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ABSTRACT

The development of generalised linear mixed models (GLMM) over the last 
decade or so has extended generalised linear modelling (GLM) techniques 
(McCullagh and Neider, 1989) to incorporate both fixed and random effects in 
a model. The development has unified the approaches to deal with a wide 
class of statistical problems such as overdispersion, shrinkage estimation, 
correlated errors and similar other problems under the common framework of 
GLMMs. The thesis looks at some theoretical and applied aspects of GLMMs 
for analysing categorical data.

After introducing the problem and reviewing the literature in the first two 
chapters it starts with an investigation of some properties of the GLMM
estimators. Approximate moments are developed for residual maximum 
likelihood estimators by utilising the known moment properties of the 
derivatives of likelihood functions. This development offers an alternative
set of estimators for the second order moments of the variance components. 
The applicability of the development to a number of problems is discussed.

Hierarchical generalised linear models (HGLM), another recent development, 
allows the distribution of the variance components to be non-normal unlike 
GLMMs. A comparative study of HGLMs and GLMMs has been undertaken by using 
a Poisson response variable.

The application of GLMMs to a number of categorical data problems is 
discussed and specific application strategies are developed. The analysis
of matched case control studies with random exposure effects is shown to be 
more appropriate under the GLMM framework. The analysis of contingency 
tables with clustered observations is another such application. The methods
of analysis with GLMMs have been developed under both Poisson and 
multinomial sampling assumptions. A general strategy for dealing with 
overdispersed multi-category response data is also presented.

The applicability of threshold modelling to the analysis of contingency 
tables with ordered categories is discussed. The strategy has been extended



to cover the situation where not only are the categories ordered but also 
the observations are clustered.

An approximate method for adjusting the standard errors of the fixed 
parameters in the absence of a full GLMMs based analysis is presented. This 
can be applied to any of the above mentioned applications to reduce the risk 
of misleading inferences in a fixed effect analysis.

The proposed methods are applied to various real datasets and the results 
from simulation studies are presented where appropriate.
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CHAPTER ONE

In t r o d u c t io n

I.l MIXED MODELS

The use of regression models to study the inter relationships among 

variables is a common phenomenon in socio-economic and biomedical research 

and the related theory has occupied a substantial part of the statistical 

literature. In a model the coefficients which relate the dependent variable

with the explanatory variables are called parameters. These parameters are 

often assumed fixed implying that if the whole population could be observed 

then the actual value of a parameter can be obtained. However in many 

applications it also makes sense to assume the parameters are random. That 

means even in the population these values are not fixed and can vary 

randomly from one to the next realisation of the population. For instance, 

in some applications the set of parameters in a model may be a sub-set of a 

bigger set of parameters while an inference is required for the whole set 

and not for the sub-set in hand. In that case it is more appropriate to 

assume the parameters in the model are random rather than fixed. 

Consequently, depending on the nature of the parameters, the models are 

referred to as fixed effects or random effects. Models which include both 

fixed and random parameters are called mixed effect models or mixed models.

Although the term ‘mixed models’ was first introduced by Eisenhart (1947) 

the use of mixed models in the form of variance components dates back as 

early as the 1860s. Airy (1861) and Chauvenet (1863) implicitly used 

variance component models in their work in astronomy. However the real 

evolution of the linear mixed model was initiated with the work of Fisher
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(1918, 1925) in genetic modelling and the development of the analysis of 

variance (ANOVA) technique. This process of evolution continued and 

received real impetus during the 1950s and the 1960s when more interest was 

focused on the estimation of variance components, particularly in relation 

to the construction of a selection index in genetics (Henderson 1950, 1953, 

1963; Rao 1952). Since then the theory and application of mixed models have 

been considerably developed.

Mixed models are found to be a very useful tool to analyse data that are 

correlated due to single or multi-level clustering or some form of

hierarchical structure. Datasets with clustering or hierarchical

relationships are very common in practice. For example, data on students

from different classes in different schools, patients from different clinics 

and animals in different litters are naturally correlated at respective 

levels of grouping. Similar structures are introduced in datasets collected

through multistage sample surveys. In longitudinal studies repeated

observations on the same individual are another example of correlated data. 

Mixed models are used very extensively in genetics in assessing the genetic

merits of animals. The models can be used to separate fixed effects such as 

age, sex or breed of animals from random genetic effects. The predictions 

of random effects can then be used for selecting animals in a breeding

program.

1.2 GENERALISED MIXED MODELS

The application of mixed models is not restricted only to the case of 

continuous response variables with normally distributed errors. During the

last couple of decades there has been considerable research in applying
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mixed models to discrete data. Following the framework of generalised

linear modelling (GLM), as in McCullagh and Neider (1989), the theory of 

mixed models has been extended to cover a variety of discrete response

variables with non-normal error distributions. The general framework of the

extension of GLM to mixed models is called generalised linear mixed models 

(GLMMs). The generalised framework can be applied to the modelling of

either continuous or discrete response data with clustered or hierarchical

structure. In epidemiological or biometric studies, the variable of

interest is often discrete and in many cases correlated or clustered. In

such situations GLMMs have proved to be very useful analysis tools. GLMMs 

are also found to be useful in accommodating overdispersion often observed 

in binomial (Williams, 1982) and Poisson (Breslow, 1984) regression models.

However, the use of GLMMs for discrete data is not as widespread as for 

continuous data for a number of reasons. The method of estimation for

discrete data is more complicated than that in the continuous case. The

absence of related fully developed asymptotic theory for inference; absence 

of appropriate modifications required for applications to specific types of 

discrete data and the unavailability of appropriate software are some of the 

main reasons preventing the widespread use of GLMMs. In recent years

several authors such as Anderson and Aitkin (1985), Breslow (1984), Morton 

(1988), Stiratelli et al. (1984) and Williams (1982) have investigated the

techniques of fitting GLMMs. Influenced by the above work Schall (1991),

Breslow and Clayton (1993) and McGilchrist (1994) have developed methods of

fitting GLMMs in a more general framework. Although each of these methods 

use a somewhat different rationale, the methods are substantially in

agreement with one another.
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1.3 RESEARCH OBJECTIVES

As indicated above the method of estimation in GLMMs is still not completely 

developed. There is scope for further improvements particularly in relation

to the properties of the GLMM estimators and inferential techniques. Also 

there is a need to analyse the GLMM framework with respect to its 

applicability to various types of categorical data. The aims of the thesis 

are: to further investigate the method of estimation in GLMMs; research the 

properties of the estimators; and analyse and develop the appropriate 

modifications required for applying the method to some specific types of 

categorical data which are frequently observed in applied research.

Applications to matched case-control studies, analysis of contingency tables 

with nominal and ordinal categories, and application to multi-category 

response data are some of these examples.

The research will mainly concentrate on the approach to estimation used by 

McGilchrist (1994) which uses the best linear unbiased prediction (BLUP) 

methods. BLUP was first proposed by Henderson (1963, 1973, 1975) to develop 

approximate maximum likelihood (ML) and residual maximum likelihood (REML) 

estimators. The approach is based on an approximate linearisation of the 

model and hence has the potential to apply to wide ranging problems.

1.4 OUTLINES OF CHAPTERS

After setting the background and the broad objective of the research in 

Chapter 1, an extensive review of the literature related to the estimation 

of variance components and fitting mixed models is presented in Chapter 2. 

Because of the difference in the problem of estimation in mixed models for
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continuous and discrete response variables the review of literature has been 

separated accordingly. The first part of Chapter 2 reviews estimation 

methods associated with a continuous response variable with normal error 

model, while the second part extends the review to the case where the

response variable is discrete with non-normal error distribution.

In Chapter 3, approximate second order moments of GLMM estimators are 

developed by utilising the connection between REML estimators and known 

moment properties of the derivatives of the components of penalised 

likelihood functions. Expressions for estimators of variance components and 

other parameters are then obtained based on the moments. The expressions 

provide an alternative strategy for estimating the variance of the

dispersion parameters. The applications to specific cases such as 

generalised mixed models, random component hazard models and threshold 

models are discussed. The GLMM strategy is then extended to a non-normal 

random component. This is done for a response variable with Poisson 

distribution and the random component is assumed to be gamma distributed. 

The chapter concludes by presenting the results from a simulation study 

using Poisson-gamma model.

Although the theory has been developed assuming the distribution of the

random term is either normal or some other appropriate distribution, no

study has so far investigated if the difference in distributional 

assumptions has any impact on estimates. Poisson-normal and Poisson-gamma 

distributions are compared and presented in Chapter 4.

5



Chapter 5 presents a strategy to analyse data from matched case-control 

studies where exposure effects are random over matched sets. This involves 

applying GLMMs framework to the conditional likelihood based analysis and 

deriving expressions for estimation equations. An efficient computing 

method for dealing with studies involving large numbers of matched sets is 

also developed. A simulation study is undertaken and the method is applied 

to a number of real datasets.

In Chapter 6, it is demonstrated how GLMMs can be used to analyse 

contingency tables where observations are clustered. The method presented 

in the chapter is developed under Poisson assumptions. The performance of 

the method is evaluated by using a benchmark dataset called Neighbourhood 

data (Brier 1980) which has been used by some other authors (Fingleton 1984) 

to investigate the analysis of clustered contingency tables.

A strategy for analysing a multi-category response variable under GLMMs is 

developed in Chapter 7. The proposed strategy is applied to a dataset 

called ‘hamsters birth defects study’ and the results are compared with 

existing methods of analysis for multinomial response. The method is then 

extended to the analysis of contingency tables with clustered observations 

under product multinomial assumptions. The neighbourhood dataset mentioned 

above is tested for independence under this approach and compared with the 

results obtained under the method presented in the previous chapter.

The methods of analysis presented in Chapters 6 and 7 are appropriate for 

contingency tables with nominal categories. In Chapter 8, a method for 

analysing contingency tables with ordinal categories is developed based on
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threshold models (McCullagh, 1980). It is shown that the method is more

efficient than those discussed in Chapters 6 and 7 when the categories are

ordinal as the number of parameters to be estimated is fewer due to the 

utilisation of additional information of the ordered relationship among 

categories. The method is extended to cover the situation where not only

are categories ordinal but also observations are clustered. This is done 

by incorporating random cluster effects in threshold models. A number of

contingency tables with both independent and correlated observations are 

analysed by using this approach. As the categories of the Neighbourhood 

dataset are ordinal this is reanalysed here to compare the result under the 

mixed threshold model with those of other methods that do not utilise the 

ordered relationship.

In Chapter 9 a method is presented to approximately adjust the standard 

eiTors (SEs) of the coefficients in a fixed effect model in the absence of a 

full mixed model analysis. In most practical applications interest is

mainly focused on the estimates of fixed parameters rather than the

predictions of random effects. However, if the estimates are obtained by 

using a fixed effect model ignoring random effects then the main problem 

appears to be the underestimation of the standard errors (SEs) of the

coefficients. The estimates of the coefficients also suffer from bias but 

to a much lesser extent than the SEs, implying that in most cases the risk

of making a wrong inference can be reduced considerably by adjusting only

the SEs. This strategy can be useful when an applied researcher is not

capable of undertaking a full mixed model analysis because of the absence of 

appropriate software or expertise. It can also be useful in a situation
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where the number of random effects to be predicted is extremely large and it 

may not be easy to undertake a mixed model analysis.

In Chapter 10, a general discussion of the research is presented. Possible 

areas of further research are also discussed.

The datasets used in various chapters are presented in Appendix A. DYALOG 

APL version 7.1 is used for all computing work in the thesis. Appendix B 

presents the relevant APL programs used in various simulations and analysis 

undertaken.
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CHAPTER TWO

Re v ie w  : Es t im a t io n  in  Mix e d  Mo d e l s

2.1 INTRODUCTION

The estimation of variance components has been a major problem since the 

beginning of the mixed model analysis. However, not much progress had been 

made in developing estimating techniques until the 1950s. Previously, the 

main contribution had come from the development of the analysis of variance 

(ANOVA) technique by Fisher (1918, 1925). This was further extended, 

notably by Tippett (1931), Daniels (1939), Winsor and Clarke (1940) and 

Crump (1946), to the estimation of variance components. The next wave of 

research on the estimation problem started with the publication of a paper 

by Henderson (1953) which introduced three different methods for estimating 

variance components from unbalanced data. Subsequently, the issue has drawn 

extensive interest and a wide variety of estimation methods have been 

developed. It is not intended to give an extensive review of the

development of the methods of estimating variance components in this

chapter. A detailed history of the development can be found in Searle et 

al. (1992). Khuri and Sahai (1985) also provides a good summary of the more 

recent work particularly in relation to continuous response variables. A 

recent paper by Robinson (1991) includes an extensive bibliography.

The history of the development of estimating variance components for

discrete response variables on the other hand is not so old. The interest 

in the use of mixed models for discrete data arose mainly in the 1980s, 

particularly with the development of generalised modelling techniques

(McCullagh and Neider, 1989). As the focus of the thesis is on discrete
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response variables the related estimation issues w ill be discussed in detail 

later in the chapter. By contrast the discussion of continuous response

variables w ill include only those methods which are related to the 

estimation of generalised linear mixed models.

An introduction to the standard notation and general assumptions can be made 

by defining a linear mixed model

where y is an nx l vector of observed responses and e is an nx l vector of 

random errors. In the case of a continuous response variable the 

distribution of e is assumed to be N(0,g2D) where D is a known matrix, ß is 

a p x l vector o f unknown fixed parameters corresponding to the known nxp 

matrix X of explanatory variables. The random component Zu can be

partitioned conformably into Z= [Z ,,Z2,...,Zk] and u=[u[,U2,...,uk]' where Uj 

is a VjXl vector of random effects with incidence matrix Zj. Each u} is 

assumed to be distributed as N[0,GjAj(p)] where p=(p|,p2,...,ps)/, a 

parameter which describes the covariance structure of the vectors Uj. The 

inclusion of the covariance parameter p is a recent development. I f  G “ =G~(|)j

(2.1) y = Xß + Zu + e

then

4>,A,(P) 0 0
0(2.2) A = 0 ^2A 2(P)

o 60 . . .  <j>kA k(p)

and Var(u) = g2A.

10



Therefore, the assumptions in the model are

E(Uj) = 0 and Var(Uj) = OjAj(p), for j=l,2....k

Cov(U:,Uj') = 0, for j*j'=l,2,...,k
(2.3)

£(e) = 0 and Var(e) = g2D; Cov(iij,e) = 0 

E{y) = Xß, and E{y | u) = Xß + Zu

Var(y) = V = g2(D + ZAZ) = g2I

2.2 METHODS FOR CONTINUOUS RESPONSE VARIABLES 

2.2.1 The Analysis of Variance Method

As mentioned above the ANOVA method was implicitly introduced by Fisher 

(1925). Later Tippett (1931) used the method explicitly to estimate 

variance components from balanced data with 2-way cross-classifications. 

The essence of the method is to calculate the mean squares under the fixed 

effect model and then equate these to the expected values under mixed or 

random effect models to derive the estimators of variance components. Under 

the assumption of normality of the error terms and other assumptions as 

mentioned in (2.3), the distribution of the estimators are obtained as 

linear functions of multiples of % -variables. Detailed discussions of the 

ANOVA method can be found in Searle (1971) and in Searle et al. (1992).

For balanced data, the ANOVA method is still the most widely accepted 

method. The ANOVA estimators are unbiased for balanced data and have the 

smallest variance of all estimators that are quadratic functions of

observations and are unbiased. Consequently, they are minimum variance 

quadratic unbiased (MVQU) estimators. Under the assumption of normality the 

estimators are minimum variance unbiased (MVU). However, the major 

disadvantage of the method is that the estimates can turn out to be negative
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which is theoretically not acceptable. One of the suggestions is that the

negative estimate is an indication that the variance component is negligible 

and should be treated as zero. Further discussion of this can be found in 

Searle (1971).

The performance of the ANOVA method for estimation of variance components 

from unbalanced data is not as good as for balanced data. The properties of 

unbiasedness and minimum variance as mentioned above do not hold in the 

unbalanced case. The seminal paper by Henderson (1953) proposed three 

modifications of the basic ANOVA method for dealing with unbalanced data. 

Method 1 is essentially the application of the strategy used for balanced 

data but the method is not applicable to mixed models and it provides biased 

estimates for random effect models. Method 2 uses data adjusted for fixed 

effects and then obtains the estimates of variance components. It does

provide unbiased estimates but it is unable to handle any interactions 

between fixed and random effects. Method 3 uses reduction in sums of 

squares due to fitting a fixed effect model and various sub-models of it. 

The variance components are estimated by equating each computed reduction to 

its expected value under the full model. The estimators under Method 3 are 

unbiased and the method can be applied to a model with interactions between 

fixed and random effects. Among the disadvantages of the method is that the 

estimates are not unique when there is more than one interaction term in the 

model.

2.2.2 Best Linear Unbiased Prediction (BLUP)

Robinson (1991) provides an extensive review of BLUP and its justification 

using various other approaches. BLUP is a technique introduced by Henderson
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(1963, 1973, 1975) for estimating random effects. The method provides a 

basis for generating ML and REML estimates particularly for GLMMs. It 

involves maximising the joint likelihood function, /=/,+/2 where

/, = - 2 [n ln 2rar + ln | d | + cr(y-Xß-Zu)'D'(y-Xß-Zu)]

(2.4)

h  = - A I  [Vj ln(2nc7j) + ln I Aj(p) | + afu 'A 'u,] 
j = l

viz. /, is the log-likelihood for y given u fixed and l0 is the log- 

likelihood for u. For normal error models, the estimates ß and ü are those 

values which equate the derivatives of / with respect to ß and u to zero. 

Henderson (1950) derived the simultaneous equations, also referred to as 

mixed models equations, for calculating BLUP estimates as follows

(2.5) XD>X x d 'z P _ X D ' y
Z D ' X Z D 'Z + A '1 Ü

.  .
Z'D"'y

Solving the equations provides explicit expressions for ß and ü 

ß = [X'I',X]'1X/r 1y
(2.6)

ü = A Z 'r‘[y - Xß]

An alternative expression for ü is derived by Patterson and Thompson (1971) 

(2.7) ü = (Z'KZ+A'Vz'Ky

where K = D 1 - D IX(X'D‘1X)"X'D'1 is a symmetric matrix with X'KX=0 

implies KX=0.

13



Taking the derivatives with respect to a 2, a 2, ps and equating to zero 

provides the estimating equations for variance components. Solving the 

equations and using the estimates ß and ü, the BLUP estimators of the 

variance components are obtained as

(2.8)

~2(T = (y - Xß - Zü)'D (y - Xß - Zü)/n

5 j2 = üjAj'üj/Vj

X [rjs) - Gj üjAj (3Aj/öps)Aj üj] I p=ps — s—1,2,...,S

where rjs> = tr[Aj'(öAj/öps)]. The equation for ps may not be solvable 

explicitly.

The above derivation is done without assuming any normality of the joint 

distribution of y and u. However, under the condition of normality, BLUP 

estimators have some good properties.

1. The BLUP estimators ß and ü are identical to ML 

estimators given the variance-covariance matrix of y.

2. E(u I ü) = ü

3. Var(u | ü) = Var(u) - Var(ü)

Henderson (1973) also extended BLUP to predict k'ß+mTi by k'ß+nTü.

2.2.3 Maximum Likelihood (ML)

With the advancement of computing technology likelihood based methods for 

estimating variance components are becoming more and more popular. The 

applications of ML theory to variance components estimation are discussed in

14



Hartley and Rao (1967), Anderson (1973) and Miller (1973, 1977). A unified 

review of ML approaches to variance component estimation is provided by

Harville (1977). As Harville mentioned, a ML approach to variance

estimation has a number of attractive properties. The ML estimators are

asymptotically normal and efficient, consistent and are functions of every 

sufficient statistic. The ML approach does not suffer from the deficiencies

of some other methods. For example, the possibility of negative estimates 

of variance components can easily be removed by including non-negativity

constraints in the parameter space. It offers a strategy for simultaneously 

estimating fixed and random effects and the corresponding variance

components. One of the requirements of the ML approach is to assume a

parametric form for the distribution of the data vector. Generally, the

distribution is assumed to be normal for continuous data.

The ML estimators are derived by maximising the likelihood function with 

respect of the parameters to be estimated. For the mixed model defined in 

(2.1) the log-likelihood function of the observation vector y is given by

(2.9) / = \  [n ln (2jt) + ln | V | + (y - Xß)'V '(y - Xß)]

The derivatives of / with respect to ß, a", a. and p are as follows 

Jp  = [X'V'(y - Xß)],

— r = (-l/2)[n02 - 0 ’2(y-Xß)'V’l(y-Xß)],
SG“

( 2. 10)

= (-1/2) [tr(V"1 ZjAjZj) - (y-Xß)'V" 'ZjAjZJV"1 (y-Xß)],
da]

dl /dps = (-1/2) [tr(V’lZöA/apsZ/) - (y-Xß),V’lZdA/dpsZ/V~l(y-Xß)],
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Generally, the ML estimates are obtained by equating the derivatives to zero

and solving for the parameters. However, in this case the solutions for ß 

and o j may not necessarily be ML estimators because of the boundary 

restrictions on Gj. If V is known then the solution for ß,

(2.11) ß = (X 'V lX )'X 'V ‘y.

gives ML estimates because there are no boundary restrictions on ß. If the
9

corresponding solutions for other parameters are within the boundary i.e. a" 

> 0 and G“ > 0 then the estimates are ML estimates. If the above conditions 

are not met then the solutions are not ML. One way of resolving the problem 

in that situation is by replacing negative values by zero and then

recalculating the estimates until the non-negativity conditions are met. 

The approach is further discussed in Herbach (1959) and Thompson (1962). In 

most cases the solutions have to be obtained numerically, usually by

iteration.

Hartley and Rao (1967) proposed an alternative method by formulating the
9 9

likelihood function in terms of H and ({)=g“/g“ where H is given by

(2.12) V = a 2H = a 2[ I+ZAZ']

with A is as defined in (2.2). Using (2.5) in the above derivatives the 

estimates of ß and g“ are obtained as

(2.13) X'HT'y = X 'H '‘X ß

(2.14) a 2 = (y - Xß)'H"'(y - Xß)/n

and the estimate of is obtained iteratively from

(2.15) tr(H’lZJZj) = cr2(y - X ß )'H 'lZJZ 'H ‘1(y - Xß) .
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Since (2.12) does not involve p, there is no derivative with respect to p.

The availability of the large sample, asymptotic dispersion matrix of the 

estimators is one of the attractive features of the ML estimation. The 

inverse of the information matrix provides the asymptotic variances of the 

estimates where the elements of the information matrix are the second order 

derivatives of the likelihood function.

McGilchrist and Yau (1995) derived an expression for the information matrix 

/ML for ß, 5 2, <pj, ps as

c f2L 0 0 0

0 n/2a4 ( l/2 a 2)[trZ’l3X/a<t>j] (l/2<r)[trZ ''aZ/ap,]

0 . (i/2 )tr[l" ‘al/a<|>iE"lal/a<t>J] (i/2)tr[Z 'laz/a(|>iz ''0 Z /a p l]

0 . . (l/2 )tr[Z 'laZ/apsZ 'laZ/apt]

where L = X'Z !X implying that for a particular value of Z 

ß = L"X'Z"'y
(2.16)

ö 2 = (y-Xß)'Z"'(y-Xß)/n .

k
Given that Z = D + ZAZ' = D +X  4>JZJAj(p)ZJ/ ,

j = i
k

3Z/3({)j = ZJAJ(p)Zj , 3Z/3ps = X 4>jZjöAj/öpsZj ,
j = l

Q = K(KZK)"K , Qy = Z‘‘(y-Xß) = D''(y-Xß-Za) ,

alternative expressions for variance components and IML are derived as 

follows
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a2 = y'r'Cy-XßVn = y'D-'(y-Xß-ZÜ)/n = y'Qy/n,
(2.17)

a2 = u'Aj Uj/(Vj-rp

3//aPslß=ß = -0 /2) £  [VjS)+r*(s)+aj'2üj(aAjl/aps)üJ]p=p = 0 for ps 
j  =  i

which may be required to be solved iteratively. The definitions of the 

terms v-s) and rj(s) are given below. Let

(2.18) [X'D" X X'D" Z
Z'D-'X Z'D'Z+A ' 1

that means T is that part of the inverse corresponding to Z'D 'Z+A 1 in the 

original matrix and T*=(Z'D_,Z+A ’)_1. Tjj is a partition of T* into blocks 

conformal to the partition of u.

Then defining the following terms

(2.19)

r* -  <J>j tr Aj Tjj , r* -  <J>j tr 8Aj /SpsTjj ,

rf° = 4>:'tr aAj'/ap.TjjAj'aAj'/ap, ,

r-j = tr T*jAj:it ;,A;', r f  = tr T*j aAj'/ap.Tj.AJ1.

(St) * I * I I
r-j = tr T j j  aAj /a p ^ a A ; /dtyt , Vj = tr Aj Aj , 

vjs) = tr Aj‘aAJ/a(j)s , Vj(st) = tr aAj/a(j)saAj Va(()t ,

the information matrix multiplied by 2 can be expressed as
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0 02g’2L 0

0
j=l

0 . [<t>i2(vi-2r*)5ij+<t>|2<()j2r*j] [^'(vf'+ar’W -I

0

2.2.4 Residual Maximum likelihood (REML)

One of the shortcomings of ML estimation of the variance components is that 

it does not consider the loss in degrees of freedom that results from 

estimation of the fixed coefficients. The ML estimates, even from simple

balanced data, do not coincide with those generated by ANOVA methods. They 

tend to be negatively biased and the variance is not minimum (Searle et al. 

1992). To overcome this drawback the REML method was developed originally 

by Anderson and Bancroft (1952) and Russell and Bradley (1958) for specific 

balanced ANOVA models. Thompson (1962) extended it for all balanced ANOVA 

models, and Patterson and Thompson (1971, 1974) extended it in general form. 

The essence of REML estimation is to calculate variance components based on 

residuals calculated after fitting the fixed effects part of the model 

through ordinary least squares. The estimation can also be viewed as 

maximising a marginal likelihood. The REML estimators are identical to 

those resulting from ANOVA methods and likewise bear the property of 

unbiasedness and minimum variance. An expression for the REML log-

likelihood function given by Patterson and Thompson (1971) is

(2.20) /REMl = -(1/2) [(n-p) in (2mr) + In | k IK | + cry'K(KXK)'Ky]

19



here K  = D 1 - D '^ X 'D ^ X )  X 'D  1 which satisfies the condition KX=0. 

(KZK) is the generalised inverse of K ZK  and | K ZK  | is the determinant of 

linearly independent rows and columns of KZK. The estimators for o 2 and (J) 

are derived by taking the derivatives of /REML as follows:

a/REML/öa2 = (-l/2 )[(n -v )a2- G4y'Qy],
(2.21)

= (-l/2)[trQöZ/ö())j - <7 y QaZ/afyQy], 

a R̂EML̂ aPs = (- l/2)[trQ<3Z/5ps - o yQaZ/dpsQy], 

where Q = K(KZK)"K-

Equating the above derivatives to zero and solving for a 2 and (j) gives the 

REML estimates. Again the equations may have to be resolved iteratively.

Similarly to the M L estimators, the asymptotic dispersion matrix o f the 

parameters can be derived by taking the inverse of the information matrix 

that is calculated by using the second derivatives o f the REML log- 

likelihood function.

An expression for IREML was derived by McGilchrist and Yau (1995) as follows

4 e m l  -

(n-v)/2a4 (l/2 c r)[tr QaZ/a^] (l/2cr)[trQ3L/Spt]
(l/2)tr[QaZ/ai|)iQaZ/a(|)J] (l/2)tr[QaI/a(|)jQal/ap,]

(i/2)tr[Qaz/apsQal/ap,]

k
Using aZ/atjjj = ZjAj(p)Zj , dZ/3ps = X fyZjdAj/öpjZj and the notations

j = i
used in the previous section, expressions for variance components are 

derived as:
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( 2.22)
a REML = (n-v)~’y'Qy ,

^REMl/^j = -( l/2(})j)[Vj-rj-CJj UjAj Uj] = 0 

giving Oj = u'Aj u/CVj-r*)

3//aps |ß =ß = -(1/2)1 [VjS)+rj(s)+Gj‘2uj(5Aj1/aps)uj]p=p = 0 for ps 
j  = i

which may required to be solved iteratively. The information matrix 

multiplied by 2 is

2-fREM L =

(n-v)/a4 CTj2(vj-rj) crj21  (vj°+r/0)
j  =  i

[t})i2(vi-2ri)Öij+(j)j2({)j2rij] [<t>I1 (vf)+2ri(*>_ £  (j):1̂ 1̂ 0)]
j = t

I  ("VjSt)+2rj(s,)+ £  
j = 1 m = 1

The expressions for r-, rV], q(s), r^st>, r- and rjm are obtained if
(s)

T* and Tjj are replaced by T and T- in the derivations of rj , r*j ,
*(s) *(st> *(s) , * (st) , .rj , Tjj , Tjj and Tjm as presented in the previous section.

The above expression for /REML excludes the variance-covariances for the 

fixed coefficients. These remain the same as for ML estimates.

Except some specific situations where explicit expressions for ML and REML 

estimates can be derived (Herbach, 1959; Thompson, 1962), an iterative 

numerical procedure needs to be employed to obtain the estimates. The 

procedure turns out to be very computationally intensive as in each

iteration the first and second partial derivatives, expected values of the 

second derivatives and other related quantities are required to be
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calculated. Moreover, there are many different numerical algorithms that 

can be applied and none of these seem to work uniformly well in all 

applications. Anderson (1973) and Henderson (1973) proposed algorithms for 

computing ML estimates of (}) in specific situations. Harville (1977) 

reviewed various procedures for obtaining efficient solutions in both 

specific and general situations. The procedures for computing ML and REML 

estimates of variance components rely mainly on a variation of the methods 

of steepest ascent (Hartley and Vaughn, 1972), the Newton-Raphson method 

(Hemmerle and Hartley, 1973; Corbeil and Searle, 1976) and the method of 

scoring (Jennrich and Sampson, 1976).

2.2.5 Other Methods

There are many other approaches to the estimation of variance components 

which are not very widely used in practice (Searle et al. 1992). Among 

these Minimum Norm Quadratic Unbiased Estimation (M1NQUE) and Minimum 

Variance Quadratic Unbiased Estimation (MIVQUE) which were introduced by Rao 

(1970, 1971a, 1971b, 1972). Under normality, MINQUE and MIVQUE are 

identical. No distributional assumption is required for MINQUE except the 

requirement of the existence of the first four moments. The procedure also 

does not involve any iteration but for solving the linear equations it 

depends on a priori values for variance components and the solutions can be 

different for different choices of a priori values. This is considered to 

be a disadvantage of the approach. Rao (1979) developed a class of iterated 

Minimum Norm Quadratic Estimators (MINQE) which do not depend on any a 

priori values. This class also includes ML and REML estimators. For 

details of these methods of estimation, see Rao and Kleffe (1988).
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A number of authors proposed Bayesian methods for the estimation of variance 

components. In the Bayesian framework the posterior distribution of the 

variance components are obtained based on a prior distribution. Hill (1965, 

1967) first considered the Bayesian method for estimating variance 

components in the one-way random model. A review of the Bayesian methods 

for variance components can be found in (Khuri and Sahai, 1985). It is 

noted in the latter paper that the Bayesian methodology was investigated 

mainly for balanced data and not many papers were published for its 

application to unbalanced data.

2.3 METHODS FOR DISCRETE RESPONSE VARIABLES 

2.3.1 Generalised Linear Mixed Models (GLMMs)

The investigation of the methods of fitting mixed models to a discrete 

dependant variable has been started rather recently. The development of 

generalised linear modelling (GLM) techniques by Neider & Wedderburn (1972) 

and McCullagh and Neider (1989) paved the way for extending mixed models to 

discrete response data. GLM has unified the regression methodology for a 

variety of discrete and continuous response variables. GLMMs are in fact an 

extension of GLMs to incorporate both fixed and random effects in the model. 

Similarly to GLM, in GLMMs the distribution of the error term is not

restricted to the normal but can follow any distribution from the 

exponential family.

The problem of estimation in models with non-normal error is more complex 

than that of mixed models with normal error. In non-normal error models,

the random error is generally assumed to follow a multivariate normal

distribution and variance components are estimated based on the marginal
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distribution of the response variable. However, a full maximum likelihood 

analysis based on the joint marginal distribution requires numerical 

integration techniques for calculation of the log-likelihood by integrating 

out with respect to the random effect variables. The problem with this 

marginal likelihood approach is that, except in some simple cases, it has

proved intractable to perform the numerical integration operation, 

particularly for more complicated problems involving high dimensional 

integrals. A variety of different approaches have been proposed to overcome 

the problem.

Leonard (1972) gave a Bayesian procedure for estimating the variance of the 

random effects. The Bayesian approach to binary responses is described in 

Stiratelli et al. (1984) for modelling the dependence among outcome 

variables inherent in longitudinal or repeated measures designs. Recent 

Bayesian techniques overcome the problem of numerical integration by taking

repeated samples from the posterior distributions using importance

(Raghunathan, 1994) or Gibbs sampling techniques (Besag et al., 1991; Zeger 

and Karim, 1991).

Williams (1982) proposed an empirical approach for binomial data with extra 

binomial variation. Breslow (1984) investigated the problem in the context 

of Poisson-gamma models. Crowder (1985) and Tsutakawa (1988) have

investigated log-linear models with random effects for count data. Anderson 

and Aitkin (1985) and Im and Gionola . (1988) used maximum likelihood 

estimation in logistic and probit models where the random effects are 

assumed to follow a normal distribution, and the conditional distribution of

y is binomial. Other models have been proposed by Williams (1975), Crowder 

(1978) and Küpper & Haseman (1978).
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Methods for estimating random parameters from threshold data are presented 

by Gianola & Foulley (1982, 1983) and Harville and Mee (1984). These 

methods, based on Bayesian arguments, maximize the likelihood jointly for 

both fixed and random effects. Gilmour et al. (1985) proposed an 

alternative solution for predicting random effects which maximizes the 

likelihood with respect to the fixed effects while taking expectations over

the random effects. The solutions of the resultant equations produce 

predicted values of the random effects. The Gilmour et al. (1985) approach

has elements in common with the EM algorithm of Dempster et ai. (1977).

Zeger et al. (1988) introduced the concepts of ‘subject specific’ (SS) and 

‘population averaged’ (PA) approaches. In SS models, subject-to-subject 

heterogeneity is explicitly modelled, while in PA models, importance is 

given to population level inference rather than to any individual. The

generalized estimating equation (GEE) approach of Zeger and Liang (1986), 

Liang and Zeger (1986) and Zeger et al. (1988) is based on the PA approach. 

This models the marginal expectation, rather than conditional expectation 

given a cluster-specific effect, thus avoiding the need for numerical 

integration. As the strategy does not provide any estimates of random 

effects it is not useful to those situations where interest is on the random 

effects.

Schall (1991) used a different approach which went directly to a 

linearisation of the link function applied to the observations rather than 

approximating the likelihood function. This direct approach enabled Schall

to use the relationship among BLUP, ML and REML approaches, developed for

normal theory models by Harville (1977), Patterson and Thompson (1971) and
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Fellner (1986, 1987), to obtain similar methods for GLMMs. Wolfinger (1993) 

applied an approximation to Laplace’s method for integrals to marginal 

distributions of non-normal data and extended Schall’s approach.

Breslow and Clayton (1993) developed penalized quasi-likelihood (PQL) and 

marginal quasi-likelihood (MQL) for approximate inference in GLMMs. Similar 

approaches have been used by Engel and Keen (1992) and Wolfinger and 

O’Connell (1993). PQL method was investigated previously by Green (1987) 

for inference in hierarchical models. Laird (1978) and Stiratelli et al.

(1984) also proposed PQL as an approximate Bayes procedure for some GLMMs. 

The MQL procedure, in fact, originated in Goldstein (1991) as an extension 

to GLMs of his work on multilevel modelling (Goldstein 1986, 1988). By

using informal mathematical arguments, simulations and applying to several 

data sets, Breslow and Clayton (1993) conclude that PQL is useful in 

practice for approximate inference on fixed and random effects in the

hierarchical model. However, when applied to clustered binomial data the 

approach underestimates somewhat the variance components and fixed effects, 

but the bias tends to disappear rapidly for binomial observations with 

denominators greater than one (Breslow and Clayton 1993). The Solomon and 

Cox (1992) approach and a Laplace approximation are compared through 

different expansions of the likelihood function in Breslow and Lin (1995)

where a bias correction for PQL is given. The failure to account for the 

contribution of the estimated variance components when assessing the 

uncertainty in both fixed and random effects is another limitation of PQL. 

On the other hand, an important drawback of MQL is its inability to

correctly model the heterogeneity in the fixed effects which leads to a 

misleading correlation in the estimated random effects. Breslow and Clayton
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(1993) recommended that MQL should be the preferred method when the marginal 

relationship between covariables and response is of interest but PQL should 

be used when estimates of random effects are of interest in the hierarchical 

model.

McCulloch (1994) proposed a variation of the EM algorithm for computation of 

ML and REML estimation of variance components and an analog of BLUP for the 

realized values of the random effects in a class of probit-normal models for 

binary data. The strategy was extended further in McCulloch (1997) to

develop another computation strategy called Monte Carlo Newton-Raphson 

(MCNR) method.

McGilchrist and Aisbett (1991a) proposed an estimation procedure based on 

Henderson’s BLUP technique (1963, 1973, 1975). They proposed to replace the 

likelihood function for fixed and random components by the asymptotic 

likelihood of their ML estimators and the distribution of the random 

components by a restricted prior. This is essentially a PQL approach.

McGilchrist (1994) further modified the McGilchrist and Aisbett (1991a) 

approach. The method extended BLUP methods to ML and REML estimation 

procedures in GLMMs. The approach is still similar in principle to PQL and 

very much in agreement with McGilchrist and Aisbett (1991a), Schall (1991) 

and Breslow and Clayton (1993). It uses a slightly different argument for 

approximate linearisation which provided a rationale for applying the method 

to a wider class of problems. Applications of the method have been made to 

Multi-centre clinical trials in McGilchrist and Zhaorong (1990); discordance 

data in Zhaorong et al. (1992); to threshold models in Zhaorong et al. 

(1992), Saei (1996) and Saei and McGilchrist (1996); to survival analysis in
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McGilchrist and Aisbett (1991b), McGilchrist (1993), McGilchrist and Yau 

(1996), Yau and McGilchrist (1998). This approach has been investigated 

further in the current thesis.

Lee and Neider (1996) has further extended the linearisation approach by 

introducing a variety of random component model distributions and deriving 

estimating equations for the parameters of the generalised model. Their 

approach has been termed the hierarchical likelihood approach.

2.3.2 Estimation Framework in GLMMs

As mentioned above a wide variety of different approaches has been proposed 

for obtaining ML or REML estimates in GLMMs with non-normal error. A number 

of authors have proposed penalised quasi-likelihood with some variations. 

As most of the approaches are very much in agreement, a general framework of 

GLMM with particular references to McGilchrist (1994) is presented here.

In GLMM, the distribution of the response vector y given u depends on an 

underlying vector quantity r\ which in turn relates to the explanatory 

variables through the equation

r| = Xß + Zu

The notation used here is the same as described in section 2.1. The log- 

likelihood function of y conditional on fixed u is

/, = ln f(y;ß I u)

where f(y;ß I u) is the probability density function of y conditional on fixed 

u. As the distribution of the random component vector u is assumed to be 

normal the log-likelihood is given by
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(2.23) l2 = - i  I  [Vj ln(2no?) + ln | Aj(p) I + a fu jA '1̂ ]
j= l

Estimators are derived using a penalised likelihood approach. The approach 

is consistent with the BLUP philosophy which obtains estimators ß, ü by 

maximising the penalised likelihood function / = / +/? . First and second 

derivatives of the log-likelihood are

a//aß = X'dl/ar\ , a//a u = Z'a/^arj + ayau
(2.24)

a2//aßaß' = X'(a2/ /ariariOX, a2//aßau' = X'(a2/ /ariarOZ 

a2//auau' = Z'(a2/ i/ariarj,)Z + a^/auau'

Letting B = -a2//a rlarj' , A = -a2/yauau' , the values ß and u which 

maximise the likelihood function are obtained by using an iterative Newton- 

Raphson algorithm as follows

(2.25) + V X'
Z' t + V -1 where a/,/ar| , s = a/2/au

and ß0 , u0 are initial values which are replaced by ß, , u, after the 

first iteration and the process continued until convergence is achieved. 

The variance-covariance matrix Y is given by

(2.26)

a2//aßaß' a2//aßau' 
a2//auaß' a2//auau'

X'
b [x  z ] + 0 0 v „  v , ; X T - \ T, T 2

Z' 0 A v2l v 22 , v  =
t 2 t

I f  V is replaced by E(V) then the iterative procedure becomes the method ol 

scoring.
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McGilchrist (1994) argued that the likelihood function / can be approximated 

by assuming that ß and ü have approximately a joint normal distribution with 

means ß and u and variance matrix V’ as follows

(2.27) l = constant + ^
' /

ß-ß V ß-ß
u-u u-u

In McGilchrist and Aisbett (1991a), the component /, of the BLUP procedure 

is replaced by the log-likelihood of ß and u based on the normal 

approximation of its asymptotic distribution. The resulting BLUP log- 

likelihood is identical with the above quadratic expression. The estimating 

equations for ß and u are also consistent with that of the method of 

scoring. McGilchrist (1994) concluded that if / is approximately quadratic 

in ß and u then the BLUP estimation may be considered as derived from the 

very approximate asymptotic distribution of ß and u. Then the joint 

likelihood of the BLUP procedure is approximated as / = /, + l2 with l2 as 

defined above and

/* = constant - ^ ß-ß
/

X'
Z' b [x  z] ß-ß

u-u - U - U

(2.28)

= constant - (l/2)(y*-Xß-Zu)'B-(y*-Xß-Zu) 

where y* =Xß + Zu and B = -E{d2lJdr\dr{)

2.3.3 BLUP to ML and REML

For given <}>, both ML and REML estimators of ß are identical to the BLUP 

estimators. But the estimators of the variance components are different.

If T* = V2 2  then the ML estimators are

30



aML = y*'B(y*-Xß-Zü)/n ,
(2.29)

Oj(MU = üjAj'ü/CVj-rp ,

£  [v(s)+r^s)+Gj2uj(aAj'/■ 3ps)Uj] = 0, for ps(ML). s=l,2,...,S
j = i J J

where r* = fy’1 tr(Aj'Tjj). The information matrix for the ML estimators of
2

cT, (j)j and ps are as given in the previous section.

Similarly, the REML estimators of the variance components are derived by 

using T instead of T*;

° reml = y"ß(y*-xß-Zü)/(n-v) ,
(2.30)

a j(REML) = ^jAj Ü j/(V j-Ij) ,

i  [v<s)-Hr<s)+cr:2Uj(aAjVaps)üj] = 0, for ps(REML), s=l,2,...,S 
j = i

where rj = (J)-1 tr(AjITjj). The information matrix for the ML estimators of
2

cT, <|)j and ps are as given in section 2.2.4.

For the normal error model, y* and B should be replaced in the above 

expressions by y and D‘ respectively and for non-normal error model g “= 1  

implying <t>j=Gj.

As mentioned above the solution for the parameters has to be obtained

iteratively. The process starts with arbitrary values of (J) and p and 

obtains the initial estimates of ß and u through the Newton-Raphson 

algorithm. Then the initial estimates of ß and u are used to calculate the
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initial estimates of <|> and p. The second iteration starts with these 

initial estimates of (j) and p and then a new set of estimates of ß and u is 

obtained. The process is continued until convergence is achieved for ß, u, 

§ and p.
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CHAPTER THREE

Moment Properties for Estimators in Generalised 
Linear Mixed Models

3.1 INTRODUCTION

In GLMMs, valid asymptotic theory has been difficult to develop through

expansion techniques (see Barndorff-Neilson and Cox, 1994) because of the 

number of random components. It will usually be true that, as the number of 

responses increase, so too will the number of random components involved in 

the corresponding model. Indeed, as the number of observations approach

infinity, so too do the number of random components. Because of this

difficulty the asympototic properties of the GLMM estimators have not been

developed fully.

The aim of this chapter is to develop approximate moments for REML 

estimators. This is done by linking the distribution of estimators of fixed 

and random components in the mixed model to the distribution of the

derivatives of loglikelihoods and derivatives of logarithm of density

functions which have known first and second order moment properties. The 

linking equations are again based on approximate first order expansions but 

the resultant theory is further justification for the use of extended REML

techniques. In section 3.2 the structure of the inference problem is set 

out and in sections 3.3, 3.4 and 3.5 estimation techniques are developed. 

Two alternative strategies for deriving the estimator of the variance 

components (j) are discussed and a new method for calculating variance of the 

estimator $ is developed under the assumption of approximate normality for 

üj. An estimator for an additional variance parameter y and the
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corresponding variance of the estimator y are also derived. Final sections 

consider application to specific classes of problems. One of the

applications is to extend the method for a Poisson distributed response 

variable to the case where the distribution of the random components is non­

normal. Finally, results are presented from a simulation study using the

Poisson-gamma model.

3.2 THE LINEAR MIXED MODELS

In the previous chapter a basic description of GLMMs and the estimation 

problem has been presented. However, in this section problems are taken to 

have a particular structure which is sufficiently general to include GLMMs 

and dependent failure time models. The ith response is taken to have a 

distribution dependent on a quantity ly, for i=l,2,...,n. In the structure 

considered here, regression parameters of interest are contained in the 

linear combinations

(3.1) r\. = x'ß + z'u , i = l,2,...,n

where x is a v-dimensional vector of risk or regression variables with 

regression coefficient ß fixed across different values of i , while u is a 

vector of random components and having incidence vector z indicating which 

random components are present in rj.. Letting r|'=[r| ,r)o,...,ri ] then the 

linear model becomes r\ = Xß + Zu as described in 2.3.2. In some cases it 

is convenient to write u'=[u',u',...,u'] and conformal decomposition 

Z=[Z(,Z2 ...,Zk]. The u. are mutually independent and have distributions 

with parameters ({). , j=l,2,...,k which are distinct one from the other but 

possibly a common parameter vector p . Usually the parameter represents 

the variance of the random component Uj while the parameter p describes the
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correlation structure of the whole set of random components. For many

problems there is no parameter p because the dependence structure is 

adequately explained by the random components, each with their own variance.

The response variables of the experiment may be loosely referred to as the 

vector y and these responses have a distribution which depends on r\ . It is 

important that, conditional on given random component vector u, the response 

has a log-likelihood function / (r|,Y I u) . The parameter y is additional to

those occurring in r\ and will often relate to the variance of the response. 

Not all problems have this extra parameter y and it, together with p , are 

considered fixed and known in the initial development. The log-likelihood 

function /, is not necessarily the full likelihood function but may be a

conditional likelihood, a partial likelihood or some other appropriate

likelihood function. For a GLM, the full likelihood function would be

appropriate while for multiple failure times the Cox partial likelihood 

would be used. In what follows we assume that the domain of this likelihood 

does not depend on r\ or y.

3.3 ESTIMATION OF ß, u

The estimation procedure has been described in the previous chapter in

section 2.3.2 which is briefly reviewed here. The distribution of the 

random component vector u is specified by a log-probability density function

(3.2) /,(<!>,p) = I / (<|>,p) .
j = i J J

Estimators are derived using a penalised likelihood approach where /o is a 

penalty function on random components u for the log-likelihood function / | . 

The approach chooses estimators ß, ü to maximise / = / +/, similar to the
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BLUP principle. This function has been called the hierarchical likelihood 

by Lee and Neider (1996). Using the first and second derivatives as 

presented in section 2.3.2, an iterative Newton-Raphson solution for ß, u of 

the equations 3//3ß = 0, dl/du = 0 begins at initial values ß , and 

finds a first iteration ß , u ( given by

(3.3)

and V

ßrßo
ur uc = V- l fX'

Z' t + V-1 , where

a //aßaß' a2//aßaiT 
a2//auaß' a2//auau'

X'
Z' [xz] +

t = a/|/ar| , s = a/0/au

0 o' v „  v , ;
0 A V2, V„

V 1
T, T2
t ' t

where b = -a2/ i/ariarj' , a = -32/yauaiT.

The method becomes iterative when the one-step iterations ß , u replace the 

initial values for a further iteration and so on. If B is replaced by 

/yu=£yu(B) and A by J3=£U(A) then the Newton-Raphson method becomes the 

method of scoring. An intermediate position is to use Iy  ̂u=Ey  ̂U(B) and A as 

the appropriate matrices. Note that, for generalised linear models, the

matrices /  and B are the same and, if u is normally distributed A and A 

are the same.

To develop the properties of these estimators we consider the equations that

would result if we started the iterations from the true values of ß, u and

considered that ß, u are obtained (at least approximately) as one step

iterations much in the same spirit of Pregibon’s (1981) one-step residuals.

In that case we have approximately
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(3.4)
ß = ß + (TjX'+TjZOt + T2s 

ü = u + (T'X'+TZOt + Ts

We assume initially below that the intermediate matrices of I , A are used
y I u

so that V and hence all T matrices are not dependent on y but are possibly 

dependent on u.

Since we are assuming that the domain of the likelihood function does not 

involve r| we may write

£y,u(t) = 0 , Vary|U(t) = -£y|U(a2/|/ariaTi') = /y|U

so that

£y |U(ß) = ß + T2s , £ y|U(u) = u + Ts

and

(3.5) Vary\ p = V X'
r /y|U[x z ]V  = V - V 0 o’

0 A
u

_ .
■

T,-T2AT2 t 2-t 2at
T2-TaT2 T-TaT

This expression for the variance is exactly true when V is computed from 

/y u and A instead of 7y u and A  , otherwise it is an approximation.

For /  and A  used to construct V , the matrices T and A  do not depend on y 

or u. If £ u(s)=0 then £yu(ß)=ß and using Vary | u(ß)=T|-T2AT2 as well as

Varu[£y  ̂u(ß)]=T2AT2 then Varyu(ß)=T, . Thus ß is an unbiased estimator 

of ß and has variance matrix Tj. We can expect that, if no small subset of 

observations is very influential, the formation of ß as a linear combination 

of components of t will ensure approximate normality of its distribution.
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3.4 ESTIMATION OF $ VARIANCE COMPONENTS

Interest now centres on appropriate quadratic forms to estimate when

these parameters are scalars representing the variance of the random

components Uj . Letting Äj = -d2l1ldu]d\x] = -8fl2-ld\x-d\i', and noting that
2

-d~l2/dUjSu'=0 for j^r because the Uj are independent, we have

A, p ,

A =
a2

For some choice of P =
P2

* h ’ P k

the quadratic form ujPjüj will have an expectation depending on

(3.6) £ y|U(ü) = u+Ts = z , Vary|U(u) = T-TaT = R .

Letting z'=[zJ,Z2,...,z£] , R=[Rjr] be partitions of z and R conformal to

the partitions of u , gives

(3.7) E y ! u(UjPjUj) = z'PjZj + tr(PjRjj) .

Note that if £ u(s)=0 then £ u(z)=0 so that

(3.8) £ y,u(üjPjUj) = tr[Pj£u(ZjZj)] + ^(PjR^) 

where it is taken that P and R are not functions of u .

If we argue that higher moments of u'PjUj can be obtained by assuming 

approximate normality for üj then

V a r y |u ( “ j p j“ j)  =  4 z j P j R jjP ,zj +  2  t r <P j R ji>2 

^uVary|U(ü'Pjüj) = 4 trtPjR/^ZjZj)] + 2 tnP.R.f

Varu[£y (SjPjGj)] = 2 trlPjÊ ZjZj)]2
giving

(3.9)
Var^lGjPjüj) = 4tr[PjRjjPj£u(ZjZ')] + 2tr(PJRJJ)2 + 2tr[PJ£ u(zJzJ')]:

= 2 tr^Rjj+Pj^CZjZ')]2
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An unbiased estimating equation for tfy is constructed by equating to

its expectation Ey u(ujPjUj) as evaluated above for an appropriate choice 

of Pj . Often Pj will be chosen as an identity matrix. Progress beyond 

this point of development depends on the choice of the model l2 for the 

random components. Section 3.6 gives further development when the random 

component u is normally distributed.

An alternative approach is to let s be the value of s=dl2/du at u . Thus

(3.10) s — s - A(u-u) = (I-aT)s - AOT'X'+TZOt

giving

£y|U(s) = (I-AT)s = z* ,

Vary|U(s) = ARA , £u(z*z*') = A-ATa-aRA .

If z*,=[zf,zf',...,zf/] , s'=[s;,s',...,s'] then

Ey I u(SjÄj ‘sj) = zJ'Aj’zJ + tr(RjyAj) ,

^y,u(SjÄj ®j) = vj"tr(T]jAj) .

Equating s'Aj'sj to Vj-tr(T^Aj) leads to an unbiased estimating 

equation for <J)j . In a similar manner to previous development we may find

(3.11) Vary „(s'Aj'sj) = 2 t r ^ . - T / /  .

3.5 ESTIMATION OF THE y VARIANCE PARAMETERS

For problems in which y is a scalar and represents some form of variability 

of the observations, an estimator can often be constructed by equating 

to its expectation, where t is the value of t at ß=ß, u=u. For
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more general types of parameter the equating of dl /dy  to its expectation 

can be explored. Similarly the equating of dl ldp to its expectation can

be used to find an estimating equation for p. The remainder of this Chapter 

considers the simpler problem of there being no parameter p. It has been 

included in the general discussion to indicate how to proceed when such 

correlational parameters are present in the problem. We now go on to 

consider the estimation of y .

An approximate expansion of t about the true value of t at corresponding 

true ß, u is

t * t - Ly\ p-p
u-u

Using the moments of ß, u for given u we have

(3.12)

(3.13)

£ yiu(t) = -/yiU(XT2+ZT)s ,y\

y I u y I [x z V+v" 0 0 
0 AV ] X'

Z'L V . « /
/ j y I u •

Using the formula E y (u( t7 yJut) = EyiU(t') /y IuEyiU(t)  + tr /“ | uVaryiU(t)y I uV '  y I u“ y I y I u y I

and noting that

X '/y|U(XT2+ZT) = 0 , Z 7y|U(XT,+ZT) = Iv.-ftT

where V: is the dimension of Uj and v_ is the sum of such dimensions, gives

£y|U( t 7 ; |ut) = s'(T-TftT)s + n - v - v + tr(AT)2 .

Since £’u(s)=0 , Varu(s)=Ä we have

(3.14) £yiU( t7 yjut) = n - (v+v.) + tr(AT) .

Equating t7~Jut to n-v-v#+tr(ÄT) may be used to find an unbiased 

estimator of y.
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If t is approximately normally distributed then we may find the variance 

using standard normal theory as

Vary|U(t7 y [ut) = 2(n-v-v#)+ 2 tr(AT)4+ 4 (s')[2TäT-3(Tä)2T+(Tä)3T](s) 

Varu£ yu( t7 y ‘ t) = 2 tr(AT)2 - 4 tr(AT)3 + 2 tr(AT)4
giving

(3.15) Vary u( t 7 y | ut) = 2(n-v-vJ + 10 tr(AT)2 - 16 tr(AT)3 + 8 tr(AT)4.

3.6 NORMALLY DISTRIBUTED RANDOM COMPONENTS

If now we specify that Uj are independent N(0,<j>jl) where I is the identity 

matrix of order Vj then l2 is given by the sum of

(3.16) /2j = -(l/2)[Vjln(27T<l)j) + ^j’ujuj]

giving s=-Au with ĵ=())j‘l so that

z = u-TAu , Eu(zz') = A"'-T-R.

Choosing Pj as the identity matrix of order v} gives

Ey u(uJ/uJ) = tr[(j,j) block of a' ‘-T-R] + tr[(j,j) block of R]

= Vj - tr TU
An unbiased estimating equation for (|>j is then

(3.17) $j = (üjüj + tr Tjj)/Vj

and this estimator is identical to the one derived as the REML estimator by 

Schall (1991) and by McGilchrist (1994) using somewhat different arguments. 

The method of derivation is similar to that used by Gilmour et al. (1985).

The variance of üjüj may be obtained from the previous expression for 

Varyu(üjPJüj) by putting PJ=I and £ u(ZjZj) = tyl-T^Ry giving
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(3.18)

Vary u(üjüj) = 2 tr[((j>jl - Ty)2] from which 

Var = 2vj2tr[(({)jl - T-)2].

3.7 APPLICATIONS

For this section, applications are considered that conform to the structure 

laid out in section 3.3 and have a random component vector which can be 

partitioned into independent component vectors Uj distributed as N(0,<j>jl). 

The structure of section 3.2 requires that the outcome variables must have a 

loglikelihood function which can be written as /,(r |,y |u ) , where r|=Xß+Zu 

and all parameters apart from y and those describing the distribution of u 

enter into the problem through r| . The only variation in the method in 

moving from one such problem to another is in computing the derivatives 

t = 3/,/ari , 03 = -d2l l/dr\dr\' .

Preferrably B should be replaced by its expectation Iy  ̂u or Jy u .

3.7.1 Generalised Linear Mixed Models

Conditional on fixed u the generalised linear mixed model considers

observations Y- having a distribution which belongs to the exponential 

family and the loglikelihood is

/|(T|,y Iu) = I
i = 1

VA-bOi)
W ) + c(Yj,Y)

£ y,„(Yj) = Hi = b'(0i) , Vary|UY, = of =

For standard generalised linear models, the variance term can be written 

a^yqCiij). For binomial and Poisson models ^ 1  but for normal and gamma 

models there is a separate unknown scalar parameter y representing extra
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variability of the observations associated with those distributions distinct 

from that which is a function of the observation mean.

The inverse link function is jai=h(r|i) with ri^x'ß+z'u . The component of 

t=5/,/dri corresponding to T|j is h'(r|i)[Yi-|ii]/aj and /y|U=/y>u is a 

diagonal matrix with ith term [h 'C q ß jV G j . The variances Gj may depend 

on rjj through a’f=yq(|_ii)=Yq[h(rii)]. When c] depends only on r| , then the 

method of section 3.4 applies. Otherwise the extra parameter y must be 

estimated.

The specific equations for estimating ß, u may be expressed in terms of Aß, 

Au which are the changes in ß, u values between successive iterations. 

Usually the initial value of u can be taken to be a zero vector while 

initial ß may be chosen by standard GLIM techniques. If u is distributed as 

N(0,a ‘) then

MAu =

V
n

 ’

t + ’ 0 ’
-Au , V =

X'
Z' ^ y , u [ X  Z] +

0  o'
0 A

with /yjU = IB = diag [h'Oißf/af1 t = 2 '
h'(n,)[Yr n,]/0-

2

In the case

of the generalised linear mixed model, the parameter G- does not cancel from 

the equations, as it does when random components are not present, so that 

initial estimates of y, (])j or, more simply fy/y , are required. An initial

estimate of unity will often suffice. Following convergence of the

iterative estimation of ß, u to ß, ü for fixed y, , these latter

parameters must then be estimated. For A = diag[Aß , A-} = 11 as in

section 3.4 , then

(3.19) (j)j = (ujüj + tr Tjj)/Vj
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The estimation of y has been foreshadowed in section 3.5 as being obtained 

by equating

i = 1
to its expectation n-v-v#+tr(AT). The estimator of y is then 

(3.20) y = [n-v-v +tr(AT)]'‘ I  (Yi-jLii)2/q(gii).
i = 1

Since we use estimates in A then an alternative expression for n-v-
k

v#+tr(AT) is n-v-X (pj'üjüj . This agrees with the expression for REML
j = i

estimation obtained by Schall.

Note that the formula for the variance of t ' /yJut , obtained in section

3.5, may be used to find a standard error for the estimator of y.

3,7.2 Random Component Hazard Models

The treatment of random component hazard models is essentially the same as 

that given in McGilchrist (1993, 1994) and differs from the application in 

section 3.5.1 only in the likelihood function /, for the observations given 

random components u. Since u is again taken to be normally distributed, the 

estimation of the variances <{>j of the random components is identical to the 

above. There is no parameter y involved in /, which is the Cox (1975) 

partial likelihood of the failure/censoring times conditional on given 

random components/frailties. The expressions for /, and its derivatives are 

fully developed in the earlier papers.
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3.7.3 Threshold Models

Where a response varible Yj , i=l,2,...,n, can take on values 0,1, ... ,m 

, a threshold model for the distribution of Yj is

P(Y<y) = GCYy-rji)

for some cumulative distribution function G(.) and r^x 'ß+z'u

representing the mixed linear model. The parameters yy are the cut-point

(or threshold) parameters which are translated up or down by the regression

rij. We may define y_, = -«>, ym = oo so that

P(Yj=y) = Gty-iii) - G(yy.,-rii)

and if r|j contains a constant term, then we may take y0=0 to remove the lack 

of estimability arising from fact that any change in the regression constant 

could be compensated by a shift of all the cutpoint parameters by the same 

amount.

The distribution of u is specified by l2 and is often taken to be normal as

elsewhere in this paper but /, becomes

(3.21) /, = In n [G(yy.-rh) - G(yy..1-rii)] .

In this case the cut-point parameters yy form extra parameters of /, which 

may be estimated by equating 3/,/dy to zero. However, the vector parameter 

y are similar to r\ in the way it enters the likelihood function and the BLUP 

equations may be extended to

TrYo I 0 a/, /ay o'
(3.22) V ßrßo

u,-u0
0 X' 
0 Z' 3/,/a-q + 0

s
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where Vwhere V =
I 0
0 X'

- d 2l {/ d y d Y  -a2/,/ayari'

0 Z' -a2/ 1/ariay -a2/,/ar|ar|'

I 0 0 
0 X z +

0 0 0 
0 0 0 . 
0 0 A

The method then proceeds along the lines of previous sections. Specific 

examples are given in Saei and McGilchrist (1996) and Saei et al. (1996).

3.7.4 Poisson-Gamma Model

Response variables Yj , i=l,2,...,n are Poisson distributed with mean 

^i=exp(r|i) , rj—x'ß+z'u for u taken to be conditionally fixed. However,

the components of u , viz. Uj are distributed as independent log-gamma 

variables such that Vi=exp(Ui) are gamma distributed with mean 1. Thus

h = I  [-expOli) + YiTjj - In Yj!] , 
i = I

(3.23)

* 2 = 1  [<|>ln(<|0 - In T(<t>) - <i>eUi + $U,] 
i = 1

giving
a/j/arij = Yj-expOiß , a2/,/ar | 2 = -expOiß , 

fy|U = diag[exp(rij)] , /yu = D = diag[exp(x'ß)] 

and
3/,/SUi = <()( l-eu') , a2l2/dU] = -<|>eUi 

A = diag(0eu‘) , A = <|>I

The scoring equations for estimating ß, u are iterative from initial values 

ß0, u0 to first iteration ßh u, given by

(3.24) ß.-ßc
u r uc

X'
Z' (y-e11) +

(})(l-eU)

V = 0 0
0 <t>I

46



where y, r|, u are vectors formed from Yi? rjj, Uj. From section 3.4 we have 

Eyu(uu ) = tr[£u(zz')] + tr(R)

where z = u+Ts = u+(J)T(l-eu) -(I-(f)T)(l-eu) , R = T-(J)T2. This gives

(3.25)

Since V"1 =

T = D,

Ey[1(uu  ) = v,/<|> - tr T , v, = dimension of u so that

= (u u + tr T)/v, .

X'DX X'DZ 
Z'DX D+(J)I

- l

. T we may find

+ D , Z'DX [X'DX-X'DZD, Z'DX]' 1 X 'DZD, , D, = (D+<J>I)‘

We have also (assuming ü approximately normal)

Varyu(u u ) = 2 tr[Eu(zz')+R]2 = 2 tr[(j)''l-T]2

giving

(3.26) Var = 2 trfo ''l-T ]2/v? .

If the alternative approach using sjA-'sj had been used, as given in 

section 3.4, then the above would be altered to using exp(u) - 1 in place 

of ü in the estimating equation but the remainder of the working would be 

the same.

3.8 SIMULATION SUPPORT

A small simulation study is reported here for the Poisson-gamma model. Its 

purpose is to test out and illustrate the method rather than give exhaustive 

simulations. Observations YV] , i=l,2,...,15; j= l,2  are generated according 

to the model: Given random components Uj , the Y- are Poisson distributed 

with parameters iL = exp r\[} , = ß,+ß2xij+Ui . The random components
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Uj are distributed according to Vj=exp(Ui) being gamma distributed with 

mean 1 and variance (j)'1 as described in section 3.7.4. The x- are selected 

randomly as 0 or 1.

For each combination of parameter values ß,, ß2, (j)'1 reported in Table 3.1, 

100 data sets , each set containing 30 observations as described above, are 

generated and the three parameters are estimated. Convergence of estimates 

was not always obtained from arbitrarily selected initial values but changes 

to the initial values did produce convergence. We report averages of

estimated values and

SE, = average of reported standard errors for each parameter estimate,

SE2 = standard deviations of the estimates obtained from simulations.

Results are reported systematically in Table 3.1.
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Table 3.1 Simulation Study for Poisson-gamma model. True Values, Average 
Estimates of Parameters are given together with SEj and SE2

Parameter True
value

Aver a ge 
e stimate

SE, s e2 Parameter True
value

Average 
e stimate

SE, s e 2

Simulation 1 Simulation 4

p . 1.0 0.92 0.34 0.30 p , 3.0 2.98 0.32 0.27
P 2 0.5 0.50 0.28 0.31 P 2 1.5 1.50 0.09 0.10

1.0 1.21 0.35 0.69 f 1 1.0 1.45 0.51 0.70
Simulation 2 Simulation 5

p> 1.0 0.96 0.25 0.28 p , 3.0 2.98 0.20 0.17
P 2 0.5 0,48 0.26 0.29 P 2 1.5 1.49 0.09 0.09

<t>‘‘ 0.5 0.47 0.13 0.31 0.5 0.53 0.18 0.23
Simulation 3 Simulation 6

P . 1.0 0.98 0.21 0.22 p , 3.0 2.97 0.14 0.16
p 2 0.5 0.51 0.24 0.25 P2 1.5 1.50 0.09 0.09

<t>'' 0.25 0.23 0.05 0.18 0.25 0.24 0.08 0.11

From Table 3.1, it is apparent that estimates show no appreciable bias for

any of the parameters and there is very good agreement between SE, and SE2 

for all regression parameters. This good agreement does not carry through

for all estimators of (j)1. The method of computing the standard error of 

the (J)'1 estimator depends on assuming that ü is approximately normal -

specifically that third and fourth order moments agree with those for a 

normal distribution and are then functions of first and second order 

moments. Clearly there are difficulties in this assumption for smaller

values of (J)"1. However, the results of the simulations support a high

degree of confidence in the estimation process except that the standard 

error of the estimator of (J)'1 may be understated.
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CHAPTER FOUR

Hierarchical Generalized Linear Models : A Comparison 
Between Poisson-normal and Poisson-gamma Models

4.1 INTRODUCTION

In GLMMs the distribution of random components is often considered to be 

normal irrespective of the conditional distribution of the response variable 

y. Recently Lee and Neider (1996) proposed a class of GLMMs which they 

referred to as hierarchical generalized linear models (HGLMs). In HGLMs the 

distribution of random components is not restricted to normal and may come 

from any arbitrary distribution, often the distribution conjugate to that of 

y. A generalization of Henderson’s joint likelihood, called hierarchical or 

h-likelihood, is used for estimation in HGLMs. Some examples of HGLMs are 

Poisson-gamma, binomial-beta and gamma-inverse-gamma models.

In addition to discussing the theoretical aspects, these models were applied 

to several real datasets and the results were compared with that of GLMMs in 

Lee and Neider’s paper. It was recommended to decide the distribution of 

random components based on the nature of the data or the purpose of 

inference. However, the application was limited to selected datasets and 

may not be completely generalised. One of the discussants of Lee and 

Neider’s paper recommended to undertake more detailed comparison to examine 

whether there is any real gain for using non-normal distribution of the 

random effects.

The objective of the current chapter is to undertake a simulation based 

comparative study between GLMMs and HGLMs when the distribution of the
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response variable is Poisson conditional on given random components but the 

random components themselves are allowed to have different distributions. 

As the conjugate distribution of Poisson is gamma the comparison was 

undertaken between the Poisson-normal and the Poisson-gamma models. 

Specifically we looked at the effect of model misspecification, that is, 

when the Poisson-normal is used for modelling while the dataset is generated 

by the Poisson-gamma model and vice versa.

4.2 HIERARCHICAL GENERALISED LINEAR MODELS

The structure of HGLMs is basically covered by the general framework of the 

linear mixed models presented in section 3.2 and will be reviewed only 

briefly here. In the structure discussed in section 3.2, the response 

vector y is assumed to have a distribution dependent on r\ = Xß+Zu where Xß 

is the fixed component and Zu is the random component with u, a vector of 

random effects of one or more components. As usual ß is a vector of fixed 

coefficients, and X and Z are design matrices. The notation and related 

model assumptions are as discussed in section 3.2.

The conditional log-likelihood for y | u has the GLM form as discussed in 

section 3.7.1.

(4.1) / , ( i u l u )  = I
i = 1

Y A  -b(0:)
a*y) + c(Yj,y)

where 0j denotes the canonical parameter and y is the dispersion parameter. 

If the conditional distribution of y given u is p then r|=g(p) with

appropriate link function g(.). The random component vector u has a log-

k
probability (density) function /2(<t>) = X /2((|>j) •

j  =  i
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Then hierarchical likelihood or h-likelihood, h, is defined as h = /,+/, 

which is the same as the penalised likelihood function / defined in Chapter 

3. In GLMMs l2 is always the log-likelihood of a normal variate while in 

HGLMs /2 can take various forms. The distribution of u can have any 

distribution that is conjugate to the distribution of y where u=g(v) for 

some strictly monotonic function of v. For example, if Y- given u is 

binomial distributed then v = exp(u)/{ l+exp(u)} is considered as beta and 

the model is called binomial-beta HGLM. Similarly, if the distribution of 

Yj given u is gamma then v = exp(u) is considered as inverse-gamma 

distributed and the model is called a gamma-inverse-gamma HGLM. When both 

Yj and u are normal the model becomes the standard mixed model with normal 

error and the likelihood converts to Henderson’s Joint likelihood.

The Estimation of ß, u and <J> are derived by maximising this penalised 

likelihood function h=l as discussed in sections 3.3 and 3.4. Lee and

Neider called the estimates maximum h-likelihood estimates (MHLEs) as these 

are derived from maximising the h-likelihood.

4.2.1 Estimation in Poisson-Gamma and Poisson Normal Models

In both the Poisson-Gamma and the Poisson-normal models, distribution of the 

response variables Yj, conditional on given random components u, are assumed 

to be Poisson distributed with mean ^i=exp(rji) , where rj—x'ß+z'u. But 

the difference is that the distribution of the components, u, viz. Uj are 

considered as N(0,<j>I) in the Poisson-normal model and G( 1 ,(J)’11) in the 

Poisson-gamma model.
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The details of estimation strategy in the Poisson-gamma model are presented 

in section 3.7.4 which will not be repeated here.

In the Poisson-normal model the likelihood function /, , corresponding

differentials 3/,/ar\{ , 32/,/3r|2 and information matrices / and 7yu are

exactly the same as presented in 3.7.4 for the Poisson-gamma model. But the 

log-likelihood l2 is different. The function l2 and the related expressions 

are given as follows.

h

giving

(4.2)

constant - (1/2) X {Vjln(27C(|>) + (jf'l)2}
i = I

s/2/aUj = -f'u, , a2l2/dV] = -i))'1 ,

A = cliag(<|>"11) , A = (|)*11

Consequently the form of the scoring equations are slightly different.

(4.3) Y PrPo
U i - U 0

X'
Z'

(y-e^0) + 0

f ' u 0

with V
0 0 
o

The dispersion parameter <j), as opposed to (j)’1 for the Poisson-gamma model, 

is estimated by

(4.4) $ = (li u + tr T)/v, ,

where T = T = D, + D, Z'DX[X'DX-XDZD, Z'DX] 1 X'DZD, , which is the same 

expression as given under section 3.7.4 but the expression for D, used in 

deriving T is different, D, = (D+4)‘11)'1 . The estimate of 0 is obtained

under REML approach in both the Poisson-normal and Poisson-gamma methods.
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The variance of the disperson parameter, var((j>) , is estimated from the

information matrix /REML as presented in Chapter 2 and not by the method 

developed in Chapter 3. For the purpose of comparison, it was considered

more appropriate to use a method which is consistent with Lee and Neider 

(1996). The same approach is used for the Poisson-gamma estimation method.

A deviance measure is used to compare the goodness-of-fit in individual 

models. The deviance in the mixed model is calculated by using the expected 

value of y I u as follows:

(4.5) Dev (y;r|) = 2 I  {y In (y/jl) - (y - jl)}

where ft = exp (fj).

4.3 SIMULATION

The observations Yy are generated by assuming the distribution to be

Poisson with parameters X- = exp r\V], = ß,+ß2xij+U1? where Ußs are

random components distributed as normal in the case of GLMM and, in the case 

of HGLM, Vj = exp(Uj) is distributed as gamma with mean 1 and variance

4>'*.

In each simulation a dataset of 30 observations are generated with 2 

observations in each block and consequently 15 effects in the random 

component u. The Xy are randomly selected as 0 or 1. The simulation was 

repeated 100 times for each combination of ß,, ß2 and ({) or The

averages of estimated values are presented with average of reported standard 

errors for each parameter estimate (SE,) and standard deviations of the 

estimates obtained from simulations (SE2).
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4.4 RESULTS

The dispersion parameter of random component is (J) in the Poisson-normal 

model and (j)’1 in the Poisson-gamma model. In presenting the results a 

common notation 5 is used for dispersion parameter instead of ({) or (j)'1. 

Table 4.1 presents the results of fitting the Poisson-normal model to the 

datasets generated by the Poisson-gamma model with a fixed set of ß, and ß̂  

values and three different values of 5 as shown in the table. Table 4.2 

presents similar results from the datasets generated with the same set of 5 

values but a different set of ß, and ß2 values.

Tables 4.3 and 4.4 presents the results from similar simulations with 

reverse procedure to that of Tables 4.1 and 4.2, i.e. the datasets were 

generated by the Poisson-normal model but the estimates were obtained by 

using the Poisson-gamma estimation method.

The results show that both methods tend to provide an unbiased estimate of 

ß2 irrespective of the simulation models. However, the estimates of

intercept parameter ß, tend to be different dependent on simulation models. 

The model which generates the dataset provides unbiased estimates while the 

other estimation model produces lower estimates. The reason for this 

difference in intercept estimate, as explained by Lee and Neider (1996), is 

due to the difference in E(Y). Under GLMM, E(Y) ^ p but under HGLM, E(Y) 

= p.
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Table 4.1: Comparison o f Poisson-Gamma and Poisson-Normal Models using 

datasets simulated by Poisson-Gamma model.

P o isson -G am m a P o isson -N orm al

S im u l ­

a t io n

P a r a ­

m e te r

T ru e

V a lu e

A v e ra g e

e s t im a te

S E , s e 2 A v e ra g e

e s t im a te

S E , s e 2

1 ß> 1.0 1.01 0.33 0.28 0.66 0.32 0.31

ß2 0.5 0.50 0.27 0.29 0.50 0.27 0.28
6 1.0 1.20 0.44 0.53 0.99 0.41 0.57

2 ß, 1.0 1.03 0.27 0.30 0.83 0.26 0.29

ß2 0.5 0.48 0.25 0.29 0.50 0.27 0.26
5 0.5 0.59 0.24 0.26 0.51 0.22 0.28

3 ß, 1.0 0.99 0.22 0.24 0.89 0.22 0.24

ß2 0.5 0.49 0.24 0.25 0.50 0.27 0.24
5 0.25 0.29 0.14 0.17 0.25 0.14 0.18

Table 4.2: Comparison o f Poisson-Gamma and Poisson-Normal Models using 
datasets simulated by Poisson-Gamma model.

P o isso n -G am m a P o isson -N orm al

S im u l ­

a t io n

P a r a ­

m e te r

T ru e

v a lu e

A v e ra g e

e s t im a te

S E , s e 2 A v e ra g e

e s t im a te

S E , s e 2

1 ß, 3.0 2.89 0.30 0.25 2.40 0.31 0.28

ß2 1.5 1.51 0.10 0.10 1.51 0.21 0.10
5 1.0 1.35 0.47 0.53 1.37 0.48 0.59

2 ß, 3.0 2.91 0.22 0.21 2.66 0.22 0.22

ß2 1.5 1.51 0.09 0.10 1.51 0.24 0.10
5 0.5 0.67 0.23 0.27 0.68 0.24 0.28

3 ß. 3.0 2.98 0.15 0.15 2.88 0.15 0.15

ß2 1.5 1.50 0.09 0.09 1.50 0.23 0.09

6 0.25 0.28 0.12 0.14 0.25 0.13 0.15
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Table 4.3: Comparison of Poisson-Normal and Poisson-Gamma Models using 
datasets simulated by Poisson-Normal Model

P oisson-N orm al P o isso n -G am m a

Sim ul

ation

Para­

m eter

T rue
value

A verage
estim ate

SE, s e 2 A verage
estim ate

SE, s e 2

1 p . 1.0 1.05 0.28 0.33 1.37 0.31 0.34

ß2 0.5 0.51 0.26 0.22 0.51 0.22 0.22

5 1.0 0.94 0.28 0.30 1.37 0.45 0.55

2 p . 1.0 1.03 0.24 0.25 1.20 0.25 0.26

ß2 0.5 0.49 0.25 0.24 0.49 0.23 0.25
5 0.5 0.47 0.25 0.25 0.54 0.26 0.31

3 ß. 1.0 0.99 0.21 0.23 1.07 0.21 0.23

ß2 0.5 0.51 0.25 0.26 0.52 0.23 0.27

8 0.25 0.24 0.15 0.15 0.26 0.14 0.18

Table 4.4: Comparison of Poisson-Normal and Poisson-Gamma Models using 
datasets simulated by Poisson-Normal Model

P oisson-N orm al P o isso n -G am m a

S im u l­

a tio n

P a ra ­

m e te r

T ru e
v a lu e

A v e ra g e

e s tim a te

S E , s e 2 A v e rag e

es tim a te

S E , s e 2

1 P, 3.0 3.00 0.25 0.25 3.27 0.29 0.25

ß2 1.5 1.50 0.19 0.08 1.50 0.08 0.08
5 1.0 1.04 0.30 0.33 1.35 0.47 0.55

2 p . 3.0 3.00 0.19 0.20 3.20 0.20 0.19

ß2 1.5 1.51 0.20 0.08 1.51 0.08 0.09
8 0.5 0.50 0.16 0.16 0.51 0.17 0.21

3 ß, 3.0 2.99 0.14 0.14 3.10 0.15 0.15

ß2 1.5 1.51 0.20 0.08 1.51 0.09 0.08

8 0.25 0.25 0.08 0.09 0.26 0.10 0.13
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In the case of the main parameter of interest 5, when 5 = 0.25 both 

models give unbiased estimates irrespective of the simulation process but 

for higher values of 5, the Poisson-gamma estimation procedure tends to 

overestimate even when the observations are generated by the Poisson-gamma 

model. The Poisson-normal estimation method performs either better or at 

least similar to the Poisson-gamma estimation procedure. As expected the 

Poisson-normal estimation provides better estimates when the dataset is 

simulated by the Poisson-normal model. Even in the case when observations 

are generated by the Poisson-gamma model, the Poisson-normal estimation 

tends to give better estimates than the Poison-gamma method for the smaller 

set of fixed effect coefficients. While for the larger set of fixed 

coefficients, the Poisson-normal performs similar to the Poisson-gamma.

Standard errors of the estimates as measured by SE, and SE2 appear to be 

very similar for ß, and ß2 but tend to be slightly lower for 5 under the 

Poisson-normal method. SE2 is an approximate benchmark for SE,.

Tables 4.5 and 4.6 present the actual results of model fittings for a sample 

of datasets selected from the above simulation. For each of the true 

parameter configurations used in the above tables, three datasets are 

selected randomly and the results of fitting the Poisson-normal and the 

Poisson-gamma models to each of these datasets are presented. Table 4.5 

presents the results when observations are generated by the Poisson-gamma 

model while Table 4.6 shows the results for observations generated by the 

Poisson-normal model. The estimates obtained under both models indicate 

that, even though in most cases average estimates of 8 tend to be similar, 

the individual estimates frequently become different for specific data sets.
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4.5 DISCUSSION

The chapter compares the relative performance of the Poisson-normal and the 

Poisson-gamma estimation procedures for datasets simulated by both the 

Poisson-normal and the Poisson-gamma models. The study indicates that in 

terms of average of estimates over simulations, the Poisson-normal model 

performs either better or equivalent to the Poisson-gamma model irrespective 

of the model used for data simulation. Standard errors of the estimates 

under the Poisson-gamma method are also not lower than that of the Poisson- 

normal method. Therefore, in this instance of Poisson response variable, 

HGLM is not offering any definite improvement over GLMM. The average of 

estimates are not sensitive to the assumed distributional form of the random 

effect.
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Table 4.5: Comparison o f estimates under Poisson-Gamma and Poisson-Normal 
models fo r  a randomly selected sample o f individual datasets generated by

Poisson-Gamma model.

True values Poisson-G am m a Poisson-Norm al

p . ß2 5 p . p 2 6 Dev p , p 2 5 9ev

1 0.5 1.00 1.13 0.44 0.44 22.7 0.99 0.45 0.41 23.1
1.11 0.21 1.22 24.9 0.81 0.25 0.87 27.6
1.23 0.47 1.58 53.0 0.89 0.43 0.92 23.5

1 0.5 0.50 0.75 0.47 0.25 22.5 0.71 0.46 0.21 23.8
1.01 0.58 0.67 33.3 0.81 0.61 0.53 18.9
0.83 0.88 0.54 39.9 0.66 0.89 0.49 27.0

1 0.5 0.25 1.03 0.45 0.25 15.6 0.96 0.44 0.26 14.9
0.85 0.38 0.12 25.7 0.83 0.35 0.16 23.6
1.12 0.39 0.38 13.7 1.02 0.41 0.30 16.3

3 1.5 1.00 2.91 1.42 0.57 16.7 2.68 1.43 0.58 07.9
3.25 1.35 0.70 99.8 2.97 1.35 0.93 20.1
2.66 1.55 1.55 141.5 2.22 1.51 1.16 20.6

3 1.5 0.50 2.96 1.23 0.22 11.2 2.87 1.23 0.21 11.1
3.00 1.67 0.44 20.5 2.84 1.68 0.37 20.7
2.93 1.48 0.67 33.0 2.72 1.48 0.56 16.9

3 1.5 0.25 2.92 1.49 0.31 23.7 2.81 1.49 0.30 23.1
3.00 1.61 0.14 09.4 2.94 1.62 0.12 10.5
3.08 1.45 0.17 12.9 3.01 1.45 0.16 13.1
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Table 4.6: Comparison of estimates under Poisson-Gamma and Poisson-Normal
models for a randomly selected sample of individual datasets generated by

Poisson-Normal model.

T ru e  V alues P oisson-N orm al P o isson -G am m a

p . ß2 5 p . ß2 5 D ev ß, ß2 5 Dev

1 0.5 1.00 1.26 0.42 0.79 15.6 1.56 0.42 0.59 22.6
1.14 0.51 0.47 27.0 1.29 0.53 0.40 29.4
1.31 0.32 1.01 18.9 1.70 0.34 0.92 50.5

1 0.5 0.50 0.91 0.88 0.53 20.5 1.08 0.88 0.60 19.3
0.90 0.79 0.48 21.5 1.03 0.92 0.30 62.3
0.84 0.38 0.53 20.1 0.98 0.49 0.35 77.8

1 0.5 0.25 1.03 0.50 0.40 17.7 1.21 0.43 0.21 40.3
0.84 0.71 0.21 19.3 0.89 0.73 0.23 18.2
0.80 0.67 0.34 18.3 0.90 0.69 0.36 18.7

3 1.5 1.00 2.66 1.57 0.57 11.2 2.89 1.58 0.66 57.6
2.96 1.47 1.11 12.7 3.41 1.47 1.28 18.5
2.86 1.46 0.90 20.9 3.28 1.45 1.59 84.2

3 1.5 0.50 3.16 1.51 0.33 12.2 3.30 1.51 0.34 15.5
3.01 1.47 0.58 11.9 3.25 1.46 0.71 34.6
3.00 1.46 0.51 20.7 3.18 1.47 0.52 21.6

3 1.5 0.25 2.92 1.49 0.15 19.2 2.98 1.49 0.15 19.0
2.96 1.54 0.22 12.1 3.05 1.54 0.23 12.8
2.93 1.56 0.52 15.1 3.12 1.56 0.54 16.0
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CHAPTER FIVE

Ma t c h e d  Ca se  Co n t r o l  St u d ie s  w it h  
Ra n d o m  Ex p o s u r e  Eff e c t s

5.1 INTRODUCTION

Analyses of matched case control studies such as Walter (1980), Miettinen 

(1969, 1970) compared the probabilities of exposure in cases and controls 

where subjects were either exposed or not exposed. Such probabilities were 

allowed to vary over the matched sets, thereby considering the possibility 

that numbers of exposed subjects would be overdispersed from the usual 

binomial variation and that there could be an association between the 

results for cases and controls within each matched set.

To a large extent, such analyses have been replaced by a conditional

likelihood method when a logistic model can be assumed. The conditional 

likelihood method for logistic models was given in Cox (1970) and has been 

applied to matched case control studies in Breslow and Day (1980), Breslow 

(1982) and others. No overdispersion or correlation between results for the 

same matched set have as yet been included in this development. It is the 

intention of the chapter to explore this possibility.

5.2 MODEL AND NOTATION

Let Y.. , j=l,2,...,n be the indicator variables for cases and controls in
u i

the ith matched set, where Y =1 if the i,j element is a case and Y =0 ifU ü
the element is a control. The number of cases in the i,h matched set is

denoted by mj with i=l,2,...,I. Cases and controls are matched for a vector 

of variables w. and other potentially important regression variables are
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collected into a vector x corresponding to Y . The exposure variable for 

ij is denoted by Zv . Let n.. = P(Y.=1 | w .^ Z A
j  ij ij i ij 'j

If a logit model applies to then we may express dependence on matching 

variables, covariables and exposure variable in which the last has a

coefficient which varies over the matched sets as

(5.1) 7i.. =  expCoti+w'Y+rijjyn +  exp C ct^ y*^ )]

where = x^ß+Z^T+Uj) and Uj are distributed as independent N(0,<J>).

The random component Uj allows variation in the effect of exposure from one 

matched set to another and thus includes extra variation as well as 

association of observations within each matched set, reminiscent of the 

analysis given by Walter (1980).

5.3 Estimation

To estimate the parameters in the model described above, the GLMM technique 

is applied. As described in section 2.3.2, in GLMMs the response vector y

has a distribution dependent on the vector r| = Xß+Zu , ß is the vector of

fixed parameters and u is the vector of random components distributed as 

N[0,A]. The variance matrix A can depend on vector parameters (J) and p but 

for the current application A = (ßl and the notation will be specialised to

this case. For the current application the likelihood function /, is taken

to be a suitable conditional likelihood and l2 is, as usual, the likelihood 

function for the normally distributed random components u. The estimates

are obtained by maximising the joint likelihood function /=/,-h/2 by using 

the Newton-Raphson iterative method. The estimation equation and the 

variance matrix V are as presented in (2.25) and (2.26).
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5.3.1 Estimation in Matched Case-Control Data

In applying the above estimation technique to the matched case control 

problem, we let the vector of observations from the ith matched set be

y; = [Yji,Yj2, ... , Y ] , i=l,2,...,I

so that the probability distribution of y. is proportional to

n i Y -
n [jc../(i-jt..)] IJ.

j=i 1

From this distribution we construct the conditional likelihood of the

observations given that there are ml cases in the ith matched set. If Rt 

denotes all possible for which Vy-X = mj then the conditional probability 

distribution of y; given l'yj = m; is

n [«./(i-Wj.)]
V j = l  J J

I  n  [n/U -Jt.)]
W e R :  r =  1

where y\k = [Y*k!, Y ^,..., Y*kn.] is the vector of values in the klh of 
the possible values of y. in Rr Using the logistic model for 7Cy given in 
section 2, the above conditional probability becomes

n exp(a i+wiY+Tiij)Yij I  n  e x P ( « i + w iY+ T l i r ) Y ik r  
^kE R: r= 1

r n  j
n  expCriijYy) 

v'j= 1
I  n exP(nirYTkr)

•̂kE R: r= 1

and the conditional log-likelihood function is

(5.2) /, = Z [ZYyiljj - log aj
i =  I j =  I

where aj = I  [exp I  Yfkrriir] . 
kE R j r
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Letting by = I  [Y?kjexp I  Y*krr|ir] and 
ke/Jj

Cijj' = I  [Y?kjYsfkj,exp Z Yfkrriir] ,
kG R  j r

the first and second order derivatives may be expressed

a V 3Tlij =  Y ij - ai ‘b ij . S2/|/ariijSriij' =  a ^ b , /  - a ;1̂ '  .

Other mixed second order derivatives with respect to Tjy are zero.

For the special case of one case per matched set, the above expressions 
simplify to

ai = 2 exp T|ir , by = exp , Cijj' = &/exp riy
r

where 5 is the usual Kronecker delta.

For two cases per matched set the expressions for a j, by and Cyj' are as 
follows.

n i -1 n i
a, = I 2 exp ( T i l l  +nij2) 

j 1 =1 j 2>il

n i
by = I exp (T|y +  TlyO , C yj' = 5 y ' CXp (T |y +  T |y ')

The above expressions for three cases per matched set are

n j - 2  n j -1 n j

ai = I  I  2exp (11;;+ Tly2 + Tlijj) 
j 1 =1 j 2 >j 1 j 3 ^ 2

ni ni
b y  = S  2 exp (Tlij + Tiy +  r i i j , )  , 

j 1 12̂ 11̂ 1

ni
Cijj' = Sii' 2 exp (Tly + 11;;'+ T);;,)

This can be generalized for Cj cases in the i,h matched set as follows
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1 I i n :
ai = I  I  -  I  exp (rjjj + rijj + ... + rjjj )

j i =1 J 2 >j l k  i >k{1 " 1

ni n i
bü = I  ... I  exp (rijj + T|jj + ... + riij ) ,

J i ^ J  i c j ^  •  1

ni ni
cijj' = V  I  ... I  exp (rjy + r^M- r\v + ... + Tiy ) 

J2 k ^ -2 ^ 1 '

5.3.2 Generalisation

The general method of estimation may be applied with a small change in 

notation and using

*1' = [Tli„ 11i2> ... > Tlin.] »
Xi = [Xi„ x i2, ... , x in.] ,

Zi = K l» Zj2* ... » Zin.] ,

ri' =  [TiJ, ri', ... , rjJ]

x ' = [xj, x ' , ..., x;]
Z — [Z|, z 2, ... , Zj]

u' = [U„ U2, ... , U,]

The model in section 5.2 is then r\ = Xß+zx+Zu [X z] which is

consistent with the model given in the general theory above but with [X z] 

in place of X. The BLUP equations are then

Aß' X' 0
(5.3) V Ax = z' a/,/ar| - 0

Au Z' f ’uo
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X' 0 0 0 '
V = z'

Z '
[-32/ 1/3ri3T|,] [ x  z z ]  + 0 0 0

_  1

0  0  <t> i

and similar changes are made to obtain ML and REML estimators of <{).

If V
v„ Vl2 vl3

^ 2 1  ^ 2 2  ^ 2 3  

^ 3 1  ^ 3 2  ^ 3 3

V-1
T

then

the ML estimator for (}) is u'u/(v-r*) , r*=(j) 1 tr V33 . If V33 is replaced by 

T then REML estimates are obtained.

5.3.3 Efficiency in Computation

• 2Since d lJdx |„3T |.y=0 for , further analytic development of the above 

equations is possible resulting in faster computational method and 

considerable saving in space requirements. Let B = -32/ /3T|.3T|' and

i
I  X B X
i=. 1 1

c = X B z  , C = [c ,c , - c ] , z'B z

i
D = diag [d ,d ,...,d ], t = I  X'dl  /ar|., s. = z'dl /dr\.,

1 2 1  1 I 1 1  1 I 1i = 1

s = [si,s2...,s(]/ 

giving

V =

C C,1 c,
re; 1 D1 i 'd and

X '
z' 3/,/3T| =

t
I s

C; D1 Z ' S

Use of the general formula for inversion of partitioned symmetric matrices 

gives
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1D1 ID  
D l D + f 'l

0 0 
0 D, + (j)m

D, = ( D + f 'I ) '1, d = DD,1, m '1 = I d .

and then

0 0 0 0 I
07 0 O' +<j)m 1 +-oiÖ

-mv' G’1 [i -mv mvd'-C.D,
0 0 D, -d mdv'-DjCJ L J

where v = C jD ,l, G = C-C|D,C[-({) m w '. This gives

Aß
Ax = V

t
l 's

q
-mm2

Au s - f  u0 g+mm2d-D,CJq

where g=D1(s-(J)~1u0), m^tjTl'Cg+Uo), q=G‘‘(t-mm1v-C1g), m2=v,q-(})m1.

To estimate (j) after convergence of the estimation of ß, x, u we require 

tr V2' = tr D, and tr(I-<ff'V^)2 = » ( I - f 'D ,)2 = tr(DD,)2

while T = D| + <|)mdd' + (m d v '-D ^ ^ G  '(m vd'-C |D |) giving

tr T = tr D, + (Jimd'd + m2d'dv 'G  v - ad'D ^G  'v + tr(D2c;G''C,)

5.4 SIMULATION SUPPORT

A simulation study was undertaken to investigate the relative performance of 

the proposed method of analysis with the usual conditional likelihood based 

analysis. The methods of analysis are referred to as Generalized Linear 

Mixed model (GLMM) and Generalized Linear Model (GLM) techniques 

respectively. A number of matched case-control data sets were generated 

corresponding to different exposure effects and various random effect 

coefficients. The model included exposure variable only and no other
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regression variable was included. Once a number of cases and controls were 

generated for each matched category then appropriate number of cases and 

controls were randomly selected for matched analysis. The simulation was 

undertaken 200 times for each parameter configurations and the analyses were 

conducted using both GLMM and GLM methods. Tables 5.1 and 5.2 present the 

comparative results for single cases per matched set for various

configurations of exposure and random effects coefficients while Tables 5.3

and 5.4 present similar results for two cases per matched set. The averages 

of estimated values are compared with the true values in the tables. The 

standard error SE, presented in the tables is the average of the estimated 

standard errors from each analysis while SE2 is the standard deviation of

estimated values over simulations.

5.4.1 Single Case and Multiple Controls

The comparative estimates from the applications of GLM and GLMM to 30 

matched sets of size 5, 1 case and 4 controls, simulated with positive and

negative exposure effects are presented in Tables 5.1 and 5.2 respectively. 

The results shows that the estimates of the exposure coefficient under both 

methods are very similar and both methods able to approximately reproduce 

the true values. However, the estimated standard errors SE, tend to be

under estimated by GLM when compared with SE2. The estimates of SE, under 

GLMM is either same or very close to SE2.
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Table 5.1: The Comparison of Estimates Under GLM and GLMM for Datasets with 
Single Case and Four Controls per Matched Set Simulated with Positive

Exposure Effects.

Exposure Effect (ß) Dispersion Parameter (0)
Simul­
ation

Method True
Value

Average
estimate

SE, s e2 True
^alue

Average
estimate

SE, SE,

1 GLM 1.0 0.99 0.47 0.52 - - - -

GLMM 1.0 0.98 0.52 0.52 1.0 1.11 1.03 0.80
2 GLM 1.0 1.01 0.45 0.48 - - - -

GLMM 1.0 1.00 0.47 0.48 0.5 0.58 0.80 0.56
3 GLM 0.5 0.49 0.44 0.48 - - - -

GLMM 0.5 0.49 0.48 0.48 1.0 0.89 1.11 0.73
4 GLM 0.5 0.51 0.42 0.45 - - - -

GLMM 0.5 0.51 0.45 0.45 0.5 0.67 0.92 0.65

Table 5.2: The Comparison of Estimates Under GLM and GLMM for Datasets with 
Single Case and Four Controls per Matched Set Simulated with Negative

Exposure Effects.

5.4.2 Multiple Cases and Multiple controls

Tables 5.3 and 5.4 present similar comparative results as Tables 5.1 and 5.2 

for 20 matched sets with 2 cases and 3 controls. The results tend to behave
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similar to the case of matched set with single case as presented in previous 

tables. The estimates of SE, are lower under GLM in comparison with SE2 

while GLMM is providing estimates of SE, closer to SE2.

Therefore, as expected the simulation results are showing that if GLM is 

used for analysing matched data in the presence of random exposure effects, 

then the estimated variation of the estimate of exposure effect would be 

less than the actual variation.

The estimates of dispersion parameter of random effects which is only 

available for GLMM are also presented in Tables 5.1 to 5.4. The average 

estimates and estimated standard errors are reasonable but not as good as 

fixed exposure effect which is often a general problem with the estimation 

in GLMM.

Table 5.3: The Comparison of Estimates Under GLM and GLMM for Datasets with 
Two Cases and Four Controls per Matched Set Simulated with Positive Exposure

Effects.

Exposure Effect (ß) Dispersion Param eter ((J>)
Simul­
ation

Method True
Value

Average
estimate

SE, s e 2 True
bailie

Average
estimate

SE, s e 2

1 GLM 1.0 0.98 0.43 0.49 - - - -

GLMM 1.0 0.99 0.48 0.49 1.0 0.89 0.97 0.87
2 GLM 1.0 1.00 0.43 0.46 - - - -

GLMM 1.0 0.99 0.48 0.47 0.5 0.61 0.91 0.86
3 GLM 0.5 0.51 0.42 0.50 - - - -

GLMM 0.5 0.50 0.48 0.51 1.0 0.85 0.97 0.75
4 GLM 0.5 0.50 0.42 0.48 - - - -

GLMM 0.5 0.49 0.45 0.48 0.5 0.46 0.65 0.57
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Table 5.4: The Comparison of Estimates Under GLM and GLMM for Datasets with 
Two Cases and Four Controls per Matched Set Simulated with Negative Exposure

Effects.

Exposure Effect (ß) Dispersion Parameter (({))
Simul­
ation

Method True
Value

Average
estimate

SE, s e 2 True
V̂ alue

Average
estimate

SE, s e 2

1 GLM -1.0 -0.99 0.43 0.48 - - - _

GLMM -1.0 -0.98 0.49 0.48 1.0 0.82 0.93 0.85
2 GLM -1.0 -1.01 0.43 0.50 - - _ -

GLMM -1.0 -1.02 0.48 0.51 0.5 0.48 0.67 0.69
3 GLM -0.5 -0.49 0.41 0.44 - - - _

GLMM -0.5 -0.49 0.47 0.45 1.0 0.87 0.97 0.80
4 GLM -0.5 -0.51 0.42 0.46 _ _ _ _

GLMM -0.5 -0.51 0.46 0.46 0.5 0.52 0.74 0.68

5.5 APPLICATIONS

In addition to the simulation study the method was applied to a couple of 

real datasets. The descriptions of the datasets and the results are 

presented below.

5.5.1 Los Angeles Study of Endometrial Cancer

Breslow and Day (1980) presented data from a matched case control study 

reported by Mack et al (1976) which is included in Appendix A (Table A3). 

The study identified 63 cases of endometrial cancer occurring in a 

retirement community near Los Angeles, California, USA 1971 to 1975 and each 

case was matched to four controls who were alive and living in the same 

retirement community. The variables used for matching were age, marital 

status and the timing of entering the community. The main objective was to

study the effect of exogenous estrogens on the risk of endometrial cancer. 

In addition to information on exposure to oestrogens, the other information
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collected were the history of gall bladder disease, hypertension, obesity, 

other drugs, etc. Breslow and Day (1980) analysed the dataset by using 

conditional likelihood with GLM. We analysed the same dataset for some of 

the exposure variables by including random exposure effects with GLMM.

Three comparisons were made with only one exposure variable in the model 

each time. The exposure variables included in different models are 

Estrogen, Gall bladder and Hypertension. As Table 5.5 shows, when the 

exposure effects of Estrogen and Gall bladder are investigated both GLM and 

GLMM produce the same estimates of exposure effects and corresponding 

estimates of standard errors as there are no randomness in exposure effects. 

The estimates of 0 in both cases are very small (0.02). However, for

Hypertension the estimates and standard errors tend to differ because of the 

presence of random variation in exposure effect which is reflected in the 

large estimate of <{> (1.10). The table also presents the corresponding 

relative risks and confidence intervals. For Hypertension, the confidence 

interval is about 10% shorter under GLM than that of GLMM.

Table 5.5: Comparison o f Estimates from GLM and GLMM with Matched Data from  
Los Angeles Study o f Endometrial Cancer. Three Comparisons with Different 

but Single Exposure Variable in the Model Each Time.

Comparison Risk Factor Method Est SE Rel Risk 95% Cl
1 Estrogen GLM

GLMM
2.07
2.07

0.42
0.42 0.02

7.92
7.92

3.48- 18.05
3.48- 18.05

2 Gall bladder GLM
GLMM

1.31
1.31

0.37
0.37 0.02

3.71
3.71

1.79- 7.65
1.79- 7.65

3 Hypertension GLM
GLMM

0.41
0.40

0.30
0.34 1.10

1.51
1.49

0.83-2.71
0.76-2.90
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Table 5.6 presents the results of another comparison where the exposure 

variable Hypertension is included in the model with two other regression 

variables, viz. Gall bladder and Estrogen. The presence of random exposure 

effect is even more as the estimate of (j) is 3.09. The differences in 

estimates and standard errors under GLM and GLMM are prominent not only for 

the exposure variable but also for the regression variables. A comparison 

between relative risks or confidence intervals would make it more obvious.

Table 5.6: Comparison o f Estimates from GLM and GLMM with Matched Data from  

Los Angeles Study o f Endometrial Cancer. One Exposure Variable with Two 

Other Regression Variables in the Model.

Method Risk Factor Est SE 0 Rel Risk 95% Cl
GLM Gall 1.28 0.41 - 3.60 1.61-8.03

Estrogen 2.12 0.45 - 8.33 2.41-20.1
Hyper -0.04 0.34 - 0.96 0.49-1.87

GLMM Gall 1.38 0.37 - 3.97 1.92-8.21
Estrogen 2.29 0.47 - 9.87 3.93-24.8
Hyper -0.08 0.37 3.09 0.92 0.44-1.90

5.5.2 Low Birth Weight Study

Hosmer and Lemeshow (1989) reported a study that was conducted to 

investigate risk factors associated with giving birth to a low weight baby 

(less than 2500 grams). Each case, a mother who gave birth to a low weight 

baby, was matched with three controls selected from the mothers of the same 

age who gave birth to a normal weight baby. Twenty nine such matched sets 

were included in the study. We fit GLM with conditional likelihood and GLMM 

with random exposure effects to this dataset with the case and the first two 

controls from each set. The dataset is presented in Appendix A (Table A2). 

The risk factors included in the models are SMOKE (smoked during pregnancy),

74



UI (presence of uterine irritability), PTD (history of premature delivery), 

and LWD (mother’s weight at last menstrual period is in the first quartile 

for the study group). Table 5.7 presents comparative results of GLM and 

GLMM where exposure to SMOKE was considered as random. The estimate of (j) is 

1.89, indicating the presence of considerable random exposure. The 

difference in estimated exposure (Smoke) effect is relatively small, 0.42 

under GLM compared to 0.40 under GLMM, but the difference in standard errors 

is large, 0.52 compared with 0.62 under GLM and GLMM respectively, which is 

reflected in the estimates of confidence interval.

Table 5.7: Comparison Between GLM and GLMM Using Data From Low Birth Weight
Study.

Method Risk Factor Est SE 4) Rel Risk 95% Cl
GLM PTD 0.37 0.56 - 1.45 0.48- 4.34

UI 1.92 0.81 - 6.82 1.39-33.37
LWD 0.30 0.54 - 1.35 0.47- 3.89
Smoke 0.42 0.52 - 1.52 0.45- 4.22

GLMM PTD 0.60 0.62 - 1.82 0.54- 6.14
UI 1.97 0.86 - 7.17 1.33-38.69
LWD 0.36 0.59 - 1.43 0.45- 4.46
Smoke 0.40 0.62 1.89 1.49 0.44- 5.23

5.6 DISCUSSION

The possibility of applying GLMM technique to accommodate overdispersion in 

matched case-control studies is explored in this chapter. The estimation 

method is discussed and appropriate modifications in GLMM estimation 

equations are derived for its application to a conditional likelihood

analysis as undertaken in matched case-control studies. In addition to

providing exact expressions for the quantities required in the estimation 

process for common situations, a general algorithm is presented for

efficient computation which will be particularly useful when the number of
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matched sets is large. The validity of the proposed method is analysed by 

undertaking a simulation study and applying to some real datasets. Our 

assessment indicates that the method has the capability to improve 

efficiency in the analysis of matched case control data. Further

investigation is required to develop similar exact methods for small samples 

and examine the implications on study design particularly on sample size 

determination.
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CHAPTER SIX

Analysis of Contingency Tables 
with Clustered Observations

6.1 INTRODUCTION

The standard analysis of contingency tables or cross-classified categorical 

data are often performed under the assumption that observations which 

contribute to the category counts are independent. However, in many 

practical situations this assumption does not hold as observations which 

contribute to contingency tables are often clustered or correlated. One

common reason is that the method of sampling used in collecting data is not 

always simple random but rather surveys are often conducted by using more 

complex multi-stage or cluster sampling designs. As the members of the same 

primary sampling unit (PSU) or cluster tend to respond similarly, a

correlation structure is introduced in the observed data. This can also 

happen with temporal or spatial data which are gathered at successive points 

in time or units in maps which are often close enough to be correlated. In 

that situation a standard analysis for testing independence of category 

classification by goodness-of-fit would be misleading as the analysis will 

underestimate the standard errors of the estimates.

Pearson chi-squared and the log-likelihood tests under the assumption of

multinomial or product multinomial sampling are often employed for testing

independence or goodness-of-fit in contingency tables. Cohen (1976), Altham 

(1976), Brier (1980), Feliegi (1980), and Rao and Scott (1981) discuss the 

effects of clustered or correlated data on test statistics for independence

or goodness-of-fit in contingency tables. These papers describe methods to
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deflate the Pearson’s chi-square or likelihood ratio statistics in order to 

adjust for intra-cluster correlation. These methods apply to two-way tables 

only and mostly approximate.

Log-linear modelling is another approach to analysing contingency tables 

which has become more popular since it can easily handle multi-dimensional 

tables. This paper addresses the problem of how to analyse clustered data 

in contingency tables using the techniques of GLMM which incorporate both 

fixed and random cluster effects in log-linear models.

6.2 ANALYSIS OF CONTINGENCY TABLES 

6.2.1 Sampling Models

Contingency tables are generally analysed under such sampling models as

Poisson, multinomial or product multinomial distributions.

Under the Poisson assumption each cell in a cross classification table is 

assumed to follow a Poisson process where no a priori knowledge regarding 

the total number of observations in the table is considered. If fy are

cell counts in a table with I rows and J columns, they are viewed as

independent Poisson variables with the expected cell counts my then 

likelihood function for the observed frequencies is given by

niy î e
(6.1) £(m,f) = [j ----- •

ij 1J'

Under the multinomial assumption the sample size, i.e. the total number of

observations in a table, is treated as fixed and the distribution of the
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category counts given the fixed total is considered as multinomial. If f is 

the total number of observations and wy is the underlying probability of 

falling an observation in the i,jth cell then the likelihood function is 

expressed as

(6.2) vI(w,f) = - 2 t - [] WijflJ where X wy = 1
M >j- ij i j
•j

When each row in a table is treated as independent with a fixed sample size 

and the observations in different column categories are distributed as

multinomial then the sampling model is called product multinomial. If fu 

is the row total for the ith row then the likelihood function can be 

expressed as

(6.3) 2*w,f) = p — ' •  p wy1̂ -1 where X wy = 1
i II V  j  j

j

Birch (1963), Haberman (1974a), and others have shown that the maximum 

likelihood estimates (mle) of expected cell counts under the log-linear 

model are the same under any of the above three sampling assumptions

provided a factor for fixed margins is included in the product multinomial

model. In the rest of this chapter Poisson model will be adopted as the

method of analysis.

6.2.2 Test of Independence

The test of independence in a contingency table is commonly undertaken by 

using Pearson’s goodness-of-fit chi-square (Pearson 1904) or likelihood 

ratio chi-square (Wilks 1935).
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Pearson’s chi-square for testing goodness-of-fit, that is to compare 

observed with expected frequencies, is defined as

(6.4) X2 = I  I  ~
, j mü

which is asymptotically distributed as y} with (I-1 )(J-1) degrees of freedom 

under the null hypothesis of no association.

The corresponding test based on the likelihood criterion is given by

(6.5) G2 = -2 I  I  fu log -jf
i j 'J

which is also distributed asymptotically as %2 with (I-1 )(J-1) degrees of 

freedom under the null hypothesis of independence.

The chi-square approximation used in the above two test statistics depends 

on the distributional assumptions such as Poisson, multinomial or product 

multinomial and on the survey sampling scheme. As discussed in the 

introduction the tests are applicable to the simple random sample case. Any 

departure from that, for instance in the case of complex sample design 

involving stratification and clustering, can seriously effect the validity 

of these tests.

6.2.3 Adjustment for Complex Sample Design

Cohen (1976) proposed a method for adjusting the conventional test statistic 

X2 used for independence or goodness of fit. The adjustment procedure was 

originally designed for a cluster size of two which was later extended by
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Altham (1976) to cover the case where cluster size is more than two. The

adjusted test statistic is given by

(6.6) Xa = -  Xi 2(I.,km)

where k is the cluster size and a is some form of measure of positive

correlation with 0 < a < 1. If there is no intra-cluster correlation then

2 2 2 X2a=0, and X a=X . If there is a perfect correlation then Xa = . Altham

(1976) discuss the method for estimating a.

Brier (1980) used the Dirichlet-multinomial distribution to model the

distribution of counts in contingency tables generated by cluster sampling. 

This provided an alternative rationale for Altham’s method and also helped 

extend the method to cover the case of unequal clusters. It is shown by 

Brier that the asymptotic distribution of conventional test statistics X2 

and G2 under clustering are B%2 with (I-1)(J-1) degrees of freedom and

B = Z kj^Ci
i = 1

/ I kjr.
i = 1

where it is assumed that there are r, clusters of size k , , ....., rt

clusters of size kt; and

1 < Cj = (kj+R)/(l+R) < kj ;

and R is a structural parameter for clustering effects such that p =

1/(1+R), where p is the intra-cluster correlation coefficient.
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6.2.4 Log-Linear Models

Let us consider the notation for log-linear modelling which will then be 

extended to GLMM.

Let Fjj be the observed frequency in the i,jth cell in a two-way contingency 

table which is the sum of the frequencies in i,jth cells of k clusters. 

Then

Fj. = X Fjj is the marginal total for the ith row;

F#j = £  Fjj is the marginal total for the j th column;
i

F t = X I  Fjj = I  Fit = I  F#j is the overall total, 
i j i * 1

Similarly,

fyk is the observed frequency in the i,jth cell of the kth cluster;

fi>k is the marginal total for the ith row in the kth cluster;

f -k is the marginal total for the jth column in the kth cluster;

f .k = X X fjjk = X fi#k = X f jk is the overall total for the kth 
i j i j

cluster.

Therefore,

Fij = I fp  ; Fu = I fu  ; Fj = I f jk ; and F . = E f.,k.
k k k k

When clustering is ignored the contingency table is analysed using the 

following log-linear model:

(6.7) log ey = log M + log ^  + log bj + log (ab)y 

= n + Oi + ßi + aß.j

where ey is the Poisson mean of Fy;

82



\x is the overall mean;

0Cj is the row effect; 

ßj is the column effect; 

ocßjj is the interaction effect;

To test for independence or goodness-of-fit in the contingency table, the 

model is fitted with and without the interaction terms and the likelihood

ratio test is applied. In the presence of a cluster effect the test 

statistic turns out to be larger and leads to the false conclusion of

association in the table.

6.3 GENERALIZED LINEAR MIXED MODELS APPROACH

The GLMM approach as outlined in sections 2.3.2 and 3.3 is used to develop 

an analysis strategy for contingency tables with clustered observations. 

The analysis strategy is developed under the Poisson assumption and

consequently a Poisson-normal GLMM is the basis of the proposed analysis.

6.3.1 Application to Contingency Tables

To account for the cluster level correlation the model can be fitted to

cluster level observations as follows:

(6.8) log eijk = p + otj + ßj + aßjj + uk + uik + ujk

where uk, uik and ujk are random coefficients corresponding to overall 

mean, row and column effects respectively for the kth cluster. The model 

obtains estimates of common interaction effects after removing the random 

variation in cluster level main effects.
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The above model can be written in a general form as 

e = fix l) where r\ = Xß + Zu

where

e =  [e l l l»e 121’” -’e U l ’ ......» e i IK’e l2K’ - " ’e lJK]’
and

^  = [^11 hTll21 ’ *--’TllJI’ ....... ’ r l l lK ’r l l2K’" - ’r llJK] •

Let IxJ = m, IxJxK = n and 1+(I-1)+(J-1) = P then

X is an nxm and Z is an nxPxK design matrices corresponding to the fixed 

effects and the random effects respectively, Z can be partitioned 

conformably to iT=[u J,U2,...,u '] as Z=[Z ,,Z2,....,ZP].

ß — [|i,ot1,(X2,.-,otI.|,ßi,ß2v,ßj.i,otßji,...,aß(|.|)(j.,)]

is a P-vector of fixed effects, which w ill be estimated after removing the 

cluster level random variation in the main effects.

u' = )*uP i - - upci..,l

is an PxK vector of random effects for P main effects corresponding to K 

clusters, i.e. each of Uß(j ^ has K components, for example,

u|i = [un,'u|x2.....unKl.

u is assumed to be distributed as N(0,A) where

A = diag [AjI cJ)jI ,Aa i4)a i ,...,Aa([.1)(j)a(I.1),Aß1ct)ß1,...,Aß(J.1)4)p(J.1)] 

with Aj^, A a i, etc. known matrices of constants.

The distribution of the components of u can also be assumed to be log-gamma 

with Vj^ = exp(uji ), V a , = exp(ua i), etc. gamma distributed with mean 1. 

However in the case of a Poisson distributed response variable, a simulation 

study presented in Chapter 4 indicates that the difference between models
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with normal and log-gamma distributed random components is not significant. 

Therefore, the present application will be derived assuming normally 

distributed random components.

The distribution of observed frequencies, fijk, conditional on given random 

components, u, is assumed to be Poisson with mean eijk = expCn^). Thus 

the log-likelihood functions for f | u and u are

i j
(6.9) h  I u ~ ^  ^

i = I j = 1

(6.10) / = constant
r 1

and K = Aijx +

K

2  [-exp(tlijk) + fiJkT|ijk - In fjjk!] ,
k = 1

- (1/2) {K ln(27t(j)|j) +

' +  /uß(J-0

giving

dl\/drip  = Yijk-exp(rjijk) , d l{/dr\^k = -exp(t|jjk) , 

/y|U = diag[exp(r|iJk)] , / yu = B = diag[exp(x'jkß)],

here I is the information matrix and

dl2/du^  = -(j)|̂  Ajĵ  , d l2/dUj  ̂ = -(j)ĵ  Aj^

and so on for u a i , u a2> etc.

Therefore, dl2/du = -A_lu , d2l2/duSiT = -A

The scoring equations for estimating ß, u are iterative from initial

values ß0, u 0 to first iteration ß,, u, given by

( 6. 11)
ß.-ßc
u ,-u c

X'
Z' (f-e11») +

-A  Ur

X'
r j  / b [x z l +

0 0 "
z L J 0 A 1
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Once convergence for initial estimates of ß, u for given initial (]) is 

achieved, the improved estimate of <j) is obtained and the iteration process 

is repeated until the convergence in <J) is also achieved.

The REML estimate of (j)̂  for instance, is given by

(6.12) ^  = ( 0 ^ +  tr T ^/K

where K is the number of clusters and

X'BX X'BZ -1 v„ v,; -l T, T2‘
Z'BX Z'BZ+A”1 v ;2 v 22 t 2 t

Tj  ̂ is the corresponding sub-matrix of T.

Once the model is fitted, the estimate of the standard errors of the fixed 

and random components are obtained from the information matrix. The Wald 

test can be used to test the significance of the interaction terms for the 

hypothesis of independence or goodness-of-fit as follows.

(6.13) Xw = [ocßi1,...,ocß(i_i)(j_|)] T 1[(xß|„...,otß(|_|)(j_[)]

♦

where T, is a sub-matrix of T, consisting of the appropriate elements.

2
Under the null hypothesis is distributed as %2 with (I-1 )(J-1) degrees of 

freedom.

Alternatively, the modelling can be repeated without the interaction terms 

and the likelihood ratio type test can be undertaken as suggested by (Lee 

and Neider, 1996) as follows. If

H 0 : ß =  ßo th en
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(6.14) G2 = 2 {/(ß,(J); f,ü) - /(ß0,<j); f,ußo)} + 2{A(ß) - A(ß0)}

where A(ß) = - ^ log det (V221 ß) and A(ß0) = - ^ log det (V221 ß0). G2 is 

approximately distributed as %2, for given ({).

A 2x2 contingency table can be analysed either by binomial logit or log- 

linear models and the analysis method for overdispersed data due to 

clustering is well developed using binomial logit mixed models. The mixed 

modelling described above for the log-linear (Poisson-normal) model is 

consistent with binomial logit case and both methods give the same result.

6.3.2 Computation

A usual problem in the analysis of contingency tables using the log-linear 

model is the number of parameters to be estimated. This problem will

potentially increase very rapidly if GLMM is used for the analysis. The

number of random effects to be included is directly proportional to the 

number of clusters contributing to the table. For example, in a 5x5 table 

with 20 clusters, 25 fixed effects (9 main effects and 16 interaction 

effects) and 180 (20x9) random effects are required to be estimated. This

increasing number of parameters can quickly paralyse the proposed method of 

analysis. It is shown below how this problem can be removed when applying 

the technique to large contingency tables with many clusters.

The main problem is to take the inverse of the variance-covariance matrix of 

very large dimension. However, with slight rearrangement of the random 

parameters the corresponding variance-covariance matrix, V22 , can be
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converted to a block diagonal matrix which would make the method of 

computation considerably simpler.

The vector of random parameters u can be written as

U =  [U | ,U 2, . . .U k, . . . ,U K]

where <  = .... ,% (M)k,ußlk..... ,uß(j |)k].

Then the following matrices can be expressed in diagonal forms: 

Z = diag[Z,,Z2,..... ,ZK], B = diag [B,,B2,.... ,BKL

V22 = diag[Vn,W22,.....>VKK], V12 = diag[ v0, ,V02,......,W0K].

If X' = then v* =  X'BkXk, V0k = X'BkZk

and Vkk = Z'BkZk+e_1I where 0 = [V fe iv .^ad -i^ß h -^ß u -i)]

^00 V01 V02 ' ' V0K Too T0| • ■ tok

Ki V11 0 • • 0
V-i =

T5i T|, ■ • T,k

<1 0 0 •
• ^KK

rri/ rp/
a ok a ik  ‘ • t kk

where
Too = E » T0k = E V0kVkk,

T u  = K l + k K v \ * <

Tkk' = vX E ' ' v« < '

and E = V(K) - [V0|Vn V0i + 0̂2̂ 22̂ 02 +---+ ôk̂ kk̂ ok 1
K

= Voo - 2
k = 1

Pi = ßo + Too ^'(f-e71») + £  Tok Z J f tV H
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sk, =  Uk0 + T |0 X ^ » )  + I  [T,k Z f̂fc-e1̂ 10) - ek'u J .
k = 1

The estimates of dispersion parameters are obtained as follows 

5(1 = ( I + tr T^/K,
k = 1

where T^ is a KxK matrix formed by extracting the first diagonal elements of 

the sub-matrices of T i.e. T,, ..... , TKK .

^ai = ( £  ua  + tr Ta i)/K,
k = 1

where Ta , is a KxK matrix formed by extracting the second diagonal elements 

of the sub-matrices of T i.e. T,, ,.... . TKK .

Similarly estimates of (j) corresponding to other parameters are obtained.

The estimates obtained under the above strategy will not require the 

handling of any matrix greater than the matrix corresponding to the fixed 

effect model. Therefore computationally, if a contingency table can be 

analysed by using an ordinary log-linear model, it should also be able to be 

analysed under the proposed mixed model scheme for any number of clusters.

6.4 APPLICATION

The method is applied to a benchmark dataset used by Brier (1980) for 

studying the effect of clustering in contingency tables analysis. The data

came from a survey conducted for the U.S. Department of Agriculture to study 

the levels of satisfaction with housing in the neighbourhood. The survey

was conducted in 20 neighbourhoods in Montevideo, Minnesota and five 

families were selected in each neighbourhood and two questions were asked,
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viz. the level of satisfaction with housing in their neighbourhood and the 

level of satisfaction with their own house. The responses were categorised 

as unsatisfied, satisfied and very satisfied for each question. The 

responses from all five selected families were reported for all 

neighbourhoods except two where only three families were included. Appendix 

1 (Table Al) presents the detailed dataset separately for all neighbourhoods 

and Table 6.1 presents a collapsed version of the dataset for all families.

Table 6.1. Contingency Table of Families Classified by Level of 
Satisfaction with Housing at Personal Level and Community Level.

p , p 2 p 3

C , 18
(12.5)

6
(9.75)

0
(1.75)

C 2 28
(30 .73)

28
(23.97)

3
(4.30)

C 3 4
(6.77)

5
(5.28)

4
(0.95)

P = Personal Satisfaction, C = Community Satisfaction 

and the subscripts 1 = Unsatisfied, 2 = Satisfied, 3 = Very Satisfied.

The objective of the analysis is to test the hypothesis of whether a 

family’s level of personal satisfaction is independent of its level of

community satisfaction.

A conventional chi-square test of independence in the collapsed table, 

ignoring the existence of clusters and assuming a simple random sample of 96 

families, would result in a Pearson %2 statistic, X2 = 17.89 and the 

likelihood ratio y}, G2 = 15.38. Both of these values are greater than 

X 2 = 9.49 which indicates there is a significant level of association 

between categories of personal and community level satisfactions.
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Brier (1980) extended a method proposed by Altham (1976) for deflating the 

X2 value for cluster effect. Altham originally derived the deflating factor 

for equi-size clusters which was extended by Brier for unequal clusters. To 

apply Brier’s method an estimate of intra-cluster correlation is required 

and, in the absence of such information, a maximum value of 1 for the intra­

cluster correlation is suggested to be used. Under this assumption deflated

values of X2 and G2 are obtained as 3.67 and 3.15 respectively, which are

less than %4 005 implying no association among the classification of

personal and community level satisfactions. Brier (1980) refined this chi-

squared statistics further by deriving an estimate of intra-cluster

correlation rather than using the maximum possible correlation. That

produced the values of X2 and G2 of 15.68 and 13.49 respectively, which are 

again significant compared with Fingleton (1984) however notes

that the conditions under which the method is developed are fairly weak and

not highly reliable.

We analyse the same dataset using the method proposed in this paper. The

model used to analyse the data is as follows:

e = fir i) where rj = Xß + Zu

and
e = [eyj, the Poisson mean of the category counts fijk, 

i= 1,2,3 ; j= 1,2,3 and k=l,2,...,20;

i and j represent levels of community and personal level satisfactions 

respectively and k indicates the number of neighbourhoods. We have

ß' = [pi, Cj, c2, p„ p2, cpn, cp12, cp21, cp22], 

u' = [uj,....u'0],

and u( = [ujĵ , uclk? uc2k, uplk? up2k]
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The model is fitted with and without interaction terms and the likelihood 

ratio statistic is calculated as G2 = 11.43 which is closer to the value 

obtained by Brier (1980). The calculated G2 = 11.43 lies in between G2 = 

3.15 and G2 = 13.49, the likelihood ratio statistics calculated based on 

Brier’s method under perfect intra-cluster correlation and estimated intra­

cluster correlation respectively. As the assumption of perfect correlation 

is a conservative strategy the real G2 is likely to be higher. On the other 

hand as Fingleton (1984) mentioned, Brier’s method of calculating G2 based 

on estimated correlation is dependent on fairly weak conditions and can not 

be highly relied upon. Thus the actual value of G2 is more likely to be in 

between these two values.

6.5 DISCUSSION

A GLMM based framework is proposed for the analysis of contingency tables 

where observations enter as clusters. The analysis is applicable when 

Poisson sampling error is assumed. The method has the advantage of 

accommodating multiple levels of clustering. This is basically an extension 

of log-linear modelling to incorporate random cluster effects. A

disadvantage of the method is that similar to the standard log-linear 

analysis the numbers of fixed parameters and random components to be dealt 

with are large since one fixed parameter and one random component are 

required for each of the main effects. A computing algorithm is developed 

to ensure that the proposed method does not demand any unmanageable 

additional computing space. That means from the computing point of view the 

analysis can be undertaken if the standard log-linear modelling can be 

carried out. Still the method should be preferred only if there is a
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specific reason for conducting the analysis under the Poisson assumption. 

Otherwise the method proposed in the following chapter assuming product 

multinomial rather than Poisson is easy to apply because of the reduction in 

the number of parameters.
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CHAPTER SEVEN

Modeling Multinomial Data with Extra Variation 
and Analysis of Contingency Tables

7.1 INTRODUCTION

Multi-category response variables are common phenomena in social and 

biomedical research. Multinomial modelling is often adopted to analyse such 

data. However, in many cases the variances and covariances of the

observations are found to be more than the sampling variation assumed by the 

multinomial model. This syndrome is known as extra variation or

overdispersion in the literature. The reason behind such overdispersion is 

mainly due to clustering of observations which can happen for various 

reasons as discussed in Chapter 6 in relation to the clustering in

contingency tables.

Extra variation in multinomial modelling is often addressed by using quasi­

likelihood functions or by using the Dirichlet multinomial model. The 

multinomial covariance matrix is often multiplied by a scalar parameter to 

account for extra variation. The Dirichlet-multinomial model is in fact a

scalar adjustment of the multinomial covariance matrix used by Brier (1980) 

for the analysis of contingency tables under cluster sampling. Koehler and 

Wilson (1986) adopted a similar approach for comparing proportions derived 

from cluster samples. McCullagh and Neider (1989) proposed a quasi­

likelihood approach to scaled multinomial modelling. Liang and Zeger (1986) 

proposed a class of generalised estimating equations to address this type of 

problem. Recently Morel and Koehler (1995) proposed a method based on a one 

step Gauss Newton estimator which allows flexibility in accommodating
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different levels of overdispersion corresponding to different components of 

variance instead of multiplying the covariance matrix by a single scalar. 

This method however concentrates on making inference about the population 

mean rather than about individual respondents.

We propose a method based on the GLMM approach which retains the flexibility 

of accommodating overdispersions at different levels similar to Morel and 

Koehler’s method but it offers the added advantage of making inference about 

individual respondents apart from inference about population means. It is 

also discussed how this method can be used for analysing contingency tables 

with correlated observations. This offers an alternative to the method

discussed in the previous chapter.

7.2 ANALYSIS IGNORING CLUSTERING

Let y*,=[y*,,y*,,....,y*/] be a vector of counts which consists of a set of 

sub-vectors which are independent, where y*/==[yi i ,yi2,—»yij-t-i are the

category counts in J+l response categories.

Let T'=[T1,T2,....,Ti] be a vector of the totals of I groups

j +  l

where Tj = Z yy , 
j = i

and 7i*/=[7i*/,7t be a vector of probabilities, where

7t*'=[7iil,7t:i2,....,7tiJ+1] be the vector of probabilities for responses in the 

J+l categories for each of the Tj observations in group i.

I  7Cjj = 1, and 7iiJ+1= 1 -1 7 ty , £(y*)=Tj7i* . 
j=i j=i
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The likelihood function for product multinomial data can be written as

( 7 1 )  =  ,n ,T ' ! % %
and the corresponding log-likelihood function excluding the constants can be 

written as

i j + 1
(7.2) /(y) = I  I yjj In Tty .

i=l j=i

Let us define the link function Tty = g(Tjjj) with rjy = x^ß where Xy is 

a vector of covariates and ß is a vector of parameters.

Now in dealing with multinomial data since the Tj’s are predetermined so is 

the J+lth category once the first J categories are known.

Therefore dropping the last value of each group we can define:

y' = where y'. = and

71 — [7t|,7to,....,7l|] where 7tj — [7tj|,7tj25**»*j7tjj]

Here y is an m-vector with m=IxJ where the first J elements belong to the 

first group, the second J elements belong to the second group and so on. 

Similarly 7t is the corresponding m-vector of probabilities. Then the link 

function can be written as r\ = Xß where X is an mxp matrix of explanatory 

variables and ß is a pxl vector of parameters. Then the log likelihood 

function can be written as

(7.3) / = y' ln g(t|) = y' ln g(Xß),

The estimate of ß is obtained by maximizing the likelihood function. This 

works well when the observations do not show any intra-cluster correlation 

or any other extra variation. In the presence of such extra variation the
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estimate of ß is consistent but the estimate of the standard error of ß 

tends to be under estimated. In the following section, we demonstrate how 

the GLMM technique can be used to estimate of ß and the cluster effects.

7.3 GENERALISED LINEAR MIXED MODELS APPROACH

Let us extend the above structure to a situation where the observations come 

from K clusters and the category counts are recorded at the cluster level 

for each population. We define, y* as a vector of category counts at 

cluster level such that yki; represents the category counts for the jth
«I*

category of the ith group in the kth cluster. n and T are the

corresponding vectors of probabilities and cluster level population totals 

respectively. Therefore,

y*' = [ytl....y*i.... J ki’- J k!] and y*[ = [yki| .... ykiJ+1]

"*' = [«m.... .Jtfjv.... .......... tCkH and Jtk' = [Jtki.....,JtkiJ+1]

J +  1
with X 7tkij = 1 

j = i

r [T;,T',...,T'] and T' 1 k [Tk|,Tk2,...,Tki] with Tki
j + i

-  £  y kjj •
j = i

As before after removing the last categories we define y and 71 corresponding 

to y* and k*. The dimensions of y and k is nxl where n=KxIxJ.

The link function is now defined as

(7.4) n = g(rj) and r\ = Xß+Zu

where

X is an nxp matrix of covariates corresponding to the p-vector of fixed 

coefficients ß,
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u' = [u;,u',...fu;] with uj = [ujl,uj2,...,ujK]

a vector of random effects which has J components each with K effects for K 

clusters and Z is an nxKxJ incident matrix indicating the presence or 

absence of the observations in K clusters for J response categories.

u ~ N(0,A) where A = block diag [A,(]),,A2(j)2,...,AJ(})J]

where fy’s are dispersion parameters of the random components and Aj are 

known matrices.

As usual the log-likelihood function is now defined in two components

(7.5) / = /, + l2 where

/, = ln /(y;ß I u) = In /(r|,(J) | u) = y' In g(r|) and

j
l2 = In f(u) = constant - (1/2) X {Kln(27t(t)j) + 'ujA^Uj}

j = i

The estimates of ß, u and (j) are then obtained by the usual method of

maximizing the joint likelihood function / as described in the previous 

chapters.

7.3.1 Multinomial Logistic Modelling

As a logit link function is commonly used in the case of multinomial data we 

describe the details of estimation for multinomial logistic modelling in

this section.

For multinomial data odds ratios are defined as the ratio of the odds of a

particular response category with the odds of the base category. Here the
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last category is treated as the base category. The logit link function is 

given by

(7.6) ^kij “
exp (Hk«)

l + I  exp Cnkij) 
j=l

Thus the form of the likelihood function /, ignoring irrelevant portions is

K I J + 1

(7.7) /, = S X I  ykij [rikij - I" U+.Z exp (T|kij)}]
k = 1 i = 1 j = 1 J = 1

and l2 is as specified earlier.

dl\!drikij -  ykij - Tki T>0lkij)

l + I  exp (r|kij) 
j = i

-  Y kij ~ T ki% i j

=> a/i/arl = y - y where y = [yikj] = Tki7ikij

5 /i/9T|kij ör|k,i,j'= 7tkij(l - 7tkij) if k = k , i=i and j=j 

= - 7tkij7tkij/ if k=k', i=i' and j^ j' 

= 0 otherwise

=> - d2l l/dr\dr\' = diag (k ) - block diag (nn') = V(7t)

d l /dudu' = - 
2

diag <t>j*A^ = - A-l

The estimates of ß, u and cj) are obtained by maximizing the joint likelihood 

function /=/,+/2. From initial values ß0, u0 and given (j)0 the estimates 

ß, u are obtained by using the Newton-Raphson iteration procedure as 

follows:

(7.8) V ß-ßo = X'
Z' (y - y) -

0
A"'u0

5-u0
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with V X '
Z' V(7C)[X z] + 0 0

0 A- l If V = V„ V,2 
^ 2 1  ^ 2 2

V - '  = . I

then a new initial value for is ü'Aj‘üj/(K-r*) , r*=(j)j'tr V22(j) .

Using this estimate of <{)j , new estimates for ß, u are found and a new value 

of <j)j is estimated as indicated above. The final converged values of ß, u,

$ are the approximate maximum likelihood estimates. If V22 is replaced by I 

then REML estimates are obtained.

7.3.2 Multiple levels of Clustering

When there are multiple levels of clustering the above method can be

generalised by defining

u =[u;,U2,...,Uq], with uq=[uql,uq2,...,uqJ] and uqj=[uqjl,...,uqjK ]

as a vector of random coefficients with Q levels of clustering. u^

represents a vector of random effects corresponding to the j th response 

categories for the clustering at qth level. The dimension of u^ will be 

equal to Kq, the number of clusters at qth level. If the first random

component corresponds to K, ultimate clusters then ujj will be of dimension 

K,xl. If the second component corresponds to an upper level clustering,

such as primary sampling units (PSU) in multistage sampling, each of which 

consists of K2 ultimate clusters then u2j will have dimension K2xl and so

on. Z=[Z,,Z2,...,Zq] with Zq=[Zqi,Zq2,...,ZqJ] is partitioned conformably 

with the partition of u.

The u^’s are assumed to be independent with distribution N(0,Acy()>̂ ) where 

(j^’s are dispersion parameters of random components and A^’s are known 

matrices such that
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A = block diag [A,,A2,...,AQ] and Aq = block diag [Aql(j)ql,...,AqJ<J)qJ] .

In the log likelihood function (7.5) /, will remain as before but /2 will be 

adjusted as follows

(7.9) l2 = In f(u) = constant - (1/2) I  I  {K^ln^t})^) + ^ ’u^a J u^}
q = lj = 1

The estimation equation will be the same as defined in (7.8) but with 

multiple random components and multiple dispersion parameters. The 

dispersion parameter for qjth component will be calculated as (J)qi = 

“ i A qj“ c / ( K q r rqj) > r*j = <t>qj tr V 22(qj) w ith  K qj the number of components 

of Uqj and V2j(qj) is the appropriate sub-matrix of V22. If V22 is replaced 

by I  then REML estimates are obtained.

7.4 APPLICATION TO CONTINGENCY TABLES

Contingency tables are often analysed under a multinomial sampling scheme 

particularly when one or more variables can be thought of as independent 

variables and the remainder as response variables. The sample size 

corresponding to each category of independent variable is assumed fixed and 

the main interest is to test the homogeneity of proportions across

independent groups. Multinomial logistic modelling is often employed to 

obtain the estimates of odds ratios or to test the homogeneity when the 

response variable has more than two levels. In this section, we describe 

the analysis of contingency tables using multinomial logistic modelling when 

the observations are clustered.
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Let us consider the case of a two-way contingency table with I rows and J+l 

columns. The observations contributing to the table are obtained from K

clusters. Category counts are denoted by fkij with expected value ekij .

If the columns are considered as response categories and rows are treated as 

explanatory categories then, taking the last response category as the base 

category, the multinomial logit for the k,i,jth cell can be written as

log e kij

e ki,J+l
=  % j  •

If e and r| are vectors of ekij’s and r |kij’s then the full mixed effect 

analysis model can be expressed as

(7.10) logit e = r| = Xß+Zu

where ß is a vector of fixed coefficients with dimension J+(I-1)J. It can be 

decomposed as ß'=[ß0r,ß*/] where

ß° = tß?, ß°.... ß?r

includes an intercept term for each response category except the base 

category J+l, and

ß* = [ß*„ ß*2, ... ßtj, . . . . .  ß* ßt-,.2.....  ßt

represents the interaction terms for each combination of the first J columns 

and 1-1 rows. The interaction effect corresponding to the Ith row is 

confounded with the ßü parameters.

Let u/=(uJ,U2,...,uJ/) and uj=[uj, ,Uj2,...,U jK] , to allow J random components 

corresponding to the J response categories with each having K effects 

corresponding to the K clusters. To allow for clustering at another level a 

different set of J components are required with number of effects in each
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components equal to the number of clusters at that level. X and Z will have 

to be designed appropriately to conform with the parameter structure of ß 

and u. Then the estimate of ß, u and (J) can be obtained by following the 

standard procedure described in the previous section.

To test homogeneity in the contingency table the likelihood ratio test or 

Wald test can be employed. For the likelihood ratio test the model has to 

be fitted again without the interaction terms but keeping the random 

component structure the same as before and test statistics can be 

constructed as suggested by (Lee and Neider, 1996) as follows.

If H0 : ß* = 0 then

(7.11) G2 = 2{/(ß°, ß*, <|>; f,u) - /(ß°,<t>; f,upo)}+ 2{A(ß°, ß*) - A(ß0)) 

where A(ß°,ß*) = - j  log det (V221 ß°,ß*) and A(ß°) = log det (V22! ß°).

For given (j), G2 is approximately distributed as y} with degrees of freedom

equal to the dimension of ß*.

As the test of homogeneity is equivalent to the test of independence, the 

multinomial logistic method can be used as an alternative to the method 

presented in the previous chapter under Poisson (log-linear) modelling for

the test of independence. The main advantage of the multinomial logistic 

approach compared with the Poisson modelling approach is that fewer random 

terms are required, which is particularly useful when the number of clusters 

is very large. The number of fixed parameters under the multinomial

modelling is also less. However, as discussed in detail by Freeman (1987),
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there are situations where log-linear modelling is preferable to multinomial 

logistic and vice versa.

7.5 EMPIRICAL RESULTS

Two applications of the proposed method are discussed in this section, the 

first to contingency table analysis and the second to the analysis of

general multi-category response data.

7.5.1 Application to Neighbourhood Dataset

The method is applied to the contingency table of the neighbourhood dataset

(Brier 1980) as discussed in Chapter 6. Table 6.1 in the previous chapter 

presents a collapsed version of the dataset and Table A1 in Appendix 1

presents the detailed dataset separately for all neighbourhoods and for all 

families. This is basically a two-way contingency table, with levels of

satisfaction with own home (p’s) being columns and the satisfaction with

neighbouring housing (c’s) being rows. For the current analysis, the 

satisfaction with own home is treated as the response variable and the

satisfaction with neighbouring housing is considered as the independent

variable. As the response variable has three levels (p,, p2 and p3) the

first level is treated as the reference category while the three row levels 

(ch c2 and c3) are taken as the levels of the explanatory variable. Each

neighbourhood is considered as a cluster of families and the analysis is

undertaken by using cluster level contingency tables with cell frequencies

(fkij) where k indicates cluster and i and j are the levels of community and

personal satisfaction. The multinomial logistic model used to analyse the

data is
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(7.12) e  = f(r|) where r| = Xß + Zu

and
e = tekij]’ is the expected value of fkij 

i= 1,2,3; j=2,3 and k=l,2,...,20;

e kij =  T ki7tkij With 

3
Tki = X fkij = multinomial marginals, and 

j = i

„ _ exp(r|kij)
™kij------ 5

1+Z exp (t|kij) 
j=2

ß' = [P2> P3- CP22. CP32’ CP23- Cp33], 

u = tup2’ up3]> with Upj = [Upji Upj2»....upj20]*

Here p2 and p3 are two fixed intercept coefficients corresponding to the two 

levels of the response variable and the remaining four fixed coefficients 

are interaction or odds ratio parameters. Two random components up2, up3 

corresponding to two response categories each with twenty levels for twenty 

communities are included in the model.

X and Z are design matrices corresponding to the fixed coefficients ß and 

random components u. Z=[Z2,Z3] where Z2 and Z3 are design matrices 

corresponding to the two random components up2, up3.

The model was fitted with and without interaction terms and the calculated 

likelihood ratio statistic and Wald statistic W2 are presented in Table 

7.1 in comparison to the test results obtained from other methods.
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Table 7.1. Calculated Test Statistics Under Different Methods

Method of Estimation X 2 W“
Multinomial Logistic (ignoring clustering) 15.39

Log-linear (ignoring clustering) 15.09

Multinomial Logistic (random cluster effects) 10.32 8.56

Log-linear (random cluster effects) 11.43 11.97

Brier’s Dirichlet-multinomial (estimated corr) 13.49

The results show that, similar to the mixed log-linear model introduced in 

the previous chapter, the mixed multinomial logistic model is deflates the 

likelihood ratio statistic, X 2 . The conventional analysis under multinomial 

and Poisson assumptions produces the values of X 2 as 15.39 and 15.09 

respectively. This are deflated to 10.32 under multinomial and 11.43 under 

Poisson mixed models. The correction in X 2 for clustering under these

methods is larger than the correction done under Brier’s Dirichlet-

multinomial model. The value of X 2 obtained under Brier’s method is 13.49. 

Even after the correction the test result is still significant at 5% level 

under all methods. However, the p-values are very close to 0.05 under the 

corrected methods.

7.5.2 Application to Birth Defect Study

Morel and Koehler (1995) present a dataset from a study conducted by 

Hartsfield et al. (1992) on the effects of prenatal exposure to cadmium and 

zinc on death and malformation rates of hamster fetuses. They used the 

dataset to compare the estimates obtained from their proposed one-step 

Gauss-Newton estimator with that of multinomial and scaled multinomial
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models. We use the same dataset to show the performance of the proposed 

method in the case of general multi-category response data.

Table 7.2 presents the dataset where each row within a treatment group 

represents a litter. The treatment groups are the litters of pregnant 

hamsters which received various treatments such as 2 mg kg*1 of zinc, 2 mg 

kg'1 of cadmium, 3 mg kg-1 of cadmium, combination of 2 mg kg*1 of zinc and 

2 mg kg-1 of cadmium and 2 mg kg-1 of zinc and 3 mg kg-1 of cadmium. In 

addition two control groups of 10 hamsters in each group received either no 

treatment or a saline solution only. The two control groups were combined 

into a single group in the analysis. The outcome of the study, the numbers 

of dead fetuses, alive fetuses with physical malformations and alive fetuses 

without physical malformations, are presented in the first, the second and 

the third columns respectively within each group.

Table 7.2: Data from Hamsters Birth Defect Study

Injected
Controls

Untreated
Controls

2mg kg-> 
of zinc

2mg kg-1 
of

cadmium

3 mg kg-1 
of

cadmium

2 mg kg-1 
zinc and
2mg kg-1 
of cad.

2mg kg-1
zinc and
3 mg kg-1 
of cad.

a b c a b c a b c a b c a b c a b c a b c
0 0 13 0 0 13 2 0 11 2 5 5 6 5 1 1 1 9 4 1 5
8 0 1 5 1 7 0 0 15 12 0 0 11 0 0 0 0 13 4 7 3
0 0 13 0 0 13 1 0 13 4 5 3 8 5 0 1 1 13 13 5 0
1 0 11 1 0 11 1 1 13 3 8 0 8 0 0 4 4 3 2 4 6
1 0 17 0 0 13 1 0 12 3 8 0 14 0 0 0 1 12 6 5 1
0 0 13 0 0 11 1 0 12 9 4 0 11 1 0 0 0 11 11 0 0
0 0 15 0 0 11 0 0 13 1 12 3 12 0 0 0 3 9 5 6 2
0 0 14 1 2 10 1 0 10 1 9 2 13 5 0 2 2 9 4 2 6
0 0 11 0 1 12 0 0 16 2 4 10 12 0 0 0 4 11 6 3 6
0 0 14 0 0 12 0 1 11 3 0 12 12 0 0 1 5 6 5 3 3

a = dead fetuses, b = alive fetuses with malformations and c = alive fetuses

without malformations
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In Morel and Koehler (1995) the dataset was analysed by viewing it as a 3x2

factorial experiment where one factor corresponded to the levels of zinc

(control, 2 mg) and the other factor corresponded to the levels of cadmium

(control, 2 mg, 3 mg). We analyse the dataset in the same way to make the

results comparable.

Let us denote the outcomes in Table 7.2 by ykU:, where k, i, 1, j represent 

litters, levels of zinc, levels of cadmium and the response categories 

respectively. If Tk = Xykiij represents the multinomial marginals in litter

k then the corresponding probabilities can be defined as 7rküj =

where ekilj are the expected frequencies. If the number of alive fetuses 

without any physical malformations is considered as the base category (j=c) 

then the logits for the alive with physical malformations (j=b) and dead

fetuses (j=a) can be defined as log for j = a and b.
^kilc

The multinomial logit model is then fitted as 

(7.13) ekiu = g(T|kilj) with

Tlkiij = l0g = “j + ßijXÜ + XljWkj + 'K'jXW«j + Ukj

where ctj’s are intercept parameters that represent the control groups, ßy’s 

are main effects for zinc, Xy are main effects for cadmium and are

interaction parameters for the interactions among zinc and cadmium levels

and ukj’s are random effects for the jth response level in the k,h litter.

Xy, wkj and xwUj are indicator variables for zinc, cadmium and

zincxcadmium interactions for the jth response category. There are two sets
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of parameters corresponding to two outcome levels of interest (j=a,b). In

each set there are six fixed parameters - an intercept parameter, a 

parameter for zinc effect, two parameters for cadmium and two interaction 

effects. The base levels of zinc and cadmium are confounded with the

intercept. There are two random components for two response categories with 

the number of effects in each component equal to the number of litters. 

Therefore in each set there are 70 random effects corresponding to 70 

litters. The strategy accounts for random litter effects corresponding to 

each response categories.

Table 7.3: Estimates of Interaction Parameters and The Corresponding 
Statistics for the Test of Significance.

Parameters Multi.
model

Scaled
multi.

Generalised mult. 
Diagonal Unrestrict

GLMM
ML , REML

Logit 1: Dead versus alive without any malformations
Zinc x Cad2 -2.24

(0.62)
-2.24
(1.09)

-2.24
(1.26)

-2.24
(1.28)

-2.94
(1.05)

-2.99
(1.11)

Zinc x Cad3 -3.78
(1.13)

-3.78
(1.98)

-3.78
(1.79)

-3.78
(1.88)

-4.44
(1.14)

-4.49
(L46)

Logit 2 : Alive with versus without any malformations
Zinc x Cad2 -1.90

(0.93)
-1.90
(1.63)

-1.90
(1.31)

-1.90
(1.31)

-2.10
(1.11)

-2.15
(1.51)

Zinc x Cad3 -2.58
(1.37)

-2.58
(2.41)

-2.58
(1.93)

-2.58
(1.93)

-2.28
(1.51)

-2.26
(1.54)

Wald test 
Logit 1 18.50 6.02 5.52 5.19 13.80 12.51

Logit 2 4.86 1.58 2.47 2.47 3.85 3.77

Logit 1 & 2 27.88 9.08 8.58 7.47 17.59 16.59

The results of fitting the model are presented in Tables 7.3 and 7.4 in 

comparison to the results of other methods such as scaled multinomial and
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generalized multinomial models proposed by Morel and Koehler (1995). Table 

7.3 presents the estimates of interaction effects and the corresponding Wald 

test results. It appears that the methods which only adjust the covariance

Table 7.4: Estimates of Parameters and Standard Errors Under Additive Models

Parameters Multi.
model

Scaled
multi.

Generalised mult. 
Diagonal ,Unrestrict

GLMM
ML , REML

Logit 1 :Dead versus alive without anv malformations
Intercept -2.30

(0.21)
-2.30
(0.39)

-2.30
(0.45)

-2.30
(0.45)

-2.47
(0.39)

-2.49
(0.41)

Zinc -2.43
(0.28)

-2.43
(0.51)

-2.50
(0.54)

-2.20
(0.56)

-2.10
(0.48)

-2.10 
. (0.50)

Cad 2mg 2.33
(0.29)

2.33
(0.53)

2.29
(0.60)

2.43
(0.61)

2.35
(0.54)

-2.37
(0.57)

Cad 3mg 5.55
(0.36)

5.55
(0.65)

5.67
(0.69)

5.34
(0.71)

5.87
(0.59)

5.91
(0.61)

Logit 2 : Alive with versus without any malformations
Intercept -3.76

(0.41)
-3.76
(0.74)

-3.75
(0.59)

-3.79
(0.59)

-3.80
(0.47)

-3.81
(0.48)

Zinc -1.51
(0.26)

-1.51
(0.47)

-1.51
(0.38)

-1.60
(0.38)

-1.48
(0.43)

-1.47
(0.45)

Cad 2mg 4.00
(0.45)

4.00
(0.81)

3.97
(0.65)

4.10
(0.65)

-3.99
(0.56)

-4.00
(0.58)

Cad 3 mg 5.38
(0.50)

5.38
(0.91)

5.46
(0.73)

5.46
(0.73)

5.34
(0.63)

5.35
(0.65)

matrix i.e. scaled and generalised multinomial methods do not adjust the 

estimates of parameters but only adjust the standard errors. However, ML 

and REML under GLMM adjust both estimates and standard errors of the fixed 

coefficients. Consequently, the Wald test results turn out to be 

substantially different than other methods. The combined Wald statistics 

for logit 1 and 2 under GLMM reduce to 17.59 (p=0.0015) for ML and 16.59
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(p=0.0023) for REML compared with 27.88 (p<0.001) under the ordinary 

multinomial model and in the range of 7.47 (p=0.113) to 9.08 (p=0.059) under 

other scaled multinomial models. Similarly, for logit 1 the Wald test under 

ML is 13.80 (p=0.008) and under REML is 12.51 (p=0.014) which are 

substantially higher than those of other scaled methods where 6.02 (p=0.049) 

for scaled multinomial, 5.52 (p=0.063) and 5.19 (p=0.075) under diagonal and 

unrestricted scaling methods. Table 7.4 shows similar results for main 

effects when the model is fitted without interaction terms.

7.6 DISCUSSION

A GLMM based strategy for dealing with overdispersed multinomial data has 

been presented in this chapter. A variety of methods has been proposed in 

the literature for dealing with such datasets. However, the method proposed 

offers greater flexibility in analysis. It offers the flexibility of

accommodating overdispersion at various levels and making inference at both 

population and individual or cluster levels. When there are only two 

response categories the method is consistent with binomial logit mixed 

model, a recognised method of analysis for overdispersed binomial data.

The method is also shown to be applicable to the analysis of contingency 

tables with clustered observations under the assumption of multinomial 

sampling. This can be considered as an alternative to the method discussed 

in the previous chapter for analysis of clustered contingency tables. The 

advantage of this method is that the number of parameters to be dealt with 

is much less than that under a Poisson-normal model.
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CHAPTER EIGHT

Analysis of Contingency Tables with Ordered 

Categories and Clustered Observations

8.1 INTRODUCTION

The use of ordinal scales is very widespread in social and health sciences. 

Attitudes, opinions, severity or stages of various conditions or situations 

are often measured by using ordinal scales which often result in contingency 

tables with ordered categories. However, most of the commonly used 

statistical methods for analysing contingency tables often ignore the 

ordinal relationship between categories and treat these as nominal 

categories. The conventional analysis using log-linear modelling or test of 

independence using Pearson chi-square statistic often treat ordinal

variables as nominal variables. Ignoring the additional information of the 

ordered relationship among categories may lead to less power for detecting 

an alternative hypothesis. In the analysis of contingency tables ordinal 

methods of analysis can considerably reduce the number of parameters to be 

tested for goodness of fit or test of independence compared to that of 

nominal methods. The methods for analysing ordinal categorical data have 

been developed considerably over the last couple of decades. The detailed 

discussion of conventional methods of analysis for ordinal data can be found 

in the books of Bishop et al. (1975), Gokhale and Kullback (1978), Goodman 

(1978), Haberman (1974b, 1978, 1979), Fienberg (1980), Gilbert (1981) and 

Agresti (1984) among others.
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In McCullagh (1980) a class of regression models has been developed for 

analysing ordinal response variables which are known as threshold models. 

As reflected in the recent literature the threshold models can be considered 

as the most appropriate method for analysing ordered response variables.

The method has subsequently been extended to include both fixed and random 

effects by Harville and Mee (1984) and Zhaorong et al. (1992) and Saei 

(1996).

The problem of analysing contingency tables with clustered observations 

discussed in the previous two chapters is extended here to the case where 

categories are ordinal. A strategy for analysing such contingency tables 

with the aid of mixed threshold models is developed.

8.2 LOG-LINEAR MODELS FOR ORDERED CATEGORIES

Agresti (1984) provides a review of the methods used for modelling cross-

classified data with ordered categories. The essence of these methods is to 

replace the interaction terms in conventional log-linear models by lesser 

number of regression coefficients while assigning a score for the ordinal 

categories. In a two-way ordinal-ordinal cross-classification, a single 

regression coefficient is used to replace all interaction terms as explained

below.

If my is the expected frequency in row i and column j in a two dimensional 

contingency table with i=l,2,..,I and j=l,2,..,J then a saturated log-linear

model can be written as

(8.1) log mjj = |i + otj + ßj + aßij .
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The above model is saturated and includes ( I-1 )(J-1) interaction parameters 

and a test for independence w ill have ( I-1 )(J-1) degrees of freedom (df). 

I f  both row and column categories are ordinal then these interactions terms 

are replaced by a single regression term as follows

(8.2) log mjj = |i + a; + ßj + y(ui-ü)(Vj-v)

where Uj and v} are ordered scores for rows and columns respectively. The 

choice o f scores reflect the assumed distances between categories for 

underlying interval scales. In the absence of any information the scores

can be considered as equi-spaced. The advantage of the above model is that 

the number of parameters to be estimated is much less than the saturated 

model and the. df for goodness of fit is ( I-1 )(J-1)-1 and the df for testing 

independence is 1 only.

I f  the cross-classification categories are ordinal-nominal i.e. columns are 

ordinal but rows are nominal, say, then an equivalent model can be written 

as

(8.3) log my = (i + otj + ßj + Yi(vj-v)

with (I-l)(J-2) df for goodness of fit and (1-1) d f for test of 

independence.

The models can also be interpreted in terms of log odds or log odds ratios. 

For the ordinal-nominal model presented above, the log odds for an arbitrary 

pair o f rows i and i' is,

m
(8-4) log —f  = (Yi-Yi') +  (Yi-Yi')(vr v)llij j
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that is the log odds is the linear function of the scores with slope as the 

difference between the slopes for i and \ rows. Similarly the log odds 

ratio for an arbitrary pair of rows i and i' and for an arbitrary pair of 

columns j<j' ,

Hym:/
(8'5) log m'7m = ft-Yi'XVj-Vj')

I j '  1 J

implying the odds ratio is proportional to the difference between column 

scores.

For the ordinal-ordinal model, the log odds ratio for an arbitrary pairs of

rows i<i' and an arbitrary pairs of columns j<j' is given by

^ j/m :/
(8'6) log m-'./m = TfOviVXVj-Vj') .

i y l x l i j

Therefore, the odds ratio is proportional to the product of the differences 

between appropriate row and column scores.

A number of other authors such as Birch (1963), Haberman (1974b), Goodman 

(1979), Andrich (1979), Duncan and McRae (1979) discuss this type of

modelling in various forms.

In the following sections we develop an analysis strategy for ordinal-

nominal contingency tables along the line discussed above but by using

threshold models. The proposed analysis strategy will not only utilize

ordered relationships for interaction effects but will also extend it to 

main effects for ordered column categories. The strategy will then be
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extended to cover the case where observations are clustered by applying 

GLMM.

8.3 THRESHOLD MODELS

The concept of threshold models is developed by assuming an underlying 

continuous and maybe unobservable random variable, T, with a specific 

distribution. The categories of the observed ordinal variable Y correspond

to the various contiguous intervals of the underlying variable, T. The cut- 

points of the intervals are called threshold parameters (0’s) which are 

unknown. If the categories of Y are denoted as 0,1,....,M then the realised

value of Y is recorded as Y = m if 0m.,< T < 0m- As the commonly used

distributions of t ranges over -oo to <» the highest and lowest cut-points of 

0 can be assigned values as 0., = -oo and 0M = The threshold model for Y 

is then

P(Y<m) = G(0m-r0

where r|=Xß with X the matrix of independent variable values and ß a vector 

of regression coefficients; G(0m-t|) is a cumulative distribution function. 

If X includes a column of 1 ’s for an intercept term then the problem of a 

lack of identifiability arises which can be overcome by setting 0o=O. That 

leaves the threshold parameters 0,,02,...,0M.[ and the regression parameters 

in Tj to be estimated.

The mixed model extension of threshold models is done by adding random

components in rj as r|=Xß+Zu, where u'=[uj,u2,...,u£] is a vector of a set of

random parameters and Z=[Z,,Z2,...ZJ is the corresponding incidence matrix. 

The assumptions related to the distribution of Uj's and the covariance
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structure are as usual, that is Uj ~ N(0,(|)jAj) or u ~ N(0,A) with A = block 

diag [Aj<)>j] as the variance-covariance matrix of u.

Depending on the distributional form of the underlying variable x and hence 

the cumulative distribution function, G, various threshold models can be 

defined as follows:

1) If G(0m-r|)=O(9m-rj), where O is the cumulative distribution function of 

the standard normal distribution, then the standard threshold model is 

achieved.

exp(0m-r|)
2) If the logistic function is used i.e. G(0m-r|) = j - ---775——i+exptom-T|) and then the

proportional odds model is obtained. This model will be used mainly in the 

present chapter for analysis of contingency tables.

3) If G(0m-r|) = l-exp[-exp(0m-ri)], i.e. the extreme minimal value

distribution, then the proportional hazards model is obtained.

4) If G(0m-r|) = exp[-exp(0m-r|)] i.e. then the extreme maximal value

distribution is used.

8.4 ESTIMATION IN MIXED THRESHOLD MODELS

The parameters of a mixed threshold model is obtained by following the usual 

method of maximising the joint likelihood function /=/ ,+/2 for mixed

models. The definitions of /, and l2 are same as described in the previous
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chapters. However, the form of the conditional likelihood function /, is 

different which is discussed below. Given that

P(Y<m) = G(0m-r|),

if y is a Nxl vector of ordinal responses with i,h realisation Yi=yi=m, 

where m can be one of 0,1,...,M, then the probability that Y—yj is given

by

P(Yj=yi) = Pi = GOy.-Tij) - Gce^j-rij).

Then the log-likelihood function for y can be written as 

h = f .In [G(0 -rii) - G(6 ,-Tii)]-
i = 1 ‘ '

(8.7)

Z2 = -(1/2) t  [vjln(2TC<)>j) + u'Aj'uj] 
j=l

and /2 is the as usual log-likelihood function for k random components under 

the normal assumption as defined in the previous chapters. The notations 

are as usual with Uj representing a random component with dimension Vj .

Then the estimates of 0/=[01,02,...,0M.1] , ß and u are obtained by

maximising the joint likelihood function /=/,+/2 following the usual

Newton-Raphson iterative scheme as follows

A0 I 0 ö/,/50n 0
Aß
Au

0 X' 
0 Z'

1 u
3/,/STlo

0
A o’uq

where A indicates changes in estimates in each iteration and the subscript 0 

indicates the initial starting values and subsequently the values in each 

iterations. The matrix V is defined as follows
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(8.9) V =
I  0
0 X' 
0 Z'

-32/ | / ö0 qÖ0q -ö2/ )y/ 5 0 qÖT|q 

-ö - / | /d r |oö0Q - d ‘- l \ / d V \ Q d V \ Q

I 0 0 
0 X z +

0 0 0 
0 0 0
0 0 A0'

and the variance covariance matrix is given by

V-'
T i l  T j2 T , 3

T2) T22 T23 
T31 T32 t 33

and the derivatives can be expressed by defining 

(8.10) Qj = g(0m.-rii)/Pi, q | = g(0m..1-Tli)/Pi ,

where g(.) is the derivative of G(.) and 0m. can be one o f the possible 

cutoff points.

Then the first derivatives can be written as 

dl \/dr |j = -(Qj - Q-)

5/,/a0m = I  Qi - I Q !
y j =m yj = m + 1

The second order derivatives can be expressed by defining 

Dj = a[ln g(0y.-'ni)]/a0y.
(8.11)

D- = a[ln g(0y..1-Tii)]/a0yi.,

Note that D~0 and D*=0 when y^O.

a2//ö0mö0m' =  I  Qi(Dr Qi) - I  Q* (D;+Q*) , m'=m
yj = m yj=m + l

= I  QjQ* , m '=m-1
yj = m

= I  Q, Q* , m'=m+l
yj=m + l

= 0 otherwise
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s2/l/semsr\i = S QKQi-Q’-Dj) - I  Q‘ (QrQ'-D‘)
y: = m yj=m + l

aV arliarli' = X [QjDj-QjDj-(Qj-Qj)2] , i=i/
yj =

= 0 otherwise

Using the derivatives in estimation equation (8.8) the converged values of 

threshold and regression parameters are obtained through iteration. After 

convergence the estimate of dispersion parameter is calculated as

<t>j(ML) = [ujAj'uj + tr Aj'T*j]/Vj 

tycREML) =  tUj^ j  Uj +  tr Tjj]/Vj

where T- is the appropriate sub-matrix of T33 and T*j is the appropriate 

sub-matrix of V33 . The iteration process is continued until the

convergence in (j) is also obtained.

8.5 THRESHOLD MODELS FOR CONTINGENCY TABLES

Let us consider a IxJ contingency table which may have observations from K 

clusters. To undertake an analysis by incorporating random effects for the

clusters a separate contingency table is formed using observations from each 

cluster. Then the combined contingency table can be defined as of dimension 

IxJxK. The J ordinal column categories are considered as the response 

categories with values 1,2,...,J (0 is excluded for consistency) in the

threshold model while the row categories are treated as explanatory 

variables. In the following description the row categories will be

considered as nominal.
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8.5.1 Fixed effect Analysis

Let fjj be the frequency count in the ijth cell. Since r)ij=r|i the log- 

likelihood function can be written as

(8.12) /, = Z £ fy  ln [GCÖj-rij) - G(0j.,-Tii)].
i = Ij = 1

If ri=[r|1,r|2,...,riI]/ we define ri=Xß where X is a design matrix of dimension 

Ixl. Each column of X corresponds with a row effect and one of the row 

effects is confounded with the intercept. ß is a Ixl vector of 

coefficients. As a vector of l ’s is included in the design matrix we set

0,=O and 0o=-oo and 0j=°o with G(-oo)=0 and G(°o)=i. Therefore, the remaining 

J-2 values of 0’s are required to be estimated, which can be included in a 

vector 0/=[02,03,...,0J.1]. The estimates of 0 and ß are now obtained by 

maximising the likelihood. If

Pjj = GCOj-rij) - G^j^-rij)

Qij = g(0j-rii)/Pij, Qij = g(6j.i-rii)/Pij
(8.13)

Dy = 3[ln g(0j-Tli)]/30j

Dij = 3[ln g(0j.|-T)j)]/30j.j

Note that Du=0 and D*0=0 for all i .

Then the derivatives can be expressed as

3/,/aß = - I  I  ^(Qy-Qlpxi
j = li = 1

3/,/30j = Z fjj Qjj - X fjj+iQij+i 
i = 1 i = 1

32/ / 30j30j '=  z  fjj Qij(Dij-Qij) - z  fjj+1 Qij+1 (Djj+,+Qij+i) » j =j
i = 1 i = 1
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-  Z fjj Qy Qjj , j - j - l
i =  I

= £  îj+i Qij+i Qij+i » j =j + i
i =  1

= 0 otherwise

ö2/,/a0jaß =

Z fjj Qjj (Qjj-Qjj-Djj) Xj - Z fjj+i Qjj+i (Qjj+rQij+i-Djj+i) *j
i =  1 i =  I

a 2/ 1/ ö ß ö ß '  =  Z Z  f 0 [QijDjj-QjjDjj-CQjj-Q-j)2] XjX' 

j=l  i=l

The estimates can then be obtained by using the Newton-Raphson method of 

iteration as follows

(8.14) 0

p

e0
ßo + V 1

a/j/a0o
a/,/aßo where V

-a2/ 1/a 0 a 0 / -a2/,/a0aß ' 
-a2/,/a0 'aß  -a2/,/aß aß /

8.5.2 Mixed Effect Model

Let fkij be the frequency in the j th response category in the ith row of the 

k,h cluster. The joint likelihood function can be written as /= /,+/2 

where, using T|kij=Tlki .

(8.15) /, = I I I In [G(ert|kl) - G(ej.,-rikj)]
k = li = lj = 1

and rjki = xkiß+zkiu rj = Xß+Zu

with r|' = [r|, 1,..,ri1I,..... , X is a Kxlxl design matrix for

the fixed effects corresponding to I rows and Z is a KxIxK incidence matrix 

for the random effects corresponding to K clusters. Z can be designed to
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accommodate clustering at multi-levels. ß and u are parameter vectors of 

dimensions I and K respectively.

The random effects in u is assumed to be distributed as N(0,aj 

l2 is the usual likelihood function of a normal variable.

Let us redefine the following quantities to obtain the derivatives

Pkij =  G ( 0 j - r | ki) - G ( 0 j . , - r i ki)

Qkij =  ö ( 0 j - r !kiVPkij’ Qkij =  g ( ^ j .  [-T) ki) / P kij
(8.16)

D kij =  a[ln  g ( 0 j - r | ki) ] / 0 0 j

^kij =  a ß n S(öj_i-Tlki)]/^0j_i

Note that DkiJ=0 and Dki0=0 for all k and i .

Then the derivatives can be expressed as

3 / , / a ß  =  -  I  X  X  fk i j(Q k ifQ ki j)  Xki
k = li = Ij = 1

3 / , / d l l  =  - I  I  I  4 i j (Q k i j_Qkij) Zki
k = li = lj = 1

dl\/dQj = 1  I  f kij Q kjj -  I  I  fki.j+lQkij+1
k = li = 1 k = li = 1

a 2/ / a 0 j a 0 j ' =

X  X  fk i jQ k ^ ^ k i j 'Q k i j ) “ ^  ^  fk i j+ lQki ,j+ l(P)ki,j+l+ Q ki, j+ |)’ j  = J
k = li = 1 k = li = 1

=  X  X  f kij Q kij Qkij > j  = j " l
k = li = 1

= X X fjj+i Qij+i Qkij+i > j =j+^
k = li = 1

= 0 otherwise

Therefore
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a 2 / , / a 0 j ö ß  - I I  f k i j Q k i j ( Q k i j " Q k i j " ^ )k ij )X ki "
k = li  = I

£  £  ^ i , j + | Q k i , j + l ( Q i j + r Q k i , j + r ^ i , j + l ) X ki
k = li = I

ö 2/ , / a 0 j a u  - I I  f k i j Q k i j ( Q k i j " Q k i j " ^ k i j ) z ki "
k =  li =  I

K !

^  ^ i , j + | Q k i , j + | ( Q i , j + l " Q k i , j + r ^ i , j + l ) z ki
k = li = 1

a2/ [/aßaß - I I I  f k i j [ Q k i j D ki j " Q kj j I \ j - ( Q kj j - Q kjj) ] x kix ki
k = li =  lj = 1

a 2 / , / a u a u  - I I I  f kij [ Q k i j D kij - Q kij D kij - ( Q kij - Q kij )  ] z kiz ki
k = li = lj = !

The estimates can then be obtained by using the Newton-Raphson method of 

iteration as follows

(8.17)
0

p

ü

00

ßo + V 1
a / , /a0Q

S /,/S ß o - a j v 1

O
 O

» 0 a/,/a u0 u o

where V
-a2/|/a0a0 ' -a2/,/a 0 a ß / -a2/|/a0aiT
-a2/,/a ß a 0 / -a2/,/aßaß' -a2/,/aß au /
-a2/,/a u a 0 / -a2/,/auaß' -a2/ l/auau'+a^l

8.5.3 Multi-level Clustering

When the observations are clustered at multiple levels say at household 

level, at block level and also at primary sampling unit (PSU) level, the 

above development is still applicable. The contingency table has to be
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formed at the smallest level of clustering and then the Z matrix has to be 

formed such that it reflects the clustering at various levels and the vector 

of random effects u will have more than one term at each level of 

clustering. The number of effects in each term will depend of the number of 

clusters at different levels. If there are K, households, K2 blocks and K3

PSU’s then Z will have K,+K2+K3 columns and u will have three components 

with K,, K2 and K3 effects respectively. The distribution of u will then be 

multivariate normal. If u has M components due to clustering at multiple

levels then u ~ N(0,A) with A = block diag [Am(j)m] where 6' = [4> j ,(})2,...,(1)M] 

is a vector of dispersion parameters. The method of estimation is the same 

as above with g ,I replaced by A.

8.5.4 Test of Independence

The test of independence in a contingency table can then be undertaken 

either by using the Wald test or the likelihood ratio test as described in 

the previous chapters. For a likelihood ratio test, initially the model 

will be fitted by including intercept and row effects and then by excluding 

the row effects. For a mixed model the likelihood ratio statistic will be 

calculated as discussed in the previous chapters (see equations 6.14, 7.11).

The test of independence under threshold modelling is more powerful than 

that under conventional nominal log-linear modelling because of the lesser 

number of degrees of freedom (df) for y} statistics. If the alternative 

hypothesis of association is true then with the increase of sample size, y} 

under nominal modelling would increase at a slower rate than under threshold 

modelling. Even if the magnitudes of yv s under both modelling are similar,
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threshold modelling would give smaller a p-value because of the smaller df 

for x2.

8.6 APPLICATIONS

The method is initially applied to a number of two-way contingency tables 

where observations are not clustered and therefore fixed effect threshold 

models are fitted. The chi-square values for test of independence are 

compared with that of ordinary log-linear analysis under Poisson assumption 

and with the method of analysis discussed by Agresti (1984) for ordinal 

categories. As threshold models only utilise the ordered relationship in 

the categories of the response variable the comparable model is Agresti’s 

ordinal-nominal model instead of ordinal-ordinal model. In ordinal-nominal 

model, interaction effects are redefined by introducing a uniform 

association parameter for each row category. This reduces the number of 

parameters to be estimated for association which leads to a chi-square test 

with lesser df. The methods have been applied to three datasets - Dumping 

Severity, Pain and Spasm and Mental Health datasets. The objective is to 

show that threshold modelling offers an alternative method for analysis of 

contingency tables with ordered response categories.

Finally, the method with mixed effects is applied to a dataset where not 

only are categories ordered but also observations are clustered. The 

application demonstrates the use of mixed effects threshold model and 

compares the results with fixed effect model.

126



8.6.1 Fixed Effect Threshold Modelling

As discussed earlier, four different cumulative distribution functions can 

be used in threshold modelling. As Saei (1996) concludes that the use of 

different functions does not make any significant difference in estimates, 

we use proportional odds model i.e. logistic function in all of the 

following examples. The expressions of the cumulative function and 

derivations of relevant quantities required for estimation are discussed for 

the mixed model case as applied later in the Neighbourhood dataset.

Application to Dumping Severity Data

Dumping Severity data reported by Grizzle et al. (1969) which shows the 

extent of side effects (dumping severity) of four different types' of 

operations for treatment of duodenal ulcer patients. Data are given in 

Table 8.1. The objective of the analysis is to examine whether there is any 

association between dumping severity and types of operations. The 

categories of the response variable, Dumping severity, are ordered (none, 

slight, moderate). There is also an ordered relationship among types of 

operations but in this analysis the operation types are treated as nominal 

categories. Table 8.2 presents the likelihood ratio statistics (G2) for the 

test of independence obtained under different methods of analysis. The G2

value corresponding to the log-linear model has higher degrees of freedom 

than both ordinal-nominal and threshold models. The test of association is 

not significant at 5% level under all methods but as expected the p-value 

for the threshold model is smaller than the other two methods.
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Table 8.1: Patients by Dumping Severity and Operation Methods

Dumping Severity
Operation None Slight Moderate
A 61 28 7
B 68 23 13
C 58 40 12
D 53 38 16

Table 8.2: Test of Independence for Dumping Severity Data

Method of Analysis G2 df p-value
Log-linear model 10.88 6 0.09
Ordinal-nominal model 6.48 3 0.09
Threshold model 7.31 3 0.06

Application to Pain and Spasm Data

The dataset presented in Table 8.3 is reported by Miller and Landis (1991) 

from a study comparing two drugs for the relief of pain and spasm. The 

response variable for the dataset has three-point ordered categories 

corresponding to two row categories i.e. drug and placebo. Table 8.4 

presents the G2 values under three methods of analysis. The p-value is the 

smallest for the threshold model (p=0.001) followed by the ordinal-nominal 

model (p=0.002) and the p-value is the highest (p=0.003) under the log- 

linear model. The calculated G2 under the threshold model is highly 

consistent with that of ordinal-nominal model.

Table 8.3: Severity of Pain and Spasm for Treatment and Control

Response

Treat­
ment

Worse or 
no change

Slight
Improvement

More Improve­
ment or Cure

Drug 24 15 68

Placebo 36 25 45
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Table 8.4: Test of Independence for Pain and Spasm Data

Method of Analysis G2 df p-value
Log-linear model 11.58 2 0.003
Ordinal-nominal model 9.18 1 0.002
Threshold model 9.95 1 0.001

Application to Mental Health Data

Srole et al. (1978) presents a contingency table showing the mental health 

status of a group of offsprings by parent’s socio-economic status (Table 

8.5). The column variable mental health status has ordered categories which 

is treated as the response variable in a threshold model. The row variable 

categories are also ordered but in this analysis the categories are 

considered as nominal. The objective of the analysis is to examine any 

significant association between mental health and socio-economic status. 

Likelihood ratio statistics calculated under different methods are presented 

in Table 8.6. All three methods of analysis indicating a significant 

association in the table. However, chi-square values under ordinal-nominal 

and threshold models are much higher than the log-linear model when df is 

taken into account.

Table 8.5: Data on Mental Health and Parent’s Socio-economic Status

Mental Health Status
Parent’s
Socio-economic
Status

Well Mild
Symptom

Moderate
Symptom

Impaired

A (high) 64 94 58 46

B 57 94 54 40

C 57 105 65 60

D 72 141 77 94

E 36 97 54 78

F (low) 21 71 54 71
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Table 8.6: Test of Independence for Mental Health Data

Method of Analysis G2 df p-value
Log-linear model 47.42 15 0.000
Ordinal-nominal model 40.59 5 0.000
Threshold model 39.60 5 0.000

8.6.2 Mixed Effect Threshold Modelling 

Application to Neighbourhood data

The method is applied to the Neighbourhood dataset analysed in the previous 

chapters where the categories are treated as nominal. In the case of

multinomial analysis the satisfaction with own house was considered as the 

response variable. Although the responses i.e. unsatisfied, satisfied, very 

satisfied have an ordered relationship these were treated as nominal

categories in the previous chapters. The threshold modelling will utilise

the extra information of the ordered relationship while allowing for the 

clustering of the observations. That will not only increase the power of 

the test by reducing the number of fixed parameters to be estimated but it 

will also reduce the number of random components. To fit a mixed threshold 

model the overall contingency table will be separated into 20 contingency 

tables for 20 neighbourhoods each with three rows. If the response variable 

is denoted as Y with ordered values j= 1,2,3 (say) then the model can be 

fitted as follows.

Let Yki be the response from a household with ith level of satisfaction

with neighbourhood housing, from the kth neighbourhood, where i= 1,2,3 and 

k=l,2,...,20. The level of satisfaction with community housing was
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considered here as a nominal variable. Then the cumulative probability 

distribution can be written as

p(Ykisj) = G(0j-%i) wheie %  = xkiß+zkiu •

Here, X is a 60x3 design matrix corresponding to the fixed effects for the 

levels of row variables i.e. satisfaction with neighbourhood housing, Z is a 

60x20 design matrix corresponding to the random effects for 20

neighbourhoods and r\ is a 60x1 vector. As 0,=O and 03=°° the only threshold 

parameter to be estimated here is 02. Let fkij represent the frequency in 

k,i,jth cell.

As mentioned above the proportional odds model is used in all applications 

of threshold modelling. The expressions for cumulative function, 

derivatives and other quantities for proportional odds model are as follows.

G(0yki-riki) = exp(0yt.-riki)/[l+exp(eyki-r|ki)].
(8.18)

g ^ y y - T I k i )  =  e x P ( 6 y k i - T l k i ) / [ l + e x P ( 0 y kf ' n k i ) ] 2

As mentioned above yki can have ordered values j= 1,2,3. We have

D _ exp(0rT|ki) exp(0j.l-T|ki) 
k|j "  ll+exp(0j-r|ki)J ’ ll+exp(0j.1-Tiki)J

n  _ exp(0f r|ki) D., _ exp(0j.l-nki) D.i
^ kij ll+exp(0j-T|ki)j2 Kk'J ’ ^ k« ll+exp(0j.l-T|ki)j2 k‘l

2 *  2 
° kij = 1 " l+exp(0r r|kl) ’ ° ku = 1 ' l+exp(0j.|-riki)

Using the above quantities, the expressions for the derivatives for the 

proportional odds model are obtained and parameters are estimated as
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discussed in the previous section. Table 8.7 presents the parameters

estimates and test statistics for the tests of independence. The estimates

obtained under the mixed effects model are based on the REML method. The 

likelihood ratio statistic (G2) is calculated by fitting the models with and 

without row effects. In the case of mixed models G2 is calculated following 

Lee and Neider (1996) as discussed in the previous chapters.

Table 8.7: Parameter Estimates and Test o f Independence Under Fixed and
Mixed Effects Threshold Modelling.

P aram eters F ixed  effect  
M odel

M ixed  effect  
M odel

Full Model Est. SE Est. SE

02
Int
ß 2
ß 3
Deviance

2.68
-1.13

1.19
2.47

97.82

0.42
0.47
0.53
0.77

2.93
-1.05

1.14
2.26

98.36

0.45
0.53
0.56
0.80

0.78

Reduced Model
02
Int
Deviance

2.46
-0.08

109.60

0.39
0.20

2.77
-0.52

110.18

0.42
0.31

0.97

W2
p-value

10.53
0.005

- 8.23
0.016

“

G2
p-value

11.78
0.003

- 8.15
0.016

”

The estimates of parameters and SEs under mixed models are slightly 

different than those under fixed effect models. However, both the Wald 

statistic, W2 and likelihood ratio statistic, G2 for test of independence 

are deflated under the mixed effect modelling compared to the fixed effect 

modelling. Under the fixed effect modelling W2 = 10.53 and G2 = 11.78 which 

are significant compared with X2 0 0 .V F°r t îe mixed effect modelling W2 = 

8.23 and G2 = 8.15. In both cases the tests are significant compared with
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%2 005- However, the p-values are larger under the mixed model. The 

result is consistent with the conclusions of the Poisson and multinomial 

modelling undertaken in the previous two chapters. But because of utilising 

an ordered relationship the test tends to be more powerful as reflected in 

the p-values which are much smaller here than those obtained in the previous 

chapters.

8.7 DISCUSSION

It has been demonstrated in this chapter that the threshold model offers an 

alternative to the standard analysis of contingency tables when categories 

are ordered. It can also accommodate the clustering of the observations by 

including random effects in the model. The chi square statistics calculated 

for test of independence are found to be consistent with the method 

discussed by Agresti (1984) for ordinal data. The advantage here is that 

the number of parameters to be estimated is much less compared with 

alternative methods. This is particularly convenient in the case of mixed 

effect modelling where the number of parameters to be dealt with is often 

large. For the same reason the method also enjoys the benefit of increased 

power of the test when the alternative hypothesis is true. The proposed 

method has some computational advantages too. By exploiting the fact that 

the cells which belong to the same row have the same representation to the 

design matrix, efficiency in computing can be achieved.
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CHAPTER NINE

Adjusting Standard Errors of the Fixed 
Coefficients for Random Effects

9.1 INTRODUCTION

Although there has been considerable development in the theory of GLMMs, the 

use of such modelling in applied research is still very limited. One of the 

problems preventing the widespread use of GLMMs, is the absence of 

appropriate software. In most practical applications the number of random 

effects tends to increase with the number of observations so that in such 

situations, a full analysis involving the estimation of random effects and 

the corresponding dispersion parameters appears to be a daunting task, 

particularly to researchers of other disciplines. The methods discussed in 

the previous chapters may turn out to be unmanageable when the number of 

random effects is very large. The main problem is to deal with sparse 

matrices of very large dimensions.

In most practical applications, interest is mainly in the fixed effects and 

the standard errors of the estimates rather than the predictions of random 

effects or their variances. It is often found that the effect of mixed 

modelling on the estimates of fixed parameters is relatively small. The 

effect is mainly on the standard errors of the estimates. Under a mixed

model the estimates of the standard errors tend to be larger than that of a 

fixed effect model. Therefore, any risk of making a misleading inference 

from a fixed effect model which ignores random effects, can be considerably 

reduced by adjusting the standard errors of the coefficients obtained under 

a fixed effect model. The extent of adjustment mainly depends on the
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dispersion parameter (0) of random effects. If a rough idea of the 

dispersion parameter of a random term is available then an approximate

adjustment can be made easily without fitting a complete mixed model 

particularly for the applications discussed in the thesis. Although the

adjustment is only approximate it would lead to a more conservative

inference.

In the current chapter, we show how the standard errors of the estimates of

fixed coefficients, obtained under a fixed effect model, can be adjusted for

possible random effects if some knowledge of 0 is available. It is

demonstrated that the elements required for making the adjustment can be

easily calculated at the cluster level without being required to deal with 

the full design matrix for random effects. Only cases, for which there' are

only one or two random terms in the model, are dealt with here. Simulation 

results are also presented to indicate the general performance of the 

proposed method of adjustment.

9.2 ADJUSTMENT

Let us consider the fixed effect model

(9.1) E{ y) = f(r|), Ti = Xß

where r\ = X is an nxp matrix of known constants and ß is an

pxl vector of fixed coefficients. If / is the log likelihood function of

the observations and if the parameters are obtained by maximising / then 

the variance-covariance matrix of the estimated parameters is given by

(9.2) X = R '1 = [X'BX]’1

with B = - d2UdV[dr[ .

135



The corresponding mixed effect model, under the standard notation used in 

the previous chapters, can be written as

(9.3) E{ y) = f(7i*), T|* = Xß + Zu

where Zu is the random component which can be partitioned corresponding to 

the number of random terms in the model. If r=/j+/2 is the joint log- 

likelihood function which is maximised to obtain the parameter estimates 

under GLMM then the variance-covariance matrix of the estimates is given by

(9.4) V 1 = X* X, with V =
r j - i*

_ X'B’X X 'BZ
X, ^2 Z'B'X Z'B*Z+A* 1

where B* = - d2l/dr\*dr\*' and A* is a block diagonal matrix [Ak(j)k], with (j)k 

the dispersion parameter corresponding to the kth random term. These 

notations are standard as defined in the earlier chapters.

Now the variance-covariance matrix of the fixed coefficients under the mixed 

model is X* as obtained from (9.4) which can be expressed in terms of the 

elements of V matrix as

(9.5) Z* = [R* - T*D*"'T"]’ ' .

This variance-covariance matrix is obtained under a full mixed model 

analysis. Following the expression of the above matrix, the variance- 

covariance matrix calculated under a fixed effect model can be adjusted 

approximately for possible overdispersion as follows

(9.6) XA = [R - TD 't T 1,

where T = X'BZ and D = Z'BZ+A . The approximation basically involves 

replacing B* = - d2l/dr\*dr\*' by B = - d2l/dr\dr\' •
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To calculate this an approximate value, <j>, of the vector (j)* is required. An

approximate value of (J) can be obtained from a previous analysis of similar 

data. Even if such a value is not available then any best guess of (J) can be 

used so that conservative estimates of the variances of fixed effects can be 

derived. Once the values of <}) is determined the values of T and D 1 are 

easily calculated at the cluster level without being required to handle the 

full Z matrix. In the following sections this is demonstrated specifically 

in the situations when the adjustment is required for only one or two random 

terms.

9.2.1 Adjustment for One Random Term

If there is only one random term with J effects and observations are sorted 

by clusters then X and Z matrices can be defined as

X

Z

= [x;,x'....x\y ,

= block diag [z,,z2,...,Zj]

where Zj is a vector of l ’s with dimension nj , the size of cluster j ,

similarly, B = diag [B,,B2,...,Bj] .

The expression (9.3) can be written as

j
(9.7) XA = [R - TD 'TT' = [R -X tj dj1 t']'1

j=i

where
D = diag [d|,d2,...,dj],

T = [t j ,t2,...,tj],
with

d j  =  Z j B j Z j  +  ( j)’1 =  l ' B j l  +  (J)-1 

= (J)*1 + sum of the elements of B in cluster j . 

As dj’s are scalars
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D"1 = diag [dj',d2l,...,djl], 

‘j = xjBjzj = x B I

The dimension of t } is pxl where p is the number of fixed parameters.

h ~  Ctji’tj2>—>tjP]

(9.8) Z - 1
^11 ^12 
R2| r22

Rpl ^p2

IP
^ t j |/d j  ^ tj ,tj2/dj

fti^ /d j ? lj2/dj

Zt,t- /dj j 1 jp j

Zt-,t- /d j j * jp  j

In many applications B is diagonal and in that case the elements of B can be 

stored as a vector, L =[1J,I2,...,1]]/, In such situations tj = xjlj i.e.

"j
the sum of the columns of Xj multiplied by lj and tjp=x'plj =ZXjpiljj .

Simple L inear Regression

The expressions can be further simplified in the case of simple regression 

with an intercept (ß[) and a regression coefficient (ß2). The variances of 

the parameter estimates can be adjusted for one random term as follows.

(9.9)
R M R12

Rl2 ^2 2

Ztji/dj Ztj,tj2/dj 

^ tj2/dj

If A is the determinant of ZA* then the exact expressions for the variances 

can be written as
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(9.10)

Var (ß,) = ^  (R22 - Stp/dj), 

Var (ß2) = j  (Rn - &j|/dj).

These expressions can be specified further when B is a diagonal matrix as 

follows

Here Xj2i is denoted as x̂  and XjH is a vector of l ’s corresponding to the 

intercept. Therefore, to adjust the variances of fixed coefficients for one 

random term, the only additional elements required to be calculated are £1̂  

and ^Xjjlji for each cluster.

9.2.2 Adjustment for Two Random Terms

When there are two random terms in the model the variance covariance matrix 

can be written as

(9.11)

and

A = (Rn-SSIjiXR.rX
(£xji*ji)2 p v (PjiX?xji*ji) 2

r  + ? v  '  12", <t>4 + » ,

^  l o i  ^02
(9.12) V"1 = I q, I , ,  S12 with
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V =
rjl*

T*/ D*
_

r * t ; t ;
t ; 7 d ; d ; _

X'B'X X'B*Z| X'B'Z,

z ;b *x  z ^ ' z ^ a , ^ ) -1 z ;b *z 2

- t 2' d ;' d ; Z2B’X Z2B'Z, Z2'B*Z2+(A)<t>))''

From the above matrix the variances of the fixed coefficients can be 

expressed as

(9.13) X* = [R* - T*D*"'T*yl

= [R* - - t*2n"t;' - t;n*t2' - t*2e*''t"]"'

where D*"1 M* N* 
N*' E*'1

with

m * = D*,1 + d *;'d j e * 'd j d *;1 

n * = - D '/D JE ’1 

E* = D*2 - DJ'D 'i'DJ

Now the equivalent estimates for the fixed effect model can be obtained by 

replacing R* by R, using an approximate value (j) of (j)*, and calculating all 

other elements by using B instead of B*. The expression can be written as

(9.14) xA = [r - t,mt; - t2n't; - t,nt2 - t2e 't2]''

For the purpose of computation let us define

T] = [tj 1,t12,—,t1j], with ty = [t,jj,tij2,-—,t|jp] ,

^ 2  =  ^2Iq =  t^2ql ^2q2’***^2qp] *

where J and Q are the number of components in the first and second random 

terms respectively while the number of fixed effect coefficients is denoted 

by p.

t,j = XjBjZjj = XjBjl , t2q = xqBqz2q = xqBql  ,
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For nested random component models, components of Xj not equal to zero are a 

subset of component of xq not equal to zero so that t2q = and when B

is diagonal t,j = xjlj i.e. the sum of the columns of Xj multiplied by 1( 

(the diagonal elements of B p , with t,|p = xjplj = .^x^l^. Similarly, 

t2qp = xqplq = | .x qpilqi . These are basically the sums of columns of X 

multiplied by L =[1J,12,...,1J,]/ for the first and the second set of 

clustering.

^ij ~  z ij^jz ij +  ^ i 1 — 1 ß j l  +  ^ i 1 

= ({)]1 + sum of the elements of B for cluster j. 

As d,j’s are scalars

DJ1 = diag [d;|,d;2,...,d;J] .

Similarly, d2q = (J)2‘ + sum of the elements of B for cluster q, 

and D2‘ = diag [d21‘,d22,...,d2Q],

Db

db, 0 
0 db2

6 6
with = [d5ql,dbq2,...,dbqS]/,

and dbqs = zfjBjZ^ = l'B jl , j e q, which is basically the sum of the 

elements of Bj which correspond to the first stage cluster j and the second 

stage cluster q.

All the elements required for adjustment are basically calculated at the 

cluster level and there is no need to deal with the full design matrix for 

any of the random terms.
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9.3 SIMULATION RESULTS

A simulation study was undertaken to demonstrate the performance of the 

proposed adjustment procedure in relation to mixed model estimates. The 

proposed method of adjustment is based on the assumption that in most 

applications the estimates of fixed coefficients obtained under fixed effect 

model (GLM) do not differ to a significant extent than the estimates 

obtained under mixed effect model (GLMM). The main difference is between 

the estimates of standard errors (SEs) and if  the SEs under GLM can be 

adjusted then the constructed confidence intervals would be very similar to 

those under GLMM. The specific objectives of the simulation was to examine 

the extent o f differences between estimates of coefficients under GLM and 

GLMM and to compare the adjusted SEs with the estimated SEs under GLMM.

The simulation was conducted using binomial logit model. The data was 

simulated following McGilchrist and Aisbett (1991a) in which 30 observations 

of a response variable Yj with distribution B(6,7ti) were generated where 

is given by

TCj = exp r|j/(l+exp rjj), with r\' = Xß+Z,U|,

where X '= 1 1 
-14 -13

1 1 r j ,

14 15 ’ ^

1 1
1 1

1 1

and Uj — [U U ,UU ,...,U1>15].

Uj j’s are independently and identically distributed N(0,oj) random 

variables and ß is the vector of fixed coefficients with two components.
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The simulation was conducted for both one and two random components in the 

model. When there was only one random component in the model the data were 

generated as described above but in the case of two random components, Z, 

was replaced by Z = [Z ,,Z2]/ and u, was replaced by u = [u^u,]7 where Z, 

and u, are as defined in the case of one random term and Z 2 and u2 are 

defined as follows

Z2
1 1 . . 1

•*2 = [U2.„U2,2,U2.3].

Once the datasets were simulated the estimates and SEs were obtained under 

both GLM and GLMM. The estimates of SEs calculated under GLM were then 

adjusted by using the proposed method and compared with the SEs calculated 

under GLMM. In undertaking the adjustment the estimate of the dispersion 

parameter obtained from GLMM was used.

The results of the simulation are presented in Tables 9.1 and 9.2. The 

estimates and SEs (SEI) presented in the tables are the average over 200 

simulations while SE2 is standard deviation of the estimates from 200 

simulations. SE2 can be considered as the expected values of SEI.

In both tables, estimates obtained under GLM and GLMM tend to be broadly 

similar even though the estimates under GLM often tend to be slightly 

biased. However, in the case of SEs, the estimates under GLM are severely

under estimated which is obvious when compared with SE2. The estimated SEs 

obtained under the proposed method of adjustment are very much consistent 

with that of GLMM and also with expected SEs (SE2).
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Table 9.1: Simulation Results fo r  Binomial Logit Model with One Random
Component

E stim ate S E I S E 2

S im ul- T rue
ation value G LM G L M M G L M G L M M A djusted G L M G L M M

1 ß ,= 0 .2 0 0.193 0.206 0 .162 0.296 0.289 0.269 0.282
ß ,= 0 .10 
0  =1.0

0.084 0.095
0.890

0 .020 0.035 0.034 0.036 0.035

2 ß ,= 0 .2 0 0.195 0.204 0.164 0.238 0.234 0.215 0.235
ß 2= 0 .10 
0  =0.5

0.096 0.100
0.446

0 .020 0.028 0.028 0.029 0.028

3 ß ,= -0 .2 -0 .186 -0.203 0 .162 0.296 0.289 0.289 0 .304
ß 2=-0.1 
0  =1.0

-0 .086 -0.097
0.942

0 .020 0.035 0.034 0.035 0.036

4 ß ,= -0 .2 -0 .182 -0 .194 0 .164 0.243 0.240 0 .230 0.240
ß 2=-0.1 
0  =0.5

-0 .096 -0 .100
0.485

0 .020 0.029 0.029 0.028 0.029

Table 9.2: Simulation Results fo r  Binomial Logit Model with Two Random
Components

E stim ate S E I SE 2

S im u l­
ation

T rue
value G LM G L M M G L M G L M M A djusted G L M G L M M

1 ß i= 0 .20
ß 2=0 .10  
0 ,=  1.O 
02=0.5

0.174
0.085

0.192
0.102
0.858
0.573

0.165
0 .020

0.483
0.051

0.473
0.048

0.458
0.048

0.475
0 .050

2 ß ,= 0 .2 0
ß 2=0.10
0,=O.5
02=0.2

0.181
0.106

0.187
0.108
0.470
0.270

0 .168
0.021

0.379
0.038

0.365
0.037

0.326
0.039

0.335
0.039

3 ß ,= -0 .2
ß 2=-0.1
01=1.0
0,=O.5

-0 .172
-0 .084

-0.193
-0.093
0.871
0.447

0.161
0 .019

0.432
0 .044

0.426
0.043

0.401
0.043

0.439
0.045

4 ß ,= -0 .2
ß 2=-0.1
0,=O.5
02=0.2

-0 .192
-0.088

-0 .212
-0.091
0.435
0.251

0 .163
0 .020

0.377
0.037

0.342
0.036

0 .314
0.038

0.327
0.037
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9.4 APPLICATION

The method of adjustment was applied to a dataset, published by Crowder

(1978), from an experiment on seed germination. The proportion of seed 

germinated in each of 21 plates in a 2x2 factorial lay-out of seed variety

and root extract is presented in Table 9.3. The dataset is analysed by

using GLM and GLMM with plate effects as random to account for

overdispersion associated with each plate. The calculated SEs under GLM are 

then adjusted and compared with the calculated SEs under GLMM. The results 

are presented in Table 9.4.

Table 9.3: Seed Germination Data. Germination Rate in Each o f Twenty' One 
Plots by Seed Type and Root Extract.

Seed => 0. aegyptiaca 75 O. aegyptiaca 73
Root Extract r n r/n r n r/n
Bean 10 39 0.26 8 16 0.50

23 62 0.37 10 30 0.33
23 81 0.28 8 28 0.29
26 51 0.51 23 45 0.51
17 39 0.44 0 4 0.00

Cucumber 5 6 0.83 3 12 0.25
53 74 0.72 22 41 0.54
55 72 0.76 15 30 0.50
32 51 0.63 32 51 0.63
46 79 0.58 3 7 0.43
10 13 0.77

The results show that the differences in the estimates under GLM and GLMM 

are relatively small compared with the corresponding differences in SEs. 

GLM did not account for over dispersion and consistently under estimated the 

SEs. The adjusted SEs are almost the same as those of GLMM. The t-tests 

undertaken for individual factors indicate that the interaction effect is 

significant under GLM which is in fact not significant under GLMM. The t- 

statistics calculated using the estimates as obtained under GLM while using
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the adjusted SEs are also presented in Table 9.4. The adjusted t-statistics 

are very much similar to those under GLMM implying that an inference based 

on the adjusted t-test would be consistent with that from GLMM. 

Particularly the interaction effect turned out to be not significant after 

the adjustment which was significant under GLM.

Table 9.4: Analysis Results for Seed Germination Data

Method => GLM GLMM A djusted

Parameter Est SE t-val Est SE t-val Est SE t-val

Constant
Seed
Root
Interact

-0.558
0.146
1.318

-0.778

0.126
0.223
0.178
0.306

-4.43*
0.65
7.43*

-2.54*

-0.542
0.078
1.337

-0.823
0.096

3.188
0.305
0.267
0.426
0.063

-2.88*
0.26
5.01*
-1.93

-0.558
0.146
1.318

-0.778

0.189
0.306
0.268
0.426

-2.95*
0.48
4.92*
1.82

*Significant at 5% level

Table 9.5: Adjustment with a Range of Values (+50%) of (J)

Method => Adjusted 
with 0.5(J)

Adjusted 
with <})

Adjusted 
with 1.5(})

Parameter SE t-val SE t-val SE t-val

Constant
Seed
Root
Interact

0.162
0.270
0.230
0.375

-3.43*
0.54
5.73*
-2.07

0.189
0.306
0.268
0.426

-2.95*
0.48
4.92*
-1.82

0.216
0.342
0.306
0.478

-2.58*
0.43
4.31*
1.63

*Significant at 5% level

The adjustment presented in Table 9.4 is based on the value of <J> as 

estimated under GLMM. However, in practice in the absence of GLMM an 

estimate of ({) would not be available and an approximate value of (J) would be 

used for adjustment. In Table 9.5, results are presented for adjustments 

with two other values of (j) which are in fact ±50% of the actual estimate 

under GLMM. The results show that in this particular example the inference

146



still remains the same. The parameter of interest, the interaction effect, 

is still not significant. This is also true for other parameters. That 

means an adjustment using any value of (j) within ±50% of the actual value 

would lead to consistent inference in this particular example. Of course 

this may not be true in all situations but an adjustment even with a very 

rough value of ({) would always reduce the risk of wrong inference 

particularly in favour of significance.

9.5 DISCUSSION

An approximate method for adjusting the estimated SEs of the coefficients in 

a fixed effect model for possible over dispersion in a dataset is developed 

in this chapter. Although the adjustment is not exact it reduces the risk 

of any misleading inference from an analysis using a fixed effect model. 

This is particularly useful for analysing datasets for which a proper 

analysis using GLMM would require dealing with very large number of random 

effects and may be computationally difficult to handle. It is also useful 

for analysing small datasets where the data analyst is not familiar with 

GLMM theory and is not able to undertake proper analysis involving random 

effects. It is shown that most of the elements required for adjustment can 

be obtained from a fixed effect model. Many commonly used softwares produce 

most of these quantities as a by-product of the conventional analysis. The 

quantities which are not available from the fixed effect modelling are some 

cluster level totals and the random effects dispersion parameter (j). It is 

shown that for one and two random terms in the model these cluster level 

quantities can be obtained by simple calculations. This is particularly 

true when there is only one random term in the model. An approximate value 

of the dispersion parameter, (J), can be obtained from the literature for a
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previous analysis of a similar dataset. In those situations where the 

adjustment will be made because of the large number of random effects to be 

estimated under a GLMM, an estimate of (j) can be obtained by using a smaller 

subset of the dataset. Any approximate value of <|) would help inflate the

estimates of SEs and would lead to a more conservative inference. An exact 

expression for the adjustment is derived for simple linear regression with 

only one random term. Similar exact expressions for other cases may not be 

easy to derive but this is an area which can be investigated further.
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CHAPTER TEN

Ov e r a l l  Dis c u ssio n

10.1 OVERVIEW

Some theoretical and application aspects of GLMMs have been researched. The 

thesis has contributed to the ongoing development of the estimation in GLMMs 

by investigating the properties of the estimators and developing further 

arguments for the REML method of estimation. The investigation leads to new 

expressions for estimating variance of the dispersion parameters (j) and y and 

also a new estimator for y itself. The potential of the recent development 

of hierarchical generalised likelihood models (HGLMs) has also been 

investigated by comparing its performance with GLMM for a Poisson response 

variable.

The current use of GLMMs is still very limited even though it has enormous 

potential for analysing categorical data. It has been demonstrated how GLMM 

can be used in improving efficiency of commonly used statistical procedures. 

For instance, the conventional methods for analysis of contingency tables 

are found to be less appropriate in the situations where observations are 

clustered. Two GLMM based approaches have been proposed and shown to be 

more efficient than other existing methods when observations are clustered. 

One of the approaches is developed under Poisson sampling and the other 

under product multinomial sampling assumptions. By utilising mixed 

threshold modelling, another method of analysis is proposed for contingency 

tables with ordinal categories.
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A general strategy for dealing with a multinomial response category is also 

discussed and compared with other available methods. A method for dealing 

with random exposure effects in matched case-control studies is developed 

and applied to some real datasets.

In some situations a full GLMM based analysis may not be possible 

particularly in the absence of appropriate software. A method for 

undertaking approximate adjustments in the estimated standard errors of the 

parameters in a fixed effect analysis is also proposed. In the presence of

clustering the approximate adjustment will serve as a safeguard from

misleading inference.

10.2 PROBLEM AREAS

10.2.1 Estimation of Variance Components

Although estimation in GLMMs has been developed considerably over the recent 

years, still there is a need for improvement. The ML and REML estimators of 

the variance component § tend to show large bias in certain situations. In

general the ML estimator is negatively biased and it tends to increase 

rapidly when there are multiple random components in the model. Even though 

the REML estimator is asymptotically unbiased and in most cases performs 

better than the ML estimator it also appears to be significantly biased when 

(j) is large and also when there are multiple random components. In the 

applications discussed, the parameters p and y were not required to be dealt 

with. In other applications where these parameters were also required to be

estimated, the performance of the estimators deteriorates further. Also in 

many cases convergence of the iteration becomes a difficulty as there is no
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easily detectable maximum. In some other cases, depending on the starting 

values, the converged estimates turn out to be considerably different often 

because of the flatness of the surface corresponding to l\+l2-

10.2.2 Asymptotic Theory

The asymptotic properties of the GLMMs estimators have not been developed 

sufficiently yet. A crucial condition for the asymptotic property to hold 

is that the number of random effects is fixed but in practice the number of 

random effects tends to increase with the increase in the number of 

observations. Although the maximum likelihood principle is used in the 

estimation, the corresponding likelihood based test statistics are still not 

available. Lee and Neider (1996) have proposed test statistics for testing 

the significance of fixed parameters and the variance components. The 

likelihood ratio statistic for the fixed parameters appears to work well but 

there is a problem with the testing of variance components. The two test 

statistics proposed by Lee and Neider for testing the parameter <j) are found 

to be unsatisfactory in simulation studies. The Wald test based on the 

information matrix seems to work to some extent when there is only one 

random component in the model but when the number of random components is 

two or more the test result always appears to be insignificant.

10.2.3 Model Diagnostics

The absence of enough diagnostic tools for checking the goodness of fit of 

a GLMM is another drawback. Lee and Neider (1996) introduced a scaled

deviance measure as a goodness-of-fit criterion. However, as the measure 

uses the distribution y | u only it can not be used for checking the random
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components. They also introduced a graphical technique called half-normal 

plots which graphs normal order statistics against ordered residuals. Apart 

from these there are not many other tools available for checking the 

goodness-of-fit. In the previous chapters deviance is calculated in some 

cases assuming u is fixed which is similar to the Lee and Neider approach 

and can only be used for fixed parameters.

10.2.4 Software

The other issue which is preventing the widespread use of GLMMs in applied

research is the absence of appropriate software. What is required is a user

friendly software to undertake GLMM based analysis so that applied

researchers can benefit from the theoretical development without going into

the theoretical detail. The software should also be able to deal with very

large numbers of random effects, which is very common in practice. 

Analytical methods also need to be developed to achieve further efficiency

in computing. The straight forward Newton-Raphson estimation algorithm is 

more likely to break down when the number of random effects becomes large. 

The efficiency in computing may be achieved better by concentrating on 

specific applications. For example, different procedures within a software

can be developed for different applications such as for contingency tables,

survival analysis, threshold modelling, matched analysis and similar other 

analyses. Diagnostics and hypothesis testing facilities should also be

included.
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10.3 POTENTIAL RESEARCH PROBLEMS

Obviously there are needs for research in all of the above mentioned issues. 

However, some specific research issues which have been identified while 

working on the thesis will be discussed in this section.

10.3.1 Distribution of GLMM Estimators

As mentioned above there is obvious room for further improvement in GLMM 

estimation. One of the possibilities is to further investigate the 

distributional properties of the GLMM estimators. An attempt has been made 

in Chapter 3 to identify some characteristics of GLMM estimators. More 

investigations along this line are required. A better understanding of the 

distribution, particularly the second order moments of the estimators, would 

contribute to more accurate variance-covariance matrix which could increase 

the efficiency of the estimation methods.

10.3.2 Information Matrix

In computing the variance-covariance matrix V, different convergent methods 

use one of four possible ways of computing the information matrix, / = 

-3“/,/dr|öT|', or its expectations. These are:

(i) 7 = -Ey u(32/,/3r|dri') which does not depend on y, u,

(ii) /  I u = -Ey I u(ö2/,/arlari') which depends on u but not y,

(iii) I = -d2/,/dr|dr|' = sample information matrix depending on y, u,

(iv) /* = (/ + /y| u)/2 used by AIREML methods (Gilmour et al. 1995).
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There needs to be further research on the comparative performances of the 

above options for both the influence on the estimates and the convergence 

properties of the algorithms.

For Cases (i) and (ii) suppose that V is formed from /  or /  | u so that 

it is not a stochastic matrix when considered over the distribution of y 

conditional on fixed u.

Using the notation specified in Chapters 2 and 3, since Ey | u(t) = 0 we get 

£ y |u(P) = ß-T2A ‘u and £ y | u(u) = u-TA 'u = z. Now if

t ,-t 2a ~'t ; t 2-t 2a ~'t  

t 2-t a  't 2 t -t a 't

then Vary | u(P) = T ,-T 2A ''T ^  , Vary | „(Ü) = T - T A ' T  .

X ' r i  -i - 1 - 1 0 0 ’
Z ' /y|u[x z ]v  1 >

1

>II
0 A - '

For the Case (ii) an attempt was made to approximate the elements of V 1 as 

follows:

I f  /  I u is used to compute T matrices then these matrices are functions

of u and, i f  U is a general component of u ,

T  « T 0 + I  UTjJ , T 0 = T (u=0) , T l = (dT/dU)(u=0) , 
u

T, -  T 10 + X UT?0 , T 10 = T l(u=0) . T?0 = (dT|/dU)(u=0) , 
u

T 2 -  T 20 + X UT20 , T 20 = T 2(u_0) , T 20 = (dT2/dU)(u=0) . 
u

and

£y.u(ß) = ^ u(ß-T2A"'u) = ß - I  T20A ’ 1Cov(U,u) = ß-b2
u

where b2 = Z  (column of T 20 corresponding to U) 
u

£ y.u(u) = £ u(u-TA"'u) = - I  ToA"‘Cov(U,u) = -b
u
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where b = - X (column of TjJ corresponding to U) 
u

Vary>u(ß) = EJLT r T2A-'T') = T.o-T^A-'T'o- X X T ^ lf tC o v f tJ .U * )
u u*

Vary „(0) = £ u(T -T A ''r) = To-ToA'1̂ -  I  I  T^A''<Cov(U,U*)
u u*

= B0 - I  I  T^A"'To*Cov(U,U*) , where B0 = To-ToA"1̂  , 
u u*

and * corresponds to the derivative with respect to U*. Using

z = u - TA u = u - T0A 'u - X UT^A 'u
u

we have
£u(z) = - X (column of Tq corresponding to U) = -b 

u
and

E„(z z') = A - T0 - B0 + I  £ u[UU*tJa "iuu'A’iTq*]
U , U*

so that

£y>u(u'A; Uj) = tr(A-‘zjZ-) + tr[A;‘£ u(Bü)]

= GjVj - tr(Aj'T0jj) + tr[Aj'x (i,i) block of Q]

where Q = X {£’u[UU*T^A'1uu,A"1TqV  X X TqA_1Tq*Cov(U,U*)} . 
u , u *  u u*

The above strategy of investigation could not be completed and evaluated 

fully and remains to be followed up further.

10.3.3 Likelihood Ratio Tests

The argument used for developing GLMM estimation strategy in McGilchrist 

(1994) is that

y* = Xß + Zu ~ N(Xß+Zu,B_1) approximately 

=>y = Xß + Zü + e ~  N(Xß, B-'-kj2ZAZ').

Using this distributional assumption a log-likelihood function can be 

derived as follows

/ = -(1/2){n ln27t + ln | b ->+g2ZAZ'| + (y*-Xß)/(B '+a2ZAZ,)-'(y#-Xß)}

155



and a likelihood ratio test may be constructed to test H0:({) = 0 or for some 

components of ß. Some investigations were undertaken on this but could not 

be resolved completely. Further research can be undertaken along this line

to examine whether test statistics can be developed.

10.3.4 Comparison between HGLMs and GLMMs

In Chapter 4 a simulation-based comparison between HGLMs and GLMMs is 

presented in the case of a Poisson distributed response variable. Further

investigation can be undertaken along this line by using response variables 

with various distributions such as binomial, gamma and inverse-Gaussian.

More effective diagnostic tools should be developed to identify the

situations where HGLMs may be preferable over GLMMs.

10.3.5 Exact Expressions

Various applications discussed in the previous chapters are dependent on 

fitting GLMMs and estimating parameters through iteration. This is not 

always required in conventional analysis with simple situations such as 2x2 

contingency tables or case-control studies where exact expression is

available for testing independence. That facilitates the use of the

techniques by researchers from other disciplines. There may be a 

possibility for a similar development of such exact or even approximate 

expressions for corresponding mixed model analysis.

10.3.6 Sampling Weights

In practice correlation or clustering in a dataset is often created due to 

the sample design used in data collection and in many cases unequal

selection probabilities are used. The analysis discussed in the previous
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chapters are mainly under the assumption of equal weights to all 

observations. Specific results can further be derived for the datasets

where weights of the observations vary from cluster to cluster or even over 

observations. The implications for the corresponding finite population

inference should also be investigated.
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APPENDIX A

DATASETS

A number of datasets used in various chapters of the thesis. Some of these

which are smaller in size are already included within the respective 

chapters while the bigger size ones are presented in this Appendix. The 

dataset in Table A1 is used in Chapter 6 and the datasets in Tables A2 and 

A3 are used in Chapter 5.

Table Al: Responses on Housing Satisfaction of Families in 20 Neighbourhood
Clusters in Montevideo, Minnesota.

C,P, C,P2 C,P3 C2P, C2P, ^2^3 C3P, C3P2 C3P3

1 0 0 2 2 0 0 0 0
1 0 0 2 2 0 0 0 0
0 2 0 0 2 0 0 1 0
0 1 0 2 1 0 1 0 0
0 0 0 0 4 0 0 1 0
1 0 0 3 1 0 0 0 0
3 0 0 0 1 0 0 1 0
1 0 0 1 3 0 0 0 0
3 0 0 0 0 0 1 0 1
0 1 0 0 3 1 0 0 0
1 1 0 0 2 0 1 0 0
0 1 0 4 0 0 0 0 0
0 0 0 4 1 0 0 0 0
0 0 0 1 2 0 0 0 2
2 0 0 2 1 0 0 0 0
1 0 0 1 1 0 0 0 0
0 0 0 1 1 1 0 2 0
0 0 0 1 0 1 0 0 1
2 0 0 2 1 0 0 0 0
2 0 0 2 0 0 1 0 0

P = Personal Satisfaction, C = Community Satisfaction 
and the subscripts 1 = Unsatisfied, 2 = Satisfied, 3 = Very satisfied.

Source: Brier (1980)
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Table A2: Matched Case Control Data from Low Birth Weight Study

Set Case Control 1 Control 2 Set Case Control 1 Control 2
1 0000 0000 1000 2 1110 0001 1000
3 0000 0000 0000 4 0000 1001 1101
5 1010 1101 1001 6 1111 1000 0000
7 0001 0000 1000 8 1100 0100 0001
9 1000 0000 1000 10 1000 0001 0000
11 1110 0110 1000 12 0100 1100 0000
13 0011 0000 1100 14 1110 1001 1000
15 1000 0000 1010 16 0101 0000 0000
17 1010 0000 0000 18 0000 0000 0000
19 0000 1011 0000 20 0101 1000 0000
21 1001 0100 0000 22 0011 0000 m i
23 1000 1000 1000 24 1110 0000 1000
25 1001 1000 0000 26 0100 0000 0000
27
29

1010
1001

0111
0000

0000
0000

28 1011 0101 1000

The binary string for each observation is the values of variables in the 
order SMOKE, PTD, UI and LWD

Source: Hosmer and Lemeshow (1989)
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APPENDIX A

TABLE A3: MATCHED DATA FROM THE LOS ANGELES STUDY 
OF ENDOMETRIAL CANCER USED FOR ILLUSTRATION IN

CHAPTER 5

CASE OR AGE GALL HYPER OBESITY ESTROGEN CONJUGATED ESTROGEN NON
CONTROL BLADDER

DISEASE
TENSION USE DOSE DURATION

(MONTHS)
ESTRGN
DRUG

CASE 74 NO NO YES YES 3 96 + YES
CONTROL 75 NO NO UNK NO 0 0 NO
CONTROL 74 NO NO UNK NO 0 0 NO
CONTROL 74 NO NO UNK NO 0 0 NO
CONTROL 75 NO NO YES YES 1 48 YES
CASE 67 NO NO NO YES 3 96 + YES
CONTROL 67 NO NO NO YES 3 5 NO
CONTROL 67 NO YES YES NO 0 0 YES
CONTROL 67 NO NO NO YES 2 53 NO
CONTROL 68 NO NO NO YES 2 45 YES
CASE 76 NO YES YES YES 1 9 YES
CONTROL 76 NQ YES YES YES 2 96 + YES
CONTROL 76 NO YES NO YES 1 3 YES
CONTROL 76 NO YES YES YES 2 15 YES
CONTROL 77 NO NO NO YES 1 36 YES
CASE 71 NO NO UNK YES UNK 96 + NO
CONTROL 70 YES NO NO YES 2 7 YES
CONTROL 70 NO NO NO YES 0 0 YES
CONTROL 71 NO YES YES YES 2 7 YES
CONTROL 70 NO NO YES YES 2 27 YES
CASE 69 YES NO YES YES 2 36 YES
CONTROL 69 NO YES NO YES 1 96 + YES
CONTROL 69 NO NO YES YES 2 1 YES
CONTROL 69 NO NO NO YES O O YES
CONTROL 68 NO NO UNK NO 0 0 NO
CASE 70 NO YES YES YES 2 71 YES
CONTROL 71 NO NO NO NO 0 0 NO
CONTROL 71 NO YES YES YES 3 S YES
CONTROL 70 NO NO YES NO 0 0 NO
CONTROL 71 NO NO UNK NO 0 0 NO
CASE 65 YES NO NO YES 1 96 + YES
CONTROL 65 NO NO UNK NO 0 0 NO
CONTROL 64 NO NO NO YES 3 91 YES
CONTROL 64 NO NO NO YES 2 96 + YES
CONTROL 65 NO NO YES YES 2 60 NO
CASE 68 YES YES YES YES 1 36 YES
CONTROL 68 NO YES UNK NO 0 0 . YES
CONTROL 68 NO NO YES NO 0 0 YES
CONTROL 68 YES NO UNK YES 0 O NO
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TABLE A3: ENDOMETRIAL CANCER STUDY

C A S E  OR AGE G A L L H Y PE R O B E S I T Y E S T R O G E N C O N JU G A T E D E S T R O G E N NON
C O N T R O L B L A D D E R

D I S E A S E
T E N S I O N U S E D O SE D U R A T I O N

(M O N T H S)
E S T R G N
DRUG

C O N T R O L  6 8 NO NO UNK Y E S 1 1 Y E S
C A S E  6 1 NO NO UNK NO 0 0 Y E S
C O N T R O L  6 1 NO NO Y E S NO 0 0 Y E S
C O N T R O L  6 1 NO NO NO Y E S 1 2 4 Y E S
C O N T R O L  6 1 NO NO UNK NO 0 0 Y E S
C O N T R O L  6 0 Y E S NO NO NO 0 0 NO
C A S E  6 4 NO NO Y E S Y E S 1 5 4 Y E S
C O N T R O L  6 4 NO NO UNK NO 0 0 NO
C O N T R O L  6 5 NO Y E S UNK Y E S 3 2 Y E S
C O N T R O L  6 4 NO Y E S Y E S Y E S 3 1 0 Y E S
C O N T R O L  6 5 NO NO UNK NO 0 0 NO
C A S E  6 8 Y E S NO Y E S Y E S 3 9 6  + Y E S
C O N T R O L  6 9 NO NO UNK NO 0 0 NO
C O N T R O L  6 9 NO NO Y E S NO 0 0 Y E S
C O N T R O L  6 9 Y E S Y E S Y E S Y E S 0 0 Y E S
C O N T R O L  6 9 Y E S NO Y E S Y E S 1 3 5 NO
C A S E  7 4 NO NO NO Y E S 2 9 6  + Y E S
C O N T R O L  7 4 NO Y E S NO Y E S 3 4 Y E S
C O N T R O L  7 3 NO Y E S NO Y E S 2 1 1 Y E S
C O N T R O L  7 4 NO NO Y E S Y E S 1 6 Y E S
C O N T R O L  7 4 NO NO Y E S Y E S 1 1 2 NO
C A S E  6 7 Y E S NO Y E S Y E S 0 0 Y E S
C O N T R O L 6 8 NO Y E S NO Y E S 0 0 Y E S
C O N T R O L  6 8 NO Y E S Y E S Y E S 3 6 5 Y E S
CO NT R O L  6 8 NO NO UNK NO 0 0 NO
C O N T R O L  6 8 NO NO Y E S Y E S 2 9 6  + Y E S
C A S E  6 2 Y E S NO NO Y E S 1 UNK Y E S
C O N T R O L  6 2 Y E S NO NO NO 0 0 NO
C O N T R O L  6 3 NO NO Y E S NO 0 0 NO
C O N T R O L  6 3 NO NO UNK NO 0 0 NO
C O N TR OL 6 3 NO NO Y E S Y E S 2 UNK NO
C A S E  7 1 Y E S NO Y E S Y E S 2 5 9 Y E S
C O N TR OL 7 0 NO Y E S Y E S NO 0 0 Y E S
C O N TR OL 7 1 NO NO Y E S Y E S UNK UNK Y E S
C O N T R O L  7 1 NO Y E S Y E S NO 0 0 Y E S
C O N T R O L  7 1 NO Y E S Y E S Y E S 2 8 4 Y E S
C A S E  8 3 NO Y E S Y E S Y E S 3 9 6  + Y E S
CO NT R O L  8 2 NO NO Y E S NO 0 0 NO
CO NT R O L  8 2 NO Y E S NO Y E S 3 4 Y E S
CO NT R O L  8 2 NO Y E S NO NO 0 0 Y E S
CO NTR OL 8 2 NO NO UNK NO 0 0 NO
C A S E  7 0 NO NO Y E S NO 0 0 Y E S
C O N TR OL 7 0 Y E S Y E S Y E S Y E S 2 5 5 Y E S
C O N TR OL 7 0 NO Y E S Y E S Y E S 2 1 4 Y E S
C O N TR OL 7 0 NO Y E S Y E S Y E S 1 3 9 Y E S
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TABLE A3: ENDOMETRIAL CANCER STUDY

C A S E  OR AGE GALL H Y P E R O B E S I T Y  E ST R O G E N C O N J U G A T E D E S T R O G E N NON
C O N T R O L B L A D D E R

D I S E A S E
T E N S I O N U S E D O S E D U R A T I O N

(M ON THS)
E S T R G N
DRUG

C O N T R O L  7 0 NO Y E S Y E S NO 0 0 Y E S
C A S E  7 4 NO NO NO Y E S 0 0 Y E S
C O N T R O L  7 5 Y E S Y E S NO Y E S 2 6 Y E S
C O N T R O L  7 4 NO NO Y E S NO 0 0 Y E S
C O N T R O L  7 4 NO Y E S NO Y E S 2 4 6 Y E S
C O N T R O L  7 5 NO NO UNK NO 0 0 NO
C A S E  7 0 NO NO UNK Y E S 0 0 Y E S
C O N T R O L  7 0 NO Y E S NO Y E S 1 9 6  + Y E S
C O N T R O L  7 0 NO NO UNK NO 0 0 NO
C O N T R O L  7 0 NO NO UNK NO 0 0 Y E S
C O N T R O L  7 0 NO NO UNK NO 0 0 NO
C A S E  6 6 NO Y E S Y E S Y E S 3 4 8 Y E S
C O N T R O L  6 6 NO NO UNK Y E S 1 9 6  + Y E S
C O N T R O L  6 6 NO NO UNK NO 0 0 Y E S
C O N T R O L  6 6 NO NO Y E S NO 0 0 NO
C O N T R O L  6 6 NO Y E S Y E S Y E S 1 1 2 Y E S
C A S E  7 7 NO NO Y E S Y E S 3 4 Y E S
C O N T R O L  7 7 Y E S Y E S Y E S Y E S 0 0 Y E S
C O N T R O L  7 7 NO Y E S NO Y E S 2 2 4 Y E S
C O N T R O L  7 7 NO NO Y E S NO 0 0 NO
C O N T R O L  7 8 NO Y E S Y E S Y E S 2 9 Y E S
C A S E  6 6 NO Y E S NO Y E S 3 2 9 Y E S
C O N T R O L  6 7 NO Y E S NO NO 0 0 Y E S
C O N T R O L  6 6 NO NO Y E S NO 0 0 Y E S
C O N T R O L  6 7 NO NO Y E S NO 0 0 Y E S
C O N T R O L  6 9 NO Y E S Y E S Y E S 2 1 0 Y E S
C A S E  7 1 NO Y E S Y E S Y E S 1 9 6  + NO
C O N T R O L  7 2 NO NO UNK NO 0 0 NO
C O N T R O L  7 2 NO NO NO NO 0 0 Y E S
C O N T R O L  7 1 NO NO UNK NO 0 0 NO
C O N T R O L  7 1 NO Y E S Y E S NO 0 0 Y E S
C A S E  8 0 NO NO NO Y E S 2 UNK Y E S
C O N T R O L  7 9 NO NO UNK NO 0 0 NQ
C O N T R O L  7 9 NO NO NO NO 0 0 NO
C O N T R O L  7 9 NO NO Y E S NO 0 0 NO
C O N T R O L  8 0 NO NO NO NO 0 0 NO
C A S E  6 4 NO NO Y E S Y E S 2 UNK Y E S
C O N T R O L  6 4 NO NO NO Y E S 0 0 Y E S
C O N T R O L  6 3 NO NO Y E S Y E S 1 6 0 Y E S
C O N T R O L  6 4 NO Y E S NO Y E S 1 6 Y E S
C O N T R O L  6 6 NO Y E S Y E S Y E S 1 UNK Y E S
C A S E  6 3 NO NO NO Y E S 1 6 0 Y E S
C O N T R O L  6 3 NO Y E S NO Y E S 1 9 6  + Y E S
C O N T R O L  6 5 NO NO NO Y E S 1 2 5 NO
C O N T R O L  6 5 NO NO NO NO 0 0 Y E S
C O N T R O L  6 4 NO NO NO Y E S 1 9 6  + Y E S
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TABLE A3: ENDOMETRIAL CANCER STUDY

C A S E  OR AGE G ALL H Y P E R O B E S I T Y E S T R O G E N C O N J U G A T E D E S T R O G E N NON
C O N T R O L B L A D D E R T E N S I O N U S E D O S E D U R A T I O N E S T R G N

D I S E A S E (M ON THS) DRUG

C A S E  7 2 Y E S NO Y E S NO 0 0 Y E S
C O N T R O L  7 2 NO Y E S UNK NO 0 0 NO
C O N T R O L  7 2 NO Y E S Y E S NO 0 0 Y E S
C O N T R O L  7 2 NO Y E S NO Y E S 1 4 8 Y E S
C O N T R O L  7 2 NO Y E S Y E S Y E S 0 0 Y E S
C A S E  5 7 NO NO NO Y E S 3 1 2 NO
C O N T R O L  5 7 NO Y E S Y E S Y E S 0 0 Y E S
C O N T R O L  5 8 NO NO Y E S Y E S 1 3 6 Y E S
C O N T R O L  5 7 NO NO NO Y E S 1 3 6 NO
C O N T R O L  5 7 NO NO NO Y E S 0 0 NO
C A S E  7 4 Y E S NO Y E S NO 0 0 Y E S
C O N T R O L  7 4 NO NO Y E S NO 0 0 Y E S
C O N T R O L  7 3 NO NO Y E S Y E S 2 2 Y E S
C O N T R O L  7 5 NO NO Y E S NO 0 0 Y E S
C O N T R O L  7 5 NO NO UNK NO 0 0 NO
C A S E  6 2 NO Y E S Y E S Y E S 2 6 Y E S
C O N T R O L  6 2 NO NO Y E S Y E S 2 3 7 Y E S
C O N T R O L  6 2 NO NO Y E S Y E S 2 6 3 Y E S
C O N T R O L  6 3 NO NO UNK NO 0 0 NO
C O N T R O L  6 1 Y E S Y E S Y E S Y E S 3 9 6  + Y E S
C A S E  7 3 NO Y E S Y E S Y E S 1 4 Y E S
C O N T R O L  7 2 NO NO NO Y E S 2 9 0 Y E S
C O N T R O L  7 3 NO NO NO Y E S 3 5 Y E S
C O N T R O L  7 3 NO Y E S NO Y E S 1 1 5 Y E S
C O N T R O L  7 3 NO Y E S NO NO 0 0 NO
C A S E  7 1 NO Y E S Y E S Y E S 1 UNK Y E S
C O N T R O L  7 1 NO NO UNK NO 0 0 NO
C O N T R O L  7 1 NO NO NO NO 0 0 Y E S
C O N T R O L  7 1 NO NO NO NO 0 0 Y E S
C O N T R O L  7 1 NO Y E S NO Y E S UNK UNK Y E S
C A S E  6 4 NO Y E S Y E S NO 0 0 Y E S
C O N T R O L  6 5 NO NO Y E S Y E S 3 9 6  + Y E S
C O N T R O L  6 4 NO NO Y E S Y E S 3 9 6  + Y E S
C O N T R O L  6 4 NO NO Y E S Y E S 2 3 6 Y E S
C O N T R O L  6 4 NO NO Y E S Y E S 3 9 6  + NO
C A S E  6 3 NO NO NO Y E S UNK 9 6  + Y E S
C O N T R O L  6 4 NO NO Y E S NO 0 0 Y E S
C O N T R O L  6 2 NO NO Y E S NO 0 0 Y E S
C O N T R O L  6 4 Y E S NO NO Y E S 1 1 8 NO
C O N T R O L  6 4 NO Y E S Y E S Y E S 3 UNK Y E S
C A S E  7 9 Y E S Y E S Y E S Y E S 1 9 6  + Y E S
C O N T R O L  7 8 Y E S Y E S Y E S Y E S 1 9 6  + Y E S
C O N T R O L  7 9 NO NO Y E S NO 0 0 Y E S
C O N T R O L  7 9 NO Y E S NO Y E S 0 0 Y E S

C O N T R O L  7 8 NO NO Y E S Y E S 1 2 4 Y E S
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TABLE A3: ENDOMETRIAL CANCER STUDY

C A S E  OR AGE G A L L H Y P E R O B E S I T Y E S T R O G E N C O N JU G A T E D E S T R O G E N NON
C O N TR OL B L A D D E R T E N S I O N U S E D O S E D U R A T I O N E S T R G N

D I S E A S E (M O N T H S ) DRUG

C A S E  8 0 NO NO Y E S Y E S 1 1 5 Y E S
CO NT R O L  8 1 NO Y E S Y E S NO 0 0 Y E S
CO NT R O L  8 1 NO Y E S NO Y E S 1 1 8 Y E S
CO NT R O L  8 0 NO NO Y E S Y E S 2 7 4 Y E S
CO NTR OL 8 0 NO Y E S Y E S NO 0 0 Y E S
C A S E  8 2 NO Y E S Y E S Y E S 2 6 Y E S
CO NT R O L  8 2 NO NO Y E S NO 0 0 Y E S
CO NTR OL 8 1 NO Y E S UNK NO 0 0 Y E S
C O N TR OL 8 1 NO Y E S Y E S Y E S 1 1 2 Y E S
C O N TR OL 8 2 NO Y E S Y E S Y E S 2 1 3 Y E S
C A S E  7 1 NO Y E S NO Y E S UNK 8 4 Y E S
CO NTR OL 7 1 NO Y E S Y E S NO 0 0 Y E S
CO NTR OL 7 1 Y E S NO Y E S NO 0 0 Y E S
CO NT R O L  7 1 Y E S NO Y E S Y E S 1 9 6  + Y E S
CO NT R O L  7 1 NO NO NO Y E S 1 3 0 Y E S
C A S E  8 3 NO Y E S Y E S Y E S 3 1 4 Y E S
CO NTR OL 8 3 NO Y E S Y E S NO 0 0 Y E S
C O N TR OL 8 3 NO NO NO NO 0 0 Y E S
CO NTR OL 8 3 NO Y E S Y E S Y E S 2 1 6 Y E S
CO NTR OL 8 3 NO NO NO NO 0 0 Y E S
C A S E  6 1 NO Y E S NO Y E S 3 9 6  + Y E S
C O N TR OL 6 0 NO NO NO NO O O Y E S
C O N TR OL 6 1 NO NO NO Y E S 1 2 4 Y E S
C O N TR OL 6 2 NO NO Y E S NO 0 0 Y E S
C O N TR OL 6 1 NO NO NO Y E S 0 0 Y E S
C A S E  7 1 NO NO NO Y E S 1 9 6  + Y E S
CO NTR OL 7 1 NO NO Y E S NO 0 0 NO
C O N TR OL 7 1 NO Y E S Y E S NO 0 O NO
CO NT R O L  7 0 NO NO NO NO 0 0 NO
CO NTR OL 7 1 NO Y E S Y E S Y E S 1 3 Y E S
C A S E  6 9 NO Y E S Y E S Y E S 2 4 0 Y E S
CO NTR OL 6 9 Y E S NO Y E S NO O O Y E S
CO NTR OL 7 0 NO Y E S NO Y E S O O Y E S
CO NTR OL 7 0 NO Y E S NO Y E S 1 3 2 Y E S
CO NTR OL 7 0 NO NO Y E S Y E S UNK UNK Y E S
C A S E  7 7 NO NO Y E S Y E S 3 7 3 Y E S
CO NTR OL 7 6 NO Y E S NO Y E S 0 0 Y E S
CO NTR OL 7 6 NO Y E S Y E S Y E S 0 0 Y E S
CO NTR OL 7 7 Y E S Y E S Y E S Y E S 0 0 Y E S
CO NTR OL 7 7 NO Y E S NO NO 0 0 Y E S
C A S E  6 4 NO NO Y E S Y E S 1 3 7 NO
CO NTR OL 6 4 NO NO Y E S Y E S 3 6 NO
CO NTR OL 6 3 Y E S NO Y E S NO 0 0 NO
CO NTR OL 6 3 NO Y E S NO Y E S UNK UNK Y E S
CO NTROL 6 3 NO Y E S Y E S NO 0 0 Y E S
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TABLE A3: ENDOMETRIAL CANCER STUDY

C A S E  OR AGE GALL H Y P E R O B E S I T Y E S T R O G E N C O N JU G A T E D E S T R O G E N NON
CONTROL B L A D D E R T E N S I O N U S E D O SE D U R A T I O N E S T R G N

D I S E A S E (M O N T H S ) DRUG

C A S E  7 9 Y E S NO NO NO 0 0 NO
CONTROL 8 2 NO NO Y E S Y E S 1 UNK Y E S
CONTROL 7 8 NO NO NO NO 0 0 NO
CONTROL 8 0 NO NO Y E S NO 0 0 NO
CONTR OL 8 1 NO NO NO NO 0 0 NO
C A S E  7 2 NO NO NO Y E S 0 0 Y E S
CONTROL 7 2 NO NO Y E S Y E S 2 5 7 Y E S
CO NTROL 7 3 NO NO UNK NO 0 0 NO
CO NTROL 7 3 Y E S Y E S NO Y E S 2 9 6  + Y E S
CONTROL 7 3 NO NO NO NO 0 0 Y E S
C A S E  8 2 Y E S Y E S Y E S Y E S 3 9 6  + Y E S
CONTROL 8 1 NO NO UNK NO 0 0 NO
CONTROL 8 1 NO NO Y E S NO 0 0 NO
CONTROL 8 1 NO NO Y E S Y E S 0 0 Y E S
CONTR OL 8 1 NO Y E S Y E S NO 0 0 Y E S
C A S E  7 3 NO Y E S Y E S Y E S 2 6 0 Y E S
CONTROL 7 4 NO NO Y E S Y E S 1 1 Y E S
CONTROL 7 5 NO NO NO NO 0 0 Y E S
CO NTROL 7 5 NO Y E S Y E S Y E S 1 9 6  + Y E S
CONTROL 7 4 NO NO NO NO 0 0 NO
C A S E  6 9 NO NO UNK Y E S UNK UNK Y E S
CONTROL 6 8 NO NO NO NO 0 0 Y E S
CONTROL 6 8 NO NO Y E S Y E S 2 4 8 Y E S
CONTROL 6 8 NO NO NO Y E S 1 9 6  + NO
CONTROL 7 0 NO NO NO NO 0 0 NO
C A S E  7 9 NO Y E S Y E S Y E S 1 6 7 Y E S
CONTROL 7 9 NO Y E S Y E S NO 0 0 Y E S
CONTROL 7 9 NO Y E S Y E S NO 0 0 Y E S
CONTROL 7 8 Y E S NO Y E S Y E S 1 UNK Y E S
CONTROL 7 9 NO NO Y E S NO 0 0 Y E S
C A S E  7 2 NO NO Y E S Y E S 3 6 0 NO
CONTROL 7 1 NO NO NO Y E S 0 0 Y E S
CONTROL 7 2 NO NO NO NO 0 0 Y E S
CONTROL 7 2 NO Y E S Y E S Y E S 3 9 6  + Y E S
CONTROL 7 1 NO Y E S Y E S Y E S 3 1 2 Y E S
C A S E  7 2 NO Y E S Y E S Y E S 1 2 7 Y E S
CONTROL 7 2 NO Y E S Y E S Y E S 1 3 Y E S
CONTROL 7 1 NO NO UNK NO 0 0 NO
CONTROL 7 2 NO Y E S Y E S NO 0 0 Y E S
CONTROL 7 2 NO Y E S Y E S NO 0 0 Y E S
C A S E  6 5 NO Y E S Y E S Y E S 2 1 6 Y E S
CONTROL 6 7 NO NO NO NO 0 0 NO
CONTROL 6 7 NO NO UNK NO 0 0 NO
CONTROL 6 6 NO NO Y E S NO 0 0 . Y E S
CONTROL 6 6 NO NO NO Y E S 2 3 NO
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TABLE A3: ENDOMETRIAL CANCER STUDY

C A S E  OR AGE GALL H Y P E R O B E S I T Y E S T R O G E N C O N J U G A T E D E S T R O G E N NON
C O N T R O L B L A D D E R T E N S I O N U S E D O S E D U R A T I O N E S T R G N

D I S E A S E (M O N T H S) DRUG

C A S E  6 7 NO Y E S Y E S Y E S 2 9 6  + Y E S
C O N T R O L  6 6 NO NO Y E S Y E S 2 5 6 Y E S
C O N T R O L  6 6 NO NO Y E S NO 0 0 NO
C O N T R O L  6 7 NO NO Y E S Y E S 1 UNK Y E S
C O N T R O L  6 7 NO NO Y E S Y E S 2 3 4 Y E S
C A S E  6 4 Y E S NO Y E S Y E S 3 9 6  + Y E S
C O N T R O L  6 3 NO NO Y E S NO 0 0 Y E S
C O N T R O L  6 4 NO NO Y E S Y E S 1 4 Y E S
C O N T R O L  6 3 NO NO Y E S NO 0 0 Y E S
C O N T R O L  6 5 NO NO UNK NO 0 0 NO
C A S E  6 2 NO NO UNK Y E S 2 3 6 NO
C O N T R O L  6 3 NO NO Y E S NO 0 0 NO
C O N T R O L  6 2 NO NO NO NO 0 0 Y E S
C O N T R O L  6 2 NO NO UNK Y E S 3 UNK NO
C O N T R O L  6 2 NO NO UNK NO 0 0 NO
C A S E  8 3 Y E S Y E S UNK NO 0 0 Y E S
C O N T R O L  8 3 Y E S NO UNK NO 0 0 NO
C O N T R O L  8 2 NO NO NO Y E S 2 6 Y E S
C O N T R O L  8 3 NO NO UNK NO 0 0 Y E S
C O N T R O L  8 3 Y E S NO UNK NO 0 0 Y E S
C A S E  8 1 NO NO Y E S Y E S 0 0 Y E S
C O N T R O L  7 9 NO NO UNK NO 0 0 NO
C O N T R O L  8 0 NO NO Y E S NO 0 0 Y E S
C O N T R O L  8 2 NO NO Y E S NO 0 0 Y E S
C O N T R O L  8 0 NO NO NO NO 0 0 NO
C A S E  6 7 NO NO Y E S Y E S 2 9 6  + Y E S
C O N T R O L  6 6 NO NO Y E S Y E S 2 4 0 Y E S
C O N T R O L  6 8 NO NO UNK NO 0 0 Y E S
C O N T R O L  6 5 NO NO ND NO 0 0 Y E S
C O N T R O L  LO NO Y E S Y E S Y E S 1 9 6  + Y E S
C A S E  7 3 Y E S Y E S Y E S Y E S 1 UNK Y E S
C O N T R O L  7 2 NO NO Y E S Y E S 1 1 2 Y E S
C O N T R O L  7 1 NO NO Y E S Y E S 1 9 6  + Y E S
C O N T R O L  7 3 Y E S NO NO Y E S 2 9 6  + Y E S
C O N T R O L  7 2 NO NO Y E S NO 0 0 Y E S
C A S E  6 7 Y E S NO NO Y E S 3 9 6  + Y E S
C O N T R O L  6 7 Y E S NO Y E S Y E S 2 9 6  + Y E S
C O N T R O L  6 8 NO NO Y E S NO 0 0 NO
C O N T R O L  6 7 NO NO Y E S NO 0 0 NO
C O N 1 R O L  6 7 NO NO Y E S NO 0 0 Y E S
C A S E  7 4 NO Y E S Y E S Y E S 2 9 Y E S
C O N T R O L  7 5 NO NO NO NO 0 0 Y E S
C O N T R O L  7 5 NO NO UNK NO 0 0 NO
C O N T R O L  7 5 Y E S Y E S NO NO 0 0 Y E S
C O N T R O L  7 5 NO NO NO Y E S 2 4 1 Y E S
C A S E  6 8 Y E S NO Y E S Y E S 3 1 8 Y E S
C O N T R O L  6 9 NO NO Y E S Y E S 2 9 6  + Y E S
C O N T R O L  7 0 NO NO UNK NO 0 0 NO
C O N T R O L  6 9 NO Y E S Y E S Y E S 2 9 2 Y E S
C O N T R O L  6 9 NO Y E S NO Y E S 3 5 9 Y E S
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APPENDIX B

DYALOG APL PROGRAMS

The computations required in the thesis are undertaken by using Dyalog APL 

Version 7.1. The following table summarises the main programs and related 

functions used in various chapters.

Table B l: Dyalog ALP Programs used in Various Chapters

Chapter Description APL Programs 
& Sub-programs

Three To simulate and fit Poisson-gamma 
model.

SIMPG, POSGAM 
POISSON

Four To compare Poisson-normal and 
Poisson-gamma models.

COMPPGPN, DATAPN 
DATAPG, NORMALR 
POSNML, POSGMM

Five To simulate matched case-control data 
and fit mixed and fixed effects model.

To calculate derivatives.

SIMMATCH, DEV 
MATCHDAT, DATA 
MATCHMIX, GLIM 
LL0M1, LL0M2, LLOM

A general program for fitting mixed 
model to matched case-control data.

MCASECONT 
LIKEDRV, COEFF

Six To analyse contingency table of 
Neighbourhood data under Poisson assu- 
-mption and to calculate derivatives.

POSCON
GLIMP
DEVP

A general space efficient program. POSCONSP
Seven To fit fixed and mixed effect 

multinomial model and to calculate 
derivatives and Deviance.

GLIMM 
MULTMIX 
LLOMN, DEVM

Eight To fit fixed and mixed effect 
Threshold models.

THRES
THRESMIX

To calculate Deviances. DEVTH, DEVTHM
Nine To adjust SEs for 1 and 2 random 

components
ADJSE1
ADJSE2

All Some general functions used in 
various chapters.

BINO, BLOCK, BNLEFT 
DET, FMSE, MEAN 
DIAG, RND, STD 
UNIT, VP, VAR
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SIMPC

V SIMPG
[1] pTo generate POS-GAM data and fit Pisson-Gamma model
[2] DATAPC
[3] POSGAM Y
[4] - +( C = 1 ) / L 2
[5] BETAO+BETAO,liBETA
[6] BETA1+-BETA1 ,BETA[2]
[7] THETA1+-THETA1, THETA
[8] SETH1+-SETH1 ,SE
[9] SEBETO+SEBETO' SEBETAl l ]
[10] SEBET1+-SEBET1 ,SEBETA[ 2]
[11] LI: 'CONVERGED SIMULATION*pTHETAl

V

POSGAM

V POSGAM Y-,B;IS;TH;X;Y;L;VV;W;T;Il;l2;J-,K
[1] piFits Po isson-gamma model. Various initial values are
[2] pitried with automatically. The first column of Y is the
[3] aresponse vector and the remaining columns are design
[4] amatrix for fixed and random parameters.
[5] A>(~lxj)+j^"o.2
[6] LBLO : J+-J + 0 .2,0pA>0
[7] LBLliTHETA+O.lxK+K+l
[8] 'At tempt = ',K ,'In itial U = l, J I n i t i a l  TH=',K*0.1
[9] BETA+-2 ,l,15pJ,0pIl-^l2-^0
[10] LBL2 :L*-(Y[ ;1]~* {0 1 4 Y ) + . »BETA ) , 3 0 30p(*7[;2 3 ] +. x 2 + BETA ) , 3 0 30p0
[11] Kl^S((<$?0 147)+.x(0 141) + . x0 l + D + 1 7  17p( (2p0) , IS p rTHETA) ,17 17p0
[12] BETA+-( W+BETA )+VV+. x ( ($0 147)+.*I[;l])+(2pO),( * THE TA) x l - * 2 4 BETA
[13] -*• ( ( 0.0 0 3 < r / 2 + I W-BETA)*Q>Il+Il+l )/LBL2
[14] THETA+{W4-THETA) + { {+/2+BETA*2) + + / + /( T<- 2 24 VV)x(UNIT 15))il5
[15] SE*-{ (2*+/ + / (T~THETA*UNIT 1 5 ) * 2 ) * 0.5 ) fl 5
[16] -*( {T+0.Q2< I THETA-W) *122 124-12+114-1)/LBL2
[17] -( (0<r)Al0iK)/LBi;i
[18] -►( (0<r)A0. Q>J)/LBLO
[ 19 ] 5£’S£:2*4«-( 7K[1 ;I2-1 ] , VV[ 2 ; 2 ] ) *0.5 , O p O T
[20] 'BETA-',(2+BETA)
[21] 'SEBETA-',SEBETA
[22] 'Theta- ',THETA,'SETHETA-',S E ,T ,J ,K*0.1
[23] DEVP BETA

V

POISSON

V POISSON L \P \Y
[1] a920417 Simulates N values of Poisson variaDie
[2] pwith parameters specified by vector L with N
[3] (^components, one for each simulation
[ 4 ] P++\*( (8l)o.x0,n-iio.t0,+\®^i [[/L+6V * * * * XL*0.5
[ 5 ] R+- + / p<(0.000001x .?Wp999999)o .x (14pP)pl

V
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COMPGPN

7 COMPGPN
Cl] ^Generates data under Poisson-Normal or Poisson-gamma
[2] a models and fits both Poisson-Normal and Poisson-gamma
[3] a models. This needs to be run repeatedly for the
[4] nrequIred number of simulations
[5] DATAPN
[6] nDATAPG
[7] a  Use either DATAPN or DATAPG by commenting out one.
[8] POSNML l
[9] POSGMM Y
CIO] -( (C + C l ) > 0)/L2
Cll] BETO^BETO,If BET
[12] BET1+BET1,BETl2]
[13] THET1+THET1,THET
[14] SI*-Si, SEP
[15] SEBET0+SEBET0,SEBET[ 1]
[16] SEBET1+SEBET1,SEBET[ 2 ]
[17] BETAO+BETAO,11 BETA
[ 18 ] BETA1*-BETA1 ,BETA[2]
[19] THETA1+THETA1,THETA
[20] SE1+-SE1 , SE
[ 21 ] SEBETAO+SEBETAO,SEBETA[l]
[22] SEBETA1+SEBETA1,SEBETA[2 ]
[23] 12-.'ACTUAL SIMULATION =',p THETl

V

DATAPG

7 DATAPG;ETA;S;U;ETA;BETA;X;A 
[l] a Generates data under Poisson-gamma model
[ 2 ] (/«-® ('t-/(15,i4)p-®0.0001x.7(15><-4)p9999) *4-4
[3] *«-($2 30p(30pl) , - l + .?30p2) , Z ■«- § 1 5 30pl l,30p0
[4] BETA*-3 1.5,4/
[5] £ZVl-*+. "BEIM
[6] S - 30 P0ISS0N*ETA
[7] r-s,jr

7

£4 ZV1P/V

7 DATAPN;ETA;S;U;ETA;BETA;X
[1] a To generate data under Poisson+Normal model
[2] i/*-15 /V0£M,4££ 0 1
[3] 30p ( 30pl ) , ~ 1 + 730p2 ) , Z^S?15 30pl l,30p0
[4] BETA+l 0.5 ,U
[5] £T7l^+. *B£2V1
[6] S"-3 0 POISSON * ETA[7] r-s, a:

7
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POSGMM

V POSGMM Y;B;IS;TH;X;Y;L;VV;W;T;I1;I2;CV;J;K
Cl] pEits Poisson-gamma model. Various initial values are
[2] ptriecf with automatically. The first column of Y is the
[3] presponse vector and the remaining columns are design
[4] ^matrix for fixed and random parameters.
[5] A > ( ~l*J)+J+'0.2
[ 6 ] LBL0:J*-J + 0.2,0p K<-0
[7] LBL1 : THETA+O . 1*K+-K+1
[8] 'Attempt^',K,'Initial U=* , J I n i t i a l  TH=',K*Q.l
[9] BETA+-2,1,15p<7, 0pIl^I2^0
[10] LBL2 :I>( Y[ ; 1 ]-*( 0 1 + Y) + . *BE TA ) , 3 0 30p(*7[;2 3]t.x2tB£Ti4 ),30 30p0
[11] KK^ 0 ( ( $ O l + r )  + .x(o l + D  + .xO l  + D + 1 7  17p ( ( 2p0 ) , 15pf THETA) , 17 17pO
[ 12 ] BETA-*- ( W+-BETA )+VVt. x ( (6? 0 l + 7)t.x£[;i]) + (2pO)J ( t THETA )*1-*2\BETA
[13] -*-((0.003s[/2t| W-BETA) a 8>I1^I1 + 1 ) / LBL2
[14] THETA+{ W+-THETA ) + ((+/2\BETA* 2 )++/+/ ( 2V2 24 VK) * ( M U ’ 15 ) ) *15
[15] -*( ( T+-0.Q2< I THETA-W)*12>I2+I2+I1<-1)/LBL2
[16] -+[{0<T)*1Q*K)/LBL1
[17] -((0<T)a O.B2J)/LBL0
[18] ri^+/ + /7 7[Af;W^-2+il7]x(/o . = W+-11 5
[19] T2++/+/VV[M;M]*2
[ 20 ] B«-2 x gf/x (15 - 2*T1t THET) tT2*W+THET* 2
[ 21 ] SEBETA+{ VrV/'[l;X2-«-l] , V V [ 2 ; 2 ] ) *0 . 5 , O p O T
[22] SE-*-B *0.5
[23] 'BETA- • , (2+BE271)
[24] •SEBETA='.SEBETA
[25] 1SETHETA= ' , SE
[26] 1 Theta= ' ,THETA, 'SETHETA= ' ,S E ,T ,J ,K*Q.1
[27] BE/P BEIM.

V

BE/P

V DEVP B;S;F;D;M
[1] pCalculate deviance for Poisson response
[ 2 ] S+-+/YI ; 1 ]-*M*-[0 HY) + .*B
[ 3 ] F+-Y[ ; 1 ] t. x ( « j[ ; 1 ] + o . 0000000001)-#
[4] B«-2 * F-S
[5 ] 'Deviance='D

v
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POSNML

7 POSNML Y ; B ; I S ; T H ; X ; Y ; L ; V V ; W ; T ; I 1 ; I 2 ; J ; K
[ 1 ]  p F i t s  P o i s s o n - n o r m a l  m o d e l .  V a r i o u s  I n i t i a l  v a l u e s  a r e
[ 2 ]  p t r i e d  w i t h  a u t o m a t i c a l l y .  The  f i r s t  c o l u mn  o f  Y i s  t h e
[ 3 ]  ar e s p o n s e  v e c t o r  and  t h e  r e m a i n i n g  c o l u m n s  a r e  d e s i g n
[ 4 ]  p m a t r i x  f o r  f i x e d  a n d  r a n d o m  p a r a m e t e r s .
[ 5 ]  K*-{~ 1 * J ) +J<-~ 0 . 2
[ 6 ]  LBLO : J -*-J + 0 . 2 , 0  p K-*-0
[ 7 ]  L B L 1 : THET+Q. 1*K+K+1
[ 8 ]  ' A t t e m p t = ' , K , ' I n i t i a l  £/='  , J I n i t i a l  T H = ' , K * 0 . 1
[ 9 ]  BET+3 , 1 , 1 5 p J  , 0 p I l ^ l 2 < - 0
[ 1 0 ]  L B L 2 : L + ( Y [ ; l ] - * ( 0  1 4 Y ) + . * B E T ) , 30  3 0 p ( * ( 0  1 + Y ) + . * B E T ) , 3 0  3 0 p 0
[ 1 1 ] ^ 0 ( ( $ O  l  + r )  + . * ( 0  l + D  + . x O l  + n + 1 7  1 7 p ( ( 2 p O ) , 1 5 p f  THE T) , 1 7  1 7 p 0
[ 1 2 ]  BET*-{W‘-BET)  + VV+.  x ( ( $ 0  l + y ) + . * F [ ; l ] ) - ( 2 p O ) , (  f THET)  * 2 \ BET
[ 1 3 ]  -*■ ( ( 0 . 0 0 2 < r / 2 t  I W-BET) * 8> J l - ' - J l  + l ) /  LBL2
[ 1 4 ]  THET*-(W*-THET) + { [ + / 2 i B E T * 2 )  + + /  + / (  T+ 2 2 +VV) x ( UNI T  1 5 ) ) t l 5
[ 1 5 ]  - (  (T*-0.QQ3< I THET-W)  a 1 0 * 1 2 ^ 1 2  +I l * - 1 ) / L B L 2
[ 1 6 ]  ->( {0<T) *1Q>K) / LBL1
[ 1 7 ]  - ( ( 0 < T ) a Q . e * J ) / L B L O
[ 1 8  ] Tl*-+ / + /VV[M;M+2i  117 ] *W<> . = f / « - i l 5
[ 1 9 ]  r 2 ^ - + /  + / / K [ W ;  W] *2
[ 20  ] B ^ 2 x p x  { 1S- 2*T1*THET) +T2*W+THET*~2
[ 2 1 ]  SEBET*-( VV[ l  12+-1 ] , V T [ 2 ; 2 ]  ) * 0 . 5 , 0  p C l - ^ r
[ 2 2 ]  SEP+-B * 0 . 5
[ 2 3 ]  ' B £T  = 1 , ( 2 \ BET)
[ 2 4 ]  ' S E B E T - ' ,  SEBET
[ 2 5 ]  1S E T H E T - 1 , SEP
[ 2 6 ]  ' T h e t =  ' , T H E T , ' S E T H E T = ' , S E P , T , J , K * 0 .1
[ 2 7 ]  D F / P  BET 

V

NORMALR

7 NORMALR PA;V
[ 1 ]  « 8 2 / 0 2 / 0 2 .  RETURNS N NORMALiPA^^MEAN, VARIANCE] VARIATES,
[ 2 ]  Pi US INC THE BOX-MULLER,  AMSX ( 1 9 5 8 ) , METHOD.
[ 3 ]  F<-( ? (  2 , [ y V f 2 ) p 2 1 4 7 4 8 3 6 4 7  ) f 2 1 4 7 4 8 3 6 4 7
[ 4 ]  F ^ J V t ( , l  2 « . o Ä [ 2 ; ] x o 2 ) x / , ^ ( “ 2 x ® i ? [ l ; ] ) * 0 . 5
[ 5 ]  ^ ( a / P A - 0 l ) / 0
[ 6 ]  R*-PA [ l ] + F x P i 4 [ 2 ] * 0 . 5
[ 7 ]  «

7
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MATCHMIX

V MATCHMIX X ; V; N ; I C ;P ;R ;L ; T ; I ; J ; ß ; VV\ VW;W;M;K;ML; TH 
[ 1 ] PiFi ts  m i x e d  m o d e l s  l o r  m a t c h e d  c a s e - c o n t r o l  d a t a
[ 2 ]  RWi th random e x p o s u r e  e f f e c t s .  The f i r s t  col umn o f  X
[ 3 ]  v i n d i c a t e s  c a s e  or  c o n t r o l  and t h e  s e c o n d  column i s
[ 4 ]  a e x p o s u r e .
[ 5 ]  , ( l  + p / ) f  5
[ 6 ]  BETA+-1
[ 7 ]  P+pTHETA+O. 5 , OpO
[ 8 ]  BETÄUBETA,  ( + / 1 + V ) p 0 . 5 , 0  pJV+ ( I C « - 1 ) t  p*
[ 9 ]  ML +2
[ 1 0 ]  vUse LLOMl f o r  s i n g l e  c a s e  and LL0M2 f o r  2 c a s e s
[ 1 1 ]  L B L h L + L L Q M U O  1 + X ) + . ' BETA
[ 1 2 ]  V W ^ ( 1 , 1 )  p W ,  ( I , I<-pVV-*-( /  [ 1 ] p 0 ) , ( V[ 2 ] p f T HET A)  ) p 0
[ 1 3 ]  l + j n t . x ( o  1 + I ) t . x 0  1 *X)  + VW
[ 1 4 ]  BETA*-{B*-BETA) + VV+.  x ( (S?0 1 \X  ) + . x£ [ ; i  ] ) -  vt/+ . *BETA
[ 1 5 ]  - * ( 0 . 0 0 1 < \  /  \ B - B E T A ) /LBL1
[ 1 6 ]  -+{ML*1 ) / L BL 2
[ 1 7 ]  VV<-{ ( («7 , J ) + VV) , {J , B) pO) , [ l ]  ( ( ( B + + / 1 4 K )  , J )  p 0 ) , S (  J ,  J+-V[l] )+®VV
[ 1 8 ]  LBL2 : T*-{ ( 2 + P )  , P ) p _ 1 +I-*-J*-l
[ 1 9 ]  LBL 3 : TLl - , J ]++/ BETAl M*- ( +/ J<V) +W4- i V[J  + l~\ ]*2
[ 2 0 ]  Tl 2 ; J]  + +/ + /VV[M-, M] *W° . =W
[ 2 1 ]  £ 4  : Tl  ( 2 + 1 )  ; J  ]-*-T[ [ 2+J ) ;I]*- + /  + /VV[  ( K+- ( t / J + V r ) + iVr[ J  + l ]  ) •, M] * 2
[ 2 2 ]  -*( {pV)>I<-I  + l ) / m
[ 2 3 ]  -*((pV)>I+-J<-J + l ) / L B L 3
[ 2 4 ]  I T f - T t l ;  ] t ( 1  + /  ) - R+-TI 2 ; H ß + r ß ß Z ^
[ 2 5 ]  THETA+-TH+3 * TH-B
[ 2 6 ]  +  ( ( 1 2 > I O I C  + l  ) a C^O . O K  [ /  I TH-B) /LBL1
[ 2 7 ]  THETA+-TH
[ 2 8 ]  SEP->-{ ( 2 *  + /  + /  ( ( ( «7 ,«/■) + Ky ) - THETA x UNIT J+V{ 1 ] ) * 2 ) * 0 . 5  ) f  7[  2 ]
[ 2 9 ]  L*-l  2p ( c  ' R e g r e s s i o n  c o e f f ' ) , { c ' S . E . ' )
[ 30  ] B + 0 I + (  . = \ J ) x V V * - ( J  , J + V [ l ] ) i V V ) * 0  . s
[ 3 1 ]  L , [ 1 ] ( 6 RND(JlBETA) , [ l .  5 ] 5 l * -  + / I )
[ 3 2 ]  i > i  2 p ( c , j ’/ 3 e t a '  ) , ( c 1 5  . £  . ' )
[ 3 3 ]  B+UJNIT P) x VW+- 2 x ®( DI AG{ Wx { i ±V) - 2 x R)  ) + ( 2  0 4 T ) x {/» . x W+-THETA * ~ 2
[ 3 4 ]  I  , [ 1 ] ( 6 £JVD THETA ) , [ 1 . 5  ] , SETH+ + / 1*-( I B ) * 0 . 5
[ 3 5 ]  ' S E P =' , SEP
[ 3 6 ]  O '  ZERO/ONE INDICATES C 0 N V ERGENCE /  N 0 NCONV ERGENGE OF THETA E S T ' , C

v

GLIM

V GLIM X ; N ; L ; VV ;W; DE V ; B ; K.; I
[ 1 ]  a To u n d e r t a k e  a f i x e d  e f f e c t  a n a l y s i s  i g n o r i n g
[ 2 ]  a t andom e x p o s u r e  e f f e c t
[ 3 ]  BE T A ^ l , Op l
[ 4 ]  LBLS :L+LL0M(0 1*X)  + .*BETA
[ 5 ]  K M E ( ( $ 0  1 +J O + . * ( 0  l  + D  + . x O 1 + * )
[ 6 ]  BETA*-(B*-BETA)+VV+. x ( (6?0 1 + A" ) + . x L [ ; 1 ] )
[ 7 ]  + ( 0 . 0 0 1 « ;  [ / \ B-BETA) /LBLS
[ 8 ]  B*-ftI<-VV*0 . 5
[ 9 ]  L+-1 2p (<='  R e g r e s s i o n  c o e / / ' ) , ( < = ' 5  . £ . ' )
[ 1 0 ]  £ , [ 1 ] ( 6 RND BETA, [ 1 . 5 ] 5 + t / I )
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S I  MMATCH

V S IMMATCH;Q2
[1 ] pTo generate match dataset and lit models.
[ 2 ]  fiQl=no of matched set, Q2 to be taken large
[ 3 ]  penuogh to select required case and control.
[ 4 ]  ( M Q 1 ^ 3 0 ) x Q 2 ^ 3 5
[ 5 ]  LB-.DATA
[ 6 ]  5 MATCHDAT 2
[ 7 ]  ■ * { { l i p V ) < Q l ) / L B
[ 8 ]  MATCHMIX X
[ 9 ] -{C=1)/LB
[ 1 0 ]  BETA1+BETA1, 1\ BETA
[ 1 1 ]  S E l ^ S E l , S 1
[ 1 2 ]  THETA1+THETA1, THETA
[ 1 3 ]  S E T l + S E T l , SEP
[ 1 4 ]  S E T 2 + S E T 2 , SETH
[ 1 5 ]  GLIM X i ; 1 , 2 ]
[ 1 6 ]  BETAQ*-BETA0, BETA
[ 1 7 ]  SE*-SE, S

V

MATCHDAT

V I K MATCHDAT C S ; R ; X 2 ; W \ W l ; I ; J
[ 1 ]  pi To randomly select expoused/not expoused
[ 2 ]  ^correspondmg to cases/controls in each set
[ 3 ]  R + ( Q l , ( Q 2 ) ) p Y
[ 4 ]  * 2 - ( Q l , ( Q 2 ) ) p * l
[ 5 ]  V+(0 , I K ) p I + - l
[ 6 ]  L 01  : W-*-R [ I  ; ]
[ 7 ]  Wl*-X2 [ I  ; ]
[ 8 ]  ->(0 = + / W ) / L 0 2
[ 9 ]  - +( ( I K- CS) >+/ W = 0 ) / L 0 2
[ 1 0 ]  ^ V r , [ l ] ( C S t ( l  = { / ) / f / l ) ,  ( I K - C S ) i  (Q = W) / Wl
[ 1 1 ]  L02 :-+{Ql>I*~I + l  ) / L01
[ 1 2 ]  I - I K x { I J + l i p V )
[ 1 3 ]  Y*-Ip ( ( C S p l  ) , { I K~CS) pO  )
[ 1 4 ]  X + $ ( 2 , I ) p Y  , X ^ I p V
[ 1 5 ]  X<-X, ( * t ( I J , I ) p X l  ; 2 ]  , I ) p ( I K p l )  , I pO
[ 1 6 ]  X l + I p $ ( I K , I J ) p i I J
[ 1 7 ]  Xl-*-X 1 , [ 2 ] [ ; 1 , 2 ]

V

DA TA

V DATAi Zl - , B; U; W; ETA
[ 1 ]  a To generate binary exposure data
[ 2 ]  * l « - ( ( 0 . 0 0 1 * 7 Ö P 9 9 9  ) * 0 . 4  )
[ 3 ]  Z l - * - ( Q l , Q ) p ( Q 2 p l )  ,QpO
[ 4 ]  B*-"1 + ( $ Z 1 )  + . * C M Q 1  NORMALR 0 1 )
[ 5 ] PHI*-W*1 + W+-*ETA4-X1*B
[ 6 ]  n QRL+- + /UTS
[ 7 ]  Y<-{ ( 0 . 0 0 1 x  ?Qp999 ) i P H I )

7
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MCASECONT

7 MCASECONT X ; V ; I J  ; W; XX ; I ; N ; B ; Wl ; L ; W 2 T ; C ; T H Q C D  ; S
[ 1 ]  ;W^;W5-,G;IC;MV-,TR2-,VR
[ 2 ]  a 9 7 0 4 2 2  M a t r i x  X has  f i r s t  co l umn t h e  m a t c h e d  s e t  number  w i t h
[ 3 ]  a c o n s e c u t i v e  n u mb e r s  s t a r t i n g  a t  l .  Col 2 i s  c a s e = l ,  c o n t r o l - o
[ 4 ]  aR e m a i n i n g  c o l u m n s  ar e  r i s k  v a r i a b l e s ,  w i t h  l a s t  column b e i n g  t h e
[ 5 ]  ^ t r e a t m e n t / e x p o s u r e  v a r i a b l e .  Model  f i t t e d  t a k e s  t r e a t / e x p  e f f e c t
[ 6 ]  a as  v a r y i n g  r a n d o m l y  o v e r  m a t c h e d  s e t s  w i t h  v a r i a n c e  t h e t a .
[ 7 ]  B+OpV*--3 + l  + pX
[ 8 ] TH+O. 1
[ 9 ]  ML-*-0
[ 1 0 ]  B^B,  U + l ) p 0 , 0 p / K | 7 * [  ; «-1 ]
[ 1 1 ]  LBL1:C+(V ,V)pT+-Vp(LL<-0) , ,  C D - ( ( 7 + l ) , 0 ) p 5 - i  1 + I C - l
[ 1 2 ]  LBL2 : W<-0 2 + XX-  ( X[ ; 1 ] =IC ) /  [ 1 ] X
[ 1 3 ]  L-XXl  ; 2 ]LIKEDRV ( ( J / l - 0  ~ 1 + V) + . * V\B ) + ( W2- , U[ ; 7 + 1 ] ) *B[  K + l  ] +B[  K + l + I C ]
[ 1 4 ]  C - C + ( $ J / l )  + . x ( i  l + I J  + . x J / i
[ 1 5 ]  CD-CD,  ( $ J / l , f / 2 )  + . x ( l  l U )  + . x f / 2
[ 1 6 ]  r « - r + ( $ * / i )  + . x i + i [  ; i ]
[ 1 7 ]  5 - 5 , t / 2 + . x i + I [  ; l ]
[ 1 8 ]  L L - L L + L i 1 ;  1 ]
[ 1 9 ]  -*( JVas IC- IC + l ) ILBL2
[ 2 0 ]  MV<-CD+. xW- i [ WS- , CD[ V+l i  ] ) + * Z 7 f
[ 21 ] Ä l - (  + / f / l + S - ( S -  ( Wl -{V+1)*B)*TH)*W)*TH
[ 2 2 ]  G « - 0 C - ( ( VI  x ( Kp 1 ) o . xW) + . 1 0 + C D ) + (  t72 ° . *U2-  1 \MV ) tTH* W^-MV[ V + l  ]
[ 2 3 ]  Q-Gf .  *T~ {Ml*W2tWi\)+WU- . *S
[ 24 ] , ( - f/3 ) , 5  + ( ( ( J / 3^ (  ( V2 + . xQ)  - r / / x / f l  ) t t / 4  ) xt /5 ) - Q+ . x t / l  ) xj /
[ 25 ] ->( ( 1 0  > 1 - 1 + 1  ) a Q . 0 0 1 < \ / \ Q , W 3 ) / L B L 1
[ 2 6 ]  2 7 ? - ( +/W)+0*TR2-+/(W*W5  ) * 2
[ 2 7 ]  ->(ML = 1) /LBLH
[ 2 8 ]  TR+TR+{TH*TR2t WH) + {TR2*W2+ . x (7+ . x {72 ) f  J74 * 2
[ 29 ] TR-TR+ ( + / + / ( (  171 x ( V p l ) * . x | / * 2 )  + . x $  *71 ) x C ) - 2 x  ( I / 1 + .  x {75 * W* 2 ) + . * G + . * W2
[ 3 0 ]  LBL 4 : TH— ( 0 * *7—TH ) + ( + /  ( V + 1 ) + B * 2 ) t N - T R t TH 
[ 31 ] - (  ( 1 0 > I J - I J + I - 1  ) a 0 . O K  I W-TH)/ LBLl
[ 3 2 ]  7 R - ( G ,  -J /5  ) , [ 1 ] ( - J/5 ) , ( TH + W2+.  **75-G + . *W2t WH)t WL
[ 33 ] a TH + W2 + . * f / 5 - G + .  *W2rWH ) f  1/4
[ 3 4 ]  ' E s t i m a t e s  and SEs  o f  r i s k . e x p o s u r e  v a r i a b l e  c o e f f i c i e n t s '
[ 3 5 ]  6 RND( ( y + l ) t ö ) , [ 0 . 5 ] ( / * - (  + /Vri ? x ( l y + l ) » .  = i y  + l ) * 0 . 5
[ 3 6 ]  ' C o r r e l a t i o n  m a t r i x '
[ 3 7 ]  3 R/VD (/+ . x . x(7<-( ( /  + 1 ) , V + l  ) p ( f  W) , ( ( V + l  ) , K + 1 ) pO
[ 3 8 ]  ' E s t i m a t e  and s t a n d a r d  e r r o r  o f  THETA'
[ 3 9 ]  2 7 / , [ 0 . 5 ] 2 7 f * ( 2 x 2 7 ? 2 ) * 0 . 5  

7

COEFF

7 L - I J  COEFF N ; I ; W
[ 1 ]  a 9 7 0 4 2 1  F i n d s  t h e  sum o f  a l l  p r o d u c t s  o f  c o m p o n e n t s  o f  N
[ 2 ]  A t aken  I J  a t  a t i m e .
[ 3 ]  - ( 1 >L - ( I J >0  ) + I J > 0  ) / 0
[ 4 ]  I —1 - 1 + 0  *W-pN
[ 5 ]  LBLl  :L<-{L , 0 ) +0  , L * N t I ]
[ 6 ] - * { W > I - I f l ) /  LBLl
[ 7 ]  L - L Ü J  +1 ]

7
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DEV

V DEV B ; S  ; F ;D ; M
[ 1 ]  a C a i c u i a t e  d e v i a n c e  f o r  P o i s s o n  r e s p o n s e
[ 2 ]  S + t / Y l  ; l ] -*Jf<- (0  l  + n  + . xf l
[ 3 ]  F<-r[  ; l ]  + . x ( ® 7 [ ; l ] + 0 . 0 0 0 0 0 0 0 0 0 1 ) - A f
[ 4 ]  D+-2*F-S
[ 5 ]  ' D e v i a n c e = ' D 

v

POSCON

V POSCON X ; V ; N ; I C ; P i R ; L ; T ; I ; J ; B ;  VV;VW;W;M-,K;ML-,Xl
[ 1 ]  nThe  p r o g r a m  u s e d  t o  a n a l y s e  n e i g h b o u r h o o d  d a t a s e t
[ 2 ]  s u n d e r  t h e  p r o p o s e d  m i x e d  m o d e l  s c h e m e  i n  c h a p t e r  6 .
[ 3 ]  y « - 9 , 5 p 2 0
[ 4 ]  j r i - ( ( i t p j n , y [ i ]  + i ) + j r
[ 5 ]  BET*-~ 0 . 5  0 . 8  " 0 . 5  " 0 . 5  ' 0 . 5 , 4 p 0 . 3
[ 6 ]  P+pTHET+{ ( p l + V ) p O . 1 ) , OpO. 5
[ 7 ]  BET+BET,  ( + / i  + y ) p o , o p t f « - ( i o i ) t p x
[ 8 ]  I B i ; i : W [  ; 1 ] - * ( 0 1 4 ^ )  + . x ß £ T
[ 9 ]  L+-L , ( N, N) p  ( * ( 0  1+JO + . "BET)  , ( P . A N - l t p J O p O
[ 1 0 ]  V W + ( I , I ) p V V , ( I , I+-pVV4-(  K[ 1 ] p0 ) , ( + / l - m p i 2 7 / £ T ) p O
[ 1 1 ]  / M 3 ( ( * 0  1 + Jf) + . x ( 0 l + D  + . xO 1 +X)+VW
[ 1 2 ]  BET*-{B*-BET) + VV+.  x ( ( ^ o  1 + *  ) + . x£ [ ; l  ] ) - VW\  . *BET
[ 1 3 ]  - * ( 0 . 0 0 0 1 <  [ / \ B - B E T ) / L B L 1
[ 1 4 ]  £ B £ 2 : 2 V (  ( 2 + P )  , P ) p - l + J « - l
[ I S  ] LBL 3 : T[  1 •, J  ]«-+/  BETC M - ( V [ l  ] + J  - B ) + ( B- P THET) * v Vl  J  + l ]  ] * 2
[ 1 6 ]  r [ 2  ; J ] ^ + /  + / / K [ / f ; / f ] x J / .  . = ^ l K[J- + i  ]
[ 1 7 ]  - (  ( p I O > « W  + l  ) / LBL3
[ 1 8 ]  THET+(  0 x B ^ - r / / £ D + l x  ( T[ 1 ; ] + 37[ 2 ; ] ) f l  + V
[ 1 9 ]  THET*-B + 2»THET-B
[ 2 0 ]  - ( ( 1 4 > I C - I C  + 1 ) aC I - 0 . 0 0 0  3 < [ / I T H E T - B ) / LBLl
[ 2 1 ]  THET-B
[ 2 2 ]  SEBETA*-+ /  ( ( J J \ V V ) * U N I T  J « - K [ l ] ) * 0 . 5
[ 2 3 ]  ' BETA= ' , / [ 1 ] t BET
[ 2 4 ]  ' SEBETA=' ,SEBETA
[ 2 5 ]  n / o r  l i k e l i h o o d  r a t i o  t e s t
[ 2 6 ]  a: £ E P  BET
[ 27 ] £>B«-( K[ 2 ] x®27/Er [  1 ] ) + ( t 27/ET[1 ] ) x J C + .  * I O / [  2 ] t  7 [ l  ] I BET
[ 2 8 ]  DB+-DB+( / [ 3 ] *®THET[2 ] )  + ( f T B E T t 2 ] ) x J C + . x J O K [ 3 ] t  ( P«- / [  1 ] + K[ 2 ] ) \BET
[ 29 ] DB + -DB t  ( /  [ 4 ] x®r / /ET[  3 ] ) t  ( t THETL 3 ] ) xJC + . xJC«-K[ 4 ] + (P<-P+K[ 3 ] ) +BET
[ 3 0 ]  PB »DET(J  J \ &VV)
[ 3 1 ]  f l / o r  WALD t e s t
[ 3 2 ]  ' WTEST= ' , [BETlW]  + . x (@KK[(7; f/] ) t . xBET[f/<-6 7 8 9 ] )
[ 3 3 ]  ' THETA= ' , THET
[ 3 4 ]  ' ZEPO JiVPICTirEB CONVERGENCE ' ,C1

V
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POSCONSP

V POSCONSP X ; V i N ; IC ; P ; R ; L T I ; J ; B •, VV ; VW; W ; M ; K ; ML ; XI
[1] f\To fit space efficient model. The arrangement of X
[2] Rcolumns are different here. For random effect design
[3] Pimatrix (Z) the columns are rearranged to make it diagonal.
[4] V+U, Op[]+'ENTER NUMBER OF FIXED EFFECTS'
[5] F+ + /V+V ,[],0pO' ENTER NO. OF EFFECTS IN EACH RANDOM TERM'
[6] Xl+-{(ltpJO ,V[l]+l)iX
[7] BET+-U, 0 p[R' ENTER INITIAL VALUES FOR FIXED COEFF'
[8] P<-pTHET<-{ ( pi 4 V) pO . 1 ) , OpO . 5
[9] BET+-BET, ( + /1 + V) pO , 0 pN<- (IC-1) t pX
[10] LBL1 :L + {N, 1 ) pL*-Xl ; 1 ]-* ( 0 liX) + .*BET
[11] L + L,*{0 1\X)+.xBET
[12] VW-*- {I ,I )pVV, (1,1«- pVV+{ K[ 1 ] p 0 ) , ( + / 1 + /) p f THE T) pO
[13] VV-*-( F , F) p I-I+-J+1
[14] XB11 : VV[ I ;J ] *-X [ ;I+l]+.x£[ ; 2 ] x Xi ; J + l ]
[15] -((J-J+l)sF)/XBll
[16] -( (J>I+(J*-l))sni])/XBll
[17] LB13:VV[I;J]+VV[J;I]
[18] -( (I<-I + 1)<F)/LB13
[19] ->( (J«-J + l)< (iVK[l] + l) )/LBl3
[20] L B V n V V U i J ] + X i  ;1+1]+.*£[ ;2]*J([ ;J + l]
[21] -+((J«-J + l)sF)/XBl4
[22] c/’-*-/[l] + l
[23] -*( (I«-I + l )<F)/ZB14
[24] yy+K(/)
[25] £^FpJ«-l
[26] DD:D[J]*-L[ ;l] + . xjf[ ;J + l]
[27] -*( (J+J + 1)<F)/DD
[28] BET*-{B*-BET) + VV+. xD~VW+. *BET
[29] -»-(O.OOOlsr/IB-BBD/XBXl
[30] aremove comment for ML estimate of THET
[31] fiVV-{((J,J)iVV),(J,B )p0),[l](((B-+/1+/),J)pO),0(J, J«-K[l]
[32] LBL2:T-*-((2 + P),P)p~l + J*-l
[ 33 ] LBL 3 : Tl 1 ; J ]•*- + / BET[ M*-{ Vl 1 ] +J-B ) + ( B-p THET) * iK[J+l]]*2
[34] Tt2;J]*-+/ + /VVtM;M]*Wo.=W4-\V[J + l]
[35] -*( ( pK)>J^J+l )/LBL3
[36] THET‘-(0*B‘-THET)+l*{Ttli ]+T[ 2; ] )tl + K
[37] THET*-B + 1*THET-B
[38] ->( (14>IC«-IC + 1) aCI-^0.000 3 < 17I THET-B ) t LBL 1
[39] THET+-B
[40] SEBETA<-+ / ( ( J JiVV)*UNIT J«-/[l])*0.5
[41] 'BETA-',K[1]tBET
[42] 1SEBETA=',SEBETA
[43] X DEV BET
[44] PtFor WALD test
[45] ' WTEST= ', (BETA[W] + . x {/] ) + . *BETAl f/«-6 7 8 9 ])
[46] 'THETA=',THET
[47] 'ZERO INDICATES CONVERGENCE',Cl
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LIKEDRV

V L+Y LIKEDRV N ; A ;B ; C ;J ;K ; W ; M
[1] o960421 For Y=vector of cases/controls and N-eta, returns
[2] ^matrix L with I[l;i]=log 1 ike 1ihood, remaining elements of
[3] f\first row/col as d e n v a t e s  of log 1 ike 1 ihood and other rows
[4] p/cols containing second order derivatives of log likelihood.
[5] A-*-{ + / Y )COEFF N+-*N
[6] C*-(W, W)pB+(W+-pN)pO*J+K+l
[7] L B L l :C l J ] * (A/-1 )COEFF (J * iW)/N
[8] +{J=1)/LBL3
[ 9 ] LBL2 :C[J;K]*-C[K;J'\*-N[J']xN[K]x(M-2 )COEFF[ l=l-(J=iW)+K=\W)/N
[10] + (J>K+-K+1)/LBL2
[11] IBI3 +K*-1) /LBLl
[12] I«-(({+/Y*N)-®A),W),[1]{W+Y-BtA ) ,(CfA)-Bo .*BtA*2

V

LLOM

V L+LLQM W;S;B
[1] RTo calculate derivatives in ordinary GLIM
[2] S d l  + pmi/C
[3] R + tR+(B+S BLOCK IK)+.x {W-*W)
[4] L*-{Xl ; 1 ]-5) , 'lx (£x VP S ) -DIAG ( S*-W*R )

LL0M1

V I-»-II0 A/1 W; S ; B
[1] p To calculate the derivatives for a single case in a set[2] S^(ltpX)rIK
[3] R*-tR<-(B+-S BLOCK IK) + . x {W*-*W)
t1*] L<-(Xt ; 1 ]-5) , ~lx (fix VP S)-DIAG{S+U*R)

V

II0A/2

[1 ]
[2 ]
[3]
[4]
[5]
[6 ]
[7]
[8 ]
[9]
[10] 
[11] 
[ 12 ]

V L+LLQM2 W; S ; B ; I ;J ;A;C;T 
fllo calculate the derivatives for 2 cases in a set 
S+-IJ BLOCK IK 
A*- {IJ , IK- 1 )p0pI*-«7«-i 
T+-UJ ,IK)pW+-*W 

L L : 71 [ I ; J ]<-![ I ; J ] x ( + / J + T[ I ; ] )
+ {IK>J*-J + 1)/LL 
-+{IJzl4-I+J*-l) ILL 
A*- ( I*-pW)  pty ( I K , I J  ) p + /  A 
B*-IV* (Ip * ( I K , I J ) p  + / T ) - W  
C + S * { V P  U)
C+- (DIAG B)+C*(1-UNIT I)
L + (X[ ; 1 ]-A*B) , T*C- ( T+-§ [ I , I ) pA<~tA) * S * B ° . xß
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CL I MM

V GLIMM X ; N ; L \ V V \ U \ DEV; B \ K ; I ; J ; V
[1] aTo lit multinomial model. The first column of X
[2] «is the response and the remaining columns are design
[3] amatrix for fixed parameters.
[4] BE TA4-U,0pU+-' ENTER INITIAL VALUES OF FIXED PARAMETERS'
[5] I^l + pMVD, OpO' ENTER THE VARIABLE CONTAINING MARCINALS'
[6] LBL1:L+LL0MN[0 1\X)+.*BETA
[7] l + X) + .x(o l+D + .xO 1 + X)
[8] BETA+(B+BETA)+VV+.x(($0 1+X )t.x£[;l])
[9] ->(r̂ -(0.001< T / \B-BETA)*20zI<-I + l)/LBLl
[10] SEBETA-+/(VVxUNITpBETA)*0.5,0pC^T
[11] 'BETA=',(8 3*BETA),C
[12] 'SEBETA-',9 3fSEBETA
[13] X DEVM BETA
[14] ' WTEST=' , (BETA[W] + .* ($VV[W;W]) + .*BETA[W*-3 4])

V

DEVM 
— — — —

V Y DEVM B •, F l  ; FO •, D ; SW; T
[1] PiTo c a l c u l a t e  d e v i a n c e  i n  MULTINOMIAL mode l
[2] SW<-(B-( ( N + H pX ) tR)BLOCK R*-2) + . x W*-*(0 1 + D  + .xB
[3] M+NTxWil+SW
[4 ] FI^r[;l]+.x(®r[;i]+o.0000000001) - 9M+0 .0000000001
[5] N*-NtR
[6 ] T + ( ( N , R ) p N T ) [ ; 1]
[7 ] F 0 + Y Q + . X(®0.000000ltro^r-t/{N,R)p r[ ;1])-®0.0000001 +D4-T- + /{N,R)pM '
[8] D-*-2 *F1+FO
[ 9 ] 'D e v i a n c e = ' D

v

CLIMP

[1 ]
[2 ]
[3]
[4]
[5][6]
[ 7 ] 
[8 ] 
[9]
[ 10 ] 
[11] 
[ 12 ]

V GLIMP Y-,L\ VV ; U; Y ; I 

BG*-1,1-*-1

£Ä o cit̂ ;!!(r[i2i;^i:,rp(*n!2 31+-‘bg>-3° 3°*°
BG+-( W<-BG) + VV+ . x((4?0 l + r) + .x£[;i])
■+(T*-(0.0ls [/ \2iW-BG)*10zI+Itl)/LBL2 
SEBG+- ( VV[ 1 ; I2-*~1] , KK[ 2 ; 2 ] )*0.5,0pC-<-r 
' BG ~ ' ,BC 
'SEBG= ',SEBG 
DEVP BG
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LLOMN

V L+-LLOMN W; SW; B ; SD
[1 ] S W+ { B + { { N + - H p X ) t R)BLOCK R+2)+.*W+*W
[2 ] L<-(X[ ;1]-NT*Wt1+SW) , ( § ( N , N ) p N T ) * B * (DIAC SD)-VP SD*-Wrl+SW

V

MULTMIX

V MULTMIX X ;V ; N ; IC ; P ; R ; L ; T ; I ; J ;B;VV\ VW;W ;M ;K ;C ;M L ;VT
[1] p>To lit mixed muitinomial model. The first column of X
[2] pis the response and the remaining columns are design
[3] ^matrix for fixed and random parameters.
[4] M D . O p O '  ENTER NUMBER OF FIXED COEFFICIENTS'
C5] V+V,U, 0 p[]-<-' ENTER NUMBER OF EFFECTS IN EACH RANDOM TERM'
[6] NT-U,OpU^'ENTER THE VARIABLE CONTAINING MARGINALS'
[7] BETA*-V[l]pO .1
[8] P^pTHETA+U.OpU*-' ENTER INITIAL VARIANCES OF RANDOM VECTORS'
[9] BETÄUBETA ,(+/1 + K) pO , Optf-( l O l ) t p*
[10] 'INITIAL ESTIMATES OF RANDOM COMPONENTS ARE TAKEN TO BE ZERO'
[11] ML-U,OpCK'ENTER 1 FOR ML ESTIMATE, OTHERWISE REML GIVEN'
[12] LBL1:L<-LL0MN(0 1 \X) + .*BETA
[13] VW<-(I ,I)pVV, (I.I + pVV+i VI (0 ,t THETA) ) )p0
[14] VV*-(VT,{VT*-+/V))pI-l4-J+-l
[15] XB11 : VV[ ; J]-($0 l+Jf) + .x(o 1 iL ) + . *X{ ; J + l ]
[16] -((« W  + 1 )*VT)/LB11
[17] VV^(VV+VW)
[18] D+VTpJ+1
[19] DDiDtJl+Li ;1] + . *Xl ;«7 + l]
[20] -((«7-J + l )<VT)IDD
[21] BETA*-{B+BETA)+VV+.*D-VW+.*BETA
[22] 8 3*12 + BETA
[23] -(0.01sr//[l]p\B~BETA)ILBL1
[24] -+{ML*1 ) ILBL2
[25] VV+({{J ,J) + VV) , (J ,B)pO) ,[l](((B<- + /l + V) ,J)pO) ,®(J ,J^V[l])+®W
[26] LBL2 : T*-{ {2+P) ,P )p ~1+I—J—1
[ 27 ] LBL 3 : Ti 1; J ]-+ /BE TA [ M+- ( + / J + 7 ) +J/-1 K[ J + l ] ]*2
[28] r[2 ; J]-+/ + /yK[M;tf]*f/° . =W
[29] £4 : T[ (2 + 1) ; J]+-T[ (2+J) ;I ]-+/+/m  ( { + / I +V)+iV[I +l] ) ;M]*2
[30] -((p7)>I-I+l)/!4
[31] -((pK)>I-J-J+l)/£B£3
[ 32 ] THETA+-TL 1 ; ] t ( 14 K) -B-T[ 2 ; ] rB^THETA
[33] -( (8>IOIC + 1)a0 0 . 0  0 5< [/ I THETA -B )/LBL 1
[34] SEBETA*- + / ( ( J J +VV)x UNI T J + V[ 1 ] ) *0.5
[35 ] 1 BETA-' , V[1]+ BETA
[36] 'SEBETA-',SEBETA
[37] X DEVM BETA
[38] 'WTEST=',(BETA[W]+.x($VV[W;W])+.xBETA[W+9 10 11 12])
[39] ' WTEST-' , (BETA[W] + .x{®VV[W;W]) + .xßETA[W+-9 10])
[40] 'WTEST-' , (BETA[W] + .x(®VV[W;W]) + . xBETAIW<-11 12])
[41] 'THETA-',THETA
[42] □-'ZERO INDICATES CONVERGENCE ','C=',C 
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IHRES

V Y THRES X ; X l ; C ; R - , T ; E ; G ; G P ; D ; D T N - , D T P ; D l ; G l - , G l P i I ; I C ; W ; W P ; WY
C 1 ] -,WPY ;DT- ,DB;DP;VT;DB2\DT2  ; DIB  ; SEBETA
[ 2 ]  o To T i t  f i x e d  e f f e c t  t h r e s h o l d  m o d e l .  Y i s  a v e c t o r  o f
[ 3 ]  ^ r e s p o n s e s  t o  b e  r e c o r d e d  f i r s t  r o w  t h e n  s e c o n d  a n d  s o  o n ,
[ 4 ]  aX i s  t h e  t r a n s p o s e  o f  t h e  d e s i g n  m a t r i x  f o r  r o w  e f f e c t s
[ 5 ]  i M D . O p O '  ENTER NUMBER OF ROWS'
[ 6 ]  O G ,  OpU^'ENTER NUMBER OF COLUMNS, C'
[ 7 ]  N*-RxC*IC<-l
[ 8 ]  X 1 - { N ,  ( 1 + pX)  ) pX
[ 9 ]  BTH+-U, O p O '  ENTER I N I T I A L  VALUES FOR C - 2 THRESHOLD PARAMETERS'
[ 1 0 ]  BTH+BTH , □ , 0 pD-<-' ENTER I N I T I A L  VALUES FOR ROW EFFECTS'
[ 1 1 ]  L00P0 :TH*-(D+*/  p TH) pTH^ ( RpO)  , [ 2 ] ( R , C- 2 ) p ( C- 2 ) fBTH
[ 1 2 ]  E*-Dp ( C - 1 )  /  E+-X+ . x {C - 2 )  \ BTH
[ 1 3 ]  a £ > £ p ( C - 1 ) / £ > * x ( C - 2 ) + B T / /
[ 1 4 ]  G*-Np(Dl*- (R,C- l )pD+-WiE«- l+(W+-*TH-E))  , [ 2 ] ( t f p l )
[ 1 5 ]  VT-*-G-GP-*-Np ( / ? p O ) , [ 2 ] P l
[ 1 6 ]  C l ^ N p ( D l + ( R , C - l ) p { D f E ) ) , [ 2 ] ( B p O )
[ 1 7 ]  G l P + N p ( R p O ) , [ 2 ] P 1
[ 1 8 ]  WY*-Y x W-*-G1t VT
[ 1 9 ]  WPY*-YxWP^G1Pt VT
[ 2 0 ]  DT+( l  + - l \ + / i $ ( R , C ) p W Y ) - 2 i  + / t $ ( R , C )  pWPY
[ 2 1 ]  Z)B- + / ( $ * )  + . x ( R , C) pWPY- WY
[ 22  ] D+-N p ( D1*- { R , C- 1 )  p ( l - 2 x D ) ) , [ 2 ] B p O  
[ 2 3 ]  DP+Np( RpO) , [ 2 ]D1
[ 24  ] DB 2<-(§Xl  ) + . x { D I A G { N p $ { R , C ) p Y x  ( WxD)+(  1 xWPxDP)-  (W-WP)*  2 ) ) + . *JT1
[ 25 ] D T 2 - (  l  + ~ l  + + / M B , C ) p J / T x D - J 7 )  -  2 + + A  ( B , C ) p I/PT x {WPtDP)
[ 2 6 ]  D T P ^ l  + " 1 4 + / ^ ( B , C ) p f / r x f / p
[ 2 7 ]  DTP+DTN+2i +/ $( R, C) pWYxWP
[ 2 8 ]  DTB*-{ ($0 1 + 0 " 1 + ( P , C ) p { 7 i , x{/ +(  1 x f/p ) + 1 xß  ) + . x A-
[ 2 9 ]  DTB+DTB- t b  0 2 + ( R , C ) p tfP Y * ( " 1 * VP ) + _ 1 «DP ) + . * X
[ 30  ] VT+-DIAG DT2
[ 3 1 ]  + ( ( p D T ) < I ^ l ) / L B L l
[ 3 2 ]  LOOP!  : VT[ I  ; 1 + 1 ]*-DTN[ I  ]
[ 3 3 ]  V T l I + 1 ; I ] ^ D T P [ I ]
[ 3 4 ]  -*{{pDT)>I*- I  + l ) / L O O P l
[ 3 5 ]  L BL 1 : VV*-~1 x ( V T , DTB) , [ l ] { ^ D T B ) , D B 2
[ 3 6 ]  VV+-&VV
[ 3 7 ]  BTH*-(B*-BTH) + VV+ . x ( D T  ,DB)
[ 3 8 ]  B TH+- ( B x 0 ) +1 x B TH
[ 3 9 ]  -*( ( 1 2 > I O I C  + l  ) a£)P«-0. 0 0 1  < [ /  \ B-BTH)  / L00P0
[ 4 0 ]  SEBTH+-+ /  ( VV xUN ITpBTH)  * 0 . 5
[ 4 1 ]  ' BT H= ' , ( 8  3 *BTH) , W
[ 4 2 ]  ' S E B = ' , 8  3 iSEBTH
[ 4 3 ]  Y DEVTH BTH
[ 44  ] 1 WTEST- ' , {BTH[W] + . x [$VV[W- , W])  + . x BTH[ W+{ C- 2 ) ±  \ pBTH] )
[ 4 5 ]  O ' Z ER0 INDICATES CONVERGENCE ' , DP
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THRESMIX

V Y T H R E S M I X  X ; X l  - , C- , R‘, R 1  ; T ; E ; K;  Z - , G - , G P \ V  ; D ■, D T N  ; D T P  ; D l  ; C l  ; G l P  
[ 1 ] ; I ; 1 2 ; I C  ; W ; UP ; WY ; W P Y \ D T ; D B  ; DP ; 7 T ;  VW- , DB2  - , DT2 ; D T B  ; B T H U
[ 2 ] a C o n t i n g e n c y  t a b  a n a l y s i s  w i t h  m i x e d  e f f e c t  t h r e s h o l d  m o d e l .
[ 3 ]  a 7 i s  a  v e c t o r  o f  r e s p o n s e s  t o  b e  r e c o r d e d  f i r s t  r o w  t h e n
[ 4 ]  a s e c o n d  and s o  o n ,  X i s  t h e  t r a n s p o s e  o f  t h e  d e s i g n  m a t r i x
[ 5 ]  a f o r  r o w  e f f e c t s
[ 6 ]  O p Q - ' E N T E R  HU MB E R  OF R O W S '
[ 7 ]  Ö D , O p U ^ 1E N T E R  N U M B E R  OF C O L U M N S , C '
[ 8 ]  K + U , 0 p Q + - ' E N T E R  N U M B E R  OF C L U S T E R S '
[ 9 ]  N + - C * R ^ R 1 * K
[ 1 0 ]  V + l , R l , K
[ 1 1 ]  X2+-  { X2*-  { R , K[ 2 ] ) p X  ) , $ ( K , R ) p (  ( R f  K ) p 1 ) , R p  0
[ 1 2 ]  B THU-*- ( B TH+- ( + / 2 t / ) p l . 4  0 . 0 5 5  " 0 . 3  0 9 ) , U + V l  3 ] p 0
[ 1 3 ]  P + p { T H E T + 0 . 7 8 ) f 0 p I O I 2 - l
[ 14  ] L O O P  0 : T H + ( D + *  /  p T H )  p T H * - ( R p O  ) , [ 2 ]  ( R , C  -  2 ) p (C - 2 ) t  B T H
[ 1 5 ]  a C h o o s e  one  o f  t h e  f o l l o w i n g  two l i n e s  d e p e n d i n g  on
[ 1 6 ]  Pt f u l l  mo d e l  o r  i n t e r c e p t  o n l y  m o d e l
[ 1 7  ] £ > ( £  p ( { C - l ) * R l ) / U ) + E 4 - D p { C - l ) / E 4 - X + . * { C - 2 ) + B T H
[ 1 8 ]  a£ > ( D p ( ( C - 1 ) * R 1 )  / U ) + E 4 r D p { C - l ) / E + - X * ( C - 2 ) * B T H
[ 1 9 ]  G ^ N p ( D 1 * - ( R , C - 1 ) p D + W t E + 1 + ( W ^ * T H - E ) )  , [ 2 ] R p l
[ 2 0 ]  C P ^ - N p ( R p O )  , [ 2 ] D 1
[ 2 1 ]  C l + N p ( D l « - ( / ? , C - l ) p ( D i E ) ) , [ 2 ] ( R p O )
[ 2 2 ]  C l P ^ N p ( R p O ) , [ 2 ] D1
[ 2 3 ]  WY<-Y x W*- G1 t V T * - G- GP
[ 2 4 ]  W P Y < - Y x W P ^ G l P i r V T
[ 2 5  ] DT* - [  l \ ' l ±  + / $ ( R , C ) p W Y ) - 2 i t / § { R , C ) p U P Y
[ 2 6 ]  D B - + / ( $ X 2 ) + . x ( R , C ) p W P Y - W Y
[ 27 ] D*- N p { D l - * - { R , C - l ) p ( l ~ 2 * D )  ) , [ 2 ] /?p 0
[ 2 8 ]  DP* - Np  ( R p O  ) , [ 2 ] D1
[ 2 9 ]  X 1 ^ { N ,  ( l  + p j f 2 )  ) p X 2
[ 3 0 ]  DB2+-  ( fc)Xl) + . * ( D I A G ( , N q $ ( R , C ) p Y x ( Wx D ) + {  1 x W P x D P ) -  ( W-  WP ) * 2 ) ) + . * X 1
[ 31  ] D T 2 + (  1 + " 1 + + / { R , C )  p U Y x D - W )  - 2 + + / $  ( R , C )  p W P Y x  ( WP + D P )
[ 3 2 ]  D T P < - l \ ~ H  + / § ( R , C ) p W x W P Y
[ 3 3 ]  D T N ^ 3 \ + / $ ( R , C ) p W Y x W P
[ 3 4 ]  D T B <-{§0 1+0  " 1 + { R , C ) p W Y x W t {  1 x W P ) + _ 1 * D ) + . * X 2
[ 3 5 ]  D T B + D T B - (<s?0 2 + ( J?, C ) p f/PZ x t/+ ( ~ l  x VP ) + " 1 x DP  ) + . * X2
[ 36 ] V T + - DI A G D T 2
[ 3 7 ]  ( p D T ) s l ) / L B L l
[ 3 8 ]  L O O P l - . V T l I  ; I  + 1 ] ^ D T N [ I ]
[ 3 9 ]  V T l I  + l - , I ] + D T P [ I ]
[ 4 0 ]  - + { { p D T ) > I + I  + l ) / L 0 0 P l
[ 4 1 ]  L B L  1 : V V + - ~ l x ( V T  , D T B )  , [ l ]  ( § D T B )  , D B  2
[ 4 2 ]  V V + ß V V + V W - i l  t I ) p V W ,  { I , I  + pVW+- (  V / ( 0 , 0  , f  T H E T  ) ) ) p 0 
[ 43  ] B T H U * - ( B 4 - B T H U )  + VV+ . x ( D T  , D B  ) - V W  + . x ß T H U
[ 4 4 ]  B T H + ( + / 2 i V ) i B T H U
[ 4 5 ]  U * - ( + / 2 * V ) * B T H U
[ 4 6 ]  ' B T H - ' , B T H
[ 47  ] ■*{ ( 8 > 1 2 ^ 1 2  + 1 ) a Z^O . 0 1 * r / ( + / 2 t K )  + \ B -  B T H U  ) /  L 0 0 P 0
[ 4 8 ]  a F O R  ML
[ 4 9 ] * v v + - {  u  x ,  m  * v v )  , ( k , b ) p o )  , I i ] { ( ( b ^ p b t h ) , x ) p o )  , $ ( K , K ) i ® v v
[ 5 0 ]  a E N D  ML
[ 5 1 ]  L B L 2 : T + - { { 2 + P ) , P ) p ~ l  +J *- 12+- 1
[ 52  ] L B L  3 : T [  1 ; J  ] «-+ / B  T H U l  M*- ( + /  ( J  +1 ) + K ) + ^ i / [ « 7  + 2 ] ] * 2
[ 5 3 ]  T [  2 ; J ] <-  + /  + / V V l M ;  M]  x W°  . = W
[ 5 4 ]  ->( ( p V ) > l + J * - J  + l  ) / L B L 3
[ 5 5 ]  T H E T * - T [  1 ; ] t ( 2 \ V )  -  T [ 2 ;  ] t B « - T H E T
[ 5 6 ]  - ( ( 1 0 > I O I C  + 1 ) a Z ^ 0 . 0  07 < \ / \ T H E T - B ) / L 0 0 P Q
[ 5 7 ]  S E B T H + -  + /  ( ( J  J \ V V ) x U N L T  J ^ f / 2 i V ) * 0 . S
[ 5 8 ]  ' B T H - ' , ( 8  3 * B T H ) , Z
[ 5 9 ]  ' S E B - '  , 8  3 *  S E B T H
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[ 60 ] ' UTEST- ' , (BTHl W]  + . * (@VT[ (/; W] ) + . *BTHl 3 ] )
[61] Y DEVTHM BTH
[ 62 ] DBM K[ 3 ] x®27f£r[ l ] ) + ( t THET[ l l ) « I C + . * I C + i + / 2 * V ) * B T H
[63] ' LKHOOD VALUE-' ,D+DB*-DB + <»DET (J J + )
[64] O'Z£B0 INDICATES CONVERGENCE ' ,Z 

V

DEVTH

V 7 DEVTH B T H ; M ; T ; P S ;P£ ; G ; E
[1] aTo calculate deviance for fixed effect threshold model
[2] a7=response vector, BTH-thres para,row effects
[3] M ^ N p C / M + - + / T + ( R , C ) p Y
[4] P5«-+/7x®(Y t M ) +0.00000001
[ 5 ] E+- {D+R*C -1 ) p (C-l) /E+-X+ . * [ C - 2 )  *BTH
[ 6 ] CMP.C-l ) pC«-£rl+£^* (DpTH+0 , ( C- 2 ) fBTH ) -E  
[ 7 ] P F< - + / Y * » P F< - ( N p ( G , [2]Bpl)-(BpO),[2]C)
[ 8 ] D + 2 * P S - P F
[9] ' DE V- '  ,D

V

DEVTHM

V Y DEVTHM BTH •, M ; T; PS ; PF ; G ; E
[1] a To calculate deviance for mixed threshold model
[2] M+-NpC / M*- + / T-*-{R ,C ) pY
[3] P5-+/7X®(YtM)+0.00000001
[4] E*- (D+-R*C - l)p{C-l)/{Rl/U) +E*-X+ . *(C-2)\BTH
[ 5 ] CMP, C-l ) p C M  rl+£-*-* (Dp W/M) , ( C- 2 ) iBTH ) -£
[ 6 ] PF-*- + / Y x ®P£-*- { Np [G , [2]Ppl)-(PpO),[2]C)
[7] D-*-2 x PS - Pf
[8] 'DEV-',D

V

196



BINO

7 BINO N T ;P ;I
[1 ] Y+I+O
[ 2 ]  L 1  : P*- ( 1  BNFR NT ( PHI [ I - I  +  l ]  ) )
[ 3 ]  r « - r , p
[ 4 ]  +{I<120)/L1
[5] r^i + r
[6] flJf«-$2 1 20 p 7 , Xl 

7

BLOCK

7 ZVJV BLOCK B ; K;C 
C l ]  £ - 1
[ 2 ] ZV ( B , ß ) p 1
[ 3 ]  L B L 1 :T*-T,(C,C+K*B)pO
[ 4]  z v r , c i ] ( ( c , c ) p o ) , ( c , c ) t r
[5] a> f +ixa:
[ 6 ]  - * u >  ( ( l t p r ) T f l )  )/LBLl
[ 7 ]  T*-{K, K+N*B ) t  T 

v

BNFR

V BFFF NP;PX;B;RN
C l ]  a Binomial [NP*-NU, PI ] /reg Cable , Random Sample ol N< 1000
C2 ] ) / i _ i
[3] 'BNLEFT'a CY'PKDISC'
C 4] L_l:+(Nsl000)/L_2
C 5 ] -*I_1 ,F-[], OpU*-' SAMPLE SIZE > 1000; ENTER SAMPLE SIZE.'
C 6 ] L_2 : PX-*-NP[l]BNLEFT NP
C 7 ] F^ + / ( "1 + i pF^) o . = + /[i ] (ßx+\FX) o . < ?^pß^( L / iO ) L Tl 1/ (PX*0 )/PX 
[ 8 ]  R+-(R>0)/RN*-0 , i B P C l ]

7

BNLEFT

7 F+-W BNLEFT NP;NU;X;PI 
C l ]  I _ l : ^ ( J V s B B < - B P [ l ] ) / I _ 2
C 2 ]  'TOO MANY TERMS SOUGHT : BP TO WHAT VALUE REALLY? AT MOST N U ’
C 3 ]  - I _ 1 ,B « - D
C 4 ] L_2:-»{NU=~l-\-pR*-{X'. NU)*{PI*X)x  ( 1 -PI+-JVPC 2 ] ) *NU~X+- 0 ,\N~l)/0
C 5 ] M . 0 C 1 -  + /J?

7
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ADJSE1

V ADJSE1 G;D; T;F‘,FW; V\SE
[11 «To calculate adjusted SE for single random component
[2] f\G is the second derivatives from fixed effect model.
[3] All and Zl are design matrices for fixed and random respectively.
[4 ] D+DIAG (+/( 4?Z1) + . *<?+. xZl )+tTHETA
[5] 2V(*JU ) + . xC+. xZl
[6] y<-0(0£)- M + .  x (0X>) + .
[7 ] v+-+/vxunit(u q x d
[8] 'Adjusted SE=' ,SE*-V*0.5 

v

4£J5£2

V ADJSE2 G;D;Tl;T2iM;N;EiDl;D2;DBiV;SE
[1] aTo calculate adjusted SE for two random components
[2] o(7 is the second derivatives from fixed effect model
[3] o/i,Zi,Z2 are design matrices for fixed and random respectively.
C 4 ] Dl*-DIAG{ +/ ($Z1) t. x(7+. xZl) + iTHETA[l ]
[5] Tl+-{$X1)+.xC+.xZl
C 6 ] D2*-DIAG{ + /($Z2 ) + . x (7+ . x Z 2 ) +1 THETA [ 2 ]
[7] T2-«-($7fl ) + . x(7+. xZ2
[8] £B«-( $Zl ) + . x(7t. xZ2
[9] £«-0.D2 - ( §DB ) + . x£«-( gpi) + . «DB
[10] N+--F+ . *E
[11] tf«-(001 )+£+. x£+. x ($£)
[12] n  +. *ä + . x$ri) + (T2 +. x ($jy) +. x$ri) + (n  + . xb + . x$r2) + (T2 +. *£ +. )
[13] y«-0(0Ä)-tf
[14] K«-+/Kx(/jyir(i + p*i)
[15] 'Adjusted SE-' , SE*-V * 0 . b

V

BLOCK

V T*-N BLOCK B ; K;C
[1] A>1
[2] 2V(B,B)pl
[3] LBLl : T+-T, (C ,C+-K*B) qQ
[4] T^T,[1]((C,C)pO),(C,C)tr
[5] k*-k +i *k
[6] -(N> ( (ltpDfB) )/LBLl
[7] T+{K,K+-N*B)iT

V
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ADJSE1

V ADJSE1 G ",D ; T ; F ; F W ; V ; SE
[1] fiTo calculate adjusted SE for single random component
[2] piG Is the second derivatives from fixed effect model.
[3] f\Xl and 11 are design matrices for fixed and random respectively.
[4] D*-DIAG{+/{$Z1) + . *G+. *Z1)++THETA
[5] r-($*l)+. *G+. xzi
[6] y«-@(0Ä)-r*»T+.*(@D) + .x$r
[7] V*-+/V*UNITU*pXl)
[8] 'Adjusted SE=',SE<-V*0.5 

v

ADJSE2

V ADJSE2 G;D ; T1; T2 ; M; N; E •, Dl; D2 ;DB ] V;SE
[1] aTo calculate adjusted SE for two random components
[2] aG is the second derivatives from fixed effect model
[3] piXl, Zl, Z2 are design matrices for fixed and random respectively.
[4] D1+DIAG(+/(§Z1)+.*G+.xZl)+tTHETA[1]
[5] r u ( w i )  + .xc+.xzi
[6] D2*-DIAG[Jt/ (<5}Z2) + . *C+. x Z 2 ) + i THETA [ 2 ]
[7] T2<-($Xl) + .xC+. *12
[8] DB-*- (^Zl) + .x(7+.xZ2
[9] £>&D2-($£S) + . xJV(@Di)+. x£)ß
[10] N^-F+.'E
[11] JM0Z>1)+Ft. x£+. x ($F)
[ 12 ] Ä«-( T1+. x/f+. x $ n  ) + (T2+. x ($B) + . x$2*l) + ( 2*1 + . xtf+. x$T2 ) + (T2+. x£+. x$T2)
[13] @i?) -M
[14] V^+/V*UNIT[l+pXl)
[15] 'Adjusted SE=',SE^V*o.5

V

BLOCK

V BLOCK B ;K;C
[1] A>1
[2] 2V(B,B)pl
[3] LBLl’.T+T, (C,C*-K*B)f>0
[4] r-r,  [i ]  ( (c , c )po) , ( c , c) tr
[5] K+K+lxK
[6] -+{N> ( (ltpr)iB) ) / L B L l
[7] T-*-{ K , K*-N*B ) t T

V
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COR

V X COR Y
Cl] ({MEAN Xx Y ) - (MEAN X)*(MEAN Y))i-((VAR X)*(VAR Y)) *0.5

V

CORM

V I+CORM X\J
[1] J+- l\pX
[2] I+(C0VM X)**(*I) + .xI*-(l,J)pl4-(VAR X)*0.5

V

COV

V X COV Y
Cl] (MEAN Xx Y )-(MEAN X)x(MEAN Y)

V

COVM

V I+COVM X
Cl] I + X - (pX)pMEAN X
[2] I«-(M) + . *Ii( ltpjf)

V

V T<-UNIT I 
Cl] r-(iI)o.=vi

V

KP

V P ^ K P  B ; I
Cl] //«-( (I,l)pB) + .x((i,i«-pB)pB)

V

V RND X
Cl] O920310 Rounds X CO N decimal places 
C 2 ] R+-(1Q*-N)x l0.5 + (10*N)xX

V
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D E T

V R+DET M; K; S ; G ; F •, P
[ I ] O 8 3 / 0 8 / 1 0 .  R e t u r n s  t h e  d e t e r m i n a n t  o f  t h e  s q u a r e  m a t r i x  M.
[ 2 ] -*•( O-ppR^M)  / 0
[ 3 ]  -*■ ( ( = /  pM) a 2 = p pM) / LBLl
[ 4 ]  'NO DETERMINANT: SQUARE MATRIX REQUIRED'
C5]
[ 6 ]  L B L l : A > i ( S - l ) + P«
[ 7 ]  I f l £2  :S<-S*~1*P*C4- 1+P + F x { /  F-*-\ M[ K ; P+{ i 0 ) p1 + £ ]
[ 8 ]  tf t P . G ; ]«-Jf[G,P; ]
[ 9 ]  t f U ;  ] - (Jf [K«- l  + K ; P ] * / f [ P ; P ]  )» • x^[P;  ]
[ 1 0 ]  + { K p K ) / L B L 2
[ I I ]  i?-*-1 * /  S , 1 1$M
[ 1 2 ]  ftD e t e r m i n a n t  o f  s q u a r e  m a t r i x  M

v

D I A G

V I
[ 1 ]  A * - ( N  , N ) p X ,  ( N  , N + p X ) p O

V

FMSE

V FMSE W; M; N ; V
[ 1 ]  O ' W e a n  = ' , M*-{ + / [  l  ] U)\N+-l  t pJ7
[ 2 ]  O  ' SE = ' , ( + / ( (  ( W  + . [Npl  ) ° . *Af) t ~1+N)  x ( i  V) » . = t V+pM) * 0 . 5

7

M E A N

V M + M E A N  X
[ 1 ]  ]*«-(+/**)  * l t p *

V
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STD

V S+-STD X
[ 1 ]  S«-( ( + / $ * * 2  ) r l + p J O  - (MEAN X) *2
[ 2 ]  S*-S* 0 . 5  

7

fMJ?

V S+-VAR X
[ 1 ]  S«-( {+/ >Si X*2) r l i pX) - { MEAN X) * 2

V
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