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Abstract

Experimental atomic physics has used electron-atom collisions and specifically 
the (e,2e) technique for many decades. An (e,2e) experiment involves firing an electron 
beam at a target and mapping the momenta of the two outgoing electrons in coincidence. 
It is used to probe the structure of a target or to investigate the ionisation processes. 
This information is of use for many reasons, it improves the understanding of reactions 
in the upper atmosphere, plasma formation, gas discharge and laser physics.

The experimental technique involves a multiparameter detection system, i.e., data 
is gathered over a range of outgoing energies simultaneously. Here electrons are passed 
though an energy-dispersing element before impinging on a position sensitive detector 
which determines spatial coordinates of the detected electrons. The PSD consists of 
chevron mounted multichannel plates followed by a position sensitive resistive anode. 
This type of experiment has been performed previously, e.g., Lower and Weigold (1989) 
and is widely used.

It is possible to gather more information from (e,2e) collisions by using well 
defined targets or projectiles, to investigate spin effects in electron-atom collisions. In 
this case, a polarised electron source is used, i.e., the electrons have a preferred spin. 
This allows for a more detailed examination of the ionisation process. Previous 
experiments have shown that spin asymmetries are observable in certain conditions, i.e., 
low energy elastic scattering. Preliminary results in Granitza et al. (1993) showed that 
asymmetries are measurable for ionisation in an (e,2e) experiment at an intermediate 
energy. In this work experiments are performed which further demonstrate that spin 
effects are observable as spin asymmetries in xenon (5p5 2Pm and 2Pyl states) at an 
incident energy of 147eV, for scattered, fixed angles of 0S = 28°, 15° and 40° at lOOeV 
and at 35eV for the ejected, scanned angle. This spin effect is explained via the analogue 
to the “fine-structure effect”. This fine-structure effect has been observed in excitation 
processes as a spin asymmetry, e.g. Hanne (1983).

The results are presented as cross sections, (total, state resolved and spin 
resolved), asymmetries and branching ratios. This work confirms the use of polarised 
electrons in (e,2e) collisions as a powerful tool for unraveling competing spin and non­
spin dependent effects in the ionisation process. Some of the effects are clearly 
dependent upon the dynamics of the reaction mechanism, and others, such as the 
branching ratio, depend largely on the details of the target wave function.



Contents

Declaration...................................................................................................................iii

Acknowledgments..................................................................................................... iv

Abstract.......................................................................................................................... v

1 Introduction 1

2 Theoretical Considerations 6

2.1 The (e,2e) Reaction.................................................................................. 6
2.2 Theoretical Approximations....................................................................8
2.3 Background Discussion of Polarisation Effects.....................................13
2.4 Mott Scattering as an Analysis Tool......................................................14

3 Spin Polarisation Effects 19

3.1 Spin-orbit Interaction.............................................................................. 19
3.2 Exchange................................................................................................21
3.3 Fine-Structure Effect............................................................................. 23
3.4 Density Matrix Formalism.....................................................................24

4 Experimental Apparatus 27

4.1 Polarised Electron Source.............................................................. 29
4.1.1 Vacuum System............................................................................29
4.1.2 Producing Polarised Electrons..................................................... 30

The GaAs Crystal...................................................................... 30
Laser Diode................................................................................30
Activation...................................................................................31
Transport of the Polarised Electron Beam................................ 32

vi



4.2 Mott Polarimeter................................................................................... 34
4.2.1 The Apparatus............................................................................ 34
4.2.2 Operating the Mott Polarimeter................................................... 36

Calibration................................................................................. 36
Calculating the Polarisation.......................................................37
Measuring the Polarisation....................................................... 39

4.3 Scattering Chamber and Associated Electronics.................................. 39
4.3.1 Vacuum System........................................................................... 40
4.3.2 Electron Detection System.......................................................... 40

Interaction Region.....................................................................40
Hemispherical Analysers...........................................................41
Position Sensitive Detectors..................................................... 42

4.3.3 Coincidence Circuit..................................................................... 43
Timing Branch.......................................................................... 43
Coincidence Calculations.......................................................... 46
Energy Branch...........................................................................47

4.3.4 Energy Resolution........................................................................49

5 The Xenon Experiment 51

5.1 Fine-structure Effect in the Ionisation of Xenon.....................................51
5.1.1 Calculations of Xe (e,2e) Xe+ with Polarised Electrons...............53

5.2 Kinematics.............................................................................................56
5.3 Measured Parameters and Quantities....................................................58
5.4 Data Analysis........................................................................................ 59
5.5 Results and Discussion..........................................................................62

5.5.1 Cross Sections.............................................................................. 62
5.5.2 Asymmetry in the Fine-Structure Cross Sections......................... 77
5.5.3 Branching Ratios.......................................................................... 88

6 Summary and Conclusions 99

Appendix A 104

References 115

vii



Chapter 1

Introduction

Electron-atom collisions have been used in atomic physics to improve the 
understanding of such things as the details of the upper atmosphere, plasma formation, 
gas discharge and laser physics. There are various methods used in experimental studies 
of electron-atom collisions, including for example, the ‘crossed beam’ experiments, 
where a single electron is detected after elastic scattering, or an excitation or ionisation 
event (Gulley et al., 1994), coincidence experiments, which detect an electron-photon 
coincidence and (e,2e) experiments (McCarthy and Weigold, 1976). An (e,2e) 
experiment is a kinematically complete electron impact ionisation measurement which 
detects two outgoing electrons from the same scattering event in coincidence. This work 
employs the (e,2e) technique.

The (e,2e) experiment was an innovative technique introduced to atomic physics 
almost three decades ago (Amaldi et al., 1969 and Ehrhardt et a l, 1969). The (e,2e) 
experiment can gather more information by using a spin polarised electron source, 
thereby improving the power of electron-atom collision experiments. Various sources of 
producing polarised electrons have been researched see e.g., Kessler (1985) and Gay 
(1983). Pierce et al. (1975) were the first to measure spin polarisation of photoemitted 
electrons from a non-magnetic semiconductor. The experiment for this work utilises a 
spin polarised electron source based of the type of Pierce, Meier and Zürcher (1975) and 
Pierce et al. (1980). A polarised electron source alone is of little advantage, unless the 
polarisation of the electron beam can be determined. A popular method to measure the 
polarisation of electron beams is to employ a so called “Mott polarimeter” {e.g., Hodge 
et al., 1979 and Gay and Dunning, 1992a).

The primary aim of the experiments described here is to test the validity of 
theoretical models describing electron-atom collision processes. In an (e,2e) experiment, 
where the kinematics of the collision partners are known, simply determining the 
differential cross sections is not always enough to stringently test a theory. Previously, 
(e,2e) experiments have provided a good testing ground for the theory. The electron- 
atom collision is a many body problem, but it is often treated as a three body problem, 
governed by the long range Coulomb interaction. An (e,2e) experiment with a hydrogen 
target is exactly the three body problem. Solutions to this three body problem are found 
by solving the Schrödinger equation with correct asymptotic boundary conditions. This
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Chapter 1: Introduction

is not a trivial task and generally requires an appropriate choice of approximations. In 
such experiments if an averaging process, such as the spin orientation of the projectile or 
target, is removed, the theory would be tested more rigorously.

The work in this thesis does just that. By conducting an (e,2e) experiment using a 
polarised electron beam, the sum over the intrinsic angular momentum (spin) of the 
incident particle is removed. Hence, the theories need to resolve the spin channel of the 
scattering event to describe the (e,2e) experiment. Typically in experiments investigating 
spin effects, a spin dependent asymmetry is observed. That is, the cross section of an 
event may differ depending on the spin orientation the particles involved in the collision. 
Observing a spin asymmetry implies observing a ratio of the scattered intensities, hence 
measurements of absolute target densities and absolute scattering intensities, are not 
required in polarisation measurements. ‘Complete scattering experiments’ as first 
suggested by Bederson (1969) aim to measured all channels of the electron-atom 
collision, in which the states of the collision partners are well defined before and after the 
collision. These types of experiments are not yet generally possible, however 
experiments which involve spin polarised electrons are being conducted in various 
laboratories e.g., Hanne (1983), Baum et al. (1985) and Shi et al. (1996). These 
experiments will be commented on later in this chapter.

The level of sophistication of the theory has gradually increased in recent years. 
In electron-atom collision experiments, large numbers of independent parameters are 
measurable. Furthermore, there is a wide range of different experimental arrangements 
which theorists are required to assimilate with available theoretical models. The general 
density matrix formalism (Bartschat, 1992) is a framework from which a systematic 
description of the scattering process is possible. The density matrix formalism is an 
invaluable tool for theorists, as it can describe many different aspects of an experiment 
within the same formalism, using appropriate approximations for certain conditions.

Many experiments have been performed which consider polarisation effects (see 
Kessler (1985) for a full review). The work of McClelland, Kelley and Celotta (1987) is 
an example of spin polarised experiments. That experiment measured spin-orbit and 
exchange effects in elastic scattering from sodium, where both collision partners (target 
and projectile) were polarised. The results for the sodium atom were presented as spin 
and exchange asymmetries. The data does show evidence of an asymmetry and the 
agreement with theory is reasonable. Shi et al. (1996) have recently reported the first 
azimuthal asymmetries for elastic scattering from sodium. The experiment reported by 
Shi et al. (1996) found asymmetries, due to the Coulomb interaction, of the order of 0.3, 
for incident electron energies below 5eV. Spin asymmetries have also been measured for 
alkali atoms such as lithium and potassium, (Zhang et al., 1992 and references therein). 
Exchange effects in chromium have also been studied (Hanne et al., 1993), at low 
energies in a superelastic scattering experiment. Spin dependent polarisation effects had 
been observed in superelastic scattering from sodium (Nickich et al., 1990). In this 
experiment a polarised electron beam was superelastically scattered from laser-excited 
unpolarised sodium atoms. This was a low energy experiment (6 - 20eV), where spin 
asymmetries were observed.
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Chapter 1: Introduction

Polarisation effects have also been reported by Sohn and Hanne (1992) for 
excitation of mercury (Hg*(63Pi)). This is an electron-photon, (e,ey) coincidence 
experiment, where an electron and photon are detected in coincidence. An (e,ey) 
coincidence experiment conventionally obtains information on the magnetic sub-levels of 
the excited atom. However, the inclusion of a spin polarised electron beam as in the 
(e,ey) experiment of Sohn and Hanne (1992), implies that the reflection symmetry in the 
scattering plane is, in general, broken. Consequently, the charge-cloud distribution may 
be tilted by an angle 8, with respect to the scattering plane (Hanne, 1992). The charge 
cloud, with anisotropically populated atoms, emits linearly polarised photons and 
measurement of these photons yields parameters which can characterise the anisotropic 
charge cloud distribution (Hanne, 1992).

In the experiment conducted by Sohn and Hanne (1992), differential Stokes 
parameters (i.e., photon polarisation components) were determined at low incident 
energies (8eV and 15eV). The results were compared to an R-matrix calculation, where 
agreement was good at the lower energy, but was not satisfactory at 15eV. The (e,ey) 
coincidence experiment was also used by Uhrig, Hanne and Kessler (1994) to study the 
polarisation of the resonance lines in xenon. The polarisation results of this experiment 
were presented as integrated Stokes parameters and as a spin up-down asymmetry. Both 
of these experiments were low energy electron impact excitation studies which proved to 
be effective in examining spin effects in inelastic electron-atom collisions.

Garcia-Rosales, Müller and Kessler (1988) showed strong polarisation effects are 
observed in low energy elastic scattering and excitation for heavier atoms. This 
experiment was conducted to measure the Sherman function for xenon, by two different 
methods, a polarisation measurement and an asymmetry measurement. The first method 
analysed electrons which were elastically scattered from a xenon target in a Mott 
detector. In the second method, polarised electrons were elastically scattered from a 
xenon target and the asymmetry was measured. These experiments were conducted at 
low energy (30eV), both gave similar results for the Sherman function. Other 
experiments have been performed using polarised electron sources and noble gases, e.g., 
Dümmler et al. (1990) and Berger and Kessler (1986). Dümmler et al. (1995) observed 
spin dependent effects (left-right asymmetries) in argon, krypton and xenon in low 
energy excitation experiments. Berger and Kessler (1986) measured the change in the 
polarisation of the polarised incident electron beam when elastically scattered from 
mercury and xenon (the S, T, U parameters). These experiments were conducted in the 
intermediate energy regime, (40 - 350eV). It was found that the complete set of 
observables (Le., S, T, U parameters, the absolute differential cross section and the 
moduli and relative phase of the scattering amplitudes) is needed to stringently test the 
theory.

The first (e,2e) spin polarised ionisation experiment investigated the competing 
processes of direct and exchange scattering. Baum et al. (1992) achieved this by 
scattering a low energy (54.4eV) polarised electron beam from a beam of polarised 
lithium atoms. By performing the experiment with a light target, it was possible to 
examine the scattering process under conditions where the spin-orbit interaction of the 
continuum electrons in the atomic and ionic fields is negligible.
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Another recent spin polarised (e,2e) ionisation experiment by Prinz et a l  (1995) 
measured spin asymmetries for ionisation of AT-shell electrons in unpolarised silver atoms 
by high energy (300keV) polarised electrons. This experiment shows that large spin 
asymmetries result from the spin-orbit interaction of the continuum electrons.

Geesmann et al. (1991) performed low energy elastic and inelastic scattering 
experiments from heavy target systems. The targets in this case were unpolarised 
thallium and lead atoms. This showed that at these low energies, the fine-structure effect 
was the dominant spin effect, which resulted in spin dependent asymmetries. This fine- 
structure effect is discussed below.

Polarisation effects are usually caused by more than one spin dependent 
interaction. Spin effects caused by only one spin dependent interaction are the exception. 
It is known that exchange, in conjunction with the atomic fine-structure interaction, is 
responsible for spin effects in inelastic collisions of slow electrons, (Hanne, 1983). Later, 
Hanne (1992) indicated that the fine-structure effect was apparent in excitation 
processes. It was postulated that this polarisation effect could be observed in ionisation 
processes. The theory for the fine-structure effect must consider limiting conditions 
which fulfill the following requirements, a) neglecting the spin-orbit interaction and b) 
assuming that the internal spin-orbit coupling of the target is weak and therefore the LS 
coupling scheme is valid (Kessler, 1991).

The work in this thesis proposes that the fine-structure effect is observable in an 
(e,2e) experiment, where a polarised electron beam is used to study the ionisation 
processes in the xenon atom. These experiments demonstrate that the conditions 
required for measuring this effect are achievable. That is, in the absence of any explicit 
spin dependent forces and if,
a) the angular momentum of the target is non-vanishing, i.e., (L) * 0, the orbital angular 
momentum is orientated after a collision (Anderson, Gallagher and Hertel, 1988),
b) electron exchange is possible during the electron-atom collision
and c) the fine structure states of the 5p  ionisation level of xenon are resolvable by the 
experimental apparatus employed.
If this can be done, then the polarisation effects should be observed as a measurable spin 
up-down asymmetry in the cross section.

Following this introduction, chapters 2 and 3 discuss the theoretical details of the 
experiment. Chapter 2 begins with the (e,2e) theory which is the building block of this 
work. The last sections of chapter 2 describe the physics behind polarisation phenomena, 
including using Mott scattering as an analysis tool. The theory in chapter 3 concentrates 
on the inclusion of the spin of the electron and the introduction of the density matrix 
formalism. In this chapter 3, exchange, spin-orbit interaction and the fine-structure effect 
are discussed. It is this fine-structure effect which this experiment aims to verily.

The experimental apparatus is reported in chapter 4. This chapter comprises of 
all relevant practical aspects of the experiment, including the polarised electron source, 
the Mott polarimeter and the (e,2e) spectrometers. In addition to a description of the 
hemispherical analysers and multichannel plates which are used to detect the two 
outgoing electrons in coincidence, there is a discussion of the electronics associated with

4



Chapter 1: Introduction

the coincidence circuit. Schematic diagrams of the experimental apparatus and selected 
parts of the apparatus are included here, along with typical energy and timing spectra.

Chapter 5 introduces the results and the details of the theoretical calculations 
which are used as a comparison. The kinematics and the experimental conditions are also 
outlined in this chapter. It is in this chapter that the observables of the experiment are 
given, the cross sections, asymmetries and branching ratios are all shown and 
accompanied by a discussion of these results. This chapter also includes details of the 
data analysis.

Finally in chapter 6, a summary is presented. This summary briefly recaps the two 
theories used for comparisons, the experimental aspect and the data analysis involved in 
this work. This chapter concludes this work with some suggestions about the future 
direction of these experiments.
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Chapter 2

Theoretical Considerations

In experimental physics it is essential to consider the relevant theory, so that the 
information gathered from the experiment can be optimised. That is, the theory guides 
the experiment to areas of interest and which may be measurable. The experiment then in 
turn indicates where further improvements are required (it is therefore an iterative 
process). Thus improving the understanding of atomic systems. This chapter presents a 
general introduction to the theory of (e,2e) collisions. A more detailed look at this 
theory will be presented in chapter three, where a spin component will be included. 
Good reviews can be found in Stefani et al. (1993) and McCarthy and Weigold (1995), 
for more insight into the details of atomic physics and (e,2e) experiments. This thesis is 
restricted to only that theory which is relevant to the experimental work. The final stages 
of this chapter detail the theory concerned with the generation and analysis of polarised 
electron beams.

Section 2.1 The (e,2e) Reaction

(e,2e) theory evolved from (p,2p) theory in nuclear physics almost three decades 
ago and has since been successfully used as a spectroscopic tool in atomic physics. The 
(e,2e) technique has been used in a variety of situations, most notably for studying 
ionization processes and target structure. At high energies and high momentum transfers 
the ionisation mechanism is well understood and it has been used extensively to describe 
the electronic structure of many atoms, from the simplest one electron atoms (H, Na) to 
more complex atoms such as xenon. Molecules have also been studied using this 
technique (Samardzic et al., 1993 and Zheng et a l, 1995) and more recently this type of 
experiment has been extended to include solids, e.g., amorphous carbon (Vos et al., 
1995).

Essentially the (e,2e) experiment is firing a beam of electrons at a target and 
detecting two outgoing electrons in coincidence. There are three possible reactions, 
either the target electron may be excited, (excitation) or knocked out, (ionisation) and of 
course elastic scattering is possible. It is the ionisation reaction which is studied in this 
work. The two outgoing electrons are selected by energy and although they are
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Chapter 2: Theoretical Considerations

indistinguishable, they are labelled as a fast, scattered electron and a slow, ejected 
electron. Conventionally Es > Ee. The ionisation reaction is expressed as:

e + A -> ee+ e s + A+. ...2.1

In such a reaction the kinematics (shown in figure 2.1) are complete and must 
obey the law of conservation of energy:

E0= E s + Ee + £ ’ ...2.2

where E0 is the incident energy and e is the binding energy (here the kinetic energy of the 
ion is assumed to be negligible). The reaction must also obey the law of conservation of 
momentum

k 0 = P + k s + k e’ - 2 . 3

where k is the momentum and the subscript 0 represents the incoming electron and s, e 
are the scattered and ejected electron respectively and p is the ion recoil momentum.

Usually the momentum transfer is defined as

K = k0- k s , ...2 .4

which is often fixed in an (e,2e) experiment. The momentum transfer may also be used 
to classify experiments.

k = k n - k - k,

Figure 2.1: The kinematics of an (e,2e) reaction where the subscripts, 0, s, and e 
represent the incoming electron, scattered and ejected electron respectively.

There are two general categories of (e,2e) experiments, which reveal information 
on either the target and it’s structure or the ionisation process. The former category 
involves high energy, high momentum transfer collisions and is known as electron 
momentum spectroscopy, (EMS) (McCarthy and Weigold, 1976, 1988). The study of 
ionisation processes generally utilises low energy asymmetric kinematics, which forms
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Chapter 2: Theoretical Considerations

the basis of this work. Typically, coplanar asymmetric experiments are performed with 
low or intermediate energies (i.e., small K) so that the dynamics of the collision can be 
fully investigated. The present work is done at small momentum transfer with 
intermediate energies. In this case, intermediate energy means approximately ten times 
the ionisation energy. An abundance of experimental data exists for a vast range of 
kinematical regions and targets which are used to test the validity of the theoretical 
approximations. However, there is still little data available for spin resolved experiments, 
which is the topic of this work and will be discussed in chapter 3.

Section 2.2 Theoretical Approximations

There are many forms of approximations for theoretical calculations which have 
been developed parallel with the (e,2e) experimental techniques. For example, the binary 
encounter approximation (BEA), plane wave impulse approximation (PWIA), the target 
H artree-Fock approximation (THFA), the distorted wave Bom approximation (DWBA) 
and the Brauner, Briggs and Klar approximation (BBK) are but a few. Detailed 
descriptions of these can be found elsewhere, (e.g., McCarthy and Weigold, 1976, 
1991a, Bray and Stelbovics, 1995) however, a brief outline of some of these theories is 
warranted.

All of the calculations attempt to solve the same many-body problem, but they 
differ in the techniques used to approximate the solutions. For an (e,2e) reaction, the 
many body problem in the final state consists of an ion and two electrons. Generally, this 
is reduced to a two body problem so that it can be solved. However, as the governing 
potential is Coulombic and is of infinite range, this assumption is not strictly true. The 
complete three body problem has been tackled by Brauner, Briggs and Klar and will be 
discussed later.

The triple differential cross section (or (e,2e) cross section) for an uncharged 
system with an electron bound to the core in the state a, is (McCarthy, 1995):

where the subscripts, 0, s and e refer to the incident and the final state continuum 
electrons respectively. Atomic units are used in this description, h = m* = e = 1. The 
symbols Q s and £2e denote the solid angles of emission for both final state electrons and 
E s is the energy of one of the final state electrons. X indicates a sum over final states and 
an average over initial state magnetic and spin degeneracies. T is the unknown transition 
operator representing the transition amplitude for the ionization process from an initial 
state, a, and is defined as,

d5o ... 2.5
dQsd£2edEs

Tf o (ke.ks,k0) = (kskc|T|a k 0>. . . .2.6

The main approximation in these theories is in the T operator.
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Chapter 2: Theoretical Considerations

According to formal scattering theory,

(ksk e|T |a k 0> = (y-»|v |ak0) = <kske|V|V*') ... 2.7

where V is the scattering potential, vjC' is the exact final state with final state boundary 
conditions and \j/<+) is the exact initial state with initial state boundary conditions. Of 
course these wave functions need to be approximated as they cannot be determined 
exactly. They must however, satisfy the following Schrödinger equations:

(H -E ) |y - ,) = 0 , ...2 .8a

(H -E )V * 1} = 0 ...2.8b

where the Hamiltonian, H is,

H = K., + V! + Kj + v2 + v3, ... 2.9

where Ki and K2 are the kinetic energies of the electrons, V! and v2 are the electron-ion 
potentials and v3 ( = l/ri2) is the electron-electron potential. Equations 2.8 represent two 
different approaches to this problem, where the BBK considers equation 2.8a (see later 
this chapter) and for example, the convergent close coupling (CCC), which 
approximates for the infinite expansion of the target states, (Bray et a i ,  1991) solves for 
equation 2.8b. The scattering amplitude is f(k',k) and is represented by:

f(k ',k ) = T ^ T(27t)3T (k ',k ). ...2 .10
Inn

An example of an approximation of the T matrix can be seen in the binary 
encounter approximation. Here the T matrix is given by

T/o(ks>k o ko)=(kskc/|  1 | ° k o)- -  2.11

where t is the operator for a two electron collision. This case is assumed to be valid if 
the momentum transfer, K, is large and the collision can be presumed to be between the 
incident electron and one target electron.

If the potential is much smaller than the kinetic energy then it may be treated as a 
perturbation, then in the Lipmann-Schwinger formulation the T operator may be 
perturbated in the following manner (in Dirac notation),

T ( k ,k ') = ( k '|U |k )  + ( k / |U G 0U |k )+ (k '|U G 0UG0U |k ) + ................2.12

where U is the general form of the potential and G represents the usual Greens functions 
(see e.g., McCarthy and Weigold, 1976). This equation is known as the Bom series. The 
first term gives the Bom approximation to the transition amplitude.

9



Chapter 2: Theoretical Considerations

As the first Bom approximation (FBA) is a first order calculation which uses 
plane waves and a one electron wave function for the target, it is too simple to give 
satisfactory results except at very high energies. The FBA is most applicable in the high 
energy regimes. To improve this approximation it is then necessary to consider other 
factors arising from the electron-atom collisions. This means including the distortion of 
the incident electron due to the target potential, the free particles due to the ionic 
potential and the effects of electron-electron correlation in the final state. This leads to 
further approximations, such as the second Bom approximation (SBA) which considers 
the second order of the iteration of the incident electron with the target electron.

An extension to the Bom approximation is the distorted wave Bom 
approximation (DWBA). This treats the potentials to all orders in the Bom series 
(equation 2.12) although it omits an infinite set of different terms. The DWBA is 
generated by replacing the plane wave, |k) in equation 2.12, by a distorted wave for the 
incident state and similarly replacing the plane wave, |k'), with a time-reversed wave:

The DWBA does not work well in the kinematical region where the two-final 
state electrons remain close to each other for long enough that their long range repulsion 
is significant. That is, the DWBA does not have correct boundary conditions or account 
for electron-electron interactions.

Plane wave impulse approximation (PWIA) is one of the simplest of the 
approximations used to describe the (e,2e) reaction and is most commonly applied in 
EMS experiments. It’s validity is limited to the region near where Bethe-Ridge 
conditions hold, that is, where k<.2 = K*2 and the momentum transfer is high. The electron- 
atom collision becomes a two body electron-electron collision and is known as an 
impulse approximation. The PWIA transition amplitude factorises to give,

where tsp denotes the antisymmetric t-operator for two electrons with spin S at a relative 
collision energy corresponding to k' (McCarthy and Weigold, 1991a) and

The distorted wave impulse approximation (DWIA) is when incoming and 
outgoing waves can no longer be treated as plane waves. In this approximation, the 
plane wave, |k) is replaced by the distorted wave, |x(±) (k)) which takes into account the 
distortion of the incident and outgoing waves by the potential of the remaining system. 
The T matrix becomes:

T(k'. k) = (x<)QOx<)0O'*,io” I'v i XW0O) • ...2.13

T/0(ks.k e,k 0)= (k '|tsp |k )(k ,k e /|O k 0), ... 2.14

k '= - l(k ,-k e)v k = i ( k 0-q )  and q = k0- k s- k ,  = - p.

T/0(ks> ke, k0)=(k' 11J  k) (xH(ks)xH(ke)/1 Oxw(k0)) • ...2.15

10
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In this approximation the target and ion structure appear only in the form of the ion- 
target overlap ( f | 0 ), which is a one electron function. It should be noted here that the 
DWIA gives correct results for (e,2e) experiments at high energy under Bethe-Ridge 
conditions, but is generally not expected to be valid far off the Bethe-Ridge.

Consider further the structure overlap. This may be studied using the one- 
electron model of the target, constructed from the well known Hartree-Fock orbitals and 
representing the ion by the same model with one hole in the ith orbital. The overlap can 
be expanded in the independent particle configurations, <J>a of the target (McCarthy and 
Weigold, 1988),

U/N
To XaL%,

'i f - ' X‘®(cjX <!*,)-

... 2.16 

... 2.17

where the preferred basis for the target in an (e,2e) experiment is the Hartree-Fock 
target basis. The linear expansion of the ion state, f, in equation 2.17, demonstrates the 
coupling of a hole in the orbital j, to a target configuration, <J)a by a Clebsch-Gordan 
coefficient, Cja. Then the overlap amplitude is

(q ' I f  I**) = X  *5® tjoCja(q | Vi>. ••• 2-18
ja

The overlap amplitude is given by a sum of momentum space orbitals, \|/j,

vXq) = <q|vj) - ... 2.19

Consider the target Hartree-Fock approximation (THFA) where to a good 
approximation, <J)0 is the target wave function, so for a  *  0, ao(0) = 1 and a ^  « 1. In this 
case only one characteristic orbital, \\f, is usually needed, whereas in general a linear 
combination of these orbitals is used.

The feature of the THFA is that experimentally the momentum profile is usually 
well described by the target Hartree-Fock orbital, \|ft. Hence the target Hartree-Fock 
basis is the optimum choice in the (e,2e) sense. The overlap then becomes;

( q f |0 ) = t< > 1(q) = 4 > 1(q). ...2 .20

Then the differential cross section can be expressed in the PWIA as:

d£XdQ,dEc
(27t)4 ^ f „ S f 0»Nj|{kske|Vl(q)k0)|2, .. 2.21

where Si0(f) is the spectroscopic factor,

11
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. . .  2.22

and fee is the electron-electron collision factor and Ns is the occupation number of the 
orbital \\f{. The closure and normalisation relations leads to the spectroscopic sum rule,

£ s f >  = l .  ...2.23

In the PWIA and DWIA the outgoing electron wave functions are treated 
respectively as plane waves or waves distorted by the ion static potential. Brauner, 
Briggs and Klar (Brauner et a i,  1989) have developed a theory which is capable of 
solving approximately the three body Coulomb problem in the final state with correct 
asymptotic boundary conditions. The BBK approximation constructs the wave function, 
vF(+), as a product of the asymptotic forms for each of the three Coulomb two-body 
systems. This wave function solves the full three body Schrödinger equation (equation 
2.8a):

V

A2k , A2 Zp 
2|i 2v Ir-ccRl

+ Z,
|r+PR|

2l_! + p
R + t f ^  =  0 ... 2.24

where

Mt + Mp
„ M P a t :  k2 , K2, ß = —— and Ef =7T-+ ^ — K MT + MP f 2|i 2v

and the subscripts, T and P represent the target and projectile electron respectively.

The wave function, xF( )f, for the two electron continuum state which considers all 
three two-body Coulomb interactions is:

= (2jc)‘ 3,2e'k‘" C K ,k a, rs)(2jt)’ 3,2eik‘-" C K k b, rb)C(+alb,k ib, r j  ... 2.25

where the Coulomb factors are:

C (a ,k ,r)= r(l-ia )e '7tot/21Ij[-ia:-i(kr-i-k»r)] ... 2.26

and

a .=  - p ,  a b = ^ ’ a * b = -2F ; -  with k ab=f(H a-kb) and rab= r - r b.

The BBK approximation has been shown to be in good agreement with 
experiments having an incident energy above 150eV. Further work has been conducted 
at an energy of 50eV and these results are encouraging (Brauner et al., 1991).

12
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Section 2.3 Background Discussion of Polarisation Effects

A beam of electrons is said to be polarised if it has a preferred spin. The degree 
of polarisation of an electron beam is defined as:

N (t)-N (i)
N (t)+ N (- l) ’

... 2.27

where N(T) is the number of electrons with spin up and N ( i)  is the number of electrons 
with spin down. As there is an array of polarised electron sources available, it is 
necessary to be able to compare the characteristics of the sources. One such 
characteristic is the figure of merit, P2I, where P is the polarisation and I is the electron 
beam current. Other characteristics such as the ease of reversal of polarisation, 
brightness and longevity are also important, lc\'SS~).

Producing a reliable source of polarised electrons has been researched for some 
years and a comprehensive review is given in Kessler (1985) which gives the advantages 
and disadvantages of various polarised electron sources. In the present experiments, the 
polarised electron source is produced from non-magnetic material. This relies on the 
spin-orbit interaction which splits the energy bands, in this case, in a GaAs crystal. The 
energy bands for GaAs are shown in figure 2.2. At the center of the Brillioun zone (the 
T point), the P valence band is split into fourfold degenerate P3 /2 and twofold degenerate 
P 1/2 bands as a result of the spin-orbit interaction. The energy gap between these two 
bands is 0.34eV. The conduction band, Sm is separated from the valence band by 
1.52eV. If the transitions from the m, sub-levels are considered then the production of 
spin polarised electrons can be explained. The selection rules for these sub-levels for 
circularly polarised light are: Am, = +1 for g + (right hand circularly polarised) and Am, = 
-1 for G ’ (left hand circularly polarised) light (see figure 2.2).

conduction
band

E = 1.52eV

valence
bands

0.34 eV
__  P

3/2 m.

Figure 2.2: The band structure of GaAs, showing on the right side the relative transition 
probabilities.
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The relative transition probabilities for these transitions, shows that for G+, three 
times as many electrons will be in the ra; = -1/2 state (spin down) than in the ra, = +1/2 
state (spin up). That is, it is three times more likely for a transition from the m; = 3/2 
than from the mj = 1/2. Similarly for a  ' there will be three times as many electrons in the 
mj = +1/2 state than in the m; = -1/2 state.

The next stage in generating a beam of polarised electrons from this source is to 
change the GaAs crystal from a positive electron affinity surface to a negative electron 
affinity surface to allow for emission of the electrons. Scheer and van Laar (1965) 
showed that that the vacuum level can be lowered below the bulk conduction band by 
applying ceasium to the surface forming a dipole layer. Therefore, a negative electron 
affinity surface can be created by layering ceasium and oxygen onto the surface of the 
crystal. In this way the electrons which are excited from the valence band to the 
conduction band by the circularly polarised light can be emitted. The experimental 
details of this process are given in section 4.2.

By definition of the spin polarisation the theoretical maximum for this source 
(assuming 100% circularly polarised light and 100% extraction from the source), must 
be P = 50%. Experimentally the theoretical maximum of the spin polarisation of 50% is 
never reached. This is due to depolarisation effects, including possible spin exchange 
scattering in the layers of caesium and oxygen. In general these effects lower the 
polarisation to levels of about 30%. A new generation of GaAs crystals have been used 
to produce highly polarised electron beams. It has been shown that it is possible to grow 
a s.trained GaAs crystal in which the degeneracy of the valence band is removed 
(Nakanishi et a l ,  1991). The splitting of the valence band makes it theoretically possible 
to achieve 100% polarisation. In practice polarisations as high as 90% have been 
measured, (Nakanishi et a l ,  1991 and Maruyama et a l ,  1992). However, in this 
experiment a strained crystal was not available.

Section 2.4 Mott Scattering as an Analysis Tool

Mott scattering is a result of the spin-orbit interaction and can be simply 
described in a classical sense (Gay and Dunning, 1992a). It has proven to be a simple, 
effective method for determining the polarisation of an electron beam. In most 
experiments the initial polarisation is a parameter which needs to be well defined.

Consider an electron with high energy being scattered from a nucleus with a 
charge Ze. Then the motion of an electron with velocity, v, in an electric field, E, of the 
nucleus, creates a magnetic field, B, in the electron rest frame:

B (vxE)
_ > ... 2.28

where, as usual, c is the velocity of light. Then if E = (Ze/r*)r, where r is the position of 
the electron relative to the nucleus, the magnetic field becomes:
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B
cr3y

r x v Ze > 
mcr3 j

L , ... 2.29

where the electron orbital angular momentum is defined as L = m r  x v. Then the 
interaction of this magnetic field with the electron magnetic moment, p,s, assigns an 
additional term Vso, in the scattering potential. Knowing that the electron magnetic 
moment is related to the electron spin, S, through

Us
ge

v2mc

\

)
S , 2.30

where g is the spin g factor (g -  2) and that:

...2.31

then the spin-orbit contribution to the scattering potential is given by,

V
SO

Ze2
2 m 2c 2r3

L»S, ...2.32

where the Thomas precession, a relativistic effect, has been accounted for by including a 
factor of 1/2. This spin-orbit term then introduces a spin dependence into the scattering 
cross section which is defined as (e.g., Kessler, 1985)

<*e) = °«Ue)[1+s(e)p*n]. ...2.33

This is the Mott scattering equation, where Gunpoi(0) is the cross section for spin- 
averaged scattering, P is the polarisation of the incident electron beam and S(0) is the 
asymmetry function.

N , ~  1 + S

Figure 2.3: Scattering of an unpolarised electron beam.
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This scattering process can be seen in figure 2.3. Here the unit vector, n,  is normal to 
the scattering plane and using k and k' is defined as:

* k x k 'n = -------- -.
|kxk'|

...2.34

Mott scattering can be described via a double scattering experiment. In such an 
experiment an initially unpolarised electron beam is scattered from a high Z target (e.g., 
gold, Z = 79 or thallium, Z = 90). That is, an incident beam of electrons is assumed to 
have equal numbers of electrons with spin up (ms = +1/2) as with spin down (m5 = -1/2). 
It follows equation 2.33 that the number of spin up and spin down electrons scattered, 
through angle 0,, to the left is:

N(T)oc 1 + S(ej), ...2.35a

N (i)o c l-S (0 ,) .  ...2.35b

That means there are different numbers of N(?) and N (i)  electrons in the beam 
scattered from a target (TO through an angle 0,, i.e., the scattered beam is polarised. 
Then the total polarisation for the electrons being scattered through the angle 0, to the 
left is:

N (T)-N (f)
N (t)+ N (4 )

... 2.36

Similarly equations can be written for scattering an unpolarised electron beam to the 
right through the angle 0i.

unpolarised
\beam

Figure 2.4: A double scattering experiment where Ti and T2 are the targets, 0j are the 
scattering angles and N represents the number of counts detected either to the left, NL, 
or right, NR, of the incident electron beam.

So far an unpolarised beam of electrons has been scattered from a target and 
becomes polarised. Now consider the second part of the double scattering experiment. 
Now the polarised electron beam is scattered from a second target, (T2) through an
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angle 02 (see figure 2.4). It follows that scattering a polarised electron beam from a 
second target yields a left-right scattering asymmetry measurement, A(02):

A(02)
n l - n r

n l+ n r ’
... 2.37

where NL and NR are the number of electrons scattered to the left and right, through 
angle, 02, respectively. If the scattering events from both targets are coplanar, then:

NL~ n (T)(i + s (ej+N C iX i+scej)
... L .ioa

oc i+s(e2)p(e1)

and

nr “  n(T)(i-s (e2))+ N(i)(i+s(ej 2 38b
“= i-s(e2)p(e,)

Thus, substitution into the equation 2.37 leads to:

A (02) = P (0,)S (02) = S (0,)S (02) ...2 .39

as equation 2.36 shows that P(0O = S(0i), where S(0) is the analysing power, (or the 
Sherman function).

The double scattering experiment has shown two features, scattering as a 
polariser and scattering as an analyser (Kessler, 1985). It is the second feature which 
shows that the left-right asymmetry, A, observed with the scattering of a beam that is 
polarised perpendicular to the scattering plane is also determined by S(0), i . e A = P 
S(0). This is the principle on which Mott polarimeters operate.

The Sherman function is measured by either a double scattering experiment 
(figure 2.4), or by using a beam of electrons with known polarisation (equation 2.36). 
Sherman functions measured with an atomic beam give more accurate results than 
scattering from thin films, as the latter introduces multiple scattering effects. 
Furthermore, if a beam of polarised electrons with known spin direction is used, then the 
sign of the Sherman function can be determined (the sign can also be determined by 
double scattering of identical atoms).

These Sherman functions are calculated for ideal situations, where scattering is 
from a single atom. Therefore, it cannot be directly applied to an experiment such as in a 
Mott polarimeter, where in this case the target is a foil of some thickness, t. The 
measured Sherman function depends on the thickness of the foil, as well as the scattering 
angle and the atomic number of the target. Consequently, it is necessary to consider an 
effective Sherman function which depends on the thickness of the foil. It is best to 
measure the effective Sherman function for the Mott polarimeter used in a particular 
experiment, as there are large uncertainties in the theoretical treatment of multiple
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scattering (Kessler, 1985). Since the effective Sherman function takes into account 
multiple scatterings from a foil, it will generally be a lower value than the real Sherman 
function, which is calculated for a single atom. This calibration of the Mott polarimeter 
can be done by scattering a beam of electrons of known polarisation from a target, such 
as a gold foil and measuring the asymmetry. From equation 2.36, the effective Sherman 
function for that Mott polarimeter can be determined.

An alternate method of calibration is to use a beam of electrons with a known 
polarisation and to measure the increase in scattering asymmetry for targets of 
decreasing foil thicknesses, t. Multiple scattering involves reactions with more than one 
deflection. If the multiple scattering contribution is assumed to be small, then it is 
possible to extrapolate to a thickness of zero (t = 0), where a thickness of zero 
represents scattering from a single atom. This can then be normalised to the well 
established Sherman function for t = 0, (Kessler, 1985). Then this effective Sherman 
function for the Mott polarimeter employed can be applied to foils of various 
thicknesses. This is discussed further in section 4.2, where the alternative method used in 
this experiment is explained.

There are many sources of errors which need to be considered for the 
measurement of the Sherman function. This includes the multiple scattering from the 
target which is discussed elsewhere (in section 4.2.2). Other scattering events, such as 
back scattering from the chamber walls also add to the background noise. This can be 
negated by coating the walls of the chamber with graphite. If electrons have reached the 
detectors by indirect means, i.e., from being scattered from the chamber walls, then they 
would have suffered an energy loss. If a retarding potential Mott analyser is used, these 
electrons can be discriminated against by use of the energy loss window. This assumes 
that the resolution of the apparatus is high. Systematic errors also need to be considered 
especially in an experiment which depends upon asymmetry measurements. This is 
considered in section 4.2.
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Spin Polarisation Effects

In general the (e,2e) experiment has provided a wealth of information. However, 
these experiments have usually involved interactions between unpolarised targets and 
unpolarised projectiles, where the ionisation mechanism is dominated by the strong 
Coulomb force. Experimental developments in the last few years have made it possible 
to produce polarised collision partners, thus extending the (e,2e) experiment to provide 
more information. This additional information involves spin effects, which are generally 
weaker forces and therefore cannot be observed in ordinary experiments as they are 
masked by the Coulombic force. To observe these effects it is necessary to use polarised 
projectiles and/or polarised targets in collision experiments. It is now relatively easy to 
polarise targets, such as sodium, which have been used in experiments for some years 
(Baum et al. , 1985 and McClelland et a l ,  1989a).

Of particular interest in this study is the use of spin polarised projectiles. Spin 
polarised electron sources are implicitly simple devices. Chapter 2 explained theoretically 
how these devices are possible and chapter 4 demonstrates the practicality of a polarised 
electron beam. In this work only one example of a polarised electron source is discussed, 
although a variety exist and a comprehensive review is given in Kessler (1985). 
Experiments involving polarised electron beams have been used to study concepts such 
as the spin-orbit interaction, exchange and the fine-structure effect (Hanne, 1992). The 
following sections describe these spin-dependent effects and how they can be measured.

Section 3.1 Spin-orbit Interaction

The principles of the spin-orbit interaction were discussed in chapter 2 (see 
section 2.4) in regard to Mott scattering. Recapping briefly, an electron in its rest frame 
sees a nucleus with velocity, v, and there is an electric field between them, E. A 
magnetic field due to the moving charged particle is produced, B = - v x E/c. It is this 
magnetic field which interacts with the magnetic moment of the electron. The 
corresponding potential describing the scattering process, then has a spin-orbit part, 
which is proportional to L*S (equation 2.32).
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If the incident electron beam is polarised perpendicular to the scattering plane, 
then the direction of polarisation will not change during the scattering event, although 
the magnitude may be altered. However, the component of polarisation that is not 
perpendicular to the scattering plane is subject to a torque caused by the magnetic field 
and will therefore precess. In this case the direction of polarisation may change. Spin- 
orbit scattering can clearly be seen, for example, when a beam of unpolarised electrons is 
elastically scattered from a spinless heavy target and the resulting polarisation is 
measured.

In the ideal experiment, the polarisation after scattering a polarised beam is 
(Kessler, 1985):

r , [P„+S(9)]n+T(9)Pp + U (9)[nxP p]

i+p„s(e)

where the directions are indicated in figure 3.1. The initial polarisation has two 
components, i.e., in the scattering plane, Pp and perpendicular to the scattering plane, P„. 
The definitions of the generalised S, T, U parameters used are:

s(e)=;

T(e) = 

u(e) =

f g ' - f g

|f|2+W2

|f |2-  |g|2

f g ' + f g

|f|2 +M2

... 3.2

where f is the direct scattering amplitude, g is the exchange scattering amplitude and 5. 
T, and U represent the Sherman, contraction and rotation functions of the polarisation, 
respectively. As these parameters are not independent, S2+T2+U2 = 1.

Figure 3.1: A schematic diagram showing the components of the polarisation with 
respect to the scattering plane, where k and k ' are momenta before and after scattering.
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Clearly, if the initial beam is unpolarised, then the resulting polarisation is:

P '= S (0 )n , ...3.3

where S(0) is the Sherman function as discussed in section 2.4. This provides a method 
for determining the Sherman function and allows measurements of polarised electron 
beams, via asymmetry functions. The cross section in elastic scattering is dependent on 
the electron spin (Kessler, 1985):

a(0,<p)=au(8)[l+S(0)P» n]. ...3 .4

That is, the spin-orbit effect can give rise to spin polarisation in electron scattering.

Section 3.2 Exchange

An incident electron can be exchanged with the target electron during an 
electron-atom collision. The scattering amplitude for this exchange process is denoted by 
g. This event is most obvious when polarised electrons are scattered from a target of 
light polarised atoms, since the spin-orbit effect is negligible. If a beam of polarised 
electrons is scattered from a polarised target (say spin down), one possible reaction is:

eT + A i = e i +  A t  ...3.5

where the incident electron is exchanged with the target electron. This spin-flip is most 
likely a result of exchange as other spin effects are negligible.

Continuing with this example, presuming the target is spin down, then the other 
possible reactions are

and
e T + A i = e T + A i ... 3.6

e i  + A i  = e4 + A 4 . ... 3.7

Equation 3.6 represents the direct scattering process and is described by the scattering 
amplitude, / .  In these scattering reactions it is possible to distinguish between the direct 
and exchange scattering processes. The final possibility (equation 3.7) can be due to 
either direct or exchange scattering. These scattering amplitudes must be added 
coherently and only the phase difference, y, is observable.

For completeness, consider a target with spin up, then the following reactions are 
possible:

e i + A T = e T + A4 ... 3.8

e4 +A T = e4 +A T ... 3.9
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e T + A T  =  e T + A T  ... 3.10

where equation 3.8 is due to exchange, equation 3.9 is direct scattering and equation 
3.10 is either direct or exchange scattering. The scattering amplitudes are g, f, and f-g , 
respectively. The corresponding cross sections are | g | 2, I /I2 and | / - g |2. These cross 
sections would be measurable in an experiment where the spin states o f the collision 
partners were well defined and the spin o f the scattered electrons (or the final spin state 
o f the atom) was observed and analysed.

The cross section for scattering a beam o f polarised electrons, (Pe) from a 
polarised target, (Pa), (neglecting all other spin-dependent forces) is (Kessler, 1991):

o = o „ (e )[ i-A (e )p ..p .]  . . .3 .11

where gu(0), the cross section for an unpolarised beam is:

a„4i/i24ui24 i/-gi24 i /+gr+|i/-«i 3.12

with f+ g , and f-g, the singlet and triplet amplitudes respectively. Kessler defines the 
scattering asymmetry as:

A(e)
f g ' + f g  _ |f||g|cos(Y,-Y,) _ |f + g |j - | f -g |

2<5. °u  |f  + g| +  3) f - g

The polarisation o f the scattered electrons in a scattering event is:

p :

(  1 |2  A

1 . 1 1 r .+
(  I 

. - | g |CT„ a „
V  u J V u J

P.-»'-V -—p.*p.
1 ■ A  Pe • P,

... 3.13

... 3.14

It is obvious that if the target beam is unpolarised (P, = 0), then the polarisation o f the 
scattered beam is:

p : i -
2 N

. . .3 .15

This explains the possible partial depolarisation o f the polarised incident electron beam 
as a result o f exchange with the target.

To completely determine the characteristics o f the experiment, that is, the 
scattering amplitudes, /  and g, and their relative phase, y, it is necessary to measure the 
absolute unpolarised cross section and three observables. The measurement o f a
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scattering asymmetry, in terms of cross sections for parallel and antiparallel polarisation 
vectors of the incident eliectron and the target atom, is defined as:

A(e) = ° n  ~ a n  ...3.16

yields cosy, from equation 3.13. If the polarisation of the scattered electrons is 
measured, then information on the scattering amplitudes may be obtained (equation 
3.14). However, more information is needed to completely determine y. This can be 
gathered by measuring the electron polarisation component normal to Pe and P„ then re­
arranging equation 3.14:

■ fg * -f* g  . jf | |g ls in (y ,-y 2) 317
2o„ c u

yielding siny, completely fixing the relative phase. Thus, all characteristics of the 
experiment are measurable in this manner. As this type of experiment only yields 
unambiguous information about exchange processes from light atom targets, sodium is 
well suited to measuring exchange effects.

Section 3.3 Fine-Structure Effect

Reactions cannot simply be classified as either exchange or spin-orbit effects. 
There are many other factors to consider. Hanne (1983) proposed that if the fine- 
structure of an atom could be resolved in the final state, then there are significant 
polarisation effects due to the interplay of exchange and fine-structure splitting. These 
polarisation effects are evident even in the absence of spin-orbit interaction (i.e., if light 
atoms are considered).

For the fine-structure effect to be noticeable, it is necessary for the fine-structure 
states to be resolved in either the initial or the final state. That is, the resolution of the 
entire experimental apparatus needs to be less than the energy difference separating the 
fine-structure states being investigated. The fine-structure effect depends on having a 
non-vanishing orbital angular momentum orientation of the target (i.e., (L) * 0) and 
electron exchange. If these three conditions are attainable in an experiment in the 
absence of any other explicit spin dependent forces, then the fine-structure effect is 
evident (Hanne, 1983).

To explain the fine-structure effect simply, a light atom, such as helium is 
considered. The physical mechanism can then be easily understood (Kessler, 1991 and 
McCarthy and Weigold, 1995). The experiment is arranged such that a polarised 
electron beam excites the 23Pj states of helium and only one of the fine-structure states is 
monitored. It is known that the excitation process may result in an orientation of the 
orbital angular momentum of the final state (Anderson, Gallagher and Hertel, 1988). In 
this example experiment this means that an excitation from the ground state, VS0 to the
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23Po state, leaves the final state with an orbital angular momentum (La), perpendicular to 
the scattering plane.

Assuming that LS coupling holds for the target state and the scattering system, 
then in the 23P0 state the spin and orbital angular momentum must be antiparallel, as 
quantum mechanics dictates that J = L + S (this particular excited state has J = 0). That 
is, (Sx) = - (L ^ . If the orbital angular momentum is assumed to be positive, (Lx) > 0, 
then the spin of the final helium state must be negative (spin down). As the Pauli 
principle must apply, the only possible reaction from ground state ( VS0, which has zero 
spin) to the excited state (23P0), is a result of exchange. Exchange implies that the 
incident electron is captured and an electron from the atom is ejected. Furthermore, the 
incident electron must have spin antiparallel to the electron ejected and parallel to the 
bound electron. Therefore, the probability of exciting the 23P0 with spin up electrons is 
greater than with spin down electrons. Consequently, the scattering cross sections will 
be different depending on the orientation of the incident spin direction. An explanatory 
diagram can be found in e.g., Hanne (1983).

This difference in scattering cross sections results in an asymmetry, A (Hanne, 
1983), which is defined as:

g (T )+  g(4 ) h h

where g(T) and G(i) are the cross sections for an incident electron beam with spin T 
and spin f, respectively.

However, if the fine-structure of the atom is not resolved, i. e., the multiplet is 
averaged over, then the asymmetry vanishes. This proves to be a good, simple check for 
experimental data. Where the energy splitting between the fine-structure states is too 
small, a ‘time reversed’ experiment yields similar results. In a ‘time reversed’ experiment 
superelastic scattering is measured from a laser excited state as an electron-photon 
coincidence. This is the case for sodium where experiments have shown that this effect is 
observable (Hanne, 1983 and McClelland, Kelley and Celotta, 1987).

Section 3.4 Density Matrix Formalism

The neatest way to present the theory for polarisation mechanisms is via the 
density matrix formalism (Bartschat and Madison, 1988 and McCarthy and Weigold, 
1995). Guo et al. (1995) applied this formalism to describe the asymmetry as produced 
by the fine-structure effect of a spinless target which includes both spin-orbit and 
exchange interactions. Here, only the relevant results of the density matrix formalism 
will be stated. However, the details for the theory can be found in the above references.

In applying this theory the kinematics of the experiment for this work is used. 
(The kinematics are shown in figure 5.2.) To begin with, the collision parameters need to
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be defined in terms of the reduced density matrix in the collision frame. The electron 
beam is a mixture of pure spin states, with each electron having the same eigenvalues of 
momentum, k. The spin properties of the electron beam are characterised by the reduced 
density projector:

r t = s, <v„|p;rK)|vo)(vo|
v0*v0

... 3.19

where (pe,)Vo v0=  < v0 |p</p"1v'0) are the reduced density matrix elements. In the {| ±1/2)} 
representation the explicit form of the reduced density matrix is:

f t ,

f \ + P3 

PffiP2
P-iP>)
l - P j

... 3.20

where (Pu P2, P3) = (Px, Py, Pz) define the components of the polarisation vector along 
the x, y, z axes.

Similarly, the atomic beam is described as a mixture of atoms in different pure
states:

ft=  I |a i , i ;M ^ > ( a 0,y0>M0| ( f t ) ^  ...3.21
hA  ,M0.M0

where a pure state of the atom is defined as \ cxq' J0 M0) with J0 and M0 the total angular 
momentum of the atom and it’s projection, respectively, ao' is the set of all other 
quantum numbers required to completely define the atomic state.

The reduced density matrix for the final state can be written as (Guo et al.,
1995):

(V;, V;; M }  p;,“| v,, v,; 7,., M )  =

2 rrT I / ( v> : . ) / * ( v , . v „  M,.,v0)(pt,X .
" 0 “»- 1 M0

vo*vo

... 3.22

where the scattering amplitudes, /  (the superscript, *, denotes the complex conjugate) 
are defined as:

/(vs,v,,Mi ,v0)=(v„ve,J,.,Mj |r |7 0,M0,v0). ... 3.23

As this is a coincidence experiment, where the Us interaction within the target 
gives rise to a fine-structure splitting in the ion, the reactions corresponding to the two 
different values of J„ are differentiated. The preceding reduced density matrix is then 
diagonal with respect to Jx. Hence, equation 3.22 becomes:
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( v > ; .< ;v „  v„w,)= x  /(v;, v;,m ',v;) /-(v„  v„M,.,v0)(pe,x
V q .V q

o.v'o
... 3.24

where the normalisation coefficient and the summation over M0 cancel for the case of a 
closed shell atom.

The (e,2e) differential cross section can be expressed in terms of the density 
matrix formalism as follows:

(2k)4^  X / ( v„  v„ M „ v0) /- (v„  v„ M X ) ( ft,)v. vo. ... 3.25dQsd ^d E 5
V v0v„ve

I f  the cross section for scattering of an unpolarised electron beam is defined to be:

unpol.
d a

Vd n .dn ,dE ,Av<)(
b  1 /

( 27C ) 4 ~t ~L ,
K 0

3.26

then the (e,2e) cross section (equation 3.25) can be written as:

d3a f  d3a ^
dß  dQ dE vdß.dß.dE, [ l + Py.A ] . 3.27

The parameter o f primary interest in this work is the asymmetry, which in terms o f the 
density matrix formalism is:

-2(27t)4 ksk.

®unpol. k 0
X(-0 H / 1 1 M 1

y2 2 2 j

1 1
/ *  — ,—

V 2 2 ' 2
...3.28

1 1 1 1 1
M , , -

2 2 2

I f  the contribution of the l«s interaction is now neglected, the expression for the 
asymmetry for a pure fine-structure effect in the collision frame is obtained. It is 
important to note that there are no approximations in this theory as yet. The 
approximations eventuate in the scattering amplitudes. An intuitive explanation o f the 
experiment for this work is given in chapter 5, where the results are presented in 
comparison to the calculations of Mazevet (1996) and those of Madison, Kravtsov, 
Jones and McEachran (1995, 1996). The theoretical calculations used for comparison 
are briefly discussed in chapter 5.
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Experimental Apparatus

This chapter describes the experimental apparatus used to obtain the results for 
this work. General descriptions of (e,2e) experiments can be found in Lower and 
Weigold (1989) and Ehrhardt et dl. (1986). The particular apparatus used in these 
experiments has been developed over many years, by several co-workers. Some aspects 
were described in Zheng et al. (1990) and Granitza et al. (1993). Some components of 
the apparatus were changed midway through the course of this work, which coincided 
with a relocation from Flinders University to the Australian National University. A few 
of these changes were cosmetic, to comply with the new laboratory environment, while 
others were more substantial. Phase two of these changes are currently taking place and 
will also be described here. The majority of the experimental data was collected before 
phase two began.

There are three main sections of this apparatus, namely the polarised electron 
source, the Mott polarimeter and the scattering chamber (figure 4.1a and photograph in 
figure 4.1b). Initial modifications to the system included installing new Helmholtz coils, 
upgrading the wiring of most sections of the electronics, and most importantly, careful 
alignment of the entire system. These modifications have been described in detail by 
Shen (1995) and consequently, are only mentioned here. Phase two is essentially to 
improve the electron transport from the electron source to the scattering chamber and 
the differential pumping stage.

The polarised electron source, described in section 4.1, was used to generate a 
beam of electrons with preferred spin at a given energy. This involved irradiating a GaAs 
crystal with circularly polarised light of a predetermined wavelength. The electrons were 
then extracted from the crystal surface and transported through a series of electron 
optics to the scattering chamber.

To measure the polarisation of the electron beam a Mott polarimeter was used. In 
this apparatus the electron beam was accelerated to typically 60kV and fired at a gold 
foil target. By measuring the asymmetry of the outgoing electrons and using the Sherman 
function the polarisation of the beam can be extracted.

The experiments were performed in the scattering chamber. The scattering 
chamber houses many pieces of apparatus, including the retarding lens system for the
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Chapter 4: Experimental Apparatus

electron beam, a Faraday cup to measure the beam current, two hemispherical analysers 
to detect the outgoing electrons in coincidence and a Faraday cage where the interaction 
takes place. Associated with this scattering chamber was a series of electronic NIM units 
that were used to process the information gathered and to discriminate against any 
random coincidence events. This is called the coincidence circuit and is described here 
and some information can be found elsewhere, for example, in Lower and Weigold 
(1986).

Section 4.1 Polarised Electron Source

The system was modified to improve the differential pumping and to ensure that 
both the source and differential pumping chambers could be kept at UHV pressures 
(phase two of the modifications). Briefly, the original configuration had the source 
chamber separated by a gate valve from the differential pumping chamber leading to the 
scattering chamber. The modification entailed placing the gate valve between the 
differential pumping chamber and the scattering chamber. This modification also 
included situating an aperture before the differential pumping chamber. At the same time, 
to improve control over the polarised electron beam the size of the final set of 
quadrupoles after the extraction optics was increased. The following section gives a 
detailed description of the polarised electron source as it is today.

4.L1 Vacuum System

The source region vacuum system was a six-way cross, each arm being 95mm in 
diameter, constructed of 310 grade stainless steel. The vacuum was sustained by an ion 
pump and a titanium sublimation pump. The best achievable base pressure was 4x10" 
Torr, however a typical pressure was 4x1010 Torr.

A ‘differential pumping chamber’ separated the source chamber from the 
scattering chamber so that a good UHV condition could be held in the source chamber. 
The differential pumping chamber had a height and width of 162mm, was pumped by a 
170 17s turbo pump and a backing pump. The tube for the electron optics, which ran from 
the beginning of the extraction optics in the source chamber, to the retarding lens system 
in the scattering chamber, was 18mm in diameter. In the differential pumping chamber 
the tube was made of mesh to facilitate the general pumping procedure.

The source chamber was baked up to 220°C, while ensuring that the gate valve 
separating the source and the differential pumping chamber from the scattering chamber 
was kept below 100°C. The gate valve had a viton O-ring, prohibiting baking at a higher 
temperature. To enhance the pumping procedure, a bypass tube of 18mm diameter was 
connected to the source chamber from the turbo pump of the differential pumping 
chamber. This was utilised in the initial pump down of the source chamber. The bypass 
tube was shut off after a suitable pressure was reached in the source chamber, when the 
other pumps where operated. A 4mm aperture on the differential side of the gate valve
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ensured there was differential pumping, that is, while the source chamber was at 1x10 10 
Torr, the differential pumping chamber was at 3xlO"8 Torr.

4.1.2 Producing Polarised Electrons

This section describes the experimental basics of producing the polarised 
electrons. To produce the electrons a GaAs crystal, which was carefully selected and 
handled, was illuminated with circularly polarised light. The polarised electron beam, 
after extraction from the GaAs crystal surface, was then transported to the scattering 
chamber to be used in the experiment.

4.1.2.1 The GaAs Crystal

A commercial GaAs crystal with a [100] face was used. Prior to being mounted 
in the UHV chamber, the crystal was chemically cleaned. The long and involved etching 
procedures as described by Pierce et al. (1980) were not used as it was recognised that 
the structure of the crystal surface was of greater importance than the chemical treatment 
of the crystal (Kolac et al., 1988). To this end, the crystal was carefully washed in 
ammonia, ensuring the shiny side was kept facing upwards. The crystal was then blow 
dried with nitrogen before being quickly placed in the vacuum chamber. The baking and 
heating process for the source chamber and the crystal respectively, was then performed 
to maintain the cleanliness of the system.

The GaAs crystal was mounted to a manipulator which was attached to the top 
flange of the source chamber. The manipulator allowed for moving the crystal up and 
down, as well as slight lateral and tilt movements, allowing for further alignment with the 
laser diode. A commercial heater block was clamped to the crystal to accommodate for 
uniform heating of the crystal. The crystal was heated slowly to a maximum of 690°C. 
Then the temperature was held at this maximum for about five minutes before the crystal 
was cooled to room temperature. Measurement of the temperature was via a 
thermocouple which was spot-welded to the heating block. This implies that the 
thermocouple did not measure the temperature of the crystal directly, however, 
experience with the activation process has shown that this block temperature was 
appropriate for correct processing of the crystal. Once the crystal was cleaned and 
baked it was then lowered into position, 0.8cm above the extraction optics.

4.1.2.2 Laser Diode

A GaAlAs laser diode in CW mode was used as the light source for the 
production of the polarised electron beam. The laser diode and the associated optics 
were mounted separately below the source chamber, as per figure 4.2. The wavelength 
of the laser diode was 780nm. Circularly polarised light was generated by using a linear 
polariser and a X/4 plate, in the usual manner (Pierce et al., 1980). The circular 
polarisation of the laser diode was measured to be better than 99%. The helicity of the 
laser diode can be easily reversed by rotating the XJ4 plate 90°. The XJ4 plate was 
carefully calibrated prior to the experiments being performed. This reversal of the
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circular polarisation does not move the beam of light, that is, the laser hits the same spot 
on the crystal for all positions of the Ä74 plate. The rotation of the A/4 plate was 
controlled by a stepping motor which can either be manually or computer controlled.

TO CRYSTAL

A
LI

S.M. A /4  PLATE

mm mm NEUTRAL DENSITY 
FILTER

LASER DIODE

Figure 4.2: The laser diode and associated optics assembly.

4.1.2.3 Activation

After the crystal was cleaned ‘in-house’ to remove the contaminants from the 
crystal surface and was cooled to less than 50°C, it was then ready for the next step in 
the activation process. The crystal surface was then layered with caesium and oxygen, 
thus creating a negative electron affinity surface (as described in section 2.3). The light 
impinging upon the crystal emanating from the GaAlAs diode had a power of ~0.8mW.

Caesium was expelled in vapour form from a commercial ampoule (SAES 
Getters) by applying ohmic heating. Firstly the ampoule must be degassed, which was 
done with a current of 6 Amps. The current for controlling the caesium was then 
reduced and the emission current and chamber pressure were monitored. When the 
emission current rapidly increased, the oxygen layer was required.

Oxygen of high purity was introduced into the chamber via a needle valve from a 
glass flask which was attached to the source chamber platform. The amount of oxygen in 
the source chamber was monitored by the chamber pressure. (The pressure in the source
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chamber was always kept below 5 x 10'9Torr.) As the emission current dropped off, the 
oxygen was shut off and the caesium vapour was re-emitted. This was the so called ‘yo­
yo’ technique (Tang et al., 1986). The process was completed when no further obvious 
increase in emission current was gained. The final layer applied to the crystal surface was 
a layer of caesium.

Typically a maximum emission current of 30-40|iA was obtained. The 
modifications to the source chamber allowed two ampoules to be placed into the source 
chamber, hence increasing the running time of the source. The wires carrying the heating 
current were run side by side so as to negate any magnetic field effects.

Once the emission current had been established, it was then passed through the 
electron optics into the scattering chamber. Initially the emission current was kept at the 
maximum. This allowed the characteristics of the polarised electron beam from the 
source to the Faraday cup in the scattering chamber to be investigated. As the beam 
stabilised and settled, the emission current was decreased so that ~100nA was measured 
after the interaction region. It was found that the best operating conditions required the 
caesium dispenser to be kept on ‘stand-by’ at a current of ~ 2.5A (which was increased 
as the amount of available caesium decreased).

4.1.2.4 Transport of the Polarised Electron Beam

The experiment which utilised the polarised electron beam was performed in the 
scattering chamber, 1.2m from the origin of the polarised electrons. It was therefore 
important to have an efficient method of transporting the polarised electron beam to the 
scattering chamber. Efficient transportation in this case means maintaining the 
polarisation of the electron beam, ensuring the beam was parallel and that a high 
percentage of the beam reaches the interaction region. This was done by a series of 
lenses and apertures that carry the beam at lOOOeV, as shown in figure 4.3.

As stray magnetic fields can affect the trajectory and polarisation of electrons, 
great care was taken to reduce these fields in the region of the electron beam. It was 
impossible to maintain a zero magnetic field over the entire path of the electron beam, as 
well as in the scattering chamber. The electron energies were lowest in the interaction 
region and would therefore be the most affected by magnetic fields. Hence, the magnetic 
field was minimised in this region first. This was done by varying the currents in the three 
sets of Helmholtz Coils (see section 4.3.1). To further reduce the magnetic fields along 
the ‘beam line’, ji-metal shielding was used and all internal materials were de­
magnetised.

The electrons were extracted from the crystal and accelerated by a uniform field 
to the anode aperture at 250eV. A photograph of the source chamber and the extraction 
optics is shown in figure 4.4. Initially the electron beam was polarised longitudinally. To 
transform this into a transversely polarised electron beam, a 90° electrostatic spherical 
deflector was used, which does not affect the degree of polarisation. A pass energy of 
250eV was chosen for the 90° electrostatic spherical deflector, so as to minimise 
dispersion and to maximise transmission. The beam then passed through a series of
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lenses at lOOOeV. This style of transport system was similar to that used by Pierce et al. 
(1980) and the principles will not be expanded on here, as they have been well described 
in the reference paper.

Typically, for a cathode voltage of Vc = 147eV, and an emission current of 1^ = 
15.5jiA, the total current reaching the Faraday cup was Itot = 5.5pA, with an inner cup 
measurement of Iin = 4.1pA. The transmission of the beam line was typically 30%. This 
resulted in a current which was satisfactory for the experiment. This beam remained 
stable for up to a week of continuous operation. The crystal then sometimes required 
cleaning and re-activation.

Section 4.2 Mott Polarimeter

The Mott polarimeter was used to determine the polarisation of the electron 
beam using the principles explained in chapter 2. The Mott polarimeter used in this 
analysis was a compact spherical ‘Mini-Mott’ polarimeter. It consisted of retarding 
potential detectors and spherical anodes.

4.2.1 The Apparatus

The Mott polarimeter requires a good UHV system. A suitable vacuum was 
obtained using a turbo pump, ensuring a base pressure of 1 x 108 Torr. The Mott 
polarimeter, which was connected to the scattering chamber, was the last component in 
the entire system. It could be isolated from the scattering chamber by a manually 
controlled metal gate value, after determining the polarisation of the electron beam. This 
allowed for the scattering experiments to be conducted without affecting the vacuum in 
the Mott chamber. The lid of the Mott polarimeter could be raised hydraulically.

The Mott chamber had two coaxial spherical electrodes mounted in the UHV 
chamber. The inner sphere had a diameter of 100mm and the outer sphere had a diameter 
of 200mm. The inner sphere operated at high voltage and was therefore mounted on a 
high voltage insulator. The voltage was limited by the size of the electrodes and in this 
case breakdown was at 85kV (the ideal maximum was lOOkV). Usual operation was in 
the 20-60kV range. The outer sphere was held at ground potential providing a relatively 
safe situation for the operators. Entrance apertures on the inner and outer spheres were 
5mm and 10mm respectively.

A manipulator which held three gold foils of different thicknesses and a 
phosphorous screen was mounted in the centre of the inner sphere via a linear 
feedthrough. The linear feedthrough was mounted on the top flange and held the foils via 
an insulating rod. A scale on the exterior of the feedthrough was used to set the foils and 
the screen in place correctly. The gold foils were commercial products mounted on 
substrates and were lOOnm, 50nm and lOnm thick. For the measurement of the 
polarisation in these experiments a gold foil of lOOnm thickness was used.
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TURBO PUMP

Figure 4.5: The Mott polarimeter, showing the MCPs and the linear feedthrough.
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Retarding analysers were used to detect the electrons. These were a combination 
of retarding meshes and multichannel plates. A grounded entrance mesh shielded the 
retarding field from the inner and outer spherical electrodes. A retarding mesh, with a 
voltage VR, was placed in front of the multichannel plates. This allowed discrimination 
for electrons that have suffered a certain energy loss during the scattering process. The 
voltage, VR was variable and controlled the energy loss window, AE = E0 - VR, where E0 
was the incoming electron beam energy. Two pairs of retarding analysers were in the 
Mott polarimeter. They were located symmetrically at a backward scattering angle of 
120° in both the vertical and horizontal planes. A schematic of this apparatus is shown in 
figure 4.5

4.2.2 Operating the Mott Polarimeter

The electron beam was transported from the polarised electron source through 
the scattering chamber and into the Mott polarimeter at lOOOeV. However, as the 
normal experimental current was too high for the retarding potential analysers, a neutral 
density filter was placed between the GaAlAs laser diode and the GaAs crystal, thereby 
reducing the beam current to acceptable levels. In the Mott polarimeter the spherical 
electrodes create a symmetrical radial field distribution between the inner and outer 
spheres. Incident electrons were accelerated to energies between 20 and 60kV towards 
the inner sphere. The back scattered electrons were decelerated by the ground potential 
on the outer sphere and were detected if they were within the energy loss window by the 
retarding analysers. In this analysis the set of retarding analysers in the horizontal plane 
was used as the electron beam was vertically polarised. In the first instance, the 
phosphorous screen was positioned in the centre of the inner sphere so that the electron 
beam was visible. This showed clearly as a bright blue spot and demonstrated that the 
beam was focused.

4.2.2.1 Calibration

As explained in chapter 2, the effective Sherman function, Seff, is used to 
determine the polarisation of the incident electron beam. Usually an extrapolation 
method is used, where the Mott scattering asymmetry is measured for various target 
thicknesses and extrapolated to a thickness of zero (i.e., scattering from a single atom). 
This can then be normalised to the well known Sherman function, S, for a given energy 
and angular setting. However, the maximum of only three measurements of varying 
thicknesses possible in this case, yields an insufficient data base to use the extrapolation 
method reliably. Therefore a different extrapolation method was necessary.

The alternate calibration method used in this case was to extrapolate to a zero 
energy loss (AE). In the retarding potential analyser, the degree to which the effective 
Sherman function, Seff, depended on foil thickness was a function of the size of the 
inelastic energy window used in detecting the scattered electrons (McClelland et a l,  
1989b). If the energy loss window was small, then it was presumed that the scattering 
took place primarily close to the surface. That is, if electrons travel large distances into 
the foil, then they lose larger amounts of energy. Therefore, the observed scattering 
events can be limited to the surface region of the foil by reducing the energy loss
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window. Hence, reducing the energy loss window effectively reduces the thickness of the 
scattering region (Gay and Dunning, 1992a). Therefore, by extrapolating the energy loss 
window to zero, which could then be normalised to the calculation of the Sherman 
function for a single atom, the polarisation could be determined. It should be noted 
however, that there may still be multiple scattering events that will contribute to the 
asymmetry as well as the background, see  -pcx^e

Once it had been established that the beam had reached the manipulator holding 
the gold foil, the polarimeter was calibrated by performing an extrapolation of scattering 
asymmetries obtained at 60kV for various energy loss windows to an energy loss of 
zero. At a zero energy loss the analysing power of the polarimeter can be normalised to 
the Sherman function for 60kV as reliable theoretical values were available (Ross and 
Fink, 1988).

4.2.2.2 Calculating the Polarisation

It is well known that Mott scattering from a high Z atom can be used to measure 
the polarisation of an electron beam, (e.g., Kessler, 1985). The asymmetry, A was a 
function of the polarisation, P and the Sherman function, S. A = PS, where A = (NL - NR) 
/ (Nl + Nr). If the effective Sherman function is considered, then from the principles of 
Mott scattering:

N L =  1 + S eff N R = 1 - S eff » - 4*1

where N is the number of electrons scattered to either the left (Nl) or right (Nr) 
detector. The measured asymmetry is a combination of Mott scattering asymmetry and 
instrumental asymmetry (from unequal detector responses). Then if the ratios of these 
counts is considered:

n , q + p s j «
n r “ (i-pscff)

...4 .2

where 5 is the instrumental response. It is necessary to account for this instrumental 
response function. This can easily be done if the source of polarised electrons allows a 
simple, quick reversal of the spin direction, which is the case for a GaAs crystal source.

Then the ratio for the reverse polarisation becomes:

n ,: ( i + p s j ,
n r (1 -P S J

... 4.3

Re-arranging equations 4.2 and 4.3 to eliminate 8:
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Figure 4.6: This graph shows the extrapolation to zero energy loss.
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Figure 4.7: The Mott scattering asymmetry as a function of the electron energy loss 
window.
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where X = (NLN;R /NrNY). Hence, the polarisation can be measured effectively regard­
less of the instrumental response function.

4.2.2.3 Measuring the Polarisation

The incident electron beam was accelerated to either 20 or 60kV. An integral 
electron energy loss spectrum at 20kV is shown in figure 4.6. This was a good spectrum 
in that it clearly shows the zero energy loss cutoff. The energy resolution is determined 
by the retarding potential method, which is the width of the steep rise near cutoff in a 
graph of intensity verses retarding potential. For this device the energy resolution, AE/E, 
was 2.5 x 104, which is comparable to similar Mott detectors (Uhrig et al., 1989 and 
Gay et al., 1992b). This resolution is sufficient to ensure that elastic scattering events 
can be differentiated from inelastic scattering events.

The asymmetry measurements are shown in figure 4.7 for 20kV and 60kV. Here 
a least squares fitting procedure is used to fit the data with a quadratic function. The 
extrapolation to zero yields A = -0.087 ± 0.004 at 60kV. The theoretical value of the 
Sherman function for 60kV is S = -0.362 (Ross and Fink, 1988). From equation 2.33, 
the polarisation for the incident electron beam given by P = A/S is 0.24 ± 0.01 (or 24 ± 
1%). This measurement took no longer than an hour. Once the calibration and the initial 
measurement have been completed for 60kV, Seff, is known for all energy loss windows, 
AE, at both 60 and 20kV. Therefore, subsequent measurements of the polarisation under 
similar experimental conditions could be performed at the lower energy, where the Mott 
polarimeter operates more effectively.

The error analysis for the measurement warrants further discussion. The 
previously cited polarisation value of 0.24 ± 0.01 includes only the counting statistics. It 
would be expected that if the number of measurements were increased that this error 
would be reduced. However as this error fails to include systematic errors, simply 
increasing the number of measurements does not significantly decrease the total error. 
Systematic errors can arise from asymmetric response functions of the detectors, but the 
main source of these errors is the extrapolation procedure. The unequal detector 
responses were accounted for as discussed above in the calculation of the asymmetry and 
the derivation of the polarisation value. A 10% uncertainty was assumed for the 
extrapolation error and combining this with the statistical error, a more appropriate value 
for the error is 0.24 ± 0.03.

Section 4.3 Scattering Chamber and Associated Electronics

The following section describes the housing in which the actual experiments were 
performed. It is divided into two parts, namely a description of the scattering chamber 
and secondly, the electronics required to accumulate and process the data.
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Scattering Chamber

4.3.1 Vacuum System

The scattering chamber was a cylinder, 74cm in diameter and 73cm high. It was 
pumped by a diffusion stack which was pumped by a rotary backing pump. The base 
pressure in this chamber was typically 6 x 10"8 Torr, but was generally operated at 6 x 
IO-6 Torr when using a gaseous target. A photograph of the inside of the scattering 
chamber is shown in figure 4.8. The laboratory where this experiment was conducted 
had a residual magnetic field of 1.1 Gauss which was compensated for by using sets of 
orthogonal “Helmholtz” coils. Three sets were necessary with the dominant set being in 
the vertical direction. The vertical coils were octagonal and had an internal diameter of 
6m, with 100 turns and a current of approximately 3Amps. The north-south and east- 
west coils were less substantial, square in shape with sides of lm  length, having 20 turns 
with a current of approximately 1 Amp. To assist the coils the scattering chamber was 
lined with p.-metal shielding. The resultant magnetic field was less than 5mG in the 
vicinity of the interaction region.

4.3.2 Electron Detection System

The electrons pass through a cylindrical electrostatic lens system into the 
hemispherical analyser and impinge upon a detection unit. This detection unit was the 
combination of multichannel plates and a resistive anode. From the position that the 
electron arrives at the resistive anode the energy information of the electron can be 
deduced. The analysers were mounted on rotatable turntables allowing external 
positioning with respect to the electron beam. The following subsections describe these 
units.

4.3.2.1. Interaction Region

The interaction region was defined by the overlap of the incident electron beam 
and the target gas beam. This region was enclosed in a Faraday cage to minimise electric 
field interference. The Faraday cage was a solid tube made of stainless steel, with 
viewing slits to allow the analysers access to the interaction region so that the electrons 
may be detected. The top of the cage was constructed of mesh for pumping efficiency.

A Faraday cup measured the beam current behind the interaction region. The cup 
was designed to be lifted out of the line of sight of the beam by an external control, so 
that the electron beam could pass through to the Mott polarimeter. This also allowed the 
analysers to operate at small forward angles. To have an indication of the focusing of the 
electron beam the Faraday cup consisted of two cups, an inner and outer cup with 
diameters of 3mm and 6mm respectively. Typical measurements in the inner cup were 
about 11 On A with about 25nA measured in the outer cup, under normal experimental 
conditions.
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4.3.2.2 Hemispherical Analysers

Two hemispherical electrostatic analysers were used for the energy and 
momentum analysis of the outgoing electrons. Hemispherical electrostatic analysers have 
been used in many experiments and are based on the design of Kuyatt and Simpson 
(1967). This type of analyser detects in one dimension and is suitable for an (e,2e) 
experiment. This is due to its point to point focusing properties and its almost linear 
dispersion of energy with respect to the particle position at the exit plane. The analyser 
consists of two parts, an electrostatic lens system and a 180° hemispherical analyser. A 
schematic of the lens system and the analyser is shown in figure 4.9.

MCPs

Figure 4.9: Cross section of the electron lens system and 180° hemispherical analyser.

The feature of the five-element lens system is that it can independently vary the 
angular and energy resolution. The first of the five elements, which is closest to the 
interaction region, must be grounded and has an entrance aperture of 2mm. The two 
zoom lenses are formed by elements one, two and three and three, four and five with 
voltages of ground, V2, V3 and V3, V4 and V0 respectively. The first zoom lens controls 
the angular resolution, while the second controls the energy resolution. The electron 
beam is collimated by two 1.5mm slits in the third element and hence determined the 
acceptance angle of the analysers. V0 on the last (fifth) element determined the electron 
mean pass energy, Ep of the hemisphere. A quad X-Y deflector set, with voltage VD, 
symmetric about V0, was incorporated in the final lens element in front of a 5mm circular 
aperture, which is the lens system exit and analyser entrance.
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The hemispheres of the analysers are concentric, with an inner diameter of rA = 
51mm and an outer diameter of rB = 89mm. Six stainless steel rings were inserted 
between the two hemispheres in order to produce a uniform potential distribution so that 
the energy resolution of the analyser could be improved. The central energy for the 
electrons entering the 180° hemispherical analyser is Ep. The analyser functions as an 
energy dispersing device by detecting electron with energies of Ep ± AE/2. The energy 
dispersing range, AE, is defined at the exit of the analyser by a slit which is 25mm long 
and 5mm wide. In this case AE is 6eV.

4.3.2.3 Position Sensitive Detectors

Position sensitive detectors were placed at the exit of each of the hemispherical 
analysers to determine the spatial co-ordinates of detected electrons. Position sensitive 
detectors consisted of multichannel plates (MCPs) and a resistive anode (RA) as shown 
in figure 4.10. This arrangement allowed for information to be simultaneously collected 
over the range of the MCPs. By using this arrangement the quality of the data was 
improved, as more data can be collated in a shorter time frame (Zheng, 1989). This was 
important as (e,2e) coincidence countrates were generally low'.

■MCPs

SECONDARY
ELECTRONS

RESISTIVE
ANODE

A lu m in a  B a s

Figure 4.10: The MCPs and resistive anode arrangement, which shows the fast, timing 
pulse, Fe, and the slow pulses, A* and Be.

The MCPs and RAs were from Surface Science Laboratory and were secured in 
a specially designed mount. The MCPs were arranged in a chevron configuration that 
provided the necessarily high gain (106- 107) for detecting single electrons and reduced 
spurious signals from ion-feedback. An incident electron hitting the front MCP produced 
an electron cascade, resulting in an electron cloud that leaves the MCPs and impinged on 
the resistive anode.
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In this experiment a Gear type resistive anode was used, as it was important for 
the detector to have a good linear response function. The spatial information required 
was derived from the ‘charge division’ method. The charge cloud impinging upon the 
RA produced two pulses from either end of the RA. These two pulses were fed into the 
electronic circuit and the positional information was deduced. The way in which this was 
done is described in detail in the following section.

Associated Electronics

4.3.3 Coincidence Circuit

The electronic circuitry used to process the electronic pulses and that which 
stored this data has been described many times before. However, as this process was 
pivotal to the experimental procedure a description is warranted. There are essentially 
two branches of the coincidence electronics, the energy, or information branch and the 
timing branch. Simply, the energy branch contained the energy and angular information 
which was the essence of the experiment, while the timing branch ensured a coincident 
event had taken place and also accounted for accidental coincidences. The complete 
coincidence circuit is shown in figure 4.11.

4.3.3.1 Timing Branch

The detection of each electron generated three pulses, the origin of these pulses 
can be seen from the diagram of the position sensitive detectors (figure 4.9). The fast 
pick off pulse from the back of the second plate of the MCP was the timing pulse, Fe 
(also referred to as the fast pulse). This denoted the arrival time of an electron at the 
detector.

A fast inverting pulse transformer was used to decouple the high voltage circuitry 
and to couple the back plate of the MCP to the fast amplifier. The pulses from the 
preamplifiers were further amplified by a fast amplifier. The fast timing pulses from the 
fast amplifiers enter constant fraction discriminators (CFDs), which set threshold levels 
to remove noise from the signal lines and produce an output correlated in time to the 
input signal. The discriminator output from one detector was used to start a time-to- 
amplitude converter (TAC) and the delayed pulse from the other detector provided the 
stop pulse. The pulse height distribution of the TAC output was proportional to the time 
difference between the start and the stop pulses. The TAC outputs were either due to 
real coincidence events or from random coincident events. The pulse height distribution 
from the TAC therefore has a uniform background caused by the arrival of uncorrelated 
electrons in the detectors with a peak superimposed on this background due to real 
coincidence events. This peak was the coincidence peak.

The timing signal needed to be corrected for the variations of the flight times 
through the analysers. The flight time for an electron passing through a hemispherical 
analyser increased with increasing entrance energy. Explicitly, an electron having a high 
energy has a greater radius and therefore a longer pass flight through the analyser.
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Similarly an electron with low energy has a shorter pass flight (Lower and Weigold, 
1989).

If the flight time for the electrons through both analysers was T, (Ts for the 
scattered electrons and Te for the ejected electrons), then:

Te=T? + t e(Ee) , ...4.5a

T,=T>t,(Es), ...4 .5b

where Te° is the time for an electron with mean pass energy E0, to pass through the 
analyser and

tc(Ee) = te(Ec- Eo). - 4 .6 a

t s(Es) = ts(Es- Eo)- - 4 .6 b

The pulse from the TAC, At, is given by

At = Te + Td - Ts , ...4 .7

where Td is the delay time in the TAC, Te is the start pulse and Ts is the stop pulse 
(ignoring the small time differences through the entrance lenses). Then substituting 
equations 4.5 into equation 4.7 gives;

A t = ( t  -T? + Td)+ te(Ee)- ts(Es). ...4 .8

A t= T e + tt(Et) - t s(Es), ...4 .9

where Tc is a constant. Assuming the analysers are linear with respect to energy, then:

te = a e(Ee-E°e), ...4.10a

t s = a s(Es-E°), ...4.10b

For E0 = Es° = Ee° and since the analysers are identical, i.e., a* = a* = a, substituting 
equations 4.10 into equation 4.9 gives

At = Tc + (aEe- aE 0) - (aEs- aE 0) , ... 4.11

and rearranging becomes,

Tc = At -aE e + aEs . ...4.12
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Hence, the timing spectrum may be corrected in the following manner; the two 
energy pulses Ee, Es were attenuated by a factor of a and combined with the pulse from 
the TAC in a dual sum and invert amplifier, yielding a corrected timing spectrum. A 
typical timing spectrum is shown in figure 4.12. The angular divergence of the electrons 
in the hemispherical analyser cannot be corrected for therefore, the timing spectrum has 
a finite width.

A single channel analyser (SCA) then selected the coincidence signal from the 
corrected output from the TAC. The background timing window was selected directly 
from the TAC output (see figure 4.11). Here the timing branch met with the energy 
branch.

4.3.3.2 Coincidence Calculations

The coincidence peak was collected in a window Atc, which was experimentally 
set and the random background events were collected in a set window Atb. True 
coincidence counts Nt, accumulated in time T can be derived:

N, = N . - ^ ,  . ..4.13

where N„ Nb are respectively the number of counts in the windows Atc, Atb, and R is the 
ratio of the window widths, (R = Atb/ Atc).

The standard deviation of Nt is:

AN, — N + N .c a
l  rJJ . . .4.14

where Na = Nt/R is the number of accidental counts in the coincidence window. If R is 
known accurately then it can be seen that the larger R, the smaller is the error in 
determining the number of coincidence counts. The number of true and accidental counts 
can be expressed as:

N t = C,nIT , . ..4.15

N a= C 2Atc(nI)2T , . . .4.16

where T is the time for the measurement, n the target gas density, I the incident electron 
beam current and Ci and C2 are constants fully determined by the physics of the process 
and the overall efficiency of the instrumental arrangement.

Then the signal to background ratio is:

N C,
N a (C2nI Atcl  •

. ..4.17

46



Chapter 4: Experimental Apparatus

The quality of the experiment is determined by the relative statistical uncertainty 5, of the 
true counts:

5 =
AN,

"nT C, T

(  c
—r + C2 (1 + 1/ R)Atc 

VnI

1/2

...4.18

Therefore a small Atc and large R improve the quality of the experiment, as does a long 
accumulation time T. Obviously increasing nl also improves the experiment, but it 
reduces the signal to background ratio. Compromising between the accumulation time 
and the signal to background ratio is important. From equation 4.18 the time T required 
for a statistical accuracy of 8 is:

T=
52

1
C,nl + £ i ( l  + l/R )A tc . 

'~1
...4.19

Alternatively the time T required for a statistical accuracy of 8 as a function of the true 
count rate is:

T = 1
82N,

! I Q + i / R )
r ... 4.20

If the limits for signal to background ratios are considered then there are two cases, for 
large r (r »  1+1/R) and for small r (r «  1+1/R).

For r »  1+1/R

T = 1
S2C,nI ’

...4.21

Here if nl is increased then T can be decreased, but this leads to a smaller signal to 
background ratio.

For r «  1+1/R

T =  ■ §sl (1+1/R)At‘ • - 4-22

In this case further increases in nl yield no additional reduction in accumulation time 
(McCarthy and Weigold, 1991b). The experimental apparatus for these experiments was 
optimised to measure coincidence events with minimum accumulation time and a 
satisfactory signal to background ratio.

4.3.3.3 Energy Branch

Four slow pulses were generated by the two sets of MCPs, each pair of pulses 
containing the required position and hence energy information. Each pair of slow pulses
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100
nanoseconds

Figure 4.12: The timing spectrum after flight time corrections.

Channels

Figure 4.13: A typical energy spectrum from the helium lSm state, showing the signal 
(on the left) and the background (on the right), the background to signal window ratio 
being 10.
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were amplified by a pre-amplifier and an amplifier and then summed in a dual sum and 
invert amplifier (DS&I). This summed pulse along with one of the pulses from the 
original pair was combined in a position sensitive detector analyser (PSDA) which 
produced an output of A / (A + B), proportional to the energy Ee and Ei where E| is the 
fixed lowest energy transmitted by the analysers. For simplicity E, will be ignored in the 
following discussions.

The energy pulse from each pair was then sent to three paths. One path 
attenuated the pulse and was combined with the timing pulse to correct for the flight 
time variations as described above. Another path summed both energy pulses, Ee + Es. 
The final path takes the pulse to SCAs where the energy pulses were suitably delayed to 
coincide with the timing pulses at the triple coincidence gate (TCG). Two TCGs were 
used, one for the coincidence signal and one for the random signal. The TCG only 
produced an output if the three pulses, that is, Es, Ee, tc or tb arrived within a set time of 
each other. This pulse was then used to gate the dual linear gate (DLG) where the pulse 
being gated was the summed energy pulse.

The two linear gates provided input pulses to the multiplexer/router. One linear 
gate which was gated by the coincidence pulse, transmitted the summed energy pulse 
when a coincidence event was observed. The other gate transmitted summed energy 
pulses only for random or accidental coincidences (background events). The analogue 
input pulses from the multiplexer were received by a PCA card which produced digital 
signals which were stored and displayed on the computer. A typical energy spectrum is 
shown in figure 4.13 for the helium xSm state. The first 0-255 channels stored the 
coincidence spectrum, while the next 256-512 channels stored the background spectrum. 
The subtraction of one from the other (using the background to coincidence window 
ratio, R) yielded the spectrum of true coincidence events, N,= Nc - Nt/R. (Here R = 10, 
i.e., the background is amplified 10 times, as shown in figure 4.13.)

The energy spectrum (or summed energy spectrum) has a triangular background 
as it is the convolution of both analysers. Each analyser has an electron energy 
distribution which is almost flat for the 6eV dispersion range. The energy spectrum 
therefore, has a dispersion range of 12eV, with a triangular background. As two peaks 
are being considered, the 2Pm and 2P3/2 ionisation peaks of xenon and one of the 
parameters being considered in this experiment is the ratio of the cross sections, this 
uneven efficiency function must be corrected for. This is discussed further in the data 
analysis in section 5.4.

The experiment was controlled by a PC 386 computer. A Master Board in the 
computer executed the programmes which controlled the experiment, including 
initialising (and stopping) the data collection, moving the ejected analyser and rotating 
the A/4 plate (and hence controlling the spin direction of the incident electron beam).

4.3.4 Energy Resolution

The energy resolution of the entire system needed to be good enough to be able 
to resolve the two xenon states (2P 1/2 and 2P3/2) being considered in this experiment. That
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is, it must be less than the energy gap of 1.3 leV. The energy resolution was a 
convolution of the energy spread of the polarised electron beam and the energy 
resolutions of the two detectors. The energy resolution for the polarised electron beam 
was measured using the elastic peak of helium. It was measured to be ~0.5eV for a 
current of the order of ~150nA and included the analyser resolution. The experiment was 
operated with a current of about lOOnA, where the resolution was constant.

The energy resolution in the hemispherical analysers depended on the voltages 
for the hemispheres, the gain on the multichannel plates and the electron optics used to 
focus the incoming electrons. The procedure for optimising the resolution in this part of 
the experiment was to set the voltages for the hemispheres, for a mean pass energy of 
35eV and then to modify the MCP settings for a flat background response and suitable 
resolution. The final stage was to adjust the lens settings so as to compromise between a 
high signal (and therefore coincidence count rate) and a sufficiently good energy 
resolution. A helium autoionising peak was chosen to measure the energy resolution of 
the hemispheres. The autoionising states chosen were: (2s2)15', (2s2p)3P, (2p2)'D and 
(2s2p)lP as they have been studied before (van den Brink et al., 1989). At the same time 
the analysers could be calibrated, with either the autoionising states or an elastic helium 
peak. The energy resolution of each analyser was approximately 230meV. The total 
coincidence energy resolution achieved in these experiments was ~0.6eV. This was 
sufficient to resolve the peaks being investigated.
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The Xenon Experiment

As shown in chapter 3, spin polarisation effects are possible as the result of the 
interplay of exchange and the fine-structure effect. This spin effect results in spin 
asymmetries for excitation in xenon (Hanne, 1983). Preliminary results in Granitza et a l  
(1993) showed that an analogue to this effect was also possible for ionisation events, 
where a bound electron is excited to the continuum. To investigate the possibilities of 
spin polarisation effects, xenon was chosen as the target atom, due to the large energy 
separation between 2Pm and 2Py2 ion ground states with ionisation energies of 13.44 and 
12.13eV, respectively. Thus, ensuring that the fine-structure states are resolvable in the 
present experimental arrangement. After beginning these measurements, Jones, Madison 
and Hanne (1994) produced calculations for the (e,2e) reaction on xenon which showed 
that large spin effects may be expected at low energies for ionisation of the outer filled 
5p  valence shell. It is the aim of this experiment to further verify this.

Section 5.1 Fine-structure Effect in the Ionisation of Xenon

An intuitive explanation of the analogue of the fine-structure effect in ionisation 
of say, xenon is given in Hanne (1992), Shen (1995) and Granitza et al. (1996). The 
fine-structure effect for excitation was explained in section 3.3, however, as it is the basis 
for this experiment it is repeated here for ionisation. Figure 5.1 gives a simple picture of 
what happens in the ionisation of a noble gas. It is assumed that the incident electron 
beam is totally polarised, with the polarisation perpendicular to the scattering plane. The 
noble gas considered here is xenon, however, the following explanation applies to any 
noble gas (with the exception of helium).

Ionisation of xenon means that the closed 5p6 shell is broken, the transition being 
from 5p6 —> 5p5. Spin-orbit interaction within the atom will split this 5p5 open shell into 
either a 2Pm or a 2P3/2 ionic core. Consider the event where the ionic core is in the 2Pm 
state, where the approximation is made that the final state can be described as an LS 
coupled state and the spin-orbit interaction of the continuum electrons is negligible. 
Under such conditions, spin will be conserved in the reaction.
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(n + l) l  ---- - - C

Figure 5.1: A picture showing the spin effects of the 5p6 —> 5p5 transition.

This illustration is considered in the natural frame, i.e., the quantization axis is 
perpendicular to the scattering plane, where there is only the possibility of exchange 
between the two final state continuum electrons (for the purposes of this discussion, the 
capture amplitudes are ignored). The possible reactions which lead to this ionisation 
process are listed in table 5.1, along with the partial TDCS.

Initial
State

Final State

TDCSIon Electron
(Es)

Electron
(Ee)

Xe+ 2Pm ms m,

e(T)+Xe ('So) Xe*(i) -1/2 +1 e(T) e(T) 1/+/ - g+t 12
Xe*(t) +1/2 -1 e(t) e(-l) 1/. I2
Xe*(T) +1/2 -1 e(i) e (t) 1 g-i 12

Table 5.1: The possible reactions leading to the 2Pm state with their corresponding 
partial cross sections and t ,  1 denote the spin projections for either the continuum 
electrons or the residual ion along the quantization axis (Granitza et al., 1996).

If excitation of the m, = +1 state is considered, then the orientation of the orbital 
angular momentum is positive and the spin orientation is negative (my = m, + ms). As the 
excitation is from a closed shell and the Pauli principle must hold, then the excited 
electron must have positive spin orientation. This process can not be classified as either 
direct or exchange scattering due to the indistinguishability of the two outgoing 
continuum electrons. Therefore, the amplitudes for both direct and exchange scattering 
must be added coherently as indicated in table 5.1.
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The second two reactions listed in table 5.1, indicate that both direct and 
exchange scattering is possible in this illustration (which correspond to equations 3.6 and 
3.5, respectively). In these cases the residual ion is left with a positive spin orientation. 
These processes are distinguishable, as the two final state continuum electrons have 
opposing spin orientations. Thus, for the m, = -1 state, an incoherent sum of the direct 
and exchange scattering amplitudes is required.

Then the differential cross section, a, for ionisation to the J = 1/2 final ion state 
with “spin up” incident electrons can be expressed in the following manner (Granitza et 
al., 1996),

where K is a kinematic factor and the subscript m,, denotes the projection of the ion. 
Similarly an equation for “spin down” incident electrons can be expressed as,

After a collision an atom may be oriented due to the Coulomb interaction (Anderson et 
al., 1988), (Li) *  0. That is, the direct scattering amplitudes are not the same for 
different magnetic sub-levels of the atom, f t  *  f+h (nor are the exchange scattering 
amplitudes the same, g.t ^  g+l). Then from equations 5.1 and 5.2 it can be seen that the 
cross section for ionisation of the Gm will be different for incident spin up electrons from 
that for incident spin down electrons. This difference will show as a spin up-down 
asymmetry, which is expected to be measurable in this experiment.

5.1.1 Calculations of Xe (e,2e) Xe+ with Polarised Electrons

The experimental results presented here are compared with two theoretical 
calculations. One theory, described in part in section 3.4 (Guo et al., 1995), is based on 
the density matrix formulation and is discussed in detail later. The other theory is that of 
Madison et al. (1996). This theory is also explained in Jones et al. (1994) and Madison 
et al. (1995, 1996) which presents the cross sections for the J  = 1/2 state for incident 
spin up electrons as:

where / % and gmn are the direct and exchange scattering amplitudes respectively. Note 
here that the subscript mn refers to the projection of the orbital angular momentum of the 
active electron removed from the atom (the ejected electron), which is simply the 
negative of the corresponding projection for the residual ionic core, m,, which is the 
subscript used in section 5.1 and in Granitza et al. (1996). Similarly for incident spin 
down electrons:

... 5.1

...5 .2

...5 .3a
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a , / 2 ( - 0  =  ^ £ ^ " | ( | / i l  +  | & i f  +  I / + 1 “  £ + i |2) >

Then for the J  = 3/2 state the cross sections are:

a 3/2^) = ~ ~ ^ (j/- l |2+ I -̂l|2+“ |/-l~ g-lf

+ ̂ | / +1|2+- | ^ +1|2+ | / +l - g +l f j

3̂/2 W = I Ai|2 +1 s+if I Ai - s+J2

+ 2 11 /-if + 31 #-if + I f-\ ~ S-if j

... 5.3b

... 5.4a

... 5.4b

The origin of the asymmetry, Aj, (see equation 3.18) can then be seen to be in agreement 
with that derived using the simple physical argument as above. The formalism of Jones et 
al. (1994) is in the natural frame where the quantization axis is perpendicular to the 
scattering plane, hence there are no mi = 0 terms.

The scattering amplitudes are calculated by the DWBA method (Jones et al., 
1994 and references therein). The direct and exchange amplitudes are given by Madison 
et al. (1996):

L ,  =(Za(°)X b(0|— I «^„" '„(l)x*(0 ))> ... 5.5
roi

8m. ={x,(1)Xb(°)|— I a„/„m,(l)z:(0)) . . .  5.6
r01

where %(±) are the free electron distorted waves. The distorted incident electron wave 
used in the above calculation is derived as a solution of the following equation

f

v -A2+t/A
4 y

X, ... 5.7

As a non-relativistic Hamiltonian is used, the potential for the static interaction of the 
incoming electron with the ground state of the atom, Uatom, contains no spin dependent 
forces. Similarly, the outgoing distorted waves are solutions of

{ i
- - V 2+ t /

l  2 / 5.8

where j  = a, b and \Jf = Ua + Ub (Madison et al., 1996). The distorted waves are 
orthogonalised to the bound-state orbital of the active electron and the final state 
potential is,
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Uf  = zU,on+ (l-z)U ,atom ’ ... 5.9

where a static-exchange potential for the ion, Uf, is used and the effective charge, z, is:

This implies that the contribution to the asymmetry in this calculation is only due to 
exchange.

Jones et al. (1994) show that if a non-relativistic Hartree-Fock orbital is used, the 
agreement with the experimental data in terms of the branching ratios and the cross 
sections is poor. This suggests that some relativistic effects may be needed for the 
calculation of the asymmetry. Indeed Guo et al. (1995), show that a calculation of 
Madison et al. (1996), which uses a relativistic Dirac-Fock wave function improves the 
agreement with the experimental data. For this work, only the calculations based on 
Dirac-Fock orbital wave functions which still neglect the Us interaction for both the 
continuum electron and the bound electron, will be used for comparisons. However, an 
example of a Hartree-Fock calculation is given in figure 5.13b to demonstrate this point.

Guo et al. (1996) express the asymmetry using the density matrix formalism and 
account for some relativistic interactions, see equation 3.28. The scattering amplitude is 
f(vs, ve, m*, v0), where v0, corresponds to a spin projection for the incoming electron and 
vs, ve, correspond to a spin projection for the scattered and ejected electron respectively. 
The ion is in the final state, |Jj m*). This amplitude

with Jj = j, and m* = -m, is evaluated in a semi relativistic DWBA method with Dirac- 
Fock wave functions. It has no electron correlation in the final state or in the bound 
states, while the theory of Madison et al. (1996), includes some electron-electron 
correlation in the final state, via the effective charge. The relativistic interactions for the 
continuum electrons are included by solving the Schrödinger form of the Dirac equation.

The Dirac equation can be transformed into a Schrödinger type equation under 
certain approximations for the exchange term. The approximation involves neglecting the 
small component of the bound state orbital in the exchange term. This is justified, as the 
small component of the outer orbitals for an atom, such as xenon, contribute only a few 
percent (Sin Fai Lam, 1980). Through this transformation, relativistic corrections are 
added to the static potential. Further, the exchange term is approximated by the Fumess- 
McCarthy local exchange potential (McCarthy et al., 1977). The asymmetry is evaluated 
in the collision frame, where the quantization axis is along the direction of the incident 
electron beam. The inclusion of the l*s interaction in the potential does not have much 
effect at the kinematics considered in this work, in terms of the calculated asymmetry 
(Mazevet, 1996). An example of the negligible effect of the l*s interaction is shown in 
section 5.5.2 (figure 5.8b).

... 5.10

... 5.11
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Section 5.2 Kinematics

The kinematics used are shown in figure 5.2. In this experiment, three different 
kinematic settings are considered. Each setting scans the ‘ejected’ electron (lower 
energy) angle, while three fixed angles are selected for the ‘scattered’ (higher energy) 
electron. The scattered electron is detected at an energy of 100 ± 3eV, while the ejected 
electron is detected at 35 ± 3eV. The polarised electron beam current as measured in the 
inner Faraday cup is 105nA, for an incident electron energy of 147eV. The fixed, 
scattered angles are 0S = 28°, 0S = 15° and 0S = 40°. They were selected on the basis of 
expected reasonably large cross sections, to be on the Bethe-Ridge (0S = 28°) and on 
either side of the Bethe-Ridge, with reasonably large momentum transfers.

Figure 5.2: The kinematics for the experiment for this work, where Pe is the polarisation
of the incident electron beam.

The fine-structure energy splitting between the ground states of xenon is 1.3 leV, 
which is easily resolvable in the experiment, where the energy resolution of the 
experiment is 0.6eV (see section 4.3.4). The angular resolution of the experiment is 
better than 3°. A pressure of 6 x 10'6 Torr is maintained in the scattering chamber during 
the experiment. The minimum possible angle between the two hemispherical analysers is 
56°. However, to thoroughly ensure that the hemispherical analysers could not make any 
contact with each other, the safety limits are set for a minimum angle of 60°. Thus, 
defining the minimum angles at which the measurements could be taken (see table 5.2). 
A polarisation of 0.24 ± 0.03 is measured with the Mott polarimeter and is constant 
throughout the experiment.

An example of an energy spectrum is shown in figure 5.3, for both incident 
electron spin up and spin down, at 0S = 40° and 0e = 40°. Typically, the (e,2e) count rates 
are in the range of one to 10 counts per minute.

An elastic scattering experiment is conducted to ensure that the direction of the 
polarisation, i.e., spin up and spin down, is correct and consistent. This experiment is 
performed at an incident energy of 50eV, on xenon. The Sherman function is measured 
(equation 3.4) and compared to the results of Müller and Kessler (1994) and are used as 
a consistency check for the measured polarisation. The data are reported in Shen (1995) 
and shows that the magnitude and direction of the polarisation are indeed correct.
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1000

energy (eV)

1000

energy (eV)

Figure 5.3: A typical energy spectrum for spin up and spin down incident electrons, 
where the incident energy is 147eV, the scattered electron is detected at lOOeV at 0S = 
40° and the ejected electron is detected at 35eV at 0C = 40°. Clearly the 1Pm state is 
larger for spin up than for spin down incident electrons.

57



Chapter 5: The Xenon Experiment

Section 5.3 Measured Parameters and Quantities

The experimental data may be expressed in a number of ways, (see appendix A 
for the tabulated values of the derived quantities). Of primary importance is the 
asymmetry parameter, which is:

A _  1
' P. N ,(T)+N ,(i)

... 5.11

where N(T) represents the counts measured for an incident electron beam with spin up 
and N(i) represents the counts measured for an incident electron beam with spin down 
under identical conditions, with a polarisation of 24%. These numbers, N(T) and N(i) are 
converted to relative cross sections, Gj(spin), for an incident electron beam with 100% 
polarisation in the following manner:

(T) = ^ - [ 0  ■+:P. )N . (t)-( l-P .)N , (4) ] ... 5.12

and

O. W = [(1 ■+ P. )N. W - (1- P« )N , (t) ] ... 5.13

where Pe is the polarisation of the incident electron beam. The asymmetry calculation in 
equation 5.11 can be cross checked immediately, as it can also be expressed as:

gj(h -q i(4
a J(T)+oJ(J.)'

... 5.14

If the small kinematical difference due to the different energies of the fine- 
structure states is ignored, e.g., the ionisation energies are the same for both 2P 1/2 and 
2Py2 states, then it can be seen that a 3/2 = 2g1/2 (Madison et al., 1996). And in the limit of 
the non-relativistic fine-structure effect, the asymmetries for each J, state are related by,

A j/2 — -2 A 3/2, ... 5.15

due to the statistical weighting of the states. However, it is more interesting to consider 
the case where the fine-structure states are summed over and averaged, according to the 
relative statistical weights,

A(avg) = Am  + 2A *2 . ...5.16

In the pure fine-structure effect the asymmetry would be zero if the fine-structure states 
were degenerate (and hence not resolved).

Further to the asymmetries, the branching ratios for the fine-structure states can 
be considered. This is done for spin up and spin down incident electrons:
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R ( U ) o,/2(T ,i) '

It is then a simple step to consider the spin averaged branching ratio:

R(avg) = R(T + i)

... 5.17

... 5.18

The total cross section, o,ofa/, is obtained from an angular correlation experiment 
for each scattered angle setting (as defined in section 5.4). More information about the 
cross sections is obtained in the asymmetry experiments. Therefore, to use all available 
information about the cross sections, the asymmetry and branching ratio information is 
folded into the original total cross section data. This is simply done using the following 
set of equations. The unpolarised cross sections are:

®  total . — _  ______ ®  total_______

1/2 1 + R(avg) ’ 3/2 1 +1 / R(avg) ‘

where c w  = Gm + cr3/2. The spin polarised cross sections for J 
incident spin up and spin down electrons, respectively):

a,(T)= a,[l + A,] ; o,(4) = o ,[ l -  A,],

... 5.19 

1/2, 3/2 are (for

... 5.20

where Gj = [G j(t)  + Gj(4)]/2. For completeness, the equations used for the error analysis 
are included in the final part of appendix A.

Section 5.4 Data Analysis

The experimental data is collected and stored in the computer, as discussed in 
section 4.3. As the data is collected over several weeks, each experiment is broken into 
manageable sections, call a run. During a run, the program is setup to measure a certain 
angular range for each fixed, scattered angle setting. Usually, only one or two runs are 
performed scanning the entire angular range of the ejected angle for each scattered angle 
setting. These are the angular correlation runs. Most of the data is collected in runs 
which are arranged to collect data at one ejected angle, for one of the scattered angle 
settings. This is for many reasons for example, the files are easier to manage and it is 
easier to maintain constant conditions for the experiment.

Furthermore, each run is divided into scans. These scans can be individually 
examined after the experiment. The scans are again segmented so as to collect data for 
both incident spin up and incident spin down electrons. A scan can include up to 20 
different angular settings (each collecting data for incident spin up and incident spin 
down electrons). Each run is collected over approximately the same time frame, usually 
24 hours (except the angular correlation runs which are kept running as long as possible,
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up to 3 days). A scan for a one angular setting, usually runs for between 20-40 minutes, 
which varies according to the cross sections, i.e., the larger the cross sections, the 
smaller the scans.

The raw data is extracted using analysis programs that have been developed for 
(e,2e) experiments. The extracted data is the signal minus background, as per equation 
4.13. Each run is then carefully checked, scan by scan, for any anomalies which may 
have occurred, for example, as the result of a power glitch. At the same time the 
spectrum can be checked for any energy drifts during a particular run, which manifest 
themselves as a shift in the position of the energy peaks. However, there is essentially no 
evidence of energy drifting over the course of these experiments.

During the collection of data, the energy peaks are monitored. These peaks, the 
~Pi/2 and 2P 3/2 ionisation peaks, have different energies and are therefore located at 
different positions on the energy spectrum. Since these measurements are dependent 
upon the distribution of counts in two adjacent peaks, it is important to compensate for 
the efficiency function, as discussed in section 4.3.3.

This compensation of the energy spectrum is done by correcting the energy 
spectrum for the background function. A program, called, ‘transfit’ was designed to do 
this. The first step is to approximate the shape of the background. Ideally, the 
background is triangular in shape, which can simply be fitted with two straight lines. 
However, as this is a real experiment, the background ‘curve’ is divided into straight line 
segments, each of which are fitted with a straight line, using the least squares method. 
The number and position of straight line segments are initially judged by eye. To ensure 
that these are the best approximations for the background, the background function is 
corrected for using the same background function. If the approximation is good, the 
result should be a continuous straight line. An iteration process ensures that the best 
result is achieved. Once the best background fit has been established, the energy 
spectrum containing the data are corrected for the detection efficiency function. That is, 
a transmission function file is produced which has had the background approximation 
removed from the energy spectrum. This spectrum is then analysed further to yield the 
numbers required, i.e., the relative cross sections.

A program called ‘globe fit’ (in which the algorithms are constructed from 
Bevington, 1969) is employed to extract the relative cross sections from the energy 
spectrum. Globe fit has been used for analysing (e,2e) data at Flinders University for 
many years. The object of this program is to fit a number of gaussians to each peak and 
calculate the area under the peaks. In this instance three gaussians are assigned to each 
peak. These gaussians are assigned by height, position and width. For each gaussian, the 
position is kept the same and the distance between the two peaks is fixed (as it is known 
that the peaks are 1.3 leV  apart, which from the energy calibration is known to be 16.6 
channels). An example of the fitting is shown in figure 5.4. To check that this method of 
peak fitting gave a good result, the data was analysed by an alternate method.

This second method simply sums the number of counts in each peak. As the two 
peaks are partially superimposed, i.e., not completely separated, it is necessary to 
establish a sensible way to determine the range to be summed for each peak. The range is
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labelled in channel numbers as in figure 5.4, (energy spectra are conventionally shown as 
an energy scale as in figure 5.3). The start channel for the 2P m peak and the end channel 
for the 2P3,2 peak are arbitrarily chosen. These channels are not significant as the first and 
last sections of the energy spectrum contain essentially zero counts. The difficult part is 
to determine the best place to end the 2P m peak and to start the 2Pm peak. The most 
satisfactory method is to simply define the position of the overlap as the channel to end 
the 2P i/2 peak and one channel further as the start of the 2Pm peak. This overlap position 
is defined by the globe fit curves. The sums are then performed for the chosen channel 
ranges yielding areas for each peak. These areas are similar to those calculated with 
globe fit.

1 200

1 000

channels

Figure 5.4: A binding energy spectrum for Xe (e,2e) Xe+ ground state transitions, with 
curve fitting from the globe fit program, 0S = 28° and 0e = 35° for spin down incident 
electrons.

Eventually, it is the results from globe fit which are used, as the method of curve 
fitting is more rigorous and therefore more reliable. However, the associated error 
counts are taken from the summing method, as it is not clear that the errors produced in 
the globe fit program are correct. The summing method gives a larger error count and is 
therefore presumed to be a more appropriate estimate of the errors.

The final stage of the analysis is to calculate the parameters as discussed in 
section 5.3. These calculations are done in an MS Excel spreadsheet. Lastly, the errors 
for each parameter are calculated. These are calculated from the original numbers, using 
the standard derivative method (e.g ., Bevington, 1969). The raw data derived from the 
globe fit method and the parameters for all three kinematics are documented in appendix 
A.
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Section 5.5 Results and Discussion

The experimental results are compared with the DWBA theoretical calculations 
of Maze vet (1996) and Madison et al. (1996). Recall that the essential difference in the 
theories is that the former includes a further exchange interaction between the continuum 
electrons and the ion. For comparison between the theories and the experimental data, 
the cross sections are normalised to the theory of Mazevet (1996), which is discussed in 
section 5.5.1. However, the measured asymmetry and branching ratios are compared 
directly to the theoretical calculations, that is, no normalisation is required for these 
parameters. The error analysis is restricted to statistical error calculations, which are 
shown on each graph.

So that the results can be seen clearly, the parameters are presented separately, 
that is, the asymmetry parameters for 2P 1/2 and for 2Pm are on individual graphs. 
Similarly, the branching ratios are separated according to the direction of incident 
electron spin polarisation. Each set of parameters is presented in order of the scattering 
angle, first 0S = 15° then 0S = 28°, followed by 0S = 40° and are plotted as a function of 
0e, the ejected electron angle. The quantities, K, the momentum transfer and it’s 
direction, 0K, are presented in table 5.2.

0* K (a.u.) Or 0, (minimum) 0, (maximum)
15° 0.97 46.4° 45° 90°
28° 1.56 54.9° 32° 95°

oO

2.12 55.2° 20° 100°

Table 5.2: The corresponding kinematic conditions, the momentum transfer, K, the 
direction of momentum transfer, 0K, and the angular range of the ejected electron, 0e, for 
the three scattered angles, 0S, considered in this work.

The range of the ejected electron angle is primarily restricted by the physical size 
of the analysers, the position of the incident electron beam optics and the Faraday cup. 
However, the small cross sections at larger backward angles made data collection 
impractical as the collection times would need to be very long to be able to obtain 
reasonable statistics.

5.5.1 Cross Sections

The measured cross sections are relative and therefore need to be normalised. 
The normalisation point was chosen to be at 0e = 45°, the binary peak, on the 2Pm state 
as it is close to the maximum of the cross section and has good statistics. The 
experimental data and the theory of Madison et al. (1996) is normalised to the theory of 
Mazevet (1996) by a normalisation factor, N, for each scattered angle. The normalisation 
factors for theory of Madison et al. (1996) are listed in table 5.3.
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0, N (Madison theory)
15° 0.94
28° 1.30
40° 0.90

Table 5.3: The normalisation values for the experimental data and the theory of Madison 
et al. (1996) where N  is the normalisation factor, i.e., for comparison at 0S = 15°, the 
theory of Madison et al. (1996) is multiplied by 0.94 for 0S = 15°, to be compared to the 
theory of Maze vet (1996).

The state resolved cross sections, are shown in figures 5.5. These clearly show 
that ionisation to the 2Pm state is about twice as likely as ionisation to the 2Pm state, in 
all three settings. Note that each graph has a different y-axis maximum, which directly 
reflects the cross sections, i.e., for the state resolved cross sections, the maximum on the 
scale is, 1.2, 0.4, and 0.12 for 0S = 15°, 28° and 40°, respectively.

It is obvious at 0S = 15°, that both of the theories underestimate the 2Pm state 
cross section, although the theory of Mazevet (1996) is quite close to the experimental 
data. This has implications for the branching ratios which is discussed later. The 
agreement for the 2Pm state cross sections is excellent for both theories. At 0S = 28° the 
cross section is dominated by two lobes, located at about 0e = 45° and 75°, as would be 
expected for ionisation of a p  electron in the binary region under Bethe-Ridge 
conditions. The experimental data at 0S = 28°, clearly shows an angular shift, of about 5°, 
relative to both theoretical calculations for both 2Pm and 2Pm state cross sections. The 
theories at this setting differ slightly in the prediction of the magnitude of the second 
(sometimes called backward) lobe, where the semi-relativistic calculation of Mazevet 
(1996) is closer in magnitude to the experimental data. However, both theories 
underestimate the first (or forward) lobe (located about 0e = 45°), while overestimating 
the second lobe (located about 0e = 75°).

For 0S = 40°, the large error bars are due to the small cross section and indicate 
that a longer counting time may be needed to improve the statistics. The agreement 
between theories and the experimental data is good, although again the theory of 
Mazevet (1996) predicts the magnitude of the 2PV2 cross section better than the theory of 
Madison et a l  (1996).

Of course, the comparisons between theory and experiment are similar for the 
total cross sections in all cases. These are presented in figures 5.6 to confirm the trends 
set for the state resolved cross sections. At 0S = 15°, the theory of Mazevet (1996) is in 
good agreement with the experimental data, however, the calculation of Madison et al. 
(1996) slightly underestimates the magnitude of the cross section. There is a marked 
difference between the theories and the experimental data at 0S = 28°. Here, the 
calculation of Madison et al. (1996) using Dirac-Fock wave functions overestimates 
both lobes, while the theory of Mazevet (1996) underestimates the first lobe located at 0e 
= 45°, while slightly overestimating the second lobe, relative to the experimental data. 
The agreement with the theory is good at 0S = 40°, although this may be deceptive due to
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the poor statistics. The theory of Madison et al. (1996) is smaller in magnitude at the 
peak of the cross section, at 0e = 50°.

The final cross sections presented are the spin resolved cross sections. That is, 
for each fine-structure state there are two cross sections, either for incident spin up 
(denoted spin T) or spin down (denoted spin i )  electrons. Again, these results follow the 
trend determined for the state resolved cross sections. For completeness, the entire set of 
these cross section data are shown in figures 5.7. It is notable that the statistics decrease 
the more the data is separated, i.e., the error bars increase for the spin resolved cross 
sections and that the scatter of the experimental results is more prominent. These results 
are outlined here.

The agreement between the theoretical calculations and the experimental data at 
9S = 15° is quite good. It is noticeable that the spin down 2Pm cross section has a slightly 
higher magnitude than the spin up cross section. The DWBA calculations of Madison et 
al. (1996) overestimates the spin up 2Pm cross section and underestimates the spin down 
2Pm cross section. For the 2Pm ionisation state, the spin up cross section is higher in 
magnitude than the spin down 2PV2 cross section. Both theories underestimate the spin 
up 2PV2 cross section, but closely approximate the 2PV2 spin down cross section.

At 0S = 28° there is an immediately obvious difference between the spin up and 
spin down relative cross sections for both fine-structure states. Firstly for the 2Pm state, 
the theoretical predictions agree well for the spin up cross section and the 5° angular 
shift relative to the experimental data is again evident. It is clear that the first lobe is 
much larger in magnitude for spin up incident electrons than for spin down incident 
electrons. Conversely, the second lobe (located about 0e = 75°), has a larger magnitude 
for spin down incident electrons. For the 2PV2 fine-structure state, the theories agree, 
with an exception at the second lobe in the spin up cross section, where the DWBA 
calculation of Madison et al. (1996) overestimates the magnitude, compared to the 
experimental data. The difference between spin up and spin down is seen mainly in the 
first lobe, where the spin down cross section is greater in magnitude, while the second 
lobe is slightly larger for the spin up cross section.

An interesting aspect of the 0S = 40° spin resolved cross sections is the 
differences in shape between the two theories. For the 2Pm fine-structure state cross 
section with spin up electrons, the semi-relativistic theory of Mazevet (1996) predicts a 
peak about 0e = 50° and a shoulder about 0e = 75°. At the same time, the theory of 
Madison et al. (1996) predicts one broad peak about 0e = 60°. It is however, the 
opposite for incident spin down electrons, where Madison et al. (1996) predicts a peak 
about 0e = 45° and a shoulder at 0C = 75° while Mazevet (1996) predicts an asymmetric 
peak. In both cases the experimental data is better represented by the semi-relativistic 
calculation of Mazevet (1996). The difference between the theories is not as pronounced 
for the 2PV2 state spin resolved cross sections. There are however, hints of a shoulder in 
the theory of Madison et a l  (1996) for spin up incident electrons and conversely, in the 
theory of Mazevet (1996) for spin down incident electrons. Again the experimental data 
appears to be in better agreement with the semi-relativistic calculation of Mazevet 
(1996), but it is not clear that it is the best calculation in this case.
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a  ( t )  measured
0 = 15°

s

SPIN Tg  (T) Mazevet

G (T) Madisonet at.
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Figure 5.7a: Spin resolved cross sections for the 2Pm state, compared to the theories of 
Mazevet (1996) and Madison et al. (1996) at 0S = 15°.
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a (T) measured 
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a  ( t )  Madison et al.
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Figure 5.7b: Spin resolved cross sections for the Pv2 state, compared to the theories of 
Mazevet (1996) and Madison et al. (1996) at 0S = 15°.
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Figure 5.7c: Spin resolved cross sections for the 2Pm state, compared to the theories of 
Mazevet (1996) and Madison et al. (1996) at 0S = 28°.
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o j/2( t )  measured

— g (T)Mazevet
3/2v ’

- G ( t )  Madison et al.

e =28°
s

SPIN T

G (4) measured 0 =28° 
s

SPIN 1a  (4) Mazevet

----- G (4) Madison et al.

Figure 5.7d: Spin resolved cross sections for the 2P3/2 state, compared to the theories of 
Mazevet (1996) and Madison et a l (1996) at 0S = 28°.
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a  (T) measured

a  (T) Mazevet SPIN T
G (T) Madison et al.

G (4 ) measured

o  (4 ) Mazevet SPIN i

G (4 ) Madison e/ al.

Figure 5.7e: Spin resolved cross sections for the lPm state, compared to the theories of 
Mazevet (1996) and Madison et a l  (1996) at 9S = 40°.
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a  (T) measured

a  (T)Mazevet SPIN t
a  (T) Madison et al.

a  (4 )  measured

a  (4 ) Mazevet SPIN 1 "

a  (4 ) Madison et al.

Figure 5.7f: Spin resolved cross sections for the 2P3/2 state, compared to the theories of 
Mazevet (1996) and Madison et al. (1996) at 0S = 40°.

76



Chapter 5: The Xenon Experiment

5.5.2 Asymmetry in the Fine-Structure Cross Sections

The 2PU2 state displays an interesting variation in the asymmetry for the three 
different scattering angles as shown in figures 5.8. The biggest asymmetry is seen at 0S = 
28°, which shows large, positive asymmetries at the forward ejected electron angles, the 
largest, 0.43 ± 0.6, being measured at 0e = 32°. The figure also indicates that the zero in 
the calculated asymmetry is at 0C = 55°, (and where the sign of the asymmetry changes), 
which corresponds to the direction of momentum transfer. The experimental asymmetry 
zero is at 0e = 50°, showing the relative angular shift between the theory and the 
experiment. The theories agree well with each other and give a reasonable description of 
the data.

As mentioned in section 5.1, the l«s interaction has a negligible effect on the 
asymmetry parameter (see figure 5.8b). If there were to be a significant difference, it 
would be expected to be seen at the minima in the cross section, as any such effects 
would be magnified. However, clearly there is very little difference in the region where 
the asymmetry parameter is experimentally measured. It appears that both of the 
theoretical descriptions, which do not include the l*s interaction are satisfactory for this 
kinematics (at 0S = 28°).

The experimental asymmetry at 0S = 40° displays little agreement with the 
theoretical calculations. The experimental data has nearly all positive values, except at 0e 
= 80° and 0e = 85°, where the values are negative. The large errors in this data indicate 
that more data would be needed to correctly identify the trend. The theories here do not 
agree in shape or magnitude, although the shape of the calculations with the density 
matrix formalism of Maze vet (1996), appears to be closer to the experimental data than 
the calculations of Madison et al. (1996).

At 0S = 15° where the momentum transfer is small, the theories and the 
experimental data all agree that there is still a significant, although small, asymmetry 
evident, which is largest at the forward angles. Both theories predict asymmetries as high 
as 0.3 at 0e ~ 10°, but unfortunately, due to the size of the hemispherical analysers, the 
experiment cannot take measurements in this region. In the region where experimental 
data is available, the agreement between the theories and the measured results is poor. 
The DWBA calculation of Madison et al. (1996) is consistently higher in magnitude, 
with a varying shape. Agreement between the asymmetry calculated from the density 
matrix formalism of Mazevet (1996) and the experimental data is better, although the 
experimental results show some scatter, whereas the theory is relatively flat between 0e = 
45° and 0C = 90°.

For the 2P3/2 state, figures 5.9, the general trends are the same as for the 2P i/2 
state. That is, the asymmetry at 0S = 15° is very small, except for the forward angles, 
where an asymmetry as high as -0.15 is predicted by the density matrix formalism of 
Mazevet (1996). It is this density matrix formalism calculation which is in better 
agreement with the experimental results, as it is almost constant about 0.025, while the 
calculations of Madison et al. (1996) is much smaller and becomes negative at 0e ~ 65°. 
The largest discrepancy is at 0e = 80°, which shows an experimental value three times
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larger than the theory of Maze vet (1996). It is here where the cross section becomes 
smaller, which is reflected in the size of the errors.

Again the 0S = 28° data is the most varied, while showing smaller asymmetry 
values than the 2P\/2 state. In fact, at most ejected electron angles, the measured 
asymmetry for the 2Pm state is approximately twice the magnitude, but opposite in sign 
to the measured asymmetry values of the 2PV2 state. This is to be expected from equation 
5.15, in the limiting case of the non-relativistic fine-structure effect. The largest value 
here is only -0.17 ± 0.04, at the same angle (0e = 32°) of the largest asymmetry (0.43 ± 
0.06) for the 2Pm state. While at 0S = 40°, the agreement with the theories and between 
the theories and experiment is again poor, although the theory of Mazevet (1996) fares 
best with regard to the measured asymmetries.

To demonstrate that the asymmetries in both the fine-structure states, 2P i/2 and 
2Py2, arise from the fine-structure effect, the quantity (AI/2 + 2A3/2)/3, (as per equation 
5.16), is plotted. These are shown in figures 5.10. It is clear that for both 0S = 15° and 0S 
= 28°, the experimental data is consistently zero, within the errors.

The 0S = 28° measured data shows some evidence for a small non-zero 
asymmetry contribution at the larger ejected electron angles. This slight variation from 
zero, may indicate that it is not a pure fine-structure effect which is responsible for the 
asymmetries. The theories both show an essentially zero distribution for this quantity, 
showing that relativistic effects are small.

The greatest deviation from zero is at 9S = 40°, but this is most likely be due to 
the poor statistics available at 0S = 40°. Where the statistics are better, between 0C = 35° 
and 0C = 75° this parameter is indeed close to zero. This region also corresponds to the 
larger cross section at this setting.

Overall, this averaged asymmetry parameter, which is approximately zero for 
each kinematic considered here, confirms the presence of the fine-structure effect in 
xenon. That is, for each fine-structure state there is a non-zero asymmetry parameter, but 
when the fine-structure is not resolved, i.e. figures 5.10, there is essentially no observed 
spin dependence. It can be seen, especially from the 0S = 40°, that the semi-relativistic 
DWBA calculation of Mazevet (1996), which includes the exchange between the 
continuum electrons and the ion, is a better description of the asymmetry parameter. 
Further, it can be seen from the asymmetry for ionisation to the 2P i/2 fine-structure state 
at 0S = 28°, that the spin-orbit interaction is not important in the region where the 
experimental data was measured.
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Chapter 5: The Xenon Experiment

5.5.3 Branching Ratios

The branching ratios depend on the relative areas of the 2Pm and 2Pyi peaks and 
it would be expected that the statistical branching ratio would be 2, due to the statistical 
weighting of the 2P 1/2 and 2PV2 states. The branching ratios shown are labelled with 
respect to the direction of the incident polarised electron beam, perpendicular to the 
scattering plane, either spin up (denoted spin T, in figures 5.11) or spin down (denoted 
spin i ,  in figures 5.12).

Experimental data for 9S = 15° (spin up), shows a branching ratio as high as 3.1 ± 
0.1 at 0C = 55° and is consistently greater than 2. The theory of Mazevet predicts a 
minima of about 1.4 at 0e = 10° and is 2 at 9e = 32° but is never greater than 2.5. The 
calculation of Madison et al. (1996) is similar in shape to the other theory, but is smaller 
in magnitude. This result is a reflection of the underestimation of the 2P3/2 state 
contribution in the cross section calculations of the theories as mentioned earlier.

The 0S = 28° (spin up) data, (figure 5.1 lb) shows significant structure. It peaks at 
0C = 55°, with a value of 5.0 ± 0.9 (note that the error bars are larger in this region, 
which corresponds to the smallest cross section for 0S = 28°). There is an angular shift of 
approximately 5° between the experimental data and the theoretical calculations. In this 
case, the theory of Madison et al. (1996) is larger in magnitude than the theory of 
Mazevet (1996) but the shapes of the theories are very similar.

The general trend agreement of the theoretical calculation of Mazevet (1996) at 
0S = 40° (spin down), is quite good (figure 5.11c). The theory of Madison et a l  (1996) 
does not agree well with the experimental branching ratio, especially at forward and 
backward angles. In the region of 9e = 50° to 0e = 75°, the values are close to 2, 
however, the theory of Mazevet (1996) predicts values to be slightly higher than 2, while 
the theory of Madison et al. (1996) predicts values slightly less than 2.

The spin down data is in reasonable agreement with the theoretical calculations in 
most of the three cases (figures 5.12). The first case, 0S = 15°, shows excellent 
agreement, with the values being consistently around 2, within experimental error. 
Again, the theoretical calculation of Mazevet (1996) predicts higher values than the 
measured branching ratio (spin down), while the theory of Madison et al. (1996) predicts 
slightly lower values than the measured values, although both calculations are in quite 
good agreement with the experimental data..

There is more structure to the 0S = 28° data. However, the ratios at the backward 
angles are flat at about 2.5. At the forward angles the branching ratio increases to a 
maximum value, 5.0 ± 0.5 at 0e = 32°. The semi-relativistic calculation, which includes 
the exchange interaction between the continuum electrons and the ion (Mazevet, 1996) 
is in much better agreement with the experimentally measured branching ratio (spin 
down), than the theory of Madison et al. (1996). In this case, the prediction of Madison 
et al. (1996) is lower than the measured values, which is converse to the spin up case, 
where it was larger than the measured values.
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As the cross section is smaller for the 1Pm state, by definition of the branching 
ratio, (a  3/2 / O1/2) it is not surprising that the agreement at 0S = 40° is not good and the 
errors are very large. The shape, however, does agree with the theory of Mazevet, 
although the measurements give a uniformly higher magnitude. The theory of Madison et 
al. (1996) appears not to agree with the experimental data at all, except between 0e = 
50° and 0e = 80°, however this is a peak for the theoretical predictions, but a trough for 
the measured branching ratio.

An unpolarised branching ratio plot shows how the data would look if the 
experiment did not use a polarised electron beam. In this case the incident polarisation is 
averaged over. These results are shown in figures 5.13. Both theories underestimate the 
unpolarised branching ratios at 0S = 15°, although the data agrees in shape. This is 
consistent with the poor agreement for the spin up data at the same setting. The theory 
of Madison et al. (1996) is consistently lower than the theory of Mazevet (1996), 
although both agree in shape.

At 0S = 28° the agreement between the theories and the experimental data is 
good, although there is again evidence of the angular shift between the experimental data 
and the theoretical calculations. The theoretical calculations begin to differ at the 
forward angles, where the theory of Madison et a l  (1996) predicts a minima at 0e = 18°, 
which is not evident in the theory of Mazevet (1996). Unfortunately, the experimental 
apparatus is unable to take measurements in this region, or at the backward angles, 
which is again where the theories differ. This graph, figure 5.13b, also includes another 
calculation of Mazevet (1996), which is labelled as Mazevet (b). This calculation uses a 
Hartree-Fock wave function for the target states. The calculation with the Hartree-Fock 
description (a non-relativistic description) shows an almost constant value of 2, except 
where the cross section has a minimum. It is clear then, that a relativistic calculation is 
required and that the branching ratio depends sensitively on the description of the target 
state.

The 0S = 40° (figure 5.13c) experimental data are rather scattered, which is a 
reflection of both spin dependent branching ratios and the low cross section for this 
kinematics. The unpolarised branching ratio of 3.85 ± 1.8 at 0e = 100° is certainly due to 
the extremely low cross section and hence the difficulty in distinguishing between the 
2Pm and 2P3/2 peaks in that energy spectrum. The semi-relativistic calculation of Mazevet 
(1996) agrees well with the experimental data, but the theory of Madison et a l  (1996) 
underestimates the experimental data, except for 0C = 30° and 0e = 95°.

Mazevet (1996) and Madison et a l  (1996) both use the Dirac-Fock wave 
function to describe the xenon target, yet the calculations are consistently different. 
Therefore, these experiments give information on the reaction dynamics as well as the 
structure of the target. The sensitivity to the target wave function is clearly demonstrated 
in figure 5.13b. It is essential that Dirac-Fock wave functions be used.
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Chapter 6

Summary and Conclusions

An (e,2e) experiment investigating spin effects in electron-atom collisions has 
been performed. The (e,2e) multiparameter detection technique combined with a 
polarised electron source was used to investigate the dynamical processes within the 
electron impact ionisation process. Specifically, the analogue of the fine-structure effect 
was observed in electron impact ionisation of xenon.

The (e,2e) experiment has been extended to include a spin polarised electron 
source. The type of polarised electron source used in these experiments is based upon 
emission of electrons from a GaAs crystal by polarised photons. Spin orbit splitting of 
the energy bands within the crystal means that it is possible to excite the two different mi 
sub-levels by irradiating the crystal with circularly polarised light. In this case a GaAlAs 
laser diode of wavelength 780nm together with a A/4 plate was used to give o  ± light. A 
negative electron affinity on the crystal surface was produced by layering the surface 
alternately with caesium and oxygen. The electrons produced have a transverse 
polarisation which was converted to a longitudinal polarisation by a 90° electrostatic 
spherical deflector. Transporting the electrons to the experimental region was relatively 
simple. The transport tube was floated at lOOOeV and was protected from magnetic 
fields by (i-metal shielding.

To be a useful technique, the polarisation of the electron beam must be able to be 
easily measured. This was done in a Mott polarimeter. By measuring the scattering 
asymmetries at large backward angles from a high energy electron beam scattered off a 
gold foil, the polarisation of the incoming electron beam can be deduced. In deriving the 
electron polarisation, the effective Sherman function is used and due care must be paid 
to possible asymmetric instrumental responses. The polarisation measured in this 
experiment is P = 0.24 ± 0.03. The polarisation of the electron beam could be improved 
by the use of a strained GaAs crystal. This has been reported by Maruyama et a l  (1992) 
and Nakanishi et a l  (1991) as yielding polarisation values up to 90%.

The experiments were conducted in the scattering chamber, where the target, 
gaseous xenon was introduced via a needle valve. The polarised electron beam was 
adjusted to yield a current of ~100nA, at the interaction region, as measured in the inner 
Faraday cup. The cathode voltage for the polarised electron beam was set to 147eV.
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Two hemispherical analysers were employed to detect two outgoing electrons in 
coincidence. These electrons were detected at energies of 35 ± 3eV and 100 ± 3eV. At 
the exit planes of the hemispherical analysers was a detection system which included 
multichannel plates and a resistive anode. From this detection unit pulses were generated 
which correspond to either energy or timing information. These pulses were synthesised 
through a variety of electronic units to produce timing and energy spectra, which 
contained the relevant information. The energy resolution of the (e,2e) spectrum, 
including the polarised electron source, is 0.6eV. This resolution is good enough to 
resolve the two peaks corresponding to the 5p5 2Pm and 2Pyl ground state transitions in 
xenon.

After collecting the information the data needed to be analysed in a systematic 
manner. The following set of points is a summary of the analysis procedure as discussed 
in chapter 5,

* data is extracted, as signal minus background, using an in-house developed program
* each data set is thoroughly checked for any anomalies, i.e., energy drifts
* the energy spectra are corrected for the background transmission function
* the areas under the two peaks are estimated using the globe fit program
* using the sum program, which simply sums all counts in a specified range, these 

areas are roughly checked for each fine-structure state, to ensure the results are 
similar to that given by globe fitting the energy spectra

* the errors for each peak are obtained from the sum program (as the errors in globe 
fit are believed to be inadequate)

* the required parameters are produced for presentation using equations 5.11 -4 5.20
* the statistical errors are calculated for each observable e.g. as per Bevington (1969)

A series of experiments was conducted at three different kinematic settings. The 
fast, scattered electron is detected at a fixed angle, which defines the different settings, 0S 
= 15°, 28° and 40°. At each fixed, 0S angle the slow, ejected electron angle 0C, is scanned 
according to the physical constraints of the experimental apparatus. Results for each 
kinematic condition are presented as relative cross sections (total, state resolved and 
spin resolved), asymmetries and branching ratios.

The two theories which have been used for comparison to the experimental 
results are discussed. The first is the theoretical calculations of Mazevet (1996) where a 
semi-relativistic DWBA approach with Dirac-Fock wave functions is used. In this case 
the distorted waves are calculated in the static exchange potential of the target (or ion) 
with the addition of the Thomas precession term. The asymmetry in this theory is 
calculated in the density matrix formalism. The second comparison is with the 
calculation of Madison, Kravtsov, Jones and McEachran (1995, 1996) (and Jones et al., 
1994). The Madison et al. (1996) theory calculates the scattering amplitudes with the 
DWBA using a Dirac-Fock orbital, omitting the spin-orbit interaction term for the 
continuum electrons.

The aim of this work is to investigate spin effects in electron-atom collisions. The 
results are presented as an asymmetry parameter and a branching ratio. Also presented 
are the cross sections which are a relative measure, that is, they are not absolute
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measurements, hence a normalisation procedure is necessary. All cross sections 
(experimental and those calculated by Madison et al. (1996)) are normalised to the 
theory of Mazevet (1996) at 0C = 45° on the 2Pm state resolved cross section. This point 
was chosen because of the good statistics in the region near the maximum cross section. 
Note that the asymmetry and branching ratios need not be normalised and provide a 
direct comparison between the theory and the experimental data.

The cross sections best compared to the theoretical calculations are the spin 
resolved state resolved cross sections, as the total and state resolved cross sections can 
be derived from that information. The total cross sections show reasonable agreement 
with theory in both shape and magnitude at 0S = 15° and 40°, although the poor statistics 
at 0S = 40° may be misleading. At 0S = 28° the cross section has two lobes and the 
theories agree in shape, although there is a difference in magnitude between both 
theories and the experimental data. At 0S = 28° there is also an angular shift of about 5° 
evident between the theoretical calculations and the experimental data.

The trends in agreement between the experimental data and the theories are 
similar for all state and spin resolved cross sections. In the state resolved cross sections, 
where transition to the 2P3/2 state is about twice as likely as to the 2Pm state, the 
agreement between the experimental data and the theory of Mazevet (1996) is better 
than the theory of Madison et al. (1996). For the state resolved cross section at 0S = 15° 
and 0S = 40° the theory of Madison et al. (1996) underestimates the 2P3/2 state 
contribution, but at 0S = 28° the 2P3/2 state is overestimated. However, both theories 
approximate the 2P U2 state cross section well.

In the spin resolved cross section, the effect of the polarised electron beam 
becomes apparent. The most significant difference is for 0S = 28°, where there is a clear 
difference between the spin up cross section and the spin down cross section. For the 
2P i/2 fine-structure state it is clear that the forward lobe is much larger for spin up 
incident electrons than for spin down incident electrons. The agreement with the 
theoretical calculations is very good, although again the theory of Madison et al. (1996) 
overestimates the backward lobe. Conversely, both theories and the experimental data 
agree that for the 2P3/2 fine-structure state the forward lobe is smaller for incident spin up 
electrons, where the theoretical agreement is the same as for the 2P i/2 state.

At 0S = 15°, the agreement between the theoretical calculations and the 
experimental data is excellent for the 2P3/2 fine-structure state, where the cross section 
for incident spin down data is slightly smaller than for incident spin up electrons. The 
agreement with the theory is poorer for the 2P[/2 fine-structure state, but the theory of 
Mazevet (1996) is closer to the experimental data. In this case, the cross section for 
incident spin down electrons is the smaller of the two spin resolved state cross sections. 
For 0S = 40°, the spin down cross section for the 2Pm fine-structure state is smaller than 
for incident spin up and conversely, for the 2P3/2 fine-structure state the cross section is 
smaller for incident spin up electrons. The experimental data does not agree well with 
the theoretical data, although the predictions of Mazevet (1996) are closer to the 
experimental data.
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Spin effects are clearly indicated by the presence of a significant asymmetry for 
the 0S = 28° data. For both the 2Pm and the 2PV1 fine-structure states there is a significant 
asymmetry which varies as a function of the ejected electron angle. The density matrix 
calculation of Maze vet (1996) agrees well with the experimentally determined 
asymmetry, although the angular shift is again present at this angle. Also at 0S = 28°, 
another calculation of Mazevet is presented, which includes the spin-orbit interaction of 
the continuum electrons for the calculation of the asymmetry for the 2PU2 fine-structure 
state. This comparison shows that the spin-orbit interaction has a negligible effect on the 
asymmetry parameter in the region where the experiment is conducted.

At 0S = 15° there is evidence of spin polarisation effects, although the asymmetry 
is small over the range scanned. However, the theory indicates that there may be some 
interesting asymmetries (i.e., larger asymmetries), at the forward scattering angles. Both 
theories underestimate the asymmetry for the 2Pm state, while showing reasonable 
agreement for the 2PV2 state. At 0S = 40° there is an obvious asymmetry, although the 
agreement with the theoretical calculations is poor. It is at this angle that the two 
theories disagree the most and where the density matrix formalism method of Mazevet 
fares best. In both cases (2P{n state and 2P3/2 state) the measured asymmetry is larger than 
that predicted by the theory.

In all cases (0S = 15°, 28° and 40°) the averaged asymmetry parameter (A i/2 + 
2A3/2)/3, is approximately zero. The largest deviation is at 0S = 40°, which is a reflection 
of the small cross section at this angle, (the asymmetry is closet to zero in the region of 
the largest cross section, between 0e = 35° and 75°). Each fine-structure state shows a 
non-zero asymmetry as a function of the ejected electron angle, but when the fine- 
structure states are not resolved, i.e., the asymmetry is averaged over the final states, 
there is essentially no spin dependence. This indicates that the spin effects observed are 
largely due to the fine-structure effect.

The branching ratio of the fine-structure states is also presented, which in theory, 
due to the statistical weighting of the states, should be 2. The results show that the 
polarised branching ratios vary smoothly with the angle of the ejected electron. The 
greatest variation occurs in the kinematic setting of 0S = 28°, where the theory agrees 
quite well with the experimental results, for both spin up and spin down incident 
electrons. The theory of Mazevet (1996) is in better agreement with the experimental 
data than the calculations of Madison et al. (1996). The calculations of Madison et al. 
(1996) overestimate the spin up branching ratio and underestimates the spin down 
branching ratio. Again at this kinematics, an angular shift between the theory and the 
experimentally measured asymmetry is evident.

At 0S = 15°, there is a marked difference in the agreement between the theoretical 
calculations and the experimented data. For incident electrons with spin up, the theory 
predicts consistently lower values than the results show. However, at the same 
kinematics, but for incident electrons with spin down, the experimental data agrees with 
the theoretical calculations. In both of these branching ratios the theoretical calculations 
of Madison et al. (1996) are lower than the theoretical predictions of Mazevet (1996). 
At 0S = 40°, the theories do not agree with each other, although the theory of Mazevet 
(1996) predicts the trend of the experimental data. The agreement between the
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theoretical calculations of Maze vet (1996) and the experimental data is better for 
incident spin up electrons than for incident spin down electrons. This kinematics shows 
that both theories are inadequate in the prediction of the branching ratios.

The unpolarised branching ratios are also presented. As expected these reflect 
the degree of agreement with the theory by the spin polarised branching ratios. That is, 
the 0S = 15° setting does not agree at all well with the theory, while the 0S = 28° data 
shows excellent agreement with both theories. A calculation of Mazevet (1996), using a 
Hartree-Fock description of the target states is shown to be inferior to the calculations 
with Dirac-Fock wave functions. The experimental data at 0S = 40° shows a good 
agreement with the theoretical calculations, although the experimental data shows some 
scatter. Again, the semi-relativistic calculation of Mazevet (1996) is the better 
calculation, with respect to agreement with the experimental data. The comparisons with 
the theory for all branching ratios are a reflection of the agreement between theory and 
experimental cross section data.

To improve the theoretical calculations it may be necessary for relativistic effects 
to be included more precisely in the calculations. The average branching ratio calculation 
at 0S = 28° with a Hartree-Fock wave function indicates that a non-relativistic calculation 
is inadequate. The theory may also improve with the inclusion of more exact collision 
approximations. In the results shown, the semi-relativistic calculation of Mazevet 
(1996), which neglects the spin-orbit interaction of the continuum electrons, but includes 
the exchange interaction between the continuum electrons and the ion, generally agrees 
well with the data.

Currently the experiment is being fine-tuned before collating more data. It is 
intended that this new set of experiments will link the results shown in this work 
together. The next step is to take a set of measurements at a fixed ejected angle and to 
scan the angle of the scattered electron. This would enable a normalisation across the 
range of fixed scattered angles presented. Thus all observables would be scaled relative 
to one kinematic setting.
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Derivation of Measured Quantities

As the data analysis was such an important part of this work, it is appropriate to 
include the steps involved in the derivation of the various quantities. The full set of 
data is included for each of the three kinematic settings. In each case the polarisation 
remained the same, P = 0.24. The errors, AX, are shown in brackets after the number.

The starting point is the raw data (signal - background) for 0S = 15°.

e / o) N , M N J V N J D
45 14722(176) 14752(176) 32781(233) 31950(231)
50 21224(201) 22535(202) 52362(280) 50631(278)
55 22751(205) 25045(183) 56973(292) 55621(291)
60 22833(202) 24062(204) 56470(286) 55649(285)
65 14258(162) 15304(163) 35521(226) 34733(225)
70 10764(141) 11764(143) 25960(199) 25864(198)
75 12830(162) 13378(162) 30990(222) 30334(221)
80 9450(147) 9573(144) 21639(203) 20594(197)
85 3981(107) 4192(107) 8875(133) 8611(131)
90 3882(117) 3873(117) 7969(143) 7903(142)

Now adjust the for 100% polarisation, as per equations 5.12 and 5.13 (omitting the 
corresponding errors).___________________________________________________

e / 0) N 'JV
45 14675 14800 34097 30634
50 19148 24611 55103 47890
55 19119 28677 59114 53480
60 20887 26008 57770 54349
65 12602 16960 36769 33485
70 9181 13347 26112 25712
75 11962 14246 32029 29295
80 9256 9767 23294 18939
85 3646 4526 9293 8193
90 3896 3860 8074 7798
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The asymmetry parameter is derived using equations 5.14 and 5.16. This is easily 
checked using equation 5.11 with a polarisation value of P = 0.24. The errors are 
calculated from equations A.5 and A.6.

0e(O)
(0,=/5°>

A„ A,,, +  2 A ,/2 

3

45 -0.004(0.035) 0.053(0.021) 0.034(0.018)
50 -0.125(0.027) 0.070(0.016) 0.005(0.014)
55 -0.200(0.024) 0.050(0.015) -0.033(0.013)
60 -0.109(0.025) 0.031(0.015) -0.016(0.013)
65 -0.147(0.032) 0.047(0.019) -0.018(0.017)
70 -0.185(0.037) 0.008(0.023) -0.057(0.019)
75 -0.087(0.036) 0.045(0.021) 0.001(0.019)
80 -0.027(0.045) 0.103(0.028) 0.060(0.024)
85 -0.108(0.077) 0.063(0.044) 0.006(0.039)
90 0.005(0.089) 0.017(0.053) 0.013(0.046)

The branching ratios are calculated using equations 5.17 and 5.18, while the errors are 
derived using equations A.7 and A.8.

a> "ii 
,®

*-
•«

1 
o

o

R(avg) Ratio('l) R a tio(i)

45 2.20(0.02) 2.32(0.10) 2.07(0.09)
50 2.35(0.02) 2.88(0.10) 1.95(0.06)
55 2.36(0.02) 3.09(0.11) 1.86(0.05)
60 2.39(0.02) 2.77(0.09) 2.09(0.06)
65 2.38(0.02) 2.92(0.13) 1.97(0.07)
70 2.30(0.02) 2.84(0.15) 1.93(0.08)
75 2.34(0.02) 2.68(0.12) 2.06(0.08)
80 2.22(0.03) 2.52(0.14) 1.94(0.11)
85 2.14(0.05) 2.55(0.25) 1.81(0.16)
90 2.05(0.05) 2.07(0.22) 2.02(0.22)
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The unnormalised total cross section is from an angular correlation run. The above 
information yields the unnormalised state resolved cross sections via equations in 5.19 
and the associated errors as per equations A.9 and A. 10.

e,(o)
<Q,=15°)

g( total)
G l/2 < * s n

45 6686(219) 2092(70) 4594(165)
50 7295(449) 2175(134) 5120(321)
55 7874(491) 2346(147) 5527(350)
60 7614(498) 2245(147) 5368(357)
65 7106(216) 2105(65) 5002(170)
70 5859(198) 1775(61) 4084(154)
75 4500(375) 1347(113) 3152(268)
80 3421(354) 1062(110) 2358(248)
85 1917(131) 611(43) 1306(98)
90 1172(113) 385(38) 787(80)

The state resolved cross sections are derived from equation 5.20 and the associated 
errors as per equations A .l 1 and A. 12.

0,<o)
<8,=15°)

45 2083(101) 2101(102) 4840(199) 4349(184)
50 1904(132) 2447(162) 5478(353) 4761(310)
55 1877(130) 2816(185) 5804(377) 5251(343)
60 2000(143) 2491(173) 5532(376) 5205(355)
65 1794(88) 2415(101) 5235(201) 4768(188)
70 1447(83) 2104(98) 4115(180) 4052(178)
75 1230(114) 1465(132) 3293(288) 3012(265)
80 1034(117) 1091(123) 2601(281) 2115(232)
85 545(60) 676(67) 1389(119) 1224(108)
90 387(51) 383(51) 801(92) 774(89)
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The raw data (signal-background) for 9S = 28°.

e,(o) N JV NJD N JV N

32 4620(84) 3760(77) 9690(121) 10538(124)
35 5585(87) 4785(83) 12981(137) 14056(141)
40 6819(93) 5913(88) 17104(145) 17635(147)
45 8119(108) 7886(107) 22079(174) 22566(176)
50 10962(139) 11053(139) 31907(206) 31626(205)
53 995(39) 1082(39) 3034(65) 3122(65)
55 2668(38) 2943(39) 8879(63) 8782(61)
57 941(38) 1108(40) 3003(62) 2783(61)
60 4796(90) 5035(89) 14323(153) 13740(151)
65 7037(101) 7583(103) 21304(164) 20434(161)
70 2848(68) 3105(69) 8698(117) 8387(117)
75 7194(101) 7248(101) 20133(171) 19158(165)
80 2467(61) 2523(61) 6352(80) 6136(79)
85 1660(48) 1587(47) 3974(72) 3839(71)
95 1297(44) 1317(45) 3050(66) 2941(67)

Conversion to 100% polarisation.

6 “ N 'JV n ’j v N'sJV

32 5983 2397 8347 11882

35 6852 3518 11280 15757

40 8254 4478 16264 18476

45 8487 7518 21307 23338

50 10817 11197 32352 31180

53 857 1220 2894 3261

55 2233 3377 9032 8629

57 675 1374 3353 2433

60 4416 5414 15246 12816

65 6172 8448 22681 19056

70 2440 3512 9190 7894

75 7109 7332 21676 17616

80 2380 2610 6692 5796

85 1777 1470 4187 3627

95 1266 1348 3223 2767
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The asymmetry parameter.

e ,(o)
(Q,=28°)

^ ■ i n • ^ 3/2
4/2 + 2 4/2 

3

32 0.428(0.056) -0.175(0.036) 0.026(0.030)
35 0.321(0.048) -0.166(0.030) -0.003(0.026)
40 0.297(0.042) -0.064(0.025) 0.056(0.022)
45 0.061(0.040) -0.045(0.023) -0.010(0.020)

50 -0.017(0.037) 0.018(0.019) 0.007(0.018)

53 -0.175(0.110) -0.060(0.062) -0.098(0.055)

55 -0.204(0.040) 0.023(0.021) -0.053(0.019)

57 -0.341(0.112) 0.159(0.063) -0.008(0.056)

60 -0.102(0.054) 0.087(0.032) 0.024(0.028)

65 -0.156(0.041) 0.087(0.023) 0.006(0.021)

70 -0.180(0.068) 0.076(0.040) -0.009(0.035)

75 -0.015(0.041) 0.103(0.025) 0.064(0.022)

80 -0.046(0.072) 0.072(0.037) 0.032(0.035)

85 0.095(0.087) 0.072(0.054) 0.079(0.046)

95 -0.031(0.100) 0.076(0.065) 0.040(0.055)

The branching ratios.

e ,(o1
/0.=2S°)

R(avg) Ratio( T) R a tio (i)

32 2.41(0.04) 1.40(0.08) 4.96(0.52)

35 2.61(0.04) 1.65(0.09) 4.48(0.35)

40 2.73(0.03) 1.97(0.09) 4.13(0.27)

45 2.79(0.03) 2.51(0.12) 3.10(0.15)

50 2.89(0.03) 2.99(0.13) 2.78(0.12)

53 2.96(0.09) 3.38(0.52) 2.67(0.30)

55 3.15(0.03) 4.04(0.23) 2.55(0.10)

57 2.82(0.09) 4.96(0.90) 1.77(0.20)

60 2.85(0.04) 3.45(0.24) 2.37(0.15)

65 2.85(0.03) 3.67(0.20) 2.26(0.10)

70 2.87(0.05) 3.77(0.35) 2.25(0.17)

75 2.72(0.03) 3.05(0.15) 2.40(0.12)

80 2.50(0.05) 2.81(0.24) 2.22(0.18)

85 2.41(0.06) 2.36(0.23) 2.47(0.28)

95 2.29(0.07) 2.55(0.31) 2.05(0.25)
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The unnormalised total cross section is from an angular correlation run. The above 
information yields the unnormalised state resolved cross sections via equations in 5.19 
and the associated errors as per equations A.9 and A. 10.

e,(o)
(6,=28°,)

g ( to ta l )
<*in

32 3689(160) 1081(48) 2608(134)
35 4704(176) 1304(50) 3400(154)
40 5914(189) 1586(52) 4328(171)
45 5894(189) 1556(51) 4339(170)
50 4905(175) 1262(46) 3642(152)
53 4116(162) 1039(47) 3078(239)
55 3715(156) 896(38) 2819(140)
57 3917(156) 1025(47) 2893(219)
60 4216(161) 1094(43) 3122(155)
65 5225(174) 1355(47) 3869(159)
75 5205(171) 1399(47) 3806(153)
85 2416(125) 709(39) 1707(113)
95 552(24) 168(24) 384(57)

The state resolved cross sections are derived from equation 5.20 and the associated 
errors as per equations A.l 1 and A. 12.

e,(o)
( Q s = 28° )

32
35
40
45
50
53
55
57
60
65
75
85
95

1543(92)
1723(92)
2057(95)
1650(82)
1240(65)
857(121)
713(47)

675(119)
983(70)

1144(68)
1377(74)
776(75)
162(28)

618(67)
885(72)

1116(76)
1461(78)
1284(66)

1220(127)
1078(59)

1374(131)
1205(76)
1566(77)
1421(75)
642(71)
173(30)

2153(144)
2837(165)
4053(193)
4141(191)
3710(169)
2894(295)
2884(154)
3353(311)
3392(195)
4205(194)
4200(194)
1829(152)

413(66)

3064(183)
3963(207)
4604(211)
4536(204)
3575(164)
3261(318)
2755(148)
2433(258)
2852(173)
3533(170)
3413(167)
1584(140)

355(53)
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The raw data (signal - background) for 0S = 40°.

e,(0) N JV NJD NJV NJ

20 149(23) 121(23) 275(24) 339(24)
25 218(22) 179(21) 533(24) 478(26)
30 351(24) 296(23) 578(26) 695(28)
35 385(24) 314(23) 849(30) 908(31)
40 448(26) 381(25) 1054(33) 1149(34)
45 475(26) 372(24) 1093(33) 1261(35)
50 528(28) 499(27) 1266(35) 1351(36)
55 498(27) 433(25) 1305(36) 1355(37)
60 519(27) 451(26) 1217(34) 1190(34)
65 390(24) 365(24) 1062(32) 1076(33)
70 335(23) 329(22) 854(30) 976(31)
75 313(21) 279(21) 718(27) 752(28)
80 199(18) 244(19) 540(24) 573(24)
85 152(17) 161(17) 361(20) 411(22)
90 91(15) 80(14) 192(16) 207(17)
95 65(13) 47(13) 83(14) 118(15)
100 22(12) 16(12) 74(13) 73(12)

Now adjust the data for 100% polarisation.
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The asymmetry parameter.

e ,(o)
(Q,=40°)

A,. 4 »
4/2 + ̂ 4/2 

3

20 0.432(0.505) -0.434(0.232) -0.146(0.228)
25 0.409(0.319) 0.227(0.147) 0.288(0.145)
30 0.354(0.214) -0.383(0.125) -0.137(0.110)
35 0.423(0.198) -0.140(0.102) 0.048(0.095)
40 0.337(0.181) -0.180(0.090) -0.008(0.085)
45 0.507(0.174) -0.297(0.085) -0.029(0.081)
50 0.118(0.158) -0.135(0.080) -0.051(0.075)
55 0.291(0.164) -0.078(0.081) 0.045(0.077)
60 0.292(0.161) 0.047(0.083) 0.129(0.077)
65 0.138(0.187) -0.027(0.090) 0.028(0.086)
70 0.038(0.200) -0.278(0.098) -0.173(0.093)
75 0.239(0.209) -0.096(0.110) 0.016(0.101)
80 -0.423(0.246) -0.124(0.127) -0.223(0.118)
85 -0.120(0.320) -0.270(0.160) -0.220(0.151)
90 0.268(0.499) -0.157(0.243) -0.015(0.232)
95 0.670(0.693) -0.726(0.427) -0.260(0.366)
100 0.658(1.884) 0.028(0.501) 0.238(0.711)

The branching ratios.

e ,(o1
<e,=4o°>

R(avg) Ratio(T) Ratio(i)

20 2.27(0.30) 0.90(0.50) 5.74(5.31)
25 2.55(0.21) 2.22(0.59) 3.33(1.95)
30 1.97(0.12) 0.90(0.24) 4.21(1.48)
35 2.51(0.13) 1.52(0.29) 4.97(1.80)
40 2.66(0.13) 1.63(0.29) 4.73(1.37)
45 2.78(0.13) 1.30(0.22) 7.31(2.65)
50 2.55(0.11) 1.97(0.34) 3.28(0.64)

55 2.86(0.13) 2.04(0.33) 4.34(1.07)

60 2.48(0.11) 2.01(0.31) 3.34(0.83)

65 2.83(0.14) 2.42(0.47) 3.37(0.81)

70 2.76(0.15) 1.92(0.47) 3.66(0.83)

75 2.48(0.14) 1.81(0.39) 3.58(1.08)

80 2.51(0.17) 3.82(1.75) 1.98(0.43)

85 2.47(0.21) 2.05(0.89) 2.80(0.90)

90 2.33(0.31) 1.55(0.78) 3.69(2.67)

95 1.79(0.35) 0.30(0.48) 9.37(20.10)

100 3.87(1.79) 2.40(3.03) 10.99(61.73)
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The unnormalised total cross section is from an angular correlation run. The above 
information yields the unnormalised state resolved cross sections via equations in 5.19 
and the associated errors as per equations A.9 and A. 10.

e,(o)
(Q,=40°)

o( total)

20 442(142) 135(45) 307(118)
25 704(141) 199(42) 506(128)
30 960(153) 324(53) 637(113)
35 1228(165) 350(49) 879(145)
40 1516(180) 415(51) 1102(167)
45 1601(181) 424(50) 1177(174)
50 1822(192) 514(56) 1309(172)
55 1796(192) 466(52) 1330(189)
60 1689(185) 485(55) 1204(161)
65 1447(173) 378(47) 1069(170)
70 1247(162) 332(45) 915(155)
75 1031(148) 296(44) 735(129)
80 778(130) 222(38) 557(114)
85 543(116) 157(35) 386(101)
90 286(94) 86(29) 200(79)
95 157(83) 56(31) 101(58)
100 93(74) 19(17) 74(120)

The state resolved cross sections are derived from equation 5.20 and the associated
errors as per equations A.l 1 and A. 12.

e,(o)
(Q,=40°)

G j V o j y

20 193(94) 77(73) 174(98) 440(184)
25 280(86) 117(68) 620(174) 391(124)
30 438(100) 209(77) 393(106) 880(175)
35 497(98) 202(75) 756(154) 1001(188)
40 554(102) 275(83) 904(169) 1299(220)
45 638(105) 209(78) 827(158) 1527(247)
50 574(103) 453(95) 1131(181) 1486(221)
55 601(102) 330(85) 1226(204) 1434(230)
60 627(106) 343(87) 1260(196) 1147(183)
65 430(89) 325(82) 1040(191) 1098(199)
70 345(81) 320(79) 661(143) 1169(217)
75 367(83) 225(71) 664(142) 806(163)
80 128(59) 315(77) 488(123) 625(147)
85 138(59) 175(63) 282(96) 490(142)
90 108(57) 63(48) 168(82) 231(103)
95 94(64) 19(40) 28(46) 173(109)
100 32(45) 7(36) 76(129) 71(122)
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Appendix A: Derivation o f Measured Quantities

The error analysis equations are as follows, where for simplicity the following 
notation is used, A2X = (AX)2.
For 100% polarisation:

A2N ; ( t ) = ( ^ ]  A2N,(T)+ ^ J A2N ,(i) ,

A2NS(X)=| a2n ,(T)+ f 1 + pV
2P J A2N ,(4),

ANj =f~) -y/A2Nj(T) + A2Nj(i) , 
v2y

AN;ofa/=VA2N[/2+ A2n ;/2 .

... A. 1

... A.2

... A.3 

... A.4

This is used to calculate the error for the total cross section for the angular correlation 
run. Aa to,ai is then used in equations A.9 to A. 12 to calculate the errors for the state 
resolved and spin resolved cross sections which have had the asymmetry and ratio 
parameters folded in.

The errors for the asymmetry:

2 jN 2(+)A2Ny(t)+ N 2(t)A2N ,(I) 
P (N,(T)+N ,(i))2

V

+ 2 A 3/2 

3 J

■J A2A1/2 + 4 A2 A 3/2 
3

The branching ratio errors are:

... A.5

... A.6

A 7 R ( t )  = (i + p )2a2n <;2> + (i - p)2a2n (3)] 

((i + p )n (;2)-(i - p )n « ) 2

((i + p )2a2n <;2>+(l-P)2A2N « ) |((l+p):nS - ( i - p )n S ) 2

((i + p)n {;2>-(i - p )n « f

Equation A.7 is used to calculate the error, AR(i), by simply inverting all spin directions.

. a2n£ +a2nM (a2n1 ^ a2nW)(n(3!>+n^

'  K > + n M)2 (n ^ + n « ) 4
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Appendix A: Derivation of Measured Quantities

Then the errors for the cross sections calculated from the asymmetry and branching 
ratio information are:

1+R^| A a uul +
g,,,a,A2R

( 1 + R ) 2

1+ R ^
A2g total

Vital* 2 R

r 4(1+ r )2

... A.9

... A .10

A ay(T)=-J(l+Ay)2A2a y + g)A2A  y .. .A .11

A ay( i)= ^ ( l-A y)2A2a y + a 2-A2A y ...A .12
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