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Abstract

This thesis describes an investigation of the ranging and grazing 
behaviour of merino sheep in the South Australian arid zone. The 
information that was obtained from this study is used to build a model 
of sheep behaviour in very large arid zone paddocks.

The positions, activities and movements of sheep in three paddocks 
were mapped for several days at ten times during 1980-83; these years 
corresponded to increasing drought and declining forage availability. 
Patterns of movement were dominated by the influence of three ’foci of 
non-grazing activity’ - the waterpoint, night-time campsites, and shade 
sites on hot days. The use of each of these was investigated.

A simple water balance model for the sheep adequately predicts the 
times at which they water. Night-time campsites were few, and choice 
between them was affected by prevailing wind directions. A physical 
model of the energy balance of the sheep is developed; this predicts a 
respiration index which correlates very well with observed respiration 
rates. This index is shown to predict the use of shade by sheep in 
the open paddock, and some interactions between heat, hunger and thirst 
are investigated. Choice of shade locality seems to depend on similar 
factors to the use of sites for the unstressed activity of resting in 
the open; this may be partly because of the common availability of 
shade trees throughout the study paddocks.

The location of both shade use and resting is dependent on 
movement in grazing since the previous non-grazing activity. 'Directed 
grazing', towards a destination, occurs mostly in stressful conditions. 
Otherwise movement in grazing is little affected by wind direction. 
It is inferred that movement to foci of non-grazing activities is the 
dominant determinant of the area of the paddock in use.

The details of grazing behaviour and diet selection were studied 
in small enclosure trials. The proportion of active time spent moving 
by sheep does not vary consistently during a grazing period, but speeds 
of movement increase in enclosures containing poor forage quality, 
probably as a result of increased distances between acceptable food
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items. It is shown that there is a dramatic and consistent switch in 
diet preferences during a grazing period, from eating shrubs when 
hungry to eating ephemeral material when sated. This is interpretable 
as a switch from foods of high potential intake rates to foods that are 
normally highly preferred but of low availability. The significance of 
these findings in the open paddock, and to grazing trials, is 
discussed.

Finally, a model of sheep ranging behaviour in large paddocks, and 
their resultant grazing impact, is described and tested. The model 
predicts general activity patterns and the use of water over the years 
of this study very well. In good vegetation conditions, it predicts 
ranging behaviour well in two paddocks of very different layout, even 
on a day-to-day basis. The model’s weak points seem to lie in 
selection of campsite locations, and in the learned response of sheep 
to locally poor vegetation quality; in drought years, it consequently 
under-estimated the ranging of sheep over the paddock.

The model was used to predict the outcome of two future management 
options at the study site. Despite its limitations, it predicted 
results which are sensible in retrospect, but which might not have been 
foreseen without this approach.
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Chapter I

Introduction.

Semi-arid and arid lands form a large part of the world’s surface. 

Many of these areas are occupied by man and his domestic animals, 

whilst others support wild populations of large mammals. In contrast 

to the extreme deserts and the more mesic agricultural lands, most 

semi-arid systems are subject to a highly variable and unpredictable 

climate (Goudie & Wilkinson 1977). In consequence, life for both 

humans and animals in these environments is often marginal.

In the Mediterranean region, man and agriculture have had an 

influence on semi-arid lands since ancient times (e.g. Hills 1969). 

These lands have often proved susceptible to degradation under his 

hand, as is evidenced by the former ’granaries of Rome', inland of the 

North African coastal strip. Cycles of degradation have resulted from 

intermittently increased demands on the resources of these areas. 

These pressures began with settlement and the discovery of agricultural 

methods by early man, and have been intensified since as various 

civilisations have flourished. In recent decades, renewed pressures 

on arid lands have resulted from a rapidly increasing world population; 

these pressures are sometimes localised to areas settled by peoples of 

previously-nomadic cultures.

The semi-arid and arid region of Australia (Williams 1979) is 

singular in that it had not been exposed to the influence of a 

sedentary culture until the last two centuries. Following European
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settlement, many areas have passed through stages of degradation that

occurred pre-historically in equivalent Mediterranean regions. Today,
2it is estimated that at least one third (i.e. over one million km ) of 

Australia's arid grazing lands need some conservation work (Woods 

1983). In many areas, the downward trends in productive capacity, and 

alterations to both physical and biotic structures, have yet to 

stabilise at a new, lower level (Newman & Condon 1969, Perry 1973). 

Much of the arid-zone is managed by a well-educated population who are 

increasingly aware of the limitations that the variable climate places 

upon their management procedures. Hardship in this pastoral community 

is usually manifested in economic terms, which is unlike the life-and- 

death balance endured by occupants of many of the world's arid regions.

Changes associated with the degradation of arid lands are often 

slow, and there are usually long recovery times; this is largely due 

to the rare occurrence of suitable combinations of climatic conditions, 

and because of long-term alteration of resource bases. In 

consequence, there is a great onus on the applied sciences to provide 

predictive tools for determining the long-term outcome of management 

policies before major and undesirable changes take place. Australia 

is an ideal continent in which to study how these predictions should be 

made, both because of its recent history of degradation, and because of 

the ready availability of high technology.

My thesis is concerned with a study of the behaviour of sheep 

(Ovis aries) in the Australian arid zone, and with the application of 

the results of this study in the prediction of the outcome of 

management policies. Sheep occur in large numbers in many semi-arid 

and arid regions of the world, but the species is intended to be an 

exemplar of any large herbivore in these regions. I discuss the
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advantages and limitations of sheep in this respect in the next 

chapter, which also reviews a wide range of behavioural information and 

theory.

In this study, fieldwork was carried out with sheep that ’free- 

range* within the large paddocks typically used in the Australian arid 

zone. The approach adopted to prediction in this system is that of 

modelling, and these models often require the insensate calculating 

ability of a computer. Although the management systems used in the 

Australian arid zone are important in some areas of the world, again 

they are intended as exemplars of other systems; in particular, the 

replacement of animal movement models by the influence of shepherds 

(and their behaviour) would permit the modelling of herded systems, 

whilst the removal of fenceline constraints would allow the description 

of wild animal populations such as those of game reserves. Chapter 

III discusses the relevance of predictive models, and outlines one 

which I have used as a starting point in this work.

The last section of Chapter III discusses various approaches to 

the ranging behaviour of sheep in large areas, and the four subsequent 

chapters are largely concerned with my investigations at this scale. 

Chapter IV describes the study site and methods used; Chapter V 

considers which factors are important in determining ranging behaviour 

and flock structure, whilst Chapter VI examines these processes in more 

detail. Chapter VII focuses on movement in grazing in the open 

paddock, and Chapters VIII and IX describe the study of grazing intake 

behaviour. Finally, in Chapter X, I draw these lines of investigation 

together into a new model of sheep behaviour in the large paddocks of 

the arid zone, and test the adequacy of the predictions of the model.



Chapter II.

Ranging and selection behaviour in semi-arid ecosystems; a review.

Pastoralists and nomadic herders possess great stores of anecdotal 

knowledge and ’gestalt’ understanding of the behaviour of man's various 

domestic animals. This knowledge is derived from individual 

experience and is transmitted culturally. There are many examples 

reported, such as Lott & Hart (1971) on the integration of the 

lifestyle of the Fulani tribal society with the behaviour patterns of 

their cattle; Baskin (1974) of native shepherds directing their 

sheep’s movement in Central Asia; or the control exercised over the 

ranging of camels in the Sahara by manipulation of their parental 

attachment to their offspring (Gauthiers-Pilthers 1974). The 

limitation of such information, despite its fascinating insights into 

man and animal alike, results from its anecdotal nature.

At the other end of the scale, there has been much laboratory and 

small-plot research into many aspects of herbivore physiology, 

nutrition and behaviour. Often such research is aimed at testing the 

specific responses of a breed to a particular environment, but it also 

provides the quantitative information necessary to model the physiology 

and behaviour of these animals.

Large mammalian herbivores in semi-arid regions usually range over 

such great distances that it is difficult to quantify natural history 

observations, and often impossible to extrapolate from the laboratory

to their normal habitat. The chasm between these approaches lay
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behind Tribe’s (1950) review of the behaviour of the grazing animal, 

for example. Since then many studies have attempted to quantify the 

observations made in the field; this has resulted in overviews such as 

Schaller (1977) on Himalayan caprovids, Sinclair (1977) on African 

Buffalo, and Geist’s (1971) classic work on North American mountain 

sheep, as well as many others.

Concurrently, development of the theoretical side of ethology has 

has begun to suggest explicit reasons based on genetic selection why 

certain behaviour patterns should develop and be maintained, both 

evolutionarily, and within an individual’s lifetime. The relevance of 

some of these theories has only been tested in laboratory conditions; 

but for others, field studies (e.g. sociality, Bertram 1976; dispersal, 

Greenwood et al.1978; sexual competition, Hrdy 1976, Le Beouf 197*1; and 

many aspects of foraging behaviour mentioned below) are finding support 

for the assumption that selection drives towards some optimal state.

Management of land systems has become, by necessity, more of a 

scientific discipline in our society: both as a result of the need for 

agricultural efficiency, and because policy is increasingly determined 

by people who cannot obtain a lifetime's understanding of every land 

system over which they may exert control (Box 1973, Lange 1973)* For 

long-term planning, the concept of stability in plant-animal systems 

has become important for the prediction of limitations to growth (e.g. 

Noy-Meir 1975, Westoby 1980, Caughley & Lawton 1981). The ambit of 

these three research approaches - field studies, laboratory work and 

theoretical ecology - is so broad that their linking may only ever take 

place at the level of whole system modelling. Communication of the 

results of this research to policy makers may also require simulation

models (Holdgate 198*4).
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In this chapter I establish a framework and context for the 

development of the rest of this thesis. The best recent summary of 

relevant behavioural information for domestic herbivores is to be found 

in Arnold & Dudzinski (1978), to which I shall refer not infrequently. 

It is apparent from their review that, despite considerable work on 

some economically-important aspects of behaviour, other areas remain 

obscure. These include especially an understanding of the short-term 

selection of food by herbivores, and the reasons underlying many of 

their patterns of movement. After some historical background, I shall 

discuss both ranging and grazing behaviour. The following chapter 

takes up the theory and practice of modelling.
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(a) Prehistory and history.

(i) Evolutionary background.

The behaviour patterns of today's herds are constrained by their 

evolutionary history, and have been altered by the imposition of 

domesticity. Grasses form a major component of the diets of modern 

mammalian herbivores. On a geological time-scale, grazing became 

widespread as the great savannas, pampas, prairies and other grasslands 

of the world developed during the Tertiary Period. In the fossil 

record, many parallel lines of evolution derived from differing stock 

(such as the palaeotheres in South America which so strikingly 

resembled the equid line in tooth and leg development) suggest that 

there were extensive opportunities for small herbivores to increase in 

size (e.g. Simpson 1951, Römer 1959). An increase in size permitted 

greater energetic efficiency in movement over large areas (e.g. Taylor 

et al.1970). Whilst becoming larger, however, these animals had to 

develop new methods of predator-avoidance, for it was no longer so easy 

to hide - both because of size and because of the open landscape. For 

many species, the wide-spread appearance of socially-tied groups 

enhanced their ability to avoid predators (e.g. Hamilton 1971, 'the 

selfish herd'; Bertram 1978, warnings), as well as improving foraging 

(e.g. Pitcher et al.1982). This in turn demanded modifications to 

searching and grazing habits; for instance, some needs of the 

individual were subjugated to the instinct to stay together.

The evolutionary background of herbivores is important, for it has 

left domestic animals with a legacy of behaviour patterns that persist 

despite possible irrelevance to present conditions. Knowledge of 

these patterns is essential for the shepherd's control of native
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flocks, but is also important in the management of stock that have been 

distantly removed from their native pastures. These animals may be 

artificially segregated and submitted to conditions very different to 

those which originally moulded their behaviour patterns. Examples of 

domestic animals finding highly poisonous plants palatable (the 

deadliness of which presumably implies that no equivalent 

commonly-occurring plant would have been eaten in their homelands) are 

well-known and documented (e.g. Mitchell 1979) and can be useful in 

understanding the cues used by animals in dietary selection.

On the other hand, many animal species have changed during their 

long history of domestication by man. Primitive herders could easily 

select for some physical attributes; for example, domestic cattle 

initially tended to be smaller than the original wild aurochs in 

Europe, but increased in size again from the Middle Ages as herders 

learned greater control, and, perhaps, greater docility was bred in. 

Less physical differences are apparent in the degree of permanency of 

flock structure between Geist's (1971) mountain sheep or the long-time 

feral sheep of Soay (Grubb & Jewell 1 9 7 ,  and today's free-ranging 

herds. Changes such as these must be carefully considered before any 

attempt is made to extend observations from the more-easily observed 

domestic animals to their wild counterparts (cf. Fraser & Herchen 

1979).

(ii) Sheep in recent times.

Sheep husbandry in the world today may be loosely divided into 

three categories. In mesic areas, free-grazing occurs in small 

pastures usually dominated by grasses and herbs, in which the animals
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rarely move out of sight of most of the land available to them, and are 

entirely constrained by fences. In lands of lower productivity, 

animals may free-range in much larger paddocks, fences are encountered 

relatively infrequently, distances are large enough so that special 

features such as waterpoints are not always in line-of-sight, and the 

fodder available tends to be very variable and often depauperate for at 

least some part of most years. Thirdly, there is active shepherding, 

in which a shepherd takes the place of fences and directs the movements 

of the flock; this often occurs in areas where the vegetation is not 

very productive, if only because other areas have been sufficiently 

productive to pay for fencing.

During the last few decades, Australian practices have been almost 

exclusively of the former two types, except in the special case of 

stock route usage. Much of the investigation of sheep husbandry has 

been carried out in small, easily-observed paddocks, but it is in the 

larger paddocks that behavioural adaptations are more critical to sheep 

survival. Here the sheep must range over much larger areas for their 

food and water. Research in these pastures is more relevant to the 

low productivity sheep-lands of the ’third world', in terms of the 

survival of the fragile vegetation, as well as the animals themselves. 

Such rangelands also often contain open vegetation which is more easily 

observed for studies of selection and movement patterns than are high- 

density grasslands.

Sheep in Australia provide an extreme example of animals removed 

from their original environment. In the semi-arid lands, however, the 

management policies used in this century have allowed far more free- 

ranging behaviour than does any shepherded system, by the fencing of 

very large paddocks. The hardy Spanish Merino breed, and its modified
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descendants, survive in chenopod-dominated vegetation and native 

grasses: in many places the perennial shrubs and longer-lived 

ephemeral chenopods have become their main drought reserve. Manage

ment may involve mustering no more than twice a year (at shearing and 

crutching), and the sheep usually have areas of more than 1000ha in 

which to roam.

On the other hand, the animals’ ranging is severely limited by the 

necessity for regular recourse to the man-made waterpoint for much of 

the year, and they are artificially segregated into single sex (and 

often limited age-group) flocks with controlled access for mating. In 

fact these single-sex flocks may be less ’unnatural’ than they seem, 

since both the mountain and wild Soay sheep spontaneously maintain 

discrete male and female groups for all the year except in a well- 

defined rutting season, and lambing may consequently be no less 

synchronised than under management. Domestic flocks may differ mainly 

by the reduced inter-male competition between domestic rams, so that 

the range of differential reproductive success is much smaller than in 

the wild. The history of sheep in Australia is variously well- 

documented from Dixon ( 1892)  and Davidson ( 1938)  to, for example, Peel 

( 1 9 7 3 ) ,  Reeves (1973)  and Squires ( 1 9 7 6 b ) .
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(b) Ranging behaviour.

(i) Introduction.

There are many studies of open-ranging in the wild by herds in

Africa (summaries in Leuthold 1977,, Eltringham 1979) and elsewhere

(e.g. Geist 1971, mountain sheep; Jewell & Grubb 1974, Soay sheep;

Klein 1970, deer; Caughley 1964 and Newsome 1975, kangaroos); other

work has been carried out on domestic animals, such as Hunter's (1962)

Scottish hill-sheep . These studies use a variety of observational

methods including aerial counts or photography (e.g. Dudzinski & Arnold 

1967), mapping from ground vehicles (e.g. Jarman & Jarman 1973), 

following groups on foot (e.g. Harrington & Pratchett 1973), and 

watching from fixed vantage points (e.g. Kilgour et al.1975); others 

have examined dung distribution as an indicator of activity (Riney 

1957, Lange & Willcocks 1978, Welch 1982).

In Australasia, work on domestic herbivores has used all of these 

methods, with most of the results coming from relatively few authors. 

For example a considerable amount of data has been obtained on 

free-ranging short-horn cattle near Alice Springs, N.T., summarised in 

Hodder & Low (1978) and Low et al. (1981a,b,c), from which they provide 

detailed transition matrices for activities, as well as data on 

vegetation community usage (eg. Low 1972).

As Lynch (1967) put it, most studies of sheep had until then been 

of less than 30 sheep in less than 3 acres, and very little had been 

published about Merino ranging behaviour under extensive conditions. 

In large arid paddocks, this behaviour must be more important to

survival, and studies in these areas may shed light on the less
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obvious expression of behaviour in smaller paddocks. The situation 

has now improved with various general studies being published such as 

Arnold & Pahl (1967), Dudzinski et al. (1969), Lynch (1974), Squires 

(197-4) and Noble (1975) in Australia, and New Zealand hill-country work 

such as Kilgour et al. (1975) and Harris & O’Connor (1980). A study 

of feral animals in unmanaged conditions - the information on the Soay 

Island sheep summarised in Jewell et al. (1974) - is also useful for 

comparitive purposes.

Most ranging behaviour of herbivores is determined by, and 

composed of, the primary activities of grazing, watering and resting, 

intermittently affected by interruptions associated with reproduction. 

Resting at night seems to be qualitatively different to that in the day 

and is referred to as ’camping’ herein. The additional activity of 

walking - the proximate mechanism of ranging - may be associated with 

any of the other activities. The ranging behaviour of individuals may 

also be strongly dependent on social interactions.

Many studies (e.g. Arnold 1962, Bowns 1971 , Squires 197Mb, Harris 

& O'Connor 1980) have described the general patterns of daily activity, 

which seem to be as common to domestic sheep in Australia as the feral 

Soay Island sheep. These patterns are summarised by Arnold and 

Dudzinski (1978). Morning and evening grazing periods are usually 

separated by rest periods in the middle of the day (spent in or out of 

shade) and at night (at regularly-used campsites). In hot weather, 

the period spent in shade in the afternoon may considerably exceed the 

camping period at night. In cool weather, there is often a pause in 

grazing in the mid-morning, effectively creating a third period of 

grazing; a similar extra grazing bout probably occurs at night in hot 

weather, before the campsite is occupied. The time of watering in
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Australia is usually strongly bimodal, in the first and last few hours 

of daylight; this bimodality of behaviour is even evident in feedlot 

lambs (Shreffler & Hohenboken 1980). Some of these activity patterns 

can be related to seasonal and climatic conditions (Dudzinski & Arnold 

1979, Bueno & Ruckebusch 1979).

The spatial use of pastures by herbivores is important not only 

for the animals' livelihood (McBride et al.1967, Lynch & Alexander 

1973, Kilgour 197-4), but also with regard to the resultant effects on 

the vegetation (Squires 197^a, Taylor 1980). The most dramatic 

effects are the patterns imposed on the vegetation around waterpoints, 

which Lange (1969) has termed 'piospheres'. The concept describes a 

zone which is depleted of palatable forage species in a regular fashion 

(Barker & Lange 1969, Graetz & Ludwig 1978). Such centres can be seen 

as a form of 'refuge' in the sense of Hamilton & Watt (1970), and the 

waterpoint is not the only one to affect pattern development (Foran 

1980); for sheep, the location of shade is also important (Squires 

1975).

A great amount of work has been done on aspects of sheep ranging 

behaviour and physiology. I now examine some of these aspects; 

studies of particular relevance will be mentioned here, and others 

appear in later chapters, but I do not attempt to review the whole 

gamut of previous work.

(ii) Watering.

The ranging of sheep in the Australian arid zone is most singul

arly constrained by their need for water. This dependence may be 

greatly reduced in winter as a result of lower heat stress, the
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occasional presence of ground-water and greater succulence of 

vegetation. Because it has considerable direct economic importance, 

watering itself has been studied in relation to frequency, quantity and 

the effects on these of climate and vegetation.

Macfarlane et al. (1967) described the water metabolism of sheep 

grazing halophytic chenopods. They found significant breed differ

ences between Border Leicesters and Merinos, and wide inter-individual 

differences. The presence of some grass greatly reduced water 

requirements. Interestingly they concluded that "the tolerance of 

animals for the taste and effects of sodium and potassium salts in the 

body may be determined more by behaviour than the ability of gut and 

kidney to remove the salt ingested".

Wilson (1966), on generally similar pastures, found that by 

varying their water and food intake according to the salt concentrat

ions in available fodder and water, sheep would maintain a NaCl:total 

water ratio in the narrow range 1.82—2.17% whilst water intake varied 

up to 11.3 1/day. Intake of Atriplex nummularia dropped by over a 

half when the water available was changed from fresh to that containing 

about \% NaCl. Dietary salt intakes were apparently more important 

than temperature in determining water intake, although both would be 

correlated with time of year.

Further work by Wilson (1974) showed predictably higher water 

requirements on halophytic vegetation than on pure grass communities; 

on the latter, water might not even be needed for as much as five 

months per year, especially after rain. On the chenopod-dominated 

communities (with some grasses only in winter) intake was as high as 

12 1/day for several months during one particularly dry period, and



II. Ranging and selection behaviour 15

some watering continued through winter, except after rain. Provision 

of shade generally reduced water turnover by no more than 10% during 

summer (e.g. 0.4 1 in 4 1/day), suggesting that it was of little 

importance for woolly sheep. On the other hand, Lynch (1967) found 

that temperature correlated with watering in a 2400 ha paddock near 

Ivanhoe, N.S.W.

The watering behaviour of sheep is constrained by the distances 

over which they must range. Squires et al. (1972) examined the 

distances sheep are prepared to walk between food and water down a long 

race, and found significant breed differences associated with speeds of 

walking. The food was easily foraged for, but, if the length of the 

experimental race became too great, the food and water intake dropped. 

As distances increased, the sheep reduced their watering frequency from 

twice daily to three times in two days, and then only once per day 

(Squires 1970): the sheep could not take more than about six litres in 

a single drink. An average walking speed for merinos not engaged in 

any other activity was about 2.5 km h"1, corresponding to values 

estimated by Noble (1975) in the open paddock.

In open paddocks of the order of 1000 ha in area, Squires (1976a) 

found differences in watering between sheep on Danthonia-Stipa grass

land and Atriplex vesicaria-dominated communities; two waterings per 

day were common on the latter in late summer, compared to only one 

watering per day on the grassland, and a third the water consumption. 

Correspondingly the saltbush sheep walked an average of twice the 

distance (up to 14 km/day) that the others did, even in late summer 

when forage levels became low on the grassland: these distances are 

equivalent to the maxima that he found in his long-race experiments. 

The spatial arrangement of communities within the paddocks was found to
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be important (and the saltbush paddock was 30  ̂ larger).

The movement distances described by Squires seem to be maximal: a 

survey of daily movement distances recorded in the literature appears 

in Arnold & Dudzinski (1978, p4l ), although without comments on numbers 

and distributions of waterpoints, or on climate. There is no doubt 

that this focus of activities, the waterpoint, is very important in 

flock dispersion and the general patterns of movement over the whole 

paddock, which I now address.

(iii) Flock structure and sociality.

Flock usage of large paddocks is affected by flock dispersion and 

sub-group movement. The function of differing group sizes between 

species that have different foraging habits has been discussed by 

Jarman (1974) and Estes (1974), both approaches being supported by 

Wirtz & Lorscher (1983). However, group sizes can also vary greatly 

within a species.

Arnold & Pahl (1967), Dudzinski & Arnold (1967) and Dudzinski 

et al. (1969) have used aerial techniques to describe the statistics of 

group patterning, and found in general that, with scarcer feed, flocks 

tended to break in smaller subgroups. A major limitation in the 

application of aerial techniques to large paddocks with bush was the 

small percentages of sheep actually located (e.g. 5%), although useful 

statistics were still obtained. Dudzinski et al. (1978) were able to 

develop this approach to the point of predicting a measure of range 

condition from the observed flock dispersion.

Noble (1975, p168) suggests that increased subgrouping and inter-
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group distances is a mechanism to allow more complete searching for 

scarce palatable ephemerals. Alternatively, this scattering might be 

regarded as an incidental result of patterns of search in poor forage 

contitions which over-rides the forces of sociability, rather than a 

change in the patterns themselves. Squires (1976a), observing sheep 

in large paddocks from a 10m tower, saw few, large groups with a mean 

inter-individual distance of 2.9m in saltbush vegetation, but many, 

smaller subf locks on dry grasslands where there was a mean inter-

individual distance of 4.4m, and inter-group distance of 187m. Lynch 

(1974) also found greater scattering in times of feed scarcity, and 

Gardiner et al. (1978) found that lower pasture productivity correlated 

with lower live weights, smaller group sizes and more groups; they 

commented on the relevance of this to mating efficiencies - mainly that 

more rams may be needed if conditions are bad. 

These studies show that environmental conditions affect subflock 

numbers more than inter-individual dispersion within groups, and this 

suggests that there may be some social cohesiveness within these sub-

groups. The mechanism for this was proposed by Crofton (1958) to be 

the maintenance by any individual of at least two other objects (sheep 

or landmarks) within their visual ambit for orientation during grazing. 

However, chenopod shrublands can become relatively high, and it seems 

unlikely that this mechanism can predominate in them (Noble 1975, 

p162). Presumably a mixture of audible and visual cues maintains 

flock contact in these pastures, and it is not uncommon to see a 

subflock appear to simply diverge into two sections in high scrub, nor 

to hear isolated individuals bleating loudly. 

The longer-term cohesiveness of domestic subflocks is a matter for 

interest - for example, Noble (1975) found that movements between sub-
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groups, and regroupings, were not unusual. Amongst other ungulates, 

Lott & Minta (1983) have found almost random associations amongst 

American Bison, once the parent-offspring bond is broken. Conversely, 

Bighorn and Soay sheep under 'natural* conditions show total stability 

in the group structure of the females (Geist 1971; Grubb & Jewell 

1974). This stability is paralleled by the occupancy of a definite, 

small home range, although the location of this changes seasonally in 

the Bighorns. Hunter (1964) found that Scottish hill-sheep subflocks 

also used definite ranges.

Inter-individual dominance behaviour is not obvious in domestic 

sheep, although such interactions become more visible under conditions 

of stress associated with restricted food, and perhaps at waterpoints 

(Collias 1956, Squires & Daws 1975). Squires & Daws found that in 

long experimental races, certain sheep always tended to be in the same 

position in the flock during movement to and from water, and there was 

a high correlation between position and social dominance as ranked when 

limited access to a self-feeder was allowed. They do not indicate 

whether there were differences between orders of movement to water on 

the one hand, and food on the other (i.e. whether the leader was 

dominant in all activities, or was only the animal that, for example, 

became water-stressed most easily). Thus Arnold & Mailer (1974), 

studying competition at supplementary feed troughs, also found certain 

sheep to be regularly first to the trough, but there was no correl

ation with competitive ability once there. Arnold (1977) observing 

groups of six sheep in small fields found that flock movement was 

stimulated by individuals who tended to be less gregarious and graze at 

greater inter-individual distances; less independent sheep would then 

follow them, but active 'leadership' was not involved.
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(iv) Movement and grazing.

The question of which areas of a paddock are used for grazing is a 

complex one, evidently involving the positions of waterpoints, shade 

and camps, social factors, vegetation distributions and the effects of 

some climatic variables, all of which interact (e.g. Squires 1978). 

Knowledge of the form and extent of the interactions would have 

considerable potential value in solving managerial problems such as 

determining best paddock sizes, waterpoint positions, flock sizes and 

other parameters (Lynch & Alexander 1973, Squires 1976).

There can be a huge differential in density of grazing activity 

across a paddock, making the mean stocking rate irrelevant as far as 

the localised impact on the vegetation is concerned. This has been 

shown using dung densities by Lange & Willcocks (pers.comm.), and Lynch 

(197*0 found that half of his study paddock was unused during one 

summer. On the other hand, at least some sampling of most areas in a 

paddock does occur from time to time, and the factors that influence 

this ranging are important for the survival of palatable minority 

species (Lange & Willcocks 1980).

The influence of some extrinsic variables on the patterns of sheep 

movement are known in general terms. For example, in moderate winds, 

it is well-known that sheep tend to be in the upwind portion of a 

paddock. Examination of aerial photos often emphasises this posit

ioning, and distinctively different vegetation conditions may be found 

in the corners of the paddocks into the prevailing wind direction, with 

strong cross-fence contrasts to adjacent under-used areas. In 

stronger winds, especially if cold, sheep tend to move with the wind 

(e.g. Arnold & Dudzinski 1978, pp38~9).
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Despite these general observations, however, wind is certainly no 

more than one of a suite of cues that may determine direction both in 

grazing and movements on a larger scale. In many animals there is 

evidence of habitat selection (e.g. Hodder & Low 1978, cattle, Belovsky 

1981, moose, Duncan 1983, horses); movement may be affected by slope 

(e.g. Mueggler 1965, cattle); and it can certainly be altered by 

predators or a human presence (e.g. Berger et al.1983, pronghorns). 

For sheep, Crofton (1958) discussed factors that may be important in 

orientation, such as landmarks and the location of other individuals. 

In the arid zone especially, previously-developed sheep tracks may also 

be important (Lange 1969).

Lynch (197-4) stated that sheep in a 2000 ha paddock tended to 

graze in preferred areas, limited only by fences, and by distance from 

water when watering became a more frequent necessity. Squires (1976) 

compared sheep usage patterns in two paddocks with different vegetation 

subunits and forage availabilities, but was unable to find any partic

ular correlation. In one of his paddocks, the area used correlated 

well with prevailing wind direction, whilst in another the movement 

pattern was entirely contrary despite three days of consistent winds; 

forage distribution probably had an effect here. Harris & O'Connor 

(1980) observed sheep over a period of three years on part of their 

high country summer range in the South Island of New Zealand. They 

related distribution to forage conditions and various other attributes 

of nineteen land units, finding a general preference for damper sites 

(with more persistent forage) especially towards late summer. Similar 

trends in the relative usage of different landunits for each year 

indicated consistent non-random behaviour, but only to the extent that 

sheep stay in areas where the forage lasts longest.
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Sheep sometimes 'trek’ (i.e. move without any significant grazing 

for 2 to 3 km) in a definite direction out from the waterpoint in 

Australian arid zone paddocks (Squires 197^b). The large movements 

involved must be important in determining which part of a large paddock 

is occupied for grazing. No study to date has been able to offer any 

real clues as to the combination of factors which is specifically 

determining these movements.

Shade sites used in hot conditions are usually individual trees, 

of which there may be many. However, in a paddock of the order of 

thousands of hectares in area, there are usually only five or six sites 

used regularly for night-time camping. Camping is restricted to these 

sites even in summer when less time may be spent in rest during the 

short nights than in the day. The areas used for camping tend to be 

less well-delineated than day rest-sites, in the open, and often up 

hills (cf. Figure 1.23, Arnold & Dudzinski 1978). Initial selection 

of sites can be influenced by social factors such as the presence of 

sheep in an adjoining paddock which may cause camping on the common 

boundary (Whalley pers.comm.).

Little work has been carried out on learning of the layout of 

large paddocks, nor to examine the effects of changing paddock 

configurations on the long-term patterns of movement. In small 

enclosures, sheep can learn changes in the position of gates to a 

waterpoint rapidly, but they are notoriously slow to learn the position 

of a new waterpoint in the open paddock. When moved by graziers, 

young sheep especially tend to return to the old waterpoint. Arnold & 

Dudzinski (1978) quote some information on exploratory behaviour in 

smaller paddocks (100's ha), but its importance to productivity in 

large paddocks is unknown. Rapidity of learning could be important in
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a management scheme which does not return the same sheep to the same 

paddock each year, since the location of shade, camps and preferred 

vegetation might have to be re-learned annually. Experience is known 

to affect the foraging efficiency of sheep, and their expectations in 

grazing, to which I now turn.
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(c) Grazing behaviour.

(i) Introduction.

A major portion of an herbivore's active hours is spent amassing 

the relatively large quantities of plant material that must be 

processed for its nutritional needs. Arnold (1964a) has provided a 

summary of the intrinsic and external factors which combine to 

determine a herbivore's diet. These include the plant species 

available (influenced by their physical, microclimatic and macroscopic 

environments, and their position relative to biotic factors such as 

established patterns of animal movement), which interact with the 

individual animal in its particular physiological state and social 

situation (modified by previous experience - both long- and short-term) 

to resolve the diet composition.

There have been many studies of the specific selection of diet by 

sheep in particular environments. Much of this is reviewed in Arnold 

& Dudzinski (1978). Techniques have included oesphageal fistulation 

(e.g. Arnold & Bush 1963, Leigh & Mulham 1966), rumen fistulae 

(Thornton & Minson 1973), dung cuticle analysis (Croker 1959, Peden et 

al.1974) and determination of net biomass change (Andrew et al.1979). 

In a few instances (e.g. Harrington & Pratchett 1973), direct 

observations of animals have been made. Each technique has its 

problems (e.g. Monro 1982). Fistula techniques sample what has 

definitely been eaten, but omly over short sample periods, which may 

not be representative; significant veterinary attention is usually 

needed. Dung samples can only be taken after the process of 

digestion. Vegetation biomass change needs a non destructive 

estimation technique, and then measures the effect on the vegetation,
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but not necessarily what has been eaten; significant losses can occur 

due to trampling and wastage, which are not easy to quantify. Direct 

observations measure effort rather than intake, and are often limited 

by restricted visibility and the need for minimal disturbance of the 

animal. Some methods require that the animal be penned for a period 

before the trials. None has been used in large open paddocks. 

Combinations of methods are probably best (e.g. Peden et al.1974), but 

involve great manpower costs.

Dietary selection undoubtedly occurs in sheep. Numerous studies 

have shown that a diet is selected with higher contents of nitrogen, 

phosphate, and gross energy, but lower fibre than is available on 

average in the herbage on offer (see summary of references in Arnold & 

Dudzinski 1978, p100). The proximate explanation for this may be 

that, on a given plant, sheep tend to select leaf material in 

preference to stem, and young tissue in preference to old or dry 

(ibid., and Hamilton et al.1973). The majority of the plants eaten 

may be chosen from a very small proportion of the forage species on 

offer; for example, Leigh & Mulham (1966a,b) found that at one time of 

the year, 80% of forage was selected from plant species representing 

only 1 % of the herbage available, by weight at least. Such extremes 

cannot occur where there are few species to choose from; then diet 

changes may be more constrained by relative abundances of 

moderately-acceptable species (e.g. Arnold et al.1966).

Foraging selectivity which is apparently this sensitive might be 

expected to be strongly affected by physiological status, breed and 

age, but there is little evidence to suggest that this true. Arnold 

& Dudzinski (1967a) found that there were differences in grazing times 

and intake rates between dry, pregnant and lactating ewes but there was
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little effect on diet composition or total digestible organic matter 

intake; much of this variation could be accounted for by changes in 

fodder availabilities. Graham (1980) found some changes in the use of 

energy and nitrogen by sheep between weaning and maturity in the 

laboratory, but the partitioning of digestible energy between nitro

genous losses and metabolisable energy varied with level of feeding 

rather than age; furthermore, effects of increasing intake lessened as 

the sheep grew. Hodge & Doyle (1967) found that young lambs and 

yearlings ate similar proportions of grass and clover. Although these 

are only a few of the studies available, representing little variety of 

environment, they suggest that grazing trials should be robust to some 

age and physiological variability in experimental animals.

Variation between individuals may outweigh other effects, since 

individuals can be much more selective than is apparent from mean flock 

data. Arnold (1964c), quoted in Arnold & Dudzinski (1978), found that 

the variability in the percentage grass content of the diets of 

different individuals within a day was of the same order as the 

variation between groups of sheep from day to day. This result shows 

the importance of being able to analyse individual and summed data 

separately. Differences between breeds have also been found (e.g. 

Langlands 1968), some of which may be accounted for by documented 

differences in taste preferences (Arnold & Hill 1972).

Dietary selection clearly occurs: what are the mechanisms, and

how do they operate ?
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(ii) The senses.

An herbivore selects its diet at two crudely-separated scales. 

First it chooses an area in which to graze - the ranging aspect of 

behaviour discussed above - and then within that area it selects 

individual plants and plant parts. For the latter activity, the 

mechanisms employed are the various senses, and these are interpreted 

into behaviour. The patterns of this interpretation are established 

by the existence of the senses, and 'innate' instinct; they are 

modified by learning, other forms of experience (including losing a 

leg, for example), and probably in the short-term by feedback from 

internal organs regarding cues such as nutritional status or rumen 

fill. From the point of view of the plant, there is an important 

distinction between remote sensing (sight and smell) and sensing that 

requires at least some sampling (taste, and perhaps texture).

Fontenot & Blaser (1965) reported that colour vision had no 

influence on sheep grazing behaviour, and that smell was unimportant in 

selection. Arnold et al. (1980) found that there was little effect 
caused by odours added to chaffed hay on intake, though a few were 

consistently avoided. Arnold (1966) and Kreuger et al. (197-4) used 
impairment techniques to come to broadly similar conclusions regarding 

the importance of smell, taste and touch to diet selection. Arnold 

found that these senses each had a qualitatively similar effect of 

changing the preference ranking of about a third of twenty different 

strains of each of seven species in an Australian grass-clover pasture. 

Inability to taste was more likely to improve acceptability than to 

depress it, whilst smell and touch had about equal partitioning of 

effects. Combined impairment of all three senses had no significant 

effect on animal productivity under these good pasture conditions.
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All authors considered sight to be of minor importance except in gross 

orientation and recognition of some conspicuous food plants. It would 

be surprising if sight were equally unimportant in arid areas, where 

more movement is often necessary to locate forage.

The interpretation of these sensory inputs gives rise to the 

actual selection of forage by the animal. The first stage involves 

the differential use or filtering of the available senses as above: 

and the final result is a specific diet composition. It is the latter 

that has been given most attention in the literature, and there are 

many examples of the preferences of particular breeds of sheep on 

particular pastures. It is clear, however, that better understanding 

of the intermediate stages is needed before this data can be more 

generally applied. Genetic background and previous grazing experience 

are also important, both of which have been largely neglected for large 

domestic herbivores. It may be that genetic factors largely determine 

the general strategies of searching, and the responses to internal 

stimuli, as well as the form of the filter which specifies which sense 

is important in a particular context.

Experience early in life is important in influencing grazing 

preferences, efficiencies and expectations, in a fashion perhaps 

analogous to imprinting (e.g. Bateson 1976). As the animal gets 

older, learning seems to become slower. Arnold & Mailer (1977), 

following Arnold (1964b), found that sheep which were experienced in a 

limited range of grazing environments performed worse in new 

environments than sheep previously conditioned to a wider range; this 

effect was more significant in animals which were treated when younger. 

Differences in preferences for normally-palatable plants persisted for 

two years despite attempts at ’re-education'. Lobato et al. (1980)
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state similarly that early (pre-weaning) familiarisation with dietary 

supplements greatly increased later ingestion of them (a fact of 

evident commercial significance).

Arnold & Mailer (1977) showed that experienced animals were able 

to obtain food at a much faster rate than sheep which had been raised 

without grazing experience, when put out to pasture: this presumably 

involves experience other than just the establishment of preferences. 

Dudzinski & Arnold (1979) found consistent behavioural differences in 

response to temperature, relative humidity and daylength, in merinos 

raised in a dry tropical climate compared to merinos raised in a 

Western Australian Mediterranean climate, when they were grazed 

together for three years; these differences decreased with time. 

Gluesing & Balph (1980) showed that the expectation of alfalfa by sheep 

which had been in a pasture containing the plant led to greater time 

being spent searching for it in a new pasture.

Diet selection thus rests on a genetic base which may be modified 

by learned behaviour during an animal’s life. Some genetically- 

determined aspects of selection are purely physical, though nonetheless 

important. These include the forms of the sheep’s jaw, lips and

teeth, which enable, for example, sheep to be potentially more

selective in eating than the larger-mouthed cow or horse. They

determine certain constraints on grazing, such as the greater

accessibility of the higher layers of vegetation. Although these 

constraints may reflect preferences on a genetic timescale, they should 

not be described as behavioural selection. Such genes also circum

scribe the the variety of senses available, although conversely the 

availability of a sense does not imply its use. Such long-term 

attributes as these are usually not behaviourally flexible and need
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only be borne in mind as precursors in diet selection. The behav

ioural aspects have been considered as part of foraging theory.

(iii) Foraging theory.

Although the recent development of ethological theory has placed 

considerable emphasis on how animals locate and select their diet - 

foraging theory (e.g. Emlen 1966, 1968, Schoener 1971, Pulliam 1974, 

Estabrook & Dunham 1976, Ellis et al.1976, Zach & Falls 1976, Pyke et 

al.1977, Krebs 1978, Hainsworth & Wolf 1979, McNair 1979, etc) - few 

attempts have been made to extend it to herbivores (but see Freeland & 

Janzen 1974, Westoby 1974, 1978, Belovsky 1978, Owen Smith & Novellie, 

1982). Location and patchiness of prey have also been considered at 

length (MacArthur & Pianka 1966, Gill & Wolf 1977, Bobisud & Voxman 

1979, Morse & Fritz 1982), as has optimal habitat use and predation 

risks (Belovsky 1981, Werner & Mittelbach 1981, Werner et al.1983). 

The trend in foraging theory in recent years has been to try to include 

more realism in models, which has involved greater complexity, and 

often made testing less easy. These complications include a number of 

aspects that may be relevant to herbivores, including prey switching 

(Murdoch 1969), the differences between sequential and simultaneous 

encounters (Houston & McNamara 1982, Waddington 1982), substitutable 

resources (Rapport 1980), stochastic models (Green 1980, Stephens & 

Charnov 1982), competition (Milinski 1982), partial consumption of prey 

(Sih 1980) and the effects of hunger (Richards 1983), amongst many 

others.

The basis of foraging theory is that (genetically and/or

behaviourally) animals are equipped to optimise their diet in some

fashion. The ’currency' being optimised, the relative 'values’ of
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different ’prey' at different times and the predator's perception of 

relative and absolute abundances must all be determined or assumed 

(Estabrook & Dunham 1976, Pyke et al.1977). The currency may be any 

of a variety of absolute or perceived measures, generalised by 

Estabrook & Dunham (1976) to the intake of food 'value' per unit time 

such that this 'value' may maximise the expected genetic contribution 

to subsequent generations. whether the 'value' (as total energy, or 

specific overriding nutrients, or sometimes particular trace 

chemicals), or the time is more significant may depend upon forage 

type. Thus, for herbivores with an approximately fixed bulk or time 

of intake, food quality may need optimising rather than, for example, 

time in an animal that is subjected to higher risks whilst foraging, or 

bulk in animals with a limited capacity; plainly all these factors may 

interact. Krebs (1978) lists the possible failures of the theory 

which arise when data do not match model predictions.

To what extent may these theories be applied to domestic 

herbivores, and in particular, the sheep ? There has been little 

critical discussion of whether ruminants optimise their diet and there 

is almost no evidence as to how much 'nutritional wisdom' may be 

involved in their diet selection. Few studies have been interpreted 

in terms of optimal patterns of movement.

In a broad sense, if there is any biological mechanism by which a 

ruminant can optimise its foraging behaviour, then selection should 

have occurred to enable it to do so; the continued presence of the 

species is evidence that they can usually obtain adequate nutrition. 

However, any large, generalist herbivore may have difficulty in 

developing viable foraging mechanisms, and domestic animals have added 

problems imposed by pastures alien to their genetic history. Westoby
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(1974) points out that the size and mixing of consecutive 'meals' in 

large herbivores may mean that it is almost impossible to correlate bad 

after-effects with particular foodstuffs. There is no evidence of 

such 'long-delay' learning in herbivores: indeed, the only reliable 

evidence is for rats (e.g. Revusky & Garcia 1967) who may take a very 

varied diet but are extremely conservative in their approach to new 

foods.

Belovsky's (1978) study of the moose is one of the few to show a 

clear correlation between reality and optimal predictions in an 

herbivore, and it may be that it is unusual to have a system in which 

animals are constrained simply between two main requirements (sodium 

and energy), with food plants falling clearly into one or other supply 

category. In these circumstances, Belovsky could predict daily 

consumption of the three main food-types well on the basis of an 

energy-maximising strategy. As a result, he could also predict 

optimal body sizes, and habitat use (Belovsky 1981). He concluded 

that "the situation faced by some herbivores in selecting a diet is not 

as complex as has been previously supposed": 'some' may be the 

operative word, although Owen Smith and Novellie (1982) have had some 

success with diet selection in kudu.

There is limited evidence (Allden & Whittaker 1970) to suggest 

that intake in sheep may be related to available pasture 'quality' in 

such a way that a certain level of digestible intake is maintained, but 

that this level cannot be attained below a certain threshold of forage 

availability. Their approach was based on Holling (1959), and was not 

supported in findings for microtine rodents (Batzli et al.1981). 

Other studies of sheep (e.g. Arnold & Dudzinski 1967a,b, Thornton & 

Minson 1973» Arnold 1975) have also failed to show the effect;
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however, some fixated preferences undoubtedly cloud the issue (cf. 

Arnold & Dudzinski, pp121-4), as well as previous experience (Allden & 

Scott Young 1964 and Langlands 1964 found increased compensatory intake 

after undernourishment in young sheep).

To be detected, quality of food must be correlated with some 

sense-susceptible attribute. As Janetos & Cole (1981) suggest, there 

may be no adaptive advantage in being perfectly optimal, if the costs 

of the perfect sensors outweigh the small improvement in return rates. 

Westoby (1974) has put forward the concept of 'fallible nutritional 

wisdom', wherein a general tendency to optimise is rendered deficient 

in practice both by the imperfect correlations between sensible 

attributes and food quality (including particular toxins), and by the 

continual need to sample other plants in small quantities in order "to 

keep up with seasonal changes in what the nutritionally optimal diet 

is" (Westoby 1978; also Freeland & Janzen 1974). These imperfect 

correlations are likely to be worse for domestic herbivores (and 

introduced feral animals) since their available fodder is not necessar

ily similar to that on which the required senses evolved. This 

phenomenon presumably explains the cases of palatable poisonous plants, 

such as the instance quoted by Arnold & Dudzinski (1978) where sheep 

but not kangaroos in Western Australia will ingest lethal doses of 

fluoroacetate from Gastrolobium and Qxylobium species.

Domestic animals may be good experimental subjects for examining 

foraging theory in regard to herbivores, since a great deal is known 

about their physiology and general behaviour. Against this, however, 

is the fact that they are usually translocated from, and no longer 

under the influence of, many of the selection pressures of their past. 

Some aspects of foraging behaviour should still tend towards
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optimality, but most previous work has not been interpreted in these 

terms.

Ultimately, some all-encompassing diet selection theory will be 

needed to model the quantity and quality of dietary intake on new 

pasture combinations. Recent work in the very early parts of grazing 

periods using artificial foods by Kenney & Black (1983) has moved 

towards predicting these factors on the basis of rate of intake alone. 

For reasons that will become apparent (Chapter IX), this approach is 

unlikely to explain more than part of the whole. There is, however, 

considerable data available on which to base a model of sheep 

behaviour, and it is with this that the next chapter is concerned.

(d) Overview.

A model of the behaviour of an animal necessarily includes inform

ation from a wide spectrum of sources. In this chapter, I have 

described some of the evolutionary and historical processes which 

delimit how herbivores, and sheep in particular, can behave and adjust 

their non-reproductive behaviour in the short-term. I have then 

examined the literature available on ranging behaviour and grazing 

behaviour in more detail, since these two aspects of the sheep’s 

activities broadly determine where and how great will be its impact on 

the vegetation. In doing this, I have dealt pre-emptively with some 

areas of the literature which will turn out to be important in later

chapters.



Chapter III.

Modelling, and approaches to open paddock ranging.

Chapter I has outlined how both domestic and wild herbivores use 

semi-arid and arid regions for extensive pasturing. The long-term 

changes that herbivores can cause in vegetation, especially when mis

managed by man, result in the need for a clear understanding of inter

actions between plants and animals. Models of grazing behaviour not 

only help clarify these interactions, but also provide a basis for 

management decisions. The long turnover times of arid zone ecosystems 

mean that these systems require a modelling approach which can predict 

the results of management strategies well beyond a manager’s lifetime.

In Chapter II, I examined some of the background biological 

knowledge that is available to such an approach, and delineated some 

problem areas. In this chapter, I describe the requirements for 

whole-system models which are intended to be useful in management, and 

I critically examine the model of Noble (1975) upon which much of my 
work has been based. Although one ultimate aim is to validate this 

model and redress its inadequacies, certain areas need further study in 

order to determine the best modelling approach. In the final section 

of this chapter, I outline the framework within which my work has been

structured.
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(a) Systems and management-oriented modelling.

The objectives of model design are often described as a balance 

between realism, precision and generalism. There are three categories 

of reasons for building a model of an herbivore’s interaction with its 

biotic environment; each type of reason emphasises a different 

objective.

Firstly a model may be developed primarily for its scientific 

value. The explicit coding of a model exposes gaps in our scientific 

knowledge, since it requires a clear statement of all assumptions 

underlying the model. Most competent managers, and scientists, 

possess many of these assumptions as part of their ’gestalt’ under

standing of a system, but these may not be communicable, and may be 

inapplicable in different situations. The infilling of gaps in our 

knowledge, and the disclosure of underlying assumptions often results 

in significant contributions to scientific theory. Model-building for 

such purposes tends to emphasise realism in describing process, and 

often requires great detail in the input variables. Many ecosystem 

models have been built using this approach.

A model for local management, on the other hand, is intended to 

predict the impact of particular events on a given system. These 

events may be management procedures, such as stocking rates, or less 

predictable phenomena, such as fires. In order to be practicable, 

such a model must operate on a bare minimum of reliably-available input 

information. It may be used to test between management options which 

are as yet unimplemented, or to predict the course of a particular 

event so that appropriate management action can be taken. The 

realistic modelling of process is not usually important, but precision
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is needed in suitable output indices. Modelling approaches of this 

type have been implemented, for example, in planning for the management 

of National Parks in the U.S. (e.g. Shechter & Lucas 1978).

The third use of complex models involves an increase in generality 

at the expense of both realism and precision. This occurs when a wide 

range of conditions are to be modelled at the same time - for example, 

a model to summarise patterns of production over large areas such a 

whole properties, game reserves or climatic regions, or a model of fire 

intensities in many vegetation types under many climatic conditions. 

Often such models may best be derived by running more detailed models 

for a large range of conditions, and using simplified regression 

relationships between input variables and relevant output parameters to 

substitute for the realistic modelling of process. The approach of 

regional models is well illustrated in Freeman & Benyon (1983).

These different approaches result from changes of scale between 

explanatory and descriptive models. I emphasise this point since 

choice of scale is an essential part of model-making that is not always 

acknowledged, and is frequently the reason why models fail when they 

are unjustifiably applied to situations for which they were not 

designed. For example, a transition matrix of daily activity changes 

for animals may serve to describe statistically what an animal is 

likely to be doing, and therefore may predict the effects of long-term 

grazing on a pasture. However, such a transition matrix offers no 

information about the ’decisions’ that underlie the changes in 

behavioural state associated with particular conditions, and it may not 

apply under conditions other than those in which the data used to build

it were collected.
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Such a model could include more detail, and determine the physiol

ogical state (say heat balance) of the animal, and consequently predict 

a movement to shade on the basis of specific external conditions which 

combine to cause some internal index to exceed a threshold level. In 

this case, the explanatory level has moved down from the transition 

matrix to a physiological level, and this change in activity has been 

distinguished from one due to rumen fill or thirst. The model is now 

likely to be applicable under most combinations of external conditions 

because, if the correct index has been used, some degree of process has 

been explained realistically. However, the model is still at the 

descriptive level in establishing the threshold of the physiological 

index to be used. This threshold in turn might be modelled by 

detailing the heat tolerances of cells, movement and temperature of 

blood in the brain, and so forth: but each deeper level will be 

constrained by some descriptive parameters (as well as requiring more 

computational time), until the Laws of Thermodynamics are finally 

reached.

My study has aimed to elucidate some of the processes involved in 

sheep's ranging and selection behaviour, with the intention of going 

beyond the level of detail that is essential to a management-oriented 

model. By a process of simplification, it is then possible to pare 

the model down to the level of detail which is relevant to the required

scale of modelling.
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(b) The Noble model.

I began this study using a model of sheep behaviour and vegetation 

dynamics which had been developed for a paddock near Middleback (see 

Chapter IV(a)) called 'Wertigo'. This model was conceived and written 

by Ian Noble. Much of my study has been aimed at validating and 

complementing the approaches of this model, as well as extending it in 

certain areas. I therefore present here a brief description of the 

structure of Noble's model (usually termed 'the model' hereafter), 

before examining some of its weaknesses. While I have modified the 

model considerably, and extended its application to other paddocks, I 

stress that the original structure and approaches are those of its 

author. A detailed description of the original model can be found in 

Noble (1975, 1979).

(i) Description.

Figure III.1 is a simplified schematic outline of the structure of 

Noble's model. Briefly, a small number of climatic inputs operate on 

a daily basis to drive a soil moisture budget submodel. This in turn 

drives the germination, growth and death of several classes of veget

ation. Some structural information about the paddock being modelled 

is necessary, including the spatial patterns of run-off, soil charact

eristics and the initial vegetation distribution over the paddock. 

Figure III.2 is taken directly from Noble (1975) and illustrates his 

view of the detailed interactions involved. The vegetation component 

of the model was perhaps the part best validated, drawing considerably 

on the records of the Koonamore Vegetation Reserve (see Noble & Crisp 

1980, Noble 1977). I do not deal much further with the vegetation 

growth model in this study, but it is worth noting here that it is the
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Inputs Sub-models Outputs

Local edaphics 
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(germination, growth, death)
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Figure III. 1 : A simplified outline of the overall structure of 
Noble's paddock model. The 'black box' of the behavioural sub-model 
is expanded in Figure III.3.



Figure III.2: 
view of his model.

Figure 4.3a from Noble (1975), illustrating his
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'
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section that requires most information before the model can be applied 

to a new paddock.

As Figure III.1 shows, the behavioural model interacts with the 

distribution and condition of the vegetation, with feedback resulting 

directly from grazing impact and indirectly by nitrogen redistribution. 

Goodall (1969) and Noy-Meir (1981) stressed the need to incorporate 

spatial heterogeneity in this type of model. It was the clear 

intention of Noble’s study, therefore, both to model the mean effect of 

a herbivore on its pasture, and to determine the spatial distribution 

of this effect (Noble, 1975, p18).

A spatial component was included in the model by dividing the 

paddock into a number of adjoining cells using a regular grid system. 

Each of these cells had its own run-off and soil characteristics, and 

the growth and condition of the vegetation in each is modelled 

separately. In the behavioural model, each group of sheep in the 

paddock has a position in one of these cells, and the modelling of 

their movement between cells locates the impact of their grazing.

The definition of both spatial and temporal scales is fundamental 

in all ecology. For the model, these definitions depend upon the 

detail of the processes that are to be modelled. Vegetation growth 

was modelled on a daily timestep, but this could probably have been 

done less frequently. On the other hand, animal behaviour and 

movement was modelled on an hourly timestep so as to be realistic in 

relating them to actual activity and spatial position. In the 

original model, the paddock cells were defined as 800x800 m2 , an area 

comparable to that over which a sheep may graze in an hour, as well as 

for other practical reasons. These choices immediately constrain both
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the detail required on input, and the detail available on output. I 

have used a smaller cell size of 500x500 m2 for much of my study, in an 

attempt to increase the realism of the spatial aspects of grazing.

The behavioural portion of the model is outlined in Figure III.3. 

This submodel centres around an hourly selection of activity for each 

subflock being modelled. Activity selection is controlled by a series 

of ’trigger conditions': these are the evaporative load on the sheep 

(its 'heat stress'), its thirst, hunger, and the fall of darkness. 

The threshold levels of these trigger indices which cause an activity 

transfer are more-or-less directly heirarchical (see Table III. 1 ). 

There is some interaction, so that, for example, a hot and thirsty 

sheep will not try to leave shade for water, unlike a hot and severely 

dehydrated animal.

Abbreviated version of Table 8.2 from Noble (1975), listing the 
trigger conditions that cause activity transitions. The heirarchy is 
indicated by the number, 1 being dominant.

Table III.1

Trigger Description and result

1 dehydrated 
3 & thirsty

Two levels of water deficiency. Thirsty sheep may 
not travel in the hottest period of the day, 
but if they lose more water and become dehyd
rated, they will seek water despite the heat.

2 body temp.
4 rising & hot

Two levels of heat stress. Hot sheep will stop
grazing and seek shade, but move to water if 
they become thirsty. In more extreme heat 
stress they will not leave shade unless they 
are suffering from dehydration.

5 night No grazing occurs from late evening until an hour 
before dawn.

6 hungry One level of hunger stress (rate of consumption is 
varied with hunger in the intake sub-model).

7 no stress Resting occurs wherever the sheep happen to be.
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Site location
Time of day 

Temperature. 
Wind.___

Paddock 
layout 

(waterpoint,
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movement
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stress levels 
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Figure III.3: Outline of the behavioural sub-model of Noble's 
model. Underlined items are outputs of potential interest to a 
manager. Inputs are shown on the lefthand side of the diagram.



III. Modelling approaches 44

As a result of the hourly choice of activity, a sheep may move to 

water, shade or camp at night, or graze, or do nothing if no index 

passes its threshold level. Movement may thus occur for two purposes: 

either in the course of moving to shade, camp or water, or during 

grazing. The former involves a choice of destination, and is then

assumed to occur at 2 km h_1 with no grazing en route. The latter is 

the least deterministic event in the model, involving a probability 

function which describes the likelihood of moving in a given direction 

relative to preceding movement direction and wind direction. The

speed of movement in grazing is 0.5 km h“”1 , but is increased in low 

quality or unpalatable pasture.

Finally, the actual effect on the vegetation via grazing is 

modelled by a simple intake model, in which pasture availability in a 

cell determines how much may be eaten from that cell during each hour. 

The total intake is apportioned between the various forage types 

present by constant preference indices for each. Consumption per hour 

is reduced as satiation is approached. The salt and water obtained 

from plants during grazing affect water usage.

(ii) A critique.

To quote the summary from Noble (1975),

'Separate validation of each submodel has been 
attempted. No data of sufficient detail were available 
to validate the paddock model as a whole but the output 
agrees with our present understanding of the system in 
all important aspects.'

The model in Wertigo paddock functions quite well. It satisfied 

reasonably the requirements for minimal input - the most significantly 

time-consuming section would be creating a vegetation map of a new 

paddock, and perhaps locating the sheep's campsites, since most other
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information could be obtained from topographic maps and stereographic 

aerial photos, providing the soils were reasonably uniform. Climatic 

input was modelled, but the model may be run under real conditions with 

only meteorological station variables. The outputs generated included 

the amount of wool cut, and animal condition as measured by live 

weight, and the state of the vegetation in each cell in the paddock. 

Water consumption could be estimated if desired, and details of many 

other variables could be obtained.

Long-term output seems to match ’reality' for 'normal' conditions 

in Wertigo. The model predicts that, under average conditions and 

stocking rates, the effects of rainfall on vegetation growth will 

dominate in most of the paddock except for the area around the 

waterpoint. However, the model appeared to overpredict the rate at 

which a piosphere would develop, even in a paddock such as Wertigo 

which was supposedly in a relatively stable condition after many 

decades of similar stocking. The original justification for looking 

further at the model, indeed, was that in a paddock of very different 

structure (Jervoise, see Chapter IV), a major overprediction of the use 

of the area close to water was also obtained; this area is the most 

important zone of impact. It was apparent that there might be serious 

flaws in the movement model in particular.

I now examine aspects of the behavioural model which were not 

validated, and identify areas which need further study in order to 

replace them or justify their presence in the model. In the next 

section, I will place the areas that require further study into a more 

theoretical framework.

Three sections of the model of sheep behaviour warrant discussion.
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Firstly, the ’decision* to move to water or shade is based mainly on a 

heat and water balance submodel for the sheep. This submodel is 

developed in considerable detail, but is not validated and has not been 

related to open paddock behaviour. Amongst the assumptions of the 

original model are the relationships between the ’heat’ index threshold 

levels and other indices. These relationships are important in 

determining the use of shade in relation to other activities, and are 

also unstudied in large paddocks. This section of the model is quite 

modular, and is discussed in more detail in Chapter VI(b) and the 

Appendix.

Secondly, the movement aspects of the model were based on relat

ively few paddock observations. Movement other than that associated 

with grazing involves two factors - the choice of a site and the form 

of movement to it. Selection of camp and shade in the model is 

assumed to be selection for the nearest available; choice between 

multiple waterpoints does not occur. The locations of camps, shade 

and waterpoints all represent sites from where the next grazing period 

is likely to begin, so that justification of this selection is 

necessary. No grazing is permitted during non-grazing movements in 

the model. In reality, such committed movement rarely occurs except 

close to the waterpoint. Rates of movement in grazing are crucial in 

determining the degree of localisation of grazing impact. If 

significant 'directed grazing’ is occurring (i.e. grazing towards a 

destination, as discussed by Noble, 1975, p172), it is necessary to 

know whether directional movement is being determined by influences in 

grazing, or by selection of a destination.

The prediction of movement directions in undirected grazing could 

valuably be made more deterministic. The model predicts these by
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using a probabilistic function biased only by wind direction, although 

speed of movement is also presumed to be affected by vegetation 

quality. Further validation is necessary if the model is to be useful 

under ’abnormal' conditions which may bring about critical changes in 

the pasture. It is necessary to demonstrate that other possible 

influences are not important, or, if they are, to include them. Such 

influences could include a much greater responsiveness to vegetation 

distribution (with or without learning) or fencelines, which are 

assumed in the model to have a simple reflective effect on movement. 

Factors relating to movement in general seemed to be a major reason for 

the failure of this model in paddocks other than Wertigo.

The third major area of the behavioural model is that of diet 

selection during grazing. A considerable amount of work was done to 

show that a simple submodel is adequate to predict diet selection, and 

that further complexities were unwarranted. This is likely to remain 

the case until much more is known about foraging in herbivores, and 

whether their habits can be fitted into the 'classical' mould of 

optimal foraging theory. However, a number of unvalidated factors, 

such as reduced intake rates, both during satiation, and after moving 

from a good area to a worse, were included; there was no examination 

of whether diet preferences vary with satiation. The scales at which 

animals are supposed to select their diets, and which determine their 

preferences for different food types, are also important. One 

(clearly acknowledged) weakness of the model is that its preference 

indices do not change with season.

In summary, the behavioural model is a major part of the overall 

paddock model of Noble (1975), and it determines the spatial distrib

ution of the predicted impact of grazing on the paddock. It over-
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predicts the use of centres of activity, particularly the area around 

the waterpoint. This failing is likely to result from the lack of 

validation both of the trigger conditions which determine the 

occurrence of the various activities, and of the criteria used to 

determine directions of movement in the open paddock. Additionally, 

the grazing intake model contains a number of weak points which are 

unvalidated, and might be better approached in ways that avoid the need 

to predict the hourly intake independently of the diet selection model. 

Grazing selection is taken up further in Chapters VIII and IX; in the 

remainder of this chapter, I discuss movement in the open paddock.
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(c) Conceptual approaches to movement.

(i) Background.

As has been mentioned in Chapter II, wind certainly affects the 

area of the paddock being used by sheep. On the other hand, there is 

evidence for sheep (Harris and O'Connor 1980), and much more for cattle 

(Hodder & Low 1978) and other large herbivores, that animals select 

preferred vegetation types in which to graze. It should be borne in 

mind here that the divisions between vegetation types which are 

discussed in the literature are often much more coarse or extreme than 

may be found in the comparatively homogeneous vegetation of a chenopod 

shrubland paddock, and the criteria that are used for defining taxa 

supposedly relevant to animals are particularly prone to anthropo

morphic presumption. However, the influence of vegetation communities 

may also be significant.

If animals sense that they are going to need water later, or shade 

on a hot summer's day, or require to move to one of the limited numbers 

of available campsites on a cold winter's evening, then they might 

start to seek out a particular target before finishing grazing. 

Observations of sheep often show such apparently 'directed' grazing 

movement, indicating that the locations of these sites may also be 

important. In this respect, one might argue that on a stressful day, 

or late at night, all movements ought to be directed.

It is difficult then to propose a universal deterministic theory 

of movement which can be tested in a straightforward fashion. An 

example will serve to illustrate this, and to indicate some of the 

conditions that must be fulfilled by an appropriate solution. My main
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study paddock, Jervoise (see Chapter IV for details), has its 

waterpoint in its northeast corner. As will be shown, there was 

certainly a greater tendency for the sheep to move south in southerly 

winds than in northerlies. In north winds, they would usually graze 

within a 1500 m radius of the waterpoint. Often in south winds, 

however, they could be observed to walk with very little grazing 

through the same area as used previously to graze further south. Two 

days later, they would be grazing in the north again. Clearly a 

theory so simple as to suggest that the sheep walk out from the 

waterpoint until there is sufficient feed to eat, and then stop and 

graze, is inadequate.

A more complex model is essential; it is necessary to allow for 

interaction between factors, with different outcomes for different 

subflock histories and positions. Some components of such a treatment 

can be tested, and its overall predictions can be compared with 

reality; but the variation to be found in simple parameters of flock 

activity is not likely to be more than partially explained by simple 

criteria such as wind direction or vegetation type.

(ii) A framework.

All grazing begins after a period of inactivity. The four 

conditions of non-grazing activity that I have mentioned are watering, 

camping, sheltering in shade or resting in the open. Watering occurs 

at the definite focus of one or more waterpoints. Camping is 

restricted for the majority of the flock on any night to one or two of 

a handful of larger sites. Shade sites are usually much more 

numerous, but not every tree will be used, and they are often spatially 

concentrated. Resting seems to take place at any site in the paddock,
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although local areas that are devoid of vegetation may be slightly 

preferred.

Shade, camps and waterpoints are thus all foci for the beginning 

of grazing periods. Areas around them are likely to be over-utilised 

relative to the rest of the paddock. The effect of the waterpoint on 

the development of pattern in the vegetation has been identified with 

the piosphere. Goodall (1967) emphasised only distance to water and 

from fencelines in his model of a hypothetical arid zone paddock, and 

Noble’s (1975) prototype model ’GRZM0D1' operated on annuli around a 

waterpoint. The impetus to include more spatial information about a 

paddock is a result of the fact that these other locations of inactiv

ity will act as similar foci in vegetation pattern development. Any 

vegetation types which cause particular foci to be used may themselves 

act as concentrating foci.

To a considerable extent, the problem of how sheep influence the 

vegetation of their range may be broken down into the following 

questions. Under what conditions will they need to use one of these 

foci ? What factors determine which particular site is in use ? 

Where will they graze when they leave it ? And, of course, what diet 

will they select in the area that they are grazing ? The 'selection' 

of a particular shade or campsite may in turn depend upon previous 

grazing movement.

The first stage in the process of answering these questions is to 

delineate what variables (such as distance from water, vegetation type, 

etc.) may be of significance in affecting the patterns of activity over 

the paddock (Chapter V). It is then possible to assess the impact of 

these factors on the activities of resting, using shade, watering and
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camping, and to determine when these activities occur (Chapter VI). 

The other major activity, grazing, in which movement is crucial is 

discussed in Chapter VII. Finally, diet selection in grazing, in 

which the spatial element is still very important, must be considered. 

In particular, if grazing regularly starts from a limited number of 

foci, then changes in behaviour with time through the grazing period 

will be important (Chapters VIII and IX). Throughout, I keep the 

model in mind as a focus, and finally return to it to draw these 

factors together in Chapter X.



Chapter IV.

Sites and methods used in the open paddock work.

The last chapter has laid a theoretical background to the study of 

of sheep ranging behaviour in the open paddock. This chapter presents 

the practical aspects. In it, I describe the general site, Middleback, 

as well as the particular paddocks that I used. I summarise the 

weather experienced during the study, and how this related to the 

fieldtrips and observation periods. After a brief discussion of 

methods available for the study of large-scale ranging behaviour, I 

describe the collection of open paddock data, both by mapping, and by

other techniques.
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(a). Location and conditions of fieldwork.

(i). The property, Middleback.

The fieldwork of this study was carried out from Middleback Field 

Centre on two South Australian stations, ’Middleback’ and ’Roopena’. 

These are situated about 30 km west of Whyalla, on the Eyre Peninsula. 

This location was selected because of an existing field station, with 

laboratory facilities and close proximity to a major town; because of 

the good condition of the shrub vegetation storey; and because of 

well-established working relationships with the owners. Figure IV.1 

is a location map.
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Middleback'

Figure IV.1: A map of Australia showing median annual rainfall 
(in) and the approximate extent of the arid zone. The location of 
Middleback is marked. (Modified from Gibbs 1969.)
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Study areas were located on both Middleback and Roopena stations, 

but I shall refer to the whole area as ’Middleback’ except where more 

accuracy is required. The Middleback Field Centre is a small but 

well-equipped field station, run by the Department of Botany of 

Adelaide University, under the direction of Dr. R.T.Lange. I was able 

to use various of its facilities and equipment: in particular, its 

basement provided a cool, dust-free environment in which to run a 

micro-computer (see Chapter VIII).

The property is run as a commercial concern and owned by the two 

brothers Don and Andrew Nicolson. It carries about 10,000 merino 

sheep, primarily for strong wool production. The two stations total 

about 624 km^ in area, and are fenced into about 43 paddocks ranging in 

area from 500 to 5000 ha (Figure IV.2). Due to lack of surface water, 

land in the vicinity of Whyalla was not taken up until the 1870’s. 

The Nicolson family first acquired an interest in the area in 1919. 

Since then, they have developed a substantial network of water-pipes 

from a well near the Roopena homestead. These now supply at least one 

waterpoint in almost all paddocks, and supplement the ephemeral water 

supplies of surface dams. In dry summers, over 100,000 litres of 

water may be pumped around the property each day.

The family’s policy has been to subdivide paddocks, with the aim 

that no waterpoint should used by more than about 250 sheep. A 

similar policy was advocated independently by Waite in 1896 (see 

Macfarlane 1968). Although the process is not quite complete, 

Middleback generally has smaller paddocks and more waterpoints than 

surrounding properties. A fixed stocking policy is pursued, with 

little movement of stock except at shearing.

■J'J
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Figure IV.2: Pastoral map of Middleback and Roopena stations, 
showing study paddocks (stippled) and other locations mentioned in this 
thesis (underlined).
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The normal sequence of management procedures at Middleback is: 

shearing (and weaning), late February; lambing, June-July; lamb

marking, July-August; crutching, September; and rams into ewe 

paddocks, December until shearing. Wethers comprise about half of the 

flock. Many sheep are not mustered more than 2 or 3 times a year 

(mainly for crutching and shearing), and do not see humans much more 

often than this.

(ii) Physical structure.

Both stations have little topographic relief, although some hills 

around ' Mt. Whyalla' on Roopena soar to over 200 m. These hills are 

composed of coarse sandstones, grits and conglomerates, which protrude 

through Quaternary 'mallee soil plains'. The area is situated on the 

western edge of the Adelaidean Geosyncline, and much older rocks 

outcrop to the west of the faultline that runs down the centre of the 

property. The soils overlying this geology are most commonly red 

calcareous earths with good drainage, often gravelly and capped by 

travertine limestone or calcrete. More locally, there may be 

solonized, heavy brown loams, and sands. Rock outcrops through 

skeletal soils on many of the hills. There is no permanent surface 

water, although many sandy river-beds carry water briefly after heavy 

rain.

(iii) Vegetation.

The vegetation of the area consists of both chenopod shrub steppe 

and open low woodland with chenopod shrub understorey (Specht 1972, 

Jessop 1981). Although appearing quite dense from ground level, the 

total ground cover of the perennials does not usually exceed 10—15%.
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The dominant chenopod shrub species are Maireana sedifolia (F.Muell.)

('bluebush'), M.pyramidata (Benth.) ('blackbush'), and Atriplex 

vesicaria Benth. ('saltbush'). Many other Maireana spp. and Atriplex 

spp. occur subdominantly or locally dominant.

Acacia papyrocarpa Benth. ('western myall') is the dominant 

overstorey species, although several other tree species are dominant 

over significant areas or important to stock, including Casuarina 

cristata Miq. ('black oak'), Heterodendrum oleaefolium Desf. 

('rosewood') and other acacias (A.burkittii F.Muell.ex Benth.,

A .ligulata A.Cunn.ex Benth., A.aneura F.Muell.ex Benth.). Myoporum 

platycarpum R.Br., Santalum acuminatum (R.Br.)DC., and Pittosporum 

phylliraeoides DC. are other notable tree species. Eucalypts are 

rare. Other common perennial shrub species include many Eremophila 

spp. , Cassia spp., Dodonaea spp., Sida spp. , Rhagodia spp., and 

Exocarpus aphylla R.Br. A number of 'heath' species occur in locally 

high densities on the hills.

There are a large number of small perennial, biennial and 

ephemeral species in the ground flora. Although many of these may be 

palatable to sheep, especially in their earlier growth stages, I do not 

list them all here. Two important components are the copper burrs 

(previously known as Bassia spp., but now split between the genera of 

Sclerolaena R.Br. and Dissocarpus F.Muell.), and the dominant perennial 

grasses, Stipa nitida Summerh. & C.E. Hubb. and Danthonia caespitosa 

Gaud. These plants form the bulk of ground material biomass as the 

vegetation dries out or dies back into summer. Further description of 

the vegetation of these regions may be found in Wood (1937),

Black(1965) and Specht (1972).
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(iv) Climate.

Climate in this area is dominated by a series of anticlines moving 

from the west, parallel with the southern Australian coastline, with a 

mean periodicity of about 6.8 days (Specht 1972). These result in 

repeated cycles of cool weather with southerly winds and clear skies, 

changing to northerly winds with hotter weather, followed by a rapid 

frontal passage, sometimes associated with rain, and a return to 

southerlies.

The 'mean' annual rainfall of the area is 200-250 mm, and varies 

over the 30 km length of the property. As is common in arid areas, 

the rainfall has high variability: Figure IV.3 shows the monthly 

long-term means for Whyalla, with the 10th and 90th percentiles. 

There is little seasonality in rainfall at Middleback in long-term 

averages, but individual years vary considerably. This may greatly 

affect the specific germination and success of different plant species 

(e.g. Austin et al 1981). Additionally, summer rainfalls tend to be 

heavy cyclonic storm events, whilst winter rain is more likely to be 

light and prolonged.

Figure IV.4 illustrates the monthly range and extremes of 

temperature for Whyalla; temperatures at Middleback are typically 2°C 

higher during the day. January is the hottest month of the year, and 

July the coolest. Relative humidities are low, though dews and frosts 

may occur in winter. Winds are dominantly northerly or southerly: 

typical wind speed roses for Whyalla are shown in Figure IV.5 . Cloud 

density tends to be strongly correlated with the passage of frontal 

systems. These fronts sometimes carry very energetic winds, dust and 

lightning. Fires never burn far in the vegetation, but other
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Figure IV.3: Mean and 10th and 90th percentile monthly rainfall
1931-60, and evaporation, for Whyalla (source: Laut et al.1977).
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Figure IV.4: Mean monthly maximum, minimum, mean and 86th and
14th percentiles for temperatures at Whyalla (source: Laut et al.1977).
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mechanical damage in these relatively rare storms may be important to 

plants, as well as bringing down branches which are often browsed by 

sheep.

<6 6-12 >12
SPEED KNOTS ------ c = c = Z

FREQUENCY i%) t i -i -i .-r j 50%

Figure IV.5: Wind roses for four typical months of the year at
Whyalla, 1973~74 (source: Santos 1981).

The high variability and extremes of weather are typical of arid 

systems. Prolonged periods of high temperatures, including weeks over 

40°c, or years of very low rainfall, occur intermittently and may be 

critical for plants and animals. Rare very wet years may be equally 

important for seedling establishment by some plant populations. These 

extremes of climate are just as important in modelling as ’normal*

conditions.
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(v) Timing of fieldwork.

It is important to place any sampling period into the context of 

the conditions under which it was carried out. I made four fieldtrips 

a year of approximately one month duration each from early 1980 to mid 

1983 (Table IV.1). Two trips were concentrated around summer, since 

this was the time of year that I expected to be most behaviourally 

critical for the sheep. Summer was also often more suitable for small 

enclosure work (see Chapter VIII), since there was relatively less 

ground material around. Further trips were made in autumn, and in 

late winter.

Table IV.1

Dates and primary activities of all fieldtrips.

Year Dates Trip
i.d.

Mapping 
J W

i
A

Small
enclosure2

Dung
survey 3 Other

1980 May A - - - - - veg’n maps
Aug B c - c - - -

Nov-Dec C cf c c —

1981 Jan-Feb D cf c c - Y- -

Apr-May E cf c c Run 1 - s/flock tracking
July F cf c c - Y veg’n exclosures
Nov-Dec G cf c c Run 2 — —

1982 Jan-Feb H c c c Run 3 Y heat balance
Apr-May I cf c - Run 4 - -
Sep J - - - - Y s/flock tracking
Nov-Dec K f — — Run 5 Y

1983 Jan-Feb L f - - - - water observ'ns
Apr M - - - Run 6 Y -
Oct (10 d) N 24 h observ'ns

1 Paddock mapping (see this chapter): J=Jervoise, W=Wizzo North,
A=Adam ’s West paddocks; c=coarse, f=fine (section c.ii)

2 small enclosure observation Runs (Chapters VIII & IX)
3 dung surveys (section d.iii): Y=survey carried out
4 this dung survey was a dung pickup: remainder used the

estimation technique.
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Figure IV.6: Rainfall over the years of this study, and the
occurrence of fieldtrips (marked as hatched blocks).

Figure IV.6 shows the relation of these fieldtrips to rainfall. 

Most importantly, 1982 was considered to be one of the worst droughts 

in the memory of the local pastoralists (and for much of southeastern 

Australia). All dams dried up, and significant shrub mortality 

occurred independently of grazing. Rains in early 1983 alleviated the 

drought conditions, although soil moisture deep in the profile was very

slow to recover.
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(b) Paddock-scale approaches.

In this section I review the approaches that were available for 

investigating behaviour large paddocks. I needed information on 

general spatial patterns of paddock usage under many conditions, with 

more detail about specific activities. There are three categories of 

approaches available in the large open paddock. These are a long-term 

'cumulative' approach, a short-term intermittent sampling, and a 

dynamic, continuous tracking of individuals. I have used all three, 

and shall briefly discuss each in turn.

(i) The long-term cumulative approach.

The long-term cumulative approach is based on information which 

integrates the lasting effects of animal activity over significant 

periods of time. These may range from months to years. At the 

longest term, there are the fenceline contrasts on aerial photos or 

Landsat imagery already mentioned. Such records are not referred to a 

particular climatic sequence, as it is not certain when the vegetation 

pattern may have developed; consequently, they cannot usually delineate 

critical periods, or the related behaviour patterns. The integration 

is over too long a period.

Over months to years, Lange & Willcocks (1978) have shown that 

dung accumulation may be used successfully to predict the relative 

amounts of time spent by sheep in different areas. It is not possible 

to be sure what activity was engaged in during this time, although the 

effects of shade, camp and water can be excluded by design. 

Seasonally-changing patterns of foraging and total ingestion on the 

part of the sheep necessitate a regular sampling program if data from
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different periods are to be compared. I have developed a dung 

estimation technique that is both quicker and covers a larger area than 

the method of Lange & Willcocks, and have used it to determine some 

general patterns of usage. This method has its own drawbacks, and is 

described in section (d.iii).

Vegetation sampling is another cumulative technique, which has 

special value for determining the impact of sheep on plants since it 

includes the effects of trampling and wastage. To get observable 

results in the open paddock, however, it usually has to be integrated 

over too long a period to highlight critical behaviour. I maintained 

some vegetation quadrats at various distances from a waterpoint which 

did show clear cumulative effects due to grazing during the drought.

(ii) Intermittent, short-term sampling.

An intermittent, short-term sampling regime has often been used to 

study ranging behaviour of animals, as mentioned in Chapter II. 

Collection of data may be from the air, from ground vehicles or from 

stationary vantage points and towers. Regular aerial survey was not 

possible due to cost; it would be useful at times of grazing activity, 

especially early in the morning, but of little value when animals were 

in shade.

Data were collected from a stationary tower or Toyota roof rack 

near waterpoints, and hilltop vantage points were used on several 

occasions, especially for observing shade usage. In general, however, 

distances, topography and heat-haze were all too great for this system

to be of use for observations over a whole paddock.
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Mapping of paddocks from the ground, by vehicle or on foot, is 

cheaper, more flexible and provides similar information to other 

techniques. Its major drawback is that it is not always possible to 

keep track of individuals' movements in one part of the paddock whilst 

another area is being mapped. It was the technique I most commonly 

used, and details are described in the next section. The problem of 

keeping track of individual subflocks was partly addressed by marking a 

number of sheep in each paddock, and attempting to locate them in each 

survey. If maps are made frequently enough, and a reasonable number 

of subflocks can be re-identified each time, this method can be similar 

to individual subflock tracking.

(iii) Individual subflock tracking.

The third approach provides the most detailed information, but is 

the most time-consuming for any given level of statistical signif

icance. This method involves following the activities of one 

individual, or subflock, continuously. It is an approach commonly 

used in ethology, and has at times resulted in descriptive reports 

based on inadequate sample sizes. Since a full day can easily be used 

to obtain only one datum point for a final analysis, it can be very 

inefficient. At Middleback, these problems were compounded by the 

wild and wary state of the sheep which made close observations 

difficult without affecting their behaviour. There was insufficient 

time to train sheep at the paddock scale. This Heisenbergian risk of 

the observer confounding the observations, although possible in all the 

approaches mentioned, was certainly most significant here.

Despite these problems, the approach of tracking individuals has 

often been applied successfully, and statistically, in recent years.
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Low et al's (1981a,b,c) observations of individual cattle in Central 

Australia are an example, and there are many others in the ethological 

literature. I did try to follow individual subflocks at times. I 

usually gained plenty of useful anecdotal information, but rarely any 

reliable data. Remote alternative methods were also tried, such as 

photographing a subflock's position regularly, and later using the 

photographs to relate vegetation quality to sheep activity. This was 

successful as far as avoiding disturbance was concerned, and failed to 

fulfill its purpose for different reasons (see Chapter VII).
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(c) Mapping procedures.

This section describes the paddocks in which ranging behaviour was 

studied, and the procedures used in the open paddock.

(i) Paddocks used.

Wertigo, the paddock that was used in the original model 

construction, was ideal for observing sheep flocks, because it was 

almost flat, and had low vegetation and good visibility. However, the 

homogeneity and particular layout of the paddock masked some details of 

sheep behaviour. Additionally, the management of Wertigo had changed 

since the previous study, so that it was no longer suitable for work.

I needed to use paddocks with some variety of vegetation pattern, 

but with reasonable visibility, and in close proximity to each other so 

that I could examine several in a day. Three paddocks were located on 

Roopena which satisfied these criteria adequately, and most of the data 

to be discussed was derived from these. They are 'Wizzo North’, 

'Jervoise', and ’Adam's West'. Another paddock, 'West End', would 

also have been suitable, but was too far away from any others; however, 

it was used for some other observations. Some mapping was also done 

in 'Two Mile' paddock, near Middleback homestead, since other people 

were doing work there simultaneously. These paddocks are outlined on 

Figure IV.2.

Some important characteristics of the three main paddocks are 

summarised in Table IV.2, and the schematics used for mapping sheep in 

them are illustrated in Figure IV.7(a-c). Jervoise was selected as 

the most amenable for detailed study, being smallest, least wooded, and
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Table IV.2

Some characteristics of the main study paddocks. D is the 
approximate distance that would normally be travelled to map the 
paddock in a 'coarse1 mapping run. The number of sheep is the typical 
stocking rate during mapping observations.

Approx, size No. waterpoints Sheep D
Area
(ha)

Dimensions 1 
(km)

Permanent Dams No. Type (km)

Jervoise 1250 5.7x2.5 1 2 2 250 ewes 12

Wizzo North 3600 6.0x6.0 23 23 400 ewes 18

Adam's West 2600 6.0x4.0 2 14 350 wethers 20

1 as if rectangular
2 very small: these never contained water during mappings
3 variously available, see Chapter VI(c)
4 this dam was only briefly dry, and then water was piped in

central: a campsite was established near to it (in Honeymoon paddock) 

to facilitate early morning observations. The waterpoint in Jervoise 

is unusual in being in the northeast corner of the paddock: this 

resulted in some interesting pattern developments in the vegetation, 

but also in some loss of generality.

(ii) Mapping and sheep activities.

Mapping of a paddock was carried out by driving around as much of 

the paddock's trackplan as was necessary to find the majority of the 

flock within the paddock, and marking their positions on the map. 

Either a Toyota Land Cruiser or a 200 c.c. bike was used for this, 

although Jervoise was sometimes surveyed on foot. To examine the 

whole paddock usually required between 40 and 60 minutes. Care was 

taken to avoid any duplication of groups over this time, and a minimal 

observation was always recorded. The sheep could be frightened by my
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JERVOISE.
DATE

ROUTE..
WIND... 
CLOUD..
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Figure IV.7: (a) schematic used for mapping Jervoise paddock. 
Dots are trees, solid lines are fences, dashed lines are tracks, 
letters are identification points for the route description, x's mark 
1 km grid posts. The main waterpoint is the circle in the north east 
corner; oblong symbols are two small dams.
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Figure IV.7: (b) schematic used for mapping Wizzo North. Symbols 
similar to (a), except solid squares are dams, w marks permanent water- 
points, and water-courses are outlined.
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Figure IV.7: (c) schematic used for mapping Adam’s West. Symbols 
similar to (a), except the solid square marks the dam, w marks 
permanent waterpoints, and no trees are shown. The water-courses rise 
in a range of hills down the west and south sides of the paddock.
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presence: they did not usually move far, and I took great care to 

avoid disturbing them.

At the position of a group of sheep on the map, four character

istics were noted: the number of animals counted in the group, the 

general activity of the group, the direction of movement of the group 

(if any), and any marked sheep seen in the group. On most fieldtrips 

15-20 sheep in each paddock were spray-painted in individually recog

nisable patterns with scourable dye. These ’marked sheep’ could be 

identified at up to about 1 km if fully visible, but it was not often 

that I could locate many of them. However, they helped confirm flock 

movements.

Mapping sequences are categorised as either ’coarse' or ’fine’. 

Each sequence usually consisted of evening maps for day 1, maps all day 

for days 2 to M, and morning maps for day 5. In coarse sequences, I 

mapped all three paddocks three times a day. Thus the coarse 

sequences consist of an early morning, middle of the day and late 

afternoon survey each day for each paddock. These were intended to 

characterise the general patterns of sheep activity and movement over 

each paddock, and extra effort was not expended in finding every 

individual sheep.

For the fine sequences, I mapped Jervoise only, usually 7 times 

each day. These maps were intended to include, as near as possible, 

all sheep, and to give a better idea of the sequence of activities of 

individual sub-flocks. Two maps would be made close to dawn, one 

mid-morning, one at midday, one mid-afternoon, and two around sunset; 

this corresponded to departure from campsites to graze, the end of 

morning grazing and movement to rest or shade, presence at rest or
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shade, departure from rest or shade to graze or to water, and evening 

watering or grazing.

The first survey of the day was begun at first visibility, usually 

about 40 minutes before dawn, and the last was finished after sunset. 

Grazing and movement certainly occurred in the dark but this could not 

be determined except by inference and occasional chance encounter. I 

rarely saw every sheep in the paddock: visible animals could not 

always be counted exactly, and only a few individuals were usually 

visible in shading groups. In Jervoise I usually found most groups, 

but could not always count exact numbers; in the coarse records, the 

reliability of group location is reduced too.

Table IV.3

Activity codes used in paddock mapping, and their descriptions.

Code Name and description

c camping (night-time resting)
r1 resting (resting in the open during the day) 
s1 ’shading* (resting in the shade during the day) 
g grazing (0-25% of the group moving at any time)
gm grazing with movement (25_50$ ditto)
mg moving with grazing (50-75$ ditto) 
m moving (75-100$ of group actually moving)
w watering (within water enclosure, or drinking at dam)

1 sheep may be lying or standing, but majority are inactive

The activity codes used here are listed in Table IV.3. They 

apply to the majority of a group. ’s' for shading implies the 

definite use of a shade site with some sheep in 'shade' even when the 

weather might be cloudy. 'g', 'g/m', 'm/g', 'm' make up a sequence 

with increasing movement during grazing until most of the sub-flock is 

walking. In most cases a definite direction of movement was evident,
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based on the direction in which the majority of the sheep were facing, 

although none could sometimes be determined for activity *g*. 'c' for 

night-time camping is equivalent to resting ('r'), but before dawn, and 

usually at a specific site.

Weather conditions were recorded at all times of mapping, and a 

note was made of the route that was taken. A typical completed map 

for Jervoise on 25.11.82 is shown in Figure IV.8. The occasions of 

coarse and fine observations were summarised in Table IV.1. 

Observations were least regular in Adam's West, where management of 

stocking rates was most affected by the drought. At the height of the 

drought, patterns of movement were so rigid during the day that the 

frequency of mapping was generally reduced: more activity was 

occurring at night, but attempts to define it were unsuccessful.

(iii) Analysis of mapped data.

About MOO maps, representing 81 days in Jervoise, 39 in Wizzo 

North and 41 in Adam's West, were made during the course of the study. 

Subflocks in Jervoise had been marked on maps to within 100m, and in 

Wizzo North and Adam's West to within about 300m. The approach taken 

to reduce this data for analysis was based on the structure of the 

model. A grid (500x500 m^ for Jervoise, and 1x1 km^ for the other 

paddocks) was superimposed on each map, and the location and activities 

of groups in each cell were recorded. Computer programs were written 

to analysis this data, taking account of marked sheep, activities and 

movement directions, as well as numbers and locations of sheep. The 

grids used for Jervoise and Wizzo North are shown superimposed on the 

paddock outline in Figure IV.9. Some forms of more detailed analysis, 

including tracing the movements of subflocks, were performed by
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Figure IV.8: A completed survey map of Jervoise for 25.11.82. 
Subflocks are indicated by circles containing the numbers of sheep 
counted in the group and the group activity; the arrow indicates the 
direction of movement, if any, and marked sheep are noted on the side 
of the map.
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Figure IV.9: (a) the 500x500 grid used for Jervoise, and (b) 
the 1x1 km^ grid used for Wizzo North, shown superimposed on the 
computer-generated paddock maps. The cell numbers are often referred 
to in other chapters, and alternate versions of these maps are bound 
inside the back cover for easier reference.
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recourse to the raw map information.

A general problem in ethology is that of how to characterise the 

spatial distribution and intensity of the ranging behaviour of animals. 

In this study, most of the paddock can be reached by the sheep at some 

times, so that an outer absolute limit to their range at the fenceline 

is not meaningful. Furthermore, I need to be able to compare their 

activities under different conditions, but centred on the same supposed 

’range’. It is possible to contour-map the numbers of animals (or 

groups) found in different cells. It is better, however, to use some 

form of moment to both define a centre of activity and to smooth 

outlying data into a probability function for usage density.

Anderson (1982) summarises a number of methods of describing home 

range, but the methods are generally too sophisticated and detailed for 

the data here. Many of them involve arithmetic means, which suffer 

from being singular; because of this, they can predict a peak of 

activity in an area that is really midway between two centres of 

activity.

An alternative method is described by Dixon & Chapman (1980), 

which I have generally adopted. This is the harmonic mean moment, 

which sums the harmonic means of the moments to every animal in the 

range from each cell on a grid of unspecified dimension, that is,

where M.J
ith of N

Mj = M x E1 = 1>n (1/r^j).

is the moment to the jth cell of all the distances r^ to the 

animals (or groups) in the paddock. The result of this

algorithm is to obtain a value for each cell considered; these values 

may be used as a smoothed function on which to draw isopleths of equal 

’activity' (actually in units of distance), and minima may be located
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which correspond to centres of activity. Dixon & Chapman state that 

the measure is quite stable to grid dimension, the magnitude of which 

limits only the accuracy with which minima can be located.

This method is ideally suited to the format of my data, for which 

there is an obvious choice of grid cell size, and it has several other 

advantages. Amongst the most important of these is that it can define 

multiple centres of activity (after inspection), which is essential 

when, for example, two waterpoint are in use. I have used this 

measure on paddock maps of activity in Chapters V, VI and X. Note 

that it is possible to analyse by moments to individual sheep, or to 

subflocks. In different situations, each method is likely to have its 

biases as a result of observation techniques; I use numbers of groups 

usually, since the group is the primary unit of movement for the sheep.

Classification is a quite different approach which treats each 

grid cell in the paddock as an observational entity. I have attempted 

to use two techniques of this type on the gridded data. Firstly, it 

is possible to treat each cell of the paddock as an independent 

observation in characterising one map record, and perform a principle 

coordinates analysis on the data (Austin, pers.comm.). This is 

something of a hit and miss method, in that it is only possible to 

interpret the results usefully if the principle vectors correlate with 

any extrinsic variables considered to be of importance. I did not 

find the method successful.

Alternatively, each cell entry may be regarded as an independant 

observation, characterised by certain descriptive features of that 

cell. Discriminant analysis may then be used to examine which of the 

cell characteristics are important in predicting the presence of sheep
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in the cell. This method of analysis is used in Chapter V to examine 

which cell characteristics are important in the patterns of ranging.

(iv) Dung survey.

The use of dung as an indicator of activity has been mentioned in 

Chapter II and section (b.i). Regular sampling of cleared quadrats, 

preferably at monthly intervals, is necessary for the technique of 

Lange & Willcocks (1978). I could only sample intermittently at much 

longer intervals, when the dung pick-up method becomes much more time 

consuming and much less reliable. I made one dung pick-up at 50 

quadrat sites in Jervoise in February 1981, which took about seven full 

days to complete. In consequence I developed a rapid estimation 

technique that allowed me to cover a much larger sample area (about 

1/250th of the paddock, compared with about 1/1250th in a thorough 

pick-up sample) in one day and about 30 km of walking.

This method involved what I have termed ’egestion event 

estimation’, in which each pile of dung found in a 2 m wide transect 

walked across the paddock is counted as one egestion event (E.E.). 

Lesser amounts are counted in quarters of an event, and the total 

rounded and recorded every 250 m. I had previously positioned a steel 

post at the centre of every 500x500 m2 grid cell in Jervoise (see 

Figure IV.9), so it was possible to pace between these, back and forth 

across the paddock. Two 250x2 m2 transect estimates were then summed 

to give the cell mean, and the result expressed in thousandths of the 

total number of E.E's seen over the paddock. This data was collected 

on 5 occasions (see Table IV.1).

On one occasion, I compared my estimations using this method with
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the dung picked up shortly afterwards at fixed dung quadrats in Two 

Mile paddock at Middleback by Mr David Thompson; his collections were 

part of a regular monthly survey at Middleback, and I am grateful for 

access to this information. My estimates correlated well with his dry 

weights (Pearson’s correlation, r = .98, n=32, p<.0001), even though 

the quadrats were smaller than those that I use in the open paddock, 

and fixed errors in the technique (such as rounding approximations) 

were therefore exaggerated. In Jervoise, four repeated transects, 

parallel to each other but differing in line, and containing about 30 

E.E.’s, proved to be consistent to within 3 E.E.'s: similar 

consistency was found on other occasions. Additionally, the values 

for the two quadrats that were combined to define a cell in the actual 

data collections usually agreed well, except where there were good 

reasons for expecting a sudden gradient. Finally, the resulting 

patterns did reflect in the general spatial patterns of usage by the 

animals at the time.

The method has three drawbacks. Firstly, for walking at a steady 

pace, it was found very much less reliable in strong sunlight, when 

high contrast resulted in dung pellets easily being missed, or mistaken 

for pebbles. Sampling therefore had to be confined to overcast days, 

which meant that on some fieldtrips no survey occurred.

Secondly, the age of the dung that is being estimated is unknown, 

unless some samples are regularly marked from known dates. Ageing of 

dung is greatly accelerated by rain. I normally limited my estimation 

to ’fresh’ dung, which I defined as retaining some black patina: this 

represented a significant error in the technique. The data therefore 

refers to an unknown time period previous to the survey date, but 

usually between 2 and 4 weeks. This is long enough to include a
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variety of weather conditions, so that sheep ranging activity should be 

reasonably averaged.

Finally, as with any dung technique, one cannot know what activity 

is being engaged in at the time the dung is deposited. I avoided 

known camp and shade sites, as well as the waterpoint itself, in my 

quadrat routes, but the activity sampled included both extensive 

grazing and movement, and resting in the open.

(v) Heat balance and shade usage.

Chapter VI(b) and the Appendix will refer to work which invest

igated when sheep move to shade: the conclusions are based partly on a 

model of sheep heat balance, which is derived from Noble (1975) and 

described in the Appendix, and partly on open paddock observations of 

time and degree of usage of shade. Observations of times of entry to, 

and departure from, shade, as well as preceding and subsequent 

activities, were derived from the maps discussed above, both by 

examining the mean patterns of activity of a paddock’s flock, and by 

following individual groups that could be identified between maps. 

Proportions of sheep actually in shade were obtained by observing the 

flock in Adam's West paddock from a vantage point on a central hill. 

It was possible to track the activities of most of the paddock's flock 

throughout days when they were using shade in the mid-eastern area of 

the paddock. Records of activity followed those described above.

(vi) Waterpoint observations.

In summer 1982-1983, an attempt was made to relate patterns of 

movement of individual sheep into a waterpoint with their patterns of
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departure. With the help of Mr Paul Jupp, a student from the A.N.U.,

I obtained records of arrivals and departures of all sheep at the 

eastern trough in West End paddock and at the Jervoise waterpoint for

II and 3 days respectively. Directions, speeds and times of movement

were recorded, and the presence of any of 20 marked sheep was 

monitored. The observations in West End were carried out from a 6 m 

tower (to which the sheep had become acclimatised), and included two 

overnight watches. It was intended both to relate arrival and

departure patterns, and to record individual watering frequencies for 

sheep in open paddock conditions. The former aim was not successfully 

met: the data is discussed in Chapter VI(c).

(vii) Jervoise water meter.

The Jervoise trough is fed from the Morgan-Whyalla pipeline, which 

passes some 3 km away, rather than from the Roopena well. Its water 

is metered on entry to a tank which then feeds the trough. The inflow 

rate from the pipeline is slow relative to the rate at which the sheep 

can drink from the trough, and the tank is designed to buffer this 

difference. In consequence, the reading on the pipe meter can be 

lagged by several hours relative to the consumption by the sheep, 

depending on how recently drinking has occurred. Whilst I was 

mapping, I usually recorded the reading once a day, and Mr David 

Illman, the Roopena station hand, kindly took recordings at other times 

of the year. Because of the lag, the details of readings are not 

reliable, but do provide a general indication of water intake during 

1980-1983. The readings do not distinguish which type of animal is 

watering, but the background rate of kangaroo watering (determined at 

shearing time when there were no sheep in the paddock for about 3

weeks) was low in comparison to the sheep. These data are discussed
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in Chapter VI(c).

(viii) Subflock tracking.

Some tracking of individual subflocks in the open paddock was 

attempted, in order to test certain of the small enclosure findings. 

Most important was the relation between movement speeds in grazing and 

vegetation quality. Two methods were tried, and these are discussed 

in chapter VI, since the methodology relates to their success.
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(d) Vegetation assessment and other data.

In this section, I briefly describe other sampling techniques used 

repeatedly, including biomass estimation, and the derivation of paddock 

vegetation maps. Sections on meteorological data and computing then 

complete this catalogue of methods within one chapter. The other 

major section on methodology - in small enclosures - is to be found in 

Chapter VIII.

(i) Biomass estimation.

It was often necessary to make an assessment of the edible 

and available component of the vegetation; this was carried out 

using the method of Andrew et al.(1979) for shrub biomass 

estimation, based on a handheld comparison unit. This unit can 

be standardised in several ways both for between-days measure

ments, and to obtain absolute estimates of biomass. All methods 

were used at times, depending on the accuracy needed.

The most accurate method is an extension of that recommended 

in their paper. A standard run of about 20 shrubs, encompassing 

the range of condition and size of those to be estimated, is 

established somewhere convenient. Each shrub in this standard 

run is re-estimated with the hand-held comparison unit between 

measurement runs. At the end of the measurement period, these 

bushes are stripped of foliage by hand, and the resulting material 

is oven-dried at 80°C. The dry weights are regressed against the 

standard estimates for each trial to provide an estimator of the 

size of the unit for that run. Not all of the bushes in the 

standard run need be stripped - large numbers merely serve to
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reduce the chance of remembering previous counts.

A similar method was used for estimating the biomass of 

grasses on some occasions, in which a run of 1x1 m2 quadrats was 

used for standardising a handheld clump; this unit was then used 

in the estimations, and the quadrats were later clipped. The 

method was less accurate for grasses than shrubs. A co-sampling 

method, also described by Andrew et al.(1979), was used for 

assessments that required less accuracy (e.g. open paddock 

measurements).

I performed some special trials, and regularly assessed my 

accuracy of estimation using these methods, but I do not present 

details here. In summary, I found that repeated sampling within 

a day (e.g. contemporaneous comparisons between adjoining 

enclosures) had a repeatability of better than 556 , whilst for 

between-day comparisons (e.g. enclosures on successive days), or 

absolute estimates (i.e. correcting from estimated units to 

absolute dry weight biomasses), the figure was better than 10%. 

The co-sampling technique had an accuracy of only 15-2056, but it 

was always used in conjunction with a normal standard run (which 

was not stripped), so that comparisons were 5-1056 accurate even 

though absolute quantities were worse.

(ii) Paddock vegetation classification.

Vegetation monitoring in the open paddock was done in two 

ways. In May 1980, an estimation was made of the biomasses in two 

50x1 m quadrats at each of 22 sample sites scattered across the 

main study paddock, Jervoise. Using other ground observations
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and aerial photographs, divisions between vegetation associations 

were established over the paddock, primarily on the basis of 

differences in the shrub layer. These major vegetation assoc

iations are described where they are used (Chapter V (a)); the 

absolute biomasses are used as baseline data in model runs 

(Chapter X).

Fixed quadrats were also established over Jervoise paddock 

and in the Chimney Yards (further south) in July 1981 to monitor 

general trends in the condition of the vegetation. In Jervoise, 

open quadrats were placed at distances of 125, 250, 500, 1000 and 

2000 m from the waterpoint, with additional fenced quadrats at 

250, 1000 and 4000 m. There were two fenced quadrats in the 

Chimney Yards.

Initially a major sampling programme for both ephemeral 

biomass and perennial shoot growth was established in all of 

these, but it was found too time-consuming to obtain useful 

samples. In consequence, only a sequence of photographs was 

maintained unbroken: an ordered index of vegetation condition was 

obtained from these using the method that Noble (1977) developed 

for the Koonamore Vegetation Reserve photos. This index 

adequately showed the trend in the condition of the perennial 

vegetation through the drought, as well as the presence or absence 

of an ephemeral layer. The sequence out from the waterpoint also 

clearly showed some grazing effects as the drought intensified:

this series is used for validation of the model.
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(iii) Meteorological data.

Daily rainfall is recorded at both Middleback and Roopena

homesteads. I maintained an additional rainguage in Jervoise, since

storms can be locally very variable. In fact, the Jervoise readings 

parallelled those from Roopena, except for one 12 mm event at Jervoise 

which hardly registered at the homestead 10 km away. The readings at 

Middleback are often noticeably different to Roopena’s, so I use the 

latter for most purposes.

Other meteorological data was collected intermittently at 

Middleback homestead by residents at the field station, in particular 

by Mr David Thompson, to whom I am indebted. Maximum and minimum 

daily temperatures, wind direction and daily run, some indication of 

cloud cover, and occasional relative humidity readings were recorded.

Continuous records were kept during fieldtrips, but an average of one

day in ten is missing at other times. Meteorological records are also

available from Whyalla, but the town is more affected by sea breezes

than is Middleback.

In late 1982, an automatic weather station was installed at 

Middleback by the A.N.U. This station is based on a Campbell 

Scientific Inc. CR21 Micrologger, and stores hourly temperatures (air, 

ground surface and at 10 cm depth), wind runs and directions, and solar 

radiations on magnetic tape. Soil moisture and rainfall are also 

monitored. This data was accessed for the later fieldtrips, and for

some of the model validation referred to in the Appendix.
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(iv) Computing.

This section is not directly related to fieldwork practical-
i

ities, but is relevant to data analysis and figure production. 

On most field trips, an Horizon micro-computer with NorthStar 

BASIC software was used at Middleback for direct dumping of 

records collected in the field, and for a considerable amount of 

preliminary analysis. In Canberra, most of the major data

analysis was done on the Univac 1100/80 at the Australian National

University. I used many of my own FORTRAN programs, a

data-handling package of I.R.Noble's called 'DAPR', and

occasionally the systems packages 'GENSTAT' (Alvey et al.1982) and

’SPSS' (Nie et al.1975). Graph plotting was mostly done using

H.N.Cornin's package, 'GRAFX' , and all the paddock figures on my

own data handling and plotting package, 'PLOTPAK'.



Chapter V.

Factors affecting ranging behaviour in the open paddock.

In the previous chapters, I have described the importance of 

ranging in determining the pattern development of grazing impact in the 

open paddock. I have also outlined the approaches available for 

studying the subject, and those that I have used.

These approaches, and the model, assume that only a few variables 

will have an important influence on ranging behaviour at the open 

paddock scale. In this chapter I use my map data to test whether this 

assumption is justified. After discussing which variables may be 

important, I show that the area of the paddock in use is primarily 

influenced by distance to water and the other foci of non-grazing 

activities. I then examine flock structure, and the impact on it of 

universal variables such as climate and time of year.

This chapter is a post hoc look at observational data, although 

there are a priori reasons for expecting certain relationships. This 

approach is inevitable in examining the general influence of many 

variables on a few descriptors of a whole system, when, in reality, the 

variables are interacting in a very complex and detailed fashion. The 

approach to more detailed process is to be found in later chapters.
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(a) Factors likely to be important.

Factors which might influence the ranging behaviour of sheep in a 

large arid zone paddock may be divided into three categories: those 

that are intrinsic to the sheep themselves, those extrinsic to the 

sheep and varying in space in the paddock, and universal variables that 

vary in time.

(i) Factors intrinsic to the sheep.

This chapter's analysis does not, on the whole, consider sheep 

individually. Most factors intrinsic to the sheep are likely to vary 

synchronously within the flock. The most universal of these is 

wool-length, which, due to management procedures, is about 7 mm in 

early March, growing to about 75 mm by the middle of the following 

February, when shearing again occurs. Clearly this will be confounded 

with season.

It is possible that all sheep show some physiological adjustments 

to the extremes of temperatures during the year (i.e. night-time cold 

in winter and afternoon heat in summer): by definition this will be 

confounded with season, or such variables as monthly mean temperatures. 

Other physiological effects, which may be almost universal, are those 

associated with lambing. In general, I tried to avoid the lambing 

period, but lambs were suckling during the winter observation periods. 

There was an increase in numbers of subflocks that was partly related 

to this, since the increase was less evident in Adam's West, the wether 

paddock. Rams were in the paddocks during late summer observations, 

at about 3 per 100 ewes. They appeared to have no effect on most 

groups: when in oestrous, the ewes seem to individually search out the
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rams. The sparser records from Adam’s West paralleled those of the 

ewe paddocks at this time of year, and it is assumed here that there 

was no effect of the rams.

It is possible that there are some interactions between factors 

intrinsic to the sheep and spatial factors. For example, the need of 

some sheep to water could be affected by the area of the paddock that 

they habitually use. Cattle on the Barkly Tablelands are known to 

include cows that will stay relatively close to water, and others that 

will walk out before starting to graze under the same conditions 

(Yeates & Schmidt 1975), and I examined whether any similar effects 

might be important in Jervoise.

A few sheep that are usually obviously ill or lame do not move far 

from water, but these represent a very small minority of the flock. 

Amongst the bulk of the flock, the marked sheep data does not support a 

division between ’walkers' and 'non-walkers'. Figure V.1 shows the 

number of times that four particular marked sheep were seen in the 

different cells of Jervoise during the Nov-Dec 1980 fieldtrip. I have 

selected two showing the widest ranging seen, and two showing the 

least, for similar numbers of sightings. Although some differences 

can be seen, they are not significant in comparison to potential 

sampling errors; no records show any clearer differences. The 

harmonic mean centres of activity for all four are in or next to cell 4 

(see Figure IV.9).

Different sheep certainly show different ranging distances within 

a given day, but there is no evidence at the moment that this relates 

to consistent differences between healthy individuals between days. I 

may have failed to have marked or observed an animal in the non-walking
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Figure V.1: Some ’extremes’ of marked sheep ranging during Nov-Dec 
1980. Maps of all sightings of four marked sheep, two showing maximal 
movement (a,b), and two showing minimal movement (c,d) for similar 
numbers of sightings. Numbers are numbers of sightings per cell, 
contours are isopleths of equal activity (by harmonic mean moments). 
The solid triangles mark the centres of activity (the cell with minimum 
harmonic mean moment).

class, but the sample size is reasonable (viz. 20 marked sheep in ca. 

250, re-chosen on 6 out of the 10 mapping runs). I therefore assume 

subsequently no special propensity by individuals to overuse particular 

areas of the paddock.

(ii) Spatial factors.

There are many spatial characteristics of each cell that might 

affect the probability of sheep being found in that particular cell. 

Vegetation type, and distance to the various foci of non-grazing 

activities are obvious ones. The vegetation in Jervoise had been 

mapped in May 1980 (Chapter IV(d.ii)), and Figure V.2 shows the 

resulting vegetation map of the paddock. On the basis of this, all
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the cells were classified into one of six vegetation types, which fell 

into the three broad categories of bluebush plain, stunted saltbush 

hill vegetation, and run-on areas (including washes) usually charact

erised by some blackbush. Table V.1 shows the details of these 

categories, and the names I use for them in this chapter. 

Additionally, the presence of heavy timber was noted as a separate 

character to the presence of shade; the heavily wooded areas often 

have a lower density of shrubs of the local vegetation type, as well as 

different plant species under the canopies, and the possibility of 

significant browse.

Table V.1

Major vegetation types in Jervoise, and my abbreviations. Codes 
are those used in Figure V.2: 2 and 3 are both hillside types, whilst 
4, 5 and 6 are run-on areas.

Name Code Description

BB/SB 1 Tall Bluebush/Saltbush plains

SB/BB 2 Hillsides dominated by low saltbush, but with 
substantial bluebush (including M. astrotricha), 
stony shallow soils.

SB(BB) 3 As SB/BB, but scattered bluebush only.

SB/PYR 4 Tall blackbush/saltbush run-on and watercourse 
areas, often sandy soils, significant for 
ephemeral growth.

SB(PYR) 5 Saltbush-dominated run-on and watercourse areas, 
with scattered blackbush only.

’SWAMP' 6 Low-lying swampy area in cell 22, with few shrubs 
except scattered Muehlenbeckia cunninghamii.

The three important foci I have mentioned are the waterpoint, 

shade and campsites. Distances to the nearest of each were used as 

additional cell characteristics. Note that shade availability does 

not correlate highly with heavy wood, since many cells with a small
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Figure V.2: Vegetation map of Jervoise paddock: abbreviations for 
vegetation categories are given in Table V.1.
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number of trees still provide shade sites. Only the major campsites 

were considered (see Chapter VI(d) and Figure VI.9). If ranging is 

severely curtailed by fencelines, these may also have an influence, so 

the presence of an E-W or a N-S fence line is included.

There are other characteristics that might be important, but which 

are confounded with those already mentioned. Some cells carry more 

ephemerals after rain: these correlate highly with the run-on 

vegetation types. Topography might be important: hill cells 

correlate completely with the hill vegetation type, and highly with 

campsite presence. Presence or high densities of potential animal 

competitors might be important (e.g. Lange and Willcocks found some 

negative correlation between kangaroo and sheep dung in Wertigo, as 

quoted in Noble 1975). The limited data that I have on other 

herbivores suggest that rabbits are universal, with a possible tendency 

to use the wash vegetation types, and that kangaroo presence tends to 

be associated with wooded areas and the hills. I do not add any of 

these factors to the following analysis, therefore, although the 

possible correlates should be borne in mind.

(iii) Universal factors.

Universal factors are those that affect the whole paddock 

simultaneously. These include a number of climatic factors which may 

influence sheep behaviour, such as temperature, wind, rain and cloud 

density. Only wind is hypothesised to have a directly spatial 

influence, and for the discriminant analyses mentioned in the next 

section it was coded as a 'pseudo-spatial' characteristic of each cell. 

For this, it was given a value of +1 for a cell if the cell lay in the

end of the paddock from which the wind was coming for that map record,
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-1 if it was at the other end, and 0 if conditions were calm. Wind is 

discussed in more detail in later chapters, since it clearly is 

significant in the open paddock.

Cloud might be expected to affect the need to use shade: on clear 

days, up to 90% of the thermal load on a sheep outside shade comes from 

the direct component of shortwave radiation. Rain can reduce 

dependence on water as well as changing vegetation characteristics in 

the short-term (in the longer term it may affect vegetation condition 

too, of course). Temperature may affect behaviour in a great number 

of direct and indirect ways, including the need to go to shade, to 

water, and, possibly, the amount of time spent in night-time campsites. 

Indirectly, it affects vegetation growth. Long-term mean values are 

correlated with season, and, in the short-term, both maxima and minima 

may be important. Other climatic features are probably irrelevant 

(e.g. lightning), or inextricably correlated with those already 

mentioned (e.g. relative humidity, atmospheric pressure).

Other universal factors mostly relate to the march of the seasons. 

Many proximate variables ’correlate' with season, including mean 

temperatures, daylength, many perennials' vegetative growth flushes and 

flowering cycles, and management regime.

Longer term climatic trends such as drought years are important to 

overall vegetation condition. The general state of vegetation in the 

paddock was classified as a cumulated score from all exclosed Jervoise 

photopoints for 1981-1983 (Chapter IV(d.ii)), and augmented for the 

earlier trips from some unstandardised photographs: 1980 was a wet 

year, and the vegetation was generally better than any of the following

years. The presence or absence of ephemerals, green or dry, was also
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noted from these photographs. The resulting values, used in the 

following analyses, are shown in Table V.2. The general state of the 

vegetation correlated well with total rainfall in the previous three 

months. All these universal factors may act on those intrinsic to 

the sheep by affecting sociality and dispersion: this is taken up in 

section V(c).

Table V.2

Vegetation indices obtained from the Jervoise and Chimney Yards
photopoints, 1981 -83, supplemented from other photographs for 1980.

Ground material1 Shrubs2 Rainfall (mm)2in
Fieldtrip green (0-3) dry (0-3) (0-10) prior 3 months

Aug 80 B 2 3 10 81 .
Nov/Dec 80 C 1 3 9 58.

Jan/Feb 81 D 0 2 9 91 .
Apr 81 E 1 2 10 116.
Jul 81 F 3 3 10 49.
Nov/Dec 81 G 1 3 6 36.

Jan/Feb 82 H 0 3 6 22.
Apr/May 82 I 0 1 7 36.
Sep 82 J 0 0 4 22.
Nov/Dec 82 K 0 0 2 14.

Jan/Feb 83 L 0 0 1 16.
Apr 83 M 1 0 8 83.
Oct 83 N 1 2 8 89.

1 ground material indices: 0 = none, 1 = barely visible in photo, but
available to searching sheep, 2 = noticeable in photo, 3 = heavy.

2 shrub index correlates with rainfall in the previous 3 months,
r=.79 , n=13, p=.001

Finally, time of day is an important determinant in both the 

sheep's current activity, and its immediate past history. The general 

patterns of activity at Middleback corresponded well with those 

previously reported in the literature (see Chapter II). The 

distribution of animals between activities under different conditions

is discussed briefly at the end of this chapter.
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There are a total of 291 map records of sheep in Jervoise to be 

discussed in the remainder of this chapter and the next. All of these 

were assigned to one of the categories of 'dawn' (within an hour of 

dawn), ’midday’ (within an hour of solar noon, but best representing 

the flock’s distribution if there was any choice), ’dusk' (within an 

hour of sunset) or none of these. Thus one record per day could be 

drawn on for each time category to reduce bias from having mappings 

close to each other in time. The resulting number of days represented

is listed in Tables as the sample size.
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(b) Influence of cell characteristics, and wind.

This section considers the influence of the cell characteristics, 

and of wind, on the use of different cells under different conditions, 

using discriminant analysis. The method was mentioned in Chapter 

IV(c), using the discriminant analysis routines of the statistics 

package SPSS. The quoted 'standardised canonical function coeffic

ients' (which I call SCF coefficients) are the weightings given to 

different cell characters in a stepwise inclusion procedure, using the 

method of minimising Wilks' lambda to distinguish the significance of 

discrimination by a character. All the cell characteristics and wind 

were allowed to contribute to the analysis, and the SCF coefficients 

are quoted for those that were sufficiently significant to be entered 

into the analysis at a partial F-ratio value of 1.0 (p=.50): this is 

very low, so that any variable which has any discriminating power at 

all is included.

The groupings to be discriminated here are simply the presence or 

absence of sheep in a given cell (coded as 2 and 1 respectively). 

Since the SCF coefficients are standardised, their relative magnitudes 

within a single analysis correspond to the relative importances of the 

associated characteristics. Quantitative comparisons between analyses 

are doubtful due to different sample sizes and different success in 

discrimination (as indicated by the difference between the group 

centroid values). In some instances where these factors are similar, 

trends are assessed.

All the results are standardised so that 'presence' in a cell has 

a positive group centroid, and 'absence' a negative one. The sign on

the SCF coefficient for a character then indicates in which direction
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Table V.3

Name in subsequent Tables, description and meaning of positive SCF 
coefficient sign for discriminant analysis factors.

Name Description Meaning of 
+SCF coeff.

WDIS 1 ( water ( water
SDIS 1 distance to ( nearest shade use cells away from ( shade
CDIS1 ( nearest camp ( camps

FENCE E/W2 cell has east-west fence use cells with E/W fence
FENCE N/S2 cell has north-south fence use cells with N/S fence

WOOD2

BB/SB2 ) 
SB/BB2 )

cell contains heavy timber use cells with timber

SB(BB)2 ) 
SB/PYR2 ) 
SB(PYR)2)

cell contains this veg'n 
(see Table V.1)

use cells with this veg'n

WIND

l

cell position relative 
to wind (see text)

coded as distance (100's m)

wind direction matches 
cell position

2 coded as 1=present, 2=absent for each cell

that character is contributing to the discrimination. It is important 

to be clear what the sign implies, and this is listed for each 

character in Table V.3; for example, a positive sign on 'WDIS' implies 

that the sheep are avoiding the cells close to the waterpoint. The 

other quoted statistic is the percentage group members classified 

correctly by the discriminant function: with two groups possible, a 

random classification would result in 50%. All the percentages are 

significant overall, but because of the larger number of cells with 

animals absent, the classification of this group often biases the total 

percentage. I therefore quote the percentage successfully classified 

for each group separately: not infrequently this is smaller for the

present group.



V. Open paddock ranging 102

(i) The data set at different times of day.

I first analyse the data set of 176 records that were classified 

as dawn, midday or dusk. This serves no subtle end, but clearly shows 

(Table V.4) the expected influence of distance from the waterpoint, 

with the likelihood of sheep being present in a cell increasing towards 

the waterpoint. The importance of distance to water is general to 

most of these analyses, and will only be referred to again where 

exceptions occur.

Table V.4

SCF coefficients for discriminant analysis of presence/absence of
sheep in cells of all records, and breakdown for dawn, midday and dusk
records. Discriminating factors described in Table V.3.

All data Dawn Midday Dusk

n (records) 176 61 56 59
Factors

WDIS -.57 -.50 -.40 -.62
SDIS -.18 -.65 .08
CDIS .22 .32 .31
FENCE E/W -.08 -.11 -.21
FENCE N/S

WOOD -.26 -.21 -.28 -.26
BB/SB -.34 -.86 -.18
SB/BB -.22 -.41 -.21
SB(BB) .21 .46 .17
SB/PYR .32 -.20
SB(PYR) .11 -.18

WIND .21 .28 .24 .22

Statistics: % correct classifications

total 70 69 69 74
presences 66 60 63 70
absences 71 71 70 75

(missing values are factors with partial F-ratio < 1.0, see text)
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I also point here to a tendency to avoid the heavy timber, which 

occurs frequently in the analysis. Some of this timber was in the 

southeast corner of the paddock, the under-utilisation of which is 

corroborated by other data (e.g. dung pattern data, which is not 

dependant on finding sheep). However, there is also the possibility 

that this indicates some failings in the observations, as sheep were 

more likely to missed in the well-wooded areas.

Table V.4 also presents the breakdown of records by time of day. 

About 60 days are represented in each category. Throughout, there is 

the dependence on the waterpoint, slightly lessened in the middle of 

the day. Also throughout, there is a consistent but not strong 

influence of wind: as expected, sheep are more likely to be present in 

cells at the end of the paddock from which the wind is blowing.

Other spatial factors show most significance in the middle of the 

day, that is, when the sheep are most likely to be resting or in shade. 

There is a strong tendency to be close to shade, not surprisingly, and 

a tendency to be away from campsites. The latter is interpretable as 

a tendency to keep away from hills on which there is no shade. This 

effect persists into evening, when shade has become a trivial discrim

inator; at this time many sheep may be headed into water, and they 

rarely move to camp before at least an hour after sunset. The 

positive value suggests that they are not seeking camp at this stage.

It is surprising that there is no effect of campsite distance in 

the early morning. Sheep tend to move off campsites around first 

light, so this may merely indicate that I did not often catch them all 

still camping. Most of the campsites are also on hills of the stunted 

SB(BB) vegetation type, so it may be that the discriminative power of
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campsite distance is overshadowed by that of this vegetation type as 

the sheep move off from camp. Fencelines seem to be minor in effect, 

despite the frequent presence of campsites close to them.

As regards vegetation, I have already noted the possible avoidance 

of heavy wood. Negative indices on the vegetation category parameters 

imply avoidance, and can be difficult to interpret. The potential 

interdependence of variables in this type of analysis is illustrated by 

the significant avoidance of BB/SB in the middle of the day. The 

presence of this vegetation type in fact shows a chance negative 

correlation with shade distance for Jervoise (r=-.40, n=53, p=.003, 

Pearson’s correlation coefficient), that is, it tends to occur in cells 

with a short distance from shade. The combined closeness to shade and 

avoidance of this vegetation type therefore suggests the preferential 

usage of shade in cells of other vegetation type. However, this in 

turn is likely to be a result of a positive correlation of BB/SB with 

distance from water (r=.48, n=53, p<.001), so that in reality the whole 

effect is one of using shade relatively close to water. Conversely, 

SB(BB) has a positive correlation with distance to shade (r=.70, n=53, 

p<.001) which may explain why it has no effect on the midday distribut

ion at all. Such interactions mean that only strong trends are useful.

Positive SCF coefficients are easier to interpret, and the SB(BB) 

vegetation type is important in the morning. This may be a result of 

campsite positioning, as already discussed, but local pastoralists 

describe this stunted saltbush form as being especially ’sweet’, and it 

may be a preferred shrub fodder when ground material is in short 

supply. SB/PYR also seems preferred in the early morning grazing 

period: at times of ephemeral presence, these run-on areas are likely

to contain good feed.
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(ii) Variation with wind and season.

I next examine the significance of these cell characteristics for 

some different weather and seasonal conditions. Two factors are 

particularly important: wind, and overall vegetation trend between 

1980 and 1983. Firstly, in south winds in Jervoise, the sheep use a 

larger area of the paddock: influences other than water should 

therefore become more apparent in records from these wind conditions. 

Secondly, summer vegetation condition generally declined from 1980 to 

1983 (see Table V.2). This should affect many parameters, amongst 

them water use, heterogeneity of vegetation and daily behaviour 

patterns.

Records were first divided on the basis of the wind directions 

experienced: 'N winds’ refers to winds only from NW, N and NE, whilst 

’S winds’ were only SW, S and SE. The few E, W and calm records were 

omitted from the analysis. The cell criterion of ’WIND’ now becomes 

only an index indicating cell position for a given wind direction.

For northerly winds (see Table V.5), waterpoint distance remains 

important, and the north end of the paddock is in use, as is indicated 

by the positive WIND coefficient. For south winds, waterpoint 

distance becomes unimportant, and other physical and vegetative factors 

become significant as spread over the paddock is increased. The WIND 

coefficient actually becomes negative, which merely reflects the fact 

that sheep are still to be found in the north end of the paddock as 

well as the south. This is no great surprise, and is equally evident 

from Figure V.3.

North winds are generally correlated with higher temperatures, as
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Table V.5

SCF coefficients for discriminant analysis of presence/absence of 
sheep in cells for northerly and southerly winds, and for summers from 
1980 to 1983, midday records only. Discriminating factors described 
in Table V.3.

N winds S winds 1980-81 1981-82 1982-83

n (records) 19 28 20 12 5
Factors

WDIS -.26 -.51 -.98
SDIS -.21 -.99 -.71 -.31 -.34
CDIS .56 .34 .27 .61
FENCE E/W .13 -.41 -.35 .21
FENCE N/S .09 -.12 -.45

WOOD -.17 -.43 -.36 -.14
BB/SB -1.28 -1.04 -.22
SB/BB -.60 -.53
SB(BB) .28 .47
SB/PYR .37 -.78 -.15
SB(PYR) -.23 -.12

WIND .24 -.26 .37 -.24 -.31

Statistics: % correct classifications

total 81 67 72 89 71
presences 76 66 76 71 74
absences 82 67 71 91 70

(missing values are factors with partial F-ratio < 1.0, see text)

discussed earlier with respect to the cyclonic cycles. The important

result from this analysis, then, is that physical factors other than

distance to water become much more important in south winds, when the

sheep are spread over more of the paddock. Because of the shape of

Jervoise, it is not possible to determine in this analysis whether this 

is because of a genuinely greater dependence on the waterpoint in 

warmer weather, or whether it is simply a wind effect on movement 

direction from the waterpoint; both may be implicated. Similar 

comments apply to the vegetation characteristics.

The results of the dawn and dusk analyses (not presented)
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Figure V.3: Distribution of all groups of sheep seen in Jervoise 
during mapping records, in all records, and in those from northerly or 
southerly winds only. Numbers are groups seen in each cell; contours 
are isopleths of equal activity (harmonic mean moments to each group), 
where higher numbers indicate less activity (see Chapter IV(c)).

generally parallel those of Table V.5, with the differences to midday 

being similar to those described in section (i). Notably, distance to 

the waterpoint remains important at dusk even in south winds, 

reflecting the likelihood of sheep to be watering at this time.

The second half of Table V.5 presents the breakdown for summers 

(Nov-Feb) 1980-81, 1981-82, 1982-83. This series corresponds to a 

steadily declining general vegetation condition as the drought became 

more severe (see Table V.2). The sample size for summer 1982-83 is 

doubtful, but there is a clear trend to increasing importance of the 

waterpoint in the middle of the day through the series. In 1980-81, 

few sheep would stay near the water except when actually watering in 

the morning or the evening. In 1981-82, more water was being drunk 

(see Chapter VI(c)), despite similar temperatures, and more sheep were
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resting near the water in the middle of the day. By 1982-83, the 

change in behaviour was more pronounced. Correspondingly, the 

importance of distance to shade declines, and does the influence of 

vegetation type and wind.

A similar trend is apparent in the dawn data (not presented). 

Additionally, near dawn, the vegetation category SB(BB), which was 

influential in the overall data (Table V.4) for reasons I suggested 

were associated with proximity to camps, declines in significance 

through the years. This may reflect earlier departures from campsites 

areas, and more night-time grazing, although plants on the shallow 

hillside soils also seemed most affected by the drought. At dusk, the 

waterpoint is still significant throughout, in line with the evening 

waterings which occurred even in 1980-81.

I had wished also to examine the differences between summer and 

winter, to demonstrate a lesser attachment to water in winter than 

summer, and a correspondingly greater influence of wind. The winter 

sample sizes are, however, too small to be reliable and the analysis is 

not presented. It suggests that wind is indeed more significant in 

determining which end of the paddock is used in winter than in summer; 

unexpectedly, however, the waterpoint remains important in both.

(iii) Summary.

Plainly this analysis is very general in its approach, and often 

delphic in its interpretability. Nonetheless, I draw from it the 

following points:

1. Distance to the waterpoint, as expected, is almost always 

important in sheep distribution. For Jervoise, this is less so in
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south winds when the sheep tend to spread out further down the paddock. 

This factor was much less important in a summer of good vegetation 

condition than during drought.

2. Wind is generally, but weakly, significant in that sheep 

are more likely to be at the end of the paddock from the wind is 

coming. This matches widely-held beliefs and long-term aerial 

photograph evidence.

3. Position of shade is important during the middle of the 

day (although the sample is biased towards summer).

M. Fencelines seem of minor importance in a paddock of these 

dimensions, although they must be constraining movement northwards (in 

these analyses, this is likely to be over-ridden by the effect of the 

waterpoint).

5. Campsite location seems of minor importance by an hour or 

so after departure from it, although,

6. vegetation types near campsites are likely to be over

utilised early in the day. This is a justification for regarding 

campsites as significant foci.

7. Few vegetation preference effects were seen that were not 

likely to have been due to correlation with other variables: many of 

the effects were negative. This may be a reflection of how relatively 

uniform chenopod shrublands are.

8. The downwards trend in general vegetation quality from 

year to year has an effect on ranging behaviour, most apparent in the 

increasing significance of the waterpoint.

Most of these results were expected, but the analyses support 

commonsense. Most importantly, they show that vegetation type and 

fence lines are less significant than the centres of non-grazing

activity, and vegetation condition.
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(c) Flock structure, dispersion and activities.

I now turn to consider the effects of the universal variables on 

some general descriptors of the flock in the open paddock. To make 

discussion of dispersion meaningful, I first remark on flock structure 

in these merinos. I then relate dispersion to climate and 

physiological state, and finally briefly outline how the breakdown of 

the flock’s activities varies with these factors.

(i) Flock structure.

Feral sheep on Soay (Grubb & Jewell 197*0 and wild Bighorn sheep 

(Geist 1971) seem to have very rigid group structure, for females at 

least. The groups are often of related animals, and in numbers are 

comparable to the ’subflocks' that I describe in the paddocks. 

Although merinos are renowned as being amongst the most social of 

domestic sheep, maintaining close inter-individual distances and being 

particularly frantic when isolated, I found little evidence for any 

consistent structure to the subflocks in the open paddock.

Anecdotally, during the tracking of individual subflocks, I have 

often observed groups diverge into two sections in areas with high 

shrubs. Sheep may transfer between two groups as they move past each 

other in opposite directions, even in conditions of open visibility and 

when moving at considerable speeds (e.g. relative speeds of up to 3 km 

h_1). Very occasionally, on the other hand, frightened sheep were 

observed to run counter— intuitively to another animal before both set 

off to join the nearest larger group; this included a few times when 

the first sheep frightened actually ran towards me to join a companion.
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I tested how stable the groupings are more objectively from the 

marked sheep observations, using cases of sheep seen in pairs. 

Firstly, as context, over all Jervoise map records, the mean 

probability of a marked sheep being seen in a given mapping session was 

about .25: this probability was higher in the morning and evening 

active periods (usually about .5) and lowest during the middle of the 

day when animals were likely to be lying down (e.g. 0.05). If, 

however, one marked animal could be seen in a group, any others in that 

group were usually visible too.

From all the mapping in Jervoise, I have over 500 records of pairs 

of marked sheep being seen in the same subflock. In 310 cases, both 

sheep were seen again simultaneously more than 24 h later. Of these 

310, only 29 (9%) were still together at the second sighting. Of the 

remainder, 197 (64%) were confirmed in separate groups within 36 h, and 

the other 84 (27%) before the end of that trip (Figure V.4).

Remelding of the groups was certainly occurring. For the 281 

which split, in 168 (60%) cases, at least one of the two animals 

originally seen paired was seen at the second sighting in the company 

of a third marked individual which had been seen in a different group 

on the first occasion. Furthermore, 55 (20%) of these split pairs 

were seen again in their original pairing before the end of the trip.

Suppose a group of sheep splits at random, so that the chance of a 

pair of marked animals being separated by the split is 0.5. Then if 

only 29 of 226, or 0.128, pairs remain unsplit after about 24 h, the 

mean number of splits that must have occurred since the first sighting 

is n, where (0.5)n=0.128. 'n* is approximately three, and group sizes 

should be reduced to about one eighth during the day. By an
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Figure V.4: Schematic illustrating the frequency of break-ups of 
pairs of marked sheep seen at Middleback.

alternative approach, if splitting may occur during any of h hours, 

then the probability of not splitting in a given hour is p where 

ph=0.128; for, say, eight hours of extensive movement in a day, which 

is when splitting is likely to occur, p is about 0.77. These 

calculations will be used in Chapter X.

It is now possible to estimate how big any ’core group size' might 

be at Middleback. The analysis is complicated by the fact that marked 

sheep were not located reliably, and because re-pairing may have been 

occurring in the open paddock. However, most close contact between 

groups occurs at the waterpoint and campsites, little more than once a 

day; these may act as re-grouping centres around the night-time. 

This suggestion is supported by the fact that group sizes tend to fall
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during the day, although the great variability means that no differ

ences are significant; over all dawn records, the mean group size away 

from water was 19.4 sheep (57 days), in midday records it was 15.3 

(57 days), and at dusk it was 14.3 (60 days).

Even if all 250 sheep met up at once, group breakdown should 

result in subflocks of about 30 sheep. In fact the animals rarely all 

meet up, and the mean group size over all observations was 18.8 sheep 

(n=174 records, 2520 groups). If this is a mean size during 

splitting, the maximum stable group size in merinos at Middleback under 

these conditions cannot exceed about 10 sheep, and may be less.

(ii) Dispersion and group sizes.

If only the smallest groupings of sheep are directed by social 

behaviour as the previous section suggests, subflock sizes and 

dispersion may be affected by external factors. I have reviewed 

(Chapter II) evidence suggesting that sheep do subgroup more when 

grazing in conditions of scarcer feed. The resultant impact on the 

vegetation is determined by two factors: what portion of the paddock 

is ever used during some period, and how much dispersion there is 

within this area on a particular occasion. These two aspects can vary 

independently, and may determine whether a narrow swathe of total 

destruction is grazed through the vegetation, or whether the impact is 

evenly spread over a larger area.

Figures V.3 and V.5 illustrate the first point. Figure V.3 shows 

the average usage of Jervoise for all mapping occasions (dawn, midday 

and dusk as defined previously). The adjoining maps are derived from 

records for northerly or southerly winds only. Clearly the patterns
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of usage can be changed in the short-term, and wind directions may 

correlate with the changes.

Figure V.5: distribution of all mapped sheep groups in Jervoise 
during fieldtrips of summers (a) 1980-81, (b) 1981-82 and (c) 1982-83. 
Numbers and contours as Figure V.3.

Patterns also change in the longer term, however. Figure V.5 

shows the paddock usage for summers 1980-81 (pre-drought), 1981-82 

(early drought) and 1982-83 (height of drought). Although the 

waterpoint was important in all three cases, it assumed a greater 

importance with the drought. Usage was constrained northwards in 

1981-82, but, despite increasing use of water, it expanded southwards 

again in 1982-82. This pattern was corroborated by the dung survey 

data. It was not a consequence of different winds, but was due to the 

over-utilisation of vegetation in the north end of the paddock, and a
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consequent need to forage further south later in the drought. The 

vegetation pattern development is detailed in Chapter X(b.iii). 

Whilst these changes overall paddock usage were occurring, however, 

there were partially independent trends in group dispersion, to which I 

now turn.

In the remainder of this section I test whether subgrouping is 

increased in adverse conditions. Such conditions can occur 

seasonally, and with declining vegetation condition. I exclude 

animals that were within the waterpoint cell from the analysis, so that 

the numbers and mean sizes of groups in the rest of the paddock are 

considered. I use a seasonal index that varies sinusoidally from -1 

in mid-July to +1 in mid-January (i.e. treating Dec-Feb as summer and 

Jun-Aug as winter); this correlates highly with mean temperatures 

(r=.74, n=174, p<.0001 for daily temperatures at Middleback during the 

fieldtrips).

Table V.6 presents the results of this analysis. In the data as 

a whole, there is a significant seasonal effect on numbers of groups 

and group size: this is, however, contra hypothesis, such that numbers 

of groups increase during winter, when temperatures are less extreme, 

and forage is usually in better condition. This is partly a result of 

lambing, since many of the groups were one or two ewes with their 

offspring (the lambs are not included in the numbers). Nonetheless, 

there was a smaller increase in numbers of groups in the wether 

paddock, Adam’s West, so that the change in behaviour is 

seasonally-influenced as well as physiologially-mediated.

There is a weak negative correlation between numbers of groups and 

vegetation indices, in support of reports in the literature already
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Table V.6

Correlations between numbers of groups and group sizes away from 
water against season and vegetation condition indices (see Table V.2).

Mean r
N group Number Group

Correlate size of groups size

All records 174 16.3

season .19
shrub index -.17* .14

ephem. index .01 .19*

All summers 111 18.9

shrub index _ 57*** 2 g # * *

ephem. index -.63*** .36***
*

p< .05 * *  X A 1p<. 01 *** p<.005

referred to (Chapter II). This effect is much stronger within the

summer seasons from 1980/81 to 1982/83. I have additionally examined

any correlates with wool-length, temperatures and other climatic

variables, both within and between season, and none shows any

comparable predictive value.

The previous section suggested that the waterpoint operates as a

re-grouping centre, and that group size in the open paddock is a

function of the rate of group break-up, and of the time since last

re-grouping. The results of this section are consistent with this 

view if the rate of splitting is affected by vegetation condition and, 

perhaps, the physiology of lambing. Group size then decreases in 

winter partly due to less frequent watering, and partly because of 

lambing. It also decreases in poorer vegetation conditions because of 

increased rates of group splitting, perhaps a result of more grazing

search movement.
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(iii) Activities.

Many studies of animals present detailed charts of daily activity 

patterns for the animals concerned. This descriptive exercise may be 

of little use to a detailed modelling approach, except for validation. 

However, I briefly present here some histograms of mean proportions of 

animals in different activities at different times of day, and show 

some changes with season. The histograms present the mean percentage 

numbers of groups seen in different activities, where the percentages 

are derived for each map record and averaged; a small background of 

uncertain activities (about 3% of numbers of groups for each histogram) 

is omitted.
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Figure V.6: Percentage of all groups seen in different activities 

for all data, and for dawn, midday or dusk records. Activities are as 
in Table IV.3, except that g=g+gm, m=mg+m, and r=r+s.
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Figure V.7: Percentage of groups seen in different activities at 
different times of day in summer and winter records. Activities as 
Figure V.6. Note the reduction in midday resting in winter compared 
with summer, and the increased movement in summer compared to winter.

Figure V.6 shows the pattern for all the data, and breaks it down 

into the dawn, midday and dusk categories. There is the expected 

increase in resting during the middle of the day. There is a major 

change in pattern between summer and winter, as Figure V.7 shows, with 

much more activity throughout the cooler, shorter days. Note that 

there is rarely a total consistency of activity type, so that subflocks 

are not usually wholly synchronised. Such synchronicity may does 

occur on the hottest afternoons (see Chapter Vl(b.i)) and at campsites, 

but a complete model must allow different subflocks to pursue their own 

ends under most conditions. In general, however, the patterns 

correspond well with those described in the literature (Chapter II).
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(iv) Summary.

Observations of marked sheep show that the groupings of merino 

sheep are volatile and transitory. The maximum size of a stable core 

group (if any) is about 10 sheep. Under the range of vegetation 

conditions observed, groups split about three times a day on average, 

with the waterpoint and campsites acting as re-grouping areas. Group 

size is affected by season, probably because of changes in the frequ

ency and synchronicity of the use of water and camp sites. Group size 

also declines with declining vegetation condition and during lambing. 

Activity patterns in the open paddock at Middleback are shown to be 

similar to those reported elsewhere. Grazing is usually bimodal in 

the day, but there is a marked increase in midday activity in the 

cooler months. Subflocks are rarely fully synchronised in their

activities.



Chapter VI.

Non-grazing activities in the open paddock.

The previous chapter has delineated certain variables that are 

important to the ranging behaviour of sheep in the open paddock. 

These include the long-term condition of the vegetation, season, wind, 

and temperature inasmuch as it influences the use of shade and water. 

Spatially, the positions of water, shade and campsites seem to be more 

important than vegetation type or fencelines. In this chapter, I 

examine the sites used for non-grazing activities in more detail, 

considering both when they are used, and where this usage may take

place.
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(a) Resting.

Resting is hypothesised to occur wherever a sheep is when it has 

no impulse causing it to move. Normally this will be at the end of a 

grazing period, although it may also occur after a move to water if the 

sheep is not hungry. Except in the latter case, the location of rest 

sites should be strongly dependent on movement in grazing, a topic 

which is considered in more detail in the next chapter. Here I 

examine location of, and movement to and from, rest sites, so that they 

may be compared with shade sites in the next section, and I briefly 

discuss how long sheep should stay in rest sites.

(i) Location and movement.

Figure VI.1 shows the locations of all resting groups taken from 

observation records in Jervoise, with the division into records from 

northerly and southerly wind directions. An extension of use into the 

southern end of the paddock is evident in southerly winds. There is 

also a negative correspondence between cells containing shade and cells 

used as rest sites (correlation of distance to shade with number of 

uses as a rest site: r=.36, n=52, p=.009). This may either be due to 

sheep avoiding shade sites when they are not needed, or because they 

use a shade site for resting when they are in a shade area on a 

stressful day. Observation supports the latter explanation, since 

shade sites would often be used under total cloud cover, for example, 

and consequently be recorded as shade use rather than as resting 

behaviour. This phenomenon increases the focusing effect of shade 

sites at a fine scale, although it is not relevant at the cell size of

500x500 m2.
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Figure VI.1: Locations of all groups of sheep seen resting in 
Jervoise; all data, and records from conditions of northerly and 
southerly winds only. Numbers are the numbers of groups seen in each 
cell; contours represent isopleths of equal activity (as measured by 
harmonic mean moments to each group from each cell, see Chapter 
IV(c.iii)), where higher values indicate less activity.

To test whether movement to and from rest sites was determined by 

wind direction or by previous and subsequent activities, I re-examined 

the raw data maps of Jervoise. Where I could be sure of correct 

identification, I followed individual subflocks through the course of 

the day, recording the area of the paddock in which they were resting, 

their directions of arrival and departure for that location, and their 

previous and subsequent sites of inactivity (i.e. before and after the 

associated grazing periods). Groups resting near to one another in 

the same set of records were considered as a single unit if they had 

similar histories and futures. Cases of resting near the waterpoint 

were ignored, since they may be confounded with watering behaviour.

This analysis produced only 38 separate recordings of resting
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behaviour during 1980-83. Of 32 cases for which the previous activity 

was certain, 15 derived from the waterpoint and 17 from campsites. 

After departure from resting, and after at least some grazing, the next 

site of non-grazing activity was the waterpoint in 16 cases, a camp in 

six, and shade in one; 15 cases were indeterminate.

Table VI.1

Arrivals and departures by sheep subflocks at rest sites in 
Jervoise, 1980-83. Numbers of records of movement in different wind 
conditions and for different previous or subsequent activities are 
shown. Where relevant, tests are given.

Arrival or departure directions n
NW,N,NE SE,S ,SW E/W (total)

ARRIVAL (from)
in winds: northerly ^ 4 1 9

southerly 16-^ 0 24

last site: water 13 2 0 15
camp 6 10 1 17

from camp in: N ’ly winds 2 \ ^ 2 1 4
S'ly winds 4— — 8 0 12

DEPARTURE (to)
in winds: northerly 6 0 0 6

southerly 13 4 0 17

next site: water 16 0 0 16
camp3 1 4 0 5
shade 1 0 0 1

1 PX^=2.67, p>.10, arrival directions not significantly related to 
wind directions.

2 xf=1.33, p>.10, arrival directions from camp not significantly
related to wind directionn.

3 all 5 records of departure to camp were in south winds.

Table VI. 1 shows the distribution of arrival and departure 

directions in northerly and southerly winds, and in relation to 

previous activity. Mismatching sample sizes between departures and 

arrivals reflect cases where some characteristics could not be

determined. The records correspond to 23 cases of resting in the
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northern third of the paddock, 12 in the central third, and three in 

the southern third.

Arrival directions were not significantly related to wind 

directions over all the records. Because the waterpoint is located in 

the north of the paddock, animals usually arrived at rest sites from 

the north after watering; in the two cases where this was not so, the 

sheep had grazed southwest of the waterpoint, and then returned north

wards before resting. Arrival directions to rest sites from campsites 

are also not significantly related to wind direction. There was a 

tendency to arrive from the south in south winds; this implies that 

the animals graze northwards from campsites used in south winds, which 

is necessary if, as was often the case, the campsite was near a 

southern fenceline.

Despite the majority of the records being from southerly winds, 

departures were strongly biased towards the north, because they usually 

involved movement to water. Even though over half (11 of 16) of the 

departures to water were in southerly winds, the sheep always left the 

rest site in the direction of water. Direction in grazing movement 

can thus be affected by the location of the next activity. There were 

insufficient records to separate the effect of winds on departures, 

although most departures to campsites were into the direction of the 

wind.

There is a slight correlation between the arrival direction and 

the day’s maximum temperature (r=-Ml, n=35, p=.011), indicating a 

greater likelihood of arrival from the south as temperatures rise. 

Since arrivals from the south must always be from campsites, and most 

departures were to water, this suggests a tendency to rest en route to
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water on days of higher temperatures; movements of sheep may be 

oriented towards watering later in the day even from the early morning.

(ii) Timing of resting.

An animal which rests when its hunger is satiated, and when it is 

neither thirsty nor hot, should cease resting when one of these 

criteria is no longer satisfied. Although the time involved may be

affected by the digestibility of feed, it should be useful for 

validating the hunger thresholds used in the model, and their inter

actions with thirst thresholds. Unfortunately there were too few 

reliable records to attempt this analysis (partly because of under

representation in the winter records, when greater numbers of groups 

made their identification less easy).

(iii) Summary: resting.

Resting is presumed to occur when no other impulse predominates. 

Sheep which are resting in areas where shade sites are available often 

use those shade sites. The location of rest sites is dependent on 

grazing movements that have occurred since leaving a previous site of 

non-grazing activity. Rest sites in the south end of the paddock are 

used only in south winds, but those in the north end are used in both 

south and north winds. Directions of departure from rest sites are 

determined by the subsequent non-grazing activity. Time spent resting 

should be related to hunger and thirst, but insufficient evidence was 

obtained in the open paddock to verify this.
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The Appendix describes in detail the prediction of the wooltip 

temperature of a sheep under given environmental conditions of wind, 

air temperature and cloud at any time on any day of the year and at any 

location (fixed by latitude and local solar noon). From this predict

ion, which is very good, conduction of energy into the body is 

calculated and a ’respiration index’, R, is derived; this correlates 

well with the observed respiration rate of sheep under various 

conditions. The index exceeds real respiration rates numerically 

because it subsumes all evaporative cooling, not just that involved in 

respiration.

A similar index derived by Noble (1975) was assumed to represent 

the heat loading felt by the sheep, and consequently was used to 

predict their behaviour. I justify this assumption here by showing, 

firstly, that the index, derived from a physical model, is related to 

open paddock behaviour, and, secondly, that the index can predict the 

specific decision to move to shade.

Firstly, I collected data on sheep in shade in Adam’s West paddock 

from a hilltop vantage point. Figure VI.2 shows the relation between 

the proportion of sheep at a shade site that are actually in the shade 

and the predicted respiration index, R, for the then-prevailing 

conditions, over eight days. The correlation is good (r=.8l, n=35, 

pC.0001). This is taken as justification that R is relevant to the 

behaviour of sheep in open paddocks under environmental conditions of 

increasing severity. In this instance, the animals are already near 

shade, and have only to decide whether or not to move into it.

Figure VI.3 shows the response of this behavioural measure of heat
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Pred ndex

Figure VI.2: Plot of percentage of sheep actually in shade at a 
shade site in the open paddock against predicted respiration rate for 
various environmental conditions on 8 days in Jan-Feb 1982. 
Regression line is, y = -95 + .60 * x.

loading during one day (23rd January 1982), plotted alongside R for 

sheep in the shade or the open. The conditions on that day were 

extreme - a maximum temperature of il60C, with 0/8 cloud until midday, 

which increased to 3/8 in the afternoon. The wool length of these 

sheep was long (about .07 m), and effect of this insulation is shown by 

the relatively small reduction in R that the sheep obtain by moving to 

shade. The respiration index closely tracks the percentage of sheep 

in the shade (which reaches a plateau when all sheep are in the shade) 

until late in the afternoon, when sheep leave shade earlier than might 

be expected from the index on the basis of their morning behaviour.
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Figure VI.3: Traces of predicted respiration index (in the open 
and in shade) for sheep on 23rd Jan 1982, compared with percentage of 
sheep actually in the shade (□); a show percentage of sheep leaving 
water to graze rather than move directly to water. All sheep were 
inactive from 1100-1730 h. * mark sunrise and sunset.
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(ii) Prediction of entry to shade.

Given that the index is related to heat-avoidance behaviour, I now 

test whether it may be used to predict the decision to move to shade. 

Time of arrival at shade in the morning might be related to heat 

loadings alone, since hunger and thirst are often satisfied early in 

the day. However, there are three possible complications. Firstly, 

some sheep may rest in the open before moving to shade, whilst others 

may go to shade immediately after grazing. In the latter case, hunger 

may delay movement to shade by temporarily over-ruling the heat
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response. ’Directed' grazing (towards a shade site) might be expected 

under these circumstances.

Secondly, for a sheep that is resting in the open, there will be a 

trade-off between the saving gained by being in shade and the effort 

involved in getting there. Thus distance to the nearest shade will

normally be important (as well as possibly affecting the recorded time 

of arrival of an animal at shade).

Thirdly, the difference between respiration indices in the open 

and in the shade (and consequently the energy and water savings of 

being in shade) decreases with increasing wool length, for any given 

set of conditions. Although sheep with any length wool may reach a 

critical threshold of the respiration index, other influences, such as 

distance to shade, are likely to increase the variability of behaviour 

shown by woolly sheep over their shorn counterparts. It is also 

important to know whether the absolute value of the respiration index, 

or the difference between its value in the open and in the shade, is 

likely to be the better predictor of behaviour.

The following predictions may therefore be made:

(1) sheep which have been grazing immediately beforehand should enter 

shade at a higher value of R than those entering after resting.

(2) with increased distance to shade, sheep should only move there at 

higher values of R.

(3) variability in the use of shade should decrease when sheep have 

shorter wool, since they then have more to gain by going to shade in 

hot conditions.

Using the mapped data from the various paddocks for days on which
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sheep used shade sites, I have determined the approximate time when the 

main movement to and from shade occurred for known conditions. I have 

also recorded whether animals went directly to shade from grazing, or 

after a period of resting in the open. As usual, there is a confound

ing effect of season (and consequent temperature) and wool length. I 

have categorised by long and short wool length (dividing in winter and 

at shearing time), and calculated the predicted indices for the 

prevailing conditions (Table VI.2).

Table VI.2

Threshold levels of the respiration index for entry to and exit 
from shade by shorn (wool length about .02m) and woolly (wool lengths 
.055“.07m) sheep, with and without the possible effects of hunger or 
thirst. AR = open index - shade index, one factor in the relative 
cost of not being in shade.

Entry to shade. 

SHORN

index threshold 
mean s.e.

level
n mean

AR
s.e.

WOOLLY
201 .9 1 3 . 8 5 64.7 15.5

after resting 226.7 11 .2 6 11 .4 4.4
direct from grazing

Exit from shade. 

SHORN

245.0 12.5 8 19.8 4.8

direct to water 209.6 16.5 3 47.0 14.7
to graze first 
WOOLLY

189.6 30.9 3 35.2 17.8

direct to water 249.6 13.9 10 8.1 1 .3
to graze first 249.0 12.0 11 4.2 .8

Although I do not have suitable data for the testing of prediction 

(2), both it and prediction (3) imply considerable variability in 

behaviour in the open paddock, and this is certainly shown. Firstly, 

shorn animals enter (and leave) shade at lower levels of the index than 

do woolly sheep (t-test, p=.08). Because wool length is confounded
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with time of year, this may result from physiological adjustments to 

cooler nights. As required by prediction (3), the shorn animals have 

much more to gain (AR values) by going to shade at a given index level 

than do woolly sheep (t-test, p<.0001). However, the sample size for

shorn sheep is too small to be categorised by previous activity, which 

may be why this difference is not reflected in reduced variability as 

also predicted.

Woolly sheep tolerated a higher index value when going to shade 

direct from grazing than if they had been resting in the open. This 

is reflected also in an increased difference between shade and open 

indices (AR), representing an increased cost incurred by not going to 

shade. The differences are not significant (t-test, p>.10), but

support prediction (1) as well as the suggestion that some other index 

- here hunger - may delay entry to shade. There were not enough cases 

for this effect to be examined in the shorn sheep.

(iii) Prediction of exit from shade.

Departure from shade may be affected by other factors. The

respiration index in the open falls below that in the shade towards

sunset. Once in shade, however, there is little reason for an

undisturbed sheep to leave , if neither hunger nor thirst become

significant. On hot days, sheep first leave shade with remarkable 

synchrony from points so widely scattered, in and between paddocks, 

that it is unlikely that they could have influenced one another. For 

example, on the day referred to in Figure VI.3, after at least 6 h in 

the shade, the first sheep to depart from eight of the ten shade trees 

under observation did so within 12 minutes of each other. These trees

were scattered over more than 2 km. This initial synchrony of
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behaviour is common on hot days, but breaks down in cooler weather.

On hot days, most early departures from shade are animals that 

proceed rapidly to water. Only later do departing animals graze more 

and more en route to water, until the last departures may not even go 

to drink. In Figure VI.3, for example, sheep leaving shade about 

1800 h all moved to the waterpoint (.5 to 2 km from the shade trees) 

with little grazing, whilst those leaving shade around 1900 h were 

predominantly grazing, as the triangular symbols show. Those sheep 

remaining at shade trees shade until 1900 h maintained the same high 

proportions actually in the shade. In a similar fashion, sheep that 

have been in shade near a waterpoint (and often watering during the hot 

afternoon) usually become active about one hour after the first 

departures from shade trees at a distance from the waterpoint.

These observations suggests that the first departures from shade 

occur when the significance of thirst over-rides that of the heat 

loading incurred by leaving shade, whilst the later departures are 

influenced by hunger. Thus, at about 1800 h on 23rd January 1983, the 

thirst of some animals had out-weighed the advantage of staying in 

shade. Other animals, whose water status was better (e.g. they had 

drunk that morning instead of the previous night), stayed in shade 

until close to the time at which there was no advantage in doing so 

(i.e. respiration index in shade equal to that in open). Since some 

animals voluntarily spent as much as 10 h without grazing on this day, 

the effect of hunger may be less important relative to heat loading 

than that of thirst.

The prediction that, in the open paddock, thirst should hasten the 

departure from shade is supported in Table VI.2 by the data for shorn
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sheep. There is no difference in the threshold level for woolly sheep 

that depart shade to different activities. However, for sheep of both 

wool lengths there is a reduced cost (AR) in leaving shade by the time 

animals depart to graze. Again, none of these differences is statist

ically significant (t-test, p>.05).

Finally, can a threshold level of the index be set for movement to 

and from shade ? It is clear that the absolute value of R is a better 

predictor than the cost (AR) of not being in shade. The threshold 

levels of R for entry to and exit from shade are consistent for sheep 

within each class of wool lengths, but a correction factor is appar

ently needed for wool length. The predicted threshold levels of Table 

VI.2 correlate significantly with wool length over all the data (r=.4l, 

n=52, p=.003). The energy balance model is accurate in predicting 

wooltip temperatures (see the Appendix), so that this represents 

variation in the response to energy loading, rather than an error in 

calculating the energy flux into the sheep's body. Because wool 

length is confounded with season at Middleback, I cannot tell whether 

the variation in response is a result of physiological adjustment to 

seasonal temperatures, or because the relative use of different cooling 

pathways changes with wool length (see Appendix Figure 5 and related 

discussion).

In either case, a correction factor for wool length can be 

inserted in the threshold value, and consistent threshold levels can 

then be determined to predict movement to shade for a given breed. 

This physical model is therefore successful at predicting an aspect of 

ranging behaviour in the large open paddock.
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(iv) Location and use of shade sites.

Once it is possible to predict when a sheep will move to shade, 

the next question concerns which shade site will be used. Not all 

trees in Jervoise are used by sheep. Most isolated trees will harbour 

sheep at times, but where there are many to choose from, only a limited 

number will ever be used, and fewer still will be used regularly in any 

given year. Trees which are used frequently for shade have less 

undergrowth and are surrounded by more bare ground than others. This 

is likely to be a result of their use as shade sites, as well as a 

cause of their continued use. Their original selection is historic, 

perhaps entirely due to chance, but is now self-perpetuating.

Some learning by sheep seems to occur from year to year: I 

mention this observation briefly, but have no good data to support it. 

With respect to shade, learning effects were most evident in the use of 

the trees in cells 29, 30, 4M and 45 (see Figure IV.9(a)). In summer 

1980-81, about 20 trees in this area were used for shade by sheep; two 

trees in particular would always have sheep under them when there were 

sheep in the area. In 1981-82, these two trees were never seen to be 

used, and had very little fresh dung under them in comparison to 

others. In summer 1982-83, one was again in heavy use, but the other 

continued not to be used. In all these summers, sheep were using other 

shade located less than 100 m from each of these two trees. There are 

no obvious correlates to this behaviour, and it may be simply a 

function of chance learning about local shade sites from year to year.

On a small number of occasions when I frightened sheep from under 

a shade tree, I observed that the fleeing group moved rapidly away from 

me for about 100 m, and then one of the leading sheep turned abruptly
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and headed towards another tree. On some occasions, this was not the 

nearest tree, but was the nearest tree used regularly as a shade site. 

These two types of casual observations strongly suggest that at least 

some individuals learn the location of specific shade sites over the 

whole area of the open paddock during the year. It would be 

interesting to investigate the nature of this learning by moving all or 

part of a paddock's flock elsewhere; however, on this scale, and with 

any controls, the necessary trials would be monumental. More import

antly for modelling, these observations suggest that sheep do know 

where the nearest shade site is, but that selection between individual 

trees takes place on a scale which is sufficiently local to be 

irrelevant at a cell size of 500x500 m2.

The general location of shade sites which is used under given 

conditions might be 'chosen' as that area nearest to the position of 

the animals when the respiration index exceeds critical values. 

Alternatively, the sheep might foresee that shade will be needed later 

in the day and graze towards a specific shade location. In the first 

case, shade location would be determined predominantly by grazing 

movement, and in the second, the grazing movement would be biased or 

'directed' towards the shade location.

It is difficult to test between these possibilities at the scale 

of my mapping. However, Figure VI.4 shows the distribution of all 

shade site usage over the paddock, divided into records from southerly 

and northerly winds. As usual, there is a considerable extension of 

activity into the south of the paddock in southerly winds. The 

activities r and s were not separated in the map records until April 

1981, so this data does not include my first three fieldtrips.
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Figure VI.4: Maps of shade use by groups of sheep for all records 
from Jervoise, 1981-83; all data, and records from northerly and 
southerly winds only. Numbers and contours as in Figure VI.1.
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Figure VI.5: Maps of all the resting groups from Figure VI.1 
translated to the nearest shade site. Numbers and contours as in 
Figure VI.1. Note the similarity in disposition to Figure VI.4.
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Figure VI.5 shows the data for rest sites shown in Figure VI.1 

translated directly to the nearest cells with shade. The records in 

the two figures are not matched exactly for environmental conditions, 

since shade is used predominantly in conditions different to those in 

which the sheep rest. There is a reduced use predicted for cells 14 

and 19 (see Figure IV.9(a)), because the surrounding shade cells were 

closer to the rest sites in the translation. However, there is a 

marked similarity in the distribution of the translated rest data to 

the shade data, which suggests, apropos of the first hypothesis above, 

that the locations for both these activities depend on similar factors; 

in other words, on movement in grazing and the position of the previous 

site of inactivity (camp or water), biased only by the location of the 

nearest shade.

As a further test of the first hypothesis, I examine the amount of 

directed grazing that precedes the occupation of shade sites. The 

potential occurrence of directed grazing is important because it can 

alter the location of grazing impact both by increasing movement speeds 

in grazing, and by adjusting movement directions. The first 

alternative above does not predict directed grazing towards shade, 

whilst the second does. I have already shown that hunger can delay 

entry to shade, and this might be expected to cause directed grazing.

Figure IV.6(a,b) shows how the extensive activities of g, gra, mg 

and m (see Table IV.3) vary during the course of the day. It is clear 

that most directed grazing (gm and mg) occurs near dawn and dusk, and 

is therefore related to watering (as is the increased absolute numbers 

of groups moving - m - at these times). In the mid-morning, when 

sheep are moving to shade, there is very little directed grazing, which 

again supports the first hypothesis. Figure VI.6(c) shows the
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Figure VI.6: Distribution of groups between grazing activities 
with different amounts of movement during the day. (a) numbers and 
(b) percentages of groups for all summer days on which shade was used, 
and (c) percentages for winter records. 'Directed' grazing activities 
are shaded. The time periods and sample sizes are indicated.
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equivalent winter records which include negligible directed grazing. 

The small amount of gm in late morning in summer may therefore be 

movement to shade, but it is of minor proportions.

(v) Movement directions.

Finally I test whether movement directions before and after the 

use of shade were influenced by wind or other foci of activities. I 

collected data on shade site usage from the maps using similar methods 

to those described for the rest sites (section (a.i)). I found a 

total of 91 records, excluding shade use by the waterpoint. The 

details of these records are shown in Table VI.3» to which similar 

comments apply as for Table VI.1.

The location of the waterpoint again constrained arrivals to be 

from the north when the previous non-grazing activity was watering. 

However, there are sufficient records where campsites were the previous 

focus to analyse these by wind direction. In northerly winds, sheep 

were always moving north from camp, whereas for southerly winds, the 

division between directions is not significantly biased to the south. 

This reflects the use of campsites close to the south fence in south 

winds, from which it is necessary to move north. Here paddock 

geometry over-rides any effect of wind. However, it is notable that 

in many cases when the sheep were grazing north from the southwest 

campsite (see Figure VI.9), they moved up to shade in cells 39 and 40 

(see Figure IV.9(a)) despite the presence of less-used shade further 

south. These animals would usually continue north to water in the 

late afternoon, and this may be an example of movement directed by the

need to water later in the day.
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Table VI.3

Arrivals and departures of sheep subflocks to and from shade sites 
in Jervoise, 1980-83. Numbers of records of movement in different 
wind conditions and for different previous or subsequent activities are 
shown. Where relevant, x2 tests are given.

Arrival or departure direction n
NW,N,NE SE,S,SW E/W (total)

ARRIVAL (from)
in winds: northerly 14 17 2 33

southerly 25 20 2 47

last site: water 26 1 2 29
camp 11 35 2 48

from camp in: N'ly winds 0 16 16
S'ly winds 11-— .----- -19 30

DEPARTURE (to)
in winds: northerly 29 3 1 33

southerly 37 10 1 48

next site: water 52 0 0 52
camp 2 11 1 14

to camp in: N'ly winds 0 1 1
S'ly winds 2— -a--- - 12

1 xf=1«63, p>.10, arrival directions from camp in S winds not signif
icantly related to wind direction (Yates' correction applied).

2 Xp=4.08, p=.04, distribution of departure directions to camp in
south winds significantly related to wind direction.

In these records, most animals leave shade for water and therefore 

move north. For such sheep as do go to a campsite, there is a 

significant southerly movement in south winds, which may be related 

either to grazing movement or to the choice of a southerly campsite. 

In summary, results are very similar to the more sparse records for 

rest sites (section (a.i)).
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(vi) Summary: shade use.

Use of shade is related to heat loading of the sheep. A physical 

model of the energy balance of a sheep provides a good prediction of 

respiration rate with a respiration index that is related to the 

evaporation needed for cooling. This index is shown to be relevant to 

shade-seeking behaviour in the open paddock, and to be a good predictor 

of when shade will be used. There are interactions with hunger which 

delay entry to shade, and with thirst which advance exit from shade. 

The specific trees used for shade sites may be influenced by learning, 

but the area of shade sites occupied under given conditions is closely 

related to the usage of rest sites, corrected by movement to nearest 

shade. The location depends largely on movement during grazing since 

the last non-grazing activity, but may involve some directed grazing

towards shade.
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(c) Water.

It is well-known that the waterpoint is a significant focus of 

activity in a paddock. In many paddocks, there is only one source of 

water, so that when animals need to drink regularly their activity 

patterns are bound to be centred on this waterpoint. The water 

requirements of an animal are a function of the amount of water that it 

can take in a single drink, and its net rate of water use. A model of 

water balance may be used to predict when drinking should occur. In 

some paddocks, animals do have a choice between waterpoints, and this 

selection must also be modelled.

(i) Water balance and requirements.

Following Noble (1975), the water balance of a sheep may be

written as,

drinking intake + water in food + metabolic water = evaporative 

losses + urinary losses + faecal losses.

Metabolic production of water is taken as being approximately constant, 

whilst the water obtained from food depends both on the condition of 

the vegetation and diet selection. Evaporative losses may be

determined from the heat balance model described in the previous 

section and in the Appendix. These will be slightly over-estimated, 

since the model does not allow for other heat loss mechanisms (see 

Appendix), but this may be allowed for in the setting of threshold 

levels. Urinary and faecal losses of water have an approximately

constant component, but must also allow for the disposal of dietary

salt, a factor which is also dependent on vegetation condition and diet 

selection. The equation will normally be balanced as a result of the 

sheep adjusting its drinking intake. If this becomes impossible, it
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could also maintain the balance by reducing feed intake where water 

content is low, and by using shade to minimise evaporative losses.

Figure VI.7 shows the water usage by sheep in Jervoise for

1980-83, obtained from the waterpoint meter records (see Chapter

IV(d.iv)). Each point represents the mean intake of water per head 

per day, averaged over the number of days since the previous reading 

(this interval varied from 1 to 82 days, mean 5.5, mode 2, n=l47).
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Figure VI.7: Mean daily intake of water intake per sheep from 
late 1980 to early 1983, estimated from intermittent readings at the 
Jervoise water meter. The curve is a spline fit.

The water-balance equation above predicts that the intake of water 

should be affected by the variables of the heat balance model, and by 

vegetation condition. For saltbush, and some other chenopod shrubs, 

salt and water contents are approximately inversely related (e.g.
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Sharma et al.1972). My indices of vegetation condition (Table V.2) 

are likely to correlate with both. I performed a multiple regression 

between the intake per head per day and year, maximum and minimum 

temperatures, index of season (as described in Chapter V(c.ii)), wool 

length, and the vegetation indices (shrub and ephemeral). The 

temperatures used were the mean maximums and minimums for the interval 

concerned, except that periods of longer than seven days were excluded 

from this analysis. Whilst temperature maxima should affect the heat 

loading on the sheep, low overnight minima correlate both with low 

humidities and clear weather.

Table VI.4

Multiple regression of water intake per head per day in Jervoise 
against various environmental parameters. The linear regression 
equation is: intake = constant + Z b*V, where V are the independent 
variables listed below, and b their respective coefficients.

Independent % reduction
variables in S.S.

Constant

Shrub index (1-11) 44.3
Wool length (.01-.07m) 4.5
Mean max. temp. (°c) 3.6
Mean min. temp. (°c) 2.0

Predicted equation
coefficient significance

5.59 -

-.675 <.001
52.1 .005
.185 .002

-.137 .058

1 from t-test on predicted coefficient, d.f.= 88

Shrub condition, wool length and temperature contributed to more 

than reduction in the sum of squares. Their contributions and the 

resulting coefficients are shown in Table VI.4. A total of 5456 of the 

variation is explained by these parameters (F-ratio = 25.0, d.f.=4,84, 

p<.0001), corresponding to a multiple correlation coefficient of 0.74 

(n=89, p<.0001). The effect of shrub condition is unexpectedly 

strong, but is due to the major changes that occurred during the major 

drought year (1982). It has over-ridden the effect of season, and of
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the presence of ephemerals (which correlates with drinking in a 

separate Pearson's test, r=-.4l, n=89, p<.001). None of the other 

three independent variables contribute greatly to the regression (in 

separate Pearson's correlations with volume drunk, the coefficients 

are: wool length, r=.l6, p=.126; temperature maxima, r=.20, p=.054; 

minima, r=-.04, p=.708; n=89 for each), but each has the expected 

effect. There is no remaining trend in the residuals after this 

analysis: much of the remaining variance may be associated with errors 

in reading the meter (see Chapter IV(d.iv)).

Since the important factors influencing watering were those that 

were expected, data were collected to test the actual values of the 

water index in the model, and its possible threshold levels. The 

eastern waterpoint of West End paddock was observed from a tower on 

20-21 and 27~28 January 1983, from 0530h on the first day of each pair 

to 2100h on the second. This was the only waterpoint available to the 

animals in the paddock. Temperature ranges were 12-43°c (20-21st) and 

10“36oC (27_28th), and the nights were moonlit. There were 32 marked 

sheep in the paddock, and the presence of any of them at the waterpoint 

during these periods was recorded. I am grateful to Paul Jupp for 

collecting much of this data.

Figure VI.8(a) shows the distribution of watering by the marked 

sheep over the 24-hour periods. Sometimes a sheep would move into 

shade near the waterpoint after drinking, and return to water within a 

few hours. Such repeated watering was defined as a single event when 

the sheep did not depart more than 200 m from water (the distance was 

marked with flags). There were strong peaks of watering in the 

morning and evening, as has been recorded elsewhere (e.g. Squires 1976, 

Arnold & Dudzinski 1978 p47), but some watering events were scattered
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throughout the day and night.

During these 39-hour observation periods, many sheep returned to 

water. Figure VI.8(b) shows the frequencies of different return 

times. Again there is a bimodal distribution, which seems to reflect 

the preference to water at one of the modal watering times.

For each individual, I have calculated the water deficit it would 

have experienced by the time it returned to water according to the 

water balance equation described above. Values for metabolic water 

production (.3 1 d- 1 ) t urine losses ignoring salt disposal (1 1 d-1 ) 

and faecal losses (1.5 1 d-1), distributed evenly through the day, are 

taken from Noble (1975), who quoted Brown & Lynch (1972) and Macfarlane 

et al. (1956, 1966). Brown & Lynch (1972) did find a lower value of 

urinary losses (.25-.M2 1 d-1 ) for sheep on low salt diets and under 

water stress.

In January 1983, there was no ephemeral vegetation present, and 

the water content of saltbush and bluebush ranged from .45“.75 1 per kg 

of dry weight for non-woody plant material. Assuming some forage 

selection by the sheep, I used .70 1 (kg d.w.)-1 as an intermediate 

figure, and 140 g (kg d.w.)-1 for salt content (after Wilson 1966). I 

assume a slightly low intake of 1 kg d.w. d-1, distributed evenly 

through the day. Noble (1975), after Wilson (1966) and Macfarlane et 

al. (1966), assumed that an additional 30 ml of water were required to 

excrete 1 g of salt. Finally, evaporative losses associated with 

cooling were calculated directly from the respiratory index, which was 

derived from hourly weather records for the days in question.

Figure VI.8(c) shows the distribution of the calculated water
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Figure VI.8: Watering behaviour by marked sheep at the West End 
trough, January 1983. (a) Distribution of watering through the day 
(* marks sunrise, 0640 h, and sunset, 2020 h). (b) Distribution of 
return times for re-watering. (Continued on next page).
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Figure VI.8(ctd): Watering behaviour of marked sheep at the West 
End trough, January 1983. (c) Modelled water deficit at the time of 
re-watering. (d) Modelled water deficit at the modal watering time 
(0800 h or 2000 h) nearest preceeding the time of re-watering.
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deficit at the time when individual sheep watered again. There is 

again a bimodality. This is likely to have occurred because heat 

loadings tend to restrict animals to shade in the afternoon, and other 

factors (perhaps genetic) encourage them to remain camping at night.

According to the original model, sheep became thirsty at a pure 

water deficit of 3 1, and severely dehydrated at 5 1. On the basis of 

Figure VI.8(c), a 3 1 deficit seems a reasonable approximation for the 

first level of thirst, but the sheep can evidently tolerate much 

greater deficits than 5 1. To what extent is this tolerance related 

to the factors which constrain most watering to the two modal peaks ?

Many sheep delayed at least one possible modal time before 

watering again. Figure VI.8(d) shows the frequency distribution of 

modelled water deficits that these sheep would have experienced at the 

last modal watering time (taken as 0800 h or 2000 h) at which they did 

not drink; there is a sharp cutoff at about 4.5 1 pure water. This 

may be taken as the maximum deficit that a sheep will tolerate at a 

time when conditions do not suppress watering. A deficit of about 8 1 

is the maximum that can be tolerated regardless of restraints placed by 

heat loads or camping behaviour. The relation of these figures to 

respiration index thresholds will be discussed in Chapter X.

An accepted tenet is that sheep take no more than 5 1 in one drink 

(e.g. Wilson & Hindley 1968). As Figure VI.7(a) shows, individuals 

were drinking over 15 1 per day at the peak of the 1982-83 drought. 

The maximum intake actually coincided with both winter and lambing, and 

may have been more extreme than otherwise because of lactation require

ments. However, even in the following summer, over 11 1 per head was 

being drunk in a day. Whilst this high water intake may be partly
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explained by multiple waterings - some sheep visited the trough morning 

and night, and others drank several times in the afternoon while 

resting near the waterpoint - it strongly suggests that larger amounts 

may have been taken during one visit. At times, a distinct sloshing 

noise could be heard as the sheep walked away from water.

Figure VI.8(b) also supports the latter suggestion, since the 

water deficit by the time of return may be as high as 8 1 of pure 

water. The West End waterpoint supplies well water, with salt 

concentration of about 3500 ppm, so that 1 1 of water drunk is 

equivalent to only .895 1 of pure water. To obtain 8 1 of pure water, 

it is then necessary to drink nearly 9 1 of well water. Although a 

sheep need not entirely refill its water store, these figures support a 

higher maximal intake under extreme conditions.

(ii) Selection of watering point.

In Jervoise, there is no choice of waterpoints available to the 

sheep. In Wizzo North, there are four waterpoints (see Figure 

IV.6(b)): the Central Dam, a trough fed from the Morgan-Whyalla pipe

line (the E 'McGouishs* trough), a trough fed from the well at Roopena 

(the SW trough), and a trough windmill-pumped from a smaller dam in the 

neighbouring Ram Paddock (W trough). The western trough was only 

observed in use once, and is not discussed further.

I had intended to obtain data on the differential use of these 

waters, but two problems developed. Firstly, the drying of the dam in 

early 1982, and the failure of the eastern trough in February 1982, 

gave rise to an inconsistent availability of waterpoints. Secondly, 

although the sheep seem to prefer dam water to either the salty well-
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water or the chlorinated Murray water, the extent of any preference is 

unknown. Most of the brief discussion that follows is therefore based 

on anecdote.

Sheep are renowned to be slow to learn a new water site when 

shifted, and may return repeatedly to their original waterpoint. 

Sometimes this imputation is unfair, if, for example, they can sense 

the continued presence of water in a dam but are denied access. In 

Wizzo North, marked sheep were rarely observed to move from one 

waterpoint to another during a four day mapping period. In 1980-81, 

water was available at all waterpoints, but all observed watering 

occurred on the Central Dam and the E trough, which are separated only 

by about 2.5 km. Some transfer was seen between these two waters; 

two marked sheep were sighted at both waterpoints, out of 20 occasions 

where a marked sheep could be relocated on successive days. One 

marked sheep was seen by the east fence and then the west fence (6 km 

apart) on successive days, indicating that considerable movement was 

occurring, although this does not prove multiple water use.

In 1982, only the E and SW troughs were available and in April 

1982, sheep were split more-or-less evenly between these. The groups 

associated with each waterpoint were separated almost entirely in 

range, usually coming into contact only in cells 25 and 19 (Figure 

IV.9(b)). Despite 13 resightings of marked sheep during that trip, no 

transfers between areas were observed. On one occasion, a group 

containing two marked sheep was frightened from cell 29 to 23 in the 

southeast corner of the paddock. Despite the close proximity of 

several groups from the E trough which were moving north to water, this 

group was observed to stolidly retrace its steps along the southern 

fence. It was seen by the SW trough the next morning, having
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travelled at least 5km across a range of hills.

Thus there appears to be an inertia in any change of waterpoint 

use, although changes do occur naturally, especially in the long-term. 

Presumably this inertia is related to the learning ability of sheep and 

the latency of their memories. Sheep in Wizzo North certainly knew 

the layout of the Central Dam when they were using it: if they were 

blocked at one exit, they would immediately depart by the alternative 

route, which is out of sight of the first. When two waterpoints are 

close together, they may be encountered often enough to remain in the 

sheep's memory: this appeared to be the case with the Dam and the E 

trough in 1980-81. With greater distances and consequently longer 

time periods between encounters, locations seem to be forgotten, as 

appeared to be the case between the SW and E tanks in 1982.

(iii) Movement to and from water.

Because the waterpoint is such an important focus of sheep 

activity in the paddock, it can be seen as a pivot point for successive 

periods of non-watering activity. The direction of departure from the 

waterpoint then assumes importance in determining which area of the 

paddock will be used between waterings, especially if those waterings 

occur at frequent intervals.

To examine the influence of weather on the directions of departure 

from water, and with the help of Mr Paul Jupp, I collected data on 

movements to and from waterpoints in Jervoise and West End paddocks in 

January 1983, at the same time as recording watering frequencies as 

described above. All dams on the property were dry, and it was 

impossible to find a permanent trough located in the middle of a
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paddock. The eastern trough of West End subtends about 180° from the 

fencelines, and Jervoise waterpoint only about 90° (though movement 

patterns were better understood here, and there was better visibility). 

Arrival and departure directions were recorded for all sheep from first 

to last light on a total of 14 days (Chapter IV(c.vi)). However, I 

was unable to relate arrival and departure directions to prevailing 

wind directions and time of day, primarily because of the lack of a 

360° approach (which compounded the complexity of movement patterns), 

and the need to track the subflocks further out into the paddock than 

could be seen from the West End waterpoint.

I also examined map records for watering in Wizzo North in the 

same manner as described above for rest and shade sites in Jervoise. 

The resulting data is confounded by varying waterpoint availability, 

and is too restricted to be useful. The most important question 

concerns whether and how movement out from water is affected by wind. 

Although limited, these data tend to support the hypothesis that the 

direction of movement out from water is preferentially into the wind.

The waterpoint is important in causing directed grazing, to a 

degree that shade sites are not. Analyses of the shade and rest site 

data for Jervoise have indicated that the sheep’s need to drink in the 

evening may already be influencing their behaviour in the early morning 

(see section b.v). Figure VI.6 clearly demonstrates the increase in 

directed grazing at times when watering is occurring.
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(iv) Summary: watering.

The water balance of sheep may be modelled by balancing water loss 

from evaporation and excretion (including water necessary to dispose of 

dietary salt intake) with gains from drinking and from food intake. 

Drinking is shown to be related primarily to the condition of the 

vegetation in a series of dry years, as well as to the requirements of 

respiratory cooling. Time of watering may be related to a water 

deficit derived from the water balance equation, with allowances for 

the effect of other influences which constrain watering to modal 

morning and evening periods (in summer at least). For sheep in open 

paddocks, quantities of water consumed in a single drinking session are 

likely to exceed those quoted in the literature for closely penned 

animals. Switching between multiple waterpoints seems to be const

rained by frequency of use and by consequent memory of waterpoint 

location; switching between distant waterpoints was rare. Although 

attempts to study movement in and out of waterpoints were unsuccessful, 

partly due to drought conditions, the need for water is the major 

influence in directed grazing.
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(d) Camping.

(i) Location and movement.

It was difficult to obtain any reliable information on camping, 

since it was impossible to locate a significant proportion of the flock 

at night. Some spot-lighting was tried unsuccessfully and with 

considerable disturbance. However, from early morning records of 

animals leaving camp, and from frequent finds of fresh dung, it was 

certain that most camping in Jervoise was confined to a few localised 

areas (Figure VI.9). There were four regularly-used main areas (sites 

1-4), all associated with hillsides; three were also by fencelines 

(2-4). A site was located on each of the main hills in the paddock. 

Sites 1 and 3 comprised a loose agglomeration of several smaller areas, 

each typically 50-100 m in diameter. Another area in the northwest 

corner (site 5) was used significantly only in 1980-81, and the use of 

site 4 varied greatly between years. Comments made in section (b.iv) 

about learning with regard to shade sites may also be applicable to 

campsites.

It is notable that the energy balance model described in the 

Appendix shows that sheep would be warmer under a tree on a clear 

winter’s night (providing it was not located in a frost hollow), but in 

fact they invariably occupy the tops of hills. It is often argued 

that this occurs because temperature inversions result in warmer air 

temperatures at the top of hills, which is true on calm nights. 

However, the cover of a tree would significantly reduce radiant heat 

losses to the night sky. This suggests that inherited factors may 

influence sheep to camp on hilltops, so that the camping phenomenon 

cannot be modelled by an approach akin to that used for shade-seeking.
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Figure VI.9: Areas used regularly as campsites in Jervoise (solid 
triangles). Open triangles mark other sites known to have been used, 
usually by few sheep only for one night.
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Figure VI.10: Distribution of all sheep groups in Jervoise in 
'dawn' records; all records, and records from northerly and southerly 
wind conditions. Numbers and contours as for Figure VI.1.

Figure VI.10 shows the location of sheep in Jervoise for all early 

morning ('dawn') records, 1980-83 (many dawn records occur in calm 

conditions, which accounts for the disparity between the summed values 

of the righthand maps, and those of the lefthand map). Sheep activity 

is focused on the major campsites, especially sites 1 and 3. High 

densities also occur on the west fence where sheep were often moving 

north from site 3. The restriction of the use of sites 3 and H to 

southerly wind conditions is evident. The loss of discernable pattern 

in northerly winds reflects warmer mornings and consequent earlier 

starts by the sheep, especially in 1982-83.

There was some use of areas in cells 1 and 2 for camping during 

summer 1982-83. Other locations where camping is known to have
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occurred on at least one occasion are marked on Figure VI.9; these are 

not always associated with hills. Defining a night's campsite as the 

location at which sheep last rested before dawn, I estimate that 90-95$ 

of all camping activity occurred on campsites 1-5 during the period of 

observations.

On the basis of late evening and early morning records for 

Jervoise, I analysed the maps for campsite usage in a similar manner to 

that described for rest and shade sites. The records are tentative, 

and biased towards campsites 1 and 3; these were more easily observed, 

although they were undoubtedly used more than the others. Site 3, 

being positioned on the southern fence, was invariably approached from 

the north, and departed from in the same direction. Site 1, centrally 

located in the paddock, should have been the most useful for the 

analysis of movement patterns, but was dominated by animals arriving 

from and departing to the waterpoint. No useful information was 

obtained from this analysis.

(ii) Summary: camping.

Over 90$ of camping activity occurs at very few sites (5 in the 

1500ha area of Jervoise). These sites are associated with both hills 

and fencelines, and may be a diffuse association of smaller sites. 

Night time activity was difficult to study in the open paddock. Sites 

in the south of the paddock were only used in south winds.



Chapter VII

Grazing movement in the open paddock.

The previous chapter has examined each of the foci of non-grazing 

activities. It is possible to predict when these foci are used, and 

it is from them that grazing periods begin. The two chapters 

following this consider some aspects of diet selection once the sheep 

are in a given area of the paddock. In this short entr'acte, I 

examine movement in grazing, which determines the areas in which diet 

selection will occur after the sheep have left a rest, shade, camp or 

watering site.

I have already remarked on the possibility of 'directed grazing'. 

There are, then, two circumstances in which it is necessary to consider 

movement in grazing - when the animal is grazing towards a definite 

goal, and when it is simply grazing (which I shall term 'undirected 

grazing' hereafter). The two important questions are what conditions 

induce directed grazing, and how speed and direction is determined in

undirected grazing.
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(a) Directed grazing.

If the occurrence of directed grazing is dependent on urges other 

than hunger reacting with the hunger trigger, as discussed in Chapter 

VI and as indicated in data such as that presented in Figure VI.6, then 

it should occur at times of year and of day when the animal is likely 

to be driven by these other urges. These times should normally be 

near the dawn and dusk watering periods, and towards the time of entry 

to shade. A similar effect may occur at night before camping, but I 

have only anecdotal information on this.

Table VII.1 presents the correlations between various environ

mental factors and the proportion of grazing groups that are moving 

significantly (i.e. [gm+mg]/[g+gm+mg]). Time of day has been included 

in the analysis as a binary index for records made near dawn, towards 

the end of morning grazing, midday, as grazing begins again in the 

afternoon, or near dusk.

Over all the data (1980-83), there is a clear between-season 

effect, shown also by maximum temperatures and vegetation indices. 

Increasing numbers of subflocks show directed grazing as ephemeral 

presence declines between summers, although the seasonal effect is 

stronger. Time of day is most significant in predicting directed 

grazing, however, with increased amounts at dawn and dusk, and a 

consistent lack of directed grazing in the middle of the day. 

Movement increases on clear days and on days on which shade was used, 

but the correlations with time of day suggest that this may be related 

to the need to water on days when shade is used, rather than to the use

of shade itself.
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Table VII.1

The effects of various environmental variables on directed grazing 
under different conditions in Jervoise. Pearsons correlation 
coefficients between the arcsine transform of the proportion of all 
grazing groups (g+gm+mg) that are showing significant movement (gm+mg) 
and environmental variables. Records with less than 2 grazing groups 
are omitted.

All data Summers Winters
r P r P r p

Variable & range

Season (-1,1) .19 .004 n.a. n.a.
Max temp. ( ° c ) .19 .004 .11 - .02
Cloud (0-8) -.14 .031 -.21 .007 -.12
Wool length (m) .02 - -.02 - -.20
Shade use (0,1)1 .26 <.001 .21 .008 -.27

Shrub condit (1-11) -.13 .043 -.06 - n.a.
Ephem. condit (0-6) -.28 <.001 -.17 .029 .20

Near dawn (0,1) .27 <.001 .27 .008 .15
Mid morning (0,1) -.16 .012 -.26 .001 .22
Near midday (0,1) -.25 <.001 -.31 <.001 -.02
Mid afternoon (0,1) -.15 .020 -.09 - -.39 .034
Near dusk (0,1) .09 - .14 .067 .03

No. of map records: 248 179 28

- = p>.10; n.a.= not applicable (e.g. all data identical)
1 days on which >1 group used shade coded as 1

Thus directed grazing is most likely to occur at watering times on

days when water is needed , and perhaps on days when shade is used;

this corresponds with the predictions of Chapter Vl(b.iv). Directions 

and rates of movement may then be determined. Direction of movement 

will be related to the goal of the directed movement. Speeds in ’gm', 

’mg’ and 'm' range from about .5 to over 2.0 k h“1 (and sheep may run 

into water at up to 5 k h-1 from up to 500 m away).
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(b) Undirected grazing.

Undirected grazing is not confined to the ’unstressful’ days of 

winter: it may also occur throughout cooler summer days, and at 

restricted times on other days. Movement in undirected grazing may 

partially determine which shade and rest sites are likely to be used. 

The two components to movement are direction and speed. If popular 

beliefs are to be confirmed, direction of movement in grazing sheep 

should be strongly influenced by wind direction. I examine this, and 

the influence of vegetation quality on movement speeds.

(i) Direction of movement.

I have described good evidence to show that wind direction 

influences which part of a paddock is used. This influence is often 

presumed to be due to the effect of wind on movement during grazing. 

Alternatives could be that sheep move without grazing to an area of the 

paddock, and then proceed with their activities there, or that inter

mittent directed grazing movements are the dominant determinators of 

grazing location. In fact dramatic ’trekking' movements out from the 

waterpoint (cf. Squires 1974b), which were not immediately followed by 

the use of shade or a camp, were occasionally observed, not caused by 

any human agent. These were rare, so I hold to the precept of 

movement being congruent with grazing if a move to a non-grazing site 

is not involved. I assume that such treks were caused by some 

stochastic frightening event in the environment (kangaroos and emus, 

amongst other less-obvious agents, certainly caused movement by 

subflocks at times).

Direction of movement in grazing was the least deterministic
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section of Noble's model of sheep behaviour. It was selected 

randomly, with an unvalidated bias towards movement into the windwhich 

is increased at higher wind speeds, or biased in the current movement 

direction if there is no wind. Local effects of other factors such as 

slope have been hypothesised, but were not noted in Jervoise. Grazing 

along a contour on the steeper slopes in Adam's West and Wizzo North 

paddocks (locally up to 20°) was sometimes observed, but on most 

occasions slope seemed to be ignored. The presence of incised sheep 

tracks might have an effect on preferred directions of movement: this 

is certainly important in directed grazing. Sheep tracks are 

themselves dependent on paddock geometry and previous usage, so their 

effect could only be distinguished where a major re-arrangement of a 

paddock had occurred (e.g. movement of a waterpoint).

The question as to why sheep should respond to wind has received 

little attention in the literature. If an animal has no reason to 

move in any particular direction, one might expect that some default 

factor such as the sun or wind should be adopted to orient its other

wise random movements. Any other factors, such as steep slopes, or 

the frightening presence of a predator, will override the default. 

For a herbivore strongly dependent on smell, an obvious possibility 

would be to graze in the direction from which the next odour is coming. 

Because winds shift, different areas will be used on different days, 

which could be a practical advantage for an animal that is centring its 

activities on a single waterhole. In any case, one should not expect 

dependence on any default factor to be complete; agents that may seem 

trivial to humans, such as crowing birds or moving kangaroos, are bound 

to introduce a stochastic element. This inevitably requires a 

non-deterministic element in a model which cannot attempt to describe 

the sheep's environment and reactions with perfect knowledge.
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I have tested the hypothesis that grazing occurs into the wind by 

examining all records of the activity 'g' for movement direction in 

relation to wind direction and speed. Figure VII.1 shows wind and 

grazing directions for all the records in Jervoise and Wizzo North when 

there was a definite wind direction; all distributions are different 

to random (x̂ , p<.001 always). The distribution of recorded wind 

directions was not even, as is shown by Figure VII.1(a) and (d), so the 

total number of subflocks seen grazing in each wind direction is also 

shown in (b) and (e) for comparison with directions of movement. The 

number of groups actually grazing in each direction, shown in (c) and 

(f), does not relate closely to the other distributions. There is a 

clear dominance of north-south movement, especially in the narrower 

Jervoise with its single waterpoint; this implies that paddock 

geometry may be a dominant factor in influencing grazing movement.

Table VII.2 contains the correlations between numbers of groups 

seen in a given wind direction and the numbers moving in that 

direction. The correlations are never significant, and actually 

negative in Jervoise, due to the strong predominance of north-south 

movement. Because of this, the data from Wizzo North, which is 

more-or-less square, should be more reliable for looking at the effect 

of wind; here the correlations are always positive, but still never 

significant. The influence of wind direction may be enhanced in 

higher wind speeds, although there is no parallel sign of this in 

Jervoise.

The apparent importance of factors other than wind is indicated by 

Figure VII.2, which shows the movement directions in the two paddocks 

in calm conditions (i.e. I could not determine a wind direction).
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Figure VII.1: Recorded wind directions and grazing movement 
directions in Jervoise (a-c) and Wizzo North (d-f). (a) and (d), 
numbers of records for each wind direction; (b) and (e), numbers of 
sub-flocks seen in records from each wind direction; and (c) and (f), 
numbers of subflocks seen grazing in each direction.

Table VII.2

Correlations between the numbers of subflocks seen in records from 
a given wind direction and the numbers of subflocks seen grazing in 
that direction, for Jervoise and Wizzo North, under various environ
mental conditions. Statistic is Spearman's non-parametric correlation 
coefficient, all n=8, missing p-value indicates p>.10.

Jervoise Wizzo North
r P r P

All data -.38 - .67 .068
Summers -.24 - .51 -
Winters

1-9 k h"1 
10-25 k h"1

-.30 - .11 -
Wind speeds -.21 - .42 -
Wind speeds -.41 .60

All movement directions in Jervoise vs. all in Wizzo: r=.8l, p=.015
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Figure VII.2: Numbers of subflocks seen grazing in different
directions in calm wind conditions; (a) Jervoise, (b) Wizzo North.

These are similar to the windy data movements, especially in Jervoise 

(in Jervoise, Spearman's r=.95, p<.001; in Wizzo, r=.52, p>.10; for 

calm conditions in Jervoise versus Wizzo, r=.49, p>.10; all n=8).

The above results show that there are biases in grazing direct

ions, but that north-south movements dominate any effect of wind. 

Finally, I test whether movement directions when transformed with 

respect to wind direction are different to random. Figure VII.3 shows 

grazing directions relative to the prevailing wind direction for 

Jervoise and Wizzo North. All these distributions are significantly 

different to random (x^, p<.001). However, if grazing occurred 

consistently into the wind, there should be a peak at 'Same'. Such a 

pattern is never clearly seen, although there is some sign of it in 

stronger winds in Wizzo North.

As has been discussed previously, wind is known to have some



VII. Grazing movement 168

OPP - 3  - 2  -1  SOME 1 3 OPP 3 OPPSOME 1OPP -3  -2  -1

Figure VII.3: Grazing directions transformed for each records so 
that ’SAME' is numbers of subflocks grazing into the wind, 'OPP* is 
those grazing with the wind, and positive values are clockwise points 
in between. (a) all data from Jervoise; (b-d) Wizzo North, (b) all 
data, (c) records in wind speeds 1-9 k h-1, (d) wind speeds >10 k h_1 .

effect on the area of the paddock in use. Since it has little

influence on directions in grazing, this analysis therefore suggests

that the effect of wind may be more important in determining which

shade or camp site is used under given conditions. In other words,

the choice of a southerly campsite in south winds may be far more 

important to location the next morning than some small amount of 

movement south during the previous grazing period. I shall return to 

this point in Chapter X.
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(ii) Speeds of movement in grazing.

Movement speed in grazing is important in determining how grazing 

impact is distributed as animals move out from foci such as water, camp 

or shade sites. Noble (1975) found it necessary to include an ad hoc 

effect in his model whereby movement speed was increased if the sheep 

had ingested less than a threshold amount of food in a cell during the 

previous time step. My small enclosure work showed that speed is 

affected by vegetation quality or density (Chapter VHI(c.i)). I 

therefore tried to find a similar dependence in the open paddock. 

When a non-disruptive and reliable technique was finally devised, it 

was unsuccessful for reasons probably associated with universal poor 

vegetation condition.

I was trying to find a relationship between movement speed in 

undirected grazing and local vegetation condition - in particular the 

biomass and numbers of palatable shrubs, and biomass of ephemerals. 

On the scale of tens of metres there is considerable variability in 

these parameters in the open paddock. It was therefore necessary to 

be able to determine a subflock’s position accurately at frequent (e.g. 

5 minute) intervals without disturbing their behaviour. The subflock 

had to have recently started its grazing period, to allow time for 

enough records, and had to be grazing without apparent intent to move 

to water.

Initially I tried following a subflock on foot, remembering their 

position every five minutes and marking it with a peg as soon as I 

could catch up. I then returned later to measure the distance between 

the pegs and to characterise the vegetation on a 30x3 m2 quadrat

between each pair of pegs. It was difficult to be sure of not
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affecting the animals’ movement, and to remember the positions 

accurately when they were moving slowly or in open vegetation. 

Alternative triangulating methods would have been cumbersome, and 

required at least three people.

Finally a photographic method was developed. From a stationary 

vantage point (e.g. the top of a Toyota), with 400ASA colour print film 

and a 500mm lens, I took a photograph of a subflock every five minutes. 

The animals could be up to 1 km away, and the best accuracy was 

obtained if they were moving across the field of view. The film was 

then processed and printed cheaply. From the same vantage point, I 

would then direct a helper with a walkie-talkie to the centroid of the 

subflock in each photo; detail was usually adequate to position pegs 

to within 2m using the shrubs observable in the photo. This part was 

very quick, and I could then return alone later to measure distances 

and vegetation. The method had the advantages of being remote, of 

using two people only briefly and at leisure, of using already 

available equipment, and of being cheaply aborted if a watch was 

unsuccessful. It required reasonably calm weather, and had to be used 

during the morning grazing period to avoid heat haze. As with 

previous methods, it still involved many wasted early mornings when no 

suitable subflocks could be found, or they changed behaviour pattern 

during the watch.

This technique was used in summer 1982-83. Out of about 15 early 

mornings, I obtained four records of reasonable length. One showed no 

significant variation in movement speeds. The others certainly 

contained variation in speeds, but this could not be related consist

ently to vegetation parameters. The vegetation in any single location 

was in such uniformly poor condition that a much more detailed study of
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the remaining plant biomass would have been necessary to find the 

parameters, if any, that the sheep were selecting by (e.g. perhaps 

water content).

I believe that this technique would be useful in future studies, 

lthough radiotracking would be an alternative. Results would

probably be clearest if there was spatial variation in the quantity of 

ephemeral material when it is at a low level, as often occurs in late 

spring.

(iii) Summary: grazing movement.

Directed grazing occurs at times of year and times of day that are 

compatible with the hypothesis that it is a response to need for water 

and shade. Undirected grazing is more strongly influenced by paddock 

design than by wind direction, since the location of shade and camp 

sites seems more important than movements during undirected grazing in 

determining which area of a paddock is in use under given conditions. 

An attempt to link movement speeds in the open paddock with vegetation 

quality was unsuccessful, primarily due to the poor condition of the

vegetation.



Chapter VIII

The grazing period in small enclosures: activities and movement.

In the previous three chapters, I have tried to establish where 

grazing will occur in the open paddock, and especially where grazing 

periods will begin. In this chapter and the next, I turn to small

enclosure work to examine the process of grazing in more detail.

An animal’s intake of a plant food type in a given area is 

determined by the following factors:

1. the instantaneous intake rates by the animal for that food type,

2. the animal's preference for that food in that area,

3. the proportion of time actually spent eating by the animal, and

4. the rate of movement of the animal through that area.

From the point of view of the plants rather than the animal, trampling 

and wastage are also important, as are other factors which operate at a 

finer scale.

In this study I have tried to examine the principles involved in 

the variation of some of these factors under different forage 

conditions, rather than simply describing values applicable to a single 

vegetation type. The latter are needed for a model of a given area, 

but an understanding of the principles is necessary to effect transfer 

of the model to other areas, and to delineate the parameters which need 

to be measured for the new site.

The next chapter concerns itself with the finer details of intake
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rates, and how selection changes with satiation. It also briefly 

examines switching rates between plant individuals and species. On 

trampling and wastage I have little data, and I do not mention them 

further. This chapter describes the small enclosure design and 

techniques used in this part of the study. I then discuss the changes 

in major activities during the grazing period, and examine movement

speeds.
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(a) Small enclosure work: methods and analysis.

The small enclosure work was based on detailed observations of the 

grazing behaviour of groups of three sheep in 0.1 ha enclosures 

containing variously-treated vegetation types. In this section I 

briefly outline the experimental designs and data handling techniques.

(i) Observation Runs and designs.

Between April 1981 and May 1983, small enclosure observations were 

carried out in six sets of trials: I refer to these as Runs 1 to 6. 

Each Run consisted of a number of acclimatisation trials, during which 

a new group of sheep became used to my presence, and then usually nine 

trials from which the data was actually analysed. The dates and 

general characteristics of the Runs are given in Table VIII.1.

Run 1 was mostly exploratory, and will not be greatly referred to. 

Each of the other Runs involved observations in three different 

vegetation treatments. Figure VIII.1 shows a typical fencing layout. 

Three 0.1 ha enclosures were located in uniform vegetation, with a 2 ha 

holding yard beside them in the same vegetation. Observations were 

made from the roofrack on a Toyota, so observation points were placed 

along an existing track where possible. There was a pen around the 

waterpoint into which the sheep could be mustered from the holding 

yard, and from which they could be released with minimal handling into 

any of the enclosures. In Run 4, I examined the effect of experience 

in the holding yard, so I built three separate enclosures with their 

own holding yards in different vegetation types (in West End, Depot and 

Chimney Yards paddocks); the design was otherwise similar to that 

described below, except that all trials in one vegetation type were
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Table VIII.1

Summary of Runs: dates, numbers of trials (N), shrub vegetation 
treatments in enclosures and holding yards, locations, duration of 
overnight penning (H, in h) and numbers of animals used in all.

Run Date N Treatments1 Holding 1 Paddock H Total
no. (shrubs) yard location sheep

1 Apr 81 5 Mix Mix Chyds2 13-14 4

2 Nov-Dec 81 9 Bb Chyds 10 9
Sb3 Mix
Mix

3 Jan-Feb 82 9 Bb Mix Chyds 10.5 9
Sb
Mix

4 Apr-May 82 9 Bb Bb West End 12.5 3
Sb3 Sb3 Depot
Mix3 Mix3 Chyds

5 Nov 82 12 40:604
55:45
20:80

Mix Barbers 10 9

6 Apr 83 9 50:50 4 5 
60:40 
20:80

Mix Barbers 12.3 3

i Treatments: Sb = saltbush only, Bb = bluebush only , Mix = mixture
2 ’Chyds' = Chimney Yards paddock
3 significant amounts of ground material present (usually dry) 
Bb:Sb shrub biomass ratios, by dry weight (approx).

5 newly germinated ephemeral material in early trials.

consecutive, and four days acclimatisation to the holding yard were 

permitted.

Vegetation treatment was achieved by removing the above ground 

biomass of unwanted shrubs and herbs by chopping, hoeing and sweeping. 

One enclosure usually required at least a full day’s work. Table 

VIII.2 details the vegetation treatments in each enclosure for each 

Run, and the enclosure names. Figure VIII.2 illustrates the approx-
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EXPERIMENTAL DESIGN OF TREATMENTS 
RUNS 5 & 6 ('Barbers')

HOLDING YARD

water

fences
subdivision

OBSERVATION
POINTS

RATIOS ARE 
SALTBUSH : BLUEBUSH 
DRY-WEIGHT BIOMASS.

'cells '

Figure VIII.1: Experimental design and layout of enclosures in 
Barbers paddock for Runs 5 and 6: similar arrangements were used for 
Runs 1, 2 and 3. (Temporary gates used for mustering and penning 
animals overnight by water are not illustrated). The subdivision into 
'cells' was used in Run 6 (see Chapter IX(a.i,b.v)).
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imate biomasses for each set of enclosures. It should be noted here 

that this method of vegetation treatment removes biomass by reducing 

shrub density, which is very different to an equal amount of biomass 

reduction by grazing; in the latter case, a selected (most palatable) 

element of the vegetation is removed, both inter- and intra- 

specifically.

Table VIII.2

Vegetation parameters used for Runs 2 to 6: shrub biomasses were
assessed intermittently using the ’Adelaide' technique (see Chapter
IV(b)). All weights are kg dry weight after 60h at oo o o o

Run Enclosure Numbers Bluebush Saltbush Total Approx Total
no. name of shrubs shrub ground biomass

2 NW1 180 18.0 - 18.0 .5 1 18.5
NW2 269 14.3 14.7 29.0 . 5 1 29.5
NW3 224 - 15.6 15.6 2.01 17.6

3 NW1 180 14.0 - 14.0 - 14.0
NW2 269 13.8 10.7 24.5 - 24.5
NW3 224 - 11 .6 11 .6 1 .O1 12.6

4 West End 153 41 .5 - 41 .5 - 41 .5
Depot 461 - 29.0 29.0 3.6 32.6
Chyds 286 14.7 5.2 20.52 4.1 24.6

5 North 460 10.1 13.7 23.8 - 23.8
Mid 421 10.6 9.0 19.6 - 19.6
South 445 3.3 16.4 19.7 — 19.7

6 North 446 10.1 10.6 20.7 1 .O3 21 .7
Mid 400 12.6 8.1 20.7 .93 21 .6
South 445 3.3 15.1 18.4 1 .03 19.4

1 post hoc estimates to nearest .5 kg
2 includes 0.6 kg Chenopodium ulicinum
3 green, newly germinated, mostly eaten in the first trial in each

enclosure: all other ground material was dry, mostly grass and
bassias, except for some green grass in Run 4 Chyds.

Sheep were obtained from an open paddock, and marked so as to be 

individually identifiable. They were allowed several days in which to 

become used to the holding yard and water arrangements. Then they
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Treatment b lomasses
□  Bb a  Sb 0 T o t a l

RPR 83RPR 82FEB 82

SB MIX N O R T H  MID S O U T H

Figure VIII.2: Estimated biomasses in each enclosure used for the 
small enclosure work (variations between Run not illustrated). Dashed 
lines show total biomass for each treatment. ’BBf, 'SB' and ’MIX' refer 
to the West End, Depot and Chyds enclosures of Run 4 respectively.

were mustered several times, and observed in an enclosure similar to 

the treated ones; they soon became indifferent to my presence and that 

of the Toyota, providing that I did not move significantly. Any 

exceptionally nervous or aggressive animals were removed at this stage 

(if they had not already departed over the fence). This was usually 

one or two sheep out of about 15, so it is not considered to have 

affected the data with regard to the ’average’ sheep.

Each trial in a Run consisted of the observation of the entire 

early morning grazing period on one day. This grazing period was more 

easily synchronised with open paddock behaviour, and some observations 

that were made of afternoon grazing periods suggested that there were 

no qualitative differences. The three sheep to be watched were penned 

just before last light on the previous evening. Overnight they had
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water available ad lib, but usually no food. They were released as 

soon after first light as the vegetation was visible, usually within 20 

minutes of the departure from camp by sheep in the open paddock. They 

would graze for between one and three hours, during which time watering 

was not permitted.

The general Latin Square observation design is shown in Figure 

VIII.3. Statistical analysis of previous studies (Dudzinski, 

pers.comm.) had suggested that cycling on a longer than three-day 

period for a given group of sheep should result in no auto-correlation 

with regard to memory in trials of this sort. The sheep could then be 

regarded as being drawn at random from the population, although fixed 

inter-individual differences could not be discounted. For Runs 2 and 

3, therefore, 9 sheep were used in three fixed groups; each group was 

watched in each enclosure, leaving a day between each set of three 

trials to guarantee the three-day gap. During each trial, I would 

observe each animal for 10 minutes in turn, in strict cycle (also 

cycling between the first observed in replicate trials), or watch one 

animal throughout (cycling through animals between trials).

In the first three Runs, I found no evidence of inter-individual 

differences. I performed various ANOVA tests, based on the Latin 

square design, which showed no significant differences between 

replicates, between animals or between groups of animals either in time 

spent in major activities or on transition matrix patterns, and I do 

not discuss these further. As a consequence, in Runs 4 and 6 I used 

only three sheep. This permitted stricter replication. In Run 5, I 

was helped by Dr Imanuel Noy-Meir and Mr Peter Cochrane, and we used 9 

sheep again since three trials were run simultaneously. Again no 

differences in the major activity parameters could be found (in
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Replication of given enclosure

Enclosure

Figure VIII.3: Idealised Latin square design used for 
replication on each each enclosure within one Run. First number in 
each cell is sheep group (Runs 2,3,5) or sheep individual (Runs 4,6) 
being watched; second number is overall day of observation (one day 
was usually also left between sets of replicates), except for Run 5, 
where the added complication of three observers is not shown.

transition matrix or stationary analysis) which were attributable to 

individual animals or observers, although one group of sheep grazed 

consistently longer than the other two in Run 5.

The sheep were watched until they stopped grazing. Where 

possible this was defined by the time at which they lay down; 

sometimes they did not do so, and I had to use my judgement. Most of 

the following discussion is concerned with the earlier part of the 

grazing period for which the preciseness of the definition does not 

matter. Near the end of a grazing period, the amount of time spent 

inactive rises rapidly. Where I discuss the whole grazing period, 

therefore, I usually describe its length in terms of the total time 

spent active, which minimises errors due to the inaccurate determin

ation of the cessation of activity.
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After the end of records, the sheep were returned to the holding 

yard. The time to this release was varied by several hours to avoid 

the development of any learned expectations which might have shortened 

subsequent grazing periods.

(ii) Activities and data-handling.

Throughout the grazing period, the animal under observation was 

assigned into one of 5 main activities, each of which could be 

subdivided further. The activities, and the names used below, are 

given in Table VIII.3. For Runs 1 to H, these codes were typed 

directly into a handheld, battery-driven data-storage device. This 

unit, a NORAND 101 XL ALPHA1, could store up to about 5000 entries, and 

possessed an internal time-base. When 'enter' was pressed, the 

previously keyed activity code was stored with the time spent since the 

previous 'enter'. This record could then be dumped directly to a 

Horizon NorthStar micro-computer which was kept on mains power at the 

field centre.

For Runs 5 and 6, the grazing period was described on a cassette 

tape recorder. Later in the day, this record was replayed at the 

field-centre, and converted into the same codes using the internal 

time-base of the Horizon. Tape-recording was more discriminatory of 

short activities, but required two processings, and well over twice the 

data collection time per day.

Once on the computer, the data was annotated and saved on discs 

immediately. It was then available for analysis that same day. A 

considerable number of display and data handling routines were written 

in Horizon NorthStar BASIC. The two general analysis approaches, used
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Table VIII.3

Activity codes and definitions used in small enclosure observations.

Code Name Activity description

N NULL animal inactive: includes brief inactivities, ruminating, 
lying down, watching galahs, etc.

M MOVE moving without eating (may include chewing): numbers were 
usually appended to indicate estimated distance of 
movement in m. MOVE must be >.5 m to over-ride
any simultaneous activity.

A TRY sniffing at vegetation without eating (second letter gave 
vegetation type, as for EAT).

C CHEW chewing, with head away from vegetation, movement <.5 m

B EAT actually biting at vegetation (second letter gave type of 
vegetation: main categories, G=ground, B=bluebush, 
S=saltbush).

BGM continuous nibbling along ground whilst moving, where no 
movement between nibbles exceeded .5 m, but total 
distance moved did.

in this chapter and the next, are a static analysis of time spent in 

different activities during different intervals of the grazing period, 

and a transition matrix or Markov chain approach which permits the 

examination of dynamic pattern during the grazing period. Transition 

matrices are not easy to treat statistically. Information statistics 

may be used to check the significances of different orders of 

transitions, and special versions of tests can compare between or 

within matrices. I was helped in developing programs for these by Dr 

Kim Malafant, and the literature of Anderson & Goodman (1957), Macrae 

(1971), Chatfield & Lemon (1970) and Thomas & Barr (1977). I do not 

refer to these sources again.
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(b) Grazing: the major activities.

In this section I first examine the influence of conditions on 

total grazing time. I then turn to the coarse division of grazing 

into the activity categories of NULL, MOVE, EAT, CHEW and TRY, and show 

how the time spent in these varies through the grazing period. In 

doing so, I sometimes assume that time is useful as a measure of 

successful effort in eating; this assumption is justified in the next 

chapter.

(i) Total active grazing time.

As mentioned above, the total time spent active (that is, total 

observation time less time spent NULL) is an indicator of total time 

spent foraging which minimises the errors in determining the end point 

of grazing. I soon noticed that the sheep seemed to graze for a 

shorter period in summer observations than in autumn. This might have 

been due to a shorter penning time and consequent shorter starvation 

time in summer: however, the grazing periods were shortest in early 

February, whilst penning was shortest in December. Alternatively, 

Noble (1975) had reported less intake when there was very little 

vegetation available.

I examined the effect of season (which is centred in January) as 

opposed to time of overnight penning (related to daylength and centred 

on December 22), as well as environmental and vegetation parameters, on 

active grazing time for all the records. No causation can be 

inferred, of course, but the correlation with season is the strongest 

(r=-.79, n=53, p<.0001), as well as with seasonal temperatures. 

Within season (e.g. Nov-Dec or Apr-May records), there is no
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significant effect of any climate parameters (temperatures, cloud, 

wind), nor vegetation quantity (biomass of shrubs, saltbush alone, 

ground material or total biomass on offer in the enclosure) nor phase 

of the moon. Multiple regressions confirm this pattern.

I conclude that length of grazing period is more-or-less 

independent of day-to-day climate, and of vegetation availability, 

provided that a reasonable quantity is available. Some trials in 

smaller enclosures with much less vegetation resulted in shorter 

grazing periods, but the quantities present in 0.1 ha seem to be 

adequate for normal behaviour. Over three trials in one enclosure, 

the three sheep would typically eat 3 to 4 kg, or at most 25% of the 

biomass on offer; this proportion was smaller in the later Runs. The 

variation in length of early morning grazing periods may be related to 

physiological adjustments in metabolic heat production as a response to 

mean temperatures. I do not have data to quantify the effect.

(ii) Major activities: the whole grazing period.

Figure VIII.4 shows the mean proportion of observed time spent in 

each major activity, averaged over the trials of each Run. The 

pattern is consistent between Runs except that time spent inactive 

(NULL) varies. This inactivity shows no significant correlation with 

any climatic, seasonal or vegetational characteristics; it is probably 

largely dependent on how easy it was to be sure that grazing had 

finished, which in turn depended on chance observational events which 

influenced whether or not the sheep lay at the end of a trial.

The righthand column of each plot shows the division of the active 

time into MOVE, TRY, CHEW and EAT. Again the division between
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RUN
1
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4
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Move
Try
Chew
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Figure VIII.4: Distribution of time between major activities over 
the whole grazing period, for each Run. Lefthand histograms show the 
percentage of total time time spent in each activity; righthand column 
shows how active time (total time less NULL) was apportioned between 
activities. (Y-axis scale is 0-100).
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movement and eating-associated activities is very consistent: time

spent moving is highly correlated over all trials with active time 

(r=.73, n=53, p<.0001). A mean 18% of active time is spent moving, or 

of total time.

TRY and CHEW account for a small and variable proportion of active 

time, 1-10 and 1—16% respectively (means 7 and 3%, n=53 trials). Much 

of this variation probably depends on vegetation type and visibility 

from the Toyota. Either activity could occur during eating whilst the 

sheep’s head was ensconced in a shrub; under these circumstances these 

activities were indistinguishable from eating and they would have been 

included in the EAT record. They do not vary consistently with

parameters of climate or vegetation. These two activities are not 

discussed much further below, but are sometimes included with EAT as 

eating-associated activities.

(iii) Major activities: time courses through the grazing period.

Regardless of how intake rates and selection change during a 

grazing period, net intake per unit time will be constrained by the 

time spent actually eating. Similarly, total movement will be

constrained by time spent moving as well as movement speeds.

Figure VIII.5 shows the mean percentages of time spent in the 

activities NULL, MOVE and EAT in each 5-minute period for all trials of 

Run 4 and 5. The general pattern, shown by the spline-fit curves, is 

a gradual increase in NULL, compensated more-or-less by declines in EAT 

or MOVE. The full grazing periods are truncated in these Figures to 

the length of the shortest trial in the Run, so the end of the grazing 

period is not illustrated. Figure VIII.6 shows the trials in the
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(a ): Run 4

Hove
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Time Into grazing period (min)

(b ): Run 5
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Figure VIII.5: Mean time courses of the activities EAT, MOVE and 
NULL through the grazing periods of (a) Run 4, (b) Run 5 and (c) Run 6. 
Points show mean percentage of total time spent in the given activity 
and one standard error for 9, 12 and 6 trials per Run respectively; 
line is spline fit to these points. Only the first 100 minutes of the 
grazing period are shown. (Continued on next page).
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(c ): Run 6

Move

Nu I I

Time Into grazing period (min)

Figure VIII.5 (ctd): (c) Run 6; see previous page for details.

Depot enclosure of Run 4, and one of these trials in more detail, to 

give an impression of within enclosure and within trial variability. 

At the very end of the grazing period, NULL increases rapidly to 10056. 

As can be seen from Figure VIII.6(b), this is usually associated with a 

break in gradient from a gradual rise in NULL to a rapid change to 

total inactivity. These general patterns were very consistent in all 

Runs, although there were variations in rates and asymptotes.

It is apparent from Figure VIII.5 that there is usually some 

decline in MOVE during the grazing period, but that this is not 

necessarily linear. Over all the Runs, regressions of time spent 

moving in each 5-minutes against total time into the grazing period
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(a) Run 4, Depot enclosure.

Move

Time Into grazing period (min)

(b) Run 4, 3rd trial In Depot

Move

Time Into grazing period (min)

Figure VIII.6: Time courses of major activities through the 
grazing periods of (a) all 3 trials and (b) the 3rd trial only in the 
Depot enclosure of Run 4 to illustrate daily variability. Details as 
Figure VIII.5, except that no error bars are plotted on the single day.
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sometimes show significant declines, but regressions against active 

time do not. In Figures VIII.5 and 6, ’EAT’ refers to eating only; 

regressions of all time associated with eating (i.e. EAT+CHEW+TRY), 

however, show the same pattern as MOVE. Clearly the data contains 

non-linear variation, but, in general, the decline in active time 

through the grazing period is absorbed approximately proportionally by 

movement and activities associated with eating.

(iv) The cyclic nature of inactivity.

It may have been noticed that the spline-fit curves of Figure 

VIII.5 hide a cyclical variation in the actual values, which is 

superimposed on the trend. When it is recalled that each point is an 

average over nine trials, the remarkable regularity of the cycles 

becomes apparent. Plots of EAT or MOVE as proportions of active time 

remove this effect, so it is due to cycling in inactivity. It may be 

seen in the data of most of the Runs, with a consistent period of 

between 20 and 25 minutes. During the observations, it was noticed as 

an increase in standing around, and sometimes ruminating, about every 

20 minutes, being more apparent towards the end of the grazing period. 

It may be related to physiological function in the rumen, or digestion. 

It is insignificant at the time scale of the model, but it reinforces 

the need to use proportions of active time in the next chapter.

(v) Summary: major grazing period activities.

Total time of grazing is related to seasonal variations, probably 

in metabolic requirements; early morning grazing periods are shortest 

in late summer. Total time spent in different major activities (NULL, 

MOVE, EAT, CHEW, TRY) is largely independent of external factors of
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climate or vegetation. Time spent moving is about one fifth of time 

spent active in the grazing period as a whole. Time spent inactive 

increases slowly through the grazing period, increasing more rapidly 

only at the very end of grazing. Concomittantly, time spent moving 

and eating decrease proportionally.
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(c) Movement speeds.

Foraging models generally predict that an animal should modify its 

rates and patterns of movement to match the foraging conditions that it 

is experiencing. In this section, I describe evidence that, in small 

enclosures at least, sheep do move faster in poorer foraging 

conditions, thus potentially searching a larger area. In these 

trials, however, it seems that this may only be a response to greater 

mean free path between food items. Attempts to confirm these findings 

in the open paddock have already been described (Chapter Vll(b.ii)).

I also examine changes in movement speeds through a grazing period.

(i) Movement speed and forage condition.

In all trials of Runs 2, 3 and i|, the distance that an animal 

moved was recorded at the same time as recording the time taken in 

moving. I estimated these distances by eye, but the estimates 

appeared both reasonably accurate (±1 m each time) and consistent. 

They could be checked against the regular 5 m spacing of the 

fenceposts, and with pegs put in at the 5x5 m2 cell boundaries within 

each enclosure. Absolute accuracy is not important to most of the 

argument below, but should, in any case, be improved after averaging 

over a whole grazing period.

Firstly, using the Latin Square design described in the previous 

section, I found no differences attributable to individual animal, day 

of replication or section of grazing period (comparing the 1st, 2nd and 

3rd third of each grazing period). ANOVA’s of animals x treatments, 

animals x third of grazing period, or treatment x day of replication 

all showed no interactive effects, and no differences which were not
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solely a result of treatment type (all p>.10).

Because the grazing periods are not necessarily of the same total 

time, I compare now the mean speed for the trial, defined as the total 

estimated distance moved during the period divided by the total time 

spent in the MOVE activities. Table VIII.4 presents these mean speeds 

for each treatment in these Runs; the data are also plotted in Figure 

VIII.7. In general (as Chapter IX will show), ground material is 

preferred by sheep over saltbush, which is greatly preferred over 

bluebush. In all three Runs, the ’bluebush-only* enclosure contained 

the least preferred species at the lowest density of individuals, 

though not necessarily the lowest total biomass (cf. Table VIII.2, in 

particular, Run 4, West End enclosure). There are significant 

differences between the enclosure treatments over all the data (ANOVA, 

between treatment, ^g=5 .6 t p=.012) but not between the Runs

^2,18=1*2, p>.10, and no interactions). Evidently the state of the 

forage on offer has some effect on the animals' movement speed.

It is not clear what may cause this change in speeds from the 

biomasses as presented. In particular, the treatments other than 'BB' 

in Figure VIII.7 all contain more preferred species, more variety of 

species, a higher density of individuals, and a greater quantity of 

ground material than the bluebush-only treatment.

From the original data, I have calculated the mean length of each 

movement; Table VIII.4 shows this, and the mean distance between shrub 

centres for each enclosure. Again there is a significant difference 

in mean movement length between enclosures (ANOVA F^ ^ = 1 0 . 8 ,  p=.001) 

but not between Runs P>*10).  Furthermore, the correlation 

between mean length of movement and mean inter-shrub distance is almost
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Table VIII.4

Mean movement speeds for each treatment of Runs 2, 3 and 4: also 
given are mean length of movement, and mean distance between shrub 
centres (D), calculated by assuming random distribution of the shrubs 
in the treatment (when the mean distance is given by 1/(2/p), p=mean 
shrub density).

Run Enclosure Mean speed Mean distance D
no. name (treatment) (m s”1) moved (m) (m)

2 NW1 (Bb) .449 3.02 1.18
NW2 (Mix) .419 2.15 0.96
NW3 (Sb) .393 2.04 1 .06

3 NW1 (Bb) .439 2.70 1.18
NW2 (Mix) .403 2.01 0.96
NW3 (Sb) .362 1 .92 1 .06

4 West End (Bb) .470 2.68 1 .28
Chyds (Mix) .411 1 .75 0.74
Depot (Sb) .411 1 .98 0.93
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Figure VIII.7: Mean and standard errors of speed of movement in 
three replicates for each enclosure of Runs 2, 3 and 4, plotted against 
general vegetation type.
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significant (over all trials, r=.39, d.f.=7, p=.07). Thus higher 

speeds occur with longer movement distances in enclosures with greater 

distance between shrubs. This may be interpreted to imply that longer 

movements permit the attaining of a higher speed.

The forage condition correlates for this change in movement speed 

were further investigated in Run 6, where all three enclosure 

treatments contained both a similar total biomass and a similar number 

of individuals. Each enclosure was broken into 16 cells, however, and 

these contained a considerable range of different biomasses and 

numbers. There is the inevitable correlation between biomass and 

numbers of plant individuals in a cell although this was better for 

saltbush alone (r=.85, n=48, p<.001) than for all shrubs (i.e. bluebush 

and saltbush, r=.59, n=48, p<.001). The task of estimating movement 

distances as well as tracking the animals' movements between the 16 

cells of each enclosure proved too much, so here I recorded only the 

time spent moving.

The correlations between mean duration of each movement and 

various vegetation parameters are shown in Table VIII.5. During these 

trials, there was some ephemeral biomass, and over 9056 of shrub 

foraging was on saltbush (see Chapter IX(b)). The results suggest 

that the relatively non-preferred food-types (here the bluebush) are 

not important in affecting the movement parameters. However, because 

the saltbush numbers and biomasses are so highly correlated, it is not 

possible to confirm the importance of shrub density as opposed to total 

biomass.

If movement speeds in undirected grazing are primarily determined 

by distance between potential food items, variation in speed is not
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Table VIII.5

Correlations between mean time in each move and vegetation 
parameters for the 16 cells of each of 3 replicate trials in the 3 
treatments of Run 6. n=l44 throughout.

Vegetation parameter r P

total biomass (Sb+Bb) -.13 .116
saltbush biomass -.48 <.001
total no. of shrubs -.38 <.001
no. of saltbushes -.50 <.001

likely to be significant in an open paddock when grass is common. 

This may also be the reason why no single vegetation parameter appeared 

to explain the differences between the treatments of Run 2 to since 

quantities of ground material and shrub densities were confounded in 

many cases.

(ii) Movement speed through the grazing period.

Two alternate effects on movement speeds might be expected during 

a grazing period: a decrease in speed might occur due to more careful 

searching for small food items, or an increase might result from the 

acceptance of fewer food types as satiation proceeds, thus increasing 

mean free paths between acceptable food items.

Using the data collected on movement speeds as described above, I 

tested for these possible changes during the grazing periods of Run 4. 

The mean speed was calculated for each 20-minute period in each trial, 

up to 100 minutes (this being the length of the shortest grazing 

period). Although speeds varied from .302 to .539 m s-1 during 

different 20-minute periods, no significant correlation (or even trend) 

could be found with time for the whole run, or within individual
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treatments. The only significant differences were those between 

treatments, as discussed above.

Movement also occurs in the special ’lawn-mowing' activity of BGM 

(see Table VIII.3). This activity usually increases during the 

grazing period. I have no exact data on movement speeds in BGM, but 

they are very much slower than MOVE (by definition). Its increase 

might therefore be seen as supporting the first alternative above, of 

movement speeds declining later in the grazing period. It is, 

however, linked to increased foraging on the ground (discussed in 

Chapter IX(b)), and should probably be regarded in the light of this, 

rather than movement speeds per se.

(iii) Summary: movement speeds.

Movement speeds in grazing in small enclosures differ 

significantly in different forage conditions. Higher speeds seem to 

result from increased mean distances between food items in poorer 

forage. Movement speeds do not change during grazing periods 

independently of forage conditions. Instantaneous speeds of movement 

in small enclosures varied from .3 to .54 m s-1 over 20-minute periods, 

corresponding to .15 to .27 k h“1 in overall activity, if 14$ of total 

time is spent moving. This is at the lower bounds of typical subflock 

speeds in undirected grazing in the open paddock, but does not include 

a small amount of movement in the activity ’BGM’.



Chapter IX.

The grazing period: intake rates and selection.

The previous chapter has examined movement in grazing, and has 

discussed how the amount of time spent actually eating declines during 

a grazing period. In doing this, I have implicitly assumed that time 

spent eating is a good indicator of net intake. This requires that 

intake rates be constant. In this chapter I first show that intake 

rates are indeed consistent between trials and plant individuals, and 

then examine whether they change within a grazing period. I then turn 

to diet selection, and discuss how it may vary during the grazing 

period. Finally, I touch briefly on a number of aspects that are 

important to individual plants, but are shown to be relevant at too 

fine a scale to be significant in the model.
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(a) Intake rates.

My small enclosure work has examined grazing by recording the time 

spent in different activities. A requirement of this approach is that 

time spent should be a reliable indicator of success or effort expended 

in an activity. This is particularly important in the interpretation 

of time spent eating different food items in terms of diet. In this 

section I therefore demonstrate that the net intake of a given species 

in a given condition is accurately related to time spent grazing that 

food type, for the shrub species at least.

It is important to know whether intake rates change during the 

grazing period with satiation. I therefore also show that there are 

no significant changes, and that eating seems to be an on/off activity.

(i) Consistency between plants and within trials.

During Runs 3 and 5, some mornings were given over to a different 

observational setup. For these trials, 10 plants each of saltbush and 

bluebush were cut and weighed to the nearest 0.1 g close to sunset on 

the evening before the trial. Eight plants of each species were then 

wired on to pegs scattered around a small (0.05 ha) enclosure, whilst 

the other two were wired outside the enclosure to act as controls for 

loss of moisture before reweighing (which was usually slight). The 

measured plants accounted for about 1/5th of the biomass on offer in 

the enclosure.

Next morning, three sheep were let into the enclosure, following 

the normal routine of other small enclosure trials, and allowed to
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graze until they sat down. Although the enclosure was only half the 

size of that used for the other trials, the sheep were well acclimat

ised to my presence and behaved as if undisturbed. Occasionally one 

of the test ’plants' would be a trifle unstable, but this did not worry 

the sheep.

Instead of recording the activity of one sheep, I recorded the 

time spent eating each of the test plants, which were individually 

identifiable by letters scratched in the ground beside them. When the 

sheep had finished, they were released as usual, and the 20 plants 

reweighed as soon as possible. The weight loss was then determined 

and corrected by the weight loss per unit weight of the controls. A 

few plants were trampled by the sheep, and these were omitted from 

analysis, so that intake rather than plant damage is recorded: the 

latter was too variable to be examined in this way. The weight change 

for each plant was then regressed against the observed time spent 

eating that plant to obtain an intake rate for each species, with an 

indication of variability.

For Run 6, I made biomass estimates in 16 cells within each of the 

three treatments before and after the nine trials (Figure VIII.1 showed 

the spatial layout of the enclosures). During the trials, I recorded 

not only the activity of the sheep under observation, but also the cell 

in which it was. I therefore know the total time that was spent 

eating each of the food categories in each cell by one sheep throughout 

the trials: this time can be used as an estimate of grazing time by 

all three sheep, on the assumption that the observed sheep at any time 

reflected the behaviour of the other two both in space and activity. 

An intake rate can then be obtained by regression, with an estimate of 

variability between the cells.
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The results show that there is a good correlation between measured 

offtake and time spent eating for each shrub species. Figure 

IX.1(a-d) are plots of time spent against offtake for all the data of 

trials from each of Runs 3 and 5, where each point represents one plant 

individual, being grazed by one to three sheep. I did not record 

which sheep individual was grazing at a given time, but from the 

tightness of fit there is little variation in intake rate between 

either plants or sheep. Some plants were grazed much less than

others, and some were clearly rejected on the basis of smell alone.

For Run 6, Figure IX.1(e) shows the plot of saltbush biomass 

change against three times the total time spent eating saltbush in the 

cells of the three enclosures that contained any of the species. 

This estimating method has greater scatter due both to the less 

accurate estimate of biomass change, and the assumption that all three 

sheep behaved identically. Too little bluebush was eaten in this Run 

to obtain a reliable estimate for its intake rate.

Table IX.1 shows the resulting intake rate estimates. Time is a 

good measure of intake rate on specified bushes: it is also a good 

measure when averaged over many bushes or days within a short period. 

There is also a reasonable consistency in dry weight intake over longer 

period. There is a much greater variability in ’wet’ weight intake

rates, especially in Run 6. Plants in this Run, which followed rains 

after a dry summer, had a high water content but had not put on much 

new growth. This suggests that the spatial patterning of leaves on 

the shrubs may be a more important factor in determining how much a 

sheep can cram into a mouthful than the contents of the leaves 

themselves. As bushes dry out into summer most years, and in periods 

of drought, they have a lower density of leaves, and this may result in
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Figure IX.1: Plots of dry weight offtake against time spent 
eating for intake rate trials of (a,b) Run 3 and (c,d) Run 5, where 
each point represents a single plant, and (e) Run 6, where each point 
represents a cell within one of the enclosures. (a,c,e) are for 
saltbush, (b,d) are for bluebush. Some negative changes in (e) relate 
to the accuracy of biomass estimation (Chapter IV(d.i)).
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Table IX.1

Mean intake rates estimated during Runs 3, 5 and 6 (see text for 
methods). Dry weights relate to oven drying at 80°C for 60h. n is 
number of shrubs (Runs 3 and 5) or cells (Run 6). 's.d.' is standard 
deviation on the origin regression coefficient; all r2 are significant, 
p<.001. 'Wet’ weight intakes were obtained by correcting dry weight 
rates for mean foliage water content at the time.

Run
Intake 

dry wt.
rates
s.d.

(g s 1 ) 
'wet' wt. r2 n

No. of 
trials

Saltbush
3 .21 .011 .34 .92 12 3
5 .15 .005 .22 .94 35 4
6 .17 .014 .61 • 37 44 (3)

Bluebush
3 .16 .013 .35 .88 10 3
5 .13 .005 .23 .92 34 4
6 (inadequate data)

a generally decreased rate of dry weight intake, as seen in Run 5.

I conclude that time is a good measure of intake where many bushes 

are involved within a short period. However, correlated changes in 

vegetation condition over periods of months and longer, and potentially 

between sites, mean that intake rates should not be expected to be 

consistent between Runs, nor between spatially well-separated 

enclosures. Although the difference between dry weight intake rates 

is not great between Runs, digestibilities, water contents and salt 

concentrations are hidden by this measure.

(ii) Intake rate changes during the grazing period.

The above analysis could disguise changes in intake rates during 

the grazing period. It will be seen below (section (b)) that there 

was an a priori reason to suppose that the early part of the grazing 

period might be different to the remainder in terms of instantaneous 

intake rates. Animals which are hungry might be expected to eat less
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selectively within a bush and consequently maintain a higher intake 

rate; alternatively, frenetic behaviour, as is sometimes seen early in 

the grazing period, might be inefficient and result in dropped food.

It was not possible to design an experiment of the form above in 

which the offtake weight changes could be determined for different 

intervals within the grazing period without disturbing the sheep. (A 

laboratory approach could be used for this, with regularly-changed 

artificial food containers). However, the times spent eating each 

plant were recorded continuously, and could therefore be distributed 

amongst different portions of the grazing period. Provided there is a 

reasonable scatter in usage between plants and in time, it is possible 

to use multiple regression techniques to see whether the relation 

between time spent and offtake is constant during different sections of 

the grazing period.

Table IX.2

Intake rate in the first 30 minutes of the grazing period, as 
compared to the remainder. Multiple regression coefficients for 
linear model, offtake = A * t(30) + B * t(remainder), where t is 
the time spent grazing a measured plant individual during the period 
indicated. Constants a and b are the respective predicted intake 
rates, in g d.w. s-’1 .

Run 0-30
A

minutes
s.e.

Remainder 
B s.e.

% S.S. 
explained

n Test
t

A^B
P

Saltbush
3 .204 .014 .225 .020 91 .5 12 .86 n. s.
5 .146 .009 .128 .015 92.7 35 1 .0 n.s.

Bluebush
3 .178 .024 .124 .034 88.1 10 1.3 n.s.
5 .120 .009 .118 .007 88.9 34 .18 n.s.

All multiple correlation coefficients are significant, p<.0001 
All A and B coefficients differ significantly from 0, p<.001

Table IX.2 presents the results of this approach for each species
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in each Run, where measured total offtake is the dependent variable, 

and time spent in the first 30 minutes or the remainder of the grazing 

period on a given plant are the independent variables. The data is 

such that significant relations may be found in all instances, although 

they do not explain any more of the variability than the simple 

regressions described above (see r2 in Table IX.1). None of the pairs 

of coefficients are significantly different to each other.

The analysis can be repeated for any time period division, 

although the partitioning of the data limits the reliability. On 

shorter partitionings, for Run 5, there was a significant increase in 

intake rate for saltbush only between the first 20 minutes of grazing 

and later. This effect is not large enough to affect the discussion 

of the next section, but may indicate that saltbush is grazed less 

efficiently in the earliest part of the grazing period.

In general, then, I conclude that intake rates within a species of 

shrub are approximately constant during the grazing period for a given 

vegetation condition. This suggests that eating, for shrubs at least, 

is an 'on/off' phenomenon, and that if an individual is to be eaten at 

all, it will be eaten as fast as possible.

(iii) Summary: intake rates.

Intake rates are highly consistent between sheep and between 

shrubs of the same species within a trial and a locality. They differ 

between species and change with long-term vegetation condition. They 

are probably related to the physical structure of leaf display in these 

shrubs. Intake rates are also constant within a grazing period.
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(b) Selection: scales of change in time and space.

'Traditional1 foraging theory is based on preference indices for 

different food types; for conditions of differing relative abundances, 

these result in different inclusions in the diet. Much of the optimal 

foraging approach is concerned with showing that these preferences do 

relate sensibly to measurable nutritive characteristics of the food 

types.

Implicitly, these preferences are often used as constants, 

although it is well recognised (for plants especially) that they vary 

continuously in time and within the food type. It is generally 

impossible to be sure that animals, especially herbivores, perceive 

their food in the same categories that the scientific observer may use: 

the species is often an inadequate category, as is clear from the 

sub-division of the cabbage or cattle taxa in our own foods. Even 

within what we label a single food type for our own consumption, there 

is continuous variation in quality. Individual plants are probably 

treated as 'patches’ by herbivores, since different plant sections 

certainly have different nutritional value. Sheep are known to select 

young leaf over old, for example.

Despite the limits imposed by these complications (or perhaps 

because of them), Noble (1975) found that a simple intake selection 

model described his grazing trials as well as more complex versions. 

This was based on the intake equation,

V c = Pi * b. / 2 (p± * b.),
where ĉ  and b^ are the consumption and biomass on offer of species i 

respectively, C = Ec^, and the sum is over all food types. , which 

he termed the preference rating for food type i, is the product of the
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probability of consuming food type i with the mean quantity consumed in 

a successful encounter: it should be a constant for given pasture 

conditions in this model. Noble recognised the need to allow p to 

vary with pasture condition, but did not have the data to include this. 

Although an approach to the variation might be by water content, I have 

not pursued the long-term preference issue. These changes would be 

related to general vegetation condition, which is presumed to vary 

significantly only on a timescale of weeks to months.

In the shorter term, I have tested whether and how diet selection 

changes within a single grazing period, and related this issue to 

Noble's intake selection model. Additionally, I examine the spatial 

scale at which the sheep selects, since this affects its perceived 

encounter rate with food types. In this section I show that selection 

does change on a timescale well within that of a single grazing period, 

and that the spatial scale is probably sufficiently small as to be 

effectively random.

(i) Changes in selection within a grazing period.

Table IX.3 shows the mean proportions of time spent on different 

major food types in each enclosure of Runs 2 to 6. The structure is 

similar to that of Table VIII.2 (the vegetation biomasses), which may 

be compared. The most obvious discrepancy between the two is the 

relatively large time spent searching on the ground even in enclosures 

where there was so little ground biomass as to make it impossible to 

estimate. In the West End enclosure of Run 4, for example, I had 

removed all ground material, raked and finally swept the area, yet 42$ 

of their eating time was still spent on the ground. Despite my 

efforts, there were obviously small amounts of dry grass and bassia
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seeds available, the latter potentially having a significant protein 

content. Their efforts did decline over the three trial days ($ of

eating time spent on the ground was 56, 38 and 33 respectively).

Their return rate on the ground in comparison to the shrubs was

miniscule, and, on the basis of estimated intake rates, over 95$ of 

their total intake was bluebush in this particular enclosure.

Table IX.3

Mean times spent eating the major food categories in each 
enclosure of each Run: times given as percentage of active time, to 
the nearest unit. Dashes indicate the absence of the food type.

Run Enclosure Eat Eat Eat Eat on Total
no. name bluebush saltbush shrub ground eat

2 NW1 32 - 32 20 52
NW2 29 20 52 12 63
NW3 — 25 25 43 68

3 NW1 56 - 56 6 62
NW2 29 30 58 10 68
NW3 — 34 34 36 70

4 West End 47 - 47 34 80
Depot - 24 24 51 75
Chyds 9 27 55 82

5 North 14 28 42 29 71
Mid 18 16 34 41 75
South 10 27 37 34 71

6 North 1 12 13 65 78
Mid 2 12 14 66 80
South 1 12 13 68 81

The distribution of intake through time was also not random with

respect to food type availability, which is more important as far as

spatial distribution of grazing impact in the open paddock is 

concerned. For Runs 4, 5 and 6 (2nd and 3rd replicates in each 

enclosure only for Run 6, for reasons explained below), Figure IX.2 

shows the mean proportion of active time spent eating shrubs or on the 

ground for every 5 minute interval into the grazing period.
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Figure IX.2: Time courses of eating activities through the 
grazing periods of (a) Run 4, (b) Run 5 and (c) Run 6; upper plot of 
each pair is for eating shrubs, the lower is for eating on the ground. 
Points show mean and standard error of percentage of active time spent 
in the activity during each 5-minute period for 9 (Run 4), 12 (Run 5) 
or 6 (Run 6) trials per Run. First 100 min of grazing period shown, 
curves are spline fits.
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Figure IX.2 (ctd): (c) Run 6 (see previous page).

The importance of the dichotomy between shrubs and the ground 

layer is clear here. Over the first 20 to 40 minutes of their grazing 

time in this vegetation, the amount of time spent by the sheep on 

eating shrubs declines from an initial high level to a lower plateau 

that is maintained for the rest of the grazing period. Time spent 

eating on the ground rises to a complementary plateau.

From the previous section on intake rates, these curves may be 

taken as approximately equivalent to intake (with a different scaling 

factor for each food type). The precise fashion in which this varies 

for the ground category is not known, but where there is very little 

ground material present this does not matter. Since these curves are 

repeated trials within the same enclosures, the effect is not a result 

of changing vegetation during the grazing period. Evidently the
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animals are changing the criteria by which they select their diet as 

the grazing period proceeds.

This pattern was common to all the trials of Runs 2 to 5, and to 

the later trials in each enclosure of Run 6. As mentioned, I was

unable to determine the intake rates for ground material by any method 

comparable to that used for the shrubs, but a maximal intake rate can 

be estimated from the loss of material from the enclosures during a 

Run. All the trials above are characterised by the dry weight intake 

rates on the shrubs exceeding those on the ground by 3 to at least 10 

times. Consequently, whatever the reasons for the switch from shrub 

to ground material, the effective result of it was that early in their 

grazing periods, the sheep were preferring a diet with a high net 

intake rate, whilst later they accept a much lower rate despite the 

food still being available.

I should stress here, then, that short-term samples of dietary 

intake are not reliable predictors of the overall diet of an herbivore 

that behaves in this manner. Even unbiased sampling of the overall 

diet (e.g. by monitoring vegetation removal) does not give information 

about the temporal distribution of the diet during the grazing period. 

This is very important in modelling the impact of an herbivore which 

moves out from regular foci to graze, since the animal may be selecting 

by quite different criteria close to the foci than when it is further 

away.

(ii) The causes of change.

Figure IX.2 showed declines in shrub intake to a plateau around

which there is variation. In this section I test whether the time at
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which this plateau is reached is constant, or is related to a constant 

intake, or is related to intakes of toxins in the shrubs. I located a 

consistent 'inflection point' in this data by two techniques: a fitted 

continuous curve, and paired linear regression.

It is possible to fit an exponential decay curve of the form, 

y = A + B e“kx.

This can be achieved by computer global search techniques which adjust 

all three coefficients (A, B, k) to minimise some error criteria such 

as sum of squared residuals. A criterion such as

e“kT = 0.1

will then give a consistently selected time T at which the decay has 

proceeded to 90$. This worked well for data with little variability, 

but with occasional outlier points, a machine method becomes unreli

able. On the data of Run 6, this method gave very similar results to 

the second technique, which could be more easily monitored for odd 

behaviour, so I use the latter throughout.

Paired linear regression divides the time series data in all 

possible places and fit pairs of regression lines. I used the maximum 

overall F-ratio as the criterion to determine the best fit, although I 

sometimes had to constrain it to a sensible region where there were 

multiple maxima for the more variable data. The point of intersection 

of the two regressions was then taken as a consistent measure of the 

inflection point, although this is not meant to imply that the data 

necessarily contain a discontinuity. Some data was too variable for 

the approach, especially in shorter grazing periods, but I carried out 

the analysis for each enclosure of Runs 4, 5 and 6.

After obtaining the inflection point, I returned to the raw data
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Table IX.4

Intake rates (g s 1) for Runs 4 5 and 6, used for the calculation 
of intake to the inflection point in Table IX.5. Shrubs: for Runs 5 & 
6, from Table IX.1 (bluebush being increased proportionally with 
saltbush from Run 5); for Run 4, as Run 3 (Table IX.1), but wet weights 
from known water contents. Ground material: maximal rates calculated 
from loss of ground material (or total initial biomass where this is 
not known) divided by the total recorded time spent eating on the 
ground (allowing for 2 other animals); values for Run 5 and West End in 
Run 4 assume there was 200 g d.w. initially (all had supposedly been 
cleared from the enclosures).

Bluebush Saltbush Ground1
Run Enclosure dry wet dry wet dry

4 West End .16 .35 - - <.025
Depot - - .21 .34 <.036
Chyds .16 .35 .21 .34 <.050

5 all .13 .23 .15 .22 <.026

6 all .14 .57 .17 .61 <.052

1 no estimate of ground material wet wt. intake rate possible,
due to variability in drying curves.

and counted how much time had actually been spent eating different

foods up to this point. From this I make an estimate of the total 

intake during the initial period. Intake rates used for this 

calculation are given in Table IX.4, together with comments on their 

derivation: the ground intake rates are very approximate, but all were 

estimated prior to the calculation of the following results.

Table IX.5 shows the times spent eating prior to the inflection 

points, and the calculated total intakes at this time. Time to 

inflection varied from 20 to 45 minutes, but there seems to be a 

remarkable consistency of dry weight intake by this time at around 

150 g, both within and even between Runs. The wet weight intakes vary 

much more, even without including the ground material; Run 6, after 

rains, is particularly high.
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Table IX.5.

Estimated inflection point (T, min) for data from each enclosure 
of Runs *1, 5 and 6, with actual times of eating (sec) to the inflection 
per trial: estimated dry and wet weight intakes (g) are calculated 
from the intake rates given in Table IX.4. Wet weight intake is for 
shrubs only.

Run Enclosure T eating times dry intake wet intake
no. name Bb Sb Gr Bb+Sb Gr1 Tot1 Bb+Sb

4 West End 28 928 — 434 148 11 159 325
Depot 22 - 659 344 138 12 150 224
Chyds 20 352 2 265 349 112 18 130 21 3

5 North 32 288 712 147 144 4 148 223
Mid 37 533 494 383 143 10 153 231
South 45 186 768 574 139 15 154 212

6 North 38 0 553 1113 94 58 152 337
Mid 38 11 4 554 1052 110 55 165 403
South 35 27 729 852 128 44 172 460

1 these figures maximal (see intake rates, Table IX.4).
2 this figure includes 30s spent eating Chenopodium ulicinum.

Late in their grazing periods, as the previous section showed, 

sheep are prepared to spend a large amount of time obtaining very 

little bulk return. Sheep can certainly survive on saltbush and 

bluebush, although many herbs and grasses may be more nutritious. If 

plenty of ground material is available, sheep will eat it almost 

exclusively. Clearly the ground material in general is more highly 

preferred than the shrubs.

There are two classes of possible reasons as to why an animal 

should switch between shrubs and ground material during the grazing 

period when the former are still available. Either (1) it is 

switching as a result of a build-up of toxins from the shrubs, or (2) 

it has obtained enough bulk intake, but can still gain from the higher 

or different quality (in nutrition or minor elements) available in the



IX. Intake rates and selection 215

ground material. There are two other unlikely explanations. The 

animal might completely forget its preferences between grazing periods, 

and require 20 minutes or more to re-assess the vegetation. I dismiss 

this since sheep are known to have long-term expectations about their 

surrounds (c.f. Gluesing & Balph 1980), amongst other reasons of 

mal-adaptation in an animal that spends a third of its life eating. 

Alternatively, the latter part of the grazing period could have no 

importance at all, but just satisfy some innate restlessness. I 

dismiss this possibility since significant intake does still occur 

during this period, and the suggestion is not compatible with the 

variable length of grazing activity described in the last chapter.

The consistent dry bulk intake at the indicator inflection point 

could support either a basic satiation of hunger or a toxin that was 

present in constant proportion to dry weight. Salt, oxalates and 

probably other secondary compounds occur in saltbush and bluebush. 

Salt is the obvious candidate, but its levels vary in dry weight 

proportion with soil moisture and plant water content (e.g. Sharma et 

al.1972 for saltbush). From this literature, salt intake by the 

inflection point varied between about 3 and 12 g: this argues against 

salt being relevant. The variability in the ratio of shrub to ground 

material intake between trials also argues against salt, or any other 

toxin, although interactive effects, or multiple limiting factors, 

cannot be ruled out.

The suggestion that the changeover is determined by bulk gut fill 

(rather than toxin level) might be doubted because of the wet weight 

intake variability. However water from the rumen can probably be 

absorbed over the time period (20 to ^0 minutes) that is involved (e.g. 

Warner & Stacy 1972 show that up to 200 ml of water per hour can move
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across the rumen wall for suitable rumen osmolarities, and the rumen is 

less permeable than the omasum). The variation between trials is not 

consistent with increased penning time (from 10 h in November to 12 h 

in autumn) resulting in increased hunger: Run 6 has longer mean times 

and perhaps higher intakes than Run 5, but Run M does not parallel 

this. A sheep’s rumen empties geometrically by about one tenth per 

hour (e.g. Blaxter et al.1956); if the rumen is full at about 750 g, 

after 10 h starvation it will contain about 262 g, and only lose a 

further 50 g to 212 g by 12 h. Thus it may be that two additional 

hours are not significant after being starved for 10 hours anyway.

As mentioned earlier, the effect of the switch between food types 

is that sheep are selecting for bulk early and, perhaps, quality later 

on in their grazing periods in this vegetation type. Two further 

facts suggest that the sheep may be making an active change in the 

criteria by which they select. Firstly, Kenney and Black (1983) have 

recently reported a study on laboratory sheep fed artificial diets 

(different hays, variously chopped, etc). When these sheep were 

presented with two foods simultaneously in the first one to four 

minutes of their grazing periods, their preferences for the foods could 

be predicted on the basis of the maximal intake rates of each of the 

foods when presented alone. They found that the preference for one 

food had to be adjusted by a 'palatability factor’. Within the 

constraints of tolerable feed acceptability, it seems that the sheep 

will select for maximum intake rate alone in the (very) early part of 

the grazing period.

Secondly, Figure IX.3 shows the eating activity curves, comparable 

to those of Figure IX.2, for the first use of each enclosure in Run 6. 

In all other Runs discussed in this section, there was little ground
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Figure IX.3: Eating patterns in the first trial in each enclosure
of Run 6 only; otherwise as for Figure IX.2.
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Figure IX.4: Time courses for eating the shrub sub-categories of 
saltbush and bluebush during trials of Run 5; details as for Figure 2. 
Note the earlier decline in the use of bluebush.
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material available. In this set of trials, however, there had been 

ephemeral germination. There was only about 1 kg of ground material 

in each enclosure, but it was highly preferred and mostly eaten off 

during these first grazing periods. As can be seen, these showed no 

initial use of shrubs at all. Note that the levels are very similar 

to the plateaux levels of Figure IX.2(c).

I therefore tentatively conclude that, early in their grazing 

periods, sheep select the plants that they can eat at a maximal rate 

from the range of acceptable plant types at the time. In optimal 

foraging terms, this is akin to suggesting that, as satiation proceeds, 

their perception of the relative abundance of the minor but higher 

quality food types increases (e.g. Emlen 1966, Schoener 1971). This 

theory predicts that the easily-accessed but lower quality feeds should 

drop out of the diet during the course of satiation in order of 

increasing palatability: this order will be affected also by relative 

intake rates and actual relative abundances. Figure IX.M shows how 

bluebush and saltbush dropped from favour in grazing periods of Run 5. 

Bluebush usually has a lower palatability and a lower intake rate than 

saltbush; it also declined in the diet earlier, which is consistent 

with this approach.

(iii) Relevance to the open paddock.

I briefly discuss the wider relevance of the findings of the last 

two sections here because, although they certainly apply to small 

enclosures, there are possible criticisms of any extension to open 

paddock behaviour.

In general, behaviour in the small enclosures seemed very similar
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to that seen during sub-flock observations in the open paddock, 

although it was difficult to obtain any recordings of the same detail 

there. Obviously the enclosed sheep did not have the option of moving 

to alternative pasture, whilst they were not restricted from looking 

through the fence at it. This might have affected their movement 

behaviour to some extent and prevented them from making larger 

movements between eating bouts, for example when the vegetation seemed 

poor.

The major criticism, however, is that in the enclosures the 

animals have been penned without food overnight, and that the initial 

preference for high intake foods might be caused by a degree of hunger 

which would never occur 'naturally1. There are four counter-arguments 

to this.

Firstly, penning times varied from 10 to 12 hours. On hot days, 

I have observed undisturbed sheep in the open paddock which have stayed 

voluntarily in shade without eating for over 10 hours. Night-time 

campsites are probably occupied for similar periods in winter. This 

suggests that natural factors may restrict sheep to non-grazing 

activities for comparable periods to at least my shorter penning times, 

although it is possible that a very few nibbles in this period might 

stave off starvation.

Secondly, the intake by the inflection point described in the last 

section is a half to a third that of the observed grazing periods (e.g. 

estimated mean total intake for each trial of Run 5 was 339 g d.w., for 

Run 6, 432 g d.w.). Although the inflection point as assessed may not 

be exactly equivalent to when starvation hunger might have ended, it is 

unlikely that anything approaching half the grazing period intake would
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be necessary to return the hunger status to a ’natural' level at which 

ad lib grazing would begin.

Thirdly, in October 1983, I carried out three consecutive days of 

22 hour observations of sheep in the Barbers paddock enclosures used in 

Runs 5 and 6. The sheep were free to water and graze at will within 

the confines of one enclosure, and were watched almost continuously. 

The first morning and afternoon grazing bouts were recorded on tape as 

for other trials, from their ad lib starting points. The data was not 

very satisfactory because there was not time for the sheep to 

acclimatise properly to my presence. However, declines comparable to, 

but less significant than, those described above sometimes occurred, in 

the afternoon grazing period as well as the morning one. Maximum gaps 

without any eating at all were only 5 to 6 hours: often gaps which 

would have been as long were broken by about a minute of desultory 

grazing. I do not know to what extent this was affected by the 

availability of water (which they used 5 to 6 times a day) and the 

unsettled restlessness of the sheep. Variability was such that I 

could not compare the time to any inflection point with the time since 

the previous grazing period finished, as I had hoped.

Fourthly, there is no evidence of time to the inflection point or 

intake up to this time being related to time of penning. That this 

detail did not show up may reflect differences between the vegetation 

types, but clearly any effect of starvation in two hours is minor in 

comparison to that of the natural gap between grazing periods.

For the model, therefore, I conclude that the effect is important 

in the open paddock. In Chapter X I shall take it to be related to 

the hunger trigger, and to be sufficiently important as to have a
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significant effect in the sheep’s first hour of grazing. This will 

only result in a change in diet selection when there is little 

ephemeral material available. The basis for this approach is 

discussed further in the next section. I should remark, however, that 

a similar change in diet selection may also occur between different 

classes of ground material when they are available, both at Middleback 

and, no doubt, in more mesic pastures. This could normally be masked 

by the change being for different parts of one plant type, or by the 

difficulty of observation in such pastures.

(iv) Relation to the previous diet selection model.

The previous sections have established how grazing effort changes 

during the grazing period. In this section I briefly apply a modified 

version of the diet selection model of Noble to my data to test its 

adequacy for the overall model. ’Traditionally’ in the literature, 

such a diet selection model would be applied for an animal's total 

intake. The previous sections have suggested that this is unlikely to 

be adequate here; I show that, although the model fits the plateaux 

levels of grazing reasonably, a different approach is needed for the 

early period. I had planned to test the model in more detail in 

Run 6, where the location of the sheep was followed closely; one 

result of the breaking of the drought, however, was that bluebush was 

little eaten during this Run. The usefulness of these trials was 

therefore greatly reduced by the small number of food types being 

eaten. Much of my data is not ideally suited to these tests, so I 

restrict their ambit.

The model referred to in the introduction to this section (b) may

be re-written as,
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t./T = (p * b. / r.) / Z (p * b. / r.) 

where intake c^ is replaced by t^*r^, the product of the time spent

eating food type i with the intake rate on the food type. Combining

equations for i and j, one obtains,

pi / Pj = (ti * r. * b.) / (t . * r. * bi)

In an enclosure with only two species, for which t, b, and r are known, 

it is therefore possible to estimate the ratio of the preferences.

For Run 4, I have calculated the relative preferences of bluebush 

and ground material in the West End enclosure, and for saltbush and 

ground material in the Depot enclosure. Note that there is

substantial variability between the enclosures in the use of shrub 

relative to the ground material. I use biomasses from Table VIII.2

and intake rates from Table IX.4. Table IX.6 presents the resulting

estimates, using the mean percentage times spent eating the food types 

during the plateau section. As some test of the adequacy of this 

formulation, I then predict what the plateaux levels ought to be for 

the three species in the Chyds enclosure, bearing in mind that the 

location was different, and consequently both preferences and intake 

rates might also be. The use of shrub material is underpredicted, but 

orders are correct. The preferences are very similar to those found 

by Noble (1975).

In a similar fashion for Run 5, the ratio of saltbush to bluebush 

preferences in each enclosure can be calculated, and should be 

constant. Table IX.7 shows these calculated for each enclosure using 

time data from the whole grazing period, or from only the plateau 

section. Note that the latter are considerably more consistent. Here 

bluebush was slightly preferred to saltbush, in comparison to Run 4; 

this was probably due to extraordinarily low water contents towards the
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Table IX.6

Predicted preference ratings , P, for the West End and Depot
enclosures of Run 4, and the time apportioning predicted for the Chyds
enclosure calculated from these.

Bluebush Saltbush Ground

West End
plateau ($ eating time) 53.5 - 46.5
biomass (kg) 41 .0 - 0.2
intake rate (g s_1) .16 - .025

P .036 1 .0

Depot
plateau ($ eating time) - 28.3 71 .6
biomass (kg) - 29.0 3.6
intake rate (g s“"1) - .21 .036

P .29 1 .0

Chyds
biomass (kg) 14.7 5.2 4.1
intake rates (g s-^) . 1 6 .21 .05

predicted plateau $ 3.6 7.8 91 .9
actual plateau $ 8.5 10.4 81 .0

end of the drought in the saltbush (30-35$, in comparison to 40-45$ in 

the bluebush). Thus this simple model is reasonable for the 

’baseline’ plateau preferences of food types.

A similar model might be applicable to the early part of the 

grazing period, but with different preference ratings. I calculated 

the preference ratios thus predicted for the first 10 minutes of the 

grazing periods of Run 4, in a similar fashion to that described above. 

The ratio of preferences bluebush:saltbush:ground material then was 

0.093 : 1 : 0.074, compared to the ’baseline’ ratio 0.12 : 1 : 3.4. 

Note that the bluebush:saltbush ratio is still similar, although the 

preference for ground material is reduced by 46 times.
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Table IX.7

Preference ratios, p, for bluebush and saltbush in each
(adjoining) enclosure of Run 5, calculated using either the plateau
time apportioning or the times for the whole grazing period. Intakes
rates were .13 and .15 g s 1 for bluebush and saltbush respectively.

Bluebush Saltbush PBB:PSB
North

biomass (kg) 10.1 13.7
% times: plateau 48.8 51 .2 1.12:1

whole period 33.3 66.7 0.59:1

Mid
biomass (kg) 10.6 9.0

% times: plateau 58.3 41 .7 1.03:1
whole period 52.9 47.1 0.83:1

South
biomass (kg) 3.3 16.4

% times: plateau 27.7 72.3 1 .65:1
whole period 27.0 73.0 1 .59:1

The work of Kenney & Black (1983), mentioned above, suggests that 

preferences early in the grazing period should be primarily dependent 

on relative intake rates. They did require some 'palatability factor* 

as well, and this is clearly necessary here where saltbush is always 

greatly preferred over bluebush in Run 4. The inaccuracies associated 

with both biomass and intake rate of ground material make its value 

uncertain. However, the ratios above are wholly consistent with 

relative preferences early in the grazing period being biased from the 

’baseline' preferences by the relative intake rates. This approach 

even explains the slightly reduced preference for bluebush relative to 

saltbush in the first 10 minutes (the ratio change is .78 compared with 

the ratio of intake rates which is .76); and it is consistent with the 

reduced preference for the ground material, although the estimated 

difference in intake rates is not as large as the reduction in the

preferences.



IX. Intake rates and selection 225

Normally no model should be tested in isolation, since its 

adequacy of fit must be compared with another. In this instance, 

however, the simple model is clearly a better predictor than any null 

model of random selection, and the form of the data does not justify 

testing any more complex models. It is worth noting that an approach 

to the early part of the grazing period based solely on biomass 

availability and random encounters (i.e. assuming that the hungry sheep 

will eat anything it encounters) is definitely not supported by these 

data, nor by Kenney & Black's work (where equal biomasses of all their 

artificial foods were available).

(v) Spatial scale of selection.

In Run 6, I attempted to examine at what scale the sheep were 

reacting to the vegetation. Some workers assume a knowledge by the 

feeding animal of its entire surrounds, whilst others assume that 

selection is based only on the area immediately available to the 

sheep's senses. Long-term preference ratings are presumably built up 

by the sheep over many days of experience, but it is important to know 

whether instantaneous selection is based on a cumulated impression of 

what is available gained during the grazing period, or simply on a 

moment-by-moment basis.

The enclosures of Run 6 were divided in 16 subcells (see Figure 

VIII.1), each of which was monitored separately. As mentioned above, 

the breaking of the drought restricted the usefulness of the trials, 

and it was not possible to apply the model detailed in the previous 

section to them. However, I present some findings on the patterns of

use of the subcells.
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Although the overall biomasses in the enclosures of Run 6 differed 

little, there was a 50-fold variation in biomass between different 

cells (of about 8x8 m2), as well as great variety in the proportions of 

shrub species. I had hoped, therefore, to show that vegetation 

variation at the finer scale predicted sheep behaviour better than at 

the enclosure scale of 30x35 m2. Because bluebush was little eaten 

during these trials, I was unable to do this on the basis of the diet 

selection model. However, I present here a few data which suggest 

that activities are determined by the fine scale of vegetation pattern.

The total time spent in each cell was correlated well with the 

total biomass of the cell (r=.l4, n=48, p=.006), as was the total time 

spent eating in the cell (p=.44, n=48, p=.002). The time spent eating 

saltbush correlated well with saltbush biomass per cell (r=.55, n=48, 

p=.0001), and better than it did with numbers of saltbush in the cell 

(r=.44, n=48, p=.00l8). By enclosure, these correlations were 

stronger in North and Mid, where the vegetation was more mixed, than in 

South (see Table VIII.2). Similar correlations may be found for 

ground material, and weaker ones for the little-used bluebush.

These correlations support the proposition that the sheep’s 

minute-by-minute grazing activity is determined on a fine scale, at 

least as fine as 8x8 m2. in fact, the area may be no more than that 

immediately available to its senses. This results in the sheep 

encountering a highly randomised series of vegetation sets, and 

justifies the use of gross biomass totals as an estimator of these

random encounters.
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(vi) Summary: scales of selection.

When there is little ground material available, sheep in small 

enclosures still spend large amounts of time foraging for it. The 

majority of their intake is, however, obtained from shrubs under these 

conditions. The proportions of their time that they spend foraging 

for different categories are not constant with time. They eat far 

more of the shrub category, at a much higher intake rate, than the 

ground category in the first 20 to 40 minutes of the grazing period. 

Later in the grazing period, they concentrate on the lower intake rate 

category. The time to this changeover may vary from 20 to 45 minutes, 

but estimated dry weight intake up to this time is remarkably constant 

at about 150 g. With some evidence against shrub toxins being 

important, this is hypothesised to be a genuine change from selecting 

for high intake rate when hungry to high quality when partially 

satiated. This finding is important to experimental design of diet 

selection experiments, oesophageal fistulation, and to the distribution 

of grazing impact in the open paddock. A modified version of Noble's 

diet selection model explains time apportioning between foods by sheep 

reasonably; 'traditional' preference ratings predict the plateau time 

apportioning, and a preference rating modified by intake rate ratios

may be suitable when the sheep are hungry.
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(c) Other impacts on plant individuals and species.

The amount of time that a sheep spends on one individual plant 

will have obvious importance to that plant, and to the distribution of 

grazing between plants. The frequency with which the animal switches 

between species in its diet will similarly be important to the 

distribution of impact between species in the area through which a 

subflock is travelling. These factors are likely to act at a scale 

far below that of the model operation, so I only touch briefly on them 

in this section to confirm this.

(i) Time spent on an individual plant.

When faced with a saltbush, sheep do not eat it to the ground, 

which perhaps they should do if all parts of the bush had equal 

palatability. Optimal foraging patch theory (e.g. MacArthur & Pianka 

1966) suggests that the animal should cease to eat it when its marginal 

return rate from that patch falls below the mean marginal return rate 

to be expected by moving to another (although there are other possible 

approaches, e.g. Janetos & Cole 1981). This must be estimated from 

previous foraging experience, in either the short- or the long-term. 

It is probably naive to expect to be able to apply such theory in any 

simple form to a herbivore which has only small costs in moving to 

another bush, for which the palatabilities of different plants and 

plant parts fall on a continuum, which may need to sample, and on which 

added complications are imposed by sociality. A sheep rarely removes 

all the feed in one category (e.g. young leaves) from a bush on one 

occasion.

I tested whether offtake from an individual plant was related to
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its size on two occasions. In the collection of data for the intake 

rate measurements (section (a.i)), there was slight effect of the mean 

length of eating bout being longer for larger test ’plants' (r=.71, 

n=9, p=.03 for saltbush, non-significant for bluebush, in one trial); 

however, there was only a small variation in size of plant in these 

trials. Therefore, in Run 6, I compared the mean size of saltbush 

individuals within each cell (see Figure VIII.1) with the mean duration 

of a bout of eating on a single bush (this was defined as the time 

spent eating before either a movement, or a switch to another food 

type). The mean plant size per cell ranged from 10 to 55 g, and the 

mean length of eating bout from 1 .<4 to 39.8 s, but there was no 

correlation between the two (r=.00, n=48, p=.98).

If there is a genuine lack of correlation between offtake from an 

individual shrub and its size, then a large plant is likely to sustain 

a smaller proportional amount of damage in a grazing event than a small 

plant. Although large plants may have a higher encounter rate with 

sheep than small plants, this may still mean that large plants will 

sustain smaller proportional damage in light to moderate grazing 

pressures. This could certainly be important to the plant, and to the 

population structure of the pasture in drought years, but is below the 

scale of the model.

(ii) Switching.

The concept of a search image, first studied in birds, involves 

the active seeking out of one cryptic prey type (Dawkins 1971). 

However, a weaker form of temporarily-heightened recognition for one 

food type, or an undue preference for locally common food types (e.g. 

Murdoch 1969), can cause correlated bouts of feeding on one food type,
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followed by abrupt switches to another. This could be significant in 

the pattern of grazing impact if the animal concentrated on a single 

species for long enough.

Table IX.8 shows the total number of transitions between the major 

food types in Run 5. This simple transition matrix can be tested 

against the mean expected values obtained from the column sums. The 

resulting x^ values and probabilities are shown. In total for the 

enclosures, the ratio of saltbush individuals to bluebushes was 

1067:224, so one would expect saltbush to be more frequently 

encountered (although their mean size was also smaller), as well as 

being more likely to be accepted because of being preferred by the 

sheep.

Table IX.8

Actual and expected transition matrices between food types for all 
the data of Run 5. tests are given for the comparison of actual 
and expected rows (i.e. transitions from the present food to the next), 
where the expected value is conservatively estimated as proportional to 
the column totals. All x^ values are significant, d.f.=2, p<.0001.

Next
From:

food:

Bb

Bb

61

Actual
Sb

50

Gr

73

Bb

25

Expected
Sb

55

Gr

104
x2
62

Sb 60 208 150 60 124 237 89

Gr 70 161 577 110 240 458 71

Total 191 419 800

(Bb = bluebush, Sb = saltbush, Gr = ground material)

There is a bias towards remaining with the shrub type just eaten 

for both bluebush and saltbush. Although this data records a 

transition only if a movement or a type switch has occurred, this bias
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may be partly due to sheep moving around to another part of the same 

shrub, especially for the larger bluebush. For saltbush there is 

often a spatial association of several individuals, so that the 

immediate environment may be locally dominated by saltbush. The 

effects are interesting, but not highly relevant, therefore. Many 

other analyses can be carried out on the transition data, but their 

impact is clearly at a scale that is not needed in the model.



Chapter X.

The new behavioural model: structure, validation and prediction.

In this chapter, I draw together the various lines of study 

previously discussed in this thesis, and build a new model of sheep 

behaviour in the large open paddock. Some sections of Noble’s model 

have been validated and are retained, others have been validated in 

modified form, and some approaches have been completely replaced. In 

the first part of this chapter, I outline how I have rebuilt the model.

I do not describe some details where they follow the approach of Noble 

(1975), except where they are relevant to an understanding of the major 

changes, or important in the ensuing discussion. Thus, for example, 

the submodel dealing with body and wool growth is not mentioned, since 

its formulation has not been altered.

The latter half of this chapter is concerned with testing the 

model. There are many problems and a variety of different approaches 

associated with testing complex models of this type (e.g. Shechter & 

Lucas 1978). The first step is verification - that is, ensuring that 

the model and its coding carries out the operations that were intended, 

irrespective of their validity. Validation approaches include 

'informal verification' to confirm that the model behaves sensibly in 

the opinion of someone who has experience in the system that has been 

modelled; 'sensitivity analysis' to test whether the model is 

unrealistically sensitive to small changes in particular variables; 

and predictive tests of 'goodness-of-fit' to real data that were not 

used to build the model. A considerable amount of data from my main
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study paddock, Jervoise, has been used in this thesis so far, and is 

therefore of limited value for validation of the model, although it may 

be used in verification. Independent data, in particular from dung 

surveys and the vegetation exclosures, is used for validation in 

Jervoise, and I also run the model for Wizzo North paddock. Finally, 

an important test of a predictive model is to try to look into the 

future, so I finish this chapter with two predictive runs.
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(a) Remodelling.

In Chapter III, I pointed out three components of Noble’s model 

that were deficient either in approach, or because of lack of 

validation. These were the physiological indices that determine the 

sheeps’ behaviour, the selection of sites of non-grazing activity in 

the movement model, and the form of the grazing intake model. 

Additionally, I remarked that the interactions between the physiol

ogical threshold levels were over-simplistic, partly because directed 

grazing was not permitted. In this section, I discuss briefly how I 

have tried to redress each of these components, and I then describe how 

they are linked together, and into the structure of the overall model.

The spatial representation of the pasture in the new model is very 

similar to the old, and was described in Chapter 111(b). In brief, 

the modelled paddock is divided into cells (500x500 m2 in Jervoise); 

the runoff, soil moisture and plant growth is modelled on a daily 

time-step for each cell. There are six categories of plants modelled 

for growth and grazing: these are grasses, ’bassias’, standing dead 

and dry ephemerals, saltbush, bluebush and blackbush. A number of 

sheep subflocks move between the cells on an hourly time-step, with 

movement being determined by their activity during that hour. Grazing 

takes place within a cell, and intake is constrained by the vegetation 

available in that cell. The impact of the sheep on the paddock is 

determined by nitrogen re-distribution and grazing offtake in the cells

that they visit.
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(i) Physiological triggers.

The four 'triggers’ used in Noble's model were a heat-loading 

index, thirst (as a body water deficit), hunger (as rumen fill) and 

night-time. The interactions of these resulted in seven trigger 

conditions (see Table III.1), which gave rise to the eight activities 

of grazing, 'shading', camping, resting, moving to shade, to camp or to 

water, and watering. This subsection describes the determination of 

the trigger levels; their integration is discussed in the next.

The heat-loading index has been the most successfully developed 

and validated of the triggers in this thesis. Chapter VI(b) and the 

Appendix describe how the physically-determined respiration index can 

predict movement to shade. This respiration index is used in the new 

model, and is calculated from the equations given in the Appendix. 

For a given day and hour, these equations require the climatic inputs 

of air temperature, wind velocity and cloud cover; they also need the 

body length and radius of the sheep, its wool length and body weight 

(only the latter two vary in the model). From these parameters, 

respiration indices for sheep in the shade and in the open are 

calculated, and one or other is used for a given subflock depending on 

its activity.

In addition to predicting movement to shade, the respiration index 

is also used to determine aspects of the sheep's energy balance. It 

is not allowed to fall below a minimum value (20 min“1) for lung 

aeration; below this value, an increase in metabolic rate to maintain 

body temperature is assumed to occur, and the extra energy is taken 

into account when calculating the daily live-weight changes. When the 

sheep are hot, the index is not permitted to rise above the maximum
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value recorded for sheep (300 min“1), at which body cooling begins to 

fail; energy which cannot be lost from the sheep is stored in the body 

tissues, so that the body temperature begins to rise. Both of these 

approaches follow Noble (1975). The fourth use of the index is to 

predict water loss in respiratory cooling for the water balance 

accounting.

The water balance sub-model for the sheep is calculated hourly as 

a body water store; this store may be replenished by drinking. Other 

sources of water are metabolic water and water from food intake, whilst 

losses are incurred during respiration, in the faeces and urine, and to 

dispose of salt absorbed from the food. This approach follows Noble, 

and is described in more detail in Chapter VI(c). Salt and water 

contents in the food are determined from grazing intake. Using this 

approach, Chapter VI(c) showed that observed watering peaks occurred in 

a consistent range of predicted water deficits, although this submodel 

is not validated as thoroughly as the respiratory index.

The rumen-fill index for hunger is discussed further in subsection 

(iv) which deals with the grazing model; this index also operates as a 

store. Decline in rumen fill, by outflow to the omasum, is taken to 

be by a constant factor of 0.9 per hour, after Blaxter et al.(1956). 

Finally, the night-time camping trigger is set an hour after dusk and 

lifted in the hour before dawn. As discussed in Chapter VI(d), the 

strong urge that sheep have to camp seems to be genetically imposed and 

not amenable to process-modelling.
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(ii) Activity transitions and the interaction of triggers.

Noble's model did not permit directed grazing, and was simpler in 

its heirarchy of trigger thresholds. Chapters VI and VII have shown 

that grazing does occur en route to water, and perhaps to shade and 

campsites. The behavioural categories of 'gm' and 'mg' (see Table 

IV.4) are important parts of grazing and movement behaviour, and are 

allowed for in the structure of the new model. As was shown in 

Chapter VI, other interactions also occur, such as with the heat index.

It is not possible to make the threshold levels of the index 

continuously interactive with each other, as they probably should be, 

because their functional relationships are not known in this much 

detail. However, I now have enough information to be able to divide 

the ranges of the trigger indices in more places than the old model, 

and thus permit more interaction. These indices are examined every 

hour for every subflock in the model, so that it must be possible to 

operate the chosen method of implementation quickly.

I have therefore adopted the approach illustrated in Table X.1. 

Each trigger has several threshold levels, with the order of dominance 

being thirst, heat, hunger and then night-time. This heirarchy 

normally determines the next activity on the basis of the previous 

activity, the dominant current trigger and its threshold level (1 —3)- 

This permits implementation using the same decision table method of the 

old model, which is very rapid, although this table is now three 

dimensional. If all triggers are at the zero level, then the animal 

will rest; all other possibilities are illustrated in Table X.2. As 

can be seen, I have retained the eight basic activities of the old 

model, but once the main decision has been made, the subdominant
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Table X.1

The new heirarchy of trigger level conditions: the conditional 
entries are explained below. A dash indicates that the entry is 
irrelevant in determining the dominant trigger, which is underlined.

Trigger levels
Thirst Heat Hunger Night

ranges
Next activity

0-3 0-3 0-2 0-1

To water1 3 - - -
To shade1 <2 3 — —

To water2 2 <2 - -

To shade2 <1 2 - -
Graze3 <1 <1 2 —

(Drink)4 1 <1 <1 -

(Shade)5 0 1 <1 -
(Graze)6 0 0 1 -
To camp7 0 0 0 1_

Rest in situ 

1 movement is

0

exclusive

0 0 0

2 hunger level 2 will induce some grazing
3 any trigger level 1 will induce directed 
456 these activities are conditional

4 drink if near water
5 stay in shade if already there
6 keep grazing if already doing so

during movement 
grazing

7 except that, 
unless

once in camp, sheep cannot 
a trigger reaches level 3

leave till morning

triggers may interact to modify the chosen activity.

The interactions between triggers primarily concern directed 

grazing. In particular, hunger may cause some grazing during movement 

(i.e. ’mg') to shade, camp or water, providing the trigger instigating 

movement is not at the extreme level 3. Low levels of other triggers 

may cause grazing to become directed (i.e. gm) providing the potential 

destination has not been reached. Other conditional decisions are 

mentioned in Table X.1. In particular, the camping impulse, which is 

subdominant before arrival at camp, does not allow departure from camp
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Table X.2

The decision table for primary activities, described in the text: 
on the basis of the previous activity (row, with identifying number) 
and the dominant trigger and its threshold level (columns), a new 
activity is chosen (entry in table). Two conditional decisions are 
corrected after using the decision table, and interactions with 
subdominant triggers are handled separately.

Dominant trigger and threshold level
Thirst Heat Hunger Night

3 2 1 3 2 1 2 1 1
Previous activity

1 Graze 7 7 1 1 5 5 1 1 1 1 6
2 Shade 7 7 2 2 2 2 1 4 6
3 Camp 7 72 3 5 5 2 3 1 2 3 3
4 Rest 7 7 4 5 5 4 1 4 6

5 Move to shade 7 7 4 5 5 4 1 4 6
6 Move to camp 7 7 6 5 5 6 1 6 6
7 Move to water 7 7 7 5 5 4 1 4 6

8 Water 8 8 8 5 5 4 1 4 6

1 rest if hunger trigger is not above level 1
2 stay in camp if still dark

until the hour before dawn unless an extreme (level 3) trigger 

threshold is exceeded (in practice this only occurs with thirst).

There are a number of other minor complications; for example, the heat 

index only influences grazing movement if it has risen since the 

previous hour, so that movement to shade does not occur on a hot 

evening. Similarly, on very hot days, sheep will not stay in shade 

after the hour before sunset; this event occurs very rarely.

The threshold levels of the indices are mostly obtained from

earlier chapters. The hunger trigger levels are discussed in

subsection (iv) with the grazing model. The night-time trigger is

turned on in the hour after dusk and off in the hour before dawn; 

sheep were rarely seen in camp outside this period. Level 2 of the 

heat index (’hot’) is set from the less-stressed values in Table VI.2,
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with allowance for wool length. The relationship was obtained from 

regression on the original data, after rounding, as,

trigger level = 185 + 650 * wool length (min-1)

The higher threshold (’extremely hot’) is set if body temperature 

begins to rise (see previous section). There could be a higher level 

still, of heat exhaustion, where the body temperature rises above a 

critical level: this was the upper trigger in the old model. 

However, this occurs too rarely to warrant the extra code for the sake 

of symmetry in the decision table, and in test runs the 'extremely hot' 

threshold had invariably already caused movement to shade. (The 

calculations of rising body temperature are retained since they allow 

the sheep to tolerate high air temperatures with less water loss). 

The lower or ’warm’ threshold level is taken to be 20 min-"' below the 

’hot’ level, which typically results in an hour’s warning for the 

grazing sheep. This value results in a small effect of the need for 

shade on grazing movement, as suggested by Chapter VI(b).

The threshold levels for the thirst index are set on the basis of 

Chapter VI(c). The maximum drink size permitted on one occasion is 

5 1, but drinking may occur again in the next hour. The first level 

of mild thirst is taken at a body water deficit of 2.75 1, which was 

approximately the minimum calculated deficit at which animals returned 

to the waterpoint in West End. The second level, thirsty, is taken as 

4.25 1 deficit, which was the modal level at next watering, and the 

highest level at which sheep might miss a modal watering time in West 

End (Figure VI.8(c,d)). Level 3, or ’dehydrated’, is set at 6 1; 

sheep did tolerate more than this occasionally in West End, but that 

was in an extreme summer. In the model, the notional body-water store 

for the sheep is taken to be 6 1, so that drinks will not be taken to 

exceed this level; the dehydrated threshold is then at a body water
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store of 0 1.

To what extent does this approach accord with the data of Chapters 

VI and VIII ? In Chapter VI, it was shown that hunger could delay 

entry to shade, and thirst could advance departure. In the model, 

sheep will depart shade for water before they will leave to graze 

(although they may then graze a little en route if very hungry). 

Arrival at shade will be delayed if the animals are hungry because they 

will graze en route and therefore move more slowly (see next section). 

Chapter VI also showed that the need to water might affect grazing 

directions early in the day, even though a period in the shade 

intervened. The timing of these interactions are not coded into the 

model, but the structure will allow them to occur. Watering in West 

End rarely took place at night (Figure VI.8(a)), and then not after the 

middle of the night; in Jervoise, sheep were occasionally heard at the 

waterpoint several hours before dawn, so that extreme thirst had 

overriden the camping impulse. Again the structure is compatible with 

reality.

(iii) Movement and selection of destination.

In this section, I discuss movement speeds and movement 

directions. The activities that involve movement are grazing and 

movement to shade camp or water. Grazing may be directed (gm), and 

movement may include some grazing (mg).

Speed of movement and grazing 'intensity’ in the activities g, gm, 

mg and m are set by derivation from my definitions (see Table IV.4), 

where a mean 12.5, 37.5, 62.5 and 87-5% of the time is spent moving 

respectively, in a ratio 1:3:5:7. 12.5% of the total time spent
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moving is similar to the proportion found in small enclosure grazing 

periods (Chapter VHI(b.ii)). Taking 0.3 km h“  ̂ as the net movement 

speed in grazing (at the upper end of the values found in small 

enclosures), this results in speeds of 0.3, 0.9, 1.5 and 2.1 km h-1 for 

the activities respectively; these values accord well with the values 

observed in the open paddock and with ranges quoted in the literature. 

Correspondingly, grazing ’intensity’, or the effective proportion of 

time spent eating, declines in the ratio 7:5:3:1» except that, in the 

model, no grazing is permitted in ’m’ sensu stricto (intakes would be 

very small, but computing costs are very high, since the grazing model 

must be run for every cell that is passed through).

Chapter VHI(c.i) showed that movement increases in low shrub 

densities (when there was little forage available on the ground). 

Observations aimed at quantifying the relationship between movement 

speed and vegetation quality in the open paddock were unsuccessful 

(Chapter Vll(b.ii)). Sheep clearly do not graze much in areas where 

there is no vegetation, so a realistic model must permit them to leave 

a cell that is devoid of forage. One approach to this requirement 

would be to set a threshold level of forage availability below which a 

subflock tends to move faster in grazing. Another approach, adopted 

in Noble’s model, is to increase a subflock’s speed if its intake in 

the current hour is less than in the previous hour; this is not 

satisfactory where more than one cell may be traversed in an hour, as 

is the case with the smaller grid size used in Jervoise in comparison 

to Wertigo, nor does it result in an increase in movement speed if the 

sheep have started their grazing in a poorly-vegetated cell (near the 

waterpoint, for example). A third alternative is to increase the 

subflocks's speed if the forage available to it at its present position 

is less than the mean availability in the paddock.
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Since I have no data on which to reliably base any threshold, I 

adopt the third approach. This approach assumes that the sheep range 

over the paddock sufficiently to visit cells which are not severely 

affected by any grazing impact, and that they have some memory of the 

quality of these cells. This is effectively invoking some learning on 

the part of the sheep, a process which has generally been avoided in 

the model, although the response could also be based on smells wafting 

in on the wind. Rather than using the total available forage in a 

given cell, I use the total effective forage (Ep^b^), since it is 

biased in favour of preferred feeds and may therefore be more relevant 

to the sheep.

Movement directions are determined for directed movements by the 

’choice* of a shade, camp or waterpoint location. There is only one 

waterpoint in Jervoise, and the use of water in Wizzo North is 

discussed further in section (c). Chapters VI and VII have suggested 

that the choice of camp and shade sites may be more important than 

movement in grazing in determining the area of a paddock in use, and 

that this choice may be affected by wind direction. The old model 

selected the nearest camp or shade site for this purpose. In the new 

model, the nearest shade or camp site in the direction of the wind is 

selected as required, except that a site which is only one cell away 

will be chosen in preference to one in the direction that the wind is 

coming from if the latter is more than two cells distant. For speed 

of implementation, this choice is coded as a matrix of nine possible 

destinations (one for each wind direction, and one for calm conditions) 

for each cell in the paddock. For Jervoise, only the major campsites 

shown in Figure VI.9 are used.
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Movement in grazing was shown to be little affected by wind 

direction in Chapter VII, except perhaps in stronger winds. Once a 

subflock has started moving in some direction, therefore, its movement 

direction in the next hour is selected randomly with bias towards the 

previous direction (as it was in calm conditions in the old model). 

Movement in the first hour of grazing is still selected as it was in 

the old model, that is, as a random direction biased by the wind 

direction, the bias being stronger in stronger winds.

The final effect to discuss with respect to movement is that of 

'contagion’. The model runs on a fixed number of subflocks, whilst

Chapter V showed that group size varied with a number of conditions. 

Some of the variation may be related to the physiology of lambing, and 

I do not attempt to model this; however, other aspects were probably 

dependent on the time since subflocks last met up, and grouping of 

subflocks is included in the model as follows. From Chapter V(c), the 

maximum 'core group size' in Jervoise was about 10 sheep, and for most 

purposes I run the model with 260 sheep in 20 subflocks. Real groups 

were larger at campsites and the waterpoint, and broke up during 

extensive movement on departing these locations. The old model 

permitted subflocks grazing in the same cell to move together at times; 

I adopt the same approach, where the probability of 'contagion' for two 

such subflocks is given by p, where p (=.77) was the probability of a 

group not breaking up during a given hour of grazing as calculated in 

Chapter V(c.i).

(iv) Diet selection.

The diet selection and intake submodel used in the old model has 

already been described (Chapter IX(b)). The equations used in it
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require an independent estimate of hourly total consumption, which was 

derived from a Holling-type equation, adjusted by a satiation factor. 

As Chapter IX showed, selection as well as total consumption changes at 

an hourly timescale, and within a grazing period.

The approach intimated in Chapters VIII and IX is developed as 

follows. The actual time spent eating per hour is modelled first,

rather than total intake per hour. Chapter VIII showed that there was 

an inconsistent decline in eating activity with satiation, which was 

slow relative to a rapid cessation of grazing at the end of the grazing 

period. From mean values, I take this to be a linear decline in time 

spent eating from 75? to 65? of total time, from when the sheep are 

very hungry to when they are sated. If these two states of rumen fill 

are respectively FQ and F^, time spent eating per hour is given by,

Tp = 0.65 + 0.1 * (F - Fq) / (Ft - Fq) hours

This total time is divided amongst the food types available by the 

modified version of the previous model that was discussed in Chapter 

IX(b), so that,

fci = t f * (Pi f * bi / r0 / 1 (pi f * bi / r0 hours
where t̂  is the time spent eating food type i, of biomass b^, intake 

rate r̂  and preference rating F at this hunger status F, and E is 

over all food types.

Evidently p.. F cannot be regarded as constant for all F. Chapter

IX(b.iv) suggests that, if F^ is the hunger status at the ’inflection

point’ described in the previous chapter, then p. for all F>F shouldi ,r P
be constant and equal to the ’baseline’ preference ratings. At Fq , it 

also suggested, p̂  F should be given by the product of the baseline 

preference rating and the relative intake rate. I take this
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tentatively to be an adequate description for this model.

I can find no satisfactory suggestions in the literature as to 

what the functional form of any influence of hunger on preferences

where is the baseline preference rating for food type i. Intake 

rate, r^, may be expressed in any consistent units, since these divide 

out in the equation for t̂  above.

This model can now be used to predict the observed time distrib

utions in the small enclosure Runs. I assume the sheep to have been 

at status Fq when released; then, using the known biomasses and intake 

rates, Figure X.1 shows the modelled times spent eating shrubs and 

ground material for trials in the Depot enclosure of Run 4 compared 

with the observed times. The selection model underpredicts the 

initial extreme value, and overpredicts the rate of changeover between 

food types. However, in the overall model, grazing intake is 

calculated on a time-step of 15 to 60 minutes (depending on the numbers 

of cells traversed during the hourly time-step of activity selection), 

so that underprediction of the effect of the hunger status at the start 

of the time-step satisfactorily approximates the average value of the 

declining hunger status as the animal grazes.

In the full model, actual intakes per hour are now calculated as 

the product of the time spent on each food type and its intake rate. 

Several values must be known, namely, the intake rates and the baseline 

preferences for each food type, and the three critical levels of rumen

(p. * (F - Fq) + pi*r. * (Fp - F)) / (F - Fq) for F<F 

p. for F>F ,
P
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Eat saltbush

Eat on ground

Time Into grazing period (min)

Figure X.1: The observed time courses of eating shrubs and ground 
material (points) compared with the modelled time courses (solid line) 
calculated for every five-minute period, for trials in the Depot 
enclosure, Run 4 (c.f. Figure IX.2).

fill (Fq , Fp and F^). As with the original model, it is clear that 

preferences do change during the year (e.g. the increase in preference 

for bluebush relative to saltbush from Run 4 to 5). In the shrubs, 

this might be related to water content at Middleback, but there is not 

enough data to vary these at present. The values found by Noble 

correspond well with my values for Run 4, when weather conditions were 

moderate, so I retain them for the shrubs (Table X.3). I have 

increased the preference ratings for ephemerals, since my trials showed 

much higher values than were found by Noble.

The sheep's intake rates of the shrubs also vary; this probably 

is a result of the physical structure of the shrub, and may also cor-
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relate with water content at Middleback. Again I have inadequate data 

to adjust the rates reliably, so I adopt mean values after Table IX.1.

The variation in preference ratings with intake rates described 

above is most importantly affected by the intake rates of the ground 

material. These too probably vary continuously through the year, 

although some of the variation is taken up in the model by the 

separation of dry from living ephemeral material. In order to be able 

to model the increased preference for shrubs when the sheep are hungry, 

I assume a step function where ephemeral intake rates have one value 

when they are plentiful, and a lower value if their biomass falls below 

a critical value in the cell being grazed. These are derived as 

estimates based on the small enclosure trials, although the grass 

intake rates are comparable with those described by Allden & Whittaker 

(1970); all the values used are listed in Table X.3.

Table X.3

Values of baseline relative preference ratings and intake rates 
used for the vegetation classes in the new model, with the critical 
levels of ephemeral biomass below which intake levels are reduced (see 
text).

Preference Intake rates (g s 1) Threshold
rating normal reduced biomass (kg ha-1)

Ephemeral classes
Grass 5.0
'Bassia’ 1.5
Dry 2.0

Shrub classes
Saltbush 1 .0 .18 -
Bluebush 0.1 .15 -
Blackbush 0.025 .12 -

.10 .04 20

.09 .03 20

.08 .03 25

The remaining parameters are those of rumen fill. FT> for the 

sated sheep, is taken as 0.75 kg d.w. after Noble (1975). FQ iS
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assumed to be the approximate state of rumen fill for a sheep after 

10 h penning, which, on the basis of a 0.9 rumen-emptying factor per 

hour (Blaxter et al.1956), is 0.26 kg d.w. The setting of F^ should 

be about 150 g d.w. above this according to Chapter IX(b.ii). 

Equally, on the basis of the total intakes of the observed grazing 

periods being 350-400 g d.w., it should be 0.2-0.25 kg d.w. below F^. 

In fact, the inflection point as defined in Chapter IX may not be the 

end point of extreme hunger if the change in preferences is considered 

as a smooth curve, and the rumen probably empties a little more slowly 

when low in contents, so the value may be more than 0.15 kg d.w. above 

Fq ; contrarily, the grazing periods as described from the small 

enclosures do not include possible residual grazing later in the 

morning, which may have been delayed because of 'jaw fatigue' or other 

food processing factors. In consequence, F^ is defined as 0.5 kg d.w. 

rumen fill, and is also taken as the 'hungry' trigger level (i.e. level 

2 at which, if no other urge prevents them, sheep will start grazing). 

The level 1 hunger threshold occurs whenever rumen fill is below F^.

The sheep ingest water and salt in their food, and these affect 

the water balance of the body. The old model had no provision for 

variation in these. During the drought that occurred during this 

study, plant water content dropped drastically, and, to be realistic in 

validation runs, I include a simple descriptive relationship based on 

soil moisture to determine these parameters for the shrubs. Sharma et 

al. (1972) show a reasonable linear relationship between the salt 

content of saltbush leaves (as Na+ or Cl ) and soil moisture, and a 

quadratic relationship between salt content and relative leaf water 

content; the latter is almost linear for higher values of water 

content. This work was carried out on Atriplex vesicaria and

A. nummularia on clay soils in the Riverina Plain. I measured water



X. The model. 250

contents of saltbush forage (by dry weight) on five occasions and 

compared them with soil moisture values predicted in the the deepest of 

the three soil layers treated in the runoff submodel during the 

increasing drought of 1980-82. In the first four cases, water

contents decreased in parallel with the predicted soil moistures. The 

fifth was measured in April 1983, when rain had saturated the upper 

soil layers, but had not reached the deep layer; here the plants had a 

high water content, showing that the shrubs can tap sources at both 

levels.

On the basis of my results, and by comparison with the work of 

Sharma et al. (1972), I use the following linear relations to describe 

the water and salt content of saltbush forage for validation runs prior 

to March 1983. I emphasise that these are merely descriptive relat

ionships for this period:

water content of saltbush = 400 - (27 - SM3) * 27.4 {% d.w.)

salt content of saltbush = 6 + (27 - SM3) * 0.45 (% d.w.),

where SM3 is the mean soil moisture (cm) in the deepest soil horizon, 

and the expressions are not allowed to exceed 400 and 12 % respect

ively. A slightly different relationship is used for bluebush,

water content of bluebush = 400 + (SM3 - 27) * 24.5 (% d.w.)

There is little available data on the salt content of bluebush, but on 

the basis of Lange (1967) and Noble (1975), I have taken it to be 15% 
that of saltbush. A few samples of blackbush have contained water in 

similar quantities to saltbush, and I take its salt content as 50% that 

of saltbush; it is a minor dietary component so that these approxim

ations are insignificant. These values are set daily in the model.
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(v) Structure and implementation.

In this section, I describe how the new behavioural model fits 

together, and how it is linked to the plant growth model and the run 

control system. The control system is a group of subroutines that I 

have written to make the model interactive in use (the old model was 

designed to be run in batch mode only); this permits much greater 

flexibility in the control of output quantity (at any time interval 

from hours to years) and type (various summary parameters of climate, 

vegetation or behaviour, and behavioural details including ranging 

patterns and hourly activities). In common with a number of other 

routines, such as those controlling time incrementation, weather input 

from file records, and many output routines, the coding details of the 

control system are irrelevant to the model itself, and I do not 

describe them.

AA
"yrsim

"timer
WEATHR
WATVB
PGROW

interactive control routine + own summary structure
- simulates each day of the year
- time keeping
- obtains or generates weather
- runoff, soil moisture and evaporation
- plant germination, growth and dieback

HRSIM
"heat
GMOVER

"ÖDEST
GRAZE
GWATER

hourly sheep behaviour, called 24x a day 
respiration index for hour 
movement and grazing
destinations and directions of movement
diet selection and intake
watering

SHPHYS
ZUMARY

daily sheep growth 
summaries as required

Figure X.2: Simplified structure of subroutines in overall model. 
’AA' is actually a group of several routines, handling commands, 
initialising runs, and making available its own summaries.
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Daily Hourly By subflock

Heat trigger settings
Fixed heat balance calculations
Call hourly simulator for each hour

‘ Hourly heat balance calculations

‘ Assess physiological status / time of day 
Select new activity
Modify main activity by subsiduary triggers

Set up contagion matrix for grazing groups

Carry out activity 
’ Graze or move

'Obtain destination/direction 
Set speed and grazing intensity 
Determine route and time in each cell 
Graze visited cells if necessary 
Distribute nitrogen on visited cells 
Water if at waterpoint and thirsty 
.Adjust status of any linked subflocks 

or shade or camp or rest or water
[Water if at waterpoint and thirsty 
[Distribute nitrogen on cell 

Adjust rumen fill and water status 
Store extra energy requirements 
Adjust body temperature if cooling inadequate

, Hourly summaries, if necessary

Body and wool growth
Daily summaries, if necessary
Adjust or zero various daily stores

Figure X.3: Detail of new behavioural model structure; the
program cycles through each block daily, hourly or by subflock.

The structure of the new model is summarised in Figure X.2, and 

the behavioural section is shown in more detail in Figure X.3. Each 

day, any factors which remain constant for the day are determined; this 

includes the day's weather, and the soil moisture and plant growth in 

each cell of the paddock. For most of the runs described in the 

chapter, I have used real weather data from Middleback (temperatures, 

wind speed and direction, cloud cover) and Roopena (rainfall), although
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longer predictive runs use simulated weather sequences based on Noble’s 

model. The consequent determination of soil moisture and plant growth 

also uses Noble’s submodels. Some adjustment of growth parameters was 

made after model runs with no sheep to fit the vegetation exclosure 

data from Jervoise (Chapter IV(d.ii)) over the study period. Initial 

biomasses in Jervoise were those recorded during the vegetation survey 

of 1980 (Chapter IV(d.ii)). The growth model fitted the vegetation 

conditions in Jervoise adequately for the period of the study; for 

longer predictive runs, results are always described in terms of the 

difference between model runs with and without sheep in the paddock, 

thus reducing the impact of the vegetation growth model on any 

conclusions drawn.

Certain factors which are constant for the behavioural model are 

also calculated at the start of the day, including dawn, dusk, solar 

azimuth, heat trigger levels (based on wool length), and mean effective 

forage availability in the paddock. An hourly simulation routine is 

then called for each hour of the day.

Each hour (Figure X.3), certain fixed parameters are first calcul

ated, such as respiration rates in the shade and the open. The status 

of the triggers for each subflock is then examined, and this hour’s 

activity is selected. Next, all subflock pairs are checked, and, if 

two are grazing in the same cell, they may be linked together in a 

group on the basis of the probability described in the previous 

section; if this occurs, then intakes and movements of the first of 

each tied set of subflocks are automatically applied to the others in 

the group in later routines. The activity of the hour is now carried 

out for each subflock, including any movement and grazing; at the end 

of the hour, various physiological triggers and stores are adjusted,
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and summaries output if necessary. At the end of each day, wool and 

body growth is calculated for the day from the sheep growth submodel.

The coding of the programs are such that the model may be adjusted 

to run on a different paddock with minimal effort. All alterations 

may be made in one data element, which includes information on the 

spatial design of the paddock, its grid size, and the distribution of 

its vegetation, run-off, campsites, shade and waterpoints. The 

largest matrix to be entered is one which describes movement between 

cells; for this, the cell nearest in each direction (NE,E,...,N) must 

be specified for movement from each cell. This matrix requires 

considerable storage, but greatly speeds up the execution of the 

movement subroutine, as well as taking account of fenceline effects. 

The model as described in this section uses about 60 s of central 

processor time on the Univac 1100/80 at the A.N.U. for each simulated 

run-year, including plant growth and the behaviour of 20 sheep 

subflocks in the 53 cells of Jervoise. By comparison, about 38 s is 

used when modelling only 10 subflocks, and 7 s when no sheep were 

present (i.e. run-off and plant growth models alone).
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(b) Model runs in Jervoise.

This section describes a series of runs of the model on Jervoise 

paddock, using the weather data from the period of my study. These 

runs all start in May 1980, using information from the vegetation 

survey that was carried out during that month as a baseline for plant 

distributions in the paddock.

In Jervoise, the model operates on the 53 cells shown in Figure 

IV.9(a). The sheep behaviour section of the model invokes a random 

function for two purposes - determining whether grazing subflocks will 

move as a group, and to select movement directions in grazing; for 

most of this section, therefore, I compare the observed data with that 

predicted by model runs with five alternate ’seeds', or starting 

values, in the functions that generate the random numbers. The 

difference between these runs gives a good indication of how sensitive 

the model is to chance events.

(i) Activity patterns in different seasons.

A basic verification of the model is to ensure that it predicts 

sensible daily patterns of activity. Figure X.4 shows the predicted 

patterns for 60 day periods at various times. These patterns parallel 

those reported in the literature (see Chapter II) and earlier in this 

study (Chapter V(c.iii)). There are morning and afternoon grazing 

peaks, watering is usually bimodal, and shade is used in summer and 

autumn only. Watering frequency is reduced in winter relative to 

summer, and some grazing occurs throughout the day; the subflocks in 

the model grazed less in the middle of winter days than did real sheep, 

however (Figure V.7). This implies that the modelled subflocks are
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Figure X.H: Predicted hourly distributions of activities through 
the day for 60-day periods in (a) Jul-Aug 1980, (b) Dec-Feb 1980-81, 
(c) Apr-May 1981 and (d) Dec-Feb 1981-82. Ordinate is the number of 
the 20 modelled subflocks in the activity.
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more synchronised in their behaviour patterns than are real sheep in 

winter. Movement in winter is primarily movement to camp in the 

evening, whilst in summer it is also associated with water and shade 

usage.

Conditions during summer 1980-81 at Middleback were not severe; 

the vegetation was in good condition, and a total of 94 mm of rain fell 

during the period represented in Figure X.4(b). By summer 1981-82, 

vegetation condition had declined (Table V.2), and only 2 mm of rain 

fell during this two month period. This change is reflected in 

differences between Figure X.4(b) and (d), with increased watering 

frequencies, greater synchrony of day-time activities, and 

substantially more night-grazing. These differences were all seen in 

the field, although the night-time activities were not well-documented.

J u 1-Aug 1980

Dec-Feb 1980-81

flpr-May 1981

Dec- Feb  1981 - 82

H o u r  o f  d a y

Figure X.5: Predicted numbers of subflocks in the activities ’mg' 
or ' gm’ during the day, for 60-day periods at various times of year. 
Ordinate as for Figure X.4.
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An important aspect of sheep behaviour which was included in this 

model is directed grazing. Figure X.5 shows how the numbers of groups 

in the activities ’gm' and 'mg' (Table IV.3) were affected by season in 

the model. In summers, the patterns are very similar to those shown 

in Figure VI.6(a), with peaks in the morning associated with movement 

to water and some movement to shade, and in the late afternoon again 

related to watering. The model also predicts directed grazing to 

campsites after dark, which I never had the opportunity to observe, but 

could sometimes infer from dusk and dawn locations of sheep in 

Jervoise. The model also predicts substantial directed grazing in 

winter; some of this is towards campsites, which may occur, but in the 

morning it is a response to thirst which was rarely seen in Jervoise 

(Figure VI.6(b)). The relationship between thirst and hunger in the 

model may be too sensitive to thirst.

Use of water is very important to the predictions of the model. 

The threshold levels for the thirst index were set on the basis of the 

observations in West End which were described in Chapter Vl(c.i), which 

may have been in unusually extreme conditions. Figure X.6(a) shows 

the predicted daily water intakes for the modelled sheep during the 

same period as is illustrated in Figure VI.7; there is good agreement 

throughout the run, even in details such as the decline in drinking in 

early 1981 (as a result of rains), except that the model underpredicts 

the intake in the latter stages of the drought. Additionally, the 

model fails to show the extra increase during late winter in 1982, 

which, as previously noted, may be a response to lactation requirements 

which are not modelled here. The underprediction of water use is 

surprising since, as the next section will show, the model overpredicts 

the impact of the sheep near water in the drought conditions.



X. The model. 259

®
x.o
c
L0)
Ö
£

T J
©
U
T>
©
LQ_

(a)

1 . \ I

W A

O N D J F M R M J J f l S O N D J F H R M J J R S O N D J F M
1980  -  1983

•a
E
X.

T3
9X
O*
<D
ÜC
o

T>
•o

■ Offl(.Q_
O N D J F M R M J J R S O N D J F M R M J J f l S O N D J F M

1 980 1 983

Figure X.6: Predicted daily activities in Jervoise, 1980-1983, 
(a) mean daily water intake per head, (b) mean distance walked daily by 
a subflock. Solid blocks on the x-axis indicate times of shearing.
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Figure X.7: Predicted mean grazing times per subflock per day in 
Jervoise during 1980-1983; (a) time spent actually grazing, (b) number 
of hours in which some grazing occurred. Solid blocks on the x-axis 
indicate times of shearing.
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Figure X.6(b) shows the predicted variation in the mean distance 

walked per day by a subflock during the study period. These records 

are comparable to distances recorded in the literature (see Chapter 

Il(b.ii)), with distances in the drought period reaching the maxima 

recorded by Squires et al. (1972). The model therefore appears to 

predict a sensible amount of movement on the part of the sheep; the 

next section examines to what extent this movement is to the correct 

areas of the paddock. The model predicts a much greater scattering of 

subflocks in winter than in summer (e.g. Figure X.15(b) in Wizzo 

North), and correspondingly smaller ’linked’ groups. Thus it is 

possible to predict some seasonal reduction in group sizes simply 

because of less synchrony in behavioural patterns, especially in the 

use of waterpoints and camp sites, as was suggested in Chapter V(c).

Predicted daily intakes of the modelled sheep varied from

1.4 kg hd-*' in 1980 down to 0.95 kg hd-  ̂ in late 1982. This reduction 

was associated with greater movement, as Figure X.6(b) shows, but was 

also caused by attempts to graze in cells near the waterpoint which 

contained little or no vegetation by the end of 1982. These daily 

intakes are within the range found by Noble (1975) in grazing trials at 

Middleback, although they do not fall as low as those that he recorded 

in poor vegetation. This is a result of the model being purely 

time-limited in attempting to maintain the intake of the sheep, whereas 

real sheep eventually reduce their total intake in response to very 

poor forage conditions.

In correspondence with the drop in predicted daily intake, there 

was a major rise in time spent grazing. This may be expressed either 

as the number of hours in which grazing occurred (including hours of 

’mg' and ’gm’), or as the actual time of grazing (i.e. the time for
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which the grazing sub-routine is called, corrected by the reduced 

grazing ’intensity’ of ’gm’ or 'mg' (see section (a.iv)). The latter 

measure reflects pasture availability and net rates of intake, whilst 

the former increases with increasing movement. Figure X.7 shows the 

predicted variation in both of these parameters.

The number of hours of grazing in 1980 was low. Grazing times 

described in the literature would correspond best to a measure which is 

intermediate between the two measures that I have shown; Allden & 

Whittaker (1970) found that sheep would graze for 6 to 13 h per day, 

depending on pasture condition. In good conditions, therefore, the 

modelled sheep are probably obtaining their daily intake too quickly; 

this could result in less ranging movement in the model. In poor 

conditions, grazing times were much more variable and often excessive. 

This is due to the over-utilisation of cells with very low biomass; 

some extreme values of hours with some grazing (e.g. 2*0 towards the 

end of the simulation resulted from the unrealistic event of subflocks 

becoming 'stuck' in the eaten-out cells of the north-eastern corner - 

by this stage, the model predictions are breaking down in this partic

ular paddock design, because of accumulated errors resulting from the 

overprediction of grazing near the waterpoint (see next section).

In summary, the activity patterns are generally predicted well, 

with some underprediction of watering at the height of the drought. 

Grazing intakes are realistic, but are obtained a little too fast in 

good conditions. This is probably because real sheep switch between 

categories of ephemeral material in the later parts of their grazing 

periods, in the same way as they switched from shrubs (which could be 

eaten quickly) to ground material (which could not) in the trials of 

Chapter IX(b). This switch-over can only occur between shrubs and



X. The model. 263

ground material in the model, but a similar change within the latter 

category could result in net intake rates declining late in grazing 

periods, even in good pasture conditions. I had little opportunity to 

examine responses in good pasture conditions during this study.

(ii) Dung surveys and vegetation quadrats.

The best validatory data that I have for runs in Jervoise paddock 

are the distribution patterns that were obtained from the dung surveys, 

described in Chapter IV(c.iv); although these reflect the mapped 

behaviour patterns, they have not been used in building this model. 

In conjunction with the dung survey data, I discuss the trends that 

were shown by the vegetation quadrats (Chapter IV(d.ii)); these were 

positioned at 125, 250, 500, 1000, 2000 and 4000 m from the waterpoint. 

These showed a grazing impact that was superimposed on the general 

decline in vegetation condition that was observed in adjoining 

exclosures. This impact differed in timing depending on the location 

of the quadrat, and these differences can be related to subtle shifts 

in the dung distribution patterns.

To compare the model output with the dung surveys, I made five 

model runs using different random number sequences, in which the total 

predicted extensive behaviour (i.e. including grazing, movement and 

resting, but excluding shade use, camping and watering) was summarised 

for the 30 days prior to the date of each dung survey. Cumulated over

this many days, the model output from separate runs differed little

from each other (in all cases, Spearman’s rank correlation test

comparing the predicted use of each cell gave r>.88, n=53* p<.0001: 

usually r=.95), so that I describe and illustrate only one run in each

case. In statistical comparisons with the survey data, I exclude the
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waterpoint cell since my surveys actively avoided the area close to 

water, whilst the model includes resting by the waterpoint itself; the 

surveys underestimate the use of cell 1 in this respect throughout.

Figure X.8 shows the surveyed and predicted distributions of dung 

and animal activity respectively for July 1981 and February 1982; 

these agree reasonably (Spearmans' rank correlation excluding cell 1, 

r=.76, n=46, p<.001 and r=.80f n=46, pC.001 respectively; the reduced 

n is because some edge cells were not surveyed). In July 1981, use of 

cell 12 is overpredicted; together with cell 17, this constitutes the 

main northern campsite, and in reality the sheep use cell 17 more. 

For sheep arriving from the north in the model (as they often do from 

water), cell 12 is reached first and consequently used; this may 

significantly affect the predicted use of the north end of the paddock. 

It is very clear from the maps of February 1982 that the model greatly 

overpredicts the use of the east side of the paddock; south-east winds 

are common, but the real sheep tended to use the south-west of the 

paddock more during this summer. This may reflect camp-site 

preferences, since the observed usage of the south-east campsite (cells 

36 and 40) varied substantially over the three years.

Although the model performs reasonably in both winters and summers 

in which conditions are not too severe, its prediction of the later 

dung surveys is markedly worse. Figure X.9 shows the surveys of 

September and December 1982, at the 'height' of the drought, for which 

the correlations are poor to non-existent (r=.36, n=46, p=.013 and 

r=.02, n=46, p>.10 respectively). In both cases the model is 

substantially underpredicting the use of the south of the paddock and 

greatly overpredicting the use of cells near the waterpoint (e.g. 

cell 3)* This is despite the fact that the previous section showed
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Figure X.8: Dung survey data and predicted distribution of 
extensive behaviour in Jervoise for (a) July 1981 and (b) February 
1982. Lefthand map of each pair is dung survey (numbers are thous
andths of whole paddock 'egestion event’ totals), righthand map is 
predicted distribution of extensive behaviour for the 30 day period 
prior to the date of the dung survey. Contours are drawn on the data 
as shown; asterisks mark cells that were not surveyed.
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Figure X.9: Dung surveys and predicted distribution of extensive 
behaviour in Jervoise for (a) Sept 1982 and (b) Dec 1982. Other 
details as for Figure X.8.
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that it is, if anything, underpredicting water intake at these times. 

In December, the model is still predicting similarly to the previous 

summer, whilst the sheep were behaving very differently.

During 1982, the condition of the vegetation in the cells near the 

waterpoint in Jervoise declined to a very poor state, even in 

comparison with the universal decline in condition during the drought. 

This is reflected in the differences between the dung surveys of Figure 

X.8 and X.9; in these, it can be seen that the area of highest usage, 

which is usually near the waterpoint, gradually moves south (it shows 

as a band between the 35 mil isopleths of dung density), as was 

mentioned in Chapter V(c.ii). The area immediately adjacent to the 

waterpoint remained greatly used as a shade or rest location, but, as 

mentioned, the dung survey did not include this micro-site. Since the 

use of water increased during this period, it is clear that this 

pattern was a result of the sheep moving through the zone of depleted 

vegetation much faster than the model predicts. Although the movement 

speed of the grazing sheep is increased in cells of below-average 

pasture condition in the model (section (a.iii)), it is apparent that 

the predicted distribution of grazing pressure is too localised around 

the waterpoint.

The result of overpredicting grazing in the area near to water is 

that the waterpoint and adjacent cells are invariably eaten out 

completely by summer 1982-83 in model runs. Figure X.10 shows the 

decline in vegetation index at five of the vegetation quadrat sites in 

Jervoise compared with the predicted decline in biomass of saltbush at 

these locations. There were drastic decreases at all sites except 

that furthest from the waterpoint, and these decreases are predicted by 

the model; however, whereas in reality there was still some vegetation
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Figure X.10: Decline in vegetation at various positions out from 
the waterpoint during the period of the study; (a) changes in the index 
obtained from the Jervoise vegetation quadrats (the names, e.g. J-500, 
indicate distances from the waterpoint), and (b) the predicted decline 
in saltbush biomass in various corresponding cells (’cell 3+ '̂ indic
ates the mean value in these cells, since J-500 was on their boundary).

left at all sites, the model predicts total removal at most. This is 

associated with the failure to predict the movement down the paddock 

that is shown in Figure X.9.

The explanation for the overuse of depleted cells is probably

that, in the model, the preference ratings and digestibility of the

f eeds do not decline as their total biomass does; in reality, in an

area in which the biomass is declining as a result of grazing impact, 

the best vegetation is likely to be consumed first, and that remaining 

will be both less-preferred, and composed of lower quality material. 

Under these circumstances in real life, sheep evidently respond by
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reducing their grazing in the area if there is a better alternative; 

in other words, the approach to increased movement speeds in poor 

vegetation described in section (a.iii) is insufficient, and the 

modelled sheep cannot adjust their diet selection within one cell by 

taking account of others where forage may be better. Although Chapter 

V showed that sheep seemed not to be responding to vegetation type in 

Jervoise, they must have been responding to vegetation quality. As 

described in Chapter Vll(b.ii), I was unable to investigate this in the 

field, so I do not follow the point further here.

Although the model overpredicts the rate and extent of vegetation 

decline in the cells near the waterpoint, it does predict some aspects 

of the sequence correctly. Not surprisingly, the waterpoint cell is 

eaten out earliest in both real-life and the model, as Figure X.10 

shows. However, quadrat J-2000 in real-life and cell 12 in the 

simulation both decline at about the same time as locations nearer the 

waterpoint. This was a consequence of the proximity of the northern 

campsite and illustrates the importance of campsites as foci of grazing 

impact other than the waterpoint.

To recapitulate, Noble (1975) found that his model tended to 

predict too much piosphere development in Wertigo; the same model run 

on Jervoise, which evidently has a more critical paddock layout in 

terms of testing the adequacy of a model, predicts the destruction of 

the vegetation around the waterpoint in about six months, and very 

rarely predicts any use of the south end of the paddock. The new 

model is a considerable improvement; evidently it still overpredicts 

grazing near a waterpoint in drought conditions, but it is much better 

at predicting the spatial use of a narrow paddock such as Jervoise in

good years. The next section will show that the new model also
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produces reasonable predictions in the very different paddock design of 

Wizzo North.

(iii) Map patterns in Jervoise.

To close this section on tests in Jervoise, I briefly compare some 

modelled sheep distributions with ’real life' at a particular time. 

During verification of the model, I followed many modelled days in 

detail to ensure that the programs were running as intended; I do not 

describe this process here. However, I present a few separate 

observation maps of sheep in Jervoise to compare with the predictions 

for the same day and hour by the model, in order to elucidate the 

limitations of the model that were described in the previous section.

Figure X.11 shows the actual distribution of sheep in Jervoise as 

mapped around dawn on 7th December 1980, and five alternate predicted 

distributions for the same time (all runs commenced in May 1980). 

Needless to say, there is no reason why any particular randomly- 

generated run should exactly agree with reality, and there is indeed a 

considerable variability between predictions, depending on previous 

patterns of grazing and watering. However, the dominant use of the 

northern campsite is correctly predicted by all runs; the secondary 

use of the south-west site is only shown in one run and there is a 

tendency to predict some use of the south-east campsite which did not 

occur. The winds on the previous day were southerly, and this 

frequently causes the modelled sheep to occupy the closer south-east 

campsite in preference to that of the south-west. In reality, sheep 

did not frequently use the south-east campsite, and it is apparent that 

the use of campsites may be more affected by learned preferences or 

quality differences between campsites than is permitted in the model.



X. The model. 271

Figure X.11: Observed and predicted distributions of sheep in 
Jervoise at 0600 h on 7th Dec 1980: top left land map is observed 
distributions of sheep (numbers are sheep), all others are the 
predicted distributions (numbers are subflocks) from each of the 5 
independent simulations.

This over-use of the south-east campsite in comparison to that in the 

south-west is the main factor responsible for the general overpredict- 

ion of use of the eastern side of the paddock, as shown in Figure X.8.

Three further illustrative days are shown in Figure X.12, in which 

I include only two predictions - one which best matches reality and one 

that least does so. The first set, from the morning of 29th August 

1980 in conditions of north-west winds, shows how the model predicts
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Figure X.12: Observed and predicted distributions of sheep in 
Jervoise, (a) 0900 h on 29th Aug 1980, (b) 0600 h on 30th Jan 1981 and 
(c) 1200 h on 28th November 1981. Left hand map shows the actual 
distribution (numbers of sheep), right hand maps show predicted 
distributions (number of subflocks) in two alternate simulations.
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Figure X.13: Observed and predicted distributions of sheep in 
Jervoise, 17th April 1981, (a) 0600 h, (b) 1200 h, and (c) 1800 h. 
Left hand map shows the actual distribution (numbers of sheep), right 
hand maps show predicted distributions (number of subflocks) in the 
same pair of simulations through the day.
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Figure X.14: Observed and predicted distributions of sheep in 
Jervoise, 26th November 1981, (a) 0600 h, (b) 1200 h, and (c) 2000 h. 
Left hand map shows the actual distribution (numbers of sheep), right 
hand maps show predicted distributions (number of subflocks) in the 
same pair of simulations through the day.
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well in circumstances where the movement model is less critical. The 

second shows camping behaviour on 30th January 1981, which was one of 

the few fieldtrips during which the south-eastern campsite was used 

regularly. The model again predicts this usage, but most of the 

modelled subflocks do not come south of the northern campsite despite 

the south winds. On this particular occasion, the route of the sheep 

that camped in the south-east was still visible in the morning, since 

they had walked down the eastern paddock track after dark; they had 

apparently walked past the northern campsite, so that the factors that 

draw sheep to a campsite in a particular direction, or part of a 

paddock, may be stronger than assumed in the model. The third set of 

maps is from midday on 28th November 1981, and the model is consist

ently predicting positions too far south on this day of south winds. 

This illustrates the fact that the model’s failings during this summer 

and later into the drought are not in overpredicting the use of the 

waterpoint, but in underpredicting the rate and distances of longer 

movements out from the waterpoint by sheep during poor conditions, 

especially to the southern campsites.

Finally, Figures X.13 and X. 1 show the time-courses of two days, 

to illustrate the dynamic nature of the model. Figure X.13 shows 

records from an autumn day in south-east winds, and Figure X.14 shows 

an early summer day in north winds; the model predictions are from 

runs with the same pair of random number sequences throughout, and are, 

apart from reservations as expressed above, in remarkably good

agreement with reality.
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(iv) Summary: Jervoise.

This section has shown that the model predicts sheep activity and 

watering patterns well. It may over-estimate net rates of intake in 

good conditions; this could result in there being fewer grazing hours 

available for movement. Decreases in daily intake during the 

declining vegetation conditions of the drought are realistic, although 

increases in total grazing time are excessive. Spatial use of the 

paddock is predicted well in moderate conditions of climate and fodder 

availability. In cells of poor vegetation condition, however, the 

model overpredicts the grazing effort by the sheep; this is probably 

due to the inflexible preference ratings in the model which fail to 

take account of the removal of preferred fodder first by the sheep, and 

to the assumption that sheep learn very little about the vegetation 

condition available elsewhere in the paddock. Invocation of learning 

seems to be necessary only in poor conditions. The predicted decline 

in vegetation state at the location of vegetation quadrats in the real 

paddock generally matches measured declines, although the extent of the 

decline is exaggerated. In particular, an area near the northern 

campsite is correctly predicted to be eaten out earlier than would be 

expected on the basis of distance from water alone. This illustrates 

the importance of campsites as foci of impact. Finally, predicted 

distributions of subflocks on particular days show considerable 

(realistic) variation between model runs, but often match observed 

distributions reasonably. They also show that incorrect, and insuff

iciently frequent, choice of southern campsites is the main proximate 

cause of the model's underprediction of the use of the extremities of 

the paddock, and overprediction of use of the eastern side.
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(c) Model runs in Wizzo North.

Wizzo North is a paddock of twice the size of Jervoise, with a 

centrally-located dam, and two permanent waters. In general, its 

paddock geometry is far less constricted than that of Jervoise. In 

this section, I describe the extra features needed in the model for it 

to run on Wizzo North, and I compare the output with some mapped 

observations.

(i) The Wizzo model.

The main additional feature that is needed to model Wizzo North is 

some criterion for selecting between waterpoints. As Chapter Vl(c.ii) 

mentioned, choice of the nearest waterpoint did not explain water use 

in Wizzo North; I have no detailed data on this matter, so I use a 

simple ’memory1 model, as was suggested necessary by Chapter Vl(c.ii). 

In this, if a sheep waters at a given waterpoint, its ’memory’ of that 

location is set to 1.0. On each subsequent day, if not reinforced, 

this 'memory' declines by a factor of 0.95. When the sheep needs to 

go to water, the following decisions are made: firstly, if any water 

is in the current or adjacent cell, this waterpoint will be chosen. 

Otherwise, the waterpoint with the highest ’memory' value will be 

chosen, except that, if more than one 'memory' exceeds 0.5, then the 

nearest of these will be chosen. At the given rate of forgetfulness, 

the value of 0.5 is reached in two weeks; thus, providing a water is 

visited at least fortnightly, it will remain available to the sheep 

regardless of the animal's location. Beyond this, it will only be 

used if the subflock passes nearby.

This simple model predicts the qualitative behaviour seen in Wizzo
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reasonably. When the central dam and the eastern (McGouish's) trough 

are in use, both tend to be used with a preference for the dam; if 

sheep are 'released* in equal numbers at both in the model, it predicts 

visits to both, but with a tendency to drift to the central dam. 

Under these conditions, the voluntary use of the south-western trough 

is very minor. If only the south-west and eastern troughs are 

available to the sheep, the modelled division of visits is strongly 

dependent on which water is first visited after the sheep were released 

in the paddock, and negligible transfer occurs between the two; if all 

the sheep are introduced on the south-western trough in early summer, 

the predicted ratio of visits over the following two months is 67:1 in 

favour of the trough they first used. This parallels the observed 

behaviour in early 1982 well, when separate 'home ranges' were 

effectively maintained in the eastern and western sections of the 

paddock.

Thus the simple memory model is adequate. Other adjustments to 

the model for Wizzo concerned baseline vegetation distributions, 

run-off patterns, paddock layout and cell sizes. The grid used in 

Wizzo North is much coarser than that in Jervoise, with cells of 

1x1 km2 (see Figure IV.9(b)); the coding of the program automatically 

accounts for different cell sizes, however. No changes were made in 

any other behavioural aspects.

(ii) Mapped patterns in Wizzo.

Predicted daily activity patterns in Wizzo were similar to those 

in Jervoise (section (b.i)) and I do not repeat then. Unfortuately, 

no dung survey comparable to those of Jervoise is available for Wizzo, 

so in this section I present comparisons of data from coarse mapping
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sequences (Chapter IV(c)) with model output. In order to smooth 

chance variability, I have cumulated the total observations for several 

days of a fieldtrip, and compared these with the day-time activity 

distributions predicted by the model (i.e. extensive behaviour and 

shade use, including grazing to and from campsites, but excluding 

camping itself). In general, these predict reality better than in 

Jervoise, even into the drought, partly reflecting the more critical 

paddock layout of Jervoise, and also because less detail is available 

on the coarser grid.

Figure X.15 shows the results of the predictions in Wizzo North. 

Variation between individual model runs was again considerable (cf. 

Figure X.11 in Jervoise), and I only illustrate one of the better 

predictions for each. For the period illustrated in Figure X.15(a), 

both the eastern trough and central dam were in use and the modelled 

sheep were ’released1 at the E trough: the model overpredicts watering 

at the dam for this period, and consequently underpredicts the use of 

the south-east campsite area, but otherwise the pattern and dispersion 

is very similar (range of Spearman’s correlation coefficients between 

the observed and five modelled patterns: r=.36 to .54, n=32, p=.04 to 

.002). The waterpoint model does not include any allowance for 

differences in water quality, and, where two waters remain within the 

sheep’s memory, this might affect their choice between them. The 

observed records were obtained from ’coarse' mapping runs (Chapter 

IV(c.i)) so that sightings of small numbers of sheep were not reliably 

made. The prediction of outlying subflocks is not necessarily 

incorrect, but their grazing impact is minor.

Figure X.15(b) shows the situation in winter, with the dam and 

eastern trough available. The model predicts the increased dispersion
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Figure X.15: Observed and predicted distributions of sheep in 
Wizzo North, (a) 23~25 Jan 1981, dam and E trough, (b) 11-13 Jul 1981, 
dam and E trough, (c) 14-16 Feb 1982, SW trough, and (d) 7~9 Apr 1982, 
SW and E troughs. Left hand map shows the actual distribution, right 
hand map shows predicted distribution in one simulation. Numbers are 
% animals or subflocks seen or predicted in each cell respectively; 
contours are isopleths of harmonic mean moments.
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over the paddock in these conditions very well (range as above, r=.38 

to .52, n=32, p=.03 to .002). A summer period when only the south

west trough was available is illustrated in Figure X.15(c), however, 

for which the sheep were ’released’ in the south-west three months 

previously; this sequence includes north winds, and the model does not 

predict sufficient northwards movement over the 6 km length of the 

paddock (range as above, r=.01 to .53, n=32, p=n.s. to .002). This 

failure is comparable to the failure to predict sufficient use of the 

south of Jervoise, and is again related to campsite selection. 

Finally, Figure X.15(d) shows the predictions for autumn 1982, when 

both south-west and eastern troughs were available, and half the sheep 

had been ’released’ at each after shearing in February (range as above, 

r=.26 to .52, n=32, p=n.s. to .002). The divided 'home-ranges', 

centred on each water, are shown very clearly (see Chapter Vl(c.ii)), 

exaggerated in the model again because of underprediction of use of the 

south-eastern campsite area.

Figure X.15 (c) and (d) relate to 1982, towards the time when 

predictions became poor in Jervoise during the drought (cf.Figure X.9). 

The predictive capacity of the model seems to be better in Wizzo North 

than in the more-constrictive design of Jervoise. However, the model 

is deficient in both paddocks in its selection of campsites; these are 

evidently almost as important as the waterpoint in determining which 

area of the paddock is in use.

(iii) Summary: the model in Wizzo North.

In Wizzo North, an additional model of selection between 

waterpoints is included. This is based on a simple ’memory’, and 

works reasonably, although it does not allow for different water
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qualities. The behavioural model predicts the spatial usage of the 

paddock well in terms of dispersion; some failings with regard to 

location can be related to the same problems as discussed for Jervoise, 

and are primarily due to the imperfect choice of campsites.
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(d) Predictive runs.

Ultimately, the true test of any theory or model lies in the 

prediction of events which have not yet occurred. Furthermore, this 

model is intended to be a significant step in the process of producing 

modelling tools for management, even if, as is clear from previous 

sections, it is not yet perfect. In this section therefore I briefly 

describe two predictive sets of model runs that relate to management 

options currently under consideration at Middleback. The first 

relates to the location of a new waterpoint in Jervoise, away from the 

bottleneck in the north of the paddock, and the other concerns 

waterpoint management following the division of Wizzo North into two 

paddocks in the pursuance of the policy of subdivision that was 

described in Chapter IV(a.i).

(i) A new waterpoint in Jervoise.

The model overpredicts offtake in the northern cells of Jervoise 

with the present waterpoint arrangement. However, it is clear from 

the vegetation quadrats that this area was damaged by grazing during 

the drought; with the present paddock layout, and with no relief from 

the pressures on the waterpoint area in good or bad times, the model is 

only exaggerating the inevitable results of a poor year. In 

consequence, the owners intend to put another waterpoint into the 

paddock; this will probably be fed from a bore in Adam's West paddock, 

about 500 m from the south-western corner of Jervoise paddock.

In this section I therefore test the effect of three alternative 

waterpoint locations on the development of vegetation pattern in

Jervoise. Because of the local wind patterns, the paradigmatic
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waterpoint position at Middleback is usually considered to be about one 

third of the length of the paddock down from the north fence, and 

central on the east-west axis. I first test a location in cell 13, 

therefore, although this is a long way from the bore in economic terms. 

An alternative extreme position is in cell 45, which is close to the 

bore and financially attractive, but is further south in the paddock 

than the owners would normally choose. Thirdly, I test a location in 

cell 28 as a economic compromise between the first two.

Table X.4

Rainfall, vegetation and general characterisations of baseline 
runs used to predict the effect of different waterpoint positions in 
Jervoise. The initial mean shrub biomass in Jervoise was 603 kg ha-1. 
The mean rainfall at Roopena is ca. 200 mm yr-^.

Run Mean rainfall (mm yr "* ) Mean shrub biomass (Dec, I
years 1-5 years 6-10 year 5 year 10

1 205 225 688 730
2 179 215 154 602
3 244 248 879 899
4 183 198 198 113

General description:

Run 1: ’normal’ throughout.
Run 2: drought years 2~5, ’normal’ thereafter.
Run 3: wet throughout.
Run 4: mild drought throughout.

For these predictions, I ran the model from the vegetation 

condition in May 1980 (i.e. from before the drought, since the vegetat

ion model does not adequately describe re-generation of shrubs) and 

with no sheep for six 10-year periods with different weather sequences 

(simulated with the weather sub-routines of Noble 1975). From these I 

selected the sequences described in Table X.4, and re-ran the model for 

the same weather sequences with 260 sheep in 10 subflocks in the

paddock. The results of the 'baseline' runs are summarised in Table
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X.4, after 5 and 10 years of run. For the runs with sheep, the model 

is still overpredicting the use of the area near water when the 

vegetation condition there falls to a low state, but in Table X.5 I 

quote some very general statistics of the predicted effects of the 

sheep after 5 years in comparison to the baseline runs; the results 

after 10 years parallel those shown.

Table X.5

Grazing impact and sheep condition after 5 years predicted by 
model runs in four weather sequences for different waterpoint positions 
in Jervoise paddock. Vegetation parameters are: numbers of cells 
predicted to have less than 10 or 50$ of the saltbush biomass predicted 
in a baseline run with no sheep, and the mean shrub biomass in the 
whole paddock as $ of baseline run values (see Table X.4). The mean 
sheep body weight is given as $ of the mean value from all runs.

No. cells with Sb biomass Mean shrub Mean body
as $ of baseline runs biomass weight

<10$ <50$ ($ baseline) ($ overall)

Water at cell 13

Run 1 3 7 86 107
2 6 20 69 87
3 3 8 88 120
4 2 9 83 88

Water at cell 28

Run 1 2 12 87 109
2 3 23 67 88
3 2 7 89 120
4 1 5 83 90

Water at cell 45

Run 1 3 10 86 105
2 7 21 69 87
3 3 6 89 120
4 3 8 83 89

In general the predictions show that fewer cells will be severely 

damaged with the waterpoint at the compromise position (cell 28); this 

is usually associated with a wider spread of milder grazing impact. 

Figure X.16 shows the typical general paddock usage for one instance in
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run 1 with each waterpoint, and it can be seen that the central water- 

point permits the most even usage of the paddock. Cell 13 is 

positioned close to both the main northern campsite and a major area of 

shade, and this results in the development of a large impact zone 

around the new waterpoint. Considering that there are only a small 

number of campsites in Jervoise, but that they are spread as widely as 

is possible (Figure VI.9), it seems unlikely that any significant 

changes in campsite locations would occur. Thus the position that 

would normally be preferred in paddocks at Middleback is not suitable 

in Jervoise because of its particular spatial layout.

81 10 6

< 1  < 1  < 1  1
< 1  < 1  < 1  1

< 1  < 1 < 1  < 1
< 1  < 1

1 < 1  < 1  1

< 1  < 1  < 1

9B\3 3

Figure X.16: Predicted mean distribution patterns of subflocks in 
extensive activities (g, m, r) during years 1-4 of the weather sequence 
of Run 1 for Jervoise paddock with a new waterpoint (B)located at 
(a) cell 13, (b) cell 28, and (c) cell 45. Numbers are mean subflocks 
hours per day spent in each cell; contours are drawn on these values.
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Not surprisingly, the predictions for a waterpoint in cell 45 are 

also dismal as far as the south-western vegetation is concerned. The 

impact zone is predicted to be smaller but more intense than for cell 

1 3, and the closeness of the south-west campsite is an important factor 

in this. The third choice, in cell 28, is much more satisfactory; 

the model is undoubtedly overpredicting the impact around the proposed 

waterpoint, but there is much more even use of the paddock.

In all trials there is a considerable net reduction in mean shrub 

biomass in comparison to the baseline run, but there is little differ

ence between waterpoint positions in this respect. Similarly, sheep 

condition, as measured by body weight, is far more dependent on season 

than on management policy, although it is consistently slightly higher 

for the central waterpoint position; over many years, this might be 

significant to wool cuts and lambing successes. I have not discussed 

the possibility of continuing to use the present waterpoint intermitt

ently, but the low use of the north-eastern corner with either new 

southerly position would enhance the usefulness of the old waterpoint.

One interesting, counter-intuitive result of these runs is that 

the grazing impact is least concentrated in the run with mild, but 

continuous, drought; in this run there was a regular yearly supply of 

ephemeral material, but the rainfall pattern resulted in a steady 

decline in the vegetation throughout the paddock. This highlights the 

influence of detailed pattern in affecting productivity, and emphasises 

how un-informative mean climatic data can be.

This section makes two important points. Although it is perhaps 

not surprising that cell 13 would not be a good location for a water- 

point given the proximity of shade and campsites, the consideration of
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these factors would often not occur without the analysis needed for the 

model. Effects such as these are usually easily explained in retro

spect, and a model offers the possibility of ’pre-emptive hind-sight’, 

even when its predictions are not quantitatively perfect. Secondly, 

ideal paddock layout is not simply a function of locally prevailing 

winds, but also of how the sheep use the landscape; if there were no 

hill and no campsites in cells 12 and 17 of Jervoise, patterns of use 

would be dramatically altered, yet the outline of the paddock on the 

property map would be unchanged.

(ii) Management in ’Wizzo West’ paddock.

As part of the continuing policy of subdivision, the owners of 

Middleback will eventually divide Wizzo North paddock down the centre. 

There is little choice as to where this fenceline will run, so I do not 

pursue this issue. As a result of the sub-division, however, the 

western portion of the paddock (which I have taken the presumptious 

step of naming Wizzo West) will contain two main waterpoints; these are 

the dam, halfway up its eastern fence, and the south-west trough, on 

the southern fence. I therefore test between two alternate management 

procedures with respect to these waterpoints. The first is to permit 

watering at either water, and the second is to permit watering at the 

trough only when the dam is dry. The dam is assumed to dry up if a 

continuous period of 6 months passes with no rainfall of greater than 

20 mm in one day. I have used the same weather sequences as in the 

previous section, described in Table X.M.

Table X.6 presents some simplified results from this analysis. 

In long-term runs in Wizzo, as in Jervoise, the model overpredicts the 

use by sheep of cells with depleted vegetation. However, it is again
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possible to compare qualitatively, rather than rely on quantative 

values. In the different weather sequences, the dam contained water 

for different periods, which are shown in Table X.6.

Table X.6

Predicted impact over 10 years of two management policies with 
respect to waterpoint availability in the new 'Wizzo West’; analysis 
shows numbers of cells anywhere in the paddock in which saltbush 
biomass has declined to <50$ of the baseline run values, and numbers of 
cells in the immediate vicinity of each waterpoint in which saltbush 
biomass has declined to <10$ of the baseline values; management 
options considered are: only one water ever available ('managed'), or 
watering not controlled ('unmanaged'). The proportion of days that 
the dam was full in each run is also shown (for run descriptions, see 
Table X.4).

$ time dam cells with <10$ baseline Sb cells <50$
available near dam in S.W. (all paddock)

'Managed'

Run 1 91 1 0 5
2 77 1 0 5
3 100 1 0 5
4 74 0 0 5

'Unmanaged'

Run 1 91 0 0 5
2 77 0 2 6
3 100 0 1 2
4 74 0 1 5

There is little difference in the overall impact on the new

paddock between the management policies, but the results show that, if 

given the chance, the sheep will tend to over-use the south-western 

trough, as is shown in Run 3, when the dam was always available (in 

reality this effect might be reduced since the water supplied to the SW 

trough is saline well water). A policy of blindly preventing the use 

of the trough at all times when the dam contains water would not be 

sensible, however, since there are occasions when it dries up for only 

short periods but the overall rainfall pattern is not ideal for plant
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growth. In these conditions, as in Runs 1—3, there is a tendency for 

grazing impact to be unnecessarily high near the dam. To promote even 

use of the paddock, the best policy would be flexible, such that the 

south-west waterpoint was usually turned off when the dam contained 

water (especially after a period of drought), but that watering was 

allowed there before the dam next went dry if this was a long time 

later. Needless to say, this model does not consider some additional 

issues of concern here, such as the rate of shrub re-establishment in 

areas that have suffered the loss of adult plants.

(ii) Summary: predictive runs.

This short section of predictive runs has shown that, despite its 

failings, the model can be used to make useful comments on possible 

management options. In deciding where to place a new waterpoint in 

Jervoise, it shows the importance of considering the locations where 

camping and shade occur, as well as the general paddock design. The 

prediction that a new waterpoint in Jervoise should go in the middle of 

the paddock, rather than the mid-north, may have practical relevance, 

in addition to justifying a reduced cost of piping. In Wizzo North, 

water-use management in a potential new paddock has relatively slight 

impact on the paddock's vegetation when compared to seasonal variation. 

However, to maximise evenness of use, the model shows that management 

should control access to the south-western waterpoint at times when the 

dam contains water, but that this control should be flexible.



Chapter XI.

A retrospective.

As I have stated, the development of a model of the type that has 

been described in this thesis has two major purposes. For pure 

science, this development directs research to the areas of our 

knowledge which are deficient or ill-defined, and may rectify these 

inadequacies; in applied science, the ultimate goal is to predict the 

results of management decisions in real systems in a way that is useful 

to managers. During this study, I have had two general, personal 

goals: firstly, to carry out some work of pure scientific value in 

areas that the model of Noble (1975) had indicated that our knowledge 

was deficient; and secondly, to use these findings to rebuild the 

model, and show that it has some predictive value in a real management 

system.

To what extent have these purposes and goals been fulfilled ? 

The important areas of deficiency that were apparent in Noble’s model 

were the lack of validation of the physiological indices used to 

predict behaviour, the limited understanding of how movement is 

determined in the open paddock, and the uncertainties in the model of 

grazing intake, especially with regard to the way in which selection 

changes during the grazing period. Chapter VI has described the 

validation of some of the indices, most notably and satisfactorily in 

the heat balance sub-model; some steps have been taken towards an 

understanding of how these indices may interact when animals are in a 

free-ranging system. Chapters V, VI and VII have examined movement in
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the open paddock with varying success, and have indicated the 

importance of movements to sites of activities other than grazing, 

instead of the normally assumed importance of movement in grazing 

itself. Chapters VIII and IX have tested how the structure of the 

grazing period is related to satiation, and shown that dramatic changes 

in diet selection occur during this period, which appear to be related 

to hunger. All these results are relevant to herbivores and systems 

other than sheep in the South Australian arid zone.

In implementing these and other findings in a new version of the 

model, I have shown that it is possible to predict the ranging behav

iour of sheep, and their impact on a paddock, under moderate climatic 

conditions. In the critical paddock design of Jervoise, however, the 

movement model is shown to be imperfect still, especially as regards 

campsite usage, and more account needs to be taken of variation of 

intake requirements with external environmental conditions. The 

illumination of flaws in our knowledge is a continuing process, and the 

refining of the behavioural model has shown up some previously 

unrecognised inadequacies. From the drought years during this study, 

it is clear that the model requires much better information about the 

water and salt contents of the animals’ feed, and that the decline in 

vegetation quality associated with selective grazing removal in a given 

area must be investigated and related to the preferences and learning 

abilities of the grazing animal.

Despite these failings, I have shown that the model has value in 

predicting the relative outcomes of alternative management decisions in 

the real world. The model highlighted factors (shade and camp locat

ions) in Jervoise which should influence the choice of a site for a new 

waterpoint, and has shown that the specific design of an individual
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paddock is important in this type of decision. In this study, I have 

not attempted to extend the model to other herbivores or systems, but 

the structure of the model would be suitable for such an extension.

Overall, then, this study has examined some aspects of the behav

ioural ecology of sheep in the Australian arid zone, and produced a 

model that has useful predictive value, and which foreshadows paths for

future investigations.
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Appendix.

This appendix presents a model of the heat balance of a sheep. 

This model was validated in collaboration with I.R.Noble and G.K.Jones, 

and has been described in a paper; the text of this paper is 

reproduced here in its original form, except that the references and 

acknowledgements have been subsumed into the bibliography and 

acknowledgements of this study. Note that there is a short appendix 

to this Appendix, which gives the deriviation of the equations used to 

determine the heat balance.
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A general heat balance model for sheep, 
predict shade-seeking behaviour in hot conditions.

and its use to

D.M.Stafford Smith, I.R.Noble and G.K.Jones.

Department of Environmental Biology, 
Research School of Biological Sciences, 

Australian National University, 
Canberra, ACT 2601, Australia.



APPENDIX
Sheep heat balance model

296

ABSTRACT

Grazing impact in arid zones is focused around certain points 
which are regularity used for non-grazing activities. Amongst 
these are water-points and shade sites. Predicting the use of 
shade sites is an important component of modelling grazing impact 
on vegetation. We present a model of the thermal load of a sheep 
which has been used to predict shade-seeking behaviour by 
free-ranging sheep in the Australian arid zone.

We describe a generalised heat balance model for sheep and 
validate it in four stages:
(i) a shortwave sub-model, predicting shortwave at the earth’s 
surface,
(ii) an approximation to ground temperature,
(iii) predicted wooltip temperatures at various positions on a 
sheep’s torso, for two wool lengths, in shade or direct sunlight, 
and allowing for cloud,
(iv) a predicted respiration index correlated with respiration 
rate.

We demonstrate that our respiration index correlates with the 
proportion of sheep in a large arid zone paddock that are actually 
in the shade. A threshold level of the index may be used to
predict under what environmental conditions sheep will go to a 
shade site, as well as their water usage in evaporative cooling. 
The effects of hunger and thirst on this threshold, and its uses 
as a trigger in a model of sheep behaviour in semi-arid pastures 
are discussed.
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Introduction.

Grazing impact by free-ranging large herbivores, or animals 
in large semi-arid zone paddocks, is not randomly distributed 
within the animals’ range. Animals not only select preferred 
vegetation types (e.g. cattle, Low et al 1980, sheep, Squires 
1976, Lynch 197*0, but have certain foci in their range that are 
relatively over-utilised. For sheep in the Australian semi-arid 
zone, the paddock waterpoint is the most important of these foci, 
and a strong impact zone, or piosphere (Lange 1969), may develop 
around it. Two other significant locations of inactivity are 
day-time shade sites in hot weather, and night-time campsites. 
Being regular sites of inactivity, these are also regular starting 
points for grazing periods and consequent grazing impact. 
Squires (1975) has noted, for example, that shade location can be 
an important determinant of grazing distribution patterns for 
sheep in Australia.

Noble (1975, 1979) has described a model of vegetation growth 
and sheep grazing behaviour in a chenopod shrubland pasture of 
South Australia. Such an overall model is crucially dependant 
upon the modelling of the animals’ use of the foci of non-grazing 
activities. In this paper we describe and validate a detailed 
heat balance model, and show how it predicts the usage of shade 
sites by sheep in the open paddock. It also predicts water usage 
in evaporative cooling by the sheep, which is part of the 
requirement for predicting when the sheep need to go to the 
waterpoint.

The merino sheep has long been recognised as being 
efficiently adapted to the arid zone (Macfarlane 1964). Basic 
physiological work has been reported by Blaxter et al (1959a,b), 
Macfarlane et al (1958), Macfarlane et al (1961), Macfarlane et al 
(1966), amongst others. Lee (1950) outlined a model of the 
thermal balance of a sheep standing in the sun, and this was 
extended by Priestley (1957). More recently, Mount and Brown 
(1982) have described a model of sheep heat balance which allows
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for cloud and rain, intended to predict energy loss by sheep in 
relatively cold conditions.

Lee ( 1 9 7 2 ) has discussed thermal stress and strain - the 
disturbance experienced by an animal exposed to hot conditions. 
He expressed this in terms of the actual evaporative cooling rate 
compared with the maximum attainable by the animal. Several 
studies have followed Porter and Gates’ ( 1969 ) approach, 
estimating the thermal load of animals in a particular environment 
and comparing this with the observed animal behaviour. For 
example, Porter et al ( 1973 ) modelled the environment and thermal 
load of an iguana in order to predict its behaviour and water 
requirements (and to demonstrate that such studies are important 
in predator-prey interactions). In Australia, various studies 
have compared the effects of thermal loadings with an animal’s 
preferred shelter (e.g. Dawson & Denny 1969 , Kitchener 1972 ) .  No 
such study has examined the hour to hour interaction between 
thermal load and other behavioural determinants.
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Data collection methods.

Validation data was mostly collected during January and 
February 1982 at Middleback Station, South Australia (33°S, 
137°E). Six three-year-old Merino sheep were taken from a flock 
run on the station, and two of them were shorn. The relevant 
physical characteristics of these sheep are given in Table 1. 
Another ten sheep were held in a small (2 ha) paddock for less 
detailed observations which were taken to ensure that the 
close-penned sheep were not behaviourally affected by the 
treatment below, nor individually abnormal.

Every other day for three weeks (total 3 days for 
acclimatisation plus 11 days of recordings) the six study sheep 
were closely penned and observed. One shorn and two woolly sheep 
were penned in artificial shade created by a small 'barn' of 
reflective roofing material held high enough above the ground to 
allow the free flow of air. The other three were penned in the 
open, although the shorn individual was moved into shade when its 
distress became evident on the hotter days. The animals were 
permitted water ad lib. No animal suffered conditions that were 
not observably endured from time to time by undisturbed sheep in 
the open paddock. The weather during the observation period was 
typical for a Middleback summer, with minimum temperatures ranging 
from 12 to 3^°C and maximums from 28 to ^7°C. There was no rain, 
and six of the observation days were cloudless.

Environmental and physical measurements were taken at regular 
intervals. Air temperature in the shade and wind speed at the 
height of a sheep were recorded at the time that the observations 
were taken. A variety of ground and surrounds temperatures, 
including those under a nearby typical shade-tree, were taken 
using an infrared thermometer (Barnes Eng. Co., model PRT 10). 
Instantaneous shortwave pyranometer readings (using a LI-COR Inc. 
sensor LI-200S) were also taken on some days.

Wooltip temperatures were measured at various positions on 
each sheep’s torso with the I.R. thermometer held about 0.3 m from 
the wool. The accuracy of these was confirmed by wool surface
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and wool temperature gradient readings taken with thermocouples. 
The respiration rate of each sheep was counted three times and 
averaged to give a mean respiration rate. This measure was the 
most susceptible to disturbance, so on some days the respiration 
rates of the additional 10 sheep were also monitored to ensure 
that our sample was representative. A small number of 
respiration rates measured through binoculars on undisturbed sheep 
in the open paddock confirmed that our other readings were not 
affected by the presence of the observer.

We observed a flock of fifteen sheep in the surrounding small 
paddock (64 ha) to obtain behavioural parameters such as time of 
entry to shade. In addition, on some days, we simultaneously 
mapped a full flock (about 400 sheep, though not necessarily all 
visible) in the nearby Adam’s West Paddock (2400 ha). From a 
vantage point it was possible to determine time of entry to and 
exit from shade for many of the subflocks, and to see the 
activities of the individuals.
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Model Validation.

The model is intended to be applicable to any site given 
certain information about location, and minimal, readily-available 
meteorological data. The constant inputs required for the model 

location and certain physical parameters of the sheep - are 
listed in Table 1. With this information, the model equations as 
expressed in the appendix will predict values for a given day of 
year (D), time of day (t), air temperature (T ), wind speed (V),cl
wool-length (S, ) and, where relevant, body weight (W). Various w
other parameters such as body size (r,l) may be readily varied if 
so desired.

Our general approach has been to solve a heat balance 
equation at the wooltip to determine the energy flux into the 
body. This equation is a balance between shortwave and net 
longwave inputs, convective losses to the air, and conductive 
losses down the wool to the body (Fig-1). In the model, this 
equation is solved to obtain a notional 'mean wooltip temperature' 
from which the net heat flux into the body may be calculated. 
This notional temperature has no measurable meaning, so we have 
tested many of the assumptions involved in arriving at it by 
predicting wooltip temperature at various positions on the sheep's 
torso.

The resulting net energy flow into the body, when added to 
metabolic heat production, must be balanced by cooling mechanisms 
in hot conditions (or increased metabolic rate in cold conditions) 
if the sheep is to maintain a constant body temperature: this 
forms the basis for an internal heat balance equation. Initially 
we assume that all evaporative losses occur due to respiratory 
cooling, so that a respiration rate necessary to balance net 
energy inputs may be calculated. This equation could be made 
more complex to generate a more realistic respiration rate.

The detailed equations used in the model are derived in the 
appendix. In this section, we describe in four stages the main
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Table 1.

Parameters and their values used in this validation.

Parameter

SITE PARAMETERS

Latitude (at Middleback, S.A.)
Solar noon (in local time zone) 
Shortwave attenuation constant 
Mean ground albedo (shortwave)
Longwave emissitivity (all surfaces) e

ANIMAL PARAMETERS

Mean torso radius (no wool)
Mean torso length 
Body weight 
Body temperature 
Mean wool albedo (shortwave)
Mean wool emissitivity (longwave)
Wool thermal conductivity 
Mean wool lengths: 'shorn'

'woolly'

INPUT VARIABLE PARAMETERS

Proportion of sky covered by cloud 
Day of year (assumed S hemisphere)
Air temperature 
Hour of day (local time zone)
Wind speed (at 0.5m)

ymbol Value

4) -0.576 radians
t 12.3 h, noon k 0.8
a 0.25
eg 0.98

rb 0.149 m
lb 0.70 m
W 45.0 og
Tb 39 °C
a 0.26we 0.98

T T -2 0-1 W m 0X 0.064
£W 0.01 mw 0.07 m

m s

C
-f

assumptions underlying the derivations, and our validation which 
justifies these assumptions.

(i) Shortwave radiation reaching the earth’s surface.

Since solar radiation represents a major portion of incoming
-2radiative load on a clear day (up to 1100 W m ), the shortwave 

section of the model is the most complex, and its predictions are 
important enough to warrant separate validation. Hourly
cumulative radiation readings have been measured at Middleback 
throughout the year with a silicon pyranometer (as above) attached 
to an automatic weather station. The cumulative radiation load 
on an horizontal surface for each hour on several days, scattered 
through the year and known to have been clear at Middleback, was
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Figure 1 : The heat flows estimated in solving the heat 
balance equations. The letters (B,S,Z,Q) indicate the points used 
for wooltip temperature validations.

calculated using E0.1-E0.6 (see appendix). The inputs required 
are the latitude of the site (<j>), the mean time of solar noon 
(tnoon^ in the local time zone, the day of the year (D) and the 
time of day (t).

The form and magnitude of attenuation in the atmosphere is 
described by an attenuation function (in E0.5) which depends on 
the value of a dimensionless constant, k. Clear Australian skies 
can have a value of k as high as 0.9 (Hounam, 1963): however, we 
have used k=0.8 here, which is the normal clear sky value for the 
rest of the world, since our definition of a ’clear sky' allows up 
to 1/8 cloud.
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Hour of day

Figure 2: Cumulative hourly shortwave traces at Middleback;
predicted and observed values for one winter and one summer day.

Figure 2 shows the traces for a summer and a winter’s day at 
Middleback (29th Jan 1982, r2=.987, n=15; 2nd Oct 1982, r2=.993, 
n=13; for both p<.0001), without adjusting tnoon for the small 
drift which occurs through the year. Most of the significant 
error is at times of low radiation input, and is due to the form 
of the attenuation function which causes underprediction at low 
solar altitudes (and also allows no light prior to sunrise). The 
main effect of this, therefore, is early and late in the day, when 
the shortwave energy input is becoming physiologically trivial. 
Data from Canberra and other sites gave similar regressions, so 
the model is taken as satisfactory for Australian latitudes. The 
effects of cloud and shade are discussed in the appendix.

(ii) An approximation to ground temperature.

Estimation of wooltip temperature elsewhere on the sheep than
its horizontal back requires a value of ground temperature (T ).8
We have measurements of ground temperature during our validation
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readings, but it is not a commonly available meteorological 
parameter. Consequently, our validations are carried out using a 
simplified estimator of ground temperature from the other 
variables and equations already used in the model.

Noble’s (1975) original model followed Priestley (1957) in
assuming that T , if not available, may be approximated by wooltip 8
temperature, whilst Mount and Brown (1982) assume = T^^. For
high solar radiation loads, the latter approximation is severely
deficient since may exceed Tair by at least 30°C. Priestley’s
assumption results in a simplification of the longwave equation,
but this hides the fact that T has effectively become dependent8
on wool-length. It is also being approximated by the ’mean
wooltip temperature' of the whole sheep rather than the more 
relevant horizontal surface temperature. We therefore decided to 
model T separately, so that it is independent of zoologically-

o
variable parameters.

Accurate modelling of ground temperature is a complex 
procedure which must account for the lag in heat conduction to 
depth (e.g. Parton & Logan 1981). This involves knowing soil 
specific heat and conductivity, as well as having some integrated 
measure of energy stored at depth. Since soil parameters are 
highly variable with soil type and moisture regime, such 
complexity was not warranted here, and we choose to generate a 
gross approximation based on equations we already have in use for 
a sheep’s back. Validation results show that this approach is 
adequate for this temperature range, but we do not suggest that 
these equations accurately model all the processes involved in the 
ground surface heat balance.

Our approach is to model a flat surface with the conductive 
and reflective properties of a sheep’s back. The albedo of red 
clay or sand surfaces is similar to that used here for sheep (i.e. 
0.26). We assume surface longwave emissitivity to be the same. 
Taking the surface to be flat rather than cylindrical requires a 
small change in the convection term: this adjustment resulted in
no significant improvement in the correlation, so it is not made.

The most unrealistic assumption made is that the conduction
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term may 
thickness 
value of 
& =0.1 m.W

be considered equivalent to conduction through wool of 
to a heat sink at sheep body temperature. A long 

’wool length’ was found to be best, and we have used

With this value, for a range of ground temperatures, wind
speeds and solar inputs, we obtain a correlation between predicted

? 2and measured values of r =.879 in the open, r =.937 in the shade
(for both, n=10*J, p<0.0001 ). Results from the sections below
were very little affected by whether this predictor of T was8
used, or the measured values.

(iii) Wooltip temperatures.

Following Noble (1975), we modelled the solution to the heat 
balance equation for any surface in equilibrium in the sun as: 

Shortwave radiative input + net longwave radiative input 
- net convective losses - net conductive losses = 0, 

in order to obtain the surface temperature. The sheep’s torso is 
assumed to be a perfect cylinder with no significant end effects, 
and with the remarkable property of being able to orient itself 
with its long axis simultaneously perpendicular to both the solar 
azimuth and the direction of wind movement (McArthur and Monteith 
[1980] found that the orientation of their model sheep to wind had 
little effect on the bulk mean resistance of the fleece: they
did, however, find differences between windward and leeward sides 
as would be expected). The sheep's body is taken as a perfect 
heat sink at a body temperature Tfe at the other end of the wool 
covering. Sheep appear to allow their body temperature to rise 
only slowly, until their cooling mechanisms begin to fail (e.g. 
Hales & Brown, 197*0; although storage of heat in the body is 
significant in some large animals (Schmidt-Neilsen, 196*0, we 
assume a constant body temperature here. We also assume that 
there is no significant storage of heat in the fleece, and no lag 
in heat flux down the fleece. In fact there may be a lag of up
to 20 minutes for long fleeces (see Noble 1975), but this would 
greatly complicate any modelling and the results appear to justify 
ignoring these factors here (as does an hourly timestep in the 
overall model).
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Table 2

Correlation statistics for wooltip temperature validations: 
predicted vs actual temperatures at various positions on the 
sheep's torso, at two wool lengths, in shade or full sunlight. 
(All r2 are significant at <.0001 level). Coefficients are from 
regression equation, predicted = A 1 + B * measured.

A 1 B r2 n

SHORN (.01 m)
open B - .97 .83 82

Q 9.2 .77 .69 82
Z - 1 .04 .87 82
M 6.0 1 .02 .76 82

in shade - 1 .06 .96 104
overall 4.2 .91 .82 432

WOOLLY (.07 m)
open B 4.1 .80 .90 104

Q 8.8 .77 .96 104
Z -3.4 1.12 .94 104
M 11.3 .71 .92 104

in shade - 1 .06 .96 104
overall 7.3 .79 .84 520

ALL DATA 7.0 .81 onCO 952

1 where significantly different from 0 (p<.05).

Initially we solve the balance equation for any point at an 
elevation angle 0 on the sheep's torso (see appendix), and test 
this solution against our measured values. For both the woolly 
and the shorn sheep, we present data from the shade and the open 
on clear days. In the open, we took temperatures at four 
locations on the sheeps' torso: on the back (B), on the vertical 
side in the sun (S), on the vertical side in the shade (Z), and 
the point of maximum locatable temperature (Q - which corresponds 
to the point in line with the sun's azimuth) (see Figure 1). 
These positions are not differentiable in the shade, nor under 
cloudy conditions. We also present data for clouded days, in the 
shade and the open for both wool lengths.

Figure 3(a,b) show one day's traces for the different points 
on the torso (T^ is also plotted to show that we are not simply 
tracking it), and Fig.4 is a plot of all the predicted against
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Figure 3: Wooltip temperatures at various positions on a 
sheep's torso (see Figure 1) during one day; predicted and 
observed traces for (a) shorn sheep, (b) woolly sheep. Line is 
spline fit; air temperature is also plotted.
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Figure 4: Summary plot of all predicted against measured
wooltip temperatures used in this validation. Line is Y = X.

measured data. A summary of the results from the many 
combinations is given in Table 2. In general, the predictions 
are good. For points with high solar input, we tend to 
underpredict at the highest temperatures, which occur mainly on 
the longer fleece wooltips. Residual analysis shows that this 
cannot be attributed to lack of responsiveness to any one of our 
input variables (Q, V, Taf cloud), although solar altitude does 
explain about 1856 of the residual variation: it is unlikely to be 
due to wool conductivity being too low since this would affect the 
shorn animals more. The predictions are satisfactory for our
purposes.
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(iv) Energy flux into the body, and a respiration index.

To calculate the internal energy balance, we solve the 
external equation for a mean wooltip temperature over the whole 
body. With this temperature, E2.17 gives the energy flux into 
the body, and E0.13 gives metabolic heat production.

Evaporative cooling occurs in the respiratory tract during 
respiration, and from the skin in sweating. Earlier reports, 
such as Macfarlane (1964), considered that no more than one tenth 
of the total evaporative losses at high temperatures were from 
sweating. More recent estimates have varied from 20 to 90? 
(Hofmeyr et al 1969, Hales & Brown 1974, Hopkins et al 1978). 
These estimates depend greatly on the breed of sheep, and on the 
conditions in which the animals are observed: in particular, the 
proportion is likely to vary with ambient temperature and 
humidity, and with whether forced evaporation is allowed to occur 
due to air movement.

Not all the latent heat is absorbed from the body during 
sweat evaporation, and there is an exothermic reaction of water 
with the fleece (Klemm 1962). Wind and orientation of the animal 
affect forced evaporation from bare areas such as the ears, face 
and legs. The efficiency of sweating is likely to be affected by 
temperature. The transfer of latent heat down the wool and 
consequent heat loss, as distinct from the water loss, is 
therefore difficult to calculate (e.g. Gatenby et al 1983).

In this model we ultimately require an index of the heat load 
on the sheep for use as a behavioural indicator, and a predictor 
of the water usage by the sheep for cooling in hot conditions. 
We therefore ignore sweating, and assume that all evaporation 
occurs in the respiratory tract. Clearly, the respiration index 
derived in this fashion will numerically over-predict real 
respiration rates, but, inasmuch as respiration rate reflects heat 
loading, the two should be correlated. Since the evaporative 
process is similar for both sweating and respiratory cooling, the 
heat and water balances will show smaller errors. We expect to 
overpredict the respiration rate with increasing winds, as 
sweating becomes more effective.
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E0.1i] then gives the evaporative cooling for a respiration 
rate R (min 1), and E2.18 is the solution for the value of R 
necessary to maintain a constant body temperature. Table 3 and 
Figure 5 show the results of comparison between this predicted 
respiration index and measured respiration rates.

Table 3

Correlation statistics for respiration index compared with 
measured respiration rates: for two wool lengths, in the shade 
and in the open. (All r2 are significant at p<.0001 level). 
Coefficients are from the regression equation,

index = A + B * measured respiration rate.

A B r2 n

SHORN (.01m)
in open 108.2 1 .027 .764 70
in shade 107.-4 1.368 .747 90

WOOLLY (.07m)
in open 1511.7 .883 .707 101
in shade 178.1 .768 .548 101

all shorn 110.1 1.1611 .716 160
all woolly 170.8 .780 .609 202

Several f acts are clear from Figure 5. Firstly, the sheep
are capable of a basal degree of heat loss which we are not
modelling: the result of this is that they do not start to use
respiratory cooling until a higher energy influx level than we
would predict. We expect this to be a result both of cutaneous 
sweating over the body, and of additional controlled heat loss 
after vasodilation in naked areas of the body such as ears, face
and perhaps legs. The effect occurs for both wool lengths.

Secondly, once the shorn sheep do start panting, their rate 
does not rise as fast as our index does. Presumably there is 
still some temperature-dependent adjustment to the effectiveness 
of sweating, although one would expect a complicating compensation 
due both to the decreasing tidal volume as respiration rate rises 
(Hales & Webster 1967), and because non-evaporative heat loss from 
naked areas must become less significant as air temperature rises
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Figure 5: Plot of predicted respiration index against 
measured respiration rates, for woolly and shorn sheep; solid 
symbols are sheep in the open.

to and above body temperature.

Thirdly, there is a small significant difference in the 
slopes between the shorn and woolly sheep, such that the shorn 
sheeps' actual respiration rate rose slower relative to the index 
than the woolly sheeps'. This may reflect an improved 
effectiveness of sweating through short wool, or may relate to 
some physiological adjustment to being shorn in severe conditions 
(e.g. see Hopkins et al 1978). This difference supports our 
assumptions regarding the insignificance of heat storage in the 
wool, and time lag in conduction down it, since both effects could 
be expected to reverse this difference in slopes between wool 
lengths.
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Open paddock behaviour.

This section, including one table and two Figures, is pres

ented and expanded upon in Chapter Vl(b.i-iii); it is therefore 

omitted here.
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Discussion.

The most complete model of sheep heat balance in the
literature is Mount & Brown (1982), for sheep under British
conditions. Their model predicts net energy loss from a sheep 
through its fleece, but does not take this measure further to 
correlate it with behavioural responses. We have run their 
model, using our shortwave submodel, on our data, and found 
encouraging agreement with the predictions of our model for the 
net energy flux through the fleece: this is despite their very 
different approach to the convection and conduction terms. This 
may be partly because shortwave radiation is such an important 
component in the conditions that we are considering. Neverthe
less, it seems that we can now model the physical portion of the 
heat balance well.

We have also demonstrated that the energy flux through the 
fleece can be used to calculate a respiration index that is 
strongly correlated with actual respiration rates. This index is 
also shown to predict the use of shade by sheep in large, open 
paddocks. Since the index is linked to shade and water use, it 
can perform an important predictive role in behavioural models 
such as that of Noble (1975, 1979). We have shown that there are 
subtle interactions between the influences of heat, thirst and 
hunger on sheep behaviour; these interactions make it difficult 
to predict behaviour on the basis of a single index.

Our overall model of the use of large paddocks by sheep, of 
which this heat balance section is but one component, allows for 
interactions between hunger, thirst and heat loading indices, but 
the detailed form of these interactions are not well known. The 
heat-linked respiration index described in this paper has three 
uses in the overall model. It is used to predict when the sheep 
will go to shade sites, when they may leave them, and how much 
water is lost in evaporative cooling. With the hourly time-step 
that is used in the overall behavioural model, predictions of when 
sheep will move to shade, that are based on the respiration index 
and a single trigger level, are adequate in most conditions.
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A complete behavioural model can account for a large part of 
the variability of spatial utilisation of a paddock (c. Q0% in 
Noble 1975, 1979), and thus provides the basis for simulating the 
impact zones around sites of herbivore concentration. The 
application of heat and water balance models will also be useful 
in predicting herbivore distributions in other grazing regimes, 
such as in game reserves and in semi-nomadic grazing systems.
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APPENDIX.

The salient heat transfer equations that are used in the 
model, and their modifications for validation, are listed in Table 
A-2. In this appendix, we briefly describe their derivation
(i-iv) and their use to build these models (v-viii). Note that 
equation numbers prefixed with 0 are listed in Table A-2, those 
with 1 are general equations, and those with 2 are derived in the 
text below. Symbols are summarised in Tables 1 and A-1.

The external and internal heat balance equations are:
E1.1 Shortwave input + net longwave input - net convective loss

- net conduction into the wool = 0,
E1.2 Net conduction from the wool + metabolic heat production

- evaporative latent heat losses = 0.

One caveat must be inserted here. Because the model involves 
the solution of balance equations, small errors in absolute values 
of the various energy inputs are often be compensatorily dampened 
by other terms in the course of solving for temperature or 
respiration rate. Consequently, good final agreement of the
model with reality does not imply perfect accuracy in all its 
components, should these be used independently.

(i) Shortwave.

Shortwave input on a clear day is based upon equations 
EO.1-0.6 (Table A-2), derived from Berry (1964), McCullough & 
Porter (1971) and Harris (1972) (see Noble 1975 for more details). 
Solar declination (E0.1) and the effect of the eccentricity of the 
earth's orbit (E0.2) must be calculated for each day D, then the 
hour angle H is calculated for time t hours (E0.3), to derive the 
solar altitude expression (E0.4). From this the shortwave
radiation Qmax impinging on a surface perpendicular to the sun 
rays may be approximated (E0.5): the attenuation constant, k, was
taken as 0.8. In practice there is the additional constraint 
that if a<0 then Q=0 (this slightly under-predicts shortwave near
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Table A-1

Parameters in the equations, and values used in this validation. 

Parameter Symbol Value

GLOBAL CONSTANTS

Solar constant Qo 1360 W m 2
Earth's eccentricity 
Stefan-Boltzmann constant Ö °*°167 -8 -2 -45.67x10 W m K

OTHER SYMBOLS USED IN PAPER

Conductive heat transfer cd W m"2
Convective heat transfer cd

\ r 9W m 7
ir ™-2 0r'"1w m LConduction coefficient V

CfMetabolic heat production Ef W
Respiratory evaporative heat transfer Em W
Hour angle H* radians
Convection coefficient h W m 2 °C 1
Shortwave radiation: horizontal surface Q C W m 2

maximum at ground level ^m W m 2 
minRespiration rate Rm

Total radius of animal (= r, + £ ) r mb wShade (S=1 in shade, 0 in open) S
Temperatures: ground T

rr»ß A Y
°C

in Kelvin K
mean wooltip T ’Kw °C
at angle 6 T e

uea

°c
Sky-subtended proportion at angle 0 
Solar altitude radians
Solar declination 6 radians
Longwave radiation A W m 2

dawn and dusk). It should be noted that the cosine functions in 
E0.1 and E0.2 must be phase-shifted by tt for the northern 
hemisphere. Shortwave radiation striking a surface of elevation 
0 may then be obtained as E0.6.

A point may receive shortwave from three immediate sources: 
direct radiation from the sun, diffuse radiation from the sky 
generally, and by reflection off other objects, in particular the 
ground. Following McCullough & Porter (1971) and Brooks (1960), 
about 8$ of the sky shortwave input on a cloudless day is diffuse 
radiation, but 4555 of this comes from a cone of solid angle close 
enough to the sun to be treated as direct. Thus about 4.4% of 
the sky shortwave is distributed across the sky, and 95.655 derives 
from the sun's primary cone: it is assumed here that this
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E0.1 
E0.2 
E0.3 
E0.4 
E0.5 
E0.6

E0.7
E0.8

E0.9
E0 .1 0

E0.1 1 
E0 .1 2

EO. 1 3

E0.1 4

Table A-2

Listing of main equations used in model. 

SHORTWAVE

6 = 0.4102 * cos[0.017214 * (171 .3-D)] ...radians
1 /r2 = 1 + 0.0334 * cos(0.017214 * D) . . .
H = -0.2618 * (t-t )noon' ...radians
sina = cos<{) * cos6 * cosH + sin<(> * sin6 . . .

Qm = Q0 * (1/r2) * k(1/sina) ...W m"2

Qe = Qm * cos(a-B) .. .W m

LONGWAVE

at
t
oTk

4= e * o * T L G K
- 298.5 + 6.36 * T

...W m"2 
...(T in °C)

CONVECTION

CV
hc

= h * (T -T )
. ^036 A 0?805 * r~°-195

...W m~2
tT -2 op-1...W m C

CONDUCTION

cd = c # (T -T ) f u w V ...W m"2
u m-2 °r"1... W m 0°f = X / I w w

METABOLIC HEAT PRODUCTION

E = 5.5 * W°*75 ...Wm
EVAPORATIVE HEAT LOSS IN RESPIRATION

Ed = R * (0.58 - 0.0053 * T ) ...WK a

distribution is even. These assumptions lose validity at low
solar altitudes (e.g. see Weber & Baker, 1982), but by then the 
absolute quantities are small.

The ground is taken to be horizontal, so that the total
radiation striking it is given by E0.6 with e=ir/2. The
proportion reflected is given by the ground albedo, a , and8
absorption of impinging radiation at the wooltips is similarily
reduced by the wool albedo, a . In the Middleback region a isw g
typically about 0.25. Wool albedo may be very high for clean
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wool, but was found to decline rapidly to about 0.26 in the field; 
a similar value has been used by other workers (e.g. Mount & Brown 
1982).

Cloud cover greatly affects atmospheric shortwave trans
mission. Studies such as Lumb (1964) or Maine (1958) were too 
detailed to be used here. However, Mount and Brown (1982) use 
Lumb's finding that about 15$ of total solar radiation is 
transmitted through thick cloud. Alternative mean estimates may 
be derived from Black et al (1954) or Hounam (1963,1969) in 
Australia suggesting transmissions of 38 or 30$. We regularity 
measured values in the range 20-30$ for varying densities of 8/8 
cloud, so we have adopted 25$ as the mean transmittance on a 
totally overcast day. We then assume a linear effect of 
increasing cloud on this figure, so that,
E2.1 Q. Q * (1-.75 * c)actual
where c is the proportion of the sky that is covered by cloud. 
Additionally, as cloud increases, the mean proportion of the 
radiation that is diffuse as opposed to direct increases from its 
clear sky value to 100$. We approximate this by supposing that, 
with integration over time,
E2.2 Q(c)diffuse Q(0)diffuse + 0 * ^direct ’ and

E2.3 Q(c)direct - (1'c) * Q(0)direct
This is not realistic for instantaneous measurements. There is 
no net effect on reflected radiation from a rough surface.

Finally, it is the shortwave input that is most affected by 
shade. When the sheep move into shade, we assume that none of 
the direct solar radiation reaches it: this was certainly true 
for our artificial shade, and is approximately so for many shade 
trees. Our measurements suggest that c. 40$ of the diffuse and 
reflected components still reach under a shade tree, so we assume 
that this proportion strikes the sheep. This is accounted for 
as,
E2.4 Qactual (1-S) * Qdirect + (1-.6*S) * Qdiffuse+reflected
where S=1 if in shade, 0 if not.
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(ii) Longwave.

Net longwave input is given by longwave from the sky ^ sky) 

and the ground (A ) less longwave emission from the wool surface. 
Longwave emission A from a surface at temperature T (Kelvin) is

I ^
given by E0.7: aT^ may be linearly approximated to T (°C) by
E0.8. This approximation has an error range of +2 to -5$ for
temperatures f rom 0 to 60°C, with a mean error of 0.5$, and an
error of 8$ at 80°C. The range of temperatures under
consideration were 0<T <50 and 0<T ,T <80, a w ’ g with the higher ends
being exceptional.

Swinbank (1963) describes sky longwave emission as being
-170.9 + 1.195 * oT, .. .W m-2sky * k,air

for clear skies. Using the approximation (E0.8) above, one may 
calculate (after Monteith, 1973) that under clear conditions the 
effective radiant temperature of the sky is about 20°C below air 
temperature, for a normal range of air temperature values. In 
fact our measurements showed a range of 14 to 35°C deficits, with 
a mean of about 22°C. Under heavily clouded conditions, similar 
calculations predict a deficit of about 2°C below air temperature: 
however, we found under less dense 8/8 cloud conditions that the 
range was from 0 to 13°C, with a mean around 9°C. Although 
Monteith*s reasoning applies only to average conditions, and may 
be less adequate for drier skies especially, we assume that the 
effective radiant temperature may be approximated as linearly 
changing from 20 to 10°C below air temperature with increasing 
cloud. Thus,

sky Tair - 20 + 10*° ...°C

where c is again the proportion of the sky covered by cloud.

On a clear day, sky longwave flux decreases by 20-30$ from 
horizon to zenith (Monteith, 1973)» with a mean value at about 37° 
elevation. Most points on a sheep’s upper torso will be exposed 
to a substantial proportion of this variability, so that the error 
in assuming an even input from all over the sky will be much less 
than 20-30/&: this assumption is therefore made.

When the animal is in shade, most of its 'sky' longwave input
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comes from the canopy overhead. We found, for both our
artificial shade and two typical shade trees nearby, that the 
effective radiant temperature of the canopy was usually 0-6°C 
(mode 1.4°C) less than T  ̂ , with a slight tendency for the
deficit to increase with increasing T 
consistently affected by cloud, 
that Tsky~Tair, so that in general,

. . It was notair
In shade we therefore assume

E2.5 Tair + (1-s)*(10*c " 2°)sky
where S= 1 in shade, 0 in the open. We also assume that all 
ground longwave comes from shaded ground when the animal is in the 
shade. We use an emissitivity e=.98 for all surfaces.

(iii) Convection.

If Tw and Ta are unequal, convective exchange will occur 
according to E0.9. We follow Noble (1975) in deriving the 
convection coefficient for a cylinder, hc, as E0.10, where r is 
the external radius of the cylinder. The derivation is similar 
to Gates (1962), but for Reynolds number applicable to a 
sheep-sized cylinder: it assumes the cylinder to be oriented 
perpendicularily to the wind. This equation compares reasonably 
well with the table of convective losses given by Priestley (1957) 
for a 0.5 m diameter sheep, and overpredicts the low wind speed 
measurements obtained by Joyce et al (1966). We also assume a 
minimum wind speed of 0.5 m s 1 (less than the walking speed of a 
sheep), so that special equations for free convection at low 
Reynolds numbers need not be included.

The same convective equation is used throughout the model, 
despite the gross approximations involved when individual points 
are considered. The equation derived by the same reasoning for a 
flat surface in moderate wind speeds differed only by a multiple 
of 1.17, so the simplification to a single equation is made for 
ground temperature.

(iv) Conduction through the wool.

Conduction will occur along the wool when T and T^ arew b
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unequal, and may be approximated as EO.11, where the conduction 
coefficient ĉ, is given by E0.12 for a wool length Z^. We assume 
here that heat storage in the wool itself is negligible, and that 
the lag in transmission down the wool is insignificant. We also 
assume here that body temperature is constant at the base of the 
wool. The model as a whole has provision for severe heat stress 
and rising body temperature if the modelled respiration rate 
becomes untenable, but this was not allowed to occur in the 
validation readings, and would be a rare event in natural 
conditions when shade is available.

The conductivity of wool, Z , is taken as 0.064 W m 1 °C \w
the mean in vivo estimate of Blaxter et al (1959). This may on 
average be a low value, since no account is taken of wind ruffling 
the wool surface (Hutchinson, 1964, McArthur & Monteith, 1980), 
nor of the effect of rain. Rain is of rare occurrence in 
conditions of potential heat stress: its effect could be 
partially allowed for by an approach similar to that of Mount and 
Brown (1982), but we have no available validatory data.

(v) Heat balance for a flat surface, and ground temperature.

The solution of the heat balance equation E1.1 for a
horizontal surface involves no ground reflection or transmittance
terms. Shortwave input is direct and diffuse, suitably corrected
for cloud and shade (E2.1-4), and reduced by the albedo term.
Longwave input is entirely from the sky with re-emittance by the
surface according to E0.7, linearised by E0.8. For the
convection term, we use E0.9 with hc given by E0.10, and, as
stated above, we approximate by applying hc for a whole cylinder
to the horizontal portion. For a sheep’s back, conduction is
given by EO.11—2: ground temperature is estimated using S, =.1 m.w

Total shortwave for the horizontal surface, Q^, is therefore 
given by,

E2'6 Qh “ <l-a„)(1--75c)!(l-S)<Qdlrect‘sina + {1--6S)*Qdiffuse}
.. .W m“2

where,
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E2.7 ^direct (1-c)*.956 * Qmax, and,

E2.8 ^diffuse - * «max + c * .956 * Q>max
Now the external balance equation, E1.1, becomes,

Qh + e(Asky-V - W V  - °f(V V  * 0
After substitution for A in which the constant terms cancel, and 
with constant values from Tables 1 and A-1, rearrangement readily 
yields the solution for as,
E2.9 = {Q, + T (6.23+h ) + c *T, + 6.23(1-S)(10c-20)} /h h a  c i b

{6.23 + hc + cf} ...°C

where h is obtained from E0.10, and c„ from E0.12. c f

(vi) Heat balance at other points on a cylinder.

Using the equations above, it is possible to derive an
equation for the temperature anywhere on the cylinder. Our
validation involved measurements of temperatures on the sunny
vertical side, the shaded vertical side and of the maximum
locatable temperature, as well as the back temperature already
derived (points Q, Z, M and B respectively in Fig.1). In general
(see Fig.A-1), a point on a cylinder at angle 6 (-ir/2<6<ir/2)
receives radiative input from both the sky and ground in a ratio
of 77/2+6:71/2-6: i.e. a proportion U = (tt/2 + 8)/tt from the sky,0
and 1-U from the ground. This general factor reduces to U=0.5 0
for points S and Q, and U = (7r/2+a)/7T at M.a

For direct shortwave, input to a point at elevation 6 occurs
according to E0.6, with correction for cloud and shade: except
that point S on the sheep never receives direct shortwave by
definition. Diffuse radiation is received according to the ratio
U Also, such a point 'sees’ a proportion 1-U. of the shortwave 6 6
reflected from the ground. Hence the generalised shortwave input 
to any point, allowing for shade and cloud, is,
E2.10 Qq = (1-aw)(1-.75c){(1-S)*Qdirect*cos(a-e) +

(1--6S)[V Qdiffuse + (1- V ‘Qreflected]! • ■ ’W
where,
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SUN

Q

Figure A-1 : to illustrate the proportion U =(ir+0)/7r.

E2.1 1 ^direct
E2.12 ^diffuse

E2.1 3 Q
reflected

and Q] is given max &

(1~c)*.956*Qmax, or 0 for shade side point Z,

.044*Q + c *.956*Q , andmax max

a *Q *sina g max

By similar reasoning, the general net longwave input to a 
point at elevation e is,

0 elAsky*U e + ‘ground*«1'V - Awool> .. .W m-2

Using the approximation (E0.8), and allowing for shade and cloud, 
the constant terms again cancel, and this becomes,

A. = 6.23(U *[T - T + (1 -S) (1 0c-20) ] + T - T j  . . .W mo b a g  g ö
-2

We assume that convection and conduction are unaffected by 

position (i.e. continue to use the cylindrical Reynolds number) 
and use E0.10-12. Substituting into the external heat balance 
equation, we obtain,

Qe * Ae - W V  - °f(V V  - 0
and rearrangement again yields the solution for T as,0
E2.1U T e - {Qe + Ta (6.23U6+hc ) + 6.23Tg (1-U0) + cfTb +

6 .23U0(1-S)(1Oc-20)) / {6.23 + hc + cf) ...°C

where QA , h and c„ are obtained from E2.10, E0.10, and E0.12 0 c f
respectively.
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(vii) Net conduction into the body.

To calculate the net heat flux into the sheep’s body, the 
surface heat balance equation E1.1 is solved for a notional ’mean 
wooltip temperature’, T^: this does not differ significantly from
the result obtained by integrating all the point temperatures. 
This is then substituted back into the conduction term EO.11. To 
obtain T the energy fluxes are estimated for the whole surface 
of the sheep cylinder, radius r, length 1 (m).

Direct shortwave is intercepted on an area equal to the 
projection of the sheep body, i.e. 2rl. Diffuse shortwave is 
received by the upper half of its surface area, i.e. irrl. 
Ground-reflected shortwave is assumed to strike evenly on the 
equal lower half, except that (see Noble, 1975) the input is 
reduced by one third to account approximately for the part of the 
source in shadow (or covered, in the case of a lying sheep). 
Allowing for shade and cloud, total shortwave input is then given 
by,

Q = (l-aw)0-.T5cmi-S)*Qd.reot*2rl ♦

(1--6S)(Qdiffuse‘*rl + •667*Qrefleoted‘m'1)} — H 
or,

E2.15 Q/rl • (1-a )(1-.75c){2(1-S)*Q.. . +w direct

*(1--6S)(Qdiffuse + -“ ^«reflected»

where Qdirect’ diffuse and Reflected are as glven above in 
E2.1 1-13.

Longwave input is assumed to strike half the wool surface 
from the sky and half from the ground. Emission occurs from all 
over the body, so that net longwave input is,

A = e{Aaky*itrl ♦ Aground*irrl - Awool*2„rl} ...W

which, on substitution, becomes,

A = 6.23irrl {T + (1-S) (1 0c-20) + T - 2T } . . .Wa g w

The convection equation E0.9 is now fully justified and is 
applied over the whole body area of 2irrl, as is the conduction
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term EO.11. With the usual values and rearrangement, the ’mean 
wooltip temperature' may now be calculated as,
E2.16 Tw = {Q/nrl + Ta(6.23+2hc) + 6.23Tg + 2cfTb +

6.23(1—S)(10c-20)} / 2{6.23 + hc + cf} ...°C

This value may now be substituted back into the conduction 
equation EO.11, applied over the whole body, to obtain the net 
inward flux of energy to the torso as,
E2.17 E = 2irrl*A *(T -T. )/£ ...Wc w w b w

(viii) Evaporative cooling, body heat balance and the index.

The internal equation, E1.2, balances net heat conducted into 
the body and metabolic heat production against evaporative 
cooling. We assume that the term Ec above represents net 
conducted heat (i.e. that special bare areas such as ears, face 
and legs do not lose significant non-evaporative heat).

We assume that under high heat loads the sheep will not be 
especially active: net metabolic heat production is not 
substantially affected by energy expended in panting, until 
critical levels are reached (Hales & Brown 197*0, although it is 
increased in cold conditions. (In the full model, the index is 
not allowed to fall beyond a minimum value, below which extra heat 
is produced by raising the metabolism, with consequent effects on 
wool and body weight growth). Thonney et al (1976) have 
suggested that the .75 power approach to fasting heat production 
is too generalised when applied to a single species. Their 
re-analysis suggests that .75 is an overestimate for ewes, but 
they stress that any population needs to be assessed for its 
particular environment. We therefore estimate metabolic heat 
production from the maintenance requirements for sheep grazing 
pastures in cool weather (Young & Corbett, 1972): these results 
may be summarised (Vickery & Hedges, 1972) as E0.13*

Finally, we assume here that all evaporative losses may be 
modelled as respiratory loss (see the main text for further 
discussion). After Noble (1975), we take the sheep's tidal
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volume to be constant (in fact it initially declines with 
increasing respiration rate [Hales & Brown, 197-4], but this may be 
partially offset by the animal bringing extra evaporative surfaces 
such as the tongue into greater play), and the water lost in each 
'respiration' to be independent of external conditions. E0.14 
then gives the energy exchange per respiration at an external 
temperature the components are latent heat of evaporation
in raising the air's relative humidity to 85$, and energy transfer 
in changing the temperature of the air to near body temperature. 
With these assumptions, water loss is 0.0085g per respiration.

Combining EO.13—4 and E2.17, and solving for the respiration 
index, R, we obtain,
E2.18 R = {2Trrl*cf(Tw-Tb) + 5.5W7*5} / {.58 - .0053^} ...min"1

(ix) Summary.

To summarise, the equations needed for each prediction are:

and

Qmm EO. 1-E0.5
Tg Q .m E2.6-E2.9, E0.10, E0.12

T e Q .m E2.10-E2.'U, E0.10, E0.12
Tw Qm ,m E2.11-E2.13, E2.15-E2.16,
R Tw in E2.18.
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