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Abstract

This thesis is concerned with the design of robust controller algorithms. The
mechanics of the design procedures involve factoring the plant and controller
transfer functions into stable, proper factors. This has the advantage of
allowing the analysis of the stability properties of the control loop, and, for
instance, enabling the characterization of the class of all stabilizing controllers
for a given plant.

Here results are developed showing that the class of all stabilizing con-
trollers for a given plant can be structured as a state estimate feedback
controller, with the state feedback and state estimate gains generalized to
be proper transfer functions. This result is also generalized to the case of
reduced-order observers. An important by product of the work on reduced
order observers is the generation of new state-space realizations of doubly co-
prime factorizations; these state-space realizations are important both from
a theoretical point and a computational point of view.

An arbitrary controller can be organized as a state estimate feedback
controller with a constant state feedback and state estimator gain providéd
that the solution to a particular quadratic matrix equation exists. The in-
sights gained by studying this realization problem lead to an investigation
of conditions under which the solutions of of the algebraic Riccati equation

exist.

Some related work on the problem of controller reduction follows. A con-
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troller reduction scheme is proposed which applies standard model reduction
algorithms to augmentations of the controller which arise when working with
the class of all stabilizing controllers. Practical issues such as scaling of the
plant variables are addressed, and two examples are given to demonstrate
the use of the model reduction techniques.

Finally, an algorithm for adaptive resonance suppression is proposed for
use in situations where time-varying plants can drift into instability. A simu-
iation study is performed to demonstrate the behaviour of the algorithm. The

algorithm appears particularly useful for enhancing existing fixed controller

designs.
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Chapter 1

Introduction

Classical controller design and analysis techniques are based on frequency
domain concepts and are principally concerned with the control of single-
input single-output plants. Such techniques are adequate for a large class of
practical engineering design problems: they are simple to understand, do not
need complex hardware, and are reliable. In addition, gain/phase margins,
Nyquist diagrams, and Bode plots are examples of concepts and tools which
can be used to analyse the feedback loop.

There are, however, control problems which cannot be treated using sin-
gle loop control techniques: a plant may be controlled from more than one
input and measurements may be taken from many outputs. Classical con-
trol techniques are generally inadequate for use with multivariable plants,
although knowledge of classical theory provides a good background for the

study of multivariable systems.

The introduction of the idea of the state of a linear system into the con-
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trol literature was a major step forward in the treatment of multivariable
systems. State space ideas arise naturally in the mathematical treatment
of linear ordinary differential equations, and engineers often model systems
using such differential equations. Consider as an example the following state

space system G : u(t) — y(t),

(t) = A()z(t) + B(t)u(t);
y(t) = C(t)z(t) + D(t)u(t) (1.1)

where for any time t, A(t) € Rnna, B(t) € Rom, and C(t) € R,n. The
system (1.1) along with initial conditions for z(t) defines the relationship
between the m x 1 input vector u(t) and the p x 1 output vector y(t). The
n X 1 state vector z(t) is defined by a vector differential equation driven by
u(t); the output vector y(t) is a linear combination of z(¢) and u(t). Much of
what follows is concerned with the class of time-invariant state space systems,
where A(t), B(t), and C(t) are restricted to be constant real matrices. In
this case Laplace transform techniques provide an alternative representation

of G. Assuming zero initial conditions,
Y(s) = G(s)U(s) (1.2)
G(s) = C(sI-A)™'B+D (1.3)
where Y(s) = L[y(t)]; U(s) = Llu(?)]

At first (1.1) may not seem like a natural way to describe an engineering

system, but it is important to realize that the entries of the state vector may
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represent physical variables, either measurable or unmeasurable. In some
situations it is desirable to obtain on-line estimates of the state variables, ei-
ther for monitoring unmeasurable physical variables, or for use in the control
algorithm. Much of linear control theory is concerned with regulation of the
state z(t) to some reference state by appropriate manipulation of the control
input. The problem of on-line estimation of the state via observers (state
estimators) has been an important research topic over the last thirty years,
with important initial contributions by Kalman [19] and Luenberger [27].

A natural dual to the problem of state estimation is that of state feedback.
While state estimation attempts to estimate the hidden state vector, the aim
of state feedback is to control the state via the plant inputs. The two can ‘
be combined to form a controller which cascades an observer and a state
feedback gain. For the time invariant case, Luenberger [27] shows that there
is a separation principle: the design of the observer and the choice of the
state feedback gain can be made independently. The closed loop poles of
the state estimate feedback scheme can be separated into poles due to the
observer and poles due to the choice of the state feedback gain. While a
state estimate controller can be designed to assign the closed loop poles
in a particular way, there may be alternative design objectives. The state
feedback law may be the solution of a linear quadratic (LQ) design problem
[3]. Similarly in the presence of noise, it may be desirable to use optimal

state estimation techniques such as Kalman filtering [20]. The LQ controller
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design and Kalman filtering problems are strict mathematical dualé, with a
controller formed iby the cascade of a Kalman filter and an LQ controller
known as a linear quadratic gaussian (LQG) controller.

Although LQG control seems like an ideal optimal control strategy, there
are some important problems that arise in practice. One such problem is ro-
bustness to uncertainty in the plant model: thg closed loop system may not
be stable if the true plant is slightly different from the nominal plant. This
is in contrast to the scalar LQ controller, where it can be shown that there
is an inherent infinite gain margin and a corresponding 60° phase margin [3].
The problem of robustness to plant uncertainty or small time variations in
the plant model is one that becomes more important as control systems be-
come more complex, since plant error can be roughly compared to controller
realization error. In the LQG case, techniques such as loop transfer recovery
[13] have been proposed to obtain a compromise between the optimality and
robustness.

State space realizations such as (1.1) or (1.3) are not the only ways to
represent the input-output behaviour of dynamical systems. In Wolovich
[48] and [18] there is a treatment of linear time invariant systems represented
by ratios of polynomial matrices. Canonical forms and properties such as
minimality can be described for polynomial factor representations as has
been done for state space systems.

Recently another method has been used to represent the transfer function
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of a multivariable system. The transfer function is factored into matrices of
stable, proper transfer functions. Although stable, proper factorizations may
seem to be unnecessarily complex, they have the advantage of being useful
when analysing the stability of a feedback system. For instance, using stable
proper factorizations it is possible to characterize the class of all stabilizing
controllers for a given plant, a concept which is very important in this thesis.
This factorization approach to controller synthesis and analysis was intro-
duced by Kuéera [22] for discrete time and Youla et. al. [49] for continuous
time, and later formulated in an axiomatic framework [11, 46]. It provides a
framework for research in the area of H,, optimal control [15], which is con-
cerned with finding a controller to minimize the L, norm of a disturbance
transfer function subject to the constraint that the controller be stabilizing.

Many of these results at first sight seem irrelevant to practical control en-
gineering, because of the abstract algebraic framework which underlies much
of the theory. This thesis is concerned principally with using ideas, tech-
niques, and results from the factorization approach in the design of practical
robust controllers. Existing knowledge and intuition based on frequency do-
main ideas is combined with the new theory. A summary of the progression

of ideas in the thesis now follows.

State estimate feedback Chapter 2 is concerned with the design of
closed-loop systems in which the control signal is a linear function of the state

estimate. The work is related to that of Doyle [12], where it is shown that



Chapter 1 Introduction 6

the class of all stabilizing controllers for a given plant can be obtained using
a state estimate feedback control structure. The control signal is formed by
adding a linear function of the state estimate to a stable filtering Q(s)r of the
residuals r, where the residuals is the difference between the true plant output
y and estimate § of the plant output from the state estimator. The class of all
stabilizing controllers for a given plant is obtained by varying the parameter
Q(s) over the class of all stable transfer functions. In Doyle’s work the state
feedback gain and the state estimator gain are constant real matrices, whereas
this thesis allows them to be possibly unstable transfer function matrices. We
will sometimes refer to the dynamics in the state estimator and state feedback
gains as frequency shaping, because the frequency response of the dynamics
can sometimes be related to plant or plant noise frequency responses.

In Chap. 2 it is shown that the class of all strictly proper stabilizing con-
trollers for a proper linear plant can be structured as state estimate feedback,
with dynamics in the state estimator or in the state estimate feedback law.
The place where the dynamics is introduced is at the designers discretion.
The parameterization of the controller class can be in terms of an arbitrary
proper stable transfer function, with the closed loop system affine in this
transfer function. With constant output feedback permitted in addition to
the state estimate feedback, the class of all proper stabilizing controllers can
be generated in like manner. These results are useful in engineering applica-

tions where the states represent physical variables.
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Algebraic Riccati equations Following on from this, one can ask
when an arbitrary controller can be organized as a state estimate feedback
controller with a constant state feedback law and a constant state estimator
gain. It was originally observed by Anderson [1] that this is possible only
when there exists a nonsingular solution to a particular nonsymmetric Riccati
equation. Such equations also arise in polynomial factorization theory [9],
and although they have been treated at length in the literature, some of
their properties are less well understood than for the symmetric case.

Chapter 3 provides contributions to established theory on this funda-
mental subject. Necessary conditions are shown for solutions of this Ric-
cati equation to exist in terms of controllability and observability of the
plant/controller state space realizations. The existence of an inverse of these
solutions is given by considering a dual Riccati equation. There is also an
alternative proof to that given hitherto, to establish the sufficiency of these
conditions for a class of equations associated with certain scalar variable
problems. A counterexample is givén to the conjecture that the sufficiency
conditions can be extended, without modification, to the multivariable case.
This leads to generalized conditions for the multivariable case. As a challenge

to the reader, it is conjectured that these are also sufficient conditions.

Reduced order observers; doubly coprime factorizations To make
use of the results in the factorization approach requires an arbitrary trans-

fer function to be factored into coprime factors in the ring of stable, proper
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transfer functions. For convenient computation, is it desirable to be able to
work with state-space realizations of these transfer functions. In important
work by Nett, Jacobson, and Balas [39], explicit state-space realizations of
these factorizations are derived using results from state estimation and state
feedback theory. These results are based only on full-order state estimators,
which have realizations with the same McMillan degree n as the plant model.

Asymptotic state estimation can also be achieved by estimators of a lower
degree: the degree may be reduced to n — p for a plant with p outputs. This
theory on reduced-order observers was originally reported by Luenberger [27],
and is a génera.lizé.tion of the full-order case. In Chap. 4 new doubly coprime
factorizations are developed based on reduced-order observers. Following on
from this, various extensions are noted, and it is proved that the class of all
stabilizing controllers for a given plant can be generated by dynamic feedback

of the state estimate given by the reduced-order observer.

Controller reduction Chapter 5 is concerned with the problem of
controller reduction. In reducing high order controller designs, such as arise
from H,, or LQG techniques, to more practical low order ones, a reasonable
objective is to preserve the performance and robustness properties. Here
standard balanced truncation or Hankel norm approximation methods are
applied to augmentations of the controller which emerge when characterizing
the class of all stabilizing controllers for a given plant in terms of an arbitrary

proper stabilizing transfer function.
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In the method, scaling parameters are at the disposal of the engineer to
achieve an appropriate compromise between preserving performance for the
nominal plant and a certain type of robustness to plant variations. There are
a number of unique features of the approach. One feature is that a straight-
forward re-optimization of a reduced-order controller is possible within the
framework of the method. A second feature is that for controllers designed
for simultaneous stabilization of a number of plants, the method seeks to

preserve the performance and robustness of the reduced-order controller for

each plant.

Adaptive resonénce suppression The work of Chap. 6 is not con-
cerned directly with stable, proper factorizations, but it is intended that
the results be used tor complement the work of Tay, Moore, and Horowitz
{42]. This related work is concerned with applying adaptive techniques to
structures arising when describing the class of all stabilizing controllers for
a given plé.nt. Chapter 6 is concerned with control systems that can drift
into stability, or less catastrophically, exhibit resonance behaviour. Such res-
onance phenoniena appear in many practical engineering control systems,
ranging from relatively slow chemical processes to high performance aircraft
controllers.

Fixed controllers may not be robust in the presence of time-varying plant
models. One role for adaptive controllers is to learn sufficient information

concerning the dominant closed-loop resonant modes so as to apply effec-
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tive feedback to dampen these modes. In such situations the adaptive loop
augments the fixed controller feedback loop. Here an algorithm is presented
for adaptive resonance suppression and simulation results are provided to
study its behaviour in the presence of high-order unmodelled dynamics. The
algorithm appears particularly useful for enhancing existing fixed controller

designs.

In the final chapter, an overview of the work will be given, and further

research possibilities will be discussed.



Chapter 2

All stabilizing controllers as
frequency shaped state
estimate feedback

2.1 Introduction

Consider the stabilizable and detectable linear time-invariant system with

state equations
z=Az+ Bu, y=Cz + Du (2.1)

and transfer function G € R,
G=C(sI-A)™'B+D o (2.2)

The plant G(s) is said to be proper since |G(o0)| is finite. We formally say
that a controller K(s) is stabilizing for G (see Fig. 2.1) if the four transfer
functions from [u] u}]’ to [e] 5]’ are stable.

This chapter is concerned with the structure and properties of state es-

timate feedback controllers. Unlike much of the work in this area, the state

11
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L] L}
G(s)

[
| K(s) | (D)

Figure 2.1: Closed loop system

|

- B = (5]-A)" » C

F  |t—]

Figure 2.2: Control system with state feedback

feedback gain F' and state estimator gain H are here permitted to be proper
transfer functions. We recall first what is meant by these terms for the case
when F, H are constant. Figure 2.2 shows state feedback for the strictly
proper plant G(s) = C(sI — A)~1B; the feedback signal is Fz(t). The trans-

fer function from u to y is

Y(s)
U(s)

=C(sI - A—BF)™'B . (23)

It well known that by a suitable choice of F, the poles of this transfer function
can always be assigned into the stability region, R[s] < 0, if and only if the

pair (A, B) is stabilizable. The stabilizability property is equivalent to saying
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that all unstable plant modes will be controllable. If a constant F is replaced
by a possibly unstable F(s), then what choices of F(s) will lead to a stable
state feedback controller?

Consider the state estimator in Fig. 2.3, which is the dual of the above
case. The transfer function from the input u to the error in the state estimate
z — £ is zero, and furthermore, the transient behaviour of this error, due to
non-zero initial conditions, will approach zero if H is chosen such that the
eigenvalues of A+ HC are in the stability region. This is known to be possible
whenever the pair (A, C) is detectable, where detectability is equivalent to
saying that all unstable modes of A will be observable. If a constant H is
replaced by an arbitrary proper transfer function H(s), then what values of

H(s) will give an estimator with an error that tends to zero asymptotically?

Combining state estimation and state feedback, we obtain a state estimate

feedback controller. Such a controller, with F, H constant, can be defined

by

& = A%+ Bu-H(y-9)
§ = Ci+ Du (2.4)
u = Fz

with transfer function K € R,,

K = —F[sI - (A+ BF + HC + HDF)|"'H (2.5)
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Yx(:=0)

> B |—m (5/-A)" }—>]

Yi(t=0)
—» B GI-A)"
state estimator
| H
*x— ilho
x-x -y
sI-4)" —== C )
erTor system

Figure 2.3: An asymptotic state estimator
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This controller is known to be stabilizing if and only if
[sI-(A+BF)™, [sI-(A+ HC)|™' € RH,, (2.6)

where RH,, is defined to be the class of proper and stable real-rational
transfer functions. |

With H, F generalized as transfer functions H(s), F(s) € R, with sta-
bilizable and detectable state-space realizations, the resulting state estimate
feedback controller is known to be stabilizing for the plant G(s), with all

states asymptotically stable for arbitrary initial conditions if ahd only if [33]:
F(s), H(s) stabilize Gr, Gy respectively, where

Gr = (sI —A)™'B, Gy = C(sI — A)™! (2.7)
This result is also shown as a by-product of the theory of this chapter.

In the chapter we show that for the plant G of (2.2) the class of all
stabilizing controllers of the form (2.4), parameterized in terms of F, H € R,
satisfying (2.7), is the entire class of all stabilizing controllers for the plant
(2.2). Moreover, the entire class can be generated in terms of a stabilizing
F € R, for G, where H € R, is an arbitrary stabilizing controller for Gy
with a left inverse H-L € RH,,. Likewise, in terms of a stabilizing H € R,
for Gy, where F is an arbitrary stabilizing controller for Gg with a right

inverse F~® € RH,. The existence of a stable proper inverse of H or F is
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equivalent to a multivariable generalization of the familiar scalar minimum
phase property, with the additional constraint that the transfer function has
relative degree zero.

With constant output feedback permitted in addition to the state esti-
mate feedback, the class of all proper stabilizing controllers can be generated
using a mild variation. In addition, the parameterizations can be in terms of
arbitrary transfer functions Qr, Qu € RHy, with the closed loop transfer
functions affine in Qr or Qy. The theory developed here is based on re-
sults from factorization theory [46, 11], and complements other work which
involves modification to standard state estimate feedback [33, 12].

The controller structures of this chapter have the advantage that they are
decomposed into a state estimator and a state feedback law, where at the
discretion of the designer, generally one or both are frequency shaped. Thus
any stabilizing controller can be viewed in terms of filtered feedback of each
state estimate, or as direct feedback of each frequency shaped state estimate.
This has appeal in engineering situations, where the states represent physical
internal variables. For example, knowledge that an effective controller feeds
back a low pass filtered velocity or position estimate could be instructive
when improving the design by introducing a,dditioﬁa.l sensors, or improving
sensor locations. In situations where state estimation is required in addition
to control, the results of this chapter give useful implementation possibilities.

Gain scheduling could be more systematic in the framework of the state
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estimate feedback. This is not to say that state estimate feedback is always
the best design approach, as illustrated when the frequency shaping in the
state estimate feedback cancels out the observer dynamics.

In Sec. 2.2, known theory [12, 11] for the class of all stabilizing controllers
is reviewed and extended for use in subsequent sections. In Sec. 2.3, the
main results of the chapter are developed. Some useful related results are

summarized in Sec. 2.4, and conclusions are drawn in Sec. 2.5.

2.2 Stabilizing controllers for G, Gp, Gy

Employing the notation in Appendix A2.1, the transfer functions G, Gr, Gy
from (2.2),(2.7) can be written - |

o=[ME] cor=[H2] on=[4H] 9

Consider also coprime factorizations over RH,

G=NM-=MN,

Gr = NeM7! = M7 Nz,

G = NgMz* = Mz Ny,

where M‘I,M‘I,MEI,MEI,MEIa‘MFII €R,

(2.9)

Let us denote K, F, H € R, as stabilizing controllers for G, Gr, Gy respec-
- tively with coprime RH,, factorizations
K=Uv-1=v-17,

F =UpV5' = V5t Up,

H = UyVi' = Vgtly,

where V-1, V-1, Vit Vi, V', Vit € R,

(2.10)
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Such stabilizing controllers are known to exist with (A, B) stabilizable and
(A, C) detectable.
For what follows, doubly coprime factorizations of G(s) with respect to

the ring RH,, are required. With the notation above and

ERICN CH I

then NM~! = M-1N-! provide doubly coprime factorizations of G. With
F, H constant and K equal to the state estimate feedback controller of (2.5),
then Nett, Jacobson, and Balas [39] give explicit state space realizations for
factorizations of G, K satisfying (2.11).

It is no longer possible to use the doubly coprime fax:torizatibns for G of
Nett et. al. when F, H are generalized to possibly unstable F'(s), H(s) € R,.

Theorem 2.1 overcomes this problem by using suitably modified factoriza-

tions.

Theorem 2.1 Given any F, He R, stabilizing for G, Gg of (2.7) with
factorizations (2.10) and (A, B, C) minimal, then coprime factorizations for

Gr, Gu, G and K satisfying (2.9), (2.10) are *:

. [ -1
Mg _ A+ BF B~VF < REL
NF ] F ) V};l co
- I 0 T
- e A+ BF | -B BF
—Np Mp| = - —7| € RH, (2.12)
[ ° A VF 1 0 VF 1 T

1Here the notation is generalized to allow the four entries of the state realization matrix
to be transfer functions as in (2.57).



Chapter 2 Frequency-shaped state estimate feedback 19
i r—1
Mg | |ATHC |V .
Ng | ~ HC |Vvi? oo
c 0 Ip
L. A4+ HC | -1
[~Ng My| = ie To i, € RH,, (2.13)
[ (71
U A+BF | BV ~Un
[ Nv| = F Vit 0 € RH,
' |C+DF | DVF* Vg |,
i 7] [A+HC |-B-HD H
- | Vg'C -Vg!D  Vi!

T

Moreover, the factorizations satisfy the following double Bezout equations:

Ve -Ur][Mp Ur]l _ [I 0]
el - 0] ew

Va -Ug|[Mg Ug] _ [I O]
[-NH MHHNH Va| = |0 1] (2.16)

Vv =-U]1[M U] [T 0]
[—N MHN v| = o) (2.17)

Proof The properties of (2.9),(2.15)-(2.17) can be verified by simple ma-
nipulations, as shown in Appendix A2.2. It remains to show that the fac-
tors (2.12)—(2.14) are stable, since with (2.15)—(2.17) this implies that the
factorizations are coprime in RH,. Consider first coprime factorizations
Gr = NpM7! = M7 Nr. Since F stabilizes Gr, then standard arguments
[46] give that |

(MFVF - JVFUF)_I, (?FMF - ﬁFNF)—l € RH,, (2.18)
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Also from (2.15), Mp(Vr — GrUr) = I, (V& — UrGr)Mp = I so that

[Mp NF] = (Vr — GrUr)™ I GF]

= (MpVr—NrUr)™ [Mr N¥| € RH,, (219

ARl

- [ M ] (VeMp = UpNe)™ € RH  (220)

Analogous proofs for the dual show that Ny, My, Ny, My € RH. It then
follows that N, M, N, M € RH,, since

[%] B [117 g][%ﬁ] (2:21)

[N &) = [ M MH][_% (}] (2.22)

Finally, since F stabilizes G, all four closed loop transfer functions are

stable. This implies that
[sI-(A+ BF)|™, F[sI-(A+ BF)|"'B € RH,,

= F[sI — (A+ BF)|™! € RH,, under (A, B) controllable (2.23)

It follows from (2.23) that U,V € RH,. Dual arguments show that U , Ve

RH.
o

With the factorizations of Theorem 2.1 established, then (2.17) implies
that [11]:

K=UV1'=V0=~F[s]-(A+BF+HC+HDF)|"'H (2.24)
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will be stabilizing for G. Other standard results can immediately be applied
to G, K based on the doubly coprime factorizations of Theorem 2.1. For
instance, it is possible to characterize the class of all stabilizing controllers

K(Q), that stabilize G, in terms of an arbitrary parameter @) € RH..

Theorem 2.2 ([11, 12]) Consider the plant G of (2.8) with coprime fac-
torizations (2.9), (2.14), (2.17) as above. The class of all proper stabilizing

controllers can be parameterized in terms of arbitrary Q € RH,, as

K@) = UQV(@Q)™=V(@Q)'U(Q)
= K+ V1QU+V-INQ) V!
where
U@)=U+MQ; V() =V+NQ; [V+NQ|#0 (2.25)
U@Q)=U+QM; V(@) =V+QN; [V+QN|#0 '

We finish this section with some remarks:

1. The class of all stabilizing controllers of (2.25) can be depicted as in
Fig. 2.4, where

J=[‘fi, _ffIIN],T= [[—% 3{]] [Aff] (2.26)

2. The closed loop transfer functions are affine in @,

I k1
[—G IK] =Ty 4+ T12QTo =
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Q |- Q e R,

Figure 2.4: Class of all stabilizing controllers
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plant .
u y estimator
=1 {A,B,C,D} —>= N
{a.com| *12=9
-
* r=(y-C%)
QeRH. | 0
S 7]~
Figure 2.5: Class of all stabilizing controllers: Doyle-Stein form
[ A+ HC 0 0 -B-HD —-H ]
BoViiC Ag 0 BQVi'D  BgVi!
B(F-DC) BV§f'Cq A+BF |B(I+DD) BD
F-DC V7'Cq A+BF| I+DD D
| D(F - DC) DV§'Cq C+DF|(I+DD)D I+DD|_
(2.27)

where

D=V'DeVg', Q = [

Aq | Bg
Ca | Dq |,

The derivation of T is shown in Appendix A2.2. An alternative de-

piction is in Fig. 2.5; here all stabilizing controllers are be obtained

by filtering the residuals r = y — § with an arbitrary Q@ € RH, and

adding this to the controller output.

3. Observe from (2.25) that given an arbitrary proper plant K, with

arbitrary coprime factorizations

Ky = UVt =V,
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then @, € R, is uniquely determined such that K; = K(Q.), since

from simple manipulations:

Q1 = =M -KG\(U-KYV)
= —[WM — U,N) WU — U, V]
= —[0v - Vlh|[MVy - NUL]™! (2-28)

A consequence is that M@, and NQ), are uniquely determined.

4. Substitution for V, U and V, U into (2.17) from (2.25) results in cor-
responding properties for V(Q), U(Q) and V(Q), U(Q)

[ PNl e

With the result (2.29), Uy = U(Q1), Vi = V(Q1), and the duals, then
(2.28) simplifies to

Q=U(Q)V = V(@)U = VU(Q1) - TV(Q) (2.30)
5. Note that
[K(Q) € Ryp] & [Q € Ryp) (2.31)

6. Observe that as a consequence of the fact that T5; = 0, the transfer

function from e to r is invariant of @, and is equal to T3;.

7. With F, H € RH,,, then without loss of generality, Vg = I, Vg = I.
In this case, the factorizations of (2.12)-(2.14) simplify to the special-

izations of [39].
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8. The above results apply to yield the class of all stabilizing controllers
for Gr, Gy in terms of arbitrary Qr, Qn € RHy:

F(Qr) Vr(QrF)Ur(Qr)

= ViU + VeQr(I + V7' NpQp) ' Vit

Ve(Qr) = Ve + QrNr; Ur(Qr) = Ur + QrMr

Ve + QrNp| # 0 (2:32)

and

H(Q#H)

Un(Qu)Vu(Qn)™
= UpVi'+ V' Qu(I + Vi NuQu) V!

Un(Qn) = Un + MuQu; Va(@u)=Va+NuQu 543,
|Va + NgQul| #0 .

Then the transfer functions F(Qr), H(Qx) can be structured as shown

in Fig. 2.6, where Jg, Jy are given by

| F Vit | H Vit
JF_[VF'TI _ EINF],JH_[VEI _ EINH (2-34)

The main development in this section is to define new state space real-
izations for doubly coprime factorizations of a plant G(s). They are based
on a stabilizing state estimate feedback controller with dynamics in both the
state estimator and the state estimate feedback gains. This is a non-trivial
extension to the case where only constant gains are permitted. The theory

also requires doubly coprime factorizations of the associated ‘plants’ Gr, Gy
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—"planl” GF ” planl" GH
— (s/-A)"'B —{ C(s1-A)"!
e — et
Jr Ju
et |-t enem
LD- QP e QH
Stabilizing controllers F(Q) Stabilizing controllers H(Q;;)

Figure 2.6: Stabilizing controllers F(Qr), H(QF)

to be defined. It is shown that once the doubly coprime factorizations are
established, then standard results on stability can be applied. In particu-
lar, it is possible to parameterize the class of all stabilizing controllers for
G,Gr,Gy. In what follows we show that the class of all stabilizing con-
trollers for_ G can be achieved by a state estimate feedback controller with

dynamic state estimator or state estimate feedback gains.

2.3 Stabilizing controllers for G in terms of

QF’ QH’ Q

The class of state estimate feedback controllers in terms of F, H € R, will

be denoted as

K[F,H] = [A+BF+§C+HDF || ‘f]TeR,, (2.35)



Chapter 2 Frequency-shaped state estimate feedback

27

Lemma 2.3 With the definitions (2.85), (2.82), (2.88), and the factoriza-

tions of Theorem 2.1, the following classes of strictly proper controllers pa-

rameterized by Qp,Qr € RH,, are stabilizing:

K[F,H(Qu) = Ua(Qu)Vu(Qu)™
Ug(Qu) =U + MQ4y, Vu(Qu)=V +NQx

K[F(Qr),H] = Vr(Qr)'Ur(QF)
Up(Qr) = U + Qr M, Vr(Qr) =V + QrN

where M, N'; M, N are given by
A+ BF | =My -Ug
M U]

[N vi= F 0 0 | €RHw
. _C+DF Ny Vu T

v 7 A+ HC |-B—-HD H

[—1\7 M = ﬁ}j VE 0 € RH,,

) | —-Mp —Nr 0 T

Moreover, the following properties hold

GM =N, MG =N
[ff —fJHM U]__:[M'lM 0

N M| NV 0 MM
MM = —UplsI-A-HC]"'Vg' € RH,,
MM™ = —Vg[sI— A— BF]"\Uy € RH,,

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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Proof See Appendix A2.2

It remains to find conditions under which the class of all strictly proper
stabilizing controllers can be structured as K[F, H(Qx)] or K[F(QF), H] for
Qr, Qn € RH..

Lemma 2.4 With the definitions (2.36), (2.37), and (2.25), then

KIPH@n] =K@ € Ry & |4 |aa=] ¥ |0,

& Q=M'MQy€ER, (2.42)

For all Q € RHe, N Ryp then there ezists Qu € RHy satisfying (2.42) if and
only if

F has a right inverse in RH, (2.43)

(A dual relationship ezxists for K[F(QF), H| and K(Q), the relationship being
Q = QrMM-'. The dual of (2.48) involves the ezistence-of a left inverse
for H.)

Proof See Appendix A2.2.
Remarks:

1. Condition (2.43) in Lemma 2.4 is equivalent to specifying that F is a

minimum phase transfer function with relative degree zero.

2. Since the closed loop transfer functions are affine in @, and by (2.42),
QF is linear in Qp, then the closed loop transfer functions generated

by the class of all controllers K[F, H(Qg)] will be affine in Qg.
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3. The results of (2.42) can be generalized by replacing F by F(Qr), for
some Qr € RHo. With a fixed F(Qr) and, for example, writing K(Q)
as Kry(Q) to denote explicitly the state feedback and state estimator

gains, the (2.42) becomes

K[F(Qr), H(Qn)] = Kr(qr),u(Q)
& Q=-Ur(Qr)sI-A- HC]-II‘;};IQH (2.44)

It follows that the class of all stabilizing controllers can be organized

as K[F(Qr), H(Qu)] where F(Qr), H(Qg) are given by (2.32),(2.33)
and QF: QH € R.Hog.

The following theorem is now established from Theorem 2.2, Lemma 2.4, and

their remarks

Theorem 2.5 Consider the plants G, G, Gy of (2.8) with (A, B) stabiliz-
able and (A, C) detectable, and the state estimate feedback controller K[F, H|
of (2.35) for G.

(i) With F, H € R, arbitrary stabilizing controllers for Gr, Gy, respec-
tively, then K[F, H] € Ry, is stabilizing for G and represents the entire

class of stabilizing controllers for G.

(it) With Fi € R, fized and (strictly) minimum phase as in (2.43), and
H € R, arbitrary stabilizing proper controllers for Gy, the subclass
- K[F, H] represents the class of all strictly proper controllers for G if
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plant frequency-shaped
u y estimator
»{{4,B,C,D} —>] "
{A,B,.C,D,HO|_X
-
r=-c%__Y
Vi™'Qn) Qr € RH.,
On €RH.
T |
VilQp) [w—1 O
T F(QF) [=a—

Figure 2.7: Class of all stabilizing state estimate feedback controllers, denoted

and only if Fy € R, stabilizes Gg. A dual result holds for K[F, H,]
when H,y is fized. |

As an extension, consider a more general class of state estimate feedback
controllers K[F, H, Q] as in Fig. 2.7. This is really the class Krg(Q), but
writing K[F, H, Q] explicitly shows that there are three parameters F, H,
and Q. The class is obtained from the class K[F, H] € R,, by adding to the
controls the residuals (y — §) filtered by Q € RH.,

u=Q(y—§)+F2 (2.45)

The results of the previous section can be applied (see Appendix A2.2) to

yield the following theorem, which is a generalization of the results in [12] to
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the case when F, H are dynamic rather than constant.

Theorem 2.6 With the notation above, K[F, H, Q] € R, is stabilizing for
arbitrary F, H stabilizing for Gr, Gg and arbitrary Q € RH,,. Moreover,

with Q an arbitrary constant, then K[F, H, Q) represents the entire class of

stabilizing controllers in R, for G.
Proof See Appendix A2.2
Remarks:

1. The controllers K [F, H, Q] when Q is a constant, are still conveniently
viewed as state estimate feedback schemes with additional output feed-

back. With Q constant, then the feedback signal u in (2.45) can be

formed as a combination of & and y:
u=(F-QC)z+Qy (2.46)

When Q is frequency shaped, there is no ready interpretation as state

estimate feedback or even frequency shaped state estimate feedback.

2. The results in this chapter are presented without restricting F, H to
be stable, yet in practical controllers the restriction F,H € RHy, is
a reasonable one to apply. Of course any implementation of K[F, H|
must not include unstable pole/zero cancellations associated with un-

stable F, H. Such would give instability; a priori cancellation avoids

such difficulties.
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2.4 Useful relationships

Here several useful formulae will be stated, which relate various transfer
functions such as K, @, J, F, and H of the previous sections. The relation-
ships are verified by algebraic manipulation as was done in Appendix A2.1
for earlier proofs. Consider the plant G with a strictly proper controller
K = C(sI — A)"'B and H, F constant vectors stabilizing Gg, Gr respec-
tively. The factorizations (2.14) can then be specialized with Viy = I, Viy = I,
Vi = I, and V& = I. If the control-loop is well posed, then it will be possible
to invert (2.25) to obtain a @ such that K(Q) = K )

- [A+BDC BC| B
Q = BC A|-H| (2.47)
| ¢ -Fl o],
A+ BF+HC+HDF |-H B+ HD
J = F \ 0 T (2.48)
I —-C - DF I -D |,

The expression for J is stated in [12]. Also from (2.27),

PR A+BDC BC|BD B
- BC Al I 0
= = 2.49
[—G’ I ] c 0 ‘ I 0 (249
p¢ ¢ lbD 1

T

Comparing (2.47) and (2.49) show that the modes of @, perhaps not all
controllable or observable, are the same as the modes of the closed-loop
transfer functions: this is not unexpected, since Q € RH,, if and only if

there is closed loop stability.
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If a constant H is chosen to stabilize C(s] — A)~! and H has a left in-
verse H~L, then a controller K[F(s), H] can be realized by using a frequency
sha,ped‘sta.te estimate feedback, with

A+BH-Y(B+ HD)C | -|[A+ BH-Y(B+ HD)C|BH
F(s)= +BH-L(A+ HC)
¢ I ~CBH-L

T
(2.50)
The dual result exists for K[F, H(s)] in the case when a constant F', which
stabilizes (sI — A)~1B, has a right inverse
A+ B(C + DF)F-RC | B
(A+ BF)F-RC — F-RC|A + B(C + DF)F-RC] | -F-RCB | _
' (2.51)

Note that existence of a right inverse of the constant H is the same as con-

H(s) =

dition (2.43), but (2.43) considers the case when H is permitted to have

dynamics.
2.5 Conclusions

This chapter has demonstrated that the class of all stabilizing controllers
can be constructed conveniently from frequency shaped state estimate feed-
back controllers, with the frequency shaping in the state estimation, in the
state estimate feedback, or in both. This result underlines the versatility of
controller designs based on frequency shaped estimation and control, and al-
lows elucidation of controllers designed by other approaches in terms of state

feedback, albeit frequency shaped.



Chapter 2 Frequency-shaped state estimate feedback 34

The proofs rely heavily on the structure of the doubly coprime factoriza-
tions introduced in Theorem 2.1, since the derivation of these new factoriza-

tions relies on state estimate feedback theory.

A2.1 Some basic definitions

Some function spaces

In this appendix, a few basic concepts will be introduced. The Hardy space
H,, consists of all complex valued functions G(s) of a complex variable s
that are analytic and bounded in the open right half-plane, R[s] > 0. The
H, norm of G(s), denoted ||G($)||co, is defined by
IG(s)llec = sup G(s) (2.52)
[s1>0
The class RH, is a subset of Hy,, consisting of all rational functions with real
coefficients that are bounded in IR[s] > 0. Alternatively, for a real-rational
F(s), then F'(s) € RH if and only F is proper (|F(c0)| is finite) and stable
(F'(s) has no poles in the closed right half-plane, Res > 0) . The class of
proper functions will be denoted R,; the class of strictly proper functions,
denoted R,,, consists of real-rational functions F'(s) for which |F(c0)| = 0.
Although spaces such as RH,, have been defined as scalar, we will gen-
eralize the definition, so that, for example, RH,, represents the class of all
matrix valued functions, with each entry a real-rational function that is stable

and proper.
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Working with state-space realizations

Consider a stabilizable and detectable time-invariant linear system G with

state equations,
z(t) = Az(t)+ Bu(t)
y(t) = Cuz(t)+ Du(t) (2.53)

A special notation for the transfer function of such a system will be used,

G(s)=C(sI—-A)™B+D#2 [%l—g-]T (2.54)

The horizontal and vertical lines are not partitioning of the block matrices,
but indicate that the matrices represent transfer functions. Using this con-
venient notation, some identities will be given: first for the cascade of two

systems, and then for the inverse of a system.

A1 BC, | BiD
[A1 | Bl] [Az | Bz] _|% }122 11322] (2.55)
C: I D, T C, | D, T Cl chz | D, D, - ’
[A | B]* _ [A—BD*C | —BD*] (2.56)
ClD|, ptc | Dt |,

with { representing a left or right inverse. The notation can also be general-

C(s)[sI = A(s)]"*B(s) + D(s) & [28 i 8] (2.57)
T

Two useful matrix identities follow,

ized so that,

X(I+YX)"!=(I+XY)'X (2.58)
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I+X(I-YX)'Y = - XY)™! (2.59)
A2.2 Proofs
Derivation of (2.9)—(2.14)

The factorizations (2.9)—(2.14) can be verified. For example

A BF | BV A+ BF BF‘BV;‘
GrMr=|0 A+4+BF|BVi'| = 0 A 0 = Nr
T 0 1 0 ), I ol o g
(2.60)

Here the second equality follows from a change of basis (second column added
to first column and the first row subtracted from the second row). The third

equality follows by the deletion of uncontrollable paris. Similarly, (2.39)
follows from definition (2.38) and

A BF 0 A 0 My
T T

c DF | o C C+DFI| 0
The properties (2.15)—(2.17) and (2.40) can be proved using similar manip-
ulations based on (2.55).

Derivation of closed-loop transfer function

Assume that K has the form (2.25), so that K(Q) = U(Q)V(Q)™! where
U(Q)=U+MQ,V(Q) =V + NQ. The closed-loop transfer functions from

u to e in Fig. 2.4 are

I+ K(QU-GK(Q)'K(Q) K(Q-GK(Q)]™!
[I - GK(Q))'G [I-GK(Q)]™
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[-IG —KI(Q)]-I" (2.62)
Moreover,
[T = [V vl [ VS
= A(;I V?Q)][é —IQ]—I[-]}JIV —vg]-l.
_[M M@ [ M -U]"
S
Ak IE AR
_ :—IG ‘;(]-1+[%]Q[N it | (2.63)

The result (2.26) follows from (2.63). The state variable form of the closed-
loop transfer functions in (2.27) can be derived by substitution for G, K, N,
M, N, M into (2.63) from (2.2), (2.5) and (2.17), and with Q@ = Cq(sI —
AQ)™'Bg + Dg.

Proof of Lemma 2.3
(i) Specializing (2.14) with H = UyVj;! replaced by
H(Qu) = Un(Qu)Vu(Qn)™

of (2.33), and thus U, V replaced by Un(Qu), Vu(Qu) we have

Kt P o IS KA B
' (2.64)

F I 0
C+DF| Vg+ NgQn
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Likewise

(@) - Oe(@p)] = |zoiic (=B-AD H]
T

Ve +QrMp | U+ QrNp 0
= [V -U]+Qr [N -M] (265)

The class K[F, H(Qn)] is stabilizing from previous results since F sta-

bilizes Gr and H(Qpg) stabilizes Gg. The dual result follows similarly.

(i1) This follows by direct verification as for the derivation of (2.9) and
(2.12) in the beginning of the appendix. To show that M~*M € RH,
it is necessary to use (2.13)

ClsI - A— HC]"'Vz' € RH, NR,,
= C {(A + HC)[sI-A—-HC]™' + I} Vi' € RH,, (by differentiation)
= CAlsI - A— HC|"'V7' +CMy € RH,,

= CA[sI - A—- HC|*V' € RH,, (using My € RH,,)
Repeated differentiation leads to

[c’ (cAY---(CAa™Y] [sI - A~ HC]'V;' € RHo N Ry
= [sI - A— HC]*V;;' € RH, N R,, (Under (A,C) observable)
= M M=-Up[sI-A-HC|"'Vg' € RH,
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Proof of Lemma 2.4

(i) The second equivalence of (2.42) follows from applying the identities
GM = N and GM = N. For the first equivalence, compare (2.36) and
(2.25), note the property (2.31), and exploit the connections between

@ and K(Q) as in (2.28) and the corresponding results for Qg and
K[F, H(Qu)]-

(ii) Observe that there exists Qg € RHy such that
Q=M""MQu € RHo N R,y
& Ugp[sI — A— HC]™*V;7 (s + a) has a right inverse in RH,, (a > 0)
& Uphasa right inverse in RH

& F= VFT 177, r has a right inverse in RH

That is, (2.43) holds.

0
Proof of Theorem 2.6
From (2.14), (2.55), and (2.56)
yo1_ [A+BF | -Un]|" _[A+BF+HC+HDF| H (2.66)
“|C+DFT Va |, Vs C+DF) | V3! o

and

V-IN = 0 A+ BF —BV;?
Vi'(C + DF) ~Vi'(CoF) | VgDVt |

A+ BF+HC+ HDF -HC-HDF l HDVg!
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1 [A+BF+HC+HDF|B+HD] -_,
B VH[ C+DF D |, 'F (2.67)

where the last equality follows from a change of basis and the deletion of

uncontrolled modes. Likewise for the other terms in J of (2.26), leading to

A+BF+H(C+DF) | -H —(B+HD)Vg!

J= F 0 Vit (2.68)
—~Vz!(C + DF) Vit VgDVt

Applying Theorem 2.2, the class of all stabilizing controllers is of the form
of Fig. 2.4, with J as in (2.68). It is straightforward to see that this is of the
form K[F, H, Q)] as defined in Sec. 2.3. The Theorem 2.6 result follows.

Derivation of results in Sec. 2.4

The state equations for @ given in (2.47) can be derived by substitution for

M, N, U,V from (2.14) into the expression
Q=—-(M—-KN)(U~-KV)

derived from (2.28).

The expression for the frequency shaped state estimate feedback, given
a desired controller K = C(sI — A)~'B and constant H with a left inverse

H-L was derived as follows. Manipulations with (2.5) lead to

K =F(s)(sI—A—-HC)(BK - H)

[é ? ]T = F(s)(sI - A~ HC)™ [B%‘TBEL | (2:69)

or
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It can be verified by direct substitution that one solution for F'(s) satisfying

(2.69) is

F(s) = [é ll lg]T [BAC—' i _BH];L (sI— A— HC) (2.70)

Then (2.51) follows with the use of (2.55)—(2.56) and the identity

sC(sI — A)"'B = C(sI — A" AB + CB



Chapter 3

On the existence of solutions
of nonsymmetric Riccati
equations

3.1 Introduction

Consider the matrix Riccati equations

AT-TA-TBCT+BC = 0 (3.1)
AZ-ZA-ZBCZ+BC = 0 (3.2)

with T,Z € C,, and A,A € Rnn, B € Rap, B € Ry, C € Ry, and
C € Ry

Although Riccati equations are well studied in the literature there is as
yet no theory giving convenient necessary and sufficient conditions for the
existence of solutions. Potter [41] characterizes all solutions for the symmet-
ric case when A = A*. Other authors [21, 29] give further results for the

symmetric case in relation to the optimal control problem. Clements and

42
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—» G(s)

K(s) [

Figure 3.1: Plant/controller feedback pair

Anderson [9] tackle the problem of factoring a polynomial using the Riccati
equation, but with B, B,C’, C’ rank one vectors and with A, A not necessar-
ily of the same dimension. They give sufficient controllability conditions for
solutions to exist.

The rgs_ults of this chapter were motivated by a problem unrelated to
optimal control or spectral factorization. Consider the plant/controller pair

of Fig. 3.1 with the following minimal transfer functions,
G(s)=C(sI-A)'B (3.3)

K(s)=C(sI-A)™B (3.4)

where the coeflicient matrices are defined as in (3.1),(3.2).
The problem is to find a state estimator gain H and a state estimate
feedback gain F' associated with the plant G(s), such that the resulting state
estimate feedback controller —F(s]—A—BF—HC)™!H has the same transfer

function as K(s). It is known [1] that the existence of F, H is equivalent to

the existence of a nonsingular solution of (3.1).
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Section 3.2 of the chapter combines the results of Clements and Anderson
[9] and a generalization of Martensson [29] to give necessary and sufficient
conditions for solutions of the Riccati equation to exist for the scalar case, i.e.,
when B, B, C’, (' are vectors. Further insights can be obtained by consider-
ing the state estimate feedback problem described above. The multivariable
case will be considered in Sec. 3.3, and it will be seen that the scalar results
cannot easily be generalized, as was foreshadowed in [9]. A plant/controller
pair with a specific structure is given to provide a counterexample to the con-

jecture that the sufficiency conditions can be extended, without modification,

to the multivariable case.

3.2 The scalar case

The first lemma states clearly the relationship between the Riccati equation
and the problem of obtaining an arbitrary controller as a state estimate

feedback controller.

Lemma 3.1 Given minimal G(s), K(s) as in (3.3), (3.4) then the following

are equivalent

(a) There ezist real constant F,H such that the state estimate feedback

controller —F(sI — A— BF — HC)™'H has the same transfer function
as K(s).

(b) There exists a nonsingular real solution T of (3.1).
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Proof [1] Starting with F, H satisfying (a), then there must exist a similarity

transformation T such that
TAT '=A+BF+HC, TB=-H,CT'=F (3.5)

Substitution with (3.5) leads directly to (3.1). Conversely, if there exists a

nonsingular solution T to (3.1), then by defining F, H as
H& _TB, F&CT™ (3.6)

then (a) will be satisfied.
o

Note: A nonsingular solution T of (3.1) corresponds to a solution Z = T'-1
of (3.2). This can be seen by premultiplying and postmultiplying (3.1) by
T-L.

The following theorem [31], a generalization of the results of Potter, will

now be applied to our problem,

Theorem 3.2 Let M = [ BAC BAC ] € Ranon and T € C,n. The follow-

ing are equivalent:
(a) T is a solution of (3.1).

(b) there ezist k,ay,...,ar € N, eigenvalues Ay,...,\x of M and matrices

L, € Con,, for x =1,...,k such that

(1) x L X' and A\, = Ay imply ay > ay for x, X' =1,...,k,

(i) MLy = LyJa, (Ay) forx =1,...,k,
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(1ii) [Ly--- Lg] = [S] with P,Q € C,n, Q nonsingular and T =
PQ™1

Notes:

1. The matrix J,()) is an n X n Jordan form with A on the diagonal,

superdiagonal elements equal to one, and zero elsewhere.

2. The columns of the matrices L, in the above theorem form a generalized

eigenvector associated with the eigenvalue Ay of M.

3. Real solutions T of (3.1) can be obtained by choosing the L, in complex

conjugate pairs.

4. The matrix M is the state transition matrix associated with the closed

loop transfer function of the system in Fig. 3.1.

The following theorem is a combination of results from [29] and [9],

Theorem 3.3 Consider the algebraic Riccati equation (3.1) with B, B, C',
C' vectors and all solutions T obtained by selecting eigenvectors as in The-
orem 3.2. A necessary and sufficient condition for all possible eigenvector
selections (Ly - - - Li) to give a nonsingular Q is that (A,C) and (A', B’) be

observable.

Proof For necessity, the proof is a slight generalization of the results of [29].
Suppose initially that all possible @ are nonsingular. If (A, C’)i is not observ-

able, then by the Popov-Belevitch-Hautus eigenvector test for observability
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there exists an eigenvector p of A with corresponding eigenvalue A such that

Ap=p, C-p=0 (3.7
p A BC|{pj_ |~
Since [ l(; ] is an eigenvector of M, induding [ g ] in [Ly - -- Lg] will result

in [ S ] with a singular @). This contradicts the initial assumption that
all Q are nonsingular, and establishes that the observability of (A4,C) is a
necessary condition. To establish the necessity of observibility of (4, B"),
the same analysis can be duplicated, but using a version of (3.1) that is
transposed and has T replaced by —T'. (Alternatively, the proof can use the
Popov-Belevitch-Hautus test for controllability of (A, B), and proceed in a
dual fashion.) The details are omitted.

The proof of sufficiency of observability of (A4,C) and (A’, B) for all Q

to be non-singular is given in [9], and is not reproduced here.
a

There is a natural dual to Theorem 3.3. Writing L, as [ gl,x ] , then from
2,x
Theorem 3.2,

A B_C’ by | _ | bx 7
BC A by | = | lay |7
A BC ||ty | _ | lax
= [ BC A ] [ b1y ] - [ by ] Jox (3.9)
This transposition of the rows and columns of M shows immediately that

while solutions of (3.1) are of the form PQ~!, solutions of the dual Riccati

equation are of the form QP~!. The dual of Theorem 3.3 is then,
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Theorem 3.4 Consider the algebraic Riccati equation (3.1) with B, B,C',C’
vectors and all solutions T obtained by selecting eigenvectors as in Theo-
rem 3.2. A necessary and sufficient condition for all possible eigenvector
selections [Ly -+ Li] to give P nonsingular is that (A, B) and (A',C") be

controllable.

It is important to note that even if the necessary and sufficient condition of
Theorem 3.3 is not satisfied, some eigenvector selections may still lead to a
non-singular . Consequently, some solutions of the Riccati equation will
usually still exist.

Consider again the state estimation problem of Lemma 3.1 in the light
of the previous theorems. Lemma 3.1 starts with the assumption that both
G(s) and K(s) are minimal and of the same degree. This is equivalent to
saying that (A, B), (A, B) are controllable and (4, C), (A, C) are observable.

The following result is then immediate.

Theorem 3.5
Consider the algebraic Riccati equation (3.1) where (A, B, C), (A, B, C)
are scalar, minimal state-space realizations of the same degree. Then all

P, @ resulting from eigenvector selections as in Theorem 3.2 will lead to a

nonsingular T'.

This result can also be proven as follows. Assume that G(s) = (4, B, C)
and K(s) = (A, B, C) are minimal and of the same degree. The closed-
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loop poles of the system G(s), K(s) are the eigenvalues of M. The closed-
loop poles of the state estimate feedback system are a combination of the
observer poles A\(A + HC) and the state feedback poles A(A + BF). By
controllability of (A, B) and (A’, C') it is possible to choose H, F' to place
AA+ HC), \(A + BF) at the eigenvalues of M. In Appendix A3.1 it is
shown that given G(s), there is a one-to-one mapping between the closed-
loop poles and the controller transfer function for scalar systems. The choice
of H, F as described above will lead to a state estimate controller with the
desired closed-loop poles, and thus a transfer function equal to that of K(s).

By Lemma 3.1 there exists a corresponding nonsingular solution T of the

Riccati equation.

3.3 The multivariable case

A multivariable version of the necessary condition of Theorem 3.3 is,

Theorem 3.6 Consider the algebraic Riccati equation (3.1) with all solu-
tions T obtained by selecting eigenvectors as in Theorem 3.2. A necessary

condition for all possible eigenvector selections [Ly - - Li] to give nonsingular

Q is that (A,C) and (A', B') be observable.

Notes:
1. A dual yersion of Theorem 3.6 also exists.

2. The proof of necessity follows that of Theorem 3.3.
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A counterexample to the proposition that observability of (A,C) and
(A’, B is a sufficient condition in the multivariable case will now be pre-

sented. Consider G(s), K(s) with state-space realizations,

G(s)=C(sI - A)"'B = [ 20 ]

0 L
where
10 10
a3 8]mmc=[1 1] 510
and
A
K(s) = O(sI — A)B = [ SR g]

where

- -1 0 -
A‘[o —z]’B

M
1
—
=)
[ E—— )
Y
Il
————
O
o
—d
—
w
oy
i
p

M has eigenvectors

-0.34 -0.25 -0.91 0.00

0.00 0.00 | | 0.00 —1.00
0.25 0.91 —0.34 0.00
0.91 —0.34 —0.25 0.00

Inspection shows that selecting two eigenvectors of M to form [ g ] can re-
sult in singular P, ) even though (A, B), (A, B) are controllable and (4, C),
(A, C) are observable. Further examination shows that although the state
space realizations of G(s), K(s) are minimal, one of the modes of G(s) is not
observable from the output of K(s)G(s). This can not occur in the case of

scalar G(s), K(s). Examination of the zero entries of the eigenvectors of M
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gives a clue as to how the proof techniques of Theorem 3.3 can be used to

strengthen Theorem 3.6,

Theorem 3.7 Consider the algebraic Riccati equation with all solutions T
obtained by selecting eigenvectors as in Theorem 3.2. Necessary conditions
for all possible eigenvector selections [Ly--- Li| to give nonsingular Q) are

that (A, BC) be observable and (A, BC) be controllable.

Proof When (A, BC) is not observable, then there exists an eigenvector p

of A with corresponding eigenvalue A such that

Ap=Xu, BC-p=0
:H[g]s.t.[BAC Bf”g];x[g] (3.12)

Since [ K ] is an eigenvector of M, including [

ow

0 ] in [Ly -+ Li] will result
in [ g ] with a singular . This contradicts the initial assumption that all
Q are nonsingular, and establishes that the observability of (A, BC) is a nec- |
essary condition. The method of establishing the necessity of controllability

of (A, BC) follows in dual fashion. The details are omitted.
a

Notes:

1. The above theorem is an independently derived specialization of a re-
sult by Medanic [30], which gives necessary and sufficient conditions
for the existence of a Riccati equation solution associated with a par-

ticular admissible eigenvector selection. Unfortunately the sufficient
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conditions given by Medanic can not readily be interpreted as corre-
sponding conditions on the plant/controller pair of Theorem 3.1. Also
the sufficient conditions of Medanic can only test one admissible solu-

tion at a time, whereas here we are concerned with the existence of any

solution.

2. The conditions of Theorem 3.7 imply the observability conditions of
Theorem 3.6, because (A4, BC) observable implies that (A, C) is ob-
servable and (A, BC) controllable implies that (A, B) is controllable.
Moreover, this theorem shows that the conditions of Theorem 2.2 do

not extend, at least without modification, to the multivariable case.

3. One of the necessary conditions in the above theorem can be interpreted
as a condition on observability of the plant states from the controller
states. The other condition relates to controllability of the controller

states from the plant states.

4. Many combinations of G(s), K(s), with the corresponding solutions of
the resulting algebraic Riccati equation, have been studied. So far,
all G(s), K(s) satisfying the conditions of Theorem 3.7 have‘had all
P, Q, obtained by eigenvector selection as in Theorem 3.2, nonsingu-
lar. It may be that the conditions of Theorem 3.7 are both necessary
and sufficient for all possible P, Q to be nonsingular, but a proof of

this is elusive—certainly any attempts to generalize the scalar variable
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versions of the proofs are fraught with difficulties.

5. The dual result to the above theorem is as follows,

Theorem 3.8 Consider the algebraic Riccati equation with all solutions T
obtained by selecting eigenvectors as in Theorem 3.2. Necessary conditions
for all possible eigenvector solutions [Ly - - - Li] to give nonsingular P are that

(A, BC) be controllable and (A, BC) be observable.

3.4 Conclusions

It is not difficult to use a computer to calculate all solutions of the algebraic
Riccati equation using the methods of [31]. It would be desirable to have a
simple test giving a priori knowledge of whether or not all solutions exist,
or how many exist. Using the connections between the Riccati equation and
the problem of finding a state estimate feedback controller gives an intuitive
framework in which to study this problem. Theorem 3.7 and its dual extend
existing scalar results, and it may be that the necessary conditions are also
sufficient.

The approach of this chapter for analysis of the Riccati equation has been
similar to that of Potter [41]; the solution of the qﬁadratic matrix equation
has been rewritten in terms of eigenvectors of a matrix such as the M of
Theorem 3.2. It is surprising that a complete solution to the problem could

not be obtained; many different avenues were explored, such as rewriting the
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nonsymmetric Riccati equation as part of a symmetric Riccati equation with

dimensions twice as large.

A3.1 Alternative proof of Theorem 3.5

In the following lemma, the relationship between the closed loop poles and
K (s) for the system of Fig. 3.1 is examined, for the case where G(s), K(s)

are scalar transfer functions. Consider the representations,

G(s) = X(3)Y (s)™, K(s) = U(s)V(s)™ (3.13)

where

X(s) = zs" P4 zs" i 4+,
Y(s) = s"+ys" +ys" P+ tyn
U(s) = uis™ ' 4 ugs™ 24+ +u,,

V(s) = s"+vs™ ! +vs™ 2+ 40,
The closed loop poles are the zeros of
H(s) = Y(s)V(s) — X(s)U(s)
= §M 4 hys™ 4 hysT2 4o 4 Ry, (3.14)

Lemma 3.9 Given a scalar G(s) of degree n and a minimal realization

X (3)Y(s)™1, there is a one-to-one mapping between the 2n closed loop poles

and the controller transfer function K(s) of degree n.
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Proof Substituting for X(s), Y(s), U(s), V(s) in (3.14) and collecting co-

efficients of each power of s one obtains (2n + 1) equations,

1 0 0 ... 0 o0 ...0 o] Y71 17
i 1 o ... 0 0o ... 0 0 21 hy
2 onn 1 € ... b 2 ha
Lo : 0 00w |=|, | 319
Yn Yn-1 1 z, z; 0 Uy n
0 Yn Yn-1 ... N Ty I . hn-}-l
. Un-1 :
L Yn Tn 10 un R h2n

The (2n + 1) square Sylvester matrix in (3.15) is nonsingular if and only if
X(s),Y(s) are coprime [6]. This is true because {X(s),Y(s)} is a minimal
representation of G(s). Since the Sylvester matrix is nonsingular, the map-

ping between the controller U (s)V(s)™! and the closed loop poles (ie. the

zeros of H(s)) is one-to-one.
a



Chapter 4

Doubly coprime factorizations,
reduced order observers, and

dynamic state estimate
feedback

4.1 Introduction

A doubly coprime factorization of the transfer function of a lumped linear
time-invariant system is the starting point for many of the powerful results
in the factorization approach to multivariable control system analysis and
synthesis [46]. In an important paper by Nett, Jacobson, and Balas [39],
explicit formulae are given for state-space realizations of the Bezout identity
elements. The results of Nett et. al. are based on ideas from the theory
of state feedback and state estimation, and use existing computational algo-
rithms, namely pole placement algorithms.

Recently, Hippe [17] has derived modified factorizations which are related

56
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to compensators based on reduced-order observers, rather than full-order
state observers. One problem with these factorizations is that some of the
Bezout identity elements are non-proper, and consequently are not suitable
for use with the factorization approach. In Sec. 4.2 of this chapter we derive
doubly coprime factorizations related to minimal-order observers, with all
Bezout identity elements stable and proper.

In Moore, Glover, and Telford [35], the factorizations of Nett et. al. [39]
are generalized to allow for the possibility of dynamic state estimate feedback
gains, as well as dynamic state estimator gains. Section 4.3 of this chapter
generalizes the factorizations of Sec. 4.2 in a similar manner. To give an
example of the utility of the results, it is then proved that all stabilizing
controllers for a given plant can be structured as a minimal-order observer,

with dynamic state estimate feedback gains. Finally, some dual results are

summarized in Sec. 4.4.

4.2 Factorizations related to minimal-order
observers

4.2.1 Preliminaries
As in Chap. 2, plant/controller pair G(s), K(s), depicted in Fig. 2.1 will, be
said to be well-posed and internally stable if and only if

I -K17 .
¢ I exists and belongs to RH,. (4.1)
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This condition corresponds to the transfer functions from [Z:] to [Z:] being
stable and proper.

The minimal-order observer for the m-input, p-output plant G(s), with n
state controllable and observable state-space realization C(sI — A)~! B, will

now be briefly reviewed. The treatment is similar to that found in O’Reilly

[40]. The observer equations are,

=Rz + Sy +TBu (4.2)
s=[0 e][g] (4.3)

where
C is full rank, (4.4)
v o1z =[7]te e1=[y 3], (4.5)
R=TA®, S=TAU (4.6)

A suitable selection of a full row rank matrix T results in (s/— R)™! € RH,
i.e., R is a matrix with all eigenvalues in the open left half-plane IR[s] < 0.
For such selections, the error in the state estimate £ — Z due to an incorrect
initial value of z will approach zero asymptotically.

Figure 4.1 shows the block diagram for an observer-based controller which
uses feedback of the state estimate £ through a constant, real matrix F.

The transfer function matrix K(s) of an equivalent controller in the simple
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Plant

=1 G(s) s =0 | =&

[=
«

TB | R

Figure 4.1: Minimal-order observer based control loop

positive feedback configuration of Figure 2.1 is,

K(s)= |B+TBFO| S+ TBF\I:]
T

Fo | Fy (4.7)

4.2.2 Factorizations

The main factorization result will now be stated.

Theorem 4.1 Consider the plant G(s) = C(sI — A)™'B, with (A, B) con-
trollable and (A, C) observable. Choose F,T such that (sI—A—BF)™ (s]—
R)™! € RH,,, where R, T are described by the observer equations (4.2)-(4.6).
With arbitrary A such that (sI — A)™! € RH,,, define

M U A+BF,|B (A+ BF - TAC)Y

C 0 I
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[fc :ff]_
-N M ]~

AOT + UAC | —B —(A - UAC)¥

FOT l I —F¥ (4.9)
C 0 I T

Then

(i) all transfer function matrices described by (4.8), (4.9) are stable and

proper;

(1) M, M,V,V have proper inverses;

(iii) G = NM~! = M-'N;

(iv) K = UV~ = V-1 where K is the observer-based controller given by

(4-7);
(v) ) i
[ w1y vl=h 2 (4.10)

Proof Considering (i), the transfer function matrices (4.8),(4.9) are inher-
ently proper. Since F is chosen such that (sI — A — BF)™! € RH,,, (4.8) is

stable, and furthermore, to see that (4.9) is stable, apply a similarity trans-

formation and use (4.5),
_IC 1A c4e1[C
AOT + UAC = [T] [0 a ][T] (4.11)

Since the similarity transformation leaves the eigenvalues unchanged, the

eigenvalues of AOT + WAC are simply equal to the eigenvalues of A, a matrix
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chosen such that its eigenvalues lie in the left half-plane, together with the
eigenvalues of R, which lie in the left half-plane by virtue of the T selection.

It can be deduced from (2.56) that a square proper transfer function
matrix has a proper inverse if its direct-feedthrough term D is nonsingular.
Considering (ii), it follows that M, M,V,V have proper inverses, because
they have unity direct-feedthrough matrices. Application of (2.55), (2.56)
shows that (iii), (iv), and (v) hold. As an example of the proof technique,

observe that

cz _ [AGT +UAC | —(A—WAC)¥] ™ [AQT + WAC | B
MN =
Cc | I T L C 10y
(A | (A—\I!AC)\II] [AOT+\IJAC | B]
= by (2.56
-2 e N A ) R
(A AUC—-UAC | 0
= |0 AOT+UAC | B| by (2.55)
C C 10,
[ AOT + UAC A\I!C’—\IIAC‘ 0 |
= 0 A B (by change of basis)
E 0 C 10],
—A—!—B—G by th al of unobservable mod
= |cTol, = (by the removal of unobservable modes)

a
Note that these factorizations, like those of Nett et. al. [39], are still n-th

order even though they are based on a minimal-order observer design. In
this sense they are non-minimal, as are the factorizations of Hippe. We will
now attempt to gain more intuition about the results, by comparing their

properties with known properties of the full-order factorizations [39, 35].
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Plant
AL e J
7 e
.
KQ | , :
= Q
QeRH"™

Figure 4.2: Class of all stabilizing controllers for G.
4.2.3 The class of all stabilizing controllers

Once doubly coprime factorizations for the plant G(s) have been found, it

is possible to parameterize the class of all proper stabilizing controllers in
terms of an arbitrary Q(s) € RH [46]. Such a class {K(Q)|Q € RHx} can

be written in terms of linear fractional transformations as,

K(Q) (U4 MQ)V +NQ)™ =(V+QN)" (U + QM)

= UV 14 V1QU+VINQ) IV (4.12)

or diagrammatically as in Fig. 4.2, where, based on the third equality in
(4.12),
-1
J= [ K v ]

V-1 _y-IN (4.13)



Chapter 4 Factorizations related to reduced order observers 63

With the factorizations (4.8), (4.9),

A C(A+BF)® | C(A+BF — UAC)¥ CB
s_|o ra+BR@| T(a+BRY 1B

0 Fo | Fy I
-I 0 I 0

(4.14)
T

The scheme of Fig. 4.2 with J given by (4.14) has an interesting inter-
pretation. To lead us into this, recall that if J is formed according to (4.13),
and the doubly coprime factorizations of Nett et. al. [39] are used, then the
scheme of Fig. 4.2 can be interpreted as in Fig. 4.3. That is, the class of all
stabilizing controllers {K(Q)|Q € RH} for G(s) can be generated by the
use of an observer-based controller, with an additional internal feedback loop
involving stable dynamics Q(s) [12]. The residuals r = (y — §) are filtered
by @ to form s, which is added to F'z to give the control signal u.

A reasonable question to ask is whether, analogously to the full state
estimator based scheme of Fig. 4.3, the class of all stabilizing controllers ca.ﬁ
be obtained with a minimal-order observer-based compensator with added
stable dynamics. There can not be a direct analogue since the residuals

(y — 9), obtained by defining § = CZ, are equal to zero, as follows

r=y—jg=y-Ci=y-C[¥ @][Z]

= y-11 0[Y]=0 by(es)

Consider instead residuals r £ (y — ye), where the estimate y. of y is, for the

case A = 0, the integration of an estimate of the derivative y. More generally,
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G(s)

—
>
g

s r=y-§
2 [~ Qeer

Figure 4.3: Controller class {K(Q)|Q € RH.} based on full-order observer

when A is chosen such that its eigenvalues lie in the closed left half-plane, y.

is the solution of
Ye — Aye = C(AZ + Bu) — Ay =C(A+ BF)Z — Ay (4.15)

Here C(AZ+ Bu) is an estimate of y. From (4.15), we can obtain y. explicitly
by filtering a linear combination of the minimal-order state estimate & and

the plant output y
ye = (sI — A)"}[C(A + BF)z — Ay] (4.16)

With the residuals r = y — y., and referring to Fig. 4.2, it is reasonable to

propose a minimal-order observer-based scheme as in Fig. 4.4. Evaluating the
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G(s)
u y
O~ F [ O ¥
A \
J A+BF T | ) A
7 . B :
B —0® C —(g-— (sI-A)" —;Q-)
S r=y-Ye
Qs) - -1 o
Q(s)eRH (sI-A) eRH

Figure 4.4: Controller class {K(Q)|Q € RH} based on minimal-order ob-
server

“transfer function of the J block defined according to Fig. 4.4 gives precisely
the J of (4.14).

In summary we have found a minimal-order observer based compensator,
with added stable dynamics, that generates the class of all stabilizing con-
trollers for G as Q(s) varies over RH,,. Notice that the McMillan degree of
J in (4.14) is (n — p) + p = n, which is the same as for the J in the full-order
scheme of Fig. 4.3.

4.3 Dynamic state estimate feedback

From this point onwards, we will generalize the state estimate feedback gain
F' to be a proper, rational transfer function matrix, which may possibly be

unstable. Assume that a left coprime factorization F' = V7'Ur has been
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found: state space realizations for such factorizations are readily available
with the use of the doubly coprime factorizations given in Sec. 4.2. It will be

necessary to generalize the notation for a state space realization so that, for

example,

= F(s)[sI — A— BF(s)]*BVz1(s) + Vi (s)

[A + BF(s) | BU#(s)
T

F(s) | V&'(s)

(4.17)

To take account of the dynamic state estimate feedback, new doubly
coprime factorizations will be defined.

In Sec. 4.2, a constant F is chosen so that (sI ~ A— BF)™! € RH, or

equivalently, so that F is a stabilizing controller for the system (sI — A)~!B.

Generalizing to the case when F is a transfer function matrix, we require

F(3) to be a stabilizing controller for the system G £ (sI — A)~1B.
4.3.1 Factorizations

Theorem 4.2 (Doubly coprime factorizations for Gg) Given a plant
Gr & (sI — A)~1B with (A, B) controllable, a proper stabilizing controller
F(s) with a left coprime factorization ViU, arbitrary Ay such that (sI, —
A1) € RH,,, and defining,

Mr Us A+ BF(s) | BVs'(s) A+ BF(s)— A
[ Nr Vg ] = ng) l 171;'(1)(3) ng) (4.18)

T
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A| =B —(A-TAC)

Ve -Ur " _
[—fvp MF] 0 | Vr(s) —Ur(s) (4.19)
I 0 I "
Then

(i) the transfer matrices defined by (4.18),(4.19) are stable and proper;

(1) M,M,V,V have proper inverses;

(iii) Gr = NPM7' = M7 'Np, F =UpV§';

(iv)

e (N vEl=D5 1]
|5 el vil=lo 1) (420).

Proof Statements (ii), (iii) and (iv) can be proved by simple manipulations
using (2.55),(2.56). It remains to show that the transfer function matrices
(4.18),(4.19) are stable, since together with (iv) this implies that the fac-
torizations are coprime in RH.. First note that Mg, Nr are stable, since

(sI — Ay)™!' € RH,,. Consider then arbitrary stable proper stable factoriza-

tions Gr = NgMF!, F = UrVF!. Since F stabilizes G, then the standard
arguments [46] give that

(VeMp — UpNF)™, (MpVr — NelUp)™ € RH,,
Also from (iv) (f/p' - [}FGF)MF =1, (MF — ﬁpF)VF = I so that

[Af\/‘/{;} = [GIF] (Vr = U<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>