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A bstract

This thesis is concerned with the design of robust controller algorithms. The 

mechanics of the design procedures involve factoring the plant and controller 

transfer functions into stable, proper factors. This has the advantage of 

allowing the analysis of the stability properties of the control loop, and, for 

instance, enabling the characterization of the class of all stabilizing controllers 

for a given plant.

Here results are developed showing that the class of all stabilizing con­

trollers for a given plant can be structured as a state estimate feedback 

controller, with the state feedback and state estimate gains generalized to 

be proper transfer functions. This result is also generalized to the case of 

reduced-order observers. An important by product of the work on reduced 

order observers is the generation of new state-space realizations of doubly co- 

prime factorizations; these state-space realizations are important both from 

a theoretical point and a computational point of view.

An arbitrary controller can be organized as a state estimate feedback 

controller with a constant state feedback and state estimator gain provided 

that the solution to a particular quadratic matrix equation exists. The in­

sights gained by studying this realization problem lead to an investigation 

of conditions under which the solutions of of the algebraic Riccati equation 

exist.

Some related work on the problem of controller reduction follows. A con-
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troller reduction scheme is proposed which applies standard model reduction 

algorithms to augmentations of the controller which arise when working with 

the class of all stabilizing controllers. Practical issues such as scaling of the 

plant variables are addressed, and two examples are given to demonstrate 

the use of the model reduction techniques.

Finally, an algorithm for adaptive resonance suppression is proposed for 

use in situations where time-varying plants can drift into instability. A simu­

lation study is performed to demonstrate the behaviour of the algorithm. The 

algorithm appears particularly useful for enhancing existing fixed controller 

designs.
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C hapter 1 

In troduction

Classical controller design and analysis techniques are based on frequency 

domain concepts and are principally concerned with the control of single­

input single-output plants. Such techniques are adequate for a large class of 

practical engineering design problems: they are simple to understand, do not 

need complex hardware, and are reliable. In addition, gain/phase margins, 

Nyquist diagrams, and Bode plots are examples of concepts and tools which 

can be used to analyse the feedback loop.

There are, however, control problems which cannot be treated using sin­

gle loop control techniques: a plant may be controlled from more than one 

input and measurements may be taken from many outputs. Classical con­

trol techniques are generally inadequate for use with multivariable plants, 

although knowledge of classical theory provides a good background for the 

study of multivariable systems.

The introduction of the idea of the state of a linear system into the con-
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Chapter 1 Introduction 2

trol literature was a major step forward in the treatment of multivariable 

systems. State space ideas arise naturally in the mathematical treatment 

of linear ordinary differential equations, and engineers often model systems 

using such differential equations. Consider as an example the following state 

space system G : u(t) i-+ y(t),

x(t) = A(t)x(£) + B(t)u(t);

y(t) = C(t)x(t) + D(t)u(t) (1.1)

where for any time t, A(t) E IRn,n, B(t)  E lRn,m, and C(t) E lRp,n- The 

system (1.1) along with initial conditions for x(t) defines the relationship 

between the m x 1 input vector u(t) and the p x 1 output vector y(t). The 

n x l  state vector x(t) is defined by a vector differential equation driven by 

u(t); the output vector y(t) is a linear combination of x(t) and u(t). Much of 

what follows is concerned with the class of time-invariant state space systems, 

where A(t), B(t),  and C(t) are restricted to be constant real matrices. In 

this case Laplace transform techniques provide an alternative representation 

of G. Assuming zero initial conditions,

Y(s)  =  G(s)U(s) (1.2)

G(s) = C(s l  -  A)~XB  + D (1.3)

where L'(s) =  £[y(t)]-, U(s) =  C[u(t)}

At first (1.1) may not seem like a natural way to describe an engineering 

system, but it is important to realize that the entries of the state vector may
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represent physical variables, either measurable or unmeasurable. In some 

situations it is desirable to obtain on-line estimates of the state variables, ei­

ther for monitoring unmeasurable physical variables, or for use in the control 

algorithm. Much of linear control theory is concerned with regulation of the 

state x(t) to some reference state by appropriate manipulation of the control 

input. The problem of on-line estimation of the state via observers (state 

estimators) has been an important research topic over the last thirty years, 

with important initial contributions by Kalman [19] and Luenberger [27].

A natural dual to the problem of state estimation is that of state feedback. 

While state estimation attempts to estimate the hidden state vector, the aim 

of state feedback is to control the state via the plant inputs. The two can 

be combined to form a controller which cascades an observer and a state 

feedback gain. For the time invariant case, Luenberger [27] shows that there 

is a separation principle: the design of the observer and the choice of the 

state feedback gain can be made independently. The closed loop poles of 

the state estimate feedback scheme can be separated into poles due to the 

observer and poles due to the choice of the state feedback gain. While a 

state estimate controller can be designed to assign the closed loop poles 

in a particular way, there may be alternative design objectives. The state 

feedback law may be the solution of a linear quadratic (LQ) design problem 

[3]. Similarly in the presence of noise, it may be desirable to use optimal 

state estimation techniques such as Kalman filtering [20]. The LQ controller
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design and Kalman filtering problems are strict mathematical duals, with a 

controller formed by the cascade of a Kalman filter and an LQ controller 

known as a linear quadratic gaussian (LQG) controller.

Although LQG control seems like an ideal optimal control strategy, there 

are some important problems that arise in practice. One such problem is ro­

bustness to uncertainty in the plant model: the closed loop system may not 

be stable if the true plant is slightly different from the nominal plant. This 

is in contrast to the scalar LQ controller, where it can be shown that there 

is an inherent infinite gain margin and a corresponding 60° phase margin [3]. 

The problem of robustness to plant uncertainty or small time variations in 

the plant model is one that becomes more important as control systems be­

come more complex, since plant error can be roughly compared to controller 

realization error. In the LQG case, techniques such as loop transfer recovery 

[13] have been proposed to obtain a compromise between the optimality and 

robustness.

State space realizations such as (1.1) or (1.3) are not the only ways to 

represent the input-output behaviour of dynamical systems. In Wolovich 

[48] and [18] there is a treatment of linear time invariant systems represented 

by ratios of polynomial matrices. Canonical forms and properties such as 

minimality can be described for polynomial factor representations as has 

been done for state space systems.

Recently another method has been used to represent the transfer function
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of a multivariable system. The transfer function is factored into matrices of 

stable, proper transfer functions. Although stable, proper factorizations may 

seem to be unnecessarily complex, they have the advantage of being useful 

when analysing the stability of a feedback system. For instance, using stable 

proper factorizations it is possible to characterize the class of all stabilizing 

controllers for a given plant, a concept which is very important in this thesis. 

This factorization approach to controller synthesis and analysis was intro­

duced by Kucera [22] for discrete time and Youla et. al. [49] for continuous 

time, and later formulated in an axiomatic framework [11, 46]. It provides a 

framework for research in the area of Hqq optimal control [15], which is con­

cerned with finding a controller to minimize the norm of a disturbance 

transfer function subject to the constraint that the controller be stabilizing.

Many of these results at first sight seem irrelevant to practical control en­

gineering, because of the abstract algebraic framework which underlies much 

of the theory. This thesis is concerned principally with using ideas, tech­

niques, and results from the factorization approach in the design of practical 

robust controllers. Existing knowledge and intuition based on frequency do­

main ideas is combined with the new theory. A summary of the progression 

of ideas in the thesis now follows.

State estim ate feedback Chapter 2 is concerned with the design of 

closed-loop systems in which the control signal is a linear function of the state 

estimate. The work is related to that of Doyle [12], where it is shown that
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the class of all stabilizing controllers for a given plant can be obtained using 

a state estimate feedback control structure. The control signal is formed by 

adding a linear function of the state estimate to a stable filtering Q(s)r of the 

residuals r, where the residuals is the difference between the true plant output 

y and estimate y of the plant output from the state estimator. The class of all 

stabilizing controllers for a given plant is obtained by varying the parameter 

Q(s) over the class of all stable transfer functions. In Doyle’s work the state 

feedback gain and the state estimator gain are constant real matrices, whereas 

this thesis allows them to be possibly unstable transfer function matrices. We 

will sometimes refer to the dynamics in the state estimator and state feedback 

gains as frequency shaping, because the frequency response of the dynamics 

can sometimes be related to plant or plant noise frequency responses.

In Chap. 2 it is shown that the class of all strictly proper stabilizing con­

trollers for a proper linear plant can be structured as state estimate feedback, 

with dynamics in the state estimator or in the state estimate feedback law. 

The place where the dynamics is introduced is at the designers discretion. 

The parameterization of the controller class can be in terms of an arbitrary 

proper stable transfer function, with the closed loop system affine in this 

transfer function. With constant output feedback permitted in addition to 

the state estimate feedback, the class of all proper stabilizing controllers can 

be generated in like manner. These results are useful in engineering applica­

tions where the states represent physical variables.
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Algebraic Riccati equations Following on from this, one can ask 

when an arbitrary controller can be organized as a state estimate feedback 

controller with a constant state feedback law and a constant state estimator 

gain. It was originally observed by Anderson [1] that this is possible only 

when there exists a nonsingular solution to a particular nonsymmetric Riccati 

equation. Such equations also arise in polynomial factorization theory [9], 

and although they have been treated at length in the literature, some of 

their properties are less well understood than for the symmetric case.

Chapter 3 provides contributions to established theory on this funda­

mental subject. Necessary conditions are shown for solutions of this Ric­

cati equation to exist in terms of controllability and observability of the 

plant/controller state space realizations. The existence of an inverse of these 

solutions is given by considering a dual Riccati equation. There is also an 

alternative proof to that given hitherto, to establish the sufficiency of these 

conditions for a class of equations associated with certain scalar variable 

problems. A counterexample is given to the conjecture that the sufficiency 

conditions can be extended, without modification, to the multivariable case. 

This leads to generalized conditions for the multivariable case. As a challenge 

to the reader, it is conjectured that these are also sufficient conditions.

Reduced order observers; doubly coprime factorizations To make 

use of the results in the factorization approach requires an arbitrary trans­

fer function to be factored into coprime factors in the ring of stable, proper
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transfer functions. For convenient computation, is it desirable to be able to 

work with state-space realizations of these transfer functions. In important 

work by Nett, Jacobson, and Balas [39], explicit state-space realizations of 

these factorizations are derived using results from state estimation and state 

feedback theory. These results are based only on full-order state estimators, 

which have realizations with the same McMillan degree n as the plant model.

Asymptotic state estimation can also be achieved by estimators of a lower 

degree: the degree may be reduced to n — p for a plant with p outputs. This 

theory on reduced-order observers was originally reported by Luenberger [27], 

and is a generalization of the full-order case. In Chap. 4 new doubly coprime 

factorizations are developed based on reduced-order observers. Following on 

from this, various extensions are noted, and it is proved that the class of all 

stabilizing controllers for a given plant can be generated by dynamic feedback 

of the state estimate given by the reduced-order observer.

Controller reduction Chapter 5 is concerned with the problem of 

controller reduction. In reducing high order controller designs, such as arise 

from Hoq or LQG techniques, to more practical low order ones, a reasonable 

objective is to preserve the performance and robustness properties. Here 

standard balanced truncation or Hankel norm approximation methods are 

applied to augmentations of the controller which emerge when characterizing 

the class of all stabilizing controllers for a given plant in terms of an arbitrary 

proper stabilizing transfer function.
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In the method, scaling parameters are at the disposal of the engineer to 

achieve an appropriate compromise between preserving performance for the 

nominal plant and a certain type of robustness to plant variations. There are 

a number of unique features of the approach. One feature is that a straight­

forward re-optimization of a reduced-order controller is possible within the 

framework of the method. A second feature is that for controllers designed 

for simultaneous stabilization of a number of plants, the method seeks to 

preserve the performance and robustness of the reduced-order controller for 

each plant.

Adaptive resonance suppression The work of Chap. 6 is not con­

cerned directly with stable, proper factorizations, but it is intended that 

the results be used to* complement the work of Tay, Moore, and Horowitz 

[42]. This related work is concerned with applying adaptive techniques to 

structures arising when describing the class of all stabilizing controllers for 

a given plant. Chapter 6 is concerned with control systems that can drift 

into stability, or less catastrophically, exhibit resonance behaviour. Such res­

onance phenomena appear in many practical engineering control systems, 

ranging from relatively slow chemical processes to high performance aircraft 

controllers.

Fixed controllers may not be robust in the presence of time-varying plant 

models. One role for adaptive controllers is to learn sufficient information 

concerning the dominant closed-loop resonant modes so as to apply effec-



Chapter 1 Introduction 10

tive feedback to dampen these modes. In such situations the adaptive loop 

augments the fixed controller feedback loop. Here an algorithm is presented 

for adaptive resonance suppression and simulation results are provided to 

study its behaviour in the presence of high-order unmodelled dynamics. The 

algorithm appears particularly useful for enhancing existing fixed controller 

designs.

In the final chapter, an overview of the work will be given, and further 

research possibilities will be discussed.



C h a p te r  2

A ll s tab iliz in g  co n tro lle rs  as 
fre q u e n c y  sh a p e d  s ta te  
e s tim a te  feed b ack

2.1 Introduction

Consider the stabilizable and detectable linear time-invariant system with 

state equations

x =  Ax  + B u , y =  Cx  + Du (2-1)

and transfer function G £ Rp

G =  C(sl  — A)~XB  +  D (2.2)

The plant G(s) is said to be proper since |G(oo)| is finite. We formally say 

that a controller K(s)  is stabilizing for G (see Fig. 2.1) if the four transfer 

functions from [u\ u^]' to [e[ e'2}' are stable.

This chapter is concerned with the structure and properties of state es­

timate feedback controllers. Unlike much of the work in this area, the state

11



Chapter 2 Frequency-shaped state estimate feedback 12

G(s)

K(s)

Figure 2.1: Closed loop system

Figure 2.2: Control system with state feedback

feedback gain F and state estimator gain H are here permitted to be proper 

transfer functions. We recall first what is meant by these terms for the case 

when F, H  are constant. Figure 2.2 shows state feedback for the strictly 

proper plant G(s) = C(sl  — A)~lB; the feedback signal is Fx(t).  The trans­

fer function from u to y is

I jh y  =  C(s l  -  A -  BF)~1B  . (2.3)

It well known that by a suitable choice of F , the poles of this transfer function 

can always be assigned into the stability region, lR[s] < 0, if and only if the 

pair (A, B ) is stabilizable. The stabilizability property is equivalent to saying
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that all unstable plant modes will be controllable. If a constant F  is replaced 

by a possibly unstable F(s), then what choices of F(s)  will lead to a stable 

state feedback controller?

Consider the state estimator in Fig. 2.3, which is the dual of the above 

case. The transfer function from the input u to the error in the state estimate 

x — x is zero, and furthermore, the transient behaviour of this error, due to 

non-zero initial conditions, will approach zero if H  is chosen such that the 

eigenvalues of A + H C  are in the stability region. This is known to be possible 

whenever the pair (A, C ) is detectable, where detectability is equivalent to 

saying that all unstable modes of A will be observable. If a constant H  is 

replaced by an arbitrary proper transfer function H(s ), then what values of 

H(s)  will give an estimator with an error that tends to zero asymptotically?

Combining state estimation and state feedback, we obtain a state estimate 

feedback controller. Such a controller, with F , H  constant, can be defined

by

x =  Ax  4- Bu — H(y  — y)

y =  Cx  -f- Du (2-4)

u =  Fx

with transfer function K  € R sp

K  = —F [ s l - { A  + B F  + HC + HDF)]~l H (2.5)
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state estimator

error system

(si-A)'

Figure 2.3: An asym ptotic s ta te  estim ator
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This controller is known to be stabilizing if and only if

[si — (A + B F ) } - \  [si -  (A +  HC)}-1 € R H ^  (2.6)

where RHoo is defined to be the class of proper and stable real-rational 

transfer functions.

With H , F  generalized as transfer functions H(s), F(s) £ Rp with sta- 

bilizable and detectable state-space realizations, the resulting state estimate 

feedback controller is known to be stabilizing for the plant G(s), with all 

states asymptotically stable for arbitrary initial conditions if and only if [33]:

F(s), H(s) stabilize Gf , Gh respectively, where

Gf =  (s i  -  A)~l B, Gh =  C{sl  -  A ) ' 1 (2.7)

This result is also shown as a by-product of the theory of this chapter.

In the chapter we show that for the plant G of (2.2) the class of all 

stabilizing controllers of the form (2.4), parameterized in terms of F, H £ Rv 

satisfying (2.7), is the entire class of all stabilizing controllers for the plant 

(2.2). Moreover, the entire class can be generated in terms of a stabilizing 

F £ RP for Gf , where H £ Rp is an arbitrary stabilizing controller for Gh 

with a left inverse H~L £ R H ^ .  Likewise, in terms of a stabilizing H £ Rv 

for Gh , where F  is an arbitrary stabilizing controller for Gf with a right 

inverse F~R £ R H ^ .  The existence of a stable proper inverse of H  or F  is
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equivalent to a multivariable generalization of the familiar scalar minimum 

phase property, with the additional constraint that the transfer function has 

relative degree zero.

With constant output feedback permitted in addition to the state esti­

mate feedback, the class of all proper stabilizing controllers can be generated 

using a mild variation. In addition, the parameterizations can be in terms of 

arbitrary transfer functions Qp, Qh € RH<x>, with the closed loop transfer 

functions affine in Qp or Qh . The theory developed here is based on re­

sults from factorization theory [46, 11], and complements other work which 

involves modification to standard state estimate feedback [33, 12].

The controller structures of this chapter have the advantage that they are 

decomposed into a state estimator and a state feedback law, where at the 

discretion of the designer, generally one or both are frequency shaped. Thus 

any stabilizing controller can be viewed in terms of filtered feedback of each 

state estimate, or as direct feedback of each frequency shaped state estimate. 

This has appeal in engineering situations, where the states represent physical 

internal variables. For example, knowledge that an effective controller feeds 

back a low pass filtered velocity or position estimate could be instructive 

when improving the design by introducing additional sensors, or improving 

sensor locations. In situations where state estimation is required in addition 

to control, the results of this chapter give useful implementation possibilities. 

Gain scheduling could be more systematic in the framework of the state
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estimate feedback. This is not to say that state estimate feedback is always 

the best design approach, as illustrated when the frequency shaping in the 

state estimate feedback cancels out the observer dynamics.

In Sec. 2.2, known theory [12, 11] for the class of all stabilizing controllers 

is reviewed and extended for use in subsequent sections. In Sec. 2.3, the 

main results of the chapter are developed. Some useful related results are 

summarized in Sec. 2.4, and conclusions are drawn in Sec. 2.5.

2.2 Stabilizing controllers for G, Gf ,

Employing the notation in Appendix A2.1, the transfer functions G, Gf , Gh 

from (2.2), (2.7) can be written

A B
C D , G f

B
, Gh

J t

A I
C 0

(2.8)
J t

Consider also coprime factorizations over RHC

G = N M - 1 = M ~ 1N,
Gf =  NFM p 1 =  Mf 1N f ,
Gh =  N„Mh1 =  Mü'N h ,
where A M ] ? 1, Aifj?1, iWjJ1, MjJ1 €

Let us denote K, F, H€ Rpas stabilizing controllers for Gf , Gh respec­

tively with coprime RHx factorizations

K  =  U V - 1 = V- 'Ü,
F  = UFVf1 =  V£xÜf ,
H = Uh Vh 1 = Vh 'Uh , 
where V ~ \  V ~ \ V f l , V f \  V ^ .V J 1 € Rp

(2.10)
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Such stabilizing controllers are known to exist with (A ,B )  stabilizable and 

(A, C) detectable.

For what follows, doubly coprime factorizations of G(s) with respect to 

the ring RHoo are required. With the notation above and

V -Ü  ' ' M U ' ' I  o '
M N  V 0 I

then N M ~ l = provide doubly coprime factorizations of G. With

F, H  constant and K  equal to the state estimate feedback controller of (2.5), 

then Nett, Jacobson, and Balas [39] give explicit state space realizations for 

factorizations of G, K  satisfying (2.11).

It is no longer possible to use the doubly coprime factorizations for G of 

Nett et. al. when F, H  are generalized to possibly unstable F (s), H (s) £ Rv. 

Theorem 2.1 overcomes this problem by using suitably modified factoriza­

tions.

Theorem 2.1 Given any F, H  £ Rp stabilizing for Gf , Gh of (2.7) with 

factorizations (2.10) and (A, B , C ) minimal, then coprime factorizations for 

Gf , Gh , G and K  satisfying (2.9), (2.10) are 1;

I. ' a  + b f B V f>'
= F V f 1

I 0  J

—̂N f A/f ]

£ RHC

A + B F - B  B F
v f 0 V f 1

e RHC ( 2. 12)

1 Here the notation is generalized to allow the four entries of the state realization matrix 
to be transfer functions as in (2.57).
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[ M h ] ' a  + h c V '

Nh HC V
L C 0  J

[ ~ N h M h ]

M  U 
N  V

V -u 
- N  M

e RHC

A + HC - I  H
Vh 1C 0 V

e RHC (2.13)

A + B F BVf1 - U H
F V f 1 0

C P D F D V f 1 V„ _
T

A + HC - B - H D H
Üf VF 0

V„lc -VZ'D V

€ RHC

£ RHoo (2.14)

Moreover, the factorizations satisfy the following double Bezout equations:

Vf - Ü f ' M f UF ' ' I 0 '
—Np Mp N f Vp 0 I

Vh - U h ' ' Mh UH ' ' I 0 '
- N h Mh . Nh VH 0 I

V - Ü  ' ' M U ■ I 0 ■
- N  M N V  _ 0 I

(2.15)

(2.16)

(2.17)

Proof The properties of (2.9), (2.15)—(2.17) can be verified by simple ma­

nipulations, as shown in Appendix A2.2. It remains to show that the fac­

tors (2.12)-(2.14) are stable, since with (2.15)—(2.17) this implies that the

factorizations are coprime in R H ^. Consider first coprime factorizations 

Gf = N fM f1 = Ad^A/p. Since F  stabilizes Gf , then standard arguments 

[46] give that

(AdpVp — N f Uf ) 1, (VpAdp — C/pA/p) 1 £ RHoo (2.18)
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Also from (2.15), AIf (Vf — Gf Uf ) = 7, (Vf  ~ Uf Gf )Mf — I  so that

[MF JVjt] (VF -  Gf Uf ) -1 [I ]

( - M f VF —  jVf Uf ) 1 f  - V f '  €  RH~ (2.19)

M f
N f

I
G f

(Vf -  ÜfGf ) - 1

Ai  F
j\fp (Vf M f -  ÜfX f Y 1 e RHco (2.20)

Analogous proofs for the dual show that Nh , Mh , Nh , M h € RHoq. It then 

follows that N, M, N,  M  G i?i7oo since

' M  ‘ ' I  o ' Mp
N D C Np

N  M [ N h Mh
B

- D
0
I

( 2.21)

( 2.22)

Finally, since F  stabilizes Gf , all four closed loop transfer functions are 

stable. This implies that

[si -  (A + B F ) } - \  F[sl  -  {A +  BF))~lB  € R H ^

=> F[sl  — (A + B F )]_1 G RH qo under (A, B)  controllable (2.23) 

It follows from (2.23) that U, V  G R H^ .  Dual arguments show that U, V" G

RHoo.
□

With the factorizations of Theorem 2.1 established, then (2.17) implies 

that [11]:

K  = U V - 1 = V~l Ü = —F [ s l - { A  + B F  + HC + HDF)]~l H  (2.24)
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will be stabilizing for G. Other standard results can immediately be applied 

to G, K  based on the doubly coprime factorizations of Theorem 2.1. For 

instance, it is possible to characterize the class of all stabilizing controllers 

K(Q), that stabilize G, in terms of an arbitrary parameter Q £ RH<*,.

Theorem  2.2 ([11, 12]) Consider the plant G of (2.8) with coprime fac­

torizations (2.9), (2.14), (2.17) as above. The class of all proper stabilizing 

controllers can be parameterized in terms of arbitrary Q £ R H ^  as

K(Q) = U(Q)V(Q)~1 = V(Q)~1Ü{Q)

= K +  V - 1Q ( I + V - 1NQ)~1V - 1

where

U{Q) — U + MQ;V(Q) = V + NQ-, \V + NQ\ ji 0 
Ü(Q) = Ü + QM-, V(Q) = V + QN-, \V + Q N \ ^ 0  1 ;

We finish this section with some remarks:

1. The class of all stabilizing controllers of (2.25) can be depicted as in 

Fig. 2.4, where

J K  V - 1 , T  =
I  - K  

- G  I __
__

i

_ V - 1 - V - ' N
‘ N  M 0

(2.26)

2. The closed loop transfer functions are affine in Q,

I  - K  1_1_ Q j  = Tu  + T12QT21
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Figure 2.4: Class of all stabilizing controllers
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estimator

Figure 2.5: Class of all stabilizing controllers: Doyle-Stein form

A + HC 0 0 - B - H D - H
B q V j 'C a Q 0 BqVü 'D BqVü 1

B ( F -  DC) BVf 'C q A + B F B (I  + DD) BD

F - D C v f 'C q A + B F I F D D D
D(F  -  DC) D V f 'C q C + DF {I + DD)D I  a d d

a Q Bq

Cq Dq

(2.27)

where

D = V f ' D q V j \  Q --

The derivation of T  is shown in Appendix A2.2. An alternative de­

piction is in Fig. 2.5; here all stabilizing controllers are be obtained 

by filtering the residuals r = y — y with an arbitrary Q £ R H ^ ,  and 

adding this to the controller output.

3. Observe from (2.25) that given an arbitrary proper plant K\,  with 

arbitrary coprime factorizations

I<i =  U,Vfl =  Vf'Üu
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then Qi 6 Rv is uniquely determined such that K i =  K(Q i), since 

from simple manipulations:

Qi = —M~l [I — KiG]~l (U — K\V)

= —[ViM — Ü\N)~l [V\U — U\V]

= - [UVl -  VUi][MVi -  NUi]“1 (2.28)

A consequence is that MQ\  and NQ\  are uniquely determined.

4. Substitution for V, U and V, Ü into (2.17) from (2.25) results in cor­

responding properties for V(Q), U(Q) and V(Q), Ü(Q)

' V(Q) - & ( Q ) ' ' M U{Q) ' ■ /  o '
- N  M N V(Q) 0  7

With the result (2.29), Ui =  U(Qi), V\ =  V(Q\),  and the duals, then 

(2.28) simplifies to

Qi =  U{Qi)V -  V(QX)U =  VU(Ql ) -  ÜV(Ql ) (2.30)

5. Note that

[■K( Q ) G 7?sp] ^  [Q G R-sp] (2.31)

6. Observe that as a consequence of the fact that X2 2  =  0, the transfer 

function from e to r is invariant of Q, and is equal to T2 1 .

7. With F, H G RH00, then without loss of generality, Vh — I, Vp — /. 

In this case, the factorizations of (2.12)-(2.14) simplify to the special­

izations of [39].
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8. The above results apply to yield the class of all stabilizing controllers 

for Gf , Gh in terms of arbitrary Qf , Qh € RH^:

F(Qf) =  Vf {Qf)~1Uf(Qf)

=  V f l ÜF +  VFQF{I +  V £ xN FQ F )- l V f 1

Vf (Qf ) =  V> +  Qf Nf ; Üf (Qf ) = Of + QfMf ,9 ^  
|V> +  Of Af | # 0  1 J

and

=  UHVSX +  Vs 'Q hV  +  Vs 'N hQhY 'V ü 1

Uh (Qh ) = Uh + Mh Qh ; Vfr(Qtf) =  V* +  jV*QH (2.33)

Then the transfer functions F (Q f ), H(Qh ) can be structured as shown 

in Fig. 2.6, where J f , Jh are given by

Jf
'-1F Vp

V f 1 - V f ' N p , Jh
- iH Vj

Vh 1 ~VR1N h
(2.34)

The main development in this section is to define new state space real­

izations for doubly coprime factorizations of a plant G(s). They are based 

on a stabilizing state estimate feedback controller with dynamics in both the 

state estimator and the state estimate feedback gains. This is a non-trivial 

extension to the case where only constant gains are permitted. The theory 

also requires doubly coprime factorizations of the associated ‘plants’ Gf , Gh
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"plant" GF "plant" GH

C ( s l - A )'

Stabilizing controllers F(Qf ) Stabilizing controllers H(Qh)

Figure 2.6: Stabilizing controllers F{Qf), H(Qf)

to be defined. It is shown that once the doubly coprime factorizations are 

established, then standard results on stability can be applied. In particu­

lar, it is possible to parameterize the class of all stabilizing controllers for 

G, Gf , Gh- In what follows we show that the class of all stabilizing con­

trollers for G can be achieved by a state estimate feedback controller with 

dynamic state estimator or state estimate feedback gains.

2.3 Stabilizing controllers for G in term s of
Qf > Qhi Q

The class of state estimate feedback controllers in terms of F, H G Rp will 

be denoted as

K [F, h ] = \ A + BF + HC + HDF  I - H ; j e R ^  (2.35)' a  + b f  + h c  + h d f - H
F 0
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Lemma 2.3 With the definitions (2.35), (2.32), (2.33), and the factoriza­

tions of Theorem 2.1, the following classes of strictly proper controllers pa­

rameterized by QHi QF 6 RHoo are stabilizing:

K[F,H(Qh )\ = Mh(Qh)Vh(Qh ) 1 

Mh(Qh) =  U +  M Q hi Vh{Qh) =  V +  N Q h (2.36)

K[F{Qf)i H] =  M Q fY'Uf{Qf)

Üf(Qf ) =  Ü + QfM , Vf{Qf) =  V + QFAf (2.37)

where A4, Af, M , Af are given by

A4 U 
Af V

A + BF 1 1 1

F 0  0
C + DF Nh Vh \ T

A + HC - B - H D  H'
Of VF 0

- M f - N f 0 _

e RHC

V -u 
- jV A4

Moreover, the following properties hold

GA4 = Af, M G  =  Af

e RHC

---
---

-1 1 c;« ' M U ' ' M~l M 0
_ - S r  m . jV V 0 m m - 1

(2.38)

(2.39)

(2.40)

M~lM  = - U f[sI - A - H C ] - xVh 1 eRHoo 

M M - 1 =  —Vf [sI — A — BF]~1Uh € RHoq (2.41)
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Proof See Appendix A2.2

It remains to find conditions under which the class of all strictly proper 

stabilizing controllers can be structured as K[F, H(Qh )\ or K[F(Qf ), H] for

Qf , Qh € RHoo.

Lem m a 2.4 With the definitions (2.36), (2.37), and (2.25), then

K[F, H(Qh )\ =  K(Q)  G Rsp & M
N Q G R Sp

Q = M  1 M.Qh € Rsp (2.42)

For all Q G RHoo H Rsp then there exists Qh G RHo© satisfying (2.42) if and 

only if

F has a right inverse in RHoo (2.43)

(A dual relationship exists for K[F(Qf ), H] and K(Q), the relationship being 

Q = QpAdM~x. The dual of (2-43) involves the existence- of a left inverse 

for H .)

Proof See Appendix A2.2. 

Remarks:

1. Condition (2.43) in Lemma 2.4 is equivalent to specifying that F  is a 

minimum phase transfer function with relative degree zero.

2. Since the closed loop transfer functions are affine in Q , and by (2.42), 

Qf is linear in Qh , then the closed loop transfer functions generated 

by the class of all controllers K[F, H(Qh )\ will be affine in Qh -
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3. The results of (2.42) can be generalized by replacing F by F(Qf), for 

some Qp £ RHoo. With a fixed F(Qp)  and, for example, writing K(Q)  

as Hf,h (Q) to denote explicitly the state feedback and state estimator 

gains, the (2.42) becomes

K{F(Qf ), H(Qh )\ =  K f(qf),h (Q)

Q = - U f (Qf )[s I-A-HC(2.44)

It follows that the class of all stabilizing controllers can be organized 

as K[F(Qf ) ,H(Qh )] where F(Qf ), H(Qh ) are given by (2.32), (2.33) 

and Qf , Qh £ RHoo.

The following theorem is now established from Theorem 2.2, Lemma 2.4, and 

their remarks

Theorem  2.5 Consider the plants G, Gf , Gh of (2.8) with (A ,B ) stabiliz- 

able and (A , C) detectable, and the state estimate feedback controller K[F , H] 

of (2.35) for G.

(i) With F, H  € Rp arbitrary stabilizing controllers for Gf , Gh , respec­

tively, then K[F , H] 6 R3p is stabilizing for G and represents the entire 

class of stabilizing controllers for G.

(ii) With Fi £ Rp fixed and (strictly) minimum phase as in (2.43), and 

H  £ Rp arbitrary stabilizing proper controllers for Gh , the subclass 

K[F\,H] represents the class of all strictly proper controllers for G if
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frequency-shaped
estimator

<2F e RH00 
Qh e RH00 
Q e RH„

Figure 2.7: Class of all stabilizing state estimate feedback controllers, denoted 
K[F(Qf ), H(Qf ),Q]

and only if F\ £ Rv stabilizes Gf • A dual result holds for K[F,H\\  

when Hi is fixed.

As an extension, consider a more general class of state estimate feedback 

controllers K[F , i7, Q\ as in Fig. 2.7. This is really the class K f,h (Q), but 

writing K[F, H, Q] explicitly shows that there are three parameters F, H , 

and Q. The class is obtained from the class K[F, H] £ R sp by adding to the 

controls the residuals (y — y) filtered by Q £ RHoo,

u =  Q(y - y )  + Fx  (2.45)

The results of the previous section can be applied (see Appendix A2.2) to 

yield the following theorem, which is a generalization of the results in [12] to
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the case when F, H  are dynamic rather than constant.

T heorem  2.6 With the notation above, K[F , H, Q] E Rp is stabilizing for 

arbitrary F, H stabilizing for Gf , Gh and arbitrary Q E RHoq. Moreover, 

with Q an arbitrary constant, then K[F , H , Q] represents the entire class of 

stabilizing controllers in Rp for G.

Proof See Appendix A2.2
□

Remarks:

1. The controllers K[F, H, Q] when Q is a constant, are still conveniently 

viewed as state estimate feedback schemes with additional output feed­

back. With Q constant, then the feedback signal u in (2.45) can be 

formed as a combination of x and y:

u = (F — QC)x + Qy (2.46)

When Q is frequency shaped, there is no ready interpretation as state 

estimate feedback or even frequency shaped state estimate feedback.

2. The results in this chapter are presented without restricting F , H  to 

be stable, yet in practical controllers the restriction F, H  E RHoc is 

a reasonable one to apply. Of course any implementation of K[F, H ] 

must not include unstable pole/zero cancellations associated with un­

stable F, H. Such would give instability; a priori cancellation avoids 

such difficulties.
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2.4 U sefu l re la tio n sh ip s

Here several useful formulae will be stated, which relate various transfer 

functions such as K , Q, J , F,  and H  of the previous sections. The relation­

ships are verified by algebraic manipulation as was done in Appendix A2.1 

for earlier proofs. Consider the plant G with a strictly proper controller 

K  = C(s l  — Ä)~lB  and AT, F  constant vectors stabilizing Gjy, Gf respec­

tively. The factorizations (2.14) can then be specialized with Vh =  I,  Vh — A, 

Vp =  A, and Vp =  A. If the control-loop is well posed, then it will be possible 

to invert (2.25) to obtain a Q such that K(Q)  =  AT,

Ä + BDC BC B
BC A - H
C - F 0

A + B F  + HC + HDF - H  B + H D
J  = F 0 I

- C  - D F I  - D

The expression for J  is stated in [12]. Also from (2.27),

(2.47)

(2.48)

A + B D C  BC BD B
I  - K BC A I  0

- G  I C 0 I  0
L DC C D I

(2.49)

Comparing (2.47) and (2.49) show that the modes of Q , perhaps not all 

controllable or observable, are the same as the modes of the closed-loop 

transfer functions: this is not unexpected, since Q E RHoo if and only if 

there is closed loop stability.
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If a constant H is chosen to stabilize C(sl  — A)~l and H has a left in­

verse H~L, then a controller K[F(s), H] can be realized by using a frequency 

shaped state estimate feedback, with

F{s) =
' Ä + B H - L(B + HD)C - [ Ä  + B H - l (B + HD)C]BH-L 

+ B H - l (A + HC)
c - C B H ~ l

(2.50)

The dual result exists for K[F, H(s)] in the case when a constant F , which 

stabilizes ( s i  — A)~lB, has a right inverse

Ä + B(C + DF)F~RC B
(A +  B F) F- RC -  F - RC[Ä + B(C +  DF)F~RC\ - F ~ RCB

(2.51)

Note that existence of a right inverse of the constant H is the same as con­

dition (2.43), but (2.43) considers the case when II is permitted to have 

dynamics.

2.5 C onclusions

This chapter has demonstrated that the class of all stabilizing controllers 

can be constructed conveniently from frequency shaped state estimate feed­

back controllers, with the frequency shaping in the state estimation, in the 

state estimate feedback, or in both. This result underlines the versatility of 

controller designs based on frequency shaped estimation and control, and al­

lows elucidation of controllers designed by other approaches in terms of state 

feedback, albeit frequency shaped.
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The proofs rely heavily on the structure of the doubly coprime factoriza­

tions introduced in Theorem 2.1, since the derivation of these new factoriza­

tions relies on state estimate feedback theory.

A2.1 Som e basic  defin itions

Som e function  spaces

In this appendix, a few basic concepts will be introduced. The Hardy space 

Hqo consists of all complex valued functions G(s) of a complex variable s 

that are analytic and bounded in the open right half-plane, IR[s] > 0. The 

iJoo norm of G(s), denoted 110(3)1100, is defined by

| | G ( s ) | | o o  = sup G(s) (2.52)
2Rp]>o

The class RHqq is a subset of consisting of all rational functions with real 

coefficients that are bounded in IR[s] > 0. Alternatively, for a real-rational 

F (s), then F(s) € R H ^  if and only F  is proper (|F(oo)| is finite) and stable 

(F (s ) has no poles in the closed right half-plane, Res > 0) . The class of 

proper functions will be denoted Rv\ the class of strictly proper functions, 

denoted R sp, consists of real-rational functions F(s) for which |jF(oc)| = 0.

Although spaces such as RHoo have been defined as scalar, we will gen­

eralize the definition, so that, for example, RHoo represents the class of all 

matrix valued functions, with each entry a real-rational function that is stable 

and proper.
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W orking w ith  state-sp ace realizations

Consider a stabilizable and detectable time-invariant linear system G with 

state equations,

x(t) =  Ax(t) -f Bu(t)

y(t) =  Cx(t ) + Du(t) (2.53)

A special notation for the transfer function of such a system will be used,

G{s) =  C { s l -  A)~lB + D ’a b '
c D

(2.54)

The horizontal and vertical lines are not partitioning of the block matrices, 

but indicate that the matrices represent transfer functions. Using this con­

venient notation, some identities will be given: first for the cascade of two 

systems, and then for the inverse of a system.

B 1 C 2  B 1 D 2

(2.55)A \ B !

C ! D 1

A2 b 2

c 2 D 2

A i B\C s2 B \  D 2

= 0  A2 b 2

T .C l  D 1C 2 D l D 2

A B T A - B D ^ C - BD ♦
C D T . D'C D t

(2.56)

with f representing a left or right inverse. The notation can also be general­

ized so that,

C{s)[sl  -  A(s)]-l B(s) +  D(s) = 

Two useful matrix identities follow,

A(3) B{s)
C(s) D{s)

(2.57)
J T

X ( I  + Y X ) ~ l = (I + X Y ) ~ lX (2.58)
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/  + X ( I  - Y X ) - ' Y  =  ( /  -  X Y ) ~ l (2.59)

A 2 .2  P ro o fs

D erivation  o f (2 .9)—(2.14)

The factorizations (2.9)-(2.14) can be verified. For example

A B F  BVf '~\  B F
Gf Mf = o A A B F  B V f 1 =  0 A 0 =  Nf

.i ö I ~ J T I 1 n  —JT
(2.60)

Here the second equality follows from a change of basis (second column added 

to first column and the first row subtracted from the second row). The third 

equality follows by the deletion of uncontrollable parts. Similarly, (2.39) 

follows from definition (2.38) and

1 TA  0 Mu  1
(2.61)GMq =

‘ A B F
0 A + BF

0
- M h _

A  0
0 A + B F

M h
- M h

C DF 0 T C C + DF 0

The properties (2.15)—(2.17) and (2.40) can be proved using similar manip­

ulations based on (2.55).

D erivation  o f closed-loop  transfer function

Assume that K  has the form (2.25), so that K(Q) = U(Q)V(Q)~l where 

U(Q) = U +  MQ, V(Q) = V + NQ.  The closed-loop transfer functions from 

u to e in Fig. 2.4 are

I  +  K(Q)[I  -  GK(Q)]~'K(Q) K(Q)[I -  GK(Q)]-1 
[I -  GK(Q)]~1G [I -  GK(Q)]-1
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I  ~  
- G  I

- 1

(2.62)

Moreover,

I  -I<(Q) '
-1 ’ M  O ' M  —U(Q) '

- G  I . 0 V(Q) _ - N  V(Q)

- l

M  0 
0 V(Q)

M  MQ ' 
0 V(Q)

i  - Q
0 I

M  - U  
- N  V

- i M  - U  
- N  V

- i

- l

M  0 ‘ M - U  ' -1
+

' 0 M Q ' ‘ V Ü '
0 V . ~ N V ° NQ . & M

I
- G

-K
I + M

N Q [ N  M (2.63)

The result (2.26) follows from (2.63). The state variable form of the closed- 

loop transfer functions in (2.27) can be derived by substitution for G, K,  N,  

M, N , M  into (2.63) from (2.2), (2.5) and (2.17), and with Q =  Cq(sI  —  

A q )~1B q +  D q .

P ro o f o f Lem m a 2.3

(i) Specializing (2.14) with H  =  Uh V ^ 1 replaced by

H(Qh ) = Uh (Qh )Vh (Qh )~1

of (2.33), and thus U, V  replaced by Uh (Qh ), Vh {Qh ) we have

Uh (Qh )
Vh (Qh )

' A  + B F —Uh — M hQh

---
---

---
---

---
--
1

__
__

__
__

__
_1 ' M  '

Af= F 0 = +
[C + DF Vh + Nh Qh

T
L '  J

Qh

(2.64)
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Likewise

[Vf (Qf ) - Ü f (<3f )]
A + HC - B - H D  H

Vf 4- Qf Mf Ü +  Qf Nf o
V -Ü] + Qf [ (2.65)

The class I\[F, H(Qh)] is stabilizing from previous results since F  sta­

bilizes Gf and H(Qh ) stabilizes Gh • The dual result follows similarly.

(ii) This follows by direct verification as for the derivation of (2.9) and 

(2.12) in the beginning of the appendix. To show that M~lM. € RH0Q, 

it is necessary to use (2.13)

C[sl  - A -  HC \ - l Väl e RHoo n R sp 

=► C{(A +  HC)[sI - A -  HC]-1 +  /}  € RH„  (by differentiation)

=  CA[sI — A -  HC]- 'Vü'  + CM„  € RH„

=> CA[sI - A -  HC ] -1]/€ RHX (using € RH„)

Repeated differentiation leads to

[C (CA)' ■ ■ ■ (C4"-1)']' [si - A -  HC\~1V ^ 1 € A#«, n R,p 

=>[s/ — A — € RH„fl Rsp (Under (A,C) observable)

=► M - 1M  = - Ü F[ s I - A - H C ] - 1Vä1 €RH«>
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P ro o f o f Lem m a 2.4

(i) The second equivalence of (2.42) follows from applying the identities 

GM  =  N  and G M  =  Af. For the first equivalence, compare (2.36) and 

(2.25), note the property (2.31), and exploit the connections between 

Q and K (Q ) as in (2.28) and the corresponding results for Qh and 

K[F, H(Qh )].

(ii) Observe that there exists Qh € R H such that

Q — M ~1M Q h € RHoo n R sp

Üf [sI  — A — HC]~l V ^ l {s + a) has a right inverse in R H ^  (a > 

Uf has a right inverse in R H ^

F  = V f l ÜF has a right inverse in R H ^

That is, (2.43) holds.
□

P ro o f of T heorem  2.6

From (2.14), (2.55), and (2.56)

A  +  B F - U H1
-i A + B F  + HC  +  R D F H

C + DF Vh  j T V 5 \ C  + DF) V ( 2 .66)

and

A  + B F  + HC  + HD F - H C  -  HDF H D V f 1
V~lN  = 0 A + B F - B V f

_ V j \ C  + DF) - V h 1(CdF) V ^ D V f 1
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=
A + B F  + HC  + HDF B + HD

C + DF D V c l (2.67)
-i t

where the last equality follows from a change of basis and the deletion of 

uncontrolled modes. Likewise for the other terms in J  of (2.26), leading to

A + B F  + H + DF)- H  —(B + H
J  = F 0

- V H l {C + DF) V  - V i ' D V f '

(2.68)

Applying Theorem 2.2, the class of all stabilizing controllers is of the form 

of Fig. 2.4, with J  as in (2.68). It is straightforward to see that this is of the 

form K[F, H, Q] as defined in Sec. 2.3. The Theorem 2.6 result follows.

D erivation  o f results in Sec. 2.4

The state equations for Q given in (2.47) can be derived by substitution for 

M, N,  U, V  from (2.14) into the expression

Q =  —(AT -  K N ) ~ \ U  -  KV )

derived from (2.28).

The expression for the frequency shaped state estimate feedback, given 

a desired controller K  =  C(sl  — A)~lB  and constant H  with a left inverse 

H~L was derived as follows. Manipulations with (2.5) lead to

K  =  F(s)(sl  - A -  H C ) - \ B I<  -  H)

Ä B
c 0

F(s)(s l  - A  -  HC) - l

BC
B

- H
(2.69)
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It can be verified by direct substitution that one solution for F(s) satisfying

(2.69) is

F(s) A B A B
C 0  . T BC - H

( .s i  -  A -HC)

Then (2.51) follows with the use of (2.55)-(2.56) and the identity

(2.70)

sC(sI -  A)- 'B =  C(s-  A ) - 1 AB + CB



C h a p te r  3

O n  th e  ex is ten ce  o f so lu tio n s  
o f n o n sy m m e tr ic  R ic c a ti 
e q u a tio n s

3.1  In tro d u ctio n

Consider the matrix Riccati equations

A T - T Ä - T B C T  + BC = 0 (3.1)

ÄZ -  ZA -  ZBCZ  + BC = 0 (3.2)

with T, Z £ Cn,n and A, Ä 6 IRn.n? B 6 lRn,p? B € IRn,g? 0  6 IRg.n and 

C € l R p ,n -

Although Riccati equations are well studied in the literature there is as 

yet no theory giving convenient necessary and sufficient conditions for the 

existence of solutions. Potter [41] characterizes all solutions for the symmet­

ric case when A = A*. Other authors [21, 29] give further results for the 

symmetric case in relation to the optimal control problem. Clements and

42
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G(s)

K(s)

Figure 3.1: Plant/controller feedback pair

Anderson [9] tackle the problem of factoring a polynomial using the Riccati 

equation, but with £?, B.  C', C' rank one vectors and with A, Ä not necessar­

ily of the same dimension. They give sufficient controllability conditions for 

solutions to exist.

The results of this chapter were motivated by a problem unrelated to 

optimal control or spectral factorization. Consider the plant/controller pair 

of Fig. 3.1 with the following minimal transfer functions,

G(s) =  C(sl  — A)~lB (3.3)

I<{s) =  C{sl- (3.4)

where the coefficient matrices are defined as in (3.1), (3.2).

The problem is to find a state estimator gain H  and a state estimate 

feedback gain F  associated with the plant G(s), such that the resulting state 

estimate feedback controller — F ( s i —A —B F —HC)~)H has the same transfer 

function as K(s).  It is known [1] that the existence of F, H  is equivalent to 

the existence of a nonsingular solution of (3.1).
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Section 3.2 of the chapter combines the results of Clements and Anderson 

[9] and a generalization of Martensson [29] to give necessary and sufficient 

conditions for solutions of the Riccati equation to exist for the scalar case, i.e., 

when B , B, C , C' are vectors. Further insights can be obtained by consider­

ing the state estimate feedback problem described above. The multivariable 

case will be considered in Sec. 3.3, and it will be seen that the scalar results 

cannot easily be generalized, as was foreshadowed in [9]. A plant/controller 

pair with a specific structure is given to provide a counterexample to the con­

jecture that the sufficiency conditions can be extended, without modification, 

to the multivariable case.

3.2 T h e  scalar case

The first lemma states clearly the relationship between the Riccati equation 

and the problem of obtaining an arbitrary controller as a state estimate 

feedback controller.

Lem m a 3.1 Given minimal G(s), K(s) as in (3.3), (3.4) then the following 

are equivalent

(a) There exist real constant F ,H  such that the state estimate feedback 

controller — F( s l  — A — B F  — HC)~lH has the same transfer function 

as K(s).

(b) There exists a nonsingular real solution T  of (3.1).
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Proof [1] Starting with F, H satisfying (a), then there must exist a similarity 

transformation T such that

T A T '1 = A + B F  +  HC, T B  =  - H ,  CT~l = F  (3.5)

Substitution with (3.5) leads directly to (3.1). Conversely, if there exists a 

nonsingular solution T  to (3.1), then by defining F, H  as

H  = —TB, F  =  - 1 (3.6)

then (a) will be satisfied.
□

Note: A nonsingular solution T  of (3.1) corresponds to a solution Z  =  T~l 

of (3.2). This can be seen by premultiplying and postmultiplying (3.1) by 

T - \

The following theorem [31], a generalization of the results of Potter, will 

now be applied to our problem,

T heorem  3.2 Let M  

ing are equivalent:

A BC  
BC Ä €  fR 2n ,2n and T  £ C n ,n . The follow-

fa) T  is a solution of (3.1).

(b) there exist k, a i , . . . ,  ajt € N , eigenvalues Ai,. . . ,  A* of M  and matrices 

Lx £ C 2n,ax for x  =  1, • . . , k such that

(i) X < X '  and \ x = Ax/ imply ax > ax, for X, x! =  1, • • •, k,

(H) M L x — LxJax( \ x) for x  = 1? • • •, k,
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(Hi) [ X r !---Xrfc]

PQ~l

P
Q

with P,Q  G Cn,n, Q nonsingular and T  =

Notes:

1. The matrix Jn(A) is an n x n Jordan form with A on the diagonal, 

superdiagonal elements equal to one, and zero elsewhere.

2. The columns of the matrices Lx in the above theorem form a generalized 

eigenvector associated with the eigenvalue Ax of M.

3. Real solutions T  of (3.1) can be obtained by choosing the Lx in complex 

conjugate pairs.

4. The matrix M  is the state transition matrix associated with the closed 

loop transfer function of the system in Fig. 3.1.

The following theorem is a combination of results from [29] and [9],

Theorem 3.3 Consider the algebraic Riccati equation (3.1) with B, B, C , 

C' vectors and all solutions T obtained by selecting eigenvectors as in The­

orem 3.2. A necessary and sufficient condition for all possible eigenvector 

selections (L\ • • • Lk) to give a nonsingular Q is that (A, C) and (Ä', B') be 

observable.

Proof For necessity, the proof is a slight generalization of the results of [29]. 

Suppose initially that all possible Q are nonsingular. If (A, C) is not observ­

able, then by the Popov-Belevitch-Hautus eigenvector test for observability
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there exists an eigenvector n of A with corresponding eigenvalue A such that

An =  A/i, C • [L

ß s.t. A BC  ' =  A0 BC Ä 0 0

Since

=► a

is an eigenvector of M, including in [Ll  •

(3.7)

(3.8)

Lk] will result

with a singular Q. This contradicts the initial assumption that 

all Q are nonsingular, and establishes that the observability of (A, C) is a 

necessary condition. To establish the necessity of observability of (Ä ' ,B '), 

the same analysis can be duplicated, but using a version of (3.1) that is 

transposed and has T  replaced by —T. (Alternatively, the proof can use the 

Popov-Belevitch-Hautus test for controllability of (Ä, B), and proceed in a 

dual fashion.) The details are omitted.

The proof of sufficiency of observability of (A, C) and (A ' ,B ') for all Q 

to be non-singular is given in [9], and is not reproduced here.
□

There is a natural dual to Theorem 3.3. Writing Lx as 

Theorem 3.2,

^i.x
2̂,x

A
BC

BC  ' 
Ä .  ^ 2 , x  .

= ^ 1 ,X

. ^ 2 ’X  .

Ä
BC

BC  ' 
A

^ 2 ,X

^ !» X
=

1--
---

---
--

1

*
0

X
 

X

then from

(3.9)

This transposition of the rows and columns of M  shows immediately that 

while solutions of (3.1) are of the form PQ~X, solutions of the dual Riccati 

equation are of the form QP~l . The dual of Theorem 3.3 is then,
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T heorem  3.4 Consider the algebraic Riccati equation (3.1) with B , B, C", C' 

vectors and all solutions T obtained by selecting eigenvectors as in Theo­

rem 3.2. A necessary and sufficient condition for all possible eigenvector 

selections [L\ • • • Lk\ to give P nonsingular is that (A, B ) and (Ä', C') be 

controllable.

It is important to note that even if the necessary and sufficient condition of 

Theorem 3.3 is not satisfied, some eigenvector selections may still lead to a 

non-singular Q. Consequently, some solutions of the Riccati equation will 

usually still exist.

Consider again the state estimation problem of Lemma 3.1 in the light 

of the previous theorems. Lemma 3.1 starts with the assumption that both 

^ (s) and K(s)  are minimal and of the same degree. This is equivalent to 

saying that (A, 13), (Ä, B) are controllable and (A, C), (Ä, C) are observable. 

The following result is then immediate.

T heorem  3.5

Consider the algebraic Riccati equation (3.1) where (A, B , C), (A, B , C) 

are scalar, minimal state-space realizations of the same degree. Then all 

P , Q resulting from eigenvector selections as in Theorem 3.2 will lead to a 

nonsingular T .

This result can also be proven as follows. Assume that G(s) =  (A, B , C) 

and K(s)  =  (Ä, B , C) are minimal and of the same degree. The closed-
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loop poles of the system G(s), K(s)  are the eigenvalues of M.  The closed- 

loop poles of the state estimate feedback system are a combination of the 

observer poles A(A -f HC)  and the state feedback poles A(A + BF).  By 

controllability of (A, B ) and (A ', C )  it is possible to choose H, F  to place 

A(A 4- HC),  A(A 4- BF)  at the eigenvalues of M.  In Appendix A3.1 it is 

shown that given G(.s), there is a one-to-one mapping between the closed- 

loop poles and the controller transfer function for scalar systems. The choice 

of H , F  as described above will lead to a state estimate controller with the 

desired closed-loop poles, and thus a transfer function equal to that of K{s).  

By Lemma 3.1 there exists a corresponding nonsingular solution T  of the 

Riccati equation.

3.3  T h e  m u ltivariab le  case

A multivariable version of the necessary condition of Theorem 3.3 is,

T heorem  3.6 Consider the algebraic Riccati equation (3.1) with all solu­

tions T obtained by selecting eigenvectors as in Theorem 3.2. A necessary 

condition for all possible eigenvector selections [L\ • • • Lk\ to give nonsingular 

Q is that (A, C) and (Ä' ,B' ) be observable.

Notes:

1. A dual version of Theorem 3.6 also exists.

2. The proof of necessity follows that of Theorem 3.3.
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A counterexample to the proposition that observability of (A, C) and

(A', B') is a sufficient condition in the multivariable case will now be pre­

sented. Consider G(s), K(s)  with state-space realizations,

G(s) = C ( s I - A ) ~ l B =

where

and

A 1 0 
0 2 B = C 1 0  ' 

0 1

K(s) = C(s l  — Ä)~l B

where
-1  
0 - 2 B

M  has eigenvectors

1 0 
1 0 C = 1 1 

0 0

(3.10)

(3.11)

* - 0.34 ' * - 0.25 '
0.00 0.00
0.25 0.91
0.91 - 0.34

* - 0.91 ' ’ 0.00 ‘
0.00 - 1.00

- 0.34 0.00
- 0.25 0.00

Inspection shows that selecting two eigenvectors of M  to form 

suit in singular P, Q even though (A, P ), (Ä, P ) are controllable and (A, C), 

(A, C ) are observable. Further examination shows that although the state 

space realizations of G(s), K(s)  are minimal, one of the modes of G(s) is not 

observable from the output of K(s)G(s).  This can not occur in the case of 

scalar G(s), K(s).  Examination of the zero entries of the eigenvectors of M

P
Q

can re-
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gives a clue as to how the proof techniques of Theorem 3.3 can be used to 

strengthen Theorem 3.6,

Theorem 3.7 Consider the algebraic Riccati equation with all solutions T  

obtained by selecting eigenvectors as in Theorem 3.2. Necessary conditions 

for all possible eigenvector selections [L\ • • • Lk] to give nonsingular Q are 

that (A ,B C ) be observable and (A ,B C ) be controllable.

Proof When (A, BC) is not observable, then there exists an eigenvector p 

of A with corresponding eigenvalue A such that

Ap =  A p, BC  • p

s.t. A BC  ' = A0 BC A 0 0

Since
r

is an eigenvector of M, including

(3.12)

in \L i • • • Lk] will result

with a singular Q. This contradicts the initial assumption that all 

Q are nonsingular, and establishes that the observability of (A , BC) is a nec­

essary condition. The method of establishing the necessity of controllability 

of (Ä, BC) follows in dual fashion. The details are omitted.

Notes:

1. The above theorem is an independently derived specialization of a re­

sult by Medanic [30], which gives necessary and sufficient conditions 

for the existence of a Riccati equation solution associated with a par­

ticular admissible eigenvector selection. Unfortunately the sufficient
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conditions given by Medanic can not readily be interpreted as corre­

sponding conditions on the plant/controller pair of Theorem 3.1. Also 

the sufficient conditions of Medanic can only test one admissible solu­

tion at a time, whereas here we are concerned with the existence of any 

solution.

2. The conditions of Theorem 3.7 imply the observability conditions of 

Theorem 3.6, because (A, BC)  observable implies that (A, C) is ob­

servable and (Ä, BC)  controllable implies that (Ä, B)  is controllable. 

Moreover, this theorem shows that the conditions of Theorem 2.2 do 

not extend, at least without modification, to the multivariable case.

3. One of the necessary conditions in the above theorem can be interpreted 

as a condition on observability of the plant states from the controller 

states. The other condition relates to controllability of the controller 

states from the plant states.

4. Many combinations of G(s), K(s),  with the corresponding solutions of 

the resulting algebraic Riccati equation, have been studied. So far, 

all G(s), K( s ) satisfying the conditions of Theorem 3.7 have had all 

P, Q, obtained by eigenvector selection as in Theorem 3.2, nonsingu­

lar. It may be that the conditions of Theorem 3.7 are both necessary 

and sufficient for all possible P, Q to be nonsingular, but a proof of 

this is elusive—certainly any attempts to generalize the scalar variable
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versions of the proofs axe fraught with difficulties.

5. The dual result to the above theorem is as follows,

Theorem 3.8 Consider the algebraic Riccati equation with all solutions T  

obtained by selecting eigenvectors as in Theorem 3.2. Necessary conditions 

for all possible eigenvector solutions [L\ • • • Lk] to give nonsingular P are that 

(A ,B C ) be controllable and (A ,B C ) be observable.

3 .4  C o n c lu s io n s

It is not difficult to use a computer to calculate all solutions of the algebraic 

Riccati equation using the methods of [31]. It would be desirable to have a 

simple test giving a priori knowledge of whether or not all solutions exist, 

or how many exist. Using the connections between the Riccati equation and 

the problem of finding a state estimate feedback controller gives an intuitive 

framework in which to study this problem. Theorem 3.7 and its dual extend 

existing scalar results, and it may be that the necessary conditions are also 

sufficient.

The approach of this chapter for analysis of the Riccati equation has been 

similar to that of Potter [41]; the solution of the quadratic matrix equation 

has been rewritten in terms of eigenvectors of a matrix such as the M  of 

Theorem 3.2. It is surprising that a complete solution to the problem could 

not be obtained; many different avenues were explored, such as rewriting the
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nonsymmetric Riccati equation as part of a symmetric Riccati equation with 

dimensions twice as large.

A 3.1  A lte r n a tiv e  p ro o f o f  T h eo rem  3.5

In the following lemma, the relationship between the closed loop poles and 

K (s )  for the system of Fig. 3.1 is examined, for the case where G(s),  K (s )  

are scalar transfer functions. Consider the representations,

G{s) = X ( s )y ( s ) - \  I<{s) = U{s)V{s)~l (3.13)

where

X ( s )  = x isn_1 +  x 2sn~2 4-------hxn

Y (s) =  sn + y i sn~l +  y2sn~2 + -----V yn

U(s) = u xsn~l + u2sn~2 d-------

V(s)  =  S n +  V l 5 n_1 +  U25 n" 2 +  • • • +  Vn

The closed loop poles are the zeros of

H{s) = Y { s ) V { s ) - X ( s ) U { s )

= 62n + hxs 2n- 1 + h2s 2n~2 +  •. • +  h2n (3.14)

Lemma 3.9 Given a scalar G(s) of  degree n and a minimal realization 

X(-s)y(s)-1, there is a one-to-one mapping between the 2n closed loop poles 

and the controller transfer function K( s )  of  degree n.
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Proof Substituting for X(s), y (s), U(s), V(s) in (3.14) and collecting co­

efficients of each power of s one obtains (2n + 1) equations,

ooooo0r-H
1 - ’ 1 '

' 1 '
y i  1 0 . . . 0  0 . . . 0 0 V l hX
2/2 2/i 1 x i  :

V2 h2

cc •

Vn  2/n—1 1 *̂ n—1 X \  0
0 y n V n - 1  ■■■ 2/1 X n  *1

V n

U i
hn 

h n + 1

# * . ’ * .
U n - 1

1In X n . u n . L ri2n  J

The (2n -f 1) square Sylvester matrix in (3.15) is nonsingular if and only if 

X (s),y (5 ) are coprime [6]. This is true because {X(s), y(.s)} is a minimal 

representation of G(s). Since the Sylvester matrix is nonsingular, the map­

ping between the controller U(s)V(s)~l and the closed loop poles (ie. the 

zeros of H(s)) is one-to-one.
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D o u b ly  co p rim e  fa c to riz a tio n s , 
re d u c e d  o rd e r  o b se rv e rs , a n d  
d y n am ic  s ta te  e s tim a te  
feed b ack

4.1 I n t r o d u c t io n

A doubly coprime factorization of the transfer function of a lumped linear 

time-invariant system is the starting point for many of the powerful results 

in the factorization approach to multivariable control system analysis and 

synthesis [46]. In an important paper by Nett, Jacobson, and Balas [39], 

explicit formulae are given for state-space realizations of the Bezout identity 

elements. The results of Nett et. al. are based on ideas from the theory 

of state feedback and state estimation, and use existing computational algo­

rithms, namely pole placement algorithms.

Recently, Hippe [17] has derived modified factorizations which are related

56
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to compensators based on reduced-order observers, rather than full-order 

state observers. One problem with these factorizations is that some of the 

Bezout identity elements are non-proper, and consequently are not suitable 

for use with the factorization approach. In Sec. 4.2 of this chapter we derive 

doubly coprime factorizations related to minimal-order observers, with all 

Bezout identity elements stable and proper.

In Moore, Glover, and Telford [35], the factorizations of Nett et. al. [39] 

are generalized to allow for the possibility of dynamic state estimate feedback 

gains, as well as dynamic state estimator gains. Section 4.3 of this chapter 

generalizes the factorizations of Sec. 4.2 in a similar manner. To give an 

example of the utility of the results, it is then proved that all stabilizing 

controllers for a given plant can be structured as a minimal-order observer, 

with dynamic state estimate feedback gains. Finally, some dual results are 

summarized in Sec. 4.4.

4.2 F ac to riza tio n s  re la te d  to  m in im a l-o rd e r 
o b serv ers

4.2.1 Prelim inaries

As in Chap. 2, plant/controller pair G(s), K(s),  depicted in Fig. 2.1 will, be 

said to be well-posed and internally stable if and only if

- l

exists and belongs to RHoq. (4-1)
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Mi

u 2
e i

L e 2  J
beingThis condition corresponds to the transfer functions from 

stable and proper.

The minimal-order observer for the m-input, p-output plant G(s), with n 

state controllable and observable state-space realization C(s l  — A)~l B , will 

now be briefly reviewed. The treatment is similar to that found in O’Reilly 

[40]. The observer equations are,

where

z = Rz + Sy + T Bu

x  =  [ T 0 ]
y

C is full rank,

[*  0 ]

b b
i___

i =
C'  
T . t« 0 ]  = I  0' 

.0 / .

R =  TA 0, 5  =

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

A suitable selection of a full row rank matrix T  results in (si  — R)~l £ RH^ , 

i.e., R is a matrix with all eigenvalues in the open left half-plane IR[s] < 0. 

For such selections, the error in the state estimate x — x due to an incorrect 

initial value of z will approach zero asymptotically.

Figure 4.1 shows the block diagram for an observer-based controller which 

uses feedback of the state estimate x through a constant, real matrix F. 

The transfer function matrix K(s)  of an equivalent controller in the simple
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Figure 4.1: Minimal-order observer based control loop

positive feedback configuration of Figure 2.1 is,

K(s) R + TB F O S + T B F V
FQ F^l

(4.7)

4.2.2 Factorizations

The main factorization result will now be stated.

Theorem 4.1 Consider the plant G(s) = C(s l  — A)~l B , with (A, B) con­

trollable and (A, C) observable. Choose F ,T  such that (s i  — A — BF)~l , (s i  — 

R)~l E RHoo, where R ,T  are described by the observer equations .

With arbitrary A such that (s i  — A)-1 E RHoo, define

M  U 
. N  V

A + B F B (A + B F - q \ C ) V
F I  FV
C 0 I T

(4.8)
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v  - f n AQT  +  'M G ' - B - ( A  -  * A C ) 'J >

i ä
s — FQT I - F V

C 0 I
Then

(4.9)

(i) all transfer function matrices described by (4-8), (4-9) are stable and 

proper;

(ii) have proper inverses;

(Hi) G = N M '1 =  M ~l N\

(iv) K = UV~l = V~l U where K  is the observer-based controller given by

(4-V;

(v)
' V - IT M U' I O'
.-N M  . .N y . _ .0 i . (4.10)

Proof Considering (i), the transfer function matrices (4.8),(4.9) are inher­

ently proper. Since F  is chosen such that (s i — A — BF)~l €  RH<x>, (4.8) is 

stable, and furthermore, to see that (4.9) is stable, apply a similarity trans­

formation and use (4.5),

AQT + mc m- i 'A CAQ' mC m
T. .0 R . .T. (4.11)

Since the similarity transformation leaves the eigenvalues unchanged, the 

eigenvalues of AQT  -f 4/AC are simply equal to the eigenvalues of A, a matrix
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chosen such that its eigenvalues lie in the left half-plane, together with the 

eigenvalues of i?, which lie in the left half-plane by virtue of the T  selection.

It can be deduced from (2.56) that a square proper transfer function 

matrix has a proper inverse if its direct-feedthrough term D is nonsingular. 

Considering (ii), it follows that M , M , V , V  have proper inverses, because 

they have unity direct-feedthrough matrices. Application of (2.55), (2.56) 

shows that (iii), (iv), and (v) hold. As an example of the proof technique, 

observe that

M~lN AQT + VAC
C

( A -
- 1

[ AQT  +  'M C
J t L c

B

'A (A - 'fA C ) '} ' \ a q t  + v a c B
[c I T «■ c 0 .

' a AVC -  VAC 0 ‘
= 0 AQT  +  $AC B by (2.55)

c C 0 _ T

by (2.56)

AQT  +  M C A t f C - ' M C 0
= 0 A B

0 C 0
(by change of basis)

A B
C 0

(by the removal of unobservable modes)
J t

□

Note that these factorizations, like those of Nett et. al. [39], are still n-th 

order even though they are based on a minimal-order observer design. In 

this sense they are non-minimal, as are the factorizations of Hippe. We will 

now attempt to gain more intuition about the results, by comparing their 

properties with known properties of the full-order factorizations [39, 35].
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Plant

K(Q)

Figure 4.2: Class of all stabilizing controllers for G.

4.2.3 T he class o f all stab ilizing controllers

Once doubly coprime factorizations for the plant G(s) have been found, it 

is possible to parameterize the class of all proper stabilizing controllers in 

terms of an arbitrary Q(s) € RH<x> [46]. Such a class {K(Q)\Q € RHoo} can 

be written in terms of linear fractional transformations as,

K(Q)  =  (U + MQ)(V  + NQ)~l =  (V +  QN)~l (Ü + QM)

= U V - 1 +  + V ~ 'N Q ) - l V~l (4.12)

or diagrammatically as in Fig. 4.2, where, based on the third equality in 

(4.12),
v - 1

- V ~ lN (4.13)
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With the factorizations (4.8), (4.9),

A C{A + BF)Q C(A + BF-  QIAO'S CB

J  = 0 T(A  +  BF)Q T(A + BF)Q> T B
0 FQ F$f I

- I 0 I 0

The scheme of Fig. 4.2 with J  given by (4.14) has an interesting inter­

pretation. To lead us into this, recall that if J  is formed according to (4.13), 

and the doubly coprime factorizations of Nett et. al. [39] are used, then the 

scheme of Fig. 4.2 can be interpreted as in Fig. 4.3. That is, the class of all 

stabilizing controllers {K(Q)\Q € RHo©} for G(s) can be generated by the 

use of an observer-based controller, with an additional internal feedback loop 

involving stable dynamics Q(.s) [12]. The residuals r = (y — y) are filtered 

by Q to form s, which is added to Fx  to give the control signal u.

A reasonable question to ask is whether, analogously to the full state 

estimator based scheme of Fig. 4.3, the class of all stabilizing controllers can 

be obtained with a minimal-order observer-based compensator with added 

stable dynamics. There can not be a direct analogue since the residuals 

(y ~  y)i obtained by defining y =  Car, are equal to zero, as follows

r y - y y - C x y - C { V 0 ]
y
Z

y - [ i by (4.5)

Consider instead residuals r = (y — ye), where the estimate ye of y is, for the 

case A = 0, the integration of an estimate of the derivative y. More generally,
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Q(s)e RH~

Figure 4.3: Controller class {K{Q)\Q 6 RHoo} based on full-order observer

when A is chosen such that its eigenvalues lie in the closed left half-plane, ye 

is the solution of

ye — At/e =  C{Ax  +  B u ) — Ay =  C{A 4- BF)x  — Ay (4-15)

Here C{Ax + Bu)  is an estimate of y. From (4.15), we can obtain ye explicitly 

by filtering a linear combination of the minimal-order state estimate x and 

the plant output y

ye = {si -  A)~l [C{A +  BF)x  -  Ay] (4.16)

With the residuals r = y — ye, and referring to Fig. 4.2, it is reasonable to 

propose a minimal-order observer-based scheme as in Fig. 4.4. Evaluating the
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Q(s)eRH~ (sI-A) eRH~

Figure 4.4: Controller class {K(Q)\Q € RHoo} based on minimal-order ob­
server

transfer function of the J  block defined according to Fig. 4.4 gives precisely 

the J  of (4.14).

In summary we have found a minimal-order observer based compensator, 

with added stable dynamics, that generates the class of all stabilizing con­

trollers for G as Q(s) varies over RHoo- Notice that the McMillan degree of 

J  in (4.14) is (n — p) +  p =  n, which is the same as for the J  in the full-order 

scheme of Fig. 4.3.

4.3 D yn am ic  s ta te  e s tim a te  feedback

From this point onwards, we will generalize the state estimate feedback gain 

F  to be a proper, rational transfer function matrix, which may possibly be 

unstable. Assume that a left coprime factorization F  =  V f l UF has been
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found: state space realizations for such factorizations are readily available 

with the use of the doubly coprime factorizations given in Sec. 4.2. It will be 

necessary to generalize the notation for a state space realization so that, for 

example,

A + BF(s) B V f l (s)

F(s) V f ' ( s )
F(s)[sl — A -  B F  {$)]-'BVf +  V f \ s )

(4.17)

To take account of the dynamic state estimate feedback, new doubly 

coprime factorizations will be defined.

In Sec. 4.2, a constant F  is chosen so that (s i  — A — BF)~l € RH<*>, or 

equivalently, so that F  is a stabilizing controller for the system (s i  — A)~1B. 

Generalizing to the case when F  is a transfer function matrix, we require 

F (s ) to be a stabilizing controller for the system Gf =  (s i  —  A)~lB.

4.3.1 Factorizations

Theorem 4.2 (Doubly coprime factorizations for Gf ) Given a plant 

Gf =  (s i  — A)~l B with (A ,B)  controllable, a proper stabilizing controller 

F(s ) with a left coprime factorization Vf^ÜF, arbitrary such that (sln — 

Ai)-1 € RHoo, and defining,

'M f Uf ' 
. N f Vf .

A + BF(s)

F(s)
I

B V f \ s )

V f ' ( s )
0

A + B F ( s ) ~  Ai

F(s)
I

(4.18)
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■ Vf -Up'  
. — N p  M p  .

Then

Ai —B - ( A - t f A jC )

0 VF{s) - Ü F(s)
7 0 I

(4.19)

(i) the transfer matrices defined by (f. 18), (f. 19) are stable and proper;

(ii) M, M, V, V have proper inverses;

(Ui) Gp =  N p M p 1 =  MRlNF, F  =  UFV f l ;

(iv)
Vr - y F- Mp Up] I  O'

L - ivf Mp . .Np Vp J .0 7. (4.20)

Proof Statements (ii), (iii) and (iv) can be proved by simple manipulations 

using (2.55),(2.56). It remains to show that the transfer function matrices 

(4.18),(4.19) are stable, since together with (iv) this implies that the fac­

torizations are coprime in R H ^ .  First note that M p,Np  are stable, since 

(s i  — Ai)-1 6 RHoq. Consider then arbitrary stable proper stable factoriza­

tions Gp = M pM -ff , F  =  UpVf1. Since F  stabilizes Gp, then the standard 

arguments [46] give that

(VpMp -  ÜfMf) - \  (MpVp -  NpUp)-1 e RHco

Also from (iv) (Vp — Üf Gf )Mf =  7, (Mp — NpF)Vp  = I  so that

Mp
. Nf .

‘  7  "

.Gp. (Vp — ÜfGf )  1 M F 
. Mf .

(VpM p -  ÜpMp)-1 e RHo o

(4.21)
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\vF1
Up.

T
F (Mf -  NpF)~l \Vf ] 

Up, (MpVp -  NpUp)~l G RHoo (4.22)

A generalization of Theorem 4.1 follows,

T h eo rem  4 .3  (D o u b ly  coprim e factoriza tion s for G )

Consider a plant G = C (sl  — A)~l B with (A, B) controllable and (A, C) 

observable. Choose T such that (s i  — R)~l G RHoo, and proper F(s), with 

arbitrary right coprime factorization V f l UF, such that F(s) stabilizes GF = 

(s i  — A)~XB . (The matrices R ,T  are defined by the observer equations (4-2)~ 

(4-^))- With arbitrary A2 such that (slp — A2 ) - 1  G RHoo define

M  U 1 
N V

V -u 
- N  M

' a  +  5 F ( s) B V f ' ( s ) (A + BF(s ) -< t A, C) < t
_____________

J

v?lW
0

t
I

■a g t  +  ^ a 2c - B

=
Üf(s)@T

c Vf(>)
0

- Ü F(s)V
1 T

'(4.23)

(4.24)

Then

(i) the transfer functions defined by (4-23), (4 -24) are stable and proper;

(ii) M ,M ,V ,V  have proper inverses;

(iii) G =  NM ~l =  M~l N ;

(iv) K  = UV -1 = V~l U where K  is the observer based controller given by
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(v)
■ V - i r U' ■/ O'
, - N M  . . N V. .0 /.

(4.25)

Proof As in previous theorems, (iii)-(v) can be proved by application of 

(2.55), (2.56). Evaluation of A/“1, V~l shows that A/, V  have proper inverses, 

because Vp is proper with a proper inverse. Similarly, since V, M  have unity 

direct-feedthrough matrices, are proper, completing the proof of

(ii). It remains only to prove that all of the transfer functions are proper and 

stable. Consider first V,

V = ÜFQT{sI  -  AQT -  $ A2C ) - \ - B ) +  V> (4.26)

Since (.si — AQT  — 4/A2C)~l £ -fti/oo , V  is formed from the sum and product 

of stable proper transfer functions. It follows that V  is also proper and stable. 

The same can be seen of U, N, M.  From the previous theorem, we have stable 

proper transfer functions Mp, Np,  and

'AT I O' ‘M p ’
. N . .0 c. . Nf .

To establish that 

F(s)  stabilizes G f (s),

r u 
v

€ R H (4.27) 

is stable requires some intermediate results. Since

‘ I
. —Gp(s)

-F(»)
I

- 1 A - B 0
-1

0 I  -F{ s )
I 0 I  J T

A + BF(s) B BF(s)
F(s) I F(s)

I 0 I
€ ÄffooC4.28)
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=>

L i
™ i

/

\F(s)]
I

[fwi
I

{s i  — A — BF(s)} lB  G RHqo (by differentiation)

{s i  -  A -  B F { s ) } ' 1{A + BF{s)}B  + I

{s i  -  A -  BF(s)}~lAB  +
A +  BF(s)

F(s)
I

B  6 RH„  

B F( s ) '
F(s)

I
B  €

{s i  -  A -  BF(s)}~1AB  € RH^(by  (4.28))

Repeated differentiation leads to

=>

\ F M l
I

fWl
. I

{ s i - A -  BF(s)}~l [B AB  A2 B  • • • An~l B] € RH  

{s i  -  A -  BF(s)}~1 G RHoo ([A,B] controllable) (4.29)

Finally, with the following decomposition,

■ £ T I
.0

O'
C.

A + BF(s)
F{s)

/

BF(s)
F{s)

0
*4-

I  O' r ^ w i
. 0  c. i {$/ -  A -  B F ( s ) } - \ A  -  tfA 2C)V  (4.30)

the first and second terms are proper stable transfer functions by virtue of 

(4.28),(4.29) respectively. Thus U, V  G R H ^ ,  and the proof of (i) is complete.

□

Observe that when F(s) equals a constant F,  then (4.23), (4.24) are identical 

to (4.8),(4.9), and Theorem 4.3 specializes to Theorem 4.1.

The previous two theorems lead to the following corollary.
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GP(s)

F(s)

- LGc=(sl-A) B

Figure 4.5: Feedback loop containing Gf and F

C orollary  4.4 Consider a plant G =  C (sl — A)~l B with (A, B) controllable 

and (A, C) observable. Choose T  such that the corresponding R results in 

a stable observer design. The controller for G obtained by dynamic state 

estimate feedback, via a proper F(s), will be stabilizing if F (s) is a proper 

stabilizing controller for Gf -

Proof Start with an arbitrary F(s) which stabilizes Gf (see Fig. 4.5). Choose 

a left coprime factorization V f l UF for F , and construct the doubly coprime 

factorizations (4.23), (4.24). A standard result from factorization theory [46] 

is that V~l U thus obtained will be a stabilizing controller for M ~lN . Since 

G =  C (sl — A)~lB  = M ~l N , and K  = V~l Ü is the observer based controller 

given by (4.7) (See Fig. 4.6), the corollary is proved.
□

A natural question to ask is the converse: would the controller of Fig. 4.6 

be destabilizing for G if F  did not stabilize Gf ? The answer to this question 

is not straight-forward, because the coprime factorizations of Theorem 4.3 

rely on F  to be stabilizing for Gf - The next section tackles this problem, 

and demonstrates the utility of the new factorizations at the same time.
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Figure 4.6: Observer based controller with dynamic state estimate feedback.

4.3.2 A ll stab ilizing controllers as m inim al-order ob­
server-based controllers

The parameterization of the class of all proper stabilizing controllers for G 

will now be restated.

K(Q) = (V + QN)~\ (J  +  QM), Q € R H ^  (4.31)

Here M , N ,  U, V  now refer to the factorizations of Theorem 4.3, and can be 

thought of as functions of F(s).  At this point, it is convenient to introduce 

a new notation—Instead of K(Q)  we will write K[Q,F],  to note explicitly 

the dependence of K  on the choice of F(s).  The controller K  =  V~l U will 

be written as K[0,F]. Making use of the doubly coprime factorizations of 

Theorem 4.2, the class of all proper stabilizing controllers for Gf can be 

written as

F{Qf ) = (VF +  QfNf )-HÜf +  QfM f ), Qf € „  (4.32)

What we wish to show is that the class of all proper stabilizing controllers
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{K[Q, F]\Q G RHoo} is the same as the class of proper ob server-based con­

trollers {JT[0, F(Qf )]\Qf G RHqo}- The proof of this requires an alternative 

representation of K [0, F(Qf )],

Lemma 4 .5  An observer based controller /C [0 ,F (Q f )] can be restructured 

as a linear fractional transformation,

A'[0, F(Qf )} = (V + Q F iV o)-l (C/ + QfMo) (4.33)

where

[-No Mo]

[ 0  * ]

M0M ~l

AQT  -  A2C B (A-  V \ tC)V

Mf (s)QT —Nf(s) M f (s)<S

[-No
M  U 
N  V

(4.34)
r
(4.35)

(4.36)

Proof

K[0,F(Qf )]

V  1 U \ f =F{Qf )={Vf +Q f Nf ) - i {Üf +Q f Mf )

a q t  + v a 2c - B
( Üf(s) +  Qf(s)Mf (s))QT Vf M  +  Qf(s)Nf(s)

A O T + q A 2C (A + 2C )$

(ÜF(s) + Qf(s)Mf (s))QT (ÜF{s) + Qf

A 0T + ^A 2C - B
+  Qf{s)

T

AOT + ^ A 2C - B
Üf (s )QT VfW Mf(s)QT Nf(s)

- l
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AQT + ^ \ 2C (A -  ’5A2C)'5

Üf(s)QT Ü(s)FV JT

+  Qf (s )
A 0T + ^A 2C ( A - t f A 2C)tt

Mf (s)&T Mf{s)<1

= (V + QfN0) l (U + QfMq) where Nq, Mo are as defined above.

Finally, (4.35),(4.36) can be proved by application of (2.55), (2.56).
□

The main result is then,

T h eo rem  4.6

The class of proper stabilizing observer-based controllers {K  [0, F(Q f )]\Qf € 

RHoo} is the class of all proper stabilizing controllers {K[Q,F]\Q £ RHoo} 

for G.

Proof Let us consider F(Q f ), with arbitrary Qf € RHoo. This is an 

arbitrary stabilizing controller for Gf . Define Q =  Qf 4/ £  RHoo, then

Q =  Q f M oM - 1 by (4.36)

4=> QM  =  Qf Mq

4=> Q [ —N  M] = Qf [—N0 Mo] (multiplication by [ —G /] )

4* (V  +  Q N )- \Ü  + QM) =  (V  +  QfNo)~ \Ü  +  QfM0) by (4.12),(4.33) 

K[Q,F] = K[0,F(Q f )}

Consequently the observer based controller K[0, F(Qf)] is a stabilizing con­

troller K[Q,F]  for G. Conversely, suppose we have an arbitrary stabilizing
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controller K  for G, and we find Q £ RHoo such that K  = K[Q,F].  Then 

defining Qf hy

QF = Q ( y T<$)-1'f T

it is clear that Qf satisfies

Q = Qf#  € RHoo

<=$> K[Q,F] = K[0, F(Qf )] (as above)

This completes the proof, by showing that the arbitrary stabilizing controller 

K[Q,  F] can be structured as an observer based controller Ar[0, F(Qf)], where 

F(Qf ) is stabilizing for Gf -
□

4 .4  T h e  m in im al-ord er dual ob server

The reader may have noticed that Lemma 4.5 and Theorem 4.6 deal primarily 

with left coprime factorizations of K[Q, F] and F(Qf )- Are there dual results 

related to right coprime factorizations? In fact, we can exploit the dual 

minimal-order observer [40]. Whereas the role of the observer is to make 

full use of the system information in the system outputs, the dual observer 

takes advantage of the fact that the system can be excited from more than 

one input. We claim that all of the results of this chapter can be derived in 

terms of the dual observer. To give an illustration of this, a dual version of 

Theorem 4.1 will be stated. The dual observer equations are

z = Dz + (Hw,  w — y- \ -CSz , u = Lz + r]Hw (4.37)
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where

[5 V
iv.

B  is full rank

[5  B)  =

{AS, L = r)AS

t
IV

I  0 
0 I

(4.38)

(4.39)

(4.40)

The transfer function matrix /ffs) of an equivalent controller for G is

K(s)
D + ZHCS &
A + qH CS VH

(4.41)
-It

Theorem 4.7 Consider the plant G(s) = C (sl — A)~lB with (A, B) control­

lable and (A, C) observable. Choose H ,S  such that(sl — A — HC)~X,( s l  — 

D)~l € RHoo where H ,S  are described by the observer equations (4.37)- 

(.4-40)• With arbitrary T such that (s i  — T)-1 E R H ^, define

U^ 
L N  V

V - Ü  
—N  M

SZ,A +  BTrj B  - S (H
—r](A — BTrj) I rjH

c 0 I
A + HC - B

•rj(A + HC -  BTrj) 
C

I  - p H  
0 I

(4.42)

(4.43)

Then,

(i) all transfer functions defined by (4.4%), (4-4$) are stable and proper; 

(ii) M ,M ,V ,V  have proper inverses;

(Hi) G =  N M -1 =  M~ l N;
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(iv) K  — UV 1 = V l U where K is the observer-based controller given by

(IV;

(v)
■ V - U ' ’M U' ■J O'
- N M  . , N V . .0 I. (4.44)

Close comparison of Theorem 4.1 and Theorem 4.7 shows that the corre­

sponding factorizations are natural duals of each other. We can write down 

a dual to the controller-class of Fig. 4.4, with m integrators required to re­

alize the transfer function (s i  — T)-1 . The full-order observer based class of 

Fig. 4.3 has no dual, as can be seen in the inherent symmetry of the block 

diagram.

4.5  C o n c lu s io n s

For brevity, the results of the chapter have been obtained in terms of the 

minimal-order observer, which has McMillan degree n — p ( p >  1). As shown 

in Fig. 4.1, the state estimate has an additive term 4/y involving direct- 

feedthrough of all plant outputs. The results can also be obtained in terms 

of a reduced-order observer of order n — x, with \  < P- As shown in Fig. 4.7, 

the reduced-order observer-based controller has direct feedthrough to x of 

only x plant outputs, the plant outputs being divided as follows,

Cx = [Cil
lc2J

y i
4/2

with a (p — x) x 1 vector y\ and a ^ x l  vector
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Figure 4.7: Reduced order observer-based control loop

The case x  = P corresponds to the results of this chapter, while the \  = 0 

leads to the results of Nett et. al. [39], with F  constant, and the results of 

Moore et. al. [35], with F  dynamic. The requirement that C be full rank is 

not restrictive, since in practice C can always be made full rank by ignoring 

certain plant outputs, and deleting the corresponding rows of C .

Finally, it has been shown that an ob server-based controller class

{tf[0,F(QF)]|QF €Ätfoo}

is exactly the class of all proper stabilizing controllers {K[Q, F]\Q € RR<x>} 

for G. Trivial extensions show that this is identical to the more general class

{K[Qi F{Qf)]\Q,Qf € RHoo}-



C h a p te r  5

C o n tro lle r  re d u c tio n  m e th o d s  
m a in ta in in g  p e rfo rm a n c e  a n d  
ro b u s tn e s s

5.1 Introduction

The process of controller design and implementation can be broken into many 

stages. One of the first stages is to obtain a model of the plant through knowl­

edge of the physical characteristics, off-line identification, or from existing 

data. For a large plant with many sensors, actuators, and sub-processes, a 

complex high-order model may be required to describe accurately the input- 

output behaviour of the plant. This is usually not a problem, since such 

high-order models can easily be handled with modern workstations and com­

puters, and the engineer will have a much better chance of designing a sat­

isfactory controller if he starts with a good model of the process. The next 

stage, assuming that the design objectives have been specified, is to design

79
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the actual control algorithm. There are many standard techniques available, 

with many producing controllers as complex, or even more complex, than 

the plant model.

Once the design is complete, the engineer must decide how to implement 

the controller. Some problems that can arise when implementing a high- 

order controller are numerical instability and inability of the controller to 

execute the real time algorithm quickly enough. This may necessitate a 

final controller reduction step. Here the high-order controller is replaced by 

a low-order controller which will give approximately the same closed-loop 

properties.

The model reduction methods of Glover [16] provide a priori bounds 

on reduction errors in terms of measures. A simpler technique, termed 

balanced realization, has guaranteed bounds which are not quite so good [16, 

32]. Such techniques are then attractive to achieve controller reduction, but 

without modification do not take into account the fact that the controller is 

in a control loop and needs to achieve performance and robustness properties. 

In the reduction, these techniques without modification weight all frequencies 

equally.

The notion of a frequency-weighted model reduction based on the tech­

niques of [16, 32] has been explored in by other authors [23, 2, 14]. It is not 

clear from these results how best to use knowledge of the frequency character­

istics of a plant, or closed-loop, to frequency-weight the controller reduction.
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Special frequency-weightings based on controller characteristics are studied 

in [14].

A technique for controller reduction for linear quadratic gaussian designs 

is given in [24]. This exploits the fact that the innovations process is white 

(as in the techniques of [10]) and reduces the subsystems of the controller 

driven from this white noise. In effect there is a particular coprime stable 

factorization of the controller, and it is proposed that reductions on these 

be implemented using standard methods (balanced realizations without fre­

quency shaping). A possible disadvantage for this approach is that stability 

of the original controller design is not guaranteed in the reduction.

In this chapter, a novel controller reduction approach is proposed. It is 

based on the application of standard model reduction techniques to a system 

calculated from both plant and controller. The method utilizes theory for 

the class of all stabilizing controllers [39] based on the work of [49]. Thus 

referring to Fig. 5.1 with plant G(.s) E Rp, controller K(s)  E Rp, then the 

class of all stabilizing controllers is given in terms of J(Ä', G) E Rp and 

arbitrary Q(s) E RH^^  where Rp denotes the class of rational proper transfer 

functions and RHoo the class of stable rational proper transfer functions.

The selection of J ( s ) we consider is where the block Jn(s)  is in fact 

the controller K(s),  and the other elements Jij(s) are appropriately scaled. 

Using the circumflex to denote a low order approximation, we propose that 

J(s) first be approximated by J(s) using standard model reduction (possibly
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u
G(s) y

K(s)

(a) Closed-loop system (b) Class of all stabilizing 
controllers K(Q,s)

(c) a reorganization

Figure 5.1: Feedback structures based on the class of all stabilizing controllers
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frequency-weighted). Then the reduced order controller K(s)  is taken as the 

11-block of this. That is,

K(s)  =  [J(s)]n where K{s) = Jn(s) (5.1)

This contrasts the more direct application of model reduction where only 

Ju(s)  =  K(s)  is approximated, so that K(s)  =  J ( s )n .

An extension of the approach proposed is to work with the class of con­

trollers of Fig. 5.1b with (J(.s) constrained as constant. Thus consider the 

class

K(Q, s)  = Ju(s)  + Ju(s)Q[I  — Juis) ,  Q constant (5.2)

and its reduced order versions

K(Q , s) =  [j(s) 1„ +  [j(s)U2<3 [/ -  [i(3)l22Q]_1 [J(s)]n (5.3)

Here K(s)  of (5.1) is equal to K(Q = 0,s). Also note that

degree K(Q \ Q =  constant, s) = degree K(Q = 0,s) (5.4)

In this chapter one proposal is that K(Q  | Q =  constant, s) be re-optimized 

over constant Q in terms of the original (or related) controller robustness/per­

formance objectives.

To maintain performance which penalizes some internal variables,or their 

estimates e, a refinement of the above method is to modify the J(s)  or 

K(Q, s )  blocks in Fig. 5.1 to have an additional output e. Denoting these
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blocks as J e(s), K e(Q,s)  we propose the reduction of K(s)  via Je(s) or 

K e(Q,s)  to maintain performance as well as robustness. Again scaling gives 

desired trade-off between performance and robustness. When K(s)  is de­

signed to achieve simultaneous stabilization of a number of plants, it is pro­

posed to maintain its performance/robustness properties for each of these 

plants by working with appropriate augmentations of J(s).  Details are given 

in the chapter. A dual version of the method is where the role of G(s) and 

K(s)  are interchanged.

In Sec. 5.2, the controller reduction techniques for preserving robustness 

are given in details. A rationale for the proposed controller reduction is given 

in Sec. 5.3, and examples are studied in Sec. 5.4. Conclusions are drawn in 

Sec. 5.5.

5.2 D etails of controller reduction

5.2.1 D efin itions

Referring to Fig. 5.1, let us first recall the formulation of Ju(s)  =  K(s)  based 

on the theory for the class of all stabilizing controllers [35]. Let us denote

G(s) =  C(s l  — A)~lB  + D ‘a B
c D

(5.5)
J T

Also, in the first instance let us consider that K(s)  belongs to the stabi­

lizing controller class having the form of Fig. 5.2 for the case Q(s) = 0. Thus 

K(s)  is characterized in terms of F, H (see also Sec. 5.2.7) as



Chapter 5 Controller reduction methods 85

Figure 5.2: Controller class

I<(s) Ak - H € Rsv, A k  = A + B F  + HC + HDF

[si — {A +  B F ) ] - \  [si -  (A + HC)]-1 e RHt

(5.6)

(5.7)

where R sp denotes rational strictly proper.

Clearly, the class of LQG controllers is a subset of this controller class. 

From [35], the class of all stabilizing controllers for G(s) has the form of 

Fig. 5.2, being parameterized in terms of Q(s) € RHoq. Moreover J(s) has 

the form

J(s)
A k - H  B + H D
F 0 I

- C - D F I - D
M s )  =  I<(s) (5.8)

It should be clear that Fig. 5.1b for this case takes the form of Fig. 5.2 with 

the Q(s) nonzero.
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Other relationships of interest are reviewed. Defining

X  = M(s)  U(sy  
[N(s)

A  4- B F B - H
= F I 0

C + DF D I
€ RHC (5.9)

x  4

then

r v(3) - ü ( s )
—N(s) M(s)  J

A + HC
F
C

-IT

- ( B  + HD )  H
I

- D
€ RHoo (5.10)

X(s)X(s)  = X(s)X(s)  = I (double Bezout) (5.11)

G(s) =  N{s)M{s)~l = M( s ) ' l N(s),  K(s)  =  Uis)V(s)-1 = V(s)~l Ü{s)

(5.12)

Also

J(s)

and referring to Fig. 5.1c,

\Jn(s) M s ) ]  _  r K(s)  IZ(a)-1 1
M s )  J22MJ Lf (s) - 1 - V { s) - ' N( s) \

K(s) M(s) — K(s)N(s)  1
~[M(s) -  N{s)I<(s)]N(s) J [0 }

T(s) = J22(s) +  J2i (s)G(s)[I -  Jii(3)G(s)]-1J12(s) =  0 (5.14)

5 .2 .2  S c a l in g

Before applying any multivariable model reduction technique to J(s) to yield 

a J(s),  it makes sense to scale the inputs y(t), s(t) and outputs u(i), r(t) in 

such a way that they are given appropriate significance. We do not propose 

an optimal scaling selection. Based on experience we know that scaling can
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be crucial to a good reduction. In the examples studied in this chapter, we de­

termine the scalings of the variables y(t), s($), u(t) and r(t) using their closed- 

loop auto-covariance responses to realistic stochastic disturbances. This is 

achieved by solving a steady state Lyapunov equation associated with the 

closed-loop system. Thus consider the stochastic closed-loop system driven 

by the process noises w(t) and measurement noise v(t),

- j p -  = Ax( t ) 4- Bu(t)  + w(t) 
at

(5.15)

— Ax(t) +  Bu[t) — Hr(t ) 
at

(5.16)

where

r(t) =  y(t) -  [Cx(t ) 4- Du(t)], y(t) =  Cx(t)  4- Du(t) 4- v(t)

u(t) =  Fx(t)

E[w(t)w'(r)] = Qw8(t -  r), E[v(t)v'(T)] — Qv8(t -  r)

The state/state-estimate auto-covariance matrix P satisfies the following 

Lyapunov equation,

P A ’ +  A CP + I  0
0 - H

Q n
I  0 1
0 - H (5.17)

where

P A B F
- H C  A + B F  + H C .

Q n
' Q u  0 •

. 0 Qv.
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E\y{t)y'(t)] = [C DF]P[C DF]1 + [0 I]Qn[0 /] ' (5.18)

E[u{t)u'{t)] =  [0 F]P[0 F]' (5.19)

E[r(t)r'{t)} =  [C -  C)P[C -  C]' +  [0 I]Qn[0 /] ' (5.20)

It is not possible to calculate a value for / ^ ( ^ ' ( t ) ] ,  because it is dependent 

on the value of Q(s). Choosing a value that it too large will place too much 

emphasis on the s(t) input in the reduction. One suggested selection is to 

choose E[s(t)s'(t)] = E[u(t)u'(t)]. We propose that the square roots of the 

diagonal elements of these matrices be used to generate scaling matrices Dy, 

Du, Dr, Ds to scale J(s)  as follows

Ak -H D y  (B  +  HD)Da
«/seeded ( ̂  ) — D ^ F 0 D zl D,

D; ' {C  + DF) D ; l Dy - D ; lDD,

In the system JscaiedM the variances of the scaled input/output variables in 

the closed-loop system will be unity.

Now model reduction techniques as in [16] can be applied to J SCaied(>s) to 

yield low-order models,

«/scaled ( ^ )
(Ak ) Hscaled *

Fscaled * /^scaled ** *
(5.22)

from which a reduced order controller is taken as

K(s)
( A k ) F-scaledDy

DUFseeded D u //scaled ZZ y j  T

D y  [ t / s c a l e d ( ^ ) ] l l ^ y (5.23)
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More generally, K(Q,s)  can be in terms reductions on J  and constant Q as 

in (5.3).

Other scaling possibilities can be envisaged. Observe that at the one 

extreme with Du approaching zero, then [ j(s )]n  —> J n (s) and standard con­

troller reduction is achieved. At the other extreme with Dr —> 0, maintaining 

prediction quality is emphasized—this is linked to maintaining quality of the 

state estimate feedback. When the prediction errors are white and state es­

timation is optimal, then with Dr —* 0 these qualities are preserved as much 

as possible.

Of course, a search procedure over Du, Dr and Dy may achieve an im­

proved compromise between performance and robustness. Such brute force 

optimizations are not explored further in this chapter. There is no proof or 

rationale in this chapter to suggest that a selection Du 0 is always better 

than a selection Du =  0. However, out experience has certainly shown that it 

is sometimes better. One scaling technique has been presented above based 

on certain intuitions which appear to work well. It could be used as the 

starting point for a search for an improved reduction.

5.2.3 R e-O ptim ization

Referring to (5.2)-(5.4), it is clear that a class of reduced order controllers 

having the same dimension can be defined in terms of the sub-blocks of J(s) 

and Q(s), with Q(s) constrained to be constant. These are parameterized
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in terms of a constant Q matrix having the dimensions of the plant transfer 

function matrix. A search over all constant Q can lead to improved reduced 

order controllers over that of the simplest case where Q =  0 as in the previous 

subsection.

Such a search over constant Q is relatively simple computationally com­

pared to a search over the scale factors Dr , Du, Dy involving repeated appli­

cation of the balanced realization algorithm.

The search over constant Q(s) can be simplified exploiting the fact that 

all closed-loop transfer functions are affine in Q(s) when J(s) =  J(s ), so are 

“close” to affine in Q(s) when j ( s )  is “close” to J(s).

5.2.4 E stim ation-based  reduction

Control schemes based on state estimate feedback can be viewed as an es­

timator/controller driven from both the plant inputs u(t) and outputs y{t) 

with an output u(£). As depicted in Fig. 5.3a, we can think of an augmented 

plant G'a(s) = [G'(s) I] with an augmented output [y'(t) u,(<)]/ driving a 

controller, denoted K a(s). Now the corresponding K a(s) and Ja{s) are given 

from
’A + HC [~(B + HD) H) 0

J „ ( s )  = - F [0 0] I
C [-D I } 0

Notice that Ja(s) is stable so that reduced order approximations J a(s), 

K a(s) =  [Ja(5)]n are also stable. There appears to be no other a priori guide­

line in selecting between reducing this controller and the conventional one.
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r=y-y

(a) (b)

Figure 5.3: Estimation-based reduction

Clearly in any particular application one may be given a “better” reduced 

order performance and robustness. A dual approach is to view the plant as 

in Fig. 5.3b, where the plant Gb(s) = [(j (.s) 7] has an additional input which 

is added to the output of G(s). The corresponding transfer function for Jb{s) 

is given by

Ms)

Comparison of (5.24), (5.25) with (5.9), (5.10) reveals that

A + B F H —B
- F 0 I

C + DF 0 - D
0 7 0

(5.25)

X { s )
O'

7.

0
7

7
Ja(s ) (5.26)

(5.27)

This suggests the possibility of reducing X  or A'(s) as another method of
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controller reduction. The fractional decomposition of the reduced order con­

troller would be found by applying standard model reduction methods to X  

or T'(s).

5.2.5 C ontroller reduction  m aintaining perform ance

Consider that a performance objective is to minimize the energy in some 

internal variable, or its estimate, denoted e. For the controller class (5.6), 

which can be interpreted as state estimate feedback, it is common for e to 

be a linear combination of the states of K(s).  Thus here we assume that the 

transfer function from u to e is E(s l  — Now, the augmentation

of the J(s)  block of (5.8) to incorporate this transfer function is

Ms)
A k - H B
F 0 I

- ( C + D F ) I - D
E 0 0

, K e(s) = [Je(j)]n (5.28)

Scaling of this in terms of Dy, Du, Dr , Ds and De is now a natural extension

of the scaling in (5.21). Likewise generalizations of (5.22) to Jscaied(5) and 

K{s)  = T)u[TScaied(5)]ii^y 1 are straightforward. The relative significance of 

De determines the emphasis on performance of the controller in the reduction 

process, and can be fine tuned by a trial and error procedure.

5.2.6 Frequency shaped reduction

Just as a frequency shaped reduction of K(s)  can lead to improved reduced 

order controllers, so a frequency shaped reduction of J(s) leading to a reduced
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K{s)  can give improvement. It might be that we require robustness in a 

frequency band only. That is, we require robustness to Q(s) € RHoo in 

this frequency band. Under such circumstances it makes sense to insert in 

Fig. 5.1b a stable band pass filter between the residuals r(t) and the input 

to Q(s), and require robustness to all Q(s) G R H ^  as before. The band 

pass filter can be used as a frequency shaped augmentation of J(s),  being in 

series with J2i{s) (or Ju{s))  and Again the augmented J(s) can be

reduced and the 11-block extracted as a frequency shaped reduced controller 

/C(s). The augmentation increases the degree of J(s), while the following step 

reduces the degree of J(s).  In many cases, the effect of the errors introduced 

by increasing the degree of J(s) in the intermediate step will be outweighed 

by the improved robustness of the closed loop controller.

Of course general frequency shapings can be employed based on the 

closed-loop transfer functions. In fact, it is sometimes impossible to ob­

tain a good reduction of J(s) unless frequency weighted reduction methods 

are used.

To avoid numerical difficulties when the combined order of J(s) and any 

frequency shaping is high, it makes sense to first carry out a preliminary un­

weighted reduction of J(s)  and any frequency shaping using balanced trunca­

tion. Such a reduction allows a degree reduction with relatively small error.
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5.2 .7  G eneration o f F , H

When the plant and controller have the same degree, but a selection F, H 

to satisfy (5.6) is not known a priori, then such selections can be found for 

generic K (s), G(s) [31]. More precisely

Lemma 5.1 Consider the plant/controller pair G(s), K (s ) with minimal 

nth-order state-space realizations

G(«)
' a B
c D

I<(s) ' Ä B
C 0 .

(5.29)

The controller can only be represented in the form (5.6) if and only if there 

exists a real, nonsingular solution Z to the quadratic matrix equation

A Z + B C -  Z B C Z  -  Z(Ä  4- B B C ) = 0 (5.30)

Moreover, when a real, nonsingular Z exists

F = C Z ~ \ H  =  —Z B (5.31)

Proof: As in Theorem 3.1

In the SISO case solutions F , H  always exist [9] under

[A, B],[Ä, B] controllable, [A, C],[Ä, C] observable (5.32)

Remarks:

(i) Sufficient conditions for multivariable G(s), K(s)  have been considered

in Chapter 3.
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(ii) There are in general a class of nonsingular solutions of (5.30), giving 

rise to a class of J(s),  J(s) and K(s).  For each J(s) the bounds on 

|| J(s)  — J($)|| will in general be different, and each approximation will 

have its own inherent frequency shaping. Clearly some selections of 

J(s)  will be better than others. This has been borne out with examples 

studied, but as yet there is no elegant method to select the best J(s) 

to use.

5.2.8 Staged reduction

So far the simplest situation has been studied—namely when the degrees 

of G(s),K(s)  are the same. Should K(s)  be of a higher degree than G(s), 

it makes sense to first perform a standard reduction of K(s)  until it is the 

same degree as G(s). Such preliminary reduction can usually be made with 

negligible errors compared to subsequent reductions to achieve a lower degree 

estimates K(s).  The same holds mutatis mutandis when G(s) is of a higher 

degree than K(s).

5.2.9 S im ultaneous stab ilization

Consider that K  is designed to give acceptable performance/robustness for 

a number of plants G\,  G2 . . .  Gn . Associated with each plant Gi there is a 

corresponding J, with [«/,•]n  = K  for each i. By bringing each J,- to the same 

co-ordinate basis it is possible to define a block J ( s ), Q(s) as in Fig. 5.4 such 

that
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Q(s) Qu e RH°°

Figure 5.4: New J  and Q blocks based on controller designed for simultaneous 
stabilization of many plants.

J i  = [ / u I (5.33) 
Lc/i+1,1 J i + l , i + l J

By setting Qu =  0 for k, l ^  2, i = 1,2. . .  Â , the class of all stabilizing 

controllers for G{ is characterized in terms of Qu 6 RH<*,. This leads to the 

following lemma.

Lemma 5.2 With (5.33) holding, the class of all stabilizing controllers for 

G{ for i =  1 ,2 . . .  N  is a subset of the class of all controllers of Fig. 5.3 with 

arbitrary Q(.s) € RH oo-

To achieve a reduced order controller K(s)  for K( s ), we propose the reduction 

of J ( s )  giving K  =  [J]n . When N  = 1, this method reduces to that 

presented previously. Scaling can be introduced to order the importance of 

the various plants G,-.
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5.2.10 R educed order plant

It may be that for simulation purposes a reduced order plant is required. In 

the reduction technique described above it is possible to extract a reduced 

order plant G(s) in addition to the reduced order controller as follows

A k -  B F  -  HC -  HDF

C

B (5.34)
J T

—■ 1 *«. A A A  A A

where the estimates A k ,H->FiC and D are obtained from J.  One problem is 

that there is no guarantee that K  close to K  will ensure that G will be close 

to G , or indeed, that K  or K  will stabilize G. Let us instead propose that 

a reduced order G be obtained from a dual procedure to that giving K,  so 

that at least G is close to G and is stabilized by K.  In the dual procedure 

the roles of K, G are merely interchanged.

5.3 R a t io n a le

5.3.1 P reserving robustness properties

The class of all stabilizing controllers for a plant G(s) € Rv shall be denoted

Ka =  { K  € R p I H(G,K) € RHM , det(7 -  ^  0} (5.35)

where H( G , A') represents the closed loop transfer functions

H(G,  K)  = ’ /  +  K{ I  -  GK) ~l G K(I-  G K ) - 1' 1 1

. ( /  -  GI<)~lG

r-H11 l - G  I
(5.36)
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Such classes have a parametrization in terms of an arbitrary Q E RHoo and 

an arbitrary factorization K  = UV~l E fCG

Ka = { ICa (Q) = (U + M Q )(V  +  N Q )-11Q € R H „, det(V +  MQ) ^  0 }

(5.37)

By duality, a controller K(s) E Rp stabilizes a class of plants QK, and the 

reduced order controller K  stabilizes a class of plants Qg.

D efinition 5.3 The robustness properties of a stabilizing controller K  with 

respect to a plant class Q* are said to be preserved in a controller reduction, 

yielding K  when

Q* C Qk ,k = (5.38)

Remarks:

(i) A dual definition of preserving robustness is as follows. With KG the 

class of all stabilizing controllers for a reduced order plant G , the ro­

bustness properties of a plant G with respect to a controller class K* 

are said to be preserved in a plant reduction yielding G when

K* C £ Gi(} = r f ln C Ä (5.39)

The class of stabilizing controllers for a plant G can similarly be pa­

rameterized in terms of Q E RH

£<j = {£<s(<3) = (Ü + M Q ^V + N Q )-1 I € R H ^,de t(V + N Q )  0}

(5.40)
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JC^Q)

Figure 5.5: Linear fractional maps

where K  = ÜV~l is a stabilizing reduced order controller for the re­

duced order plant G =  N M ~ l .

(ii) A controller or plant reduction that preserves the robustness properties 

defined in (5.38), (5.39) should maintain QK j> close to QK and JCGG 

close to fCG. In other words, the reduction should give K  such th'at

AG == or A/C = small 1 (5.41)

(iii) The fractional maps (5.37), (5.40) can be depicted as in Fig. 5.5.

5.3.2 C loseness m easures

Standard T2 or norms define measures of closeness of GK(Q) to G^(Q)

for any specific Q E R H ^ ,  with such norms highly Q dependent functions.

The controller reduction method based on the reduction of X(s)  or Ja(s)

^ e re  the binary set operator A is the symmetric difference defined as A A B = 
( A D B ) ö ( Ä n B ) .
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suggests convenient measures of closeness of the classes Gk ,Gk  being

||AA?(s)|| or ||A J0(s)|| respectively (5.42)

where A J a(s) = Ja(s) — J a(.s) etc.

The following lemma shows that a sufficient condition for the controller re­

duction objective that QK(Q) is close to GftiQ) is that || A*£(s)|| or || A J0(s)|| 

in (5.42) be small. A dual argument can be developed for the corresponding 

plant reduction.

Lemma 5.4 With the definition (5.42) and

\\AX\\ < c or \\AJa\\ < e (5.43)

then for generic Q G R H ^ ,  as e —> 0

IIS k (Q) -  0A-(0)ll -  0 with O(t) (5.44)

Proof Observe that from (5.44)

Qk (Q) -  SK(Q) = (N + VQ)(M + UQ)-X- { N  + VQ) ( M + UQ)-'

= {Sk (Q)[AM + A -  [AN +  A +  5}4fe)

For generic Q and with ||A*V|| < e, as AM, A N ,  AU, A V  —► 0, ||GffiQ) — 

Qk (Q) II ~* 0 with G(AM, A N ,  AU, AV)  and the result (5.44) follows. Since 

from (5.25) ||A Ja|| < e implies ||A<f|| < \/2e, then ||A J0|| < e implies (5.44)

□
also.
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Remark: By appropriate scaling, the controller reduction methods can be 

specialized to those of [25] involving only At/, A V. Clearly the methods 

proposed take into the account both the plant and the controller dynamics.

5 .4  E x a m p le s

The method described in Sec. 5.2.1-5.2.2 has been applied to the reduction of 

a 55th order LQG controller for an advanced active control research aeroplane 

[38, 26]. Figure 5.6 shows the block diagram of a flutter suppression and gust 

load alleviation design. The controls used are the elevator and the outboard 

aileron surfaces. Measurements of pitch rate and wing tip acceleration are 

used to estimate the aeroplane’s rigid and elastic motion. Also shown in 

parentheses in Fig. 5.6 are the root-mean-square responses, at various points 

in the control loop, to a lOfts-1 vertical Dryden turbulence. These values 

were used to scale J scaied(-s) o f  (5.21), and Hankel norm approximation was 

used to obtain the reduced order JscaiedM- Reduced order controllers of as 

low as fourth order could give a satisfactory closed loop performance.

Table 5.1 summarizes the results for different controllers, ranging from the 

original controller to the fourth order controller. Robustness properties have 

been evaluated based on single loop phase and gain margins, and the worst- 

case stability margins have been recorded in the table. Note that the margins 

of stability have been preserved in accordance with the design requirements 

( gain margins of 6dB and phase margins of 30°). Similarly, the damping
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Turbulence (10 ft/s)j

Elevator (0.592 mrad)
Outboard Aileron 
(2.35 mrad)

AEROELASTIC 
AEROPLANE 
MODEL 
(55-th Order)

Dynamic Loads
(Bending Moment, Shear, Torsion)

Pitch Rate (0.8606 rad/s)
Wing Tip Acceleration 
(96.32 in/s/s)

LQG
CONTROLLER 
(55-th Order)

Figure 5.6: Block diagram of the flutter suppression and gust load alleviation 
system

of the flutter mode always exceed the design requirement of 0.015. Further 

reduction leads to an unstable closed-loop system. With other controller 

reduction methods such as modal residualization, the minimum order for the 

reduced order controller is ten. It is perceived that if the options described 

in Sec. 5.2.3, 5.2.5-5.2.6 were considered, then further improvements in the 

controller reduction could be expected. This will be left for future work.

We will now make some remarks on a second example, one which is well 

studied in the literature [14, 24, 25]. Our aim here is not to demonstrate the 

superiority of our various methods, since the inbuilt frequency weighting in 

the reduction technique of [24] turns out to be highly suited to this example; 

a simple application of our methods does not do as well. Rather, our aim 

is to be convinced that the methods here can be competitive, depending 

on the engineering criteria for judging robustness/performance. Indeed, for
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Order F lu tter
Mode

Damping

Stability
Margins

Bending
Moment
(in-lbs)

Shear

(lbs)

Torsion

(in-lbs)
55 0.074 14.0dB, 58.6° 2.348 x 10s 854 4.437 x 104
10 0.034 14.0dB, 59.0° 2.593 x 105 890 4.200 x 104
9 0.039 5.8dB, 70.0° 2.348 x 105 859 4.495 x 104
8 0.032 10.0dB, 69.0° 2.610 x 105 930 4.821 x 104
7 0.032 15.0dB, 38.0° 2.345 x 105 862 4.779 x 104
6 0.027 7.0dB, 28.0° 2.362 x 105 871 4.968 x 104
5 0.016 15.0dB, 81.0° 2.371 x 105 997 7.117 x 104
4 0.016 7.5dB, 70.0° 2.680 x 105 1102 7.877 x 104

Table 5.1: Reduction of a 55th order F lu tter Suppression and Gust Load 
Alleviation Controller1.

a frequency weighted version of our technique we claim equality with, and 

perhaps marginal superiority to, some of the m ethods of [25].

An eighth-order controller is reduced to a fifth-order controller using vari­

ous controller reduction m ethods. The original plant and controller are given 

in [14] (case q=100). The plant has one rigid body mode and three lightly 

dam ped structural modes (£ =  0.02). The command response corresponding 

to the  full order controller does not exhibit any lightly dam ped structural 

modes. This is due to the fact th a t with precisely placed notch filters in 

the feedback controller, the residues at the structural mode frequencies are 

negligible. Reduction of the controller order alters the location of the notch 

filter poles and zeros, and may introduce large residues at the uncontrolled 

structu ra l modes.

^ h e  bending moment, shear force, and torsion are root-mean-square responses to a 
lOfts-1 vertical Dryden turbulence.
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A+BF+HC+HDF -H  B

-<C+DF)

Figure 5.7: Frequency-weighting at the controller inputs

Reduction of a stable right coprime factorization of the controller [24] 

produces a good approximation in the low frequency region, and introduces 

residual responses at the second structural mode frequency. Comparison of 

the frequency weighted balanced truncation method of [14] with other reduc­

tion methods is given in [24, 25]. Frequency weighted balanced truncation 

is here applied to the controller structure Je{s) described in previously (see 

Fig. 5.7). The criterion function in the cost function is appended to the 

outputs of Je(s) to maintain performance. The scale factors applied at the 

inputs and outputs of Je(s) are determined by evaluating the closed-loop 

covariance responses. This reduction technique yields a reduced order con­

troller with good robustness/performance properties in a systematic fashion, 

with fewer iterations than the method of [25]. (In [25], an augmented output 

is also included in the reduction to improve performance.)

A reduced order controller obtained by direct optimization via the SANDY 

design algorithm [28] has also been studied for comparative purposes. The 

reduction was based on the same cost objective, process noise, and sensor
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noise characteristics. The resulting step response agrees closely with the orig­

inal design. The low order controller has the advantage that it only excites 

the plant at the first structural mode frequency.

5.5 C o n c lu s io n s

A class of controller reduction methods have been proposed which preserve 

the robustness and performance qualities of the controller. The methods 

can be viewed as consisting of three steps. The first is organizing the plant 

and controller information. The second is applying standard model reduc­

tion techniques, and the third is extracting and re-optimizing (if necessary) 

a reduced order controller from the second step results using a constant sta­

bilizing controller structure. Trade-offs between performance and robustness 

can be achieved by scaling, and indeed by certain extreme scalings, other 

methods in the literature can be recovered.

The proposed methods are, in the first instance, most appropriate for 

controller designs organized as state estimate feedback schemes. However all 

stabilizing controller designs can be organized as such [35], and our methods 

do extend of stabilizing controllers. Simulation studies have supported the 

rationale for the methods proposed.



C h a p te r  6

A  s tu d y  on  a d a p tiv e  
s ta b iliz a tio n  a n d  re so n an ce  
su p p re ss io n

6.1 Introduction

With precise knowledge of a linear multivariable plant, controller design tech­

niques are effective at achieving a high performance in terms of disturbance 

response and control energy trade-offs. However, since plants are invariably 

uncertain objects, possibly drifting in their characteristics with time, perfor­

mance for a nominal model is usually compromised in a design procedure to 

achieve robustness to plant uncertainty. Even with a fairly robust design, 

there is a possibility that the control system can catastrophically drift into 

instability or approach such a condition by exhibiting resonance behaviour. 

In such cases, one lightly damped mode often dominates, and if this dom­

inant mode can be dampened by adaptive techniques, and the resonance

106
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suppressed without otherwise inordinately influencing the control system, 

robustness/performance enhancement will result.

One area of application of resonance suppression is in aircraft control. 

For example, ride quality can deteriorate if a structural resonance is excited 

by turbulence. Indeed, catastrophic failure can arise in the presence of wing 

flutter, which can occur in an emergency situation when the flutter speed is 

exceeded. The work of this chapter is motivated by the need for adaptive 

resonance suppression, rather than the possibility of devising an elegant so­

lution to such a problem. Clearly, if low order adaptive schemes are applied 

to high order uncertain plants, such as an aircraft body or wing, there are 

inevitably unmodelled dynamics. How then can the problem of unmodelled 

dynamics be overcome. The methods proposed in this chapter are presented 

more as a challenge for following researchers, rather than to give an optimal 

approach. We do not seek global convergence results for our methods, be­

cause of unmodelled dynamics, and since there are high order unmodelled 

dynamics, we do not seek to calculate regions of local convergence. Rather 

we assess our methods by simulation studies with random model selection.

The adaptive scheme proposed here differs from those treated in the lit­

erature more in terms of its objectives and orchestration than in terms of 

its building blocks. It has evolved from case studies such as earlier work [8]. 

Most adaptive control designs in the literature tend to replace an off-line de­

signed controller with an adaptive version of the off-line design. Thus, instead
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of a pole assignment or linear quadratic controller, there is an adaptive pole 

assignment scheme or an adaptive linear quadratic controller. These utilize 

linear parameter estimation schemes, based often on input-output models 

with little or no incorporation of a priori model information.

The scheme proposed here is to provide an additional loop on an existing 

off-line designed control system, associated with a nominal model. The a 

priori information is that the control system is stabilizing for the nominal 

model, but may drift into a resonant condition or instability. Thus, in the 

simplest case we may reasonably assume that all modes are stable, except 

for one dominant mode which is near instability or is just unstable. The de­

sired control objective is merely to dampen the dominant mode somewhat. 

This suggests estimating its frequency and damping, and applying an adap­

tive pole-assignment scheme to force this mode to a location at the same 

frequency, but with greater damping. The intention is to achieve this with­

out driving the other modes into instability or exciting other lightly damped 

modes.

The algorithms are presented in Sec. 6.2 based on low-order plant ide­

alizations and known least-squares identification and pole assignment tech­

niques. In Sec. 6.3, simulation studies are presented for both idealized low 

order plants and random high order ones, and stabilization and resonance 

suppression properties are observed. Section 6.4 presents an application of 

the new algorithm, which allows it to adaptively enhance fixed controller
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designs. Conclusions are drawn in Sec. 6.5.

6.2 A n a d a p tiv e  a lg o rith m  for reso n an ce  su p ­
p ress io n

Consider now a scalar stochastic plant or closed loop system G(q~l ), mod­

elled in terms of polynomials in the backwards shift operator g_1, with one 

dominant resonant mode associated with a pair of poles in the vicinity of the 

unit circle. The adaptive resonance suppression algorithm presented here 

seeks to determine the frequency band of the resonant mode via an inner 

identification loop and exploit this information in an outer adaptive control 

loop. The algorithm is shown in Fig. 6.1, and is now developed in some 

detail.

Plant M odel It is assumed that the plant G(q~l ) can be accurately 

modelled by a high-order moving-average autoregressive model(ARMAX):

Vk T dl2/n—1 + ‘ +  ttnoVk—no — b\XLk—1 "h * * * T

+ C i w k - i  + -----1- cPowk- Po (6.1)

where it; is a zero mean gaussian noise disturbance process. The parameters 

of the ARMAX model will be represented by a vector

0  — [dj • • • <zno b\ bmQ C\ Cpj] ( 6.2)
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Identifier

Identifier
bandpass filter

desired poles

controller

pole assign 
algorithm

K(z)

Figure 6.1: Main control system
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Inner Loop Identification The recursive least squares identifier RLSl 

is based on a low-order ARMA model:

Vk T GiVk—i T ■ • • 4* o.noVk—ni — ~l- * • * —|— bmiUk-mi (6-3)

where typically ri\ = 4. This identification block has two outputs, 0 / t* and 

The value 0 /^  is a recursive estimate at time h of the true model 

0 . The estimate will not in general asymptotically approach any of the 

true model parameters, because the model is underparametrized. However, 

in the presence of a dominant resonant mode (or unstable mode) 0 /^  can 

allow a crude estimate of cji G [0,7r], the radian frequency, normalized by the 

sampling frequency, of the least stable pole pair. Here the least stable pole 

pair is the pole pair belonging to 0 , which is furthest from the origin. The 

estimate wi,* of uj\ is the frequency of the least stable poles of the ARMA 

model given by 0 / t*. The idea is that RLSl will give a rapidly converging 

estimate of the frequency lo\ of the dominant resonance, and this information 

can be used to adjust the bandpass filter at the plant output. Here the 

dominant resonant mode is always considered to be due to a complex pole 

pair; the possibility of a nearly stable or unstable pole on the real axis is 

excluded.

Frequency Shaping Filter Using the frequency information from the 

inner loop, our approach is for the bandpass filter at the plant output to 

be adjusted to accentuate signals in the frequency band associated with the 

resonant mode, and to attenuate signals at other frequencies. With the series
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band pass filter in place, the outer identification/control loop can concentrate 

on stabilizing the resonant mode, ignoring the now well damped stable modes. 

The underlying assumption of this approach is that the augmented plant, 

formed by the combination of the plant and the frequency shaping filter, can 

be closely approximated by a lower order plant. Whether this is achieved in 

practice depends on the nature of the plant and filter. Certainly the frequency 

shaping attenuates plant modes at a frequencies far from the frequency of 

the dominant resonant mode.

Outer-Loop Control The outer identification loop consists of a recur­

sive least squares identifier RLSO and a pole assignment controller. There is 

no need to be restricted to RLS identification or pole positioning algorithms: 

these algorithms were chosen in the simulations for simplicity. Notice that 

the control loop can be broken at the point X . It may be necessary initially 

to run the identification algorithms without feedback applied, to allow the 

estimates Qo,k to get close to their final values.

Since the frequency of the resonant mode is assumed to be initially un­

known, a standard pole assignment controller may attempt to move the res­

onant mode to an assigned pole location far from its initial position. This 

will result in a large control energy, and possibly destabilize the closed-loop 

system.

As an alternative to using standard pole assignment, we propose an al­

gorithm in which the location to which the closed loop poles are assigned is
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resonant mode 
(open loop)

unit circle

poles assigned here

Figure 6.2: Pole assignment with the dominant resonant mode assigned ra­
dially inwards

a function of the estimate of the frequency of the resonant mode. An 

attempt is made to assign the resonant mode radially inwards, so that it 

has a higher damping than originally, but is still not heavily damped. This 

is idea is depicted in Fig. 6.2. If is a good estimate of u/i, then this 

pole assignment strategy minimizes the distance that the pole is moved, and 

hence the control energy to achieve more damping.

In the following section, simulation results are discussed, and improve­

ments to the algorithm are suggested.
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6.3 A S im u la tio n  S tu d y

6.3.1 Prelim inary R esu lts w ith  Standard P ole A ssign ­
ment

In all of the following simulations a time invariant plant G(q~l) is used, 

even though the algorithm is ultimately intended for use when plants have 

slow time variations. The parameter estimates Qo,k are given arbitrary 

initial values, and the covariance matrices associated with the RLS estimation 

are initialized to matrices of the form al, with a a large real number.

It is also necessary to choose the relative magnitudes of the external 

excitation s*, and the noise Wk inherent in the ARMAX model. In most 

of the following, the magnitude of Sk is ten times the magnitude of ciWk-i 

(Po = 1).

With rii = 4, and with various different plants and initial conditions, it 

is observed that is a good estimate of the frequency of the least stable 

pole u\. As one would intuitively expect, increasing tl\ results in uifk being 

a more accurate estimate: the disadvantage is that the computational effort 

becomes much greater. As a result of these initial tests, it seemed reasonable 

to set rii, mi — 4 for the remaining simulations. This corresponds to RLSl 

identifying a model of the form

big'1 4- b2g~2 + b3q~3 + 4̂q~4 ^  ^
1 + aiq-1 + a2q- 2 + a3q~3 + a4q~4

The loop filter L(q~l) is designed by bilinear transformation of a low pass
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Magnitude

1 1 10

Frequency (rads'1)

Figure 6.3: Frequency response of second-order lightly damped transfer func­
tion

continuous time prototype of the form

up
s2 +  2£o;s -p u 2

Figure 6.3 shows the frequency response of such a system. The magnitude 

of the frequency peak can be increased by reducing the damping coefficient 

(. In the outer loop, a model of the form (6.4) is also identified. In the 

simulation, the loop is closed at X after a fixed number of iterations and 

trials run with different values of £. For simplicity, and to enable comparison
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with the adaptive pole positioning in the following section, the closed-loop 

pole assignment is initially made non-adaptive. Two of the closed-loop poles 

are assigned to 0.5±0.5j and the rest are assigned to the origin. Since main­

taining stability is the most important criterion for a successful controller, 

many simulations must be run, and a check made of how many runs result 

in closed loop stability.

The results indicate that there is, in general, no advantage in using the 

loop filter L[q~l ). There seemed to be little correlation between the damp­

ing of L(q~l ), and hence the corresponding frequency selectivity, and the 

effectiveness of the controller. It is important to note that for a continuous 

time plant with a broad spectral response sampled prior to applying adap­

tive techniques, there is already an in-built pre-filtering which focuses on any 

frequency band of interest. Our simulations suggest that, in general, there 

is no merit in a further prefiltering, although there are certainly situations 

where prefiltering does help.

6.3.2 C losed-loop  P oles A d ap tively  A ssigned

We now allow the location to which the closed-loop poles are assigned to be a 

function of u \ tjt. In the simulations, one pair of closed-loop poles is assigned 

to frequencies of ± cji^ and at a radius of 0.7. The other closed-loop poles 

are assigned to the origin. The plant models in the simulation have a lightly 

damped dominant pole with a randomly chosen frequency, and the other 

poles with random locations close to the origin. The design parameter that
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No filter 
C =  0.6 
C =  0.2

Table 6.1: Simulation results: Adaptive pole positioning

no. runs no. successful runs success rate
24 18 0.75
11 2 0.18
5 11 0.45

is changed is the damping coefficient £ associated with the loop filter design. 

Some simulations are also run with no loop filter: here the only purpose of 

the inner identifier is to allow the location to which the closed-loop poles are 

assigned to be adaptive. In all cases, the control algorithm is run in open 

loop for the first fifty iterations, then closed. The results, based on a small 

number of simulations, are given in Table 6.1.

Loop Filter The results of Table 3.1 indicate that the use of the loop filter 

can actually reduce the chance of obtaining a stabilizing controller. One 

reason for this is that the loop filter introduces additional poles into the 

control loop, and these must be taken into account in the pole assignment. 

A refinement of the algorithm is to assign two closed loop pole pairs to 

a radius of approximately 0.7 and the rest to the origin: one to assign the 

dominant resonant pole radially inwards, and the second to take into account 

the filter poles. Simulations show that this assignment of a double pole pair 

results in a more reliable controller.

In the following, we describe some enhancements to the controller design.



Chapter 6 Adaptive resonance suppression 118

6.3.3 C autious Control

In the simulations above, the control loop is not closed until after the first 

fifty iterations. The resulting transient sometimes causes the system to go un­

stable. To lessen the effect of this startup transient, concepts from Äström’s 

cautious control [4] can be implemented. Indirect adaptive control algorithms 

employing caution use not only the parameter estimate, but also information 

about the covariance of the estimate, when designing the control law. In our 

case, the algorithm is modified by replacing the control signal Vk by a scaled 

control signal Q kV*, where Q k  is a nondecreasing positive sequence bounded 

above by one. Such a sequence can be generated as follows. Given outcomes 

rk and a regression vector <j>k of past measurements, the RLS algorithm iden­

tifies the parameters 0 of the best model of the form

rk =  (f>kO (6.6)

The RLS algorithm also calculates a matrix P k , which, under certain noise 

assumptions, can be interpreted as an estimate of the covariance matrix 

associated with the estimate Ok of the true system model. We therefore 

propose Q k  given by (6.7), where k s is some empirically determined positive 

constant.

Q k
1

i + k,K6'kp̂ (6.7)

Simulations show that there is little variation in Qk for different Simula-
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tion runs. As a result of this Qk is made independent of 0*, and increasing 

in a linear fashion from zero (k = 6) to one (k =  50). In general, the simu­

lations show that the use of caution results in a more reliable controller.

6.3 .4  C entral T endency A d ap tive P ole A ssignm ent

One problem with adaptive pole assignment schemes is that when the esti­

mated plant has a near pole zero cancellation, the resulting controller can 

produce excessive control signals. This occurs because the controller design 

must invert a nearly singular Sylvester matrix. The central tendency adap­

tive control algorithm [37] chooses controller parameters based on a trade-off 

between the confidence in the estimated plant parameters and ill-conditioning 

of the Sylvester matrix, as described below.

Suppose we are given an estimate Go{q~l ) by RLSO of the form

Go(q-') =  Biq-^/A^q-1) (6.8)

where

A(q l ) =  1 +  a\q 1 H-h

B(q~l) =  bi_q~l H-------1- bmq~m ( 6. 10)

(6.9)

For this plant the pole assignment control scheme is

E(q l )vk =  - F ( q  1)rk 

A i q - ' W q - 1) + B (q - l)F(q-')  =  H(q~X)

( 6 . 11)

(6. 12)
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where

E{q  *) — 1 +  e i<? 1 +  • • • +  e m <7 m ,

Fiq-1) = f a ' 1 +  • • •  +

H(q~') =  1 + /h ? - 1 +  • • • + A„+m«?-("+m)

The polynomial equation (6.12) can be written in terms of a Sylvester equa­

tion.

Sab
1
0

(6.13)

where

e' = [eie2 . . .  em], / '  =  [ / i /2 . . .  / n], h' = [hih2 . . .  Än + m ]

S ab

1 0
G! 1 0 0
Ü2 CL\ * 6i 0

. &2 6i • •

The dual form of this relation is

/i, O' =  [ä' 6'] (6.14)

With T \t the cr-algebra generated by measurements up to and including 

time the central tendency pole assignment algorithm chooses the con­

troller xj> which maximizes the probability density f[^{0)\^Fk-i]i where the 

minimization is carried out over all 9. It is shown in [37] that

f W ) i n - i ]  =  K.\  det ex p {-l(fl -  6k)’P ^ ( 9  -  04)} (6.15)
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where

I det J I det Sef (6.16)
det Sab

The minimization above is not possible in practice, because it is impossi­

ble to evaluate f [ i p ( 9 ) |^jt-i] at all values of 9. As a compromise, we instead 

evaluate this expression only over the set of 9 for which ip(9)  is of necessity 

evaluated, that is §k , 9 k - h  • • •, 9 k - M  for some M.

For the simulations above based on random plant parameter selection, 

there is a low probability of introducing near pole-zero cancellations, so that 

we do not expect any improvement in an average sense as a result of in­

troducing central tendency modifications. However, as shown in [37], non- 

generic cases can arise where dramatic improvements to performance can be 

expected.

6.3.5 Transient Perform ance S im ulation  R esu lts

Some simulation results are now presented to show the typical transient be­

haviour of the controller algorithm. The tenth-order plant is randomly chosen 

with one unstable pole pair at a radius of 1.1, and four other pole pairs ran­

domly distributed inside a circle of radius 0.7 centred at the origin. The 

frequency of all of the plant poles is uniformly distributed on [0,7r), and the 

radius of the stable plant poles is uniformly distributed on [0,0.7). It is 

suggested here that the above class of randomly selected plants be used as 

a benchmark, enabling comparison of our resonance suppression algorithm
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with those of other authors. The identifiers RLSl and RLSo identify fourth- 

order ARMA models. Cautious control and central tendency concepts (with 

M  = 5) are used as described in Sec. 6.3.

One pole pair is assigned to a radius of 0.7 and a frequency given by wi,*. 

The control loop does not include a loop filter L(z). Figure 6.4 shows the 

estimation of the frequency of the least stable pole pair; the actual frequency 

based on the true plant parameters is also marked on the graph. The pa­

rameter estimates given by RLSo are shown in Fig. 6.5. The plant output 

yk increases initially in an unstable manner until the control system learns 

the plant parameters, after which time yk settles down again.

6.4 P re c o n d itio n in g  M e th o d s

The methods proposed here have largely been motivated for use in con­

junction with other control methods. As an example, consider the indirect 

adaptive techniques of [42], based on the theory on the class of all stabilizing 

controllers [46, 12]. In this work, the real plant is embedded in a control 

loop, as in Fig. 6.7. The design of Jk  is based on a control system with a 

nominal plant Go and a stabilizing controller K q. With stable proper coprime 

factorizations

Go =  NoMö' = (6.17)

Ko =  UoVo-1 = V 0- l Uo (6.18)
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k

Figure 6.4: Estim ate of the frequency of the least stable pole pair
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Figure 6.5: Estimate Oo,k generated by outer identifier(RLSO )
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plant output yk

k

Figure 6.6: Plant output
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Figure 6.7: Plant/noise model
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then

Jk
K 0 Vo-1

Vq- 1 - V o 1 N o
(6.19)

With Q =  0, Jk forms a stabilizing controller for the nominal plant; such a 

controller can be designed to achieve specific performance or robustness ob­

jectives for the nominal plant. The block Q represents an additional adaptive 

feedback path over that of the nominal controller. In fact, the nominal plant 

Go is stabilized if and only if Q itself is stable. Furthermore, as Q spans the 

class of all stable transfer functions, the controller class

I<(Q) = K0 + V0- 'Q ( I  + V o - 'N o Q y X - 1 (6.20)

is the class of all stabilizing controllers for Go-

One result in [42] is that G will be stabilized if and only if Q stabilizes 

S', where

5 = M(G — Gq)Mq (6.21)

Here M, M0 provide a natural frequency weighting for (G — Go) in the fre­

quency bands of interest.

We now consider the problem of finding a suitable adaptive Q to stabilize 

the augmented plant S. Since 5 emphasizes frequencies in the passband of 

the closed loop system (G, Ko), it follows that S may often be a transfer 

function with a dominant resonant mode. This is an ideal opportunity to 

utilize the resonance suppression techniques of Sec. 6.2. The proposed scheme 

is shown in Fig. 6.8.
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Figure 6.8: Adaptive scheme to enhance fixed controller design
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6.5 C o n c lu s io n s

We present here a preliminary investigation into the problem of designing an 

adaptive controller when there is a priori knowledge that the plant has one 

dominant lightly damped, or possibly unstable, mode. Such a problem could 

be tackled without making any use of the knowledge that a dominant mode 

exists, as is the case when standard adaptive control schemes of are applied.

The algorithm is Sec. 6.2 makes use of an inner underparameterized iden­

tification of the plant, which enables fast estimation of the frequency of the 

resonant mode. This estimate can be used to adjust filters in the control loop, 

or even to adjust the position to which the closed loop poles are assigned. 

The latter possibility seems to be particularly attractive, as it prevents a 

situation where the controller tries to change the frequency of the of the 

dominant resonant mode by arbitrary pole assignment. The controller can 

instead simply apply feedback to increase the damping of the resonant mode. 

In practice, techniques such as central tendency adaptive control [37] and 

cautious control [4] can be used to improve the robustness of the algorithm.

The problem which is studied is one that we believe is important and that 

arises in many engineering situations. It is not shown that our algorithm is 

a universal or optimal resonance suppression algorithm, but instead that ad 

hoc modifications to existing adaptive control algorithms can improve their 

reliability.



C h a p te r  7

C o n clu sio n s a n d  F u r th e r  
R e se a rc h

7.1 C onclusions

This thesis has developed new theory and algorithms for multivariable con­

troller design. A basic assumption throughout much of the work is that 

the input-output behaviour of the plant is linear and time-invariant, and can 

thus be represented by factors of stable proper transfer functions. One conse­

quence of having an underlying axiomatic framework is that the theory may 

be extended to more general settings simply by choosing different definitions 

for the ring of plant transfer functions (rather than Rp), and the subring of 

stable transfer functions (rather that RHoo). In [11, 7] it is noted that the 

results may also be applied to time-varying and distributed systems. A sim­

ple variation of the theory of this thesis is to consider the case, as shown in 

Fig. 7.1, where the stability region is defined to be some subset of the com­

plex left half-plane. A design procedure based on factorizations with poles
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stability region

Figure 7.1: Alternative stability region

in this stability region will result in a closed-loop system with guaranteed 

bounds on the overshoot and settling time [46]. We now summarize some of 

the important contributions of this thesis:

• There have been theoretical contributions in the area of doubly co­

prime factorizations; these are right and left coprime factorizations of 

the plant and controller satisfying double Bezout identities. State space 

realizations of doubly coprime factorizations are given by Nett, Jacob­

son, and Balas [39] based on the theory of full-order state estimator. 

In Chap. 4 new doubly coprime factorizations are derived related to 

reduced-order observers. These factorizations are important both from 

a computational and a theoretical point of view. For computation it 

is convenient to be able to describe transfer functions in state-space
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form. The theoretical results on observer-based controllers with dy­

namic state feedback could not have been derived without the use of 

the new factorizations.

• A second contribution to the theory of doubly coprime factorizations is 

to generalize the state-space realizations to allow for possibly unstable 

dynamic estimator and state feedback gains. This nontrivial general­

ization is achieved both for the full-order and the reduced-order state 

estimators.

• Furthermore it is shown that any stabilizing controller for a given plant 

can be structured as a state estimate feedback controller, with the 

dynamics in either the state estimator or in the state feedback law. 

Conditions for closed loop stability when the state estimate feedback 

controller has dynamic state estimate and state estimate feedback gains 

are given.

• Finally, it is recalled that an arbitrary controller can be organized as 

a state estimate feedback controller with constant state estimate and 

state estimate feedback gains if and only if a nonsingular solution of a 

particular nonsymmetric Riccati equation exists. An example is given 

to show that plant/controller pairs with certain structural properties 

can not be reorganized as such. Necessary controllability and observ­

ability conditions for the existence of a solution are given; sufficient
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conditions are as yet not available.

Two new design algorithms are also presented: the first deals with the 

controller reduction problem, and the second with adaptive resonance sup­

pression.

• The controller reduction problem is tackled by applying standard model 

reduction algorithms to augmentations of the controller which arise 

when characterizing the class of all stabilizing controllers, and it is 

claimed that the method preserves robustness and performance qual­

ities of the controller. The method is especially well suited to state 

estimate feedback controllers, and specializes to other methods [24] 

when appropriate scaling is used. Issues such as scaling of input/output 

variables, maintaining controller performance, and simultaneous stabi­

lization of a class of plants are discussed.

• The adaptive resonance suppression algorithm presented here is in­

tended for use when a plant has an unknown unstable or resonant mode. 

The algorithm attempts quickly to identify the resonant mode, and to 

apply a control signal which dampens the resonance. The structure of 

the algorithm has evolved from previous research results, such as [8], 

and appears sensible from an engineering point of view. It is certainly 

not reasonable to expect an elegant analytical analysis of the perfor­

mance of the controller. A simulation study shows that the algorithm
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performs well in certain situations, and that the underparameterized 

inner identification loop does effectively identify the frequency of the 

resonant mode.

• One important by-product of this work is the proposal in Sec. 6.3.5 of 

a benchmark enabling comparison of resonance suppression schemes. 

This benchmark specifies a class of unstable discrete-time plant models, 

along with the distribution associated with the random plant selection 

process.

7.2 Further research

We now note some possibilities for further research which arise from results 

developed in this thesis:

• In the area of doubly-coprime factorizations, Wang and Balas [47] have 

recently presented an extension of earlier results [39] which provides ex­

plicit formulae for doubly coprime factorizations of the transfer function 

of a generalized dynamical system, such as

Ex  =  Ax +  Bu (7.1)

y =  Cx + D (7.2)

Here E  is a possibly singular matrix; if E  were non-singular, then the 

system could be replaced by an equivalent system with E  replaced by
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the identity. Further work could include extending the results of this 

thesis to cover generalized dynamical systems.

• Recall from Lemma 2.4 that given a minimum-phase state estimate 

feedback gain F , that stabilizes Gf , then any stabilizing controller 

K  for G can be obtained as an equivalent state estimate feedback con­

troller K[F, H(Qh )\ for some Qh 6 RH<x>- More simply stated, subject 

to the minimum phase condition on F , which stabilizes Gf , any stabi­

lizing controller K  for G can be obtained as a state estimate feedback 

controller K[F,H] for some H  which stabilizes Gh • This simple result 

requires a complicated proof, perhaps indicating that a simpler and 

more insightful proof could be found.

• It would also be interesting to develop connections between the loop 

transfer recovery techniques of Doyle and Stein [5, 13] and the fre­

quency shaped state estimate feedback controllers of this thesis. The 

loop transfer recovery method generates a controller whose closed loop 

behaviour arbitrarily closely approximates a given target feedback loop 

subject to certain minimum phase requirements. The design method 

exploits the solution of the linear quadratic regulator problem, and uses 

a LQG-based controller structure. Perhaps there exists a generaliza­

tion of existing LTR/LQG method based on controllers with dynamic 

state estimate and state estimate feedback gains.
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• Chapter 3 gives a simple example of a plant./controller pair which can 

not be organized as a state estimate feedback controller. Further work 

could define classes of plant/controller pairs which can not be organized 

as such. The sufficient conditions of Medanic [30], which apply to solu­

tions of the Riccati equation based on only one admissible eigenvector 

selection, might allow such classes to be specified.

• The preconditioning methods for the resonance suppression algorithm 

of Chap. 6 have not as yet been investigated. This would require more 

simulation trials, perhaps with actual aircraft flutter models. It would 

be useful to compare the simulations results here with corresponding 

results for LQG based adaptive schemes.
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