Multicomponent Diels-Alder

Sequences of 1-Aminodendralenes

A thesis submitted for the degree of

Doctor of Philosophy

Siu Min (Margaret) Tan

Research School of Chemistry
The Australian National University

November 2017
© Copyright by Siu Min (Margaret) Tan 2017
All Rights Reserved

Declaration

Except where specific acknowledgements of others are made, the work described in this thesis was carried out by the author during the period of April 2011 to November 2017 in the Research School of Chemistry of the Australian National University, Australia, under the supervision of Professor Mick Sherburn. The material presented has not been submitted for any other degree and is less than 100,000 words in length.

Siu Min (Margaret) Tan

November 2017

Acknowledgements

Firstly, I would like to thank my supervisor Professor Mick Sherburn for his guidance, advice and support throughout my PhD studies. He has taught me so much and I am thankful to have had this opportunity to work in his group.

Thanks to members of the Sherburn group, who have been so helpful and made the environment a pleasant and conducive one to work in. Thanks to Dr Imants Kreituss for help in proofreading. Thanks to the technical staff at the RSC for all their help, especially Dr Tony Willis for single crystal X-ray analyses, Anitha Jeyasingham for mass spectrometry, Chris Blake for NMR and Tony Herlt for HPLC.

Special thanks to Mehmet, Supanimit, Cynthia, Daniel and Richmond for their friendship and all the good times in Canberra.

Finally, I am grateful to my mum and dad for giving me the freedom to pursue my dreams and for their constant encouragement and support.

Publications and Presentations

The following list details the publications and presentations that have resulted from the author's research during her candidature for the degree of Doctor of Philosophy.

Publication

Tan, S. M.; Willis, A. C.; Paddon-Row M. N.; Sherburn M. S. Multicomponent Diene-Transmissive Diels-Alder Sequences Featuring Aminodendralenes, Angew. Chem. Int. Ed. 201655 (9) 3081-5.

Presentations

Tan, S. M. and Sherburn M. S. Rapid Access to Heterocyclic Frameworks Through Novel Multiple Component Reactions. Oral presentation: Southern Highlands Conference on Heterocyclic Chemistry in Bowral, Australia, 31 August-2 September 2014.

Tan, S. M. and Sherburn M. S. Multi-Component Reactions Involving CrossConjugated Trienamines. Poster Presentation: RACI NSW Organic Chemistry Group 34th Annual One Day Symposium, Canberra, Australia, 4 December 2013.

Tan, S. M. and Sherburn M. S. Multi-Component Reactions Involving CrossConjugated Trienamines. Poster Presentation: $21^{\text {st }}$ International Symposium: Synthesis in Organic Chemistry, Oxford, United Kingdom, 22-25 July 2013.

Tan, S. M. and Sherburn M. S. Cross-Conjugated Trienamines. Poster Presentation: $19^{\text {th }}$ International Conference on Organic Chemistry/The 24th Royal Australian Chemical Institute Organic Conference (ICOS19/RACI24), Melbourne, Australia, 1-6 July 2012.

\%	percentage yield
${ }^{\circ} \mathrm{C}$	degrees Celsius
Ac	acetyl
aq	aqueous
Ar	aryl
BHT	2,6 -di-tert-butyl-4-methylphenol
Bn	benzyl
br	broad
Bu	butyl
ca	circa (approximately)
$\mathrm{cm}{ }^{-1}$	wave number
COSY	correlated spectroscopy
δ	chemical shift
d	day/s or doublet/s
DA	Diels-Alder
DFT	density functional theory
dm	decametre
DMP	Dess-Martin periodinane
DIBAL	diisobutylaluminium hydride
DMSO	dimethylsulfoxide
$d r$	diastereomer ratio
EDG	electron donating group
$e r$	enantiomer ratio
EI	electron impact
equiv	equivalent/s
ESI	electrospray ionisation
Et	ethyl
EWG	electron withdrawing group
eV	electron Volts
FMO	frontier molecular orbital
GC	gas chromatography
h	hour/s
HMBC	heteronuclear multiple bond coherence
LDA	lithium diisopropylamide
HSQC	heteronuclear single quantum coherence
highest occupied molecular orbital	

HPLC	high pressure liquid chromatography
HRMS	high resolution mass spectrometry
Hz	Hertz
IMDA	intramolecular Diels-Alder
i-Pr	isopropyl
IR	infrared
J	coupling constant
LRMS	low resolution mass spectometry
LUMO	lowest unoccupied molecular orbital
M	molar
M^{+}	molecular ion
m-CPBA	meta-chloroperoxybenzoic acid
Me	methyl
min	minute/s
MHz	megahertz
mm Hg	millimetres of mercury
mol	mole or molar
mp	melting point
MS	mass spectroscopy
m / z	mass to charge ratio
v	absorption maxima (IR)
$n-\mathrm{BuLi}$	n-butyl lithium
$n-\mathrm{Pr}$	n-propyl
NMM	N -methylmaleimide
NMR	nuclear magnetic resonance
nOe	nuclear Overhauser effect
NOESY	nuclear Overhauser and exchange spectroscopy
NPM	N -phenylmaleimide
Ph	phenyl
ppm	parts per million
q	quartet
rt	room temperature
sat	saturated
SOI	secondary orbital interaction
t	time
t-Bu	tert-butyl
TBS	tert-butyldimethylsilyl
TES	triethylsilyl
TMS	trimethylsilyl

temp	temperature
THF	tetrahydrofuran
TLC	thin layer chromatography
TS	transition state

Abstract

This thesis explores the use of in situ generated acyclic 1-aminodendralenes in multicomponent diene-transmissive Diels-Alder (DTDA) reaction sequences. Dendralenes have previously been shown to generate polycyclic frameworks in a step-economic manner. The 1-amino substituent is shown to promote very high levels of site selectivity in these processes.

Chapter 1 reviews the Diels-Alder reactions of 1 -amino-1,3-butadienes and is divided into three sections. The first two sections cover the Diels-Alder reactions of 1 -amino-1,3-butadienes and 1-amino-3-siloxy-1,3-butadienes (Rawal's dienes) generated with a stoichiometric amount of amine. The third section covers enantioselective Diels-Alder reactions involving 1-amino-1,3-butadienes generated in situ with a catalytic amount of a chiral amine. While there have been many reports of Diels-Alder reactions of 1-amino-1,3-butadienes and 1-amino-3-siloxy-1,3-butadienes, there has been only one involving a semi-cyclic 1 -amino[3]dendralene. There have been few examples which combine these Diels-Alder reactions with other transformations in multicomponent reactions to generate polycyclic frameworks.

Chapter 2 describes the use of acyclic 1-amino[3]dendralenes in multicomponent reactions to generate a diverse range of heterocyclic structures. The condensation/DielsAlder reaction sequence was tolerant of a variety of amines as well as carbon and hereoatom-based dienophiles. The Diels-Alder reactions of 1-amino[3]dendralenes were highly site-selective, taking place exclusively at the amine substituted 1,3-butadiene unit.

The sequence was extended to a one-pot four-component reaction by including an additional dienophile for a Diels-Alder reaction to take place at the newly generated semi-cyclic diene. These condensation/Diels-Alder/Diels-Alder cycloadducts were generated with high diastereoselectivity, the origins of which were investigated and explained with the use of density functional theory calculations (carried out by Prof Paddon-Row). By reversing the order of events, that is performing a Diels-Alder reaction on the skipped dienal precursor before the condensation/Diels-Alder reaction sequence, constitutional isomers were accessed.

The second Diels-Alder reaction could be performed intramolecularly when an amine bearing an alkenyl substituent was used. This condensation/Diels-Alder/intramolecular Diels-Alder reaction sequence furnished a variety of tricyclic and tetracyclic heterocycles.

Chapter 3 describes the use of acyclic 1 -aminodendralenes bearing chiral amines in organocatalytic, enantioselective Diels-Alder reactions to deliver enantioenriched cycloadducts. The enantioselective Diels-Alder reaction between 1-amino[3]dendralenes, the condensation product of skipped dienals and chiral amines, and various dienophiles followed by elimination of the amine generated trienal cycloadducts in good yield and high enantioselectivity. The reaction tolerates substitution on the skipped dienal as well as dienophiles possessing an aldehyde substituent at the α position.

Extension of this methodology by performing Wittig and Diels-Alder reactions on the trienal cycloadducts enabled access to enantioenriched polycyclic products.

By using a diene-dialdehyde as the starting precursor, it is anticipated that the Horeau principle would operate in the twofold condensation/Diels-Alder/elimination reaction sequence would furnish the cycloadduct in high enantioselectivity. A preliminary attempt successfully generated the desired cycloadduct as the major product.

Table of Contents

Declaration i
Acknowledgements iii
Publications and Presentations v
Abbreviations vii
Abstract xi
1 Diels-Alder Reactions of 1-Amino-1,3-Butadienes 1
1.1 Introduction 1
1.2 Diels-Alder reactions of 1-amino-1,3-butadienes using stoichiometric amounts of amine 5
1.2.1 Intermolecular Diels-Alder reactions with acyclic 1-amino-1,3-butadienes 5
1.2.2 Intermolecular Diels-Alder reactions with semi-cyclic 1-amino-1,3- butadienes 11
1.2.3 Intramolecular Diels-Alder reactions with acyclic 1-amino-1,3- butadienes 13
1.2.4 Intramolecular Diels-Alder reactions with semi-cyclic 1-amino-1,3- butadienes 14
1.2.5 One-pot synthesis and Diels-Alder reactions of 1-amino-1,3-butadienes 15
1.3 Diels-Alder reactions of 1-amino-3-siloxy-1,3-butadienes 17
1.3.1 Intermolecular Diels-Alder reactions of 1-amino-3-siloxy-1,3-butadienes 18
1.3.2 Intramolecular Diels-Alder reaction of a 1-amino-3-siloxy-1,3-butadiene 22
1.3.3 One-pot Diels-Alder reactions of a 1-amino-3-siloxy-1,3-butadiene 23
1.4 Diels-Alder reactions of 1-amino-1,3-butadienes using catalytic amounts of chiral amine 24
1.4.1 Intermolecular Diels-Alder reactions with acyclic 1-amino-1,3- butadienes 25
1.4.2 Intramolecular Diels-Alder reactions with acyclic 1-amino-1,3- butadienes 32
1.4.3 Intermolecular formal Diels-Alder reactions with semi-cyclic 1-amino-1,3- butadienes 35
1.4.4 Intermolecular Diels-Alder reactions with acyclic 1-amino-1,3-butadienes that are part of an extended linear conjugated system 38
1.5 Summary and Conclusions 41
1.6 Aims 45
1.7 References 47
2 Multicomponent Diene-Transmissive Diels-Alder Sequences
Featuring Aminodendralenes 53
2.1 Context 53
2.2 Publication 55
2.3 Supporting Information 60
3 Enantioselective Diels-Alder Reactions of
1-Amino[3]dendralenes 277
3.1 Introduction 277
3.1.1 Enantioselective Diels-Alder reactions of dendralenes 279
3.2 Aims 284
3.3 Results and Discussion 287
3.3.1 Condensation/Diels-Alder/elimination reaction sequence 287
3.3.2 Multiple Diels-Alder Reactions 307
3.3.3 Preliminary investigation into a double enantioselective Diels-Alder reaction 319
3.4 Summary 326
3.5 Future Work 332
3.6 References 334
3.7 Experimental Section 336
3.7.1 General Methods 336
3.7.2 Experimental 337
3.7.3 References 366
$3.8{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 368
3.9 HPLC Traces 428

1 Diels-Alder Reactions of 1-Amino-1,3-Butadienes

1.1 Introduction

The Diels-Alder reaction is a concerted [4+2] cycloaddition between a diene $\mathbf{1}$ and a dienophile 2 which generates a cyclohexene $\mathbf{4}$ through a cyclic transition state $\mathbf{3}$. This process breaks three π bonds while forming two σ bonds and one π bond. In the prototypical reaction shown in Scheme 1.1, cyclohexene 4 does not bear any stereocentres. The Diels-Alder reaction can generate up to four stereocentres, at the positions marked by asterisks in cyclohexene 4, depending on the presence of substituents on the diene and dienophile.

Scheme 1.1 The prototypical Diels-Alder reaction

Based on the Frontier Molecular Orbital (FMO) theory, a normal electron demand Diels-Alder reaction occurs through interaction of the highest occupied molecular orbital (HOMO) of the 1,3-butadiene with the lowest unoccupied molecular orbital (LUMO) of the dienophile (Figure 1.1a). ${ }^{[1,2]}$ The reaction is made more favourable by
placing an electron-donating substituent such as an amine on the 1,3-butadiene. This raises the HOMO of the 1,3-butadiene, leading to a smaller HOMO-LUMO gap and thus a lower activation energy required for the reaction to take place (Figure 1.1b).

Figure 1.1 Orbital energy diagrams of a normal electron demand Diels-Alder reaction with: a) an unsubstituted 1,3-butadiene b) an amine-substituted 1,3-butadiene

An amine substituent can be placed on the C 1 (1-amino-1,3-butadiene 5) or the C 2 (2-amino-1,3-butadiene 6) position on a simple 1,3-butadiene unit (Figure 1.2). While the synthesis and Diels-Alder reactivity of 2-amino-1,3-butadienes have been reported, ${ }^{[3,4]}$ they are not the focus of this thesis and will not be discussed.

Figure 1.2 Structures of 1-amino-1,3-butadiene 5 and 2-amino-1,3-butadiene 6

This chapter covers the literature up to December 2015. The Diels-Alder reactions of 1-amino-1,3-butadienes will be discussed, focusing on the types of structures which have been accessed as well as the endo/exo, regio-, enantio- and diastereoselectivity of these reactions. The discussion will be limited to acyclic (structure 7) and semi-cyclic 1-amino-1,3-butadienes (structures $\mathbf{8}$ and 9) which bear alkyl, aryl or alkenyl substituents and 1 -amino-3-siloxy-1,3-butadienes $\mathbf{1 0}$, which are related in terms of chemical
reactivity to 1 -amino[3]dendralenes (Figure 1.2a). 1-Amino-1,3-butadienes which are cyclic, such as structures $\mathbf{1 2}$ and 13, or part of aromatic heterocycles such as structures 14 and 15, and 1-amido-1,3-butadienes 16 are not included as they are structurally different from the 1-amino[3]dendralenes $\mathbf{1 1}$ described in this thesis (Figure 1.2b).
a)

7
$R^{1}, R^{2}, R^{3}, R^{4}, R^{5}$
= H, alkyl, aryl or alkenyl
acyclic
1 -amino- 1,3 -butadienes $\underset{1 \text {-amino- } 1,3 \text {-bctictadienes }}{ }$

10
$\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{alkyl}$ $R^{3}=$ TMS, TBS, TIPS 1-amino-3-siloxy-1,3-butadienes

11
$R^{1}, R^{2}, R^{3}, R^{4}$
= H , alkyl or aryl 1-amino[3]dendralenes
b)

12
$R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}$
= H, alkyl or aryl
cyclic
1-amino-1,3-butadienes

14
$R^{1}, R^{2}, R^{3}, R^{4}$
= H, alkyl or aryl
1-amino-1,3-butadienes part of aromatic heterocycle

16
$R^{1}, R^{2}, R^{3}, R^{4}, R^{5}$
= H, alkyl or aryl
1-amido-1,3-butadienes

Figure 1.3 a) Types of 1-amino-1,3-butadienes discussed in this chapter and b) examples of types of 1-amino-1,3-butadienes not discussed in this chapter

The chapter is divided into two main sections, categorised by whether a stoichiometric or catalytic amount of amine is used in the reaction. The term stoichiometric is used to refer to reactions in which the amine is incorporated into the product. The term catalytic is used to refer to reactions in which the amine is incorporated into an intermediate but is regenerated at the end of the reaction sequence and is not incorporated into the product. In both cases, aldehyde $\mathbf{1 7}$ and amine $\mathbf{1 8}$ undergo a condensation reaction to form 1-amino-1,3-butadiene 5, which participates in a Diels-Alder reaction. When a stoichiometric amount of amine is used, the reaction terminates at this point and the amine is incorporated into the product 20 (Scheme 1.2a). In Diels-Alder reactions where a catalytic amount of amine $\mathbf{1 8}$ is used, the Diels-Alder product $\mathbf{2 0}$ undergoes
elimination to produce the final product 21 and release amine catalyst 18, which can participate in another catalytic cycle. Besides the example shown, there are other modes of reactivity through which 1-amino-1,3-butadienes undergo aminocatalytic Diels-Alder reactions and these are described in Sections $1.41-1.44$.
a)

5

b)

Scheme 1.2 Examples of Diels-Alder reactions of a) stoichiometrically generated 1-amino-1,3-butadienes and b) catalytically in situ generated 1-amino-1,3-butadienes

The first section (Chapter 1.2, page 5) focuses on the Diels-Alder reactions of 1-amino-1,3-butadienes generated using a stoichiometric amount of amine. Two reviews in the early 1980s cover the relevant literature of 1-amino-1,3-butadienes up to 1982 in their discussion, ${ }^{[56]}$ so only selected examples from before 1982 will be used to illustrate the general reactivity and selectivity of 1-amino-1,3-butadienes in Diels-Alder reactions. The second section (Chapter 1.3, page 17) focuses on the Diels-Alder reactions of 1-amino-3-siloxy-1,3-butadienes. The third section (Chapter 1.4, page 24) covers DielsAlder reactions of 1-amino-1,3-butadienes which are generated with a catalytic amount of amine and is limited to examples of enantioselective reactions, as they are relevant to
the work described in this thesis. There are numerous reviews on enantioselective amine catalysed Diels-Alder reactions but these are often brief in their coverage of reactions involving 1-amino-1,3-butadienes. ${ }^{[4,7-12]}$ This third section will comprehensively discuss these examples.

1.2 Diels-Alder reactions of 1-amino-1,3-butadienes using stoichiometric amounts of amine

1.2.1 Intermolecular Diels-Alder reactions with acyclic 1-amino-1,3-butadienes

1-Amino-1,3-butadienes 7 are generally prepared by condensation of an enolisable α, β unsaturated aldehyde $\mathbf{2 2}$ with a primary or secondary amine $\mathbf{1 8}$ and sometimes include the use of an acid catalyst or a dessicant such as potassium carbonate (Scheme 1.3). ${ }^{[13-15]}$

$R^{1}, R^{2}, R^{3}, R^{4}, R^{5}=H$, alkyl or aryl
Scheme 1.3 General method of synthesising 1-amino-1,3-butadienes

The use of a 1-amino-1,3-butadiene in a Diels-Alder reaction was first reported in 1939 (Scheme 1.4). ${ }^{[16]}$ Aniline and 2-ethylhex-2-enal 23 were reacted at $100{ }^{\circ} \mathrm{C}$ to generate imine 24. Based on their understanding of tautomerisation of simple imines to enamines, the authors proposed a similar transformation of imine 24 to 1 -amino-1,3butadiene 25. 1-Amino-1,3-butadiene 25 underwent Diels-Alder reaction with maleic anhydride 26, generating bicycle 27, which upon intramolecular nucleophilic acyl substitution led to the formation of bridged bicycle 28. The stereochemistry of adducts 27 and 28 was not defined in the original paper, presumably due to a lack of suitable analytical methods at that time and there have not been any follow-up papers which address this point. The predicted stereochemistry is shown. Adduct 27 is the result of endo addition of maleic anhydride 26 to 1-amino-1,3-butadiene $\mathbf{2 5}$ (endolexo selectivity is further explained on page 7). The stereochemistry of adduct 27 is retained in the intramolecular substitution product 28.

Scheme 1.4 First reported Diels-Alder reaction of a 1-amino-1,3-butadiene

Initial studies into Diels-Alder reactions between 1-amino-1,3-dienes and unsymmetrical dienophiles, namely acrolein, ethyl acrylate, acrylonitrile and methyl vinyl ketone, revealed their highly regioselective nature (Scheme 1.6). ${ }^{[17,18]}$ Only the ortho product $\mathbf{3 2}$ was formed, whereas the meta product $\mathbf{3 3}$ was not observed. This can be rationalised using frontier molecular orbital (FMO) theory. ${ }^{[1,2]}$ The presence of substituents causes the orbital coefficients (depicted by the shading in structures $\mathbf{3 0}$ and 31, Scheme 1.5) of the diene and dienophile to be different. The conjugating, electronwithdrawing substituent on dienophile $\mathbf{3 1}$ results in a larger LUMO orbital coefficient on its unsubstituted end. The electron-donating amine substituent at the C 1 position of diene $\mathbf{3 0}$ results in the largest HOMO orbital coefficient to be on C 4 . The orientation of the diene with respect to the dienophile, which maximises overlap between the HOMO and the LUMO orbitals leads to the favoured formation of ortho product $\mathbf{3 2}$.

Scheme 1.6 Diels-Alder reaction between 1-amino-1,3-butadiene 29 and unsymmetrical dienophiles acrolein, ethyl acrylate, acrylonitrile and methyl vinyl ketone

The stereochemical outcome of Diels-Alder reactions between 1-amino-1,3-butadiene 29 and acrolein was established in later studies, which revealed the exclusive formation of the cis stereoisomer 35a. ${ }^{[19]}$ The reaction with ethyl acrylate was shown to produce a mixture of the cis stereoisomer 35b and trans stereoisomer 37b in the ratio 60:40. ${ }^{[20]}$ The major diastereomer $\mathbf{3 5}$ is the result of endo addition of the dienophile. This preferential formation of endo over exo products is often attributed to secondary electronic interactions (SOIs). ${ }^{[21]}$ Specifically, such interactions refer to overlap between the orbitals of unsaturated substituents of the dienophile with the newly forming alkene on the 1,3-butadiene to maximise orbital overlap. ${ }^{[22]}$ The existence of SOIs, however, has not been proven and the preferential formation of endo products has also been attributed to other factors. ${ }^{[23]}$

Scheme 1.7 Diels-Alder reactions of 1-amino-1,3-butadiene 29 with acrolein and ethyl acrylate

Potthoff and Breitmaier reported the exo-selective Diels-Alder reaction between alkyl substituted 1-dimethylamino-1,3-butadiene $\mathbf{3 6}$ and β-nitrostyrene (37) to form cyclohexene 38 (Scheme 1.8). ${ }^{[15,24]}$ The reaction is suprafacial with respect to both the 1,3-butadiene and the dienophile. ${ }^{[2]}$ The stereospecificity of a concerted Diels-Alder reaction results in the retention of stereochemistry of both the 1,3-butadiene and dienophile in the Diels-Alder product, ${ }^{[25]}$ thus an E-configured dienophile such as β-nitrostyrene (37) generates products in which the $-\mathrm{NO}_{2}$ and phenyl groups are in a trans relative configuration. Under kinetic control, the observed exo selectivity of the reaction between nitrostyrene (37) (with respect to the $-\mathrm{NO}_{2}$ group) and electron-rich 1-amino-1,3-butadiene 36 was proposed to be the result of electrostatic repulsion between the electron rich amino and $-\mathrm{NO}_{2}$ groups in the transition state. ${ }^{[26-28]}$

Scheme 1.8 Diels-Alder reaction between 1-dimethylamino-1,3-butadiene 36 and β-nitrostyrene (37)

When 1-amino-1,3-butadiene 39 was reacted with dimethyl maleate (40) then heated to reflux with acetic anhydride, 1,3-cyclohexadiene 43 was obtained (Scheme 1.9a). ${ }^{[15]}$ It was proposed that 1-amino-1,3-butadiene 39 underwent a Diels-Alder reaction with dimethyl maleate (40) to generate two diastereomeric products 41 and 42, which, upon elimination, produced the observed product, 1,3-cyclohexadiene 43. Unlike the previous example, the stereochemistry of the dienophile was not retained in the product. The Z-configuration of dimethyl maleate 40 generated products $\mathbf{4 1}$ and $\mathbf{4 2}$, in which the $\mathrm{CO}_{2} \mathrm{Me}$ groups are in the trans rather than the expected cis relative configuration.

Scheme 1.9 Diels-Alder reaction of 1-amino-1,3-butadiene 169 with dimethyl maleate (40)

The authors proposed in situ isomerisation of dimethyl maleate (40) to dimethyl fumarate (44), which reacts as the dienophile, to account for the observed products (Scheme 1.10a). It was not shown whether this isomerisation could have taken place under the reaction conditions. Another possibility is a step-wise mechanism, involving firstly a conjugate addition of 1 -amino-1,3-butadiene 39 to dimethyl maleate (40) then a Mannich-type ring closure of the resulting intermediate 45 (Scheme 1.10b). It is also possible for the Diels-Alder reaction between 1-amino-1,3-butadiene 39 and dimethyl maleate (40) to occur, before epimerisation of cyclohexene $\mathbf{3 4 2}$ to generate the observed products, cyclohexenes 41 and 42 (Scheme 1.10c).

Scheme 1.10 Proposed mechanisms for the reaction of 1-amino-1,3-butadiene 39 with dimethyl maleate (40)

In a similar example, the Diels-Alder reaction of 1-diethylamino-1,3-butadiene 29 with dimethyl maleate (40) generated cyclohexene 47 as the major product, in which the $-\mathrm{CO}_{2} \mathrm{Me}$ groups are also trans to one another (Scheme 1.11). ${ }^{[29]}$ After ruling out amine catalysed isomerisation of dimethyl maleate (40) the authors proposed a stepwise conjugate addition then Mannich-type ring closure process via intermediate 46.

Scheme 1.11 Formal Diels-Alder reaction of 1-diethylamino-1,3-butadiene 29 with dimethyl maleate (40)

Diels-Alder reactions typically involve either an electron rich diene or an electron poor dienophile and these are usually concerted cycloadditions. Reactions between two highly polar reactants, an electron rich substituted diene with an electron poor dienophile, can also proceed by a step-wise ionic mechanism involving a zwitterionic intermediate. ${ }^{[30,31]}$ Whether a reaction is concerted or step-wise depends on the types of substituents present on the reactants and mechanistic pathways may be elucidated with the help of computational calculations. ${ }^{[32]}$

1.2.2 Intermolecular Diels-Alder reactions with semi-cyclic 1-amino-1,3-butadienes

When semi-cyclic 1-amino-1,3-butadienes 48 were reacted with dimethyl fumarate (44), mixtures of endo $\mathbf{5 0}$ and exo $\mathbf{5 2}$ diastereomers were generated (Scheme 1.12). ${ }^{[33]}$ The Diels-Alder reaction showed increasing diastereoselectivity as the number of methyl groups present on the starting 1 -amino-1,3-butadiene increased. Unfavourable steric interactions in the exo transition state $\mathbf{5 1}$ between the R^{1} methyl substituents of 1-amino-1,3-butadienes 48b and 48c and the $-\mathrm{CO}_{2} \mathrm{Me}$ substituents of the dienophile resulted in the formation of cycloadduct $\mathbf{5 2 b}$ and $\mathbf{5 2} \mathbf{c}$ being less favoured.

Scheme 1.12 Diels-Alder reaction between semi-cyclic 1-amino-1,3-butadienes 48 and dimethyl fumarate (44)

The Diels-Alder reactions of semi-cyclic 1-amino-1,3-butadienes 53 with methyl acrylate (54) ${ }^{[34]}$ and methyl propiolate (57) ${ }^{[35]}$ as dienophiles followed by treatment with silica gel generated bicyclic adducts $\mathbf{5 6}$ and $\mathbf{5 9}$ respectively, which were suggested to arise by dimethylamine elimination from the intermediate Diels-Alder adducts 55 and 58 (Scheme 1.13). The authors proposed, based on ${ }^{1} \mathrm{H}$ NMR spectroscopic data, that adducts 55 were formed as a mixture of endo and exo diastereomers (ratios not specified). These reactions proceeded with complete orientational regioselectivity to produce adducts in which the amino- and $-\mathrm{CO}_{2} \mathrm{Me}$ groups are adjacent to one another.

Scheme 1.13 Diels-Alder reactions of 1-dimethylamino-1,3-butadienes 53 with methyl acrylate $\mathbf{5 4}$ and methyl propiolate $\mathbf{5 7}$ followed by dimethylamine elimination

1.2.3 Intramolecular Diels-Alder reactions with acyclic 1-amino-1,3-butadienes

By tethering a 1-amino-1,3-butadiene to a dienophile, an intramolecular Diels-Alder (IMDA) reaction can be performed. The IMDA reaction is a powerful transformation which forms two new rings and up to four new stereocentres in one step. ${ }^{[36,37]} 1$-Amino-1,3-butadienes 60 and 65, which are tethered to alkenes bearing terminal $-\mathrm{CO}_{2} \mathrm{Et}$ activating groups, underwent intramolecular Diels-Alder (IMDA) reactions when heated (Scheme 1.14). ${ }^{[38]}$ With 1-amino-1,3-butadiene 60, trans-fused cycloadduct 62 and cis-fused cycloadduct 64, which are products of an endo 61 and exo 63 Diels-Alder reaction respectively, were generated in an 85:15 ratio. The high endo selectivity was proposed to be the result of greater steric hindrance between the 1 -amino-1,3-butadiene and the $-\mathrm{CO}_{2} \mathrm{Et}$ group of the dienophile in the exo transition state 63 than the endo transition state 61 as the molecule twists to relieve strain in the developing cyclopentane ring. ${ }^{[39]}$ For decatriene 65, endo cycloadduct 67 and exo cycloadduct 69 were formed in almost equal amounts (55:45 dr). This is likely to be a result of minimal strain in the developing chair-like cyclohexane rings in both the endo transition state 66 and exo transition state 68, so there is no major preference for the formation of either the endo or exo product. ${ }^{[39]}$ The endo rule predicts preferential formation of endo over exo products in intermolecular Diels-Alder reactions due to
favourable secondary orbital interactions between the diene and the dienophile and may account for the slight preference for endo adduct 62. It has a smaller impact in intramolecular reactions as other factors such as tether conformational preferences play a bigger role on the stereochemical outcome. ${ }^{[40]}$

Scheme 1.14 Intramolecular Diels-Alder (IMDA) reactions of 1-amino-1,3-butadienes 60 and 65

1.2.4 Intramolecular Diels-Alder reactions with semi-cyclic 1-amino-1,3-butadienes

A semi-cyclic 1-amino-1,3-butadiene undergoes an IMDA reaction to produce a fused tricyclic structure. 1-Amino-1,3-butadienes 70, which bear an internal $-\mathrm{CO}_{2} \mathrm{Et}$ activating group, underwent IMDA reactions when heated to produce a mixture of
diastereomeric tricycles 71 and 72, which arise from endo and exo cycloaddition respectively (Scheme 1.15). ${ }^{[41]}$ IMDA reactions performed with 1-amino-1,3-butadienes 73, which possess a terminal $-\mathrm{CO}_{2} \mathrm{Et}$ activating substituent, provided mixtures of endo 74 and exo 75 adducts. The authors proposed that the preferential formation of exo cycloadducts 72a and 75a from 1-amino-1,3-butadienes 70a and 73a, which possess shorter tethers ($\mathrm{n}=1$), was due to formation of the more favourable cis ring junction present in these adducts. As the IMDA reaction is irreversible, ${ }^{[42]}$ such a thermodynamic argument is not valid. An alternative reason is that the cis transition state leading to formation of the exo cycloadducts is more favourable. For both the internally and terminally activated precursors, the IMDA reactions of 1-amino-1,3-butadienes 70c and 73c, which possess longer tethers ($\mathrm{n}=3$), were much lower yielding. This was attributed to the slow IMDA reaction and competing decomposition to unidentified compounds, perhaps via intermolecular Diels-Alder reactions, which consumed the starting material before it underwent an IMDA reaction.

Scheme 1.15 IMDA reactions of semi-cyclic 1-amino-1,3-butadienes 70 and 73

1.2.5 One-pot synthesis and Diels-Alder reactions of 1-amino-1,3-butadienes

A more synthetically efficient sequence is achieved by performing both the 1-amino-1,3-butadiene formation and Diels-Alder reaction in the same pot. In 2014, the first example involving a one-pot three-component reaction between aldehydes 22, nitroalkenes 76 and amines was reported (Scheme 1.16). ${ }^{[43]}$ Initial condensation of an
amine with aldehydes 22 led to the formation of 1-amino-1,3-butadienes 77, which underwent Diels-Alder reaction with nitroalkene dienophiles 76 to provide cycloadducts 78 in $16-82 \%$ yield and diastereomeric ratios of $3: 1$ to $35: 1$. The major diastereomer was a result of exo addition with respect to the $-\mathrm{NO}_{2}$ group of the dienophile to the 1,3butadiene (refer to page 8 for an explanation of the stereochemical outcome of cycloadditions of nitroalkenes to 1 -amino-1,3-butadienes).

Scheme 1.16 A one-pot three-component condensation/Diels-Alder reaction between aldehydes 22, nitroalkenes 76 and amines

The condensation between aldehyde 79 and chiral amine $\mathbf{8 0}$ generates chiral 1-amino-1,3-butadiene 81, which leads to the issue of π-diastereofacial selectivity in its DielsAlder reactions (Scheme 1.17). ${ }^{[43]}$ The conformation in which the $\mathrm{N}-\mathrm{C} 2$ ' bond and the $\mathrm{C} 1=\mathrm{C} 2$ bond of 1 -amino-1,3-butadiene $\mathbf{8 1}$ are trans (as shown) is favoured as it minimises steric interactions between the bulky pyrrolidine ring substituent and the diene. ${ }^{[12]}$ Assuming that nitroalkene 76 only approaches the 1-amino-1,3-butadiene in an exo orientation, two diastereomers 83 and 85 can result from the Diels-Alder reaction, depending on whether this approach is from the same (Scheme 1.17a) or opposite face (Scheme 1.17 b) as the bulky substituent on the pyrrolidine ring. The major product, cyclohexene 85, arises from the favoured approach of dienophile 76 from the opposite face from the bulky substituent of the 1-amino-1,3-butadiene (as shown in transition structure 84), as this minimises steric repulsion between the 1 -amino-1,3-butadiene and dienophile.

Scheme 1.17π-Diastereofacial selectivity in the Diels-Alder reaction between chiral 1-amino-1,3-butadiene $\mathbf{8 1}$ and nitroalkenes $\mathbf{7 6}$

1.3 Diels-Alder reactions of 1-amino-3-siloxy-1,3-butadienes

In 1997, Kozmin and Rawal reported the synthesis and Diels-Alder reactions of 1-amino-3-siloxy-1,3-butadienes 88, which are typically prepared by a two step reaction sequence. ${ }^{[44]}$ Conjugate addition-elimination between 4-methoxybut-3-en-2-one 86 and various amines delivered vinylogous amides 87 , which were transformed into 1-amino-3-siloxy-1,3-butadienes $\mathbf{8 8}$ via deprotonation and trapping of the resulting enolate with various silyl chlorides. Rawal's diene usually refers specifically to 1-dimethylamino-3-tert-butyldimethylsiloxy-1,3-butadiene 89.

Scheme 1.18 Synthesis of 1-amino-3-siloxy-1,3-butadienes 88

1.3.1 Intermolecular Diels-Alder reactions of 1-amino-3-siloxy-1,3-butadienes

Rawal's diene 89 is highly reactive and readily participates in Diels-Alder reactions with a variety of dienophiles under mild conditions (Scheme 1.19). ${ }^{[45]}$ With reactive dienophiles such as N -phenylmaleimide and methacrolein, exclusive formation of endo products ($90 \mathbf{a}$ and $90 \mathbf{c}$) was observed. The use of substituted acrylates and acrylonitriles led to the formation of endo and exo product mixtures ($\mathbf{9 0} \mathbf{e} \mathbf{- i}$). Although Rawal's diene is highly electron rich and could undergo a step-wise, formal Diels-Alder reaction, results from kinetic studies (entropy of activation and activation energy measurements) of the reaction with methacrolein (product 90c) were consistent with a concerted cycloaddition mechanism. ${ }^{[46]}$ Computational studies showed that the high reactivity of Rawal's diene arises from the synergistic effect of the electron donating amino and enol ether substituents on the C 1 and C 3 positions in raising its HOMO energy level, thus reducing the activation energy for the Diels-Alder reaction to take place. ${ }^{[46]}$

Scheme 1.19 Diels-Alder reactions of Rawal's diene $\mathbf{8 9}$ with various dienophiles

Diels-Alder adduct 90c can be transformed into a useful and versatile intermediate, ${ }^{[47-50]}$ cyclohexenone 93, by acidic hydrolysis and conjugate elimination of the amine (Scheme 1.20). ${ }^{[44]}$

Scheme 1.20 Conversion of cycloadduct 90 c to cyclohexenone 93
The use of chiral 1-amino-3-siloxy-1,3-butadienes allows access to enantiomerically enriched Diels-Alder adducts. The Diels-Alder reaction of 1 -amino-3-siloxy-1,3butadiene 94 (>99:1 er) with 2-ethylacrolein (95) generated intermediate 97, which upon in situ reduction, acidic hydrolysis and elimination, provided cyclohexenone 98 with a high enantiomeric ratio (93:7 er, Scheme 1.21). ${ }^{[51]}$. Cycloadduct 97 arose from endo addition of 2-ethylacrolein ($\mathbf{9 5}$) to 1-amino-3-siloxy-1,3-butadiene 94 from the top face to minimise steric interactions between the larger dienophile substituent i.e. the ethyl substituent and the "outside" phenyl group in the transition state 96. The high enantioselectivity for the formation of cyclohexenone $\mathbf{9 8}$ observed is a result of high diastereoselectivity during the Diels-Alder reaction.

Scheme 1.21 Enantioselective Diels-Alder reaction of chiral 1-amino-3-siloxy-1,3butadiene 94 with 2-ethylacrolein (95)

Besides using chiral amines, enantio-enriched Diels-Alder products of 1-amino-3-siloxy-1,3-butadienes have also been accessed using chiral alcohols ${ }^{[52,53]}$ and a chiral metal catalyst. ${ }^{[54]}$

In 2004, Rawal and co-workers reported the use of a chiral diol, TADDOL 100, to catalyse an enantioselective Diels-Alder reaction between Rawal's diene 89 and acrolein as well as α-substituted acroleins 99 (Scheme 1.22). ${ }^{[52,53]}$ The Diels-Alder cycloadduct $\mathbf{1 0 2}$ underwent reduction, TBS deprotection and elimination to generate the isolated product 103. The proposed transition state 101 shows interactions between TADDOL 100, dienophile 99 and Rawal's diene 89 during the Diels-Alder reaction. The conformation of TADDOL $\mathbf{1 0 0}$ is held in place by an intramolecular hydrogen bond between the hydroxyl groups. The TADDOL hydroxyl group forms an intermolecular hydrogen bond with the carbonyl group of the dienophile, which lowers the LUMO of the dienophile. One of the napthyl groups holds the dienophile in place through π interactions with the carbonyl of the dienophile and this also blocks approach of the diene from one face, which results in an enantioselective reaction.

Scheme 1.22 Diels-Alder reaction between Rawal's diene $\mathbf{8 9}$ and acrolein as well as α substituted acroleins 99 catalysed by TADDOL 100

The enantioselective hetero-Diels-Alder reaction between Rawal's diene 89 and aldehydes $\mathbf{1 0 4}$ catalysed by an axially chiral diol, BAMOL 105, has also been reported (Scheme 1.23). ${ }^{[55]}$ BAMOL $\mathbf{1 0 5}$ is proposed to act in the same way as TADDOL $\mathbf{1 0 0}$ in which an intramolecular hydrogen bond holds the catalyst in a rigid conformation while another hydrogen bond to the aldehyde dienophile restricts approach of Rawal's diene 89 from one face. The Diels-Alder adduct 106 is converted to dihydropyranone 107 through TBS deprotection and elimination with acetyl chloride.

Scheme 1.23 Diels-Alder reaction between Rawal's diene 89 and aldehydes 104 catalysed by BAMOL 105

The same hetero-Diels-Alder reaction has also been reported to be catalysed by TADDOL ${ }^{[52]}$ as well as a chiral dirhodium catalyst, $\mathrm{Rh}_{2}(S \text {-BPTPI })_{4} .{ }^{[54]}$

1.3.2 Intramolecular Diels-Alder reaction of a 1-amino-3-siloxy-1,3-butadiene

A modified Rawal's diene $\mathbf{1 0 9}$ was used in an IMDA reaction to access cycloclavine (113) (Scheme 1.24). ${ }^{[56]}$ Vinylogous amide 109, synthesised in eight steps from β methallyl alcohol 108, was treated with sodium bis(trimethylsilyl)amide followed by TBS trapping of the resultant enolate to generate 1 -amino-3-siloxy-1,3-butadiene $\mathbf{1 1 0}$ in situ. Upon microwave heating, the tricyclic IMDA product 111 was delivered as a single diastereomer, in the process generating the trans ring junction required for the natural product. Following removal of the silyl protecting group with TBAF, enone 112 was formed. The synthesis of cycloclavine (113) was completed in a further five steps.

Scheme 1.24 Total synthesis of cycloclavine (113)

1.3.3 One-pot Diels-Alder reactions of a 1-amino-3-siloxy-1,3-butadiene

By performing more than one cycloaddition in the same sequence, polycyclic frameworks could be rapidly constructed. Bur and Padwa demonstrated the use of Rawal's diene $\mathbf{8 9}$ in the one-pot synthesis of tricycle 118, which could be converted in three steps to Uhle's ketone 119, an important intermediate in the synthesis of ergot alkaloids (Scheme 1.25). ${ }^{[57,58]}$ It is proposed that a thermal Diels-Alder reaction between Rawal's diene $\mathbf{8 9}$ and substituted acrylate $\mathbf{1 1 4}$ led to the formation of cyclohexene $\mathbf{1 1 5}$. Hydrolysis of the silyl enol ether followed by elimination generated cyclohexanone 116, which acted as the dienophile in an intramolecular Diels-Alder reaction with the tethered furan. In situ aromatisation provided tricycle $\mathbf{1 1 8}$ in $\mathbf{6 0 \%}$ yield over four steps.

Scheme 1.25 One-pot twofold Diels-Alder reaction sequence of Rawal's diene 89 with substituted acrylate/furan diene 114

1.4 Diels-Alder reactions of 1 -amino-1,3-butadienes using catalytic amounts of chiral amine

This section focuses on the use of amine catalysts in generating 1-amino-1,3-butadienes to perform Diels-Alder reactions. The seminal reports by List on enamine catalysis ${ }^{[59]}$ and MacMillan on iminium catalysis ${ }^{[60]}$ in 2000 led to renewed interest in the field of organocatalysis, which has since been applied to many different reactions. ${ }^{[61-63]}$ Enamine catalysis ${ }^{[64]}$ has been extended ${ }^{[11]}$ to dienamines (referred to as 1 -amino-1,3butadienes in this thesis), ${ }^{[4]}$ trienamines ${ }^{[9-11,65]}$ (referred to as 1 -amino-1,3,5-trienes or 1 -amino-[3]dendralene in this thesis) and tetraenamines ${ }^{[66]}$ (referred to as 1 -amino-1,3,5,7tetraenes in this thesis), which participate in Diels-Alder reactions as electron-rich 1,3butadienes to access enantioenriched cycloadducts. These are generally catalysed by chiral secondary amines, which can be broadly categorised into two groups, depending on the way they induce π-diastereofacial selectivity (Scheme 1.26). The first group, which includes L-proline (121), forms hydrogen bonds to carbonyl groups present in electrophilic dienophiles, thus directing their approach from the same face (Scheme 1.26a). The second group consists of diarylprolinol silyl ethers, ${ }^{[7,12]}$ such as amine 80a, which bear a large substituent consisting of two aryl groups and a silyl protected alcohol on the pyrrolidine ring. These catalysts act by blocking the approach of a dienophile from the same face as the bulky substituent (Scheme 1.26b). The amine catalysts are
regenerated from the Diels-Alder adducts, for example by an elimination reaction, to provide the final product 124 and 127.

b)

Scheme 1.26 Examples of reactions involving secondary amine catalysts which a) direct the approach of a dienophile by forming a hydrogen bond and b) block one face with towards dienophile approach with a bulky substituent

1.4.1 Intermolecular Diels-Alder reactions with acyclic 1-amino-1,3-butadienes

In 2006, Jørgensen reported an enantioselective HOMO-activated 1-amino-1,3butadiene Diels-Alder reaction (Scheme 1.27a) ${ }^{[67]} \alpha, \beta$-Unsaturated aldehydes 128 were reacted with diethyl azodicarboxylate (129) in the presence of catalytic amounts of amine 80c and benzoic acid, which resulted in the formation of γ-substituted aldehyde 133 with high enantioselectivity. The first step of the reaction is proposed to be the condensation between aldehyde $\mathbf{1 2 8}$ and amine 80c to form 1-amino-1,3-butadiene 131. There are three potential nucleophilic sites in 1-amino-1,3-butadiene 131, the N , the 2 and the 4 positions. Computational studies showed that there was no energetic preference for direct addition at either position. Instead, the reaction was suggested to
proceed via a [4+2] reaction to give intermediate $\mathbf{1 3 2}$ followed by hydrolysis of the aminal to generate the observed product 133. The observed stereochemistry of enantiomer $\mathbf{1 3 3}$ is consistent with the aza dienophile approaching from the less hindered face of the 1 -amino-1,3-butadiene in the Diels-Alder reaction. The proposed cycloaddition mechanism was also supported by an experiment in which the proposed 1-amino-1,3-butadiene intermediate $\mathbf{1 3 1}$ was trapped as the cycloaddition product $\mathbf{1 3 5}$ by using NMM as the dienophile (Scheme 1.27b).

b)

Scheme 1.27 a) γ-Amination of aldehyde 128 via 1 -amino-1,3-butadiene 131 b) Synthesis of cycloadduct $\mathbf{1 3 5}$ from aldehyde $\mathbf{1 3 4}$

Hong and co-workers reported the reaction between aldehydes 136, β-substituted acroleins $\mathbf{1 3 7}$ and L-proline (121) to generate cyclohexenes $\mathbf{1 4 1}$ (Scheme 1.28). ${ }^{[68]}$ Two possible mechanisms were proposed. Condensation between aldehyde 136 and Lproline (121) generates 1 -amino-1,3-butadiene 138 which either undergoes a step-wise, formal Diels-Alder reaction involving a conjugate addition reaction followed by an intramolecular Mannich addition (Scheme 1.28a) or a direct Diels-Alder reaction (Scheme 1.28b) to generate cyclohexene 140. Elimination of L-proline provides 1,3cyclohexadiene 141. The authors favour the stepwise mechanism as reactions of (E) and (Z)-4-acetoxycrotonaldehyde $\left(\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OAc}, \mathrm{R}^{2}=\mathrm{H}\right)$ delivered products with the same stereochemistry, indicating that the stereochemistry of the dienophile is scrambled in the reaction. The synthetic utility of the method was demonstrated by the conversion of cycloadduct $\mathbf{1 4 3}$ to (+)-palitantin (144) in 10 steps (Scheme 1.28c).

(a)
\downarrow elimination

(b)
L-proline 121
($50 \mathrm{~mol} \%$),

Scheme 1.28 a) Proposed condensation/step-wise addition/elimination reaction mechanism b) Proposed condensation/Diels-Alder/elimination mechanism c) Synthesis of (+)-palitantin (144) from aldehyde 142 via adduct 143

A similar reaction was performed using cyclic dienophiles such as pyranones 147 with amine 80a and p-nitrobenzoic acid (Scheme 1.29). ${ }^{[69]}$ Only one of the enantiomers \boldsymbol{S}-147 is reactive in the Diels-Alder reaction whereas the non-reactive enantiomer \boldsymbol{R} - $\mathbf{1 4 7}$ undergoes racemisation over the course of the reaction, which generates more of the reactive enantiomer $\boldsymbol{S} \mathbf{- 1 4 7}$. This dynamic kinetic resolution resulted in the intermediate Diels-Alder adducts $\mathbf{1 4 8}$ being produced, which upon elimination generated the bicycles
149. In the case of α, β-unsaturated aldehydes without γ substituents (i.e. $\mathrm{R}^{1}=\mathrm{H}$), lower enantioselectivities of 65:35 to 67.5:32.5 er were observed.

Scheme 1.29 Condensation/Diels-Alder/elimination reaction of aldehydes 146, amine 80a and pyranones 147

In a similar example, Jørgensen et al. reported the reaction between aldehydes 150, substituted 1,4-quinones 151, amine ent-80a and an acid co-catalyst to generate bicyclic adducts $\mathbf{1 5 5}$ with high regio- and enantioselectivity (Scheme 1.30). ${ }^{[70]}$ In this case, computational studies suggested the mechanism to be a stepwise conjugate addition then intramolecular Mannich addition rather than a concerted Diels-Alder reaction to form bicycle 154. The site selectivity is determined in the conjugate addition step where
reaction at the substituted β carbon was calculated to be slightly more favourable than at the unsubstituted α carbon. Bicycle 154 is also the most thermodynamically favoured product in this reversible reaction. The observed enantiomer $\mathbf{1 5 5}$ was a result of addition of quinone $\mathbf{1 5 1}$ to 1 -amino-1,3-butadiene $\mathbf{1 5 2}$ from the face opposite to the bulky pyrrolidine substituent in a "stacked" transition state, which was proposed to be preferred due to favourable electrostatic attraction between amine and quinone.

Scheme 1.30 Condensation/conjugate addition/intramolecular Mannich addition/elimination reaction between aldehydes 150, substituted quinones 151 and amine ent-80a

Serebryakov reported the reaction between aldehyde 79, malonate 156 and amine 80d (Scheme 1.31). ${ }^{[71]}$ The reaction is proposed to start with a condensation between aldehyde 79 and amine $80 d$ to form 1-amino-1,3-butadiene 158 followed by a DielsAlder reaction with malonate 156 via transition state 159 to generate cycloadduct 160, which lacks a proton on the α carbon necessary for regeneration of the amine catalyst by elimination. In this case, the carboxylic acid substituent on the dienophile is essential in freeing the amine catalyst through a decarboxylative elimination sequence.

1,3-Cyclohexadiene 161 was obtained in 40% yield and a reported 100:0 er, which was determined using a chiral shift agent and ${ }^{1} \mathrm{H}$ NMR spectroscopy. Due to the limits of detection of $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy, it would be more accurate for the enantiomeric ratio to be reported as $>95: 5 .{ }^{[72]}$

Scheme 1.31 Condensation/Diels-Alder/decarboxylative elimination reaction between aldehyde 79, malonate 156 and amine $\mathbf{8 0 d}$

More recently, Wang and co-workers performed a similar reaction sequence using coumarin-3-carboxylic acids $\mathbf{1 6 3}$ as dienophiles to access tricyclic Diels-Alder adducts 168 (Scheme 1.32). ${ }^{[73]}$ The observed stereochemical outcome is a result of endoselective (with respect to the carboxylic acid) Diels-Alder reaction between 1-amino-1,3-butadiene 165 and dienophile 163. The dienophile approaches 1 -amino-1,3butadiene $\mathbf{1 6 5}$ from the bottom face as shown in transition structure $\mathbf{1 6 6}$ to generate cycloadduct 167, which undergoes decarboxylative elimination to afford tricycle 168.

Scheme 1.32 Condensation/Diels-Alder/decarboxylative elimination reaction between aldehydes 162, dienophiles 163 and amine 80e

1.4.2 Intramolecular Diels-Alder reactions with acyclic 1-amino-1,3-butadienes

Aldehydes 169, which are tethered to a cyclic dienophile, were converted into fused tricycles $\mathbf{1 7 3}$ in the presence of amine 80a (Scheme 1.33). ${ }^{[74]}$ It is proposed that condensation between aldehydes 169 and amine 80a led to the formation of 1-amino-1,3-butadienes 170, which reacted in an IMDA reaction to generate cycloadducts $\mathbf{1 7 2}$. Elimination of amine $\mathbf{8 0}$ delivered tricycles 173. The stereochemical outcome of the reaction is a result of endo approach of the dienophile from the face opposite to the bulky pyrrolidine ring substituent in the Diels-Alder reaction. Aldehyde 169b bears substituents at the β-positions of the dienophile (i.e. R^{1} is not hydrogen) and underwent the same reaction to form tricycle 173b with lower enantioselectivity.

Scheme 1.33 Condensation/IMDA/elimination reaction reactions of aldehydes 169a and 169b with amine 80a

A similar condensation/IMDA/elimination reaction sequence between dialdehydes $\mathbf{1 7 4}$ and amine 80a produced bicyclic cycloadducts 177 via 1-amino-1,3-butadiene 175 (Scheme 1.34a). ${ }^{[75]}$ The cycloadducts were reduced in situ and isolated as alcohols 178. The stereochemical outcome of the reaction is a result of endo approach of the dienophile from the face opposite to the bulky pyrrolidine ring substituent in the DielsAlder reaction. With precursor 179, where one of the aldehydes was replaced with a ketone, the expected cycloaddition did not occur. Cyclopentane 182, a product of intramolecular γ addition of 1-amino-1,3-butadiene $\mathbf{1 8 0}$ to the α, β-unsaturated ketone, was obtained instead (Scheme 1.34b).

Scheme 1.34 a) Condensation/IMDA/elimination reactions of dialdehydes 174 b) intramolecular γ addition of 1-amino-1,3-butadiene 180

1.4.3 Intermolecular formal Diels-Alder reactions with semi-cyclic 1-amino-1,3butadienes

1-Amino-1,3,5,7-tetraenes have been reported to undergo formal Diels-Alder reactions via a stepwise mechanism (Scheme 1.35). ${ }^{[66]} 1$-Amino-1,3,5,7-tetraene 185, a product of condensation between aldehyde 183 and amine 80c, reacted with oxindoles 184 to generate tetracycles 188. 1-Amino-1,3,5,7-tetraene 185 was proposed to undergo conjugate addition to form zwitterions $\mathbf{1 8 6}$ followed by iminium tautomerisation and hydrolysis to generate aldehydes 187. Intramolecular aldol reaction of aldehyde 187 provided tetracycles $\mathbf{1 8 8}$. This reaction is both highly enantio- and diastereoselective. The steric bulk of amine catalyst 80c directs the conjugate addition to occur from the opposite face to the bulky pyrrolidine substituent while in the intramolecular addition, the oxindole fragment orientates to minimise the steric clash with the seven membered ring.

Scheme 1.35 Condensation/conjugate addition/intramolecular aldol reaction between aldehyde 183, oxindoles 184 and amine 80c

In 2014, Jørgensen and co-workers reported the use of semi-cyclic 1-amino-1,3butadienes 191 to access highly enantio-enriched steroidal frameworks 194 (Scheme
1.36). ${ }^{[76]}$ Condensation between aldehydes $\mathbf{1 8 9}$ and amine catalyst 80a resulted in the formation of 1 -amino-1,3-butadienes 191. The mechanism for subsequent transformations leading to tetracycle 194 was not described but may be similar to the mechanism proposed for the conversion of 1 -amino-1,3,5,7-tetraene $\mathbf{1 8 5}$ to tetracycle 188 in Scheme 1.35. Tetracycle 195 was converted to Torgov's diene 196 in four steps, which constituted a formal total synthesis of (+)-estrone (197).

Scheme 1.36 Synthesis of tetracyclic steroidal framework 194 and Torgov's diene 196

Jørgensen et al. reported an enantioselective Diels-Alder reaction involving semi-cyclic cross-conjugated 1-amino-[3]dendralenes 199, derived from aldehydes 198 and chiral amine 80a, and dienophiles 200 (Scheme 1.37). ${ }^{[77]}$ While the reaction can take place at two possible 1,3-butadiene sites, only the cycloaddition product arising from reaction at
the cyclic 1,3-butadiene unit distant to the amine substituent was observed. Hydrolysis and Wittig olefination of cycloadducts 201 provided spirocycles 203.

Scheme 1.37 Condensation/Diels-Alder/hydrolysis reaction sequence between aldehydes 198, amine 80a and dienophiles 200 followed by hydrolysis and Wittig reaction to generate spirocycles 203

Further computational studies by Houk and co-workers showed that the formation of spirocycles 201 from 1-amino-[3]dendralenes $\mathbf{1 9 9}$ in Scheme 1.37 is a result of two step-wise addition reactions rather than a concerted cycloaddition as previously proposed (Scheme 1.38). ${ }^{[78]}$ The regioselectivity is attributed to the reversible formation of the kinetically favoured 1,2 -addition product $\mathbf{2 1 0}$, which could readily equilibrate to zwitterionic intermediate 209 via ring-opening. Intermediate 209 then undergoes bond rotation and 1,6 -addition to afford the thermodynamic product 207, which is irreversible.

observed product
conjugate addition

Scheme 1.38 Proposed mechanism and selectivity of the reaction between crossconjugated 1-amino-[3]dendralene 204 and oxindole 205

1.4.4 Intermolecular Diels-Alder reactions with acyclic 1-amino-1,3-butadienes that are part of an extended linear conjugated system

In 2011, the first example of a Diels-Alder reaction via a linear 1-amino-1,3,5-triene intermediate 213 was jointly reported by the groups of Jørgensen and Chen (Scheme 1.39). ${ }^{[79]}$ Using 3 -alkenic oxindoles 212 as the dienophile, aldehydes 211 derived 1-amino-1,3,5-trienes $\mathbf{2 1 3}$ underwent a highly regio-, diastereo- and enantioselective DielAlder reaction to generate spirocyclic adducts 214. Upon hydrolysis, amine 80b was regenerated to provide spirocycles 215. Computational studies suggested that the
observed regioselectivity is due to a combination of steric and electronic factors. There is a smaller energy barrier to access conformer 213c than conformer 213a from conformer 213b by bond rotation. This was proposed to be due to steric clash between the γ hydrogen and the pyrrolidine substituent present in conformer 213a. Calculated orbital coefficients also indicated that 1 -amino-1,3-butadiene 213c is more reactive as the HOMO energy level of the terminal C3=C4-C5=C6 1,3-butadiene is higher than that of the $\mathrm{C} 1=\mathrm{C} 2-\mathrm{C} 3=\mathrm{C} 41,3$-butadiene. The Diels-Alder cycloadducts 214 resulted from endo approach of the oxindoles dienophile $\mathbf{2 1 2}$ from the less sterically hindered face of 1-amino-1,3,5-triene 213c. Alkenic cyanoacetates 217 were also suitable dienophiles for the reaction, generating cyclohexenes 219.

Scheme 1.39 Diels-Alder reactions of 1-amino-1,3,5-trienes 213 with 3-alkenic oxindoles 212 and alkenic cyanoacetates 217

Since then, 1 -amino-1,3,5-trienes have been reported to undergo enantioselective DielsAlder reactions under similar conditions with other highly reactive dienophiles to furnish diverse structures (Scheme 1.40). Spirocycles bearing α, α-disubstituted amino acid 223, ${ }^{[80]}$ benzofuranone $224{ }^{[81]}$ and benzohexanone 225 substituents as well as cyclohexenes with nitro $\mathbf{2 2 6}{ }^{[28]}$ and 4-nitro-isoxazole $\mathbf{2 2 7}^{[82]}$ groups can be accessed. Heteroatoms such as sulfur ${ }^{[83]}$ and nitrogen ${ }^{[84]}$ can also be incorporated into the frameworks by using heterodienophiles, generating cycloadducts 228 and 229 respectively. In all of these reactions, the dienophile selectively reacts at the 1,3butadiene unit farther from the amine substituent of the 1 -amino-1,3,5-triene intermediate 222.

Scheme 1.40 Structures accessible via Diels-Alder reactions of 1-amino-1,3,5-trienes 222

Aldehyde 230, which possesses skipped conjugation, underwent condensation with amine ent-80a to generate 1 -amino-1,3,5-trienes 232 more readily than the
corresponding conjugated aldehyde 234, which was unreactive under the same reaction conditions (Scheme 1.41). ${ }^{[85]}$

Scheme 1.41 Diels-Alder reaction of 1-amino-1,3,5-triene 232 with nitroalkenes 231

1.5 Summary and Conclusions

1-amino-1,3-butadienes and 1-amino-3-siloxy-1,3-butadienes undergo inter- or intramolecular Diels-Alder reactions to generate a structurally diverse range of cycloadducts (Figure 1.4). Almost all the examples feature pre-formed alkyl substituted 1-amino-1,3-butadienes or 1-amino-3-siloxy-1,3-butadienes undergoing single DielsAlder reactions.

56a $\mathrm{n}=1$
56b $n=2$
56c $n=3$

59a $\mathrm{n}=1$
59b $\mathrm{n}=2$
59c $n=3$

90a

93

43

Figure 1.4 Cycloadducts obtained from Diels-Alder reactions of 1-amino-1,3butadienes and 1-amino-3-siloxy-1,3-butadienes

By combining multiple transformations in one pot, more efficient routes to polycyclic structures are possible. There are two examples in which the Diels-Alder reaction of 1-amino-1,3-butadienes or 1-amino-3-siloxy-1,3-butadienes is combined with other transformations in one synthetic operation. The synthesis and Diels-Alder reactions of 1-amino-1,3-butadiene 77 were performed in one-pot to provide cyclohexenes 78 (Scheme 1.42a). ${ }^{[43]}$ 1-Amino-3-siloxy-1,3-butadiene $\mathbf{8 9}$ underwent a DielsAlder/hydrolysis/IMDA/aromatisation reaction sequence to generate tricycle 118 in one step (Scheme 1.42b). ${ }^{[57]}$ The development of new methodology combining different reactions with the Diels-Alder reaction or with other functionalised 1 -amino-1,3butadienes will enable access to a larger variety of complex polycyclic frameworks.

Scheme 1.42 a) One pot condensation/Diels-Alder reaction between aldehydes 22, nitroalkenes 76 and amines b) One-pot Diels-Alder/hydrolysis/IMDA/aromatisation reaction of 1-amino-3-siloxy-1,3-butadiene 116

The use of chiral amines to generate the corresponding 1-amino-1,3-butadienes has allowed access to enantioenriched condensation/Diels-Alder products. Different methods, such as hydrolysis, elimination and decarboxylative elimination, have been used to release the amine catalyst from the condensation/Diels-Alder product, so as to complete the catalytic cycle (Scheme 1.43).

c)

Scheme 1.43 Catalytic enantioselective reaction sequences involving condensation/Diels-Alder reactions followed by a) hydrolysis, b) elimination and c) decarboxylative elimination

The reactivity of different types of substituted 1-amino-1,3-butadienes such as 1-amino-1,3,5-trienes 213c and semi-cyclic 1-amino-[3]dendralenes $\mathbf{1 9 9}$ in aminocatalytic reactions has also been explored (Scheme 1.44). The use of acyclic 1-amino[3]dendralenes 235, which have the potential to undergo multiple Diels-Alder reactions, has not been reported.

Scheme 1.44 Catalytic enantioselective condensation/formal Diels-Alder reaction sequences of a) 1-amino-1,3,5-trienes 213c, b) semi-cyclic 1-amino-[3]dendralenes $\mathbf{1 9 9}$ and c) acyclic 1-amino-[3]dendralenes $\mathbf{2 3 5}$

1.6 Aims

Dendralenes have been shown to undergo diene-transmissive Diels-Alder reaction sequences ${ }^{[86,87]}$ to generate complex structures in step-economic ${ }^{[88-91]}$ transformations. It was anticipated that 1 -amino-[3]dendralenes will be useful for rapidly accessing heterocyclic frameworks closely related to alkaloids and medicinal compounds as well as enantioenriched polycyclic structures. This thesis explores the synthesis and use of acyclic 1-amino-[3]dendralenes in highly efficient and selective domino Diels-Alder
sequences. Chapter 2 describes the development of new methodology involving the synthesis of 1-amino-[3]dendralenes 237 and their double Diels-Alder reactions (Scheme 1.45). The initial focus was on investigating the reactivity and scope of the condensation/single Diels-Alder reaction sequence (aldehyde 236 to mono-adduct 238) using various amines and dienophiles. The sequence was then extended to include a second inter- or intramolecular Diels-Alder reaction to generate polycyclic nitrogencontaining frameworks such as bicycle 239 and tricycle 240.

Scheme 1.45 Proposed one-pot synthesis of 1-amino-[3]dendralenes 237 and their double Diels-Alder reactions

Chapter 3 describes the development of enantioselective Diels-Alder reactions involving chiral 1-amino[3]dendralenes. The first aim of this chapter was to develop and optimise the enantioselective Diels-Alder reaction between aldehyde 236, amine 80a and β-substituted acroleins 241 (Scheme 1.46). The second aim was to extend the reaction to include multiple Diels-Alder reactions to access polycyclic enantioenriched products such as tricycle 244. The final objective was to briefly explore the twofold condensation/Diels-Alder/elimination reaction sequence of diene-dialdehyde 245.

b)

Scheme 1.46 a) Proposed Diels-Alder reactions of 1-amino[3]dendralene 242 and b) proposed condensation/Diels-Alder/elimination reaction sequence of diene-dialdehyde 245

1.7 References

[1] K. N. Houk, Acc. Chem. Res. 1975, 8, 361-369.
[2] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, 1976.
[3] D. Enders, O. Meyer, Liebigs Ann. 1996, 1996, 1023-1035.
[4] D. B. Ramachary, Y. V. Reddy, Eur. J. Org. Chem. 2012, 865-887.
[5] M. Petrzilka, J. I. Grayson, Synthesis 1981, 1981, 753-786.
[6] P. W. Hickmott, Tetrahedron 1984, 40, 2989-3051.
[7] A. Mielgo, C. Palomo, Chem. Asian. J. 2008, 3, 922-948.
[8] M. Nielsen, D. Worgull, T. Zweifel, B. Gschwend, S. Bertelsen, K. A. Jorgensen, Chem. Commun. 2011, 47, 632-649.
[9] J.-L. Li, T.-Y. Liu, Y.-C. Chen, Acc. Chem. Res. 2012, 45, 1491-1500.
[10] H. Jiang, L. Albrecht, K. A. Jorgensen, Chem. Sci. 2013, 4, 2287-2300.
[11] I. D. Jurberg, I. Chatterjee, R. Tannert, P. Melchiorre, Chem. Commun. 2013, 49, 4869-4883.
[12] B. S. Donslund, T. K. Johansen, P. H. Poulsen, K. S. Halskov, K. A. Jørgensen, Angew. Chem. Int. Ed. 2015, 54, 13860-13874.
[13] T. C. Wu, J. Mareda, Y. N. Gupta, K. N. Houk, J. Am. Chem. Soc. 1983, 105, 6996-6997.
[14] F. Kienzle, I. Mergelsberg, J. Stadlwieser, W. Arnold, Helv. Chim. Acta 1985, 68, 1133-1139.
[15] R. L. Snowden, S. M. Linder, Helv. Chim. Acta 1988, 71, 1587-1597.
[16] H. R. Snyder, R. B. Hasbrouck, J. F. Richardson, J. Am. Chem. Soc. 1939, 61, 3558-3560.
[17] W. Langenbeck, O. Gödde, L. Weschky, R. Schaller, Ber. Dtsch. Chem. Ges. 1942, 75, 232-236.
[18] S. Hunig, H. Kahanek, Chem. Ber. 1957, 90, 238-245.
[19] J. P. Gouesnard, G. J. Martin, M. Blain, Tetrahedron 1974, 30, 151-157.
[20] N. Tesson, S. Deshayes, Org. Prep. Proced. Int. 2000, 32, 41-45.
[21] J. Sauer, R. Sustmann, Angew. Chem. Int. Ed. 1980, 19, 779-807.
[22] R. B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry, Verlaag Chemie: Weinheim, 1970.
[23] J. I. García, J. A. Mayoral, L. Salvatella, Acc. Chem. Res. 2000, 33, 658-664.
[24] B. Potthoff, E. Breitmaier, Chem. Ber. 1987, 120, 255-257.
[25] J. G. Martin, R. K. Hill, Chem. Rev. 1961, 61, 537-562.
[26] M. Node, K. Nishide, H. Imazato, R. Kurosaki, T. Inoue, T. Ikariya, Chem. Commun. 1996, 2559-2560.
[27] R. J. Stoodley, W.-H. Yuen, Chem. Commun. 1997, 1371-1372.
[28] Z. J. Jia, Q. Zhou, Q. Q. Zhou, P. Q. Chen, Y. C. Chen, Angew. Chem. Int. Ed. 2011, 50, 8638-8641.
[29] R. Sustmann, M. Rogge, U. Nuechter, H. Bandmann, Chem. Ber. 1992, 125, 1647-1656.
[30] L. R. Domingo, J. A. Saez, Org. Biomol. Chem. 2009, 7, 3576-3583.
[31] R. Sustmann, W. Sicking, J. Am. Chem. Soc. 1996, 118, 12562-12571.
[32] M. Linder, T. Brinck, J. Org. Chem. 2012, 77, 6563-6573.
[33] R. L. Snowden, R. Brauehli, M. Wüst, Helv. Chim. Acta 1990, 73, 640-651.
[34] R. L. Snowden, M. Wüst, Tetrahedron Lett. 1986, 27, 699-702.
[35] R. L. Snowden, M. Wüst, Tetrahedron Lett. 1986, 27, 703-704.
[36] W. Oppolzer, Angew. Chem. Int. Ed. 1977, 16, 10-23.
[37] G. Brieger, J. N. Bennett, Chem. Rev. 1980, 80, 63-97.
[38] T. C. Wu, K. N. Houk, Tetrahedron Lett. 1985, 26, 2293-2296.
[39] F. K. Brown, K. N. Houk, Tetrahedron Lett. 1985, 26, 2297-2300.
[40] W. R. Roush, in Comprehensive Organic Synthesis (Ed.: I. Fleming), Pergamon, Oxford, 1991, pp. 513-550.
[41] R. K. Boeckman Jr, S. R. Breining, A. Arvanitis, Tetrahedron 1997, 53, 89418962.
[42] D. Craig, Chem. Soc. Rev. 1987, 16, 187-238.
[43] A. K. Weber, J. Schachtner, R. Fichtler, T. M. Leermann, J. M. Neudoerfl, A. J. von Wangelin, Org. Biomol. Chem. 2014, 12, 5267-5277.
[44] S. A. Kozmin, V. H. Rawal, J. Org. Chem. 1997, 62, 5252-5253.
[45] S. A. Kozmin, J. M. Janey, V. H. Rawal, J. Org. Chem. 1999, 64, 3039-3052.
[46] S. A. Kozmin, M. T. Green, V. H. Rawal, J. Org. Chem. 1999, 64, 8045-8047.
[47] A. B. Smith, III, K. Basu, T. Bosanac, J. Am. Chem. Soc. 2007, 129, 1487214874.
[48] J. Hayashida, V. H. Rawal, Angew. Chem. Int. Ed. 2008, 47, 4373-4376.
[49] L.-F. You, R. P. Hsung, A. A. Bedermann, A. V. Kurdyumov, Y. Tang, G. S. Buchanan, K. P. Cole, Adv. Synth. Catal. 2008, 350, 2885-2891.
[50] A. B. Smith, III, T. Bosanac, K. Basu, J. Am. Chem. Soc. 2009, 131, 2348-2358.
[51] S. A. Kozmin, V. H. Rawal, J. Am. Chem. Soc. 1997, 119, 7165-7166.
[52] Y. Huang, A. K. Unni, A. N. Thadani, V. H. Rawal, Nature 2003, 424, 146-146.
[53] A. N. Thadani, A. R. Stankovic, V. H. Rawal, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5846-5850.
[54] Y. Watanabe, T. Washio, N. Shimada, M. Anada, S. Hashimoto, Chem. Commun. 2010, 7294-7296.
[55] A. K. Unni, N. Takenaka, H. Yamamoto, V. H. Rawal, J. Am. Chem. Soc. 2005, 127, 1336-1337.
[56] F. R. Petronijevic, P. Wipf, J. Am. Chem. Soc. 2011, 133, 7704-7707.
[57] S. K. Bur, A. Padwa, Org. Lett. 2002, 4, 4135-4137.
[58] A. Padwa, S. K. Bur, H. Zhang, J. Org. Chem. 2005, 70, 6833-6841.
[59] B. List, R. A. Lerner, C. F. Barbas, J. Am. Chem. Soc. 2000, 122, 2395-2396.
[60] K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243-4244.
[61] D. W. C. MacMillan, Nature 2008, 455, 304-308.
[62] P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem. Int. Ed. 2008, 47, 6138-6171.
[63] S. Bertelsen, K. A. Jorgensen, Chem. Soc. Rev. 2009, 38, 2178-2189.
[64] S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 54715569.
[65] I. Kumar, P. Ramaraju, N. A. Mir, Org. Biomol. Chem. 2013, 11, 709-716.
[66] J. Stiller, P. H. Poulsen, D. C. Cruz, J. Dourado, R. L. Davis, K. A. Jorgensen, Chem. Sci. 2014, 5, 2052-2056.
[67] S. Bertelsen, M. Marigo, S. Brandes, P. Diner, K. A. Jorgensen, J. Am. Chem. Soc. 2006, 128, 12973-12980.
[68] B.-C. Hong, M.-F. Wu, H.-C. Tseng, G.-F. Huang, C.-F. Su, J.-H. Liao, J. Org. Chem. 2007, 72, 8459-8471.
[69] A. Orue, E. Reyes, J. L. Vicario, L. Carrillo, U. Uria, Org. Lett. 2012, 14, 37403743.
[70] T. K. Johansen, C. V. Gómez, J. R. Bak, R. L. Davis, K. A. Jørgensen, Chem. Eur. J. 2013, 19, 16518-16522.
[71] E. P. Serebryakov, A. G. Nigmatov, M. A. Shcherbakov, M. I. Struchkova, Russ. Chem. Bull. 1998, 47, 82-90.
[72] Y. Perez-Fuertes, A. M. Kelly, J. S. Fossey, M. E. Powell, S. D. Bull, T. D. James, Nat. Protocols 2008, 3, 210-214.
[73] A. Song, X. Zhang, X. Song, X. Chen, C. Yu, H. Huang, H. Li, W. Wang, Angew. Chem. Int. Ed. 2014, 53, 4940-4944.
[74] A. Fraile, J. Alemán, Synlett 2015, 26, 1940-1954.
[75] R. M. de Figueiredo, R. Frohlich, M. Christmann, Angew. Chem. Int. Ed. 2008, 47, 1450-1453.
[76] K. S. Halskov, B. S. Donslund, S. Barfüsser, K. A. Jørgensen, Angew. Chem. Int. Ed. 2014, 53, 4137-4141.
[77] K. S. Halskov, T. K. Johansen, R. L. Davis, M. Steurer, F. Jensen, K. A. Jørgensen, J. Am. Chem. Soc. 2012, 134, 12943-12946.
[78] A. Dieckmann, M. Breugst, K. N. Houk, J. Am. Chem. Soc. 2013, 135, 32373242.
[79] Z.-J. Jia, H. Jiang, J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J. Grouleff, Y.-C. Chen, K. A. Jorgensen, J. Am. Chem. Soc. 2011, 133, 5053-5061.
[80] H. Jiang, B. Gschwend, Ł. Albrecht, S. G. Hansen, K. A. Jørgensen, Chem. Eur. J. 2011, 17, 9032-9036.
[81] X. Li, M. H. Lin, Y. Han, F. Wang, J. P. Cheng, Org. Lett. 2014, 16, 114-117.
[82] Y. Li, F. J. López-Delgado, D. K. B. Jørgensen, R. P. Nielsen, H. Jiang, K. A. Jørgensen, Chem. Commun. 2014, 50, 15689-15691.
[83] H. Jiang, D. C. Cruz, Y. Li, V. H. Lauridsen, K. A. Jørgensen, J. Am. Chem. Soc. 2013, 135, 5200-5207.
[84] J. X. Liu, Q. Q. Zhou, J. G. Deng, Y. C. Chen, Org. Biomol. Chem. 2013, 11, 8175-8178.
[85] L. Prieto, G. Talavera, U. Uria, E. Reyes, J. L. Vicario, L. Carrillo, Chem. Eur. J. 2014, 20, 2145-2148.
[86] H. Hopf, M. S. Sherburn, Angew. Chem. Int. Ed. 2012, 51, 2298-2338.
[87] M. S. Sherburn, Acc. Chem. Res. 2015, 48, 1961-1970.
[88] P. A. Wender, B. L. Miller, in Organic Synthesis: Theory and Applications, Vol. 2 (Ed.: T. Hudlicky), JAI Press, Greenwich, 1993, pp. 27-66.
[89] P. A. Wender, S. T. Handy, D. L. Wright, Chem. Ind. (London) 1997, 765, 767769.
[90] T. Newhouse, P. S. Baran, R. W. Hoffmann, Chem. Soc. Rev. 2009, 38, 30103021.
[91] P. A. Wender, B. L. Miller, Nature 2009, 460, 197-201.

2 Multicomponent Diene-Transmissive Diels-Alder Sequences Featuring Aminodendralenes

2.1 Context

Dendralenes have previously been shown to generate polycyclic frameworks in a step-economic manner through diene-transmissive Diels-Alder reaction sequences. As described in the previous chapter, the Diels-Alder reactions of 1 -amino-1,3-butadienes and 1-amino-3-siloxy-1,3-butadienes have been reported. In contrast, there has been only one report involving a semi-cyclic 1-amino[3]dendralene. This chapter describes the first use of acyclic 1-amino[3]dendralenes in highly selective multicomponent reactions through in situ formation and diene-transmissive Diels-Alder cycloaddition sequences to generate a variety of heterocyclic structures. The mechanism of the reaction and origins of the observed π-diastereofacial selectivity are explained with the help of density functional theory calculations, which were performed by Prof Michael N. Paddon-Row. As briefly mentioned on page 11, the Diels-Alder reaction between a highly electron-rich diene such as 1 -amino[3]dendralene and a highly electron-poor dienophile may proceed through a concerted or stepwise (i.e. conjugate addition followed by intramolecular Mannich) reaction mechanism. More specifically, a concerted Diels-Alder reaction may be synchronous (i.e. bonds form and break to the same extent in the transition state) or asynchronous (i.e. some bonds form or break to a greater extent than others in the transition state). The DFT calculations showed that the

Diels-Alder reaction between 1-amino[3]dendralenes and N -methyl maleimide (NMM) occurred through a concerted and asychronous mechanism.

The manuscript was published in Angewandte Chemie International Edition on 28 January, 2016. Reprinted (adapted) with permission (S. M. Tan, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Angew. Chem. Int. Ed. 2016, 55, 3081-3085.). Copyright (2016) John Wiley \& Sons Inc. The other authors are Dr Anthony C. Willis, Professor Michael N. Paddon-Row and my supervisor, Professor Michael S. Sherburn. The project was conceived, designed, evolved and drafted in collaboration with Professor Sherburn. The computational studies of the paper were carried out and drafted by Professor Paddon-Row. Dr Willis solved and refined X-ray crystallographic data from samples provided by myself. Dr Emily Mackay and Ms Natalie Shadwell worked with me on the synthesis of iodide SI-12, boroxine SI-14, aldehydes 1c and 1d and bis-adduct 4d and the original synthesis of alcohol precursors SI-2, SI-3, SI-4 and SI-5 as part of Ms Shadwell's undergraduate project and are acknowledged in the manuscript. I repeated and optimised the synthesis of alcohol precursors SI-2, SI-3, SI4 and SI-5 under a different set of reaction conditions, which is included in the supporting information. All other reactions that appear in the paper were conducted by myself. (The structures in the paper reproduced in this thesis have been colourised to be consistent with the rest of the thesis.)

TOC Graphic

2.2 Publication

Domino Reactions

Multicomponent Diene-Transmissive Diels-Alder Sequences Featuring Aminodendralenes

Siu Min Tan, Anthony C. Willis, Michael N. Paddon-Row,* and Michael S. Sherburn*

Abstract: 1-Aminodecalins were prepared from acyclic precursors by combining the powerful twofold diene-transmissive Diels-Alder chemistry of [3]dendralenes with the simplicity of enamine formation. On mixing at ambient temperature, a simple dienal condenses with a primary or secondary amine to generate the enamine, a 1-amino-[3]dendralene in situ, and this participates as a double diene in a sequence of two Diels-Alder events with separate dienophiles. Overall, four $\mathrm{C}-\mathrm{C}$ bonds and one $\mathrm{C}-\mathrm{N}$ bond are formed. Mechanistic insights into these reactions are provided by means of density functional theory calculations.
Step-economic synthesis necessitates the invention of new methods for converting simple and readily accessible precursors into more complex products. ${ }^{[1,2]}$ The rapid generation of structural complexity is inexorably linked with processes that form several new covalent bonds. Such multiple single-bond-forming transformations ${ }^{[1]}$ have several subclassifications, with those involving successive reactions at sequentially generated functional groups featuring strongly in current research endeavors. ${ }^{[3]}$ In addition to maximizing useful structural complexity gains, a new synthetic method should ideally be atom-economic, ${ }^{[4]}$ operationally simple, and robust. ${ }^{[5]}$

Dendralenes ${ }^{[6]}$ are cross-conjugated olefins of significant value in the step-economic synthesis of complex molecules owing to their multiple-1,3-butadiene character, which permits their participation in diene-transmissive ${ }^{[7]}$ Diels-Alder (DA) cycloaddition sequences. ${ }^{[8]}$ Such sequences, which are amongst the most powerful of all multiple single-bondforming processes, ${ }^{[9]}$ are now finding application in stepeconomic total synthesis. ${ }^{[10]}$ The dendralenes are invariably made first and then used separately in a cycloaddition sequence. ${ }^{[6]}$ If it were possible to unite the preparation of dendralenes with their cycloaddition sequences in a single, simple synthetic operation, we reasoned that significant efficiency dividends would result. Herein, we report the successful realization of this proposition. The conceptualized

[^0]

Scheme 1. Schematic representation of the four-component sequence.
sequence is depicted in stripped-back form in Scheme 1, and shows that skipped dienal 1 would condense reversibly with an amine to generate 1 -amino-[3]dendralene 2. ${ }^{[11]}$ Steric effects notwithstanding, this species would be expected to react with an electron-poor dienophile at the more strongly activated 1,3 -disubstituted 1,3 -butadiene unit ${ }^{[12]}$ to produce "transmitted" semicyclic diene 3, which would in turn react with a second dienophile to deliver aminodecalin ${ }^{[13]}$ system 4 Significant structural complexity would thus be generated from four simple precursors through three consecutive reactions.
E-Configured trienamine 2a was generated in CDCl_{3} solution at ambient temperature within 5 minutes, simply by mixing methylene-skipped dienal 1a with morpholine (Scheme 2). ${ }^{[14]}$ The new dendralene $\mathbf{2 a}$ readily decomposed upon attempted isolation or standing in solution, thereby resulting in complex mixtures of products including the two geometrical isomers of isomeric conjugated dienal 1a' Addition of the electron-poor dienophile N-methylmaleimide (NMM) to a preformed solution of trienamine $\mathbf{2 a}$ delivered endo-cycloadduct 3 a very cleanly. ${ }^{[12]}$ Conjugated dienal 1a' was not converted into trienamine $\mathbf{2 a}$, instead yielding the products of aza-Michael additions upon exposure to morpholine and NMM. ${ }^{[14,15]}$

Scheme 2. Generation and Diels-Alder reaction of trienamine 2a.

Scheme 4. One-pot, four-component sequences with dienal 1. Major stereoisomer depicted, d.r. $>95: 5$ unless indicated otherwise. [a] d.r. $=91: 9$. [b] d.r. $=71: 29$. [c] $C_{6} D_{6}$ solvent used. [d] 6.0 mol equiv NMM used.

Alder addition of a dienophile to the semicyclic diene segment of mono-adduct 3 (Scheme 4). Compounds 4a-c were produced through a highly diastereoselective endo addition of the dienophile to the face of the semicyclic diene intermediate $\mathbf{3}$ lacking the amine substituent. The diene component of skipped dienal $\mathbf{1 a}$ is also amenable to direct Diels-Alder addition by a dienophile, producing skipped enal $\mathbf{5}$ (Scheme 4), which upon addition of a second dienophile and amine gives rise to aminotetralins $\mathbf{7 a}$ and $\mathbf{7 b}$, presumably through the intermediacy of 1-amino-1,3-butadiene 6. Simply changing the order of addition of the dienophiles and amine to dienal 1 thus results in the formation of constitutional isomers 4 and 7, each of which carries five new covalent bonds and two new rings. Substitution on the precursor is also tolerated, as demonstrated by the formation of derivatives $\mathbf{4 d}$ and $\mathbf{4 e}$ from substituted skipped dienals $\mathbf{1 b}$ and $\mathbf{1 c}$.

In the presence of an excess of the dienophile NMM, dienal 1a reacted with a stoichiometric amount of firstgeneration MacMillan organocatalyst ${ }^{[18]} 8$ to deliver pentacycle $4 \mathbf{f}$ as the major diastereomeric product (d.r. $=73: 27$; Scheme 5). In a similar manner, Jørgensen-Hayashi organocatalyst ${ }^{[19]} 9$ generated four component product 4 g as a single diastereomer, within the limits of NMR detection. Enamines derived from amine $\mathbf{8}$ are known to be very poor nucleophiles ${ }^{[20]}$ so Diels-Alder trapping of the HOMO-activated trienamine derivative of oxazolidinone $\mathbf{8}$ with a dienophile is interesting.

Density functional theory calculations, using B3LYP/6$31 \mathrm{G}(\mathrm{d})$ model chemistry,${ }^{[14]}$ were carried out in order to gain mechanistic insights into the origin of the observed π diastereofacial selectivity of the first cycloadditions depicted in Scheme 5. ${ }^{[21]}$ It is instructive, in the first place, to analyze the two conformations associated with rotation about the

Scheme 5. Trapping trienamines of chiral amines as double DA adducts. [a] X-ray crystal structure of the tertiary alcohol product of silyl ether hydrolysis.
bond connecting the dendralene and the heterocycle in the two reactant aminodendralenes $\mathbf{2 b}$ and $\mathbf{2 c}$. As shown in Figure 1, the two conformations are distinguished according to whether the $\mathrm{N}-\mathrm{C} 2^{\prime}$ or $\mathrm{N}-\mathrm{C} 5^{\prime}$ bond partially eclipses the dendralene $\mathrm{C} 1-\mathrm{C} 2$ bond. The syn/anti notation refers to the disposition of the $\mathrm{N}-\mathrm{C} 5^{\prime}$ bond, that is, the bond involving the less substituted C^{\prime} atom, with respect to the $\mathrm{C} 1=\mathrm{C} 2$ bond. As might be expected from the small dihedral angles between $\mathrm{C} 1=\mathrm{C} 2$ and the partially eclipsing $\mathrm{N}-\mathrm{C}$ bond in both the syn and anti conformations of 2b and 2c (Figure 1), the syn conformer should be more stable than the anti conformer because of diminished adverse steric interactions between the dendralene $\mathrm{C}^{\prime}-\mathrm{H}$ group and the less substituted C^{\prime} center of the heterocycle. ${ }^{[2]}$ Indeed, the B3LYP calculations predict the syn form to be more stable than the anti form in both 2b and 2c, by 9.4 and $12.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively.

In both syn and anti conformers of $\mathbf{2 c}$, one of the OTMS methyl groups lies substantially over the $S i$ face of the dendralene C1C2C3C4 diene component of the former and over the $R e$ face of this diene component in the latter

2b-syn

Figure 2. B3LYP/6-31G(d)-optimized structures 2 b -syn and 2 c -syn, with the favored trajectories of dienophile approach indicated. H atoms are omitted from phenyl and some methyl groups and the dendralene is colored green for clarity.
(Figure 2). Stabilizing $\mathrm{CH} \cdots \pi$ interactions between a phenyl ring and the proximal methyl group in both $\mathbf{2 b}{ }^{[9,23]}$ and $\mathbf{2} \mathbf{c}^{[22}$ results in the aromatic ring partially obscuring the Si and Re faces of the diene component in the syn and anti forms, respectively (Figure 2).

The above analysis leads to a reactant-based explanation of the observed π-diastereofacial selectivity of the DA reactions of $\mathbf{2 b}$ and $\mathbf{2 c}$, namely that the dienophile preferen tially approaches the more exposed $R e$ faces of the syn conformers of $\mathbf{2 b}$ and $\mathbf{2 c}$ and the more exposed Si faces of the anti conformers of these molecules. Because the syn conformer is more stable than the anti form in both $\mathbf{2 b}$ and $\mathbf{2 c}$, which is greater for $\mathbf{2 c}$, it is concluded that $R e$ facial selectivity prevails in these reactions and that it should be more pronounced when using 2 c as the diene reagent than with $\mathbf{2 b}$. A more rigorous approach is to compare the relative energies of the transition structures (TSs) for $R e$ and S addition modes. The results with B3LYP optimized TSs for endo addition of NMM to $\mathbf{2 b}$ and $\mathbf{2 c}$ are presented in Table 1.

Table 1: Energies of B3LYP-optimized TSs for endo addition of NMM to 2 b and 2 c .

Cycloaddition mode $^{[f]}$	2c $\mathrm{H}^{+}{ }_{\text {rel }} \mathrm{G}^{+}{ }_{\text {rel }}$	2b H^{+}rel $\mathrm{G}^{+}{ }_{\text {re }}$
Re/syn	00	00
Si/spn	25.224 .3	6.24 .7
Re/anti	19.921 .2	16.514 .7
Si/anti	10.811 .0	5.65 .1
[a] See Figures 1 and 2 for definitions.		

The results of these calculations clearly predict a strong preference for Re-face addition to the syn conformations of the two aminodendralenes and indicate that $R e$ addition on the anti conformations is an unimportant pathway to Rebased product formation. The Si/anti channel is the near exclusive source of Si -based product from $\mathbf{2 c}$, whereas both Si/anti and Si/syn channels are contributors to the Si-based product in the case of $\mathbf{2 b}$. The relative free energy data in Table 1 indicate that π-diastereofacial selectivity in the DA reaction with NMM is stronger for aminodendralene $\mathbf{2 c}$ than

2b-syn
$H_{\text {rel }}=0$

Figure 1. Schematic of the two trienamine conformations for $\mathbf{2 b}$ and 2 c with respect to rotation about the $\mathrm{Cl}-\mathrm{N}$ bond, together with the B3LYP/6-31G(d) dihedral angles between the dendralene and $\mathrm{N}-\mathrm{C}$ bonds of the heterocycle, and their relative enthalpies, $H_{\text {rel }}(298 \mathrm{~K}$, k) mol^{-1}). Note the similar steric clash in the higher-energy anti conformations. a total $R e$-based product/Si-based product ratio of $99: 1$ and $76: 24$ for $\mathbf{2 c}$ and $\mathbf{2 b}$, respectively. These ratios are in reasonable accord with the experimental values of $>95: 5$ and $73: 27$, respectively (Scheme 5).

The main structural features of the reactant aminodendralenes, as discussed above, are essentially retained in the respective Diels-Alder transition structures (TSs), as exemplified by $2 \mathrm{c}-$ endo-Re-syn-TS and 2 c -endo-Si-anti-TS (Figure 3). A noteworthy feature of these TSs (and of those

2c-endo-Re-syn-TS

Figure 3. B3LYP/6-31G(d)-optimized TSs for the Diels-Alder cycloaddition of the NMM dienophile to aminodendralene $\mathbf{2 c}$. H atoms are omitted from phenyl and methyl groups and the dendralene is colored green for clarity.
not shown in the Figure) is the high degree of bond-forming asynchronicity between the two developing bonds between NMM and the dendralene diene component. Thus, the forming bond lengths in 2c-endo-Re-syn-TS are 2.896 and $2.083 \AA(\Delta r=0.81 \AA)$ and for $\mathbf{2 c}$ cendo-Si-anti-TS they are 2.905 and $2.072 \AA(\Delta r=0.83 \AA)$. The shorter forming bond involves C 6 of the central double bond of the aminodendralene and this has the effect of conferring stabilizing pentadienyl radicaloid character on the dendralene component. This large degree of bond-forming asynchronicity is a general characteristic of dendralenes in their DA addition reactions. ${ }^{[24]}$

Tethering the dienophile to the amine (as in $\mathbf{1 0 a} \mathbf{a} \mathbf{c}$) permits the second cycloaddition $(\mathbf{1 1} \rightarrow \mathbf{1 2})$ to be realized in an intramolecular ${ }^{[25]}$ fashion (Scheme 6). The benefits of employing this tactic include: 1) the generation of additional structural complexity with complete orientational regioselectivity, 2) attainment of products with complementary stereoselectivity to the intermolecular process, ${ }^{[26]}$ and 3) the ability to deploy nonactivated dienophiles ($\mathbf{1 0} \mathbf{a}$). Substituted dienals $\mathbf{1 d}$ and $\mathbf{1 e}$ also participate in the tricyclization sequence, thus confirming the robust character of this new method.

In summary, the first multicomponent reaction sequences involving dendralenic intermediates have been devised. These reactions are extraordinarily easy to perform in the laboratory, in most cases involving the mixing of simple precursors. The incorporation of a 1 -amino-substituent on the [3]dendralene backbone simultaneously augments both its reactivity and selectivity in diene-transmissive Diels-Alder sequences, ${ }^{[24]}$ at the same time delivering highly functional ized multicyclic products akin to alkaloids and medicinal

Scheme 6. Tricycle synthesis through one-pot, three-component sequences featuring an intramolecular Diels-Alder (IMDA) reaction. Major stereoisomer depicted, d.r. $>95: 5$ unless indicated otherwise. [a] mono-adducts 11 a and 11 f were isolated before being subjected to intramolecular cycloaddition. [b] 2.5 mol equiv of amine and dienophile used, acrolein as dienophile, yield of isolated product after NaBH_{4} reduction. [c] d.r. = 93:7.
agents. This study demonstrates the diversity of multicomponent transformations with only one amine group at a specific position of the simplest possible dendralene structure. Evidently, the possibilities for step-economic synthesis with aminodendralenes are vast.

Acknowledgements

This work was supported by the Australian Research Council. We thank Dr Emily Mackay and Ms Natalie Shadwell (ANU) for synthetic assistance. MNP-R acknowledges that the computational component of this research was undertaken with the assistance of resources provided at the NCI National Facility through the National Computational Merit Allocation Scheme supported by the Australian Government.

Keywords: density functional calculations • Diels-
Alder reactions - domino reactions - multicomponent reactions . polycycles

How to cite: Angew. Chem. Int. Ed. 2016, 55, 3081-3085 Angew. Chem. 2016, 128, 3133-3137
[1] P. A. Wender, B. L. Miller, in Organic Synthesis: Theory and Applications (Ed.: T. Hudlicky), JAI Press, Greenwich, 1993, pp. 27-66.
[2] a) P. A. Wender, S. T. Handy, D. L. Wright, Chem. Ind. (London, U.K.) 1997, 765, 767-769; b) P. A. Wender, B. L. Miller, Nature 2009, 460, 197-201; c) T. Newhouse, P. S. Baran, R. W. Hoffmann, Chem. Soc. Rev. 2009, 38, 3010-3021.
[3] N. J. Green, M. S. Sherburn, Aust. J. Chem. 2013, 66, 267-283. [4] B. M. Trost, Science 1991, 254, 1471-1477.
[5] K. D. Collins, F. Glorius, Nat. Chem. 2013, 5, 597-601.
[6] a) M. S. Sherburn, Acc. Chem. Res. 2015, 48, 1961-1970; b) H. Hopf, M. S. Sherburn, Angew. Chem. Int. Ed. 2012, 51, 22982338; Angew. Chem. 2012, 124, 2346-2389
[7] First mention of diene-transmissive: O. Tsuge, E. Wada, S Kanemasa, Chem. Lett. 1983, 239-242.
[8] Reviews of diene-transmissive Diels-Alder sequences: a) J. D. Winkler, Chem. Rev. 1996, 96, 167-176; b) see Refs [6a] and [6b].
[9] N. J. Green, A. L. Lawrence, G. Bojase, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Angew. Chem. Int. Ed. 2013, 52, 8333-8336; Angew. Chem. 2013, 125, 8491-8494.
[10] a) C. G. Newton, S. L. Drew, A. L. Lawrence, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Nat. Chem. 2015, 7, 82-86; b) S. V. Pronin, R. A. Shenvi, J. Am. Chem. Soc. 2012, 134, 19604-19606; c) N. A. Miller, A. C. Willis, M. S. Sherburn, Chem. Commun. 2008, 1226-1228.
[11] To our knowledge, only one report of such a system has been reported. Cyclic analogues of $\mathbf{2}$ participated in a $[4+2]$ annulation with a strongly activated dienophile at the diene site remote to the amine substituent: a) K. S. Halskov, T. K. Johansen, R. L. Davis, M. Steurer, F. Jensen, K. A. Jørgensen, J. Am. Chem. Soc. 2012, 134, 12943-12946. This outcome was subsequently traced to an inter-/intramolecular Michael addition sequence featuring a zwitterionic intermediate: b) A. Dieckmann, M. Breugst, K. N. a zwitterionic intermediate: b) A. Dieckmann, M.
Houk, J. Am. Chem. Soc. 2013, 135, 3237-3242.
[12] Many examples of condensations to form 1-amino-1,3-butadienes and subsequent Diels-Alder reactions have been reported. The earliest publication: a) H. R. Snyder, R. B. Hasbrouck, J. F. Richardson, J. Am. Chem. Soc. 1939, 61, 3558-3560; Recent reviews: b) H. Jiang, L. Albrecht, K. A. Jorgensen, Chem. Sci. 2013, 4, 2287-2300; c) I. D. Jurberg, I. Chatterjee, R. Tannert, P. Melchiorre, Chem. Commun. 2013, 49, $4869-4883$; d) D. B. Ramachary, Y. V. Reddy, Eur. J. Org. Chem. 2012, $865-887$; A review on enamine catalysis: S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, $5471-$ 5569.
[13] Notable compounds with this structure include the selective serotonin reuptake inhibitor sertraline, one of the most prescribed drugs in the USA, and members of the kalihinane diterpenoids, which exhibit potent antimalarial activity: a) W. M. Welch, Adv. Med. Chem. 1995, 3, 113-148; b) M. E. Daub, J. Prudhomme, K. Le Roch, C. D. Vanderwal, J. Am. Chem. Soc. 2015, 137, 4912-4915, and references therein.
[14] See the Supporting Information for full details.
[15] A related observation with an unbranched, skipped dienal during trienamine catalysis: L. Prieto, G. Talavera, U. Uria, E. Reyes, J. L. Vicario, L. Carrillo, Chem. Eur. J. 2014, 20, $2145-$ 2148.
[16] K. Alder, G. Stein, Angew. Chem. 1937, 50, 510-519.
[17] The more substituted 1,3-butadiene group of 1-amino-[3]dendralene 2 contains a 1 -amino substituent and a 3 -vinyl group. Rawal-type dienes carry a 1 -amino group and a 3-silyloxy group S. A. Kozmin, J. M. Janey, V. H. Rawal, J. Org. Chem. 1999, 64, 3039-3052. Akin to Danishefsky dienes, Rawal dienes are highly reactive partners in normal-electron-demand cycloaddition reactions.
[18] K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem Soc. 2000, 122, 4243-4244.
[19] a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jorgensen, Angew. Chem. Int. Ed. 2005, 44, 794-797; Angew. Chem. 2005, 117, 804-807; b) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212-4215; Angew. Chem. 2005, 117, 4284-4287.
[20] S. Lakhdar, B. Maji, H. Mayr, Angew. Chem. Int. Ed. 2012, 51, 5739-5742; Angew. Chem. 2012, 124, 5837-5840.
[21] The Gaussian 09 program was used for all calculations: M. J. Frisch, et al., Gaussian09, revision E.1, Gaussian Inc., Wallingford CT, 2009. See the Supporting Information for the full list of authors. All calculations refer to the gas phase and unless stated otherwise, activation parameters were calculated at 298.15 K.
[22] These findings are consistent with computational and experimental findings with related systems: a) U. Grošelj, D. Seebach, D. M. Badine, W. B. Schweizer, A. K. Beck, I. Krossing, P. Klose, Y. Hayashi, T. Uchimaru, Helv. Chim. Acta 2009, 92, 1225-1259 b) M. B. Schmid, K. Zeitler, R. M. Gschwind, Chem. Sci. 2011, 2, 1793-1803; c) reference [11b]
[23] a) R. Gordillo, K. N. Houk, J. Am. Chem. Soc. 2006, 128, $3543-$ 3553; b) C. Allemann, R. Gordillo, F. R. Clemente, P. H.-Y. Cheong, K. N. Houk, Acc. Chem. Res. 2004, 37, $558-569$
[24] a) M. N. Paddon-Row, M. S. Sherburn, Chem. Commun. 2012 , 48, 832-834; b) H. Toombs-Ruane, E. L. Pearson, M. N. Paddon-Row, M. S. Sherburn, Chem. Commun. 2012, 48, 6639-6641.
[25] Reviews of the intramolecular Diels-Alder reaction: a) A. G. Fallis, Can. J. Chem. 1984, 62, 183-234; b) D. Craig, Chem. Soc. Rev. 1987, 16, 187-238; c) B. R. Bear, S. M. Sparks, K. J. Shea Angew. Chem. Int. Ed. 2001, 40, 820-849; Angew. Chem. 2001, 113, $864-894$; d) K.-i. Takao, R. Munakata, K.-i. Tadano, Chem. Rev. 2005, 105, 4779-4807; e) W. R. Roush, in Advances in Cycloaddition, Vol. 2 (Ed.: D. P. Curran), JAI Press, Greenwich, 1990, pp. 91-146.
[26] The dienophile is constrained to approach the semicyclic diene from the same face as the amine with the shorter tether, as seen in the products 12c, d, and \mathbf{e}. Cycloadducts 12d and 12e are the result of an endo-selective IMDA reaction; we presume that the NMM-derived succinimide ring blocks endo approach of the $-\mathrm{CO}_{2} \mathrm{Me}$ group, thereby resulting in the formation of exo-adduct $\mathbf{1 2} \mathbf{c}$. We suspect that similar steric influences cause an approach of the dienophile to the convex face of the semicyclic diene during the IMDA reaction of the longer tethered substrates, giving rise to adducts $\mathbf{1 2} \mathrm{a}, \mathbf{1 2} \mathrm{b}, \mathbf{1 2} \mathrm{f}$, and $\mathbf{1 2 g}$
[27] CCDC nos. 1429160-1429173 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Received: November 25, 2015
Published online: January 28, 2016

2.3 Supporting Information

Angewandte smamentimentiment Chemie

Supporting Information

Multicomponent Diene-Transmissive Diels-Alder Sequences Featuring
Aminodendralenes
Siu Min Tan, Anthony C. Willis, Michael N. Paddon-Row,* and Michael S. Sherburn*
anie_201510925_sm_miscellaneous_information.pdf

Contents

General methods 1
Experimental Section 2
Synthesis of precursors2
Trienamine synthesis and Diels-Alder reaction 11
Reaction between aldehyde 1a', morpholine and NMM 11
Synthesis of mono-adducts $\mathbf{3 a}-\mathbf{3 n}$ 12
Synthesis of bis-adducts $\mathbf{4 a}-\mathbf{4 g}, \mathbf{7 a}$ and $\mathbf{7 b}$ 24
Synthesis of tricycles 12a-12g 33
References 40
Anisotropic Displacement Ellipsoid Plots for 3c, SI-8, SI-9, 4a-4c, 7b, 4f, SI-10, 12a-12c,
12e and 12f. 40
Stereochemical assignments by NMR 49
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra 55
Computational Section 143
Computational methods 143
References 143
Cartesian coordinates and energies of molecules 144
N -Methyl maleimide 144
Conformations of Jørgensen-Hayashi organocatalyst-derived aminodendralene 2c. 145
Conformations of MacMillan Generation 1 organocatalyst-derived aminodendralene 2b193
Transition structures for the endo addition of N-methyl maleimide to $\mathbf{2 b}$ 211
Transition structures for the endo addition of N-methyl maleimide to $\mathbf{2 b}$. 236

General methods

${ }^{1} \mathrm{H}$ NMR spectra were recorded under standard conditions at $800 \mathrm{MHz}, 400 \mathrm{MHz}$ or 300 MHz using a Bruker AVANCE 800, Bruker AVANCE 400, Varian MR400 or Varian Mercury 300 spectrometer. Residual chloroform ($\delta 7.26 \mathrm{ppm}$) was used as an internal reference for ${ }^{1} \mathrm{H}$ NMR spectra recorded in this solvent. Coupling constants (J) are quoted to the nearest 0.1 Hz . Assignment of proton signals was assisted by COSY and HSQC experiments where necessary. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 or 75 MHz on a Bruker AVANCE 400, Varian MR400 or Varian Mercury 300 spectrometer. Chloroform ($\delta 77.10 \mathrm{ppm}$) was used as an internal reference for ${ }^{13} \mathrm{C}$ NMR spectra recorded in this solvent. For other solvents, residual solvents were referenced according to Fulmer and co-workers. ${ }^{[1]}$ Assignment of carbon signals was assisted by HSQC and/or HMBC experiments. IR spectra were recorded on a Perkin-Elmer 1600 FTIR spectrometer as neat films on sodium chloride plates for oils, potassium bromide discs for solid products with only selected peaks being reported as characteristic. Low resolution electron impact (EI) mass spectra were recorded on an Agilent HP 6890 series gas GC/MS with a 7683 series injector. High resolution EI mass spectra were recorded on a Waters AutoSpec Premier spectrometer magnetic sector instrument, operating at 70 eV . Low resolution electrospray ionization (ESI) mass spectra were recorded on a ZMD Micromass spectrometer with Waters Alliance 2690 HPLC. High resolution ESI mass spectra were recorded on a Waters LCT Premier time-of-flight (TOF) mass spectrometer. Positive ionization was employed unless otherwise indicated. Melting points were measured on a Reichert melting point stage or Stanford Research Systems Optimelt-Automated Melting Point System and are uncorrected. Preparative HPLC was performed using a Waters 600E instrument. Analytical TLC was performed using Merck silica gel plates, pre-coated with silica gel 60 F243 (0.2 mm). Compounds on TLC were visualized by exposure to UV light and/or by dipping the plates in solutions of potassium permanganate followed by heating. Flash chromatography was carried out using Merck Kiesegel 60 ($230-400 \mathrm{mesh}$) silica gel. Reactions were conducted open to air unless otherwise indicated. Reaction conditions invoking microwave irradiation were carried out in a CEM Discover and Explorer SP microwave synthesis system. Solvents were dried using a solvent purification system based on that described by Pangborn and co-workers, ${ }^{[2]}$ or dried using standard laboratory methods. ${ }^{[3]}$ Deuterated chloroform was passed through basic silica prior to use. All chemicals were purchased from Sigma Aldrich, Alfa Aesar, Merck or Strem and used without further purification.

Experimental Section

Synthesis of precursors

Iodide SI-12

The title compound was prepared using a modified literature procedure. ${ }^{[4]}$ Chlorotrimethylsilane ($17.9 \mathrm{~mL}, 142 \mathrm{mmol}, 2 \mathrm{~mol}$ equiv) and water ($2.1 \mathrm{~mL}, 119 \mathrm{mmol}, 1.67$ mol equiv) were added successively to a solution of sodium iodide ($21.3 \mathrm{~g}, 142 \mathrm{mmol}, 2 \mathrm{~mol}$ equiv) in acetonitrile (140 mL). The creamy yellow reaction mixture was stirred for 10 min before 3-butyn-1-ol ($5.4 \mathrm{~mL}, 71.3 \mathrm{mmol}$) was added in portions. The reaction mixture was stirred at rt for 2 h 20 min then added to water/Et 2 O . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice, combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure. The crude reaction mixture was subjected to vacuum distillation (1.5 $\mathrm{mBar}, 75-85^{\circ} \mathrm{C}$). The first fraction was further purified by flash column chromatography on silica gel eluting with petrol/EtOAc (80:20 to 60:40) to provide a clean fraction of iodide SI$12(4.1 \mathrm{~g})$ and an impure fraction. Further purification by vacuum distillation of the combined impure fractions provided another sample of clean iodide $(4.7 \mathrm{~g})$. The title compound $(8.8 \mathrm{~g}$ in total, $44.4 \mathrm{mmol}, 62 \%$) was obtained as a brown oil. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[5]}$

Boroxine SI-14

The title compound was prepared using a modified literature procedure. ${ }^{[6]}$ Isopropenylmagnesium bromide in THF (50 mL of a 0.71 M THF solution, 36 mmol) was added dropwise to a solution of trimethyl borate ($6.0 \mathrm{~mL}, 54 \mathrm{~mol}, 1.5 \mathrm{~mol}$ equiv) in THF (50
mL) at $-78^{\circ} \mathrm{C}$ under nitrogen. The resulting mixture was warmed to rt and stirred for 1 h 40 \min before being poured into 0.5 M aqueous HCl and diethyl ether. The organic layer was collected while the aqueous layer was re-extracted three times with diethyl ether. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure until about 50 mL of solution remained. Pyridine $(0.96 \mathrm{~mL}, 12 \mathrm{mmol}, 0.34 \mathrm{~mol}$ equiv) and magnesium sulfate were added to the solution, which was then stirred at rt for 15 min before being concentrated under reduced pressure to provide the title compound as a viscous yellow oil ($3.18 \mathrm{~g}, 11.2 \mathrm{mmol}, 94 \%$). The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[6 \mathrm{~b}]}$

(i) Alcohols

General procedure A:

A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$ (0.025 mol equiv), tri(2-furyl)phosphine (0.10 mol equiv), silver carbonate (1.5 mol equiv) and boronic acid (1.2 mol equiv) were placed in a roundbottom flask. The flask was purged with vacuum and back-filled with argon three times. A solution of iodide SI-12 ${ }^{[4]}$ in freshly degassed THF (0.1 M) was cannulated into the mixture and stirred at rt in an aluminium foil covered flask until the iodide was completely consumed.
The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous sodium bicarbonate solution and filtered through Celite. The organic layer was collected while the aqueous layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were dried over potassium carbonate and concentrated under reduced pressure. The crude material was then purified by flash column chromatography on silica gel to provide the product.

Alcohol SI-2

Prepared according to general procedure A using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(287 \mathrm{mg}, 0.287 \mathrm{mmol}$, 0.025 mol equiv), tri(2-furyl)phosphine ($258 \mathrm{mg}, 1.11 \mathrm{mmol}, 0.10 \mathrm{~mol}$ equiv), silver carbonate ($4.59 \mathrm{~g}, 16.7 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv), boroxine $\mathbf{S I}-14(1.07 \mathrm{~g}, 3.78 \mathrm{mmol}, 0.340 \mathrm{~mol}$ equiv) and iodide SI-12 ($2.20 \mathrm{~g}, 11.1 \mathrm{mmol}$). Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (70:30:1 then $60: 40: 1$) provided the title compound ($715 \mathrm{mg}, 6.37 \mathrm{mmol}, 57 \%$) as a yellow oil: $R_{f} 0.22$ petrol/EtOAc ($80: 20$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $144.1(\mathrm{C}), 142.2(\mathrm{C}), 114.4\left(\mathrm{CH}_{2}\right), 113.3\left(\mathrm{CH}_{2}\right), 61.6\left(\mathrm{CH}_{2}\right), 37.0\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\text {max }}=3339,3093,2950,1597 \mathrm{~cm}^{-1} ;$ MS ($70 \mathrm{eV}, \mathrm{EI}$): m/z (\%): 112 (40) $[\mathrm{M}]^{+}, 97$ (100), 95 (30); HRMS: calc for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}[M]^{+}: 112.0888$; found 112.0884.

Alcohol SI-3

Prepared according to general procedure A using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(261 \mathrm{mg}, 0.253 \mathrm{mmol}$, 0.025 mol equiv), tri(2-furyl)phosphine ($234 \mathrm{mg}, 1.01 \mathrm{mmol}, 0.10 \mathrm{~mol}$ equiv), silver carbonate ($4.18 \mathrm{~g}, 15.2 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv), boronic acid $(1.80 \mathrm{~g}, 12.2 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and iodide SI-12 ($2.00 \mathrm{~g}, 10.1 \mathrm{mmol}$). Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (80:20:1 then 70:30:1) provided the title compound (682
$\mathrm{mg}, 3.91 \mathrm{mmol}, 39 \%$) as a yellow oil. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[7]}$

Alcohol SI-4

Prepared according to general procedure A using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(225 \mathrm{mg}, 0.218 \mathrm{mmol}$, 0.025 mol equiv), tri(2-furyl)phosphine ($202 \mathrm{mg}, 0.871 \mathrm{mmol}, 0.10 \mathrm{~mol}$ equiv), silver carbonate ($3.60 \mathrm{~g}, 13.1 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv), boronic acid ($1.63 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and iodide SI-12 (1.72 g, 8.71 mmol). Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(90: 10: 1)$ provided the title compound $(1.09 \mathrm{~g}, 5.98 \mathrm{mmol}$, 68%) as a yellow oil: $R_{f} 0.16$ petrol/EtOAc ($80: 20$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.06(\mathrm{~d}, J$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=15.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.49(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.6(\mathrm{C}), 131.4(\mathrm{CH}), 131.4(\mathrm{CH}), 115.3$ $\left(\mathrm{CH}_{2}\right), 61.2\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$, $14.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=3341,2957,2925,2872,2856 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI})$: $m / z(\%): 182(100)[M]^{+}, 151(25), 97$ (85); HRMS: calc for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}[M]^{+}$: 182.1671; found 182.1672.

Alcohol SI-5

Prepared according to general procedure A using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}(73 \mathrm{mg}, 0.0703 \mathrm{mmol}$, 0.025 mol equiv), tri(2-furyl)phosphine ($65 \mathrm{mg}, 0.281 \mathrm{mmol}, 0.10 \mathrm{~mol}$ equiv), silver carbonate ($1.16 \mathrm{~g}, 4.22 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv), boronic acid SI-12 ($500 \mathrm{mg}, 3.38 \mathrm{mmol}, 1.2$ mol equiv) and iodide SI-12 ($556 \mathrm{mg}, 2.81 \mathrm{mmol}$). Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (80:20:1) provided the title compound ($343 \mathrm{mg}, 1.97 \mathrm{mmol}, 70 \%$) as a yellow oil. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[7]}$

(ii) Aldehydes

General procedure B:

To an ice-cooled suspension of Dess-Martin periodinane (1.3 mol equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$ was added a solution of alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{M})$. The reaction mixture was stirred at rt until complete consumption of the alcohol as indicated by TLC. The reaction mixture was washed twice with a solution of saturated aqueous NaHCO_{3} and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1)$, water then brine. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure to provide the aldehyde, which was used without further purification.

General procedure C:

To a solution of the alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.03 \mathrm{M})$ was added $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mol}$ equiv) then Dess-Martin periodinane (1.3 mol equiv) in portions. The reaction mixture was stirred at rt until complete consumption of the alcohol as indicated by TLC. The reaction mixture was diluted with diethyl ether and washed with a solution of saturated aqueous $\mathrm{NaHCO}_{3} /$ saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}$ (1:1:1). The organic layer was collected while the aqueous layer was re-extracted with diethyl ether. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to provide the aldehyde, which was used without further purification.

Aldehyde 1a

The title compound was prepared using a modified literature procedure. ${ }^{[8]}$ Prepared using general procedure B with alcohol SI-1 ${ }^{[9]}(2.40 \mathrm{~g}, 24.4 \mathrm{mmol})$ and Dess-Martin periodinane $(11.4 \mathrm{~g}, 31.7 \mathrm{mmol}, 1.3 \mathrm{~mol}$ equiv). The title compound was obtained as a yellow oil $(1.57 \mathrm{~g}$, $16.3 \mathrm{mmol}, 67 \%)$. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[10]}$

Aldehyde 1b

Prepared using general procedure B with alcohol SI-2 ($100 \mathrm{mg}, 0.892 \mathrm{mmol}$) and DessMartin periodinane ($492 \mathrm{mg}, 1.16 \mathrm{mmol}, 1.3 \mathrm{~mol}$ equiv). The title compound was obtained as a yellow oil ($62 \mathrm{mg}, 0.549 \mathrm{mmol}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.57(\mathrm{t}, 1 \mathrm{H}), 5.37(\mathrm{~s}$, $1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.8(\mathrm{CH}), 142.3(\mathrm{C}), 139.2(\mathrm{C}), 117.5\left(\mathrm{CH}_{2}\right), 114.8\left(\mathrm{CH}_{2}\right)$, $49.2\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (ATR): $v_{\max }=2919,2851,1723 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): m / z$ (\%): 110 (22) $[\mathrm{M}]^{+}, 95(61), 67$ (100) ; HRMS: calc for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}[M]^{+}$: 110.0732 ; found 110.0733.

Aldehyde 1c

Prepared using general procedure B with alcohol SI-3 ($658 \mathrm{mg}, 3.78 \mathrm{mmol}$) and Dess-Martin periodinane ($2.08 \mathrm{~g}, 4.91 \mathrm{mmol}, 1.3 \mathrm{~mol}$ equiv). The title compound was obtained as a yellow oil ($307 \mathrm{mg}, 1.76 \mathrm{mmol}, 47 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.68(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$
$-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.29-5.22(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 200.1(\mathrm{CH}), 149.8(\mathrm{C}), 140.5(\mathrm{C}), 139.7(\mathrm{C}), 128.5(\mathrm{CH}), 128.2(\mathrm{CH}), 127.7(\mathrm{CH})$, $120.9\left(\mathrm{CH}_{2}\right), 115.5\left(\mathrm{CH}_{2}\right), 49.3\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=3081,3057,2925,2822$, $2721,1725 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): $172[\mathrm{M}]^{+}$(9), 143 (90), 129 (100); HRMS: calc for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}[M]^{+}: 172.0888$; found 172.0891

Aldehyde 1d

Prepared using general procedure C with alcohol SI-4 (540 mg, 2.96 mmol), $\mathrm{NaHCO}_{3}(1.26 \mathrm{~g}$, $15.0 \mathrm{mmol}, 5.0 \mathrm{~mol}$ equiv) and Dess-Martin periodinane ($1.65 \mathrm{~g}, 3.89 \mathrm{mmol}, 1.3 \mathrm{~mol}$ equiv). The title compound was obtained as a yellow oil ($324 \mathrm{mg}, 1.80 \mathrm{mmol}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.58(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.22$ $(\mathrm{m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.5(\mathrm{CH}), 137.7$ (C), $133.0(\mathrm{CH}), 131.4(\mathrm{CH}), 118.0\left(\mathrm{CH}_{2}\right), 47.8\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right)$, $28.9\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (ATR): $v_{\max }=2956,2925,2855,1725 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (70 eV, EI): $m / z(\%): 180$ (13) [M] ${ }^{+}, 95$ (100); HRMS: calc for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}[M]^{+}$: 180.1514; found 180.1514 .

Aldehyde 1e

Prepared using general procedure C with alcohol SI-5 ($520 \mathrm{mg}, 2.98 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(1.25 \mathrm{~g}$, $14.9 \mathrm{mmol}, 5.0 \mathrm{~mol}$ equiv) and Dess-Martin periodinane ($1.65 \mathrm{~g}, 3.88 \mathrm{mmol}, 1.3 \mathrm{~mol}$ equiv). The title compound was obtained as a yellow oil ($253 \mathrm{mg}, 1.47 \mathrm{mmol}, 49 \%$). ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.66(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H})$, $5.24(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.1(\mathrm{CH})$, $137.6(\mathrm{C}), 136.7(\mathrm{C}), 130.2(\mathrm{CH}), 130.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.1(\mathrm{CH}), 126.7(\mathrm{CH}), 120.9$ $\left(\mathrm{CH}_{2}\right), 47.6\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=3026,2822,2722,1721 \mathrm{~cm}^{-1}$; MS $(70 \mathrm{eV}, \mathrm{EI})$: $m / z(\%): 172(40)[M]^{+}, 129(100) ;$ HRMS: calc for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}[M]^{+}: 172.0888$; found 172.0888.

Aldehyde 1a'

DBU ($40 \mu \mathrm{~L}, 0.26 \mathrm{mmol}, 0.5 \mathrm{~mol}$ equiv) was added to a solution of aldehyde $\mathbf{1 a}(50 \mathrm{mg}, 0.52$ $\mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.50 \mathrm{~mL})$. The solution was left at rt for 1 h then diluted with CDCl_{3} and washed with water. The organic layer was extracted once with CDCl_{3}. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to provide the title compound ($30 \mathrm{mg}, 0.31 \mathrm{mmol}, 59 \%, E: Z=68: 32$). The ${ }^{1} \mathrm{H}$ NMR spectroscopic data of the Z isomer matched those previously reported. ${ }^{[11]}$

(iii) Amines

Amine 10a

The title compound was prepared using a literature procedure. ${ }^{[12]}$ To a solution of bromide SI-6 ($1.44 \mathrm{~mL}, 14.2 \mathrm{mmol}$) in ethanol (20 mL) was added benzylamine ($7.71 \mathrm{~mL}, 70.6 \mathrm{mmol}$, 5 mol equiv) then sodium iodide ($80 \mathrm{mg}, 0.53 \mathrm{mmol}, 0.04 \mathrm{~mol}$ equiv). The reaction mixture was then heated to reflux for 5.5 h . After cooling to $\mathrm{rt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1 M aqueous KOH solution were added to the reaction mixture. The aqueous layer was separated and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic laters were dried over potassium carbonate and concentrated under reduced pressure. The residue was purified by flash column
chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(50: 50: 1)$ to provide the title compound $(2.06 \mathrm{~g}, 12.8 \mathrm{mmol}, 90 \%)$ as a pale yellow oil. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[12]}$

Amine 10b

The title compound was prepared using a modified literature procedure. ${ }^{[13]}$ To a solution of amine $10 \mathrm{a}(600 \mathrm{mg}, 3.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added p TSA. $\mathrm{H}_{2} \mathrm{O}(708 \mathrm{mg}, 3.72$ mmol, 1 mol equiv). The resulting solution was stirred at rt for 5 minutes then concentrated under reduced pressure to provide SI-12 as a white solid, which was used without further purification. To a solution of ammonium salt SI-12 ($467 \mathrm{mg}, 1.31 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added methyl acrylate ($1.80 \mathrm{~mL}, 19.7 \mathrm{mmol}, 15 \mathrm{~mol}$ equiv) and Hoveyda-Grubbs II catalyst ($40 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.05 \mathrm{~mol}$ equiv). The resulting dark green solution was stirred under reflux for 23 h then cooled to rt and poured into a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1 M aqueous KOH solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine, dried over potassium carbonate, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with petrol/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}(50: 50: 1$ then $0: 100: 1)$ to provide the title compound (225 $\mathrm{mg}, 1.03 \mathrm{mmol}, 78 \%)$ as a brown oil. $R_{f} 0.30 \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}(100: 1)$. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[14]}$

Amine 10c

The title compound was prepared using a literature procedure ${ }^{[15]}$ To a solution of bromide SI-7 ($358 \mathrm{mg}, 2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added benzylamine $(0.46 \mathrm{~mL}, 4.0 \mathrm{mmol}, 2.0$
mol equiv). The resulting mixture was stirred at rt for 3 h then poured into a solution of saturated aqueous NaHCO_{3}. The aqueous layer was separated and extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over magnesium sulfate and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with petrol/ $\mathrm{Et}_{2} \mathrm{O}(50: 50$ then $20: 80)$ to provide the title compound ($232 \mathrm{mg}, 1.13 \mathrm{mmol}, 57 \%$) as a brown oil. $R_{f} 0.28$ petrol/ $\mathrm{Et}_{2} \mathrm{O}(20: 80)$. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[15]}$

Trienamine synthesis and Diels-Alder reaction

A solution of aldehyde $\mathbf{1 a}(11 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$ was added to morpholine ($19 \mathrm{mg}, 0.11 \mathrm{mmol}, 0.95 \mathrm{~mol}$ equiv). Trienamine $\mathbf{2 a}$ was formed in solution with a yield of $\sim 60 \%$ (estimated by ${ }^{1} \mathrm{H}$ NMR with residual CHCl_{3} as internal standard): ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 6.41(\mathrm{dd}, J=17.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.17(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.76(\mathrm{~m}$, $4 \mathrm{H})$, 2.93-2.99 (m, 4 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.0(\mathrm{C}), 140.7(\mathrm{CH}), 137.9$ $(\mathrm{CH}), 114.7\left(\mathrm{CH}_{2}\right), 109.1\left(\mathrm{CH}_{2}\right), 99.5(\mathrm{CH}), 66.4\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$.

Addition of NMM ($15 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) provided mono-adduct 3a in quantitative yield (from trienamine 2a, estimated by ${ }^{1} \mathrm{H}$ NMR with residual CHCl_{3} as internal standard). The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those reported on page 8 .

Reaction between aldehyde 1a', morpholine and NMM

To a solution of aldehyde $\mathbf{1 a}{ }^{[16]}(18 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.8 \mathrm{~mL})$ was added NMM ($25 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv), benzoic acid ($4.5 \mathrm{mg}, 0.037 \mathrm{mmol}, 0.2 \mathrm{~mol}$ equiv). The resulting solution was then added to morpholine ($36 \mathrm{mg}, 0.41 \mathrm{mmol}, 2.2 \mathrm{~mol}$ equiv) and transferred to an NMR tube. Upon complete consumption of aldehyde $\mathbf{1 a}$ ', as observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$ (1:99:1) followed by re-purification on silica gel eluting with THF/hex (50:50) provided adduct SI-11 ($36 \mathrm{mg}, 0.0990 \mathrm{mmol}, 52 \%$) as a yellow oil; $R_{f} 0.17 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 96) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.59(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.64(\mathrm{~m}, 8 \mathrm{H}), 3.48-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{dd}$, $J=12.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.71(\mathrm{~m}, 7 \mathrm{H}), 2.66-2.43(\mathrm{~m}, 7 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left.\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.7(\mathrm{C}), 175.9(\mathrm{C}), 139.0(\mathrm{C}), 124.6 \mathrm{CH}\right), 67.3\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right)$, $63.9(\mathrm{CH}), 56.7\left(\mathrm{CH}_{2}\right), 54.0\left(\mathrm{CH}_{2}\right), 53.1\left(\mathrm{CH}_{2}\right), 42.7(\mathrm{CH}), 41.3(\mathrm{CH}), 36.0(\mathrm{CH}), 24.8\left(\mathrm{CH}_{3}\right)$, $19.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm} ;$ IR (ATR): $v_{\max }=2956,2854,2807,1694 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): \mathrm{m} / \mathrm{z}(\%):$ 363 (2) $[M]^{+}, 276(43), 166(33), 100(100)$; HRMS: calc for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}[M]^{+}: 363.2158$; found 363.2158 .

Synthesis of mono-adducts 3a-3n

General Procedure D:

To a solution of aldehyde $\mathbf{1 a}$ in CDCl_{3} was added the dienophile (1.2 mol equiv). The resulting solution was then added to the amine (1.2 mol equiv), shaken briefly then checked by ${ }^{1} \mathrm{H}$ NMR spectroscopy to ensure complete consumption of aldehyde $\mathbf{1 a}$. The reaction mixture was then concentrated under reduced pressure and purified by flash column chromatography to provide the mono-adducts $\mathbf{3 a - n}$.

Prepared using general procedure D with aldehyde $1 \mathbf{1 a}(73 \mathrm{mg}, 0.76 \mathrm{mmol})$, NMM (100 mg , $0.91 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and morpholine ($79 \mathrm{mg}, 0.91 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in $\mathrm{CDCl}_{3}(2.0$ mL). Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(60: 40: 1)$ provided the title compound $(195 \mathrm{mg}, 0.71 \mathrm{mmol}, 93 \%)$ as a yellow solid: $R_{f} 0.25$ petrol/EtOAc/Et 3 N (60:40:1); mp 81-82 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 6.27$ (dd, $J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.83 (br. s, 1 H), 5.29 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 $(\mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.42(\mathrm{dd}, J=8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.26(\mathrm{~m}, 1$ H), 2.94-3.10(m, 2 H), 2.88 (s, 3 H), 2.72-2.84 (m, 2 H), 2.52-2.62 (m, 2 H), $2.18(\mathrm{dd}, J$ $=15.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 178.7(\mathrm{C}), 176.1(\mathrm{C}), 137.7(\mathrm{CH})$, $136.1(\mathrm{CH}), 128.2\left(\mathrm{CH}_{2}\right), 113.9\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 62.7(\mathrm{CH}), 52.6\left(\mathrm{CH}_{2}\right), 41.2(\mathrm{CH}), 39.7$ $(\mathrm{CH}), 24.8\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=2955,2855,1700 \mathrm{~cm}^{-1} ; \operatorname{MS}(70 \mathrm{eV}$, EI): $m / z(\%): 276(100)[M]^{+}, 105(71), 86(55) ; H R M S: ~ c a l c ~ f o r ~ \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}[M]^{+}: 276.1474$; found 276.1472.

Mono-adduct 3b

Prepared using general procedure D with aldehyde $1 \mathrm{a}(67 \mathrm{mg}, 0.70 \mathrm{mmol})$, NMM (93 mg , $0.84 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and piperidine ($71 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in $\mathrm{CDCl}_{3}(2.0$ mL). Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(80: 20: 1)$ provided the title compound $(156 \mathrm{mg}, 0.57 \mathrm{mmol}, 81 \%)$ as a yellow solid: $\quad R_{f} 0.31$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(80: 20: 1) ; \mathrm{mp} 98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 6.29(\mathrm{dd}, J=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.97-3.10(\mathrm{~m}, 2 \mathrm{H})$,
$2.90(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{dd}, J=16.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-$ $1.71(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.50(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.1$ (C), 176.6 $(\mathrm{C}), 137.1(\mathrm{C}), 136.5(\mathrm{CH}), 129.6(\mathrm{CH}), 113.4\left(\mathrm{CH}_{2}\right), 62.8(\mathrm{CH}), 53.5\left(\mathrm{CH}_{2}\right), 41.8(\mathrm{CH}), 39.4$ $(\mathrm{CH}), 26.3\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=2933,2757$, $1697 \mathrm{~cm}^{-1}$; MS (70 eV, EI): $m / z(\%): 274.2$ (100) $[M]^{+}, 105$ (52), 84 (88); HRMS: calc for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}[M]^{+}: 274.1681$; found 274.1683.

Mono-adduct 3c

Prepared using general procedure D with aldehyde $1 \mathrm{a}(59 \mathrm{mg}, 0.62 \mathrm{mmol})$, NMM (82 mg , $0.74 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and pyrrolidine ($52 \mathrm{mg}, 0.74 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in $\mathrm{CDCl}_{3}(2.0$ $\mathrm{mL})$. Purification by flash column chromatography on triethylamine washed silica gel eluting with petrol/EtOAc/Et $3 \mathrm{~N}(70: 30: 1)$ provided the title compound $(105 \mathrm{mg}, 0.40 \mathrm{mmol}, 65 \%)$ as a yellow solid. $R_{f} 0.15$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(70: 30: 1)$. Recrystallisation from ethyl acetate gave yellow needles: mp $120-121^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.28$ (dd, $J=17.3,10.8 \mathrm{~Hz}, 1$ H), 5.90 (br. s., 1 H), 5.31 (d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26-3.43 (m, $J=8.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3$ H), 2.77-2.86(m, 2 H), 2.62-2.72 (m, 2 H), 2.13 (dd, J=15.1, 5.7 Hz, 1 H$), 1.79-1.92 \mathrm{ppm}$ (m, 4 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.9$ (C), 176.2 (C), 136.8 (C), $136.3(\mathrm{CH})$, $130.0(\mathrm{CH}), 113.7\left(\mathrm{CH}_{2}\right), 63.1(\mathrm{CH}), 53.6\left(\mathrm{CH}_{2}\right), 43.3(\mathrm{CH}), 40.0(\mathrm{CH}), 25.0\left(\mathrm{CH}_{3}\right), 23.4$ $\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=2949,2768,1696 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): m / z$ (\%): 260 (100) $[M]^{+}, 105$ (39), 70 (76); HRMS: calc for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[M]^{+}: 260.1525$; found 260.1526; Elemental analysis: calc for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 69.21; H, 7.74; N, 10.76. Found: C, $69.21 ; \mathrm{H}, 7.94 ; \mathrm{N}, 10.73$. The structure and stereochemistry of mono-adduct 3c were confirmed through single crystal X-ray analysis.

Prepared using general procedure D with aldehyde $1 \mathrm{a}(59 \mathrm{mg}, 0.62 \mathrm{mmol})$, NMM (82 mg , $0.74 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and dibenzylamine ($147 \mathrm{mg}, 0.74 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in CDCl_{3} $(2.0 \mathrm{~mL})$. Purification by flash column chromatography on silica gel eluting with petrol/EtOAc (70:30) provided the title compound ($183 \mathrm{mg}, 0.47 \mathrm{mmol}, 76 \%$) as a yellow solid: $R_{f} 0.41$ petrol/EtOAc (70:30); mp $64-65{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=17.3,10.9 \mathrm{~Hz}, 1$ H), 5.96 (br. s., 1 H), 5.31 (d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.08 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (d, $J=14.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.80(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.33-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{dd}, J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 179.1(C), 177.9 (C), 139.8 (C), 137.9 (C), 136.8 (CH), 128.4 ($2 \times \mathrm{CH}$), 127.9 (CH), 127.1 $(\mathrm{CH}), 113.6\left(\mathrm{CH}_{2}\right), 56.1(\mathrm{CH}), 55.4\left(\mathrm{CH}_{2}\right), 42.3(\mathrm{CH}), 39.7(\mathrm{CH}), 25.1\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{2}\right)$ ppm; IR (KBr disc): $v_{\max }=3026,2922,2849,1700 \mathrm{~cm}^{-1}$; MS (70 eV, EI): $m / z(\%): 386$ (93) $[M]^{+}, 295$ (100), 196 (28); HRMS: calc for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[M]^{+}: 386.1994$; found 386.1996.

Mono-adduct 3e

Prepared using general procedure D with aldehyde 1 a ($48 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv), NMM ($55 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and diethylamine ($30 \mathrm{mg}, 0.41 \mathrm{mmol}$) in CDCl_{3} $(1.5 \mathrm{~mL})$. Purification by flash column chromatography on triethylamine washed silica gel eluting with petrol/EtOAc/Et $\mathrm{t}_{3} \mathrm{~N}(70: 30: 1)$ provided the title compound $(78 \mathrm{mg}, 0.30 \mathrm{mmol}$, 60%) as a yellow oil: $R_{f} 0.30$ petrol/EtOAc/Et 3 N (70:30:1); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 6.31 (dd, $J=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.85 (br. s, 1 H), 5.29 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 (d, $J=10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.62-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.33(\mathrm{~m}, J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.00$ (dd, $J=16.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{dd}, J=16.0,7.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.2(\mathrm{C}), 177.4(\mathrm{C}), 137.3(\mathrm{C})$, $137.0(\mathrm{CH}), 128.8(\mathrm{CH}), 113.3\left(\mathrm{CH}_{2}\right), 58.0(\mathrm{CH}), 44.5\left(\mathrm{CH}_{2}\right), 43.0(\mathrm{CH}), 39.5(\mathrm{CH}), 24.9$ $\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{2}\right), 12.7\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=2963,2858,1596 \mathrm{~cm}^{-1}$; MS $(70 \mathrm{eV}$, EI): m / z (\%): 262.2 (100) $[M]^{+}, 105$ (70), 72 (48); HRMS: calc for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[M]^{+}: 262.1681$; found 262.1679 .

Mono-adduct 3f

Prepared using general procedure D with aldehyde $1 \mathbf{1 a}(23 \mathrm{mg}, 0.23 \mathrm{mmol})$, NMM (31 mg , $0.28 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and benzylamine ($30 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in CDCl_{3} $(1.0 \mathrm{~mL})$. Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (70:30:1) provided the title compound ($59 \mathrm{mg}, 0.20 \mathrm{mmol}, 85 \%$) as a yellow oil: $R_{f} 0.25$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(70: 30: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.28-7.33$ (m, 2 H), 7.24 (m, 2 H), $7.14-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.19$ (dd, $J=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (br. s., 1 H), $5.20(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-3.10(\mathrm{~m}, 1 \mathrm{H})$, $2.88-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{dd}, J=15.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 179.3(\mathrm{C}), 178.0(\mathrm{C}), 139.7(\mathrm{C}), 136.9(\mathrm{C}), 136.3(\mathrm{CH}), 131.6(\mathrm{CH}), 128.4(\mathrm{CH})$, $128.2(\mathrm{CH}), 127.0(\mathrm{CH}), 113.5\left(\mathrm{CH}_{2}\right), 54.1(\mathrm{CH}), 51.4\left(\mathrm{CH}_{2}\right), 41.8(\mathrm{CH}), 39.2(\mathrm{CH}), 24.7$ $\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=2950,2850,1697 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): m / z$ (\%): 296 (50) $[M]^{+}, 205$ (38), 106 (99), 91 (100); HRMS: calc for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[M]^{+}$: 296.1525; found 296.1522 .

Mono-adduct 3 g

Prepared using general procedure D with aldehyde $1 \mathbf{a}(23 \mathrm{mg}, 0.23 \mathrm{mmol})$, NMM (31 mg , $0.28 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and aniline ($26 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL})$. Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (70:30:1) provided the title compound ($59 \mathrm{mg}, 0.21 \mathrm{mmol}, 89 \%$) as a yellow solid: $R_{f} 0.27$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(70: 30: 1) ; \mathrm{mp} 118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.17-7.24(\mathrm{~m}$, $J=1.0,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.72-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=8.5,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{dd}, J=17.5$, $10.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.79 (br. s., 1 H), 5.51 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (d, $J=17.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.08$ (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.23 (br. s., 1 H), 3.36 (t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=15.1,7.2 \mathrm{~Hz}, 0 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 178.9(\mathrm{C}), 178.6(\mathrm{C}), 146.5(\mathrm{C}), 137.4(\mathrm{C}), 136.0(\mathrm{CH}), 131.5(\mathrm{CH}), 129.4(\mathrm{CH})$, $118.1(\mathrm{CH}), 113.9\left(\mathrm{CH}_{2}\right), 113.7(\mathrm{CH}), 50.3(\mathrm{CH}), 42.2(\mathrm{CH}), 39.0(\mathrm{CH}), 25.0\left(\mathrm{CH}_{3}\right), 22.7$ $\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=3027,2950,2850,1697 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): m / z(\%): 282$ (100) $[M]^{+}, 105$ (63); HRMS: calc for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[M]^{+}: 282.1368$; found 282.1372.

Mono-adduct 3 h

Prepared using general procedure D with aldehyde $1 \mathbf{1 a}(45 \mathrm{mg}, 0.47 \mathrm{mmol}$), β-nitrostyrene (84 $\mathrm{mg}, 0.56 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and morpholine ($49 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in CDCl_{3} $(1.2 \mathrm{~mL})$. Two diasteoreomeric isomers were formed in the ratio 89:11. Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/ $\mathrm{Et}_{3} \mathrm{~N}(90: 10: 1)$ provided the title compound (89:11 mixture of two diastereomers, $108 \mathrm{mg}, 0.34 \mathrm{mmol}, 73 \%$) as a pale yellow solid. Repeated rinsing of the pale yellow solid with methanol provided a pure sample of the major isomer as a white solid: $R_{f} 0.24$ petrol/EtOAc (90:10); mp $205{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.23-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{dd}, J=17.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~d}$, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=11.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59-3.73(\mathrm{~m}, 5 \mathrm{H}), 3.48(\mathrm{td}, J=11.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.66-$ 2.74 (m, 1 H), 2.53-2.59 (m, 2 H), 2.37-2.49 ppm (m, 1 H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 138.9(\mathrm{C}), 137.9(\mathrm{C}), 137.2(\mathrm{CH}), 129.0(\mathrm{CH}), 128.1(\mathrm{CH}), 127.3(\mathrm{CH}), 124.6$
$(\mathrm{CH}), 114.1\left(\mathrm{CH}_{2}\right), 88.9(\mathrm{CH}), 67.4\left(\mathrm{CH}_{2}\right), 66.0(\mathrm{CH}), 48.9\left(\mathrm{CH}_{2}\right), 45.0(\mathrm{CH}), 32.7\left(\mathrm{CH}_{2}\right)$ ppm; IR (KBr disc): $v_{\max }=2955,2913,2856,2828,1551 \mathrm{~cm}^{-1}$; MS ($70 \mathrm{eV}, \mathrm{EI}$): $\mathrm{m} / \mathrm{z}(\%): 314$ (20) $[M]^{+}, 165(100)$; HRMS: calc for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[M]^{+}$: 314.1630; found 314.1631.

Mono-adduct 3i

Prepared using general procedure D with aldehyde 1a ($24 \mathrm{mg}, 0.25 \mathrm{mmol}$), 2chloroacrylonitrile ($26 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and morpholine ($26 \mathrm{mg}, 0.30 \mathrm{mmol}$, 1.2 mol equiv) in $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$. The residue was purified by flash column chromatography on silica gel eluting with petrol/EtOAc/ $\mathrm{Et}_{3} \mathrm{~N}(80: 20: 1)$ to provide the title compound (53 mg , $0.21 \mathrm{mmol}, 84 \%$) as a yellow oil: $R_{f} 0.35$ petrol/EtOAc (80:20:1); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.35(\mathrm{dd}, J=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.60-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.13(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.49-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 4 \mathrm{H}), 2.37$ - $2.47(\mathrm{~m}, 3 \mathrm{H}), 2.26-2.34(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.1(\mathrm{C}), 137.4$ $(\mathrm{CH}), 122.0(\mathrm{CH}), 119.0(\mathrm{C}), 114.4\left(\mathrm{CH}_{2}\right), 68.6(\mathrm{CH}), 67.7\left(\mathrm{CH}_{2}\right), 60.2(\mathrm{C}), 52.4\left(\mathrm{CH}_{2}\right), 32.8$ $\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=2958,2854,2821,2243 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI})$: $m / z(\%): 252(71)[M]^{+}, 217(71), 165$ (100); HRMS: calc for $\mathrm{C}_{19} \mathrm{H}_{21}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}[M]^{+}: 252.1029$; found 252.1029; calc for $\mathrm{C}_{19} \mathrm{H}_{21}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}[M]^{+}: 254.1000$; found 254.1000.

Bis-adduct SI-8

To a solution of mono-adduct $\mathbf{3 i}(76 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$ was added NMM ($170 \mathrm{mg}, 1.50 \mathrm{mmol}, 5.0 \mathrm{~mol}$ equiv) and stirred at $30^{\circ} \mathrm{C}$ until complete consumption of the mono-adduct was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy $(60 \mathrm{~h})$. The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel eluting with hexane/EtOAc/Et ${ }_{3} \mathrm{~N}(50: 50: 1)$ to provide the title compound ($55 \mathrm{mg}, 0.75$ $\mathrm{mmol}, 50 \%)$ as a yellow solid. $R_{f} 0.31$ hexane/EtOAc/Et ${ }_{3} \mathrm{~N}$ (50:50:1). Recrystallisation from methanol gave colourless crystals: mp $160{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.65$ (br. s, 1 H), $4.40(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.52-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{br} . \mathrm{s} ., 2 \mathrm{H})$, 3.16 (t, J=8.2 Hz, 1 H), 3.10 (br. s, 2 H), 2.93 (s, 3 H), $2.50-2.67$ (m, 4 H), 2.36-2.42 (m, 1 H), 2.16-2.25 (m, 2 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.6$ (C), 179.0 (C), 135.6 (C), $122.8(\mathrm{CH}), 118.2(\mathrm{C}), 68.4(\mathrm{CH}), 68.2\left(\mathrm{CH}_{2}\right), 61.1(\mathrm{C}), 50.3\left(\mathrm{CH}_{2}\right), 41.2(\mathrm{CH}), 39.4\left(\mathrm{CH}_{2}\right)$, $39.3(\mathrm{CH}), 39.2(\mathrm{CH}), 27.7\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR $\left(\mathrm{KBr}\right.$ disc): $v_{\max }=2953$, 2891, 2851, 2252, 1772, $1694 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 363 (72) [M] $]^{+}, 328$ (49), 276 (100), 138 (11); HRMS: calc for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{35} \mathrm{Cl}[M]^{+}$: 363.1350; found 363.1349; calc for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{37} \mathrm{Cl}[M]^{+}: 365.1320$; found 365.1325 . The structure and stereochemistry of bisadduct SI-8 were confirmed through single crystal X-ray analysis.

Mono-adduct 3 j

Prepared using general procedure D with aldehyde $1 \mathbf{1 a}(40 \mathrm{mg}, 0.40 \mathrm{mmol})$, ethyl benzylidenecyanoacetate ($95 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and morpholine ($42 \mathrm{mg}, 0.48$
$\mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in $\mathrm{CDCl}_{3}(2 \mathrm{~mL})$. The residue was purified by flash column chromatography on silica gel eluting with petrol/EtOAc (90:10 then $80: 20$) to provide the title compound ($91 \mathrm{mg}, 0.25 \mathrm{mmol}, 62 \%$) as an orange wax: $R_{f} 0.32$ petrol/EtOAc (70:30); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.44$ (m, 2 H), $7.27-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.44$ (dd, $J=17.6,10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.89$ (br. s, 1 H$), 5.20(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (br. s., 1 H), 3.86-4.01 (m, 2 H), 3.58-3.71 (m, 4 H), $3.34(\mathrm{dd}, J=12.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.07(\mathrm{~m}$, $2 \mathrm{H}), 2.83-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=17.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1$ (C), 138.1 (C), $138.0(\mathrm{C}), 137.5(\mathrm{CH})$, $128.7(\mathrm{CH}), 128.3(2 \times \mathrm{CH}), 124.3(\mathrm{CH}), 117.9(\mathrm{C}), 113.9\left(\mathrm{CH}_{2}\right), 68.7(\mathrm{CH}), 67.8\left(\mathrm{CH}_{2}\right), 62.4$ $\left(\mathrm{CH}_{2}\right), 56.5(\mathrm{C}), 51.3\left(\mathrm{CH}_{2}\right), 46.9(\mathrm{CH}), 29.3\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR $(\mathrm{KBr}$ disc $): v_{\max }=$ 3033, 2919, 2852, 2243, $1737 \mathrm{~cm}^{-1}$; MS (70 eV, EI): $m / z(\%): 366.2$ (32) $[M]^{+}, 165.1$ (100); HRMS: calc for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}[M]^{+}: 366.1943$; found 366.1949.

Bis-adduct SI-9

To a solution of mono-adduct $\mathbf{3 j}$ ($33 \mathrm{mg}, 0.090 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$ was added NMM ($150 \mathrm{mg}, 1.4 \mathrm{mmol}, 15 \mathrm{~mol}$ equiv) and stirred at $30^{\circ} \mathrm{C}$ until complete consumption of the mono-adduct was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (42 h). The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel eluting with hexane/EtOAc/Et ${ }_{3} \mathrm{~N}$ (50:50:1) to provide the title compound ($35 \mathrm{mg}, 0.073$ $\mathrm{mmol}, 85 \%)$ as a yellow solid. $R_{f} 0.31$ hexane/EtOAc/Et $\mathrm{H}_{3} \mathrm{~N}$ (50:50:1). Recrystallisation from ethyl acetate gave colourless crystals: $\mathrm{mp} 226{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20-7.37$ $(\mathrm{m}, 5 \mathrm{H}), 5.68(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.65(\mathrm{~m}, 4$ H), $3.38(\mathrm{dd}, J=8.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.03-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H})$, $2.87-2.95(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.35(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.6$ (C), 178.9 (C), 167.3 (C), 138.2 (C), 136.4 (C), 128.6 $(\mathrm{CH}), 128.1(\mathrm{CH}), 128.1(\mathrm{CH}), 122.8(\mathrm{CH}), 118.1(\mathrm{C}), 68.1\left(\mathrm{CH}_{2}\right), 65.9(\mathrm{CH}), 62.3\left(\mathrm{CH}_{2}\right)$, $57.5(\mathrm{C}), 50.7\left(\mathrm{CH}_{2}\right), 47.2(\mathrm{CH}), 41.4(\mathrm{CH}), 39.6(\mathrm{CH}), 36.1(\mathrm{CH}), 33.9\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right)$,
$25.0\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=2956,2909,2851,1772,1739,1695 \mathrm{~cm}^{-1}$; MS (70 eV, EI): $m / z(\%): 477$ (12) $[M]^{+}, 276$ (100), 165 (13); HRMS: calc for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}$ $[M]^{+}: 477.2264$; found 477.2261. The structure and stereochemistry of mono-adduct SI-9 were confirmed through single crystal X-ray analysis.

Mono-adduct 3 k

Prepared using general procedure D with aldehyde 1a ($40 \mathrm{mg}, 0.41 \mathrm{mmol}$), dimethyl fumarate ($71 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and morpholine ($43 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in $\mathrm{CDCl}_{3}(2.0 \mathrm{~mL})$. Two diasteoreomeric isomers were formed in the ratio $1: 1$. Purification by flash column chromatography on silica gel eluting with petrol/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ (60:40:1) provided the title compound ($1: 1$ mixture of two diastereomers, $99 \mathrm{mg}, 0.32 \mathrm{mmol}$, 77%) as a yellow oil; $R_{f} 0.21$ petrol/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ ($60: 40: 1$). Analytical samples of each diastereomer were obtained by preparative HPLC (Waters Xbridge C18 $5 \mu \mathrm{~m}$ column, 150 $\left.\mathrm{mm} \times 19 \mathrm{~mm}, 50: 50: 0.1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: T \mathrm{TA}\right)$:
mono-adduct 3k-A: $t_{r}=14.5 \mathrm{~min}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.35(\mathrm{dd}, J=17.4,10.8 \mathrm{~Hz}$, 1 H), 5.79 (br. s, 4 H), 5.14 (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 3.60-3.65(\mathrm{~m}, 5 \mathrm{H}), 2.94-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.75(\mathrm{~m}, 3 \mathrm{H})$, $2.42-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.34(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.1(\mathrm{C})$, $174.0(\mathrm{C}), 137.8(\mathrm{CH}), 136.6(\mathrm{C}), 127.1(\mathrm{CH}), 113.1\left(\mathrm{CH}_{2}\right), 67.7\left(\mathrm{CH}_{2}\right), 64.5(\mathrm{CH}), 52.2$ $\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 48.9\left(\mathrm{CH}_{2}\right), 45.1(\mathrm{CH}), 42.5(\mathrm{CH}), 27.2\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=$ 2952, 2851, 1736, 1643, $1607 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 309 (100) $[M]^{+}, 250$ (70), 165 (60); HRMS: calc for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5}[M]^{+}: 309.1576$; found 309.1570.
mono-adduct 3k-B: $t_{r}=16.5 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.40(\mathrm{dd}, J=17.6,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.85(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 3.53-3.65(\mathrm{~m}, 5 \mathrm{H}), 2.96-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.78(\mathrm{~m}, 3 \mathrm{H}), 2.47-2.56(\mathrm{~m}, 2 \mathrm{H})$, 1.96-2.09 (m, 1 H$) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8(\mathrm{C}), 173.0(\mathrm{C}), 138.0(\mathrm{CH})$, $137.4(\mathrm{C}), 124.7(\mathrm{CH}), 113.4\left(\mathrm{CH}_{2}\right), 67.9\left(\mathrm{CH}_{2}\right), 59.3(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 51.7$
$\left(\mathrm{CH}_{2}\right), 47.8(\mathrm{CH}), 38.4(\mathrm{CH}), 27.2\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=2952,2851,1736,1643$, $1607 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 309 (100) $[M]^{+}, 250$ (70), 165 (60); HRMS: calc for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5}[M]^{+}: 309.1576$; found 309.1570.

Mono-adduct 31

Prepared using general procedure D with aldehyde $1 \mathrm{a}(58 \mathrm{mg}, 0.61 \mathrm{mmol})$, acrolein (85 mg , $1.50 \mathrm{mmol}, 2.5 \mathrm{~mol}$ equiv) and morpholine ($132 \mathrm{mg}, 1.51 \mathrm{mmol}, 2.5 \mathrm{~mol}$ equiv) in CDCl_{3} (2 mL). Upon complete consumption of aldehyde 1a, as observed by ${ }^{1} \mathrm{H}$ NMR, a solution of sodium borohydride ($69 \mathrm{mg}, 1.81 \mathrm{mmol}, 3.0 \mathrm{~mol}$ equiv) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1,2 \mathrm{~mL})$ was added and the resulting mixture was stirred at rt for 1 h . The mixture was then poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure. Purification by flash column chromatography on silica gel eluting with petrol/EtOAc (60:40) provided the title compound ($77 \mathrm{mg}, 0.34 \mathrm{mmol}, 57 \%$) as a yellow oil: $R_{f} 0.24$ petrol/EtOAc ($60: 40$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.37$ (dd, $J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.85 (br. s, 1 H), 5.19 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=11.4,3.8 \mathrm{~Hz}$, 1 H), $3.75(\mathrm{dd}, J=11.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.30$ (br. s., 1 H), 2.72-2.82 (m, $2 \mathrm{H}), 2.63-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.98(\mathrm{~m}, 1 \mathrm{H})$, 1.62-1.80(m, 2 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.8(\mathrm{C}), 139.1(\mathrm{CH}), 124.8(\mathrm{CH})$, $112.6\left(\mathrm{CH}_{2}\right), 67.4\left(\mathrm{CH}_{2}\right), 65.8\left(\mathrm{CH}_{2}\right), 62.8(\mathrm{CH}), 52.7\left(\mathrm{CH}_{2}\right), 38.5(\mathrm{CH}), 23.2\left(\mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=3416,2921,2851,1639,1604 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): \mathrm{m} / \mathrm{z}$ (\%): 223 (100) $[M]^{+}, 165$ (94), 165 (94); HRMS: calc for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2}[M]^{+}: 223.1572$; found 223.1574.

Mono-adduct 3 m

Prepared using general procedure D with aldehyde $1 \mathbf{1 a}(32 \mathrm{mg}, 0.33 \mathrm{mmol}$), di-tert-butyl azodicarboxylate ($91 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and morpholine ($35 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.2$ mol equiv) in $\mathrm{CDCl}_{3}(1.5 \mathrm{~mL})$. Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(70: 30: 1)$ provided the title compound $(110 \mathrm{mg}, 0.28 \mathrm{mmol}$, 85%) as a white solid: $R_{f} 0.33$ petrol/EtOAc/Et $3 \mathrm{~N}(70: 30: 1) ; \mathrm{mp} 91{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, toluene-d ${ }_{8}, 100^{\circ} \mathrm{C}$): $\delta 6.08$ (dd, $J=17.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.45 (br. s., 1 H), 5.27 (br. s., 1 H), $4.98(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=16.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.47-3.57(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.85(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 7 \mathrm{H}), 1.34-1.42(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (75 MHz , toluene- $\mathrm{d}_{8}, 100{ }^{\circ} \mathrm{C}$): $\delta 155.4(\mathrm{C}), 153.9(\mathrm{C}), 136.1(\mathrm{CH}), 131.4(\mathrm{C}), 125.3$ $\left(\mathrm{CH}_{2}\right), 113.9\left(\mathrm{CH}_{2}\right), 81.4(\mathrm{C}), 81.0(\mathrm{C}), 73.4(\mathrm{CH}), 68.0\left(\mathrm{CH}_{2}\right), 49.5\left(\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{2}\right), 29.0$ $\left(\mathrm{CH}_{3}\right), 28.7\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=2971,2861,1700 \mathrm{~cm}^{-1}$; MS $(70 \mathrm{eV}, \mathrm{EI}): m / z$ (\%): 395 (20) $[M]^{+}, 309$ (33), 165 (100); HRMS: calc for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}[M]^{+}: 395.2420$; found 395.2420 .

Mono-adduct $3 n$

Prepared using general procedure D with aldehyde $1 \mathbf{a}(43 \mathrm{mg}, 0.44 \mathrm{mmol})$, nitrosobenzene ($57 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and morpholine ($46 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in $\mathrm{CDCl}_{3}(2.0 \mathrm{~mL})$. Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (70:30:1) provided the title compound ($94 \mathrm{mg}, 0.35 \mathrm{mmol}, 78 \%$) as a brown solid: $R_{f} 0.35$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (70:30:1); mp 73-75 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta 7.31-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.96-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{dd}, \mathrm{J}=17.8$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (br. s, 1 H$), 5.27(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 3.63-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.01-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.90 \mathrm{ppm}(\mathrm{m}$, $2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.3$ (C), $137.5(\mathrm{C}), 135.6(\mathrm{CH}), 129.0(\mathrm{CH})$, $126.7(\mathrm{CH}), 122.2(\mathrm{CH}), 115.6(\mathrm{CH}), 113.4\left(\mathrm{CH}_{2}\right), 91.4(\mathrm{CH}), 67.5\left(\mathrm{CH}_{2}\right), 51.0\left(\mathrm{CH}_{2}\right), 48.6$ $\left(\mathrm{CH}_{2}\right) \mathrm{ppm} ; \mathrm{IR}(\mathrm{KBr}$ disc $): v_{\max }=2963,2858,2830 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): m / z(\%): 272(30)$ $[M]^{+}, 165$ (100); HRMS: calc for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[M]^{+}: 272.1525$; found 272.1520 .

Synthesis of bis-adducts $\mathbf{4 a}-\mathbf{4 g}, 7 \mathrm{a}$ and 7b

Bis-adduct 4a

To a solution of aldehyde $\mathbf{1 a}(23 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL})$ was added NMM (160 $\mathrm{mg}, 1.4 \mathrm{mmol}, 6.0 \mathrm{~mol}$ equiv). The resulting solution was added to morpholine ($24 \mathrm{mg}, 0.28$ $\mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and stirred at $25{ }^{\circ} \mathrm{C}$ for 45 hours. The reaction mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(20: 80: 1)$ to provide the title compound $(78 \mathrm{mg}, 0.20 \mathrm{mmol}$, 86%) as a yellow solid. $R_{f} 0.33$ petrol/ $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}$ (20:80:1). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate gave yellow crystals: mp 197-199 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 5.63 (br. s, 1 H), $4.00-4.07$ (m, 1 H), 3.72-3.79 (m, 2 H), 3.62-3.70 (m, 2 H), 3.41 (ddd, $J=12.8,8.7,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.02(\mathrm{~m}, 1 \mathrm{H})$, $2.89(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=15.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.54$ (m, 2 H), $2.29(\mathrm{dd}, J=12.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 179.6(\mathrm{C}), 179.3(\mathrm{C}), 177.7(\mathrm{C}), 177.6(\mathrm{C}), 137.0(\mathrm{C}), 123.4(\mathrm{CH}), 67.4\left(\mathrm{CH}_{2}\right), 59.2$ $(\mathrm{CH}), 50.4\left(\mathrm{CH}_{2}\right), 41.2(\mathrm{CH}), 40.6(\mathrm{CH}), 40.4(\mathrm{CH}), 39.9(\mathrm{CH}), 36.4(\mathrm{CH}), 29.1\left(\mathrm{CH}_{2}\right), 25.4$ $\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=2962,2949,2851,1689 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (70 eV, EI): m/z (\%): 387 (100) [M] ${ }^{+}, 276$ (65), 86 (95); HRMS: calc for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$ $[M]^{+}: 387.1794$; found 387.1799; Elemental analysis: calc for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}: \mathrm{C}, 62.00 ; \mathrm{H}, 6.50$;
$\mathrm{N}, 10.85$. Found: C, $61.65 ; \mathrm{H}, 6.59 ; \mathrm{N}, 10.56$. The structure and stereochemistry of bis-adduct 4a were confirmed through single crystal X-ray analysis.

Bis-adduct 4b

To a solution of aldehyde $\mathbf{1 a}(42 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(2.0 \mathrm{~mL})$ was added β nitrostyrene ($78 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv). The resulting solution was added to morpholine ($46 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and stirred briefly. Upon complete consumption of aldehyde 1a, as indicated by ${ }^{1} \mathrm{H}$ NMR spectroscopy, NMM ($58 \mathrm{mg}, 0.52$ $\mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) was added and and the mixture was stirred under reflux for 23 hours. The reaction mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel eluting with petrol/EtOAc $(20: 80)$ to provide the title compound (91:9 mixture of two diastereomers, $120 \mathrm{mg}, 0.29 \mathrm{mmol}, 66 \%$) as a pale yellow solid: $R_{f} 0.27$ petrol/EtOAc (20:80). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethyl ether gave pale yellow crystals: mp 188-189 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 2 \mathrm{H})$, 5.65 (br. s, 1 H), $4.82-4.93$ (m, 2 H), 3.60-3.67 (m, 4 H), 3.51 (dd, $J=8.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.38-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{td}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dt}$, $J=11.2,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=15.8,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.60$ (m, 1 H), 2.39-2.50(m, 1 H), 2.19-2.30(m, 1 H$\left.) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 179.5 (C), 178.4 (C), 140.2 (C), 137.1 (C), $128.9(\mathrm{CH}), 127.7(\mathrm{CH}), 127.0(\mathrm{CH}), 121.8(\mathrm{CH})$, $91.8(\mathrm{CH}), 67.9\left(\mathrm{CH}_{2}\right), 62.7(\mathrm{CH}), 48.8(\mathrm{CH}), 44.8(\mathrm{CH}), 41.2(\mathrm{CH}), 39.7(\mathrm{CH}), 37.6(\mathrm{CH})$, $36.3\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR $(\mathrm{KBr}$ disc $): v_{\max }=2952,2921,2855,1704 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 425 (20) $[M]^{+}, 379$ (60), 276 (60), 202 (100); HRMS: calc for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}[M]^{+}: 425.1951$; found 425.1960 . The structure and stereochemistry of bis-adduct 4b were confirmed through single crystal X-ray analysis.

Bis-adduct 4c

To a solution of aldehyde $\mathbf{1 a}(42 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(2 \mathrm{~mL})$ was added nitrosobenzene ($55 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv). The resulting solution was added to morpholine (46 mg , $0.52 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and stirred briefly. Upon complete consumption of aldehyde $1 \mathbf{1 a}$, as indicated by ${ }^{1} \mathrm{H}$ NMR spectroscopy, NMM ($241 \mathrm{mg}, 2.17 \mathrm{mmol}, 5.0 \mathrm{~mol}$ equiv) was added and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 20 hours. The reaction mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(50: 50: 1)$ to provide the title compound ($67 \mathrm{mg}, 0.18 \mathrm{mmol}, 40 \%$) as a yellow solid. $R_{f} 0.23$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (50:50:1). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethyl ether gave colourless crystals: mp 169-171 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.01-7.06$ (m, 2 H), 6.91-6.97 (m, 1 H), 5.67-5.73 (br. s, 1 H), 5.65 (d, $J=9.7 \mathrm{~Hz}, 1$ H), $4.11(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.79(\mathrm{~m}, 5 \mathrm{H}), 3.31(\mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.21$ (m, 3 H), 2.91 (s, 3 H), 2.86-2.97 (m, 2 H), 2.63-2.80(m, 2 H), 2.14-2.19 (m, 1 H$) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.7$ (C), 177.5 (C), 150.4 (C), 135.8 (C), $128.8(\mathrm{CH})$, $122.1(\mathrm{CH}), 120.8(\mathrm{CH}), 115.5(\mathrm{CH}), 93.0(\mathrm{CH}), 67.6\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{2}\right), 48.5\left(\mathrm{CH}_{2}\right), 40.0$ $(\mathrm{CH}), 39.7(\mathrm{CH}), 35.3(\mathrm{CH}), 25.0\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR $\left(\mathrm{KBr}\right.$ disc): $\boldsymbol{v}_{\max }=2963,2853$, $1689 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 383 (30) [M] $]^{+}, 276$ (100); HRMS: calc for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ $[M]^{+}: 383.1845$; found 383.1849 . The structure and stereochemistry of bis-adduct $\mathbf{4 c}$ were confirmed through single crystal X-ray analysis.

Bis-adduct 4d

To a solution of aldehyde $\mathbf{1 b}(5 \mathrm{mg}, 0.045 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.4 \mathrm{~mL})$ was added NMM (30 $\mathrm{mg}, 0.27 \mathrm{mmol}, 6.0 \mathrm{~mol}$ equiv). The resulting solution was added to morpholine (5 mg , $0.0545 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and left at rt for 40 hours. The reaction mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel eluting with petrol/ $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}(60: 40: 1$ then $40: 60: 1)$ to provide the title compound (15 mg , $0.037 \mathrm{mmol}, 83 \%)$ as a colourless wax: $\mathrm{R}_{\mathrm{f}} 0.14$ hex $/ E t O A c / \mathrm{Et}_{3} \mathrm{~N}(40: 60: 1) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.99$ (dd, $\left.J=12.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77$ (ddd, $\left.J=9.8,6.4,2.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.67$ $(\mathrm{ddd}, J=10.4,6.4,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.96(\mathrm{~m}$, $3 \mathrm{H}), 2.96-2.81(\mathrm{~m}, 9 \mathrm{H}), 2.51(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=12.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}$, $J=14.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.6(\mathrm{C}), 179.5$ (C), $177.9(\mathrm{C}), 177.9(\mathrm{C}), 131.6(\mathrm{C}), 127.5(\mathrm{C}), 68.1\left(\mathrm{CH}_{2}\right), 59.6(\mathrm{CH}), 50.5,41.5(\mathrm{CH}), 40.6$ $(\mathrm{CH}), 40.3(\mathrm{CH}), 39.9(\mathrm{CH}), 37.2(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{2}\right), 19.1$ $\left(\mathrm{CH}_{3}\right) \mathrm{ppm} ; ~ I R ~(A T R): v_{\max }=2949,2852,1770,1694 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): \mathrm{m} / \mathrm{z}(\%): 401$ (72) $[M]^{+}, 315$ (23), 290 (63), 86 (100); HRMS: calc for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}[M]^{+}: 401.1951$; found 401.1947.

Bis-adduct 4 e

To a solution of aldehyde $\mathbf{1 c}(30 \mathrm{mg}, 0.172 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was added nitrosobenzene ($22 \mathrm{mg}, 0.207 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv). The resulting solution was added to morpholine ($18 \mathrm{mg}, 0.207 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and stirred briefly. Upon complete
consumption of aldehyde 1c, as indicated by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the mixture was concentrated under reduced pressure and redissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$. NMM ($96 \mathrm{mg}, 0.860$ mmol, 5.0 mol equiv) was added and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 2 days and 17 hours. The reaction mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel eluting with hex/EtOAc/Et ${ }_{3} \mathrm{~N}(30: 70: 1$ then $0: 100: 1)$ to provide the title compound ($35 \mathrm{mg}, 0.0762 \mathrm{mmol}, 44 \%$) as a beige solid: $R_{f} 0.23$ petrol/EtOAc/Et N (50:50:1); mp $130-138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-$ $7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.92(\mathrm{~m}, 3 \mathrm{H}), 5.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}$, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.72(\mathrm{~m}, 5 \mathrm{H}), 3.44(\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=9.0,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.30-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.11-2.95(\mathrm{~m}, 6 \mathrm{H}), 2.97-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.6$ (C), 177.8 (C), 150.5 (C), 139.8 (C), 133.6 (C), $130.6(\mathrm{C}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 122.3(\mathrm{CH}), 115.8(\mathrm{CH}), 92.8$ $(\mathrm{CH}), 67.7\left(\mathrm{CH}_{2}\right), 54.5\left(\mathrm{CH}_{2}\right), 48.7\left(\mathrm{CH}_{2}\right), 40.7(\mathrm{CH}), 40.5(\mathrm{CH}), 37.0(\mathrm{CH}), 31.7\left(\mathrm{CH}_{2}\right), 25.2$ $\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (ATR): $v_{\max }=2983,2971,2957,2855,1771,1695 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): m / z$ (\%): 459 (57) $[M]^{+}, 352$ (70), 77 (100); HRMS: calc for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}[M]^{+}: 459.2158$; found 459.2159 .

Bis-adduct 7a

To a solution of aldehyde $\mathbf{1 a}(24 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL})$ was added NMM (61 $\mathrm{mg}, 0.55 \mathrm{mmol}, 2.2 \mathrm{~mol}$ equiv) and stirred at $25^{\circ} \mathrm{C}$ until complete consumption of aldehyde 1a, as indicated by ${ }^{1} \mathrm{H}$ NMR spectroscopy, was observed (22 h). The reaction mixture was added to morpholine ($44 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and shaken briefly. The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel eluting with $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}(100: 1)$ to provide the title compound $(58 \mathrm{mg}, 0.15 \mathrm{mmol}, 60 \%)$ as a yellow solid: $R_{f} 0.27 \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}(100: 1) ; \mathrm{mp} 89{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.69$ (br. s, 1 H), 3.72-3.84 (m, 4 H), 3.37-3.46 (m, 1 H), 3.17-3.26
(m, 1H), 3.00-3.13(m, 2H), 2.92(s, 3 H), 2.86(s, 3H), 2.70-2.81(m, 3 H), 2.64-2.69 (m, 1 H), 2.60 (dd, J=14.7, 1.8 Hz, 1 H), 2.48-2.57 (m, 2 H), 2.31-2.43 (m, 2 H), 2.07$2.16(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.7(\mathrm{C}), 179.4(\mathrm{C}), 176.8(\mathrm{C}), 175.1$ (C), $135.9(\mathrm{C}), 125.1(\mathrm{CH}), 66.7\left(\mathrm{CH}_{2}\right), 63.2(\mathrm{CH}), 52.8\left(\mathrm{CH}_{2}\right), 43.4(\mathrm{CH}), 41.0(\mathrm{CH}), 39.1(2$ $x \mathrm{CH}), 32.9(\mathrm{CH}), 28.8\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR $(\mathrm{KBr} \operatorname{disc}): v_{\max }=$ 2952, 2855, 2810, 2762, 1773, $1696 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 387 (3) [M] $]^{+} 276$ (100); HRMS: calc for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}[M]^{+}: 387.1794$; found 387.1789.

Bis-adduct 7b

To a solution of aldehyde $\mathbf{1 a}(40 \mathrm{mg}, 0.42 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1.5 \mathrm{~mL})$ was added NMM (49 $\mathrm{mg}, 0.44 \mathrm{mmol}, 1.05 \mathrm{~mol}$ equiv) and stirred at $25^{\circ} \mathrm{C}$ until complete consumption of aldehyde 1a, as indicated by ${ }^{1} \mathrm{H}$ NMR spectroscopy, was observed (48 h). β-nitrostyrene ($130 \mathrm{mg}, 0.88$ $\mathrm{mmol}, 2.1 \mathrm{~mol}$ equiv) was added to the reaction mixture. The resulting solution was added to morpholine ($44 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and shaken briefly. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel eluting with petrol/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}(90: 10: 1)$ to provide the title compound ($71: 29$ mixture of diastereomers, $110 \mathrm{mg}, 0.15 \mathrm{mmol}, 62 \%$) as a pale yellow solid. The mixture was further purified by flash column chromatography on silica gel eluting with petrol/THF/Et ${ }_{3} \mathrm{~N}(60: 40: 1)$ to provide an analytical sample of the major isomer. $R_{f} 0.22$ petrol/THF/Et ${ }_{3} \mathrm{~N}(60: 40: 1)$. Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethyl ether gave yellow crystals: mp $216{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 5.73 (br. s, 1 H), 5.12 (t, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.75(\mathrm{~m}, 5 \mathrm{H}), 2.93(\mathrm{~s}$, $3 \mathrm{H}), 2.89-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.29(\mathrm{~m}, 1 \mathrm{H})$, 2.00-2.13(m, 2 H), 1.28-1.44 ppm (m, 1 H) ppm; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.6$ (C), 177.8 (C), 139.6 (C), 136.3 (C), $129.0(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 118.3(\mathrm{CH}), 84.3$
$(\mathrm{CH}), 67.2\left(\mathrm{CH}_{2}\right), 65.8(\mathrm{CH}), 48.8\left(\mathrm{CH}_{2}\right), 47.4(\mathrm{CH}), 41.8(\mathrm{CH}), 40.0(\mathrm{CH}), 39.6(\mathrm{CH}), 35.3$ $\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm} ; \mathrm{IR}\left(\mathrm{KBr}\right.$ disc): $v_{\max }=2953,2854,1775,1705 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (70 eV, EI): $m / z(\%): 426(1)[M]^{+}, 379$ (9), 276 (100), 165 (15); HRMS: calc for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$ $[M]^{+}: 425.1951$; found 425.1954 . The structure and stereochemistry of bis-adduct 7b were confirmed through single crystal X-ray analysis.

Bis-adduct 4 f

To a solution of aldehyde $\mathbf{1 a}(40 \mathrm{mg}, 0.42 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(2 \mathrm{~mL})$ was added $\mathrm{NMM}(100 \mathrm{mg}$, $0.92 \mathrm{mmol}, 2.2 \mathrm{~mol}$ equiv). The resulting solution was added to amine $\mathbf{8}(110 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1.2 mol equiv). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 22 h then concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(30: 70: 1$ then $0: 100: 1)$ provided the title compound ($73: 27$ mixture of diastereomers, $130 \mathrm{mg}, 0.25 \mathrm{mmol}, 60 \%) . R_{f} 0.15 \mathrm{EtOAc}_{\mathrm{Et}}^{3} \mathrm{~N}$ (100:1). Further purification by preparative HPLC (Waters Xbridge C18 $5 \mu \mathrm{~m}$ column, $150 \mathrm{~mm} \times 19 \mathrm{~mm}, 50: 50: 0.1$ $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ TFA) provided an analytical sample of the major diastereomer as a white powder. Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane gave colourless crystals: mp 141-143 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26$ (br. s, 4 H), $7.14-7.22$ (m, 1 H), 5.51 (br. s, 1 H), 5.13 (t, $J=5.3$ Hz, 1 H), 4.43 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H})$, $2.89(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{dd}, J=8.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.51(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{~d}$, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 179.6$ (C), 178.7 (C), 178.7 (C), 177.0 (C), 173.1 (C), 139.4 (C), 137.7 (C), 129.6 $(\mathrm{CH}), 128.3(\mathrm{CH}), 126.5(\mathrm{CH}), 124.0(\mathrm{CH}), 80.6(\mathrm{C}), 61.8(\mathrm{CH}), 52.3(\mathrm{CH}), 46.7(\mathrm{CH}), 41.8$ $(\mathrm{CH}), 41.0(2 \times \mathrm{CH}), 40.0(\mathrm{CH}), 39.7\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right)$, $25.1\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR $(\mathrm{KBr}$ disc $): v_{\max }=3057,3027,2946,2854,1771$, $1694 \mathrm{~cm}^{-1}$; MS (ESI): $m / z(\%): 541$ (100) $[M+N a]^{+}$; HRMS (ESI): calc for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Na}$
$[\mathrm{M}+\mathrm{Na}]^{+}: 541.2427$; found 541.2429. The structure and stereochemistry of bis-adduct $\mathbf{4 f}$ were confirmed through single crystal X-ray analysis.

Bis-adduct 4 g

To a solution of aldehyde $\mathbf{1 a}(40 \mathrm{mg}, 0.42 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(2 \mathrm{~mL})$ was added $\mathrm{NMM}(277 \mathrm{mg}$, $2.49 \mathrm{mmol}, 6.0 \mathrm{~mol}$ equiv). The resulting solution was added to amine $9(162 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1.2 mol equiv). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 22 h then concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (90:10:1 then $80: 20: 1$) provided the title compound ($174 \mathrm{mg}, 0.278 \mathrm{mmol}$, 67%) as a pale yellow powder: $R_{f} 0.15$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(80: 20: 1) ; \mathrm{mp} 128-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1$ H), $7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.51-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.14(\mathrm{~m}, 1 \mathrm{H})$, 3.13 (dd, J=8.0, 2.9 Hz, 2 H), 3.01-3.09 (m, 1 H), 2.96(s, 3 H), 2.94-3.00 (m, 1 H), 2.93 (s, $3 \mathrm{H}), 2.56-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 2 \mathrm{H}), 2.23-$ $2.29(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.35(\mathrm{~m}$, $1 \mathrm{H}), 0.37-0.52(\mathrm{~m}, 1 \mathrm{H}),-0.21(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.8(2 \mathrm{x} \mathrm{C})$, 179.7 (C), 177.6 (C), 143.9 (C), 143.3 (C), 139.1 (C), $130.0(\mathrm{CH}), 129.8(\mathrm{CH}), 127.6(2 \mathrm{x}$ $\mathrm{CH}), 126.7(\mathrm{CH}), 126.2(\mathrm{CH}), 120.7(\mathrm{CH}), 66.5(\mathrm{CH}), 54.8(\mathrm{CH}), 48.1\left(\mathrm{CH}_{2}\right), 42.9(\mathrm{CH})$, $40.7(\mathrm{CH}), 40.5(\mathrm{CH}), 38.7(\mathrm{CH}), 37.3(\mathrm{C}), 29.3\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right)$, $24.9\left(\mathrm{CH}_{3}\right)$, $22.9\left(\mathrm{CH}_{2}\right), 1.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (KBr disc): $\boldsymbol{v}_{\max }=3056,2951,1773,1700 \mathrm{~cm}^{-1}$; MS (ESI): $m / z(\%): 626(100)[M+H]^{+}$; HRMS (ESI): calc for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}[M+H]^{+}$: 626.3050 ; found 626.3052 .

Bis-adduct SI-10

To a solution of bis-adduct $\mathbf{4 g}(50 \mathrm{mg}, 0.080 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added TBAF $(0.16$ $\mathrm{mL}, 0.16 \mathrm{mmol}$ of a 1.0 M THF solution, 2 mol equiv). The resulting solution was stirred at rt until complete consumption of bis-adduct $\mathbf{~} \mathbf{g}$ as indicated by TLC (30 min). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and added to a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous NaHCO_{3} $(1: 1,10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and the combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (80:20:1 then $50: 50: 1$) provided the title compound ($21 \mathrm{mg}, 0.038 \mathrm{mmol}, 48 \%$) as a yellow solid. R_{f} 0.30 petrol/EtOAc/Et 3 (50:50:1). Recrystallisation from methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave yellow crystals: mp $264{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67 (d, J=7.4 $\mathrm{Hz}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.53$ (br. s, 1 H), 5.48 (br. s., 1 H), 4.44 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52-3.62 (m, 2 H), 3.43 (br. s., 1 H), 3.34 (dd, $J=9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.95-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{dd}, J=15.5,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.91(\mathrm{~m}$, 2 H), $1.54 \mathrm{ppm}(\mathrm{br} . \mathrm{s} ., 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.4$ (C), 179.4 (C), 178.9 (C), 178.1 (C), 148.5 (C), 147.5 (C), $136.8(\mathrm{C}), 127.9(2 \times \mathrm{CH}), 126.5(\mathrm{CH}), 126.2(\mathrm{CH})$, $126.0(\mathrm{CH}), 125.4(\mathrm{CH}), 123.0(\mathrm{CH}), 76.5(\mathrm{C}), 66.9(\mathrm{CH}), 52.6(\mathrm{CH}), 47.7(\mathrm{CH} 2), 41.2(\mathrm{CH})$, $40.5(\mathrm{CH}), 40.1(\mathrm{CH}), 39.1(\mathrm{CH}), 38.4(\mathrm{CH}), 29.9\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right.$ and CH_{2}), $23.0\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=3058,2977,2950,2847,1772,1693 \mathrm{~cm}^{-1}$; MS (ESI): $m / z(\%): 576$ (15) $[M+N a]^{+}$; HRMS (ESI): calc for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}[M+N a]^{+}$: 576.2474; found 576.2475. The structure and stereochemistry of bis-adduct SI-10 were confirmed through single crystal X-ray analysis.

Synthesis of tricycles 12a-12g

Mono-adduct 11a

Prepared using general procedure D with aldehyde $1 \mathrm{a}(36 \mathrm{mg}, 0.37 \mathrm{mmol})$, NMM (50 mg , $0.45 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and amine 10a ($72 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) in $\mathrm{CDCl}_{3}(2.0$ mL). Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(80: 20: 1)$ provided the title compound $(120 \mathrm{mg}, 0.34 \mathrm{mmol}, 92 \%)$ as a yellow oil: $R_{f} 0.22$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(80: 20: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{obs}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=17.5,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.88 (br. s., 1 H), $5.69-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-5.11(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{~d}$, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.83$ (br. s., 1 H), $3.39(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.10-3.18(m, 1H), 3.00-3.07(m, 1 H), 2.92 (s, 3 H), 2.68-2.83 (m, 2 H), $2.22(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.08 (dd, $J=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.1$ (C), 177.8 (C), 140.3 (C), 137.7 (C), $136.8(\mathrm{CH}), 136.6(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 127.0(\mathrm{CH}), 115.8\left(\mathrm{CH}_{2}\right), 113.5\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{CH}), 55.7\left(\mathrm{CH}_{2}\right), 51.4\left(\mathrm{CH}_{2}\right), 42.3(\mathrm{CH})$, $39.7(\mathrm{CH}), 33.3\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (thin film): $\boldsymbol{v}_{\max }=3062,3027,3002$, 2974, 2941, $2848 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 350 (23) [M] $]^{+} 309$ (61), 190 (52), 91 (100); HRMS: calc for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[M]^{+}: 350.1994$; found 350.1996.

Tricycle 12a

To a solution of mono-adduct 11a ($40 \mathrm{mg}, 0.11 \mathrm{mmol}$) in toluene $(2.3 \mathrm{~mL})$ was added BHT ($7 \mathrm{mg}, 0.034 \mathrm{mmol}, 0.30 \mathrm{~mol}$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(18 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv). The resulting mixture was heated in a microwave reactor at $150{ }^{\circ} \mathrm{C}$ for 5 hours, filtered through a
plug of cotton wool and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (70:30:1) provided the title compound ($14 \mathrm{mg}, 0.069 \mathrm{mmol}, 61 \%$) as a pale yellow solid. $R_{f} 0.37$ petrol/EtOAc/Et 3 N (70:30:1). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethyl ether gave yellow crystals: $\mathrm{mp} 205{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $0 \mathrm{H}), 5.42-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=9.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.13$ $(\mathrm{m}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.06(\mathrm{~s}, 4 \mathrm{H}), 2.84-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1$ H), 2.52 (dd, $J=12.0,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-2.19(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65$ (dd, $J=12.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.34(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.8$ (C), 176.3 (C), $138.8(\mathrm{C}), 132.4(\mathrm{C}), 129.8(\mathrm{CH})$, $128.3(\mathrm{CH}), 127.0(\mathrm{CH}), 123.6\left(\mathrm{CH}_{2}\right), 61.1(\mathrm{CH}), 58.7\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{2}\right), 41.7(\mathrm{CH}), 40.6$ $(\mathrm{CH}), 39.8(\mathrm{CH}), 38.0(\mathrm{CH}), 31.1\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{2}\right)$ ppm; IR (KBr disc): $v_{\max }=2925,2848,2813,1690 \mathrm{~cm}^{-1}$; MS (70 eV, EI): $m / z(\%): 350(81)$ $[M]^{+}, 239(60), 91$ (100); HRMS: calc for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[M]^{+}: 350.1994$; found 350.1994. The structure and stereochemistry of tricycle 12a were confirmed through single crystal X-ray analysis.

Tricycle 12b

To a solution of aldehyde $\mathbf{1 a}(28 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(3 \mathrm{~mL})$ was added $\mathrm{NMM}(36 \mathrm{mg}$, $0.32 \mathrm{mmol}, 1.1 \mathrm{~mol}$ equiv). The resulting solution was added to amine $\mathbf{1 0 b}$ ($68 \mathrm{mg}, 0.31$ $\mathrm{mmol}, 1.05 \mathrm{~mol}$ equiv) and stirred briefly before being heated to reflux for 3 hours. The reaction mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}(95: 5: 1)$ to provide the title compound ($90 \mathrm{mg}, 0.22 \mathrm{mmol}, 74 \%$) as a beige solid. $R_{f} 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} / \mathrm{Et} 3 \mathrm{~N}$ (95:5:1). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate gave colourless crystals: mp $210{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.44-5.51(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=9.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H})$, $3.07-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{dt}, J=11.7,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.77 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=11.9,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.35(\mathrm{~m}$, $1 \mathrm{H}), 1.83(\mathrm{td}, J=12.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.08-1.27(\mathrm{~m}$, $1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.5$ (C), 175.9 (C), 175.7 (C), 138.5 (C), 132.3 (C), $129.7(\mathrm{CH}), 128.3(\mathrm{CH}), 127.1(\mathrm{CH}), 121.9\left(\mathrm{CH}_{2}\right), 60.7(\mathrm{CH}), 58.4\left(\mathrm{CH}_{2}\right), 51.6\left(\mathrm{CH}_{3}\right)$, $51.4\left(\mathrm{CH}_{2}\right), 46.0(\mathrm{CH}), 40.5(2 \mathrm{x} \mathrm{CH}), 39.7(\mathrm{CH}), 39.6(\mathrm{CH}), 28.6\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 26.5$ $\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (KBr disc): $\boldsymbol{v}_{\max }=2956,2928,2795,1729,1697 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}$, EI): $m / z(\%): 408(60)[M]^{+}, 297(41), 91$ (100); HRMS: calc for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}[M]^{+}: 408.2049$; found 408.2046. The structure and stereochemistry of tricycle 12b were confirmed through single crystal X-ray analysis.

Tricycle 12c

To a solution of aldehyde $\mathbf{1 a}(20 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL})$ was added NMM (26 $\mathrm{mg}, 0.23 \mathrm{mmol}, 1.1 \mathrm{~mol}$ equiv). The resulting solution was added to amine $\mathbf{1 0 c}(46 \mathrm{mg}, 0.22$ $\mathrm{mmol}, 1.05 \mathrm{~mol}$ equiv) and stirred briefly before being diluted with $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL})$ and heated to reflux for 1 h . The mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(70: 30: 1)$ to provide the title compound ($60 \mathrm{mg}, 0.15 \mathrm{mmol}, 72 \%$) as a yellow solid. $R_{f} 0.20$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (70:30:1). Recrystallisation from methanol gave yellow crystals: mp $118{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (br. s., 1 H$), 4.15(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}$, overlapping), $3.60(\mathrm{~s}, 3 \mathrm{H})$, $3.44(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.96(\mathrm{~m}, 2 \mathrm{H}$, overlapping), $2.87(\mathrm{~s}, 3 \mathrm{H})$, 2.46-2.69 (m, 3 H), 2.25-2.41 (m, 2 H), 1.98-2.22(m, 2 H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 179.4(\mathrm{C}), 177.3(\mathrm{C}), 175.9(\mathrm{C}), 139.2(\mathrm{C}), 132.0(\mathrm{C}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH})$, $126.9(\mathrm{CH}), 122.0(\mathrm{CH}), 62.3(\mathrm{CH}), 57.6\left(\mathrm{CH}_{2}\right), 56.2\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{3}\right), 42.5(\mathrm{CH}), 41.3$
$(\mathrm{CH}), 41.2(\mathrm{CH}), 41.0(\mathrm{CH}), 37.4(\mathrm{CH}), 32.9\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR $(\mathrm{KBr}$ disc): $v_{\max }=2955,2936,2798,2773,1728,1695 \mathrm{~cm}^{-1}$; MS (70 eV, EI): $m / z(\%): 394$ (84) $[M]^{+}, 303$ (31), 283 (40), 91 (100); HRMS: calc for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}[M]^{+}$: 394.1893; found 394.1894. The structure and stereochemistry of tricycle 12c were confirmed through single crystal X-ray analysis.

Tricycle 12d

To a solution of aldehyde $\mathbf{1 a}(22 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1.2 \mathrm{~mL})$ was added acrolein (41 $\mu \mathrm{L}, 0.56 \mathrm{mmol}, 2.5 \mathrm{~mol}$ equiv). The resulting solution was then added to amine $\mathbf{1 0 c}(123 \mathrm{mg}$, $0.56 \mathrm{mmol}, 2.5 \mathrm{~mol}$ equiv). The solution was stirred briefly before being heated to reflux for 1 h . The reaction mixture was then concentrated under reduced pressure and redissolved in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 1,2 \mathrm{~mL})$. Sodium borohydride ($22 \mathrm{mg}, 0.58 \mathrm{mmol}, 2.6 \mathrm{~mol}$ equiv) was added and the resulting mixture was stirred at rt for 50 min before being poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with petrol/EtOAc (60:40 then $40: 60$) provided the title compound ($43 \mathrm{mg}, 0.13 \mathrm{mmol}, 56 \%$) as a yellow oil: $R_{f} 0.32$ petrol/EtOAc (40:60); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.34(\mathrm{~m}, 5 \mathrm{H}), 5.24$ (br. s., 1 H), $4.05(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.46-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=11.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.65(\mathrm{~m}, 1 \mathrm{H})$, 2.39-2.51 (m, 3 H), 2.05-2.31 (m, 5 H), 1.51-1.59 (m, 2 H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 174.9(\mathrm{C}), 137.9(\mathrm{C}), 136.3(\mathrm{C}), 129.3(\mathrm{CH}), 128.5(\mathrm{CH}), 127.4(\mathrm{CH}), 118.6(\mathrm{CH})$, $65.9\left(\mathrm{CH}_{2}\right), 65.6(\mathrm{CH}), 60.1\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{3}\right), 45.5(\mathrm{CH}), 43.8(\mathrm{CH}), 43.8(\mathrm{CH})$, $35.3(\mathrm{CH}), 29.7\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=3246,3086,3061$, 3028, 2923, $2847 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 341 (100), 282 (30), 91 (100); HRMS: calc for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}[M]^{+}: 341.1991$; found 341.1986.

Tricycle 12e

To a solution of aldehyde $\mathbf{1 a}(20 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(1.2 \mathrm{~mL})$ was added β nitrostyrene ($37 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv). The resulting solution was then added to amine 10 c ($55 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv). The solution was stirred briefly before being heated to reflux for 2.5 h . The reaction mixture was then concentrated under reduced pressure and purified by flash chromatography on silica gel eluting with petrol/EtOAc $(90: 10)$ to provide the title compound ($93: 7$ mixture of two diastereomers, $60 \mathrm{mg}, 0.14 \mathrm{mmol}, 67 \%$) as a pale yellow solid. $R_{f} 0.23$ petrol/EtOAc (90:10). Recrystallisation from methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave yellow needles: mp $122-124{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.14-7.33(\mathrm{~m}, 10 \mathrm{H})$, $5.49(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{td}, J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-3.08(\mathrm{~m}, 2$ H), 2.62-2.74 (m, 2 H), 2.50-2.57 (m, 2 H), $2.42(\mathrm{dd}, J=15.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.36(\mathrm{~m}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.8$ (C), 142.6 (C), 138.7 (C), 134.2 (C), 129.0 $(\mathrm{CH}), 128.9(\mathrm{CH}), 128.3(\mathrm{CH}), 127.6(\mathrm{CH}), 127.1(\mathrm{CH}), 127.0(\mathrm{CH}), 121.1(\mathrm{CH}), 96.1(\mathrm{CH})$, $64.0(\mathrm{CH}), 60.8\left(\mathrm{CH}_{2}\right), 56.8\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{3}\right), 45.7(\mathrm{CH}), 44.1(\mathrm{CH}), 43.1(\mathrm{CH}), 42.6(\mathrm{CH})$, $36.7\left(\mathrm{CH}_{2}\right)$, $29.9\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (KBr disc): $\boldsymbol{v}_{\max }=3086,3058,3031,2954,2914,2847,2813$, $1725,1542 \mathrm{~cm}^{-1}$; MS (70 eV, EI): $m / z(\%): 432$ (10) $[M]^{+}, 386$ (8), 283 (100), 91 (58); HRMS: calc for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}[M]^{+}$: 432.2049; found 432.2053. The structure and stereochemistry of tricycle 12e were confirmed through single crystal X-ray analysis.

Mono-adduct 11f

Prepared using general procedure C with aldehyde $1 \mathbf{d}(50 \mathrm{mg}, 0.28 \mathrm{mmol})$, NMM (37 mg , $0.33 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and amine $\mathbf{1 0 a}\left(54 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.2 \mathrm{~mol}\right.$ equiv) in CDCl_{3} (1 $\mathrm{mL})$. Purification by flash column chromatography on silica gel eluting with hex $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ (80:20:1 then 70:30:1) provided the title compound ($106 \mathrm{mg}, 0.244 \mathrm{mmol}, 88 \%$) as a yellow oil: $R_{f} 0.26$ hex/ $\mathrm{Et}_{2} \mathrm{O}(60: 40) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.70(\mathrm{~m}, 3 \mathrm{H})$, $5.04-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}$, $1 \mathrm{H}), 3.36(\mathrm{dd}, J=9.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{ddd}, J=9.3,7.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=15.7$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 3 \mathrm{H})$, $1.44-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.1$ (C), $177.9(\mathrm{C}), 140.4(\mathrm{C}), 137.5(\mathrm{C}), 136.6(\mathrm{CH}), 130.8(\mathrm{CH}), 130.2(\mathrm{CH}), 128.3(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 126.8(\mathrm{CH}), 125.6(\mathrm{CH}), 115.7\left(\mathrm{CH}_{2}\right), 57.8(\mathrm{CH}), 55.6\left(\mathrm{CH}_{2}\right), 51.4\left(\mathrm{CH}_{2}\right), 42.3(\mathrm{CH})$, $39.7(\mathrm{CH}), 33.2\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right), 22.6$ $\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=2926,2854,1775,1704 \mathrm{~cm}^{-1} ;$ MS (70 eV, EI): m / z (\%): 434 (25) $[M]^{+}, 393$ (32), 349 (38), 274 (35); HRMS: calc for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}[M]^{+}: 434.2933$; found 434.2938.

Tricycle 12 f

To a solution of mono-adduct $\mathbf{1 1 f}(22.5 \mathrm{mg}, 0.052 \mathrm{mmol})$ in toluene (5 mL) was added BHT (1 crystal) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($23 \mathrm{mg}, 0.11 \mathrm{mmol}, 3 \mathrm{~mol}$ equiv). The resulting mixture was heated in
a microwave reactor at $150{ }^{\circ} \mathrm{C}$ for 8 hours, filtered through a plug of cotton wool and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with hex/EtOAc/Et ${ }_{3} \mathrm{~N}(90: 10: 1)$ provided the title compound ($14 \mathrm{mg}, 0.324 \mathrm{mmol}$, 63%) as a pale yellow solid. $R_{f} 0.26$ hex/EtOAc (80:20). Recrystallisation from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave colourless crystals: mp $154-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.52(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=9.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.84(\mathrm{~m}$, $1 \mathrm{H}), 2.75(\mathrm{dd}, J=16.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dt}, J=6.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=12.1,6.5 \mathrm{~Hz}$, 1 H), 2.09 (br. s, 1 H), $1.85(\mathrm{td}, J=11.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.04(\mathrm{~m}, 16 \mathrm{H}), 0.91-0.84(\mathrm{~m}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.7$ (C), 176.3 (C), 138.8 (C), 132.0 (C), 129.8 $(\mathrm{CH}), 128.6(\mathrm{CH}), 128.3(\mathrm{CH}), 127.0(\mathrm{CH}), 61.0(\mathrm{CH}), 58.7\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{2}\right), 42.3(\mathrm{CH})$, $40.6(\mathrm{CH}), 39.9(\mathrm{CH}), 37.0(\mathrm{CH}), 34.7\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 33.8(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right)$, $29.5\left(\mathrm{CH}_{2}\right)$, $27.6\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (ATR): $v_{\max }$ $=2952,2919,2855,1767,1684 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 434 (37) $[M]^{+}, 349$ (63), 323 (11), 91 (100); HRMS: calc for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}[M]^{+}: 434.2933$; found 434.2934. The structure and stereochemistry of tricycle $\mathbf{1 2 f}$ were confirmed through single crystal X-ray analysis.

Tricycle 12 g

To a solution of aldehyde $\mathbf{1 e}(12 \mathrm{mg}, 0.070 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was added NMM (9 $\mathrm{mg}, 0.084 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv). The resulting solution was added to amine $\mathbf{1 0 b}(18 \mathrm{mg}$, $0.084 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and stirred briefly before being diluted with $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ and heated to reflux for 1 h . The mixture was concentrated under reduced pressure and purified by flash chromatography on silica gel eluting with hex/EtOAc/Et ${ }_{3} \mathrm{~N}(80: 20: 1)$. The impure fractions containing the product were combined, concentrated under reduced pressure and purified by flash chromatography on $\mathrm{Et}_{3} \mathrm{~N}$ washed silica gel eluting with hex/EtOAc (80:20 then $70: 30$) to provide the title compound ($24 \mathrm{mg}, 0.049 \mathrm{mmol}, 70 \%$) as a brown wax: $R_{f} 0.43$
petrol/EtOAc (60:40). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 5 \mathrm{H}), 3.01(\mathrm{~s}$, $3 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 3 \mathrm{H})$, $\left.0.95(\mathrm{td}, J=12.6,9.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.4(\mathrm{C}), 175.9(\mathrm{C})$, 172.2 (C), 141.3 (C), 138.4 (C), 133.3 (C), $129.8(\mathrm{CH}), 129.1(\mathrm{CH}), 128.3(\mathrm{CH}), 128.1(\mathrm{CH})$, $127.2(\mathrm{CH}), 127.1(\mathrm{CH}), 125.4(\mathrm{CH}), 60.7(\mathrm{CH}), 58.6\left(\mathrm{CH}_{2}\right), 51.6(\mathrm{CH}), 51.6\left(\mathrm{CH}_{2}\right), 50.9$ $\left(\mathrm{CH}_{3}\right), 43.0(\mathrm{CH}), 40.9(\mathrm{CH}), 40.5(\mathrm{CH}), 39.6(\mathrm{CH}), 34.9(\mathrm{CH}), 28.3\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 25.2$ $\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (ATR): $v_{\max }=2949,2911,2797,1736,1695 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): m / z(\%):$ 484 (82) $[M]^{+}, 425$ (44), 373 (40), 91 (100); HRMS: calc for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}[M]^{+}: 484.2362$; found 484.2362.

References

[1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.
[2] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518-1520.
[3] W. L. F. Armarego, C. Chai, Purification of Laboratory Chemicals, 5th Edition, ButterworthHeinemann, 2003.
[4] N. Kamiya, Y. Chikami, Y. Ishii, Synlett 1990, 1990, 675-676.
[5] J.-S. Zheng, H.-N. Chang, F.-L. Wang, L. Liu, J. Am. Chem. Soc. 2011, 133, 11080-11083.
[6] a) F. Kerins, D. F. O'Shea, J. Org. Chem. 2002, 67, 4968-4971; b) L. Ballell-Pages, D Barros-Aguirre, J. Castro-Pichel, M. J. Remuinan-Blanco, J. M. Fiandor-Roman (Glaxo Group Limited, UK), WO2009000745A1, 2008
[7] G. A. Molander, L. A. Felix, J. Org. Chem. 2005, 70, 3950-3956.
[8] P. S. Arora, Q. N. Van, M. Famulok, A. J. Shaka, J. S. Nowick, Bioorg. Med. Chem. 1998, 6, 1421-1428.
[9] T. A. Bradford, A. D. Payne, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, J. Org. Chem. 2010, 75, 491-494.
[10] S. Karlsen, P. Froyen, L. Skattebol, Acta Chem. Scand. B 1976, 30, 664-668.
[11] P. Gramatica, P. Manitto, D. Monti, G. Speranza, Tetrahedron 1988, 44, 1299-1304.
$[12] \quad$ a) C. Taillier, T. Hameury, V. Bellosta, J. Cossy, Tetrahedron 2007, 63, 4472-4490; b) S. F. McCann, L. E. Overman, J. Am. Chem. Soc. 1987, 109, 6107-6114.
[13] C. P. Woodward, N. D. Spiccia, W. R. Jackson, A. J. Robinson, Chem. Commun. 2011, 47, 779-781.
[14] K. M. J. Brands, A. A. P. Meekel, U. K. Pandit, Tetrahedron 1991, 47, 2005-2026.
[15] a) A. Barco, S. Benetti, G. Spalluto, A. Casolari, G. P. Pollini, V. Zanirato, J. Org. Chem. 1992, 57, 6279-6286; b) S. G. Davies, D. Diez, S. H. Dominguez, N. M. Garrido, D. Kruchinin, P. D. Price, A. D. Smith, Org. Biomol. Chem. 2005, 3, 1284-1301.
[16] H.-x. Wei, M. Schlosser, Chem. Eur. J. 1998, 4, 1738-1743.

Anisotropic Displacement Ellipsoid Plots for 3c, SI-8, SI-9, 4a-4c, 7b, 4f, SI-10, 12a 12c, 12e and 12f

Figure S1. Anisotropic displacement ellipsoid plot of 3c (CCDC 1429173) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S2. Anisotropic displacement ellipsoid plot of SI-8 (CCDC 1429172) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii; the minor sites for the disordered H atoms have been omitted.

Figure S3. Anisotropic displacement ellipsoid plot of SI-9 (CCDC 1429171) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S4a. Anisotropic displacement ellipsoid plot of molecule one of 4a (CCDC 1429170) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S4b. Anisotropic displacement ellipsoid plot of molecule two of 4a (CCDC 1429170) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S5. Anisotropic displacement ellipsoid plot of $\mathbf{4 b}$ (CCDC 1429169) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S6. Anisotropic displacement ellipsoid plot of 4c (CCDC 1429168) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S7. Anisotropic displacement ellipsoid plot of 7b (CCDC 1429167) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S8. Anisotropic displacement ellipsoid plot of $\mathbf{4 f}$ (CCDC 1429166) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S9a. Anisotropic displacement ellipsoid plot of molecule one of SI-10 (CCDC 1429165) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S9b. Anisotropic displacement ellipsoid plot of molecule two of SI-10 (CCDC 1429165) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S10. Anisotropic displacement ellipsoid plot of 12a (CCDC 1429164) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S11. Anisotropic displacement ellipsoid plot of 12b (CCDC 1429163) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S12. Anisotropic displacement ellipsoid plot of 12c (CCDC 1429162) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S13. Anisotropic displacement ellipsoid plot of 12e (CCDC 1429161) with labelling of selected atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S14. Anisotropic displacement ellipsoid plot of $\mathbf{1 2 f}$ (CCDC 1429160) with labelling of selected atoms, showing only the major sites of disordered atoms. Ellipsoids exhibit 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Stereochemical assignments by NMR

Mono-adducts 3a-3g
The stereochemistry of mono-adducts $\mathbf{3 a}, \mathbf{3 b}, \mathbf{3 d}, \mathbf{3 e}, \mathbf{3 f}$ and $\mathbf{3 g}$ was assigned by comparison of ${ }^{1} \mathrm{H}$ NMR spectra with that of $\mathbf{3 c}$. The stereochemical assignment of $\mathbf{3 c}$ was determined by single crystal X-ray analysis.

Similarities between the ${ }^{1} \mathrm{H}$ NMR spectra of the mono-adducts are highlighted in Figure S15.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra of mono-adducts $\mathbf{3 a}-\mathbf{3 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Mono-adduct 3k-A

The stereochemistry of tricycle $\mathbf{3 k} \mathbf{- A}$ was assigned by 2 D NMR experiments and the coupling constants between $\mathrm{H}^{1}, \mathrm{H}^{2}$ and H^{3}. The NOESY spectrum is shown in Figure S16.

Figure S16. 2D NOESY spectrum of mono-adduct $\mathbf{3 k - A}\left(800 \mathrm{MHz}\right.$, acetone- d_{6})

Bis-adduct 4d

The stereochemistry of bis-adduct $4 d$ was assigned by comparison of the ${ }^{1} \mathrm{H}$ NMR with that of bis-adduct 4a.

Figure S17. ${ }^{1} \mathrm{H}$ NMR comparison of bis-adducts $\mathbf{4 a}$ and $\mathbf{4 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Differences are highlighted in blue while similarities are highlighted in yellow.

Bis-adduct 4e

The stereochemistry of bis-adduct $\mathbf{4 e}$ was assigned by comparison of the ${ }^{1} \mathrm{H}$ NMR with that of bis-adduct $\mathbf{4 c}$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR comparison of bis-adducts $\mathbf{4 c}$ and $\mathbf{4 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Differences are highlighted in blue while similarities are highlighted in yellow.

Tricycle 12d

The stereochemistry of tricycle $\mathbf{1 2 d}$ was assigned by 2D NMR experiments. The 2D NOESY spectrum is shown in Figure S19.

Figure S19. 2D NOESY spectrum of tricycle $12 \mathrm{~d}\left(800 \mathrm{MHz}\right.$, acetone- d_{6})

Tricycle 12g

The stereochemistry of tricycle $\mathbf{1 2 g}$ was assigned by comparison of the ${ }^{1} \mathrm{H}$ NMR with that of tricycle 12b.

Figure S20. ${ }^{1} \mathrm{H}$ NMR comparison of bis-adducts $\mathbf{1 2 b}$ and $\mathbf{1 2 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Differences are highlighted in blue while similarities are highlighted in yellow. $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{3} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

H NMR Spectrum
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	15			
								ppm					1.5	1.0	0.5	0.079

${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum $100 \mathrm{MHz}_{1} \mathrm{CDCl}_{3}$

 $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{llllllllllllllllllllll}8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & 87\end{array}$

 $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{llllllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & 92\end{array}$

3k-A
${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

| 1.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.903 |
| :--- |

${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4b
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

20	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	
										ppm							30	20	10	912

$\iiint \quad \int \quad \iiint \int_{\int} \int$

\qquad

| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.913 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ppm | | | | | | | | | | | | | | | | |

س.

${ }^{13} \mathrm{C}$ NMR Spectrum $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

11a
${ }^{1} \mathrm{H}$ NMR Spectrum
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Jht jes,

| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0
 ppm | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.927 |
| :--- |

${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{Spectrum}$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$400 \mathrm{MHz}, \mathrm{CDC}_{3}$

${ }^{13} \mathrm{G}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{11}$
${ }^{1} \mathrm{H}$ NMR Spectrum
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(1)

${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0138

$12 f$
${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

12g
${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{Spectrum}$
$\mathbf{4 0 0 \mathrm { MHz } , \mathrm { CDCl } _ { 3 }}$

| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | $\begin{array}{c}1.0 \\ \mathrm{pmm}\end{array}$ | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.9 |
| :--- |

12g
${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Computational Section

Computational methods

All calculations were carried out using the GAUSSIAN 09 software package. ${ }^{[1]}$ The B3LYP ${ }^{[2]}$ functional and the $6-31 \mathrm{G}(\mathrm{d})$ basis set were employed as the model chemistry (B3LYP/6-31G(d)). Gas phase geometry optimisations, vibrational harmonic frequencies, thermal corrections, characterisations of stationary points and IRC analyses were done using B3LYP/6-31G(d). Entropies were corrected using the quasi harmonic approximation as described by Truhlar and co-workers. ${ }^{[3]}$

References

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01: Gaussian, Inc. Wallingford, CT, USA 2009.
[2] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789; For reviews of density-functional methods, see: c) R. G. Parr, W. Yang, Density-functional Theory of Atoms and Molecules, Oxford University Press: New York, 1989; d) Density Functional Methods in Chemistry, (Eds.: J. K. Labanowski, J. W. Andzelm), Springer-Verlag: New York, 1991; e) T. Ziegler, Chem. Rev. 1991, 91, 651-667; f) W. Koch, M. C. Holthausen, A Chemist's Guide to Density Functional Theory, Wiley-WCH: Weinheim, 2000.
[3] Y. Zhao, D. G. Truhlar, Phys. Chem. Chem. Phys. 2008, 10, 2813-2818.

Cartesian coordinates and energies of molecules

N-Methyl maleimide

B3LYP/6-31G(d)
$\mathrm{Eel}=-398.74426237 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-398.64761327 \mathrm{au}$

Enthalpy $=-398.63946266 \mathrm{au} ;$ Gibbs energy $=-398.67908594 \mathrm{au}$

C $\quad 0.648962-1.635328 \quad-0.000001$
$\begin{array}{llll}\text { C } & -0.687108 & -1.619422 & 0.000003\end{array}$
$\begin{array}{llll}\text { C } & 1.146789 & -0.216105 & 0.000000\end{array}$

C $\quad-1.152765 \quad-0.189625 \quad-0.000001$
$\begin{array}{llll}\text { O } & -2.292689 & 0.227376 & 0.000000\end{array}$
$\begin{array}{llll}\text { O } & 2.294046 & 0.180470 & 0.000000\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.386621 & -2.445565 & -0.000003\end{array}$
$\begin{array}{llll}\mathrm{N} & 0.007507 & 0.591791 & -0.000001\end{array}$
$\begin{array}{llll}\text { C } & 0.029639 & 2.043058 & 0.000000\end{array}$
$\begin{array}{llll}H & 0.544133 & 2.418626 & -0.889298\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.006320 & 2.385759 & -0.000029\end{array}$
$\begin{array}{llll}H & 0.544081 & 2.418628 & 0.889329\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.328210 & -2.478214 & -0.000003\end{array}$
\#

Conformations of Jørgensen-Hayashi organocatalyst-derived aminodendralene 2c, in descending order of Energy (0K); most stable first
c_syn_S_diPhTMS_pyrrolidine_1_0_t_vin
B3LYP/6-31G(d)
$\operatorname{Eel}=-1430.11529776 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1429.58797217 \mathrm{au}$

Enthalpy $=-1429.55637634 \mathrm{au} ;$ Gibbs energy $=-1429.64335665 \mathrm{au}$
$\begin{array}{llll}\text { C } & 2.206563 & -0.043904 & -1.178081\end{array}$
$\begin{array}{llll}\text { C } & 3.511914 & -0.185988 & -0.836801\end{array}$

H $\quad 1.807969 \quad 0.947276 \quad-1.371462$
$\begin{array}{llll}\text { H } & 3.884310 & -1.153460 & -0.510599\end{array}$
$\begin{array}{llll}\text { C } & 4.465732 & 0.929794 & -0.852205\end{array}$
$\begin{array}{llll}\text { C } & 4.407777 & 1.941382 & -1.749971\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.084622 & 2.789656 & -1.689637\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.684741 & 1.948307 & -2.559587\end{array}$
$\begin{array}{llll}\text { C } & 5.540797 & 0.952364 & 0.157916\end{array}$
$\begin{array}{llll}\text { C } & 5.664075 & 0.132114 & 1.209944\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.295823 & 1.724522 & 0.008952\end{array}$
$\begin{array}{llll}H & 6.499057 & 0.222845 & 1.898894\end{array}$
$\begin{array}{llll}\text { H } & 4.937163 & -0.645548 & 1.426427\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.274105 & -1.041188 & -1.294923\end{array}$

C $\quad-0.146516 \quad-0.784309 \quad-1.531609$

C $1.620584 \quad-2.448758 \quad-1.454896$
$\begin{array}{llll}\text { C } & -0.681007 & -2.122663 & -2.103099\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.225108 & 0.025021 & -2.267502\end{array}$
$\begin{array}{llll}\text { C } & 0.571179 & -2.946522 & -2.456895\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.563857 & -2.992864 & -0.500516\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.645208 & -2.531272 & -1.831850\end{array}$

H $\quad-1.333440 \quad-1.960616 \quad-2.965081$
$\begin{array}{llll}\mathrm{H} & -1.270697 & -2.650491 & -1.350005\end{array}$
H $\quad 0.396979 \quad-4.025370 \quad-2.393395$
$\begin{array}{llll}\mathrm{H} & 0.904830 & -2.718453 & -3.475768\end{array}$
$\begin{array}{llll}\text { C } & -0.912000 & -0.254401 & -0.246536\end{array}$
$\begin{array}{llll}\text { C } & -0.640491 & -1.211479 & 0.929058\end{array}$

C $\begin{array}{llll}-1.439343 & -2.337002 & 1.187828\end{array}$
$\begin{array}{llll}\text { C } & 0.501168 & -1.021291 & 1.721926\end{array}$
C $\begin{array}{llll}-1.116583 & -3.232850 & 2.209713\end{array}$
$\begin{array}{llll}\text { H } & -2.336011 & -2.511809 & 0.602051\end{array}$
$\begin{array}{llll}\text { C } & 0.825180 & -1.915026 & 2.743275\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.146294 & -0.173989 & 1.524362\end{array}$
$\begin{array}{llll}\text { C } & 0.017391 & -3.025295 & 2.994115\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.759008 & -4.090614 & 2.391579\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.715283 & -1.741576 & 3.342697\end{array}$
$\begin{array}{llll}\text { H } & 0.268220 & -3.719505 & 3.791801\end{array}$
$\begin{array}{llll}\text { C } & -2.412534 & -0.031094 & -0.533417\end{array}$
$\begin{array}{llll}\text { C } & -3.351485 & -0.028337 & 0.511506\end{array}$
$\begin{array}{llll}\text { C } & -2.875005 & 0.297651 & -1.817784\end{array}$
$\begin{array}{llll}\text { C } & -4.694331 & 0.274918 & 0.283056\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.030886 & -0.270200 & 1.518643\end{array}$
$\begin{array}{llll}\text { C } & -4.218019 & 0.595749 & -2.052243\end{array}$
$\begin{array}{llll}\text { H } & -2.188694 & 0.336728 & -2.655743\end{array}$
$\begin{array}{llll}\text { C } & -5.136689 & 0.585097 & -1.003008\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.394030 & 0.265894 & 1.114776\end{array}$
H $\quad-4.542708 \quad 0.841946 \quad-3.059838$
$\begin{array}{llll}\mathrm{H} & -6.182375 & 0.818039 & -1.184785\end{array}$
$\begin{array}{llll}\text { O } & -0.295849 & 1.011259 & 0.006494\end{array}$
$\begin{array}{llll}\mathrm{Si} & -0.667242 & 2.434399 & 0.830483\end{array}$

C $\quad-1.249999 \quad 2.142454 \quad 2.604891$
$\begin{array}{llll}H & -1.258357 & 3.097734 & 3.146107\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.263101 & 1.730060 & 2.656001\end{array}$
$\begin{array}{llll}H & -0.581887 & 1.461150 & 3.142879\end{array}$
$\begin{array}{llll}\text { C } & -1.946894 & 3.462642 & -0.102012\end{array}$
H $\quad-1.638084 \quad 3.630995-1.140354$

H $\quad-2.933681 \quad 2.988816 \quad-0.118482$
$\begin{array}{llll}\text { H } & -2.055315 & 4.446010 & 0.374026\end{array}$
$\begin{array}{llll}\text { C } & 0.981586 & 3.344121 & 0.855199\end{array}$

H $\quad 1.368209 \quad 3.503521 \quad-0.157833$
$\begin{array}{llll}\mathrm{H} & 0.879427 & 4.326802 & 1.332520\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.742520 & 2.780914 & 1.407237\end{array}$
\#
c_syn_S_diPhTMS_pyrrolidine_2_2_t_vin
B3LYP/6-31G(d)
Eel $=-1430.11528187 \mathrm{au}$; Energy(0K)) $=-1429.58793241 \mathrm{au}$
Enthalpy $=-1429.55642950 \mathrm{au}$; Gibbs energy $=-1429.64329751 \mathrm{au}$
$\begin{array}{llll}\text { C } & 2.358492 & 0.081846 & -1.003018\end{array}$
$\begin{array}{llll}\text { C } & 3.652540 & -0.179124 & -0.687409\end{array}$
$\begin{array}{llll}H & 2.002603 & 1.108286 & -0.973582\end{array}$
$\begin{array}{llll}\text { H } & 3.990523 & -1.208314 & -0.600861\end{array}$
$\begin{array}{llll}\text { C } & 4.644591 & 0.873907 & -0.435932\end{array}$
$\begin{array}{llll}\text { C } & 4.633931 & 2.066590 & -1.074920\end{array}$
$\begin{array}{llll}\text { H } & 5.340559 & 2.851105 & -0.817135\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.920695 & 2.290054 & -1.862084\end{array}$
$\begin{array}{llll}\text { C } & 5.707517 & 0.619528 & 0.554657\end{array}$
$\begin{array}{llll}\text { C } & 5.792155 & -0.430121 & 1.382632\end{array}$
$\begin{array}{llll}H & 6.488883 & 1.378582 & 0.594609\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.621898 & -0.533867 & 2.075927\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.037968 & -1.211455 & 1.406950\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.400825 & -0.834274 & -1.352670\end{array}$
$\begin{array}{llll}\text { C } & -0.008888 & -0.495981 & -1.563298\end{array}$
$\begin{array}{llll}\text { C } & 1.731606 & -2.179328 & -1.820074\end{array}$

C	-0.577110	-1.723925	-2.317870
H	-0.076934	0.389685	-2.206231
C	0.655347	-2.452239	-2.876840
H	1.692678	-2.913125	-1.001356
H	2.747445	-2.182808	-2.229677
H	-1.285012	-1.420442	-3.091909
H	-1.114630	-2.375877	-1.624143
H	0.478691	-3.520635	-3.037419
H	0.963697	-2.014376	-3.833705
C	-0.850184	-0.154053	-0.256626
C	-0.443501	1.211304	0.348481
C	-0.237571	1.408740	1.721011
C	-0.356832	2.339022	-0.488216
C	0.069268	2.671801	2.234065
H	-0.322179	0.573644	2.405693
C	-0.047984	3.600458	0.019209
H	-0.548714	2.241199	-1.551854
C	0.172958	3.772851	1.386836
H	0.226449	2.788366	3.303114
H	0.017848	4.449029	-0.656761
H	0.417870	4.753750	1.784871
C	-0.741426	-1.318925	0.741603
C	-1.820131	-2.185668	0.957485
H			

$\begin{array}{llll}\text { C } & 0.465111 & -1.590864 & 1.411810\end{array}$
$\begin{array}{llll}\text { C } & -1.711351 & -3.276826 & 1.823696\end{array}$
$\begin{array}{llll}\text { H } & -2.749595 & -2.015356 & 0.428221\end{array}$
$\begin{array}{llll}\text { C } & 0.575520 & -2.682074 & 2.274210\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.325043 & -0.945753 & 1.268857\end{array}$
$\begin{array}{llll}\text { C } & -0.512984 & -3.530241 & 2.487888\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.567667 & -3.929890 & 1.971833\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.518348 & -2.865452 & 2.783283\end{array}$
$\begin{array}{llll}\text { H } & -0.425195 & -4.377973 & 3.162234\end{array}$
$\begin{array}{llll}\text { O } & -2.181783 & -0.055905 & -0.771431\end{array}$
$\begin{array}{llll}\mathrm{Si} & -3.620535 & 0.711219 & -0.341817\end{array}$
$\begin{array}{llll}\text { C } & -3.789248 & 2.356048 & -1.252034\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.650847 & 2.227212 & -2.332287\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.791920 & 2.774297 & -1.095476\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.060607 & 3.094863 & -0.903876\end{array}$
$\begin{array}{llll}\text { C } & -3.819132 & 0.978111 & 1.515963\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.682678 & 0.048076 & 2.078871\end{array}$
$\begin{array}{llll}H & -3.108308 & 1.713039 & 1.906370\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.831629 & 1.347817 & 1.724566\end{array}$
$\begin{array}{llll}\text { C } & -4.959936 & -0.459929 & -0.971611\end{array}$

H $\quad-4.952672 \quad-1.419188 \quad-0.440980$
$\begin{array}{llll}\mathrm{H} & -5.956099 & -0.018591 & -0.841674\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.827087 & -0.671252 & -2.039007\end{array}$

\#

t_syn_S_diPhTMS_pyrrolidine_1_0_c_vin
B3LYP/6-31G(d)
$\operatorname{Eel}=-1430.11449374 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1429.58708410 \mathrm{au}$
Enthalpy $=-1429.55560763 \mathrm{au} ;$ Gibbs energy $=-1429.64230744 \mathrm{au}$
$\begin{array}{llll}\text { C } & 2.339114 & -0.450964 & -0.861719\end{array}$
$\begin{array}{llll}\text { C } & 3.593886 & -0.797940 & -0.474996\end{array}$
$\begin{array}{llll}\text { H } & 2.090857 & 0.591755 & -1.031385\end{array}$
$\begin{array}{llll}\text { H } & 3.810582 & -1.828367 & -0.203267\end{array}$

C $\quad 4.706121 \quad 0.142263 \quad-0.358762$
$\begin{array}{llll}\text { C } & 5.876658 & -0.217061 & 0.215945\end{array}$
$\begin{array}{llll}\text { H } & 6.727550 & 0.455375 & 0.239311\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.012167 & -1.202542 & 0.654800\end{array}$
$\begin{array}{llll}\text { C } & 4.554878 & 1.500460 & -0.936453\end{array}$
$\begin{array}{llll}\text { C } & 4.978998 & 2.635605 & -0.369271\end{array}$

H $\quad 4.056136 \quad 1.553672 \quad-1.905026$
$\begin{array}{llll}H & 4.872635 & 3.594228 & -0.870506\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.444474 & 2.643518 & 0.612883\end{array}$
$\mathrm{N} \quad 1.277103 \quad-1.297197 \quad-1.061987$
$\begin{array}{llll}\text { C } & -0.048192 & -0.815981 & -1.454989\end{array}$
$\begin{array}{llll}\text { C } & 1.431948 & -2.732199 & -1.282032\end{array}$
$\begin{array}{llll}\text { C } & -0.698066 & -2.028869 & -2.169552\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.089126 & 0.025490 & -2.144631\end{array}$
$\begin{array}{llll}\text { C } & 0.456240 & -3.012577 & -2.432195\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.177816 & -3.309372 & -0.381450\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.470963 & -2.953204 & -1.545125\end{array}$

H $\quad-1.211034 \quad-1.727230 \quad-3.086391$
$\begin{array}{llll}\mathrm{H} & -1.444195 & -2.498405 & -1.524324\end{array}$
H $\quad 0.122652 \quad-4.054713 \quad-2.465700$
$\begin{array}{llll}\mathrm{H} & 0.945016 & -2.784677 & -3.386623\end{array}$

C $\quad-0.887005 \quad-0.230623 \quad-0.242601$
$\begin{array}{llll}\text { C } & -0.914007 & -1.268308 & 0.895197\end{array}$
$\begin{array}{llll}\text { C } & -1.890504 & -2.273563 & 0.981972\end{array}$
$\begin{array}{llll}\text { C } & 0.127338 & -1.282409 & 1.835268\end{array}$
$\begin{array}{llll}\text { C } & -1.834969 & -3.250677 & 1.978578\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.718427 & -2.288058 & 0.280566\end{array}$
$\begin{array}{llll}\text { C } & 0.184679 & -2.257727 & 2.831463\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.903354 & -0.529335 & 1.773545\end{array}$
$\begin{array}{llll}\text { C } & -0.796705 & -3.247184 & 2.909324\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.610192 & -4.011207 & 2.025435\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.003272 & -2.243835 & 3.546478\end{array}$
$\begin{array}{llll}\text { H } & -0.753562 & -4.005253 & 3.686898\end{array}$
$\begin{array}{llll}\text { C } & -2.288001 & 0.230148 & -0.700783\end{array}$
$\begin{array}{llll}\text { C } & -3.349968 & 0.322714 & 0.213783\end{array}$
$\begin{array}{llll}\text { C } & -2.520573 & 0.687474 & -2.008149\end{array}$
$\begin{array}{llll}\text { C } & -4.592187 & 0.836073 & -0.161572\end{array}$
$\begin{array}{llll}\text { H } & -3.206447 & -0.013101 & 1.234346\end{array}$
$\begin{array}{llll}\text { C } & -3.762674 & 1.196569 & -2.389810\end{array}$
$\begin{array}{llll}\text { H } & -1.728922 & 0.662812 & -2.748311\end{array}$
$\begin{array}{llll}\text { C } & -4.807025 & 1.273222 & -1.468551\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.392188 & 0.891340 & 0.572172\end{array}$
$\begin{array}{llll}\text { H } & -3.909146 & 1.538409 & -3.411066\end{array}$
$\begin{array}{llll}\text { H } & -5.774095 & 1.670537 & -1.764661\end{array}$
$\begin{array}{llll}\text { O } & -0.130825 & 0.912584 & 0.168400\end{array}$
$\begin{array}{llll}\mathrm{Si} & -0.415632 & 2.344646 & 1.013853\end{array}$
$\begin{array}{llll}\text { C } & -1.391060 & 2.100797 & 2.615626\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.287432 & 2.998147 & 3.239647\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.460330 & 1.942703 & 2.443297\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.011143 & 1.250106 & 3.192066\end{array}$
$\begin{array}{llll}\text { C } & -1.282152 & 3.615818 & -0.080237\end{array}$
$\begin{array}{llll}\text { H } & -0.727656 & 3.777219 & -1.012223\end{array}$
$\begin{array}{llll}\text { H } & -2.300280 & 3.312188 & -0.344468\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.343734 & 4.581066 & 0.439052\end{array}$
$\begin{array}{llll}\text { C } & 1.317513 & 2.942734 & 1.441907\end{array}$
$\begin{array}{llll}H & 1.963437 & 3.001232 & 0.559198\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.282042 & 3.939439 & 1.899903\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.806714 & 2.267966 & 2.153980\end{array}$
\#
t_syn_S_diPhTMS_pyrrolidine_2_2_c_vin
B3LYP/6-31G(d)

Eel $=-1430.11440359 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-1429.58695579 \mathrm{au}$

Enthalpy $=-1429.55551410 \mathrm{au} ;$ Gibbs energy $=-1429.64204019 \mathrm{au}$
$\begin{array}{llll}\text { C } & -2.391189 & 0.497020 & -0.825716\end{array}$
$\begin{array}{llll}\text { C } & -3.627294 & 0.944101 & -0.480522\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.184061 & -0.568853 & -0.822442\end{array}$
$\begin{array}{llll}\text { H } & -3.811617 & 2.013071 & -0.404693\end{array}$

C $\quad-4.761172 \quad 0.078062 \quad-0.165271$

C $\quad-5.912958 \quad 0.584657 \quad 0.330531$
$\begin{array}{llll}\mathrm{H} & -6.779970 & -0.043296 & 0.505649\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.015986 & 1.644084 & 0.552109\end{array}$

C $\quad-4.647707 \quad-1.375632 \quad-0.437465$
$\begin{array}{llll}\text { C } & -5.087448 & -2.347774 & 0.368259\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.160962 & -1.651082 & -1.373727\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.002156 & -3.395332 & 0.091707\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.541186 & -2.128817 & 1.331442\end{array}$
$\begin{array}{llll}\mathrm{N} & -1.313797 & 1.270218 & -1.178604\end{array}$
$\begin{array}{llll}\text { C } & 0.013306 & 0.726740 & -1.479608\end{array}$
$\begin{array}{llll}\text { C } & -1.450372 & 2.671681 & -1.572588\end{array}$

C	0.744851	1.898815	-2.178247
H	-0.085250	-0.111249	-2.180571
C	-0.375048	2.837412	-2.652178
H	-1.282673	3.348740	-0.721787
H	-2.463040	2.849194	-1.950251
H	1.380704	1.541757	-2.990905
H	1.389648	2.418223	-1.464321
H	-0.040748	3.874027	-2.762199
H	-0.773820	2.508022	-3.619096
C	0.836469	0.163375	-0.238644
C	0.230089	-1.155806	0.295633
C	0.010092	-1.405084	1.657285
C	-0.042816	-2.199259	-0.607519
C	-0.489629	-2.633709	2.097227
H	0.233145	-0.639122	2.390030
C	-0.544345	-3.425207	-0.172876
H	0.152178	-2.062802	-1.666245
C	-0.776608	-3.647379	1.185788
H	-0.652636	-2.792474	3.159936
H	-0.750674	-4.208013	-0.898218
H	-1.170861	-4.600480	1.527449
C	0.963463	1.260787	0.830967
C	2.180462	1.921176	1.043005

$\begin{array}{llll}\text { C } & -0.153116 & 1.687562 & 1.572913\end{array}$
$\begin{array}{llll}\text { C } & 2.291277 & 2.956721 & 1.974609\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.046289 & 1.636241 & 0.458171\end{array}$
$\begin{array}{llll}\text { C } & -0.044096 & 2.723944 & 2.500892\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.115603 & 1.207852 & 1.434535\end{array}$

C $\quad 1.179638 \quad 3.362771 \quad 2.710054$
$\begin{array}{llll}\mathrm{H} & 3.250755 & 3.447399 & 2.117391\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.922664 & 3.029210 & 3.063494\end{array}$

H $\quad 1.262707 \quad 4.167907 \quad 3.435289$
$\begin{array}{llll}\text { O } & 2.110955 & -0.117045 & -0.825189\end{array}$
$\begin{array}{llll}\mathrm{Si} & 3.421262 & -1.130292 & -0.506587\end{array}$
$\begin{array}{llll}\text { C } & 3.287045 & -2.726563 & -1.505737\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.078244 & -2.515362 & -2.561427\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.234320 & -3.279511 & -1.461921\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.498324 & -3.386255 & -1.130511\end{array}$
$\begin{array}{llll}\text { C } & 3.640404 & -1.530514 & 1.324645\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.666554 & -0.623962 & 1.939361\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.837091 & -2.169924 & 1.704111\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.589619 & -2.061772 & 1.473126\end{array}$
$\begin{array}{llll}\text { C } & 4.906745 & -0.154577 & -1.141519\end{array}$
$\begin{array}{llll}H & 5.081779 & 0.756002 & -0.556870\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.820698 & -0.759634 & -1.092115\end{array}$
$\begin{array}{llll}H & 4.762864 & 0.145213 & -2.186052\end{array}$

\#

t_syn_S_diPhTMS_pyrrolidine_1_0_t_vin
B3LYP/6-31G(d)
$\operatorname{Eel}=-1430.11372228 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1429.58611908 \mathrm{au}$

Enthalpy $=-1429.55464432 \mathrm{au} ;$ Gibbs energy $=-1429.64123524 \mathrm{au}$
$\begin{array}{llll}\text { C } & -2.380069 & 0.226596 & -0.783081\end{array}$
$\begin{array}{llll}\text { C } & -3.646391 & 0.535413 & -0.402326\end{array}$

H $\quad-2.053530 \quad-0.805334 \quad-0.813990$
$\begin{array}{llll}\text { H } & -3.912807 & 1.578896 & -0.250684\end{array}$
$\begin{array}{llll}\text { C } & -4.687757 & -0.429170 & -0.038214\end{array}$
$\begin{array}{llll}\text { C } & -5.727568 & -0.049005 & 0.742855\end{array}$
$\begin{array}{llll}\text { H } & -6.518766 & -0.741754 & 1.014528\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.821161 & 0.968678 & 1.111981\end{array}$

C $\quad-4.683844-1.829184 \quad-0.517946$
C $\quad-4.095443 \quad-2.328240 \quad-1.613859$

H $\quad-5.292053 ~-2.505991 \quad 0.082615$
$\begin{array}{llll}\mathrm{H} & -4.217403 & -3.374482 & -1.880941\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.512043 & -1.716595 & -2.294024\end{array}$
$\begin{array}{llll}\mathrm{N} & -1.390872 & 1.117594 & -1.118016\end{array}$
$\begin{array}{llll}\text { C } & -0.037248 & 0.695738 & -1.486106\end{array}$
$\begin{array}{llll}\text { C } & -1.658467 & 2.507410 & -1.475827\end{array}$
$\begin{array}{llll}\text { C } & 0.531754 & 1.900341 & -2.275931\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.119967 & -0.192465 & -2.124388\end{array}$
$\begin{array}{llll}\text { C } & -0.691866 & 2.758087 & -2.639904\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.467811 & 3.187659 & -0.632622\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.707967 & 2.616526 & -1.767575\end{array}$
$\begin{array}{llll}\text { H } & 1.098213 & 1.576217 & -3.152567\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.213198 & 2.478960 & -1.647693\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.442594 & 3.816245 & -2.768432\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.145359 & 2.403253 & -3.572795\end{array}$
$\begin{array}{llll}\text { C } & 0.840701 & 0.239450 & -0.246244\end{array}$
$\begin{array}{llll}\text { C } & 0.796257 & 1.338594 & 0.832077\end{array}$
$\begin{array}{llll}\text { C } & 1.699541 & 2.413739 & 0.855272\end{array}$
$\begin{array}{llll}\text { C } & -0.239476 & 1.333025 & 1.778261\end{array}$
$\begin{array}{llll}\text { C } & 1.580638 & 3.437667 & 1.797757\end{array}$

H $\quad 2.520640 \quad 2.448726 \quad 0.146620$
$\begin{array}{llll}\text { C } & -0.360283 & 2.355064 & 2.720380\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.962735 & 0.527033 & 1.765170\end{array}$
$\begin{array}{llll}\text { C } & 0.550249 & 3.412628 & 2.736810\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.300823 & 4.251862 & 1.796182\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.173097 & 2.323571 & 3.441383\end{array}$
$\begin{array}{llll}H & 0.458181 & 4.207069 & 3.472700\end{array}$
$\begin{array}{llll}\text { C } & 2.270958 & -0.148864 & -0.682954\end{array}$
$\begin{array}{llll}C & 3.341293 & -0.101868 & 0.225390\end{array}$

C	2.528513	-0.681215	-1.956899
C	4.614721	-0.552548	-0.125713
H	3.180791	0.295707	1.221072
C	3.801450	-1.126840	-2.314760
H	1.732409	-0.767434	-2.687443
C	4.853325	-1.064882	-1.400863
H	5.420281	-0.500144	0.602129
H	3.966298	-1.529434	-3.310766
H	5.844457	-1.413648	-1.677961
O	0.167442	-0.932071	0.227657
Si	0.553552	-2.282950	1.162110
C	1.416641	-1.841522	2.783952
H	1.443561	-2.724271	3.436114
H	2.450059	-1.513597	2.633214
H	0.885676	-1.046719	3.319018
C	1.600968	-3.519970	0.194817
H	1.116445	-3.797350	-0.748721
H	2.596248	-3.130141	-0.041202
H	1.730973	-4.438853	0.781439
C	-1.134002	-3.032727	1.533357
H	-1.708033	-3.209971	0.616830
H	-1.029148	-3.992212	2.055398
H	-1.734506	-2.371601	2.168916

\#
t_syn_S_diPhTMS_pyrrolidine_2_2_t_vin
B3LYP/6-31G(d)
Eel $=-1430.11352276$ au; Energy(0K)) $=-1429.58569103$ au
Enthalpy $=-1429.55436996$ au; Gibbs energy $=-1429.64065312 \mathrm{au}$
$\begin{array}{llll}\text { C } & 2.469001 & -0.315480 & -0.677834\end{array}$
$\begin{array}{llll}\text { C } & 3.699220 & -0.753353 & -0.303117\end{array}$
$\begin{array}{llll}\text { H } & 2.221802 & 0.737118 & -0.598312\end{array}$
H $\quad 3.892652-1.823366 \quad-0.280153$
$\begin{array}{llll}\text { C } & 4.792881 & 0.085444 & 0.196762\end{array}$
$\begin{array}{llll}\text { C } & 5.769883 & -0.457020 & 0.961933\end{array}$
$\begin{array}{llll}H & 6.598594 & 0.138556 & 1.333752\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.772844 & -1.512610 & 1.219585\end{array}$
$\begin{array}{llll}\text { C } & 4.906508 & 1.524406 & -0.128021\end{array}$
$\begin{array}{llll}\text { C } & 4.395583 & 2.175512 & -1.181333\end{array}$
$\begin{array}{llll}H & 5.536839 & 2.087738 & 0.560362\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.596601 & 3.232805 & -1.330884\end{array}$
$\begin{array}{llll}H & 3.795492 & 1.682062 & -1.938657\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.439454 & -1.096658 & -1.141285\end{array}$
$\begin{array}{llll}\text { C } & 0.108399 & -0.575601 & -1.464076\end{array}$
$\begin{array}{llll}\text { C } & 1.652636 & -2.450391 & -1.651851\end{array}$

C	-0.538161	-1.703460	-2.305272
H	0.207671	0.326833	-2.079693
C	0.641468	-2.554059	-2.799262
H	1.469555	-3.208618	-0.876048
H	2.689733	-2.554947	-1.988188
H	-1.145041	-1.296227	-3.116468
H	-1.197112	-2.308168	-1.676628
H	0.355501	-3.587275	-3.020892
H	1.076242	-2.122786	-3.708947
C	-0.801507	-0.159684	-0.226634
C	-0.271595	1.113698	0.474673
C	-0.154898	1.229636	1.866733
C	0.035619	2.247773	-0.298562
C	0.275178	2.418921	2.461433
H	-0.405361	0.388748	2.502004
C	0.469420	3.434520	0.290424
H	-0.075653	2.214394	-1.377471
C	0.596156	3.525130	1.677721
H	0.357371	2.473604	3.543769
H	0.707111	4.289148	-0.337505
H	0.937117	4.447733	2.139410
C	-0.956723	-1.358318	0.724664
C	-2.168850	-2.053890	0.816980

C $\quad 0.133534 \quad-1.834758 \quad 1.475605$
$\begin{array}{llll}\text { C } & -2.299890 & -3.175819 & 1.639688\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.013952 & -1.726136 & 0.224287\end{array}$
$\begin{array}{llll}\text { C } & 0.004437 & -2.957276 & 2.294263\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.089794 & -1.325679 & 1.430240\end{array}$
$\begin{array}{llll}\text { C } & -1.214008 & -3.633245 & 2.383393\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.254796 & -3.692778 & 1.691233\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.862392 & -3.300471 & 2.866758\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.313045 & -4.505897 & 3.023538\end{array}$
$\begin{array}{llll}\text { O } & -2.048738 & 0.141624 & -0.860125\end{array}$
$\begin{array}{llll}\mathrm{Si} & -3.394449 & 1.107806 & -0.544881\end{array}$
$\begin{array}{llll}\text { C } & -3.228040 & 2.785468 & -1.395073\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.957446 & 2.667481 & -2.451304\end{array}$
$\begin{array}{llll}\text { H } & -4.184769 & 3.322588 & -1.359224\end{array}$

H $\quad-2.472079 \quad 3.419459 \quad-0.921081$
$\begin{array}{llll}\text { C } & -3.745908 & 1.345774 & 1.293826\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.808176 & 0.388847 & 1.823817\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.978708 & 1.951530 & 1.786121\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.708558 & 1.858767 & 1.418238\end{array}$
$\begin{array}{llll}\text { C } & -4.814990 & 0.169893 & -1.359999\end{array}$

H $\quad-5.001691 \quad-0.797294 \quad-0.878908$
$\begin{array}{llll}\mathrm{H} & -5.745367 & 0.749291 & -1.308984\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.601662 & -0.023038 & -2.417814\end{array}$
\#
c_syn_S_diPhTMS_pyrrolidine_1_0_c_vin
B3LYP/6-31G(d)
Eel $=-1430.11175566$ au; Energy $(0 \mathrm{~K}))=-1429.58467820 \mathrm{au}$
Enthalpy $=-1429.55305473$ au; Gibbs energy $=-1429.64012672$ au
$\begin{array}{llll}\text { C } & -2.217620 & 0.213472 & -1.011921\end{array}$
$\begin{array}{llll}\text { C } & -3.500417 & 0.429595 & -0.622884\end{array}$

H $\quad-1.887244 \quad-0.800092 \quad-1.218351$
$\begin{array}{llll}\text { H } & -3.801372 & 1.415294 & -0.274567\end{array}$
$\begin{array}{llll}\text { C } & -4.520692 & -0.625112 & -0.595087\end{array}$

C $\quad-4.502676 \quad-1.713010 \quad-1.399118$
$\begin{array}{llll}\mathrm{H} & -5.202266 & -2.530796 & -1.257770\end{array}$
H $\quad-3.782857-1.814688 \quad-2.205928$
$\begin{array}{llll}\text { C } & -5.600317 & -0.444327 & 0.405765\end{array}$
$\begin{array}{llll}\text { C } & -6.874413 & -0.825653 & 0.258982\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.311360 & 0.071648 & 1.322731\end{array}$
$\begin{array}{llll}\text { H } & -7.606526 & -0.674526 & 1.047692\end{array}$
$\begin{array}{llll}\text { H } & -7.227623 & -1.294310 & -0.656137\end{array}$
$\begin{array}{llll}\mathrm{N} & -1.232665 & 1.152151 & -1.166271\end{array}$
$\begin{array}{llll}\text { C } & 0.152980 & 0.805167 & -1.483515\end{array}$
$\begin{array}{llll}\text { C } & -1.500647 & 2.577246 & -1.327096\end{array}$
$\begin{array}{llll}\text { C } & 0.735701 & 2.101628 & -2.102378\end{array}$
$\begin{array}{llll}\text { H } & 0.135306 & -0.012416 & -2.214054\end{array}$
$\begin{array}{llll}\text { C } & -0.481541 & 2.999509 & -2.393171\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.356629 & 3.126157 & -0.385023\end{array}$
H $\quad-2.538199 \quad 2.718916 \quad-1.646479$
$\begin{array}{llll}\mathrm{H} & 1.323705 & 1.889686 & -2.999176\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.402088 & 2.598535 & -1.393312\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.237299 & 4.065796 & -2.352402\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.887064 & 2.784865 & -3.388643\end{array}$
$\begin{array}{llll}\text { C } & 0.956945 & 0.236160 & -0.240356\end{array}$
$\begin{array}{llll}\text { C } & 0.821846 & 1.218852 & 0.937563\end{array}$
$\begin{array}{llll}\text { C } & 1.708521 & 2.290574 & 1.131360\end{array}$
$\begin{array}{llll}\text { C } & -0.277507 & 1.113362 & 1.802764\end{array}$
$\begin{array}{llll}\text { C } & 1.512366 & 3.214447 & 2.160195\end{array}$
$\begin{array}{llll}H & 2.576449 & 2.401038 & 0.489233\end{array}$
$\begin{array}{llll}\text { C } & -0.475158 & 2.035534 & 2.831341\end{array}$
H $\quad-0.989172 \quad 0.309950 \quad 1.656665$
$\begin{array}{llll}\text { C } & 0.419613 & 3.090473 & 3.017212\end{array}$
$\begin{array}{llll}H & 2.221061 & 4.028290 & 2.290466\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.335270 & 1.927999 & 3.487297\end{array}$

H $\quad 0.2672183 .806257 \quad 3.820683$
$\begin{array}{llll}\text { C } & 2.420407 & -0.087949 & -0.613660\end{array}$
$\begin{array}{llll}\text { C } & 3.418308 & -0.144043 & 0.373342\end{array}$

C	2.782043	-0.456805	-1.919248
C	4.722377	-0.536667	0.069018
H	3.174847	0.126198	1.394610
C	4.086216	-0.844528	-2.229695
H	2.045423	-0.457524	-2.714313
C	5.065142	-0.885844	-1.237258
H	5.469980	-0.566994	0.857415
H	4.332928	-1.119616	-3.251816
H	6.080534	-1.188614	-1.478214
O	0.273822	-0.982380	0.066281
Si	0.607566	-2.428247	0.867113
C	1.348558	-2.176326	2.588157
H	1.325713	-3.127549	3.136083
H	2.391267	-1.843503	2.556635
H	0.778671	-1.443943	3.170406
C	1.732812	-3.543929	-0.158955
H	1.319825	-3.706398	-1.161505
H	2.739842	-3.130663	-0.274471
H	1.826518	-4.526267	0.322276
C	-1.092748	-3.221003	1.028947
H	-1.576181	-3.342416	0.052979
H	-1.018601	-4.213134	1.491684
H	-1.762150	-2.612678	1.647550

\#

c_syn_S_diPhTMS_pyrrolidine_2_2_c_vin
B3LYP/6-31G(d)

Eel $=-1430.11187326 \mathrm{au}$; Energy(0K)) $=-1429.58437611 \mathrm{au}$
Enthalpy $=-1429.55299535 \mathrm{au}$; Gibbs energy $=-1429.63960634 \mathrm{au}$
$\begin{array}{llll}\text { C } & 2.338113 & -0.140433 & -0.899113\end{array}$
$\begin{array}{llll}\text { C } & 3.605719 & -0.470811 & -0.539637\end{array}$
$\begin{array}{llll}H & 2.049075 & 0.907258 & -0.912008\end{array}$
$\begin{array}{llll}\text { H } & 3.869576 & -1.516628 & -0.398191\end{array}$
$\begin{array}{llll}\text { C } & 4.661301 & 0.518332 & -0.288776\end{array}$
$\begin{array}{llll}\text { C } & 4.699167 & 1.739496 & -0.867864\end{array}$
$\begin{array}{llll}\text { H } & 5.424101 & 2.487034 & -0.561576\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.998773 & 2.023708 & -1.647571\end{array}$
$\begin{array}{llll}\text { C } & 5.709632 & 0.104577 & 0.675216\end{array}$
$\begin{array}{llll}\text { C } & 7.001077 & 0.449910 & 0.620291\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.379311 & -0.560831 & 1.474305\end{array}$
$\begin{array}{llll}H & 7.709059 & 0.121063 & 1.376219\end{array}$
$\begin{array}{llll}\text { H } & 7.393220 & 1.065368 & -0.185478\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.334018 & -1.005716 & -1.244997\end{array}$
$\begin{array}{llll}\text { C } & -0.044490 & -0.585742 & -1.510237\end{array}$
$\begin{array}{llll}\text { C } & 1.593267 & -2.381143 & -1.669557\end{array}$

C	-0.667628	-1.797575	-2.246514
H	-0.036021	0.282244	-2.180146
C	0.531608	-2.616034	-2.750044
H	1.486154	-3.088695	-0.834287
H	2.618006	-2.457334	-2.048495
H	-1.334644	-1.473947	-3.048172
H	-1.262283	-2.395208	-1.550559
H	0.292764	-3.675533	-2.887452
H	0.893226	-2.225492	-3.708770
C	-0.900387	-0.149661	-0.242008
C	-0.417904	1.201307	0.339617
C	-0.238072	1.422873	1.712141
C	-0.229343	2.296068	-0.523577
C	0.140727	2.675971	2.200939
H	-0.399327	0.614954	2.415536
C	0.151943	3.547069	-0.040278
H	-0.395724	2.180874	-1.589719
C	0.345052	3.742702	1.328431
H	0.274759	2.811926	3.270862
H	0.296498	4.369487	-0.736007
H	0.646183	4.715362	1.707624
C	-0.905103	-1.290666	0.789515
C	-2.046695	-2.076944	0.989662
(

$\begin{array}{llll}\text { C } & 0.258004 & -1.625953 & 1.506352\end{array}$
$\begin{array}{llll}\text { C } & -2.040731 & -3.148906 & 1.886125\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.944594 & -1.860142 & 0.424214\end{array}$
$\begin{array}{llll}\text { C } & 0.265719 & -2.698175 & 2.399141\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.164371 & -1.045089 & 1.375670\end{array}$

C $\quad-0.884668 \quad-3.464413 \quad 2.597054$
$\begin{array}{llll}\mathrm{H} & -2.943921 & -3.738610 & 2.021020\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.177149 & -2.931565 & 2.943685\end{array}$
$\begin{array}{llll}\text { H } & -0.876887 & -4.297466 & 3.294941\end{array}$
$\begin{array}{llll}\text { O } & -2.204552 & 0.025401 & -0.804409\end{array}$
$\begin{array}{llll}\mathrm{Si} & -3.601194 & 0.895812 & -0.438513\end{array}$
$\begin{array}{llll}\text { C } & -3.628264 & 2.528876 & -1.384779\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.437768 & 2.369068 & -2.452899\end{array}$
H $\quad-4.613854 \quad 3.003333-1.293259$

H $\quad-2.880801 \quad 3.235419-1.010717$
$\begin{array}{llll}\text { C } & -3.842685 & 1.212866 & 1.406070\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.799443 & 0.286154 & 1.989069\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.090550 & 1.898134 & 1.809164\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.829631 & 1.664463 & 1.571502\end{array}$
$\begin{array}{llll}\text { C } & -4.994922 & -0.195212 & -1.093815\end{array}$

H $\quad-5.078399 \quad-1.136890 \quad-0.538697$
$\begin{array}{llll}\mathrm{H} & -5.961300 & 0.318878 & -1.017685\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.834689 & -0.446130 & -2.148802\end{array}$
\#
c_anti_S_diPhTMS_pyrrolidine_1_0_t_vin
B3LYP/6-31G(d)

Eel $=-1430.11083595 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1429.58301480 \mathrm{au}$

Enthalpy $=-1429.55177379 \mathrm{au} ;$ Gibbs energy $=-1429.63786791 \mathrm{au}$
$\begin{array}{llll}\text { C } & -2.484825 & 1.388662 & -0.558759\end{array}$
$\begin{array}{llll}\text { C } & -3.023636 & 0.167747 & -0.343063\end{array}$
$\begin{array}{llll}H & -3.132831 & 2.261267 & -0.509697\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.390155 & -0.710179 & -0.382128\end{array}$

C $\quad-4.442181 \quad-0.038600 \quad-0.015906$
$\begin{array}{llll}\text { C } & -5.182308 & 0.838663 & 0.700329\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.241658 & 0.671574 & 0.875802\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.754144 & 1.740959 & 1.126104\end{array}$

C $\quad-5.090617 \quad-1.282008 \quad-0.474353$
C $\quad-4.563000 \quad-2.206126 \quad-1.288811$

H $\quad-6.100262 \quad-1.439749 \quad-0.094651$

H $\quad-5.120602 \quad-3.096941 \quad-1.563571$
H $\quad-3.570393 \quad-2.102303 \quad-1.717304$
$\begin{array}{llll}\mathrm{N} & -1.173969 & 1.718095 & -0.847346\end{array}$
$\begin{array}{llll}\text { C } & -0.199656 & 0.741802 & -1.359395\end{array}$
$\begin{array}{llll}\text { C } & -0.867778 & 3.054679 & -1.370770\end{array}$

C	0.556027	1.495857	-2.492908
H	-0.768693	-0.101954	-1.764262
C	-0.261963	2.773025	-2.749080
H	-0.141684	3.561459	-0.721099
H	-1.773942	3.665874	-1.404911
H	0.659403	0.874561	-3.386004
H	1.566139	1.760738	-2.170414
H	0.349594	3.597966	-3.129189
H	-1.063704	2.581637	-3.472174
C	0.746456	0.136307	-0.241338
C	1.296787	1.294943	0.611330
C	3.070119	-0.969492	-0.225167
H	2.466462	1.998663	0.283480
H	0.352612	3.177378	3.299688
H	0.544710	1.747654	1.706006
C	2.879296	3.103264	1.033358
H	3.079611	1.677630	-0.552329
H	-0.954517	2.850064	2.455693
H	2.125902	3.533734	2.124418
H			

$\begin{array}{llll}\text { C } & 1.572755 & -1.521524 & -2.017183\end{array}$
$\begin{array}{llll}\text { C } & 4.010028 & -1.870143 & -0.730105\end{array}$
$\begin{array}{llll}\text { H } & 3.304923 & -0.419243 & 0.678976\end{array}$
$\begin{array}{llll}\text { C } & 2.510662 & -2.418310 & -2.528662\end{array}$
H $\quad 0.620340$-1.428026 $\quad-2.526984$
$\begin{array}{llll}\text { C } & 3.737743 & -2.596196 & -1.889061\end{array}$
H $\quad 4.956842$-2.001041 -0.212544
$\begin{array}{llll}\text { H } & 2.275918 & -2.983625 & -3.426784\end{array}$
$\begin{array}{llll}\text { H } & 4.469122 & -3.294867 & -2.286209\end{array}$
$\begin{array}{llll}\text { O } & -0.119640 & -0.681955 & 0.550826\end{array}$
$\begin{array}{llll}\text { Si } & 0.082258 & -1.930757 & 1.670139\end{array}$
$\begin{array}{llll}\text { C } & 1.355594 & -1.527575 & 3.008021\end{array}$
$\begin{array}{llll}\text { H } & 1.334477 & -2.309940 & 3.778102\end{array}$
$\begin{array}{llll}H & 2.377283 & -1.482103 & 2.617098\end{array}$
$\begin{array}{llll}\text { H } & 1.142043 & -0.571314 & 3.497150\end{array}$
$\begin{array}{llll}\text { C } & 0.541373 & -3.557649 & 0.828317\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.168363 & -3.804290 & 0.030128\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.544102 & -3.536043 & 0.390077\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.511845 & -4.375730 & 1.560001\end{array}$
$\begin{array}{llll}\text { C } & -1.623669 & -2.091182 & 2.450956\end{array}$
$\begin{array}{llll}\text { H } & -2.385727 & -2.341507 & 1.704620\end{array}$
$\begin{array}{llll}\text { H } & -1.628677 & -2.881175 & 3.212716\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.934853 & -1.157927 & 2.933508\end{array}$

\#

t_anti_S_diPhTMS_pyrrolidine_1_0_c_vin
B3LYP/6-31G(d)

Eel $=-1430.11074003 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1429.58300819 \mathrm{au}$

Enthalpy $=-1429.55165426 \mathrm{au}$; Gibbs energy $=-1429.63815750 \mathrm{au}$
$\begin{array}{llll}\text { C } & -2.611364 & 0.855524 & -0.487373\end{array}$

C $\quad-2.919309 \quad-0.462838 \quad-0.454774$
$\begin{array}{llll}H & -3.405795 & 1.585866 & -0.353673\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.132196 & -1.200532 & -0.561215\end{array}$

C $\quad-4.274477-0.980201 \quad-0.273213$

C $\quad-4.551843-2.293126 \quad-0.444367$
$\begin{array}{llll}\mathrm{H} & -5.540503 & -2.694615 & -0.249012\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.787638 & -2.994468 & -0.770515\end{array}$
$\begin{array}{llll}\text { C } & -5.349212 & -0.046948 & 0.146147\end{array}$
$\begin{array}{llll}\text { C } & -6.589738 & -0.023965 & -0.352214\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.083926 & 0.669492 & 0.924836\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.340886 & 0.664760 & 0.025830\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.893324 & -0.689996 & -1.155862\end{array}$
$\begin{array}{llll}\mathrm{N} & -1.375200 & 1.447569 & -0.672593\end{array}$
$\begin{array}{llll}\text { C } & -0.248054 & 0.732530 & -1.292265\end{array}$
$\begin{array}{llll}\text { C } & -1.311849 & 2.871675 & -1.024457\end{array}$

C	0.332728	1.729541	-2.338288
H	-0.661823	-0.150535	-1.788231
C	-0.696227	2.870982	-2.427890
H	-0.669331	3.410859	-0.316325
H	-2.309244	3.318039	-0.982012
H	0.503370	1.240858	-3.301029
H	1.296227	2.123333	-2.005407
H	-0.241979	3.829329	-2.700352
H	-1.469856	2.637865	-3.169048
C	0.808051	0.194381	-0.243295
C	1.204894	1.349152	0.696080
C	2.249888	2.241722	0.409308
C	0.429395	1.593395	1.839900
C	2.521055	3.329311	1.243344
H	2.877141	2.083196	-0.461775
C	0.698231	2.678839	2.673991
H	-0.397879	0.930487	2.061886
C	1.746993	3.552785	2.381074
H	3.343169	3.997627	1.000330
H	0.082036	2.842844	3.554439
H	1.958513	4.396384	3.032809
C	2.002874	-0.479730	-0.955185
C	3.267015	-0.554396	-0.348561

$\begin{array}{llll}\text { C } & 1.830269 & -1.157522 & -2.173399\end{array}$
$\begin{array}{llll}\text { C } & 4.317523 & -1.259097 & -0.939214\end{array}$
$\begin{array}{llll}\text { H } & 3.437272 & -0.055326 & 0.598477\end{array}$
$\begin{array}{llll}\text { C } & 2.878531 & -1.858072 & -2.770443\end{array}$
$\begin{array}{llll}\text { H } & 0.865974 & -1.158606 & -2.668492\end{array}$
$\begin{array}{llll}\text { C } & 4.130382 & -1.911780 & -2.157282\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.283657 & -1.294558 & -0.442446\end{array}$
$\begin{array}{llll}\text { H } & 2.711019 & -2.367844 & -3.715620\end{array}$
$\begin{array}{llll}H & 4.947344 & -2.458005 & -2.620971\end{array}$
$\begin{array}{llll}\text { O } & 0.093622 & -0.800452 & 0.493873\end{array}$
$\begin{array}{llll}\mathrm{Si} & 0.488167 & -2.099470 & 1.495839\end{array}$
$\begin{array}{llll}\text { C } & 1.813218 & -1.690146 & 2.781560\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.854790 & -2.498125 & 3.523925\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.812896 & -1.595640 & 2.345747\end{array}$
$\begin{array}{llll}\text { H } & 1.588214 & -0.760109 & 3.314501\end{array}$

C $\quad 1.026199 \quad-3.601634 \quad 0.486674$
$\begin{array}{llll}\text { H } & 0.266132 & -3.874357 & -0.254980\end{array}$
$\begin{array}{llll}H & 1.966903 & -3.428821 & -0.045999\end{array}$

H $\quad 1.168003$-4.467106 1.147042
$\begin{array}{llll}\text { C } & -1.132761 & -2.470066 & 2.380172\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.949878 & -2.654794 & 1.674338\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.033199 & -3.355196 & 3.021237\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.436587 & -1.630971 & 3.016813\end{array}$

\#

t_anti_S_diPhTMS_pyrrolidine_1_0_t_vin
B3LYP/6-31G(d)
$\mathrm{Eel}=-1430.10968880 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1429.58186918 \mathrm{au}$

Enthalpy $=-1429.55058771 \mathrm{au} ;$ Gibbs energy $=-1429.63692992 \mathrm{au}$
$\begin{array}{llll}\text { C } & -2.639482 & 0.698630 & -0.773340\end{array}$

C $\quad-2.887322 \quad-0.630218 \quad-0.698226$
$\begin{array}{llll}\mathrm{H} & -3.471344 & 1.395487 & -0.744043\end{array}$

H $\quad-2.052900 \quad-1.321868 \quad-0.726635$

C $\quad-4.217949 \quad-1.244245 \quad-0.648122$

C $\quad-4.385786$
H $\quad-5.356982 \quad-3.016926 \quad-0.994259$

H $\quad-3.552831 \quad-3.134615 \quad-1.385830$

C $\quad-5.414168 \quad-0.525612 \quad-0.153443$
$\begin{array}{llll}\text { C } & -5.460539 & 0.497144 & 0.710562\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.360375 & -0.937553 & -0.505182\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.412974 & 0.906459 & 1.036391\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.567642 & 0.933974 & 1.145946\end{array}$
$\begin{array}{llll}\mathrm{N} & -1.418291 & 1.335437 & -0.897693\end{array}$
$\begin{array}{llll}\text { C } & -0.210042 & 0.657503 & -1.391956\end{array}$
C $\quad-1.384423 \quad 2.751814 \quad-1.279136$
$\begin{array}{llll}\text { C } & 0.413510 & 1.652475 & -2.415942\end{array}$
H $\quad-0.536651 \quad-0.260233-1.890930$
$\begin{array}{llll}\text { C } & -0.650903 & 2.745187 & -2.624263\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.827054 & 3.334237 & -0.533811\end{array}$
$\begin{array}{llll}\text { H } & -2.399541 & 3.154914 & -1.332514\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.683897 & 1.147240 & -3.346835\end{array}$
$\begin{array}{llll}H & 1.329400 & 2.095957 & -2.017448\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.215149 & 3.715688 & -2.883611\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.347073 & 2.460294 & -3.421937\end{array}$
$\begin{array}{llll}\text { C } & 0.775526 & 0.202324 & -0.238161\end{array}$
$\begin{array}{llll}\text { C } & 1.006279 & 1.393296 & 0.710905\end{array}$
$\begin{array}{llll}\text { C } & 2.006769 & 2.355613 & 0.500947\end{array}$
$\begin{array}{llll}\text { C } & 0.116600 & 1.594681 & 1.777094\end{array}$
$\begin{array}{llll}\text { C } & 2.123063 & 3.470766 & 1.334734\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.719542 & 2.232212 & -0.307890\end{array}$
$\begin{array}{llll}\text { C } & 0.231129 & 2.706877 & 2.611163\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.677846 & 0.876506 & 1.938242\end{array}$

C $\quad 1.236130 \quad 3.651532 \quad 2.395116$
$\begin{array}{llll}\mathrm{H} & 2.913620 & 4.194262 & 1.152604\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.471385 & 2.836386 & 3.430605\end{array}$

H $\quad 1.327450 \quad 4.516865 \quad 3.046291$
$\begin{array}{llll}\text { C } & 2.072965 & -0.401245 & -0.821282\end{array}$
$\begin{array}{llll}\text { C } & 3.278977 & -0.374928 & -0.102486\end{array}$

C	2.057767	-1.113577	-2.031784
C	4.424354	-1.015203	-0.579218
H	3.328467	0.152142	0.843535
C	3.201034	-1.750634	-2.514737
H	1.143538	-1.191926	-2.609418
C	4.393288	-1.703219	-1.791694
H	5.341756	-0.972793	0.002205
H	3.154863	-2.290059	-3.457168
H	5.284339	-2.199433	-2.166635
O	0.058678	-0.826784	0.448164
Si	0.435706	-2.095052	1.494991
C	1.625060	-1.607434	2.881150
H	1.673444	-2.421983	3.615831
H	2.643278	-1.431591	2.520375
H	1.292037	-0.705663	3.406163
C	1.135791	-3.571343	0.548173
H	0.457045	-3.882117	-0.254836
H	2.109721	-3.353863	0.097965
H	1.261201	-4.427703	1.223562
C	-1.231977	-2.552056	2.241304
H	-1.970290	-2.796033	1.469695
H	-1.136292	-3.421750	2.903747
H	-1.642456	-1.726067	2.833554

\#
c_anti_S_diPhTMS_pyrrolidine_2_2_t_vin
B3LYP/6-31G(d)
Eel $=-1430.10906872$ au; Energy(0K)) $=-1429.58135239$ au
Enthalpy $=-1429.55010339$ au; Gibbs energy $=-1429.63627180$ au
$\begin{array}{llll}\text { C } & 2.525476 & -1.434131 & -0.513523\end{array}$
$\begin{array}{llll}\text { C } & 3.116494 & -0.243368 & -0.262911\end{array}$
$\begin{array}{llll}\text { H } & 3.132661 & -2.332583 & -0.424965\end{array}$
$\begin{array}{llll}\text { H } & 2.564597 & 0.683250 & -0.367270\end{array}$
$\begin{array}{llll}\text { C } & 4.523171 & -0.136467 & 0.156795\end{array}$
$\begin{array}{llll}\text { C } & 5.117164 & -1.023179 & 0.987466\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.173843 & -0.949178 & 1.230942\end{array}$
$\begin{array}{llll}\text { H } & 4.567048 & -1.841381 & 1.441963\end{array}$
$\begin{array}{llll}\text { C } & 5.321465 & 0.997308 & -0.345189\end{array}$
$\begin{array}{llll}\text { C } & 4.946775 & 1.883851 & -1.276943\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.310500 & 1.097536 & 0.102249\end{array}$
$\begin{array}{llll}\text { H } & 5.605119 & 2.692664 & -1.580976\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.982279 & 1.827822 & -1.773312\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.223542 & -1.714294 & -0.873141\end{array}$
$\begin{array}{llll}\text { C } & 0.247115 & -0.708590 & -1.314546\end{array}$
$\begin{array}{llll}\text { C } & 0.908758 & -3.026076 & -1.458038\end{array}$

C $\quad-0.581912-1.436652 \quad-2.412020$
$\begin{array}{llll}\mathrm{H} & 0.794574 & 0.131312 & -1.755920\end{array}$
$\begin{array}{llll}\text { C } & 0.250373 & -2.669509 & -2.791951\end{array}$
$\begin{array}{llll}\text { H } & 0.210174 & -3.576335 & -0.812447\end{array}$
H $\quad 1.818889$-3.623480 -1.559934
$\begin{array}{llll}\mathrm{H} & -0.789033 & -0.775152 & -3.255965\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.546559 & -1.750301 & -2.005225\end{array}$
$\begin{array}{llll}\text { H } & -0.358757 & -3.481858 & -3.202291\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.021482 & -2.413847 & -3.528787\end{array}$
C $\quad-0.705023 \quad-0.102261 \quad-0.178589$
$\begin{array}{llll}\text { C } & -0.022823 & 1.049226 & 0.596168\end{array}$
$\begin{array}{llll}\text { C } & 0.033804 & 1.128423 & 1.993287\end{array}$
$\begin{array}{llll}\text { C } & 0.486499 & 2.135744 & -0.137694\end{array}$
$\begin{array}{llll}\text { C } & 0.609652 & 2.230375 & 2.632249\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.382002 & 0.333298 & 2.599880\end{array}$

C $\quad 1.063076 \quad 3.2352820 .495151$
$\begin{array}{llll}\text { H } & 0.417028 & 2.131163 & -1.221053\end{array}$
C $\quad 1.134463 \quad 3.2848961 .888949$
$\begin{array}{llll}H & 0.641878 & 2.258535 & 3.718282\end{array}$
$\begin{array}{llll}\text { H } & 1.456278 & 4.053868 & -0.101945\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.587257 & 4.138386 & 2.385992\end{array}$
$\begin{array}{llll}\text { C } & -1.205404 & -1.249786 & 0.711700\end{array}$
$\begin{array}{llll}\text { C } & -2.515598 & -1.731206 & 0.601281\end{array}$
$\begin{array}{llll}\text { C } & -0.336735 & -1.907300 & 1.602185\end{array}$
$\begin{array}{llll}\text { C } & -2.956349 & -2.816564 & 1.363837\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.195071 & -1.262425 & -0.099492\end{array}$
$\begin{array}{llll}\text { C } & -0.774496 & -2.991400 & 2.362765\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.688312 & -1.570077 & 1.703124\end{array}$
$\begin{array}{llll}\text { C } & -2.088500 & -3.451396 & 2.249569\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.980460 & -3.165023 & 1.256832\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.083491 & -3.477429 & 3.046871\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.428196 & -4.295357 & 2.844111\end{array}$
$\begin{array}{llll}\text { O } & -1.783784 & 0.461345 & -0.933182\end{array}$
$\begin{array}{llll}\mathrm{Si} & -3.000473 & 1.601575 & -0.674247\end{array}$
$\begin{array}{llll}\text { C } & -2.530696 & 3.249079 & -1.468088\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.220991 & 3.111045 & -2.511081\end{array}$
$\begin{array}{llll}\text { H } & -3.393562 & 3.927602 & -1.467968\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.713843 & 3.746990 & -0.936409\end{array}$
$\begin{array}{llll}\text { C } & -3.431746 & 1.856567 & 1.145035\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.675508 & 0.911256 & 1.642154\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.613387 & 2.325852 & 1.700100\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.309502 & 2.511284 & 1.223800\end{array}$
$\begin{array}{llll}\text { C } & -4.492326 & 0.911143 & -1.604196\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.883000 & -0.003604 & -1.143843\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.308827 & 1.643931 & -1.623876\end{array}$
$\begin{array}{llll}\text { H } & -4.233688 & 0.675435 & -2.643115\end{array}$

\#

t_anti_S_diPhTMS_pyrrolidine_2_2_c_vin
B3LYP/6-31G(d)

Eel $=-1430.10878762 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-1429.58109737 \mathrm{au}$

Enthalpy $=-1429.54981987 \mathrm{au} ;$ Gibbs energy $=-1429.63612622 \mathrm{au}$
$\begin{array}{llll}\text { C } & -2.658691 & 0.880267 & -0.577658\end{array}$
$\begin{array}{llll}\text { C } & -3.004821 & -0.415279 & -0.383104\end{array}$

H $\quad-3.433830 \quad 1.639893-0.511195$

H $\quad-2.258425 \quad-1.198413 \quad-0.442299$

C $\quad-4.373916 ~-0.854263-0.111446$

C $\quad-4.702260 \quad-2.165565 \quad-0.119908$
$\begin{array}{llll}\text { H } & -5.699882 & -2.501786 & 0.142060\end{array}$

H $\quad-3.969051 \quad-2.929561 \quad-0.365437$
$\begin{array}{llll}\text { C } & -5.401936 & 0.162633 & 0.221052\end{array}$
$\begin{array}{llll}\text { C } & -6.652743 & 0.180392 & -0.251106\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.091289 & 0.949512 & 0.910064\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.368028 & 0.935701 & 0.064100\end{array}$
H $\quad-7.001019 \quad-0.557316 \quad-0.969494$
$\begin{array}{llll}\mathrm{N} & -1.420097 & 1.422725 & -0.848820\end{array}$
$\begin{array}{llll}\text { C } & -0.256136 & 0.658741 & -1.321132\end{array}$
C $\quad-1.330323 \quad 2.819959 \quad-1.294768$

C	0.454741	1.623926	-2.314679
H	-0.622880	-0.225376	-1.853294
C	-0.577284	2.718043	-2.622465
H	-0.763516	3.420045	-0.569338
H	-2.330596	3.252718	-1.384417
H	0.801535	1.091869	-3.203260
H	1.334721	2.066102	-1.841337
H	-0.114356	3.662153	-2.928608
H	-1.265869	2.401399	-3.415191
C	0.758296	0.143548	-0.191229
C	0.295174	-1.190043	0.441111
C	0.980158	1.274894	0.823537
C	0.168026	2.016113	0.828884
H	-0.551968	-4.340181	-0.590217
H	-0.710824	-4.694658	1.873017
C	0.020225	-2.275933	-0.409716
C	-0.132928	-2.666977	2.333029
H	0.467447	-0.620004	2.515023
H	-0.340433	-3.523935	0.095713
H	-0.426123	-3.724513	1.475108
H			

$\begin{array}{llll}\text { C } & -0.035499 & 1.653117 & 1.720772\end{array}$
$\begin{array}{llll}\text { C } & 2.350336 & 3.087199 & 1.708203\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.954045 & 1.761541 & 0.128843\end{array}$
$\begin{array}{llll}\text { C } & 0.144466 & 2.722537 & 2.597859\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.972406 & 1.107866 & 1.736604\end{array}$
C $\quad 1.339896 \quad 3.445202 \quad 2.597881$
$\begin{array}{llll}H & 3.285058 & 3.641847 & 1.689719\end{array}$
$\begin{array}{llll}H & -0.654715 & 2.990487 & 3.284315\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.478657 & 4.277236 & 3.283170\end{array}$
$\begin{array}{llll}\text { O } & 1.959330 & -0.116774 & -0.927325\end{array}$
$\begin{array}{llll}\text { Si } & 3.359757 & -1.031847 & -0.708594\end{array}$
$\begin{array}{llll}\text { C } & 3.231624 & -2.665555 & -1.645341\end{array}$
$\begin{array}{llll}\text { H } & 2.925191 & -2.499300 & -2.685151\end{array}$
$\begin{array}{llll}\text { H } & 4.207725 & -3.167268 & -1.665982\end{array}$
$\begin{array}{llll}\text { H } & 2.512452 & -3.351196 & -1.186840\end{array}$
$\begin{array}{llll}\text { C } & 3.788933 & -1.347850 & 1.101454\end{array}$
$\begin{array}{llll}H & 3.812767 & -0.418450 & 1.680977\end{array}$
$\begin{array}{llll}\text { H } & 3.076591 & -2.025101 & 1.582899\end{array}$

H $\quad 4.784113-1.8069691 .165996$
$\begin{array}{llll}\text { C } & 4.712201 & 0.004485 & -1.522825\end{array}$
$\begin{array}{llll}\text { H } & 4.895813 & 0.943420 & -0.987750\end{array}$
H $\quad 5.659726-0.548040-1.552705$
$\begin{array}{llll}\mathrm{H} & 4.444190 & 0.258580 & -2.555020\end{array}$
\#
c_anti_S_diPhTMS_pyrrolidine_1_0_c_vin
B3LYP/6-31G(d)
Eel $=-1430.10715121 \mathrm{au}$; Energy(0K)) $=-1429.57997079 \mathrm{au}$
Enthalpy $=-1429.54845258 \mathrm{au}$; Gibbs energy $=-1429.63526016 \mathrm{au}$
$\begin{array}{llll}\text { C } & 2.316967 & -1.566495 & -0.582618\end{array}$
$\begin{array}{llll}\text { C } & 2.948144 & -0.370618 & -0.537640\end{array}$
$\begin{array}{llll}\text { H } & 2.909053 & -2.469150 & -0.445853\end{array}$
$\begin{array}{llll}\text { H } & 2.381019 & 0.542155 & -0.684416\end{array}$
$\begin{array}{llll}\text { C } & 4.389143 & -0.219909 & -0.287286\end{array}$
$\begin{array}{llll}\text { C } & 5.139540 & -1.095912 & 0.417013\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.218059 & -0.991424 & 0.478853\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.697799 & -1.940977 & 0.937181\end{array}$
$\begin{array}{llll}\text { C } & 5.005260 & 0.995309 & -0.875127\end{array}$
$\begin{array}{llll}\text { C } & 5.989646 & 1.715577 & -0.324721\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.581055 & 1.327604 & -1.824000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.402103 & 2.588178 & -0.824105\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.409621 & 1.459279 & 0.644634\end{array}$
$\begin{array}{llll}\mathrm{N} & 0.977276 & -1.837305 & -0.783983\end{array}$
$\begin{array}{llll}\text { C } & 0.042397 & -0.845214 & -1.340248\end{array}$
$\begin{array}{llll}\text { C } & 0.576009 & -3.187695 & -1.199891\end{array}$

C	-0.787698	-1.630537	-2.397877
H	0.643826	-0.068685	-1.822863
C	-0.050976	-2.969102	-2.580364
H	-0.161197	-3.598030	-0.497435
H	1.442194	-3.854762	-1.210098
H	-0.878703	-1.068657	-3.330974
H	-1.802015	-1.813444	-2.034704
H	-0.719095	-3.781442	-2.884849
H	0.739812	-2.877222	-3.334339
C	-0.824042	-0.111236	-0.237730
C	-1.454796	-1.174988	0.681274
C	-2.688131	-1.786847	0.407394
C	-0.726994	-1.632441	1.790141
C	-3.182991	-2.810117	1.220003
H	-3.285343	-1.453233	-0.434946
C	-1.219203	-2.653757	2.602874
H	0.237028	-1.186662	2.002201
C	-2.451047	-3.248134	2.322781
H	-4.145610	-3.258735	0.988279
H	-0.634764	-2.987493	3.456585
H	-2.836108	-4.041817	2.957581
C	-1.848005	0.850134	-0.881453
C	-3.032572	1.202796	-0.214499
H			

C	-1.569212	1.505878	-2.091819
C	-3.908912	2.153597	-0.740348
H	-3.277970	0.729669	0.729506
C	-2.445011	2.452383	-2.624556
H	-0.653330	1.295190	-2.632699
C	-3.622381	2.780959	-1.952374
H	-4.817951	2.400715	-0.198093
H	-2.199871	2.937360	-3.565822
H	-4.304807	3.518487	-2.366053
O	0.127434	0.658067	0.500829
Si	0.097475	1.997254	1.525460
C	-1.231443	1.889020	2.866615
H	-1.062951	2.681628	3.607415
H	-2.242626	2.022356	2.469047
H	-1.200298	0.928831	3.393041
C	-0.111381	3.603951	0.555259
H	0.646958	3.691679	-0.231641
H	-1.095901	3.684964	0.083503
H	0.010309	4.463757	1.227065
C	1.798543	1.965892	2.331862
H	2.599625	1.998643	1.585692
H	1.926169	2.825515	3.002030
H	1.943732	1.055813	2.925058
(

\#

t_anti_S_diPhTMS_pyrrolidine_2_2_t_vin
B3LYP/6-31G(d)

Eel $=-1430.10778398 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-1429.57989921 \mathrm{au}$

Enthalpy $=-1429.54866853 \mathrm{au} ;$ Gibbs energy $=-1429.63487438 \mathrm{au}$
$\begin{array}{llll}\text { C } & -2.702923 & 0.743996 & -0.782041\end{array}$

C $\quad-3.004356-0.554856 \quad-0.542713$

H $\quad-3.507470 \quad 1.472388 \quad-0.803582$
$\begin{array}{llll}\mathrm{H} & -2.214819 & -1.297381 & -0.542358\end{array}$

C $\quad-4.361908 \quad-1.089351 \quad-0.384742$
$\begin{array}{llll}\text { C } & -4.603519 & -2.401440 & -0.615779\end{array}$
H $\quad-5.596060 \quad-2.826655 \quad-0.497474$

H $\quad-3.809655-3.083836 \quad-0.905960$
$\begin{array}{llll}\text { C } & -5.506490 & -0.259285 & 0.053437\end{array}$
$\begin{array}{llll}\text { C } & -5.482654 & 0.854201 & 0.797969\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.480666 & -0.660072 & -0.227734\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.406317 & 1.342342 & 1.096786\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.560152 & 1.294005 & 1.162841\end{array}$
$\begin{array}{llll}\mathrm{N} & -1.470416 & 1.316777 & -1.017183\end{array}$
$\begin{array}{llll}\text { C } & -0.257625 & 0.578852 & -1.399087\end{array}$
$\begin{array}{llll}\text { C } & -1.405238 & 2.699896 & -1.508808\end{array}$

C $\quad 0.473453 \quad 1.535131 \quad-2.386366$
$\begin{array}{llll}\text { H } & -0.565914 & -0.335010 & -1.918145\end{array}$
$\begin{array}{llll}\text { C } & -0.576151 & 2.580025 & -2.788799\end{array}$
$\begin{array}{llll}\text { H } & -0.902351 & 3.346416 & -0.776033\end{array}$
$\begin{array}{llll}\text { H } & -2.413637 & 3.091359 & -1.669224\end{array}$
$\begin{array}{llll}\text { H } & 0.887727 & 0.985997 & -3.234720\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.310083 & 2.024478 & -1.881771\end{array}$
$\begin{array}{llll}\text { H } & -0.129347 & 3.529208 & -3.103031\end{array}$
$\begin{array}{llll}\text { H } & -1.208443 & 2.212194 & -3.606007\end{array}$
$\begin{array}{llll}\text { C } & 0.714317 & 0.136526 & -0.201803\end{array}$
$\begin{array}{llll}\text { C } & 0.272730 & -1.197801 & 0.443325\end{array}$
$\begin{array}{llll}\text { C } & 0.141404 & -1.391949 & 1.824406\end{array}$
$\begin{array}{llll}\text { C } & 0.089564 & -2.316170 & -0.390235\end{array}$
$\begin{array}{llll}\text { C } & -0.195653 & -2.642389 & 2.350420\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.310422 & -0.568055 & 2.506890\end{array}$
$\begin{array}{llll}\text { C } & -0.247145 & -3.564646 & 0.130080\end{array}$
$\begin{array}{llll}\text { H } & 0.227013 & -2.215757 & -1.462264\end{array}$
$\begin{array}{llll}\text { C } & -0.399650 & -3.732854 & 1.508059\end{array}$
$\begin{array}{llll}\text { H } & -0.294609 & -2.757651 & 3.426595\end{array}$
$\begin{array}{llll}\text { H } & -0.387547 & -4.406691 & -0.542788\end{array}$
$\begin{array}{llll}\text { H } & -0.666329 & -4.703374 & 1.917348\end{array}$
$\begin{array}{llll}\text { C } & 0.836261 & 1.303205 & 0.789221\end{array}$
$\begin{array}{llll}\text { C } & 1.989198 & 2.096379 & 0.831946\end{array}$
$\begin{array}{llll}\text { C } & -0.240787 & 1.662014 & 1.620410\end{array}$
$\begin{array}{llll}\text { C } & 2.079187 & 3.199037 & 1.686257\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.820452 & 1.858391 & 0.180084\end{array}$
$\begin{array}{llll}\text { C } & -0.152930 & 2.762663 & 2.472549\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.153452 & 1.076935 & 1.604092\end{array}$
C $\quad 1.009083 \quad 3.536890 \quad 2.511754$
$\begin{array}{llll}\mathrm{H} & 2.988820 & 3.794112 & 1.698379\end{array}$
$\begin{array}{lllll}\text { H } & -0.997880 & 3.014871 & 3.108274\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.075992 & 4.393484 & 3.177296\end{array}$
$\begin{array}{llll}\text { O } & 1.961611 & -0.095993 & -0.866294\end{array}$
$\begin{array}{llll}\text { Si } & 3.391680 & -0.930518 & -0.545902\end{array}$
$\begin{array}{llll}\text { C } & 3.394730 & -2.587935 & -1.449770\end{array}$
$\begin{array}{llll}\text { H } & 3.141051 & -2.459788 & -2.508999\end{array}$
$\begin{array}{llll}\text { H } & 4.392429 & -3.043177 & -1.402916\end{array}$
H $\quad 2.682633-3.296322 \quad-1.015414$
$\begin{array}{llll}\text { C } & 3.736062 & -1.195344 & 1.290309\end{array}$
$\begin{array}{llll}\text { H } & 3.715152 & -0.255055 & 1.852143\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.015058 & -1.877885 & 1.750913\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.735640 & -1.633225 & 1.411293\end{array}$
$\begin{array}{llll}\text { C } & 4.739088 & 0.151645 & -1.307554\end{array}$
$\begin{array}{llll}\text { H } & 4.857857 & 1.104573 & -0.778907\end{array}$
$\begin{array}{llll}\text { H } & 5.708598 & -0.361615 & -1.281133\end{array}$
$\begin{array}{llll}\text { H } & 4.513928 & 0.379924 & -2.355886\end{array}$
\#
c_anti_S_diPhTMS_pyrrolidine_2_2_c_vin
B3LYP/6-31G(d)
Eel $=-1430.10537772$ au; Energy(0K)) $=-1429.57808846$ au
Enthalpy $=-1429.54665965 \mathrm{au}$; Gibbs energy $=-1429.63329944 \mathrm{au}$
$\begin{array}{llll}\text { C } & 2.409021 & -1.528017 & -0.616899\end{array}$
$\begin{array}{llll}\text { C } & 3.045702 & -0.341686 & -0.476010\end{array}$
H $\quad 2.996326$-2.436341 -0.498016
$\begin{array}{llll}\text { H } & 2.513776 & 0.590611 & -0.628758\end{array}$
$\begin{array}{llll}\text { C } & 4.474791 & -0.238209 & -0.142059\end{array}$
$\begin{array}{llll}\text { C } & 5.142001 & -1.142485 & 0.608480\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.219124 & -1.089350 & 0.731730\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.629972 & -1.960438 & 1.106986\end{array}$
$\begin{array}{llll}\text { C } & 5.174819 & 0.943530 & -0.702052\end{array}$
$\begin{array}{llll}\text { C } & 6.174866 & 1.610555 & -0.114553\end{array}$
$\begin{array}{llll}\text { H } & 4.806618 & 1.295747 & -1.666818\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.652598 & 2.458421 & -0.598096\end{array}$
$\begin{array}{llll}H & 6.542485 & 1.335749 & 0.870885\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.084166 & -1.791518 & -0.891784\end{array}$
$\begin{array}{llll}\text { C } & 0.108305 & -0.786515 & -1.338837\end{array}$
$\begin{array}{llll}\text { C } & 0.707031 & -3.125856 & -1.382216\end{array}$

C $\quad-0.796288 \quad-1.554421 \quad-2.345912$
$\begin{array}{llll}\text { H } & 0.649763 & 0.010596 & -1.859345\end{array}$
$\begin{array}{llll}\text { C } & -0.014094 & -2.827695 & -2.697721\end{array}$
$\begin{array}{llll}\text { H } & 0.031894 & -3.619903 & -0.669787\end{array}$
H $\quad 1.596048$-3.751833 -1.497166
$\begin{array}{llll}\mathrm{H} & -1.034884 & -0.936970 & -3.214559\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.743696 & -1.819942 & -1.870240\end{array}$
$\begin{array}{llll}\text { H } & -0.662707 & -3.645839 & -3.028242\end{array}$
$\begin{array}{llll}\text { H } & 0.721729 & -2.633539 & -3.487481\end{array}$
$\begin{array}{llll}\text { C } & -0.764074 & -0.091803 & -0.190009\end{array}$
$\begin{array}{llll}\text { C } & -0.008932 & 1.078210 & 0.482860\end{array}$
$\begin{array}{llll}\text { C } & 0.113677 & 1.236064 & 1.869226\end{array}$
$\begin{array}{llll}\text { C } & 0.501303 & 2.102667 & -0.334824\end{array}$
$\begin{array}{llll}\text { C } & 0.755939 & 2.350510 & 2.416609\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.300737 & 0.492960 & 2.539382\end{array}$
$\begin{array}{llll}\text { C } & 1.143517 & 3.214617 & 0.206448\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.382854 & 2.039899 & -1.412147\end{array}$
$\begin{array}{llll}\text { C } & 1.281938 & 3.340655 & 1.590335\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.839154 & 2.439279 & 3.496636\end{array}$
$\begin{array}{llll}\text { H } & 1.534785 & 3.983608 & -0.454546\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.786585 & 4.203626 & 2.015900\end{array}$
$\begin{array}{llll}\text { C } & -1.245064 & -1.175572 & 0.787058\end{array}$
$\begin{array}{llll}\text { C } & -2.568525 & -1.632471 & 0.764345\end{array}$
$\begin{array}{llll}\text { C } & -0.348614 & -1.802486 & 1.671917\end{array}$
$\begin{array}{llll}\text { C } & -2.995003 & -2.662136 & 1.608009\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.270497 & -1.189290 & 0.068963\end{array}$
$\begin{array}{llll}\text { C } & -0.772130 & -2.831131 & 2.513308\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.687027 & -1.484619 & 1.705277\end{array}$
$\begin{array}{llll}\text { C } & -2.099473 & -3.265343 & 2.488322\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.029937 & -2.992328 & 1.568591\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.059503 & -3.294003 & 3.191255\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.428001 & -4.065689 & 3.146086\end{array}$
$\begin{array}{llll}\text { O } & -1.867531 & 0.461122 & -0.916143\end{array}$
$\begin{array}{llll}\mathrm{Si} & -3.038323 & 1.647902 & -0.657252\end{array}$
$\begin{array}{llll}\text { C } & -2.551952 & 3.250202 & -1.529009\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.290469 & 3.066214 & -2.578108\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.392293 & 3.956342 & -1.518023\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.698085 & 3.738713 & -1.049518\end{array}$
$\begin{array}{llll}\text { C } & -3.392284 & 1.982959 & 1.165610\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.655578 & 1.066691 & 1.705253\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.535543 & 2.436731 & 1.673643\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.238984 & 2.676439 & 1.252292\end{array}$
$\begin{array}{llll}\text { C } & -4.582204 & 0.966351 & -1.504158\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.971254 & 0.072557 & -1.002936\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.383496 & 1.715971 & -1.509248\end{array}$
$\begin{array}{llll}\text { H } & -4.373111 & 0.697967 & -2.546288\end{array}$

\#

Conformations of MacMillan Generation 1 organocatalyst-derived aminodendralene $\mathbf{2 b}$, in descending order of Energy (0K); most stable first
c_syn_imidvin_t_vin

B3LYP/6-31G(d)

Eel $=-923.16863898 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-922.77510518 \mathrm{au}$

Enthalpy $=-922.75203418 \mathrm{au} ;$ Gibbs energy $=-922.82239057 \mathrm{au}$

C $\quad 0.355612 \quad 1.668002 \quad-1.005723$

C $\quad 0.069930 \quad 0.624336 \quad 1.190942$
$\begin{array}{llll}\mathrm{H} & -0.678694 & 1.032149 & 1.890381\end{array}$
$\begin{array}{llll}\mathrm{N} & -0.403046 & 0.697882 & -0.180974\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.393836 & 2.091778 & -0.058115\end{array}$
$\begin{array}{llll}\text { C } & 2.473650 & 2.996106 & -0.400449\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.062261 & 3.141273 & 0.507175\end{array}$
$\begin{array}{llll}\text { H } & 3.116752 & 2.573607 & -1.180749\end{array}$
$\begin{array}{llll}\text { H } & 2.093668 & 3.966358 & -0.740200\end{array}$

C $\quad 0.968961 \quad 0.976432 \quad-2.235035$
$\begin{array}{llll}\text { H } & 1.558761 & 1.681011 & -2.831331\end{array}$
H $\quad 1.604992 \quad 0.145095 \quad-1.921239$

H $\quad 0.176712 \quad 0.583765 \quad-2.880780$

C $\quad-0.509852 \quad 2.874241-1.421167$

H	-1.321026	2.563000	-2.085825
H	-0.947128	3.350947	-0.538588
H	0.090529	3.614991	-1.959623
C	0.458699	-0.792094	1.696222
H	0.857283	-0.645829	2.706317
H	-0.452275	-1.391013	1.787893
C	1.464755	-1.520861	0.832453
C	1.036572	-2.401607	-0.170761
C	2.842914	-1.326450	1.009274
C	1.958250	-3.068932	-0.979438
H	-0.028752	-2.565482	-0.314531
C	3.766204	-1.991740	0.201065
H	3.188031	-0.644773	1.781916
C	3.327370	-2.865122	-0.796235
H	1.606595	-3.752028	-1.748629
H	4.830362	-1.832466	0.356073
H	4.046706	-3.387876	-1.421338
C	1.275700	1.557412	1.190667
O	2.011967	1.768622	2.144114
C	-1.640572	0.244307	-0.573411
C	-2.597681	-0.315507	0.202733
H	-1.833125	0.351823	-1.638230
H	-2.463297	-0.371708	1.279274
H			

C	-3.855559	-0.849658	-0.341045
C	-3.929259	-1.480572	-1.534765
H	-4.881859	-1.809866	-1.941032
H	-3.046273	-1.684882	-2.132456
C	-5.087017	-0.694027	0.454728
C	-5.224614	0.025882	1.575948
H	-5.954679	-1.227910	0.067524
H	-6.175400	0.075198	2.098571
H	-4.405799	0.597125	2.004113

\#
t_syn_imidvin_c_vin
B3LYP/6-31G(d)
$\mathrm{Eel}=-923.16770418 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-922.77423278 \mathrm{au}$

Enthalpy $=-922.75113416 \mathrm{au} ;$ Gibbs energy $=-922.82159631 \mathrm{au}$
$\begin{array}{llll}\text { C } & 0.332035 & 1.716835 & -0.812564\end{array}$

C $\quad 0.376577 \quad 0.614391 \quad 1.373596$
$\begin{array}{llll}\mathrm{H} & -0.188352 & 1.045193 & 2.216629\end{array}$
$\begin{array}{llll}\mathrm{N} & -0.342991 & 0.786842 & 0.123194\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.563300 & 2.017480 & -0.071761\end{array}$
$\begin{array}{llll}\text { C } & 2.635934 & 2.838811 & -0.596872\end{array}$
$\begin{array}{llll}H & 3.394446 & 2.904069 & 0.185259\end{array}$
$\begin{array}{llll}\text { H } & 3.082111 & 2.390320 & -1.491801\end{array}$
$\begin{array}{llll}\text { H } & 2.286556 & 3.848156 & -0.842283\end{array}$

C $\quad 0.639149 \quad 1.024764 \quad-2.151749$
$\begin{array}{llll}\mathrm{H} & 1.155662 & 1.705032 & -2.837717\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.256741 & 0.138353 & -1.987163\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.291629 & 0.713320 & -2.637066\end{array}$
$\begin{array}{llll}\text { C } & -0.483112 & 3.007451 & -1.030618\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.426949 & 2.793367 & -1.540743\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.705852 & 3.483453 & -0.070857\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.072507 & 3.715463 & -1.654315\end{array}$
$\begin{array}{llll}\text { C } & 0.740478 & -0.848355 & 1.752499\end{array}$
$\begin{array}{llll}\text { H } & 1.343618 & -0.773975 & 2.664184\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.178438 & -1.382106 & 2.011760\end{array}$
$\begin{array}{llll}\text { C } & 1.490939 & -1.613554 & 0.684839\end{array}$
$\begin{array}{llll}\text { C } & 0.799194 & -2.402486 & -0.245042\end{array}$

C $\quad 2.889455 \quad-1.546241 \quad 0.597159$
$\begin{array}{llll}\text { C } & 1.483976 & -3.105246 & -1.237943\end{array}$

H $\quad-0.284787 \quad-2.466473-0.186521$
$\begin{array}{llll}\text { C } & 3.576106 & -2.246856 & -0.395885\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.437350 & -0.936221 & 1.310258\end{array}$
$\begin{array}{llll}\text { C } & 2.875992 & -3.028922 & -1.316833\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.930042 & -3.716183 & -1.946304\end{array}$
$\begin{array}{llll}\text { H } & 4.660465 & -2.186934 & -0.444986\end{array}$
$\begin{array}{llll}H & 3.411369 & -3.579676 & -2.085931\end{array}$

C $\quad 1.636145 \quad 1.447405 \quad 1.164499$
$\begin{array}{llll}\text { O } & 2.555046 & 1.560304 & 1.963568\end{array}$
$\begin{array}{lllll}\text { C } & -1.669567 & 0.457409 & -0.033581\end{array}$
$\begin{array}{llll}\text { C } & -2.496459 & -0.087873 & 0.892086\end{array}$

H $\quad-2.048357$ 0.644506 -1.034314
$\begin{array}{llll}\text { H } & -2.127421 & -0.302534 & 1.891177\end{array}$
$\begin{array}{llll}\text { C } & -3.892654 & -0.444228 & 0.637987\end{array}$
$\begin{array}{llll}\text { C } & -4.607812 & -1.148616 & 1.542349\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.661967 & -1.356504 & 1.393514\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.156412 & -1.513036 & 2.461812\end{array}$

C $\quad-4.532641 \quad 0.024685 \quad-0.615334$

C $\quad-5.338042 \quad-0.708367-1.390766$

H $\quad-4.317693 \quad 1.053883-0.907070$

H $\quad-5.805842 \quad-0.290798 \quad-2.278404$

H $\quad-5.553857-1.749406 \quad-1.164659$

\#

t_syn_imidvin_t_vin

B3LYP/6-31G(d)
$\mathrm{Eel}=-923.16698528 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-922.77316634 \mathrm{au}$
Enthalpy $=-922.75016442 \mathrm{au} ;$ Gibbs energy $=-922.82028478 \mathrm{au}$

C	-0.289771	1.672677	0.929025
C	-0.286733	0.739341	-1.334801
H	0.291310	1.237644	-2.130508
N	0.406360	0.816506	-0.060331
N	-1.509990	2.020923	0.190858
C	-2.593199	2.802648	0.753141
H	-3.340661	2.917197	-0.033971
H	-3.049906	2.294553	1.609988
H	-2.251461	3.794764	1.069542
C	-0.615383	0.881483	2.207334
H	-1.155733	1.503483	2.929226
C	-0.718526	-2.412005	0.016671
H	-2.797902	-1.479316	-0.769409
H	-1.216700	0.001762	1.965035
H	-1.398603	-1.543127	-0.848379
H	0.309302	0.548246	2.689819
C	0.513727	2.947427	1.256167
H	1.448412	2.701254	1.768542
H	-0.752800	3.491908	0.337628
H	-0.634447	-0.690349	-1.836923
H			

C	-1.415102	-3.194254	0.939429
H	0.365643	-2.477006	-0.039581
C	-3.496369	-2.259737	0.153446
H	-3.337068	-0.809433	-1.433755
C	-2.807527	-3.119426	1.011501
H	-0.870443	-3.866390	1.597866
H	-4.581017	-2.200707	0.196602
H	-3.351843	-3.731677	1.725882
C	-1.554864	1.548604	-1.087059
O	-2.458118	1.719680	-1.893711
C	1.727885	0.471182	0.106434
C	2.571853	-0.008381	-0.839048
H	2.090242	0.610633	1.118897
H	2.228508	-0.085696	-1.867247
C	3.987566	-0.334451	-0.630335
C	4.841101	-0.341398	-1.680626
H	5.892549	-0.583457	-1.556947
H	4.506387	-0.120139	-2.690283
C	4.537776	-0.686520	0.697254
C	3.891141	-1.206164	1.749483
H	5.615890	-0.549652	0.781777
H	4.429275	-1.468563	2.656115
H	2.827789	-1.422643	1.736382
	-2.03		

\#
c_syn_imidvin_c_vin
B3LYP/6-31G(d)
Eel $=-923.16505946 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-922.77167514 \mathrm{au}$
Enthalpy $=-922.74858515 \mathrm{au} ;$ Gibbs energy $=-922.81906008 \mathrm{au}$
$\begin{array}{llll}\text { C } & 0.550486 & 1.761485 & -0.879651\end{array}$
$\begin{array}{llll}\text { C } & 0.230263 & 0.612509 & 1.258161\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.437121 & 1.064406 & 2.010657\end{array}$
$\begin{array}{llll}\mathrm{N} & -0.279268 & 0.823203 & -0.086716\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.674778 & 1.986292 & 0.037047\end{array}$
$\begin{array}{llll}\text { C } & 2.839307 & 2.780933 & -0.300449\end{array}$
$\begin{array}{llll}H & 3.484012 & 2.784558 & 0.580264\end{array}$
$\begin{array}{llll}\text { H } & 3.387286 & 2.347357 & -1.144442\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.565033 & 3.812915 & -0.547782\end{array}$
$\begin{array}{llll}\text { C } & 1.019155 & 1.104401 & -2.188700\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.662098 & 1.781492 & -2.761361\end{array}$
$\begin{array}{llll}\text { H } & 1.563679 & 0.181608 & -1.973788\end{array}$
$\begin{array}{llll}H & 0.157702 & 0.860758 & -2.818991\end{array}$
$\begin{array}{llll}\text { C } & -0.185526 & 3.087454 & -1.155920\end{array}$
$\begin{array}{llll}\text { H } & -1.059168 & 2.922344 & -1.793358\end{array}$
$\begin{array}{llll}\text { H } & -0.520305 & 3.539095 & -0.217070\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.470199 & 3.796154 & -1.672657\end{array}$
$\begin{array}{llll}\text { C } & 0.460719 & -0.868039 & 1.667167\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.893618 & -0.832262 & 2.672977\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.512595 & -1.360959 & 1.747229\end{array}$
$\begin{array}{llll}\text { C } & 1.357890 & -1.653261 & 0.735600\end{array}$

C $\quad 0.812908$-2.392942 -0.323490
$\begin{array}{llll}\text { C } & 2.750449 & -1.653636 & 0.905864\end{array}$
$\begin{array}{llll}\text { C } & 1.635537 & -3.111675 & -1.192660\end{array}$

H $\quad-0.265489 \quad-2.407294 \quad-0.462246$
$\begin{array}{llll}\text { C } & 3.574769 & -2.371412 & 0.037782\end{array}$
$\begin{array}{llll}\text { H } & 3.185935 & -1.081177 & 1.720287\end{array}$
$\begin{array}{llll}\text { C } & 3.020447 & -3.102504 & -1.014760\end{array}$

H $1.193815 \quad-3.684036 \quad-2.004586$
H $\quad 4.651363-2.363756 \quad 0.188429$

H $\quad 3.661988$-3.666402 -1.687022

C $\quad 1.540265 \quad 1.392350 \quad 1.257070$
$\begin{array}{llll}\text { O } & 2.332472 & 1.453661 & 2.186585\end{array}$

C $\quad-1.571287 \quad 0.532570 \quad-0.454349$
$\begin{array}{llll}\text { C } & -2.561137 & 0.037724 & 0.326828\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.786301 & 0.720077 & -1.504089\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.402386 & -0.078353 & 1.396269\end{array}$
$\begin{array}{llll}\text { C } & -3.891242 & -0.321233 & -0.187700\end{array}$
$\begin{array}{llll}\text { C } & -4.107584 & -0.771902 & -1.442848\end{array}$

H	-5.113154	-0.911635	-1.826669
H	-3.287432	-1.005528	-2.115398
C	-5.014401	-0.140254	0.763230
C	-6.107044	-0.909111	0.832627
H	-4.904788	0.680208	1.473792
H	-6.899920	-0.703924	1.546571
H	-6.240248	-1.772144	0.185171

\#

c_anti_imidvin_t_vin

B3LYP/6-31G(d)
$\mathrm{Eel}=-923.16502153 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-922.77160776 \mathrm{au}$
Enthalpy $=-922.74845418 \mathrm{au} ;$ Gibbs energy $=-922.81905076 \mathrm{au}$
$\begin{array}{llll}\text { C } & 0.095197 & 1.539695 & -0.858130\end{array}$
$\begin{array}{llll}\text { C } & 0.695640 & 0.917955 & 1.435611\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.355527 & 1.521690 & 2.292800\end{array}$
$\begin{array}{llll}\mathrm{N} & -0.325495 & 0.873996 & 0.396024\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.450161 & 1.989486 & -0.494255\end{array}$
$\begin{array}{llll}\text { C } & 2.334446 & 2.687807 & -1.406864\end{array}$
$\begin{array}{llll}\text { H } & 3.250614 & 2.902789 & -0.853889\end{array}$
$\begin{array}{llll}\text { H } & 2.579954 & 2.071536 & -2.279071\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.892272 & 3.629489 & -1.750437\end{array}$

C	0.162753	0.555469	-2.040932
H	0.538900	1.058062	-2.938659
H	0.819779	-0.283084	-1.797476
H	-0.828436	0.161157	-2.276832
C	-0.793234	2.755116	-1.181688
H	-1.833021	2.453891	-1.324492
H	-0.752805	3.478108	-0.361255
H	-0.454189	3.244473	-2.100290
C	1.148674	-0.455117	1.997457
H	1.928241	-0.234229	2.735581
H	0.304902	-0.894519	2.542322
C	1.661648	-1.437456	0.966823
C	0.805081	-2.390237	0.398019
C	3.002270	-1.410404	0.553311
C	1.271933	-3.291989	-0.559998
H	-0.236900	-2.424787	0.707042
C	3.470640	-2.310213	-0.405313
H	3.675598	-0.673756	0.983070
C	2.607382	-3.254407	-0.965114
H	0.592680	-4.025998	-0.986067
H	4.513617	-2.277247	-0.709995
H	2.973898	-3.959073	-1.707073
C	1.842923	1.661899	0.767713

O	2.925125	1.909096	1.282736
C	-1.602772	0.472282	0.714686
C	-2.677096	0.243645	-0.077441
H	-1.724787	0.305302	1.784323
H	-2.595801	0.295815	-1.157734
C	-3.997781	-0.105671	0.468973
C	-4.477146	0.419243	1.619242
H	-5.427552	0.095032	2.034809
H	-3.936788	1.181864	2.171247
C	-4.834751	-1.064174	-0.276004
C	-4.458200	-1.792255	-1.335471
H	-5.853876	-1.170971	0.095299
H	-5.149811	-2.471286	-1.825542
H	-3.451325	-1.748525	-1.741242

\#
t_anti_imidvin_c_vin

B3LYP/6-31G(d)
$\mathrm{Eel}=-923.16404428 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-922.77056453 \mathrm{au}$

Enthalpy $=-922.74738071 \mathrm{au} ;$ Gibbs energy $=-922.81810740 \mathrm{au}$
C $\quad-0.172242 \quad-1.700641 \quad-0.666224$
$\begin{array}{llll}\text { C } & -0.468200 & -0.583345 & 1.493990\end{array}$

H	0.025893	-0.978781	2.396163
N	0.380582	-0.744632	0.318827
N	-1.449427	-2.056847	-0.024611
C	-2.422027	-2.952998	-0.619132
H	-3.243682	-3.042392	0.093753
H	-2.809155	-2.554786	-1.563667
H	-1.994827	-3.945519	-0.800761
C	-0.428017	-1.032943	-2.029670
H	-0.875574	-1.745691	-2.730577
H	-1.098908	-0.178919	-1.907980
H	0.505886	-0.676910	-2.470277
C	0.708142	-2.958920	-0.799401
H	1.706950	-2.708671	-1.161250
H	0.807869	-3.449680	0.173576
H	0.262336	-3.666421	-1.506102
C	-0.908398	0.869771	1.813400
H	-1.544872	0.800017	2.702756
H	-0.018039	1.441120	2.101478
C	-1.640367	1.584003	0.697815
C	-0.945323	2.385080	-0.218777
C	-3.030304	1.455835	0.554788
C	-1.617153	3.041375	-1.251602
H	0.132368	2.494923	-0.123661

C	-3.704035	2.110155	-0.477532
H	-3.580909	0.833095	1.254437
C	-3.000280	2.905722	-1.384012
H	-1.059861	3.661418	-1.949140
H	-4.781866	2.002656	-0.569287
H	-3.526209	3.420129	-2.184083
C	-1.663506	-1.473877	1.186913
O	-2.642777	-1.621214	1.905718
C	1.657283	-0.229063	0.322793
C	2.615024	-0.233846	-0.637714
H	1.892233	0.253131	1.268960
H	2.441739	-0.708090	-1.598031
H	5.407922	1.902206	2.308473
H	3.941413	0.359167	-0.458541
H	4.925206	0.154073	-1.361762
H	5.888879	0.643397	-1.270282
C	4.778892	-0.493527	-2.222809
H	3.2782860	1.233761	0.715367
H		1.315517	
H			

\#

```
t_anti_imidvin_t_vin
B3LYP/6-31G(d)
Eel =-923.16319046 au; Energy(0K))=-922.76937602 au
Enthalpy =-922.74632435 au; Gibbs energy =-922.81669557 au
C 0.049212 1.553142 -0.866519
C 0.391246 0.737422 1.418896
H
N -0.460848
N 1.290666 2.073922 -0.268265
C 
H 3.030292 3.159017 -0.276852
H
H
C 
H
H 1.085711 -0.065774 -1.878560
H
C 
H
H
H
C 
```

$\begin{array}{llll}\text { H } & 1.555636 & -0.420082 & 2.774555\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.065546 & -1.219311 & 2.279433\end{array}$
$\begin{array}{llll}\text { C } & 1.681380 & -1.440902 & 0.879763\end{array}$
$\begin{array}{llll}\text { C } & 1.028872 & -2.401386 & 0.094346\end{array}$
$\begin{array}{llll}\text { C } & 3.055466 & -1.236061 & 0.682346\end{array}$
$\begin{array}{llll}\text { C } & 1.726651 & -3.136492 & -0.865639\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.035399 & -2.574149 & 0.235108\end{array}$
$\begin{array}{llll}\text { C } & 3.754767 & -1.968979 & -0.277737\end{array}$
$\begin{array}{llll}H & 3.573023 & -0.492259 & 1.281949\end{array}$
$\begin{array}{llll}\text { C } & 3.092978 & -2.921625 & -1.055170\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.202845 & -3.879001 & -1.462239\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.819859 & -1.799203 & -0.413582\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.638862 & -3.496225 & -1.798967\end{array}$
$\begin{array}{llll}\text { C } & 1.531114 & 1.657010 & 1.005180\end{array}$
$\begin{array}{llll}\text { O } & 2.493611 & 1.952468 & 1.700762\end{array}$
$\begin{array}{llll}\text { C } & -1.703396 & 0.117046 & 0.304526\end{array}$
$\begin{array}{llll}\text { C } & -2.646562 & -0.054080 & -0.654060\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.905098 & -0.280984 & 1.294611\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.450211 & 0.257198 & -1.674590\end{array}$
$\begin{array}{llll}\text { C } & -3.921783 & -0.757429 & -0.464217\end{array}$

C $\quad-4.564513 ~-1.288087 \quad-1.530615$
$\begin{array}{llll}\mathrm{H} & -5.513409 & -1.805234 & -1.423163\end{array}$
H $\quad-4.165962 \quad-1.204230 \quad-2.537953$

C	-4.569774	-0.895323	0.859161
C	-4.440813	-0.098843	1.928712
H	-5.278268	-1.721156	0.923602
H	-5.017553	-0.283641	2.830683
H	-3.795338	0.773515	1.935053

\#

c_anti_imidvin_c_vin
B3LYP/6-31G(d)
Eel $=-923.16142134 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-922.76827546 \mathrm{au}$
Enthalpy $=-922.74503683$ au; Gibbs energy $=-922.81585915 \mathrm{au}$
$\begin{array}{llll}\text { C } & -0.163522 & -1.556042 & -0.806568\end{array}$
$\begin{array}{llll}\text { C } & -0.741337 & -0.817686 & 1.458794\end{array}$
$\begin{array}{llll}\text { H } & -0.377360 & -1.367050 & 2.342203\end{array}$
$\begin{array}{llll}\mathrm{N} & 0.263793 & -0.814506 & 0.402181\end{array}$
$\begin{array}{llll}\mathrm{N} & -1.503473 & -2.010183 & -0.395722\end{array}$
$\begin{array}{llll}\text { C } & -2.388475 & -2.774188 & -1.253589\end{array}$
$\begin{array}{llll}\text { H } & -3.286277 & -2.985740 & -0.670043\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.670070 & -2.207636 & -2.148466\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.928183 & -3.719304 & -1.561798\end{array}$
C $\quad-0.270063-0.640161 \quad-2.040206$
$\begin{array}{llll}\text { H } & -0.654950 & -1.198349 & -2.900543\end{array}$

H	-0.937218	0.199567	-1.830547
H	0.709145	-0.243144	-2.317521
C	0.744347	-2.769884	-1.076880
H	1.775658	-2.456093	-1.250624
H	0.729802	-3.447797	-0.217989
H	0.403533	-3.315476	-1.962630
C	-1.210763	0.575952	1.951753
H	-1.976131	0.381790	2.711934
H	-0.367713	1.058011	2.460551
C	-1.754569	1.492589	0.877620
C	-0.923137	2.429296	0.248190
C	-3.099567	1.420105	0.484088
C	-1.418064	3.270920	-0.749623
H	0.121571	2.498873	0.541803
C	-3.596026	2.259643	-0.514262
H	-3.754327	0.695890	0.961068
C	-2.757389	3.188055	-1.134624
H	-0.757796	3.993457	-1.222548
H	-4.641938	2.192215	-0.802792
H	-3.146110	3.845652	-1.907798
C	-1.884376	-1.617585	0.851138
O	-2.954498	-1.853647	1.395747
C	1.535363	-0.367377	0.674551

C	2.595245	-0.167817	-0.146558
H	1.670372	-0.129393	1.729239
H	2.495241	-0.280915	-1.221636
C	3.915029	0.254525	0.346229
C	4.393545	-0.065469	1.568756
H	5.315470	0.367170	1.944155
H	3.873303	-0.758373	2.223452
C	4.709575	1.087577	-0.588573
C	6.041976	1.067433	-0.707846
H	4.134655	1.745694	-1.241686
H	6.559045	1.722194	-1.403861
H	6.657269	0.391429	-0.119459

\#

Transition structures for the endo addition of N-methyl maleimide to 2 b , in descending order of Energy (0 K); most stable first.
Although 4 TSs are present in Table 1, there are actually eight listed here, the doubling being due to the spectator vinyl group in the dendralene adopting either a cis or trans conformation with respect to the central double bond of the dendralene.

N_Re_syn_pyrrole_t_vin
B3LYP/6-31G(d)
$\mathrm{Eel}=-1828.85263685 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-1828.22594109 \mathrm{au}$
Enthalpy $=-1828.18722010 \mathrm{au} ;$ Gibbs energy $=-1828.28808837 \mathrm{au}$
$\begin{array}{llll}\text { C } & -1.243138 & 0.274599 & 0.208112\end{array}$
$\begin{array}{llll}\text { C } & -2.358396 & 0.815691 & 0.832462\end{array}$
$\begin{array}{llll}\text { C } & -3.284801 & 0.069571 & 1.600231\end{array}$
$\begin{array}{llll}\text { C } & -3.215341 & -1.331989 & 1.714415\end{array}$
$\begin{array}{llll}\text { C } & -3.746558 & -2.111743 & -0.143237\end{array}$
C $\quad-2.920382-1.647052 \quad-1.163789$
$\begin{array}{llll}\text { C } & -5.071136 & -1.402319 & -0.291978\end{array}$
$\begin{array}{llll}\text { C } & -3.583185 & -0.552198 & -1.856622\end{array}$
$\begin{array}{llll}\text { O } & -3.213746 & 0.146456 & -2.796284\end{array}$
$\begin{array}{llll}\text { O } & -6.115231 & -1.603843 & 0.306620\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.892641 & -0.713487 & 0.473345\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.585307 & 1.862188 & 0.658259\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.940651 & -1.822496 & 2.358941\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.248025 & -1.822237 & 1.684351\end{array}$
$\begin{array}{llll}\text { H } & -3.743410 & -3.125309 & 0.242878\end{array}$

H $\quad-1.982204 \quad-2.064735 \quad-1.502560$
$\begin{array}{llll}\text { C } & -4.471260 & 0.732136 & 2.164691\end{array}$
$\begin{array}{llll}\text { C } & -4.615077 & 2.040837 & 2.423133\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.294684 & 0.061533 & 2.405150\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.534544 & 2.425893 & 2.853557\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.825572 & 2.765905 & 2.242906\end{array}$
$\begin{array}{llll}\mathrm{N} & -4.865994 & -0.425259 & -1.251957\end{array}$
$\begin{array}{llll}\text { C } & -5.859670 & 0.549924 & -1.647010\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.491170 & 1.044935 & -2.547438\end{array}$

H	-6.813207	0.055000	-1.852917
H	-6.014661	1.291898	-0.855303
N	-0.435490	0.922491	-0.656499
C	0.744857	0.279201	-1.262183
C	-0.830856	2.137113	-1.385376
C	1.009390	1.109060	-2.540823
H	0.460658	-0.748361	-1.515474
C	1.967692	0.155180	-0.265179
C	-0.298660	1.874440	-2.796328
H	-0.374440	3.024173	-0.925359
H	2.214663	-1.812978	1.850100
H	-1.916630	2.241870	-1.366220
H	1.296878	0.470254	-3.378993
O	1.582154	1.889710	1.558546
H	1.827554	1.814244	-2.374280
H	2.240983	1.530560	0.373596
H	-0.1979764	-0.79769	-0.456454

C	3.226461	3.761828	0.321230
H	3.602693	2.247153	-1.145422
C	1.744206	3.157757	2.117967
H	0.930755	1.170784	2.040045
C	5.607842	-0.841975	-1.051514
H	4.642619	0.481557	0.329030
C	4.169032	-1.996625	-2.594919
H	2.078373	-1.617456	-2.416973
C	3.475731	-0.962737	2.969964
C	2.994334	-3.316152	1.018722
C	0.737551	-2.376739	2.877045
C	2.567691	4.101193	1.502422
H	3.875466	4.481859	-0.170282
H	1.221548	3.407069	3.037791
C	5.450952	-1.735057	-2.111282
H	6.598199	-0.628607	-0.657964
H	4.026559	-2.694758	-3.415423
H	3.745602	-1.637935	3.792421
H	4.399757	-0.705183	2.442229
H	3.073556	-0.044168	3.410733
H	2.281611	-3.814748	0.351458
H	3.882398	-3.063067	0.431658
H	3.294200	-4.044527	1.783636

H	0.011260	-2.920438	2.261044
H	1.054905	-3.051893	3.681372
H	0.216269	-1.531140	3.340032
H	2.696156	5.087882	1.939229
H	6.315580	-2.222582	-2.553209

\#

N_Re_syn_pyrrole_c_vin

B3LYP/6-31G(d)
$\operatorname{Eel}=-1828.85172786 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1828.22525010 \mathrm{au}$

Enthalpy $=-1828.18639976 \mathrm{au} ;$ Gibbs energy $=-1828.28756980 \mathrm{au}$
$\begin{array}{llll}\text { C } & 1.211768 & -0.226037 & 0.332410\end{array}$
$\begin{array}{llll}\text { C } & 2.301051 & -0.465018 & 1.157557\end{array}$
$\begin{array}{llll}\text { C } & 3.277864 & 0.501677 & 1.512090\end{array}$

C $\quad 3.251862 \quad 1.808966 \quad 1.002453$
$\begin{array}{llll}\text { C } & 3.744395 & 1.676899 & -1.063762\end{array}$

C $\quad 2.914369 \quad 0.795321 \quad-1.746426$
$\begin{array}{llll}\text { C } & 5.074098 & 0.989161 & -0.891783\end{array}$
$\begin{array}{llll}\text { C } & 3.581087 & -0.495477 & -1.863772\end{array}$
$\begin{array}{llll}\mathrm{O} & 3.206332 & -1.551515 & -2.365478\end{array}$
$\begin{array}{llll}\text { O } & 6.126787 & 1.451308 & -0.482956\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.910094 & 0.787554 & 0.105593\end{array}$

H	2.465255	-1.480144	1.508598
H	3.988489	2.523434	1.355870
H	2.295719	2.253094	0.748515
H	3.723744	2.756572	-1.159610
H	1.973788	1.008590	-2.235210
C	4.401439	0.011291	2.328561
C	5.569069	0.624576	2.572835
H	4.243049	-0.976234	2.762863
H	6.323175	0.147582	3.192008
H	5.832311	1.586752	2.146584
N	4.869616	-0.323157	-1.286386
C	5.881181	-1.355799	-1.218994
H	5.433162	-2.275902	-1.598702
H	6.750375	-1.090464	-1.830151
H	6.212978	-1.495415	-0.185189
N	0.369315	-1.163719	-0.150060
C	-0.787074	-0.815556	-0.994108
C	0.714404	-2.589213	-0.257942
C	-1.075792	-2.108718	-1.792956
H	-0.470048	-0.005421	-1.660319
C	-2.006575	-0.240025	-0.165826
C	0.197555	-2.958432	-1.651321
H	0.219815	-3.163669	0.536925

H	1.794963	-2.713470	-0.171290
H	-1.321761	-1.887215	-2.834160
H	-1.929963	-2.638061	-1.363623
C	-2.330315	-1.204978	0.990745
C	-3.210693	0.055637	-1.086510
O	-1.506924	0.997662	0.359568
H	0.002399	-4.029975	-1.758737
H	0.951283	-2.660299	-2.385849
C	-3.189543	-2.305172	0.834766
C	-1.682003	-1.051618	2.225042
C	-4.520595	0.070068	-0.580236
C	-3.029980	0.441447	-2.424646
Si	-2.186500	2.436423	0.930434
C	-3.400317	-3.210933	1.876563
H	-3.720484	-2.452480	-0.099915
C	-1.892143	-1.954652	3.268009
H	-1.001954	-0.220387	2.365077
C	-5.604828	0.437243	-1.378910
H	-4.700651	-0.212512	0.450857
C	-4.111496	0.803311	-3.228350
H	-2.037245	0.475358	-2.858881
C	-3.495059	2.160363	2.263490
C	-2.898127	3.488609	-0.464630

C	-0.699992	3.322839	1.676585
C	-2.753190	-3.039638	3.099751
H	-4.077093	-4.048236	1.727729
H	-1.377176	-1.808051	4.213909
C	-5.406614	0.802040	-2.710362
H	-6.605863	0.434703	-0.955632
H	-3.936454	1.091410	-4.261453
H	-3.756864	3.123200	2.721311
H	-4.417029	1.728289	1.861185
H	-3.134083	1.499583	3.058893
H	-2.165760	3.632206	-1.267602
H	-3.798196	3.050600	-0.906836
H	-3.163515	4.482011	-0.079536
H	0.059974	3.535849	0.915432
H	-0.998916	4.281450	2.118385
H	-0.224891	2.727061	2.464202
H	-2.919147	-3.741764	3.912350
H	-6.249391	1.083875	-3.335556

\#

N_Si_anti_pyrrol_t_vin
B3LYP/6-31G(d)
$\mathrm{Eel}=-1828.84872308 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1828.22174303 \mathrm{au}$
Enthalpy $=-1828.18310794 \mathrm{au} ;$ Gibbs energy $=-1828.28389033 \mathrm{au}$
$\begin{array}{llll}\text { C } & 1.390597 & 1.200770 & -0.974384\end{array}$
$\begin{array}{llll}\text { C } & 1.817854 & -0.109735 & -1.115390\end{array}$
$\begin{array}{llll}\text { C } & 3.058122 & -0.482947 & -1.688328\end{array}$

C $\quad 4.014275 \quad 0.463850 \quad-2.107297$
$\begin{array}{llll}\text { C } & 4.820701 & 1.290742 & -0.387298\end{array}$
C $\quad 3.848231 \quad 1.886698 \quad 0.414342$
$\begin{array}{llll}\text { C } & 5.224885 & 0.007471 & 0.299931\end{array}$
$\begin{array}{llll}\text { C } & 3.470788 & 0.967776 & 1.476121\end{array}$
$\begin{array}{llll}\text { O } & 2.641398 & 1.077134 & 2.376808\end{array}$
$\begin{array}{llll}\text { O } & 6.140561 & -0.748985 & 0.023750\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.918370 & 1.992030 & -1.494456\end{array}$
H $1.187358 \quad-0.888248 \quad-0.707435$

H $\quad 4.913984 \quad 0.090957 \quad-2.590205$
$\begin{array}{llll}\text { H } & 3.685998 & 1.428504 & -2.480891\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.573608 & 1.833634 & -0.948771\end{array}$
$\begin{array}{llll}H & 3.477305 & 2.901095 & 0.364206\end{array}$
$\begin{array}{llll}\text { C } & 3.478244 & -1.893101 & -1.692493\end{array}$
$\begin{array}{llll}\text { C } & 2.741218 & -2.974003 & -1.389565\end{array}$

H $\quad 4.515675-2.050935-1.981305$
$\begin{array}{llll}\mathrm{H} & 3.172159 & -3.969062 & -1.443824\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.697586 & -2.918875 & -1.094064\end{array}$

N	4.310939	-0.170343	1.326614
C	4.268462	-1.334499	2.184795
H	3.587914	-1.108824	3.007947
H	5.267366	-1.554783	2.572426
H	3.906120	-2.210327	1.633718
N	0.299191	1.641483	-0.303853
C	-0.396240	0.853586	0.735296
C	0.129225	3.079393	-0.036624
C	-0.600169	1.849111	1.912699
H	0.284266	0.053108	1.025401
C	-1.720161	0.166437	0.213021
C	-2.450260	1.481390	-1.835143
H	0.108091	3.154102	1.494442
H	-0.404406	4.049071	1.861006
H	-0.813022	3.430162	-0.472052
H	0.947934	3.641649	-0.494626
H	-0.165366	1.442714	2.827532
H	-1.661688	2.023622	2.098722
C	-2.610158	1.227962	-0.464172
H	-2.414192	-0.600497	1.362105
H			

C	-3.800288	-0.824201	1.357742
C	-1.663324	-1.206056	2.383545
Si	-1.928672	-2.138380	-1.520941
C	-4.236096	3.045050	-0.385608
H	-3.678521	1.858876	1.307233
C	-3.170232	2.493235	-2.471367
H	-1.745153	0.883980	-2.400121
C	-4.413429	-1.609492	2.335774
H	-4.413611	-0.379280	0.582698
C	-2.273193	-1.986623	3.365938
H	-0.587232	-1.082442	2.425475
C	-3.749597	-1.963575	-1.995742
C	-1.702944	-3.661937	-0.430270
C	-0.908708	-2.304443	-3.096717
C	-4.067663	3.281683	-1.749476
H	-4.934389	3.645411	0.191696
H	-3.026391	2.665387	-3.535006
C	-3.652737	-2.193210	3.348128
H	-5.489258	-1.760805	2.303068
H	-1.663266	-2.435986	4.145013
H	-4.016358	-2.778430	-2.681670
H	-4.418123	-2.030717	-1.132404
H	-3.951380	-1.017732	-2.509634

H	-0.657024	-3.787551	-0.125785
H	-2.309075	-3.603992	0.479875
H	-1.999699	-4.567810	-0.974458
H	0.165743	-2.349958	-2.891031
H	-1.184493	-3.217166	-3.639775
H	-1.079269	-1.455759	-3.769638
H	-4.631118	4.068099	-2.244427
H	-4.127833	-2.801627	4.112854

\#

N_Si_anti_pyrrol_c_vin
B3LYP/6-31G(d)
Eel $=-1828.84805031 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-1828.22129051 \mathrm{au}$
Enthalpy $=-1828.18260919 \mathrm{au} ;$ Gibbs energy $=-1828.28346234 \mathrm{au}$
$\begin{array}{llll}\text { C } & 1.335782 & 1.255294 & -0.957782\end{array}$
$\begin{array}{llll}\text { C } & 1.768544 & -0.049981 & -1.115956\end{array}$
$\begin{array}{llll}\text { C } & 3.028039 & -0.429196 & -1.652035\end{array}$
$\begin{array}{llll}\text { C } & 3.999448 & 0.508757 & -2.033289\end{array}$
$\begin{array}{llll}\text { C } & 4.750443 & 1.373691 & -0.240511\end{array}$
$\begin{array}{llll}\text { C } & 3.738310 & 1.931668 & 0.530922\end{array}$
$\begin{array}{llll}\text { C } & 5.162020 & 0.090020 & 0.433588\end{array}$
$\begin{array}{llll}\text { C } & 3.346483 & 0.984531 & 1.564617\end{array}$

O	2.484701	1.059914	2.437802
O	6.110926	-0.634692	0.184175
H	1.876795	2.059519	-1.444153
H	1.119357	-0.839557	-0.757909
H	4.915055	0.155505	-2.496789
H	3.681677	1.485410	-2.382252
H	5.494009	1.932994	-0.796875
H	3.343903	2.937203	0.484347
C	3.314585	-1.874061	-1.642360
C	4.488215	-2.483374	-1.867530
H	2.454066	-2.500133	-1.405780
H	4.564925	-3.565753	-1.822472
H	5.407892	-1.943508	-2.066359
N	4.217093	-0.131092	1.423478
C	4.203578	-1.294123	2.284418
H	3.377346	-1.169333	2.986772
H	5.145940	-1.380038	2.835413
H	4.062403	-2.205308	1.694174
N	0.219560	1.674829	-0.312886
C	-0.476430	0.874755	0.718674
C	0.017794	3.109227	-0.051397
C	-0.738461	1.876438	1.879577
H	0.222773	0.099554	1.032920

C $\quad-1.768989 \quad 0.139985 \quad 0.181644$
$\begin{array}{llll}\text { C } & -0.031057 & 3.185731 & 1.478238\end{array}$
$\begin{array}{llll}H & -0.924590 & 3.440367 & -0.502283\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.831685 & 3.687159 & -0.498413\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.338478 & 1.482247 & 2.815243\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.808899 & 2.040939 & 2.018291\end{array}$
$\begin{array}{llll}\text { C } & -2.664305 & 1.159557 & -0.550253\end{array}$
$\begin{array}{llll}\text { C } & -2.475140 & -0.609299 & 1.334450\end{array}$

O $\quad-1.273993-0.818968 \quad-0.760982$
$\begin{array}{llll}\mathrm{H} & -0.555967 & 4.076947 & 1.836415\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.984113 & 3.185340 & 1.884087\end{array}$
$\begin{array}{llll}\text { C } & -3.606003 & 1.962176 & 0.113997\end{array}$
$\begin{array}{llll}\text { C } & -2.472359 & 1.375895 & -1.923390\end{array}$
$\begin{array}{llll}\text { C } & -3.854754 & -0.867474 & 1.300464\end{array}$
$\begin{array}{llll}\text { C } & -1.736865 & -1.165788 & 2.392370\end{array}$
$\begin{array}{llll}\mathrm{Si} & -1.865923 & -2.242300 & -1.455435\end{array}$
$\begin{array}{llll}\text { C } & -4.333039 & 2.938836 & -0.570447\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.795357 & 1.817531 & 1.172279\end{array}$
$\begin{array}{llll}\text { C } & -3.197593 & 2.350993 & -2.609160\end{array}$
H $\quad-1.739307 \quad 0.777579 \quad-2.450629$
$\begin{array}{llll}\text { C } & -4.474496 & -1.638655 & 2.285637\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.457945 & -0.460729 & 0.496949\end{array}$
$\begin{array}{llll}\text { C } & -2.353712 & -1.931873 & 3.381685\end{array}$

H	-0.665508	-1.013921	2.457417
C	-3.667701	-2.137481	-2.015558
C	-1.645262	-3.704612	-0.283997
C	-0.772785	-2.462668	-2.975139
C	-4.132429	3.138823	-1.935845
H	-5.060773	3.539289	-0.030797
H	-3.028478	2.494811	-3.673288
C	-3.727045	-2.172961	3.334499
H	-5.545124	-1.817603	2.229822
H	-1.754205	-2.342847	4.189517
H	-3.888835	-2.993917	-2.666110
H	-4.371627	-2.172052	-1.178722
H	-4.207583	-2.769884	4.104869
H	-3.865834	-1.225338	-2.588548
H	-0.608966	-3.782302	0.065454
H	-2.290033	-3.627071	0.597453
H	-1.891934	-4.641950	-0.799289
H	-0.291608	-2.475278	-2.717538
H	-1.004695	-3.405639	-3.485864
H			

\#

N_Re_anti_pyrrole_c_vin

B3LYP/6-31G(d)

Eel $=-1828.84506098 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-1828.21775049 \mathrm{au}$
Enthalpy $=-1828.17935841 \mathrm{au} ;$ Gibbs energy $=-1828.27969737 \mathrm{au}$
$\begin{array}{llll}\text { C } & -1.134235 & 1.200249 & -1.572539\end{array}$

C $\quad-1.603976 \quad-0.094528 \quad-1.698763$
$\begin{array}{llll}\text { C } & -2.960881 & -0.411571 & -1.981539\end{array}$
$\begin{array}{llll}\text { C } & -3.943791 & 0.586125 & -2.140642\end{array}$
$\begin{array}{llll}\text { C } & -4.408238 & 1.389747 & -0.300676\end{array}$
$\begin{array}{llll}\text { C } & -3.323779 & 1.709799 & 0.519434\end{array}$

C $\quad-5.044362 \quad 0.149661 \quad 0.284193$
$\begin{array}{llll}\text { C } & -3.125666 & 0.642946 & 1.483104\end{array}$
$\begin{array}{llll}\text { O } & -2.289345 & 0.501327 & 2.374042\end{array}$
$\begin{array}{llll}\text { O } & -6.093972 & -0.387477 & -0.033553\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.830707 & 2.021438 & -1.687775\end{array}$

H $\quad-0.913994 \quad-0.911988 \quad-1.523864$
$\begin{array}{llll}\mathrm{H} & -4.941176 & 0.284985 & -2.443572\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.638933 & 1.537562 & -2.564245\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.062196 & 2.125177 & -0.758284\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.756542 & 2.629109 & 0.553416\end{array}$
$\begin{array}{llll}\text { C } & -3.303744 & -1.840109 & -1.974847\end{array}$
$\begin{array}{llll}\text { C } & -4.523676 & -2.395722 & -2.061044\end{array}$

H	-2.446643	-2.507530	-1.885528
H	-4.638122	-3.475472	-2.036789
H	-5.437812	-1.814798	-2.122318
N	-4.177958	-0.293021	1.263853
C	-4.400290	-1.485431	2.053673
H	-3.721192	-1.449188	2.907086
H	-5.437978	-1.513985	2.398554
H	-4.203141	-2.387929	1.464586
N	0.140024	1.617610	-1.394138
C	1.350656	0.793203	-1.588251
C	0.474570	3.044208	-1.512168
C	2.350043	1.760553	-2.291708
H	1.067420	-0.033280	-2.245442
C	1.916655	0.135937	-0.261077
C	1.561325	3.050598	-2.589947
H	0.855772	3.421325	-0.556688
H	-0.416898	3.618396	-1.777764
H	2.763617	1.307635	-3.196069
H	3.193198	1.979015	-1.633903
C	1.931099	1.208532	0.845827
C	3.286509	-0.525108	-0.540647
O	0.975703	-0.890200	0.059005
H	2.190005	3.945482	-2.554237

H	1.096533	3.001553	-3.581383
C	2.989931	2.115522	1.021448
C	0.786954	1.371866	1.640482
C	4.281025	-0.613483	0.444929
C	3.524979	-1.178050	-1.761958
Si	1.018844	-2.238692	1.089663
C	2.911433	3.138709	1.969926
H	3.896516	2.021810	0.432365
C	0.706230	2.394267	2.586095
H	-0.062497	0.712199	1.521099
C	5.472788	-1.304383	0.214130
H	4.126183	-0.140393	1.407452
C	4.715685	-1.863424	-1.999380
H	2.770743	-1.172101	-2.541558
C	1.795712	-1.891030	2.775577
C	1.915446	-3.681630	0.262865
C	-0.795759	-2.661275	1.330760
C	1.768572	3.283339	2.757275
H	3.750558	3.819090	2.091780
H	-0.201047	2.481198	3.177044
C	5.699676	-1.928068	-1.011764
H	6.222818	-1.352240	0.999239
H	4.869661	-2.354098	-2.956852

H	1.655516	-2.772873	3.414866
H	2.871272	-1.695581	2.722427
H	1.317975	-1.040756	3.272911
H	1.510327	-3.882597	-0.735959
H	2.990686	-3.504788	0.158400
H	1.782134	-4.592260	0.861489
H	-1.303027	-2.862349	0.380379
H	-0.901957	-3.553852	1.960406
H	-1.316990	-1.832175	1.821404
H	1.709326	4.078496	3.496032
H	6.627876	-2.462568	-1.194569

\#

N_Si_syn_pyrrol_t_vin

B3LYP/6-31G(d)
$\operatorname{Eel}=-1828.84338705 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1828.21634341 \mathrm{au}$

Enthalpy $=-1828.17760750 \mathrm{au} ;$ Gibbs energy $=-1828.27882043 \mathrm{au}$
$\begin{array}{llll}\text { C } & 0.994550 & -0.484804 & -1.448005\end{array}$
$\begin{array}{llll}\text { C } & 2.346790 & -0.749545 & -1.588013\end{array}$
$\begin{array}{llll}\text { C } & 3.341564 & 0.221599 & -1.876889\end{array}$
$\begin{array}{llll}\text { C } & 3.174916 & 1.601674 & -1.585927\end{array}$
$\begin{array}{llll}\text { C } & 3.519222 & 1.918678 & 0.297315\end{array}$

C	2.683489	1.224239	1.191080
C	4.894612	1.290142	0.434938
C	3.385858	0.081401	1.720981
O	3.048873	-0.790950	2.518222
O	5.952567	1.682943	-0.033353
H	0.624426	0.528247	-1.555190
H	2.682803	-1.778817	-1.528119
H	3.904914	2.275586	-2.030787
H	2.166412	2.005803	-1.586815
H	3.487800	3.000893	0.193906
H	1.699127	1.509933	1.531266
C	4.658931	-0.213728	-2.347702
C	4.958894	-1.401163	-2.902666
H	5.452623	0.523443	-2.245196
H	5.971150	-1.623833	-3.226002
H	4.214595	-2.172931	-3.079458
N	4.710243	0.140402	1.170128
C	5.755303	-0.813271	1.471608
H	6.035705	-1.378480	0.575031
H	5.363129	-1.495256	2.228431
H	6.643074	-0.298442	1.851330
N	0.013618	-1.390370	-1.253923
C	-1.425683	-1.076738	-1.431921
H			

C $\quad 0.233799 \quad-2.840253-1.168304$
$\begin{array}{llll}\text { C } & -2.075997 & -2.452873 & -1.722882\end{array}$

H $\quad-1.501140 \quad-0.411633-2.297184$

C $\quad-2.071110 \quad-0.292464 \quad-0.220873$
$\begin{array}{llll}\text { C } & -0.910751 & -3.415178 & -2.005280\end{array}$

H $\quad 0.183642 \quad-3.160881 \quad-0.120605$
$\begin{array}{llll}\text { H } & 1.216043 & -3.105170 & -1.560902\end{array}$
H $\quad-2.780518 \quad-2.392745 \quad-2.555541$

H $\quad-2.635927 \quad-2.795641 \quad-0.850269$
$\begin{array}{llll}\text { C } & -1.743199 & -1.042126 & 1.083861\end{array}$
$\begin{array}{llll}\text { C } & -3.583438 & -0.076832 & -0.453875\end{array}$
$\begin{array}{llll}\text { O } & -1.410255 & 0.982260 & -0.253255\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.145364 & -4.450543 & -1.741118\end{array}$
H $\quad-0.636507 \quad-3.391505 \quad-3.066352$

C $\quad-2.564950 \quad-2.058628 \quad 1.600951$
$\begin{array}{llll}\text { C } & -0.518071 & -0.803467 & 1.721443\end{array}$
$\begin{array}{llll}\text { C } & -4.452597 & 0.127847 & 0.630328\end{array}$
$\begin{array}{llll}\text { C } & -4.120126 & 0.049010 & -1.745308\end{array}$
$\begin{array}{llll}\mathrm{Si} & -1.788659 & 2.538660 & 0.298396\end{array}$
$\begin{array}{llll}\text { C } & -2.179713 & -2.791214 & 2.725912\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.522681 & -2.277428 & 1.139776\end{array}$
$\begin{array}{llll}\text { C } & -0.122648 & -1.540174 & 2.839187\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.150817 & -0.051042 & 1.324600\end{array}$
$\begin{array}{llll}\text { C } & -5.802502 & 0.423030 & 0.434721\end{array}$
$\begin{array}{llll}\text { H } & -4.071976 & 0.052105 & 1.642423\end{array}$
$\begin{array}{llll}\text { C } & -5.470317 & 0.338294 & -1.945918\end{array}$

H $\quad-3.487985 \quad-0.065680 \quad-2.618769$
$\begin{array}{llll}\text { C } & -2.081614 & 2.582784 & 2.161782\end{array}$
$\begin{array}{llll}\text { C } & -3.242304 & 3.322264 & -0.616580\end{array}$
$\begin{array}{llll}\text { C } & -0.244576 & 3.528083 & -0.136693\end{array}$
$\begin{array}{llll}\text { C } & -0.958101 & -2.535230 & 3.348936\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.840357 & -3.564272 & 3.110465\end{array}$
$\begin{array}{llll}H & 0.852878 & -1.340271 & 3.271718\end{array}$
$\begin{array}{llll}\text { C } & -6.320703 & 0.524420 & -0.856341\end{array}$
$\begin{array}{llll}\mathrm{H} & -6.447609 & 0.572292 & 1.296503\end{array}$

H $\quad-5.854154 \quad 0.423535 \quad-2.959064$
$\begin{array}{llll}\mathrm{H} & -2.107394 & 3.624068 & 2.508149\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.031128 & 2.118956 & 2.449255\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.282013 & 2.068416 & 2.705728\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.100369 & 3.276298 & -1.702586\end{array}$
$\begin{array}{llll}H & -4.204853 & 2.858584 & -0.383631\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.305674 & 4.382958 & -0.339196\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.052549 & 3.504137 & -1.216280\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.371623 & 4.579500 & 0.149715\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.647030 & 3.150873 & 0.373095\end{array}$
$\begin{array}{llll}\text { H } & -0.656529 & -3.110680 & 4.220290\end{array}$

H $\quad-7.3722610 .749474-1.011713$

\#

N_Si_syn_pyrrol_c_vin

B3LYP/6-31G(d)
$\mathrm{Eel}=-1828.84198019 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1828.21499802 \mathrm{au}$
Enthalpy $=-1828.17631130 \mathrm{au} ;$ Gibbs energy $=-1828.27738752 \mathrm{au}$

C $\quad-0.955493-0.410140 \quad 1.530165$
$\begin{array}{llll}\text { C } & -2.289382 & -0.724157 & 1.723754\end{array}$
$\begin{array}{llll}\text { C } & -3.350969 & 0.210000 & 1.892823\end{array}$
$\begin{array}{llll}\text { C } & -3.238331 & 1.564693 & 1.508362\end{array}$
$\begin{array}{llll}\text { C } & -3.493052 & 1.726966 & -0.464210\end{array}$
$\begin{array}{llll}\text { C } & -2.644369 & 0.938780 & -1.252825\end{array}$

C $\quad-4.874398 \quad 1.117298 \quad-0.585914$
$\begin{array}{llll}\text { C } & -3.353048 & -0.240522 & -1.692684\end{array}$
$\begin{array}{llll}\text { O } & -3.004382 & -1.194761 & -2.383551\end{array}$
$\begin{array}{llll}\mathrm{O} & -5.939589 & 1.577311 & -0.203784\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.639415 & 0.625394 & 1.480459\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.562554 & -1.770368 & 1.820516\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.008144 & 2.250401 & 1.850980\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.247435 & 2.008858 & 1.499345\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.431601 & 2.811243 & -0.427710\end{array}$

H	-1.644948	1.173190	-1.586221
C	-4.616191	-0.353880	2.374111
C	-5.784432	0.281817	2.568386
H	-4.576749	-1.418588	2.605089
H	-6.650505	-0.261242	2.934984
H	-5.932974	1.332537	2.347239
N	-4.693109	-0.102304	-1.200550
C	-5.757519	-1.043345	-1.471453
H	-5.319466	-1.875761	-2.025296
H	-6.547814	-0.576083	-2.068671
H	-6.197983	-1.403891	-0.535825
N	0.073885	-1.282606	1.462153
C	1.494684	-0.871470	1.581577
C	-0.069381	-2.737201	1.606764
C	2.216214	-2.155173	2.064157
H	1.535945	-0.085299	2.341432
C	2.101365	-0.238066	0.265687
C	1.102709	-3.112749	2.515243
H	0.000050	-3.217120	0.622661
H	-1.036040	-2.989262	2.043695
H	2.931765	-1.936120	2.859613
H	2.774976	-2.603543	1.239917
C	1.802298	-1.178511	-0.916944
(

$\begin{array}{llll}\text { C } & 3.603680 & 0.071424 & 0.452460\end{array}$
$\begin{array}{llll}\text { O } & 1.385566 & 1.000048 & 0.126963\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.387005 & -4.165122 & 2.422172\end{array}$
$\begin{array}{llll}\text { H } & 0.830091 & -2.927371 & 3.560762\end{array}$
$\begin{array}{llll}\text { C } & 2.662746 & -2.225408 & -1.290588\end{array}$
$\begin{array}{llll}\text { C } & 0.567175 & -1.082394 & -1.571582\end{array}$
$\begin{array}{llll}\text { C } & 4.464191 & 0.146656 & -0.654916\end{array}$
$\begin{array}{llll}\text { C } & 4.134571 & 0.409963 & 1.707619\end{array}$
$\begin{array}{llll}\text { Si } & 1.700047 & 2.473380 & -0.650310\end{array}$
$\begin{array}{llll}\text { C } & 2.303287 & -3.126713 & -2.295202\end{array}$
$\begin{array}{llll}\text { H } & 3.630208 & -2.336411 & -0.811741\end{array}$
C $\quad 0.197588 \quad-1.986343-2.568593$
$\begin{array}{llll}\mathrm{H} & -0.129167 & -0.307173 & -1.282174\end{array}$
$\begin{array}{llll}C & 5.802016 & 0.517728 & -0.512331\end{array}$
$\begin{array}{llll}\text { H } & 4.086541 & -0.090197 & -1.643006\end{array}$
$\begin{array}{llll}\text { C } & 5.472534 & 0.776598 & 1.856119\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.505999 & 0.404527 & 2.591173\end{array}$
$\begin{array}{llll}\text { C } & 1.955317 & 2.256850 & -2.507156\end{array}$
$\begin{array}{llll}\text { C } & 3.148981 & 3.419592 & 0.104565\end{array}$
$\begin{array}{llll}\text { C } & 0.141696 & 3.479523 & -0.316858\end{array}$
$\begin{array}{llll}\text { C } & 1.070098 & -3.011447 & -2.937366\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.993258 & -3.920409 & -2.570768\end{array}$
$\begin{array}{llll}\text { H } & -0.785042 & -1.885244 & -3.019381\end{array}$

C	6.315881	0.829184	0.746434
H	6.441194	0.561584	-1.390221
H	5.852070	1.027285	2.843107
H	2.003845	3.240429	-2.992121
H	2.886527	1.730551	-2.742109
H	1.132934	1.697569	-2.966257
H	3.034785	3.520788	1.190041
H	4.120594	2.957054	-0.089311
H	3.169292	4.432808	-0.318540
H	-0.047139	3.564447	0.760248
H	0.258469	4.497492	-0.709283
H	-0.747649	3.045545	-0.782706
H	0.789290	-3.717685	-3.714371
H	7.358142	1.114119	0.860740

\#

Transition structures for the endo addition of N-methyl maleimide to $\mathbf{2 b}$, in descending order of energy (0 K); most stable first.
Although 4 TSs are present in Table 1, there are actually eight listed here, the doubling being due to the spectator vinyl group in the dendralene adopting either cis or trans conformation with respect to the central double bond of the dendralene

N_Re_syn_benzimidaz_t_vin
B3LYP/6-31G(d)

Eel $=-1321.89886048$ au; $\operatorname{Energy}(0 K))=-1321.40609622$ au
Enthalpy $=-1321.37583023$ au; Gibbs energy $=-1321.46053880$ au
$\begin{array}{llll}\text { C } & 0.356764 & 0.204203 & -0.843065\end{array}$
$\begin{array}{llll}\text { C } & 1.115752 & 1.160746 & -0.188405\end{array}$
$\begin{array}{llll}\text { C } & 2.283119 & 1.786004 & -0.693779\end{array}$
$\begin{array}{llll}\text { C } & 2.930143 & 1.362521 & -1.875374\end{array}$
$\begin{array}{llll}\text { C } & 3.820079 & -0.401405 & -1.460706\end{array}$
$\begin{array}{llll}\text { C } & 2.877339 & -1.397035 & -1.195339\end{array}$
$\begin{array}{llll}\text { C } & 4.487331 & -0.079546 & -0.139120\end{array}$
$\begin{array}{llll}\text { C } & 2.758856 & -1.583511 & 0.238457\end{array}$
$\begin{array}{llll}\text { O } & 2.020966 & -2.314849 & 0.894706\end{array}$
$\begin{array}{llll}\text { O } & 5.462271 & 0.623980 & 0.065626\end{array}$
$\begin{array}{llll}\text { H } & 0.537730 & -0.006817 & -1.890257\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.856077 & 1.396390 & 0.835922\end{array}$
$\begin{array}{llll}\text { H } & 3.774353 & 1.959003 & -2.214349\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.337814 & 0.955650 & -2.689167\end{array}$
H $\quad 4.431013-0.368222 \quad-2.357673$
$\begin{array}{llll}\mathrm{H} & 2.355049 & -2.014325 & -1.910639\end{array}$
$\begin{array}{llll}\text { C } & 2.973187 & 2.793683 & 0.123422\end{array}$
$\begin{array}{llll}\text { C } & 2.431844 & 3.544552 & 1.095345\end{array}$
$\begin{array}{llll}\text { H } & 4.023758 & 2.939373 & -0.120831\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.030304 & 4.271644 & 1.635429\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.381521 & 3.486681 & 1.368843\end{array}$

N	3.739684	-0.729804	0.826091
C	3.978798	-0.622908	2.250122
H	3.332760	-1.350682	2.744588
H	5.027186	-0.838454	2.476963
H	3.745209	0.385830	2.608808
N	-0.689514	-0.464671	-0.307112
C	-1.409131	-1.541354	-1.050235
C	-1.060923	-0.407321	1.108586
N	-2.215930	-2.129975	0.024273
C	-2.295317	-0.942052	-2.155357
C	-0.439915	-2.592024	-1.616549
H	-0.180078	-0.618251	1.727898
H	-0.974909	1.695728	1.682654
H	-1.003699	-3.448858	-1.998694
H	-1.726994	0.905314	1.614004
H	-2.046132	-1.561814	1.249847
H	-3.134719	-3.233824	-0.178992
H	-2.830416	-1.732204	-2.692707
H	-1.676073	-0.410944	-2.885844
H	0.129794	-2.186432	-2.457633
H			
	-0.923914	-0.838692	
H			
	-0.239558	-1.734424	
H			

C	-2.900419	1.392520	0.791837
O	-2.615023	-1.878255	2.284105
H	-3.625581	-3.413114	0.779024
H	-3.891378	-2.986052	-0.931391
H	-2.610048	-4.145404	-0.485828
C	-2.715591	2.346133	-0.219053
C	-4.193962	0.897965	1.017838
C	-3.791129	2.791976	-0.989225
H	-1.719822	2.743538	-0.402477
C	-5.270418	1.340613	0.247315
H	-4.351978	0.161337	1.800957
C	-5.072794	2.288358	-0.759289
H	-3.628211	3.535970	-1.764826
H	-6.266418	0.950123	0.439823
H	-5.912461	2.637521	-1.354444

\#

N_Re_syn_benzimidaz_c_vin
B3LYP/6-31G(d)
$\mathrm{Eel}=-1321.89754674 \mathrm{au} ; \operatorname{Energy}(0 \mathrm{~K}))=-1321.40474948 \mathrm{au}$

Enthalpy $=-1321.37448812 \mathrm{au} ;$ Gibbs energy $=-1321.45923389 \mathrm{au}$
C $\quad-0.307150 \quad 0.256593 \quad 0.779445$
$\begin{array}{llll}\text { C } & -1.060359 & 1.169405 & 0.061737\end{array}$
$\begin{array}{llll}\text { C } & -2.258938 & 1.803771 & 0.488091\end{array}$
C $\quad-2.902663 \quad 1.475230 \quad 1.695065$
$\begin{array}{llll}\text { C } & -3.755613 & -0.387790 & 1.451842\end{array}$
$\begin{array}{llll}\text { C } & -2.789293 & -1.368014 & 1.238523\end{array}$
$\begin{array}{llll}\text { C } & -4.466145 & -0.187041 & 0.132404\end{array}$

C $\quad-2.694732 \quad-1.653099 \quad-0.182666$
$\begin{array}{llll}\text { O } & -1.947255 & -2.406299 & -0.801567\end{array}$
$\begin{array}{llll}\text { O } & -5.481047 & 0.449775 & -0.093421\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.518824 & 0.085084 & 1.827927\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.757220 & 1.378803 & -0.957666\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.759588 & 2.070542 & 1.995316\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.301947 & 1.136772 & 2.532990\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.332558 & -0.283207 & 2.364959\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.236434 & -1.919553 & 1.983600\end{array}$
$\begin{array}{llll}\text { C } & -2.870618 & 2.720965 & -0.485301\end{array}$
$\begin{array}{llll}\text { C } & -4.097209 & 3.263202 & -0.446472\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.234298 & 2.964284 & -1.336317\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.432232 & 3.924655 & -1.239658\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.816312 & 3.048677 & 0.336620\end{array}$
$\begin{array}{llll}\mathrm{N} & -3.714615 & -0.874154 & -0.805140\end{array}$
$\begin{array}{llll}\text { C } & -4.009348 & -0.900676 & -2.222377\end{array}$
H $\quad-3.263558 \quad-1.540644 \quad-2.697462$

H	-5.010822	-1.304779	-2.403242
H	-3.962028	0.109079	-2.642363
N	0.767799	-0.415282	0.302917
C	1.499134	-1.427510	1.120181
C	1.155815	-0.440103	-1.109003
N	2.323865	-2.073304	0.092558
C	2.368168	-0.740042	2.186816
C	0.546684	-2.456646	1.750387
H	0.284100	-0.702082	-1.722263
C	1.808520	0.845982	-1.694581
C	2.159285	-1.586113	-1.167773
C	3.261187	-3.143648	0.375476
H	2.911412	-1.482507	2.781167
H	3.083149	-0.058434	1.720657
H	1.735865	-0.167819	2.873751
H	-0.033210	-2.008869	2.562543
H	-0.136611	-2.852503	0.993867
H	1.125263	-3.276338	2.187644
H	2.147304	0.552508	-2.694448
H	1.045788	1.617239	-1.830019
C	2.961674	1.411133	-0.893629
O	2.744432	-1.957964	-2.174296
H	3.766544	-3.373744	-0.563985

H	4.003834	-2.833457	1.118529
H	2.750673	-4.044243	0.734117
C	2.748635	2.441133	0.033210
C	4.264570	0.916278	-1.057326
C	3.805457	2.961277	0.782494
H	1.745710	2.840712	0.166471
C	5.322200	1.433177	-0.307262
H	4.445161	0.121808	-1.776414
C	5.096490	2.456767	0.615689
H	3.620535	3.763429	1.492383
H	6.325752	1.040985	-0.451063
H	5.921668	2.863281	1.194464

\#

N_Si_syn_benzimid_t_vin
B3LYP/6-31G(d)

Eel $=-1321.89646183 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-1321.40405680 \mathrm{au}$
Enthalpy $=-1321.37346859 \mathrm{au} ;$ Gibbs energy $=-1321.45873791 \mathrm{au}$
$\begin{array}{llll}\text { C } & 0.275193 & -0.500908 & -0.221592\end{array}$
$\begin{array}{llll}C & 1.150207 & -1.044656 & 0.701183\end{array}$
$\begin{array}{llll}\text { C } & 2.235343 & -1.891283 & 0.356578\end{array}$
$\begin{array}{llll}\text { C } & 2.549860 & -2.224495 & -0.977040\end{array}$
$\begin{array}{llll}\text { C } & 3.348418 & -0.576752 & -1.886809\end{array}$
$\begin{array}{llll}\text { C } & 2.475423 & 0.510923 & -1.932333\end{array}$

C $\quad 4.415973-0.234159 \quad-0.868892$
$\begin{array}{llll}\text { C } & 2.830864 & 1.460039 & -0.889892\end{array}$
$\begin{array}{llll}\text { O } & 2.327246 & 2.535360 & -0.583814\end{array}$
$\begin{array}{llll}\text { O } & 5.439150 & -0.845739 & -0.610446\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.328121 & -0.850671 & -1.244709\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.073176 & -0.750296 & 1.738932\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.360794 & -2.931749 & -1.131468\end{array}$

H $1.747744 \quad-2.319062 \quad-1.702643$
H $\quad 3.641181 \quad-1.157469 \quad-2.755721$
$\begin{array}{llll}\text { H } & 1.727329 & 0.730957 & -2.682133\end{array}$
$\begin{array}{llll}\text { C } & 3.182884 & -2.322378 & 1.394989\end{array}$
$\begin{array}{llll}\text { C } & 2.962643 & -2.373960 & 2.717736\end{array}$
$\begin{array}{llll}\text { H } & 4.150787 & -2.647609 & 1.017825\end{array}$
$\begin{array}{llll}H & 3.734336 & -2.724603 & 3.395999\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.012716 & -2.101558 & 3.170446\end{array}$
$\begin{array}{llll}\mathrm{N} & 3.985861 & 0.924718 & -0.247973\end{array}$

C $\quad 4.683996 \quad 1.570782 \quad 0.843656$
$\begin{array}{llll}\mathrm{H} & 4.238532 & 2.558306 & 0.977453\end{array}$

H $\quad 5.747455 \quad 1.666921 \quad 0.606599$
$\begin{array}{llll}\mathrm{H} & 4.583587 & 0.991523 & 1.768573\end{array}$
$\begin{array}{llll}\mathrm{N} & -0.735445 & 0.380176 & -0.033271\end{array}$
$\begin{array}{llll}\text { C } & -1.070519 & 1.106832 & 1.224378\end{array}$
$\begin{array}{llll}\text { C } & -1.483374 & 0.876844 & -1.190787\end{array}$
$\begin{array}{llll}\mathrm{N} & -2.098489 & 2.041740 & 0.734723\end{array}$
$\begin{array}{llll}\text { C } & -1.675766 & 0.145129 & 2.263311\end{array}$
$\begin{array}{llll}\text { C } & 0.122803 & 1.897380 & 1.789383\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.793742 & 1.360164 & -1.898821\end{array}$
$\begin{array}{llll}\text { C } & -2.307998 & -0.179236 & -1.969249\end{array}$
$\begin{array}{llll}\text { C } & -2.374298 & 1.955864 & -0.594316\end{array}$
$\begin{array}{llll}\text { C } & -2.800669 & 2.977065 & 1.593575\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.929174 & 0.684605 & 3.181782\end{array}$
$\begin{array}{llll}\text { H } & -2.577333 & -0.326552 & 1.863980\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.962669 & -0.639792 & 2.526756\end{array}$
$\begin{array}{llll}H & 0.868842 & 1.238342 & 2.237838\end{array}$
$\begin{array}{llll}\text { H } & 0.609771 & 2.478364 & 1.002750\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.226940 & 2.569732 & 2.579432\end{array}$
$\begin{array}{llll}\text { H } & -2.835784 & 0.382917 & -2.747869\end{array}$
H $\quad-1.615905 \quad-0.857773-2.482277$
C $\quad-3.287582 \quad-0.977031-1.134788$
$\begin{array}{llll}\text { O } & -3.199521 & 2.610274 & -1.215872\end{array}$
$\begin{array}{llll}\text { H } & -3.530872 & 3.491148 & 0.966280\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.324200 & 2.457522 & 2.403395\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.118456 & 3.717041 & 2.025781\end{array}$
$\begin{array}{llll}\text { C } & -2.942164 & -2.241894 & -0.639748\end{array}$

C	-4.558875	-0.464417	-0.833652
C	-3.836108	-2.975871	0.141697
H	-1.965169	-2.659806	-0.871653
C	-5.454012	-1.196103	-0.051949
H	-4.840901	0.513823	-1.212861
C	-5.095612	-2.453324	0.439490
H	-3.549666	-3.956501	0.512652
H	-6.436193	-0.785404	0.167325
H	-5.795646	-3.024461	1.043495

\#

N_Si_anti_benzimid_t_vin
B3LYP/6-31G(d)
Eel $=-1321.89686425 \mathrm{au} ;$ Energy(0K) $)=-1321.40395218$ au
Enthalpy $=-1321.37370011 \mathrm{au}$; Gibbs energy $=-1321.45860698$ au
$\begin{array}{llll}\text { C } & 0.529100 & -1.389223 & -0.261672\end{array}$
$\begin{array}{llll}\text { C } & 1.512406 & -1.292407 & 0.706877\end{array}$
$\begin{array}{llll}\text { C } & 2.888426 & -1.548891 & 0.472539\end{array}$
$\begin{array}{llll}\text { C } & 3.399402 & -1.751955 & -0.830610\end{array}$
$\begin{array}{llll}\text { C } & 3.418898 & 0.014017 & -1.766151\end{array}$
$\begin{array}{llll}\text { C } & 2.185025 & 0.676667 & -1.750901\end{array}$
$\begin{array}{llll}\text { C } & 4.314587 & 0.745097 & -0.787879\end{array}$
$\begin{array}{llll}\text { C } & 2.184967 & 1.653139 & -0.676636\end{array}$
$\begin{array}{llll}\text { O } & 1.318472 & 2.432398 & -0.288801\end{array}$
$\begin{array}{llll}\text { O } & 5.509260 & 0.592634 & -0.595880\end{array}$

H $\quad 0.799586-1.721734 \quad-1.255076$
$\begin{array}{llll}\mathrm{H} & 1.226316 & -0.983686 & 1.706258\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.447860 & -2.028439 & -0.912270\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.770753 & -2.241590 & -1.568646\end{array}$
$\begin{array}{llll}\text { H } & 3.876100 & -0.385196 & -2.666660\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.374554 & 0.594385 & -2.461597\end{array}$
$\begin{array}{llll}\text { C } & 3.856122 & -1.450892 & 1.570580\end{array}$
$\begin{array}{llll}\text { C } & 3.593696 & -1.475404 & 2.887906\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.894611 & -1.370765 & 1.253556\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.397138 & -1.407111 & 3.614690\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.590828 & -1.590719 & 3.290165\end{array}$
$\begin{array}{llll}\mathrm{N} & 3.485268 & 1.609148 & -0.097948\end{array}$

C $\quad 3.909291 \quad 2.439255 \quad 1.010503$
$\begin{array}{llll}\mathrm{H} & 3.139131 & 3.196390 & 1.167579\end{array}$
$\begin{array}{llll}H & 4.866033 & 2.913365 & 0.775605\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.026663 & 1.840671 & 1.921412\end{array}$
$\begin{array}{llll}\mathrm{N} & -0.801679 & -1.215355 & -0.083698\end{array}$

C $-1.796976-1.736366 \quad-1.068049$
$\begin{array}{llll}\text { C } & -1.405145 & -0.892436 & 1.210492\end{array}$
$\begin{array}{llll}\mathrm{N} & -2.993703 & -1.831933 & -0.223937\end{array}$

C	-1.988769	-0.755810	-2.235250
C	-1.410096	-3.135188	-1.586127
H	-0.886739	-1.448892	2.001806
C	-1.406624	0.616360	1.605304
C	-2.814991	-1.452053	1.075634
C	-4.277295	-2.306154	-0.705700
H	-2.727263	-1.139283	-2.947415
H	-2.313031	0.220534	-1.869385
H	-1.043482	-0.630616	-2.774056
H	-0.530351	-3.095930	-2.234831
H	-1.207797	-3.814182	-0.752431
H	-2.227915	-3.547976	-2.184242
H	-1.654662	0.639093	2.673013
H	-0.383698	0.991949	1.497011
C	-2.365376	1.516377	0.845383
O	-3.643199	-1.517622	1.970381
H	-4.975566	-2.221416	0.128649
H	-4.636291	-1.693662	-1.539710
H	-4.231739	-3.353921	-1.024366
C	-1.910665	2.314790	-0.214731
C	-3.719272	1.589383	1.211466
C	-2.796144	3.148707	-0.903504
H	-0.856588	2.304996	-0.479765
H			

C	-4.600709	2.421760	0.521106
H	-4.083123	0.984790	2.036804
C	-4.143111	3.202211	-0.542606
H	-2.424288	3.767939	-1.716188
H	-5.644616	2.466381	0.821561
H	-4.828379	3.856425	-1.075846

\#

N_Si_anti_benzimid_c_vin
B3LYP/6-31G(d)
Eel $=-1321.89641629 \mathrm{au} ;$ Energy(OK)) $=-1321.40360420 \mathrm{au}$
Enthalpy $=-1321.37334332$ au; Gibbs energy $=-1321.45828678$ au
$\begin{array}{llll}\text { C } & 0.465014 & -1.390026 & -0.147517\end{array}$
C $\quad 1.419879 \quad-1.273554 \quad 0.845811$
$\begin{array}{llll}\text { C } & 2.811180 & -1.511922 & 0.665187\end{array}$
$\begin{array}{llll}\text { C } & 3.352433 & -1.801742 & -0.602864\end{array}$
$\begin{array}{llll}\text { C } & 3.357398 & -0.079552 & -1.700731\end{array}$
$\begin{array}{llll}\text { C } & 2.135173 & 0.596755 & -1.714064\end{array}$
$\begin{array}{llll}\text { C } & 4.278362 & 0.702072 & -0.791150\end{array}$
$\begin{array}{llll}\text { C } & 2.163260 & 1.643638 & -0.705744\end{array}$
$\begin{array}{llll}\text { O } & 1.309889 & 2.452642 & -0.353364\end{array}$
$\begin{array}{llll}\text { O } & 5.475282 & 0.551258 & -0.611578\end{array}$

H	0.766815	-1.721458	-1.132102
H	1.101703	-0.969912	1.838680
H	4.403159	-2.066130	-0.666205
H	2.734249	-2.339246	-1.315103
H	3.791215	-0.569020	-2.566964
H	1.315746	0.483802	-2.409978
C	3.658939	-1.308108	1.845617
C	4.999321	-1.361457	1.915931
H	3.111904	-1.084885	2.761628
H	5.507454	-1.181852	2.858571
H	5.633186	-1.553446	1.056962
N	3.473924	1.624095	-0.149867
C	3.940989	2.535912	0.873268
H	3.090926	3.150678	1.173887
H	4.741112	3.175334	0.486468
H	4.326342	1.976370	1.731719
N	-0.872744	-1.231118	-0.003047
C	-1.838950	-1.760041	-1.010564
C	-1.509965	-0.906235	1.273541
N	-3.060253	-1.846588	-0.201286
C	-1.997302	-0.789952	-2.191618
C	-1.437793	-3.163773	-1.503979
H	-1.017759	-1.466098	2.079512

C $\quad-1.513455 \quad 0.601838 \quad 1.668620$
$\begin{array}{llll}\text { C } & -2.919247 & -1.456091 & 1.099572\end{array}$
$\begin{array}{llll}\text { C } & -4.330944 & -2.318758 & -0.717883\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.716604 & -1.179349 & -2.920006\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.330066 & 0.190087 & -1.843458\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.037882 & -0.670240 & -2.705990\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.535919 & -3.130833 & -2.121904\end{array}$
H $\quad-1.264971 \quad-3.835691 \quad-0.658011$
$\begin{array}{llll}\mathrm{H} & -2.235267 & -3.580781 & -2.126240\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.803434 & 0.627392 & 2.725581\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.483182 & 0.967142 & 1.602160\end{array}$
$\begin{array}{llll}\text { C } & -2.431304 & 1.509757 & 0.869560\end{array}$
$\begin{array}{llll}\text { O } & -3.774961 & -1.507892 & 1.969112\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.052396 & -2.229358 & 0.096027\end{array}$

H $\quad-4.664439 \quad-1.708112 \quad-1.563752$
$\begin{array}{llll}\mathrm{H} & -4.278902 & -3.367651 & -1.031783\end{array}$
$\begin{array}{llll}\text { C } & -1.928517 & 2.292527 & -0.180266\end{array}$

C $\quad-3.795979 \quad 1.6039541 .187486$
$\begin{array}{llll}\text { C } & -2.777647 & 3.133215 & -0.905686\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.867053 & 2.265735 & -0.413839\end{array}$

C $\quad-4.640907 \quad 2.443113 \quad 0.460624$
$\begin{array}{llll}\mathrm{H} & -4.196717 & 1.010347 & 2.003737\end{array}$
$\begin{array}{llll}\text { C } & -4.135375 & 3.208688 & -0.592157\end{array}$

H	-2.368543	3.740099	-1.709670
H	-5.693950	2.504535	0.723943
H	-4.792295	3.868203	-1.153785

\#

N_Si_syn_benzimid_c_vin
B3LYP/6-31G(d)
Eel $=-1321.89583032 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-1321.40350524 \mathrm{au}$

Enthalpy $=-1321.37292946 \mathrm{au} ;$ Gibbs energy $=-1321.45819570 \mathrm{au}$
$\begin{array}{llll}\text { C } & 0.231157 & -0.468313 & -0.144276\end{array}$

C $\quad 1.094702 \quad-0.959664 \quad 0.816607$
$\begin{array}{llll}\text { C } & 2.217982 & -1.786530 & 0.533189\end{array}$
$\begin{array}{llll}\text { C } & 2.542913 & -2.183924 & -0.775233\end{array}$
$\begin{array}{llll}\text { C } & 3.287843 & -0.533330 & -1.808572\end{array}$
$\begin{array}{llll}\text { C } & 2.429008 & 0.563245 & -1.818994\end{array}$
$\begin{array}{llll}\text { C } & 4.418465 & -0.194639 & -0.865388\end{array}$

C $\quad 2.855972 \quad 1.517466 \quad-0.804403$
$\begin{array}{llll}\text { O } & 2.387096 & 2.601734 & -0.477628\end{array}$
$\begin{array}{llll}\text { O } & 5.456150 & -0.806409 & -0.673864\end{array}$

H $\quad 0.328312 \quad-0.844554 \quad-1.154767$
$\begin{array}{llll}\mathrm{H} & 0.967649 & -0.658162 & 1.849470\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.366142 & -2.876956 & -0.914321\end{array}$

H	1.739131	-2.319787	-1.491603
H	3.507499	-1.148203	-2.674899
H	1.653464	0.793738	-2.536856
C	3.094546	-2.087641	1.674684
C	4.311790	-2.652351	1.650907
H	2.687970	-1.797188	2.643673
H	4.861146	-2.812844	2.573783
H	4.816250	-2.938382	0.734236
N	4.037037	0.970572	-0.224960
C	4.821976	1.625960	0.800067
H	4.288751	2.534117	1.086736
H	5.815650	1.885986	0.420741
H	4.942667	0.968614	1.667095
N	-0.821961	0.374508	-0.012110
C	-1.186045	1.172337	1.193006
C	-1.568896	0.779010	-1.205047
N	-2.234746	2.045363	0.636936
C	-1.773548	0.269707	2.293005
C	-0.013741	2.026743	1.705450
H	-0.884925	1.235052	-1.936858
C	-2.354383	-0.345967	-1.924437
C	-2.494405	1.868677	-0.686434
C	-2.971443	3.014301	1.427117

$\begin{array}{llll}\mathrm{H} & -2.062723 & 0.868569 & 3.162807\end{array}$
$\begin{array}{llll}\text { H } & -2.650446 & -0.264753 & 1.918611\end{array}$
$\begin{array}{llll}\text { H } & -1.037587 & -0.464855 & 2.628568\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.758362 & 1.412763 & 2.172892\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.449018 & 2.583146 & 0.887120\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.375112 & 2.726076 & 2.466310\end{array}$
$\begin{array}{llll}\text { H } & -2.876423 & 0.147270 & -2.752045\end{array}$
H $\quad-1.636418 ~-1.042948 \quad-2.373355$
$\begin{array}{llll}\text { C } & -3.336296 & -1.104237 & -1.056700\end{array}$
$\begin{array}{llll}\text { O } & -3.328638 & 2.461583 & -1.355917\end{array}$
$\begin{array}{llll}\text { H } & -3.696412 & 3.478038 & 0.756094\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.504434 & 2.532349 & 2.253933\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.311615 & 3.789820 & 1.830694\end{array}$
$\begin{array}{llll}\text { C } & -2.969931 & -2.311700 & -0.446558\end{array}$
$\begin{array}{llll}\text { C } & -4.631608 & -0.610100 & -0.839171\end{array}$
$\begin{array}{llll}\text { C } & -3.867972 & -3.007016 & 0.365069\end{array}$
H $\quad-1.973163-2.714790 \quad-0.610624$
$\begin{array}{llll}\text { C } & -5.530932 & -1.303411 & -0.027927\end{array}$

H $\quad-4.928997 \quad 0.324887-1.305652$
$\begin{array}{llll}\text { C } & -5.152315 & -2.503382 & 0.577750\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.565182 & -3.943701 & 0.825797\end{array}$
H $\quad-6.531651 \quad-0.907815 \quad 0.125353$
$\begin{array}{llll}\mathrm{H} & -5.855131 & -3.045296 & 1.205004\end{array}$
\#

N_Re_anti_benzimidaz_t_vin
B3LYP/6-31G(d)

Eel $=-1321.89258571 \mathrm{au} ;$ Energy $(0 \mathrm{~K}))=-1321.39997528 \mathrm{au}$

Enthalpy $=-1321.36955949 \mathrm{au} ;$ Gibbs energy $=-1321.45495111 \mathrm{au}$
C $\quad-0.505262 \quad-1.098055 \quad-0.916873$
C $\quad-1.673962 \quad-1.457128 \quad-0.267844$
$\begin{array}{llll}\text { C } & -2.975218 & -1.308645 & -0.815521\end{array}$
$\begin{array}{llll}\text { C } & -3.224726 & -0.561198 & -1.990530\end{array}$
$\begin{array}{llll}\text { C } & -3.061404 & 1.366322 & -1.529328\end{array}$
$\begin{array}{llll}\text { C } & -1.817952 & 1.703582 & -0.979859\end{array}$
$\begin{array}{llll}\text { C } & -4.059844 & 1.410839 & -0.390866\end{array}$

C $\quad-1.930695 \quad 1.748851 \quad 0.465902$
$\begin{array}{llll}\text { O } & -1.091936 & 1.966034 & 1.337105\end{array}$
$\begin{array}{llll}\text { O } & -5.275609 & 1.331078 & -0.446855\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.576132 & -0.724167 & -1.932486\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.616878 & -1.854745 & 0.736325\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.239191 & -0.588586 & -2.381838\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.469247 & -0.538765 & -2.770338\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.396373 & 1.705321 & -2.505367\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.920022 & 1.994712 & -1.506037\end{array}$

C	-4.140550	-1.793073	-0.067097
C	-4.147863	-2.705637	0.918852
H	-5.091658	-1.364922	-0.378610
H	-5.077182	-2.997852	1.397796
H	-3.250194	-3.212172	1.263656
N	-3.305773	1.514380	0.762707
C	-3.857204	1.495844	2.101407
H	-3.071119	1.823511	2.784083
H	-4.716111	2.170054	2.162988
H	-4.184407	0.485466	2.373054
N	0.781592	-1.230442	-0.512495
C	1.256503	-1.866362	0.750965
C	1.875596	-0.989768	-1.465999
N	2.706530	-1.921157	0.502586
C	0.930708	-0.991179	1.971040
C	0.732395	-3.309286	0.905895
H	1.697678	-1.571121	-2.380923
C	2.112062	0.488895	-1.885890
C	3.092608	-1.557928	-0.752992
C	3.662623	-2.418269	1.474472
H	1.232541	-1.495549	2.895102
H	1.450020	-0.033655	1.895317
H	-0.139877	-0.782797	2.030445

H	-0.341227	-3.347779	1.090756
H	0.951767	-3.890716	0.005102
H	1.226871	-3.787678	1.756682
H	2.755936	0.441088	-2.770663
H	1.151391	0.901210	-2.217474
C	2.752110	1.395019	-0.851699
O	4.217634	-1.628795	-1.222515
H	4.651675	-2.303593	1.027822
H	3.614614	-1.838689	2.401838
H	3.499968	-3.477618	1.705076
C	1.989202	2.043360	0.129226
C	4.139107	1.606231	-0.873258
C	2.600072	2.880727	1.065775
H	0.914226	1.902780	0.189058
C	4.748465	2.444681	0.060575
H	4.743663	1.099603	-1.620263
C	3.979978	3.086394	1.033842
H	1.984258	3.372998	1.813620
H	5.824014	2.598096	0.024313
H	4.453363	3.744264	1.758300

N_Re_anti_benzimidaz_c_vin
B3LYP/6-31G(d)
Eel $=-1321.89175961 \mathrm{au} ;$ Energy(OK) $)=-1321.39922118$ au
Enthalpy $=-1321.36879580 \mathrm{au}$; Gibbs energy $=-1321.45424536 \mathrm{au}$
$\begin{array}{llll}\text { C } & -0.434302 & -1.206134 & -0.737162\end{array}$
$\begin{array}{llll}\text { C } & -1.546753 & -1.562229 & 0.003140\end{array}$
$\begin{array}{llll}\text { C } & -2.889500 & -1.525758 & -0.469552\end{array}$
$\begin{array}{llll}\text { C } & -3.226653 & -0.980823 & -1.724806\end{array}$
$\begin{array}{llll}\text { C } & -3.100793 & 1.042254 & -1.589395\end{array}$
$\begin{array}{llll}\text { C } & -1.877482 & 1.507545 & -1.100590\end{array}$
$\begin{array}{llll}\text { C } & -4.109062 & 1.226451 & -0.477231\end{array}$
$\begin{array}{llll}\text { C } & -2.002031 & 1.770129 & 0.322822\end{array}$
$\begin{array}{llll}\text { O } & -1.178549 & 2.148898 & 1.150935\end{array}$
$\begin{array}{llll}\text { O } & -5.321714 & 1.104559 & -0.524575\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.580098 & -0.895737 & -1.765679\end{array}$
$\begin{array}{llll}\text { H } & -1.414464 & -1.886184 & 1.028085\end{array}$
$\begin{array}{llll}\text { H } & -4.251289 & -1.083673 & -2.068341\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.501153 & -1.050778 & -2.529229\end{array}$
$\begin{array}{llll}\text { H } & -3.438481 & 1.187186 & -2.610938\end{array}$
$\begin{array}{llll}\text { H } & -0.990640 & 1.758449 & -1.664741\end{array}$
$\begin{array}{llll}\text { C } & -3.913868 & -1.965276 & 0.485139\end{array}$
$\begin{array}{llll}\text { C } & -5.248773 & -1.924774 & 0.340591\end{array}$
$\begin{array}{llll}\text { H } & -3.518609 & -2.368042 & 1.417870\end{array}$

H	-5.898331	-2.280222	1.134784
H	-5.739977	-1.519247	-0.537049
N	-3.369848	1.533521	0.648782
C	-3.941126	1.731745	1.964158
H	-3.121412	1.977545	2.641511
H	-4.667963	2.550639	1.952390
H	-4.448905	0.821382	2.298311
N	0.879165	-1.269493	-0.402522
C	1.449468	-1.837698	0.853262
C	1.906562	-1.024572	-1.425176
N	2.882214	-1.867863	0.516024
C	1.177663	-0.919925	2.055342
C	0.975953	-3.285247	1.102506
H	1.691006	-1.631228	-2.315252
C	2.079087	0.449505	-1.889998
C	3.179157	-1.541134	-0.773233
C	3.911849	-2.300264	1.442595
H	1.562338	-1.371000	2.976076
H	1.653102	0.051207	1.901979
H	0.105751	-0.751317	2.183533
H	-0.083440	-3.343601	1.352206
H	1.159353	-3.900174	0.216087
H	1.533301	-3.711525	1.942029
(

$\begin{array}{llll}\mathrm{H} & 2.699694 & 0.399072 & -2.791389\end{array}$
H $\quad 1.095789 \quad 0.819392 \quad-2.203250$

C $\quad 2.713816 \quad 1.402532 \quad-0.895583$
$\begin{array}{llll}\text { O } & 4.274741 & -1.602030 & -1.309740\end{array}$
$\begin{array}{llll}H & 4.864838 & -2.196725 & 0.921092\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.920755 & -1.672638 & 2.339609\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.783204 & -3.347636 & 1.738948\end{array}$
C $\quad 1.943400 \quad 2.094383 \quad 0.049285$

C $\quad 4.101134 \quad 1.613765 \quad-0.917672$
$\begin{array}{llll}\text { C } & 2.548050 & 2.972104 & 0.952609\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.866753 & 1.961328 & 0.102900\end{array}$
$\begin{array}{llll}\text { C } & 4.703825 & 2.491503 & -0.016276\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.710273 & 1.076191 & -1.638695\end{array}$
C $\quad 3.928482 \quad 3.174700 \quad 0.922933$
$\begin{array}{llll}\mathrm{H} & 1.926983 & 3.498774 & 1.672168\end{array}$
$\begin{array}{llll}\text { H } & 5.779576 & 2.643969 & -0.051833\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.396888 & 3.863327 & 1.621635\end{array}$
\#

3 Enantioselective Diels-Alder Reactions of 1-Amino[3]dendralenes

3.1 Introduction

Chapter 2 described the development of methodology where skipped dienals are reacted with stoichiometric amounts of amine to generate putative 1-amino-[3]dendralenes, which are reacted with dienophiles, providing a variety of cycloadducts. One of the examples involved a three-component condensation/Diels-Alder reaction between skipped dienal 236a, acrolein and morpholine to generate cycloadduct 237a, which was observed in the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture. Purification on silica gel resulted in the isolation of trienal $\mathbf{2 4 9}$, which was the product of elimination of morpholine from cycloadduct 237a (Scheme 3.1). This observation led us to consider developing an enantioselective, catalytic reaction in which elimination regenerates the amine at the end of each reaction cycle.

Scheme 3.1 Condensation/Diels-Alder reaction of skipped dienal 236a, acrolein and morpholine followed by elimination on silica gel

As described in Chapter 1, transformations involving elimination of the amine from the condensation/Diels-Alder cycloadduct as the catalyst turnover step have previously been reported in the literature. Three examples are shown in Scheme 3.2. Proline (121) and Jørgensen-Hayashi catalyst 80a have been used as chiral amine catalysts and both inter- and intramolecular Diels-Alder reactions have been performed to afford the desired cycloadducts in high enantiomer ratios. The obvious advantage of extending this methodology to 1 -amino[3]dendralenes is the opportunity to access enantiopure or highly enantioenriched polycyclic structures via domino Diels-Alder sequences.

Scheme 3.2 Condensation/Diels-Alder reaction sequences followed by the regeneration of the amine catalyst by elimination

The purpose of this work is to develop enantioselective domino reaction sequences of aminodendralenes. Only a relatively small number of publications describing enantioselective Diels-Alder reactions of dendralenes have been reported and these are summarised in the following section.

3.1.1 Enantioselective Diels-Alder reactions of dendralenes

[3]Dendralene (250) was reported to undergo an enantioselective Diels-Alder reaction with methyl acrylate catalysed by modified Corey's catalyst 251, ${ }^{[1]}$ which acts as a chiral Lewis acid, to produce substituted cyclohexene 253 in 86% yield and $96: 4$ er
(Scheme 3.3). ${ }^{[2]}$ The absolute configuration was assigned based on Corey's model ${ }^{[1]}$ of the pre-transition state $\mathbf{2 5 2}$ where the carbonyl oxygen and the Lewis-acidic boron form a dative bond, while the Lewis basic oxygen participates in hydrogen bonding with α hydrogen of the methyl acrylate. This results in one of the aryl groups of catalyst $\mathbf{2 5 1}$ blocking one face of methyl acrylate. [3]Dendralene approaches methyl acrylate from the less hindered face through an endo transition state to generate cycloadduct 253. This model was supported by computational modelling. ${ }^{[3]}$

Scheme 3.3 Enantioselective Diels-Alder reaction between [3]dendralene (250) and methyl acrylate catalysed by modified Corey's catalyst $\mathbf{2 5 1}$
[3]Dendralene (250) was also reported to undergo enantioselective Diels-Alder reactions with acrolein and β-substituted acroleins $\mathbf{1 3 7}$ in the presence of MacMillan's catalyst 254, ${ }^{[4]}$ furnishing cycloadducts 255 with high enantioselectivities (Scheme 3.4). ${ }^{[5]}$ MacMillan's catalyst $\mathbf{2 5 4}$ is also a LUMO lowering catalyst. It acts by reversibly condensing with the carbonyl group on the dienophile, generating iminium 256. Formation of the E-iminium isomer is favoured to minimise steric interactions between the alkene and the gem dimethyl substituents on the imidazolidinone. The stereochemical outcome can be rationalised by the benzyl group of iminium 256 blocking the bottom face of the dienophile and the diene (i.e. [3]dendralene) approaching from the top face, endo to the dienophile.

Scheme 3.4 Enantioselective Diels-Alder reaction of [3]dendralene (250) and β-substituted acroleins $\mathbf{1 3 7}$ with MacMillan's catalyst 254
[4]Dendralene (257) was reported to undergo a double Diels-Alder reaction with β substituted acroleins $\mathbf{1 3 7}$ in the presence of MacMillan's catalyst 254, resulting in the formation of major diastereomers 258 with up to $>99.5: 0.5 \mathrm{er}$ (Scheme 3.4). ${ }^{[5]}$ Only the terminal double Diels-Alder adducts $\mathbf{2 5 8}$ and $\mathbf{2 5 9}$ were isolated while the intermediate mono-adduct (\boldsymbol{R})-260 was not observed. This is due to the inherent reactivity of [4]dendralene: the first Diels-Alder reaction generates cyclo-adduct (\boldsymbol{R})-260, which is a substituted [3]dendralene and thus undergoes a faster second Diels-Alder reaction than [4]dendralene (257). ${ }^{[6]}$ A third cycloaddition between bicycle 258 and NMM allowed access to enantioenriched polycycle 261 in two steps from an acyclic precursor, [4]dendralene (257).

Scheme 3.5 Double enantioselective Diels-Alder reactions between [4]dendralene (257) and β-substituted acroleins $\mathbf{1 3 7}$ with MacMillan's catalyst $\mathbf{2 5 4}$ followed by Diels-Alder reaction with NMM

The highly enantioselective formation of chiral diastereomer $\mathbf{2 5 8}$ is a demonstration of the Horeau principle, which describes the amplification of enantiomer ratio through successive enantioselective reactions. ${ }^{[7]}$ The stereochemical outcome at each step of the organocatalysed double Diels-Alder reaction between [4]dendralene (257) and acrolein with MacMillan's catalyst $\mathbf{2 5 4}$ is shown in Scheme 3.6. The catalyst $\mathbf{2 5 4}$ controls the enantioselectivity of both Diels-Alder reactions. The first cycloaddition generates the major enantiomer $(\boldsymbol{R})-\mathbf{2 6 0}$ and the minor enantiomer $(\boldsymbol{S}) \mathbf{- 2 6 0}$ in a 95:5 ratio. In the second cycloaddition, a small proportion of the major enantiomer (\boldsymbol{R})-260 and a large proportion of the minor enantiomer (\mathbf{S}) $\mathbf{- 2 6 0}$ are converted to the meso diastereomer $(\boldsymbol{R}, \boldsymbol{S}) \mathbf{- 2 6 2}$, thus only a very small proportion of the minor enantiomer ($\mathbf{S}, \boldsymbol{S}$)-262 of the chiral diastereomer is formed and the enantiomer ratio (i.e. the ratio of $(\boldsymbol{R}, \boldsymbol{R}) \mathbf{- 2 6 2}$ to $(S, S)-262)$ of the chiral diastereomer is enhanced to $>99.5: 0.5$.

Scheme 3.6 Stereochemical outcome of the organocatalysed double Diels-Alder reaction between [4]dendralene (257) and acrolein with MacMillan's catalyst 254

As described in Chapter 1 (Scheme 1.37, page 37), Jørgensen and co-workers have reported the enantioselective Diels-Alder reactions of semi-cyclic 1amino[3]dendralenes 199, which selectively react at the cyclic 1,3-butadiene unit distant
to the amine substituent to provide cycloadducts 202 (Scheme 3.7). ${ }^{[8]}$ Products 203 are isolated following a subsequent Wittig reaction.

Scheme 3.7 Condensation/Diels-Alder/hydrolysis reaction sequence between dienals 198, amine 80a and dienophiles 200 followed by Wittig reaction to generate spirocycles 203

In summary, dendralenes have been reported to undergo Lewis-acid catalysed ${ }^{[2]}$ and iminium catalysed ${ }^{[5]}$ enantioselective Diels-Alder reactions. While enantioselective Diels-Alder reactions of in situ generated 1-amino-1,3-butadienes have been extensively reported (Chapter 1, section 1.4), the only report of dendralenes involves single semicyclic 1 -amino[3]dendralenes. ${ }^{[8]}$ This work will extend the use of enamine catalysis to acyclic 1-amino[3]dendralenes as well as extend it to domino reaction sequences.

3.2 Aims

The first objective of this work is to develop and optimise the enantioselective DielsAlder reaction between skipped dienal 236, amine 80a and β-substituted acroleins 137
(Scheme 3.8). The condensation between skipped dienal 236 and amine 80a is proposed to generate 1 -amino[3]dendralene 241, which would react with β-substituted acroleins 137 as the dienophile, leading to the formation of cycloadducts 263. Skipped dienals bearing aryl and alkyl substituents will also be used to investigate the generality of the reaction.

Scheme 3.8 Condensation/enantioselective Diels-Alder/elimination reaction sequences between skipped dienals 236, dienophiles 137 and amine 80a

The second objective is extension of this methodology to multiple Diels-Alder reactions to access polycyclic enantioenriched products such as tricycle 266 (Scheme 3.9).

Scheme 3.9 Accessing polycyclic enantioenriched products from mono-adduct 242a

The final objective is to explore the condensation/Diels-Alder/elimination reaction sequence of diene dialdehyde 244 (Scheme 3.10). This reaction sequence may proceed through two consecutive condensation/Diels-Alder/elimination sequences (pathway (a)) or twofold condensation to form 1,6-diamino[4]dendralene 245 then successive DielsAlder/elimination sequences (pathway (b)). It is expected that the Horeau principle (Scheme 3.6) would operate in this reaction to furnish cycloadduct 246 with high enantioselectivity.

(a)
Diels-Alder/ elimination v

(b)

246
double Diels-Alder/ elimination

Scheme 3.10 Twofold enantioselective condensation/Diels-Alder/elimination reaction sequences between diene dialdehyde 244, dienophile 137a and amine 80a

3.3 Results and Discussion

3.3.1 Condensation/Diels-Alder/elimination reaction sequence

3.3.1.1 Optimisation of the reaction

The Diels-Alder reaction between skipped dienal 236a as the diene precursor and 1.2 molar equivalents of dienophile 137a with $10 \mathrm{~mol} \%$ of amine $\mathbf{8 0 a}$ as the catalyst was performed in deuterated chloroform (0.22 M) and monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Scheme 3.11). The target aldehyde product 242a was formed cleanly after 18 h in $>95 \%$ yield, as determined by NMR spectroscopy. To develop a method for the separation of the enantiomers of 242a using high performance liquid chromatography (HPLC), a racemic sample was prepared with the same synthetic sequence using 20 $\mathrm{mol} \%$ of pyrrolidine instead of $10 \mathrm{~mol} \%$ of amine 80a. Separation of this racemic sample was achieved by eluting with 60:40 n-hexane/isopropanol on a Chiralcel OJ-H column at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. The enantioenriched sample was separated with HPLC using the same conditions and the enantiomer ratio was determined to be 94:6.

Scheme 3.11 Condensation/Diels-Alder/elimination reaction between skipped denal 236a, dienophile 137a and amine 80a

Although the enantiomer ratio was already high, we sought to increase it further by adding an acid co-catalyst. There have been reports ${ }^{[9,10]}$ that the addition of an acid cocatalyst improves the enantioselectivity of condensation/Diels-Alder/elimination sequences. The enantioselectivity of the condensation/Diels-Alder/elimination reaction between α, β-unsaturated aldehyde 146a, pyranone dienophile 147a and amine 80a increased from 94:6 er to 98.5:1.5 er with the addition of p-nitrobenzoic acid (Scheme 3.12a). ${ }^{[9]}$ Similarly, the formation of bicyclic cycloadduct 178a improved from 90:10 er to 95:5 er with the addition of benzoic acid (Scheme 3.12b). ${ }^{[10]}$ An increase in the level of conversion from 50% to 100% was also observed. Based on computational studies of the intramolecular reaction shown in Scheme 3.12b, it has been proposed that benzoic acid lowers the activation energy for the formation of the 1 -amino-1,3-butadiene intermediate from α, β-unsaturated aldehyde 146 a and amine 80a, thus increasing the rate of reaction and the level of conversion of the overall reaction. ${ }^{[11]}$ It was also mentioned that the energy difference between the transition states leading to the two enantiomers formed is similar with and without benzoic acid, ${ }^{[11]}$ so the exact role of the acid in slightly enhancing the enantiomer ratio remains unclear. It is possible that the acid inhibits unwanted base-mediated processes, which produce a racemic mixture of the desired product and lower the enantiomer ratio.

Scheme 3.12 Literature examples of improved enantioselectivity when acid co-catalysts are used in a) intermolecular Diels-Alder ${ }^{[9]}$ and b) intramolecular Diels-Alder reactions ${ }^{[10]}$

Four carboxylic acids were screened in attempts to enhance the enantioselectivity of our reaction (Table 3.1). These acids were chosen as they are most commonly used in the literature for related processes. Disappointingly, the addition of an acid additive did not have any significant effect on the reaction outcome: the addition of $10 \mathrm{~mol} \%$ of benzoic acid, p-chlorobenzoic acid, acetic acid or p-nitrobenzoic acid did not improve the enantioselectivity of the reaction.

Table 3.1 Variation in acid co-catalyst
$\left.\begin{array}{lll}\text { Entry } \\ \text { Acid co-catalyst } \\ \text { (1.2 mol equiv) }\end{array}\right)$

The effect of catalyst loading and solvent on the reaction was examined next (Table 3.2). Under the initial reaction conditions, the desired product 242a was obtained in $>95 \%$ yield in 18 hours at 0.22 M concentration of skipped dienal 236a with $10 \mathrm{~mol} \%$ of amine 80a as the catalyst and deuterated chloroform as the solvent (entry 1). As amine 80a is expensive, the possibility of lowering the catalyst loading was investigated. Reducing the catalyst loading to $2 \mathrm{~mol} \%$ did not afford the desired product 242a being formed (entry 2). The rate of reaction is too slow at this catalyst loading. With $5 \mathrm{~mol} \%$ of catalyst 80a, only 19% of the cycloadduct 242a was formed after 17 hours (entry 3). The amount of cycloadduct 242a did not change after a further 32 hours (total reaction time of 49 hours). In both cases, over the course of the reaction, skipped dienal 236a was consumed and other unidentified aldehyde side products were formed, presumably from self-condensation of aldehyde 236a. The screening of various solvents for the reaction revealed chloroform as the optimal choice. Lower yields were observed when reactions were repeated in toluene, benzene and acetonitrile (entries 4-6). It is possible that hydrogen-bonding between chloroform and the carbonyl oxygen ${ }^{[12]}$ of dienophile 2a increases the reactivity of the dienophile and enhances the rate of the Diels-Alder reaction over unwanted side-reactions which consume the starting material.

With methanol, no product was formed possibly because the solvent reacted with the aldehyde functionalities of skipped dienal 236a and dienophile 137a to form hemi-acetals (entry 7). In DMSO, a complex mixture formed over time (entry 8). This could be due to the acceleration of other unwanted side-reactions in a highly polar solvent such as DMSO. In acetone, no product was observed possibly because acetone itself undergoes amine catalysed aldol reactions ${ }^{[13]}$ (entry 9).

Table 3.2. Optimisation of the Diels-Alder reaction between aldehyde 236a and dienophile 137a

			 conditio (0.22 M)			
Entry	Catalyst loading ($\mathrm{mol} \%$)	Solvent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	time	NMR yield (\%) ${ }^{\mathrm{e}}$	$e r^{b}$
1	10	CDCl_{3}	25	18 h	>95	94:6
$2^{\text {a }}$	2	CDCl_{3}	25	48 h	0	-
$3^{\text {a }}$	5	CDCl_{3}	25	49 h	19	90:10
4	10	toluene-d8	25	48 h	64	92:8
5	10	benzene- d_{6}	25	45 h	61	93:7
6	10	acetonitrile-d ${ }_{3}$	25	48 h	56	81:19
7	10	methanol-d4	25	48 h	$0{ }^{\text {c }}$	-
8	10	DMSO-d ${ }_{6}$	25	48 h	$0^{\text {d }}$	-
9	10	acetone-d ${ }_{6}$	25	48 h	$0^{\text {c }}$	-
a concentration of skipped dienal: 0.26 M						
${ }^{\mathrm{b}}$ measured by HPLC on chiral stationary phases						
${ }^{\text {c }}$ no reaction						
${ }^{\text {d }}$ complex mixture						
${ }^{\text {e }} 1,4$-dinitrobenzene was used as the internal standard						

3.3.1.2 Absolute configuration assignment

The absolute configuration of the stereocentre in the major cycloadduct 242a is tentatively assigned based on computational modelling and the reported absolute configuration of a literature compound (Scheme 3.13). Computational modelling described in Chapter 2 suggested that the syn conformer of 1-amino[3]dendralene 271 is the most stable intermediate, with the exposed bottom face of the diene undergoing a Diels-Alder reaction (Figure 2, page 55). Two diastereomers could be formed: cycloadduct 272 which arises from exo addition and cycloadduct $\mathbf{2 7 3}$ which arises from endo addition of the dienophile. Trienals ent-242a and 242 would be generated from the elimination of cycloadducts 272 and 273 respectively. Hong and co-workers have reported the absolute configuration of cyclohexadiene 277, the condensation/DielsAlder/elimination product of 1-amino-1,3-butadiene 274 and o-nitrocinnamaldehyde 137g. ${ }^{[14]}$ This was determined by single crystal X-ray analysis and arises from endo addition of the dienophile to the diene from the less sterically hindered diene face. If 1 amino[3]dendralene 271 reacts in the same way as 1 -amino-1,3-butadiene 274, the favoured enantiomer is expected to be trienal 242a, which is a product of endo addition of dienophile 137a to 1-amino[3]dendralene 271 from the bottom face.

Scheme 3.13 a) Tentative assignment of the absolute configuration of cycloadduct 242a
b) Reported absolute configuration of cycloadduct $\mathbf{2 7 7}{ }^{[14]}$

3.3.1.3 Proposed reaction mechanism

The proposed mechanism for the reaction is shown in Scheme 3.14. Condensation between skipped dienal 236a and amine 137a and subsequent tautomerisation generates 1-amino[3]dendralene 271, which undergoes a Diels-Alder reaction with dienophile 137a to form cycloadduct 273. It is also possible that iminium dienophile 137i, the product of a condensation/tautomerisation reaction between dienophile 137a and amine

80a, reacts with 1 -amino[3]dendralene 271 in a Diels-Alder reaction to generate cycloadduct 343 and upon hydrolysis, cycloadduct 273. Tautomerisation of the aldehyde generates enol 278, which can potentially eliminate the amine to generate the trienal product 242a. While it is possible for the 1,3-butadiene unit present in dienal 236a to undergo a Diels-Alder reaction with dienophile 137a , this was never observed as the condensation reaction to form 1 -amino[3]dendralene is very fast and the aminesubstituted 1,3-butadiene unit is a much more reactive diene in the Diels-Alder reaction.

Scheme 3.14 Proposed reaction mechanism for the formation of cycloadduct 242a

3.3.1.4 Synthesis of dienophiles

The scope of this catalytic enantioselective reaction was extended to different dienophiles (Figure 3.1). Dienophiles 137b and 137c were chosen to examine whether the size of the ester substituent has an effect on yield or enantioselectivity. To
investigate whether the reaction tolerates other types of electron-withdrawing substituents at the β position of the acrolein dienophile, the ester substituent was replaced with ketones (dienophiles 137d and 137e), nitrile (dienophile 137f) and an o nitrophenyl group (dienophile $\mathbf{1 3 7} \mathbf{g}$). To investigate whether the reaction tolerates dienophiles which do not possess an aldehyde functionality, β-nitrostyrene 137 h was included.

Figure 3.1 Dienophiles to be used in the Diels-Alder reaction

As dienophiles 137b-f are not commercially available and dienophile $\mathbf{1 3 7} \mathbf{g}$ was not available to us, they were synthesised according to literature procedures or modified literature procedures.

Methyl ester dienophile 137b was synthesised following a known literature procedure. ${ }^{[15]}$ Horner-Wadsworth-Emmons reaction between 2,2dimethoxyacetaldehyde (279) and trimethyl phosphonoacetate 280 followed by hydrolysis of the resulting acetal 281 under acidic conditions provided methyl ester dienophile 137b (Scheme 3.15). The t-butyl ester derivative 137c was obtained by transesterification of ester 281 with lithium t-butoxide ${ }^{[16]}$ followed by deprotection of the dimethyl acetal group. Both dienophiles 137 b and $\mathbf{1 3 7} \mathbf{c}$ were obtained with an $E: Z$ ratio >95:5 as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Scheme 3.15 Synthesis of dienophiles 137b and 137c

Dienophile 137d was synthesised following a known literature procedure in a two-step process (Scheme 3.16). ${ }^{[17]}$ Furan (283) was lithiated with n-butyllithium and subsequently alkylated with 1 -iodopropane to provide substituted 2-n-propylfuran (284), which was converted to dienophile 137d by an oxidative ring opening with n bromosuccinimide in water. This dienophile, as well, was obtained with an $E: Z$ ratio of $>95: 5$ as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Scheme 3.16 Synthesis of dienophile 2d

Dienophile 137e was synthesised using a modified literature procedure involving a Wittig reaction between 2,2-dimethoxyacetaldehyde (279) and phosphorane 285 to produce a mixture of ketones \boldsymbol{E}-286 and $\mathbf{Z - 2 8 6}(E: Z=1: 3)$ followed by deprotection of the dimethoxyacetal protecting group under acidic conditions (Scheme 3.17). ${ }^{[15]}$ Acetal deprotection proceeds with alkene Z to E isomerisation. After chromatography, dienophile 137e was obtained with an $E: Z$ ratio of $>95: 5$ as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Scheme 3.17 Synthesis of dienophile 137e

Dienophile 137f was made in three steps from allyl nitrile (287) (Scheme 3.18). Alcohol 289 was prepared according to a literature procedure. ${ }^{[18]}$ Epoxidation of allyl cyanide (287) with m-CPBA provided epoxynitrile (288), which underwent E1cb type epoxide ring-opening with lithium diisopropylamide (generated in situ) to furnish stereoisomeric alcohols $\mathbf{2 8 9}$ in a yield of $\mathbf{3 8 \%}$ with an E / Z ratio of 9:1. The low yield is attributed to the propensity of alcohols 289 to polymerise under the reaction conditions - a thick precipitate was formed as soon as the reaction was quenched with acetic acid. Allylic alcohols 289 were oxidised to aldehyde $\mathbf{1 3 7 f}$ with manganese dioxide. After chromatography, the product $\mathbf{1 3 7 f}$ was isolated in 46% yield and an $E: Z$ ratio of $>95: 5$ as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Scheme 3.18 Synthesis of dienophile $\mathbf{1 3 7 f}$

Dienophile 137 g was prepared via ortho-nitration of E-cinnamaldehyde (291) with nitric acid following a literature procedure ${ }^{[19]}$ (Scheme 3.19).

Scheme 3.19 Synthesis of dienophile $\mathbf{1 3 7} \mathrm{g}$

3.3.1.5 Scope of the Diels-Alder reaction with respect to the dienophile

The condensation/Diels-Alder/elimination reaction sequence was carried out under optimised conditions between skipped dienal 236a and dienophiles 137a-f in the presence of amine 80a (Scheme 3.20). Dienophiles bearing β ethyl, methyl and t-butyl ester substituents generated cycloadducts 242a, 242b and 242c with comparable yields (74-78\%) and enantioselectivities (92:8 to 94:6 er). The sterics of the ester substituent had no adverse impact on the enantioselectivity or reactivity. By replacing the β ester substituent with an n-propyl ketone, cycloadduct $\mathbf{2 4 2 d}$ was generated in 74% yield and a slightly diminished er of 90:10. With the β phenyl ketone substituted dienophile 137e, the Diels-Alder cycloadduct 242e was formed in 61% yield and 61:39 er. Dienophile 137f, which has a β nitrile substituent, provided Diels-Alder adduct $\mathbf{2 4 2 f}$ in 63% yield and 81:19 er. It has been reported that the use of prolinol catalysts with bulkier silyl protecting groups result in higher enantioselectivities. ${ }^{[20]}$ Repeating the reaction with dienophile 137e using catalyst 80b, which bears a bulkier TES protecting group than the TMS group of catalyst 80a, afforded the Diels-Alder cycloadduct 242e in 64% yield and a much improved enantioselectivity of 95:5 er. Catalyst 80b may provide better results with the other dienophiles as well.

Scheme 3.20 Diels-Alder reaction between skipped dienal 236a and dienophiles 242a-f The condensation/Diels-Alder/elimination reaction sequence between skipped dienal 236a and o-nitrocinnamaldehyde $\mathbf{1 3 7} \mathrm{g}$ catalysed by amine $\mathbf{8 0 a}$ was performed under various reaction conditions

Table 3.3). Under the previously optimised conditions, a poor yield (8%, determined by NMR spectroscopy) of cycloadduct $\mathbf{2 4 2}$ g was obtained. A ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture showed that after 19 h , skipped dienal 236a was completely consumed, about half of the original amount of skipped dienal 236a had been isomerised to the conjugated dienal 236a' while only 8% of the desired product $\mathbf{2 4 2 g}$ was formed. No further increase in the formation of the desired product $\mathbf{2 4 2 g}$ was observed. To increase the rate of reaction, we tried doubling the amount of dienophile $\mathbf{2 4 2 g}$ (entry 2), skipped dienal 236a (entry 3) and amount of amine 80a (entry 4). An increase in the yield of the desired product 242g to 15% (determined by NMR spectroscopy) was observed when the amount of amine 80a was increased. In an attempt to reduce the rate of formation of any unwanted by-products, the reaction temperature was reduced to $0{ }^{\circ} \mathrm{C}$, but this did not have a significant effect on the yield of cycloadduct $\mathbf{2 4 2 g}$. By doubling the reaction concentration, the yield of the desired product 242g increased to 24%. It appears that this set of conditions improves the rate of the Diels-Alder reaction over the rate of the unwanted side-reactions. In a separate experiment, by using benzoic acid as a cocatalyst, the yield of the desired product $\mathbf{2 4 2}$ g was 24% (determined by NMR spectroscopy). It has been speculated that an acid co-catalyst may activate the dienophile towards Diels-Alder reactions. ${ }^{[10]}$ Although the enantioselectivity is high (95:5 er), the yield of the reaction requires further optimisation.

Table 3.3 Condensation/Diels-Alder/elimination reaction sequence between skipped dienal 236a and o-nitrocinnamaldehyde $\mathbf{1 3 7} \mathbf{g}$ under various conditions

	HO			$\xrightarrow[\substack{\mathrm{O}_{\mathrm{Ph}}^{\mathrm{OTMS}} \\ 80 \mathrm{a}}]{\substack{\mathrm{Ph} \\ \mathrm{CDCl}_{3} \\ 25^{\circ} \mathrm{C}}}$	\forall			${ }_{6 a^{\prime}}$
Entry	Dienal 236a (mol equiv)	Dieno phile 137g (mol equiv)	Amine (mol \%)	Dienal conc (M)	t (h)	Isomerised dienal 1a' (\%)	NMR yield (\%)	er
1	1	1.2	10	0.2	19	52	$8^{\text {a }}$	-
2	1	2.4	10	0.2	19	48	$11^{\text {a }}$	-
3	2.2	1	10	0.2	18	57	$3{ }^{\text {a }}$	-
4	1	1.2	20	0.2	19	0	15	-
$5^{\text {b }}$	1	1.2	20	0.2	45	21	12	-
6	1	1.2	20	$0.4{ }^{\text {c }}$	18	0	24	-
7	1	1.2	$20^{\text {d }}$	0.2	18	0	24	95:5
${ }^{\text {a }}$ subsequent ${ }^{1} \mathrm{H}$ NMR spectra showed no further increase in the amount of product ${ }^{\mathrm{b}}$ reaction performed at $0{ }^{\circ} \mathrm{C}$								
${ }^{\text {c }}$ dienophile did not fully dissolve								${ }^{\text {d }}$ co-catalyst: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$ ($20 \mathrm{~mol} \%$)

The proposed mechanism for the formation of the isomeric conjugated dienal $\mathbf{2 3 6 a}^{\mathbf{}}{ }^{\prime}$ is shown in Scheme 3.21. Condensation between skipped dienal 236a and amine 80a generates 1 -amino[3]dendralene 271 which undergoes protonation to form diene iminium 292 which is hydrolysed to the conjugated dienal 236a' (Scheme 3.21a). Alternatively, amine 80a reacts as a base to deprotonate skipped dienal 236a to generate enolate 291, which re-protonates to provide conjugated dienal 236a' (Scheme 3.21b). 1-Morpholino-[3]dendralene was also observed to decompose to a complex mixture of products including conjugated dienal 236a' upon standing in solution at room temperature (Chapter 2, page 53). As dienophile $\mathbf{1 3 7} \mathbf{g}$ is less reactive than dienophiles

137a-f, the rate of Diels-Alder reaction between 1-amino[3]dendralene 271 and dienophile $\mathbf{1 3 7} \mathbf{g}$ is slower and isomerisation to conjugated dienal 236a' occurs instead.

Scheme 3.21 Proposed mechanism for the formation of the isomeric conjugated dienal 236a'

The reaction between aldehyde 236a, β-nitrostyrene 137h, amine 80a and various carboxylic acids, such as benzoic acid, p-nitrobenzoic acid and acetic acid, did not furnish the desired cycloadduct $\mathbf{2 4 2 h}$ (Scheme 3.22). ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture showed peaks indicative of the condensation/Diels-Alder product 293 forming, however, elimination product $\mathbf{2 4 2 h}$ was not observed.

Scheme 3.22 Attempted condensation/Diels-Alder/elimination reaction between skipped dienal 236a and β-nitrostyrene 137h

A similar reaction involving enal 79 has been reported (Scheme 3.23). ${ }^{[21]}$ When the reaction was performed step-wise (i.e. the condensation/Diels-Alder reaction product cycloadduct 85 is isolated before subjecting it to elimination with trifluoroacetic acid), cyclohexadiene 294 was generated in moderate yield (46% over two steps) and an enantiomer ratio of $97: 3$. When the two steps were performed simultaneously, cyclohexadiene 294 was obtained with a low yield (25\%) and diminished enantiomer ratio of 78.5:21.5. It is possible that the amine $\mathbf{3 a}$ was desilylated ${ }^{[22]}$ over the extended reaction time $(70 \mathrm{~h})$, resulting in the lower reaction enantioselectivity compared to the step-wise reaction. It would be useful to perform the reaction shown in Scheme 3.22 in a step-wise manner to identify which acids are capable of elimination of the amine from cycloadduct 293 before applying it to the one-pot reaction.

Scheme 3.23 Literature example of condensation/Diels-Alder/elimination reaction sequences between aldehyde 79, β-nitrostyrene 137h, amine 80a and trifluoroacetic acid or p-nitrobenzoic acid ${ }^{[21]}$

3.3.1.6 Scope of the Diels-Alder reaction with respect to the aldehyde

To investigate the tolerance of the reaction towards substitution on the skipped dienal starting material, skipped dienals 236b-f bearing aliphatic and aromatic substituents on the terminal alkene were made (Scheme 3.24). They were chosen as the corresponding alcohols are readily accessible from Suzuki cross-coupling of an alkenic iodide $\mathbf{2 9 5}$ with appropriately substituted alkenyl boronic acids 296. DMP oxidation of these alcohols delivers the desired substituted skipped dienals. Substituted skipped dienals 236b-e have been used in stoichiometric condensation/Diels-Alder/Diels-Alder reaction sequences described in Chapter 2.

Scheme 3.24 Synthesis of substituted skipped dienals 236b-f

Dienophile 137a was used in the reactions as it provided the best yield and enantioselectivity out of the dienophiles that were examined. Table 3.4 summarises results from these studies. In all the cases, the substituted skipped dienals underwent the same condensation/Diels-Alder/elimination sequence as the unsubstituted skipped dienal. The substituents did not alter the course of the reaction sequence. With terminal n-hexyl substituted skipped dienal 236b and internal methyl substituted skipped dienal 236d, the respective cycloadduct products $\mathbf{2 4 2}$ (entry 1) and $\mathbf{2 4 2 k}$ (entry 4) were obtained with good enantioselectivities of 92:8 and 94:6 er. With the terminal phenyl (skipped dienal 236c), internal phenyl (skipped dienal 236d) as well as 1,2-cyclohexyl (skipped dienal 236e) substituted skipped dienals, the corresponding cycloadducts $\mathbf{2 4 2} \mathbf{j}$ (entry 2), 242 l (entry 5) and $\mathbf{2 4 2 m}$ (entry 9) were obtained with lower enantioselectivities of 86:14 and 87:13 er. To improve the enantioselectivities of the reactions with substituted skipped dienals 236c, 236d and 236e, a second round of optimisation was conducted using internal phenyl skipped dienal 236d as a model substrate. By lowering the reaction temperature to $0{ }^{\circ} \mathrm{C}$, no improvement in enantioselectivity was observed (entry 6). This is in line with Jørgensen's report that the reaction temperature does not have a substantial effect on the enantioselectivity of diarylprolinol enamine catalysed reactions. ${ }^{[23]}$ As described in Chapter 1 (pages 23-24), catalyst $\mathbf{8 0}$ brings about enantioselective reactions by sterically shielding one face of the 1-amino-[3]dendralene intermediate so that the dienophile approaches from the opposite face thus the size of silyl protecting group and aryl substituents on the catalyst have an impact on the enantioselectivity of the reaction. Improved enantioselectivity was previously observed in the synthesis of cycloadduct $\mathbf{2 4 2 I}$ when the TMS protecting group of catalyst 80a was replaced with a bulkier TES group in catalyst 80b (Scheme 3.20, page 297). Similarly, by using catalyst 80b instead of catalyst 80a, cycloadduct $\mathbf{2 4 2 m}$ was obtained with an improved enantioselectivity of 96:4 er (entry 7). It has also been reported that the use of catalysts with sterically more demanding aryl groups give rise to higher enantioselectivities. ${ }^{[23]}$ Using catalyst 80c, which has larger 3,5-trifluoromethylphenyl groups instead of phenyl groups in catalyst 80a, no desired product was observed (entry 8). Instead, a mixture of products was formed. Having ascertained that catalyst $\mathbf{8 0 b}$ provides the optimal results, the reaction was repeated with skipped dienals 236c (entry 3) and $\mathbf{2 3 6 f}$ (entry 10), both of which also exhibited an increase in enantioselectivity but a slight decrease in yield.

Table 3.4 Diels-Alder reactions between aldehydes 236b-e and dienophile 137a

(1.2 mol equiv)

Entry	R^{1}	R^{2}	Skipped dienal	Catalyst	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Product	Yield (\%)	$e r$
1	n-hex	H	236b	80a	25	242i	72	94:6
2				80a	25		76	86:14
3			236	80b	25	24,	66	91:9
4	H	Me	236d	80a	25	242k	70	92:8
5				80a	25		73	87:13
6				80a	0		74	87:13
7			236	80b	25		67	96:4
8				80c	25		0	-
9	-($\left.\mathrm{CH}_{2}\right)_{4}{ }^{-}$		2366	80a	25	242m	77	87:13
10			80b	25	69		96:4	

3.3.2 Multiple Diels-Alder Reactions

In order to access more complex structures, trienal 242a could undergo a three step reaction sequence to generate tricycle 266 (Scheme 3.25). There are two possible pathways. Trienal 242a could be subjected to a Wittig reaction to generate tetraene 264, which possesses two semi-cyclic 1,3-butadiene units. A double Diels-Alder reaction of tetraene 264 with an appropriate diene generates tricycle 266. Alternatively, trienal 242a could undergo a Diels-Alder reaction to form bicyclic skipped dienal 267 which could be converted by a Wittig reaction to the bicyclic skipped triene 265. A third DielsAlder reaction would lead to the tricycle 266.

Scheme 3.25 Proposed routes to enantioenriched polycycles

3.3.2.1 Enantioselective Diels-Alder/Wittig/Diels-Alder/Diels-Alder reaction sequence

Results from the Diels-Alder/Wittig reaction sequence are summarised in Scheme 3.26. The organocatalysed Diels-Alder/elimination sequence between skipped dienal 236a, dienophile 137a and amine 80a generated cycloadduct 242a, which underwent a Wittig reaction with stablised ylide 298 to furnish tetraene 299 in 68\% yield and 93:7 er. By performing both the Diels-Alder and Wittig reactions in one pot, an improved overall yield of 66% was obtained while maintaining high enantioselectivity - 93:7 er.

Scheme 3.26 Condensation/Diels-Alder/elimination/Wittig reaction sequence

With tetraene 299 in hand, its Diels-Alder reactivity was investigated with NMM (Scheme 3.27). NMM previously reacted cleanly and stereoselectively with semi-cyclic dienes in Diels-Alder reactions (see Chapter 2, page 54) thus it was chosen as the dienophile for the Diels-Alder reaction with tetraene 299. The Diels-Alder reaction between tetraene $\mathbf{2 9 9}$ and NMM generated cycloadduct $\mathbf{3 0 0}$ (tentatively assigned as it was not fully characterised) cleanly in 89% yield, as determined by NMR spectroscopy. An attempt to isolate the product by flash column chromatography on silica gel was unsuccessful as a mixture of unidentified products was otained. The use of silica gel with eluting solvents doped with triethylamine also provided a mixture of unidentified products. It appears that cycloadduct 18 might be both acid-and base sensitive. As the reaction was clean by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis, cycloadduct $\mathbf{1 8}$ was characterised as a mixture with a small amount of residual NMM (0.17 mol equiv). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed the expected number of signals for cycloadduct 300 and these were assigned using HSQC and HMBC 2D NMR experiments. The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals consistent with the structure of cycloadduct 300: two doublets at 7.44 and 5.89 ppm with a J value of 16.0 Hz , which correspond to the two E-alkenic protons, two apparent singlets at 6.63 and 5.70 ppm which correspond to the two endocyclic alkenic protons, a singlet at 2.85 ppm corresponding to three protons of the N -methyl functionality, and two sets of signals comprising of a quartet (4.18 ppm) and a triplet (1.27 ppm) and a multiplet ($4.00-4.10 \mathrm{ppm}$) and a triplet (1.16 ppm) which correspond to the ethyl groups of the two ethyl esters. The ${ }^{13} \mathrm{C}$ NMR spectrum showed
four signals at $167.0-179.6 \mathrm{ppm}$ corresponding to the carbonyl carbons of the two esters and two amides present in tricycle 300, six alkenic signals at $117.1-145.2 \mathrm{ppm}$ and 11 aliphatic signals at $14.1-61.0 \mathrm{ppm}$, which is consistent with the proposed structure of cycloadduct $\mathbf{3 0 0}$. The LRMS spectrum showed a molecular ion peak of 387.1 and HRMS of the reaction mixture showed the molecular formula to be $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{6}$, both of which confirmed the presence of cycloadduct $\mathbf{3 0 0}$.

Scheme 3.27 Diels-Alder reaction between tetraene 299 and NMM

The cycloaddition reaction between tetraene 299 and NMM was highly site selective even though there are three possible 1,3-butadiene units in tetraene 299 which could undergo a Diels-Alder reaction - ester substituted semi-cyclic diene $\mathrm{C} 1=\mathrm{C} 2-\mathrm{C} 3=\mathrm{C} 4$, endocyclic diene $\mathrm{C} 3=\mathrm{C} 4-\mathrm{C} 5=\mathrm{C} 6$ and unsubstituted semi-cyclic diene $\mathrm{C} 5=\mathrm{C} 6-\mathrm{C} 7=\mathrm{C} 8$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture showed the disappearance of a pair of doublets $\left(\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}\right)$ and a doublet of doublets $\left(\mathrm{H}_{\mathrm{c}}\right.$, overlapping with $\left.\mathrm{H}_{\mathrm{e}}\right)$ corresponding to the mono-substituted alkene while two doublets $\left(\mathrm{H}_{\mathrm{f}}, \mathrm{H}_{\mathrm{g}}\right)$ corresponding to the 1,2disubstituted alkene remained at the end of the reaction. This indicated that cycloaddition had taken place exclusively at the unsubstituted semi-cyclic diene. In a normal electron demand Diels-Alder reaction, an electron deficient dienophile such as NMM preferentially reacts with the most electron rich diene. The diene with an electron-withdrawing $-\mathrm{CO}_{2} \mathrm{Et}$ group $(\mathrm{C} 1=\mathrm{C} 2-\mathrm{C} 3=\mathrm{C} 4)$ is the most electron deficient and least favoured to undergo Diels-Alder reaction with NMM. The unsubstituted semicyclic diene $(\mathrm{C} 5=\mathrm{C} 6-\mathrm{C} 7=\mathrm{C} 8)$ is the farthest from the conjugated ester unit and is the most electron rich diene thus it is favoured in the Diels-Alder reaction. The reacting diene unit is also the least substituted and thus sterically most accessible. Reaction between NMM and the endocyclic 1,3-butadiene unit ($C 3=C 4-C 5=C 6$) is presumably disfavoured as this breaks conjugation in the product. Similar selectivity was previously been observed in the Diels-Alder reaction of a linear conjugated tetraene. ${ }^{[24]}$

a) Tetraene $\mathbf{2 9 9}$

b) Reaction mixture at $t=25 \mathrm{~h}$

Figure 3.2 ${ }^{1} \mathrm{H}$ NMR spectra of a) tetraene 299 and b) the Diels-Alder reaction between tetraene 299 and NMM after 25 h

It has been reported that the Diels-Alder reaction of linear conjugated tetraene $\mathbf{3 0 1}$ with maleic anhydride also did not generate any product resulting from Diels-Alder reaction at the internal 1,3-butadiene unit (Scheme 3.28). ${ }^{[24]}$ Only mono-adducts 302 and 303 and bis-adduct 304, products arising from reaction at the terminal 1,3-butadiene units, were observed. Computational studies suggested that the stabilising effect of the conjugated butadienyl substituent on the transition state when reaction occurs at the terminal diene is greater than that of two vinyl substituents in the case of reaction at the internal diene.

maleic anhydride
(1 mol equiv)
BHT (10 mol\%)
toluene, $110{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$; then $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C} \downarrow$

302:303:304:301 $=\mathbf{2 6}: 24: 23: 27$

Scheme 3.28 Literature reported Diels-Alder reaction between linear tetraene 301 and maleic anhydride

The Diels-Alder reaction between tetraene $\mathbf{2 9 9}$ and NMM (Scheme 3.27) is also highly diastereoselective, as evidenced by the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture, which showed that only one diastereomer was formed in the reaction. In principle, four possible diastereomeric cycloadducts could be formed depending on whether NMM approaches the diene from the bottom or top face and whether it is an exo or endo mode of addition (Scheme 3.29). The tentative stereochemical assignment of the cycloadduct obtained is diastereomer 300, which is the product of Diels-Alder approach of NMM from the less sterically hindered bottom face of tetraene $\mathbf{2 9 9}$ in an endo transition state.

Scheme 3.29 Possible stereochemical outcomes for the reaction between tetraene 299 and NMM

For the final Diels-Alder reaction on the ester substituted semi-cyclic diene of cycloadduct 300, N-phenylmaleimide (NPM) was chosen as the dienophile. As cycloadduct 300 could not be isolated, both Diels-Alder reactions were performed in one pot starting from tetraene 299 (Table 3.5). The crude reaction mixture from the reaction between tetraene 299 and NMM in CDCl_{3} was concentrated under reduced pressure, then redissolved in toluene- d_{8} before NPM was added. Heating this reaction mixture to $110{ }^{\circ} \mathrm{C}$ for 16 hours resulted in complete consumption of cycloadduct $\mathbf{3 0 0}$. Based on the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture, the cycloaddition reaction between cycloadduct $\mathbf{3 0 0}$ and NPM generated two diastereomers of pentacycle 313 in the ratio 57:43 which was subsequently isolated in a combined 45% yield (14% of a pure sample of one diastereomer and 31% of a mixture of both diastereomers). Both Diels-Alder reactions could also be conducted in the same solvent, toluene- d_{8}, with a slight increase in yield to 57% and no significant change in diastereomeric ratio (53:47).

Table 3.5 Two-fold Diels-Alder reaction between tetraene 299 and NMM then NPM

Entry	Conditions Yield (over two steps)	$d r$
1	a) NMM (1.05 mol equiv), $\mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}, 16 \mathrm{~h}$ b) NPM (5.00 mol equiv), toluene- $\mathrm{d}_{8}, 110^{\circ} \mathrm{C}, 16 \mathrm{~h}$	57:43
2	a) NMM (1.05 mol equiv), toluene- $\mathrm{d}_{8}, 60^{\circ} \mathrm{C}, 22 \mathrm{~h}$ b) NPM (5.00 mol equiv), toluene- $\mathrm{d}_{8}, 110^{\circ} \mathrm{C}, 24 \mathrm{~h}$	53:47

Repeated purifications by flash column chromatography yielded pure samples of each diastereomer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, IR spectroscopy, LRMS and HRMS confirmed the structure of the cycloadducts formed. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of each of the diastereomers of cycloadduct $\mathbf{3 1 3}$ showed the expected number of signals and these were assigned using HSQC and HMBC 2D NMR experiments, as detailed in the following paragraphs.

The ${ }^{1} \mathrm{H}$ NMR spectrum of one of the diastereomers of pentacycle $\mathbf{3 1 3}$ showed signals consistent with the proposed structure: two multiplets at $7.33-7.50 \mathrm{ppm}$ corresponding to five aromatic protons, two signals at 5.58 and 5.80 ppm corresponding to two alkenic protons, two sets of quartets (4.12 and 4.25 ppm) and triplets (1.23 and 1.30 ppm) corresponding to the ethyl groups of the two ethyl esters and a singlet at 2.89 ppm corresponding to three protons of the N-methyl functionality. The ${ }^{13} \mathrm{C}$ NMR spectrum
showed six signals at 172.3 - 179.9 ppm corresponding to four amide and two ester carbonyl carbons, four signals at $121.0,121.2,138.2$ and 138.6 ppm corresponding to four alkenic carbons, four signals at 131.7, 129.3, 128.8 and 126.5 ppm corresponding to four non-equivalent carbons of the mono-substituted phenyl and 15 aliphatic carbons at $14.2-61.9 \mathrm{ppm}$, which is consistent with the proposed structure of cycloadduct 318. The LRMS spectrum showed a molecular ion peak of 560.2 and HRMS of the reaction mixture showed the molecular formula to be $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8}$, both of which confirmed the presence of cycloadduct $\mathbf{3 1 3}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the other diastereomer of pentacycle $\mathbf{3 1 3}$ also showed signals consistent with the proposed structure: a multiplet at $7.31-7.44 \mathrm{ppm}$ corresponding five aromatic protons, two signals at 6.35 and $5.61-5.68 \mathrm{ppm}$ corresponding to two alkenic protons, two sets of quartets ($3.85-3.92 \mathrm{ppm}$, overlapping with a multiplet and 4.32 ppm) and triplets (1.07 and 1.33 ppm) corresponding to the ethyl groups of the two ethyl esters and a singlet at 2.93 ppm corresponding to three protons of the N-methyl functionality. The ${ }^{13} \mathrm{C}$ NMR spectrum showed six signals at $170.5-179.9 \mathrm{ppm}$ corresponding to four amide and two ester carbonyl carbons, four signals at 122.3, 123.1, 137.0 and 138.1 ppm corresponding to four alkenic carbons, four signals at 126.9, 128.7, 129.0 and 131.9 ppm corresponding to four non-equivalent carbons of the mono-substituted phenyl and 15 aliphatic carbons at $14.2-61.5 \mathrm{ppm}$, which is consistent with the proposed structure of cycloadduct 318. The LRMS spectrum showed a molecular ion peak of 560.2 and HRMS of the reaction mixture showed the molecular formula to be $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8}$, both of which confirmed the presence of cycloadduct 313 .

Although both samples were solids, repeated attempts to obtain crystals suitable for single crystal X-ray analysis were unsuccessful and the relative stereochemistry of each of the cycloadducts was not determined. As was the case with cycloadduct 300, four possible diastereomers can be formed in the Diels-Alder reaction between cycloadduct 300 and NPM, depending on the endolexo and π diastereofacial selectivity of the reaction (Figure 3.3). More thorough analysis will be required to determine the relative stereochemistry of each of the diastereomers of the obtained adducts 313. Endo adducts 314 and 315 are the most likely products based upon the known endo-preference of NPM and the fact that substituents hinder dienophile approach to both top and bottom faces of the diene in tricycle $\mathbf{3 0 0}$.

314
Arises from NPM
approaching diene from opposite face to $-\mathrm{CO}_{2} \mathrm{Et}$ in an endo-TS

316
Arises from NPM
approaching diene from opposite face to $-\mathrm{CO}_{2} \mathrm{Et}$ in an exo-TS

315
Arises from NPM approaching diene from same face as $-\mathrm{CO}_{2} \mathrm{Et}$ in an endo-TS

317
Arises from NPM approaching diene from same face as $-\mathrm{CO}_{2} \mathrm{Et}$ in an exo-TS

Figure 3.3 The four possible diastereomers from the two-fold Diels-Alder reaction between tetraene $\mathbf{2 9 9}$ and NMM then NPM

3.3.2.2 Enantioselective Diels-Alder/Diels-Alder/Wittig/Diels-Alder reaction sequence

The Diels-Alder reactivity of trienal 242a was tested with NMM (Scheme 3.30). The reaction proceeded cleanly to generate tricycle 2 in $>95 \%$ yield, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. As was the case with cycloadduct 300, attempts to isolate the compound by flash column chromatography on silica gel with or without triethylamine additive in the eluting solvent provided a mixture of products. Tricycle 318 appears to be both acid and base sensitive. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the reaction mixture showed the expected number of peaks for cycloadduct $\mathbf{3 1 8}$ in addition to the contaminant NMM and these were assigned using HSQC and HMBC 2D NMR experiments. The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals consistent with the proposed structure of cycloadduct 318: a singlet at 9.60 ppm , which corresponds to the aldehyde proton, two apparent singlets at 7.30 and 5.76 ppm which correspond to the two endocyclic alkenic protons, a singlet at 2.88 ppm corresponding to three protons of the N-methyl functionality, and a quartet at 4.05 ppm and a triplet at 1.18 ppm , which correspond to the ethyl group of the ethyl ester. The ${ }^{13} \mathrm{C}$ NMR spectrum showed a signal at 191.3 ppm corresponding to the carbonyl carbon of the aldehyde, three signals at 171.8 - 179.3 ppm which corresponds to the carbonyl carbons of the two amides and an
ester, four alkenic signals at $122.2-150.9 \mathrm{ppm}$ and 9 aliphatic signals at $14.1-61.1$ ppm , which is also consistent with the proposed structure of cycloadduct 318. The LRMS spectrum showed a molecular ion peak of 317.1 and HRMS of the reaction mixture showed the molecular formula to be $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$, both of which confirmed the presence of cycloadduct $\mathbf{3 1 8}$.

Scheme 3.30 Diels-Alder reaction between trienal 242a and NMM

The ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture showed that the trienal reacted exclusively at the semi-cyclic diene (Figure 3.4). The disappearance of a pair of doublets $\left(\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}\right)$, a doublet of doublets $\left(\mathrm{H}_{\mathrm{c}}\right)$ and a broad doublet $\left(\mathrm{H}_{\mathrm{d}}\right)$ corresponding to the semi-cyclic alkene and the appearance of a new broad singlet $\left(\mathrm{H}_{\mathrm{g}}\right)$ corresponding to the newly formed endocyclic alkene were observed. As was discussed previously (page 306), NMM is an electron deficient dienophile which preferentially reacts in a DielsAlder reaction with more electron rich dienes. The endocyclic diene, being directly conjugated to an aldehyde, is electron poor and less favoured to undergo a normal electron demand Diels-Alder reaction with NMM compared to the semi-cyclic diene.

a) Trienal 242a

Figure 3.4 ${ }^{1} \mathrm{H}$ NMR spectrum of a) trienal 242a and b) the Diels-Alder reaction between trienal 242a and NMM after 15 h

The one-pot condensation/Diels-Alder/elimination/Diels-Alder/Wittig reaction sequence was next performed (Scheme 3.31). The condensation/Diels-Alder/elimination reaction between skipped dienal 236a, dienophile 137a and amine 80a generated trienal 242a. The addition of NMM to the reaction mixture did not generate the expected Diels-Alder product, tricycle 318. The cycloadduct produced lacked the alkenic proton corresponding to H_{g} thus it is postulated that the $\mathrm{C} 1=\mathrm{C} 2$ alkene in cycloadduct 20 had isomerised to the $\mathrm{C} 2-\mathrm{C} 3$ position, bringing it in conjugation with the α, β-unsaturated aldehyde. As this was only observed when the Diels-Alder reaction was conducted in the same pot as the enantioselective Diels-Alder reaction, the isomerisation may have been promoted by catalyst $\mathbf{8 0 a}$ acting as a base. Addition of phosphorane $\mathbf{2 9 8}$ to the reaction mixture generated the Wittig product, tricycle 320, in 40% yield from skipped
dienal 236a in one-pot. To determine the enantiomer ratio of tricycle $\mathbf{3 2 0}$ by HPLC on chiral stationary phase, the racemic compound rac-320 was synthesised by using pyrrolidine as the catalyst instead of amine 80a. Crystals of tricycle rac-320 suitable for single crystal X-ray crystallography were also obtained.

Scheme 3.31 One-pot condensation/Diels-Alder/Diels-Alder/Wittig reaction sequence

The relative stereochemistry of tricycle rac-320 was confirmed by single crystal X-ray analysis of the racemic material, which showed a syn relationship between protons $\mathrm{H}_{\mathrm{a}} / \mathrm{H}_{\mathrm{b}}$ and the $-\mathrm{CO}_{2} \mathrm{Et}$ group (Figure 3.5).

Figure 3.5 X-ray crystal structure of cycloadduct rac-320

The relative configurations at C_{x} and C_{y} of cycloadduct $\mathbf{3 2 0}$ are set during the DielsAlder reaction between trienal 242a and NMM. The stereochemical outcome observed could have arisen from either endo addition of NMM to cycloadduct 242a from the less sterically hindered face opposite to the $-\mathrm{CO}_{2} \mathrm{Et}$ substituent (cycloadduct 318) or exo addition of NMM to the more sterically hindered face (cycloadduct 321) (Figure 3.6). As NMM is typically a highly endo selective dienophile, the endo cycloadduct 318 is more likely to be the diastereomer which formed before the isomerisation.

Figure 3.6 Two possible diastereomers formed in the Diels-Alder reaction between cycloadduct 242a and NMM

3.3.3 Preliminary investigation into a double enantioselective Diels-Alder reaction

The possible stereochemical outcomes from a twofold condensation/DielsAlder/elimination reaction sequence of diene-dialdehyde 244 are shown in Scheme
3.32. Two enantiomers ($\boldsymbol{S})$-269 and $(\boldsymbol{R})-\mathbf{2 6 9}$ are expected to be generated from the inital condensation/Diels-Alder/elimination reaction sequence. These would generate four stereoisomers (S,S)-246, (R,R)-246, (S,R)-246 and (R,S)-246 arising from the second condensation/Diels-Alder/elimination reaction sequence. (S,S)-269 and ($\boldsymbol{R}, \boldsymbol{R}$)-269 are a pair of enantiomers while $(\boldsymbol{S}, \boldsymbol{R})$-246 and $(\boldsymbol{R}, \boldsymbol{S})$-246 are identical structures, representing an achiral meso compound. The meso form is diastereomeric with enantiomers $(\boldsymbol{S}, \boldsymbol{S})-\mathbf{2 4 6}$ and $(\boldsymbol{R}, \boldsymbol{R})-\mathbf{2 4 6}$. With an achiral amine, it is expected that a statistical mixture will be generated from the reaction sequence, that is, equal amounts of (\boldsymbol{S})-269 and (\boldsymbol{R})-269 from the first condensation/Diels-Alder/elimination reaction sequence and equal amounts of $(\boldsymbol{S}, \boldsymbol{S}) \mathbf{- 2 4 6},(\boldsymbol{R}, \boldsymbol{R}) \mathbf{- 2 4 6},(\boldsymbol{S}, \boldsymbol{R})$-246 and $(\boldsymbol{R}, \boldsymbol{S})$-246 from the second reaction sequence i.e. a 1:1 mixture of two diastereomers, chiral $(\boldsymbol{S}, \boldsymbol{S}) \mathbf{- 2 4 6} /(\boldsymbol{R}, \boldsymbol{R}) \mathbf{- 2 4 6}$ as a racemate and achiral meso $(\boldsymbol{S}, \boldsymbol{R})-\mathbf{2 4 6} /(\boldsymbol{R}, \boldsymbol{S})$-246. With chiral amine 80a, (\boldsymbol{S})-269 and $(S, S)-\mathbf{2 6 9}$ are expected to be the favoured stereoisomers, based on the proposed absolute configuration assignment (Section 3.3.1.2). It is anticipated that this twofold enantioselective reaction would result in an amplification of enantioselectivity of (S,S)-246 and ($\boldsymbol{R}, \boldsymbol{R})$-246, in line with the Horeau principle, which was described earlier in Section 3.1.1 (page 281).

Scheme 3.32 Possible stereochemical outcomes of condensation/DielsAlder/elimination reaction sequence of diene-dialdehyde 244, dienophile 137a and amine 80a.

Diene-dialdehyde 244 has been reported in the literature (Scheme 3.33). ${ }^{[25]}$ It was generated as the major product in the thermal isomerisation of 1,4-bis(vinyloxy)but-2-yne (322) at elevated temperatures between 280 to $320{ }^{\circ} \mathrm{C}$ through a twofold Claisen rearrangement. Diene-dialdehyde $\mathbf{3 2 2}$ was reported to undergo decomposition to methyl substituted skipped dienal 236d under the reaction conditions.

Scheme 3.33 Hopf's and Wolff's synthesis of diene-dialdehyde 244 from 1,4-bis(vinyloxy)but-2-yne (323) and decomposition to methyl substituted skipped dienal 236d

Diene-dialdehyde $\mathbf{2 4 4}$ was synthesised via an alternative route (Scheme 3.34), following the procedure by Roscini and co-workers. 1,4-Butynediol (324) was treated with triethylorthoformate and propionic acid to induce a twofold Johnson-Claisen rearrangement ${ }^{[26]}$ to generate diene-diester 325, which was reduced with lithium aluminium hydride to provide diene-diol 326. ${ }^{[27]}$ Twofold DMP oxidation of diene-diol 326 provided diene-dialdehyde 244.

Scheme 3.34 Synthesis of diene-dialdehyde 244

With diene-dialdehyde 244 in hand, the twofold condensation/Diels-Alder/elimination reaction sequence was performed with dienophiles 137a and amine 80a as the catalyst (Table 3.6). An initial attempt produced cyclopentene 327 (enantiopurity not determined) as the major product instead of the desired tetraene-dialdehyde bisadduct 246 (entry 1). Cyclopentene 327 is the product of an intramolecular reaction of dienedialdehyde $\mathbf{2 4 4}$ catalysed by amine 80a (the proposed mechanism is discussed later). To minimise formation of the undesired intramolecular product and favour the intermolecular Diels-Alder reaction, the amount of dienophile 137a was increased from 2.1 to 4 molar equivalents and the concentration of the starting diene-dialdehyde 244 was increased from 0.16 M to 0.50 M . This was successful in favouring the formation of the desired tetraene-dialdehyde bisadduct 246 (ratio of $\mathbf{2 4 6}: \mathbf{3 2 7}=91: 9$), however, the low NMR and isolated yields (50% and 34%, entry 2) require further optimisation.

Table 3.6 Twofold condensation/Diels-Alder/elimination reaction sequence between diene-dialdehyde 244, dienophile 137a and amine 80a

[^1]The proposed mechanism for the formation of cyclopentene $\mathbf{3 2 7}$ is shown in Scheme 3.35. Condensation of amine 80a with dialdehyde $\mathbf{2 4 4}$ generates 1-amino[3]dendralene 328. Intramolecular 5-exo-trig aldol cyclisation via β-addition of the enamine to the aldehyde results in the formation of iminium 329, which upon hydrolysis and isomerisation of one of the exocyclic alkenes into conjugation with the aldehyde generates the observed cyclopentene 327.

Scheme 3.35 Proposed mechanism for the intramolecular aldol condensation of dialdehyde 244

The formation of cyclopentene 327 is not unprecedented, as amine-catalysed 5-exo-trig aldol cyclisations of aliphatic 1,6-dialdehydes have been reported (Scheme 3.36). Woodward reported the 5-exo-trig aldol cyclisation of tricyclic 1,6-dialdehyde 330 in the presence of catalytic amounts of piperidine and acetic acid to generate tetracyclic β-hydroxy aldehyde 331, which underwent dehydration in situ to afford tetracyclic enal 332. ${ }^{[28]}$ An enantioselective variant of a 5-exo-trig aldol cyclisation was reported by List in 2003 in which an aliphatic 1,6-dialdehyde 333 was reacted with proline to provide β-hydroxycyclopentanals $\mathbf{3 3 4}$ and $\mathbf{3 3 5}$ as a mixture of diastereomers. ${ }^{[29]}$

Scheme 3.36 Literature examples of 5-exo-trig aldol cyclisations of aliphatic 1,6dialdehydes $\mathbf{3 3 0}$ and $\mathbf{3 3 3}$

To determine the enantiomer ratio of tetraene-dialdehyde bisadduct ($\boldsymbol{S}, \boldsymbol{S}$) $\mathbf{- 2 4 6}$ by HPLC on chiral stationary phase, the racemic sample were synthesised by using pyrrolidine as the amine catalyst (Scheme 3.37). As expected (see pages 316-317), this reaction provided a mixture of two diastereomers (ca. 1:1 as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude reaction mixture). Purification by flash column chromatography provided pure samples of each diastereomer for characterisation. The relative stereochemistry of the meso cycloadduct meso-246 was determined by single crystal X-ray analysis (Figure 3.7). Attempts to separate the enantiomers of $\boldsymbol{r a c} \mathbf{- 2 4 6}$ by chiral HPLC was not successful thus the enantiomer ratio for cycloadduct (S, S) - $\mathbf{2 4 6}$ was not determined.

Scheme 3.37 Twofold condensation/Diels-Alder/elimination reaction sequence between diene-dialdehyde 244, dienophiles 137a and pyrrolidine

Figure 3.7 X-ray crystal structure of cycloadduct meso-246

3.4 Summary

In summary, the first examples of organocatalysed enantioselective Diels-Alder reactions between acyclic 1-amino[3]dendralenes 241, the condensation product of skipped dienals $\mathbf{1 3 6}$ and amines 80, and various dienophiles 137 were developed. In all cases, Diels-Alder reaction occurred exclusively at the amine-substituted 1,3-butadiene unit. This is different to what was observed in the reaction between semi-cyclic 1 amino[3]dendralenes 199 and 3-alkenic oxindoles 200, where Diels-Alder reaction at the semi-cyclic 1,3-butadiene site, more distant from the amine substituent, was observed.

b)

Scheme 3.38 Comparison between a) our Diels-Alder/elimination reaction between acyclic 1 -amino[3]dendralenes 136a-f and β substituted acroleins 137 and b) reported ${ }^{[8]}$ Diels-Alder/hydrolysis/Wittig reaction between semi-cyclic 1-amino[3]dendralenes 199 and oxindoles 200

Various dienophiles and skipped dienals were prepared and examined in the reaction (Scheme 3.39). Acroleins bearing electron-withdrawing groups such as esters, ketones and nitrile at the β position generated the desired cycloadducts 242a-f in moderate to good yield and enantioselectivity. The absence of an electron-withdrawing substituent at the β position of the dienophile reduced its reactivity in the Diels-Alder reaction step and the overall yield of the reaction was lower in these cases. o-Nitrocinnamaldehyde, which bears a less electron withdrawing o-nitrophenyl substituent at the β position, provided the corresponding cycloadduct $\mathbf{2 4 2 g}$ in much lower yield. The presence of an aldehyde at the α position appears to be important for the amine catalyst to be regenerated via elimination (see proposed mechanism on page 293). The use of β-nitrostyrene did not generate the desired cycloadduct $\mathbf{2 4 2 h}$, likely due to difficulty at the elimination step. The reaction tolerates aryl and alkyl substituents on the terminal
alkene and these generated the corresponding cycloadducts 242i-m in good yields and excellent enantioselectivities.

Scheme 3.39 Condensation/Diels-Alder/elimination reaction between skipped dienals 236a-f, dienophiles 137a-h and amines 80a-b

The method was extended to access polycyclic compounds such as pentacycle $\mathbf{3 1 3}$ and tricycle $\mathbf{3 2 0}$ (Scheme 3.40). Further analysis is required to determine the relative configurations of pentacycle 313.
a)

(1.3 mol equiv), rt
i) NMM (1.2 equiv), toluene- $\mathrm{d}_{8}, 60^{\circ} \mathrm{C}$ (over 2 steps) 93:7 er
condensation/Diels-Alder/ elimination/Wittig
ii) NPM (5 equiv), $110^{\circ} \mathrm{C}$ 57\% (over 2 steps)
\downarrow double Diels-Alder

b)

Scheme 3.40 Synthesis of a) pentacycle 313 via a condensation/DielsAlder/elimination/Wittig/double Diels-Alder reaction sequence and b) tricycle 320 via a condensation/Diels-Alder/elimination /Diels-Alder/Wittig reaction sequence

A preliminary attempt at the twofold enantioselective Diels-Alder reaction between diene-dialdehyde 244, dienophiles $\mathbf{1 3 7}$ a and amine 80a was successful in producing the desired bicyclic cycloadduct ($\mathbf{S}, \boldsymbol{S}$)-246 but in a low yield of $\mathbf{1 1 \%}$ (determined by NMR spectroscopy) (Scheme 3.41). A competing intramolecular aldol reaction of dienedialdehyde $\mathbf{2 4 4}$ generated cyclopentene $\mathbf{3 2 7}$ as an undesired product. By increasing the concentration of the reaction and molar equivalents of dienophile, the intramolecular aldol reaction pathway was disfavoured and the desired cycloadduct was formed in an improved 50% yield (determined by NMR spectroscopy). The racemic material was synthesised with pyrrolidine as the amine catalyst. Attempts to separate the enantiomers of meso- $\mathbf{2 4 6}$ by HPLC on chiral stationary phase was not successful thus the enantiomer ratio for cycloadduct ($\mathbf{S}, \boldsymbol{S}$)-246 was not determined.

Scheme 3.41 Synthesis of bicycle 246 via a twofold condensation/DielsAlder/elimination reaction between diene-dialdehyde 244, dienophiles 137a and amine 80a or pyrrolidine

3.5 Future Work

The work in this chapter has focused on intermolecular Diels-Alder reactions. An intramolecular Diels-Alder reaction may be performed with a skipped dienal that is tethered to a dienophile, such as trienal 336 (Scheme 3.42a). This could then be further transformed into polycyclic structures such as tetracycle $\mathbf{3 3 9}$ using the steps shown in Scheme 3.40a. There have been intramolecular examples of similar transformations in the literature with both acyclic ${ }^{[10]}$ (Scheme 3.42b) and cyclic ${ }^{[30]}$ tethered dienophiles (Scheme 3.42c).

Scheme 3.42 Reaction sequences involving intramolecular Diels-Alder reactions a) proposed as an extension of the work described in this chapter b) as reported in the literature with an acyclic dienophile ${ }^{[10]}$ and c) with a cyclic dienophile ${ }^{[30]}$

Members of the Sherburn group have continued research into the twofold condensation/enantioselective Diels-Alder/elimination reaction between dienedialdehyde 244, amine 80a and various dienophiles. The reactions exhibited high enantioselectivities of >99:1 in line with Horeau principle discussed in Section 3.1.1 (page 282).

It may also be interesting to combine an enamine catalysed Diels-Alder reaction, as described in this chapter, with other modes of catalysis. The condensation/DielsAlder/elimination reaction sequence between trienal 339, dienophile 137 and amine 80a is expected to produce tetraene 340, which could undergo an iminium catalysed DielsAlder reaction with MacMillan's catalyst $\mathbf{2 5 4}$ and acrolein to generate bicyclic bisadduct 341 (Scheme 3.43).

Scheme 3.43 An enamine catalysed Diels-Alder reaction followed by an iminium catalysed Diels-Alder reaction on skipped trienal 339

3.6 References

[1] D. H. Ryu, T. W. Lee, E. J. Corey, J. Am. Chem. Soc. 2002, 124, 9992-9993.
[2] T. A. Bradford, A. D. Payne, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, J. Org. Chem. 2010, 75, 491-494.
[3] M. N. Paddon-Row, C. D. Anderson, K. N. Houk, J. Org. Chem. 2009, 74, 861868.
[4] K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243-4244.
[5] N. J. Green, A. L. Lawrence, G. Bojase, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Angew. Chem. Int. Ed. 2013, 52, 8333-8336.
[6] A. D. Payne, G. Bojase, M. N. Paddon-Row, M. S. Sherburn, Angew. Chem. Int. Ed. 2009, 48, 4836-4839.
[7] J. P. Vigneron, M. Dhaenens, A. Horeau, Tetrahedron 1973, 29, 1055-1059.
[8] K. S. Halskov, T. K. Johansen, R. L. Davis, M. Steurer, F. Jensen, K. A. Jørgensen, J. Am. Chem. Soc. 2012, 134, 12943-12946.
[9] A. Orue, E. Reyes, J. L. Vicario, L. Carrillo, U. Uria, Org. Lett. 2012, 14, 37403743.
[10] R. M. de Figueiredo, R. Frohlich, M. Christmann, Angew. Chem. Int. Ed. 2008, 47, 1450-1453.
[11] F. J. S. Duarte, A. G. Santos, J. Org. Chem. 2012, 77, 3252-3261.
[12] Y. Huang, V. H. Rawal, J. Am. Chem. Soc. 2002, 124, 9662-9663.
[13] L. Xu, J. Huang, Y. Liu, Y. Wang, B. Xu, K. Ding, Y. Ding, Q. Xu, L. Yu, Y. Fan, RSC Advances 2015, 5, 42178-42185.
[14] B.-C. Hong, M.-F. Wu, H.-C. Tseng, G.-F. Huang, C.-F. Su, J.-H. Liao, J. Org. Chem. 2007, 72, 8459-8471.
[15] T. Satoh, N. Hanaki, Y. Kuramochi, Y. Inoue, K. Hosoya, K. Sakai, Tetrahedron 2002, 58, 2533-2549.
[16] O. Meth-Cohn, J. Chem. Soc., Chem. Commun. 1986, 695-697.
[17] J. Moreira, J. Millar, J. Chem. Ecol. 2005, 31, 965-968.
[18] F. F. Fleming, Q. Wang, O. W. Steward, J. Org. Chem. 2001, 66, 2171-2174.
[19] R. E. Buckles, M. P. Bellis, Org. Synth. 1953, 33, 60-61.
[20] Y. Hayashi, D. Okamura, T. Yamazaki, Y. Ameda, H. Gotoh, S. Tsuzuki, T. Uchimaru, D. Seebach, Chem. Eur. J. 2014, 20, 17077-17088.
[21] A. K. Weber, J. Schachtner, R. Fichtler, T. M. Leermann, J. M. Neudoerfl, A. J. von Wangelin, Org. Biomol. Chem. 2014, 12, 5267-5277.
[22] M. H. Haindl, M. B. Schmid, K. Zeitler, R. M. Gschwind, RSC Advances 2012, 2, 5941-5943.
[23] J. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296-18304.
[24] C. I. Turner, M. N. Paddon-Row, A. C. Willis, M. S. Sherburn, J. Org. Chem. 2005, 70, 1154-1163.
[25] H. Hopf, J. Wolff, Eur. J. Org. Chem. 2001, 2001, 4009-4030.
[26] W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brocksom, T.-T. Li, D. J. Faulkner, M. R. Petersen, J. Am. Chem. Soc. 1970, 92, 741-743.
[27] C. Roscini, K. L. Cubbage, M. Berry, A. J. Orr-Ewing, K. I. Booker-Milburn, Angew. Chem. Int. Ed. 2009, 48, 8716-8720.
[28] R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, W. M. McLamore, J. Am. Chem. Soc. 1952, 74, 4223-4251.
[29] C. Pidathala, L. Hoang, N. Vignola, B. List, Angew. Chem. Int. Ed. 2003, 42, 2785-2788.
[30] A. Fraile, J. Alemán, Synlett 2015, 26, 1940-1954.

3.7 Experimental Section

3.7.1 General Methods

${ }^{1} \mathrm{H}$ NMR spectra were recorded under standard conditions at 400 MHz or 300 MHz using a Bruker AVANCE 400, Varian MR400 or Varian Mercury 300 spectrometer. Residual chloroform ($\delta 7.26 \mathrm{ppm}$) was used as an internal reference for ${ }^{1} \mathrm{H}$ NMR spectra recorded in this solvent. Coupling constants (J) are quoted to the nearest 0.1 Hz . Assignment of proton signals was assisted by COSY and/or HSQC experiments where necessary. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz on a Bruker AVANCE 400 or Varian MR400 spectrometer. Chloroform ($\delta 77.10 \mathrm{ppm}$) was used as an internal reference for ${ }^{13} \mathrm{C}$ NMR spectra recorded in this solvent. For other solvents, residual solvents were referenced according to Fulmer and co-workers. ${ }^{[1]}$ Assignment of carbon signals was assisted by HSQC and/or HMBC experiments. IR spectra were recorded on a Perkin-Elmer 1600 FTIR spectrometer as neat films on sodium chloride plates for oils, potassium bromide discs for solid products or a Perkin-Elmer UATR Two spectrometer as a thin film or solid with only selected peaks being reported as characteristic. Low resolution electron impact (EI) mass spectra were recorded on an Agilent HP 6890 series gas GC/MS with a 7683 series injector. High resolution EI mass spectra were recorded on a Waters AutoSpec Premier spectrometer magnetic sector instrument, operating at 70 eV . Low resolution electrospray ionization (ESI) mass spectra were recorded on a ZMD Micromass spectrometer with Waters Alliance 2690 HPLC. High resolution ESI mass spectra were recorded on a Waters LCT Premier time-of-flight (TOF) mass spectrometer. Positive ionization was employed unless otherwise indicated. Melting points were measured on a Reichert melting point stage or Stanford Research Systems Optimelt-Automated Melting Point System and are uncorrected. Analytical HPLC was conducted using a Waters 600E pump and controller monitored by a Waters 2996 photodiode array detector, or a PDR chiral pump and autosampler monitored by a multi-wavelength detector and a laser polarimeter. Analytical TLC was performed using Merck silica gel plates, pre-coated with silica gel 60 F243 (0.2 mm). Compounds on TLC were visualized by exposure to UV light and/or by dipping the plates in solutions of potassium permanganate followed by heating. Flash chromatography was carried out using Merck Kiesegel 60 (230-400 mesh) silica gel. Reactions were conducted open to air unless otherwise indicated. Solvents were dried using a solvent purification system based on that described by Pangborn and co-
workers, ${ }^{[2]}$ or dried using standard laboratory methods. ${ }^{[3]}$ All chemicals were purchased from Sigma Aldrich, Alfa Aesar, Merck or Strem and used without further purification.

3.7.2 Experimental

3.7.2.1 Synthesis of precursors

Synthesis of skipped dienals 236a-f
The syntheses of skipped dienals 236a-e are described in the experimental section of Chapter 2 on pages 63-69.

3-(Cyclohex-1-en-1-yl)but-3-en-1-ol $236 f$

A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(84 \mathrm{mg}, 0.81 \mathrm{mmol}, 0.025 \mathrm{~mol}$ equiv), tri(2-furyl)phosphine ($75 \mathrm{mg}, 0.32 \mathrm{mmol}, 0.10 \mathrm{~mol}$ equiv), silver carbonate (1.34 g , $4.86 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv) and boronic acid $296 f(490 \mathrm{mg}, 3.89 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) were placed in a round-bottom flask. The flask was purged under reduced pressure (0.1 mmHg) and back-filled with argon three times. A solution of iodide $\mathbf{2 9 7 f}$ ($642 \mathrm{mg}, 3.24$ mmol) in freshly degassed THF (32 mL) was cannulated into the mixture and stirred at rt until the iodide was completely consumed (3.5 h). The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous sodium bicarbonate solution and filtered through Celite. The organic layer was collected while the aqueous layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were dried over potassium carbonate and concentrated under reduced pressure. Purification by flash column chromatography on silica gel eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (85:15:1 to $80: 20: 1$ to $70: 30: 1$) provided the title compound ($357 \mathrm{mg}, 2.35 \mathrm{mmol}, 72 \%$) as a yellow oil: $R_{f} 0.22$ petrol/EtOAc/Et ${ }_{3} \mathrm{~N}(80: 20: 1) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H})$, 4.88 (s, 1H), $3.78-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.72-$
$1.63(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $144.7(\mathrm{C}), 135.4(\mathrm{C}), 125.3(\mathrm{CH}), 111.2\left(\mathrm{CH}_{2}\right), 61.7\left(\mathrm{CH}_{2}\right), 37.0\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right)$, $25.9\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (UATR): $v_{\max }=3340$ (broad), 2928, 2859, $2835 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 152 (62) [M] ${ }^{+\bullet}, 121$ (100), 81 (60); HRMS: calc for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+\bullet}: 152.1201$; found 152.1204.

3-(Cyclohex-1-en-1-yl)but-3-enal 236f

To a solution of dienol 297 f ($325 \mathrm{mg}, 2.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added NaHCO_{3} ($895 \mathrm{mg}, 10.6 \mathrm{mmol}, 5.0 \mathrm{~mol}$ equiv) then Dess-Martin periodinane (1.17 g , $2.77 \mathrm{mmol}, 1.3 \mathrm{~mol}$ equiv) in portions. The reaction mixture was stirred at rt until complete consumption of the alcohol as indicated by TLC (1 h). The reaction mixture was diluted with diethyl ether and washed with a solution of saturated aqueous $\mathrm{NaHCO}_{3} /$ saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}$ (1:1:1). The organic layer was collected while the aqueous layer was re-extracted with diethyl ether. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to provide the title compond ($224 \mathrm{mg}, 1.49 \mathrm{mmol}, 70 \%$) as a colourless oil, which was used without further purification: $R_{f} 0.55$ petrol/EtOAc (80:20); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 9.55-9.52(\mathrm{t}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 2.27-2.17$ $(\mathrm{m}, 2 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.4(\mathrm{CH}), 139.6(\mathrm{C}), 135.7(\mathrm{C}), 127.0(\mathrm{CH}), 113.9\left(\mathrm{CH}_{2}\right), 49.3$ $\left(\mathrm{CH}_{2}\right)$, $26.0\left(\mathrm{CH}_{2}\right)$, $25.7\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=2928$, 2859, 2834, $1723 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 150 [M] ${ }^{+\bullet}$ (51), 121 (100); HRMS: calc for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+\bullet}: 150.1045$; found 150.1045 .

Synthesis of dienophiles 137b-h

Methyl (E)-4,4-dimethoxybut-2-enoate 281

The title compound was prepared using a literature procedure. ${ }^{[4]}$ This reaction was conducted under argon. A mixture of phosphonoacetate $280(2.67 \mathrm{~mL}, 16.6 \mathrm{mmol})$ and potassium carbonate ($3.42 \mathrm{~g}, 24.8 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv) in cyclohexane (20 mL) was heated to $60^{\circ} \mathrm{C}$ for 30 min before being cooled to rt. Dimethoxyacetaldehyde 279 (5.0 mL of a $60 \% \mathrm{~mol} \mathrm{wt}$ in $\mathrm{H}_{2} \mathrm{O}$ solution, $32.9 \mathrm{mmol}, 2 \mathrm{~mol}$ equiv) was added and the mixture was heated to $60^{\circ} \mathrm{C}$ for 1.5 h before being cooled to rt . The reaction mixture was added to saturated aqueous ammonium chloride solution/ $\mathrm{Et}_{2} \mathrm{O}$ (1:1). The aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to provide the title compound ($2.91 \mathrm{~g}, 15.4 \mathrm{mmol}, 94 \%$) as a colourless oil. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[4]}$

Methyl (E)-4-oxobut-2-enoate 137b

The title compound was prepared using a literature procedure. ${ }^{[4]} p \mathrm{TSA} \cdot \mathrm{H}_{2} \mathrm{O}(205 \mathrm{mg}$, $1.08 \mathrm{mmol}, 0.07 \mathrm{~mol}$ equiv) was added to a solution of dimethoxy methyl ester 281 ($2.91 \mathrm{~g}, 15.4 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}$ /acetone ($1: 1,70 \mathrm{~mL}$). The solution was heated to reflux for 2 h before being cooled to rt and poured into saturated aqueous sodium bicarbonate solution $/ \mathrm{Et}_{2} \mathrm{O}$ (1:1). The mixture was concentrated under reduced pressure and extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over magnesium sulfate and concentrated under reduced pressure to provide the title compound ($1.12 \mathrm{~g}, 9.82 \mathrm{mmol}, 64 \%$) as a pale yellow solid. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[4]}$
tert-Butyl (E)-4,4-dimethoxybut-2-enoate $\mathbf{2 8 2}$

The title compound was prepared using a modified literature procedure. ${ }^{[5]}$ A solution of t-butanol ($0.304 \mathrm{~mL}, 3.18 \mathrm{mmol}, 1.24 \mathrm{~mol}$ equiv) in THF (5 mL) was cooled in an ice bath. $n-\operatorname{BuLi}(2.18 \mathrm{~mL}$ of a 1.46 m hexanes solution, $3.18 \mathrm{mmol}, 1.24 \mathrm{~mol}$ equiv) was added to the solution followed by a solution of dimethoxy methyl ester 281 (482 mg , $2.56 \mathrm{mmol})$ in THF (1 mL). The reaction mixture was warmed to rt and stirred at rt for 3 h. The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}$ (1:1) and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to provide the title compound as a colourless oil, which was used without further purification. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[6]}$
tert-Butyl (E)-4-oxobut-2-enoate 137c

The title compound was prepared using a modified literature procedure. ${ }^{[4]} p \mathrm{TSA} \cdot \mathrm{H}_{2} \mathrm{O}$ ($31 \mathrm{mg}, 0.165 \mathrm{mmol}, 0.07 \mathrm{~mol}$ equiv) was added to a solution of dimethoxy t-butyl ester 282 ($476 \mathrm{mg}, 2.35 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O} /$ acetone ($1: 1,10 \mathrm{~mL}$). The solution was heated to reflux (oil bath set to $80^{\circ} \mathrm{C}$) for 2 h before being cooled to rt and poured into saturated aqueous sodium bicarbonate solution/ $\mathrm{Et}_{2} \mathrm{O}$ (1:1). The mixture was concentrated under reduced pressure and extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over magnesium sulfate and concentrated under reduced pressure. Purification by flash column chromatography on silica gel eluting with
hex $/ \mathrm{Et}_{2} \mathrm{O}(80: 20)$ provided the title compound ($174 \mathrm{mg}, 1.36 \mathrm{mmol}, 53 \%$ over 2 steps) as a yellow oil. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[7]}$

2-n-Propylfuran 284

The title compound was prepared using a modified literature procedure. n - BuLi (31.0 mL of a 1.54 m hexanes solution, $48.5 \mathrm{mmol}, 1.10 \mathrm{~mol}$ equiv) was added to a solution of furan (283) ($3.54 \mathrm{~mL}, 48.5 \mathrm{mmol}, 1.10 \mathrm{~mol}$ equiv) in THF (180 mL) at $-15^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 3 hours. 1-Iodopropane ($4.30 \mathrm{~mL}, 44.1 \mathrm{mmol}$) was added dropwise and the mixture was stirred at at $-15^{\circ} \mathrm{C}$ for 1.5 h before being warmed to rt , stirred at rt for 1 h and quenched with water. The aqueous layer was extracted three times with pentane/Et 2 O (1:1). The combined organic layers were washed with aqueous 5% sodium sulfite solution, water and brine successively, dried over sodium sulfate and concentrated under reduced pressure in an ice bath. The title compound was obtained as a solution in THF (2.86 g of 2-n-propylfuran (284) in 0.55 mL of THF, 59%), which was used without further purification. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[8]}$

(E)-4-Oxohept-2-enal 137d

The title compound was prepared using a literature procedure. ${ }^{[9]}$ A solution of 2-npropyl furan (284) ($1.40 \mathrm{~g}, 12.7 \mathrm{mmol}$) in THF/acetone/water ($42 \mathrm{~mL}, 20: 15: 7$) was cooled to $-15^{\circ} \mathrm{C} . n$-Bromosuccinimide ($3.40 \mathrm{~g}, 19.1 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv) was added followed by pyridine ($2.05 \mathrm{~mL}, 25.4 \mathrm{mmol}, 2 \mathrm{~mol}$ equiv). The reaction mixture was
stirred at $-15^{\circ} \mathrm{C}$ for 3 hours before being warmed to rt , stirred at rt for 15 h and poured into a mixture of 0.5 m aqueous $\mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}$ (3:2). The aqueous layer was extracted three times with diethyl ether and the combined organic layers were washed with brine, dried over sodium sulfate and concentrated under reduced pressure. Purification by flash column chromatography on silica gel eluting with pentane/diethyl ether (70:30) provided the title compound ($560 \mathrm{mg}, 4.45 \mathrm{mmol}, 35 \%$) as a colourless oil. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[10]}$

4,4-Dimethoxy-1-phenylbut-2-en-1-one 286

The title compound was prepared using a modified literature procedure. ${ }^{[4]}$ This reaction was conducted under argon. A solution of phosphorane $285(1.00 \mathrm{~g}, 2.63 \mathrm{mmol})$ and dimethoxyacetaldehyde $279\left(0.79 \mathrm{~mL}\right.$ of a $60 \% \mathrm{~mol} \mathrm{wt}$ in $\mathrm{H}_{2} \mathrm{O}$ solution, $5.26 \mathrm{mmol}, 2$ mol equiv) in cyclohexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,10 \mathrm{~mL})$ was stirred at rt for 2 h . The reaction mixture was added to $\mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}$ (1:1). The aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine, dried over magnesium sulfate and concentrated under reduced pressure. Purification by flash column chromatography on silica gel eluting with hex/EtOAc (100:0 then 80:20) provided the title compounds as a mixture ($490 \mathrm{mg}, 2.38 \mathrm{mmol}, 90 \%$, ratio of $E: Z=1: 4$) as a yellow oil: $R_{f} 0.51$ hex/EtOAc (70:30); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.91$ (m, 8H, Z286 and \boldsymbol{E}-286), 7.63 - 7.55 (m, 4H, Z-286 and $\boldsymbol{E}-286$), 7.48 (m, 8H, Z-286 and $\boldsymbol{E}-286$), 7.21 (dd, J = 15.6, 1.5 Hz, 3H, Z-286), 6.89 (dd, J = 12.1, 1.1 Hz, 1H, E-286), 6.83 (dd, $\mathrm{J}=15.6,3.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{Z}-286), 6.16(\mathrm{dd}, \mathrm{J}=12.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \boldsymbol{E}-286), 5.49(\mathrm{dd}, \mathrm{J}=7.0$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \boldsymbol{E}-\mathbf{2 8 6}$), 5.07 (dd, J = 3.8, $1.4 \mathrm{~Hz}, 3 \mathrm{H}, \boldsymbol{Z}-\mathbf{2 8 6}$), 3.38 (s, 24H, Z-286 and \boldsymbol{E} 286).
(E)-4-Oxo-4-phenylbut-2-enal 137e

$p \mathrm{TSA} \cdot \mathrm{H}_{2} \mathrm{O}$ ($32 \mathrm{mg}, 0.167 \mathrm{mmol}, 0.07 \mathrm{~mol}$ equiv) was added to a solution of dimethoxy phenyl \boldsymbol{E}-286 and \boldsymbol{Z}-286 ($490 \mathrm{mg}, 2.38 \mathrm{mmol}$, ratio of $E: Z=1: 4$) in $\mathrm{H}_{2} \mathrm{O}$ /acetone (1:1, 10 mL). The solution was heated to reflux (oil bath set to $80^{\circ} \mathrm{C}$) for 2 h before being cooled to rt and poured into saturated aqueous sodium bicarbonate solution/Et2 O (1:1). The mixture was concentrated under reduced pressure and extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over magnesium sulfate and concentrated under reduced pressure. Purification by flash column chromatography on silica gel eluting with hex/Et $\mathrm{t}_{2} \mathrm{O}$ (100:0 to $60: 40$) provided the title compound ($264 \mathrm{mg}, 1.65 \mathrm{mmol}, 69 \%$) as an orange solid. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[11]}$

2-(Oxiran-2-yl)acetonitrile 288

The title compound was prepared using a literature procedure. ${ }^{[12]}$ To a solution of allylcyanide (287) ($2.00 \mathrm{~g}, 29.8 \mathrm{mmol}$) in dichloromethane (60 mL) was added m CPBA (70% purity, $5.51 \mathrm{~g}, 44.8 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv) with $1 / 8$ of the total amount (1.38 g) added each day over a period of 8 days. The reaction mixture was then cooled in ice and saturated aqueous sodium sulfite solution was added portionwise. The mixture was left to stir until 2 clear layers remained before the organic layer was separated, washed three times with saturated aqueous sodium bicarbonate solution, dried over sodium sulfate and concentrated under reduced vacuum. Purification by flash column chromatography on silica gel eluting with petrol/ $\mathrm{Et}_{2} \mathrm{O}(80: 20$ then $0: 100)$ provided the title compound $(1.65 \mathrm{~g}, 19.9 \mathrm{mmol}, 67 \%)$ as a colourless oil. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[13]}$

4-Hydroxybut-2-enenitrile 289

The title compound was prepared using a literature procedure. ${ }^{[12]}$ A solution of diisopropylamine ($6.20 \mathrm{~mL}, 44.3 \mathrm{mmol}, 2.0 \mathrm{~mol}$ equiv) in THF (40 mL) was cooled to $78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath. $n-\operatorname{BuLi}(28.0 \mathrm{~mL}$ of a 1.56 m hexanes solution, 44.3 mmol, 2.0 mol equiv) was added and the solution was stirred for 10 minutes. A solution of nitrile $\mathbf{2 8 8}(1.84 \mathrm{~g}, 22.1 \mathrm{mmol})$ in THF (18 mL) was added to the LDA solution at $78^{\circ} \mathrm{C}$, resulting in the formation of a thick yellow precipitate. Following the addition of acetic acid $(5 \mathrm{~mL})$ and ethyl acetate $(60 \mathrm{~mL})$, the mixture was filtered through a short pad of silica gel, which was rinsed with ethyl acetate (100 mL). The filtrate was concentrated under reduced pressure and purified by flash column chromatography on silica gel eluting with petrol/ethyl acetate ($70: 30$ then $60: 40$) provided the title compound ($695 \mathrm{mg}, 8.36 \mathrm{mmol}, 38 \%, E: Z=9: 1$) as a colourless oil. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[14]}$

(E)-4-oxobut-2-enenitrile $\mathbf{1 3 7} \mathbf{g}$

Manganese dioxide ($10.9 \mathrm{~g}, 8.36 \mathrm{mmol}, 15.0 \mathrm{~mol}$ equiv) was added to a solution of allylic alcohol 289 ($695 \mathrm{mg}, 8.36 \mathrm{mmol}, E: Z=9: 1$) in dichloromethane (40 mL). The mixture was stirred at rt for 2 days then filtered through Celite, concentrated under reduced pressure and purified by flash column chromatography on silica gel eluting with petrol/ether ($60: 40$) to provide the title compound as a red oil ($321 \mathrm{mg}, 3.86 \mathrm{mmol}$, 46%). The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[14]}$

(E)-3-(2-nitrophenyl)acrylaldehyde 137h

The title compound was prepared using a literature procedure. ${ }^{[15]}$ A solution of E-cinnamaldehyde (291) ($27 \mathrm{~mL}, 0.227 \mathrm{~mol}$) in acetic anhydride (120 mL) was cooled in an ice-salt bath. A solution of nitric acid ($9.7 \mathrm{~mL}, 0.233 \mathrm{~mol}, 1.03 \mathrm{~mol}$ equiv) in acetic acid (27 mL) was added dropwise while maintaining the internal temperature of the reaction mixture below $5^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and left to stand at rt for two days after which it is cooled in an ice bath and 2 m hydrochloric acid solution (300 mL) was added in portions. The mixture was then left at rt for three days and the yellow needles formed were collected. This was repeated twice to obtain two more batches of product. The combined product was recrystallised from hot ethanol to provide the title compound ($7.7 \mathrm{~g}, 0.0435 \mathrm{~mol}, 19 \%$) as pale yellow needles. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[16]}$

3.7.2.2 Condensation/Diels-Alder/elimination reaction sequence

Synthesis of mono-adducts 242a-m

General procedure:

To a solution of skipped dienal 236 (1.0 mol equiv, unless otherwise specified) in CDCl_{3} was added the dienophile 137 (1.2 mol equiv, unless otherwise specified) followed by the amine catalyst $\mathbf{8 0}$ ($10 \mathrm{~mol} \%$, unless otherwise specified). The resulting mixture was transferred into an NMR tube, shaken briefly then held at $25^{\circ} \mathrm{C}$ until complete consumption of the skipped dienal 236 was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction mixture was concentrated under reduced pressure then
purified by flash column chromatography on silica gel (30 x crude material mass) to provide the product. Racemic material was prepared in the same manner using pyrrolidine ($20 \mathrm{~mol} \%$) as the amine catalyst with comparable yields. (Mono-adducts 242a-m should be concentrated under reduced pressure at a temperature of $25^{\circ} \mathrm{C}$ or lower to minimise decomposition.)

Ethyl (S)-2-formyl-5-vinylcyclohexa-2,4-diene-1-carboxylate 242a

Prepared using skipped dienal 236a ($15 \mathrm{mg}, 0.156 \mathrm{mmol}$), dienophile 137a (24 mg , $0.187 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and amine 80a ($5 \mathrm{mg}, 0.0156 \mathrm{mmol}, 10 \mathrm{~mol} \%$). Purification by flash column chromatography on silica gel eluting with hex/Et2 $\mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ (10:90:1 then 20:80:1) provided the title compound ($25 \mathrm{mg}, 0.121 \mathrm{mmol}, 78 \%$) as a yellow oil: $R_{f} 0.12$ hex/Et 2 O (80:20); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 6.97$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=5.6,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.57 (d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.36 (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.01-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.78$ (dd, $J=9.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=17.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=17.6,9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13}{ }^{3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.1(\mathrm{CH}), 172.2(\mathrm{C})$, $144.0(\mathrm{C}), 143.3(\mathrm{CH}), 137.1(\mathrm{CH}), 135.3(\mathrm{C}), 123.4(\mathrm{CH}), 118.1\left(\mathrm{CH}_{2}\right), 61.2\left(\mathrm{CH}_{2}\right)$, $35.2(\mathrm{CH}), 25.4\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=2981,2814,2720,1730$, 1670, $1548 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 206 (9) [M] ${ }^{+\bullet}, 177$ (86), 133 (100); HRMS: calc for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}]^{+}: 206.0943$; found 206.0946; $[\alpha]_{\mathrm{D}}=-215$ (c 1.2, MeOH); e.r. 94:6, determined by chiral HPLC (Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA $60: 40,1 \mathrm{~mL} / \mathrm{min}$), minor $(+)$ enantiomer $\mathrm{t}_{\mathrm{R}}=5.7 \mathrm{~min}$, major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=16.0$ min.

Methyl (S)-2-formyl-5-vinylcyclohexa-2,4-diene-1-carboxylate 242b

Prepared using skipped dienal 236a ($23 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv), dienophile 137b ($23 \mathrm{mg}, 0.20 \mathrm{mmol}$) and amine $\mathbf{8 0 a}(6.5 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. Purification by flash column chromatography on silica gel eluting with hex/Et ${ }_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ (80:20:1 then $70: 30: 1$) provided the title compound ($29 \mathrm{mg}, 0.15 \mathrm{mmol}, 76 \%$) as a yellow oil: $R_{f} 0.14$ hex/Et 2 O (70:30); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.50(\mathrm{dd}, J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.38$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (dd, $J=9.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (s, 3H), 3.19 (dd, $J=$ 17.7, $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.52(\mathrm{dd}, J=17.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $191.1(\mathrm{CH}), 172.8(\mathrm{C}), 144.2(\mathrm{C}), 143.4(\mathrm{CH}), 137.0(\mathrm{CH}), 135.0(\mathrm{C}), 123.4(\mathrm{CH})$, $118.3\left(\mathrm{CH}_{2}\right), 52.5\left(\mathrm{CH}_{3}\right), 35.0(\mathrm{CH}), 25.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=3007,2952$, 2819, 2722, 1733, 1670, $1548 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 192 (30) [M] ${ }^{+\cdot}, 133$ (100), 79 (35); HRMS: calc for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}[\mathrm{M}]^{+}: 192.0786$; found 192.0788; [$\left.\alpha\right]_{\mathrm{D}}=$ -159 (c 0.93, MeOH); e.r. 8:92, determined by chiral HPLC (Chiralcel OJ-H column, $150 \times 4.6 \mathrm{~mm}$), hex/IPA $70: 30,1 \mathrm{~mL} / \mathrm{min}$), minor $(+)$ enantiomer $\mathrm{t}_{\mathrm{R}}=7.6 \mathrm{~min}$, major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=16.7 \mathrm{~min}$.
tert-Butyl (S)-2-formyl-5-vinylcyclohexa-2,4-diene-1-carboxylate 242c

Prepared using skipped dienal 236a ($21 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv), dienophile 137c ($23 \mathrm{mg}, 0.18 \mathrm{mmol}$) and amine $\mathbf{8 0 a}(5.9 \mathrm{mg}, 0.018 \mathrm{mmol}, 10 \mathrm{~mol} \%$). Purification by flash column chromatography on silica gel eluting with hex/Et ${ }_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}(90: 10: 1)$
provided the title compound ($31 \mathrm{mg}, 0.13 \mathrm{mmol}, 74 \%$) as a yellow oil: $R_{f} 0.13$ hex/ $\mathrm{Et}_{2} \mathrm{O}$ (80:20); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.56$ ($\mathrm{s}, 1 \mathrm{H}$), 6.95 (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.50 (dd, $J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}$, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=9.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=17.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (ddd, $J=17.7,9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.37 (s, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 191.1 (CH), 171.3 (C), 144.0 (C), 142.9 (CH), 137.2 (CH), 136.1 (C), 123.4 (CH), $117.9\left(\mathrm{CH}_{2}\right), 81.3(\mathrm{C}), 36.1(\mathrm{CH}), 27.9\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=$ 2977, 2932, 2811, 2718, 1727, 1671, $1548 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 234 (10) $[\mathrm{M}]^{+}, 133$ (42), 79 (18); HRMS: calc for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}]^{+}: 234.1256$; found 234.1555; $[\alpha]_{\mathrm{D}}=-328(c \quad 1.2, \mathrm{MeOH})$; e.r. $92: 8$, determined by chiral HPLC (Chiralcel OJ-H column, 150 x 4.6 mm), hex/IPA 80:20, $1 \mathrm{~mL} / \mathrm{min}$), minor $(+)$ enantiomer $\mathrm{t}_{\mathrm{R}}=4.7 \mathrm{~min}$, major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=8.4 \mathrm{~min}$.
(S)-6-Butyryl-4-vinylcyclohexa-1,3-diene-1-carbaldehyde 242d

Prepared using skipped dienal 236a ($46 \mathrm{mg}, 0.476 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv), dienophile 137d ($50 \mathrm{mg}, 0.396 \mathrm{mmol}$) and amine 80 a ($13 \mathrm{mg}, 0.040 \mathrm{mmol}, 10 \mathrm{~mol} \%$). Purification by flash column chromatography on silica gel eluting with hex/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}(90: 10: 1$ then 80:20:1) provided the title compound ($60 \mathrm{mg}, 0.29 \mathrm{mmol}, 74 \%$) as a yellow oil: $R_{f} 0.25$ petrol/Et $\mathrm{E}_{2} \mathrm{O}$ (80:20); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.47(\mathrm{dd}, J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=5.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=17.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.38 (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (dd, $J=9.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=17.7,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.51-2.35(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{~h}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.4(\mathrm{CH}), 191.6(\mathrm{C}), 145.4(\mathrm{C}), 145.0(\mathrm{CH}), 137.1(\mathrm{CH})$, $135.8(\mathrm{C}), 123.2(\mathrm{CH}), 118.5\left(\mathrm{CH}_{2}\right), 42.2\left(\mathrm{CH}_{2}\right), 42.1(\mathrm{CH}), 24.5\left(\mathrm{CH}_{2}\right), 17.1\left(\mathrm{CH}_{2}\right)$, $13.7\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=2962,2932,2874,1709,1666,1544 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (70 eV, EI): m/z (\%): 204 (10) [M] ${ }^{+\cdot}, 105$ (49), 79 (25), 77 (63), 71 (100); HRMS: calc for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}:$204.1150; found 204.1151; $[\alpha]_{\mathrm{D}}=-186(c 0.44, \mathrm{MeOH})$; e.r. 90:10,
determined by chiral HPLC (Chiralcel OJ-H column, $150 \times 4.6 \mathrm{~mm}$), hex/IPA 80:20, 1 $\mathrm{mL} / \mathrm{min}$), minor $(+)$ enantiomer $\mathrm{t}_{\mathrm{R}}=7.9 \mathrm{~min}$, major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=35.9 \mathrm{~min}$.
(S)-6-Benzoyl-4-vinylcyclohexa-1,3-diene-1-carbaldehyde 242e

Prepared using skipped dienal 236a ($17 \mathrm{mg}, 0.177 \mathrm{mmol}$), dienophile 137e (34 mg , $0.212 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and amine $80 \mathrm{a}(6.6 \mathrm{mg}, 0.018 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. Purification by flash column chromatography on silica gel eluting with hex/Et2 O ($80: 20$) provided the title compound ($26 \mathrm{mg}, 0.108 \mathrm{mmol}, 61 \%$) as a dark yellow oil: R_{f} 0.10 hex/Et $2 \mathrm{O}(80: 20) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 7.99$ (d, $J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (dd, $J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.74 (dd, $J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ (dd, $J=18.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (ddd, $J=18.4,10.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.0(\mathrm{CH}), 191.1(\mathrm{C})$, $144.8(\mathrm{CH}), 142.7(\mathrm{C}), 137.2(\mathrm{CH}), 136.2(\mathrm{C}), 135.5(\mathrm{C}), 133.2(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.8(\mathrm{CH})$, $123.5(\mathrm{CH})$, $117.6\left(\mathrm{CH}_{2}\right), 37.8(\mathrm{CH}), 26.3\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$; IR (UATR): $v_{\max }=$ 2924, 2817, 2722, 1681, 1662, $1553 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 238 (17) [M] ${ }^{+\bullet}, 105$ (100), 77 (55); HRMS: calc for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+}: 238.0994$; found 238.0994; $[\alpha]_{\mathrm{D}}=-$ 202 (c 0.68, MeOH); e.r. 5:95, determined by chiral HPLC (Chiralcel OJ-H column, $150 \times 4.6 \mathrm{~mm}$), hex/IPA $30: 70,1 \mathrm{~mL} / \mathrm{min}$), minor $(+)$ enantiomer $\mathrm{t}_{\mathrm{R}}=12.0 \mathrm{~min}$, major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=21.7 \mathrm{~min}$.
(S)-2-formyl-5-vinylcyclohexa-2,4-diene-1-carbonitrile 242f

Prepared using skipped dienal 236a ($27 \mathrm{mg}, 0.286 \mathrm{mmol}$, 1.2 mol equiv), dienophile $\mathbf{1 3 7 f}$ ($19 \mathrm{mg}, 0.238 \mathrm{mmol}$) and amine 80a ($8 \mathrm{mg}, 0.024 \mathrm{mmol}, 0.10 \mathrm{~mol}$ equiv). Purification by flash column chromatography on silica gel eluting with hex/Et $\mathrm{t}_{2} \mathrm{O}$ (80:20 to $40: 60$) provided the title compound ($24 \mathrm{mg}, 0.15 \mathrm{mmol}, 63 \%$) as a yellow oil: $R_{f} 0.21$ hex/Et ${ }_{2} \mathrm{O}$ (40:60); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.57(\mathrm{dd}, J=17.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dt}, J=17.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (dd, $J=17.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.2(\mathrm{CH}), 144.2$ $(\mathrm{CH}), 143.3(\mathrm{C}), 136.5(\mathrm{CH}), 130.9(\mathrm{C}), 123.4(\mathrm{CH}), 119.6\left(\mathrm{CH}_{2}\right), 118.7(\mathrm{C}), 26.2$ $\left(\mathrm{CH}_{2}\right), 20.8(\mathrm{CH}) \mathrm{ppm}$; IR (UATR): $v_{\max }=2928,2832,2730,2238,1668,1546 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 159 (100) [M] ${ }^{+\bullet}$, 132 (47), 130 (99); HRMS: calc for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}[\mathrm{M}]^{+\bullet}: 159.0684$; found $159.0678 ;[\alpha]_{\mathrm{D}}=-61(c 0.68, \mathrm{MeOH})$; e.r. 81:19, determined by chiral HPLC (Chiralcel OJ-H column, $150 \times 4.6 \mathrm{~mm}$), hex/IPA 60:40, 1 $\mathrm{mL} / \mathrm{min})$, minor $(+)$ enantiomer $\mathrm{t}_{\mathrm{R}}=10.8 \mathrm{~min}$, major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=12.2 \mathrm{~min}$.
(R)-2'-Nitro-5-vinyl-1,6-dihydro-[1,1'-biphenyl]-2-carbaldehyde 242g

Prepared using skipped dienal 236a ($15 \mathrm{mg}, 0.156 \mathrm{mmol}$), dienophile $\mathbf{1 3 7 g}$ (33 mg , $0.187 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv), amine $\mathbf{8 0 a}$ ($10 \mathrm{mg}, 0.016 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and benzoic acid ($2 \mathrm{mg}, 0.016 \mathrm{mmol} 20 \mathrm{~mol} \%$). The yield of the reaction, as estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4 -dinitrobenzene as an internal standard, was 24%. Purification by
flash column chromatography on silica gel eluting with hex/Et $\mathrm{E}_{2} \mathrm{O}$ (90:10 then 80:20) provided cycloadduct $\mathbf{2 4 2 g}$ as a mixture with dienophile $\mathbf{1 3 7}$. Further purification by flash column chromatography on silica gel eluting with hex/ $\mathrm{Et}_{2} \mathrm{O}$ (90:10) provided an analytical sample of the title compound as a yellow oil: $R_{f} 0.25$ hex/EtOAc (80:20); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.49$ (s, 1H), 7.87 (dd, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (td, $J=$ $7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (td, $J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, J $=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=5.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J$ $=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{ddd}, J$ $=18.4,11.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=18.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 191.1(\mathrm{CH}), 148.9$ (C), 144.2 (CH), 143.6 (C), 138.3 (C), $137.3(\mathrm{CH}), 137.0$ (C), $133.0(\mathrm{CH}), 129.0(\mathrm{CH}), 127.7(\mathrm{CH}), 125.0(\mathrm{CH}), 123.1(\mathrm{CH}), 118.4\left(\mathrm{CH}_{2}\right), 30.1$ $\left(\mathrm{CH}_{2}\right), 29.6(\mathrm{CH}) \mathrm{ppm}$; IR (UATR): $v_{\max }=2818,2720,1663,1549,1521 \mathrm{~cm}^{-1} ;$ MS (ESI): m / z (\%): 278 (100) $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS: calc for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}]^{+\bullet}: 278.0793$; found 278.0792; e.r. 95:5, determined by chiral HPLC (Chiralcel OJ-H column, 150 x 4.6 mm), hex/IPA 90:10, $1 \mathrm{~mL} / \mathrm{min}$), minor $(+)$ enantiomer $\mathrm{t}_{\mathrm{R}}=25.9 \mathrm{~min}$, major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=28.6 \mathrm{~min}$.

Ethyl (S,E)-2-Formyl-5-(oct-1-en-1-yl)cyclohexa-2,4-diene-1-carboxylate 242i

Prepared using skipped dienal 236b ($24 \mathrm{mg}, 0.133 \mathrm{mmol}$), dienophile 137a (20 mg , $0.160 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and amine $\mathbf{8 0 a}\left(4 \mathrm{mg}, 0.013 \mathrm{mmol}, 10 \mathrm{~mol} \%\right.$) in CDCl_{3} $(0.5 \mathrm{~mL})$. Purification by flash column chromatography on silica gel eluting with hex/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}(90: 10: 1)$ provided the title compound ($28 \mathrm{mg}, 0.096 \mathrm{mmol}, 72 \%$) as a yellow oil: $R_{f} 0.07 \mathrm{hex} / \mathrm{Et}_{2} \mathrm{O}(90: 10) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.53(\mathrm{~s}, 1 \mathrm{H}), 6.95$ (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.02(\mathrm{~m}, 3 \mathrm{H}), 4.15-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{dd}, J=9.3,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{dd}, J=17.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=17.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.13(\mathrm{~m}$, $3 \mathrm{H}), 1.41(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.0(\mathrm{CH}), 172.5(\mathrm{C}), 144.8(\mathrm{C}), 144.1(\mathrm{CH})$, $136.8(\mathrm{CH}), 134.1(\mathrm{CH}), 130.9(\mathrm{CH}), 121.2(\mathrm{CH}), 61.2(\mathrm{CH} 2), 35.3(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right)$,
$31.7\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$ ppm; IR (thin film): $v_{\max }=2927,2855,2717,1730,1668,1545 \mathrm{~cm}^{-1} ;$ MS (ESI): m / z (\%): $313[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS: calc for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 313.1780$; found 313.1779; $[\alpha]_{\mathrm{D}}=-265(c 0.87, \mathrm{MeOH})$; e.r. 94:6, determined by chiral HPLC (Chiralcel OJ-H column, $150 \times 4.6 \mathrm{~mm}$), hex/IPA $70: 30,1 \mathrm{~mL} / \mathrm{min}$), minor (+) enantiomer $\mathrm{t}_{\mathrm{R}}=4.1 \mathrm{~min}$, major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=5.3 \mathrm{~min}$.

Ethyl (S,E)-2-Formyl-5-styrylcyclohexa-2,4-diene-1-carboxylate 242j

Prepared using skipped dienal 236c ($23 \mathrm{mg}, 0.133 \mathrm{mmol}$), dienophile 137a (20 mg , $0.160 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and amine $\mathbf{8 0 b}\left(5 \mathrm{mg}, 0.013 \mathrm{mmol}, 10 \mathrm{~mol} \%\right.$) in CDCl_{3} $(0.5 \mathrm{~mL})$. Purification by flash column chromatography on silica gel eluting with hex/ $\mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}(80: 20: 1)$ provided the title compound ($25 \mathrm{mg}, 0.089 \mathrm{mmol}, 67 \%$) as a dark yellow oil: $R_{f} 0.17$ hex/Et $2 \mathrm{O}(60: 40)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.58(\mathrm{~s}, 1 \mathrm{H})$, $7.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 6.30(\mathrm{dd}, J=5.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{qd}, J=7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.84(\mathrm{dd}, J=9.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=17.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=17.4,9.3$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.9(\mathrm{CH})$, 172.3 (C), 144.3 (C), $143.5(\mathrm{CH}), 136.5(\mathrm{C}), 134.7(\mathrm{C}), 132.8(\mathrm{CH}), 128.9(\mathrm{CH}), 128.9$ $(\mathrm{CH}), 128.7(\mathrm{CH}), 127.1(\mathrm{CH}), 123.7(\mathrm{CH}), 61.3\left(\mathrm{CH}_{2}\right), 35.3(\mathrm{CH}), 26.1\left(\mathrm{CH}_{2}\right), 14.1$ $\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=3031,2980,2930,2809,2719,1725,1662,1531 \mathrm{~cm}^{-1}$; MS (ESI): $m / z(\%): 305[\mathrm{M}+\mathrm{Na}]^{+\bullet} ;$ HRMS: calc for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 305.1154$; found 305.1153; $[\alpha]_{\mathrm{D}}=-239(c 0.76$, MeOH); e.r. 91:9, determined by chiral HPLC (Chiralcel OJ-H column, $150 \times 4.6 \mathrm{~mm}$), hex/IPA 70:30, $1 \mathrm{~mL} / \mathrm{min}$), major (-) enantiomer $\mathrm{t}_{\mathrm{R}}=21.4 \mathrm{~min}$, minor $(+)$ enantiomer $\mathrm{t}_{\mathrm{R}}=24.6 \mathrm{~min}$.

Ethyl (S)-2-formyl-5-(prop-1-en-2-yl)cyclohexa-2,4-diene-1-carboxylate 242k

Prepared using skipped dienal 236d ($19 \mathrm{mg}, 0.174 \mathrm{mmol}$), dienophile 137a (27 mg , $0.209 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and amine $\mathbf{8 0 a}$ ($6 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.10 \mathrm{~mol}$ equiv). Purification by flash column chromatography on silica gel eluting with hex/Et2O/Et ${ }_{3} \mathrm{~N}$ ($90: 10: 1$ then $80: 20: 1$) provided the title compound ($27 \mathrm{mg}, 0.12 \mathrm{mmol}, 70 \%$) as a yellow oil: $R_{f} 0.12$ hex/ $\mathrm{Et}_{2} \mathrm{O}(80: 20) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.00$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.15-4.02(\mathrm{~m}$, 2 H), 3.75 (dd, $J=9.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (dd, $J=17.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54 (ddd, $J=17.5$, $9.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 191.1(\mathrm{CH}), 172.3(\mathrm{C}), 145.2(\mathrm{C}), 143.6(\mathrm{CH}), 141.5(\mathrm{C}), 134.8(\mathrm{C}), 119.4$ $(\mathrm{CH}), 117.3\left(\mathrm{CH}_{2}\right), 61.1\left(\mathrm{CH}_{2}\right), 35.5(\mathrm{CH}), 27.0\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=2980,2904,2813,2719,1728,1670,1547 \mathrm{~cm}^{-1} ;$ MS (ESI): $m / z(\%):$ $243[\mathrm{M}+\mathrm{Na}]^{+\bullet} ;$ HRMS: calc for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+\bullet}: 243.0997$; found 243.0996; [$\left.\alpha\right]_{\mathrm{D}}$ $=-188$ (c 0.84, MeOH); e.r. 92:8, determined by chiral HPLC (Chiralcel OJ-H column, $150 \times 4.6 \mathrm{~mm}$), hex/IPA 70:30, $1 \mathrm{~mL} / \mathrm{min}$), minor $(+)$ enantiomer $\mathrm{t}_{\mathrm{R}}=5.5 \mathrm{~min}$, major $(-$) enantiomer $\mathrm{t}_{\mathrm{R}}=20.9 \mathrm{~min}$.

Ethyl (S)-2-formyl-5-(1-phenylvinyl)cyclohexa-2,4-diene-1-carboxylate 2421

Prepared using skipped dienal 236e ($23 \mathrm{mg}, 0.133 \mathrm{mmol}$), dienophile 137a (20 mg , $0.160 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and amine $\mathbf{8 0 b}(5 \mathrm{mg}, 0.013 \mathrm{mmol}, 10 \mathrm{~mol} \%$). Purification by flash column chromatography on silica gel eluting with hex/Et ${ }_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ (90:10:1)
provided the title compound ($25 \mathrm{mg}, 0.089 \mathrm{mmol}, 67 \%$) as a yellow oil: $R_{f} 0.14$ hex/Et $2_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}(80: 20: 1) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.31$ (m, $3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (s, 1H), $5.37(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{qd}, J=7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=9.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (dd, $J=17.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=17.6,9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.2$ (CH), 172.3 (C), 149.3 (C), 145.6 (C), $143.4(\mathrm{CH}), 140.3(\mathrm{C}), 135.0(\mathrm{C}), 128.8(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 123.2(\mathrm{CH})$, $117.5\left(\mathrm{CH}_{2}\right)$, $61.3\left(\mathrm{CH}_{2}\right), 35.6(\mathrm{CH}), 28.2\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (UATR): $v_{\max }=$ 2981, 1729, 1670, $1545 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 282 (22) [M] ${ }^{+\bullet}, 209$ (100), 179 (20), 103 (71); HRMS: calc for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}]^{+}: 282.1256$; found 282.1257; $[\alpha]_{\mathrm{D}}=-51$ (c 0.89, MeOH); e.r. 95:5, determined by chiral HPLC (Chiralcel OJ-H column, 150 x 4.6 mm), hex/IPA 90:10, $1 \mathrm{~mL} / \mathrm{min}$), major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=14.1 \mathrm{~min}$, minor $(+)$ enantiomer $\mathrm{t}_{\mathrm{R}}=20.4 \mathrm{~min}$.

Ethyl (S)-4-formyl-[1,1'-bi(cyclohexane)]-1',4,6-triene-3-carboxylate 242j

Prepared using skipped dienal $236 f(20 \mathrm{mg}, 0.133 \mathrm{mmol}$), dienophile 137a (20 mg , $0.160 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) and amine $\mathbf{8 0 a}$ ($5 \mathrm{mg}, 0.013 \mathrm{mmol}, 10 \mathrm{~mol} \%$). Purification by flash column chromatography on silica gel eluting with hex/Et ${ }_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ (90:10:1) provided the title compound ($24 \mathrm{mg}, 0.092 \mathrm{mmol}, 69 \%$) as a yellow oil: $R_{f} 0.24$ hex/Et 2 O (70:30); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.30(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=6.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=9.1,3.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.21 (dd, $J=17.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (ddd, $J=17.4,9.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-$ $2.11(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 191.1$ (CH), 172.6 (C), 146.5 (C), 144.4 (CH), 135.4 (C), 133.8 (C), 130.7 $(\mathrm{CH}), 116.4(\mathrm{CH}), 61.1\left(\mathrm{CH}_{2}\right), 35.5(\mathrm{CH}), 26.8\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 22.6$ $\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=2980,2929,1732,1668,1538$
cm^{-1}; MS (ESI): $m / z(\%): 283[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS: calc for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 283.1310; found 283.1310; $[\alpha]_{\mathrm{D}}=-251(c 0.59, \mathrm{MeOH})$; e.r. 96:4, determined by chiral HPLC (Chiralcel OJ-H column, $150 \times 4.6 \mathrm{~mm}$), hex/IPA 70:30, $1 \mathrm{~mL} / \mathrm{min}$), minor (+) enantiomer $\mathrm{t}_{\mathrm{R}}=5.1 \mathrm{~min}$, major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=7.0 \mathrm{~min}$.

3.7.2.3 Diels-Alder/Wittig/Diels-Alder/Diels-Alder reaction sequence

Ethyl (S, E)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)-5-vinylcyclohexa-2,4-diene-1carboxylate 299

Via a two step reaction sequence:

Mono-adduct 242a was synthesised as described on page 343. To a solution of trienal 242a ($36 \mathrm{mg}, 0.18 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was added a solution of stabilised ylide 298 ($85 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.4 \mathrm{~mol}$ equiv) in $\mathrm{CDCl}_{3}(0.2 \mathrm{~mL}$) in an NMR tube. The resulting mixture was shaken briefly then held at $25^{\circ} \mathrm{C}$ for 45 h . Purification by flash column chromatography on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (with 1 crystal of BHT per 500 mL of eluent) provided the title compound ($70 \mathrm{mg}, 0.12 \mathrm{mmol}, 68 \%$) as a yellow solid: mp 100-104 ${ }^{\circ} \mathrm{C} ; R_{f} 0.28 \mathrm{CH}_{2} \mathrm{Cl}_{2} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41$ (d, $J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=17.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=5.9$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (dd, $J=17.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.2$ (C), $167.4(\mathrm{C}), 144.9(\mathrm{CH})$, $139.0(\mathrm{C}), 137.4(\mathrm{CH}), 134.2(\mathrm{CH}), 131.8(\mathrm{C}), 124.6(\mathrm{CH}), 117.1(\mathrm{CH}), 115.5\left(\mathrm{CH}_{2}\right)$, 61.1(CH_{2}), $60.4\left(\mathrm{CH}_{2}\right), 38.6(\mathrm{CH}), 25.6\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR $(\mathrm{KBr}$
disc): $v_{\max }=2981,2937,2904,1709,1627,1610,1593 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): m / z(\%):$ 276 (18) $[\mathrm{M}]^{+\bullet}, 203$ (72), 157 (100); HRMS: calc for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}]^{+}: 276.1362$; found 276.1360; $[\alpha]_{\mathrm{D}}=-94(c 0.60, \mathrm{MeOH})$; e.r. 94:6, determined by chiral HPLC (Phenomenex Lux Cellulose 4 column (150 x 4.6 mm), hex/IPA $85: 15,1 \mathrm{~mL} / \mathrm{min}$), minor $(+)$ enantiomer $t_{R}=8.3 \mathrm{~min}$, major $(-)$ enantiomer $\mathrm{t}_{\mathrm{R}}=12.6 \mathrm{~min}$.

The racemic material was obtained by performing the reaction with pyrrolidine (20 $\mathrm{mol} \%$) instead of amine catalyst 80a.

Via a one-pot reaction:

To a solution of skipped dienal 236a ($37 \mathrm{mg}, 0.38 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.4 \mathrm{~mL})$ was added dienophile 137a ($52 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.05 \mathrm{~mol}$ equiv) followed by amine catalyst 80a ($12 \mathrm{mg}, 0.038 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The resulting mixture was transferred into an NMR tube, shaken briefly then held at $25^{\circ} \mathrm{C}$ until complete consumption of skipped dienal 236a was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (3.5 h). The reaction mixture was added to stabilised ylide 298 ($471 \mathrm{mg}, 135 \mathrm{mmol}, 1.3 \mathrm{~mol}$ equiv) with $\mathrm{CDCl}_{3}(0.4 \mathrm{~mL})$ and stirred at rt for 15 h , after which TLC analysis indicated complete consumption of trienal 242a. Purification by flash column chromatography on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (100:0 then $95: 5$ with 1 crystal of BHT per 500 mL of eluent) provided the title compound ($70 \mathrm{mg}, 0.25 \mathrm{mmol}, 66 \%$) as a yellow solid. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those reported in the above section.

Ethyl (3aS,7S,9aS,9bR)-8-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)-2-methyl-1,3-dioxo-2,3,3a,4,6,7,9a,9b-octahydro- 1 H -benzo[e]isoindole-7-carboxylate $\mathbf{3 0 0}$

Tetraene 299 ($30 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0 \mathrm{~mol}$ equiv) and NMM ($13 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.05$ equiv) were dissolved in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ in a Young's Tap NMR tube. The reaction mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 25 h . The yield of the reaction, as estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy using durene as an internal standard, was 89%. Attempted purification with flash column chromatography on silica gel or with eluting solvents doped with triethylamine generated a mixture of unidentified products. The reaction was repeated without the internal standard and bis-adduct $\mathbf{3 0 0}$ was characterised as a mixture with a small amount of residual NMM (0.17 mol equiv). Signals tentatively assigned to bis-adduct 300 are as follows: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1$ H), 6.63 (br. s, 1 H), 5.89 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.70 (br. s, 1 H), 4.18 (q, $J=7.2 \mathrm{~Hz}, 2$ H), 4.00-4.10 (m, 2 H), 3.52 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.29 (dd, $J=8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-$ 3.20 (m, 1 H), 3.12 (br. s, 1 H), 2.85 (s, 3 H), 2.63-2.76 (m, 2 H), 2.19-2.28 (m, 2 H), $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 179.6 (C), 177.3 (C), 172.0 (C), 167.0 (C), 145.2 (CH), 138.7 (CH), 136.3 (C), 133.6 (C), $121.3(\mathrm{CH}), 117.1(\mathrm{CH}), 61.0\left(\mathrm{CH}_{2}\right), 60.4\left(\mathrm{CH}_{2}\right), 44.3(\mathrm{CH}), 40.7(\mathrm{CH}), 40.1(\mathrm{CH})$, $36.7(\mathrm{CH}), 32.1\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR $(\mathrm{KBr}$ disc): $v_{\max }=2982,2956,2905,1774,1694 \mathrm{~cm}^{-1}$; MS ($70 \mathrm{eV}, \mathrm{EI}$): $m / z(\%): 387.1$ (3) $[\mathrm{M}]^{+\bullet}, 342.1$ (12), 314.1 (15), 268.1 (100); HRMS: calc for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{6}[\mathrm{M}]^{+\bullet}: 387.1682$; found 387.1683.

Ethyl ($6 S, 9 \mathrm{a} S, 12 \mathrm{a} R, 12 \mathrm{~b} S$)-4-((ethylperoxy)-12-methyl)-11-methyl-1,3,10,12-tetraoxo-2-phenyl-1,2,3,3a,4,6,7,9,9a,10,11,12,12a,12b,12c,12d-hexadecahydrobenzo[2,1-e:3,4-e']diisoindole-6-carboxylate $\mathbf{3 1 3}$

Tetraene 299 ($75 \mathrm{mg}, 0.271 \mathrm{mmol}$) and NMM ($32 \mathrm{mg}, 0.285 \mathrm{mmol}, 1.05 \mathrm{~mol}$ equiv) were dissolved in toluene $-\mathrm{d}_{8}(0.5 \mathrm{~mL})$. The resulting reaction mixture was heated to 60 ${ }^{\circ} \mathrm{C}$ overnight (22 h) in an NMR tube upon which complete consumption of tetraene 299 was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction mixture was cooled to rt , N phenylmaleimide ($235 \mathrm{mg}, 1.36 \mathrm{mmol}, 5.0 \mathrm{~mol}$ equiv) and toluene- $\mathrm{d}_{8}(0.3 \mathrm{~mL}$) were added and the reaction mixture was heated to $110{ }^{\circ} \mathrm{C}$ for 24 h in an NMR tube. Complete consumption of bis-adduct $\mathbf{3 0 0}$ was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy with the formation of tris-adduct $\mathbf{3 1 3}$ as a mixture of two diasteoreomers ($\mathrm{a}: \mathrm{b}=57: 43$). The reaction mixture was concentrated under reduced pressure and purified with flash column chromatography eluting with hex/ $\mathrm{Et}_{2} \mathrm{O}(30: 70$ to $10: 90)$ to provide a mixture containing both diastereomers ($63 \mathrm{mmol}, 0.112 \mathrm{mmol}, 41 \%$) and pure samples of the following:
diastereomer a ($10 \mathrm{mg}, 0.0178 \mathrm{mmol}, 7 \%$) as a white solid: $\mathrm{mp} 96-100{ }^{\circ} \mathrm{C} ; R_{f} 0.28 \mathrm{Et}_{2} \mathrm{O}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.50$ (m, 2 H), $7.33-7.42$ (m, 3 H), 5.80 (br. s, 1 H), 5.58 (br. s., 1 H), 4.25 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.12 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.79$ (m,

2 H), 3.65-3.69 (m, 1 H$), 3.40-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.22(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.59$ - 2.71 (m, 2 H), 2.49-2.55 (m, 2 H), 2.12-2.22(m, 1 H), $1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.9$ (C), 179.2 (C), 177.9 (C), 176.2 (C), 173.1 (C), 172.3 (C), 138.6 (C), 138.2 (C), 131.7 (C), 129.3 (CH), 128.8 $(\mathrm{CH}), 126.5(\mathrm{CH}), 121.2(\mathrm{CH}), 121.0(\mathrm{CH}), 61.9\left(\mathrm{CH}_{2}\right), 61.0\left(\mathrm{CH}_{2}\right), 46.5(\mathrm{CH}), 45.6$ $(\mathrm{CH}), 42.4(\mathrm{CH}), 42.3(\mathrm{CH}), 40.6(\mathrm{CH}), 40.5(\mathrm{CH}), 40.0(\mathrm{CH}), 34.4(\mathrm{CH}), 33.3\left(\mathrm{CH}_{2}\right)$, $25.0\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=2981,2851$, 1772, $1712 \mathrm{~cm}^{-1}$; MS (70 eV, EI): $m / z(\%): 560$ (60) [M] ${ }^{+\bullet}, 487$ (40), 376 (100), 302 (90); HRMS: calc for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}]^{+\cdot}: 560.2159$; found 560.2159; $[\alpha]_{\mathrm{D}}=+78.5(c$ 0.90, MeOH);
diastereomer b ($14 \mathrm{mg}, 0.0250 \mathrm{mmol}, 9 \%$) as a white solid: $\mathrm{mp} 110-114{ }^{\circ} \mathrm{C} ; R_{f} 0.19$ $\mathrm{Et}_{2} \mathrm{O} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.35(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ $-5.61(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}=9.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}$, $3 \mathrm{H}), 3.72(\mathrm{dd}, J=8.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.32-$ $3.23(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.9$ (C), 179.0 (C), 176.3 (C), 176.0 (C), 172.9 (C), 170.5 (C), 138.1 (C), $137.0(\mathrm{C}), 131.9(\mathrm{C}), 129.0(\mathrm{CH}), 128.7(\mathrm{CH}), 126.9(\mathrm{CH}), 123.1(\mathrm{CH})$, $122.3(\mathrm{CH}), 61.5\left(\mathrm{CH}_{2}\right), 60.9\left(\mathrm{CH}_{2}\right), 47.2(\mathrm{CH}), 43.8(\mathrm{CH}), 40.6(\mathrm{CH}), 40.5(\mathrm{CH}), 40.2$ $(\mathrm{CH}), 40.0(\mathrm{CH}), 35.0\left(\mathrm{CH}_{2}\right), 34.4(\mathrm{CH}), 33.9(\mathrm{CH}), 25.0\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{2}\right), 14.2(2 \mathrm{x}$ CH_{3}) ppm; IR (UATR): $v_{\max }=2980,2900,1709 \mathrm{~cm}^{-1}$; MS (70 eV, EI): $m / z(\%): 560$ (57) $[\mathrm{M}]^{+\bullet}, 487$ (42), 376 (100), 302 (88); HRMS: calc for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}]^{+}: 560.2159$; found $560.2159 ;[\alpha]_{\mathrm{D}}=+58.5(c 0.68, \mathrm{MeOH})$.

3.7.2.4 Diels-Alder/Diels-Alder/Wittig reaction sequence

Ethyl (3aS,7S,9aS,9bR)-8-formyl-2-methyl-1,3-dioxo-2,3,3a,4,6,7,9a,9b-octahydro-1H-benzo[e]isoindole-7-carboxylate $\mathbf{3 1 8}$

Trienal 242a ($20 \mathrm{mg}, 0.096 \mathrm{mmol}$) and NMM ($54 \mathrm{mg}, 0.48 \mathrm{mmol}$, 5.0 mol equiv) were dissolved in $\mathrm{CDCl}_{3}(0.4 \mathrm{~mL})$ in a Young's Tap NMR tube. The reaction mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 16 hours after which complete consumption of trienal 242a was observed. The yield of the reaction, as estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,2tetrachloroethane as an internal standard, was $>95 \%$. Attempted purification with flash column chromatography on silica gel or with eluting solvents doped with triethylamine generated a mixture of unidentified products. The reaction was repeated without the internal standard and bis-adduct $\mathbf{3 1 8}$ was characterised as a mixture with NMM. Signals tentatively assigned to bis-adduct 318 are as follows: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.30$ (s., 1 H), 5.76 (br. s., 1 H), 4.05 (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.80 (dd, $J=$ $5.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.40(\mathrm{dd}, J=8.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.16-3.25$ (m, 2 H), 2.88 (s, 3 H), 2.67-2.80 (m, 2 H), 2.21-2.31 (m, 1 H), 2.12-2.21 (m, 1 H$), 1.18$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.3$ (CH), 179.3 (C), 177.3 (C), 171.8 (C), $150.9(\mathrm{CH}), 139.6(\mathrm{C}), 136.0(\mathrm{C}), 122.2(\mathrm{CH}), 61.1\left(\mathrm{CH}_{2}\right), 44.2(\mathrm{CH}), 40.6(\mathrm{CH}), 37.1$ $(\mathrm{CH}), 36.8(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right)$, $24.8\left(\mathrm{CH}_{2}\right)$, $14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (KBr disc): $v_{\max }=2981,2952,2905,1774,1695,1642 \mathrm{~cm}^{-1} ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}): m / z(\%): 317.1(6)$ $[\mathrm{M}]^{+\cdot}, 243.1$ (65), 214.1 (48), 129.1 (100); HRMS: calc for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}[\mathrm{M}]^{+\bullet}: 317.1263$; found 317.1263.

Ethyl (3aS,7S,9bS)-8-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)-2-methyl-1,3-dioxo2,3,3a, 4,5,6,7,9b-octahydro-1 H -benzo[e]isoindole-7-carboxylate $\mathbf{3 2 0}$

To a solution of skipped dienal 236a ($23 \mathrm{mg}, 0.234 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was added dienophile 137a ($36 \mathrm{mg}, 0.281 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) followed by amine catalyst 80a $(7.5 \mathrm{mg}, 0.0234 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The resulting mixture was transferred into an NMR tube, shaken briefly then held at $25{ }^{\circ} \mathrm{C}$ for 17 h , after which complete consumption of skipped dienal 236a was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. NMM (31 $\mathrm{mg}, 0.281 \mathrm{mmol}, 1.2 \mathrm{mmol}$) was added and the mixture was heated to $60^{\circ} \mathrm{C}$ for 24 h , after which complete consumption of trienal 242a was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Phosphorane 298 ($117 \mathrm{mg}, 0.337 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv) was added and the mixture was stirred at rt for 5 h , then additional phosphorane 298 ($82 \mathrm{mg}, 0.234$ mmol, 0.5 mol equiv) was added and the mixture was stirred at rt for 18 h . The reaction mixture was concentrated under reduced pressure and purified with flash column chromatography eluting with petrol/EtOAc/Et ${ }_{3} \mathrm{~N}$ (90:10:1 to 60:40:1) to provide the title compound as a pale yellow solid ($36 \mathrm{mg}, 0.0929 \mathrm{mmol}, 40 \%$): $R_{f} 0.18$ petrol/EtOAc
(60:40); mp $116-117{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.85(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{p}, J=7.0 \mathrm{~Hz}$, 2 H), 3.43 (dt, $J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 (dd, $J=7.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dt, $J=8.3,5.4$ Hz, 1H), $2.96(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 179.0 (C), 176.8 (C), 172.1 (C), 167.2 (C), 145.0 (CH), 138.1 (C), 134.4 (CH), 130.3 $(\mathrm{C}), 121.8(\mathrm{C}), 117.5(\mathrm{CH}), 61.1\left(\mathrm{CH}_{3}\right), 60.4\left(\mathrm{CH}_{3}\right), 41.7(\mathrm{CH}), 39.8(\mathrm{CH}), 38.0(\mathrm{CH})$, $33.0\left(\mathrm{CH}_{2}\right)$, $27.3\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (UATR): $v_{\max }=2981,2938,2907,1696,1611 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m/z (\%): 387 (20) $[\mathrm{M}]^{+\bullet}, 314$ (62), 268 (100); HRMS: calc for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{6}[\mathrm{M}]^{+\bullet}$: 387.1682; found 387.1681, e.r. 87:13, determined by chiral HPLC (Chiralcel OJ-H ($150 \times 4.6 \mathrm{~mm}$), hex/IPA 70:30, $1 \mathrm{~mL} / \mathrm{min}$), minor (+) enantiomer $\mathrm{t}_{\mathrm{R}}=19.0 \mathrm{~min}$, major $(-)$ enantiomer t_{R} $=22.3 \mathrm{~min} ;[\alpha]_{\mathrm{D}}=-195(c 0.80, \mathrm{MeOH})$.

The racemic material was obtained by performing the reaction with pyrrolidine (20 $\mathrm{mol} \%$) instead of amine catalyst 80a. Recrystallisation of the racemic material from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ gave pale yellow crystals.

3.7.2.5 Twofold condensation/Diels-Alder/elimination reaction sequence

Synthesis of dialdehyde 244
Diethyl 3,4-dimethylenehexanedioate $\mathbf{3 2 5}$

The title compound was prepared using a literature procedure. ${ }^{[17]}$ Propionic acid $(0.78$ $\mathrm{mL}, 10.5 \mathrm{mmol}, 0.15 \mathrm{~mol}$ equiv) was added to a suspension of butynediol (324) (6 g , 69.7 mmol) in triethylorthoacetate ($70 \mathrm{~mL}, 380 \mathrm{mmol}, 5.5 \mathrm{~mol}$ equiv) and the mixture was heated to $110^{\circ} \mathrm{C}$ for 30 min and $130{ }^{\circ} \mathrm{C}$ for 1 h . An additional portion of propionic acid ($0.78 \mathrm{~mL}, 10.5 \mathrm{mmol}, 0.15 \mathrm{~mol}$ equiv) was added and the mixture was heated at $130^{\circ} \mathrm{C}$ for 4 h . An additional portion of propionic acid ($1.60 \mathrm{~mL}, 21.5 \mathrm{mmol}, 0.30 \mathrm{~mol}$ equiv) was added and the mixture was heated at $130^{\circ} \mathrm{C}$ for 17 h . The reaction mixture
was diluted with EtOAc, washed successively with 2 m HCl , saturated aqueous sodium bicarbonate solution and brine, dried over magnesium sulfate and concentrated under reduced pressure. An attempt to purify the mixture by vacuum distillation was unsuccessful. After recombining the distillate and residue, the mixture was purified by flash column chromatography on silica gel eluting with hex/EtOAc (90:10) to provide a pure sample of the title compound ($3.85 \mathrm{~g}, 16.7 \mathrm{mmol}, 24 \%$) as a colourless oil. The impure fractions containing the desired product were combined and purified by flash column chromatography on silica gel eluting with hex/EtOAc (90:10) to provide another pure sample of the title compound ($1.75 \mathrm{~g}, 7.73 \mathrm{mmol}, 11 \%$). The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[17]}$

3,4-Dimethylenehexane-1,6-diol 326

The title compound was prepared using a literature procedure. ${ }^{[17]}$ A suspension of lithium aluminium hydride (335 mg , $88.4 \mathrm{mmol}, 4 \mathrm{~mol}$ equiv) in THF (35 mL) was cooled in an ice bath. A solution of diene-diester 325 ($500 \mathrm{mg}, 22.1 \mathrm{mmol}$) in THF (5 mL) was added dropwise to the lithium aluminium hydride suspension. The reaction mixture was warmed to rt and stirred at rt until complete consumption of the dienediester $\mathbf{3 2 5}$ as indicated by TLC $(0.5 \mathrm{~h})$. The reaction mixture was then cooled in an ice bath and water was added dropwise to the mixture until no further bubbling was observed. The mixture was filtered through Celite and the aqueous layer was extracted with ether. The combined organic layers were combined and concentrated under reduced pressure to provide the title compound as a colourless oil ($242 \mathrm{mg}, 17.2 \mathrm{mmol}$, 78%), which was used without further purification. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[17]}$

3,4-Dimethylenehexanedial 244

To a solution of diene-diol $326(240 \mathrm{mg}, 1.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added DessMartin periodinane ($1.66 \mathrm{~g}, 3.91 \mathrm{mmol}, 2.3 \mathrm{~mol}$ equiv). The reaction mixture was stirred at rt until complete consumption of diene-diol $\mathbf{3 2 6}$ as indicated by TLC (1 h). The reaction mixture was washed twice with a solution of saturated aqueous NaHCO_{3} and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (1:1), water then brine. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure to provide the title compound as a yellow oil ($133 \mathrm{mg}, 0.969 \mathrm{mmol}, 57 \%$), which was used without further purification. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported. ${ }^{[18]}$

Synthesis of tetraene-dialdehyde bis-adduct 246
Diethyl (3S,3'S)-4,4'-diformyl-[1,1'-bi(cyclohexane)]-4,4',6,6'-tetraene-3,3'dicarboxylate (S, S)-246 and 5-Hydroxy-2-methyl-3-methylenecyclopent-1-ene-1carbaldehyde 317

To a solution of diene-dialdehyde $244(50 \mathrm{mg}, 0.359 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.72 \mathrm{~mL})$ was added dienophile $\mathbf{1 3 7 a}(138 \mathrm{mg}, 1.08 \mathrm{mmol}, 4 \mathrm{~mol}$ equiv) followed by the amine catalyst $\mathbf{8 0 a}$ ($11 \mathrm{mg}, 0.0359 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The resulting mixture was transferred into an NMR tube, shaken briefly then held at $25^{\circ} \mathrm{C}$ until complete consumption of diene-dialdehyde 244 was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (15 h). The ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture showed that tetraene-dialdehyde bis-adduct ($\mathbf{S}, \boldsymbol{S}$)-246 and cyclopentane $\mathbf{3 1 7}$ were formed in a $91: 9$ ratio. Purification by flash column chromatography on silica gel eluting with hex/Et2O (20:80) provided the title
compound ($\boldsymbol{S}, \boldsymbol{S}$)-246 as a dark yellow oil ($43 \mathrm{mg}, 0.12 \mathrm{mmol}, 34 \%$); $R_{f} 0.40 \mathrm{Et}_{2} \mathrm{O} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.62(\mathrm{~s}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{dd}, J=6.2,2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.08(\mathrm{qd}, J=7.1,4.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.81(\mathrm{dd}, \mathrm{J}=9.2,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{dd}, J=$ $17.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59$ (ddd, $J=17.3,9.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.9(\mathrm{CH}), 171.7$ (C), 142.7 (C), $142.3(\mathrm{CH}), 136.3$ (C), $122.5(\mathrm{CH}), 61.4(\mathrm{CH} 2), 35.4(\mathrm{CH}), 26.9(\mathrm{CH} 2), 14.1(\mathrm{CH} 3) \mathrm{ppm}$; IR (UATR): $v_{\max }$ $=2983,2814,1729,1667,1545 \mathrm{~cm}-1$; MS (ESI): $m / z(\%): 381(100)[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS: calc for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 381.1314$; found 381.1315. After a second round of purification, an analytical sample of the title compound $\mathbf{3 1 7}$ was obtained as a yellow oil: $R_{f} 0.38 \mathrm{Et}_{2} \mathrm{O} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.13(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.13(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H})$, $2.59-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.4(\mathrm{CH})$, $156.6(\mathrm{C}), 151.7(\mathrm{C}), 143.5(\mathrm{C}), 112.0\left(\mathrm{CH}_{2}\right), 71.9(\mathrm{CH}), 37.6\left(\mathrm{CH}_{2}\right), 9.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (thin film): $v_{\max }=3401,2919,2848,1660 \mathrm{~cm}^{-1}$; MS (70 eV, EI): m / z (\%): 138 (15) $[\mathrm{M}]^{+\bullet}, 109$ (100) ; HRMS: calc for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}[\mathrm{M}]^{++}: 138.0681$; found 138.0681.

Diethyl (3R,3'S)-4,4'-diformyl-[1,1'-bi(cyclohexane)]-4,4',6,6'-tetraene-3,3'dicarboxylate meso-246

To a solution of diene-dialdehyde 244 ($50 \mathrm{mg}, 0.36 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.72 \mathrm{~mL})$ was added dienophile $\mathbf{1 3 7 a}(140 \mathrm{mg}, 1.1 \mathrm{mmol}, 4 \mathrm{~mol}$ equiv and pyrrolidine $(5 \mathrm{mg}, 0.072$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$). The resulting mixture was transferred into an NMR tube, shaken briefly then held at $25{ }^{\circ} \mathrm{C}$ until complete consumption of diene-dialdehyde $\mathbf{2 4 4}$ was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (14 h). Purification by flash column
chromatography on silica gel eluting with hex/Et $\mathrm{t}_{2} \mathrm{O}$ (20:80) provided the title compound as a yellow oil (mixture of 2 diastereomers, $49 \mathrm{mg}, 0.137 \mathrm{mmol}, 38 \%$). Analytical samples of each diastereomer were obtained with purification by flash column chromatography on silica gel eluting with hex/Et 2 O (50:50 then 0:100):
bis-adduct meso-246: yellow solid; mp: $203{ }^{\circ} \mathrm{C} ; R_{f} 0.21$ hex/EtOAc (30:70); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.62$ ($\mathrm{s}, 2 \mathrm{H}$), $7.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{dd}, J=5.9,2.1 \mathrm{~Hz}$, 2 H), 4.09 (qq, $J=7.7,3.7 \mathrm{~Hz}, 4 \mathrm{H}$), 3.80 (dd, $J=9.0,3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.26 (dd, $J=17.3$, $3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{ddd}, J=17.2,9.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ; 13 \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.9(\mathrm{CH}), 171.9(\mathrm{C}), 142.8(\mathrm{C}), 142.2(\mathrm{CH}), 136.1(\mathrm{C})$, $122.7(\mathrm{CH}), 61.5\left(\mathrm{CH}_{2}\right), 35.4(\mathrm{CH}), 26.7\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR (UATR): $v_{\max }=$ 2956, 2926, 2857, $1732 \mathrm{~cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z}(\%): 381[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS: calc for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+\bullet}: 381.1314$; found 381.1318;
bis-adduct rac-246: The ${ }^{1} \mathrm{H}$ NMR spectroscopic data matched those previously reported for (S,S)-246 on page 362.

3.7.3 References

[1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.
[2] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518-1520.
[3] W. L. F. Armarego, C. Chai, Purification of Laboratory Chemicals, 5th Edition, Butterworth-Heinemann, 2003.
[4] T. Satoh, N. Hanaki, Y. Kuramochi, Y. Inoue, K. Hosoya, K. Sakai, Tetrahedron 2002, 58, 2533-2549.
[5] O. Meth-Cohn, J. Chem. Soc., Chem. Commun. 1986, 695-697.
[6] M. Brambilla, S. G. Davies, A. M. Fletcher, P. M. Roberts, J. E. Thomson, Tetrahedron 2016, 72, 4523-4535.
[7] M. He, J. R. Struble, J. W. Bode, J. Am. Chem. Soc. 2006, 128, 8418-8420.
[8] N. B. McKeown, I. Chambrier, M. J. Cook, J. Chem. Soc., Perkin Trans. 1 1990, 1169-1177.
[9] J. Moreira, J. Millar, J. Chem. Ecol. 2005, 31, 965-968.
[10] P. Bonete, C. Nájera, Tetrahedron 1995, 51, 2763-2776.
[11] I. Shibata, H. Kato, M. Yasuda, A. Baba, J. Organomet. Chem. 2007, 692, 604619.
[12] F. F. Fleming, Q. Wang, O. W. Steward, J. Org. Chem. 2001, 66, 2171-2174.
[13] F. Rua, M. Buffard, L. Sedo-Cabezon, G. Hernandez-Mir, A. de la Torre, S. Saldana-Ruiz, C. Chabbert, J. M. Bayona, A. Messeguer, J. Llorens, Toxicol. Sci. 2013, 135, 182-192.
[14] A. Nudelman, E. Keinan, Synthesis 1982, 1982, 687-689.
[15] R. E. Buckles, M. P. Bellis, Org. Synth. 1953, 33, 60-61.
[16] P. Das, N. Aggarwal, N. R. Guha, Tetrahedron Lett. 2013, 54, 2924-2928.
[17] C. Roscini, K. L. Cubbage, M. Berry, A. J. Orr-Ewing, K. I. Booker-Milburn, Angew. Chem. Int. Ed. 2009, 48, 8716-8720.
[18] H. Hopf, J. Wolff, Eur. J. Org. Chem. 2001, 2001, 4009-4030.

$3.8{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

C
297f
${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\mathbf{2 3 6 f}$
${ }^{1} \mathrm{H}$ NMR Spec
${ }^{1} \mathrm{H}$ NMR Spectrum
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
 $-$

$\underset{\substack{137 \mathrm{~b} \\{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{Spectrum} \\ 400 \mathrm{MHz}, \mathrm{CDCl}_{3}}}{\text { OHC }}$ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

O-Pr
(as a THF solution)
${ }^{1} \mathrm{H}$ NMR Spectrum
$300 \mathrm{MHz}, \mathrm{CDCl}_{3}$
\qquad

\qquad

${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{Spectrum}$

${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{Spectrum}$

${ }^{1} \mathrm{H}$ NMR Spectrum
${ }^{1} \mathrm{H}$ NMR Spectrum
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

OHC
137f
${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{Spectrum}$
$300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underset{\substack{{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{Spectrum} \\ 400 \mathrm{MHz}, \mathrm{CDCl}_{3}}}{2 \text { 242b }}$ \qquad

$\underbrace{\text { 242b }}_{\substack{13 \\ 100 \mathrm{MMR} \mathrm{Spectrum} \\ 100 \mathrm{MHz}, \mathrm{CDCl}_{3}}}$

${ }_{\substack{13 \\ \mathrm{C} \mathrm{NMR} \mathrm{Spectrum} \\ 100 \mathrm{MHz}, \mathrm{CDCl}_{3}}}^{\text {242c }}$

${ }^{13} \mathrm{C}$ NMR Spectrum
${ }^{2400 \mathrm{MHz}, \mathrm{CDCl}_{3}}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}$

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

1
$\xrightarrow{\square}$ len

${ }^{242 i}$
${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}$
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}$
$\underbrace{242 \mathrm{CHO}}_{\substack{1 \\{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{Spectrum} \\ 400 \mathrm{MHz}, \mathrm{CDCl}_{3}}}$

$\underbrace{{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}} \begin{gathered}\text { 242k } \\ 100 \mathrm{MHz}, \mathrm{CDCl}_{3}\end{gathered}$
${ }_{4}^{1} \mathrm{H} \mathrm{NMR} \mathrm{Spectrum}$

242m
${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{Spectrum}$
${ }^{100 \mathrm{MHz}, \mathrm{CDCl}_{3}}$
$\stackrel{\pi}{* \pi}$

-
${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

313

$\xrightarrow[=]{\substack{3 \\ 3}}$

Concen \qquad

320
${ }^{13} \mathrm{C}$ NMR Spectrum
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

-8
$0 \angle$
∞
06
욱 틈

(206
326
${ }^{1} \mathrm{H}$ NMR Sp
${ }^{1} \mathrm{H}$ NMR Spectrum
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR Spectrum
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$$10.5 \quad 10.0 \quad 9$

Abstract

$\begin{array}{llllllllllllllllllllllllll}10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5\end{array}$

$10 \quad 0$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3.9 HPLC Traces

Chiralcel OJ-H column ($150 \times 4.6 \mathrm{~mm}$), hex/IPA 60:40 $1 \mathrm{~mL} / \mathrm{min}$
Racemic:

	S A M P L E		IN F O R M A T IO N
Sanple Name:	ntad180-r-run3	Acquired By:	System
Sanple Type:	Unknown	Sanple Set Name:	
Vial:	1	Acq. Method Set:	40\%IPAhexane
lijection \#:	1	Processing Method:	x
Injection Volume:	10.00 ul	Channel Name:	337.0 nm
Run Time:	60.0 Mnutes	Proc. Chnl. Descr.:	PDA 337.0 nm
Date Acquired:	$7 / 21 / 2014$ 4:50:16 PMEST		
Date Processed:	6/30/2015 2:14:02 PMEST		

	RT	Area	\% Area	Height
1	5.399	7267301	50.08	1142239
2	13.813	7244860	49.92	308188

Enantioenriched:

	S A M P L E		IN F O R M A T I O N
Sanple Name:	ntae12-a-chk	Acquired By:	System
Sanple Type:	Unknown	Sanple Set Name:	
Vial:	1	Acq. Method Set:	40\%IPAhexane
Injection \#:	1	Processing Method:	x
Injection Volume:	10.00 ul	Channel Nanme:	337.2 nm
Ran Time:	120.0 Mnutes	Proc. Chnl. Descr.:	PDA 337.2 nm
Date Acquired:	7/23/2014 10:37:01 AMEST		
Date Processed:	6/30/2015 2:06:34 PMEST		

	RT	Area	\% Area	Height
1	5.695	2322844	6.49	329522
2	15.961	33464643	93.51	1099308

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 70:30 $1 \mathrm{~mL} / \mathrm{min}$ Racemic:

	S A M P L E	I N F O R M A T I O N	
Sample Name:	mtaf018-a-rac-30-IPA	Acquired By:	System
Sample Type:	Unknown	Sample Set Name:	
Vial:	1	Acq. Method Set:	IPA hex 30%
Injection \#:	1	Processing Method	\times
Injection Volume:	10.00 ul	Channel Name:	330.6 nm
Run Time:	60.0 Minutes		
		Proc. Chnl. Descr.:	PDA 330.6 nm
Date Acquired:	$3 / 3 / 2015$ 12:29:01 PM EST		
Date Processed:	5/18/2015 7:01:55 PM EST		

	RT	Area	\% Area	Height
1	7.474	7933819	49.77	876512
2	16.854	8007661	50.23	333821

Enantioenriched:

	RT	Area	$\%$ Area	Height
1	7.637	4168264	8.10	450013
2	16.092	47280646	91.80	1674336

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 80:20 $1 \mathrm{~mL} / \mathrm{min}$
Racemic:

SAMPLE INFORMATION			
Sample Name: Sample Type:	mtaf023-a-20-IPA Unknown	Acquired By: Sample Set Name:	System
Vial:	1	Acq. Method Set:	PA hex 20\%
Injection \#:	3	Processing Method	x
Ijjection Volume: Run Time:	$\begin{aligned} & 10.00 \text { ul } \\ & 60.0 \text { Minutes } \end{aligned}$	Channel Name: Proc. Chri. Descr.:	$\begin{aligned} & 339.0 \mathrm{~nm} \\ & \text { PDA } 339.0 \mathrm{~nm} \end{aligned}$
Date Acquired: Date Processed:	3/10/2015 11:35:22 AM EST 6/30/2015 2:26:14 PMEST		

	RT	Area	$\%$ Area	Height
1	4.619	10704343	49.51	1854688
2	7.837	10916327	50.48	203565

Enantioenriched:

	RT	Area	$\%$ Area	Height
1	4.716	3567077	8.13	620589
2	8.392	40330762	91.87	2651566

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 80:20 $1 \mathrm{~mL} / \mathrm{min}$ Racemic:

SAMPLE		INFORMATION	
Sanple Nane:	ntad 193-r-un1	Acquired By:	System
Sanple Type	Uninown	Sanple Set Name:	
Vijection\#		Acq Meshod Set	${ }_{\mathrm{x}} \mathbf{2 0 \% P A h e x a n e}$
hijection Volume:	20.00 u	Channel Name	350.0 nm
Fun Time:	60.0 Mnutes	froc. Onnl Descr:	FDA 350.0 mm
Date Acquired: Date Frocessed	6/27/2014 12:16:46 PMEST 5/18/2015 7:33-17 PMEST		

	Rा	Area	\% Area	Height
1	8.751	4200825	51.33	410133
2	38.524	3883243	48.67	79189

Enantioenriched:

	Rा	Area	\% Area	Heigtt
1	7.898	509016	9.89	53478
2	35.883	4750628	90.31	98400

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 70:30 $1 \mathrm{~mL} / \mathrm{min}$
Racemic:

SAMPLE INFORMATION			
Sample Name: Sample Type:	mtaf015-a-rac-30-PA Unknown	Acquired By. Sample Set Name:	System
		Aca. Method Set	PA hex 30\%
Injection Volume:	10.00 ul	Channel Name:	339.7
Run Tme:	60.0 Minutes	Proc. Chri. Descr.:	PDA 339.7 nm
Date Acquired:	2/27/2015 1:52:04 PMEST 4/302015 11:54:52 AMEST		

	RT	Area	\% Area	Height
1	11.945	4451135	49.59	261123
2	21.758	4524985	50.41	128740

Enantioenriched:

	RT	Area	$\%$ Area	Height
1	12.035	1854311	5.45	108474
2	21.721	32179756	94.55	830160

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 60:40 $1 \mathrm{~mL} / \mathrm{min}$ Racemic:

SAMPLE		INFORMATION	
Sample Name:	ntze18-run2	Acquired By:	System
Sample Type:	Unlnown	Sample Set Name:	
Vial:	1	Acq Method Set:	40\%PAhexane
njection\#	4	Processing Method:	-
njection Volume: Pun Time:	$\begin{aligned} & 10.00 \text { ui } \\ & 60.0 \text { Mnutes } \end{aligned}$	Channel Name: froc. Crnl. Descr:	$\begin{aligned} & 330.4 \mathrm{~nm} \\ & \text { PDA } 330.4 \mathrm{rm} \end{aligned}$
Date Acquired: Date Rrocessed.	8/14/2014 0:00:22 PMETT 5/19/2015 3:05:57 PMETT		

	Rा	Area	\%Area	Height
1	10.432	10284339	49.84	1425218
2	11.887	19405728	50.16	1183617

Enantioenriched:

	Rा	Area	\% Area	Height
1	10.825	7577280	19.27	594607
2	12.193	31738410	80.73	1835009

Chiralcel OJ-H column ($150 \times 4.6 \mathrm{~mm}$), hex/IPA 90:10 $1 \mathrm{~mL} / \mathrm{min}$
Racemic:

SAMPLE		INFORMATION	
Sample Name:	ntae 189-rac-10-1PA-hex	Acquired By:	System
Sample Type:	Unlnown	Sanple Set Name:	
Vial:		Acq Method Set:	10\%PAhexane
njection\#.	3	Processing Method:	
njection Valume:	10.00 ul	Channel Nane:	339.3 nm
Run Time:	60.0 Mnutes	Proc. Crri. Desor::	FDA 339.3 rm
Date Acquired:	8/28/2014 1:34:01 PMEST		
Date Processed.	5/18/2015 2-56:19 PMET		

	Rा	Area	\% Area	Height
1	25.754	5679731	49.98	151114
2	28.240	5682132	50.01	139218

Enantioenriched:

Rा	Area	\% Area	Heigt	
1	25.835	74276	5.16	2002
2	28.595	1364114	94.84	34300

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 70:30 $1 \mathrm{~mL} / \mathrm{min}$ Racemic:

	RT	Area	\% Area	Height
1	4.213	15162003	47.15	2379080
2	5.503	16092725	52.85	2011787

Enantioenriched:

	RT	Area	$\%$ Area	Height
1	4.078	2354545	6.35	460565
2	5.256	34702228	83.65	4121324

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 70:30 $1 \mathrm{~mL} / \mathrm{min}$
Racemic:

SAMPLE		INFORMATION	
Sample Name: Sample Type:	mtaf003-a-rac-30-PA Unknown	Acquired By. Sample Set Name:	System
Vial:	1	Acq. Method Set:	PA hex 30\%
Injection \#:	13	Processing Method	x
Injection Volume: Run Time:	10.00 ul 60.0 Minutes	Channel Name: Proc. Chri. Descr.:	380.9 nm PDA 380.9 nm
Run Tme.		Proc. Chni. Descr..	PDA380.8 nm
Date Acquired: Date Processed:	2/22/2015 2:50:15 PM EST 5/18/2015 6:14:28 PM EST		

	RT	Area	\% Area	Height
1	20.951	25161460	50.21	711243
2	24.047	24047797	49.79	616080

Enantioenriched:

	S A M P L E	I N F O R M A T I O N	
	Sample Name:	mtaf046-30-PPA	Acquired By:
Sample Type:	Unknown	System	
Vial:	1	Sample Set Name:	
njection\#:	2	Acq. Method Set:	PA hex 30%
njection Volume:	10.00 ul	Processing Method	x
Run Time:	60.0 Mnutes	Channel Name:	380.2 nm
Date Acquired:	$4 / 8 / 2015$ 1:44:39 PM EST		
Date Processed:	$5 / 18 / 2015$ 6:19:11 PM EST		

	RT	Area	$\%$ Area	Height
1	21.443	16471841	21.25	441366
2	24.644	1580167	8.75	38046

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 70:30 $1 \mathrm{~mL} / \mathrm{min}$ Racemic:

SAMPLE INFORMATION			
Sample Name: Sample Type:	mtaf007-a-rac-30-PA Unknown	Acquired By. Sample Set Name:	System
Vial:	1	Acq. Method Set:	PA hex 30\%
Injection \#:	11	Processing Method	x
Injection Volume:	$10.00 \mathrm{ul}$	Channel Name:	330.5 nm
Run Time:	60.0 Mnutes	Proc. Chri. Descr::	PDA 330.5 nm
Date Acquired: Date Processed:	$\begin{aligned} & \text { 2/22/2015 1:47:38 PMEST } \\ & \text { 5/18/2015 6:44:38 PM EST } \end{aligned}$		

	RT	Area	\% Area	Height
1	5.347	9548516	49.78	1452200
2	20.252	9833416	50.22	277648

Enantioenriched:

RT		Area	$\%$ Area	Height
1	5.482	2810713	7.83	375592
2	20.819	30315741	92.07	748203

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 90:10 $1 \mathrm{~mL} / \mathrm{min}$
Racemic:

SAMPLE INFORMATION			
Sample Name: Sample Type:	mtae 185 -rac-10-IPA Unknown	Acquired By. Sample Set Name:	System
Val:	1	Acq. Method Set:	PA hex 10\%
Injection \#:	10	Processing Method	x
Injection Volume: Run Time:	10.00 ul 60.0 Minutes	Channel Name: Proc. Chnl. Descr::	$\begin{aligned} & 330.5 \mathrm{~nm} \\ & \text { PDA } 330.5 \mathrm{~nm} \end{aligned}$
Date Acquired: Date Processed:	3/17/2015 11:48:30 AM EST 5/18/2015 6:27:28 PM EST		

	RT	Area	\% Area	Height
1	11.842	22088593	50.58	1383227
2	16.584	21558719	49.42	877186

Enantioenriched:

	RT	Area	\% Area	Height
1	14.096	10573242	95.50	546338
2	20.374	488661	4.50	16880

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 70:30 $1 \mathrm{~mL} / \mathrm{min}$ Racemic:

SAMPLE		INFORMATION	
Sample Name: Sample Type:	mtae 197-rac-30-IPA Unknown	Acquired By. Sample Set Name:	System
Val: niection\#		Acq. Method Set: Processing Method	${ }_{\mathrm{x}} \mathrm{P}$ h hex 30\%
injection Volume: Run Time:	10.00 ul 30.0 Minutes	Channel Name: Proc. Chri. Descr.:	330.5 nm PDA 330.5 nm
Date Acquired: Date Processed:	2/23/2015 3:31:26 PMEST 5/18/2015 6:52:11 PMEST		

	RT	Area	$\%$ Area	Height
1	5.059	12562498	48.83	1948160
2	8.846	13110496	51.07	1368029

Enantioenriched:

SAMPLE		INFORMATION	
Sample Name: Sample Type:	mtaf047-30-1PA Unknown	Acquired By. Sample Set Name	System
Val:	${ }_{3}^{1}$	Act. Metrod Set	PA hex 30\%
hjection Volume:	10.00 ul	Process ing Method Channel Name:	$330.5 n$
Run Time:	60.0 Minutes	Proc. Chri. Deser.:	PDA 330.5 nm
Date Acquired: Date Processed:	4/8/2015 2:58.53 PM EST 5/18/2015 6:51:21 PMEST		

	RT	Area	\% Area	Height
1	5.096	48106	4.19	6824
2	7.032	1098969	85.81	106883

Phenomenex Lux Cellulose 4 column ($150 \times 4.6 \mathrm{~mm}$), hex/IPA 85:15, $1 \mathrm{~mL} / \mathrm{min}$
Racemic:

Rt	Aeas	\%Aeal	Heabr
$\frac{17.02}{11.52}$	10.10856858	50.6	48

Enantioenriched:

S A M PLE		INFORMATION	
Sample Name:	mtaf083-b-15IPA-cell4	Acquired By:	System
Sample Type:	Unknown	Sample Set Name:	
Vial:	1	Acq. Method Set:	IPA hex 15\%
Injection \#:	33	Processing Method	x
Injection Volume:	10.00 ul	Channel Name:	354.9 nm
Run Time:	60.0 Minutes	Proc. Chnl. Descr.:	PDA 354.9 nm
Date Acquired:	7/30/2015 5:10:51 PM EST		
Date Processed:	7/30/2015 5:31:35 PM EST		

	RT	Area	\% Area	Height
1	8.312	3960153	6.46	234145
2	12.647	57350923	93.54	1613287

Chiralcel OJ-H column (150 x 4.6 mm), hex/IPA 70:30 $1 \mathrm{~mL} / \mathrm{min}$ Racemic:

SAMPLE		INFORMATION	
Sample Name: Sample Type:	mtaf089-rac-30IPA Unknown	Acquired By: Sample Set Name:	System
Vial:	1	Acq. Method Set:	IPA hex 30\%
Injection \#:	10	Processing Method	x
Injection Volume:	10.00 ul	Channel Name:	310.1 nm
Run Time:	60.0 Minutes	Proc. Chnl. Descr.:	PDA 310.1 nm
Date Acquired: Date Processed:	8/8/2015 12:13:22 PM EST 1/17/2016 2:28:57 PM EST		

	RT	Area	\% Area	Height
1	18.681	151460	49.65	1977
2	22.531	153625	50.35	1835

Enantioenriched:

	RT	Area	$\%$ Area	Height
1	19.013	8017755	13.17	114688
2	22.274	52862424	86.83	554495

[^0]: [*] S. M. Tan, Dr. A. C. Willis, Prof. M. S. Sherburn
 Research School of Chemistry, Australian National University
 Canberra, ACT 0200 (Australia)
 E-mail: michael.sherburn@anu.edu.au
 Prof. M. N. Paddon-Row
 School of Chemistry, The University of New South Wales Sydney, NSW 2052 (Australia)
 E-mail: m.paddonrow@unsw.edu.au
 Supporting information and ORCID(s) from the author(s) for this
 (iD article are available on the WWWW under http://dx.doi.org/10.1002 anie. 201510925

[^1]: ${ }^{\text {a }}$ determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of crude reaction mixture

