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ABSTRACT

Thesis Advisor: Lucas A. Cieza

Thesis by: Dary A. Rúız-Rodŕıguez

Circumstellar disks and outflows play a central role in the growth of low-mass

(M < 2 M�) stars and the formation of planetary systems. These disks are

ubiquitous at young ages (< 1 Myr), as they are naturally formed during the

gravitational collapse of protostellar cores due to the conservation of angular

momentum. Circumstellar disks feed the forming stars and provide an envi-

ronment for small grains to eventually grow into rocky planets and the cores of

giant planets at a wide range of stellocentric distances (∼ 0.1-100 au). In par-

allel to the growth solids in the disk, bipolar outflows and winds are generated

on similar physical scales. Outflows carry angular momentum away and help

the accretion of circumstellar material onto the central object. They also play

an important role in the dissipation of the envelope that marks the transition

from the Class I (a deeply embedded protostar) to Class II stage (an opti-

cally visible T Tauri star). Eventually, the primordial disk disperse, leaving a

star surrounded by a remnant debris (Class III) object and likely a system of

planetesimals and planets.

This thesis incorporates high-sensitivity millimeter-wavelength interferometry

and near-infrared Non-Redundant Mask (NRM) Interferometry to assess molec-

ular outflow and disks properties in Class I-II objects. It explores the physical

mechanisms dispersing the disk and envelope system (e.g., outflows and dy-

namical interactions in binary systems) and the properties of protoplanetary

disks as a function of stellar mass at an age of 2-3 Myr.
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We investigate the properties of the Class I molecular outflows present in HBC

494 and V883 Ori, two young stellar objects experiencing episodic events of

extreme accretion known as FU Ori outbursts. These outflows help to disperse

the surrounding envelope at very early stages while removing angular momen-

tum from the disk. We estimate the kinematic properties and describe physical

structures of the outflows using the 12CO and 13CO emissions lines. Similarly,

the C18O emission line is used to describe envelope material of both sources.

An outstanding result is the wide-opening angle of the outflow cavities of ∼

150
◦

for both sources. Outflows masses in both FUors are on the same order of

magnitude, while V883 Ori shows an outflow component that is much slower

(characteristic velocity of only 0.65 km s−1) than seen in other FUors such as

HBC 494. To date, interferometric studies of FUors are scarce and more obser-

vations needed in order to compare with other objects at a similar sensitivity

and resolution.

In addition, using NRM, we searched for binary companions to objects pre-

viously classified as Transitional Disks (TD, disks with inner opacity holes)

in nearby (d < 300 pc) star-forming regions (Ophiuchus, Taurus-Auriga, and

IC348) and investigate the interaction with (sub)stellar companions as a pos-

sible mechanism for the depletion of their inner disks. We implement a new

method of completeness correction using a combination of randomly sampled

binary orbits and Bayesian inference. We find that ∼ 0.38±0.09 of the TDs

are actually circumbinary disks, while the remaining objects are transitional

disks where the inner holes are the result of other internal processes such as

photoevaporation, and/or planet-disk interactions.

Finally, we present an ALMA 1.3 mm survey of Class II sources in the bench-
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mark 2-3 Myr stellar cluster IC 348 to investigate the properties of disks at the

time 50% of the disks have already been completely dispersed. We find that the

detection rate in 1.3 mm continuum is a strong function of stellar mass. Most

targets with masses 0.3< M� remain undetected down to a 3-σ sensitivity of

0.45 mJy, corresponding to a disk dust mass of ∼0.9 M⊕. A stacking analysis

of the non-detections suggests that the typical dust mass around most 2-3 Myr

old M-type stars is 0.2 M⊕ (or 0.07 MJUP of gas + dust, assuming a standard

gas to dust mass ratio of 100). A Bayesian analysis is used to statistically com-

pare IC 348 to other star-forming regions. As a general result, this analysis

shows that IC 348 disks are a factor of 5 fainter on average than in Taurus,

Cha I, and Lupus. While, IC 348 and σ Ori have similar distributions. On the

other hand, Upper Sco disks are definitely fainter on average than IC 348. The

resulting cumulative distribution functions confirm a clear evolution (depletion

of mm-sized grains) of the circumstellar disks in these regions over a period of

1-10 Myr.
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1

Introduction

The star-formation process begins when a slowing-rotating molecular core col-

lapses as a result of gravity. The collapsing material eventually forms a young

stellar object at the center. During this process, and as a result of the conser-

vation of the angular momentum, the material does not fall directly towards

a point, instead, a disk-like structure is formed around the protostellar core.

As angular momentum is moved outward, some of the material in the disk

moves inwards and fall onto the protostar, building up the stellar mass. An-

other mechanism to release angular momentum from the is the spurting out

of mass in a bipolar-shape flow. These outflows clear out the feeding material

surrounding the forming star, and thus are important to determine the final

stellar mass (e.g. Williams & Cieza, 2011; Armitage, Livio & Pringle, 2001;

Hartmann, Herczeg & Calvet, 2016).

The combination of intensive ground- and space-based observations and state-

of-the-art theoretical simulations have established that circumstellar disks and

molecular outflows are an integral part of the formation and evolution of stars
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(Williams & Cieza, 2011). Also, it is well established that planets form in

such disks composed of gas, dust, and ices. To date, more than 3500 ex-

oplanets have been detected with a wide variety of masses and orbital pa-

rameters (Batalha, 2014). Despite all the efforts to observationally constrain

the location and age of planet formation, a comprehensive picture of where,

when, and how these planets are formed is still largely incomplete. Wide-

separation exoplanet discoveries at 50 − 300 au (Marois et al., 2008;

Kuzuhara et al., 2013; Rameau et al., 2013; Lafrenière, Jayaward-

hana & van Kerkwijk, 2008) are particularly difficult to explain by

current planet-formation theories: core-accretion vs. disk instabil-

ity. Based on these theoretical models, the core-accretion scenario

is more suitable for explaining the formation process of planets (<

0.3 MJup), whose orbits lie at < 5 au from the host star (Pollack

et al., 1996). While the disk instability scenario predicts the rapid

formation of giant planets (>2 MJup) in the outer regions of the disk

(> 30 au). A caveat with the latter scenario is that it requires a

disk-star mass ratio of >10−2, and if the disk is sufficiently massive,

it is more likely a fragmentation into a stellar companion instead of

a planetary companion (Boss, 2001). More relevant for this thesis,

these two models predict different planet formation timescales (core

accretion: 3-5 Myr vs. disk instability: 0.5 Myr), which extends to

the disk dispersal timescales.

A major challenge today is to discern which processes disperse the dust and gas

in the disk-envelope system and to constrain the initial conditions, timescales,

and planet-formations mechanisms, as well as the role of environment. In
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addition, it is imperative to investigate the relationship between accretion and

energetic outflows in young stellar systems, to understand 1) the low-mass

star-formation efficiency of in turbulent clouds and 2) the efficient transport of

angular momentum that allows the accretion of circumstellar material onto the

central star. These circumstellar disks and molecular outflows are the focus of

this thesis, which consists of 3 related but independent projects, distributed in

four first-author papers.

In the first project, we use interferometric millimeter-wavelength observations

to investigate the circumstellar environments (disks, outflows, and envelopes)

of two embedded (Class-I) young stellar objects undergoing events of intense

disk accretion known as FU Ori outburst (Hartmann & Kenyon, 1996). In the

episodic accretion paradigm (e.g., Audard et al. 2014), these FU Ori outbursts

are believed to be short-lived but relative common events during early stages

(age <0.5 Myr) of the star-formation process and to play a crucial role in

building up stellar masses. In particular, we present the kinematic study of

the HBC 494 and V883 Ori systems using ALMA 1.3mm/230 GHz images at

0.2′′ resolution of the 12CO, 13CO and C18O molecular lines. Both objects

show spectacular wide-angle outflows that are likely to impact disk evolution

and the surrounding cloud environment. The intense outflow activity of these

outbursting sources also highlights the inmate connection between accretion

and outflows.

In the second project, we study primordial (gas-rich) disks with inner opacity

holes. Since these systems are believed to be in a “transition phase” between

an optically thick and an optically thin disk (i.e. between Class II and Class III

objects), they are commonly known as Transitional Disks (TDs). TDs are a
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relatively rare (20% of the general disk population depending on exact adopted

definition) and heterogeneous group of objects (e.g., Cieza et al. 2012). They

have attracted significant attention as they present signatures of different disk

evolution process, including planet formation. TDs are identified and classified

using their Spectral Energy Distributions (SEDs), and their main characteristic

is a decreased level of IR excess emission with respect to typical T Tauri stars

(Espaillat et al., 2012) indicating an inner opacity hole. However, the origin

of these holes (planet formation, photo-evaporation or binary interactions) can

not be established from the SED alone. In Rúız-Rodŕıguez et al. (2016a) we use

near-IR Non-Redundant Aperture Masking (NRM) to search for (sub)stellar

companions in TD objects in order to identify Circumbinary Disks (CDs), i.e.

a binary star surrounded by a disk. With these observations, we investigate

the fraction of TDs that have companions that could explain the opacity holes

in their inner disks.

The last project is a 1.3 mm continuum survey of 136 Class II disks in the

2-3 Myr benchmark cluster, at an age where 50% of the disk population has

already been dispersed. We detect 46 of them and construct the disk luminosity

function for the cluster. An staking analysis of the 90 non-detections suggest

that the typical (average) disk in the cluster should have a dust mass of just 0.2

M⊕, although disk masses are a strong function of stellar mass. We compare

the luminosity function of IC 348 to those of younger and older regions taking

into consideration the differences in Initial Mass Functions of the samples and

find a clear evolution of disk masses from 1 to 10 Myr.
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1.1 Overview

Observations in the infrared and (sub-) millimeter region of the electromagnetic

spectrum have allowed the discovery of embedded sources in dusty envelopes,

known as protostars. These objects presumably have undergone the freefall

collapse of dusty material and contain high extinct central sources that remain

undetected at optical wavelength range but become visible in the infrared spec-

tral region (Figure 1.1). These deeply embedded objects are believed to be early

stages of the young stellar objects that are eventually classified as T Tauri stars.

Young Stellar Objects (YSOs) can be described by the slope of their SED, α,

measured between ∼2 and 20 microns (Figure 1.1).

From these SEDs, spectral classes 0, I, II and III have been defined with approx-

imate characteristics shown in Figure 1.1, from top to bottom, respectively.

Class 0 and Class I sources are deeply embedded YSOs with α > 3. Class

0 sources are characterized by bolometric temperatures < 70 K (Chen et al.,

1995). Their high ratio of sub-millimeter to bolometric luminosity, suggesting

that the envelope mass exceeds the central stellar mass. Class I sources also

have strong sub-millimeter emission, but their bolometric temperatures are >

70 K. Both Class 0 and Class I sources typically have bipolar molecular out-

flows that carry away mass and angular momentum. The infalling envelope

material settles into a rotating flattened disk around the source, due to the

conservation of angular momentum. As the envelope the dissipates, Class I

sources transition to a Class II source with −1.6 < α < −0.3 (Greene et al.,

1994). At this stage, the central star becomes optically visible and the SED

is characterized by the IR excess an optically thick disk. Eventually, the dissi-
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pation of this circumstellar material will lead to the Class III with α < −1.6,

where most of the detectable emission is from the central star (Greene et al.,

1994).

Figure 1.1: Artistic image of a protostellar evolution process together with
its corresponding observed Spectral Energy Distribution (SED). Right: Star
Formation Process. Left: SED at the different stages. This image is Figure 1
from André (2002).
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1.2 Protoplanetary disks and their evolution

During the core collapse process in a collapsing molecular core and while the

central protostellar his building up, one of the most significant consequences

is the formation of a circumstellar disk due to the conservation of the angular

momentum. With a persisting small amount of material still accreting (Dulle-

mond et al., 2007), the accretion rate decreases from Ṁ ∼ 10−5−10−6M�/year

to Ṁ ∼ 10−7 − 10−9M�/year. This disk evolves rapidly, reaching an extension

of approximately R(t) ∝ Ω2t3, where Ω is the angular momentum of the system

and has to be conserved with an infall time of magnitude t3 (Terebey, Shu &

Cassen, 1984). However, since the inclusion of magnetic fields in simulations, it

has been shown that the extension of the disk might grow only linearly (Basu,

1998), thus giving way for new uncertainties in the initial disk sizes and masses.

The disk can achieve extensions of up to 100 au or more in a period of approx-

imately few x 105 years. More specifically, this disk is named a protoplanetary

disk, a term that is typically only applied to the the primordial, gas-rich

phase of the disk. The emission of these disks can be locally approximated

as blackbodies emitting at different wavelengths and globally described as the

sum of the fluxes from annuli emitting at different radii. Equation 1.1 states

the flux of a spatially thin disk,

Fν =
cosθ

D2

∫ router

rinner

Bν(Td)(1− e−τν )2πrdr. (1.1)

where, θ represents the inclination of the disk to the line of sight, D is the



8 Introduction

distance to the system, rinner and router are the disk’s inner and outer radii,

Bν(Td) is the Plank’s function at a specific temperature and τν is the opti-

cal depth of the dust. While optically thick IR emission provides no useful

information on disk masses (e.g. Calvet et al., 2002), an appropriate use of

Equation 1.1 in the optically thin (sub)millimeter regime is the determina-

tion of dust masses, of fundamental importance for the formation of different

types of planets. However, because dust grains emit more efficient at wave-

lengths comparable to their size, (sub)millimeter dust continuum observations

only traces a limited range of grain sizes. Multi-wavelength (sub)millimeter

and centimeter-wavelength observations have provided evidence for centimeter

sized grains. Radiative transfer models can be used to calculate the properties

of these systems from the observed SEDs (e.g. Dullemond et al., 2007). Figure

1.2 shows the predicted excess emission from different types of circumstellar

disks, using the CGPlus code Dullemond, Dominik & Natta (2001).

Numerical models for protoplanetary disks typically use an approximation of

radial density profiles and apply the equation of the state to these profiles to

derive the vertical structure of the disk at different radii and surfaces. By

considering the disk as a thin viscous disk with physical characteristics such

as a vertical scale height H << r and a mass MDisk << M∗, it is possible

to express the variation of the surface density over time. Then, assuming

an azimuthal velocity much larger than the radial velocity of the particles in

the disk, we have a negligible gas gradient pressure along the radial direction

and the orbital motion is mainly dictated by the centripetal acceleration in a

gravitational potential.

The surface density in a Keplerian potential (Ω = (GM/r3)1/2) is described
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Figure 1.2: Theoretical Spectral Energy Distribution for a primordial disk, a
transitional disk, and a debris disk. The star SED is a 3200 K blackbody. The
primordial and transitional SEDs were produced by using the CGPlus code
(Dullemond, Dominik & Natta, 2001)

by equation 1.2, the time-dependent solutions of which show that a fraction of

the gas accretes onto the star while spreading diffusively to large radii (Frank,

King & Raine, 2002).

∂Σ

∂t
=

3

r

∂

∂r

[
r

1
2
∂

∂r
(νΣr

1
2 )

]
. (1.2)

Where Σ is the surface density, ν is the viscosity as a function of local conditions

in the disk, and r is the disk radius. This transport process allows the transfer

of matter from the surrounding material to the growing protostar and defines

the basic structure and viscous evolution of the disk. However, measurements of

mass accretion rates are not fully consistent with a “weak” molecular viscosity,
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particularly after the active infall phase has stopped; suggesting an incomplete

understanding of the transport of mass and angular across the disk (Hartmann,

2008). For simplicity and in the absence of a well-defined physical transporting

mechanism, the viscous stress can be parameterized in a dimensionless value.

In order to find a “temporal” solution for the unknown source of viscosity

in a geometrically thin non-self gravitating disk, Shakura & Sunyaev (1973)

introduced an α-viscosity parameter. Assuming a scale height H larger than

the length scale of the turbulence, the kinematic viscosity is defined as:

ν = αcsHgas. (1.3)

Where cs is the gas sound speed and Hgas is the vertical scale height of the gas.

Possible mechanisms to produce “strong” viscosity are convection, gravitational

instabilities, and magnetorotational instability (MRI) (Dullemond et al., 2007),

nevertheless, for the main purpose of this document, these processes will be

omitted. Finally, if the disk is assumed to be vertically isothermic, the vertical

density structure can be found by,

ρ(r, z) = ρc(r)e
−z2/2H2

gas (1.4)

where ρc(r) is the density at the midplane and Hgas is the gas scale height.

Hgas =

√
kTcr3

µmpGM?

=
Cs
Ω

(1.5)
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where Tc is the temperature at the disk midplane, µ is the mean molecular

weight in units of the proton mass mp and M? is the stellar mass.

On the other hand, the gas and dust temperature can be calculated by using

the conservation of energy in terms of heating and cooling processes. Although

in reality the dust and gas have different temperatures, most models assume

that both have the same temperature (the well-coupling between the dust and

gas, thermally and dynamically). By assuming a disk optically thin at the

surface and optically thick at the midplane with a vertical profile in hydrostatic

equilibrium (two-layer model), the dust grains in the disk surface scatter a

fraction of the stellar photons and absorb the other fraction of photons to re-

emit them with the magnitude of the local surface dust temperature (Chiang &

Goldreich, 1997). If we take the ratio between the height above the midplane

where the disk becomes optically thick and the gas (pressure) scale height as

a constant, it can be found that the gas scale height increases with radius at a

rate of Hgas ∝ r1.286, indicating a disk with a ”bowl” shape or flaring disk. In

general, the disk midplane temperature scales as Tc ∝ r−0.428 (Chiang et al.,

2001). Figure 1.3 shows a schematic gas temperature profile of a disk based

on the two-layer model of Chiang & Goldreich (1997). At the optically thick

layer, the dust and gas are well-coupled due to collisions.

1.3 FU Ori Objects

Overall, young stellar objects show optical variability mainly by accretion, ex-

tinction events, and stellar spots (Joy, 1945). An outstanding eruptive phe-

nomenon is the large episodic accretion in some of these YSOs, where much



12 Introduction

Figure 1.3: Gas temperature structure of a protoplanetary disk, based on the
two-layer model of Chiang & Goldreich (1997).

disk material is added to the central object in a short period of time. The

frequency and intensity of these episodes affect the circumstellar environment

at young stellar ages and the final mass of the forming star. The most in-

tense bursts are believed to take place during early stages (Class I objects) of

star formation. However, some outbursting sources display flat SEDs near the

Class I/II boundary (Evans et al., 2009a; Green et al., 2013) or even Class II

SEDs with no signs of molecular envelopes. These bursts, which can last years

to centuries, punctuate long periods (104-105 yr) of relative quiescence. Ob-

servationally, the most extreme events of episodic accretion are known as FU

Orionis outburst (hereafter FUors), whose main characteristic is an increase in

optical light that can reach 5 mag or even more (Herbig, 1977). During these

periodic outbursts, FUors have a bolometric luminosity of ∼ 100-400 L� with

accretion rates between 10−6, and 10−4 M� yr−1 and are fueled by material



Introduction 13

still falling from the circumstellar envelope to the disk and eventually onto the

central star. FUors show spectra similar to F/G supergiant spectral types in

the optical regime, while in the near-infrared these objects show spectra like

K/M supergiant spectral types and first-overtone CO absorption at 2.2 µm.

The Fe I, Li I, and Ca I optical lines observed in FUors are double-peaked

and broader than a YSO, consistent with a rotating disk origin (Hartmann &

Kenyon, 1996). FUors present blue SED typical of a mildly flared disk with

pristine silicate emission features around 10 µm (Green et al., 2006). These

features can be observed either in absorption or in emission, where objects with

absorption features are likely FUors embedded in an envelope and objects with

silicates in emission are less-embedded FUors (Quanz et al., 2007). Submil-

limeter observations show that FUors disks are more similar to those of Class

I protostars, with larger and more massive accretion disks than a classical T

Tauri star (Sandell & Weintraub, 2001).

1.3.1 Molecular outflows

The large mass accretion rate can increase as much as a factor of 100 and as a

result, produces strong winds and eventually, they can produce massive bipolar

outflows (Figure 1.4). These outflows are composed of H2, carbon monoxide

(CO), and other molecules present in the disk. As H2 lines are weak, CO

emission is used to trace the cooler swept-up material (i.e. interaction of the

outflows and their surrounding envelope), with temperatures < 100 K. From

sub-millimeter observations, CO lines typically have a line width of 1−3 km

s−1 in a quiescent molecular cloud, while towards a YSO, CO lines showed

widths of 6−8 km s−1 that can be attributed to the gravitational collapse of
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the cloud around forming-stars (Lada, Dickinson & Penfield, 1974). Higher

sensitive observations in active star-forming regions have shown velocities that

are higher than the ambient cloud velocity by up to 60−70 km s−1 (Kwan &

Scoville, 1976). These high velocities are due to energetic outflows. FUors

have been detected with molecular outflows of a bipolar shape with mass-

loss rates ranging from 10−8 up to 10−6 M�, without correcting for optical

effects. These molecular outflows are believed to carry angular momentum

away, permitting the accretion of mass onto the central object at higher rates.

The strong outflows inject large quantities of energy to their surroundings and

hence, perturb and modify the surrounding molecular cloud.

It is believed that these outflows might originate mainly through two outflow-

launching mechanisms: (1) the X-wind, which is launched at a few stellar radii

from the star (Shu et al. 2000), and (2) the disk wind, which is launched

from a wide region throughout the disk (Konigl & Pudritz, 2000). The exact

launching position of the disk wind is difficult to establish. Recently, ALMA has

observed outflows launched within the inner ∼25 au radius of a disk (Bjerkeli

et al., 2016), while there are other exceptional cases where outflows can be

launched at a distance of ∼90−130 au from the rotational axis (Alves et al.,

2017). Therefore, more observations with a higher sensitivity are required to

constrain the launching point of disk winds.

In general, 12CO emissions are optically thick in dense cores, however, 12CO

is often used to estimate outflow properties because it might become optically

thin over the higher velocity outflow gas. Given its strength, 12CO is used to

obtain shapes, physical extensions, kinematic properties and, outflow masses.

However, 12CO observations could underestimate the outflow masses if the
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emission becomes optically thick (Bradshaw, Offner & Arce, 2015). Therefore,

13CO and C18O data are used to correct for 12CO optical depth effects (e.g.

Goldsmith et al., 1984) and measure masses, momentum, and energy flux with

higher accuracy. These estimates typically assume that the gas is in local ther-

modynamic equilibrium (LTE) and CO emits at a single excitation temperature

(e.g. Curtis et al., 2010; Bradshaw, Offner & Arce, 2015), see Chapters 3 and

4.

Figure 1.4: Sketch of a FUor object. Image Credit http://insciences.org

The first part of my Ph.D. thesis includes ALMA observations of two FU Ori
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objects, HBC 494 and V883 Ori. We use of 12CO, 13CO and C18O emission

lines as tracers of the different components of the systems, their disks, outflows,

and envelopes. This part of my Ph.D. thesis aims to answer the following

outstanding questions:

1. What are the basic properties of FU Ori outflows (mass, size,

morphology, and kinematics) and how do these properties com-

pare to those of quiescent systems?

2. How do FU Ori outflows affect the evolution of the disk/envelope

system?

3. What are the physical mechanisms responsible for the observed

outflows?

1.4 Transitional Disk

By the time young stellar objects become optically visible T Tauri stars, the

star-building process is mostly over, and the mass remaining in the circumstel-

lar disks represents < 1% of the mass of the stars (Andrews & Williams, 2007;

Andrews, 2015). Primordial disks typically last 2-3 Myrs before dissipating

through different processes and becoming disk-less (Class III) stars. The tran-

sitional stage between Class II and III objects is characterized by decreased

levels of NIR and/or MIR excess (NIR: 1-5µm, MIR: 5-20µm), and an excess

emission at wavelengths ≥ 20µm similar to that of a primordial disk. This

can be explained by an inner disk region devoid of hot dust grains. The first
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objects showing such observational signatures were identified by Strom et al.

(1989) and are currently known as transitional disks. In general, the term

“transitional disk” (TD) is used to describe protoplanetary disk which is op-

tically thick and gas-rich with central clearings due to a non-continuos dust

distribution. Observations of transitional disks have shown dust-poor cavities

that contain significant gas material (Pérez et al., 2014). Although the com-

position of the inner disk is only ∼ 1% dust, it dominates the opacity of the

disk. The lack of near-IR excesses implies that the small particles in the inner

disk region should be depleted by around 10−4 from standard full disk values.

Therefore, the transitional disk classification is based on the evolution of dust

particles instead of gas, which represents 99% of the mass and drives the dy-

namics in the disk. Understanding the evolution of the dust particles is key

because they are the “raw” material for the formation of terrestrial planets and

the cores of the giants planets.

TDs are a diverse group of objects. Their central cavities have a wide range of

radii (∼1-100 au); however, more massive stars tend to have TDs with larger

cavities (Meŕın et al., 2010). Owen & Clarke (2012a) showed observational

evidence for two “different” types of transitional disks based on their millimeter

flux. The first type is characterized by low millimeter flux, inner holes of less

than 10 au and low accretion rates of around < 10−9M�/yr. This type of disk

is consistent with the last stages of disk dissipation. The second type presents

high millimeter fluxes, inner holes larger than 10 au and accretion rates of

around 10−9-10−8 M�/yr. Different physical mechanisms are proposed in the

literature to explain inner holes of transition disks: 1) planetary formation, 2)

photoevaporation, 3) grain growth/coagulation/settling, 4) magnetorotational
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instability, and 5) dynamical effects of the presence of a stellar companion, as

discussed below.

Planet Formation

In general, there are two main models proposed for the formation of gas gi-

ant planets: core accretion and gravitational instability. In the core accretion

model, micron-sized dust grains stick together to build up mm-to-cm-sized ag-

gregates. Although important barriers exist, these aggregates eventually form

10-100 km planetesimals (e.g., as a product of a gravitationally unstable dust

layer; Furuya & Nakagawa, 2001). Gravitational interactions allow the oli-

garchic growth of some of these objects to create planetary embryos. Even-

tually, these embryos collide and grow into a core with a critical mass of ∼10

M⊕, starting a phase of rapid gas accretion. This gas accretion phase continues

until the planet opens a gap in the protoplanetary disk (Chambers, 2011). The

pressure gradient at the edge of the gaps filters the dust being transported

inward from the outer disk (Pinilla et al. 2015) and the forming planets divert

most of the material onto itself. The combination of both effects results in the

dust poor inner disks characteristic of transition objects.

Photoevaporation

Another probable mechanism responsible for opening gaps in the inner regions

of disks is photoevaporation by its central star. It has been shown that at the

surface layers of the inner disk, the temperature of the gas can be higher than

the dust temperature as a result of the radiation from the central star. This
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gas flows off the disk and escapes from the gravitational field of the host star.

The main sources of heating are the strong EUV and FUV acting at different

radii in the disk and penetration depth. The evaporative mass depends on the

penetration depth of the FUV and EUV photons and the temperature of the

heated gas (Dullemond et al., 2007). FUV dominates at r > 50 au and EUV

affects mostly the planet-forming region, r << 50 au. While the mass transport

across the disk is high, material moving in from the outer disks compensates

any loses due to photoevaporation. As both the disk mass and the accretion

rate decrease, the mass-loss rate becomes important and a gap is formed in

the disk at a critical radius. Eventually, the inner disk dissipates in dynamical

timescales, leaving an empty, photo evaporating cavity that expands from the

inside-out.

Binary Stars

Dynamical interactions in binary systems can also produce inner holes in pro-

toplanetary disks and transition disk SEDs (Ireland & Kraus, 2008). Most

stars are formed in binary or multiple systems; therefore, understanding the

effects of this multiplicity on disk evolution is important for planet forma-

tion theory. Observationally, planets in binary systems are less common than

planetary systems in single stars, which is reflected with only ∼60 planets de-

tected that reside around binary systems. To date, most of these circumbinary

planets reside in binary systems with a relatively large separation, often with

separations of > 500 au (Roell et al., 2012), while only ∼10 of these binaries

have a separation of less than 100 au, and 5 exoplanets reside in close bina-

ries with separations of ∼20 au. Those planets orbiting only one of the stars,
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with the second star acting as a perturber, are known as S-type configuration

planets(Dvorak, Froeschle & Froeschle, 1986). Planets orbiting both stars in a

binary system are known as P-Type or circumbinary planets (e.g. Beuermann

et al., 2011).

From theoretical and observational studies, it is established that a single star is

more suitable for the formation of a planet. In binary stars, especially those or-

biting closer than ∼ 100 au, the protoplanetary disk is hotter and dynamically

more excited impacting the initial steps for planet formation, such as the co-

agulation and growth of planetesimals or the gravitational instability process.

However, planets in S-Type configuration can still form at small distances from

the star (Nelson et al., 2000). Close-binary stars with separations < 1 au are

more suitable for the formation of a P-type of circumbinary planets.

The second part of my thesis assesses these transitional disks in the context of

their impact on disk evolution, and addresses questions such as:

1. How many disks classified as transitional disks are actually cir-

cumbinary disks?

2. How long does the true pre-transitional and transitional disk

phase last for single stars?
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1.5 Characterizing Disks at An Intermediate Age (2-3

Myr)

The combination of intensive ground- and space-based observations over the

last decades has established the basis of our current understanding of disk

evolution (e.g., Williams & Cieza, 2011). Much of our knowledge about the

evolution and dispersal of protoplanetary disks comes from IR and millimeter

surveys of clusters at different ages. From these surveys, we know that at 1 Myr,

80% of stars have accretion disks, while at 10 Myr, a disk frequency of 1% is

seen, see Figure 1.5, (Mamajek, 2009). Even though more than 3500 extra-solar

planets have been detected to date and current exoplanet statistics indicate

that planet formation is the typical end product of disk evolution, the picture

of when, how, and where these planets are formed is still largely incomplete.

Characterizing disks (i.e. their masses, sizes, structures, and accretion rates) in

young star-forming clusters of a given age, and then comparing these properties

to those of clusters at different ages, allows us to investigate how disk properties

change with time, and thus constrain disk evolution mechanisms and timescales.

The IC 348 cluster is an attractive target for disk surveys (2-3 Myr). It contains

one of the richest populations of Class II stars, an ideal evolutionary stage

to estimate dust and gas of the protoplanetary disks already undergoing a

dispersal phase.

The third part of my thesis investigates and characterize mass (dust+gas)

and size of the disks in the IC 348 star-forming cluster, using ALMA Cycle 3

observations, to improve our understanding of the initial conditions for planet
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formation and contribute in the comprehension of:

1. Why giant planets are rare and Earth-like planets are more

frequent around M stars (Howard et al., 2012; Burke et al.,

2015)?

2. How disk properties at 2-3 Myr define the planet-formation

potential of different systems.
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Figure 1.5: The disk frequency as a function of cluster age from Spitzer ob-
servations. The Spitzer data is optically thick and only measure the presence
of a disk. Millimeter wavelength observations of the same clusters provide the
distribution of disk masses. Most recent results show a decrease of disk mass
with age in Taurus, Lupus, IC 348, and Upper Sco. Figure 1 from Mamajek
(2009)
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2

METHODOLOGY AND

OBSERVATIONAL TECHNIQUES

This chapter discusses the various observations and analyses techniques in-

cluded in this thesis. Observations used in this thesis and the results are

presented in separate chapters and publications such as Rúız-Rodŕıguez et al.

(2016a, 2017b,a). Chapers 3, 4, and 6 presents observations of carbon monox-

ide (CO), including 12CO, 13CO and C18O with energy level transition J = 2

- 1, as well as dust continuum observations, which were taken with the Ata-

cama Large Millimeter/submillimeter Array (ALMA). Chapter 5 presents ob-

servations using the Non-Redundant Mask interferometry technique from Keck

Observatory.

2.1 Observing Techniques

The formation of stars and planets occurs deep inside molecular clouds and

circumstellar disks. Because at these early stages these objects are mostly com-
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posed of dust and gas, the study can be best performed by using infrared and

(sub-)millimeter wavelengths. For instance, in the past decade, the sensitiv-

ity and improved spatial resolution of Spitzer made possible the identification

of populations of T Tauri stars in several star-forming regions, enriching the

knowledge of dust distributions in the disks. More recently, ALMA allowed

probing continuum and molecular lines in deeply embedded young stellar ob-

jects, revealing new structures in disks and the kinematics of the molecular

gas. Therefore, infrared and (sub-)millimeter are essential for our understand-

ing young stellar objects and their disk-envelope system.

In Section 2.2, we present a brief discussion of ALMA, the world’s most ad-

vanced millimeter-wavelength interferometer, which was used to observe two

FUors: HBC 494 and V883 Ori. Interferometers sample the visibility function1;

therefore, we also present a description of this complex quantities.

2.2 Millimeter-wavelength Interferometry

Basically, interferometry can be described as receiving light from two apertures

separated at a distance b and the recombination of these two light “sources”, see

Figure 2.1. The propagation of these two electromagnetic waves have different

relative path lengths and the difference in phase produces a constructive and

destructive diffraction pattern. Mathematically, these interferences take place

as:

1Visibilities are the Fourier transform of the sky brightness distribution.
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Figure 2.1: Diagram showing two identical antennas that receive signal from a
point source in the direction specified by ŝ. Each antenna generates a voltage
output, V1 and V2, where the correlator generates an output response of am-

plitude R =
(
V 2

2

)
cos(ωτg) by time averaging them. V1 and V2 have the same

magnitude with a geometric delay of τg =
~b.ŝ
c

in V1, where ~b is the distance
between antennas and ŝ is the unit vector in the direction of a distant point
source.
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I = I1 + I2 + 2
√
I1I2cos(δ). (2.1)

with maximum interference at phase difference |δ| = 0, 2π, 4π, ..., and minimum

interference at |δ| = π, 3π, 5π. The features of the aperture and wavelength of

the light will determine the interference fringes at a determined frequency.

The degree to which a source is resolved on a given baseline can be measured

with the fringe contrast named as visibility and written as:

V =
Imax − Imin
Imax + Imin

=
2
√
I1I2

I1 + I2

=
Fringe Amplitude

Average Intensity
. (2.2)

where Imax and Imin are the maximum and minimum intensity of the fringes.

The visibility is a dimensionless number between zero and one (I1 = I2) and

contains spatial and spectral information of the source. Then, the spatial

interferometry is about measuring the contrast of the fringe pattern,

i.e. its maxima and minima. As a result, the intensity distribution at

different frequencies is obtained by adding up interference patterns

like those described by equation 2.1. This fringe pattern determines

the spatial coherence of the intensity distribution and due to the

light source being incoherent, we can denote the visibility function

as µ(b), where b is the distance between two apertures, see Section

2.2. This complex function has a phase denoted as φ(b) and defines

the position of the central fringe. The definition of the visibility

function is:
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µ(b) =

∫
I(δ)e−ikδ·bdδ

I0

. (2.3)

This function is known as The Van Cittert-Zernike theorem. The visibility is

proportional to the amplitude of the image Fourier component, which corre-

sponds to the fringe spatial frequency and studying the variation of this quan-

tity with respect to the fringe contrast, it is possible to estimate the spatial

intensity distribution.

Angular Resolution and Sensitivity:

In interferometers, as well as conventional imaging telescopes, the resolution is

defined by the “Rayleigh Criterion”, where a pair of close objects are resolved

if the fringe contrast goes to zero at the longest baseline. This can be achieved

when the angular separation is:

R =
λ

2b
, (2.4)

where b is the largest baseline of an interferometer or the diameter of the

telescope mirror, and λ is the wavelength detected.

In our case, in order to detect faint objects, the sensitivity of the telescope

must reach a minimum signal above the background or noise. The sensitivity

is defined as:
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S =
πb2

4
, (2.5)

where b denotes same as above. The sensitivity is proportional to the col-

lecting area of a telescope or the collecting area of all of the antennas of an

interferometer. Thus, for an interferometer, we have:

S = N
πb2

4
, (2.6)

where N is the number of elements of the interferometer. Thus, it implies that

for a better sensitivity, it is required large baselines for point sources or more

compact sources such as outflows. Also, it can be defined for a pair of antennas

as follows:

S =
N(N− 1)

2
. (2.7)

Atacama Large Millimeter/submillimeter Array (ALMA):

The Atacama Large Millimeter/submillimeter Array (ALMA) is located at an

altitude of 5000 meters at Llano Chajnantor in northern Chile, see Figure 2.2.

ALMA is a 12-m antennas array (50 antennas) with baselines up to 16 km,

which can form different array configurations with different distributions of

baseline lengths. The longest baselines are designed to provide higher spatial

resolution, while a more compact array configuration provides better sensitivity

for extended sources such as large molecular clouds because the compact array
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Figure 2.2: ALMA Observatory.

can detect emission on larger angular scales. For these cases, there is also the

Atacama Compact Array (ACA) that consists of twelve 7-m antennas and four

12-m antennas.

Interferometry uses multiple antenna dishes to achieve a specific resolution

and sensitivity 2. In this thesis, we present ALMA3 band-6 (230 GHz/1.3

mm) continuum and 12CO, 13CO and C18O J=2-1 line observations of HBC

494 and V883 Ori, which were taken under program 2013.1.00710.S during

Cycle-2 phase. Our correlator setup was centered at 230.5380, 220.3987, and

219.5603 GHz, respectively. This correlator was configured to provide a spectral

resolution of 0.04 km s−1 for 12CO and of 0.08 km s−1 for 12CO and C18O. More

details of the observations and data reduction process can be found in Chapters

3, 4 and 6.

2The maximum resolution is determined by the longest baseline or distance between two
antennas.

3This thesis makes use of the following ALMA data: ADS/JAO.ALMA No.
2013.1.00710.S . ALMA is a partnership of ESO (representing its member states), NSF
(USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and
KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA
Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy
Observatory is a facility of the National Science Foundation operated under cooperative
agreement by Associated Universities, Inc.
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2.3 Methodology and Data Analysis In Molecular

Outflows: HBC 494 and V883 Ori (FUors)

Observing molecular lines:

Regions of cold gas and dust with temperatures around 10-80 K and densities

of ∼103-104 cm−3 emit in the (sub-)millimeter (30 - 300 GHz) and radio regime

of the electromagnetic spectrum. These bands are optimal to detect kinematic

details in disks, outflows, and envelopes that are forming dust grains. Obser-

vations of the detailed spatial distribution of the dust and gas in disks and

molecular outflows, either spatial visibility functions or intensity distribution,

provide information to constrain the initial steps for planetary formation, our

ultimate goal.

Therefore, images of molecular lines at very high spatial and spectral resolution

are necessary to describe motions due to infall, rotation, and outflow in FUors.

The molecular isotopologues of CO J=2-1 line presented here, 12CO, 13CO, and

C18, trace the material ranging from optically thick to optically thin, respec-

tively. Although H2 is the most abundant molecule in the interstellar medium,

this molecule does not have a permanent dipole moment and 12CO, 13CO, and

C18 molecules are used to trace indirectly H2, because CO has the advantage

of having a strong dipole moment. For that matter, the standard process for

deriving gas properties uses a conversion factor from CO intensity-to-column

density of H2. In chapter 3 and 4, we use a method based on Local Thermody-

namic Equilibrium (LTE), which assumes the H2/CO abundance and a specific

excitation temperature.
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Molecular outflows emit at a different optical depth depending on the medium

velocity. For instance, 12CO is optically thick in outflowing gas at low veloci-

ties near that of the surrounding envelope, and 13CO, as a medium-density gas

tracer, can be used to estimate the opacity of the 12CO line (Dunham et al.,

2014). After correcting for optical depth effects, we use 12CO and 13CO to

estimate outflow gas properties such as mass, momentum, energy, and mor-

phology. C18 emission traces denser regions than the 12CO, 13CO lines, and

it was used to infer the morphology and structure of the envelope. For HBC

494 and V883 Ori, we were limited to infer the entire structure of the outflows

and surrounding envelope allowing us to obtain a higher resolution with the

interferometer, see Chapters 3 and 4.

2.4 Near-IR interferometry

2.4.1 Image Formation

Understanding the formation of an infrared astronomical image is fundamental

in the analysis needed to carry out this thesis. In chapter 5, we only use

the Fraunhofer approximation or far-field approximation, which takes place at

large distances from the light source and is large enough that at the diffraction

aperture the wavefront may arrive as “plane wave”.

Assume small field of view with shift invariance of the optical system or iso-

planatism4. By considering a point object at θ, see Figure 2.3, we have the

4Iso-planatism in an optical system requires that if the translation of a object point source
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expression:

K (α− θ) ∝
∫
P (λ~u) e−2π(α−θ).~ud~u (2.8)

where K (α− θ) is the amplitude spread function and can be thought

to represent an infinite set of waves planes describing the far-field diffraction

(Saha, 2007). P (λ~u) is the complex pupil function and expresses the trans-

mission of light through the telescope pupil, where a zero value means light

blocked and one means light fully transmitted. It also contains the informa-

tion from the phase disturbances introduced by aberrations. For convenience,

~u = ~x/λ is dimensionless and represents the pupil plane scaled to one wave-

length equal to unity. In 2-D (u, v) = (x, y)/λ is the spatial frequency vector

in the pupil plane.

Figure 2.3: The relation between object and image. Figure taken from Léna
et al. (2012), (Chapter 6, Figure 6.5).

at x produces a PSF f(x) in the image plane, then the translation of the object point to
(x+ ∆x) produces the PSF f(x+m∆x), where m is the magnification of the system.
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In this thesis, we will approximate the electric field as a scalar, U(~θ). However,

the electric field is not accessible to be measured at the optical detector and

then the intensity must be averaged over many cycles of oscillation, leading

to the specific case of a stellar source with spatial incoherence between two

different points, U(~θj) with j = 1, 2, in its electric field distribution, we have

then:

< U(~θ1), U∗(~θ2) >= O(~θ)δ(θ2 − θ1) (2.9)

where the intensities from different elements Uj of the above equation are ad-

ditive due to nature of its incoherent source. The system is meant to be linear

in its intensity and thus,

I (α) =< |U (θ)|2 > (2.10)

where the bracket notation denotes a time average over many cycles on Uj.

Then, for a “small” source the total intensity is5:

I(~α) =

∫ ∞
−∞

O(~θ)|K (α− θ) |2d~θ. (2.11)

The equation 2.11 is the convolution of the spatial intensity distribution in the

5According to the Van Cittert-Zernike theorem, the degree of coherence is correlated to
the diffraction pattern resulting from a telescope aperture with the size and shape of the
stellar source.
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object with the amplitude spread function, written as:

I(~α) = O(~α) ∗ |K(~α)|2 (2.12)

In other words, the “incoherent” PSF is the power spectrum of the pupil func-

tion and by replacing τ (~α) = |K(~α)|2 in Equation 2.12 , the aperture’s PSF

is:

I(~α) = O(~α) ∗ τ (~α) (2.13)

In summary, the Fraunhofer pattern or image intensity pattern is a Fourier

Transform of the aperture and hence in an iso-planatic approximation, an

astronomical object appears as the convolution of the aperture’s point spread

function (PSF) 6, τ (α), with the object intensity distribution, O (α).

Atmospheric and Optical Aberrations

The intensity pattern is equal to the convolution of the aperture’s PSF with

the function that describes the astronomical object, see equation 2.13. How-

ever, the phase in the pupil plane is affected by corrugations of many radians

introduced to the phase front of the incoming starlight. Thus, the PSF includes

an additional component, which represents a “distortion” in the image. Those

aberrations can be written as:

6The point spread function is invariant under spatial shifts of the entire electric field.
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A(x) = eiφ(~x) (2.14)

Then, the distortion in the PSF can be expressed in terms of the pupil function

information, see equation 2.8, as follows:

P (λ~u) = Po (λ~u) eiφ(λ~u) (2.15)

Then, the modification to the pupil function by A(x) affects the form of the PSF

in short and long exposures. In a long exposure, the function of the aperture

and atmospheric seeing can be well-defined by its exposure average value. On

the other hand, in a short exposure, the phase in A(x) can be approximated

as static and can be seen in the resulting image as a granular structure of

speckles.

2.4.2 Adaptive Optics

There are three atmospheric parameters that provide essential information to

design an Adaptive Optics (AO) system; Fried parameter, isoplanatic angle,

and coherence time. Figure 2.4 shows an AO system that measures the vari-

ations of the wavefront of the incoming light with the wavefront sensor. The

measured wavefront is used to obtain an estimate for the best correction and

applies it to a deformable mirror. This process is performed hundreds of times

per second or more. The wavefront sensor uses the measurements of a single

guide star to correct the wavefront in its direction. Because the AO wavefront
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sensing requires a bright single guide star (∼ 15 mag) and close to the astro-

nomical target (∼ 10”, the isoplanatic angle), a Laser Guide Star (LGS) can

be used to achieve the sky coverage (Davies & Kasper, 2012).

Keck II Telescope:

Our facility to perform part of this thesis, Keck II (see Figure 2.5), uses a

sodium (Na) laser emitting light at 589 mm with a magnitude range of 9.5<

V <11.0. Keck II can operate in the natural guide star (NGS) and LGS mode.

Figure 2.6 shows the Keck II AO control loops with the corresponding modes,

LGS and NGS.

Figure 2.4: Adaptive Optics System, figure 3 from Davies & Kasper (2012).
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Figure 2.5: Keck Observatory.

One of the most challenging issues in resolving a faint companion at small an-

gular separations is the residual wavefront phase errors uncorrected by the AO

system. Variations by the atmosphere in the wavefront produces the speckles in

the image. Addition of these wavefronts will produce a wave whose amplitude

and intensity varies randomly. It can litter the astronomical image with bright

speckles that are located in the diffraction pattern. These wavefront errors are

produced by temperature and pressure gradients, guiding errors, a non-uniform

reflectivity of the primary mirror, etc. Purely static speckles can be subtracted

by using a reference star as a calibrator.

On the other hand, non-common path wavefront errors in the optical system

cause quasi-static speckles, which originate in the optical components located

between the wavefront sensor and uncorrected aberrations from the primary
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Figure 2.6: Keck LGS AO control loops.

mirror. The evolution of the quasi-static speckles is slow, leading to a difficulty

in the calibration process. Because of their slow evolution, they cannot be ef-

fectively averaged out over long exposures times (even more than one hour!).

The mean brightness of the quasi-static speckles sets the companion detection

limit. Several techniques have been designed to overcome the contrast lim-

its set by the residual of quasi-static speckles such as Spectral Deconvolution

(SD), Spectral Differential Imaging (SDI), Angular Differential Imaging (ADI),

Polarimetric Differential Imaging (PDI), Coherence Differential Imaging (CDI)

and non-redundant aperture masking.
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2.5 Methodology and Data Analysis Used In The

Frequency of Transitional Disks: Binary vs. Single

Stars

In this section, I present a more detailed discussion of the observational tech-

nique used in Rúız-Rodŕıguez et al. (2016a), together with the Bayesian analysis

to rule out or confirm a stellar companion as sources for those objects classified

as TDs by using their SEDs.

Non-Redundant Aperture Mask Interferometry

If two-pairs of coherent sub-apertures, or more, contribute with the same spatial

frequency are redundant, then the final baseline power will be a result of a

repetitive and random number of contributions from the “same” baseline within

the pupil. However, the noise inherent to this random walk process dominates

the Signal-to-Noise Ratio (SNR) and produces wavefront errors or speckles.

The final intensity distribution will be a diffraction pattern with Airy rings

increasingly degraded outwards with a halo of random speckles.

An alternative approach is the use of Non-Redundant Aperture Mask

Interferometry (NRM), which can be produced by blocking most of the

light with an opaque mask placed at the telescope pupil, see Figure 2.7. This

mask will transform the pupil plane into an interferometric array and will lose

most of the light. One significant requirement in the NRM is that in the design

of the mask, each “baseline” creates a unique vector. Thus, the aperture mask



42 METHODOLOGY AND OBSERVATIONAL TECHNIQUES

Figure 2.7: Example of the closure phase relation taken from Martinache
(2011). Left panel shows a non-redundant pupil of 9 hole-pattern mask with
a possible closure phase relation of i, j and k sub-apertures represented by the
arrows. The central panel portraits the power spectrum resulted from the 9-
hole mask, it illustrates the sampling of the complex visibility function. The
right panel shows the relation for the corresponding visibility phases around
the closure ”triangle” 1-2-3.

has a selected pattern of holes, which are not at the same distance from each

other, e.g., Figure 2.7.

By adding a triangle of these baselines, one can remove all the atmospheric

random phasors and cancel out the non-common path errors responsible for

the presence of the quasi-static speckles in the recorded image (Martinache,

2011). The sum of these phases (triangle) is a self-calibrating quantity called

Closure Phases and can be shown as:

φ123 ≡ (φ12+∆φ1−∆φ2)+(φ23+∆φ2−∆φ3)+(φ31+∆φ3−∆φ1) = φ12+φ23+φ31.

(2.16)

where ∆φ are the phase errors and φ are the phase relations. From equation
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2.16, for the closure phase φ123, only the true phases contribute to the observed

source acquired with a sparse aperture mask.

The open gap in the inner region of the disk might have different physical

origins, but here we seek to answer whether the dispersion of the primordial

material in the inner region of the disk is a result of the interaction with a binary

system or the presence of a single star. Therefore, the observed transitional

disks harbor a binary or single star, leading to the question: How many disks

classified as transitional disks are actually circumbinary disks?

In order to answer this question, we make use of the Bayesian approach by using

prior information of binary and single systems and observations of transitional

disks. The orbit of a binary system is fully determined by seven parameters,

providing information of the position in the sky for each stellar component.

For a single system, we assume the position of the star at the center of the field

of view. Then, prior information of position and contrast ratio of the stars can

be built into a Bayesian analysis.

2.5.1 Bayesian Analysis

There is not a direct method to measure the presence of a dimmer companion

in the observed image. However, Bayesian statistics can be used, providing

the advantage of using prior information for updating our state of belief or

knowledge. For our purposes, this prior information is provided by the orbital

parameter distribution and randomly sampled using a simple uniform Monte

Carlo algorithm, which generates a set of outputs for each set of parameters.
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Each set of ”predictions” can be quantitatively compared with actual observa-

tions. This is known as Bayes’s Theorem and can be described as the product

rule:

p(Hi|D, I) =
p(Hi|I)p(D|Hi, I)

p(D|I)
(2.17)

where:

Hi ≡ The truth of a hypothesis of interest,

I ≡ proposition representing prior information,

D ≡ proposition representing data,

p(D|Hi, I) ≡ probability of obtaining data D, if Hi and I are true, (likelihood

function),

p(Hi|I) ≡ prior probability of hypothesis,

p(Hi|D, I) ≡ posterior probability of Hi.

Bayes’s theorem shows us how to manipulate known probabilities in order to

find other probabilities. However, the probabilities are not independent in this

sense and we need to know the probabilities on the right side of equation 2.17

A normalization factor is needed to ensure that the sum of all posterior prob-

abilities is equal to 1.

∑
i

p(Hi|D, I) = 1 then, p(D|I) =
∑
i

p(Hi|I)p(D|Hi, I). (2.18)
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Measuring Odds Ratio, Bayes’s Factor and Occam’s Razor

Until now, we have been working on solving the question of whether there is a

binary star or a single star in the observed target, whose presence or absence

could be responsible for the gap opening of the ”transitional” disk or formation

of a circumbinary disk. To quantitatively identify the type of object present

in the data, the highest constrast as a function of position obtained from the

calibrated data can help with this answer. In the hypothesis space of interest,

the simulated binary and single systems 7 lead us to write Bayes’s theorem for

each hypothesis as follows:

p(Bi|D, I) =
p(Bi|I)p(D|Bi, I)

p(D|I)
and p(Si|D, I) =

p(Si|I)p(D|Si, I)

p(D|I)
.

(2.19)

Here, we want to know how the probability of a hypothesis should be modi-

fied upon obtaining new information, in this case, new D. In the absence of

new D, the probabilities for the hypothesis are called their prior probabilities

p(Hi|I). In the presence of new D, the probabilities are called their posterior

probabilities, p(Hi|D, I). The global likelihood, L(Mi) = p(D|Hi, I), shows the

probability of measuring the observed data, if the hypothesis Bi or Si is true.

Comparing both hypotheses or models, we compute the ratio of the posterior

probabilities, known as Odds Ratio and written as odds ratio in favor of the

7Theoretical models to measure contrast limits as a function of position. For a single star
the contrast ratio is equal to zero.
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binary system model over the single system model:

OB,S =
p(B|D, I)

p(S|D, I)
=

p(Bi|I)

p(Si|I)︸ ︷︷ ︸
PriorRatio

p(D|Bi, I)

p(D|Si, I)︸ ︷︷ ︸
Bayes′sFactor

(2.20)

where the first factor is the prior odds ratio and the second is known as Bayes’s

Factor (BB,S). Therefore, BB,S > 1 means that a binary model rises from the

data, BB,S < 1 the data comes from a single star and BB,S ≈ 1 means that the

odds are not modified and a binary and/or single star are equal probable.

Comparing the two models makes it easier to deal with the normalization con-

stant because it vanishes.

Also, the prior information for binary or single system models are 1:1 or with

equal probability of 50%, then they cancel out. So our proposition representing

prior information I = γ =0.5 and our prior ratio is:

P (B|I)

P (S|I)
=

γ

1− γ
= 1. (2.21)

Predicted Model Probabilities

In order to know if the observed data shows the presence of a secondary com-

ponent, we compare a binary system model with a single system model as

the odds ratio states. Therefore, we need to be able to compute the global
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likelihood 8. This will be subject to conditional statements about the model

parameters and can be calculated from the conditional likelihood and its joint

prior probability (see equation 5.4).

In the data reduction process, after computing closure phases and squared-

visibilities for each model and comparing with the observed data, the final

quantity is subject to the correct acquisition of a 3-D χ2 for each observed

epoch that depends on the position in the field of view and the contrast of

the secondary relative to the primary. Then, the global likelihood for a binary

system model, lies in the precise prediction of angular separation and position

angle values for a stellar companion. These position values depend on seven

orbital parameters, which are unknown. From equation 2.19a, we have that

the global likelihood for a binary system model is:

p(D|Bi, I) =∫
dq

∫
dT

∫
de

∫
a

∫
Ω

∫
ω

∫
i

∫
Cp(q, T, e, a, ω, ω2, i, C|Bi, I)

× p(D|Bi, q, T, e, a, ω, ω2, i, C)

(2.22)

where p(q, T, e, a,Ω, ω, i, C|Bi, I) is the joint prior probability for the model

parameters and p(D|Bi, q, T, e, a,Ω, ω, i, C) is the conditional likelihood.

8The global likelihood of a model is equal to the weighted average likelihood for all the
parameters in consideration.
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Joint Prior Probability

The prior beliefs for each one of the parameter values can be expressed as a

probability density function before obtaining new data. Because the global

likelihood in the Bayes’s factor depends on the conditional likelihood weighted

by the prior probabilities distributions of each one of the parameters, it is neces-

sary to compute the eight-dimensional integral shown in equation 5.4. To deal

with this tedious integral, we made use of Monte Carlo Integration to estimate

the value of the global likelihood by generating a number of random samples

according to a determined function in a spatial domain. This process is based

on computing the average value of this function for multiple random samples,

which means an estimate of the value of the multi-dimensional integral.

We start by defining the joint prior probability of each prior parameter, which

are mutually independent and distributed in a specific range. The probabilities

for a binary system for T, ω, ω2 and C are assumed to have a uniform distribu-

tion, so p(T,Ω, ω2, C|Bi, I) = 1 and for q, a, e and i are explained in section 2

with more detail, thus:

p(q, T, e, a,Ω, ω, i, C|Bi, I) ∝ qβ
(
e2

a

)
sin(i). (2.23)

The joint prior probability for a single system model without parameters to

find and a contrast equal to zero, will be:

p(C|Si, I) = 1. (2.24)
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Conditional Likelihood

The conditional likelihood of the binary system can be computed as follows:

p(D|Bi, q, T, e, a, ω, ω2, i, C) = A× exp

−
N∑
i=1

(
χ2
o(x, y) +

(µ(x, y)− C)2

σ2(x, y)

)
︸ ︷︷ ︸

χ2(x,y,C)


(2.25)

where χ2(x, y, C) is the best fit as a function of contrast and position (x, y) in

the field of view, µ(x, y) is the best contrast ratio, σ(x, y) the corresponding

error for that position and A is a normalization constant. The IDL program

binarygrid2.pro outputs functions µ(x, y) and σ(x, y) such that the value of χ2

for 3-dimensional (x,y,C) fits to the data is given by the formula:

χ2(x, y, C) =
(µ(x, y)− C)2 − µ2(x, y)

σ2(x, y)
. (2.26)

Using equation 2.25 and 2.26, we have:

p(D|Bi, P, T, e, a, ω, ω2, i, C) ∝ A×exp

[
−

N∑
i=1

(
(µ(x, y)− C)2 − µ2(x, y)

σ2(x, y)

)]
∝ LBi(C, x, y).

(2.27)

where LBi(C, x, y) is the likelihood for the model that represents the binary

star as a function of position and contrast ratio. In the case of a single system
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model, there is only one parameter, meaning integration over only the contrast

ratio to find the conditional likelihood.

p(D|Si, I) =

∫
Cp(C|Si)p(D|Si, C) (2.28)

where,

p(D|Si, C) = A× exp

[
N∑
i=1

χ2(x, y, C)

2

]
(2.29)

Since the hypothesis has an unknown parameter C equal to zero at the center

of the search region, then its global likelihood will be:

p(D|C, Si) = LSi(C, x, y) ∝ 1. (2.30)

Then the global likelihood will be:

L(Si) ∝ 1. (2.31)

Occam Razor Factor

Now, we can compute the odds ratio, see equation 5.7. Just to be clear, the

Bayes’s factor does not rely on the ratio of the maximum likelihood, this factor

depends on the global likelihood. However, the global likelihood of a model

with αi number of parameters can be expressed as its maximum likelihood by

computing the product of the global likelihood times a factor called the Occam

Razor factor Ωαi . For our binary and single systems hypothesis, we have:
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p(D|Bi, q, T, e, a,Ω, ω, i, C) = Lmax.(Bi)Ωq,ΩT ,Ωe,Ωa,ΩΩ,Ωω,Ωi,ΩC (2.32)

and

p(D|Si, C) = Lmax.(Si)ΩC . (2.33)

The above equations can be interpreted as a penalization for miscalculating the

appropriate prior range for each parameter. Penalization that, in our case, will

be present in the calculation of position parameters for the stellar components,

angular separation, and position angle, in other words, Occam factor arises

automatically in the marginalization process. However, we are not interested in

this factor, instead, we focus on the Bayes factor or marginal (global) likelihood

ratios of the competing models.

2.5.2 Angular separation and Position angle

Position angle (PA) and angular separation are not well characterized in young

close low-mass binary stars, therefore, in order to obtain a prior information

of these measurable orbital parameters, I simulated N number values of un-

known orbital parameters such us, time of periastron passage (T, years), period

(P,year), semi-major axis (a,arc second), eccentricity (e), nodes (Ω), longitude

of periastron (ω), inclination (i,degrees), epoch of observation (t2,year) and

stellar masses (M1,M2) by sampling a corresponding distribution. To generate

these orbital parameters, first, we assume an appropriate probability distri-
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bution f(x) for each one in the range between a and b. However, the key

for generating these orbital parameters is based on the use of random values

from a uniform distribution (U) on the interval between 0 and 1. Then, for

a given parameter X in the range between a and b can be represented by a

random value of U , such that the cumulative density function F (x) of f(x) in

the interval [a,b] is equal to U .

F (x) =

∫ x

a

f(x)dx = U, (2.34)

where X is any continuos random variable between a and b, and F (a) = 0 and

F (b) = 1. Then, any random variable X with a propability density function

f(x) can be produced by the inverse function of f(x), F (x):

X = F−1(U) (2.35)

This procedure is known as Monte Carlo.

2.5.3 Orbital Parameters

• Semi-major axis:: In the case for the semi-major axis, I used the ap-

proach followed by Metchev and Hillenbrand (2009) as:

f(a) =

∫ a2

a1

1

a
da. (2.36)
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where a1 and a2 are semi-major axis values corresponding to inner and

outer radii in the gap of the disk, respectively, and by following equation

2.34, we have:

F (a) =

∫ Na

a1

1

a ∗K
da = U, (2.37)

with F (a1) = 0 and F (a2) = 1, and K = (ln(a2)− ln(a1)) . U represents

a vector with N random values between 0 and 1. Na random values on

the interval of a1 and a2 are generated by the inverse of F (a):

Na = a1 exp(U∗(ln a2−ln a1)) (2.38)

• Eccentricity: The eccentricity of the orbit was sampled by using the

distribution (Brandeker et al. 2006):

f(e) =

∫ emax

emin

2ede (2.39)

where emin and emax are the minimum and maximum of eccentricity values

for the probability density function. Then, the CDF:

F (e) =

∫ Ne

emin

2e

K
de = U, (2.40)

where K = e2
max − e2

min. To generate a random value of Ne for a given

uniform variate U in the interval 0 and 1, we have:
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Ne =
√
U(e2

max − e2
min) + e2

min (2.41)

• Inclination: The inclination was sampled considering that the orbital

plane of the generated binary stars might have any orientation in space.

Then, the normal vector perpendicular to the orbital plane can point

out in any portion of the solid-angle (η), meaning that it has an equal

probability everywhere to be sampled as p(η)dη = Constant. The solid-

angle can be expressed by spherical coordinates as follows:

dη = sin(θ)dθdϕ (2.42)

where for our observational purposes the co-latitude θ is equal to the

inclination i. Now, if the probability of distribution of the normal vector

with coordinates of i and θ is equal to p(η), it can be expressed as:

p(i, ϕ) = sin(i) (2.43)

f(i) =

∫ π

0

sin(i)di (2.44)

Then, for the inclination we have a probability density function evaluated

between 0 and π and equivalent to p(i) ∝ sin(i). So, if we take the Cu-

mulative Density Function (CDF) to find the probability of a continuous

random variable, we get:

F (i) =
1

K

∫ Ni

0

sin(i)di (2.45)
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where the constant K = cos(0)− cos(π) = 2. For a given CDF F (0) = 0

and F (π) = 1. To obtain N random values with a PDF f(i), we obtain

the inverse of F (i), then:

Ni = arccos(1−KU) (2.46)

with U a vector of random values distributed uniformly between 0 and 1.

• Mass-Ratio: For the stellar masses in the range of M2,M2 + dM are

generated N number values of companion masses by randomly sampling a

mass-ratio q and linearly interpolating into isochrones of Baraffe (1998),

see next section. The number of random mass ratios from Monte-Carlo

approach has the following distribution:

f(q) =

∫ 1

qo

qβdq (2.47)

where qo cannot be equal to zero because f(q) will tend to infinity. The

CDF of f(q) has the form:

F (q) =

∫ Nq

qo

=
qβ

K
dq = U (2.48)

from the limits of the CDF, we have that F (qo) = 0 and F (1) = 1 and

where the constant K equal to:

K =

(
1− qβ+1

o

)
β + 1

(2.49)

The Nq random values generated from the uniform distribution U are
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found by sampling:

Nq =
(
UK(β + 1) + qβ+1

o

)( 1
β+1)

. (2.50)

where β is a power index of 0, see Metchev and Hillenbrand (2009) for

more information.

• Orbital Period: For the orbital period, I used the values of total mass,

semi-major axis and by using Kepler’s law, the square of the period of

any orbiting object is proportional to the cube of the semimajor axis of

its orbit:

P =

√
4π2

G ∗MT

a3 (2.51)

where MT = M1 +M2 obtained from interpolating Baraffe’s models and

a is the semimajor axis in AU obtained from Monte Carlo approach.

• Longitude of Periastron and Ascending Node: The element ω can

take any values in the range 0 ≤ ω≤2π and its PDF is a constant s of

the form:

f(ω) =

∫ 2π

0

sdω (2.52)

Then, its CDF is equal to:

F (ω) =

∫ Nω

0

s

K
dω, (2.53)

with F (qo) = 0 and F (2π) = 1. Nω random values are generated by
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finding the inverse of F (ω) and s=1, then,

Nω = UK, (2.54)

where K = 2π and U a vector of random numbers from 0 to 1. Similarly,

the PDF of the position angle of the ascending node, Ω, is a constant

within the domain 0 ≤ ω≤π. Then, K = π with a sampling of the form:

NΩ = UK, (2.55)

• Time of periastron passage: random values were obtained by sam-

pling a uniform distribution with a domain that best represents the com-

panion orbit.

2.5.4 Computing Odd Ratio

After computing the Bayes factor BB,S = P (D|B)
P (D|S)

for every target and assigned

with a prior distribution γ that represents the best prior state of knowledge,

we proceed to modify the γ values as follow:

P (γ|D) = P (γ)[P (D|B)P (B|γ) + P (D|S)P (S|γ)]

= P (γ)[P (D|B)γ + P (D|S)(1− γ)]

= P (γ)[γBB,S + (1− γ)]}
(2.56)
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The odds ratio is computed by considering all TDs in our sample and addi-

tionally, TDs from previous studies, therefore:

P (γ|Dn) ∝ P (γ)
n∏
n=1

[γ(BB,S)n + (1− γ)] (2.57)

Choice of Prior Information

The Bayesian approach requires prior probabilities to all unknown hypothesis

or models and their resultant parameters. In our case, whether there are two in-

teracting stars or a single star in the observed data. This information rises from

data of single stars surrounded by a transitional disk and then, modified by

predictions of the frequency of binary stars among transitional disks. Because

subjective information is unavailable from inside the inner region, we assumed

that the observed data have arisen from one of two models. Therefore, we look

for assigning prior probabilities to each model. A non-informative probabil-

ity distribution for the frequency of binary or single systems is a parameter

representing two unique scenarios, binary or not binary. Thus, P (B|I) = γ

represents the event of binarity and P (S|I) = (1 − γ) not binarity, where the

parameter γ ∈ [0, 1], and in the case of (B,S) ∈ [(1, 0), (0, 1)] the PDF given γ

is P (B|γ) ∝ γB(1 − γ)1−B. We made use of the well-known Bayesian method

that represents uniform probability: Jeffreys prior. Also, an unimodal sam-

pling distribution in the interval between 0 and 1 representing the γ values, is

the family of beta distributions.
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f(γ) = f(γ|α, β) =


1

ß(α|β)
γα−1(1− γ)β−1 ; 0 < γ < 1, with α, β > 0

0; elsewhere

(2.58)

where the beta function, ß(α|β), ensures a probability equal to unity, and to

provide uniform probability to both events α, β = 1/2. Therefore the Jeffreys

prior for the sampling distribution γ is:

P (γ) ∝ 1√
γ(1− γ)

∝ 1√
B ∗ S

(2.59)
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3

The ALMA Early Science View of

FUor/EXor objects. II. The Very

Wide Outflow Driven by HBC 494.

This chapter is published in Monthly Notices of the Royal Astronomical Society

as D. Ruiz-Rodriguez, L. A. Cieza, J. P. Williams, J. J. Tobin, A. Hales, Z.

Zhu, K. Muzic, D. Principe, H. Canovas, A. Zurlo, S. Casassus, S. Perez, and

J. L. Prieto, 2017, MNRAS 466, 3519-3532

We present Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle-2

observations of the HBC 494 molecular outflow and envelope. HBC 494 is an

FU Ori-like object embedded in the Orion A cloud and is associated with the

reflection nebulae Re50 and Re50N. We use 12CO, 13CO and C18O spectral line

data to independently describe the outflow and envelope structures associated

with HBC 494. The moment-1 map of the 12CO emission shows the widest

outflow cavities in a Class I object known to date (opening angle ∼ 150
◦
). The

morphology of the wide outflow is likely to be due to the interaction between
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winds originating in the inner disc and the surrounding envelope. The low-

velocity blue- and red-shifted 13CO and C18O emission trace the rotation and

infall motion of the circumstellar envelope. Using molecular line data and

adopting standard methods for correcting optical depth effects, we estimate

its kinematic properties, including an outflow mass on the order of 10−1 M�.

Considering the large estimated outflow mass for HBC 494, our results support

recent theoretical work suggesting that wind-driven processes might dominate

the evolution of protoplanetary discs via energetic outflows.

3.1 Introduction

FU Orionis objects (FUors) belong to an embedded pre-main-sequence phase

of young stellar evolution, usually associated with reflection nebulae (Herbig,

1966, 1977). Observational features of these objects include similarities to

the F-G supergiant optical spectra and overtone CO absorption, in addition

to water vapour bands in the near-infrared wavelengths characteristic of K-M

supergiants (Mould et al., 1978). At far-infrared/submillimeter wavelengths,

the Spectral Energy Distributions (SED) of FUors are largely dominated by

the envelope emission. Where such envelopes are massive enough to replenish

the circumstellar disc in the stellar formation process (Sandell & Weintraub,

2001). Usually, these types of young stellar objects (YSO) are explained with

a disc in Keplerian rotation that produces the observed double-peaked line

profiles as seen in FUors (Hartmann & Kenyon, 1985); however, those objects

that do not present line broadening consistent with pure Keplerian rotation

might require an additional contribution from another component such as a
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high-velocity inner disc wind (Eisner & Hillenbrand, 2011).

The main observational feature of FUors is their eruptive variability in optical

light that can reach 5 mag or even more. This variability is due to outbursts

that rise in short periods of time of around ∼ 1−10 yrs and decay timescales

that take place from decades to centuries (Herbig, 1966, 1977). It is believed

that material falling from a massive circumstellar disc to the central protostar

at high disc accretion rates (∼ 10−4 M�yr−1) is responsible for these events

(Hartmann & Kenyon, 1996), although their outburst frequency is unknown.

During the outburst phase, large amounts of disc material (∼ 0.01 M�) are

accreted onto the parent star, thus increasing the luminosity during these short

events. If the episodic accretion scenario (Audard et al., 2014) is correct, most

systems undergo multiple FU Ori events during their evolution and the study

of these outbursts represents a key element of the star and planet formation

process.

Additionally, the outbursts might be connected to the evolution and extension

of the observed outflows in FUors. It has been suggested that the formation,

evolution and widening of molecular outflows are the result of the wide-angle

wind that arises from the interaction of the highly accreting disc inner edges

with a strongly magnetised central star (Snell, Loren & Plambeck, 1980; Shu

et al., 2000); or highly collimated jets that propagate into the surrounding

envelope material (Raga & Cabrit, 1993; Ostriker et al., 2001). However, the

triggering mechanism for an FUor outburst has yet to be established. The

proposed mechanisms for the FU Ori outburst include: 1) Tidal interaction

of a massive disc and an eccentric binary system or a giant planet (Bonnell &

Bastien, 1992; Lodato & Clarke, 2004), 2) Magnetorotational instability (MRI)
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activated by gravitational instabilities (GI) (Armitage, Livio & Pringle, 2001;

Zhu et al., 2009; Martin & Lubow, 2011) and 3) Disc Fragmentation devel-

oping spiral structures, more specifically, clump accretion events (Vorobyov &

Basu, 2005). Testing the proposed theoretical scenarios requires measuring disc

masses of FUor objects and spatially resolving structures such as asymmetries

in the disc and close binaries. For instance, clumps would indicate large-scale

disc fragmentation, while knowledge of disc mass can constrain if GI operates in

these discs. Interferometric observations in the millimetre and sub-millimetre

of FU Orionis objects can spatially and spectrally resolve the envelope, bipolar

outflows, and disc emissions and thus, provide a more accurate description of

these embedded systems than possible with single-dish observations.

HBC 494 is an FUor object, Class I protostar, located in the Orion molecular

cloud, which has an estimated distance of 414 ±7 pc (Menten et al., 2007).

Initially, this luminous object was identified from its associated reflection neb-

ulae, Re50 and Reipurth 50 N (Re50N). Reipurth (1985) detected a very bright

nebulous object by performing an optical survey in the Orion molecular cloud.

A more detailed study by Reipurth & Bally (1986) reported the sudden appear-

ance of an intense and variable conical nebula: Reipurth 50 N (Re50N). This

brightening episode is believed to be a consequence of an outburst event in HBC

494. This infrared source has a luminosity of ∼ 250 L� and is located about

1.5 arc min north of Re50 (Reipurth & Bally, 1986). Supporting this hypoth-

esis, Chiang et al. (2015) reported a new brightening event in Re50N at some

point between 2006 and 2014, while Re50 has faded considerably. From recent

ALMA observations, Cieza et al. (In Prep.) reported an asymmetry in the 230

GHz continuum at the South-West of HBC 494 and they speculated that this
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Figure 3.1: 230 GHz Continuum emission of HBC 494 together with contour
levels with steps of 10, 30, 80, 150 and 250 × rms (0.25 mJy beam−1). The
0.35′′×0.27′′with P.A. = -90

◦
synthesised beam is shown on the lower left corner

of the image.
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feature might be a result of a binary object undergoing a formation process and

triggering an outburst in HBC 494. Binary objects are becoming strong candi-

dates to trigger these outburst events as they are being resolved more efficiently

in the ALMA era, such as the case of the FU Ori system (Hales et al., 2015).

Only for guidance to the reader, an illustration of the 230 GHz continuum of

HBC 494 is presented in Figure 3.1 to highlight the non-symmetric emission.

From the major and minor axes of the continuum emission, Cieza et al. (In

Prep.) found a very high inclination (i) of ∼ 70.2
◦± 2.5 (i.e. close edge-on).

However, at this resolution, the continuum observation reveals an asymmetry

towards the south-east side of the disk, leading to an uncertain estimation of

this parameter, a more detailed description and analysis can be found in Cieza

et al. (In Prep.). With a total flux density of 113 ± 2.5 mJy and adopting a

distance to the Orion nebula of 414 ± 7 pc, they estimated a dust disc mass

of 2.0 MJ at 20 K, and assuming a gas-to-dust mass ratio of 100, a total disc

mass of 0.2 M�.

Here, we present ALMA band-6 (230 GHz/1.3 mm) continuum and 12CO, 13CO

and C18O J=2-1 line observations of HBC 494. We use the more optically

thin tracers 13CO and C18O to study the envelope material and the optically

thick 12CO emission to investigate the strong bipolar outflow. The ALMA

observations and the data reduction process are described in section 4.2. The

results are presented in Section 6.4, and their implications discussed in section

6.5. The summary and conclusion are presented in Section 6.6.
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Figure 3.2: Cartoon showing the different dynamical and flux components
traced by 12CO, 13CO and C18O of HBC 494. The envelope and the cavi-
ties are coloured with red to illustrated the red-shifted emission, while blue
illustrates the blue shifted emission. Envelope material close to and accreting
onto the disc is coloured with green and its infalling motion is indicated by the
small green arrows. The green line with a position angle of ∼ 145

◦
depicts the

rotation axis of the entire system.
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3.2 Observations

ALMA observations for HBC 494, located at 05h 40s 27.45s -07o 27
′

29.65′′,

were taken under program 2013.1.00710.S during Cycle-2 phase and over three

different nights. This program involves the observation of eight FUor/EXor

objects with results to be published in Cieza et al. (2016), Zurlo et al. (2016),

Rúız-Rodŕıguez et al. (2016b), Principe et al. (In Prep.) and Cieza et al. (In

Prep.). The first two nights are December 12th, 2014 and April 15th, 2015 using

37 and 39 antennas on the C34-2/1 and C34/2 configurations, respectively.

These configurations are quite similar with the shortest baseline of ∼ 14 m

and longest of ∼ 350 m. The precipitable water vapor ranged from 0.7 to

1.7 mm with an integration time of ∼ 2 min per each epoch. Additionally,

a third night, on August 30th, 2015 HBC 494 was observed with 35 antennas

in the C34-7/6 configuration with baselines ranging from 42 m to 1.5 km, an

integration time of ∼3 min, and a precipitation water vapor of 1.2 mm. The

quasars J0541-0541, J0532-0307 and/or J0529-0519 (nearby in the sky) were

observed as phase calibrators. J0423-013 and Ganymede were used as Flux

calibrators, while the quasars J0607-0834 and J0538-4405 where observed for

bandpass calibration.

Our correlator setup included the J=2-1 transitions of 12CO, 13CO and C18O

centered at 230.5380, 220.3987, and 219.5603 GHz, respectively. The correlator

was configured to provide a spectral resolution of 0.04 km s−1 for 12CO and of

0.08 km s−1 for 13CO and C18O. The total bandwidth available for continuum

observations was 3.9 GHz. The observations from all three nights were concate-

nated and processed together to increase the signal to noise and uv-coverage.
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The visibility data were edited, calibrated and imaged in CASA v4.4 (McMullin

et al., 2007). The uncertainty for calibrated flux is estimated to be 10 %. We

used the CLEAN algorithm to image the data and using a robust parameter

equal to zero, a briggs weighting was performed to adjust balance between res-

olution and sensitivity. From the CLEAN process, we obtained the following

synthesized beams: 0.35′′× 0.27′′with P.A. = -90
◦

for 12CO, 0.37′′× 0.28′′ with

P.A. = 86.5
◦

for 13CO and 0.37′′ × 0.29′′ with P.A. = 87
◦

for C18O. The rms is

12.5 mJy beam−1 for 12CO, 16.0 mJy beam−1 for 13CO and 13.9 mJy beam−1

for C18O. For the integrated continuum, we obtained a synthesized beam and

rms of 0.25′′×0.17′′with P.A. = -85.5
◦

and 0.25 mJy beam−1, respectively. The

maximum resolvable angle is 11 arc sec.

3.3 Results

Our data reveal the impressive extension of the outflow and envelope surround-

ing HBC 494 allowing us to piece together the main physical components of

this object. The close edge-on configuration of the system means that the red-

and blue-shifted outflow lobes are spatially separated. The complex gas kine-

matics and density gradients are traced by the blue-shifted and red-redshifted

components of the CO emission. 12CO traces the bipolar and extension cavities

of the outflow with a rotation axis oriented at ∼ 145
◦ 1 (Section 4.3.1). 13CO

probes the infalling and rotating envelope surrounding the protostar and disc.

A fraction of the mass of this part of the envelope is eventually transported

1All position angles are specified north through east.
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Figure 3.3: Channel maps of the 12CO. LSR velocities are shown at the top-
right corner of each panel with a systemic velocity of ∼4.6 km s−1. White
contours represent the continuum emission around HBC 494 as shown in Figure
4.2a.
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onto the disc to be accreted onto the protostar, while at more distant regions

from the central object, another fraction is being pushed away to external re-

gions by the opposing outflow (Section 4.3.2). C18O traces similar regions as

13CO at the northern side of the central object, while at larger distances, the

envelope is driven out by the wider-angle portions of the wind (Section 3.3.3).

Also, the C18O is weak at the southern region of the system, suggesting lower

densities. Using the C18O line, we estimated a systemic velocity of ∼4.6 km s−1,

see section 3.3.5. We further estimate the kinematics and masses of the outflow

and envelope from the emission and its velocity structure (Section 4.3.4). To

picture HBC 494 in a more comprehensive way, we provide a cartoon showing

the main components drawn from the 12CO, 13CO and C18O emissions, see

Figure 3.2.

3.3.1 12CO Moment Maps

The 12CO emission traces the highly energetic outflow blowing through the

gas and creating a bipolar cavity in the molecular cloud. In our data cubes,

significant 12CO emission is detected at the velocities ranging from -5.25 to 18

km s−1, see Figure 3.3. We integrated separately, the channels corresponding

to the “Northern” and the “Southern” outflows to show structural shapes in

a more clear manner. The moments 0 and 1 of the high-velocity blue- and

red-shifted outflow cavities are shown in Figures 3.4a, 3.4b and 3.4c and their

corresponding zoomed version in the small windows next to each figure. Figure

3.4a and 3.4b have a velocity range, with respect to the Local Standard of

Rest (LSR), between -5.25 and 4.75 km s−1 for the blue-shifted region and

between 6.75 and 18 km s−1 for the red-shifted emission. Although the complete
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(a) Moment 0: Southern Outflow (b) Moment 0: Northern Outflow

(c) Moment 1: Entire System.

Figure 3.4: Figure a: Integrated intensity maps of the 12CO blue- shifted
emission from -5.25 to 4.75 km s−1 channels. Figure b: Integrated intensity
maps of the 12CO red- shifted emission on the velocity range between 7.0 and
18 km s−1 . Figure c: 12CO velocity field map that was obtained from the
integration over the velocity range from -5.5 to 18 km s−1. Black contours
show the continuum emission around HBC 494 at 10, 30, 80, 150 and 250 ×
rms (0.25 mJy beam−1). The 0.35′′ × 0.27′′with P.A. = -90

◦
synthesised beam

is shown on the lower left corner of each panel. The upper right insets are a
closeup (± 2.7”) of the central object. The black and red arrows shown in the
insets of Figures 3.4a and 3.4c point out the “stream” described in section 4.3.1.
While the purple arrow shows the material interacting with the surrounding
envelope, also detected at 13CO and C18O emissions, see Figures 4.2b and 4.2c.
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extension of these bipolar cavities is not observed because it falls outside of our

field of view, the very wide outflow cavities reach an apparent opening angle

of ∼ 150
◦
with an extension of at least 8000 au at a distance of 415 pc. Such a

sculpted and defined outflow cavity is among the widest known to date and is

remarkable for a Class I object, which typically have narrower cavities at these

early stages. The overall range of these Class I outflows varies between 30 and

125
◦

(Arce & Sargent, 2006; Klaassen et al., 2016; Zurlo et al., 2016; Principe

et al., In Prep.). In addition, the 12CO emission comes predominantly from

the material directly influenced by the outflow, indicating the deep sweeping

of surrounding material inside out acquiring a higher temperature. This might

be a product of the interaction between the surrounding material and the high

luminosity central protostar (∼ 250 L�; Reipurth & Bally, 1986). The lack of

uniform emission in the extension of the cavities as seen in Figures 3.4a and

3.4b, is likely related to the ALMA maximum recoverable scale of 11′′ that

would correspond to ∼ 4500 au and prevents resolving larger scale structures.

Thus, the “missing” emission does not imply a lack of 12CO gas emission in

between cavity arms (e.g. Bradshaw, Offner & Arce, 2015).

The red-shifted velocity field of 12CO, considering emission merely from the

outflow, can be described in terms of the degree of interaction with the sur-

rounding envelope. The Northern outflow presents a velocity pattern with a

gradient field perpendicular to the outflow axis that ranges between 7.0 and 18

km s−1. This suggests that its opening angle increases as the abundant envelope

material is being removed inside out from the outflow axis. Additionally, at

the base of the bipolar cavities, a large amount of material with velocities from

5.0 to 6.75 km s−1 seems to follow an infalling motion surrounding the central
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Figure 3.5: Comparison of the 12CO and 13CO velocity range-integrated inten-
sity maps (moment 0). Blue and red contours show the integrated intensity
of the 12CO blue- and red shifted lobes, respectively, at 80, 150, 300, 450 and
600 × 3σ levels. Light and dark red regions correspond to the red-shifted low
(extended emission) and high (compact emission) velocities, respectively. Light
and dark blue regions correspond to the blue-shifted low (extended emission)
and high (compact emission) velocities, respectively. The extended and com-
pact emission covers in blue-shifted emission velocities between 1.0 and 1.75
km/s and 2.5 and 3.5 and in red-shifted emission between 6.5 and 8.0 km/s
and 4.5 and 5.5, which are explained in Section 4.3.2. Green contours show
the continuum emission around HBC 494 at 10, 30, 80, 150 and 250 × rms
(0.25 mJy beam−1). The synthesized beam is shown on the lower left corner.
Cyan and yellow arrows show the projected axis alignment along the Southern
outflow - disc - Northern outflow system.
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object, see Figure 3.3 and Figure 3.4c. This red-shifted outflow emission at

velocities close to the ambient molecular cloud is dense gas being impacted by

the outflow that belongs to the infalling envelope, which might be composed of

ionized and hot material as a result of the direct interaction with the launched

outflows. This slab of material closer to the rotation plane partially overlaps

with the 13CO emission tracing medium densities corresponding to the envelope

material, a more detailed explanation can be found in Section 4.3.2.

The 12CO blue-shifted emission probes at the Southern side of HBC 494 a

complex geometry of the outflowing molecular material. The emission arises

from the accelerated molecular gas depending on the medium properties (e.g.

geometry, density). Indeed, it is detected at a velocity range between -5.25 and

1.5 km s−1 that the Southern cavity shows a brighter region, more concentrated

at the southwest of the object, possibly due to the interaction with a significant

amount of gas in the surrounding envelope, see purple arrow in Figure 4.2a.

While, the 12CO blue-shifted emission between 2.5 and 3.5 km s−1 might be

outflow-envelope interactions with expanding motions.

In contrast to the wide angle outflow, it can be noted in the moments 0 and

1 maps and shown in the insets of Figures 3.4a and 3.4c, an “intensity max-

imum” with a diameter of around ∼ 200 au that lies at the southwest from

the continuum emission. This intensity maximum has a blue-shifted compo-

nent that reaches 2.9 km s−1 and coincides with the location of the asymmetry

found in the continuum by Cieza et al. (In Prep.), see Figure 3.1. However, it

is not straightforward to attribute a physical origin to this feature and future

observations with higher resolution are required.
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The integrated flux on both sides of the bipolar outflow differ by a factor of

∼2.5. At the Northern cavity the integrated flux is 39.65 ± 0.09 Jy km s−1 and

at the Southern cavity a value of 93.32 ± 0.12 Jy km s−1, see Figures 3.4a and

Figure 3.4b. This might be evidence of the non-uniformity of the molecular

cloud, where the evolution of this Class I object is taking place. Considering

that CO transitions are thermalised at or close to their critical densities (∼ 1.1

x 104 cm −3; Carilli & Walter, 2013), the absence of a stronger emission at the

Northern region indicates a slightly denser cloud material; while the stronger

emission at the Southern region might point out a more widespread region that

interacts with the ejected material from the central object. Additionally, the

alignment among the South outflow − disc − North outflow at the base of

both lobes, is evident in their 12CO contours delineating the limb-brightened

walls of the parabolic outflow cavities and the continuum, see Figure 3.5. This

alignment allows us to draw a line through it and then, compute the outflow

position angle (PA) of ∼ 145
◦

north through east.

3.3.2 13CO Moment Maps

We find that the 13CO emission traces the rotating, infalling and expanding

envelope surrounding the central system. The blue-shifted emission is detected

at velocities from 1.0 to 4.25 km s−1 and the red-shifted material has a range of

velocities from 4.5 to 9.0 km s−1 (Figure 4.4b). Figure 3.7a and 3.7b shows the

moment-0 and moment-1 maps of the 13CO line, while the small windows are a

zoomed image to the central object. Since the 13CO shows a complex structure

with compact and extended emission that comes from different regions of the

envelope, we integrated channel maps of blue- and red-shifted low (extended
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Figure 3.6: Channel maps of the 13CO. LSR velocities are shown at the top-
right corner of each panel with a systemic velocity of ∼4.6 km s −1. White and
red contours show the integrated intensity of the 12CO blue- and red shifted
lobes, respectively, at 150 and 300 × 3σ levels. Magenta arrows in the channels
with velocities from 1.25 to 1.75 km s −1 point out the emission of the streamline
on this side of the system. Brown arrows in the channels with velocities from
2.5 to 3.75 km s −1 point out the interaction between the Southern outflow
and the surrounding envelope and showing how as a result there is expelling
material on this side of the envelope directed toward us. Black contours show
the continuum emission around HBC 494 at 10, 30, 80, 150 and 250 × rms.
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(a) Moment 0

(b) Moment 1

Figure 3.7: Figure a: 13CO intensity maps (moment-0) integrated over the
velocity range of 1.0 − 9.0 km s−1. Figure b: Intensity - weighted mean velocity
(moment-1) map of 13CO in the velocity range 1.0 − 9.0 km s−1 over values
higher than a 3σ (σ ∼ 15 mJy beam−1 km s−1). The 0.37′′×0.28′′ with P.A. =
86.5

◦
synthesised beam is shown on the lower left corner of each panel. Black

contours show the continuum emission around HBC 494 at 10, 30, 80, 150 and
250 × rms (0.25 mJy beam−1). The upper right insets are a closeup (± 2.7”) of
the central object. The black and green arrows shown in the insets of Figures
3.7a and 3.7b point out the streamline described in section 4.3.2. While the
purple arrow shows the material interacting with the outflow detected at 12CO
emission, see Figures 4.2a. The region enclosed with dashed lines correspond
to the region in which we integrated the line profile shown in Figure 3.11.
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emission) and high (compact emission) velocities in order to see a more detailed

velocity structure and a direction of the velocity gradient (e.g. Aso et al., 2015).

Figure 3.5 shows the moment 0 with integration of the blue-shifted emission at

velocities between 1.0 and 1.75 km s−1 and 2.5 and 3.5 km s−1 and red-shifted

emission between 6.5 and 8.0 km s−1 and 4.5 and 5.5 km s−1. The light red

and blue and dark blue and red areas correspond to the extended and compact

regions, respectively. Using the compact emission, we draw a line along the

gradient velocity and then, estimate a PA of ∼ 50
◦

north through east, which

is almost perpendicular to the outflow PA of ∼ 145
◦
. Similarly, the low velocity

components (extended structure) show a velocity gradient with a PA of ∼ 50
◦
.

The compact blue-shifted emission protrudes with a high flux density that we

named as “stream” (S) located at the southeast of the disc and indicated by

the black arrow along the feature in Figure 3.7a. In Figure 3.7b a green arrow

is shown representing the location of the stream detected in the moment 0.

The direction of this compact structure is difficult to indicate, but it might

have originated in wide-angle winds from the central object blowing into the

envelope (Snell, Loren & Plambeck, 1980; Shu et al., 2000; Gardiner, Frank &

Hartmann, 2003) and expelling material to larger radii, following the Southern

outflow. Figure 4.4b presents the channel maps of the 13CO line, where this

stream or compact blue-shifted emission is indicated with a magenta arrow and

12CO contours are over plotted to spatially compare these emissions. On the

other hand, the extended blue-shifted emission is more likely to be part of the

surrounding envelope, being pushed toward us by the outflow. In addition, on

the bottom-left side of Figure 3.7b an elongated structure appears, indicated

with a purple arrow, and with blue-shifted velocities of 2.5 and 3.75 km s−1,
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coincides with the 12CO emission detected in the Southern region of a velocity

range of 2.5 − 3.25 km s−1. Thus, the “extended” emission is likely tracing

the internal structure of the envelope and showing how the southern outflow is

expelling material on this side of the envelope directed toward us.

The 13CO red-shifted emission also originates from two different regions in the

envelope: one close and other farther away from the central system. The red-

shifted compact emission source is the envelope material located very close to

the protostar that reaches velocities of 6.5 and up to 9 km s−1 (Figure 4.4b).

The origin of this emission is likely related to the dragged gas by the ejection

of matter at the Northern cavity and indicated in Figure 3.7b as region 1. The

second region, shown as regions 2 and 3 in the inset of Figure 3.7b, suggests

that the emission at velocities between ∼4.5 and 6.25 km s−1 corresponds to

material being accreted onto the system and thus, indicates the kinematics

of the infalling and rotating envelope at the base of the bipolar outflows. As

mentioned in Section 4.3.1, the slab of material closer to the rotation plane

partially overlaps with the 12CO emission at the base of the cavities, thus

strongly suggesting their accreting nature onto the central object. In addition,

the emission in the velocity range between∼5.5 and 6.25 km s−1 extends around

the central system forming a feature with the shape of a half symmetric “ring”

with a distance between the inner and outer ring of around ∼ 200 au, shown

as region 2 in Figure 3.7b. Although, the origin of this feature is not clear,

we speculate that it is a signature of material being accreted with a rotation

motion.
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Figure 3.8: Position - velocity map of 13CO along the axis perpendicular to the
rotating outflow, see Figure 3.5.

Position-Velocity Diagram

The velocity gradient in the emission of 13CO is perpendicular to the direction

of the outflow. Thus, we have created a position−velocity (PV) diagram by

cutting along the axis perpendicular to the rotating outflow and throughout the

continuum emission of the disc, see Figure 3.8. In Figure 3.5 the cyan+yellow

line indicates the outflow rotation axis and perpendicular to it, the image-

space PV diagram cut at a position angle of ∼ 50
◦

and the averaging width is

∼ 0.45
′′
. This diagram shows higher velocities toward the center of the system

as expected for envelope material feeding a central proto-stellar source.
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(a) Moment 0

(b) Moment 1

Figure 3.9: Figure a: Integrated C18O intensity over the velocity range between
1.75 and 6 km s−1. Figure b: Intensity weighted mean velocity. The 0.37′′ ×
0.29′′ with P.A. = 87

◦
synthesized beam is shown on the lower left corner of

each panel. Black contours show the CO continuum emission around HBC 494
at 10, 30, 80, 150 and 250 × rms (0.25 mJy beam−1). The upper right insets
are a closeup (±2.7′′) of the central object. The black arrow shown in the
inset of Figure 3.9a point out the streamline described in section 3.3.3. While
the purple and black arrows show the material interacting with the outflow
detected at 12CO emission, see Figures 4.2a. The region enclosed with dashed
lines correspond to the region in which we integrated the line profile shown in
Figure 3.11.
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3.3.3 C18O Moment Maps

Of the 3 isotopologues, C18O has the lowest abundances and thus traces higher

gas density regions inside the molecular cloud, where it sublimates off dust

grains. Therefore, we used this line to map the morphology of the envelope

surrounding HBC 494. With a channel width of 0.25 km s−1, the emission is

detected within a range of 1.75 and 6 km s−1. Figure 3.9a shows the integrated

flux over the spectral line and Figure 3.9b is the intensity-weighted velocity of

the spectral line. The blue-shifted outflow is seen at velocities from 1.75 to 4.25

km s−1. The stream feature detected in 13CO at 1−1.75 km s−1 is also seen

in C18O emission at 1.75-2.0 km s−1, see Figure 3.9a for stream location, while

the C18O emission in the range of 2.25 and 4.25 km s−1 traces the shape of the

envelope. Additionally, the C18O blue-shifted emission is very weak compared

to the red-shifted emission and is located mostly at regions close to the central

source. The faint or lack of blue-shifted emission at larger distances from the

central object in the southern direction might be an indication of a significant

extended and diffuse gas, where the emission origin corresponds to a break out

of the surrounding molecular cloud.

The C18O red-shifted emission detected at velocities from 4.5 and 6 km s−1 is

bright and overlaps the 13CO red-shifted emission, see Figure 3.9b, meaning

that this probes infalling and expanding envelope material at different locations

from the central source. Following our assumption that the northern side of

the cavity is more denser than the southern side, given the lower 12CO emission

at the northern outflow, then this traces out the colder and denser structures

composing the infalling envelope. In addition, gas swept up by the southern
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outflow is seen to the west with low velocities of around ∼ 4.25 and 4.75 km s−1

and connected to rotating material in between the limbs of the outflows. The

swept up gas is located slightly above the 13CO arm emission and indicated

with purple and black arrows in Figures 3.9a and 3.9b.

3.3.4 Outflow Masses and Kinematics

We use our molecular line data to derive the mass and kinematics of the out-

flow. However, as demonstrated in Cabrit & Bertout (1990), the estimated

outflow masses and dynamical properties computed from an optically thick

line such as 12CO can be considerably underestimated if they are not corrected

for optical depth effects (τ12). Therefore, before computing the outflow prop-

erties, we corrected our molecular line data following standard methods such

as those found in Arce & Goodman (2001), Curtis et al. (2010) and Dunham

et al. (2014) to evaluate τ12 numerically. Essentially, these methods are based

on computing abundance ratios of optically thin CO emissions. Then, assum-

ing identical beam-filling factors and the same excitation temperature for both

isotopes, also considering that 13CO traces the optically thin emission of the

outflow in detections at low velocities, we compute the ratio of the brightness

temperatures between 12CO and 13CO, T12

T13
= X12,13

1−exp(−τ12)
τ12

, where the abun-

dance ratio X12,13 = [12CO]/[13CO] is taken as 62 (Langer & Penzias, 1993).

T12

T13
in each channel is estimated by computing the weighted mean values, where

the weight was performed using the sigma values of every channel. To compute

the 12CO mass, we apply the correction factor to all the channels with 13CO

detection above 5σ. For those channels where 13CO is too weak to be detected,

we extrapolate values from a parabola fitted to the weighted mean values of
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the form:

T12

T13

= 0.2 + 0.23(v-vLSR)2.

As a part of the fitting process, we only use the channels with 12CO and 13CO

emission above 3σ and the minimum ratio value was fixed at zero velocity.

Figure 3.10 shows the fit with a χ2 of 0.4 as a solid green line and the blue dots

correspond to the weighted mean values and the error bars are the weighted

standard deviations in each channel. For this fit, we did not use the last

three points, presented as the red dots, because at these velocities 12CO starts

becoming optically thin.

After applying the correction factors to every channel and using the emission

that traces the outflow in the blue- and red shifted components, we start from

the assumption that the emission is optically thin and in Local Thermodynamic

Equilibrium (LTE). Next, we integrated the intensity from pixels with detec-

tions above 5σ over all of these velocity channels to measure the NCO column

density. Then, with an Xco = 10−4, which is the abundance of CO relative

to H2 taken from Frerking, Langer & Wilson (1982), we inferred the column

density of NH2 . The interested reader can find a detailed description available

in Appendix C of Dunham et al. (2014). This quantity is multiplied by pixel

area and then, summing over all the pixels, we obtain estimates of mass (Mch)

and using velocity channels, estimates of momentum (Mch vch)2 and energy

(0.5 Mch v2
ch) of the outflow. To obtain total values of these parameters, it is

2Properties not corrected from inclination effects
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integrated over the whole range of velocities with detections.

In order to avoid contamination by ambient cloud emission or material not

related to the outflows of HBC 494, we integrate only over those channels with

emissions that shape the outflow; for example, in Figure 3.3, the 12CO emission

in the channels with a velocity range between 1.75 and 7.25 km s−1 were not

considered, because they are related to the emission that arises from around

the protostar and parcels of matter that belong to the surrounding envelope.

Additionally, in order to assure emission only from the outflow, we built a

mask around HBC 494 of radius size ∼ 1.5”, where pixels inside this area were

removed from the final analysis. Thus, separating the red- and blue shifted

components, the blue shifted outflow kinematics were estimated by integrating

channels in the range between -5.25 and 1.5 km s−1 for 12CO and, 1.0 and 4.0

km s−1 for 13CO. The range of channels in the red shifted emission are between

7.25 and 16.5 km s−1 for 12CO and, 4.5 and 6.25 km s−1 for 13CO.

For simplicity and considering how the excitation temperature varies the esti-

mated parameters (e.g. Curtis et al., 2010; Dunham et al., 2014), we adopted

for this quantity, values of 20 and 50 K in our analysis. The estimated pa-

rameters are shown in Table 6.6. Additionally, taking the extent of the 12CO

emission (20”) and the maximum speed of the 12CO gas extension, obtained

using vs−vb

2
where vs and vb are the red- and blue-shifted maximum velocities,

we estimated a kinematic age for HBC 494 of ∼5400 years to obtain the me-

chanical luminosity and mass loss rate of the outflow, see Table 6.6. However,

these property estimations are lower limits of the outflow because HBC 494 is

not detected completely in the extension of 20” of the image, see e.g. Figures

4.2a and 4.2c, and implicit assumptions in the method.
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Envelope Mass and Kinematics

Following the process described above, we use the C18O emission to estimate

the lower limits of mass and dynamical properties of the envelope surrounding

HBC 494. Taking into account that as an optically thin tracer only provides

information of distant regions from the central object, we did not build a mask

for the C18O cube. Also, it is not necessary to apply a correction factor to

compute the parameters of the cloud. As previously performed, we also sep-

arated the blue- and red-shifted components to integrate over ranges between

and 1.75 and 4.25 km s−1 for blue-shift velocities and 4.5 and 6.25 km s−1 for

red shift velocities. Estimated parameters of the molecular cloud are shown in

Table 6.6.
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3.3.5 Spectral Lines

To further explore the kinematic properties of the envelope interacting with

the outflow cavities, we obtained spatially integrated 13CO and C18O spectral

lines from the regions where most of the radiation arises from the envelope

while trying to avoid background emission. The regions enclosed with dashed

lines in Figures 3.7b and 3.9b correspond to the regions in which we integrated

the line profiles and figure 3.11 shows the line profiles of both isotopes. As

expected, the observed C18O spectral line shows a typical width previously

seen in quiescent envelopes of around 0.7-2 km s−1 (e.g. Jørgensen, Schöier &

van Dishoeck, 2002; Kristensen et al., 2012).

The observed C18O line has a FWHM of 0.84 ± 0.04 and is centred at 4.60

± 0.02 km s−1, which is taken as the systemic velocity. The 13CO profile

shows a dip around 4.0 km s−1 and is slightly blue-shifted from the systemic

velocity. This particular profile is not a real absorption and might be due to

missing short-spacing information in the u-v coverage. The C18O line is not

affected by this spatial filtering because it is less abundant and traces a more

compact region. In contrast to that, the 13CO traces a more extended and

energetic envelope region, which is evident in its full width of around 4.5 km s

−1. Hence, the 13CO profile is broader than the C18O indicating the complex

outflow motion in 13CO, previously seen in very young objects embedded in

molecular clouds (e.g Kristensen et al., 2012). This profile might be evidence

of an expanding envelope mostly in the Southern region, likely due to the

stream emission observed with the 13CO and C18O isotopes at the southeast

of the disc. Additionally, it might also indicate how the outflow cavities are
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Figure 3.10: Ratio of the brightness temperatures T12

T13
as a function of the

velocity from the systemic velocity. The blue solid dots are the weighted mean
values and the error bars are the weighted standard deviations in each channel.
The red solid dots are weighted mean values not used in the fitting process.
The green solid line is the best-fit second-order polynomial with a χ2 of 0.4.

efficiently pushing aside envelope material, see Figures 3.4a and 3.7a. For a

Class I object with a low mass envelope, it becomes relatively easy to expel

material to outer regions of the molecular cloud and thus, modify the geometry

of the molecular cloud and surroundings (e.g Kristensen et al., 2012; Mottram

et al., 2013). We provide a more detailed discussion about this scenario in

Section 3.4.4.
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Figure 3.11: 13CO and C18O line profiles of the envelope shown as red solid
lines. The spectrum for C18O is centered at 4.60 ± 0.02 km s−1 and is shown
as a green vertical line.

3.4 Discussion

3.4.1 The Wide Angle Outflow

Figures 4.2a and 3.5 illustrate a double-lobed 12CO structure of HBC 494. The

main characteristics of these shell-like structures are the wide-angle outflows

extending (∼ 8000 au) in opposite directions with a projected opening angle of

∼150◦ and a velocity pattern with high and low velocity components along and

at the wake of the lobes, see Figure 3.3. This defined wide-angle morphology of

the cavities has previously been observed in only a few Class I objects such as

RNO 129 (∼125
◦
; Arce & Sargent, 2006) and more recently in the FU Ori V883

Ori (∼150
◦
; Rúız-Rodŕıguez et al., 2016b) that, with an outflow mass on the

order of 10−2 M�, are observational evidence of the evolutionary trend found
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in the morphology of the molecular outflows by Arce & Sargent (2006). This

trend basically indicates how the opening angles increase with source age, lead-

ing to a stronger outflow-envelope interaction during the evolutionary process.

Additionally, in Figure 4.2b, a “stream” is observed to the southeast of HBC

494 with velocities between 1−1.75 km s−1 and partially linked to this stream, a

C18O emission is detected with a velocity range of 1.75−2.0 km s−1, see Figure

3.9a. The direction of this stream likely follows the blue-shifted outflow com-

ponent on this side of the bipolar cone and might be related to flows that arise

from the interaction of the highly accreting disc inner edges with an existing

threading strong magnetic field (e.g. Donati et al., 2005). It has been suggested

that outflows can be centrifugally accelerated along net vertical magnetic field

lines threading the disc; when non-ideal magnetohydrodynamical effects are

taken into account, the MRI turbulent activity disappears, allowing that the

disc launches a strong magnetocentrifugal wind (Bai & Stone, 2013). If so,

the wind sweeps up the ambient molecular gas in the vicinity of the surround-

ing envelope when it interacts with a collapsing environment (Snell, Loren &

Plambeck, 1980; Shu et al., 2000; Gardiner, Frank & Hartmann, 2003; Bjerkeli

et al., 2016). Figure 3.2 depicts a computer illustration of HBC 494 to better

show the dynamic properties of the system components. The effectiveness of

the removal of envelope material depends on the age of the protostar and the

degree of collimation of the wind. Thus, a highly collimated wind with high

density profile would flow along the rotation axis (e.g. Class 0), while for a

more evolved protostar with a reduction of envelope material, the collimated

wind would decrease with its density at increasing angles from the axis (Shang,

Shu & Glassgold, 1998). For a Class I object, the gas entrained by the wide-

angle component of the wind will be the dominant structure in the molecular
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outflow, producing the observed widening angle outflows seen in HBC 494.

Also, it is expected that the energetic outflows impact an homogeneous sur-

rounding envelope, because the bipolar extension are largely symmetric in their

opening-angles. Nevertheless, as mentioned previously the envelope material

interacting with the outflow in the Northern region of HBC 494 might be

slightly denser than in the Southern region, see Figures 3.4a and 3.4b. Figure

3.12 shows an image of the Re50N nebula taken as part of The Two Micron

All Sky Survey (Skrutskie et al., 2006) in H band (1.6 µm), where the contin-

uum and 12CO contours are over-plotted indicating the position of HBC 494

and its wide outflows. From this image, the inhomogeneous molecular cloud

hosts the outflow evolution with an embedded outflow emerging at the South-

ern side, while the Northern cavity is still deeply embedded. However, it is

difficult to confirm this from our estimates of the outflow parameters, see Ta-

ble 6.6, because are subject to the maximum recoverable scale and the spatial

filtering, e.g. Figure 3.11. Therefore, these values are underestimated and bi-

ased by the visibility sampling, which require observations for a larger scale

structure. Although, the parent molecular cloud might not be homogeneously

distributed around HBC 494, this does not mean that both lobes would evolve

in a distinguishable way and might vary only in the extension of their out-

flows. Unfortunately, information with respect to the extension projected onto

the rotation axis is more ambiguous due to the observing limitations, which

did not detect the complete structure of the outflow cavities. In addition, we

might be facing a very young binary object as the triggering mechanism of

the outburst (Cieza et al., In Prep.), and considering that FUor outbursts are

usually accompanied by strong winds (e.g Bastian & Mundt, 1985) and if most
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of the stellar mass is accreted during these events, we speculate that the ori-

gin of the wide-angle cavities of HBC 494 is a combination of binarity and

magnetocentrifugally-driven winds.

3.4.2 Role of Outflows in Star Formation

Inspecting Table 6.6, the parameters estimated from the corrected 12CO emis-

sions are increased by a factor ranging from ∼ 10 to 20. This supports the

claim by Dunham et al. (2014) that molecular outflows are much more massive

and energetic than commonly reported. Our mass estimations from the blue-

and red-shifted emissions, after correcting for optical depth, are on the order

of outflows previously presented using a similar approach (e.g Arce & Sargent,

2006; Curtis et al., 2010; Dunham et al., 2014). If we are indeed facing the fact

that outflows are more massive than expected, and from a theoretical point

of view, these outflows are responsible for extracting angular momentum from

the proto-stellar core-disc system to allow the accretion onto the central object,

then we might expect a huge impact on the final stellar mass and indirectly, the

shape of the Initial Mass Function (IMF). It has been suggested by theoretical

models that including outflow feedback the average stellar mass would decrease

by a factor of ∼ 3, while the number of stars increases by a factor of ∼ 1.5

(Federrath et al., 2014). Energetic outflows may be responsible for triggering

star formation by perturbing other regions of the same cloud, which leads to

the formation of multiple stars instead of a single one (Federrath et al., 2014).

Additionally, we note that the outflow mass, momentum, and energy for HBC

494 are higher than those found recently for the Class I objects, HL Tau and
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V2775 Ori (Klaassen et al., 2016; Zurlo et al., 2016). However, these quantities

highly depend on the outflow mass and in the case of HL Tau and V2775 Ori,

these values were not corrected for optical depth effects. On the other hand,

HL Tau and V2775 Ori present a kinematic age of 2600 yr with opening angles

of 90
◦

and 30
◦
, respectively, while HBC 494 has a kinematic age of ∼5400 yr

and an opening angle of 150
◦
. For both HL Tau and V2775 Ori the opening

angle differs considerably and these objects, differ in their kinematic age from

HBC 494. In spite of the fact that the outflows present a significant discrepancy

in their spatial extension, it highlights the importance of understanding and

constraining the initial conditions of the stellar formation process, which might

be controlled by the parent molecular cloud and perturbations from external

agents to develop this variety of FU Ori objects.

3.4.3 Role of Outflows in Disc Evolution

The physical source generating the wide angle outflow in HBC 494 could be

connected to the evolution of the disc and as a requirement, it must play an

important role in the removal of angular momentum from the accreted material.

Indeed, it has been indicated that outflowing gas from an accretion disc might

provide an efficient transport of angular momentum to permit the accretion

of matter onto the central star (Blandford & Payne, 1982). In addition, to

determine the disc lifetime it is necessary to constrain properties such as mass

accretion and mass loss rates, which might be intrinsically coupled to angular

momentum transport (Gressel et al., 2015; Bai, 2016). In recent years, the ratio

of the wind mass loss rate to the wind driven accretion has been suggested to be

on the order of 0.1 with large uncertainties (e.g Klaassen et al., 2013; Watson
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et al., 2015). As shown in Dunham et al. (2014), and from HBC 494 as well,

the mass loss rates are underestimated, leading to suggest that the mass loss

rate is not a small fraction of the accretion rate. Then, if increasing the mass

outflow by factors of ∼ 20 or even higher (50-90 in the most extreme cases;

Dunham et al., 2014) , it might limit the accretion directly by factors of similar

magnitude. Recently, Bai et al. (2016) suggested a scenario where discs might

lose mass at a considerable fraction of the accretion rate. Enhancing the FUV

penetration depth would lead to considerable increases of the outflow rates,

while the accretion rate would also present an increase in a more moderate

way (Bai, 2016). Using the relation Ṁ = 1.25LaccR?
GM?

(Hartmann et al., 1998)

and if we consider HBC 494 as a Class I star of 1 M� with a 250 L� (Reipurth

& Bally, 1986), 3 R� (Baraffe et al., 2015) and assuming an age of 0.5 Myrs,

typical of Class I objects, then its accretion rate is ∼ 3x10−5 M� y−1, which is of

the order of typical FU Ori objects. From Table 6.6, the estimates for mass loss

rates are of the order of the accretion rate, however, these values might be taken

with caution because our approach to estimate the accretion rate might failed

in the limits of very large accretion luminosities (Hartmann et al., 1998), or a

lower stellar mass would imply a higher accretion rate. More importantly, the

rate of mass outflow and angular momentum transport increase with increasing

net vertical magnetic field, however, we are still limited to accurately predict

the timescale of disc evolution due to the lack of knowledge of magnetic flux

distribution threading the disc (Bai & Stone, 2013; Bai, 2016).

As mentioned above, our outflow mass and kinematic estimates of HBC 494 are

massive and energetic, meaning that in order to raise these massive outflows

via winds might require a fully ionised inner disc. For a normal classical T
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Tauri star, it has been shown that the low ionisation levels in the disc pre-

vent the rise of winds from the inner region. The wind outflow rate sensitively

depends on the FUV and X-ray penetration depth which on the other hand

are determined by the abundance of small grains (Bai, 2016) and the photon

energy (Ercolano & Glassgold, 2013). For FUors, in the region interior to the

dust sublimation radius, the disk is sufficiently ionised so that the magneto-

centrifugal wind can be launched efficiently. A very important consequence

of this strong penetration depth and hence, the wind mass loss, is that mass

is primarily removed from the disc surface as a function of the distance (Bai,

2016). This creates favorable conditions for planetesimal formation in outer

regions of the disc, where most dust grains settle at the disc midplane. Re-

cently, from high resolution ALMA observations, Cieza et al. (2016) reported

the detection of the water snow line at a distance of ∼ 42 au from the central

star, V883 Ori. They suggested that the location of the water snow-line at

these early stages is largely affected by outburst events. In addition, observa-

tional evidence has been found for preferential loss of gas relative to dust in

CO isotopologue surveys by Williams & Best (2014) and Ansdell et al. (2016).

Thus, the disc evolution and initial conditions for planetary formation at these

early stages might be strongly influenced by the intimately connected processes

of outflows and accretion (Bai et al., 2016).

3.4.4 Role of Outflows in Star-Forming Molecular Clouds

Class I objects are able to disperse their surrounding envelope effectively,

through their short outburst events. Thus, the outflows could energetically

expel a large amount of material from the molecular cloud modifying neigh-
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bouring structures (Federrath et al., 2014). A possible change of structure in

the neighbouring regions of HBC 494 could have origin in a previous outburst

event. As previously mentioned, HBC 494 seems to start digging out from

the molecular cloud, exposing its Southern side and thus, expelling material

more efficiently to large distances. It was noticed by Chiang et al. (2015)

that Re50 located at the south of Re50N (1.5 arc min, associated nebula to

HBC 494), started fading to the west and moved eastwards by a curtain of

obscuring material, while the Re50N suffered a dramatic increase in bright-

ness sometime between 2006 and 2014 (Chiang et al., 2015). Considering the

direction of the observed 12CO emission in HBC494 and making a projection

of the emerging outflows, it coincides with the direction of the expulsion of

material directed towards the northeast side of Re50 (see Figure 2 in Chiang

et al., 2015). Therefore, material that was possibly pushed by a HBC 494

outflow could be responsible for the significant decrease in brightness of this

neighbouring object.

3.5 Summary

We studied the HBC 494 system using 12CO, 13CO and C18O images at 0.2′′

resolution. With a large expansion of the molecular outflows (∼ 8000 au), the

likely non-uniformity of the envelope material of HBC 494 lead us to suggest

that the evolution of the outflows is largely influenced by a differential density

and degree of interaction between outflow and surrounding envelope on both

sides of the bipolar cone. This scenario might be a result of the binarity and

magnetocentrifugally-driven wind present in the system (e.g Bastian & Mundt,
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Figure 3.12: Projection of the blue and red 12CO emission delineating the
outflows over the H-band (1.6 µm; Skrutskie et al., 2006) image of HBC 494.
Blue and magenta contours show the integrated intensity of the 12CO blue- and
red shifted lobes, respectively, at 80, 150, 300, 450 and 600 × 3σ levels. The
green contours are the continuum emission and represent the position of HBC
494.
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1985; Terquem et al., 1999). Although, higher-resolution images are needed to

confirm whether HBC 494 is a close binary like FU Ori itself (Hales et al., 2015).

Using the 12CO, 13CO and C18O emissions, we derived the mass and kinematics

of the outflow on the order of 10−2 M� for the mass and 10−3 M� km s−1 for the

momentum. After correcting for optical effects, these properties increased by a

factor ranging from 10-20. This increase in the kinematic properties might be

observational evidence of the important role played by the outflows in FU Ori

objets to drive the evolution of the disc via winds and hence, the conservation

of angular momentum (Bai, 2016).



Wide-Angle Outflows: Energetic vs.

Slow Components

Outflows play an important role in the formation and evolution of the stars

and protoplanetary disks. Outflows are the physical mechanism to connect

small and large scales (i.e. disks vs. envelopes) because these flows are able to

carry away the excess of the angular momentum from rotating disk, allowing

the material to accrete onto the protostar. Meanwhile, the disk mass can

be replenished by the surrounding envelope. At large scales, they disperse

circumstellar envelope material. Outflows are detected at different velocities

from the central stars (Dunham et al., 2011). In this chapter, we present an

FUor object, V883 Ori, with a wide-angle and slow-velocity outflow observed

with ALMA.
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4

The ALMA Early Science View of

FUor/EXor objects. III. The Slow and

Wide Outflow of V883 Ori.

This chapter is published in Monthly Notices of the Royal Astronomical Society

as D. Ruiz-Rodriguez, L. A. Cieza, J. P. Williams, J. J. , D. Principe, Tobin,

Z. Zhu, and A. Zurlo, 2017, MNRAS 468, 3266-3532

We present Atacama Large Millimeter/ sub-millimeter Array (ALMA) obser-

vations of V883 Ori, an FU Ori object. We describe the molecular outflow and

envelope of the system based on the 12CO and 13CO emissions, which together

trace a bipolar molecular outflow. The C18O emission traces the rotational

motion of the circumstellar disk. From the 12CO blue-shifted emission, we

estimate a wide opening angle of ∼ 150
◦

for the outflow cavities. Also, we

find that the outflow is very slow (characteristic velocity of only 0.65 km s−1),

which is unique for an FU Ori object. We calculate the kinematic properties

of the outflow in the standard manner using the 12CO and 13CO emissions. In
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addition, we present a P Cygni profile observed in the high-resolution optical

spectrum, evidence of a wind driven by the accretion and being the cause for

the particular morphology of the outflows. We discuss the implications of our

findings and the rise of these slow outflows during and/or after the formation

of a rotationally supported disk.

4.1 Introduction

During the early stellar evolution process the key to understanding outflow

motions is hidden. In stellar formation, these outflow motions might regulate

the final stellar mass with a core-to-star efficiency of only 30% (Offner et al.,

2014). In addition, it is believed that these outflows carry matter back to the

molecular cloud, transporting energy and momentum to it, which may affect

the dynamics of the surrounding envelope. However, the formation, evolution

and effects of these flows is highy debated. Thus, a full understanding of the

origin and evolution of these winds/outflows, might disentangle the unknown

physical mechanisms that dictate the 1) low mass star formation efficiency in

turbulent clouds (Krumholz, Klein & McKee, 2012) and 2) an efficient trans-

port of angular momentum to permit the accretion of matter onto the central

star (Blandford & Payne, 1982). However, the physical origin(s) and features

of these outflows are not well understood and our current knowledge of the

entrainment process is limited due to the inability to trace the molecular gas

a scale of a few au. In the ALMA era, observations of higher sensitivity and

spatial resolution of young stellar objects surrounded by structures carved out

by these outflows are required (see Frank et al., 2014, for a review). FU Orionis
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objects (FUors) are ideal candidates to observe and analyse due to their main

characteristics: strong outflows and massive envelopes.

FUors are generally identified by their large and sudden increase of luminosity

in optical light. This increase takes place in around ∼ 1−10 yrs and can amount

to ≥ 5 mag in optical light. Although this optical variability has not been

completely incorporated in the big picture of stellar formation and the evolution

process, a large amount of matter (∼ 0.01 M�) accreting from the circumstellar

disc onto the central object (∼ 10−4 M�yr−1), is the most likely cause of this

variability (Hartmann & Kenyon, 1996). These short events might be outbursts

that are connected to the broad range of outflows observed in FUors. The

surrounding envelope directly interacts with these outflows, which are likely

the main dispersing mechanism of the natal circumstellar gas and dust, driving

the evolution from a Class 0/I object to a Class II. From an observational

perspective, an evolutionary trend in the opening angle of general protostellar

outflows has been detected (Velusamy & Langer, 1998; Arce & Sargent, 2006;

Seale & Looney, 2008), where the outflow erodes the envelope and the widening

of the cavity increases as the outflow ram pressure highly dominates over the

infall ram pressure (Arce & Sargent, 2004). The concept that cavities widen

with time, postulates that Class 0 objects present opening angles ranging from

20
◦
- 50

◦
, Class I between 80

◦
and 125

◦
and Class II objects present outflows

with cavities ≥125
◦

(Arce & Sargent, 2006). Highly collimated and wide-angle

molecular outflows differ in their gas velocities and mass. The former usually

presents velocities on the order of v∼ 100−1000 km s−1, while the latter, less

collimated outflows, are more massive with velocities on the order of v ∼10−30

km s−1 (see Audard et al., 2014, for a review). Theoretically, the observed



106 The ALMA Early Science View of FUor/EXor objects. III. The Slow and Wide Outflow of V883 Ori.

widening in outflows might be connected to the interaction of highly accreting

disc inner edges with a strongly magnetised central star, raising energetic winds.

Among these models are the X winds (Shu et al., 2000), disk winds (Pelletier

& Pudritz, 1992; Pudritz et al., 2007), and accretion-powered stellar winds

(Romanova et al., 2005). More collimated outflows might be explained by a

jet-driven bow shock, which essentially is an expanding bow shock produced

by a dense and collimated jet that propagates through the ambient material,

forming a thin shell of gas entrained in the wake of the outflow and extending

from the jet head back to the star (Raga & Cabrit, 1993; Ostriker et al., 2001).

In addition, the detection of P Cygni profiles1 mainly in Hα and Na D lines are

suggestive of energetic mass outflows/winds. These profiles, which are usually

prominent in the spectra of FUor type stars (e.g. Calvet, Hartmann & Kenyon,

1993; Reipurth et al., 2002; Aspin, 2011), are predicted by the presence of

strong winds rising from the inner region of the disc (Herbig, 1977; Bastian &

Mundt, 1985; Welty et al., 1992). Therefore, the association of outflows and

disc through energetic winds has begun one of the most promising scenarios to

explain kinematic and dynamic motions at early stages of stellar formation.

As FUors are promising “laboratories” to contribute in the understanding of the

envelope dissipation and core-to-star formation efficiency, we have conducted

a new millimeter study of FUors and FUor-like stars presented in a series of

papers by Zurlo et al. (2016), Rúız-Rodŕıguez et al. (2017b), Principe et al.

(In Prep.) and Cieza et al. (In Prep.). Here, we present ALMA band-6 (230

1Line profile composed of a red-shifted emission peak together with a blue-shifted absorp-
tion feature.
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Table 4.1: V883 Ori Properties

Property Value Reference

R.A. (J2000) 05h 38s 18.10s 1
Dec. (J2000) -07o 02

′
26.00′′ 1

M∗ (M�) 1.3 ± 0.1 2

Ṁacc (M�yr−1) 7.5e-5 2
L∗ (L�) 6 2
Lbol (L�) 400 3
AV (mag) 19 4

Reference: (1) 2MASS All-Sky Point Source
Catalog, (2) Cieza et al. (2016), (3) Strom &
Strom (1993), (4) Spectral parameters from
Caratti o Garatti et al. (2012).

GHz/1.3 mm) continuum and 12CO( J=2-1 ), 13CO( J=2-1 ) and C18O( J=2-1

) line observations of an FUor type object identified initially as a faint star in

the Hα emission line survey of Haro (1953) and designated as V883 Ori. We

also report the optical spectrum of the Hα line at 6563 Å taken with the MIKE

spectrograph (Bernstein et al., 2003).

Since its detection, V883 Ori, located at a distance of 414 ±7 pc (Menten et al.,

2007), has been a source of major findings, thus providing hints about the for-

mation and evolution of pre-main sequence stars. At first, its associated re-

flection nebulosity, IC 340, presented a morphological structure that suggested

a star formation event involving the faint star, V883 Ori (Haro, 1953). Some

years later, Nakajima et al. (1986) noticed a decrease in luminosity since V883

Ori was observed by Allen et al. (1975). However, the first team to describe

this event and suggest this source as an FUor type object with a bolometric

luminosity of ∼400 L� was Strom & Strom (1993). Although it was classified

as an FUor type, no jet or molecular outflow was previously detected from
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V883 Ori (e.g. Sandell & Weintraub, 2001), until these observations. More

recently, Furlan et al. (2016) fitted the spectral energy distribution of V883

Ori (a.k.a HOPS-376) and they classified it as a flat spectrum protostar, where

the mass of the envelope within 2500 au was found to be 2.87×10−2 M� and a

cavity opening angle of ∼ 41
◦
. As a part of the Protostellar Optical-Infrared

Spectral Survey On NTT (POISSON) performed by Caratti o Garatti et al.

(2012), V883 Ori was included and using Brγ as an accretion tracer, an equiva-

lent width (EW) of -3.6 Å was found, corresponding to an accretion luminosity

Lacc(Brγ) of 61.3 L�. More recently, Cieza et al. (2016) described V883 Ori

as a pre-main sequence object with a dynamical stellar mass of 1.3 ± 0.1 M�

and photospheric luminosity of just ∼6 L� (based on the stellar mass, an as-

sumed age of 0.5 Myr and the evolutionary tracks by Siess, Dufour & Forestini

(2000)). Based on the stellar mass and the bolometric luminosity of 400 L�,

they derived an accretion rate of 7×10−5M� year−1, which is typical of FUor

objects. More significantly, they reported the detection of the water snow line2

at a distance of ∼ 42 au from the central star, a distance ∼10 times larger than

expected for a disk passively heated by the stellar photosphere.

This relevant finding in an FUor ratified the importance of studying the evolu-

tion of circumstellar discs parallel to the outflows characteristic of these objects,

in order to understand the main mechanisms involving the accretion flow and

the high mass-loss rates. Table 4.1 summarises the estimated stellar parameters

of V883 Ori.

We use 12CO and 13CO to describe the bipolar outflows of V883 Ori and the

2Region of the disk where the temperature falls below the sublimation point of water.
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Figure 4.1: Illustration showing the different dynamical and flux components
traced by 12CO, 13CO and C18O of V883 Ori. The outflows are coloured with
red to illustrate the red-shifted emission, while blue illustrates the blue shifted
emission. Envelope material close to and accreting onto the disc is coloured
with green and its infalling motion is indicated by the small green arrows. The
green line with a position angle of ∼ 120

◦
depicts the rotation axis of the entire

system. The inset shows a Keplerian disk probed by the C18O emission, where
a water snow-line at ∼40 au reported by Cieza et al. (2016) is represented by
the brown-blue gradient colour. Outward of the snow line, grain growth is
accelerated by the high coagulation efficiency of ice-covered grains.

envelope material surrounding this source. We present the results of these ob-

servations in this article organised as follows. Section 4.2 describes the ALMA

and MIKE observations, together with the reduction process. In Section 6.4,

we report the results obtained from interferometry and spectroscopy, addition-

ally, we described the detected spectral features of this FUor. The implications

and impact of our findings are discussed in Section 6.5. The summary and

conclusion are presented in Section 6.6.
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4.2 Observations

4.2.1 12CO( J = 2-1 ), 13CO( J = 2-1 ) and C18O( J =

2-1 ) Lines

ALMA observations of V883 Ori, located at 05h 38s 18.10s -07o 02
′
26.00′′, were

taken under program 2013.1.00710.S during Cycle-2 over the course of three

different nights. This program involves the observations of eight FUor/EXor

objects: V883 Ori (Cieza et al., 2016), V2775 Ori (Zurlo et al., 2016), HBC 494

(Rúız-Rodŕıguez et al., 2017b), V1647 Ori (Principe et al., In Prep.), V1118 Ori,

NY Ori, V1143 Ori and ASASSN-13db (Cieza et al., In Prep.). Two of three

observations were performed on December 12th, 2014 and April 15th, 2015 using

37 and 39 antennas on the C34-2/1 and C34/2 configurations, respectively.

These configurations are similar with the shortest baseline of ∼ 14 m and

longest of ∼ 350 m. The precipitable water vapor ranged from 0.7 to 1.7 mm

with an integration time of ∼ 2 min per each epoch.

Additionally, a third observation of V883 Ori was performed on August 30th,

2015 with 35 antennas in the C34-7/6 configuration with baselines ranging from

42 m to 1.5 km, an integration time of ∼3 min, and a precipitation water vapor

of 1.2 mm. The quasars J0541-0541, J0532-0307 and/or J0529-0519 (nearby

in the sky) were observed as phase calibrators. J0423-013 and Ganymede were

used as Flux calibrators, while the quasars J0607-0834 and J0538-4405 where

observed for bandpass calibration.

Our correlator setup included the J=2-1 transitions of 12CO, 13CO and C18O
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(a) 12CO (b) 13CO

(c) C18O

Figure 4.2: Figure a: 12CO velocity field map (moment-1) that was obtained
from the integration over the velocity range from 2.0 to 6.25 km s−1. Figure
b: Moment 1 of the 13CO emission integrated on the velocity range between
2.0 and 6.25 km s−1. Figure c: C18O velocity field map integrated over the
velocity range from 2.0 to 6.25 km s−1. The 12CO traces mostly the southern
outflow with well defined edges, while the 13CO traces both the norther and
southern outflows, but with a less defined shape. The C18O emission reveals
the Keplerian disk embedded within the envelope. Black contours show the
continuum emission around V883 Ori at 10, 30, 80, 150 and 250 × rms (0.25
mJy beam−1). The 0.35′′ × 0.27′′with P.A. = -90

◦
synthesised beam is shown

on the lower left corner of each panel. The upper right insets are a closeup of
± 2.7” for 13CO and ± 2.1” for C18O of the central object. The purple and red
ovals indicate the emissions traced by 12CO and 13CO as described in Sections
4.3.1 and 4.3.2.
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centered at 230.5380, 220.3987, and 219.5603 GHz, respectively. The correlator

was configured to provide a spectral resolution of 0.04 km s−1 for 12CO and

of 0.08 km s−1 for 13CO and C18O. The total bandwidth available for contin-

uum observations was 3.9 GHz. The observations from all three nights were

concatenated and processed together to increase the signal to noise and uv-

coverage. The visibility data were edited, calibrated and imaged in CASA v4.4

(McMullin et al., 2007). The flux density calibration uncertainty is 10 %. We

used the CLEAN algorithm to image the data and, using a robust parameter

equal to zero, a briggs weighting was performed to adjust balance between res-

olution and sensitivity. From the CLEAN process, we obtained the following

synthesized beams: 0.35′′× 0.27′′with P.A. = -90
◦

for 12CO, 0.37′′× 0.28′′ with

P.A. = 86.5
◦

for 13CO and 0.37′′ × 0.29′′ with P.A. = 87
◦

for C18O. The rms is

12.5 mJy beam−1 for 12CO, 16.0 mJy beam−1 for 13CO and 13.9 mJy beam−1

for C18O. For the integrated continuum, we obtained a synthesized beam and

rms of 0.25′′ × 0.17′′with P.A. = -85.5
◦

and 0.25 mJy beam−1, respectively.

4.2.2 Optical Spectrum

Additionally, we observed V883 Ori on the night of 29 February, 2016 with the

Magellan Inamori Kyocera Echelle (MIKE, Bernstein et al., 2003), a double

echelle spectrograph at the Magellan (Clay) 6.5 m telescope, located in Las

Campanas, Chile. This high resolution spectrograph covers a full optical wave-

length range in the blue (320-480 nm) and the red (440-1000 nm) regime with

spectral resolutions of 25000 and 19000, respectively. Our observations were

taken with a slit size of 0.7×5
′′

and the data have been binned 2×2 in a slow

readout mode with an exposure time of 1860 s. During the observation run
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Figure 4.3: 12CO intensity maps (moment-0) integrated over the velocity range
of 0.75 − 8.0 km s−1. Black contours show the continuum emission around
V883 Ori at 10, 30, 80, 150 and 250 × rms (0.25 mJy beam−1). The upper
right inset is a closeup (± 1.8”) of the central object. The 0.35′′ × 0.27′′ with
P.A. = -90

◦
synthesised beam is shown on the lower left corner.

were taken: Milky flats, Quartz flats, Twilight flats, ThAr comparison lamps

and bias frames to use in the data reduction process. Thus, the data were

bias-subtracted and flat-fielded to correct pixel to pixel variations by using the

Carnegie Python tools3 (CarPy; Kelson, 2003).

3http://code.obs.carnegiescience.edu/mike



114 The ALMA Early Science View of FUor/EXor objects. III. The Slow and Wide Outflow of V883 Ori.

4.3 Results

We obtained emission line profile data from V883 Ori of isotopologues 12CO,

13CO and C18O with transitions J = 2→ 1 to trace the different components of

this FUor object. Figure 4.1 is a cartoon of the components detected with these

optically thick and thin emissions, with a systemic velocity of 4.3 km s−1 (Cieza

et al., 2016). The CO emissions with bipolar shaped lobes, symmetrically

placed around the central object (V883 Ori) are the product of the direct

interaction between young outflows and the surrounding envelope, where the

molecular outflows entrain part of the gas along the outflow axis independent

of the physical origin. Then, from 12CO and 13CO emissions a bipolar shape is

probed, where the cavity traced by the 12CO and pointing towards us, is less

embedded in the surrounding envelope, while the cavity traced by the 13CO

is more embedded than its counterpart. Unfortunately, we could not rule out

faster gas towards the outflow axis from this data set or previous observations in

databases. The colder and denser material close to the central object is traced

by the 13CO and C18O isotopes, where a disk with a Keplerian rotational profile

is probed by the C18O emission. For simplicity throughout the text, the blue-

and red-shifted 12CO and 13CO emissions probing the bipolar cone are referred

to as the southern and northern cavities, respectively. In order to estimate the

outflow position angle (PA), we drew a line along the velocity gradient observed

in C18O and through the 1.3 mm continuum and thus, we obtained a PA of

∼ 120
◦

north through east 4. From the 1.3 mm continuum emission, Cieza

et al. (2016) found a position angle of ∼ 32.4
◦

and from the major and minor

4All position angles are specified north through east.
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axes of this emission an inclination (i) of ∼ 38.3
◦± 1.0. Here, we adopted this

inclination value to describe the orientation of the outflows.

4.3.1 12CO Emission

Figure 4.2a presents the integrated intensity of the weighted velocity (moment-

1) maps of V883 Ori. This moment is integrated over the narrow velocity

range with respect to the Local Standard of Rest (LSR) of 2.0 − 6.25 km s−1,

where the emission is detected at levels higher than 3σ (σ = 1.5×10−2 Jy

beam−1). This integration range for 12CO is chosen to match the moment-1

of 13CO and to display the kinematic structure of the 12CO and 13CO line

emission, see Section 4.3.2. The 12CO emission tracing the southern molecular

outflow has a range between ∼ 0.75 km s−1 and ∼4.25 km s−1, while the

red-shifted emission is observed in the range between 4.5 and 8.0 km s−1. The

former emission is bright and extends up to the systemic velocity, which clearly

traces the shape of the southern cavity. The latter is detected mostly close to

the central object, and at what seems to be the end of the right arm of the

outflow. However, emissions at velocities of ∼ 4.5 km s−1 are more likely

to correspond to the parent molecular cloud. Thus, the emission indicated

with a red oval in Figure 4.2a, at a velocity of ∼ 4.5 km s−1, seems to be

better explained as being dominated by ambient emission rather than from an

outflow emission, see also Figure 4.4. A slab of colder and denser envelope

material located in the northern region of the outflow might be blocking the

12CO emission, making its interpretation ambiguous because the optically thin

13CO emission is brighter on this side of the object (see Section 4.3.2 for more

details). Another possibility is that the surrounding envelope might be built
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with different velocity components, and in the case of V883 Ori, the narrow

velocity range of this emission causes the red-shifted 12CO emission on this side

of the cavity to be spatially filtered out.

Figure 4.4a shows the 12CO channel maps, with a channel width of 0.25 km s−1,

where the outflow cavity of a parabolic shape is more predominant at velocities

of ∼ 3.25−3.50 km s−1. Interestingly, there is a slightly noticeable elongated

feature towards the southeast, while in the 13CO channel maps a more pro-

nounced feature is displayed in the same velocity range and location, which

geometrically overlaps the 12CO feature, see Figure 4.4b . This feature seems

to move further away from the central source, and could potentially be ex-

plained as outflowing layers entrained by a wide-angle wind. For this matter,

we further explore kinematic features in the position-velocity (PV) diagrams

to identify a possible parabolic PV structure, which can be produced by a

wide-angle wind model at any inclination (Shu et al., 2000; Lee et al., 2000).

Unfortunately, we did not find any signature of this characteristic, however,

this does not rule out a radial wind producing a molecular outflow with a

wide-opening angle.

From the southern cavity emission, we estimate an apparent opening angle of

the outflow following the relation:

θo = 2 tan−1

[(
1− e−1

) Ro

zo

]

where Ro is the transverse radius or radius to the rotation axis and zo is the

distance along the outflow where the angle is measured (e.g. Lee & Ho, 2005).
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Thus, an opening angle of ∼ 150
◦

is revealed beyond ∼ 600 au from the central

source and an extension of 7300 au assuming a distance of 414 ±7 pc (Menten

et al., 2007).

The narrow velocity range shown in the channel maps of 12CO data at velocity

resolution of 0.25 km s−1, Figure 4.4a, leads to the conclusion that the outflow

is not as highly energetic as other FU Ori objects in a similar evolutionary

stage (Class I).

A hole in the 12CO emission?

In Figure 4.3, we present integrated intensity maps of the 12CO emission over

the velocity range between 0.75 and 8.0 km s−1. Overall, this emission traces the

southern outflow as described above,however, it also also presents a particular

flux drop coincident with the central dust continuum peak. The inset of Figure

4.3 a zoomed in image of the hole, which is significantly weaker by a factor

of ∼15 compared with the immediately surrounding emission. This feature is

more likely due to dust absorption of the line emission and with a contrast

of this magnitude, this implies that the dust continuum is considerably more

optically thick than the CO emission around the central star.

4.3.2 13CO and C18O Emissions

Usually, millimeter observations of 12CO in star-forming environments tend to

probe optically thick gas due to the high fractional abundance (χCO ≈ 10−4)

of the isotope, while a less abundant CO isotope such as 13CO probes optically
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(a) 12CO

(b) 13CO

Figure 4.4: Channel maps of the 12CO and 13CO. LSR velocities are shown
at the top-right corner of each panel with a systemic velocity of ∼4.3 km s−1.
Black contours represent the continuum emission around V883 Ori as shown
in Figure 4.2a.
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thin material. Thus, 13CO as a medium density tracer allows us to probe a

higher density region than the low density tracer, 12CO. Figure 4.2b shows

the 13CO moment-1 map integrated in the velocity range between 2.0 and

6.25 km s−1. The 13CO gas has a bipolar distribution with respect to the

outflow source on the northern side of V883 Ori, which covers the red-shifted

velocities between 4.5 and 6.5 km s−1. This emission likely rises from the

outer envelope that surrounds the protostellar core and the material interacting

with the immediate surroundings of the outflow. The southern cavity (blue-

shifted 13CO emission) is more diffuse and weaker than on the northern side.

The southern cavity emits at velocities between 1.75 and 4.25 km s−1 and

probes envelope material that might indicate that the outflow has been able to

accelerate medium-density gas at large distances away from the central object,

where the highest velocity components are observed close to the central object

and ambient velocity components widen from the central source.

In figures 4.2a and 4.2b the moment-1 maps of 12CO and 13CO are shown,

integrated over the same velocity range for comparison (2.0 − 6.25 km s−1).

The physical connection between the base of the cavity-envelope system traced

by the 13CO isotope and what seems to be envelope material traced by 12CO,

that reaches velocities of only 4.5 km s−1 , is indicated by a red oval in the

12CO moment-1 map and the physical location of the 12CO emission in the

moment-1 of 13CO is indicated by a purple oval. The velocity field shows a

gradual decrease in speed from the inside out. At small radii, the outflow may

be entraining inner envelope material, while at large distances from the central

source it widens and acquires the systemic velocity.

Indeed, Figure 4.4 presents the 12CO and 13CO channel maps, where the emis-
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sion of both isotopes overlap and trace envelope-outflow material. Both, 12CO

and 13 CO emissions peak on the central star, where the central disc is located.

The blue shifted 12CO and 13CO line emission maps of V883 Ori reveal the

low and medium density material expanding, part of which have already been

noticed in optical images, since the northern outflow is not observed, such as in

the I-band image shown in Figure 4.5 where only the southern outflow appears

illuminated. An important implication of these emissions is that the cavity

traced by the 12CO gas and pointing towards us, is less embedded in the sur-

rounding envelope, while the cavity traced by the 13CO is more embedded than

its counterpart. This is supported by the lack of detection of the 12CO gas and

the bright detection of 13CO on the northern side of the object.

Besides the progressive dispersion of dense molecular gas at the northern region,

an infalling and rotating motion is also observed close to the central star-disk

system. It can be noted in the inset of Figure 4.2b that at the base of the

cavities, the 13CO gas probes a velocity gradient along the major axis of the

1.3 mm continuum, consistent with a Keplerian rotation and indicating the

rotating and infalling material onto the central source. The infalling envelope

near systemic velocity agrees with the rotating equatorial disc (Cieza et al.,

2016), also observed with C18O, the lowest abundant isotope.

The densest material in V883 Ori is traced by the observations of the C18O

molecule, and presented in Figure 4.2c as the moment-1 map integrated over

the velocity range 2.0−6.25 km s−1. It is evident that this velocity map shows a

structure delineating the material rotating around central object. In addition,

the shape of the C18O emission of these maps is very similar to the shape of

the 13CO gas towards the base of the cavities.
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Figure 4.5: Comparison of the 1.3 mm continuum, 12CO and 13CO emissions
(contours) and the optical I-band (0.75 µm; Ahn et al., 2012) image of V883
Ori. Blue and magenta contours show the integrated intensity of the 12CO and
13CO lines, respectively, at 20, 40, 80, 160, 240 × 3σ levels. The cyan contours
are the continuum emission and represent the position of V883 Ori. The green
contours are the I-band data at 80, 150, 300, 450 and 600 × 3σ levels.
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Figure 4.6: V883 Ori spectrum of the Hα line at 6563 Å taken with the MIKE
spectrograph. On the right column, we present the Hα velocity profiles of the
FUor objects V1057 Cyg, HBC 722, and FU Ori itself. Spectra taken from Lee
et al. (2015).

4.3.3 Optical Spectra

In order to study the winds detected in the optical regime, we obtained from

MIKE the spectrum of one the most commonly observed outflow tracers, the

Hα line at 6563 Å. Clearly visible in Figure 4.6 is the line characterised by

a P-Cygni profile representing a wind/outflow, which is built of a strong and

asymmetric blue-shifted absorption component together with a red-shifted com-

ponent. The slightly blue-shifted absorption feature shows a wing profile that

extends to ∼−360 km s−1, while the emission line extends up to ∼180 km s−1.

The blue-shifted feature shows a very asymmetric line with the deepest ab-

sorption at ∼−14 km s−1 with the edge extending up to ∼−65 km s−1, which

remains relatively invariant until it reaches ∼−150 km s−1, then it weakens as
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the blue-shifted profile increases. Thus, the blue-shifted absorption seems to be

composed of different features: a low-velocity and strong feature and a weaker

structure fading as the velocity increases. The sharp change in the equivalent

width (EW) of this feature indicates a recent increase in mass loss rate of the

system (e.g. Laakkonen, 2000). On the other hand, the red-shifted emission

peaks at ∼ 90 km s−1 and its intensity is not as strong as the blue-shifted

absorption.

4.3.4 Outflow Masses and Kinematics
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The fact that most of the 12CO emission in the southern cavity has a much

higher intensity than the 13CO line, indicates that the 12CO line can be used

as a tracer of the gas column density of the southern cavity. Likewise, the

13CO emission can trace the northern side of V883 Ori. Considering that both

the 12CO and 13CO lines trace the bipolar cavity, we use these emissions to

derive estimates of the mass of the outflow, Mflow, and its kinematic properties

(kinetic energy, Eflow, momentum, Pflow, and luminosity, Lflow) in the standard

manner (e.g. Cabrit & Bertout, 1990; Dunham et al., 2014). Thus, following the

process described in Section 3.4 in Rúız-Rodŕıguez et al. (2017b), we estimate

these quantities from the blue- and red-shifted emissions, separately. However,

as is often stated, the 12CO emission is optically thick and to derive accurate

gas column densities, it is necessary to correct for the optical depth of this

line. For that matter, 13CO, as an optically thin tracer, is used to correct for

optical depth effects in the 12CO data. Hence, after computing the ratio of the

brightness temperatures:

T12

T13

= X12,13
1− exp(−τ12)

τ12

where the abundance ratioX12,13 = [12CO]/[13CO] is taken as 62 (Langer & Pen-

zias, 1993), from all the channels with detection above 3.5σ. We also consider

that 12CO and 13CO probe opposite regions in the bipolar shape of V883 Ori,

meaning that the number of channels with a computed ratio is small because

12CO and 13CO trace different regions at a narrow velocity range. Therefore, in

order to apply the correction factor to all the channels with 12CO detection, it

is necessary to extrapolate values from a parabola fitted to the weighted mean
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values of the form

T12

T13

= 0.57 + 0.34(v-vLSR)2.

In the fitting process, the minimum ratio value was fixed at zero velocity and

we did not include those data points presented as the red dots in Figure 4.7,

because at these velocities 12CO starts becoming optically thin. The best fit

with a χ2 of 0.6 is shown in Figure 4.7 as a solid green line, where the blue dots

correspond to the weighted mean values and the error bars are the weighted

standard deviations in each channel. In this particular case, the fitted parabola

and the derived outflow parameters must be taken with caution because of the

poor fitting, which highly depends on the weighting of the last data point to

the right, see Figure 4.7. This is because the 13CO emission is usually not

detectable or is very weak in most mapping positions and velocities where the

12CO emission is detected, and vice versa.

To assure we are using the emission mostly from the outflow, we performed a

first cut to values above 5σ and the integration of channels between velocities

ranging from 1.5 to 4.25 km s−1 and between 4.5 and 7.0 km s−1. In order to

obtain a total estimate of these values, the range and number of channels in

the integration are the same for 12CO and 13CO. The characteristic velocity of

the outflow of ∼0.65 km s−1 is estimated using vflow = Pflow

Mflow
, where Pflow and

Mflow are the momentum and mass of the outflow, respectively (e.g. Dunham

et al., 2010). Taking the extent of the 12CO blue-shifted emission of ∼7300 au

(17.5′′) and the maximum speed of the gas extension, obtained using v13−v12

2

where v13 and v12 are the 13CO red- and 12CO blue-shifted maximum velocities,
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we estimated a kinematic age for V883 Ori of ∼10000 years to obtain the

mechanical luminosity and mass loss rate of the outflow. Here, it is important

to note that the estimate of the dynamical timescale is a lower limit since we

have only used our ALMA data and ignored the apparent extension observed

in optical wavelengths of ∼ 64′′, see e.g. Figure 4.5. Thus, the outflow with an

apparent extension of ∼ 27000 au, could be 4 times older than our estimate. We

note that this estimated age (> 104 yr) is larger than the typical duration of an

FU Ori outburst (∼ 102 yr). This implies that the ongoing accretion outburst

cannot be directly responsible for the properties of the observed outflow. Table

6.6 shows the estimates5 at temperatures of 20 and 50 K. The actual values

could be higher than those listed in Table 6.6 because the estimated properties

highly depend on the true values of the outflowing gas temperatures for both the

12CO and 13CO lines, and our observations have a maximum resolvable angular

scale (MRS) of ∼11′′, meaning that a fraction of the total outflow emission

might be missing. In other words, the outflow cavities are ∼15′′ across, and

thus larger than the MRS. Hence, an extended component (>11′′) between the

outflow cavities might not be resolved out. Future observations with the ALMA

Compact Array would be useful to image the outflow at larger angular scales.

In addition, taking into account that the difference between the outflow and

envelope emission is marginal based on the small number of channels of 12CO

and 13CO with emissions above 3σ, these estimates could be contaminated by

envelope emission.

5Properties not corrected for inclination and optical effects.
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Figure 4.7: Ratio of the brightness temperatures T12

T13
as a function of the velocity

from the systemic velocity. The blue solid dots are the weighted mean values
and the error bars are the weighted standard deviations in each channel. The
red solid dots are weighted mean values not used in the fitting process. The
green solid line is the best-fit second-order polynomial with a χ2 of 0.6.

4.4 Discussion

4.4.1 The extension and velocity of the outflow in the

V883 Ori system

From Figure 4.2, it is evident that the southern cavity is traced by the 12CO

emission, while the 13CO emission traces the shape of the northern cavity. To-

gether, these emissions delineate the bipolar outflow of V883 Ori. In optical

images (Ahn et al., 2012), the southern cavity seems to have a much larger

extension than in our ALMA data. However, this could be an effect of the

illumination caused by the interaction of the dusty material and the high lu-

minosity of the central object. Figure 4.5 shows a comparison of the optical
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image and the bipolar outflow (12CO and 13CO emissions), and although the

outflows roughly coincide in the projection over the I-band image, comparing

these observations is not straightforward and thus, it does not ensure that the

I-band image shows the real and physical extension of the cavity. Also, it is

worth noting that the relatively limited field of view (FOV) of our ALMA data

of only 0.1 arcminutes2 cannot be compared well with other facilities with con-

siderably larger FOV, such as the I band image shown in Figure 4.5 with FOV

of ∼ 0.5 arcminutes2. Future mosaicking observations with ALMA or imaging

by interferometers with a larger field-of-view, such as the Submillimeter Array,

are needed to better determine the real extension of the outflow.

From the 12CO blue-shifted emission, an opening angle of ∼150
◦

is estimated,

where one of the most striking characteristics of the outflows is the relatively

slow velocity with a characteristic velocity of only ∼ 0.65 km s−1, see Figure

4.4. The typical FUor outflow velocity ranges between 10 and 40 km s−1 with a

wide range of collimation (Evans et al., 1994; Zurlo et al., 2016; Rúız-Rodŕıguez

et al., 2017b), although, some FUors do not show CO emission associated with

outflows (e.g. FU Orionis itself does not show an outflow (Evans et al., 1994)).

While our observational findings can be used as inputs to test slow-velocity

outflows in FU Ori objects, yet, we are unable to compare to other FUors

with similar outflow features because to date, these wide and slow-outflows

have only been detected in V883 Ori. Thus far, these low-velocity outflows

have been observed only in other Class 0/I objects, such as Per-Bolo 58 (2.9

km s−1), CB 17 MMS (2.4 km s−1), L1451-mm (1.3 km s−1), L1148-IRS (1.0

km s−1), L1014-IRS (1.7 km s−1) (Dunham et al., 2011, and references therein).

However, these are younger, still embedded cores, with low luminosity and are
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not experiencing high accretion rates (i.e. outburst). V883 Ori is a stellar

object of 1.3 M� and extremely luminous, accreting a large amount of matter

onto the central source through a disk with Keplerian rotation (Cieza et al.,

2016). This Keplerian disk, from the 1.3 mm continuum map, is observed

without asymmetries, discarding a stellar companion influencing the geometry

and kinematics of the outflows. Thus, the physical mechanism responsible for

these particular slow and wide-angle outflows must be triggered during and/or

after the formation of a rotationally supported disk.

Recently, a similar opening angle was observed in the FU Ori Class I, HBC

494 (Rúız-Rodŕıguez et al., 2017b). The authors attributed the wide opening

angle due to the presence of energetic winds as a result of the interaction

of highly accreting disc inner edges with a strongly magnetised central star

(Snell, Loren & Plambeck, 1980; Blandford & Payne, 1982; Shu et al., 2000).

However, HBC 494 presents a very energetic outflow with a velocity gradient

perpendicular to the outflow axis of rotation, while V883 Ori does not harbour

an energetic driving source. This can be noted in the moment-1 of the 12CO

and 13CO emissions shown in Figure 4.2 and obtained from an integration of a

very narrow velocity range (2.0 - 6.5 km s−1). This narrow emission suggests

that the triggering mechanism of these wide opening outflows in V883 Ori

might have occurred 1) a long time ago, where another FUor outburst event

could take place with an average time span of thousands of years between

outbursts (Scholz, Froebrich & Wood, 2013) or 2) in a quiescent disk without

the creation of a high velocity outflow component, which might be related to

rotation of the central protostar (Romanova et al., 2005; Königl, Romanova &

Lovelace, 2011). Unfortunately, there is not a record of the outflow onset or
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evidence of a high velocity component emission to rule out and/or confirm any

of these possibilities.

While the narrow velocity of the 12CO and 13CO emission implies a slow out-

flow (see Figure 4.4), it also impacts the estimates of the mass and kinematic

parameters shown in Table 6.6 (i.e. mass-loss rate, the mechanical luminosity,

momentum, and kinetic energy). Nevertheless, these values are on the order of

other FU Ori objects such as, V2775 Ori, L1165, HBC 494 (Zurlo et al., 2016;

Dunham et al., 2014; Rúız-Rodŕıguez et al., 2017b). Similarly, compared to pre-

vious studies a total outflow mass in the range of 10−4 and 10−1M� is typical

of outflows in other young stars (e.g. Wu et al., 2004; Curtis et al., 2010; Arce

& Sargent, 2006; Dunham et al., 2014; Klaassen et al., 2016). Inspecting Table

6.6, the outflow parameters increased by a factor of ∼60-70, after correcting for

optical depth effects, in agreement with previous results that established that

these outflow parameters can increase by factors of up to 90 after correcting

for inclination and optical effects (e.g. Curtis et al., 2010; Dunham et al., 2014;

Rúız-Rodŕıguez et al., 2017b). However, it is not easy to directly compare these

parameters because 1) uncertainties in the method used and 2) the estimates

in the literature differ by observing method, i.e. single dish vs. interferometer

observations. For instance, parameters from single-dish data may take contri-

butions from the extended cloud emission, increasing these estimates by a few

factors when compared with the smaller scales sampled by the interferometer.

Therefore, a more complete characterisation of the kinematics and dynamics

of the outflows in FUors is required in the near future.
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4.4.2 Comparison with other P-Cygni profiles.

In addition to the viscous accretion and the photo-evaporation, the role of

magnetically driven disc winds might be a viable mechanism that disperses the

inner region of the disc, leading to the loss of mass and angular momentum.

In general, the presence of a P-Cygni optical profile indicates powerful winds

likely rising from the disc (Hartmann & Kenyon, 1996), allowing the accretion

of matter onto the central stellar core (e.g. Bai & Stone, 2013). As P-Cygni

profiles have been observed in Hα lines of FUors such as FU Ori, V1057 Cyg

and HBC 722 (Herbig, Petrov & Duemmler, 2003; Powell et al., 2012; Miller

et al., 2011; Lee et al., 2015), here we compare our spectrum to those objects

as is shown in Figure 4.6. These spectra were previously presented in Lee et al.

(2015) and observed with the High Resolution Spectrograph (Tull, 1998) of the

Hobby−Eberly Telescope (HET) (Ramsey et al., 1998) at McDonald Observa-

tory and the Bohyunsan Optical Echelle Spectrograph (BOES) at Bohyunsan

Optical Astronomy Observatory.

Although comparing the Hα profile of these objects is difficult because they

differ in: 1) time from last outburst and 2) amount of envelope material; these

objects have shown observational evidence of the main features and variability

of their profiles. For instance, HBC 722 is an FU Ori object observed pre-

and post-outburst (Cohen & Kuhi, 1979; Semkov et al., 2010) and thus, it

offers the opportunity to compare the spectrum of an FUor in a quiescent

state and during the outburst (∼ 6 years from outburst). The spectra of this

object have changed significantly pre- and during outburst. In short, pre- and

during outburst the Hα profile remained mostly in emission, while decreasing
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its EW (between Aug and Sept. 2010; Semkov et al., 2010), until finally a

few months later they acquired the shape of a P-Cygni profile (on Dec. 2011;

Semkov et al., 2012). Subsequently, the detected P-Cygni profile presented a

constant strength variability in the following years, (more details in Lee et al.,

2015). In Figure 4.6, it can be noted that the blue-shifted absorption feature

is considerably less broader than the Hα profile of V883 Ori. Then, if the EW

strongly depends on the physical events taking place around the central star,

an increase in the mass loss rate might broaden the EW (Laakkonen, 2000).

That is the case of the Hα profile of V1057 Cyg, which also has varied in time

since its outburst (∼ 40 years from outburst) (Laakkonen, 2000). The width

of this profile is more similar to the Hα of V883 Ori, however, the latter shows

a particular shape, see Figure 4.6. This peaked feature seems to be built by

different components and located at different distances from the central star,

one is a weaker and high velocity component and the other(s) is a strong and

low velocity component(s). In fact, it has been argued that a narrow central

absorption comes from the central object and the “wings” correspond to the

disc (Lee et al., 2015). However, V883 Ori with a bolometric luminosity of 400

L� (Strom & Strom, 1993) complicates the identification of these components,

independently.

On the other hand, the Hα profile of FU Ori highly differs from the Hα profile

of V883 Ori. To begin, a P-Cygni profile has vanished almost completely,

where the red-shifted emission line has decreased considerably (∼ 79 years

from outburst). A similar feature was observed in HBC 722, soon after the

outburst when the wind diminished, leaving mostly an Hα absorption profile

(Lee et al., 2015). Although, we cannot directly compare or make a conclusion
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about the evolutionary state of the system, the Hα profile of V883 Ori indicates

the presence of strong and persistent winds, which might be related to the wide-

opening angle of the outflows. In fact, if the Hα absorption profile of V883 Ori

arises solely via the accreting shock on the stellar photosphere, this would lead

to the launching angle of the wind to be &52
◦
.

P Cygni and Slow Winds.

In general, the blue-shifted absorption features in FUors highly depend on the

velocity shift, where larger blue-shifts are related to the strength of the profile

line (Petrov & Herbig, 1992; Calvet, Hartmann & Kenyon, 1993; Hartmann &

Calvet, 1995). If one assumes the strong winds originate in the accretion disk,

the strongest lines show the largest expansion velocities, while the weak lines

originate close to the disk photosphere. Potentially, magnetic fields anchored

in the rotating disc itself could accelerate disk winds outwards (Blandford &

Payne, 1982; Shu et al., 2000). However, the slow winds in V883 Ori might

originate in the outer part of the disk, where the location of the footpoints of

wind-launching magnetic field lines on the disk, might determine the velocity

components of the system.

4.5 Summary

In this paper, we have presented the results of the ALMA observations, together

with the optical spectrum of V883 Ori. This object is an FU Ori source with a

wide opening angle of ∼ 150
◦

(measured east through north) with an extension
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of ∼7300 au that was detected from the 12CO blue-shifted emission. From the

12CO and 13CO emissions a bipolar shape of the outflow cavities is traced, while

C18O emission probes a Keplerian circumstellar disk. V883 Ori is a unique FU

Ori object because it presents such a slow outflow with a characteristic velocity

of only 0.64 km s−1. This is surprising as current models predict outflow

velocities of around 10−50 km s−1 (e.g. Pudritz & Norman, 1986; Federrath

et al., 2014). Therefore, further theoretical and observational studies are needed

to investigate the origin of the slow and wide angle outflow in V883 Ori. A P

Cygni profile observed in the Hα line centred at 6563 Å provides evidence of the

presence of winds likely rising from the disc and being the physical mechanism

responsible for the morphology of the outflows. We estimate the kinematic

properties of the outflow in the standard manner, these values are on the order

of other FUors and young stars with outflows; after these parameters were

corrected for optical effects, they increased by a factor of ∼ 60-70. However,

as discussed in Section 4.3.4, this optical depth correction must be taken with

caution.



Outflows and companions as

Dispersing Mechanisms

Outflows and dynamical interactions are some of the mechanisms through

which primordial disks dissipate (other mechanisms include accretion onto the

star and photoevaporation). At early stellar stages, accretion and outflows are

correlated. In this thesis, we study Class I objects with energetic outburst (FU

Ori sources) and outflows to investigate the outflows as a dispersing mech-

anism of the disk/envelope system. These outflows must be considered when

developing models of disk evolution and establishing the initial conditions for

planet formation.

Transition Disks (TDs), are primordial (gas rich) circumstellar disks with inner

opacity holes. Despite of lack of dust in the inner regions, most TDs were found

to present accretion features inferred from ultraviolet/optical excess emission

(Najita et al., 2007; Espaillat et al., 2012, 2014), implying gap-crossing streams

of gas. The cavity of TDs could have been created by dynamical clearing due to

internal processes such as photoevaporation, grain growth, or planet formation

or the tidal interactions with low-mass companions. In the latter case, they

should be classified as Circumbinary Disks (CDs).
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THE FREQUENCY OF BINARY

STAR INTERLOPERS AMONGST

TRANSITIONAL DISKS.

This chapter is published in Monthly Notices of the Royal Astronomical Society

as D. Ruiz-Rodriguez, M. Ireland, L. Cieza, and A. Kraus 2016, MNRAS 463,

3829-3847

Using Non-Redundant Mask interferometry (NRM), we searched for binary

companions to objects previously classified as Transitional Disks (TD). These

objects are thought to be an evolutionary stage between an optically thick disk

and optically thin disk. We investigate the presence of a stellar companion as

a possible mechanism of material depletion in the inner region of these disks,

which would rule out an ongoing planetary formation process in distances com-

parable to the binary separation. For our detection limits, we implement a new

method of completeness correction using a combination of randomly sampled

binary orbits and Bayesian inference. The selected sample of 24 TDs belong
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to the nearby and young star forming regions: Ophiuchus (∼ 130 pc), Taurus-

Auriga (∼ 140 pc) and IC348 ( ∼ 220 pc). These regions are suitable to resolve

faint stellar companions with moderate to high confidence levels at distances

as low as 2 au from the central star. With a total of 31 objects, including 11

known TDs and circumbinary disks from the literature, we have found that

a fraction of 0.38 ± 0.09 of the SEDs of these objects are likely due to the

tidal interaction between a close binary and its disk, while the remaining SEDs

are likely the result of other internal processes such as photoevaporation, grain

growth, planet disk interactions. In addition, we detected four companions

orbiting outside the area of the truncation radii and we propose that the IR

excesses of these systems are due to a disk orbiting a secondary companion

5.1 Introduction

After the formation of a star, the lifetime of a disk is estimated to be . 10 Myrs.

At an age of ∼5 Myrs, around 90% of these objects already went through an

evolution process of dispersion of their optically thick primordial disks (Sicilia-

Aguilar et al., 2006). The dispersion of the inner disk material creates unique

morphologies in the disk that can be detected by their unusual spectral energy

distributions (SED) (Strom et al., 1989). Assuming that all disks go through

this dispersing phase, then approximately 10−20% of the disks are in a “tran-

sition” phase with time-scales within < 0.5 Myr; (Furlan et al., 2011; Koepferl

et al., 2013). In comparison with the characteristic continuum level of the SED

of a Classical T Tauri Star (CTTS), these objects are defined as: stellar objects

with small near-infrared (NIR) and/or mid-infrared (MIR) excesses and large
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MIR and/or far-infrared (FIR) excesses (e.g. Espaillat et al., 2014). Given the

ambiguity in the literature as to whether a disk in a “transition phase” makes

reference exclusively to a disk with an inner hole surrounding a single star or

also includes binary systems in a transition phase, we will describe disks around

single stars exclusively as Transitional Disk (TD) and to describe disks around

binary stars as Circumbinary Disks (CD).

Detailed modelling of TD disk SEDs has interpreted the reduction of excess

in the NIR-MIR as the dearth of small dust grains and thin gas in the inner

region of the disk (Espaillat et al., 2012). In addition, mm-interferometric ob-

servations have mapped this particular disk morphology of the TDs, showing

a dust-depleted region in the inner disk and/or gaps (Andrews et al., 2011;

Canovas et al., 2016). Although the physical origins causing these particular

shapes in the disks are still unclear, several theories have been proposed to ex-

plain the clearing mechanisms in the disk from inside out, such as grain growth

(Dullemond, Dominik & Natta, 2001), magnetorotational instability (Chiang &

Murray-Clay, 2007), photoevaporation (Clarke, Gendrin & Sotomayor, 2001;

Alexander & Armitage, 2007), dust filtration (Rice et al., 2006a), and disk-

planet(s) interactions (Kraus & Ireland, 2012; Dodson-Robinson & Salyk, 2011).

However, it has been difficult to reconcile the main process of dispersion of the

disk, especially since these mechanisms might dominate at different time-scales

and radii. For instance, planet formation and photoevaporation may play a se-

quential dominating role in the disk dispersion phase, since photoevaporation

disperses more rapidly once a planet is formed and has carved a gap in the disk

(Rosotti, Ercolano & Owen, 2015).

Unfortunately, these models are still not able to simultaneously explain the
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evolution process of all TDs, especially those with high accretion rates and

large inner cavities full of large amounts of gas near the central star. However,

fully understanding the disk dispersal process is of a vital importance, because

it provides insights about the formation of planetary systems like our own

(Dodson-Robinson & Salyk, 2011). In particular, knowledge of the timescales

of gas survival sets constraints on the time available for the formation of a

gas rich planet via core accretion (Pollack et al., 1996). Alternatively, another

clearing mechanism has been proposed for the truncation of the inner disk:

the presence of a stellar companion. Artymowicz & Lubow (1994) showed that

in the binary−disk interaction, the stellar companion will truncate the CD at

a distance, which depends highly on the eccentricity and mass ratio of the

binary system. These theoretical models predict that the ratio of the inner

radii (rd) about the center of mass and the semi-major axis (a) of the binary

system ranges from 1.7 to 3.3 for nearly circular orbits (e = 0−0.25) and highly

eccentric binaries (e ∼ 0.75), respectively. Although, previous surveys of stellar

companions in a range of ∼ 3 − 50 au have indicated that binary truncation

might not be a primary mechanism for the clearing inner region of the disk (Pott

et al., 2010; Kraus & Ireland, 2012), there are different factors that prevented

the detection of faint stellar companions in general, such as inner working angle

and a small separation of the binary at the observing epoch.

In addition, a misleading interpretation of the SEDs can occur in the classifi-

cation process of TDs through the SEDs of the CDs. Since an unresolved faint

infrared companion can aggregate NIR flux to the net SED and if this object is

surrounded by a disk, it could emit MIR levels similar to the MIR excess seen

in the SED of TDs (e.g Duchêne et al., 2003; Kraus et al., 2015). Although, the
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SED of these CDs present several overlapping features with a “normal” SED

of TDs, it would be misleading to treat them in a similar way. For instance,

the implications for the presence of another star in the star-disk system entails

an incorrect measurement of the luminosity and temperature, which translates

into inaccurate age and mass estimates. This is the case of Coku Tau/4 and

CS Cha that were originally described as TDs (Forrest et al., 2004; Espaillat

et al., 2007), but eventually were presented as CDs (Ireland & Kraus, 2008;

Guenther et al., 2007). This misclassification would be reflected in the esti-

mation of birthplaces and timescales for formation of sub-stellar companions

(brown dwarfs) and/or planetary systems, and the demographic properties of

these populations (e.g. Najita, Andrews & Muzerolle, 2015).

Therefore, determining a more accurate relative picture of the lifetime of TDs

and CDs requires a comprehensive survey capable of resolving close binaries (.

30 au) and measuring their frequency in objects previously classified as TDs

through their SEDs. Although, the open gap in the inner region of the disk

might have different physical origins, in this paper we seek to identify if the

dispersion of the primordial material in the inner region of the disk is a result

of the tidal interaction between a close binary system and the disk. At small

separations, detecting faint companions orbiting bright stars, that in addition,

are surrounded by dusty material, can be challenging due to the high contrast

between the companion and the primary star. However, observations of objects

at early ages provide favorable IR contrast ratios for the detection of so far,

unresolved faint companions because of their intrinsically higher luminosity

(∆K < 5 mag).

We use the Non-Redundant Mask interferometry (NRM) technique and NIRC2
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instrument located at the Keck II telescope, which offers a solution to reach

angular resolutions with the necessary contrast and is resistant to speckle noise

in the image by measuring a self-calibrating quantity known as closure-phase

(e.g. Martinache, 2011). In order to achieve a higher accuracy in the detec-

tion limits of our data, the NRM completeness as a function of position and

contrast utilizes a combination of a MonteCarlo Integration approach, giving a

randomly sample of artificial binary stars, and Bayesian Inference, which uses

prior probability density functions of the binary orbital parameters. We have

restricted the selection of objects to regions with an age of ∼ 1 − 3 Myrs and

within a distance of about 220 pc. Taurus-Aurigae , IC348 region (Perseus)

and Ophiucus star forming regions satisfy these criteria (Loinard et al., 2008;

Wilking, Gagné & Allen, 2008).

This article is arranged as follows. In Section 2. we present the motivation for

the sample selection, description of observations together with the data analysis

and a review of the target properties such as distance to the star-forming regions

and estimations of the inner radii. A simple Bayesian modelling analysis of

these data is conducted in Section 3, with an emphasis on prior probabilities and

description of binary and single models. The results of fitting to closure−phases

in the χ2 minimization are synthesized with other information in the literature

in Section 4. To perform a statistical Bayesian analysis of the fraction of the

binarity as the main responsible mechanism opening the gaps in the TDs, we

present a Jefreys Prior and its posterior probability in Section 5. Based on

that analysis and observational results, we attempt to reconcile the observations

with theoretical predictions from tidal interaction models and possible scenarios

of planetary formation in Section 6. Finally, we provide an overall review of
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the work done and results in Section 7.

5.2 TARGET SELECTION, OBSERVATIONS AND

PROPERTIES

In the past decade, the identified populations of T Tauri stars in the Taurus−Auriga,

IC348 and Ophiuchus star forming regions have been well studied since the

Spitzer data enriched the knowledge of dust distributions in the disks, pro-

viding large samples of Young Stellar Object members. Thus, we selected a

sample in terms of their decreased flux (with respect to the CTTS median) in

the wavelength range between ∼ 3 and 24 µm, which tracks dust out to separa-

tions of at least ∼ 30 au. Our targets were selected based on clear inner regions

in the disk seen in their SEDs. Sources with excess at wavelength in the range

of ∼ 8 to 24 µm and a lack of excess between ∼ 3 to 5 µm are taken as disks

with small or no dust excess in the inner region. Also, we included sources with

strong emission between ∼ 3 to 5 µm, but with a small excess emission at ∼

8 to 24 µm and excess beyond ∼ 40 µm. The sample of objects were selected

mostly from the work of Muzerolle et al. (2010); Cieza et al. (2010, 2012b);

Espaillat et al. (2012) and Rebollido et al. (2015). These programs aimed to

characterize SEDs for those objects in a “transition” phase and provided disk

masses and accretion rates of the targets. The Two Micron All Sky Survey

(2MASS) catalog Ks magnitudes are used to assign apparent magnitudes to

these objects classified as TDs. To maximise sensitivity in our observations

and achieve an image resolution of ∼ 20 mas, we make use of the Kp filter to

probe binary separations in this limit (e.g. Kraus & Ireland, 2012). Consid-
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ering that the maximum Kp-Ks colour of our objects is only 0.10 mag 1, we

did not apply a magnitude conversion because it is less than the combination

of our uncertainties in contrast ratio and the effects of stellar variability. Our

final target list shown in Table 5.1 is composed of 24 transitional disks with R

magnitudes brighter than 18 and spectral types in the range of G3−M5. For

this final target list of TDs, only 2MASS J04210934+2750368 and EM* SR

24S have known stellar companions at 770 mas (∼ 108 au) (Cieza et al., 2010)

and at 6000 mas (∼ 650 au) (Simon et al., 1995), respectively. These are not a

close companion located in the range of our area of detection and do not affect

the main purpose of the observations.

We observed our target list in August and December 2014 with the Adaptive

Optics (AO) system of the near-infrared instrument (NIRC2) located at the

Keck II 10 m telescope. The AO rotator tracking mode was set in vertical

angle mode. A nine-hole mask located at the telescope pupil re-samples the

light into a non-redundant interferogram of 36 pairwise fringes in the a Kp

filter (Figure 5.1, top left panel). This pattern is specially designed to reach

a near complete Fourier coverage. The Aladdin detector was configured to a

512 x 512 subarray and a multiple correlated double sampling readout mode

was used in a narrow camera with a pixel scale of 9.952 ± 0.002 mas/pixel

(Yelda et al., 2010). An overall exposure time of 20 seconds is used, except

for the calibrators LRL 410, CIDA 2 and UX Tau A with 60, 5 and 5 seconds,

respectively. Because some TDs have been previously observed using identical

settings as our observational method, we access the Keck Observatory Archive

1We use the relation (K′ −K) ∼= 0.11(H−K) from Vacca, Sheehy & Graham (2007).
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Interferogram Power Spectrum

82 mas

A

B

N

E

Figure 5.1: Top: Interferogram and Power spectrum of the new reported binary
LRL 135. Bottom: Squared visibilities as a function of the projected baseline.
The solid line shows the best-fit of the binary parameters, angular separation
and position angle.
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(KOA) and complete our sample of TDs that were unfit to observe in our 2014

runs. Table 6.3 shows a summary of the observational settings of the targets,

calibrators and their observing epochs.

The observed data have been corrected by flat-fielding, removal of bad pixels

and dark subtracted to be spatially filtered with a super-Gaussian function to

maximise sensitivity (Ireland et al., 2008). The aperture masking analysis is

based on the extraction and calibration of closure-phase and squared-visibility,

then carrying out least squares binary fitting. The interested reader can find a

detailed description available in e.g. Kraus et al. (2016). In the case of fitting

to binaries with an angular separation (ρ) of & 25 mas at high contrast, we

fit only to closure-phase because of its immunity to changes in the AO point-

spread function (PSF). We determined that any solutions with a significance

of more than 6-σ are detections of secondary components (Kraus et al., 2016).

Then, we conducted a Bayesian analysis for marginal detections and contrast

limits as described in section 5.3.1. As an input to this Bayesian analysis, for

each set of calibrated closure phases, we computed a least squares fit to contrast

(secondary/primary flux) in a grid of 80 x 80 models with 5 milli-arcsec spacing.

For reasons of both speed and in order to only consider the regime with sym-

metrical error bars, we approximated the contrast as being in the linear regime

where closure phase is proportional to contrast. The output of this process was

a grid of best fit contrasts and uncertainties. The uncertainties were scaled

in order to acquire a χ2 equal to unity in the fit to the closure phases. For

detections with ρ < 40 mas and ∆K < 1 mag, we included visibility amplitudes

for breaking contrast/separation degeneracies. When fitting to squared visibil-

ities, we conservatively added a 20% miscalibration uncertainty in quadrature
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to the uncertainties estimated from scatter in our data, and also left, as a free

parameter, the scaling of the interferometric visibilities. This was necessary

because in AO data, Strehl ratios typically vary from target to PSF calibra-

tor, and visibility amplitudes calibrate much more poorly than closure-phases.

This miscalibration uncertainty needed to be added because Strehl variations,

caused by e.g. changing atmospheric conditions, cause a variation in the vis-

ibility amplitudes between target and calibrator observations. Part of this

uncertainty was taken into account by adding the scatter amongst calibrators

in quadrature to the visibility amplitude uncertainty from the target.

Additionally, the detection limits are highly dependent on the contemporaneous

observations of calibrators that must be single stars with high S/N and ideally

close to the observed target. The calibrators are used to remove effects of

optical aberrations. Raw object visibilities are divided by calibrator visibilities,

and calibrator closure phases are subtracted from raw object closure phases.

However, we were not able to observe truly isolated stars in these dusty star-

forming regions and for those observing epochs taken from KOA, we used likely

single stars with non-redundant interferograms taken in the same observing run

(Table 6.3). Therefore, in order to assure high S/N and non−binarity in the

set of objects to be used as calibrators in each epoch, we perform the following

steps:

1. We first identified the set of targets of obvious binarity, e.g LRL 135

shown in Figure 5.1, and targets with significance levels of > 8-σ by

fitting only to closure-phase and then, removed them from the source

sample of calibrators.
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2. The remaining objects, calibrators and science targets, play the role of

inter-calibrating sources. After fitting closure phases for every observed

object, we started eliminating from the set of calibrator sources those

objects with a significance of more than 5-σ, assuring an isolated object

with high S/N.

3. The closure phases of those remaining objects are used as the final set of

calibrators.

In our survey, the aperture masking data identified a well resolved a nearly

equal luminosity companion for LRL 135 at 82 mas with a ∆K of 0.17 ± 0.01

and a position angle of 208
◦
, which is shown in Figure 5.1 as the observed

interferogram and its power spectrum. We provide a more detailed description

about these results in Section 5.4.1, including reference to maser distances.

Also, the extracted squared visibilities are plotted, where clearly fringe contrast

goes to near zero at the longest baseline of the mask (∼ 9 m).
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Table 5.2: Summary of Observations.

ID BJD tint Coadds Nframes Airmass Type Note

(2400000 +) [s]

June 18, 2008

Haro 1-6 54635.75 5.00 4 7 1.92 Calibrator >5σ

RX J1620.9-2352 54635.75 5.00 4 7 1.82 Calibrator

EM* SR 24S 54635.75 5.00 4 6 1.86 Target

EM* SR 24S 54635.75 5.00 4 8 1.81 Target

Haro 1-6 54635.75 5.00 4 7 1.72 Calibrator

Haro 1-6 54635.79 1.00 10 11 1.53 Calibrator

EM* SR 24S 54635.79 1.00 10 7 1.51 Target

EM* SR 21A 54635.88 1.00 20 7 1.40 Target

EM* SR 24N 54635.88 2.50 8 2 1.41 Calibrator >5σ

J16262367-2443138 54635.88 2.50 8 7 1.42 Target

WSB 12 54635.88 2.50 8 7 1.40 Target

EM* SR 21A 54635.88 2.50 8 7 1.43 Target

J16262367-2443138 54635.88 2.50 8 7 1.45 Target

WSB 12 54635.88 2.50 8 7 1.43 Target

EM* SR 21A 54635.92 2.50 8 7 1.47 Target

J16262367-2443138 54635.92 2.50 8 7 1.50 Target

WSB 12 54635.92 2.50 8 7 1.49 Target

V* V2059 Oph 54635.92 20.00 1 7 1.52 Calibrator >5σ

RX J1625.2-2455 54635.92 20.00 1 7 1.58 Calibrator

V* V2059 Oph 54635.92 20.00 1 7 1.61 Calibrator

November 03, 2009

J04183030+2743208 55138.92 10.00 1 10 1.05 calibrator

J04380083+2558572 55138.96 10.00 1 10 1.01 calibrator

J04350850+2311398 55139.00 20.00 1 10 1.01 calibrator

V410 X-ray 6 55139.00 10.00 1 9 1.03 Target

J04244506+2701447 55139.04 10.00 1 9 1.05 calibrator

April 23, 2011

J16233462-2308467 55674.92 5.00 4 12 1.67 Calibrator >5σ

WSB 63 55674.92 5.00 4 10 1.65 Target

J16273901-2358187 55674.96 5.00 4 9 1.55 Target

J16250692-2350502 55674.96 5.00 4 10 1.49 Target

DoAr 32 55674.96 5.00 4 11 1.47 Calibrator >4σ

WSB 63 55674.96 5.00 4 10 1.46 Target

BKLT J162624-244323 55674.96 5.00 4 11 1.44 Calibrator >5σ

WSB12 (RX J1622.3-2321) 55675.00 5.00 4 11 1.38 Target

J16315473-2503238 55675.00 5.00 4 10 1.42 Target

BKLT J162624-244323 55675.00 5.00 4 10 1.40 Calibrator
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Table 5.2 – Continued

ID BJD tint Coadds Nframes Airmass Type Note

(2400000 +) [s]

EM* SR 8 55675.00 5.00 4 10 1.40 Calibrator

J16335560-2442049 55675.00 5.00 4 11 1.40 Target

DoAr 50 55675.00 5.00 4 10 1.42 Calibrator

WSB 63 55675.04 5.00 4 10 1.41 Target

J16335560-2442049 55675.04 5.00 4 10 1.41 Target

DoAr 50 55675.04 5.00 4 9 1.44 Calibrator >5σ

DoAr 24 55675.04 5.00 4 10 1.44 Calibrator

2E 1624.2-2444 55675.04 5.00 4 11 1.49 Calibrator

RX J1633.9-2442 55675.08 5.00 4 10 1.48 Target

RX J1624.8-2359 55675.08 5.00 4 11 1.51 Calibrator no-Binary

ROXs 4 55675.08 5.00 4 11 1.57 Calibrator

2E 1624.6-2352 55675.08 5.00 4 11 1.60 Calibrator

IRAS 16114-1858 55675.08 5.00 4 9 1.62 Calibrator

November 15, 2011

MBO 22 55880.75 5.00 4 25 1.50 Calibrator >5σ

LRL 21 55880.79 5.00 4 23 1.42 Target

LRL 72 55880.79 5.00 4 23 1.33 Target

MBO 22 55880.79 5.00 4 23 1.22 Calibrator

LRL 21 55880.83 5.00 4 23 1.22 Target

LRL 67 55880.83 5.00 4 21 1.18 Target

LRL 21 55880.83 5.00 4 22 1.11 Target

MBO 22 55880.83 5.00 4 2 1.07 Calibrator

LRL 67 55880.88 5.00 4 23 1.06 Target

J03302409+3114043 55880.88 5.00 4 23 1.03 Calibrator >5σ

V410 X-ray 6 55880.88 5.00 4 23 1.05 Target

J04300424+3522238 55880.92 5.00 4 18 1.07 Calibrator >5σ

V410 X-ray 6 55880.92 5.00 4 21 1.02 Target

J04300424+3522238 55880.92 5.00 4 19 1.04 Calibrator

HBC 390 55880.96 5.00 4 22 1.04 Calibrator

J04303235+3536133 55880.96 5.00 4 10 1.04 Calibrator no-Binary

J04303235+3536133 55880.96 5.00 4 11 1.04 Calibrator no -Binary

J03302409+3114043 55880.96 5.00 4 14 1.09 Calibrator >5σ

April 14, 2012

RX J1615.3-3255 56032.04 5.00 4 12 1.66 Calibrator

RX J1615.9-3241 56032.04 5.00 4 13 1.66 Calibrator

RX J1625.3-2402 56032.08 5.00 4 3 1.42 Calibrator no-HighBF

V* V852 Oph 56032.08 5.00 4 3 1.45 Target

WMR2005 1-38 56032.08 5.00 4 3 1.47 Calibrator

WSB 40 56032.08 5.00 4 3 1.50 Target

WMR2005 1-21 56032.12 5.00 4 3 1.61 Calibrator

August 11, 2014
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Table 5.2 – Continued

ID BJD tint Coadds Nframes Airmass Type Note

(2400000 +) [s]

V* V711 Per 56881.04 20.00 1 8 1.38 Calibrator >5σ

LRL 110 56881.04 20.00 1 6 1.35 Calibrator

LRL 410 56881.04 60.00 1 5 1.31 Calibrator

CIDA 2 56881.08 5.00 4 8 1.36 Calibrator >5σ

IRAS 04125+2902 56881.12 20.00 1 7 1.16 Target

V410 X-ray 3 56881.12 20.00 1 5 1.13 Calibrator >5σ

UX Tau A 56881.12 5.00 4 8 1.14 Calibrator

August 12, 2014

LRL 75 56882.04 20.00 1 8 1.54 Calibrator

LRL 40 56882.04 20.00 1 8 1.46 Calibrator

LRL 168 56882.04 20.00 1 8 1.42 Calibrator

LRL 97 56882.04 20.00 1 8 1.35 Target

LRL 237 56882.04 20.00 1 6 1.31 Target

August 13, 2014

KOI-137 56883.00 20.00 1 7 1.65 Calibrator

KOI-0044 56883.00 20.00 1 6 1.66 Calibrator

KOI-4567 56883.00 20.00 1 7 1.66 Calibrator

LRL 72 56883.04 20.00 1 7 1.55 Target

J04311907+2335047 56883.08 20.00 1 7 1.37 Calibrator >5σ

December 09, 2014

LRL 53 57000.75 20.00 1 7 1.19 Calibrator

LRL 182 57000.75 20.00 1 8 1.17 Target

LRL 58 57000.79 20.00 1 8 1.13 Target

LRL 355 57000.79 20.00 1 7 1.12 Calibrator

LRL 135 57000.79 20.00 1 7 1.10 Target

LRL 233 57000.79 20.00 1 7 1.08 Calibrator >5σ

LRL 31 57000.79 20.00 1 4 1.07 Target

LRL 169 57000.79 20.00 1 7 1.06 Calibrator

LRL 213 57000.83 20.00 1 7 1.05 Target

J03302409+3114043 57000.96 20.00 1 13 1.41 Calibrator >5σ

MBO 22 57001.00 20.00 1 7 1.46 Calibrator >5σ

J04210934+2750368 57001.00 20.00 1 3 1.25 Target

J04300424+3522238 57001.00 20.00 1 8 1.30 Calibrator

J04303235+3536133 57001.00 20.00 1 6 1.33 Calibrator no-binary

Pr 0211 57001.08 20.00 1 7 1.02 Calibrator

Pr 0225 57001.08 20.00 1 7 1.02 Calibrator
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5.2.1 Target Properties

Our methodology to identify companions that might be responsible for the

observed TD SEDs and could be orbiting in the inner region of the disk,

requires estimations of the distances to the inner disk wall from the central

star (rd). However, not all TDs have a previous measurements of the in-

ner radii and are not calculated by following a standard approach. Because

we seek for uniformity in these estimations, we developed a simple approach

highly dependent on the stellar luminosities (L?) and the dust temperature in

the disk (Td). The stellar luminosities are calculated with the dereddened J-

band photometry method from Kenyon & Hartmann (1995) and adopting the

known distances to each different star−forming region. We de-reddened the

J-band fluxes using the AJ extinction and measured by following the Mathis

(1990) extinction law with A(λ)/A(J) ∼ (λ/1.25)−α, where α = 1.7. We used

AJ = 2.62[(J − H) − (J − H)0], where (J − H)0 is the expected colour of a

main-sequence star from Pecaut & Mamajek (2013). We derived the stellar

properties based on the spectral types taken from literature and a conversion

to the effective temperatures (Teff) taken from Pecaut & Mamajek (2013) with

uncertainties of ∼ 150 K, corresponding to ± 1 spectral subclass (Table 5.1).

Additionally, using Teff and L?, and assuming a single star system, we esti-

mated the stellar masses (M?) for each TD. Those in the range between 0.01

and 1.4 M�, were derived from Baraffe et al. (2015) and stellar masses >1.4

M� from the PARSEC evolutionary models (Bressan et al., 2012). For the

unknown metallicity values we adopted solar composition, and we also held

the surface gravity fixed at the value log g = 4.0, typical for PMS stars. Table

5.1 shows R and Ks magnitudes, spectral types and stellar properties of these



156 THE FREQUENCY OF BINARY STAR INTERLOPERS AMONGST TRANSITIONAL DISKS.

objects.

Distances to the star forming regions were adopted from literature. Thus, a

distance of 140 ± 10 pc was adopted to the Taurus-Aurigae star forming region

(Loinard et al., 2008). However, we found a large range of discrepancies in the

distances to Ophiuchus and IC-348 members, leading us to carefully choose

the most appropriate values, since these young members placed in the H−R

diagram are sensitive to any variation of these distances (Figure 6.4). We

adopted a distance to the IC 348 Region based on the distance to the Perseus

molecular cloud, that has been estimated in a wide range between 220 - 380 pc

(Harris, Morgan & Roman, 1954; Herbig & Jones, 1983; Cernis, 1993; Scholz

et al., 1999; de Zeeuw et al., 1999; Hirota et al., 2008; Hirota, 2010). We

examined in detail the distance to the brightest cluster member, LRL 1. As a

pair of B5V stars, these objects are zero-age main sequence (ZAMS) so they

have a model-derived luminosity that is almost independent of age. Using the

same technique as described above, we confirmed the distance of 220±10 pc,

excluding ZAMS model uncertainties but including uncertainties in reddening.

We provide a more detailed discussion about the IC 348 distance in Appendix

A. In the case of the distance to the Ophiuchus region and as the position of

most of our objects sit around the main cloud, L1688, we based our decision

on the distance measured to this association. For our purposes and due to the

wide extension in the position of the TDs, we adopted a mean distance of 130

pc to L1688 core (Wilking, Gagné & Allen, 2008, and references therein) and

consistent with the distance of 131 ± 3 pc calculated by Mamajek (2008).

Once the distances were found and constrained, we calculated the bolometric

luminosities (L?) of IC 348, Ophiuchus and Taurus-Auriga members. Esti-
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mations of stellar masses and ages are obtained from the H-R diagram and

Baraffe et al. (2015) evolutionary tracks, except for IC348-21, IC348-31 and

EM* SR 21A, where we made use of the PARSEC evolutionary models (Bres-

san et al., 2012). These values are estimated with the use of L? and K absolute

magnitudes. Age and stellar mass uncertainties are based mainly on the H-R

diagram placement and the determination of L?, since Teff does not vary with

a large magnitude at ages < 5 Myrs in the pre-main sequence evolution tracks

of low mass stars. The main sources of error on the L? uncertainties are dis-

tance and extinction (Hartmann, 2001). In our estimates of AJ , we used the

expected colour of a main-sequence star, which underestimates these values up

to a factor of 2, and it is reflected in the luminosity and age of the system.

In the special case of embedded object EM* SR 24S that belongs to the triple

system EM* SR24, we adopted stellar properties from Andrews et al. (2011)

to avoid any IR contribution from its nearby binary companion, EM* SR 24N

(0”.2; Simon et al., 1995). Table 5.3 shows the estimated stellar parameters.

Figure 6.4 shows Baraffe evolutionary models with IC348, Taurus-Aurigae and

Ophiuchus members. They are dispersed in a range of ages between 0.5 and

10 Myrs, characteristic of T-Tauri stars. Here, we carefully selected the chosen

isochrone to derive stellar masses for each target, because these isochrones are

also used in our Bayesian analysis, as explained in section 5.3.1.

Dust Temperature and Inner Radii

As demonstrated by Espaillat et al. (2012), the NIR excesses of classical TDs

are well reproduced by the emission of a vertical wall directly exposed to stellar

radiation. Then, we have computed the TD SEDs from NIR to MIR wave-
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Table 5.3: Luminosity and Extinction for Our Sample Members.

Target Temperature1 AJ
2 Luminosity Age Mass3

[K] [mag] [L�] [Myrs] [M�]

IC 348 d = 220 pc

LRL 21 5280 1.70 ± 0.07 2.26 ± 0.25 5.0+3.0
−2.0 1.60+0.09

−0.05

LRL 67 3680 0.82 ± 0.06 0.23 ± 0.03 3.8+1.2
−1.0 0.50+0.05

−0.10

LRL 72 3550 0.97 ± 0.08 0.27 ± 0.04 1.9+0.4
−0.5 0.41+0.07

−0.04

LRL 237 3050 0.47 ± 0.10 0.04 ± 0.01 3.4+0.7
−0.6 0.13 +0.02

−0.04

LRL 97 3550 1.79 ± 0.08 0.25 ± 0.03 2.0+0.8
−0.5 0.37+0.07

−0.04

LRL 31 5590 3.21 ± 0.05 3.44 ± 0.40 8.0+2.0
−3.0 1.62+0.09

−0.06

LRL 182 3200 1.03 ± 0.07 0.09 ± 0.01 2.7+0.4
−0.6 0.22+0.05

−0.03

LRL 213 3050 0.53 ± 0.16 0.04 ± 0.01 3.4+0.7
−0.6 0.13+0.02

−0.04

LRL 58 3680 1.13 ± 0.07 0.39 ± 0.05 1.7+3.0
−3.0 0.50+0.05

−0.07

LRL 135 3200 0.74 ± 0.11 0.12 ± 0.02 1.9+0.4
−0.3 0.2+0.05

−0.03

Taurus-Aurigae d = 140 pc

IRAS04125+2902 3680 0.90 ± 0.06 0.39 ± 0.07 1.7+0.4
−0.5 0.50+0.04

−0.02

V410 X-ray 6 3200 0.98 ± 0.09 0.41 ± 0.07 0.1+0.4
−0.1 0.22+0.04

−0.05

J04210934+2750368 3050 0.00 0.09 ± 0.02 1.4+0.4
−0.5 0.17+0.02

−0.07

Ophiuchus d = 130 pc

EM* SR 24S4 4990 7.00 4.00 – 2.00

EM* SR 21A 5720 2.46 ± 0.12 14.40 ± 2.40 2.0+2.0
−1.0 2.70 +0.10

−0.10

WSB 12 4450 0.96 ± 0.13 1.40 ± 0.15 2.1+1.8
−0.9 1.11 +0.16

−0.11

J16262367-2443138 4450 1.14 ± 0.15 1.90 ± 0.21 1.3+1.2
−0.7 0.99 +0.14

−0.10

J16273901-2358187 4200 1.49 ± 0.11 1.51 ± 0.17 0.9+0.9
−0.4 0.90 +0.11

−0.09

WSB 63 3550 1.68 ± 0.08 0.65 ± 0.07 0.6+0.1
−0.2 0.35 +0.09

−0.10

J16335560-2442049 4050 1.26 ± 0.09 0.70 ± 0.08 2.0+0.8
−0.5 0.73 +0.11

−0.09

J16250692-2350502 3400 1.32 ± 0.09 0.31 ± 0.03 1.1+0.4
−0.2 0.28 +0.05

−0.14

J16315473-2503238 4050 2.25 ± 0.18 2.50 ± 0.27 0.1+0.7
−0.1 0.86 +0.20

−0.20

WSB 40 4200 1.68 ± 0.08 1.11 ± 0.12 1.5+0.6
−0.5 0.96 +0.12

−0.08

V*V852 Oph 3200 0.84 ± 0.09 0.26 ± 0.03 0.6+0.3
−0.1 0.19 +0.08

−0.03

1 References: Effective Temperatures are taken from the scale of Pecaut & Mamajek
(2013), with uncertainties of ∼ 150 K
2 Extinctions are calculated following the Mathis (1990) approach.
3 Masses are estimated assuming single star systems.
4 Stellar parameters taken from Andrews et al. (2011).
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Figure 5.2: Theoretical models from Baraffe et al. (2015) for low mass young
stars. Solid lines in descending order are 0.5, 1, 2, 3, 5, 10, 20, 50 and 100
Myrs isochrones and dashed lines represent the evolutionary tracks in the range
of 0.06 and 1.4 M. Blue solid diamonds, green solid triangles and red solid
dots are TDs from Taurus-Aurigae, Ophiuchus and IC348 star forming regions,
respectively. The blue solid triangle corresponds to EM* SR 24S with L� and
T (K) taken from Andrews et al. (2011). We used the scale temperatures
range from Pecaut & Mamajek (2013) and stellar luminosities are estimate as
described in section 6.4.2
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Figure 5.3: Spectral energy distribution of the sources classified as transitional
disks. Red dots show photometric data acquired from the literature, green
line is the BT-settl spectrum model according to the spectral type, blue line is
the best fit, and the solid black and dotted blue lines are the disk black-body
function values. AJ values used are in Table 5.3.
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lengths in order to estimate inner wall radii for every disk (Figure 5.3). Since

the thermal balance between emission and absorption of radiation is dominated

by the dust grains as the main opacity source, we computed the dust temper-

ature (Td) at the truncation radius (rd) of the disk. Our input photometry for

SED fitting were from 2MASS (1.25, 1.65, 2.22 µm ) and Spitzer/IRAC (3.6,

4.5, 5.8, 8 and 24 µm) (Skrutskie et al., 2006; Evans et al., 2003, 2009b; Currie

& Kenyon, 2009; Rebull et al., 2010).

An estimation of the Td was computed by fitting the stellar photosphere+disk

black body function (Fm) to the observed data (Fν) and minimizing the sum

of squares. Prior to this fitting, the photometric data were dereddened using

the Mathis (1990) approach, since the properties of the inner disk material

significantly affects flux emission in these bands, and thus, the inner radii

approximations (Furlan et al., 2011). To calculate the stellar synthetic pho-

tometry with a fixed temperature T?, which is approximated by the Teff , we

1) interpolated the response curves, for the set of filters used in the fitting,

and the BT-Settl spectra models of the corresponding T? (Allard, 2014) and

2) convolved the filter response curves with the syntethic spectra, to match

the spectral resolution. Because the 2MASS, IRAC, and 24 µm data have a

photometric uncertainty of between a few percent and 0.1 mag for the objects

investigated here, systematic effects can contribute up to 0.1 mag and also, to

account for flux variability of the objects, we added an observational error of

12%. A multiplicative dilution factor relating the central star radius (R?) and

the distance to the object (d) is part of the minimization of the χ2. Then, the

model of received flux is the product of a dilution factor and the blackbody

flux. In the case of a star, this dilution factor is given by Md =
(
R?
d

)2
(e.g.
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Bayo et al., 2008)

Finally, the estimations of the truncation radius, rd, are obtained by assum-

ing Local Thermodynamic Equilibrium, and the ability of the dust to acquire

thermal balance between absorption and emission of the radiation. The inner

wall, nearly perpendicular to the stellar radiation, is heated only by the central

star with a characteristic R? and T?. Additionally, if the scattering of the dust

grains is negligible and assuming optically thin gas in the inner region, we have

in radiative equilibrium that the inner wall is being truncated at:

rd =
R?

2
√
ε

(
T?
Td

)2

(5.1)

where ε ≡ κ(Td)
κ(T?)

is the thermal cooling efficiency factor that characterizes the

dust properties of a certain size (Dullemond & Monnier, 2010). If the inner

wall consist of small dust grains of radius a << 3 µm and the backwarming by

the grains deeper in the wall is negligible, then ε << 3−0.5. For our purposes,

the size of the grains at the location of the inner wall is taken to be a ∼ 0.1

µm, leading to estimations of rd with ε ∼ 0.08 (Isella & Natta, 2005, and

references therein) as shown in Table 5.6. For EM* SR 24S, because of its

large inclination and elongated ring with a significant brightness asymmetry

along the major axis, and to avoid any flux contamination in the Spitzer/IRAC

bands from EM* SR 24N, we adopted the inner radius estimated by Andrews

et al. (2011), and recently confirmed by van der Marel et al. (2015). Our rd

estimations are in agreement with those previously measured (Table 5.1).
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5.3 Data Analysis

5.3.1 Bayesian Analysis

Although some secondary companions are observed in the interferograms, e.g.

Figure 5.1, it is important to carefully account for the assumptions inherent in

the imaging completeness. A conservative approach where only secure detec-

tions are considered and conservative detection limits are quoted does not make

maximum use of the data, especially at the smallest separations where binaries

of moderate contrast ratios give relatively small closure-phase signals. Here,

we made use of Bayesian statistics to compute confidence levels for detections,

providing the advantage of using prior information of the underlying population

of faint stellar companions. In essence, our approach to completeness correc-

tion, along with extensive Monte Carlo simulations, assigns the probability of

detecting the presence of a faint companion or absence of it. We built two

hypotheses, binary (Bn) and single (Sn), by using prior information of these

models together with the aperture masking data of the TDs. Thus, a Bayes’

theorem expresses the strengths of the hypotheses as follows:

p(B|D) =
p(Bn)p(D|Bn)

p(D)
(5.2)

p(S|D) =
p(Sn)p(D|Sn)

p(D)
(5.3)
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where p(D|Bn) and p(D|Sn) are the global likelihood2 functions or probability

of obtaining data D, if Bn or Sn are true; p(Bn) and p(Sn) are the prior prob-

abilities; and p(Bn|D) and p(Sn|D) are the posterior probabilities of Bn and

Sn, respectively. The index n represents the number of simulations performed

to determine the probability for each model.

Global Likelihood: Confirming or Ruling out the Presence of a Bi-

nary System.

In the data reduction process, after computing closure phases, the calibrated

data set is used to search for faint companions close to the central star and

orbiting the inner region of the disk. Our search strategy is based on the com-

putation of the global likelihood that can be maximized from the conditional

likelihood and its joint prior probability (Equation 5.4). Here, the conditional

likelihood expresses the probability of observing our data for a specific set of

model parameters and is weighted by the joint prior probability that incorpo-

rates prior information about the distribution of the model parameters. In our

case, we have two hypotheses, Bn and Sn, that can be tested by computing

their global likelihood as follows:

Confirming a Binary System: The maximum global likelihood or the odds

by which our data favors a binary model, lies in our approach to completeness

correction and the extensive binary star simulations to assign all possible con-

2The global likelihood of a model is equal to the weighted average likelihood for all the
parameters in consideration.
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trasts of the secondary relative to the primary (C), angular separation (ρ) and

position angle (θ) values, as detailed below. Thus, our analysis to compute

confidence levels is based on the derivation of the χ2 goodness-of-fit to the n

mock binary system models. From Equation 5.2 and marginalizing over all pos-

sible model parameters, we have that the global likelihood for a binary system

model is:

P (D|Bn) =

∫
dΨp(Ψ|Bn)× P (D|Bn,Ψ) (5.4)

where, P (D|Bn,Ψ) is the conditional likelihood, P (Ψ|Bn) is the joint prior

probability for the model parameters and Ψ = (T, a, e,Ω, ω, i, t, q) is the eight-

dimensional parameter space representing all the possible binary orbits with

the orbital parameters: Time of periastron passage (T , years), Semi-major

axis (a, arc-second), Eccentricity (e), Position angle of the line of nodes (Ω),

Longitude of periatron (ω), Inclination (i, degrees), Epoch of observation (t,

year) and Mass ratio (q).

To compute the eight-dimensional integral shown in Equation 5.4, we made

use of Monte Carlo Integration by generating a number of random samples

according to a determined probability distribution function (PDF) in a specific

spatial domain. The prior PDFs for T,Ω and ω for a binary system are assumed

to have a uniform distribution (uninformative prior), so p(T,Ω, ω2|Bi) = 1 in

the space domain of these parameters. The inclination i is sampled considering

that the orbital plane of the generated binaries might have any orientation in

space. For q, we considered the mass ratio distribution often modelled in the

form f(q) ∝ qβ, where β is a power index of 0 that reasonably describes our TD
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sample with spectral types ranging G3-M5 (e.g. Janson et al., 2012; Raghavan

et al., 2010). For the prior distribution of e for these very young objets in

a process of orbital circularisation, we based our approach on our resolving

limitations of up to & 2 au that corresponds to orbital periods of ∼ 1000 days

and is sampled well enough by the “thermal” eccentricity distribution f(e) = 2e

(Ambartsumian, 1937; Duquennoy & Mayor, 1991). For simplicity, we used the

logarithmically flat distribution dN/d log a ∝ a0 approach used by Metchev &

Hillenbrand (2009) to sample a. Thus, the joint prior probability is:

P (Ψ|Bn) ∝ qβ
(

2e

a

)
sin (i) . (5.5)

Table 5.4 shows the limits used in the simulations and corresponding prior for

the orbital parameters. The sampling ranges for i, e, T,Ω and ω were taken

by considering the total orbital plane with any orientation in space. More

relevant for our detection limits, we focus our search region, mostly constrained

by a, because the dynamics of binary-disk interaction models predict that tidal

interaction between the binary star and the disk might truncate the inner

region of the disk at radii of 2-3 times the semi-major axis of the binary orbit

(Artymowicz & Lubow, 1994). Table 5.6 shows the inner radii estimates that

we used as limits to sample the semi-major axis space that ranges between rd
2

and rd
3

at distances of the corresponding star-forming region (Tau-Aur: 140 pc,

Ophiuchus: 130 pc and IC348: 220 pc).

Separately, Contrast ratio (C) and Stellar Masses (M1,M2) are sampled as a

function of the corresponding distribution of the Mass ratio (q), where these

stellar masses together with the sample of semi-major values are used as inputs
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in Kepler’s third law to compute the Orbital Periods (P, year) of each system.

Here, we provided a brief summary of our methodology to sample M1,M2 and

C.

• Stellar Masses and Contrast Ratios: Initially, we chose an isochrone (Z1)

from the Baraffe et al. (2015) models, which represents the age of the TD

and that in principle, plays the role of the primary component. In order

to account for all the possible flux ratios, the following step is to start

computing evolutionary tracks that describe the possible secondary stellar

component in our data. This is done by randomly sampling a mass-ratio

(qn) distribution and using the relation Z2,n = Z1qn, where Z2,n and Z1 are

the tracks for all the possible secondary stars and the track for the primary

star, respectively. Then, we computed the theoretical magnitudes of the

these new evolutionary tracks by interpolating onto the theoretical stellar

masses and K magnitudes of the chosen isochrone (Z1). Thus, we have

generated a series of isochrones that correspond to every value of qn,

q = 0 being a single star and q = 1 a binary star system with similar

masses. Once the evolutionary isochrones describing all the secondary

components are computed and taking Z1, we were able to calculate the

total K magnitude of the binary system. Then, we estimated the primary

mass (M1) based on its observed absolute K magnitude interpolated onto

the total K magnitude of the binary system and the theoretical mass

track; and with the relationship M2 = q1,nM1, we obtained the secondary

mass, M2. Finally, interpolating the primary and secondary masses onto

the total K magnitude of the binary system and the theoretical mass

track, we estimated their K magnitudes in order to compute contrast
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Table 5.4: Parameter Prior for Binary Model

Orbital Parameter Prior1 Lower Bound Upper Bound

Semi-major Axis (arc second) Jeffreys’ prior 1
3
Rd

2
3
Rd

Period (years) Keplearian a3
i a3

o
Time of periastron passage (years) Uniform – –
Eccentricity 2e 0.01 0.9
Inclination (degree) sin (i) 0 180
Node (degree) Uniform 0 180
Longitude of Periastron (degree) Uniform 0 360
Mass-ratio Power-Law 0.01 1

1 It was used the Cumulative Distribution Function to sample in the orbital
parameter space.

ratios.

Finally, the orbital parameters sampled are used to derive the angular separa-

tion (ρ) and position angle (θ) (Meeus, 1992) for N simulated binary systems.

These values together with the calibrated data are used to compute the max-

imum likelihood of the contrast ratio and, thus confirm or rule out a stellar

companion orbiting in the inner region of the disk.

Confirming a Single System: In the case of a single system as a point-

symmetric target, the calibrated closure-phases are nearly equal to zero. Then,

the computation of the global likelihood for a single system is basically deter-

mined by the conditional likelihood for a single system model with flux ratio

equal to zero. From Equation 5.3, the global likelihood is:

p(D|Sn) = p(C = 0|Sn). (5.6)

Odds Ratio: After computing the global likelihoods for Bn and Sn, we are

interested in comparing the two hypotheses, thus we computed the ratio of
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Table 5.5: Companions Identified Outside the Inner Radii with the Aperture Mask

Primary BJD ∆K Sep Sep PA M1
1 M2

1 Sig.2

(2400000+) [mag] [mas] [au] [deg.] [M�] [ M�]

LRL 72 55880.79 1.37 ± 0.02 103.72 ± 0.36 22.82 ± 0.04 221.86 ± 0.10 0.41 0.13 49.0
” 56883.04 1.42 ± 0.03 100.45 ± 0.47 22.10 ± 0.08 226.70 ± 0.26 ” ” 40.0
LRL 182 57000.75 1.54 ± 0.04 35.30 ±0.74 7.76 ± 0.26 213.42 ± 0.77 0.20 0.05 39.4
LRL 135 57000.79 0.17 ± 0.01 82.01 ± 0.26 18.04 ± 0.01 208.36 ± 0.21 0.18 0.16 90.5
LRL 213 57000.83 0.57 ± 0.18 18.01 ± 0.76 3.96 ± 0.17 50.48 ± 3.23 0.11 0.06 9.30

J04303235+35361333 55880.96 0.40 ± 0.36 20.25 ± 2.88 9.11± 1.30 205.28 ± 2.25 0.72 0.59 10.31
” 57001.00 0.02 ± 0.02 26.24 ± 0.70 11.81 ± 0.32 216.81 ± 2.19 ” ” 9.48

1 The fractional uncertainties on the individual masses are ≤20%.
2 Significance in σ is calculated as

√
∆χ2 × (Ndf/Ncp), with Ndf the number of degrees of freedom and Ncp

the number of closure-phases, and uncertainties scaled so that the reduced chi-squared of the best fit solution is unity.
3 Located at Auriga-California molecular cloud (450 ± 23 pc; Lada, Lombardi & Alves, 2009).

p(B|D) and p(S|D) known as Odds Ratio and written as OB,S in favor of the

binary system model over the single system model:

OB,S =
p(B|D)

p(S|D)
=
p(Bn)

p(Sn)

p(D|Bn)

p(D|Sn)
(5.7)

where the first factor on the right side of Equation 5.7 corresponds to the prior

odds ratio equal to unity due to its uniformity in the parameter space and the

second term is known as Bayes’ Factor (Υ). Thus, ΥB,S >> 1 means that a

binary model is preferred by the data, BB,S << 1 the data comes from a single

star and BB,S ≈ 1 means that the odds are not modified and a binary and/or

single star are equally probable.

5.4 Results

We are considering visual companions to stars in our cluster down to a Ks

magnitude of ∼15 in IC348 (and significantly brighter limits in other clusters),

where the stellar density is approximately 2 × 10−4 stars per square arcsec at
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this magnitude limit. Given that we are only considering companions within

∼0.16 arcsec in this paper, the probability of a background star masquerading

as a physical companion is no more than 0.002% for each star in the sample,

or <0.04% for the entire sample.

As a part of our analysis and election of calibrator objects, we have found that

2MASS J04303235+3536133 is a binary object and although, it is reported as

a TD by Cieza et al. (2010), we excluded this object from the sample because

it is located at the Auriga-California molecular cloud. Table 5.5 shows contrast

and positions for both observing epochs of the object.

5.4.1 Stellar Companions Outside the Inner Radii

In our first identification process, we identified LRL 72, LRL 182, LRL 213

and LRL 135 as cases for a high contrast detection with a confidence level of

≥ 99.5 % (section 6.2). We removed those objects as a part of the sample of

TDs because the stellar companion is located outside the area of study and is

not responsible for carving out the inner region of the disk. Estimation of the

companion mass values were obtained by taking the K mag from the system,

∆K and Baraffe et al. (2015) models. Then, after obtaining an estimate of

the K magnitudes for each stellar component, we interpolated linearly onto the

evolutionary tracks to obtain the individual masses. Mass uncertainties are

dominated by the evolutionary tracks, and depending on the theoretical model

used, are of the order of 10-20% (Siess, 2001). In the case of LRL 213, we

included visibility amplitudes for breaking contrast/separation degeneracies.

Table 5.5 shows the epoch, contrast ratio detection, position parameters and
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companion masses of these new binary systems.

The SEDs of these four close binary companions have NIR and MIR fluxes

above the level expected for a reddened low mass star of spectral types M2-M5.

The qualitative SEDs of these objects can be explained by a system composed

of a close low-mass binary star, where the secondary component is surrounded

by a “cold and weak” disk, a “circum-secondary disk”. For instance, if the LRL

72 components are coeval and using the Baraffe et al. (2015) models, the object

would correspond to a spectral type of ∼ M5−M7 with a temperature between

2900 and 3100 K. As shown in Figure 5.4, the IR excess in the SED might be

emitted by a disk orbiting the secondary component, instead of the primary

star. Previous studies have shown that disks around brown dwarfs and very

low mass stars are generally flatter and less massive than their counterpart T

Tauri disks (Olofsson et al., 2013; Liu et al., 2015). This would explain the

relative weak IR excesses observed in their SEDs of these binary systems.

Additionally, the angular separation of ∼ 100 ± 0.4 mas of LRL 72, imposes a

limit on the extension of the disk of around 22 au, because the presence of the

companion at this close distance would truncate the disk. Similarly, LRL 182

and LRL 213 with a closer companions having mass values of 0.07 M� at ∼

7.7 au and 0.15 M� at ∼ 4.0 au, respectively, the disk also undergoes a faster

dispersion as shown in its SED with a homogeneously small IR excess, see

Figure 5.3. For LRL135, the mass ratio is near unity (q=0.89), and the system

has a very weak excess with a disk (Figure 5.3). This system therefore remains

a TD candidate, with it being unclear which component of the binary is the

TD candidate. This system has a relatively high disk to stellar temperature

ratio, with only a very small cleared inner disk region.
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Figure 5.4: Spectral Energy Distribution for LRL 72 and its components with
spectral types M2.5 and M5.5. Red dots show photometric data acquired from
the literature, green and orange lines are the primary and secondary compo-
nents BT-settl spectra, respectively. The black line is the disk black-body
function values, the cyan line is the best stellar fit and the blue line is the sum
of the primary and secondary spectra and the disk black-body function values.

5.4.2 Stellar Companions Inside the Inner Radii

Our fits to closure phases showed detections of 7 new candidate companions.

As shown in section 5.3, we computed the Bayes’ Factors for every object in

the sample. Following the interpretation of Jeffreys (1998), we have found very

strong Bayes’ factors as an indication of the presence of candidate compan-

ions for LRL 31, V∗V X-ray 6, WSB 12 and 2MASS J16335560-2442049 (see

Table 5.6). For WSB 40, 2MASS J04210934+2750368 and 2MASS J16315473-
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Table 5.6: Bayesian Analysis

Object Bayes’ Factor rd rd Td

[au] [mas] [K]

LRL 21 0.03 10.9 ± 0.8 49.0 ± 4.0 194.2 ± 1.0
LRL 67 0.03 11.6 ± 1.1 53.0 ± 5.0 112.0 ± 2.3
LRL 721 – 3.8 ± 0.4 17.0 ± 2.0 191.3± 1.7
LRL 237 1.0 1.2 ± 0.1 5.0 ± 0.4 219.6 ± 5.0
LRL 97 0.98 1.7 ± 0.2 8.0 ± 1.0 279.1 ± 3.4
LRL 31 300 13.1 ± 1.1 60.0 ± 5.0 198.0 ± 4.6
LRL 1821 – 1.2 ± 0.1 6.0 ± 0.4 260.1± 2.7
LRL 213 – 0.9 ± 0.1 4.0 ± 0.4 242.4 ± 1.0
LRL 58 0.99 2.8 ± 0.3 13.0 ± 1.0 246.5 ± 1.4
LRL 135 0.99 0.6 ± 0.1 2.0 ± 0.4 393.0 ± 2.4
IRAS04125+2902 0.02 19.9 ± 2.0 143.0 ± 14.0 92.3 ± 1.3
V410 X-ray 6 > 300 5.4 ± 0.4 39.0 ± 2.0 183.4 ± 9.6
J04210934+2750368 24 10.5 ± 1.2 75.0 ± 9.0 91.0 ± 1.9
EM* SR 24S2 0.01 29.0 223.0 –
EM* SR 21A 0.003 27.2 ± 2.7 209.0 ± 21.0 196.02 ± 9.8
WSB 12 > 300 6.0 ± 0.5 46.0 ± 4.0 230.0 ± 10.7
J16262367-2443138 0.07 8.3 ± 0.7 64.0 ± 5.0 211.0 ± 2.3
J16273901-2358187 0.05 11.1 ± 1.0 85.0 ± 7.0 174.2 ± 1.9
WSB 63 0.05 5.3 ± 0.5 41.0 ± 4.0 204.3 ± 2.0
J16335560-2442049 > 300 7.3 ± 0.7 56.0 ± 5.0 178.2 ± 3.3
J16250692-2350502 1.0 4.4 ± 0.5 35.0 ± 4.0 186.4 ± 3.3
J16315473-25032383 > 300 6.2 ± 0.6 47.0 ± 4.0 266.4 ± 11.5
WSB 404 > 300 6.7 ± 0.6 52.0 ± 4.0 209.8 ± 1.4
V*V852 Oph 0.05 16.2 ± 2.1 125.0 ± 16.0 93.1 ± 3.6

1 Targets not included in the statistical analysis of TDs.
2 Estimated inner radius taken from Andrews et al. (2011).
3 Based on Kohn et al. (2016). The Bayes’ factor based on closure-phase alone
was 30. See section 5.4.2 for a detailed discussion.
4 Using visibility amplitude. The Bayes’ factor based on closure-phase alone
was 3. See section 5.4.2 for a detailed discussion.
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Table 5.7: Detection Confidence Limits (99.9%)

Object BJD ∆K1

(2400000 +) 10-20 20-40 40-80 80-160 160-240

Non-Detections

LRL 21 55880.75 1.13 3.13 3.99 3.72 3.77
LRL 67 55880.83 1.83 3.59 4.44 4.18 4.24
LRL 237 56882.04 - 0.23 1.52 1.00 1.14
LRL 97 56882.04 0.59 2.75 3.80 3.54 3.57
LRL 58 57000.79 2.09 3.77 4.72 4.44 4.48
IRAS04125+2902 56881.12 1.60 3.41 4.29 4.04 4.09
EM* SR 24S 54635.75 - 1.43 2.77 2.40 2.41
EM* SR 21A 54635.88 2.51 4.11 4.98 4.71 4.75
J16262367-2443138 54635.88 2.28 3.91 4.81 4.57 4.58
J16273901-2358187 55674.96 - 0.44 2.01 1.60 1.67
WSB 63 55674.96 0.88 3.00 3.97 3.77 3.82
J16250692-2350502 55674.96 - 0.37 1.81 1.42 1.51
V*V852 Oph 56032.08 1.60 3.41 4.31 4.06 4.12

Detections Outside Inner Radii

LRL 72 55880.79 - - 0.55 0.31 0.38
” 56883.04 - - 0.54 0.31 0.38
LRL 182 57000.75 - 0.13 1.08 0.70 0.80
LRL 135 57000.79 - - 0.20 - 0.03
LRL 213 57000.83 0.68 2.85 3.83 3.63 -

Detections Inside Inner Radii

LRL 31 57000.79 0.93 3.02 3.91 3.72 -0.00
V410 X-ray 6 55139.00 0.57 2.72 3.63 3.38 3.44
WSB 12 55675.00 0.56 2.69 3.63 3.37 3.41
WSB 40 56032.08 1.45 3.32 4.33 4.06 4.11
J16335560-2442049 55675.04 0.93 3.02 3.91 3.72 -
NOTES: Angular separation ranges are given in mas.
1 Limits within annuli.

Table 5.8: Companions Identified Inside the Inner Radii with the Aperture
Mask

Primary BJD ∆K Sep Sep PA M2
1 Sig.

(2400000+) [mag] [mas] [au] [deg.] [ M�]

LRL 31 57000.92 3.92 ± 0.20 38.09 ± 5.30 8.38 ± 1.16 45.56 ± 4.06 0.20 6.70
V410 X-ray 6 55138.92 0.15 ± 0.07 22.96 ± 1.25 3.22 ± 0.18 87.80 ± 2.20 0.21 12.50
WSB 12 55674.92 0.42 ± 0.11 20.29 ± 0.78 2.64 ± 0.10 351.02 ± 2.13 0.75 11.80
WSB 40 56031.51 0.35 ± 0.14 17.42 ± 0.94 2.26 ± 1.12 -11.37 ± 3.80 0.75 8.40
J16335560-2442049 55675.04 0.10 ± 0.05 25.30 ± 0.55 3.29 ± 0.71 344.55 ± 1.77 0.61 14.40

NOTES: Significance in σ is calculated as
√

∆χ2 × (Ndf/Ncp), with Ndf the number of degrees of freedom and Ncp the

number of closure-phases, and uncertainties scaled so that the reduced chi-squared of the best fit solution is unity.
1The fractional uncertainties on the stellar masses are ≤20%.
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Table 5.9: Degenerate Companion Solutions for 2MASS J04210934+2750368 at ∆K 0.5, 1, 2 and 3.

Primary BJD ∆K Sep Sep PA M2 Sig.

(2400000+) [mag] [mas] [au] [deg.] [M�]

J04210934+2750368 57001.04 0.5 19.28 ± 0.69 2.70 ± 0.09 309.60 ± 3.60 0.09 10.25
” ” 1.0 19.01 ± 0.75 2.66 ± 0.10 307.68 ± 3.92 0.07 9.87
” ” 2.0 21.78 ± 1.32 3.05 ± 0.18 306.30 ± 4.63 0.04 8.54
” ” 3.0 26.40 ± 3.13 3.70 ± 0.94 306.89 ± 6.78 0.02 6.74

2503238, we obtained moderate Bayes’ factors (>10) from closure-phase alone,

and considered these sources in more detail. In all cases, a visibility amplitude

signal was found that was consistent with the best closure phase solution. In the

case of WSB 40, the use of visibility amplitudes resulted in a clear solution with

little degeneracy, as reported in Table 5.8. We assigned a high (>300) Bayes’

factor to this object in Table 5.6. In the case of 2MASS J04210934+2750368,

contrast ratio and separation were highly degenerate, so we list possible statis-

tically significant solutions at plausible contrast ratios as shown in Table 5.9.

For reported 2MASS J16315473-2503238, no binary solution was statistically

significant (taken as 6σ, e.g. Kraus et al., 2016), and there was only 1 epoch on

the target under variable Laser Guide Star conditions. For these reasons, we do

not report a binary solution, but note that a binary companion was confirmed

as a Double-Line Spectroscopic binary (SB2) star composed of a K7 and a K9,

with a semi-major axis of < 0.6 au by (Kohn et al., 2016) and therefore, we

assigned a high (>300) Bayes’ factor to this object in our statistical analysis

(Table 5.6).

An interesting case is 2MASS J16335560-2442049, which was initially presented

as a giant planet-forming candidate based on the morphology of its SED, large

disk mass and modest accretion rate (Cieza et al., 2010; Orellana et al., 2012).

Our χ2 minimization detected a secondary star located at ∼ 3.25 ± 0.07 au
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and using Baraffe et al. (2015) models and ∆K mag, the stellar mass would

correspond to ∼ 0.61 M�. However, the interpretation of a single-epoch for

this object has to be taken with caution because of the high inclination (∼ 50

deg) of its disk (Cieza et al., 2012a), and the known degeneracy between the

contrast ratio and small angular separations in the NRM data (Pravdo et al.,

2006). Recently, Cieza et al. (2013) demonstrated that the starlight scattered

off the inner edge of the FL Tau disk could mimic the presence of a faint

companion, which might be the case of 2MASS J16335560-2442049. Further

observing epochs are needed to establish the physical origin of the non-zero

closure phases found in our analysis. Other cases of new binary systems are

WSB 40 and WSB 12, which were below the detection limits of Cheetham

et al. (2015). Our careful reduction process and fits to closure phases resolved

companions at ∼ 2.22 ± 0.12 au with a mass of ∼ 0.75 M� for WSB 40 and

at ∼ 2.60 ± 0.10 au with a mass of ∼ 0.75 M� for WSB 12.

5.4.3 Stars without a companion in the Inner Radii

With a Bayes’ factor of < 0.1, the NRM data analysis did not detect binary

stars with angular separations ranging from ∼ 1
3

to 2
3

of the rd for LRL 21, LRL

67, IRAS04125+2902, EM* SR 21A, DoAr 44, 2MASS J16262367-2443138,

2MASS J16273901-2358187, WSB 63, EM* SR 24S and V*V852 Oph (Table

5.6). Detection limits for these objects are listed in Table 5.7. The absence

of a binary companion implies that the inner region mainly is being dispersed

by an internal process that determines the lifetime of the disk. To date, the

different mechanisms proposed to explain the inner holes of these disks do not

accurately predict the observed features of TDs, and produced theoretically
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distinct properties of the TDs (e.g. Alexander & Armitage, 2007). Despite all

the efforts to develop a unique explanation of the evolution of the disk and its

transition phase from a class II to III, photoevaporation and planetary forma-

tion, and its counterpart processes such as dust filtration and grain growth,

seem to be the most efficient mechanisms to disperse the disk from the inside

out.

5.4.4 Unresolved Transitional Disks

In Table 5.6, LRL 237, LRL 97, LRL 58 and 2MASS J16250692-2350502 are

the objects with Bayes’ factors of ∼ 1, meaning that our NRM observations

were not able to rule out or confirm companions for those objects, where the

inner radii estimations fall inside our detection limit of 25 mas. These objects

have M1 or later spectral types, meaning that they are at the low mass end

of our sample. They also have relatively low accretion rates, typical of lower

mass objects (Herczeg & Hillenbrand, 2008, . 10−8 M�yr−1) . If their lack of

a NIR excess is due to clearing by a binary companion, such a companion can

only be discovered by multi-epoch radial velocity monitoring. We summarise

our detection limits in Table 5.7.

5.5 Statistics

After estimating the stellar properties and computing the Bayes’ factor ΥB,S =

P (D|B)
P (D|S)

for every target, we proceed to estimate the frequency of binary stars

producing the “transitional disk SEDs”.
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Continuing with Bayesian statistics, we assigned prior probabilities to each

population, where the prior information for a binary or single system in TDs are

equally probable. A non-informative probability distribution for the frequency

of binary or single systems is a parameter representing two unique scenarios,

binary or non-binary. Thus, P (B) = γ represents the probability of binarity

and P (S) = (1−γ) not binarity, where the paramenter γ ∈ [0, 1] and is sampled

by the family of beta distributions 3 (Glickman & van, 2007).

The Jeffreys prior for the sampling distribution that provides uniform proba-

bility to both events B and S is represented by:

P (γ) ∝ 1√
γ(1− γ)

∝ 1√
P (B)P (S)

. (5.8)

Taking into account that the current work is pioneering in the search for close

binary companions (> 40 mas) or confirming a single star in the inner region

of TDs, no information was available from inside the inner region of these TDs.

Therefore, we have to assume that the data have arisen from one of two systems

and being equally probable. Thus, a prior distribution γ with the form that

represents the best prior state of knowledge can be modified with the observed

data as follows:

P (γ|D) ∝ P (γ)P (D|γ) ∝ P (γ)[γ(ΥB,S) + (1− γ)] (5.9)

3Beta distribution has parameters α, β = 1/2 to ensure a probability equal to unity and
events equally probable.
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where ΥB,S is the computed Bayes’ factor of every TD. Considering all TDs in

our sample and additionally TDs from previous studies, the posterior density

function of the frequency of binary systems responsible of the observed SEDs

is:

P (γ|D) ∝ P (γ)
i∏
i=1

[γ(ΥB,S)i + (1− γ)] (5.10)

with the index i representing the number of objects included in the modification

of γ.

5.5.1 Binary Frequency in TDs

Binary and single objects were identified in our sample of TDs with Bayes’

factors Υ < 0.1, Υ > 300 and Υ ' 1.0, which are likely single stars, binary stars

or unresolved systems, respectively, except for 2MASS J04210934+2750368

with a Bayes’ factor of 24 (Table 5.6); we proceeded to include objects that

were already classified as TDs and eventually, were characterized as binary or

single stars4. For these binary and single objects a Bayes’ factor of 300 and

0.001 were used in the Bayesian statistical analysis, respectively. These objects

are summarised in Table 5.10. After computing the posterior probability, see

Equation 5.10, our uniform prior has been modified to the posterior probability

of 0.38 ± 0.09 and shown in Figure 5.5.

4For the special cases of 2MASS J16315473-2503238 and previously studied, FL Cha, we
opted to include them as binary objects in the statistical analysis.
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Figure 5.5: The fraction of TD in our sample consistent with a binary system
being the main mechanism causing the characteristic SED is 0.38 ± 0.09.

5.6 Discussion

In our combined sample consisting of 31 objects, including 11 TDs and CDs

with known multiplicity from the literature, and excluding 3 wide binaries, we

find that a fraction of 0.38 ± 0.09 of the SEDs are being produced by the flux

emission of a binary star + disk instead of a single star + disk. This means

that the remaining SEDs with low NIR and MIR excesses observed to date are

the result of the dispersion of the primordial material due to another internal

mechanism. Our binary detections inside the fitted disk wall inner radii do not

necessarily have projected separations between 1
3

and 1
2

of the inner radii, which
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Table 5.10: Stellar Properties of Other Known TDs

Object R.A. (J2000) Dec. (J2000) Type Spec. Type Accretor Rcav. Reference

[au]
Coku Tauri/4 04 41 16.808 +28 40 00.07 Binary M1.5 n 10 1, 2,11
LKCa15 04 39 17.796 +22 21 03.48 Single K5v y 50 1,3,5,9
DM Tau 04 33 48.73 +18 10 10.0 Single M1 y 19 1,4,5,9
GM Aur 04 55 10.983 +30 21 59.54 Single K5 y 28 1,4,5,9
UX Tau A 04 30 03.988 +18 13 49.61 Single G8 y 25 1,4,5,9
RY Tau 04 21 57.41 +28 26 35.57 Single K1 y 18 1,5,10
CS Cha 11 02 24.912 -77 33 35.72 Binary K6 y 38 1,6,10
T Cha 11 57 13.550 -79 21 31.54 Single K0 y 40 1,6,12
FL Cha 11 08 39.051 -77 16 04.24 Binary K8 y 8.3 1,7
TW Hydrae 11 01 51.907 -34 42 17.03 Single K6 y 41 1,8,13
Haro 1-16 16 31 33.46 -24 27 37.3 Single K3 y 36 1, 14, 15

Reference: (1) 2MASS All-Sky Point Source Catalog, (2) Ireland & Kraus (2008), (3) Kraus & Ireland (2012),
(4)Huélamo et al. (2011), (5) Pott et al. (2010), (6) Guenther et al. (2007), (7) Cieza et al. (2013), (8) Rapson
et al. (2015), (9) Andrews et al. (2011), (10) Espaillat et al. (2011), (11) D’Alessio et al. (2005), (12) Huélamo et al.
(2015), (13) Nomura et al. (2016), (14) Bouvier & Appenzeller (1992), (12) Cheetham et al. (2015)

is the expected semi-major axis range for a binary to cause the truncation of

the disk. However, all detections lie within 1
2

of our calculated inner disk radii,

consistent with projection effects.

Given the criteria applied to select our sample and following the standards

for disk classification, we emphasize that these objects should be treated as

CDs that possibly are in a transitional phase, and no longer treat them as

TDs with a single star. Originally, the SEDs of these objects were described

assuming only one object in the interior of the disk and using detailed disk

models to fit the excess continua (e.g. Espaillat et al., 2012). As demonstrated

by this work, there is a significant fraction of these SEDs which were mis-

classified. However, as seen in Figure 5.3, the CD SEDs of LRL 31, V410 X-ray

6, WSB 12, WSB 40 , 2MASS J16335560-2442049, 2MASS J04210934+2750368

and 2MASS J16315473-2503238 are indistinguishable from TDs. Although,

to date the resemblance between CD SEDs and TD SEDs is well established

(e.g. Ireland & Kraus, 2008), unfortunately we could not set an observational

constraint such as accretion rate or flux emission in our sample. For example,
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the SEDs of V410 X-ray 6 and 2MASS J16335560-2442049 bear a resemblance

to the large MIR emission and zero NIR excess detected in the binary Coku

Tau/4 (D’Alessio et al., 2005; Ireland & Kraus, 2008), while the other objects

show a more similar SED to a typical TD SED. On the other hand, for those

objects shown in Table 5.6 with Bayes’ factors ' 1, that due to resolution

limitations we were not able to confirm or rule out their binarity, multi-epoch

RV monitoring observations are needed (e.g. Kohn et al., 2016), because there

might be more binary objects dispersing the inner region of the disk efficiently.

We have also detected 4 new binary systems with the location of the sec-

ondary component outside the inner region of the disk. Interestingly, these

systems produced SEDs characteristic of the TDs and are low accretors (Ta-

ble 5.5). We have proposed that those SEDs composed of a low-mass binary

star with one of its components orbiting outside the inner radius of the disk,

might have its more “evolved” disk orbiting the sub-stellar companion, instead

of the primary component. Although, it is also plausible that the primary

component has a circumstellar disk that is being dispersed by the close sub-

stellar companion. Previously, Harris et al. (2012) performed a high angular

resolution millimeter-wave dust continuum imaging survey of circumstellar ma-

terial associated with the individual components of multiple star systems in the

Taurus−Auriga young cluster. They found that the presence of a close stellar

companion (< 30 au ) impacts disk properties, producing a disk mass deple-

tion with a factor of ∼ 25. In the case of the LRL 72, LRL 182, LRL 213

and LRL 135 systems, a faster dispersion of the disk by the presence of the

stellar companion located at ≤ 20 au could influence the initial conditions for

the formation of planets and prevent the first steps of this evolutionary process
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(e.g. dust settling and grain growth).

5.6.1 Physical Sources of Typical TD SEDs

Planetary formation could potentially explain the estimated inner optically

thick disk radii for these objects and therefore, the peculiar shape or decreased

flux observed in the NIR/MIR SEDs of these TDs. Depending on the inner

hole size, the gap could be cleared up by single or multiple planets orbiting

this region (Lubow, Seibert & Artymowicz, 1999; Rice et al., 2006b; Dodson-

Robinson & Salyk, 2011). In the context of planet disk interaction, and as a

consequence of a massive planet clearing out the inner region of the disk, a local

pressure bump is created at the inner edge of the outer disk. In the last decade,

this local pressure bump was proposed to act as a filter at the outer edge of a

disk gap, filtering particles of size & 10 µm and impeding the drift inward of

them (Rice et al., 2006a). As a result of this dust filtration, the disk profile is

shown with an abrupt discontinuity in its dust radial profile and at the same

time permits the presence of small particles closer to the central star (. 10 µm)

(e.g Garufi et al., 2013). Thus, this optically thin dust might be responsible of

the weak NIR/MIR excess present in TD SEDs. In addition, inside this cavity

coupling between µm size dust grains and gas is expected (Garufi et al., 2013),

while the location to pile-up the dust at a sub- to millimeter scale in a pressure

maximum, leads to different locations of gap edges for gas and “bigger” dust

particles (Pinilla, Benisty & Birnstiel, 2012). In our approach to estimate inner

cavities, we consider the location of particles of ∼ 0.1 µm that might coincide

with the gaseous cavity, ingredients necessary to explain the detected accretion

rates in our sample of TDs.
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Most of our TDs show accretion rates ranging from 10−8 to 10−10 M�/yr and,

although these accreting TDs are also ideal targets to test the role of some

photoevaporation models (e.g. Alexander, Clarke & Pringle, 2006a,b), there

are other missing pieces to the puzzle such as disk mass measurements needed

to obtain a complete picture of this transitional phase. Therefore, the observed

SEDs of TDs with the presence of a single star might be subject to a dominat-

ing internal mechanism and the amount of mass in the disk. Thus, in order to

distinguish the dominating dispersal mechanism producing the inner holes in

the disks, a follow-up program of millimeter observations of the TDs is required

to be able to estimate the disk mass of these objects. Nevertheless, the inner

region of these TDs could be depleted by a combination of two or more mecha-

nisms that dominate at different distances from the central star and timescales

dictated by the initial physical conditions.

5.6.2 Single vs. Binary Stars: Hosting Planetary For-

mation

At first glance, it is tempting to suggest that single stars have a higher proba-

bility of hosting the formation of planetary systems than close binary systems.

However, Pascucci et al. (2008) studied the first steps of planetary formation in

single and binary systems with projected separations between ∼ 10 and 450 au

and they found no statistical significant difference in the degree of dust settling

and grain growth of those systems, indicating that expected differences in the

exoplanet properties arise in the later stages of their formation and/or migra-

tion (e.g. Kley, 2000; Kley & Nelson, 2007). Our close binary companions are
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detected at angular separations between 2−10 au; these small angular separa-

tions might affect the initial conditions for the formation of planets in the inner

region of the circumbinary disks. This is mainly due to the modification of the

binary eccentricity and excitation of density waves generated by the resonant

interactions of the binaries with the disk, which remove primordial material

(Lubow & Artymowicz, 2000). Based on these assumptions, the “weak” ex-

cess from the circumstellar material in the SEDs of the CDs, increased by the

secondary flux radiation, could point out a lower probability for the formation

of a planet in radii of around a ≤ 10 au in very close binary stars. On the

other hand, single stars are more probable to host forming planets at inner

radii around < 10 au than close binary stars, where actually most of the planet

formation might take place.

Because the time available to form any planet(s) in a circumstellar disk might

vary depending on the initial conditions and the evolution of the disk, it is

necessary in future surveys to characterize the distribution of disk masses in

CDs with close binary and single stars, that together with the accretion rates

will establish the physical parameters constraining where and when planets

form in those systems. Additionally, accretion rates have been used to estimate

the dissipation of the primordial disks once accretion stops; however, we did

not find any trend in Ṁ∗ or difference between close binary and single stars in

our sample that helps us to constrain the timescales of these systems.
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5.7 Summary

Using infrared NRM interferometry taken with the Keck II telescope, we have

observed a sample of 24 TDs located in the Taurus-Auriga, IC-348 and Ophi-

uchus star-forming regions. We implemented a new method of completeness

correction for our detection limits, which combines randomly sampled binary

orbits and Bayesian inference. With high confidence levels of 99%, a total of 7

close binary candidates have been detected orbiting the inner radii of the TDs,

and likely being the main mechanism responsible for the dispersion inside out

the inner disk. Also, we found four binary companions orbiting outside the

inner radii of their TDs and we have suggested that the unusual SEDs of these

systems are due to a disk orbiting a substellar secondary companion, produc-

ing similar SEDs as the single and/or close binary stars surrounded by a more

“evolved” disk or weak disk.

Including 11 known TDs from the literature and whose binarity was already

confirmed or ruled out, we have a total of 31 TDs that are part of our Bayesian

analysis (Section 5.5). Updating a uniform prior distribution, we obtained a

significant fraction of 0.38 ± 0.09 objects with TD SEDs that are actually

CDs. This fraction represents the unusual SEDs with a lack of excess in the

NIR and/or MIR being produced by the flux emission of a close-binary com-

panion and a disk. This fraction must be taken into consideration for future

surveys and studies of these transitional objects in order to decode the disk evo-

lution process and the timescales of close binary and single stars, separately.

The remaining SEDs are being produced by a single system and a disk in a

transition phase, where the main cause of dispersion could be any other in-
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ternal mechanism such as photoevaporation, grain growth and/or planet disk

interactions.

5.8 Distance to IC348 Region

The distance to the Perseus molecular cloud has been measured in a wide range

between 220 - 380 pc (Harris, Morgan & Roman, 1954; Herbig & Jones, 1983;

Cernis, 1993; Scholz et al., 1999; de Zeeuw et al., 1999; Hirota et al., 2008;

Hirota, 2010), and choosing the most appropriate measurement must be taken

with caution because of the influence on other observational estimations, such

as age and luminosity of the targets. For our purposes, we base our decision to

adopt a distance to IC348 on the astrometric observations of H2O maser sources

by Hirota (2010). They used the VERA long-baseline array to estimate a dis-

tance to SVS 13 in the NGC 1333 cluster of 235 ± 18 pc and a distance of 232

± 18 pc to L1448. In addition, Sun et al. (2006) mapped the Perseus molecu-

lar cloud complex simultaneously in 13CO(J=2-1) and 12CO(J=2-1) using the

KOSMA 3 m submillimeter telescope. They found a dynamical connection

with a velocity gradient between NGC 1333 at ∼7 km s−1, L 1448 at ∼8 km

s−1 and IC 348 at ∼9 km s−1 within a diameter of 20 pc of extension. Consid-

ering that the Perseus molecular cloud (containing IC348, NGC1333, L1448,

L1445; Hirota, 2010) has a full angular extent of only ±3
◦

from its centre, it is

expected to have a characteristic distance range of 5%.

Here, we use the most luminous member of the cluster, IC 348 LRL 1, com-

posed of two stars of similar brightness with spectral types B5V to adopt an

independent distance to IC348 objects. IC 348 LRL 1 is a binary system with
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Table 5.11: IC348 1 Properties

Property Value

R.A. (J2000)1 03:44:56.15
Dec. (J2000)1 +32:09:15.5
Spec. Type B5
L∗ (L�)2 324.8
AJ

3 0.55
T∗ (K) 15400
M∗ (M�) 4.6
Dist. (pc) 220

Reference: (1) 2MASS All-
Sky Point Source Catalog,
(2) Luminosity estimated
following the method from
Kenyon & Hartmann (1995),
(3) AJ estimated as described
in Section 6.4.2, (4) Spectral
type and stellar temperature
were adopted from Luhman
et al. (2003).
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Figure 5.6: PARSEC evolutionary models for young stars (Bressan et al., 2012).
Black Solid lines in descending order are 2, 3.5, 6 and 10 Myrs isochrones. Red
solid line corresponds to the 3.5 Myrs isochrone used to characterised IC348−1
and then, estimate a distance to the IC348 star-forming region.
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an angular separation of 0.47” and P.A. of 17.9
◦

(Alzner, 1998) and as the only

member of B spectral type in the region, it can be used to estimate a distance to

it (Luhman et al., 1998). At early ages, ≤ 10 Myrs, the bolometric luminosity

of these B spectral type massive stars do not vary significantly, giving an inde-

pendence of the isochrone used to describe the target. This allows a spectral

type conversion into effective temperature without constraints on the age of

the system. Figure 5.6 presents the isochrones of 2, 3.5, 6 and 10 Myrs, as they

are the most representative to describe young members of IC348. Clearly, the

isochrones used to predict the stellar parameters for IC 348 LRL 1 are mostly

invariant at this early stage of the stellar evolution.

We derived the stellar properties of IC 348 LRL 1 based on the spectral type

and a conversion to the stellar temperature, see Table 5.11. According to the

PARSEC evolutionary models (Bressan et al., 2012), a B5V object with a stellar

mass of 4.2 M� should be located at a distance of 220 ± 10 pc, see Figure 5.6.

Thus, a stellar luminosity of 393 L� is calculated with the dereddened J-band

photometry method from Kenyon & Hartmann (1995) and AJ extinction was

estimated as explained in Section 6.4.2.



Disk properties of Class II objects at

the critical age of 2-3 Myr

Studying the evolution of circumstellar disks around young stellar objects is

important to better comprehend how planets form. Young stellar cluster pro-

vide an opportunity to investigate disk properties of large populations that

can be considered to be close to coeval (although age dispersions are not neg-

ligible). Infrared observations of young stellar clusters (Haisch Hernandez et

al. 2008) show that by 2-3 Myrs, about half of the disks have already been

dispersed through different processes (accretion, photoevaporation, dynamical

clearing, and planet formation itself). While there is a large diversity in plan-

etary frequencies, correlations between planets properties and the mass of the

central star are emerging. In particular, giant planets are much more common

around higher mass stars (1-2 M �, Johnson et al. 2010). These correlations

are likely to be the result of a correlation between disk mass and stellar mass

at the epoch of giant planet formation. In the core accretion model (Pollack et

al. 1996), the formation of gas giants is delayed by the formation of a massive

core (∼ 10 M⊕), which might take several Myr. As a results, the formation

of giant planets might be restricted to disks that are both massive and rela-



192 THE FREQUENCY OF BINARY STAR INTERLOPERS AMONGST TRANSITIONAL DISKS.

tively long-lived. Determination of disk masses are possible through millimeter

observations. Therefore, millimeter observations and the statistical analysis of

young stellar clusters at an intermediate age (2-3 Myr) are a key for under-

standing the types of planets that might form in different types of disks, their

relative number, and their dependence on stellar mass.
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6

ALMA SURVEY OF

CIRCUMSTELLAR DISKS IN THE

YOUNG STELLAR CLUSTER IC 348

This chapter will be published in Monthly Notices of the Royal Astronomical

Society as D. Ruiz-Rodriguez, L. A. Cieza, J. P. Williams, S. Andrews, D. A.

Principe, C. Caceres, H. Canovas, S. Casassus, M. Schreiber and J. Kastner.

We present a 1.3 mm continuum survey of the young (2-3 Myr) stellar cluster

IC 348, which lies at a distance of 270 pc, and is dominated by low-mass stars

(M? ∼ 0.1-0.6 M�). We observed 136 Class II sources (disks that are optically

thick in the infrared) at 0.8′′ (200 au) resolution with a 3σ sensitivity of ∼

0.45 mJy (Mdust ∼ 1.0 M⊕). We detect 40 of the targets and construct a mm-

continuum luminosity function. We compare the disk mass distribution in IC

348 to those of younger and older regions, taking into account the dependence

on stellar mass. We find a clear evolution in disk masses from 1 to 5-10 Myr.

The disk masses in IC 348 are significantly lower than those in Taurus (1-3 Myr)
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and Lupus (1-3 Myr), similar to those of Chamaleon I, (2-3 Myr) and σ Ori

(3-5 Myr) and significantly higher than in Upper Scorpius (5−10 Myr). About

20 disks in our sample (∼5% of the cluster members) have estimated masses

(dust + gas) >1 MJup and hence might be the precursors of giant planets in

the cluster. Some of the most massive disks include transition objects with

inner opacity holes based on their infrared SEDs. From a stacking analysis

of the 96 non-detections, we find that these disks have a typical dust mass of

just . 0.3 M⊕, even though the vast majority of their infrared SEDs remain

optically thick and show little signs of evolution. Such low-mass disks may

be the precursors of the small rocky planets found by Kepler around M-type

stars.

Circumstellar Disks, Dust and Gas, Interferometry.

6.1 Introduction

The evolution of protoplanetary disks has been studied for decades, and typical

disk lifetimes are well established to be ∼2-3 Myr (Williams & Cieza, 2011).

On this timescale, the dust and gas components undergo significant evolution

which, together with the initial conditions, determine the outcome of the planet

formation process. By an age of ∼5 Myr, around 90% of protoplanetary disks

have already dispersed, constraining the time available for most planets to be

formed (Sicilia-Aguilar et al., 2006). Determining the main process of disk

dispersal is not an easy task since several physical mechanisms play a role

at different time scales and radii (Alexander et al., 2014), but studying disk

properties as a function of stellar mass and age can shed light on the frequency
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and location of forming planets (Mordasini et al., 2012).

One important inference from exoplanet surveys is that planet occurrence gen-

erally decreases with increasing planet size: rocky planets are much more com-

mon than gas giants (Howard et al., 2012; Burke et al., 2015). Moreover, the

correlation between stellar and planet properties indicates that giant planet

occurrence increases with stellar mass at solar metallicity, with a percentage of

3% around M dwarfs (∼0.5 M�) increasing to 14% around A stars (∼2 M�)

(Johnson et al., 2010). These exoplanet correlations are likely to be connected

to disk properties as functions of stellar mass.

Dust emission of millimeter-sized grains in the disk is generally optically thin

in the (sub-)millimeter regime; therefore, (sub-)millimeter continuum surveys

of disks in star-forming regions with different ages (∼1−10 Myr) can trace the

distribution of disk masses as a function of age and stellar mass. This allows us

to investigate how disk properties and evolution connect to the population of

planets observed in the field. To exploit this observational potential, Andrews

et al. (2013) performed a millimeter continuum survey with the Submillime-

ter Array (SMA) of the Taurus Class II members (optically thick disks) with

spectral types earlier than M8.5. As a main result, they showed a correlation

between the mm luminosity (Lmm) and the mass of the host stellar object of

the form Lmm ∝ M∗
1.5−2.0, which in turn suggests a linear relationship between

the masses of the disk and that of the parent star: Mdust ∝ M∗.

Various observational studies of higher sensitivity and resolution with the At-

acama Large Millimeter/submillimeter Array (ALMA) add additional samples

in Lupus (1 − 3 Myr; Comeron, 2008; Alcalá et al., 2014; Ansdell et al., 2016),
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Chamaeleon I (2 − 3 Myr; Luhman, 2007; Pascucci et al., 2016), σ Ori (3 −

5 Myr; Oliveira et al., 2002; Ansdell et al., 2016), and the Upper Scorpius OB

Association (5 − 10 Myr; Pecaut, Mamajek & Bubar, 2012; Barenfeld et al.,

2016). A Bayesian linear regression has been the standard method used to

characterize the Mdust - M∗ relations of these star-forming regions. Although,

initially Mdust and M∗ were thought to be linearly correlated in 1−3 Myr old

clusters, the main caveat of these linear relations is the simultaneous fitting of

detections and upper limits, which is complicated by the fact that the latter

dominate the aforementioned surveys. This adds more uncertainty to the Mdust

- M∗ relationship because the limited sensitivity implies lower detection rates

for late-type stars and brown dwarfs, allowing for the possibility of a steeper

relation. Indeed, Pascucci et al. (2016) reanalysed all the submillimeter fluxes

and stellar properties available for Taurus, Lupus, and Upper Sco, and found

steeper correlations than linear for these clusters. They also obtained a steep

dust mass-stellar mass scaling relation in the ∼ 2 Myr Cha I star-forming

region, hence concluding that the same Mdust - M∗ relation is shared by star-

forming regions that are 1-3 Myr old (Pascucci et al., 2016). More recently, a

similar steepening of the Mdust - M∗ relation was found by Ansdell et al. (2017)

for the σ Ori star-forming region. This steeper relation possibly indicates 1)

undetected large pebbles or 2) an efficient inward drift in disks around the

lowest-mass stars. In addition, this steepening of the Mdust - M∗ correlation

with age suggests a faster decline of circumstellar dust mass with time in late-

type stars. From these relations, at an age of 10 Myrs, disks around 0.1 and

0.5 M� stars might have dispersed millimeter-sized grains by factors of 5 and

2.5, respectively, faster than earlier-type objects (Pascucci et al., 2016).
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Following these studies, the IC 348 star-forming region, with a fraction of disks

of 36% in the IR regime, is an excellent benchmark to characterize the rela-

tionship between the masses of the disk and that of the host star by comparing

to other star-forming regions. In fact, the first millimeter observations of pro-

toplanetary disks in IC348 star-forming region were made by Lee, Williams &

Cieza (2011), and with a detection rate of only ∼ 12%, they concluded that

most of the solids in the IR-detected disks have aggregated beyond millimeter

sizes, resulting in low luminosities at millimeter wavelengths.

In this work, we present a 1.3 mm/230 GHz study of ∼136 Class II objects

in the IC 348 star-forming region. This paper is organised as follows: Section

6.2 describes the target selection. Section 6.3 summarizes the ALMA observa-

tions and data reduction. In Section 6.4, we estimate the stellar properties of

our sample, and present our ALMA results, which are compared to previous

findings in other regions in Section 6.5. The main conclusions are discussed in

Section 6.6.

6.2 TARGET SELECTION AND PROPERTIES

IC 348 is a rich and compact (2×2 pc) young stellar cluster in the Perseus

molecular cloud, whose ∼480 members have been identified initially by Hα

emission (Herbig, 1954) and subsequently by optical and IR photometry and

spectroscopy (Lada & Lada, 1995; Herbig, 1998; Luhman et al., 1998; Luhman,

1999; Luhman et al., 2003; Luhman, 2003, 1999; Luhman, McLeod & Gold-

enson, 2005; Luhman, Esplin & Loutrel, 2016). Most of the known T Tauri

stars in the IC348 star-forming region have been well studied and spectrally
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Figure 6.1: Distribution of stellar spectral types for our sample in the IC 348
star-forming region. These targets were selected from Muench et al. (2007) and
Lada et al. (2006) and are listed in Table 6.1

classified (Luhman et al., 2003; Muench et al., 2007): see Figure 6.1.

Our sample was selected specifically from the work of Lada et al. (2006), whose

sample was based on Luhman et al. (2003), and from Muench et al. (2007).

These programs used Spitzer -IRAC photometry to investigate both the fre-

quency and nature of the circumstellar disk population in the IC348 cluster

on the basis of the IR SED slope between 3.6 and 8.0 µm, α3.6−8.0µm. In gen-

eral, Lada et al. (2006) and Muench et al. (2007) used α3.6−8.0µm to classify the

objects as follows:

1. Class I (protostars): α3.6−8.0µm > −0.5;

2. Class II (thick-disks): −0.5> α3.6−8.0µm > −1.8;
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3. Class II/III (anemic disks): −1.8 > α3.6−8.0µm > −2.56;

4. Class III (disk-less stars): α3.6−8.0µm < −2.56.

We selected Spitzer sources with α3.6−8.0µm values between −1.8 and −0.5,

which corresponds to Class II T Tauri stars with optically thick disks. From

Lada et al. (2006), we selected 91 objects classified as optically “THICK” disks

(hereafter Class II sources to keep the nomenclature consistent), and from

Muench et al. (2007), we selected 42 objects classified as Class II objects. We

also included Cl* IC 348 LRL 31, Cl* IC 348 LRL 67 and Cl* IC 348 LRL

329, which are Class III sources based on their α3.6−8.0µm values, but their 24

µm fluxes indicate that they are transitional objects with optically thick outer

disks (Lada et al., 2006; Espaillat et al., 2012). We note that the standard

YSO Class system (Greene et al., 1994) is based on the SED slope between ∼2

and ∼20 µm, but most IC 348 members lack Spitzer 24 µm detections. With

these caveats, our final target list (Table 6.1) is composed of 136 Class II disk

objects with stellar spectral types in the range of G1−M9. Figure 6.2 shows

the positions of our targets. Among the objects selected, Cl* IC 348 LRL 237,

V* V716 Per, Cl* IC 348 LRL 135 and Cl* IC 348 LRL 97 are classified by

Espaillat et al. (2012) as transitional disks. Our sample also includes Cl* IC 348

LRL 31 and Cl* IC 348 LRL 135, which have known close stellar companions at

separations of 38.1± 5.3 mas and 82.1± 0.3 mas, respectively (Rúız-Rodŕıguez

et al., 2016b).
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Figure 6.2: IR map of IC 348 star-forming region with our ALMA targets.
ALLWISE 3-color image with RGB mapped to 22 (W4), 4.6 (W2), and 3.4
(W1) µm. Yellow and blue circles correspond to the sampled selected from
Muench et al. (2007) and Lada et al. (2006), respectively. At the center of the
map, a red circle indicates the position of the A2 type star IC 348 12, which
has been observed by Gaia.
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6.3 ALMA Observations and Data Reduction

ALMA observations toward our IC 348 targets were carried out in Band 6

(211-275 GHz) under the project code: 2015.1.01037.S. Our science goal was

executed in Cycle 3 with the C40-4 array configuration and was observed be-

tween the 23rd and 27th June, 2015. The Band 6 continuum observations were

conducted with a total on-source integration time of ∼1 min per target over 3

execution blocks, each one targeting all 136 objects for 0.3 min. The adopted

setup included two spectral windows for continuum observations with effective

bandwidths of 1.875 GHz centered at 218.0 and 233.0 GHz, for a mean fre-

quency of 225.676 GHz (∼1.3 mm). The typical (1σ) noise level reached is

∼0.15 mJy/beam. We also targeted the molecular lines 12CO, 13CO, and C18O

(J = 2−1), centered on 230.535, 220.395, 219.557 GHz, respectively. Each line

was observed with a resolution of 242 kHz (0.3 km s−1) and a bandwidth of

117.2 MHz. The ALMA data were reduced using the Common Astronomy Soft-

ware Application (CASA) package, version 4.5.3 (McMullin et al., 2007). Initial

calibration (i.e. water vapor radiometer corrections, phase and amplitude cali-

brations) was performed by the ALMA science operations team during quality

assurance. The flux calibrator was J0237+2848. J0238+1636 and J0336+3218

were chosen as bandpass calibrators and J0510+1800 as a phase calibrator.

To reach the requested synthesized beam size of ∼0.8 arcsec, we applied the

CLEAN algorithm to the calibrated visibilities and extract the continuum im-

ages by applying a Briggs weighting with a robust parameter of +2, which is

close to a natural weighting. Using the uvcontsub routine, we subtracted the

continuum emission from the spectral windows to extract the 12CO, 13CO, and

C18O spectral line data from the calibrated visibilities.
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6.4 Results

6.4.1 Detection Criteria

We searched for 1.3 mm continuum emission centered on the 2MASS positions

of the 136 targets, listed in Table 6.1. From the continuum images, we deter-

mined the peak flux and rms using the task imstat and thus, estimated the

signal to noise (S/N, ratio between peak and rms) for each image. Peak fluxes

were derived from a 4
′′

radius circle, and the rms from a 4-7
′′

radius annulus

centered on the expected source position. A source with S/N < 4 is considered

a non-detection. For these sources, we measured the flux densities by using the

uvmodefit routine in CASA and by fitting a point source in the uv plane. If

the flux density is less than 4σ, the point source fit is applied to the visibilities

with the pointing center as a free parameter. If the flux density is less than

3σ it is fit with a point source with the offset position fixed. Table 6.2 lists

integrated flux density (F1.3 mm) and rms for non-detected sources.

For detections (S/N > 4), flux densities were measured by applying an elliptical

Gaussian model to the visibility data using uvmodelfit in CASA. This model is

centered at the nominal source position and provides the parameters F1.3 mm,

the FWHM along the major axis, aspect ratio, position angle of the major axis

(P.A.), and coordinate offsets (∆α, and ∆δ). These parameters are listed in

Table 6.3. A disadvantage of fitting the brightness profile of a source in the

UV-plane directly is the possibility of including emission from a second source

in the fitting process. To avoid any contamination in the measured flux of each

field, we visually inspected the image plane for pixels with significant brightness
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(>4σ). Applying these methods, we detect 40 out of the 136 IC 348 targets at

> 4 σ significance. Images of the 40 sources are displayed in Figure 6.3. We

find that 10 of the targets are partially resolved. For these objects, the source

sizes (deconvolved from the beam) are listed in Table 6.3.

Using standard approaches (e.g. Hildebrand, 1983), the millimeter flux can be

translated into a disk mass according

Mdust =
Fνd

2

κνBν(Tdust)
, (6.1)

where Fν is the integrated flux, d is the distance to the target, Bν(Tdust) is the

Planck function at the average disk temperature, and κν is the total opacity.

Thus, adopting a distance of 270 pc (Section 6.4.2) and making standard as-

sumptions concerning the disc temperature (Tdust = 20K) and dust opacity (κν

= 2.3 cm2g−1 at 1.33 mm; Andrews & Williams (2005, and references therein)),

we estimate disk masses for all detected targets and report them in Table 6.3.

Similarly, the 3σ upper limits of ∼0.45 mJy for most of our targets correspond

to a dust mass of MDust ∼ 1.0 M⊕.
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Table 6.1: Targeted Class II Objects in IC 348.

Source ID Target R.A. Dec. Spec. type Ref.

1 IC 348 12 03 44 35.33945 +32 10 04.8843 A2 1

2 V* V909 Per 03 44 26.027 +32 04 30.41 G8 1

3 Cl* IC 348 LRL 13 03 43 59.649 +32 01 53.98 M0.5 1

4 V* V926 Per 03 44 44.721 +32 04 02.48 M0.5 1

5 Cl* IC 348 LRL 19 03 44 30.82 +32 09 55.8 A2 1

6 Cl* IC 348 LRL 26 03 43 56.028 +32 02 13.21 K7 1

7 V* V920 Per 03 44 37.881 +32 08 04.18 K7 1

8 V* V715 Per 03 44 38.457 +32 07 35.70 K6 1

9 V* V712 Per 03 44 37.980 +32 03 29.66 K6 1

10 V* V910 Per 03 44 29.726 +32 10 39.84 K8 1

11 V* V697 Per 03 44 21.614 +32 10 37.68 K7 1

12 Cl* IC 348 LRL 46 03 44 11.623 +32 03 13.18 XXX 1

13 IRAS 03410+3152 03 44 12.980 +32 01 35.50 XX 1

14 Cl* IC 348 LRL 55 03 44 31.373 +32 00 14.05 M0.5 1

15 V* V716 Per/58* 03 44 38.541 +32 08 00.65 M1.25 1, 3

16 V* V698 Per 03 44 22.288 +32 05 42.79 K8 1

17 Cl* IC 348 LRL 63 03 43 58.905 +32 11 27.07 M1.75 1

18 Cl* IC 348 LRL 68 03 44 28.513 +31 59 54.00 M3.5 1

19 V* V719 Per 03 44 43.768 +32 10 30.41 M1.25 1

20 Cl* IC 348 LRL 76 03 44 39.797 +32 18 04.19 M3.75 1

21 V* V710 Per 03 44 37.411 +32 09 00.91 M1 1

22 V* V922 Per 03 44 39.196 +32 09 44.90 M2 1

23 Cl* IC 348 LRL 97* 03 44 25.549 +32 06 17.13 M2.25 1,3

24 V* V695 Per 03 44 19.238 +32 07 34.74 M3.75 1

25 V* V905 Per 03 44 22.321 +32 12 00.70 M1 1

26 V* V925 Per 03 44 44.585 +32 08 12.54 M2 1

27 V* V919 Per 03 44 37.391 +32 12 24.20 M2 1

28 Cl* IC 348 LRL 128 03 44 20.178 +32 08 56.59 M2 1

29 Cl* IC 348 LRL 129 03 44 21.295 +32 11 56.34 M2 1

30 Cl* IC 348 LRL 135* 03 44 39.184 +32 20 08.93 M4.5 1,3

31 V* V907 Per 03 44 25.303 +32 10 12.80 M4.75 1

32 Cl* IC 348 LRL 140 03 44 35.685 +32 03 03.54 M3.25 1

33 Cl* IC 348 LRL 149 03 44 36.98 +32 08 34.2 M4.75 1

34 Cl* IC 348 LRL 153 03 44 42.761 +32 08 33.77 M4.75 1

35 Cl* IC 348 LRL 156 03 44 06.783 +32 07 54.09 M4.25 1

36 V* V902 Per 03 44 18.579 +32 12 53.08 M2.75 1

37 Cl* IC 348 LRL 165 03 44 35.457 +32 08 56.35 M5.25 1

38 Cl* IC 348 LRL 166A 03 44 42.581 +32 10 02.50 M4.25 1

39 Cl* IC 348 LRL 168 03 44 31.348 +32 10 46.98 M4.25 1

40 Cl* IC 348 LRL 173 03 44 10.126 +32 04 04.50 M5.75 1

41 Cl* IC 348 LRL 192 03 44 23.648 +32 01 52.69 M4.5 1

42 V* V713 Per 03 44 38.006 +32 11 37.03 M4 1



206 ALMA SURVEY OF CIRCUMSTELLAR DISKS IN THE YOUNG STELLAR CLUSTER IC 348

Table 6.1 – Continued

Source Target R.A. Dec. Spect. type Ref.

43 Cl* IC 348 LRL 202 03 44 34.282 +32 12 40.73 M3.5 1

44 Cl* IC 348 LRL 203 03 44 18.102 +32 10 53.44 M0.75 1

45 Cl* IC 348 LRL 205 03 44 29.804 +32 00 54.58 M6 1

46 Cl* IC 348 LRL 214 03 44 07.506 +32 04 08.81 M4.75 1

47 Cl* IC 348 LRL 221 03 44 40.241 +32 09 33.13 M4.5 1

48 SSTc2d J034431.2+320559 03 44 31.19 +32 05 58.9 M0.5 1

49 Cl* IC 348 LRL 229* 03 44 57.856 +32 04 01.60 M5.25 1, 3

50 Cl* IC 348 LRL 237 03 44 23.569 +32 09 33.88 M5 1

51 Cl* IC 348 LRL 241 03 44 59.83 +32 13 31.9 M4.5 1

52 Cl* IC 348 LRL 248 03 44 35.951 +32 09 24.31 M5.25 1

53 Cl* IC 348 LRL 256 03 43 55.265 +32 07 53.31 M5.75 1

54 Cl* IC 348 LRL 272 03 44 34.129 +32 16 35.77 M4.25 1

55 Cl* IC 348 LRL 276 03 44 09.208 +32 02 37.68 M0 1

56 Cl* IC 348 H 149 03 44 34.051 +32 06 57.05 M7.25 1

57 Cl* IC 348 LRL 292 03 43 59.873 +32 04 41.44 M5.75 1

58 Cl* IC 348 LRL 297 03 44 33.210 +32 12 57.46 M4.5 1

59 Cl* IC 348 LRL 300 03 44 38.968 +32 03 19.69 M5 1

60 Cl* IC 348 LRL 319 03 45 01.001 +32 12 22.21 M5.5 1

61 Cl* IC 348 LRL 324 03 44 45.221 +32 10 55.75 M5.75 1

62 Cl* IC 348 LRL 325 03 44 30.06 +32 08 48.9 M6 1

63 Cl* IC 348 LRL 334 03 44 26.664 +32 02 36.32 M5.75 1

64 Cl* IC 348 LRL 336 03 44 32.374 +32 03 27.48 M5.5 1

65 Cl* IC 348 LRL 341 03 44 12.977 +32 13 15.61 M5.25 1

66 Cl* IC 348 LRL 366 03 44 35.017 +32 08 57.34 M4.75 1

67 Cl* IC 348 LRL 382 03 44 30.956 +32 02 44.18 M5.5 1

68 Cl* IC 348 LRL 407 03 45 04.141 +32 05 04.38 M7 1

69 Cl* IC 348 LRL 415 03 44 29.970 +32 09 39.45 M6.5 1

70 2MASS J03444593+3203567 03 44 45.935 +32 03 56.78 M5.75 1

71 Cl* IC 348 LRL 462 03 44 24.457 +32 01 43.71 M3 1

72 Cl* IC 348 LRL 468 03 44 11.070 +32 01 43.60 M8.25 1

73 Cl* IC 348 LRL 555 03 44 41.215 +32 06 27.14 M5.75 1

74 Cl* IC 348 LRL 603 03 44 33.42 +32 10 31.5 M8.5 1

75 [PSZ2003] J034437.6+320832 03 44 37.644 +32 08 32.90 M5.5 1

76 [PSZ2003] J034426.4+320809 03 44 26.367 +32 08 09.94 M9 1

77 Cl* IC 348 LRL 690 03 44 36.38 +32 03 05.4 M8.75 1

78 Cl* IC 348 LRL 703 03 44 36.62 +32 03 44.2 M8 1

79 [PSZ2003] J034433.7+320521 03 44 33.699 +32 05 20.67 M6 1

80 [PSZ2003] J034433.7+320547 03 44 33.691 +32 05 46.71 M8.75 1

81 Cl* IC 348 LRL 746 03 44 49.962 +32 06 14.61 M5 1

82 [PSZ2003] J034419.7+320645 03 44 19.666 +32 06 45.93 M7 1

83 Cl* IC 348 LRL 2096 03 44 12.937 +32 13 24.06 M6 1

84 [PSZ2003] J034416.2+320540 03 44 16.176 +32 05 40.96 M9 1

85 Cl* IC 348 TJ 72 03 44 31.982 +32 11 43.95 G0 1

86 [BNM2013] 32.03 53 03 44 42.009 +32 08 59.98 M4.25 1
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Table 6.1 – Continued

Source Target R.A. Dec. Spect. type Ref.

87 Cl* IC 348 LRL 8078 03 44 26.682 +32 08 20.35 M0.5 1

88 Cl* IC 348 LRL 9024 03 44 35.371 +32 07 36.24 M0 1

89 Cl* IC 348 H 110 03 44 25.576 +32 11 30.24 M2 1

90 2MASS J03452514+3209301 03 45 25.145 +32 09 30.18 M3.75 1

91 2MASS J03452046+3206344 03 45 20.463 +32 06 34.48 M1 1

92 Cl* IC 348 LRL 31* 03 44 18.167 +32 04 57.04 G1 1

93 Cl* IC 348 LRL 329* 03 44 15.581 +32 09 21.83 M7.5 1

94 Cl* IC 348 LRL 67* 03 43 44.614 +32 08 17.76 M0.75 1

95 2MASS J03435856+3217275 03 43 58.569 +32 17 27.53 M3.5(IR) 2

96 Cl* IC 348 LRL 117 03 43 59.080 +32 14 21.31 M3.5(IR) 2

97 2MASS J03442724+3214209 03 44 27.249 +32 14 20.98 M3.5(IR) 2

98 2MASS J03434881+3215515 03 43 48.810 +32 15 51.55 M4.5(IR) 2

99 Cl* IC 348 LRL 179 03 44 34.986 +32 15 31.15 M3.5(IR) 2

100 Cl* IC 348 LRL 199 03 43 57.22 +32 01 33.9 M6.75(IR) 2

101 Cl* IC 348 LRL 215 03 44 28.947 +32 01 37.85 M3.25(IR) 2

102 2MASS J03443112+3218484 03 44 31.126 +32 18 48.49 M3.25(IR) 2

103 2MASS J03443468+3216000* 03 44 34.687 +32 16 00.09 M3.5(IR) 2, 3

104 2MASS J03441522+3219421 03 44 15.224 +32 19 42.18 M4.75(IR) 2

105 2MASS J03442294+3214404 03 44 22.943 +32 14 40.43 M5.5(IR) 2

106 2MASS J03440599+3215321 03 44 05.993 +32 15 32.15 M6.5(IR) 2

107 Cl* IC 348 LRL 364 03 44 43.013 +32 15 59.67 M4.75(IR) 2

108 Cl* IC 348 LRL 368 03 44 25.702 +32 15 49.27 M5.5(IR) 2

109 Cl* IC 348 LRL 406 03 43 46.444 +32 11 05.94 M5.75(IR) 2

110 2MASS J03445853+3158270 03 44 58.535 +31 58 27.03 M6.5(IR) 2

111 2MASS J03432845+3205058 03 43 28.454 +32 05 05.82 M4(IR) 2

112 Cl* IC 348 LRL 753 03 44 57.617 +32 06 31.25 XXX 2

113 2MASS J03445688+3220355 03 44 56.883 +32 20 35.52 M6(IR) 2

114 Cl* IC 348 LRL 1379 03 44 52.00 +31 59 21.5 M9.75 2

115 2MASS J03445205+3158252 03 44 52.059 +31 58 25.21 M3.5(IR) 2

116 Cl* IC 348 LRL 1683 03 44 15.834 +31 59 36.77 M5.25(IR) 2

117 Cl* IC 348 LRL 1707 03 43 47.635 +32 09 02.56 M7(IR) 2

118 2MASS J03451307+3220053 03 45 13.071 +32 20 05.32 M5(IR) 2

119 2MASS J03442721+3220288 03 44 27.214 +32 20 28.82 M5(IR) 2

120 2MASS J03435056+3203180 03 43 50.565 +32 03 18.00 M8.75(IR) 2

121 Cl* IC 348 LRL 1881 03 44 33.792 +31 58 30.28 M3.75(IR) 2

122 2MASS J03432355+3212258 03 43 23.557 +32 12 25.82 M4.5(op) 2

123 V* V338 Per 03 43 28.201 +32 01 59.12 M1.75(IR) 2

124 Cl* IC 348 LRL 1923 03 44 00.471 +32 04 32.71 M5(IR) 2

125 Cl* IC 348 LRL 1925 03 44 05.766 +32 00 01.10 M5.5(IR) 2

126 EM* LkHA 99 03 45 16.349 +32 06 19.95 K5(op) 2

127 2MASS J03445997+3222328 03 44 59.979 +32 22 32.83 M5.25 2

128 2MASS J03451782+3212058 03 45 17.826 +32 12 05.85 M3.75(op) 2

129 2MASS J03431581+3210455 03 43 15.812 +32 10 45.53 M4.5(IR) 2

130 2MASS J03453563+3159544 03 45 35.637 +31 59 54.44 M4.5(IR) 2
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Table 6.1 – Continued

Source Target R.A. Dec. Spect. type Ref.

131 2MASS J03452212+3205450 03 45 22.128 +32 05 45.01 M8(IR) 2

132 2MASS J03442186+3217273 03 44 21.864 +32 17 27.31 M4.75(op) 2

133 Cl* IC 348 LRL 22865 03 45 17.647 +32 07 55.33 L0 2

134 Cl* IC 348 LRL 40182 03 45 03.83 +32 00 23.3 XXX 2

135 Cl* IC 348 LRL 54299 03 43 44.27 +32 03 42.6 XXX 2

136 2MASS J03451349+3224347 03 45 13.498 +32 24 34.71 M4.25 2

Ref.: (1) Lada et al. (2006), (2) Muench et al. (2007), (3) Espaillat et al. (2012).

∗ Transitional Disk

6.4.2 Target Properties

Most of our ALMA targets have fundamental stellar parameters such as extinc-

tion, stellar masses, luminosity, effective temperature, etc, reported in previous

studies. However, not all values have been obtained in homogeneous manner,

and uncertainties might be larger due to systematic differences in methodology

or the adopted distance to IC 348. Considering that the first data releases of

the Gaia space mission and Pan-STARRS-1 (PS1) are available, we seek for

uniformity in these estimations. We adopt a distance of 270±65 pc based on

the preliminary Gaia parallax measurement of 3.70 ± 0.93 mas for IC 348 12

(Michalik, Lindegren & Hobbs, 2015), the A2 type star at the center of the

cluster (Figure 6.2). To estimate the visual extinction (Av), we use the extinc-

tion relations
Aλeff

Av
listed in Table 6.4, which are calculated using the extinction

law presented in Cardelli, Clayton & Mathis (1989). We use PS1 colours r−z

and z−y (Magnier et al., 2013), in order of preference, and adopt the relations
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Figure 6.3: 1.3 mm continuum images meeting our detection criteria (>4σ) in
the IC 348 region, see Section 6.4.1. Each image covers 1.7” X 1.7” size with an
average beam size of 0.8

′′
X 0.7

′′
. Integrated flux density values are presented

at the low-right corner as reported in Table 6.3.
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Figure 6.4: Inferred stellar parameters for IC 348 members (Table 6.5; Sec.
6.4.2) with theoretical models from Baraffe et al. (2015) for low mass young
stars overlaid. Solid lines in descending order are 0.5, 1, 2, 3, 5, 10, 20, 50 and
100 Myrs isochrones and dashed lines represent the evolutionary tracks in the
range of 0.06 and 1.4 M�. Blue diamonds represent IC 348 detected members,
while red circles correspond to non-detections.
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Az = 1.4[(r − z) − (r − z)0] and Ay = 6.3[(z − y) − (z − y)0], where (r − z)0

and (z − y)0 are the expected PS1 colours of a main-sequence star generated

from MARCS synthetic fluxes (Gustafsson et al., 2008). In the special case of

Class II objects lacking PS1 photometry in the necessary bands, we adopted

Av from Currie & Kenyon (2009).

The stellar luminosities (L?) of IC 348 members are calculated via the dered-

dened J-band photometry method of Kenyon & Hartmann (1995) and adopting

the distance of 270 pc. We derived the stellar properties based on the spectral

types taken from Luhman et al. (2003) and Muench et al. (2007) and a conver-

sion from spectral type to the effective temperature (Teff) taken from Pecaut &

Mamajek (2013) with uncertainties of ± 1 spectral subclass (Table 6.5). Using

Teff and L?, and assuming all targets are single star systems, we estimated the

stellar masses (M?) and ages from comparisons with theoretical pre-MS evo-

lutionary tracks. Masses and ages of targets with stellar masses between 0.01

and 1.4 M� were derived from models presented in Baraffe et al. (2015) and

stellar masses >1.4 M� from the PARSEC evolutionary models (Bressan et al.,

2012). Age uncertainties are based mainly on the H-R diagram placement and

the determination of L?, incorporating the estimated observational photome-

try, J-band bolometric correction and extinction uncertainties. Nevertheless,

the dominant sources of error on the L? uncertainties are the ∼ 20% distance

and extinction uncertainties (Cieza et al., 2007). Stellar mass uncertainties are

dominated by the ± 1 spectral subclass and determined by their spectral type.

For these T Tauri stars, whose metallicity values are unknown, we adopted

solar composition, and we held the surface gravity fixed at the value log g =

4.0, typical for PMS stars. Table 6.5 lists the resulting adopted Teff , estimated
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stellar age, Av, L? and estimated stellar mass of these objects. Figure 6.4

shows Baraffe evolutionary models with our IC 348 target selection. The stars

are clustered around the 2 to 3 Myr isochrones, in agreement with previous age

estimates for the region.
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Table 6.2: Non-Detected Class II Sources in IC 348

Source F1.3 mm rms Source F1.3 mm rms

[mJy] [mJy beam−1] [mJy] [mJy beam−1]

1 0.19 ± 0.13 0.14 71 0.35 ± 0.13 0.13
2 0.51 ± 0.13 0.13 72 0.06 ± 0.13 0.13
5 0.31 ± 0.15 0.13 73 0.4 ± 0.14 0.13
6 0.52 ± 0.15 0.13 74 0.04 ± 0.13 0.14
8 0 ± 0.14 0.14 75 0.3 ± 0.14 0.13
12 -0.07 ± 0.14 0.14 76 -0.02 ± 0.14 0.14
16 -0.05 ± 0.14 0.14 77 -0.19 ± 0.15 0.14
18 0.17 ± 0.13 0.12 78 0.08 ± 0.14 0.13
19 0.06 ± 0.15 0.13 79 0.36 ± 0.13 0.14
21 0.04 ± 0.14 0.14 80 0.27 ± 0.13 0.14
22 0.12 ± 0.13 0.13 81 0.08 ± 0.13 0.14
23 -0.09 ± 0.14 0.14 82 -0.11 ± 0.13 0.13
24 0.13 ± 0.12 0.13 83 0.2 ± 0.14 0.13
26 0.41 ± 0.14 0.14 84 0.09 ± 0.13 0.13
27 -0.42 ± 0.13 0.14 85 0.26 ± 0.13 0.15
28 -0.15 ± 0.13 0.14 89 0.49 ± 0.14 0.14
29 0.15 ± 0.15 0.14 93 0.26 ± 0.13 0.14
30 0.26 ± 0.15 0.14 97 0.32 ± 0.14 0.12
31 0.03 ± 0.13 0.14 98 0.16 ± 0.13 0.13
32 0.36 ± 0.14 0.13 99 0.25 ± 0.14 0.14
33 0.16 ± 0.15 0.13 100 0.41 ± 0.15 0.13
37 0.02 ± 0.12 0.14 104 0.16 ± 0.13 0.13
39 0.37 ± 0.15 0.13 105 0.21 ± 0.13 0.14
40 0.31 ± 0.14 0.14 106 0.24 ± 0.12 0.13
42 0.16 ± 0.13 0.14 107 0.38 ± 0.14 0.13
44 0.19 ± 0.13 0.14 108 0.36 ± 0.14 0.13
45 0.35 ± 0.14 0.14 109 -0.31 ± 0.13 0.12
46 0.24 ± 0.13 0.14 110 0.14 ± 0.14 0.14
47 -0.13 ± 0.13 0.14 112 -0.38 ± 0.14 0.13
49 -0.13 ± 0.13 0.14 113 0.21 ± 0.14 0.13
50 0.2 ± 0.13 0.13 114 0.05 ± 0.13 0.12
51 0.05 ± 0.13 0.13 115 0.03 ± 0.13 0.13
53 0.09 ± 0.13 0.13 117 0.25 ± 0.14 0.13
54 0.5 ± 0.13 0.13 118 0.28 ± 0.14 0.15
56 0.04 ± 0.14 0.14 119 0.35 ± 0.13 0.14
57 0.33 ± 0.14 0.13 120 -0.44 ± 0.17 0.19
58 0.15 ± 0.12 0.13 122 0.02 ± 0.12 0.13
59 -0.28 ± 0.13 0.14 123 0.21 ± 0.13 0.14
60 0.2 ± 0.17 0.16 124 0.36 ± 0.13 0.14
61 -0.18 ± 0.13 0.14 125 0.15 ± 0.14 0.13
62 0.24 ± 0.12 0.13 127 -0.06 ± 0.15 0.14
63 0.17 ± 0.14 0.12 128 -0.04 ± 0.13 0.14
64 0.14 ± 0.13 0.14 130 0.32 ± 0.13 0.13
65 0.02 ± 0.14 0.14 131 -0.08 ± 0.14 0.14
66 -0.18 ± 0.13 0.14 133 0.05 ± 0.13 0.13
68 0.45 ± 0.15 0.13 134 -0.06 ± 0.12 0.15
69 0.37 ± 0.13 0.14 135 0.07 ± 0.13 0.13
70 0.15 ± 0.14 0.14 136 0.18 ± 0.14 0.14
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Table 6.3: Continuum Detections of Class II Sources in IC 348

[1ex] Source F1.3 mm
∗ rms ∆α ∆δ a i P.A. MDust

[mJy] [mJy beam−1] [′′] [′′] [′′] [deg.] [deg.] [M⊕]

3 2.5 ± 0.24 0.14 0.19 -0.16 0 0 5.3 ± 0.3
4 1.28 ± 0.15 0.13 0.06 -0.13 0 0 2.71 ± 0.28
7 5.68 ± 0.45 0.13 -0.09 -0.08 0 0 12.05 ± 0.28
9 0.7 ± 0.14 0.13 -0.02 -0.1 0 0 1.48 ± 0.28
10 3.23 ± 0.29 0.14 0.12 -0.06 0 0 6.85 ± 0.3
11 0.96 ± 0.14 0.13 0.11 -0.12 0 0 2.04 ± 0.28
13 54.32 ± 4.41 0.27 0.14 0.03 0.19 0 0 115.2 ± 0.57
14 0.78 ± 0.22 0.13 -0.02 -0.14 0 0 1.65 ± 0.28
15 2.24 ± 0.22 0.14 -0.13 -0.08 0 0 4.75 ± 0.3
17 1.55 ± 0.17 0.14 0.07 -0.04 0 0 3.29 ± 0.3
20 0.78 ± 0.15 0.13 -0.34 -0.4 0 0 1.65 ± 0.28
25 1.22 ± 0.17 0.13 0.01 -0.2 0 0 2.59 ± 0.28
34 4.09 ± 0.36 0.13 -0.14 -0.28 0.157 0 0 8.67 ± 0.28
35 6.34 ± 0.54 0.13 -0.01 -0.15 0.331 47.5 1 73.7 13.45 ± 0.28
36 1.74 ± 0.2 0.14 -0.09 -0.13 0 0 3.69 ± 0.3
38 1.42 ± 0.17 0.13 -0.23 -0.25 0 0 3.01 ± 0.28
41 0.61 ± 0.13 0.13 0.17 0.18 0 0 1.29 ± 0.28
43 0.59 ± 0.14 0.14 -0.06 -0.06 0 0 1.25 ± 0.3
48 2.08 ± 0.2 0.13 0.1 -0.03 0 0 4.41 ± 0.28
52 0.67 ± 0.14 0.14 0.1 -0.04 0 0 1.42 ± 0.3
55 0.8 ± 0.15 0.14 0.1 -0.17 0 0 1.7 ± 0.3
67 1.91 ± 0.21 0.13 0.13 -0.04 0 0 4.05 ± 0.28
86 1.27 ± 0.17 0.13 -0.1 -0.31 0 0 2.69 ± 0.28
87 0.7 ± 0.14 0.13 -0.02 -0.13 0 0 1.48 ± 0.28
88 2.99 ± 0.28 0.13 -0.02 -0.03 0 0 6.34 ± 0.28
90 1.69 ± 0.2 0.15 0.11 -0.08 0.396 24.7 43.6 3.58 ± 0.32
91 6.73 ± 0.58 0.15 0.08 -0.17 0.422 75.3 65.4 14.27 ± 0.32
92 12.01 ± 1.12 0.16 0.09 -0.09 0.476 0 0 25.47 ± 0.34
94 6 ± 0.5 0.14 0.05 -0.27 0.308 51 24.5 12.72 ± 0.3
95 1.88 ± 0.22 0.14 0.09 -0.26 0 0 3.99 ± 0.3
96 1.76 ± 0.19 0.14 0.1 -0.1 0 0 3.73 ± 0.3
101 2.5 ± 0.24 0.14 -0.01 -0.06 0 0 5.3 ± 0.3
102 0.73 ± 0.14 0.14 0.2 0.01 0 0 1.55 ± 0.3
103 7.22 ± 0.58 0.14 0.02 -0.06 0.308 64.6 28.4 15.31 ± 0.3
111 1.06 ± 0.16 0.13 -0.02 -0.01 0 0 2.25 ± 0.28
116 1.43 ± 0.16 0.13 0.04 -0.08 0 0 3.03 ± 0.28
121 4.83 ± 0.41 0.14 0.11 0 0.198 0 0 10.24 ± 0.3
126 6.54 ± 0.52 0.13 0 -0.04 0 0 13.87 ± 0.28
129 0.62 ± 0.15 0.12 0.18 -0.29 0.523 0 0 1.31 ± 0.25
132 1.05 ± 0.15 0.13 0.17 -0.17 0 0 2.23 ± 0.28

∗The elliptical Gaussian model applied to the resolved sources generates five free parameters: integrated flux
density (Sν), FWHM along the major axis (a), position angle (P.A.), right ascension offset from the phase center
(∆α), and declination offset from the phase center (∆δ).

Filter ID Aλeff

Aλeff

Av
Zero Point

[Å] [Jy]
g 4775.6 1.19 3631
r 6129.5 0.89 3631
i 7484.6 0.67 3631
z 8657.8 0.51 3631
y 9603.1 0.44 3631

Table 6.4: Extinction relations calculated by following the Cardelli, Clayton &
Mathis (1989) extinct law with Rv = 3.1.
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Table 6.5: Stellar Properties for Class II Sources in IC 348.

Source ID Log Teff Av Log L? M? Source ID Log Teff Av Log L? M?

[K] [mag] [L�] [M�] [K] [mag] [L�] [M�]

1 3.95+0.02
−0.01 2.87 ± 0.08 1.89+0.16

−0.19 3.17+0.0
0.0 69 3.45+0.01

−0.02 2.85 ± 0.16 -1.82+0.24
−0.38 0.04+0.01

0.01

2 3.72+0.01
−0.01 4.6 ± 0.03 0.73+0.17

−0.21 1.8+0.0
0.0 70 3.45+0.01

−0.02 4.18 ± 0.11 -1.67+0.24
−0.38 0.05+0.01

0.01

3 3.58+0.01
−0.02 13.93 ± 1.89 0.23+0.2

−0.26 0.57+0.03
0.04 71 3.53+0.02

−0.03 9.34 ± 0.24 -1.23+0.24
−0.33 0.29+0.05

0.07

4 3.58+0.01
−0.02 2.22 ± 0.03 -0.09+0.23

−0.3 0.42+0.03
0.04 72 3.41+0.01

−0.02 4.38 ± 0.49 -2.32+0.27
−−0.93 0.02+0.0

0.0

5 3.95+0.02
−0.01 1.3 ± 0.01 0.96+0.16

−0.19 1.89+0.0
0.0 73 3.45+0.01

−0.02 1.7 ± 0.08 -1.6+0.24
−0.38 0.05+0.01

0.01

6 3.6+0.01
−0.0 8.99 ± 0.36 0.18+0.18

−0.2 0.6+0.02
0.01 74 3.41+0.01

−0.02 4.11 ± 0.89 -2.33+0.27
−−0.93 0.02+0.0

0.0

7 3.6+0.01
−0.0 3.6 ± 0.06 -0.18+0.19

−0.21 0.69+0.02
0.01 75 3.46+0.04

−0.01 5.4 ± 0 -3.01+0.2
−0.19 0.07+0.04

0.01

8 3.6+0.01
−0.01 2.52 ± 0.06 -0.08+0.21

−0.22 0.68+0.05
0.02 76 3.39+0.0

−0.0 1.6 ± 0 -3.1+0.16
−0.19 0.05+0.0

0.0

9 3.6+0.01
−0.01 2.32 ± 0.12 -0.21+0.21

−0.22 0.71+0.05
0.02 77 3.39+0.02

−0.0 4.39 ± 0.53 -2.18+0.26
−−1.03 0.01+0.0

0.0

10 3.6+0.0
−0.01 2.67 ± 0.09 -0.38+0.17

−0.24 0.69+0.01
0.02 78 3.41+0.01

−0.02 3.87 ± 0.34 -2.36+0.27
−−0.94 0.03+0.0

0.0

11 3.6+0.01
−0.0 3.94 ± 0.12 -0.46+0.19

−0.21 0.72+0.02
0.01 79 3.45+0.0

−0.0 1.6 ± 0 -3.13+0.16
−0.19 0.06+0.0

0.0

12 3.58+0.01
−0.02 9.44 ± 0.07 0.01+0.2

−0.26 0.46+0.03
0.04 80 3.39+0.0

−0.0 1.5 ± 0 -2.85+0.16
−0.19 0.06+0.0

0.0

13 3.58+0.01
−0.02 10.78 ± 1.03 -0.77+0.25

−0.27 0.52+0.03
0.04 81 3.46+0.0

−0.0 1.8 ± 0 -3.01+0.16
−0.19 0.07+0.0

0.0

14 3.58+0.01
−0.02 12.46 ± 0.23 0.0+0.2

−0.26 0.46+0.03
0.04 82 3.42+0.0

−0.0 0 ± 0 -2.82+0.16
−0.19 0.07+0.0

0.0

15 3.56+0.02
−0.02 1.74 ± 0.06 -0.53+0.26

−0.31 0.41+0.05
0.04 83 3.45+0.0

−0.0 1.1 ± 0 -3.36+0.16
−0.19 0.06+0.0

0.0

16 3.6+0.0
−0.01 2.26 ± 0.18 -0.67+0.17

−0.24 0.7+0.01
0.02 84 3.39+0.0

−0.0 1.3 ± 0 -3.01+0.16
−0.19 0.05+0.0

0.0

17 3.56+0.02
−0.02 1.6 ± 0.11 -0.62+0.26

−0.31 0.43+0.05
0.04 85 3.78+0.01

−0.01 5.94 ± 0.14 0.98+0.17
−0.21 1.51+0.0

0.0

18 3.53+0.02
−0.03 1.06 ± 0.06 -0.67+0.26

−0.34 0.27+0.03
0.04 86 3.5+0.03

−0.04 1.93 ± 0.04 -0.51+0.27
−0.38 0.2+0.04

0.04

19 3.56+0.02
−0.02 0 ± 0 -0.86+0.18

−0.22 0.48+0.05
0.05 87 3.58+0.01

−0.02 7.48 ± 0.36 -0.29+0.2
−0.26 0.45+0.03

0.04

20 3.53+0.02
−0.03 1.69 ± 0.06 -0.69+0.26

−0.35 0.27+0.03
0.05 88 3.58+0.01

−0.02 2.55 ± 0.04 -0.47+0.23
−0.3 0.52+0.04

0.05

21 3.56+0.02
−0.02 1.27 ± 0.2 -0.8+0.26

−0.31 0.44+0.05
0.04 89 3.54+0.02

−0.02 2.53 ± 0.04 -0.68+0.24
−0.27 0.33+0.04

0.03

22 3.54+0.02
−0.02 1.55 ± 0.11 -0.78+0.28

−0.3 0.35+0.04
0.03 90 3.5+0.03

−0.04 1.61 ± 0.1 -0.65+0.27
−0.38 0.18+0.04

0.04

23 3.54+0.02
−0.02 5.37 ± 0.6 -0.56+0.24

−0.27 0.36+0.04
0.03 91 3.56+0.02

−0.02 1.18 ± 0.02 -0.26+0.26
−0.31 0.42+0.04

0.03

24 3.5+0.03
−0.04 0.43 ± 0.13 -1.08+0.31

−0.28 0.17+0.04
0.06 92 3.78+0.01

−0.01 10.9 ± 0.08 0.72+0.18
−0.22 1.56+0.0

0.0

25 3.56+0.02
−0.02 1.93 ± 0.07 -0.75+0.26

−0.31 0.45+0.05
0.05 93 3.42+0.02

−0.01 2.87 ± 0.14 -1.57+0.34
−0.31 0.04+0.01

0.0

26 3.54+0.02
−0.02 1.18 ± 0.08 -0.99+0.28

−0.3 0.39+0.05
0.04 94 3.56+0.02

−0.02 1.22 ± 0.05 -0.63+0.23
−0.28 0.43+0.05

0.04

27 3.54+0.02
−0.02 6.9 ± 0.17 -0.43+0.24

−0.27 0.33+0.03
0.03 95 3.53+0.02

−0.03 1.96 ± 0.07 -0.59+0.23
−0.31 0.26+0.03

0.05

28 3.54+0.02
−0.02 1.87 ± 0.02 -0.84+0.28

−0.3 0.36+0.04
0.04 96 3.53+0.02

−0.03 1.76 ± 0.12 -1.18+0.23
−0.31 0.26+0.04

0.06

29 3.54+0.02
−0.02 1.24 ± 0.02 -0.89+0.28

−0.3 0.37+0.04
0.04 97 3.53+0.02

−0.03 0.66 ± 0.32 -1.09+0.26
−0.29 0.28+0.04

0.06

30 3.5+0.03
−0.04 1.1 ± 0.02 -0.95+0.31

−0.36 0.2+0.04
0.06 98 3.5+0.03

−0.04 0 ± 0 -1.21+0.28
−0.23 0.17+0.05

0.06

31 3.46+0.04
−0.01 2.42 ± 0.15 -0.93+0.4

−0.27 0.11+0.04
0.02 99 3.53+0.02

−0.03 4.01 ± 0.1 -0.87+0.24
−0.33 0.27+0.03

0.05

32 3.53+0.02
−0.03 4.69 ± 0.7 -1.12+0.24

−0.33 0.28+0.04
0.06 100 3.42+0.02

−0.01 7.88 ± 0.31 -1.42+0.34
−0.31 0.05+0.01

0.0

33 3.46+0.04
−0.01 2.73 ± 0.11 -0.97+0.4

−0.27 0.11+0.04
0.02 101 3.53+0.02

−0.03 11.29 ± 0.74 -0.87+0.24
−0.33 0.29+0.04

0.05

34 3.46+0.04
−0.01 2.7 ± 0.08 -1.04+0.4

−0.27 0.1+0.04
0.02 102 3.53+0.02

−0.03 4.59 ± 0.82 -1.46+0.24
−0.33 0.28+0.06

0.06

35 3.5+0.03
−0.04 0.41 ± 0.01 -1.18+0.31

−0.28 0.18+0.05
0.06 103 3.53+0.02

−0.03 15.43 ± 1.27 -0.54+0.23
−0.34 0.27+0.03

0.05

36 3.53+0.02
−0.03 11.2 ± 1.05 -0.27+0.24

−0.33 0.27+0.03
0.04 104 3.46+0.04

−0.01 3.28 ± 0.11 -1.35+0.4
−0.27 0.07+0.06

0.01

37 3.46+0.04
−0.01 3.43 ± 0.1 -0.97+0.4

−0.27 0.11+0.04
0.02 105 3.46+0.04

−0.01 1.93 ± 0.07 -1.57+0.4
−0.27 0.06+0.06

0.01

38 3.5+0.03
−0.04 7.78 ± 0.17 -0.6+0.29

−0.44 0.19+0.04
0.04 106 3.45+0.01

−0.02 2.59 ± 0.05 -1.52+0.24
−0.38 0.05+0.01

0.01

39 3.5+0.03
−0.04 3.47 ± 0.12 -1.02+0.29

−0.44 0.18+0.04
0.06 107 3.46+0.04

−0.01 5.61 ± 0.2 -1.27+0.4
−0.27 0.08+0.05

0.01

40 3.45+0.01
−0.02 2.62 ± 0.1 -1.05+0.24

−0.38 0.08+0.02
0.01 108 3.46+0.04

−0.01 5.78 ± 0.15 -1.42+0.4
−0.27 0.07+0.05

0.01

41 3.5+0.03
−0.04 10.26 ± 0.15 -0.75+0.29

−0.44 0.18+0.04
0.05 109 3.45+0.01

−0.02 3.72 ± 0.15 -1.65+0.24
−0.38 0.05+0.01

0.01

42 3.5+0.03
−0.04 2.71 ± 0.13 -1.05+0.29

−0.44 0.18+0.04
0.06 110 3.45+0.01

−0.02 5.57 ± 0.28 -1.7+0.24
−0.38 0.05+0.01

0.01

43 3.53+0.02
−0.03 12.2 ± 1.42 -0.8+0.24

−0.33 0.27+0.03
0.04 111 3.5+0.03

−0.04 8.21 ± 0.5 -1.32+0.29
−0.44 0.18+0.06

0.06

44 3.56+0.02
−0.02 12.52 ± 1.83 -0.85+0.22

−0.26 0.48+0.05
0.05 112 3.45+0.01

−0.02 0 ± 0 -3.3+0.16
−0.19 0.06+0.0

0.01

45 3.45+0.01
−0.02 3.79 ± 0.06 -1.1+0.24

−0.38 0.08+0.02
0.01 113 3.45+0.01

−0.02 14.3 ± 0 -1.76+0.16
−0.19 0.05+0.01

0.01

46 3.46+0.04
−0.01 0.79 ± 0.07 -1.33+0.4

−0.27 0.08+0.05
0.01 114 3.39+0.0

−0.0 0 ± 0 -3.11+0.16
−0.19 0.05+0.0

0.0

47 3.5+0.03
−0.04 4.19 ± 0.25 -1.13+0.29

−0.44 0.18+0.05
0.06 115 3.53+0.02

−0.03 6.86 ± 0.21 -0.74+0.24
−0.33 0.28+0.03

0.04

48 3.58+0.01
−0.02 6.89 ± 0.75 -1.21+0.2

−0.26 0.57+0.02
0.03 116 3.46+0.04

−0.01 2.43 ± 0.12 -1.41+0.4
−0.27 0.07+0.06

0.01

49 3.46+0.04
−0.01 1.2 ± 0.1 -1.32+0.4

−0.27 0.08+0.05
0.01 117 3.42+0.02

−0.01 1.42 ± 0.09 -1.82+0.34
−0.31 0.03+0.02

0.0

50 3.46+0.04
−0.01 1.36 ± 0.11 -1.3+0.4

−0.27 0.08+0.05
0.01 118 3.46+0.04

−0.01 4.48 ± 0.15 -1.54+0.4
−0.27 0.07+0.06

0.01

51 3.5+0.03
−0.04 4.5 ± 0.11 -1.02+0.29

−0.44 0.18+0.04
0.06 119 3.46+0.04

−0.01 2.45 ± 0.13 -1.28+0.4
−0.27 0.08+0.06

0.01

52 3.46+0.04
−0.01 2.69 ± 0.13 -1.33+0.4

−0.27 0.08+0.05
0.01 120 3.39+0.02

−0.0 0 ± 0 -2.87+0.16
−0.19 0.02+0.0

0.0

53 3.45+0.01
−0.02 1.57 ± 0.09 -1.35+0.24

−0.37 0.06+0.02
0.02 121 3.5+0.03

−0.04 4.03 ± 0.27 -0.96+0.29
−0.44 0.2+0.04

0.06

54 3.5+0.03
−0.04 5.52 ± 0.1 -1.09+0.29

−0.44 0.17+0.04
0.06 122 3.5+0.03

−0.04 3.54 ± 0.05 -1.25+0.29
−0.44 0.16+0.05

0.06
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Table 6.5 – Continued

Source ID Log Teff Av Log L? M? Source ID Log Teff Av Log L? M?

[K] [mag] [L�] [M�] [K] [mag] [L�] [M�]

55 3.58+0.01
−0.02 9.65 ± 0.4 -1.17+0.2

−0.26 0.58+0.02
0.03 123 3.56+0.02

−0.02 0.28 ± 0.14 -0.61+0.26
−0.25 0.43+0.05

0.04

56 3.42+0.02
−0.01 2.45 ± 0.12 -1.39+0.34

−0.3 0.05+0.01
0.01 124 3.46+0.04

−0.01 0 ± 0 -3.88+0.2
−0.19 0.04+0.04

0.0

57 3.45+0.01
−0.02 2.26 ± 0.08 -1.47+0.24

−0.38 0.06+0.02
0.02 125 3.46+0.04

−0.01 0 ± 0 -2.92+0.2
−0.19 0.06+0.05

0.01

58 3.5+0.03
−0.04 10.56 ± 0.36 -0.98+0.29

−0.44 0.19+0.04
0.06 126 3.62+0.02

−0.01 3.42 ± 0.25 -0.31+0.18
−0.2 0.86+0.08

0.05

59 3.46+0.04
−0.01 1.26 ± 0.15 -1.56+0.4

−0.27 0.07+0.06
0.01 127 3.46+0.04

−0.01 2.7 ± 0.08 -1.51+0.4
−0.27 0.07+0.06

0.01

60 3.46+0.04
−0.01 2.4 ± 0.09 -1.46+0.4

−0.27 0.07+0.06
0.01 128 3.5+0.03

−0.04 2.1 ± 0.09 -1.28+0.29
−0.44 0.18+0.05

0.06

61 3.45+0.01
−0.02 2.9 ± 0.13 -1.55+0.24

−0.38 0.05+0.01
0.01 129 3.5+0.03

−0.04 6.45 ± 0.54 -1.75+0.29
−0.44 0.15+0.07

0.05

62 3.45+0.01
−0.02 3.17 ± 0.19 -1.56+0.24

−0.38 0.05+0.01
0.01 130 3.5+0.03

−0.04 6.72 ± 0.12 -0.75+0.29
−0.44 0.18+0.05

0.06

63 3.45+0.01
−0.02 1.21 ± 0.1 -1.69+0.24

−0.33 0.05+0.01
0.01 131 3.41+0.01

−0.02 0 ± 0 -3.0+0.16
−0.19 0.06+0.0

0.0

64 3.46+0.04
−0.01 3.46 ± 0.16 -1.62+0.4

−0.27 0.06+0.06
0.01 132 3.46+0.04

−0.01 0 ± 0 -1.57+0.2
−0.19 0.06+0.06

0.01

65 3.46+0.04
−0.01 2.39 ± 0.14 -1.6+0.4

−0.27 0.06+0.06
0.01 133 ...+...

−... 0 ± 0 -2.55+0.16
−0.19 0.0+0.0

0.0

66 3.46+0.04
−0.01 1.99 ± 0.14 -1.78+0.4

−0.27 0.07+0.05
0.01 134 3.58+0.0

−0.0 0 ± 0 ...+...
−... 0.0+0.0

0.0

67 3.46+0.04
−0.01 6.26 ± 0.22 -1.57+0.4

−0.27 0.06+0.06
0.01 135 3.58+0.0

−0.0 0 ± 0 ...+...
−... 0.0+0.0

0.0

68 3.42+0.02
−0.01 4.27 ± 0.35 -2.21+0.34

−0.31 0.02+0.01
0.0 136 3.5+0.03

−0.04 4.4 ± 0 -1.34+0.29
−0.44 0.18+0.06

0.05
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In Figure 5, we plot the SEDs of all targets detected at 1.3 mm, including

photometry from PS1 (0.48, 0.62, 0.75, 0.87, 0.96 µm), 2MASS (1.25, 1.65,

2.22 µm) and Spitzer/IRAC (3.6, 4.5, 5.8, 8 and 24 µm) (Skrutskie et al.,

2006; Evans et al., 2003; Currie & Kenyon, 2009). The photometric data were

dereddened using the Mathis (1990) approach. To calculate the stellar synthetic

photometry with a fixed temperature T?, which is approximated by Teff , we

interpolated the response curves for the set of filters used in the fitting, and

used the BT-Settl spectral models for the corresponding T? (Allard, 2014).

Then, we convolved the filter response curves with the synthetic spectra, to

match the spectral resolution. Because the PS1, 2MASS, IRAC, and 24 µm

data have photometric uncertainties between a few percent and 0.1 mag for

the objects investigated here, systematic effects can contribute up to 0.1 mag.

To account for flux variability of the objects, we added an observational error

of 15%. A multiplicative dilution factor,
(
R?
d

)2
, relating the central star radius

(R?) and the distance to the object (d) is used to normalize the optical bands.

In Figure 6.6, we plot millimeter flux as a function of stellar mass. The 8 tran-

sition disks in our sample are indicated as red symbols. Some of these objects

are among the most massive disks in the cluster, with disk masses of several

MJup, assuming a standard gas to dust mass ratio of 100. In particular, 3 of the

6 brightest disks in the entire sample are transition objects based on their SEDs

(Cl* IC 348 LRL 31, Cl* IC 348 LRL 67, and 2MASS J03443468+3216000),

a trend that was already reported by Cieza et al. (2015) based on shallower

SCUBA-2 observations of the cluster at 850 µm.

Three transition disks (Cl* IC 348 LRL 97*, Cl* IC 348 LRL 229*, Cl* IC 348

LRL 329) remained undetected. These results fit well in the scenario proposed
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Figure 6.5: Spectral energy distributions of the sources detected at 1.3 mm
in the IC 348 sample. Red dots show photometric data acquired from the
literature; blue lines are the BT-settl spectra model according to the spectral
type. Av values used are in Table 6.5. The green lines correspond to the
median SEDs of K5−M2 CTTSs calculated by Furlan et al. (2006).
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Figure 6.5: Continued.
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Figure 6.6: 1.3 mm continuum flux as a function of stellar mass for IC 348 Class
II sources. The horizontal dashed-line indicates the flux level corresponding to a
disk mass of ∼1 MJup assuming a gas to dust mass ratio of 100. Four transition
objects (red symbols) are among the most massive disks in the sample.

by Owen & Clarke (2012b) and Cieza et al. (2012b), in which there are at least

two types of transition disks with inner opacity cavities that are the result of

distinct processes: 1) gas-accreting transition disks that are massive and have

large inner holes caused by the formation of giant planets, (multiple) lower

mass planets or subsequent migration (van der Marel et al., 2018), and 2) non-

accreting transition objects with low disk masses that have inner holes carved

by photoevaporation during the final stages of disk dissipation.
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6.5 Discussion

6.5.1 Non-Detections

The ensemble of undetected sources can be used to estimate the typical disk

mass of the faint sources in IC 348. Initially, for the stacking analysis, we

produced average images of two subsamples (SpT: A2-M4 and M5-L0), and

we did not find a significant emission in those images. Then, we stack the 96

non-detections, after centering each field on the expected stellar position, to

create an average image that has noise which is a factor of ∼7 lower than in

the individual fields. After doing so, we find a clear signal 0.14 ± 0.02 mJy

(Figure 6.7), indicating that there are many targets in IC 348 with fluxes very

close to the 1σ noise of our observations. The 0.14 mJy flux measurement

resulting from the stacking exercise suggests that the average dust mass of the

disks that were not individually detected is only ∼0.30 M⊕. This implies that,

for most disks in the IC 348 cluster, the amount of millimeter-sized dust that

is still available for planet formation is of the order of the mass of the planet

Mars. Kepler has recently found that M-type stars host an average of 2.2 ±0.3

planets with radii of ∼1 R⊕ and orbital periods of 1.5 to 180 days (Gaidos et al.,

2016); therefore, it is expected that most stars in IC 348 should form multiple

rocky planets even though most of the cluster members have already lost their

disks (within the stringent limits imposed by the infrared observations) or

have very little dust left. Thus, we conclude that most disks around IC 348

members contain several Earth masses worth of solids in bodies that are large

enough to become undetectable by ALMA observations (at least several cm
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in size). More significantly, this suggests that these protoplanetary disks are

likely sites of already formed planetary systems like our own. In addition, IR

emission from disks not detected at mm wavelengths connotes the existence

of small optically thick disks with extensions of < 1 au. Our observations

also constrain the amount of second-generation dust produced in the systems

not detected by ALMA to be < 0.3 M⊕, which still leaves significant room to

explain the observed IR excesses. In fact, a small amount of warm grains of

micron sizes (¡1 lunar mass) is sufficient to produce the observed excesses at

10 µm (e.g. Nagel et al., 2010).

In addition, our survey with an RMS of ∼0.15 mJy results in a large number

of non-detections, with respect to other surveys, mainly because of a lower

sensitivity at late spectral types (M4-M9) at a distance of 270 pc. Detecting

such late M stars individually (with S/N of >4) at 1.3 mm would require 10×

our exposure time. However, we note that objects with a disk mass of ∼1 M⊕

are individually detected with a S/N of ∼10 in the Lupus survey thanks to the

much smaller (150 pc) distance of some of the Lupus PMS stars and, to a lesser

extent, the use of a shorter observing wavelength (Ansdell et al., 2016).

6.5.2 Disk Evolution

Disk properties determine possible planet formation scenarios. Investigating

basic disk parameters such as mass and size at different evolutionary stages is

thus vital for planet-formation theory. Nearby star-forming regions like Taurus

(1-3 Myr), Lupus (1-3 Myr), Cha I (2-3 Myr), σ Ori (3-5 Myr), and Upper

Sco (5-10 Myr) are ideal targets to track evolutionary patterns because the
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Figure 6.7: Stacked image for the 96 non-detections, which clearly shows a
detection at the 6σ level.
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Figure 6.8: Distribution of stellar spectral types for the detected and non-
detected sources in IC 348 targeted by our ALMA survey (Tables 6.2 and 6.3).

ages of these populations cover the disk dispersal timescale. Recently, (sub-

)mm continuum flux surveys of these star-forming regions have shown that

disk masses decline with age and that there is a strong dependence of mm-

wavelength luminosity on stellar mass (Andrews et al., 2013; Ansdell et al.,

2016, 2017; Barenfeld et al., 2016; Pascucci et al., 2016). Therefore, in order to

compare IC 348 to other regions and investigate the evolution of disk masses

as a function of stellar age, we need to take into account that disk masses and

millimeter detection rates depend on spectral types and stellar mass. Figure

6.8 displays the distribution of stellar spectral types for the detected and non-

detected sources, showing the low detection rate at later spectral types (Tables

6.2 and 6.3).

Because estimates of stellar masses depend sensitively on inputs such as dis-
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tances and theoretical models, here we used the statistical methodology pre-

sented in Andrews et al. (2013) based on spectral types. While solar-mass stars

evolve in spectral types during pre-main-sequence stages, lower-mass stars (0.1-

0.7 M� evolve at almost constant temperature for the first ∼10 Myr (see evolu-

tionary models in Figure 6.4). This supports the use of spectral types as a proxy

for stellar mass in the mass range of the stars in our IC 348 sample. Hence, to

statistically compare samples from different regions, we perform Monte Carlo

simulations, whose “reference” sample is IC 348, while a “comparison” sample

can be Taurus, Chamaeleon I, Lupus, Upper Sco, or σ Ori. The “comparison”

sample is appropriately scaled to the IC 348 distance (270 pc) and modified

for the respective observing wavelengths using the mean (sub-)millimeter flux

ratios observed in Taurus (Fλ = F1.3mm × (1.3mm/λ)2.5). Upper limit inputs

for the “comparison” samples are as reported in the literature: three times

the rms noise of the observations for Taurus, Lupus, Cha I, and Orionis, while

the upper limits in Upper Sco are given by three times the rms noise plus any

positive measured flux density. To construct our simulations, we first define a

set of spectral type bins ranging from A2 to M6, corresponding to the distri-

bution of the IC 348 sample, and place the comparison objects in those bins.

Then, disk mm-wave luminosities are randomly drawn from the reference re-

gion (IC 348) in each of these spectral type bins, such that the reference and

comparison samples have the same spectral type distributions. In this manner,

we simulate 106 synthetic “reference” disk ensembles that are used to construct

Cumulative Distribution Functions (CDF); see Figure 6.9. Each of these CDFs

is compared to the comparison sample to estimate the probability that the two

distributions are drawn from the same parent population using a censored sta-

tistical test (i.e the Gehan test: Feigelson & Nelson, 1985). The result is a list
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Figure 6.9: Cumulative Distribution Functions of the disk luminosities in IC
348 (red) and the 106 synthetic “reference” disk draws, Taurus (1-2 Myr), Lupus
(1-3 Myr), Cha I (2-3 Myr), σ Ori (3-5 Myr), and Upper Sco (5-10 Myr), in
black colour. At the right bottom, the comparison between the disk luminosity
distribution of IC 348 and the “reference” sample shows the probability that
IC 348 and the “reference” sample belong to the same population. The vertical
green bars indicate the nominal 2, 3, and 4σ probabilities.

of 106 such probabilities for each comparison region. The cumulative distribu-

tions for these probabilities, f(pφ), are also shown in Figure 6.9 (bottom-right

panel).

Relative Flux Densities

The CDFs for the scaled flux densities show that the disks orbiting IC 348

stars are fainter on average than disks in Taurus, Lupus, Cham I and σ Ori.

Cieza et al. (2015) presented a similar statistical analysis based on shallower

SCUBA-2 observations of IC 348 and found that the fluxes in this cluster were

slightly lower than in Taurus. Here, we confirm that the fluxes in IC 348 are ∼
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5× fainter than in Taurus with a very high level of significance: virtually all 106

tests indicate that the probability that disk luminosities in Taurus and IC 348

are drawn from the same parent population is < 10−9. Similarly, we find that

the younger Lupus and Cha I regions have substantially brighter distributions

compared to the older IC 348 region, at the &3σ level. The difference between

the luminosity distributions of IC 348 and σ Ori are marginal, with IC 348 being

slightly fainter than σ Ori. This might suggest that IC 348 is actually more

evolved than σ Ori, despite the fact that it is usually assigned a younger age in

the literature. Indeed, we note that adopting a distance of 250 pc, Bell et al.

(2013) derived an age of 6 Myr for IC 348 (e.g. Ripepi et al., 2014). In addition,

Upper Sco is also very different from IC 348 (all tests indicate differences >

3σ), but in the opposite sense: the Upper Sco disks are fainter than disks in

IC 348, which reflects the fact that the mean mass dust is lower at the 5-10

Myr age of Upper Sco. In summary, these millimeter observations trace the

population of millimeter/centimeter-sized grains at radial distances >10 au,

confirming a significant dispersal process in the outer disk over a timescale of

∼1−10 Myr.

Previously, infrared surveys with the Spitzer Space Telescope, at IRAC wave-

lengths (3.6−4.5 µm), already established that the fraction of optically thick

dust disk decreases, yielding disk fractions (%) of 63 ± 4 in Taurus, 52 ± 5 in

Lupus, 52 ± 6 in Cha I, 39 ± 6 in σ Ori, 36 ± 3 in IC 348, and only 16 ± 6 in

Upper Sco (Ribas et al., 2014). These IR observations probe the dispersion of

micron-sized grains within a few au (< 10 au) from the central star. While IR

disks observations are very sensitive and typically less biased with respect to

spectral type, (sub-)millimetre detection rates are much lower and usually very
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biased against the lower end of the stellar mass function (M4-M9), making the

interpretation of the results difficult.

Continuum Luminosity Distributions

Figure 6.9 (bottom-right panel) compares the disc luminosity distributions of

the “comparison” and “reference” samples. Where pφ is the probability that the

two distributions are drawn from the same parent population and the vertical

green bars indicate the nominal 2σ, 3σ and 4σ probabilities. The cumulative

distributions derived from the the Peto-Prentice test indicate medians of pφ =

3.8 x 10−15 and 1.3 x 10−6 for Taurus and Upper Sco, respectively, implying a

>4σ difference. The Lupus and Cha I samples appear to have a difference of

>3σ in their luminosity distributions, as indicated by medians of pφ = 7.7 x

10−5 and pφ = 5.4 x 10−4, respectively. Meanwhile, the σ Ori has a luminosity

distribution that is only marginally (&2σ) different from the IC 348 sample,

with pφ = 2.0 x 10−2.

It is noteworthy that the disc luminosity distribution of our IC 348 sample is

significantly different from those of the Taurus and Upper Sco samples. As

mentioned above, IC 348 is fainter than Taurus and Upper Sco is fainter than

IC 348, which is not surprising, considering their relative ages and their IR disc

fractions (Taurus: 63 per cent, Upper Sco: 16 per cent, IC 348: 36 per cent

(Ribas et al., 2014)). Also, σ Ori, with an IR disc fraction of 39 per cent and

slightly brighter than IC 348, seems to undergo a similar evolutionary stage in

terms of dispersal timescales.
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Distance Uncertainty: Recent results for a similar analysis applied to the

millimeter surveys of discs towards other star-forming regions (Taurus, Lupus,

Cha I, Ori, Upper ScoI), also reveal a significant decrease of disk masses with

“age”, which has been interpreted as a signature of evolution. However, ages

are difficult to determine at early times (<10 Myr) and are highly dependent

on the adopted distances and theoretical models (Hillenbrand, Bauermeister

& White, 2008). In the literature, the distance to the IC 348 region has been

estimated in a wide range between 220 - 380 pc (Harris, Morgan & Roman,

1954; Cernis, 1993; Herbig, 1998; Scholz et al., 1999; de Zeeuw et al., 1999;

Luhman et al., 2003; Luhman, Esplin & Loutrel, 2016). Here, we have adopted

a distance value based on the Gaia DR1 despite its large error bar (∼270 ±65

pc). However, if the distance is closer than the adopted value of 270 pc, IC

348 is expected to be even older than 5 Myr. Similarly, a larger distance

would imply a younger age. For a distance of ∼320 pc, the luminosities would

increase by approximately 30% and the inferred age would be around 1-3 Myr

(Herbig, 1998; Luhman et al., 2003). Adopting a distance of 320 pc, the IC

348 mm emission distribution becomes similar similar to the Lupus and Cha

I distributions, while the σ Ori distribution would be slightly less luminous

than IC 348, and Upper Sco considerably lower than IC 348. On the other

hand, if the distance is actually ∼380 pc, the luminosities would increase by

approximately 50% and the mean age would be ∼1 Myr, which is not consistent

with the IR disk fraction of the cluster (∼36%). Unfortunately, we do not have

a more accurate distance measurement to date and given the sensitivity of the

available data, it is plausible that IC 348 Class II members are in an earlier

evolutionary stage. Here, our Montecarlo simulations are scaled to a distance of

270 pc and emphasize that the comparisons of the disc luminosities are highly
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dependent on the adopted distance and spectral types.

In addition, adopting spectral types as a proxy for mass also introduces un-

certainties as pre-main-sequence stars, specially higher mass objects, can sig-

nificantly evolve in spectral type over time. Given that the mm-emission from

disks depends on the host stellar mass, the results of our statistical analysis

can be influenced by the difference in stellar masses at different evolutionary

stages and spectral types.

6.5.3 Disk mass vs. Stellar mass

A commonly used approximation to estimate disk masses is the use of flux

densities in the millimeter wavelength regime, where the disk luminosity is pro-

portional to the dust mass (Beckwith et al., 1990). In recent years, a Bayesian

linear regression approach analysis of ALMA surveys of star-forming regions at

different ages have revealed a positive relationship between dust mass and stel-

lar mass but with a steepening of the Mdust - M∗ relation. (e.g. Andrews et al.,

2013; Ansdell et al., 2016; Pascucci et al., 2016). This method accounts for

measurement errors in linear regression for detected and undetected sources,

allowing one to correlate measurement errors, and to account for intrinsic scat-

ter in the regression relationship (Kelly, 2007). Indeed, studies of Taurus,

Lupus, and Chamaeleon I show that the dependence of disk mass on stellar

mass is similar at an age of ∼ 1-3 Myr, while older regions such as σ Ori and

Upper Sco present a steeper disk mass vs. stellar mass relation (Pascucci et al.,

2016; Ansdell et al., 2017). The steepening of this relation with age has been

interpreted in terms of an efficient inward drift of mm-sized grains (Pascucci
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Figure 6.10: Disk dust mass as a function of stellar mass for IC 348 region. Blue
circles represent the detected sources, while red triangles are 4σ upper limits for
non-detections. The blue and orange solid lines represent the Bayesian linear
regression obtained for IC 348 and σ Ori, respectively; see Section 6.5.3.
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et al., 2016). However, the parameters describing the dependence of disk mass

on stellar mass are very sensitive to the mm detection fraction and the treat-

ment of the upper limits. In the case of IC 348, the detection fraction is low

(∼30 %) and is a strong function of stellar mass. As a result, most of the de-

tections are restricted to a narrow range of stellar masses. Given these issues,

a linear regression fit is not accurate enough to allow a meaningful comparison

to other star-forming regions. Nevertheless, we report the resulting parame-

ters from the “standard” methodology used in the previous studies mentioned

above.

Considering all IC 348 sources in our ALMA sample, we derive slope and

intercept values of β = 1.13 ± 0.25 and α = 0.30 ± 0.20, where β and α are

the slope and intercept, respectively. Figure 6.10 shows the linear fit obtained

from the Bayesian method. Because of the difficulty in obtaining a reliable fit,

we only use σ Ori as a comparison to illustrate differences between our fitting

and other investigations with a wider mass range. The linear regression for σ

Ori data generated values of 1.95 ± 0.37, 1.00 ± 0.20, and 0.65 ± 0.15 for β,

α and δ, respectively, consistent with the values estimated by Ansdell et al.

(2017). Moreover, such measurements are subject to systematic uncertainties

in the assumed parameters, such as the adopted disk temperature and distances

to the star-forming regions. The fitted linear regression for IC 348 provides a

large intrinsic scatter of δ = 1.01 ± 0.18. Similar large intrinsic dispersions

were estimated for Taurus, Lupus, Cha I, σ Ori, and Upper Sco (Pascucci

et al., 2016; Ansdell et al., 2017). As previously suggested by Pascucci et al.

(2016), the dispersion can be an intrinsic property of the disk population (i.e.

disk masses, dust temperatures, and grain sizes) reflected in the diversity of
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planetary systems.

6.5.4 CO Emission From IRAS 03410+3152

The brightest millimeter source in our sample, IRAS 03410+3152, which has

a bolometric temperature of 463 K and luminosity of 1.6 L� (Hatchell et al.,

2007), was observed previously with the Submillimeter Array by Lee, Williams

& Cieza (2011). They detected a bipolar shape in the 12CO emission, with

prominent emission outflow lobes and a moderate opening angle. From our ob-

servations at a resolution of 0.3
′′
, we are able to estimate position angle (P.A.),

mass and kinematics of the of the outflow following the process presented in

Rúız-Rodŕıguez et al. (2017c). Here, we used the 13CO emission to correct for

the CO optical depth and estimated the mass, momentum and kinetic energy

of the outflow, see Figure 6.12. Using the C18O line, we estimated a systemic

velocity of ∼ 8.0 km s−1. Because 12CO traces the bipolar and extension cav-

ities of the outflow, we drew a line along the rotation axis to estimate a P.A.

of ∼ -155
◦

north through east. Additionally, taking the extent of ∼ 3800 au

(14
′′
) and maximum speed of the 12CO emission, we estimated a kinematic age

of 1800 yr.

To compute the 12CO mass, we apply the correction factor to all the chan-

nels with 13CO detection above 4σ. In order to ensure emission only from

the outflow, we built a mask around IRAS 03410+3152 of radius 3.0
′′
, where

emission inside this area was removed from the integration. Thus, separating

the red- and blue-shifted components, the blue-shifted outflow kinematics were

estimated by integrating channels in the range between 5.0 and 8.0 km s−1 for
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Figure 6.11: Intensity ratio between 12CO and 13CO function of velocity. The
green solid curve is the best-fit second-order polynomial using the blue data
points, more details in Rúız-Rodŕıguez et al. (2017c)

12CO and, 5.0 and 8.0 km s−1 for 13CO. The range of channels in the redshifted

emission is between 9.5 and 17.5 km s−1 for 12CO and, 9.5 and 11.5 km s−1 for

13CO. To apply the correction factor to all the channels with 12CO detection, we

extrapolate values from a parabola fitted to the weighted mean values, where

the minimum ratio value was fixed at zero velocity. In the fitting process, we

did not include those data points presented as red dots in Figure 6.11, because

at these velocities 12CO starts becoming optically thin. The fitted parabola

has the form:

T12

T13

= 0.11 + 0.40(v-vLSR)2. (6.2)
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Table 6.6 shows the estimates at temperatures of 20 and 50 K and without cor-

recting for inclination effects. Correcting for the 12CO optical depth increases

the estimated mass of the outflow, the momentum and the kinetic energy by

factors of 7.5-43, 5-27, and 4-23, respectively, at a temperature of 20 K.

IRAS 03410+3152 has been identified as an optically thick Class II protostar

with a slope of α3.6−8.0µm ∼ -0.006 (Lada et al., 2006). While the highly dered-

dened SED peaking in the mid-infrared clearly shows that IRAS 03410+3152

is still embedded, the presence of energetic outflows suggests that this object

could be a Class I. Furthermore, the estimated outflow mass on the order of

10−2 M� is consistent with the highest mass estimates of previously reported

Class 0 and I outflows, after correcting for optical depth effects (Dunham et al.,

2014). The differences between these estimates can be attributed to the higher

ALMA sensitivities, which facilitate the detection of weak and high-velocity

emission from the outflows, thus integrating over high-resolution spectra. In

table 6.6, note that the measured mass of the blue-shifted outflow is a factor

of ∼2 lower than that of the red-shifted outflow, indicating possible differences

in the environment between the cavities.
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Figure 6.12: 13CO intensity map (moment-0) of IRAS 03410+3152 integrated
over the velocity range of 5.0 to 11.5 km s−1. Black contours show the 1.3 mm
continuum emission around IRAS 03410+3152 at 10, 40, 60, and 80 × rms
(0.15 mJy beam−1). Green and Red contours show the blue- and red- shifted
moment-0 of the 12CO line, respectively, at 20, 40, 80, 160 x 3σ levels. These
blue- and red- shifted intensity maps are integrated over the velocity range of
5.0 to 8 km s−1 and 9.5 to 17.5 km s−1, respectively. The synthesized beam
of 0.77 arcsec × 0.63 arcsec with PA = 20.33 deg. is shown in the lower left
corner. The upper right inset is a closeup (±2.5

′′
) of the central object.



ALMA SURVEY OF CIRCUMSTELLAR DISKS IN THE YOUNG STELLAR CLUSTER IC 348 237

T
ab

le
6.

6:
M

as
s,

M
om

en
tu

m
,

L
u
m

in
os

it
y

an
d

K
in

et
ic

E
n
er

gy
of

th
e

O
u
tfl

ow
an

d
E

n
ve

lo
p

e

R
e
d

sh
if
te

d
∗

B
lu

e
sh

if
te

d
†

Is
o
to

p
e

P
r
o
p
e
r
ty

5
0

(K
)

2
0

(K
)

5
0

(K
)

2
0

(K
)

12
CO

M
a
ss

(1
0
−

2
M
�

)
2
3
.5

0
(1

6
3
.4

0
)

1
5
.8

9
(1

1
0
.4

0
)

1
.6

8
(7

7
.7

3
)

1
.1

3
(5

2
.5

3
)

M
a
ss

lo
ss

(1
0
−

6
M
�

y
r−

1
)

1
3
1
.1

8
(9

1
1
.6

9
)

8
8
.6

0
(6

1
6
.1

4
)

9
.3

6
(4

3
3
.8

0
)

6
.3

3
(2

9
3
.0

0
)

M
o
m

en
tu

m
(1

0
−

2
M
�

k
m

s−
1
)

1
0
6
.0

0
(5

5
6
.6

)
7
2
.0

9
(3

7
6
.2

1
)

1
.5

3
(4

0
.9

5
)

1
.0

4
(2

7
.6

7
)

E
n

er
g
y

(1
0

4
2

er
g
s.

)
5
5
.3

8
(2

2
0
.3

9
)

3
7
.4

3
(1

4
9
.0

0
)

0
.2

5
(5

.5
0
)

0
.1

6
(3

.6
9
)

L
u

m
in

o
si

ty
(1

0
−

2
L
�

)
2
5
.4

6
(1

0
1
.3

3
)

1
7
.2

1
(6

8
.4

8
)

0
.1

1
(2

.5
2
)

0
.0

8
(1

.7
0
)

13
CO

M
a
ss

(1
0
−

2
M
�

)
0
.1

6
0
.1

1
0
.0

8
0
.5

5
M

a
ss

lo
ss

(
1
0
−

6
M
�

y
r−

1
)

0
.9

0
0
.6

0
4
.6

3
3
.1

0
M

o
m

en
tu

m
(1

0
−

2
M
�

k
m

s−
1
)

0
.2

7
0
.1

8
0
.1

7
0
.1

1
E

n
er

g
y

(1
0

4
1

er
g
s.

)
0
.4

9
0
.3

3
0
.2

4
0
.1

6
L

u
m

in
o
si

ty
(1

0
−

2
L
�

)
0
.0

2
0
.0

2
0
.0

1
0
.0

1
1

B
lu

e
sh

if
te

d
o
u

tfl
o
w

k
in

em
a
ti

cs
w

er
e

es
ti

m
a
te

d
a
ft

er
a

cu
t

a
b

o
v
e

4
σ

a
n

d
in

te
g
ra

ti
o
n

o
f

ch
a
n

n
el

s
b

et
w

ee
n

5
.0

a
n

d
8
.0

k
m

s−
1

fo
r

1
2
C

O
a
n

d
5
.0

a
n

d
8
.0

k
m

s−
1

fo
r

1
3
C

O
.

2
R

ed
sh

if
te

d
o
u

tfl
o
w

k
in

em
a
ti

cs
w

er
e

es
ti

m
a
te

d
w

it
h

a
th

re
sh

o
ld

v
a
lu

e
a
b

o
v
e

4
σ

a
n

d
in

te
g
ra

ti
o
n

o
f

ch
a
n

n
el

s
b

et
w

ee
n

9
.5

a
n

d
1
7
.5

k
m

s−
1

fo
r

1
2
C

O
,

a
n

d
9
.5

a
n

d
1
1
.5

k
m

s−
1

fo
r

1
3
C

O
.

3
P

a
ra

m
et

er
s

in
si

d
e

th
e

p
a
re

n
th

es
es

co
rr

es
p

o
n

d
to

th
e

co
m

p
u

te
d

v
a
lu

es
a
ft

er
a
p

p
ly

in
g

th
e

co
rr

ec
ti

o
n

fa
ct

o
rs

fo
r

o
p

ti
ca

l
d

ep
th

eff
ec

ts
to

a
ll

th
e

ch
a
n

n
el

s
w

it
h

1
3
C

O
d

et
ec

ti
o
n

a
b

o
v
e

4
σ

.



238 ALMA SURVEY OF CIRCUMSTELLAR DISKS IN THE YOUNG STELLAR CLUSTER IC 348

6.6 Summary

We have observed 136 Class II members of the young stellar cluster IC 348 with

ALMA at 1.3 mm. We reach a dust mass sensitivity of 1.0 M⊕ (3σ) and detect

a total of 40 disks. The detection rate is a strong function of spectral type, as

expected from the known dependence of disk mass on stellar mass. A stacking

analysis of the 96 objects that were not individually detected yielded a clear 6σ

detection of 0.14 mJy, indicating that these disks have a typical dust mass of

just . 0.3 M⊕, even though their infrared SEDs remain optically thick and show

little signs of evolution. We compare the disk luminosity function in IC 348 to

those in younger and older regions and see a clear evolution in the dust masses

between 1 and 5-10 Myr. Based on the statistics of extrasolar planets (Gaidos

et al., 2016; Howard et al., 2012; Burke et al., 2015), a stellar cluster like

IC 348 with ∼400 members dominated by low-mass stars should form a very

small fraction of systems (.5%) with giant planets, which is consistent with

the number of disks with masses > 1 MJup in the cluster and the presence of

transition disks among this small population. The rest of the members should

mostly form small rocky planets, consuming most of the primordial dust by

the age of the cluster.
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Conclusions

The main goal of this thesis is to investigate the physical components that play

an important role dispersing the disk and circumstellar envelope at very early

stages and thus, contribute to constrain the time availability and initial condi-

tions for planet formation. Disk lifetimes from star-forming region observations

have shown a considerable dispersion of the disk at an age of ∼ 10 Myrs. While,

statistical properties of circumstellar disks around young stars have shown that

the fraction of young stars with optically thick primordial disks follow an ex-

ponential decay (Mamajek, 2009). Observations of these star-forming regions,

especially those with a large disk frequency at early formation stages, are nec-

essary to solve the enigma that involves the initial steps of the formation of

planets.
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7.0.1 Outflows in FUors

As discussed in Chapters 3 and 4, FUors are promising laboratories to investi-

gate the core-to-star formation efficiency, early stages of disk evolution, and the

dissipation of the envelope. This thesis investigates two FUor objects in par-

ticular: HBC 494 (Chapter 3) and V883 Ori (Chapter 4), using ALMA Cycle-2

observations of their molecular outflows and envelopes. HBC 494 is an FUor

object embedded in the Orion A cloud and is associated with the reflection

nebulae Re50 and Re50N. V883 Ori is associated with the reflection nebulosity

IC 340. In both objects, we identified individual outflow and envelope struc-

tures by using 12CO, 13CO and C18O spectral line data. The moment-1 maps

of the 12CO emission show the wide outflow cavities with opening angles of ∼

150
◦

for each object. The morphology of the wide outflow is likely to be due to

the interaction between winds originating in the inner disc and the surrounding

envelope.

Using these molecular line data and adopting standard methods for correcting

optical depth effects, we estimate its kinematic properties, including an outflow

mass. In this thesis, we note that it is important to consider the velocity

range where outflows emit. For instance, a slow outflow impacts the estimates

of the mass and kinematic parameters. However, it is not easy to directly

compare these parameters because 1) uncertainties in the method used and

2) the few estimates in the literature differ by observing method (single dish

vs. interferometer observations) and sensitivity. Nevertheless, the kinematic

properties and outflow mass are of the same order as those derived in the

few other FU Ori objects already published such as V2775 Ori and L1165
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(Zurlo et al., 2016; Dunham et al., 2014). Future ALMA observations will

provide outflow parameters the can be calculated in a systematic fashion for

larger samples of FUor sources and young stellar objects in general. This will

allow us to construct a more complete picture of outflows properties and the

evolution of size, morphology, mass-loss rate, and angular moment dissipation

across different stages (Class 0, I, and II).

ALMA long-baseline (>10 km) observations can also zoom in onto the disk of

FUor sources. Recently, we observed V883 Ori at 30 mas (12 au) resolution

and detect the water snow-line in a circumstellar disk for the first time (Cieza

et al., 2016). The water snow-line is the region where a disk reaches the wa-

ter sublimation temperature and is typically located at 3-5 au from solar-type

stars. This boundary is crucial for planet formation as water ice plays a criti-

cal role in the growth of solid particles by promotion dust agglomeration and

preventing fragmentation. In the case of V883 Ori, a 1.3 M� star, the snow-

line has been moved to ∼40 au due to the FUor outburst, implying dramatic

effects on the thermal structure of the disk. If most young stars experience a

few outbursts, these sporadically events might affect the first steps of planet

formation. FUOri disks are also strong candidates for gravitational instability

(GI) and disk fragmentation (Zhu et al, 2012). While V883 Ori does not show

evidence for GI (e.g. clumps or spiral arms) at high spatial resolution, the

HBC 494 disk seems asymmetric even at low resolution hinting to structure

in the disk (see Figure 3.1). To investigate the GI possibility, we have also

observed HBC 494 at 30 mas (12 au) resolution in ALMA Cycle-4. The results

will be presented in a future paper.
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7.0.2 (Sub-)stellar Companions Dispersing Circumstel-

lar Disks

In recent years, transition disks have atracted significant attention from the

community due to their connection with different disk evolution processes. In

this thesis (Chapter 5), we investigate the fraction of objects that been classified

as TDs based on their SEDs that are actually circumbinary disks. Using Non-

Redundant Mask interferometry, we searched for binary companions in TDs

and investigated the presence of a stellar companion as a possible mechanism

of material depletion in the inner region of these disks, which would prevent

planet formation at distances comparable to the binary separation. The se-

lected sample of 24 TDs belong to the nearby and young star forming regions:

Ophiuchus, Taurus-Auriga and IC348. With a total of 31 objects, including

11 known TDs and circumbinary disks from the literature we find that 0.38 ±

0.09 of the SEDs of these objects are likely due to the tidal interaction between

a close binary and its disk, while the remaining SEDs are likely the result of

other internal processes such as photoevaporation, grain growth, planet disk

interactions.

Previous observations with Spitzer have shown that mid-separation binaries (a

∼ 20-50 au) tend to destroy disks completely, removing any detectable IR ex-

cesses (Kraus & Ireland, 2012). Our close (sub-)stellar companions are detected

at projected separations of only ∼ 2−10 au, and thus are likely to inhibit planet

formation at distances of up to ∼5-20 au from the binary systems. Since the

SEDs of our targets indicate the presence of outer disks, circumbinary planets

might still form at larger distances from the central stars. With future ALMA
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observations of these circumbinary disk systems, we will be able to measure

their basic properties (masses, sizes, and surface density profiles) and estab-

lish their planet-formation potential. Meanwhile, transition disks around single

stars continue to be a focus of detail observations to investigate their origins

and their connection with planet formation. Transition disks, and later pre-

transition disks were originally defined as objects showing evidence for inner

cavities and gaps as opposed to ”continuous disks” lacking such structures.

Since then, high-resolution images from ALMA (ALMA Partnership et al.,

2015; Andrews, 2015) have shown that “continuous disks” might actually be

the exception rather than the rule. In this context, objects previously identified

as transition and pre-transition disks based on there SEDs might be a part of

a continuum of objects showing structures of different scales.

7.0.3 Disk Evolution

Young stellar clusters provide an opportunity to investigate the distribution of

disk properties at a given (characteristic) age. In Chapter 6, we used ALMA

to study Class II objects that belong to IC 348, a benchmark 2-3 Myr stellar

cluster dominates by M-type stars, and construct its disk luminosity function at

1.3 mm. By now, many other nearby clusters have been observed with ALMA

at similar wavelengths allowing us to compare the results in IC 348 to those

from younger and older regions. We find a clear evolution in disk masses from

1 to 5-10 Myr. The disk masses in IC 348 are significantly lower than those

in Taurus (1-2 Myr) and Lupus (1-3 Myr), similar to those of Chamaleon I,

(2-3 Myr) and σ-Ori (3-5 Myr) and significantly higher than in Upper Scorpius

(5-10 Myr).
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Statistics of extrasolar planets imply that a stellar cluster like IC 348 with ∼400

members dominated by low-mass stars should form a handful of systems (∼5%)

with giant planets (Gaidos et al., 2016; Howard et al., 2012; Burke et al., 2015).

This is consistent with the number of disks with masses > 1 MJUP in the IC

348 star-forming region and the presence of massive transition disks among this

small population. The rest of the cluster members should mostly form small

rocky planets, consuming most of the primordial dust by the age of the clus-

ter. These basic connections between disk evolution and planet demographics

are promising. However, disk mass is not only a function of stellar age, as it

also depends on stellar mass, multiplicity, and even environment. Similarly,

there are parameters other than disk mass than are important for planet for-

mation, including sizes, surface density profiles, and metallicities. Investigating

all relevant disk properties as a function of age, stellar mass, multiplicity, and

environment will require larger samples and deeper (sub-)millimeter observa-

tions at higher resolution. Meanwhile, our knowledge of planet demographics

is continuously expanding, and we can expect to see the fields of disk evolution

and extrasolar planets to get closer together with time.
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A., Meŕın B., 2012b, ApJ, 750, 157



250 Bibliography

Clarke C. J., Gendrin A., Sotomayor M., 2001, MNRAS, 328, 485

Cohen M., Kuhi L. V., 1979, ApJS, 41, 743

Comeron F., 2008, The Lupus Clouds, Reipurth B., ed., p. 295

Currie T., Kenyon S. J., 2009, AJ, 138, 703

Curtis E. I., Richer J. S., Swift J. J., Williams J. P., 2010, MNRAS, 408, 1516

Cutri R. M. et al., 2003, VizieR Online Data Catalog, 2246

D’Alessio P. et al., 2005, ApJ, 621, 461

Davies R., Kasper M., 2012, ARA&A, 50, 305

de Zeeuw P. T., Hoogerwerf R., de Bruijne J. H. J., Brown A. G. A., Blaauw

A., 1999, AJ, 117, 354

Dodson-Robinson S. E., Salyk C., 2011, ApJ, 738, 131

Donati J.-F., Paletou F., Bouvier J., Ferreira J., 2005, Nature, 438, 466
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L. J., Romero G. A., 2012, A&A, 539, A41

Ostriker E. C., Lee C.-F., Stone J. M., Mundy L. G., 2001, ApJ, 557, 443

Owen J. E., Clarke C. J., 2012a, MNRAS, 426, L96

Owen J. E., Clarke C. J., 2012b, MNRAS, 426, L96

Pascucci I., Apai D., Hardegree-Ullman E. E., Kim J. S., Meyer M. R., Bouw-

man J., 2008, ApJ, 673, 477

Pascucci I. et al., 2016, ApJ, 831, 125

Pecaut M. J., Mamajek E. E., 2013, ApJS, 208, 9

Pecaut M. J., Mamajek E. E., Bubar E. J., 2012, ApJ, 746, 154

Pelletier G., Pudritz R. E., 1992, ApJ, 394, 117
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Rúız-Rodŕıguez D. et al., 2017c, MNRAS, 466, 3519

Rúız-Rodŕıguez D., Ireland M., Cieza L., Kraus A., 2016a, MNRAS, 463, 3829
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