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Abstract

This thesis is motivated by the expected implementation of the next generation

mobile networks (5G) from 2020, which is being designed with a radical paradigm

shift towards millimeter-wave technology (mmWave). Operating in 30–300 GHz

frequency band (1–10 mm wavelengths), massive antenna arrays that provide a

high angular resolution, while being packed on a small area will be used. More-

over, since the abundant mmWave spectrum is barely occupied, large bandwidth

allocation is possible and will enable low-error time estimation. With this high

spatiotemporal resolution, mmWave technology readily lends itself to extremely

accurate localization that can be harnessed in the network design and optimiza-

tion, as well as utilized in many modern applications. Localization in 5G is still in

early stages, and very little is known about its performance and feasibility.

In this thesis, we contribute to the understanding of 5G mmWave localiza-

tion by focusing on challenges pertaining to this emerging technology. Towards

that, we start by considering a conventional cellular system and propose a posi-

tioning method under outdoor LOS/NLOS conditions that, although approaches

the Cramér-Rao lower bound (CRLB), provides accuracy in the order of meters.

This shows that conventional systems have limited range of location-aware appli-

cations. Next, we focus on mmWave localization in three stages. Firstly, we tackle

the initial access (IA) problem, whereby user equipment (UE) attempts to estab-

lish a link with a base station (BS). The challenge in this problem stems from the

high directivity of mmWave. We investigate two beamforming schemes: directional

and random. Subsequently, we address 3D localization beyond IA phase. Devices

nowadays have higher computational capabilities and may perform localization in

the downlink. However, beamforming on the UE side is sensitive to the device

orientation. Thus, we study localization in both the uplink and downlink under

vii
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multipath propagation and derive the position (PEB) and orientation error bounds

(OEB). We also investigate the impact of the number of antennas and the number

of beams on these bounds. Finally, the above components assume that the system

is synchronized. However, synchronization in communication systems is not usu-

ally tight enough for localization. Therefore, we study two-way localization as a

means to alleviate the synchronization requirement and investigate two protocols:

distributed (DLP) and centralized (CLP).

Our results show that random-phase beamforming is more appropriate IA ap-

proach in the studied scenarios. We also observe that the uplink and downlink are

not equivalent, in that the error bounds scale differently with the number of anten-

nas, and that uplink localization is sensitive to the UE orientation, while downlink

is not. Furthermore, we find that NLOS paths generally boost localization. The

investigation of the two-way protocols shows that CLP outperforms DLP by a sig-

nificant margin. We also observe that mmWave localization is mainly limited by

angular rather than temporal estimation.

In conclusion, we show that mmWave systems are capable of localizing a UE

with sub-meter position error, and sub-degree orientation error, which asserts that

mmWave will play a central role in communication network optimization and un-

lock opportunities that were not available in the previous generation.
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Chapter 1

Introduction

1.1 Evolution of Localization

“Where are you?” is probably one of the questions most asked on a daily basis.

Since the beginning of history, humans sought knowledge of their locations for

different reasons. Using notable landscapes, like mountains, hills and shores, they

were able to know their position on land. Later, with the aid of instruments such as

astrolabes [2], kamals [3], and sextants [4], they observed astronomical objects, e.g.,

the stars and the sun, in order to infer location information, which helped them

navigate the high seas, survive the vast deserts, and explore the world. The broad

concept applied back then was to take some measurements and observations relative

to some anchors, whose positions were known, and then use these measurements

to somehow coarsely determines one’s location.

With tremendous human efforts, although continued to use the same concept

of relative measurements, today’s localization1 methods use extremely more com-

plex tools to take these measurements, need minimal usage efforts, and are greatly

more accurate. Since the discovery of electromagnetic waves and the subsequent

radio technology, localization using radio signals replaced the older methods. The

first attempt known to employ radio signals in localization dates back to 1906

when The Stone Radio and Telegraph Company installed a direction-finding nav-

1Localization is studied in many disciplines differently. For example, it can be used in audio
or underwater applications. However, in this thesis, localization, radio localization, positioning
and geolocation are used interchangeably to refer to localization using wireless signals.

1
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igation prototype on an American naval ship [5]. Subsequently, with the advent

of satellites later in the 20th century, the first satellite navigation system, Transit,

was made operational by the USA in 1962, and provided an accuracy of about 25

meter [6]. Later on by 1985, the USA fully put in orbit the Global Positioning

System (GPS) we know nowadays [7]. More recently, the Russian GLONASS, and

the European Galileo, and several other national systems followed [7]. Although

the above systems were mainly motivated by military use initially, location deter-

mination eventually found its way to civilian applications, particularly after the

adoption of mobile communication networks for civilian purposes.

For the last few decades, localization has been used in an abundance of indoor

and outdoor applications, including

� Emergency intervention: Twenty years ago, the US started using mobile

localization to determine the location from which an emergency call is made.

This would provide the emergency department with more precise information

to act more rapidly [8, 9].

� Civilian navigation: GPS was made available for civilian use, and became

very popular for route guidance in aviation, maritime and land travel [7].

� People localization: This includes geofencing applications such as locating

lost children in parks, zoos, or theme parks, or vulnerable individuals leaving

a predefined area [10–12]. It also includes locating prisoners trying to escape

[13].

� Asset management: Localization has been useful in managing and storing

goods in warehouses [14–16]. Moreover, using radio frequency tags, a store

can locate unpaid items when a customer departs [17].

� Workforce management: Tracking firemen during a mission [18], knowing the

location of workers in a warehouse, or patients and staff at hospitals [19] are

all applications of radio localization.

� Other location-based services: Location-based marketing especially in social

networks [20,21], and location-based billing [22].
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For cellular networks, location services were supported in 2G and 3G through ra-

dio resource control, radio resource location services protocol, and IS-801 standard

to meet the requirements of emergency services and commercial applications [23].

Later in the 4G, long-term evolution (LTE) standards define three positioning tech-

niques [23–25], namely, assisted GNSS that integrates satellite systems with ter-

restrial cellular networks, observed time-difference-of-arrival (TDOA) that requires

cooperation amongst multiple anchors using the so-called Positioning Reference

Signals, and the enhanced cell ID that combines angular and temporal informa-

tion using the uplink signals. These three techniques together compose the LTE

Positioning Protocol, which is implemented to enable positioning over LTE.

With active research being done on 5G millimeter-wave (mmWave) mobile com-

munication, and the expected launch of 5G in 2020, 5G localization is receiving a

growing attention [26–28] due to the unique features 5G mmWave technology en-

joys. With the possible extremely large bandwidth allocation and the utilization

of array of large number of antennas at both the BS and UE, mmWave 5G is ex-

pected to facilitate high-accuracy localization, which not only paves the way to a

wide range of applications that were not possible in previous generations [29–32],

but will also enable an optimized network design and performance due to the pos-

sible integration of location information in the network paradigm [26,33–35].

1.2 Classification of Localization Systems

A localization system is an estimator that determines the location of an agent

using one or more anchors. In this context, the agent is the device with unknown

position. For example, it can be a mobile station in cellular networks, a laptop in

WiFi localization, or a sensing node in wireless sensor networks. A generic term

often used to refer to an agent is user equipment (UE). On the other hand, an

anchor is an active device that has a known location, and attempts to estimate the

location of a UE. An anchor can be a base station (BS) in cellular networks, an

access point in WiFi localization, or a reference node in wireless sensor networks.

We can broadly view localization from nine angles summarized below [36–39]:

1. Infrastructure: Localization can be implemented on different platforms,
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depending on the application.

� Satellite positioning is more suitable for aviation and maritime naviga-

tion systems.

� Cellular networks are more suitable for responding to emergency calls,

location-aware billing services, and communication systems optimiza-

tion.

� WiFi localization was initially more suited for indoor localization appli-

cations in warehouses, hospitals, and office spaces, where WiFi infras-

tructure is already installed. However, with the spread of WiFi access

points in outdoor, and the growing application of Internet-of-Things

(IoT), WiFi has also been used in outdoor localization [40].

� Wireless sensor networks (WSN) are a considerably active area of local-

ization, particularly for monitoring the environment, industrial plants,

and traffic systems.

� Proximity devices, such as radio frequency identification tags (RFID)

and Bluetooth devices, have been used to implement indoor localization

and provided an accuracy of 1 meter.

2. Localization Technique:

� Fingerprinting: The basic idea of fingerprinting is to build a database

containing location-based features (e.g., received power) for some area of

interest, in a process called calibration. Subsequently, the location of a

user can be determined by pattern recognition methods that match the

user features with the best database entry. This method is widely used

in indoor WiFi localization, although it suffers from some shortcom-

ings, including the overhead time-consuming calibration process. It is

also sensitive to environment changes such as moving people and layout

alternation, in which case calibration needs to be done regularly.

� Proximity Detection is the simplest localization technique in which the

anchor (e.g., BS) makes a boolean decision based on the received signal

strength (RSS) to determine whether the user is within a predefined
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Figure 1.1: (a) Multilateration localization with TOA ranging in 2D, (b) Multian-
gulation localization with DOA in 2D, (b) Hybrid localization wth angle and range
measurements. The red dot represents the UE location.

range. Proximity detection is widely used in mobile networks, e.g., for

handover and other resources allocation procedures. It is also used in

shoplifting prevention using RFID tags, and in vehicles proximity keys.

� Multilateration requires multiple anchors depending of the dimension

of localization 2-dimensional (2D) or 3-dimensional (3D). Each of these

anchors estimates its range from the UE, and uses this estimate to deter-

mine the locus of the UE with respect to this anchor. The UE location

is then determined at a processing center as, ideally, the intersection of

the loci provided by the participating anchors. Measurements can be ob-

tained using time-of arrival (TOA), time-difference-of-arrival (TDOA),
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RSS, or round-trip time (RTT). One popular application of this method

is the GPS, in which a receiver should be in the vicinity of at least 4

satellites, and determines its location as the intersection created by 4

corresponding spheres. In mobile communication networks, where 2D

position is to be estimated, three BSs participate to collectively localize

a UE. As shown in Figure 1.1.a, each BS estimates the range of the

UE and defines a circle, whose radius is equal to the estimated range.

The UE position is then taken as the intersection point of the three

circles. The accuracy of this approach is subject to the accuracy of the

range estimation. One promising field of application using TOA is in

ultra wideband (UWB) systems, where the massive bandwidth provides

cm-level accuracy [36].

� Multiangulation requires two or more anchors to cooperate and local-

ize a UE. Equipped with an antenna array, each anchor estimates the

direction-of-arrival (DOA) with respect to its own array, by measuring

the phase difference of signals arriving at different antennas of the array.

DOA is then used to define a straight line, as shown in Figure 1.1.b. The

UE location is then taken as the intersection point of the lines defined

by different DOAs.

� Hybrid Localization combines range and angular measurements. As in

multilateration, a range estimate is obtained through TOA, TDOA,

RTT or RSS measurements, and used to define a circle as shown in

Figure 1.1.c. Moreover, an angle estimate is obtained at the same an-

chor. The UE position is then taken as the intersection of the line and

the circle defined by these estimates. Note that this approach inherently

requires an anchor with an antenna array.

3. User Equipment Participation: Localization can be either active, when

the UE participates in the localization process, or passive when it does not.

Active localization, depending on where the UE location is estimated, can

be either uplink localization when the anchor estimates the UE location,

or downlink localization if the location is estimated at the UE itself. On

the other hand, localization is passive when it is done without exchanging
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messages. Also known as device-free localization, passive localization usually

applied to estimating the location of obstacles such as scatterers, from which

an environment map can then be created.

4. Processing Location: When more than one anchor are involved, localiza-

tion systems can be classified based on the premises where the estimation

process takes place, as centralized of distributed (cooperative). Centralized

systems are those which collect measurements at different anchors and then

the whole location estimation process takes place at a dedicated processing

center. This is the traditional approach applied in cellular networks. On the

contrary, in distributed localization, each anchor participates in the localiza-

tion process by exchanging useful information with neighboring anchors till

the unknown location is determined. This approach is widely used in WSNs.

5. User Environment: This environment can be either indoor or outdoor.

Each of these two environments has its own requirements in terms of accuracy,

algorithm complexity, and suitable infrastructure.

6. Number of Anchors: Depending on the technique used, a localization sys-

tem can comprise a single or multiple anchors. Single-anchor localization

systems can use fingerprinting, proximity or hybrid techniques. On the other

hand, by definition, multilateration and multiangulation are built with mul-

tiple anchors.

7. Number of Users: A localization system can be a single-user or multiuser.

8. User Movement: A localization system can serve a stationary, or a moving

user. In the latter case, the localization process is referred to as tracking.

9. Antenna Configuration: Single antenna localization is useful when angle

measurements are not involved, in which case an antenna array is required.

The classification of the localization systems is summarized in Figure 1.2.
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1.3 Challenges Facing Localization Systems

From our discussion so far, it can be seen that localization is highly dependent on

accurate channel and transceiver models in order to take accurate measurement

of time, phase, power level, or a combination of them. However, sometimes these

models are not sufficiently accurate, which may deteriorate the expected perfor-

mance if the underlying impairments are not properly addressed. In this section,

we discuss the main challenges a localization system may face.

One of the main challenges in this context is the presence of none-line-of-sight

(NLOS) paths between the transmitter and receiver [41,42]. In many of the local-

ization methods, measurement of TOA, DOA or RSS of the line-of-sight (LOS) are

needed to establish the location of the UE. However, in a multipath environment,

the measurements may not be related to the LOS. Moreover, NLOS signals travel

longer distances than LOS, which introduces a positive range bias on the measure-

ments. Therefore, the presence of NLOS paths can cause significant performance

deterioration or even the collapse of the localization process, and thus must be

remedied to preserve the robustness. One way to deal with this issue is the “iden-

tify and mitigate”, in which a path is identified statistically to be either LOS or

NLOS, before incorporating this information in the localization process [43–47]. On

the other hand, the “identify and discard” approach cleans the signal by retaining

the information of the LOS path only [42, 48, 49]. Moreover, convex optimization

tools have also been used to estimate the UE location in the presence of NLOS

paths, without the need to identify the link status [1, 50–55].

Another challenge that usually faces localization is the tight synchronization

requirement between the anchors and the UE. TOA measurements, and the result-

ing range measurements, are only useful if the time at which the signal departed

the transmitter is known. Therefore, the clocks of the receiver and the transmit-

ter should be synchronized to guarantees a sample-rate at the receiver similar to

that at the transmitter, with no excess time offset [36, 56, 57]. Similarly, DOA

measurements are based on measurements of the signal phase of arrival [58], which

means that timing and carrier frequency offsets should be synchronized in that case.

Although communication systems are synchronized in most cases, the level of syn-

chronization is not usually high enough to suit localization. This being said, there
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are applications that do not require time synchronization, such as those involving

RSS and TDOA2 [36].

Systems relying on DOA estimation must be equipped with antenna arrays. For

reliable positioning using DOA, the array must have antennas with known electric

characteristics such as gain and phase. The antenna locations and inter-antenna

spacing should also be known. However, in reality the antenna electric character-

istics may vary over time, and it is hard to guarantee the array element locations

exactly as the design values. Therefore, for robust localization performance using

antenna array, a process called array calibration is sometimes necessary [59]. Com-

pensating for the gain, phase or antenna elements location errors, array calibration

is achieved using pilots of known nature transmitted from known locations [59,60].

In many localization applications, the UE to be localized is assumed to be

stationary. However, applications based on this assumption, may not work if the

user is moving in a car or a train for example. Relative motion of the receiver with

respect to the transmitter is known to introduce the Doppler effect which affects

the synchronization and consequently the localization accuracy [39]. To overcome

this issue, systems with potentially moving users observe signals over a very short

period of time, or use tracking methods, such as Kalman filter, to obtain and

predict the location of the UE [29] [38].

Finally, localization algorithms, especially those involving antenna arrays and

3D localization, can be very demanding in terms of device processing resources and

physical size. Thus, most algorithms are traditionally designed to be executed at

the anchors that have superior computation powers, or resort to a design trade-off

between performance and complexity. Nevertheless, with the smart devices having

a growing processing power, more complexity is being pushed in the UE nowadays,

especially in device-to-device communication paradigms [61].

1.4 5G: Localization Opportunities and Challenges

Mobile technology is one of the most successful ambient technologies. This is why,

recently there has been a significant increase in the bandwidth requirement. Not

2In TDOA, synchronization between the UE and BSs is not required. However, the different
BSs must be synchronized, which is easy to achieve [36].
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only the number of users increased but also the number of devices (phone, tablets,

smart watches,... etc.) per user and the data volume per device have also im-

mensely increased. While internet access from a mobile device was initially for

browsing and other low-to-medium size data usages, nowadays with the ubiquity

of social networks and video-on-demand services, users expect to be able to stream

network-demanding contents such as ultra high-definition movies, and video calls

with high quality. Advanced techniques to optimize the latest mobile commu-

nication have almost been depleted, whether using orthogonal frequency-division

multiplexing (OFDM), multiple-input multiple-output (MIMO), multi-user diver-

sity, link adaptation, turbo code, or hybrid automatic repeat request (HARQ) [62].

Therefore, a move to a new generation (5G) is necessary, and would involve radical

adoption of disruptive technologies including: massive MIMO and mmWave [61].

MmWave 5G systems are characterized by frequencies of 30–300 GHz. At these

high frequencies, the path loss becomes more significant than in the sub-6 GHz

bands [62–65]. Therefore, the use of dedicated techniques to provide sufficient gain

will be necessary to counter-act the increasing path loss. By virtue of mmWave

tiny wavelengths, a large number of antennas can be packed in a small area. Thus,

beamforming at the transmitter and receiver will be a natural techniques to use.

Moreover, mmWave channels have no diffraction, are sensitive to blockage, and

enjoy a low scattering/reflective nature, causing the channel to be sparse, with

the number of paths limited to just a few [64, 66]. The small number of paths

and the use of beamforming mean that mmWave communication is dominated by

LOS and limited NLOS communication, hence, can be considered quasi-optical

[67]. Furthermore, moving to higher carrier frequencies in bands that are barely

occupied, mmWave will employ a very large bandwidth supporting 1 Gbps data

rate, and providing reduced latency [62].

From a localization point-of-view, the large number of antennas and the large

bandwidth facilitate estimating the DOA, DOD and TOA with a high degree of

accuracy, leading to the following implications:

1. UE position Estimation using a single anchor can potentially be very accurate.

2. The low-error estimate of location will unlock a wide range of location-aware

applications, including vehicle-to-vehicle and vehicle-to-everything commu-
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nications [30, 31], intelligent health systems [68], environment mapping [69],

targeted content delivery [70], and public safety applications [32].

3. Due to the highly directive nature of mmWave channels, incorporating lo-

calization in the network design and optimization will be an indispensable

feature [26]. In fact, 5G will be the first generation of mobile communication

to do that [26], with many research nowadays investigating the possibilities.

For example, it has been shown that location-awareness can boost the network

performance if pilots are assigned based on the user location [34]. Moreover,

location determination assists in more efficient beamforming schemes [33,71].

Furthermore, spatial-devision multiple access can be better optimized when

the user location is known [35].

High performance localization schemes in 5G, will not be possible without ef-

ficient beamforming techniques. However, there are mainly three challenges in 5G

mmWave beamforming. Firstly, due to the high directivity of mmWave channels,

beam alignment of the UE and BS in the initial access (IA) to the network(network

discovery phase) becomes an important issue to address [64,72]. On the other hand,

analog-to-digital converters are known to be highly power dissipating. Therefore,

it will be infeasible to employ all-digital beamforming, especially with the large

number of antennas. Towards that, analog beamforming, or hybrid beamforming

architecture have been proposed for 5G mmWave devices [64]. Moreover, beam-

forming at UE is highly sensitive to the device orientation, since steering the device

away from the BS, may point beams towards directions not useful for localization.

In addition to the challenges of a classical a localization system discussed in Sec-

tion 1.3, to meet accuracy requirements, 5G localization systems need to address

the high computational and processing complexity stemming from the large num-

ber of antennas and large bandwidth. Handover and location information fusion

from different localization methods will also be a challenge [26]. Finally, since a UE

is usually associated with one person, the abundance of location-aware communi-

cation will raise legal issues regarding privacy as it would reveal the user location,

speed, and means of transport [73].

Finally, it is worth mentioning that during a late phase of writing this thesis,

the first 5G standard was approved by 3GPP in December 2017. Under the New
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Radio (NR) series, the 5G NR Release 15 [74] defines actual baseline physical layer

components, system specifications and radio access functionalities up to 52.5 GHz.

As the work on 5G localization incorporated in this thesis started in 2015, when 5G

was in its infancy, reflecting this standard in the current thesis was not possible.

1.5 Thesis Scope and Overview

The next generation of mobile communication systems (5G) is expected to provide

an excellent platform of a wide range applications of location-aware communica-

tion. In this context, localization can be seen as a key enabler of such systems.

Therefore, it is imperative to study localization in the context of 5G mmWave sys-

tems. 3Although localization techniques have been an actively-researched topic over

the past decades, there are still many open problems which researchers have not

solved or understood yet. With focus on outdoor mobile localization, this thesis

contributes to the field’s aggregated knowledge by providing applied and funda-

mental research results that address open areas of localization with more focus on

5G mmWave systems. The thesis studies NLOS localization in various outdoor

environments of conventional communication systems (sub-6 GHz). Subsequently,

focusing on 5G mmWave systems, which is still in its infancy, the thesis explores

fundamental performance bounds of location estimation, and provides a deep un-

derstanding of the factors that together affect these bounds, and shows how this

understanding can be exploited to better design 5G communication systems and

localization algorithms.

The main contribution this thesis provides is a fundamental understanding of

how 5G mmWave technology can enable extremely accurate localization. By study-

ing theoretical performance bounds, we aim to provide insights on the feasibility

and the factors that need to be considered when designing 5G localization systems

in order to achieve the required high location accuracy. The localization systems

considered in this thesis follow the classifications in Figure 1.2, highlighted with

thicker box borders. That is, we consider single-stationary-user active outdoor lo-

3It is commonly understood that the first commercial deployments of 5G technology will focus
on centimeter-wave technology. However, we focus on 5G systems that are related to the highly
anticipated mmWave systems
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calization for mobile communications networks using multilateration and hybrid

approaches.

Research Questions

The research presented in this thesis seeks to address the following research ques-

tions:

1. In sub-6 GHz, given an environment with a given scattering richness, what

is the best expected performance? How can we exploit the NLOS propaga-

tion models to better design localization algorithm with performance that ap-

proaches the best performance?

2. Focusing on 5G mmWave communications systems, and considering the ini-

tial network access problem, how can we use a blind beamforming technique

that provides the UE with a reasonable access to the network?

3. Beyond the IA phase, is it better to perform localization at the BS (Uplink)

or at the UE (downlink)? How does the unique mmWave channel features

impact this performance? What is the best positioning performance that can

be achieved?

4. What are the system parameters that need to be tuned in order to boost the

performance of 5G mmWave localization? How do these parameters affect

the performance?

5. Building on the results of questions 3 and 4, how can we account for synchro-

nization issues in mmWave?

Thesis Overview

The remainder of this thesis is organized as follows:

� Chapter 2 provides the background necessary to understand the thesis. This

includes a brief revision of relevant notions from array signal processing, a

review of some concepts of estimation theory, and an overview with some

example on how to compute the Cramér-Rao lower bound (CRLB). CRLB is
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a performance metric widely-used to judge and benchmark estimation prob-

lems, of which localization is one.

� Chapter 3 proposes a trilateration-based localization scheme applicable in

conventional cellular systems and accounts for different NLOS environments.

Towards that, we devise an unbiased ranging method that is based on a

distance-dependent bias model. Then, incorporating range estimate from 3

BSs, we localize UE. We perform an error analysis and compare it with the

distance CRLB that is obtained using numerical statistical methods. We do

that for mixed LOS/NLOS scenarios in four environments, ranging from bad

urban environment to rural environment.

� Chapter 4 focuses on the initial access problem in 5G mmWave networks,

when no channel-side information is available at the UE that attempts to gain

network access. In this regard, the chapter investigates two blind beamform-

ing schemes, referred to as random-phase beamforming (RPBF) and direc-

tional beamforming (DBF). Since the subsequent step to initial access would

be channel estimation, we compare the performance of DBF and RPBF in

terms of CRLB of the channel parameters. We show that under the consid-

ered scenarios, RPBF is more appropriate.

� Chapter 5 considers the 3D positioning error bound of 5G mmWave systems

in multipath propagation, both uplink and downlink, beyond the initial access

phase. It analyzes the impact of system parameters, and the interaction

between different paths in terms of information gain. It also explores the

role of reflectors, and scatterers on the localization limits. The problem

of jointly estimating the UE location and orientation is considered, since

beamforming at the UE in mmWave systems (hence, systems performance)

depends on the UE orientation. The results in this chapter imply that uplink

and downlink are not equivalent, and that NLOS paths assist localization

in general. Moreover, we show that mmWave systems can provide a sub-

meter position and sub-degree orientation errors, if the systems parameters

are tuned appropriately.

� Chapter 6 extends the results in Chapter 5 by focusing on LOS scenarios,
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and accounting for the time-offset bias issue. It proposes two-way localiza-

tion protocols, distributed and centralized and compares them in terms of

the uplink and downlink position error bounds in the presence of receive

beamforming and spatially correlated noise. We deduce that the central-

ized protocol outperforms the distributed protocol, with the cost of requiring

coarse synchronization.

� Chapter 7 provides a summary of the important results of the thesis and

sheds some light on related future research directions.



Chapter 2

Background Concepts

Overview: The reader of this thesis encounters many concepts of array signal pro-

cessing and classical estimation theory. Therefore, it is meaningful to cover these

concepts in this Chapter. The Chapter starts by giving an overview on the field of

array signal processing, where the coordinate system is defined, and the concept of

array manifold vector is introduced. Subsequently, analog beamforming and the re-

sulting channel model useful in 5G mmWave are described. In the second part of the

Chapter, the basics of estimation theory are covered, and the measurement model is

discussed. The assessment of the estimation performance is highlighted thereafter.

The concepts of Cramér-Rao Lower Bound (CRLB) and Fisher Information Ma-

trix (FIM) are frequently encountered throughout this thesis. Therefore, they are

introduced later in this Chapter. Moreover, we observe one variable sometimes,

but are interested in another, which is a function of the observed one. Towards

that, we discuss the transformation of parameters. To conclude this Chapter, the

equivalent FIM (EFIM) is briefed at the end. To make the concepts in this chapter

clearer, some relevant examples were designed and included herein. We stress that

this Chapter is not to meant to be all-inclusive, and that only background relevant

to the thesis is provided. However, we provide highlights to guide the reader to

other resources, should more comprehensive background be necessary.

17
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2.1 Background on Array Signal Processing

As the name suggests, array signal processing is a branch of signal processing that

focuses on signals received by a group of sensors. These sensors are spatially “ar-

rayed” by a specific geometry that affects the behavior of the sensors ensemble. In

the context of this thesis, the sensors we are focusing on are antennas, as traducers

of electromagnetic waves into electrical signals. Since the signal arrives at the array

elements in delayed versions, the signal received at the output of an antenna array

carries two-part information: spatial and temporal. Employing this spatiotempo-

ral information, array signal processing addresses four problems [75]. Firstly, the

detection problem is concerned with estimating the number of emitting sources.

Secondly, the DOA estimation problem, known as direction finding, employs the

spatial information of the received signal to infer information on the direction from

which the signal is impinging on the array. Then in combination with TOA es-

timation, the location of the transmitter can therefore be determined. Moreover,

the reception problem addresses the design of beamforming schemes to extract the

desired signal and cancel the interference. Finally, environment mapping seeks to

create a map of the surrounding environment based on the received signal features

such as signal density based on the spatial coordinates. In this thesis, we focus

on the location estimation bounds, and beamforming. Thus, only array process-

ing basics that are related to these two concepts are introduced in this chapter.

However, a reader interested in comprehensive background on array processing is

referred to the books [58, 75–79], which cover a wide range of topics with varying

levels of complexity, while [80] provides a good overview on the topic.

2.1.1 Array Manifold Vector

Firstly, we need to understand how the antenna array behaves as an ensemble.

Towards that, the array manifold vector, provides us with this understanding [58,

75]. It is reasonable to expect the array manifold vector to depend on the array

geometry. Therefore, we start by defining the standard spherical coordinate system,

used in this thesis. From Figure 2.1, for 0 ≤ θ ≤ π, 0 ≤ φ < 2π, and % ≥ 0, we
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Figure 2.1: Spherical coordinate system.

can write

x = % sin θ cosφ, (2.1a)

y = % sin θ sinφ, (2.1b)

z = % cos θ. (2.1c)

Based on this notation, we define a unit vector pointing towards (x, y, z) as u ,

[sin θ cosφ, sin θ sinφ, cos θ]T, from which the wavenumber vector can be defined as

k(θ, φ) ,
2π

λ
u =

2π

λ
[sin θ cosφ, sin θ sinφ, cos θ]T, (2.2)

where λ = c/fc is the wavelength, c is the propagation speed, and fc is the carrier

frequency. Furthermore, considering an array of NR antennas, denote the location

of the nth antenna, 1 ≤ n ≤ NR, in Cartesian coordinates by un = [xn, yn, zn]T ∈
R3. The the antenna location matrix is given by

∆R = [u1,u2, · · · ,uNR
] ∈ R3×NR . (2.3)

Consequently, the array manifold vector is defined by [58,75]

aR(θ, φ) , g̃(θ, φ)� exp
(
−j∆T

Rk(θ, φ)
)
, (2.4)
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where � denotes the Hadamard product, and g̃(θ, φ) ∈ CNR is a vector specifying

the directional gain and phase of each antenna element. In our work, as the case

with most literature, we will assume that the antennas radiation pattern is isotropic.

That is,

aR(θ, φ) =
1√
NR

exp
(
−j∆T

Rk(θ, φ)
)
, (2.5)

Note that we use
√
NR to normalize aR(θ, φ), such that aT

A(θ, φ)aR(θ, φ) = 1.

Moreover, observe that aR(θ, φ), encapsulates the phase difference of arrival at

each antenna. Finally, note that usually the term “array manifold vector” is used

as a unified term that applies to both transmitter and receiver. However, “array

response vector” is the popular used with receiving arrays, while “array steering

vector” is the one used with transmitting arrays. After all, these three terms

describe the vector defined in (2.5).

In the following, we show how to obtain the array manifold vector for example

geometries.

Uniform Rectangular Array (URA)

A URA is a 2D array of sensors as illustrated in Figure 2.2 (right). The total

number of antennas is NR = NR,xNR,z, where NR,x and NR,z are the number of

antennas in the x- and z-directions, respectively. We denote the inter-element

spacing in these direction by dx and dz. Using the general form in (2.5), we can

write

∆T
R = [dxxR, 0NR

, dzzR] (2.6)

where

xR = 1NR,z
⊗ x̃R, (2.7a)

zR = z̃R ⊗ 1NR,x
, (2.7b)

x̃R ,

[
−NR,x − 1

2
,−NR,x − 1

2
+ 1, · · · , NR,x − 1

2

]T

, (2.7c)
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Figure 2.2: Left: ULA with 9 antennas and dx inter-element spacing. When dx =
λ/2 it is called SLA. Right: URA of 45 antennas, consisting of 9 ULAs, each with
5 antennas and dx inter-element spacing. Spacing between adjacent arrays is dz.

z̃R ,

[
−NR,z − 1

2
,−NR,z − 1

2
+ 1, · · · , NR,z − 1

2

]T

. (2.7d)

and ⊗ denotes the Kronecker product. Consequently, we obtain

aR(θ, φ) =
1√
NR

exp

(
−j 2π

λ
(dx sin θ cosφ xR + dz cosφ zR)

)
. (2.8)

Note that when dx = dz = λ/2, and NR,x = NR,z, the array is called standard

square array (SSA).

Uniform Linear Array (ULA)

A ULA is an 1-dimensional array of sensor with equispaced antennas as illustrated

in Figure 2.2 (left). It is easy to see that a ULA is a special case URA with

NR,z = 1. Therefore,

xR = x̃R, zR = 0NR
, θ =

π

2
. (2.9)
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Thus, the array response vector is given by

aR(φ) ,
1√
NR

exp

(
−j 2πdx

λ
cosφ xR

)
, (2.10)

Note that when dx = λ/2, the ULA is called standard linear array (SLA).

2.1.2 Analog Beamforming

One of the great advantages of array signal processing is enabling us to focus the

transmission or reception on some specific areas by steering the beams electron-

ically, rather than mechanically as in traditional radar systems. We can achieve

that through a process called beamforming, whereby we scale the signal on each

antenna by some complex weight to alter its magnitude and phase, so that the

overall antenna gain is higher in the desired areas than in the other areas [76]. In

mmWave systems, analog beamforming will be implemented using phase-shifters

only. Therefore, in this thesis, we restrict our discussion on beamforming only to

analog beamforming with constant magnitude but varying phase.

The simplest form of beamforming is when the antennas are uniformly weighted.

Considering a URA lying the xz-plane as shown in Figure 2.2, under this beam-

forming scheme, the radiation pattern of the beam points towards θ = φ = 90◦.

Similarly, in the case of a ULA along the x-axis, it points towards the broadside

direction, φ = 90◦ [58]. An example radiation pattern of a 12-antenna ULA is

shown in Figure 2.3. This radiation pattern is often called an array factor, which

is the radiation pattern of an “unsteered” beam [58].

Mathematically, for any beamforming vector f , the beam gain in the direction

(θ, φ) is given [76]

G(θ, φ)[dB] = 20 log10

(‖fHa(θ, φ)‖
‖f‖

)
. (2.11)

Consider a transmitting array with NT antennas, and assume that we want to

transmit a beam towards a direction (θ0, φ0). In that case, we can design f to be

f(θ0, φ0) = aT(θ0, φ0) ,
1√
NT

exp
(
−j∆T

Tk(θ0, φ0)
)
. (2.12)
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Figure 2.3: An array factor of a 12-antenna standard ULA.

Figure 2.4: Radiation Pattern of a 12-antenna ULA, steered to 60◦, and 125◦.

Throughout this thesis, we will refer to this type of beamforming as directional

beamforming. The array factor of the 12-antenna ULA shown in Figure 2.3 is

replotted in polar form in Figure 2.4 (blue), steered to the directions 60◦, and 125◦.
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Figure 2.5: Analog transmit and receive beamforming structure.

2.1.3 Received Signal Model

In this subsection, we introduce the end-to-end channel model based on the ana-

log beamforming structure, shown in Figure 2.5. Due to the infeasibility of all-

digital beamforming, this model is a candidate structure for 5G mmWave com-

munication [64]. Consider a transmitter and a receiver equipped with NT, and

NR antennas, respectively. For the simplicity of presentation, let us consider ini-

tially the transmission of a single signal, s(t), over a single beam through a sin-

gle path. The transmit beamforming, denoted by f(θf , φf) = [f1, f2, · · · , fNT
]T,

points towards the direction (θf , φf), while the receive beamforming, denoted by

w(θw, φw) = [w1, w2, · · · , wNR
]T, points towards the direction (θw, φw).

Firstly, let us consider the transmitter. Based on Figure 2.5, the signal at the

input of the antenna array steered to the direction (θf , φf) is given by

x(t) = f(θf , φf)s(t) ∈ CNT . (2.13)

Consequently, taking the array steering vector into account, the superposition sig-

nal in the far-field of the array, known as plane-wave, measured at an angle of

(θT, φT) is given by

x̃(t) =
√
NTaT(θT, φT)Hx(t).

=
√
NTaT(θT, φT)Hf(θf , φf)s(t). (2.14)
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x̃(t) arrives at the receiver after some propagation delay, τ . Thus, ignoring the

path gain and the receiver noise, for the time-being, the signal received via the

direction (θR, φR) at the output of the receive array is modeled by

r0(t) =
√
NRaR(θR, φR)x̃(t− τ),

=
√
NTNRaR(θR, φR)aT(θT, φT)Hf(θf , φf)s(t− τ). (2.15)

Adding the channel gain, β, and the receiver noise, n(t) to the model yields,

r(t) =
√
NTNRβaR(θR, φR)aT(θT, φT)Hf(θf , φf)s(t− τ) + n(t) ∈ CNR . (2.16)

Defining Hs ,
√
NTNRβaR(θR, φR)aT(θT, φT)H. Subsequently, the signal processed

by a receive beamformer pointing towards (θw, φw) is then given by

ys(t) = wH(θw, φw)r(t),

= wH(θw, φw)Hsf(θf , φf)s(t− τ) + wH(θw, φw)n(t) ∈ CNR . (2.17)

Finally, with similar steps, we can extend the single-path single-beam model in

(2.17) to NB beams and M paths. The resulting receive signal is then given by

y(t) = WH

M∑

m=1

HmFs(t− τm) + WHn(t) ∈ CNB , (2.18)

where

� W , [w(θw,1, φw,1),w(θw,2, φw,2), · · · ,w(θw,NB
, φw,NB

)] , is the receive beam-

forming matrix, stacking the receive beamformers. The receive angles are

dropped for concise presentation.

� F , [f(θf,1, φf,1), f(θf,2, φf,2), · · · , f(θf,NB
, φf,NB

)] , is the transmit beamforming

matrix, stacking transmit beamformers. The transmit angles are dropped for

concise presentation too.

� Hm =
√
NTNRβmaR(θR,m, φR,m)aT(θT,m, φT,m)H, the channel excluding the

propagation delay, where βm is the mth path gain, (θR,m, φR,m) is the mth

DOA, and (θT,m, φT,m) is the mth DOD.
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Figure 2.6: Transmitted (top) and reflected (bottom) radar pulse. The latter is
contaminated by measurement noise and channel impairments.

� s(t) , [s1(t), s2(t), · · · , sM(t)].

� τm is the mth TOA.

2.2 Introduction to Classical Estimation Theory

Inferring the values of unknown deterministic parameters from noisy measurements

is the subject of classical1 estimation theory. It has been widely applied in engi-

neering problems, particularly in communication and signal processing [81–83].

As an introductory example, consider the classical ranging problem using a radar

system [81]. The radar transmits a pulse of known properties similar to that in

Figure 2.6, which is then reflected back to the radar system by the subject. The

radar then calculates the round trip time, 2τ , from which the range can be simply

obtained as τ/c, where c is the speed of the signal. Note that the determination

of τ is based on a reflected signal that has been subject to deformation including

the path and reflection losses, as well as the receiver noise. Therefore, the range

estimate is prone to errors depending on the severity of these factors.

1Estimating a random unknown parameter is the subject of Bayesian estimation, which is
outside the scope of this thesis.
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2.2.1 Measurement Model

Consider the problem of estimating a vector ofNv parameters, ϕ , [ϕ1, ϕ2, · · · , ϕNv ]T,

using NR observation channels, r(t) , [r1(t), r2(t), · · · , rNR
(t)]T, such that

r(t) = µϕ(t) + n(t), 0 ≤ t ≤ To. (2.19)

In (2.19), µϕ(t) is a deterministic vector function of the unknown parameter vector,

n(t) ∼ CN (0,Σn) is the measurement noise vector, Σn is the noise covariance

matrix, and To is the observation interval.

The estimator of ϕ is given by some vector function g(.) as ϕ̂ = g (r(t)). Note

that r(t) is observed in the presence of noise. Therefore, ϕ̂ is a random vector,

and r(t) is a random process whose distribution depends on the noise probability

density function (PDF). In most estimation theory applications, the measurements

are generally modeled by Gaussian processes such that the PDF of r as a function

of ϕ is

fr(r;ϕ) =
1

det(2πΣn)
1
2

e−
1
2

(µϕ−r)HΣ−1
n (µϕ−r), (2.20)

Recall that it is very common to assume that observations are contaminated by

zero-mean and independent and identically distributed Gaussian noise, in which

case Σn = N0INR
, where N0 is the noise power spectral density (PSD), and INR

is

the NR-dimensional identity matrix.

Based on this PDF, the issue becomes: how can we design a “good” estimator,

ϕ̂? And, what is a “good” estimator? In the following, we answer these questions.

2.2.2 Estimation Performance

As an optimality criterion to assess the estimator performance, we start by the

estimator mean-square error (MSE) denoted by ρ, and defined as,

ρ(ϕ) , E
{

(ϕ̂−ϕ)2} =




E
{

(ϕ̂1 − ϕ1)2}
...

E
{

(ϕ̂Nv − ϕNv)2}


 , (2.21)
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where E {·} is the expectation operator. Without loss of generality, consider the

MSE of ϕ1, and write [81] as

ρ(ϕ1) = E
{

(ϕ̂1 − ϕ1)2} , (2.22a)

= E
{

(ϕ̂1 − E {ϕ̂1}+ E {ϕ̂1} − ϕ1)2
}
, (2.22b)

= E
{

(ϕ̂1 − E {ϕ̂1})2
}

+ (E {ϕ̂1} − ϕ1)2 . (2.22c)

This means that the estimator error has two components: a variance, σ2
ϕ1
,

E
{

(ϕ̂1 − E {ϕ̂1})2}, and a bias, bϕ1 , (E {ϕ̂1} − ϕ1)2. Any good estimator should

provide an estimate of the variable that is equal to the said variable on the average.

Such an estimator is called unbiased estimator, and is characterized by

ϕ1 = E {ϕ̂1} ⇒ bϕ1 = 0. (2.23)

Consequently, in the absence of estimation bias, the best estimator is the one

that provides the least variance. This minimum variance is known as Cramér-Rao

lower bound (CRLB), and the estimator that attains the CRLB is called minimum

variance unbiased estimator (MVUE). Unfortunately, the MVUE does not always

exist, or may not be practically possible [81]. Moreover, a closed-form procedure

to compute the MVUE estimator does not exist. The computation of CRLB is

discussed in more details in the following section.

2.2.3 Cramér-Rao lower bound (CRLB)

In the context of parameter estimation, CLRB is a useful tool that serves as a feasi-

bility study on whether a given technology can meet some performance requirement

or not. Being a lower bound, it can also be used to benchmark the performance

of new estimators. Moreover, it can be used in investigating the impact of differ-

ent system parameters on the overall performance of an estimator. Finally, CRLB

may provide means to compute a MVUE. The use of CRLB in benchmarking is

applied in Chapter 3, while its use for feasibility studies, and investigating system

parameters impact is applied in Chapters 4, 5, and 6.
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Assuming that the PDF fr(r;ϕ) satisfies the regularity condition

E
{
∂ ln fr(r;ϕ)

∂ϕ

}
= 0Nv , (2.24)

then the variance of any unbiased estimator of ϕ, is computed from the information

inequality given by [81,83]




σ2
ϕ1

...

σ2
ϕNv


 ≥ diag

(
J−1
ϕ

)
, (2.25)

where Jϕ is the Fisher Information Matrix (FIM), whose elements are given by

[Jϕ]u,v , E
{
∂ ln fr(r;ϕ)

∂ϕu

∂ ln fr(r;ϕ)

∂ϕv

}
, 1 ≤ u, v ≤ Nv (2.26)

The CRLB is then related to the FIM by

CRLB(ϕ) ,




CRLB(ϕ1)
...

CRLB(ϕNv)


 = diag

(
J−1
ϕ

)
. (2.27)

We now consider the most used case of Gaussian distribution. It is easy to see

from (2.20) that the regularity condition is satisfied, and that the CRLB is defined

for the Gaussian PDFs. For the vector Gaussian PDF given in (2.20), using (2.26),

it can be shown the FIM entries are given by [81–83]

[Jϕ]u,v ,
∫ To

0

<
{
∂µH

ϕ(t)

∂ϕu
Σn
−1
∂µϕ(t)

∂ϕv

}
dt, 1 ≤ u, v ≤ Nv (2.28)

For the widely-used case of i.i.d Gaussian noise,

[Jϕ]u,v ,
1

N0

∫ To

0

<
{
∂µH

ϕ(t)

∂ϕu

∂µϕ(t)

∂ϕv

}
dt, 1 ≤ u, v ≤ Nv (2.29)
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Finally, note that if the measurements are discrete-time, the FIM is defined as

[Jϕ]u,v ,
1

σ2
n

Ns∑

n=0

<
{
∂µH

ϕ[n]

∂ϕu

∂µϕ[n]

∂ϕv

}
, 1 ≤ u, v ≤ Nv (2.30)

where σ2
n is the observation noise variance. An illustrative example is now provided.

Example 2.1 Consider a signal s(t) impinging on an NR-element SLA from two

different paths via directions φ1, and φ2, so that the received signal is modeled by

r(t) =
√
NR

(
aR(φ1) + aR(φ2)

)
s(t) + n(t), 0 ≤ t ≤ To,

where aR(φm),m = 1, 2, is as defined in (2.10), and n(t) is a zero-mean random

Gaussian process with Σn = N0INR
. Derive the CRLB of ϕ = [φ1, φ2]T.

Solution

From the observation model in (2.19), we take µϕ(t) =
√
NR

(
aR(φ1)+aR(φ2)

)
s(t),

then we apply (2.29), to calculate the FIM from which the CRLB can be obtained.

Towards that, the array response vector of a SLA (ULA with half-wavelength inter-

element separation) in the direction φm is given by

aR(φm) =
1√
NR

e−jπ cosφmx̃R , (2.31)

where the antenna location vector is x̃R given in (2.7). Thus,

∂µϕ(t)

∂φm
= jπ

√
NR sinφm diag(x̃R)aR(φm)s(t). (2.32)

Starting with the diagonal elements of FIM,

[Jϕ]1,1 ,
1

N0

∫ To

0

<
{
∂µH

ϕ(t)

∂φ1

∂µϕ(t)

∂φ1

}
dt, (2.33a)

=
π2NR sinφ2

1

N0

∫ To

0

<
{
s∗(t)aH

R(φ1) diag2(x̃R)aR(φ1)s(t)
}

dt, (2.33b)

=
π2NR sinφ2

1

N0

aH
R(φ1) diag2(x̃R)aR(φ1)︸ ︷︷ ︸

= 1
NR

x̃T
Rx̃R

∫ To

0

<{s∗(t)s(t)} dt

︸ ︷︷ ︸
,R0

. (2.33c)
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Note that it is straight-forward to see that x̃T
Rx̃R = NR(N2

R − 1)/12. Thus,

[Jϕ]1,1 =
π2

12N0

NR(N2
R − 1)R0 sinφ2

1. (2.34)

Similarly, we can show that

[Jϕ]2,2 =
π2

12N0

NR(N2
R − 1)R0 sinφ2

2. (2.35)

Considering the off-diagonal elements, using similar steps, then

[Jϕ]1,2 = [Jϕ]2,1 ,
1

N0

∫ To

0

<
{
∂µH

ϕ(t)

∂φ1

∂µϕ(t)

∂φ2

}
dt, (2.36a)

=
π2

N0

NRR0 sinφ1 sinφ2<{aH
R(φ1) diag2(d̃)aR(φ2)}, (2.36b)

=
2π2

N0

R0 sinφ1 sinφ2

(NR−1)/2∑

n=1

n2 cos (π(cosφ1 − cosφ2)) , (2.36c)

=
2π2

N0

χ12R0 sinφ1 sinφ2 (2.36d)

where χ12 ,
∑NR−1

2
n=1 n2 cos (π(cosφ1 − cosφ2)). Since Jϕ is 2× 2, then

J−1
ϕ =

1

det(Jϕ)

[
[Jϕ]2,2 −[Jϕ]1,2

−[Jϕ]1,2 [Jϕ]1,1

]
(2.37)

Finally, from (2.27),

CRLB(φ1) =
[Jϕ]2,2

det(Jϕ)
, (2.38a)

CRLB(φ2) =
[Jϕ]1,1

det(Jϕ)
, (2.38b)

2.2.4 Transformation of Parameters

In many applications, the parameters of interest are functions of the unknown

parameters observed. For example, estimating the signal-to-noise ratio is obviously
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a function of the noise power and signal power, which are estimated separately.

When multilateration or multiangulation is involved, the position estimation is

also a function of TOAs, DOAs or both. Therefore, in this subsection we review

the concept of parameter transformation.

Consider the problem when we are interested in the unknown parameter vector

ϑ , [ϑ1, · · · , ϑNp ]T, which is a function of the unknown parameter vector ϕ, defined

earlier. In other words, we have Np unknowns that are functions of Nv unknowns.

In many cases, it may be easier to obtain the FIM of ϕ and transform it to an FIM

of ϑ instead of computing the latter directly from the PDF of the observations. In

that case, the FIM of ϑ is given by [81,83]

Jϑ = ΥJϕΥT, (2.39)

where Υ is the transformation matrix given by

Υ ,
∂ϕT

∂ϑ
=




∂ϕ1

∂ϑ1

∂ϕ2

∂ϑ1
· · · ∂ϕNv

∂ϑ1

∂ϕ1

∂ϑ2

. . . . . . ∂ϕNv

∂ϑ2
...

. . . . . .
...

∂ϕ1

∂ϑNp
· · · · · · ∂ϕNv

∂ϑNp



. (2.40)

We now demonstrate the transformation of parameters through the following simple

example.

Example 2.2 Assume that instead of the DOAs in Example 2.1, we are interested

in ϑ such that ϑ1 = ϕ1 + ϕ2, and ϑ2 = 3ϕ1 − ϕ2. What is CRLB(ϑ)?

Solution

Firstly, we note that CRLB(ϑ) = diag(J−1
ϑ ), and that Jϑ can be computed from

(2.39). Since Jϕ is derived in Example 2.1, we need to compute Υ. Therefore,

from the given relationships, we can equivalently write

ϕ1 =
1

4
(ϑ1 + ϑ2), ϕ2 =

1

4
(3ϑ1 − ϑ2). (2.41)
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Consequently, it follows that

Υ =
1

4

[
1 3

1 −1

]
. (2.42)

Therefore, from (2.34), (2.35), and (2.36), it can be shown that

Jϑ =
π2

16N0

[
1 3

1 −1

][
NR

12
(N2

R − 1) sin2 ϕ1 χ12 sinϕ1 sinϕ2

χ12 sinϕ1 sinϕ2
NR

12
(N2

R − 1) sin2 ϕ2

][
1 1

3 −1

]
, (2.43)

2.2.5 Equivalent Fisher Information Matrix (EFIM)

Although FIM helps us understand the interaction between different parameters,

sometimes we need to focus on a subset of the unknown parameters and study it

isolatedly. In that context, we can use the concept of equivalent FIM (EFIM) of

that parameter for our investigation [84,85].

Definition 2.1 Given a parameter vector ϕ , [ϕT
1 ,ϕ

T
2 ]T with corresponding FIM

Jϕ =

[
J11 J12

JT
12 J22

]
, (2.44)

Then, the EFIM of ϕ1 is given by

Je
ϕ1

= J11 − J12J
−1
22 JT

12. (2.45)

The form in (2.45) is the well-known Schur’s Complement. The first term of (2.45)

is the information content related to ϕ1, in the absence of ϕ2. Moreover, based on

the fact that information is always positive, it is interesting to see that the second

term in (2.45) is negative. This means that when we need to estimate another

parameter jointly with ϕ1, the net information at the estimator is reduced.

Example 2.3 Write the expressions in (2.38) in terms of the EFIM.

Solution
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We start by writing the determinant as:

det(Jϕ) = [Jϕ]1,1[Jϕ]2,2 − [Jϕ]21,2. (2.46)

Consequently, it is straight forward to see that

CRLB(φ1) =
[Jϕ]2,2

[Jϕ]1,1[Jϕ]2,2 − [Jϕ]21,2
=

1

[Jϕ]1,1 − [Jϕ]−1
2,2[Jϕ]21,2

=
1

[Jϕ]e1,1
, (2.47a)

CRLB(φ2) =
[Jϕ]1,1

[Jϕ]1,1[Jϕ]2,2 − [Jϕ]21,2
=

1

[Jϕ]2,2 − [Jϕ]−1
1,1[Jϕ]21,2

=
1

[Jϕ]e2,2
. (2.47b)

We can conclude from (2.47) that the CRLB of a parameter, can be computed

directly from its EFIM, without inverting the big FIM, hence the name, equivalent.

2.3 Summary

In this Chapter, we covered concepts from array signal processing and the classical

estimation theory. We briefly described the concepts of array manifold vectors and

analog beamforming, from which we provided a step-by-step explanation of the

directional channel model used in mmWave systems. Subsequently, we provided a

short introduction on estimators performance assessment via CRLB and FIM. We

also introduced two important tools that are used in Chapters 4, 5 and 6, which

are parameter transformation of FIM, and the equivalent FIM. Different relevant

examples are given to help the reader understand the different notions studied.

We note that this Chapter provides only the background necessary to understand

the thesis content. However, we provide highlights to guide the reader to other

resources, should more comprehensive background be necessary.



Chapter 3

Mobile Localization under

LOS/NLOS Conditions in

Conventional Networks

Overview: The presence of NLOS link between a BS and UE in a cellular network,

is a major issue that limits the performance of the majority of TOA localization

methods. Due to blocking obstacles, a signal travels a longer distance to reach the

other end of the communication link. Thus, the additional distance introduced by

the presence of NLOS link is modeled by a positive measurement bias. In contrast

to most of relevant works that are either search-based or iterative, in this Chapter,

we propose a two-stage closed-form estimator to localize a UE by three BSs. We

use a distance-dependent bias model to derive a range estimator as a first step.

We then use trilateration to find an estimate of the UE position. To assess the

performance of our technique, we derive the mean square error of the estimator and

evaluate numerically the CRLB as a benchmark. We investigate the performance

of the proposed method under mixed LOS/NLOS scenarios in four environments,

ranging from bad urban environment to rural environment. The provided Monte-

Carlo simulations show that our technique performs on average close to the CRLB.

35
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3.1 Introduction

Over the past two decades, the estimation of a mobile user location has attracted a

considerable research focus due to its vital role in different wireless networks appli-

cations, such as cellular networks, wireless local area networks, and wireless sensor

networks. Location-aware services are on a growing demand in cellular networks

field, especially with the introduction of E-911 [9], which allows the authorities to

locate the caller and provide emergency services efficiently. This would require a

very accurate location estimation capability.

UE localization has been extensively studied under LOS conditions, over the

last few decades (See for example, [52,86–88]). However, one major issue that limits

the performance of many available methods is the presence of a NLOS link between

the UE and the BS, i.e., when an obstacle or more interrupt the direct path between

a UE and a BS. One of the most popular localization methods is estimating the

range between the two ends by multiplying the signal speed by the TOA [41]. In the

LOS case, the measured location is only contaminated by Gaussian measurement

noise, while in the NLOS case a measurement bias is added up on the measured

range and its corresponding noise. Since the presence of obstacles between the UE

and BS will force the signal from one end to be reflected on these obstacles before

finding its way to the other end, the measured range will always be greater than

the actual distance. Therefore, the distance bias under NLOS is always positive.

Researchers in this field considered the problem in different approaches. These

approaches can be broadly classified into five categories:

1. Identify-and-localize [43–47]: In this category, the link status is statistically

identified as being LOS or NLOS. Based on this identification, localization is

performed by either incorporating the NLOS links, or discarding them.

2. Mathematical programming: The idea is to formulate the UE localization

problem as a constraint optimization problem and solve it by techniques such

as linear programming [50], linear quadratic programming [51], the interior

point method [52], and sequential quadratic programming [53].

3. Least-squares (LS) solution: These include LS [54] and weighted LS [1, 55]

search-based techniques.
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d1

d2

d3

BS1

R

BS3

BS2

Processing Centre

measure

TOA

measure
biased
ranges

estimate
actual
ranges

identify
link status

estimate

position
tm,i rm,i d̂m p̂

Figure 3.1: The proposed localization technique block diagram. BS1 is the host
base station, while BS2 and BS3 are the neighboring BSs. Note that every cell is
divided into 3 sectors. R is the cell radius.

4. Robust estimation techniques: These methods try to suppress the effect of

NLOS outliers on the measured ranges. To do this, they use estimators such

as Huber estimator [89, 90] and least median of squares [91]. On the other

hand, [92] and [93] implement robust methods to mitigate the NLOS effect by

estimating the measurement bias probability distributions and the position,

iteratively.

5. Hybrid methods: Techniques in this category mix TOA with other localiza-

tion methods such as DOA [94] and RSS [95].

Most of relevant previous TOA-based works are either search-based or iterative.

On the contrary, in this chapter we contribute to the first category by proposing

a closed-from two-step localization technique for cellular networks. This technique

first estimates the range between the UE and three BSs; the hosting BS and two

neighboring cells BSs, by an asymptotically unbiased estimator. Subsequently, it

estimates the user location using trilateration. In most of the identify-and-localize

works, the measurement bias is considered either constant or a random process of a

Gaussian [96], exponential [43] or uniform distribution [50] with given parameters.

On the contrary, we consider the bias model proposed in [97] and adopted in

the European standard COST 259 [98–100]. This model is more realistic in that

it suggests that the bias follows a conditionally exponential distribution whose

parameter is a function of the distance between the BS and UE, the median rms

delay-spread, and the shadowing. Although the model in [97] is used to generate
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simulation data in [55, 89], and [101], it was not incorporated in the respective

localization algorithm. In our work herein, we use this bias model knowledge

to derive an asymptotically unbiased estimator that finds approximate values of

the range between the UE and all the three BSs. To achieve this, a processing

center first collects TOA measurements and uses them to obtain range estimates

and identify the link status, as shown in Figure 3.1. Once all the three ranges

are estimated, they are used to define three circles. The closest three intersection

points of these circles are used to define a triangle whose centroid is taken as the

user location estimate. In case where two circles do not overlap, the center of

the gap between them is taken as a triangle vertex. To assess the performance of

our localization method, we investigate its performance in the four environments

classified in [97] as: Bad urban, urban, suburban, and rural.

The contributions and merits of this chapter can be summarized as

� In contrast to [55, 89], and [101], we use a range-dependent bias model [97]

to derive a TOA-based closed-form range estimator that is asymptotically

unbiased. Subsequently, we use trilateration to obtain an estimator of the

UE location in a closed-form.

� The MSE of the range estimator is derived and compared to the CRLB, which

we evaluate numerically1. The range PDF for the three BS is derived herein,

and is used to determine the average CRLB.

� Finally, extensive Monte-Carlo simulations are carried out to assess the per-

formance of the proposed localization technique in the four environments

mentioned above, using the performance measures defined in Section 3.5.

The results show that the proposed localization technique performs on aver-

age close to the CRLB.

The rest of the chapter is organized as follows: Section 3.2 presents the problem

formulation and sets the assumptions of this work. Subsequently, Section 3.3,

describes in detail the range estimator and shows its unbiased behavior, while

Section 3.4 explains the trilateration procedure of estimating the user location.

1We resort to numerical computation due to the difficulties in evaluating it analytically. These
difficulties are discussed in Section 3.5.
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Host

Figure 3.2: BS selection is based on the sector of the host BS that the mobile is
in. Three scenarios are possible as illustrated: White, light grey and dark grey.

Section 3.5 discusses the CRLB and the difficulties of obtaining it analytically. It

also lists the PDF of the range and defines the performance measure we use for

our technique assessment. The numerical results of the Monte-Carlo simulation are

given in Section 3.6. A thorough discussion of the results is also included in that

section. Finally, the conclusions are presented in Section 3.7.

3.2 Problem Formulation

In this section, we formulate the problem under consideration. Firstly, we present

the assumptions of our work, before discussing the signal model.

3.2.1 Assumptions

This work is based on the following assumptions:

� TOA measurements are readily available at the processing center, and were

obtained by the TOA method used by the air interface i.e., wireless standard.

The `th TOA measurement, τ`, is used to calculate the `th range, r` = τ`c,

where c = 3× 108 m/s is the speed of the signal.

� As shown in Figure 3.2, we consider a cellular network with regular hexagonal
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cells. Each cell is divided into three sectors2. The user position is uniformly

distributed in the cell, and the sector in which the user exists is assumed to

be known. This can be identified using hand-over information available at the

processing center, as used in [89]. The sector boundaries are used to select

the three BSs to perform localization. In other words, considering the host

cell in Figure 3.2, when the UE is in a particular sector, the BSs in the cells

shaded with the corresponding color are selected to perform the localization.

As a result from the hexagonal pattern, BSs locations are also assumed to be

given. The backhaul link between BSs and processing center is assumed to

be error-free.

� Similar to [55] and [89], the measurement bias due to NLOS is modeled as an

exponential random process conditional to a zero-mean log-normal random

process. These distributions are described by the nature of the environment

as detailed in [97]. Consecutive bias samples are considered independent and

identically distributed (i.i.d). On the other hand, the measurement noise

is assumed to be i.i.d zero-mean Gaussian process, and independent of the

measurement bias.

� The parameters specifying the environment surrounding the UE are consid-

ered known and fixed during the measurements acquisition phase. The status

of each UE-BS link whether LOS or NLOS is assumed to stay unchanged dur-

ing the measurements acquisition phase.

3.2.2 Signal Model

Based on the above assumptions the ith range measurement at the mth BS can be

written as

rm,i = dm + nm,i + bm,i, i = 1, 2, ...Ns, m = 1, 2, 3. (3.1)

2A sector is a partial area of a cell that is served by a directional antenna, usually with
beamwidth of 60◦ or 120◦ [102].
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where Ns is the sample size. The actual distance between the UE and the mth BS,

positioned at p = [px, py]
T and pm = [px,m, py,m]T, respectively is given by

dm = ‖p− pm‖ =
√

(px − px,m)2 + (py − py,m)2. (3.2)

Here, dm is an unknown variable that is considered constant over the Ns mea-

surements. nm,i denotes the measurement noise and is modeled as a zero-mean

Gaussian random variable, i.e., nm,i ∼ N (0, σ2
n). The measurement bias, which is

always non-negative, is denoted by bm,i. In fact, bm,i = 0 in the case of a LOS

link between UE and the BS. On the other hand, bm,i is a positive random variable

under NLOS conditions. This is due to the fact that a signal reflected by obstacles

will travel a longer distance compared to a LOS signal. According to [97], the

stochastic distribution of bm,i is given by

fBm(bm,i) =

{
0, LOS,∫∞

0+
fBm|Zm(bm,i|zm)fZm(zm)dzm, NLOS,

(3.3)

where,

fZm(zm) =
1

zmσz
√

2π
e
− (ln zm)2

2σ2z , (3.4)

is the PDF of Zm, the lognormal random variable representing the shadowing that

affects the signal from the UE to the mth BS, σz is measured in nepers (σ′z[dB] =

σz
20

ln 10
), and

fBm|Z,(bm,i|zm) =
1

κm
e−

bm,i
κm . (3.5)

The parameter κm is given by

κm = cτrms = cT
√
dmzm, (3.6)

where τrms is the rms delay-spread within the UE environment, and T is the median

value of τrms obtained at a distance of 1 km from the BS.
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Depending of the severity of T , we focus on four environments: bad urban,

urban, suburban and rural environments [97]. Furthermore, we investigate mixed

LOS/NLOS scenarios, where the status of a link is detected at the processing

center.

Based on the assumptions and system model discussed above, our objective is

to estimate the UE position, p in the vicinity of three BS located at pm ∈ R2, and

covering three hexagonal cells of radius R.

3.3 Closed-Form NLOS Range Estimation

In this section, we propose a two-stage location estimator to address the problem

described in Section 3.2. Firstly, we present an asymptotically unbiased range

estimator to estimate d̂m. Secondly, we use these range estimates to find an estimate

position of the UE, using trilateration.

3.3.1 Range Estimator

We aim on using the first-order statistics of rm in the range estimation. The classical

approach to compute the PDF of the random variable, Rm, would be to obtain

the fBm(bm,i) in (3.3) in a closed-form and convolve it with fNm(nm,i). However,

evaluating fBm(bm,i) is extremely intractable when considering the integration of

the product of (3.4) and (3.5). In addition, as far as the derivation of our estimator

is concerned, we need to know the mean of Rm, while there is no need to know the

complete distribution of Rm. Thus, we resort to computing ERm [rm,i] relying on

the law of total expectation and the independence between Nm and Bm. The steps

(3.7)–(3.9b) are used to obtain the expectation of Rm under NLOS conditions,

which then can be estimated by the sample mean in (3.10b).

Taking the conditional expectation of (3.1) w.r.t. Bm|Zm

EBm|Zm {rm,i} = dm + nm,i + EBm|Zm {bm,i|zm} ,
= dm + nm,i + cT

√
dmzm, (3.7)

where (3.7) follows from the exponential PDF in (3.5). Taking the expectation of
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(3.7) w.r.t Zm, and applying the law of total expectation [103]

EZm
{
EBm|Zm{rm,i}

}
= EBm {rm,i} = dm + nm,i + cT

√
dmµz, (3.8)

where µz = e
σ2z
2 is the mean of the log-normal distribution given in (3.4).

Taking the expectation of (3.8) with respect to Nm

ENm {EBm{rm,i}} = EBm,Nm{rm,i}, (3.9a)

= ERm{rm,i} = dm + cT
√
dmµz. (3.9b)

Note that (3.9a) follows from the assumption that the measurement noise and the

bias are independent, while (3.9b) uses the assumption that the noise is zero-mean.

It should be remarked that (3.9b) represents the theoretical mean of the collected

measurement, which requires infinite number of samples to be computed. Thus,

assuming ergodicity, we use the sample mean, given by

ÊRm{rm,i} , rm =
1

Ns

Ns∑

i=1

rm,i, (3.10a)

= dm +
1

Ns

Ns∑

i=1

bm,i. (3.10b)

instead, as a suitable estimate to the mean in (3.9b). This estimator is known to

be the best mean estimator as shown in [81].

Based on the sample mean of Rm, we now proceed to derive the closed-form

range estimator. Using (3.9b), and (3.10a), we can write

d̂m + cTµz

√
d̂m − rm = 0. (3.11)

Equation (3.11) can be seen as a quadratic equation of

√
d̂m ≥ 0, which can be

solved to obtain

√
d̂m =

−cTµz +
√

(cTµz)2 + 4rm
2

. (3.12)
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Defining the parameter T , cTµz , we write

d̂m =





1
2

(
T

2 − T
√
T

2
+ 4rm

)
+ rm, NLOS,

rm, LOS,
(3.13)

Note that when T = 0, the NLOS estimator reduces to the LOS estimator. More-

over, note that since dm and bm,i are positive, rm is positive. As a result,

√
T

2
+ 4rm

is always real.

Proposition 3.1 The proposed range estimator under NLOS in (3.13) is asymp-

totically unbiased.

Proof

Using the assumption of zero-mean noise, and substituting (3.10b) in (3.13)

d̂m − dm =
1

2

(
T

2 − T

√√√√T
2

+ 4dm +
4

Ns

Ns∑

i=1

bm,i

)
+

1

Ns

Ns∑

i=1

bm,i. (3.14)

Taking the expectation3 of (3.14)

E{d̂m} − dm =
1

2
E



T

2 − T

√√√√T
2

+ 4dm +
4

Ns

Ns∑

i=1

bm,i



+

1

Ns

Ns∑

i=1

E{bm,i}. (3.15)

If Ns is large enough, then

1

Ns

Ns∑

i=1

bm,i → E{bm,i} = Ez{κm} = T
√
dm, (3.16)

which implies that

E{d̂m} − dm →
1

2

(
T

2 − T
√
T

2
+ 4dm + 4D

√
dm

)
+ T

√
dm. (3.17)

3Dropping the subscript from the expectation operator means that the expectation is taken
with respect to the random variable between brackets.
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By completing the square, and conducting straight-forward simplification, it can

be shown that

E{d̂m} − dm → 0, (3.18)

which means that the proposed range estimator is asymptotically unbiased. �

It should be stressed that the notions of measurement bias and the estimator

bias are completely distinct from each other. The measurement bias is inherent

to the environment and is caused by the signal traveling a further distance in the

case of NLOS. However, the estimator bias is the difference between the average of

the estimated parameter and the actual value of this parameter. See (2.22c).This

is an estimator property and is not related to the environment. For an unbiased

estimator, this difference is zero [81]. See (2.22c).

3.3.2 Range Estimator Error Analysis

Since the proposed range estimator in (3.13) was shown in 3.1 to be asymptotically

unbiased, the estimator error variance, σ2
dm

, and mean-squared error (MSE), ρ2
dm

,

are equal [81]. In other words

σ2
dm = E{(d̂m − dm)2} = E{d̂2

m} − d2
m = ρ2

dm . (3.19)

As a performance metric, we now compute ρ2
dm

. Substituting (3.13) in (3.19) and

simplifying the result,

ρ2
dm =

T
4

2
+ 2T

2E {rm}+ E
{
r2
m

}
− T

2
E
{(
T

2
+ 2r

)√
T

2
+ 4rm

}
− d2

m. (3.20)

We now calculate the individual terms of (3.20). From (3.10b) and (3.16), respec-

tively, we have

2T
2E {rm} = 2dmT

2
+ 2T

3√
dm. (3.21)

E
{
r2
m

}
=E

{(
dm +

1

Ns

Ns∑

i=1

nm,i +
1

Ns

Ns∑

i=1

bm,i

)2
}
, (3.22)
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=d2
m +

1

N2
s

E

{( Ns∑

i=1

nm,i

)2
}

+
1

N2
s

E

{( Ns∑

i=1

bm,i

)2
}

+
2dm
Ns

Ns∑

i=1

E {bm,i} , (3.23)

=d2
m +

1

N2
s

E

{
Ns∑

i=1

n2
m,i

}
+

1

N2
s

E

{
Ns∑

i=1

b2
m,i + 2

Ns∑

i=1

Ns∑

j=i+1

bm,ibm,j

}
+ 2dmT

√
dm,

=d2
m +

σ2
n

Ns

+
E
{
b2
m,i

}

Ns

+
(Ns − 1)E2 {bm,i}

Ns

+ 2dmT
√
dm,

=d2
m + 2dmT

√
dm +

σ2
n + σ2

b

Ns

+ E2 {bm,i} ,

=d2
m + T

2
dm + 2dmT

√
dm +

σ2
n + σ2

b

Ns

. (3.24)

Note that the terms 2dm
Ns

∑Ns

i=1 E {nm,i} and 1
N2

s

∑Ns

i=1 E {nm,i}
∑Ns

i=1 E {bm,i} vanish

in (3.23) since the noise is zero-mean. Here, σ2
b is the measurement bias variance

calculated by

σ2
b = E

{
b2
m,i

}
− E2 {bm,i} ,

= EZ
{
EB|Z

{
b2
m,i|zm

}}
− E2

Z

{
EB|Z {bm,i|zm}

}
,

= EZ
{
σ2
B|Z + E2

B|Z {bm,i|zm}
}
− E2

z

{
EB|Z {bm,i|zm}

}
,

= EZ
{
c2T 2dmz

2
m + c2T 2dmz

2
m

}
− (cT

√
dmµz)

2 = T
2
dm(2µ2

z − 1). (3.25)

Furthermore, using (3.10b) and (3.16), we can write

E
{(
T

2
+ 2r

)√
T

2
+ 4rm

}
=
(
T

2
+ 2dm + 2T

√
dm

)√
T

2
+ 4dm + 4T

√
dm,

=
(
T

2
+ 2dm + 2T

√
dm

)(
T + 2

√
dm

)
,

= T
3

+ 4T
2√

dm + 6Tdm + 4dm
√
dm. (3.26)

Finally, substituting (3.21), (3.24) and (3.26) into (3.20) yields

ρ2
dm =

1

Ns

T
2
(2µ2

z − 1)dm +
1

Ns

σ2
n, Ns � 1. (3.27)
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In summary, the asymptotic MSE is given by

ρ2
dm =





T
2
(2µ2z−1)dm+σ2

n

Ns
, NLOS,

σ2
n

Ns
, LOS,

(3.28)

Note that in the case of LOS, i.e., T = 0, ρ2
dm

reduces to the well-known CRLB of

measurements contaminated by additive white Gaussian noise, σ2
n/Ns [81].

3.4 Localization Based on Range Estimates

After estimating the range between every BS and the UE, we proceed to estimate

the UE location by, first, drawing circles with the estimated ranges, d̂m, as radii.

Then, we find the number of intersecting circles, denoted by C ≥ 0, and the points

of intersection of these circles. Two circles i, j are overlapping if

d̂i + d̂j > ‖pi − pj‖. (3.29)

Subsequently, we define a triangle and estimate the UE location as its centroid.

However, since our distance estimator is asymptotically unbiased. i.e., E[d̂m]→ dm,

for some measurements, the distance will be under-estimated d̂m < dm, while for

the other measurements, it will be over-estimated, d̂m > dm. However, on the

long run the average estimated distance, E[d̂m], approaches the actual distance,

dm. These two cases are depicted in Figure 3.3, depending on which the triangle is

defined:

1. Case 1: Three intersecting circles (C = 3)

In this case, the triangle vertices are defined by the three intersection points

bounding the intersection area, as shown in Figure 3.3.(a). The three triangle

vertices are given by

v1 = arg min
u∈{c(1)12 ,c

(2)
12 }
‖u− p3‖, (3.30)

v2 = arg min
u∈{c(1)23 ,c

(2)
23 }
‖u− p1‖, (3.31)
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Figure 3.3: Effect of range estimation error on location estimation (a) C = 3 and
(b) C = 2.

v3 = arg min
u∈{c(1)31 ,c

(2)
31 }
‖u− p2‖, (3.32)

where c
(1)
ij , c

(2)
ij ∈ R2 are the two intersection points of the circles i and j.

2. Case 2: Less than three intersecting circles (C < 3)

Because less than three circles overlap, three intersection points are partially

available. To decide on triangle vertices, the circles are investigated in pairs.

Since any two intersecting circles will have two intersection points, we define

a triangle vertex by the intersection point closer to the third circle (non-

intersecting), similar to (3.30) – (3.32). For the non-overlapping circles, we

define the triangle vertex as the point in the gap center between the two

circles. For the example illustrated in Figure 3.3.(b), two circles overlap, but

a third point is needed for trilateration. Thus, we select the mid-gap point

as a reasonable heuristic approach.

v3 = p1 + (d̂1 + 0.5g)
p3 − p1

‖p3 − p1‖
, (3.33)

where g = (d̂1 + d̂3)− ‖p3 − p1‖, is the gap between the two circles. To see

why this approach is taken, consider Figure 3.3.(b). Circle 1 and circle 3 do
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not overlap. This means that d̂1, d̂3, or both are under-estimated. However,

we have no additional information to weigh among the three possibilities. For

this reason, we choose the mid-gap point as a trilateration point.

After obtaining the triangle vertices, v1,v2 and v3, the UE location is estimated

by

p̂ =
1

3
(v1 + v2 + v3). (3.34)

3.5 Cramér-Rao Lower Bound

Discussed in Chapter 2, CRLB is one of the most important performance bench-

mark for an estimator. In our problem, the CRLB of dm in (3.1) is defined by [81]

CRLB(dm) =
−1

E
[
∂2 ln f(rm;dm)

∂2dm

] , (3.35)

where rm = [rm,1, rm,2, ..., rm,Ns ]
T . Note that in the classical case of LOS, this

bound is given by σ2
n/Ns [81]. Although there has been some works on CRLB for

NLOS localization, e.g., [54] and [93], none of these works addressed the problem

formulated in Section 3.2. Therefore, in this section, we focus on NLOS CRLB.

To start with, we need the joint probability distribution f(rm; dm). However,

since rm,1, rm,2, ..., rm,Ns are i.i.d, we can write

f(rm; dm) =
Ns∏

i=1

f(rm,i; dm) = fNs(rm,1; dm), (3.36)

where the first equality follows from the independence assumption, and the sec-

ond equality follows from the identical distribution assumption. Without loss of

generality, we choose PDF pf the first sample, rm,1. We make the following remarks,

� rm,1 = (dm + nm,1) + bm,1, so to evaluate f(rm,1; dm), we would require the

joint probability fB,N+D(b, n+ dm).

� From (3.1), bm,1 and dm + nm,1 are not independent since bm,1 is a function
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Algorithm 1 Numerical Evaluation of CRLB in (3.35), using MATLAB

Input Ns, σn, σz, R, T, c,Nb, Ir, Icrlb.
initialize CRLB(dm) = 0,∀dm
for k = 1 : Icrlb do

for dm = 1 : 2R do
initialize f̂(r; dm) = 0
Generate zm
for i = 1 : Ir do

Generate Nb instances of bm,i, and nm,i,
Calculate the corresponding Nb instances of rm,i = dm + bm,i + nm,i,

Obtain the Kernel Density Estimate,f̂(ri; dm), using a a normal kernel function [104].

f̂(r; dm) = f̂(r; dm) + f̂(ri; dm)
end for
f̂(r; dm) = f̂(r; dm)/Ir

end for
for j = 1 : Nb do

g(j, dm) = ∂2

∂d2
m

ln f̂(j; dm), where the second derivative is obtained by the MATLAB

function diff(.,2)

end for
CRLB(dm) = CRLB(dm) + −1

Ns
∑

j g(j,dm)f̂(j;dm)

end for
CRLB(dm) = CRLB(dm)/Icrlb.

of dm. Therefore, their joint distribution cannot be simply obtained by the

convolution of the marginal distribution, fB(b) and dm-shifted fN(n).

� Even if they were independent, the integral in (3.3) is very hard to evaluate

from (3.4) and (3.5).

For these reasons, we proceed to evaluate the CRLB numerically as listed in Algo-

rithm 1.

The CRLB procedure in Algorithm 1 gives a performance measure for individ-

ual range estimators. However, to evaluate the overall localization performance,

we need to define some performance measures that take into account the average

performance over the three cells. But before that, we need to evaluate the PDF of

the range, fD(dm), for m = 1, 2, 3. As derived in Appendix A, for the hosting cell
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Figure 3.4: PDF of the UE range from the mth BS, m = 1, 2 and 3. R = 500 m.

(m = 1), this distribution is given by

fD(dm) =





4πdm
3
√

3R2 , 0 ≤ dm <
√

3R
2
,

8dm√
3R2

[
π
6
− cos−1

(
√

3R
2dm

)]
,
√

3
2
R ≤ dm < R.

(3.37)

For the two neighboring cells (m = 2, 3), this distribution is given by

fD(dm) =





4dm√
3R2 cos−1

(√
3R

2dm

)
,

√
3R
2
≤ dm < R

2dm√
3R2 sin−1

(√
3R

2dm

)
, R ≤ dm <

√
3R

2dm√
3R2

[
sin−1

(√
3R
dm

)
− π

3

]
,
√

3R ≤ dm < 2R

(3.38)

Figure 3.4 shows the plots of (3.37) and (3.38) for a cell with radius of 500 m.

To measure the performance averaged over the three cells, we define the follow-

ing measures:

� Average CRLB over three cells:
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σ̃2
CRLB = σ̃2

CRLB|LOSPr(LOS) + σ̃2
CRLB|NLOSPr(NLOS). (3.39)

where Pr(LOS) and Pr(NLOS) are the probabilities of the link being LOS or

NLOS, respectively, and are assumed to be given a priori. The exact values

of these two probabilities depend on several factors, such as the environment,

the location and being indoor or outdoor. σ̃2
CRLB|LOS = σ2

n/Ns, while

σ̃2
CRLB|NLOS =

1

3

3∑

m=1

[ ∫

dm

CRLB(dm)fD(dm)ddm

]
. (3.40)

under the assumption that dm are mutually independent, m = 1, 2, 3.

� Average Range Estimation MSE :

When the link status is perfectly known at the processing center, the average

range estimation MSE is denoted by

ρ̃2
de|k =

(
ρ2
d1

+ ρ2
d2

+ ρ2
d3

3

∣∣∣link status known

)
. (3.41)

On the other hand, when the link status is estimated by a decision rule, the

average range estimation MSE is denoted by

ρ̃2
de|i =

(
ρ2
d1

+ ρ2
d2

+ ρ2
d3

3

∣∣∣link status identified

)
. (3.42)

� Location Estimation MSE:

Depending on the link status knowledge, this MSE is denoted by

ρ̃2
pe|k = E

[
‖p− p̂‖2

∣∣∣link status known
]
,

ρ̃2
pe|i = E

[
‖p− p̂‖2

∣∣∣link status identified
]
.
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Table 3.1: Median RMS Delay Spread For The Considered Environments

Environment T (µs)

Bad Urban 1.0

Urban 0.4

Suburban 0.3

Rural 0.1

3.6 Numerical Results and Discussion

To investigate the performance of the proposed algorithm, we perform extensive

Monte-Carlo simulations. We also present the results for the numerical compu-

tation of the CRLB in this section, but before that, we start by describing the

simulation setup.

3.6.1 Simulation Setup

The measured range samples are generated according to the model discussed in

Section 3.2. The model parameters we use here are chosen to match the recom-

mended values in [97]. In this regard, the measurement noise is generated as a

zero-mean Gaussian process with σn = 60 m. Moreover, the lognormal shadowing,

Zm, conditioning the measurement bias parameters is specified by σ′z =4 dB, while

the values of T for the four environments under interest are given in Table 3.1.

In our simulations, we consider a seven regular hexagonal cells served by BSs

located at (0, 0), (1.5R,
√

3/2R), (1.5R, −
√

3/2R), (0, −
√

3R), (−1.5R, −
√

3/2R),

(−1.5R,
√

3/2R), and (0,
√

3R), where R = 500 m, as shown in Figure 3.2. The

user, located in the first cell, is localized by three BSs that are defined by the sector

boundaries, as described in Section 3.2.1. The model in [105] was used to generate

user locations uniformly distributed over a regular hexagon.

For the link status identification, we use the single BS decision-theoretic method

proposed in [96]. By recalling that σ2
r = σ2

n + σ2
b = σ2

n + T
2
dm(2µ2

z − 1), a decision
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rule that can be used to identify the link status is

σ2
r

NLOS

≷
LOS

ησ2
n, (3.43)

where σ2
r is the recorded sample variance and η > 1 is a decision threshold that

depends on the environment and the cell being either a UE host or a neighbor

cell. In our simulations, a link status is modeled as an equally-probable Bernoulli

random variable.

For location estimation performance comparison, we use a Weighted-LS tech-

nique similar to [1]

p̂LS,i = arg min
p̂

3∑

m=1

(
rm,i − ‖p̂− pm‖

)2

αm
, (3.44)

where

αm =

{
σ2
n, LOS,

σ2
n + T

2
(2µ2

z − 1)‖p̂− pm‖, NLOS.
(3.45)

Subsequently, the location estimates taken as

p̂ =
Ns∑

i=1

p̂LS,i. (3.46)

3.6.2 Range Estimation

Considering the range estimation stage only, the CRLB of the NLOS range es-

timator is given in Figure 3.5. Since CRLB increases with dm, we can see that

the farther the UE from the BS, the harder it is to get a lower error estimate.

Also, we can infer that CRLB is a function of the environment, in that it becomes

worse for environments with higher delay spread. Recall that 0 ≤ d1 ≤ R, while√
3R/2 ≤ d2, d3 ≤ 2R, which means d1 is generally better estimated than d2 and d3.

Finally, note that the four CRLB curves approach σ2
n/Ns = 36 m2 when dm → 0.

This is because the bias term in (3.1) vanishes and only noise is present, which
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pared to the range estimation error variance ρ2
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√

3
2
R ≤ d2, d3 < 2R

leads the bound to become similar to that of the LOS case. Moreover, Figure 3.5

shows that ρ2
dm

of the proposed distance estimator performs closely to the CRLB

for lower dm values, but diverges as the distance between the UE and BS increases.

We now present the results for the range estimation under mixed LOS/NLOS

conditions with the statuses of the links are assumed to be known. Figure 3.6 shows

how the selection of the data size Ns affects the range RMSE, measured by ρ̃de|k,

for the four user environments. The range RMSE decays as Ns increases, which is

sensible because the range estimator requires averaging the recorded range sample,

and this average is better approximated with larger history. We can also infer from

this figure that the range estimation accuracy is generally inversely proportional

to the value of T that specifies the environment. Note that, from (3.6), larger

T implies higher delay spread, measurement bias mean, and measurement bias

variance.

Figure 3.7 illustrates the identification error effect on the range estimation.
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Figure 3.6: Average range RMSE as a function of Ns when link statuses are known,
obtained by averaging over 1000 user location.

The identification error is the error made in the link status identification block.

An identification error occurs when the actual link is LOS, while it was identified

as NLOS, or vise versa. The effect of this error is quantified by the difference

between ρ̃de|k and ρ̃de|i. In this figure we can see that the identification error has a

minor effect on the three environments with higher T , when Ns ≥ 100. However,

the identification error is substantial in rural areas. For example, at Ns = 200

the identification error is around 4.8 m. To see why, recall that the identification

approach we are using from [96] and defined in (3.43), relies on the gap between the

sample variance, σ2
r = T

2
dm(2µ2

z−1)+σ2
n, and the noise variance, σ2

n. Consequently,

the larger this gap is, the more accurate the decision. So, we compute σ2
r for the

four environments and compare it to σ2
n, as shown in Table 3.2. It is evident that σ2

r

in the rural case is relatively close to the value of σ2
n, in contrast to the other three

environments, where σ2
r is more pronounced and comparable to the noise variance.

This means that the decision rule from [96] can easily identify link status for the

bad urban, urban and suburban environments, while making larger identification

errors in the case of rural environment. With this said, it should be stressed that
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Figure 3.7: Identification error effect on range estimation as a function of Ns ob-
tained by averaging over 1000 user location.

Table 3.2: Sample Variance and Noise Variance for Different Environments

Environment σ2
r = T

2
dm(2µ2

z − 1) + σ2
n σ2

n

Bad Urban 48577 3600

Urban 10796 3600

Suburban 7648 3600

Rural 4050 3600

we do not address the identification problem in this Chapter, but used this method

from [96] as-is.

Although higher Ns can reduce the distance error (Figure 3.6 and Figure 3.7),

this would require more calculations and storage capability at the processing center,

i.e., higher complexity. For this reason, we select Ns = 100 as a suitable trade-off

for the subsequent results in this section.

To have a deeper look, we now compare the range estimation using different

setups in Figure 3.8. In the legend, ρ̃LOS indicates that the results were obtained by
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Figure 3.8: Average RMSE of range error in different setups compared to average
CRLB, obtained by averaging over 1000 user location with Ns = 100.

the averaging estimator that assumes that all the links are LOS [81], i.e., ignoring

the existence of NLOS paths. On the contrary, ρ̃NLOS is obtained by the estimator in

(3.13) that assumes that all the paths are NLOS, i.e., assumes measurement bias

exists in all paths. ρ̃de|i, ρ̃de|k, and σ̃CRLB are the square roots of the quantities

defined in (3.42), (3.41), and (3.39), respectively.

It can be concluded from Figure 3.8 that, when link identification is imple-

mented, the proposed estimator performs close to σ̃CRLB with difference of 3.1 m,

1.9 m, 3.2 m, and 6.5 m in the bad urban, urban, suburban, and rural environ-

ments, respectively. Smaller gaps occur when the link status is perfectly known at

the processing center, with the performance of the proposed technique approach

the CRLB for the suburban and rural areas. Also, notice that the error upper-

bound is well above the proposed estimator error. On an absolute measure, the

proposed estimator provides range estimates with ρ̃de|i of: 21.4 m, 10.9 m, 10.1 m,

and 13.0 m in the four environments, respectively.
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Table 3.3: The Percentage of The Number of Overlaps, C with Ns=100.

Environment C = 3 C = 2 C = 1

Bad Urban 75.00 24.40 0.60

Urban 80.17 19.53 0.30

Suburban 81.29 18.46 0.24

Rural 80.30 19.36 0.34

3.6.3 Location Estimation

After discussing the range estimation accuracy in Section 3.6.2 as a first step, we

now discuss the results of the location estimation as a second step.

Firstly, we present the frequency of the number of overlaps used for trilateration4

in Table 3.3. These values were obtained during the simulations campaign by

counting the number of overlaps in each simulation iteration, and dividing the

total number of occurrences by the number of iterations, which is 105. As can

be noticed, in the great majority of experiments, 3 overlaps are used to obtain a

triangle centroid. On the other hand, 2 overlaps occur with lower probability, while

1 overlap occurs with a negligible percentage. Note that this table is obtained when

the link statuses are unknown.

Figure 3.9 illustrates the location estimation accuracy in terms of ρ̃pe|k for the

four environments. Observations similar to Figure 3.6 can be seen in Figure 3.9.

Particularly, notice that any increase of recorded data size beyond Ns = 200, offers

a minor enhancement relative to the additional required complexity. For example,

we would get 50% RMSE enhancement when the data size is 5 times larger.

We now benchmark the location estimation error, when the status is either

known or identified at the processing center, with the cases when all the links are

assumed to be either LOS or NLOS. This comparison is illustrated in Figure 3.10,

for Ns =100. Remarkably, the proposed method, isolated from identification error,

performs well below the NLOS and LOS estimation cases with RMSE of 25.1 m,

14.6 m, 13.0 m, and 10.3 m, in the four environments respectively. Furthermore,

when the case of ρ̃pe|i is considered, we get RMSE of 25.4 m, 15.7 m, 14.6 m,

4Measured as a percentage of the total number of experiments.
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Figure 3.11: PDF of the location error with Ns =100, obtained by averaging over
1000 user locations, with link status identified.

and 18.7 m, respectively. Since the error of a stage propagates to the subsequent

stage, it should be highlighted that the ρ̃pe|i effect in Figure 3.10 comprises three

error components, namely: identification error, range estimation error and location

estimation error.

Finally, note that the proposed approach outperforms the WLS approach, de-

noted by ρ̃WLS and outlined in (3.44)-(3.45), by a large margin. This is because our

approach takes into account the bias distribution function, in contrast to the one

in [1]. Also note that due to the bias being non-Gaussian, the numerator of (3.44)

is non-Gaussian. Moreover, WLS requires a higher number of BS for an accurate

estimate. These two reasons cause WLS to have a greater estimation error than

the other considered approaches in Figure 3.10.

To get a better insight on the nature of location error, Figure 3.11 illustrates

the approximate error distributions for the four environments obtained during the

simulations with identification. Again, note that this this error is the total error

due to identification error, ranging error, and localization error. It can be seen
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Table 3.4: Localization Error Central Tendency Measures, Ns=100

Measure Bad Urban Urban Suburban Rural

Mean (m) 20.79 13.07 12.28 15.93

Median (m) 17.42 11.15 10.44 14.01

Mode (m) 10.97 8.14 7.90 8.16

that most of the error is concentrated at very low values. Table 3.4 describes

this quantitatively. Since the bad urban environment has the highest median rms

delay-spread, T , among all the investigated environments, it exhibits the worst

performance in the considered scenarios.

3.7 Conclusions

In this chapter, we have presented a two-stage closed-form NLOS mobile localiza-

tion technique that is based on TOA estimation at the closest three BSs. A key

feature in our work is that it solves the NLOS UE localization in closed-form, in

contrast to most of works that are either search-based or iterative. We have used

a distance-dependent bias model to derive an asymptotically unbiased estimator

in order to estimate the distance between each of the BS and the UE, at the first

stage. Subsequently, the intersection points of the circles, defined by radii equal to

the estimated distances, are used to define a triangle whose centroid is taken as the

user location estimate. In addition, we have derived the MSE of the proposed range

estimator, and obtained the CRLB numerically to benchmark the performance of

the distance estimators. Furthermore, we have derived the PDF of the distance

between the three BS and the UE. The simulations presented herein demonstrate

that with a cell radius of 500 m, our localization method is accurate with an av-

erage position error ranging between 12–21 meters depending on the environment.

It is worth mentioning that in a rural environment, a more efficient identification

rule is needed. The focus of this chapter has been on localization using 3 BSs. We

did not addressed the identification issue, neither did we address the case where

more BSs are involved in the localization. These are left for future work. Another
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potential venue for investigation in the context of this Chapter is the application

of linearised solution of the TOA equations to obtain an estimate of the user lo-

cation, instead of taking the centroid of the intersection area. Moreover, since the

performance of the proposed technique in this Chapter is model-dependent, it is

meaningful to consider model mismatch analysis and simulation for future work.

Finally, we note that, even though the proposed technique performs closely with

the CRLB, the average error obtained is in the order of several meters, which im-

plies that location-aware communications have limited applications in conventional

cellular networks.
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Chapter 4

Beamforming for Initial Access in

5G mmWave Networks

Overview: The utilization of the millimeter-wave frequency band in 5G is a highly-

debated current topic. MmWave MIMO systems will use arrays with large number

of antennas at the transmitter and the receiver, implemented on a relatively small

area. With the inherent high directivity of these arrays, the initial access to the

network (IA) will be challenge in 5G mmWave, since using omni-directional trans-

mission is not feasible due to the high propagation loss. Therefore, algorithms to

help the UE find the BS and establish a communication link should be carefully

designed. Towards that, we examine two beamforming schemes, namely, random-

phase beamforming (RPBF) and directional beamforming (DBF), under the line-

of-sight channel model. Since the step following IA would be channel estimation,

we compare RPBF and DBF with respect to the the CRLB of jointly estimating the

channel parameters: DOA, DOD, TOA, and the complex channel gain. The results

show that the application of RPBF is more appropriate in the considered scenario

because it attains a lower CRLB with fewer beams compared to DBF.

4.1 Introduction

One of the enabling technologies of the fifth generation of mobile networks (5G)

is the millimeter-wave technology (mmWave) that operates at a carrier frequency

65
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in the range of 30–300 GHz [62–65,106]. MmWave allows packing high number of

antennas in a relatively small area due to their small wavelengths – from 1 mm

to 1 cm. In addition, the massively available spectrum of mmWave would easily

enable transmission with extremely high data rates [62]. Although 5G localization

research is still in its infancy, these two reasons reinforce the role that the mmWave

technology can play in 5G localization.

Due to the special characteristics of the mmWave channel, directional trans-

mission with large-size arrays, at both the transmitter and the receiver, is going to

be utilized [64]. However, when initiating a communication link, this high direc-

tionality is an issue for a user equipment (UE) trying to find the base station (BS),

or vice-versa, especially that omni-directional transmission with antenna arrays is

a challenge by itself [107,108].

The mmWave initial access (IA) techniques with analog beamforming were

reviewed in [72]. The three approaches compared therein include two direction-

based methods, namely exhaustive search and iterative search. The third method

is a GPS-assisted algorithm. The disadvantage of these approaches is mainly the

delay of finding the proper transmission direction through scanning the area of

interest.

Our approach in this thesis to consider the transmission of several beams si-

multaneously rather than scanning. The main advantage of such approach is that

it reduces the search time significantly with respect to the exhaustive search and

iterative search methods. This is particularly important in mmWave systems as

the 5G network will be designed for low-latency applications [61]. In contrast to

the directional beamforming, we focus on random beamforming. The concept of

random beamforming is not new per-se. Randomly-directional beamforming is a

method of opportunistic beamforming that was investigated for mmWave receivers

in [109,110]. Under this scheme, the BS generates narrow beams with random direc-

tions and select the user with the highest SNR. On the other hand, optimization-

based random beamforming in [108] optimizes the beamforming weights so that

the resulting beam pattern is omni-directional. The work therein focused on con-

ventional multiple-input-multiple-output (MIMO) systems in the microwave band.

Despite the advantage of omni-directional coverage in the AI phase, the cost func-

tion is complex and, for a high number of antennas, it is only solvable numerically.
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Another random beamforming investigated under conventional MIMO is the uni-

tary beamforming, whereby the beamforming matrix is obtained by the singular

value decomposition of the channel matrix, e.g., see [111]. This is not applicable

in an IA scenario since the channel is unknown at that phase. Analog beamform-

ing in mmWave is implemented using phase-shifters only. Therefore, we limit our

beamforming to be unit-magnitude variable phase.

In this Chapter, we look into the IA problem for a LOS mmWave channel

and investigate a random beamforming scheme, referred to as random-phase beam-

forming (RPBF). Under this scheme, the beamforming vector is generated as a

vector of complex exponentials with i.i.d. random phases. This scheme is used

in [112] to initiate an iterative beamforming scheme which assumes full channel

knowledge, and in [113], which assumes the DOD to be known. However, these

two assumptions are not used in our work. We compare the RPBF with directional

beamforming (DBF) scheme. Since the step following a successful initial access

would be the channel estimation, it is meaningful to compare the performance of

these two schemes in terms of the CRLB of the channel parameters: DOA, DOD,

TOA, and the complex channel gain. The CRLB of a LOS mmWave channel pa-

rameters were previously studied in [114]. Therein, the CRLBs were provided as a

function of the Fisher information matrix (FIM), whose entries were given by high

level expressions and are valid for ULA . The current Chapter presents the closed-

form CRLB expressions of the mmWave parameter using ULA, simpler than those

obtained in [114]. Although mmWave may apply different array geometries, ULA

is the standard array structure that is usually used to get initial insights. Finally,

we investigate and assess the RPBF and DBF in terms of the CRLBs, as a function

of the number of transmit antennas, receive antennas and transmit beams.

While we focus on the IA herein, in subsequent Chapters, we focus on localiza-

tion performance and synchronization issues, beyond the initial access phase.

4.2 Problem Formulation

Consider the scenario illustrated in Figure 4.1, where the receiver and the transmit-

ter are equipped with arrays of NR and NT antennas, respectively. Without loss of

generality, we consider the uplink and assume that the BS and UE are located in the
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Figure 4.1: A schematic diagram of the considered scenario. d1 is the transmitter-
receiver separation distance.

same plane. Consequently, we consider a 2D approach. Moreover, similar to [114],

we assume that the UE and BS communicate via a LOS path only. We leave the

investigation of the NLOS where communication is carried out via scatterers and

reflectors to Chapter 5. Furthermore, we assume that the transmit antenna array

is rotated by an unknown orientation angle φ0. Finally, we assume that the arrays

are narrow-band, i.e., the signal traverses the antenna arrays apertures, both at

the transmitter and the receiver, within a fraction of a symbol duration. That is

Amax � cTs, where Amax is the maximum array aperture.

As described in Section 2.1.3, and based on the above assumptions, the channel

matrix is modeled by

H ,
√
NRNTβaR(φR)aH

T(φT) ∈ CNR×NT , (4.1)

where β = βR + jβI ∈ C is the complex channel gain, φR is the DOA, and φT is

the DOD. Under mmWave channel, DOD depends on the orientation angle and

both are crucial in beamforming, since the knowledge of the direction of departure

and the orientation angle would enable more efficient beamforming. From Section

2.1.1, for a receiver equipped with a ULA of NR elements placed along the x-axis
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with d inter-element spacing, the array response vector is given by

aR(φR) =
1√
NR

e−j
2πd
λ

cosφRxR ∈ CNR , (4.2)

where xR is as defined in (2.9). Similarly, by using the subscript T, the transmitter

array steering vector is given by

aT(φT) =
1√
NT

e−j
2πd
λ

cosφTxT ∈ CNT . (4.3)

For notation simplicity, we drop the angle parameter from aR(φR) and aT(φT).

These two vectors are normalized so that ‖aR‖2 = ‖aT‖2 = 1. Thus, the received

signal at the analog output of the array at a time instant t, can be written as

r(t) , [r1(t), r2(t), ..., rNR
(t)]T, ∈ CNR , t ∈ [0, To],

= Hx(t− τ) + n(t). (4.4)

where To ≈ NsTs is the observation time and Ns is the number of pilot sym-

bols. Moreover, τ ∈ R+ is the propagation delay of the transmitted signal,

i.e., TOA, and is related to the transmitter-receiver distance , by τ = d1/c.

Furthermore, n(t) , [n1(t), n2(t), ..., nNT
(t)]T ∈ CNR denotes zero-mean additive

white Gaussian noise processes with spectral density (PSD) N0. Furthermore,

x(t) , [x1(t), x2(t), ..., xNT
(t)]T ∈ CNT is the single-carrier transmitted signal vector

at the output of a beamforming matrix F , [f1, f2, ...fNB
] such that x(t) =

√
EtFs(t)

and s(t) , [s1(t), s2(t), ..., sNB
(t)]T, where NB is the number of transmitted beams

and Et is the transmitted energy per symbol. Moreover,

s`(t) =
Ns−1∑

k=0

a`,kp(t− kTs), ` = 1, ..., NB (4.5)

where a`,k is the kth pilot symbol transmitted over the `th beam, and p(t) is a unit-

energy pulse with a PSD |P (f)|2 and a bandwidth W . To keep the transmitted

power fixed, regardless of the number of antennas, NT, we normalize F such that

Tr
(
FHF

)
= 1, and s(t)sH(t) = INB

. Matrix F is modeled in two ways: directional

and random. These models and the differences between them are discussed in detail
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in the sequel of Section 4.3.

Our aim is to investigate the impact of the two beamforming schemes on the

estimation lower bounds of the channel parameters, ϕ = [φR, φT, βR, βI, τ ]T based

on the observed signal, r(t).

4.3 Beamforming: Random-Phase and Directional

In this section, we formally define the two beamforming schemes considered here.

The impact of these two schemes on the joint estimation of the channel parameters

is investigated in subsequent sections. The first scheme we consider is DBF, which

spatially steers the transmission beams towards the azimuth angles φB,` such that

f` ,
1√
NB

aT(φB,`), 1 ≤ ` ≤ NB (4.6)

where aT(φB,`) has the same structure as (4.3).

On the other hand, the RPBF generates beams with uniformly distributed

random phases such that

f` ,
1√

NTNB

[ejϑ`,1 , ..., ejϑ`,NT ]T, (4.7)

where ϑ`,n ∼ U(−π, π). Recall that analog beamforming is implemented solely

using phase shifter. Thus, RPBF and DBF have unit-magnitude weights. Al-

though, practical phase shifters generate quantized phases, recently, phase shifters

for mmWave with 3.5◦ (≈ 0.06 rad) phase resolution were proposed [115,116].

Note that in (4.7) the phase is random, in contrast to the scheme in [109,110],

which have a structure similar to (4.6), but with a random direction. Moreover,

note that both (4.6) and (4.7) have ‖f`‖2 = 1
NB

. This implies that increasing the

number of beams, will linearly scale down the power per beam to preserve the

constant transmitted power condition.

A good advantage of (4.7) is that the generated beams are not too narrow com-

pared to those of DBF as shown in Figure 4.2. Thus, RPBF exhibits a better spatial

coverage, which is an essential feature when the initial direction of transmission is

unknown.
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Figure 4.2: Beam patterns generated using DBF (left) and RPBF (right) with
NT = 32 and NB = 24. For directional beamforming, φB,` = 7.2◦`.

4.4 Cramér-Rao Lower Bound

As discussed in Section 2.2.3, a widely used performance measure in the estimation

theory is the CRLB [81]. CRLB provides a lower bound on the variance of an

unbiased estimator of a given parameter. In this Chapter, we use the CRLB to

compare the best performance of RPBF and DBF in the scenario described in

Section 4.2 in terms of the CRLBs of channel parameters

The CRLB of estimating ϕ for an array with arbitrary geometry is derived in

Appendix C.2. Subsequently, for the case of ULA, we show in Appendix C.3.2 that

the CRLBs for jointly estimating φR, φT, β and τ are given by (4.8). Note that

since β = βR + jβI, we provide CRLB(β) = CRLB(βR) + j CRLB(βI).

CRLB(φR) =
12

γ0|β|2N3
RNT[Q]1,1

( λ

2πd sinφR

)2

, (4.8a)

CRLB(φT) =
[Q]1,1

γ0|β|2NRNT det(Q)

( λ

2πd sinφT

)2

, (4.8b)

CRLB(β) =
1

γ0NRNT[Q]1,1

(
1 +

[Q]1,1[Q]2,2
det(Q)

)
, (4.8c)
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CRLB(τ) =
1

4π2γ0|β|2NRNTW 2
eff [Q]1,1

. (4.8d)

where

γ0 =
NsEt

N0

, (4.9a)

W 2
eff ,

∫ ∞

−∞

(
∂p(t)

∂τ

)2

dt =

∫ W
2

−W
2

f 2|P (f)|2df, (4.9b)

Q ,

[
aH

TFFHaT aH
TXTFFHaT

aH
TXTFFHaT aH

TXTFFHXTaT

]
. (4.9c)

XT = diag(xT) (4.9d)

Note that γ0 denotes the transmitted SNR, and that (4.9b) follows from Parseval’s

theorem. Weff is called the effective bandwidth. Note that directly from (4.8), it

is easy to see that the CRLBs of channel parameters improve with NR, namely

CRLB(φR) ∝ 1
N3

R
, while CRLB(φT ),CRLB(β), and CRLB(d1) ∝ 1

NR
. However, the

relationships of these bounds with respect to NT, are not as obvious. Therefore,

in the following, we analyze the expressions (4.8) for both DBF and RPBF with

respect to NT.

4.4.1 DBF Analysis

Define $` , 2πd
λ

(
cosφT − cosφB,`

)
. Then, for DBF, it can be shown that

[Q]1,1 =
1

N2
TNB

NB∑

`=1

1− cosNT$`

1− cos$`

, (4.10a)

[Q]2,2 =
1

2N2
TNB

NB∑

`=1

N2
T −NT

1− cos$`

+
1 + cosNT$`

(1− cos$`)2
, (4.10b)

<{[Q]1,2} =
(NT − 1)

2
[Q]1,1, (4.10c)

={[Q]1,2} =
1

N2
TNB

NB∑

`=1

(1− cosNT$`) sin$` −NT (1− cos$`) sinNT$`

(1− cos$`)
2 .

(4.10d)
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Note that (4.10) imply that the performance of DBF is highly governed by the

difference between φT and φB,`. Ideally, the difference should be zero to achieve the

lowest CRLB. Moreover, carefully inspecting (4.10), one can notice the averaging

over NB. Thus, after a certain value of NB, increasing NB has a little effect on the

CRLBs, and a performance floor is reached.

Since NT and NB will be typically very large, it is meaningful to analyze the

limiting behavior of the elements and determinant of Q with NT. Focusing on

the relationship between the DBF CRLB and NT, we can see that there are two

components in (4.10); a short-term harmonic component represented by cos(NT$`)

and a long-time trend represented by a polynomial of NT. Focusing on the long-

term trend, it can be noticed that [Q]1,1 ∼ O( 1
N2

T
), [Q]2,2 is constant, the real and

imaginary parts of [Q]1,2 ∼ O( 1
NT

), and finally, det(Q) ∼ O( 1
N2

T
). Consequently,

from (4.8), we can deduce that, under DBF,

CRLB(φR) ∼ O(NT), (4.11a)

CRLB(φT) ∼ O(
1

NT

), (4.11b)

CRLB(β) ∼ O(NT), (4.11c)

CRLB(τ) ∼ O(NT). (4.11d)

Due to the fixed transmit power constraint, higher NT leads to narrower beams and

higher received power in a certain direction as implied by (4.6). If that direction

mismatches φT, the CRLBs of φR, β, and τ tend to worsen when NT increases.

4.4.2 RPBF Analysis

For the RPBF case, since both NT and NB are typically high in mmWave systems,

we resort to the law of large numbers to compute the average CRLB. We calculate

E{[Q]1,1}, E{[Q]2,2}, and E{det(Q)}, to obtain the limiting behavior of (4.8) as

E{[Q]1,1} = aH
TE{FFH}aT =

aH
TaT

NT

=
1

NT

, (4.12a)

E{[Q]2,2} =
aH

TX2
TaT

NT

=
1

N2
T

NT−1∑

i=0

(
i− NT − 1

2

)2

=
N2

T − 1

12NT

, (4.12b)
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Table 4.1: Scaling Effect on CRLBs For High NT And NB.

NR NT (RPBF) NT (DBF) NB

CRLB(φR) 1
N3

R
constant O (NT) constant

CRLB(φT) 1
NR

O
(

1
N2

T

)
O
(

1
NT

)
constant

CRLB(β) 1
NR

constant O (NT) constant

CRLB(τ) 1
NR

constant O (NT) constant

E{[Q]1,2} =
aH

TXTaT

NT

=
1

N2
T

NT−1∑

i=0

(
i− NT − 1

2

)
= 0, (4.12c)

E{det(Q)} =
N2

T − 1

12N2
T

→ 1

12
. (4.12d)

The results in (4.12) in conjugation with (4.8) imply that CRLB(φT) ∼ O(1/N2
T),

while CRLB(φR), CRLB(β), and CRLB(τ) are constant in NT and NB. In con-

trast to DBF, increased NT does not decrease the spatial coverage. Thus, higher

NT does not affect the received power in average, and the CRLBs of φR, β, and τ

stay constant. Table 4.1 summarizes the scaling factors of DBF and RPBF with

respect to NT and NR.

4.5 Simulation and Numerical Results

With reference to the scenario illustrated in Figure 4.1, we consider a receiver

equipped with a ULA lying in the x-axis with d = λ/2, and covering a spatial

field (0, π). The transmitter, operating at f = 38 GHz, is assumed to be tilted

with an orientation angle φ0 measured from the positive x-axis. Without loss of

generality, we select φ0 = 0. The DODs and DOAs are measured counter-clockwise

from x-axis in line with the standard polar coordinates. The BS is assumed to

be located at the origin, while the UE is located at p = (5, 25) m. This leads to

the angles φR = 78.7◦, φT = 191.3◦. Similar to [117], the complex channel gain

is computed using the free-space propagation model, leading to β = βR + jβI =

−(56.5 + j53.7)× 10−3. Moreover, we consider p(t) to be a unit-energy ideal pulse
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given by

p(t) =
1√
W

sinc(Wt). (4.13)

Consequently, it follows from Parseval’s theorem that W 2
eff = W 2/3, where W =

Rb/2b, and Rb is the bit rate, and b is the number of bits per symbol. We present

the results for 1 Gbps bit rate and 16 QAM transmission, i.e., W = 125 MHz. To

improve the results presentation, we provide the CRLB(τ) in terms of CRLB(d1) =

c2 CRLB(τ). It should be noted that using the values above, the SNR at the given

location can be calculated to be 30.7 dB, which is high enough to guarantee the

tightness of the CRLB of the parameters.

For DBF, the directions are chosen to be equally spaced to cover the region

(0, π), i.e., φB,` = π`
NB+1

, 1 ≤ ` ≤ NB. Finally, in the following results, when

referring to RPBF, CRLB means the average CRLB. RPBF plots are obtained by

Monte-Carlo simulation averaged over 1000 iteration.

4.5.1 Effect of NB on the CRLBs of Channel Parameters

Figure 4.3 illustrates the CRLBs of the channel parameters as a function of NB

with NT = 32 and NR = 64. It can be seen that, using RPBF, the CRLB floor is

reached at NB = 18. Also, note that for NB < 10 the average CRLBs of φR and

d1 are less sensitive to NB compared to those of φT, and β. On the other hand,

the CRLB under DBF is non-monotonic. Thus, NB should be carefully chosen for

optimum estimation. However, since in the initial access phase the transmitter has

no information on the direction of transmission, an optimal beam is not guaranteed.

Comparing RPBF with DBF in Figure 4.3, it can be inferred that the RPBF

scheme attains a lower floor at a low NB than the DBF, except when the latter

happens to have a beam close to the receiver direction. To see why the CRLB

floors, notice the averaging effect in (4.10), and the independence of NB in (4.12).

Intuitively, recall that with a fixed NR the receiver beam-width about φR is fixed.

Now, consider the RPBF case shown in Figure 4.2. When NB is small, there is a

limited chance that a random transmit beam will cover φR with a suitable gain, but
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Figure 4.3: CRLB of the channel parameters w.r.t NB using RPBF (dashed line)
and DBF (solid line) with NR = 64, NT = 32. Directional beams are equally spaced
over (0,π)

as NB goes up, this chance enhances and the CRLB starts to decrease. As NB grows

significantly, the resultant beams becomes almost omni-directional and, regardless

of how high NB is, the CRLB becomes fixed. On the other hand, consider the DBF

case in Figure 4.2, where beams have a comb-like shape and the CRLB mainly

depends on the difference between the transmit beams and the DOD. As NB grows

higher, more transmit beams fall within the vicinity of the DOA. However, since

‖f`‖2 = 1/NB, the received power stays fixed, and the CRLB floor is reached.

4.5.2 Effect of NR on the CRLBs of Channel Parameters

The CRLBs of the channel parameters as function of NR are provided in Figure

4.4. In both schemes, CRLBs of φT, β, and τ decrease as 1/NR. On the other

hand, CRLB of φR decreases by three orders of magnitude, when NR increases by

one order of magnitude. This is in line with the theoretical expressions in (4.8).

Finally, as is the case with respect to NT, these results confirm the conclusion made

using Figure 4.3 that RPBF provides better bounds than DBF does when NB is

fixed.
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Figure 4.4: CRLB w.r.t NR using RPBF (dashed line) and DBF (solid line) with
NB = 18, NT = 32. Directional beams are equally spaced over (0,π)

4.5.3 Effect of NT on the CRLB

Figure 4.5 illustrates the results of investigating the CRLB in terms of NT. Con-

sidering DBF, it is hard to draw any conclusion for scaling factors in terms of NT

due to the high non-linearity observed and represented by (4.10). However, there is

an average trend that can be seen, as discussed in Section 4.4, whereby CRLB(φT)

decreases with 1/N2
T while the other CRLBs increase with NT. As for RPBF, it can

be seen from Figure 4.5 that only the estimation of φT improves when increasing

NT. Note that due to the power normalization discussed in Section 4.2, the CRLBs

of β and φR are not affected by an increased NT.

4.5.4 Summary of Results

From Figures 4.3 – 4.5, it can be inferred that RPBF outperforms DBF in terms

of the CRLBs of the channel parameters, except in some cases shown in Figure

4.3, where a few NB choices can result in a better DBF performance. Note that in

these cases a beam or more are close enough to the receiver direction, hence the
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Figure 4.5: CRLB w.r.t NT using RPBF (dashed line) and DBF (solid line) with
NB = 18, NR = 32. Directional beams are equally spaced over (0,π)

better CRLB. However, since at the IA stage the receiver location is unknown, a

careful choice of NB cannot be made for DBF. As a result, RPBF is more reliable

in this case during AI phase.

4.6 Conclusion

In this Chapter, we have studied the impact of two beamforming schemes on the

CRLBs of the channel parameter: DOA, DOD, TOA, and complex channel gain.

RPBF has shown better CRLB floor at a smaller number of beams than DBF.

Thus, as shown by the numerical results, it would be favorable to use RPBF in the

initial access phase. Table 4.1 summarizes the scaling factors of CRLB in terms

of NR, NT and NB. In the next Chapter, we consider 3D mmWave channels with

multi-path propagation and carry out an analytical investigation on the localization

bounds in 5G for both, uplink and downlink.
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Chapter 5

Uplink and Downlink 3D

Localization Error Bounds in 5G

mmWave Systems

Overview: Location-aware communication systems are expected to play a pivotal

part in the next generation of mobile communication networks. Therefore, there is

a need to understand the localization limits in these networks, particularly, using

mmWave. Towards that, we address the uplink and downlink localization limits in

terms of 3D position and orientation error bounds for mmWave multipath channels.

We also carry out a detailed analysis of the dependence of the bounds on different

system parameters. Our key findings indicate that the uplink and downlink behave

differently in two distinct ways. First of all, the error bounds have different scaling

factors with respect to the number of antennas in the uplink and downlink. Sec-

ondly, uplink localization is sensitive to the orientation angle of the UE, whereas

downlink is not. Moreover, in the considered outdoor scenarios, the non-line-of-

sight paths generally improve localization when a line-of-sight path exists. Finally,

our numerical results show that mmWave systems are capable of localizing a UE

with sub-meter position error, and sub-degree orientation error.

81
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5.1 Introduction

Having considered the initial network access problem in the previous Chapter, we

now focus on UE localization in mmWave location-aided systems.

Location-aided systems are expected to have a wide range of applications in 5G

mmWave communication [26], whether for vehicular communications [118], assisted

living applications [68], or to support the communication robustness and effective-

ness in different aspects such as resource allocation [119], beamforming [33, 71],

and pilot assignment [34]. Therefore, the study of positioning in 5G mmWave

systems becomes especially imperative. Due to the use of directional beamform-

ing in mmWave, in addition to the UE position also the UE orientation plays an

important role in location-aided systems.

Conventionally position information is obtained by GPS, though this has sev-

eral limitations. Most importantly, GPS suffers from degraded performance in

outdoor rich-scattering scenarios and urban canyons, and may fail to provide a po-

sition fix for indoor scenarios. Even in good conditions, GPS positioning accuracy

ranges between 1–5 meters. To address these limitations, there has been intense

research on competing radio-based localization technologies. To understand the

fundamental behavior of any technology, the CRLB or related bounds can be used.

As discussed in Section 2.2.3, the CRLB provides a lower bound on the variance

of an unbiased estimator of a certain parameter. The square-root of the CRLB of

the position and the orientation are termed the position error bound (PEB), and

the orientation error bound (OEB), respectively. PEB and OEB can be computed

indirectly by transforming the bounds of the channel parameters, namely: DOA,

DOD, and TOA.

For conventional MIMO systems, the bounds of the 2D channel parameters are

derived in [120], based on received digital signals and uniform linear arrays (ULA),

while bounds are derived in [121] based on 3D channel matrix with no transmit

beamforming. It was found that having more transmit and receive antennas is ben-

eficial for estimating the DOA and DOD. In both [120, 121] beamforming was not

considered. The bounds on the channel parameters can be transformed into PEB

and OEB as in [84,122–124] that considered 2D cooperative wideband localization,

highlighting the benefit of large bandwidths.
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MmWave communication combines large antenna arrays with large bandwidths,

and should be promising for localization, then. In [125], PEB and OEB for 2D

mmWave downlink localization using ULA are reported, while [126] considers 2D

uplink multi-anchor localization. Furthermore, for indoor scenarios, PEB and OEB

are analyzed in [127] for 3D mmWave uplink localization with a single beam whose

direction is assumed to be known. Although multipath channels are considered in

[125–127], the difference between the uplink and downlink for 3D and 2D with large

number of antennas and analog transmit beamforming is yet to be investigated.

In this Chapter, we consider 3D mmWave localization problem for both the

uplink and downlink under multipath conditions, and derive and analyze the PEB

and OEB using multi-beam directional beamforming with arbitrary array geometry.

By their nature, these bounds are theoretical, and serve as benchmarks to assess

location estimation techniques, as well as being a feasibility study to see how well

the location and orientation can be potentially estimated. We derive these bounds

by transforming the Fisher information matrix (FIM) of the channel parameters

into the FIM of location parameters. We stress that although the FIM of the

channel parameters is structured similarly in the uplink and downlink, this is untrue

for the location parameters FIM, which is obtained by transforming the FIM of the

channel parameters. Using procedure similar to the one introduced in Section 2.2.4,

this transformation is different in the uplink and downlink, and leads to different

PEB and OEB. The contributions of this Chapter are summarized as follows:

� Based on the low-scattering sparse nature of the mmWave channel and the

resulting geometrical model, we show that, under some conditions, the mul-

tipath parameter estimation can be reduced to a problem of multiple single-

path estimation. We refer to this reduction as the approximate approach.

These conditions are highly relevant in mmWave due to channel sparsity, high

number of receive and transmit antennas, and the very large bandwidth.

� We derive the single-path CRLB of the channel parameters in a closed-form

for arbitrary geometry, and show how these bounds are related to the PEB

and OEB bounds. We also propose closed-form expressions of PEB and OEB

for 3D and 2D LOS localization. Although our derivation is for an arbitrary

array geometry, we specify the results for URA and ULA.
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� We derive the PEB and OEB for general uplink and downlink localization,

based on exact and approximate approaches, and show the asymmetry be-

tween uplink and downlink via both analytical scaling results and numerical

simulations with a URA.

The rest of this Chapter is organized as follows. Section 5.2 presents the problem

statement. Then, in Section 5.3, we derive the FIM of the channel parameters

in a general setup of arbitrary arrays for 3D localization.The transformation of

the channel parameters FIM into PEB and OEB is detailed in Section 5.4. The

simulation results and the related insights are provided in Section 5.5. Finally, the

conclusions are reported in Section 5.6.

5.2 Problem Formulation

5.2.1 System Geometry

By extending the 2D system geometry considered in Chapter 4, to the general case

of 3D, we consider a BS equipped with an array of NBS antennas arranged in an

arbitrary but known geometry whose centroid, i.e., geometric center, is located

at the origin (O), and orientation angle is oBS = [0, 0]T. On the other hand,

the centroid of the UE is located at an unknown position p = [px, py, pz]
T and

equipped with a second array of NUE antennas arranged in an arbitrary but known

geometry with an unknown orientation o = [θ0, φ0]T, aligning the UE with the

rotated axes x′, y′ and z′. An example with URAs is depicted in Figure 5.1. φ0 is

defined as the rotation around the z-axis, while θ0 is defined as the rotation around

the −x′-axis. Thus, the UE array elements locations is obtained using a rotation

matrix R(θ0, φ0) derived in (5.35). Considering two orientation angles is highly

relevant in applications such as vehicular communication and robotics, where the

UE turns left and right, or goes up or down hills, without rotating the vehicle axis.

We further assume that there are M ≥ 1 paths between BS and UE, where the

first path is LOS, while with the other M − 1 paths are associated with clusters

located at qm = [qm,x, qm,y, qm,z]
T, 2 ≤ m ≤ M . These clusters can reflectors

or scatterers. Due to the mmWave propagation characteristics, the number of

paths is small [62] and correspond to single-bounce reflections [117,125]. In fact, it
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Figure 5.1: An example scenario composed of a URA of NUE = NBS = 81 antennas,
and M paths. We use the spherical coordinate system highlighted in the top right
corner. The axes rotated by orientation angles (θ0, φ0) are labeled x′, y′, z′.

was experimentally observed in [66] that the average value of M under mmWave

propagation in an urban environment in New York City is 2 to 3 paths with a

maximum of 4 paths present during measurement. This consequently resulted in

modeling M by a Poisson mass function whose average is 1.8 and 1.9 at 28 GHz,

and 73 GHz, respectively. Thus, the channel can be considered spatially sparse,

and the parameters of different paths are assumed to be distinct, i.e., we assume

unique DOAs, DODs, and TOA.

5.2.2 Channel Model

Denote the mth DOD and DOA by (θT,m, φT,m) and (θR,m, φR,m), 1 ≤ m ≤ M ,

respectively, where the related unit-norm array response vectors are given by [58]

aT,m(θT,m, φT,m) ,
1√
NT

e−j∆
T
Tk(θT,m,φT,m), ∈ CNT (5.1)
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aR,m(θR,m, φR,m) ,
1√
NR

e−j∆
T
Rk(θR,m,φR,m), ∈ CNR (5.2)

where k(θ, φ), λ, and ∆R ∈ R3×NR , are as defined in Section 2.1.1, while NR is the

number of receiving antennas. NT, and ∆T are defined similarly1. We drop the

angle parameters from the notation of aT,m, and aR,m.

Assuming synchronization2, and denoting the TOA of the mth path by τm, the

channel can be expressed3 as

H(t) =
M∑

m=1

Hmδ(t− τm), (5.3)

From Figure 5.1, τm = dm/c, where dm = dm,1 + dm,2, for m > 1 and

Hm ,
√
NRNTβmaR,maH

T,m ∈ CNR×NT , (5.4)

where βm is the complex gain of the mth path. Finally, we define the following

θR , [θR,1, θR,2, ..., θR,M ]T,

θT , [θT,1, θT,2, ..., θT,M ]T,

β , [β1, β2, ..., βM ]T,

φR , [φR,1, φR,2, ..., φR,M ]T,

φT , [φT,1, φT,2, ..., φT,M ]T,

τ , [τ1, τ2, ..., τM ]T.

5.2.3 Transceiver Model

The transmitter sends a signal x(t) =
√
EtFs(t), as defined in (4.4). Here, we only

consider directional beamforming such that F , [f1, f2, ...fNB
], where

f` =
1√
NB

aT,`(θ`, φ`), 1 ≤ ` ≤ NB (5.5)

1The subscripts T and R refer to the transmit and receive sides, respectively, regardless of
using the uplink or downlink. On the other hand, when the notation is unique to the base station
or the user equipment, we use the subscript BS and UE.

2We rely on the commonly used synchronization assumption e.g., [68], [120], [84,122–124], [126],
to gain fundamental understanding. We, however, realize that in practice synchronization errors
must be accounted for in protocols and algorithms. This can be done by, e.g., a two-way protocol
or a joint localization and synchronization approach, which is addressed in Chapter 6.

3We use a narrow-band array model, so that Amax � c/W , where Amax is maximum array
aperture, c is speed of light, and W is the system bandwidth [58].
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The received signal observed at the input of the receive beamformer is given by

r(t) ,
M∑

m=1

√
EtHmFs(t− τm) + n(t), t ∈ [0, To], (5.6)

where n(t) , [n1(t), n2(t), ..., nNR
(t)]T ∈ CNR is zero-mean white Gaussian noise

with PSD N0. Similar to [128, 129], we assume that a low-noise amplifier and

a passband filter are attached to each receive antenna. While this may seem a

restrictive assumption, it will allow us to derive the PEB and OEB, which are

fundamental lower bounds irrespective of the type of processing performed at the

receiver, such as receive beamforming.

5.2.4 3D Localization Problem

Our objective is to derive the UE PEB and OEB, based on the observed signal,

r(t), for both the uplink and downlink. We achieve this in two steps: firstly, we

derive bounds on the channel parameters, namely, direction of arrival, (θR,φR),

direction of departure, (θT,φT), time of arrival τ , and paths gains, β. Secondly,

we transform these bounds into the position domain.

5.3 FIM of The Channel Parameters

We first derive exact expressions for the entries of the FIM. Then, we determine

the conditions under which the individual paths can be considered orthogonal.

Subsequently, we provide closed-form expressions of the CRLB for the single-path

case for 3D and 2D localization.

5.3.1 Exact Expression

Let us define the parameter vector

ϕ , [θT
R,θ

T
T,φ

T
R,φ

T
T, τ

T,βT
R,β

T
I ]T, (5.7)



88 Uplink and Downlink 3D Localization Error Bounds in 5G mmWave Systems

where βR , <{β}, and βI , ={β} are the real and imaginary parts of β, re-

spectively, and denote the uth element in ϕ by ϕu. Then, the corresponding FIM,

partitioned into M ×M submatrices, is structured as

Jϕ ,




JθRθR JθRθT · · · JθRβI

JT
θRθT

. . . · · · ...
... · · · . . .

...

JT
θRτ

· · · · · · JβIβI



, (5.8)

where, due to the additive white Gaussian noise [81],

[Jϕ]u,v ,
1

N0

∫ To

0

<
{
∂µH

ϕ(t)

∂ϕu

∂µϕ(t)

∂ϕv

}
dt, (5.9)

where µϕ(t) is the noiseless part of received signal in (5.6).

µϕ(t) ,
√
NRNTEt

M∑

m=1

βmaR,maH
T,mFs(t− τm). (5.10)

We now introduce the following matrices to simplify the notation

B , diag(β) (5.11a)

AR , [aR,1, aR,2, ..., aM ], (5.11b)

K̃R,m , diag

(
∂

∂θR,m

∆T
Rk(θR,m, φR,m)

)
, (5.11c)

P̃R,m , diag

(
∂

∂φR,m

∆T
Rk(θR,m, φR,m)

)
, (5.11d)

KR , [K̃R,1aR,1, K̃R,2aR,2, ..., K̃R,NR
aR,NR

], (5.11e)

PR , [P̃R,1aR,1, P̃R,2aR,2, ..., P̃R,NR
aR,NR

], (5.11f)

with similar expressions obtained by replacing “R” with “T”. It is shown in Ap-

pendix B that each submatrix in (5.8) is of the form

Jx,x′ = <{(RX factor)� (TX factor)� (signal factor)} , (5.12)
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where � denotes the Hadamard product, the RX factor relates to the receiver

array, the TX factor relates to the transmitter array and beamforming, and the

signal factor relates to the pilot signals. The RX factor is a product of the ma-

trices {ARB,KRB,PRB}, while the TX part is a product of similar matrices

{FHAT,F
HKT,F

HPT}, associated with the transmitter as well as F. Under the

assumption of i.i.d. symbols, the signal factor depends on

[Ri]uv ,
∫ W/2

−W/2
(2πf)i|P (f)|2e−j2πf∆τuvdf, (5.13)

in which ∆τuv , τv − τu, i ∈ {0, 1, 2}. The signal factor in (5.13) represents

the correlation between different paths obtained in the frequency domain using

Parseval’s theorem. See (B.8), (B.11) and (B.12).

For instance, defining the signal-to-noise ratio (SNR) as

γ ,
NRNTNsEt

N0

, (5.14)

it can be verified that

JθRθR = γ<
{

(BHKH
RKRB)� (AH

TFFHAT)T �R0

}
, (5.15)

The rest of the FIM entries in (5.8) are listed in Appendix B, and all exhibit the

structure in (5.12). Observe that the FIMs in (5.8) scale linearly with SNR, which

means that the CRLB decreases as SNR increases.

5.3.2 Approximate FIM of the Channel Parameters

The exact FIMs presented in Section 5.3.1 provide the exact CRLB of the channel

parameters. However, under some circumstances, it is possible to simplify this

computation by reducing the submatrices of the FIMs to either diagonal or zero

matrices, by exploiting the structure in (5.12). Inspired by [130], we start by

introducing the following definition.

Definition 5.1 Given a square matrix A(κ) that can be decomposed into a diago-

nal matrix D(κ) 6= 0 plus a hollow matrix E(κ) 6= 0, then A(κ) = D(κ) + E(κ) is
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almost diagonal (AD) for any parameter κ if

lim
κ→∞

δ(A, κ) , lim
κ→∞

‖E(κ)‖F

‖D(κ)‖F

= 0. (5.16)

We now use Definition 5.1 to inspect the factors in (5.12), and understand the

behavior under typical mmWave conditions, i.e., large transmit and receive arrays

and large system bandwidth.

� Factor 1 – Receiver Side: For a large number of receive antennas, the power

received from a direction (θR,u, φR,u) via a steering vector in the direction

(θR,v, φR,v) is very small, i.e., ‖aH
R,uaR,v‖ � ‖aR,u‖2, u 6= v, when the DOAs of

the different paths are distinct. Thus, limNR→∞ δ(A
H
RAR, NR) = 0. Similarly,

considering the exponential form of aR,m and that K̃R,m, P̃R,m are diagonal,

lim
NR→∞

δ(KH
RKR, NR) = lim

NR→∞
δ(PH

RPR, NR), (5.17a)

= lim
NR→∞

δ(KH
RPR, NR) = 0. (5.17b)

On the other hand, using the facts that the BS centroid is at the origin,

then for uplink Tr(K̃R,m) =
∑NR

n=0
∂
∂θR

∆T
Rk =

(∑NR

n=0 ∆T
R

)
∂
∂θR

k = 0, and

similarly, Tr(P̃R,m) = 0, and that the UE centroid is at p, then for down-

link Tr(K̃R,m) = pT ∂
∂θm

k, Tr(P̃R,m) = pT ∂
∂φm

k. Moreover, Noting that

[KH
RAR]m,m = Tr(K̃R,m)/NR, then, for both uplink or downlink,

lim
NR→∞

KH
RAR = lim

NR→∞
PH

RAR = 0M×M . (5.18)

where 0M×M is an M ×M matrix of zeros.

� Factor 2 – Transmitter Side: The transmitter side contributes to the FIM

in (5.15) by AH
TFFHAT. Recalling that [AH

TFFHAT]u,v = aH
T,uFFHaT,v, the

right-hand side term can be interpreted as the spatial cross-correlation be-

tween the uth and the vth DODs. So, considering directional beamforming,

as NT increases, the beams become narrower, leading to

lim
NT→∞

aH
T,uFFHaT,v ≈ 0 u 6= v. (5.19)
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Moreover, for extremely narrow beams, the likelihood of covering the vth

DOD is almost zero,

lim
NT→∞

aH
T,vFFHaT,v = lim

NT→∞
‖FHaT,v‖2 ≈ 0. (5.20)

In this extreme case, AH
TFFHAT ≈ 0, which implies the whole FIM is zero.

However, since (5.19) approaches 0 faster than (5.20), the transmission over

directional beamforming should be restricted to NT <∞. That said, there

are cases where (5.20) does not hold and AH
TFFHAT is AD, e.g., when using

random beamforming. By inspection, a similar statement can be made for

(PH
TFFHPT)T, (KH

TFFHKT)T, and (PH
TFFHKT)T.

� Factor 3: Multipath Cross-Correlation: It can be shown that the cross-

correlation functions in (5.13) are even in ∆τuv for i = 0, 2 and have maxima

on their diagonals. These maxima are constant with values 1 and 4π2W 2
eff ,

respectively, where W 2
eff is as defined in (4.9b). Moreover,

lim
W→∞

δ(R0,W ) = 0, (5.21a)

lim
W→∞

δ(R2,W ) = 0. (5.21b)

Regarding R1, we note that for any W , diag(R1) = 0M so that R1 is a hollow

matrix, with limW→∞R1 = 0M×M . So, in effect, the paths overlapping in

time is negligible, which is consistent with [131] and [132].

In combination, given the Hadamard product structure of (5.12), we find that

under typical mmWave conditions, due to the combined effect of large values of NR,

and W , some submatrices of the FIM in (5.8) are AD, while the others are almost

zero as shown in Figure 5.2 (left). This effect relates to the fact that paths can be

resolved in either direction of arrival or delay domain, both of which reinforce each

other in mmWave. In other words, it is sufficient to have NR →∞ or W →∞ in

order for the paths to be orthogonal. However, as it is customary to have a very

large antenna array at the base station, it is reasonable to assume that paths are

always orthogonal. Re-ordering the parameters, grouping them path by path, we

obtain the block diagonal FIM in Figure 5.2 (right).
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re-order

θR︷ ︸︸ ︷
1 2

θT︷ ︸︸ ︷
1 2

φR︷ ︸︸ ︷
1 2

φT︷ ︸︸ ︷
1 2

τ︷ ︸︸ ︷
1 2

βR︷ ︸︸ ︷
1 2

βI︷ ︸︸ ︷
1 2

1︷ ︸︸ ︷
θR, θT, φR, φT, τ, βR, βI

2︷ ︸︸ ︷
θR, θT, φR, φT, τ, βR, βI

θR
θT
φR

φT

τ
βR
βI
θR
θT
φR

φT

τ
βR
βI

︷
︸︸

︷
︷

︸︸
︷

1

2

1
2
1
2
1
2
1
2
1
2
1
2
1
2

︷︸
︸︷

︷︸
︸︷

︷︸
︸︷

︷︸
︸︷

︷︸
︸︷

︷︸
︸︷

︷︸
︸︷

θR

θT

φR

φT

τ

βR

βI

Figure 5.2: An example on the approximate FIM in (5.8) with M = 2. The red and
blue cells represent the non-zero entries of the FIM and correspond to m = 1, 2,
respectively. Re-ordering the FIM on the left yields the FIMs in (5.37).

5.3.3 FIM of Single-Path mmWave Channel Parameters

Focusing on the FIM of the mth path, it is interesting to note that after obtaining

the FIM in Figure 5.2 (right), it becomes evident that the estimation of τm is

independent of any other parameter. This follows from the fact that, for the mth

path, ∆τmm = 0 and [R1]m,m = 0. Moreover, note that the estimation of θR,m and

φR,m is independent of the other parameters, unlike θT,m and φT,m which depend

on βm. This is because we use transmit beamforming only, hence power gain has

two components: channel gain and antenna directional gain.

We now use the notion of the equivalent FIM (EFIM) from [84], and reviewed in

Chapter 2, to isolate the effect of the nuisance parameter β. EFIM is a measure of

the information corresponding to a certain unknown parameter, taking into account

the uncertainties of the other unknown parameters.

Given the block-diagonal structure of the approximate FIM, it becomes mean-

ingful to study paths separately. Thus, considering β as a nuisance parame-

ter, we focus on a single path, with the parameters of interest being ϕch ,

[θR, θT, φR, φT, τ ]T, and write the EFIM of the DOA, DOD, and TOA, from Ap-

pendix C, as follows

Je
ϕch

=

[
Je
θ,φ 04

0T
4 γ|β|24π2GW 2

eff

]
, (5.22)
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where

Je
θ,φ = γ|β|2




RθG 0 Xθ,φG 0

0 Lθ
G

0
Yθ,φ
G

Xθ,φG 0 RφG 0

0
Yθ,φ
G

0
Lφ
G



, (5.23)

in which

Rθ , aH
RK̃2

RaR,

Rφ , aH
RP̃2

RaR,

Vθ , aH
TK̃TFFHaT,

Vφ , aH
TP̃TFFHaT.

Lθ , GTθ − |Vθ|2,
Lφ , GTφ − |Vφ|2,
Tθ , aH

TK̃TFFHK̃TaT,

Tφ , aH
TP̃TFFHP̃TaT,

G , aH
TFFHaT,

Xθ,φ , aH
RK̃RP̃RaR,

Yθ,φ , GY ′θ,φ −<{VφV ∗θ },
Y ′θ,φ , <{aH

TP̃TFFHK̃TaT},

Note that G denotes the transmit array gain in a direction θT, while Rθ, Rφ, Tθ,

and Tφ are the information contents related to the spatial aspects of the received

signal and correspond to θR, φR, θT, and φT, excluding the SNR, i.e., the integrands

in (5.9). Similarly, Vθ, Vφ, Xθ,φ, and Y ′θ,φ respectively represent the mutual spatial

information between θT and β, φT and β, θR and φR, and θT and φT. Consequently,

Lθ and Lφ represent the equivalent Fisher spatial information of θT and φT, respec-

tively, after removing the dependence on β. Finally, Yθ,φ denotes the equivalent

mutual information of θT and φT, after removing the dependence on β.

The CRLB of the channel parameters for arbitrary array geometries is provided

below.

Proposition 5.1 Based on the FIM in (5.22), the CRLBs of the DOA, DOD and

TOA are given by

CRLB (θR)=
1

γ|β|2 G
(
Rθ −

X2
θ,φ

Rφ

) =
Rφ

γζ1|β|2G
, (5.24a)

CRLB (φR)=
1

γ|β|2 G
(
Rφ −

X2
θ,φ

Rθ

) =
Rθ

γζ1|β|2G
, (5.24b)

CRLB (θT)=
G

γ|β|2
(
Lθ −

Y 2
θ,φ

Lφ

) =
GLφ
γζ2|β|2

, (5.24c)
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CRLB (φT)=
G

γ|β|2
(
Lφ −

Y 2
θ,φ

Lθ

) =
GLθ
γζ2|β|2

, (5.24d)

CRLB(τ) =
1

(4π2W 2
eff)(γ|β|2G)

. (5.24e)

where ζ1 = RθRφ −X2
θ,φ, and ζ2 = LθLφ − Y 2

θ,φ.

Proof

See Appendix C.1.

Note that the CRLBs in (5.24) consist of two components: Firstly, there is an

SNR component represented by γ|β|2 G for the receiver angles, and by G/(γ|β|2) for

the transmitter angles. This component is inversely proportional to the CRLBs,

which means with higher SNR, the CRLBs of the channel parameters decrease.

Secondly, there is a spatial information part in the parentheses containing the

equivalent information after removing the dependence on the other parameter.

Proposition 5.2 For 2D localization, when the UE and BS are located in the xy-

plane, θR = θT = π/2

CRLB(φR) =
1

γ|β|2RφG
, (5.25a)

CRLB(φT) =
G

γ|β|2Lφ
, (5.25b)

while CRLB(τ) is unchanged.

Proof

See Appendix C.2.

Recall that θR = θT are known and can be removed from ϕch, leading to (5.25).

Moreover, Note that these expressions can be viewed as special cases of Proposition

5.1, by ignoring the terms relating to the coupling between θ and φ. Appendix C.3

provides details on the computation of the FIM and CRLB for URA and ULA as

special cases.
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5.4 FIM of the Location Parameters

In the preceding sections, we have seen how the FIM of the multipath channel

parameters can be approximated by multiple single-path FIMs. We have also

derived the single-path FIM for different settings. In this section, we derive the PEB

and the OEB by applying a transformation [81] to the EFIM of DOA, DOD, and

TOA, computed from (5.8), to obtain the exact FIM of position and orientation.

We also transform Jϕch
, defined in (5.22), to obtain the approximate one.

5.4.1 PEB and OEB: Exact Approach

General Formulation

Before proceeding further, we state the following theorem.

Theorem 5.1 (Equivalence Theorem) The FIM of position and orientation

obtained by transforming the EFIM of the directions of arrival and departure, and

the time of arrival is equivalent to the EFIM of position and orientation obtained

by direct transformation of the FIM of the directions of arrival, departure, time of

arrival and other nuisance parameter.

Proof

See Appendix D.1.

This means that instead of transforming the FIM of all the channel parameters

(useful and nuisance), and then computing the EFIM of p and o, we can simplify

that by only transforming the EFIM of the useful channel parameters (DOAs,

DODs, TOAs).

In this section, we derive the PEB and OEB based on the EFIM of the multipath

channel parameters of interest ϕCH , [θT,φT, τT]T. We do so by first transforming

Je
ϕCH

to a FIM of the location parameters ϕL , [oT,pT,qT]T, where

θ ,
[
θT

R,θ
T
T

]T
, (5.26a)

φ ,
[
φT

R,φ
T
T

]T
, (5.26b)

q ,
[
qT

2 ,q
T
3 , · · · ,qT

M

]T
. (5.26c)
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Towards that, we write

JϕL
, ΥJe

ϕCH
ΥT ,

[
Jop Jop,q

JT
op,q Jq

]
, (5.27)

where Jop ∈ R5×5, Jq ∈ R3(M−1)×3(M−1) and

Υ =
∂ϕT

CH

∂ϕL

=




∂θT

∂o
∂φT

∂o
∂τT

∂o
∂θT

∂p
∂φT

∂p
∂τT

∂p
∂θT

∂q
∂φT

∂q
∂τT

∂q


 . (5.28)

Consequently, the EFIM of p and o is found via Schur’s complement as

Je
o,p = Jop − Jop,qJ−1

q JT
op,q. (5.29)

Finally, the PEB and OEB are given by the square roots of the squared-PEB

(SPEB) and squared-OEB (SOEB) defined in the following.

Definition 5.2 For the equivalent Fisher information matrix of the position and

the orientation, Je
o,p ∈ R5×5, the SOEB and SPEB are defined as:

SOEB =
[
(Je

o,p)−1
]

1,1
+
[
(Je

o,p)−1
]

2,2
, (5.30a)

SPEB =
[
(Je

o,p)−1
]

3,3
+
[
(Je

o,p)−1
]

4,4
+
[
(Je

o,p)−1
]

5,5
. (5.30b)

Transformation for Uplink and Downlink

The relationships governing the UE position and orientation with the BS and UE

angles are different. Therefore, unlike Jϕ, the structure of Υ and, effectively, Je
o,p,

depends on whether the uplink or downlink is used for signal transmission. For

this reason, we switch to the explicit notation with the subscripts BS and UE,

θ =





[
θT

BS,θ
T
UE

]T
, uplink

[
θT

UE,θ
T
BS

]T
, downlink

, (5.31a)

φ =





[
φT

BS,φ
T
UE

]T
, uplink

[
φT

UE,φ
T
BS

]T
, downlink.

(5.31b)
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Figure 5.3: Two-step derivation of the UE angle in 2D. It is easy to see that
φUE = tan−1

(
p′y/p

′
x

)
, where p′ = −Rz(−φ0)p.

where φBS and θBS denote the vectors of the azimuth and elevation angles at the

BS, and φUE and θUE are the azimuth and elevation angles at the UE.

Starting with LOS and using the spherical coordinates, it can be seen from

Fig. 5.1 that

θBS,1 = cos−1 (pz/‖p‖) , (5.32a)

φBS,1 = tan−1 (py/px) , (5.32b)

τ1 = ‖p‖/c. (5.32c)

However, the relationship of the UE angles with the position and orientation angles

are not as obvious. Therefore, we resort to the two-step procedure illustrated in

Fig. 5.3 for 2D, but easily extensible to 3D. In the first step, we shift the coordinate

system origin to the UE, hence, the BS is shifted to −p. In the second step, the

coordinate system is rotated in the negative direction of the orientation angle (φ0).

Consequently, the BS location is also rotated, and the UE angles are then taken as

the spherical coordinates of the new BS location. Mathematically, this location is

given by p′ = −Rz(−φ0)p = −R−1
z (φ0)p, where Rz(φ0) is the rotation matrix in

the direction φ0 around the z-axis. Generalizing this result to the 3D case yields,

p′ = −R−1(θ0, φ0)p. (5.33)

Consequently, defining p′ , [p′x, p
′
y, p
′
z]

T and noting that ‖p‖ = ‖p′‖, we write

θUE,1 = cos−1 (p′z/‖p‖) , (5.34a)
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φUE,1 = tan−1
(
p′y/p

′
x

)
. (5.34b)

With the right-hand rule in mind, the rotation considered in this paper (See

Fig. 5.1) is a rotation by φ0 around the z-axis, followed by another rotation by

θ0 around the negative x′-axis. Thus, the rotation matrix is given by [133]

R(θ0, φ0) = Rz(φ0)R−x′(θ0),

=




cosφ0 − sinφ0 cos θ0 − sinφ0 sin θ0

sinφ0 cosφ0 cos θ0 cosφ0 sin θ0

0 − sin θ0 cos θ0


 . (5.35)

Note that R(θ0, φ0) is orthogonal and hence satisfies R−1(θ0, φ0) = RT(θ0, φ0).

Next, considering the NLOS paths (2 ≤ m ≤M) and using the same procedure,

the following relations can be obtained

θUE,m = cos−1
(
w′m,z/‖wm‖

)
, (5.36a)

φUE,m = tan−1
(
w′m,y/w

′
m,x

)
, (5.36b)

θBS,m = cos−1 (qm,z/‖qm‖) , (5.36c)

φBS,m = tan−1 (qm,y/qm,x) , (5.36d)

τm = (‖qm‖+ ‖wm‖) /c, (5.36e)

wm = p− qm, (5.36f)

where w′m , [w′m,x, w
′
m,y, w

′
m,z]

T = −RT(θ0, φ0)wm. Based on (5.32), (5.34), and

(5.36), the non-zero elements of Υ are listed in Appendix E.

5.4.2 PEB and OEB: Approximate Approach

In Section 5.3.2, it was concluded that, under certain conditions, the multiple

paths arriving at the receiver can be treated as non-interfering paths carrying

independent information. Thus, we can write the total EFIM of position and

orientation as a sum of the individual EFIMs obtained by transforming the FIM

of useful channel parameters (DOAs, DODs,TOAs), and apply Theorem 5.1 in the

following proposition.
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Proposition 5.3 Define the vector of useful channel parameters of the mth path by

ϕ
(m)
ch , [θR,m, θT,m, φR,m, φT,m, τm]T, and let J

(m)
ϕs be the FIM of all the parameters of

mth path, such that ϕs
(m) , [θR,m, θT,m, φR,m, φT,m, τm, βR,m, βI,m]. Then we write

J(m)
ϕs
,

[
J

(m)
ch J

(m)
ch,β

J
(m)T

ch,β J
(m)
ββ

]
, (5.37)

where J
(m)
ch ∈ R5×5 is the FIM of ϕ

(m)
ch , J

(m)
ββ ∈ R2×2 is the FIM of βR,m and βI,m,

and J
(m)
ch,β ∈ R5×2 is the mutual information matrix of ϕ

(m)
ch and β. Moreover,

denote the EFIM of the mth DOA, DOD, and TOA by

J
(e,m)
ch = J

(m)
ch − J

(m)
ch,β

(
J

(m)
ββ

)−1

J
(m)T

ch,β , (5.38)

and the corresponding transformation matrix in block form by

Υm ,





Υ1, m = 1
[
Υ

T

m Υ
T

m

]T

, 2 ≤ m ≤M
(5.39)

where Υm is the 5 × 5 matrix relating to o and p, and Υm is the 3 × 5 matrix

relating to qm. Then, the approximate EFIM of o and p is given by

J̃e
o,p ,

M∑

m=1

J(m)
o,p , (5.40)

=
M∑

m=1

ΥmJ
(m)
ch Υ

T

m −
M∑

m=1

ΥmJ
(m)
ch,β

(
J

(m)
ββ

)−1

J
(m)T

ch,β Υ
T

m

︸ ︷︷ ︸
path gains uncertainty

−
M∑

m=2

ΥmJ
(e,m)
ch Υ

T

m

(
ΥJ

(e,m)
ch Υ

T
)−1

ΥmJ
(e,m)
ch Υ

T

m

︸ ︷︷ ︸
clusters locations uncertainty

. (5.41)

Proof

See Appendix D.2.

We make the following remarks from (5.41). Firstly, due to the additive nature of
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the EFIM, the FIM of the useful localization information (TOA, DOA, DOD) of

the M paths accumulate positively to construct the first term. On the other hand,

the channel gain, βm, is a nuisance unknown parameter which needs to be estimated

despite not being useful for localization. Not knowing βm decreases the amount of

available information as highlighted by the negative second term comprising J
(m)
ch,β,

the mutual information relating β with TOA, DOA, and DOD. Finally, since m = 1

is assumed to be a LOS path, the third term is defined starting from m = 2. This

term is also negative to represent the loss of information due to not knowing the

clusters’ locations, qm.

5.4.3 Closed-Form Expressions for LOS: 3D and 2D

Although it is hard to derive closed-form solutions of the general case of PEB and

OEB, here we present expressions for the LOS case (M = 1).

Proposition 5.4 For the localization problem set in Section 5.2, in the existence

of a LOS path only, the 3D localization SPEB and SOEB of a UE located at p with

an orientation angle o are given by

SPEB =‖p‖2 CRLB(θBS) + ‖p‖2 sin2 θBS CRLB(φBS) + c2 CRLB(τ), (5.42a)

SOEB =b1 CRLB(θBS) + b2 CRLB(φBS) + b3σ
2
θBSφBS

+b4 CRLB(θUE) + b5 CRLB(φUE) + b6σ
2
θUEφUE

. (5.42b)

where σ2
θBSφBS

and σ2
θUEφUE

are covariance terms arising from the mutual informa-

tion of the angles in the subscript, and b1, ..., b6 are as given in (F.13).

Proof

See Appendix F.

In light of (5.42), it can be seen that SPEB depends on the BS angles rather than

the UE angles. In other words, SPEB depends on CRLB(DOA) in the uplink, and

CRLB(DOD) in the downlink, which have different expressions in (5.24). Thus,

SPEB is asymmetric in these two cases. On the other hand, SOEB depends on

both UE angles and BS angles, albeit with different weights in the uplink and

downlink. As a result, although the SOEB expression in (5.42) is valid for both
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Table 5.1: Scaling Factors of CRLBs of the Channel Parameters, PEB and OEB

URA ULA

CRLB(θR) N−2
R N/A

CRLB(θT) N−1
R N/A

CRLB(φR) N−2
R N−3

R

CRLB(φT) N−1
R N−1

R

CRLB(τ) N−1
R N−1

R

SPEB (DL) N−1
R N−1

R

SPEB (UL) N−1
R +N−2

R N−1
R +N−3

R

SOEB N−1
R +N−2

R N−1
R +N−3

R

uplink and downlink, SOEB is asymmetric in general. Finally, for the 2D special

case, it can be shown that, discarding the terms related to the elevation angles,

SOEB = CRLB(φBS) + CRLB(φUE) and SPEB = c2 CRLB(τ) + ‖p‖2 CRLB(φBS).

These results can be used to determine scaling laws. For instance, evaluating

(5.24) and (5.42) as a function of NR, the scaling factors in Table 5.1 are obtained.

Similarly the scaling factors for ULA are obtained in Chapter 4. We see that URAs

and ULAs have different scaling, in that for CRLB(φR) scales with 1/N2
R for URAs,

but with 1/N3
R for ULAs. This can be explained by noting that these scaling factor

consist of two multiplicative components: SNR improvement that scales with 1/NR

for both geometries, and a spatial resolution that depends on the squared number

of antennas in the x-axis direction, that is 1/N2
R for ULA, and 1/(

√
NR)2 for URA.

To obtain scaling laws for SPEB and SOEB, we highlight that while the expres-

sions in (5.42) are valid for both uplink and downlink, the values of the CRLBs

in the expressions are different in these two cases (see (5.24)). The CRLB(DOA)

and CRLB(DOD) have different scaling laws and thus SPEB will scale differently

in the uplink and downlink. However, since b1, ..., b6 do not depend on the number

of antennas, the scaling factors of SOEB is unchanged in both cases.
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Figure 5.4: A cell sectorized into three sectors, each served by 25 beams directed
towards a grid on the ground in the downlink (left) and towards a virtual grid in
uplink (right). The grid has the same orientation as the UE.

5.5 Numerical Results and Discussion

5.5.1 Simulation Environment

Although the theoretical results are valid for any arbitrary array geometry, we

focus on URAs, as an example of 3D localization. Particularly, we consider a

scenario where a BS with standard square array is located in the xz-plane centered

at the origin with
√
NBS ×

√
NBS antenna elements and a height of hBS = 10

meters. The UE, operating at f = 38 GHz, is equipped with a square array which

have
√
NUE×

√
NUE antenna elements, and assumed to be tilted by an orientation

angle of 0◦ or 10◦ in both azimuth and elevation. We investigate the performance

over a flat 120◦ sector of a sectorized cell with a radius of 50 meters as shown in

Figure 5.4. The UE is assumed to be located anywhere in this sector, which lies

in the plane z = −hBS = −10 meters. Moreover, we consider the ideal sinc pulse

defined in (4.13) so that W 2
eff = W 2/3, where W = 125 MHz, Et/Ts = 0 dBm,

N0 = −170 dBm/Hz, and Ns = 16 pilot symbols. The LOS SNR at any location

in the sector is given by SNR[dB] = 144.24 + 20 log10 |β| + 20 log10 ‖aTF‖, with

95% of the locations having an SNR of at least 30 dB. We utilize the directional

beamforming scheme defined in (5.5). In the downlink case, the directions of the

beams are fixed and chosen such that the beams centers are equispaced on the

ground. On the other hand, in the uplink, the centers of beams are fixed and

equispaced on a virtual sector containing the BS. Initially, when the UE has zero

orientation, i.e, lying in the xz-plane and facing the BS (See Figure 5.1), this

virtual sector lies in the horizontal plane z = 0 meters. The beamforming angles
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Figure 5.5: An example on beamforming configuration with 4 beams. The right-
most device has orientation angles of 30◦, while the other two have 0◦.

Figure 5.6: A scenario with LOS (black), 2 reflectors (blue) and 2 scatterers (red).

are measured with respect to the UE array plane. Thus, when the orientation of

the UE is non-zero, the virtual plane is rotated by the same orientation angles.

Figure 5.4 depicts the sector layout with NB = 25 for both downlink and uplink.

Figure 5.5 provides an example beamforming configuration, where the BS is located

at (0, 0, 0), with beams pointing downwards. A UE is located at (25, 25,−10)

with zero orientation angles, and another UE is located at (−25, 25,−10) with

orientation angles o = [30◦, 30◦]T. The black rectangles denote the array frame
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of reference of the device. Note that the first UE has reversed beam direction

compared to BS, while the second UE has beam directions reversed and rotated

by [30◦, 30◦]T , so that the beams direction remains constant with respect to the

frame of reference.

The environment comprises scatterers and reflectors, with scatterers distributed

arbitrarily in the 3D space, and reflectors placed close to the sector edge, as shown

in the example scenario in Figure 5.6. We use 5 reflectors placed at the edge of the

sector, not to obscure the area behind them if placed otherwise. We also use 15

scatterers distributed arbitrarily in the volume formed by the sector as base, and the

BS as height. We only consider the clusters that contribute by a power greater than

10% of the LOS power. As shown in Figure 5.7, it is seen that this configuration

leads to a maximum number of paths M = 6 at any location in the studied sector,

which is similar to the probability mass function in [66]. Accordingly, the complex

channel gain of the mth path is modeled by βm = |βm|ejϑm such that

|βm|2 =
λ2

(4π)2





1/d2
1 LOS

ΓR/(d1,m + d2,m)2 reflector

σ2
RCS/(4π(dm,1dm,2)2) scatterer,

(5.43)

where ϑ1 = 2πd1/λ and ϑm = 2π(dm,1 + dm,2)/λ for m > 1, while σ2
RCS = 50 m2,

and ΓR = 0.7 are the radar cross section, and the reflection coefficient, respectively.

Although our derivations are valid for any path loss model, we use the model in

(5.43) and the corresponding parameters values to get comparative insights into

the role of reflectors and scatterers on the performance bounds. This may not be

the typical case in reality where scatterers are characterized by the roughness of the

surfaces, which would lead to random path loss, and consequently, random PEB

and OEB. The locations of reflectors are computed using the virtual transmitter

method [134], shown in Figure 5.8

We consider 5 scenarios, for each of which we evaluate the PEB and OEB:

1. LOS : Free space propagation only, without NLOS paths.

2. LOS+R: A LOS path and M − 1 reflected NLOS paths.

3. LOS+S : A LOS path and M − 1 scattered NLOS paths.
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Figure 5.7: The number of reflectors (top), clusters (middle), and clusters (bottom)
as function of the UE location.
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Figure 5.8: The virtual transmitter method in 3D (left) and its top view (right).
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Figure 5.9: Receiver and Transmitter factors w.r.t. NR and NT for URA with dif-
ferent path separation angles. The separation angle is the angle difference between
the azimuth and elevation angles of the two paths.

4. LOS+C : A LOS path and a mix of both scattered and reflected NLOS paths.

5. NLOS : The LOS path is blocked, so only scattered and reflected NLOS paths

exist.

All the following results are obtained with NB = 25, NT = NR = 144, unless

otherwise stated. We choose equal array sizes at the UE and BS to make the

comparison of uplink and downlink localization fair by having a symmetric channel

setup. However, it is understood that more complexity is allowed at the BS and its

array can grow to larger sizes such as that in [135] to have up to 10,000 antennas,

which will improve the localization bounds presented herein, subject to the number

of beams used.
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5.5.2 Tx and Rx Factors of the Approximate FIM

We now investigate numerically the trend of the RX and TX factors in (5.12) with

respect to NR and NT and the path separation angles, as shown in Figure 5.9.

Each subfigure is obtained for a different separation angle, that is the azimuth and

elevation angle difference between two paths. It can be seen that with a separation

of 10◦, NR = 100 and NT = 16, the corresponding factor drops below -20 dB

(1% of the maximum). On the other hand, for higher separation angles, the two

factors drop below -20 dB with less number of antennas. Finally, note that the

approximate FIM is obtained by a combined effect of these two factors, plus the

signal factor. Therefore, if NR ≥ 100 or NT ≥ 16, the total FIM will be almost

diagonal.

5.5.3 Downlink PEB and OEB

Figure 5.10 shows the downlink PEB and OEB as a function of the UE location for

the LOS case with the BS located at (0, 0). With NT = NR = 144, and NB = 25,

the maximum PEB in the sector is 40 cm, while the maximum OEB is 1◦ in the

LOS scenario. Note that from (5.42), the PEB increases with ‖p‖. This explains

the dark area around the corners. Moreover, the closer the UE to the BS, i.e., as

θBS → π, singularities appear in the FIM, and the OEB tends to worsen, hence the

dark areas around the BS. Scatterers and reflectors are introduced in the 3D space,

so that a maximum of 5 clusters contribute at any given location. Based on that,

Figure 5.11 shows the PEB and OEB for the LOS+C case. Although incorporating

NLOS clusters in the localization does not lower the maximum bound value, it

improves the bounds at those locations where the clusters’ signal are received. In

the illustrated example, the clusters mainly affect the top and center areas of the

sector. Finally, note the singularity dots in the central area of the PEB and OEB

(LOS+C). These dots occur because at these locations, the scatterer blocks the

LOS, violating the unique parameters assumption, and causing singularities in the

FIM.

To obtain a more concise quantitative assessment of the performance, we collect

all the PEB and OEB values across the space and visualize them in a cumulative

distribution function (CDF). Subsequently, Figure 5.12 shows PEB obtained for
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Figure 5.10: PEB and OEB for downlink LOS. The black dots denote the centers
of beams, NB = 25, NR = NT = 144.

all 5 considered scenarios. The PEB obtained from the approximate approach, is

also shown in the figure. We observe the following: overall, scatterers and/or re-

flectors improve the localization performance, compared to the LOS-only scenario,

despite the fact that more parameters need to be estimated. Scatterers are mainly

useful in providing rather low PEB improvement for many locations, while reflec-

tors can provide modest PEB improvement for fewer locations. When scatterers

and reflectors are combined, we see both phenomena. It is also apparent that the

approximate approaches closely follow the exact PEB and OEB and that the ap-

proximation always leads to a slightly lower PEB and OEB, due to the independent

paths assumption, under this approach. Note that at a 90% CDF, the PEB values

for LOS, LOS+R, LOS+S, LOS+C are 0.23 m, 0.21 m, 0.19 m and 0.18 m, re-

spectively. Moreover, note that the NLOS scenario is unreliable, with a PEB of 0.5

m at a 13% CDF, and reaches 90% CDF at a value that is irrelevant in mmWave

localization. OEB curves (not shown) look similar to those in Figure 5.12, with

90% CDF ranging between 0.42◦ and 0.5◦ when a LOS exists. Finally, we obtained
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Figure 5.11: PEB and OEB for downlink LOS+C. The black dots denote the
centers of beams, NB = 25, NR = NT = 144.

similar qualitative results with NR = 25, but with PEB and OEB of 45 − 55 cm

and 1.77◦ − 1.84◦, at 90% CDF respectively, when a LOS exists.

5.5.4 The Selection of NB

In this section, we evaluate the impact of the number of beams on downlink lo-

calization. Considering directional beamforming and a given number of transmit

antennas, i.e., a fixed beamwidth, the selection of NB becomes a trade-off between

hardware complexity and the coverage area up to a certain value of NB, where more

beams do not necessarily assist the localization. This relationship is highlighted

in Figure 5.13 for PEB values across the space, at a CDF of 90% (similar results

hold for the OEB, not shown). It can be seen that at a small NB, the bounds

are high, but as NB increases, the bounds start to decrease due better coverage.

However, as NB continues to increase, the bounds reach a floor and adding more

beams only adds more complexity while providing negligible improvement. To see

why, recall that the total transmitted power over the sector is fixed. So, starting
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Figure 5.13: Effect of NB on the exact downlink PEB with NR = 144, NT ∈
{64, 144}, for LOS and LOS+C, at CDF = 0.9.
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with a small NB and increasing it gradually improves the coverage, while reduc-

ing the power per beam. Eventually, beams start to overlap, but this does not

improve the performance because the power impinging on a certain area remains

approximately constant. This means that NB should be selected as a function of

the beamwidth. For instance, considering NT ∈ {64, 144}, beams with NT = 64

are wider than NT = 144, and thus wider beams provide better coverage for a

fixed value of NB. This is why, in this case, it is sufficient to have 16 beams for

NT = 64, compared to 25 beams in the case of NT = 144. Finally, note that this

trade-off does not depend on whether clusters exist or not.This means that NB

should be selected as a function of the beamwidth, which is in turn a function of

NT. For instance, considering NT ∈ {64, 144}, beams with NT = 64 are wider4

than NT = 144. Therefore, smaller NB is required to provide full area coverage

when NT = 64. More specifically, it is sufficient to have 16 beams when NT = 64,

compared to 25 beams in the case of NT = 144. However, it should be noted that

while a higher NT provides narrower beams and necessitates more beams for cov-

erage, it provides higher array gain, i.e., higher SNR due to scaling with γ, hence,

lower PEB and OEB. This conclusion manifests in Fig. 5.13, in that the use of 144

antennas attains a lower floor than 64 antennas.

5.5.5 Downlink vs. Uplink Comparison

We now compare uplink and downlink in terms of the following parameters: (i) UE

orientation; (ii) number of transmit antennas; (iii) number of receive antennas. We

recall that in the downlink, the position and orientation of the transmitter (BS)

are known, while in the uplink, (UE transmitter) they are unknown.

UE Orientation impact on PEB and OEB

Considering Figure 5.14, the CDF of PEB is shown for uplink and downlink with

two different UE orientation angles. Recall that in the downlink, the UE is a

receiver, where no beamforming is assumed. In that sense, and for the sake of

4From [58], a URA is considered as two ULAs in orthogonal directions. The half-power

beamwidth in each direction is given by HPBW = 2 sin−1
(

0.891
NT

)
. Thus, high NT leads to small

HPBW.
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Figure 5.14: CDF of the PEB over the entire sector, for uplink and downlink, with
different orientation angles.

computing the bounds regardless of the processing at the receiver, we assume that

the receiver is equipped with isotropic antenna elements. Therefore, the downlink

PEB is independent of the UE orientation, the downlink PEB is identical in both

0◦ and 10◦ orientation cases. On the contrary, the uplink PEB is highly dependent

on the UE orientation: beamforming from the UE is performed in fixed directions

in the UE’s frame of reference. Depending on the UE location, beams may miss the

BS. With 10◦ orientation, this happens more frequently, thus degrading the PEB.

Finally, although in this example the uplink with 0◦ orientation is better than the

downlink in Figure 5.14, this is not alway the case. In fact, this depends on the

choice of NR, as will be demonstrated.

For the OEB in Figure 5.15, downlink curves again coincide, with the uplink

OEB for 0◦ yielding similar performance. This is due to OEB being a function

of DOA and DOD, which are interchangeable when UE and BS have the same

orientation. However, when the UE orientation is 10◦, OEB is again degraded,

similar to the PEB. Note that to improve the presentation, Figures 5.14 and 5.15

are truncated to show the relevant values of PEB and OEB, respectively.
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Figure 5.15: CDF of the OEB over the entire sector, for uplink and downlink, with
different orientation angles.

Effect of NR and NT

Figure 5.16 shows the scaling effect of the PEB at 90% CDF for LOS, which in line

with Table 5.1, implies that uplink and downlink have different scaling exponents.

This leads the two lines to cross at some value. So, regarding PEB, choosing

NR on either side of this crossing point dictates the outperforming scheme, uplink

or downlink. Specifically, for very large number of receive antennas, uplink PEB

becomes far better than downlink PEB. With reference to Table 5.1 and (??),

downlink PEB ∝ 1√
NR

, while uplink PEB ∝
√

c1
NR

+ c2
N2

R
, for some constants c1,

and c2 that depend on location, bandwidth, and path gain. For the uplink case,

the first term corresponds to CRLB(TOA), while the second term corresponds

to CRLB(DOA), from Figure 5.16, it can be inferred that CRLB(TOA) is much

smaller than CRLB(DOA) yielding uplink PEB ∝ 1
NR

, which decays faster than

PEB ∝ 1√
NR

. This also means that the estimation of the UE location is limited by

the estimation of the angles rather than the range.

From Table 5.1, however, the OEB scaling is different than PEB. This is con-

firmed by the results of the OEB at 90% CDF for LOS shown in Figure 5.17. It
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Figure 5.16: Scaling of the PEB w.r.t NR for uplink and downlink LOS scenarios,
at CDF = 0.9, with different orientation angles.
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Figure 5.17: Scaling of the OEB w.r.t NR for uplink and downlink LOS scenarios,
at CDF = 0.9, with different orientation angles.
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Figure 5.18: Scaling of the PEB w.r.t NT for uplink and downlink LOS scenarios,
at CDF = 0.9, with different orientation angles.

can be seen that for relatively large NR, OEB scales of 1/
√
NR, while for small NR,

it scales of 1/NR, in both uplink and downlink.

Finally, we discuss the effect of NT on the PEB shown in Figure 5.18 (similar

OEB results are observed, not shown). Both PEB and OEB scale non-linearly

with NT. Small NT results in bad performance due to less spatial resolution and

lower SNR. As NT increases, the SNR increases but the beamwidth decreases. At

a certain point, the beams become too narrow and bounds start to worsen. Both

uplink and downlink suffer from this effect, but it is more severe in the uplink.

5.5.6 Summary of Results

Focusing on outdoor scenarios, our simulations of the approximate approach under

mmWave assumptions showed that when NR = 100 and NT = 16, the paths are

resolvable in the space domains, and the multipath components can be considered

orthogonal. Moreover, our investigations implied that NLOS clusters improve the

localization when a LOS path exists. Particularly, we observed that reflectors

provide modest PEB improvement for some locations, while scatterers provide small
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PEB decrease for more locations. Our analysis of the impact of the NB and NT

showed that although smaller NT provide better coverage due to the wider beams,

larger NT provides higher SNR, leading to lower PEB and OEB. We also observed

that PEB and OEB are more sensitive to the orientation angle in the uplink than

in the downlink. Finally, we showed that under mmWave assumptions, PEB < 1

meters and OEB < 1◦ are feasible for BS-UE separation of up to 50 m.

5.6 Conclusions

In this Chapter, we considered mmWave localization performance limits in terms

of PEB and OEB, for uplink and downlink localization with arbitrary array ge-

ometries in multipath environments. We obtained these bounds by transforming

the FIM of the channel parameters that was shown to be composed of three factors

related to the receiver side, the transmitter side, and the transmitted signals. Our

investigations of an approximate approach under mmWave assumptions showed

that if the number of antennas at the receiver is very high, or if the bandwidth is

very large, the paths are resolvable in either the time or space domains, and the

multipath components can be considered orthogonal. Consequently, the total FIM

is the sum of the FIM of individual paths. We also derived closed-form expressions

for single-path PEB and OEB, and showed that OEB is a function of the CRLB

of the DOA and DOD, while PEB is a function of the CRLB of the TOA and the

CRLB of the BS angles (DOD in the downlink, and DOA in the uplink).

Focusing on outdoor scenarios, our simulations show that the NLOS clusters

improve the localization when a LOS path exists. Particularly, we observed that

reflectors provide modest PEB improvement for some locations, while scatterers

provide small PEB decrease for more locations. We analyzed the impact of the

number of beams, and the number of transmit and receive antennas. Although

having many receive antennas is more beneficial in uplink localization than in

downlink localization, the former is generally harder since transmit beamforming

at UE may point towards directions not useful for localization. Finally, we observed

that PEB and OEB are more sensitive to the orientation angle in the uplink than

in the downlink.
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Chapter 6

Two-Way Localization Bounds for

5G mmWave Systems

Overview: In Chapter 5, we have seen that 5G mmWave localization is promis-

ing with error being in the order centimeters. An assumption usually made in the

investigation of localization methods is that the UE and BS are synchronized. This

was also the case in Chapter 5. However, in reality communications systems are

not finely synchronized to a level useful for localization. Therefore, in this Chapter

we investigate two-way localization protocols that alleviate the need for high-level

of synchronization. Namely, we consider a distributed localization protocol (DLP),

whereby the BS and UE exchange signals in two rounds of transmission and then

localization is achieved using the signal received in the second round. On the other

hand, we consider a centralized localization protocol (CLP), whereby localization is

achieved using the signals received after the two rounds of transmission, where the

first signal is assumed to be fed-back to the first device without error. We derive the

PEB and OEB applying beamforming at both ends, and compare them to the tradi-

tional one-way localization (OWL). Our results show that CLP outperforms DLP

by a significant margin, and that DLP barely outperforms OWL because mmWave

localization is mainly limited by angular rather than temporal estimation. Our sim-

ulations also show that it is more beneficial to have more antennas at the BS than

at the UE.

119
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6.1 Introduction

Recently, the accuracy of single-anchor localization for 5G mmWave systems has

been studied in several papers in terms of position (PEB) and orientation error

bounds (OEB). In [125], the UE PEB and OEB of 2D localization were inves-

tigated using ULAs in 5G mmWave systems. Moreover, [127] and our work in

Chapter 5 derived, with different approaches, the PEB and OEB for mmWave 3D

localization using arrays with arbitrary geometry. The results in [125, 127, 136]

showed a 5G mmWave localization performance with error in the order of centime-

ters. However, one important, yet usually overlooked, requirement for localization

is the synchronization of BS and UE. For example, [125] and our work in Chapter 5

assume that the BS and UE are perfectly synchronized, while [127] assumes coarse

synchronization, and includes a residual synchronization error in their model.

Inspired by two-way ranging methods [36, 137, 138], where the time-of-flight

is utilized to estimated the range, in this Chapter, we focus on cooperative two-

way localization (TWL). We study the PEB and OEB under line-of-sight (LOS)

communication with two TWL protocols that account for timing bias between the

clocks of the BS and UE. Higher order artifacts such as clock drift and skew are not

addressed herein, but can be estimated using the so-called three-way ranging [36]

or multi-way ranging [139,140]. Under TWL, a device transmits a known signal to

a receiver, which responds by transmitting another known signal. Upon receiving

the latter signal, the first device can estimate the range between the two devices

with reference to its local clock. Since this clock was originally used to transmit

the first signal, it will alleviates the need for fine time synchronization. In the first

protocol, referred to as Distributed Localization Protocol (DLP), a device initiates

the localization process. Then, a second device estimates the TOA with reference

to its local clock and, after a pre-agreed interval, transmits back another signal.

Subsequently, localization is carried out using the signal received back at the first

device. On the contrary, in the second protocol, referred to as Centralized Local-

ization Protocol (CLP), the BS and UE are assumed to be coarsely synchronized,

so that the two transmission rounds take place in non-overlapping time frames.

Under coarse synchronization, the clocks will still have residual bias. Moreover,

the pre-agreed waiting interval is taken with reference to the clock of the first de-
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vice, and localization is achieved using the signals received at both devices. In this

context, the signal received at the second device is assumed to be fed-back to the

first device via an error-free link. Note that TWL can be either uplink or downlink,

depending on the device where localization is executed. Finally, the contributions

of this Chapter are summarized as follows

� We investigate the DLP and CLP for LOS 5G mmWave signals, as a means

of alleviating the fine synchronization requirement of 5G localization.

� We derive the FIMs of the position and orientation of the two protocols

using 5G mmWave signals, with the timing bias between the BS and UE as

a nuisance parameter.

� Unlike [125, 127, 136], we consider multi-direction receive beamforming, and

account for the spatially correlated noise resulting from this beamforming.

� Based on the derived FIMs, we evaluate the PEB and OEB numerically for

different protocols, and investigate the impact of the number of antennas at

BS and UE, as well as the bandwidth.

The rest of the Chapter is organized as follows. In Section 6.2, we provide the

system model and highlight the underlying assumptions, while in Section 6.3, we

present the DLP and CLP in detail. In Section 6.4, we derive the PEB and OEB for

the two protocols, first by calculating the channel parameter FIM, then applying

a transformation of variables. In Section 6.5, we provide the numerical results and

the discussion, while in Section 6.6, we draw the conclusions.

6.2 Channel Model and Beamforming

Based on the system geometry detailed in Section 5.2.1, we consider two-way local-

ization protocols in which either BS or UE initiates the protocol. Thus, we denote

the device initiating the protocol by D1 and the responding device by D2.

Notes on notation: In the following, all parameters related to D1 are denoted by

the subscript “1”, while those related to D2 are denoted by the subscript “2”.

Moreover, the superscripts “f” and “b” are used to relate the parameters to the
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Figure 6.1: Summary of parameters at D1 and D2. Although D1 and D2 in the
figure are BS and UE, this assignment can be reversed.

forward and backward transmissions, respectively. Finally, unless otherwise stated,

all the provided times are with respect to the clock of D1, which is considered a

global clock. See Fig. 6.1

Forward Channel

The forward signal, transmitted from D1 at time t = 0, and received at D2 at time

t = τ f , undergoes a forward channel given by

Hf(β,ϑ) , Hf
s(β,ϑ)δ(t− τ f),∈ CN2×N1 (6.1)

where δ(t) is the Dirac delta function, and Hf
s(β,ϑ) is the channel part correspond-

ing the spatial channel parameters, such that

Hf
s(β,ϑ) ,

√
N1N2βa2(θ2, φ2)aH

1 (θ1, φ1), (6.2)

where β is the complex LOS path gain, N1 and N2 are the number of antennas at

D1 and D2, respectively, while

ϑ , [θ1, φ1, θ2, φ2]T, (6.3)

and (θ2, φ2) and (θ1, φ1) are the forward DOAs and DODs at D2 and D1, respec-

tively. Finally, a2 and a1 are the response vectors at D2 and D1, respectively, given
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by

a1(θ1, φ1) ,
1√
N1

e−j∆
T
1 k(θ1,φ1), ∈ CN1 (6.4)

a2(θ2, φ2) ,
1√
N2

e−j∆
T
2 k(θ2,φ2), ∈ CN2 (6.5)

where k(θ, φ) is the wavenumber vector, ∆1 ∈ C3×N1 is a matrix whose columns

contain the 3D Cartesian coordinates of the array elements of D1 in meters, and

∆2 ∈ C3×N2 is defined similarly for D2. For presentation purposes, we drop the

angle parameters from the notation of a1 and a2.

The signal transmitted from D1 is modeled by
√
EtF1s1(t), where Et is the

transmitted energy per symbol, and

F1 , [f1,1, f1,2, ...f1,NB1
]. (6.6)

is a D1 transmit beamforming matrix, f1,b, 1 ≤ b ≤ NB1 is the bth transmit beam,

and NB1 is the number of transmit beams. The pilot signal s1(t) , [s1,1(t), s1,2(t),

..., s1,NB1
(t)]T is written as

s1,b(t) =
Ns−1∑

`=0

a
(b)
1,`p(t− `Ts), 1 ≤ b ≤ NB1 , (6.7)

where a
(b)
1,` are known unit-energy pilot symbols transmitted over the bth beam from

D1. Similarly, define the receive beamforming matrix at D2 as

W2 , [w2,1,w2,2, ...w2,NB2
], (6.8)

where w2,k, 1 ≤ k ≤ NB2 is a D2 receive beam, and NB2 is the number of receive

beams.

Backward Channel

Similarly, the backward channel from D2 to D1 is defined as

Hb(β,ϑ) , Hb
s (β,ϑ)δ(t− τb) ∈ CN1×N2 , (6.9)
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where

Hb
s (β,ϑ) ,

√
N1N2βa1(θ1, φ1)aH

2 (θ2, φ2), (6.10)

where τb denotes the local TOA at D2, (θ2, φ2) and (θ1, φ1) are the backward DODs

and DOAs at D2 and D1, respectively. We assume that both transmissions occur

within the coherence time, so that the channel gain remains unchanged.

In the backward transmission, D2 transmits via a beamforming matrix, F2

containing NB2 beams, while D1 receives via a beamforming matrix, W1 containing

NB1 beams. Both F2 and W1 are defined similar to W2 and F1, respectively, but

with possibly different beam directions.

Our objective is to derive the performance bounds of estimating p and o, via

TOA, DOA, and DOD, in the presence of the unknown nuisance parameters: timing

offset between the BS and UE clocks, B, and the unknown path gain, β. This will

be done for the DLP and CLP protocols described below.

6.3 Two-Way Localization Protocols

In this section, we define two different two-way localization protocols with the aid

of Fig. 6.2.

6.3.1 General Operation

In our formulation, we assume that D1 has no timing bias, while D2 has a clock

bias with respect to the clock at D1, denoted by B. We also denote the nominal

TOA by τ = ‖p‖/c, where c is the speed of light.

1. Forward Transmission is initiated by D1 at time t = 0, and received at D2

at local time

t = τ f = B + τ. (6.11)

The received signal after beamforming at D2 is given by

y2(t) =
√
EtW

H
2 Hf

s(β,ϑ)F1s1(t− τ f) + n2(t), (6.12)
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D1 D2

t = 0

s1(t)

τ +B

τ −B

τ f = τ +B

y2(t)

tb = τ̂ f + τD

s2(t)τb = 2τ + ef + τD

y1(t)

τD

(a) Distributed Localization Protocol

D1 D2

t = 0

s1(t)
τ f = τ +Bτ +B

y2(t)

t = tb

s2(t)
τb = τ + tb −B

y1(t)

tb −B

τ

(b) Centralized Localization Protocol

Figure 6.2: The timeline of the studied TWL protocols .

We determine the FIM of
[
ϑT, βR, βI, τ

f
]T

based on y2(t), and denote the

equivalent FIM (EFIM) of τ f by Jτ f .

2. Backward Transmission is initiated by D2 at time t = tb, and received at

D1 at local (which is in the case of D1 is also global) time

t = τb = tb + τ −B. (6.13)

The received signal after beamforming at D1 is

y1(t) =
√
EtW

H
1 Hb

s (β,ϑ)F2s2(t− τb) + n1(t) (6.14)

Based on y1(t), we determine the FIM of
[
ϑT, βR, βI, τ

b
]T

and EFIM of τb,

denoted by Jτb .
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We introduce the following estimation error notation

ef , τ̂ f − τ f , and eb , τ̂b − τb, such that (6.15)

E{
(
ef
)2} ≥ J−1

τ f
, E{

(
eb
)2} ≥ J−1

τb
. (6.16)

Note that, since the received signals are observed at the beamformer output,

n2(t) and n1(t) in (6.12) and (6.14) are zero-mean additive spatially-correlated

Gaussian processes. Therefore, the corresponding auto-covariance matrices are

Rn2 = N0W
H
2 W2, and Rn1 = N0W

H
1 W1. N0 is assumed identical at BS and UE.

The main difference between DLP and CLP is how each protocol coordinates

the response message from D2. In the following, we describe each of these protocols.

6.3.2 Distributed Localization Protocol (DLP)

After a pre-agreed delay τD, measured from the time y2(t) is received, D2 sends

back a signal s2(t) at tb = τ̂ f + τD. See Fig. 6.2(a). Subsequently, D1 receives the

signal y1(t) at

τb = τ̂ f + τD + τ −B = 2τ + ef + τD. (6.17)

Finally, based on y1(t), D1 estimates τ̂b and eventually determines p, and o. Note

that B in the forward and backward transmissions cancel out, and need not be

estimated at D2.

6.3.3 Centralized Localization Protocol (CLP)

We assume that D1 and D2 are coarsely synchronized to avoid overlapping trans-

missions. At this level of synchronization, there is still some residual clock bias,

typically, in the order of hundreds of microseconds. In light of Fig. 6.2.(b), in CLP,

tb is a pre-agreed time with reference to the clock of D2 (tb − B with reference to

the clock of D1), known to both D1 and D2. Upon receiving the signal of D1, D2

sends back a signal s2(t) at t = tb, which is received at D1 at τb given in (6.13).

In parallel to that, D1 also receives y2(t) via an error-free feedback link that can

possibly be established using a microwave channel. Finally, based on y1(t) and the
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fed-back y2(t), D1 estimates p, and o.

Under CLP, we determine the FIM of
[
ϑT, βR, βI, τ, B

]T
based on both y1(t)

and y2(t). Since the transmissions occur over non-overlapping interval, they provide

independent information. We use this fact to sum up the FIMs of the forward and

backward directions in the following section.

6.4 Derivation of Two-Way PEB and OEB

The PEB and OEB can be computed from the EFIM of position and orientation,

obtained by the transformation of channel parameters; DOA, DOD, and TOA.

Therefore, for both DLP and CLP, we start by computing the FIM of the channel

parameters before deriving the corresponding PEB and OEB using a parameter

transformation procedure similar to that used in Chapter 5.

6.4.1 PEB and OEB for DLP

To compute the PEB and OEB, it is sufficient to obtain the EFIM of position and

orientation, and then use Definition 5.2.

FIM of Channel Parameters

In light of (6.10), (6.14), and (6.17), the vector of the unknowns under DLP is

ϕD ,
[
ϑT, βR, βI, τ

]T
. (6.18)

Consequently, the FIM of ϕD is defined as

JϕD
,

[
Jb

SS 06

0T
6 Jττ

]
, (6.19)

where,

Jb
SS =

[
Jb
ϑϑ Jb

ϑβ(
Jb
ϑβ

)T
Jb
βRβR

I2

]
, (6.20)
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is the FIM corresponding to the spatial part of JϕD
, such that

Jb
ϑϑ ,




Jb
θ1θ1

Jb
θ1φ1

Jb
θ1θ2

Jb
θ1φ2

Jb
θ1φ1

Jb
φ1φ1

Jb
φ1θ2

Jb
φ1φ2

Jb
θ1θ2

Jb
φ1θ2

Jb
θ2θ2

Jb
θ2φ2

Jb
θ1φ2

Jb
φ1φ2

Jb
θ2φ2

Jb
φ2φ2



, (6.21)

and

Jϑβ ,




Jb
θ1βR

Jb
θ1βI

Jb
φ1βR

Jb
φ1βI

Jb
θ2βR

Jb
θ2βI

Jb
φ2βR

Jb
φ2βI



. (6.22)

Note that the mutual information between the temporal and spatial parts in (6.19)

is zero based on realistic mmWave assumptions of large number of antennas at the

transmitter and receiver, large bandwidth and spatially sparse channel. Moreover,

note that, in (6.20), we used the fact that Jb
βRβR

= Jb
βIβI

.

While we can determine Jτ f based on y2(t), the FIM of
[
ϑT, βR, βI, τ

b
]T

is based

on y1(t). To obtain the FIM of ϕD that includes τ rather than τb, we apply the

fact that the delays are not dependent on any of the other parameters proven in

Chapter 5. Towards that, recall that τ̂b = 2τ + ef + eb + τD, and define

τ ′ ,
τ̂b − τD

2
= τ +

ef + eb

2
. (6.23)

Consequently, using (6.16) yields

E
{

(τ ′ − τ)
2
}
≥ 1

4

(
J−1
τ f

+ J−1
τb

)
, (6.24)

that is,

Jττ = 4
(
J−1
τ f

+ J−1
τb

)−1
. (6.25)

The value of Jττ as well as the entries of (6.20) are listed in (G.6) and (G.7), derived

in Appendix G.
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FIM of Location Parameters

To obtain the FIM of the location parameters (position and orientation), we need

the EFIM of ϑ and τ . Since the temporal and spatial parts in (6.19) are indepen-

dent, the EFIM of DOD and DOA is obtained from (6.20) by Schur’s complement

Je,b
ϑϑ = Jb

ϑϑ −
1

Jb
βRβR

Jb
ϑβ

(
Jb
ϑβ

)T
. (6.26)

Consequently, the EFIM of ϑ and τ is given by

Je,b
ϑτ =

[
Je,b
ϑϑ 04

0T
4 Jττ

]
. (6.27)

Applying a parameter transformation to (6.27), we obtain the EFIM of o and p

Je,b
o,p = ΥbJe,b

ϑτ

(
Υb
)T
, (6.28)

where

Υb ,

[
∂θ1
∂o

∂φ1
∂o

∂θ2
∂o

∂φ2
∂o

∂τ
∂o

∂θ1
∂p

∂φ1
∂p

∂θ2
∂p

∂φ2
∂p

∂τ
∂p

]
=
[

Υb
s Υτ

]
. (6.29)

Note that while

Υτ =
[
0T

2
pT

c‖p‖

]T

, (6.30)

for both the uplink and downlink, Υb
s is defined differently. From Chapter 5

Υb
s |UL =




0 0 −p′y
a′ −p′xp

′
z

a′2

0 0 p′x sin θ0
a′

−p′2x cos θ0+gp′y
a′2

ṗθ
‖p‖a

[−py ,px,0]T

a2

r3+
p′z
‖p‖p

a′
(r2rT1 −r1rT2 )p

a′2


 , (6.31)

Υb
s |DL =




−p′y
a′ −p′xp

′
z

a′2 0 0
p′x sin θ0

a′
−p′2x cos θ0+gp′y

a′2 0 0

r3+
p′z
‖p‖p

a′
(r2rT1 −r1rT2 )p

a′2
ṗθ
‖p‖a

[−py ,px,0]T

a2


 , (6.32)
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where g , py cosφ0 − px sinφ0, ṗθ , [pxpz, pypz,−a2]T, a ,
√
p2
x + p2

y, a
′ ,√

p′2x + p′2y , [p′x, p
′
y, p
′
z]

T , Rp, and R , [r1, r2, r3] is the rotation matrix as defined

in (5.35).

Subsequently, for DLP, we can isolate the spatial and temporal parts and write,

Je,b
o,p = Υb

s J
e,b
ϑϑ

(
Υb

s

)T

︸ ︷︷ ︸
Spatial Part

+ JττΥτΥ
T
τ︸ ︷︷ ︸

Temporal Part

. (6.33)

6.4.2 PEB and OEB for CLP

FIM of Channel Parameters

Unlike DLP, in CLP we have to retrieve B, as can be inferred from (6.11) and

(6.13). Therefore, we define the vector of unknown parameters as

ϕC ,
[
ϑT, βR, βI, τ, B

]T
. (6.34)

Since D2 transmission time is independent of the TOA of y2(t), and the trans-

mission in the two ways occurs in a non-overlapping time slots, the forward and

backward transmissions can be considered independent, and we can write

JϕC
= Jf

ϕC
+ Jb

ϕC
,

=

[
Jf

SS 06×2

02×6 Jf
TT

]
+

[
Jb

SS 06×2

02×6 Jb
TT

]
. (6.35)

where the superscripts “f”, “b” indicate that the FIM is of the channel parameters

from forward and backward transmission, respectively. Note that while Jb
SS in (6.20)

can be directly obtained from (G.6), Jf
SS is obtained by swapping the subscripts

“1” and “2” of the right-hand side of (G.6) in Appendix G.

Moreover, Jf
TT and Jb

TT ∈ R2×2 are the FIMs of the temporal parameters, τ

and B, in the forward and backward transmission, respectively, such that

Jf
TT ,

[
J f
ττ J f

τB

J f
τB J f

BB

]
(6.36)
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and Jb
TT is defined similarly with matching superscripts.

To obtain Jf
TT and Jb

TT, we use transformation of variables. From (6.11)

Jf
TT =

[
∂τ f

∂τ
∂τ f

∂B

]
Jτ f
[
∂τ f

∂τ
∂τ f

∂B

]
= Jτ f

[
1 1

1 1

]
. (6.37)

Similarly, from (6.13)

Jb
TT =

[
∂τb

∂τ
∂τb

∂B

]
Jτb
[
∂τb

∂τ
∂τb

∂B

]
= Jτb

[
1 −1

−1 1

]
. (6.38)

Note that although both Jf
TT and Jb

TT are rank-deficient1, their sum is full-rank,

and is given by

Jf
TT + Jb

TT =

[
Jτb + Jτ f Jτ f − Jτb
Jτ f − Jτb Jτb + Jτ f

]
. (6.39)

Consequently, the EFIM of τ is obtained from (6.39) by Schur’s complement as

Je
ττ = Jτb + Jτ f −

(Jτb − Jτ f )2

Jτb + Jτ f
,

=
(Jτb + Jτ f )

2 − (Jτb − Jτ f )2

Jτb + Jτ f
,

=
4JτbJτ f

Jτb + Jτ f
,

= 4
(
J−1
τ f

+ J−1
τb

)−1
(6.40)

which is equivalent to Jττ of DLP given in (6.25).

FIM of Location Parameters

Under CLP, we transform the FIM of the channel parameters vector ϕC into a FIM

of the location parameters vector

ϕL , [oT,pT, βR, βI , B]T, (6.41)

1Hence, τ and B cannot be estimated using only one transmission.
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as follows

JϕL
= ΥbJϕC

(
Υb
)T

= Υb
(
Jf
ϕC

+ Jb
ϕC

) (
Υb
)T
,

= ΥbJf
ϕC

(
Υb
)T

︸ ︷︷ ︸
,Jf

ϕL

+ ΥbJb
ϕC

(
Υb
)T

︸ ︷︷ ︸
,Jb

ϕL

, (6.42)

such that

Υb =
∂ϕT

C

∂ϕL

,




Υb
s 05×2 Υτ 05

02×4 I2 02 02

0T
4 0T

2 0 1


 (6.43)

where Υτ is the transformation vector from τ to o and p defined in (6.30) and Υb
s

is the transformation matrix from DOD and DOA to o and p, defined in (6.31)

and (6.32) for the uplink and downlink. Moreover, from (6.20) and (6.35), we write

Jb
ϕC

=




Jb
ϑϑ Jb

ϑβ(
Jb
ϑβ

)T
Jb
ββ

06×2

06×2 Jb
TT


 . (6.44)

Note that Jf
ϕC

is defined similarly with matching superscripts.

Substituting Υb, Jf
ϕC

and Jb
ϕC

into (6.42), it can be shown that JϕL
is given by

JϕL
=




Jo,p Υb
s

(
Jf
ϑβ + Jb

ϑβ

)
(Jτ f − Jτb)Υτ(

Jf
ϑβ + Jb

ϑβ

) (
Υb

s

)T
Jf
ββ + Jb

ββ 02

(Jτ f − Jτb)ΥT
τ 0T

2 Jτb + Jτ f


 , (6.45)

where Jo,p = Υb
s

(
Jf
ϑϑ + Jb

ϑϑ

) (
Υb

s

)T
+ (Jτb + Jτ f )ΥτΥ

T
τ .

Finally, taking the Schur’s Complement with respect to Jo,p, and using (6.26),

and (6.40), it can be shown that the EFIM of the position and orientation is

J
(e)
o,p =Υb

s

(
Jf
ϑϑ + Jb

ϑϑ

)(
Υb

s

)T
+

(
Jτb + Jτ f −

(Jτb − Jτ f )2

Jτb + Jτ f

)
Υτ (Υτ )T

−Υb
s

(
Jf
ϑβ + Jb

ϑβ

)(
Jf
ββ + Jb

ββ

)−1 (
Jf
ϑβ + Jb

ϑβ

)(
Υb

s

)T
.
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= Υb
s Je,f
ϑϑ

(
Υb

s

)T

︸ ︷︷ ︸
Forward Spatial Part

+ Υb
s Je,b
ϑϑ

(
Υb

s

)T

︸ ︷︷ ︸
Backward Spatial Part

+ Je
ττΥτΥ

T
τ︸ ︷︷ ︸

Temporal Part

+
Jb
βRβR

J f
βRβR

J f
βRβR

+ Jb
βRβR

JfbJT
fb

︸ ︷︷ ︸
Channel Redundant Information

,

(6.46)

where Jfb = Υb
s

(
Jf
ϑβ

J f
βRβR

− Jb
ϑβ

Jb
βRβR

)
. In the following, we obtain some insights from this

equation.

6.4.3 Comparison of DLP, CLP and OWL

It can be seen that (6.46) comprises four terms: two spatial information terms

related to both the forward and backward transmissions, one term related to the

temporal information, and another term, carrying mutual information relating the

path gain with the DOA and DOD. Note that although we assume a single β in

both transmissions, it is estimated using two different observations, y1(t) and y2(t).

This provides more spatial information useful in localization, since the path gain,

DOA and DOD are not mutually independent (See (6.20)). Moreover, this mutual

information is non-zero due to having different beamformers at both ends, hence
Jf
ϑβ

J f
βRβR

6= Jb
ϑβ

Jb
βRβR

.

Comparing DLP to CLP, we note that (6.33) contains only one spatial informa-

tion term, related to the backward transmission, and another temporal information

term. These two terms are equal to their counterparts in (6.46). Since CLP has

two more terms, it provides more information on the position and orientation, and

consequently lower PEB and OEB. Thus, CLP will always outperform DLP.

We now compare DLP to the one-way localization (OWL) presented in Chapter

5. Recall that for OWL, Je,b
o,p has the same expression as (6.33), but with

Jττ = Jτb . (6.47)

Based on that, we provide the following proposition.

Proposition 6.1 DLP outperforms OWL if,

Jτ f >
1

3
Jτb .
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Proof

Comparing DLP with OWL, it can be seen that they have equal spatial, but dif-

ferent temporal information. Therefore, comparing (6.25) with (6.47), for DLP to

outperform OWL, we should have

Jτb < 4
(
J−1
τ f

+ J−1
τb

)−1
= Jτb

4Jτ f

Jτ f + Jτb
,

which leads to Jτ f >
1
3
Jτb .

This means that, when the bandwidth is equal in both directions, the forward link

should have at least one third the SNR of the backward link for DLP to outperform

OWL. From (G.7), it can be seen that this mainly depends on the beamforming

at the transmitter and receiver. However, under the general case of non-identical

bandwidth allocation, (G.7) can be used to determine the values of bandwidth and

SNR that satisfy the condition in Proposition 6.1.

6.5 Simulation Results and Discussion

6.5.1 Simulation Environment

System Layout and Channel

In our numerical simulations, we investigate and compare the DLP and CLP. Since

both protocols involve forward and backward transmission, we selected equal num-

ber of antennas at both the BS and the UE to make the comparison of these pro-

tocols fair. Towards that, we consider a BS and a UE both with 12 × 12 uniform

rectangular antenna array (URA) communicating via a LOS. Moreover, we assume

that the BS array is located in the xz-plane centered about the origin [0, 0, 0]T, thus

has orientation angles of [0◦, 0◦]T. On the other hand, the UE moves freely within a

diamond-shape 120◦ defined by the vertices {(0, 0,−10), (25
√

3, 25,−10), (0, 50,−10),

(−25
√

3, 25,−10)}. That is, the BS height is 10 meters. We focus on two cases

of orientation angles with respect to the z-axis and x-axis: o = [θ0, φ0] = [0◦, 0◦]T

and o = [30◦, 30◦]T as specified in the sequel. Finally, at a distance d1, the channel
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Figure 6.3: Beamforming configuration examples with 4 beams. The rightmost
device has orientation angles of 30◦, while the other two have 0◦.

gain is modeled as

β =
λ

4π d1

exp

(
j

2π

λ
d1

)
, (6.48)

Transmit-Receive Model

We select the mmWave frequency of f = 38 GHz, and bandwidth W = 125 MHz.

We assume an ideal sinc pulse such that W 2
eff = W 2/3. The transmitted power

Et/Ts = 0 dBm, and N0 = −170 dBm/Hz. Furthermore, we specify the number of

pilots to be Ns = 64 pilot symbols. This yields a location-dependent SNR [dB] =

150.26 + 20 log10 (|β|‖aiFi‖‖ajWj‖), where i, j ∈ {1, 2}, i 6= j, specified depending

on the communication direction being forward or backward. This provides 95% of

the location with an SNR of at least 30 dB, which guarantees a tight CRLB. Similar

to Chapter 5, we adopt fixed directional beamforming with NB1 = NB2 = 25 beams

at the UE and BS such that

f1,b =
1√
NB1

a1(θf
1,b, φ

f
1,b),

w1,b =
1√
NB1

a1(θw
1,b, φ

w
1,b), 1 ≤ b ≤ NB1
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are D1 transmit and receive beams pointing towards (θf
1,b, φ

f
1,b) and (θw

1,b, φ
w
1,b), re-

spectively. The transmit and receive beamforming at D2 can be similarly defined

with subscript “2”. The directions of the beams at the BS are chosen to be equi-

spaced on the sector. On the UE, these directions are reversed to point upwards,

and rotated with respect to the UE frame of reference by the same orientation an-

gles specified in the studied experiment. This setting provides 90% of the locations

with an SNR of at least 17 dB. Fig. 6.3 provides three examples on beamform-

ing configuration: a BS at (0, 0, 0), with beams pointing downwards, a UE at

(25, 25,−10) with zero orientation angles, and another UE at (−25, 25,−10) with

o = [30◦, 30◦]T. The black rectangles denote the array frame of reference of the

device. Note that the first UE has reversed beam direction compared to BS, while

the second UE has beam directions reversed and rotated by [30◦, 30◦]T , so that the

beams direction remains constant with respect to the UE local frame of reference.

Scenarios Studied

We study the PEB and OEB under DLP and CLP and compare these bounds to

those obtained for OWL in Chapter 5. Each of these three protocols is studied

when localization is performed in the uplink (at BS) and in the downlink (at UE).

6.5.2 PEB and OEB with 0◦ UE Orientation

The PEB with zero orientation angles is provided in Fig. 6.4 for all the considered

protocols. First of all, to have a fair comparison, we compare the three solid curves

corresponding to uplink localization, and then compare those related to downlink

localization (dash-dot lines). It can be seen that DLP provides a negligible improve-

ment over OWL. Despite that, DLP is still a better approach since it alleviates the

need of high-accuracy synchronization, with the cost of UE-BS coordination. As

discussed in Section 6.4.3, DLP and OWL have the same spatial component, but

DLP has higher temporal information content. However, Fig. 6.4 shows almost

identical results for both protocols, which means that the additional temporal in-

formation in DLP is of little importance, and thus the localization performance

is limited by the angles estimation rather than the time delay. To understand

this phenomenon more, we study the impact of the bandwidth on the performance
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Figure 6.4: CDF of PEB with UE orientation angles of 0◦, and NUE = NBS = 144,
NB = 25.
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Figure 6.5: CDF of OEB with UE orientation angles of 0◦, and NUE = NBS = 144,
NB = 25.

later in Section 6.5.4. On the other hand, as expected, CLP represents the best

approach among the three studied, since it attains more useful information. How-

ever, this comes with the cost of a more complex implementation due to the need

for a feedback channel.
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Figure 6.6: CDF of PEB with UE orientation angles of 30◦, and NUE = NBS = 144,
NB = 25.

Although similar statements can be made for downlink localization, we note that

an extensive comparison between the uplink and downlink localization is discussed

in Chapter 5. It was concluded that, under matched orientation between the BS

and UE, the uplink PEB is lower than the downlink PEB due to 1) PEB is a

function of the CRLB of the BS angles, and 2) CRLB of DOA is lower than CRLB

of DOD. Therefore, when the BS angles are DOAs (uplink), the PEB will be lower.

Considering OEB with zero orientation angles in Fig. 6.5, it can be seen that

DLP and OWL exhibit identical performance. Note that OEB depends on DOA

and DOD, while the enhancement of DLP over OWL is in the temporal domain.

Furthermore, in line with the results in Chapter 5 with zero orientation angles,

the uplink and downlink OEB are the same. Therefore, the four curves of DLP

and OWL with uplink and downlink localization coincide. Moreover, in terms of

OEB, CLP is also better than DLP and OWL due to the fourth term in (6.46),

which accounts for the coupling between the path gain and the transmission angles,

providing more spatial information on the orientation angles.

6.5.3 PEB and OEB with 30◦ UE Orientation

The PEB with orientation angles o = [30◦, 30◦]T is shown in Fig. 6.6, for all the

considered protocols. The overall observation from this figure, in comparison with
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Figure 6.7: CDF of OEB with UE orientation angles of 30◦, and NUE = NBS = 144,
NB = 25.

Fig. 6.4, is that the performance worsens due to the beams being steered away, when

the orientation angles are non-zero. This can result in a loss of beamforming gain

that depends non-linearly on the UE location, and orientation angles. However,

CLP performance is still superior to DLP and OWL. In this example, performance

loss of 42 cm, 54 cm, and 80 cm were observed at a PEB CDF of 90%, under

CLP, uplink DLP, and downlink DLP, respectively. On the other hand, comparing

Fig. 6.7 with Fig. 6.5, it can be seen that, at a CDF of 90%, there is a OEB

performance loss of 6.8◦, 8.8◦, and 11.5◦ under CLP, uplink DLP, and downlink

DLP, respectively. Considering the PEB and OEB loss, it can be concluded that,

among the studied approaches, CLP is the approach that is most robust to UE

mis-orientation. Finally, we note that in comparison with the case of matched

orientation, under 30◦ mis-orientation, the system can still provide sub-meter PEB,

while providing significantly higher OEB. This means that orientation estimation

is more challenging than position estimation.

6.5.4 Impact of the System Bandwidth on PEB

In Section 6.5.3, we concluded that the system is limited by the estimation of the

angles rather than the time delay. To investigate that further, we now look closer

into the impact of the bandwidth. The results shown in Fig. 6.8 indicate that as
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Figure 6.8: PEB at 0.9 CDF with respect to the bandwidth W .

the bandwidth increases the PEB decreases, until it reaches a floor at around 100

MHz when o = [0◦, 0◦]T, and 60 MHz when o = [30◦, 30◦]T. Based on these results,

we make the following observations:

1. At higher bandwidths that are more relevant in mmWave, the temporal infor-

mation is very high compared to the spatial information, and the performance

becomes fixed with W , i.e., the systems is spatially-limited.

2. under mis-orientation, the accuracy of spatial information degrades, and the

system becomes spatially-limited. Hence, the improved temporal informa-

tion does not provide any benefit to the performance achieved at lower band-

widths.

3. On the contrary, for lower bandwidths, the amount of temporal information

decreases and becomes comparable to the spatial information. Therefore,

the weight of the temporal information in the forward transmission becomes

more significant, and the difference between OWL and DLP becomes more

pronounced.

6.5.5 Impact of NBS and NUE on PEB

We now study the effect of the number of antennas at BS and UE on the PEB

under CLP and DLP. Since this number can be N1 or N2 depending on the device
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Figure 6.9: PEB at 0.9 CDF as a function of the UE number of antennas, with
NB = 25, with orientation angles 0◦ and 30◦, and NBS = 144.
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Figure 6.10: PEB at 0.9 CDF as a function of the BS number of antennas, with
NB = 25, with orientation angles 0◦ and 30◦, and NUE = 144.

role, we use NBS and NUE to unify the notation of the number of antennas at BS

and UE, respectively.

Fig. 6.9 illustrates the effect of NUE on PEB with NB = 25 and NBS = 144.

It can be seen that a higher NUE generally results in a worse performance. This
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is because with higher NUE, the UE beams become narrower, which requires more

beams to cover the area. Note that with UE mis-orientation, the rate of perfor-

mance deterioration is higher. It is interesting to see that this rate is almost the

same for the three protocols, which means that the performance loss is mainly due

to SNR loss.

On the other hand, the impact of NBS is shown in Fig. 6.10 with NB = 25

and NUE = 144. It can be seen that a higher NBS will slightly improve the PEB

in general. Similar to the case in Fig. 6.9, it is understood that the PEB will

generally increase when NBS increases, albeit, at NBS values well beyond those

displayed in Fig. 6.10, and with a lesser magnitude than higher NUE. Therefore,

adding more antennas at the BS will not reduce the localization performance, as

the UE antennas potentially would, at least within the studied range of array size.

Finally, notice that both Figs. 6.9 and 6.10 exhibit some non-monotonic trend.

This is due to the nature of directional beamforming, whereby the beamforming

gain depends on the user location, number of antennas, and beams directions as

detailed in Chapter 4.

6.6 Conclusions

Many publications on localization assume that the BS and UE are tightly syn-

chronized. However, usually communication systems are not synchronized to a

high-level useful for localization. Focusing on this issue, in this Chapter, we con-

sidered two protocols of two-way localization referred to Distributed Localization

Protocol (DLP) and Centralized Localization Protocol (CLP). We investigated the

PEB and OEB under these two protocols, where we showed mathematically that

CLP outperforms DLP with a significant margin. However, this comes with the

cost of requiring feedback channel, unlike DLP where no synchronization or feed-

back are required, although it may need dedicated hardware to trigger the response.

In our derivations, we considered beamforming at the transmitter and the receiver,

and accounted for the spatially-correlated receive noise. Comparing DLP to the

traditional one-way localization, the enhancement observed through numerical sim-

ulations was limited. That is, the localization was angle-limited rather than delay-

limited. Our numerical results also showed that it is more beneficial to have more
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antennas at the BS than at the UE. Future work based on this Chapter includes

considering adaptive beamforming, whereby the beams directions are modified in

the second round of transmission. Moreover, multipath propagation would be a rel-

evant extension, since scatterers may differ in the uplink and downlink, depending

on the beam directions.
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Chapter 7

Conclusions and Future Research

This thesis provided applied and fundamental research results on active areas of

mobile localization, with more focus on 5G mmWave localization performance. In

this chapter, we draw conclusions with respect to the questions posed in this thesis

(Section 1.5) and suggest possible future research directions

7.1 Conclusions

� The problem of multi-anchor localization under mixed LOS and NLOS condi-

tions is addressed in Chapter 3. A key advantage in our work is that it solves

the NLOS UE localization in a closed-form, in contrast to most of works

that are either search-based or iterative. We used a distance-dependent bias

model to derive an unbiased range estimator as a first step. Subsequently,

we used trilateration to find an estimate of the UE position. We then per-

formed error analysis and evaluated numerically the CRLB as a benchmark.

Our approach was to identify the NLOS links and then use a statistical sig-

nal model to account for the positive range bias. Our proposed localization

techniques showed performance close to the CRLB. With a cell radius of 500

m, our method is accurate with an average position error ranging between

12–21 meters depending on the environment. Finally, we note that, although

the proposed method performs closely with the CRLB, the average error ob-

tained is in the order of several meters, which implies that location-aware

145
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communications have limited applications in conventional cellular network.

� Focusing on 2D scenarios of 5G mmWave, the initial access problem was

addressed in Chapter 4. We investigated two beamforming schemes (RPBF

and DBF) and compared their capabilities in terms of the channel parameters’

CRLBs. Our analysis and simulation results showed that in the absence of

any prior location knowledge, application of RPBF is more appropriate in

the considered scenario because it attains a lower CRLBs with fewer beams

compared to DBF. We also observed that in DBF, the CRLBs tend to increase

with NT, while under RPBF, they stay constant. An exception to this is the

CRLB of DOD, which decreases with NT, with varying degrees in RPBF and

DBF. On the other hand, we observed that increasing NR always reduced the

CRLB of all parameters in both schemes. We used CRLB to compare these

two schemes. However, the values of these CRLB are of little importance until

location information is inferred from them, which is the topic of Chapter 5.

� Contributing to the emerging 5G mmWave networks, and focusing on the

localization part of the system beyond the initial access phase, Chapter 5

investigate the position and device orientation estimation error bounds. Both

uplink and downlink localization were considered. Our key findings indicate

that the uplink and downlink behave differently in two distinct ways. First

of all, the error bounds have different scaling factors with respect to the

number of antennas in the uplink and downlink. Secondly, uplink localization

is sensitive to the orientation angle of the UE, whereas downlink is not.

Moreover, in the considered outdoor scenarios, the NLOS paths generally

improve localization when a LOS path exists. We observed that reflectors

provide modest PEB improvement for some locations, while scatterers provide

small PEB decrease for more locations.

� Although having many receive antennas is more beneficial in uplink local-

ization than in downlink localization, the former is generally harder since

transmit beamforming at UE may point towards directions not useful for lo-

calization. We analyzed the impact of the NB, and noticed a saturation effect

appears after some value, after which adding more beams does not enhance
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the performance. We also studied the impact of NT and NR on PEB and

OEB, and concluded that increasing NR always improves the performance

with the cost of increased hardware and computation complexities. Finally,

our numerical results showed that mmWave systems are capable of localizing

a UE with sub-meter position error, and sub-degree orientation error.

� In Chapter 7 we addressed the synchronization issue of 5G mmWave systems

by studying two-way localization protocols: DLP and CLP. Our studies show

that mmWave localization is mainly limited by angular rather than temporal

estimation. Thus, estimating the DOA and DOD is much harder than TOA,

as far as localization is concerned. We investigated the PEB and OEB under

these two protocols, where we showed mathematically that CLP outperforms

DLP with a significant margin. However, this comes with the cost of requiring

a coarse synchronization, unlike DLP where no synchronization is required.

Our simulations also showed that it is more beneficial to have more antennas

at the BS than at the UE. This is consistent with the results obtained in

Chapter 5, although we did not consider receive beamforming in that Chapter.

The main outcome of this thesis is a fundamental understanding of how 5G

mmWave technology can be an enabler for extremely accurate localization. Through

theoretical performance bounds, we have developed insights as to why and when

5G localization is feasible, how 5G localization systems should be designed, and

how 5G localization and 5G communication can support each other. This thesis

highlights that 5G localization with mmWave technology will play a central role

in communication network optimization and unlock opportunities that were not

available in conventional networks.

7.2 Future Research Directions

Localization in 5G mmWave networks is still in its infancy. This thesis contributed

significantly to the understanding of the factors interplay and the expected er-

ror performance. Our findings in this thesis show that 5G mmWave is much

more promising than conventional networks in terms of location-aware applications.
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However, there are still many problems open for investigation. These problems can

be classified into five areas:

� Beamforming: We considered beamforming with fixed beams, but we also

believe that adapting the beam directions based on the estimated user lo-

cation is beneficial for both communication system optimization and local-

ization performance. Moreover, in this thesis, we used analog beamforming

with an RF-chain dedicated to each beam. Other structures include hybrid

beamforming where part of the beamforming is achieved in the digital domain

too. Although the mathematical relationships presented in this thesis can be

easily extended to the hybrid beamforming case, more attention should be

paid to the design of the beamformers. The related hardware complexity also

forms a challenge in this direction.

� Synchronization: We addressed the time-offset clock bias in LOS scenar-

ios, but since the 5G mmWave are angle-limited rather than delay-limited,

it is worthwhile to focus on joint carrier frequency offset and clock offset

in multipath environments, to avoid phase and range errors simultaneously.

Moreover, higher order clock artifacts such as clock drift and skews can po-

tentially be interesting research venues under 5G mmWave paradigm.

� Estimators: The broad objective of our studies was to gain an understand-

ing and study the feasibility of 5G localization. The next natural step is

to design location and orientation estimators and benchmark their perfor-

mance against the PEB and OEB derived herein. We expect the estimation

of DOA and DOD to be more challenging than TOA. However, the sparsity

of mmWave channel poses as an opportunity that can be efficiently exploited

to apply sparse signal processing techniques such as compressed sensing.

� Location information fusion: MmWave localization can play an integral

part with already existing localization methods. Location fusion from multi-

ple sources can lead to more available information, and eventually enhanced

localization performance. Energy efficient algorithms should be developed

taking into account the existing infrastructure.
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� Localization Modeling and Analysis Using Stochastic Geometry:

Since the concept of ”cell” is vanishing in favor of dense base stations located

in random locations. More adequate mathematical tools suitable to model

new mobile networks are those based on stochastic geometry. Therefore, it

is of high interest to investigate how localization techniques can be modeled

and analyzed in such random configurations.

� New application fields: We believe that mmWave localization can be a

key enabler for device-to-device, vehicle-to-vehicle communication, vehicle-

to-everything networks, and the internet-of-things. A key challenge in these

networks is when the device is moving, which necessitates the investigation

of tracking methods similar to [29], for example. Having tens or hundreds of

antennas for tracking would require very efficient computation power.





Appendix A

Derivation of The Range PDF

Assuming that the UE occupies an infinitesimal area that can be approximated by

a point, the PDF in this case is given by the length of the arc, L, of radius dm and

angle θ, divided by the area of the sector, A, of radius R, where, L = dmθ and

A =
√

3
2
R2.

dm

θ
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Figure A.1: Geometrical setup with m = 1.

A.1 Hosting Cell (m = 1)

For the area 0 ≤ dm <
√

3
2
R, from Fig. A.1a, θ = 2π/3, and

fD(dm) =
L

A
=

4πdm

3
√

3R2
, 0 ≤ dm <

√
3

2
R.

On the other hand, for the area
√

3
2
R ≤ dm < R, from Fig. A.1b, we can write

θ1 =
π

6
− cos−1

(√
3R

2dm

)
.
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From the symmetry, it can be deduced that

fD(dm) =
4θ1dm
A

=
8dm√
3R2

[
π

6
− cos−1

(√
3R

2dm

)]
,

√
3

2
R ≤ dm < R.

A.2 Neighboring Cells (m = 2, 3)

For the region
√

3
2
R ≤ dm < R, from Fig. A.2a, the arc angle can be computed as

θ

2
= cos−1

(√
3R

2dm

)
,

Consequently, we can write

fD(dm) =
4dm√
3R2

cos−1

(√
3R

2dm

)
,

√
3

2
R ≤ dm < R.

On the other hand, for the region R ≤ dm <
√

3R, from Fig. A.2b, and using the

law of sine, it is easy to see that

sin θ

R
=

sin(2π/3)

dm
, ⇒ θ = sin−1

(√
3R

2dm

)
.

therefore,

fD(dm) =
2dm√
3R2

sin−1

(√
3R

2dm

)
, R ≤ dm <

√
3R.

Finally, for the region
√

3R ≤ dm < 2R, from Fig. A.2c, it is easy to see that

sin
(
θ +

π

3

)
=

√
3R

dm
, ⇒ θ = sin−1

(√
3R

dm

)
− π

3
,
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Figure A.2: Geometrical setup with m = 2, 3.from which we write,
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For m = 2 and 3, this distribution is given by
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Appendix B

FIM of 3D Multipath Channel

Parameters with Arrays of

Arbitrary Geometry

Considering the model in (5.6), define βR , <{β},βI , ={β}, where <{·} and

={·} denote the real and imaginary parts, respectively. Also define the vector of

unknown parameters and the measurement mean as

ϕ , [θT
R,θ

T
T,φ

T
R,φ

T
T, τ

T,βT
R,β

T
I ]T, (B.1)

µϕ ,
M∑

m=1

Hmx(t− τm) =
√
NRNTEt

M∑

m=1

βmaR,maH
T,mFs(t− τm), (B.2)

Then, for the case of measurement under additive white Gaussian noise process,

the FIM of ϕ is given element-wise as [81]

[Jϕ]u,v ,
1

N0

∫ To

0

<
{
∂µH

ϕ

∂ϕu

∂µϕ
∂ϕv

}
dt, (B.3)

where ϕu is the uth element in ϕ. Consequently, it can be shown that

∂µϕ
∂θR,m

= −j
√
NRNTEtβmK̃R,maR,maH

T,mFs(t− τm), (B.4a)
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∂µϕ
∂θT,m

= j
√
NRNTEtβmaR,maH

T,mK̃T,mFs(t− τm), (B.4b)

∂µϕ
∂φR,m

= −j
√
NRNTEtβmP̃R,maR,maH

T,mFs(t− τm), (B.4c)

∂µϕ
∂φT,m

= j
√
NRNTEtβmaR,maH

T,mP̃T,mFs(t− τm), (B.4d)

∂µϕ
∂βR,m

= −j ∂µϕ
∂βI,m

=
√
NRNTEtaR,maH

T,mFs(t− τm), (B.4e)

∂µϕ
∂τm

=
√
NRNTEtβmaR,maH

T,mF
∂s(t− τm)

∂τm
, (B.4f)

where

K̃R,m ,
2πd

λ
diag

(
∂

∂θR,m

kT(θR,m, φR,m)∆R

)
,

P̃R,m ,
2πd

λ
diag

(
∂

∂φR,m

kT(θR,m, φR,m)∆R

)
,

∆R ,
[
u1 u2 ... uNR

]
,
[
xR yR zR

]T

.

K̃T,m and P̃T,m are defined similarly by replacing the subscript R by T. Moreover,

defining γ , NRNTNsEt/N0, we partition Jϕ into M ×M submatrices, so that

Jϕ ,




JθRθR JθRθT · · · JθRβI

JT
θRθT

. . . · · · ...
... · · · . . .

...

JT
θRτ

· · · · · · JβIβI



, (B.6)

For 1 ≤ u, v ≤M,

[JθRθR ]u,v =
1

N0

∫ To

0

<
{
∂µH

ϕ

∂θR,u

∂µϕ
∂θR,v

}
dt,

=
NRNTEt

N0

∫ To

0

<
{
β∗uβvK̃R,vaR,va

H
T,vFs(t− τv)sH(t− τu)FHaT,ua

H
R,uK̃R,u

}
dt,

= γ<
{
β∗uβv[R0]u,va

H
R,uK̃R,uK̃R,vaR,va

H
T,vFFHaT,u

}
(B.7)
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where
∫ To

0
s(t− τv)sH(t− τu) = Ns[R0]u,vINB , and

[R0]u,v ,
∫ To

0
s`(t− τv)s∗` (t− τu)dt =

∫ W/2

−W/2
|P (f)|2e−j2πf∆τuvdf, (B.8)

where ∆τuv = τv − τu. Note that to obtain (B.7), we used the fact that aHbcHd =

cHdaHb, and that (B.8) follows from Parseval’s theorem.

Defining the following matrices,

KR , [K̃R,1aR,1, K̃R,2aR,2, ..., K̃R,NR
aR,NR

],

PR , [P̃R,1aR,1, P̃R,2aR,2, ..., P̃R,NT
aR,NT

],

AR , [aR,1, aR,2, ..., aR,NR
],

B , diag(β),

we can rewrite (B.7) as

JθRθR = <
{

(BHKH
RKRB)� (AH

TFFHAT)T �R0

}
. (B.9)

The other sub-matrices of (B.6) can be similarly obtained as

JθTθT = γ<{(BHAH
RARB)� (KH

TFFHKT)T �R0}, (B.10a)

JφRφR
= γ<{(BHPH

RPRB)� (AH
TFFHAT)T �R0}, (B.10b)

JφTφT
= γ<{(BHAH

RARB)� (PH
TFFHPT)T �R0}, (B.10c)

JβRβR
= JβIβI

= <{(AH
RAR)� (AH

TFFHAT)T �R0}, (B.10d)

Jττ = γ<{(BHAH
RARB)� (AH

TFFHAT)T �R2}, (B.10e)

JθRθT = γ={j(BHKR
HARB)� (KH

TFFHAT)T �R0}, (B.10f)

JθRφR
= γ<{(BHKH

RPRB)� (AH
TFFHAT)T �R0}, (B.10g)

JθRφT
= γ={j(BHKR

HARB)� (PH
TFFHAT)T �R0}, (B.10h)

JθTφR
= γ={j(BHAH

RPRB)� (AH
TFFHKT)T �R0}, (B.10i)

JθTφT
= γ<{(BHAH

RARB)� (PH
TFFHKT)T �R0}, (B.10j)

JφRφT
= γ={j(BHPH

RARB)� (PH
TFFHAT)T �R0}, (B.10k)

JβRβI
= γ<{j(AH

RAR)� (AH
TFFHAT)T �R0}, (B.10l)
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JθRτ = γ<{j(BHKH
RARB)� (AH

TFFHAT)T �R1}, (B.10m)

JθTτ = γ={(BHAH
RARB)� (AH

TFFHKT)T �R1}, (B.10n)

JφRτ = γ<{j(BHPH
RARB)� (AH

TFFHAT)T �R1}, (B.10o)

JφTτ = γ={(BHAH
RARB)� (AH

TFFHPT)T �R1}, (B.10p)

JθRβI
+ jJθRβR

= −γ (BHKH
RAR)� (AH

TFFHAT)T �R0, (B.10q)

JθTβI
+ jJθTβR

= γ (BHAH
RAR)� (AH

TFFHKT)T �R0, (B.10r)

JφRβI
+ jJφRβR

= −γ (BHPH
RAR)� (AH

TFFHAT)T �R0, (B.10s)

JφTβI
+ jJφTβR

= γ (BHAH
RAR)� (AH

TFFHPT)T �R0, (B.10t)

JβRτ + jJβIτ = γ (AHARB)� (AH
TFFHAT)T �R1, (B.10u)

where, similar to R0 the elements of R1 and R2 are given by

[R1]u,v ,
∫ To

0

∂s`(t− τv)
∂τv

s∗` (t− τu)dt

=

∫ W/2

−W/2
2πf |P (f)|2e−j2πf∆τuvdf, (B.11)

[R2]u,v ,
∫ To

0

∂s`(t− τv)
∂τv

∂s∗` (t− τu)

∂τu
dt

=

∫ W/2

−W/2
(2πf)2|P (f)|2e−j2πf∆τuvdf. (B.12)



Appendix C

FIM and CRLB of Single-Path

Channel with Arrays of Arbitrary

Geometry

C.1 Signle-path 3D Channels

We now consider the case of single-path channel parameters nd define the vector of

unknown parameters as

ϕs , [θR, θT, φR, φT, β, τ ]T (C.1)

Note that the subscript m is dropped from the path parameters to simplify presentation.

Without loss of generality, we start by computing LOS FIM1

Jϕsuϕsv ,
1

N0

∫ To

0
<
{
∂µHϕs

∂ϕsu

∂µϕs

∂ϕsv

}
dt,

where ϕsu is the pth element in ϕs, 1 ≤ u, v ≤ 7. The easiest way to do that is to

evaluate the matrices in (B.9) and (B.10) for the first path, i.e., taking the element at

1As far as the FIM of the channel parameters is concerned, the difference between LOS and
NLOS paths is how the path loss is modeled.
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(1, 1) position of each matrix, which leads to

JθRθR = γ|β|2aHR K2
RaRaHT FFHaT. (C.2)

JθTθT = γ|β|2aHT KTFFHKTaT, (C.3)

JφRφR = γ|β|2aHR P2
RaRaHT FFHaT. (C.4)

JφTφT = γ|β|2aHT PTFFHPTaT, (C.5)

JβRβR = JβIβI = γaHT FFHaT, (C.6)

Jττ = 4γπ2|β|2W 2
effaHT FFHaT, (C.7)

JθRφR = γ|β|2aHR KRPRaRaHT FFHaT. (C.8)

JθTφT = γ|β|2N0<{aHT PTF FHKTaT}, (C.9)

JθTβR = −γ<{jβ∗aHT FFHKTaT}, (C.10)

JθTβI = γ<{β∗aHT FFHKTaT}, (C.11)

JφTβR = −γ<{jβ∗aHT FFHPTaT}, (C.12)

JφTβI = γ<{β∗aHT FFHPTaT}, (C.13)

while the remaining elements in Jϕs are zero. Finally, the FIM of ϕs, can be written as

Jϕs ,

[
Jθ,φ,β 06

0T6 Jττ

]
, (C.14)

where

Jθ,φ,β , γ|β|2
[

A U

UT C

]
(C.15)

= γ|β|2




RθG 0 Xθ,φG 0 0 0

0 Tθ 0 Y ′θ,φ Sθ Uθ

Xθ,φG 0 RφG 0 0 0

0 Y ′θ,φ 0 Tφ Sφ Uφ

0 Sθ 0 Sφ
G
|β|2 0

0 Uθ 0 Uφ 0 G
|β|2




, (C.16)

where Sθ , −={βVθ}/|β|2, Uθ , <{βVθ}/|β|2, Sφ , −={βVφ}/|β|2, and Uφ , <{βVφ}/|β|2.
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Then, we compute the CRLBs of DOA and DOD using their EFIM as

Je
θ,φ , γ|β|2(A−UC−1UT) = γ|β|2




RθG 0 Xθ,φG 0

0 Lθ
G 0

Yθ,φ
G

Xθ,φG 0 RφG 0

0
Yθ,φ
G 0

Lφ
G



. (C.17)

To simplify the inverse computation, we utilize the independence between DOA and DOD

to re-order Je
θ,φ to write (C.18), from which (5.24) follow.

CRLB ((θR, φR)) =
1

γ|β|2G

[
Rθ Xθ,φ

Xθ,φ Rφ

]−1

, (C.18a)

CRLB ((θT, φT)) =
G

γ|β|2

[
Lθ Yθ,φ

Yθ,φ Lφ

]−1

, (C.18b)

Finally, directly from (C.14), it is easy to see that

CRLB(τ) =
1

4γπ2|β|2GW 2
eff

. (C.19)

C.2 Signle-path 2D Channels

When the UE and BS are in xy-plane, θR = θT = π/2, and the channel is modeled by the

azimuth angle only. As a result, the CRLB of the channel parameters can be obtained

by inverting the relevant sub-matrix of Jϕs defined in (C.16). In other words, we seek to

invert the matrix

Jϕ′
s
, γ|β|2




RφG 0 0 0

0 Tφ Sφ Uφ

0 Sφ
G
|β|2 0

0 Uφ 0 G
|β|2




(C.20)

where Jϕ′
s
, [φR, φT, βR, βI]

T . Consequently, it is easy to see that

CRLB(φR) =
1

γ|β|2RφG
, (C.21a)

CRLB(φT) =
G

γ|β|2Lφ
. (C.21b)
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Note that following from the fact that βR and βI are orthogonal, we can write CRLB(β) =

CRLB(βR) + CRLB(βI), which is straight forward to write as

CRLB (β) =
1

γ|β|2 Tr
(

(C−UTA
−1

U)−1
)
,

=
1

γG

(
1 +

GTφ
GTφ − |Vφ|2

)
, (C.22)

while CRLB(τ) is similar to that in (C.19).

C.3 Examples

C.3.1 Example – URA and 3D Channel

To compute the CRLBs, PEB or OEB for URA, in this section, we specify the parameters

of (C.14) assuming that the receiver array is located in xz-plane, as described in Section

2.1.1, and the normalized element locations are given by (2.7), then assuming that dx =

dz = d, we can write

K̃R =
2πd

λ
diag(cos θR cosφRxR − sin θRzR), (C.23a)

P̃R = −2πd

λ
sin θR sinφR diag(xR), (C.23b)

Defining α , 4π2d2/λ2, and assuming (N2
R,z − 1) ≈ N2

R,z and (N2
R,x − 1) ≈ N2

R,x, then

xT
RxR = NRN

2
R,x/12, zT

RzR = NRN
2
R,z/12. As a result, it can be verified that,

Xθ,φ =
Tr(K̃RP̃R)

NR
= − α

12
cos θR cosφR sin θR sinφRN

2
R,z, (C.24a)

Rθ =
Tr(K̃2

R)

NR
=

α

12

(
cos2 θR cos2 φRN

2
R,x + sin2 θRN

2
R,z

)
, (C.24b)

Rφ =
Tr(P̃2

R)

NR
=

α

12
sin2 θR sin2 φRN

2
R,x. (C.24c)

To compute the transmitter-side parameters, define XT = diag(xT), ZT = diag(zT), and

M ,




aH
TFFHaT <{aH

TXTFFHZTaT}
aH

TXTFFHaT aH
TXTFFHXTaT

aH
TZTFFHaT aH

TZTFFHZTaT


 , (C.25)
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Using the same procedure by which Rθ, Rφ, and Xθ,φ are obtained, it can be shown that

Tθ = α
(
cos2 θT cos2 φT[M]2,2 + sin2 θT

[
M]3,2 − 2 cos θT cosφT sin θT[M]1,2), (C.26a)

Vθ =
√
α (cos θT cosφT[M]2,1 − sin θT[ M]3,1), (C.26b)

Tφ = α sin2 θT sin2 φT[M]2,2, (C.26c)

Vφ = −√α sin θT sinφT[M]2,1, (C.26d)

Y ′θ,φ = α(− cos θT cosφT sin θT sinφT[M]2,2 + sin2 θT sinφT[M]1,2). (C.26e)

C.3.2 Example – ULA and 2D Channel

For a ULA lying on the x-axis, xR = x
(1)
R /d, yR = zR = 0NR

, and θR = θT = π/2. So,

Rφ =
4π2 sin2 φR

λ2NR
xT

RxR =
α

12
(N2

R − 1) sin2 φR. (C.27)

Moreover, write P̃T = −√α sinφTXT, then

Tφ = α sin2(φT)(aH
TXTFFHXTaT), (C.28a)

Vφ = −√α sin(φT)(aH
TXTFFHaT). (C.28b)

Substituting (C.27) and (C.28) into (C.21) and (C.22), and defining

Q ,

[
aH

TFFHaT aH
TXTFFHaT

aH
TXTFFHaT aH

TXTFFHXTaT

]
,

and γ0 , NsPs/N0, it can be shown that

CRLB(φR) =
12

γ0|β|2N3
RNT[Q]1,1

( λ

2πd sinφR

)2
, (C.29a)

CRLB(φT) =
[Q]1,1

γ0|β|2NRNT det(Q)

( λ

2πd sinφT

)2
, (C.29b)

CRLB(β) =
1

γ0NRNT[Q]1,1

(
1 +

[Q]1,1[Q]2,2
det(Q)

)
, (C.29c)

CRLB(τ) =
1

4π2γ0|β|2NRNTW 2
eff [Q]1,1

. (C.29d)





Appendix D

Proof of Theorem 5.1 and

Proposition 5.2

D.1 Proof of the Equivalence Theorem

Let JCh be the FIM of the DOA, DOD and TOA of all the paths, and Jββ be the FIM

of complex gains of all the paths. Then the FIM of the channel parameters is given by

Jϕ ,

[
JCh JCh,β

JT
Ch,β Jββ

]
(D.1)

Furthermore, define the transformation matrix of the channel parameters (θ,φ, τ ,β)

into position parameters, (o,p,q,β), as

Υ ,




Υp 0

Υq 0

0 I


 , (D.2)

where Υp is the transformation matrix of the θ,φ and τ to o and p, Υq is the trans-

formation matrix of the θ,φ and τ to q, the vector of the parameters that depend on

the DOA, DOD and TOA, such as scatterers location in the multipath case. Note that

the transformation from β to β is obtained by the identity matrix I. Consequently, the

EFIM of o and p can be obtained using the EFIM θ,φ and τ computed as the Schur’s
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complement of Jϕ as follows:

Jo,p,q =

[
Υp

Υq

]
(JCh − JCh,βJ−1

ββJT
Ch,β)

︸ ︷︷ ︸
,Je

Ch

[
ΥT

p ΥT
q

]
=

[
ΥpJe

ChΥT
p ΥpJe

ChΥT
q

ΥqJe
ChΥT

p ΥqJe
ChΥT

q

]
(D.3)

Then,

J
(e)
o,p = ΥpJe

ChΥT
p −ΥpJe

ChΥT
q (ΥqJe

ChΥT
q )−1ΥqJe

ChΥT
p . (D.4)

The EFIM of o and p can also be obtained by direct transformation of the full FIM of

the channel parameters and then using Schur’s complement as follows:

Jo,p,q,β = ΥJϕΥT =




ΥpJChΥT
p ΥpJChΥT

q ΥpJCh,β

ΥqJChΥT
p ΥqJChΥT

q ΥqJCh,β

JTCh,βΥT
p JCh,βΥT

q Jββ


 . (D.5)

Therefore,

J
(e)
o,p = ΥpJChΥT

p −
[
ΥpJChΥT

q ΥpJCh,β

] [ΥqJChΥT
q ΥqJCh,β

JT
Ch,βΥT

q Jββ

]−1 [
ΥqJChΥT

p

JT
Ch,βΥT

p

]
,

(D.6)

Using the matrix inverse lemma,

[
ΥqJChΥT

q ΥqJCh,β

JT
Ch,βΥT

q Jββ

]−1

=

[
(ΥqJe

ChΥT
q )−1 −(ΥqJe

ChΥT
q )−1ΥqJCh,βJ−1

ββ

−J−1
ββJT

Ch,βΥq(ΥqJe
ChΥT

q )−1 J−1
ββ + J−1

ββJT
Ch,βΥq(ΥqJe

ChΥT
q )−1ΥqJCh,βJ−1

ββ

]
,

(D.7)

Substituting above leads to

J
(e)
o,p = ΥpJChΥT

p − [ΥpJChΥT
q (ΥqJe

ChΥT
q )−1ΥqJChΥT

p (D.8)

−ΥpJCh,βJ−1
ββJT

Ch,βΥq(ΥqJe
ChΥT

q )−1ΥqJChΥT
p

−ΥpJChΥT
q (ΥqJe

ChΥT
q )−1ΥqJCh,βJ−1

ββJT
Ch,βΥT

p + ΥpJCh,βJ−1
ββJT

Ch,βΥT
p

+ ΥpJCh,βJ−1
ββJT

Ch,βΥq(ΥqJe
ChΥT

q )−1ΥqJCh,βJ−1
ββJT

Ch,βΥT
p ],
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= ΥpJe
ChΥT

p −ΥpJChΥT
q (ΥqJe

ChΥT
q )−1ΥqJe

ChΥT
p

+ ΥpJCh,βJ−1
ββJT

Ch,βΥq(ΥqJe
ChΥT

q )−1ΥqJe
ChΥT

p

= ΥpJe
ChΥT

p −Υp(JCh − JCh,βJ−1
ββJT

Ch,β)Υq(ΥqJe
ChΥT

q )−1ΥqJe
ChΥT

p

= ΥpJe
ChΥT

p −ΥpJe
ChΥq(ΥqJe

ChΥT
q )−1ΥqJe

ChΥT
p , (D.9)

which is equivalent to (D.4).

D.2 Proof of Proposition 5.2

We start by deriving the EFIM of the location parameters for the mth path. Then, we

show that the overall EFIM can be written as a sum of the individual EFIM. For the

mth path,

J
(m)
op,qm = ΥmJ

(e,m)
ch ΥT

m =


ΥmJ

(e,m)
ch Υ

T
m ΥmJ

(e,m)
ch Υ

T

m

ΥmJ
(e,m)
ch Υ

T
m ΥJ

(e,m)
ch Υ

T


 . (D.10)

Consequently, for o and p, by Schur’s complement,

J
(m)
o,p = ΥmJ

(e,m)
ch Υ

T
m −ΥmJ

(e,m)
ch Υ

T

m

(
ΥJ

(e,m)
ch Υ

T
)−1

ΥmJ
(e,m)
ch Υ

T
m. (D.11)

Recall that for m = 1 the second term above is undefined. For all the M paths, define

Υ ,




Υ1 Υ2 · · · ΥM

0 Υ2 · · · 0
...

...
. . .

...

0 0 · · · ΥM



, Je

ϕCH
,




J
(e,1)
ch 0 · · · 0

0 J
(e,2)
ch · · · 0

...
...

. . .
...

0 0 · · · J
(e,M)
ch



. (D.12)

Then from (5.27),

JϕL
= ΥJe

ϕCH
ΥT =




∑M
m=1 ΥmJ

(e,m)
ch Υ

T
m Υ2J

(e,2)
ch Υ

T

2 · · · ΥMJ
(e,M)
ch Υ

T

M

Υ2J
(e,2)
ch Υ

T
2 Υ2J

(e,2)
ch Υ

T

2 · · · 0
...

...
. . .

...

ΥMJ
(e,M)
ch Υ

T
M 0 · · · ΥMJ

(e,M)
ch Υ

T

M



.
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By Schur’s Complement and using (D.11), it is easy to verify that

J̃e
o,p =

M∑

m=1

ΥmJ
(e,m)
ch Υ

T
m −

M∑

m=2

ΥmJ
(e,m)
ch Υ

T

m

(
ΥmJ

(e,m)
ch Υ

T

m

)−1

ΥmJ
(e,m)
ch Υ

T
m

=
M∑

m=1

J
(m)
o,p .

Finally, from (5.38), J
(e,m)
ch = J

(m)
ch − J

(m)
ch,β

(
J

(m)
ββ

)−1
J

(m)T

ch,β . Therefore, it follows that

J̃e
o,p , =

M∑

m=1

ΥmJ
(m)
ch Υ

T
m −

M∑

m=1

ΥmJ
(m)
ch,β

(
J

(m)
ββ

)−1
J

(m)T

ch,β Υ
T
m

︸ ︷︷ ︸
path gains uncertainty

−
M∑

m=2

ΥmJ
(e,m)
ch Υ

T

m

(
ΥJ

(e,m)
ch Υ

T
)−1

ΥmJ
(e,m)
ch Υ

T
m

︸ ︷︷ ︸
clusters locations uncertainty

. (D.13)



Appendix E

Transformation Matrix Entries

We derive the non-zero elements of Υ. For the LOS case, it can be shown that

∂φUE,1

∂φ0
=
−p′2x cos θ0 + (py cosφ0 − px sinφ0)p′y

p′2x + p′2y
, (E.1)

∂φUE,1

∂θ0
= − p′xp

′
z

p′2x + p′2y
, (E.2)

∂φUE,1

∂p
= (r2r

T
1 − r1r

T
2 )

p

p′2x + p′2y
, (E.3)

∂φBS,1

∂p
=

[−py, px, 0]T

p2
x + p2

y

, (E.4)

∂θBS,1

∂p
=

[pxpz, pypz,−(p2
x + p2

y)]
T

‖p‖
√
p2
x + p2

y

, (E.5)

∂θUE,1

∂φ0
=

p′x sin θ0√
p′2x + p′2y

, (E.6)

∂θUE,1

∂θ0
= −

p′y√
p′2x + p′2y

, (E.7)

∂θUE,1

∂p
=

1√
p′2x + p′2y

(
r3 +

p′z
‖p‖p

)
. (E.8)

∂τ1

∂p
=

p

c‖p‖ , (E.9)

where ri, 1 ≤ i ≤ 3 is the ith column of R(θ0, φ0).

For the NLOS case, we use the similarity in (5.32), (5.34), and (5.36), to obtain,
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∂φUE,m

∂φ0
,
∂φUE,m

∂θ0
,
∂φUE,m

∂p ,
∂θUE,m

∂φ0
,
∂θUE,m

∂θ0
,
∂θUE,m

∂p , ∂τm
∂p by replacing p and p′ in (E.1) with

wm and w′m, receptively. Note that in NLOS,
∂φBS,m

∂p =
∂θBS,m

∂p = 0. Finally, we obtain

the following

∂φUE,m

∂qm
= −∂φUE,m

∂p
, (E.10)

∂θUE,m

∂qm
= −∂θUE,m

∂p
, (E.11)

∂φBS,m

∂qm
=

[−qm,y, qm,x, 0]T

q2
m,x + q2

m,y

, (E.12)

∂θBS,m

∂qm
=

[qm,xqm,z, qm,yqm,z,−(q2
m,x + q2

m,y)]
T

‖qm‖
√
q2
m,x + q2

m,y

, (E.13)

∂τm
∂qm

=
qm

c‖qm‖
− wm

c‖wm‖
, (E.14)

wm , p− qm (E.15)



Appendix F

Closed-form PEB and OEB for

LOS-only

F.1 3D localization

To find the LOS SOEB and SPEB in a closed form, we note that

J−1
o,p =

(
ΥΛe

1Υ
T
)−1

=
(
Υ−1

)T
(Λe

1)−1 Υ−1 =

(
∂ϕT

L

∂ϕCH

)T

(Λe
1)−1

(
∂ϕT

L

∂ϕCH

)
, (F.1)

where the rightmost term is obtained by the inverse function theorem [141]. Thus,

SPEB = Tr

{(
∂pT

∂ϕCH

)T

(Λe
1)−1

(
∂pT

∂ϕCH

)}
. (F.2a)

SOEB = Tr

{(
∂oT

∂ϕCH

)T

(Λe
1)−1

(
∂oT

∂ϕCH

)}
. (F.2b)

Dropping the LOS subscript “1” and using spherical coordinates, we write

p = cτ
[
cosφBS sin θBS, sinφBS sin θBS, cos θBS

]T
. (F.3)

For the uplink, ϕCH = [θBS, θUE, φBS, φUE, τ ]T (Section 5.4.1). Therefore, it follows that

(
∂pT

∂ϕCH

)T

= c



τ cosφBS cos θBS 0 −τ sinφBS sin θBS 0 cosφBS sin θBS

τ sinφBS cos θBS 0 τ cosφBS sin θBS 0 sinφBS sin θBS

−τ sin θBS 0 0 0 cos θBS


 (F.4)
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Defining σ2
xx and σ2

xy, x, y ∈ {θR, θT, φR, φT, τ}, as respectively the CRLB of x, and the

covariance of x and y, then from Appendix C.1, we can write the uplink EFIM as

(Λe
1)−1 =




σ2
θBSθBS

0 σ2
θBSφBS

0 0

0 σ2
θUEθUE

0 σ2
θUEφUE

0

σ2
θBSφBS

0 σ2
φBSφBS

0 0

0 σ2
θUEφUE

0 σ2
φUEφUE

0

0 0 0 0 σ2
ττ



. (F.5)

Substituting in (F.2a), and simplifying the results yield

SPEB = ‖p‖2σ2
θBSθBS

+ ‖p‖2 sin2 θBSσ
2
φBSφBS

+ c2σ2
ττ . (F.6)

To obtain downlink SPEB, we need to exchange columns 1 and 3 with 2 and 4 in (F.4),

respectively, while concurrently swapping the role of BS and UE angles in (F.5). Even-

tually, this leads to the same SPEB expression in (F.6).

We now focus on the SOEB. From the properties of spherical coordinates,

cosφUE =
p′x

‖p‖ sin θUE
= − rT

1 p

‖p‖ sin θUE
=⇒ cos(φ0 − φBS) = −cosφUE sin θUE

sin θBS
. (F.7)

Differentiating both sides w.r.t to θBS, we have

− sin(φ0 − φBS)
∂φ0

∂θBS
= −cosφUE sin θUE

sin2 θBS
cos θBS. (F.8)

Consequently, using (F.7) we obtain,

∂φ0

∂θBS
= cot θBS cot(φ0 − φBS). (F.9)

Similarly, it can be shown that,

∂φ0

∂θUE
=

cosφUE cos θUE

sin θBS sin(φ0 − φBS)
,

∂φ0

∂φBS
= 1,

∂φ0

∂φUE
= − sinφUE sin θUE

sin θBS sin(φ0 − φBS)
. (F.10)

On the other hand, we have

cos θUE =
−rT

3 p

‖p‖ = sin θ0 sin θBS sin(φ0 − φBS)− cos θ0 cos θBS, (F.11)
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Similarly, differentiating and simplifying the results yield

∂θ0

∂θBS
=

∂φ0

∂θBS

∂θ0

∂φBS
− tan(θ0) sin(φ0 − φBS) + tan(θBS)

tan(θ0) + tan(θBS) sin(φ0 − φBS)
, (F.12a)

∂θ0

∂θUE
= −

sin(θUE) + sin(θ0) sin(θBS) cos(φ0 − φBS) ∂φ0
∂θUE

sin(θBS) cos(θ0) sin(φ0 − φBS) + sin(θ0) cos(θBS)
, (F.12b)

∂θ0

∂φBS
= − tan(θBS) tan(θ0) cos(φ0 − φBS)

tan(θ0) + tan(θBS) sin(φ0 − φBS)
, (F.12c)

∂θ0

∂φUE
=

∂θ0

∂φBS

∂φ0

∂φUE
. (F.12d)

Note that both ∂θ0
∂τ and ∂φ0

∂τ are zeros. Therefore, SOEB is a weighted sum of the angular

bounds. Recalling that ∂o = [∂θ0, ∂φ0]T, SOEB can be written from (F.2b) in the form

SOEB =

∥∥∥∥
∂o

∂θBS

∥∥∥∥
2

σ2
θBSθBS

+

∥∥∥∥
∂o

∂φBS

∥∥∥∥
2

σ2
φBSφBS

+ 2

(
∂oT

∂θBS

∂o

∂φBS

)
σ2
θBSφBS

+

∥∥∥∥
∂o

∂θUE

∥∥∥∥
2

σ2
θUEθUE

+

∥∥∥∥
∂o

∂φUE

∥∥∥∥
2

σ2
φUEφUE

+ 2

(
∂oT

∂θUE

∂o

∂φUE

)
σ2
θUEφUE

. (F.13)

Note that applying the column swapping procedure, described after (F.6), to obtain the

downlink SPEB leads to the same expression in (F.13), hence (F.13) is valid for both the

uplink and downlink.

F.2 2D Localization:

For the 2D case, θBS = θUE = π/2. Thus, these two parameters can be removed from the

vectors of unknown parameters, setting their CRLB to zero. Therefore, it can be seen

that (F.6) and (F.13) reduce to

SPEB = ‖p‖2σ2
φBSφBS

+ c2σ2
ττ , (F.14)

SOEB =

∥∥∥∥
∂o

∂φBS

∥∥∥∥
2

σ2
φBSφBS

+

∥∥∥∥
∂o

∂φUE

∥∥∥∥
2

σ2
φUEφUE

(F.15)

Note that, using the fact that φUE + φ0 − φBS = π, it can be shown from (F.10) that∥∥∥ ∂o
∂φBS

∥∥∥
2

=
∥∥∥ ∂o
∂φUE

∥∥∥
2

= 1, leading to

SOEB = σ2
φBSφBS

+ σ2
φUEφUE

. (F.16)





Appendix G

Derivation of the Elements of JϕD

Consider backward transmission round. In this case, D1 has the following observation:

y1(t) =
√
N1N2EtβWH

1 a1a
H
2 F2s2(t− τb) + n1(t). (G.1)

For the case of zero-mean additive correlated Gaussian noise, the FIM of ϕD defined in

(6.18), is given by [81]

Jb
xy ,

∫ To

0
<
{
∂µH(t)

∂x
R−1

n1

∂µ(t)

∂y

}
dt, (G.2a)

,
1

N0

∫ To

0
<
{
∂µH(t)

∂x

(
WH

1 W1

)−1 ∂µ(t)

∂y

}
dt, (G.2b)

x, y ∈ {θ1, φ1, θ2, φ2, βR, βI, τ}

where µ(t) is the mean of the observation vector, and To is assumed to be long enough

to receive the entire pilot signal.

Consequently, we write

µ(t) =
√
N1N2EtβWH

1 a1a
H
2 F2s2(t− τb), (G.3)

from which we write

∂µ(t)

∂θ1
=
√
N1N2EtβWH

1 k1a
H
2 F2s2(t− τb),

∂µ(t)

∂φ1
=
√
N1N2EtβWH

1 p1a
H
2 F2s2(t− τb),
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∂µ(t)

∂θ2
=
√
N1N2EtβWH

1 a1k
H
2 F2s2(t− τb),

∂µ(t)

∂φ2
=
√
N1N2EtβWH

1 a1p
H
2 F2s2(t− τb),

∂µ(t)

∂βR
= j

∂µ(t)

∂βR
=
√
N1N2EtW

H
1 a1a

H
2 F2s2(t− τb),

∂µ(t)

∂τ
=
√
N1N2EtβWH

1 a1a
H
2 F2ṡ2(t− τb),

where ṡ(τ) , ∂s(τ)
∂τ ,ki = ∂

∂θi
ai,pi = ∂

∂φi
ai, such that i ∈ {1, 2}. Note that the zeros in

J
(b)
ϕ follow from the facts that

∫ To

0
sH

2 (t− τb)ṡ2(t− τb)dt = 0, (G.4)

and that ∂µ(t)
∂βR

and ∂µ(t)
∂βI

are orthogonal. On the other hand, noting that

∫ To

0
s2(t− τb)sH

2 (t− τb)dt = NsINB
, (G.5)

and defining the operator PA , A
(
AHA

)−1
AH, and γ , N1N2NsEt/N0, we can write

the following

Jb
θ1θ1 = γ|β|2

(
aH

2 F2F
H
2 a2

) (
kH

1 PW1k1

)
(G.6a)

Jb
φ1φ1 = γ|β|2

(
aH

2 F2F
H
2 a2

) (
pH

1 PW1p1

)
(G.6b)

Jb
θ2θ2 = γ|β|2

(
kH

2 F2F
H
2 k2

) (
aH

1 PW1a1

)
(G.6c)

Jb
φ2φ2 = γ|β|2

(
pH

2 F2F
H
2 p2

) (
aH

1 PW1a1

)
(G.6d)

Jb
βRβR

= Jb
βIβI

,

= γ|β|2
(
aH

2 F2F
H
2 aR2

) (
aH

1 PW1a1

)
, (G.6e)

Jb
θ1φ1 = γ|β|2

(
aH

2 F2F
H
2 a2

) (
pH

1 PW1k1

)
, (G.6f)

Jb
θ1θ2 = γ|β|2

(
kH

2 F2F
H
2 a2

) (
kH

1 PW1a1

)
, (G.6g)

Jb
θ1φ2 = γ|β|2

(
pH

2 F2F
H
2 a2

) (
kH

1 PW1a1

)
, (G.6h)

Jb
θ1βR

= γ<
[
β∗
(
aH

2 F2F
H
2 a2

) (
kH

1 PW1a1

)]
, (G.6i)

Jb
θ1βI

= −γ=
[
β∗
(
aH

2 F2F
H
2 a2

) (
kH

1 PW1a1

)]
, (G.6j)

Jb
φ1θ2 = γ|β|2

(
kH

2 F2F
H
2 a2

) (
pH

1 PW1a1

)
, (G.6k)

Jb
φ1φ2 = γ|β|2

(
pH

2 F2F
H
2 a2

) (
pH

1 PW1a1

)
, (G.6l)
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Jb
φ1βR

= γ<
[
β∗
(
aH

2 F2F
H
2 a2

) (
pH

1 PW1a1

)]
, (G.6m)

Jb
φ1βI

= −γ=
[
β∗
(
aH

2 F2F
H
2 a2

) (
pH

1 PW1a1

)]
, (G.6n)

Jb
θ2φ2 = γ|β|2

(
pH

2 F2F
H
2 k2

) (
aH

1 PW1a1

)
, (G.6o)

Jb
θ2βR

= γ<
[
β∗
(
aH

2 F2F
H
2 k2

) (
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1 PW1a1
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, (G.6p)

Jb
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(
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) (
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1 PW1a1
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, (G.6q)
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[
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(
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, (G.6r)
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= −γ=
[
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(
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2 F2F
H
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) (
aH

1 PW1a1

)]
. (G.6s)

To compute Jττ , in (6.25), we extend the results in Appendix C to write

Jτb =
1

4γ|β|2π2W 2
eff‖aH

2 F2‖2 (aH
1 PW1a1)

, (G.7a)

Jτ f =
1

4γ|β|2π2W 2
eff‖aH

1 F1‖2 (aH
2 PW2a2)

, (G.7b)
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