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Abstract

The theory of Markov processes has many applications in areas such as communications systems, 

speech processing, biological signal processing, and pattern recognition. In such systems the 

underlying information is hidden in a noisy environment, resulting in system models being termed 

hidden Markov models, (HMMs). This thesis develops new and novel information-state techniques 

for HMM identification, adaptive estimation, and control. A number of application areas are also 

explored.

New HMM identification schemes are developed, based on recursive prediction error techniques. 

Reduced computational complexity schemes are also generated. The resulting algorithms are 

shown to have better asymptotic performance than previously known schemes. An important 

feature of these algorithms, is that they are on-line. This is true for most of the techniques 

presented in this thesis. It is also of fundamental importance for real time systems.

Applications of the new HMM signal processing techniques to communications systems are 

investigated for the cases of quadrature amplitude modulated (QAM) and differentially encoded 

phase shift keyed (DPSK) signals. Such systems are shown to require extensions to the basic 

hidden Markov model representation, as they result in hybrid models with both discrete-range and 

continuous-valued states. The approach of this thesis is to use conditional coupling of schemes 

which would otherwise be optimal, to generate state and parameter estimation algorithms for 

the HMM. The optimal schemes which are used include the Kalman filter and modifications to 

standard HMM filtering schemes. Extensive simulation studies have been carried out to confirm 

convergence, robustness, and the superior performance of these adaptive HMM signal processing 

techniques.

This thesis also considers control problems. Risk-sensitive, or exponential performance criteria, 

regulation and tracking results are derived for both linear systems and HMMs. Simulation studies 

are presented which demonstrate the effect on control, of variations in risk sensitivity. Connections 

to risk-sensitive filtering are also discussed.



Preface

This thesis is divided into 7 chapters.

• Chapter 1 introduces the topics and problems which are considered in this thesis. It presents 

an introduction to the area of hidden Markov models (HMMs), and gives a review of standard 

filtering techniques. It also introduces communications systems and risk-sensitive filtering and 

control problems, thereby providing motivation for the study of HMMs.

• Chapter 2 considers the problem of parameter identification for an HMM. The model is for­

mulated in such a way as to allow standard nonlinear recursive prediction error identification 

techniques to be applied, thus generating on-line algorithms. Simulation studies are used to 

demonstrate the superior performance of this technique, compared with current schemes.

• Chapter 3 presents a modification to the parameter identification algorithms of Chapter 2, which 

results in reduced complexity schemes in certain cases. Simulation studies are again used to 

demonstrate the performance of the algorithms.

• Chapters 4 and 5 consider applications of HMM signal processing to communication systems. 

Such systems require adaptive estimation of time-varying parameters. The problem of adaptive 

demodulation for quadrature amplitude modulated (QAM) and M-ary differential phase shift keyed 

(MDPSK) signals in noisy fading channels is addressed. Models for such systems are nonlinear, 

however, with the application of HMMs, they can be represented in a new way which is bi-linear in 

terms of states and parameters, and thus allows the application of new coupled conditional linear 

information state filters.

• Chapter 6 presents solutions to risk-sensitive control problems. Both linear systems and HMM 

systems are considered. Simulation results are presented demonstrating the effect of variations to 

the desired amount of risk. In addition, connections between risk-sensitive control and filtering 

problems are discussed.

• Conclusions are presented in Chapter 7.
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Chapter 1

Introduction

ost systems, from natural processes to high-technology communication networks, can be 

considered to consist of an underlying, or hidden, structure coupled with a mechanism 

by which this structure is observed. Many such systems can be viewed in an input/output 

framework, where control signals (or inputs) are applied to the system, and system responses (or 

outputs) are collected. Often the first aim of systems analysis is to model accurately a system’s 

unknown internal structure, using known input/output sequences. This form of system modelling 

is commonly termed system identification. Closely related to system identification are the areas 

of signal processing and control. The task of signal processing is to take a system model and 

use it to determine the input sequence corresponding to a given output sequence, and at the same 

time improve the model. For control problems the aim is to use the system model and output 

sequence, to generate a controlling input sequence which will cause the actual system to perform 

desired tasks. System identification, signal processing and control problems are, to a large extent, 

interdependent. By considering the interconnections a large number of tasks can be undertaken 

on a wide range of system types.

In seeking to classify adequately the underlying structure of a system, it is often useful to model 

system behaviour in terms of internal variables, termed states, which define the structure and are 

associated with the dynamics of the system. Depending on the class of system, the dynamics (or 

relationship governing the evolution of the state) can be nonlinear or linear, time-varying or time- 

invariant, deterministic or stochastic, and continuous-time or discrete-time. The states themselves 

can be real valued or complex valued, and belong to either a finite set or a continuous range. The
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2

observation process, which generates an output sequence, is generally a noisy nonlinear function 

of the state process. The task of system identification is to choose the appropriate combination of 

internal variable set, state process, and observation process, which best models the actual given 

system.

The class of systems to be considered in this thesis has internal dynamics which are governed by 

Markov processes. Models for such Markov systems are nonlinear and stochastic. In the case 

that the internal states belong to a finite set of discrete values, and the observations are nonlinear 

functions of these finite-discrete states plus stochastic noise, the Markov models are termed hidden 

Markov models (HMMs). Such models are of great importance as the finite-discrete nature of the 

HMM has applications to many systems, for example digital communication systems and discrete 

event systems, where the states belong to a finite set of discrete values. This thesis deals mainly 

with mixed state hidden Markov models which contain both finite-discrete and continuous-range 

states. It considers problems involving model identification, signal processing, and system control, 

along with practical applications for these mixed state models.

The study of HMMs has grown out of the theory of Markov processes, which was introduced by 

A. A. Markov in the early 1900’s. The first presentation of the explicit form of Markov dependence 

came in his 1906 work [Markov 1906], and was followed a year later by a paper introducing 

the basic concepts [Markov 1907]. Markov’s pioneering work on dependent random variables 

was later published as a collected series of papers [Markov 1951]. Following its introduction, 

applications of Markov models were immediately abundant. Markov himself used the techniques 

to model the succession of consonants and vowels in the literary work “Eugene Onegin” [Markov 

1913, Markov 1924]. Since then the Markov model has been used to represent an ever increasing 

range of systems and has provided a rich area for research.

Early investigations into the model tended to focus on the statistical properties and uniqueness 

questions associated with the Markov chain. It was not until much later that the HMM was 

developed in order to address the task of filtering in noisy environments. However, following the 

realisation that computation requirements for discrete-state Markov processing were, at the time, 

restrictively high, the excitement tended to wane. With the advent of digital computers, interest 

was renewed in the HMM, and applications abounded. As digital systems have replaced their 

analog predecessors, the finite-discrete nature of the HMM has lead to its increased relevance. 

Recently, HMMs have been used in a wide variety of applications, including speech processing 

[Rabiner 1989, Levinson et al. 1983], frequency tracking [Streit and Barrett 1990, Xianya and
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Evans 1991], biological signal processing [Chung et al. 1991], and image recognition [Bellegarda 

etal. 1994].

In this thesis, signal processing applications to communication systems are considered for mixed 

state hidden Markov models. The HMM techniques provide a new and structured way of ap­

proaching many of the challenges in modem digital communication systems. Also, the mixture 

of finite-discrete and continuous-range states in mixed state HMMs is found to be directly appli­

cable, and of great use. In addition to signal processing applications, control problems are also 

considered in this work. An area of control theory termed risk-sensitive control is investigated for 

both linear system and HMM tracking problems. Risk-sensitive policies are useful for adding ro­

bustness to optimal controllers in the presence of uncertain models. The resulting control schemes 

apply similar techniques to those employed in the signal processing application to communication 

systems. Both these application areas (communications and tracking) are important not only to 

demonstrate the usefulness of HMMs for a wide range of problems not previously considered, but 

also to present significant new results where gains are achieved over standard approaches to the 

various problems.

This chapter discusses the hidden Markov model, and outlines standard techniques for parameter 

identification and state estimation. This is followed by an introduction to recursive prediction error 

(RPE) and extended Kalman filter (EKF) techniques for parameter identification and estimation. 

A discussion on communication systems is then presented with emphasis on why hidden Markov 

models are both applicable and of great benefit. Next, problems of control are discussed and the 

concept of risk-sensitive control introduced. Finally an outline of the thesis structure is given.

1.1 Hidden Markov Models

An nth-order Markov process is a stochastic process for which the probability distribution of the 

present state in a sequence is a function of the model parameters and the n previous states, and is 

independent of all history prior to that. For a hidden Markov model, the Markov process can only 

be observed via another stochastic process which produces a sequence of observations, or outputs 

resulting from the underlying Markov process. Calculating the expected value of these outputs 

requires knowledge of only the present Markov state, and is again independent of all previous 

history.



4 Hidden Markov Models 1 . 1

The Markov processes considered in this thesis are first order, finite-discrete state, discrete-time, 

homogeneous processes, denoted X (where k is the discrete time variable). The phrase finite- 

discrete state implies that the state is restricted to be one of a finite set of discrete values. The 

term homogeneous means that the parameters are invariant of time (for a thorough treatment of 

the properties of such processes, see Kemeny and Snell [I960]). For a first order hidden Markov 

model, the parameters which define the model are: the state values, the transition probabilities, 

the initial state probability distribution, and the variance of the observation noise.

The main motivation behind considering this particular class of HMMs, is that they can be 

used to represent many systems arising in a wide range of modem digital technologies, such as 

computer networks and telecommunication systems. There are, of course, a number of other 

reasons. One is that the discrete nature of the formulation allows current high speed digital signal 

processing techniques to be applied, in order to generate practical algorithms. Another is that the 

computational requirements of higher order Markov models are much greater than for the first 

order models considered here. And a third reason is that, as is evident from simulation studies, 

even in the cases where systems are not strictly first order, the first order assumption often still 

provides a reasonable approximation.

An important aspect of the approach to hidden Markov modelling taken in this thesis, is the method 

by which internal states are represented. The internal state of the system at any time k, X k , is 

represented by an indicator vector from the set of possible orthogonal unit indicator vectors S = 

{et}, i =  1 , . . . ,  N,  where N  is the total number of states, and e,- =  ( 0 , . . . ,  0, 1 , 0 , . . . ,  0)' G R  v 

where 1 appears in the ith position. Associated with each indicator vector is a state value. By way 

of an example, consider a binary digital signal which has voltage levels of ±  1 volt. For this case 

S =  {(0 1)', (1 0)'}. When Xk  = (0 1)' it is indicating that the state value is +1 volt, and when 

Xk  = (10) '  it is indicating that the state value is -1  volt.

The motivation for introducing such notation (termed the indicator vector formulation) is that the 

model dynamics can be shown to be characterised by the following linear relationship [Segall 

1976]:

Afc+1 = A 'Xk +  Mk+1 ,

where A is the transition probability matrix defined by A = (alJ), for =  P(Xk+ i = ej \ 

Xk = e,-), and Mk is a Martingale increment. The observation process associated with the model
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is given by

Vk = h ( X k) + wk ,

where vok is an independent and identically distributed (i.i.d.) noise process and h(.) is the output 

function. The observation symbol probabilities are defined by bk(i) = P{yk \ X k = et-) and, in 

the case where wk is Gaussian white noise, are distributed by bk(i) ~  N[h(e{), a where o\u is 

the variance of the Gaussian distribution.

The main benefit to this state space representation of the Markov process, is that it allows any 

nonlinear function of the Markov state, X k, (in particular, the observations) to be rewritten as a 

linear function of that state, as follows:

yk = [h(e{) , . . . ,h(eN )]Xk -f wk .

While the above indicator vector formulation has been used widely in the statistical literature 

for analysis of Markov chains, it does not seem to have been applied previously to engineering 

problems involving hidden Markov chains. In this thesis, the indicator vector representation is 

used in solving problems of signal processing and control for systems modelled by HMMs. By 

considering such a representation, many important insights can be gained into a wide variety of 

HMM processing problems. This thesis presents new algorithms which in many cases have distinct 

advantages over current approaches. The benefits arise to a large extent because the HMM is now 

in a standard linear systems type representation. This gives new clues relating to the application 

of finite dimensional filters.

Filtering, or state estimation, of HMMs can be expressed in terms of a conditional expectation of 

the state, X k, given the observations, yk. This leads to the concept of an information-state which, 

as the name suggests, provides information about the state of the system [Kumar and Varaiya 1986] 

(p. 81). In the case of HMMs, the information-state is a probability distribution vector representing 

the conditional probability of each state. The most likely state is determined by the largest element 

of this probability distribution vector. When considering the limiting case, for linear systems in 

white Gaussian noise, when the set of real numbers are quantised into an infinite number of states, 

then the information-state is an infinite dimensional vector with a Gaussian distribution. In this 

case the largest element of the information-state is in fact the minimum variance estimate. In the
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more realistic case of finite dimensional systems, the largest element of the information-state is 

simply termed the maximum a posteriori (MAP) estimate.

An important aspect of the work in this thesis is the extensive use of information-states. The 

application based problems which are considered, are each formulated with the aid of the indicator 

vector representation in such a way as to enable the full information-state to be used. This is in 

contrast to more traditional approaches to the problems which just use MAP estimates, and are 

therefore throwing away information about the quality of that estimate.

This thesis makes use of the new state space HMM representation in conjunction with information 

state filters, to investigate on-line model identification, adaptive parameter estimation and risk- 

sensitive control problems. The term on-line refers to the case when a new state, or system, 

estimate is made each time a new measurement is made. The on-line feature is important for 

applications such as mobile communication systems, and follows in many ways from the state 

space approach. The techniques presented in this thesis are finite dimensional. They are also 

new, novel, and in many cases provide distinct advantages over current techniques. The schemes 

generated are, of course, not specific to communication systems and have a wide range of other 

applications, such as on-line speech processing and on-line frequency tracking.

1.2 Model Identification

Model identification and estimation are important aspects of signal processing. These two terms 

apply to the technique of measuring a signal output from a system, and using it to generate a model 

for that system. Estimation is the term used when the model parameters are time-varying, while 

identification is applied to the time-invariant parameter case. Both are performed in two stages, 

firstly the model set must be chosen, and secondly model parameters need to be determined in 

order to locate a system within the model set which best approximates the true system behaviour. 

This thesis deals with model identification and adaptive estimation within the class of hidden 

Markov models. Such tasks are of great interest since they are essential in the solutions to a wide 

variety of engineering problems, including the communication systems considered later in this 

thesis.

A popular approach to HMM identification, is the maximum likelihood approach of the expectation 

maximisation (EM) algorithm. This technique was first developed by Baum and his colleagues
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[Baum et al. 1970], however, the definitive reference is the paper by Dempster et al. [1977]. The 

EM algorithm is an off-line approach and consists of two steps for each iteration, or pass through 

a batch of data. The first step is an expectation step, in which a conditional expectation of some 

log-likelihood function of the state sequence is generated. The second step is a maximisation step 

with the aim of maximising the conditional expectation, of step one, over all possible models in 

the model set. The expectation step involves what is commonly known as the forward-backward 

algorithm and the maximisation step makes use of what are commonly called the Baum-Welch re­

estimation equations. Such an approach provides estimates of the model which have the attractive 

property that they are guaranteed not to decrease in likelihood with each pass through the data. 

Unfortunately there are limitations to the EM technique. The algorithm only converges linearly 

with the number of iterations, and the scheme requires off-line processing of data. The linear 

characteristic is not a major limitation, but the off-line processing aspect implies that the EM 

algorithm can not be used for problems where the signal must be analysed in real-time, or on-line, 

such as for communication systems.

A modification to the EM algorithm for HMMs is presented in Krishnamurthy and Moore [1993] 

in which on-line processing is achieved. This technique applies a two step procedure, similar 

to the EM algorithm, as each new piece of data arrives, instead of at the completion of a pass 

through a batch of data. The techniques are derived using stochastic approximations to maximise 

the Kullback-Leibler information measure and are therefore termed recursive Kullback-Leibler 

(RKL) optimisation schemes. This approach is a generalisation, for the Markov case, of algorithms 

proposed by Titterington [1984] and Weinstein et al. [1990], for estimating finite state chains in 

white Gaussian noise (WGN).

With the application of smoothing and forgetting, the on-line EM techniques can be seen to 

converge to the correct model in a single forward pass through a batch of data. However, a 

problem arises with these algorithms. The equations presented for updating the estimates of the 

transition probabilities associated with the Markov process (given by the matrix A from Section 

1.1), are not constrained to ensure that these estimates do not become negative, a fundamental 

requirement for probability measures. This, coupled with the linear convergence properties of 

the EM technique, suggests the need for further investigation into the on-line HMM identification 

problem.

Another method for on-line identification of nonlinear systems is the recursive prediction error 

(RPE) technique presented in Ljung and Söderström [1983]. While it is designed for continuous-
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range Gauss-Markov processes, in this thesis it is used in a new approach to the identification 

of HMMs. The RPE technique is discrete-time, nonlinear and finite-dimensional, which makes 

it ideal for use with HMMs. As with the EM algorithm, this approach is based on off-line 

techniques. It is formulated by considering the minimum variance of the prediction error, (that is, 

the error between the actual measurement and the predicted measurement, based on the best model 

estimate at the time). The minimisation of this error function provides an updated estimate of the 

system model with each new measurement. The resulting scheme is expressed as a gradient type 

algorithm, where the gradient is given by the derivative of the prediction error function. By means 

of appropriate parameterisation, the scheme is applied in this thesis to HMMs to achieve on-line 

estimates for the model. An important feature of this new RPE approach to HMMs is the fact that 

the parameters are considered as states, and take values in a continuous range. This leads to the 

notion of mixed-state HMMs where some states are finite-discrete and some are continuous-range. 

It is this formulation which allows RPE techniques to be applied.

Convergence analysis of RPE techniques is most fully understood for identification of linear 

stochastic systems. However, results are also available for stochastic nonlinear parameter esti­

mation problems [Ljung and Söderström 1983, Ljung 1977, Moore and Weiss 1979]. In general, 

the RPE technique, as with the algorithm in Krishnamurthy and Moore [1993], is not globally 

converging but rather, converges to the nearest local minimum of the prediction error variance 

cost function. The RPE scheme is based on a quadratically convergent off-line scheme, therefore 

improved asymptotic convergence rates are expected for RPE/HMM schemes, over RKL/HMM 

schemes, but at a computational cost. The computational complexity of the RPE scheme can how­

ever be reduced by appropriate de-coupling assumptions, while maintaining the same asymptotic 

estimates; however initial transients may be degraded.

One must be careful, however, when applying RPE techniques to HMM identification, that 

successive model estimates preserve the properties of an HMM. In particular, the estimated state 

transition probabilities (elements of A) must remain positive and the rows of A must sum to 

1. In this thesis, these requirements are rewritten as smooth equality constraints which define a 

smooth compact manifold of parameters. Results from differential geometry are used to restrict 

the gradients, derived for the RPE schemes, to this manifold. In order to ensure the positivity 

constraint is satisfied, the HMM is parameterised by the square root of the transition probabilities. 

Thus, the parameter estimates generated can be positive or negative, while the transition probability 

estimates will always be positive. This implies that the new parameterisation now lives on an N -



1.3 Introduction 9

dimensional sphere leading to a straightforward application of differential geometry techniques. 

The approach taken in this thesis is new to recursive identification of HMMs, and has proven to 

be of great benefit. Simulation studies have shown that in all cases, the application of differential 

geometry to the RPE schemes, improves convergence and allows for a large increase in initial 

conditioning errors.

1.3 Parameter Estimation

When considering time-varying systems, many of the assumptions made in generating the iden­

tification schemes discussed above, do not apply. The main implication is that convergence 

results are more difficult to obtain, and sub-optimal algorithms are often required, especially when 

considering hidden Markov model estimation.

For stochastic linear systems, the optimal state estimator is the Kalman filter (KF), which was 

presented most completely by Anderson and Moore [1979]. Like the nonlinear RPE scheme, 

the KF is finite-dimensional. Unlike the RPE scheme, it applies to both time invariant and 

time varying systems. The KF generates conditional mean estimates and associated covariance 

estimates for states with linear dynamics driven by white Gaussian noise. For nonlinear systems, 

the KF can be modified to generate the extended Kalman filter (EKF). At each iteration, the EKF 

makes linearisations around the conditional mean estimate for the state, and then uses standard 

KF methods to update the estimate. As with the KF, this technique is finite dimensional.

The KF and EKF approaches are well known and understood. In fact the KF has been used almost 

exclusively for a wide variety of linear stochastic systems, since its inception in 1960 [Kalman 

1960] (see also [Kalman 1963]). When used for parameter estimation, it is known to converge to 

the true model, even for time-varying systems, as long as certain observability and controllability 

conditions hold [Anderson and Moore 1979]. For nonlinear systems, convergence of estimates is 

somewhat more of an issue. In order to ensure that the EKF scheme has bounded errors, more 

stringent conditions apply [La Scala et al. 1993].

For the mixed-state HMM systems considered in this thesis, it is possible to write the observations 

in a bi-linear form with respect to the state and the parameters. This is due to the indicator 

vector representation of the Markov process, discussed earlier. The term bi-linear relates to 

equations which would be linear in one variable if the other was constant, and vice versa. Such
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a representation allows coupled conditional linear filters to be applied, in conjunction with the 

nonlinear HMM filter. The term coupled conditional filter is given to a filtering scheme where 

separate filters for each parameter, or state, are run in parallel, and where each filter generates 

outputs which are conditioned on the estimates given by the other filters. Through this coupled 

conditional approach, the difficulties of increased computations encountered with the nonlinear 

EKF scheme are avoided. Unfortunately, while the algorithms generated are more suited to 

implementation, it has proved difficult to obtain meaningful analytical results describing their 

asymptotic properties. Therefore, simulation studies are used to demonstrate performance.

1.4 Communication Systems

Communication systems provide a rich area for application of HMM signal processing techniques. 

In particular, digital systems (for which the discrete-time signal takes on only a finite number of 

discrete values) fall directly into the framework of the HMM. In the environment of modem 

computing systems, where on-line HMM processing has become computationally feasible, such 

applications provide exciting areas for research. This thesis demonstrates some of the advantages 

that can be gained through the use of HMM filtering in communication systems.

In this thesis hidden Markov models are used to tackle the important problem of tracking fading 

channels associated with the transmission of digital signals. The term fading channel refers to a 

transmission medium which has continually varying properties. Such channels arise, for example, 

in mobile communication systems [Vucetic and Du 1992, Loo and Secord 1991] and indoor radio 

communication systems [Hashemi 1993], where the signal path from transmitter to receiver varies 

as the receiver changes location or when objects move into the path of the signal. The resulting 

task is to estimate accurately these channel variations, in order to ensure the correct message 

is decoded. Much work has been done on signals in Rayleigh fading channels. Some current 

approaches to the demodulation problem include the use of maximum likelihood (ML) Matched 

filters [Proakis 1983, Pahlavan and Matthews 1990], and maximum likelihood sequence estimation 

Viterbi algorithms [Viterbi 1967, Forney Jr. 1973]. Recently, variations to these algorithms have 

been developed (for example, by Lodge and Moher [1990]) incorporating the ideas of sequence 

estimation. A summary of results for phase modulated signals can be found in Haeb and Meyr 

[1989], where optimal solutions are shown to be infinite dimensional, and where sub-optimal 

schemes are discussed involving decision directed maximum a posteriori (MAP) estimates. The
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HMM techniques of this thesis can be seen, in many cases, to have advantages over these ML and 

MAP techniques, particularly with regards to robustness.

At its most abstract level, a communication system, depicted in Figure 1.1, consists of a transmitter, 

a channel, and a receiver. The sub-components of these three elements vary, depending on the type 

of messages to be sent. In this thesis digital signals are considered, and the transmitter consists of 

an encoder and a modulator, while the receiver consists of a demodulator and a decoder. It is the 

task of the demodulator to estimate the fading channel properties, and therefore, it is in its design 

that HMM signal processing is applied.

Transmitter
I I
I I

Message

Received
Message

ModulatorEncoder

Decoder Demodulator

Channel

I I
I I

Receiver

Figure 1.1: Signal transmission system

In order to design the demodulator, it is of course necessary to have an understanding of the 

transmitter’s operation. The transmitter obtains a message signal, then encodes it, modulates it 

and transmits it. In general, the message could be any signal in a digital form, for example FAX 

signals or quantised speech signals. The encoder, which processes these messages, has two main 

purposes: to ensure that transmission through the channel is efficient, and to add redundancy so 

that errors can be corrected at the receiver. These two tasks are carried out by source encoding 

and channel encoding respectively. The source encoder acts to randomise the digital message 

to ensure that the maximum possible amount of information can be transmitted per bit. If the 

digital signal has equally probable, or independent and identically distributed (i.i.d.), symbols 

(for example, in the binary case, the symbols 1 and 0 are equally likely) then the signal cannot
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be predicted and therefore all of the signal contains information. If the symbols are not equally 

probable, then part of the signal is redundant (because it can be predicted). The channel encoder, 

on the other hand, adds redundancy to the signal, but does so without compromising the efficiency 

greatly. Redundancy is added so that errors can be more easily detected and corrected at the 

receiver. Common channel encoders include parity check encoders [Lin 1970], convolutional 

encoders [Proakis 1983], and more recently, trellis encoders [Biglieri et al. 1991].

Once the message is encoded it is then modulated for transmission through the channel. Modulation 

turns the discrete-time digital signal into an appropriate continuous-time signal. This thesis is 

primarily interested in applying HMM techniques to two digital transmission schemes, namely 

quadrature amplitude modulation (QAM) and M-ary differential phase shift keyed (MDPSK) 

modulation. Both signal classes are commonly used in current communication systems. Other 

modulation schemes can also be considered in the HMM framework, and although they are not 

presented in this thesis, they do serve to demonstrate the wide applicability of the mixed-state 

HMM approach presented here.

Quadrature amplitude modulation is a transmission scheme characterised by a signal which is 

quadrature in nature, and for which the real and imaginary components of the message are 

transmitted as two amplitudes which modulate the quadrature and in-phase sinusoidal carriers. 

The resulting transmitted signal, s(t), has the following form:

s(t) = Ac[mR(t) cos(27tf t  + 9) + m7(f) sin(27rf t  -f 0)\ ,

where the carrier amplitude Ac, frequency / ,  and phase 0 are constant, and m(t ) =  for t = 

[tk,tk+1)> where 4  arises from regular sampling, and is the complex value of the message 

symbol. Therefore, each digital symbol is represented by a different complex number.

In contrast, phase shift keyed modulation schemes carry the message solely in the phase of the 

signal. They are therefore termed constant amplitude, or constant modulus, transmission schemes. 

For differential PSK schemes, the message is carried in the difference between successive phases, 

rather than by the magnitude of the absolute phase value. M-ary DPSK schemes allow M different 

symbols and thus M different discrete phase jumps. In this case, the transmitted signal has the 

following form:

s(t) = Ac cos [2tv f ct + 9{t)] ,
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where 9{t) = 9 k for t = [ 4 , 4 + i ) and 9k = Y^e=o / a where fk is the frequency shift representing 

the message symbol, and where the carrier amplitude A c, and frequency f c are constant.

The mapping between the output of the source encoder and the sequence of symbols the modulator 

can transmit, depends of course on the channel encoder. Consider the case of convolutional codes. 

For such schemes, the code words, corresponding to the modulator symbols, are generated through 

linear operations on source bits. An example is shown in Figure 1.2 where a binary input signal, 

from the source encoder, is passed through a four element shift register. In this case, the adders 

perform modulo two addition. The result is that each possible combination of bits in the register 

corresponds to one of four output values. Therefore, if we consider a QAM system, a four symbol 

constellation is required in the modulator, where the complex symbols take values mjt £ {±c±jc}, 

for some constant c.

Bit sequence Output values

(0 ,1,2 ,3)

Figure 1.2: Example of convolutional coding scheme

It is at this point that the usefulness of the HMM formulation becomes apparent. If the combination 

of bits in the shift register is defined as the state of the message, then each possible combination 

can be assigned an indicator vector. It is clear that the next state of the shift register depends only 

on the current state, and the next input bit from the source encoder, and therefore falls directly into 

the HMM framework. The transition matrix, A, of the resulting Markov process is automatically 

defined by the probability distribution of the bit sequence, and the possible transitions of state as a 

new bit enters the register and one drops off the end. In the case of parity check channel encoders, 

the state of the message can be defined by the modulator symbol (eg. mk in the case of QAM), 

and again the HMM formulation applies, as the next message symbol will depend on the current 

one, and the next input from the source encoder.

With either of these definitions, the HMM demodulator can be designed to adaptively track 

fading channel characteristics, by applying the mixed-state HMM estimation approach of coupled
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conditional filters, described in Section 1.3. Here, an on-line HMM filter is used to estimate the 

signal state (a discrete quantity) while a Kalman filter is used to track the channel variations (a 

continuous quantity). The two filters are coupled, as each depends on output from the other. A 

feature of this technique is that the full information-state (in this case the probability distribution 

vector which is the output from the HMM filter) is used to condition the Kalman filter. This is in 

contrast to current techniques which use only the most likely message value for conditioning, and 

thus do not make use of estimate uncertainty.

Many of the current approaches to demodulation, discussed previously, make use of the above 

definition of message state, whereby the state represents the contents of the shift register, however 

they all perform maximum-likelihood based estimation as opposed to, in the HMM case, evaluating 

the full probability distribution for the expected value of the state. Such ML and MAP techniques 

are only optimal if the channel is non-fading, and if the input bit sequence from the source encoder 

is i.i.d. (actually, under such ideal conditions, the HMM filter with MAP estimate (discussed 

in Section 1.1) is identical to the Matched filter). When the system involves fading channels, 

and non-i.i.d. input signals, the HMM techniques presented in this thesis can be shown to have 

distinct advantages, when it comes to signal decoding, channel parameter tracking, and model 

identification.

1.5 Risk-Sensitive Filtering and Control

An exciting area of current research in stochastic systems, is risk-sensitive filtering [Speyer et 

al. 1992] and control [Jacobson 1973]. Such approaches include an exponential operator in the 

performance criteria. They lead to an optimal solution, similar to the case for Kalman filtering 

and linear-quadratic-Gaussian (LQG) control; however in addition, the sensitivity to risk can be 

varied. One application area for risk-sensitive control has been economics, where risk-sensitivity 

is termed hedging or risk-aversion, for example in Karp [1988] and Caravani [1986]. These papers 

illustrate that advantages can be gained from the risk-sensitive approach, for problems such as 

dynamic trading and futures market prediction.

For a risk-sensitive policy, decisions (be they control or filtering) are made, based on a desired 

amount of risk. For example, if a model is known to be accurate, then only a small amount 

of risk will be involved in decision making. However, if the model is inaccurate then a higher 

amount of risk would be involved, and so steps should be taken to account for this. Traditional
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optimal control techniques employ averaging procedures which assume disturbances are acting in 

some average manner. More recent robust (for example Hoc) controllers account for maximum 

disturbances resulting in so called “worst case” designs. The risk-sensitive controller allows for a 

variation in the robustness of the design, by considering changes in the sensitivity to risk.

As in the HMM application to communication systems discussed in Section 1.4, information-states 

again play an important role in risk-sensitive techniques. For standard LQG control [Anderson 

and Moore 1989], a separation principle holds allowing the state feedback problem to be solved, 

and the state estimate, which is calculated separately, is substituted in place of the state. For 

risk-sensitive problems, no such principle holds and so the full information-state must be fed into 

the controller. In addition, a key to the technique is that the information-state actually contains 

information about the cost incurred, as well as the state estimate [Bensoussan and van Schuppen 

1985]. This is the vital concept which allows the risk-sensitive performance criteria to be expressed 

in terms of the information-state, as opposed to the actual state. Therefore, in the control context, 

output feedback control can be implemented optimally, since the information-state, and hence the 

performance criteria, is a function of the observations, and not the state directly. As is seen here, 

the concept of an information-state covers more than just conditional expectations of the state.

Another important aspect of this work on risk-sensitive systems, is the way in which reference 

probability measures are defined. For many problems in stochastic systems, advantages can be 

gained by translating the measure by which information is evaluated, from “real-world” measures, 

to ones which are more attractive mathematically. The changes of probability measure used 

in this thesis are discrete-time versions of Girsanov’s theorem [Segall 1976]. The technique 

involves defining a new reference probability measure for which the observations are i.i.d. random 

variables. It can be shown that under such a measure change, nonlinear information-states can be 

re-expressed in terms of new un-normalised information-states, which can in turn be evaluated by 

linear equations [Elliott 1993].

By way of example, consider that E[-] is the expectation operator under the usual reference 

probability measure, and that E[-] is the expectation operator under the new measure where the 

observations are independent. Consider the following:

where A = dP/ dP  is the change of probability measure. Therefore, expectations under one
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measure can be expressed in terms of expectations under another measure, with the inclusion of 

the change of probability terms. For filtering problems involving conditional probabilities, one 

has the following version of Bayes’ theorem:

E[x\y\
E[Ax\y]

E[ A]

In this thesis similar techniques to those in Elliott [1993] are used to compute E[Ax\y] using linear 

equations and the quantity of real interest, namely E[x\y], is generated by normalising this new 

information-state.

Such measure changes can be used for both linear and nonlinear systems analysis. This thesis 

uses techniques presented in James et al. [1994], to derive finite-dimensional output-feedback 

risk-sensitive linear-quadratic-Gaussian (RLQG) control results. Solutions for this linear case are 

obtained in a non-separated form, and thus provide insight to the infinite-dimensional nonlinear 

solution of James et al. [1994]. The resulting equations are compared to those in Whittle [1981] 

where linear techniques were used to solve the regulator problem. They are also shown to specialise 

to standard LQG results under limiting conditions.

In addition to regulation, this thesis considers applying a risk-sensitive policy to tracking problems. 

Augmentations to the plant model are presented, in order to achieve zero steady state error in the 

constant reference signal case. For such problems, integrators are included in the controller design. 

One advantage to this approach is that it leads to an increase in the allowable range over which 

the sensitivity to risk can be varied. Unfortunately, however, adding an integrator greatly reduces 

the benefit gained by such variations.

In addition to the RLQG solution, the techniques are applied to finite-discrete HMM tracking 

problems, where a finite dimensional information-state is derived. The control solution in this 

HMM case, is however infinite dimensional, and so sub-optimal solutions are discussed. In each 

of the tracking cases, simulation examples are presented which demonstrate the effect of varying 

the controller’s sensitivity to risk.

Finally, the risk-sensitive filtering problem is shown to be solved by considering the tracking 

problem, and reformulating the performance criteria. For tracking problems, the task is to choose 

a control which causes the state to be close to a desired value. It is possible to reformulate this 

into a filtering problem, for which the task is to pick a value close to the true state. Using such a
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technique, this thesis derives the risk-sensitive filtering equations directly from the information- 

state equations obtained for the tracking problem. Such a connection leads to the possibility of 

considering more difficult, and as yet unsolved, problems of coupled risk-sensitive filtering and 

risk-sensitive control.

1.6 Algorithms Developed

This section presents a list of the algorithms developed in this thesis:

• On-Line Identification of HMMs : New recursive prediction error (RPE) based algorithms 

are developed to perform on-line identification of HMMs. The schemes perform better than 

previous algorithms in terms of asymptotic convergence, as weli as having a number of 

other attractive properties, for example they automatically ensure that transition probability 

estimates are positive.

• Reduced Complexity On-Line Identification of HMMs : A reduction in computational 

complexity can be achieved in cases where states are clustered in groups. An algorithm 

is presented, which is again based on the RPE algorithm, for on-line identification in such 

cases.

• Adaptive Demodulation of QAM signals : New HMM based algorithms are developed 

for demodulation of digital QAM signals transmitted through flat fading channels. The 

schemes are especially applicable for mobile communication systems where fast fading 

environments exist. The schemes are on-line, adaptive, and make use of new information- 

state ideas. Simulation studies are carried out which demonstrate the advantages of such an 

approach when compared current schemes.

• Adaptive Demodulation of MDPSK signals: Information-state HMM techniques are used 

to demodulate digital M-ary DPSK signals in fading channels. The resulting algorithms are 

shown also to be applicable to analogue FM signals with appropriate quantisation. As in 

the QAM case, the schemes are on-line and adaptive.

• Risk-Sensitive Tracking for Linear Systems : An algorithm is presented for tracking 

with output feedback and a risk-sensitive control policy. State space augmentations are 

also discussed in order to incorporate integrators for the purpose of obtaining zero steady
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state error. While a similar tracking result has been derived previously, the technique by 

which the solution is generated in this thesis provides a much simplified framework for 

implementation, as well as giving more insight into nonlinear systems.

• Risk-Sensitive Tracking for HMMs : The risk-sensitive approach is applied to tracking for 

hidden Markov model systems, to allow for variations in the robustness of HMM controllers. 

Numerical solutions to the dynamic programming control problem are also discussed.

1.7 Thesis Structure

A brief outline of the progression of ideas in this thesis is as follows :

Hidden Markov Model Identification

In Chapter 2 an on-line state and parameter identification scheme for HMMs, with states in a 

finite-discrete set, is developed using RPE techniques. The parameters of interest are the transition 

probabilities and discrete state values of a Markov chain, and the noise density associated with 

the observations. In general any independent and identically distributed (i.i.d.) noise density 

could be considered, however, in this work, zero mean white Gaussian noise (WGN) is used. In 

contrast to the more familiar off-line EM algorithm which is a fixed-interval “forward-backward” 

multi-pass approach, the RPE on-line schemes presented here, have significantly reduced memory 

requirements. In addition, a reduced computational complexity algorithm is developed for the 

case where state values are clustered into groups.

Implementation aspects of the proposed algorithms are discussed, and simulation studies on three 

and four state Markov chains are presented to show that the algorithms provide competitive, and 

in fact asymptotically faster converging, estimates to those of earlier proposed on-line HMM 

schemes based on recursive Kullback-Leibler (RKL) measure optimisation. Also, an improved 

version of the RKL scheme is proposed with a parameterisation that ensures positivity of transition 

probability estimates.

Adaptive Parameter Estimation with HMMs

In Chapter 4 the techniques of extended Kalman filtering and HMM signal processing are combined 

to adaptively demodulate QAM signals in noisy fading channels. The approach is to formulate the 

QAM signal model and channel parameter model, in a mixed finite-discrete state and continuous
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state framework. The mixed state model is then re-formulated in terms of conditional information- 

states, using HMM theory. This leads to models which are amenable to standard EKF or related 

techniques. Adaptive state and parameter estimation schemes are devised based on the assumption 

that the transmission channel introduces time-varying gain and phase changes, modelled by a 

stochastic linear system, and has additive Gaussian noise. The case of white observation noise is 

considered, as well as generalisations to cope with coloured noise. The adaptive HMM approach 

results in a practical finite-dimensional algorithm for state and parameter estimation, consisting 

of a coupled continuous state KF and finite state HMM filter. A more sophisticated EKF scheme 

with an HMM sub filter is also discussed. Simulation studies demonstrate the ability to estimate 

the signal, and track effectively the rapidly time-varying channel parameters, in noisy conditions. 

Comparisons with traditional techniques are also presented. These serve to demonstrate the 

advantages of the mixed state HMM approach.

In Chapter 5 EKF and HMM signal processing, techniques are again blended, this time in order 

to demodulate MDPSK signals in noisy fading channels. Two adaptive HMM approaches are 

formulated, both consist of a continuous state KF coupled with finite-discrete state HMM filters. 

The first proves computationally intensive, the second incorporates decoupling which achieves 

practical finite-dimensional algorithms. The technique used is to represent MDPSK signals with 

state space signal models where some of the state components belong to a finite-discrete set and 

others are in a continuous range. As with the QAM case, HMM signal processing is then applied 

to re-formulate these models as conditional information-state models from which the KF/HMM 

coupled filters are derived. Simulation studies demonstrate the ability to estimate the MDPSK 

signal, and track time-varying channel parameters.

Risk-Sensitive Control

In Chapter 6 the information-state approach is used to obtain solutions to risk-sensitive quadratic 

control problems. Specifically, the case of tracking a desired trajectory, is considered. Results are 

presented for linear discrete-time models with Gaussian noise, and also for finite-discrete state, 

discrete-time hidden Markov models with continuous-range observations. Using the information- 

state approach, the tracking solution is obtained without appealing to a certainty equivalence 

principle. Limit results are discussed which demonstrate the link to standard linear quadratic 

Gaussian control. Also included is a section on achieving zero steady state error with risk-sensitive 

control policies. Simulation studies are presented to show some advantages gained via the use of a
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risk-sensitive approach. Finally, a discussion on risk-sensitive filtering is presented. The filtering 

problem is shown to be solved by considering the control problem with a slightly different cost 

function. This result leads to the notion of dual risk-sensitive filtering and risk-sensitive control.



Chapter 2

Identification of Hidden Markov 

Models

2.1 Introduction

\f~\ his chapter considers the problem of on-line model identification for finite-discrete state, 

discrete-time hidden Markov models (HMMs) with continuous-range observations. As

mentioned in Chapter 1, HMMs with states in a finite-discrete set have been widely applied in 

areas such as speech processing [Rabiner 1989], biological signal processing [Chung et al. 1991] 

and pattern recognition [Bellegarda et al. 1994]. In such cases, it is of primary importance to 

identify the parameters of the Markov model, so as to gain a better understanding of the system 

concerned. The Expectation Maximisation (EM) algorithm [Dempster et al. 1977, Baum et al. 

1970] is a popular off-line technique for obtaining maximum likelihood estimates of the HMM 

parameters. However, a limitation of the off-line EM methods is the ‘curse of dimensionality’ 

which arises because the computational effort, speed, and memory requirements are in proportion 

to the square of the number of possible states of the Markov chain. Memory requirements are also 

proportional to the length of data being processed. As a consequence of these limitations, there 

is incentive to explore on-line (sequential) algorithms to seek improvements in terms of memory 

requirements and computational speed, and also to cope with the possibility of time-varying HMM 

parameters.

21
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The key contribution of this chapter is to reformulate HMMs, with states in a finite-discrete set and 

with unknown parameters, in such a way that Recursive Prediction Error (RPE) techniques can 

be applied for model identification. The quadratically convergent RPE scheme is shown to be a 

superior alternative to the linearly convergent recursive Kullback-Leibler (RKL) scheme presented 

in Krishnamurthy and Moore [1993].

This chapter is mainly concerned with estimating a finite state Markov chain in white Gaussian 

noise (WGN). The parameters to be estimated are the transition probabilities and state values of 

the Markov chain, and the noise variance associated with the measurements. To derive the RPE 

based algorithms, it is necessary to first formulate the HMM in an N -dimensional state space 

form (where N  is the number of Markov states). In terms of traditional linear system terminology, 

the N  X N  transition probability matrix corresponds to the system matrix, while the vector of 

Markov state values forms the observation matrix. The next step is to formulate an alternative 

representation of the finite-discrete state HMM, based on the conditional filtered state estimate of 

the Markov chain. In this case, the filtered estimate, termed information state, lies in a continuous 

range, and is given by the “forward” variable, o^, of the EM algorithm [Rabiner 1989]. This 

nonlinear estimator based model is characterised in terms of the HMM parameters.

A requirement of RPE formulation presented here, is that, in addition to computing o^, it is 

necessary to evaluate the first derivatives of with respect to the HMM parameters. Recursive 

techniques, similar to the forward recursion for a^, are proposed for computing these derivatives. 

The computational complexity required for these recursions, is the same as that for (that is, 

0 ( N 2) per time instant).

In this chapter, two model parameterisations are considered for handling transition probabilities, 

constrained by the Markov property that rows of the system matrix must add to one. The first 

is with transition probabilities constrained to a simplex, the second is with the square root of 

transition probabilities constrained to the surface of a sphere in R ^ . In both cases the derivatives 

are restricted to the tangent space of the simplex or manifold. It is shown that an advantage 

is gained by working on the sphere, instead of the simplex, because the surface of the sphere 

is smooth, and the estimates of transition probabilities are assured to be non-negative. Other 

parameterisations are also possible (for example a polar co-ordinate representation on the sphere) 

however they are less attractive since most result in much greater complexity in the calculation of 

gradients for the RPE scheme. This chapter also presents an RKL scheme on the sphere which
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eliminates the inherent possibility, in Krishnamurthy and Moore [1993], of negative transition 

probability estimates.

For an additional improvement to the estimates, it is also possible to modify the RPE formula­

tion to incorporate fixed-lag smoothing. Simulations have shown that using fixed lag variable 

estimates, such as 7  ̂ (the smoothed state estimate of a Markov chain [Rabiner 1989]), and first 

derivatives, can improve the transient properties of the estimates. Of course fixed-lag smoothing 

adds computational requirements proportional to the lag.

In the actual implementation of the HMM/RPE algorithm it is necessary to scale or normalise the 

filtered variables and their derivatives to keep their values in the numerical range of a computer. 

This chapter employs a scaling procedure which scales without affecting the parameter estimates.

Simulation examples are presented to illustrate the algorithms. These examples show that the 

proposed schemes can satisfactorily identify HMM parameters and that their performance is 

better, asymptotically, than that of RKL schemes.

This chapter is organised as follows: Section 2.2 formulates the HMM and details the estimation 

objectives. It also provides an outline of RPE techniques and shows their relevance to HMM 

estimation. In Section 2.4, RPE based recursive algorithms for HMM estimation are derived, 

working on both the simplex and the sphere for the constrained transition probability estimates. 

Also, an RKL scheme on the spherical parameter constraint manifold is proposed. In Section 

2.5 implementation considerations are discussed, and simulation examples are given. Finally, 

conclusions are presented in Section 2.6.

2.2 Problem Formulation

This section presents the HMM signal model, details estimation objectives, reviews the RPE 

algorithm, and points out its relevance in adaptive HMM estimation.

2.2.1 State Space Signal Model

Let X k be a discrete-time homogeneous, first order Markov process belonging to a finite-discrete 

set. The state space of X , without loss of generality, can be identified with the set of unit vectors
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S — {e i, e2 , .. •, ejv}, e,- = ( 0 , . . . ,  0 ,1 ,0 ,. . . ,  0)' £ R x with 1 in the zth position. The transition 

probability matrix is

A = (aij) , 1 < i , j  < N  , where atJ = P (X k+\ = ej | X k = ez) ,

so that

E[Xk+l I X k] = A ' X k ,

where £[.] denotes the expectation operator. Of course atJ > 0, XZyLi aij -  1, for each i. It is 

also of use to denote { //, / £ 2  + } to be the complete filtration generated by X.  That is, for any 

k £ 2 + , T k is the complete cr-field generated by X k, l < k.

Definition 2.1: [Adams and Guillemin 1986] Consider events At, in a sample space fi. Now, a 

a-field, T , is defined to be a collection of subsets of Q which contains the empty set, and is closed 

under complements and countable unions. That is, given {i4t } i n  T , then At is also in T .

□

Lemma 2.1 The dynamics of X k are given by the state equation

X k-\.i = A' A k + Mk+\ , (2.1)

where Mk+\ is a (A, T k) martingale increment, in that E[Mk+\ \ T k\ = 0.

Proof: [Segall 1976]

E[Mk+\ I T k] = E[Xk+i -  A 'X k I Ajt, A'] = E[X ,b+, | X k, A'] -  A 'X k = 0 .

Assume that X k is hidden, that is, indirectly observed by measurements yk. The observation 

process yk has the form

Vk = g( Xk) + wk , ( 2 .2)

where without loss of generality, since X k is in a discrete set, g( Xk) = (g, X k), with (, ) denoting 

the inner product in R v , and g £ R A is the vector of state values of the Markov chain. It is also of 

use to define Yk = (go. . .  yk). Assume that wk is independent and identically distributed (i.i.d.), 

with a zero mean Gaussian distribution, so that wk ~ N [0, <7̂ ], and E[wk+\ \ Ek\ /yk] = 0 where
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y) is the (7-field generated by yk , k < l. It is now readily seen that E[Mk+ \ \ Tk  V >\.] =  0. 

Because w \t is white, the independence property

E[yk I X k - \  = et ,2 rfc_2, Jfc-i] =  E[yk | Xk-\  = e;] , (2.3)

holds and is essential for formulating the problem as an HMM.

Now, let bfc = (&*.( 1) , . . . ,  6^(iV))/ denote the vector of parameterised probability densities (which 

will loosely be called symbol probabilities), where 6*(*) = b{yk,gi) = P[yk \ Xk — 0], and

KVk,gi) = ^ ^  exp

Also, the assumption is made that the initial state probability vector for the Markov chain 7r = (7r*) 

is defined from 7r,- =  P (X i =  e,-). The HMM is denoted A = (A, g, 7r, a^).

Remark 2.1: Figure 2.1 gives an example of a realization of the observation process, yk, for a 3 

state HMM. The state values are g — [0,1,2]'. □

( yk - gi y
2 a}.,

(2.4)

<D

>
c_o
C3
£
<u
C /2X>o -5

-IQ

-
Standard deviation = 0

-

\ /M_J Lj ---------- vT \ - N  ' \_i

-

1 1

-

100
Time

150 200

U 10
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Figure 2.1: Example of observation process (3 state HMM)
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2.2.2 Model Parameterisation

Consider that A is parameterised by an unknown vector 9 so that A(9) = ( A(9),g(9),7r, cr2J 9 ) ). 

Two parameterisations are proposed, the dimensions of which are No = N  + N 2 + \, representing 

N  state values, N 2 transition probabilities, and the noise variance associated with the observations.

/. Parameterisation on a Simplex :

where atJ = s2.. The benefit of the second parameterisation (2.7), over the first (2.5), is that the 

constraint manifold is differentiable at all points. In addition, (2.7) has only the equality constraint 

of the sphere surface, S v_ l , where

(2.5)

subject to the equality and inequality constraints defined by the simplex

( 2 .6 )

2. Parameterisation on a Sphere :

(2.7)

( 2. 8 )

and therefore ensures each transition probability estimate is positive.

For either parameterisation the following state space signal model applies:

Xk+i  = A'{0)Xk + Mk+\
(2.9)

Vk =  (g{9) , Xk)+wi t

This signal model is not, however, in a form suitable for application of RPE techniques to achieve 

estimates of 9 and Xk  from the measurements yk (due to the finite-discrete nature of the states, 

Xk).  Such a model is now developed.
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2.2.3 Parameterised Information-State Signal Model

Let Xk\o denote the conditional filtered state estimate of at time k, that is,

Xk\e = E[Xk\yie,0] • (2.10)

Also, define I  to be the column vector containing all ones, and the information-state (termed 

“forward” variable in Rabiner [1989]) \e = (afc|ö(l), • • •, &k\e{N))' ,  is defined by

<Xk\o(*) = P(Yk,Xk = e i \ 0) .  ( 2 . 1 1 )

Lemma 2.2 Xk\6* as defined in (2.10), can be expressed in terms of the column vector ctk\e> 

defined in (2.11), as follows:

Xk\o = (ojfe|ö»I) ' a k\e • (2.12)

Proof : From (2.10),

x kv = E{Xk\yk,0] = Y.?=\dP(Xk = e,\Yk.«)

P(Xk = ei \Yk,9) \ P(Yk, X k = e,|9) \
_  1 
_  P(Yk \0)

\  P(Xk = eN\Yk,6 ) \  P(Yk, X k = eN\0)

-  (öjfc|0 ,l> 1 a k\e •

Lemma 2.3 The information-state a ̂  can be computed using the following “forward" recursion 

[Rabiner 1989]:

<*k+i\8 = B(j/jb+i,ö)\ ' ( d ) a k\Q , (2.13)

where B(yk,0) = diag( b(yk,g\ ) , ..  -,b(yk,gN) )•
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Proof:

a k+1 \e Ü ) = P{ Yk+ i , Xk+i = e3 I 9)

-  P(Vk+\,Yk,Xk+\ = ej I 0)

= P(Vk+i I Yk,Xk+\ = ej ,0)P(Yk,  Xk+\ = ej \ 9)

= P{Vk+1 I X k+1 = ej,9)J2iL\ P(Yk ,Xk+1 = e j ,X k = et- | 9)

= K y k+u gj)E i L  i = ej I Yk, X k = el,9)P(Yk , X k = e,- \ 9)

= KVk+u9j)YliLi P{Xk+1 = ej I Jfjb = en ö ) P ( n ,X ,  = e,- | 0)

=  b( yk+i , 9 j ) 72i Li <i i j <Xk\ e( i )

Writing this in vector notation gives the result. ■

It is now necessary to express the observations, yk, in terms of the un-normalised conditional 

estimates, a k\e-

Lemma 2.4 The conditional measurements yk\e are given by

1lk\e — (a Jc-i|e>I) 1 k'<Xk-\\e) + n k i

where a k is defined in (2.11) and nk is a [9, y k- 1) martingale increment.

Proof: Following standard arguments since a k\e is measurable with respect to {9, E[wk+i \

yk] = 0 and E[Mk+i \ y k] = 0, then

E[nk+1 I 9 , y k] = E[{g(9),Xk+i) + wk+l -  (g{9), (ak\e, \ )~ l A ' a k\e) | 0,yk]

= W ) ,  X ' X k\e) -  {g(9),{akle, \ )  ]A ' a k\e) = 0 .

In summary, the parameterised estimator based signal model for an HMM parameter 9, and with 

states a k\ i s  given by

a k+\\e = B (y k+[,0)A '(O)ak\o

Vk\e -  {g{0)i {a k-\\e, l )  ' X ' a k_i\d) + nk

(2.14)
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where nk is a (9. y k_ i ) martingale increment. This signal model is now in a suitable form to apply 

RPE algorithms to achieve, simultaneously, state and parameter estimates, on-line. Of course, an 

alternative signal model in terms of normalised estimates could be formulated as:

B(yk+l , 0)A' [0)Xkle 
+ '11' <1.B(ä/fc+l,Ö)A'((9)A'fc|0> ’

Vk\9 — (#($)’ A 7(0) A/c-i]#) + nk .

(2.15a)

(2.15b)

However, this model turns out to be less convenient for deriving an RPE scheme.

2.3 Identification Algorithms

2.3.1 General Prediction Error Algorithms

The off-line minimum variance prediction error task is to evaluate the following [Ljung and 

Söderström 1983]:

min V{0) , where V(0) = ]-E[yk -  yk\B,k- 1]2 , (2.16)

and yk\e,k- i  = E[yk ) 9 , y k-\).  This process yields a set of global minima {0X}, where 

9* = argmin# V(9).  It is known that if the signal generating system is in the model set, then 

under appropriate observability, (identifiability), conditions the true system parameter 9° £  {#*} .  

Moreover, if in addition, the signal model is uniquely parameterised, then {#*} contains one 

element, namely 9°. For a finite state sequence of length T, and under ergodicity assumptions, 

where by time averages are equivalent to expectations, the task (2.16) is approximated as

min Vt {9) , where VT{0) = —  ^ 2 { y k  ~ V k \ o , k - i Y
k =  1

(2.17)

to yield estimates {^r}. As discussed in Ljung and Söderström [1983], under reasonable regularity 

conditions, {9j }  converges with probability 1, to a minimum of V(9) = lim;r_00 E[Vt (9)\, as 

T tends to infinity. In addition, for appropriate initial conditions, the estimates are consistent, 

in that limT_*co{^7’} =  {#*}• Moreover, if d2V(9)/d92 is invertible then the asymptotic rate of 

convergence is proportional to \ p f .
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2.3.2 Off-line Gauss-Newton Prediction Error Method

The Gauss-Newton Prediction Error method [Ljung and Söderström 1983] is a gradient search 

approach to finding a local minima of (2.16). At the end of each successive pass, p, through the 

data, used to evaluate Vj(9)  and its derivatives, the parameter estimate, 9, is updated by

where ipe = cIVt{9)/c19 and e<?p = yk — yk\ep,k- \-  In the case of 9 parameterised on a sphere, as 

in (2.7) and (2.8), the gradient vector, 0, is evaluated in the tangent space of the sphere.

The computational cost of the off-line scheme (2.19) is of order T N j  for each pass through a T  

point observation sequence. Also it is necessary to invert the No x N q matrix, (d2V{9)/dd2), at 

the end of each pass.

2.3.3 The Recursive Prediction Error Algorithm

In this section a recursive version of the prediction scheme is applied to the signal model (2.14). 

In the RPE case, at each time update k, there is no attempt to calculate V{9) or Vt {9) exactly, 

but rather by approximations. Thus the estimate for otk is recursively computed at each iteration, 

using obvious notation, as follows:

(2.18)

For suitable 7 (7 —► 1 as p — 00), V(9p+ \) < V(9P) and a local minimum is found. Under 

ergodicity, the algorithm (2.18) is approximated by the practical algorithm

(2.19)

^ 4 + l | © fc —  A  ( 0 f c )  ^ A r | 0 fc_ ,  ’ ( 2 .20)

where 9k is the recursive estimate of the parameter vector of unknown coefficients based on 34 and 

Qk = {<?i,. . . ,  9k}. Let ilk\Qk 2 Qk ( denote a predicted output at time k based on measurements 

up to time k — 1.
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Now, the RPE parameter update equation is [Ljung and Söderström 1983] (p. 94):

9k+\ -  Tpr0J{ßk + 7fc+i ipk+1 nk+\\Qk_ltek}
( 2 . 22 )

where

lk\@k_ 2A - i  ^k\@k_ 2 , h - \  ’

R k+1 =  Rk  +  ik+\ 1 V’it+i -  Rk) ,

or by the matrix inversion lemma (see Equation (B.l)),

# : ! ,  =
1 l k + \ R k ‘ ^Ar+l ^ + l Ä fc‘

/c+‘ 1 — Tfc-t-i V fc (1 -  7fc+i) + Vjfe+i

Here jk is a gain sequence (often referred to as step size) satisfying,

Ik > 0  , 7 * = oo , ^  7  ̂ < oo .
1 k= 1

Also ^  is the gradient

ö=öfc_i

where _  Ĵt|©fc_2,0 and

^|© fc_2,0 “  (®Jfc-l|©fc_2»D A 1 |©fc_2 ) '

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

Rk is the Hessian, or covariance matrix, approximation. The notation Tproj{.} represents a 

projection into the so called stability (in this case constraint) domain. This is discussed later in 

Section 2.4.

Implementing (2.24) is computationally expensive, since a matrix inversion is required. It is 

therefore more attractive to implement (2.25), thereby reducing computation requirements to the 

order Nj.  To further reduce the computational cost of the RPE scheme it is possible to consider 

that, as k increases, Rk becomes diagonally dominated. A scheme of complexity order Nq can be 

derived by assuming that the covariance matrix is always diagonal. The resulting update equation 

for each of the diagonal elements of Rk is given by

fjfc+iW = rk(*) + 7M-1 (V'L(-i(t') ~  nfc(t')) 1 < i < Nq , (2.29)
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where Rk = diag(r^( 1 rk{Ng)). Simulations have shown that this technique does not appear 

to reduce the asymptotic estimate of the RPE scheme, however initial transients may be degraded. 

Also, in comparison to the full RPE scheme, it is generally necessary to choose initial conditions 

which are closer to the true values.

Convergence Properties : The RPE algorithm has the following convergence properties under 

reasonable ergodicity assumptions: The estimate 6k converges with probability one, to a local 

minimum of V(6)  as k approaches infinity, where V(6)  is defined in (2.16), (see convergence 

analysis in Ljung and Söderström [1983],Dupuis and Kushner [1989], Kushner and Shwartz 

[1984]). Unfortunately however, a rigourous verification of the ergodicity type conditions is not 

yet complete for the HMM case.

While it is not possible to make claims of global convergence, it should be noted that in the 

simulation studies of Section 2.5.2, the only times convergence was to a point other than the global 

minimum of V{6),  was when all state level estimates of the HMM converged to the same value, 

or when the observation noise variance was so small that the covariance matrix, Rk , was out of 

the range of the computer, for initial estimates far from the true value. These are of course easily 

detected situations. However, in cases where initial estimates were far from the true parameters, 

the evolution of the estimates was sometimes too erratic or too slow to be useful.

The RPE technique is based on a Newton off-line re-estimation approach which is known to be 

quadratically convergent. In contrast, the RKL technique [Krishnamurthy and Moore 1993] is 

based on the off-line EM algorithm which is known to be linearly convergent. While the theory 

has not yet been fully developed for convergence rates of either recursive scheme, at least it 

is possible to say that from simulations, after initial transients, the RPE scheme has an error 

function, l /kJ2t=i  & ~ & » which appears proportional to 1 / \/7c, compared to the RKL scheme 

which appears proportional to 1 / \ fk,  (for noise variance 1). On the other hand, the RKL scheme 

has a computational effort, for parameter updates, of order Ng (where Ng is defined in Section 

2.2.2), whereas the RPE scheme has effort of order Nj.  The RPE scheme can, however, often be 

implemented using decoupling assumptions to gain reduced computational complexity of order 

Ng without adversely effecting the asymptotic estimates.

It is also worth noting that under the usual ergodicity assumptions, the convergence result holds, 

for the RPE scheme, whether or not the true system belongs to the model set, {#}. This means that 

even if the system is of higher dimension than parameterised, (2.22) will choose an appropriate
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best approximation in the sense of minimising V{6). This is a valuable robustness property, and 

implies the RPE technique is not dependent on a precise set of model assumptions.

A final point to mention is that prediction error algorithms, such as RPE, are based on the 

assumption that observations consist of two parts: a predictable part and an unpredictable Gaussian 

distributed random part. The implication of this for Markov chains (which jump randomly between 

states in a finite-discrete set as opposed to the random-walk nature of linear systems in Gaussian 

noise) is that such algorithms may not be applicable in the low noise case. Under such conditions 

the random jumps from state to state will be much larger than the deviations due to the Gaussian 

observation noise, and hence can not be approximated by a Gaussian assumption. Fortunately 

in low noise conditions, with the aid of smoothing, the random jumps can be predicted and this 

problem overcome, although the techniques are somewhat ad-hoc (see Example 3.5).

Increased Step Size and Averaging : Equations (2.22) and (2.24) show how the gain sequence, 

7*, scales the update of both Rk and 0*. Apart from satisfying (2.26) it can be any function. 

Generally, it has the form 7 k =  70 / k n , n G R .  This form is used under the assumption that as k 

increases, the estimates improve and need to be updated less. In the derivation of (2.24), 7k — 1 / k 

is assumed. In practise, for this case, 7k tends to become too small too quickly, and does not allow 

fast convergence for initial estimates chosen far from the minimum error point. To overcome this 

problem, a method suggested by Polyak and Juditsky [1992] is used whereby a larger step size 

is applied (that is 0 < n < 1), and then the estimates are averaged. Averaging is used to get a 

smoother estimate, as the larger step will mean higher sensitivity to noise, and also to ensure that 

the third requirement in (2.26) remains satisfied. In the simulations n = 0.5 was chosen.

A further heuristic technique is to start averaging only after the estimates are in a close range of 

the true value, as indicated by a small error value, V{0).  However, while this may improve the 

transient response, it will have no effect on the asymptotic properties.

2.4 Gradient Vector and Projection Calculations

In this section gradient and projection calculations for the RPE based algorithms (2.22)-(2.27) are 

presented, to estimate the HMM parameters, 0. These algorithms update Ok and Rk recursively, 

and require yk\Qk , anc* t0 evaluated at each update. In Section 2.4.1 ipk is evaluated for the 

parameterisation on a simplex, given by (2.5). In Section 2.4.2 the parameterisation on a sphere
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(2.7), is employed. The required projections, Tpr0J, are also given in each case. In Section 2.4.3 

the RKL scheme is presented with the parameterisation on a sphere, as opposed to the simplex as 

is given in Krishnamurthy and Moore [1993], again to ensure the transition probability estimates 

remain non-negative.

2.4.1 Parameterisation on a Simplex

The derivative vector, ipk, defined in (2.27), is given, for m, n £ [1, . . . ,  N], in the case of the first 

parameterisation (2.5), by

^k = ^* i© fc-2,0 dyk\ek-2,o dyk\&k_2,o
oe

9=9k- 1
dgr ddr dal,

(2.30)
9=9u_\

where yk\Qk e is given in (2.28). In the remainder of this section the dependence of d k on 0^._i 

is omitted and N k = (aA:,!)-1 .

The derivatives with respect to the discrete-state values, gz, are obtained by differentiating (2.28) 

to yield

^fe+il0fc-,,g
dgm

= N k(a(')m, d k) +  N k{g,A'r]k(m))  -  N k (\,rjk(m)){g, A ' a k)
(2.31)

where eq )m =  (aim, . . . ,  and ^ (m )  =  d d k/dgm is the iV-dimensional vector given by

the following recursive equation:

rik+\{m) =  B(yk+\,0)A'7ik{m) +  diag(em) f  yk+x- - (Jrn̂ j  B( y fc+i , 0)A'dk  . (2.32)

The derivatives with respect to transition probabilities, 0 < < 1, are given by

del-mu
N kgndk{m) +  N k(g,A'Zk(m,n))  -  N k(\,  tk(m, n))(g, A ' d k)

(2.33)

where £fc(m,n) =  d dk /damn is the iV-dimensional vector given by the following recursive 

equation:

n •£k+\(m, n) = B(yk+\,0)A'Zk(m,n)  +  dk{m)b(yk+i, gn)e (2.34)
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The derivatives (2.33) and (2.34) are not defined along the “edges” of the simplex, that is for 

atJ = 0 or 1, so that in practise, a projection from the simplex boundary to a neighbourhood inside 

the simplex, is required.

The derivative with respect to the measurement noise variance, cr-, is given by

dcr}„ = N k(g ,A 'pk) -  N 2k( L p k) ( g , A ’a k)
(2.35)

where pk =  d a k/ d a “ is the N -dimensional vector given by the following recursive equation:

Pk+1 =  R(yk+i,0)A'pk  +  6(yk+i)B(yk+i ,0 )A 'a k , (2.36)

where

Hyk+ 1) =  diag
(yk+\ -  g i)2

2 at
iVk+1 ~ ffyv):

2(7,1,

In the case of this first parameterisation, projection onto J2jL\ «ij =  1 is straightforward:

a,j(fc + 1) = l)j a f j i k + l ) ,  (2.37)

where ^ ( k )  is the un-normalised RPE estimate.

There is, however, no guarantee that alJ > 0, either before, or after, projection. One approach to 

achieve this end, is to reduce the step size at any iteration which violates the condition. Notice 

too that the projection in this case, using the first parameterisation (2.5), is not an orthogonal 

projection. It does however have the property that projection of > 0 onto J2jL i ^ij —  ̂

achieves atJ > 0, in contrast to the orthogonal projections which may violate atj > 0 after 

projection.

The computational requirements can be further reduced by estimating only N  -  1 transition 

probabilities for each state value, and using the constraint i aij — • t0 determine the remaining 

value. Actually it is a little disconcerting that, for such a scheme, there is a free choice of which 

aij 's to leave out of the parameter vector, 6. However, experience has shown that it is better to 

leave out the smallest element in each row of A.
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2.4.2 Parameterisation on a Sphere

In the case of the second parameterisation (2.7) with stJ rather than its square alJ, then

ipk =
^^k\Qk_i,e

do
&=6k-1

( d yk\Qk_ 2,6 d y k \ e k_ 2,e d yk\@k_2,e V
\  dgm ' dsmri ’ 0(j2 y

(2.38)

and again (2.31)(2.32)(2.35) and (2.36) apply, however (2.33) and (2.34) are formulated with a 

modification to the derivative calculation. Given that the parameterisation implies stJ lives on the 

surface of a unit sphere in 1RA , more appropriate expressions for (2.33) and (2.34) can be gained 

by projecting gradients onto the tangent space of the surface of this sphere. The projected gradient 

can be written as follows, (see Appendix A):

’* = 2iV*0*;(m)«m„9'(e„ -  diag(sm(.) )^ ( j) + Nk{g,A'Zk(m,n))
(2.39)

~ N k ( L  Zk{m, n) ) (g , A ' d k)

where sm(_) =  (smi , . . . ,  smjv) and ^-(m , n ) = ddk /dsmn is the A-dimensional vector given by 

the following recursive equation

t k + i {m ,n )  =  B (y k+ i ,9 )A 'Z k( m yn) +  2ak(m )B (y k + u e)srnn [en -  diag(5m(.))5,m(>))

(2.40)

In achieving an update estimate of slJ at time k +  1 via (2.38), denoted here stJ(k +  1), there is a 

required projection rpr0J{.} into the constraint domain (2.8), the surface of a unit sphere in R A . 

Observe that this domain is also a stability domain. Thus in updating slJ, first an unconstrained 

update, denoted s^,  is derived then projected onto the sphere as follows

sfjik + 1) — (2.41)

to achieve i $i j(k  +  1) =  1 as required.

Recall, as described in Section 2.2.1, with the parameterisation on a sphere, the constraint manifold 

is differentiable at all points and the positivity of transition probability estimates is inherently 

guaranteed. Further, the projection in (2.41), is orthogonal. Simulation studies show that the 

parameterisation on a sphere yields much improved estimates compared to the parameterisation 

on a simplex.



2.4 Identification of Hidden Markov Models 37

Remark 2.2: Figure 2.2 shows the HMM/RPE scheme in block diagram form. It indicates the 

way in which the standard HMM filter and RPE identification algorithm have been coupled. □

Sensitivity
equations

Covariance
equations

HMM
state
estimate

RPE
parameter
estimate

Where fi(.) is given implicitly in (2.32)(2.34) (2.36) and (2.40) 
and f2(.) is given implicitly in (2.31 )(2.33) (2.35) and (2.39)

Figure 2.2: HMM/RPE scheme for HMM identification

2.4.3 RKL Scheme with Parameterisation on a Sphere

The RKL scheme presented by Krishnamurthy and Moore [1993] with parameterisation on a 

simplex, can now be modified for the parameterisation (2.7). It is of benefit to do this because 

even though the RKL update equations for atj on a simplex, have the property that the incremental 

terms, when summed over j ,  add to zero, there is no constraint to ensure atJ > 0. Employing 

(2.7), and the approach given in Appendix A for gradients on a manifold, leads to the following 

modifications to the score vector, Sa , and the Fisher information matrix (FIM), I A, as defined in
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Krishnamurthy and Moore [1993].

PA(iJ)

S A ( h j )  =

(2.42b)

(2.42a)

where the score vector for the transition probabilities is now given by the vector S'a =  

( S 4 ( l ) , . . . , S 4 (vV))' f°r S a {i ) = (5 ,4 (2, 1 5 ,4 (2, N)),  and the FIM is given by I A = 

blockdiag(-Pi, . . . ,  P/v) where now, Pt = diag(p^(2, 1), .  N)).  Also, 7 *^(2) =  P( X k =

ex I Yk,0)  is the conditional probability of the state at time k, and Ck\k(hj) — P ( ^ k  =  €i , Xk + 1 =  

e3 I Yk,0)  is the conditional probability of transition from time k to k +  1. In contrast to the RKL 

scheme on a simplex, where I A is block diagonal, here it is easily seen that I A is strictly diagonal. 

Consequently, the computational complexity of this RKL scheme is still of order N q, being that 

for RKL on a simplex.

The update for the transition probabilities on a sphere, is now given by

on a sphere, the projection (2.41) is required.

2.5 Implementation Considerations and Simulations

Simulations of the RPE scheme, as applied to the HMM formulation presented in this chapter, 

have been carried out on three-state and four-state Markov chains. This section presents some 

practical implementation aspects which should be considered in simulations, and also the results 

of the simulations.

2.5.1 Implementation Considerations

Sij(k 4- 1) — Sij(k) -1— 4-7 ,4 (2.43)

( Z )  ( i )
where gj and pr- are given in (2.42a) and (2.42b) respectively. As with the RPE parameterisation

This section considers important implementation aspects such as scaling, multi-pass processing, 

introduction of fixed-lag smoothing, stability, and re-initialisation to cope with slowly time varying 

models.
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Scaling : From (2.13) (2.32)(2.34) and (2.36) it is noted that as k increases, a k(i) and derivatives 

of ak(i) decrease exponentially. It is necessary to scale estimates of these variables to ensure 

they remain within the numerical range of the computer. In order to develop a consistent scaling 

strategy the scaling factor must cancel out in the final update equations, (2.22) and (2.24), to ensure 

it has no effect on the estimates.

The following strategy for scaling is proposed, based on techniques in Rabiner [1989]. Let a k be 

the actual un-scaled forward variable defined in (2.13), let a k be the un-scaled updated version 

based on the previous scaled version, and let ctk be the scaled updated version based on the 

previous scaled version, that is:

= Ck&k(i) , (2.44)

where

It follows from (2.44) that

= CrOik(i) with Ct  = {CkCk- \  • • -Co) , (2.46)

and for the derivative terms (77, £,p) similar expressions can be derived. For example (2.32)(in 

scalar notation) gives

Vk+\(j) = ^ 2  Vk^ i jKvk+i^gj )  + '52&k(i)ai j yk+l 2 -9 jKyk+u9j) , (2-47)
t = i  *•=1 G w

which leads to

rfk(i) = CT r)k(i) • (2-48)

Similarly, l k(i) = Cj^k{i)  and pk(i) = C j  pk(i)- From (2.46) and (2.48) it can be shown, by 

direct substitution into (2.32), that evaluating derivatives of V^+i with respect to gz, using a k and 

f)k , yields identical results to the case where no scaling has taken place. Similarly it can be shown 

that scaling does not affect the estimates for the transition probabilities and noise variance.

Multi-pass Processing : Multiple passes through the data can be used to improve the estimates. 

One method is to divide the data up into sections. The algorithm is applied to each section a number 

of times before the next section of data is used. The initial estimate at each successive pass is given

1

Ef=, &k(i)
(2.45)
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by the output from the previous pass and is therefore an improved initial estimate. Asymptotically 

this will have no effect, however initially it may be a useful technique for improving transients.

Fixed-Lag Smoothing Algorithms : A fixed-lag smoothed estimate of the state can be computed 

by replacing a k with a £ \ for which the zth element is given by a £ ( i)  = P(Yk+&,Xk | 9). It is 

shown in Krishnamurthy and Moore [1993] that can be computed as

®k{ 0 ß k \k + A  ( 0 i (2.49)

where A is the fixed lag and ß k\k+A is given by 

ß k + A \k + A  (0 1 i

ßt\k+A{i) =  E j L i ßt+i \k+AÜ)ai jHyt+i , 9 j )  , fori = k + A -  \ , k  + A -  2....... k ,
(2.50)

f°r ß k \k + A  = ^(2/fc,2/ib+l,- • • , Vk+A  I X k l 6) .

Of course a small memory requirement is imposed because A + 1 data points must be stored, 

namely {yk, y k+ \ , . . . , y k+A).

The justification for this substitution is based on the observation [Krishnamurthy and Moore 1993] 

that smoothing improves estimates by giving a better approximation of the Markov chain’s current 

state. In simulation studies it was found that, in many cases, parameter estimates were better and 

convergence was improved, when (2.49) was implemented.

Initialisation and Projection : Initialisation needs to be addressed to insure all assumptions are 

satisfied. The main requirements are that: initial parameter estimates are close to the actual values 

and satisfy the model constraints, initial gradients are normal to the surface of the sphere in R v 

(for (2.39) and (2.40)), and the covariance matrix is initialised in such a way that the parameter 

error remains bounded.

The second two requirements are satisfied in the scheme presented here, by not updating the 

parameter estimates in the first instance, until reasonable estimates of gradients and covariance 

matrix are obtained. It was found that in the order of N 2 data points were required to obtain such 

a state. In place of this method, a projection can be applied in the first instance to ensure estimates



2.5 Identification of Hidden Markov Models 41

do not change substantially from the initialised values. These schemes can be implemented to 

ensure 6k+ 1 is in a small neighbourhood of 6^, as is required for RPE.

From simulation studies it was found that two other factors effected the performance of this 

HMM/RPE scheme. They are the choice of the initial step size and the covariance matrix. 

Fortunately, however, the ‘best’ choice of 70 and Ro was observed to depend only on the observation 

noise variance, which is often assumed to be known. If other initialisations were used, the estimates 

still converged to the true values, although it generally took many more iterations. Therefore, in 

cases where the observation noise variance is known, the transient performance of the scheme can 

be improved by appropriate selection of 70 and Ro.

Re-initialisation Of Variables : As noted previously, the choice of 7  ̂ is based on the assumption 

that as k increases, the estimates are better. In the case of time-varying HMMs, 7/- may become 

too small to allow for large jumps in signal parameters. One way of tracking time-varying HMMs 

is to periodically reinitialise 7 ^, especially when large step changes are involved. For the same 

reason, it is also useful to reinitialise Rk and ipk. The frequency of re-initialisation is chosen as a 

trade off between good steady state estimation and time-varying tracking ability. Techniques for 

tracking quickly time-varying parameters are discussed in Chapter 4.

2 .5.2 Simulation Studies

Presented here are results of simulation studies using computer generated finite state Markov 

Chains in WGN.

Example 2.1: A three state Markov Chain embedded in WGN was generated with parameter 

values an = 0.9, atJ = (1 — an) / (N  -  1) for i ^  j ,  g = [0, 1,2]' , = 1. Figure 2.3

and Figure 2.4 show parameter estimates for this data. The RPE algorithm was used with 

parameterisation (2.7), the projection scheme (2.41), and the covariance matrix updated by (2.25). 

The algorithm was initialised with parameter estimates, =  0.1, g = [0.5,0.6,0.7]'. This 

scheme gives a complete update by accounting for all the cross coupling between estimates, rather 

than implementing decoupling of the covariance matrix as discussed in Section 2.3.3, equation 

(2.29), however there is little difference in the estimates generated for the two cases, as shown 

later in Example 2.5. In addition, for the covariance matrix recursion, 7  ̂ = 1 /k ,  as is strictly 

the case from its derivation. However, for the parameter update, 7  ̂ = 1 / V k ,  and averaging is 

implemented to achieve faster convergence, as discussed in Section 2.3.3.
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Notice that after only 10000 points, the estimates for both the state values and the transition 

probabilities are close to the true values, even though they they were initialised with a large error. 

By way of comparison, the RKL scheme presented in Krishnamurthy and Moore [1993], was 

applied to the same data. The estimates shown, using the RPE scheme (Figure 2.3 and Figure 2.4), 

converge to the neighbourhood of the correct values, in a comparable time to the RKL scheme, 

however, asymptotic convergence is faster.

Example 2.2: A four state Markov Chain embedded in WGN was generated with parameter 

values an =  0.9, atj = (1 — an) / (N  -  1) for i /  j ,  g = [0, 1,2, 3]', <rw =  1. Figure 2.5 and 

Figure 2.6 show the parameter estimates for this data, where the computational effort is of course 

greater than that for Example 2.1. Initial estimates are, again, able to be taken far from the true 

values, however more iterations than for the three state case, are required before the estimates are in 

the region of the correct values (10s points compared to 104). These estimates were generated with 

the same scheme as was used in Example 1, with initial estimates an — 0.1, g = [0.5, 1, 1.5,2]'. 

HMMs with up to six states have been tested, and no limit to the number of states is anticipated.

Example 2.3: For a comparison of performance under the high noise case, a three state Markov 

Chain embedded in WGN was generated with parameter values an = 0.9, = (1 — an) / ( N — 1)

for i ^  j ,  g = [0, 1,2]' , ow — 4. Figure 2.7 and Figure 2.8 give parameter estimates for this 

data using the same scheme as in Example 2.1, and initialised with alt =  0.1, <7 = [0.5, 1.4, 1.6]'. 

In this case the parameter estimates take longer to reach the neighbourhood of the correct values 

(2 x 105), and there is greater sensitivity to initial estimates. A longer averaging length would be 

useful in order to gain smoother estimates for this high noise case.

Example 2.4: Figure 2.9 and Figure 2.10 show the estimates for a three state Markov Chain 

under the assumption that six states are present. The data used is the same as for Example 2.1. 

It can be seen that even if the algorithm is computed for a higher order model, the estimates will 

still move to the correct values. It should be noted that the transition probability estimates have 

estimated the values for a six state system with g = [0,0, 1,1,2,2]'. If model reduction is applied 

to the estimated values, then the true three state transition probability matrix is generated.

Example 2.5: This example demonstrates the feasibility of using the reduced complexity RPE 

algorithm derived by assuming the covariance matrix is diagonally dominated, as discussed in 

Section 2.3.3. The parameters of the HMM are atl = 0.7, atJ = (1 — a n ) / (N  — 1) for i /  j ,  

g = [0 ,1 ,2]', crw — .5. The initial conditions for the algorithms are än = 0.1, £ = [0.5, 1.4, 1.6]'.
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Figures 2.11 and 2.12 show parameter estimates for this data, generated using the full RPE 

algorithm as used in the previous examples. Figures 2.13 and 2.14 show parameter estimates 

generated using a strictly diagonal covariance matrix. The same data sequence was used in both 

cases.

Comparing the results from the two schemes shows that there is very little difference in the 

estimates. It can be seen, however, from other simulation studies, that the range of initial 

conditions which result in convergence, is smaller for the reduced complexity scheme. Also, the 

transient response of the estimates is generally worse. These are the trade-offs which need to be 

made when considering such reduced complexity algorithms.

Empirical comparison of the convergence rates of RPE and RKL : When focussing on the 

asymptotic convergence rates, as discussed in Section 2.4, simulations show that the RKL scheme 

asymptotically converges at a rate which is the square root of that for the RPE scheme. Figure 

2.15 and Figure 2.16 show the error function defined in Section 2.3.3, plotted against time, k , for 

the RPE and RKL schemes respectively. The data used is the same as that used in Example 2.1. 

Although it is not shown, the RPE scheme with covariance matrix decoupling, displays the same 

asymptotic convergence as the full RPE scheme.

Parameter Estimation Error Studies : Presented in Tables 2.1 to 2.6 are results of sim­

ulations carried out using two-state Markov chains in WGN. Each table is generated from 

50 simulations and the error function used (The parameter estimate error (PEE)) is given by 

PEE(f) = y j(1/50) ~ z )2- A two-state process was used in order to give meaning to the

noise variance, when presented in the form of a signal to noise ratio (SNR). The parameters of the 

Markov chain are g = [0, 1]' and an = 0.9. The SNR is therefore given by 101og( 1 /cr^). Initial 

parameter estimates used in generating Tables 2.1 to 2.4 were g = [0.4,0.6]' and an = 0.5. The 

tables show that the HMM/RPE algorithms converge to the correct values, even for high noise, 

and also for a wide range of initial conditions. In some cases the state value estimates collapsed 

to a single state, when this occurred the algorithm was re-initialised.
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2.6 Conclusions

In this chapter an RPE based on-line parameter and state identification scheme for HMMs has been 

derived. The algorithms presented are memory efficient and of computational complexity 0( Nj )  

for the RPE estimate and 0 { N 2) for the HMM information-state evaluation. Two parameterisations 

of the HMM have been considered, one on a simplex, the other on a sphere. Simulation studies 

have shown that advantages are gained by working on the sphere and projecting gradients into 

the tangent space. An existing RKL scheme has also been reformulated with the parameterisation 

on a sphere. In addition, implementation aspects for the RPE scheme have been discussed, and 

the ability to estimate parameters of both three and four state Markov chains in WGN has been 

demonstrated. Simulation studies have also shown that, in many cases, decoupling assumptions 

can be made which reduce the complexity of the RPE scheme to O{No).

2.7 Figures and Tables

The figures and tables for this chapter are now presented.
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50 100 150 200 250 300 350 400
Time k (x 1000)

A = 0 , = 1 , Averaging length = 1000

Figure 2.3: Level estimates of 3 state Markov chain

Diagonal elements of A
a  0.7

^  0.5

aü(0)=0.1, g(0)=(0.5, 0.6, 0.7)’

150 200 250 300 350 400
Time k (x 1000)

A = 0 , <7̂  = 1 , Averaging length = 1000

Figure 2.4: Transition probability estimates of 3 state Markov chain
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50 100 150 200 250 300 350 400
Time k (x 1000)

zX — 0 , cî u — 1 , Averaging length = 1000

Figure 2.5: Level estimates of 4 state Markov chain

Diagonal elements of A

150 200 250 300 350 400
Time k (x 1000)

= 1 , Averaging length = 1000

Figure 2.6: Transition probability estimates of 4 state Markov chain
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Time k (x 1000)

A = 0 , <7̂  = 16 , Averaging length = 1000 

Figure 2.7: Level estimates of 3 state Markov chain in high noise case

Diagonal elements of A

50 100 150 200 250 300 350 400
Time k (x 1000)

A = 0 , <7“ = 16 , Averaging length = 1000

Figure 2.8: Transition probability estimates of 3 state Markov chain in high noise case
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TO 20 30 40 50 6Ö 70 80 90 100
Time k (x 1000)

A = 0 , o \  — 1 , Averaging length = 1000 

Figure 2.9: Level estimates of 3 state Markov chain under 6 state assumption

Diagonal elements of A

^  0.9

10 20 30 40 50 60 70 80 90 100
Time k (x 1000)

A = 0 , <7̂  = 1 , Averaging length = 1000

Figure 2.10: Transition probability estimates of 3 state chain under 6 state assumption
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aii(0)=0.1, g(0)=(0.5,1.4,1.6)’

40 60
Time k (x 1000)

A = 0 , crw = .5 , Averaging length = 1000

Figure 2.11: Level estimates 3 state HMM

Diagonal elements of A

aii(0)=0.1, g(0)=(0.5,1.4,1.6)’

40 60
Time k (x 1000)

A = 0 , crw = .5 , Averaging length = 1000

Figure 2.12: Transition probability estimates of 3 state HMM
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aii(0)=0.1, g(0)=(0.5,1.4,1.6)’

40 60
Time k (x 1000)

A = 0 , aw = .5 , Averaging length = 1000

Figure 2.13: Level estimates for reduced complexity RPE scheme

Diagonal elements of A

aii(0)=0.1, g(0)=(0.5,1.4,1.6)’

40 60
Time k (x 1000)

A = 0 , cw = .5 , Averaging length = 1000

Figure 2.14: Transition probability estimates for reduced complexity RPE scheme



E
rr

or
 

Er
ro

r

2.7 Identification of Hidden Markov Models 51

Time k

Derived from Figure 2.3

Figure 2.15: Error function for RPE scheme

Time k

Derived from RKL scheme with same data as for Figure 2.3

Figure 2.16: Error function for RKL scheme
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Iterations PEE(^j) PEE (g2) PEE(an) PEE(a22)
25000 0.085 0.088 0.042 0.047
50000 0.058 0.041 0.017 0.013
75000 0.045 0.041 0.015 0.010

100000 0.036 0.033 0.011 0.012

Table 2.1: Parameter estimation error (PEE) for SNR = OdB

Iterations PEEG?,) PEE (g2) PEE(än) PEE(a22)
25000 0.231 0.165 0.076 0.103
50000 0.026 0.128 0.056 0.068
75000 0.185 0.115 0.043 0.029

100000 0.162 0.127 0.043 0.027

Table 2.2: PEE for SNR = -6.0dB

Iterations PEE(<7,) PEE(^2) PEECfiu) PEE(d22)
25000 0.238 0.224 0.063 0.121
50000 0.239 0.187 0.046 0.101
75000 0.219 0.186 0.040 0.084

100000 0.194 0.185 0.037 0.065

Table 2.3: PEE for SNR = -9.5dB

Iterations PEE(<7,) PEE(^2) PEE(d,i) PEE(d22)
25000 0.271 0.238 0.131 0.146
50000 0.245 0.232 0.159 0.137
75000 0.226 0.190 0.127 0.110

100000 0.210 0.210 0.099 0.085

Table 2.4: PEE for SNR = - 1 2.0dB
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a«( 0) PEE(s0 PEEOh) PEE(an) PEE(d22)
0.7 0.107 0.115 0.038 0.023
0.5 0.160 0.095 0.063 0.031
0,3 0.182 0.113 0.067 0.045
0.1 0.143 0.077 0.057 0.033

Results after 25000 iterations, <)(0) = [0, 1]', SNR = OdB

Table 2.5: PEE for variations in initial trans. prob, estimates

M 0 ) M 0 ) PEE(<7i) PEE(g2) PEE(dn) PEE(d22)
0.1 0.9 0.081 0.094 0.078 0.099
0.3 0.7 0.078 0.070 0.022 0.025
0.5 0.5 0.120 0.135 0.073 0.083

Results after 25000 iterations, at-t-(0) = 0.9, SNR = OdB

Table 2.6: PEE for variations in initial level estimates
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Chapter 3

Identification of HMMs with Grouped 

States

3.1 Introduction

\H n  his chapter presents an algorithm which addresses the issue of computational complexity 

for on-line identification of hidden Markov models (HMMs). In Chapter 2, a recursive 

prediction error based scheme was presented for HMMs, for which the computational effort was 

in the order of the square of the number of parameters. This chapter considers HMMs for which the 

state values, g, of the Markov chain, are clustered into groups. This allows a reformulation of the 

Markov model and results in a sub-optimal reduced order identification scheme. The computational 

complexity of this new scheme is much lower than that for the full scheme of Chapter 2. Actually, 

an exact definition of clustering is not discussed, rather, a general identification technique is 

presented for which the computational requirements are greatly reduced when the state values are 

divided in some way into groups. The applicability to certain types of cluster patterns is tested via 

simulation studies.

An important motivation for this work comes from recent developments in multi-resolution com­

munication systems. For such systems, essential information (for example, outlines in an image) 

is sent with a certain signalling scheme, while more detailed, but not essential, information (for 

example, shading in an image) is sent with a higher resolution signalling scheme, therefore re-

55
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quiring higher resolution in the receiver in order to be decoded. In high noise conditions it may 

be that the high resolution signal can not be decoded, yet the low resolution signal, carrying 

the essential information, is successfully decoded. One example is with quadrature amplitude 

modulated (QAM) signals (as discussed later in Chapter 4) where the symbol constellation can 

be modified by dividing it into groups with non-equidistant symbols (and hence varying degrees 

of resolution). The general techniques of this chapter can be applied to such QAM systems with 

clustered state values in order to reduce the computational complexity o f demodulation.

Much work has been carried out into grouping states associated with Markov chains (see for 

example, Simon and Ando [1961]). Techniques such as stochastic complementation [Meyer 

1989] are sophisticated methods of producing reduced complexity representations of Markov 

chains which have large numbers of states. They have been used mainly to evaluate steady- 

state probability distributions [Cao and Stewart 1985] and reduced order controllers for Markov 

systems [Aldhaheri and Khalil 1991, Delebecque and Quadrat 1981]. When there exist only 

weak interactions between groups of states, these techniques provide very accurate reduced order 

approximations [Courtois 1975]. The procedures, however, require knowledge of the transition 

probabilities, which are o f course unknown in the case of model identification. Therefore, more 

straight forward state lumping techniques are of interest for the on-line identification problem 

considered in this thesis.

In this chapter a lumping procedure is proposed which produces a reduced order representation 

of the Markov chain, suitable for use with RPE parameter estimation techniques. It is an exact 

technique, according to the definition o f lumpability in Kemeny and Snell [1960](p. 124), for 

Markov chains which have the property that for each state within a group, there is an equal 

probability o f making a transition to any other given group. The technique is also relevant for 

Markov chains for which the transition probability matrix is doubly stochastic. However, in this 

case the result is only approximate, being based on the average, or steady-state, behaviour o f the 

process. Other more general Markov chains can also be considered although knowledge of the 

steady state probability distribution, and hence the transition probability matrix, is required for 

such cases.

The general approach to identification in this chapter is the same as in Chapter 2, where the 

HM M  is modelled in such a way as to allow an RPE algorithm to be applied. The parameters o f 

interest are the state values and transition probabilities o f the Markov chain, and the noise variance
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associated with the measurements. In this chapter the transition probabilities are parameterised 

on a sphere so as to ensure that the derivatives are smooth, and that the estimates remain positive.

A key to the ideas presented in this chapter is the subdivision of the Markov chain, and allocation 

of associated flag states, representing a lumping of all states not in the particular group. This 

extra flag state is added to each group of state values to indicate weather the actual state is in the 

group or not, at each time instant. This is an essential idea which allows a reduced complexity 

HMM/RPE identification scheme to be developed.

Simulation examples are presented to illustrate the algorithms. These examples show that the 

proposed schemes can satisfactorily identify HMM parameters. They also illustrate that the 

distance between clusters, the distance between state values within clusters, and the noise level, 

all contribute to the achievable performance.

This chapter is organised as follows: Section 3.2 formulates the HMM and details the reduced 

order model. In Section 3.3 RPE based recursive algorithms for HMM estimation are derived, 

working on the sphere for the constrained transition probability estimates. In Section 3.4 simulation 

examples are given. Finally, conclusions are presented in Section 3.5.

3.2 Problem Formulation

This section presents modifications to the HMM signal model of Chapter 2, for the case where 

state values are clustered into distinct regions.

3.2.1 State Space Signal Model

Let Xk  be a discrete-time homogeneous, first order Markov process belonging to a finite-discrete 

set, as in Section 2.2.1. Let N  be the number of states in the Markov process, and let L be the 

number of groups into which the states are partitioned. Let the zth group have elements and

Now, the state space of X , without loss of generality, can be identified with the set of unit vectors 

S =  {ei, e2, .. . , e N), where ex -  (0 ,..  . ,0 ,1 ,0 , . .  .,0 ) ' G R A with 1 in the zth position. The

define

(3.1)
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dynamics of A'* are given, from Lemma 2.1, as follows:

X k+i = A ' X k + Mk+l , (3.2)

where A is the N x N  transition probability matrix with elements aXJ = P ( X k + 1 = ej \ X k = e,-). 

It is partitioned according to the grouping of states, in the following way:

* A \i A\2 . . .  A\l  ̂

A21 A22  . ■ ■ A 2L

\  A i\ Al2 . . .  A n  /

(3.3)

where An is a square matrix of dimension x Of course atJ > 0 and J2jL\ ao — L for 

each i. It is also of use to denote { l e Z +} the complete filtration generated by X,  that is, for 

any k E Z + , T k is the complete a-field generated by X k, I < k.

Also, consider the observation process defined in (2.2):

yk = g(Xk) + wk , (3.4)

where without loss of generality, since X k is in a discrete set, g{Xk) = (g, X k), and g 6 R N is 

the vector of state values of the Markov chain. In this chapter it is assumed that the state values 

can be grouped as follows:

g = ((5(l))',(ff'2))'....... (g{L))'y ■ (3.5)

Assume that wk is independent and identically distributed (i.i.d.), with a zero mean Gaussian 

distribution, so that wk ~  jV[0,cr^]. Also, let bk = (bk( 1 bk(N))'  denote the vector of 

parameterised probability densities (which will loosely be called symbol probabilities), where 

bk(i) = b(yk, gi) -  P[yk \ X k = e,-, 0]. The explicit expression for b(yk,gi) is given in (2.4).

In addition, the assumption is made that the initial state probability vector for the Markov chain 

7T = ( “K{) is defined from 7rt = P(X\  = et). As in Chapter 2, the HMM is denoted A = 

(A,£,7r,cr~).
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3.2.2 Reduced Order State Space Signal Model

In order to decouple the Markov chain, and hence obtain a reduced order signal model, it is 

necessary to introduce the concept of flags. For each group of state values, an additional flag 

state is defined which indicates, at each time, k, whether or not the state value of the Markov 

chain belongs to that particular group. In addition, a new state vector, and a corresponding set of 

indicator vectors, are defined for each group.

To illustrate the concept, consider a four state chain divided into two groups each with two 

elements. If X k  =  (0, 1,0,0)' for some k, then the corresponding grouped indicator vectors 

would be:
/ 0

1

\ /

and

0 N 

0

0 / 1 /
where the bottom element of each vector is the flag. If the flag is zero then the Markov state value 

is in that group, if the flag is 1, then the Markov state value is in one of the other groups. In effect, 

the flag state represents a lumping together of all the states not in the particular group.

More precisely, this can be expressed in the following way. Let X k be the state vector associated 

with the ith group. In this work, is called a grouped state vector. The dimension of x [^  is 

-F 1, as it represents the state values in the group, plus the flag. For the remainder of this 

chapter, let m and n be integers in the range [1, N],  and let x , 2, t and r, be given by the following 

expressions:

x =  for t such that H ^ ~ 1̂ +  I < m  < (3.6)

z = n — for r such that H^r~^  + 1 < n < 77('̂  (3.7)

where is defined in (3.1).

Now, the state space of can be identified with the set of unit vectors S (i) =  { e ^ , . . .  ,e ^ (l)+1}, 

where = ( . . . ,  0 ,1 ,0 , . . .) ' € R A(0 + 1, with 1 in the j th position. Now, as seen in the illustra­

tion previously, only one grouped state vector will take a value other than ( . . . ,  0 ,0 , 0 , . . . ,  1)', at 

each time, k. Specifically, it will be the grouped vector X ^  = ex \  where t and x are given in 

(3.6), and where Xk = em.



60 Problem Formulation 3.2

The dynamics of each of the i grouped state vectors are given by the following equation, for

1 < i < L:

4 +! = ( A ^ / aT  +' v b )  i jitb)  k-f 1 (3.8)

( 0where M k depends on Mk (see Remark 3.1), and

A<*'> =
An A (0 \

(0 Ab)AX A 22 /

where A tl is defined in (3.3), and

L k W

= E E ^ W ) .
e^\ 7 - 1

1 L k {()
a 2\ =  7(7y •) i

=̂i j= i 
*#*, L L

a22 = j(7T F.Y. E  E A<n(j, x),
* = l  n = l  j = l  r r  1

(3.9)

(3.10)

(3.11)

(3.12)

where At̂ ( . , j )  is the 7th column of the matrix An, An( j , . )  is the j lh row of the matrix Aa,  

Atn{j, x) is the element in the j th row and z th column of the matrix A(n, and

L
j b )  = Y j I & ) .

e=\
(3.13)

Remark 3.1: Equation (3.8) strictly holds only for lumpable or weakly lumpable Markov chains 

[Kemeny and Snell I960], In other cases, (3.8) is used as an approximation. The validity of 

such an approximate approach is discussed in Lindqvist [1978], and can be tested via simulation 

studies. □

3.2.3 Model Parameterisation

As in Chapter 2, consider that A is parameterised by an unknown vector 0 so that A($) = 

( A(0),g(6),  7T, <7 ^ ( 0 ) ) .  In this chapter, only the parameterisation on the sphere is proposed, 

due to the superior performance gained over the parameterisation on the simplex as observed in 

Chapter 2. The dimension of 9 is N q = N  +  N 2 +  1, representing N  state values, N 2 transition
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probabilities, and the noise variance associated with the observations. The important aspect of the 

work in this chapter is that the identification scheme involves decoupling which greatly reduces 

the computational complexity.

I . Parameterisation on a Sphere :

0 — {g \ , . . . ,  g jy, s \ \ , . . .  i s \ n  i S2 \ i i s n  n  i ) i (3.14)

where atJ = s2XJ. As with the parameterisation (2.7), (3.14) has only the equality constraint of the 

sphere surface, S N -  l, where

S'v - '  := j . s  : V - i  = 1

and therefore ensures each transition probability estimate is positive. 

The following state space signal model applies:

(3.15)

4+, = (AÔ D'̂ ' + M̂,

4 + i  = (a  {L)m  x (3.16)

Vk = Ef=i

This signal model is not, however, in a form suitable for application of RPE techniques to achieve 

estimates of 6 and Xk  from the measurements yk (due to the finite-discrete nature of the states, 

Xjf*). Such a model is now developed.

3.2.4 Parameterised Information State Signal Model

Let X ^ d denote the conditional filtered state estimate of X ^  at time k, that is,

4;> = £[4,)î .#] • (3.17)
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Let I  be defined to be the column vector containing all ones, and the information state be a 

A'(d + 1 dimension column vector with it’s j th element given by

(3.18)

" (i)Observe from Lemma 2.2, that X k^  can be expressed in terms of the column 

follows:

vector a^|0 , as

(3.19)

«1+119 = B<t)(W+,,0)(A<'>(Wa<*> , (3.20)

where B ^ ( y k,9) = diag( b(yk,g j ° ) , . . . ,  b(yk, g (̂ \ t ) ) , E v ^ ( / / ( - 0 +i,...,//(*)) b{yklge)).

Remark 3.2: It can be seen from these equations that the computational complexity associated 

with evaluating the information-states is in the order of A'(2) + l)2. This is compared to

N 2 for the scheme of Chapter 2. In most cases, + l)2 <<  N 2. For example, if

A'61 =  C  , Vi ,  then the computational requirements of the grouped algorithm presented in this 

chapter are less than those for the full scheme when the number of groups, A, satisfies the following 

inequality: A > l  +  ^  + ^ r > 2 . □

It is now necessary to express the observations, yk, in terms of the un-normalised conditional 

estimates, a j . ^ .

Lemma 3.1 The conditional measurements yk\Q are given by

where is defined in (3.18) and nk is a (0, y k~\) martingale increment.

Proof : The proof follows the same arguments as that for Lemma 2.4.

In summary, the parameterised estimator based signal model for an HMM parameter 6, and with
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states a (*')
k\8* is given by

a k+\\9 

( .L )
a W\\e

Vk\8

B ^ { y k+l,0)(A('He)Ya[\l 

A / (  gc > w \  (A W y g W ,„ \i = \ \ ^  0 J (aj.-i|0’i) /
+ nk

(3.21)

where nk is a (0, J ^ - i )  martingale increment. This signal model is now in a suitable form to 

apply RPE algorithms to achieve, simultaneously, state and parameter estimates, on-line.

3.3 Gradient Vector and Projection Calculations

In this section gradient and projection calculations for the RPE based algorithms (2.22)-(2.27) are 

presented, to estimate the HMM parameters, 9. As in Chapter 2, these algorithms update 9k and R k 

recursively, and require yk\Qk { and tfik to be evaluated at each update, where Qk = {91 , . .  ., 0k], 

and

9k\Qk_2,9k-\ \
i= 1 \

L I /  A i R a .  \  (A

V

9{l)(0k- .) 

0
k-l\6k

/
(3.22)

The derivative vector, ipk, defined in (2.27), is given, for m, n G [1 ,...,JV ], in the case of 

parameterisation (3.14), by

tpk = de
f  d yk\Qk_ 2,6 d yk\Qk_2,e d y k \ e k_2,e V

e = 9 k \  ^ S m n  )
(3.23)

8—9k-1

where yk\Qk 2 q is given in (3.22) by replacing Ok- 1  with 9. In the remainder of this section the 

dependence of dj^ on 0^_i is omitted, and = ( d j^ , l ) -1 , where

d l+i|0. = B (' l(t/t+, ,4 ) ( A ( * > (^ ) ) 'a 2k\et (3.24)

The derivatives with respect to the discrete-state values, gt, are obtained by differentiating (3.22) 

to yield the following:
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^ H l | 9 t _ |  ,g

'̂ 9rn = N (t) A“! jx) ) 4 ‘> + E '
^ ^ 2 1  ( x )  J  *=i  y

Jvi’Vs'0, t A • ' '/ x  7 7

a(0 \  ^21

-(^jfe°)2(L V k \ m ) ) { 9 (l\
Ai

A(O
cv(0

V ~ 21
(3.25)

where /!« ( .,  x) =  (A «( 1, x ) , . . . ,  K ^ \  x )) ', for x and / defined in (3.6), and where % \m )  =

£d d ^ /d g m is the ( A '(<) +  1 )-dimensional vector given by the following recursive equation:

7?[+i(ra) =  B (l)( t/j t+ ,,^ ) (A (l))'7y[l)(m ) +  d iag (e j°) 6 ( ^ + J , fiim) ( A (l)),d [0 ,
\  ^Ul /

(3.26)

where

4°  =

(* )
Cr
,(0

if //(*-*) +  1 < m <

e y (0+1 otherwise ,
(3.27)

The projected derivatives with respect to the square root of the transition probabilities, $ty, are 

given by

(3.28)

where

F = /i(A-( ,)+ 1)....... i 1( i ’,' - |4 l ) , / , W J l t i( i - |w |  + l ) , . . / I ( i - | I | + l )

for / z( j )  defined by

with

Gi = <

f i U )  =  G i N P & P 0 ) 4 ( 0  ,

1 i f t f ^ - 1) + 1 < i < H^)

1 /«/(*) otherwise

(3.29)

(3.30)

(3.31)

where t and x are given in (3.6).
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Also, £ k \ m ,n )  = dd^ /dsmn  is the (A'(i) + 1 )-dimensional vector given by the following 

recursive equation:

+2Cic $ ( t ) 8 mr&M(yk+u 9)EW (en -d ia g (5m(.))5'm(0)
( 3 . 32 )

where

E (t) =
0 . . .  0 o . . .  0

1'  1 '  0 1 '  1 '
-A '(0  -A '( .- i )  —/<■(«+0 ± h ' ( L )

Ce
1 if r = t

l /. /(r) i f r ^ t
and d ^ (^ )  =

d[.r)(a:) if r — <

4 r)(A'(r) +  1) i f r ^ f

As in Section 2.4.2, in achieving an update estimate of stJ at time k + 1 via (2.22), denoted here 

Sij(k + 1), there is a required projection r pr0J{.} into the constraint domain (3.15), the surface 

of a unit sphere in R //<L). This is performed using (2.41) to achieve s}j(k + 1) =  1 as

required.

3.4 Implementation Considerations and Simulations

Simulations of the RPE scheme, as applied to the grouped HMM formulation presented in this 

chapter, have been carried out on six-state and nine-state Markov chains. This section presents 

some practical implementation aspects which should be considered in simulations, and also the 

results of the simulations.

3.4.1 Implementation Considerations

As with the scheme presented in Chapter 2, important implementation aspects include scaling, 

multi-pass processing, fixed-lag smoothing, stability, and re-initialisation. Such topics have 

previously been discussed in Section 2.5.1. This section discusses issues specific to the grouped 

HMM problem.

Initialisation and Projection : Initialisation needs to be addressed to insure all assumptions are 

satisfied. The main requirements are that: initial parameter estimates are close to the actual values 

and satisfy the model constraints, initial gradients are normal to the surface of the sphere in R /y 1
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(for (3.28) and (3.32)), and the covariance matrix is initialised in such a way that the parameter 

error remains bounded.

In Chapter 2 simulation studies showed that initial estimates could be chosen far from the actual 

values. In this chapter, where the grouping assumption has been made, more stringent conditions 

apply. However, it has been observed that as a general rule, as long as the initial estimates are 

grouped in a similar way to the actual states, then convergence will occur.

De-coupling of the Covariance Matrix: An important aspect of the grouping procedure presented 

in this chapter, is that the covariance matrix of the RPE estimate, R can be assumed to be 

approximately block diagonal. In fact, it can be seen that there is little degradation to the 

performance, by considering the matrix to be strictly block diagonal. This is because in this 

grouped case, interactions within groups are much stronger than those between groups. In fact it 

is often possible to consider the matrix to be strictly diagonal, as in (2.29).

3.4.2 Simulation Studies

Presented here are results of simulation studies using computer generated finite state Markov 

chains in WGN.

Example 3.1: A six state Markov chain embedded in WGN was generated with parameter values

' .957 .02 .02 .001 .001 .001 f —4 >

.02 .957 .02 .001 .001 .001 - 3

.02 .02 .957 .001 .001 .001
, g  =

- 2

.001 .001 .001 .957 .02 .02 2

.001 .001 .001 .02 .957 .02 3

v .001 .001 .001 .02 .02 .957 j l  4 /

and crw = 1. This Markov chain satisfies the conditions of lumpability [Kemeny and Snell 1960], 

and as such, there is no approximation in the definition of the grouped transition probability 

matrices. In this example, the HMM was divided into two groups and the RPE algorithm was 

used to estimate the state values, with the transition probabilities being assumed to be known. The 

algorithm was initialised with parameter estimates, g = [-2 .6 , -2 .5 , -2 .4 ,2.4,2.5,2.6]'. The 

reduced complexity RPE scheme is used, where the covariance matrix is assumed to be strictly 

diagonal, as discussed in Section 3.4.1. In addition, for the covariance matrix recursion, 7^ = 1/A:,
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as is strictly the case from its derivation. However, for the parameter update, 7*. = 1 / \ /k ,  and 

averaging is implemented to achieve faster convergence, as discussed in Section 2.3.3.

Figure 3.1 shows parameter estimates for this data. It also shows, with a dotted line, the actual 

noise-free data, (g, Xk),  to indicate that the grouping of states results in the RPE algorithm only 

making significant updates to state-value estimates in the group which is active at the time.

Example 3.2: A nine state Markov Chain embedded in WGN was generated with parameter 

values

An =

'  .97 .012 .012 N

.012 .97 .012

v .012 .012 .97 j

Aij —

1 .002 .001 0 ^

0 .002 .001

v .001 0 .002 }

for i ±  j  ,

g — (1,2, 3 ,7 ,8 ,9 ,13 , 14, 15)', and ow = 0.5. The HMM was divided into three groups and the 

RPE scheme was implemented with the same conditions as in Example 3.1. The initial state value 

estimates were g = (1.8,2,2.2,7.8,8,8.2,13.8,14,14.2)'.

Figure 3.2 shows parameter estimates for this data. This figure demonstrates that the scheme works 

well for Markov chains which do not satisfy the strict conditions of lumpability [Kemeny and Snell 

1960], and are thus more widely applicable in practise. It also shows that when more states are 

considered, more data is required, as is expected from persistence of excitation requirements 

associated with the RPE scheme [Ljung and Söderström 1983].

Example

values

3.3: A four state Markov chain embedded in WGN was generated with parameter

A =
.08 

.01 

 ̂ .01

.08 .01 .01  ̂

.9 .01 .01

.01 .9 .08

.01 .08 .9 j

9 =

(  ~ 2 )
-1

1

V 2

and Gyj = 0.5. This Markov chain satisfies the conditions of lumpability [Kemeny and Snell 

1960], and as such, there is no approximation in the definition of the grouped transition probability 

matrices. In this example, the HMM was divided into two groups and the RPE algorithm was used 

to estimate the transition probabilities as well as the state values. A diagonal covariance matrix
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was used, as discussed in Section 3.4.1. The algorithm was initialised with parameter estimates,

( .5 .48 .01 .01 ^

.48 .5 .01 .01

.01 .01 .5 .48

v .01 .01 .48 .5 )

9  =

t  —1.7  ̂

-1 .3  

1.3

V 1 - 7  )

Figures 3.3 and 3.4 show parameter estimates for this data. The figures demonstrate that the 

estimates converge to the true values. It was found, as in Example 3.1, that as long as the initial 

state value estimates are grouped similarly to the true values, then convergence will occur for a 

wide range of initial transition probability estimates. The rate of convergence for the estimates of 

each group, of course depends on the characteristics of the excitation ofthat group.

Example 3.4: A four state Markov chain embedded in WGN was generated with parameter values 

the same as those in Example 3.3, except that in this case higher noise variance is considered, 

where crw — 1. The results are presented in Figures 3.5 and 3.6. This example shows that even 

under these higher noise conditions, and with a reduced complexity RPE scheme, the grouped 

HMM/RPE algorithm satisfactorily estimates both the state values and the transition probabilities.

Example 3.5: A six state Markov chain embedded in WGN was generated with parameter values

1 .8 .16 \ ( .01 .01 N
An — > Aij -

{ 16 -8 ) v .01 .01

g = (1 ,2 ,6 ,7 ,11 ,12)', and crw = 0.5. The HMM was divided into three groups and the RPE 

scheme was used to estimate the transition probabilities, with the state values being assumed to 

be known. The RPE scheme was implemented with the same conditions as in Example 3.1. The 

initial transition probability estimates were

.1 .86  ' ( .01 .01 \
A n  =

, .86 -1 J

,  Ä { j  —

v .01 .01 j for i £  j  ,

In this example, it was found to be advantageous to apply a threshold to the error h/c\Qk_l • This is 

due to the fact that the groups of state values are far apart in relation to the Gaussian observation
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noise variance (as discussed at the end of Section 2.3.3). The threshold was chosen to be twice 

the standard deviation, crw.

Figure 3.7 shows parameter estimates for this data. The figure demonstrates that the estimates 

converge to the true values. There is no limit to the number of states which can be estimated, 

however the length of data required for accurate estimates increases as the number of states 

increases.

Example 3.6: A six state Markov chain embedded in WGN was generated with parameter values

An =

.8 .097 .097

.097 .8 .097

.097 .097 .8

A{j —

/

1 .002 .002 .002 ^

.002 .002 .002

.002 .002 .002

for i ± j  ,

g = ( - 6 , —5 ,-4 ,4 , 5,6)', and crw = 0.3. The HMM was divided into two groups and the 

RPE scheme was used to estimate the transition probabilities with the state values being assumed

known. The RPE scheme was implemented with the same conditions as in Example 3.1. The 

initial transition probability estimates were

.5 .247 .247

.247 .5 .247

.247 .247 .5

1 .002 .002 .002 N

.002 .002 .002 

v .002 .002 .002 j

for i f  j  ,

In this example it was found that transition probabilities relating to state values which were 

surrounded by other state values in the same group (that is, they were not the boundary state 

values), required larger values of in the RPE algorithm. In this example, the 7̂ . was multiplied 

by 10 for estimates of for i = 2 and i = 5.

Figure 3.8 shows parameter estimates for this data.
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3.5 Conclusions

In this chapter a reduced order RPE based on-line parameter identification scheme for grouped 

HMMs has been derived. The algorithms presented are memory efficient and of lower computa­

tional complexity than the scheme of Chapter 2. Implementation aspects for the RPE scheme have 

been discussed, and the ability to estimate parameters of both six and nine state Markov chains in 

WGN has been demonstrated.

3.6 Figures and Tables

The figures and tables for this chapter are now presented.
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Time k (x 1000)

Figure 3.1: Level estimates of 6 state Markov chain divided into 2 groups

16 r

°0 2 4 6 8 10
Time k (x 1000)

<7 w — 0.5

Figure 3.2: Level estimates of 9 state Markov chain divided into 3 groups
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Time k (x 1000)

Figure 3.3: Level estimates of 4 state Markov chain divided into 2 groups

Diagonal elements of A

aii(0)=0.5, g(0)=(-1.7,-1.3,1.3,1.7)’

Time k (x 1000)

Figure 3.4: Transition probability estimates of 4 state Markov chain divided into 2 groups
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10
Time k (x 1000)

G yj  —  1

Figure 3.5: Level estimates in higher noise conditions

Diagonal elements of A

ajj(0)=0.5, g(0)=(— 1. 7 - 1.3,1.3,1.7)’

10
Time k (x 1000)

Figure 3.6: Transition probability estimates in higher noise conditions
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Diagonal elements of A

aii(0)=0.1, g(0)=( 1,2,6,7,11,12)’

10
Time k (x 1000)

Figure 3.7: Transition probability estimates with 6 states divided into 3 groups

Diagonal elements of A

aii(0)=0.5, g(0)=(-6 -5  -4,4,5,6)’

20 30
Time k (x 1000)

Figure 3.8: Transition probability estimates with 6 states divided into 2 groups



Chapter 4

HMM Processing for QAM Digital 

Communication Systems

4.1 Introduction

{/ p] his chapter considers the problem of fading channels in digital communication systems. In 

contrast to the model identification work of Chapters 2 and 3, this problem requires consid­

eration of adaptive estimation schemes. Some quite general, new and novel, hidden Markov model 

signal processing techniques are developed to adaptively track transmission channel parameters 

and estimate the digital signal. The specific modulation scheme considered, is that of quadrature 

amplitude modulation (QAM), which is used extensively in communication systems. Such a study 

illustrates the application potential for hidden Markov model signal processing techniques.

The problem of fading channels can be the limiting factor in many communication systems. For 

example, a multi-path Rayleigh fading mobile telephone channel can introduce amplitude gain, 

and phase shifts, to the transmitted signal, making it unrecognisable at the receiver. Demodula­

tion of signals under fading conditions requires adaptive estimation of the transmission channel 

characteristics. The traditional signal model formulation for modulated digital signals leads to 

a nonlinear task for estimating both the signal and the channel distortions. This is commonly 

performed using a matched filter (MF), or Viterbi algorithm, for state estimation, and an ana­

log PLL operating in tandem with an AGC, for channel estimation, as discussed in Bingham

75
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[ 1988](Ch. 5,6). However, these ML and MAP techniques are known to be far from optimal under 

fading conditions. Other more recent techniques involve the use of training sequences (as used 

for example in the European Global System for Mobile Communication (GSM) digital standard). 

Unfortunately, however, these schemes are also sub-optimal. The main drawback being that up 

to 20% of the transmission time can be required for sending the training data. Optimal schemes, 

on the other hand, are inherently infinite dimensional and are thus impractical, (as discussed for 

example in Haeb and Meyr [1989]). Also, they may not be robust to modelling errors. The 

challenge, therefore, is to devise sub-optimal robust and efficient demodulation schemes to cope 

with fading signals, particularly in the case where the message symbols are not equally-probable.

Recent approaches to the fading problem for QAM signals have involved the use of pilot symbol- 

aided schemes [Sampei and Sunaga 1993] and alterations to the QAM signal constellation [Webb 

et al. 1991]. These deal mainly with the transmitter in an effort to improve the bit-error-rates 

(BERs). The approach in this chapter is to apply hidden Markov modelling at the receiver, and as 

such, these HMM schemes can be implemented in tandem with the above techniques. It should 

be pointed out that this HMM approach does not require any modification to the transmitter.

In tackling demodulation using recent techniques in stochastic and adaptive systems, it is worth 

recalling the role of the Kalman filter (KF) and extended Kalman filter (EKF) (The EKF turns 

out to be a PLL in disguise). Examples of the use of the EKF are given in Anderson and Moore 

[1979] (target tracking p. 53, frequency modulation p. 200). More recent schemes have been 

developed coupling Kalman filtering techniques with maximum likelihood sequence estimation, 

for continuous phase modulated (CPM) signals in fading channels [Lodge and Moher 1990], The 

approach of this thesis, for QAM signals, is to use EKF techniques coupled with hidden Markov 

model filtering.

To date, HMM filters have been widely applied in areas such as speech processing [Rabiner 1989] 

and biological signal processing [Chung et al. 1991], however these applications have involved 

off-line analysis. An important aspect of the work in this chapter is the application of new on-line 

HMM processing techniques to problems involving time-varying parameters.

In this chapter, KF/EKF techniques and HMM signal processing techniques are coupled in an 

adaptive HMM approach, to estimate both the signal, and the time-varying transmission channel 

parameters, on-line. The HMM filter is ideal for signals which do not have equally-probable 

(or i.i.d.) message symbols, as is the case with coded signals for example. Coding techniques
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such as convolutional coding [Proakis 1983] (p.441), produce signals which are not i.i.d. and 

as such display Markov properties. Also, recent investigations in trellis coding (reported in Du 

and Vucetic [1991]) suggest that a similar situation arises for trellis coded signals. Actually, in 

the un-coded case, with equally-probable message symbols, the HMM filter with a maximum a 

posteriori (MAP) estimate, is identical to the matched filter, which is known to be optimal for 

non-fading i.i.d. digital signals. However, when fading is present, even in the i.i.d. case, there is 

an advantage to the non-MAP estimate HMM approach (which makes use of the full information 

state rather than MAP estimates), because more information about the message is being fed back 

to the channel tracking algorithm.

In this chapter the technical approach is to work with the signal in a discrete set, and associate 

with this signal a finite-discrete state vector Xk- Xk is an indicator vector for the signal. In 

the case of parity check encoders, each of the allowable values of Xk would represent one of 

the QAM signal constellation points. For convolutional codes, as mentioned in Chapter 1, each 

allowable value of Xk would represent a different combination of bits in the shift register. The 

states Xk are assumed to be first order Markov with known transition probability matrix A and 

state values Z. This is a reasonable assumption given that the coding scheme is known. In less 

friendly communication environments, where codes may not be known, the techniques of Chapter 

2 could be used in conjunction with these tracking schemes, to identify parameters associated with 

the coding algorithm.

Associated with the channel are time-varying parameters (gain, phase shift, and noise colour), 

which are modelled as states Xk, in a continuous range, Xk E The channel parameters arise 

from a known linear time-invariant stochastic system. In this chapter, state space models are 

formulated involving a mixture of the states Xk and x\t, and are termed mixed state models. These 

are reformulated using HMM filtering theory to achieve a nonlinear representation with a state 

vector consisting of ak and Xk, where ak is an un-normalised information state, representing 

a discrete state conditional probability density for X*. These reformulated models are termed 

conditional information state models. Next, the EKF algorithm, or some derivative scheme, can 

be applied for state estimation of this innovations representation, thereby achieving both signal 

and channel estimation. The resulting adaptive HMM algorithms appear either as coupled KF and 

HMM filters, or as a more sophisticated EKF with an HMM filter as a sub filter.

This new idea of using information states as opposed to MAP estimates, or matched filters, is an 

important aspect of this work. It allows information about the statistics of the state estimate to
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be used, in contrast to the more traditional MAP estimate approaches discussed for example in 

Haeb and Meyr [1989]. It is also important to note that while the algorithms presented in this 

thesis involve simultaneous coupled state estimation and channel tracking (that is, with each new 

observation a state estimate is made and the channel estimate adjusted accordingly) the techniques 

can easily be extended to sequence estimation, in order to generate new information-state versions 

of the traditional MAP based Viterbi algorithms. These extensions can be considered to be similar 

to more recent soft-output Viterbi algorithms (SOVA), where accuracy information is supplied 

along with the MAP sequence estimate. The advantage however, in an information-state sequence 

estimator, is that through the techniques of this chapter, a systematic method is in place for the use 

of such accuracy information in the channel tracker.

In addition to reformulating the QAM signal representation, a non-intuitive channel representation 

is employed. Rather than work directly with a linear stochastic model for channel gain and phase 

shift, it is proposed to formulate the channel in terms of a linear stochastic model with the state 

being the real and imaginary components of the channel. Working in rectangular co-ordinates 

instead of polar co-ordinates allows the models to be written in a familiar bi-linear state space form 

driven by Gaussian noise. This bi-linear representation facilitates the application of a Kalman 

filter, as opposed to a nonlinear PLL. Unfortunately the rectangular co-ordinate representation 

introduces coupling between the two noise sources in the model. This coupling is, however, well 

understood.

When the channels are time-invariant (non-fading), the EKF and derivative schemes are equivalent 

to the recursive prediction error (RPE) approach for HMM identification and estimation, the subject 

of Chapter 2. There are quite solid theoretical foundations in the RPE case, giving confidence of 

asymptotic optimality, with quadratic convergence rates. When the channels are fading, however, 

the problem falls, in general, within the context of EKF theory which is less developed. Therefore, 

strong theoretical convergence results are not sought here, save that it is expected from known 

theory that in the low noise case, the EKF is near optimal after initial transients.

This chapter is organised as follows : In Section 4.2 the QAM signal model is formulated in 

the HMM framework. In Section 4.3 the HMM/EKF and HMM/KF adaptive algorithms are 

presented. Coloured noise is considered in Section 4.4. Section 4.6 gives simulation examples 

which demonstrate good tracking ability for fast changing channels. Finally, conclusions are 

presented in Section 4.7.
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4.2 Quadrature Amplitude Modulation (QAM)

Digital information grouped into fixed length bit strings, or out-putted from a convolutional 

encoder, is frequently represented by suitably spaced points in the complex plane. Quadrature 

amplitude modulation (QAM) transmission schemes are based on such a representation. In this 

section, the usual QAM signal model is presented, followed by a reformulation so as to apply 

hidden Markov model (HMM) and extended Kalman filtering (EKF) methods.

This section considers the set of states to be the set of complex message symbols constituting the 

QAM constellation. This is the situation arising with parity check encoders, and is presented here 

in order to simplify notation. The state could easily have been considered to be the contents of 

a shift register, as in the convolutional coded case, however, whilst the approach is the same, the 

resulting equations are slightly more complicated.

4.2.1 Signal Model

Let m k be a complex discrete-time signal, (k E 2 +), where for each k,

m ke z = {*<'>, . . . , 2 (2" )} , where z<’> (4.1)

In addition, the vector 2  is defined by

z = zR + izI = e c 2". (4.2)

For digital transmission, each element of Z is used to represent a string of N  bits. In the case of 

QAM, each of the complex elements, 2 (t), is chosen so as to generate a rectangular grid of equally 

spaced points in the complex space C . A 16 state (N = 4) QAM signal constellation is illustrated 

in Figure 4.1.

Note that at any time, k, the message, m k E Z, is complex valued and can be represented in either 

polar or rectangular form, as follows:

mk = pjtexp[jTfc] = mk + . (4.3)

The real and imaginary components of mk can be used to generate piece-wise constant time 

signals, m(t) = m k for t = [tk, t k+ 1), where tk arises from regular sampling. The messages are
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Figure 4.1: 16 state QAM Signal Constellation 

then modulated and transmitted in quadrature as a QAM bandpass signal

s(t) = Ac[mR(t) cos(27r/t -t- 9) 4 - m7(<) sin(27t// -|- (9)] , (4.4)

where the carrier amplitude Ac, frequency / ,  and phase 9 are constant. This transmission scheme is 

termed QAM because the signal is quadrature in nature, where the real and imaginary components 

of the message are transmitted as two amplitudes which modulate quadrature and in-phase carriers.

4.2.2 Channel Model

The QAM signal is passed through a channel which can cause amplitude and phase shifts, as for 

example, in fading channels due to multiple transmission paths. The channel model considered 

in this chapter is appropriate for narrow band digital transmission systems, such as time-division 

multiple access (TDMA) mobile communication systems. In these cases the bandwidth is narrow 

enough that fading occurs evenly across the band, or in other words, it is non-frequency selective, 

or flat fading. Therefore, the channel has a delta impulse response, but with a time varying 

amplitude and phase shift to the modulating carrier, and hence no inter-symbol interference (ISI) 

takes place. In cases where ISI is present, the task of tracking fading channels is more difficult. 

HMM techniques can be applied to the ISI problem, however such techniques are not presented 

in this thesis, as they are the topic of current research.
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In the flat fading case, the channel can be modelled by a multiplicative disturbance, g(t), resulting 

in a discrete time baseband disturbance gk,

gk = Kfc exp[j <f>k] = gk + j g{ , (4.5)

which introduces time-varying gain and phase changes to the signal. The time variations in gk are 

realistically assumed to be slow in comparison to the message rate.

Channel State - Cartesian Co-ordinate Representation : In this co-ordinate system, the vector x k 

is associated with the real and imaginary parts of gk.

x k
nk cos (fk 

 ̂ nk sin cf)k
9^

9[ )
(4.6)

Channel State - Polar Co-ordinate Representation : An alternative to Cartesian co-ordinates, in 

the complex plane, is the more traditional polar co-ordinate representation.

(4.7)

As mentioned previously, the Cartesian co-ordinates allow the observations to be written in a 

form which enables linear Kalman filtering to be applied, while the polar co-ordinates require 

the nonlinear suboptimal PLL for phase estimation. The practical benefits of each approach are 

discussed later in Section 4.6.

Assumption on Channel Fading Characteristics : Consider that the dynamics of x k, from (4.6), 

are given by

x k+\ = F x k + vk+\ , vk = N[0 , Qk],  (4-8)

for some known F,  (usually with A(F)  < 1, where A indicates eigen-values, to avoid unbounded 

x k, and typically with F = f l  for some scalar 0 < <  /  < 1). In polar co-ordinates, (4.7), a 

corresponding model is

Kk+] = f Knk + v£+l , where v£ is Rayleigh distributed [/iK, <t*] ,

(j>k+l = f ^ k +  v£+1 , where vk is Uniformly distributed over [0, 2t ) ,
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and typically, 0 < <  f K < 1 and 0 < <  < 1.

For both channel models it is assumed that the variation associated with the magnitude of the 

channel gain, k, and the phase shift, <t>, are independent, with variances given by cr2 and ir­

respectively. It follows from Anderson and Moore [ 1979](p.53), that the covariance matrix of the 

Cartesian channel model noise vector vk, is given by

crl cos2 (f)k + K2kcrj sin2 4>k (cr2 -  sin<f>k cos <f)k ^

(<?2 ~ Kl* l )  sin <t>k cos (bk u \ sin2 <\>k + k \ g 2̂  cos2 <j>k

For the remainder of this chapter the Cartesian channel model will be used, as it allows the system 

to be written in the familiar state space form.

Qk = E[vkv'k] ~

4.2.3 Observation Model

The baseband output of the channel, corrupted by additive noise wk, is therefore given by

Vk =  (Jk m k +  Wk • (4.10)

Assume that wk E C has i.i.d. real and imaginary parts, wj? and w[ respectively, each with zero 

mean Gaussian distributions, so that w ^, w[ ~  N[0, d 2].

In vector notation the observations have the form:

/ R \ / R 1 \ (  R
V k m k ~ m k 9 k

I I ^ R  I I
V k \  m k m k  ) \  S k

+ (4.11)

4.2.4 State Space Signal Model

Consider the following assumption on the message sequence. 

Assumption on Message Signal

m k is a first order homogeneous Markov process. (4.12)
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Remark 4.1: This assumption enables the signal to be considered in a Markov model framework, 

and thus allows Markov filtering techniques to be applied. As discussed earlier, it is a reasonable 

assumption on the signal, given that error correcting coding has been employed in transmission. 

Of course un-coded i.i.d. signals can be considered in this framework too, since a Markov chain 

with a transition probability matrix which has all elements the same, gives rise to an i.i.d. process.

□

Let the vector X k be an indicator function associated with m k. The state space of X k, without 

loss of generality, can be identified with the set of unit vectors S = {ei,e2 , . . . , c2n }, where 

e* = ( 0 , . . . ,  0, 1 ,0 , . . . ,  0)' G IR2  ̂ with 1 in the ith position, so that

m k =  z' X k , (4.13)

where z is defined in (4.2). Under Assumption (4.12) the transition probability matrix associated 

with the message, m k, in terms of X k, is

A = (atJ) , 1 < i j  < 2jV , where atJ = P ( X k+\ = e3 \ X k = eQ ,

so that

E [ X k+i I Xk] = A ' X k .

Of course alJ > 0, ^ = i  aij = 1, for each i. In addition, denote {X iJ  G Z +] to be the complete 

filtration generated by X ,  that is, for any k G 2 + , T k is the complete tr-field generated by

X k, I < k.

From Lemma 2.1 it can be seen that the dynamics of X k are given by the state equation

X k+i = A ’ X k + M k+i , (4.14)

where M k+ \ is a (A , T k) martingale increment.

As noted previously, in the case of quadrature modulated signals, the states represented by X k are 

each characterised by a complex value, corresponding to the unit vector G S. These are 

termed the state values of the Markov chain.
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The observation process from (4.11), for the Cartesian channel model (4.6), can be expressed in 

terms of the state X k as

vl
( z R ) ' X k - ( z ' y x k)

[  g'u
( z l ) ' X k ( z R y x k j \ Ä j v w k

or equivalently, with the appropriate definition of h{.),

(4.15)

yjfc = h{Xk)xk  + w* , vrk ~ N [ 0 , R k ] .  (4.16)

Note that, E[w^+l | JT/c V}^] = Oand E[w l+l \ T ky y k\ = 0, where Yi is the cr-field generated by 

yk , k < l. In addition, let Yk =  (yo • • • Vk)- It is usual to assume that wf} and w[ are independent 

so that the covariance matrix associated with the measurement noise vector w k has the form

o 2
R k =  w

0

Remark 4.2: In the previous chapters, the symbol Rk was used to denote the covariance matrix of 

the parameter estimate, as is traditional when considering RPE techniques. This chapter, however, 

considers Kalman filtering techniques. For such schemes it is usual to use the symbol Rk to denote 

the covariance matrix associated with the measurement noise, while using Y,k for the covariance 

matrix of the state estimate. □

It is now readily seen that

E[Mk+l = 0 .  (4.18)

In order to demonstrate the attractiveness of the Cartesian channel model, the properties of the 

indicator function, X k, are now used to express the observations (4.16) in a bi-linear form with 

respect to Xk  and x k.

<72 j

(4.17)

y k = h ( X k ) x k +  w fc

= [h{e\)xk , h(e2)xk, .. . , h(e2N)xk\ X k + w fc (4.19)

= H' [I2n ® x k]Xk + w fc ,

where H'  = [h(ei ) , .. . ,h(e2N)] and “(g)” denotes a Kronecker product. The observations (4.19) 

are now in a form which is bi-linear in Xk  and x k.
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It is possible to define the vector of parameterised probability densities (which will loosely be 

called symbol probabilities), as bk = (bk( 1 6 ^ ( 2 v ))', for bk(i) = P[yk \ X k = 

where

{yk -  [(^R)'elgk -  ( z1 Yei9k]}2
2er}.,bk(i) =

27TCT“
exp -

{yj  -  [(^Yeidk  +  (zRYei9l]}2
2 <j }„ (4.20)

Here it is assumed that ctwr — o w i = o w . Because wf* and w [  are independently distributed.

E{yk I X k-\  = ei,fFk- 2 , y k-\ )  -  E{yk \ X k_\ = ê ) , (4.21)

which is essential for formulating the problem as an HMM, parameterised by the fading channel 

model parameter x k.

To summarise, the following lemma is presented,

Lemma 4.1 Under assumptions (4.12) and (4.8), the QAM signal model (4.1) to (4.10) has the 

following state space representation, in terms of the 2iV dimension finite-discrete state message 

indicator function, X k, and the continuous state associated with the fading channel characteristics,

x k:

—  A ' A j t  +  M f c + i

x k+\ = Fxk + vk+\

yk = H' [I2n ® x k]Xk +

(4.22)

Remarks 4.3: /. If x k is known, then the model specialises to an HMM denoted A =

(A, Z, 7T, <7 5, xk), where 7r = (7rt), defined from iti = P(X\  — eQ, is the initial state probability 

vector for the Markov chain.

2. If X k is known then the model specialises to a linear state space model.

3. By way of comparison, for the polar co-ordinate channel representation (4.7), the observation 

process can only be expressed in terms of a linear operator on the channel gain, with a nonlinear
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operator on the phase. Thus if Xk and 4>k, or and <£*., are known then the model specialises to 

a linear state space model, but not if Xk and Kk are known and 4>k is unknown.

4. In Figure 4.2 the output constellation is presented, with signal to noise ratio SNR = 6dB, from 

a channel with sinusoidal characteristics given by

Kk = 1 + 0.5 sin( 37TA:/1000)

4>k =  0.757tcos( 107T A : / 1000)

The plots show 1000 data points at each of the constellation points for times k = 200 and k = 450, 

and give an indication of how the channel affects the QAM signal constellation. □
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Figure 4.2: 16 state QAM Signal Constellation output from channel

4.2.5 Conditional Information-State Signal Model

Let X k\x denote the conditional filtered state estimate of Xk at time k, given the channel parameters 

Xk = {^0 , • • .,£*}, that is,

X ^ x  = E[Xk\y k,X k\.(4.23)

Let i  be the column vector containing all ones, and the information state, a k\x = (a k\x( 1), • • •, <Xk\x{2N))‘ 

be such that the 2th element

akix(i) = P(Yk, X k = ei\ Xk ) .  (4.24)

Observe that X k\x can be expressed in terms of otk\x by

X k\x = 1 a k\x • (4.25)
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Here ctk\x is computed using the following “forward” recursion:

a k+ \\x -  B(y*:+ii xk+\) A ' ak\X , (4.26)

where B(yk+\, arjt+i) =  diag( bk+ \ ( \ ) , .. .,bk+x(2N) ) and bk(i) is defined in (4.20).

The observations, yk, are now expressed in terms of the un-normalised conditional information 

state, otk\x-

Lemma 4.2 The conditional measurements yk\x are defined by

yk\x -  H'[I2N ® Xk](a k-\\x>i)  1 A 'afc_i|.Y + nk\x , (4.27)

where ak Is defined in (4.24) and nk\x is a (Xk, y k- \ )  martingale increment. In addition, the 

co-variance matrix of the conditional noise term nk\x is given by

Rn = a 2J  + H'[I2s  ® x k]{X%x  ~ Xk\xX'k\x } [h»  ® Xk]'H , (4.28)

where Xf? is the matrix which has X k on its diagonal, and all other elements zero.

Proof : Following standard arguments, since a k\x  is measurable with respect to {Xk, y k},

E[wk+l I y k] = 0, E[w[+X I y k] = 0 and E[Mk+i \ y k] = 0, then

E[nk\x I Xk, y k- \\  -  E[H'[I2n 0 x k]Xk +  w k

- H '  [I2n 0  X 'a k_ ^x  I X k , y k- 1]

= H' [I2n ® xk] (A'Xk_i\x  -  (ak-i\x  , l ) _l A'ak_^x)  = 0 .

Also,

Rn = E[n\  I Xk, y k-\\

= E[(Wk + h ’[i2N® xk\(xk-  f iyyy ))2 1

=  E[wk 1 xk,yk-\\+
E[H'[I2n 0  xk](Xk -  X k\x){Xk -  X k\x)'[l2N ®  xk]'H I x k, y k- 1]

= a l l  + H f[I2N <g> x k] E[(Xk -  X klx ) (X k -  X k\x )' I Xk, y k̂ ][I2s  0  x k]'H 

= ^2,/ + H'[I2n 0 Xjfc]{X^A: -  ® .



88 Quadrature Amplitude Modulation (QAM) 4.2

In summary, the following lemma is presented,

Lemma 4.3 The state space representation (4.22) can be reformulated to give the following 

conditional information state signal model, with states ctk\x>

Remarks 4.4: /. When F  = I  and v = 0, then x k is constant. Under these conditions, the 

problem of channel state estimation reduces to one of parameter identification, and recursive 

prediction error techniques can be used, as in Chapter 2. However, when x k is not constant, an 

EKF or some derivative scheme is required for parameter tracking, as in the following section.

2. By way of comparison, for the polar co-ordinate channel representation (for which the obser­

vations are nonlinear in terms of the channel phase parameter), it is possible to consider the case 

when f k  is quantized into a discrete set of values, and is assumed to be Markov with indicator 

function E {e \ , e i , . ..}. A conditional filtered estimate of X'jl can then be generated by 

the same means as used for the conditional filtered estimate of Xk,  (4.25). The reformulated 

information state signal model, for the polar channel model case, is now given, in obvious notation 

by

ajfc+i = B p ( y k + i , K k + i , a l + l ) A ' a k  ,

a k+l\X ~  B ( V k + l , x k+\ )A' C*k\x 

x  k-\-1 — F x  k T Vk

yk \X  — H '  i h N ® a;fc](a/fc-l|A'>l)~l A'o!jt_i| x  +  n k\X

(4.29)

&i+ 1 =  B^(j/fc+ i,Kik+l,Qfc+ i)(A^),Qj ,
(4.30)

K'Ar-l-l — f T ^k i

yk = H p ( ( a k- i , I )  1 A'orjt-i) («* )#£  ( (a £ _ p l)  '(A (p) ' a t - \ )  + nk ,

where H'p = [hP(eQ .. .hP(e2N)], H'^ = [ M e j ) .. . M eL*)l* and

M O  = {zp, .) exp[j(^T, .)] ,

M O  = exp[j(^,.)],
(4.31)



4.3 HMM Processing for QAM Digital Communication Systems 89

where is the vector containing the discrete values of <j>, zp and z j  are vectors containing the 

magnitudes and phases respectively of the QAM signal constellation, L$ is the number of discrete 

values of </>, and X% E S  = {ej , . . . ,  e i is the indicator function associated with <f>k so that 

when <f>k =  z ^ \  X f  =  e{. Also, B p (yk+\ , ^ + i , cv̂ +1) = diag( 6f+1( 1 6f+1(2iV)),  where 

bk+i (*) = 6P(t/A:+l,en«fc+l,«t+i)’ and

\ 2
(0 = exp

~{Vk ~ h P{ei){nk) 
2o}„

(4.32)

In addition, the matrix B<t>(yk+i , Ofc+i, *k+ \) =  diag( b£+1( l ) , . .  . ,6^+1(L^) ), is defined where 

6*+1(i) — b 1 (?/A:+11 & k +11 1)» änd

1
2 ttct2

exp
/ - { y fc -  H'Pa k (nk) h 4>(el)}2\
{ 2*1 )

(4.33)

The key property which facilitates estimator construction is that now, with the quantised discrete- 

state assumption on <t>, in this polar co-ordinate representation for the channel, the measurements 

are tri-linear in X k, k and X%. Problems arise, however, in the choice of associated with 

the phase quantisation, with the quantisation error itself, and with the increased computational 

requirement resulting from the need to evaluate the recursion for aj*. □

4.3 Adaptive HMM Algorithms

Two adaptive HMM schemes are presented here, the first is referred to as an HMM/EKF scheme, 

and is a full nonlinear scheme for the information state signal model (4.29) with the augmented 

vector ( ak, x ky.  The second scheme is referred to as the HMM/KF scheme, and is with a 

simplification assumption which results in a KF for channel estimation, coupled with an HMM 

filter for signal state estimation.

4.3.1 Adaptive HMM/EKF Scheme

Let x k = ( a k , x k)', then (4.29) can be written as

£fc+i  =  fk{xk) +  9k(xk)vk , 

Vk — bk[x_k) -f- nk ,

(4.34a)

(4.34b)
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where the nonlinear functions are given by

/*(£*) = , gifete*) =
(o\

1 /

hk[x_k ) — M 1 k •

Assuming that the nonlinearities are smooth functions, they can be expanded in Taylor series about 

the conditional means x k\k and x k\k_ \ . With an assumption that higher order terms can be ignored, 

as would be the case when x k\k is close to x k, (4.34a) and (4.34b) can be written as follows:

%k+1 — Fkx k Gkvk +  uk , (4.35a)

Uk — H'kx k +  nk +  zk , (4.35b)

where Fk = d f k/ d x , =  dgk/ d x k, Hk = dhk/ d x k, uk = /*(£*(*) -  /'*£*!* and 

Zk  — ^Ar(iL/c|/c — 1 ) — — I •

The EKF equations for (4.34a) and (4.34b) are the KF equations for (4.35a) and (4.35b), now 

summarised:

£k\k -  k k \ k - \  +  h k [ y k  -  h k ( x k\k_ ] )] , (4.36a)

£ * + 11* = /*(£*!*) , (4.36b)

K k =  X w - i H k l H f i w ^ H k  +  R k ] - 1 , (4.36c)

^k\k =  ^ k \ k - \  ~ ' ^ k \ k - i H k [ H ,k 'F,k \k- \ H k +  R k] 1 H k H k\k- \  , (4.36d)

E * + i | * =  F k Z klkF'k + GkQkG'k , (4.36e)

where (4.36c) gives the Kalman gain and (4.36d) and (4.36e) are the Riccati equations. Figure 

4.3 gives a block diagram for this adaptive HMM scheme, when switch 1 is closed and switch 2 is 

in the top position. If switch 1 was in the open position then the HMM/KF scheme given below 

would result. Further assumptions can be made for simplification if the maximum a posteriori 

estimate of a k were used, indicated by having switch 2 in the lower position. This approach would 

be similar to using the matched filter, where only the most likely message symbol is used, and not 

the full information state.



4.3 HMM Processing for QAM Digital Communication Systems 91

Remarks 4.5: /. This HMM/EKF scheme suffers from the fact that through (4.36a), the update 

for otk requires a further projection to ensure positivity of each element. This adds undesired 

nonlinearities to the model and provides further incentive to consider the HMM/KF scheme 

presented below, where this problem does not arise.

2. The filter here is in fact a smoothed filter in the sense that f k{xk) is actually f k+\ (xk) due to the 

dependence of B(xk) on yk+\. This again provides incentive to consider the HMM/KF scheme 

presented below, where this problem does not arise. □

RICCATl EQUATIONS

Figure 4.3: Adaptive HMM/EKF scheme

4.3.2 Adaptive HMM/KF Schemes

This scheme can be viewed as a derivative of the above HMM/EKF scheme by setting the Kalman 

gain term, associated with the ctk update, to zero. The rational for this is that in the case where the 

channel parameters are constant, this term in fact does go to zero asymptotically. Indeed setting 

it to zero under constant parameter conditions leads to the RPE scheme as used in Chapter 2, 

for which there are strong theoretical foundations. If the channel is only slowly varying, then 

it is expected that the components of the Kalman gain associated with the a k update, will be 

asymptotically small. There is then a temptation and some rational, to neglect these terms for the 

simplicity of the resulting scheme, which is now described in more detail.
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The HMM estimator for the signal information state, a*., conditioned on the channel estimate 

sequence {£k},  is given by

/̂c+l|xfe Vk+ 1 5 ) A •> (4.37a)

i -L) • (4.37b)

The Kalman filter equations for the channel parameter, Xk, conditioned on the indicator state

estimates X k ,  are

?r II % k \ k — 1 T  R k [ U k  H k \ k — 1 ] i (4.38a)

& k + l \ k  ~ F x k \k , (4.38b)

K k  = ^ k \ k - \ H k [ H ' k E k \k - \ H k  +  R k \  1 i (4.38c)

Â:|A: = ^ k \ k - \  ~  ^ k \ k - \ H k [ H ' k E k \ k - i H k  +  R k ]  1 H k ^ k \ k - i , (4.38d)

^ k + l \ k  - F ^ k \ k ^ '  +  Q k  , (4.38e)

where

H'k = d ( H ’ [I2N ® x k]Xk) / d x k , (4.39)

and R is the covariance matrix of the noise on the observations given in (4.17), Q is the

covariance matrix of y*, given in (4.9), and £  is the covariance matrix of the channel parameter 

estimate Xk, (xk is defined in (4.6)). Figure 4.4 shows the scheme in block form.

KF channel estimate
A

conditioned on

HMM state estimate 
conditioned on x,

A

A

Figure 4.4: Adaptive HMM/KF scheme
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Remarks 4.6: /. A further sub-optimal HMM/KF scheme can be generated by conditioning the 

KF on a maximum a posteriori probability estimate of the message state, X j ^ AP. Here

H'k = d( H' [I2n ® x k] X ^ AP)/dxk . (4.40)

Figure 4.5 shows this scheme in block form. In fact hybrid versions can be derived by setting the

MAP operator

KF channel estimate
a M A Pconditioned on x{^

HMM state estimate 
conditioned on xĵ

A

Xk

Figure 4.5: Adaptive HMM/KF scheme with MAP approximation

small valued, that is low probability, elements of X k to zero and re-normalising.

2. Extensions to this simultaneous coupled state estimation and channel tracking technique, to 

sequence estimation techniques are straight forward. In a batch processing situation the off-line 

HMM schemes of Rabiner [1989] could be used to gain estimates of the sequence from forward 

and backward passes through the data. In an on-line delayed sequence estimation technique, the 

smoothing approach of (2.49) and (2.50) would be used to estimate a sequence of length A, and 

then the new information state afc could be used in place of a k for conditioning of the channel 

estimate. □

4.4 Coloured Noise Case

In the coloured noise case, it is reasonable to work with the following signal model involving a 

moving average of white noise as follows:

y k = h(.)xk + + ci w^_i + . . .  + cnw fc_n . (4.41)
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The task of estimating the noise coefficients, cu is carried out by augmenting the state vector x k 

by a vector x % = (wk- 1, wk- 2 , • • An example is given for the case n = 3. The state vector 

x k is the vector of noise values, x% = (wk_\, wk_2, wk- 3)', and the vector of noise coefficients 

is 0 = (c i,c2,c 3)'.

(
X k+1

\ ' k+  1

Vk

( \xk

\ Xk )
T

^ vk ^

wk

0

V 0 )

[MO ö'J +  Wk

(4.42a)

(4.42b)

The ascribed estimation task can now be solved with an EKF, or derivative KF, where the state 

vector is now the augmented vector, (ak, x k, x%). If 6 is unknown, it can be adaptively estimated 

using standard RPE/EKF ideas.

4.5 Robustness Issues

Due to the inherently sub-optimal nature of these adaptive HMM algorithms, it is necessary to 

consider robustness issues. In the case of the HMM/EKF scheme above, some robustness is gained 

by the fact that the Kalman gain term acts on the whole augmented vector x k. A problem however 

is that the dimension of x k is too large for practical implementation. The HMM/KF schemes 

presented in Section 4.3.2, which are practical derivatives of the HMM/EKF scheme, effectively 

set the Kalman gain terms associated with the respective a ’s, to zero. This results in coupled 

conditional estimators, which are used to condition the other estimates. Unfortunately, however, 

there is no theory for convergence for these coupled schemes, when dealing with time varying 

parameters. The validity of such an approach can only be tested via simulation studies.

It should be noted that, through the use of information-state techniques, some degree of robustness 

is inherent in these schemes, when compared to standard MAP estimate approaches. This is due 

to the fact that, instead of only feeding the most likely signal state into the channel tracker, with 

information-state techniques, the full state probability distribution is fed in. This effectively means 

that a measure of the error involved in the state estimate is taken into account, thus making the 

scheme more robust.
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In an effort to address further the inevitable robustness question, it is possible to look to the 

standard procedures from Kalman filtering. A widely practised method for adding robustness, 

is to model the estimate errors, due to incorrect conditioning, as noise in the observations. This 

procedure can also be used with the adaptive HMM techniques presented in this chapter. By 

adding extra noise to the observation model, the vector of parameterised probability densities 

(symbol probabilities) will be more uniform. That is, the diagonal “observation” update matrix, 

B(.), in the “forward” procedure, (4.26), for the information state a w i l l  place less emphasis on 

the observations. An additional method for adding robustness to the adaptive HMM scheme, is 

to assume the probability of remaining in the same state is higher than it actually is. That is, by 

using a more diagonally dominant transition probability matrix A. This will also have the effect 

of placing less importance on the observations, through the “forward” procedure for the discrete 

state estimate a

These robustness techniques are of course an attempt to counter estimation errors in high noise. 

They therefore restrict the ability of the estimates to track quickly varying parameters, as the rapid 

changes will effectively be modelled as noise. There is here, as in all cases, a trade off to be made 

between robustness and adaptive tracking ability.

4.6 Implementation Considerations and Simulations

In this section results are presented which demonstrate the ability of the adaptive HMM/KF 

scheme to demodulate QAM signals in noisy fading channels. For comparisons, the standard 

MF/AGC/PLL scheme, which is diagrammatically represented in Figure 4.6, is used (similar to 

the LMS algorithm presented in Pahlavan and Matthews [1990]). Viterbi schemes could also 

be used, however, they require some degree of off-line, or delayed, sequence estimation. An 

advantage of the approach in this chapter is that no delay is required.

The signal considered is a 16 state QAM signal with a strong dependence from one message 

symbol to the next, (as is the case with some convolutional codes, or if oversampling were to be 

used). The channel characteristics for Example 4.1 are deterministic while those for Examples 4.2 

to 4.5 are given by a low pass filtered (LPF) white Gaussian noise stochastic process. The variance 

of the Gaussian process is 1 for amplitude variations, and 5 for phase variations. The bandwidth 

of the LPF is Wc times the bit rate (Wc is different in each example). An example of a real valued 

stochastic channel is shown in Figure 4.9 for Wc = 0.1. These variations are very fast in the
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case of FAX and modem applications, but are more reasonable in applications involving mobile 

communications and indoor communication channels [Hashemi 1993, Loo and Secord 1991].

Two main points can be gained from the following examples, the first is that under these non- 

equally-probable message symbol conditions, the HMM filter is a major improvement over the MF, 

the second point is that the Cartesian and polar co-ordinate systems can each have their advantages, 

depending on the channel conditions. Computationally, the MF is of course less taxing, however 

for mobile communications under the conditions (16-QAM, 19.2 kB/sec, f c=1800 MHz, car 

travelling at 100 km/h and with one channel update every 120 samples), the processing power 

required for the HMM/KF approach is only 10 MFlops, which is reasonable with current DSP 

technology. Therefore the approach presented in this chapter is computationally feasible, and is 

seen to out-perform the traditional scheme for the case of non-equally-probable messages. In the 

equally-probable message case, when a MAP operator is used in the HMM filter, as in Figure 4.5, 

the HMM approach is identical to the traditional MF scheme. There is still an advantage to the 

HMM approach using the full information state, because more information is being fed back to 

the Kalman filter or AGC/PLL combination.

Example 4.1: A 16 state QAM signal was generated under assumption (4.12) with parameter 

values au =  0.95, a{j = (1 -  atl) / ( N  -  1) for i ±  j , ( z ^ ) R = ±0.01976 ± 0.03952, (*(*')) ;  = 

±0.01976 ± 0.03952. The channel characteristics used were deterministic, as opposed to the 

stochastic low pass filtered white noise channels used in the following examples. The deterministic 

channel gives a more easily repeatable test, and allows results to be displayed in a manner which 

more clearly shows tracking ability of these schemes. The channel characteristics used in this 

example were given by
Kk = 1 ± 0.5 sin(37tA:/1000),

(f ) k  = 0.757tcos(107t/j/1000) ,

and the signal to noise ratio (SNR) associated with the observations, in the absence of fading, is 

SNR =  (Eb/<r~) =  16dB, where Eb is the energy per bit associated with the transmitted signal. Of 

course much lower SNRs can be accommodated in the presence of more slowly varying channels, 

and it should be noted that the SNR effectively varies as the channel fades. The lowest effective 

SNR in this example occurs at k = 500 where SNR = lOdB. This example is used to demonstrate 

the HMM/KF scheme of Figure 4.4. The results are presented in Figure 4.7 and Figure 4.8, and 

show that even though the channel changes quite quickly, good estimates are generated. Figure 

4.7 shows the true channel values and the estimated values in real and imaginary format, that is,
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exactly as estimated from (4.38a) to (4.38e). Figure 4.8(a) shows the actual channel amplitude k*., 

and the estimate of this, generated from the estimates in Figure 4.7. Likewise, Figure 4.8(b) shows 

the actual channel phase shift (fik and the estimate of this,generated from the estimates in Figure 

4.7. Small glitches can be seen in the amplitude and phase estimates at points where tracking was 

slow and the received channel amplitude was low, but the recovery after this burst of errors seems 

to be quite good. It is natural that the estimates during these periods be worse, since the noise on 

the observations is effectively greater when < 1, as seen from the signal model (4.22).

Example 4.2: This example demonstrates the ability of the HMM/KF adaptive algorithm to 

demodulate a 16-QAM signal, in the presence of a real valued stochastic channel. The signal 

parameter values are given in Example 4.1. The results for this example are displayed in Figure 

4.10, where signals of length 50000 data points have been used to generate bit-error-rate (BER) 

values. The simulations assume that 90 degree phase invariant coding is used. A comparison 

is given to the conventional MF/AGC/PLL system (of course the PLL is not required since the 

channel is real valued). It can be seen that the HMM/KF scheme provides distinct advantages over 

the traditional scheme. As noted before, the case of Wc = 0.1 is one of severe fading, and it is 

seen that even under such conditions, the HMM/KF scheme performs well.

Example 4.3: In this example, it is demonstrated that the HMM approach with MAP operator, is 

identical to the MF approach in the case of equally-probable message signals. The discrepancies 

which can be seen between the two schemes, in the results of Figure 4.11, are due to the Cartesian 

approach compared to the polar approach of the traditional scheme. It seems that under these 

channel conditions, in the high SNR case, the polar approach is better than the Cartesian approach. 

Such a comparison is the subject of the next two examples.

Example 4.4: This example demonstrates the ability of the HMM/KF adaptive algorithm to 

demodulate a 16-QAM signal, in the presence of a complex valued stochastic channel. The signal 

characteristics are the same as for Example 4.1. Results for this example are displayed in Figure 

4.12. It can be seen again that the HMM approach has significantly better performance than 

the traditional scheme involving the MF. Here the results for the adaptive HMM approach, when 

formulated in the polar representation, are also presented. For this case an AGC/PLL scheme for 

the channel parameter was implemented (note that this is not the quantised approach presented in 

Remark 4.4). It can be seen that under these conditions, the nonlinearities in the PLL approach 

are not detrimental, and in fact the HMM/AGC/PLL approach performs better than the HMM/KF 

scheme.
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Example 4.5: This example investigates the relative benefits of the Cartesian channel parame- 

terisation versus the polar representation. The signal characteristics are the same as for Example 

4.1 and the results are displayed in Figure 4.13. In the previous example, the channel phase shift 

varied more slowly than in this example. It can be seen that under the more stringent conditions 

presented here, the nonlinearities in the PLL approach are detrimental, and the HMM/KF approach 

performs better than the HMM/AGC/PLL scheme.

From these examples it can easily be seen that the HMM approach is more suited, than the MF, 

to signals with non-equally-probable message symbols. Also, depending on the channel charac­

teristics, the Cartesian co-ordinate representation can provide improvements over the traditional 

polar representation. Such improvements are most apparent in conditions of rapidly varying phase 

where the nonlinearities associated with the PLL are detrimental to performance.

4.7 Conclusions

In this chapter derivations have been given for adaptive HMM on-line state and parameter es­

timation schemes for QAM signals in fading communications channels. A key element of the 

HMM approach, which appears to be quite powerful, is to work with mixed finite-discrete and 

continuous range state models. These are reformulated via HMM filtering theory as conditional 

information state models. The resulting adaptive algorithms blend EKF and HMM techniques. 

They are based on optimal techniques, but are inevitably sub-optimal. Simulation studies are 

presented which show the ability to effectively track time-varying channel parameters for QAM 

signals, and demonstrate advantages over traditional approaches to the fading channel problem.
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4.8 Figures

The figures for this chapter are now presented.

MF state estimate 
conditioned on

PLL channel phase estimate 
conditioned on , Kk

AGC channel amp estimate 
conditioned on , 0^

A

Figure 4.6: Standard MF/AGC/PLL scheme

-o 0.5

4 \ ; I

Time k

SNR = 16dB

Figure 4.7: Real and imaginary channel gain for 16-QAM

<
 *
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Time k Time k

(a) SNR = 16dB (6)

Figure 4.8: Channel amplitude gain (k) and phase rotation (fa) estimates

^ 0.6

600 
Time k

Figure 4.9: Stochastic channel gain, W c = 0 .1
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* HMM / KF

o M F/AG C

Wc = 0.1

Wc = 0.01

SNR dB

Figure 4.10: BER v SNR for real valued channels

* H M M /K F

o M F /A G C /P L L

Wc = 0.04

Wc = 0.01

SNR dB

Figure 4.11: BER v SNR for complex valued channels with equally-probable message symbols
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* HM M /KF

o M F/A G C /PL L  

x H M M /A G C /PLL

Wc = 0.04
Wc = 0.01

SNR dB

Figure 4.12: BER v SNR for complex valued channels

* HM M /KF

o M F/A G C /PL L  

x H M M /A G C /PLL

Wc(amp) = 0.01 
Wc(phase) = 0.15

SNR dB

Figure 4.13: BER v SNR for complex valued channels



Chapter 5

HMM Processing for Differentially 

Phase Modulated Communication 

Systems

5.1 Introduction

\n  P\] his chapter addresses the problem of demodulating differentially phase modulated signals 

under conditions of fading transmission channels. The HMM approach presented, is similar 

to that of the previous chapter, however some significant extensions to the signal model are required 

in this case.

When addressing the problem of frequency, or differentially phase, modulated signal demodulation 

in noisy fading channels, it is of interest to note the historical role of the EKF. EKF techniques 

have previously been applied to problems of continuous time frequency modulated (FM) signal 

demodulation (for example, in Anderson and Moore [1979]). In these cases, however, the channel 

is considered to be known and constant. Under such conditions the EKF turns out to be a PLL in 

disguise, where the Riccati equations are decoupled from the state estimate and can therefore be 

solved off-line. The case of fading channels is however more difficult.

103
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The specific signal models considered in this chapter are digital M-ary differential phase shift 

keyed (MDPSK) signals, and analog frequency modulated (FM) signals. As in the previous 

chapter, the approach taken is to couple EKF and HMM filtering techniques. The finite-discrete 

nature of the Markov model is ideal for modelling the digital, or quantised analog, signal while the 

EKF is used to estimate the continuously varying complex channel. As in the previous chapter, 

an advantage is gained by using the full probability distributions for the states, obtained from the 

HMM filter, instead of more traditional MAP estimate techniques.

Unfortunately, in the analog FM case, the discrete-state nature of the formulation implies quanti­

sation errors. However, if the quantisation is fine, and sampling rate high, then these errors can 

be minimised such that the processing gains, due to optimal HMM filtering, will overcome the 

quantisation disadvantages. In addition to DPSK and FM signals, the HMM schemes presented in 

this chapter have direct application to digital frequency shift keyed (FSK) and phase shift keyed 

(PSK) signals. In fact the PSK model has the same form as the quadrature amplitude modulation 

(QAM) model, which was the subject of Chapter 4.

This chapter is organised as follows : In Section 5.2 the state space signal model for the MDPSK 

and FM signals is formulated. Section 5.4 reviews Kalman filtering and presents estimation 

objectives. In Section 5.5 simulation examples are given which demonstrate good tracking ability 

for fast changing channels. Finally, some conclusions are presented in Section 5.6.

5.2 MDPSK and FM Signal Models

Digital M-ary differential phase shift keyed (MDPSK) and analog frequency modulated (FM) 

signals are common methods for information transmission. Such signals carry the information 

message in the frequency component of the signal. This section first presents the usual MDPSK 

and FM signal models and then proposes a reformulation so as to apply hidden Markov model 

(HMM) and extended Kalman filtering (EKF) techniques.

5.2.1 Initial Signal Model Formulation

Let fk  be a real valued discrete-time signal, where for each k,

f k e z J = { z y \ . . . , z f > )} , z f  = ( i / L f ) x e  R , Lf e z + . (5.1)
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Also, let

z (fLf)y  g irl '  . (5.2)

Therefore each of the Lj  E 2 + elements of Z / is an equally spaced frequency in the range [0, it). 

Now note that at any time, k, the message, f k 6 Z /, is real valued, and can be used to generate 

piece-wise constant time signals, f ( t )  = f k for t = [tk, t k+i). For transmission, the instantaneous 

frequency is varied linearly with the baseband signal /(<), giving the following transmitted signal.

where the carrier amplitude A c, and frequency f c are constant, and 0(t) is the phase of the signal. 

For the formulation which follows, it is convenient to represent the signal in customary complex 

baseband notation, relevant when the signal is sampled in a quadrature and in-phase manner.

where (.)2 denotes modulo 2it addition.

5.2.2 Channel Model

The channel model used in this chapter is the same as that presented in the previous chapter (see 

Section 4.2.2).

Channel State - Cartesian Co-ordinate Representation : In this co-ordinate system, it is possible 

to work with the vector x k associated with the real and imaginary parts of gk.

s(t) = A c cos [2itfct + 9{t)] , 9{t) = /o / ( r )  dr  , (5.3)

s(t) = A c exp[j 9(t)] , sk = A c exp[j 9k\ . (5.4)

Here the amplitude, A c, is a known constant, and

9 k =  ( 9 k_ \  -f f k ) l r  , (5.5)

(5.6)

The dynamics of x k are given in (4.8).
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5.2.3 Observation Model

The baseband output of the channel, corrupted by additive noise Wk, is given in discrete-time, by

Uk — 9k $k T Wk i (5.7)

where gk is defined in (4.5). Assume that Wk G C has i.i.d. real and imaginary parts, and 

w[ respectively, each having a zero mean Gaussian distribution, so that w ^ w l  ~  iV[0. crj;]. 

Reformulating (5.7) in matrix notation gives

(  R \  Vk ( A c cos 9k —Ac sin Ok \  (  g p  \ (  R \
w k= 1 +

vl  ̂ A c sin 9k A c cos 9k )  \  g lk ) <4 )
(5.8)

5.2.4 State Space Signal Model

For the MDPSK and FM signals, a discrete-time state space signal model is now generated. 

Consider the following assumption on the message signal.

Assumption on Message Signal

fk  is a first order homogeneous Markov process. (5-9)

Remarks 5.1: /. This assumption enables the signal to be considered in a Markov framework, 

and thus allows Markov filtering techniques to be applied. It is a reasonable assumption on the 

FM signal if the transition probability matrix is chosen to be diagonally dominated, Toeplitz, and 

circulant. In the case of digital MDPSK signals, the assumption is valid, given that error correcting 

coding has been employed in transmission.

2. Higher order message signal models are discussed later in Section 5.3. □

Let the vector X [  be an indicator function associated with fk. The state space of X * , without 

loss of generality, can be identified with the set of unit vectors S = {e \ ,e{,  • •. ,e{^}, where 

e{ = (0,.. . ,0,1,0,. .  .,0)' G IRL/ with 1 in the ith position, so that

A = 4  *1 ■
(5.10)
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Under Assumption (5.9) the transition probability matrix associated with f k, in terms of A'7, is 

A 7 = (a7 ) , 1 < i , j  < L f  , where a7- =  P{ A 7+| = e7 | X [  = e{) ,

so that

mCI xi\ = a  >x',
Of course a ̂ > 0, Y5jL\ n!i = 1, for each i .In addition, denote { / ) . /  6 to be the complete 

filtration generated by A'7, that is, for any k 6 2 + , Tk is the complete cr-field generated by 

A 7, l < k.

From Lemma 2.1 it can be seen that the dynamics of X [  are given by the state equation

x fk+l = ( A ' Y X l  + M '+l .(5.11)

As noted previously, the states represented by X are each characterised by a real value, 

corresponding to the unit vector e7 e S. These values are termed state values of the Markov 

chain.

Now, let the set of discrete phase values be given by:

Ze = {zq[\  . . . ,  4 Le)} * where = l i t i /Lo  e R ,  (5-12)

and define the corresponding vector

Z9 = ( 4 ' ), . . . , 2<ie)) ' 6 R L». (5.13)

Lemma 5.1 Consider the discrete-state message f \c G Z j from (5.1), the phase 9k from (5.5) and 

the set Ze o f (5.12). Now, 0k G Z iff do G Z e and Le = 2 nL f , for some n G Z

Proof : For any a G {1 , . . . ,  Le} and b G {1, . . . ,  Lf }

0k+ 1 =  ( dk +  f k h n

= (“ g  + Ä̂ ) 2,  e z 9 .
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It is now possible to define a vector X k £ S  = {e9{, . . . ,  eeLß} to be an indicator function associated 

with 9k, so that when 9k = z[l\ x ek = ef. Now given (5.5), it can be seen that A'j?+1 is a “rotation” 

on A'f by an amount determined from X k+r In particular,

Xt+i = [Ai ( X l +l)} 'X t  , (5.14)

where A 0(.) is a transition probability matrix given by

A^(A"/+ ,y  = 5 rfe+l , where rk = [1 ,2 , . . . ,  Lf \ X fk , (5.15)

and S  is the rotation operator

5

y o o . . .  i o y

0 0 . . .  0 1

1 0 . . .  0 0

0 1  . . . 0 0 (5.16)

Now define x{6 to be the state associated with the augmentation of and <9fc,

(5.17)

and X kd to be the Lf  x Le dimension indicator function associated with x kd,

x l e = x fk ® X 6k . (5.18)

As before, the state space of X ke can be identified with the set of unit vectors^ = {e{ , . . . ,  e£/XLe}’ 

so that Xl °  uniquely determines X k and X k:

x l  = x l ( X { e) ,

X i  = X

(5.19a)

(5.19b)
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Lemma 5.2 Given X [  from (5.11), and the relationship (5.5), then X k°, defined in (5.18), is a 

first order Markov process given by the equation

x ll  = (A le)'xl6 + ■ (5-20>

Here, Mk+ { is a (A^ry, Jf [ 9) martingale increment, in that E [Mk _̂, | T) 0] = 0 where lFk° is the 

complete a -field generated by x [ 9, /  <  k, { t { 9 ,1 G 2 + }. Also, A^° = (aff) und A^ = {ajj). 

In addition, from (5.19a) and (5.19b), let and be the respective state space indicator 

vectors corresponding to e j 9. Now, A^e is given from A* as follows

a{f = 6 ( X ek-  ( X ‘k + x£_,)) x a , 1 < (5.21)

Proof : That A '/0 = X k ® X ek is a first order Markov process follows, since both X k+l

and X k+[ depend only on X k and X k, and not on X k_ t , A 'j?_,,.. . , X q , X q (as can be seen 

from (5.11) and (5.14)). Application of Lemma 2.1 leads directly to equation (5.20). For a proof 

of (5.21) the following steps are presented (here the obvious superscripts on the respective unit 

vectors, e, are omitted):

P (X '*  =  ej \ x " l = e i , X " 2 =  eh, . : . )

— P { X k — e n ( j ) ,  x k — Cm (j) I X k_ \  — e n ( i ) i X k_2  — e n(/i) ? • • • •> X  k_  j — e m ^ , X k_2  — e m(/i)

=  ~~ e m( j )  I k ~  e n ( j ) ->Xk- \  — e n(i ) i  X  \ — e m(i) )*-

— e n(j )  I A fc_ ,  — e n(i ) i  X k ~ 2  — e n(h) i  • • • i X  k _  j — e m ( ; ) ,  A  fc_ 2 —

from (5.5),

= <5(X* -  (X / + X j_ ,))  x P(x/ = enU) I X [ _ I =  en(i))

= S ( Xi  -  (Xjf +  X L ,) )  X al(i),n(j]■

where all arguments are interpreted modulo 2. ■

The observation process (5.8) can now be expressed in terms of the state X k.

(  ft N Vk

vl )
Ac cos[z'dX ek] 

Ac sin[z'eX dk\

- A c sin[z'eX 6k]  ̂

Ac cos[z'eX ek] }

(

\ 9i
(5.22)
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or equivalently with the appropriate definition of hg(.),

y k =  he( X 6k) x k +  w fc , w k =  N [ 0 , R k]

=  [he{e\)x]t M e2 ) ^  • •• +  w fc (5.23)

= #0 [^Le ® + w fc ,

where the augmented matrix H'e =  [ / ^ ( e , ) .. . /^ (e^  )]. Note that the Cartesian co-ordinates for 

the channel model, allow the observations to be written in a form which is linear in both X k and 

xk. Also, E[wR+l I T k V yk] =  0 and E[wk+l \ T k V yk] =  0, where JV/ is the a-field generated 

by yk , k < l. It is usual to assume that wR and w1 are independent so that the covariance matrix 

associated with the measurement noise vector w k has the form

The vector o f parameterised probability densities can now be defined by bjj. = ( 6 j ( l ) , .. . ,bk(Lo))',

(5.24)

It is now readily seen that

E [ M ' + I \ x k v y k] =  0 ,  

E [ M l l ,  I T k V yk] =  0 . (5.25b)

(5.25a)

for b9k{i) =  P[yk \ X 6k =  ed{ , x k], where

[yk ~ (A ccos [^e f ]g f  -  A c s in [ 4 e f ] ^ ) ]

2*1
,01 „ J \  12

(5.26)
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In summary, the following lemma is presented

Lemma 5.3 Under assumption (5.9) and (4.8), the signal model (5.1) to (5.7) has the following
fOstate space representation, in terms of the L j X  Lq dimension indicator function X k ,

xl'+l = (\fey xle + Mk

Zfc+1 =  F X k + V k + l

y* = H'e [/£,, ® Xk]Xk( X [ e) +

(5.27)

or equivalently, in terms of the L j and L$ indicator functions Xj* and X [ respectively,

*£+, = (A 1)'X I + M I+X

*1+1 = [A*(*/+, )]'***
* £ f c + l  —  F x k  ^ / c + 1

yk = H'e [ILe 0  x k\X ek + wfc

Remarks 5.2: 1. Observe that both models are in terms of the channel parameters (states)

x k in a continuous range, and in terms of indicator functions (states) which belong to a finite- 

discrete set, being the vertices of a simplex.

2. The first model (5.27) has linear state dynamics with measurements bi-linear in x k and X k . 

The second model (5.28) has linear dynamics for the states x k and X k , but X k+] is bi-linear in 

X k and X k+l. The measurements are bi-linear in x k and X k.

3. In Figure 5.1 the channel output for 5000 data points is presented, with channel noise variance

c7 2w = 0.00001, and channel dynamics K,(t) = 1+0.5 sin(27rf/5000), <f>(t) = 0.047T cos(27rf/5000). 

In the simulations of Section 5.5, much more rapidly changing channel dynamics are used. Figure 

5.1 is used here merely to illustrate the time-varying nature of the channel’s effect on the signal 

constellation. D
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Real

k*. = 1 + 0.5 sin(27r/:/5000), <j>k = 0.047rcos(27r/j/5000), SNR = 2.4 dB

Figure 5.1: FM signal constellation output from channel

5.2.5 Conditional Information-State Signal Models

First Model : Let X [ 9x- denote the conditional filtered state estimate of X [ 9 at time k, given the 

channel parameter sequence Xk = {xo>. . . ,  Xk}, that is,

X llx  = E [ X l e \ y k , Xk).(5.29)

It is possible to define 1 to be the column vector containing all ones, and the information state 

o k9x. is such that the ith element

0‘{\x ( i ) = P ( Y k , X 1ke = ei \ Xk) . (5.30)

*  f A  ,  f ß
Observe that X Jk  ̂v can be expressed in terms of a k] v byk\X

=  (al\XX)-»Uv ■ (5.31)

Here <xk\¥ is computed using the following “forward” recursion:

«{+h* = b /<w , z*+,)(a (5.32)
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where B ^ (y k+i, xk+ \ ) = diag(6{^.1( 1 ,  b{d+](Lf x Lq)), and where bk6+l(i) is defined by 

t>i+1(0 =  b9(yk+ i ,edm{i)(e{9) ,x k+i), for e8m{i)(e{d) defined in Lemma 5.2.

It is now possible to express the observations, yk, in terms of the un-normalised conditional 

estimates, a ^ , |  v .

Lemma 5.4 The conditional measurements yk\X are defined by

yk\x = H',e [ILlxLe ® xk] (a { tnxA )- '  ( ^ e) ' ^ x + , (5.33)

where a { s[x is defined in (5.32), H'fe = [he(eem(l)(e,l l>) ) . .  . M em (L,xl,,)(eL%£»))]- andnk\x is 

a {Xk, y k - 1) martingale increment.

Proof : Following standard arguments since a k9x  is measurable with respect to {Xk, 34},

E[w*+l I y k] = 0, E[wl+[ I y k] =  0 and E[m { 9+1 \ y k] = 0, then

E[nk\X I Xk, y k-\\ = E[Hq [ILe 0 Xk\X6k( X Ske) + w fc

-H'f9 [iLfXLe 0 **]<«£„*,IT' (AS9)'a l - i \ x I Xk- i , y k-i]

=  Hf6 [lLfXLe ® xk\ ( ( X f e) X k_ x\x  -  (oLk_ x\X ,V) 1 ( A fe) a k_ {^  

=  0 .

In summary, the following lemma is presented,

Lemma 5.5 The state space representation (5.27) can be reformulated to give the following
f 6conditional information state signal model, with states x ,

z+l\x ~ (yk+\, Xk+\){A^6 )

xk+\ = Fxk +  vk

Yk\x = H'f 9 [ILfXLe ® xk]{a{9_ [lx, l ) - 1 ( A ^ f a l ^ i x  +  nk\x

(5.34)
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This fading channel signal model is now in standard state space form to allow the application of 

extended Kalman filtering.

Second Model : Let Y and X 9̂x  Y/ denote the conditional filtered state estimates of X k 

and X 9 respectivly, where Xk = {x0, . . . ,  x k}, X 9 = (X q, . . . ,  X 6k), and Xk = { X q , x[}. 
In particular,

X fk]xxe = E[X[\y(5.35a)

Xi\x,x i =  E [ X i \ y k, X k,X>].  (5.35b)

It is possible to define 1 to be the column vector containing all ones, and the information states, 

v Y 0 and otekI y y f ’ such that their zth elements are given respectively by

* l ix, A 0  = P( Yk , XJk = (5.36a)

X x x M  = P(Yk, X ek = (5.36b)

Observe that X ^ Y Y&a n d X ^ Y x j can be expressed in terms of o ^ Y v6 ando^|V Y /respectively, 

by

A k\X,Xe ~ (a k\X,X6' ^  ak\X,Xe ’
\ r9 _ / 6 i\ — 1 9
*k\x ,x f  ~ \a k\x,xfiM ak\ x x f  •

(5.37a)

(5.37b)

Here v Ye is computed using the following “forward” recursion [Rabiner 1989]:

a l+\\x,x° = B f (yk-k^x k + ^ X k ) (A f ),afk\XjXe , (5-38)

where B f (yk+[, x k+i, X k) = diag(&{+1( l) , . . . ,& { +1(Z /)) , and where bfk+l(i) = P[yk + 1 | 

X U \  = eL x k + \ , X dk\, where

[Vk ~ (A cCOs[z,d([A9(e{)],X dk_ l )]g^ -  A c sm[z,e([A0(eJi )] 'X^_l )]g1k)]9 ( J \ W 9

b't( i )  =  w : exp 2 o}„

[y[ -  ( Ac sin[zg([Ad (e{ )]'Xk_ {)\gf} +  A c c o s ^ ([Ag(e/)]'X £_, )]g!k) ]2

2
. (5.39)
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Also, a £|x  xs  is conveniently computed using (5.14) to give the following “forward” recursion:

< 1 1 * ,* / = B*(,*+!.**+,)(Ef=M A "(ef)]'A'/+l ( * ) ) < .  ^

(5.40)

— B (yk+\ 1 £fc+I )A [ X ^ Y  I l6\ a k\X,Xf ’

where B d{yk+\, x k+i) = diag( 6®+1( 1) , . . . ,  bjf+l(L e ) ), and where bk(i) is given in (5.26). Also, 

A* = ll A°(e{)}'...[A°(efLf)}'}.

It is now possible to express the observations, yk, in terms of the un-normalised conditional 

estimates, a[_{]xxe.

Lemma 5.6 The conditional measurements yk\x ,xe are defined by

yk \X ,Xe — H q [ lL6 ® Xk\A i.) a k - l \ X , X e ®^Le\  ^ k - l  “b n k\X,Xe i (5 *4 1 )

where nk\x ,xe ls a (%k, Xk_ ,, ^fc-l) martingale increment.

Proof: Following standard arguments since x ve is measurable with respect to { X k, Xk_ ,, 34},

E[Wk+1 I y^] = E lwU\  I yk] = 0 and E[mk+\ \ y k] = 0, then

E[nk\x,x* I 3>*-i] -  m i  [ h e ® x k\ X ek + w fc

-H's [iLe® x k)X{ (a[_{]xxe. i ) - 1 (a 0 ' < , | x<xe ® i L 0} x i _ ,  I x ^ x ^ y ^ ]  

= H'e [IL,  ® x k] (A e[x[]xxe  ® / t j - t ,

—-̂ 9[(Q{-i|*,*»’i) 1 (A/) ® /lJ a '.,)

=  0 .

■

In practise, however, as noted above, there is no access to X k_ {, but its conditional expectation,

a k_ y\X x f . Therefore the conditional measurement for this second model, y k\x ,xe’ which can 

be used in practise, does not have a martingale increment noise term, nk\x,x°- 1° addition, the 

covariance matrix, R n, of nk\x ,x6’ ls °f higher magnitude than that of wk. The exact form of R n
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is however too complicated for presentation in this chapter, and application based estimates of Rn 

can be used when implementing these algorithms.

In summary, the following lemma is presented,

Lemma 5.7 The state space representation (5.28) can be reformulated to give the following 

conditional information state signal model, with states v .̂e and v Yj,

J
a k + \ \ X , X 6 — & { y k + \ , x k,  X k ) (A-f) ( X ^ x  x 6

o du k + l \ x , x f — B ( V k+ 11 % k + 1 )*̂  [(Q:jfc|A',A'e ’ —̂̂

•E k+ 1 = F x k + Vk

y k \ x =  H's [IL, ® x k} A » [ \ a)  ' - " * • * *  ,
' Jb-\\x,xO

(5.42)

+ Ukix
' k - W X . X f

This fading channel signal model is now in standard state space form to allow the application of 

extended Kalman filtering.

5.3 Higher Order Message Models

Lemma 5.7 provides insight into methods for coping with higher order analog signal models, and 

thus allows Assumption (5.9) to be relaxed. To do this it is necessary to continue quantising the 

range of phases, while allowing the model of the frequencies to be in a continuous range, and 

in vector form. Therefore the state space representation of the frequency message is no longer a 

first order system. Also, the quantisation errors are now involved with the phase estimate. This 

approach allows the message frequency model to be in a continuous range, while still employing 

the attractive optimal filtering of the HMM filter for the phase. The following state space model
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applies,

x l+ i  =  Fkxl +  vl+
x ' w  =  [a  e{X {(h '

Xk+\ = F x k + vk+\ 

y k = H'e [ILe 0  x k] X ek + w k

(5.43)

where Fk is the function associated with the dynamics of the frequency message given by the 

state x{,  the scalar message frequency is given by h'x[,  and X {  is the quantised frequency in state 

space form.

Following the steps presented in Section 5.2, for the signal under Assumption (5.9), an information- 

state signal model can be generated for this higher order state space signal model. As with the 

previous information-state signal model, this higher order model also results in an HMM/EKF 

scheme similar to that presented in the following section.

5.4 Adaptive HMM Algorithms

Two adaptive HMM schemes are presented here for the MDPSK and FM signal model. The 

technique used here for linking HMM signal state estimation with EKF channel parameter tracking 

is the same as was presented in the previous chapter for the QAM signal model. The equations are, 

however, slightly more complex. The first scheme is referred to as the HMM/EKF scheme (and 

is a full nonlinear EKF scheme for the information state signal models (5.34) and (5.42), with the 

augmented vectors given below), and the second scheme is referred to as the HMM/KF scheme, 

(and is with a simplification assumption which results in a KF for channel estimation, coupled with 

HMM filters for signal state estimation). In both cases, it is important to remember that unlike 

standard approaches, such as matched filters or Viterbi decoders which use MAP estimates of the 

digital state, this technique utilises the full information state probability distribution vector so as 

to feed back information about the reliability of the estimate as well as the most likely state. Also 

in this section implementation aspects are discussed when considering MDPSK and FM signals.
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5.4.1 Adaptive HMM/EKF Scheme

Let

x k = ( oSk , x k)' , for model (5.34) ,1 k

J rJ= (ak , a k, x ky  , for model (5.42)

(5.44a)

(5.44b)

Then (5.34) and (5.42) can be written as

x.k+1 = f k (xk ) + gk{xk)vk ,

Vk = hk(x*) +  nk ,

(5.45a)

(5.45b)

where the nonlinear functions are given by

f k ( xk) =
B'«(x*)(A f eYa{9 )

F x k ,

k hk(xk) = H'f 0 [ILfXLo®Xk\{a{d_ pi) '(A/0)'a^,

for model 

(5.34)
(5.46a)

and

(

f k ( x k )  =

\

, 9k(xk) =

B '(**)(A /)'a '

Be(xt)A 9[(a { ,l)_l (A ')'a{ ®

FXA;

Mi * )  = H »  [ h .  ® X k] ®  I I , ]  ( ^ r y
/

> , (5.46b)

for model (5.42) .

As for the adaptive HMM algorithm with an EKF presented in the previous chapter, the EKF 

equations for (5.45a) and (5.45b) are given in (4.36a) to (4.36e).

Figure 4.3 applies here, and gives a block diagram for this adaptive HMM scheme, for the first 

model. Figure 5.2 gives a block diagram for this adaptive HMM scheme, for the second model, 

when switch 1 and 2 are closed. As with Figure 4.3, if switch 1 and 2 were in the open position 

then the HMM/KF scheme given below would result.
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Remark 5.3: This HMM/EKF scheme suffers from the same problems discussed in the previous 

chapter in relation to the QAM signal model (see Remarks 4.5). These implementation difficulties 

again provide incentive to explore sub-optimal schemes such as the HMM/KF algorithm which 

involves coupling separated state and parameter estimators. □

RICCATI EQ U ATIO N S

Figure 5.2: EKF/HMM scheme for adaptive HMM filter for second model

5.4.2 Adaptive HMM/KF Schemes

This scheme can be viewed as a derivative of the HMM/EKF scheme above by setting the Kalman 

gain term, associated with the ot[d, d{, d k updates, to zero. The rational for this is the same as 

that in Chapter 4, and is based on the fact that if the parameters were constant then the HMM/RPE 

scheme of Chapter 2 applies, for which there are strong theoretical foundations. If the channel is 

only slowly varying, then it is expected that the components of the Kalman gain associated with 

the a [ d, d£, a k updates, will be asymptotically small. The resulting scheme can be viewed as 

coupled conditional HMM filters together with a conditional Kalman filter as follows.
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In the case of (5.34), the HMM estimator for the signal state, d [ \  conditioned on the channel 

estimate sequence {xk}, is given by

“ it+Hx* = B 'W i , * * ) ( A  (5.47a)

(5.47b)

In the case of (5.42), the conditional HMM estimators for the signal states, ak, d k, are given by.

and

d I + l | i * , ä »  =  B ' ( y k+l,xi',ü

^k\xk-u&ek_, ’

-e
k + \ \ x k ,6tfk

Xs
k\xk_ u 6ifk_ l â Ä|xfc_i,ä{_,1 a k|4fc-i,

(5.48a)

(5.48b)

(5.49a)

(5.49b)

The Kalman filter equations for the channel parameter, xk, conditioned on the indicator state 

estimates, X ke in the first case, and X k and X k in the second case, are given in (4.38a) to (4.38e), 

and are reproduced here:

A: I A: — 1 4" Rk[llk Rk^k\k — 1 ] t (5.50a)

^A+1|A = F x k\k , (5.50b)

Rk = ^k\k-\^k[H'k^k\k-\^k 5- Rk] * , (5.50c)

^k\k = ^k\k-\ ~ ^‘k\k-\Rk[H'kXl̂ k_ lHk + Rk] lH'k^k\k-\ 7 (5.50d)

S k+\\k = F^k\kR'  + Qk , (5.50e)
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where

d(Hfe [ h f xLe 0 Fxk-i  ](&{- pi) '( A }e)'a[9_ {)l dxk for model (5.34) ,

d{H'e [ILe® F x k^ \ A 9[ for model (5.42) ,

(5.51)

and R is the covariance matrix of the noise on the observations given in (5.24), Q is the 

covariance matrix of Vk, given in (4.9), and E is the covariance matrix of the channel parameter 

estimate xk, (xk is defined in (5.6)).

A further sub-optimal HMM/KF scheme can be generated by using the state space signal models 

(5.34) and (5.42), and estimating the KF conditioned on a maximum a priori probability estimates

( a l ) MAP, (a 9k)MAP and (ot[6)MAP. In fact hybrid versions can be derived by setting the small

5.5 Simulation Studies

Example 5.1: In this example an 8-DPSK signal was demodulated using the techniques presented 

in this chapter. It is assumed that a coding scheme was employed in transmission, leading to the 

following signal properties. The signal is of amplitude A c = 0.2, and assumption (5.9) holds 

with a[x = 0.95, aXJ = (1 — 0.95) / ( L f  -  1) for i j ,  where Lf  = 8 in this example. The 

channel characteristics used were stochastic channels, generated from low pass filtered white 

Gaussian noise. The variance of the Gaussian process is 1 for amplitude variations, and 5 for 

phase variations. The bandwidth of the LPF is Wc times the bit rate, where values of W c are 

shown in Figure 5.3. The estimation scheme used here is the de-coupled HMM/KF scheme 

implemented on the 8-DPSK signal model given in (5.42). For comparisons to the HMM/KF 

technique, the standard MF/AGC/PLL scheme is used, (diagrammatically represented in Figure 

4.6), where the MF estimates the phase, and then successive phases are subtracted in order to 

gain estimates for the frequency. Computationally, the MF is of course less taxing, however for 

mobile communications under the conditions (8-DPSK, 19.2 kB/sec, f c= 1800 MHz, car travelling 

at 100 km/h), the processing power required for the HMM/KF approach is only 3 MFlops, which 

is reasonable with current DSP technology. Therefore the approach presented in this chapter is 

computationally feasible, and is seen in this example to out-perform the traditional scheme for

valued, that is low probability, elements of (d{), (a ek) and (d£ö) to zero and re-normalising.
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the case of non-equally-probable messages, while being identical to the traditional scheme in the 

equally-probable message case.

The results for this example are displayed in Figure 5.3, where signals of length 50000 data 

points have been used to generate bit-error-rate (BER) values. It should be noted that the case of 

Wc = 0.04 is one of severe fading, and it is seen that even under such conditions, the HMM/KF 

scheme performs well.

Example 5.2: In order to demonstrate the application of the HMM techniques to analog signals, 

a frequency modulation scheme, under assumption (5.9) with a/- = 0.95, was generated with 

Lf = 16. 0 was quantised into Lq = 32 values, under Lemma 5.1. The signal is of amplitude 

Ac = 0.2. The channel characteristics used were deterministic as opposed to the stochastic, low 

pass filtered white noise channels used in Example 5.1. The deterministic channel allows the 

results to be displayed in a manner which more clearly shows tracking ability of these schemes. 

The channel characteristics were given by

K,k = 1 + 0.5 sin(3ttA:/1000) ,

(f>k = 0.757Tcos(\0 irk/1000) ,

and the signal to noise ratio associated with the observations in the absence of fading is SNR = 

(Eb/crlj) = 2.4dB, where Eb is the energy per bit associated with the transmitted signal, if the 

signal were a 16-FSK digital signal. Of course much lower SNRs can be accommodated in the 

presence of more slowly varying channels, and it should be noted that the SNR effectively varies 

as the channel fades. The lowest effective SNR in this example occurs at k = 500 where SNR = 

1.8dB. The channels presented here are very fast in the case of FAX and modem applications, but 

are more reasonable in applications involving mobile communications and indoor communication 

channels [Hashemi 1993, Loo and Secord 1991].

The estimation scheme used here is the de-coupled HMM/KF scheme implemented on the FM 

signal model given in (5.42). The simulations which were carried out using the signal representa­

tion in terms of the Lf  x Le dimension vector were found to be too computationally taxing. 

The results for the de-coupled scheme are presented in Figure 5.4 to Figure 5.6 and show that 

even though the channel changes quite quickly, good estimates are generated. Figure 5.4 shows 

the true channel values and the estimated values in real and imaginary format, that is, exactly as 

estimated from (5.50a) to (5.50e). Figure 5.5 shows the actual channel amplitude and the
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estimate of this, generated from the estimates in Figure 5.4. Likewise, Figure 5.6 shows the actual 

channel phase shift 4>k and the estimate of this,generated from the estimates in Figure 5.4. These 

results show sudden phase shifts, seen as glitches in the phase estimate in Figure 5.6. These can 

be any multiple of 7r /T / due to the symmetry of the phase quantisation. In this case, there is 

tracking degradation over the period where channel amplitude is less than one. It is natural that the 

estimates during these periods be worse, since the noise on the observations is effectively greater 

when Kk < 1.

Example 5.3: In this example the FM signal parameters and channel characteristics were the 

same as those used in Example 5.2. The SNR, without fading, was however SNR = 1.4dB. Note 

again that at the maximum fading point, k = 500, the SNR is effectively SNR = 0.8dB. The phase 

estimate results are presented Figure 5.7 and show that the phase shift estimates are not able to 

track the actual phase shifts as accurately as in the lower noise case of Example 5.2. This example 

demonstrates the effect on robustness when the observation noise is assumed to give SNR = 0.4dB 

without fading, an order of magnitude greater than the actual value. For this robust case, the 

channel gain estimate shows no appreciable difference from the non-robust estimate, however the 

channel phase shift estimate shown in Figure 5.8 shows improved tracking ability.

5.6 Conclusions

In this chapter adaptive HMM on-line state and parameter estimation schemes have been derived 

for MDPSK and FM signals in fading communication channels. The schemes which blend 

EKF and HMM techniques, are based on optimal techniques, but are inevitably sub-optimal. 

Simulation studies are presented which show the ability to track time varying channel parameters, 

for both MDPSK and FM signals. Comparisons to traditional schemes demonstrate performance 

advantages for the HMM/KF techniques presented.



124 Figures 5.6

5.7 Figures

The figures for this chapter are now presented.

* HMM/KF 
o MF / AGC / PLL

Wc = 0.04

Wc = 0.0

SNR dB

Figure 5.3: BER v SNR for 8-DPSK
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i  \  * /  i  \  /

800 1000200 400 600
Time k

SNR = 2.4 dB

Figure 5.4: Real and imaginary' channel gain for FM

200 400 600 800 1000
Time k

SNR = 2.4 dB

Figure 5.5: Channel amplitude gain (k) estimates for FM
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200 400 600 800 1000
Time k

SNR = 2.4 dB

Figure 5.6: Channel phase rotation (4>k) estimates for FM

200 400 600 800 1000
Time k

SNR = 1.4 dB

Figure 5.7: Channel phase rotation (4>k) estimates for FM
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200 400 600 800 1000
Time k

SNR = 1.4 dB but with SNR = 0.4 dB used in algorithm

Figure 5.8: Channel phase rotation (<f>k) estimates for FM



128 Figures 5.6



Chapter 6

Risk Sensitive Control Problems

6.1 Introduction

\n  pj his chapter addresses optimal regulation and tracking problems for both linear systems 

^  and hidden Markov models. Specifically, it considers cost criteria involving risk-sensitive 

policies. Recently there has been much interest in risk-sensitive control techniques. Such policies 

lead to an optimal solution, similar to the case for linear quadratic Gaussian (LQG) control. 

However, with a risk-sensitive policy, the controller’s sensitivity to risk can be varied. One 

application area for risk-sensitive control has been economics, where risk-sensitivity is termed 

hedging or risk-aversion, for example see Karp [1988] and Caravani [ 1986]. These papers illustrate 

that advantages can be gained from the risk-sensitive approach, for problems such as dynamic 

trading and futures market prediction.

The particular risk-sensitive control policy considered in this chapter involves an exponential 

in the cost function. This approach was first presented in Jacobson [1973], when considering 

the risk-sensitive LQG problem with state feedback. Jacobson demonstrated a link between 

exponential performance criteria and deterministic differential games. He showed that the risk- 

sensitive approach provides a method for varying the the robustness of the controller, and noted 

that in the case of no risk, or risk-neutral, the well known LQG solution [Anderson and Moore 

1989] would result.

129
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The discrete-time risk-sensitive linear-quadratic-Gaussian (RLQG) output feedback control so­

lution was first presented in Whittle [1981], where use was made of a risk-sensitive version of 

the certainty equivalence principle. This allowed the state estimation and control optimisation 

to be decoupled, solved separately, and then re-coupled. The continuous-time case was solved 

in Bensoussan and van Schuppen [1985], where a technique which generalises to the nonlinear 

case, was used. More recent developments in risk-sensitive control have included a solution to the 

output feedback control problem for nonlinear systems using information-state techniques [James 

et al. 1994]. The solution is of course infinite dimensional, but does not require the use of a 

certainty equivalence principle.

This chapter presents the output feedback RLQG solution, derived via the methods in Bensoussan 

and van Schuppen [1985], James et al. [1994]. It considers specifically, the case of tracking 

a desired trajectory. The resulting equations are shown to be consistent with those presented 

in Whittle [1981], and in the “risk-neutral” case, consistent with the standard LQG solution. In 

addition, methods are discussed for achieving zero steady state error for tracking with risk-sensitive 

control policies.

The solution to the discrete-time hidden Markov model (HMM) risk-sensitive tracking problem is 

also presented. In this case a finite-dimensional information-state is derived. However, the control 

solution requires an infinite-dimensional dynamic programming problem to be solved. Fortu­

nately though, it is possible to discretise the information-state space and thus obtain approximate 

solutions.

The key to the technique used in this chapter is that an information-state is chosen in such a way that 

it represents both a state estimate and the cost incurred to the time of the estimate, as in Bensoussan 

and van Schuppen [1985]. A change of reference probability measure is used to arrive at a linear 

recursive update equation for this information-state. Then, dynamic programming methods are 

employed to obtain the solution to the control problem, with the cost having been re-formulated 

in terms of the information-state. This derivation is fundamentally different to Whittle’s approach 

[Whittle 1981], being more closely linked to the work in Bensoussan and van Schuppen [1985].

An important feature of this chapter is that it presents a finite dimensional solution to the 

risk-sensitive output feedback control problem in the LQG case. It therefore provides a finite­

dimensional example of the quite general infinite-dimensional controllers derived in James et al. 

[1994], and gives insight to the nonlinear control solution. The presentation of results for tracking
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with hidden Markov model systems demonstrates a nonlinear situation where a finite dimensional 

information-state can be derived. The dynamic programming solution is infinite dimensional, but 

can be solved approximately, as discussed later in Section 6.3.4.

This work is, in part, an extension of the work presented in [Aggoun et al. 1994], where bi-linear 

systems were considered. In the work of this chapter, however, the tracking solution is discussed 

in addition to regulation, and the control solution is solved explicitly. Simulation studies are 

presented in an effort to demonstrate the effect of variations in the controller’s sensitivity to risk. 

Various tracking problems are considered to show the advantages of the risk-sensitive approach.

Finally, the problem of risk-sensitive filtering is discussed. The filtering solution is shown to be 

derived directly from the tracking equations, with a slightly different interpretation of the cost 

function. Having demonstrated the close link between the information-state (used for control 

purposes) and the risk-sensitive filter, the idea of dual control can then be considered, as discussed 

in Section 6.6.

This chapter is organised as follows: Sections 6.2 and 6.3 present risk-sensitive tracking results 

for linear systems and HMMs respectively. Approaches for tackling constant reference inputs 

are considered in Section 6.4. In Section 6.5, simulation studies are presented, followed by a 

discussion on risk-sensitive filtering in Section 6.6. Finally, conclusions are presented in Section 

6.7.

6.2 Linear Systems

This section considers the risk-sensitive tracking problem for discrete-time linear systems in 

Gaussian noise. Such problems are termed here risk-sensitive-linear-quadratic-Gaussian(RLQG) 

problems. The case of time-invariant systems is presented, however in this finite-time framework 

the result is equally applicable to time-varying systems.
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6.2.1 State Space Model

Consider the following discrete-time system on the probability space [L l,T , P) with complete 

filtration {Pk}-

x k+1 — Ax k T Bilk T iik •>

Vk+1 = C x k + W k ,  (6 .1)

~k-1-1 — Bxk  i

over the finite time interval k = 0 , 1,... ,  T. The state of the system is represented by the process 

x . The observable part of the system is represented by the process y. This chapter will consider 

the problem of output tracking, where the desired trajectory will be denoted by 5. The process 

which is to follow 5 is defined by 2 . The random variables Vk and Wk have normal densities 

ip ~  N{ 0, E) and cp ~  N ( 0, T) respectively, where E and T are n x n and p x p positive definite 

matrices. The control, u, takes values in R m. The complete filtration generated by (j/o, - . . ,  yk) is 

denoted by yk,  and the admissible controls u are the set of R m-valued {.TaJ  adapted processes. 

Also, write Uk,i for the set of such control processes defined on the interval k , . . . ,  /.

In order to reformulate the system model (6.1), a new probability measure, P , can be defined by 

setting

A (lPAo’k = IP
k

=  ^  ’ where Xk =
ip{xk -  A x k - 1  -  B u k-\)(}>(yk -  C x k- \ ) 

Mxk)(p{yk) ( 6 . 2 )

Here, Ao,a; is an T k martingale, and E’fAo./c] = 1. Now, under P , x k and yk are two sequences 

of independent, normally distributed random variables with densities ip and <p respectively. This 

reformulated model results in a linear recursion for the un-normalised information-state, as seen 

later in Section 6.2.3.

6.2.2 Cost

The cost function for the risk-sensitive control problem is given, for any admissible control

u e Uq j - \ ,  by

J(u) E

E

exp 6 j $0,7-1 +  yx'TM Tx TI 
A0,Texp6> + X- x 't M t xt |  ,

(6.3)

(6.4)
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where

Here, 9 > 0 is a real number and represents the amount of risk in the control policy. For small 

values of 0, approaching zero, the effect is to make control decisions assuming the stochastic 

disturbances are acting in an average manner. For larger values of 6, the control is effectively 

more conservative, or in other words, has a higher sensitivity to risk.

It can be shown [James et al. 1994] that in the limit when 9 approaches zero, the cost function 

(6.4) is identical to the more familiar cost function considered for LQG control [Anderson and 

Moore 1989]. This implies that the LQG solution will be generated by simply setting 9 equal to 

zero in the final RLQG equations (as demonstrated in the following sections).

6.2.3 Information State

In this section finite dimensional recursions are presented for the information-state. In the case of 

risk-sensitive control, it is convenient to also include a component of the cost in the information- 

state. This is an important concept and is a more general type of information-state than those 

used in previous chapters. For the formulation presented here, the information-state is again a 

probability distribution (it can be compared to the ‘past stress’ in Whittle [1981]). For small 

values of 9, approaching zero, the mean and variance of the information-state become the state 

and covariance estimates for the linear Kalman filter. This can be seen in the following definition 

by setting 9 equal to zero.

For any admissible control u, consider the measure

where /( .)  is the indicator function.

Lemma 6.1 The information-state ak(x), as defined in (6.6), obeys the following recursion:

a k+\(x) = l(yk+1) fi(yk+\ -  C^)e \ ^{9^kik)'fi(x -  A£ -  Buk)ak(^)d^ . (6.7)

ak(x)dx = E[Aoyke\p(9'Ho,k-\)I(xk G dx)\yk] ( 6 .6 )
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Proof:

a k+[(x)dx = £[A0,fc+i exp(0$otA;K ( ^ + i  G dx)\yk+]]

=  ^ [ A fc+i A 0, f c e x p ( ^ ^ fcifc) e x p ( ( 9 ^ o , i t - i ) / ( a : ^ + i  G dx)\yk+i] ,

<*k+i(x) = f Rn • • • f R n ° (^(J~+̂)Xk) exp(9^ktk)fi(x -  A x k -  Buk)

A0,k exp( 9 ^ 0lk- 1  )dP{ x0, . . . ,  x k)

= 0 - '(2/fc+i)/Rn 4>(Vk+1 -  C'OexpC^fc.ltM* -  Af -  i?«*)«*^)^  •

Theorem 6.1 77z£ information-state a k(x) is an un-normalised Gaussian density given by

a k(x) = a k( x , \ k )  = Zk exp(— \ /2)[(x -  pk)'Rk '(ar -  p k )] , (6.8)

where the new information-state \k  = (ßk-> Rk-,Zk), and p k, Rk x and Zk are given by the 

following algebraic recursions:

Rk+1 = R k + 1 [E~x Buk

+ E  ~xAa\

X » , = E _1 -  E _1 Aa^

Zk + 1 = Zfc|E |"2 |a^ |_ 2 (

- l ,

(6.9)

exP ( 2) Ak Rk+\-̂ fc+l/̂ Ar+l

where

ak = C' T~XC -  9(M +  D'QD)  +  A 'S -1 A + R k x , (6.10)

l k -  u'k( - 0 N  +  B ' E ~ xB ) uk + p'kR k Vfc -  Oz'k+xQzk+\

- ( a4  V  ~ ukB'Yi~xA  + yk+lT~xC -  9zlk+,QD)a~k x

(R k XRk ~ A'Tj~ x B u k + C'T~xyk+i -  0D’Qzk+i) , (6.11)

under the condition that ak and R k be positive definite for all k.
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Proof : Due to the linearity of the dynamics, and the fact that Vk and Wk are independent

and normally distributed, it can be seen that a/.(x) is an un-normalised Gaussian density. The 

recursions for /^ ,  RJi1 and Zk are obtained by evaluating the integral in (6.7). An outline of the 

derivation is given in Appendix B. ■

Further matrix manipulations yield the following, more familiar, expressions:

pk-\-1 — Aflk T Bufc

+A K k [ C T - ' ( » +l -  Cut -  er(C') -'D'Qh+i)  + 0(M + D'QD)nk] 

K k = (Ä *‘ + C T  - lC - 8 ( M  + D'QD))- '

Rk+1 — ^  4* AKkA1
( 6 . 12)

which can be compared to the result presented in Whittle [1981] for the case where Q — 0.

Limit Result

Equations (6.12) can be re-expressed in the following form:

Pk+i — Aukik T Biik

ß k]k = ß k + K k[yk+i -  Cuk -  0(T(C')~lD'Qzk+t-  +

K k = (Rk ' - 0 ( M  + D'QD)) - 'C’[C(R-k ' - e ( M  + D' QD) ) - ' C+

Rk+\ — £ + a r ^ a1 

Rk\k =  Rk -  KkCRk
—

3)

In the case when 6 approaches zero, it can easily be seen that the equations in (6.13) reduce to the 

standard Kalman filter equations [Anderson and Moore 1979] (p. 40).

6.2.4 Alternate Cost Representation

This section shows that the cost function can be expressed in terms of the information-state. This 

allows the optimisation problem to be solved by dynamic programming, without any appeal to 

a certainty equivalence principle. It can however be viewed as a slightly different form of the 

seperation principle ([Anderson and Moore 1989] p. 218), since due to the fact that the cost is
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actually in terms of the information-state, there is no need to evaluate the state feedback solution 

and then substitute the state estimate. The system is not however fully seperated because the 

information-state, as defined in (6.6), contains terms from the control cost function.

Theorem 6.2 For any admissible control u, the risk sensitive cost can be expressed in the form

6.2.5 Dynamic Programming

Following James et al. [ 1994] it is possible to see that the alternative control problem can be solved 

using dynamic programming. Suppose that at some time k, 0 < k < T, the information-state \k

is X = {p ,R ,Z ).

The value function for this control problem is [Aggoun et al. 1994, James et al. 1994]:

J(u) = E  [(o!t (-,Xt ),/^t )] , (6.14)

where (/(•)> ?(•)> = / r" f ( z )<l(z )dz and ßT(x) = exp(f x'MTx).

Proof : Now, from (6.4) it is possible to see that

J(u) = E Aoj’exp(0$o,r-i)exp(§z'r M rxr)

=  E E [Ao,TQ^p(0^oj-\)ßT(XT)\yT]

= E  [ / R n  ß r(x )a T(x)dx]

= E  [(ar(->X r),0t )\ •

V{x,k)  = inf E[{ak,ß k) | a k = a(X)] ,
u£Uk,T - 1

(6.15)

where ßk is an adjoint process defined, for k < T  -  1, by

(6.16)

The adjoint process is different to the ‘future stress’ in [Whittle 1981], as it relates to output 

feedback, not state feedback.



6.2 Risk Sensitive Control Problems 137

Theorem 6.3 [Aggoun et al. 1994, James et al. 1994] The value function satisfies the recursion

V{ x , k ) =  inf E[V(xk+\(Xk,u,yk+\),k + l)|xfc = x]ueuk'k
(6.17)

and V (x, T) = {olt(-,x ), ßr)-

6.2.6 Dynamic Programming Solution

Theorem 6.4 The value function is the exponential o f a quadratic in p,

V(x,  k) = Zk exp(6/2)[p.'kSkpk + 2Sk Hk + Sk] , (6.18)

and the optimal control is linear in p,

u min = - ( N  + B 'S k+lB ) - '  B '

where

Sk+> = ((SJ+,)“* -  tfffcfi)-' . Ä
K% = (N  + B 'S k+lB ) - 'B 'S k+lÄ ,  M

K bk =

f*  = A K kC'T-'Ce, 6

0  = [(CTC)-1 + p - ' R k}'/2 , p

Also, S k and Sk are given by the following backwards recursions:

S ak = M  + Ä'Si+l(I  + B N - 'B 'S i + i- e t kt 'kS i+l) - 'Ä

Sk =  Ä '^ + i  - { I +  »M R k)D 'Q zk+\ + Ä 'S k + x B o - 'B 'iS P i + » K l )  + 8 A 'K bk
—  (6720)

under the condition that ( I  -  0T'kS k+lt  k ) is positive definite fo r  all k, and C is positive definite 

except in the cases where C = D or D — 0.

=  Ap 1 ,

=  (M  + D'QD)p~l ,

= N  + B ' Sk+lB ,

=  i-er'kst+ttk,
= I  -  8Rk( M + D'QD) .
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Proof : By evaluating the dynamic programming equation (6.17) for V(x,  T  -  1) it can be seen 

that the value function is the exponential of a quadratic in /i. The remainder of the proof is outlined 

in Appendix B, and is essentially an evaluation of the dynamic programming equation (6.17), with 

appropriate variable transformations. ■

Remark 6.1: The condition that C be positive definite, is a manifestation of the variable

transformation used in order to present the results in a form which more readily demonstrates the 

link to standard LQG results. As can be seen from the exclusion when D = 0, the condition only 

applies to the tracking part of the solution, (that is the Sbk and K bk recursions). It is possible to 

solve the dynamic programming problem without such a variable transformation and thus remove 

the condition on C. n

In order to demonstrate consistency with the results presented in Whittle [1981], where an appeal 

was made to a certainty equivalence principle, and Q = 0, we now set

II* = Si[I + f)RkSak}-' , (6.21)

and Q — 0, which results in the following recursion for Ilk

nk = M + /t'tn*;, + b n - ' b ' - os]-U|

under the condition that (I  -  9RkUk) is positive definite for all k.

Substitution of (6.22) into (6.19), yields

u f in = - N - ' B ' w i h  + b n - ' b ' - e z ) - ' A { i - 8 R kn t ]-yT| .

where the term [I -  9RkUk]~l is sometimes referred to as the minimum stress estimate.

Limit Result

In the case where 9 approaches zero, it can easily be seen that Sk+1, Ä and M  approach S£+1, A 

and M  + D’Q D respectively, and the following equations result from manipulations to (6.19) and 

(6 .20):
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« ? ”* = - ( N + B'SlJr,B)-'B'[Sl+{Aßk + S l ^ \

S i  = M + D'QD + A'[Si+ l - S i +lB(N + B'Si+lB)-

S bk =  ( A - B ( N  + B 'S i+lB)- 'B>St+tA y S l+ l - D ' Q z k+l

(6.24)

These are the standard LQG equations, as presented for example in Anderson and Moore [1989] 

(p. 32 and p. 81).

6.3 Hidden Markov Models

In this section the risk-sensitive tracking result is presented for hidden Markov models. Such 

systems are discrete time and have finite-discrete states. Consider the case of continuous valued 

observations.

6.3.1 State Space Model

Let Xk be a discrete-time homogeneous, first order Markov process belonging to a finite-discrete 

set. As in previous chapters, the state space of Xk, without loss of generality, can be identified 

with the set of unit vectors S = {e\ , e - i , en}, et- = (0, 1,0, E R n with 1 in the

zth position [Segall 1976]. Now consider that the process is defined on the probability space 

(Q ,X ,P )  with complete filtration {Xk}- Suppose, in this control setting, there is a family of 

generators A(u) = (atJ(u)), 1 < < n where dij(u) = P(Xk+\ = ej | Xk = ei,u) so that

E[Xk+\ I Xk, u] = A'(u)Xk- These generators depend on the admissable controls, u. Of course 

alJ(u) > 0, aij{u) = 1, for each i. In this chapter consider the case of continuous valued 

observations yk, and desired trajectories Zk- The state space model for the HMM is given by

Xk+1 = A '(u) Xk  + Mfc+i ,

Vk = c(Xk) + wk , (6.25)

~ k — d( X k ) ,

where Mk+\ is a (A(w), Xk) martingale increment, in that E[Mk+\ \ Xk] = 0. Also, the random 

variable Wk has normal density <fi ~ N ( 0, T), where T is a p x p positive definite matrix.
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In order to reformulate the system model (6.25), a new probability measure, P, can be defined by 

setting

A ClP
Ao’1 =  7P

k
= J J  A* , where \ k 

e= l

(f){yk -  c(Xk))
<t>{Vk)

(6.26)

Here, Ao,/,- is an T k martingale and ^[Ao^] = 1- Now under P, yk is a sequence of independent, 

normally distributed random variables with density 0. This reformulated model results in a linear 

recursion for the un-normalised information-state, as in Section 6.3.3.

6.3.2 Cost

The cost function for the risk-sensitive control problem for HMMs is given, for any admissible 

control u £ by

J{u) E

E

exp 6 \ ^o,T-i + - X j Mj X j

Ao^expO  <j +  - X j Mt X t

(6.27)

(6.28)

= X ?  [X' fMXt  + u'iNui + (zt -  -  . (6.29)
t=3

In this case, where X k is an indicator vector, the cost has a connotation slightly different to the 

minimum variance controller of Section 6.2. However, consider a limiting example where the 

set of real numbers is quantised into an infinite set of Markov states. In this case, X k is infinite 

dimensional. If M  = C'C  in (6.29) then the result is a minimum variance controller. This infinite 

dimensional example gives some insight into the motivation behind considering (6.29) as the cost 

function in this HMM problem.

6.3.3 Information State

As in Section 6.2.3, an information-state is presented which includes a component of the cost. 

Unlike the linear case, however, for HMMs the information-state is a probability distribution 

vector of dimension n.

For any admissible control u, consider the measure

a^e , )  = ^[A q,/:exp(^^0,fc-\ ) (Xk, e;)|34] • (6.30)
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Theorem 6.5 The information-state a k = ( ak( e \ a k(en))', as defined in (6.30), obeys the 

following recursion
a k+1 = BkA' (u)Vka k (6.31)

where

Bk

V k

diae ( ^ yk+1 ~ MVk+i  ~ c(en)) \
V f i ( y k + 1) f i ( V k + 1) /

diag ^exp-[e',Mei +  +  ( h  ~  d{ex))'Q(zk -  d(e i))],

••->exP 2 lenMen + u [ N u k + -  d(en)),Q(5fc -  d(en))]\

(6.32)

(6.33)

Proof:

0^+1 ( e t ) ^[Ao,^+i exp(ö^o,Ar)(A'fc+i, et> |^ +i]

^[Afc+iA0ifcexp(ö^fc)A;)exp(^$o)jk-i)A:^A(w)etU fc+i]
E i ’(yk+\-c(e, ) )  

HVk+ l)
(E j= i(A fc ,e7) exp §[e'M ej + u'^iVufc +  (z fc -  d(ej ) ) 'Q(zk -  d{ej))])

(E-=i aJl(w)(XA;,eJ)) A0,fcexp(6>̂ o,A:-i)l>Wi] 

^ X 7 . \ e0) ^i=> CXP f  +  «1^ «*  +  (** -  d(e,) ) 'g (2 fc -  d(e j ))}

aJl(u)ak{eJ) .

Writing this in matrix notation gives the result.

6.3.4 Alternate Cost and Dynamic Programming

For the HMM case, the cost (6.28) can be expressed in a separated form, as for the linear case 

in Theorem 6.2, with appropriate notational changes. The dynamic programming solution is 

likewise obtained from Theorem 6.3. Unfortunately for the HMM, the solution to the dynamic 

programming equation cannot be evaluated in terms of finite-dimensional Riccati equations (as 

is the case for linear systems in Section 6.2.6). The solution for the HMM system requires a 

search over all possible control values for each backwards step, and for each possible value of the 

information-state. Therefore while the HMM case results in a finite dimensional information-state, 

it unfortunately has an infinite dimensional solution to the dynamic programming problem. It is
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possible however to solve an approximate dynamic programming problem by making practical 

numerical approximations such as quantising the information-state space. This can be compu­

tationally feasible in some cases since the information-state is known to have positive elements. 

Also, a normalised version of the information-state can be used in the Dynamic programming 

problem since the following property is known to hold in the HMM case [James and Elliott n.d.] :

V(ca, k) = cV(a,  k ) . (6.34)

In Section 6.5 an example of such an approximate dynamic programming solution is presented for 

this risk-sensitive HMM case.

6.4 Constant Reference Input Case

This section investigates the case where Zk is a constant value. Under such conditions it is possible 

to design an optimal controller with zero steady state error. This section considers the discrete-time 

linear system of Section 6.2.

Consider the cost function given in (6.4). Note that for this general function there exist some 

trade-offs which do not allow zero steady state error to be achieved. For example, (6.5) penalises 

deviations of Xk from zero, while at the same time penalising deviations of Dxk  from z\t, these 

are conflicting objectives. Also, the control Uk is penalised for deviations from zero when it is 

known that, in steady state, it must be a constant non-zero value for this constant reference input 

case. These considerations indicate that the tracking problem must be reformulated.

6.4.1 Control Integrator Approach

A standard method for obtaining zero steady state error, is to introduce an integrator in the forward 

path of the control loop. This technique can be used in this risk-sensitive case with a few minor 

adjustments to the control policy. Figure 6.1 shows the block diagram for the control system 

presented in the preceding sections of this chapter. By introducing an integrator and augmenting 

the state, as in Figure 6.2, it is possible to obtain a more appropriate cost function.
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In this section the control uk is chosen to be an extra state, and a new control ük is defined. The 

state of the augmented system is then given by

Xk = (6.35)

where x ck = uk = J2i=\ ük• This augmented state is an un-normalised Gaussian density, and is 

given from equations (6.9) to (6.11), with appropriate re-definitions for the augmented system, by

X k-\-1

Vk+1 

Zk+\

t A b \
V /

' o '

0 /

( C 0 )xk + wk ,

( D 0 )xk •

X 7 /
Ük +

' C

X 0 /
Vk ,

(6.36)

The cost function to be considered is now given, for zk = z, by (6.4) where 'Pj*. is re-defined as

k j
*;,* = Y l ?  l ü ' tN ü > + -  ( D  0 ) x k )’Q ( i  -  ( D  0)4*)] ■ (6.37)

t=j  1

It can easily be seen that for this cost function there are no conflicting objectives, and as such zero 

steady state error can be achieved.

Unfortunately, however, there exist some hidden problems. The first is that the new state x k has 

zero state noise and as such results in a singular filtering problem. This can be overcome by 

assuming there exists some noise of variance e and then taking the limit of the information-state, 

as c approaches zero. As can be seen from (6.12), the limit exits with Kk re-defined as

K k = R k(I  + C 'Y - 'C R k  - 6 ( M  + D 'Q D )R k) - '  . (6.38)

The second problem is that in the case of modelling errors, even with the augmented system, zero 

steady state error is not necessarily achieved. This is due to the fact that there exists a term in the 

optimal control law (6.19), which is not proportional to the state estimate Uk- If this term is not 

calculated correctly, as would be the case with modelling errors, then the control ük would drive 

the output Zk to an incorrect steady state value. Since the observations, yk, are being fed back, not 

the tracking value, Zk, there is no non-zero error term to drive the controller to zero steady state 

offset.
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Although zero steady state error may not be achieved in certain cases, there is still an advantage to 

applying the integrator approach. In the risk-sensitive case, when modelling errors are present, it 

is possible to achieve a lower minimum variance cost than for the case of LQG control (as can be 

seen in Section 6.5). One problem however is that the step response can be undesirable for values 

of 9 which are too large. By augmenting the system with an integrator, the step response will be 

smoothed out, resulting in a risk-sensitive policy which has both a lower minimum variance cost 

and an acceptable step response.

6.4.2 Reference Model Integrator Approach

An extra point to note is that in the scheme presented so far, it is necessary to have prior knowledge 

of the constant reference input signal, z. An approach for removing this assumption, commonly 

used in LQG tracking systems, is to model the reference 5 by a first order integrator,

xk+i  =  x l  +  vk i  

h+ \ = D xrk .
(6.39)

This would of course slow the response of the system, but would have the advantage of zero-steady 

state error in conditions of uncertain models. The augmented state vector is given by

Xk x k

\ )

(6.40)

This new augmented state is again an un-normalised Gaussian density, and is given from equations 

(6.9) to (6.11), with appropriate re-definitions for the augmented system, by

1 A B  0 ^ M (  „  \Vk

X k+ 1 — 0 / 0 Xk + i Ük + 0

k-ioo UJ v  )

V k+1 = ( C 0 - D  ) x k  + w k , 

Z k +1 = ( D 0 - D  ) i k  •

The cost function to be considered is given by (6.4) where is re-defined as

*j,k ü't Nüe + x'k( D 0 - D  )'Q{ D 0 - D  )xk . (6.42)
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In this case there are no terms in (6.42) which are linear in x*, and as such the optimal control 

will be proportional to the state estimate pk and have no extra terms (that is, S bk and K bk will not 

appear). In fact the solution to the dynamic programming problem for this augmented system 

is given in Theorem 6.4 with the following substitutions (in addition to those for the augmented 

system representation (6.41)):

M  = ( D 0 - D  )'Q( D 0 - D  ) , Q = 0 . (6.43)

Due to the purely proportional feedback nature of this solution, it can now be seen that it is 

possible to obtain zero steady state error even in the case of modelling errors, as there is no longer 

a constant offset term contributed by K k. Unfortunately, however, the initial transient will suffer 

due to the fact that the controller is no longer able to anticipate the step in the reference input, as 

it is now assumed to be unknown.

One final point to note is that this second augmentation can be used without the first augmentation, 

and zero steady state error will result for the case where N  = 0, (this is termed cheap control). 

However, undesirable oscillations in the transient response will increase, compared to the situation 

where an integrator is present in the forward path.

6.5 Simulation Studies

Simulation studies are now presented to demonstrate the effect of variations to the risk-sensitive 

parameter 6.

Example 6.1: This example demonstrates a case where modelling errors are present. The true 

system is given by the following parameters:

-0 .2  1 0.9 C = [1 0] , , , 1 0
A = , B  = , =

-0 .2  0 -0 .6 £> = [10] , 0 1

T  =  100, v 0.01 0 TV = 0.1,

o o.oi ’ Q = ioo,
r = o .o i ,

and the trajectory to be followed, Zk, is a unit step at k 20. The modelling error is introduced
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by assuming in the design that A is given by

A =
- 0.8 1 

- 0.8 0

Table 6.1 gives values of the LQG, minimum variance, cost function (that is, #o,T- i +0.5 x 't M t x t ) 

averaged over 100 simulation runs. It can be seen that in the case where no modelling error is 

present, of course 9 — 0 gives lowest cost. However, when the error is introduced, a higher value of 

6 gives a lower minimum variance cost. This example displays an advantage of the risk-sensitive 

approach in the presence of modelling errors.

Unfortunately, the sample path properties may not improve with a lower minimum variance cost, 

as one would wish, especially if 6 is too large. Here, too large will depend on the type of modelling 

error, and will of course be unknown to the designer. Figure 6.3 shows a typical sample run for the 

case of no modelling errors. It shows that the cost function chosen, for the tracking task considered, 

results in little difference in tracking errors between the LQG and risk-sensitive policies. Figure 

6.4 shows a typical sample run for the case where modelling errors are present. Even though the 

minimum variance cost is lower for the risk-sensitive policy, the tracking performance might not be 

as desirable, having much greater oscillations in the transient response. Therefore the desirability 

of a risk-sensitive approach cannot be measured purely by the minimum variance cost.

Example 6.2: This example demonstrates the case of a constant reference input, where an 

integrator is added in the forward path of the control design. This is done in an effort to combat 

the undesired oscillations in the transient response, seen in the previous example. The system is 

the same as in Example 6.1, but with M  = 03x3. When no modelling errors are present, zero 

steady state is achieved. When errors are introduced to the model it is not possible to have zero 

steady state error, however Figures 6.5 and 6.6 demonstrate that there are still advantages to the 

integrator approach. The modelling error in these figures is the same as that in Example 6.1. As 

can be seen from the figures, the addition of an integrator effectively increases the usable range 

of risk-sensitive parameter values, 9, by smoothing the step response. However, there is less cost 

benefit from varying 9.

Example 6.3: This example demonstrates the case of a constant reference input, where an 

integrator is added in the forward path of the control design as well as using a model for the 

reference. As can be seen from Figure 6.7, zero steady state error is achieved for both modelling



6.5 Risk Sensitive Control Problems 147

errors and no modelling errors, however it is at the expense of the speed of transient response. 

The other point to note from this example is that the benefit from a risk-sensitive control policy 

is reduced when integrators are added. This is due to the fact that the LQG cost function is much 

smaller when zero steady state error is achieved, compared to when it is not achieved. The result 

is that the effect of varying 0 is less, as the variation is over a less steep region of the exponential 

curve.

It should also be noted that it is only for certain types of modelling error, that a cost benefit is 

derived from a risk-sensitive approach. In many cases the LQG cost is either larger for a risk 

sensitive controller, or it is only smaller for a certain range of parameter values. Therefore, the 

desirability of a risk sensitive control policy must be determined via simulation studies, from case 

to case, due to its dependency on the type of modelling error present.

One final point to note is that the LQG design is not optimal for the doubly augmented system, due 

to the fact that the reference is modelled by an integrator (6.39) when in fact it is a deterministic 

signal. This is effectively an unavoidable modelling error due to the augmented design, and as 

such the LQG solution is not optimal with this augmentation. In fact, for the example considered, 

the cost is actually less for the risk-sensitive solution than for the LQG solution, even in the case 

where A is known precisely (that is, the line labelled ‘no modelling error’ in Figure 6.7).

Example 6.4: This simulation study presents an example of an approximate solution to the risk- 

sensitive HMM control problem of Section 6.3. The system is given by the following parameters

0.1 0.9 u —u
A =

0.9 0.1
+

— u u
, c ( Xk) = ( , X k) ,  d ( Xk) = ( , X k) ,

M  =
0 0 

0 1

N  = 0.1 , 

Q = o ,

r = 2,
t  = 100 ,

and in this example there is no trajectory to be followed, (that is, zk — 0). Note from this system 

that in an uncontrolled situation, the output trajectory, zk, will tend to oscillate between the values 

0 and 1 at each discrete time instant. From the definition of M  it can be seen that the control 

objective is to force zk to the value zero.
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In this example the dynamic programming problem is solved by quantising the normalised 

information-state, a qk, into six discrete values,

OLqk E { ( £  x 0.2, m  x 0.2)'} , 0 < l ,m  < 5 , I + m = 5 , (6.44)

and allowing only three possible control values

uk e {0.1.0.3,0.5} . (6.45)

The dynamic programming problem is then solved by evaluating the cost which minimises the 

value function for each possible information-state, a qk, at each step backwards in time, k.

In Table 6.2 the steady state control values which result from the approximate solution to the 

dynamic programming problem are presented. These values demonstrate the effect of the risk- 

sensitive parameter on the control policy. It can be seen that as the risk-sensitive parameter 

increases, the information-state must be increasingly more confident of the true state, before the 

controller is willing to apply a large control value. This example therefore demonstrates the 

robustness property gained from increasing the sensitivity to risk.

6.6 Risk-Sensitive Filtering Interpretations

In this section the risk-sensitive filtering problem is presented in order to demonstrate its connection 

with the control problem considered in the preceding sections.

6.6.1 Linear Systems

In this section the risk-sensitive filtering problem is shown to be solved by the same equations 

derived previously for the tracking problem, but with a slight reinterpretation of the cost func­

tion. These results for the linear filtering case have already been solved, without the control 

interpretation, in Speyer et al. [1992], and for the nonlinear case in Dey and Moore [1994].

To see the connection to the control problem, the risk-sensitive filtering cost function is now 

presented.

Jk(xk) = E Ao.jk exp 0^o,k(xk)\yk, Xk-1 (6.46)



6.6 Risk Sensitive Control Problems 149

where
k j

xHj,k(xk) = J 2 - [ ( x e - x e ) ' Q ( x e - x e)] , (6.47)
e=j

and xe is the risk-sensitive state estimate of x?. Note here that the cost is an expectation conditioned 

on the set of observations. This is due to the fact that the filtering problem is one of optimisation in 

the forward direction (as opposed to the control problem which is an optimisation in the backwards 

direction), and as such, the previous observations will be available when the optimisation procedure 

is carried out at each iteration.

Comparing (6.46) and (6.47) to (6.4) and (6.5) it can easily be seen that (6.47) can be obtained 

from (6.5) by replacing zp+\ by xp, and setting D = I  and B =  M  = N  =  0. Therefore, with 

the same definition of information-state given in (6.6), the result presented in Theorem 6.1 holds 

here as well, with the appropriate replacement of symbols. Equation (6.9) can be compared to 

the equations in Speyer et al. [1992] which differ only slightly since the prediction problem was 

considered, rather than the filtering solution presented here. From the information-state, a k, the 

risk-sensitive state estimate, x k, is obtained, as in Dey and Moore [1994], by solving the forward 

optimisation task of the following theorem.

Theorem 6.6 The risk-sensitive state estimate, x k> defined by

x k = argmin Jk(()  , (6.48)
C

is given by the mean, p k, o f the information-state, a k, defined in (6.6), where ^ j jk is given in 

(6.47), zp+1 is replaced by xp, D = I, and B = M  = N  = 0.

P ro o f:

x k = argminc E  [a 0,*exp0 ^ Otk(Q \y k, * k -\

= argminc / R„ . . .  f Rn exp 0 $ k,k(()Ro,k exp 0 9 o,k- idP(xo, . . . ,  x k)

= argmin^ f Rn expO^k,k(Qa k(z )dz

= argmin^ f Rn exp f  (z -  () 'Q(z -  ( ) Z k exp ( - l / 2 ) ( z  -  p k)' R k \ z ~ Pk)dz 

= argmin^ C\ exp(l/2) -  p'kR~k Vfc -  {p'k^  ~ 9(,'Q)a~ \ R k 1 p k -  #QC)}

= ~{0Q -  62Qa~lQ)~{9Qa~l R ^ p k 

= - ( a  -  0Q)~l pk

=  P k  i
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where a = [6Q -  R k 1), C\ is constant with respect to (, and a is positive definite. It can now be 

seen that the risk-sensitive state estimate is given by the mean, pk, of the information-state, a*.. ■

The recursion for this estimate is easily obtained by rearranging the expression for pk  from (6.12), 

with the appropriate substitutions for the filtering problem. The following equation results:

Fk+\  = Apk + A { R ^ 1 + C 'T~XC -  0 Q )- l[C 'T-l(yk+i -  C pk ) -  0(pk -  £*)] • (6.49)

The final recursive equation is obtained by setting Xk equal to pk ,  from Theorem 6.6 as follows:

Xk+i = A x k + A (R k ' + C 'r - 'C  -  « Q )- | [ C T - | (!/t+l -  C x k)] . (6.50)

This filtering result corresponds, as noted before, to the prediction result presented in Speyer et 

al. [1992].

6.6.2 Hidden Markov Models

In this section the control interpretation is used to derive the risk sensitive filtering results for 

HMMs. For such systems the risk-sensitive state estimate Xk  is obtained by solving the following 

optimisation task:

X k = argmin E[A0, k ^ P ^ o , k \ y k ^ k - \ ]  , (6.51)

where $ 0,k is defined in (6.29), and q^, Bk, A and T>k are defined, as for the control problem, in 

(6.30) and Theorem 6.5, and all of these terms require the following re-definitions: replace Zk by 

X ,  and set d(.) = (.), and B = M  = N  = 0, as in the previous section. The following theorem 

gives the solution for the risk-sensitive estimate Xk-

Theorem 6.7 The risk-sensitive estimate Xk, defined in (6.51), is given by the following recursive 

equation:

Xk  = eo , , where X* = argm in(l,VkOtk) ■ (6.52)
x

with the above definitions ofotk and T>k.
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Proof : The term to be minimised in (6.52) is given by:

£ [A q,A: exp 0 ^ o,k I , Afc_ i ]

=  E exp § (X  -  X k) Q (X -  X k ĵ AotkexvOVo,k-i\yk,Xk-\

= Ef=i exp § (.X -  e , ) ' Q ( x  -  e j) a k( j ) .

Writing this in matrix notation gives the result.

6.6.3 Dual Control

Now that the risk sensitive filtering result has been shown to be obtained from the control result, 

via an alteration to the cost function, the idea of dual control can be considered. Dual control 

issues result when a risk-sensitive filter is coupled to a risk-sensitive controller. These ideas are 

not fully developed but are noted here to provide an insight to future research opportunities.

Consider the following cost function:

J(u) = E  [Ao,rexp » (6.53)

where k .
=  £ r  [0,x'eM xt +  e tu't Nui + 92(x, -  -  x e)} , (6.54)

e=j

and where
Qi = Q if i < k ,

=  0 if i > k .

In this case, the cost function combines the task of filtering and control. With Qt defined as it is, 

the control equations of Theorem 6.4 continue to hold while the filtering equations of Theorem 

6.1 likewise hold with replacement of zk+1 by x k, and setting D = I  as before. By varying 0\ 

and 02 it is possible to trade off control and filtering objectives. For dual control, where current 

control decisions are made with the aim of improving filtering so that future control will be better, 

the situation is more complicated as Qi is constant for all i.
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6.7 Conclusion

In this chapter the solution to the linear risk-sensitive quadratic Gaussian control problem has been 

presented. Results have been derived for the case of tracking a desired trajectory. The solution 

to the dynamic programming problem has been achieved without the need to appeal to a certainty 

equivalence principle, and hence it gives insight to the solution for nonlinear systems. Limit results 

have also been presented which demonstrate the link to standard linear quadratic Gaussian control. 

Also, the solution to the problem of risk-sensitive tracking for hidden Markov models has been 

presented, as well as a discussion on achieving zero steady state error with risk-sensitive control 

policies. Simulation studies were presented in order to show some advantages of the risk-sensitive 

approach. Finally, the risk-sensitive filtering solution was derived from the tracking equations, to 

demonstrate the links between filtering and control.

6.8 Figures

The figures for this chapter are now presented.

xlO2 9 = 0 (LQG)

ÖII 0 =  0.15
No model error 4.714 4.715 4.716
With model error 9.363 6.076 6.593

Table 6.1: Error analysis for risk-sensitive control

* control oscilates between the two values

Table 6.2: Risk-sensitive HMM control values
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(A,B,C,D) INFORMATION
STATE

Figure 6.1: Block diagram for standard control policy

Augmented Plant

(A,B,C,D)

INFORMATION
STATE

Figure 6.2: Block diagram for constant reference input case
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9 =  0 .15

0 = 0  ( L Q G )

T i m e  k

Figure 6.3: No modelling errors

0 = 0  ( L Q G )

0 =  0.1

T i m e  k

Figure 6.4: With modelling errors
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W ith integrator

N o integrator

T im e k

Figure 6.5: Augmented system with modelling errors, 9 = 0.15

W ith integrator

0=  0.17

N o integrator

T im e k

Figure 6.6: Augmented system with modelling errors, 0 = 0.17
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W ith  m o d e ll in g  e r r o r

-------L . 4

N o  m o d e ll in g  e r ro r

0 =  0.15

T im e  k

Figure 6.7: Doubly augmented system,  ̂ = 0.15



Chapter 7

Conclusion

7.1 Overview of Thesis

Ŝ !\\ If a &reat dea  ̂ study ^as ^een cafried out on Markov chains, the field of hidden 

v v Markov model (HMM) research is relatively new, and has many open problems. This 

thesis has considered issues arising in HMM signal processing and control. Specific problems 

tackled include on-line identification of HMMs, adaptive estimation of mixed state HMMs, risk- 

sensitive control of both linear systems and hidden Markov models, and the development of 

reduced computational complexity algorithms.

In addition to the more theoretical issues, there is also enormous potential for the application 

of HMM based algorithms in a wide range of areas. This thesis considered an application of 

HMMs to digital communication systems. Such systems have a finite number of discrete states 

and therefore fall directly into the HMM framework. Specifically, solutions have been presented 

for the problem of fading transmission channels. Another application of HMM techniques was 

considered in the area of control and trajectory tracking. Risk-sensitive techniques were developed 

for HMMs, thus allowing the sensitivity to errors, be they modelling or system noise, to be varied. 

This thesis provides new and novel solutions to a variety of problems, and serves in many ways to 

highlight the application potential for HMM signal processing and control.

157
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The main ideas and contributions of this thesis are summarised in the following sections.

7.1.1 State Space Models for HMMs

One of the main contributions of this thesis has been to reformulate the standard HMM represen­

tation, into a form more akin to the state space formulations of systems theory. The reformulated 

state space model for HMMs has been used throughout this thesis. It is an important feature which 

facilitates the development of new and novel signal processing and control techniques for systems 

which are Markov in nature.

To achieve the reformulation, the Markov process was represented by a dynamical state equation 

with a Martingale increment stochastic noise term. This allowed the observations to be written 

in standard systems notation. In carrying out this reformulation, it was necessary to represent the 

Markov states by a set of unit indicator vectors. A resulting feature is that any nonlinear function 

of the state can be represented in a linear form. This is crucial for the signal processing and control 

schemes developed.

Once this step has been made, all HMM based systems can be viewed as a nonlinear state process, 

observed via a linear function of the state. In the cases considered in this thesis, the observations 

were also able to be expressed linearly in terms of the possibly time-varying continuous-range 

model parameters. The resulting models had observations which were bi-linear in the states 

and the parameters. Such an approach has two main advantages. The first is that the bi-linear 

representation allows optimal linear schemes to be conditionally coupled, for state and parameter 

estimation. The second is that the state space representation of the HMM provides a more 

systematic approach for the application of HMM techniques to many and varied problems.

In addition to the state space representation, and motivated by the problem of model identification, 

this thesis presented a new parameterisation for the HMM. This involved slightly reformulating 

the Markov model, in terms of the square root of transition probabilities. RPE based algorithms 

were then developed for model identification, which ensured that the estimates for transition 

probabilities always remain positive. The reformulated model was also applied to a previous EM 

based scheme, to again ensure positivity.

In conjunction with the new parameterisation, a projection was used, drawing on techniques from 

differential geometry, to ensure the RPE gradients were evaluated in the tangent space of a sphere.
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The sphere was defined by the requirement that the sum of squares of the reformulated transition 

probabilities must equal one, across each row of the matrix A. By making use of the new 

parameterisation and related gradient projection, on-line algorithms have been generated which 

provide competitive, and in fact asymptotically faster converging, estimates to those of earlier 

proposed on-line HMM identification schemes.

7.1.2 On-Line Algorithms

To date, with few exceptions, hidden Markov model signal processing algorithms have been based 

on off-line expectation-maximisation algorithms. This thesis, however, has presented a new and 

systematic approach to on-line HMM signal processing. Such methods can be applied to many 

systems requiring real-time analysis. Specifically, results have been generated for problems of 

model identification, and adaptive parameter estimation. This thesis has considered an application 

to digital communication systems, for which the on-line capabilities are essential. Comparisons 

with current schemes have shown that, while the HMM approach is generally more computationally 

intensive, advantages can often be gained, especially in the case of coded signals. As a result of the 

work in this thesis, real-time signal processing for HMM based systems, be they communication 

systems, frequency tracking systems, or a host of other possibilities, have become a realistic 

prospect.

7.1.3 Information-State Signal Models

A key to the results presented throughout this thesis is the use of information-states. In the first 

instance, by defining the information-state to be a probability distribution of the Markov state, a 

new signal model has been developed for the HMM. The main benefit from this reformulation is that 

the resulting signal model no longer consists of discrete-valued states. The concept, therefore, led 

to algorithms which mixed discrete-valued states and continuous-range states. Standard nonlinear 

filters, such as the EKF, were then be applied directly, to estimate the states and parameters 

simultaneously.

By applying these ideas to signal decoding in the case of fading transmission channels, algorithms 

have been developed which are, amongst other things, generally more robust than current schemes. 

Traditional approaches to the problem employ MAP estimate decision directed techniques, such 

as matched filters, or maximum likelihood sequence estimation schemes. By considering an
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information-state reformulation, this thesis has presented algorithms for which the complete 

probability distribution is used. This implies that not only is the estimate of the state fed to the 

channel tracker, but so is a measure of the accuracy of that estimate. The result is that a degree of 

robustness is inherent in the new algorithms.

In the latter work on risk-sensitive control, use was made of information-states to obtain optimal 

output feedback results without needing to appeal to a certainty equivalence principle. The 

information-state used in this case consisted not only of a probability distribution for the state, but 

it also contained information about the control cost incurred. Again, a key to the technique is that 

the full information-state, as opposed to a state estimate or MAP estimate, is fed to the controller.

7.1.4 Conditional Coupled Filters

The application of conditionally coupled filters to HMM based systems is an important aspect 

of the signal processing schemes developed in this thesis. Since the systems considered are 

in general nonlinear, and consist of a mixture of discrete-valued and continuous-range states, 

optimal processing is invariably infinite dimensional. Of course, sub-optimal schemes, such 

as the extended Kalman filter, can be used, however problems arise when they are applied to 

information-state representations, as discussed in Remark 4.5. Instead, this thesis has presented 

conditionally coupled Kalman and HMM filters in a practical approach to adaptive state-and- 

parameter estimation.

The first step taken in generating such algorithms was to apply separate filters for estimation of the 

state and parameters. Each filter was optimal, based on the assumption that all other information 

was known. Of course this is not the case, so each filter was conditioned on outputs from the others. 

An advantage of this approach is that practical schemes have been produced for implementation 

in real systems, as opposed to the infinite dimensional optimal schemes which would otherwise 

have arisen.

The HMM/KF conditionally coupled filtering approach has been applied, in this thesis, to the 

problem of fading channels in digital communication systems. The techniques developed are, 

however, quite general and can be applied to any Markov based system to generate practical signal 

processing algorithms.
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7.1.5 Robust Processing

When developing sub-optimal algorithms, it is always necessary to consider the issue of robustness. 

In the signal processing work of this thesis, robustness gains have been achieved, over current 

schemes, through the use of information-state techniques, as discussed in Section 7.1.3. In the latter 

work on control, robustness was used as a motivation for considering a risk-sensitive approach. 

By the inclusion of an exponential operator in the cost function, a control strategy is developed 

for which the sensitivity to deviations from desired trajectories can be varied. Limiting arguments 

have shown that at one extreme, an average or minimum variance policy results, while in another 

limiting case, robust or Hoo control results. This thesis has considered risk-sensitive control of 

HMMs in an effort to robustify known HMM control techniques.

7.2 Algorithms

This section presents a summary of the algorithms developed in this thesis.

• On-Line Identification of HMMs : In Chapter 2, RPE techniques were used, along with a 

reformulation of the standard hidden Markov model, to generate a new on-line identification 

algorithm for HMMs. The resulting scheme was used to estimate the state values and 

transition probabilities of the Markov process, as well as the variance of the observation 

noise. The estimates were shown, via simulation studies, to be quadratically convergent, 

and to converge to the true values for a wide variety of initial conditions.

• Reduced Complexity On-Line Identification of HMMs : A grouping assumption was 

used in Chapter 3, in order to reduce the computational complexity of the RPE based 

algorithm of Chapter 2. The resulting algorithm was shown to converge to the true values 

for a wide variety of initial transition probability estimates, as long as the initial state value 

estimates were grouped in the same way as the true values.

• Adaptive Demodulation of QAM signals : In Chapter 4, new adaptive algorithms were 

developed for digital QAM signals transmitted through flat fading channels. Two schemes 

were presented, one linking HMM and EKF techniques, the other linking HMM and KF 

techniques. The HMM/KF coupled algorithm proved more practical, and simulation studies 

were carried out which demonstrated the advantages of such an approach over current 

schemes.
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• Adaptive Demodulation of MDPSK signals : The techniques of Chapter 4, were applied 

in Chapter 5, to the case of digital M-ary DPSK signals in fading channels. The resulting 

algorithms were also shown to be applicable to analogue FM signals with appropriate 

quantisation.

• Risk-Sensitive Tracking for Linear Systems : In Chapter 6, an algorithm was presented 

for tracking with output feedback and a risk-sensitive control policy. State space augmen­

tations were presented in order to incorporate integrators for the purpose of obtaining zero 

steady state error. Simulation studies explored many of the advantages to the risk-sensitive 

approach.

• Risk-Sensitive Tracking for HMMs : The risk-sensitive approach was applied to tracking 

for hidden Markov model systems, to allow for variations in the robustness of HMM con­

trollers. Numerical solutions to the dynamic programming control problem were discussed 

and a simulation study was used to demonstrate the effect of varying the sensitivity to risk.

7.3 Summation

This thesis has provided a new approach to HMM signal processing and control. The problems 

considered include model identification, adaptive parameter estimation, and risk-sensitive control. 

Applications for these HMM techniques, range from the digital communication systems and 

tracking problems which were discussed in the thesis, to other areas of current interest, such as 

finite/infinite impulse response filters, pulse train de-interleaving, and image processing. More 

generally, any system which has states belonging to a finite-discrete set can be approximated by 

an HMM, and can benefit from the techniques presented in this thesis.
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7.4 Future Research

This section presents some open problems and a number of application areas of current interest, 

related to the work in this thesis.

• Analytical Convergence Analysis : To date, while the identification and estimation 

schemes presented demonstrate good performance in simulation studies, they do not have 

strong analytical convergence results. It would be interesting to investigate such results 

further. In the case of RPE, there are good indications to suggest convergence properties 

can be obtained, based on parallel arguments to those in [Ljung and Söderström 1983]. The 

problem is of course that in the case of HMMs, a Martingale increment term is associated 

with the state dynamics, as opposed to white noise in more traditional RPE applications. 

For the time-varying adaptive estimation case of Chapters 4 and 5, unfortunately there are 

no such analytical indications, except to say that simulation studies appear very promising.

• HMM System Theory : An even more challenging aim in the study of HMM signal 

processing and control, is the development of a complete systems theory for the models. 

Unfortunately, much work has been carried out into this problem with few results to date (for 

example, see [Picci 1978]). However, given the state space representation presented in this 

thesis, it seems possible that some progress could be made in the direction of establishing 

parallel results to those of linear systems theory.

• Filtered HMMs : The study of communication systems presented in this thesis, has lead to 

the emergence of a wide variety of problems which are ideally suited to HMM processing 

techniques. One particular area of interest is the processing of signals transmitted through 

HR and FIR filters. By reformulating these systems into the, now familiar, HMM framework, 

it becomes possible once again to use coupled conditional filters for state and parameter 

estimation. In addition, and of greater interest for future research, the possibility arises 

here, of applying the reference probability measure techniques of [Elliott 1993] in a filtering 

problem, as opposed to the control problem to which they have previously been applied in 

Chapter 6. In the case of filtered HMMs, estimates, other than the standard state estimate, 

are required (such as the number of times a state has been active). It seems extremely 

likely that the Elliott approach may prove useful, and result in new and novel approaches to 

practical filtering problems.
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•  Frequency Tracking : Recently, algorithms have been developed for frequency tracking 

using HMM signal processing techniques [Streit and Barrett 1990, Xianya and Evans 1991]. 

These schemes employed Fourier transform and MAP estimate techniques on blocks of 

data, in order to track the time varying frequency of a signal. After considering the results 

presented in this thesis, it would be of interest to investigate two aspects of this frequency 

tracking problem. The first would be the effect of an information-state approach, as opposed 

to the MAP estimates used previously. The second would be a possible application of the 

MDPSK work of Chapter 5 to the problem, thus removing the need for batch processing 

and Fourier transform processing.

• Non-Linear Filtering via HMM Techniques : As mentioned in Section 6.3.2, HMMs can 

be used as quantised representations of continuous-range variables. In the case of linear 

systems in Gaussian noise, if the HMM had infinitely small quantisations over the whole 

space, then the probability distribution out-putted from the HMM filter would be a Gaussian 

with mean and variance the same as those given by the corresponding Kalman filter. Of 

course, the computational requirements of such an approach would not be feasible, however, 

it would be very interesting to investigate the way in which such information-state techniques 

could be applied to the quantisation of more general nonlinear systems. Techniques such 

as adaptive quantisation and state aggregation could prove useful in generating quantised 

filters which would challenge traditional schemes such as the EKF, in certain nonlinear 

environments.



Appendix A

Gradients in a Manifold

In the case where parameters, x, are constrained to a manifold, M , it is necessary to constrain 

any derivatives, evaluated with respect to those parameters, to the tangent space of M . This is 

achieved by the appropriate projection of the derivative in Euclidean space, to the tangent space 

of the manifold. In the case where M  =  S v _ l , the tangent space at a point x, x e  S :V_l, 

is {q E 1Ra I q'x — 0}, the set of points perpendicular to x. Thus, the projection of D f  = 

( d f  /dxi ) i~ t h e  Euclidean derivative, onto the tangent space of M , is given by

The technique for constraining derivatives, as applied in (2.39) (2.40) and (2.42b), will now be 

outlined using (2.39) as an example. In this case, x x consists of the elements of S{j from (2.8). 

It is important, in these recursive functions, to note that if the value of the derivative at the first 

iteration is zero (therefore automatically satisfying the tangent space requirements), then for all 

future iterations using the projected gradient, terms which rely on past derivative values, will 

also be tangent to the manifold. This allows the following result to be generated by taking the 

Euclidean derivative of (2.28) with respect to t and neglecting the terms involving derivatives of

O f .

V /'  = D f  -  ( D f x ) x ' (A. l )

(A.2)
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Using (A.l) the projected gradient vector V / ' can be evaluated.

V / ' = 2 j :k- - ). g'6vag(xl ) (IN -  x tx ,l) (A.3)
( a * ,  1 )

The individual elements of this vector notation are written out explicitly, and are given in (2.39).



Appendix B

Theorem Proofs

B .l Proof of Theorem 6.1

Substitution of (6.8) into (6.7) yields the following:

ak+i(x) = <t>~'(yk+i) JR* < H s / f c + i  -  C O e x p ( d » * , t ) V > ( a :  -  > 1 ?  -  Buk)ak(()d(
= ̂ - > ( » + i)(2 jr)-m/ 2| r | - | /2(27r)-"/2|S | - | / 2Zt

V  exp (-1) {(»*+, -  co'r-'fyt+i -
+ tliWu/t + (£>£- h+i)'Q(DS -  h+1))+

(x — A£ — Buk)"£-'(x -  A£ -  Buk) + ((  -  pk)'Rk '(Z -  Pk)}dti 

= A(2w)~n/ 2 f R„exp ( —£) -  +  c*}

where

^  = r W i ) ( 2 7 T ) — /2|r |-i/2 |E |-i/2z fc,

=  C T - l C - ö ( M  +  JD / g D )  +  A / S - , A  +  Ä ^  , 

fr'* =  +  +
ck -  (x -  Buk)'E-l(x -  Buk ) -  Ou'kNuk -  Öz'k+xQzk+\ + yk+lT~lyk+\ +  fi'kRk l îk .
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Now,

a k+i(x) = A\ak\ ' / 2exp (^-5) {ck -  b'kak 'öfcj

= Zfc|S | - ' / 2|afc| - | / 2exp ( - + )  {cfc -  b'kak xbk -  y'k+[r ~ l yk+l}

= Zfc|E | - ' / 2|a ^ |- 1/2exp {x'ß\x -  2ß'2x + 7^}

= z k+\exp ( - £ )  {(x -  ß ~ lß2)'ßi{x -  ß ; ' ß 2)} ,

where

z k+\ = Z/c|S |- 1/ 2|a/c|-1/2exp ( - £ )  [7* -  n'k+lR kl ^ i k+1] ,

R k^  = ß\ = S ' 1 -  E - 'A a ^ A 'S - 1 ,

Pk+ 1 = ß\ = Rk+\ [Z~lB u k

+ S 1 1 (-ß^ 1 — A ’Yj 1 B u k 4-C'T lyk+i — QD'Qzk+ \) ,

Ik = u'k( - 9 N  +  B ' H - {B)uk + -  05£+ iQSjfc+ i

-W ^ 1 - + yi+,r-lc - 05£+1gz>)a*1
(-R* V* -  A'Y ,-[B u k 4- C T _1?/fc+ i -  0D'Qzk+1) •

Here ends the proof of Theorem 6.1. Equations (6.12) and (6.13), which follow the theorem, are 

obtained from the above equations with the aid of the matrix inversion lemma [Kailath 1980] (p. 

656):

[A + B CD ]~{ = A ~ x -  A ~ l B[DA~X B  + C " 1] " 1 DA~'  , (B.l)

for any nonsingular .4 (m x m)  and C (n x n) matrices.

B.2 Proof of Theorem 6.4

This section presents an outline of the proof for Theorem 6.4. The proof is obtained by solving the 

dynamic programming recursion of Theorem 6.3. This could be done most directly by substituting 

(6.9) for the information state, and evaluating the integral in the dynamic programming recursion. 

However, in this section a variable transformation is used to enable the result to be displayed in 

a form similar to the standard LQG result (where a separation principle allows the state feedback 

problem to be solved, and the state estimate to be substituted in place of the state). From the final 

equations generated by this proof, the LQG result can be obtained directly, by setting 0 equal to

zero.
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The proof proceeds as follows:

Consider the expression for Zk+\ in (6.9). The term in the exponential can be written in the 

following way:

“  = Tk — p'k+\^k+\Pk+l
= ßkRk 'ßk ~ 9u'kNuk -  0z'k+lQzk+{

~(ß'kR-k ' + 4+ ir~ 'C  -  #4+i QD)K + CT-'m+i -  ) ,

where Kk is defined in (6.12). After expanding and collecting terms, the following expression can 

be reached:

— 9ukN Uk 1 Q ̂ k-\-1 P x x P k  T 2/i .̂^xiTfc T V^^vv^k

- ( 4+1 -  »z'k+lQ D C - ' r ) T - ' ( y k+l-  ,

where
it = ä/t+i -  Cßk- 9T(C')- 'D'Qzk

* xx =  9(M + D'QD)[I + 6 k k(M + D'QD)},

$*„ =  0(M +  D 'Q D )kkC ' r - '  ,

= r-‘ -r-'cA'tCT-1.

Now - can be written in the following form:

H =  -0u ,kNuk-0fJt,kMfJik + v,kV k - 9 z ,k+lQzk+i

-(4+1 -0z 'k+lQ D C - ' r ) r - ' ( y k+l - e T ( C '),

where
it = $l(2[it -  $ „ -» t]  ,

M  = (l/#)(^ + $x^™'$i„)

=  (M + D 'Q D )[I -0 R k(M + D'QD)}-' .

Rewriting the recursion for Hk in terms of the new variable vk, yields the following expression:

Pk+1 — ^-Pk + Buk + f kVk ,

where
Ä = A[I -  0Rk{M + D'QD)\ , 

f* = AKfcCT-'C© ,

0  = [ (C T C )- , + [ /-» f i t (A '/  + 0 'Q O )] - , Ät], /2 -
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This concludes the variable transformation for the information state. The dynamic programming 

problem is now solved by substituting (6.18) and ~ into the recursion in Theorem 6.3 and evaluating 

the integral:

and completing the square in the integral, an expression is gained which is minimised by the 

selection of Uk according to (6.19). The recursions in (6.20) are obtained by substituting this value 

for Uk back into the expression for the value function, rearranging the expression into the general 

form, and matching up the terms. The details are omitted here as the procedure for completing 

the square is similar to that used in Section B. 1.

V(xk+i(Xk, u,2/fc+i),fc + 1)  ̂ \yk+i)dyk+i •

By applying the transformation

Vk+\ = $vv^~Vk + C ßk + OT(C') 1 D'Qzk+1 + <S>Vy$'xviik , 
dvk/dyk+i = $ {Jv ,



Bibliography

ADAMS M. AND V. Guillemin (1986). Measure theory and probability. Wadsworth & Brooks/Cole 

Advanced Books and Software. Monterey, California.

AGGOUN L., A. Bensoussan, R. J. Elliott and J. B. Moore (1994). Finite-dimensional quasi- 

linear risk-sensitive control. Systems and Control Letters, to appear.

Aldhaheri R. W. and H. K. Khalil (1991). Aggregation of the policy iteration method for 

nearly completely decomposable Markov chains. IEEE Trans, on Automatic Control. Vol. 

36, No. 2, pp. 178-187.

ANDERSON B. D. O. AND J. B. Moore (1979). Optimal filtering. Prentice-Hall. New Jersey.

ANDERSON B. D. O. AND J. B. Moore (1989). Optimal control : linear quadratic methods. 

Prentice-Hall. New Jersey.

Baum L. E., T. Petrie, G. Soules and N. Weiss (1970). A maximisation technique occurring in 

the statistical analysis of probabilistic functions of Markov chains. Annals of Mathamatical 

Statistics. Vol. 41, No. 1, pp. 164-171.

Bellegarda J. R., D. N ahamoo, K. S. N athan and E. J. Bellegarda (1994). Supervised 

hidden Markov modeling for on-line handwriting recognition, in Proc. of the Int. Conf. 

on Acoustics, Speech and Signal Processing : ICASSP 94, Adelaide, Australia. Vol. 5. 

pp. 149-152.

Bensoussan A. and J. H. van Schuppen (1985). Optimal control of partially observable stochas­

tic systems with an exponential-of-integral performance index. SIAM Jour, on Control and 

Optimization. Vol. 23, pp. 599-613.

B iglieri E., D. DlVSALAR, P. J. McLane AND M. K. S imon (1991). Introduction to trellis-coded 

modulation with applications. Macmillan Publishing Company. New York.

171



172 Proof of Theorem 6.4 9.2

BINGHAM J. A. C. (1988). The theory and practice of modem design. John Wiley & Sons. New 

York.

CaO W. and  W. J. Stewart (1985). Iterative aggregation/disaggregation techniques for nearly 

uncoupled Markov chains. Jour, of the Association for Computing Machinery. Vol. 32, No. 

3, pp. 702-719.

Caravani P. (1986). On extending linear quadratic control theory to non-symmetric risky objec­

tives. Jour. Economic Dynamics & Control. Vol. 10, pp. 83-88.

Chen H. F. and  L. Guo (1986). Convergence rate of least-squares identification and adaptive 

control for stochastic systems. Int. Jour. Control. Vol. 44, No. 5, pp. 1459-1476.

Chung S. H., V. Krishnamurthy and J. B. Moore (1991). Adaptive processing techniques based 

on hidden Markov models for characterising very small channel currents buried in noise and 

deterministic interferences. Philosophical Transactions of the Royal Society, Lond., Series 

B. Vol. 334, pp. 357-384.

COURTOIS P. J. (1975). Error analysis in nearly-completely decomposable stochastic systems. 

Econometrica. Vol. 43, No. 4, pp. 691-709.

DELEBECQUE F. and J. Quadrat (1981). Optimal control of Markov chains admitting strong and 

weak interactions. Automatica. Vol. 17, No. 2, pp. 281-296.

Dempster A. P, N. M. Laird and D. B. Rubin (1977). Maximum likelihood estimation from 

incomplete data via the EM algorithm. Jour. Royal Stastistical Society, Series B. Vol. 39, 

pp. 1-38.

Dey S. and  J. B. Moore (1994). Risk-sensitive filtering and smoothing via reference probability 

method, submitted.

D uel-Hallen A. and C. Heegard (1989). Delayed decision-feedback sequence estimation. 

IEEE Trans, on Communications. Vol. 37, No. 5, pp. 428^136.

Du J. AND B. VUCETIC (1991). New 16-QAM trellis codes for fading channels. Electronics Letters. 

Vol. 27, No. 12, pp. 1009-1010.

DUPUIS P. and  H. J. KUSHNER (1989). Stochastic approximation and large deviations : upper 

bounds and w.p.l convergence. SIAM Jour, on Control and Optimization. Vol. 27, No. 5, 

pp. 1108-1135.



9.2 Bibliography 173

ELLIOTT R. J. (1993). A general recursive discrete time filter. Jour, o f Applied Probability. Vol. 30, 

pp. 575-588.

FORNEY Jr. G. D. (1973). The Viterbi algorithm. Proc. o f the IEEE. Vol. 61, No. 3, pp. 268-278.

GOODWIN G. C. AND K. S. Sin (1984). Adaptive filtering prediction and control. Prentice-Hall. 

New Jersey.

Haeb R. AND H. Meyr (1989). A systematic approach to carrier recovery and detection of digitally 

phase modulated signals on fading channels. IEEE Trans, on Communications. Vol. 37, No. 

7, pp. 748-754.

Hashemi H. (1993). The indoor radio propagation channel. Proc. o f the IEEE. Vol. 81, No. 7, 

pp. 943-967.

HAYKIN S. (1983). Communication systems, second ed.. John Wiley & Sons. New York.

IOSIFESCU M. (1980). Finite Markov processes and their applications. John Wiley & Sons. Chich­

ester.

Ja c o b so n  D. H. (1973). Optimal stochastic linear systems with exponential performance criteria 

and their relation to deterministic differential games. IEEE Trans, on Automatic Control. Vol. 

AC-18, No. 2, pp. 124-131.

James M. R. AND R. J. Elliott (n.d.). Risk-sensitive and risk-neutral control for continuous-time 

hidden Markov models, preprint.

James M. R., J. S. Baras AND R. J. Elliott (1994). Risk-sensitive control and dynamic games 

for partially observed discrete-time systems. IEEE Trans, on Automatic Control. Vol. AC-39, 

No. 4, pp. 780-792.

JUANG B. H. and L. R. Rabiner (1985). A probabilistic distance measure for hidden Markov 

models. AT&T Technical Journal. Vol. 64, No. 2, pp. 391-408.

KAILATH T. (1980). Linear systems. Prentice-Hall. New Jersey.

Kalman R. E. (1960). A new approach to linear filtering and prediction problems. Jour. Basic 

Engineering, Trans. ASME, Series D. Vol. 82, No. 1, pp. 35-45.

KALMAN R. E. (1963). New methods in Wiener filtering theory, in Proc. Symp. Engineering Appl. 

Random Functions Theory and Probability. John Wiley and Sons, Inc., New York.



174 Proof of Theorem 6.4 9.2

Kalman R. E. and R. S. Bucy (1961). New results in linear filtering and prediction theory. Jour. 

Basic Engineering, Trans. ASME, Series D. Vol. 83, No. 3, pp. 95-108.

Karp L. S. (1988). Dynamic hedging with uncertain production, bit. Economic Review. Vol. 29, 

pp. 621-637.

Kemeny J. G. AND J. L. SNELL (1960). Finite Markov chains. D. Van Nostrand Company, Inc.. 

Princeton, New Jersey.

KRICHAGINA N. V, R. S. Liptser and E. Y. Rubinovich (1984). Kalman filter for Markov 

processes, in Steklov Seminar 1984 : Statistics & Control o f Stochastic Processes, pp. 197— 

213.

KRISHNAMURTHY V. AND J. B. MOORE (1993). On-line estimation of hidden Markov model 

parameters based on the Kullback-Leibler information measure. IEEE Trans, on Signal 

Processing. Vol. 41, No. 8, pp. 2557-2573.

KUMAR P. R. AND P. Varaiya (1986). Stochastic systems. Prentice-Hall. New Jersey.

Kushner H. J. and A. Shwartz (1984). An invariant measure approach to the convergence of 

stochastic approximations with state dependent noise. SIAM Jour, on Control and Optimiz­

ation. Vol. 22, No. 1, pp. 13-27.

La Scala B. F., R. R. Bitmead and M. R. James (1993). Conditions for stability of the extended 

Kalman filter and their application to the frequency tracking problem. Submitted.

Lee E. A. AND D. G. Messerschmitt (1988). Digital communication. Kluwer Academic Pub­

lishers. Boston.

Levinson S. E., L. R. Rabiner and M. M. Sondhi (1983). An introduction to the application of 

the theory of probabilistic functions of a Markov process to automatic speech recognition. 

The Bell System Technical Journal. Vol. 62, No. 4, pp. 1035-1074.

Lindqvist B. (1978). On the loss of information incurred by lumping states of a Markov chain. 

Scand. Jour. Statist. Vol. 5, pp. 92-98.

Lin S. (1970). An introduction to error correcting codes. Prentice-Hall. Englewood Cliffs, New 

Jersey.

LJUNG L. (1977). Analysis of recursive stochastic algorithms. IEEE Trans, on Automatic Control.

Vol. AC-22, No. 4, pp. 551-575.



9.2 Bibliography 175

LJUNG L. (1987). System identification : Theory for the user. Prentice-Hall. New Jersey.

LJUNG L. AND T. SÖDERSTRÖM (1983). Theory and practice of recursive identification. MIT Press. 

Cambridge, Massachusetts.

LODGE J. H. AND M. L. Moher (1990). Maximum likelihood sequence estimation of CPM signals 

transmitted over Rayleigh flat-fading channels. IEEE Trans, on Communications. Vol. 38, 

No. 6, pp. 787-794.

LOO C. AND N. SECORD (1991). Computer models for fading channels with applications to digital 

transmission. IEEE Trans, on Vehicular Technology. Vol. 40, No. 4, pp. 700-707.

M aher B. (1992). Phase-locked loop FM demodulators. Electronics Australia, pp. 54-55.

M arkov A. A. (1906). Extension of the law of large numbers to dependent variables. Izv. Fiz-Mat. 

Obsc. pri Kazansk. Univ. (2 ser.)(Russian). Vol. 15, No. 4, pp. 135-156.

MARKOV A. A. (1907). Investigation of an important case of dependent trials. Izvestia Acad. Nauk. 

SPB (ser. l)(Russian). Vol. 6, pp. 61-80.

M arkov A. A. (1913). An example of statistical analysis of the text of “Eugene Onegin”, illistrating 

the associations of trials into a chain. IAN (ser. 6)(Russian). Vol. 7, pp. 153-162.

M arkov A. A. (1924). Probability calculus. 4th ed.. (Russian). Moscow, Gosizdat.

M arkov A. A. (1951). Selected works. Izd. Akad. Nauk. SSSR, (Russian). Moscow.

Meyer C. D. (1989). Stochastic complementation, uncoupling Markov chains, and the theory of 

nearly reducible systems. SIAM Review. Vol. 31, No. 2, pp. 240-272.

MOORE J. B. AND H. WEISS (1979). Recursive prediction error methods for adaptive estimation. 

IEEE Trans, on Systems, Man, and Cybernetics. Vol. SMC-9, No. 4, pp. 197-205.

Pahlavan K. AND J. W. Matthews (1990). Performance of adaptive matched filter receivers over 

fading multipath channels. IEEE Trans, on Communications. Vol. 38, No. 12, pp. 2106-2113.

PlCCl G. (1978). On the internal structure of finite-state stochastic processes, in Recent Develop­

ments in Variable Structure Systems. Vol. 162. New York : Springer Verlag.

Polyak B. T. and A. B. Juditsky (1992). Acceleration of stochastic approximation by averaging. 

SIAM Jour, on Control and Optimization. Vol. 30, No. 4, pp. 838-855.

PROAKIS J. G. (1983). Digital communications, second ed.. McGraw-Hill. New York.



176 Proof of Theorem 6.4 9.2

Rabiner L. R. (1989). A tutorial on hidden Markov models and selected applications in speech 

recognition. Proc. of the IEEE. Vol. 77, No. 2, pp. 257-285.

ROMANOVSKY V. I. (1970). Discrete Markov chains. Wolters-Noordhoff Publishing. The Nether­

lands.

SAMPEI S. AND T. S unaga (1993). Rayleigh fading compensation for QAM in land mobile radio 

communications. IEEE Trans, on Vehicular Technology. Vol. 42, No. 2, pp. 137-147.

SEGALL A. (1976). Recursive estimation from discrete-time point processes. IEEE Trans, on 

Information Theory. Vol. IT-22, No. 4, pp. 422-431.

SIMON H. A. AND A. ANDO (1961). Aggregation of variables in dynamic systems. Econometrica. 

Vol. 29, No. 2, pp. 111-138.

Speyer J. L., C. Fan and R. N. Banavar (1992). Optimal stochastic estimation with exponential 

cost criteria, in Proc. of the 31st Conf. on Decision and Control, pp. 2293-2298.

• Streit R. L. and R. Barrett (1990). Frequency line tracking using hidden Markov models. 

IEEE Trans, on Acoustics, Speech and Signal Processing. Vol. 38, No. 4, pp. 586-598.

Titterington D. M. (1984). Recursive parameter estimation using incomplete data. Jour, of the 

Royal Statistical Society, Series B. Vol. 46, No. 2, pp. 257-267.

TREES H. L. Van (1968-1971). Detection, estimation and modulation theory. John Wiley & Sons. 

New York.

V iterbi A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum 

decoding algorithm. IEEE Trans, on Information Theory. Vol. IT-13, pp. 260-269.

VUCETIC B. AND J. Du (1992). Channel modeling and simulation in satellite mobile communication 

systems. IEEE Jour, on Selected Areas in Communications. Vol. 10, No. 8, pp. 1209-1218.

W ebb W. T., L. Hanzo and R. Steele (1991). Bandwidth efficient QAM schemes for Rayleigh 

fading channels. IEE Proc. I, Communications, Speech and Vision. Vol. 138, No. 3, pp. 169— 

175.

Weinstein E., M. Feder and A. V. Oppenheim (1990). Sequential algorithms for parameter 

estimation based on the Kullback-Leibler information measure. IEEE Trans, on Acoustics 

Speech and Signal Processing. Vol. 38, No. 9, pp. 1652-1654.



9.2 Bibliography 177

WHITTLE P. (1981). Risk-sensitive linear/quadratic/gaussian control. Advances in Applied Proba­

bility. Vol. 13, pp. 764-777.

WHITTLE P. (1990). Risk-sensitive optimal control. John Wiley & Sons. Chichester, New York.

WiDROW B. AND S. D. STEARNS (1985). Adaptive signal processing. Prentice-hall. Englewood 

Cliffs, New Jersey.

XlANYA X . AND R. J. E v a n s  (1991). Multiple target tracking and multiple frequency line tracking 

using hidden Markov models. IEEE Trans, on Signal Processing. Vol. 39, No. 12, pp. 2659- 

2676.

ZEITOUNI O. a n d  A. Dembo (1988). Exact filter for the estimation of the number of transitions of 

finite-state continuous-time Markov processes. IEEE Trans, on Info. Theory. Vol. 34, No. 4, 

pp. 890-893.


