
ANALYTIC MODELS OF ELECTRICITY LOAD
By

Xichuan Zhang

A THESIS SUBMITTED FOR 

THE DEGREE OF DOCTOR OF PHILOSOPHY OF

THE AUSTRALIAN NATIONAL UNIVERSITY

July 1, 1992



D ec la ra tio n

The results of this thesis are my own except where otherwise acknowledged.

\C

I *1*111-1.



A b s tra c t

The main topic of this thesis is modelling and forecasting electricity load using regional 

data observed from every few minutes up to a daily basis (short-term load data). The 

various models presented and evaluated in this thesis utilize half-hourly and weekly 

load data from New Zealand and quarter-hourly and daily load information and three 

hourly meteorological data from Canberra, Australia.

Subset AR model selection procedures have been investigated in chapter 2. The 

concept of the projection modulus of a particular lag in a subset AR model is estab­

lished so that a more efficient subset AR searching algorithm is created. Applying the 

new algorithm to computer simulated and real data shows that the new algorithm is 

more efficient in searching for the optimal model. The impact on the performance of 

the Kalman filter of initial conditions for the state vector in a state space model has 

been examined and a recursive estimation procedure has been established to estimate 

the initial conditions so that the Riccati difference equation converges quickly.

The various approaches to short term electricity load modelling and forecasting 

have been systematically reviewed in chapter 1. In chapter 4, a new additive model 

is introduced. The setup of this model enables us to handle properly the trend, 

the transitions between the profiles of weekdays and weekend days, the important 

periodicities, and the residual innovation series.

In chapter 5, several multiplicative models are built. Comparisons of established 

models with these demonstrate that the proposed additive model and a subset ARAR 

model are best at both within sample fitting and post sample predictions. Theoretical 

analysis and real forecasting practice also show that the performance of these two



models are influenced by the seasons. This effect derives directly from the influences 

of clim ate on the load.

In chapter 6, a non-linear model of the relationship between the electricity load 

and tem perature is built to take the climatic influences into account. The climatic 

influences were carefully identified though the existence of outliers and variance het­

erogeneity. This non-linear model allows extraction of the weather sensitive and 

insensitive loads. The relation between tem perature and other load characteristics 

are captured in diagrams of the load profiles aqd of the tim e of peak load, both of 

which are derived from this non-linear model.

In chapter 7, two dynamic models, an ARMAX model and a structural state space 

model, which use weather information have been established for daily electricity load. 

A sequential hypothesis testing procedure is also provided to find the optimal state 

space models. Further study areas are suggested in chapter 8.
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Chapter 1

Introduction

The last three decades has seen the development of a range of models for short-term 

electricity load, where “short-term” is used throughout this thesis when the observa­

tions on electricity load are measureed at intervals ranging from every a few minutes 

to every day. The modeling techniques have been largely derived from statistical and 

systems engineering practice. With the recent development of techniques in the sta­

tistical and systems engineering disciplines, it has been possible to model and forecast 

short-term electricity load with greater accuracy and enhanced computational speed.

Short-term load information may be collected in its form of system load, regional 

load, or bus load. Different purposes will require us to produce short-term forecasts 

with lead times which range from a few minutes to a few weeks. Total system load 

forecasting is valuable in making decisions on whether to introduce or shut off different 

plants and for scheduling the most economic allocation between different plants in a 

power network system. An accurate regional load forecast is needed to allocate the 

total system load between different plants or to arrange switching of load between the 

various generating systems. Bus load forecasts are also needed for some applications 

related to economic and system security problems. Although the contributions to the 

three types of load are different, they have many similar features. We concentrate on 

reviewing and studying regional load modelling and forecasting when data from two 

regional short-term loads are available.

1



2 CHAPTER 1. INTRODUCTION

1.1 Influential Factors of Regional Load

The regional load is the sum of all the individual demands from an area. In principle, 

one could establish the load pattern if each individual consumption pattern were 

known. Still, the demand or usage pattern of an individual load or customer has 

some degree of randomness and unpredictability. There is a diversity of individual 

usage patterns in any region. These factors make it ineffective to predict regional 

electricity demand levels by extrapolating the estimated individual usage patterns 

and aggregating over a region. Fortunately, however, the total of the individual loads 

produces a distinct consumption pattern which can be statistically predicted.

The regional load behavior is influenced by a number of factors. The major factors 

are categorized as follows and discussed in the next four subsections.

• economic

• time

• weather

• random effects.

1.1.1 Econom ic Factors

The economic environment in which a utility operates has a clear effect on the elec­

tricity demand consumption patterns. Factors, such as area demography, levels of 

industrial and/or commercial activities, nature and level of penetration and satura­

tion of the appliance population, developments in the regulatory climate and more 

generally, economic trends have significant impacts on the regional load behaviour. 

The economic factors are not, however, explicitly represented in the short-term load 

forecasting models because of the longer term impact associated with them.
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1.1 .2  T im e  Factors

Three principal time factors -  seasonal effects, weekly and daily cycles, casual, legal 

and religious holidays -  play an important role in influencing the profile of load pat­

terns. Certain changes in the load pattern occur gradually in response to seasonal 

variations such as the number of day-light hours and the changes in temperature. On 

the other hand, there are seasonal events which bring about abrupt but important 

structural modifications in the electricity consumption pattern. These are the shifts 

to and from Day-light Saving Time, changes in the rate structure(time-of-day or sea­

sonal demand), start of the school year, and significant reductions of activities during 

vacation periods(e.g. Christmas-New Year period). The weekly- daily- periodicity 

of the load is a consequence of the work-rest pattern of the region population. The 

existence of statutory and religious holidays has the general effect of significantly 

lowering the load values to levels well below “normal”.

1 .1 .3  W ea th er  Factors

Meteorological conditions are responsible for significant variations in the load pattern. 

Most utilities have large components of weather-sensitive load, such as those due 

to space heating, air conditioning, and agricultural irrigation. In many systems, 

temperature is the most important weather variable in terms of its effects on the 

load. For any given day, the deviation of the temperature variable from a normal 

value may cause load changes of such a magnitude as to require major modifications 

in the pattern. The recent recorded history of temperature also affects the load 

profile, i.e. the “build up” effect. Humidity is a factor that may also affect the 

load in a manner associated with temperature, part icularly in hot and humid areas. 

Thunderstorms also have a strong effect on the load due to the marked change in 

temperature that they can induce. Other factors that impact on load behavior are 

wind speed, precipitation, and cloud cover/light intensity.
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1.1.4 Random  D isturbances

A power system is continuously subject to minor random disturbances since the sys­

tem load is a composite of a large number of diverse individual demands. There are 

also certain events such as widespread strikes, shutdown of industrial facilities and 

special television programs whose occurrence is known a priori, but whose effect on 

the load is uncertain.

1.2 C lassifica tion  o f Short-T erm  Load Forecasts

Based on the forecasting purpose, the data available, and computational requirements, 

the forecasting models are classified in this thesis into two categories: (1) models using 

only past load data or (2) models using both weather and load data. Furthermore, 

the models in each category can be further sub-classified into (1) an off-line approach 

or (2) an on-line approach. As the load demand is a time-dependent random process, 

many statistical techniques have been applied to load data. These include multiple 

regression approaches, time series approaches in the time domain, such as exponential 

smoothing, Box and Jenkins type models and state space approach, etc. and in the 

frequency domain, such as spectral decomposition, FFT, etc. Excellent reviews on 

the application of these techniques to short-term load forecasting along with their 

limitations are reported in Gross and Galiana (1987) and Abu-El-Magd and Sinha 

(1982). Valuable bibliographies on load forecasting can be found in Sachdev et al. 

(1977), IEEE Committee Report (1980) and IEEE Committee Report (1981). In the 

following sections, we review the the use of time series and state space models for 

“short term” load forecasting, and therefore this coverage will not include all existing 

model types in the literature. In the more detailed discussion (see section 1.2.1 ), the 

emphasis will be on a two stage process of modelling which separates the load into a 

base load part and a stochastic part including the effect of climate. The characteristic 

features of the different methods, their merits and drawbacks are stressed. Finally in 

this introduction chapter, some proposed models and associated model identification
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techniques are suggested for our study in the main part of this thesis.

1.2.1 Two Stage Tim e-Series M odel Approach

Suppose the load {X(£)} at each discrete sampling time t of the forecast period for 

duration T  is represented by a time series {X(t) ,t  = 1,* • • , T}, the basic idea of this 

model is to divide the load into two parts in an additive form or in a multiplicative 

form as follows

X(t)  =  b(t) + z(t) (1.1)

m  = b(t)z(t) (1.2)

where b(t) is a base load part which includes a trend component and an average day 

of the week pattern, but may or may not include the weather sensitive load and z(t) 

is a stochastic load part. The base load is assumed to be of a recognizable pattern 

due to normal consumer energy use. The stochastic load is assumed to consist of 

weather sensitive and random components.

The advantage of the two stage modelling approach is that it simplifies the load 

modelling by decomposing the relevant time-frames and relevant exogenous factors.

F irst S tage

There are three major methods of extracting the base load from the observed data. 

The first method based on the additive form finds the base load which does not 

include the weather sensitive load. There are then a variety of ways of revealing the 

base part for different data observation intervals. In principle, this method is based on 

the shape of the load profile. For instance, we can average the data on basis of type of 

day in a week, time of a day in an iterative way to obtain the daily levels and the daily 

profiles which comprise the base load. Some other similar ways to extract the base 

load can be found in Farmer and Potton (19G8), Gupta and Yamada (1972), Metteren 

and Son (1979), Lijesen and Rosing (1971), Holst and Jonsson (1984), Vemuri et al.
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(1986), etc. Abou-Hussien et al. (1981) also developed an iterative way to include 

the weather sensitive load in this part.

The second method, which is also based on the additive form and is used by 

Christiaanes (1971), Galiana et al. (1974), Sharma and Mahalanabis (1974) and oth­

ers, proposes a cyclic function of time with a period of a week to describe the weekly 

variations in hourly load. The function selected is of the form
m

b(t) = c + ^(d ism uji t  + 6, cos up)  (1.3)
»=1

that is a Fourier series with m frequencies and W{ = 27rA',/168 where K{ is a positive 

integer less than 84, the Nyquist limit, (see Christiaanes (1971) ). Moutter et al. 

(1986a) and Moutter et al. (1986b) argue that the frequencies^ may not harmonically 

related to daily period, and proposed a procedure using the FFT to locate the most 

likely frequencies.

The third method is based on Box and Jenkins ARIMA schemes, which is in the 

multiplicative form, to transform the stochastic process of X ( t ) into a stationary time 

series by means of a pre-whitening filter as follows

<t>(B‘)V dV °  X(t)  =  0{B‘)z(t) (1.4)

where s is the length of a one week period; <f>(B’) and 0(BS) are polynomials in B *; 

z(t) is assumed to be a zero-mean stationary series.

This method was first used by Stanton et al. (1969) and Gupta (1971) to forecast 

the medium and long-range load demand of a power system. Vemuri et al. (1973) 

and many others followed the same approach. It is to be noted that the determina­

tion of the order of the filter relies on methods of hypothesis testing and on order 

determinative statistical criteria used in each investigation.

Second S tage

For the second method in the first stage (see equation (1.3)), the forecast of the 

base load part is made by exponential smoothing developed by Brown (1965). An 

extensive analysis has been made by Panuska and Koutchouk (1975) to select the
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fitting functions and to suggest reasonable values for the smoothing constant. A 

drawback of this method is that the accuracy of the forecasts depends heavily on 

the smoothing constant when the stochastic load is assumed to be white noise and 

because the latter assumption may not be realistic.

For general cases, the stochastic load part z(t) is assumed to be a stationary 

process, which is also dependent on the weather condition changes if the weather 

sensitive component is not included in the base load part.

Spectral Decomposition: Farmer and Potton (1968) use the spectral decompo­

sition approach to expand the stochastic load part into a Karhunen-Loeve spectral 

decomposition form 
K

z(i) = H  ak^\/2^k{t) + e(t) (1.5)
k=l

where the eigenvalues and dk(t) are determined by the Karhunen-Loeve integral 

equation

/  R z{ t , r ) d k(T)dT = Xki9k(t) (1.6)
Jo

where Rz(t,r) is the autocorrelation function of {z(2)}. The mean-square error takes 

the form

6* = e \ t )  = R,(t, t)  -  (1.7)
k=1

By means of this relation, the number of terms, K , in the expansion may be 

selected to give the required accuracy in the representation of the residual load z(t). 

The forecast at time t is given by a following recursive algorithm. If the stochastic 

load is observed at time <i, • • • , and if £n- i(0  is the most probable value of the 

load at time t then the most probable value of the load at t is given by

n̂(f) = £n-l(*) +
Sn- l{ t , tn)[x(tn) -  £(*„)]

Sn(tn,tn) + <$2(*n) 

where Sn- \ ( t , t r) is a covariance matrix defined by

S„(M') = S„_, (M ') -
5 „ _ l ( l n , i n )  +  ^2 ( t n )

( 1.8)

(1.9)
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with an initial value for the above recurrence equation x-o(t) = 0 ,

So(M') =
Lijesen and Rosing (1971) argue that Farmer’s approach ignored the effect of 

weather conditions on the stochastic load part, and used an approach similar to that 

of Farmer but was particularly concerned with the effect of weather conditions on 

the a,k coefficient of (1.5). A functional relationship is determined between these 

coefficients and the weather variables so that the coefficient can be estimated based 

on the weather forecast.

As Farmer has pointed out, the drawback of this approach is that the accuracy 

of prediction achieved on-line falls far short of that indicated by the off-line work 

and the forecasting function costs too much in computing time and in computer 

capacity, mainly for storage. Furthermore, this method is sensitive to the values of 

the coefficients ak which cannot be updated optimally in the on-line situation.

Stochastic Time-Series Approach: A common method of modelling the stochas­

tic load part is the Box and Jenkins ARMA model Box and Jenkins (1976). A 

definitive work on hourly “short-term” load is Holst and Jonsson (1984) in which the 

stochastic load part is assumed to satisfy,

V 168V 24VX(<) = z(t) first stage

z(t) =  (1 — C\B)(\ — c2B24)( 1 — cj68̂ * )  second stage

where e(t) is zero mean white noise with unknown variance.

A problem with the ARMA models is that weather information is not included 

explicitly to explain the weather sensitive component of the load. This drawback can 

be remedied by using a transfer function model developed by Box and Jankins when 

the weather sensitive component is not included in the base load part

z(t) = T $ W ( t - k )  + v(t)

9(B)v(t) = <l>(B)e(t)

where W(t)  is the input weather variable; 77(B), 0(B), <f>(B) are polynomial

function of B  and e(t) is a zero-mean white noise with unknown variance.
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Hagan and Klein (1977) claim this model is slightly better than the ARM A model 

in forecasting the load data they used. The reason for the small gain in forecasting is 

that the transfer function model assumes that the weather variable W(t) is linearly 

related to the load although there is evidence that load demand and temperature 

are not linearly related. Irisarri et al. (1982) suggest using a nonlinear relation be­

tween temperature and load, recommended by Galiana et al. (1974), to transform 

temperature data into a weather sensitive load variable which will replace W(t) in 

the transfer function model (1.11). Campo and Ruiz (1987) argued that humidity 

along with temperature also plays an important role in affecting the load. They in­

troduced a Temperature Humidity Index (THI) to replace W(t). Hagan and Behr 

(1987) suggest that the relation between load and temperature can be approximately 

modeled by a polynomial function and they transform temperature (or a tempera­

ture humidity index) into a weather sensitive load variable to become an input for 

the transfer function model. Lu et al. (1989) noticed that the nonlinear relation be­

tween temperature and load is time variant. They suggest using a recursive scheme 

to update a polynomial function and transform temperature into weather sensitive 

load as an input of the transfer function model.

Another equivalent model representation is the ARMAX model with the form

0(B)z(t) = 0(B)W(t)  + <f>(B)e(t) (1.12)

where W(t) is the input weather variable; 0(B), 0(B) and <f>(B) are polynomial 

functions of B  and e(t) is white noise with zero mean and unknown variance.

W(t)  can be replaced by a nonlinearly transformed weather variable, which is 

linearly related to the load, sis mentioned above, to gain better fitting and forecasting 

(see Galiana et al. (1974) for example).

Although an additional model for the stochastic load part in the second stage can 

improve forecast accuracy if the model is properly specified, the problem with this 

approach is that the order of ARM A, transfer function, or ARMAX models are not 

easy to determine on-line. If there is evidence that the model order is changing with 

time, then the order should be re-estimated over a reasonable time span. Even if
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the order is determined, one cannot automatically identify the model parsimoniously 

when the stochastic load part appears to need a “high” order. In most practical 

circumstances, an empirical model, which is of a parsimonious form but may not be 

adequate, is imposed. Some on-line recursive algorithms such as on-line maximum 

likelihood estimation (see Hagan and Klein (1978) ) etc. are developed to update the 

parameters of the assumed model form but not the model order.

Rajurkar and Nissen (1985) use a Date-Dependent Systems approach developed by 

Pandit and Wu (1983) to obtain a model automatically, where weather information 

is not involved. The model identification procedure is carried out by successively 

fitting models to the data in higher order, n, of ARMA(n,n — 1) form, until there is 

no significant gain in fitting error as judged by certain criteria. In our opinion, this 

approach can lead to over-parameterization because of the restricted model form.

1.2.2 State Space M odel Approach

Many researchers prefer to use a state space model for load demand, because they 

can then use powerful the Kalman filtering (see Kalman (1960) and Kalman and Bucy 

(1961) ) to obtain on-line optimum forecasts which are otherwise difficult to realize 

by most time series and spectral decomposition approaches. A state space model has 

a general form as follows

x(t -f 1) = A(0, t)x(t) + B(0 , 2)u(£) + £(t) Transition equation
< . . i1-13)

y(t) = C(0, t)x(t) -f D(0, t)v(t) + e(t) Observation equation 

where (i) {x(t),t  > 1} is a sequence of m x l state vectors; y(t) is an observed series; 

A(0,t), B(0, t), C(0,t), D(0,t) are called system matrices. u(t) and v(t) are series 

exogenous to the system, (ii) Vt €  T+; £ ( t ) and e(t) are respectively m x l and 1 x l 

Gaussian random disturbances and they are conditionally independent of x(0) and 

{y(T)lT < *}• s € T+, both £(t) and e(t) have zero mean and with variance- 

covariance matrices.

{(,) 1 1 
(«*),«(*)) y _ ' Q S  ^

e(s) ) \ S' R )
E { 6(t — s) (1.14)
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and R  and Q are constant definite and semi-definite matrices respectively.

A preliminary study of the load prediction problem through state space modelling 

and the Kalman filtering has been reported by Toyoda et al. (1970a) and Toyoda 

et al. (1970b). In hourly or daily load forecasting, the daily periodical load pattern 

and the effect of the weather condition on load are involved. Thus, they suggest a 

model with following state space form

’ (  V (t +  1) \  

\ A(f + 1) j 1 ) '  m '| +

oo_______

0 a(f) J -to

<

ß(t) r(t) y

V i ( t  - f  1)

V v2(* + 1) j

T(t) N

m )

( 1.15)

y(t) = (5(«)i)
'  x { t ) N

V A(‘) ,
+ e(0

where X(t)  is the pseudo-daily peak, or daily average load, A (1) is the load fluctuation 

because of weather conditions, temperature T(t) and humidity H(t),  and 5(f) is 

the coefficient of daily standard load pattern (5(f) ~  S(t + D), D = 24 hours). 

a(f), /3(f), r(f), and S(t) can be estimated using past observations.

A state space model also has a most important property that is that any time 

series stochastic model, such as ARIMA, ARM AX, exponential smoothing, etc., has 

a state space representation (see Kailath (1980) Hannan and Deistler (1988) for de­

tails). Therefore, some researchers convert some well established time series models 

mentioned in the last sub-section into state space models, then use the Kalman fil­

tering techniques to estimate model parameters, and obtain on-line estimation and 

forecasting.

Singh et al. (1977) converted an AR model for the load demand into a state space 

model representation. Sharma and Mahalanabis (1974) used the Kalman filter to 

update the coefficients of a harmonic based model suggested by Christiaanes (1971). 

Galiana et al. (1974) also consider a model, in which the base load is modeled by 

a harmonic model (1.3) and the stochastic part modelled by an ARX model, in a
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state space model form. Irisarri et al. (1982), and Campo and Ruiz (1987) converted 

a model which comprises a base part which modelled particularly time-of-day and 

day-of-week variation, and a stochastic part modelled by an ARX in a state space 

form.

The advantages of using a state space model come not only from the realization 

of on-line estimation and forecasting through the Kalman filtering but also in the 

dynamic linkage between the base load part and the stochastic load part in a state 

space framework. The base load now can be updated adaptively through a Kalman 

filter gain which is affected by the stochastic load (difference between observed load 

value and the base load) and the weather sensitive load.

A difficult problem in state space modelling is to determine the order of a model. 

Many researchers specify the order on the basis of their experience. For univariate 

time series, Akaike (1975) and Aoki (1987) developed a methodology where the form 

of the system matrices of a state space model are totally unknown. By using the 

Hankel matrix of the time series, and its principal components, this approach can de­

termine the order of the state space model and then the model matrices in a canonical 

form. The merit of this approach is that the form of a state space model (system 

matrices) need not be pre-specified. The main drawback is that this approach may 

not be suitable for a high order system because every element of the system matrices 

represents an unknown parameter and there are therefore too many parameters to be 

estimated. In addition, the state vector generated by this approach has no physical 

interpretation. It is also difficult to include the weather variables in such a model for 

electricity load series.

To overcome this drawback, Harvey and Todd (1983) and Gersch and Kitagawa 

(1983) developed a structural state space modelling approach. This approach assumes 

that a time series consists of several components, such as trend, seasonal, and distur­

bance, etc. in an additive form, and each component has its own micro state space 

representation. This approach dynamically puts these micro representations into a 

main state space model framework which can reflect the interactive effects between
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the different components.

Once the structure of a state space model has been properly specified, the most 

difficult problem in estimating the model parameters is the specification or estimation 

of the initial state vector and corresponding covariance matrix, and the covariance 

matrices of disturbance terms because they substantially affect the Kalman filtering 

(value of the Kalman filter gain) and then consequently the parameter estimation. 

Many researchers fail to address this problem or assume they are known a priori, and 

rely on the Kalman filter to converge to the covariance matrix of the state vector. 

The covariance matrices of disturbance terms, which affect the convergence speed and 

the adaptability of the model, are simply ignored or specified by experience without 

adjustment in a statistical manner.

1.3 Sum m ary

Choosing a proper model form is the most important and crucial part of the load 

forecasting procedure. In other words the process of choosing a class of models which 

represents the load data is more important than the techniques, which may affect the 

parameter estimation, used for estimating the model parameters and minimizing a 

certain criterion.

As we reviewed above, most existing models in the literature assume that the 

weather sensitive load lies in the stochastic part. We believe that dividing the load 

into weather insensitive and weather sensitive components is a very fruitful idea. 

This simplifies the modelling effort for each component and allows more flexibility 

in representing and interpreting the load demand. A dynamic relation between the 

load and the weather insensitive, and between the load and the weather sensitive 

components should be considered according to their “energy” distribution (that is 

state) to the load. Furthermore, the accuracy of the forecast can be improved by 

making the model adaptive to the unknown changes.

The structure of this thesis is divided into two parts. The first part consists of
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chapter 2 and 3. Some theoretical work related to subset AR selection procedure 

and a new subset AR selection procedure is presented in chapter 2. In chapter 3, for 

state space models, the effect of an initial state covariance matrix on its convergence 

speed is studied and we establish a new procedure to estimate the initial state vector 

and its covariance. Associated sensitivity analysis is also presented in chapter 3. The 

development in this part are placed in a general context but will be used in the later 

chapters for the practical electricity load forecasting models. The second part includes 

chapters 4, 5, 6 and 7 where we concentrate on practical application of short-term 

load modelling and forecasting.

In the non-weather variable model category, we develop a new base load mod­

elling procedure which takes account of the day-of-week effect in a proper way in 

chapter 4, and the stochastic load is modelled by a subset AR model which is se­

lected by the procedure developed in chapter 2. This new procedure overcomes the 

over-parameterization problems, and exhibits some new features in searching for an 

optimal subset AR model. The comparison of the forecasting performance for the 

proposed model with other popular models for New Zealand half-hourly short-term 

electricity load data is presented in chapter 5.

In the weather variable model category, we first establish a non-linear statistical 

functional relation between the load and weather conditions and then proceed with 

model estimation. The accuracy and stability of the model is also studied in chapter 6. 

From this proposed function, we extract a weather sensitive variable which is linearly 

related to the load, and regard it as the weather sensitive load component. In chapter 

7, we develop a structural state space model in which the proposed weather sensitive 

variable is employed as an exogenous variable in a linear system model of the daily 

load data for the Canberra region in Australia. When identifying the proposed model, 

some theoretical work established in chapter 3 is employed for our new practical 

procedures which also addresses the initial estimation of the state vector and its 

covariance matrix, and the covariance matrix of the disturbance terms. A sequence 

of hypothesis tests is conducted to specify the final model form and the structure
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of the disturbance covariance matrix. The on-line sequential updating procedure 

will not be discussed in this thesis because it is straight forward and would increase 

unduly the size of this thesis. We present our conclusions and discussion of suggested 

directions for future research in chapter 8.



C hapter 2

On th e Selection of Subset A R  M odel

2.1 Introduction

In the analysis of stationary time series, the use of autoregressive(AR) models has 

played a pivotal role. Amongst linear time series models, autoregressive models are 

the simplest to estimate and may easily be used for forecasting purposes.

A zero-mean stationary stochastic process {A(t)} is said to be generated by an 

autoregressive model of order k , denoted by AR(fc), if it satisfies the stochastic dif­

ference equation

X(t )  + a( l )X( t  -  1) + • • • + a(k)X(t  - k )  = e(t) (2.1)

where {e(£)} is a Gaussian white noise process with variance a2. Using the backward 

shift operator, the equation (2.1) may be written as

*(B)X( t )  = e(t)

where

$(z) = 1 + a(\)z -\---- + a(k)zk

The condition for the time series {A"(£)}, satisfying equation (2.1), to be stationary 

is that all the roots of 3>(z) =  0 lie outside the unit circle.

In general, when a model of the form (2.1) is fitted to a set of observations on a 

stationary time series {X(t)}, the fitted model will include all the terms {X(t  — z); i =

16
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1,2, •••,&}. In many situations, in particular where there may be evidence that a 

time series may have some form of seasonal behaviour, this may lead to models which 

include many more parameters than are strictly necessary to describe its behaviour.

It is often desirable to use models of the form (2.1) where some of the {a(i)} are se  ̂

equal to zero. Such models are referred to as subset autoregressive time series models.

A major problem in fitting autoregressive models, even of full order, has always 

been the choice of the order of the model. Consequently, many authors, Akaike (1974), 

Box and Jenkins (1976), Hannan (1970), Parzen (1974), to mention a few, have paid 

special attention to this problem. The criteria for the choice of the AR model order 

is not discussed here. We suppose the optimum order, k , of the AR model is known.

The principal idea of an optimum subset AR model selection procedure is to 

allocate the best subset AR models for all sizes at the first stage and then to use 

a model criterion to select the optimum subset AR model from those best models. 

Residual variance is a common statistic used to measure the goodness of fit of a 

candidate model. Therefore, it is also a criterion used to find the best subset AR model 

of a particular size. Without considering the computing efficiency, one can always 

find the best subset AR model of a specified size by comparing the residual variances 

among the subset AR models with all possible lag combinations and selecting the one 

with smallest residual variance.

A more efficient procedure to select an optimum subset AR model was developed 

by adapting Hocking and Leslie’s algorithm (see Hocking and Leslie (1967)) for an 

optimum subset regression model. McClave (1975) has extended Hocking and Leslie’s 

algorithm to time series models to give a method of fitting subset autoregressive 

models. This method provides a fast procedure for selecting the best subset without 

having to evaluate all possible lag combinations for a specified size.

In section 2.2 of this chapter, we first analyse the properties of a subset AR 

model, and the effect of a removed lag on the remaining lags which compose a subset 

AR model with reduced size by 1, and then construct a new statistic to measure 

the goodness of fit of a candidate subset AR model which place emphasis on the
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representability of the removed lag by the remaining lags. By using this new statistic, 

we develop a new algorithm to search for the optimum subset AR model in section 2.3. 

Some numerical examples presented in section 2.4 prove that the proposed procedure 

is considerably more efficient than McClave’s algorithm in the sense that less subset 

AR models need to be checked to find the optimum subset AR model for a given data 

set.

2.2 P ro p ertie s  o f  Subset A R  M odels

Before discussing the selection procedure for subset AR models, we examine the 

properties of a subset AR model. Suppose, in a subset AR model with size m and 

included lags { ii, 1*2 , • • •, im} and maximum lag k, the estimated AR coefficients are 

the solution of the following subset Yule-Walker equation

(*1 i* 2 ) '" i* m ) G (*l,»2 r ( * l  , » 2 , »m) ( 2.2)

^ ( * l . * 2 » —. * m ) ( 2\  j )  ~  < i lm)

where

■̂ (*1 .*2."-»*m) (r(*l ,«2|-|«m) (*\ .7 ) )fcxfc

^  ( * 1  } * 2 } ‘ * * •) l m  )

1 i =  j, and i  ̂ (i1? i2,

0 otherwise

r («l,*2»—,*m) =  ( r (*l,*2,—,*m)(0 )fexl

-r ( i )  i e  (*i, «2 , * - Mm)

where r(«‘) =  r (—i) is lag k autocorrelation and r ( i,j )  =  r(i — j).

The above subset Yule-Walker equations can be regarded as a transformation 

arising from applied to a(<lf<ai...fim) to produce r(tl,,-2i...,tm). % , l2,...,tm) forces

the AR coefficients of the lags complementing (1*1 , i?, • • •, im) to be set equal to zero, i.e. 

-fy*i,*2 ,—,*m) projects the effects of the lags which are complementary to (* i,i2, • • •, im) 

onto the lags (i‘i, i2, • • •, im)* The increase in residual variance of the reduced size

r (*i»*2»—, * m ) ( 0  —  <
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subset AR model is caused by the effect of the lags which are complementary to 

the lag set (i i , ?2 ? * * •, im) that cannot be represented by the (t"i, 2*2 , • • •, im) lags. In 

other words, the deletion effect can be expressed by the increase in residual variance. 

The optimum subset AR with size m is chosen as a subset of size m, among the

k \
candidates, with the minimum deletion effect arising from the loss of the set

V 171J
complimentary to the included set (z 1 , «2 , ■ • •, im)- Therefore, the increase in residual 

variance due to the exclusion of the lag set which is complimentary to (zi, z2, • • •, im) 

in a AR model serves as the criterion for the optimal choice of a subset AR model of 

size m.

In general, the residual variance of the subset AR is

where C(0) is the variance of the raw data set.

The term r(il,12t...)tm) is the measure of R2 for the subset AR

fitting and represents the goodness of fit for the subset AR model.

Now, we examine the effects of reducing the subset AR size by one on the corre­

sponding R2. Without loss of generality, we suppose that the AR coefficient on the 

imth lag is set to zero. The R2 of the reduced AR subset model is

r
(*1 1 )^ ( * 1 i* 2  i” 'i*m —1) ^"(*1 »*2>'” i * m - l )

We define

Q (*m )

r(i\ j )  i /  j, i =  im, or j  =  im 

0 otherwise
(2.4)

Since Q(im) is a symmetric matrix with rank 2, there exists a full rank matrix,C, 

with dimension k x 2 which satisfies

Q M  = C B C

where B is a full rank matrix with dimension 2x2.
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It is easy to  verify th a t one of the choices for C and B  is

C ( i , l )  =
^ im2 ^

1  i  =  i m

0 l (£ (z 1, l 2 i  * ‘ ‘ i im  — 1)

C{i, 2) =  <
—C(i, 1) i / i ,  

1 i = i.

for i =  1,2, • • •, k.

/ 1 0 

0 - 1

We know th a t the coefficients of the reduced subset AR model are

B  =
V

a (*l.*2, — ,*m —l )  r (*l.*2.—,* m - l )

and

— ■^(« l.»2 ,- |« m —l d m )  ^ ( » m )

=  Ä (*l,*2,- ,«m —l . im )  “  C B C  

From the m atrix  inversion lemma,

L em m a 2.1

(A +  CBC')~l =  A ' 1 -  A - l C'[B~l +  C A -1 C']~l CA~l 

for any matrices A , i?, C if  A~l , B ~ l and [A +  CBC')~l exist. □ 

We, therefore, have the following expression for R^xl t2 tm *

0 - 1  _ D - l  _  Tj(*m)
"*^(*1 »*2 —1 ) (*1 t*2 ."'**m - l .»m ) ^ ( * 1  >*2 i‘“**m - l )

where

( 2.5)

z/Om) __ r>—1
(»1 »*2 1) (»1 »*2i"‘»*m)

C f - ß - 1 +  C fl -1
(*1 »*2

C']*‘C R- l
(*1 »*2 »*■■•*»») ( 2.6)
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Therefore,

G ( * l i * 2 i* " i* m - l )  ^ (* 1 > * 2 » — I * m ) ^ (* 1  »*2»— . * m - l )  ~~ ^(i\ ,*2 ,"*  , * m - l  ) ̂ (* 1  **2 )

—  a ( « l ,* 2 , - i * m )  ~  ^ ( * l , * 2 , - , t m ) r (*” *) , * 2 , - , * m - l  ) r (* l »*2 ) }  ( ^ - 7 )

From the above equation, it can be seen that the term

is actually the zmth lag contribution to the coefficients of the subset AR model with lag 

set (ii, z2, • • •, «m). Therefore, the effect of the reduction of the subset AR size by one 

is obtained as the contribution of the removed lag im and we see that contribution 

is subtracted from the coefficients of the subset AR model before the imth lag is 

removed. From equation (2.7), the modification of the value of the reduced subset 

AR coefficients is given by,

a ( * ' l , t 2 , - , * m  —1 ) ( 0  —  a ( * l , * 2 , - , » m ) ( Z )  +  ,*2 , - , * m )  ’ * ™ ) r ( * m )

-  E  (2-8)
/=1

where i € («1,1*2, * • • ,«m-i) and from a(i1,«2l...,im_1)(*m) = 0- We have,

a(*l,*2 .—,*m)(l'»n) =

XI 0 r ( * l , « 2 , - , * m - l ) ( 0  ( ^ - 9 )
1 = 1

and

XI (̂*T*2,”',*m-1)0 ’ 0 r(«l,*2,-,*m-l)(0 =   ̂ (2.10)
/=1

where j  £ («1,2*2, • * • ,«m)-

The R2 of the reduced subset AR model is

^ ( * 1 1*2 r " i * m - l  ) ^ ( * 1 1 * 2  r ” i*m —1 ) r ( h  »*2»*"»*m—1)

^*(*1 i*2 i‘" i* m  —1 ) " ^ (* 1  i*2 t '" i* m )  ^*(*11*2 i " ’i*m —1 )

^ ( * 1 1*2 i" ' i * m —1 )  " ^ ( * 1 1*2 t" 'i* m  —1) *~(*11*2 r " . * m - l )
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The complexity of the effects of AR size reduction by one makes theoretical anal­

ysis and practical evaluation of the modification of the subset AR coefficients and the 

goodness of fit measure, R2, very difficult since the inversion of R(ilti2,-,im) involved. 

Many authors in the subset AR literature, such as McClave (1975), successfully used 

numerical means to avoid calculating Rj~I i2—im)- Although those numerical algo­

rithms are very efficient in evaluating the increase in residual variance (equivalent to 

R 2) due to a reduction of AR size, the difficulties for theoretical analysis remain.

2.2.1 T he Property of Subset A R  M odels in H ilbert Space

The above analysis can be combined with the theory of linear system analysis. So that 

now, we consider ({x(t)}, {x(t — 1)}, • • •, {x(t — &)}, {e(t)}) which generate a linear 

space Pjt. Bearing in mind that the basic elements {x(t)} are random variables, the 

dimension of the space P* is infinite and its basic elements are neither orthogonal to 

nor independent of each other which is different from the multiple regression model 

w here th e  v a ria te s  are  o ften  assum ed  in d ep en d en t. For sim plicity , we define 0 (1) =  

{x(t — /)} / =  0,1,2, • • •, k, e =  {e(t)} and an inner product for any two elements, 

q , ß e  P* as

(a,/?) =  cov(a, ß) (2.11)

and a distance as defined by

d(a,ß) = { a - ß , a - ß )  (2.12)

It is easy to verify that the Pjt is a “random” Hilbert space. The basic element 0(0) is 

not independent of the remaining basic elements, i.e. there exists a numerical vector 

ak = (cijfc(l),ak(2), • • • ,ak(k)) which satisfies

0(0) =  a* (l)0 (l) + a*(2)0(2) + • • • + ak(k)Q(k) + e (2.13)

Forming appropriate inner products with 0(z"),i = 1,2, on both sides of the 

above equation, we have the Yule-Walker equations,

R k d k  — ?k (2.14)
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whereRk =  (r( i , j ))kxk, r ( i j )  = C{\i- j \) /C(0),rk(i) = C(i)/C{0), i , j  =  1,2 

We can, without confusion, delete the subscript k so that Rk = R, ak = a, rk = r 

To fit a subset AR model of fixed subset size m is to choose a subset of lags 

(*'i* *2 i " , dm) and restrict to zero the AR coefficients associated with lags that com­

pliment (*i , 2 2 ,* ’ •, i'm)* On the other hand, the basic elements of P k corresponding 

to those AR coefficients restricted to zero are forced to be linearly represented by 

Pm(2i, *2 > * • • 5 *m) which is a linear random subspace generated by O(zi), • • •, 0 (zm). 

i.e. there exists a matrix, C, with dimension kx(m -f- 1) satisfying the relation

0(1) ' ' e( i , ) '
0(2)

= c
0(z2)

Q(k) 0 ( * m )
e  J \  €m /

Therefore,

e(o) = a(e(i),.. . ,e(fc),€y

=  aC (0(zi), • • •, 0 (zm), e)

= ä(z!)0(z'i) + -----f  a(z'm)0(im) + Cm t m

Forming inner products with 0(z‘j), / =  1,2, • • •, m on both sides of the above equa­

tion, we have

' r ( .i)  '
1 ‘

• r(ii - i m) ^
r(i2)

=
K*2“ *l) * * r(*2 -  im)

V r(?m) j  ̂ r(im -  h)  • 1 y

( a(«i) ^

a(i2)

\  ä(zm) J

(2.15)

The above equation is equivalent to

where

r ( t l , - , t m ) ( 0
K 0 * €

0 i i  («l,?2,---,*m)
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and

■ ^ ( * 1 ~  *

r ( i - j )  i , j  e

1 i =  j  and t ,j  g (*!,t2, •••,*»!»)

0 otherwise

which is exactly the subset Yule-Walker equation (2.2).

The optimum subset AR with size m arises when we choose a lag subset, (?’i, • • •, zm), 

from the lag set (1 , •••,&) which achieves the minimum value of c^(em, em) from the

V
candidate models. On the other hand, it implies that the basic elements of P*

corresponding to the complement of (*i, • • •, im) can be “almost” linearly represented 

by P m ( * l ?  ' ' ‘ ) ^ m ) -

Now, we examine the effects of reducing the size by 1 in a subset AR model. 

Suppose we have a size m subset AR Model with maximum lag k ,

X{T) — Ü) T e(0
j=i

(2.16)

Equivalently, the model (2.16) has an expression in PmAiAii'  * * Am) of the ran­

dom Hilbert space P*

J=1

(2.17)

There is a linkage between the estimates of a subset AR model of size m and a 

subset AR model of size (m — 1) which is obtained by setting one coefficient to zero. 

Without loss of generality, we restrict fl(ilt»ai...f*m)(*m) to zero to form a size (m — 1) 

subset AR model. The linkage is dependent upon an auxiliary relation, i.e. 0 (zm) 

projects on P m_i(zi, z-2 , • • •, zm_i), and is shown as follows

0 ( * m )  —  Q ( l m )  | p m —i (t'l , t 2 , ." ,» m - l  ) T  e »r

where
m —1

0 ( i m ) | p m_i( t '1,t2,—. * m - l )  — b(i])0(ij)
3 - 1

(2.18)

(2.19)

and

m -h P m  — l ( ^ l ? ^ 2 } ' ‘ ' 5 ^ m  — l ) i  ^t . n T  ^ r
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Therefore, the linear expression linking 0(0) and P m-i(®i?*2 » * * * is

m —1

6(0) =  Y  1 )(*j)6(*j) + «m-1 (2-20)
J=1

where em_i _L P m-i(®i,*2 > * * • , im- i )  and we have,

m —1

i=i

d~ ,tm)(*Tn)e»m d- cmem} (2.21)

From equations (2.20) and (2.21), we clearly see tha t the coefficients of the subset 

AR model of size (m — 1) and the coefficients of the subset AR model of size m  have 

the following relation

a (*l,*2.—,*m—l)(*i) — a (*l.*2.—.*m)(*i) d" a (*l ,t2,—,»m) (®m ) ̂ (® j ) ( 2.22)

where j  =  1, • • •, (m — 1).

Therefore, having obtained the coefficients of the subset AR model of size m, 

estim ates of the coefficients of the subset AR model of size (in — 1) require only the 

estim ates of the coefficients of the regression of 0 (zm) on (0(zi ) , ••• ,  0 (zm_i)). 

Furtherm ore, the equation (2.18) can be expressed as

m —1

0 ( iw) =  £  b(ij)0(ij) +  etm (2.23)
i = i

Taking inner products with 0 (z; ), {j =  1,2, • • •, m — 1) on both sides of equation

(2.23) yields

( l • r(i 1 -  im) ^ ' Hil )N

(̂®m 2)
=

r(i2 -  ®i) • r(i2 -  im) b(i2)

y (̂®m ®m —l) j  ̂ (̂®m — 1 ^l) 1 J  ̂ b(im-1 ) /

(2.24)

The equation (2.24) is equivalent to the following equation

(2.25)
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where

r (,m) U)  =
r {}m j) j  € (^1, * * * , Zm_i) 

0 otherwise

Kj )
0

J £ (̂ 1 ? ' ' ' i 1m—1) 

otherwise

The linear regression coefficients of lag im on lag j  is b(j) where j  6 (t1? • • •, im-i) 

which is the solution of equation (2.25).

From equation (2.21), the associated increase in residual variance is, therefore,

^”(*1 1 ) ( ^ m  )

( a (*l.—.t’m )(*»n)e *m > a (*i,—,»'m)(l m )e tm)

—  a ( i l , — , * m ) ( * m ) ( e *m » e * m )

m—1 m—1

=  a(il.-,trn)(l"»)(0 (*m) ~  J2 6(*i)®(*i)»0(*m) ~
J=1 J=1

=  a6i,-,tm)(2m)C'(0)(l -  )[r(̂ r!-)--,*rr»-i)])

=  ^ (* i ,”^*'m)(2m)-£’(t1,...,tm) ( 2m) (2 .2 6 )

where -^(t1,—,tm)(®m) =  a (*lj ’ * * j *m)(im)»

% .-.«m )(lm) — ^(0)(1 r (*m)
(*1 l) ])

using equation (2.25).

There are m  subset AR models of size (m — 1) which can be chosen from the lag 

set of (*’i, • • •, im). The lags (t’i, • • •, im_i) are chosen as the optimum subset AR of 

size (m — 1) only if ^(^m) is the minimum among those m candidates. The

increase in residual variance due to the setting of fl(t1,...,*m_1)(*m) to zero depends on 

both the value of a (t1,...fim)(*m)» which is estim ated before lag im is removed, and the

value of [ r j ; ; : * . , , [ r { £ . ). . , < m_ l ) ] .  

Since we have,

 ̂ p  ( * m )  \
D  __  l )  ( * l i — ,*m—l )  I

l  1  )

(2.27)
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and suppose we define the inverse as,

p - i
(*1

B n  B n  N

Y B 21 B 2

Then  utilizing the following matrix lemma:

L em m a 2.2 I f  square matrix A is non-singular and

A =
A n Ai2

A 2i A 22

A n  and A 22 are nonsingular, then,

{
A ~ 1 =

( A n  A 1 2 A 2 2 A 2 1 )  1 —■( A n  — A 1 2 A 2 2 1 A 2 1 )  1 A i 2 A -1
22

 ̂ (A22 A2iA n  A12) 1A2iA111 (A22 — A21 A i l A12) -1

we have

p  _  /  1 _  r„(‘m) l / n - l  „( *m ) \ - l
22 "1 1 (*l»*2*‘"»*m-l)l (*11*2 1) (»1 »*2i*”»*m-l) -»

,(‘m)

and then, from lemma 2.1, we have

p-l — 1 I ){Bf,1 + .(*™) n  - i
(* 1 1 ) *• ]'}

=  B n  -  B n r f c l * _ , { /  +  [ ^ . „ „ . J 'B u r j ; " '

Therefore, if we pre-multiply by [r (,-^..,tm_1)]/ and post-multiply by *m a) 

sides of the above equation, we have

(* m ) ,(*ro) -1

“ i + s(il) _ 1 7T(L)
where S ( im) =

.(*m) S 2(im) S{im)

(2.28)

\

/

(2.29)

(2.30)

(2.31) 

on both

(2.32)
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It is then easy to verify tha t

[r(,m)(»1 >*m —1) (*1 —1) (r
(*1 ) ' (*1 r ’l' m - l  ) , 0) (2.33)

so tha t

S (Zm) -  [r j«r.).,,m)],jR(i!,.,,m) r (<“ ”,im) (2.34)

where -{ :r).,im) (*1 *—,*m —1)

0
Therefore, we have the following theorem:

T heorem  2.1 Suppose the AR coefficients of a size m subset AR model X(£) +

a ( > i , - ,* m ) ( z i ) ^ ( ^  * i ) H b a ( * i , - , i m ) ( * m ) - X ’(* — im) =  em(/) are known. Equivalently, 

we have the subset Yule-Walker equations,

r (*l , « 2 , » m ) (2.35)

where

■ ^ (* l.* 2 .” '»*m) ( - ^ ( * 1 ,»2.••• j ) ) k x k

j )  j  ^  > ”  ’ > l 'm )

1 i j , and z ^ (^i , 2̂} , im)

0 otherwise

r (* l ,* 2 ,—,*m) =  ( r (* l .«2 ,—, * m ) ( 0 ) f c X l

- r (z )  i €

0 2 £ (2i,22, - - ’ ,*m)

and where r(i) = r ( —z) is the lag k autocorrelation and r{i , j ) =  r(z — j ) .

If  the matrix R ^ * s  known, the increase in residual variance erf̂  t2 ( ^(zj) 

due to the removal of any lag ij £ (z‘i, z2, • • •, im) satisfies

r («l,*2 , — ,»m )(2 ) —

(2.36)

where
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r (i -  *j) j  € (?1 , • • •, im-i) and j  ± ij 

0 otherwise

It can be seen clearly that S(im) tends to be large when the absolute value of 

r(im — j), j  € (*i, • • • is large, and ) is a monotonic increasing function

of 5(zm), where
S(im)lim =  1

5(tm) —+ 00 1 +  S(im) 
and S(im) —> +oo if and only if is singular.

In general, the term (1 — in the increase in residual variance

due to removing lag ij in equation (2.36), represents the error in the linear represen­

tation of lag ij by lags (ilf • • • , i j . u ij+1, • • • , im).

By lemma 2.2 and equation (2.30), we have

= 0 - .j-1 <2-37)
and from equation (2.26), we have following proposition

Proposition 2.1 If the matrix Rfi\...im) known, the increase in residual variance 

...im)(h) ^ue the removal of lag ij € (21, 12,* * * ,2m) can be expressed as,

.2  (:  \  _ r i t r w

.....
(2.38)

However, how the coefficient a(,ltt-2,...,,m)(2j) of the removed lag ij affects the vari­

ance increase is not clear. In the next section, without loss of generality and for the 

sack of simplicity, we suppose the removed general lag ij is im.

2.2.2 R esidual Variance and Projection M odulus

In this section, we examine first how the coefficient of a removed lag affects the 

increase in residual variance, and then derive the concept of the projection modulus 

due to removing a lag.
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From the matrix block representation of -R(ilt*2, a n d  ,2... tm) in equation 

(2.27) and (2.28), the coefficient, a(*1,»a,...f«m)(tm), of lag im is given as,

B\lT(i\ j t 2 1 ) "F -̂ 227'(^m) (2.39)

and also from lemma 2.2, we have

B u  =  -{1  -  [r( * m ) / 7~>— 1

X [r! : l 1)

-1

(2.40)

By substituting the above equation and equation (2.30) into equation (2.39), we 

have

. . /„• \  _  r ( * m )  [ r ( i i , t 2 , — , » m - l ) ^ ( * l , t 2 , - , t m - l )  r ( * l . * 2 , - , * m - l )

-  _  , (.•„) ; : 7 H  ;
1 ( * l» * 2 » * " » * m - l ) J  ' ^ ' ( * l . « 2 » " - . * m - l ) ^ ( t l . * 2 . " - . * m - l )

(2.41)

The representation of the subset AR model with lags (* i,*2, • * * »*m-i) in Hilbert 

space is given by
m  —1

®(0) — a (*l.*2i—,*m-l)(Zj)® (lj) A  em-1
i=1

(2.42)

where J_ 0(zj), j  =  1, • • • ,m  -  1.

Taking inner products with 0(zm) on both sides of the above equation, we have

(0 (zm), em-l) — r(im) [r(ti,<2,-,*m-l)] r(*l,«2 ,-,tm-l) (2.43)

It can be seen that the right hand side of the above equation (2.43) is the numerator 

of equation (2.41).

Similarly, projecting 0 (zm) on (0 (zi), • • •, 0 (zm-i) )  (see equation (2.18) and (2.19) 

), we have equation (2.23), i.e.

m—1
<=K*m) =  X! K*;)0 (*j) +  e‘m (2.44)

i = 1

Taking inner products, using 0(zm), on both sides of the above equation and from 

equation (2.25), we have

(0(zm),em_i) = 1 -  ) (2-45)
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The right hand side of the above equation (2.45) is the denominator of the equation 

(2.41), and by noting that e^_j 1  (0(z'i), • • •, 0(zm_i)) and em_i _L (0(z'i), • • ■, 0(*m-i)) 

therefore, the coefficient of lag zm in the subset AR model with lags (i’i,* • •, zm) can 

be expressed as

/ • \ _  (Q(^m)? ern-l) _  (em-l? em-l)

m >  ~  (e ( lm),era_,) “  (em_l5em_i> 

where ejl_1 is the error of linear regression of 0(0) on (0(zi), • • •, 0(zm-i) ); and em_i 

is the error of linear regression 0(zm) on ( 0(?i), • • •, 0(zm_i) )• The interpretation of 

the above equation is quite obvious and is that coefficient a(t1,»2l...,«m)(*m) is directly 

proportional to the projection of 0(zm) on the error of the linear regression 0(0) on 

(0(*i), • ■ • ,0 ( tm_i)) because the projection, (0(zm),ejl_1), measures how much of 

the error can be represented by 0 (im); the coefficient a(t1,t'2,-,im)(*m) is inversely 

proportional to the projection of 0(zm) on the error of the linear regression of 0(zm) 

on (0(z’i), • • •, 0 ( im_i)), because the projection, (0(zm), em_i), measures how much 

of 0(zm) cannot be linearly represented by (0(*i), • • •, 0(zm_i)). It seems odd that 

the better is the linear regression of 0(zm) on (0(zi), • • •, 0(zm_i)), the larger is the 

magnitude of the coefficient, G(;1)t2t...t;m)(zm). However, from examining the structure 

of the error e^_a in equation (2.21) and (2.42), we know that

em — 1 — ,trn)(*m)em-l + cer (2.47)

where c is a constant and em ± (0(*i), * • •, 0(zm)), i.e. (em, 0(z’j)) = 0 , j  =  1 , • • • ,m. 

Hence, we may write

(0(*m)? em-l) e m - 1) ~f c(Q(zm), £m)
a ( * l . * 2 . — , » m ) ( * m )

{ 0 { i m ) - > e m —l) (0(im)j em-l)

This expression, i.e. (0(zm), em_i), which indicates how well the lag zm is lin­

early represented by the lags (z1? • • •, zm-i), is only a scaling factor for the value 

a ( * i , * 2 . - . * m ) (*'»»)• It would be misleading as to the true meaning of the coefficient 

a ( * i , » 2 . - . * m ) ( * m )  if we simply record that this coefficient is directly proportional to 

(0 (im),e^l_1) and inversely proportional to (0(zm),em_i) without recognizing the 

effect of the relation between and em_i (see equation (2.47) ).
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However, the new coefficients for the regression of 0 (0) on (0(H ), • • *, 0 (zm-i) )  

can be constructed from the regression of 0 (zm) on (0(H ), • • •, 0(z’m- i) )  and the 

coefficients obtained in the regression of 0(0) on the lags (0(H ), • • •, 0 (zm)).

We recall th a t equation (2.7) in section 2.2 links the new coefficients resulting 

from the regression when lag im is deleted and the old coefficients which arise from 

the regression on the “full” set of lags (0(z’i), • • •, 0 (zm)). Now, equation (2.21) 

illustrates th a t the coefficients in the reduced regression (i.e. with lag im deleted) 

may be shown to arise from the original coefficients (from the “full” set) and those 

created from regression of 0 (zm) on (0(H ), • • •, 0 (zm_i)).

The increase in residual variance produced by removing lag zm is affected by how 

well the lags (z’i, • • •, zm_i) linearly explain the lag zm and is given by multiplication of 

two components A(ilf...tim)(tm)(=  a(tl,...,tm)(«m)) and £(<»,...,,-m)(*m)(= C(O)(0(zm), eTO_i)) 

If j4(jj ) (zm) is v^ry small, this indicates that lag zm produces a very small increase 

in residual variance when it is removed no m atter how badly lag zm is represented 

by lags (*i, • • •, im- i )  because the value of -E(t1,-,im)(*m) is bounded by 0 (0 ), a finite 

value. The value of ■ß(i1,...,*m)(* m ) represents how much lag zm adds in explanation 

apart from lags (0(z’i), • • •, 0 (zm-i))- On the other hand, if ■ß(t1,...,»m)(* m ) is very 

small, this implies tha t lag im can almost be represented by lags (ii, • • •, im_i), and 

so, the contribution to the increase in residual variance by removing lag im will also 

be small if the coefficient a(«1,...,tm)(*’m ) has a bounded value.

From the above explanation of the coefficient of lag im, a(ti,-,*m)(*m)? and the in­

crease in residual variance due to the removal of lag zm, it can be seen tha t 

(0(*m)»em -i) measures how much information remains in lag zm which cannot be 

described by the size (m -  1) subset AR model wilh lags (zi, • • •, im-i)  because 

(© (zm ^em -i) can be regarded as a projection of on 0 (zm). The absolute value 

of the projection represents how much of the information in can be represented 

by 0 (zm). A smaller absolute value of the projection indicates that there is less in­

formation in associated with 0 (zm). Therefore, to reduce the subset size by 1 

for a specified subset AR model, the choice of which lag should be removed can be
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determined by the absolute values of the projection for different lags. Now, we define 

a new statistical measurement, the projection modulus of lag im on lags (t"i, • • •, im- 1 ) 

as

=  (6 (> » ) .C - i)2 (2-48)

From the expression for the coefficient of lag im in equation (2.41), the projection 

modulus of lag im on lags (*!,••• ,zm_i) can also be expressed as

(̂*1,— =  ,trn)(*m)(®(*m)» em-l) (2.49)

Removing the lag with the smallest projection modulus produces an “optimal” 

subset AR model reduced in size by 1 for the specified subset AR model; where the 

“optimum” is based on the smallest projection modulus. On the other hand, the 

increase in residual variance due to the removal of a lag is a commonly used statistic 

for measuring the significance of that lag in a specified subset AR model. Removing 

the lag with the smallest increase in residual variance produces a different “optimal” 

reduced subset AR model where “optimal” is now based on the smallest increase 

in residual variance. Therefore, the projection modulus and the increase in residual 

variance are two different statistical criteria to measure the significance of a deleted 

lag in a specified subset AR model. A question which arises is what is the relation 

between the two criteria.

Bearing in mind that (see equation (2.47)) we have,

e m —1 =  a (*i,—,»m )(* rn )e m —1 4“ c e m

and em_i _L (0(*i), • • •, 0 ( im-i) ) ,  _L (0 ( ii) , • • •, 0 ( im)), we know that the residual 

variance of the size (m — 1) subset AR model with lags (ti,* • •, im- i )  is given by

( Cm —H Cm —1) =  ^(»i ,*••,•»»)(*TO) ( Cm " 1 ’ C m -1 ) c  ( € ™ i e ™ )

where c2(em,em) is the residual variance of the size rn subset AR model with lags 

(ti ,***,im); and where we also have the expression,

(2.50)
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which is the increase in the residual variance due to removing lag im.

Comparing equations (2.49) and (2.50), we obtain the following relation between 

the two criteria

— _  em-l) (2.51)

The above relation indicates that the projection modulus depends more on how 

well lag im is linearly represented by lags (*!,•• • ,zm_i) than it does on the increase 

in residual variance in judging the optimality of the size (m — 1) AR model with lags

( ® i »  * * * ? i ) *

To illustrate this fact, we can express the projection modulus and the increase in 

residual variance as follows:

Define

(a,ß) = a-ß = cos(a,ß)||a|| ||/?|| (2.52)

where (a,/?) represents the angle between a and ß ; then we have

4 i . - , t m - l )  =  ( e m - l >  e m —i ) 2

cos (cm_i, em_1)(em_1, em_j)

cos (0(fm) , e m - l ) ( e m - l , 15e m - l )  (2.53)

and we also have

a 2 ( € m —1 j e m - 1)

( ^ m —1 ? ^m —1)

COS ( e m —1,  e m —l ) ( e m - l ’ e m —l )

cos2(0 (tm),e^_1)(e ^ .1,e^_1) (2.54)

The term cos2(0 (im), e^_x) represents the “angle” between 0(zm) and e^_1? and 

cos2(0(zm), e^_x) = O’when e^_x _L 0(zm). In other words, when 0(zm) has no ex­

tra information on the error from the regression of 0(0) on (0(*i), • • •, 0(?m_i)), then, 

there is no increase in residual variance due to the removal of lag im ; cos2(0 (im), e^_x) = 

1 implies that the error term e^_x can be totally linearly represented by 0 (im). The 

terms (ejl_1, e^_x) and (em_i,em_i) are measures of Ihe errors of 0(0), and 0(zm)
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Measures________Definition_________________exponent on (em_i,effl_i)
e m _ ! >  (em_liCm_l)2 - 2

—l ) -1
0

T ( * i  ) ( 0 ( ^ m ) ) e m _ i )  ( e m - l  5 ^ m - l ) 1
^( *1  r - , ' m —1 ) ( 0 ( z ' m em_i) (cm_i, em_i) 2

Table 2.1: Different Measurements of Errors

regressed on (0(i’i), • • •, 0 (tm-i))» respectively. The increase in residual variance only 

depends on the “angle” between 0(zm) and e^_j and the error from 0(0) regressed 

on (0(z’i), • • •, 0(zm_1)); it does not take into account the error from 0(zm) regressed 

on (0(z'i), * • •, 0(zm_i)). Therefore, it is not necessarily true that lag zm can be best 

represented by other lags even when the increase in residual variance due to the re­

moval of lag im is at its smallest value. The projection modulus does directly take 

account of the effect of 0(zm) regressed on (0(z'i), • • •, 0(2m_!)) by multiplying the 

increase in residual variance by (em_i,em_i). Similarly, achieving the smallest pro­

jection modulus does not mean that the corresponding increase in residual variance 

is at its minimum. However, the only difference between them is that projection 

modulus depends not only on the increase in residual variance but also on how well 

the removed lag is linearly related to the other included lags.

When selecting the best subset AR model of size one less than the subset model 

already selected, this property of the projection modulus is very useful since the best 

subset AR model should be the model which does not include any lag which can be 

well represented by the other included lags.

Discussion

It is interesting to note that if we set out the possible measures in Table 2.1. The 

emphasis given to, (em_i,em_!), the length of the vector, em-u  which is the failure 

of the removed lag zm to be linearly represented by lags (z1? • • •, zm_i), (em_i, em_i) is 

shown by the power transformation applied to this length. 7 ^  mi ^ and 77̂  . ^ ^
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are derived from the power transformation and may not have some obvious statistical 

meaning attached to them.

Mann and Wald (1943) proved that {y/N(a^lt...tim) — fl(»i,-,*«))} has an asymp­

totic multivariate normal distribution with zero mean and variance-covariance matrix 

cjj(em, em) ^  ... where is the least squares estimate of Therefore

the covariance of the estimated is asymptotically c2m(tm,cm) R ... im)/N.

By lemma 2.2 and equation (2.30), we have

p - i (̂ m? ®m) (1

(̂ m —11 —1) (2.55)

The t—squared statistics of the coefficient fl(i1,...,tm)(tm) will become

t2{im) = 1(m. ,trn)(*m)
Cm (6mi Cm)-ß(|-i „̂tl-m)(*m, im)/N 

N
TTTf 7 T fl(«>.-”.'*)(*m)(c,»-i>Cm-i)
c m \ c m? c m /

^  . 2  

c m \ c m i c m /
(2.56)

In general, the above equation shows that, in a subset AR model with lags 

(®i, • • • , im), the squared statistics of the coefficient for lag ij is equivalent to the

increase in residual variance due to the absence of the lag ij 6 (*i, • • •, im)-

Therefore, besides the increase in residual variance or the t—squared statistics for 

coefficient, a2̂  ...fl-m)(*m)» the projection modulus, provides a new statistic

to measure the significance of lag im. This new statistic depends more on the linear 

representation of lag im by the included lags in a specified subset AR model. Compar­

ing the relation between the increase in residual variance and the projection modulus, 

we can derive further statistics, such as 7(ill...,ifB_1), w^h a different degree

of importance given to the linear representation of lag im by the included lags, to 

measure the significance of lag zm.
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2.3 A N ew  Subset AR M odel Selection Algorithm

Hocking and Leslie (1967) have described an algorithm which always avoids checking 

every m —subset of a k—variate regression model before finding the subset with min­

imum residual variance. McClave (1975) adapted the algorithm and simplified it for 

the subset AR situation. The McClave algorithm first solves the full lag Yule-Walker 

equation (2.2) and then orders each lag in decreasing order of influence on the residual 

variance i.e 0,, (i = 1,2,--- A:) measures the increase in residual variance due to the 

absence of lag i in the full lag AR model

Oi,  > o t 2 > - >  e ik

where 0, = cr\a2(i) /  cr2â y a I is the residual variance of the full lag AR model with 

maximum lag a(«) is the AR coefficient of lag i in the full lag model and is 

the estimated variance of the estimate of a(z).

Suppose we wish to determine that m— lag model with minimum residual variance 

whose maximum lag does not exceed k. Let q = k — m and consider any subset of 

lags ' • • ,jq) which are ordered according to the ranking established for 0*, i =

1,2, • • •, k. McClave established the basic idea, which is adapted from Hocking and 

Leslie, that if the increase in residual variance arising from the removal of the q-subset 

of lags ( j i , j2, * *' ,jq) Is not larger than 0,(Ji_1); then no q-subset with lag exceeding j\ 

removed can produce a smaller increase in residual variance.

By using this idea, McClave developed his algorithm to search for the best subset 

AR model for a specified size m. The search scheme is described as follows:

Step 1 Remove the q lags corresponding to the q smallest 0, values in the order 

system (t’i, t*2 , • • •, Ü). he. lags (im+i>' ’ * »*'*) are removed.

• If the increase in residual variance due to the removal does not exceed 0̂ m, 

the best m —subset AR consists of lags (ii, • • •, zTO) in (1,2, ■ • •, k). The 

algorithm is terminated.
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Step  2

S tep  i

If the increase exceeds 0,m, the algorithm chooses lag subsets with size q in 

the lag set (im, im+i, • • •, ik) to be removed to form q candidates of subset 

AR models with size m. The model with the minimum increase in residual 

variance is selected among the q candidate models and then we go to the 

next step.

• If the minimum increase does not exceed Ötm_1, the corresponding com­

plementary lag set is the m —subset having minimum residual variance

among all subsets. The optimum m —subset AR model is found.
\ m )

The algorithm is terminated.

If the minimum increase exceeds 0,m l , the <7—subset of the lag set

(zm_ i, • • •, ik) to be removed to form the
q A 2

candidate subset AR
V

models with size m. The model with the minimum increase in residual

variance is selected from among the 

we go to the next step.

q A 2

V *
candidate models and then

• If the minimum increase does not exceed 0»m_l+1, the corresponding com­

plementary lag set is the m —subset having minimum residual variance

among all subsets. The optimum m —subset AR model is found.
V 771

The algorithm is terminated.

If the minimum increase exceeds 0,m_I+1, the q—subset of the lag set

(?m_i+i, • • •, ik) to be removed to form the
9 )

candidate subset AR

models with size m. The model with the minimum increase in residual

variance is selected among the candidate models and then we

go to the next step.
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Step m » I f  the minimum increase does not exceed 0tl, the corresponding com-

The above scheme provides a search mechanism for a specified size m subset AR 

model. In normal circumstances, McClave’s algorithm is terminated before Step m 

. Therefore, the algorithm avoids checking all possible subset AR models. However,

McClave’s search scheme can be employed by sequentially reducing (or increasing) 

the size of the subset AR model. For each given size of subset AR model, we search 

for the minimum variance subset AR model using the above algorithm and using 

model selection criteria for the appropriate size in selecting the “optimum” subset 

AR model, i.e. we use,

Criterion 1 Based on Akaike (1970) information criterion:

plementary lag set is the m —subset having minimum residual variance

among all subsets. The optimum m —subset AR model is found.

The algorithm is terminated.

• If the minimum increase exceeds 0tl, the <7—subset of the lag set (zi, • • •, i\t)

to be removed to form the candidates of subset AR models with

size m. The model with the minimum increase in residual variance is
V V

selected among the and is the optimum m—subset AR model. The
V * /

algorithm is terminated.

our task is to find an optimum subset AR for a data set without a specified size. The

AIC  = TVlog^2,, + 2m (2.57)

Criterion 2 Based on the method of Hannan and Quinn (1979):

HC  = lo g « , . .„ m)) +
2m \og(\og(N)) 

N (2.58)
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Criterion 3 Based on the Schwarz (1978) criterion:

SC  = Nlog(tT2{ili...iim)) + ralog(JV) (2.59)

Criterion 4 Based on the Hocking and Leslie (1967) criterion:

C = N 4 u...,im)y  + 2 rn -N (2.60)

where m is the size of the subset AR , cr? denotes the estimated residual variance

after fitting the size m subset AR model and a2 is the least squares estimate of the 

residual variance of the full lag model.

The optimum subset AR model can be determined by comparing with these cri­

teria among the minimum variance subset AR models for each different size.

candidate models once the increases in residual variance of the subset AR with size m, 

whose complementary lags are collected in the q—subset of the lag set (zm_1+i, • • •, ü ), 

exceeds , i =  1,2, • • •, m. Although McClave used the Cholesky decompositioa

approach (see Pagano (1972)) to avoid solving the subset Yule-Walker equations for 

the increase in residual variance, the search algorithm consumes a lot of computer 

time when it deals with a large maximum lag k. Consequently, the computing speed 

of McClave’s algorithm cannot cope with situations in practice where the maximum 

lag k is large.

Now, we examine McClave’s algorithm, sequentially reducing the size of subset 

AR models from the full lag AR model. Without loss of generality, we suppose 

the size (m — 1) (m < k) subset AR model with minimum variance is the subset 

AR model with the lag set (*i, — , *TO—i). It is noted from equation (2.21) that the 

other AR coefficients are modified due to removing lag im. The significance of the 

lags are represented by the lag number ordering, i.e. (*i, * * *, *m) on the basis of 

0tl > 0i7 > • • • > 0Xm. When a lag is deleted, for example im, the remaining (m -  1)

It can be seen that we have to solve at least or more subset Yule-
\ , q /

Walker equations in order to compare the increase in residual variances of those
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lags are not necessarily ordered (h, • • •, im_i) and, of course, if a further deletion 

of lag im- 1 was carried out, there is no reason that the lags (*i, ■ • •, 2m- 2 ) are still 

correctly ordered and therefore giving the best (m — 2)-subset AR model, i.e. the 

increase in the residual variance is likely to exceed 0lm_3. The search procedure has to 

continue checking (m — 2)-subsets in the lag set (i1? • • •, im_i) according to McClave’s 

algorithm. If all increases in residual variance of all the (m — 1) candidate AR subset 

models of size (m — 2) exceed 0im_2, the search procedure starts to search for the 

(m — 2)-subset AR model in the increased lag set (*i, • • •, im). The minimum variance 

(m — 2)-subset AR is found if the increase in residual variance does not exceed 

and so on.

From the above analysis, it can be seen that the ordering based on 

may be invalid for the reduced size model and so causes the search procedure to search 

more candidate subset AR models. If we can re-rank the order system after finding 

the minimum variance subset AR model with size m, the minimum variance subset 

AR model with size (m — 1) may be more easily found according to the new order 

system.

Suppose having the minimum variance subset AR model with size m and lag set 

(z'i, * * •, im), we calculate the r 2 values of newly estimated AR coefficients a(ij),

j  = 1 , 2 -  1.

(2.61)

and sort them into decreasing order so that we have,

Th > < > ■ ■ >  (2.62)

where lj € (*1 , • • • ,*m_ 1 ), j  = 1,2, • • •, m -  1.

We re-rank the first (m — 1) elements of the order system obtained after finding the 

minimum variance subset AR model with size m according to ( / 1 , /2, * * *, lm-1 ) to form 

a new order system. The lag corresponding to the (m — l)th element of the new system 

has the minimum r 2 among other lags. We should bear in mind that the increase of 

residual variance due to removing lag ij in a subset AR model consists of two parts



42 CHAPTER 2. ON THE SELECTION OF SUBSET AR MODEL

and - £ ? ( * ! , . . . (see equation (2.26) ). The first part is the square of the 

AR coefficient of the removed lag. The second part is the error due to the part of the 

characteristic behaviour of the removed lag not being represented by the remaining 

included lags. Therefore, the square of each AR coefficient is only the “amplitude” 

of the removed lag. Since the two parts have no “direct linkage” between them, in 

the sense that if is large (or small) there is no reason why -E(ti,~,*m)(*j)

should be small (or large), and since both are positive in value, the large value of the 

squared AR coefficient will not automatically be compensated for by the second term 

which indicates the failure of the removed lag to be represented by other included lags 

and vice versa. The increase in residual variance has to be used to search for the best 

subset model for a fixed size under the new order system which serves as a quicker 

path to find the best subset model. Under the new order system, the lag lm-i and the 

set (zm, • • • ,ifc) are removed to calculate <J2(/m_1) first. Sequentially proceeding with 

the calculations of cr2(/j) due to removing in turn the lag l3 for j  = m — 2 to j  = 1 

together with lags (zm, • • •, z*). The “best” (m — 2)-subset AR model is found once we 

have established that cr2(lj) < cr2(lm-\), since it implies that lag lj can be represented 

better by other included lags than lag /m_i although the /m_ith lag’s amplitude is 

smaller than is the Ijth lag’s, i.e. r 2(lm_i) < r 2(/j), j  =  1,• • • ,m  — 2.

It is noticed that the “best” m — 2-subset AR model produced by the above pro­

cedure is the best in the lag set (*i,• • • , tTO)» and we cannot be sure it is the best
/

subset AR model among all
k \

candidates drawn from the lags (1,2,•••,&).
 ̂ m — 2 j

In other words, the “best” of all subset models is the local best instead of the global 

best, in the sense of minimal increase in residual variance, since the candidate lag 

set, (zi, • • • , zm), is only a subset of the full lag set. Therefore, it will not always be 

the case that the local minimum residual variance model is the same as the global 

one. However, we have seen that the increase in residual variance due to the re­

moving of lag ij from an AR model with lag set («i, 72, * * •, *m) can be represented 

as follows, )(*j) There are two contribut­

ing parts A (iui2i...'im)(ij) and to o f , >(*>)- We construct another
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statistic, ^ )t-2i...,tm)(*j)? as proposed below

= 2^1og^(,1,i2,..,Im)(ii ) + 2(1 -  /?)log :% * ,-.* .)& ) (2.63)

where ß ranges from 0 to 1, and is a trade-off parameter.

Different choice of ß will result in different emphases being given to removing a 

lag. For instance, suppose that when lag ij is removed

• If ß is chosen as 1, is solely dependent on the squared coefficient,

m)('i)> for laS h  (see Table 2.1) since «((’1’...,,m)(ij) = 21oga^ii...im)(iJ);

• If /? is chosen as 1/2, *s s°lely dependent on the increase in residual

variance, nf. ,...iim)(f2) (see Table 2.1) since $ ' 2.!,im)fe) =

• if ß  is chosen as 1/3, /,-.,<„)(*>) *s solely dependent on the projection modulus,

(see Table 2-1) since ^ I/,3.!tim)(t'J) = |log/)fjl,...ijm)(«i);

• if ß  is chosen as 1/4, ’s s°lely dependent on the 7 ^  ...<m)(*j) (see

Table (2.1) since

• if ß is chosen as 1/5, £('/,?.!,(,„)(*>) is solely dependent on the —,*m)(*j) (see 

Table 2.1) since 4 i / ‘lim)(*i) = flogst

In general, Ä(,V-1im)(*i) Sives more weight to and makes Ä(f1),...,im)(*i)

more sensitive to if ß is chosen in the range (0, 0.5); and gives more

weight to and make ^ . . . ^ ( h )  more sensitive to A(ilr..tifn)(tj) if ß is

chosen in the range (0.5, 1). So we see ß is a trade-off parameter between A(;1(...)lm)(ij) 

and Our decision will be to choose an appropriate ß to best retain the

true lags in the local best models, though we remember that the local best subset 

models may not be the global best. In other words, the appropriate choice of ß should 

set up an appropriate sensitivity level to and E(*i,i2 to ensure,

whenever possible, that true lags are not removed and also that the true subset model 

is one of the best local models found by reducing the size of the subset AR models.

Adapting McClave’s algorithm, we develop a new algorithm to search for the 

optimum subset AR model for any data set as follows:
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Stage 1: solve the full lag Yule-Walker equation (2.2) and sort the increase in residual 

variance 0,, (i = 1,2, • • • k) due to the absence of each lag i in the full lag AR 

model in decreasing order

0ix #ik (2.64)

where 0, = d^a2(i)/<7^t ,̂ and where is the residual variance of the full lag 

AR model with maximum lag k. a{i) is the AR coefficient of lag i in the full 

lag model. <72̂  is the estimated variance of a(t’).

Stage 2:

This stage begins with size m set to k and reduces one by one to size 1.

S tep 1 Removing lag im corresponding to the smallest 0;m value in the order 

system ( i i , •••,*„»).

Step 2 If the increase in residual variance, cr2̂  ... im)(*m)? due to the removal 

does not exceed the increase in residual variance with 0im-i, the local best 

(m — l)-subset AR model with lags (*i,*2>• • • i*m-i) Is found. Calculate 

the model selection criterion, and go to to Step 4.

Step 3 If the increase exceeds 0,m_ ,, using theorem 2.1, calculate crf ,1,...,im) ( 2y) 

and so (̂ĵ ...,«m)(*i) f°r J from (m — 1) to 1. If {̂,̂ ...,tm)(zi) is less than 

the l°cal best (m — l)-subset AR model with lags 

(*!,•••, ij_i, ij+i, • • •, im) is found. Calculate the model selection criterion.

Step 4 Calculate the AR coefficients of the local best model with size (m — 1), 

and re-order the 0, system in (2.64) by the t2 of the AR coefficients of the 

local best (m — l)-subset AR model from Step 3. Back to Stage 2.

Stage 3: Determine the smallest model selection criterion of all the local best sub­

set models for every size, m = 1, •••,&. The subset model with the smallest 

criterion is the optimum subset model.
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The re-ranked order system in Step 4 of Stage 3 gives a search path, which can 

avoid looking at every possible model, for the local best model with the size progres­

sively reduced by 1. The optimum model can be found when at most k(k + l)/2  

candidate models have been checked. It is obvious that more weight should be put on 

since if represents the error arising from projecting lag ij on the rest of 

lags in the set (z1? i2, • • •, zm). Computer simulation shows that ß ranging from 0.1 to 

0.5 is appropriate to ensure that the proposed algorithm obtains and retains the true 

lags in the local best subset models of different size. Consequently, the true optimum 

subset AR models can be found with high probability. However, we have no evidence 

to show that there is an optimum value of ß which retains the true model lags with 

greater probability than any other values when the proposed algorithm is applied to 

those data sets simulated from different subset AR models. Nevertheless, it has been 

our experience so far that the true model has a greater chance of being selected as 

the optimum model by the proposed algorithm if ß is chosen slightly less than 0.5. 

In the next section, two numerical examples are presented to show the efficiency of 

the proposed algorithm.

2.4 Num erical Examples

The subset selection algorithm described in the above section was applied to 100 

independent simulations of the stationary model given by

X(t)  + 0.SX(t  -  1) -  0AX(t  -  3) + 0.2X(* -  12) = e(t) (2.65)

where e(t) i.i.d.(0,1).

Each sample contains 240 observations and the maximum lag k = 20 was employed 

to test the algorithm. Table 2.2 summarizes how the true model has been found for 

different choices of ß where the true optimum means that the true model is chosen 

by the proposed algorithm as the optimum model. The choice of the optimum model 

is based on the model selection criterion SC specified in section 2.3.
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0 0 0.03 0.05 0.07 0.1 0.13 0.15 1/5 1/4
True Optimum 7 74 85 84 86 82 81 75 74

0 0.3 1/3 0.4 1/2 0.6 0.7 0.8 0.9 1
True Optimum 69 68 65 57 56 58 60 61 61

Table 2.2: The Performance of the Optimum AR Subset Search Algorithm for Dif­
ferent ß

Table 2.2 shows that the proposed algorithm using model selection criterion SC 

with ß in the range of 0.05 to 0.4 performs better than ß in the range of 0.5 to 1 for 

the simulated data; with the best choice of ß around 0.1. From the 100 sample data 

sets, for ß = 0.5, 57 optimum models are the true optimum model whereas with ß 

set at to 0.1, 86 optimum model out of those 100 chosen optimum model are the true 

true optimum model. We also found in these 100 sample data sets that those sample 

data sets where the true model is chosen as the optimum model when ß = 0.5 were 

always again chosen when ß = 0.1. This observation suggests that the algorithm with 

ß = 0.1 is superior to the algorithm with ß = 0.5. In other words, it seems highly 

likely that the true model will be chosen as optimum model with a greater probability 

when ß = 0.1. Among the model selection criteria, AIC and C seem to be the most 

conservative; and they choose almost the same optimum model, i.e. same size and 

same lags. HC seems to be less conservative in most cases than AIC and C; whereas, 

SC is, as expected, the most parsimonious, i.e. the least conservative. It seems that 

the optimum models chosen by SC have a greater chance of being the true model.

To illustrate the advantage of the proposed algorithm and selection criterion 

we choose one sample of the simulated data set for which with ß = 0.5 (the proposed 

criterion, is therefore the logarithm of the increase in the residual variance) this 

method fails to select the lags of the true model. However, the choice of ß = 0.1 selects 

the true model. The global best subset models for each size and corresponding model 

selection criteria are shown in Table 2.3 on page 48. The local best subset models 

chosen by and <̂ 0-1) for each size and corresponding model selection criteria are 

presented in Table 2.4 and Table 2.5 on pages 49 and 50 respectively. The optimum
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model chosen by different model selection criteria are indicated by underline.

Comparing the chosen best local models for ß = 0.5 and ß = 0.1 in Table 2.4 and 

2.5 on page 49 and 50 respectively, the local best models for lags size 10 to 20 are 

the same. Lag 12 is removed when the proposed algorithm with ß = 0.5 searches for 

the local best model of size 9, while the lag 12 is retained if the proposed algorithm 

uses ß = 0.1. The lags of the local best model with size 9 chosen by ß = 0.5 

is (1,3,4,10,11,14,16,17,19) with residual variance a 2(9) = 1.0875 while the lags of 

the local best model with size 9 chosen by ß = 0.1 is (1,3,4,8,10,12,16,17,19) with 

residual variance cr2(9) = 1.0959. Although the proposed algorithm using ß = 0.5 

achieves a smaller residual variance than using ß = 0.1 does, the true lag 12 is 

removed. Therefore, the proposed algorithm with ß = 0.5 removes the true lag 12 

but produces a smaller increase in residual variance; and the proposed algorithm with 

ß = 0.1 retains the true lag 12 at the cost of a greater increase in residual variance. 

Although it achieves the minimum increases in residual variance for size 6 to 9, the 

proposed algorithm with ß — 0.5 misses the true model lags in the chosen models with 

smaller size since the removed true lag 12 cannot be in the candidate models using 

the proposed search scheme. The proposed algorithm with ß = 0.1 retains the true 

lags in searching for the local best models with size 6 to 9 although the local best 

models do not achieve the minimum increase in residual variance. However, using 

ß = 0.1 does ensure that the true model lags are included in the candidate models 

with smaller size. The proposed algorithm with ß = 0.1 finds the true model lags as 

the local best model with size 3. Comparing the local best model in Table 2.4 and 2.5 

with the global best model in Table 2.3, we find that the local best models, and those 

which are chosen by the search with ß = 0.5, are global best models for size 7 to 20; 

the local best models, which are chosen by the proposed algorithm with ß = 0.1, are 

global best models with size 1 to 5 and 10 to 20. Neither of the two local best models 

with size 6 are global best. The proposed algorithm with ß = 0.1 will find the true 

model as its optimum model since the true lag size is 3.
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Global Best Subset Models Based on Residual Variances 
Size(m) Lags Chosen by Increase in Residual Variances of All SubsetsT r
2 1,3
3 1,3,12
4 1,3,12,19
5 1,3,10,12,19
6 1,3,4,10,12,19
7 1,3,4,10,11,14,19
8 1,3,4,10,11,14,16,19
9 1,3,4,10,11,14,16,17,19
10 1,3,4,10,11,12,14,16,17,19
11 1,3,4,8,10,11,12,14,16,17,19
12 1,3,4,8,10,11,12,13,14,16,17,19
13 1,3,4,8,10,11,12,13,14,15,16,17,19
14 1,2,3,4,8,10,11,12,13,14,15,16,17,19
15 1,2,3,4,6,8,10,11,12,13,14,15,16,17,19
16 1,2,3,4,6,8,10,11,12,13,14,15,16,17,19,20
17 1,2,3,4,6,8,10,11,12,13,14,15,16,17,18,19,20
18 1,2,3,4,5,6,8,10,11,12,13,14,15,16,17,18,19,20
19 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20
20 _______1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
Size(ra) HC(m) AIC(m) S C(m) C(m) cr2{m )
1 0.71258 169.62 173.10 210.16 2.0105
2 0.21207 48.091 55.052 31.860 1.2017
3 0.17736 38.358 48.800 21.081 1.1443
4 0.18081 37.784 51.707 20.359 1.1321
5 0.18503 37.396 54.799 19.861 1.1209
6 0.18339 35.600 56.484 17.933 1.1033
7 0.19315 36.540 60.904 18.856 1.0985
8 0.20200 37.261 65.106 19.554 1.0926
9 0.21150 38.137 69.463 20.417 1.0875
10 0.22283 39.454 74.261 21.728 1.0844
11 0.23287 40.463 78.750 22.731 1.0800
12 0.24597 42.204 83.972 24.472 1.0788
13 0.25919 43.973 89.221 26.241 1.0778
14 0.27284 45.847 94.576 28.115 1.0772
15 0.28672 47.777 99.987 30.045 1.0769
16 0.30079 49.751 105.44 32.019 1.0768
17 0.31494 51.743 110.91 34.011 1.0767
18 0.32909 53.737 116.39 36.005 1.0767
19 0.34325 55.733 121.86 38.000 1.0767
20 0.35742 57.732 127.35 40.000 1.0767

215 Models are Checked Before The Optimum Model is Found

Table 2.3: Globally Selected AR Subset Models for the Simulated Data
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Local Best Subset Models Based on
Size(m) Lags Chosen by_  _

2 1,3
3 1,3,11
4 1,3,10,11
5 1,3,10,11,19
6 1,3,4,10,11,19
7 1,3,4,10,11,14,19
8 1,3,4,10,11,14,16,19
9 1,3,4,10,11,14,16,17,19
10 1,3,4,10,11,12,14,16,17,19
11 1,3,4,8,10,11,12,14,16,17,19
12 1,3,4,8,10,11,12,13,14,16,17,19
13 1,3,4,8,10,11,12,13,14,15,16,17,19
14 1,2,3,4,8,10,11,12,13,14,15,16,17,19
15 1,2,3,4,6,8,10,11,12,13,14,15,16,17,19
16 1,2,3,4,6,8,10,11,12,13,14,15,16,17,19,20
17 1,2,3,4,6,8,10,11,12,13,14,15,16,17,18,19,20
18 1,2,3,4,5,6,8,10,11,12,13,14,15,16,17,18,19,20
19 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20
20 ______ 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
Size(m) HC(m) AIC(m) S C(m) C(m) t j2( m )
1 0.71258 169.62 173.10 210.16 2.0105
2 0.21207 48.091 55.052 31.860 1.2017
3 0.19481 42.548 52.990 25.573 1.1645
4 0.18461 38.696 52.618 21.320 1.1364
5 0.18663 37.780 55.183 20.261 1.1227
6 0.18576 36.168 57.052 18.523 1.1059
7 0.19315 36.540 60.904 18.856 1.0985
8 0.20200 37.261 65.106 19.554 1.0926
9 0.21150 38.137 69.463 20.417 1.0875
10 0.22283 39.454 74.261 21.728 1.0844
11 0.23287 40.463 78.750 22.731 1.0800
12 0.24597 42.204 83.972 24.472 1.0788
13 0.25919 43.973 89.221 26.241 1.0778
14 0.27284 45.847 94.576 28.115 1.0772
15 0.28672 47.777 99.987 30.045 1.0769
16 0.30079 49.751 105.44 32.019 1.0768
17 0.31494 51.743 110.91 34.011 1.0767
18 0.32909 53.737 116.39 36.005 1.0767
19 0.34325 55.733 121.86 38.000 1.0767
20 0.35742 57.732 127.35 40.000 1.0767
110 Models are Checked Before The Optimum Model is Found

Table 2.4: Locally Selected AR Subset Models by for the Simulated Data
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Local Best Subset Models Based on 
Size(m) Lags Chosen by

1  1
2 1,3
3 1,3,12
4 1,3,12,19
5 1,3,10,12,19
6 1,3,10,12,16,19
7 1,3,4,10,12,16,19
8 1,3,4,8,10,12,16,19
9 1,3,4,8,10,12,16,17,19
10 1,3,4,8,10,12,14,16,17,19
11 1,3,4,6,8,10,12,14,16,17,19
12 1,3,4,6,8,10,11,12,14,16,17,19
13 1,3,4,6,8,10,11,12,13,14,16,17,19
14 1,3,4,6,8,10,11,12,13,14,15,16,17,19
15 1,3,4,6,8,10,11,12,13,14,15,16,17,19,20
16 1,2,3,4,6,8,10,11,12,13,14,15,16,17,19,20
17 1,2,3,4,6,8,10,11,12,13,14,15,16,17,18,19,20
18 1,2,3,4,5,6,8,10,11,12,13,14,15,16,17,18,19,20
19 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20
20 ______ 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
Size(m) HC(m) AIC(m) S C(m) C(m) <r2(m)
1 0.71258 169.62 173.10 210.16 2.0105
2 0.21207 48.091 55.052 31.860 1.2017
3 0.17736 38.358 48.800 21.081 1.1443
4 0.18081 37.784 51.707 20.359 1.1321
5 0.18503 37.396 54.799 19.861 1.1209
6 0.19600 38.626 59.509 21.060 1.1173
7 0.19553 37.110 61.474 19.438 1.1011
8 0.20754 38.590 66.435 20.907 1.0987
9 0.21913 39.970 71.296 22.275 1.0959
10 0.22912 40.965 75.771 23.254 1.0844
11 0.24322 42.946 81.233 25.236 1.0800
12 0.24683 42.410 84.178 24.679 1.0788
13 0.25996 44.159 89.407 26.426 1.0778
14 0.27321 45.936 94.665 28.204 1.0772
15 0.28727 47.908 100.12 30.176 1.0769
16 0.30079 49.751 105.44 32.019 1.0768
17 0.31494 51.743 110.91 34.011 1.0767
18 0.32909 53.737 116.39 36.005 1.0767
19 0.34325 55.733 121.86 38.000 1.0767
20 0.35742 57.732 127.35 40.000 1.0767
57 Models are Checked Before The Optimum Model is Found

Table 2.5: Locally Selected AR Subset Models by <Ü(01) for the Simulated Data
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A typical real data set which has been analysed by many authors in the subset 

AR literature is the /og10 transformation of annual trappings of lynx in a Canadian 

region between the year 1812 and 1934. Using McClave’s algorithm, Tong (1977), 

fitted a subset AR model containing lags 1,2,4,10,11 and a2 = 0.04405 with maximum 

lag 11. Using the inverse tree proposed by Furnival and Wilson (1974), Penm and 

Terrell (1982) fitted the same subset AR model with maximum lag 16. Using Furnival 

(1971) for subset AR model fitting, Haggan and Oyetunji (1984) developed an efficient 

method to evaluate the residual variance of all possible subset models, and fitted the 

Canadian lynx data by the same subset AR model as the one found by Tong. If the 

maximum lag is over estimated, this will make the subset AR selection more difficult. 

So, we test the proposed algorithm with maximum lag 16 to fit the Canadian lynx 

data by a subset AR model. Table 2.6 on page 52 shows the global best subset models 

obtained by Penm and Terrell (1982) with inverse tree evaluating every subset of a 

given size and the corresponding criteria. Table 2.7 and 2.8 on page 53 and 54 show 

the local best subset models chosen by and and the corresponding criteria 

respectively.

It can be seen that both searches with ß = 1/2 and ß = 1/3 select the same model 

as chosen by Tong (1977), Penm and Terrell (1982) and Haggan and Oyetunji (1984) 

as their optimum model. The local best model for size 7 to 16 and for size 1, 2, 4, 5 

are the same in both searches. However, they differ for size 3 and 6. The local best 

models chosen by the proposed algorithm with ß = 1/2 are the global best for size 

1, 2, 4, 5, 10, 15, 16. The local best models chosen by the proposed algorithm with 

ß = 1/3 are the global best for size 1, 2, 4, 5, 6, 10, 15, 16. The local best model 

chosen when ß =  1/3 has the greater chance to be the global best from Table 2.6 

since the size 6 local best chosen by ß = 1/3 is the global best while the size 6 local 

best chosen by ß = 1 /2 is not the global best because it does not coincide with the 

size 6 model in Table 2.6.

McClave’s algorithm checks more subset models because some small size best 

models should include some lags which are removed for a large size best model. For
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Global Best Subset Models Based on Residual Variances 
Size(m) Lags Chosen by Increase in Residual Variance of All Subset
T T
2 1,2
3 1,2,9
4 1,2,10,11
5 1,2,4,10,11
6 1,2,3,4,10,11
7 1,2,4,9,12,13,16
8 1,2,3,4,9,12,13,16
9 1,2,3,4,9,12,13,15,16
10 1,2,3,4,9,10,11,12,13,16
11 1,2,3,4,9,10,11,12,13,15,16
12 1,2,3,4,9,10,11,12,13,14,15,16
13 1,2,3,4,5,6,9,10,11,12,13,15,16
14 1,2,3,4,5,6,7,9,10,11,12,13,15,16
15 1,2,3,4,5,6,7,8,9,10,11,12,13,15,16
16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
Size(m) HC(m) AIC(m) S C(m) C(m) a2{m)
1 -1.1741 -133.85 -133.85 740.88 0.30909
2 -2.8085 -322.39 -316.92 47.907 0.57092E-01
3 -2.8820 -331.88 -323.68 34.765 0.51617E-01
4 -2.9690 -342.91 -331.97 21.349 0.46044E-01
5 -2.9860 -345.96 -332.28 17.830 0.44048E-01
6 -2.9722 -345.49 -329.07 18.209 0.43462E-01
7 -2.9567 -344.84 -325.69 18.790 0.42949E-01
8 -2.9413 -344.19 -322.30 19.396 0.42445E-01
9 -2.9195 -342.82 -318.19 20.752 0.42212E-01
10 -2.9015 -341.88 -314.52 21.665 0.41819E-01
11 -2.8794 -340.47 -310.37 23.073 0.41605E-01
12 -2.8535 -338.63 -305.79 24.913 0.41547E-01
13 -2.8275 -336.77 -301.20 26.763 0.41493E-01
14 -2.8022 -334.99 -296.69 28.542 0.41413E-01
15 -2.7776 -333.31 -292.27 30.226 0.41299E-01
16 -2.7523 -331.53 -287.76 32.000 0.41217E-01

149 Models are Checked Before The Optimum Model is Found

Table 2.6: Globally Selected AR Subset Models for the Lynx Data
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Local Best Subset Models Based on fit1/2) 
Size(m) Lags Chosen by
T I
2 1,2
3 1,2,10
4 1,2,10,11
5 1,2,4,10,11
6 1,2,4,10,11,16
7 1,2,3,4,10,11,16
8 1,2,3,4,10,11,12,16
9 1,2,3,4,10,11,12,13,16
10 1,2,3,4,9,10,11,12,13,16
11 1,2,3,4,5,9,10,11,12,13,16
12 1,2,3,4,5,6,9,10,11,12,13,16
13 1,2,3,4,5,6,7,9,10,11,12,13,16
14 1,2,3,4,5,6,7,8,9,10,11,12,13,16
15 1,2,3,4,5,6,7,8,9,10,11,12,13,15,16
16 _______1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
Size(m0 HC(m) AIC(m) S C(m) C(m) cr2(m)
1 -1.1741 -133.85 -133.85 740.88 0.30909
2 -2.8085 -322.39 -316.92 47.907 0.57092E-01
3 -2.8025 -322.82 -314.61 46.577 0.55888E-01
4 -2.9690 -342.91 -331.97 21.349 0.46044E-01
5 -2.9860 -345.96 -332.28 17.830 0.44048E-01
6 -2.9673 -344.93 -328.51 18.800 0.43676E-01
7 -2.9509 -344.18 -325.03 19.482 0.43199E-01
8 -2.9313 -343.05 -321.16 20.577 0.42872E-01
9 -2.9120 -341.96 -317.33 21.632 0.42530E-01
10 -2.9015 -341.88 -314.52 21.665 0.41819E-01
11 -2.8754 -340.01 -309.91 23.532 0.41771E-01
12 -2.8513 -338.37 -305.53 25.172 0.41641E-01
13 -2.8254 -336.53 -300.96 27.007 0.41581E-01
14 -2.8009 -334.85 -296.54 28.688 0.41466E-01
15 -2.7776 -333.31 -292.27 30.226 0.41299E-01
16 -2.7523 -331.53 -287.76 32.000 0.41217E-01
35 Models are Checked Before The Optimum Model is Found

Table 2.7: Locally Selected AR Subset Models by Ŝ lj/2̂ for the Lynx Data
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Local Best Subset Models Based on f i U / 3 )

Size(m) Lags Chosen by
1 1
2 1,2
3 1,2,10
4 1,2,10,11
5 1,2,4,10,11
6 1,2,3,4,10,11
7 1,2,3,4,9,10,11
8 1,2,3,4,9,10,11,12
9 1,2,3,4,9,10,11,12,13
10 1,2,3,4,9,10,11,12,13,16
11 1,2,3,4,5,9,10,11,12,13,16
12 1,2,3,4,5,6,9,10,11,12,13,16
13 1,2,3,4,5,6,7,9,10,11,12,13,16
14 1,2,3,4,5,6,7,8,9,10,11,12,13,16
15 1,2,3,4,5,6,7,8,9,10,11,12,13,15,16
16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
Size(77i )  HC(m) AIC(m) S C(m) C(m) <72( m )
1 -1.1741 -133.85 -133.85 740.88 0.30909
2 -2.8085 -322.39 -316.92 47.907 0.57092E-01
3 -2.8025 -322.82 -314.61 46.577 0.55888E-01
4 -2.9690 -342.91 -331.97 21.349 0.46044E-01
5 -2.9860 -345.96 -332.28 17.830 0.44048E-01
6 -2.9722 -345.49 -329.07 18.208 0.43462E-01
7 -2.9559 -344.75 -325.60 18.885 0.42984E-01
8 -2.9357 -343.55 -321.66 20.054 0.42683E-01
9 -2.9170 -342.53 -317.91 21.040 0.42317E-01
10 -2.9015 -341.88 -314.52 21.665 0.41819E-01
11 -2.8754 -340.01 -309.91 23.532 0.41771E-01
12 -2.8513 -338.37 -305.53 25.172 0.41641E-01
13 -2.8254 -336.53 -300.96 27.007 0.41581E-01
14 -2.8009 -334.85 -296.54 28.688 0.41466E-01
15 -2.7776 -333.31 -292.27 30.226 0.41299E-01
16 -2.7523 -331.53 -287.76 32.000 0.41217E-01
31 Models are Checked Before The Optimum Model is Found

Table 2.8: Locally Selected AR Subset Models by for the Lynx Data
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instance, the “true” lag 10 is ordered as the second smallest in the original ordering 

system (1,2,4,12,3,9,16,13,11,6,15,7,5,8,10,14) because the squared t- statistics 

of lag 10’s coefficient is the second smallest in the full AR model. Using McClave’s 

algorithm described on page 37, lag 10 is highly likely to be removed for a subset AR 

model with size less than 14. After the best model is selected for a particular size, 

the proposed algorithm takes advantage of a re-ordered system to gain efficiency as 

it begins the choice of the best model with size now reduced by one. The proposed 

algorithm selects the “true” model as the optimum model after evaluating only about 

1/3 of the subset models investigated in McClave’s algorithm.

2 .5  S u m m a r y

The numerical examples presented in the previous section allow us to conclude that

• In selecting the optimum size subset AR in model fitting, using both real and 

simulated data, the SC criterion performs best.

• The proposed algorithm is much more efficient than McClave’s algorithm; it 

reduces substantially the number of possible subset AR models to be evaluated. 

The proposed algorithm is much more efficient when fitting subset AR models 

with a large maximum lag.

• The local best model selection criterion £^)(see equation (2.63) )(when it is 

applied to a specified size subset AR model) represents a more general criterion 

than one based on only the increase in residual variance. Choosing ß =  1/3 

introduces an option involving the projection modulus rather than choosing 

ß =  1/2 which uses simply the increase in the residual variance. The proposed 

subset AR selection algorithm shows out well in preserving the true lags in the 

local best models when employed for both computer simulated and real data 

sets. Consequently, it appears that the true model will be found with greater 

probability using the projection modulus rather than using the increase in the
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residual variance as a criterion.

As we mentioned before, the optimum trade-off parameter ß is not known, and 

it seems that the best value of ß varies from one unknown true model to another. 

However, we can still use the proposed algorithm to find the true optimum subset 

AR model for a data set. The strategy is to set ß to different values, such as 1/5, 

1/4, 1/3, 1/2, and 1 which introduce different criteria and so different influences on 

removing lags. The chosen lags of the optimum models produced by different ß can 

then be divided into two sets of lags:

1. A common lag set which contains the lags which belong to all the chosen opti­

mum models;

2. Another lag set which consists of those lags which are not common to all opti­

mum models.

The lags in the common lag set are highly likely to be the lags in the true model 

since these lags have been preserved for the different values of /9, and associated 

criteria. The common lag set, however, may not include all lags of the true model. 

The remaining true lags are most likely to be in the uncommon lag set. In most cases 

for our simulated samples, the uncommon lag set is very small; and only includes 1 

or 2 lags. For instance, if there are p lags in the uncommon lag set, we can proceed as 

follows to extend the range of models considered. Taking the lags which are included 

in the common set as always being included and then adding extra lags from the 

uncommon set to produce an expanded set of candidate models. Therefore, the 

expanded candidate model set contains 2P models. For each possible model in the 

expanded set the chosen criterion (SC) is calculated and compared, and thus we can 

determine which one is likely to be the true model.

For example, the proposed algorithm with different ß was applied to a sample data 

set of length 240 generated from model (2.65), and produced the optimum models 

presented in the first part of Table 2.9 on page 57. The common lag set is (1,3); 

and the uncommon lag set is (11,12). The common lags 1 and 3 are most likely to
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ß/lags common uncommon SC
1/5 1,3 12 -8.5477
1/4 1,3 12 -8.5477
1/3 1,3 12 -8.5477
1/2 1,3 11 -5.1670
1 1,3 11 -5.1670
Possible True Opti mum Model SC
Model (1,3) -4.2159
Model (1,3,11) -5.1670
Model (1,3,12) -8.5477
Model (1,3,11,12) -3.2444

Table 2.9: Search for the True Optimum Model from Chosen Models for the Simulated 
Data

be lags of the true model. The second part of the table shows all possible optimum 

models and the corresponding values of the model selection criteria SC. Comparing 

the model selection criterion SC, we can conclude that the subset AR model with 

lags (1,3,12) is highly likely to be the true model.

By using this strategy, the optimum true model has been found in 96 out of the 

100 sample data sets. This indicates that this extra strategy option can find the true 

model with higher probability than occurs with the use of a single optimum trade­

off parameter(86 out 100 sample data sets produce the true optimum model when

ß  =  0.1).

The strategy is applied to the Canadian lynx data and yields the results in Table 

2.10 on page 58. The common lag set is (1,2,4,10,11); and the uncommon lag set 

is (16). There are only two possible true optimum models, and their model selection 

criteria SC listed in the second part of Table 2.10. It is obvious that the subset AR 

model with lags (1,2,4,10,11) is most likely to be the optimum model, since it has 

the smaller SC value. Assuming the selected optimum model is the “true” model 

and finding the size 5 subset AR model from the model with lags (1,2,4,10,11,16) 

which is the size 6 local best chosen by ß < 1/5, we list some statistics for lag 2 and 

6 and 6 ^  in Table 2.11. Comparing the values 6 ^  of lag 2 and 6 in Table 2.11, we



58 CHAPTER 2. ON THE SELECTION OF SUBSET AR MODEL

0/lags common uncommon SC
1/5 1,2,4,10,11 16 -328.51
1/4 1,2,4,10,11 null -332.28
1/3 1,2,4,10,11 null -332.28
1/2 1,2,4,10,11 null -332.28
1 1,2,4,10,11 null -332.28
Possible True Optimum Model SC

Model (1,2,4,10,11) 
Model (1,2,4,10,11,16)

-332.28
-328.51

Table 2.10: Search for the True Optimum Model from Chosen Models from the Lynx 
D ata

lag i 0(1,2,4,10,11,16)(0 (e„e t) t — ratio
2
16

0.37438
0.04951

0.14545
0.49184

3.35587
0.8167

lag
i ß = 0 ß =  1/5 0 = 1 / 4 0  =  1/3 0 = 1 / 2 0 =  1
2 -3.8558 -3.8706 -3.8744 -3.8805 -3.8929 -3.9299
16 -1.4192 -3.5399 -4.0700 -4.9536 -6.7209 -12.0225

Table 2.11: ß Weight Effects on Criterion 6 ^

can see th a t the size 5 local best model with lags (1,4,10,11,16) will be chosen if 

the trade-off param eter ß  is less than 1/4; while the size 5 local best model with lags 

(1 ,2 ,4 ,10 ,11) will be chosen if the trade-off param eter ß is greater or equal to 1/4. 

It is obvious th a t the proposed procedure will miss the “true” model when ß  <  1/5 

since the trade-off param eter ß over-emphasizes the impact of removing a particular 

lag on the rest of remaining lags. In other words, lag 2 should stay instead of lag 

16 in finding the size 5 local best model and so the “true” model can be selected 

although lag 2 can be be tte r represented by lags (1,4,10,11,16) than can lag 16 by 

lags (1 ,2 ,4 ,10 ,11). This illustrates an instance of how the range of the trade-off 

param eter ß  is critical in preserving the true lags.

This strategy, which searches a grid of ß values, always produces the same or 

a higher probability of selecting the true model than can be obtained with a single
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chosen value of the trade-off parameter ß. However, this advantage is at the cost 

of lessened efficiency since this strategy needs more than five times the number of 

operations associated with using a single trade-off parameter.

If you choose the more efficient approach there remains a major task of choosing 

an appropriate ß for 6 ^  to make it highly likely that the true lags will be preserved; 

and so select the true optimum model.



C h ap ter  3

On S ta te  Space M od el

3.1 In tro d u ctio n

The structural state space model is a more flexible statistical model which can pro­

vide a description of a time series in terms of its components of interests, such as, 

trend component, seasonal component, etc.. With the utilization of the Kalman filter 

technique, the structural state space model can handle non-stationary time series, 

and the state space model can be identified. In other words, the unknown parameters 

in the state space model can be estimated via various criteria, such as, maximum 

likelihood, mean square error of one step head prediction, etc.

After constructing a structural state space model for a practical data set, we always 

face two problems: (1) the initial conditions of the state vector; (2) the unknown 

system parameters, such as, the values of some elements of the system matrices, the 

covariance matrix of the state disturbances. When the initial state vector is normally 

distributed, the Kalman filter allows the likelihood function of the state space model 

to be calculated via what is known as the prediction error decomposition. In this 

way, the unknown system parameters in the model can be estimated. If the normality 

condition for the initial state vector is dropped, there is no longer any guarantee that 

the Kalman filter will give the conditional mean of the state vector and the system 

parameter estimation correctly. Suppose that the system parameters are all known, 

Caines and Meyne (1970) and, Anderson and Moore (1979) (see Theorem 3.2 and 3.3)

60
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give sufficient conditions on system matrices and the initial state covariance matrix, 

and guarantee that the state covariance matrix converges exponentially fast. The 

properties of state space models which are not stabilizable have been examined by 

Chan et al. (1984) with particular reference to cases where some of the roots of the 

transition matrix lie on the unit circle. However, the system parameters are usually 

unknown in practice or only partially known and need to be estimated.

In section 3.2, we give a general form of a state space model, some pre-specified 

assumptions and the likehood function of the model. In section 3.3, we discuss the 

influence of initial conditions for the state vector on the performance of the Kalman 

filter, generalize the Increasing and Decreasing Properties of the state vector covari­

ance matrix in Theorem 3.5 and 3.6, where the results from Chan et al. (1984) is 

a special case of Theorem 3.6, and conclude in Theorem 3.7 that an over-estimated 

initial state covariance matrix leads to a faster convergence speed in general than does 

an under-estimated one. In section 3.4, we investigate the fixed point smoothing and 

estimation of the initial state conditions, and show that the fixed point smoothing is 

an efficient Bayesian estimation for the initial conditions of the state vector. After 

the sensitivity analysis in section 3.5 for the state space model, we develop a state 

space model estimation procedure for the unknown system parameters in section 3.6. 

The application of this procedure will be presented in chapter 7.

3.2  M od el and A ssu m p tion s

We consider a stochastic process {y(t),t > 1} generated by the state space model 

x(t -fi 1) = A(0)x(£) + £(*) Transition equation
< . . I3-1)

y{t) =  C(0)x(t) + e(t) Observation equation

Assumption 3.1 (i) {x(t),t > 1} is a sequence of m x  1 state vectors.

(ii) {(£) and e(t) are, respectively, m x  1 and l x l  Gaussian random distur­

bances. Vt, s € T +, £(t), e(t) are conditionally independent of x(0) and of given
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y (<-!) where =  {y(O), • • •, y(t — 1)}. Both have zero mean and have variance-

covariance matrices

E

>

( f (*),«(<)) [ . ( «  7

e(s ) J
[ S '  r )

6(t — 5) (3.2)

and R >  0 and Q can be decomposed into Q =  BB' where T+ =  {1 ,2 ,3 , ••• , X1}. 

(in) The matrices A(6) and C{6) are n x n  and 1 xm, respectively.

Assumption 3.2 (Initial Conditions)

x(0) =  \P(^)C +  77 (3.3)

where (i) Is an Tnxq (q <  m) matrix, (ii) q ~  N(0,E^(V’)) and q is an m x  1

vector having an unspecified distribution. Both q and £ are independent of 6(t) and 

e{t).

if is a parameter vector belonging to a subset ^ of a finite dimensional Euclidean 

space.

We observe y(t  ), t £ T+ • Now let 7(0) =  q

and for t > 1 define

F{t,0,iP) =  C{6)At- 1{6)'H (3.4)

/  7(* + i) = A(*b(0 + CM (3>5)
\  u(t)  =  C(0)1 (t) +  e(t)

Then

y{t) =  F(t ,0 ,xf) l  +  w(t) t >  1 (3.6)

When the distribution of (  is known, the Kalman filter applied to the model 

yields the mean and covariance matrix of the distribution of x{i) conditional on the 

information available at time t — 1. Thus

x ( < | < - 1 )  = E[x(*)|!/<,- 1)]
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where y^~l) =  {y(t  -  1), • • •, y (l)}  and £(<) =  E[x(t) -  x(t\t -  l)][z(*) -  x(t\t  -  1)]'.

If y(t)  is stationary, then the system has a stable transition matrix with |A,(A(0))| < 

The initial values of x(0) or the distribution of (  does not affect y(t) when t —► oo 

because F ( t , 0 , 'll?) =  0. In principle, the starting state vector values for a

Kalman filter which is employed to estimate an unobservable state vector are given 

by the mean and covariance matrix of the unconditional distribution of the state vec­

tor, However, structural time series

models are used often to model economic time series which can be non-stationary.

N ote:

The concepts of reachability, controllability and stabilizability are all concerned with 

the interconnection between the input and state of a system. Intuitively, these con­

cepts describe to what extent the system state can be steered by using the system 

input. On the other hand, the concepts of reconstructibility, observability and de­

tectability are all concerned with the interaction between the system output and 

state. Intuitively, these concepts describe what part of the system can be seen from 

the output. The formal definitions for the above concepts can be found in Anderson 

and Moore (1979), Caines (1988), etc. and would not be presented here.

A(6) and C(0) indicate that the system matrices of the state space model may 

not be fully known. For reason of simplicity, the notation A and C will be used in 

the following sections.

3.2.1 The Exact Likelihood Function

Now in order to construct the exact likelihood function for a given nonstationary pro­

cess {?/(t)11 <  t <  T }, let us assume that the random variable y(t) has a density that 

depends on the deterministic quantities 6 for all t. From Baye sTule or equivalently 

from the definition of a conditional density and Schweppe (1965), we obtain

f ( y {T)\9) =  / ( y (rV T' 1),0 ) / ( y (T- 1V )
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= I l / ( ! / ( <)ly<' ' 1)̂ )  (3-7)
t =  1

We see that f ( y ^ \ 0 )  in the above equation is a likelihood function for the 

{y(0|l — t ^  T} an<i that the likelihood function is parameterized by determin­
istic quantities 0.

Now let

yt\t-i(0)= I' y{t)f{y (t)\y(‘~1\9)dy it) (3.8)
J R \ t )

that is yt\t-i(&) is the conditional expectation of y(t) given Making the change
of variable

y(t) -* y{i) -  yt\t-i(0), i < t < T  (3.9)

we obtain

f ( y {T)W) = n / ( » ( 0  -Si|i-i(0)|5/(' -1),0) (3.10)
t = 1

since the determinant of the Jacobian of the change of variable is the identity matrix.

The above equation yields a likelihood function for the observations of the form 
T

e x p ^ X o g f ( y t{6)\y^~l\6 )  + {function of y(0)} (3.11)
t=i

where vt(0) = y(t) — yt\t-i(0) is an innovation sequence.

Since 2/(0) = Cx(0) +  e(0) and x(0) = + Vi the above likelihood function

can be written 
T

ezp ^ lo g /( i;f(0 ) |y (t-1),0)+{function of £ and ip not depending upon 0}(3.12)
t = l

From here, we can clearly see that (1) the likelihood function can be expressed as 

density function of innovations plus a function of an initial condition; (2) the likelihood 

function is affected not only by the parameter set 6 but also by initial conditions in 

general.

If the disturbances and initial state vector in model (3.1) have proper multivariate 

normal distributions, the distribution of y(<), conditional on {y^~l\ 0 ) is itself normal.
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Furthermore, the mean and covariance matrix of this conditional distribution are 

given directly by the Kalman filter. Conditional on the state vector x(t) is

normally distributed with a mean of x(t\t — 1) and a covariance matrix of £(£). The 

innovation process v(t) is Gaussian with density V(0,Ev(/)) where Ev(t) = CE(t)C'A 

R. The following expression gives the first part of the logarithm of the likelihood 

function

log 2tt -  15] [log |E„(t)l + « '(0s »1 (<)«(*)] (3.13)

The choice of the initial state vector will often significantly influence the evaluation
the state vector,

of the likelihood function and is also related to a priori knowledge of^It is reasonable 

to take x(0) as an a priori estimate of x(0) and let E(0) reflect the confidence in this 

initial estimate, x(0). If E(0) is small the Kalman filter gain K(t) will be small for 

all t and the state vector estimates will therefore not change too much from x(0). On 

the other hand if E(0) is big, the vector estimates will quickly jump away from x(0).

3.3 T h e Influence of th e  In itia l S ta te  C ovariance  

M atrix

Note that none of the assumptions in Assumption 3.1 of the state space model (3.1) 

imply the stability properties of the system or the stationarity of the output.

If x(0) has the conditional gaussian distribution N(x(0),Eo), the innovation rep­

resentation is

X(t + 1|<) = Ax(t\t - 1 )  + K(t)v(t)

y(t) = Cz(f |< — 1) +  v(t)

where v(t) = y{t) -  Cx(t\t -  1) = C{x(t) -  x(t\t -  1)) + e(*) and K(t) is the Kalman 

gain.

Define

x{t -f" 1) = x(t + 1) — x(t + 1|/)
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= 4x(<) + f(<)-tf(<)[C*W+ <:(<)]

= [A — K( t)C]x(t ) + £(t) +

and

E(< + 1) = Ex(< + l)5(t + 1)'

Hence

u(t) =  y(t) — Cx(t\t — 1)

= Cx(t) + e(<)

Since x(t + 1) ±v(t), x(t) X £(t) and x(t) X e(<), we have that

0 = E x(t + l)t>(<)

= E[A*(t) + f(t) -  K(t)(Cx(t) + e(<))][Ci(t) +  «(<)]'

= AZ(t)C'+ S -  K(t)[CZ{t)C'+ R]

Thus

K(t) = [AE(t)C' + S][CEC' + R]-1

E(< +  1) =  E i((  + l)x'(< + 1)

= AT,(t)Ä -  AE(t)C'K'(t) + Q -  SK'(t)

-K(t)CT.(t)A' -  K(t)S' + K(t)[CE(t)C' + R]K'(t)

= AZ(t)A' -  K(t)[CZ(t + R]K'(t) +  Q

= [A-K(t)C]E(t )[A-K(t)C\

+[*"(<) -  SR-']R[K(t) -  SR-']’

+Q -  SR -1 S’

The above equation is called the Riccati Difference Equation (RDE). 

time invariant, the equation becomes

E =  [ A -K C ] Z [A -  KCY + {K -  SR~l]R[I< -  SR

AQ -  S R -1 S’

(3.15)

(3.16)

(3.17)

(3.18) 

If the S is

(3.19)
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where K  =  [A E C  +  S][CYjC' +  R\ *, is called the Algebraic Riccati Equation (ARE).

In the last section, we have shown that the initial state vector x(0) and its co- 

variance matrix E(0) affect the likelihood estimation for the system parameter set

e  =  { A ,C ,Q ,R ,S ) .

There are two questions which have arisen and need to be answered (1) How does 

the initial state variance matrix affect the Kalman filter performance ? (2) How do 

errors in the system parameter set 0  affect the Kalman filter performance ?

The answers to the above questions are important for estimates of 0 . Especially, 

in practice, when only a small sample data set is available to estimate 0 . For in­

stance, a maximum likelihood estimation is an estimation in the criterion of the highest prob 

ability of occurrence. However, it is not efficient due to the complex nature of the likelihood 

function and of the first and second derivatives of the parameter vector 0  for a gen­

eral form of the state space model. So, numerical approximations have to be used to 

evaluate these quantities in practice. The estimation procedure is computationally 

intensive when a large data set is involved. Therefore, we employ an initial part of 

a whole data set to estimate parameters in a specifically parameterized state space 

form model, and then initiate the Kalman filtering process with an on-line parameter 

estimation algorithm to finally adjust the parameters. However, the initial state vari­

ance matrix affects the Kalman filtering considerably during the likelihood estimation 

because a small data set is involved even though the specified form of the state space 

model satisfies the various conditions needed to ensure the state covariance matrix 

converges.

In this section, we are going to prove that an over-estimated initial variance matrix 

leads to a relative faster convergence speed of the state variance than an under­

estimated initial variance matrix.

T h eorem  3.1 (M in im um  P roperty)

Let two initial state covariance matrices Ei(0) and E2(0) satisfy Xa(0) >  S 2(0), 

and let the sequence {E i(t), t € T +] with initial value E^O) be generated by the
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recursive scheme

Ei(t +  1) =  [A — A(<)C]Si(t)[A — A(1)C]'

+[A (t) -  5 Ä _1]i?[A(i) -  S R -1]' +  Q -  S R '1 S' (3.20)

where A (t) is an arbitrary matrix for each t € T + . Further let the sequence {E2(<), t € 

T +) with initial value E2(0) be generated by the RDE

£ j( i  +  l )  =  [A - K ( t ) C ]E 2( t )[A-K(t )C] '

+[ K( t )  -  S R -^ R lK it)  -  S R -1]' +  Q -  S R -1 S' (3.21)

where K( t )  is defined by K( t )  =  [J4 £ 2(1)C/ +  5][C £2(^)C, + # j-1 and is called the 

Kalman gain.

Then we have,

E i(<) >  S 2(t) >  0

proof: See Caines (1988) pp.196 □

C orollary 1 (B ou n d ary  P rop erty )

If two initial covariance matrices, Ei(0) and £ 2(0), satisfy £ i(0) > £ 2(0) >  0. 

The sequences (£ i(< ), t € T +} and { £ 2(tf), t £ T +) are generated by the RDE,

£,•(* + 1) = [ A - K i W C p i W l A - K i i t f f l

+[Ki ( t )  -  SR T ^R lK iit) -  S R -1}' +  Q -  SR~l S ' (3.22)

where K{(t )  is defined by K{(t)  =  [AYii(t)C  +  5][CEi(<)C" +  i?]_1 and is the Kalman 

gain with the initial covariance matrix £ t(0), i =  1,2. Then we have the relationship,

E i(t) >  E2(t) >  0

proof: Set A(£) in the minimum property theorem equal to the Kalman gain with 

the initial state covariance matrix £ i(0 )

□
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Theorem 3.2 Subject to the assumptions

(1) (A, B) is stabilizable

(2) (C, A) is detectable

(3) So > 0

then limt-.oo S (t) =  S

where S(£) is the solution of the RDE with initial covariance matrix So and where 

S is the unique stabilizing solution of the ARE.

proof: See Caines and Meyne (1970) or Anderson and Moore (1979)

□

Theorem 3.3 Subject to ihe assumptions

(1) There is no uncontrollable modes of (A, B) on the unit circle.

(2) (C, A) is detectable

(3) S0 > 0

Then limt_00 S(t) = S

proof: See Chan et al. (1984)

□

Theorem 3.2 and 3.3 ensure that the state covariance matrix sequence {S(t), t 6 

T+} generated by the RDE will converge to a steady covariance matrix S which 

satisfies the ARD when the conditions are met. In general, we do not know the exact 

initial state covariance matrix corresponding to the initial state. There are two ways 

to deal with the unknown initial state covariance matrix S(0). (1) set S(0) = 0 

(an under-estimated initial state variance matrix), or (2) set S(0) = k l  (an over 

estimated initial state variance matrix) where k is “big enough” to approximate the 

diffuse initial condition or lack of any information a priori. Theoretically, the state 

variance matrix will converge to a steady state no matter which of the above initial 

state variance matrix assumptions are used. In practice, however, we usually have 

some partial information about the initial conditions. For instance, we may know the 

lower and upper bounds of the eigenvalues of the initial state covariance matrix. A
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problem can arise in using the partial information to ensure that the state covariance 

matrix converges quickly to the steady state. Is it best to use an over estimated 

initial state covariance matrix or an under estimated one? The following theorem 

and corollaries give us further analytical results to assist with this decision.

We deal with the under-estimated initial state matrix first.

Theorem 3.4 (Increasing Property)

(1) I f  the initial state covariance matrix Eo(0) = 0, then the sequence {E0(*)> * £ 

T +} generated by the RDE is monotonically increasing.

(2) If, in addition, (C , A) is detectable, then the sequence {Eo(^), t £ T +] is 

bounded and converges to a matrix E that satisfies the ARE

E =  [A -  KC]E[A -  KC]' + [ K -  S R '^ R iK  -  SR - 1]' + Q -  S R '1 S' (3.23)

where K  is defined by K  = [AEC  + S][CEC' + R]~l .

proof: See Anderson and Moore (1979), pp. 81 and Caines (1988) pp. 171
□

Lemma 3.1 Subject to the assumptions

(1) (C,A) is detectable.

(2) There exists a solution E for the ARE.

Then, the Kalman gain sequence {K(t ) , t  6 T +] and the state error covariance 

matrix sequence {E(£), t £ T’+} has the following relationships with the steady-state 

Kalman gain, K , and the steady-state error covariance matrix E:

K(t)  = K  + [ { A-  KC)E{t)C P S -  KR](CE(t )C + R ) '1

D(t + 1) = {A -  KC)[D(t ) -  D (t)C \C E(t)C ' + R )-l CD{t))(A -  K C ) '1 

where D(t) =  E — E(t) when E(0) < E, and D(t) = E(<) — E when E(0) > E.

proof:

Without loss of generality, we assume E(0) < E. By the Minimum Property 

(Theorem 3.1), we know that E (t) < E.
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Considering the model (3.1) we have

x (i + 1) =  Ax(t)  4- £(t A 1) — K(y( t )  — y(t))

=  Ax(t) A i ( t  + 1) -  K(Cx( t )  A e(t) -  y(t))

=  Är(t) + f(* + i) + ffy(*)

where Ä =  (A -  KC) ,  (*(t A 1) = £(t A 1) -  Ke(t).

The equivalent representation of model (3.1) is

x(t  + 1) = Äx(t)  + Ky( t )  A £*(t A 1) 

y{t) =  Cx(t)  H- e(t)

The covariance matrix of the disturbance becomes

(3.24)

(3.25)

E C(s)
e(s)

(r'ŵ w) I - K  

0 I

Q S N

Q S 

S' R

\  /

J l I S 

—K' I

S(t — s)

6(t — s) 

(3.26)
S' R

where Q = Q -  KS' -  SK' A KRK' , S =  5  -  KR.

The innovation representation is

x(t A 1|2) =  Äx(t\t — 1) +  Ky(t) A K(t)v(t) 

y(t) =  Cx(t\t -  1) +  v(t) 

where v(t) = y(t) — Cx(t\t — 1) =  C(x(t) — x(t\t — 1)) +  e(t), K(t)  is the Kalman gain. 

Because x(t A 1) can be expressed by,

(3.27)

x(t T 1) = x{t A 1) — x(t A 1|0

=  Äx(t) A C(i  +  1) +  Ky(t) -  Äx(t\t -  1) -  Ky(t) A K(t)v(t)

= Äx(t) A C{i  +  1) — Äx(t\t — 1) 4- K(t)v(t)

= Äx(<)+ {*(< + l )AK{t )v ( t )  (3.28)

we proceed in the same fashion for K(t),  and E(t + 1) in the original model (see 

equation (3.16), (3.18)) since x(t + 1) _L v(t), x(t) Jl £*(t) and x(t) _L e(£), and so we 

have

E (t +  1) =  ÄE (t)Ä' a Q a  K(t)G(t)K' (3.29)
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where G(t) = CE(t)C ' + R, and K(t) is given by

K(t) = (ÄE(t)C' + S)G(t)-' (3.30)

and is called the Kalman gain.

Now, we look at the steady-state Kalman filter of the modified model (3.27), with 

K defined in equation (3.30). So we have

K  =  (ÄEC' + S)G-1

=  [ ( A - K C ) Z C  + S  -  KR]G~'

= [(A -  (AEC + S)(CEC' + Ä)_1C)EC'

+ 5  -  (AEC + S)(CEC + fiJ- 'ß JG -1 

=  [AEC +  S -  (AZC + S)(CEC' + R)~'(CZC' + R)]G~1 

=  0 (3.31)

since the steady state Kalman gain of the original model is + 5)(G’EG" +

Ä)"1. We find that

K(t) =  (ÄE(t)C + S)G~1(t)

= [(A-KC)E(t)C’ + S-K R }G - '( t )

= (AE(t)C' + S)G-' (t)-  K(C + R)G~1 (t)

= K(t) -  K (3.32)

So, actually we have,

K{t) =  K + K{t)

= K + l(A-KC)Y.(t)C + S-KR}(CY,{t)C' + R)-1 (3.33)

By replacing K(t) in equation (3.29), we obtain

E(f +  1) =  ÄE(t)Ä'+ Q + ÄE(t)C'G-\t)CT,(t)Ä

-ÄE(t)C'G-1(<)5'-5G -1(<)CS(t).4'-5G-1(t)5'

= Ä[E(t) -  EfOC'G-’M C E t tp '
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-ÄZ(t )C 'G-l (t)S' -  SG~'(t)CL(t)Ä'

- S G - \ t ) S '  + Q

= Ä[£(<) -  S(t)C'G_l(t)CL(<)]Ä'

- K ( t ) S '  -  SK'(t) + SG-l (t)S' + Q (3.34)

We define

E(1)(< + 1) = Ä[E(i) -  £  (t)C'G-\t)CT.{t)\Ä:(3.35)

E(2)(i + 1) = -K ( t )S '  -  SK'(t) + SG-l (t)S’ + Q (3.36)

Therefore we have,

£(< + 1) =  E(1)(< + 1) + E(2)(< + 1) (3.37)

E(1) = Ä[E -  EC'G-'CE] Ä' (3.38)

E(2) = S G -1 S' + Q (3.39)

since K  — 0, and

E = E111 +  E(2) (3.40)

Now, we examine D(t) by considering

£<») _£<>>(< + 1) =  Ä[D(t)- (EC 'G -'CE -  E^JC 'G -'C Et«)))^'

= Ä{D(t) -  D W G - 1 (t)CD(t)\Ä'

+Ä[£(t)C'G_1(()CE -  EC'G_1(t)CE 

+EC"G-I(<)CE(t) -  EG'G-'CEIÄ' (3.41)

By noting that Ä'(f) is given by

^(<) = (ÄS(t)C' + 5')G-1(<)

=> AE(t)C  =  K(t)G(t) -  S  (3.42)
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and AEC' =  - S

Substituting equations (3.42), (3.43) into equation (3.41), we produce,

£<'>- £ « ( «  + 1) =  Ä[D{t) -D ( t)C 'G -l {t)CD(t)]Ä‘

+(K(t)G(t) -  S)G~l (t)(—S') -  ( -5 )G -'(< )( -5 ')

+(—S)G~1(t)(K(t)G-  S')  -  

= Ä[D(t) -  D(t)C‘G -l (t)CD(t)]Ä'

—K(t)S' -  SK'(t) +  5G _1(i)5 ' -  SG~l S'

=Ä[D(t) -  D(t)C'G-\t)CD{t))Ä'

+£<2)(i +  1) -  S (2)

Hence, we have the recursive expression for D{t 4-1)

D(t +  1) =  E(1) +  £<2> -E < 1>(f +  l ) - S < 2>(t +  l)

=  Ä\D(t) -  D{t)C'G~x(t)CD(t))Ä!

□

T h eorem  3.5 (G eneral Increasing P rop erty )

Subject to the assumptions,

(1) (C,A) is detectable.

(2) there exists a solution, E, for the ARE.

(3) the initial state covariance matrix E(0) satisfies 0 <  £(0) <  E.

then the sequence {E (/), t G T+] generated by the RDE with initial state 

ance matrix £ (0) is monotone increasing and converges to E.

proof: We prove the convergence of the sequence {£ (f), t £ T+} first. 

Consider the RDE with initial state covariance matrix. E(0)

E(* +  l)  =  [A -K ( t )C ]L ( t ) [A -K ( t )C ] '

+[K(t) -  SR~l]R[K(t) -  SR -1}' + Q -  S R '1 S'

(3.43)

(3.44)

(3.45)

covari-

(3.46)
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and the ARE is

£  =  [A -  KC]E[A -  K C }' + [ K -  5 / T 1]R[A -  S R - 1}' + Q -  S R - 1 S'  (3.47)

Using the RDE, the ARE and the Minimum Property, we have

0 <  [A -K{ t )C][X-X( t ) ] [A -K( t )C] '

< £ - £ ( *  +  1)

<  [A — KC][E — £(*)][A -  KC]'  (3.48)

and through induction, we obtain

A(*)[E -  £(0)]A '(f) <  E -  £ (f +  1) <  Ä[£ -  £(0)]Ä' (3.49)

where A (t) = Ä(0)Ä(1) • • • Ä(t -  1), Ä{t) = A -  K{i)C and Ä = A -  KC.

Since the detectability of the pair (C, A) implies that |A,(Ä)| < 1 for i =

1,2, • • •, m, we have

fcWP - S(°)PT = o
thus, limt^oo £(*) =  E.

Now, we prove tha t £(£) increases monotonically converging to E.

Defining D{t) =  E — E(f), we have shown that

D(t  +  1) =  Ä[D(t) -  D{t )C\R  +  C E (f)C ')*1CD(t)]Ä ' (3.50)

in Lemma 3.1.

Since |A,(Ä)| <  1, we have

£ ( t  +  l ) - E ( t )  =  D ( t ) - D ( t  + 1)

> Ä D ( t )Ä ' - D ( t  + 1)

=  ÄD( t )C\R  +  C'L(t)C'YlCD{t)Ä'  >  0 (3.51)

□

Therefore, the second conclusion in the Increasing Theorem is a special case of 

the above General Increasing Property. In practice, this increasing property and the
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Minimum Property together ensure that we can employ partial information about 

the initial state covariance instead of a zero initial covariance and so gain a faster 

convergence speed.

Now, we deal with the case of an over-estimated initial covariance matrix.

Theorem 3.6 (General Decreasing Property)

Subject to the assumptions

(1) (C,A) is detectable.

(2) There exists a solution, E, for the ARE.

(3) the initial state covariance matrix E(0) satisfies E(0) > E > 0.

the sequence {E(£), t £ T +} generated by the RDE with initial state covariance 

matrix E(0) is monotone decreasing and converges to E.

proof: Using the same proof procedure as we used in the General Increasing Property, 

and replacing D{t) by — D(t), we can obtain the following results,

lim E(t) = E

E( f + 1) < E(t)

where t £ T +. □

Now, we conclude that the sequence {E(£), t £ T +} generated by the RDE will 

converge to the steady state covariance matrix E which satisfies the ARE with either 

an under-estimated or an over-estimated initial state covariance if certain conditions 

are met. However, we do not know which one will converge faster when the distances 

of the under-estimated and over-estimated initial covariance matrices from the true 

initial covariance matrix are the same.

Lemma 3.2 Subject to the assumptions

(1) A, B  are non-singular matrices

(2) [B~l +  CA~lC') is non-singular matrix
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then we have the result,

[A +  CBC']-1 = -  A~l C[B~l +  CA~lC'}-lC A - 1

T heorem  3.7 Subject to the assumptions

(1) (C, A) detectable.

(2) There is a unique solution of the ARE, E.

(3) Two initial state covariance matrices Ei(0) and E2(0) satisfy

Ei(0) > E, E2(0) < E

and

II Ex (0) — E || = || E2 (0) — S ||

then we have,

||£i(<) -  £|| < ||S2(() -  E||

proof: We define

D 1(t) =  E ! (0 ) -E , D2(t) = E -  S2(0)

for t 6 T + with initial £h(0) = Z)2(0) > 0.

By Lemma 3.1, we have

Di(t + 1) =  Ä[Di(t) -  D i( t )C \R  + C ^ i(t)C ,) - 1C D ,i{t)\Ä> (3.52)

where Ä =  A — K C , K  = [AYjC  +  5][CEC' + i?]“1. The sequence E,-(<) is generated 

by the RDE with initial value, Et(0), i = 1,2.

By noting Lemma 3.2 and the results,

E i(0  = £  +  D ,(t) (3.53)

Mi= £ -  D 2(t) (3.54)

we have the recursive expressions,

D \(t  + 1) =  A[Z>r'(() + C'(R  + C E C ')- 'C \- 'A ' (3.55)

D 2(t +  1) = Ä[ D^( t )  -  C'(R  + C (3.56)
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for all t G T +.

We can also conclude tha t

D1(1 )< D 2(1)

since

0 < DA 0) A (0 )

=> DT'( 0) D2'(0)

=>• £>r‘ (0) +  C'(R + C 'E C ')-1C > D ^ M - C ' i R  + C Z C y ' C

=>• DT'(l) > D?(l)

Suppose Dj(t)<  D2(t), we then prove tha t D\(t +  1) <  D2(t + 1) and define 

D\(t) =  D,(t) + el,

If D\(t ) is singular, there exists an e > 0 to make both D\(t) and D\(t) positive 

definite.

By noting th a t we have

0 < D\(t) <  D\(t)

> [ ^ ( t ) ] - 1

[ D fä ] - 1 + C '(R  + C'LC')-'C >  [ ^ ( t ) ] - 1 -  C’(R +  C E C ')_IC

[/){(« + l)]-> > [D2(t +  1)]_1

=> D\(t + 1) <  D^(t +  1)

and letting e —► 0 yields as a consequence the relation,

Di(t  +  1) <  D2(t + 1) (3.57)

If D\(i) is non-singular, the above inequality still holds if we set e =  0. 

Therefore, for any t€ T+ we know that

□

Di(t) < D2(t)

*> ||S ,(t)-E || < l|Sj(t)-S ||
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An example is presented in Appendix A. Although the initial state can be for­

gotten quickly by a fast state convergence speed, the initial conditions still affect the 

performance of Kalman process in a small data set. In the following section, we show 

that the fixed point smoothing algorithm provides an efficient way to estimate the 

initial conditions and to analyse the properties of the algorithm in detail.

3.4 Estim ation of Initial Conditions

The unconditional distribution of the state vector is not defined when the transition

equation is non-stationary, unless genuine prior information is available. In general,

the initial condition covariance E(0) is the parametric quantity required to specify

the joint distributions of (x(0), y ^ ) ,  and to initiate the recursion for the sequence
if it cannot be concentrated out of likelihood function 

{£(<)} in the Kalman filter. However, this quantity cannot be consistently estimated^

3. it is not completely “free”' from the parameter set 0 . There are three different approaches

to estimate the initial state conditions in the existing literature, namely

1. The Diffuse Approach

2. The General Least Squares Estimation Approach

3. The Fixed Initial Vector Approach

See details of the above approaches in Harvey and Phillips (1979), Harvey (1989), and 

Rosenberg (1973). In this section, we shall show that fixed point smoothing, which 

is a Bayesian estimation, can be used to estimate the initial conditions of the state 

vector.

3.4.1 Fixed Point Sm oothing and the E stim ation of Initial 

State Condition

For a given initial state vector x(0) and its covariance matrix £(0), each state x(t) is 

a random vector that is jointly distributed with all future system states and outputs,
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as in probability spaces P(* • •, x(t — 2), x(t — 1)) and P(* • •, y(t — 1), y(t)). The result 

of the filtering calculation is that the conditional density of x(t) given the output 

observation y^~1̂ and system parameters 0 , is Gaussian with mean x(t\t — 1) and 

covariance matrix E(£), where these are generated by the Kalman filtering equations 

and the RDE.

The Kalman filtering problem is most closely related to Bayesian parameter esti­

mation in the case of a fixed-point smoothing problem. This problem constitutes an 

important example of Gaussian conjugate densities in Bayesian estimation.

In the smoothing problem we wish to estimate a random state at a fixed time 

using observations on the output process y(t) which are observed on and after the 

fixed time. We can, therefore, view estimation of the initial state problem as a 

smoothing problem.

By (ii) of Assumption 3.1, we have

E(z(<)|«/(1- 1)) =  E (A r(i -  1) +  4(<)|j/(,_1)) =  x(t\t -  1) (3.58)

To obtain a recursion for {x(t +  1|t) and x(0|£), t € T+}, we draw upon the 

following relations,

1 x(t +  l|f )  ' 

v x(0|<) J

A 0  ̂

0 I

' x { t \ t -  1) \  ' K(t)

v *(0|< -  1) J  \  K m( t )

[y(t)~ Cx(t\t—1)] (3.59)

( m  
V *’«)

A 0 W  £„(<) E12(<) 

0 /  y y £ 2i M  ^22(0
[CZnC' + R]-1 (3.60)

En(£ +  1) Ei 2{t +  1) 

 ̂ E21 +  1) £ 22(t +  1)

< A 0 X /

+

0 /

m
K \ t )  

Q 0 

0 0

/
\

/
\

/

£11  (t) ^ 1 2 (0  

E2l(£) E22(<)

[CZnC' + R]
K(t)

K*(t)

A' 0 

0 I 

\

/

(3.61)
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In view of the initial condition, it follows that the starting values for equation (3.61)

are

 ̂ £n(fo) ^ i2(to)  ̂

y E21(t0) £ 22(̂ 0) j

^  E n ( t o )  ^ 1 1 ( ^ 0 )  

y S n ( t o )  S n ( t o )

Under (i) and (ii) of Assumption 3.1, a joint conditional Gaussian distribution exists 

for (x (l), x(0), 2/(1))' when the conditioning is carried out with respect to y^°\ To be 

specific

( m  \  x (l)

x(0)

2/ ( 1 )

< / m  \x{l)

x ( 0 )

k 2 / ( 1 )
( I

N u(o)

x(l|0 )

x ( 0 )

C x(l|0)

S n (l) E12(l) En(l)C"

E2i (1) S 22(0) E12(1)C"

^ C S n ( l)  CE21(1) CZu (\)C' + R )

where

S u ( l ) E ( x ( l ) - x ( l |0 ) ) ( x ( l ) - x ( l |0 ) ) '

A £„(0)A ' +  Q - A (0)[C £u (0)C" +  fi]-*A"(0)

E2i ( 1) =  E(x(0) — x(0))(x(l) — x(l|0))'

= £ 21(0)[A -  K-(0)C)’

£ 1 2 ( 1 )  =  E 2 i ( 1 )

A-(O) =  A£„(0)C'[CE„(0)C" + R}'1

K * ( 0 )  = £ 2i(0)C,[C£„(0)C' + A]-1

Through an induction argument, we obtain for a general instant t € T+

x(t +  1) ( ' x(t +  1) ^ \

x(0) ~  P x(0) y( t )

l J/(l +  !) ) V k y{i + 1 ) /
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where

E ( *  +  l )

with

/ ( z(* + l|*) \

N j/(0 x(0|tf) , E(£ -f 1)

\ v Cx(t + l|t) j /

En(< +  1) £«(* + 1) E „(t + 1)C"

E21(f+ 1 ) E22(f) E12(t+ l)C "

^ C E n (f +  l) C S21(< +  1) CE„(< +  1)C' + ä

*(< +  1|<) = A t(i|t -  1) + K(t)(y{t) -  Cx(t\t -  1)) 

x(0|<) =  x(0|f -  1) + K ’{t)(y(t) -  Cx(t\t -  1))

(3.62)

(3.63)

(3.64)

(3.65)

En(< +  1) =  E(x(f + 1) — x(t + l|i))(x(t + 1) — 1 |i))'

=  Ä L u (t)A' + Q -K ( t ) [C £ ,u (t)C' + R]-lK'(t) (3.66)

E2i( f+ 1 )  = E(x(0) -  x(0|f))(x(( + 1) -  x(t + l|f))'

=  E 21( t )[A-K -( t )C] '  (3.67)

E i2(t + 1) =  E2i(t +  1) (3.68)

E22(f) =  E(x(0) — x(0|<))(x(0) — x(0|<))'

=  E22(< -  1) -  E21(t -  1 )C 'K’(t)

= E2i ( t - l ) C ,[C,En(<)C, +  Ä)"1CE'J1( < - l )  (3.69)

K(t)  =  AE„ (<)C'[CE n (t)C' +  Ä]“1 (3.70)

AT*(<) =  E21(<)C'[CE n (t)C +  fl] ’ 1 (3.71)

To process the argumented Kalman filter requires computer space and computer 

time raised to the power 2 in comparison with the original Kalman filter. By not­

ing, however, the update equations from (3.64) to (3.71), the need to run fully the 

argumented filter can be avoided by recursion.
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On the other hand, we can view the fixed-point smoothing procedure for estima­

tion of the initial state vector as its linear representation on Hf 0  where

= Sp{-• •, y( — 1), y(0), • • •, y(£)} is a Hilbert space. The original Kalman filter 

model can be view as an innovation generator,

x{ t+ l \ t )  = A x ( t \ t - l )  + K(t)v(t) 

y(t) =  Cx(t\t -  1) + v(t)

where v(£) = y(t) — Cx(t\t — 1).

The sequence {u(£),2 6 T+} generated by the Kalman filter is an orthogonal 

process. Hence,

H ? © H ^  = Sp{v(0),v(l), - . - ,v(t)}

=
t=0

where H*' = Sp{v(i)}.

The fixed point smoothing for estimation of the initial vector x(0) conditional on 

yW  is given by

z(0|i) =  ar(0)|t/<‘)

= x (0 ) |H ? eH ',

= x(0| -  1 ) + S ( I (°)|H”)
t=l

= ar(0| -  1) + 2  E(i(0)v'(i))(-RJ')'1«(*')
:=1

=  x (0| -  1) + 5 i:E (* (0 )» ,( t) )(f lr ) -1t>(i) +  B (* (0 K (t))(f l? )"1«’(‘)
t=l

= x(0|< -  1) + E[(x(0) -  x(0| -  1)) + x(0| -  1)] 

x[t'(<) + (x(i) -  x(i\t -  l))'<7p;rM <)

= x(0|t — 1)

+E(x(0) -  x{0\ -  1 ))(*(*) -  x(t\t -  1 )),C,][Rvt ]-1v(t) (3.73)

since x(0) T c(t) and x(0| — 1) _L e(t).
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We define two new random vectors, x0(t) and x(t), as follows,

x0(t) = z(0) — z(0|/) 

x(t) = x(t) — x(t\t — 1)

From equation (3.73), we get

X0(t) =  X0{t -  1) -  [E(x0(-1  )x,(t)]C,[Rvt]-l [e'(t) + Cx{t)]' (3.74)

and

E50(<)£oW = E i0(< -  l)x0{t -  1)

—2[E(i0( —l)x ,(i)]C,[i?J;]-1[E(xo( —l)i'(^)]/

[Eixoi-Vx^tnC’iR^-' iCm C'  + i?][^]-1[E(x0( - l ) x /(f)r

= E s0(* -  l)*J(t -  1)

-[E (5 o(“ l)^(<)]C,/[i? ]-1[E(*o(-l)5,(0]/ (3.75)

since x0(t —  1) _L e(t) and x(t) J_ e(t).

Hence we have the expression,

Ex0(*K W  = Ex0( - 1 K ( - 1 )  -  2 [ E ( i 0(-l)ä'(«)][Ä?]-1[E(ico(-l)i,(*)]'(3.76)
t=l

The term [E(xo(—l)x'(z)][i^]_1 [E(x0(—l)x,(z)]/ is the estimation improvement 

for the initial state when y(t) is available, and is non-negative definite. We have, 

therefore, the following limitation theorem.

Theorem 3.8 For any state space model which satisfies (i) (ii) of Assumptions 3.1, 

the smoothing estimation for the initial vector is a Baysian estimation, and there 

exists a non-negative matrix, Eo(z(0| — 1)) for x(0| — 1)

proof:

Since the sequence {EioM^oMl *s bounded (> 0) and a monotonically decreasing 

sequence, there must exist a non-negative matrix Eo(x(0| — 1)) which satisfies the

lim E xoM xqU) = Eo(x(0| — 1))
<—►00

expression,



3.5. THE INFLUENCE OF ERROR DISTURBANCE COVARIANCE 85

□

This theorem does not imply that the smoothed estimation is consistent. However, 

the smoothed estimation does improve the initial state vector although the estimation 

relies on the performance of the original Kalman filtering from the recursive procedure 

set out in equations (3.64) to (3.71) which depend on the system matrices A , C 

and the disturbance process covariance matrices Q, R. An obvious weakness of the 

smoothed initial estimation algorithm is that Q and R are required at each step. This 

is an unreasonable amount of information to be required a priori. Indeed, one of the 

desirable products of many system identification algorithms is precisely the system 

and observation disturbance variances. In fact, all optimal linear or non-linear filtering 

solutions to parameter estimation problems require a priori information on the noise 

covariance matrix data, at least in their initial formulation.

3.5 T he Influence o f Error D isturbance C ovari­

ance

In applying the state space model to a specific system, The system matrices A, C, 

noise covariance matrices Q, R and a priori initial condition (x(0),E(0)) must be 

specified. Since the state space model is usually an approximation to the system to 

be modeled, the system matrices and noise characteristics are seldom knqwn exactly 

although the model can be parameterized by a parameter set 0  = (A, C, Q, R) which 

can be estimated by a number of algorithms, such as Maximum Likelihood, Minimum 

Variance, Minimum Prediction Variance, etc.

We have already remarked in the last section that the initial conditions are sel­

dom precisely known a priori. Under the condition that the system matrices and 

disturbance characteristics are known exactly, i.e. 0  is known, any arbitrarily speci­

fied initial conditions which starts the filtering process are eventually forgotten when 

sufficient observations have been processed. The state vector converges to a steady 

state when certain conditions for the state space model are met (see Theorems 3.3
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and 3.4). However, the convergence speed can be accelerated when partial informa­

tion on the initial conditions are used to initiate the filtering process ( see Theorems 

3.6 and 3.7). Now, we should ask what is the effect on the filtering performance if 

the parameter set is not known exactly or an approximation is made. In this section, 

we concentrate on the error sensitivity to the disturbance statistics. We, therefore, 

suppose A , C are known exactly, and Q, R are different from the true values. Then 

we have as the model

xe(t T 1) =  Axe{t) +  £e(t)
< (3.77)

y(t) =  Cxe(t) +  ce(t)

where E£e(tf) =  0, E£e(s)£'e(t) = Qe6(t — s) and Eee(0  =  0, Eee(s)ee(t) =  ReS(t — s).

The innovation representation of the above model is

xe(i +  l | i )  =  Axe(t\t -  1) +  K e(t)V'(t) ^

y(t) =  Cxe(t\t -  1) +  ve(t)

where ve(t) =  y(t ) — Cxe(t\t — 1) are the innovations generated by the model (3.78). 

and K e(t), defined by, K e(t) = [AEc{t)C  +  Se][CTjeC  +  R]~l is the Kalman gain, 

and with Ee(2 +  1) derived from,

£ e(* +  l)  =  [ A - K e(t)C\2e( t ) [ A - K e(t)C]'

+[Ke(t)-  S'R:']R'[K'(t)  -  S .iC 1]' + Q ' ~  S'R;'S'e (3.79)

with the initial value, Ee(0)*

However, the computed £ e(2) is E (xe(0  — xe(t\t — l) ) (x e(t) — xe(t\t — 1))' instead 

of the estimation error covariance E^(t)  =  E(x(f) — xe(t\t — l))(x(t) — xe(t\t — 1))' 

since the model (3.77) is different from the real one. Now, we examine the relation 

between £ e(0  and 

Defining

xe(* +  l)  =  x(* +  l ) - x c(* +  l|*)

then we have

xe(t +  1) =  Axe(t) +  £(t) -  Ke(t)(C(xe(t) +  e(t)) (3.80)
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and

+ 1) = Exe(t + l)x'e(t -f 1)

=  [ A - K e(t)C}2 l ' \ t ) [ A - K e(t)C}'

+{K'(t) -  SR~l]R[Ke(t) -  S R - 1}1 + Q -  S R ' 1 S' (3.81)

by noting that in the model (3.77) using the real y(t), xe{t) J- y(f), £e(̂ ) T ~ 

1), xe(t) JL £(t) and xe(t) _L e(t). Then we have the expression,

£,(< + 1) -  + 1) = [A -  tf„(f)Cp,(«) -  s(e)(<)p -  Ke(t)C]'

-[(Se-S)K'e(t) +

+Ke(t)[Re -  R}K't (t) + [ Q e  -  <3] (3.82)

Suppose the state and measurement disturbances £(t ) and e(t) are uncorrelated, 

i.e. 5  = 0 and Se = 0, and Qe > Q, i?e > R, then Ee(t + 1) > £ ^ ( t  + 1) if 

Ee(t) > E^el(t). Therefore, by induction, we obtain

Theorem 3.9 I f  the disturbances of a state space system are uncorrelated, and Ee(0) >  

£(e)(0), Qe > Q, Re > R, then £ e(f) > £^ (f) for any t 6 T+.

By comparing the RDE of the model (3.77) and the RDE of the real model (3.1) 

(see equation (3.81) and (3.18) ), it can be see that the difference between them is the 

Kalman gain. Using the Minimum Property ( Theorem 3.1), we can conclude that 

£ lel(t) > £(£) if £ ^ (0 ) > £(0). Combining with Theorem 3.9, we, finally, have

Corollary 2 If  the disturbance of a state space model is uncorrelated and

£ e(0) > £(0), Qe >Q, Re > R,

then we have

£.(<) > S (e)(<) > S(t)
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The theorem shows that conservative estimates of E(0), Q, R can often be made 

for a state space model in which the state and measurement disturbances are unre­

lated, although the actual values of those quantities are not generally available. In 

general, however, conservative estimates of 11(0), Q, R may not yield a conservative 

state covariance matrix unless the correlations between the disturbances is known 

exactly. This requirement is clearly unreasonable since Q, R are usually unknown^ 

initially.

3.6 A  M o d el E stim ation  P rocedure

If the model is detectable and stabilizable, the state vector will converge to a positive 

semi-definite matrix no matter what the distribution of the initial vector. In other 

words, the initial state covariance matrix would not affect the estimate of the state 

vector asymptotically. Only the values of the initial vector affect the estimate of the 

state vector.

Therefore, it is simplest to regard the initial state vector as part of the model pa­

rameters. It can be included in the unknown parameter set 0  as unknown parameters 

of the model and estimated by a maximum likelihood procedure. However, treating 

the initial state vector x(0) in this way will increase the complexity of the numerical 

optimization considerably when the dimension of the state vector is “large” and many 

unknown model parameter are also to be estimated. A more practical way is to make 

the initial state vector estimate conditional on the model parameters. In other words, 

the initial state vector x(0) is not estimated in the maximum likelihood procedure 

which estimates the model parameters only. In the last section, we have shown that 

the initial state vector and the corresponding covariance matrix can be estimated by 

fixed point smoothing with Kalman filtering. Therefore, a recursive model estimation 

procedure can be constructed as follows:

Step 1 With initial model parameter set 0 , and estimated initial state vector i(0) 

and the over-estimated variance matrix E(0), some partial information on the
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initial state vector can be provided. Otherwise, £(0) = 0 with a diffuse initial 

distribution for £(0) can be used.

Step 2 The first part of the exact likelihood function of the state space model (3.1) 

is (see equation (3.13))

-^log27T -  ^ ^ [ l ° g |E w(t)| + u#(t)E”1(t)v(t)] (3.83)

where v(£) is generated by the innovation representation (see equation (3.14)) 

of the state space model 3.1. Thus, the Kalman filter is employed to estimate 

the unknown model parameter set 0 . The initial state vector x(0) and its 

covariance matrix E(0) are estimated by the fixed point smoothing procedure 

described in §3.4.1.

S tep 3 After the model parameter set 0  is estimated, the old initial state vector i(0) 

and its variance E(0) are updated by smoothed estimation. If the estimated 

model parameter set 0  differs considerably from the last estimation, then 0  

serves as the updated estimate of 0  and return to Step 2; if the estimated model 

parameter set 0  is not much different from the last estimation, the recursive 

procedure ceases.

The estimated 0  is the maximum likelihood estimation of 0  under the smoothed 

initial state conditions.

The application of this recursive model estimation procedure will be presented in 

chapter 7 where the recursive model estimation procedure is shown to be superior 

to the simple maximum likelihood estimation because the more precise initial vector 

estimate accelerates the convergence of the parameter estimates and produces more 

accuracy in the estimates.



C hapter 4

Profiles o f E lectricity Load

4.1 In tro d u ctio n

This chapter is a part of the study of the New Zealand half-hourly electricity con­

sumption data from April 1st, 1983 to March 31st, 1984. The level shift and other 

changing characteristics studied in this chapter arose when we studied a forecasting 

procedure for half-hourly electricity consumption developed by Moutter et al. (1986a) 

and Moutter et al. (1986b) and Bodger et al. (1987). Their procedures using frequency 

domain models are an important attempt to deal with periodical time series data. 

Unfortunately, the procedures may not provide good forecasts because of some as­

sumptions used to simplify their model, which lead to a restriction on the Papoulis 

algorithm (Papoulis (1975)). Their procedures were used to forecast weekday data, 

under the assumption that weekend days’ load is similar in daily profile to weekdays’ 

but with a lower level. Our study shows that weekdays’ and weekend days’ load 

produce very different profiles as well as different levels.

We assume that the load comprises trend, periodic, and innovation components 

in an additive form. For the integrity of the modelling procedure, the models for 

the unobserved trend component and the periodic component are developed in this 

chapter. The stationary innovation component will be modelled by a subset AR 

modelling procedure developed in chapter 2. The trend component is described by an 

“error correction” cointegrating regression model; the periodic component described

90
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by a periodically stationary model and the weekly periodic cycle is handled by the 

evolution between weekdays and weekend days which is captured by a transition 

function. Applications of the models developed in this chapter, and comparison with 

other models will be presented in Chapter 5.

4.1.1 D ata

The New Zealand total electricity demand data recorded at 30-minute intervals from 

1st April, 1983 to 31st March, 1984 (17,520 readings) is made available by Bodger 

et al. (1987) to enable the methods proposed to be tested on this data. The pattern 

of the data shows strong daily and weekly sinusoidical characteristics. A segment 

of two weeks of the data from Monday 11th June 1983 to Monday 24th June has 

been selected randomly and shows the pattern given in Figure 4.1. With very slowly 

changing working arrangements and human behaviour, an assumption can be made 

that the load pattern is similar week to week except for the effects of weather, holidays, 

and special events which have great influence upon electricity demands. From Figure 

4.1, it can also be seen that the load curve for weekdays (Monday - Friday) is similar 

with almost identical characteristics. The pattern for weekend days is similar for 

Saturday and Sunday but is different from the weekday profile.

4.1.2 M outter’s M odel

A simple model was developed by Moutter et al. (1986b) for the short-term New 

Zealand electricity consumption data. Because the load pattern for each new day 

follows an “almost” identical pattern to those preceding it, Moutter et al. (1986b) 

make an assumption that all spectral components must be harmonically related to the 

fundamental frequency component which corresponds to the daily cycle and phases 

of the spectral components are “identical” at the beginning of each day. Based on the 

above assumption, Moutter’s model is established using harmonic frequency analysis. 

The fast Fourier transform (FFT) technique is employed in this procedure to deter­

mine the fundamental frequency component and its significant harmonic frequencies.
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Two Week Half-Hourly Load Data

oo

time (half-hour)

Figure 4.1: New Zealand Half-hourly Electricity Demands from 11/07/83 to 24/07/83

An empirical preparatory stage referred to as Moutter’s Super-resolution Algorithm 

is used to find the most relevant frequencies and to increase the convergence speed 

of the Papoulis algorithm (Papoulis and Chamzas (1979)). A leakage re-introduction 

technique was used empirically to reduce errors which occur in spectral identification. 

Finally, the original Papoulis algorithm is applied to the selected spectral components 

to allow extrapolation from the sample data. Bodger et al. (1987) use the same idea 

with a mixed radix fast Fourier transform to avoid the FFT array size restriction 

and then reduce spectral leakage. For the different load pattern characteristics of 

weekdays and weekend days, Moutter et al. (1986b) and Bodger et al. (1987) be­

lieve that the main difference between them is only a level shift, and neglected any 

other differences. For this reason, the forecasting may be much less satisfactory when 

sample data ends with the last of the weekdays, Friday or the data ends with Sunday.

1A FFT calculates the frequency spectrum of a discrete data set at frequency r  t /2 _

m is an integer and N is the sample size.
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4.2 M odel Building

From the following rough analysis2 we find that the data shown in Figure 4.1 has 

three main characteristics:

1. The data is strongly oscillatory with a daily period (48 points) and a weekly 

period (336 points), which reflect the daily electricity consumption behavior, 

and working and resting day patterns, respectively. In addition, the daily elec­

tricity consumption characteristics of weekdays and weekend days are different, 

i.e. the profiles of the load in weekdays and in weekend day’s are different, 

though the weekdays’ profiles appear “almost” identical one to another. If the 

profiles of the weekday’s load and the weekend days’ load are similar in shape, 

then it is expected that the magnitude ratios of each harmonic component to 

the fundamental frequency component, and the phases of the corresponding 

frequencies would be close in values for weekdays and weekend days. Table 

4.1 shows the magnitude ratios of the five harmonic components to the daily 

fundamental frequency component and the phases of the harmonic components 

for weekdays’ and weekend days’ from the data obtained by removing their cor­

responding daily sample means. The obvious differences indicate that the load 

profiles of weekdays’ and weekend days’ are not similar in shape.

2. The daily mean level electricity consumption of weekdays is higher than that of 

the following weekend days. To illustrate this, Table 4.2 shows the sample daily 

means from Monday 11th June 1983 to Sunday 24th June 1983 and the Mest 

statistics. The t statistics show that there are no significant difference between 

weekdays’ level and weekend days level. However, the levels of weekdays’ and 

weekend days’ are significantly different. The above characteristics of weekdays’ 

and weekend days’ data suggest that harmonic analysis in the frequency domain

2The main differences between the weekdays and weekend days lie on the daily profiles and 
daily levels of the load. The comprehensive tests are very complicated. The differences shown here 
are based on intuition because our interest is of modelling the load instead of testing the explicit 
differences between weekdays’ and weekends’ load.
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Order 0 1st 2ed 3rd 4th 5th
Frequency 0.1309 0.2618 0.3927 0.5236 0.6545 0.7854

Period(Hour) 24 12 8 6 4.8 4
Weekdays 1.0 0.6115 0.1295 0.1134 0.1333 -

Weekends 1.0 0.5656 0.2432 - 0.1018 0.0388
Phase(Deg) Weekdays -139.48 157.02 52.86 147.45 -131.63 -

Weekends -125.54 -87.52 149.95 - -156.13 113.93

Table 4.1: Comparison of the Five Largest Daily Harmonic Spectral Components of 
Two Weeks D ata

aP{hj )  — C(i , j ) /C(i ,  0) i =  1,2, j  =  0,1,2, ...5 where C( l , j )  =  the magnitude of the jth  
harmonic component for the weekdays data. C(2, j )  = the magnitude of the jth  harmonic component 
for weekend days.

Mon. Tue. Wed. Thu. Fri. Sat. Sun.
Mon.
Tue.
Wed.
Thu.
Fri.
Sat.
Sun.

10./6 (-3.41)
10.23 (0.67)

10.27 (0.22)
10.27 (0.38)

10.24 (3.13)
10.14 (1.48)

(2.51) 10.07

Table 4.2: Comparison of the Daily Sample Means Over Two Weeks

aA(i, i)  are sample means of *th day of a week. A(i, i +  1) are t statistics between z'th and 
i -f- 1th days. Under hypotheses: Hq: Daily Mean of ith day = Daily Mean of i +  1th day where 
* =  1 ,2 ,.- .,7 .

may be more effective if the weekday’ and the weekend days’ data are treated 

separately3.

3. It can be seen th a t the Fridays’ and the Mondays’ daily sample mean consump­

tion levels are between their adjacent daily sample mean consumption levels. 

From this point of view, Fridays and Mondays can be regarded as transition 

periods from weekdays’ characteristics to weekend days’ or in reverse.

3In general, to treat weekdays and weekend days separately would lose some information on the 
relation between weekdays’ load and weekend days’. However, it can overcome the difficulty that 
there are too many frequency components, which are harmonics of the weekly frequency to deal with. 
The separate treatment will now focus on the daily frequency as the fundamental frequency because 
neither weekend days nor the weekdays produce strong two-day and five-day periodical patterns.
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To capture all the specific characteristics, we propose that a one week period can 

be divided into 4 intervals:

Tm = {tf I Monday}

Twd = {£ I Tuesday ~  Thursday}

Tf = {<|Friday}

Twe = {£| Saturday ~  Sunday}

and define the following variables,

• Xi(£) is weekdays’ electricity consumption, where t E Twd.

• X 2 (t) is weekend days’ electricity consumption, where t E Twe.

A model can then be established as follows:

(1 — +  £m(0 if t £ Tm
Xi(t) if t E Twcl

f2{t)Xi(tW(j) + (1 — f2{t))X2(twe) + €f(t) if t E Tf

*2 (t) if t E Twe

(4.1)

where mod(tf,48) = m o d ^ ^ S )  = mod(tu;e,48), fi(t) and f 2{t) are positive func­

tion ranging from 0 to 1. They allow us to describe the transition characteristics of 

the electricity demands for Mondays and Fridays, respectively. The tm(t) and tf(t) 

are disturbance terms when t E Tm and T/, respectively.

According to the above analysis, the weight functions fi(t) and / 2(£) play a crucial 

role in the model (4.1). The estimation of the weight functions and the overall 

forecasting of electricity demands will be discussed in later sections.

Firstly, we specify that the half-hourly load, X(t),  consists of three components, 

namely, trend trend') •> periodic component (Apgrj0(̂ ), and an innovation term [X innovation) 

in an additive form, i.e.

Xi^t) — X t r e n d ^ )  “1“ -A p e rto titc (f) 4“ Xinnovation (j') (4.2)
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Based on the linking model (4.1) and the additive model (4.2) for the weekdays 

and weekend days load, a modelling and forecasting scheme is established using the 

following steps;

1. Model and Estimate the Trend and then Detrend

2. Model and Estimate the Periodic Pattern for Weekdays and Weekend Days 

Separately

3. Model and Estimate the Transition between Weekdays and Weekend Days

4. Model and Estimate the Innovation Series

5. Forecast the Overall Load

4.3 Trend and Detrend

The most important feature of the New Zealand electricity “short term” data is the 

dominant daily and weekly periodic pattern. The annual growth trend and annual 

seasonal pattern are not easily visible if only a few weeks data are observed. However, 

the annual growth trend and annual seasonal pattern can have a significant effect on 

forecasting a few days or a few weeks ahead. Figure 4.2 shows the New Zealand 

weekly electricity demand from 1972 to 1983. It is obvious that the weekly load 

increases substantially from summer to winter, decreases similarly from winter to 

summer, which forms an annual seasonal pattern. It is not necessary to employ 

sample data arising from several years of short term data recorded half-hourly, in 

which trend and annual seasonal patterns may be visible and can be estimated, when 

our major purpose at this point is forecasting only a few days ahead and illustrating 

our ability to capture the changing daily profile. Hence, we have established an “error 

correction” model for the trend component which develops the short-run trend for 

the half-hourly data from weekly data.
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11 Year Weekly Load Data

0 100 200 300 400 500 600

time (week)

Figure 4.2: The New Zealand Weekly Electricity Demand from 1972 to 1983

In this section, an artificial trend for the half-hourly data is modelled with as­

sistance from the weekly data and associated model characteristics. Therefore, this 

trend can be predicted and extracted from the raw data to form detrended data.

It is obvious that weekly data will have a marked annual seasonal pattern, i.e. 

the weekly data are periodical time series Pagano (1978) with period 52 ( a year is 

approximately 52 weeks) after the natural growth trend is extracted. If we suppose the 

annual growth trend is exponential, it becomes linear after logarithmic transformation 

and it is expected that the weekly load, W(t), is integrated at both 0 and annual 

seasonal frequencies, where r  is a time index on a weekly scale.

The idea of cointegration, its implications, test procedures and applications can 

be found in Granger (1986), Engle and Granger (1987), Engle et al. (1989). They 

show the one-to-one relationship between error-correction mechanism (ECM) and 

cointegration and present an easy method for estimating such relationships and testing 

for cointegration, now known as the Granger and Engle Two-Step Method. By using
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their definition of integration and cointegration and their notation, the weekly load 

data can be expressed as W( t ) ~  SI(do^, <4^).

On the other hand, for the half-hourly sample data set (X(£)}, we suppose that 

the periodic component {Xperi0dic(t)} (see equation (4.2) ) includes only those periodic 

components whose frequencies are equal to or higher than the frequency corresponding 

to a weekly period and the trend component ls expected to be a smooth

and slowly changing process. In addition, because the annual seasonal frequency is 

27t/(52x 7x48) «  0 on the half-hourly scale, the short-term {Xfremf(2)}> therefore, 

includes the annual variation (annual growth trend and 52 weeks annual seasonal) 

and has an unknown integration order d̂ X  ̂ at the origin. In other words, the variation 

from annual scale embeds in the “trend” of half-hourly scale.

Since W{ t ) is formed by aggregation of X ( t ) over a one week period, the trend 

of the half-hourly data can be regarded approximately as the variation from W{r)  

although W(r)  is observed weekly. If we define w(t) = W( t ) when 336 x (r — 1) < 

t < 336 x r , (i.e. the series w(t) is created by setting it to the value of W(r)  for 

every time t in each week indexed by r) and then possibly take some moving average 

smoothing, it is obvious then that W{r)  is a long term variable for the half-hourly 

load {X(f)}, and X trend(t) and w(t) are cointegrated even though we do not know the 

exact integration orders, do^\  <4^ f°r W’(r) and cLqX  ̂ for the trend of half hourly 

data. In other words, there exists a linear combination

z(t) = X trend(t) -  aw(t) ~  1(0) (4.3)

We use the notation W( t ) to apply to weekly data, W(t)  refer to w(t) and assume 

available sample data from 1 to T  in the following sections.
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4.3.1 A M odified Cointegration “Error Correction” M odel

If the data process Y(t) ~  1(d), d > 1 is cointegrated with another data series W(t)  

and is assumed to be generated4 by the following long-run model

Y(t) = c0 + c1W(t) + r](t) (4.4)

and the short-run model

AY( t )  = b0 + b'1V(t) + ((t) (4.5)

where W(t)  are long term explanatory variables; V(t) are explanatory variables for 

AY(t); T](t) and £(t) are 1(0), i.e. the disturbance terms of the long-run model (4.4), 

rj(t) and the short-run model (4.5), £(t), are stationary series possibly with complex 

structures. Engle et al. (1989) contended that the data generation process of Y(t)  

can be represented by a complete “error-correction” model of the form

AK(*) = S +  r z(t -  1) + ß'V(t) + e(t) (4.6)

where z{t) = Y(t) — Co — c \W (<) ~  1(0) from the long-run model (4.4) is an ECM 

term and e(t) is a white noise disturbance with zero mean and constant variance.

The main difference between the short-run model and the complete “error-correction” 

model is that the latter model includes an error correction term z(t — 1). This term 

corrects the coefficients of the short-run variables V(t) and the constant term.

The complete cointegrating model (4.6), however, is usually not available in prac­

tice for prediction purposes because the long-run variable W(t) is unknown beyond the 

sample. There are two approaches allowing us to approximate the complete model.

We call the first approach the naive approximation which replaces W ( T +z) outside 

the sample by its forecast W(T  + i) in the long-run model (4.4) if the exact model 

for W(t)  is known. A problem associated with the naive approximation is that the 

exact model for W(t)  is, in practice, most unlikely to be known or at least there are 

several contending models for W(t). If the model for W(t) is not known completely

4In order to avoid too cumbersome notation, we did not introduce a separate notation for the 
theoretical coefficients and their estimates.
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and an assumed model, A4, is regarded as the “true” model, the multi-step ahead 

prediction f j h o iY {T  + h) from that model will be

fr,h=  / t,/. +  rci E  e(T + « ) £ V  (4.7)
t=l j=1

where f \ h is the prediction made by the true model, and e(T + i) is the error made 

by using an assumed model, Ad, for W (T  + t).

It can be seen that the naive approximation is very sensitive to the quality of 

the assumed model A4. The prediction errors are accumulated in rci J2i=i e(T + 

These errors are caused by the inconsistency of using observed W(t) 

within the sample and predicted W (T + i) beyond the sample.

The second approach to approximation of the full model was suggested by Engle 

et al. (1989) as follows

Ay(t) = 6 + rz(t  -  1) + ß'V(t) + e(t) (4.8)

where z(t) = y(t) — / t5l 11 is the error from the estimated long-run model and t 

is the forecast of y(t) made at (t — 1) from the long-run model, i.e.

= Co + f t—i,i (4.9)

where j is the one step ahead prediction made at (t — 1) from the assumed model, 

A4.

Once j is obtained from the assumed model, A4, ltl can be obtained from 

the approximate long-run model (4.9) and so we can also obtain z(t). The one step 

ahead post sample prediction for y(T + 1) is = y(T) + 6 + r(y(T) — f j _ x j) + 

ß'}t ,\{T, 1). It also can be iterated out to form medium and long term forecasts which 

would be essentially the same as those obtained from (4.6) by replacing everything 

by its forecast

fr,h =  fr,h-i +  ̂+ r (/r,/i-i “  fr,h-i) + ß'fr.h (4-10)

This approximate full model does not require the exact model for (VEftf)} and 

avoids the accumulated error problem because it consistently uses z(t) and z{T + h)
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generated from the long-term model by the estimated W(t)  and W( T  +  h) from the 

assumed model, M .  Now, the approximate full model (4.8) is arisen from model (4.6) 

where W(t)  is replaced by W(t).  Therefore, an additional term, W(t)  — W(i )  may 

should be introduced into (4.8) as an ECM term. To clarify the above question, we 

do the following analysis.

D efin ition:

III'  -  P h W >1 =  E |Y  -  P H m > r  =  m inE |K  -  |2 (4.11)

where H (X ) is a linear space spanned by X , P h (X)E is a projection of Y  on H (A ) 

with properties

• Y  = P H(*)y  +  Z, Z  1  H( X)  or cov(Z ,H(X))  = 0.

• If Xi  J_ X 2, P h (Xiux2)^  =  =  P h (Xi ,x2)k -

Therefore the long-, short-run and complete model can be re-written as

Y  =  P h (W)E +  Tj long-run model (4.12)

A E  =  P n(V )A y +  £ short-run model (4.13)

A K  =  P h (VuZ)A ^ +  e complete model (4.14)

T h eorem  4.1 Suppose we have Y , W , and V with sample t = l,--*,Ty* the model 

M. is an approximate model for {VE(t)}; W(t)  is estimation o f W( t )  made from the 

model M. in the sample; the residual e(t) =  W(t)  — W(t )  is stationary series, i.e. 

e ~  1(0), Z = Y  — P h (W)^ ~  1(0) Z — Y  — P h (vv)^  ~  1(0). Then, within sample, 

there are the following relations,

IIAJ" -  PH(Vu2u.)A51| = l|AK -  PH(VuZu.)AF||

< ||AK -  PHfV'uziAKH < ||A y -  P H(Vu2)AV|| (4.15)

and if e(t) is white noise,

IIAy -  p H(vuz)Ay|i = iiAy -  p H(vuz)A y ll
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For post sample, Z is not available and is replaced by Z . There are the following 

relations,

l ia r  -  P , H(vuZ)A>1 < IIAK -  P0 H(VUZ)AK|| (4.16)

where P 0 H(VuZ) =  (<So,7~0, ßo) and P 1 h (VuZ) =  {£>i,rh ß i )  are the estimated coeffi­

cients from the complete model by using z{t  — 1) and z(t — 1), respectively.

Similarly,

llA y  -  P l  H,VuZUe,A > l  <  IIAV -  P 'o H(VuZUe,A il  (4-17)

where P q H(VuZue) and PJ H(VuZue) are estimated coefficients from 

IIA Y  — P H(VuZue)  A y  || by using z(t — 1) and z(t — 1) in the place of Z , respectively. 

Consequently,

\\& Y -P \ H(VuZue)A^H < IIAP-P, H(VUZ)A ÎI < l|A K -P0 H(VUZ)A^II(4.18) 

Proof:

We first prove relation (4.15). Because Z =  Z  -f e* and Z J_ e* where e* =  PH(e) l ’, 

H (V  U Z) =  H (VUZ)  U H(e* -  VOem) and H(VrUZ)±H(e* -  VC\e% then

| | A y - P H(vuz)AK||

=  IIA Y  — P H ( V u Z ) ~  P H(e--V ne*)A r||

= 11 A y  -  p H(vuz)Ay|| + ||PH(e*-Vne.)Ay||

— 2E [A y —  P  j j ( v ru z )  A^] [PH(e*—vne*) A y]

and since

E [A y  -  P h (vuz) A y ][P H(c*—vne*)Ay]

=  E [A y ][p H(e--vne-)A y]

=  E [(A y  — P  H(e* —Vne*) A y ) +  PH(e*-Vne*)Ay][PH(e*-Vne*)Ay]

=  E [ P H(e*-Vne* ) A y ] 2 

=  | |P H (e '-V n e* )A y | |
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therefore,

| |A y - P H ( v u z ) A r | |

= ||AV -  P H(vuz)A y ll -  l|PH(e-—v'ne-iAVII

< ||A y -  p H(vuz)a p |I <4-19)

Because e* =  P n (e )^  Q H (e), H (Z) = H(ZUe*) C H(ZUe) =  H(ZUe) and we 

obtain

II AT — -PH(VuZUe)̂  ̂ II = l|AT — PH(VuZUe)AT||

< | | A y - P H(vuz)A F|| < IIAy -  P H(Vuz)AyrH

If e is white noise, then P h ^ ^  =  0, i.e. e* =  0. Therefore, from relation (4.19), 

we have

IIAK -  P h(vuz)AF|| = ||AV -  P H(vuz)A y ll 

Now, for post sample, we have

llAy -  P ,  H(vuz)A y|| =  ||AV -  «, -  n*(t - 1 )  -  ß 'v m  
=  min E |A P  -  S -  rz (f -  1) -  ß'V{t)\2 <  E |A  Y  - S o -  r 0z(f -  1) -  ßo'V(t)\2

(6,1-,/?)

=  | | A y - p oH(Vu2)A y || (4.20)

W ith the similar argument, we can also obtain,

llAy -  p ; H(vuzue)̂ Pll < ilA y  -  p ; H(vu*)A y ii (4-2i)

Because of ||A y  -  P ;  H(vuzue)A r ll ^  llA y  “  P i H(VuZ)A y ll> we establish, 

l |A y  -  P j  H(VuZue)A y II — HA y  — P i H(VuZ)A y ll -  llA y  _  Po H(VuZ)A  ̂ II

□

R em arks:

The sufficient condition for e* =  0 is that {e(t)} is a white noise. Under this condi­

tion, from the above theorem, we obain || AY' -  P h(VuZ)AT|| =  | | A y - P H(Vu^ A T ||.
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This implies that there are no differences between the naive model and Engle’s model 

and there is no reason to include the error term e in the complete model if the model 

A4 is an adequate model for the long term variable W . However, the adequacy of 

an approximate model often fails because of parsimony. Some trade-offs occur when 

using AIC or other information criteria to select a proper model and e is often a 

stationary series but may not necessarily be white noise.

The above theorem also shows that the post sample prediction from Engle’s ap­

proximate full model (4.8) is better than that from the naive approximate full model 

if the model A4 is not well enough specified to ensure {e(f)} is pure white noise even 

though the naive model has better fit within sample. Furthermore a better model 

(see relation (4.15)) can be obtained from,

Ay(t) = 6i +  riz(t  -  1) +  ß[V(t) +  pie(t -  1) +  771 ( 0  (4-22)

or

Ay(t) =  62 +  7*2z(t — 1) +  ß'2Y{t) +  P2^(t — 1) +  772(f) (4.23)

Within the sample data set, the above two modified complete models are equiva­

lent. The prediction error, {e(T +  /i)}, of the assumed model for {W{T +  h)} will be 

unknown for post sample and assumed zero. Although the modified complete model 

(4.22) has the same form as the naive full model (4.6) for post sample prediction, 

the estimated parameters £ 1 , 7*1, ß\ are influenced by the inclusion of {e(t — 1)}. 

Therefore, the pure effects of z ( t -  1) and V(t) on A y(t) can be best estimated by the 

modified model. However, from relation (4.18), we know that model (4.22) would be 

worse than model (4.23) in post sample prediction. The reason is that model (4.22) 

still suffers from the accumulated errors as does the naive full model if z(T -f h) is 

constructed by using predicted W ( T + h -  1) from the assumed model for post sample 

points while model (4.23) does not.

The modified complete model (4.23) not only has the same fitting performance 

within sample as the modified complete model (4.22) but also, more importantly, 

avoids the accumulated errors for post sample forecasts as does Engle’s approximate
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full model since it consistently uses z(t — 1) within sample and z(T + h — 1) outside the 

sample as an “error correction” term. Therefore, we conclude that the error term e 

should be included in the complete error-correction model if (e(t)} is stationary but 

not necessarily white noise and the following modified long- and short-run merged 

model is superior to both the naive full model and the modified complete model 

(4.22), and will be better than Engle’s approximate full model too (or at least will be 

no worse).

W(t)  =  W(t)  4- e(t) model A4

y(t) =  co +  d W ( t )  +  Tilt) long-run model
< (4.24)

A y(t) =  &o +  K V (0  +  C(t) short-run model

A y(t) = 6 -f r z(t — 1) +  ß'Vit ) -f pe(t — 1) +  t(t) complete model

where W{t)  is one step ahead prediction made at t — 1 from an assumed model, 

A4, for W{t)\ e(t) =  W(t) — W(t)  ~  1(0) is the long term variable prediction error; 

z(t) =  y{t) -  co -  CiW(t) ~  1(0).

This model is identical to Engle’s approximate full model (4.8), and collapses to 

the naive full model (4.6) if the model, A4, for the long-run variable W (t ) is sufficiently 

well specified to ensure that the innovation series {e(^)} is white noise. Therefore, 

this modified complete cointegration “error correction” model (4.23) is a more general 

model and (4.24) will be referred as the proposed model and will be employed here.

4.3.2 An A rtificial Trend from the Half-hourly D ata

The real problem being considered here is that {A <re„d(t)} is an unobservable trend 

component and the approximation of the complete “error correction” model (4.24) 

cannot be used directly to model the trend component. An approximation is made 

by assuming that the “weekly adjusted” series

X(t )  =  ( \ + B  + - - -B^-V)X(t )  (4.25)

is an approximation to X treTld{t) where s =  336 (one week for half hourly data).
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The long-term explanatory variable, W(t), in the long-run model (4.4) is the 

weekly load level. A reasonably simple model can be used to fit W (t ) since the 

inadequate error of the model can be partially corrected in the final “error correction” 

model (4.24). We used the “Airline model” ARIMA(0,1,1)x(0 ,1,1)52 although the 

model may not be strictly adequate for any particular segment of the data set. The 

proposed complete “error correction” model would be

AX(t)  =  (1 -  B s)X{t) = 6 + rz{t -  1) + ß'V(t) + pe{t -  1) + e(t) (4.26)

where z(t) =  X(t)  -  Cq -  Cl W{t), e(t) = W(t) -  W(t).

Since there are no short term explanatory variables (e.g. weather variables5) 

available, V(t) is assigned to be the unit vector when the trend is believed or assumed 

to be locally linear. The final modified “error correction” model would be

(1 -  B s)X (t ) = 6* -1- rz(t — 1) + pe(t -  1) + e(t) (4.27)

where 6* = 6 -f  /?, and the trend model

X trcnd(i) = X trend{t -  1) +  S* + rz(t -  1) + pe(t -  1) + e(t) (4.28)

Consequently, the one step ahead post sample prediction for X trend(T + 1) will be

Xtrend{T + 1) = X tTend(T) + 8* + r(Xtrend(T) — fT - 1 ,1 ) A pz{T) (4.29)

and the term e(T -f /i), (h > 1) will be zero for multiple step ahead predictions and 

post sample predictions can be obtained iteratively by

fr,h = ftji-1 +  + r ( / ^ _ 1 — fx^h-i) (4.30)

where f $ h = f $ h -  Co -  cxf f ’h.

Although the long-run part of the proposed model may not fit the trend as well 

as the long-run model for the naive approach, it retains the one step ahead predic­

tion error from the assumed model for {W(t)}, A4, in {£(£)}, which provides more

5The relationship between load and temperature is non-linear and time dependent. This topic 
will be discussed in chapter 6. A non-linear transformation is needed to transfer temperature into 
another variable which is linearly related to the load and serves as a explanatory variable.
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information for the post sample prediction, This part can then be corrected in the 

modified complete model (4.29) by influencing the coefficients of the short-run ex­

planatory variables.

The three “error correction” models are applied to half-hourly data for a period 

randomly chosen, i.e. April 24, 1983 to July 2, 1983, to illustrate the differences 

between the three cointegration “error correction” models. The data formed by using 

the weekly adjustment operation (4.25) are assumed to be the “trend” component 

since our task is to model the unobserved trend component.

The results from the naive model, Engle’s model and our proposed model are listed 

in Table 4.3 and Table 4.4. For the long run model, we see that the naive model fits 

better than does Engle’s or our proposed model since it uses the real long-term data 

VT(t) while Engle’s and the proposed model use the one step predicted values W(t)  

from the assumed long-term model. For the complete model, by comparing the R2 

values of the three complete models in Table 4.3 and 4.4, we can see that the proposed 

model fits best followed by Engle’s model. The proposed model employs more short- 

run information from its long-run model than does the other two models. The worst 

performance is the naive model because its complete model does not include possible 

short-run information contained in the error term (e(t)}. This result is consistent 

with the conclusion of Theorem 4.1. From the t statistic value for p in Table 4.4, it 

is also confirmed that the one step prediction error of the long-term model of W{t) 

does play a significant role in the complete “error correction” model.

The first plot in Figure 4.3 shows the estimated trend components from the mod­

ified model (M.C.trend) and the Engle’s model (E.C.trend) over the naive model 

(N.C.trend) for within sample data when the assumed “trend” (Trend) is formed by 

the weekly adjusting operation (4.25). Since the short-run model for trend includes 

time only and there are no other explanatory and reference variables available, the 

trend prediction post sample is a linear function of time for a weekly interval. The 

second plot of Figure 4.3 presents the post sample prediction performance of the dif­

ferent models after the vertical line. The dot curve (legend W.trend) is obtained from
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coef. value std.err. t.s ta t. p.value
Naive Long Run Model

Residual Standard Error =  0.0141, Multiple R-Square =  0.9502 
N =  3024,F-statistic — 57655.4 on 1 and 3022 df, p-value =  0 
co -9.3151 0.0817 -114.0838 0
et 0.9798 0.0041 240.1154_______________ 0__________

Naive Complete Model
Residual Standard Error =  le-04, Multiple R-Square =  0.8527 

N =  3022, F-statistic =  17478.47 on 1 and 3020 df, p-value =  0 
~ s  0.0001 0.0000 35.9350 Ö

r 0,9520 0.0072 132.2062_______________ 0__________

Table 4.3: The Naive Cointegrating ‘Error Correction’ Model

coef. value std.err. t.s ta t. p. value
Long Run Model

Residual Standard Error =  0.0305, Multiple R-Square =  0.7674 
N =  3024, F-statistic =  9972.934 on 1 and 3022 df, p-value =  0 

co -11.3460 0.2167 -52.3677 0
C! 1.0811 0.0108 99.8646______________ 0___________

Engle’s Complete Model
Residual Standard Error =  le-04, Multiple R-Square =  0.8696 

N =  3022, F-statistic =  20140.89 on 1 and 3020 df, p-value =  0 
6 0.0000 0.0000 27.2571 0
r  0.8912 0.0063 141.9186_____________ 0___________

Proposed Complete Model
Residual Standard Error =  le-04, Multiple R-Square =  0.8923 

N =  3022, F-statistic =  12512.63 on 2 and 3019 df, p-value =  0 
~S  0.0001 0.0000 35.1390 Ö

r  0.9495 0.0062 154.2384 0
p -0.4282 0.0170 -25.2538 0

Table 4.4: Comparison Between Engle’s & the Proposed Cointegration Models
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ia W .trend N.C.trend E.C.trend M.C. trend
1 1.717E-05 9.784E-06 1.340E-05 3.916E-06*6
2 3.486E-05 1.592E-05 5.845E-06 1.520E-06*
3 1.462E-04 9.224E-05 4.760E-05 2.123E-05*
4 5.098E-04 3.814E-04 2.472E-04 1.559E-04*
5 8.884E-04 6.867E-04 4.549E-04 2.954E-04*
6 8.040E-04 5.862E-04 3.348E-04 1.774E-04*
7 3.129E-04 1.738E-04 4.996E-05 2.315E-05*
8 6.476E-05 1.655E-05* 5.176E-05 1.757E-04
9 4.193E-05* 2.109E-04 4.492E-04 7.767E-04
10 1.609E-04* 5.460E-04 8.827E-04 1.342E-03
11 2.922E-04* 9.057E-04 1.295E-03 1.859E-03
12 3.998E-04* 1.245E-03 1.657E-03 2.306E-03
13 4.885E-04* 1.573E-03 1.990E-03 2.717E-03
14 3.647E-04* 1.510E-03 1.879E-03 2.606E-03

Table 4.5: The Comparison of Post Sample Predictions in the Different Models 

ai = the number of days ahead.
b* indicates the smallest MSE among the four differet models.

the long-run model in which long-term weekly data and its post sample prediction are 

included, i.e. regressing Y{t) on the long-term variable W(t)6 and there is no ECM 

included.

Engle’s model improves short-term prediction over the naive model and the pro­

posed model further improves short-term prediction over the Engle’s model. There­

fore, the accuracy of short-term  post sample trend prediction can be compared in the 

proposed model, the Engle’s model, the naive model and the naive long run model. 

On the other hand, the accuracy of the long-term post sample trend prediction moves 

in the opposite direction. We use MSE as measure of the post sample prediction accu­

racy properties of the different models. The MSE of the different models over a daily 

period for 14 days are presented in Table 4.5. We can see clearly tha t the proposed 

model has the best short term  prediction performance. Therefore, it will be employed 

since our interest is in the short-term  trend behaviour. In chapter 5, we will present 

the overall post sample prediction of the proposed model and comparisons with other

6W(<) is estimated and predicted by using the assumed model, M ,  on the weekly data, generating 
a set of step functions with values at every half-hourly t in the corresponding weeks and then taking 
a weekly moving average.
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Fitting of Cointegration ‘Error Correction’ Models

Trend 
N.C.trend 
E.C.trend 
M.C. trend

Post Sample Prediction of Cointegration ‘Error Correction’ Models

Trend 
W. trend 
N.C.trend 
ELC.Trend 
M.C. trend

Figure 4.3: The Performance of Cointegration “Error Correction” Models
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models.

The approximate detrended data, Y(t),  in the sample are obtained by forming

Y(t)  =  X(t)  -  X trend(t) (4.31)

and assuming that there is no trend presented in (y(t)} and the post sample forecast 

of X tr e n d { T  +  K)  can be made by (4.30).

4.4  A  B asic  M od el for P eriod ical T im e Series

Given a time series {Y(t);t  = 0,1,2,3,•••} whose first and second order moments 

exist though they are not necessarily constant. We define its mean as

m(t) = E Y(t) (4-32)

and its autocovariance as

R(s, t) = E(F(s) -  m(s))(y(<) -  m(t)) (4.33)

Such a time series with the above properties is a non-stationary time series. A 

periodically stationary time series is defined below:

Definition:

The time series {y(t)} is defined as periodically stationary of period d, if for a positive 

integer d and for all integers, s, £, the following conditions are satisfied

m(t) =  m(t  -f p), jR ( s , t) = R(s +  p,t  +  p) (4.34)

The basic approach to modelling the periodical time series Y(t) with period d, t = 

1,2,3, • * • is to decompose the value Y(t) into the sum of two components as follows:

y (t) =  yw (<) +  r (o)(<) (4.35)

where Y(e)(t) is the explained or predictable part of Y(t),  and y(u)(0 is the error or 

unexplained, or unpredictable part of Y(t).
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Y(t) Whitening Filter J'wfO

Figure 4.4: Pre-Whitening Filter 

It is assumed that Y(t) is a normal process. We define

Yic)(t) =  E [r(t)|V (f -  1), Y(t  -  2), ■ • •] (4.36)

Hence, Vje)(t) is a linear combination of Y(t  — 1), Y(t — 2), •••.

YM (t) = Y(t) -  E [K (t)|y(t -  1), Y(t  -  2), • • ■] (4.37)

oo

*00 W = -  t), a(0) = 1 (4.38)
t= 0

Y(u)(t) is called the innovation series, which is an independent zero-mean random 

variable and its variance is denoted:

A t )  = E[|yw (t)|2] (4.39)

To find T(e)M or V(u)(£) is an equivalent problem. The problem of modelling Y(t)  

includes finding a pre-whitening filter showed in Figure 4.4 which transforms Y(t) to

Y(u)(t).

A general model for a time series Y(t) is that there is a deterministic curve m(t) 

representing mean values about which Y(t) is fluctuating with variance cr2(t) that 

may be time-varying. The following model can be assumed:

Y(t) = m(t) + cr(t)Z(t) (4.40)
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where, m(t) is the periodical mean value function which period d, m(t) = E[Y(£)], 

a2(t) is the periodical variance function, <j 2(/) = var[y(2)], and Z(t) is the fluctuation 

function,

Y(t) — m(t) 
a{t)

Therefore, the pre-whitening filter is designed to remove the periodical mean m(t) 

and variance cr2(t) from Y(t)  and generate the innovation series Z(t).

To model the fluctuation function Z(t), we assume that it is normally distributed 

with zero mean and unit variance, which is stationary in the sense that there exists 

a correlation function p(v) satisfying

E [Z(t)Z(t + v)\ = p(y) (4.42)

Another assumption is that the fluctuation function Z(t) is periodically stationary 

with period d in the sense that there exists a correlation function pi{v), p2(y)t • • •, Pd(y) 

satisfying

E[Z(t)Z(t +v)] = pm (i/)

where, j( t)  is an index j  satisfying j(t)  = mod(£, d), for j  = 1,2, • • •, T

The periodically stationary model for Z{t) may be more general in some circum­

stances. Pagano (1978) suggests one uses a d dimensional autoregression model where 

the d dimensional vector is comprised by V(k) = (Z(kd -f 1), Z(kd + 2), • • •, Z(kd -f 

d )), k = 1,2, • • •, [N/d\(= K)  to fit the periodically stationary Z(t). However, there 

could too many parameters to be estimated from the available sample size N  when 

the period, d, is large. For instance, if d = 48 (for daily period of half-hourly data) 

and the maximum order of the vector autoregression is p = 1, and the number of pe­

riods is K  = 10, there are only Kd = 480 data points available to estimate d2 = 2304 

parameters in the lag 1 coefficient matrix of the vector autoregression model and 

d(d — l)/2  = 1128 parameters in the correlation matrix of the 48 dimension vec­

tor. In practice, it is impossible to estimate the model although Penm and Terrell

(4.43)
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(1982) provided a way to reduce the number of parameters involved. Therefore, the 

assumption that Z(t ) is periodically stationary is not realistic in our case.

Suppose Y (2), t = 1,2,3, • • •, to where to = nd. We need to carry out the following 

steps to pre-whiten ^(t):

1. Estimate and model the time series mean value function m(j), j  = 1,2,3, • • •, d

2. Estimate and model the time series variance function cr2(j), j  = 1,2,3, • • •, d

3. If rh(j) and cr{j) denote the fitted means and variances, Z{t) is estimated by

(4.44)

The estimators of m(j)  and cr2(j) for a fixed j  = 1,2, • • •, d are given by

z{t) ~~mr~

m n(j) = - J 2 Y (j + kd) 
U k=0
^ n — 1

*2 0 ) =  - Y . \ Y ( j  + kd

(4.45)

(4.46)
k—0

mn(j) and «^(j), j  = 1 , 2 , 3 axe called estimated periodical means and 

periodical variances , respectively.

The smooth relations among the m(j)  (j  = 1,2,3, • • •, d) can be handled by fitting 

a harmonic representation;

27T 27T
m(j)  =  m n + V] [ön(A:) cos(j— k) + bn(k) sm(j— k)] + an([d/2] +1) cos 7rj(4.47)

k=i d 52

The estimators of mn, an(i), bn(j) can be obtained from mn(j) by the formulae;

m n

ä„(j)

bn(j)

y]m„(i)cos(j^fc)

jE ™ « ( t )!in( i 7 l:)

(4.48)

(4.49)

(4.50)
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The possibility that m(j)  is equal to a common constant m for j  = 1,2,3, * * • 

as well as other smooth relations among m(j)  can be identified by testing whether 

a n { j ) and bn( j ) are significantly different from zero. In order to do the test, the 

probability distributions of an(j) and bn(j), j  = 1,2,3, • • • , d are required. However, 

these distributions depend on the properties of the fluctuation function Z{t) whose 

estimation is the key issue of the investigation. Initially, under the assumption that 

Z( t ) is white noise , one can test an(j) and bn(j) by

where <7̂  = I ^nO)- ^n(j) has a probability distribution of \ 2 with 2 degrees of 

freedom. The index j  is regarded as significant if Rn(j) is above a suitable threshold. 

Hence, the final periodical fitted means are defined by

The estimated periodical means mn( j ) and the periodical means mn(j) are not 

expected to be significantly different and, the periodical variances cr^(j) and the 

estimated periodical variances &*(j) are also not expected to be significantly different 

either. The estimated means and variances are used in our model because it seems 

preferable to fit as smooth a periodic mean value function as possible to a periodically 

varying time series.

The estimated innovation time series Z(t) is found according to equation (4.44). 

Z(t) is a stationary series with zero means and unit variance, and is not white noise 

in most circumstances. In other words, Z(t) may be thought of as the sum of an 

explained part, Z(e)(f) and an unexplained part Z(u)(t), i.e.

(4.51)

significant k

+an([d/2] + 1) cos(x;)

Z(t) -  Z(e)(0 + Z(u)(t) (4.53)

Following the approach set out in equations (4.36), (4.37), (4.38), the whitening 

filter, which transforms {Z(t)} to its innovation series {Z^ ( t )}  with a time-invariant
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variance is,
oo

£(»)(<) = E “ (»)£(*-*). a(0) =  0 (4.54)
*=0

where a 2 = E[|Z(U)(*)|2].

There are many methods in the literature to model the stationary innovation 

series, {Z(u)(£)}. For the sake of parsimony, we use the subset AR model and the 

selection procedure developed in Chapter 2.

4.4.1 Periodic P attern  o f W eekdays and Weekend Days

According to the new model described and the basic model for the periodic time 

series in section 4.1, we sort out a weekdays’ series {Vw(*)} and a weekend days’ 

series {Vrtt;e(*)} from the detrended series {y(£)}. Unlike {y(f)}, the series {V ^-)} 

and {y^e(*)} are periodically stationary processes with period 48 (daily). For the sake 

of simplicity, we treat {FUd(*)} and {V^el*)} as {F(-)} without confusion because they 

have same properties except differents in their profiles.

Since the daily periodic pattern dominates the profile of {y(*)}, it can be assumed 

that the periodic mean of {!"(•)} can be approximately expressed by the daily fre­

quency and its harmonic frequencies plus an error term as mentioned in last section 

(see equation (4.47) )

m Y(j) = m  + cos( ^ ^ i  ) + b(k) sin(fc^gj )) + Zw(j) (4.55)

In practice, however, the harmonic frequencies may not be adequate to fit the 

periodic pattern, i.e. the periodic mean may not be exactly harmonic with respect to 

the daily fundamental frequency. Some non-harmonic frequencies may be involved. 

On the other hand, some harmonic frequencies may not be significant in the harmonic 

model of the periodical means. In general, therefore, the formula for fitting periodical 

means should be

K
m(j)  =  m 4- $^(A* cos{ujkj)  + B k sin(u>kj)) (4.56)
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where {u^} may not include all harmonic frequencies and may not be only the har­

monics of the fundamental frequency.

The harmonic model is a special case of the above model. For the estimation of 

the frequencies u; ,̂ k = 1,2, • • •, K  and the corresponding Ak, Bk, the least squares 

estimation algorithm of Bloomfield (1976) can be employed, to analysis the m (j ) 

function for { Y (•)} if the initial values of u;*, A*, Bk, k = 1,2,3, • • •, m are provided. 

The problem we are facing is how to get those initial values, especially, u>k which are 

essential for the Bloomfield’s least square estimation algorithm to obtain the optimal 

multiple frequency model for the periodical means for both weekdays’ and weekend 

days’ data.

Initial Values of General Multiple Frequency Model

From Bloomfield’s least square estimation algorithm, we know that the initial fre­

quency values predominate over the other initial parameters in the algorithm. Based 

on the empirical preparatory stage in Moutter’s super-resolution algorithm Mout- 

ter et al. (1986b), a procedure which selects the initial frequencies is established as 

follows:

Step 1 Suppose that the sampled {F(2)} is {yt} with sample interval At. i.e. Yt = 

Y(t  x A t ), t = 0, ±1, ±2, ±3, • • •.

It is known that Yt has a spectral representation which extends only over the 

frequency range (—ir/At, ir/At).

The basic reason being that when t is restricted to integer multiples of At, we 

can not distinguish the frequency components between eiut and {c*(w+2WA0*J# 

The components in Y(t)  with frequencies u  ±27r/Af,u;±47r/A<,a;± 6t / At, • • • 

will all appear to have frequency u. These frequencies are said to be aliases of 

uj and every frequency outside the range (—ir/At, ir/At) has an “alias” inside 

this range (see Priestley (1982), pp. 504 - 508).
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If Yt is a bandlimited, say at u>0, process, then the spectrum of Yt within the 

bandlimit u>o is of interest and we can apply a band-pass filter to Yt to reduce the 

aliasing effect. In practice, the frequency limit beyond which Yt has negligible 

power has to be based on a knowledge the nature of the process generating the 

data set. For example, if At  is equal to one half-hour, the frequencies of Y{t) 

higher than a cycle per hour (/o) cannot be presented correctly in the spectrum 

of Yt according to the sampling theorem that At  must satisfy At  < l/2/o where 

= ?r/o- There are various low frequency band-pass filters which can be 

applied to Yt to reduce (elfectively) all frequencies higher than /o. A symmetric 

moving average filter is a simple low frequency band-pass filter which has the 

advantage of retaining the same phase as Yt after filtering. The length of the 

symmetric moving average filter can be determined by the frequency response 

of the filter needed to cut out the frequencies higher than ujq.

Step 2 The filtered time series is loaded into a mixed radix fast Fourier transform 

(MXFFT) array whose length is equal to the sample data segment. The MXFFT 

is run to form F0(H ), and the initial spectral estimate of the time series is:

F0(H) = M X FF T[Yt] (4.57)

where, H  is used to represent the harmonic order such that ljh = 2nH/N; N  

is the length of the MXFFT array.

Step 3 The spectrum is truncated to the known or desired harmonic limit by deleting 

high frequency components which we are not interested in (e.g. frequencies 

which are higher than one hour per cycle). An indicator function B(H)  is used.

1 if \H\ < n 

0 otherwise

where H  is the bandlimit harmonic order.
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Hence, the truncated spectrum, say is formed by:7

F1(H) = F0(H) * B(H) (4.58)

Step 4 In the spectrum Fo(H), a component is most likely to be the true component 

of F(H) if it has an amplitude greater than the components on either side of it. 

In practice, adjacent components are unlikely to be exactly equal in amplitude. 

F2(H) is formed by reducing Fi(H) to groups of three harmonic components in 

which it is expected that the true components will be contained.

In mathematical terms:

Step 5 Delete all components with an amplitude below a lower threshold Ei:

for H = 0, 1, 2, 3, • • •, [fin] where Ei ~  0.05max \F2(H)\.

In this way, components of relatively low amplitude and therefore of little im­

portance can be excluded.

Step 6 The largest harmonic components are selected from the groups of three har­

monic components in F2(H). It is expected that the largest harmonic compo­

nents are likely to be the “true” harmonic components of F(H).

7The symbol, *, represents the convolution operation.
8The Symbol [/in] means take the integer part of /tn.

F2(H) = F 1(H) i i \F1( H - 2 ) \ < \ F 1( H - l ) \ > \ F 1(H)\

or \Fi(H — 1)| < \Fi(H)\ > \F\(H + 1)| 

or |F i(//)| < \Fi(H + 1)| > \Fi(H + 2)|

= 0 otherwise

for H  =  0, 1, 2, 3, • • •, [f in]8
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In mathematical terms:

F4(H)
F3(H) if IF,(101 =  max(|F3(ff -  1)|, \F3(H)\, |F3(tf + l)|)
0 otherwise

In this way, we obtain the selected harmonic component orders F4. The corre­

sponding harmonic frequencies satisfy

9  Hk
= 2jr^ r

where Hk satisfies F4(H)t) > 0.

The u)k obtained from the above 6 step procedure and Ak — Bk = 0 can be used 

as a set of initial values for the model (4.56). Furthermore, the significance of the 1cj 

can be tested by a statistic similar to Rn(j) in equation (4.51) which is distributed 

approximately as a x 2 with 2 degrees of freedom if there is no significant effect of Uj.

4 .5  T r a n s it io n  b e tw e e n  W eek  a n d  W eek en d  D a y s

In section 4.2, we have shown that weekdays’ data Xi( twd) and weekend days data 

X 2 (tWe) from the short-term data have different characteristics (see Table 4.1 and 

Table 4.2). According to the model (equation (4.1)), we assume Monday, Tmon, and 

Friday, X/rt, are interim periods in which the characteristics of weekend days are in 

transition to the weekday characteristics, or vice versa. For reasons of simplicity, we 

just discuss the Friday case since the proposed procedure deals similarly with Friday 

and Monday.

X i t f r i )  =  f ( t f r i ) x ( t thu)  +  (1 -  f { t f r i ) ) x ( t sat )  (4.59)

where f/rt- 6 T/rt, tthu is the preceding Thursday, taat is the following Saturday. They 

satisfy t jri — tthu d- ^̂ 5 and taat — /̂r* d- 48.

In general, the weight function f { t f ri) (see equation (4.59)) is a nonlinear function. 

If we suppose that most industrial companies and businesses stop working around 4
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PM to 5 PM and begin a weekend when the Friday is a routine day, which excludes any 

special event, such as strikes, public holiday, etc. Therefore, the load characteristic of 

the Friday before 4 PM is still weekday’s; however, the load character of the Friday 

after 5 PM is moving to a weekend’s. The transition period is from 4 PM to 5 

PM. Normally, the transition characteristics of the weight function is unknown; the 

transition period is also unknown and varies.

From the above example and discussion, we assume that a continuous monotone 

function can approximately describe the character of the weight function /(<). Several 

numerical procedures are developed to estimate this weight function in the following 

sections.

4.5.1 Param etric Function Family Approach

Suppose {/(d)(f) Id £ TV1} is a weight function family, where d is the parameter set 

of the function; TZn is a n dimensional real number space. We construct a new series 

for each value of the weight function

7(d)M = x(tfri) -  f(d){t)x(tthu) -  (1 -  f(d)(t))x{taat), for d e TT

If the weight function fd{t) describes the transition properly, the series 7(d)(f) 

would be normally distributed white noise with mean zero and variance o . Our 

task is to choose a function in the weight family function, i.e. {f(d)(t) \d £ TV*}. For 

this purpose, therefore, a statistic can be constructed to choose an optimal weight 

function which describes the transition between weekday and weekend days in the 

family by

t(d) = I t1 (4.60)

where j (d) = ±  7(*)W> and S(d) = h £?=i (7(«0 W  “  7(d))2

If 7(d) (t) is a white noise series, the statistic td has a t distribution with mean 

zero and 47 degree of freedom. The optimal weight function in the given family of
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functions {f(d){t)\d € 7£n} is chosen with the use of the following criteria.

/(<) = /«,)(<)

where |<(Jo)| = m in(|(ij)|, d € Tl").

There are countless choices of the family of functions which can approximately 

describe the transition. For parsimony, we chose those which have the least number 

of independent parameters and can provide the required transition characteristics.

The transition characteristic mentioned at the beginning of this section, a step 

function

Sr(t) =
1 t < T

(4.61)
0 t > T

can be employed to roughly describe the transition. For instance, suppose, the electri­

cal load before 4PM on a Friday is a typical weekday. However, the load profile after 

8PM on the Friday is a typical weekend. The transition could roughly be considered 

as taking place “suddenly” at 6PM. i.e. the step function SepM^) roughly describes 

the transition. We know that the transition seldom take place as suddenly as a step 

jump rather it is a “slowly” evolving process. The transition rate, therefore, should 

take this into account. Since the electricity load at the beginning of a Friday main­

tains the weekday load profile, but changes to the weekend day load profile by the 

end of the Friday, the transition rate must be a concave function with a value of zero 

at both the beginning and the end of the Friday. The pole point of the transition rate 

function is the time at which the transition takes place most rapidly. For instance, 

in the above example, the transition rate function satisfies

0 t ^  6PM 

—oo t = 6PM

From the above discussion, it is seen clearly that the step function will not describe 

the transition accurately in most of the usual circumstances. A bounded concave 

function may be more appropriate to describe the transition rate. However, we have 

to make some assumptions to simplify the concave functions since the skewness of

d SePMj t )
dt
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the concave function is not known. A simple approximation for the transition rate is 

based on the following assumption:

Assumption 4.1 The transition rate function is a symmetric bounded function.

The implication of the assumptions is that the distribution of the transition is 

symmetric, i.e. the transition rate function is symmetric at a certain range of times 

on Friday. Intuitively, the assumption is reasonable.

There is still a large range of symmetric concave functions which can be candidate 

functions to approximate the transition rate function. For numerical simplicity, we 

choose a m-lag moving average symmetric at the pole point as an approximate tran­

sition function /(T,m)(£). The first derivative of /(T,m)(t) is a concave function with 

its minimum value at the pole point r. The number of lags of the moving average 

controls the concaveness of dEr̂ ) ^  which describes the transition rate. Now, we have 

a transition function family {/(r,m)(0} with two parameters (r, m) E 1Z2 where r is 

the pole point and m is the length or the lags of the symmetric moving average. We, 

then, have a new series 7(T,m)(0 as follows

7(r,m)(0 =  x { i f r i )  ~  f \ T , m ) { f ) x { f thu)  ~  (1 ~  f ( T , m ) { t ) ) x {tsat) (4.62)

where f(T,m){t) is an rn-lag moving average of /(T,i)(t), m = 3,5,7, • • • and

1 t  <  T

0 t  >  T

For the desired transition function /(T,m)(<), { 7 ( r , m ) ( ^ ) }  should be normally distributed. 

Therefore, a statistic is constructed as follows

<(r,m) =  I f 21 (4.63)

1 48
7(r,m ) =  T77 X ^ 7 (r ,m )(^ )  

t = l

I  48

S ( T , m )  ~  777 — (̂T»m))
w  t = l

where
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t(T,m) is a t- distribution with 47 degrees of freedom. Hence, if a pair (T0,mo) makes

l<(r„,m„)| = mm{|<(TlTO)|} (4.64)

the /(ro,mo)(0 is said to be the optimal transition function among the function family 

{/(T0,mo)(0}- A two step procedure is developed to locate the pair (r0,m 0) as follows. 

In step 1, a new series is generated as

7(t,1)(<) =  *(</ri) -  /(r,i)(<)*(W ) -  (1 -  /(t.IjW M 4**«) (4.65)

The pole point can be located by choosing r0 which has the minimum value among

the {7(2r,i)}> i-e -

7(2r„,i) =  min{7,2Til)}

In step 2, another series is generated as

7(T0,m)(0 x { i f r  t) /(r0,m)(Oa' { L h u )  (1 f(T0,m ) { ^ ) )x {^sat) (4.66)

and an associated statistic t ( To,m)- The lag of a moving average for /(To,i)> is 

determined by mo which has the minimum absolute value among the { | t ( To,m)|}> i-e.

|^ (r0,m0)l =  n d n {l^(T0,m ) |}

The chosen transition function 7(T0,m0) should be the most appropriate function 

in this family of functions to approximate the true transition. It is noted that each 

function has two parameters, and the chosen transition function from this family may 

not be smooth enough to reflect the transition process. To overcome the above two 

disadvantages, another family of functions is recommended.

We now consider a “filter” family of functions as follows:

0i~o(fyd)(48 -  <)) for Friday

gi„o(max{h(d)(t)} -  h(d)(t)) for Monday 

where d € J ,  T  is an positive integer number set.

d 1 JU, 7T7 . 7vjt
h^ ( t )  =  E ( 1  +  cos cos —

_  hW  -  min(/i(Q)
^1~° max(h(t)) — min (h{t))

According to the above definition, the family {f(d)(t)\d G 1} has the properties below:

f  (d) (0 (4.67)
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1. Each function in the family is monotone decreasing function ranging from 0 to 

1.

2. f(d){t) < f{d+i){i) for the Friday case; 

f(d){t) > f(d+i){i) for the Monday case.

3. m a x (^ j^ )  < m a x ( ^ ^ ) ,  and t ^  < t d̂+i) f°r Friday case; 

m a x (^ j^ )  < max(- (d̂ ^ ), and t^  > t^+i) f°r the Monday case; 

where tfa is determined by - ^ ~ \ t=t» = m a x (^ j^ )

The innovation series is generated as follows:

7/(d) = x(ifri) -  f{d)(t)x(tthu) -  (1 -  f(d){t))x{tsat) (4.68)

Under the criterion of the minimum sum of squared errors, we can locate the most 

suitable function in this family of functions to approximate the transition process by 

searching d0 which makes

•?/«,) =  m] n^h»>

D iscussion:

If we question the normality assumption of the generated series {7(T,m)(0} fr°m 

equation (4.63), the constructed t- statistic t(T,m) may not be a proper statistic to 

locate the pair of parameters (r, m) because the distribution of {7(T,m)(0} is unknown 

in general circumstances. Any pre-specified assumption for the distribution may mis- 

specify the estimation of the transition function. Also, it is well known that the 

criterion of sum of squared errors is not a robust criterion. Selection procedures 

without any special assumption concerning the distribution (i.e. a nonparametric 

selection procedure, and a more robust criterion such as absolute sum of squares, 

etc.) can be considered. Because only the selection criteria would be different, the 

nonparametric and robust selection procedure will not be discussed here.

In summary, the approaches mentioned above are designed to search for the op­

timal proposed transition functions from a restricted family of functions. Although
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some properties of the transition function are known by analysis, there is a broad 

range of parametrized families which can approximate the transition process. Since 

there is not enough information about the detailed properties of the transition func­

tion, some assumptions have had to be made to narrow the range of the candidates 

for the parametrized family of functions, to reduce the size of the parameter set, and 

to simplify expression of the function for simplicity and numerical reasons.

However, there is no answer to the question, “which transition function family is 

the best ?”. For this reason, another mechanism is proposed to find the transition 

process instead of searching for an optimal one in a parametrized family of functions.

4 .5 .2  P r in c ip a l C o m p o n en ts  A pproach

The evolution from weekdays to weekend days by way of a Friday can be in general 

described by a weight function (see equation (4.1)). However, f { t f ri) is an

unknown function. In the last section, two procedures were proposed to search for 

an optimal transition function in a parameterized family of functions. The optimal 

transition function is regarded as an approximation to the real transition function. 

Now, we use the linear combination of a set of step functions to approximate the real 

transition function.

Suppose, a linear space Z  is expanded on the basis of a family of functions 5 ^ ,  

where
1 if t < d

0 if t > d

From the theory of real function analysis, we know that the real function space T  

belongs in the closure of Z , say, Z.  i.e. T  C Z.  Therefore, the weight function can 

be approximately expressed by a linear combination of Sp{St^\d  = 1,2,3, • • • ,48}. 

We suppose

A t h u  —  (*Et/iu(l)} *£t/iu(2),  * ■ ’ ? £*/i u ( 4 8 ) )

X f r i  =  (x/r*(l),Z/r>(2),- • * ,X/rt(48))'

= ( W l ) , W 2 ) , - - - , ^ a t ( 4 8 ) ) /
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X i j  = + (1 — 5jj))xsoi(<)

Hence,

X - J  ' 5 -^48,j )
( Ij 0 \  /  0 0 x

1 Xtfctt +
0 0 0 l

(4.69)
48—j  /

To find the weight function, we must estimate the vector ß  in the following linear 

model

Xfri — (X.i, X,2, • ‘ ‘ , X.'4g)ß -f 6

where ß  = (ft, f t, • • •, ß48)' 

Because
48

Xfri =  X] + 6
3 =1

48

= E f t
j=i

(4.70)

( f t  0) 48

X t h u  + 53 ß j
' 0 0 N

V0 0 1 3=1 I00rf

o XSat 4” ^

The weight function /( t)  at time point i is / ( j )  = Ylj=i ßi from the first part of 

the above equation; (1 — f ( i )) = E j=i ßj from the second part of the above equation. 

According to the model equation (4.1), /(1) = 1. Therefore, there is a restriction on 

/?, i.e. E S i  ßi = 1-

Our problem becomes to solve a restricted linear regression as follows

Xfri = X  ß  + €

A ß  = a

where

(4.71)

f 1 ■
• 1 1 ^

o II

i \

1 °  • • 0
After estimating /?, the estimated weight function can be constructed by

48
f ( j )  = for 1 < i < 48

i=3

Considering the construction of X and the evolving nature of a Friday’s (or a Mon­

day’s) load profile, we know that X must be at least a near multicollinear matrix.
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Dhrymes (1978) has discussed several methods and their properties for handling the 

near multicollinear case, such as, general inversion methods, dropping multicollinear 

columns, and the principle components method. Nevertheless, there is a practical 

sense in which the principal components version is more desirable because we would 

have an “estimate” for the coefficients of all relevant variables. However, the other 

two methods generally have an estimate for only a subset of such coefficients. Hence, 

significant aspects of such implication may be obscured or escape our notice. There­

fore, we will use the principal components method to estimate the transition weight 

function for Friday and Monday.

4 .5 .3  A p p lic a tio n

To illustrate the evolution process between the weekdays and weekend days, we use 

the above three approaches on the half-hourly data from April 4, 1983 to May 1, 

1983 (four weeks) and estimate the transition functions presented in Figure 4.5. The 

thin curves are transition functions from weekdays to weekend days (Friday); and the 

wide curves are transition functions from weekend days to weekdays (Monday). The 

estimated transition functions consistently indicate that the transition from weekday 

patterns to weekend’s patterns are taking place around or after 3PM Friday; and the 

weekend days’ load profile patterns have vanished after 8AM Monday. It is noted that 

the “moving average” and “filter” function approaches show greater lack of flexibility 

as compared to the principle components approach.

As we expected the sum of squared fitting errors (see equation (4.1) ) from the 

principle components approach is the smallest among the three transition function 

estimation approaches but includes more computation. The “filter” function esti­

mation approach is the most efficient in the sense of least computation. Based on 

accuracy, the principle component approach is used in our modelling procedure. The 

total sample fitting and post sample predictions are compared with other popular 

modelling techniques in Chapter 5.
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’Moving Average’ Function Estimation

Tune (unit = half hour)

’Filter’ Function Estimation

Tune (unit = half hour)

Principle Component Estimation

\

0 10 20 30 40

Time (unit = half hour)

Figure 4.5: The Estimated Transition Functions
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4.6  Sum m ary

In this chapter, a new model for the half-hourly electricity load data has been es­

tablished. A more general cointegration “error correction” regression model has been 

proposed to model and to forecast trend behaviour. The detrended data is a period­

ically stationary time series which can be modelled by the proposed model described 

in section 4.4 for data in weekdays and weekend days separately. The load evolution 

process between weekdays and weekends is portrayed by a weight function which can 

be estimated by three approaches described in section 4.5. The remaining innovation 

series is a stationary series and can be fitted and forecast by a subset AR model 

proposed in chapter 2.

After applying the proposed new model to New Zealand half-hourly electricity 

load data and utilizing the associated modelling procedures for different components, 

it shows that the overall performance is much better than Moutter’s approach both in 

sample fitting and post sample forecasting. The proposed modelling procedure have 

also been successfully applied to quarter-hourly electricity load data in the Canberra 

region of Australia.

Our experiences show that the proposed approach is superior to Moutter et al. 

(1986b) and Bodger et al. (1987) approaches. To compress the size of this thesis, 

the results are omitted here but they can be obtained from the author on request. 

The comparison with other popular modelling techniques for New Zealand half-hourly 

electricity load data is presented in chapter 5. The results show that the modelling 

procedure proposed in this chapter is very promising with a potential to model short­

term electricity load from any region.



Chapter 5

On A dditive D eterm inistic &: A daptive  

M odels

5.1 Introduction

In the literature on modelling a noil-stationary periodic time series {x(2)}, where the 

time series {x(t)j consists of trend, seasonal, and disturbance components in additive 

form1, i.e.

x(t) = f(t) + S(t) + y(t) ( 5.1)

and where /(£), S(t ) and y(t) are the trend, seasonal, and disturbance components, 

respectively, there are two basic additive models namely:

1. Conventional Additive Model

2. Adaptive Additive Model

The conventional additive model assumes that the trend and seasonal compo­

nents are deterministic components. While, for the adaptive additive model, there 

is no such deterministic component restrictions on trend, and seasonal components, 

and, at least, one of them is stochastic. Therefore, the adaptive additive model has

^ n e  can always transfer multiplicative form to additive form by adding a constant, C,  which 
is large enough to make |x(*) +  C} a positive series, and then taking logarithms if {x(t)} is in 
multiplicative form.

131
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three forms, i.e. (1) Both trend and seasonal components are stochastic; (2) Trend 

component is stochastic while seasonal component is deterministic; (3) Trend com­

ponent is deterministic and seasonal component is stochastic. In most cases, the 

adaptive additive model is more flexible and realistic than the conventional additive 

model.

In the next section of this chapter, we will discuss the relation between the conven­

tional additive model and a special form of the adaptive additive model, and reveal 

that the conventional additive model in some circumstances may be more accurate 

in the sense of smaller residual variance, and more reliable in the sense of having a 

narrower forecasting confidence interval than the adaptive additive models. In sec­

tion 5.3, a more complicated multiplicative model, AR(ARIMA)MA, and its special 

form subset ARAR, which can be “automatically” specified for a given data set by 

a designed model selection procedure, is presented. In section 5.4, we apply five 

models (three adaptive additive models and two conventional models) to the New 

Zealand half-hourly electric load data, and compare their performance in fitting and 

forecasting.

5.2 M ultip licative M odel vs Additive M odel

We know that the filter (1 — B) will remove an order 1 polynomial trend and level, 

and the filter (1 — B 9) will remove a periodic , or “seasonal”, component with period 

s. Consequently, if x(t) contains such trend, and seasonal components, z(t) = (1 — 

B)( 1 — B 9)x(t) will have a “detrended” and “deseasonalized” form and zero mean, 

and thus it is reasonable to assume that {z(£)} may be represented by an ARM A 

model. To allow for the possibility of non-stationarity in both the {x(f)} model and 

the seasonal component, Box and Jenkins (1976) generalized the seasonal model to

0,(B)02(£*)A,,A?x(t) = (5.2)
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Where 6i(z),  $2(2:), ^i(*)j </>2(z) are polynomials of degrees, p , P , q , Q , respectively, 

(having all their roots outside the unit circle), A =  (1 — B)  is a one step differ­

ence operator, i.e. A x(t) =  x(t) — x(t — 1), and A s =  (1 — B s) is the s — step 

difference operator, i.e. A sx(t) =  x(t) — x(t — s). Box and Jenkins refer to the model 

(5.2) as the multiplicative seasonal model of order (p ,d ,q ) x (P, D,Q)

Again, once the values of d and D have been determined, and suitable integers 

specified for the orders, p, P, </, Q, the further parameters of the model may be 

estimated by fitting the model

e1(B)e2(Bs)z(t) =  m b ) M b sW )  (5.3)

to z(t)  =  A dAfx( t ) .

Box and Jenkins derive the model (5.2) by arguing that the seasonal component 

of x(t)  my be modelled by

02(B ‘ )A fx(<) =  MB' )e ( t )  (5.4)

while the unon-seasonal” component may be modelled by assuming that the “residu­

als” from the above model, e(£), satisfy

6 i ( B ) A de(t) =  M B W )  (5.5)

Substituting equation (5.5) into equation (5.4) then gives the multiplicative sea­

sonal model (5.2). Box and Jenkins maintain that model (5.2) is a fairly general 

model for (non-stationary) series which contain a seasonal component of period s, 

and it should be noted that model (5.2) implies rather more than the conventional 

additive model

*(<) = /(<) + S(t) + y(t)  (5.6)

where f ( t )  denotes a deterministic polynomial of degree (d — 1) (representing the 

“trend”), S(t)  is a periodic component, (period s), and y(t) is a stationary stochastic 

process, with Ey(t) =  0.
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Underlying Additive Model for A Multiplicative Seasonal Model

A question must arise when we ask what is the underlying additive model for a multi­

plicative seasonal ARIMA model, and how “safe” is it to use a multiplicative seasonal 

ARIMA model to fit a non-stationary time series, and what is lost, if anything, in 

this approach. For simplicity, we take the “airline” model, ARIMA(0,1,1) x (0 ,1, l ) a, 

as an example to illustrate the underlying additive model. The “airline” model has 

the following form

(1 _  B )( 1 -  B s)x(t) =  (1 -  h B ) ( \  -  cf>2B a)e(t) (5.7)

where the absolute values of <t>\,(j)2 are less than 1, and e(t) is a white noise process

with zero mean and variance g\ .

It is easy to construct an adaptive additive model which is equivalent to model 

(5.7) as follows

x(t) =  f(t) +  S(t) +  ei(*) (5.8)

where f ( t ) is a degree 1 polynomial stochastic trend function; S{t) is a stochastic 

periodic function with period s; and ei(t) is a white noise process with zero mean and 

variance a* . f ( t )  and S(t)  satisfy the following models respectively,

(1 -  B ) 2f { t )  =  v ^ "  ^ \ B ) e 2{t) (5.9)

(1 +  £  +  ••• +  B - x)S ( t ) =  T j ^ ^ n\ B a)e3(t) (5.10)

where i/(i.«'i.->""0 (z ) =  1-f vxz-\----- b vmz m] =  I +  771Z + ---- brjmz m; 6i(t) is

white noise process with zero mean and variance cr̂ , i =  1,2,3; and ei(£), €2(2), e3(t) 

are uncorrelated. The use of model (5.9) suggests that one should allow for changing 

trend slopes. Similarly, the seasonal model (5.10) allows for changing amplitude and 

phase. Box et al. (1987) show that the “airline” model yields the unobserved trend 

and seasonal forecasts given below

/,(/) = a<‘> + a>‘>/
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S,(l) = , E 4 ‘) =  0
P=1

and the forecasting function is as follows

x,(l) =  /,(!) + St(l), I > 0 (5.11)

They also show that the optimal component forecasts are independent of the 

admissible decompositions (5.9) - (5.10) generating these components. Within the 

class of decomposition (5.9) - (5.10) that are consistent with the overall adaptive 

additive model (5.8), the canonical decomposition minimizes the MSE of the forecasts 

of the trend and seasonal components, and the MSE of the irregular component 

forecasts is maximized in the canonical decomposition.

The changes in trend and seasonal components are achieved by updating the 

parameters, c*0) and a 0) Qf the trend and seasonal components using the one 

step ahead forecast errors et(l)  f°r the overall model (5.7)

Xt+i(l) = Xt(l +  1) +  ^{Ct+i (5.12)

where et+i is the error made in forecasting at time t. It is easy to show that the 

overall update parameter ipi satisfies (see pp. 310-311, in Box and Jenkins (1976) for 

details)

Ip! = Vv = Ai(l T pA2) +

where p =  mod(/, s), A2 =  1 — <f>i, A2 =  1 — ^2 and 6S =  1 if p = s and 0 otherwise. 

The adaptive parameters of the trend and seasonal forecasting component satisfy

Q(t+i) =  a (t) +

i aj,t+1) =  Qq̂  +  +  [Ai(l — £2t A2) +  e*+i (5.13)

_ a ‘,+I) =  4 + 1  +  -  ( i  -  '* .)$ ] £<+i

It is noted that the forecasted series level a ^  is adjusted by the forecast increment 

to the trend, and incorporated into the next level Oo+1* at the new origin.

It also can be seen that the overall “airline” model will be very sensitive to out­

liers and interventions; the adaptation of trend and seasonal parameters is heavily
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dependent on the one step ahead forecast error which will be large if an outlier or 

intervention occurs, i.e. the one step error caused by an outlier or intervention is 

shared among the trend, seasonal and disturbance components, and the distribution 

to each component is determined by the parameters of the “airline” model. Conse­

quently, outliers or interventions can lead to mis-adaptation of the trend and seasonal 

components, and then multiple step ahead forecasts could diverge far from the true 

value.

In general, a multiplicative seasonal model may be suitable for a forecasting a 

few steps ahead. However, for a large number of steps ahead forecasts made by a 

multiplicative seasonal model may not be reliable if the quality of a data set is poor 

(i.e. outliers and interventions are present).

Supposing the disturbance terms of trend and seasonal components of the adaptive 

additive model (5.8) are known, we examine how the model allows the parameters 

to adapt in the trend and seasonal components. As with the update equation (5.12), 

the trend and seasonal update equations have the following form:

/t+ i(/) =  /f ( / +  l)  +  lfoe2(* +  l)  (5-14)

S«+,(/)  =  5 ,(/ +  1) +  v>,£3(< +  1) (5.15)

where ipi and Lpi satisfy

t=0 ( i  -  By
+oo

=  +  1 )BJ
j=o

£  tpiB* = —— ^ 7 / (1’T?1’~ ’T?")( £ a) =  (1 -  B)tĵ " ^ \ b s) £  B aj 
i Z 0  ( l  “  B ) 3=0

It is easy to verify that when one step ahead new information becomes available, 

the update equations for the trend and seasonal components satisfy

= qW(/ + 1) + (*+1 -  tl>i)e2(t +  1)

« a%+l)(l) = a % \ l + \ )  + a M (l+ l)[ ( l  + l)1>i-hl>i+i\t2(t + l) (5.16)

a<t+1)(l) =  «{?)(/ +  1) +  <pie3(t + 1)
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Consequently, the one ahead step adaptation for the parameters of trend and seasonal 

components is as follows

q (*+1) = + e2{t + 1)
< a o+1\ 0  =  ao \ l  + 1) + <*(<)(Z + 1) +  (1 — i/i)e2(< + 1) (5.17)

. a<*1)(Z) =  a<*,( / + l )  +  e,(< +  l)

From model (5.7) and (5.8), (5.9), (5.10) we have the relation,

(1 -  -  h B ‘)e(t) =
(1 ~ *>)

+(1 -  B ) r j ^ ' - ^ ( B s)e3(t) (5.18)

and so the error variance of the overall “airline” model,

error variances of trend a2 . seasonal <r2 , and a2
E2 7 £3 ’ £ l

2 _  I/(1.«'l.~.*'m)(l) 2 | r j i 2

^  ~ (i +<a?)(i + « '7'2 + (i + ^)( i + ^ ) <7- +

ae2, is a weighted sum of the

4
(1 +  ^ i) ( l  +  <f>l)

(5.19)

When we consider that the adaptation for the trend and seasonal components 

of the overall “airline” model (5.13) is generated by one source of disturbance, e, 

according to (5.13). A “large” size disturbance caused by an outlier is shared by 

both trend and seasonal components, and may cause mis-adaptation. However, the 

adaptation of the trend and seasonal components of the adaptive additive model in 

(5.17) is determined by the disturbance terms of the trend and seasonal components, 

e2{t) and e3(i), whether their variances are known a prior or predetermined. The 

mis-adaptation for trend and seasonal components can be controlled if the overall 

one step ahead forecast error is caused by an outlier or intervention. Therefore, the 

adaptive additive model is a partial solution to overcome the mis-adaptation due to 

the presence of outliers and interventions.

One method is to restrict the variances of trend and seasonal components to 

a certain level to prevent the trend and seasonal components being over-adapted. 

This method will be discussed in a state-space form in a latter chapter. The second 

method is to abolish the adaptation for the trend and seasonal components if we can 

be convinced that the changes in the trend and seasonal components are too small
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to be taken into account. Then, the trend and seasonal are regarded as deterministic 

components. The trend and seasonal components can be estimated by regression of 

on a polynomial function f ( t ) = q0 -f at and a series of trigonometric functions 

which have harmonic frequencies related to the period s. This regression procedure 

is equivalent to setting e2(t) = 0, and e3(t) = 0 for all t in model (5.9) and (5.10), 

consequently, — of3 = 0. Therefore, from equation (5.19), the error variance of 

the overall “airline model”, <7̂ , satisfies

(1 + ^i)(l + < f > 2 )
>  <t  : (5.20)

The above equation illustrates that the overall “airline” model’s performance is 

worse than the conventional additive regression model if the trend and seasonal are 

really deterministic components. In this case, The more general random assumption 

for the trend and seasonal components and the safety associated with use of the multi­

plicative seasonal ARIMA is at the cost of an increase in residual variance (see details 

in the section, Practical Aspects, on page 141). In general, the trend and seasonal 

may not be deterministic components. If the ratio values of and J (t\ are

large, i.e. the trend and seasonal components are far from being deterministic, and 

their changes can be distinguished from the disturbance noise t \ (/), the overall “air­

line” model may fit better than the conventional additive regression model since the 

“airline” model has adaptive trend and seasonal changes. On the other hand, if the 

ratio values of and / o2ti are small, i.e. the trend and seasonal components

are nearly deterministic and their changes(if any) are submerged by the disturbance 

component ei(tf), the conventional additive regression model may fit considerably bet­

ter than “airline” model because the changes in the trend and seasonal components 

are insignificant compared to the disturbance noise ei(<).
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5.2.1 M ultiplicative Seasonal M odel vs Conventional A ddi­

tive M odel

C A SE  1: A M u ltip licative Seasonal M odel F its A T im e Series 

G en erated  by A C onventional A dd itive M odel

If the model really is of the form (5.6) and we fit a model of the form (5.2), then this 

implies that y(t ) is a pathological process, in the sense that y(t) itself has a “non- 

stationary periodic” structure. To see this, we apply the operator A dA f  to both sides 

of the conventional additive model (5.6), and noting that A d “annihilates” f ( t ) and 

A f  “annihilates” 5(t), we obtain,

A dA f  x(t) =  A 'A f  y(t)

Consequently, y(t) also satisfies (5.2), i.e.

01(B)O2(B’)Ai A?y(t)  =

and the presence of the “singular” factor (1 — £ s), (1 — B )d(both of which have roots 

on the unit circle) mean that (a) y(t) is non-stationary (if d > 0), and (b) it has a 

form of periodic structure, in the sense that its “spectral density function” is given

by
fr (e-" )6 ,(e -™ ) 2 1

y' 27T ö ,(e -‘“’)ö2(e -”“) 1 1
and thus has infinite “peaks” at frequencies w =  2nk/s, k =  0,1, • • •, [s/2] unless, 

of course, ), 4>i(Bs) contain as factors (1 — B s), (1 — B)d. Thus, for hy(u>) 

to be bounded; it is necessary for (f>i(B), <f>2{Bs) to be of the from 4>\(B) =  (1 — 

B)d<j>i(B), (p2 [B) =  (1 — B s)D<i>2 (B) where < î(T), <̂2(L) have their roots outside unit 

the unit circle.

In this case where hy(u>) is bounded, we have for the solution of model (5.2),

x(t) =  f ( t )  +  S{t) +  d(t) +  y (0  (5.21)

where d(t) is the (decaying) solution of 0 i(B)0 2 (Bs)x(t) =  0, and y(t) (the particular 

solution of (5.2) ) is the stationary process,

y(t) =  e- \B)e-2\ B s) U B ) U B s)e{t)
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However, if </>i(J9), 4>2{BS) do not contain factors of the above form then y(t) is 

non-stationary and has itself a periodic form.

Abraham and Box (1978) distinguish the above case by saying that when <f>i(B), 

<f>2{B9) contain (1 — B)d, (1 — B S)D as factors then the seasonal component has a 

strictly periodic stable “deterministic” form (i.e. it has a Fourier series representation 

with constant amplitudes and phases), and the trend has a stable “deterministic” 

polynomial form, with constant coefficients. On the other hand, when <f>\{B), (f>2(Bs) 

do not contain these factors the seasonal component has an “adaptive” form (with 

the amplitudes and phases possibly changing over time) and similarly the trend has 

an “adaptive” polynomial form. Abraham and Box (1978) therefore argue that it 

is always safe to fit a model of the form (5.2) to non-stationary seasonal data; if 

the trend and seasonal components are both stable, this will be revealed by a near 

cancellation of the operators (1 — B )d, (1 — B S)D on both sides of the fitted model.

Another tool to help one judge whether to use deterministic or adaptive seasonal 

components in modelling a periodic data set is spectral analysis which may prove 

useful; a sharp peak at the seasonal frequency and its harmonics corresponding to a 

deterministic component and a broader peak to an adaptive component. However, it 

is not easy to judge which model is better from the spectrum.

CASE 2: Conventional Additive Model Fits A Time Series 

Generated by A M ultiplicative Seasonal Model

However, if the model really is an “airline” type model, what will happen when we fit 

a model of the conventional additive form (5.6)? By noting that the solution of the 

homogeneous difference functions for f ( i ) and S(t) in (5.9) and (5.10) are equal to the 

deterministic trend and seasonal function f ( t ) and S{t) of the conventional additive 

form (5.6), the stochastic component y(t) of model (5.6) satisfies the following model

(1 _  £)(1 _  B s)y(t) = (1 -  faB)(l  -  <f>2B 3)e(t) (5.22)
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The above model is exactly the same as the model for x(t). It is expected, there­

fore, that the auto-correlation properties of y(t) should be exactly the same as the 

auto-correlation properties of x(t). Hence, although the sample variance of the in­

novation residual from the conventional additive model, var(y(/)), is less than the 

corresponding sample variance of x(f), say, var(z(/)), the innovation residual y(t) is 

still a non-stationary series which has the same stochastic structure as x(t). We can 

conclude that if x(t) is really a multiplicative seasonal ARIMA model, the innovation 

residual series, which is obtained by subtracting the “deterministic” trend and sea­

sonal components from x(t), is not stationary (actually the innovation residual series 

is also the same multiplicative seasonal ARIMA model as x(i)) unless the moving 

average side contains detrend and deseasonal factors which cancel with the detrend 

and deseasonal factors on the auto-regressive side.

Practical Aspect

From the above analysis, it can be seen that the multiplicative seasonal ARIMA model 

can still model a time series, which is generated by the conventional additive model 

(5.6), reasonably well but with an increase in residual variance from residuals which 

are nearly white noise. However, if a data set is generated by a multiplicative seasonal 

ARIMA model, the conventional additive model cannot fit the data set properly since 

the innovation or residual series is still of the same multiplicative seasonal ARIMA 

type as the original data. This is the reason why Abraham and Box (1978) claim that 

use of a multiplicative seasonal ARIMA model to fit seasonal non-stationary data is 

safer than the conventional additive model.

In practical cases it is very hard to know whether the underlying trend and seasonal 

component are nearly deterministic or totally adaptive. As we mentioned above, if 

the ratio of the error variance of trend to disturbance variance, <7^ / 0 ^ ,  and the ratio 

of error variance of seasonal component to disturbance variance, o \J o \1? are both 

very small, or equivalently, if there are approximate detrend and deseasonal factors
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as part of the moving average side of a fitted multiplicative seasonal ARIMA model 

which can nearly cancel detrend and deseasonal factors on the auto-regressive side, 

then the use of the conventional additive model may benefit from a smaller residual 

variance. However, there is no simple answer to how small those ratios should be and 

how close the moving average factors should be to the detrend and deseasonal factor 

on the auto-regressive side of any fitted multiplicative seasonal ARIMA model since 

this can vary from one model to another.

Therefore, the approximate detrend and deseasonal factor on the moving average 

average side of a fitted multiplicative seasonal model or sharp peaks in spectrum just 

indicate the conventional additive model may fit the data set better. On the other 

hand, if the innovation residuals from fitting the data set to a conventional additive 

model shows a similar auto-correlation pattern to the auto-correlation function of the 

data set, this indicates a multiplicative seasonal model may be more appropriate for 

the data set.

So far we have only considered cases where the trend and seasonal component are 

either totally deterministic or totally adaptive. However, in practical situations, one 

could have a model which is adaptive for certain components and not in others or 

both trend and seasonal are “nearly” deterministic. For these cases, the innovation 

residual series from a conventional additive model is nearly stationary and may have 

damped trend and some periodicity. Therefore, the innovation residual series may be 

modelled by an auto-regressive model such as

7 (B)y{t) = e(t)

where 7 (z) is a polynomial function of z in which all roots lie outside the unit circle 

and €\ (t) is white noise series with variance cP .

In fitting New Zealand half-hourly load data by a multiple ARIMA(p, <f, q) x 

(P, P , Q)a model, we experiment with the “airline model” ARIMA(0,1, 1) x (0 ,1, 1 )4 8  

to fit weekly differenced data, and find that the following model fits the differenced 

data reasonably well.

(1 -  B 48)(l -  B)y{t) =  (1 -  0.9B48)(1 -  0.4B)t(t) (5.23)



5.2. MULTIPLICATIVE MODEL VS ADDITIVE MODEL 143

where y(t) = x(t) — x(t — 336) is the weekly difference of the original data, and the 

estimated variance of e(t) is b\ «  2.0E-4. The coefficient of B 48 on the moving average 

side is 0.9 which is close to 1, i.e. the daily difference factor on the autoregressive

differenced data may achieve a smaller residual variance.

For data which is s periodic, the seasonal operator takes the form (1 — B s); as

which are evenly distributed over the unit circle. The homogeneous difference function

where the factors of the factorization of (1 — B s) correspond to the terms in (5.24).

It can be seen from the fitted model (5.23) that the factor (1 — 0.9548) on the left 

side of the above model is close to the term which removes the daily periodic factor, 

i.e. (1 — B 48) on the right side. From the analysis by Abraham and Box (1978), this 

fact indicates that the daily periodic component is nearly “deterministic”, and use of 

the conventional additive model (5.6) may be a suggested.

In addition, a periodic component can be fitted by the harmonic representation 

(5.24) if the periodic component is strictly periodic with period s. However, in a real 

data set, we can only observe the most apparent periodical pattern, and there may be 

other hidden periodic patterns which are not properly represented by the harmonic 

representation (5.24). For instance, the apparently periodicity of New Zealand half- 

hourly load data are weekly in period (336 points) and also daily in period (48 points) 

for weekdays and weekend days. Other periodic patterns (if any) are not so obvious. 

Furthermore, there may be only a number of the harmonics in the harmonic repre­

sentation which are significant. By employing the MXFFT described in chapter 4, we 

can search for significant seasonal harmonics and other hidden periods(frequencies) 

to fit the periodic component as follows

side. This fact indicates that the use of a conventional additive model on weekly

observed by Abraham and Box, the operator (1 — B s) has roots e2nik/s, k =

corresponding to this operator therefore has the form

(5.24)

A0 + ^2  cos +  Bi sm )it) (5.25)
significant w,
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Therefore, the harmonic representation (5.24) is a special case of (5.25).

On the other hand, in fitting New Zealand half-hourly load data directly to the 

multiple ARIMA(p, d, q) x (P, D, Q)s model, we experiment with the “airline model” 

ARIM A(0,1,1) x (0,1,1)336 to fit 12 data sets. Each of the data sets has three weekly 

samples of half-hourly electric load, starting from the first Monday of each month for 

April 1983, to March 1984. It can be seen from the trial results listed in Table 5.1 

that the some coefficients of B336 on the moving average side are quite close to l(see 

models for June, July, and October, 1983 in Table 5.1) and others are not so close to 1. 

In this case, it is very hard to determine at present which model is better the adaptive 

additive model or the conventional additive model. In the next section, we will show 

that the model ARIM A(0,1,1) x (0,1,1)336 is not adequate to fit the data because 

it ignores the daily periodic behaviour which cannot be covered by removing weekly 

periodic effect. Then we will discuss a more complicated model which may handle the 

multiplicative seasonal behaviour better than the Box-Jenkins multiplicative seasonal 

models.

Estimated ARIM A(0,1,1) x (0,1,1)336 Models for Three Weekly Sample Sets
Data set Model a2 AIC
Apr. 83 z(t) =  (1 -  0.4242B336)(1 +  0.3226B)t{t) 1.7743E-4 -8702.03
May 83 z(t) =  (1 -  0.3888B336)(1 +  0.3051B)£(«) 1.4826E-4 -8883.08
Jun. 83 z(<) =  (1 -  0.8870B336)(1 +  0.3547 1.6463E-4 -8777.51
Jul. 83 z(t) =  (1 -  0.9862B336)(1 +  0.2476ß)e(<) 9.8092E-5 -9299.44
Aug. 83 z\t) =  (1 -  0.38525336)(1 +  0.3161B)e(<)1.1718E-4 -9120.21
Sep. 83 z(t) =  (1 -  0.4406B336)(1 +  0.2359B)e(i) 1.0359E-4 -9244.47
Oct. 83 z(<) =  (1 -  0.9729B336)(1 +  0.1110B)e(<) 8.5380E-5 -9439.35
Nov. 83 z(t) =  (1 -  0.6251B336)(1 +  0.0050B)t(i) 9.7523E-5 -9305.31
Dec. 83 z(t) =  (1 -  0.39675336)(1 + 0.2226B)c(<)1.3336E-4 -8989.84
Jan. 84 z{t) =  (1 -  0.5241£?336)(1 +  0.1927ß)e(<)8.5010E-5 -9443.72
Feb. 84 z(t) =  (1 -  0.5323£336)(1 +  0.2825B)e(<) 1.5045E-4 -8868.30
Mar. 84 z(t) =  (1 -  0.2707B336)(1 +  0.0278ß)e(<)1.1458E-4 -9142.83

z(t) = (1 -  B336)(l -  B)x(t)

Table 5.1: Experimental “Airline” Model
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5.2.2 Long M emory and Short M emory M odels

By noting that the purpose of the de-seasonal difference operation (1 — B s) in a 

multiplicative seasonal model or in a general ARIMA model is to transfer long memory 

type time series (or non-stationary periodic time series) to a short memory type series 

(or stationary time series), Parzen (1982) recommended ARARMA model schemes to 

model non-stationary periodic time series. As with an ARIMA model, an ARARMA 

model consists of two filters, namely, a long memory filter and a short memory filter. 

This model is designed to filter the non-stationary periodic time series into a short 

memory type series and then to a no memory type series, i.e. the long memory filter 

transforms the long memory type series (or non-stationary periodic time series) into 

a short memory type series (or stationary time series), and the short memory filter 

transfers this short memory type series into no memory type series (or white noise).

Unlike multiplicative seasonal and ARIMA model schemes introduced by Box and 

Jenkins (1976) in which the long memory filter is constrained to be composed of a 

pure difference operation, a linear transformation of the AR form is suggested by 

Parzen (1982) as the long memory filter in an ARARMA model scheme. Since the 

pure difference operation is a special case of an AR form linear transformation, the 

ARIMA schemes are a special case of the ARARMA scheme.

More generally, a suitable ARIMA form linear transformation, where the roots of 

the characteristic function of the autoregressive part, AR, are outside the unit circle, 

can also serve as the long memory filter which transforms a long memory type time 

series, such as non-stationary periodic series, into a short memory stationary type se­

ries which can be adequately modeled by an ARMA model. The above long memory 

ARIMA filter and short memory ARMA filter comprise an AR(ARIMA)MA model. 

If the moving average term of the long memory ARIMA filter is invertible, the long 

memory ARIMA filter is equivalent to an AR(oo). i.e. the roots of characteristic 

function of the MA term are outside the unit circle, the long memory ARIMA filter 

can be approximated by an AR(n) filter with a finite order n. The order n is deter­

mined by an order-determining criterion such as the AIC, Hannan, CAT, Schwarz,
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etc. Therefore, the ARARMA model suggested by Parzen (1982) is a special case 

of AR(ARIMA)MA models. Because the long memory filter takes the form of an 

ARIMA, it is hard to specify unless one has a prior information about the long 

term behaviour of a time series. However, the AR(ARIMA)MA is still a very useful 

approach for some special circumstances.

After long memory filtering, the short memory series produced can be “whitened” 

by a short memory filter of the form of an ARMA(p, q) which has an equivalent 

AR(oo) form. With similar arguments to that for the long term memory filter, the 

short memory filter ARMA(p, q) can be adequately approximated by an AR(m) 

where m > p model which has a finite order, m, although an AR(p) scheme may be 

sufficient in many cases.

In summary, a time series based on an AR(ARIMA)MA model can be approxi­

mated by an AR(m)AR(n) model, and furthermore, some coefficients of the AR(m) AR(n) 

model may not be significant. For the sake of parsimony, the subset AR selection pro­

cedure described in chapter 2 can be employed to chose an optimum subset ARAR 

model to approximate the AR(ARIMA)MA model.

The major disadvantage of using the Box-Jenkins multiplicative seasonal type 

of model or AR(ARIMA)MA is that the modelling procedure is a trial and error 

procedure, and it is difficult to use a model selection criterion such as AIC, CAT, 

Hannan, and Schwarz to select a good model unless one has a good deal of knowledge, 

and experience with the Box-Jenkins modelling procedure. Consequently, it is very 

difficult to design an automatic procedure and to obtain a good model without certain 

restrictions on the model. The subset ARAR modelling procedure described in section 

5.2.2 overcomes the above disadvantage to a considerable extent. Once the maximum 

lag and suspected seasonal periods are specified, the proposed subset ARAR model 

procedure will automatically yield an optimum subset ARAR model. A subset ARAR 

model procedure is designed for the New Zealand short term data set as follows:

Step 1: Parzen (1982) has suggested a mechanism to search for lags in the long mem­

ory AR filter of his ARARMA model. However, this mechanism is not practical
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for the New Zealand half-hourly electric load because of the sample data which 

have to be employed to obtain weekly lag auto-correlations. The weekly lag 

cannot be convincingly identified by this mechanism for a long memory filter if 

only a few weeks of sample data are employed. Practically, however, we know 

that a weekly periodic pattern dominates the periodicity of this data set; and a 

daily periodic pattern dominates weekday (Monday to Friday) load variations. 

From the above a priori information, a subset AR model with lag 48 and 336 is 

specified to fit the series to generate a short memory series. So the expression,

(1 + Ö48 B 48 + Ö336 B 336)x(t) = y(t) (5.26)

represents a long memory filter to transform the long memory type series {z(£)} 

into a short memory type series {y(£)}

Step 2: Determine the order m of a short memory AR(m) filter, which is an approx­

imation to a short memory AR(oo), for the short memory type series {y(t)} by 

the order determination criterion, such as the AIC. We know that the AIC is 

the most “conservative” criterion among the well known criteria.

Step 3: The short memory series, |y(t)}, is fitted by the subset AR scheme de­

scribed in chapter 2, which, again, is an approximation for the AR(m) filter for 

the short memory series produced in step 1. As we know, there is an ordering 

in conservatism among the model selection criteria. The hierarchy governing 

AIC, Hannan, Schwarz, is that AIC is more conservative than Hannan and 

Hannan is more conservative than Schwarz. For parsimony, the first proposed 

short memory subset AR model is determined by Schwarz; the second proposed 

short memory subset AR model is determined by Hannan; and the third pro­

posed short memory subset AR model is determined by the most conservative 

criterion, AIC.

Step 4: Define the ith proposed model in Step 3 (i = 1,2,3). Start with i = 1 and 

test the “whiteness ” of the residual data produced by the ith proposed model.
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If the residual data set passes the “whiteness” test, it indicates the subset ARAR 

model containing the long memory AR filter (5.26) and the zth proposed short 

memory subset AR model is suitable to fit the sample data set, and we proceed 

the next step. If the residual data set does not pass the “white noise” test, go 

back to the beginning of this step with i =  i + 1. In most circumstances, the 

short memory subset model chosen by AIC is over-parameterized and is able to 

pass the “whiteness” test.

Step 5: Forecasting.
O

5.3 A p p lica tion

For comparing the performance of the two modelling methodologies, we consider:

• Adaptive Additive Model

M odel 1: Box an d  Jen k in s  m u ltip lica tiv e  seasonal ARIMA m odel 

Model 2: Multiplicative seasonal AR(ARIMA)MA model 

Model 3: Subset ARAR model

• Conventional Additive Model

Model 4: Ordinary conventional additive model (fixed harmonic frequencies 

for the deterministic seasonal component)

Model 5: Modified conventional additive model (Selected FFT frequencies for 

the deterministic seasonal component)

We apply them to the 4 different seasons for the New Zealand half-hourly load data 

set. Each sample data set for the different seasons contains three weeks’ data. The one 

week ahead forecast performance of the five models are also compared for the different 

seasons. The 4 sample sets for the 4 different seasons are described as follows:

Autumn Data Set 4th April, 1983 to 24th April, 1983
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Winter Data Set 4th July, 1983 to 24th July, 1983 

Spring Data Set 3rd October, 1983 to 23rd October, 1983 

Summer Data Set 9th January, 1984 to 29th January, 1984

5.3.1 How W ell D oes the Adaptive A dditive M odel Fit ?

Model 1: “Airline Model”

Fitting the data sets into an “airline” model frame work of the ARIMA(0,1,1) x 

(0 ,1 ,1 )3 3 6  form we have the results in Table 5.2, and the goodness of fit diagnostics in 

figures B.l, B.2, B.3 and B.4. From the plots of the residual auto-correlations, it can 

be seen that the daily auto-correlation (lag 48 autocorrelation) is significant in the 

residual data set produced by the “airline” models for the four test sample data sets. 

This suggests that the “airline” model is not adequate for the four sample data sets 

because daily “seasonal” patterns are not properly addressed in the “airline” model 

and cause significant daily auto-correlation in the residual series. In other words, the 

“airline” models only transform the “long” memory type series (adaptive linear trend 

and weekly periodic pattern) into a “short” memory type series and these “short” 

memory series are far from white noise. Following the idea of an ARARMA model, 

a short memory model, such as ARMA(p, q) and a subset AR(m), etc, is needed to 

transform the “short” memory series into white noise.

Data set Model b2 AIC
Autumn z(t) = (1 -  0.4242R336)(1 + 0.32 26B)taut{t) 1.77E-4 -8702.03
Winter z{t) = (1 -  0.9862R336)(1 + 0.24765)cwin(<) 1.50E-4 -8869.77
Spring z(t) = (1 -  0.9729R336)(1 + 0.1110B)e3pr(t) 1.46E-4 -8895.53

Summer z(t) = (1 -  0.5241R336)(1 + 0.1927J9)e,ttm(t) 0.95E-4 -9331.62
z(t) = (1 -  -  B)y(t)

Table 5.2: “Airline” Model for the Data Sets in Different Seasons

Model 2: M ultiplicative Seasonal AR(ARIM A)M A Model
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After examining the results from the ARIMA(0,1,0) x (0 ,1,1)336 trial fitting 

in Table 5.1, we observe that the estimated coefficient on B 336 from moving aver­

age side range form 0.27 to 0.98, and develop the following “long” memory filter 

ARIMA(0,1,0) x (0 ,1 ,1)336

(1 -  B336)( 1 -  B)y(t) = (1 -  0.5B™)z(t) (5.27)

as an adequate filter to convert our long memory type series (weekly periodical pat­

tern) into a short memory type series (only daily seasonal pattern present). After 

applying the above “long” memory filter to the 4 sample data sets, a multiplica­

tive model ARIMA(1,0,1) x (1,0,1)43 is recommended to fit those “short” memory 

series. These long and “short” memory filter models comprise our multiplicative 

AR(ARIMA)MA model for the four sample data set. The results from estimation of 

the parameters of these models are listed in Table 5.3 and the model diagnostics are 

given in figures B.5, B.6, B.7 and B.8.

Data set Model
Autumn (1 -  0.292R48)(1 -  0.30£)z(t) = (1 -  0.22£48)(1 + 0.12£)eolrt(f) 

(s.e.) (0.481) (0.211) (0.491) (0.218)
______________ a 2 = 1.37E-4,____________ AIC = -8962.70_____________

Winter (1 -  0.25R48)(1 + 0.18R)*(t) = (1 -  0.13R48)(1 + 0.32B)ewtn{t) 
(s.e.) (0.324) (0.258) (0.332) (0.249)

<r2 = 1.42E-4, AIC = -8926.56
Spring (1 -  0.23R48)(1 + 0.53B)z(t) = (1 -  0.035R48)(1 + 0.61R)espr(t) 
(s.e.) (0.148) (0.264) (0.152) (0.245)

<j 2 = 1.30E-4, AIC = -9015.56
Summer (1 -  0.38R48)(1 + 0.31 B)z{t) = (1 -  0.16R48)(1 + 0AbB)esum(t) 

(s.e.) (0.156) (0.238) (0.167) (0.224)
____________________ a-2 = 0 91E-4, AIC = -9375.10___________________

where (1 — f?336)(l — B)y(t) =  (1 — 0.5i?336)z(£)

Table 5.3: AR(ARIMA)AR Model for the Four Sample Data Sets

M odel 3: Subset ARAR Model

The proposed subset ARAR model procedure with model selection criterion AIC 

is employed to fit the four sample data sets and yields results listed in tables B.l, B.2,
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B.3 and B.4 of Appendix B.3, and the corresponding model diagnostics are given in 

figures B.9, B.10, B .ll and B.12. Comparing the “long” memory AR filters estimated 

for the four different data sets from the tables B.l - B.4 in Appendix B.3, we find 

that the “long” memory AR filters are similar, i.e. the estimated corresponding AR 

coefficients for the four different data sets are very close although the load profiles 

are quite different. This fact shows that the “long” memory type behaviour of the 

load data are similar. However, the “short” type memory behaviour is quite different. 

The differences are therefore reflected in the different nature of the “short” memory 

filters for the four different sample data sets in tables B.l, B.2, B.3 and B.4.

Model 4: Conventional Additive Model

The conventional additive model assumes that the deterministic periodic compo­

nent consists of harmonic frequencies of the fundamental frequency corresponding to 

the periodicity (see equation (5.24) ). By deleting those insignificant harmonic fre­

quencies, the conventional additive model is applied to the four sample data sets and 

yields the estimation for those significant frequencies which are responsible for the 

periodic behaviour of the load. The stochastic component is produced by subtracting 

the estimated deterministic trend and periodic components from the data set and is 

fitted by the proposed subset AR model. In Appendix B.4, tables B.5, and B.6 list 

the estimated results for the autumn data set; tables B.7, and B.8 list the estimated 

results for the winter data set; tables B.9, and B.10 list the estimated results for the 

spring data set; tables B .ll, and B.12 list the estimated results for the summer data 

set. The model diagnostic statistics are given in figures B.13, B.14, B.15 and B.16 

for the autumn, winter, spring and summer data sets, respectively.

M odel 5: Modified Conventional Additive Model

The modified conventional additive model assumes that pure discrete frequencies 

which are not necessarily harmonic to the fundamental frequency are responsible for 

apparent and hidden periodicities. The model for the periodic component is described 

in the last chapter and the first section of this chapter and is applied to the four sample 

data sets and yields the estimation of discrete frequencies for week days and weekend
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days, and the subset AR model for the stochastic error terms. In Appendix B.5, the 

estimated periodic components and the subset AR models for the stochastic error 

terms are listed in tables B.13, and B.14 for the autumn data set, tables B.15, and 

B.16 for the winter data set, tables B.17, and B.18 for the spring data set, tables 

B.19, and B.20 for the summer data set. The model diagnostics are given in figures 

B.17, B.18, B.19 and B.20 for the autumn, winter, spring and summer data sets, 

respectively.

The idea of model fit diagnostic checking is to look for clues that may indicate the 

specification is deficient in some way or another. Therefore, the estimated variance 

of the residual is a criterion to judge the assumed model. Apart from the residual 

variance, it is necessary to check there is no information left in the residuals, i.e. 

the residuals are white noise. There are three major checks or tests for whiteness . 

The first is the auto-correlation check which seeks significant auto-correlations in the 

residuals. If some auto-correlations are significantly different from zero, this indicates 

the residuals are not close to white noise, and the assumed model may not adequate.

The second commonly used diagnostic checking test is the portmanteau lack of fit 

test, i.e. the Box-Pierce x 2 test(see pp. 290 - 293, Box and Jenkins (1976)).

where m is the number of parameters estimated in a model; k is a constant and 

k > m; ri is the Tth lag auto-correlation of the residuals from the model; n is the 

number of sample data points used to estimate the model parameters.

If the model is adequate, i.e. the residuals are white noise, Q(k — m) should 

asymptotically satisfy a x 2 distribution with (k — m) degree of freedom.

The third is the cumulative periodogram check (for detail see pp. 294 - 298, Box 

and Jenkins (1976)). If the cumulative periodogram of the residuals from an assumed 

model exceed the 5% Kolmogrov-Smirnoff probability limits then this indicates that

5.3.2 M odel F it D iagnostics

k
(5.28)

* = i
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the assumed model is not an adequate fit to the data set. However, the cumulative 

periodogram only supplies a very rough guide to the significance of apparent devia­

tions. The deviations indicate the periodic effects have been inadequately accounted 

for by the assumed model if these deviations exceed certain probability limits. Nev­

ertheless, it does not mean the assumed model is an adequate fit to the data even if 

the cumulative periodogram is within certain probability limits.

From the cumulative periodogram check for the residuals from the five models 

(see Figure B.l to Figure B.20), it can be seen that the cumulative periodograms are 

all within the Kolmogrov-Smirnoff 5% probability limits. Therefore, the cumulative 

periodogram is not sensitive enough to compare the fit performance of the five models. 

On the other hand, the cumulative periodogram check for the five model indicates 

there is no strong evidence against the five models because of the failure to account 

for periodic effects.

Inspecting the other model diagnostic checks for Model 1 from Figure B.l to 

Figure B.4, we find that the residual auto-correlations at lag 48, 96, 144, 192 are 

significantly different from zero. This indicates that Model 1 does not properly ac­

count for the daily pattern of the load. In addition, the plots of probabilities of the 

Box-Pierce statistic Q(k — 2) are well below the 5% level at low lags, and the cumu­

lative periodogram are close to the 5% probability limits. These model diagnostics 

all indicate Model 1 is not adequate for our load data. The rest of the four models 

do not systematically violate zero residual auto-correlations as does Model 1.

Model 2 fits the sample data sets reasonably well but cannot pass the Box-Pierce 

test well at low lag auto-correlations which can be seen in the plots of the P-value 

for the goodness of fit statistics in figures B.5, B.6, B.7 and B.8. The only reason 

for that is that the “short” memory filter, ARIMA(1,0,1) x (1 ,0 ,1)48, may be too 

parsimonious to fit the data fully. A remedy can always be found through a more 

generously parameterized ARMA model to meet the goodness of fit test. However, a 

better fit within the sample data set from a more complicated model does not mean 

that a better model has been found, and that the more complicated model will yield
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Model /  Data Set Autumn Winter Spring Summer
estimated variance a2

Model 1 1.77E-4 1.50E-4 1.46E-4 0.95E-4
Model 2 1.37E-4 1.42E-4 1.30E-4 0.91E-4
Model 3 1.25E-4 1.37E-4 1.11E-4 0.82E-4*“
Model 4 1.26E-4 1.48E-4 1.17E-4 0.86E-4
Model 5 1.14E-4* 1.35E-4* 1.02E-4* 0.85E-4

AIC
Model 1 -8702.03 -8869.77 -8895.53 -9331.62
Model 2 -8962.70 -8926.56 -9015.56 -9375.10
Model 3 -9042.99 -8956.62* -9166.83 -9472.06*
Model 4 -9023.06 -8856.86 -9091.76 -9398.05
Model 5 -9111.95* -8949.52 -9230.06* -9421.84

Table 5.4: The Comparison of Estimated Variance and AIC for the Five Models

aSymbol * indicates the minimum estimated disturbance variances and minimum AIC values of 
the five models for the four different data sets.

good forecasting outside the sample; since more “short” model parameters are to be 

estimated for the “short” memory model and the forecasting confidence interval will 

be wider.

Box-Pierce tests at lag 336 for the residuals from Model 4 are always below the 5% 

level (see plots of P-value for goodness of fit statistic from Figure B.13 to B.16), and 

the cumulative periodogram of Model 4 for the Spring data set exceed the Kolmogrov- 

Smirnoff 5% boundary (see Figure B.15). These facts indicate that Model 4 is not an 

adequate model.

Model 2, 3 and 5 do not have any serious violations of model adequacy. The 

estimated variance and AIC for the five models are listed for the four sample data 

sets in Table 5.4. It can be seen that Model 5 achieves the minimum residual variance 

among the five models for three sample data sets although Model 3 achieves the 

minimum residual variance for the summer data set. Recognizing the penalty from 

the number of parameters estimated in these models, we used AIC to evaluate the 

five models. Model 3 achieves the minimum AIC for the winter and summer data 

sets, while Model 5 achieves the minimum AIC for the autumn and spring data sets.

In the adaptive model group, i.e. Models 1, 2 and 3, Model 3 performs the best
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in fitting the four sample data sets, and Model 2 is better than Model 1. These 

results clearly indicate that daily periodicity cannot be covered by the operation that 

removes weekly periodicity, and both weekly and daily periodic factors must be take 

into account in a model. Although Model 3 performs better than Model 2, it does not 

mean a subset ARAR model scheme is always better than an AR(ARIMA)MA model 

scheme because a subset ARAR model is a special form of AR(ARIMA)MA model. 

The advantage of the subset ARAR model scheme is that it is easy to implement an 

“automatic” procedure to select an optimal subset ARAR model efficiently while it 

cannot be so easily and efficiently done for the AR(ARIMA)MA model.

In the conventional model group, i.e. Models 4 and 5, Model 5 performs better 

than model 4 in fitting the sample data sets. The obvious reason is that the harmonic 

frequencies for weekly periodicity are not sufficient to model the periodic behavior 

of the data because there are extra “hidden” periodicities whose frequencies are not 

harmonic with the weekly frequency. These “hidden” periodicities, then, are passed 

on to the stochastic component and cannot easily be modelled by a subset AR model 

because the maximum lag for the subset AR scheme determined by the model selection 

criterion, AIC, is usually less than those reflecting the “hidden” periods.

The reason that the adaptive additive and the conventional additive models are 

selected from different data sets is due to the effects of weather conditions, especially, 

temperature on the electricity load. The winter and summer sample data sets are 

more “irregular” than are the autumn and spring sample data sets. Therefore, the 

deterministic trend and periodic components of Model 5 for the winter and sum­

mer sample data sets are not adequate to describe the stochastic behaviour of the 

trend and periodic components. For the same reason, as mentioned in section 5.2.1, 

the stochastic component of Model 5 may be still non-stationary and has the same 

stochastic structure as the sample data. However, the autumn and spring data sets 

are more “regular”, i.e. there is no marked weather sensitive load because of the 

moderate weather conditions in Autumn and Spring, and so, the trend and seasonal



156 CHAPTER 5. ON ADDITIVE DETERMINISTIC & ADAPTIVE MODELS

components are nearly deterministic, and therefore, Model 5 may be more appropri­

ate to model that data and so achieve a smaller residual variance than Model 3. The 

adaptive mechanism of model 3 is very sensitive to the size of the disturbance and 

therefore may cause mis-adaptation. Model 3 may not be appropriate to model the 

“regular” spring and autumn data set but may be more appropriate for the “irregu­

lar” summer and winter data sets. Nevertheless, Model 3 and 5 are the first or second 

best models in sample and which is the better varies with the season of the sample 

observed.

5 .3 .3  P o st-S a m p le  P r e d ic t iv e  T est

Since the best fitting model for within sample data may not guarantee the best 

forecasts out of sample, we conduct post-sample predictive tests and model evaluation 

for Model 3 and 5 with the maximum forecast of one week ahead. Because our 

primary interest is not only one step ahead prediction but also is multi-step ahead 

predictions, the post-sample multiple-step ahead predictive test and model evaluation 

become our major interests. However, the multiple-step ahead prediction errors are 

not independent of each other as are the one step ahead prediction errors, and the 

construction of a valid post-sample predictive test would have to take account of 

this dependence. Nevertheless, as Box and Tiao (1976) have shown all the relevant 

information for multiple-step ahead predictions is effectively contained in the one-step 

prediction errors, so we use the Chow-test. The quantities calculated arise from the 

post-sample predictions and are used to evaluate the two chosen models. 

k
Chow(Jfc) =  y V £ +,/ifcs* (5.29)

1 =  1

where e j+t- = {xr+i — X T + i \ r ) / w T + i1/2i w T+i  = prediction error weight,

ELi els =
T - L

, L — number of data used for initial estimates

Under the null hypothesis Ho : the one step ahead post-sample prediction will be 

worse than one step ahead in-sample prediction, Chow(k) ~  F(k ,T  — L ).
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The Chow statistics and their probabilities for a one week ahead post-sample 

prediction based on the four half-hourly sample data sets are listed in Table 5.5. 

From the Chow statistic values for Model 3, we can see that the null hypothesis Ho 

is rejected because there is no quantile of the Chow statistic exceeding 95%. This 

implies that the post-sample one step ahead prediction from Model 3 would not be 

worse. Similarly, the null hypothesis Ho is rejected when Model 5 is applied to the 

Autumn and Winter data sets. However, the null hypothesis Ho cannot be rejected 

when Model 5 is used for the Spring and Summer data sets. This indicates that 

Model 5 may not be appropriate. Therefore, overall the Chow-statistics for Model 3 

and 5 indicate Model 3 is better than Model 5.

Model/Data Set Autumn Winter Spring Summer
Model 3 0.384584 0.535147 0.975784 0.957431
Prob. (F(p,q)) 0(336,670) 0(336,626) 0.39(336,623) 0.33(336,623)
Model 5 0.429947 0.396865 2.00543 1.25816
Prob. (F(p,q)) 0(336,910) 0(336,909) 1(336,911) 0.99(336,911)

Table 5.5: Post-Sample One-step Predictive Test — Chow Test

Prediction errors for more than one step ahead, therefore, provide no additional 

information for assessing the internal validity of a model, However, they are useful 

in providing a measure of predictive performance which can be used as a basis for 

comparison with rival models. The obvious statistic to consider here is called the

extrapolative mean sum of squares
k

E M SS(T , k) = Yi 4 +;|t  (5.30)
i= 1

where e^+-)T = x T +i ~ x r + i \T , * = 1, ■ * *, &•

The EMSS from one day ahead to one week ahead are listed in Table 5.6. From 

Table 5.6, it is obvious that the forecasting performance of Model 3 is better than 

Model 5’s for the Spring and Summer data set; Model 5 is better than Model 3’s for 

the Autumn data set; and it is hard to judge which model is better for the Winter 

data set.
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L.T.a/D a ta  Set A utum n W inter Spring Summer
Model 3 Forecasting Performance

1 12.1E-2 3.17E-2* 7.15E-2* 2.58E-2*6
2 9.01E-2 4.26E-2* 6.68E-2* 2.71E-2*
3 7.48E-2 6.09E-2* 5.96E-2* 2.38E-2*
4 6.69E-2 7.54E-2 5.92E-2* 2.44E-2*
5 6.20E-2 9.94E-2 5.66E-2* 2.49E-2*
6 6.12E-2 11.5E-2 5.57E-2* 2.50E-2*
7 6.26E-2 12.6E-2 6.33E-2* 2.55E-2*

Model 5 Forecasting Performance
1 2.27E-2* 8.09E-2 8.24E-2 7.01E-2
2 4.24E-2* 7.93E-2 8.21E-2 6.37E-2
3 3.81E-2* 7.12E-2 7.37E-2 5.89E-2
4 3.86E-2* 6.64E-2* 6.68E-2 6.21E-2
5 4.33E-2* 6.28E-2* 6.19E-2 6.24E-2
6 4.96E-2* 6.51E-2* 5.91E-2 5.88E-2
7 5.32E-2* 6.81E-2* 6.34E-2 5.50E-2

Table 5.6: Comparison of Model 3 and 5 in Forecasting Performance 

aL.T. stands for the lead span day(s).
^Symbol * indicates the best predictive performance of a model compared to its competitor.

Because the above m ulti-step post-sample predictive performance comparison for 

Model 3 and 5 is not sensitive to the predictive performance on a particular day of a 

week, another comparison is conducted on the basis of the daily EMSS from the first 

day to seventh day ahead, and the results are listed in Table 5.7. From Table 5.7, 

we can see clearly th a t Model 3 performs better than Model 5 on the first day ahead 

in most cases except tha t Model 5 performs better than Model 3 in a significant way 

only on the first day ahead for the Autum n data set. The reason for this is tha t 

this day happens to be a public holiday Monday. Model 5 has adjusted its forecast 

values for this day because we know this day is a public holiday in advance. While 

Model 3 does not adjust its forecast values for this day. One simple adjustment can 

be made by replacing the forecast by the previous Sunday’s values in order to avoid 

large forecasting errors for this day.



5.4. SUMMARY 159

L.T.I.a/D ata Set Autumn Winter Spring Summer
Model 3 Forecasting Performance

1st 12.1E-2 3.16E-2* 7.15E-2* 2.69E-2*6
2nd 4.13E-2* 5.14E-2* 6.18E-2 3.23E-2*
3rd 2.38E-2* 8.66E-2 4.19E-2 1.88E-2*
4th 3.41E-2* 10.8E-2 5.85E-2 2.16E-2*
5th 3.69E-2* 16.3E-2 4.46E-2* 2.38E-2*
6th 5.74E-2* 17.2E-2 5.12E-2 2.42E-2*
7th 7.11E-2* 18.2E-2 9.74E-2 2.74E-2

Model 5 Forecasting Performance
1st 2.47E-2* 8.09E-2 16.2E-2 7.01E-2
2nd 5.50E-2 7.79E-2 3.23E-2* 5.70E-2
3rd 2.78E-2 5.12E-2* 2.97E-2* 4.82E-2
4th 4.05E-2 4.98E-2* 2.55E-2* 7.11E-2
5th 5.88E-2 4.62E-2* 4.70E-2 6.42E-2
6th 7.34E-2 7.55E-2* 4.95E-2* 3.54E-2
7th 7.15E-2 8.42E-2* 6.28E-2* 2.13E-2*

Table 5.7: Comparison of Model 3 and 5 in Daily Forecasting Performance 

aL.T.I. stands for the lead daily interval.
^Symbol * indicates the better predictive performance of a model compared to its rival model.

5.4 Summary

Although Model 3 fits the winter and summer data sets better than Model 5 does, 

the m ulti-step ahead predictions of Model 3 may not definitely be better than Model 

5’s. A typical example is the post-sample predictions for the winter data. From Table 

5.6 and 5.7, we can see tha t Model 3’s performance is better in first two days ahead, 

and Model 5’s performance is better from three to seven days ahead. A similar thing 

happens for the spring and autum n sets. Although model 5 fits better in sample, this 

does not guarantee tha t Model 5 will produce better multi-step ahead predictions.

From examining the trend and seasonal update functions of an adaptive additive 

model, we know tha t the difference between the trend of a adaptive additive model 

(Model 3) and a conventional additive model is tha t the former trend component in 

the post-sample period only relies on the estimation of the adaptive trend component 

at the last point of a sample data set(see equation (5.14) and (5.15) while the latter 

trend component in the post-sample is dependent on the estimation of the “average”
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trend in the sample. Therefore, because it is believed that there is no dramatic changes 

of trend in our data, Model 3 will be better for a “small” multi-step ahead prediction, 

and Model 5 will be more reliable for a “large” multi-step ahead prediction.



C hapter 6

W eather Sensitive Load

6.1 In trod u ction

Existing load forecasting techniques are basically categorized into two distinct classes:

• Non-Weather Related Load Models

• Weather Related Load Models

Weather conditions have a significant effect on electricity consumption whenever 

substantial cooling and heating loads are present. Weather Related Load Models have 

gained attention primarily because of their improved accuracy over the Non-Weather 

Related Load Models.

In most load models, the weather related load is one component of the net load 

demand, i.e.

yt =  zt + xt + vt (6-1)

where yt is net load; zt is the weather insensitive component or base load component; 

xt is the weather sensitive component; vt is a disturbance component.

There are many ways to model the base load component, such as ARIMA, State 

Space, Harmonic analysis, etc. In this chapter, we concentrate our discussion on 

weather sensitive load modelling.

161
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It is known that the electricity load and the corresponding temperature measure­

ment are nonlinearly related. One can hypothesize and also find evidence that the 

nonlinear relation also varies with time. Weather Load Related Models considered 

are further classified as Regression Models and Stochastic Models. Regression Models 

involve the effect or impact of more than one weather variable on the load, whereas 

Stochastic Models attempt to model properly the stochastic behaviour of the load.

In this chapter, we will build non-linear regression models for three-hourly elec­

tricity load for Canberra and then select and estimate parameters for the proposed 

models. After selecting an optimal model, we can decompose the load data into the 

weather sensitive and insensitive components; and the profiles of these components 

will be discussed. The stochastic effect of the weather sensitive component will be 

presented in chapter 7.

6.2 P rev iew

Before building a nonlinear modelling structure for the relationship of load and tem­

perature, several nonlinear models depicting this relationship in the literature are 

summarized below:

E m pirical N on -lin ear Function

In many reports, it was found that the values of correlation functions correspond­

ing to weather variables other than Temperature and Humidity were always outside 

confidence bands corresponding to two standard deviations about zero. Correlations 

corresponding to humidity were relevant only in Summer. The above evidence reflects 

the reality that most cooling and heating devices are thermostatically controlled and 

that the cooling devices, especially air conditioners, are not only dependent on tem­

perature but also on humidity in summer.

In general, the temperature effects on the electricity load is a nonlinear relation­

ship. The higher the temperature the greater the electricity demand for cooling; the
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lower the temperature the greater the electricity demand for heating. In the litera­

ture of modelling the electricity demand or consumption, linear time series models (or 

linear system models) are usually employed. In order to explain the load behaviour 

more precisely, the weather conditions, especially temperature, are employed as an 

explanatory variable for the load. Because a nonlinear relationship exists between the 

load and the corresponding temperature, it is unreasonable to employ temperature 

as an exogenous variable directly in the linear system models to explain the weather 

sensitive component of the load. One way to overcome this is to find the nonlinear 

relationship, then transforming the temperature by the nonlinear relation into a new 

variable which is linearly related to the load, and using this new variable as> exogenous 

to the linear system model.

Many experiments shows that a positive (negative) temperature deviation ATt 

from usual temperature, implying unusually hot (or cool) weather, leads to a load 

increase caused by extra cooling requirements in summer (or heating requirements in 

winter). Galiana et al. (1974) constructed the following non-linear function listed in 

Table 6.1 where Wt depends on the actual temperature T and the average temperature 

T, i.e. Wt = Wt( T , f )

T ( F ) Cooling + Heating 
(T -  70) -  (60 -  T) 

W  = T  + f  -  130

Cooling 

W = T -  70

Cooling 

W = T - T
70° Heating 

W = -(60  -  T)
No Effect 

W = 0
Cooling 

W = 70 — f
60° Heating 

W  = - (

Heating 

W = - ( T -  60)

Cooling + Heating 
(70 — T) -  (T -  60) 

W  = m - T - T
0 60° 70° T ( F)

Table 6.1: Non-linear Function W  Actual Temperature T  to Average Temperature f

This non-linear function transforms the real temperature into a new temperature 

index Wt(T) which is roughly directly proportional to the load. Thus, it has clear 

physical explanations, i.e. the temperature does not lead to any extra load if it is



164 CHAPTER 6. WEATHER SENSITIVE LOAD

between 60°F to 70°F. The temperature may lead to extra heating(cooling) load if 

it is less(greater) than 60°F(70°F) and the extra load is directly proportional to the 

new temperature index Wt. Nevertheless, this relationship is not time variant and is 

a crude approximation to the unknown true relationship between weather conditions 

and the loads.

As mentioned at beginning of this subsection, humidity is an influential mete­

orological factor in addition to temperature in summer. Campo and Ruiz (1987) 

introduced the combined effect on load of temperature and humidity. The so-called 

Temperature-Humidity Index (THI)  is defined as follows:

T H I  = DT -  0.55(1 -  RH/100)(DT -  58) (6.2)

where DT  represents Dry-bulb Temperatures in degrees Fahrenheit and RH  repre­

sents Relative Humidities in percentage.

He claims that THI instead of temperature T  is more reasonable in Table 6.1 if 

T  and T  are replaced by THI and T H I , respectively.

Engle et al. (1986) proposed a semi-parametric estimation procedure for the re­

lation between weather and electricity sales in which the model for the relation is 

presented in a regression form with temperature regressors carefully segmented into 

temperature variables. The optimal model or smoothing parameter is selected by the 

generalized cross-validation criterion. The problem with this approach is that it is 

quite expensive to search over smoothing parameters. Generally only a very rough 

grid search is performed and the bias in such a mixed parametric-nonparametric 

model is not well understood. Therefore, reliable confidence intervals are difficult to 

compute for the estimated curves.

Hagan and Behr (1987) suggested that if a simple model can be found for the 

load/temperature relationship and thus, provides significant improvement over non­

weather related load models, it will indicate that a nonlinear model development 

is a fruitful area for future research. To use the nonlinear relationship in a load 

forecasting scheme, they suggest using a polynomial function to fit the kind of non­

linear relationship believed necessary after examining scatter diagrams of hourly loads
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vs hourly temperatures for different data sets. The methodology for modelling the 

load-temperature relationship is to transform temperatures to a weather variable by a 

fixed polynomial function based upon fitting the past load-temperature relation, and 

then to relate the residuals of both load and transformed weather variables through 

a linear transfer function relation. In their paper, a third order polynomial was 

employed to fit the load/temperature relationship. Their specification demonstrates 

the value of using a nonlinear transformation in relating Tt and Wt and so improving 

the forecast performance.

Lu et al. (1989) argue that the nonlinear relation between temperature and load 

is time variant i.e. the sensitivity of load to temperature is different at different 

times of a day. Therefore, it is not appropriate to ignore the time factor in the 

load/temperature relation. They suggest updating the coefficients of a third order 

polynomial function in a recursive way to model the nonlinear relationship. In this 

way, the time factor can be properly taken into account.

In principle, a polynomial function with high enough order can be used to fit the 

relationship approximately. The order of the polynomial can be determined by various 

criteria. The disadvantage of polynomial fitting is the lack of physical explanation 

derived from this approach. Another disadvantage is that the fitted curves may not 

be consistent with the real world. For instance, an order three polynomial function 

was employed to fit the load/temperature relation at 9 and 12 o’clock based upon 

the load and temperature data set from the Canberra region in 1987. Three fitting 

approaches have been used namely least square, absolute residuals, and M-estimates(a 

robust estimation approach, where the bisquare function is chosen as the robust 

function). The latter two approaches give robust estimates to avoid outliers affecting 

the estimation of the polynomial coefficients. No matter which approach is used, it 

can be seen that the fitted curves are not realistic. The fitted curve indicates that the 

lower the temperature the less the load demanded when the temperature is lower than 

35 THI at 9 o’clock (see Figure 6.1). The fitted curve shows an unrealistically high 

demand when the temperature is higher than 75 THI (see Figure 6.2). It is clearly
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contrary to the expected relation. The above example suggests that a third degree 

polynomial function may not be a suitable way to describe the nonlinear relation 

between load and temperature, at least, for our data set.

Summarizing the existing methodologies in the literature, we find first the need 

for a transformation of weather conditions into a weather variable which is then 

linearly related with the load. The transformed variable is then to be used as an 

exogenous variable in a linear model system which describes the load. To overcome 

the disadvantages of Galiana’s model and the polynomial model, a different approach 

has been developed to incorporate the nonlinear relationship between the load and 

weather conditions in the remainder of this chapter.

6.3 A W eath er S en sitive  M od el

We primarily use a linear regression model to fit the daily average load by daily0 

weather variables, such a maximum temperature (xi), minimum temperature (X2), 

evaporation (X3) which is a function of humidity, wind speed above 3 metres (x4), 

wind gust speed (x5), sun duration (x6), and daily type variables (x7, x8 are dummy 

indicator variables for Saturday and Sunday). The load on weekdays is assumed to 

be identical. In fact, the differences between the load on weekdays is insignificant if 

different weekday dummy variables are included in the linear model. The goodness 

of fit and estimated parameters are shown in Table 6.2.

There is no evidence that wind speed above 3 metres, wind gust speed or sun du­

ration affect the load significantly. Whereas temperature(minimum and maximum), 

evaporation(or humidity) and weekend days are significant at the 0.01 significant level 

-  see Table 6.2. We, therefore, adopt the Temperature Humidity Index( THI) (see 

equation (6.2) ) as a single weather variable and investigate its relation with the load.
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Least Squares Fit THI Polynomial to Load

Absolute Residual Fit THI Polynomial to Load

M-Estimates Fit THI Polynomial to Load

Figure 6.1: Third Order Polynomial Fit for the Load/Tem perature Relation at 9 
o’clock from the Load &  Temperature Data Set of 1987
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Least Squares Fit THI Polynomial to Load

Absolute Residual Fit THI Polynomial to Load

M-Estimates Fit THI Polynomial to Load

<* *

Figure 6.2: Third Order Polynomial Fit for the Load/Temperature Relation at 12 
o’clock from the Load and Temperature Data Set of 1987
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Residual Standard Error = 0.0659, R2 = 0.9316 
F-statistic = 563.5807 on 8 and 331 df, p-value = 0

coef. std.err t.stat p. value
Intercept 11.6875 0.0195 599.6757 0.0

X\ 0.7133 0.0408 17.4810 0.0
X2 0.3289 0.0377 8.7277 0.0
* 3 -0.0076 0.0019 -4.0283 0.0001
X4 -0.0001 0.0 -1.0998 0.2722
Xs 0.0011 0.0006 1.9551 0.0514
X6 -0.0009 0.0014 -0.6389 0.5233
x7 -0.1066 0.0106 -10.0630 0.0
x 8 -0.1456 0.0106 -13.7774 0.0

Table 6.2: The Linear Regression of Daily Load on Weather Variables

6.3.1 M odel Building

From the shape of scatter plots of the load against THE we find that the shapes appear 

concave and that the load reaches a minimum around a value of 6577/7 (vertex) at 

different times (three hours interval) of a day. The load increases when THI decreases 

or increases away from the vertex. The temperature sensitivity of the load depends 

on the capacity of electric heating and cooling devices and their efficient usage in the 

region in which the load data were collected. The efficiency of an electric heating (or 

cooling) device is measured by the ratio of the capacity of the device and the time 

required to return an existing low (or high) temperature to the desired or specified 

level. Roughly speaking, the bigger the capacity and the lower the efficiency, the the 

higher the temperature sensitive loads; and vice versa. For instance, the nonlinear 

relation could be symmetric about the vertex with a bounded saturation value if the 

capacities for heating and cooling are the same with the same efficiency. Furthermore, 

the capacities are time variant; for example, the heating and cooling facilities in an 

office building are fully responsible for the temperature during working hours. Those 

cooling and heating facilities may never be used during non-working hours.

The point is that those capacities and efficiencies are unknown. Therefore, we have 

to use a statistical approach to specify a model for the load/temperature relationship.
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An assumption is made to specify a special case before we deal with the general case 

which can be approximately solved through modification of the solution of the special 

case.

A ssum ption 6.1 The capacities for heating and cooling are same, with the same 

efficiency, in the region in which the load data were collected. The nonlinear function 

between load and temperature is a continuous function with continuous first deriva­

tives.

As mentioned above the nonlinear function could be symmetric about the vertex 

with a bounded saturation value arising from the above assumption. Suppose, the 

nonlinear function is

Vt = f t(xt) + tx (6.3)

where yt, x t, ex are the load, temperature and stochastic error at time t. According 

to the above analysis, the nonlinear function f t must satisfy:

df
— Ix-D— 0 (vertex point at D )

f t(xt) = f t(2D — x t) (symmetric about vertex) 

lim ft{xt) = A (a bounded saturation value)
I t — > ± 0 0

The other two parameters in f t are required to describe the temperature sensitivity 

rate and the impact of concavity. In various families of functions, we find the following 

form for f t is appropriate to meet our demands:

/ 1(i,)  =  A +  Ce-<*'-',),/E

the term e-lxt~Dr / E is a “bell” shape function, symmetric about D. The parameter 

E(>  0) controls the “bell” shape, the larger E , the flatter the “bell” and vice versa. 

Therefore, the parameter E  reflects the sensitivity of loads to the corresponding 

temperature changes. C shows the impact of the “bell” .
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d f t ( x t )  _  Q c ^Xt  ~  ^  c - ( x t - D ) 2/ E
dxt E

is anti-symmetric about D.

In more general cases, however, the derivative of the nonlinear function f t may not 

be anti-symmetric about D due to the inequality of capacities for heating and cooling 

and their efficiencies. An adjustment can be made to the form of the derivative as 

follows

^ 1  = B{xt) + 2 c (x‘ - g ) e -^ -g )2/£ (6.4)
dxt E

where B(xt) is an adjustment term to meet the asymmetry of the nonlinear relation 

of load and temperature. B(xt) = 0, if the relation is symmetric about D.

For choosing the form of B(xt), we examine what are the properties of B(xt). 

Suppose, the cooling load is more sensitive than the heating load in the considered 

area i.e. there exists a region Ac = {xt : |xt — D | < 8C, 8C > 0}. In this region, 

the absolute value of the first derivative of the proposed load/temperature function 

at any point which is less than the value of the vertex would be greater than the 

absolute value of the first derivative at the point which is symmetric to the former 

point about the vertex. In other words, the rate of change on the lower side of the 

vertex is greater than the rate of change on the other side for any pair of points which 

are symmetric about the vertex in the region Ac.

G Ac, we suppose < D without loss generality, the first derivative of /*(:r*) 

should satisfy
dft(xt) - .  dft(xt) .

dxt 'rt=x(t°)_  dxt ^*=x*1)

where x[1̂ = D + (D — = 2D —

Because and xj1* are symmetric about D and

-2C (x i0) -  D ) e - ^ - D?lE = 2C(x<1) -

then,

- B ( x S0)) > i1*)
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Therefore, Vxt € Ac, B(xt) < 0 and B(D) = 0.

Furthermore, because the load yt{xt) reaches bounded saturation values when 

xt —* ±oo, therefore,

lim B(xt) = 0

On the other hand, if the cooling load is less sensitive than the heating load, there 

exist a region =  {xt : |xt — D\ < 6h, 8h > 0}. For any x t € A B(xt) > 0, 

B(D)  = 0 and limXt_±oo B(xt) = 0.

.It can be concluded that the adjustment term B(xt) keeps the same sign for both 

x t < D and x t > D cases, i.e. B(xt) < 0 (B(xt) > 0) if the cooling (heating) load is 

more sensitive than the heating (cooling) load and is relevant to a certain region of 

temperature only.

Integrating the expression for the derivative (6.4) produces

f , (x t) = A  + J  B{xt)dxt + C

and because limIt_*oo yt(xt) = c (saturated value), lim^^-too f  B(x t)d(xt) = constant, 

we have

B(xt) = o(xj_1) when \xt — D\ is big enough

For instance, if the cooling load is more sensitive than the heating load, B(xt) < 0 

and B(xt) has a profile as shown in Figure 6.3.

Even when the profile of B (x t) is known, the exact model for B(xt) is not easy 

to specify. It may have a complicated form and many unknown parameters. For the 

sake of parsimony, we make

A ssu m p tio n  6.2

1. The adjustment is linear, i.e. B(xt) is a constant.

2. The effect regions Ac or A/» must be realistic, i.e. the temperature region is 

based on the conditions in the area where the data was collected.

This assumption means that B(xt) is defined in the real temperature region and 

then as an approximation, we replace B(xt) in the load/temperature model by its
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—  Real Value o f B 
• • * • • Approximation o f B

Real Temperature Range

10 20 30 40 50 60 70 80 90

x(JHI)

Figure 6.3: The Profile of Adjustment Term B(x t) When Cooling Load Is More 
Sensitive than Heating Load

average B  (see dotted line in Figure 6.3). Under the above assumptions, the nonlinear 

load/temperature relationship can be modelled by the following expression,

y,{x,) = A + B x ,  + C e-(*,-D)'/B + u  (6.5)

To identify the above nonlinear equation, a nonlinear regression procedure is 

needed to estimate parameter set 0  = {A, £?, C, D, E}.

6.3.2 M odel Estim ation

The regression model (6.5) can be thought of as being made up of a deterministic 

part /(x* ;0) = A + B x t 4- C e- (jr‘-D)2/E and stochastic part tx. Although a wide 

variety of assumptions about tx are possible , the most frequent assumption about it 

is that it is independently and identically normally distributed with a constant but 

unknown variance a2. Unlike the linear regression model, the normal equations of 

a nonlinear regression model do not lead to an explicit expression for 0 . The least 

squares estimates 0  are obtained only by an iterative procedure starting from some
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assumed value of 0 O. An important point is that the least squares estimator 0  of 0  

for the nonlinear model does not have the properties of a least squares estimator of 

a linear model. For instance, 0  is a biased estimator of 0  for the nonlinear model, 

however, a least squares estimator for unknown parameter set of a linear model is 

an unbiased estimator. For finite samples, the general statement may be made that 

even though yt may be normally distributed about its mean f ( x t; 0) with some finite
A

unknown variance a2 for all x, 0  is not a linear combination of yt and hence in general 

is not normally distributed, nor is it unbiased, nor is it a minimum variance estimator. 

Thus, unlike a linear least squares estimator, a nonlinear least squares estimator for 

0  has essentially unknown properties for a finite sample size. Under the assumption 

for the disturbance term, cx ~  NID(0, <r2), the nonlinear least squares estimate of the 

parameter set 0  in the deterministic part of a model is asymptotically unbiased, has 

asymptotic minimum variance and is asymptotically normal ( see Chapter 12, Seber 

and Wild (1989) for a discussion).

However, there is often little understanding of the stochastic nature of the model. 

If such a model is fitted by, for example, least squares, the residuals ex = yt — / (x t, 0 ) 

may provide some insight into the validity of the model and the error assumptions. 

Although such residuals can be misleading, particularly if the model is highly non­

linear, they still can be used to diagnose independence, to assess the normality of 

the disturbances, and whether the moments are identical. The independence can be 

tested via the auto-correlation of eXt. The identical nature depends on the moments 

of the distribution of tx at each x, particularly the variance. In some cases, the magni­

tude of deviations from an estimated model depend on the magnitude of the response 

variable y. Seber and Wild (1989) (pp. 77 - 79) give an example to illustrate that a 

nonlinear least squares estimates of a parameter set 0  of a model may give completely 

misleading estimates if there is variance heterogeneity although the nonlinear least 

squares estimator is asymptotically unbiased, has asymptotic minimum variance and 

is asymptotically normally distributed.

To remedy this problem, there are two methods of modelling available: (1) the
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transformation method, (2) the weighted least squares method. The main differ­

ence between the two methods is that the transformation method transforms so that 

transformed response variable h(yt) =  h(f (xt,0))  + t* has a different distribution as 

well as having a homogeneous variance structure. Whereas the weighted least square 

method models the variance heterogeneity but leaves unchanged the distribution of 

response variable y. In practice, however, the transformation chosen for the transfor­

mation method may not achieve the desired objective; also the estimated weights of 

the weighted least squares may depend on the parameter set 0  to be estimated. It 

should be noted that transformation and weighting change the values of parameter 

estimation and the standard errors of the estimates relative to the values obtained in 

the absence of weighting for finite samples. However, only when there is a marked 

non-homogeneity of variance will the differences between the weighted solution and 

un-weighted solution be considerable. For some practical data, it is often very dif­

ficult to detect, with any confidence the evidence of non-homogeneity of variance. 

The question of whether the distribution of ex at each x is normal is very difficult 

to resolve unless one has large samples. With large samples, the so-called quantile- 

quantile plots of the expected normal quantiles versus the residual from the fitted 

model may reveal departures from the normality assumption. With small samples, 

detection of non-normality may be tested by bootstrap techniques which usually will 

be extremely computer intensive and are not considered here.

Assumptions on which statistical models are built may often be based on limited 

knowledge. The extent to which the accuracy of a model may be affected by certain 

deviations from assumptions is an important general question. Another procedure, 

which is designed to make as few assumptions about the basic features of the data as 

possible, is called robust data analysis, which includes robust regression. This proce­

dure is discussed in a book edited by Hoaglin et al. (1983). The concerns addressed 

by robust regression are focused on assumptions regarding the shape of distribution 

function of the assumed random error term ex. A robust estimate of a model can



176 CHAPTER 6. WEATHER SENSITIVE LOAD

make the model estimates robust to the effects of outliers. An outlier is an observa­

tion that is aberrant or unusually different from the rest of the observations. Often 

outliers arise in real data from known causes such as a change in pricing policy, a 

business promotion, or a labour strike. In his book, Huber (1981) established the 

effect of outliers on modelling in the case of an i.i.d. random variable.

For the nonlinear model (6.5), the normal equations for the least-squares estimate 

0  axe

f ( x t,e )]  = 0 (r =  l , •••,?) (6.6)
t= 1 UUT

If there is variance heterogeneity, by using weighted least-squares estimate, the 

normal equation to estimate 0  become

S  w< ^  [yt -  f ( xt, Q )]  = 0 (*• = 1, - - -,p) (6.7)
t = 1 V v r

When the weights wt in equation (6.7) are unknown, the most common method of 

estimating parameter 0  in the deterministic part of model (6.5) is to apply weighted 

least squares with estimated weights wt. This method is called generalized least 

squares where the weights wt are usually estimated from the variance of ex. For 

this reason, the modelling of the variance function is critically important to obtain 

the correct weighted least squares estimate of 0 . In variance function estimation, 

we often try to understand the structure of variances as a function of the predictor 

variable x t, e.g.

a? = var(ex) = g(x t , $ ) (6.8)

On the other hand, there are many instances where the variance function is an 

important component of independent interest and not just an important part of es­

timating the deterministic component of model (6.5) since our interest is not just in 

estimating the response yt from an observed variable x t but also in the associated 

confidence interval. This interval is primarily determined by the variance function 

(see Watters (1987) for detail).
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If outliers are a problem, a more robust method of estimation is needed. The 

outliers, which can be thought of as arising when the stochastic error term has a long 

tailed distribution, tend to have small robustness weights and therefore do not play a 

large role in the estimation of parameters of the model, By analogy with robust linear 

regression, an M-estimate 0  of 0  is the solution of ( Huber (1981) ) the equations 

df (x ,Q)  y , ~  f ( x t,@) . ,
“ M T H ------- ? --------- 1 =  0 ( r  =  1’ - ' - ’p)

where xp is a suitable function which down-weights or omits extreme values, and <r2 is 

a robust estimate of dispersion (for a brief summary of robust estimation for simpler 

models see ( Seber (1984), section 4.4). There are many robust function ip, such 

as Andrews, Bisquare, Cauchy, Fair, Huber, Logistic, Talworth, Welsch (see Hampel 

et al. (1986) for detail). The choice of xp is a matter for each investigator to decide 

based on each function’s particular properties.

Therefore, if there is variance heterogeneity as well as outliers in a data set, a 

robust and weighted least-squares estimate should be used. There are many methods 

to estimate 0  in / (x f,0 )  and ^  in g(x*,\I'). Basically, however, there are two kinds 

of methodologies (1) an iterative estimation approach (2) a simultaneous estimation 

approach. In the first, we estimate 0  with a given initial ^  and using l/#(x t,4/) as 

weights at the first step; then update $  using the estimated 0 ,0 ,  which generates the 

residuals from the estimated /(x*,0), and so on. In the later approach, 0  and are 

estimated simultaneously. There are many estimators for 0  and $ in both approaches, 

such as least-squares, maximum likelihood, etc. The least-squares estimator is used 

in our study. The advantage of the least squares estimates in the first approach is 

they are simple and numerically stable; the disadvantage is that the estimated 0  and 

v£ are more biased than in the second approach. The advantage of the least square 

estimates in the second approach is there is less bias than in the first approach; 

the disadvantage, however, is that the non-linear least squares optimization problem 

can be so complicated that numerical solutions do not easily converge and may not 

necessarily be stable (see Carroll and Ruppert (1988) for a discussion).

It can be seen that the load/temperature relation is very scattered from Figure
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6.1. For instance, the spread of load is lower when THI is below 50 or is beyond 

70, and is higher when THI is in between 50 and 70, for the electricity load against 

THI at 9 o’clock. The above evidences implies that people can tolerate more tem­

perature changes around 60 THI and do not in that region change their habitual 

electricity use as much. This is consistent as, for example, most people can wear 

more clothes instead of using heating devices when the temperature drops from 25C° 

to 15C°. Nevertheless, most people cannot accept colder temperature, without us­

ing heating devices, when the temperature drops from 15C° or lower. In statistical 

terms, the evidence implies that the error variances are not identical. In addition, 

there are some load points far from the others. This indicates that outliers are a 

problem. There is always the danger that minor problems with the data or the model 

will destroy the good properties of the classical estimators. Even seemingly slight 

deficiencies in the data or small modelling errors can have disastrous effects. As 

many authors have pointed out, a single outlier in a large data set can overwhelm the 

normal-theory maximum-likelihood estimator. Also, when the errors in a regression 

model are close to normally distributed but with heavier tails, then the least-squares 

estimator can be substantially less efficient than certain alternative estimators. The 

latter include robust estimators using the actual distribution of the errors when this 

distribution is known. Overall evidence, therefore, suggests that we can use a robust 

and weighted least-squares nonlinear regression to handle the variance heterogeneity 

and those pathological pieces of data and so avoid misleading parameter estimation. 

Therefore, we use the first approach to estimate 0  and

The problem is that we do not have enough information about the initial values 

of 0  and the formulation of the variance function <7(2*, $) although the formulation 

of the deterministic part, /(x* ,0 ), the load and weather condition relation, was con­

structed in the last section. We have developed a two stage estimation procedure to 

deal with this initial problem and to avoid the influences of variance heterogeneity 

and outliers.

In the first stage, a robust locally weighted smoothing developed by Cleveland



6.3. A WEATHER SENSITIVE MODEL 179

(1979) is employed to smooth the load/temperature relation. The advantage in using 

Cleveland’s smoothing algorithm is that the algorithm does not make any assumptions 

about the data, and it can avoid the disadvantages of an initial assumption on the 

form of the variance function and on its parameter estimates since the algorithm does 

not estimate the model parameter 0 . Rather it estimates a robust locally weighted 

regression the response from a linear model, on a sectional basis, arising from an 

approximation of the deterministic part of the model. We assume the smoothed data 

are a realization of the “true” deterministic function at this stage. A nonlinear least- 

squares procedure is applied to the smoothed data to estimate the model function 

parameters. There are a great many algorithms to find the least squared estimator 

for non-linear models in the literature (see a review paper by Chambers (1973)), such 

as Gauss-Newton, Newton-Raphson, Levenberg-Marquardt, etc. The properties of 

those algorithms will not be explored here but we refer to Ratkowsky (1983) pp. 155 

for a discussion. In our study, the Gauss-Newton algorithm is employed to give a 

simple solution.

There are no simple model criteria available to test and to select model functions 

wrhich are based upon robust and weighted estimates where variance heterogeneity 

and outliers are involved. The model functions estimated based on the smoothed data 

are tested in the next section, although initial model estimation, testing, and other 

assessments based on model discrimination criteria, established under the assumption 

of independent, identical and normally distributed disturbances, must be affected by 

the smoothing of the data. The variance function construction and estimation will 

be discussed after the model function based on the smoothed data has been finalized.

In the second stage, the estimated model function parameters, 0 , and the variance 

function structure and its estimated parameter 4* serve as the initial values for an 

iterative weighted and robust estimation procedure presented in section 6.4. The 

procedure is applied to the original data to estimate the model function parameters 

0  and variance function parameters
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6 .3 .3  M o d e l S e le c tio n

From Galiana’s empirical nonlinear relation between the load and THI, the parameter 

D in the model (6.5) should be around 65. Therefore, we should ask two questions (1) 

Is D = 65 and time invariant? (2) Is the load more sensitive to cooling (or heating)? 

In other words, is B  significantly different from zero. To answer these two questions, 

we start with a basic model f\ .  More complexity, along with an increasing number of 

unknown parameters, is continually added, thereby forming a sequence of proposed 

models, which provides a nested model function set.

f l - y, =  A +  C e - l " ' 65> ^  +  e i (6.10)

S i : y,  =  A  +  B  x ,  + C e- ( I,_65)2/ E + (6.11)

h  : yt = A +  C e - ^ ’- D^ / E +  ex (6.12)

u - y , = A  + B x t + C e-(x' - D)7' E + tx (6.13)

There are two nested relations among the models, / i  C /2 C f \  and /i  C fz C f \  

where /, C f j  implies that model function /, is a reduction of fj. We assume the 

“true” model function is one of them. For the selection of the “true” model, we 

consider the properties of a proposed model function /  = where 0  is the

parameter set to be estimated.

Model Criterion Function

In the case of estimated model functions, we have seen that there exist two basic 

quality criteria associated with the models, namely accuracy and stability (see details 

in Appendix C). It is obvious that the less parameters in a proposed model, the more 

stable the model. A stable model with a moderate RSS  may be preferable to an 

unstable model with a small RSS.  On the other hand, discrimination functions such 

as RSS( f )  or R2(f )  decrease (or increase) with the number of estimated parame­

ters and are not sensitive to model stability. For this reason a single discrimination
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function needs to be constructed to consider both the accuracy and the stability of 

a particular model specification. This discrimination function is called a criterion 

function(CF) and takes into account the prospective model specification’s goodness 

of fit and stability. The CF is used to eliminate unlikely models and so to select the 

best model from a set of candidate models.

A common CF comprises the sum of two terms. The first term measures the 

accuracy of the fitted model function to the response while the second term is a 

penalty function which penalizes each estimated model according to its instability. 

The larger the model’s instability, the larger the second term should be.

Since the penalty function is to be sensitive to the stability of the proposed models, 

the second term is based on the stability function SF( f )  in Appendix C.2. It is noted 

that SF( f )  can be partitioned into linear and nonlinear parts. Hence, the second term 

is taken to be a function of a(xt) and 6(xt) and dependent on the location x. For 

stability over all locations, the penalty function is related to 5^a(zt) = Tr[F'MF] = 

m, the number of estimated parameters, and X^(xt). Thus, the linear part of the 

penalty is a function of the number of unknown parameters. So, the criterion function 

for an estimated model function /  is defined as

CF( f )  = RSS( f )  -  a2[n -  m] + Ad4A (6.14)

where A is a constant, A = and a2 is a consistent estimation of the residual

variance, <72, of the true model.

It is noted that the CF( f )  is a combination of three parts: accuracy as measured 

by R S S , linear stability as assessed by a2[n — m], and nonlinear stability accounted 

for by d4A, and where the constant A balances the weight between the linear and 

nonlinear stability in the criterion function. Borowiak (1989) proved that under the 

true model /  and normal regularity conditions, then A = 3, n-1E[CF(/)] —> 0, as 

n _►  o o .  If a 2  of the true model, is known and one uses A =  3, the CF will tend to 

be positive large when an inappropriate model is examined. For instance, if a model 

is too simple(there are less parameters than needed) , it will cause RSS  to be large 

in relation to its number of fitted parameters; if a model is too complicated(there
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are more parameters than needed), a2[n — m] will be small, and the stability effect, 

A, arising from the unsuitable nonlinear portion of the model will be large although 

R S S  may be small.

Thus, a model with large CF values relative to its competitors is unlikely to 

be the true model and can be eliminated from consideration. Unfortunately, the 

probabilities of correct rejection or selection of models in this selection procedure are 

hard to calculate and can be only evaluated by simulations which is beyond the scope 

of this thesis. In addition, a2 may not be obtained before we know which model is the 

true model among the set of candidate models. In the Appendix C.3, we use various 

estimations of cr2 to show that the model f 4 is the best model.

6.3.4 Variance Function

By using the locally robustly weighted smoothed data in the last section, we avoid 

the effects of variance heterogeneity and outliers in the data on the nonlinear least 

squares estimates of parameter set 0  in model (6.5). However, of course, the nature 

of any variance heterogeneity and what outliers, if any are present, are not well 

known. We can obtain better estimation of 0  if the variance function which describe 

the heterogeneity of variance is known, and if the effects of outliers are reduced or 

eliminated. Figure 6.4 shows the residuals from the estimated models and the real 

data at different times of a day. It can be seen that the plots of the residuals indicate 

that they are roughly symmetric, and their amplitudes tend to be small when THI 

is low or high. This implies that the variances tend to be small when THI is low or 

high and to be large when THI is in the mid-range.

Since least squares estimates are adversely affected by outlying responses (see 

Huber (1981)), because the method is particularly prone to degraded performance 

as unexpectedly large residuals will, when such residuals are squared, become very 

influential. Cohen (1984) noted this and suggested that a better performance can 

be obtained by using absolute residual (see also Judge (1985) ). Harvey (1976) has 

suggested regressing the logarithm of the absolute residuals on the logarithm of their



6.3. A WEATHER SENSITIVE MODEL 183

Residuals from the Estimated Model at Different Time of A Day 
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Figure 6.4: Residuals from the Estim ated Model Based on the Sm oothed D ata
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approximate expected values. Assuming that the errors are independent and iden­

tically distributed, this should produce an approximately homoscedastic regression. 

The calculations are easy since only an ordinary nonlinear least-squares program is 

required, although a practical problem can arise if any one of the residuals is very 

near zero, in which case taking logarithms induces a rather large and artificial outlier. 

By deleting those artificial outliers effects, we build a variance function model based 

on the logarithm of the absolute residual

The basic requirement amounts to an assumption of a different form, namely that 

the logarithm of absolute deviation has expected value giving by

log(E|j/t ~  f ( x u 0 )|) = log(g(xu )) = h(xu $) (6.15)

Figure (6.5) shows the logarithms of the absolute residuals. With similar argu­

ments to those given in section 6.3.1, a model for log(^(rt, \P)) is build as

h(xt, $ ) = a -f bxt + c exp{ — (zt — d)2/e} (6.16)

where a is constant; b reflects the way of the variance function sensitive to temper­

ature; c combined with a (possibly 6) indicates the maximum value of the variance 

function; d indicates when the variance function reaches its maximum; and e reflects 

the flatness of the variance function.

Our primary interest centres on whether the variance function is more sensitive to 

low temperature than high temperature (b < 0) or vice versa (6 > 0). In other words, 

is 6 significantly different from zero? To answer this question, we start with a simple 

basic model h\. More complexity, along with an increasing unknown parameter 6, is 

added, thereby forming a proposed model h2. They form a nested model function set.

h\ : h(xt, 4>) = a -fi c exp{—(xt — d)2/e} -f tx (6-1?)

h2 : h(xt, $) = a + bxt -f c exp{—(xt -  d)2/e} + tx (6.18)

where hi C h2

With the possibility of outliers or artificial outliers caused by taking logarithms 

of the absolute residuals, we use a locally robust weighted regression to smooth the
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Robust Weighted Regression at Different Time of Days
Robust Weighted Regression for Transformed Error at 3 O ’clock Rolxist Weighted Regression for Trans fam ed E n a  at 6 O clock

Robust Weighted Regression for Transformed E n a  at IS O ’clock Robust Weighted Regression f a  Transformed E n a  at 18 O ’clock

so so m  io m

TH

Robust Weighted Regression for Transformed E n a  at 21 O ’clock Robust Weighted Regression f a  Transformed E n a  at 24 O’clock

Figure 6.5: Logarithm of the Absolute Residuals from the Estimated Model Based 
on the Smoothed Data
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logarithm of the absolute residuals and so to reduce the effects of those outliers in 

Appendix C.4. By using a likelihood ratio test and a model selection criterion CF, 

we are convinced that /i2 is the better model for the variance function.

6.4  A  R o b u st-W eigh ted  N on lin ear Least Squares

In section 6.3.3, we established a model relating electricity load and weather con­

ditions, / 4, and the corresponding disturbance variance function /i2 in section 6.3.4. 

Bearing in mind that the parameters of these two models are least squares estimated 

on the locally robust smoothed data so that the effects of variance heterogeneity and 

data outliers are diminished in the least squares estimation. The estimated parame­

ters may not be correct since they are based on the smoothed data which may affect 

the deterministic parts of the model function and the variance function. Nevertheless^ 

the estimated parameters from the smoothed data can provide a rough approximation 

to the unknown parameters.

Being aware there is variance heterogeneity and there are outliers in the real data, 

we developed robust-weighted nonlinear least squares procedure to estimate the model 

parameters 0  and the variance function parameters 'P as follows

Step 1 Using estimated parameters $  of the variance function /^(z*, $), and com­

puting the estimated weights

U, = l / s 2(s,,4>) =  l /e 2'**1"*» (6.19)

calculate robustness weights by forming

Wt — ut x rt ( 6.20)

where

( 6.21)
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and k is a constant and R is the bisquare weight function defined by

(1 — x2)2 for |x| < 1 

0 for |x| > 1

Step 2 Let 0  be the robust-weighted least squares estimate using the estimated 

robust-weights (6.20). Update the preliminary estimator by setting 0* = 0.

Step 3 Calculate the residuals from updated function model

e*(xt,0*) = yt ~ (6.23)

and form a logarithm transformation of the absolute residuals, i.e.

ht = log(|e((xi, 0)|) (6.24)

and then calculate the median of ht, i.e. 

s — median (ht)

and calculate robustness weights by forming

V, = R(p-) (6.26)k s

Step 4 Using vt as robust weights, fit ht into model h2 and let 'P be the robust 

weighted least squares estimates and set the estimated updated 0* as the pre­

liminary estimator of the next iteration by using, 0  = 0*

Step 5 Repeat the cycle from step 1 to step 4 until there is little change in 0  and

In steps 1 and 2 of the procedure, the model / 4 is fitted by robust-weighted least 

squares. The robust-weights wt (6.20) which are designed to reduce the effects of 

variance heterogeneity and outliers, will distort the parameter estimates if the initial 

parameters are far away from their true values. Thus, the closeness of the initial
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parameter values of the model function f 4 and the initial parameter values of the 

variance function h2 to their true values plays an important role.

Therefore, the estimated parameters 0  and from the robust locally weight 

smoothed data from section 6.3.3 and section 6.3.4 in Table C.4 and Table C.13 of 

Appendix C axe used as the initial parameter values in the above iterative estimation 

procedure.

Similarly, in step 3, the robust-weights vt (6.26) are designed to reduce the effect 

of outliers and artificial outliers which are produced by the logarithm transformation 

of the absolute residuals. The robustness parameter k in step 2 and step 3 should be 

chosen larger than 2. Roughly speaking, the larger k , the less robust. The choice of 

k is dependent on the quality of the data set. The robustness function chosen is the 

bisquare function (6.22) since other investigations have shown it to perform well for 

robust regression (see Gross (1977)). A reasonable range of k for our data is from 2 

to 6 and k = 3 has been chosen in our study. The final estimated parameters 0  and 

$  listed in Table 6.3 are considered to be the optimal estimates.

Figure 6.6 shows the normalized residuals, which are estimated by the robust- 

weighted nonlinear least squares estimation procedure with robust parameter s = 3 

from model f 4 with variance function h2, plotted against THI at different time of a 

day. It can be seen that the residuals have no systematic pattern and there are a few 

identified outliers. To support the assumption that residuals are normally distributed, 

Figure 6.7 displays Quantile-Quantile Plots (See Chambers (1983)) of the normalized 

residuals against the standard normal distribution at different time of a day. If 

the normalized residuals are normally distributed, then the plots(dot lines) will be 

approximately a straight line. It can be seen the plots are approximately straight 

lines except for a few identified outliers whose effects are reduced or eliminated by 

the robust weights. The above statistical evidence supports the claim that the model 

f 4 and variance function h2 are built and estimated properly.



6.4. A ROBUST-WEIGHTED NONLINEAR LEAST SQUARES 189

M odel Eyt = A + B x  + C e - ll- D'i'/E
Tim e \ 0 A B c D E vertex

3 12.2062 -7.0798E-03 -0.1670 55.6131 135.2751 58.48053
6 12.5431 -1.1451E-02 -0.1475 55.7049 60.9549 58.07098
9 13.4217 -1.2598E-02 -0.2107 60.1284 50.8239 61.64781
12 13.0939 -7.0320E-03 -0.2666 63.3080 94.2850 64.55146
15 12.9093 -3.8730E-03 -0.3529 64.6837 144.9248 65.47896
18 13.7179 -1.5526E-02 -0.3603 64.8314 114.1528 67.29093
21 13.4496 -1.4411E-02 -0.2762 61.8481 87.9413 64.14231
24 12.4812 -4.9326E-03 -0.3026 59.9780 245.1377 61.97596

M odel Elog(\y —f\) = a-\-bx-\-ce ( x —d Y / e

Tim e a b c d e vertex
3 -3.0952 -5.0780E-03 1.1629 45.5038 96.3817 45.29337
6 -3.0832 -7.0247E-03 1.5520 45.8063 196.3287 45.36199
9 -4.1598 -1.3318E-02 2.6264 52.5150 497.3102 51.25411
12 -3.7259 -1.1452E-02 1.6560 53.3759 352.0990 52.15844
15 -5.5124 -1.3586E-02 2.4568 60.7947 3336.6332 51.56898
18 -2.0556 -2.9178E-02 1.6770 58.6597 168.9758 57.1897
21 -5.2966 8.8320E-03 2.6662 50.8843 368.0993 51.49398
24 -3.6676 -3.4793E-03 1.7976 47.6125 219.3726 47.4002

Table 6.3: Robust-Weighted Estim ated Parameters



190 CHAPTER 6. WEATHER SENSITIVE LOAD

The Normalized Errors from the Estimated Model and Variance Function When s = 3
Normalized Reaiduali at 3 O’clock Normalized Reaidiali at 6 O’clock

Normalized Reaiduali at 9 O’clock Normalized Reaiduali at 12 O’clock

Normalized Reaiduali at 15 O’clock

s  ® »  »

Normalized Reaiduali at 18 O’clock

Normalized Reaiduali at 21 O’clock

I B

Normalized Reaiduali at 24 O’clock

TB

Figure 6.6: Normalized Residuals from the Estimated Model and Variance Function
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The Normalized Errors from the Estimated Model and Variance Function When s -  3
Q-Q plot for Normalized Residual at 3 O ’clock
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Q-Q plot for Normalized Residual at 21 O ’clock

Q-Q plot for Normalized Residual at 6 O ’clock

Q-Q plot for Normalized Residual at 12 O’clock

g ^ i a r t a W H m

Q-Q plot for Normalized Residual at 24 O'clock

Figure 6.7: Q uantile-Q uantile of the Norm alized Residuals
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6.5 T h e C onfidence Interval for th e  E stim ated  

M od el

When the stochastic term is i.i.d, ignoring a small bias, we have developed in Ap­

pendix C.2 that an asymptotic confidence interval for the assumed true model value 

f ( x t) is (see equation (C.6) )

/> < ) ±  [SF(Kxt)a2}1/2Hi-<,m (6-27)

where 2  is the standard normal distribution and a is the significance level. However, 

in section 6.3.4, we have demonstrated that the stochastic term in model f 4 is not i.i.d. 

and the variance function model h2 is an approximation to the variance heterogeneity, 

i.e.

E(yt) « /4(xt,0) 

var(yt) % <72(xt,^ )  =  e2ĥ Xt^

Hence, the asymptotic confidence interval for model f 4(xt, 0), with variance function 

a2{xt^ )  replacing a2 in (6.27), is given by

/ 4(x„ 0 )  ±  [ SF ( f 4{xt, ©)) ä 2(x„ 3')]1/2X(1- £,/2) (6.28)

On the other hand, the width of a confidence interval for yt — Eyt =  yt — f 4{xt , 0 )

, with confidence coefficient 1 — a, is 2<j(xt, ^ ) z ( \ ^ a/2y Thus, for a fixed a the range 

on \yt -  / 4(z* ,0 ) | is cr(xt , ^ f ) z ^ . Q/2y Since

I yt -  /4(*t, 0)1 = I (yt - /4(*t, ©)) + (f 4(xu 0) -  f 4(x t, 0) )|

<  I yt -  f 4(xu 0)1 +  1 f 4(xt, 0) -  f 4(xu 0) I (6.29)

the confidence interval of the estimated model f 4(xt, 0) is

f 4(x t, 0) ± { a{x t, V ) z{1-a/2) + [S F { f 4{xt, 0)) &{xt, tf)2 (i_a/2)}

«  /4(xf, 6 ) ± { l  +  [SF (/4(*„6))]1/2}e*»<"'*>*(i -<,/a) (6.30)

Figure 6.8 shows the 95% confidence intervals of the estimated models at different 

time of a day. In each graph for the different time of a day, the dots are the original
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data plot; the solid curve is the estimated model function, / 4(:r*,0), for the relation 

of the load and weather condition variable THI; a pair of dash curves are the 95% 

confidence interval of the estimated model function. It can be seen that the most dots 

are just surrounded by the 95% confidence interval except for a few outliers in each 

graph. This fact verifies that the estimated model function / 4(x*,0) and variance 

function h2(xt:^ )  are properly built and estimated. The 95% confidence intervals 

from midnight to the early morning period (from 0(24) to 6 o’clock) are much wider 

than the intervals for the other times of a day. The physical explanation will be given 

in the next section.

6.6 Sum m ary

In section 6.3.1, the model building of the relation between load and THI , and the 

variance function model building are based on limited knowledge and derived from 

a careful empirical study and approximation. Within the class of non-linear models, 

we look at a set of candidate models each one with a different number of parameters 

and attach the title “true” model to that candidate model which is nearest to reality. 

After the model accuracy, stability and criterion function study in Appendix C.l, and 

C.2, section 6.3.3, and 6.3.4 for the proposed model sets, we have enough statistical 

evidence to choose / 4, and h2 as an optimal model for the load/weather relation 

and variance function from the proposed model sets based on locally robust weighted 

smoothed data. Nevertheless, it may not be appropriate to claim that / 4, and h2, 

with their parameters 0  and $  based on the smoothed data, are part of the correct 

model, since there are many ways of producing smoothed data. In section 6.4, to 

reduce the outliers effects on the estimation of the proposed models for our data, a 

proposed robust-weighted nonlinear least squares estimation procedure with initial 

estimates of 0  and $  is applied to the real data to obtain the refined estimators of 

0  and ty. The final estimated parameters 0  for / 4 and $ for h2 are listed in Table 

6.3 on page 189.
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The 95% Confidence Interval of the Estimated Models When s = 3
The 95% confidence Interval at 3 O'clock The 95% confidence Interval at 6 O ’clock

Figure 6.8: 95% Confidence Interval of the Estimated Model f4
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Utilization of the estimated model / 4 leads to decomposition of the load into a 

weather sensitive load component and a weather insensitive component. Since the 

weather insensitive load should be the minimum value of / 4, we set the first derivative 

of / 4 with respect to x equal to zero to obtain the expression for the weather insensitive 

load.

d f 4
dx

B  -  2C-(- ~ D\ e-^-D)VE  
E

B -  2C— + 0((x  -  D f / E 2)

= >  X = D + BE
2 C

0

The selected model function / 4 can be re-written as 

U -  y(x) = {A + B ( D  + ^ )  + C e - ^ / E}

+ {B (x — D — ~ )  + C (e-*1- 0)2/« _  (6.3i)

Recalling the additive model (6.1), the model function / 4 decomposes the deter­

ministic part of the load into the weather insensitive basic load and the weather sen­

sitive load. It is obvious that the first part of (6.31) {A + B(D + ^ )  -f C e~(äcd /E} 

is weather unrelated, ie. the weather insensitive load; the second part of (6.31) 

{B (w — D — fjlr) + C is the weather sensitive load. The

consistent negative values for B  in model / 4 at different times indicate that the 

weather sensitive load is more sensitive to cold weather than to hot weather.

In order to explain explicitly the influences of weather conditions ( THI) on the 

load, the profiles of the total load, the weather insensitive load and the weather 

sensitive load, we define the following terminology:

• Non-weather Related Load THI: the THI value at which the load has no weather 

sensitive load component.

• Maximum Variance THI: the THI value at which the variance of the error term 

reaches maximum.

• Peak Load: the load which is larger than the load at adjacent times of a day.
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• Peak Load Time: the time of a day corresponding to the peak load.

The Non-weather Load THI and and Maximum Variance THI from model / 4 , 

are listed in the 7th(vertex) column of the first and the second part of Table 6.3 on 

page 189. Figure 6.9 displays the profiles of the non-weather related load THI and 

the maximum variance THI. It can be seen that the non-weather related load THI 

changes over the times of a day. For our three hour interval weather information data, 

the highest non-weather related load THI occurs at 18 o’clock, the lowest occurs at 

6 o’clock, and the values of THI range from about 58 to 67 THI. Recall Galiana’s 

non-linear relation between load and temperature in Table 6.1, where it shows the 

non-weather related load temperature is between 60 to 70 Fahrenheit. Comparing with 

the estimated proposed model /*, it is obvious that Galiana’s non-linear relation is 

only a rough approximation to the load and temperature relation since it ignores the 

time factor in the relation. The time factor plays an important role in the relation 

between load and temperature since it is also an index variable of human life patterns 

and activity levels over a day. Figure 6.9 plots the profile of the THI associated with 

a weather insensitive load and the profile of the THI at which the variance function 

reaches maximum for three hour intervals of a day. From this figure, we can see that 

non-weather related load THI is higher during working hours (9 to 17 o’clock) and 

lower in the remaining hours especially in the very early morning. This fact indicates 

that the non-weather related load THI is related directly to social and family activities 

and it may also be associated with the normal human body temperature patterns over 

a day, a matter which will not be pursued further here. Figure 6.9 also shows that 

the maximum variance THI is roughly parallel to the non-weather related load THI 

and is lower by about 12 THI 1. This shows that the most variability in the weather 

sensitive load occurs at a THI lower than the non-weather related load THI by about 

12 THI, and implies that people change their consumption pattern of electric heating 

more uncertainly when THI is lower than the non-weather related load THI by about

^ h is  fact can also be observed if we look at the 95% confidence interval of the estimated model 
function in Figure 6.8. The widest 95% confidence interval occurs at about 12 THI below the THI 
at which the load reaches the lowest level at all three hour intervals of a day.
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The THI Profiles for No Weather Sensitive Load and 
Maximum Variances at Different Time of Day

Weather Insensitive Load 
Maximum Variance

3 6 9 12 15 18 21 24

Time

Figure 6.9: THI Profiles of the Non-weather Related Load and Maximum Variances

12 THI although people are more sensitive to cold weather than hot weather (since 

B < 0 at all times of a day).

On the other hand, the disturbance variances do not increase when the temper­

ature is higher than the the non-weather related load THI. One explanation is that 

people may keep their consumption pattern for electric cooling steadier when THI is 

higher than the non-weather related load THI.  Another explanation is that the capac­

ity of household electric cooling appliances may be much smaller than the capacity of 

household electric heating appliances. The use of cooling appliances, therefore, does 

not produce as wide disturbance variances on the load as heating appliances do. The 

two explanations are speculations and cannot be verified unless information about 

capacity of household cooling and heating appliances becomes available.

Figure 6.10 shows the load profile, the variance function profile, the weather sen­

sitive load profile and the weather insensitive load profile. The perspective graph 

of the load profile (see The Load Profile in Figure 6.10) displays how the weather 

condition( THI) and time of a day jointly affect the total load. Roughly speaking, the
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load peak of a day occurs at 18 o’clock, 9 o’clock and 15 o’clock when the tempera­

tures are lower, close to, or higher than the comfortable temperatures at each time 

respectively.

The variance function profile (see The Variance Function in Figure 6.10) shows 

the effects of THI and time to the disturbance variances at three hourly intervals of 

a day. The largest variances tend to be around the temperature below 12 THI of 

the non-weather related load THI at each three hourly intervals of a day, and the 

variances tend to be large in early morning and in the evening rather than during the 
day.

The weather sensitive load profile (see The Weather Sensitive Load Profile in 

Figure 6.10) shows that the weather sensitive load is not only dependent on THI but 

also on the time of a day. When the THI values are lower than the non-weather related 

load THI, the heating load is concentrated at 9 o’clock and 18 o’clock; when THI are 

higher than the non-weather related load THI, the cooling load is concentrated at 9 

to 15 o’clock ( may be at 14 o’clock since maximum temperature of a day usually 

occurs at 14 o’clock. Greater detail is available if the weather data is measured for a 

shorter interval. It is obvious that the load peaks are closely associated with weather 

sensitive load peaks.

The weather insensitive load profile (see The Weather Insensitive Load Profile in 

Figure 6.10) presents the load which excludes the additional heating or cooling com- 

ponents(weather sensitive load) from the load. As expected, the weather insensitive 

load has two peaks at 9 o’clock(first peak time) and 18 o’clockfsecond peak time).

Figure 6.11 portrays the details of the load peak location and the weather sensitive 

peak location respectively since these details cannot be seen in perspective from Figure 

6.10. The thin solid curves represent the contours of the load or the weather sensitive 

load against the time of a day and THI. It can been seen that there are, at most, 

two load peaks and two peaks of weather sensitive load. The thick solid and dot 

curves represent the first and second peaks of the load and the weather sensitive load 

where first and second mean the largest and second largest peaks instead of early and
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The Featrue of Robust-Weighted Estimation When s = 3 

The Load Profile The Variance Function

The Weather Sensitive Load Profile The Weather Insensitive Load Profile

Time

Figure 6.10: Profiles of Load — Decomposition and Variance Function
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Contour Plot and Peak Location
First Peak
Second Peak
No Weather Load THI

Peaks of Load

Peaks of Weather Sensitive Load

Figure 6.11: Load and Weather Sensitive Load Peaks

later peaks. The thick dash curves represent the non-weather related load THI at 

different tim e of a day. The thick solid and dot curve illustrate the evolution of first 

and second peaks due to the changes of time of day and THI. It is noted tha t the 

variation of the first and second peak time are right across the non-weather related 

load THI curve(the thick dash curve). This illustrates how the cool and hot weather 

conditions affect the peak time.

By noting th a t tem perature changes over a day, and tha t the changing patterns
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are different from day to day, we, therefore, randomly chose four days from different 

seasons to illustrate the relation between the peak load time and temperature pattern 

of a day in Figure 6.12. The thin curves represent the temperature profile of the 

days. The intersections of temperature curves and peak curves are the expected peak 

load time. In our example, it is clear that the first peak load time is not the time 

of the lowest temperature in a day of winter or spring(temperature is lower than the 

non-weather THI at each time); however, the first peak load time is consistent with 

the highest temperature in a day of summer(temperature is higher than the non­

weather THI at each time). This fact indicates that cooling load responds to the hot 

temperature quickly and there is no time lag as far as the three hour data is concerned. 

However, the heating load peak seems not to have a certain fixed pattern(see the graph 

of peaks of weather sensitive load in Figure 6.12). The first heating load peak times 

are always at 18 o’clock when the temperature is lower than the non-weather load 

THI (i.e. there is no cooling load). The second heating load peak time will be at 9 

o’clock when temperature is really cold(below 45 THI). This heating load peak can 

be explained as follows: When the weather is really cold at 9 o’clock, extra heating is 

needed to warm buildings (such as offices, shopping centres etc.) before temperatures 

rise outside. There will be a second cooling load peak when temperature is higher 

than 70 THI at midnight(it will rarely happen). This cooling peak can be explained 

as follows: When THI (temperature and humidity) is too high at midnight, extra 

cooling is needed to help people to sleep.

On the other hand, we are also concerned with the load peaks which are jointly 

affected by the weather insensitive load and the weather sensitive load; the first 

and second weather insensitive load peak times are 9 o’clock and 18 o’clock, respec- 

tively(see graph of the weather insensitive load profile in Figure 6.10). However, for 

the weather sensitive load, the peak load time changes with weather conditions. The 

first and second peak load times are at 18 o’clock and 9 o’clock respectively when 

THI is lower than 60; the first and second peak load exchange their times when THI 

is close to the non-weather related load THI; there is only one load peak when THI
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Weather and Peak Location
Peaks of Load

Peaks of Weather Sensitive Load

--------  First Peak

“ Non-Weather Load THI

-------  Winter
.......... Spring
------- Summer
------- Autumn

Figure 6.12: An Example of Weather Patterns and Corresponding Peaks
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is higher than 70.

From the weather sensitive load peak discussed in the last paragraph, we conclude 

that the first load peak at 18 o’clock is mostly contributed to by the heating load 

when THI is lower than 60; the first load peak at 9 o’clock is mostly contributed to 

by the weather insensitive load when THI is between 60 and 70; the first load peak 

at 12 to 15 o’clock is mostly contributed to by the cooling load. The evolution of 

the load peak time, for both weather insensitive and weather sensitive load, can be 

summarized in Table 6.4 where the boxes indicate the consistency between the load 

peak and the weather insensitive load or the weather sensitive load. It can be seen 

that the load peak times are consistent with the weather sensitive load peak time 

when temperature is lower than 60 THI or higher than 70 THI.

THI Order Load Peak Weather Insensitive Weather Sensitive 
Time Load Peak Time Load Peak Time

< 45 1st 18 9 18
2nd 9 18 9

45 -> 60 1st
2nd

18 9 18
9 18

60 -+ 70 1st 9 9 18 —► 9
2nd 18 18 9 —► 0

70 -> 80 1st
2nd

9 —► 15 9 9 —>15
18 0

Table 6.4: Relation among the Peaks

It seems likely that the business and industry load dominate the overall load 

during working hours, and domestic load occupies a large proportion of the load in 

the early morning and night. The domestic heating load, therefore, leads the load 

peak at 18 o’clock when temperature is lower than 60 THI. On the other hand, the 

business and industry heating load during the day time is not so sensitive to low 

temperature. Nevertheless, it appears that the business and industry cooling load is 

so sensitive to hot weather and the cooling load leads to the load peak at 12 to 15 

o’clock when THI is higher than 70.
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On the other hand, the 95% confidence intervals (see Figure C.6) from late morn­

ing to early evening are much narrower. It can be explained that the load is dominated 

by business and industry during day time and that source has a consistent pattern 

although changing with the temperature, since cooling or heating devices are ther­

mostatically controlled. In the early evening, the domestic heating or cooling electric 

load is also consistent with temperature due to “building effects”2. For instance, in 

summer, the temperature in dwellings is still higher than outside in the evenings, 

therefore people use their air-conditioners to ensure the temperature in their homes 

is brought down to a comfortable level.

In winter, people use electric heating appliances to warm their home for sleeping, 

and some of them turn off the heating appliances after sleep, some of them have 

the heating appliances controlled by thermostats. The heating appliances which are 

controlled by thermostats will turn on more frequently since the temperature is cooler 

in the early morning. As a result, the changes in electric heating and cooling load is 

more consistent with temperature before midnight than the changes after midnight 

and in the early morning.

The above analyses suffer a little since only three hourly interval weather infor­

mation is available for analysis. Therefore, the load, weather insensitive, and weather 

sensitive load peak times are only as accurate as is possible with data based on three 

hourly intervals. As we see in Table 6.3 the parameter 0  for / 4 and $  for h2 are 

time related. The interval between the available weather information is just too large 

to establish clearly how 0  and change with time. 0  and 4* can be modelled as 

functions of time, and so, the pattern of the peak times can be refined more effectively 

if shorter time interval weather information is available.

After closely examining the load and temperature relation model / 4, and the 

decomposition of the load into weather insensitive and weather sensitive load by 

utilizing / 4(see equation (6.31) ), it is not difficult to find that the stochastic term 

of model / 4 should comprise two parts. One part is contributed to by the stochastic

2The building effect is described as a phenomenon that the change of temperature in a building 
is always naturally delayed behind the change of temperature outside.
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behaviour of the weather insensitive load. Another part is derived from the stochastic 

behaviour of the weather sensitive load. If we can assume that the two stochastic parts 

are independent, the variance function for the stochastic term in model / 4 is the sum 

of the variance functions of the two stochastic parts. Therefore, the real confidence 

interval of weather sensitive load should be narrower than / 4’s (see equation (6.30) 

). Model / 4 ignores the stochastic nature of the weather insensitive load, and treats 

it as a deterministic function of time which may not be the case in reality. So, the 

stochastic behaviour of the weather insensitive load neeeds to resolve. For this reason, 

model / 4 may not predict future load accurately even when future weather forecasting 

information is available.

Nevertheless, / 4 provides a non-linear transformation between load and weather 

information( THI) since model / 4 fits the non-linear relation between the load and 

temperature data. Utilization of this non-linear transformation converts weather 

information data into a weather sensitive load variable which is linearly related with 

the load data and can also be predicted by the second part of equation (6.31) from 

weather information. Using this variable as an exogenous variable in a linear system 

which describes the stochastic behaviour of the weather insensitive load, such as an 

ARX or a State Space model, etc. It is expected that in this way the load prediction 

can be made more accurate than a prediction which uses / 4 only.



C hapter 7

D ynam ic M odels for Daily Load

7.1 Introduction

In this chapter, we are going to use dynamic modelling approaches to model the daily 

electricity demand. The load data and the corresponding weather information in 

Canberra region, Australia from January, 1985 to July, 1988 have been provided for 

our study.

We suppose that the total load is the sum of the weather insensitive load (or base 

component) and the weather sensitive load components. As mentioned in chapter 

1, most two stage models assume that the weather insensitive load component is 

deterministic and the stochastic nature of the total load lies in the weather sensitive 

load component. This assumption simplifies the model structure because only one 

stochastic error term is included. In our opinion, this assumption is not realistic 

because it ignores the dynamic nature of the weather insensitive load component, 

as would arise for example from an evolving trend, seasonal and weekly periodic 

components.

Since only three years of daily data is available, there is not enough data to 

correctly model those “global” long term components, such as the long term trend and 

the annual seasonal behaviour. However, there is evidence that the annual seasonal 

behaviour is mainly contributed to by the seasonal changes of climate and the annual 

Christmas and New-Year holiday period. Therefore, providing weather forecasts are

206
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available, our models will put emphasis on a “local” model instead of a “global” 

model. In other words, we are interested in using a reasonably small sample data set 

to model the load approximately and thus obtain reliable short run forecasting.

Two dynamic models, an ARM AX and a structural state space model, and the 

associated model building, identification, and hypothesis testing are presented in this 

chapter.

7.2 Weather Sensitive Load Variable

In the first instance, we are interested in the relationship between the load and the 

corresponding weather conditions and so to extract the weather sensitive compo­

nent, since we assume that the load is dependent on the weather conditions. A linear 

regression model has been employed to fit the “dependent” load against the “explana­

tory” (or exogenous) weather variables’ The measure of fit will serve as an indication 

of how well the “dependent” load can be linearly explained by the “explanatory” 

weather variables, and the model provides a description of the salient features of the 

“dependent” load. During the Christmas-New Year holiday period there will be an 

effect which alters the profile of the weather insensitive component completely and 

does not have a markable impact on the profile of the weather sensitive component. 

There is no similar impact on the weather insensitive load profile for any other pe­

riods of the year. We therefore use a sample set from January 6, 1985 to December 

11, 1985 to model the load/temperature relationship to avoid the possible model 

mis-estimation arising from mis-specifying the effect of the holiday period.

Among the different linear models with various weather related explanatory vari­

ables, we find that the daily maximum temperature(:ri), minimum tem perature^), 

evaporation (x3) and weekend dummy variables for Saturday (sat) and Sunday (sun) 

have significant effects on the “dependent” load. The regression model is as follows

y(t) = q0  + aV  + a 2sat + a3sun + aAx x -f abx2 + 0 4 ^ 3  (7.1)

with the results listed in Table 7.1.
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Residual Standard Error = 0.0949, 2 = 0.8615
coef std.err t.stat p. value

<*0 12.5539 0.0231 542.3437 0
c* i -0.136E-3 0.5033E-4 -2.7020 0.0072

-0.1044 0.0144 -7.2376 0
<*3 -0.1448 0.0145 -9.9910 0
a4 -0.0197 0.0013 -15.5043 0

5 -0.0149 0.0013 -11.7795 0
OL 6 -0.0107 0.0020 -5.2382 0

Table 7.1: Linear Regression — Daily Load on Weather Variables

The value of the Multiple R-Square in Table 7.1 leads us to conclude that 86.15% of 

the variability in the load can be explained directly by the included weather variables 

and weekly periodic dummy variables. This model assumes that the daily weather 

insensitive load for weekdays is identical (actually the differences between the daily 

load for weekdays are insignificant), and the weekly periodic component of the load 

is supposed to be deterministic. The model does not fit well and the estimated trend 

slope öl is quite misleading since the trend slope is expected to be positive.

Recall that in the last chapter, the relationship between the three hourly electricity 

load and the relevant temperature is nonlinear. Therefore, it may not be appropriate 

that the daily maximum and minimum temperature serve as regressors directly in 

the regression model. In a similar way, the analysis in the last chapter is used to find 

that the nonlinear function, of the / 4 form, is still suitable for the relation between 

the load and the maximum temperature, or the minimum temperature, i.e.

y{x.) = A  + BiXi +  (* = 1 ,2 ) (7.2)

The estimated model parameters are listed in Table 7.2. The estimated weather 

sensitive load variables , W2 from the maximum and minimum temperatures can 

be derived from equation (6.31) respectively as

W,(x,) = Bi (x, -  Dt -  | ^ )  + C, (j = 1,2)(7.3)

Because the transformed maximum and minimum temperature variables, W2
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Daily Load h  Maximum Temperature 
Param eters Ai B\ C\ D\ Ei

12.16 -0.02 -0.30 23.34 72.72
Variance 0.00 0.00 0.00 0.24 286.14

Daily Load &: Minimum Temperature
Param eters A 2 B2 C2 d 2 e 2

12.21 -0.02 -0.22 11.12 44.98
Variance 0.00 0.00 0.02 2.31 1609.84

Table 7.2: Nonlinear Relationship Between the Daily Load and Tem perature

are approxim ately linearly related to the daily load, the linear regression model (7.1) 

is modified by replacing x lt x 2 with Wfi, W2 as follows

y(t) =  ß0 +  ß it +  ß2 sat +  ß3sun +  ßAWx +  ß5W2 +  ß6x3 (7.4)

Using the least squares estim ator, we have the results listed in Table 7.3.

Residual Standard Error = 0.0693 , R 2 =  0.9262

ßo
coef
11.7744

std.err
0.0139

t.sta t
844.9950

p. value 
0

ßi 0.4053E-4 0.3536E-4 1.1462 0.2525
ß“2 -0.1035 0.0105 -9.8285 0
ßi -0.1438 0.0106 -13.6123 0
A 0.7458 0.0288 25.9351 0
ßb 0.3283 0.0299 10.9655 0
ße -0.0087 0.0015 -5.9214 0

Table 7.3: Linear Regression — Daily Load on Transformed W eather Variables

Comparing the values of R-squared for the above two regression models, the latter 

model is obviously superior. This suggests tha t the nonlinear relation between the 

tem perature and the load is essential to achieve the improvement. We can create a 

new weather sensitive variable W  by forming1,

W  — ß±Wi +  ß$W2 +  ßex3 (7.5)

xThe weather sensitive variable is a function of weather conditions instead of time although the 
weather conditions are related to time. We denote W  as the weather sensitive variable and treat it 
as a constant with respect to time if the corresponding weather conditions do not change.
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and then regress y(t) on a linear time trend, W , and weekly periodic dummy variables 

sat, sun again to obtain a linear regression model

y(t) = ß0 4- ßit + ß2 sat + ß3sun +  ßwW  (7.6)

which assumes the response consists of a deterministic (level component -f- trend 

component + weekly periodic component + weather dependent component) part and 

a stochastic part. This model is clearly equivalent in structure to model (7.4) and 

the least squares estimation results axe listed in Table 7.4.

Residual Standard Error = 0.0693 , R2 = 0.9262
coef std.err t.stat p. value

ßo 11.7744 0.0079 1491.8365 0
Ä 0.4053E-4 0.3536E-4 1.1511 0.2525
A -0.1035 0.0105 -9.8285 0
A -0.1438 0.0106 -13.6123 0
ßw 1.0 0.01569 63.7304 0

Table 7.4: Linear Regression — Daily Load on Transformed Weather Variables

However, the deterministic assumption for trend and weekly periodicity may not 

be realistic because it ignores the stochastic nature of the trend and weekly periodic 

components. These are possible reasons which limit the ability of the regression model 

to model the data.

We have discussed the conventional additive model and adaptive additive model 

in chapter 5, and explained why an adaptive additive model may achieve a better fit. 

To incorporate the external weather information into an adaptive additive model to 

describe the behaviour of the daily electricity load, we employ two major adaptive 

models, the ARMAX and the State Space models, in the following sections.

7.3 A pplication of A R M A X  M odel

In the linear dynamic system literature, a linear system with observed output y(t) 

and observed input U(t) has been modelled in the time domain for different purposes
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by many researchers in statistics, econometrics, and systems engineering, etc. One of 

the model types is called an ARMAX model and has the following representation for 

the univariate case,

£  a(j)y(t -  j)  =  £  i>0X* -  j )  + £  c (j>  (i -  j )  (7.7)
j-o j=0 j=0

where a(j), 6(j), c(j) axe unknown constants; the roots of YlPj=o a(^) = ® are outside 

the unit circle and e(t) is the disturbance term, where it is assumed that E(e(tf)) = 0, 

var(e(*)) =  <72, V*, and E(e(s),e(f)) = 0, s ± t.

The basic idea of the ARMAX model is to use the dynamic behaviour of an 

exogenous variable K(t) within an ARM A model to describe a time series in a more 

effective way than the usual ARMA model. In an ARMAX model, there are two 

stochastic exciting forces entering the system; through the disturbance e(t) and the 

exogenous variable u(t). and they are dynamically linked with their response by model 

(7.7). The explanatory part 5Zj=0c(j)ft(t — j)  is generated by the exogenous variable 

and produces an exogenous dependent component of y(t), and the disturbance part 

H j=oK j)e(* — j )  produce a further stochastic component of y(t).

The above ARMAX model works well in a wide range of circumstances; its prop­

erties have been explored in the time series and linear systems literature, and will 

not be repeated in this thesis. The maximum likelihood estimation procedure will be 

used to estimate the parameters of an ARMAX model.

One of ARMAX models for nonstationary periodic series which can be parsimo­

niously structured is called a multiplicative periodic ARIMAX model with a form 

which is similar to a Box and Jenkins multiplicative seasonal model, and is specified 

as follows,

<f>p(B)$p1(B,')$p:t(B ,2)AJ A ^ 1 A?*y(t) = 9q( B )e Ql(Bs' ) 0 Q2(Bs> m
K

+ £  Ak{B)Uk(t) + ph(t) (7.8)
k= 1

where it is assumed that E(e(<)) = 0, var(e(£)) = <j2, Vf, and E(e(s), e(£)) = 0, s ^  t. 

K  is the number of exogenous variables Ujt(<) (k = 1, • • •, K ); h(t) is the Christmas and
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New-Year dummy variable; Si and $2 are constants to represent the annual seasonal 

period and a weekly periodic effect, respectively. The symbol A =  1 — B represents 

the difference operator; A ai =  1 — BSl the annual seasonal difference operator; A S2 =  

1 - B 82 the weekly periodical difference operator; <f)p, $ Pl, $/>2,0g, 0 g 1? 0 q2, Xk are 

polynomial functions with order p, Pi, P2, Qi, Q2 and r(fc) respectively; and all 

the roots of <j>p(L) =  0, $>p1(L) =  0 and 4>p2(P) =  0 are outside the unit circle.

Among the many proposed ARIMAX models, and for the different combinations 

of exogenous variables ük(t), e.g. daily maximum and minimum temperatures, evap­

oration, wind speed, and the weather sensitive load variable W etc., we find that

1. the coefficients of ^ ^ ( jE?31) and Oq^ jE?31) are insignificant i.e. (BSl) =  1,

=  I5 an(i D\ =  0 because the annual seasonal component of the load 

are mainly contributed to by the exogenous weather variables

2. the multiplicative periodic ARIM A(1,1,1) x (0 ,1 ,1)7 with the exogenous vari­

able W  is the optimal m odel2 * with respect to the model selection criterion AIC, 

i.e. we have a specification for sample data sets which do not include Christmas 

and New-Year period,

(1 -  <t>B)( 1 -  B )(l -  B7)y(t) =  (1 -  1 -  OBT)e(t) +  A (7.9)

For the daily data from January 6, 1985 to December 11, 1985, the model 

ARIM AX(1,1,1) x (0 ,1, 1)7 has been identified by maximum likelihood estimation as

(1 — 0.547f?)(l — B )(l — B7)y(t) =  (1 -  0.867P)(1 -  0.833P7)e(*)

-f0.469VY (7.10)

The model diagnostic checks are plotted in figures 7.1 and 7.2 on page 241, 242. 

Comparing the estimated disturbance variance of the regression model (see Table 7.4) 

and the above ARIM AX(1,1,1) x (0 ,1 ,1)7 model, we can clearly see the latter model 

achieves a significant improvement.

2 All experimental models and their results are not presented in this thesis. The copy of all the
results can be obtained from the author on request.
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AIC = -1201.575, <t2 =  0.001468296
c o v 0i 07
<t>\ 0.008417665 0.004783661 -0.002104029
0i 0.004783661 0.003631949 -0.001621765
07 -0.002104029 -0.001621765 0.001648345

Table 7.5: Covariance Matrix of Estimated Parameters of ARIMAX(1,1,1) x (0 ,1 ,1)7  

Model

The attraction of the ARIMAX class of models is that they provide a general 

framework for forecasting time series with the specification of a model within the class 

is determined by the data. On the other hand, to view all the models within that class 

as potential candidates and then to select the best one is ineffective. The selected 

model in general is unquestionably an arbitrary one and may not be appropriate 

unless one has a priori knowledge of the models which are likely to be most useful.

7.4 State Space Model

A commonly used time invariant state space model has the following form

x(t +  1) =  Ax(t) + Bu(t) + 6(t) Transition equation 
< (7.11)

y(t) = Cx(t) -f Dv(t) +  e(i) Observation equation

where x(t) is called the state vector which may unobservable and may appear to be 

only tenuously connected with the data y(t). The first equation is called the state 

transition equation. The second equation is the observation equation which specifies 

the relation between the data and the newly introduced auxiliary state vector x(t). 

u(t), and v(t) are exogenous input vectors. and e(t) are disturbance terms for the 

transition equation and the observation equation. It is assumed that the disturbance 

term S(t) is a noise vector with zero mean and fixed finite covariance matrix; e(t) is 

also white noise with zero mean and fixed finite variance.

The prominent advantage in using the state space model is that one can directly 

apply the Kalman filter which can produce stable dynamics even when the original



214 CHAPTER 7. DYNAMIC MODELS FOR DAILY LOAD

dynamics are unstable when certain conditions are met. These conditions are in­

tensively discussed in Anderson and Moore (1979), Caines (1988), Aoki (1987), and 

Harvey (1989), etc. Some extensions and generalizations of these conditions have 

been developed in chapter 3 of this thesis. Therefore, the properties of the Kalman 

filter are not discussed in detail here. We concentrate on the application of the state 

space model and the Kalman filtering to our daily electricity load data.

Once one decides to use a state space model to represent a time series, the first 

problem one faces is how to construct a suitable model for the time series. In the 

following section we discuss some state space model construction schemes and their 

advantages and disadvantages.

7.4.1 State Space M odel Construction

C anonical S ta te  Space M od ellin g

Akaike’s canonical correlation method (see Akaike (1975), Aoki (1987), Hannan and 

Deistler (1988)) for constructing a state space model from a data set is based upon 

the Hankel matrix of the observed data set. The main idea is based on the canonical 

analysis of the Hankel matrix, and to gather as much information as possible from 

the observed data using those canonical vectors whose corresponding eigenvalues are 

significantly different from zero. Therefore, the minimum order of the state space 

model can be determined by the number of the Hankel matrix eigenvalues which are 

judged to be significantly different from zero. After determining the minimum order, 

the system matrix can be calculated by a UV-decomposition of the Hankel matrix 

(see Akaike (1975), Aoki (1987) for details).

Because the UV-decomposition is not unique, there would be many different min­

imal dimensional state space representations for the same time series. The difference 

between the two different minimal dimensional state space representations are the 

coordinates of the state vector of the two representations. If we assume the system 

matrices of the two different minimal state-space representations are {Ai, Ci] and 

{A2,H 2,C 2}, and state vectors are Xi(t) and x2(t), there must exist a non-singular
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matrix P satisfying x2(t) = Pxi(t), A2 = PA\P~l , B2 = PBi, C2 = CP~l .

The advantage of this method is that it can directly construct an optimal state 

space model without evaluating many models and their fit to the data set. The 

disadvantage is that, first, the dynamic exogenous variables are not easy to include 

in this state space modelling procedure; secondly, the system matrices are to be 

estimated as unknown parameters, therefore, this construction scheme may not be 

effective for prediction, especially, for high order statistical models; thirdly, as far 

as the observed data is concerned, the created state vector x(t) is an extraneous 

theoretical construction. This vector may not have any obvious physical explanation. 

In practice, people are often interested in extracting particular components of the 

observed data, such as a representation of the trend, or the seasonal components.

C onversion  o f A R M A X  M odels to  S tate-Space M odels

There is a representation of an ARMAX model in state-space form which particularly 

connects with the Kalman filter. For example, an ARMAX model with order (p,q,r) 

has a state-space representation as follows

x(t + 1) = Ax(t) + Bu(t) + Ke(t) Transition equation 
< (7-12)

y(t) = Cx(t) + t(t) Observation equation

where
- a ( l ) — °(2) - o ( p - l ) -a(p) b(l) ••• 6 ( q - l ) K<j ) < 1 ) c(r  -  1) c (r )  \

1 0 o 0 0 o 0 0 0 0
0 1 0 0 0 o 0 0 o 0

0 0 1 0 0 0 0 0 0 0
0 0 o 0 0 0 0 0 0 0
0 0 o 0 1 o 0 0 o 0

0 0 o 0 0 1 0 0 o 0
0 0 o 0 0 0 0 0 0 0
0 0 o 0 0 • ■ 0 0 1 o 0

0 0 o 0 0 0 0 0 1 0 )
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C = ( -a ( l) ,  -a(2 ), • • •, -a(p), 6(1), • • •, b{q), c(l), • • •, c(r))

K ' =  (1,0, • • • ,0 , 1,0, • • • ,0 ,0, ■ • • ,0)

The above representation is called an observable canonical model since the system 

matrices A and C are a pair of observable system matrices which guarantee that the 

state vector covariance matrix converges to a steady state when the initial state vec­

tor covariance matrix is set as a positive definite matrix. Of course, the structure of 

the state space representation for an ARMAX model is not unique. Among the dif­

ferent representations, those with minimal dimension are called minimal dimension 

state space representations. Generally speaking, representations with non-minimal 

dimension are to be avoided because such representations are over parameterized, i.e. 

redundant information or irrelevant information is embedded in their state vectors 

which will affect the efficiency of the optimization computations, and create other 

technical deficiencies during model filtering, and model identification. Conversion of 

the more general traditional ARMAX model into a state space representation can be 

found in Kailath (1980) for example. After models axe thus converted, their observ­

ability and reachability should always be verified to ensure minimal representation, 

since these conditions are necessary and sufficient for minimality.

In a similar way, the minimum order for an ARMAX model can be determined 

by the number of non-zero eigenvalues of the Hankel matrix. Furthermore, Hannan 

(see (viii) of Theorem 2.5.3, pp 63 of Hannan and Deistler (1988)) proves that the 

estimation of state space and ARMAX parameters is really the same thing.

Although an ARMAX model has a state space representation which can use the 

Kalman filter to estimate the model parameters, the true ARMAX model is usu­

ally unknown in practice, and therefore its state space representation will be unknown 

as well. Thus, a state space representation of an ARMAX model can only help in 

estimating the parameters of the specified model and in smoothing, filtering and pre­

dicting through the Kalman filter. It cannot however suggest a suitable structure for 

the ARMAX models directly. For example, an ARMAX model with over-estimated 

orders has its minimal dimension state space representation which is larger in size
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than would result from an AR MAX model based on the true orders.

Stru ctural S ta te  Space M odelling

Based on the assumption that the observed data comprises different components in 

additive form, and that those components are of interest, Engle (1978), Gersch and 

Kitagawa (1983), Harvey and Todd (1983) and others propose another mechanism 

to construct a state space model called the Structural State Space Model (SSSM) 

for economic time series because economists are usually interested in extracting the 

various components of economic data. The Kalman filter can be used to estimate non­

stationary time series models. The SSSM consists of many micro-state-space models 

for each component, such as, a stochastic linear trend, seasonal, cyclical components, 

and the disturbance term. The SSSM approach is to choose some suitable micro- 

state-space models which may describe the behaviour of the different components 

of the observed data, and combine them into a main state-space model framework. 

The constructed model should be at least detectable3 because we are interested in, 

the “energy” distribution of the output among the different components (the state 

vector). If the main state-space model is both detectable and stabilizable the state 

covariance matrix converges to steady state and produces a plausible model at the 

outset.

The major advantage of using the SSSM is that this model can produce the com­

ponents of interest (the state vector) in the data, and provides sensible forecasts if 

the model is accepted. While diagnostic checking is common in both structural state 

space and ARMAX model building, the way in which models are initially specified is 

quite different. The disadvantage of the SSSM scheme is that the state vector may . 

not necessarily be minimized. A remedy for this problem can be found by simplifying 

the component models or even dropping some component models from the^main state 

space model framework as long as the model adequacy criteria is met.

The model selection methodology for structural models is more akin to those

3the reconstructibility or the observability are sufficient for the detectability
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adopted in econometrics where a tentative model is formulated on the basis of knowl­

edge of the nature of the variables and the hypothesized relationship expected between 

them. If a SSSM appears to be inadequate in diagnostic checking, its specification 

is changed and the process of estimation and diagnostic checking is repeated. If the 

model survives diagnostic checking, it is either accepted or an attempt is made to 

simplify it. Simplification occurs where, for example, small values are set equal to 

zero, or perhaps by dropping a component completely.

7.4.2 A  Structural State Space M odel for Daily Electricity  

Load

As mentioned in the introduction to this chapter and the summary of chapter 1 of 

this thesis, the main use of a state space model is to model the stochastic behaviour of 

the weather insensitive load component since the deterministic model, i.e. regression 

model in the last section, failed to represent the weather insensitive load component 

well. This conclusion has been supported by the model adequacy diagnostic tests.

In the construction of a SSSM, we assume that

1. The weather insensitive load comprises a stochastic linear trend, weekly periodic 

components, and a disturbance component.

2. The weather sensitive variable W  (see equation (7.5) ) is an exogenous variable 

which does not affect the weather insensitive component.

3. The daily load is the sum of the weather insensitive load and the weather sen­

sitive load which is a linear function of the estimated weather sensitive variable

W.

Using the above assumptions, we construct basic structural state space models 

for the trend and weekly periodic components of the weather insensitive load and the 

weather sensitive load component.
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Local Linear Trend Model

m(t) = m(t -  1) + ß(t) + T)(t)

< ß(t) = p ß ( t -  i) + c(0
ytrendiß'')  —  TTl(t^

(7.13)

where m(t), and ß(t) are the level and slope of the trend, respectively; p is a damping 

factor for the slope, 0 < p < 1, and r)(t) and £(t) are mutually uncorrelated with 

r}(t) ~  NID(0, cr̂ ), f( t ) ~  NID(0,(j^). The effect of rj(t) is to allow the level of the 

trend to shift randomly up and down, while £(t ) allows the slope to change in a similar 

way. The larger the variances of T j ( t ) and £(2) the greater the stochastic movements 

in the trend.

The state space representation of the above local linear trend model is

This model is a general local linear trend which can produce the following forms 

as special cases:

IF p =  1: The trend is a stochastic local linear trend, when crj > 0 , > 0. The

forecasting function is ytrend{T + l\T) =  m(T) + ß(T)l

W hen or% = 0: The slope of the linear trend is a constant. The forecasting 

function then becomes ytrend{T + l\T) = m(T)  + ß l

W hen <7  ̂ =  cr£ = 0: The linear trend is deterministic. The forecasting function 

becomes ytrend{T +  l\T) = m + ß (T + /)

IF p <  1: The trend is a stochastic local linear damped trend when cr* > 0 , > 0.

The forecasting function is ytrend{T +  l\T) = m(T) + [(1 -  pl)/{ 1 -  p)]ß(T)

When <7  ̂ =  0: The slope of the linear trend is deterministic and exponentially 

decreasing. The forecasting function becomes ytrend(T + /|T) = m(T)  +

(7.14)

y{t)trend = (1,0 )l(t)

[(1 -  p‘)l(l -  p)]pTß
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When cr* = cr£ = 0: The trend is a deterministic exponential curve. The fore­

casting function becomes y tTend (T  + l \T )  = rh -f (1 -  pT+l)/{ 1 -  p)]pT ß

IF ß(t) = 0: The trend model collapses to a local level model, i.e. a simple random 

walk plus noise

m(i) = m ( t - l )  + r)(t) y{t) ~  NID(0, a*)

V trendiß) =

The trend itself follows a random walk. The forecasting function becomes

ytrend(T  +  / |T )  =  m { T )

W hen <7̂ = 0: The level is a constant. The forecasting function becomes

ytrend(T  +  l \T )  =  171

Weekly Periodic Models

There axe two commonly used periodic models,

a—1

r(t ~  i )  =  or s iB )r(ß) =  w(<) (7.15)
j= 0

r(t) = r(t -  s) + o;(*) or Asr(t) =  u(t) (7.16)

where s is the length of the period; S{B)  =  1 +  B  + • • • + B3-1, A3 = 1 — Bs; r(£) 

is a weekly periodic effect at time t\ u>(t) ~  NID(0,<rJ). The disturbance term u>(t) 

allows periodic pattern changing.

Because As = AS(B), where A = 1 — B , A S and A have a unit root in common. It 

implies that the real periodic component in model (7.16) is confounded with the trend 

component because the factor (1 — B) is also associated with a long-run trend. The 

sum of the “periodic” effects, which is modelled by (7.16), will not, in general, sum to 

zero over the periods. Furthermore, in this model, it is not possible to separate the 

trend and periodic components from the data. Therefore, model (7.16) is not suitable 

for the purpose of separately modelling the periodic component.
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An alternative way of modelling a weekly periodic pattern apart from model (7.15) 

is by a set of trigonometric terms at the weekly periodic frequencies, Aj = 27rj/s (See 

details in Hannan et al. (1970) ).

The weekly periodic effect at time t is

[5/ 2]

r(t) = ^2  (rj cos Ajt  + r* sin Xjt) -f w(t) 
j = i

Provided that the full set of trigonometric terms is included in model (7.17), this 

form is equivalent to model (7.15) and the estimated weekly periodic patterns will 

be identical because the homogeneous solution of equation (7.15) has the same form 

as equation (7.17). Furthermore, if the weekly periodic patterns change relatively 

smoothly, some higher-order frequencies can reasonably be dropped to reduce the 

unknown parameter numbers (i.e. reduce the state vector dimension if the model is 

to be put into a state space representation). As an example see Abraham and Box 

(1978).

However, our experience with daily electricity load shows that there is little evi­

dence for dropping some higher-order frequencies. The use of model (7.17) is more 

complicated and has no advantage over model (7.15). Therefore, the periodic model 

(7.15) which has following state space representation is employed.

(7.17)

x(t)

r(t) '

r ( t ~  1)

r { t - s  + l) )

_1 _ i  . . .  _ i  _ i  ^

1 0 

0 1

u ..............

+ (w(^) o • • • 0)'

0 0 

0 0

1 0

x(t — 1)

(7.18)

y«*(t) =  ( i , o , - - - ,0)^(0

where u(t)  ~  NID(0, crj,) allows for the periodic pattern changing over time.
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W eather S en sitive  C om pon en t M odel

In section 7.2, we have constructed a weather sensitive load variable W  from a re­

gression model (deterministic additive model). However, this weather sensitive load 

variable is deterministic and may not reflect the stochastic nature of the weather 

sensitive load components. In other words, the effect of the weather sensitive load 

variable W  on the load y should be adaptive and allow for change.

To solve this problem, we assume that the stochastic weather sensitive load u(t) 

satisfies

' a(t + l) = a(t) + m  (7 ig)
u(t) = a(t)W(t)

where £(t) ~  NID(0,cr|). By introducing a random walk a(t), the u(t) is allowed to 

change with time. a(t) will be a constant when cr| = 0.

7.4.3 A  B asic Structural State Space M odel

Based on the models developed for the weather insensitive trend, weekly periodic 

components and the weather sensitive component, we establish a basic structural 

state space model for the daily electricity load as follows

x(t -f 1) = Ax(t) + 6(t) Transition equation 
< (7.20)

y(t) = C(t)x(t) 4- e(t) Observation equation

where

f X l  (t) )

*2 (j) 

x 3 ( t )

---
---

---
---

---
^

__
__

__
__

__
^

, m  =

m
m

' v ( t )  '
cw
u ( t )

0

X9 ( t )

\ xio(0 )

r e{ t )

K “ (0 )
wt)

v 1̂0(0 j

0

v « 0  )
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A(t) =

1 1  0

Op  0
0 0 - 1  • • •

0 0 1 0

0 0

0 0

- 1  0

. . .  0

V

,C(i) = ( l ,0 , l10>...,0 ,W (t))

/

0 0 0 • • •  1 0

0 0 0 ••• 0 1

The model parameter set 0  contains six unknown parameters, (p, cr̂ , <r£, cr̂ , cr̂ , cr̂ ), 

and the system matrix C (t) is a time varying matrix.

7.4.4 Off-line Param eter Estim ation

There are various algorithms in the literature for the model parameter estimation ac­

cording to different criteria, such as, maximum likelihood, minimum prediction error, 

etc. The estimation can also be obtained in time domain or frequency domain (see 

discussion of details in Harvey (1989)). In our study, maximum likelihood estimation 

in the time domain is employed.

Maximum Likelihood Estimation

As mentioned in chapter 3, Maximum likelihood (ML) estimation for the parameters 

of the model can be based upon the Kalman filter. It is easy to verify that the basic 

structural state space model is detectable and stabilizable if and only if crj and crj 

are strictly positive which ensures the state variance matrix converges to its steady 

state value exponentially fast.

The general form of the maximum likelihood function for a univariate state space 

model can be represented as follows

log L =  - T l ° g  2x -  ^ lo g  -  ~ Y ,\o g  f(t)  “  (7-21)

where u(t) = y(t) — y(t\t — 1) and f ( t )  = var[u(t)] are obtained from the Kalman 

filter.
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The univariate model can be reparameterized so that 4> = where is a

vector containing n -  1 parameters and a\ is one of the disturbance variances in the 

model. The variances of the disturbance can then be expressed as var[e(£)] =  

and var[6(f)] = a2mQ where h is positive and Q is positive semi-definite. As a rule, h 

or one of the diagonal elements in Q will be set to equal to 1. The reparameterization 

of the model enables crj to be concentrated out of the general likelihood function 

and the remaining disturbance variances are called relative variances. The prediction 

error decomposition yields
T T

log L =  “ log 2tt - f o g  al -  l ^ l o g / f f ) -  f(t)  (7.22)
Z Z Z t = 1 Z°* t=l

and since v(t) and f i t )  are independent of a\, differentiating the above equation with 

respect to <j \ gives

If v \ t )
rp Z—J

(7.23)
-  t = i  m

The notation indicates that it is the ML estimator of a\ conditional on a

given value of 3>*. Concentrating out a parameter reduces the dimension of the 

search involved in the numerical optimization procedure. The difficulty arises because the pararr

space of the variances includes zero. The likelihood function has a singularity if some variance goes t< 

Also, care needs to be taken in choosing one variance as the scalar a\ because the algebraic manipula 

is not viable if a\ is zero.
The solution usually proposed is to bound the relative vari­

ances away from zero. As a special case, Gersch and Kitagawa (1983) point out that 

the ratios qu  = a*/a2e, q22 = a2Ja 2t , q33 = al/a]  and q44 = a2/a 2t are signal-to-noise 

measures, trade-off parameters or hyperparameters. They set a\ = a\ and compute 

the likelihoods, with each qü = 2*, k = 0,1,2, * - •, by Kalman filtering. Their pro­

cedure is an approximation to maximum likelihood estimation in order to avoid the 

numerical optimization procedure for unknown a2, a2, a2, a2, under the assumption 

that a2v, a 2 , a2u, a\ are always greater than a\.

In general, however, if the chosen a\ is close to zero, numerical

problems may arise as the relative variances will tend to become ver^ large. However,
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the general likelihood function does not have this problem. Without any prior knowl­

edge about the disturbance variances of different components in a state space model, 

one can use the unconcentrated likelihood function to estimate the model parameters 

(including the disturbance variances) instead of considering the choice of cr\ in the 

concentrated form of the likelihood function. Therefore the general form of likelihood 

function is employed in our initial model identification.

In itia l P aram eters E stim ation

As Engle (1978) points out the Kalman filtered estimates perform very poorly at the

beginning of the sample period. This result is traceable directly to the estimation
estimates

of the initial state. The model parameters^are very sensitive to these estimates. 

Furthermore, the initial state has a substantial effect on the estimates for many 

periods. Considerable effort should therefore be directed to developing better methods 

for beginning the Kalman filtering procedure.

As discussed in chapter 3, the initial state covariance plays an important role in 

ensuring that the state covariance converges quickly to its steady state. The accuracy 

of the starting value of the initial state covariance is extremely important when the 

available sample size is small and the model is not stabilizable under these conditions 

the state covaxiance matrix may not converge approximately to the steady state at 

the end of the sample. Shephard and Harvey (1990) have paid special attention to the 

local linear trend component. Their Monte Carlo study showed that the diffuse prior 

initial state variance leads to an estimated with a higher probability of being non­

zero than the fixed unknown initial state with zero variance does, if in fact cr% > 0. 

On the other hand, if = 0, the fixed initial approach estimates cr% to be zero with 

higher probability than does the diffuse initial approach.

Theorem 3.7 in chapter 3 proves that an over estimated initial variance-covariance 

for the state vector leads to quicker convergence than does an under-estimated one. 

By the error sensitive analysis in chapter 3, Theorem 3.9 and Corollary 2, we also
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show that a conservative initial state covariance matrix plus a conservative state dis­

turbance covariance matrix provides a high convergence speed for the state covariance 

matrix. Furthermore, the RDE with an over estimated initial state covariance ma­

trix will converges to the steady state covariance matrix (the solution of the ARE) 

without the stabilizable condition on the specified model. However, this condition is 

a necessary condition for the RDE with an under-estimated initial state covariance 

matrix to converge. Although a diffuse state variance and relatively large variance 

elements in the state disturbance covariance matrix can always be used initially to al­

low the parameters to be estimated by the maximum likelihood approach through the 

Kalman filter, a more effective estimation can be obtained by using prior information 

about the state and state disturbance covariance matrices.

First of all, we suppose the basic structural model (7.20) is an adequate model 

when the trend is a local linear trend, i.e. p — 1, and the coefficient of the exoge­

nous input, VF, is set so that a  = 1 and cr| = 0, i.e. the weather sensitive load is 

deterministic.

Under the above conditions, y(t) has the following form based on model (7.20)

where ytrend(t)i ywP{t), yws(i) represent trend, weekly periodic, and weather sensitive 

components.

From the local linear trend model (7.13), the slope can be expressed as ß(t — 1) = 

((t — 1)/A and substituted into m(t) = m{t — 1) -f ß(t — 1) -f e(t). The local linear 

trend, therefore, can be expressed as

Similarly, from the weekly periodic model (7.15), the weekly periodic component 

ywp(t) = r(t) can be expressed as

y{$) — ytrend(t) T 2/u/p(0 “f" yws(t) T (̂ )̂ (7.24)

ytrend(t) = v W / A  +  C W  /  A * (7.25)

S(B)r(t) = uj(t) (7.26)
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from the weather sensitive component model (7.19), the coefficient a(t) can be ex­

pressed as

“ (0  =  £W /A (7.27)

Under the specified conditions, therefore, y(t) can be expressed as driven by four 

different disturbance components.

y(t)  =  +  +  “ (t 'l + W i w  + t n\
yy ’ A A2 S(B)  + A + y ’ (7.28)

Furthermore, y{t) can be made stationary by the operator AAa because

AA .(y(0) = A ,t7(t) +  5(£)C(f -  1) +  A2u(t) + Aa£(t)W + AA,c(f) (7.29)

If we assume cr| = 0, it can be verified that the auto-covariances of A A sy{t) satisfy 

the following relations

c(0) = 2<t 2 + SCT2 + 6<r£ +4ct2
c(l) = (» -  I K +2<?f

c(2) = 0  -  2 K

c(r) = (« ~  TK r  =  3 , • •

c(s -  1) = "1 +*<2

c(s) = - <
c(s +  1) =

c ( t )  = 0 T >  S +  1

(7.30)

If the weather sensitive load is not deterministic and W  is a constant, i.e. the 

variance of the disturbance £(f), <j |  is nonzero, a2 in equation (7.30) will be replaced 

by cr2 + VU2cr|. Therefore, under the assumption of a deterministic weather insensitive 

load, from equation (7.30), the initial estimation for <t2,<72,<t2 can be obtained from 

the auto-covariances of A A sy(t) and no matter how W  changes, the true value of 

cr2 could be expected always to be smaller (or at least not larger) than its initial 

estimated value, i.e.

*2 = + W 2 a 2 > a 2 (7.31)



228 CHAPTER 7. DYNAMIC MODELS FOR DAILY LOAD

It is also noticed that the mis-specification of the weather insensitive load affects the 

level of the local linear trend.

On the other hand, from equation (7.31), for any W , we also have <r2 > W 2crj, 

and then cr| < . Because, from equation (7.5) for the weather

conditions of the samples, the maximum value of W  does not exceed 0.685 and the
£.2

sample mean of W  is W  = 0.233, crj = ^  is a reasonable initial conservative estimate 

of cr|.

The initial variances of the four different disturbances are calculated and set out 

in Table 7.6. With these initial estimates, the model estimation procedure, which 

includes a fixed point smoothing for the initial state as proposed in chapter 3, can be 

applied to the proposed SSSM.

~ ^ r of
1.909E-4 1.4324E-4 10.1161E-4 35.1637E-4 22.3720E-4

Table 7.6: Estimated Initial Disturbance Variances

7.4.5 M odel Testing

If the basic state space model is adequate, what we are interested is follows:

For The Trend Component

• Is the trend a linear trend ? i.e. is p = 1

1. Is the slope of the linear trend constant ? i.e. is a2 = 0

2. Is the linear trend deterministic ? i.e. is a2 = a2 — 0

• Is the trend a linear damped trend ? i.e. is p < 1

1. Is the slope of the damped trend constant ? i.e. is a2 = 0

2. Is the damped trend deterministic ? i.e. is cr2 = cr2 = 0

• Is the trend a simple random walk plus noise ? i.e. is ß(t) = 0
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1. Is the trend itself a random walk ? i.e. is of = 0

2. Is the trend a constant ? i.e. is — o^ = 0

For The Weekly Periodical Component

• Is the weekly periodic component deterministic ? i.e. is crj = 0 

For The Weather Sensitive Component

• Is the weather sensitive component deterministic ? i.e. is = 0

Basically, there are three tests which are suitable to test a structural state space 

model estimated by the maximum likelihood method. These are the Likelihood Ra- 

h’o(LR) test, Lagrange Multiplier (LM) test and Most Powerful Invariant (MPI) test 

based on the theory of invariance by Lehmann (1959).

Our basic structural model contains five variance parameters (o*, o£, o f, oj, o^), 

and all of them are constrained to be non-negative since they are variances. Thus 

a value of zero is on the boundary of the parameter space. The LR based tests 

can be applied to test some of the parameters provided that the maximum likelihood 

estimator of the parameters in question are asymptotically normally distributed when 

the restriction is not applied. The LR test has following form

LR & (T — d)logfo- ,̂/<Tpj) (7.32)

where T  is the number of data points; d is the dimension of the model; <jp0, crp\ are 

variances of one step prediction from the null and alternative hypothesis respectively.

The LR test statistic has a x2 distribution with m degree of freedom where m is 

the number of parameters under the alternative hypothesis if the null hypothesis is 

true. It is noticed that when some of variance parameters (o^, o%, o f, o^,o2t ) are 

zero (i.e. they lie on the boundary of the parameter space) under the null hypothesis, 

the LR test statistic does not have the usual asymptotic x2 distribution because of 

the one sided restriction.
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For instance, when one of variance parameters in the state space model is zero 

under the null hypothesis and to be estimated under the alternative hypothesis, the 

LR test statistic will satisfy a x2 mixture distribution such that

If there axe more than two variance parameters lying on the parameter space 

boundary under the null hypothesis, the LR statistic is dependent on the information

mixture. Further details can be found in Gourieroux et al. (1982). However, under

under the alternative hypothesis because the value of the true mixture x2 distribution, 

with significance level a, is always less than Xm(a )-

Actually for the basic structural model, the LR test can be used provided that 

(j\, er£, cr| are all strictly positive, i.e. the structural model is stabilizable and de­

tectable since the maximum likelihood estimated parameters are asymptotically nor­

mally distributed.

Once one of cr£, crj, <j |  is constrained to be zero, the other maximum likelihood 

estimated parameters may not be asymptotically normally distributed. The LR based 

test is then not valid anymore.

One solution is to use the LM test because the LM test statistic still has the usual 

asymptotic x2 distribution even though some variance parameters lie on the boundary 

of the parameter space. However, it takes no account of the one-sided nature of the 

alternative, and therefore has lower power compared to other tests. Rogers (1986) 

develops a modified LM test to handle the one-sided alternatives.

Another partial solution to this situation is an MPI test which sets up a test prior 

to estimating the model in which some parameters values under both the null and the 

alternative are pre-specified and related. An MPI test can be constructed as follows

(7.33)

matrix of the parameter vector and could be distributed with a very complicated x2

any significance level a, it is sufficient to reject the null hypothesis when the LR 

statistic is greater than Xm(a ) where m is the number of parameters to be estimated

(7.34)
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where <J>J, are estimated parameter sets under the null and alternative hypothesis 

respectively; 5($5), are corresponding generalized residual sum of squares

from the models under the null and alternative hypothesis.

It is easy to verify that the generalized residual sum of squares is then given by 

the sum of squares of the standardized one step ahead prediction errors, i.e.

5(**) = £  **w//w (7-35)
t= s+ 2

where v(£) is the one-step ahead prediction error at time t and f (t) = var[v(£)].

It is expected that the statistic b obeys the relation b < c, where c is a constant, 

and this relation will be the basis for testing the null hypothesis. As to the efficiency 

and power of the MPI test, Franzini and Harvey (1983) suggest that a pre-specified 

parameter q > 0 is chosen so that a prespecified relationship will occur between the 

relative variances. The critical value c is dependent on T  and s for the MPI test. 

The critical values calculated using the method of Imhof (1961) for quarterly data 

are given in Franzini and Harvey (1983).

We refer to the statistic 6 in equation (7.34) as the FH statistic when the pre­

specified parameter is determined in the way Franzini and Harvey suggested and the 

corresponding test is referred to as the FH-MPI test.

Nyblom (1986) studied the test for a deterministic trend and suggested that the 

pre-specified noise ratio between the slope and the level, i.e. q = cr2/cr2, should be 

chosen as 375.1/(T — 2)2 to gain maximum power and Pitman efficiency. The statistic 

then has the following form

bm = (T — 2)[1 -  S(*I)/S(*;)]/375.1 (7.36)

where the relation 6* < c* gives the critical region for the test of the null hypothesis 

where c, is a constant. The table of critical values for the test can be calculated by 

Imhof’s method (see Nyblom (1986) for details). Similarly, we refer to the statistic 6* 

in equation (7.36) as the N statistic when the pre-specified parameter is determined 

by the approach of Nyblom and the corresponding test is known as the N-MPI test.
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Since there are five variance parameters to be tested, in other words, there are 32 

possible hypotheses to test. It is not feasible practically to conduct all the possible 

hypothesis tests. Therefore, we designed a scheme to test the most interesting hy­

potheses sequentially as follows: In the first stage, we assume that for V/, <r| =  0 and 

a(t) = 1. Therefore, we can use y(t) — W  as the observed weather insensitive load, 

and apply the SSSM (7.20) without the last dimension (weather sensitive dimension) 

to test the nature of the trend and weekly periodic components. Taking the accepted 

model from one test, we test further alternatives in the chosen model and so on. In 

the second stage, then we test the alternatives of the optimal model from the first 

stage without the above assumptions. The LR and MPI tests are employed in the 

testing procedure.

Determ inistic Trend and Weekly Periodicity Test

The null hypothesis is that the trend and weekly periodic components are determin­

istic, i.e. Ho '• cr̂  =  cr* = = 0 and S ($ q) = 5(0,0,0,0, cr̂ 0) where cr*0 =  This

model collapses to the regression model.

The alternative hypothesis is more general; stochastic linear trend and weekly 

periodic components, i.e. H i : cr%, cr£, cr*, a \  > 0. Because the model under the 

null hypothesis is not stabilizable and detectable, the hypothesis can be tested by 

constructing a “special” alternative model with constraints a* = crt, = qcrJ, = 0,

— cTj, and 5(4>I) =  S(qah,0,qcrl1,0,(jl1). The rationale behind the special 

alternative model is that if there is variation in the trend, of any kind, it will tend to 

show up in a test against cr*. An FH-MPI test is employed with q = 0.0234 to test 

the null hypothesis. The test results listed in Table 7.7 reject the null hypothesis.

Determ inistic Trend Test

The null hypothesis is that the trend component is deterministic and the weekly 

periodic component may not be deterministic, i.e. Ho : cr̂  = = 0 and S^^q) =

£(0,0, <rj, 0, v \ ) .
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Hypothesis Test Model Estimation of Test Model
Ho : c 2„ =  o l  =  0 vlo = cla =  1.442824

<  =  <T? =  c l  =  0S ($ .0) =  340 
cl =  4.2436E-3

H i : c \ > 0, a l  >  0 c 2̂  = 1.220561
= = <i°h 5 ($ .i )  =  282.234

of =  0 cl =  3.91E-3
Test Statistic b =  0.8301 (FH-MPI)
5% Critical Value c =  0.8671

b < c, Ho is rejected

Table 7.7: Test Trend and Weekly Periodicity — Deterministic

The alternative hypothesis is the more general stochastic linear trend, i.e. H i : 

of, of > 0. A “special” alternative model is set up with constraints a2 =  qal, a2 =  0, 

of = of and =  5 (o f ,0 ,erf,0 ,of). Again, because the model under the null

hypothesis is not stabilizable and detectable, the N-MPI test is conducted with q =  

375.1 /(T  — 2)2 and result is given in Table 7.8, and the null hypothesis is rejected by 

the N-MPI test.

Hypothesis Test Model Estim ation of Test Model
Ho : c l = c 2 = 0 °lo = ^ clo =  3.7852E-3

cl = 0 *1 =  0.0
of =  0 5 ( $ .0) =  339.3488 

cj = 4.103E-3

H i : c l>  0, c \  >  0 c \x =  2.4983E-3
o l = o-o

o-2 =  0 5 ($ ,i )  =  329.1507 
cl = 2.7529E-3

Test S tatistic b, =  0.027079 (N-MPI)
5% Critical Value c, =  0.035

6. COoX*V rejected

Table 7.8: Test Trend — Deterministic
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Determ inistic Weekly Periodicity Test

In a similar manner to the deterministic trend test adopted above, the null hypothesis 

is that the weekly periodic component is deterministic and the trend component may 

not be deterministic, i.e. Ho : cr% = 0 and S(4>2) = S(<72, cr̂ , 0,0,

The alternative hypothesis is a more general random walk weekly periodic com­

ponent, i.e. H i : cr̂  > 0. Since cr2,<72 are not known, we construct “special” testing 

models by constraining cr2 = <r2 = qa\ with q =  375.1 / (T  — 2)2 for the null and 

alternative hypothesis respectively. The N-MPI test is conducted and the results 

show that the null hypothesis is rejected (see Table 7.9). In other words, the weekly 

periodic component is not deterministic.

Hypothesis Test Model Estimation of Test Model

o A II o *.20 = <7?0 = 1.425E-3
*1 = 0 S($.o) =  319.75
av = c7C = <?l= 2.4017E-3

H i : »1 > 0 crij = 1.2578E-3
a v = 5(4>.i) = 319.0204 

=  2.3830E-3
Test Statistic K = 0.002057 (N-MPI) 
5% Critical Value c* =  0.035

6* < c*, Ho is rejected

Table 7.9: Test Weekly Periodicity — Deterministic

Partial Determ inistic Trend and Weekly Periodicity Test

The null hypothesis is that the trend and weekly periodic components are partially 

deterministic, i.e. Ho : o\ = cr2 = 0, and = 0. This model implies that the trend 

is a random walk plus drift and the weekly periodic component is fixed.

The alternative hypothesis is a more general model, i.e. H i : <r2, <r2, <j2 > 0 and 

<t2 = 0. The FH-MPI test model will be g\ = cr2 = qcr2, $ ($ ;) = S(a2ml, qcr2ml, q a ^  0,0),
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where cr\ = er*. The FH-MPI test is conducted with q = 0.00784 and results listed 

in Table 7.10 show that the null hypothesis should be rejected.

Hypothesis Test Model Estimation of Test Model
H 0 : a% > 0 = r f <j\o = 1.8521E-3
cr\ =  a l = = 0 °c =  <£ = *? = 0 S ($ . o) = 327.7981 

<r= =  1.9214E-3

H i : =  0, > 0 = <  a3. =  0 <j\ = 1.4567E-3
> 0, a* > 0 *3 =  = w h S(*.i) = 294.4885 

<rl = 1.7022E-3
Test statistics b = 0.8984 (FH-MPI)
5% Critical Value c = 0.9034

b < c, Ho is rejected

Table 7.10: Test Trend and Weekly Periodicity — Partial Deterministic

From the above tests, we are convinced that the trend and weekly periodic compo­

nents are stochastic. However, the stochastic trend component can take on different 

forms, such as, (1) a random walk plus drift(cr£ = 0, fixed slope), (2) a simple random 

walk plus noise, or (3) a random walk.

Random Walk Plus Drift Trend Test

The null hypothesis is that the slope of the trend is deterministic i.e. Ho : cr* = 0 

and the alternative is more general, i.e. H i : er* ^  0. Under the null hypothe­

sis, the properties of stabilizability and detectability are lost, so, the MPI test has 

to be applied to the null hypothesis with cr* =  0, cr* = a* =  qa*, and S ^ q) =  

S(q(T*m0, 0, g*i>, 0, (jIq) where cr*0 = cr* against the alternative with cr* = cr* = cr* = 

q<j*, and S($J) = S(qal^ qcr^, qah, 0, <7̂ ) where <7*0 = cr*. The FH-MPI test is con­

ducted with q = 0.007841 and the result listed in Table 7.11 rejects the alternative 

hypothesis.

It is noted that the variance of the estimated one step ahead predictions under the 

null hypothesis cr*0 is less than cr*x obtained under the alternative hypothesis and the 

FH-MPI test statistic is on the edge of 5% level. This fact indicates that the model
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Hypothesis Test Model Estimation of Test Model
H 0 : =  0

CN vo
bIIes?b cr2.o = 1.3843E-3

av = al  = Wlo 5 ($ ,0) = 307.8817
CT(=0 <T̂o =  2.2822E-3

H i : a\ > 0 = o? er.2, =  1.2217E-3
r f  = G\ =  ° l  = W l\ 5 ($ .,)  = 281.8578 

<t2, = 2.3903E-3
Test Statistic 
5% Critical Value

b = 0.9155 (FH-MPI) 
c =  0.9034

6 > c, H i is rejected

Table 7.11: Test Trend — Random Walk Plus Drift

under the null hypothesis may be superior to the alternative one. However, because 

the fixed relation between the variances of different components may not be realistic, 

the test statistic implies that the variance of the slope, <r̂ , may be relatively smaller 

than the other component variances.

Random Walk Plus Noise Trend Test

When p = 0, the local linear trend model becomes a random walk plus noise model, 

i.e.

m(t) = m(t — 1) + y*(t)
< (7.37)

ytrend(t)  — 77z(t)

where =  r)(t) + ((*), and — a* + a\. It can be seen that the random walk 

plus noise model is stabilizable and detectable if or cr* is strictly positive.

The null hypothesis is that the trend component is a local linear trend model i.e. 

p — 1, against an alternative of a random walk plus noise model, i.e. p — 0. Since 

both trend models still make the basic structural model stabilizable and detectable 

when er̂ , crj}, cr̂  > 0, the LR test can be employed to test the null hypothesis. The 

test result listed in Table 7.12 shows that the local linear trend hypothesis is rejected 

by the LR test. It is noted that the trend component of the estimated alternative
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model is actually a pure random model since the value of the disturbance variance, 

c>£, is estimated to be zero. This indicates that the trend component is identified 

as a pure random walk under the condition that the variance of the weather effect 

coefficient is zero.

Hypothesis Test Model Estimation of Test Model
Ho : p = 1 °la = <r?o = 1.0579E-3

® 3 > o <j \ = 3.6442E-5
a* > 0 a\ = 2.0400E-6
° l >  0 <t 1 =2.5820E-5 

S ($ .0) = 291.3755 
<7p0 = 2.4543E-3

EC M "O II o "h  = = 8.0714E-4
<7*>0 <Tp = 1.0797E-4
(j\ > 0 = 0.0
° l >  0 a l = 1.2247E-5 

S($.i) =  315.342 
a l  = 2.0372E-3

Test Statistic x . =  61.65386 (LR)
5% Critical Value xg.osCl) =  3.8410

X* > X0 .0 5(l), Ho is rejected

Table 7.12: Test Trend — Random Walk Plus Noise

D eterm in istic  W eather Effect C oefficient Test

The above tests under the condition of a zero disturbance variance for the weather 

effect coefficient, suggest strongly that the trend and weekly periodic components are 

pure random walks, i.e. crj > 0 , cr* = 0, tr* > 0, p = 0. However, the validity of the 

pre-specified variance is still in question because there is evidence that the weather 

effect was not deterministic when we created the weather sensitive component W  at 

the beginning of this chapter. Now, we use original observed load data y(t) and the 

state space model (7.20) to verify that the weather effect coefficient is not determin­

istic by constructing the following hypothesis test based on the derived models for 

the trend and weekly periodic components.
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The null hypothesis is that the structural model has a deterministic weather effect 

coefficient, i.e. cr| = 0; the general alternative is that the structural model has 

stochastic weather effect coefficient, i.e. > 0. Because the model is not stabilizable 

and detectable under the null hypothesis, an FH-MPI test is conducted with a pre­

specified parameter q = 0.007841. The results listed in Table 7.13, FH-MPI test 

rejects the null hypothesis. This confirms that the weather effect is not deterministic.

Hypothesis 
H 0 : <r| =  0

Test Model 
*.20 =
° l  = a l = q°lo
cr2 = <r| = 0

Estimation of Test Model 
al0 = 2.4425E-3

S ($ .0) = 343.8454 
<7̂0 = 2.8938E-3

H x : o\ > 0 <7?1 = 2 <rh = 2.0940E-3
*2 =  Gl  =  ° \  = wlo S($.!) = 307.5784
c} = 0.0 a\x = 2.6033E-3

Test Statistic b = 0.89453 (FH-MPI)
5% Critical Value c = 0.9034

b > c, Ho is rejected

Table 7.13: Test Weather Coefficient — Deterministic

M easu rem en t Error T est

Now, the only parameter that has not been tested is the variance of the disturbance, 

<r2, in model measurement equation. The physical explanation of <r2 is the mea­

surement error which occurs when the state (or transition) model is correct, and, is 

expected to be zero if we assume that there is no observation error.

A test can be conducted using an LR test based on the assumptions about the 

nature of the random walk trend, non-deterministic weekly periodic component and 

weather effect coefficient, i.e. cr2, <r2 and g\  are strictly positive and = p =  0. 

Under the above conditions, the null hypothesis is <r2 = 0, and the alternative is 

<72 > 0. In Table 7.14, we observe that the alternative hypothesis is rejected.

D iscussion:
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Hypothesis Test Model Estimation of Test Model
H 0 : of =  0 (j\>  0 of =  1.2483E-3
of =  0 > o of = 1.9779E-6

5̂ II o ■r
n*

o
V o of = 3.0871E-4

ofo = 1.6713E-3

H j : of > 0 <7 \ >  0 of =  7.7534E-4oII
<N B-
b

>  0 of =  2.1589E-4

•b II o ° l >  0 of = 1.3603E-5
o\  >  0 of =  1.1693E-3

of] =  1.8682E-3
Test Statistic x* =  -36 .8 6 4 6 7  (LR)
5% Critical Value Xo.oöfl) = 3.841

X* <  Xo.osU)? H i is rejected

Table 7.14: Test of Measurement Error

Summarizing all the tests carried out above, we conclude that the most suitable 

model for the selected sample data in the structural model framework is the model 

with random trend, stochastic weekly periodic and weather effect components, i.e. 

p =  = of =  0. This model has a clear and natural interpretation, i.e. the

trend, weekly periodicity and weather effect components are all stochastic. The trend 

component is identified as (1 — B)m(t) =  i/(t), which is a random walk type stochastic 

variable. The identified model shows that the trend prediction function is just the 

last estimation of the trend component. The load profile has its main contribution 

from the weekly periodic and weather effect patterns which change slowly over time.

The natural increasing trend and annual seasonal pattern cannot be identified 

from one year’s daily data. It is also ineffective to use a huge amount of daily data 

to catch the long term trend; especially, as our present interest focuses on only a 

few days prediction using a small sample data set. Therefore, the identified state 

space model performs worse than that of the ARIMAX model because the identified 

trend component may not be realistic. If a smaller sample set is employed to identify 

a structural model, the “trend” is composed of a natural increasing trend and an 

annual cycle. The local linear trend model may describe the “trend” effectively.
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In the following section, we show, firstly, that the identified structural state space 

model is an adequate model although it fits the sample data less well than ARIMAX° 

model. Secondly, five smaller sample sets are used to show that the structural state 

space model’s performance is much better than the ARIMAX model in both fitting 

sample data and post sample prediction.

7.5 D iagnostic Checking and M odel Selection

Diagnostic checking for the selected ARIMAX and structural state space models is 

based on three tests: (1) residual series correlation test (2) Box-Ljung goodness of 

fit test (3) cumulative periodogram test. Many other diagnostic tests give similar 

information to the above three diagnostic tests. It is possible to directly perceive the 

likely result of diagnostic checks from figures 7.1 and 7.2 for the ARIMAX model, 

and figures 7.3 and 7.4 for the structural state space model.

It is obvious that the two models both pass the diagnostic checks. However, the 

estimated one step ahead prediction error from the state space model (cr2 =  0.00167) 

is greater than that from the ARIMAX model (a2 — 0.0014). By a close examination 

of both models’ performance, we found that the state space model performs less well 

than its rival mainly because the specified trend component appears not to cope well 

with the trend behaviour.

To support the above explanations, we randomly choose five sample sets of daily 

data of size 70 for model building and a further 28 sample points for post sample 

prediction to compare the performances of the ARIMAX and state space models. The 

first sample set starts from January 6 (Sunday, summer), 1985; the second sample set 

starts from March 18 (Sunday, autumn), 1985; the third sample set starts from May 

27 (Sunday, autumn to winter), 1985 where there was a sudden weather condition 

change; the fourth sample set starts from August 5 (winter to spring), 1985; the fifth 

sample set starts from October 14 (Sunday, spring to summer), 1985.
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ARIMA model (U.1)X(0.U)_7 
with transformed temperature

Residuals from ARIMA model (1.1.1)^0.1J)_7 
with transformed temperature

Figure 7.1: Sample Fitting of ARIMAX Model
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Model Diagnostics:

Plot of Residual Correlation

Plot of Cumulative Periodogram Test

/  /  /

frequency

Figure 7.2: Model Diagnostic Check for ARIMAX Model
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Strum»J Sute Space Mode)

periodic component

residuals

Figure 7.3: Sample Fitting of Structural State Space Model
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Model Diagnostics:

Plot of Standardized Residuals Plot of Residual Correlation

Lag

P-value for Goodness of Fit Statistic

4 6 8 10 12

Lag

Plot of Cumulative Periodogram Test

frequency

Figure 7.4: Model Diagnostic Check for Structural State Space Model
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We choose (1) the variance of one step ahead prediction error, cr2, (2) the prob­

ability of the Box-Ljung statistic at lag 15, p[(J(15)] and (3) the Akaike information 

Criterion (AIC) to compare the fitting performance within the samples. To compare 

the post sample prediction performance of the two models, we choose (1) the sum of 

squared errors over 28 post sample predictions, PSSE(28), and (2) the Chow statistic 

for sample post prediction.

In building the ARIMAX model for the above sample data sets, we did not find 

any major model structural changes from ARIMAX(1,1,1) x (0 ,1 ,1)7. i.e. the Model 

ARIMAX(1, 1, 1) x (0,1, 1)7 is an adequate model for the five different sample sets 

although there are differences in the parameter values. However, for the structural 

state space model, after the sequential model tests described in the previous section, 

we find there are different model forms for the structural model components for the 

five different sample sets. The models’ performance in fitting within the samples and 

for post sample predictions are tabulated in Table 7.15.

Comparing the one step predictions of the ARIMAX model and the SSSM model 

for each sample data set, we find that the estimated one step prediction variances of 

the ARIMAX models are always greater than those from the SSSM models. Checking 

the probabilities for the Box-Ljung statistic for the two models, we find that the 

p[Q(15)] from ARIMAX models are always greater than those from the SSSM models 

although the two models both pass the test at the 5% significance level. These two 

statistics seem to be in conflict when choosing the better model.

The reason for the conflict is that the weather effect is considered to be determin­

istic in the ARIMAX model, and so, the average weather effect for each sample data 

set is estimated. However, the significant differences between the estimated weather 

effect coefficients A for the five sample data sets (see the sixth row of Table 7.15 indi­

cate the weather effect is not deterministic. On the other hand, this effect is allowed 

to change in the SSSM model, as a result, the one step ahead prediction errors of 

the SSSM model are expected to be smaller than ARIMAX model’s. In general, the
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Parameter sample 1 sample 2 sample 3 sample 4 sample 5
ARIMAX(1,1,1) x (0,1, 1)7 Model

<t>i 0.5105 -0.3799 0.1515 0.3553 0.4793
0i 0.9888 -0.0563 0.7502 0.7538 0.3783
07 0.9920 0.8390 0.9925 0.9873 0.7808
A 0.0055 0.5385 0.6213 0.5531 0.2705

Statistic
a 2 8.426E-4 2.521E-3 1.087E-3 2.026E-3 8.856E-4
PW(15)] 0.81 0.12 0.45 1.0 0.201
AIC -489.53 -412.82 -471.70 -428.12 -486.05
PSSE(28) 0.1525 0.0932 0.2230 0.1464 0.2818
Chow 9.9754 1.4789 10.120 3.2484 11.624

Structural State Space Model
P 0.8 0.7073 0.1745 0.0 0.4772
* 8.865E-5 6.174E-4 0.0 0.0 0.0

0.0 0.0 4.9526E-5 7.1373E-4 1.9728E-4
0.0 6.6501E-6 0.0 1.7114E-6 3.5299E-6
4.133E-5 2.752E-3 3.515E-4 0.0 0.0
4.396E-4 6.532E-4 3.983E-4 5.027E-4 1.8006E-4

Statistic
a 2 7.949E-4 2.236E-3 8.884E-4 1.716E-3 8.602E-4
PW(15)] 0.42 0.101 0.12 0.83 0.08
AIC -491.61 -417.21 -483.83 -439.74 -486.08
PSSE(28) 0.1147 0.0886 0.0127 0.0794 0.3623
Chow 5.1550 1.3433 0.7136 1.6534 15.044

Table 7.15: The Comparison of ARIMAX model and SSSM model for 5 Sample Sets
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SSSM can be considered as a general form of the ARIMAX model with a stochas­

tic coefficient for the exogenous variable and some restrictions (see equation (7.29)

). These restrictions constrain the flexibility of the SSSM model to fit the sample 

data to some degree and cause the one step ahead prediction errors lack of normality 

although the overall variance of the one step ahead prediction error is smaller than 

those of the ARIMAX model.

The Akaike information criterion (AIC) can be used to trade off the conflict in 

model selection. Comparing the AIC values for the two different models in each 

column of Table 7.15, we can see that the SSSM’s always have a lower value than the 

value from ARIMAX model for each selected sample set. This suggests that the state 

space model is a better model in the AIC sense.

The sum of squared errors for the post sample multi-step ahead, PSSE(28), and 

corresponding Chow statistics also show that the SSSMs are superior to its rival 

ARIMAX because the PSSE(28) produced by the SSSMs are less than that from 

ARIMAX for the first four sample sets. The reason for the different result in the 

fifth sample set is that the post sample period includes the Christmas and New Year 

holidays. Therefore, the post sample statistic from the fifth sample cannot easily 

be taken into account in judging the post sample prediction performance of the two 

models.

D iscu ssion:

From the estimated ARIMAX(1,1,1) x (0,1,1)7 models and the estimated SSSM 

models for the five different sample data sets, it can also be seen that they share some 

similar model interpretations.

For instance, 07 of ARIMAX(1,1,1) x (0,1,1)7 for both sample data set 1 and 

3 are close to 1 (see Table 7.15). As we discussed in chapter 5, this indicates that 

the weekly periodicity is very close to a weekly deterministic harmonic. This claim 

is also verified by the corresponding SSSM models as the estimated variance of the 

disturbance for the weekly periodic component is zero.
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Although there is no obvious similarity between the trend from ARIMAX model 

and the trend from SSSM model, they both have the detrending filter (1 — B )2 in the 

models. From the SSSM model, we can see that the trend variation mainly comes 

from the level disturbance, cr2 > 0, a2 = 0 in the first half of the year (the sample 

data sets 1 and 2); whereas the trend variation is mainly contributed to from the 

slope, c 2 =  0, (J2 > 0 in the second half of the year (the sample data sets 4 and 5).

Examining the variances of the weather effect component, <j | ,  in the estimated 

SSSMs, we can see that the electricity load is not so dependent on weather condition 

(a2 > 0) in the first half of a year as it is in the second half of a year. This implies 

that people, generally, are not consistently sensitive to temperature when it is getting 

cold in the first half of a year. In a contrary way, they are consistently sensitive 

to temperature when it is getting warm in the second half of a year. This is also 

reflected in the coefficient of the weather exogenous variable, A, in the estimated 

ARIMAX models. This indicates that people try to save on their electricity bills 

by delaying as long as possible the use of their electrical heating appliances when 

the weather becomes cold as autumn/winter approaches; and by halting the use of 

their heating appliances as soon as possible when the weather becomes warmer as 

spring/summer arrives.

7.6 Sum m ary

In this chapter, we mainly use a state space model based on the structural modelling 

approach proposed by Harvey (1989) for our daily load and weather data. The initial 

values of the state vector and its covariance matrix, which are often ignored, have 

warranted special attention by applying the techniques developed in chapter 3 to 

improve the model parameter estimation via the Kalman filter for a small sample 

data set. A hypothesis test scheme is proposed to specify the optimal state space 

model for the daily load data.

Judging by the overall performance of the ARIMAX and SSSM models both in
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the sample and post sample data, we can conclude that the SSSM is the better model 

for the smaller sample size while the ARIMAX is the better model when the sample 

size is large. The reason for this is that the long term trend (natural growth trend 

and annual cycle) behaviour cannot be well approximated by a local linear model for 

a large sample of data, say several months.

Theoretically, the SSSM can be modified to suit the annual seasonal pattern but 

with very high system order when several years of daily data are available. Computing 

problems will however occur since it will requires considerable CPU time. It also seems 

a very inefficient way to produce a relatively short term prediction.

When we looked at how an ARIMAX model could be converted approximately 

to a structural state space form, it could be carefully noted that the associated state 

space model lays in a restricted domain. It appears that within that constrained 

domain it may not possible to model well the data investigated. This suggests that 

further research may be carried out on an ARIMAX model where the parameters are 

allowed to evolve over time and that this more general ARIMAX model may be more 

effective although it still has the disadvantage in lack of natural interpretation as the 

conventional ARIMAX model. This topic is beyond the content of this thesis.



C hapter 8

Conclusion and Suggestion

This thesis has presented a review of short-term electricity load modelling and fore­

casting in the literature. We divide the various models into two categories, namely, 

load data only, and load and weather data models. In each category, the differ­

ent methods can be categorized into two approaches, i.e. the two stage time series 

approach and the state space approach.

Analysis and comparisons of different methods lead us to believe that it is very 

fruitful to divide the load into different components and for the load to comprise 

different components in additive form. In constructing a model for short-term load, 

the following main aspects have been investigated in this thesis.

1. Daily and weekly multiperiodic processes for the base component

2. A parsimonious model for the stochastic component

3. The relationship between weather variables and load demand, and hence the 

weather sensitive load

4. The influence of initial conditions in a state space model on model identification

In the theoretical work of this thesis, we focus on a subset AR model selection 

procedure in chapter 2 and the some properties of a state space model in chapter 3.

In chapter 2, the effects of deleting a lag from a full AR model, and sequentially, 

deleting a lag from a subset AR model have been intensively analyzed. We show

250
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that the effects of deleting a lag are determined by the magnitude of its coefficient 

and by its representability by other remaining lags. As a result, we concluded that 

a balance should be struck between them to search for an optimal subset AR model 

efficiently. An efficient search procedure is proposed to find an optimal subset AR 

model. The results from applying this procedure to simulated data and real data 

show that our concern for “balance” is necessary. How to obtain an optimal balance 

needs still further study.

From Kalman filter theory, it is well known that both a diffuse initial state covari­

ance matrix and a fixed initial state vector asymptotically lead to the same steady 

state vector covariance, i.e. a constant state covariance matrix if the state space 

model is detectable and controllable. The effect of an initial state vector and its co­

variance matrix on the convergence rate is neglected in the literature. However, the 

convergence rate does affect the model parameter estimation in a sample set with a 

limited data span. A faster convergence rate will lead to more accurate model pa­

rameter and state vector estimation than that associated with a slower convergence 

rate, where the sample set is not very large.

In chapter 3, we show that the state covariance matrix convergence rate from an 

over-estimated initial value is feister than that from an under-estimated initial state 

covariance matrix. A procedure for the estimation of the initial state condition is 

proposed in section 3.4 based on fixed point smoothing, which ensures that we are 

able to identify the state space model from a small sample data set. After ana­

lyzing the effect of the error-sensitivity of the state disturbance term, we conclude 

that conservative initial estimates for a state vector covariance matrix, the covariance 

matrix of the disturbance terms of the state equation and the observation equation, 

yield a conservative state covariance if the system matrices are known. Therefore, we 

proposed in section 3.6 an off-line recursive procedure to estimate for a state space 

model the system parameters (the covariance matrices of disturbance terms), the 

state vector and its covariance matrix. This procedure and the way we specify the 

initial values avoid those problems which may cause model mis-identification. For
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general cases, there are some unknown elements in the system matrices. Therefore, 

a further study should be carried out to investigate how the initial estimates for the 

unknown elements in the system matrices affect the estimation of the state vector, its 

conditional covariance matrix via Kalman filtering, and the convergence of the maxi­

mum likelihood estimation for these elements and the disturbance covariance matrix. 

This investigation safeguards the correctness of system identification by maximum 

likelihood via Kalman filtering (i.e. estimation of unknown elements of the system 

matrices, the state vector and its covariance matrix, the covariance matrices of the 

state and observation disturbance terms).

In the practical work aspect of this thesis, we propose a new modelling procedure 

based only on the load data in chapter 4 under the assumption that the load variation 

follows an inherent law and is only dependent on time when weather information is not 

available (i.e. the exogenous weather effect is ignored). This model divides the short­

term load into three components. They axe trend, periodic, and stationary stochastic 

components. Beginning with this frame-work, a cointegration - “error correction” 

regression model has been proposed to estimate and to forecast the trend behaviour. 

This cointegration model uses relatively long-term (weekly) data to help in modelling 

the short-run trend. Theorem 4.1 is a theoretical result for the cointegration -  “error 

correction” regression model proposed by Engle et al. (1989). It also proves that our 

cointegration -  “error correction” model is a generalization of the Engle et al. (1989) 

model and has a better short-run prediction performance.

The detrended data, obtained by subtracting the estimated trend component from 

the load, is a periodic stationary time series. It presents different daily periodical 

patterns for weekdays and weekend days. A new modelling procedure developed in 

chapter 5 treats data for weekdays and weekend days separately. The link between 

them is a transition process so that both daily and weekly periods in the load process 

can be accounted for. The advantages of this approach are: (1) avoiding the use of 

very large sample data sets and many frequency components to model the daily and 

weekly periodic patterns in a discrete harmonic frequency model; (2) giving a better
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understanding of the load profiles in weekdays and weekend days and how weekday 

load profiles evolve to weekend load profiles and vice versa. The innovation series are 

obtained by subtracting the estimated periodic component from the detrended data. 

As a result, the innovation series has no significant daily and weekly periodicity and 

can be assumed to be a stationary series.

The stationary innovation series can then be approximately identified automat­

ically by the procedure proposed in chapter 2 as a parsimonious subset AR model 

with an order less than the daily periodic order.

The whole procedure of modelling and its identification is processed automatically 

after a few instructions are given. This feature means that the identified model is 

adequate and parsimonious and also means that the user only has to make minimal 

a priori assumptions to initial the procedure.

After applying the proposed new approach to New Zealand half-hourly electricity 

load data and utilizing the associated modelling procedures for different components 

in chapter 5, the overall performance of the proposed modelling procedure is very 

promising in both sample fitting and post sample forecasting by comparison with 

other popular methods.

For the load and weather model, when weather information is available, we in­

tensively investigate the relationship between load and weather variables in chapter 

6. Based on the evidence of the non-linearity between them, a non-linear functional 

relationship between the load and a temperature-humidity index is established. The 

model accuracy and stability had to be well balanced to identify this relation. As a 

result, a weather sensitive load variable is derived from the estimated relations and 

is linearly related to the load. The newly created variable is now more appropriate 

than the temperature-humidity index as an exogenous variable in any linear system 

describing the load behaviour.

We also found that the parameters of the established functional relationship de­

pend on the time of a day and the type of day in a week from 3 hourly based data. 

If we wish to resolve accurately how this relation evolves over the day, we must have
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available weather data measured at time intervals much shorter than 3 hours.

A structural state space model has been built for daily electricity demand in 

chapter 7. A procedure is provided to estimate the model’s initial state which has 

not been given much attention in the literature. The estimated state using this 

procedure provides assistance in speeding up convergence of the Riccati difference 

equation for a limited data span. The model parameters and the state vector are 

estimated quickly and accurately. To test and specify an optimal model for the load 

data, a hypothesis testing procedure has been proposed.

After applying the proposed structural state space model to the data of daily 

electricity load for Canberra, Australia, and comparing its overall performance, both 

in sample and post sample, with an ARIMAX model, we conclude that the proposed 

structural state space model is better for the smaller sample size although ARIMAX 

is better when the sample size is large. The reason for this is that the behaviour of 

the trend (which includes the natural growth trend and the annual cycle) cannot be 

handled properly by a local linear model in structural state space, when the sample 

data size is sufficiently large that it entails considerable seasonal variation.

A state space model for very short term load data (i.e. quarter-hourly, half-hourly 

or hourly data) must have a very high order to cope with daily and weekly periodic 

variation, there are therefore likely to be too many parameters to be estimated. Great 

computing difficulties, related to memory size, CPU time and cost etc will arise. It is 

also a very inappropriate way to create relatively short term predictions, since such 

predictions must have wide prediction confidence intervals given the many unknown 

parameters involved. We suggest that state space models be developed for data sets 

observed at different intervals, such as hourly, daily, and weekly, etc. A model based 

on one time interval, say weekly, can be utilized to establish the “long term trend” 

in a model based on data observed daily. This same method can also be used when 

a daily model is now utilized to establish the “long term trend” for a model using 

hourly data. In this way, a state space model with multiple time scales, which contains 

several sub-state space models interacting with each other, can be setup to integrate
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the load variations as observed at different time intervals.

It should be mentioned that modelling stochastic load is, in general, a quite com­

plicated procedure. Therefore, good intuition is needed in searching for a good model 

specification. For instance, the form of the micro model for different components of 

load in a structural state space model is not easily specified. In fact, we have to 

choose one form from a group candidate models. The most obvious problem with 

such a structural state space modelling approach is that it is not easy to specify the 

covariance matrix structure of the disturbance term of the state vector. A compli­

cated structural state space model creates great difficulty in testing all the hypotheses 

needed to obtain an optimal model structure. The sequential hypothesis testing pro­

cedure presented in chapter 7 handles the most interesting models. As all possible 

models are not handled we obtain the best model of those considered using a partic­

ular criterion. This means there must be an element of subjectivity in this aspect.

Besides the improvement of modelling techniques for a regional short-term elec­

tricity load, the major source of further improvement of short-term forecasting will 

come from the proper knowledge of the various sources of demand and the genera­

tion of the load. For example, industrial, business, agriculture and residential load 

demands have their own particular characteristics associated with weather, time of 

a day, day of a week, season of a year and stochastic properties. If the load data 

from the major consumer categories in a region were provided, we believe that the 

opportunity to deal with them separately would allow better understanding of the 

total load and thus achieve more accurate forecasting.



A ppendix A

A n Exam ple for Chapter 3

For example the random walk plus noise model 

x(t  4  1) =  x(t)  +  d1/2£(t +  1)
< (A .l)

y(t)  = x{t) 4  e(t)

where both £(t) and e(t) are scalar white noise disturbances with zero mean and 

variance 1, and they are independent.

The RDE is

a 2(t +  1) =  [1 — k(t)]2a 2(t) +  k(t)2 4  d (A.2)

where k(t)  =  cr2(t)[cr2(t) 4  1]—1, &2{t) = E(x( t)  — x(t\t — l ) )2. The model is always 

observable (detectable) but it is not stabilisable when d =  0. The corresponding ARE

er2 =  [1 — k]2cr2 4  k2 4  d, where k ( t ) =  cr2[a2 4  1] 1 

=► (a2)3 4  (1 -  d){a2)2 -  2da2 -  d = 0 (A.3)

It can easily be proved tha t the ARE equation (A.3) has an unique positive solution 

when d > 0 as follows

a 2 =  2y/=qcos(^0) -  i ( l  -  d) (A.4)

where q =  — 3<f+̂ ~ ^ 2, r  =  9d+18̂ ± ? d~ , and cos(0) =  r / y / - q 3.
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The State Variance Convergence Speed 

d =  10 d = 1

time time

Figure A.l: The Convergence Speed of £(<) when E(0) is Over- or Under-estimated
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That the over-estimated initial state variances cause faster convergence than the 

under-estimated ones is clearly shown in figure A.l when d = 10, 1, 0.1, 0.01.

Therefore, we can conclude that the partial information on initial conditions of the 

state space model (3.1) can be used to speed up the convergence to the steady state 

if the model is stabilizable and detectable. In general, a large initial state covariance 

matrix converges faster than a small initial one. Therefore, an initial conservative 

estimate for the state disturbance variance is reasonable and applicable.
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Figure B.l: Model 1: Model Fit Diagnostics for the Autumn Data Set
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Figure B.2: Model 1: Model Fit Diagnostics for the Winter Data Set
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Figure B.3: Model 1: Model Fit Diagnostics for the Spring Data Set
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Figure B.4: Model 1: Model Fit Diagnostics for the Summer Data Set
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B.2 Model 2
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Figure B.5: Model 2: Model Fit Diagnostics for the Autumn Data Set
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Figure B.6: Model 2: Model Fit Diagnostics for the Winter Data Set
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Figure B.7: Model 2: Model Fit Diagnostics for the Spring Data Set
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Figure B.8: Model 2: Model Fit Diagnostics for the Summer Data Set
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B .3 M odel 3

lag coeff. s.e. t-ratio
Long Memory Filter

48 -0.31945175 0.51328354E-02 -62.236897
336 -0.66333479 0.51328354E-02 -129.23360

Short Memory Filter
1 -1.4157610 0.37876885E-01 -37.377968
2 0.41831249 0.51374629E-01 8.1423941
4 0.10509685 0.36171526E-01 2.9055135
48 0.18177316 0.49306516E-01 3.6865950
49 -0.10303809 0.37450057E-01 -2.7513466
size of 7, AIC = -9042.985, af = 0.1252618E-3

Table B .l: Subset ARAR Model Fitting the Autumn D ata Set

lag coeff. s.e. t-ratio
Long Memory Filter

48 -0.18154544 0.13682197E-02 -132.68733
336 -0.82897669 0.13682197E-02 -605.87982

Short Memory Filter
1 -1.0273980 0.72239906E-01 -14.222029
2 0.13362987 0.72291248E-01 1.8484931
18 -0.30434862E-01 0.29222472E-01 -1.0414883
46 -0.40687922E-01 0.28778533E-01 -1.4138290

size of 6, AIC =  -8956.618, af = 0.1367387E-3

Table B.2: Subset ARAR Model Fitting the W inter D ata Set
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lag coeff. s.e. t-ratio
Long Memory Filter

48 -0.20217681 0.25643010E-02 -78.842850
336 -0.80233228 0.25643010E-02 -312.88538

Short Memory Filter
1 -1.0132995 0.17830238E-01 -56.830395
5 0.77929199E-01 0.17064037E-01 4.5668678

45 -0.11167498 0.17064037E-01 -6.5444641
49 0.73816732E-01 0.17830238E-01 4.1399746

size of 6, AIC = -9120.78, erf = 0.1161884E-3

Table B.3: Subset ARAR Model Fitting the Spring Data Set

lag coeff. s.e. t-ratio
Long Memory Filter

48 -0.19982231 0.24771870E-02 -80.665009
336 -0.80134100 0.24771870E-02 -323.48831

Short Memory Filter
1 -1.1507533 0.38743131E-01 -29.702124
2 0.18511222 0.38828932E-01 4.7673788

42 -0.64948291E-01 0.14507797E-01 -4.4767852
49 0.45982625E-01 0.14567110E-01 3.1566060

size of 6, AIC =  -9384.542, = 0.0894379E-3

Table B.4: Subset ARAR Model Fitting the Summer Data Set
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Figure B.9: Model 3: Model Fit Diagnostics for the Autumn Data Set
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Figure B.10: Model 3: Model Fit Diagnostics for the Winter Data Set
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Figure B .ll: Model 3: Model Fitting Diagnostics for the Spring Data Set
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B .4  M od el 4

Seasonal Component for Weekdays
i freq. a;,- period 4 Bi phase X2(2)
1 0.13092 47.99190 -0.212E+00 -0.195E+00 -0.741E+00 0.679E+04
2 0.26179 24.00104 -0.418E-01 -0.173E+00 -0.133E+01 0.259E+04
3 0.39310 15.98352 0.233E-01 0.304E-01 -0.917E+00 0.120E+03
4 0.52408 11.98904 -0.207E-01 0.265E-01 0.907E+00 0.925E+02
5 0.65486 9.59467 -0.239E-01 -0.301E-01 -0.898E+00 0.121E+03
6 0.78477 8.00638 0.869E-03 -0.860E-02 0.147E+01 0.612E+01
7 0.91710 6.85112 0.208E-03 0.126E-01 -0.155E+01 0.131E+02

residual variance =  0.527464El-03
signal-to-noise ratio =  0.486864E+05

Seasonal Component for Weekend days
i freq. period A, Bi phase X2(2)
1 0.13074 48.05746 -0.138E+00 -0.215E+00 -0.998E+00 0.140E+04
2 0.26154 24.02351 -0.380E-02 -0.146E+00 -0.154E+01 0.457E+03
3 0.39325 15.97775 -0.300E-01 0.550E-01 0.107E+01 0.841E+02
4 0.65359 9.61330 -0.317E-02 -0.261E-01 -0.145E+01 0.148E+02

residual variance =  0.134516E-02
signal-to-noise ratio =  0.976302E+04

Table B.5: Seasonal Components for Weekdays &; Weekend Days from the Autum n 
D ata Set

Subset AR Model for the Stochastic Component 
sample variance =  0.93083405E-03

lag coeff. s.e. t-ratio
1 -1.0809759 0.57830524E-01 -18.692135
2 0.26107142 0.67707618E-01 3.8558648
4 -0.86607029E-01 0.43140885E-01 -2.0075395
9 0.55338495E-01 0.32690020E-01 1.6928254
16 -0.50712684E-01 0.28717567E-01 -1.7659116
44 0.55157990E-01 0.31945978E-01 1.7266020
48 -0.28097338 0.60661377E-01 -4.6318331

size of 8, Schwarz criterion =  -8421.6795
residual variance =  0.12607818E-03

Table B.6: Subset AR Fit for the Stochastic Component from the Autum n D ata Set
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Seasonal Component for Weekdays
i freq. period Ai Bi phase X2(2)
1 0.13088 48.00767 -0.209E+00 -0.189E+00 -0.734E+00 0.742E+04
2 0.26183 23.99737 -0.254E-01 •0.199E+00 -0.144E+01 0.376E+04
3 0.39183 16.03540 0.285E-01 0.115E-01 -0.382E+00 0.885E+02
4 0.52374 11.99682 -0.290E-01 0.252E-01 0.716E+00 0.138E+03
5 0.65420 9.60433 -0.351E-01 -0.220E-01 -0.560E+00 0.160E+03
6 0.78534 8.00055 0.558E-02 -0.695E-02 0.894E+00 0.743E+01
7 0.91603 6.85915 0.670E-02 0.141E-01 -0.113E+01 0.229E+02
8 1.04666 6.00305 -0.102E-01 0.111E-02 0.108E+00 0.978E+01

residual variance =  0.461723E-03
signal-to-noise ratio =  0.580076E+05

Seasonal Component for Weekend days
i freq. period A{ Bi phase X2(2 )
1 0.13005 48.31269 -0.175E+00 -0.233E+00 -0.926E+00 0.124E+04
2 0.26219 23.96415 0.237E-01 -0.124E+00 0.138E+01 0.234E+03
3 0.39235 16.01418 -0.219E-01 0.560E-01 0.120E+01 0.527E+02
4 0.65418 9.60461 -0.187E-02 -0.227E-01 -0.149E+01 0.760E+01

residual variance =  0.197237E-02
signal-to-noise ratio =  0.767306E+04

Table B.7: Seasonal Components for Weekdays & Weekend Days from the W inter 
D ata Set

Subset AR Model for the Stochastic Component 
sample variance =0.11242434E-02

lag coeff. s.e. t-ratio
1 -1.2483658 0.52642097E-01 -23.714212
2 0.50294812 0.77987221E-01 6.4491093
3 -0.13708463 0.52765354E-01 -2.5980046
46 0.49311855E-01 0.32203231E-01 1.5312704
48 -0.40916751 0.56937321E-01 -7.1862796
49 0.45759057 0.58513112E-01 7.8203082
51 -0.10173585 0.34597367E-01 -2.9405662

size of 7, Schwarz criterion =  -8297.7979
residual variance =  0.14829228E-03

Table B.8: Subset AR Fit for the Stochastic Component from the W inter Data Set
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Seasonal Component for Weekdays
i freq. u period A, Bx phase X2(2 )
1 0.13098 47.97228 -0.200E+00 ■0.195E+00 -0.774E+00 0.784E+04
2 0.26170 24.00924 -0.534E-01 -0.189E+00 -0.130E+01 0.389E+04
3 0.39283 15.99478 0.231E-01 0.191E-01 -0.691E+00 0.904E+02
4 0.52358 12.00050 -0.246E-01 0.346E-01 0.952E+00 0.182E+03
5 0.65419 9.60457 -0.280E-01 -0.156E-01 -0.507E+00 0.104E+03
6 0.78462 8.00790 0.426E-02 -0.751E-02 0.105E+01 0.751E+01
7 0.91677 6.85365 0.330E-02 0.951E-02 -0.124E+01 0.102E+02
8 1.04613 6.00611 -0.755E-02 0.465E-02 0.552E+00 0.792E+01

residual variance =  0.428889E-03
signal-to-noise ratio =  0.606932E+05

Seasonal Component for Weekend days
i freq. period A, Bi phase X2(2 )
1 0.13067 48.08356 -0.139E+00 -0.201E+00 -0.966E+00 0.933E+03
2 0.26146 24.03098 -0.150E-01 -0.150E+00 -0.147E+01 0.354E+03
3 0.39189 16.03323 -0.131E-01 0.454E-01 0.129E+01 0.350E+02

residual variance =  0.183822E-02
signal-to-noise ratio =  0.661305E+04

Table B.9: Seasonal Components for Weekdays & Weekend Days the Spring D ata Set

Subset AR Model for the Stochastic Component 
Sample variance =  0.90805797E-03

lag coeff. s.e. t-ratio
1 -0.96165961 0.30865003E-01 -31.156958
5 0.13073248 0.38941287E-01 3.3571691
8 -0.13058645 0.43027698E-01 -3.0349393
11 0.85341818E-01 0.35726339E-01 2.3887647
17 -0.58554643E-01 0.30491837E-01 -1.9203383
22 0.42958111E-01 0.28896459E-01 1.4866220
48 -0.33046334 0.58291620E-01 -5.6691398
49 0.33913709 0.58426273E-01 5.8045306

size of 9, Schwarz criterion =  -8507.3116
residual variance =  0.11718928E-03

Table B.10: Subset AR Fit for the Stochastic Component from the Spring D ata Set



278 APPENDIX B. TABLES AND FIGURES FOR CHAPTER 5

Seasonal Component for Weekdays
i freq. period Bi phase X2(2)
1 0.13127 47.86368 -0.179E+00 ■-0.164E+00 -0.744E+00 0.665E+04
2 0.26175 24.00466 0.686E-02 -0.129E+00 0.152E+01 0.190E+04
3 0.39340 15.97160 0.285E-01 0.172E-01 -0.541E+00 0.125E+03
4 0.52451 11.97914 -0.185E-01 -0.821E-02 -0.417E+00 0.463E+02
5 0.65478 9.59584 -0.219E-01 -0.255E-01 -0.862E+00 0.127E+03
6 0.91697 6.85213 -0.679E-03 0.112E-01 0.151E+01 0.142E+02

residual variance =  0.382932E-03
signal-to-noise ratio =  0.442760E+05

Seasonal Component for Weekend days
i freq. period Ai Bi phase xV)
1 0.13072 48.06763 -0.113E+00 -0.136E+00 -0.876E+00 0.665E+03
2 0.26142 24.03470 0.302E-01 -0.107E+00 0.130E+01 0.264E+03
3 0.39274 15.99832 -0.823E-02 0.262E-01 0.127E+01 0.160E+02
4 0.65681 9.56620 -0.725E-02 -0.173E-01 -0.117E-J-01 0.747E+01

residual variance =  0.135655E-02
signal-to-noise ratio =  0.476127E+04

Table B .ll:  Seasonal Components for Weekdays & Weekend Days from the Summer 
D ata Set

Subset AR Model for the Stochastic Component 
sample variance =  0.73936741E-03

lag coelf. s.e. t-ratio
1 -1.1343243 0.63352751E-01 -17.904894
2 0.27796562 0.64788312E-01 4.2903667
7 -0.81196143E-01 0.30688312E-01 -2.6458328
28 0.48197568E-01 0.28719812E-01 1.6781993
38 -0.52023094E-01 0.31363502E-01 -1.6587144
48 -0.24104069 0.64305567E-01 -3.7483643
49 0.27065095 0.63069347E-01 4.2913232

size of 7, Schwarz criterion =  -8810.6824
residual variance =  0.85961787E-04

Table B.12: Subset AR Fit for the Stochastic Component from the Summer D ata Set
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Figure B.13: Model 4: Model Fit Diagnostics for the Autumn Data Set
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Figure B.14: Model 4: Model Fit Diagnostics for the Winter Data Set
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B .5  M od el 5

Seasonal Component for Weekdays
i freq. period Ai Bi phase X2(2)
1 0.13090 47.99965 -0.213E+00 -0.193E+00 -0.737E+00 0.768E+04
2 0.26189 23.99124 -0.382E-01 -0.173E+00 -0.135E+01 0.290E+04
3 0.65496 9.59330 -0.233E-01 -0.304E-01 -0.917E+00 0.136E+03
4 0.39317 15.98068 0.227E-01 0.310E-01 -0.939E+00 0.137E+03
5 0.52398 11.99137 -0.201E-01 0.271E-01 0.934E+00 0.106E+03
6 0.02871 218.85445 -0.107E-01 -0.437E-02 -0.386E+00 0.125E+02
7 0.07138 88.02461 -0.157E-02 -0.865E-02 -0.139E+01 0.717E+01
8 0.78579 7.99597 0.279E-02 -0.805E-02 0.124E+01 0.673E+01
9 0.22735 27.63614 -0.571E-02 -0.585E-02 -0.797E+00 0.620E+01

residual variance =  0.465984E-03
signal-to-noise ratio =  0.549363E+05

Seasonal Component for Weekend days
i freq. u period Ai Bi phase x V )
1 0.13133 47.84218 -0.120E+00 -0.227E+00 -0.108E+01 0.475E+04
2 0.26200 23.98125 0.489E-02 -0.148E+00 0.154E+01 0.159E+04
3 0.39396 15.94892 -0.358E-01 0.510E-01 0.958E+00 0.280E+03
4 0.06394 98.27398 0.179E-01 0.336E-01 -0.108E+01 0.105E+03
5 0.65390 9.60877 -0.234E-02 -0.267E-01 -0.148E-H01 0.521E+02
6 0.19880 31.60498 -0.114E-01 -0.433E-02 -0.364E4-00 0.107E+02
7 0.45705 13.74712 0.113E-02 0.113E-01 -0.147E+01 0.933E+01
8 0.32468 19.35204 -0.370E-02 -0.989E-02 -0.121E+01 0.806E+01

residual variance =  0.398608E-03
signal-to-noise ratio =  0.340274E+05

Table B.13: Seasonal Components for Weekdays &; Weekend Days from the Autumn 
D ata Set
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Subset AR Model for the Stochastic Component 
sample variance =  0.66434490E-03

lag coeff. s.e. t-ratio
1 -1.0770758 0.52683531E-01 -20.444259
2 0.34413697 0.59371764E-01 5.7963070
4 -0.11760922 0.35764458E-01 -3.2884386
8 -0.92381091E-01 0.48928164E-01 -1.8880964
9 0.16349539 0.49333499E-01 3.3140847
12 -0.38875201E-01 0.30558075E-01 -1.2721744
43 -0.88763562E-01 0.48748310E-01 -1.8208542
44 0.13070448 0.49042352E-01 2.6651349
48 -0.35311464 0.51346747E-01 -6.8770596
49 0.40309174 0.75023946E-01 5.3728410
50 -0.11761845 0.54625101E-01 -2.1531942

size of 11, Schwarz criterion =  -8522.9814
residual variance =  0.11405256E-03

Table B.14: Subset AR Fit for the Stochastic Component from the Autumn D ata Set
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Seasonal Component for Weekdays
i freq. period B{ phase x 2m
1 0.13081 48.03111 -0.211E+00 -0.185E+00 -0.720E+00 0.754E+04
2 0.26195 23.98617 -0.199E-01 -0.199E+00 -0.147E+01 0.382E+04
3 0.65422 9.60402 -0.350E-01 -0.221E-01 -0.564E+00 0.163E+03
4 0.52356 12.00083 -0.280E-01 0.263E-01 0.755E+00 0.141E+03
5 0.39194 16.03109 0.282E-01 0.120E-01 -0.403E+00 0.895E+02
6 0.04031 155.86911 -0.129E-01 0.108E-01 0.700E+00 0.270E+02
7 0.08689 72.30933 -0.268E-02 -0.933E-02 -0.129E+01 0.897E+01
8 0.78614 7.99243 0.675E-02 -0.599E-02 0.725E+00 0.776E+01

residual variance =  0.453387E-03
signal-to-noise ratio =  0.589756E+05

Seasonal Component for Weekend days
i freq. u>, period Ai Bx phase X2(2)
1 0.13064 48.09545 -0.154E+00 -0.244E+00 -0.101E+01 0.351E+04
2 0.26260 23.92657 0.297E-01 -0.125E+00 0.134E+01 0.703E+03
3 0.39339 15.97190 -0.307E-01 0.515E-01 0.103E+01 0.152E+03
4 0.06702 93.75058 0.247E-02 0.374E-01 -0.150E+01 0.595E+02
5 0.65344 9.61556 -0.480E-02 -0.231E-01 -0.137E+01 0.236E+02
6 0.45668 13.75843 0.311E-02 0.194E-01 -0.141E+01 0.163E+02
7 0.78550 7.99898 -0.904E-02 0.134E-01 0.976E+00 0.110E+02
8 0.20665 30.40467 0.354E-02 -0.151E-01 0.134E+01 0.101E+02
9 0.52622 11.94012 0.277E-02 -0.128E-01 0.136E+01 0.727E+01
10 0.32625 19.25894 -0.323E-02 -0.128E-01 -0.132E+01 0.736E+01

residual variance =  0.681142E-03
signal-to-noise ratio =  0.225080E+05

Table B.15: Seasonal Components for Weekdays k  Weekend Days from the W inter 
D ata Set
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Subset AR Model for the Stochastic Component 
sample variance =  0.53022244E-03

lag coeff. s.e. t-ratio
1 -1.1212477 0.50373564E-01 -22.258654
2 0.42874903 0.54687864E-01 7.8399301
4 -0.16030766 0.33761938E-01 -4.7481771
42 -0.48500348E-01 0.30528847E-01 -1.5886728
48 -0.37146518 0.51730294E-01 -7.1808055
49 0.35647923 0.50801664E-01 7.0170779

size of 6, Schwarz criterion =  -8413.4173
residual variance =  0.13535962E-03

Table B.16: Subset AR Fit for the Stochastic Component from the W inter Data Set
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Seasonal Component for Weekdays
i freq. a;, period A B i phase x V )
1 0.13099 47.96778 -0.199E+00 -0.195E+00 -0.775E+00 0.725E+04
2 0.26183 23.99683 -0.480E-01 -0.191E+00 -0.132E+01 0.360E+04
3 0.52349 12.00250 -0.240E-01 0.350E-01 0.970E+00 0.168E+03
4 0.65422 9.60414 -0.280E-01 -0.158E-01 -0.513E+00 0.960E+02
5 0.39285 15.99374 0.229E-01 0.191E-01 -0.695E+00 0.828E+02
6 0.07537 83.35905 -0.981E-02 0.169E-02 0.171E+00 0.923E+01
7 0.78525 8.00155 0.530E-02 -0.682E-02 0.910E+00 0.696E+01

residual variance =  0.463305E-03
signal-to-noise ratio =  0.560678E+05

Seasonal Component for Weekend days
i freq. period A B i phcise X2(2)
1 0.13122 47.88428 -0.123E+00 -0.212E+00 -0.105E+01 0.341E+04
2 0.26199 23.98281 -0.447E-02 -0.153E+00 -0.154E+01 0.132E+04
3 0.39284 15.99416 -0.196E-01 0.422E-01 0.114E+01 0.122E+03
4 0.06353 98.90700 0.189E-01 0.393E-01 -0.112E-f01 0.108E+03
5 0.65537 9.58728 -0.396E-02 -0.170E-01 -0.134E+01 0.173E+02
6 0.52049 12.07157 -0.224E-02 0.114E-01 0.138E+01 0.768E+01
7 0.45752 13.73314 0.425E-03 0.111E-01 -0.153E+01 0.699E-f01
8 0.32414 19.38438 -0.777E-02 -0.899E-02 -0.859E+00 0.799E+01

residual variance =  0.50921 IE-03
signal-to-noise ratio =  0.250093E+05

Table B.17: Seasonal Components for Weekdays &; Weekend Days the Spring D ata 
Set
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Subset AR Model for the Stochastic Component 
Sample variance = 0.53022244E-03

lag coeff. s.e. t-ratio
1 -0.96963757 0.49756915E-01 -19.487494
2 0.20851450 0.53660504E-01 3.8858096
4 -0.11699036 0.36085650E-01 -3.2420191
9 0.10094524 0.30450812E-01 3.3150262
26 0.33976404E-01 0.27626083E-01 1.2298669
36 -0.84951985E-01 0.47668584E-01 -1.7821378
37 0.11422771 0.47771598E-01 2.3911218
48 -0.41098889 0.49466628E-01 -8.3084071
49 0.36467401 0.50472811E-01 7.2251576

size of 9, Schwarz criterion = -8644.3535
residual variance = 0.10238373E-03

Table B.18: Subset AR Fit for the Stochastic Component from the Spring Data Set
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Seasonal Component for Weekdays
i freq. period Bi phase x V )
1 0.13171 47.70381 -0.156E+00 -0.177E+00 -0.847E+00 0.795E+04
2 0.26188 23.99294 0.104E-01 -0.129E+00 0.149E+01 0.240E+04
3 0.65492 9.59386 -0.212E-01 -0.262E-01 -0.891E+00 0.162E+03
4 0.39320 15.97980 0.292E-01 0.156E-01 -0.491E+00 0.156E+03
5 0.52466 11.97571 -0.183E-01 -0.900E-02 -0.457E+00 0.592E+02
6 0.04088 153.70238 -0.983E-02 -0.571E-02 -0.526E+00 0.184E+02
7 0.12079 52.01809 0.355E-02 0.192E-01 -0.139E+01 0.544E+02

residual variance =  0.303623E-03
signal-to-noise ratio =  0.539872E+05

Seasonal Component for Weekend days
i freq. period Ai phase X2 (2 )
1 0.13132 47.84805 -0.102E+00 -0.145E+00 -0.960E+00 0.280E+04
2 0.26171 24.00781 0.342E-01 -0.107E+00 0.126E+01 0.112E+04
3 0.06566 95.69768 0.125E-01 0.388E-01 -0.126E+01 0.149E+03
4 0.39229 16.01684 -0.675E-02 0.259E-01 0.132E+01 0.643E+02
5 0.65644 9.57167 -0.848E-02 -0.170E-01 -0.111E+01 0.324E+02
6 0.52328 12.00731 -0.160E-02 -0.153E-01 -0.147E+01 0.211E+02
7 0.78542 7.99982 -0.103E-01 0.732E-02 0.616E+00 0.144E+02

residual variance =  0.308913E-03
signal-to-noise ratio =  0.210352E+05

Table B.19: Seasonal Components for Weekdays & Weekend Days from the Summer 
D ata Set
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Subset AR Model for the Stochastic Component 
sample variance = 0.40506964E-03

lag coeff. s.e. t-ratio
1 -1.0619051 0.52993717E-01 -20.038321
2 0.31123243 0.59746973E-01 5.2091748
4 -0.81574859E-01 0.37024595E-01 -2.2032614
10 0.49479057E-01 0.32583830E-01 1.5185157
17 0.75424073E-01 0.52012499E-01 1.4501144
18 -0.11800351 0.50910581E-01 -2.3178583
22 0.76201213E-01 0.30853458E-01 2.4697787
37 0.45674269E-01 0.32497490E-01 1.4054707
40 -0.66634203E-01 0.33799867E-01 -1.9714339
45 0.65440717E-01 0.33110285E-01 1.9764468
48 -0.28003313 0.55178349E-01 -5.0750545
49 0.25399478 0.53321285E-01 4.7634782

size of 12, Schwarz criterion = -8822.9621
residual variance = 0.85406862E-04

Table B.20: Subset AR Fit for the Stochastic Component from the Summer Data Set
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A ppendix C

M odel Accuracy, Stability and Selection

Two main properties characterize the usefulness of a proposed model, / ,  in data anal­

ysis. The first is the model’s fit to empirical data and is referred to as model accuracy. 

The second, in the models which contain unknown parameters to be estimated, is the 

dependence of the fitted model, or the estimated parameters on the particular ob­

servation data set. The second property is called model stability. The stability of a 

model may refer to either the variability of the estimated model function or, if the 

parameters are of primary interest, the variances of the estimated parameters.

C .l M odel Accuracy

We first consider the statistics for measuring the goodness of fit of a proposed model 

for a particular data set. The Residual Sum Square (R S S )

RSS( f )  = £ > ( * , )  -
t= 1

is a statistic to measure the goodness of fit of the estimated model / ,  where n is the 

size of data set {t/(xt)}. Another statistic is R-Square(R2) defined by

R2(f)  = 1 -  RSS( f ) / RSS(y )  

where RSS{y) = £?= i (y(xt) ~ y )2-

295
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Here R2(f)  takes values between zero and one. The former indicates no explana­

tion of y(x t ) and the la tter implies that the responses lie exactly on the fitted model 

function.

For the different model functions, the model parameters and corresponding R SS  

and R 2 axe estim ated in Table C .l, C.2, C.3, C.4.

M odel /j : y = A + C e-(*-<*r/D
T im e(t)\C oef.

(variance) A c E RSS R2
3AM 12.1133

(0.0001)
-0.5682
(0.0001)

743.8885
(899.5280)

0.124 0.981

6AM 12.3343
(0.0002)

-0.6838
(0.0001)

729.0518
(818.1399)

0.201 0.979

9AM 13.0273
(0.0000)

-0.6348
(0.0000)

280.3147
(24.6231)

0.098 0.992

12AM 12.8449
(0.0002)

-0.5021
(0.0001)

191.9326
(97.1591)

0.241 0.954

3PM 12.8697
(0.0022)

-0.5778
(0.0021)

270.6270
(1164.4569)

0.320 0.915

6PM 13.2772
(0.0071)

-0.9590
(0.0064)

308.8132
(2349.9190)

3.618 0.802

9PM 12.9624
(0.0001)

-0.7520
(0.000)

260.4629
(65.215)

0.361 0.980

12PM 12.3693
(0.0001)

-0.5709
(0.0001)

463.9415
(198.0147)

0.124 0.985

Table C .l: Gauss-Newton Nonlinear Least-Squares for Model f\

From the goodness of fit point of view, RRS  and R2 can serve as discrimination 

functions, if we would like to choose an “optim al” model from the several proposed 

models. However, objections to R2 as a discrimination function have been raised by 

Draper (1984), Healy (1984) and Hellend (1987) although R2 genuinely represents 

the proportion of variation explained by a model. They argued that R2 does not have 

any obvious meaning for a nonlinear regression model. It may mislead if R2 is used as 

a discrimination function for nonlinear regression models. Therefore, we should ask 

how to decide whether a nonlinear regression model provides a good fit to a data set. 

Once having decided tha t there is no evidence of lack of independence, invariance,
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M odel fi : y = A + B i  +  C e-I* -65)'/®
T im e(t)\C oef.

(variance) A B c E RSS R2
3AM 11.9926

(0.0005)
0.0047

(0.0000)
-0.7382
(0.0008)

711.0174
(396.5578)

0.107 0.984

6AM 12.1689
(0.0009)

0.0073
(0.0000)

-0.9656
(0.0023)

731.9504
(366.0784)

0.176 0.982

9AM 13.1355
(0.0002)

-0.0033
(0.0000)

-0.5306
(0.0002)

262.4165
(28.7918)

0.077 0.994

12AM 13.0499
(0.0000)

-0.0056
(0.0000)

-0.3393
(0.0000)

142.7686
(2.9388)

0.007 0.997

3PM 12.9803
(0.000)

-0.0047
(0.0000)

-0.3840
(0.0000)

173.3181
(31.4440)

0.026 0.993

6PM 13.8276
(0.0000)

-0.0176
(0.0000)

-0.3509
(0.0000)

133.0054
(9.2097)

0.035 0.998

9PM 13.2261
(0.0002)

-0.0075
(0.0000)

-0.5253
(0.0002)

233.8078
(41.3625)

0.143 0.992

12PM 12.3090
(0.000)

0.0020
(0.0000)

-0.6386
(0.0004)

463.6913
(150.3425)

0.118 0.986

Table C.2: Gauss-Newton Nonlinear Least-Squares for Model / 2

and norm ality of the stochastic term  (see equation (6.3) ) for the data set/m odel 

combination in question, we can only look at the magnitude of the residual variance 

(equivalently RSS)  and decide whether it is significant small.

For a nested model function set, ö , in which f\ C /2 C • • • C /jt, because of 

the nesting, the param eter sizes satisfy m (l) <  m(2) < ••• <  m(k)  and RSS(fi)  > 

RSS(f2) >  • • • > RSS(fk). In other words, as more complexity is added to include 

more param eters, the fit will be automatically improved. However, the improved fit 

may not be significant and obtained at the cost of more parameters to be estim ated 

in the model function. A general procedure for testing nested models in the arbitrary 

model function setting is constructed as below.

We compare two models using the likelihood ratio test procedure. For / ,  C / j ,  we 

test

H 0 : E(y(x, ) )  =  /,•(«, 0 .) ( C . I )
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M odel / 3 : y =  A + Ce-- ( x - D Y / E

T im e(t)\C oef.
(variance) A c D E RSS R2

3AM 12.0599
(0.0001)

-0.5056 
( 0.0001)

62.2667
(0.0674)

492.2006
(594.9642)

0.101 0.984

6AM 12.2683
(0.0001)

-0.5970
(0.0001)

61.3773
(0.0932)

443.9121
(529.7476)

0.161 0.983

9AM 13.0346
(0.0000)

-0.6460
(0.0000)

65.7653
(0.0178)

312.8798
(62.4531)

0.086 0.993

12AM 12.8505
(0.0000)

-0.5082
(0.0000)

66.8354
(0.0024)

238.2069
(21.5077)

0.027 0.995

3PM 12.8039
(0.0000)

-0.5165
(0.0000)

66.8485
(0.0005)

252.3384
(16.6387)

0.008 0.998

6PM 13.2086
(0.0001)

-0.9299
(0.0001)

70.4563
(0.0049)

406.8597
(74.0542)

0.053 0.997

9PM 12.9861
(0.0001)

-0.7820
(0.0001)

66.9658
(0.0178)

342.2392
(109.1855)

0.166 0.991

12PM 12.3517
(0.0000)

-0.5507
(0.0000)

63.9164
(0.0324)

391.1739
(231.7551)

0.113 0.987

Table C.3: Gauss-Newton Nonlinear Least-Squares for Model / 3

against

H i : E(y(x*)) =  f j ( t ,  Qj) (C.2)

Under the correct model /,.(£*, 0r ) with normality of the error we have

Y  ~  N ( / r ( 0 r ), a 21) for r =  i or j  

For the likelihood ratio test we find sup0r a (y ) or

sup (27rcr2) - n/2e x p { - ^ [ y ( x t) -  f r(xt, ©r)]2/(2cr2)} (C.3)
0 r , C T 2

Derivatives with respect to 0 r and cr2 yield the maximum likelihood estim ator 0 r and 

<j2r =  £[?/(£*) ~  fr(xt,  0 r )]2/n  for r =  i or j .  Under the specific models of hypothesis 

(C .l), (C.2) becomes, upon substitution of estimates 0 r , (2d2r )-n /2 exp(—n/2) where 

under Ho : r =  i and under H i : r =  j .  The likelihood ratio statistic is A = At/Aj, 

which simplifies to

A =  [RSS(f})/RSS(f ,)]n/2 (C.4)
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M odel / 4 : y = A + B x + C e~(x- D V / E

T im e(t)\C o ef. 
(variance) A B c D E RSS R 2

3AM 12.3467
(0.0000)

-0.0117
(0.0000)

-0.1232
(0.0000)

54.6684
(0.0047)

43.0952
(2.9341)

0.018 0.997

6AM 12.6316
(0.0000)

-0.0144
(0.0000)

-0.1453
(0.0000)

54.0883
(0.0054)

38.8437
(3.3465)

0.029 0.997

9AM 13.4503
(0.0002)

-0.0127
(0.0000)

-0.2522
(0.0001)

61.4037
(0.0175)

93.9856
(31.8116)

0.046 0.996

12AM 13.091
(0.0000)

-0.0067
(0.0000)

-0.3130
(0.0000)

64.5802
(0.0026)

126.1005
(5.3749)

0.006 0.999

3PM 12.8239
(0.0001)

-0.0007
(0.0000)

-0.4928
(0.0001)

66.6211
(0.0098)

238.1101
(48.9132)

0.008 0.998

6PM 13.6913
(0.0001)

-0.0143
(0.0000)

-0.4343
(0.0001)

66.3372
(0.0105)

178.1201
(25.9664)

0.017 0.999

9PM 13.5612
(0.0002)

-0.0168
(0.0000)

-0.275
(0.0001)

61.5364
(0.0181)

93.3020
(28.4945)

0.092 0.995

12PM 12.7170
(0.0000)

-0.0124
(0.0000)

-0.1661
(0.0000)

57.3215
(0.0093)

66.9038
(9.9861)

0.036 0.996

Table C.4: Gauss-Newton Nonlinear Least-Squares for Model / 4

We reject Ho if A is small. Under general regularity conditions, —21n(A) ~  x 2 with 

degrees of freedom m ( j ) — m{i). Hence, an a  significance level critical region is

Xi:j = n\n[RSS(fi)/RSS(fj)]  > X(i-a)(m t?) ~  ™ (0)-

The —2/n(A) values for the different pairs of model functions at different times of 

a day are shown in Table C.5.

Noting X(.9 9 )(l) =  6-63, we reject H 0, given by (C .l) with sequentially paired 

models for a set tim e of day in the two nested models at significance level a  = 0.01. 

Significant gains in fit to the response, ?/, are obtained by the complexity added in 

going from / i  to f 2 then to / 4 or from / i  to f 3 then to / 4. Therefore, we conclude 

tha t the model function / 4 is the optimal model among the candidate models in the 

sense of statistically best fitting. The stability of the model is taken into account in 

next section.
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3AM 6AM 9AM 12AM 3PM 6PM 9PM 12PM

^1:2 38.83 34.69
/ i  against / 2 

61.73 83.89 613.90 1158.12 251.92 13.88

to & 1063.14 461.39
/ 2 against f 4 

130.22 51.10 276.65 176.14 120.07 310.88

^ 1 : 3 53.58 57.22
/ i  against / 3 

34.33 527.63 887.60 1056.28 210.84 25.50

CO 456.38 438.87
/ 3 against / 4 

157.62 362.33 2.9545 277.98 161.16 299.26

Table C.5: Likelihood Ratio Statistics

C.2 Model Stability

Based on the asym ptotic theory resulting from LS estimation, a discrimination func­

tion, which measures a model function’s stability at each location can be employed 

as statistical evidence which helps separate effective from non-effective models. The 

effective model, we refer to here, should fit the responses to a desired accuracy while 

possessing a degree of stability over the range of applications. Therefore, a stable 

model with a m oderate R S S  may be preferable to an unstable model with a smaller 

RSS.  The stability function S F  of an estim ated model /  at location x is defined as

S F ( f ( 0 , X*)) =  d(x*) +  a26(xt) (C.5)

where

a (x t) =  F'(@,xt)M F ( 0 , x t)

and

6{xt) = Tr[MH(xt)MH(x t) \ /2 +  {Tr[MH{xt)}}2 /  4

F(0,  Xt) =  (/l(0, Xt), /2(0, Xt), • • * , /m(0, Xt)Y

f t( 0 , x t) =
d f (Q ,x t)

dOt
i = 1,2,•• •, m
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/

H(e,xt) =

/ l,2 (0 ,^ ) 

/2,2 (0,®<)

/ l , m ( 0 , Z * )  ^

A.m

\  / m , l ( 0 5 ^ f )  / m ,  2 ( 0 ?  ’ ** / m , m ( 0 ) ^ i )  /

f , J Q , x t) =  9Jq j q ^  , *ii = 1,2, • • •, m 

M = ( / ,(0)F '(0))-1 

F'(0) = (F(0, *,),••-,F(0,

a 2 is a consistent estimation of the residual variance of the true model.

The stability function S F ( f ( 0 , x*)) is the sum of two parts. The first term, a(x*) 

is a stability measure for the linear part of the model function, while the second term, 

<t2<$(x*) is a stability measure for the non-linear component of the model function. It 

can be proved that, ignoring a small bias, an asymptotic confidence interval for the 

assumed true model value f ( x t) is

/(*«) ±  [SF(f (xt) ^ z {l. a/2) (C.6)

where z is the standard normal distribution and a  is the significance level. The 

overall stability can be measured by the sum of the values of the stability function 

at each location. It is noted that ^2ct(xt) = Tr[F'MF] = m (number of parameters 

to be estimated in the model). The overall stability of the model /  is equal to the 

number of parameters in /  plus ^ = 1  K xt) weighted by a2, a2, however, is unknown 

unless a desired accuracy is given, since the true model is unknown. In table C.6, 

A, = is listed for all candidate models at different times of a day.

It is obvious from the Table C.6 that the more parameters in a model, the more 

instability there is in the model. Comparing the RSS  of the four models /, i = 

1,2,3,4) in Table C.2 and C.3, and A, in Table C.6, it is obvious that the model f i  is 

the most inaccurate but the most stable model; the model / 4 is the most accurate but 

the most unstable model. The model / 2 is more accurate and stable than model / 3 at 

12AM, 6PM, 9PM and / 3 is more accurate and stable than model f 2 at 3AM, 6AM,
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A ,\ Time 3AM 6AM 9AM 12AM 3PM 6PM 9PM 12PM
Ä! 16.44 10.36 2.32 8.43 60.83 7.56 2.22 7.36
Ä2 85.68 60.40 10.52 15.17 44.94 12.45 7.19 24.02
A3 51.38 33.61 10.42 16.05 39.80 15.29 9.21 22.74
a 4 85.67 71.00 104.13 88.16 312.98 107.06 49.61 67.72

Table C.6: Ä for the Different Models

9AM, 3PM, 12PM. This indicate that the parameter B  and E  do play significant 

roles. However, we are not sure if it is worth the cost of the inaccuracy of model f\  

to achieve stability or the cost of the instability of model f 4 to achieve accuracy. The 

model criterion CF can trade-off these two contradict measures for a model function. 

See details in section 6.3.3 of chapter 6 and the following section.

C.3 Model Criterion for the Model Family

Table C.5 shows that the model / 4 achieves significant gains in the sense of accuracy 

over models }\, A and jf3. If assuming the model / 4 is the true model, and using b2 

from / 4 as a consistent estimate of cr2, we obtain the model criterion function, CF, 

(see section 6.3.3 of chapter 6) values for the all candidate models at different time 

of a day in Table C.7.

On the other hand, a2 from f 4 should not replace a2 in the CF function (6.14) if 

there is not enough evidence to establish that / 4 is the true model. The average of 

b2 for all candidate models at different time or the overall average of b2 can be used 

as an estimate of cr2 . Table C.8 and Table C.9 list the criterion values when the cr2 

are estimated by the average of b2 for all candidate models at different times and the 

overall average of b2, respectively.

It is noted that the criterion function values of the two nested systems /i C ft C f \  

and f i  C fz C / 4 are decreasing for each time column except CF( f 3) < CF( f 4) at 

3PM in Table C.7, Table C.8 and Table C.9 which will be explained later. Thiif 

indicates that the model f 4 is overwhelmingly supported as the true model by the



C.3. MODEL CRITERION FOR THE MODEL FAMILY 303

CF(f i ) \  Time 3AM 6AM 9AM 12AM
<7 2 6.8302E-05 1.1395E-4 1.8086E-4 2.4583E-5

CF(fr) 1.0611E-1 1.7204E-1 5.2242E-2 2.3477E-1
C F ( h ) 8.9274E-2 1.4686E-1 3.1424E-2 1.49836E-3

CF(U 8.3474E-2 L3216E-1 4.0124E-2 2.090E-2
CF(U) 3.4191E-4 5.7069E-4 9.0770E-4 1.2297E-4

CF(f i ) \  Time 3PM 6PM 9PM 12PM
~ & r ~ 3.3745E-05 6.9600E-5 3.3787E-4 1.3702E-4
CF(h) 3.1210E-1 3.6003 2.6991E-1 8.8511E-2
CF(h) 1.7535E-2 1.8079E-2 5.2354-2 8.2249E-2
CF(h) 2.3511E-4 3.5779E-2 7.5653E-2 7.7149E-2
CF(h) 1.6908E-4 3.4852E-4 1.6950E-3 6.8639E-4

Table C.7: The CF Values When a2 Is Estimated from Model f \

CF(f i ) \  Time 3AM 6AM 9AM 12AM
<J2 3.3066-e4 5.4981E-4 2.9980E-4 2.9219E-4

CF(A) 3.7372E-2 6.0909E-2 2.2150E-2 1.7135E-1
C F ( h ) 2.0826E-2 3.6204E-2 1.4521E-3 -6.1652E-2
CF ( f 3) 1.5014E-2 2.1480E-2 1.0152E-2 -4.2252E-2

CF(U) -6.7844E-2 -1.0964 -2.8923E-2 -6.274148E-2
CF(f i ) \  Time 3PM 6PM 9PM 12PM

(T2 3.7274E-4 3.723E-3 7.0018E-4 3.7214E-4
C F ( h ) 2.3077E-1 2.6982 1.7245 2.7619E-2
C F ( h ) -6.3465E-2 -8.8014E-1 5.2353E-2 2.1598E-2
CF(U) -8.0767E-2 -8.623221E-1 -2.1436E-2 1.6498E-2

CF(U) -8.0381E-2 -8.9028E-1 -9.4976E-2 -5.9711E-2

Table C.8: The CF Values for When a2 Is Estim ated from the Average of All Models 
at Different Times
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CF(f i ) \  Time 3AM 6AM 9AM 12AM
b2 =  4.0E-4 (overall mean)

CF(f i ) 1.9208E-2 9.9105 -3.1989-3 1.4580E-1
CF(h) 2.7411E-3 7.4229E-2 -2.3795E-2 -8.7093E-2

CF{h) -3.0753E-2 5.9516E-2 -1.5095E-2 -6.7692E-2
CF(U) -8.5859E-2 -7.1766E-2 -5.4050E-2 -8.8058

CF(f i ) \  Time 3PM 6PM 9PM 12PM
CF( h ) 2.2423E-2 3.5187 2.5320E-1 2.0404 E-2
CF{h) -6.9978 -6.3194 5.2354E-2 3.0438E-2
CF( h ) -8.7281E-2 -4.5493E-2 5.9004E-2 9.3109E-3
CF( h ) -8.6850E-2 -8.0549E-2 -1.4876E-2 -6.6868E-2

Table C.9: The CF Values W hen cr2 Is Estimated by the Average over All Models

criterion function. The consistent negative values of the criterion function of model 

/ 4 in Table C.8 and Table C.9 imply tha t the average <r2 over all candidate models at 

different tim es or the overall average of b2 axe both over estimates of cr2, and then, 

indicate th a t the b 2 from model / 4 is most likely to be a consistent estim ate of cr2. If 

we assume the cr2 is tim e invariant, the average of b2 over different times is around 

1.0E-4 and is used to calculate the criterion function values for the model candidates 

in Table C.10.

CF(f i ) \  Time 3AM 6AM 9AM 12AM
b 2 — 1.0E-4 (overall mean)

C F ( h ) 9.7800E-2 1.7560E-1 7.2700E-2 2.1690E-2
C F ( h ) 8.1003E-2 1.5040E-2 5.1800E-2 -1.6230E-2
C F { h ) 7.5202E-2 1.3570E-2 6.0500E-2 3.1005E-2

CF(U) -7.8974E-3 4.1021E-3 2.1203E-2 -1.7597E-2

CF(f i ) \  Time 3PM 6PM 9PM 12PM

CF ( h ) 2.9620E-1 3.5928 3.3390E-1 9.8100E-2
C F ( f i 1.7013E-3 1.0600E-2 1.1610E-1 9.1801E-2

CF ( h ) -1.5599E-2 2.8300E-2 1.3940E-1 8.6701E-2

C F ( U ) -1.5591E-2 -7.0968E-3 6.5201E-2 1.0202E-2

Table C.10: The CF Values When b 2 Is Desired Accuracy 1.0E-4
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From the criterion values for all candidate models in Table C.10, we are convinced 

that the model f 4 is the true model and the residual variance is around 1.0E-4 except 

that C F ( f3) < C F ( f4) at 3PM in Table C.10 which conflicts with the declared 

conclusion. Now, we examine the model f 3 and f 4 at 3PM from Table C.3 and C.4. 

The estimated parameters and model statistics are listed in Table C .ll

M odel\C oef. 
(variance) A B c D E RSS R2

h 12.8039 O.O(fixed) -0.5165 66.8485 252.3384 8.3E-3 0.998
( 0 . 0 0 0 0 ) ( 0 . 0 0 0 0 ) (0.0005) (16.6387)

I* 12.8239 -0.0007 -0.4928 66.6211 238.1101 8.2E-3 0.998
( 0 . 0 0 0 1 ) ( 0 . 0 0 0 0 ) ( 0 . 0 0 0 1 ) (0.0098) (48.9132)

Table C .ll: Comparison between the Estimated Model f 3 and f 4 at 3PM

It is obvious that the corresponding estimated parameters are very close in both 

models and the overall fits of the two models are not significantly different since 

the value of the maximum likelihood ratio test / 3 against f 4, \ 3:4 = 2.9545, is not 

significant (see Table C.5 ). Model f 4 is superior to model f 3 at all three hour intervals 

of the day except for 3PM. The only reason for this is that the parameters in model 

f 4 are time variant, and parameter B  may be very close to zero at 3PM, therefore, 

model f 3 is chosen by model criterion CF at this particular time. However, since we 

seek one model function form for the load/weather relation at all times of a day, we 

still choose model f 4 as the optimum model function.

C .4  S election  o f  th e  V ariance F unction

Assuming the smoothed log(\yt — /(x* ,0)|) is the logarithms of a realization from 

the “true” variance function, and regressing the smoothed log(\yt — /(x t,0 ) |)  on the 

smoothed x*, we obtain an estimate of by nonlinear least squares as listed in Table 

C.12 and Table C.13 for the proposed model hi and h2 respectively.

The test of significance as to whether b differs from zero can be based on the 

likelihood ratio test for the two nested models to assess if the model h2 improves
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M o d e l lo g ( \y -  /I )  =  a  +  c exp{-■ ( x ~ d ) 2/ e }
T im e(t)\C oef.

(variance) a c d e RSS
3AM -4.1752

(0.0005)
1.7824

(0.0004)
45.0456
(0.0013)

199.8261
(22.9696)

0.4426

6AM -4.1431
(0.0009)

2.1032
(0.0008)

45.5000
(0.0007)

295.0790
(48.8095)

0.2467

9AM -4.3801
(0.0017)

1.8046
(0.0015)

50.9185
(0.0026)

271.2555
(124.2456)

0.6715

12AM -4.6797
(0.0018)

1.5074
(0.0016)

56.2607
(0.0038)

238.1021
(139.5430)

0.5573

3PM -4.8171
(0.0019)

1.5492
(0.0018)

56.5947
(0.0025)

479.6495
(396.2297)

0.0930

6PM -4.8268
(0.0004)

2.2506
(0.0003)

56.0366
(0.0004)

294.1145
(18.1126)

0.115

9PM -4.8775
(0.0040)

2.2744
(0.0038)

50.6802
(0.0017)

477.8534
(377.4077

0.2409

12PM -3.8203
(0.0002)

1.3969
(0.0002)

47.6306
(0.0012)

195.8720
(17.0640)

0.2409

Table C.12: Gauss-Newton Nonlinear Least-Squares for Smoothed Residuals

fitting significantly over model h\. We, therefore, test

H 0 : h(xu V) = hi (C.7)

against

H i :  h(xu V) =  h2 (C.8)

The likelihood ratio test is

A =  [ RSS(h,)/RSSChi)]n/2 (C.9)

We reject Ho if A is small. Under general regularity conditions, —21n(A) ~  \ 2 

with degrees of freedom equal to 1. Hence, an a  significance level critical region is 

A =  n\n[RSS(hi)/RSS(f2)] > X(i_a)(l)- The A values at different times of a day are 

shown in Table C.14.

Noting X(.9 9 )(l) =  6.63, we reject Ho, given by (C.7) at significance level a  =  0.01. 

Significant gains in fitting logarithms of absolute residuals are obtained by the model
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M o d e l l og( \ y - f \ )  = a -f bx + c exp{—(x -  dY/e}
T im e(t)\C oef.

(variance) a b c d e RSS
3AM -4.4165

(0.0020)
0.0037

(0.0000)
1.8523

(0.0005)
44.6284
(0.0055)

213.4366
(27.9056)

0.3733

6AM -4.0770
(0.0011)

-0.0022
(0.0000)

2.1364
(0.0010)

45.7639
(0.0057)

301.5693
(53.8842)

0.2316

9AM -3.8752
(0.0004)

-0.0108
(0.000)

1.8686
(0.0003)

52.3393
(0.0028)

272.3462
(23.1516)

0.1277

12AM -3.8277
(0.0020)

-0.0101
(0.0000)

1.2450
(0.0004)

57.5560
(0.0069)

173.9382
(32.3565)

0.2753

3PM -3.5361
(0.0097)

-0.0120
(0.0000)

0.9657
(0.0019)

58.8643
(0.0388)

278.8338
(277.0157)

0.0724

6PM -4.5821
(0.0043)

-0.0026
(0.0000)

2.1532
(0.0009)

56.2826
(0.0046)

277.0813
(32.6751)

0.1085

9PM -3.7062
(0.0029)

-0.0113
(0.0000)

1.7001
(0.0010)

52.3494
(0.0079)

317.5352
(92.5598)

0.1722

12PM -3.5392
(0.0005)

-0.0041
(0.0000)

1.3179
(0.0001)

48.1855
(0.0024)

174.6949
(9.0047)

0.1424

Table C.13: Gauss-Newton Nonlinear Least-Squares for Smoothed Residuals

3AM 6AM 9AM 12AM 3PM 6PM 9PM 12PM

A 38.82 14.53 381.76
h0 against h\ 
151.63 53.08 12.92 455.72 120.39

Table C.14: Likelihood Ratio Statistics
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h2, i.e. the term b in model h2 cannot be neglected. Therefore, we conclude that the 

model function h2 is the better model of the two candidate models.

On the aspect of model stability, we have discussed the model stability function 

(see equation (C.5) in section C.2. To compare the average stability of the two nested 

models, we list A , = £JL 1 in Table C.15 since Ylt=i — m, the number of

unknown parameters in model h,• where i = 1,2 and the error variance a is unknown. 

It is obvious that the model h\ is more stable than model h2. We have seen from the 

likelihood ratio test that model h2 is a significantly better fit than model h\. The 

model selection criterion CF introduced in section 6.3.3 of chapter 6 can trade-off the 

model accuracy and stability, and then select a better model.

Ä,\ Time 3AM 6AM 9AM 12AM 3PM 6PM 9PM 12PM
Ax
Ä2

1.2710
2.2613

2.4032
3.9783

2.9453
3.7830

4.5246
4.8422

25.3314
130.7058

2.0586
7.8059

6.1769
9.5455

1.7088
2.5246

Table C.15: Ä for the Different Models

Assuming the disturbance variance is 1.0E-3, the model selection criterion CF for 

the two nested models are listed in Table C.16. The negative values of CF indicate 

that the assumed disturbance variance is over estimated. The disturbance variance is 

adjusted to 1.0E-4 and the model criteria are calculated and listed in Table C.17. It 

can be seen that the CF values of model hi are consistently larger than CF value of 

model h2 at corresponding but different times of a day in both Table C.16 and Table 

C.17. This fact tells us the variance function model h2 is better than hi and it is 

clear that CF weights more heavily the better fitting properties of h2 than those of 

the more stability of h\.
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C F ( f i ) \  Time 3AM 6AM 9AM 12AM
=  1.0E-3 (overall mean)

C F ( h 0) 0.2186 0.0207 0.4455 0.3463
C F ( k ) 0.1503 0.0066 -0.0973 0.0653

C F ( f , ) \  Time 3PM 6PM 9PM 12PM
C F ( h 0) -0.1149 -0.1030 0.1078 0.0159
CF(hi ) -0.1342 -0.1085 -0.0558 -0.0816

Table C.16: The CF Values When a2 Is Assumed 1.0E-3

C F ( f i ) \  Time 3AM 6AM 9AM 12AM
<72 =  1.0E-4 (overall mean)

C F ( h 0)
CF(hi)

0.4202 0.2241 0.6489 0.5362
0.3510 0.2091 0.1052 0.2543

C F ( f i ) \  Time 3PM 6PM 9PM 12PM
C F ( h 0

CF(h i )
0.0722 0.0932 0.3139 0.2184
0.0517 0.0868 0.1494 0.1200

Table C.17: The CF Values When a2 Is Assumed 1.0E-4
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