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"The use of composite wheat varieties comprising strains similar 

in appearance but different in resistance to stem rust, is one of the 

ways of counteracting the effects of different races of stem rust.

This picture shows the process of preparing the composite seed." 

(Rockefeller Foundation (1966), p.41)





ABSTRACT

This study i s  a t h e o r e t i c a l  ana ly s is  o f  the problem posed to 

the breeders and users o f  disease r e s i s t a n t  p lan ts  by the p la n t in g  o f  

la rge  areas o f  monocul tures and the de p le t io n  o f  na tu ra l  gene poo ls.

In p a r t i c u l a r ,  i t  i s  an ana lys is  o f  the use o f  what are known as 

m u l t i l i n e  crops (Jensen, 1952), crops which are agronomica l l y  homo

geneous, but which are heteregeneous w i th  respect to  the disease 

r e a c t io n  o f  i n d i v i d u a l  p lan ts .  In the process o f  ana lys ing the 

argument t h a t  m u l t i l i n e  crops may have a use in  combatt ing the evo lu t io n  

o f  p l a n t  pathogens, some l i g h t  is  shed on the ro les  o f  o th e r  modes o f  

the use o f  genes f o r  disease res is tance .

A rev iew o f  the h i s t o r y  o f  breeding f o r  disease res is tance  in  

the 20th cen tu ry  is  g iven ,  which shows t h a t  al though some disadvantages 

in  the growing o f  la rge  areas o f  monocul tures had been observed by the 

mid 1930 's ,  the f i r s t  suggest ions o f  means f o r  coun te rac t ing  these 

disadvantages were not made u n t i l  the l a t e  1940 's. Among the e a r l i e r  

suggest ions was the use o f  m u l t i l i n e s .  However i t  was soon po in ted 

out t h a t  to  p la n t  crops which d id  not possess every  a v a i l a b le  

res is tance  gene in  each p la n t  was to  i n v i t e  avo idab le  losses and to  

hasten the appearance o f  "superraces" o f  pathogens able to  a t ta c k  a l l  

the a v a i la b le  res is tanc e  genes. No conc lus ive  answer to  these 

ob jec t ions  has y e t  been made and, in  consequence, there is  an open 

debate on the use o f  d isease res is tance  genes which cent res on f i n d i n g  

the answers to  fo u r  ques t ions :  which genes should be used in  which

p la n ts ,  and when, and where?

I t  i s  the c on ten t ion  o f  t h i s  study t h a t  the debate can be 

fu r th e re d  by phrasing these quest ions  as p a r t  o f  a problem in  opt imal 

c o n t r o l .  A d e t a i l e d  d e s c r ip t i o n  i s  given o f  the analogy between an



i v

optimal control problem and the task of deciding on the best use of 

resistance genes. In the process, a number of biological factors 

which have been suggested as relevant to this task are discussed and 

i t  is shown that they can be integrated into the optimal control 

formulation of the debate. However, only a fraction of the information 

needed for a resolution of the debate is currently available.

The main analysis of this study is directed towards the question 

of whether there is any reason to suppose, on the basis of available 

information, that planting multiline crops may be the optimal way of 

using crop disease resistance genes. The technique adopted is to 

simulate the spread of disease in large-scale agriculture and to use 

an optimal control algorithm to discover what crop composition gives 

an optimal result. The simulation is based on current concepts of 

disease spread, and two alternative simple economies are modelled in 

order to allow a comparison of different judgements of optimality.

The main result of the study is that i t  is not self-contradictory 

to assert that multilines can be optimal, despite the objections to 

the ir use given above. However i t  appears that the beneficial effects 

to be gained from their use are dependent on the nature of the 

criterion of optimality used, and that more substantial benefits of 

the same kind can be achieved by crop rotations. Moreover, the uses 

for multilines discovered in this study are transitional: they are

used for a few crop cycles only before a reversion to conventional 

practice occurs. On this evidence, multilines are not of practical 

use, but there are some indications in the results of effects that 

might make them so.
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The main recommendations of this study are:

(1) that the next stage in theoretical research into multilines 

is to investigate the poss ib ility  that the ir sustained use 

can be optimal,

(2) that future numerical investigation of optimal gene use 

must be directed towards simplification of techniques, 

since the method used here is so time-consuming as not to 

be applicable in practical situations,

(3) that experiments which can be used to suggest whether 

multiline crops are an optimal mode of disease-resistance 

gene use are now possible.
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1. Introduction

1.1. Aims and Layout of th is  Study

This study deals with the choice of adaptive uses of crop 

disease resistance genes in the face of the mutab i l i ty  and the powers 

of dispersal of major crop pathogens. In pa r t icu la r ,  i t  aims to 

analyse the case fo r  what are cal led m u l t i l in e  crops (Jensen, 1952,

1965; Borlaug, 1953, 1958, 1965; Browning and Frey, 1969) as being 

such an adaptive use. In the process, some l i g h t  is shed on other 

modes of use of resistance genes.

That a choice of modes is seen by plant breeders to ex is t  today 

is a sign of a growing uncertainty about the best use of resistance 

genes and of an increasing knowledge of the genetics and epidemiology 

of crop pathogens. The growth of th is  uncertainty derives from 

increasing d issa t is fac t ion  with some of the consequences of conventional 

plant-breeding methods, and from the existence of an increasing number 

of suggested a l te rnat ives to these methods, none of which number seems 

c lear ly  superior. In th is  chapter the causes of th is  d issa t is fac t ion  

are reviewed in the perspective of the development of conventional 

plant breeding fo r  disease resistance, and then the pr inc ipal a l t e r 

natives are set out, with special reference to the his to ry  of the 

m u l t i l in e  concept.

This h is to r ica l  treatment of breeding fo r  disease resistance 

w i l l  involve some mention of genetic and epidemiological fac tors ,  but 

the main discussion of these w i l l  be reserved to Chapter 2, where the i r  

relevance to d i f fe re n t  modes of resistance gene use and especial ly 

m u l t i l in e  crops w i l l  be discussed c r i t i c a l l y .  In Chapter 3 a unifying 

language w i l l  be proposed fo r  the discussion and comparison of d i f fe re n t  

modes, and the general method fo r  making such comparisons described.
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In Chapter 4 a theoretica l  approach to the appl icat ion of th is  method 

w i l l  be set out and an implementation of th is  approach via simulation 

modelling of epidemics in m u l t i l in e  crops w i l l  be described. Chapter 

5 discusses computational aspects of th is  implementation. Chapter 6 

introduces a number of  computer experiments that test hypotheses about 

the in teract ions of some of  the factors discussed in Chapter 2 with 

d i f fe re n t  modes of gene use. F ina l ly ,  Chapter 7 discusses the con

clusions of the study.

1.2 There is Uncertainty about the Best Use of Resistance Genes 

1.2.1. Conventional Plant Breeding for  Disease Resistance

The purpose of th is  section is to review b r ie f l y  the sa l ien t  

points in the development of breeding for disease resistance in th is  

century. The l im i ta t io n  to th is  century is more than a convenience 

fo r  although select ion fo r  res is tant  plants has always proceeded 

through natural evo lut ion, and has doubtless been de l iberate ly  

practised since the beginning of ag r icu l tu re ,  the beginning of a 

s c ie n t i f i c  approach to plant breeding is often (e.g. Stakman and 

Christensen, 1960) set at  1900.

The landmark event seems to have been the appl icat ion by Bif fen 

(1905) of the rediscovered genetics of Mendel. Bif fen found that some 

resistance to yel low rust in spring wheat was inher i ted via a single 

recessive gene. I t  now became possible not only to select res is tant  

plants when they were revealed by epidemics but to plan breeding 

programs in which the parents of crosses and the necessary number of 

crosses to be sure of recovering the res is tant  progeny could be 

i n t e l l i g e n t l y  chosen.
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When the fu r the r  discovery was made by Stakman et al. (1918) 

(quoted in Stakman and Christensen, 1960) that natural populations of 

Puooinia yraminis tritioi were a mixture of physiologic races with 

virulences e f fec t ive  against d i f fe re n t  wheat var ie t ies ,  two fur ther 

steps became possible. F i r s t ,  many apparently anomalous results in 

the inheri tance of resistance, in which the resistance of var ie t ies  

changed from time to time and place to place, could be explained as 

being due to the use of impure isolates of the pathogen. This gave 

added confidence to breeders guided by Mendelian ideas (Stakman and 

Christensen, 1960). Second, the breakdown of resistance in cu l t iva ted  

var ie t ies  could be understood as the resu l t  of changes in the 

composition of the pathogen population. The task for  the plant breeder 

with respect to disease resistance could now be formulated as being to 

make these changes harmless by incorporating more resistance genes 

in the genome of the crop.

This point of view on the plant breeder's task was well suited 

by the development of the backcross method in 1922 (Harlan and Pope, 

1922, quoted in Briggs and Knowles, 1967). This technique is well 

adapted to the successive concentration of resistance genes in the one 

var ie ty  and so encourages the continued and widespread use of pa r t icu la r  

var ie t ies  that have proven agronomically successful. Thus the whole 

thrust of breeding fo r  resistance came to be directed at producing 

single plants which were as fa r  as possible agronomically ideal,  whi le 

incorporating in them the best known sources of resistance. In pursui t  

of th is  ideal great e f fo r ts  were made to seek out sources of resistance 

in older crop var ie t ies  throughout the world, and large programs to 

screen these co l lect ions were undertaken (Harlan and Mart in i ,  1936).

The successes of th is  method were so marked, as in the quick 

recoveries that were made from the disastrous epidemics of wheat stem
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rust in 1916, when Ceres wheat replaced Marquis, and 1935, when 

Thatcher replaced Ceres (Stakman and Harrar, 1957), that i t  became 

possible to th ink of breeding fo r  resistance as approaching a f ina l  

success, and th is  view was put forward by, among others, Bif fen (1931) 

and Stanton e t  a l .  (1934). However, rather than achieving f ina l  

success, resistance breeding has tended to repeat a cycle of resistance 

breakdown followed by int roduction of a res is tant  var ie ty ,  whose 

resistance in i t s  turn is  found to be only temporary, as when stem 

rust again became a major problem in North America in 1953 (Stakman and 

Christensen, 1960) as in the succession of new races of oat crown 

rust  (Browning and Frey, 1969) and as in the way that wheat stem rust 

races e f fec t ive  against the resistance gene Sr6 reappeared from 

apparent ext inc t ion  in Austra l ia  with the re introduction in the 1960's 

of wheat that used th is  gene (Watson and Luig, 1968). Although the 

cycle has moved at ever higher levels of s c ie n t i f i c  understanding 

and technique, i t  has not been halted, nor can i t  be safely said that 

i t s  amplitude has decreased. The great epidemic of Southern lea f  

b l igh t  of corn in 1970 in the U.S.A. (Hooker, 1972), was made possible 

by the appl icat ion of a technique (cytoplasmic male s t e r i l i t y )  that 

could not have been explained in terms of the simple Mendelian ideas 

that Bif fen used seventy years before.

1.2.2. The F i rs t  Warning - Genetic Erosion

The cycle of resistance breeding described in the previous 

section might be regarded as being as acceptable as anything short of 

the f ina l  success once hoped for  except fo r  one consideration. The 

stock of resistance genes, though large, is surely f i n i t e .  For a 

pol icy that depends on the periodic introduction of new genes, three 

ends are in view.
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(1) The mutability of the pathogen is unable to cope with

a ll possible resistance genes simultaneously, and so 

final success in breeding for resistance is possible.

(2) The stock of resistance genes is exhausted without

achieving any permanent security for the crop.

(3) The rate of change of the pathogen population's

composition is so great that plant breeders cannot 

keep up, producing a state more like (2) than (1).

Since the stock of potential breeding material includes not only 

old varieties predating sc ien tif ic  plant breeding but primitive crops 

and even wild relatives of crops, these three points may appear rather 

academic. What f i r s t  gave them force was the observation, in the 

1930's, that the new varieties produced by plant breeders were not 

only replacing old crops but also the primitive crops in the developing 

world. Thus the onset of condition (2) was being hastened, while no 

guarantee of achieving condition (1) could be given. According to 

Harlan (1975), the f i r s t  to bring this erosion of genetic reserves to 

the public notice were Harlan and Martini (1936), who were already 

aware that, for instance, grain from California was being used to 

replace traditional varieties of barley in Africa in times of famine.

This homogenising of crops, although i t  gave cause for concern 

about the future of a ll areas of plant breeding, implies the need for 

genetic conservation, rather than the cessation of conventional plant 

breeding. Yet the conservation of wild plant populations, which is the 

only practical way of maintaining their gene pools (Frankel, 1974) is 

not only d i f f ic u l t ,  but, by an unpleasant irony, is bound also to 

conserve the pathogen populations from which races may emerge to 

challenge the cultivars of the developed world (Watson, 1970a). Thus 

conventional methods seem to procede irreversib ly to an undesirable end.
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However i t  is not clear e i the r  that th is  undesirable end is close enough 

to require immediate act ion, or that there exists a bet ter  means of 

breeding fo r  resistance. With sensible conservation the avai lable 

genetic resources may las t  un t i l  human food is being produced in some 

quite d i f fe re n t  manner. Even i f  genetic resources do not las t  so 

long, conventional breeding methods may be the best of a bad lo t .  One 

thing is c lear. There w i l l  be much opposition i f  "sensible" conserv

at ion is allowed to in te r fe re  with the access of the developing world 

to new, h igh-y ie ld ing cu l t iva rs  (Frankel, 1974).

1.2.3. The Second Warning - Large Epidemics

Not long a f te r  Bif fen (1931) had expressed the hope of solving 

the major problems of breeding fo r  disease resistance, and at roughly 

the same time as the concept of genetic erosion or ig inated, a second 

pessimistic in te rpre ta t ion  of  the course of plant breeding began to be 

put forward. Stakman in 1938 (N.E. Stevens, 1942), w r i t ing  in German, 

seems to have been the f i r s t  to observe, and take as a danger sign, 

that the success of  new var ie t ies  meant that the host environment of 

crop pathogens was more uniform than ever before. Thus the breakdown 

of resistance in a single var ie ty  meant a very rapid growth of epid

emics. I t  also meant a very large loss. Although N.E. Stevens (1939, 

1942) publ icised these facts in Engl ish, he seems to have e l i c i t e d  

l i t t l e  response at f i r s t .  This may have been because the plant breeding 

community thought the dangers less pressing. Bif fen (1931) was 

perfect ly  aware of the e f fe c t  of large homogeneous crop areas on 

epidemics, but thought that the success of plant breeding would render 

th is  e f fec t  i r re levan t .

The story of the response to the perceived threat of uniformity 

of crops is to a large extent the h istory  of m u l t i l in e  crops, and so
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w i l l  be dealt w ith in the next section. However the dangers of 

excessive un ifo rm ity  in crops are now so well recognized as to amount 

almost to a c liche (Adams e t  a l .  1971; Harlan, 1975; National Academy 

of Sciences, 1972; Day, 1973). Thus the f i r s t  element of the 

uncerta inty spoken o f in section (1.1) is  well established in the 

minds o f the plant breeding community. Something is widely held to 

be wrong with the conventional (and s t i l l  dominant) methods of breeding 

fo r  disease resistance. The a lte rn a t ive s , and the debate over whether 

they are p o te n t ia l ly  superior, are the subject of the fo llowing 

sections.

1.2.4. The Responses to the Warnings

1.2.4.1. Types o f Response: the A lte rnatives that have been Suggested

A recurring feature of the h is to ry  o f breeding fo r  disease 

resistance is the slowness with which theo re tica l debates are resolved. 

In part th is  may be due to the complexity of the subject, to the time- 

lag involved in experiments and also, perhaps, to a suspicion of 

"theory" among many of those involved. Although, as has been shown, 

the elements o f a major c r i t iq u e  of conventional methods were complete 

by 1940, no a lte rna tives  seem to have been suggested fo r  a decade, and 

no f irm  conclusions about the value of these a lte rna tives  have yet 

been reached.

The materials fo r  a complete h is to ry  o f the a lte rna tives  do not 

seem to e x is t ;  i t  may be tha t the amount o f thought devoted to many 

of them has been small. The approach adopted here w i l l  be to g ive, in 

th is  section, a l i s t  of the a lte rna tives  as they are seen now, and 

then, in section (1 .2 .4 .2) to give a re la t iv e ly  detailed h is to ry  of 

the m u lt i l in e  concept. This is  the most complex idea to be discussed 

and i t  w i l l  be seen, in section (1 .2 .4 .3 ) ,  tha t i t  can be used as an
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organizing concept for  discussion of the other a l ternat ives.

The presently known a l te rnatives to conventional disease 

resistance breeding may be summarised as fol lows (In ternational  Atomic 

Energy Agency, 1971):

(1) The use of homogeneous crops in which each plant

incorporates as many sources of resistance as possible 

(sometimes known as pyramidding of resistance genes).

(2) The use of susceptible va r ie t ie s ,  though only in the

absence of pathogens that can damage them severely.

(3) The use of so-cal led hor izon ta l ly  or general ly res is tan t ,

or to le ran t  var ie t ies .  These terms have not been c lear ly  

defined, and w i l l  be discussed in Chapter 2.

(4) The use of d i f fe re n t  var ie t ies  in ro ta t ion .

(5) The use of d i f fe re n t  var ie t ies  in spatial  patterns.

Depending on the scale of the pattern th is  might 

be done at the level of:

(a) major geographical regions,

(b) farms or f ie ld s  w i th in farms,

(c) neighbouring plants - the m u l t i l in e  option.

1.2.4.2. The M u l t i l in e  Option

The or ig ina to r  of the term "m u l t i l in e "  seems to have been 

Jensen (1952). His concept of a m u l t i l i n e  crop was of a mixture of 

agronomically uniform plants, d i f fe r in g  only in th e i r  response to the 

pathogen. Jensen bel ieved, on " theore t ica l  grounds" to be examined 

la te r ,  that

A m u l t i l in e  crop would be expected. . .  to possess 
the character is t ics  of longer var ie ta l  l i f e ,  
greater s t a b i l i t y  of production, broader adaptation 
to environment, and greater protect ion against 
disease.



1-9

Two elements seem to have combined to suggest the m u l t i l in e  

idea to Jensen. The f i r s t  was the idea of non-homogeneous crop 

mixtures as a means of buffering the y ie ld  of a crop against environ

mental f luc tua t ions .  In fac t  much of his paper is taken up with 

reviewing the performance of mixtures under conditions that were not 

e x p l i c i t l y  stated to include disease. The v a l i d i t y  of th is  idea of 

bu f fe r ing ,  and the extent to which i t  applies to the behaviour of 

crop/pathogen systems w i l l  be taken up in section (2.2).

The second, not e n t i re ly  d i s t i n c t ,  element was the idea of 

"spreading of r i s k " .  In Jensen's view, the inhomogeneity of a mu lt i -  

l ine  lowered the chance of a devastating epidemic. Although "small 

losses" would be expected to occur more often than in conventional 

crops, the susceptible components of the m u l t i l in e  could be removed 

from the next year's crop and perhaps reintroduced la te r .  As w i l l  be 

seen in Chapter 2, the concept of the spreading of r isk  remains at the 

heart of the question of the best use of resistance genotypes, while 

the benef icial  e ffects  of inhomogeneity are by no means as clear as 

they seemed to Jensen.

Two sources seem to have been important in suggesting the 

appl icat ion of r isk  spreading to the crop/pathogen s i tua t ion .  The 

f i r s t  of these was the work of Rosen (1949). Rosen summarised in an 

abstract some possible ways of countering the problem that,  at that 

time, oats res is tan t  to race 45 of oat crown rust were susceptible to 

Helminthosporiurn b l igh t  and vice versa. As a short term solut ion he 

suggested the use of unselected progeny of a cross of parents from each 

resistance type, which would give a mixture, some of which would 

re s is t  one disease and some the other. Jensen, whi le taking the 

point that disease losses could be lowered in th is  way, believed that 

i t  was important to produce an agronomically uniform crop, though he
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later modified his views on this point (Jensen, 1966).

The second source of the risk-spreading idea seems to have been 

the work of R.B. Stevens (1949), who suggested that varieties which 

had become susceptible be reused after a long enough interval for the 

race that had attacked them to have disappeared. This suggestion of 

rotation as a means of disease control may deserve the credit for being 

the f i r s t  constructive suggestion of an alternative to conventional 

methods of breeding for disease resistance.

The year after Jensen, Borlaug (1953) published an abstract in 

which he advocated a very similar program to Jensen's. He advocated 

the use of what he called "multi 1ineal" cult ivars, which would have 

the property of "remaining rust resistant indefini te ly".  Since this 

property was to be achieved by the successive replacement of susceptible 

varieties, Borlaug's multi l ineal varieties would be rather like 

Achilles' ship, which was s t i l l  Achilles' ship after i ts  hull planks, 

mast and rigging had a l l been replaced.

After this suggestion the pace of innovation slowed, and in the 

next mention of multi l ines (Borlaug, 1958) their production was s t i l l  

being spoken of in the future tense. However, in this paper two new 

and important ideas were introduced. The f i r s t  idea was the crit ic ism 

of multi l ines that remains the most serious reason for doubting their 

efficacy: that the epidemics that cause the "small losses" of Jensen

(1952) are the best possible breeding ground for a "superrace" of the 

pathogen that can attack all  components of the multi l ine, since they 

would greatly increase the opportunity for a mutation for increased 

virulence to occur, and for the mutant to disperse successfully to 

a previously immune host. The second idea was an attempted counter to 

this cr it icism: that the absence of supperace epidemics in nature 

implies that a "balanced" multi l ine system can be set up in which the



1 - 1 1

superrace is not f a ta l ly  destructive . As w i l l  be seen in several 

parts of Chapter 2, the notion of 'balance' remains an important one 

in th is  context.

Although no theory existed to suggest how such a balanced system 

could be set up, during the 1960's several programs were started to 

produce m u lt i l in es  fo r  p rac tica l use. According to Browning and Frey 

(1969) these were:

(1) The New York program, associated with N.F. Jensen.

L i t t l e  has been published about the resu lts  of th is  

program, and spec if ic  mention of a m u lt i l in e  program 

was dropped from the group's annual report in 1970 

(Cornell U n ivers ity , 1970).

(2) The Rockefeller Foundation program, associated with 

N.E. Borlaug, and concentrating on wheat va r ie t ies  

fo r  Central and South America. One m u lt i l in e ,  the 

10-component Miramar 63 was introduced commercially 

in Colombia. Two years a f te r  i t s  in troduction , two 

of i t s  components became susceptible and were 

replaced (Rockefeller Foundation, 1965). Although 

wide use o f th is  va r ie ty  was planned i t  was not 

achieved, presumably because of the advent of the short- 

strawed wheats. The heir to the Rockefeller

Foundation program, the Centro Internacional de Mejoramento 

de Maiz y Trigo, began in 1968 to develop a modern 

wheat m u lt i l in e  based on i t s  own cross number 8168. By 

1973, 285 possible components of an antic ipated 15-20 

component, not e n t i re ly  agronomically uniform, m u lt i l in e  

were being tested in 31 countries (CIMMYT, 1974). The 

reports of these tests are general and emphasize the 

good agronomic performance of the components rather
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than the i r  behaviour as a mixture or the i r  effects 

on the pathogen population.

(3) The Iowa program, associated with J.A. Browning and 

K.J. Frey. This program has produced some commercial 

oat cu l t iva rs  for  use in the southern U.S.A.

In each case the areas planted have been too small to const i tu te  

a d i rec t  test of the super io r i ty  of m u l t i l ines  in retarding pathogen 

evolut ion. The ch ie f  resu l t  has been that even when races v i ru le n t  on 

a f rac t ion  of the m u l t i l in e  are present, the loss of y ie ld  is less than 

that f rac t ion  of  the disease free y ie ld .  The need to to le rate  even 

these losses, when a pure l ine  of a f u l l y  res is tant plant might be 

planted, has not yet been demonstrated, and, by the same token, the 

pr inc ip les of construct ing a m u l t i l i n e  are not clear. In what seems 

to be the only published account of the method of making up a m u l t i -  

l in e ,  Frey e t  a l .  (1971) give th e i r  ru le as being to ensure that not 

more than 40% of the m u l t i l in e  is f u l l y  susceptible to any of the 

pathogen races present at the time, but the derivat ion of th is  number 

is  not given. (See also the f ron t isp iece) .

Thus i t  was only a f te r  the decision was made by several people 

to produce mu l t i l ines  that experimental work was done to investigate 

the basis of the assumption of m u l t i l i n e  super io r i ty .  The most 

notable epidemiological work has been that of C l i f fo rd  (1968),

Leonard (1969a, b, c) ,  and Cournoyer (1970), who have observed the 

dynamics of epidemics in m u l t i l i n e  plots of oats, and Sumner and 

L i t t r e l l  (1974) who have followed epidemics in experimental plots 

of corn m u l t i l ines .  Work at the epidemiological level is mentioned 

here simply to show how wide the gap s t i l l  is between promise and 

proof in regard to the e f fec t  that mu l t i l ines  would have i f  used on 

a large scale. The d i rec t ion  in which the resul ts of epidemiological
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and other work point w i l l  be discussed in Chapter 2.

Browning and Frey (1969) nevertheless sum up the promise of 

multi l ines in terms of extending "indefin i te ly" the "useful l i fe "  of 

resistance genes, "removing the rust hazard" and avoiding the risk of 

"homogenizing the pathogen population on a global scale". Given the 

current state of knowledge, this is an optimistic assessment. The 

present position of multi l ines is an unresolved standoff between 

optimism and caution.

1.2.4.3. The Other Alternatives

The purpose of this section is to review br ief ly  the other 

alternatives l isted in section (1.2.4.1) in order to show that some 

of them need not be considered any further separately from multi lines 

and that the others may share certain attributes with multi l ines.

From the defini t ion of multi l ines given in the previous section, 

together with the reasonable assumption that the same multi l ine need 

not suit a l l  situations, i t  is plain that the various uses of different 

crop varieties in spatial and temporal patterns are special cases of 

the use of multi l ines. For example, i f ,  over a wide area such as the 

wheat belt of N.S.W., adjacent farmers used different varieties, this 

would be the special case of multi l ine use in which one component of 

the multi l ine dominated in each farm, but di fferent multi lines of this 

type were used in each farm. Conventional methods, of course, are a 

s t i l l  more special case. Thus a l l of these patterned methods w i l l  

share in varying degrees any advantages of "spreading the risk" and 

any disadvantages of acting as a breeding ground for the superrace.

The situation with regard to the use of "generalised resistance" 

or "tolerant" varieties is more complicated because there exist conf l ic t 

ing definitions of these concepts and because some of the debate turns
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on technical genetic questions, which will be discussed in Chapter 2. 
Despite these difficulties a preliminary account can be given which 
indicates the issues involved and brings out another important idea 
which has influenced thought about plant breeding.

The earliest use of "tolerance" in this context seems to be 
that of Caldwell et al. (1958), for whom a variety was tolerant if it 
could "endure severe attack ... without sustaining severe loss". The 
issue was somewhat confused by van der Plank (1960), who contrasted 
tolerant varieties to susceptible varieties as those which, while not 
fully resistant, delayed the spread of an epidemic. He suggested that 
the widespread use of such varieties might effectively delay epidemics 
out of existence. To make matters worse, Browning and Frey (1969) 
quote van der Plank (1960), but use tolerance in a sense close to that 
of Caldwell et al. (1958). They suggest that multilines should show 
"synthetic" tolerance, presumably because many of each generation of 
pathogen propagules will meet nonsusceptible tissue.

Tolerance is also said to be significant by Browning and Frey 
because overcoming tolerance should "provide no mechanism for new 
races to prevail over established races". This appears to be true for 
tolerance in the sense of Caldwell et al. (1958), because decreasing 
the yield of a plant is of no direct significance to the pathogen's 
survival and reproduction if it does not simultaneously increase the 
infection level. However it is not true for tolerance in the sense of 
van der Plank, because a decrease in the delaying effect of a plant on 
a pathogen race constitutes a selective advantage for that race.
Indeed the advantage of tolerance [sensu Caldwell et al.) may be only 
verbal, because mutations for increased vigour in the pathogen can 
confer selective advantage and decrease yield without affecting 
"tolerance" at all.
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A third reason for considering tolerance to be significant is 

i ts  allegedly polygenic character (Simons, 1972). In this i t  is 

joined by "generalised resistance", with which i t  is sometimes 

identified (Watson, 1970b), though generalized resistance is also defined 

as resistance which is effective to some extent against all races 

(Caldwell, 1968) or as resistance which does not involve the hyper

sensitive reaction in which the invading pathogen is killed (Watson, 

1970b). Whatever form i t  takes, the significance of polygenic resis

tance is either that i t  is by definition less vulnerable to single 

mutations in the pathogen, or that the combination of genes will 

"place before the fungus barriers which are more difficult  to negot

iate." (Watson, 1970b). Generalised resistance is also sometimes 

known as "horizontal resistance" (van der Plank, 1963). Browning and 

Frey (1969) also claim that multilines should have "synthetic" 

horizontal resistance, which though not complete (since some components 

are vulnerable) is effective against all races (except, presumably, a 

superrace).

While there is general agreement that tolerance and generalised 

resistance are desirable properties for crop plants, no specific 

proposals for their use have yet been suggested. The important idea 

that appears to be contained in the proposals featuring tolerance and 

generalised resistance is that immunity is probably unachievable in the 

long run and that the task facing plant breeders is going to be to 

minimise the effects of unavoidable disease. The way this minimisation 

is to be carried out is not yet clear.

1 .3 Summary

All the alternative ways of breeding for disease resistance 

reduce to giving answers to three questions:
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(1) Which sources of resistance should be used in which plants?

(2) When should these plants be used?

(3) Where should these plants be used?

The conventional answer to th is  question has been, in essence: one new

major gene fo r  resistance bred into one plant to be used in a l l  times 

and places. As a resu l t  of mixed success with th is  approach, uncert

ainty  about i t s  correctness began to be expressed in the 1930's. This 

was the f i r s t  part of the uncertainty mentioned in section (1.1).

A number of d i f fe re n t  approaches have since been suggested. The 

e a r l ie r  ones concentrated on varying the answers to questions (2) and 

(3). With increasing understanding of the genetics of crop/pathogen 

in teract ions,  i t  has become possible to imagine varying the answer to 

question (1) as we l l ,  by using polygenic as well as monogenic re s is t 

ance. However, no consensus exists on the best approach or combination 

of approaches and so the second part of  the uncertainty mentioned in 

section (1.1) s t i l l  pers is ts .



2. Factors Affect ing the Mode of Use of Resistance Genes

2.1. Introduction

The purpose of th is  chapter is to examine the nature and 

sign if icance of factors that may a f fec t  the mode of use of resistance 

genes, and tha t ,  in p a r t icu la r ,  may j u s t i f y  the use of m u l t i l ines .

The factors that have been proposed as important in th is  context form 

only a small and apparently miscellaneous subset of the factors 

cur ren t ly  studied under the headings of disease resistance and crop 

epidemiology and the behaviour of plants in mixtures. The two 

fol lowing sections discuss only as much of the general background of 

these areas as is necessary to evaluate the factors in question. In 

section (2.2) the behaviour of mixtures in the absence of pathogens is 

discussed. Section (2.3) deals with pathogen-dependent factors , 

proceeding from a d e f in i t io n  of resistance to a consideration of factors 

at the genetic, physiological and epidemiological leve ls. Section (2.4) 

summarises the conclusions about the s ignif icance of the various factors

2.2. Non-Pathogen Factors 

2.2.1. Nature of the Factors

As was mentioned in section (1 .2 .4 .2 ) ,  the or ig ina l  impulse 

towards the use of m u lt i l ines  was pa r t ly  that advantages had been 

claimed fo r  the use of mixtures of var ie t ies  in the absence of pathogens 

These postulated advantages are of two kinds: a greater average y ie ld

fo r  the mixture than fo r  i t s  h ighest-y ie ld ing component, or a greater 

s t a b i l i t y  of y ie ld  fo r  the mixture than fo r  i t s  most stable component. 

Jensen (1952) recognised that these advantages, i f  they ex is t  would 

apply to a diseased mixture, but he also drew an analogy between the



greater s ta b i l i t y  of y ie ld  in a mixture and the avoidance of crop 

fa i lu re ,  or "spreading of r is k " ,  tha t would occur i f  the m u lt i l in e  

were so composed that a l l  of i t s  components were never vulnerable to 

the pathogen races present at one time.

Simmonds (1962) reviewed the experimental evidence fo r  the 

existence of these advantages of mixtures, and found that while 

mixture y ie ld  was occasionally higher than the pure stand y ie ld  of the 

highest y ie ld ing  component, the s ta b i l i t y  advantage was more common.

A possible explanation fo r  increased s t a b i l i t y  is that i f  the components 

of the mixture react d i f fe re n t ly  to the random var ia t ion  of the 

environment, then only part of the mixture w i l l  be adversely affected 

at any time, and the chance of the whole mixture y ie ld ing  below i t s  mean 

is  correspondingly reduced. An increase in y ie ld ,  on the other hand, 

seems to require some kind of mutually benefic ia l in te raction  between 

the components. Such cooperation is apparently less often found than 

simple d ifferences between mixture components (Trenbath, 1974), and when 

i t  does occur i t  is  usually unexplained (Simmonds, 1962). One example 

which is in te res ting  because the mechanism is pa rt ly  understood is  the 

case o f heterosis in sugar beet, where Curtis and Hornsey (1972) have 

been able to suggest tha t a mixture may be so chosen as to maximise the 

amount o f outcrossing in the crop and consequently maximise the r e l i e f  

o f inbreeding depression.

Marshall and Brown (1973) have derived a c r i te r io n  fo r  the 

s ta b i l i t y  of mixture y ie ld  to exceed the s ta b i l i t y  of the most stable 

l in e  in the case where s ta b i l i t y  is  measured by variance of y ie ld  and 

the mean y ie ld  of the crop is given by

V p i  ( V p l , )  . . .  (2.2.1)

where the X̂  are the proportions of the components of the mixture 

the Y.. are the component y ie lds  in pure culture
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the K are the weighted in teract ion ef fects

The condit ion fo r  a mixture to be more stable than the most stable 

component in an equal mixture of n components is

CY + CI < (nVmin " VI '  V /(n_1) ••• (2 *2‘ 2)

where n is the number of components in the mixture

V .. is the variance of the y ie ld  of the most stable 

component in pure cul ture

Cy is the mean covariance of the y ie lds of the components

Cj is the mean covariance of the in te ract ion ef fects

Vy is the mean variance of the y ie lds

Vj is the mean variance of the in teract ion effects

Clear ly , th is  re la t ion  is more l i k e l y  to hold the more negative the 

covariances are, that i s ,  the more unl ike the responses of the components 

to the environment are, or , in Jensen's terms, the more the r is k  is 

spread.

2.2.2. Signif icance of the Factors

Although mixtures which y ie ld  better  than th e i r  best component 

are unusual, they may have some s ign if icance fo r  the use of m u l t i l ines  

as a means of disease contro l .  The example quoted above from Curt is 

and Hornsey serves as a reminder that the components in an outbreeding 

mixture may d i f f e r  in th e i r  character is t ics  as pathogen hosts from the 

same components planted in pure cul tu re . Experimental evidence is 

needed to show whether the e f fec t  is pos i t ive or negative: heterosis

might resu l t  in a plant whose greater vigour enabled i t  to re s is t  the 

d e b i l i t a t in g  e f fec t  of the pathogen, or in a plant whose rapid meta

bolism made i t  an ideal source of metabol ites fo r  the pathogen.
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Of more general possible s ignif icance are the effects  of mixtures 

on the s t a b i l i t y  of y ie ld ,  and i t  is these that w i l l  be concentrated 

on here. In pa r t icu la r ,  the id e n t i f i c a t io n  of ' s t a b i l i t y '  with low 

variance of y ie ld  f a c i l i t a t e s  a precise discussion. The model of 

Marshall and Brown (1973) assumes that  the source of var ia t ion behaves 

randomly and that the y ie ld  has no systematic trend with time. The 

general notion of 'spreading of r i s k ' ,  though not as precise in i t s  

expression, seems to embody the same assumptions.

However the presence of a pathogen can often inva l idate  both 

assumptions i f  the host and pathogen populations are not in some stable 

state or l i m i t  cycle. I t  is p a r t i c u la r ly  c lear from the events des

cribed in Chapter 1 that in the case of extensive monocultures that the 

evolut ion of the pathogen is ,  as Johnson (1961) put i t ,  "man-guided" 

and tends always to produce a decrease in y ie ld .  I t  may sometimes be 

the case, fo r  example in the kind of t ra d i t io n a l  mixed agr icu l tu re in 

India described by Aiyer (1949), that host and pathogen in teract  

stably.  To prove that they do would be d i f f i c u l t  because i t  would be 

necessary to model the behaviour of the host and the pathogen and the i r  

in teract ion with the rest of the mixed-agriculture system and then show 

that (1) the model was stable to the perturbations produced by mutations 

in the pathogen, and (2) the model was s u f f i c ie n t l y  l i ke  the real 

system fo r  s t a b i l i t y  of the model to imply s t a b i l i t y  of the system.

Even i f  they are not s t r i c t l y  stable such systems may be e f fec t ive ly  

stable i f  the p robab i l i ty  of the pathogen dispersing successively to a 

plant of the correct species is  so low that even the superrace cannot 

reproduce fas t  and select ion fo r  virulence has l i t t l e  e f fec t  on y ie ld .  

However in the cases of in te rest  to most of the world today neither 

s t a b i l i t y  nor e f fec t ive  s t a b i l i t y  prevai ls .



Thus the behaviour of a crop/pathogen system, unlike tha t o f a 

crop/environment system, consists of two parts: a random va r ia t ion

and a systematic interdependence of crop and pathogen. Where the f i r s t  

dominates, the spreading-of-r isk conception of the mixture is  approp

r ia te  because Marshall and Brown (1973)-type assumptions hold, and the 

p lant breeder can trade o f f  some of the average y ie ld  a tta inab le  in 

exchange fo r  a greater s ta b i l i t y  o f y ie ld ,  without in tens ify ing  the 

disease problem. Where the systematic component dominates, as in the 

closer approaches to complete genetic un ifo rm ity , spread ing-of-r isk  is  

not an appropriate descrip tion , because the crop affec ts  the pathogen 

population, and the focus of the plant breeder may s h i f t  from minimis

ing the variance of y ie ld  to maximising the absolute value of y ie ld ,  

which, under the influence of the pathogen, tends downwards.

Therefore the behaviour of m u lt i l in e s  in the absence of a pathogen 

or in the case where the m u lt i l in e  does not noticeably influence the 

evolution of the general pathogen population is  only a p a rt ia l  guide to 

th e ir  usefulness as a means of disease con tro l. Uncertainty remains, 

la rge ly  because of the in te rac tion  of the crop with the pathogen popu

la t io n .  While i t  is unclear whether crop/pathogen systems can (or 

should) be s tab il ise d  (more w i l l  be said about th is  la te r  in the 

chapter), i t  is  c lear tha t the analogy between the response o f mixtures 

to random environmental factors and th e ir  response to pathogens should 

be used with great caution.



2.3. Pathogen-Dependent Factors

2.3.1. Int roduction

The long term resu lts of any mode of resistance gene use w i l l  

depend on the way resistance is inher i ted in the crop, the way virulence 

is inheri ted in the pathogen, the way the indiv idual plants grow when 

diseased, and the higher-order in teract ions which may be summed up under 

the heading of the dynamics of epidemics. There are several ways of 

c lass i fy ing  the various factors which have been said to be relevant to 

the choice of a mode of gene use. None of these c lass i f ica t ions  gives 

complete and mutual ly exclusive subsets of factors which can be d is 

cussed separately without overlap in answering the questions posed in 

Chapter 1: which genes in which plants, when and where. The fol lowing

sections are organised in a progression from the genetic to the 

physiological to the epidemiological leve l.  This corresponds roughly 

to a progression from host/pathogen interact ions of a low order to those 

of a high order, from hostXpathogen, as in the in fect ion of a single 

p lant,  to hostXhostXpathogenXpathogen, as in the competition of plants 

infected by d i f fe re n t  pathogens. The increase of complexity involved 

is  p a r t i c u la r ly  evident in the higher orders of in teract ion.

As a s ta r t ing  point fo r  the discussion i t  is useful to have a 

d e f in i t io n  of resistance. Wood (1967) has defined resistance as the 

"propert ies of a plant which reduce damage caused by a pathogen". This 

is a wide d e f in i t io n  i f  damage is defined widely, and could conceivably 

extend to "damage" done to the genetic d ive rs i ty  of a crop. I t  also 

emphasises that resistance is best quanti f ied by a vector of values 

rather than by a scalar. These values represent components of re s is t 

ance, which are often measurable separately. For example the germination 

rate of pathogen on host and the rate of production of propagules per 

un i t  infected biomass are measures of components of resistance, though
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i f  any one component is large enough i t  may be di.'f ic u lt  to measure 

the others in practice. From an epidemiological point >f  view a ll  

these properties can sometimes be summed up in a single para., ^ter, 

the re la tive  rate of increase of the pathogen (van der Plank, 196./

This is a short-hand description that inevitably involves a loss of 

information about the host pathogen interactions. Though the re la tive  

rate of increase may be the most convenient measure of the interaction  

between single pairs of hosts and pathogens, i t  can be expected to vary 

with the composition of a m u lt i l in e , and so cannot be thought of as a 

constant property of a multiline/pathogen interaction.

2 .3 .2 . The Genetic Level

2 .3 .2 .1 .  The Nature of the Factors

The defin it ion  of resistance given above already indicates the 

poss ib ility  of separate genetic control of d iffe ren t components of 

resistance. The in i t ia l  observation of Biffen (1905) was of a single 

recessive gene which conferred such a high level of some component of 

resistance that the overall growth of the pathogen was almost completely 

stopped, and the question of separate effects on separate components 

became academic. A majority of the sources of resistance discovered 

since have been, like  the f i r s t ,  oligogenic (Wheeler, 1975), meaning 

that one or a few so-called "major" genes confer a noticeable increment 

in some component of resistance. Personand Sidhu (1971) reviewed 912 

reports of resistant reactions whose genetic basis had been investigated 

and found that in over 95% of cases the genes reported were oligogenic. 

An unknown proportion of the remainder that reported polygenic resis

tance were held by Person and Sidhu to be suspect on technical grounds.

A common pattern among "major" resistance genes is that they condition 

a reaction called the hypersensitive reaction (Wood, 1967), in which the 

invading propagule is k i l le d  in its  attempt to germinate and



consequently the spread of disease is e n t i re ly  stopped. Because of the 

prevalence of th is  type of resistance i t  has general ly not seemed 

important u n t i l  recently to enquire what component of resistance is 

d i re c t l y  affected by a gene.

This preponderance of reports of ol igogenic resistance may 

re f le c t  the fac t  that i t  is easier to search fo r  the causes of discrete 

dif ferences in resistance than to attempt to assay resistance quant i ta

t i v e l y ,  as a var iable affected by many genes with a cumulative e f fec t .  

However i t  is becoming clear that at least some resistance is  inheri ted 

qu an t i ta t ive ly ,  under the control of a number of genes (Simons, 1975;

Luke et al .  , 1975), though in some cases the number of genes involved 

is  small (Luke et al .  , 1975). At the same time, physiological studies 

have found ind iv idual genes that  have d iscre te ,  but small, effects  on 

components of resistance (Slesinski and El l ingboe, 1969; Stuckey et al.  , 

1974) and that could form part of a polygenical ly  inheri ted pattern of 

resistance. When the effects  of ind iv idual genes must be combined by 

the breeder in order to produce a high level of resistance in the plant, 

i t  becomes more important to enquire what component of resistance is 

being affected, and th is  importance is re f lected in current att i tudes 

in breeding.

The resistance of the plant to the pathogen depends also on the 

genetic const i tu t ion  of the pathogen. The most s ign i f ica n t  attempt to 

systematize the genetics of in teract ions fo r  resistance and suscepti

b i l i t y  between hosts and pathogens has been the gene-for-gene hypothesis 

of Flor (1955). As stated by Flor (1971) i t  is that " fo r  each gene that 

condit ions resistance in the host there is a corresponding gene in the 

parasite that conditions pathogenicity". I f  th is  is true, a susceptible 

reaction is produced only when a gene fo r  virulence is present in the
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pathogen and the corresponding gene fo r  s u sce p t ib i l i t y  is present in 

the host.

As Wheeler (1975) points out, i t  is not clear whether the gene- 

for-gene hypothesis can be disproved, fo r  i f  a pa r t icu la r  in te ract ion 

does not seem to fo l low the ru le ,  then the discrepancy can be explained 

by the presence of other,  non-complementary genes in the in te ract ion .  

However, there are many in te ract ions that do fo l low the gene-for-gene 

pattern (F lor ,  1971) and th is  suggests that many pathogens and th e i r  

hosts have evolved together over a long period of time. Since 

unchallenged resistance exterminates the pathogen and unchecked 

aggressiveness in the pathogen tends to eliminate the host, th is  long 

period of coevolution suggests that perhaps the host and the pathogen 

formed a system that was stable before the advent of modern agr icu l tu re.  

Mode (1958) showed that  i t  was possible to s ta b i l ise  a model of a gene- 

for-gene system by appropriate choice of selection coe f f ic ien ts ,  and 

suggested that s t a b i l i t y  could be maintained over long periods by a 

system of balanced polymorphisms with suppression of crossing-over.

2.3.2.2. Signif icance of the Factors

At the level of genetic manipulation, neglecting fo r  the moment 

the way in which resistance genes express themselves, these patterns of 

inheritance raise two questions fo r  the plant breeder:

(1) Should he concentrate on ol igogenic or polygenic

resistance? In pa r t icu la r ,  are m u lt i l ines  unnecessary 

i f  polygenic resistance is avai lable?

(2) Do the known patterns of resistance j u s t i f y  fears of

genetic erosion? In p a r t icu la r ,  can induced mutations 

remove the c r i t i c i s m  of conventional plant breeding 

that i t  may exhaust the stock of resistance genes?
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(1) The importance of using po lygenically  based resistance is some

times argued (Robinson, 1968) on the grounds that oligogenic resistance 

is more easily  overcome by mutations in the pathogen race. I f  mutation 

rates are equal at a l l  loci in the pathogen, and the gene-for-gene 

hypothesis holds, th is  advantage of polygenic resistance would hold 

because more mutations would be required to overcome the larger number 

o f genes. However i f  the crop genes in question operated by giving 

add it ive  doses of some component of resistance, successive mutations in 

the pathogen would re su lt  in an accelerating return to s u s c e p t ib i l i ty  

as the increasing pathogen population had more opportunities to mutate, 

and the advantage would be temporary. A case of th is  kind has been 

reported (Simons, 1972). I t  is  a process that resembles the step-wise 

mutations fo r  v irulence tha t might be expected in m u lt i l in e  epidemics 

and which are the main disadvantage fo r  which m u lt i l in e s  have been 

c r i t ic is e d  (section 1 .2 .4 .2 ). This process of successive mutation 

might be arrested i f  the polygenic grouping was in some way cooperative 

so that a l l  genes had to be made vulnerable before s u s c e p t ib i l i ty  

appeared. The simplest case of th is  occurs when a number of s ing le genes, 

each condition ing a hypersensitive reaction and so a high level of 

resistance are simultaneously incorporated in the host. Other mechanisms 

fo r  cooperation do not seem to have been suggested. I t  ought not to be 

overlooked, however, that there are cases known in which a s ingle major 

gene has conditioned resistance fo r  decades without becoming susceptible 

to a new race (Lupton, 1972).

The imperfect co rre la t io n  between the number of genes nvolved 

and the endurance of resistance, together with the b lu rr ing  01 the 

d is t in c t io n  between po lygen ica lly  and o l igogen ica lly  determined 

resistance tend to suggest tha t polygenic resistance should not be 

treated d i f fe re n t ly  in p r in c ip le  from resistance conditioned by major 

genes. Macer (1972) discusses some of the practica l problems involved
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in handling plants with polygenic resistance. In the f i r s t  place, more 

elaborate selection processes are needed to detect plants with 

relatively low levels of resistance and whose progeny segregate in other 

than a simple Mendelian manner. Also, the polygenic character is 

masked if  there is a single major gene in the plant, so that major genes 

can only be incorporated at the later stages of a breeding program.

However there can be no question of breeding for one type of 

resistance rather than the other. A balanced position (Simmonds, 1962; 

Watson, 1970a) cannot afford to ignore ei ther,  even though the details 

of how best to partition effort between different techniques are at 

present unclear. In particular, the choice of multilines need not 

neglect polygenic resistance. There is no theoretical reason why 

multilines should not employ polygenic resistance, either uniformly 

in the genetic background of all lines, or distributed nonuniformly by 

the same rules that are used to distribute the major genes.

(2) The rate of erosion of genetic resources is also affected by 

awareness of patterns of inheritance because this awareness affects the 

use that is made of genetic material. In the f i r s t  place, the selective 

transfer of major genes from gene pools into crops without their 

accompanying polygenes (the "Vertifolia effect" of van der Plank (1968)) 

must mean that polygenic resistance is being removed from available 

genetic resources faster than major gene resistance. But on the 

positive side there is the possibility that induced mutations may help 

to make good the losses.

Although there has been much experimentation with mutagenesis 

(International Atomic Energy Agency, 1971; Roane, 1973), and some genes 

for resistance not known from natural sources have been found 

(Jorgensen, 1971), there is as yet l i t t l e  sign that practical



2 - 1 2

contr ibutions have been made to breeding fo r  disease resistance (Smith, 

1971; Will iams, 1975). I t  also appears that  such contr ibutions as are 

made are l i k e l y  to be made via single major genes whose transformations 

can be more easi ly  observed in screening the large number of usual ly 

deleterious changes that are produced by mutagens. Consequently, i t  

" is  most improbable that the balanced gene complexes which are the 

consequences of long term select ion fo r  adaptation can be assembled 

by mutation breeding techniques" (Frankel and Bennett, 1970).

Thus although i t  is d i f f i c u l t  to say whether we are in danger of 

exhausting the supply of resistance genes (Day, 1974), i t  does not seem 

that increasing genetic knowledge has created the p o s s ib i l i t y  of e i ther 

a s ta t ic  equi l ibr ium or a dynamic equi l ibr ium in which genes can be 

replaced as fas t  as they become vulnerable over an in d e f in i te ly  long 

time. The adverse consequences of conventional breeding techniques 

discussed in sections (1.2.2) and (1.2.3) must s t i l l  be regarded as 

real threats. I t  remains necessary to consider a l te rna t ive  methods.

2.3.3. The Physiological Level 

2.3.3 .1 . The Nature of the Factors

At the physiological level the genetic basis of resistance is 

expressed in many ways, the de ta i ls  of which are not a l l  of in te res t  in 

the present context. In most cases (Wheeler, 1975) the l inks between 

the genes involved and the physiology of the disease reaction and 

between the disease reaction and the success or fa i lu re  of the invading 

pathogen are not known. Hence some of the ideas to be discussed here 

are not, s t r i c t l y  speaking, physiological concepts but serve to organise 

the phenomena of resistance where the physiological correlates of 

resistance are obscure.
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Two important organising ideas are the concepts of general 

(versus specific) and induced (versus preformed) resistance. Some 

resistance is believed to be of a passive preformed nature in which 

the ordinary functioning of the plant reduces damage. This is a wide 

category that includes such things as a l i f e  cycle that avoids the 

most favourable period for pathogen development (Shaner e t  a l .  , 1975), 

the possession of a thick cuticle (Day, 1974), and a generally vigorous 

metabolism. However, most attention at present is focussed on induced 

resistance in which the growth of the pathogen is retarded or stopped 

by a reaction which does not take place until the pathogen attempts 

infection. Current theories suggest (Day, 1974, Chapter 5) that this 

type of resistance is usually specific and is the type of resistance 

governed by 'gene-for-gene' interactions. The role of the gene for 

resistance in the plant is to enable the recognition of some characteris

t ic  byproduct of the avirulent pathogen and in it ia te  the production of 

re la tive ly  nonspecific anti-fungal agents, which may be the substances 

known as phytoalexins (Kuc, 1972).

Less is known at the physiological level about the forms of 

resistance in which specific recognition does not appear to play a part. 

Perhaps as a consequence the terminology of 'general resistance' is the 

most confused of any area relating to disease resistance. Terms used 

include general resistance, slow rusting, f ie ld  resistance, mature plant 

resistance, durable resistance and tolerance. Schafer (1971), reviewing 

tolerance, gives eight s l igh tly  divergent definitions that have been 

used. Much of the confusion seems to stem from a fa ilure to specify 

closely enough what measurements would define a value of the type of 

resistance in question.

For instance, tolerance is included here as a form of resistance 

because a ll the definitions of tolerance center on the idea of a lesser
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y ie ld  reduction fo r  a given in fec t ion leve l ,  and because y ie ld  

reduction is reasonably counted as damage to the plant. However 

reference has already been made in section (1.2.4.3) to the confusion 

that has resulted from the fa i lu re  to specify at what time the in fect ion 

level is to be measured. For example, i f  in fec t ion level at time t  

affects  in fec t ion level at time , which in turn determines the y ie ld  

reduction, then "slow rust ing" (Luke e t  a l .  , 1972) from t^ to t^ 

produces "tolerance" of the in fec t ion  level at t ^ , without reference to 

any tolerance of in fect ion level at t . On the other hand, i f  the y ie ld  

reduction depended on in fec t ion  level at t  as we l l ,  then we would 

probably not wish to speak about ' to lerance' but about 'general 

res is tance '.  In a model in which the dependence of y ie ld  on in fec t ion 

levels at d i f fe re n t  times was e x p l i c i t ,  questions about ' to lerance'  or 

'general resistance' would be replaced by questions about pa r t icu la r  

model parameters, and no ambiguity would ar ise.

Terms such as ' to lerance ' and 'mature plant resistance' do not 

seem to cause serious ambiguity in pract ice. What is not c lear,  

despite the wide use of the term, is the meaning of the term 'horizontal  

res is tance '.  Van der Plank (1963), the o r ig ina to r  of the term gave two 

sepa ate d e f in i t ion s :

(1) "horizontal resistance reduces r"  ( r  is the
re la t ive  in fec t ion  rate) (1963, p.120)

( 2 ) "when the resistance is evenly spread against
a l l  races of the pathogen we shall  ca l l  i t  
horizonta l"  (1963, p.174)

and he expanded on these by saying "horizontal resistance has been 

cal led f i e l d  resistance . . .  generalised resistance . . .  and other names" 

(1963, p.120). The contradic t ion in these de f in i t ions  can be seen in 

the attempt to c lass i fy  the e f fec t  of a single gene that gives a degree 

of protect ion against one race of a pathogen. Such a gene (some of 

F lo r 's  (1955) genes come under th is  heading) is apparently to be
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considered ' v e r t i c a l '  because i t  affects  only one race. Yet ver t ica l

resistance "does not reduce r ,  because reproduction is normal in races

not governed by the resistance" (1963, p .120). In th is  system of

de f in i t ions  resistance is not considered to reduce r unless i t  reduces

r  fo r  a l l  pathogen races. Thus a l l  resistance is defined as horizontal

u n t i l  i t  becomes vulnerable to a single race, a f te r  which i t  becomes

v e r t i c a l ,  and perfect resistance is ve r t ica l  unless i t  is  e f fec t ive

against a l l  races. The confusion seems to resu l t  from a fa i lu re  to

d is t inguish between the mean level o f  resistance to various races and

the variance of resistance to various races, since horizontal resistance

is in one case defined by i t s  absolute level (reduction of r)  and in

another by i t s  variance (evenness with respect to races). The adoption

of th is  system of de f in i t ion s  has led not only to advocacy of the use

of "horizonta l"  resistance (usual ly supposed to be polygenic) with

varying degress of enthusiasm (Watson, 1970b; Nelson, 1972; Robinson,

1968), but also to such statements as

By d e f in i t i o n ,  any given resistance mechanism 
must be e i ther  horizontal or v e r t i c a l ;  i t  cannot 
be both. (Robinson, 1968)

2.3.3.2. Signif icance of the Factors

The sign if icance of the physiology of speci f ic  host/pathogen 

reactions fo r  someone seeking to answer the three questions of section 

(1.3) l ies  in the fact that  induced resistance is a common phenomenon, 

and that i t  can be e f fec t ive  against pathogens other than the av i ru len t  

spore that in i t i a t e d  i t  (Day, 1974). Thus in a number of cases the 

reaction to a av i ru len t  spore results in a temporary resistance to a 

normally v i ru le n t  spore that chances to f a l l  near the same place though 

i t  would normally not be "recognised". This e f fec t  is known as the 

cross-protect ion e f fe c t ,  and Johnson and Al len (1975) have proposed 

that i t  may be s ig n i f ic a n t  in m u l t i l in e s ,  where the more susceptible
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plants would be a source of cross-protect ing spores. The e f fec t  is 

known in wheat (Cheung and Barber, 1972), f lax  ( L i t t l e f i e l d ,  1969) and 

oats (Kochman and Brown, 1975), and although there is some controversy 

about i t s  mechanism (Kochman and Brown, 1975), i t  does not appear to be 

a laboratory ar te fac t .  The size of the e f fec t  that might be expected 

in a m u l t i l in e  under f i e l d  condit ions does not seem to have been 

estimated. Presumably the number of cross-protect ing spores would have 

to be comparable to that of v i ru le n t  spores, which suggests that high 

proportions of the more susceptible plants would have to be grown.

There is also the p o s s ib i l i t y  of induced s u sce p t ib i l i t y  occurring 

(Brown, 1975), but th is  is re la t i v e ly  rare and should not come as a 

surprise to the breeders of a m u l t i l i n e ,  since i t  too is reproducible 

experimental ly.

The signif icance of the various posited types of general res is 

tance is less c lear,  pa r t ly  because they themselves are not c lear ly  

defined. The key is probably the same as that given in section 

(2.3.2.2) fo r  the s ignif icance of polygenic resistance, with which 

general resistance is often id e n t i f ie d  (Simons, 1975) ,vcor rect ly  or 

incorrec t ly .  Thus general resistance is thought of as resistance which 

is less vulnerable to mutation than spec i f ic  resistance and whose 

conquest, since i t  is usual ly not perfect resistance, gives less of an 

advantage to the successful race. Luke et  a t .  (1972) give an example 

of a quan t i ta t ive ly  inheri ted form of resistance that has apparently 

provided general resistance fo r  many years. However examples of general 

( in  the sense of enduring (Caldwell , 1968)) resistance governed by 

single genes are also known (Simons, 1972).

I f  general resistance is defined only by the fact that no race 

has yet been found that decreases i t s  e f fe c t ,  then i t  would be foo l ish 

to base a breeding program on i t .  Moreover the corre lat ion between
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polygenes and durability  of resistance which might provide a basis for 

predicting 'general' resistance is imperfect. In the absence of other 

explanations of why some resistance is durable and other resistance is 

not, i t  would seem that general resistance is not a very useful idea.

At the same time, a history of durable resistance should not be ignored. 

Within a model of gene use and its  effects, general resistance can 

perhaps be consistently modelled as resistance whose complementary 

races (in the sense of races that can attack its  genetic base in some 

way) have low probabilities of arising. I t  is an interesting question 

how such probabilities could be estimated in practice.

I f  the "general" property of general resistance can be modelled 

in this fashion, and its  specific manifestations can be modelled as 

indicated in the discussion of tolerance, the choice of different genes 

and the ir use can be resolved as a quantitative rather than a quali

tative question. The beginning of such a quantitative treatment w ill 

be found in the following chapters. What w ill not be found is an 

attempt to model "horizontal resistance", since the inconsistencies in 

i ts  definitions make i t  impossible to model.

2.3.4. The Epidemiological Level 

2.3.4.1. Nature of the Factors

The factors relevant at the epidemiological level can be 

classified under seven headings, corresponding roughly to an increasing 

order of host pathogen interaction:

(1) the probability that new, virulent races of the pathogen

w il l  appear

(2) the probability that a pathogen propagule w il l  find a

susceptible host

(3) the relative survival rates of different pathogen races
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(4) the interaction of diverse plants subject to one
pathogen

(5) the interaction of diverse pathogens on the same host
(6) the interaction of diverse hosts and diverse pathogens
(7) other high order interactions.

(1) The probability that a new, more virulent race of a pathogen 
appears at a given time has two components. The first is the probability 
that the new race may arrive from another area, where it already exists.
It is believed, for example, that some new races of Pucoinia graminis 
tHtioi appearing in Australia may have entered from Africa (Luig and 
Watson, 1970). The second component is the probability that the new 
race arises by a change in one of the races already in the area under 
consideration. There exist a number of mechanisms by which this may 
take place, both sexual and asexual. Reviews are given in Watson 
(1970b) and Webster (1974). The basis for changes in virulence is 
mutation, but other processes such as heterocaryosis and hybridization 
can lead to the effective expression of the new gene. From the point
of view of the plant breeder seeking to define his expectation of the 
pathogen's evolution, all these processes appear in the form of 
probabilities of occurrence dependent on the size of the pathogen 
population.

(2) The probability that a pathogen propagule will find a 
susceptible host is a function of the proportion of susceptible plants 
within the dispersal range of the pathogen. It will evidently decline 
as the proportion of the susceptible host in the crop declines, both 
because the hosts are, on average, father apart and because other 
plants intervene. Even if the whole crop is susceptible, the probability 
will not be unity, because many propagules will not land on any kind of 
plant. Even apart from this mortality, the probability will not in
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originally supported by a number of field reports of the survival of 
simple races in mixed populations, notably of Phytophthora infestans. 
Since the original introduction of the concept of stabilising 
selection, some more systematic collections of field reports have been 
made (Watson, 1970b; Luig and Watson, 1970) and a number of experiments 
have been carried out to measure the progress of selection in mixed 
pathogen populations under more controlled conditions (Leonard, 1969b; 
Brown and Sharp, 1970; Martens, 1973; Volin and Sharp, 1973). Work in 
this field has been reviewed recently by Brown (1975).

While some of the work that has been done has produced evidence 
that stabilising selection occurs in particular cases (Leonard, 1969b), 
the consensus from both field and laboratory seems to be that 
stabilising selection is not a universal or even a general phenomenon 
(Brown, 1975). Thus Watson (1970b) reported that one of the two most 
prevalent strains of Puccinia grconinis tritici in Australia carried 
genes controlling virulence on two resistance genes currently unused, 
and Martens (1973) found that a simple race of oat stem rust (Puccinia 
graminis avenae) that showed superior competitive ability in the growth 
cabinet was inferior in the field.

Van der Plank (1968) attempted to adjust the theory of stabilis
ing selection to account for these exceptions by introducing the 
concept of the strength of resistance genes, defined "in terms of the 
strength with which stabilising selection acts against the gene's 
complementary race". This modification has been strongly criticised 
(Nelson, 1972) as depriving the hypothesis that simplicity correlates 
with vigour of any predictive power. In fact some genes which van der 
Plank designated as strong have since been shown to be weak (Brown, 
1975). More than this, however, the terminology of 'weak' and 'strong' 
genes is self contradictory, because there is no unique "complementary
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race". The same gene in di f ferent  genetic backgrounds has dif ferent  

complementary races and so may be rated strong and weak at the same 

time.

Whatever the resolution of the debate about stabi l ising  

selection the underlying problem of accounting for the scarciiy of 

superraces s t i l l  remains. One possible solution might l i e  in a 

reassessment of the possible rate of evolution of wild pathogen 

populations. I t  may be that only in the last  century or so has there 

been any significant probabil ity of the superraces that arose on a 

particular local variety of a crop making a successful transfer to a 

crop in another region. Obviously, evidence on this point wi l l  be 

very hard to obtain.

(4) A common phenomenon in crop mixtures of plants of uneven 

competitive a b i l i t y  is that the in fer ior  competitor grows less well in 

the mixture than in a pure culture, while the superior competitor grows 

correspondingly better (de Wit, 1960). The presence of di f ferent  

levels of resistance in a heterogeneous crop during an epidemic tends 

to ensure that the competitive position of heavily attacked plants wil l  

deteriorate so that compensatory growth of the less attacked plants 

may occur. Examples where compensatory growth has been observed 

experimentally as a result of the presence of disease are re la t ive ly  

uncommon, but in some cases i t  is strong enough to allow an almost 

normal crop yield in spite of heavy damage to part of the mixture 

(Trenbath, 1977). Thus Sibma et  a t .  (1964) found in comparing the 

yields of mixtures of susceptible and resistant tomatoes with and with

out the nematodes that affected the susceptible plants, that the 

resistant plant, which was the in fer ior  competitor when the nematodes 

were absent, was raised to parity with the susceptible plant in their  

presence. This is an example of a host X pathogen X host interaction.
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(5) The discussion of stabilising selection above proceeded in 
terms of the intrinsic rates of increase of different pathogens, 
without reference to any interactions between races on common hosts. 
Differential rates of increase imply that some races are more 
efficient users of the plant resource than others and so obtain a 
larger share than their initial proportion in the population might 
indicate. However more direct interactions between races are possible. 
Leonard (1969a) found that the total infection level reached by a 
joint inoculation of two races of Pueoinia graminis avenae on oats was 
less than the sum of the separate infection levels resulting from 
separate inoculations. Since the infection levels were low, so that 
plant resources should not have been limiting, Leonard inferred the 
existence of some mutual inhibition of races.

This area of pathogen competition has not yet been thoroughly 
explored, and the existence of such direct effects is hard to prove 
unambiguously. Another possible explanation of Leonard's result is 
that the doubly inoculated plants were inferior hosts as a result of 
the greater inoculum density and consequent loss of competitive ability 
relative to unattacked plants (Trenbath, 1977). The only result to 
set beside that of Leonard as an example of such a direct pathogen X 
host X pathogen interaction seems to be the counter-example of induced 
susceptibility reported by Brown and Sharp (1970). The primary type 
of p X h X p interaction appears to be competition for the plant 
resource but this has not been verified at the physiological level.

(6) Higher order effects are, understandably, still less well 
understood. One that has been observed is the adaptation of pathogens 
to grow better on particular hosts from the range on which they are 
virulent. Watson (1970b), Leonard (1969b), and Caten (1974) report 
effects of this kind in which after several generations on one host a
pathogen loses some of its vigour on its other hosts. This is treated
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here as a host X pathogen X host X pathogen interaction because such 
divergent evolution in a multiline would tend to reduce the mean vigour 
of complex races by denying them the opportunity to adapt. No 
mechanisms for the effect have yet been suggested, though one obvious 
presumption is that pathogen races are heterogeneous with respect to 
other host specific characters than those determining immunity, and 
that prolonged selection on one host reduces this heterogeneity.

Other high-order effects on which no work has yet been done can 
be envisaged. For instance, it is conceivable that compensatory growth 
of the less affected components of a multiline may expose them to 
increased pathogen attack. Alternatively, the multiple infections of 
simpler components may decrease their capacity to provide cross- 
protecting spores to more complex components. At present, such effects, 
if they occur, have not been separated experimentally from lower order 
e f f e c t s .

(7) The effects described under headings (1) - (6) do not take into 
account the special adaptations of individual pathogens or the many- 
faceted responses of hosts. A susceptible plant in a mixture is not 
just a source of propagules with a given leaf area. It is a shorter 
plant that consequently lives in a different microenvironment and 
responds to environmental stimuli in a different fashion. These areas 
of plant response are too complex to be approached with any confidence 
at the moment, and since they have not assumed any role in the 
theoretical debate on gene use they will not be discussed any further 
in this study.
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2.3.4.2. Signif icance of the Factors

The factors which have been l i s te d  in the previous section can 

be organised with respect to th e i r  sign if icance fo r  gene use under the 

fol lowing three headings:

(1) whether the mode of gene use encourages the appearance

of new races

(2) whether the mode of gene use minimises crop damage

(3) whether a host/pathogen system with the superrace

present can be s tab i l ised  in a benef icial  way.

(1) That the use of m u l t i l i n e s ,  by permitt ing avoidable epidemics, 

encourages the appearance of new races by giving increased opportunit ies 

fo r  the pathogen to mutate has been a major c r i t i c is m  of th is  mode of 

gene use fo r  twenty years (Borlaug, 1958). At the same time, the 

opposite point of view has sometimes been put in the suggestion that 

widespread disease-free crops exert a "select ion pressure" on the 

pathogen (Mode, 1958; Wolfe, 1975). This usage is misleading. What is 

created by modern monocultures is not "select ion pressure" but 

"select ion opportun ity". I f  a new race is not in existence, the largest 

and most homogeneous crop w i l l  not make i t  any more l i k e l y  to appear.

I t  is the consequences of the appearance of a new race that are affected.

Thus the c r i t i c i s m  of mu l t i l ines  as encouraging the appearance 

of new races is va l id .  Anything other than the concentration of a l l  

avai lable sources of resistance in to  a single plant is subject to th is  

c r i t i c is m .  I f  th is  were the only consideration involved in gene use, 

the only reason fo r  using m u l t i l ines  would be that they allow the 

simultaneous use of d i f fe re n t  a l le les  of resistance genes (Browning and 

Frey, 1969). Apart from th is  special case, i f  m u l t i l ines  or geographi

cal mosaics are to be used i t  must be fo r  reasons connected with 

headings (2) or (3) above.
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(2) Many of the factors described in the preceding sections can be 
expected to cause an interaction between the mode of gene use and the 
extent of yield loss due to disease. Cross-protection, compensatory 
growth, adaptation of races, mutual inhibition of races and decreased 
probability of finding a host may all, if they apply,serve to 
ameliorate the effects of disease spread in multilines and the special 
cases of multilines. It remains unclear whether these effects make a 
case either for tolerating losses when the absence of a superrace makes 
them avoidable, or for tolerating the presence of additional pathogens 
when the superrace is present.

(3) One factor that might tip the balance towards the use of multi- 
lines is the prospect of stabilising the pathogen population. While 
stability has not usually been precisely defined in this context, it 
has been regarded as an important attribute of multiline systems 
(Browning and Frey, 1969). The usage of stability has varied from the 
conventional mathematical usage of Mode (1958), through the concept of 
a managed common growth rate of all pathogen races (Leonard, 1969c), 
to the wish for the avoidance of sudden irruptions of new pathogen 
races (Knott, 1971).

The most careful investigation of the stability of man-managed 
crop/pathogen systems (as distinct from natural gene-for-gene systems) 
has been that of Leonard (1969a,b,c). He observed that in small plots 
of oats the rate of increase of races of Puooinia graminis avenae was 
proportional to the fraction of susceptible plants in the plot. He 
also found that among his races a wider range of virulence implied a 
lower rate of growth on susceptible hosts. He suggested that, given 
these two relationships, it should be possible to regulate the 
composition of a multiline so that all races present increase at the 
same rate. If the relative vigours of the races do not depend on the
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composition of the pathogen population, this rate is the rate at which 

the superrace alone grows. This is a kind of s ta b il i ty  but, as Leonard 

(1969c) pointed out i t  offers few advantages. However i f  there is also 

mutual inhib ition of races (as there may have been in Leonard's case), 

then the natural rate of increase of the superrace can be slowed by 

the presence of simpler races to an extent greater than would be 

indicated by simple saturation of the host. In this case Leonard 

suggested that a sequence of multilines in which the simpler components 

predominated could be used to make the simpler races predominate, with 

the result that the superrace would be inhibited. The composition of 

the multiline could then be adjusted so that this inhibited rate of 

growth was the norm for a ll races.

The principal theoretical disadvantage of such a scheme is the 

apparent ra r ity  of both stabilis ing selection and the additional effects 

needed to turn a neutral Leonard s ta b il i ty  into an advantageous Leonard 

s ta b il i ty .  No mechanism has yet been suggested for achieving s ta b il i ty  

without stabilis ing selection. However, given stabilis ing selection, 

an obvious practical question concerns the level of simple races that 

would have to be tolerated to achieve the suppression of the superrace. 

Unless mutual inhib ition between races were very strong, s ta b il i ty  

might be achieved at the cost of crop fa ilu re . Thus the probability of 

stabilis ing multilines is not great, and the probability of achieving 

a beneficial s ta b il i ty  is somewhat lower.

2.4. Summary

The factors discussed in this chapter can be reviewed under 

three broad headings:

(1) the controversy over the u t i l i t y  of d ifferent types

of resistance
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(2) the range of host/pathogen interactions of various

orders to be found in epidemics, part icularly 

multi l ine epidemics

(3) the reason for seeking a stable pathogen population.

(1) The controversy over different types of resistance has caused 

some confusion among those seeking to decide the best use of resistance 

genes. I t  is clearly helpful to have some verbal organising concepts 

for the variety of types of resistance and inheritance of resistance.

In particular i t  may be of heuristic value to have expressions for the 

mean value and the var iab i l i ty  of resistance to different races 

conditioned by a given gene or set of genes. However the evidence 

quoted in sections (2.3.2) and (2.3.3) shows that the distinctions 

between general and specific and between polygenic and oligogenic 

resistance are not sharp. From the point of view of making quantitative 

decisions about the use of genes these unclear distinctions cannot be

of great significance.

(2) A range of factors affecting the progress of epidemics has been 

considered. Some of them appear to mitigate the effects of epidemics 

in multi l ines; some of them suggest disadvantages of multi l ines. Many 

of them involve second-, th ird- and higher-order effects. Thus in the 

f i r s t  place the choice of a mode of gene use must be a quantitative one 

arrived at as the result of a quantitative balancing of factors. And 

in the second place, simple linear expressions are unlikely to be 

useful guides to f inding that quantitative balance.

(3) The review of stabil ising selection and the stabil ising of 

pathogen populations has brought out two points. First ,  i t  is l ike ly  

that stabil ising selection is the exception rather than the rule 

(Martens, 1973). Thus a search for s tab i l i ty  does not offer a guide 

to the use of resistance genes in most cases. Some other guide is
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s t i l l  needed in these cases to resolve the controversy over methods of 

breeding for disease resistance.

Second, beyond the question of whether s tab i l i ty  is attainable 

is the question of whether i t  is desirable. The response of plant 

breeders to the experience of the f i r s t  half of the century seems to 

have been, in part to identify the problem as ins tab i l i ty  (variously 

defined) of the pathogen population, and then to identify the solution 

as s tab i l i ty .  Yet i f  the decision is made to manipulate the pathogen 

population, there is a good case that s tab i l i ty  should be avoided. I t  

might be said instead that the appropriate tactic is to keep the 

pathogen "off  balance" by planting lines whose corresponding races are 

rare, i f  that is possible. This in fact is the essence of a rotation 

strategy. Rotation does not give the answer to the problem of the 

superrace when there is no stabil is ing selection, but then i t  is not 

known what does. Neither s tab i l i ty  nor ins tab i l i ty  is the key to the 

problem of gene use. In the following chapters an alternative w i l l  be 

suggested.
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3. The Choice of Breeding and Planting Pol icies as a Problem in 

Optimal Control

3.1. The Choice of Language fo r  Discussing the M u l t i l in e  Question

The problem of choosing the best mode of use of resistance genes 

has resisted solut ion par t ly  because neither the advocates of con

ventional plant breeding methods nor the advocates of the various 

a l te rnat ives have been precise enough about the aims of programs fo r  

breeding disease res is tant  plants. I t  is not clear fo r  example, why 

the p o s s ib i l i t y  of achieving an equal growth rate of a l l  pathogen races 

(Leonard, 1969c) should be regarded as a point in favour of m u l t i l ines :  

such a growth ra te, i f  i t  were high enough, might be consistent with 

complete crop fa i lu re .  On the other hand, there has been no account 

given of why and, more important, in what way, conventional practices 

are superior, given the points raised by m u l t i l in e  advocates, such as 

the devastating effects  of epidemics when large areas are planted to 

monocultures. The part ies to the debate have largely talked past each 

other, rather than discussing the topic in a common language.

I t  is the purpose of th is  chapter to suggest that th is  poor 

communication can be improved by using at least the language, and 

possibly the methods, of optimal contro l .  The f i r s t  step w i l l  be to 

make the suggestion plausible by sett ing out, in th is  section, the 

elements of an optimal control problem and sta t ing the analogy between 

these elements and the elements of the gene use problem. In subsequent 

sections the suggestion w i l l  be made persuasive by discussing each 

element in more deta i l  with the objects o f : -

(1) introducing the notat ion of optimal control theory,

(2) making some important s impl i fy ing assumptions that

expose the basic structure of the gene use problem,
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(3) preparing the way for the modelling approach described

in Chapter 4,

(4) deducing some theoretical necessary conditions for the

use of multi lines to be an optimal use of crop disease 

resistance genes.

The following l i s t  is one possible way of setting out the 

elements of an optimal control problem:-

(1) A system to be controlled.

(2) A cr iter ion of optimality.

(3) A set of manipulable control variables which can

influence the optimality of system behaviour.

(4) A sequence of times at each of which an optimal

set of current values for the control variables 

must be decided on. A sequence of such decisions 

w i l l  be referred to as a policy.

(5) The task of achieving the best possible value of the

criter ion of optimality. For example the task might 

be to find the sequence of investment decisions that 

yields the maximum return, given the amount of money 

to be invested and the response of the market to the 

operations of buying and sell ing.

With regard to the f i r s t  element, i t  is easy to think in tu i t ive ly  

of the crop plants, the disease organisms, other host plants ( i f  any), 

and the environment as forming a "system" of some kind. This notion 

is neither very confining or very f r u i t f u l ,  but i t  serves to establish 

this part of the analogy at the level of natural language: a more

precise characterisation of systems in general and this system in 

particular w i l l  be begun in section (3.2).
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With regard to the second element, i t  can be seen that whi le the 

various points of view of mu l t i l ines  do not ignore the choice of a 

c r i te r io n  of op t im a l i ty ,  there is a t a c i t  divergence in th e i r  choices. 

Opponents of m u l t i l ines  give high importance to the immediate losses 

to be expected from the use of susceptible plants,  while advocates seem 

more concerned with s t a b i l i t y  of y ie ld  and the husbanding of stocks of 

resistance genes in the long term. I f  there is disagreement over the 

sense in which the use of resistance genes is to be judged optimal, 

then there is not l i k e l y  to be agreement on the optimal manner of use. 

Accordingly, there is need fo r  a commonly accepted c r i te r io n  of 

op t ima l i ty  in the argument over m u l t i l in e s ,  and the recognit ion of th is  

need would amount to an advance in the understanding of the problem.

The choice of such a c r i t e r io n ,  however, is not automatic, and w i l l  be 

discussed in section (3.3).

The nature of the problem suggests an obvious set of control 

variables. The proportions of  the d i f fe re n t  genotypes planted in the 

crop are manipu la te ,  and can obviously a f fec t  any reasonable c r i te r io n  

of system op t ima l i ty .  In fac t  the genotypic proportions are probably 

not a complete set of control var iables, as w i l l  be discussed in section 

(3 .4) ,  but they are ce r ta in ly  c la ss i f ia b le  as control variables.

F ina l ly  i t  can be seen that the sequence of crop plantings forms 

a sequence of decision points at which values of the control variables 

are chosen. Thus what is done on the sowing date can be thought of as 

a control act ion. The plant breeding program is a constraint on the 

control act ion at these points. I f  a genotype has not been produced i t  

cannot be used, and i f  i t  costs more to produce then less of i t  w i l l  be 

used than would otherwise be the case.
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The problem of gene use can now be stated as being to choose a 

sequence of crop compositions which are optimal according to the 

c r i te r io n  of op t ima l i ty  accepted by the plant breeder. This is 

obviously a d i f f i c u l t  problem, since i t  requires that the outcomes 

of various po l ic ies  be calculated in advance so that they can be com

pared. However, unless th is  can be done to the sa t is fac t ion  of a l l  

concerned, with a l l  the mooted s ig n i f ica n t  factors being considered 

at the same time in the ca lcu la t ion ,  the gene use problem cannot be 

said to have been solved. Because the problem is at present debated in 

terms of an opposition between diverse crops and monocultures, with the 

balance of opinion leaning towards the monoculture, the question that 

w i l l  be addressed in th is  study is whether i t  is  reasonable to bel ieve 

that i t  is sometimes optimal to use m u l t i l ines .  This question w i l l  be 

referred to as the "m u l t i l in e  problem", and the nul l  hypothesis of the 

study is that the answer to the question is in the negative.

3.2. Defining the System to be Control led

The f i r s t  element of an optimal control problem l is te d  in 

section (3.1) is a system to be contro l led. So fa r ,  the concept of a 

system has been undefined. I t  is possible to discuss th is  concept in 

a highly formalised manner (e.g. Windeknecht, 1971) or in a highly 

generalised manner emphasising i t s  general a p p l i c a b i l i t y  (e.g. von 

Berta lanf fy ,  1967). What w i l l  be used here is the simple and precise 

d e f in i t io n  due to Bellman (1971): a system is a combination of a state

vector x ( t ) ,  and a rule fo r  determining the behaviour of th is  vector 

over time. This rule may well depend on an input vector of some kind. 

The state vector and the ru le governing i t  are now considered in order.
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3.2.1. Defining the State of the System

The state vector i t s e l f  needs defining, and yet the notion of a 

state is a singularly elusive one. According to Kalman (1963) i t  is 

" in tu it ive ly  speaking . . .  the minimal amount of the past history of the 

system which suffices to predict the effect of the past on the future". 

Kalman's more mathematical defin ition is beyond the scope of this work. 

Another way of considering the notion of state is to treat the choosing 

of a state vector as corresponding to drawing the boundaries of the 

system, since i t  is this choice that separates those variables considered 

to characterise the system from those regarded as input to i t .  There 

is thus no unique choice of state vector.

Environmental factors that affect the multiline problem appear 

as causes rather than effects and so i t  is natural to regard them as 

inputs rather than states, and to draw the boundary of the system around 

the crop plants and the disease organisms. Since the genotypic 

proportions of the crop are control variables, and the rules governing 

the response of the plants to the pathogen, the environment and the 

passage of time are essentially fixed, by elimination the state vector 

must then consist of measures of the abundances of the various pathogen 

genotypes. Special significance w i l l ,  of course, be attached to the 

abundance of pathogen propagules at the date at which the sowing decision 

must be taken, since i t  is to these that the control action must 

respond, and i t  is these which form the feedback information in the 

system. Therefore i t  is these presowing abundances that w il l  be treated 

as the state vector, though i t  w il l be assumed that they also give the 

intensity of the f i r s t  infection of the crop. Abundances at times 

between the f i r s t  infection and the next control decision w ill be 

treated as intermediate transformations of the state vector.
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3.2.2. Describing the System Evolution Rule

Even without assuming a particular form for the system evolution 

rule some statements about its nature can be made with confidence.

(1) The rule is nonlinear.

(2) The rule is stochastic.

(3) The rule is nonserial.

These points will  be taken in order with the object of clarifying the 

nature of system behaviour and placing some in i t ia l  limitations on the 

way in which the search for optimal policies must be carried out.

3.2.2.1. Nonlinearity

Crop/pathogen systems exhibit many nonlinearities. There are 

environmental thresholds for disease development (Waggoner and Parlange, 

1974), saturation levels of disease severity, and nonlinear yield-loss 

curves (James, 1974),  to name only some of the most obvious effects. 

Also, not only are the relations between many of the important 

variables nonlinear, they are mappings from functions to points: for

instance, the number of new disease propagules produced on a given day 

depends not only on the conditions on that day, but, in varying degree, 

on the whole previous time course of the epidemic.

These considerations, taken together, almost certainly ensure 

that no simple analytical control law will  be discovered. They also 

rule out the use of most of the simpler traditional techniques of 

control, so that a numerical treatment of the problem becomes mandatory. 

In addition there is the possibility that the nonlinearities may be 

necessary to any optimality of multilines: the optimal policies for

linear systems are drawn from the class of what are known as bang-bang 

controls (Porter, 1969), which in this case would sometimes correspond 

to rotations of pure line crops. Thus to linearise the system for the
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sake of  s im p l ic i ty  may resu l t  in e f fe c t iv e ly  begging the question that 

is being asked. Whether a l inea r  model of the rule is adequate fo r  

some pa r t icu la r  pract ical  purpose is a somewhat d i f fe re n t  question, 

though one that is un l ike ly  to have an a f f i rmat ive  answer, i f  only 

because of  the strong perception by plant pathologists of the non

l i n e a r i t y  of the systems with which they deal.

3.2.2.2. Stochastic i ty

Crop/pathogen systems are also stochastic in nature. This 

statement does not re fer  p r imar i ly  to unpredictable weather changes, 

although such unpred ic tab i l i ty  w i l l  in pract ice resu l t  in much of the 

d i f f i c u l t y  involved in deciding on optimal gene use. Rather, the basic 

unpred ic tab i l i ty  of system behaviour results from the occurrence of 

mutational changes in virulence and from the i r rup t ion  of new pathogen 

races from outside the system boundaries. While a f i r s t  s im p l i f ica t ion  

of the problem might ignore the var ia t ion in the environment, e i the r  to 

gain an i n i t i a l  understanding of system behaviour, or because a 

pa r t icu la r  environment under study behaved s im i la r ly  in each crop cycle, 

i t  could not ignore the appearance of new races, since without them a 

clean crop would stay clean fo r  ever. Thus the m u l t i l in e  problem is 

inescapably stochastic.

3.2.2.3. Non-Ser ia l i ty

This s tochas t ic i ty  leads on to the nonserial (Nemhauser, 1966) 

nature of the system, because at any moment in the crop cycle the 

system may change d i rec t ion  as the resu l t  of the appearance of a new 

race and begin to evolve along a path in state space quite d i f fe re n t  

from the one i t  was fo l lowing before. Another way of saying th is  is 

that the t ra jec to ry  s ta r t ing  at any point in state space has many
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branches. In fact this property turns out not to have a large effect 

on the method of calculating the optimal policies, but i t  may be of 

some assistance to think of the whole system as undergoing a kind of 

Markov process, in which each state is defined by which genotypes are 

present and which are absent, and the transitions between states have 

probabilities depending on the state and the frequency of mutations in 

the pathogen population. The final absorbing state of the process is 

the one in which a ll known resistance genes are vulnerable. The control 

action must take some account of the various pathways by which this 

final state may be reached.

3.3. The Choice of an Optimality Criterion

3.3.1. The Necessity of an Economic Component in the Criterion

I t  is easy to show that some simple and obvious c r ite r ia  of 

optimality for the behaviour of crop/pathogen systems have unacceptable 

properties. Maximising total yield over one year may be shortsighted 

i f  the resulting composition of the disease population causes great 

losses in subsequent years. Maximising average yield over a period of 

years is compatible with achieving alternating shortages and gluts. An 

algorithm designed to find the control policy that minimised the 

variance of yield might achieve i t  by a uniformly zero yield unless other 

considerations were included. Drawing upon these cautionary examples, 

the chooser of a crite rion might decide to maximise average yield 

subject to a constraint on the coefficient of variation of y ie ld , but 

the choice of the constraint would be arbitrary unless guided by 

information on the range of variation that is tolerable. In short, i f  

the defects of simple a prio r i c r ite r ia  are to be remedied by trading 

one criterion o ff  against another, some trade-off scale based on human 

judgements of u t i l i t y  is indispensable. Also, i f  some information is
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avai lable about u t i l i t y  preferences i t  makes sense to deal d i re c t ly  

with th is  rather than to work in terms of a rb i t ra ry  c r i t e r i a  whose 

fa m i l i a r i t y  may not imply economic trustworthiness. I t  remains true 

that the c r i te r io n  chosen must be numerical ly definable. Extending 

" in d e f in i te l y "  the "useful" l i f e  of a resistance gene (Browning and 

Frey, 1969) is only acceptable i f  the d e f in i t io n  of "useful" is 

acceptable, and although th is  is an economic judgement in embryo, i t  

is  hard to see how i t  can d i re c t l y  be made more precise.

Thus i t  is necessary in devising a c r i te r io n  to give an account 

o f  who is to benef i t  from the optimal pol icy and in what way. The 

optimal po l ic ies  prescribed as a resu l t  of an optimal control exercise 

are bound to d i f f e r  depending on the answers given to these questions. 

Moreover, there is un l ike ly  to be a single pair of  answers which w i l l  

coincide with the judgements of a l l  those who have an in te res t  in a 

solut ion to the m u l t i l in e  problem. A consensus may develop in the 

future but the procedure adopted in th is  study w i l l  be to d is t inguish 

two apparently very d i f fe re n t  cases, in the hope of i l lum ina t ing  the 

range of c r i t e r i a  that might be chosen, and of exposing some pr inc ip les 

that might apply in a range of s i tua t ions.  In each case what is
*

offered is not a d e f in i t i v e  treatment, but a simple model based on some 

of  the sa l ien t  economic concepts as a s ta r t ing  point for  fu r ther  

explorat ions. In Chapter 4 two models are introduced that are intended 

to describe respectively an agribusiness in a r ich country, and a 

society of poor subsistence farmers, so that the u t i l i t y  of d i f fe ren t  

po l ic ies  can be compared in each context.
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3.4. Necessary Conditions for Multiline Use to be an Optimal 

Control Action

The basic facts about the choice of control variables and the 

timing of control actions have been set out in section (3.1). However 

i t  w il l  be shown below that there are some fa ir ly  plausible necessary 

conditions which must be satisfied i f  multiline use is to be an 

optimal control action, and that these conditions necessitate the 

extension of the set of control variables in an unexpected and counter

in tu it ive  way. In order to demonstrate these necessary conditions two 

basic assumptions about the biology of multilines w il l  be made.

(1) the multilines to be considered are of the Iowa type

(Browning and Frey, 1969), composed of nearly- 

isogenic plants, d iffe ring only in their complement 

of major genes for resistance.

(2) the superrace of the pathogen can grow equally well on

a ll lines in the mixture.

These assumptions w il l  be carried forward in the rest of this study 

except where specific exceptions are made. Frequently, s light 

deviations from the assumptions w il l  not be significant.

I t  is now possible to prove the following simple theorems: 

Theorem 1.

I f  for a given crop/pathogen system, a given criterion and some 

state, the optimal control action is a m ulti line, then the optimal 

control action w il l  result in avoidable disease.

Proof:-

By Assumption 1, the composition of the multiline cannot affect 

the criterion in the absence of disease. By Assumption 2, the 

composition of the multiline cannot affect the criterion by affecting
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the dynamics of the superrace in the absence of the simpler races. 

Therefore i f  the m u l t i l in e  is optimal i t  must be because of the 

presence of simpler races. But the disease caused by simpler races is 

avoidable by planting the most complex c u l t i v a r  (the "superl ine")  

exc lusive ly.

A second and more surprising resu l t  can also be proved.

Theorem 2

I f  fo r  a given crop/pathogen system, a given c r i te r io n  and some 

state A, the optimal control action is a m u l t i l i n e ,  then there is at 

least one other state B fo r  which the optimal control action is a mu l t i -  

l ine  together with the del iberate addit ion of quant i t ies of the simpler 

races to the system.

Proof:-

By Theorem 1, the simpler races are present in state A. Let 

V(A) be the cost of the control act ion of planting the optimal m u l t i -  

l ine  as a response to the state A. Let V' (A) be the cost of planting 

a pure crop of the superline instead. Now

V (A )  > V(A) . . .  (3.4.1)

because V(A) is optimal. Let B be the state equal to state A except 

that the simpler races are absent. Then

V' (A) = V ' (B) . . .  (3.4.2)

because the simpler races cannot grow on the superl ine.

But V(B) = V ' (B) . . .  (3.4.3)

by Assumption 2, because the superrace can grow equally well on a l l  

l ines and the simpler races are not present, in state B.

Thus V(B) > V(A) . . .  (3.4.4)

But the di f ference V(B) - V(A) occurs only because of the presence of 

the simpler races. Thus i f  i t  costs less than some set amount per 

propagule to produce the simpler races a r t i f i c i a l l y ,  the optimal control
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response to state B involves the addition of the simpler races to the 

system.

In the stochastic case statements about the presence or absence 

of the simpler races must be replaced by statements about the expected 

amounts of the simpler races. Only slight restatements are needed, as 

follows:

Theorem la.

I f  for a given crop/pathogen system, a given criterion and some 

state, the optimal control action is a m ulti l ine, then for this control 

action the expected amount of disease w il l  include some avoidable 

disease.

Proof

This is only a restatement of theorem 1.

Theorem 2a.

I f  for a given crop/pathogen system, a given criterion and some 

state A, the optimal control action is a m ulti l ine , and the optimal 

control action when the expected amount of the simpler races is less 

than some set amount is not a m ulti l ine, then there exists a state B 

for which the optimal control action is to plant a multiline and 

deliberately add some of the simpler races.

Proof:-

This is the same as the proof of Theorem 2, except that the 

additional assumption about the lower bound on the effective amount of 

the simpler races is intended as a rea lis t ic  indication of the situation 

faced by the designer of an optimal policy, for whom the expected amount 

of the simpler races is unlikely to be zero.



3-13

These theorems are necessary conditions fo r  mu lt i l ines  to be 

optimal. Clear ly , s l ig h t  deviations from the assumptions w i l l  not 

a f fec t  the conclusions, though i t  is impossible to say how s l ig h t  

' s l i g h t '  is .  I f  for  example, there was a strong adaptation e f fec t  fo r  

the superrace growing on d i f fe re n t  l ines ,  Assumption 2 would no longer 

hold (more s t r i c t l y ,  there would no longer be a single superrace) and 

mu lt i l ines  without avoidable pathogens would be more l i k e l y  to be 

optimal. I t  is less easy to construct s u f f ic ie n t  conditions in terms 

of the factors discussed in Chapter 2 because th e i r  ef fects  are complex 

and depend on the m u l t i l in e  composition. I do not know of a suf f ic iency 

conditions of the same s ign if icance as the resul ts  given above. In 

section (3 .5 .3 ) ,  a f te r  some useful notation has been introduced, some 

f a i r l y  weak suf f ic iency conditions w i l l  be given.

Theorems 2 and 2a are in fac t  a general isat ion of Leonard's 

proposal, discussed in section (2 .3 .4 .2 ) ,  fo r  the manipulation of 

mu lt i l ines  so that the amount of the simpler races present increases.

The general isat ion arises because the need to increase the amount of 

the simpler races can now be seen as a necessary feature of the optima

l i t y  of m u l t i l ines  in general and not ju s t  of those m u lt i l ines  where 

(as in the Leonard case) there is mutual in h ib i t io n  of  races.

The need to increase the amount of simpler races present can be 

met in two ways; by the release of propagules from greenhouse cultures 

or by the growing of  m u l t i l in es .  So fa r  the t a c i t  assumption has been 

that glasshouse cultures are used and that th e i r  cost is neg l ig ib le .

In what fol lows the release of pathogen races (other than the superrace) 

w i l l  be included as a normal measure in the optimal control o f  a crop/ 

pathogen system. I t  w i l l  be assumed that any control pathogens are 

released at the same time as the crop is normally infected, which is 

computational ly convenient and r e a l i s t i c  ( i f  such an untr ied measure
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can be described as r e a l i s t i c ) ,  because the e a r l ie r  the pathogen is 

added, the more e f fec t ive  i t  is expected to be.

The d i f fe r in g  roles of  na tura l ly  produced and cul t ivated 

pathogens can be understood in terms of th e i r  re la t ive  cost. I f  

cu l t iva ted pathogens are cheap and the conditions of Theorem 2 hold, 

then i t  w i l l  be sensible to add pathogens d i re c t ly  to a crop believed 

to be in need of them. I f  cu l t iva ted pathogens are expensive, there 

w i l l  be a case fo r  an t ic ipa t ing  th e i r  use by growing a m u l t i l in e  in a 

previous crop cycle. This antic ipa to ry  use w i l l  have a cost of i t s  own, 

so that as the cost of cu l t iva ted pathogens r ises the advantage of 

using a m u l t i l in e  in state B of Theorem 2 w i l l  gradual ly disappear.

3.5. The Task of Finding an Optimal Control

3.5.1. Optimal Control: Further Concepts and some Notation

The method commonly used fo r  the solut ion of optimal control 

problems of  the kind posed here is what is known as approximation in 

pol icy space (Bellman, 1957: Kushner, 1971), which gives an optimal 

feedback control fo r  the system. Before the notat ion to be used is 

introduced, these concepts require fu r the r  explanation.

Optimal control problems admit two kinds of answer: an open or

a closed loop (feedback) contro l .  In open loop contro l ,  a pol icy is 

specif ied in advance fo r  given i n i t i a l  and f ina l  conditions and a given 

number of decision stages. Control then consists of implementing the 

precalculated decisions at each stage as the process unfolds. This 

type of  control is p a r t i c u la r ly  associated with the name of Pontryagin 

(Pontryagin e t  a l .  , 1962) and the Maximum Princ ip le he derived. Flere 

the idea is that a function of the c r i te r io n  of op t imal i ty  and the 

system equations can be constructed with the property that i f  i t  is
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maximised at each stage o f the process with respect to the control 

variable values at that stage, then the resu lt ing  po licy w i l l  be optimal. 

The use o f the Maximum P rinc ip le  is most common in de te rm in is t ic , 

continuous problems, though the extension to d iscrete-time problems is 

often possible (Jordan and Polak, 1964: Halkin, 1964), and though 

maximum pr inc ip les  have been proposed fo r  stochastic systems (e.g. 

McReynolds, 1972).

By con trast, in closed loop, or feedback control an optimal 

control action is  derived fo r  each current state o f the system, so that 

a response is made to system behaviour, rather than a course of action 

being la id  out in advance. This approach is associated with Bellman 

(1957) and his development o f Dynamic Programming, and has the advantage 

that under some circumstances each decision has to be made optimal with 

respect to only one set o f control variables, and not a l l  the sets o f 

control values that must be chosen in subsequent stages.

These two methods o f optimal control are not fundamentally 

d i f fe re n t ,  but represent two a lte rna t ive  views o f the same mathematical 

subject matter. The equations of Pontryagin's maximum p r in c ip le  can be 

shown to be lo g ic a l ly  equivalent to Bellman's equations fo r  optimal 

feedback control (McAusland, 1969). The tendency to handle determ in is tic  

problems more frequently as open loop problems and stochastic problems 

as closed loop problems seems to be pa rt ly  a re su lt  o f the h is to r ic a l 

accidents o f the development of the subject. However, in at least one 

kind o f stochastic problem i t  is  more reasonable to use a closed loop 

approach. This is  the case in which information about the parameters 

o f the source o f random va r ia t ion  can be gained from observing the 

results  o f the previous state of the random process. Where random 

va r ia t ion  appears, as in many engineering problems, as noise with well 

defined s ta t is t ic a l  behaviour, the accumulation o f information from 

stage to stage may not be great. However, in the crop/pathogen system
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with  i t s  n o n -se r ia l ,  i r r e v e r s ib le  character ,  knowing tha t  a race has 

arr ived  makes a marked change to estimates o f  the fu tu re  behaviour o f 

the system, and because of t h i s ,  the fo l low ing  no ta t ion ,  from Kushner 

(1971), applying to the feedback contro l  o f  s tochast ic  systems, is

appropr iate.

tt ( i )  : The contro l  po l icy  used s ta r t in g  at s ta te  i .  

A po l icy  is  a sequence o f  contro l  decisions.

V U ( i ) , i )  : the cost ( in  terms o f  the c r i t e r i o n  of 

o p t im a l i t y )  o f the contro l  po l icy  ( i ) ,  

s ta r t i n g  from the current s ta te  i .

X : the s ta te  vector o f  the system.

u ( X) : a contro l  decision taken in response to X.

k (X ,u (X ) ) : the cost o f  s ing le  stage o f  a po l icy  where 

u(X) was appl ied to X.

P : discount ing fa c to r ,  represent ing the r a t i o  o f  

the value o f  an asset ava i lab le  in a year 's  

time to i t s  value i f  i t  were ava i lab le  now.

E > ) : expected value o f  some quan t i ty  y ,  given s ta te  i

and po l i c y  t t ( i ) .

The general problem o f  contro l  can now be stated as being to
★

discover,  fo r  each admissible s ta te  i ,  some it  ( i )  such tha t

V ( tt* ( 1  ) ,1) <= V (7T ( i ) , i ) . . .  (3 .5 .1)

fo r  a l l  al lowable t t ,  th a t  i s ,  to minimise V.

The general statement o f  equation (3 .5 .1)  simply establ ishes

V(tt( 1 ) , i ) as a measure of the u t i l i t y  of the outcome of a state and a 

policy. There are many possible ways of comparing di f ferent  costs and
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setting up u t i l i t y  scales, and the axiomatic treatment of rational 

behaviour under conditions of uncertainty and risk is a controversial 

subject (Balch and Fishburn, 1974). The range of ways of comparing 

costs extends from setting each value of V equal to the expected total 

cost of the sequence of costs k to setting i t  equal to the greatest 

possible total cost of any sequence of costs k. The use of the expected 

cost can be crit ic ised as being insensitive to the occurrence of 

catastrophic costs occurring at low probability (Luce and Raiffa, 1957). 

The use of the maximum cost as the figure to be minimised (a minimax 

approach) can be crit ic ised as being unduly pessimistic in cases, such 

as this one, where there is no in te ll igen t adversary seeking to 

maximise the cost (Shubik, 1975).

In this study the procedure that w i l l  be adopted w ill be to set

V equal to the discounted sum of the expected values of k. This 

procedure is a standard one in works on optimal control (Kushner, 1971), 

and the meaning of i ts  results is easy to understand. When i t  is 

adopted, the optimal control problem takes the form:-

V ( tt* ( 1  ) .1) = min E*p(k(i , u ( i )) + V(ir(X1) ,X,)) . . . ( 3 .5 .2 )

★
That is , the optimal control tt ( i )  given the in i t ia l  state i is that 

control which minimises the expected value of the sum of the cost of 

the f i r s t  stage of the policy and the cost of the in f in i te  policy 

beginning with the output, X-j , of the f i r s t  stage. The equation is 

called functional because V is a function of i ,  and recursive because

V appears on both sides of the equation with d ifferent arguments. I t  

is the process of solving this equation that is known as approximation 

in policy space (Bellman, 1957). The equation i t s e l f  is an expression 

of the principle of optimality (Kushner, 1971). The significance of 

the discounting factor p, w i l l  be explained in section (3.5.2.1). Some 

possible ways of making the cost k more pessimistic
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and some uses of a minimax approach will be discussed in 

Chapter 4.

3.5.2. Three Important Simplifications and their Significance

In the three sections that follow the structure of the problem 

is simplified by the use of three assumptions. These undoubtedly 

restr ic t  the general applicability of any results of this study, but 

in each case there are compelling reasons for accepting the restriction.

3.5.2.1. The Use of Policies of Infinite Length

The f i r s t  simplification to be made is that only infinite time 

horizons for planning policies will be considered. This is computa

tionally convenient, but i t  is also realistic  from two points of view.

The convenience arises because, as i t  is easy to show (Kaufman and 

Cruon, 1969), for an infinite horizon the choice of an optimal control 

depends only on the current state. This can be seen intuitively by 

observing that each decision in an infinite process is the beginning of 

another infinite process, so that the optimal decision in any state is 

the optimal decision for an infinite process starting from that state. 

Thus the position of the given state in a sequence of decisions is no 

longer significant and only the current state need be taken into account.

The realism of the simplification can be supported by two 

arguments. In the f i r s t  place, in a situation in which resources can 

be invested at a profit outside the agricultural enterprise the costs 

of epidemics in the future should be discounted. When this is done, 

the contributions to V of long term consequences of policies stretching 

in the limit to infinity can be included without disturbing the result.

In the second place, i f  the stock of resistance genes is f in i te ,  they 

must be husbanded from now to infinity as a nonrenewable resource.
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Thus both the pragmatist making sound economic decisions and the 

conservator may wish to use an in f in i te  planning horizon. The la t t e r ,  

however, must be careful about his choice of optimality c r i te r ion ,  

because i f  he places an equal value on the costs of crop failures in 

all  epochs, that is ,  he does not discount, the calculated cost of his 

policy may well increase beyond any bound, making the existence of the 

minimum of V doubtful.

3 .5 .2 .2 .  The Omission of Environmental Variation

The second major simplication that wi l l  be made is to ignore 

the effects of environmental variation on the behaviour of the system. 

The chief reason for doing this is that to Include the environmental 

variation would increase the amount of computation required by some 

power of the number of d i f ferent  environmental states considered.

However the form of the cr i ter ion has been chosen in such a way that  

i f  multi l ines are suboptimal without environmental variation they wil l  

also be suboptimal with i t .

Suppose that the v a r ia b i l i ty  of the environment is expressed as 

a set of environments, SjcS, each with an associated probabil ity of 

occurrence p,.  Then the expected cost of the optimal policy is
J

V ( tt (1) , i ) = ? p. V (7T ( i ) ,  i , s .) . . .  (3 .5 .3)
j  J J

I f  for all  s .e S ,7 i ( i ) i s  a pure l ine of the most complex c u l t iva r ,  none
«J

of the component V( tt( i ) , i  ,S j ) of the summation can be reduced by the 

use of a mult i l ine.  Consequently, the expected cost cannot be reduced 

by the use of a m ult i l ine ,  and consequently the introduction of a 

variable environment cannot make multi l ines optimal. This reduces the 

significance of the omission of environmental variation from this study.
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Assumption 3

The minimum cost associated with a state increases monotonically 

with the amount of the superrace present in that s tate, a l l  other 

factors being constant. (This assumption can be viewed a l te rna t ive ly  

as a necessary qua l i ty  of a 'sensib le '  cost function).

Theorem 3

I f  fo r  a given crop/pathogen system and a given c r i te r io n  there 

exists a state A in which a m u l t i l i n e  can be grown which decreases the 

output of  the superrace from that state below the pure l ine  level w i th 

out increasing k(u(A),A) over the pure l ine  leve l ,  then the optimal 

control action fo r  state A is a m u l t i l i n e .

Proof

The only way of decreasing the superrace output is by the 

presence of the simpler races, and hence the use of a m u l t i l i n e .  By 

Assumption 3, decreasing the output of the superrace decreases the 

cost incurred over a l l  subsequent crop cycles. Thus i f  i t  does not 

increase k(u(A),A), and does decrease the superrace output, a m u l t i l i n e  

can be optimal .

A s im i la r ,  but weaker, resu l t  is obvious:

Theorem 3a

I f  for  a given crop/pathogen system and a given c r i te r io n  there 

exists a state A in which a m u l t i l i n e  can be planted which decreases 

k(u(A),A) below the pure l ine  level without increasing superrace out

put, then a m u l t i l i n e  is optimal in state A.

Comment

This resu l t  is ca l led weaker because of the l ike l ihood tha t ,  in 

the absence of mutual i n h ib i t i o n ,  the e f fec t  of the simpler races w i l l  

be to increase k(u(A),A).
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In fact, any real multilines that are optimal w il l  presumably 

balance out positive and negative effects on k ( i ,u ( i ) )  and V(tt( X-j) ,X-j). 

I t  can be expected that at su ff ic ien tly  high infection levels the 

simpler races can decrease the superrace output by denying i t  some of 

the crop on which to grow. That these high levels can be achieved 

without increasing k ( i ,u ( i ) )  appears improbable. The weakness of 

theorems 3 and 3a results from the d i f f ic u l ty  of dealing qualitative ly 

with the quantitative balance of the two kinds of effect on the cost. 

The quantitative aspect must be handled i f  multilines are to be used 

with confidence. This is the task of an optimal control algorithm, 

which passes judgement on the sufficiency of numerical conditions 

proposed to i t .  Chapter 4 considers the process of transforming the 

qualitative arguments about the theory of resistance gene use into the 

quantitative form that a numerical algorithm can accept.

3.6. Summary

The idea of using optimal control methods for biological and 

particu larly  agricultural purposes although re la tive ly  new is now 

fa i r ly  widespread. There is a gradual evolution from the simulation 

of agricultural systems as an end in i t s e l f ,  to single-stage optimisa

tion of inputs to systems, to sequential optimal control. Arnold and 

Bennett (1975) and Van Dyne and Abramsky (1975) give annotated 

bibliographies of the application of linear and dynamic programming to 

agricultural problems.

The present study is bracketed fa ir ly  closely in terms of 

subject matter by studies of the use of optimal control in the control 

of pests (Shoemaker, 1974a,b,c) and by studies of optimal prophylaxis 

in human epidemics (quoted in Banks, 1975). However, the aim of the 

present study is of a somewhat d ifferent kind in that i t  seeks to
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answer a theore tica l question rather than to f ind  a spec if ic  optimal 

control fo r  a p a r t ic u la r  system. This chapter has been mainly concerned 

to construct a basis fo r  a theore tica l approach, though in the process 

some ana ly tica l resu lts  have been obtained.

The general conclusion of th is  chapter is  that the language of 

optimal control is  a convenient language fo r  the q u a l i ta t iv e  discussion 

of the problem of resistance gene use. I t  allows a previously 

unsuspected extension of ideas about the way in which epidemics can 

be con tro lled  (section 3.4) and gives ins igh t in to  the way in which 

successful m u lt i l in e s  might operate (section 3 .5 .3 ). Most important, 

i t  dispels the idea that simple arguments can show what mode o f gene 

use is  best, and shows tha t a quan tita t ive  approach is  necessary i f  

the c r i t ic is m s  o f conventional plant breeding reviewed in Chapter 1 

are to be endorsed or set aside.
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4. A Theoretical Approach to the Multiline Question via Modelling 

4.1. Introduction

The purpose of this chapter is threefold. The f i r s t  aim is to 

introduce and discuss the philosophy of an approach to the optimal 

control of crop composition. The second is to describe a particular 

implementation of this philosophy. The th ird is to consider the 

robustness of this implementation.

Section (4.2) describes, and attempts to ju s t i fy ,  an approach 

via simulation modelling to solving the multiline problem in the 

optimal control formulation that has been given in Chapter 3. Section 

(4.3) describes the necessary structure of such a simulation model, 

and in sections (4.3.1 - 4.5) a particular model based on current 

concepts in the relevant fie lds of knowledge is described. The 

description of the crop/pathogen model i t s e l f  is followed in section 

(4.6) by a description of the cost function models used to derive two 

alternative c r ite r ia  of optimality, and this description is followed in 

section (4.6.3) by a discussion of the robustness of these cost 

functions and the extent to which they represent rational responses to 

the level of crop yie ld . In section (4.7), the d i f f ic u l t  topic of 

testing the robustness of conclusions drawn from simulation modelling 

is discussed, and a type of test, to be used la te r in the study, 

described. The discussion of parameter values is reserved to Chapter 6, 

except for a discussion in section (4.8) of the number and type of 

resistance genes to be modelled. Section (4.9) summarises the chapter.
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4.2. Nature and Justification of the Approach

Chapter 3 has indicated in general terms what information is 

needed in order to solve the multiline problem for any given crop/ 

pathogen system. What has not been discussed is how this information 

is to be acquired. The hardest element to acquire of those listed in 

Chapter 3 as making up an optimal control problem is evidently the 

system evolution rule, since i t  is unaffected by human decisions and is 

a property of large scale phenomena. The most direct empirical way to 

acquire i t  would be via a large experiment in which the input/output 

relations of a range of multiline compositions were measured for a range 

of input conditions. These measurements, with interpolations, could be 

used as a direct numerical representation of the rule which could then 

form the basis for computing an optimal control. Such an experiment 

would be large. I f  a three-genotype system were to be taken and 

quadratic nonlinearities detected, at least 7x3x3 large, well isolated 

plots would be required in each replicate. Yet this experiment would 

not solve the problem of extrapolating from a plot to a region, or that 

of linking the state at the end of one crop cycle to that at the start 

of the next.

The task of a theoretical approach to the multiline question 

where the empirical approach is so d i f f ic u lt  is twofold. F irst, to 

suggest whether there are grounds for supposing that the empirical 

enquiry is necessary, that is , whether the arguments proposed in favour 

of multilines are valid, and, second, to simplify the empirical enquiry 

i f  possible by suggesting a more discriminating experiment than the one 

described above. Most of this study is concerned with the f i r s t  half 

of this task. A discussion of the second half will be deferred to 

Chapter 7.
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The available techniques for studying whether the arguments 

proposed in favour of m ultilines are valid are formal logic, 

analytical mathematics and numerical mathematics. Formal logic is i l l  

adapted for argument about dynamic systems. The laborious manner in 

which simple biological conclusions were reached through formal logic 

by Woodger (1939) is evidence of th is . By comparison, analytical 

methods are well adapted to considering dynamic systems, but the ir  

quantitative application is lim ited to linear systems and special 

cases of non-linearity  (Bellman, 1971). The m ultiline question 

involves non-linear dynamics which do not seem to be among these special 

cases, i f  only because of th e ir  complexity. By elimination the only 

remaining technique is to synthesize a numerical optimal control of a 

numerical simulation of the system, and see whether i t  prescribes the 

use of m ultilines. However i t  is open to question whether numerical 

simulations should not also be eliminated from the l i s t  as w e ll ,  on the 

grounds that they are impractical or unconvincing.

Numerical simulation has the disadvantage that there can be no 

confident generalisations made from the results of one simulation to 

those of another simulation with d iffe ren t parameter values or d iffe ren t  

functional forms. In p a rt ic u la r , i t  is usually arguable that the 

departures from total realism of simulations of complex biological 

systems deprive the ir  conclusions of c re d ib i l i ty .  There is thus a 

dilemma: on the one hand numerical simulation is the only technique

that can represent any of the detia l of complex biological systems. On 

the other hand i t  cannot represent a ll of the known complexity, nor 

show what e ffec t i ts  sim plified structure (compared to the natural 

systems) w ill  have on i ts  output. Thus simulations lack c re d ib i l i ty  

as a means of convincing specialists of its  application to th e ir  areas 

of knowledge about crops and pathogens.
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The u t i l i ty  of numerical simulations can be partially just if ied ,  

despite the dilemma, by two considerations.

(1) If the results produced by a simulation are not credible, 

then opinions about modes of gene use arrived at without 

benefit of simulation are less credible s t i l l .  Thus even 

a decision to persist with conventional plant breeding 

must lack credibility i f  modelling lacks credibil ity, 

because i t  must be made on the basis of verbal arguments 

resembling greatly simplified simulations.

(2) In order to test  the validity of the arguments for and 

against multilines i t  is not necessary to integrate all 

that is known about crops and their pathogens. The task 

at hand is not to call upon a body of knowledge in order

to explain why multilines do or do not "work", but to assess 

a body of arguments, that are largely unsupported by 

evidence and are poorly integrated with each other. The 

f i r s t  test  of these arguments is to see what conclusion 

they support when integrated in a model. To do this is a 

matter of ascertaining and modelling the current level at 

which knowledge about crops and their pathogens is repre

sented in the debate about multilines. The second test is 

to see if  the conclusions are altered by including the most 

prominent factors not mentioned in the current level of 

debate. If both these tests give no support to multilines, 

then i t  may be said that there is no good reason known to 

believe what multilines are optimal.

In such a situation i t  would be up to the advocates of 

multilines to suggest why the inclusion of more realism 

in the model than was present in the pre-model debate should,
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in theory, lead to the optimality of multilines. I f  

however the two tests are positive the onus is thrown onto 

the opponents of multilines. A conflicting pair of results 

should point to a better understanding of what biological 

factors are most important in determining the nature of an 

optimal control.

Whatever the results of these tests, however, our present 

ignorance about which of the many possible biological factors may be 

important makes i t  necessary to emphasize the improvement of the debate 

about the most obvious factors rather than the inclusion of more 

realism, since the existing level of debate cannot handle even the more 

obvious factors quantitatively. Thus when, in the rest of this chapter, 

models of multiline phenomena are introduced, i t  is with the intention 

of maintaining contact with and extending the current level of debate 

on the multiline question, rather than of organising the fu l l  complexity 

of epidemic phenomena. The conclusions of this study should be viewed 

in this l igh t.

4.3. Elements of the Epidemic Simulation

The elements that are required of a simulation of an epidemic in 

a multiline for the purpose of giving a system evolution rule are:

(1) a description of pathogen increase in the crop cycle as a

function of crop composition.

(2) a description of the effects of pathogen increase on the

crop, especially the effect on yie ld.

(3) a description of the period between harvest and the next 

sowing.
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At present there is only one published model (Trenbath, 1977) which 

addresses i t se l f  to all these requirements, and there is no consensus 

on an adequate level of realism for a generally accepted simulation of 

them. Most published work has been done on the simulation or disease 

spread. There are a number of expressions that relate infection level 

to yield loss, though these have not been developed in conjunction with 

models of disease spread. Very l i t t l e  is known about the interface 

between crop cycles. In the following three sections these requirements 

will be dealt with in this order. In each section the current state 

of simulation will be reviewed, and then a model of the simulation 

element concerned will be proposed in the sp ir i t  of section (4.2).

4.3.1. A Simple Simulation of Disease Spread

A useful concept for making systematic comparisons of different 

models is Levins' (1968) distinction between general, realistic  and 

precise models. According to Levins there is a tendency for these 

attributes of models to be mutually exclusive, and this seems to be the 

case for simulations of disease spread. The most precise models are 

linear multiple regression models used for predicting disease levels 

from previous disease levels and from environmental variables 

(Eversmayer e t  a l .  , 1973). The most real is t ic  models are those of 

Waggoner and Horsfall (1969) and Waggoner e t  a l .  (1972) in which each 

stage of the l ife  cycles of (respectively) A l t e m a r i a  so lani  and 

Helminthosporium maydie is modelled in some detail. The most general 

models are those which seek to f i t  some non-linear curve to the rising 

level of disease incidence or spore production (van der Plank, 1975; 

Jowett e t  a l .  , 1974).
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Linear regression models are quite inappropriate fo r  the 

purpose of th is  study because of the need to deal with the second and 

higher order effects  discussed in section (2 .3 .4.1.)» and because they 

can only be val id  over a res t r ic ted  range of state inputs. By contrast , 

the highly r e a l i s t i c  models o f f e r  scope fo r  incorporation of complex 

e f fec ts ,  but are not usable as general theoretical  tools. One reason 

for  th is  u n su i ta b i l i t y  is th e i r  s p e c i f i c i t y ,  which would make the 

general a p p l i c a b i l i t y  of any resu lts doubtful.  A more immediate and 

practical reason is th e i r  complexity. The EPIDEM program (Waggoner 

and Hors fa l l ,  1969) consists of about 500 FORTRAN statements and 

proceeds in time increments of  three hours. As w i l l  be seen in Chapter 

5, an optimal control algori thm must run thousands of simulated 

epidemics in the process of choosing an optimal con tro l ,  and a model 

of the complexity of EPIDEM (even though i t  does not consider y ie ld  

e f fec ts)  is already too complex fo r  use in th is  fashion.

By e l iminat ion ,  an extension of the current level of debate 

about disease spread must begin, i f  at a l l ,  with the use of  the simpler 

non-l inear curves fo r  disease increase. The basis fo r  most of these 

curves is the two most s t r i k in g  aspects o f  the growth of air-borne 

fungal pathogens: th e i r  capacity fo r  exponential increase and th e i r

necessary s e l f - l im i ta t i o n  by exhaustion of host t issue. The simplest 

model that can express these two aspects is :

^  = r y ( l - y )  . . .  (4.3.1)

where y is the f rac t ion  of plant t issue infected 

r  is a constant

This has as a solut ion the lo g is t i c  equation

y = 1 . . .  (4.3.2)
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The obviousness o f  th is  model should not be confused with accuracy. 

Although disease progress curves often appear l o g i s t i c ,  there are 

other S-shaped curves that sometimes are a b e t te r  f i t  to epidemic data 

(Cournoyer, 1970; Jowett e t  a l .  , 1974), although i t  is  usual ly  not 

easy to see the b io log ica l  basis fo r  choosing them. Van der Plank 

(1975) has also c r i t i c i s e d  the l o g i s t i c  equation on the grounds tha t  

equation (4 .3 .1 )  does not provide fo r  e i t h e r  a la te n t  period before 

in fected t issue becomes in fe c t iou s  or a f i n i t e  in fec t ious  period. He 

proposed modifying the equat ion (4 .3 .1)  to include these e f fe c ts  as 

fo l lows:

= r ( y ( t - T p) -  y ( t - T p-T1) ) ( l - y ( t ) )  . . . ( 4 . 3 . 3 )

where T 

T

1

P

is the la te n t  period o f  the in fe c t io n  

is  the in fec t ious  period o f  the in fe c t io n .

Since van der Plank's work is  undoubtedly at the current ' le ve l  o f 

debate ' ,  and is  expressed in terms o f  b io log ica l  mechanisms, and since 

the equation is  apprent ly  reasonably consis tent with the behaviour of 

real epidemics (van der Plank, 1975), equation (4 .3 .3 )  w i l l  be used as 

the basis f o r  th i s  study.

The genera l isa t ion  o f  equat ion (4 .3 .3 )  to f i t  the m u l t i l i n e  case 

is not d i f f i c u l t ,  but i t  is  he lp fu l  to have a b io lo g ica l  model in mind. 

The r in equat ion (4 .3 .3 )  ( the r e la t i v e  rate of increase) combines two 

c o e f f i c ie n t s :  the ra te  of product ion of propagules per un i t  area of

in fec ted t i s su e ,  and the rate at which those propagules convert 

healthy t issue in to  in fec ted  t issue .  The rate o f  conversion i t s e l f  

depends on the p ro b a b i l i t y  o f a propagule landing on uninfected t issue 

and on the expected area th a t  i t  converts i f  i t  does. These separate 

e f fec ts  must be kept t rack  o f  when d i f f e r e n t  propagules have d i f f e r e n t  

p ro b a b i l i t i e s  o f  f in d in g  a host. Note tha t  van der Plank's equation
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assumes a cons t an t  p l an t  s i ze  of  1 so t h a t  the p r o b a b i l i t y  t h a t  a 

propagule lands on a p l an t  remains cons t an t .  The genera l i s ed  version 

of equat ion (4 . 3 . 3 )  can be wr i t t en  as fol lows:

d (y i j ( t ) ) £Rijm (t-vy1- -
S y,:i ( t ) )  - f d (y i j ( t ' Tc )) . . . ( 4 . 3 . 4 )  
k '3 dt

where y . ^ ( t )  i s  the area of  p l an t  t i s s u e  on c u l t i v a r  j  t h a t  is  

i n f ec t ed  with race i a t  t ime t .

Y. ( t )  i s  the t o t a l  area of  c u l t i v a r  j .
J

and

Ri jm s . f . im l j 1
Y ( t ) + d

. . . ( 4 . 3 . 5 )

where Y(t) i s  the t o t a l  crop area

f^ j  i s  the expected area taken up by an i -propagule  on 

a j - c u l t i v a r

s.. i s  the product ion r a t e  of  i -propagules  on c u l t i v a r  m 

in numbers of spores per  un i t  area per  un i t  time 

d i s  a cons t an t  which e s t a b l i s h e s  the law governing the

p r o b a b i l i t y  of  a propagule landing on a p l an t  as the t o t a l  

crop area i nc rease s .

i s  1 i f  race i c r o s s p r o t e c t s  c u l t i v a r  j ,  and i s  0 otherwise.  

Tc i s  the time fo r  which the c r os sp r o t ec t i on  e f f e c t  l a s t s .

R ^ m corresponds to r in equat ion 4 . 3 . 3  and (Y^(t)  - y ^ j U ) )  

corresponds to (1 - Y ( t ) ) ,  but  with the d i f f e r enc e  t h a t  s ince 1 i s

replaced by Y . ( t ) ,  i t  i s  not  assumed t h a t  the p l an t s  remain a t  a 
3

cons tan t  s i z e .  The o t he r  innovat ion in equat ion (4 .3 .4 )  concerns

the implementat ion of  the cross  p ro t ec t i on  e f f e c t .  Since the e f f e c t  

i s  l o c a l ,  not sys temic ,  and induced over about the same time span as



4-10

the infection period (L i t t le f ie ld ,  1969), i t  is reasonable to treat i t  

in the same way as infection is treated: as an area being taken over

by a propagule, though in this case the propagule induces immunity.

The size of f ^  when i is not virulent on j  and the length of time for 

which the effect lasts can be used to control the strength of the 

effect. The differences between cross protection and ordinary infection 

are that the relevant s.j is zero and that the last term of equation 

(4.3.4) is used to return cross protected area to the unoccupied 

category after the effect has worn o f f  (typ ica lly  six days in 

L i t t le f ie ld 's  (1969) example). The unoccupied area is thus continuously 

increased at the rate at which i t  was decreased by cross-protecting 

spores Tc days before.

The treatment of dispersal and deposition requires further 

comment. Much work has been done on the effects of environmental 

factors, chiefly wind velocity, on the removal of propagules from 

infected tissue (Meredith, 1963), the ir dispersal (Schrodter, 1960; 

Roelfs, 1972; Gregory, 1973), and on the ir deposition on other plants 

(Chamberlain, 1974). In this study, where a lumped system (section 

3.5.2.3) is being treated, these are only of significance in so far as 

they affect the probability of a propagule finding a host: the spatial

pattern of deposition is not represented. Since environmental variation 

is not being considered either, the only variable that can affect the 

probability of a propagule landing on another plant is the stage of 

growth of the crop. In the van der Plank equation, where the crop does 

not grow, this effect does not occur. However in this model i t  is 

assumed that the growth of the crop affects the probability of deposition 

on healthy tissue of line j  according to a hyperbolic law

Ay,( t )

pj ( t) . ..(4 .3 .6 )
(Y(t) + d)
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where Ay^(t) = Y^(t) - Z Ykj ( t ) . . . ( 4 .3 .7 )

In the computation of the model, equation (4.3.4) is implemented 

as a dif ference equation with a time step of a day, because th is  is 

more r e a l i s t i c  and computational ly fas ter  than solving the d i f fe re n t ia l  

equation. There is therefore a need to arrange the deposition of a 

f i n i t e  number of spores which may take up overlapping areas. The 

procedure which is adopted (suggested by a method in Justesen and Tammes 

(I960)) is to solve the l inea r  equations

d(Ay . ( s ))
J = -Ay^(s) I f . .  si /£s i / (Y ( t )  + d) . . . ( 4 3 . 8 )
ds

where s is the number of spores deposited

s  ̂ is the number of spores of race i produced that day

The solut ion of th is  equation is

Ay, ( s ) = Ay.(O) exp(-Zf s . s/Zs / (Y ( t )  + d)) . . . ( 4 .3 .9 )
J J i i j  i i i

and when a l l  the spores have been deposited, i . e .  when s = £s .,  the

unoccupied area has been reduced in the ra t io

Ay. (?s . )/Ay . (0) = exp(-Ef s . / ( Y ( t )  + d)) . . . (4 .3 .10 )
J i t  J I i j  i

with the various races taking up the new infected area in proportion to

f . . s . / I f  s 
U  y  l i j  i

4.3.2. The Effect  of the Disease of Plant Yield

The work quoted in the previous section takes no account of the 

e f fec t  of the disease on the growth of the plant. S im i la r ly ,  the work 

that has been done on y ie ld  loss resul t ing from disease takes no 

e x p l i c i t  account of the spread of disease. The most recent review of 

the predict ion of y ie ld  loss from disease in tens i ty  is that of James
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(1974) which distinguishes three types of approach. All three are 

examples of the use of a convolution function approach (Sokolnikoff 

and Redheffer, 1966) in which percentage loss at harvest time is given 

by

X̂ V  " £ f(Th- t )g (y ( t ) )d t  ...(4.3.11)

where f(T^-t)  is a weighting function for the effect on yield of a 

function g of infected plant area y at time T^-t. The three approaches 

are distinguished by their  choice of f

(1) the c r i t ica l  point model, where f  is a single 'spile ' 

or Dirac pulse at t  = T^ - t ' ,  the 'c r i t ica l  point' in 

crop development at which the disease exerts i ts  effect.

(2) the multiple point model where f  is a series of spikes 

centred at di fferent times.

(3) the area-under-the-curve model due to van der Plank 

(1963) where f  is a rectangle over 0 <= t  <= T^.

Current opinion (James, 1974) tends to prefer either (1) or (2), with 

(3) being regarded as less f lexible. According to James, the choice 

between (1) and (2) favours (2) for highly variable or long epidemics 

or for long periods of yield accumulation. At the level of generality 

of this study these considerations do not provide a basis for choice.

The function that w i l l  be used was chosen on the basis that i t  had been 

used to provide a very accurate prediction of yield loss from disease 

intensity by Romig and Calpouzos (1970) who used a cr i t ica l-po in t  model 

with g as a logarithmic function so that

x(Th) = a + b ln(y(Th- t ' ) )  ...(4.3.12)

for 0<= a + b ln (y (T^- t ' ) )  <=100

Using this relationship for yield loss of spring wheat to stem rust, 

they found a correlation between disease intensity at the c r i t ica l  

point and yield loss over the 5-95% range with r = .993. I t  is equation 

(4.3.12) that w i l l  be used in calculations of yield loss in this study.
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4.3.3. Incorporating Plant Growth Effects

The las t  two sections described two areas of  work that have not 

overlapped. Because of the complexity of modelling plant growth i t  has 

been simpler fo r  those concerned with y ie ld  loss not to enquire into 

the dynamics of the disease. The gap between the two approaches makes 

i t  impossible to simulate the hostXpathogenXhost and higher order 

in teract ions of section (2.3.4.1) without extending the current level 

of debate on epidemic simulat ion. In th is  section an extension of th is  

kind which can be used as an optional feature of the simulation model 

is described.

The l i t e ra tu r e  gives l i t t l e  guide on how to make th is  extension.

A number of simulat ion models of  plant growth now ex is t  which simulate 

at the level of pa r t i t io n in g  photosynthate between plant organs. A 

review is given by Hesketh and Jones, (1976). None of these studies 

has generated a simple equation, l i k e  equation (4.3.3) which can be 

used as the basis of a generalised discussion of plant growth: instead

th e i r  models are complex (and probably must be) and have the same d is 

advantages fo r  the purposes of  simulat ing plant growth as the EPIDEM 

approach to epidemiology. Also, the studies of plant growth involve 

detai led representation of  exactly those plant functions that the 

disease a f fec ts ,  and so theirmodels would have to be d ras t ica l ly  changed 

to take account at the same level of realism of the presence of a 

pathogen.

An exception, and so fa r  the only ind ication of how to extend 

the level of debate is  the model of Trenbath (1977). This model has a 

number of s im i la r i t i e s  to the one to be presented here in that i t  uses 

a growth law fo r  the disease resembling the van der Plank equation, 

however the physical in te rpre ta t ion  of the equation as representing l i f e
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stages of the disease is not exploited. The method of implementing 

plant growth is also at variance from the model described here in that, 

while a very similar basic growth equation is used the manner in which 

disease affects the plant's growth is d ifferent, and the yield loss is 

based d irectly on the total size of the plant at harvest time rather 

than on the generally used convolution function approach described above. 

The submodels used to describe plant interaction in the Trenbath model 

are also more complex than the rather simple one to be introduced here. 

Partly because of this and partly because the model is continuous, 

requiring the use of a d iffe ren tia l equation solving routine, the 

Trenbath model takes more than ten times as much computation per 

epidemic as the model used here (B.R. Trenbath, personal communication), 

which is a severe disadvantage in the computation of optimal controls.

The basic property of a plant disease's effect on the plant is 

the removal from normal function of part of the plant tissue. The 

second property of the behaviour of the common biotrophic pathogens is 

that they compete with the ir hosts for the products of photosynthesis.

I t  does not seem possible to model the second property (and more complex 

behaviour) without some reference to the process of photosynthesis, and 

this reference would make the model too complex to be used for optimal 

control. The following submodel, therefore, is intended to extend the 

level of debate in only three ways:

(1) i t  mimics the growth ofa healthy wheat plant

(2) growth is reduced in proportion to the fraction of 

tissue infected

(3) compensatory growth by less attacked plants is possible.

The basic growth equation used is

dAY j (t )

dt
kAYj(t)(l - t /T ') . . . ( 4 . 3 . 13)
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where k is the growth constant

T is the time of maximum crop size

The curve generated by this equation is a normal curve with its mode 

at t  = T' and standard deviation /(T ' /kJ.  Figure (4.1) shows that this 

curve can be used to mimic the growth of a healthy wheat plant as 

recorded in the data of Rawson and Hofstra (1969). Since AY,(t) is
U

the area of plant tissue not occupied by disease, growth can be slowed 

but not reversed by the presence of the pathogen.

In order to simulate compensatory growth without assuming any 

particular model for the interaction of plants a positive feedback is 

introduced into equation (4.3.13) such that when a cult ivar 's proportion 

of the crop exceeds i ts  proportion in the seed sown, its growth rate is 

increased. Correspondingly, when (as a result of disease) the growth 

rate of a cult ivar fa l ls  behind i ts  fellows, the feedback effect 

intensifies i ts  disadvantage and further suppresses its growth. The 

feedback signal for cult ivar j  i t s e l f  is given by

e j ( t )  = ( Y j ( t ) / Y ( t ) . U j ) ) f  (Uj f  0) . . . (4 .1 3 . 14 )

where u. is the fraction of cult ivar J planted
J

f  is the feedback gain

The feedback effect is then applied mul ip i icat ive ly:- 

dAy .( t)
J = k ej  ( t ) (1 - t /T ') ...(4.3.15)

dt

Once again, this equation is actually implemented numerically as a 

difference equation with a time step of one day, for greater speed and 

a sl ight increase in realism.

I t  should now be pointed out that where crop growth effects are 

introduced in a model of a multi l ine the standard methods of predicting
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yield loss do not apply. In part icular, they offer no way of predicting 

increased yield as a result of compensatory growth by the less affected 

plants. In the multi l ine different plants may have different absolute 

sizes as well as different disease covers and a plant with a 20% cover 

that has been competing with plants with a 30% cover is l ikely to yield 

more than a plant with 20% cover that has been competing with similar 

plants. There seems to be no element of the current level of debate 

which covers this question. The approach that w i l l  be used here is to 

take the yield as calculated by the conventional method and then multiply 

i t  by a factor resembling the one already used to in i t ia te  compensatory 

growth. Thus

Zj = Z0Uj (100 - x(Th)) (4-j )9/100 . . . (4 .3 .16 )

_ 0
where is the yield of l ine j  m

Zq is the yield of a clean crop 

u. is the proportion of line j  sown
J

x(T^) is ,  as before, the percentage yield loss

5Y . ( T  ) . u  .
J J h j

...(4.3.17)

and g is the gain factor for yield compensation. I f  g = 0, there is 

no yield compensation.

Figure 4.2. shows the yield according to the model of susceptible 

and resistant plants in a replacement series ranging from fu l ly  

resistant to fu l ly  susceptible. In each mixture a quantity of spores 

suff ic ient to depress yield by 92% in a fu l ly  susceptible crop is 

applied 40 days before the c r i t ica l  date at which disease loss is 

determined. At low proportions of the susceptible plant the disease 

is not able to multiply enough to affect yield at a l l .  As the 

proportion increases the disease loss gradually increases. Compensatory 

growth by the resistant plant then becomes noticeable in the concavity
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of i t s  y ie ld  function, which shows that i t  is y ie ld ing more than in 

proportion to i t s  representation in the seed sown. However compen

satory growth is not (and cannot be in th is  model) the explanation for  

the in s e n s i t i v i t y  of m u l t i l in e  y ie ld  to disease at low proportions of 

the susceptible components. The in s e n s i t i v i t y  is caused by the 

i n a b i l i t y  of the pathogen population to increase under these circum

stances.

I t  is not supposed that the submodel described in th is  section 

is a f u l l y  r e a l i s t i c  simulation of a diseased mixed crop stand. Instead 

i t  is conceived as a test to see i f  the conclusions of a basic model 

using equations (4.3.4) and (4.3.12) are, as i t  were, loca l ly  stable 

to increases in real ism of th is  pa r t icu la r  kind. Empirical studies may 

suggest that th i s ,  or a s im i la r ,  approach is a robust enough mimic of 

actual m u l t i l in e  behaviour to have fu r the r  use, despite i t s  lack of 

real ism, but th is  cannot be judged at the moment.

4.4. The Time Between Harvest and Sowing

I f  information which suggests how to simulate the growth of a 

diseased m u l t i l in e  is sparse, information that suggests how to model 

the interface between crop cycles is almost nonexistant: Kiyosawa

(1972) seems to be the f i r s t  to have considered 'overwintering' from a 

mathematical viewpoint, and he used a simple constant survival 

p robab i l i ty  for  propagules between cycles.

Idea l ly ,  the in te r face between crop cycles should be considered 

as almost as important as the crop cycle i t s e l f .  I t  would be point less 

to achieve an accuracy of  say +/- 10 per cent fo r  with in cycle dynamics 

while having only an accuracy of +/- 90 per cent fo r  between-cycle 

dynamics. Yet i t  is  obviously much harder to measure the between-
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season dynamics. No solut ion is offered here except to use a very 

simple model of the in te r face ,  whose parameters might conceivably be 

measured in pract ice.  The model is wr i t ten  as though survival between 

seasons is a matter of the survival and act ive reproduction of some of 

the spores present on the day of harvest on some alternate host, 

perhaps wi ld grasses. Kiyosawa's (1972) study appl ies more to a 

s i tua t ion  in which spores overwinter passively on crop residues, as in 

the case of Helmintho8porium maydis (Sumner and L i t t r e l l ,  1974). The 

choice is a large ly  a rb i t ra ry  one which was influenced here by the 

s i tua t ion  of wheat stem rust in Austra l ia .

The basic re la t ionsh ip  used here is a hyperbol ic one, intended 

to suggest that small numbers of spores may even increase on the wild 

host but that large numbers of spores saturate the avai lable host at 

a level far  below that at which the crop would be saturated (about 5% 

of saturat ion leve l ) .  Accordingly the re la t ionship between the output 

of season n and the input of season n+1 is given by

s(out)K-, 
j  (n) 1

s ( in )  = ----------------  . . . ( 4 .4 .1 )
j (n+1) K0 + s (ou t)

2 J(n)

where K-j is the maximum possible input to the next season in spores m 

is the output at which ha l f  K-j is achieved.

4.5. The Int roduct ion of New Races

The occurrence of new races of pathogens is the o r ig in  of a l l  

problems of resistance breeding and consequently deserves careful 

consideration in modelling. However the information on which to base 

quant i ta t ive  estimates of model parameters is almost t o t a l l y  lacking, 

so that what is  proposed in th is  section, while simple in concept, is 

subject to wide uncer ta in t ies ,  both about parameter values and about 

the appropriateness of the approach.
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The probability of occurrence of a new pathogen race is the 

sum of two probabilities:

(1) The probability that the new race w il l  arise by mutation 

and recombination within the system

(2) The probability that the new race w il l  be introduced 

from outside the system.

4.5.1. Mutation

Mutation rates for plant pathogens are hard to estimate either 

in nature or in experimental situations. In nature i t  is impossible 

to observe the f i r s t  appearance of the new race, or to estimate 

accurately the size of its  parent population and in experiments the 

number of spores observed is usually too low (an exception occurs with 

the rice blast fungus (Ou, 1971; Kiyosawa, 1976)) for estimates to be 

made. Since i t  is now becoming possible to culture what were once 

regarded as obligate parasitic pathogens, such as the rusts, on 

chemically defined media (Bose and Shaw, 1974), i t  may be possible to 

obtain better estimates in the future.

The probability that a new race w il l  arise by mutation depends 

not only on the mutation rate but on the number of opportunities to 

mutate, which in turn depends on the infection level and the total 

area of the crop. Thus although the system is being modelled as 

"lumped" (section 3.5.2.3) i t  must be scaled to represent an actual 

area, and the multiline problem is essentially a problem of large areas. 

Now i f  the area is large, in any but the lightest epidemic the number 

of spores is l ike ly  to be so large that

Ny »  1 ...(4 .5 .1)

where N is the total number of spores produced through the 

whole crop cycle.

p is the mutation rate
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Under these circumstances the expected number of  mutations

E(s' ) »  1 . . . ( 4 .5 .2 )

and the standard deviat ion of th is  number

o ( s ' ) ~ / m T  . . . ( 4 .5 .3 )

is so small compared to the expected number that the occurrence of a

mutation is v i r t u a l l y  certa in. Accordingly in th is  study mutation is

treated as the steady introduction of the expected number of propagules

of a new race, which is reasonable since the area being modelled is 
10 2large (say 10 m ) and the i n i t i a l  conditions considered are e i ther

zero disease or (as w i l l  be seen in Chapter 6) represent mult iples of 
l n 1210 spores.

4.5.2. Ir ruptions

Thus the essent ia l ly  stochastic element of the behaviour of an 

extensive crop/pathogen system seems to be provided, in the absence of 

environmental va r ia t ion ,  by the i r ru p t ion  of new races from outside 

the system. Quanti tat ive information on how to model th is  process is 

lacking, except fo r  the h in t  given by the often repeated statement 

(e.g. van der Plank, 1968) that the l i f e  span of a new major gene in 

small grain crops is of the order of 5-10 years. This h in t  gives a 

basis fo r  estimating the p robab i l i ty  of i r rup t ions  but not for  

estimating th e i r  d is t r ib u t io ns  of size and race composition.

In practice i t  w i l l  usual ly be impossible to t e l l  whether the 

suddenly observed presence of a new race in a pa r t icu la r  part of a 

d is t r ibu ted  crop is in fac t  a large scale i r ru p t ion  from outside the 

system or is simply the rapid spread that w i l l  occur under favourable 

circumstances from a small unnoticed focus. The important feature of 

e i the r  event, from the point of view of the administrator of a control 

pol icy is the suddenness with which serious damage is done to the crop.
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Accordingly the procedure that is adopted in this study is an 

attempt to preserve the significance of irruptions as a source of 

unpredictable crop damage while making the simplest possible 

assumptions about the size and composition of the irruptions. I t  wi l l  

be assumed that races appear as a fixed quantity of spores, suff icient 

to cause a noticeable yield loss in a fu l ly  susceptible and otherwise 

clean crop. The appearance of dif ferent races w i l l  be treated as 

independent events, each with the same probabil i ty, P Thus i f  n

genotypes are considered, i t  w i l l  be assumed that there are 2n possible 

irruptions defined by the presence or absence of the fixed quantity of 

each race. The expected cost of a control action w i l l  then be found 

by simulating the effects of each type of irrupt ion, multiplying each 

cost by its binomial probabil ity and adding.

4.6. Modelling the Cost of an Epidemic 

4.6.1. An Agribusiness Criterion

The f i r s t  cr iter ion to be modelled in this study is intended to 

represent the decision-making of an agricultural industry in an 

advanced country. The industry is managed by an organisation, public 

or private, which is interested in maximising the present value of the 

expected cash return, which i t  does by attempting to avoid shortages 

and gluts. The factors that this organisation must consider are:-

(1) the yield per unit area, as affected by the pathogen

(2) the area to be sown

(3) the fraction of the product to be stored from cycle to 

cycle and the fraction to be sold

(4) the price for which each unit of the product wi l l  sell

(5) the costs of production.
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For the sake of simplicity and in order not to divert too much attention 

from the biological events, changes in the parameters of the rules 

governing (4) and (5) w ill be neglected.

The basis of the calculation of cash return is a simple price/ 

demand curve of a type found in many economics textbooks (e.g. Leftwich, 

1970).

where p is the price per unit

and Q is the number of units sold (assumed to be a ll those put 

on sale)

I f  there were no cost associated with production then the return for 

one cycle would be given by

R = Qp . . .  ( 4 . 6 . 2 )

= QP0 e ' bQ . . . ( 4 . 6 . 3 )

which has a minimum at = 1/b, the optimum amount to produce for a 

one year policy in the cost-free situation.

But

Q = q(yA + s) . . .  (4.6.4)

where q is the fraction put on the market, 0<= q <= 1 

y is the yield per unit area 

A is the area planted to the crop, 0<= A <= 1 

s is the amount in storage 

So

R = q(yA + s)pQe bĉ yA + ...(4 .6 .5)

I f  there were no costs associated with R, then a ll planting policies 

would be equivalent unless they made i t  impossible to offer Qopt on the 

market. So in order to increase realism somewhat and constrain the 

optimal control to distinguish between possible policies, the following 

simple cost function is introduced.
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Suppose that the cost of producing Q has two parts; a f ixed cost 

Cq which might re fer  to maintenance of farms and farmers, and a 

variable part k^A, which increases l in e a r ly  with the amount of land 

cu l t iva ted and might re fer  to t rac to r  fuel and f e r t i l i s e r .  The return 

equation is now:

R = Qp - cQ - k3A . . . ( 4 .6 .6 )

I t  is now necessary to consider any costs associated with d i f fe ren t  

genotypic rat ios that might be used in the crop. P la in ly ,  there would 

be costs involved in sett ing up a m u l t i l in e  program. The breeding of 

mu lt i l ines  has been cal led "agronomically conservative" (Hooker, 1967) 

because any improvement (other than the incorporation of a new 

resistance gene) must be made in a number of l ines simultaneously with 

a corresponding extra cost. There might also need to be expansion of 

pathogen sampling programs in order to get more accurate information on 

the composition of the pathogen population. There would also be costs 

of the continued running of  such a program but they would be almost 

independent of the pa r t icu la r  decisions taken in each cycle, provided 

that mu l t i l ines  were used so frequently that sett ing up and closing 

down cost of the m u l t i l in e  f a c i l i t i e s  need not be taken in to  account 

as recurrent costs.

Nevertheless i t  w i l l  be assumed that these costs are negl ig ib le 

compared to the to ta l  cost (assumed constant) of any breeding program. 

To do otherwise would introduce a d iscont inu i ty  into R at values of y 

produced by pure l ines ,  and th is  d iscont inu i ty  might bring special 

mathematical d i f f i c u l t i e s  which are best l e f t  out of an i n i t i a l  

explorat ion. Thus a l l  costs associated with plant breeding w i l l  be 

absorbed in to  the f ixed cost Cq. Whether th is  is j u s t i f i a b le  must be 

decided in each practica l  case.
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Three important points must be made about th is  model. The 

f i r s t  is that the introduct ion of storage of the product between cycles 

has augmented the state vector. As well as consisting of ••• xn 

representing pathogen abundances, the vector must now contain an Xq = s 

representing the amount stored at the decision point.  The component 

Xq is l i k e l y  to a f fec t  the choice of pol icy. For example, i f  the 

secular trend of the pathogen is pps i t ive ,  and there is the p o s s ib i l i t y  

of  storage, i t  may prove optimal to produce some of next year's crop 

th is  year, because even i f  the price is the same next year, the cost 

of production w i l l  be higher.

The second important point is that the vector of control 

variables has also been augmented by the addit ion of q and A. The 

introduct ion of q is a stra ightforward consequence of there sometimes 

being a maximum of R at ta inable w i th in the constraints on the system 

so that a decision must be made on how much to se l l .  The role of A 

is more subtle in that i t  r e s t r i c t s  the size of the set of candidates 

fo r  the optimal pol icy by requir ing a minimisation of k-|A. This adds 

both realism and in te res t  to the problem, fo r  in real l i f e  i t  is 

un l ike ly  that  the plant breeder would have the luxury of deciding on 

his optimal pol icy by select ing among equals with the toss of a coin.

The th i rd  important point is that one of the addit ional control

variables chosen here w i l l  have a d i rec t  e f fec t  on system dynamics.

The choice of area planted w i l l  tend to mu lt ip ly  or diminish the total

number of spores produced, though not, in the lumped system, the
2

number of spores produced per m . In the extreme case where no crop at 

a l l  is planted fo r  a year, even the superrace w i l l  die out , though i t  

w i l l  s t i l l  return eventual ly from outside the system.
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In a rea l ,  d is t r ibu ted  system, a reduction in area planted 

might take the form e i ther  of a reduced density of f ie ld s  of the crop 

in each lo c a l i t y ,  or of the absence of the crop from some lo c a l i t i e s .

I f  th is  "th inning out" were undertaken on a small enough mosaic, then 

i t  would have the e f fec t  of a l te r ing  the local dynamics of the epidemic 

because spores would be frequently los t  to other species of plants.

On a larger scale, the local dynamics of epidemics would be unchanged 

where they occurred, but they would not occur everywhere. In the 

lumped system i t  is only th is  l a t t e r  assumption that can be modelled 

without introducing many extra assumptions. Accordingly, when the 

agribusiness c r i te r io n  is being used, the state output w i l l  be mult ip 

l ied by the f rac t ion  of to ta l  area planted.

4.6.2. A Subsistence Farmer's Cr i te r ion

The model discussed in the las t  section applies to a world where

Qo p t  can b e  attained most or a l l  of the time. I f  th is  were not so we

might expect to be able to model the s i tua t ion by sett ing A always

equal to A =1  and optimise by maximising product iv i ty  in a l l  ma x
seasons. However in a complex market economy i t  is d i f f i c u l t  to assign 

a d e f in i te  l im i t  to the area that can be planted, since i t  is not 

usual ly an absolute physical l im i t  but one determined by the re la t ive  

p r o f i t a b i l i t y  of other enterprises,  the cost of subst i tutable resources 

and other economic factors such as changing consumer preferences (even 

for  basic foodstu f fs ) .

So fo r  a clearer contrast to the r ich economy the model in th is  

section is designed to represent a subsistence economy of an extreme 

type, exaggerating the tendencies described in Clark and Haswell (1967). 

This new economy produces a single product, which w i l l  be cal led a 

balanced d ie t ,  equivalent perhaps to the "grain equivalent" described
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in Clark and Haswell (1967, p53). This product is produced from a 

f ixed amount of land, which might be thought of as a crowded island 

l ike  Java, with one input - labour, which consumes the balanced d ie t  

in order to produce. There is never a surplus s u f f ic ie n t  to trade and 

so the balanced d ie t  is the only commodity in the economy. There is 

some resemblance between th is  "economy" and a global society enduring 

great scarc i t ies  because of  the loss of i t s  reserves of resistance 

genes, but the more complex the society,  the harder i t  is to define 

the "balanced d ie t "  fo r  that society except through a market or a 

planning system using monetary concepts.

The basic assumption of the model is that the marginal 

product iv i ty  of labour f a l l s  as the labour input r ises ,  so that there 

w i l l  be a maximum net production, equal to net consumption, at the 

point where the consumption needed fo r  each addit ional amount of labour 

equals the resu l t ing increase in production of the balanced d ie t .  This 

maximum might be at a negative or posi t ive value of net consumption and 

at a zero or posi t ive value of the labour input. I t  is also assumed 

tha t ,  as in the previous model, the cost of implementing each control 

decision is part of the f ixed costs of production, which in th is  case 

correspond to the " rest ing" metabolism of the population.

Since th is  is not a money economy i t  is not obvious how to 

define the cost of a po l icy. As various case h is to r ies  in Clark and 

Haswell (1967) show, subsistence farmers sometimes have u t i l i t y  

preferences that surprise western economists. However, the subject ive 

u t i l i t y  of a po l icy to one of the hypothetical subsistence farmers w i l l  

probably depend on two fac tors ;  the amount of labour that has to be 

done and the size of the consumption d e f i c i t .  I t  is to be expected 

that these factors w i l l  have to be traded o f f  against each other, th is
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year's work being traded off  against next year's hunger, for example. 

Yet the two factors are at f i r s t  sight incommensurable.

One consistent solution is to suggest that the optimum point for 

the farmer occurs when he is neither hungry nor overweight ( f a t ,  the 

stored balanced d ie t ,  has to be worked fo r ) ,  and to make an equal 

trade-off  on either side of this ideal body weight by a quadratic 

function

C = k2xQ2 . . . ( 4 . 6 . 7 )

where C is the cost

Xq is an extra state variable, the deviation from 

ideal body weight 

k̂  is a constant.

I t  is now necessary to suggest some specific forms for the rule 

governing Xq . In the f i r s t  place

xn , -i = xn + f - e 0,n+l 0,n . . . ( 4 . 6 . 8 )

where Xq n is the deviation from ideal weight in cycle n

where f  is balanced diet produced

e is balanced diet consumed.

A simple law to express the dependence of f  on labour might be

M y
f  = J . . . ( 4 . 6 . 9 )

k4 + w

where w is the labour input

y is ,  as before, y ield per unit area as determined by the 

pathogen

k^jk^ are constants.

While a simple law connecting e and w is
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e = C1 + ^5W . . .  (4.6.10)

where c-| is a fixed cost equal to resting metabolism 

k̂, is a constant.

The labour input to this model is at f i r s t  sight unusual because 

i t  does not (as the area variable in the f i r s t  model) affect the 

pathogen output. However some realism can be given even to this simple 

model if i t  is supposed that w is work done in such functions as 

scaring seed eating birds, irrigating the crop at the time of grain 

maturation or any other task which affects the yield but has l i t t l e  

effect on the leaf area.

Two modifications to this basic model have proved necessary in 

practice. The f i r s t  is that a small cost has been put on the use of 

added spores, in order to induce the control algorithm, for the sake of 

clari ty,  to remove unnecessary spores. The reason for doing this was 

that i t  was found that i f  the tr ial  policy added spores, and the 

algorithm made a swift decision to plant a superline, the remaining 

added spores were undetectable by the system. The second alteration was 

more important, because the model as described above allows the 

possibility,  i f  the superrace is vigorous enough, of a regress to 

infinite negative bodyweight. It is clear that some high cost should 

be set on death at the minimum tolerable bodyweight, but not clear how 

this might be implemented. The decision was made to set a lower bound 

on the bodyweight and assign a cost to any policy that results in a 

bodyweight less than this bound, equal to the cost at the bound plus a 

multiple of the transgression. This penalty-function approach to 

bounding the cost can only be a poor approximation to the real social 

situation being modelled but the situation i tsel f  is not unrealistic 

(Turnbull, 1973).
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Similar points to those made about the agribusiness model can 

be made about the subsistence model. The state vector has been aug

mented because another system var iable is being carr ied over from stage 

to stage. The control vector has also been augmented, by the addit ion 

of w, in the interests  of real ism, but also with the object of making 

a unique optimum more l i k e l y .

4.6.3. U t i l i t y  and Risk

I t  may be argued that the cost functions described above do not 

represent the inconvenience and loss that may be caused by f luctuations 

in crop y ie ld  from cycle to cycle or by variance of y ie ld  wi th in cycles. 

This is equivalent to saying (Luce and Raif fa , 1957) that the d is 

counted sequence of cost functions does not define a l inear  u t i l i t y  

scale. I t  is of in te res t  to consider methods of avoiding th is  reproach. 

There seem to be two d i f fe re n t  classes of method. One is to t rea t  the 

choice of an optimal control as a game between two players, the plant 

breeder and the pathogen. The other is to augment the c r i te r io n  by 

adding a measure of the v a r ia b i l i t y  of system output, and minimising 

the value of the sum. We w i l l  consider these methods in order.

4.6.3.1. The M u l t i l in e  Problem as a Game Against Nature

Pesek (1974) has treated a s impl i f ied version of the m u l t i l in e  

problem as a "game against nature" (Luce and Rai ffa , 1957). In his 

formulat ion the problem is a zero-sum game played between the plant 

breeder and the disease with the payoff being the amount of disease 

and the solut ion is held to be a minimax solut ion: the minimum of the

maximum amount of disease. This approach is un rea l is t ic  in a number of 

ways. In the f i r s t  place, the m u l t i l in e  problem is not a zero-sum 

game because the human object ive is only in d i re c t ly  to reduce disease,
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being in fact to minimise a cost. In the second place, and more 

fundamentally, the question is whether to t rea t  the problem as a 

game at a l l .

The reason fo r  questioning the games theory treatment is that 

the pathogen population is not l i ke  one (or even a number) of players 

each with a range of moves. Instead, each race of the pathogen has 

jus t  one (mixed) strategy which is determined before the game begins 

by the dynamics of mutation, recombination and disease spread. The 

descript ion of the m u l t i l in e  problem as a "game against nature" is 

thus somewhat misleading since the use of a minimax approach to f inding 

the "optimum" pol icy is not a " ra t iona l "  response in the face of a 

" ra t iona l "  adversary. Instead i f  a plant breeder chooses to use a 

minimax approach he is in e f fec t  saying that the cost of an epidemic 

(as calculated by equations such as those above) does not represent his 

own u t i l i t y  scale l i n e a r l y ,  and he places an absolute p r io r i t y  on 

avoiding the highest costs that may occur. This approach w i l l  be 

avoided in th is  study because, as was said in section (3.5.1) i t  seems 

to be excessively pessimistic in the absence of fu r the r  information 

about agribusiness and subsistence farmers' u t i l i t y  scales.

4.6.3.2. Placing a Cost on V a r ia b i l i t y

In at least one respect the cost functions described above do 

take account of v a r ia b i l i t y .  Both provide storage fo r  the crop, which 

is the most ancient and d i rec t  way of smoothing out f luc tuat ions in 

y ie ld .  The agribusiness cost function, however, places no cost on th is  

storage, only an upper bound, whi le the square-law form of the 

subsistence cost function tends to act as a suppressor of v a r ia b i l i t y  

in storage.
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The use of measures of variabili ty in making a criterion more 

responsive to fluctuations was prefigured in section (3.3.1) by the 

suggestion that the variance of yield be minimised. In this section 

measures of the variability of the cost functions already defined will 

be considered. One measure that is easily obtained is the variance of 

the one-stage cost k(u( i ) , i ) ,  since i ts  probability distribution is 

constructed in the course of calculating i ts  expected value. Similarly, 

the variance of E(V( tt ( i ) , i ) )  can be found. However, these 

variances are measures of within-cycle, or, equivalently, within-state 

variabil i ty,  while between-cycle variabil i ty,  which is of prime interest,  

is omitted.

To see how between-cycle variance can be handled in the optimal 

control setting, consider an n-stage decision process. In stage (n-1), 

the decision that minimises between-stage variance for the whole 

process will minimise

(k(V l ’ v H  - Kn)2 = (k(Vl> v -P

- ( ( " -DV- ,  + k(xn_r  V l ))/n)2 . . .(4.6.11)

where k is the within stage mean of the cost 

K̂ is the grand n-stage mean

In this form the minimisation of the variance is treated as a dynamic 

programming problem at the expense of augmenting the state vector to 

include the overall mean cost at the ith stage , and the stage number 

i. This augmentation markedly increases computation, but even apart 

from this the method cannot be extended to an infinite policy horizon 

because i would increase without bound. This is equivalent to saying 

that no individual decision in an infinite policy can affect the 

variance of the cost. An alternative method, which does not calculate 

a true variance but which can be applied to an infinite policy horizon
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is to define a new cost function C( ir( i ) , i )  so that

V ( t t (  i )  , i )  =  ( C ( tt ( i ) , i ) + V W ^ ) , ^ )  ...(4.6.12)

where C(tt( i ) , i ) = otk(i »u(i)) + 3var(k(i ,u( i ))

+ y ( k ( i , u ( i )) - k(x1,ufX1) ) ) 2 ...(4.6.13)

and a, 3, y are the weighting coefficients for mean cost, within

cycle variance and between cycle variance respectively.

This procedure adds a discounted measure of va r iab i l i ty  (rather than a 

true variance), to the cost function V, which would represent both 

within and between cycle var iab i l i ty .  The amount of computation involved 

in each function evaluation would of course be roughly doubled through 

the need to compute k(X-| ,u(X-j)) as well, and i t  might also be necessary 

to minimise over two sets of control variables at once (u(i) and 

u(X] )).

These uncertainties have contributed to the decision not to 

attempt to include additional expressions for the cost of var iab i l i ty  

in the optimality c r i te r ia  of this study. The main reason has been 

that their  inclusion would complicate the interpretation of the results 

of an investigatory study such as this. The confusion would arise, 

f i r s t l y ,  because of the addition of arbitrary a, 3 and y to the other 

model parameters, but mainly because in a l l versions of the model that 

have been tried reduced var iab i l i ty  is most easily achieved by increasing 

the disease level, so that the stochastic irruptions have l i t t l e  effect.
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4.7. Uncertainty and Robust Conclusions

Section (4.6.3) has dealt with f ind ing an optimal control that 

represents ra t ional behaviour under the conditions of r isk  represented 

by the (known) p robab i l i t ies  of new races ar is ing.  In th is  section 

the impact of events whose p robab i l i t ies  cannot be measured or to 

which probabi1i t i e r s  cannot be assigned. In the context of simulation 

modelling, the f i r s t  type of uncertainty occurs as a resu l t  of i t  

being impossible to measure system parameters ( inc luding p robab i l i t ies )  

without error .  The second type occurs as a resu l t  of not knowing what 

features of the functional forms used in the model are inessential or 

wrong.

About the second type of uncertainty nothing can be done in 

general. Sometimes i t  is possible to base a qua l i ta t ive  argument upon 

ins ight or experience with numerical work and derive a resu l t  that is 

not dependent on these pa r t icu la r  forms. To a l im i ted extent th is  was 

done in the theorems of Chapter 3. The f i r s t  type of uncertainty may, 

however, be combatted to some extent. What technique is used w i l l  

depend on whether the modeller 's task is to decide on an optimal control 

in pract ice or to undertake a theoretica l analysis l i ke  th is  study.

4.7.1. The Practical Case

I f  the uncertainty to be combatted is impeding the choice of a 

pract ical optimal con tro l ,  what is required is a means of choosing 

parameter values from with in the range of uncertainty such that the 

calculated expected value of the cost corresponds to i t s  true expected 

value. I f  information is ava i lab le, as a resu l t  of experiment, which 

gives the p robab i l i ty  d is t r ib u t io n  of the d i f fe re n t  parameter values, 

th is  "uncerta inty" can be treated as a form of r i s k ,  from a new
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stochastic input that affects parameter values, and the expected cost 

can be calculated as before. I f  a l l  that is avai lable are upper and 

lower bounds on parameter values, then i t  is harder to decide on what 

is  " ra t io n a l "  behaviour. A clear exposit ion of the d i f f i c u l t i e s  of 

deciding on ra t iona l  behaviour under uncertainty can be found in Luce 

and Kaif fa  (1957): an ind ication of the current state of debate can

be found in Balch and Fishburn (1974). One possible approach is again 

a minimax in which the control is chosen so as to minimise the maximum 

value of the expected cost in re la t ion  to possible parameter values.

V ( tt ( i ) , i )  = min max E‘r ( V ( t t (  i ) , i )) . . . ( 4 .7 .1 )
7T p  1

where p stands fo r  the set of possible parameter values.

The use of the minimax procedure to f i t  models to data is a 

known a l te rna t ive  to the fam i l ia r  least squares procedure (Demyanov 

and Malozemov, 1974). The use of such a method when the c r i te r io n  of 

goodness of f i t  is also a cost function, as in the case of the method 

suggested above, can perhaps be thought of as a "game against nature" 

with more j u s t i f i c a t i o n  than in the suggestion discussed in section 

(4 .5 .3 .1)  because here Nature's move is unknown, though bounded.

However i t  is s t i l l  probably better  to think of a minimax choice of 

model parameters as a modeller 's conservative approach to his own 

ignorance. The real appl icat ion of the game approach seems to come 

in theore t ica l  studies and is discussed in the next section.

4.7.2. Strengthening a Theoretical Study

In the case where uncertainty must be combatted in order to 

establ ish the robustness of a theore tical re su l t ,  s l i g h t l y  d i f fe ren t  

questions are involved. The task is now to see what e f fec t  a d i f fe re n t  

set of parameter values might have on the conclusion, in order to
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sa t is fy  a c r i t i c a l  audience. The technique which is usual ly used is 

that cal led s e n s i t i v i t y  analysis, in which each parameter is indepen

dently varied, often by + / -  10%, and the ef fects  on the results of 

simulation observed. Specif ic conclusions are rare ly  drawn from these 

observations, unless some kind of "catastrophe" (Thom, 1975) is observed 

in model behaviour. As is pointed out by Shoemaker (1973b), s e n s i t i v i t y  

analysis is useful in that i t  gives an ind ication of which parameters 

are l i k e l y  to have the largest e f fec t  on model output and are thus in 

need of the most intense empirical study. However s e n s i t i v i t y  analysis 

has two important drawbacks:

(1) As the number of model parameters increases i t  becomes 

impossible to simulate a l l  possible combinations of +/-  

10% var ia t ions in each parameter, since there are 3n of 

them where n is  the number of parameters. Consequently,

s e n s i t i v i t y  analysis must often be res t r ic ted  to a subset
►

of a l l  independent var ia t ions ,  usual ly the 2n one-at-a- 

tiine var ia t ions. This re s t r i c t io n  excludes the 

p o s s ib i l i t y  of observing in teract ions between parameter 

values.

(2) Sens i t iv i ty  analysis is not at a l l  global:  i t  gives l i t t l e

ind ication of what effects  may occur outside the 10% 

range. For a pract ical  study, where experimental work

has already confined possible parameter values wi th in a 

range in which no q u a l i ta t i v e ly  surprising resul ts are 

expected th is  object ion may not be too serious. For a 

theore tical study such as th is  one, which is undertaken 

in almost complete ignorance about many important para

meters, a more global approach is desirable.
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A possible alternative to sensit iv i ty  analysis is to regard the 

control task as a two-person game in which the payoff to the second 

player is a measure of disagreement with the null hypothesis. The 

f i r s t  player is able to make choices of the control variables so as 

to minimise the expected cost. The second can choose parameter values 

(within agreed l imits) so as to act as a voice of caution in the 

treatment of any new finding. I t  is the deliberately c r i t ica l  sp i r i t  

of sc ient if ic  enquiry that lends the game-like aspect to this procedure. 

I t  is not, in this case, irrational to think of a second player whose 

interest l ies in finding parameter values that tend to contradict any 

novel finding of a study: such players actually exist.

The payotf function in this game may take various forms, 

depending on the manner in which the robustness of the study is being 

tested. Two forms of test and their corresponding payoffs are:-

(1) The robustness of the result is being tested by the 

suggestion that the parameter values represent an 

optimistic view of the real world, in the sense that 

real costs might be higher.

In this case the payoff function is the ordinary cost of 

the control, and the game is zero-sum.

(2) The robustness of the result is being tested by the 

suggestions that the parameter values are for some 

(perhaps unspecified) reason conducive to the rejection 

of the null hypothesis about the choice of control. In 

this case the payoff to the second player should be a 

measure of the divergence of the optimal control variables 

from the values prescribed by the null hypothesis.

These two payoff functions lead to radically di fferent amounts 

of calculation needed to solve the game. The f i r s t ,  zero-sum game



4-3/

simply requires the alternation of minimising and maximising steps in 

the calculation of one optimal control. By contrast, in the non-zero- 

sum case, each function evaluation corresponds to finding a complete 

optimal control. Accordingly in this study, because of time l imitations, 

no further mention w i l l  be made of the second type of game, although i ts  

implementation is undoubtedly a desirable objective. Instead some 

attention w i l l  be paid to the zero-sum game, which is perhaps 

additionally jus t i f ied  by i ts  resemblance to the procedure of the 

practical decision maker under conditions of uncertainty mentioned in 

section (4.7.1).

The scope and value of the results of such a game depend on the 

behaviour of the functions involved. There is an important theorem 

in games theory (Owen, 1964) according to which, i f  the payoff function 

of the zero-sum game is a convex function of the control variables for 

each set of parameter values, and a concave function of the parameters 

for each set of control variables, then a minimax solution exists.

Finding such a solution would be interpreted to mean that there was no 

set of parameter values that could cause the given optimal control to 

yield a higher cost. I f  the null hypothesis about the control variables 

were s t i l l  rejected in this situation, then at least the rejection could 

not be regarded as an artefact of an optimistic world-view.

I f  the conditions of the theorem do not hold, then the implication 

of the minimax process becomes correspondingly less global and may be 

restricted to ranges of parameter values around the i n i t i a l l y  assumed 

values but not covering the whole range of uncertainty. Even so, this 

would be a more defini te conclusion than can be usually be drawn from 

sensit iv i ty  analysis. The final advantage of this process over 

sensit iv ity analysis is that the computation required to establish the 

game solution w i l l  increase roughly as n̂  rather than 3n as in a
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complete s e n s i t i v i t y  analysis, so that above a break-even point pecul iar 

to each study, the minimax procedure w i l l  be easier. In Chapter 6 a 

simple minimax study with some theoretical  consequences w i l l  be 

introduced.

4.8. The Number and Type of Genes to be Introduced by the Plant

Breeder

In the rest of th is  chapter no mention has been made of parameter 

values, since these w i l l  in several cases be varied in the experiments 

of Chapter 6. However there is one important "parameter" common to 

a l l  the modelling done in th is  study which w i l l  be discussed here: 

the number of d i f fe re n t  genotypes ot disease race and plant l ine  to be 

considered.

In one sense, as soon as m u l t i l ines  are considered, i t  becomes 

impossible to consider introducing only one gene, because the m u l t i l in e  

s t ra teg is t  has at his disposal,  in theory, a l l  the genes that have 

been incorporated in the crop in the past. Nonetheless most m u l t i l in e  

theor is ts  and producers have not envisaged using the f u l l  number of 

genotypes. Both the Iowa oat m u l t i l ines  (Browning and Frey, 1969) 

and the CIMMYT wheat m u l t i l ines  (CIMMYT, 1974) have usual ly consisted 

of about ten to f i f t e e n  l ines each containing a major gene. The 

reasons fo r  th is  choice have not been stated d i re c t l y  though the 

complexity of handing large numbers of l ines presumably played a part.

Van der Plank (1968) theorised that since ( in his view) the 

u t i l i t y  of m u l t i l ines  depends on the presence of s tab i l i s in g  select ion,  

and s ta b i l i s in g  select ion is only re l ia b ly  enforced by what he cal led 

"strong" genes (section 2 .3 .4 .1 ) ,  the number of l ines in a m u l t i l in e  

should correspond to the number of "strong" genes avai lable.  In these
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l ines the strong gene should be used one at a time, because the i r  

mult ip le use in a single l ine  would reduce the action of s ta b i l is in g  

selection against the superrace ( i t  would have fewer unnecessary genes 

fo r  virulence in such a m u l t i l i n e ) .  Whether these arguments are val id  

or not, th e i r  usefulness is l im i ted to cases where s tab i l i s in g  select ion 

is enforced by a s u f f ic ie n t  number of strong genes fo r  resistance.

The a t t i tude  adopted in th is  study d i f fe rs  from both the 

pract ical  and the theoretical  posit ions described above, fo r  reasons 

which are mainly to do with computational l im i ta t ions  but which have a 

sound theore tical basis as wel l .  The model w i l l  deal with the 

introduct ion of two dominant major genes, A and B to a crop. Each 

gene w i l l  be considered to confer immunity to races that are not of 

genotypes aa and bb at the respective lo c i .  Of the four possible 

genotypes only Ab, aB and AB (and th e i r  corresponding pathogen races) 

w i l l  be considered.

The computational reason for choosing such a simple form of 

m u l t i l in e  fo r  study is what is known as the "curse of dimensionali ty" 

(Bellman, 1957). The amount of computing that is necessary to f ind an 

optimal control increases at least as the number of i n i t i a l  conditions 

considered, which is L , where L is the number of levels of each state 

variable considered and s is the number of state variables. Thus in 

order to get a reasonably sensi t ive response to d i f fe re n t  levels of 

each state variable i t  is necessary to r e s t r i c t  the number of state 

variables. In th is  study four state variables (three disease race 

abundances + food storage) are studied at f ive  leve ls ,  giving 625 

i n i t i a l  conditions to be covered. The inclusion of another disease 

race at the same level of resolut ion would require 3125 i n i t i a l

condi t ions.
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The theore tical reasons fo r  choosing a simple m u l t i l in e  are 

based on Theorem 1 of Chapter 3. Since any m u l t i l in e  e f fec t  depends 

on the presence of the simpler races, there must be a s u f f ic ie n t  

quant i ty  of the simpler l ines present to nurture the simpler races.

The smaller the f rac t ion  of the crop that is susceptible to a given 

race, the greater the disadvantage to that race and a race v i ru len t  

on, say, a tenth of a crop is un l ike ly  to have any influence on the 

growth of the superrace. Consequently a simple m u l t i l in e  is more 

l i k e l y  to be optimal than a complex one.

A second argument fo r  the type of simple m u l t i l in e  used here is 

s im i la r  to van der Plank's argument, quoted above, that m u l t i l in e  

components should each have only one major resistance gene. What w i l l  

be argued here, instead, is that there should be no more than two 

levels of complexity in a m u l t i l in e  (and thus in th is  case the ab 

genotype plant should be omitted). The argument is as fol lows.

Consider the Ab and ab subsystem in the absence of aabb and bb diseases. 

I f  in the subsystem there are m u l t i l i n e  effects  then the subraces in 

the subsystem w i l l  tend to retard the output of the superrace of the 

subsystem - the aa race. But th is  race should be more important in 

the main system than the simpler races growing on the ab plant because 

i t  can grow on a larger f rac t ion  of the crop. Thus the presence of 

the ab plant tends to work against the race that w i l l  be important in 

any m u l t i l in e  advantage fo r  the main system. Any counteractive e f fec t  

of th is  kind of the presence of more than two levels in the m u l t i l in e  

would be expected to be s l ig h t  because of the great disadvantages that 

would face the simplest races. However th is  argument suggests that 

the optimal number of levels is not greater than two. Nevertheless 

i t  would be desirable in p r inc ip le  to al low a control algori thm to 

decide whether a large number of genotypes is desirable in a m u l t i l i n e ,  

though i t  is impossible to do so here.
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Two fu r the r  points that should be noted about the genotypic 

system chosen here are th a t : -

(1) I t  includes the conventional use of the pure superl ine 

as a special case, in l ine  with the analysis of 

section (1 .2 .4 .3) .  Thus the algori thm is put in the 

posit ion of making a d i rec t  choice between the conventional 

pract ice and the m u l t i l in e  a l te rna t ive .

(2) I f  the m u l t i l in e  chosen were any simpler, the simpler 

l ine  would not be able to receive the benef i ts , i f  

any, of cross-pro tect ion, since there would be no 

race present that could survive without attacking i t .

Nothing has been said so fa r  in th is  chapter about the simulation 

of genes other than major genes conferr ing immunity to th e i r  correspond

ing disease races. However i t  is easy, with in the framework of the 

model, to implement a number of the d i f fe re n t  types of resistance 

discussed in Chapter 2. I t  is possible to

(1) change the rate of spore production/unit  area of races 

on pa r t icu la r  l ines

(2) change the area which a spore takes up in colonising a 

pi ant

(3) change the parameters of the y ie ld  loss equation.

I f  the rate of spore production of a l l  races in the system is reduced 

uniformly, th is  is equivalent to introducing general resistance as 

defined by Caldwell (1968), that i s ,  resistance which, while not 

necessarily conferr ing immunity is not vulnerable to mutation. I f ,  

on the other hand, the immune reaction conditioned by the main genes 

in the model were exchanged fo r  a reaction in which spores of the 

h i therto  nonviru lent races could occupy a l im i ted area, th is  would be 

a way of providing a form of general resistance vulnerable to mutation,
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like that reported by Simons (1972). F inally, i f  the parameters of 

the yield loss equation are varied, this could be used to introduce an 

amount of tolerance to disease. In Chapter 6 an experiment on the 

effects of using ' non-vulnerable' general resistance w ill be reported 

as representing the opposite pole of breeding technique to the use of 

unaided major genes.

4.9. Summary

In this chapter three things have been done:

(1) A philosophy for approaching a complex problem such 

as the multiline problem has been set out. Its basis

is the idea that the task of a theoretical investigation 

of the problem at this stage is to synthesize some of the 

d ifferent ideas and approaches that already exist and to 

give some direction to experimental work, rather than to 

attempt to answer the question d irectly  in the absence of 

much of the necessary information.

(2) A particular technique for undertaking these tasks has

been espoused and its  advantages and disadvantages set 

out. The technique is the harnessing of a numerical 

simulation of the crop/pathogen system to an optimal 

control algorithm. Its advantages are mainly the 

advantages of any default option, but in principle at 

least i t  can integrate the factors considered by 

specialists in various fie lds to be important in the 

multiline problem. Its disadvantages are the dis

advantages of complex numerical work undertaken without 

an analytical mathematical basis: cumbersome computation

and restrictions on generality.
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(3) A spec if ic  implementation of th is  technique has been 

introduced in the form of a simulation model of a 

crop/pathogen system and i t s  economic se tt ing . This 

model combines a number of standard functions in a 

simple fashion so that the synthetic portion of the 

task re ferred to in (1) above can be carried out 

without rendering the model unmanageable fo r the 

purposes of optimal con tro l.
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5. Computation of an Optimal Control

5.1. Introduction

The purpose of this chapter is to explain the computational 

procedure used in this study to find optimal controls for the model 

set out in Chapter 4, and to document the FORTRAN program by which the 

model and the optimal control procedure were implemented. Section 

(5.2) describes the computational procedure, and the subsections of 

section (5.3) describe the FORTRAN subprograms.

5.2. The Optimal Control Method

The technique that is used here for finding optimal controls for 

a closed loop, stochastic process is taken from Kushner (1971), who 

describes i t  as a "backwards iteration" using a Gauss-Seidel procedure. 

The iteration begins with a set of guesses at the expected cost of the 

in f in i te  policy starting from each point on a grid of in i t ia l  conditions 

spanning the region in state space which the system can reach, and with 

a set of guesses at the best control action for each of these in i t ia l  

conditions. During the course of the iteration the guesses at the 

costs are replaced by successively better approximations to the true 

costs. At the same time, the in i t ia l  guesses at the appropriate controls 

converge on the optimal policy.

The sequence of improving approximations to the true cost of a 

policy is constructed in the following manner. For each grid point i ,

1<= i <= N, on the nth ite ra tion ,

Cn( i ) = min p E V (k ( i , u) + c"” 1 (X-|)) ...(5 .2 .1)

where Cn( i)  is the nth estimate of the cost of the policy starting 

from in i t ia l  condition i .  Now E^(C^"^ (X-j)) is made up of estimates of
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the costs of the policies starting from the various possible values of 

X-j , and the probabil it ies of occurrence of each of these values. Some 

of these costs were last estimated on the (n-l) th iterat ion, and some 

have already been re-estimated on the nth (current) i teration. 

Accordingly

E ^ C ^ ' t x p )  = ^ P i j (u)Cn( j ) + Z PlM(u)Cn_1( j )  . . . (5.2.2) 
j=i  1J

where P-j j(u) is the probabili ty of state j  given in i t ia l  condition 

i and control action u.

The successive iterat ion over the grid of N in i t ia l  conditions 

is the Gauss-Seidel procedure. In order to understand i ts  significance, 

i t  may be useful to consider the simple case where there is only one 

grid point and only one possible control action. Then i f  the in i t ia l  

guess at the cost is C^;

C1( i ) = p ( k ( i ,u) + C°)

C2( i ) = p(k(i ,u) + C1)

= p(k( i ,u) + p (k ( i ,u) + C0))

Cn( i ) = k( i ,u) (p + p2 + p3 + . . .  + pn) + pnC°

= k( i ,u)p(1 - pn) / ( l  - p) + pnC° . .. (5.2.3)

Thus the Gauss-Seidel procedure in this case is equivalent to adding 

the geometric series of discounted costs, and, whatever the in i t i a l  

guess C°, as n-*» , i ts  effect on the estimate of the true cost V( i ) 

approaches zero.

Theorem 3 of Chapter 5 of Kushner (1971) proves that the more 

general procedure of equations (5.2.1) and (5.2.2) does in fact converge 

to the true optimal cost
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V(7T*(i) , i ) = lim Cn( i ) . . .  (5.2.4)
n - K > °

and i ts corresponding optimal control policy tt* ( i ), whatever the 

init ial  set of guesses C^(i) and u^(i).

The calculation involved in equation (5.2.2) needs some further 

explanation, because, as X is a vector of continuous variables, i ts  

components do not usually fall on any of the grid points. Hence, in 

order to make the estimates of C (j) i t  is necessary to interpolate 

between neighbouring points of the grid around X-j. It  is also necessary 

to ensure that X-j cannot l ie outside the grid of points, either by 

choosing the grid in such a way that i t  covers all areas of state space 

accessible to the system, or by limiting X-j to within the gridded 

region by some more or less ad hoo method (see section (4.5.2)). The 

interpolation method used here is piecewise linear interpolation 

(Schultz, 1973), which is easy to understand in one dimension, but less 

easy to understand in the four-dimensional state space of this study.

For a p-dimensional space the interpolation formula is

Cn ' 1 ( x l ) = Z fi ß H ( X1 ) Cn ' 1 ( j )  . . . ( 5 . 2 . 5 )
1 j=l k=l KJ 1

where m = 2P is the number of points in the p-dimensional "box" 

immediately surrounding X-j

and 3kJ(xi ) = 1 -  Ij(k) - X] (k)| /w(k) . . . (5.2.6)

where j (k) is the kth coordinate of point j 

X-j (k) is the kth coordinate of point X̂ 

w(k) is the distance between grid points along the kth 

dimension of the state space.

Thus 3kj(X1) = 1 i f  X1 = j

= 0 i f  X-j is another grid point on the "box" and varies 

linearly between 0 and 1 along any edge of the box.
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I t  is important to point out that this process, of necessity, 

introduces errors to the control process, because the true cost function 

is in a ll probability not linear between grid points. Thus wherever 

the cost function is strongly curved the 'twisted' hyperplane formed 

by the interpolation procedure w il l  be in error, and the estimate of 

the cost w i l l  be in error. By contrast, when the cost function is f la t  

or changing only slowly, the interpolation w i l l  give a better approxi

mation. This problem applies also to the task of using an optimal 

control once i t  is calculated because,to find the correct control action 

in response to a given state, i t  w il l  be necessary to interpolate in 

some manner between the optimal controls calculated for neighbouring 

grid points. This type of error can be combatted in two ways: by

using a f iner mesh of grid points, or by developing an empirical non

linear function for the purposes of interpolation. Within the 

lim itations of this study neither approach was possible.

Thus the finding of an optimal control involves a nested series 

of operations. The outermost operation is the Gauss-Seidel iteration. 

Within this is the minimisation of the expected cost for each grid point 

in turn. Within this in turn is the evaluation of the cost for 

d ifferent t r ia l  control actions. At the inmost level there is the 

simulation of the events of each day of the epidemic. The models for 

the cost function and the epidemic have already been described in 

Chapter 4. I t  remains, in this section, to discuss the method by 

which each minimum cost in the sequence (5.2.1) is found.

5.2.1. The Minimisation of the Expected Cost

The method used in this study to minimise the value of the 

expected cost at each point on the grid of in i t ia l  conditions is that 

of Davidon (1975), which belongs to the class of second-order
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optimisation methods (Kowalik and Osborne, 1968; Walsh, 1975). In this 

class of methods, as in most optimisation methods, a function (in this 

case the cost function V) is minimised by iteratively evaluating i ts 

gradient with respect to the independent variables (in this case the 

control variables) and then taking a step down the gradient. The 

procedure then repeats until some preset criterion for stopping is 

met (for example a gradient less than a certain value). The dist in

guishing feature of second-order methods is that,  at the same time as 

a step is taken, a store of information about the second derivatives 

of the function is built up. A PxP matrix, usually called H which is 

ini t ia l ly often the identity matrix is updated so that i t  becomes the 

inverse of the matrix of second derivatives of a quadratic approximation 

to the function. H is then used to modify the direction of the steps 

down the gradient and (in some methods, including the one used here) to 

set their length. In theory these second-order methods have the 

property of quadratic termination, that is ,  i f  the function being 

minimised is a quadratic in the P variables, i ts  minimum should be 

found in P steps.

A detailed discussion of the theory lying behind the particular 

method used here and of i t s  relationship to other second-order methods 

will be found in Davidon (1975). What will be discussed here are the 

specific features that led to i ts choice for this study and a number 

of modifications that were made to i t  to adapt i t  for the special 

requirements of this study.

5.2.1.1. Reasons for Choosing the Method of Davidon (1975)

Apart from the other virtues claimed for i t  in the reference, 

three reasons in particular led to the choice of this method.
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(1) The steps actua l ly  taken during the course of the 

minimization can be varied from those specif ied by 

the algori thm (to comply with constra ints) without 

a f fec t ing  the quadratic termination property. The 

method in which such var ia t ions were made w i l l  be 

described in the next section.

(2) The PxP matrix is stored in a factorised form as a 

PxQ matrix J where Q is the dimension of a subspace 

of the space of control variables and H = JJ^. This 

was desirable because in some cases i t  has been helpful 

not to use a l l  the control variables, but p a r t i cu la r ly  

because the three components of the crop mixture cannot 

be chosen independently since they must sum to 100%.

Thus in th is  study Q has been at most P-1, with a 

corresponding saving in gradient evaluations.

(3) Davidon s p e c i f i c a l l y  endorses the evaluation of function 

gradients via a f i n i t e  dif ference method, which i s ,  of 

course, the only way in which gradients of a function 

based on a simulation can be measured. A d is t ru s t  of 

th is  approach has led to the development of optimisation 

methods which do not require gradient information (eg. Box, 

1965), but B irta (1976) has given support to Davidon's 

point o f  view. B ir ta  compared the use of f i n i t e  

dif ference and e x p l i c i t  gradient evaluations on the 

opt imization of some standard test functions, and con

cluded that  i t  was more economical of computer time to

use f i n i t e  dif ference methods than to use an algori thm 

that does not use gradient information.
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5.2.1.2. Modifications of the Method

Three modifications to the published algorithm have been made in 

this study. The f i r s t  adapts the recommended step length to the 

requirements of the constraints on the control variables. The second 

makes a change in the stopping criterion that was found to be of 

advantage in improving the sensitivity of the algorithm. The third 

adjusts the algorithm so that,  optimally, i t  can find a minimax policy.

The modifications are discussed in turn.

(1) All the control variables used in this study take only 

non-negative values. In addition, most of them have a 

natural upper limit (e.g. 365.25 days worked per year) 

except the quantity of pathogen added (which has been 

given in practice a ceiling equivalent to a heavy epidemic). 

Consequently, when the proposed step cuts across the 

constraints i t  is necessary to shorten i t .  This is done 

in the following stages:

(a) the ratio S = max. Au./c. is formed . . . (5.2.7)J J J

where Au. is the proposed step component in the jth 
0

direction

Cj is the width of the allowable region between

(b)

constraints in the j th direction

S' = 1 + 4)S is formed . . . (5.2.8)

(c) All x. are scaled by dividing by S'. This has the
J

effect of leaving small steps unchanged, but restricting 

large ones to at most 1/<J> of the constrained region.

(d) The series of ratios

ajk
u . + Au . - d J J J k . . . (5.2.9)
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is formed, where
d., is the lower (k=l) bound of the jth variable JK

or the upper bound (k=2).
(i) If 0 < a.. < 1, then A u . crosses the constraintJ K J
(ii) If a < 0 or > 1, the constraint is not crossed
(iii) If a.. = 1, the constraint is active, that is u.J K J

is on the boundary and u. + A u . lies outsideJ J
(iv) If oijk = the new point lies on the boundary.

In practice the activity of a constraint is assessed by
_81 - e <a.^ <= 1 for e = 10 . If cases (ii) or (iv) apply

for all j, then the proposed step is admissible and no
further action need be taken. If case (i) applies for some
of the j, then all the A u . are multiplied by (1 - max a.. ),J J JK
so that the modified step just touches the nearest boundary.
If case (iii) applies for variables other than those
relating to the crop composition, then the component of
the step in this direction is set to zero. If however one
of the crop composition constraints is active a more complex
adjustment is necessary, and a simple version of Rosen's
(1960) gradient projection method is used. The problem is
to keep the step inside the triangular region which defines
crop composition 

3
Z u. = 1

j = i J
The edges of this region, including the active constraint, 
have the equations

ui + uj = 1 * i »j " (1>2,3)
so that the outward normal is one of (1,0,1), (0,1,1), 
(1,1,0), and the parallel vectors are (-1,0,1), (0,-1 ,1),
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(-1,1,0). The component of Au parallel to the constraint 
is found by taking the scalar product, and only this 
component is retained. If u is at a vertex, the procedure 
may have to be repeated for a second active constraint.

(2) The main stopping condition for Davidon's algorithm is that
the mean squared value of the components of the gradient
falls below a set error bound. In the constrained case, the
feasible minimum is not usually at a place where the gradient
is small, but at one where a constraint is active.
Accordingly, another stopping criterion is needed, and this
is supplied by a lower limit on the step size taken. In
the original algorithm, if an improved function value is not
found at the end of the suggested step, the step size is
halved. In the program, an upper limit is set on the number
of these bisections allowed before the current iteration of
the minimiser is terminated. Because of the non-quadratic
nature of the surfaces generated by the model, the limit on
bisections is the one that usually operates, because the
algorithm suggests steps that are usually too large. However
3 other stopping criteria are also needed. In the first
place, an upper limit on the number of iterations is set.
In the second place, the minimisation is terminated when
the constraints do not allow any movement down the function

-4gradient or when the suggested movement is less than 10 
times the constraint width. Thirdly, since it has been found 
that the updating of the inverse matrix of second derivatives 
sometimes leads to wrongly directed steps, if the bisection 
limit is invoked after the normal operation of the algorithm, 
a steepest descent step down the gradient is attempted.
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(3) The fina l modification made to the published algorithm is 

an adaptation in order to allow minimax values of the 

expected cost to be found. When the option in question is 

enabled, a fte r each minimiser ite ra tion , the second set of 

control variables is chosen, a correspondingly d iffe ren t J 

is used, and the sign of the function difference that is 

taken as an improvement is changed. The stopping crite rion  

is now changed so that optimisation stops a fte r fa ilu re  to 

find improvements in two successive iterations or a fter the 

maximum number of itera tions.

5.2.2. Optimisation as the Weak Link in Calculating an Optimal Control

I t  is important to observe that the weak link  in the above 

procedure is the minimisation of the expected cost. I f  the simulation 

w ill run at a ll i t  w ill deliver the current cost k ( i,u ( i) ) .  The Gauss- 

Seidel procedure w ill tend to converge simply because of the discount

ing factor. However the discovery of the true optimal control depends 

on finding the true minimum of the expected cost. Failure to find 

the minimum may be the resu lt of ineffic iency in the minimiser or the 

result of the existence of a number of local minima. I f  there are local 

minima the choice of the in it ia l  guesses at the control and the cost 

may cause the minimiser to become trapped in one of them.

While the effects of ineffic iency in the minimiser are plain 

enough and can in general expect to be remedied by careful choice of 

method, stopping c r ite r ia  and so on, the consequences of the existence 

of local minima require more thought. I f  there are local minima i t  

is the result of system dynamics and the choice of the cost function, 

not of a fa u lt in the optimal control procedure. I t  may be possible in 

such cases to locate the true optimum with some confidence by starting
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the minimiser o f f  from d i f fe re n t  guesses. However the u t i l i t y  of such 

a procedure is open to question because a system with mult ip le  optima 

requires more precise control than one with a single optimum. There 

is also the p o s s ib i l i t y  of catastrophic changes ( in the sense of Thom, 

1975) in which optima merge or vanish. The d i f f i c u l t i e s  of making 

ra t ional decisions under such circumstances may be so great that i f  crop/ 

pathogen systems are found to have mult ip le  optima, conventional 

methods of plant breeding are l i k e l y  to continue to be used by default .

5.3. Documentation of the program OPTIPLANT 

5.3.1. Overall Description

Abramsky and Van Dyne (1975) a f te r  surveying the l i t e ra tu re  on 

agr icu l tu ra l  systems modelling suggested that there is a need fo r  

reports of computer programs to give

(1) the language used

(2) the type of computer on which and the in s t i t u t i o n  at which 

the program was developed

(3) a verbal descr ipt ion of the code to amplify the comment 

cards

(4) the computer code i t s e l f .

The program OPTIPLANT which appl ies the method of section (5.2) 

to the model described in Chapter 4 is w r i t ten  in FORTRAN V. Apart 

from a Checkpoint routine useful fo r  safeguarding long runs against 

system crashes and a cal l  to an elapsed-time routine, both of  which 

can be deleted i f  desired, i t  uses only standard FORTRAN V functions.

I t  was developed on the UNIVAC U1110 computer at the Austral ian 

National Univers ity . As compiled i t  occupies 60 512-word blocks of 

core storage, 40 of which represent data storage of the resul ts .
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The minimum time for the program to iterate once over the 675 in i t ia l  

conditions is about 2200 seconds when the program has nearly converged. 

At earlier stages, when more minimisation is being done, time per grid 

point is up to four times longer. The results stored (for each grid 

point) are

(1) the current estimates of the components of the optimal 

control vector u. These are the amounts of each of the 

genotypes to be planted, the amounts of each pathogen race 

to be added, and the values of the economic control 

variables described in sections (4.6.1-2).

(2) the stochastic parameters of the system; the mutation 

rate and the proability  of a pathogen irruption.

(3) the expected cost V(tt( i ), i ) .

(4) the expected state output (storage level and pathogen 

spores of each race).

(5) the yield of the crop per unit area.

(6) the variance of the expected cost.

(7) k(i , u ( i )) and V(tt(X1 ) ,X] ).

These results are a ll stored in single precision, either in a 

(5x5x5x5x20) array during execution or in an unformatted mass-storage 

f i le  between executions. Most operations on the results, however, 

are carried out in double precision.

The program i t s e l f  consists of five subprograms. There is a 

main program which sets up the Gauss-Seidel iteration and calls the 

subroutine DAVMIN, which carries out the minimising procedure of 

equation (5.2.1). DAVMIN carries out its  function evaluations by 

calling FUNCOS, which sets up each of the eight possible epidemic 

variations (see section 4.5) and calls EPIMUL. EPIMUL simulates the 

course of each epidemic and returns the state output to FUNCOS, which
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then ca l ls  COST. COST calculates ( k ( i , u ( i ) ) ,  using the relevant model 

of section (4 .6) ,  and interpolates among the previously exist ing cost 

estimates by the method of equation (5.2.6) to estimate V ( tt( X ^ ) , X - j ) .  

FUNCOS takes the eight computed costs and forms the expected cost 

e|  p ( k ( i , u ( i ) )  + V ( tt (  X i ),  X -̂ ) and i t s  variance, which are returned to 

DAVMIN.

When each Gauss-Seidel i te ra t io n  is completed the main program 

compares the set of  costs calculated on the current i te ra t io n  with 

the set calculated on the previous i te ra t io n ,  using chi-square as a 

measure of th e i r  d i f fe rence. When the chi-square value drops below a 

pre-set bound, the i te ra t io n  process is held to have converged 

s u f f i c ie n t l y  and the program terminates.

In the fo l lowing sections a verbal ampl i f icat ion of the code of 

each subprogram is given. The program i t s e l f  is reproduced in Appendix A. 

The ampl i f icat ions are in the form of comments about groups of l ines 

in the program.
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5.3.2.

Lines

20-35

49-65

67-75

82-110

The Main Program

VOPT is the array which holds the calculated results of 

the program (see section 5.3 .1) . RANGE contains the 

possible levels of each state var iab le 's  i n i t i a l  

condit ion. The f i r s t  subscript indexes the var iab le, the 

second the leve l .  IEPARA and EPARAM contain integer and 

real parameters which w i l l  be referred to ind iv idua l ly  

below. UMIRR contains a guess at the optimal values of 

the control var iables. The f i r s t  two columns of SLIM hold 

the values of the constra in t l im i ts  on the control variables.

I f  IBYP = 0, the guess at the control and a guess at the 

cost function are put in to  VOPT and thence in to  the 

unformatted f i l e  23 on mass storage. In la te r  runs IBYP 

is set to 1.

The contents of F are the f ^  of equation (4 .3 .5 ) . The 

f i r s t  subscript indexes a plant l in e ,  the second a pathogen 

race. H is the area rendered immune by a cross-protect ing 

spore.

REC stores a record of a l l  the calculated costs fo r  the 

present and las t  i te ra t ion s .  I n i t i a l l y  i t  is f i l l e d  with 

zeros in column 1 and the guess from l ine  56 in column 2.

At the s ta r t  of each Gauss-Seidel i t e r a t io n ,  a chi-square 

measure of  the di f ference between the columns is calculated.

I f  th is  measure is greater than ERR, and IGSITR is less than 

or equal to the maximum allowed number of G-S i te ra t io n s ,  

another i te ra t io n  is begun. Otherwise the internal sub

routine UPDATE (see below) is cal led and the program terminates.
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112-119 This is the beginning of the main i te ra t io n .  Throughout 

the program 11 indexes the storage, 12 the aa races, 13 the 

aabb and 14 the bb. IGSTEP is usual ly set to 1 except fo r  

diagnostic purposes.

120-122 DAVJST is Davidon's matr ix J (see section 5.2 .1 .1) .  I ts  

i n i t i a l  version is stored in a separate f i l e .  Numerical 

errors prevent i t s  carry-over from i te ra t io n  to i te ra t io n ,  

and so i t  is read in afresh at the s ta r t  of the treatment 

of each point.

124 Subroutine DAVMIN that carr ies out the minimisation process 

described in section (5 .2 .1) .  IVPOS indexes the point on 

the gr id of i n i t i a l  conditions being considered current ly .

126-140 I t  w i l l  be observed that 14 runs only over the range 1 to 

12. Because there is a complete symmetry between a state 

with amounts q-j and of races aa and bb respectively in

a crop consist ing of C-j %A and %B and one in which the

corresponding values are q^, q-j , and C-j , only 375 points
4

of the f u l l  625 = 5 points in the grid  need to be separately 

investigated. In l ines 121-135 the current optimal control 

and output are used to give the control and output fo r  the i r  

mirror image point d i re c t ly .

141-145 A f te r  each minimisation the JOBSUP external function returns 

the time remaining to the scheduled end of  the run, and 

updates the data f i l e  by ca l l in g  UPDATE i f  more than f ive  

minutes have passed since the las t  c a l l .

147-149 Af te r  each i te ra t io n  the data f i l e  is  updated and the 

contents of REC shi f ted in preparation fo r  the next ch i-  

square comparison.
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153-181 When the program terminates, VOPT is  invest igated to see 

whether any o f  the optimal con tro ls  favour the use of less 

than 99% o f  the super l ine . I f  some do, the inpu t /ou tpu t  

re la t io n s  f o r  the f i r s t  such g r id  po in t  encountered are 

p r in ted .  I f  not,  a corresponding message is  pr in ted out.

182-199 Subroutine UPDATE is  an in te rna l  subrout ine which updates

the data f i l e  and sets IUPDATE = JOBSUP (1) to record the 

time at which th i s  was done.

5.3.3. Subroutine DAVMIN

36 LAMBDA is  Davidon's (1975)A.

38 DIREC is  used to measure the improvement in the func t ion ,  

represented in t h i s  case by YIELD. I f  the f la g  is  set f o r  

minimisat ion (1=0), YIELD is  unchanged. I f  the f lag  is  set 

f o r  maximisat ion, the sign o f  YIELD is  changed.

40 I f  IENAB = 0 the subrout ine minimises. I f  IENAB = 1 i t  

maximises.

42-43 ISAD re ca l l s  whether the subrout ine is  in i t s  minimising or 

maximising phase. ISADPR counts the number o f  minimising 

or maximising i t e ra t i o n s  tha t  have been unsuccessful . I t  is  

reset to 1 a f t e r  a success and augmented by 1 fo r  a f a i l u r e .

I f  i t  becomes greater  than 2, the minimax procedure terminates.

45-46 I PRINT regulates the number o f  intermediate resu l ts  p r in ted 

out.  ITLIM sets the to ta l  number o f  i t e ra t i o n s  allowed 

before a d e fa u l t  stop (usua l ly  10).

58-62 The cur ren t  value o f  the contro l  vector U is  read out o f

VOPT. DELTA was included to al low d i f f e r e n t  s e n s i t i v i t i e s  

to d i f f e r e n t  independent var iab les  in the gradient



65-75

76-96

97-98

101-137
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evaluation ( l in e  106) but th is  option is not used in the 

current version. DAVREF is a record of the i n i t i a l i s e d  

version of DAVJST.

The i n i t i a l  function evaluation. I f  the output of an 

epidemic is s im i la r  to the input then successive function 

evaluations can al low the cost at the grid  point in question 

to converge a f te r  the fashion of equation (5 .2 .3) .  In the 

arguments of FUNCOS, the function evaluator, X is the state 

vector, YIELD is the expected y ie ld ,  EXCOS is the expected 

cost, VARRUS is the variance of  EXCOS, and COSTX and COST 

are i t s  components, E (k ( i ,u ) )  and E ( V ( tt( X- |  ) ,X-|) ) .  FUNCOS 

is cal led repeatedly and the resu l t ing  EXCOS inserted in 

VOPT u n t i l  the e f fec t  on E ( V ( tt( X - j ) ,X-|) ) ,  i f  any, is  small.

When the local convergence described above is complete,

VOPT is up-dated, the state output is stored in temporary 

variables where the output resu l t ing from la te r  improved 

controls w i l l  be stored and a heading report ing the gr id 

point and i t s  input /output re la t ions is printed.

IRENAC is a f lag recording whether the las t  new step down 

the gradient was successful in reducing the cost. I f  so, 

IRENAC = 1. EPS is the lower bound o f  the mean squared 

gradient,  used as a stopping condit ion.

The gradient evaluation procedure. IBLOCK determines 

whether the gradient evaluation is being made as a prel iminary 

to making a step (IBLOCK = 0) or as a prel iminary to up

dating DAVJST (IBLOCK = 1 ) .  The gradient i t s e l f  is  measured 

by taking a step along the d i rec t ion  in control space 

specif ied by the columns of DAVJST. NUA - NUB index these
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columns. NUC and NUD are used to index the rows of DAVJST,

corresponding to the variables in U being changed. For each

column a vector TEM representing a perturbation of U in the

given d irec t ion  is f i l l e d  by reference to DELTA and DAVJST.

TEM is then scaled by the ra t io  max TEM (J ) /SLIM (J ,2 , )
J

where SLIM (J,2) is  the width of the constra in t in the j t h  

d i rec t ion .  The resu l t  is  mu lt ip l ied  by 10 ^ and the 

Euclidean norm of TEM, AMOD, is calculated. The perturbed 

U (UDASH) is used in FUNCOS to create a perturbed EXCOS = FG, 

which is used to calculate the gradient.

140-163 Step One in Davidon's algorithm. A check is made that  the 

defau lt  number of i te ra t ions  has not been exceeded and a 

heading is  prin ted. The step d irec t ion is set as being 

opposite to the gradient. Here and in the rest o f  th is  

section there w i l l  be no attempt made to explain the deta i ls  

of the Davidon algorithm. The variables used in his updates 

are usual ly represented here with FORTRAN names chosen fo r  

th e i r  mnemonic s im i la r i t y  to Davidon's names, and an 

explanation of th e i r  s ign if icance is  given in Davidon's 

(1975) paper.

166-172 Step Two of  Davidon's algorithm. A new step Au (TEM) is 

formed from the step d irec t ion  set in Step One and i t s  

magnitude is set by DAVJST. IDIV indexes the number of 

bisections of th is  t r i a l  step.

173-189 IPROJ is a f lag which is set i f  the step u has been projected

into  a constra in t  (section (5 .2 .1 .2 ) ) .  IFLAG is set i f

there is an act ive constra in t.  IMOVE is set i f  the gradient

suggests a component of Au that is more than i t s  constra in t 
-20width x 10 . Once these f lags have been i n i t i a l i s e d ,  the

Au is  scaled as described in equations (5 .2 .7 -9) .
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191-199 Au is tested to see if it is large enough to set IMOVE.

200-209 The a.^ of equation (5.2.9) are formed (ALMIN) and
classified.

210-242 IREC records active constraints. When an active constraint 
is discovered for 1<I9<3 this corresponds to an attempt to 
go outside the triangular region of possible crop 
compositions, and the gradient projection method is brought 
into play. In lines 214-216 the number of such active 
constraints is counted. If there are none, then instruction 
54 takes over the search for active constraints on the 
other control variables. If there are two, IFLAG is set 
at instruction 58 and all changes in crop composition are 
set to zero. If there is one, IFLAG is set at instruction 
56. If IPROJ is set, this means that a single constraint 
was detected before and the gradient was projected, but 
that this created a new active constraint. Such cases are 
equivalent to two active constraints and are sent to 
instruction 58. If IPROJ is not set, the first three rows 
of column 1 of IREC consist of two l's and a zero and form 
the outward normal vector to the active constraint. The 
first 1 encountered is multiplied by -1, which gives a 
vector parallel to the constraint. The scalar product of 
TEM with this part of IREC is then taken and used to project 
the TEM along this parallel vector. IPROJ is then set and 
the new TEM is recycled to instruction 38, via 54.

243-249 In these lines any active constraints affecting later
components of TEM are treated by setting the corresponding 
components of TEM to zero. If an active constraint has 
been detected anywhere, the modified TEM is recycled to 38
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251-272

to  check tha t  i t  now complies w i th  the c o n s t ra in ts  and to

cal cul ate new a .
j k

The values o f  ALMIN s tored in  columns 3 and 4 o f  SLIM are 

sor ted and the l a rg e s t  one i s  used to form the f r a c t i o n  o f  

TEM th a t  w i l l  f i n a l l y  be used in  UTRY, which is  a t r i a l  

c o n t r o l .  At t h i s  p o in t  numerical  e r r o r  sometimes re s u l t s  

in  the c o n t ro ls  escaping from t h e i r  c o n s t r a in t s  and a t t a in i n g  

p h y s i c a l l y  impossible va lues . A cco rd ing ly ,  values o f  

c o n t ro ls  c lose  to  the c o n s t ra in ts  are set  onto the 

c o n s t ra in ts  and values t h a t  have overstepped the c o n s t ra in ts  

are brought back to  them.

274-275 I f  e i t h e r  no move i s  poss ib le  f o r  the con t ro l  along the 

f u n c t io n  g ra d ie n t ,  or  Davidon's main stopping c r i t e r i o n  is  

s a t i s f i e d ,  the m in im isa t ion  te rm ina tes .

277-290 Otherwise,  the t r i a l  con t ro l  is  eva lua ted ,  and i f  an 

improvement i s  found con t ro l  passes to i n s t r u c t i o n  78.

291-300 I f  no improvement has been found, Au i s  b isec ted  as many 

as f i v e  t imes and the r e s u l t a n t  t r i a l  c o n t ro ls  evaluated 

f o r  improvement.

301-319 I f  no improvement i s  found as a r e s u l t  o f  the b i s e c t i o n s ,  

there  are i n i t i a l l y  two p o s s i b i l i t i e s .  I f  IENAB = 1, one 

minimax phase has ended, and unless the la s t - b u t -o n e  was 

a lso a f a i l u r e  the next should begin.  I f  the subrou t ine  is  

opera t ing  on ly  as a m in im ise r ,  then i f  IRENAC = 0 ( im p ly ing  

t h a t  there  has not been a success since the l a s t  f a i l u r e ) ,  

the subrou t ine  should te rm ina te .  I f  IRENAC = 1, DAVJST is  

r e i n i t i a l i s e d ,  and a complete new i t e r a t i o n  i s  s ta r te d  w i th  

a g ra d ie n t  eva lua t io n  a t  the l a s t  successfu l  improvements.
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320-345 In s t ru c t io n  78 is  executed i f  an improvement has been found. 

ISADPR records t h i s  fo r  reference in the next minimax phase 

and IDREC records which type of phase has been successful .  

Step Three of Davidon's a lgor i thm is  then begun. The 

previous best costs and contro ls  are replaced by the improved 

vers ions, as are the temporary records of s ta te  output.

347-432 These l ines  are a d i r e c t  implementation o f  steps Four through 

Seven o f  Davidon's a lgor i thm and are best understood by 

consul t ing Davidon (1975).

433-441. In these l ines  the s t a r t  o f  the next minimax phase is  

prepared. The f la g  ITEM is  set i f  the minimax procedure 

is  operat ing and e i t h e r  the past i t e r a t i o n  is  the f i r s t  or 

a success has j u s t  been achieved. In e i t h e r  case there is  

a need fo r  a new gradient evaluat ion and contro l  passes to 

in s t ru c t io n  5 w ith  a l te red  values o f  NUA and NUB. Fa i l ing  

t h i s ,  contro l  passes to 20 fo r  a step to be taken using the 

already e x is t in g  gradients .

445-466 In these l ines  VOPT is updated and the f i n a l  r e s u l t  o f  the

minimisat ion is  p r in ted out.

5 .3.4. Subroutine FUNCOS

31-32 I f  MUTMAT ( I , J )  = 1, then pathogen race 1 can mutate to 

pathogen race J. The convention used is  tha t  race aa is  

indexed by 1, aabb by 2 and bb by 3. S im i la r l y  VIR ( I , J )  = 1 

means race I is v i r u l e n t  on l in e  J.

35-36 PEXT is  the p r o b a b i l i t y  o f  i r r u p t i o n ;  REALMU is  the mutation

ra te .
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The control vector U is s p l i t  in to  the controls re ferr ing  

only to the epidemic - crop l ine  proportions and amounts of 

added disease - which are put in UBAS, and economic 

controls which are put in ECU. ECU (4) holds the tota l  

amount of  added disease so that th is  can be costed.

_2
SPEXT is  the number of pathogen propagules m added to the 

system by the i r ru p t ion  of a single race.

An i te ra t io n  is set up which covers the eight possible types 

of i r ru p t ion  and puts the number of spores to be introduced, 

besides those specif ied in the state var iables, into SPAD.

For each f i l l i n g  of SPAD, EPIMUL is cal led and returns a 

state output in X. X(1,2) contains the y ie ld  and th is  is 

immediately used in calcu lat ing expected y ie ld ,  since sub

routine COST w i l l  replace i t  with storage a f te r  levying 

consumption.

5.3.5. Subroutine EPIMUL

28-42 N is the number of days in the season. IMOD is 2 i f  the 

plant growth model is  to be act ivated and 1 otherwise.

ISTART is the date of f i r s t  in fec t ion .  LATEP is the la tent  

period of  in fec t ion .  INFECP is the number of days fo r  which 

a lesion produces spores. GAIN regulates y ie ld  compensation, 

which is absent i f  GAIN = 0. ICPTIM is the number of days 

fo r  which a cross-protected area stays immune. VIGORS 

contains the growth constant of equation (4.3.5) fo r  each 

of the races. YPAM1 and YPAM2 are used in calcu lat ing 

y ie ld  loss and IYCRIT is the date of the " c r i t i c a l  period" 

at which y ie ld  loss is determined. FACT is  Ĉ  of equation

45-50

56-75

6.4.1.
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47-57 ALOSS w il l  form a record of diseased area on each plant line, 

S w il l  record the spores produced each day and SPOSUB w ill 

record the total area producing each kind of spore on each 

day. Y records plant area according to three indices. The 

f i r s t  subscript indexes the type of area according to 

whether i t  is unoccupied or occupied by one of the three 

pathogen races. The second subscript indexes plant lines.

The th ird indexes the day on which the area was occupied.

58-65 For the model without plant growth the total leaf area

SPLAT is set to 1 and the unoccupied area of each race for 

a ll days is in i t ia l l y  set at the fraction of 1 that each 

line occupies in the mixture. DELYT, which is a variable 

used in yield estimation for the growing plant, is here 

set at a constant 1.

67-71 SEED is the in i t ia l  size of the plants. GROW is the growth

rate of equation (4.3.13). FBACK is f  of equation (4.3.14), 

regulating the efficiency with which an advantage is used 

by each line.

73-89 II indexes the day in the epidemic. I f  II = ISTART the fu l l  

number of spores provided for by the state, the control and 

any irruption is introduced into S. I f  the total number of 

spores present is above 10"^  a flag (IDEP) is set to 

indicate the need to pass through the spore deposition sub

model .

91-105 At this point the denominator of the expression giving the 

probability of a spore landing on a plant is calculated 

(see equation (4.3.6)). For the non-growing (van der Plank) 

plant th is is a constant. For the growing plant i t  is 

necessary to calculate the current value of SPLAT.
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107-133 This is  the spore deposit ion submodel. SPORAV is  the 

average area taken up on a p lan t  o f l i n e  j  by a random 

spore in the cu r ren t  populat ion.  OCCUP is  the exponent in 

equation (4 .3 .10) .  Once the new spores have been deposited, 

the date of i n i t i a t i o n  o f  any cross-pro tec t ion  now j u s t  

defunct is  ca lcu la ted ,  and the area tha t  was cross-protected 

on tha t  day is  added to the unoccupied area.

135-156 The product ion of new spores is  the most deeply nested loop 

in the whole program. Consequently SPOSUB(I), the area of 

t issue now producing spores of race I is  ca lcu la ted ,  a t  the 

r i s k  o f  numerical inaccuracy, by adding the areas tha t  have 

j u s t  become in fe c t io u s  and subtrac t ing those which have j u s t  

ceased to be i n fe c t io u s ,  ra the r  than by d i r e c t  addi t ion  of 

a l l  i n fe c t iou s  areas. At the length of in fec t ious  period 

o r d in a r i l y  used in th is  study (20 days) the saving of 

computing t ime is  roughly 90%. Once SP0SUB(1) i s  formed, 

S( I )  is  ca lcu la ted by m u l t i p l i c a t i o n  by the corresponding 

VIGORS( I ) ,  and the expected number of mutations is  added 

to  each race.

160-179 These l ines  implement the growth model o f  sect ion (4 .3 .3 ) .

182-200 These l ines  compute the y ie ld  loss. While 11 is less than 

IYCRIT, the c r i t i c a l  date at which y ie ld  loss is determined, 

ALOSS(J) is  augmented by the area o f  newly in fec ted t issue 

on l i n e  J. At IYCRIT th i s  area is  converted in to  a Cobb 

scale reading. Since the modif ied Cobb scale is l i n e a r ,  

and sets i t s  100% upper l i m i t  a t  a 37% to ta l  cover 

(Melchers and Parker, 1922), the conversion fa c to r  is  0.37. 

The re s u l t  o f  the conversion is then used as input to the 

FORTRAN version of equat ion (4 .3 .16) .
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205-213 In th is  loop the output of  pathogens at harvest is converted 

to an input at the next cycle 's  of f i r s t  in fec t ion according 

to the rule of equation (4.3.17).

5.3.6. Subroutine COST

24 NUMCRT is 1 i f  the subsistence farmer's c r i t e r io n  is being

used, and is 2 fo r  the agribusiness c r i te r io n .

28-49 These l ines implement the subsistence farmer's c r i te r io n  

as set out in section (4 .5 .1 ) . COSTX is k ( u ( i ) , i ) .

55-70 These l ines implement the agribusiness submodel of section 

(4 .5 .2) .  In order to cast the problem in the form of 

minimisation of a cost, COSTX is set as -RETN.

75-88 The f i r s t  task in in te rpo la t ing  to f ind  V(tt(X-| ) ,X-|) is to 

discover the 4-dimensional box of nearest neighbours in 

state space which encloses X^. The bounds of th is  box are 

put in NNB as they are discovered by passing through the 

relevant row of RANGE u n t i l  the f i r s t  entry greater than the 

corresponding component of X-j is found.

91-107 These l ines implement the piecewise l inear  in te rpo la t ion  

described in section (5.2).  XINT is equivalent to ß.
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6. Experiments, Results and Analysis 

6.1. Introduction

The purpose of this chapter is to report on a number of 

computer experiments that were done with the aims of

(1) determining for each optimality criterion, as a 

starting point for comparison, baseline optimal controls, 

for model parameter values that do not represent the 

presence of any of the special factors discussed in 

Chapter 2

(2) determining the effects of including a degree of general 

resistance in the model

(3) determining the effect of including a cross-protection 

effect in the model

(4) determining the effect of including stabilising selection 

in the model

(5) determining the effect of increasing the realism of the 

model by including plant growth effects.

In section (6.2.) the experimental design of the study will be 

described and the reasons for its  choice discussed. Section (6.3) is 

a discussion of the methods of analysing the results of the kind of 

computer experiments made in this study, because the methods of 

analysis partly determined the kind of computations to be made. In 

section (6.4) the results of the experiments using the agribusiness 

criterion will be set out, and in section (6.5) the results for the 

subsistence criterion will be given. Finally in section (6.6) a 

summary of the conclusions of the chapter will be made.
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6.2. Experimental Design

In Chapter 1 the task of choosing how to use disease resistance 

genes was analysed as that o f  answering the questions: which genes in

which plants,  when, and where. In Chapter 2 a number of b io logical  

factors were discussed which have been said to bear on the answers to 

these questions. In Chapter 4 a model w i th in  which the presence of 

these factors can be expressed was described, whi le in Chapter 5 the 

means fo r  discovering an optimal control fo r  the model were set out.

The questions that must now be faced are: what are the optimal

controls of the model fo r  the d i f fe re n t  c r i t e r i a ,  do they involve the 

use of m u l t i l i n e s ,  and how do the b io log ica l  factors a f fec t  these 

contro ls. This chapter describes some computer experiments intended 

to provide the data on which answers to these questions can be based.

The design of these experiments has been affected in a number of ways 

by the l im i ta t io ns  of th is  study, both bio logica l  and computational.

6.2.1. Biological Limi tat ions

In th is  study the choice of  possible genotypes has been reduced 

to three by the considerations of section (4.8).  The choice of when 

they can be used has also been somewhat re s t r ic ted  because only one of 

the c r i t e r i a ,  the agribusiness c r i t e r io n ,  has the option of not planting 

anything at a l l .  Even the choice of where various genotypes can be 

planted has been res t r ic ted  by pract ical  considerations (section 

3.5.2.2)  to the investigation of the p o s s ib i l i t y  of using m u l t i l in e  

crops rather than other spatial  patterns (section (1 .2 .4 .3 ) ) .  These 

l im i ta t ions  are consistent with the main task of the study, which is 

to examine the ra t iona le fo r  the use of m u l t i l in e s .  Thus the 

experimental task can be narrowed somewhat to the task of searching

fo r  any use of mu l t i l ines  and to explaining the e f fec t  of changes in 

the bio logical parameters on the underlying reasons for  such use.
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6.2.2. Computational Limitat ions

I f  the parameter values of the model were well establ ished and 

computing resources were unlimited the search might be begun by f i x in g  

the values of those parameters unconnected with the al legedly s ig n i 

f ica n t  b io logical factors and then exploring the region of parameter 

space spanned by a l l  possible values of the remaining ( " s ig n i f i c a n t " )  

parameters. Once th is  had been done, empirical laws might be 

discovered re la t ing  the optimal crop composition to the state variable 

values and the "s ig n i f i c a n t "  parameters. Explanation of the resu l t  

would then consist of accounting fo r  the form of these laws. However 

th is  study is  res t r ic ted  by the possible amount of computation to a 

very sparse sampling of the s ig n i f ica n t  parameter sub-space, a sampling, 

moreover which cannot be related in any precise way to the region 

which would be of most in te res t  i f  a l l  the "non-s ign i f ican t"  parameter 

values were known. Thus a series of "soundings" must be taken in 

parameter space. I f  one of these returns a m u l t i l i n e  optimal contro l ,  

the analysis then consists o f ,  f i r s t ,  attempting to check that the 

resu l t  is not an a r te fac t  of computation, and then of attempting to 

explain why the m u l t i l in e  was chosen rather than a pure l ine .

In order to maximise the chance that th is  sparse sampling w i l l  

pick up any cases in which m u l t i l ines  are optimal (or,  conversely, to 

exclude as conclusively as possible the chance that they are ever 

optimal),  the relevant b io logica l  factors must be strongly expressed 

in the model. For example in modelling s ta b i l i s in g  select ion, the 

simpler races must be given a large advantage. Such strong effects  

make i t  d i f f i c u l t  to compare the resul ts  of  d i f fe re n t  experiments 

d i r e c t l y ,  because i t  w i l l  not at f i r s t  be c lear in what way the cost 

function V has been changed. The f i r s t  and most basic comparison that 

can be made is that between any optimal m u l t i l i n e  controls that are
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discovered and the corresponding suboptimal controls produced when the 

algorithm is contrained to use the pure superline. I t  is in the 

analysis of this comparison that the investigation begins, and i t  is 

this analysis that is the main topic of the next section. Once i t  has 

been carried out an extension to comparing the significance of the main 

biological factors can perhaps be made, through a comparison of the 

results of the analyses of d iffe rent experiments.

6.2.3. The Experiments

In Figure 6.1 an experimental design for each criterion of 

optimality, based on these general principles, is laid out. The part 

of the diagram above and to the le f t  of the dashed line represents 

the experiments that perform the sparse sampling just described. The 

part below refers to a minimax test for robustness (section 4.7.2) to 

be applied to any result discovered that involves multilines. The test 

w il l  be described in more detail in section (6.3.3), but follows the 

same structural principle of pairing a constrained pureline result with 

a result where multilines are possible in theory.

The pattern followed by the experimental design is in fact a 

type of sens it iv ity  analysis, since i t  was impossible to follow the 

effects of jo in t  variations of biological factors. The uppermost box 

in the flow chart represents a run in which Pex  ̂ was set to zero and 

only the pathogen-free in i t ia l  conditions were considered. This was 

done in order to discover the rational economic response to various 

levels of storage fo r each 'economy' when there was no risk of losses 

to disease. The columns of boxes below represent, from le f t  to r igh t,

(1) a baseline epidemic system where parameter values were 

chosen so that the range of possible pathogen in i t ia l  

conditions spread fa i r ly  evenly across the range from
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zero to 90% yield loss, given a constant-size plant.

(2) an epidemic system where the same constant-size plant 

was given a degree of general resistance against a ll 

pathogen races.

(3) an epidemic system in which cross-protection is 

introduced to the constant-size plant. This brings 

the poss ib ility  that spores of the simpler races can 

be used as a kind of fungistat, and so there is an 

additional experiment in which spores may be added but 

only the pure superline grown, in an attempt to 

separate the fungistat effect from any multiline effect.

(4) an epidemic system where there is s tab iliz ing selection, 

again for the constant-size plant.

(5) an epidemic system where the baseline pathogen is applied 

to a plant like the baseline plant except that i t  grows.

The manner in which each effect is implemented and the values of the 

parameters used w il l  be discussed in the subsections of section (6.4) 

as the results of each experiment are discussed.

In summary, this section has outlined the computational and 

biological lim itations on an experimental program based on the concepts 

and methods of the previous chapters, and has laid out the pattern of 

experiments to be done within these lim itations. The approach is to 

sample the parameter subspace corresponding to the significant 

biological factors at wide intervals to maximise the chance of detecting 

any effect that leads to the use of multilines. I f  multilines are 

found to be optimal in some cases, analysis begins with a comparison 

of the optimal pure-superline policy for the same epidemic system.

The methods of analysis are the topic of the next section.
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6.3. Methods of Analysis

Each computer experiment takes the form of

(1) setting in i t ia l  guesses at the grid of policy costs 

and control actions (these may be the results of a 

previous experiment)

(2) imposing any special constraints on the control 

variables (these are usually the constraints to use 

only the pure superline and not to add spores of the 

simpler races. Both are relaxed in the search for 

mult i 1ines).

(3) setting parameter values to those required for the 

experiment

(4) starting the Gauss-Seidel i teration and allowing i t  

to run unti l the act iv i ty  of the optimiser ceases, 

or the convergence error becomes small.

In each case where the controls are permitted to search for 

optimal controls involving multil ines there are two possible types of 

result: either the procedure of the experiment results in the choice

of a multi l ine for at least one in i t ia l  condition or i t  does not. I f  

i t  does, since accepting the presence of a multi l ine is equivalent to 

a rejection of the null hypothesis of the study, the following questions 

must be asked:

(1) does the result represent a signif icant usage of 

multilines? (The definit ion of "signif icant" in this 

context wi l l  be considered below).

(2) is the result robust, in the minimax sense of section 

(4.7.2)?

(3) why are the multi l ines being used?

(4) is the result locally or globally optimal?
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The ways in which these questions can be answered will be considered 

in this order.

6.3.1. Judging the Significance of a Multiline Result

Whether or not a multiline result is significant depends on

(1) the definition of "significant"

(2) considerations related to the shape of the cost surface 

and the means available for discovering the optimal 

control

(3) the errors resulting from the process of computation.

In the following sections we will consider f i r s t  how the shape 

of the cost surface may affect judgements of significance and, second, 

the sources of computational error that may affect the numerical 

exploration of the surface. Using the results of these sections we 

will then attempt a definition of significance suitable for the study.

6.3.1.1. Interactions between Controls

An important problem in attempting to explain or judge the 

significance of any use of multilines prescribed by the optimal control 

algorithm lies in the fact that the other control variables will 

interact with the crop composition in determining the optimal control.

(It  should be noted that the "area planted" variable in the agri

business criterion has both direct economic significance and significance 

as representing a mode of gene use, though not the one of most interest 

here). For example, the use of a multiline may decrease the yield per 

unit area of the crop. In this respect i t  shares some of the effects,  

for the agribusiness farmer, of planting a smaller area - i t  increases 

the price at a constant fraction sold. Similarly the subsistence
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farmers w i l l  see the use of a m u l t i l i n e  as decreasing th e i r  bodyweight 

at a constant work rate. Such in teract ions are inev itab le in any 

economic context and are ce r ta in ly  unavoidable here.

More general ly, the d i f f i c u l t i e s  introduced by such interact ions 

resu l t  from the fac t  that the cost gradient even at the optimal values 

of the economic controls (proportion sold, area planted, work done) 

fo r  a pure l ine  crop may not be orthogonal to the economic control 

axes. Thus even i f  the pure- l ine optimum has been found, i t  need not 

be expected that a m u l t i l in e  optimum w i l l  d i f f e r  from i t  only in the 

crop composition. I f  the pure superl ine optimum has not been found, 

relaxation of the constraint on the algori thm may cause i t  to use 

m u lt i l ines  to repair i t s  f a i l u r e ,  even i f  they are not in fac t  optimal.

I f  there are some analy t ical aids to discovering the optimum 

or i f  the problem is of low dimensional i ty then i t  may be possible to 

discover that th is  non-optimal use of m u lt i l ines  has occurred. A 

par t ia l  check w i l l  be carr ied out in la te r  sections in the course of 

describing the resu lts by p lo t t ing  the surface of cost as a function 

of the economic var iables, so that the po l icy chosen by the algori thm 

can be compared with the location of the optimum on the surface. This 

check has two l im i ta t io n s .  F i r s t ,  because of  the recursive nature of 

the equation fo r  the optimal con tro l ,  the a c t i v i t y  of the optimiser 

changes the shape of  the surface and so i t  is not possible to say from 

the surface what the true optimum is ,  but only that the current choice 

of the control is (or is not) near the current estimate of the optimum. 

Thus the check is most useful in seeking out cases where the optimiser 

has stuck at a sub-optimal decision. The second l im i ta t io n  is that 

the cost surface cannot be drawn fo r  a l l  control var iables. Because 

of the number of dimensions involved, i t  can only be observed 

" s ta t i c a l l y "  at one crop composition.
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In cases where analytical or pictorial aids do not allow the 

interactions of the control variables to be disentangled from error 

i t  can be diff icult  to discover why multilines are used. This is an 

aspect of deciding whether their use is "significant", for if multi- 

lines have simply been used (suboptimally) to aid the deficiencies of 

the optimiser they should be explained away rather than explained. It 

is also difficult  to check on the alleged optimality of the multiline. 

It is not legitimate to replace the allegedly optimal multiline by a 

pure line and evaluate the expected cost: the whole policy and in

particular the economic control variables for the multiline point in 

state space will have altered in some degree to adjust to the presence 

of the multiline. Only i f  a pureline point is found in the multiline 

policy with a lower cost than the multiline point for the same init ial  

storage and superrace conditions can the multiline be rejected.

Therefore in a study as complex as the present one, at some 

stage the decision of the optimiser that a multiline is optimal has to 

be taken as final.  Some checks can be made but in the end the 

complexity of the system makes i t  impossible to discover whether the 

algorithm is correct without comparing its results with the results of 

another algorithm. In some cases plausible explanations of why multi- 

lines have been used by the algorithm can be made which support the 

likelihood that their  use is optimal (see section 6.3.2), but i f  there 

are known to be sources of error in the algorithm, then these 

explanations are persuasive and qualitative rather than conclusive and 

exact. We now turn to considering the possible sources of error.

6.3.1.2. Computational Errors

There are four types of computational error to be expected in

a study of this type.
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(1) simple numerical errors

(2) errors due to the level of resolution of the optimiser

(3) convergence or residual error

(4) interpolation errors

6.3.1.2.1. Numerical Errors

Since there is no replication in most of the results i t  is 

usually impossible to estimate directly how much of the differences 

between the costs and between the recommended controls of neigh

bouring init ial  conditions on the state space grid is due to numerical 

error. In some experiments, however, where the control is constrained 

to the use of the pure superline and there is no cross-protection, 

there is a form of replication available through the comparison of 

init ial  conditions differing only in the amounts of the simpler races 

present. This form of replication was not available in all such cases 

because advantage was taken of the fact that i t  was 15 times faster to 

calculate pure superline optimal controls on a restricted grid of 5x5 

init ial conditions varying only in storage level or superrace abundance, 

rather than the full grid of 375 points. Where the replication was 

available, i t  was found that separate evaluations of the policy cost 

at the replicate grid points were the same to at least seven decimal 

digits. Inaccuracies were detected in only two aspects of the program, 

neither of them affecting the results. The f i r s t  of these was that the 

variance of the expected cost (in cases where i t  would be expected to
_ 5

be small) was sometimes negative and of the order of 10 . This

represented the result of repeated subtractions of numbers of the order 
12 14of 10 or 10 , so that errors in the expected cost were actually only 

in the 16th decimal digit . The second error that was observed was that 

pure line crops sometimes produced small amounts of the simpler races 

(of the order of 10  ̂ spores), presumably because of the repeated



6-11

additions and subtractions in lines 140-147 of EPIMUL.

Thus, since the optimiser was restricted to detecting cost 

improvements in the seventh decimal d ig i t ,  numerical errors in the 

function evaluation were not significant in this study. The other 

possible source of numerical error was accumulated error in the updates 

of the matrix J. However, since the optimising process was periodically 

restarted by a steepest-descent step, any errors in the updating 

process could have no effect.

6.3.1.2.2. The Resolution of the Optimiser

Because of the need to truncate the optimising process in order

to save computer time, the optimising subroutine was not allowed to
“ 6resolve function improvements less than 10 of the current function 

value, nor to resolve control variable changes whose largest component 

was less than about 0.1% of the constraint width in that direction. 

Consequently, controls that were in i t ia l l y  similar might in theory 

have drifted apart to some extent during the optimisation process. I t  

was also possible, i f  the function was f la t ,  for marginally suboptimal, 

but noticeably aberrant, controls to be frozen into the fina l result, 

both because of the level of error permitted in the cost increment 

and because the optimiser tends to concentrate on the control variables 

that have the most effect on the cost. Finally, as a result of these 

restrictions and of the d i f f ic u l t ie s  of optimising on the complex cost 

surfaces that were found, the optimiser sometimes tends to be "sticky", 

that is , an apparently settled control can sometimes be made to 

achieve considerable improvements by relaxing the restrictions on its  

resolution. In such cases the improvement comes about because the 

gradient changes sharply, and the only successful steps that can be
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taken at any one time are very small, and are ignored at the lower 

level of resolution.

Because of the lack of replication, in most cases the s ig n i f i 

cance of these effects in the study was hard to judge. However in some 

test cases apparently suboptimal points (as judged from the cost 

surface) could be brought close to the optimum, though only by 

allowing the optimiser to search for any improvement at a l l ,  thus 

showing that the cost surface as drawn was correct and that the 

resolution of the optimiser was a lim itation on the accuracy of the 

result. Some policies produced during the course of the experiments 

apparently suffer from the low level of resolution, and these w il l  be 

mentioned in the next sections, but to increase the level of 

resolution of the optimiser to i ts  test level during the experiments 

would have increased the amount of computing many-fold. To put this 

shortcoming into perspective i t  should be remembered that the 

lim itations on the resolution of the optimiser in any practical non

linear optimisation w il l  always set a upper bound to the accuracy of 

the results.

In cases where there was replication, as described above, the 

null hypothesis that the optimiser was responding only to random, 

normally distributed errors in its  choice of controls can be tested 

by using an analysis of variance and examples of this test w i l l  be 

given in section (6.4.1). However this test cannot be applied to the 

cases where there is no replication. In these cases a regression 

approach might be used, but i t  would be impossible to distinguish 

between errors due to the optimiser and errors due to lack of f i t  of 

the results with the regression model, and there do not seem to be any 

simple regression models appropriate to the results described in the

next section.
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6.3 .1 .2 .3 . Convergence Error

The th i rd  possible type of er ror  is convergence er ror .

Typ ica l ly  during convergence, the optimal control is selected while 

the chi-square measure of convergence is s t i l l  large ( i . e . ,  s ig n i f ic a n t  

at the 5% leve l ) .  Once the control has been selected, the chi-square 

value decreases roughly exponential ly with the number of Gauss-Seidel 

i te ra t ions .  This decrease represents an average change in the value 

of the cost estimated from i te ra t io n  to i te ra t ion  that is governed by 

a nonl inear second order di f ference equation. There is thus some 

d i f f i c u l t y  in estimating the ' t ru e '  value of the cost, though in theory 

by continuing the convergence fo r  long enough, the magnitude of the 

change in the cost could be reduced as fa r  as is desired.

The problem that arises as a resu l t  of convergence error  is 

that of comparing the costs of two po l ic ie s ,  the "parent" constrained 

to the use of pure l in e s ,  and the derived po l icy (which has been 

allowed to diverge from the parent) free to use m u l t i l in es .  The resu l t  

of the d i f fe r in g  amount of  convergence of the two po l ic ies  is that 

th e i r  true di f ference in cost is pa r t ly  obscured by a kind of  background 

noise of cost changes d is t r ibu ted  unevenly among the gr id  points.

Thus unless more computing is done than is necessary only to establ ish 

the form of the optimal control and to test fo r  the existence of 

optimal m u l t i l in e  points i t  is not possible to tes t  the hypothesis 

that m u l t i l ines  may cause a lowering of average cost over a l l  i n i t i a l  

conditions. However the changes in cost of ind iv idual points in the 

derived pol icy due to control changes may stand out against th is  

background noise, and so one possible d e f in i t io n  of a "s ig n i f i c a n t "  use 

of mu l t i l ines  is that the mean change of cost from the parent to the 

derived pol icy in the case of the m u l t i l in e  points is more negative 

than that fo r  points where purel ines are optimal in both po l ic ies .

This can be tested quite simply with a t - t e s t .
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6.3.1.2.4. Interpolation Error

As was pointed out in section (5.2), the fact that linear 

interpolation is used to find the cost of the output of each control 

action will inevitably result in errors. If linear interpolation is 

then used again to calculate the appropriate control action for a 

state input intermediate between the grid points for which the policy 

was calculated, these errors will be compounded. In a more elaborate 

study these errors could presumably be reduced by an iterative process 

in which non-linear interpolating functions were developed that better 

f i t ted the apparent cost function as i t  was produced or by using a 

finer grid. Since these were not possible here, there is an inherent 

inaccuracy in the results of this study, whose magnitude is not easily 

measurable, though i t  can sometimes be seen to be small. (See for 

example section (6.4.1.2)). At present the existence of this type of 

error must simply be accepted. However there is no apparent reason 

why i t  should produce any systematic bias for or against the optimality 

of multilines, and so, given the general quantitative uncertainty 

surrounding the parameters important in the choice of modes of gene 

use, this type of error does not appear to be of great theoretical 

significance.

6.3.1.3. A Definition of Significance

The results of an optimal control of a complex system fall 

uneasily between the realms of a deterministic and a s ta t is t ica l  

analysis. On the one hand the present results are deterministic in 

the sense that i f  there is no cost gradient suggesting the optimality 

of multilines, the optimiser will never use them; all deviations from 

the parent policy are improvements. On the other hand, the sources 

of error described above tend to reduce the chance that the true
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optimum is found either by the parent or the derived policy; i t  is not 

clear that all the changes in the derived policy result from the 

relaxation of the constraints on the parent policy.

There are thus alternative possible definitions of significance 

in this context. One, from the stat is t ical  point of view, might be 

that significant use of multilines occurs when there is a cost 

reduction that is detectable by an appropriate test  against the back

ground noise of convergence. Another, deterministic, point of view 

would be that any use at all of multilines is significant as showing, 

at the very least,  that there can exist a cost gradient which suggests 

the use of multilines. This is a weaker test  of significance because 

stat is t ical  significance implies deterministic significance, but not 

vice versa.

Both these types of judgement need to be considered from the 

point of view of the policy as a whole, for a stronger test  of 

significance is whether multilines are likely to be used in practice.

A point in state space for which multilines are prescribed but which 

is not visited by important control trajectories is not of practical 

significance. The question of what trajectories are important is to 

some extent open. Probably of most interest are those that start  from 

the no-disease conditions, since the most obvious question to ask about 

multilines is whether there is any point in using them when the crop 

is clean. Another important set of trajectories starts from the region 

in state space where the simpler races are abundant, storage is low 

and the superrace is rare. This region corresponds to the recent 

failure of a resistance gene and the associated control decisions are 

those that must be made when a new gene is introduced. If s t a t i s t i 

cally significant multilines are rarely used on these trajectories,  

then the other costs of maintaining the multiline option, mentioned in
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section (4.6.1) but omitted from the c r ite r ia  for the sake of 

s implic ity, become important and multilines are not "s ignificant" 

in the th ird and strongest sense. In the description of the results 

these questions w ill be investigated by using the derived optimal 

policy to respond to the simulated pathogen over a number of crop 

cycles. This w il l  incidentally illuminate one of the oldest questions 

in the topic of optimal gene use (section 1.2.4.1), whether rotation 

of varieties can combat pathogen evolution successfully.

In summary, we conclude with three definitions of significance 

that can be applied to test any occurrences of multilines in the 

results. They are not mutually conflic ting, and they are useful for 

characterising the results. Application of these tests does not 

resolve the problem of deciding whether the true optimum has been 

found and is a multiline optimum, but that decision can only be made 

on the basis of repeated studies.

6.3.2. The Reason for Using a Multiline

I f  a multiline is declared to be optimal for some in i t ia l  

condition by the algorithm, the declaration can be explained at 

three levels within a study of this type

(1) The economic level. Either k ( i ,u ( i ) )  or V(tt(X^),X^) 

or both have been decreased by the use of multilines

(2) The state variable level. Some of the state variable 

outputs of the given in i t ia l  condition must have been 

altered in an (economically) advantageous way.

(3) The epidemiological level. Interactions within the 

multiline epidemic must have caused the changes in 

state variables.
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In accounting fo r  the epidemiological in te rac t ions ,  e i th e r  wi thin or 

between experiments, we deal d i re c t l y  with the assumptions of the 

model, and thus in th is  study th is  is the most fundamental possible 

level of explanation.

6.3.2.1. Economic Interact ions

An explanation at the economic level is the f i r s t  step in 

explaining the use of m u l t i l in e s ,  since i f  there are no d i rec t  benef i ts, 

the optimiser w i l l  not use them. In th is  analysis the cost decreases 

at each m u l t i l in e  point are c lass i f ied  according to whether they 

resu l t  from decreases in k ( i , u ( i ) ) ,  V(tt(X-| ) ,X-|) ,  or both. I t  is 

obvious that one change or the other must take place, and in th is  

c la ss i f ica t io n  we are seeking evidence of a pattern of  cost change 

than can summarise the purely economic reasons fo r  using m u l t i l ines .  

However a decrease of both cost components at once is a p r io r i  

unexpected (section (3 .5 .3 ))  and in such cases i t  is necessary to 

examine the economic c r i te r io n  i t s e l f  to see how such a simultaneous 

decrease can come about.

6.3.2.2. State Variable Changes

The second step in analysis is to id e n t i f y  the changes in the 

state variables that have affected k( i  , u ( i )) or V(tt(X-j ) ,X^). Changes 

in V(tt(X-| ) ,X-j) can come about, to a f i r s t  approximation, only through 

changes in the storage output to the next cycle or the superrace input 

to the next cycle. (The l a t t e r  is the superrace output from the 

current cycle transformed by passage through the offseason). I f  

m u l t i l in e  points are equi l ibr ium points or i f  the average cost over a l l  

points in state space has been changed by the use of m u lt i l ines  then 

the costs associated with a given X-j w i l l  also have changed. In th is
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context the state variables representing abundances of the simpler 

races are the independent variables, because, by Theorem 1 of Chapter 3, 

they are the means by which the multilines achieve their effect.

Changes in storage and superrace abundance are the dependent variables 

which, given a favourable interaction with the economic control 

variables, in turn influence V(tt(X-| ) ,X-|) for good.

From a plot of the expected cost of the optimal policy against 

the init ial  values of the state variables i t  is possible to see the 

expected effect of the given change in the state variables. Because 

of the nonlinear nature of the cost function, the change in cost 

cannot be directly divided into components due to each state variable 

change. Instead a simple four-way classification can be made of the 

state variable changes according to whether they were movements up or 

down the cost gradient with respect to storage or superrace abundance.

The possible effects on V ( tt( X ^ ) , X ^ ) of an increase in storage, 

are, in the case of the agribusiness criterion, always favourable 

because there is no cost attached to storage, and so the possession 

of stored food represents only the possibility of selling food that 

does not have to be grown. In the subsistence criterion an increase in 

storage is not always desirable, and in this case a state variable 

affects k ( i ,u ( i )) directly. Otherwise analysis at the state variable 

level bypasses consideration of the present cost. The significance 

of an increase in the abundance of the superrace cannot be told 

directly from the cost equations, but i t  is to be expected that (see 

section 3.5.3) that i t  will be adverse. Thus analysis at this level 

is mainly directed towards answering the question: which component

of the change in the state variable output is responsible for the 

reduction of the expected cost of all future epidemics. In terms of 

an explanation at the state variable level, this analysis can be
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expressed in such forms as "the use of multilines was indicated in 

this case because i t  permitted an increase in the storage output".

6.3.2.3. The Epidemiological Level

The basic epidemiological events that determine the divergence 

of the derived policy from the parent policy are the patterns of 

disease cover at the cr it ical point when yield loss is fixed and at 

harvest, when the conditions for the off-season competition of 

pathogen races are set. There is only one basic interaction within 

the model by which the presence of the simpler races can affect these 

patterns; by infecting plant tissue they occupy i t  and make i t  

unavailable for the superrace. This is the basic van der Plank 

property of the model. If only 1% of the total crop area is covered 

by the simpler races, then the superrace growth rate will be decreased 

by at least 1%, which will produce a cumulative effect on the superrace 

cover over several generations. At the same time, of course, the 

simpler races will be expected to affect the yield of the simpler 

1 ines.

In addition there are two possible "optional" interactions

(1) where there is cross-protection, the simpler races 

can occupy area (temporarily) without infecting i t .

(2) where the plant grows, the simpler races can modify 

the total size of the plants in the mixture.

Finally, in this model the pathogen races compete during the 

off-season. This interaction, though i t  is determined by the pattern 

of the disease cover at harvest, tends to intensify any effect of the 

presence of the simpler races on the superrace during the crop 

epidemic i tse lf .



6-20

Any particular multiline epidemic produced by this model can 

thus be described at the epidemiological level by i ts position in a 

2n(n+l)-dimensional space, where n is the number of lines (and races) 

present. There are n+1 classifications of infected area on each line 

(including uninfected), n lines and two significant dates. The 

epidemiological change between the parent and the derived policies 

corresponds to a movement in this space. In this study 2n(n+l) is 

already 24 and so a simplified measure of the change is necessary.

For this purpose we will use just two variables

(1) The total change in superrace input to the next cycle.

This expresses the interference experienced by the 

superrace, and using the total rather than a 

proportional change allows a common comparison 

with the output from the growing plant where the 

superrace may have changed as a result of change 

in size of the plant.

(2) The change in yield of the crop. The yield i t se l f

seems to be the best way of summarising the joint 

effect of three different pathogen races on three 

different plants on the yield.

In a sense all possible multiline effects within the model are 

already "explained" because i t  is known what they must be based on. 

However i t  is not known in advance what the pattern of factors 

contributing to their use will be, and a description of this pattern 

is the principle contribution of the analysis of any multiline result.  

Later, the joint effect of crop composition and the variation of a 

"significant" biological parameter will be used as the basis for 

comparisons between the results of different experiments (section 6.6)).
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6.3.3. Robustness of the M u l t i l in e  Result

The minimax approach to the robustness of theoretical  results

can, as was shown in section (4 .7 ) ,  be applied to the test ing of

d i f fe re n t  types of robustness. In these experiments the method w i l l

be applied to the test ing of robustness with respect to uncertainty

about the two parameters that i t  w i l l  be most d i f f i c u l t  to estimate in

practice: the mutation rate p, and the p robab i l i ty  of an i r rup t ion

P t*  the maximising phase of  the minimax game option o f  the

program, these w i l l  be used as control variables and allowed to range
-20between, respective ly , 1 and 10 and 1 and 0.

This procedure is intended as an i l l u s t r a t i o n  of what might be 

done in a real control s i tua t ion  where a conservative approach is 

being taken to the possible effects  of  parameters whose values are 

only known with in an in te rva l .  I t  is also intended as an i l l u s t r a t i o n  

of how the c r i t i c i s m  might be met that m u lt i l ines  are perhaps only 

optimal fo r  the i n i t i a l l y  chosen values of y, and P However the 

procedure may also serve as an ind ication of the extent to which r isk  

i t s e l f  is important in the optimal contro l .  I f  the maximising of the 

cost does not leave these two stochastic parameters at th e i r  extreme 

values i t  is evidence that not knowing whether ( fo r  example) the super

race is going to ar r ive  contr ibutes more to the cost than the damage 

due to an inevitab le i r ru p t ion .

6.3.4. Uniqueness of the Optimal Control

In section (5.2.1) i t  was pointed out that i f  there is more than 

one local optimum of  the cost function fo r  any gr id po int,  then which 

one is chosen may depend on the i n i t i a l  guess at the optimal con tro l ,  

and the one which is chosen may not be the global optimum. In th is  

section a more detai led discussion of the causes and resul tant
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problems of mult ip le optima w i l l  be given in order to show how the 

analysis of resul ts is affected by th e i r  presence.

I t  is not necessary fo r  the cost function k ( i , u ( i )  to have 

mult ip le optima in order that V ( tt (  i ) »i ) should have mult ip le  optima.

I t  is only necessary fo r  k ( i , u ( i ) )  to be non-convex, because since 

V ( i r ( i ) , i )  is the sum of a sequence of functions k-j , k^, k^, •• •k00, 

the summing of  non-convexities may produce mult ip le  optima. Furthermore, 

i t  is not necessary fo r  k ( i , u ( i ) )  to be non-convex fo r  a l l  i and u: 

occasional non-convexity is quite s u f f ic ie n t  to induce mult ip le optima 

in V(tt(X-j ) ,X-|). A reference which is  ins t ruc t ive  on the importance 

of convexity in optimal control is Halkin (1964), though Halkin was 

concerned with the use of  the maximum pr inc ip le  in open loop contro l .

However, once mult ip le  optima ex is t  fo r  even one grid point a 

complicated s i tua t ion  arises. Because the equation fo r  the control 

is  recursive (section 3 .5 .1 ) ,  the choice of a l te rna t ive  optima affects  

not only the gr id point i but the costs of other gr id points whose 

state outputs are near i .  Thus the choice o f  a local optimum w i l l  have 

an e f fec t  that propagates (usual ly with decreasing amplitude) through 

the whole pol icy. Consequently, in order to assess the e f fec t  of 

choosing one a l te rna t ive  over another i t  is necessary to confine the 

pol icy to optimise w i th in each local optimum in turn. I f  there are 

mult ip le  optima at several gr id points, combinatorial problems 

obviously ar ise. Also, the choice o f  a l te rnatives at one grid point 

may a f fec t  the existence of optima at other gr id points.

Where such complex in te ract ions occur as the resu l t  of the 

existence of mult ip le  optima i t  becomes d i f f i c u l t  to make comparisons 

between po l ic ies that have been allowed to converge from d i f fe re n t  

s tar t ing  points. Suppose that two unconstrained po l ic ies have converged
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independently and one of them recommends multilines while the other 

does not. Evidently the two results represent alternative local optima, 

and i t  can be said that for one local optimum multilines are optimal 

and for the other they are not. The expected cost of the two policies 

can also be compared (see section 6.3.1.2.3.). However i t  is d i f f ic u l t  

to answer question (3) of the l i s t  in section (6.3) - why the multilines 

are being used - because the two results do not show what would be the 

result of using a pure line in the case where the pureline is 

allegedly suboptimal.

Thus any presence of multiple optima means that the analysis 

of multiline optimality ( i f  i t  is found) takes on a local character 

corresponding to the local character of the result i ts e l f .  Just as 

multiline optimality can only be asserted to be true for the particular 

optimum that has been found, so also the significance of the result, 

i ts  robustness and its  rationale a ll relate to the particular optimum. 

The implication of this restriction for experimental design in cases 

where multiple optima exist is that the appropriate technique is that 

used in this study: to test the null hypothesis of the study for each

set of parameters by f i r s t  producing a policy that is constrained to 

the use of pure lines and is locally optimal and then relaxing the 

constraint and giving the unconstrained optimiser an opportunity to 

produce a divergent result.

As w il l  be seen in sections (6.4 & 5) the results of this study 

exhibit several types of multiple optima, including some that result 

from direct multiple optima in k(i , u ( i )) and some that result from the 

effects of summing non-convex functions. These types of functional 

aberration are inconsistent, in the sense that they appear only for 

certain state values and parameter values. There are thus catastrophes 

in the sense of Thom (1975) present in the results, which appear to
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resu l t  pa r t ly  from the use of re la t i v e ly  complex and r e a l i s t i c  ( i . e . ,  

non-l inear) functions in the c r i t e r i a  and pa r t ly  from the complexity 

of pathogen dynamics. From the point of view of th is  study these 

catastrophes represent complications in analysis and re s t r ic t ion s  of 

signif icance of the resu l ts .  I t  seems quite l i k e l y  that catastrophes 

w i l l  occur even in models using simpler c r i t e r i a ,  and in section (7.4) 

the signif icance of th is  phenomenon from the point of view of pract ical 

appl icat ions w i l l  be discussed.

6.4. The Agribusiness Cri te r ion 

6.4.1. The Economic Parameters

The values of the parameters in the equations used to describe 

the agribusiness c r i te r io n  (section 4.3) were chosen so that the natural 

condit ion of the farmer in the disease-free state would be a prosperous 

one. These values are set out in Table 6-1, and the fol lowing points 

about them are worth noting. Since the maximum y ie ld  is  set at 400 

units and b = VQ0pt  = 300, i t  is  possible fo r  the farmer to grow more 

than the amount that w i l l  give him maximum return. (Because there are 

variable costs associated with the area planted (FERCOS) the optimum 

amount to produce is a l i t t l e  less than 300.) The f ixed costs and the 

variable costs together are small compared to the attainable re turn, 

so that while the f ixed cost is  365 units o f  return the maximum return 

to the farmers is 10,672 in any one year. The value of the f ixed costs 

does not a f fec t  the optimal po l icy in any way; i f  the farmers were a l l  

paying back loans at a high (but constant) rate th e i r  actions would be 

ju s t  the same. The f ixed cost here was thought of as representing 

ch ie f ly  the maintenance of farm fami l ies.
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Table 6-1. Economic Parameters for the Agribusiness

Criterion

FORTRAN Name Source in Text Value

BASRAT P 0  (equation 4.6.1) 100 return units/unit crop

QOPT 1/b (equation 4.6.1) 300 crop units

FIXCOS C q  (equation 4.6.6) 365 return units

FERCOS k g  (equation 4.5.6) 1000 return units

SP0C0S section (4.6.2)
20.1 return units/spore/m

Thus, with these parameter values, and the capability of storing 500 

crop units, the agribusiness farmers in cooperation have a range of 

economic options. They can produce consistently, or they can hold the 

crop in storage in order to force the price up while planting a lower 

area. I t  is certain that they need not go bankrupt in the absence of 

disease, and the ir situation in fact resembles that of those farmers 

in the U.S.A. who until recent years were subsidised not to produce 

because the ir attainable production would have flooded the market. In 

the next section the actual behaviour of these prosperous farmers w ill 

be presented.

6.4.2. The Disease-Free State

The f i r s t  step in reporting each result is to display the optimal 

policy i t s e l f ,  that is ,  the rules relating the optimal control variable 

values to the state variable input. As the number of state variables 

increases i t  becomes more d i f f ic u l t  to display the results graphically 

and, in practice, interpolation in arrays of the same dimension as 

the number of state variables would be the way in which the control 

action would be determined. In the disease-free case, however, there 

is only one state variable operative, the storage, and thus the basic 

properties of the 'economy' can conveniently be displayed graphically.
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Figures 6.4.1 and 6.4.2 display the control policy, which is 

qualitatively sensible. At storage levels below QQpt (equation 4.6.3) 

the entire storage is sold since, with no disease there is no danger 

of not being able to grow the optimum amount the next year. At the 

higher levels of storage some of the total is retained in order to 

avoid depressing the market price. At low storage levels a substantial 

area is planted, but when the market can be fully supplied by selling 

from storage, nothing is planted.

The second step in reporting the result is to describe the 

consequences of the control action at each grid point of init ial  

conditions in terms of the expected cost (or, in this case, return) 

and state variable output. The disease-free control is not a 

stochastic one and so the 'expected' state outputs are certain, but 

the procedure is the same. Figures 6.4.3 and 6.4.4 show the expected 

return for the infinite policy starting at each storage level and the 

storage output after the optimum amount has been sold. The effect of 

the optimum policy is to smooth out fluctuations in the return that 

might result from unwise sales. Also, at the 8% discount rate there 

is l i t t l e  present advantage in the possession of stored food, since 

the returns from the years after i t  is sold dominate the result . The 

state output pattern is that to be expected from the description above 

of the control laws.

Although the patterning of the economic control through time 

has no direct theoretical importance in the disease-free case, i t  

serves as a useful basis for comparison with the pattern when the 

pathogen is present. Figures 6.4.5-8 repeat the information in the 

previous four figures, but displayed as a pattern in time instead of 

state space, starting from an in it ial  condition in which the silos are 

full . Figure 6.4.7 shows the proportion sold in each subsequent year
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and figure 6.4.8 shows the area planted. Figure 6.4.5 shows the return 

to be expected in each year and figure 6.4.6 shows the level of 

stored food. The policy quickly settles down to a state that is not 

only steady but stable, after the removal of the surplus, and because 

of this the present return estimated in the feedback process (115,480) 

is close to the total return actually accumulated during the 50-cycle 

period (113,715).

The question now arises of whether this optimal policy is the 

global optimum. To show that i t  is we display the surface of returns 

that the optimiser faces at each grid point in attempting to maximise 

the return in the fina l stages of convergence. Figure 6.4.9 shows 

the surface of - k ( i ,u ( i ) )  (the return is the negative of the cost) for 

each storage value and figure 6.4.10 shows -V(tt(X^),X ), while figure 

6.4.11 shows the total return - V( tt( i ) , i ). The contours divide the 

interval between the lowest return and the highest return on each 

map into deciles, with "1" labelling the 10% level. The contour marked 

"*" encloses the returns > the 99th centile.

The f i r s t  point to note about these contours is that the sets 

of contours, for -k ( i , u ( i )) and for -V( tt( i ) , i ), are very similar, with 

the 99% contour widened by a flattening of the maximum of -V(tt( i ) , i ).

The reason is that since the optimal return does not depend much on 

the storage level ( f ig .  6.4.3), -V(tt(X-| ) ,X-j) is almost constant for the 

various storage outputs produced by different combinations of area 

planted and proportion sold. What difference is made is the result of 

the fact that the return from subsequent years is maximised i f  a large 

amount of stored food is handed over from the f i r s t  year, as can be seen 

in figure 6.4.10. The second point is that the form of the optimal 

control laws in figures 6.4.1-2 can be understood as a rotation and 

s light distortion of the contours of cost within the control



6-28

constraints, with the break in the slope of the curves describing the 

policy corresponding to the storage level at which the optimum point 

passes the bottom right hand corner of the return surface. Finally, 

i t  should be observed that the cost surface is non-convex, partly 

because of the dogleg in the contours that can be seen at intermediate 

levels of storage. This dogleg is the result of the limit of 500 units 

on the storage level. For a given proportion sold, as the area planted 

rises above the optimum, increased costs are incurred and the price 

fa l ls .  However when the total of what is grown and what was stored 

exceeds 500 units, the excess is lost ,  and although further increases 

in the area planted cause cost increases they do not affect the price. 

This dumping of the glut of the product decreases the effect of 

excessive production on the return and the flattening of the gradient 

of the cost along the vertical axis is the result.

In summary, the optimal policy for the agribusiness in the 

absence of disease is to plant the minimum area needed to ensure sale 

of the optimum amount of the crop and to dispose of surpluses without 

causing a glut. This policy leads to a stable steady state at zero 

storage, which is a convenient yardstick for comparison with cases in 

which the pathogen is present.

6.4.3. The Baseline Epidemic

6.4.3.1. The Biology of the Epidemic

The baseline epidemic was designed so that i t  would represent 

a serious disease problem. A l i s t  of the key parameter values is given 

in Table 6-2. The result of using these values is that on a fully 

susceptible crop,

(1) the introduction of the standard irruption of 50 spores 

per unit area reduces yield from 400 units to 360.
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(2) the maximum spore input of 1000 spores per unit area

reduces yield to 50 units. Figure 6.4.12 shows the

dependence of yield on pathogen input.
_8

(3) i f  10 spores per unit area are introduced (corresponding 

to a mutation for increased virulence in a fa ir ly  ligh t 

epidemic of a simpler race) 95% of the maximum possible 

pathogen level is reached in 9 crop cycles. Figure 

6.4.13 shows the time course of this increase.

Thus the ordinary progress of a pathogen race in a fu l ly  

susceptible crop, without interference from other races, is a rapid 

increase from negligible levels to a level which reduces yie ld by 88%.

Table 6-2. Baseline Epidemic Parameter Values

FORTRAN Name Source in Text Value

SPEXT (section 4.5.2) 50 spores/unit area

F f^ j  (equation 4.3.5) 5x10 k area units

VIGORS s^m (equation 4.3.5) 10% spores/unit area/day

PEXT Pext (section 4.5.2) 0.1

REALMU (section 4.5.1) 10"8

ILATEP T-j (equation 4.3.4) 7 days

INFECP Tp (equation 4.3.4) 20 days

6.4.3.2. The Constrained Control Result

The optimal pure superline agribusiness baseline policy was 

converged without using the fact that the grid points d iffering only 

in abundance of the simpler races are equivalent. The result thus 

contains a degree of replication (section 6.3.1.2.1) which w il l  be 

referred to below. Apart from variation between replicates, the policy
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and its  outputs should only depend on two state variables: the

storage and the superrace abundance. We now proceed, as with the 

disease-free case, to describe f i r s t  the control laws and then the 

outputs of the policy. In the following four figures, paired graphs 

are shown with the dependent variables in common within each pair and 

the two state variables as independent variables. In each case what 

is plotted is the mean values of the dependent variable +/- two 

standard deviations where the variance is calculated over all 75 

independently converged grid points sharing the same value of the 

independent variable. The plotted range of variability is thus due 

partly to error and partly to the effect of the other state variable.

Figures 6.4.14-18 show that the control laws and their outputs

are not as simple as their counterparts in the disease-free state.

There are suggestions of downward trends in proportion sold and area

planted with increasing storage though they are not as definite as in

the disease-free policy. There are also a slight upward trend in

proportion sold and a downward trend in area planted with superrace
2abundance (number perm ). The gradualness and (in some cases) 

reversals of these trends make i t  hard to see how the policy achieves 

its  ends, and there is in addition a wide range of variability in 

most cases.

The expected return for each state conveys a more immediately 

interpretable message: at high storage the return is independent of

the pathogen and at low pathogen levels i t  is independent of the storage. 

The f i r s t  surprise of these results is that the return is so high, 

despite the seriousness of the disease, and that i t  is so l i t t l e  

affected by the amount of the pathogen present.
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The storage input/output relationship shows rather similar 

behaviour to the disease-free system, except that on average, more is 

retained from a given level of storage, suggesting a provident 

approach to the next year's epidemic. As might be expected, the 

storage output is lower at the higher superrace levels. The second 

surprise of these results is the superrace output, which is consis

tently much lower than the maximum to which i t  would be expected from 

Fig. 6.4.13 to tend, and which decreases with the superrace input at 

high superrace levels.

There are thus three problems of interpretation posed by these

results

(1) If there is error in the results,  that is ,  i f

functionally identical grid points are assigned 

different controls, what are the sources of this 

error?

(2) Are the trends in the policy laws significant

despite any such error?

(3) How do the policy rules operate to reduce the

superrace level and maintain the level of return?

The following three sections deal with these problems.

6.4.3.2.1. Tests of Significance

The analyses of variance displayed in Table 6-3 contain part 

of the answers to the f i r s t  two questions. I t  is evident in the 

f i r s t  place that there is error in the policy, in the sense that the 

sum of squares for error is non-zero. It is also clear that the 

effects of the state variables on the policy are strong and significant 

(though a linear regression model would not be appropriate for their 

description), with the storage variable as the dominant factor.



6-32

Table 6-3. ANOVA fo r  E f fec t  o f  State Variables on

Choice o f  Control

Control  Var iab le : Proport ion sold

Sums of squares d . f . Mean Squared Error F-ra t ios

Storage 11.038 4 2.7596 81.216**

Superrace .778 4 .1946 5.727**

In te rac t ion 2.468 16 .1543 4.540**

Error 11.893 350 .0340

Total 26.178 374

Control Var iab le : Area planted

Storage 5.860 4 1 .465 30.913**

Superrace 4.315 4 1 .079 22.764**

In te rac t ion 2.033 16 .1270 2.681

Error 16.587 350 .0474

Total 28.795 374

( * *  s i g n i f i c a n t  a t the 1% l e v e l )

6 .4 .3 .2 .2 .  Sources o f  Error

In order to i l l u m in a te  the reasons fo r  the occurrence of the 

e r ro r  in the re p l i c a te s ,  a ser ies o f  cost surfaces l i k e  those of 

f igu res  6.4.9-11 are displayed in f igu res  6.4.19-23. Although they are 

produced by the same method as the previous f i g u re s ,  the i n te rp re ta t io n  

of these cost surfaces is  s l i g h t l y  d i f f e r e n t  because o f  the stochast ic  

element tha t  is  introduced with  the pathogen. Thus the maps labe l led  

" - k ( i  , u ( i ) ) "  are not maps o f  E( - k ( i , u ( i ) ) ,  but o f  the values tha t  

- k ( i ,u ( i )) would take i f  the expected output o f  the pathogen a c tu a l l y  

resu lted .  S im i la r l y ,  the maps labe l led  " - V( t t ( ) ,X-|)" are maps of 

-V ( t t ( E(X-j) ,E(X-j) ) ,  and the surfaces drawn are not exact ly  the same as
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the surfaces "seen" by the optimiser, though the differences will be 

small at the higher pathogen levels. This inaccuracy is tolerated 

here because these maps can be drawn by interpolation in the 

accumulated results of the policy computation, which include the 

expected state output. The maps are drawn on a 50x50 grid, and if  the 

exact surface were to be drawn, 50x50x8 = 20,000 epidemics would have 

to be simulated for each map. (Each function evaluation requires 

the simulation of eight epidemics - section 4.5.2.)

In figure 6.4.19, representing the cost surface at the lowest 

level of the superrace, the contours of -k(i ,u ( i )) are like those of 

the disease-free case, because the expected pathogen output is not 

high. The contours of -V(tt(i ) , i ) are, however, substantially different 

from the disease-free contours, especially at intermediate levels of 

storage, in that i t  is now never optimal to sell all the available 

crop. The reason for this can be seen from the contours of -V(tt(X̂  ) ,X-|), 

which exhibit two new features. These are, f i r s t ,  stronger sanctions 

against selling all the f i r s t  year's storage and, second, a pronounced 

advantage, especially at lower storage levels, of planting only a 

small area i f  more than about half the crop is sold. There are thus 

two opposing tendencies in -V(tt(X-j ) ,X^): one requiring a large area

to be planted, and the second requiring a small area to be planted.

The trouble which these opposing tendencies can cause even in 

the relatively benign, low-disease state is indicated in the bottom 

right hand corner of the map of -V( t t( i ) , i ) for storage = 250. Here the 

90% contour narrows and then widens into the corner, indicating that 

there is probably an unmarked local optimum in the corner. This is the 

f i r s t  sign that there may be multiple optima in the agribusiness 

policy, and in fact one of the (replicated) grid points asserts that 

the optimal action for this state is "sell everything, plant nothing", 

rather than that shown by the starred contour.
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Thus even for these simpler cases where the superrace in only 

beginning to increase, multiple optima are a possible source of error.

In figures 6.4.20-23, which show the surfaces when the superrace is 

abundant, the opposing pressures on the system can be seen to have 

caused much sharper changes of regime, in which double and even triple 

optima are common. The fine detail of these more complicated contours 

for instance the presence of numerous cusps, are beyond explanation 

at present. The cusps do not seem to be the result of the grain-size 

of the grid on which the contours are interpolated. A possible reason 

for their occurrence is that they represent the overlapping of local 

optima each with a roughly circular area of attraction.

It is now clear that there are two sources of error responsible 

for the error terms in the analysis of variance. One is simple failure 

to find the nearest optimum, as for example in the control for storage = 

125, superrace = 500, which has been set by the optimiser to a point 

on the 8th decile contour at zero area planted. The other is ,  as above, 

seduction by the wrong optimum. These two types of error cannot be 

distinguished from each other except by comparison of the printout of 

the policy with the contours of cost, and then not always. However i t  

is possible to give an account of the factors tending to cause both 

types of error, and both types appear to occur in this policy.

Failure to find the nearest optimum can be partly explained 

because these surfaces have two characteriStic features which cause 

difficult ies for the optimiser: the cusps already noted and a tendency,

obvious in the disease-free case, for the optimum to be approached by 

a curving ridge. On both these types of feature anything but a very 

short step along the gradient will tend to result in a cost increase, 

and so the optimiser tends to proceed in a slow and cautious zigzag.

When the steps in the zigzag fall below the lower size limit allowed
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by the optimiser a suboptimal resu l t  is accepted.

The mult ip le  optima appear to ar ise ,  as fa r  as can be judged 

from the surfaces, fo r  two reasons

(1) the in teract ion of the non-convex shape of 

- k ( i  , u ( i )) with the tendency fo r  i t  to be 

reproduced in - V(tt(Xi ) , X-j) inverted from l e f t  to 

r ig h t  because the former function is  decreased by 

sale of storage and the l a t t e r  by retention of 

storage.

(2) the opposing tendencies w i th in -V(tt(X-j ) ,X-j) with 

respect to the area planted, where a large area 

increases avai lable storage but also the superrace 

abundance, coupled with the non-l inear dynamics of 

the epidemic.

I t  is to be expected that a simpler cost function would reduce the 

tendency of  the epidemic dynamics to produce mult ip le  optima; however 

even i f  the cost function were a convex function of the control 

variables, the non- l inear i ty  of the y ie ld  and pathogen output functions 

would tend to introduce non-convexities which in turn might produce 

mult ip le  optima when summed. The existence of mult ip le  optima should 

therefore not be dismissed as an a r te fac t  of the pa r t icu la r  economic 

c r i te r io n  used here.

6.4.3 .2 .3 . Pol icy Operation

Despite the problems introduced by the complexity of the cost 

surface, when the operation of the po l icy is fol lowed through time, 

i t  can be seen to behave sensibly. Figures 6.4.24-29 show the return 

fo r  each year, the control action taken and the outputs, including the 

y ie ld .
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The policy achieves i t s  effects of maintaining return and 

suppressing the superrace via a rather complicated fluctuation of the 

area planted. The control pattern repeats i t s e l f  almost exactly every 

twelve crop cycles,  though there are signs of a slight  drift  away from 

exact periodicity. The figures show the evolution of the policy 

starting from a clean crop and full s i lo s .  Alternative in i t ia l  

conditions only affect the f i r s t  few cycles, after which the pattern 

reasserts i t s e l f ,  shifted in phase. Storage is built up while the 

disease is low, and then the accumulation is sold when an increase in 

the disease makes i t  advisable to reduce the area planted. The 

accumulation is not great enough to prevent large fluctuations in the 

return, but in the real world these variations in area planted would 

correspond to rotation of crop land into a crop suffic iently different  

from the one being modelled to have no chance of susceptibili ty to the 

pathogen being modelled, and the fluctuations in the return would be 

somewhat reduced.

It is not clear, especially given the considerations of the last  

section, how many of the particular features of this rotation are 

optimal and how many are suboptimal or accidental. Some of the errors 

to be expected are, however, distinct  from the errors introduced in the 

convergence of the policy. As with the plotting of the cost surface, 

in calculating the evolution of the policy the graphing program assumes 

that the state output from each crop cycle is the expected output.

Thus the path that is followed in state space is not exactly the 

"expected" path since E(X-|(X )̂) is  not the same as X^EU-j)), even 

though X-j and X̂  are calculated by running epidemics, not by inter

polation, and are accurate. A more important source of error is  that 

the program assumes that the optimal control for a given state can be 

found by linear interpolation among the controls for neighbouring grid
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points even though the pathogen output changes non-linearly between 

neighbouring controls. This effect is more important here than in 

the disease-free case because of the pathogen and because of the rapid 

changes in state that result from the rotation. The presence of the 

multiple optima may also have the effect of deceiving the policy about 

the future behaviour of the system. The policy may assume at one grid 

point behaviour that d iffe rs from that which i t  assumes at another grid 

point. The net effect of a ll these actual and suspected errors is that 

while the expected return calculated in the course of deriving the 

policy for this particular in i t ia l  condition was 11.0 x l o \  the actual 

return calculated by summing the discounted -k ( i ,u ( i ) )  was 7.55 x 10^.

In summary, the sensible policy for the agribusiness confronted 

by the baseline epidemic is to rotate with another, non-susceptible 

crop, or fa il in g  th is , to leave a fallow. The reason for this is that 

the superrace abundance is strongly, though temporarily, affected by 

the area planted. At the same time as the rotation is carried out, 

some use is made of storage to smooth out the effects of the rotation 

on the return, but major fluctuations can s t i l l  be expected. The 

quantitative analysis of this conclusion is complicated by the 

existence of multiple optima in the cost function and by the limited 

va lid ity  of the linear interpolation used in implementing the policy. 

However, qua lita tive ly , the concurrence of the policy with commonsense 

a fter an elaborate numerical excursion is quite impressive.

6.4.3.3. The Unconstrained Optimal Policy

For the baseline epidemic and the agribusiness criterion and 

the given level of resolution of the optimiser, the optimal uncon

strained policy was the same as that for the constrained control 

and no multilines were introduced. Thus i t  can be concluded that, at
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least lo c a l ly ,  m u lt i l in e s  were not optimal. Consequently the null 

hypothesis of the study was not rejected under these conditions.

6 .4 .3 .4 . The Constrained Baseline Game

The control laws fo r  the constrained baseline game are shown in 

figures 6.4.30A-D. At f i r s t  s igh t they are apparently very s im ila r 

to those fo r  the control with constant Pext and p. However an analysis 

of variance of the d ifference of the control values used in the control 

and in the game shows tha t s ig n if ic a n t  changes have been made from the 

parent control in response to the changes in the stochastic parameters. 

Table 6-4 shows tha t the dependence of the proportion sold and the area 

planted on the storage and o f the proportion sold on the superrace 

abundance have been affected. Inspection of the control laws shows 

that the changes take the form tha t less is  sold in the game at low 

storage and disease leve ls , which suggests a more cautious approach 

in the game in the face of fu ture disease and tha t the area planted 

f a l l s  somewhat at intermediate disease leve ls , which would have the 

e f fe c t  of decreasing the superrace output.

Table 6-4. ANOVA fo r  the Difference between Baseline

Control and Game

Control Variable:: Proportion sold

Sums of Squares d . f . Mean Squared Error F-ra tios

Storage 1.232 4 .3081 51.613**

Superrace .3616 4 .0904 15.145**

In teraction 4.989 16 .3118 52.237**

Error 8.672 350 .005969

Total 8.672 374
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Table 6-4 ( co n t .)

Control Variable: Area planted

Sums of Squares d . f . Mean Squared Error F - ra t ios

Storage .9556 4 .23891 28.154**

Superrace .0000379 4 .00000950 .00112

In te rac t ion 3.843 16 .24019 28.305**

Error 2.970 350 .00849

Total 7.769 374

Control Var iable: Pgxt

Storage 20.320 4 5.080 83.860**

Superrace 8.682 4 2.171 35.831**

In te rac t ion 8.837 16 .5523 9.118**

Error 21.202 350 .0606

Total 59.042 374

/ -MxControl  Var iab le: Exponent o f  Mutat ion Rate, M(y = 10 )

Storage 1866.7 4 466.7 45.070**

Superrace 347.32 4 86.83 8.386**

In te rac t ion 769.42 16 48.089 4.644**

Error 3624.0 350 10.354

Total 6607.4 374

Figures 6.4.31 and 6.4.32 show the pathogen's side o f  the game.

The F - ra t ios  in Table 6-4 show tha t  Pgx^ and y have been s i g n i f i c a n t l y  

changed, as the f igu res  suggest, w ith  the storage level having the 

dominant ro le  in determining the change. The most obvious e f f e c t  is  

tha t  Pext has genera l ly  been increased, though not to u n i ty  in a l l  

cases, whi le  fo r  two storage leve ls  i t  is unchanged. These storage 

leve ls  are those a t  which the value o f  P , .  can have l i t t l e  e f f e c t  - 250,
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where only a small area is planted, and 500, where the farmer is se l f -  

s u f f ic ie n t .  The greatest average change in P  ̂ from i t s  i n i t i a l  value 

of .1 occurs at low storage and low pathogen abundance where an 

i r rup t ion  would have the greatest e f fec t  on the return.

The e f fec t  of changes in p on the cost, as revealed by gradients

calculated during optimisation, was always much less than the e f fec t  of

s im i la r  proport ional changes in P and th is  is  re f lected in the
-Mpattern of changes in M, where y = 10 . The resul ts  here seem counter

i n tu i t i v e  at f i r s t :  where M has been changed from i t s  i n i t i a l  value of

8 i t  has been increased, thus decreasing the mutation ra te , and th is  

has happened at high pathogen abundance and low storage. The explanation 

is that in the pure superl ine a high mutation rate is a high rate of 

back mutation to avirulence, which decreases the e f fec t  of the super

race. Accordingly the mutation rate has been decreased in that case, 

the case where a substantial area is planted, where the loss of a few 

spores would be most noticed.

Thus the pattern of act ion of the farmer's adversary in the 

game is apparently to adjust Pgxt and y in the d i rec t ion which w i l l  

decrease the immediate return of the po l icy.  The fac t  that the 

stochastic parameters have not been set uniformly to th e i r  extreme 

values may suggest (as was suggested above in section (6 .3 .3))  that 

there is some extra disadvantage fo r  the farmer in the r is k  of extra 

disease as d i s t i n c t  from i t s  certa in a r r i v a l .  In fa c t ,  since y is 

most harmful when reduced in the pure l ine  and may be most harmful when 

increased in a m u l t i l i n e ,  th is  suggestion may well be sometimes true.

In the present case, however, the explanation is to be found in the 

workings of the optimiser. Inspection of the p r in tou t  showed that there 

were in fac t  no intermediate values of P£xt and y: they were always

e i the r  at th e i r  extreme values or th e i r  s ta r t ing  values. The reason
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that  they were sometimes at th e i r  s ta r t ing  values was that where the 

' farmer' aspect o f  the optimiser chose to plant no crop at a l l ,  the 

'pathogen' aspect could discover no e f fec t  of a l te r ing  and y, and

l e f t  them at th e i r  s tar t ing  values. The spread of resul ts  is  thus 

pa r t ly  accounted fo r  by the presence of the local optima in the cost 

function, which fool the farmer's adversary as well as the farmer. 

Figure 6.4.33 shows that the adjustments involved in the game have in 

fac t  made the cost surface more complex at the low disease levels at 

which they are most important.

I f  i t  were not f o r  the in te ract ions between the control 

var iables, the most e f fec t ive  pol icy fo r  the pathogen would have been 

found to be to maintain the extreme values of and y, and the 

correct pol icy fo r  a pessimist ic farmer is thus to assume when growing 

a crop that the superrace w i l l  a r r ive  that year, even i f  there are no 

reports of i t s  occurrence. He would thus gain by being able to 

calculate his pol icy more easi ly  (as a determin is t ic  problem) but would 

lose on the average by creating a depressed market with higher-than- 

planned-for y ie lds .

The fa i lu re  of the optimiser, unaided by human ins igh t ,  to set 

the stochastic parameters to th e i r  extreme values is a fa i lu re  of the 

method and points out the need to guard against control var iables which 

in te rac t  as Pext and the area planted do. However the fa i lu re  does not 

appear at f i r s t  to be of much consequence because the values of  Pgxt 

and y have been reset in every case in which they could matter. This 

appearance is false as can be seen in Figures 6.4.34-9. which show the 

evolut ion of the game through time, from the same s ta r t ing  point as the 

contro l .  The playing of the game has been s u f f i c ie n t  to break down the 

regular l im i t  cycle of the control po l icy  in to  an apparently chaotic 

o s c i l l a t io n ,  though the essential q u a l i ta t ive  approach to disease
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control via rotation remains. The unfolding of the adversary's moves 

is shown in figures 6.4.38-39, which show that the fa ilure to find the 

true 'worst' values of and p can have an important effect, for 

intermediate values of Pgxt and p predominate in the pathogen's choice - 

or at least the farmer's expectation of that choice (section 4.7).

The reason is once again the fact that the chosen control depends on 

interpolation, and the interpolation causes the farmer to imagine that 

intermediate values of the stochastic parameters are l ike ly  - an 

optimistic form of pessimism.

In summary, the worst-possible values for Pgxt and p in this case
-20turn out to be the ir extreme values: 1 and 10 respectively.

Adopting these values has a definite and significant effect on the 

policy chosen, and on its  expected cost and behaviour through time, 

and also introduces extra d i f f ic u l t ie s  in maximising the expected return 

(though the complications in the cost surface may be partly due to the 

interpolation problem). The policy is changed in the direction of 

greater caution, as is desirable, given the purpose of the game.

6.4.3.5. The Unconstrained Baseline Game

The relaxation of the pureline constraints on the baseline game 

did not result in the introduction of any multilines. The fa ilure to 

reject the null hypothesis in this case means that the pureline result 

for the control of the baseline epidemic can be regarded as a locally 

robust policy.
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6.4.4. The Agribusiness System with a Plant with General Resistance 

6.4.4.1. The Biology of the System

As was pointed out in section (4 .8) ,  general resistance can be 

conveniently represented with in the epidemic model as a decrease of 

the growth rate of the pathogen. A decrease in the constant sim of 

equation (4.3.5) represents a decrease in van der Plank's r which 

cannot be reversed by mutation on the part of the pathogen. The 

converse of th is  representat ion, which has not been discussed before, 

is that i t  is impossible to conceive of  a plant that does not have some 

degree of  general resistance, since a zero level of  general resistance 

would correspond to r=°°. From the point of view of  the modeller (and 

the farmer, in the short term) at leas t ,  i t  is  of no consequence 

whether the upper l i m i t  on the pathogen's reproduction is set by the 

pathogen or by the plant.

Thus a l l  the plants modelled in th is  study have a degree of 

"general resistance". However fo r  the purpose of determining the ef fec t  

of increasing the level of general resistance of  a crop, the vigours 

of a l l  three pathogen races was uniformly halved from th e i r  baseline 

values so that
4

s. = 5x10 spores/unit  area/day

fo r  a l l  i and m. The resu l t  o f  the change on the natural dynamics of 

y ie ld  and pathogen increase are shown in f igures 6.40-41. The y ie ld  

fo r  a given spore dose is now higher because the pathogen cannot 

increase so rapid ly  in the epidemic season, and the f ina l  equi l ibr ium 

of  the pathogen is at a lower level because i t  cannot saturate the 

wi ld hosts so f u l l y .  Moreover, the or ig ina l  mutation which leads to 

the increase through time takes longer to generate a serious disease 

problem than in the baseline epidemic. When the pathogen does become 

establ ished i t  increases almost as fas t  as in the baseline epidemic
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because at th is  stage the l im i t in g  fac tor  on the increase between 

cycles is growth on the wi ld  hosts whose general resistance has not 

been augmented.

' 6.4.4.2. The Constrained Control Pol icy

The control po l icy and i t s  outputs are displayed as fo r  the base

l ine  control (Figures 6.4.42-46), but because the po l icy was converged 

without rep l ica t ion  the analysis of variance procedure cannot be 

repeated. Comparison of the po l icy with the baseline pol icy shows 

a basica l ly  s im i la r  structure with some notable dif ferences. The 

most important change in the pol icy is the much more d e f in i te  minimum 

on area planted and maximum on proportion sold at storage = 250; 

however th is  would have been optimal (according to the cost surface) 

fo r  the baseline epidemic as w e l l ,  and so the change represents 

improved convergence of the pol icy.

The other notable dif ference is that the area planted now 

increases at higher levels of the superrace and lower levels of  storage. 

From the cost contours i t  can be seen that as fa r  as immediate 

advantage goes, a lesser area of the crop needs to be planted to 

maximise - k ( i , u ( i ) ) .  As fa r  as maximising -V(tt(X̂  ) ,  X-j) goes, there 

is s t i l l  a c o n f l i c t  between low-planting and high-planting options.

On the one hand the lower pathogen vigour means that higher amounts 

of storage can be handed over to the next cycle without a disease 

penalty and on the other i t  is  no longer so valuable to hand on th is  

storage because, as f igure 6.4.44A shows, the return is even less 

dependent than before on the possession of storage. The contours of 

-V(7T( i ) , i ) show that the incentive to plant less than the baseline 

tends to win out at low superrace levels and the opposite tendency 

tends to prevai l  at high superrace leve ls ,  which is consistent with 

f igure 6.4.44B.
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As a result of these changes the output of the "general 

resistance" policy has also changed from the baseline output. The 

variance of the return has decreased, partly because of the lack of 

replication error and partly because of the lesser effect of the 

standard irruption of the pathogen. The mean return is also higher.

As the superrace input increases, the storage output does not decline 

so much, and the superrace output increases more than i t  did - which 

the economy can now afford. Both these changes can be understood 

as a result of the tendency to plant more at higher superrace levels.

These differences in the cost function and the policy combine 

to make the evolution of the policy (Figs. 6.4.52-7) radically d ifferent 

from that of the baseline policy. Instead of the complex 12-cycle 

rotation there is now a simple (and also stable) two-point l im it  cycle 

in which the fluctuations of a ll variables, particularly the return, 

are much smaller. The superrace now never reaches the proportions of 

a serious problem. The starting point of this evolution is the no

storage, no-disease level and the relative simplicity of the system's 

behaviour shows up an interesting point. The storage of the crop is 

in i t ia l l y  bu il t  up before the superrace becomes a problem (an action 

which would have no purpose i f  no disease were expected) and then 

declines to a low level before the rotation is set up but not to zero. 

This shows that the policy has in fact predicted correctly the course 

of events over the f i r s t  several years, and has planted a suffic ient 

but not excessive area, given the risk of an irruption.

In summary, the system with general resistance shows a strong 

qualitative resemblance to the baseline system, but also shows a 

number of quantitative differences. Several of these can be explained 

in terms of the decreased vigour of the pathogen on the crop, but 

there is a residue of puzzling features. Foremost among these is the
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relatively simple appearance of the cost surface, which lacks the 

complicated fine structure of the baseline cost surface. There are 

two possible explanations for this ,  which are not separable on the 

available evidence. One is that the complexity of the baseline is an 

artefact of the optimiser resolution, that the policy was "unstuck" 

from incomplete convergence by the increase in general resistance and 

that the "general resistance" policy represents a better-converged 

result. The other is that the greater vigour of the baseline pathogen 

requires that the policy must think further ahead: not only must the

economically contradictory effects of u(i) on -k(i ,u ( i )) and - V ( t t ( X - j )  , X - j )  

be resolved, but the effects on -V( t t(X̂ ) »X̂ ) must also be given 

comparable weight. The correct explanation could be identified by 

further convergence of the baseline policy with a less restricted 

optimiser. Unfortunately this was not possible in the time available.

The qualitative similarity between the two policies - the control of 

the pathogen by fallowing or rotation with another crop - remains.

6.4.4.3. The Unconstrained Control Policy

The relaxation of the constraints against using multilines did 

not provoke the algorithm into varying the crop composition. Thus the 

change in the level of general resistance in the plant did not cause 

rejection of the null hypothesis and the use of the pure superline was 

concluded to be locally optimal.

6.4.5. The Agribusiness System with a Cross-protection Effect 

6.4.5.1. The Biology of the System

Implementing cross-protection in the model is somewhat more 

complicated than changing the level of general resistance because 

there are two parameters that can be varied: the area immunised by
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the non-virulent spore and the length of time for which the effect 

lasts. In the s p ir i t  of section 6.2.1 a strong cross-protection 

effect was selected by using the following parameter values

Table 6-5. Cross-protection Parameter Values

FORTRAN Name Source in Text Value

H f.. . (non-virulent, 
equation 4.3.5)

5x10  ̂ area units

ICPTIM Tc (equation 4.3.5) 20 days

Thus the cross-protecting spore was taken as immunising an area 

of the same size as would be infected by a viru lent spore, or as 

reducing the probability of infection over a larger area. Early runs 

of the program suggested that a protected period of the order measured 

by L i t t le f ie ld  (1969) had l i t t l e  effect on epidemic dynamics, and so 

a time period three times as long was used in the converged policy, 

to create a strong effect.

Figure 6.4.57A shows the interesting effect that would be 

expected on multiline yield as a result of cross-protection. I t  would 

be expected that the simpler races would interfere to some extent with 

the superrace on the superline. What is not clear is whether the 

improvement of the yield of the superline would be outweighed by the 

lower yie ld of the simpler lines that are supporting an extra pathogen's 

cover. The figure shows that, at least with this model, i t  is possible 

for the multiline to outyield the superline as a result of cross

protection. What is shown is a replacement series in which the AB 

plant is replaced by the A plant, under a constant dosage of 750 spores 

of each of the aa and aabb races. The pure A crop is completely 

devastated by this dosage, and the pure AB crop loses 86% of i ts  yie ld:
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the i n i t i a l  protect ing e f fec t  of the i n f a l l  of aa spores on the AB 

plant is small. However at mixture compositions where the A plant is 

able to escape most of the aa spores while s t i l l  protect ing the AB 

plant by generating some aa spores through the season, there is a 

de f in i te  though small overyielding of the mixture. To achieve th is  

e f fec t  i t  was necessary to increase the area immunised by cross

protect ion by a fac tor  of  ten over the value used in the experiment.

At lower values the e f fec t  completely disappeared. Thus while the 

parameter values used here are conjectural i t  seems that only a very 

strong cross-protect ion e f fec t  could cause overy ie ld ing, though the 

theoretical  p o s s ib i l i t y  remains open. Even without overy ie ld ing,  

though, cross-protect ion may tend to raise the y ie ld  of m u l t i l ines  

over i t s  value without cross-pro tect ion, and, with the concurrent 

interference with the superrace, th is  increase in y ie ld  may be conducive 

to m u l t i l in e  op t imal i ty .

6.4.5.2. The Constrained Control Pol icy

The s ta r t ing  point fo r  convergence of the cross-protect ion pol icy 

was the converged baseline pol icy. When the cross-protect ion e f fec t  

was introduced, the optimiser "noticed" i t  and made a number of small 

changes to the area planted and proport ion sold variables fo r  several 

grid points. Thus in the determin ist ic  sense of sign if icance there was 

a s ig n i f ica n t  dif ference between the two po l ic ies .  However the changes 

made were so small tha t  a t - t e s t  was applied to tes t  the hypothesis 

that the change in cost fo r  those points where a l te ra t ions  had been 

made in the pol icy was s ig n i f ic a n t l y  d i f fe re n t  from the change in cost 

produced by convergence. Since t=.047 (373 d . f . ) ,  no s ign i f ica n t  

change had been made. The po l icy i t s e l f  is reproduced in figures 

6.4.58-62 as a matter of record, the dif ferences not being detectable
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to the eye. Figures 6.4.63-67 shows the contours of the return, with 

the difference that the contours are shown for a grid point at which 

1000 spores per unit area of both the simpler races were present. Not 

even the highest level of natural in fa l l  of cross-protecting spores 

produces a noticeable difference in the cost surface.

The surprising feature of these results is contained in figures 

6.4.68-73 showing the evolution of the policy through time. The 

surprise is that the extremely small changes in the policy (together 

with the effect of the natural irruptions of the simpler races) are 

suffic ient to make a defin ite change in the evolution of the policy.

The rotation is s t i l l  complex, but i t  now repeats every nine cycles 

instead of twelve, and the wider fluctuations are somewhat damped.

This change does not appear to have any biological significance, but 

is an indicator that the baseline rotation is frag ile , in the sense 

that the details of i ts  operation should not be regarded as having a 

very high importance. A practical version of the baseline control 

might well be produced on the model of the control for the general 

resistance system, by considering only the upper and lower lim its  of 

the area planted as control variables.

6.4.5.3. The Fungistat Policy

Allowing the control the opportunity to add spores of the simpler 

races as a cross-protecting "fungistat" did not provoke the optimiser 

into taking this measure. Since there is no doubt that the spores 

would have a beneficial effect on the y ie ld , i t  must be concluded that 

the cost placed on the use of the spores (0.1 units of return per 

spore) made them too expensive for the benefit conferred. Thus any 

addition of the simpler races to a multiline with cross-protection in 

this system would have, as i t  were, to cross a 'cost barrier' before 

being optimal.
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6.4.5.4. The Unconstrained Control Policy

Relaxing the constraint on the optimiser against the use of 

multilines did not result in the use of any multilines by the algorithm. 

The use of the pure superline could thus be concluded to be locally 

optimal, and also stable to the perturbation involved in introducing a 

strong cross-protection effect.

6.4.6. The Agribusiness System with Stabilising Selection 

6.4.6.1. The Biology of the System

Like the implementation of a cross-protection effect,  the 

simulation of stabilising selection requires some thought. Because 

the stabilising selection effect is often spoken of (e.g. Van der 

Plank (1963)), see section (2.3.4) as though i t  represents a deficiency 

of the superrace i t s e l f ,  rather than a property of the crop or the 

result of an interaction between races on the crop. It is probably 

not sufficient in modelling stabilising selection simply to reduce 

the vigour of the superrace on the crop. It is probably also necessary 

to al ter  the dynamics of the off-season so that the superrace is less 

effective then as well, and this is the approach that has been adopted 

here.

Reduction of the vigour of the superrace on the crop was achieved

in the same way as i t  was for all races on the crop with general

resistance: by halving s.j for all m and for i = 2. There was, by

contrast, some difficulty in deciding how to change the off-season

dynamics in the required fashion while remaining consistent with the

approach previously adopted. The method used was to incorporate

competition coefficients C. into the summations of equation (4.4.1)
3

so that
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C .s(out)K
s(in) = .. .(6.4 .1)
j(n+1) -------------—  x

K~ + ZC s(out)
J j J(n)

where C. = 1 for j = 1 or 3
J

= 0.5 for j = 2

Two important properties of equation (4.4.1) are preserved by this 

approach;

(1) the maximum output from the wild hosts is s t i l l  K-j spores

(2) the growth rate o,f small populations on the wild hosts 

is s t i l l  K-|/l<2 for the simpler races.

The further properties of the relation as far as the superrace is 

concerned are that now

(3) i t  can, in the absence of competition, s t i l l  saturate 

the wild host and produce K-j spores the next season.

However

(4) a larger in it ial  dose of spores from the crop is required 

to achieve a 95% saturation of the wild hosts, because

(5) the growth rate on the wild hosts in the absence of 

competition is half that of the simpler races, and

(6) when the simpler races are present the proportion of 

superrace output to the next crop is lower than the 

proportion in the input to the crop.

Thus the superrace on the wild hosts can be considered (roughly 

speaking for the model here is crude) as capable of producing fewer 

spores per unit area than the simpler races, though able to cover any 

host area given sufficient time.

Figure 6.4.74A shows the result of this modification of epidemic 

dynamics on the growth of the superrace in the absence of competition.
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The appearance of the pathogen as a factor that can depress yield 

takes longer than in the general resistance case. (The dependence of 

yield on superrace abundance is the same as in the general resistance 

case.) Also, the fina l equilibrium level of the superrace is s t i l l  

further reduced.

The question now arises of whether this form of stabilis ing 

selection does stabilise the pathogen population and in what way.

Since on a pure crop of a simpler line the simpler race w il l  drive 

the superrace to extinction while on a pure superrace crop the simpler 

races cannot exist, there ought to be an intermediate crop composition 

at which they coexist. What is not clear is at what level they w il l  

coexist: whether there w ill be a range of neutrally stable states as

in Leonard (1969b), in whose model any in i t ia l  relative proportion of 

races persists, given the correct crop composition, or whether there 

w il l  be a single attractor state to which others tend, or whether some 

more complicated pattern w il l  arise. I t  is also not clear whether 

there w il l  be only one stable crop composition, as with Leonard's 

model, or whether there w il l  be a range of compositions for which there 

is s ta b il i ty .

The d i f f ic u l ty  of imagining the l ike ly  state of affa irs  at 

equilibrium comes about because two types of saturation effect have 

been superimposed on Leonard's simple parallel increase of races. The 

f i r s t  to affect the increase of the pathogen from low levels is the 

saturation of the wild hosts, which w il l  have a different effect on 

the dynamics from that of the la ter saturation of the crop. I t  would 

be possible to adjust the crop composition so that the superrace would 

be the numerical superior within the season while remaining the 

in fe r io r on the wild host. There is thus the poss ib ility  of an 

oscilla ting process occurring.
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In fact the system of this study can be stabilised by the 

choice of crop composition, but i ts  behaviour is interestingly d ifferent 

from a Leonard equilibrium. For the superrace with halved vigour in a 

mixture of A and AB plants, there turns out to be a very restricted 

range of crop compositions in which a stable state occurs. This range 

lies in the approximate region .595 < F(AB) < .599, and the equilibrium 

is a single stable point where there is saturation of the system with 

about 350 aa spores and 293 aabb spores. (This value is varied by 

the exact crop composition.) This state attracts a ll trajectories 

passing through points where both aa and aabb are greater than zero.

Along the line joining the equilibrium state to the origin the two 

races increase at the same rate. Points o ff this line in i t ia te  

trajectories that at f i r s t  go away from the equilibrium and then turn 

to i t  over a period of many hundred crop cycles. The length of time 

taken to reach equilibrium is the reason that the estimates above of 

the stable range in crop composition are not more accurate. I t  takes 

considerable computation to test for the existence of a stable point 

and to find its  position. Figure 6.4.74B shows the trajectories of a 

number of populations started at various in i t ia l  compositions on a crop 

of mixed A and AB plants where F(AB) = .59835. The arrows on the 

trajectories show the direction of motion through time. The f i r s t  arrow 

is placed at the end of the f i r s t  cycle: the last arrow marks 100

cycles. Most of the progress towards equilibrium takes place in the 

f i r s t  five cycles.

This equilibrium also has a quite unexpected property in that i t  

corresponds in the long term to a higher yield than the pure superline. 

Figure 6.4.74C shows the result of a simulated replacement series in 

which each point marks the yield in the twentieth year of a crop of 

the given composition, grown under the stabilis ing selection regime with



the ordinary values of Pext and p. At the right hand end the yield is 

that given by long-term use of the superline alone. Small additions of 

the simpler line make very l i t t l e  difference to the yield because the 

simpler race cannot increase i ts  population on such small fractions of 

the crop. At the left  hand end there is the equilibrium yield under 

the simpler race, which has excluded the superrace and, being more 

vigorous, depresses the yield much more than the superrace does in pure 

culture. At the composition corresponding to the equilibrium of the 

pathogen, however, the yield of the crop exceeds the yield of either of 

the pure lines, showing that the steady population of the simpler race 

interferes so markedly with the superrace on the wild host that i t  

more than offsets the losses i t  causes in i ts  growth on the crop.

However at a slightly lower proportion of the superline, at which the 

superrace is driven to extinction, the yield reaches a maximum. Yield 

is apparently maximised over this time-span by the use of the minimum 

amount of the simpler needed to ensure suppression of the superrace.

This effect occurs only when the races have settled down to their 

equilibrium population. In the f i r s t  few years of the multiline the 

yield is lower than that of the pure superline. As the advantage of 

the simpler race decreases, the peak of yield decreases in size and 

moves towards the le f t  hand end of the graph. A trace of i t  is s t i l l  

present in the baseline epidemic, where a 90%A : 10%AB crop yields about 

.6% higher than an 80%A : 20%AB crop after 20 years (but well below the 

pure superline yield).

The stable state for the system is both more and less fragile 

than a Leonard equilibrium. It is more fragile because slight changes 

in the composition of the pathogen population cause wide swings away 

from equilibrium. It is less fragile because all trajectories 

eventually reach a common equilibrium point and because there is a
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range, although only a small one, of crop compositions for which an 

equilibrium point exists. I t  is also worth noting that this e q u i l i

brium point is on the boundary of the region reachable by the pathogen. 

Thus the equilibrium is reached by saturating the wild hosts and the 

crop.

I t  is not clear how general the practical and biological 

significance of this result is . The general point should be taken that 

without some mutual inhib ition of the pathogen races on a multiline, 

an equilibrium w il l  only be attained at a saturation level. Beyond 

this there is the suggestion that real systems which exhibit saturation 

may be more robust than the Leonard system in the sense that equilibrium 

is attainable for a range of crop compositions. A Leonard equilibrium 

would be quite unattainable in practice as the crop composition would 

have to be continually adjusted or else small errors in estimating the 

natural growth rate of the pathogen would result in some races going 

to extinction. The form of the saturation seems to be c r i t ic a l ,  and 

i t  may be that only the interplay of the two types of saturation - on 

the crop and in the off-season - allow an attractor to exist or a long

term rise in yield to occur in a multiline.

6.4.6.2. The Constrained Control

The policy for the system with stabilis ing selection is displayed 

in figures 6.4.75 to 79. At f i r s t  sight the laws appear to be the 

same as those for the general resistance case. In fact there are small 

differences which can be discovered by close inspection: the average

fraction sold at low storage has been very s ligh tly  increased and that 

at high superrace abundance has been s ligh tly  reduced. Besides th is , 

the area planted at low storage has been increased. There does not seem 

to be a test to show whether these changes are s ta t is t ic a l ly  significant.
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It seems more likely that they represent slight adjustments to the 

sticky optimiser caused by the changes in off-season dynamics. This 

interpretation is supported by the contours of return which, although 

they show quite noticeable changes in the relative merits of many sub- 

optimal controls, put the optima in the same positions as for the 

general resistance case.

The results of these small changes and the change in the off

season dynamics (presumably mainly the la tter)  are a further slight 

increase over the general resistance case of the expected return at 

the zero storage level and a reduction of i ts  variance. The variance 

of expected return is also reduced somewhat at high superrace abundance.

Inspection of the contours of the return surfaces shown in 

figures 6.4.80-84 reveals that there has been a further slight shift 

of the regions of higher return in the direction that was observed in 

going from the baseline to the general resistance case. At low levels 

of the superrace the tendency to plant less and to sell a higher 

proportion of the available product in keeping with the lesser l ik e l i 

hood of loss of yield at these levels. At the intermediate levels of 

the superrace these tendencies gradually weaken, especially at the 

higher levels of storage. But the overall trend can be accounted for 

by supposing that the need to provide against the risk from further 

epidemics has been further decreased by the further weakening of the 

superrace.

Figures 6.4.85-90, which show the evolution of the policy through 

time, reveal, however, a marked qualitative change in behaviour from 

what seemed above to be a policy rather similar to that for the general 

resistance case. The most striking feature of this change is that the 

policy evolution is no longer an oscillatory one and that after some
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i n i t i a l  adjustments which even out the var ia t ions in the return caused 

by the reduction of the i n i t i a l  storage level and the appearance of the 

disease, the system reaches a steady state which is then maintained 

in d e f in i te l y .  There is some doubt about the reason fo r  th is  abrupt 

qua l i ta t ive  change. The o sc i l la t io ns  in the previous results may have 

been pa r t ly  induced by the use of l inear  in te rpo la t ion  to derive the 

evolut ion of the optimal contro l .  This could come about because controls 

covering a l im i ted  range in state space tend to be treated as l inear 

or bang-bang contro ls . Thus some of the osc i l la t io ns  in the evolut ion 

of the controls might be spurious. However in the range of systems 

spanned by the disease-free case and the baseline epidemic we can form 

a ranking of the seriousness of the disease problems. The baseline 

epidemic is a more serious threat (marginal ly) than the cross

protect ion case which in turn is more serious than the general 

resistance case, which i t s e l f  is  more serious than the epidemic where 

there is s ta b i l i s in g  select ion w i th ,  f i n a l l y ,  the disease-free state 

having the smallest problem. In th is  ranking there is a clear trend 

from more widely o s c i l la to ry  to less widely o s c i l la to ry  evolutions of 

the optimal pol icy. This is in accordance with common sense because 

the slower recovery rates of the less serious epidemics in the i n i t i a l  

phase of each ro ta t ion allows storage to be b u i l t  up before the super

race can have a marked e f fec t  on the y ie ld .  Thus we can have some 

confidence that at some point between the system with general 

resistance and that with s ta b i l i s in g  select ion a threshold was passed 

on one side of which ro ta t ion  is necessary and on the other side of 

which the disease problem has decreased s u f f i c ie n t l y  that the farmer 

can coexist with the pathogen in a steady state.

This steady state can with advantage be compared to the m u l t i l in e  

equi l ibr ium described in the previous section. In the pure superl ine
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equilibrium the area planted is about seven per cent lower than the 

area which would be planted to the superline in the equilibrium multi- 

line. This reduction is much greater than the effective reduction in

area experienced by the superrace in the multiline as a result of the
»

presence of the simpler race. Consequently, the abundance of the super

race in i ts steady state is only about half i ts  abundance in the multi- 

line equilibrium. The further consequence of this is that the yield 

per unit area of the superline crop never drops below about three 

hundred and seventy units per unit area. The total yield of the super

line is about one hundred and ninety units compared with the total 

yield of the multiline equilibrium of three hundred units. However in 

the multiline case the variable costs would have been about twice as 

great. A comparison of the two steady states is thus reasonably 

favourable to the multiline case.

6.4.6.3. The Unconstrained Control

The relaxation of the constraint to use only the pure superline 

did not result in the optimiser introducing any of the simpler lines 

into the crop. The question thus arises of why one of the apparently 

more favourable multiline compositions from figure 6.4.74C was not used. 

In particular,  since there has been so much discussion of questions of 

stabil i ty in multilines, i t  is of interest to see whether there is 

some unobvious disadvantage attached to the use of the equilibrium 

composition.

The results of an attempt to shed some light on this problem are 

shown in figures 6.4.90.1A-D. Strictly speaking a comparison between 

the use of the equilibrium composition of the crop and the superline line 

optimal policy can only be made by deriving the optimal policy in terms 

of the area planted and proportion sold for the equilibrium crop
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composition but th is  was not possible in the avai lable time. Instead 

the f igures show the resu l t  o f  growing the equi l ibr ium crop fo r  50 

cycles given the standard p robab i l i t ies  o f  i r ru p t ion  and mutation. For 

th is  simple pol icy i t  is assumed that the to ta l  area is planted and 

that everything harvested is sold at once.

I t  can be seen that  the y ie ld  is much more depressed than in 

f igure 6.4.88, and that the two pathogen races increase in step with 

each other, reaching equi l ibr ium much fas ter  than in f igure  6.4.74B.

The equi l ibr ium which they reach is higher than that of f igure 6.4.74B 

in the superrace and lower in the subrace. The reason is  that in 

f igure 6.4.90.1 there is  a continual in f lu x  of equal amounts of the two 

races from outside the system, due to the ordinary stochastic pathogen 

behaviour, and th is  reinforces the superrace which has an advantage on 

the crop to balance i t s  disadvantage during the off-season. The in f lu x  

also drives the system to th is  dynamic equi l ibr ium fas te r  than would 

otherwise be the case. The c r i t i c a l  comparison comes in f igure  6.4 .90 . ID, 

where the return col lected at each cycle is shown. The i n i t i a l  phase 

fo r  the equi l ibr ium crop is r e la t i v e ly  poor in return because the 

in f le x ib le  control f loods the market. However in the f ina l  state the 

yearly  return of the m u l t i l in e  equi l ibr ium crop is s l i g h t l y  higher 

(compare f igures 6.4.87 and 6 .4 .90 . ID).

The most obvious conclusion from th is  resu l t  is that the 

equi l ibr ium crop is in the long run a better crop to grow than the 

pure superline. However th is  conclusion would be premature, fo r  reasons 

connected with the behaviour of the t ra jec to r ies  in f igure  6.4.74B and 

with the stochastic behaviour of the system. What is shown in a l l  the 

graphs of pol icy evolut ion is the behaviour of the system i f  the 

expected amount of the pathogen is the input to each stage (see section
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6.4.1.2.2.3). In the case of the equilibrium this trajectory, which 

passes along the direct line from the origin to equilibrium, is very 

improbable. As figure 6.4.74B shows, i f  at low pathogen abundance an 

irruption of one race arrives but not the other, the system w il l  be 

temporarily destablished. On half these divergent trajectories the 

superrace increases suddenly and the yield drops. Thus the expected 

crop return is probably lower than the return along the trajectory 

shown in figures 6.4.90.1A-D. Paradoxically, the equilibrium crop 

w il l  y ie ld a less stable return than the conventional pure superline.

The most balanced judgement is probably that in introducing 

stabilis ing selection the seriousness of the disease problem has been 

so reduced that there exists a wide range of only marginally sub-optimal 

policies, and that although the pure superline policy is locally 

optimal there may be other optima that are not greatly different in 

expected cost. Even the yield advantage of the highest-yielding 

multiline from figure 6.4.74C would be counterbalanced somewhat by 

this crop's sensit iv ity  to irruptions of the simpler races as well as 

the superrace.

6.4.7. The Agribusiness with a Growing Plant 

6.4.7.1. The Biology of the System

Because there is l i t t l e  guidance available from the current 

state of debate on the modelling of plant growth (section 4.3.3), the 

problem to be faced in introducing this particular kind of realism into 

the simulation are greater than in the previous experiments. The key 

parameters available to be varied are the in i t ia l  size of the plant at 

Day 1 of the growing season and its  relative growth rate (k in equation 

4.3.13). The non-growing plant used in the previous experiments
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corresponds to values of, respectively, 1 and 0. The question there

fore, is how to vary these values in such a way as to increase realism

while maintaining a system which is comparable with those used 

previously.

An in i t ia l  attempt was to use the relative growth rate used in 

Figure 4. to mimic the data of Rawson and Hofstra (1969) and to 

choose the in i t ia l  plant size so that the size at the c r i t ic a l point 

for yield determination was the same as that of the non-growing plant. 

However this choce of parameter values led to a plant that was to ta l ly

unaffected by disease since almost a ll of the in i t ia l  in fa l l  of spores

died on the ground a fter missing the small area of plant tissue. This 

result emphasised the importance of choosing parameter values that 

allow empidemics on growing and non-growing plants to be compared.

Several c r ite r ia  for making this comparison were considered.

The two that received most attention were:

1. choosing parameter values so that the integral over 

time of plant size was the same in the growing and 

non-growing cases, thus in a sense normalising the 

size of the plant across the different models.

2. the functional c riterion of choosing parameter values 

so that the damage done to the yie ld by the standard 

irruption was the same as for the baseline epidemic.

With two parameters available to be varied, i t  at f i r s t  appeared that 

there would be a point satisfying both these c r ite r ia  which would be 

a natural choice. Figure 6.4.91A is the curve of parameter values 

that satisfy the functional criterion 2. Unfortunately, the only 

point that this curve shares with the curve of points satisfying 

criterion 1 is that defining the non-growing plant. Accordingly, as
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the functional c r i t e r io n  is  strongly bound up with the stochastic 

nature of the problem, i t  was decided to take th is  curve as paramet

r is ing  the growth of the plant and, using the Rawson and Hoffstra 

( re la t ive )  growth rate of 0.23 units per day, an i n i t i a l  plant size of 

.0112 was chosen. The maximum size which th is  plant atta ins in the 

absence of disease is 6.52 units at the c r i t i c a l  point for  y ie ld  

determination.

Figure 6.4.91C shows the dependence of y ie ld  on pathogen input 

that resu lts from the use of these parameter values; the e f fec t  of  the 

pathogen on the y ie ld  is somewhat more severe than in the baseline case. 

The net resu l t  fo r  the pathogen of a host whose size increases as the 

pathogen reproduces is to permit a much greater to ta l  area to be 

occupied by the pathogen, hence the fu r the r  depression of y ie ld  at 

higher pathogen inputs. This accelerat ion of the pathogen can also be 

seen in f igure 6.4.91B where the onset of  the disease problem is  more 

sudden than fo r  the baseline epidemic.

6.4 .7.2 . The Constrained Control

The control laws fo r  the agribusiness with a growing plant are 

shown in f igures 6.4.92-96. These laws are s im i la r  in type to those 

described fo r  the previous experiments. One d is t in c t iv e  and expl icable 

dif ference l ies  in the reduction of area planted at low storage 

compared with the baseline epidemic. This appears to be caused by a 

greater p robab i l i ty  of  loss from disease in th is  system as compared 

with the baseline system. Inspection of the contours of  return in 

f igures 6.4.97-101 shows that  the greater e f fec t ive  vigour of the 

pathogen detected in the previous section has resulted in steep
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decreases in return as the area planted increases away from zero at 

low storage. Otherwise the contours resemble those of the baseline 

system in their complexity and in the presence of fine detail rather 

than the general resistance/stabilising selection systems.
I

As might be expected the process of calculating the evolution 

of the policy through time which has in the other experiments been 

the most sensitive detector of the effects of small changes in the 

return surface and in the control laws has produced a result which is 

noticeably different from the baseline case. Figures 6.4.102-108 show 

an evolution which is of the apparently chaotic type found in the 

baseline game rather than the regular limit cycles encountered else

where. In keeping with the hypothesis of section (6.4.6.2), this 

most vigorous of pathogens provokes a rotation in which the area 

planted and the return from each crop fluctuate more widely than in 

the other experiments.

6.4.7.3. The Unconstrained Control

When the constraints against using multilines were relaxed the 

algorithm responded by introducing small amounts of the simpler lines 

at 9 of the 625 grid points. In no case was the proportion of the 

superline decreased below 98 per cent and the cost reductions were not 

significant. The use of multilines was therefore significant in the 

deterministic sense though not in the s ta tis t ical  sense. Since in each 

case their use was associated with small changes in the area planted 

(of the order of 3 per cent) i t  was open to question whether their use 

was a result of the kind of interaction between control variables 

discussed in section (6.3.1.1). The multiline points occurred
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exclusively at storage values of 125 units and in cases where at least 

one of the simpler races had an abundance of 1000 spores. I t  was 

observed that in each case the yie ld of the crop had increased by an 

amount of the order of .1%.
f

There was thus a novel factor in the response of the growing 

plant to the pathogen, not possible in the non-growing plant, which 

would undoubtedly make i t  favourable to use multilines, since while 

yield was being increased the output of the superrace was being 

decreased by sim ilarly small proportions. Upon investigation,it was 

found that the yield of a replacement series, such as that shown in 

figure 4.2 can increase s lig h t ly ,  according to this model, for small 

inclusions of the simpler lines. The effect decreases as the growth 

parameters of the model move along the curve of figure 6.4.91Ä towards 

the non-growing plant and increases as the parameters are changed in the 

opposite direction. However, within the range shown in figure 6.4.91A 

the effect only occurs at very high densities of the simpler races, is 

never greater than a few tenths of a per cent, and appears only in 

almost pure superlines. I t  apparently represents a s ligh t response of 

the superline to the depression in size of the simpler line which more 

than cancels the loss of the simpler line. In real terms, this might 

correspond to a crop that was being planted at too high a density so 

that the re la tive ly  l ig h t ly  affected superline is partly released from 

competition by the heavier effect of the double inoculation on the 

simpler line. Whether this effect can be expected to occur in real 

multiline crops is debatable; in section (4.3.3) i t  was remarked that 

the evidence for compensatory growth in crop/pathogen systems is 

sparse. However i t  is s ignificant that an attempt at the introduction 

of realism in relation to plant growth into the current level of debate
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has been the only fac tor  of those "s ig n i f ica n t "  b io logical factors 

studied (section 6.2.3) which has induced the op t ima l i ty  of mu l t i l ines  

fo r  the agribusiness. I t  is therefore l i k e l y  that re la t i v e ly  simple 

arguments based on a non-growing plant are not adequate as a basis fo r  

deciding on optimal gene use.

6.4.7.4. The Constrained Game

Although the m u l t i l ines  discovered in th is  experiment were not 

s ig n i f ica n t  s t a t i s t i c a l l y  or p ra c t i c a l l y ,  the tes t  fo r  robustness in 

the minimax sense was appl ied. Figures 6.4.108-109 show a s im i la r  

pattern fo r  the adjustment of  the stochastic parameters to that 

observed in the baseline game. For the same reasons as in the baseline 

game, intermediate values of and y appear both in the "moves" of

the pathogen aspect of the game and in the evolut ion of the game 

(Figs. 6.4.111-116). The s ign if icance of the evolut ion of the game is 

therefore subject to the same l im i ta t io ns  as in the case of the baseline 

game.

6.4.7.5. The Unconstrained Game

When the constraints against the use of mu l t i l ines  were relaxed 

in the game, s im i la r  s t a t i s t i c a l l y  non-s ign i f icant  introductions of 

the simpler l ines to those in the unconstrained control were made.

These occurred at the same grid points as in the unconstrained contro l ,  

and since at these points an area greater than zero was planted th is  

choice of mu l t i l ines  would have been exposed to the ef fects  of the 

var ia t ion  in the stochastic parameters. Thus although the mu l t i l ines
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used in th is  experiment were not s t a t i s t i c a l l y  or p ra c t ica l ly  

s ig n i f ic a n t ,  th e i r  use was lo ca l ly  robust in the minimax sense, which 

fu r the r  supports the conclusion reached in section (6 .4 .7 .3) .

r

6.5. The Subsistence Cr i te r ion

6.5.1. The Economic Parameters

As with the agribusiness c r i te r io n  the economic parameters fo r  

the subsistence c r i t e r io n ,  l i s te d  in Table 6-6, were chosen so that in 

the absence of disease the subsistence farmers would be in a state of 

abundance. Abundance here, because of the u t i l i t y  function used 

(Equation 4.6.7) is defined by the p o s s ib i l i t y  of maintaining the 

preferred body weight and no account is  taken of the amount of work 

needed to achieve th is .  In the next section i t  w i l l  be shown, however, 

that the subsistence farmers need only work a small f rac t ion  of the 

year to a t ta in  th e i r  preferred body weight, even a f te r  a period of 

s tarvat ion.
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Table 6-6.

FORTRAN Name Source in Text Val ue

FIXCOS c-j (equation 4.6.10) 365.25 crop units

WORMUL k  ̂ (equation ,4.6.9) 5.0 crop units/day worked

HAFWOR k  ̂ (equation 4.6.9) 100 days

CONRAT k  ̂ (equation 4.6.10) 1.5 crop units/day worked

SPOCOS (section 4.6) 0.1 crop units/spore added/ 
unit

Thus the subsistence farmers have the capacity to produce much

more than they eat in any year. However, because of the ir u t i l i t y  

function, there is a cost on the carryover of storage from year to year, 

and the upper l im it  on what they can store (section 4.6.2) makes i t  

impossible for them to exist for more than a year i f  they do not work, 

even i f  they start from that upper l im it .

6.5.2. Subsistence Farming in the Absence of Disease

Figure 6.5.1 shows the simple rule that governs the optimum work 

rate for the subsistence farmers in the absence of disease. The 

consequence of the abundant environment described in the previous section 

can be seen in this rule. While at low storage the farmers must work 

sixty days a year in order to maintain the ir preferred body weight, at 

high storage levels they stop work almost entire ly and live on the ir 

stored fa t. This rule is so effective that the expected cost for any 

state is zero and so is the state output ( i.e . the preferred body 

weight is always attained) and so these variables are not plotted.

There is only one exp lic it  control variable mentioned in the 

subsistence crite rion : the work done in days per year. However there

was an unintended side effect of the introduction of a cost for the
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addit ion of spores of the simpler races. The use of the same "small" 

cost fo r  spores introduced in the agribusiness case in e f fec t  

introduced another control var iable.  An overweight subsistence 

farmer can move more rap id ly  to the preferred body weight by adding 

spores that have no epidemiological function to the system. Thus, in 

th is  one-product economy, the spores play a role not unl ike sports or 

c ra f ts .  The square-law u t i l i t y  function magnifies the e f fec t  of using 

spores non- l inear ly  and the resu l t  can be seen in f igures 6.5.2 A-C. 

These f igures show the cost surface fo r  the subsistence farmer in the 

same manner as the return surface fo r  the agribusiness was shown in 

section (6.4).  The starred contour now encloses the regions where the 

cost is less than one per cent of the distance between the lowest and 

the highest cost above the minimum.

Figure 6.5.2A, showing the cost in the present year of the 

control act ion, indicates that at low storage there is a single optimum 

work rate at the s ix ty  day level indicated by f igure  6.5.1. At 

lower levels of work the cost mounts rapid ly  to the maximum leve l .  At 

higher rates of work body weight increases more gradually and reaches a 

maximum at about 250 days worked. A f te r  th is  po in t ,  diminishing returns 

set in and the farmer expends more energy than he receives fo r  every 

addit ional un i t  of the balanced d ie t  produced. At work levels above 

the optimum i t  is possible to decrease the cost by adding spores to 

the system, but th is  was not permitted in the convergence of th is  

constrained control law.

At higher storage levels the optimum amount of  work moves 

steadi ly  to the l e f t  and at the highest storage level is almost against 

the l e f t  hand end of the axis. The surface fo r  storage equal to zero 

shows that at the preferred body weight i t s e l f  the optimum work range 

is very sharply defined, as the cost contours change th e i r  curvature
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from being convex towards higher work levels (corresponding to excess 

body weight) to being convex towards the lower levels where weight is 

being los t  below the optimum. The change corresponds to the work 

level at which the addit ion of spores ceases to become a means of 

reducing body weight and becomes a drain on energy.

Because of the great effect iveness of the control law on the 

disease free state the surface of cost f o r  a l l  subsequent years 

(Figure 6.5.2B) is almost completely f l a t ,  but the contour gradations 

that can be seen form a kind of mirror image of those fo r  the present 

cost. In th is  mirror ing there is a resemblance to the agribusiness 

c r i te r io n .  Figure 6.5.2B shows that the maximum future cost is 

usual ly located at the same control values that provide the minimum 

present cost. This appears to betray a preference that was not 

e x p l i c i t l y  b u i l t  in to  the model fo r  achieving the preferred body weight 

by the least possible amount of work, and may represent residual 

convergence er ror  only, since the magnitudes involved are very small.

The f latness of these contours is evident from considering the contours 

of to ta l  expected cost, which are in th is  case ind ist inguishable from 

those of the present cost.

I t  should be observed that though the contours of cost are 

simpler than the contours of  return fo r  the agribusiness, they are also 

non-convex. Because of the p o s s ib i l i t y  of adding spores there is only 

one global optimum, but i f  the farmer is not allowed to add spores he 

has a choice between two local optima in most cases, one at the maximum 

work rate and one at a lower work rate. Because the pol icy fo r  the 

disease-free state was converged quite gradual ly from an i n i t i a l  control 

of zero days worked, the global optimum at the lower work rate was 

found in each case. However, in la te r  experiments, the presence of 

the a l te rna t ive  optimum had a s ig n i f ica n t  e f fec t .
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Figures 6.5.3 and 6.5.4 show the evolution of the simple control 

through time from an in i t ia l  condition of maximum body weight. I t  can 

be seen that the in i t ia l l y  low work rate rises a fter one season to i ts  

constant fina l value and that, correspondingly, the preferred body
t

weight (scaled to zero) is reached and then maintained.

In summary, the optimum behaviour for the subsistence farmer in 

the absence of disease is to work as l i t t l e  as is necessary to attain 

the preferred body weight in any given year. Because of the diminishing 

returns to agricultural work and the consumption of the balanced diet 

in that work, the farmer may find himself in a situation in which he 

must work harder to reduce his body weight. This fa ir ly  paradoxical 

effect has its  parallels in our own society, and should not be dismissed 

as to ta l ly  unrealistic, but i t  did not affect the calculation of the 

control law displayed in this section.

6.5.3. The Baseline Epidemic 

6.5.3.1. The Constrained Control

The biological parameters of this epidemic are the same as those 

of the agribusiness epidemic. Figures 6.5.5 A-B show the control policy. 

I t  can be seen that the optimum amount of work has been increased at a ll 

levels of storage, but especially at the higher levels, which is only 

to be expected, given the average reduction of y ie ld . Figure 6.5.5B 

shows that most of the va r ia b il i ty  in work rate is now explained by the 

disease abundance, and that storage only plays a role in determining 

work done at low superrace levels.

The shape of the curve in figure 6.5.5B can be explained in the 

following way: at low superrace levels the expected yield is determined

by a re la tive ly small loss due to irruptions in a clean crop, and the
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work needed to achieve the preferred body weight is only s l i g h t l y  above 

that needed in the disease-free case. At the second level of superrace 

abundance the y ie ld  decreases (to about 170 units) and i t  is no longer 

possible to reach preferred body weight from the lower body weights: 

working about 145 days gives the minimum net loss of 80 units of the 

balanced d ie t .  Farmers at a l l  levels of storage work th is  amount; thus 

the farmers at high storage levels are beginning, unl ike those in the 

disease-free case, to take thought fo r  the morrow by re ta in ing as much 

fa t  as possible. At higher superrace levels the minimum net loss of 

weight becomes larger and larger ,  the farmers run in to  diminishing 

returns sooner and the optimum level of work f a l l s .

Figures 6.5.6A-B show the dependence of  the expected cost on 

the state var iables. As might be expected, the possession of storage 

does reduce the cost somewhat, and also reduces the variance of the 

expected cost. However most of the var ia t ion  in expected cost is 

determined by the superrace, which causes a steady r ise in cost very 

d i f fe re n t  from the minor changes in return caused by the superrace in 

the agribusiness. Figures 6.5.7A-B show the storage output which is 

a smooth function of the two state variables. The fac t  that the 

expected storage output is almost at i t s  upper l i m i t  at low superrace 

abundance indicates that  the subsistence farmers attempt to reach the i r  

storage l i m i t ,  as an insurance against loss, wherever possible.

Figure 6.5.8 shows the expected input-output re la t ion  of the superrace 

(the control cannot a f fec t  th is  output and so the superrace cannot be 

made a function of the storage).
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Table 6-7. ANOVÄ fo r  Subsistence Baseline 

Control var iab le : Days Worked Per Year

Sums o f Squares d . f . Mean Squared Error F-Ratios

Storage 26795. 1 4 6698.7 81713**

Superrace 6132600. 4 153320. 1870200**

In teraction 106730. 16 6670.5 81370**

Error 28.69 350 .08198

Total 746810 374

**  = S ign if ica n t at the 1% level

When the shape of the cost surface which has been d ic ta t ing  

these resu lts  is  examined an in te res ting  po int becomes evident. Despite 

the re la t iv e ly  simple form of the surface compared to the surfaces of 

section (6 .4 ),  a catastrophe has occurred. As the amount of the super

race increases at storage = 300 from zero to 250, the hump of cost at 

higher work levels which resu lts  from extra weight accumulated has 

been converted in to  a depression and the local optimum at 365 days 

worked has been lo s t .  This catastrophe is  so much simpler than those 

of the agribusiness surface tha t i t  can be id e n t i f ie d  as a cusp 

catastrophe (Zeeman, 1976). In the terminology of Zeeman, the dimension 

of superrace abundance is  a control axis and the dimension of work done 

is  a behaviour axis. (N.B. The contourless plots are those in which 

the p lo t t in g  routine encounters a surface in which the va r ia tion  in
_ 5

cost is less than 10 o f the minimum cost. Economically these 

correspond to cases where the storage output is at the lower l im i t  

whatever the amount of work done).

In economic terms the catastrophe occurs when the y ie ld  drops 

below the level at which i t  is  possible to a tta in  the preferred body- 

weight from a given level of storage, and fo r  the baseline epidemic
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this occurs between superrace = 0 and superrace = 250. When the 

catastrophe occurs the farmer's pattern of work changes from an 

attempt to increase production in response to the pathogen to a 

( fu t i le )  holding action against starvation, and this is i l lustra ted
t

by the evolution of the policy in figures 6.15.4-18. Storage begins 

at a high level and the work rate at this time is fa ir ly  low, though 

more than enough to keep body weight above the preferred level. As 

the yield decreases the work rate is increased and the high storage 

maintained - causing the early peak in the cost record - but when the 

yield drops and the catastrophe occurs the work rate drops and the 

storage fa l ls  steadily until the starvation level is reached in cycle 

five. As the storage drops through the preferred level there is one 

cycle of low cost, but by cycle five the cost is the constant 

(arbitrary) cost associated with a year's starvation at the lowest 

level of storage. During the course of the evolution the superrace 

follows i ts  natural pattern of increase unchecked.

In summary, the optimal pattern of work for the subsistence 

farmer facing the baseline epidemic is a brief f lu rry  of ac tiv ity  which 

defers starvation for two or three cycles. After this active period 

they lapse into a semi-apathy that conserves body weight as long as 

possible. The contrast with the power over the disease given by the 

agribusiness' option of rotating the crop is very sharp.

6.5.3.2. The Unconstrained Control

Relaxing the constraints on the optimiser to permit the addition 

of spores and the use of a multiline did not result in the use of 

either option. Thus apparently for the baseline subsistence case the 

use of a pure superline is locally optimal, and the requirement of 

maximising net food output in the face of the severe epidemic does not
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permit the downward adjustment of net output via the energy-consuming 

use of spores.

6.5 .3 .3 . The Constrained Game

The re su lt  of the constrained game can be described quite 

simply since, in the absence of the in te rac tion  of area planted with 

P t» the maximising phase of the optimiser set P^^. uniformly to 1.

At the same time y was s l ig h t ly  decreased in many cases, presumably 

fo r  the same reason suggested in section (6 .4). However the e f fe c t  

of changes in y was so s l ig h t  compared to the e f fe c t  of changes in 

^ext 1n a num̂ er cases i t  was l e f t  unchanged. Thus once again

the correct outlook fo r  a pessimist was to assume tha t the superrace 

is bound to a rr ive  at once.

6 .5 .3 .4 . The Unconstrained Game

The re laxation o f the constraints to the pure superline in the 

baseline game was responsible fo r  two in te res ting  phenomena. The f i r s t  

of these was that m u lt i l in e s  were introduced. The second was that the 

convergence of the po licy  abruptly became very much slower. These two 

events proved to be connected in the fo llow ing manner.

When i t  was observed tha t the rate of convergence was extremely 

slow, an examination of those gr id  points where the game was proving 

most res is tan t to convergence showed in a number o f cases that there 

was anomalous behaviour. I t  appeared tha t the cost to the farmers 

increased without the stochastic parameters having changed. Further 

investiga tion  showed tha t in fac t P  ̂ was shu tt l ing  between 1 and 0 

in successive maximisations, which was in contrad ic tion with the re su lt  

of the previous section.
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The explanation began with the discovery that the converged 

solution of the constrained game had not been properly applied to the 

starting condition of the unconstrained game. As a result some init ial  

values of work done were excessive, and for these values the most harmful 

effect of varying the stochastic parameters was to decrease Pgxt since 

when this was done the yield rose and so did the farmers' body weight 

(at a constant work rate). For some such grid points the response of 

the minimiser was to introduce multilines, apparently as a means of 

reducing the yield, or to drive the work done to i ts  upper limit and to 

add spores to reduce body weight directly. For a proportion of these 

responses the position on the cost surface was now such that the 

minimiser again increased P and a cycle began.

While this illuminated the reason for the increase and decrease 

of P i t  did not explain why there was no sign of convergence in 

the cycle. The explanation for this turned out to be one that depended 

in a quite basic way on the manner in which the stochastic introduction 

of epidemics was modelled. For a case in which a pure line (including 

a pure simpler line) is planted the cost is given by

E(V) = Pext V(+) + (1 - Pext) V(-) .. .(6.5 .1)

where V(+) is the cost if  an irruption occurs and V(-) is the cost 

without an irruption. This is a linear function of P and i f  a 

cycle of the type described above begins, i ts  linearity means there 

is no unique solution for the game.

This can be seen by considering the two settings of the minimiser 

aspect of the control that are involved. Let u-j be the control that 

minimises V( + ) and û  be the control that minimises V(-). If V( + , u-j)

< V (-, u-j) and V (-,  u^) < V(+, u )̂ the cycle will begin. There will be 

an intermediate control û  for which V(-, u^) = V(+, u^), and the line 

of cost connecting them will be level. This line is a set of "mini-
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neutra l" solutions of the game, but because i t  is not s t r i c t l y  concave 

fo r  a l l  the system has no minimax po in t, and the cycle w i l l

continue in d e f in i te ly  unless the convergence of other parts of the 

po licy  changes the cost surface.

Thus i t  was a matter o f  chance that the constrained game had 

converged, and though the presence of the m u lt i l in e s  in the unconstrained 

game was in tr ig u in g  they were unanalysable because of the very complex 

pattern of in te ractions with Pext and the other control var iab les, and 

because of the uncerta inty about whether the game would eventually 

converge. When i t  was found that the constrained games started fo r  

some of the other experiments exhibited the same behaviour even more 

frequently than the baseline unconstrained game, i t  was decided that 

the fu r th e r  application of the minimax te s t  to the subsistence controls 

should be ceased.

In summary, the app lica tion  of the game technique to the baseline 

po licy suggested tha t the pessimist should, as in the agribusiness case, 

assume tha t the pathogen is  certa in  to i r ru p t .  However, in th is  case, 

i f  he has not decided on the correct amount of work to do he may be 

the loser by his pessimism. The re su lt  of the unconstrained game 

suggested ta n ta l is in g ly  tha t the pessimist should also plant m u lt i l in e s ,  

but fo r  the reasons set out above th is  suggestion could not be checked. 

The process which hindered the convergence of the game was in i t s e l f  

a ra ther in te res ting  and unforeseeable in te ra c t io n , which could only 

come about because of

(1) the diminishing return of y ie ld  fo r  work which creates 

the local optimum at high work levels

(2) the u t i l i t y  law which makes a low Pgxt disadvantageous 

to the farmers at these high work levels
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(3) the way in which the stochastic introduction of new 

races is modelled.

I t  was especially the excessive simplicity of (3) that made i t  

impossible in some crops to find a minimax solution and future workers 

should consider carefully the way in which they handle the stochastic 

element of optimal gene use.

6.5.4. Subsistence with General Resistance 

6.5.4.1. The Constrained Control

The biological parameters for this epidemic are the same as 

for the agribusiness case. In the absence of rotation the ir effect in 

this criterion is to convert the insupportable baseline epidemic into 

an epidemic which can be lived with. One way of looking at the reason 

for this conversion is simply that the yield in the general resistance 

epidemic never drops so low as in the baseline case. A more abstract 

way of looking at the change is that the line in state space along 

which the catastrophe in the cost surface occurs has moved a considerable 

distance.

Figures 6.5.19A-B show the control laws for the general 

resistance policy. The f i r s t  point to notice is that the mean work 

done for each storage level has reverted to something like the disease- 

free pattern, but at a higher level. This is because at the higher 

levels of storage i t  is once more possible to live almost entirely on 

stored food with the shortfa ll being made up by a small amount of labour. 

The second point to notice is that the work done now increases at higher 

storage levels instead of fa ll in g  away, and that the work done at these 

levels is no longer wholly determined by superrace abundance. This is 

because diminishing returns no longer set in so early in the rise of
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the pathogen, but a better explanation w i l l  be made below, in terms 

of the path of the catastrophe.

Figures 6.5.23-27, showing V(tt( i ) , i ) ,  i l l u s t r a t e  the path of the 

catastrophe. (The e f fec t  of V(tt(X-j ) ,X-|) is once again negl ig ib le  and 

so only the to ta l  cost is  shown.) Whereas in the baseline case the 

t ra ns i t ion  between the two types of surface came between superrace = 0 

and superrace = 250, there is now a t ra ns i t ion  path which begins at 

zero storage at a point between zero and 250 superrace and ends at 

1000 superrace between 150 and 300 storage. Thus at a l l  superrace 

levels at least some of  the higher storage levels permit the farmer 

to reduce his cost by working harder. These are the levels at which 

the surface has a cost maximum in the region of  work = 180, and i t  can 

be seen that fo r  constant storage the starred contour on these surfaces 

moves s l i g h t l y  to the r ig h t  as the pathogen increases.

The resu l t  of the a b i l i t y  to make an e f fec t ive  response to the 

epidemic can be seen in the expected cost and state outputs of the 

pol icy. Figures 6.5.20A-B show a much reduced expected cost (note the 

d i f fe re n t  scale on the cost axis) which only begins to r ise at high 

superrace levels and which at high storage levels is independent of the 

pathogen. Figures 6.5.21A-B show that although at high superrace levels 

preferred body weight is  not attained on the average, the depression is 

comparatively small , and that at high storage levels preferred body 

weight can be attained and the need is  no longer f e l t  (at these levels) 

to lay by storage fo r  the next year.

The evolut ion of  the po l icy through time (Figures 6.5.28-31) 

confirms the impression that the general resistance epidemic is 

to lerab le. The work rate in the absence of the pathogen is low because 

the i n i t i a l  condit ion includes high storage. As storage f a l l s  the work
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rate rises and there are signs that the disease-free equilibrium 

would be established for a time, but when the yie ld begins to drop the 

work rate rises, and the system reaches an equilibrium at a s light 

positive level of storage. Why this s light positive level should be 

maintained is not clear. Another unclear point is why the brief peak 

in storage in year 4 that caused the cost to peak is produced. This 

peak may represent the tendency of linear interpolations among controls 

to produce oscillations in the control as i t  evolves.

In summary, the lowering of the vigour of the pathogen produces 

a qualitative change in the behaviour of the control; i t  is now possible 

to maintain preferred body weight by working harder than in the disease- 

free case. The subsistence farmers are in a state not of abundance 

but of sufficiency. The fina l equilibrium is , however, in the region 

of state space where an increase in the vigour of the superrace would 

provoke a vicious c irc le  of reduced work and lowered storage, so this 

state of sufficiency is not structura lly stable.

6.5.4.2. The Unconstrained Control

The relaxation of the constraints against using the simpler lines 

resulted in the introduction of multilines at 89 of the 625 grid points. 

Figures 6.5.32A and B show that these multilines were used at the lower 

levels of storage and superrace abundance. Examination of the results 

showed that the introduced multilines fe l l  into two classes, one in 

which the amount of the superline used was decreased by less than a tenth 

of a per cent (twenty cases) and those where at least 30 per cent of 

the crop was made up of one of the simpler lines. The former category 

of multiline was not associated with a s ta t is t ic a l ly  significant cost 

decrease and in most cases apparently represented an adjustment by the 

optimiser of the form discussed in section (6.3). Those multilines in
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which less than 70 per cent of the superline was planted were d is t in 

guished from the pure l in e  parent points by the fa c t  tha t

(1) a t the economic level both k ( i , u ( i ) )  and V ( t t ( X- |  )  , X - | ) 

were reduced

(2) at the state variable level the storage was decreased 

and the superrace output was reduced

(3) at the epidemiological level the y ie ld  was also reduced.

In a number of cases spores o f  the simpler races were added to m u lt i-  

l ines containing plants susceptible to them.

Figure 6.5.33 shows that the tendency in the constrained control 

to increase storage at the superrace = 250 level has now been removed 

and f igu re  6.5.34 shows tha t the presence o f the m u lt i l in e s  has quite 

noticeably reduced the average superrace output. Figure 6.5.35 shows 

that the work rate at the superrace = 250 level has decreased on the 

average.

Within th is  pattern of adjustments in the derived po licy  there 

is  a fu r th e r  sharp d is t in c t io n  between the use o f m u lt i l in e s  at the 

lowest storage level and at storage =-150. At the lower level the cost 

reductions are much la rger (about 10^) and storage is  reduced by 

approximately 115 un its . At the higher storage level the cost reductions 

are smaller (about 10 ) and storage is  ty p ic a l ly  reduced by three or 

four un its . At both storage levels the use o f m u lt i l in e s  reduces the 

superrace output by, on average, about 100 spores below the level fo r  

the constrained po licy .

The p r in c ip le  tha t l inks  these separate phenomena is  tha t the 

m u lt i l in e s ,  by reducing the fu ture abundance of the superrace, not 

only reduce the expected cost fo r  fu ture  years, in years where the 

superrace has not yet saturated, but also removes the need to
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accumulate large storage against the future effects  of the disease.

At the lowest levels of storage where the constrained po l icy tends to 

accumulate more storage as a response to the lower, more manageable, 

disease levels the e f fec t  is most marked, and the work rate drops from 

the upper l i m i t  by about f i f t y  per cent. At storage = -150 where such 

large accumulations were not made in the parent po l icy ,  the work rate 

more often increases than decreases, and the storage output is 

maintained close to zero. At th is  higher level of storage the decrease 

in cost is dominated by the decrease in V ( tt( X - j ) , X ^ ),  which is almost 

wholly due to the change in the superrace output. At storage = 0, 

with one exception, the m u l t i l ines  are non-s ign i f icant  and the reason 

fo r  the exception is  not c lear.  For one grid po in t ,  where storage = 0 

and the superrace = 250, a s ix  per cent reduction in the cost has been 

achieved by increasing the work rate and planting s ix ty  per cent of 

the crop to one of the simpler l ines.  Most of th is  reduction in cost 

was the resu l t  of the reduction in superrace output, which was 

independent of the change in work rate. However, other points with 

s im i la r  amounts of the simpler races did not attempt th is  method of 

reducing the cost, presumably fo r  some reason connected with the 

resolut ion of the optimiser. The category of non-s ign i f icant  mu lt i l ines  

mentioned at the beginning of th is  section consists mainly of these 

neighbouring points. There is thus the p robab i l i ty  that a s ign i f ica n t  

reduction in cost could have been achieved by the use of m u lt i l ines  in 

more cases than were ac tua l ly  found by the algorithm.

The most d i f f i c u l t  resu l t  to analyse in these results concerns 

the manner in which the simpler races interacted with the simpler 

l ines in the m u l t i l in es .  Amounts as high as 230 spores per un i t  area 

were added to the system at various points. In one case at least ,  

the addit ion was made fo r  purely economic reasons because there were 

no simpler l ines susceptible to the spores added. However in most
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cases the added spores would have interacted with the crop i ts e l f .

Figure 6.5.37 shows what appears to be the nature of the interaction.

The trend of the regression line (p < .01) shows that as the total of 

the spores of a simpler race naturally present and a r t i f i c ia l ly  added 

increases, so the proportion of the simpler line decreases ( i f  i t  is 

the major simpler element of the m ulti l ine). This relation shows that 

a balance is being attempted between the depression of yield and the 

depression of superrace output that can be attained at a given level 

of the simpler race. When the relationship between the food produced 

and the work done is calculated for the in tr ins ic  yie ld (y of equation 

4.6.9) of each m ulti l ine , i t  was found that the multiline had been 

chosen so that the maximum net production of food would bring the 

farmers close to the ir preferred body weight and that no trade-off 

between present hunger and future reduction of the superrace had been 

made. At the levels of output produced by most multilines even a 

small deviation from the preferred body weight (e.g. ten storage units) 

would outweigh the benefits gained by further reduction of the superrace.

In the analysis of the multilines the return cost surface cannot 

be displayed as for the pure line policies, because of the extra 

control variables present and because of the interaction of the "spores 

added" variable with the yield of the crop. Instead, we pass d irectly 

to considering the evolution of the policy through time. Figures 

6.5.38A-B show an example of the evolution of a policy whose in i t ia l  

condition is one of the multiline points, where a large component of 

one of the simpler lines is used. I t  can be seen that by the second 

year of the policy a pure or almost pure superline is being planted 

and there has been no obvious delay in the increase of the superrace.

A survey was made of a ll the points in the multiline policy to determine 

what was the greatest length of time for which multilines might be
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expected to be used. This was done by fol lowing the evolut ion of the

pol icy from every gr id  point u n t i l  the proportion of the simpler l ines
- 4used dropped below 10 .

A survey of th is  kind was not completely exhaustive because of 

the re la t i v e ly  wide spacing o f  the gr id points. However i t  was found 

that there was no point in the pol icy fo r  which m u l t i l ines  were used 

fo r  more than one season. In pa r t icu la r ,  fo r  the i n i t i a l  conditions 

that were suggested in 6.3.1 as being important, m u l t i l ines  were not 

used at a l l  and the system passed to a pure superl ine equi l ibr ium.

In summary, the introduction of general resistance to the sub

sistence c r i te r io n  made i t  possible fo r  the control algori thm to 

choose m u l t i l ines  as optimal control act ions. These mu l t i l ines  were 

optimal because they reduced the output of the superrace and reduced 

the cost incurred by storage in the face of increasing disease.

However the improvements made to the cost were f a i r l y  small - of the 

order of ten per cent in most cases - and although the average reduction 

in cost produced by the use of m u l t i l ines  was highly s ign f icant  ( t  = 517, 

373 d . f . ) ,  t h e i r  use was not p ra c t ic a l l y  s ig n i f ic a n t  in the sense 

defined in section 6.3.1. The general character of  the use of 

m u l t i l ines  in th is  pol icy is t ra n s i t io n a l :  they are used b r ie f l y  in

response to i n i t i a l  conditions that would not normally appear during 

the operation of the pol icy but which could only be the legacy of a 

sub-optimal po l icy . Thus although i t  has now been shown that the idea 

of using m u l t i l ines  is  not se l f -con t rad ic to ry ,  the resu l t  of th is  

experiment does not encourage th e i r  development and use.
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6.5.5. Subsistence with Cross Protection

6.5.5.1. The Constrained Control

The cross protection effect in this experiment was implemented 

in the manner described in section (6.4.5.1). In this experiment, as 

in i ts  agribusiness counterpart, the natural infall of spores of the 

simpler races was "noticed" by the optimiser. The effect on the yield 

of the crop was an increase of as much as 1.38 units over the yield 

without cross protection for the case where all three races were present 

at their maximum abundance. At the same time, the superrace output 

decreased but the decrease was small, being less than one spore per 

unit area in the most favourable case. The response of the optimiser 

to these effects was to increase the amount of work done slightly, the 

largest change being 2.04 days in the case of the greatest change in 

yield. No pattern was discovered in these increases in the work rate 

and they apparently represent a combination of stickiness in the 

optimiser and adjustments to the change in storage produced by the 

slight increase in yield. Because the changes in the policy were so 

small, the control law, and the cost surface and evolution of the 

constrained policy, are not displayed here graphically as they are 

indistinguishable from figures 6.5.5-18. Thus while the subsistence 

farmers clearly derive a benefit from living in a situation where there 

is cross protection, even if  for some reason they are constrained to use 

the pure superline, the benefit under this constraint is small.

6.5.5.2. The Subsistence Fungistat

The relaxation of the constraints on the algorithm to allow the 

subsistence farmers to add cross-protecting spores of the simpler races 

to the pure superline did not result in any such spores being used.
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Thus, as in the agribusiness case, the use of these spores without the 

m u l t ip l ie r  e f fe c t  o f  the presence of simpler l ines in the crop was too 

expensive fo r  the benef i t  conferred.

6.5.5.3. The Unconstrained Control

When the constraints against the use of mu l t i l ines  were relaxed 

the algori thm introduced m u l t i l ines  at 210 of the 375 independently 

converged points. Many of these m u l t i l ines  involved substantial  use of 

the simpler l ines and there were a number of cases in which pure crops 

of a simpler l ine  were chosen. Economically, these mut l i l ines  

correspond in almost a l l  cases to an increase in the present cost

k ( i , u ( i ) ) ,  which was more than compensated fo r  by a decrease in the

future cost. The di f ference between the mean change in cost between 

the pure l ine  and m u l t i l in e  po ints, and between pure l ine  points in 

the parent po l icy that  remained pure l in e  in the derived po l icy ,  was 

highly s ig n i f ica n t  ( t  = 257, d . f .  = 373). Thus the m u l t i l in e  points in 

th is  pol icy were both de te rm in is t ica l ly  and s t a t i s t i c a l l y  s ig n i f ica n t .

At the state var iable level the use of m u l t i l ines  was marked by

a decrease in storage at a l l  levels except the lowest, where a downward

change would have been impossible. At the same time, the superrace 

output was greatly  decreased by in excess of 600 spores per un i t  area 

at the highest input leve l .  The y ie ld ,  however, was uniformly 

decreased, despite th is  inter ference.

Figures 6.4.39-44 show how these effects  were achieved. The use 

of the simpler l ines was not affected by the storage level but increased 

very sharply at the higher superrace levels. At these same levels the 

work done decreased, on average, compared to the baseline and a 

substantial  number of spores of the simpler races were added. Because 

of the lowered work rate the decrease in y ie ld  caused by the use of
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multilines did not affect the storage output at the superrace levels 

in any major way. (At these levels the storage output was often -300 

for both parent and derived policy.) The most striking effect is that 

the combination of the use of multilines and the addition of spores of 

the simpler races caused the average output of the superrace at the two 

highest levels of superrace input to be lower than for some lower inputs 

(Fig. 6.5.41). Thus there appears to be the interesting prospect of an 

oscillation in crop composition in which multilines are used periodically 

to reduce the superrace abundance.

In parallel with the procedure in the experiment on subsistence 

with general resistance, an attempt was made to interpret the inter

actions of the control variables at the multiline points. The signifi

cant relationship between the spores added and the composition of the 

multiline was not found in this case. Instead (Figure 6.5.44), the 

dominant relationship appears to be one between the amount of work done 

and the composition of the multiline. The regression in Figure 6.5.44 

is highly significant (p < .001). The explanation of this difference 

appears to l ie  in the fact that in the general resistance case the cost 

catastrophe has not occurred and the farmers are able to adjust their 

body weight around the preferred level, while in the cross protection 

case the catastrophe has occurred and the farmers are engaged in the 

holding action described in section (6.5.3).

Figures 6.5.45A-D show the evolution of the multiline policy 

through time, beginning with a point where only a small fraction of 

the crop is planted to the superline. The in it ial  depression of the 

superrace from i ts  high level can be seen but the promise of an 

oscillation in crop composition has not been fulfi l led.  The multilines 

are only optimal where there is already a substantial level of the
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simpler races but the ir  use delivers the system into a state where the 

pure superline is optimal and the preconditions for the use of the 

multiline cannot occur. Thus in this case also, the multilines play a 

transitional role. A survey like that for the general resistance 

multiline policy shows that the transition period for the cross

protection policy is much longer with periods of two and three years 

of use of multilines being common and the example shown in the figure 

is one where multilines are used for five years. In the last three 

years of this period, however, the fraction of the simpler races used 

is less than two per cent, which makes the crop only technically 

a mult i 1ine

In summary, the introduction of a cross-protection effect which, 

although intended to simulate a strong effect, has not previously 

seemed strong enough to be of great importance, has had a more profound 

effect on optimal crop composition than the halving of the vigour of 

the pathogen. The result of this experiment suggests that cross

protection can in some cases be a factor conducive to the use of multi- 

lines, even in the absence of over-yielding. However, as in the general 

resistance case, the use of multilines reported here is transitional 

and therefore, though deterministically and s ta t is t ic a l ly  s ignificant, 

probably not s ignificant in practice.

6.5.6. Subsistence with Stabilising Selection 

6.5.6.1. The Constrained Control

The implementation of the stabilis ing selection effect in this 

experiment was the same as in 6.4.5. As in the agribusiness case the 

closest comparison of the results is with the general resistance case. 

Figures 6.5.46A-B show the control laws for the stabilis ing selection 

system. These turn out to be indistinguishable from those for the
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general resistance case. However from a comparison between f igures 

6.5.47A-B and f igures 6.5.20A and B the lesser vigour of the superrace 

on the wi ld hosts in the s ta b i l i s in g  select ion case can be seen to have 

decreased the expected cost, especia l ly at  low storage levels and high 

superrace inputs. The comparison between f igures 6.5.21A-B and f igures 

6.5.48A-B show that th is  lowering of cost is not a resu l t  of a change 

in storage output but is  caused exc lus ive ly , as can be seen in f igure  

6.5.49, by a fu r the r  depression of superrace output.

The cost surface fo r  th is  po l icy ,  shown in f igure 6.5.50-54, 

repeated the pattern observed in the general resistance case that 

V(tt(X-j ) , X i ) was only weakly affected by work done in the current year 

and so only the to ta l  cost V ( i r ( i ) , i )  is  shown. Just as in the general 

resistance case, the cost catastrophe never occurs at the higher 

storage levels so that the apathetic response to the pathogen need not 

take place. The change in the off-season dynamics of the superrace 

has in fa c t ,  in most cases, only affected the cost surface in de ta i l .

(The easiest way to see th is  is to note that the labe l l ing  of the 

contours has sometimes been shif ted by the p lo t t ing  program, even though 

the contours appear s im i la r . )  However at levels of high superrace and 

intermediate storage there has been a noticeable f la t ten in g  of the cost 

contours. Figures 6.5.55-59 show that  the changes described above, 

which are changes in the behaviour of the pathogen ra ther than in the 

po l icy ,  resu l t  in a stable state in which less work is done and less 

cost incurred in the s ta b i l i s in g  select ion than in the general resistance 

case. The key change is  shown in f igure  6.5.57, which shows that the 

steady state y ie ld  of the crop is about 235 units instead of 210 units 

in the general resistance case.

In summary, the change from general resistance to s tab i l i s in g  

select ion with the associated decrease in the effectiveness of the
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superrace has meant only that the farmers need work less hard in the 

equilibrium state for the same result. Their situation is s t i l l  one 

of sufficiency rather than abundance.

6.5.6.2. The Unconstrained Control

Relaxation of the constraints against using multilines in the 

stabilis ing selection case resulted in the introduction of multilines 

on a similar pattern to that in the general resistance case. Figure 

6.5.60A shows that the multilines were introduced over a s ligh tly  wider 

storage range but that on the average a smaller proportion of the 

simpler line was used. As a result of this use and concurrent reductions 

in the work rate, which were on a similar pattern to the reductions in 

the general resistance case, the storage output for the stabilis ing 

selection case assumed the same form (Figure 6.5.61) as in the general 

resistance multiline. However, as can be seen from figure 6.5.62, the 

effect on the superrace was more marked, as indicated by a wider range 

of va r ia b il i ty  than in figure 6.5.34. No significant difference could 

be detected between the patterns according to which spores were added 

to the multiline in this case and in the general resistance m ulti line, 

and the same type of relationship between the amount of the simpler line 

planted and the abundance of the corresponding simpler race (Figure 

6.5.65) was found. However, the absolute amounts of simpler lines 

planted, the slope of the regression line and its  F value were a ll 

smaller than in the general resistance case.

When a survey was carried out of the persistence of use of 

multilines in this policy, i t  was found that by contrast with the 

general resistance case i t  was quite common for small amounts of the 

simpler lines to be planted for several crops in succession. Figure 

6.5.66A shows the most strik ing of these persistent uses. The slight



6-90

depression in the proportion of superline between cycles two and six 

marks the only case known in this study in which multilines were 

introduced after the use of a superline. At other points in the policy 

much larger proportions of the simpler lines were used, but only for 

one or at the most two crop cycles. The effect shown here, despite 

i ts  small size, is thus of some theoretical interest but i t  is not 

clear whether i t  is an artefact;  the cost of this policy turned out to 

be .5% higher than the cost calculated during the evolution of the 

corresponding pure superline policy.

In summary, the multiline observed under conditions of stabilising 

selection are also transitional and although there are some slight 

indications of a tendency towards their more persistent use, i t  is not 

clear whether this is because of the presence of stabilising selection 

i t se l f  or because of the low absolute level of vigour of the superrace 

in this experiment. A comparison with the final equilibrium level of 

yield in the stable equilibrium of figure 6.4.90.1A shows that the 

subsistence fanners in this experiment were tolerating a yield 

depression greater than was necessary. However they (in the form of 

the optimiser) had no incentive to seek this higher yield, since they 

were able to maintain preferred body weight without i t .  Future 

investigation in this direction should centre on the use of multilines 

where there is stabilising selection and where a desired level of 

yield is only marginally attainable in the equilibrium state.

6.5.7. Subsistence with a Growing Plant 

6.5.7.1. The Constrained Control

The means by which the growth of the crop was simulated in this 

experiment have already been described in section (6.4.6.1). As was 

observed in section (6.4.6), the epidemic on the growing plant provides
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the most serious disease problem of those simulated, and this is also 

evident in the response of the subsistence farmers. Figures 6.5.67A-B 

show the control law for the subsistence farmers responding to this 

epidemic and i t  w il l  be seen that the law is of the same type as that 

for the baseline epidemic. The differences between the two can be 

explained in terms of the greater effectiveness of the pathogen on the 

growing plant. The mean level of work done has been reduced s ligh tly  

at low storage levels and decreased to zero at the highest superrace 

level. This indicates that the yield is so low that the farmers lose 

more than they gain in terms of the balanced diet by doing any work at 

a l l .  The expected value of the cost has not been altered by these 

changes because i t  is the product of starvation in both cases which 

has the same cost, whatever pathogen produces i t .  The storage output 

for the new policy is also the same as for the baseline policy because 

for the states at which the yie ld depression is greater with the growing 

plant, storage is either independent of yield because of previous 

reserves or at i ts  lower l im it .  However the superrace output now 

plateaus more rapidly and at a s ligh tly  higher level.

The contours of the cost surface shown in figures 6.5.71-75 are 

almost indistinguishable from those of the baseline epidemic at the 

superrace = 0 level, but by the superrace = 250 level a s ligh t tendency 

for the optimal amount of work to decrease below the baseline optimum 

can be seen in both k(i ,u ( i )) and V(tt(X-| ) ,X^). At the superrace = 500 

level, the range of work that does not drive V ( t t (  X-j ) ,X ̂ ) to its  

highest level has become more restricted and at the superrace = 100 

level the optimum level of work shifts decisively to zero in accordance 

with the control law. The catastrophe in the cost surface occurs along 

a line in state space close to the corresponding line in the baseline 

policy. When the evolution of this policy through time is followed 

(figures 6.5.76-80), the increased severity of the disease becomes
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evident once more. The response of the farmers is of the same form as 

for the baseline epidemic. However, since the yie ld decreases in 

three cycles to about half the yield of the baseline epidemic in its  

steady state, the farmers almost immediately stop working and the 

starvation level is reached in five years. (Note that in the fina l 

equilibrium state, the v a r ia b il i ty  of the cost is reduced because 

irruptions can now have scarcely any effect on the y ie ld .)

6.5.7.2. The Unconstrained Control

When the constraints requiring the use of the pure line superline 

were relaxed, the algorithm introduced small quantities of the simpler 

lines at a ll grid points where the superrace was not either at i ts  

lowest or its  highest level and where at least some quantity of the 

simpler races was present. No spores were added a r t i f ic ia l ly .  Upon 

inspection, i t  was found that the average cost reduction resulting 

from the introduction of the multilines was s ignificant, with t  = 25.7 

(d .f. = 373). This cost reduction was achieved by reducing both the 

present and the future costs. The superrace output was s ligh tly  

decreased by .5 spores per unit or less, and where the storage was above 

zero level i t  was increased by, on average, about .05 units.

I t  was found that as in the corresponding agribusiness experiment, 

the use of multilines was associated with s ligh t increases in y ie ld , 

of the order of .01%. Since the use of multilines was so much more 

common in the subsistence case, however, i t  was possible to analyse 

their pattern of use. Figure 6.5.81A shows a regression of the small 

quantities of whichever simpler line was used in the greater quantity 

against the superrace, for the multiline points in the policy only.

Within the superrace range for which multilines were used, the re lation

ship is extremely strong (p < .001). Thus in this system the presence
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of the superrace can actually increase the yield of the crop over a very 

narrow range of compositions. Presumably the mechanism is that in this 

range of disease intensity the simpler lines with their double disease 

load are more severely affected by each increment of the superrace, and 

the compensatory growth mechanism in the model expands the yield of the 

superline.

At the same time as the multilines were introduced, a number of 

small variations (less than one day per year) were made by the optimiser 

to the work done at each of the grid points where multilines were used. 

These adjustments were both positive and negative, and were quite 

variable, but there was an underlying pattern which is shown in figure 

6.5.81B. Here the change in the amount of work done from the parent 

policy to the derived policy at each multiline point is regressed on 

the corresponding changes in yield. Despite the high variabil ity, the 

regression is significant (p < .01) and the change is in the expected 

direction, namely that as the yield is increased the farmers take 

advantage of i t  by working harder. This phenomenon is interesting 

because i t  represents an adjustment which is evidently near the limit 

of resolution of the optimiser, and gives an impression of the 

importance of stickiness in the optimiser's operation.

A survey of the persistence of use of multilines in this policy 

indicated that multilines where the proportion of the simpler lines was
_ 3

greater than 10 were never used for more than one year at a time.

Thus the multilines discovered in this experiment were also of a 

transitional character and not of practical significance. Because the 

evolution of the multiline policy was numerically so similar to i ts  

parent policy, i t  is not plotted here.

In summary, i t  was found that, as in the agribusiness case, a 

particular feature of the growth model used to simulate the crop caused
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multilines to become optimal. The use of multilines and their effect 

on the evolution of the policy was small, consistent with the 

principles derived from earl ier  experiments with the subsistence 

criterion. While the over-yielding that was the basis of multiline 

use here may or may not occur in real crops, i ts  occurrence here is a 

reminder that the inclusion of premises about plant growth in the debate 

on optimal gene use may radically al ter  the conclusions.

6.6. Comparison of the Results of the Experiments

A number of lessons concerning the likelihood that multilines 

will be optimal in practice can be drawn from the results of these 

experiments. The factors which may affect their optimality in practice 

can now be ranked in order of importance. The f i r s t  of these is the 

nature of the optimality criterion. I t  cannot be said, on the basis of 

the simple models used here, exactly what type of criterion is most 

conducive to multiline use, but i t  is possible to say, for example, that 

cr i teria in which future yield is sharply discounted are less likely to 

induce optimal multilines. This conclusion is based on the fact that 

all of the multilines used except those for the model with a growing 

plant traded off a loss of yield in the current year against a saving 

in the future.

The second most important factor appears to be whether there is 

the possibility of a crop rotation. I t  was noticeable in the experi

ments on the agribusiness criterion that the gradient of cost with 

respect to the "area planted" variable was almost always several orders 

of magnitude greater than the gradient with respect to the crop 

composition variables. It  is probable that no multilines were used 

in most of the agribusiness experiments simply because the trade-off 

between present and future return was made so much more effectively by



6-95

the rotation than i t  could be by the multilines. Of course, the 

rotation used in the agribusiness system was an extremely effective 

one in the sense that a single year of zero planting completely 

exterminated the disease. As Stackman and Harrar (1957) point out, 

many rotations in real crops are not as effective as th is , either 

because the pathogen can last through a fallow or because i t  has a host 

range which covers more than one species. However, i t  seems like ly  

that unless interactions that can cause over-yielding are found in 

real multilines, or unless rotation is for some reason impossible, 

multilines are unlikely to be optimal in practice.

The two factors jus t discussed were not o rig ina lly  intended to 

fa l l  within the scope of the experimental study, which was intended to 

investigate the biologically significant effects mentioned in section 

(6.2). These biological factors evidently rank in importance below the 

nature of the criterion and the poss ib ili ty  of controlling disease 

through rotation. However, where they were given the ir best chance of 

influencing multiline optimality - with the subsistence criterion - 

the ir introduction in ways that tended, apart from the growth factor, 

to reduce the seriousness of the disease problem caused, in each case, 

the use of explicable and apparently optimal multilines. The question 

thus arises of whether there is some factor common to a l l these 

biological effects which is the c r i t ic a l  biological factor in determining 

the optimality of multilines.

The f i r s t  step in answering this question is the observation 

that multilines used with the non-growing plant were apparently a ll 

chosen by balancing a loss in current yield against a diminution in 

superrace output. Figures 6.6.1-3 were constructed in order to show 

how variation of the significant parameters considered in the experi

ments might affect this trade-off. (The growing plant, which induces
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multiline optimality for different reasons in this model, is not

considered.) In each case, what is plotted is the output in terms

of the yield and the superrace, as the parameter is varied for a range

of crop compositions. A single point in state space is taken at which

all three pathogen races are abundant (superrace = 500, simpler races

both = 1000), and for each parameter value a replacement series is

seen in which the crop composition changes from 100% AB to 100% A. The

output of each replacement series forms one rung on the ladder in the

diagram. The superrace output is i t s e l f  subdivided, with one axis

showing the output from the crop before competition on the wild hosts

and the other showing the input to the next year's crop after this

competition. Thus effects which take place in the crop i tse l f  can to

some extent be distinguished from those outside the crop/pathogen

system. A projection of the surface onto each pair of axes is shown

as an aid to judging perspective. (The visible side of the surface is 
the underside.)

The right hand end of the line representing each replacement 

series corresponds to the 100% AB crop composition. In figure 6.6.1, 

where the trade-offs for general resistance are shown, the replacement 

series on the extreme right corresponds to the pathogen vigour used 

in the baseline epidemic. For each replacement series going from 

right to le f t ,  the growth constant of the pathogen, s^m, is successively 

reduced by 10%, so that the final replacement series corresponds to a 

pathogen growing at only one tenth of the baseline rate.

For the baseline parameter value, the trade-off that is made 

is almost exclusively a trade-off in superrace output with l i t t l e  

yield loss and saturation on the wild hosts plays an important role.

For pathogen vigour equal to 0.2 of the baseline value, the trade-off 

is largely to yield, with saturation on the wild hosts playing no part 

because superrace output is so small. At the highest level of general
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resistance, the pathogen does not reproduce at a significant rate; 

there is no trade-off, and yield is not depressed.

Thus at low levels of general resistance, the trade-off is 

exclusively in terms of benefit to the next year, owing to a reduced 

superrace input to the next crop, while at high general resistance, 

the ratio of yield loss to depression in the superrace increases and 

then becomes unimportant as the total size of the yield loss decreases. 

This relationship shows that at high levels of general resistance 

there is no point in using multilines, while at low levels even the 

large possible trade-off in the superrace input to the next crop does 

not bring a noticeable benefit in future yields. (What constitute 

"high" and "low" levels of general resistance will depend on the 

economic criterion.) At intermediate levels, however, i t  is possible 

to make trade-offs in which a sacrifice in this year's yield can be 

expected to bring a noticeable benefit in the next year. The parameter 

values used in the experiment on general resistance correspond to the 

sixth rung from the right on the ladder, and are in such an intermediate 

position.

In figure 6.6.2, which shows the trade-offs that can be gained 

by cross-protection, a much smaller range of outputs is covered, 

although the cross-protection parameter (in this case, the area 

immunised for a constant 20-day period) runs from zero to twenty times 

the value used in the experiment. The upper le f t  hand side of the range 

of outputs corresponds to the highest level of cross-protection. It 

can be seen that even where over-yielding does not occur in the 

replacement series, the tendency of an increase in the cross-protection 

effect is to reduce the yield loss that must be suffered for a given 

depression in the superrace. Since, for the baseline value (zero) of 

cross-protection, the loss in yield through the use of the multiline is
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very small, the cross-protection effect observed in the experiment, 

although also small, could have an effect on the economic value of the 

trade-off.

In figure 6.6.3, which shows the trade-offs that can be expected 

from stab ilis ing selection as modelled here, the intensity of the 

stabilis ing selection effect is parametrised by varying the coefficient 

Cj of Equation 6.4.1 and the vigour of the superrace on the crop, s ^ ,  

so that they decline in equal steps from 1 to 0.1. The result of this 

parametrisation is in i t ia l l y ,  where the selection against the superrace 

is small, similar to that at low levels of general resistance. However, 

i t  can be seen that the transition to unfavourable trade-offs, where 

much yield is lost for a small depression in the superrace, is much 

sharper. The intermediate levels of the stabilis ing selection effect, 

where substantial trade-offs in both yield and superrace depression are 

possible, have moved somewhat to the lower disease output levels, and 

this may explain why, in the experiment on stabilis ing selection, a 

more sustained use of multilines was optimal than in the general 

resistance case.

In summary, the figures in this section help to show why 

qualitative arguments for and against the use of multilines have not 

served to show whether they are optimal or not. I t  appears that the 

absolute level of vigour of the pathogen, and especially its  superrace, 

are more important than has been supposed in determining whether m ulti- 

lines are optimal. This absolute level of vigour controls whether any 

other epidemiological variables can have a useful effect in making the 

trade-off between yield loss and superrace depression more favourable. 

At high levels of vigour, multilines are of no use, at low levels they 

are unnecessary. Where the absolute vigour of the pathogen permits, 

the presence of s tab ilis ing selection and cross-protection tends to
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increase any favourable effect of multilines. The effects of including 

more realism by the modelling of plant growth do not appear likely to 

disturb these conclusions, except where, as in the experiments 

reported here, an interaction between the components of the multiline 

allows an advantage for the multiline in the present as well as in the 

future.
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7. Conclusions

7.1. Introduction

In this Chapter four things will be done. The conclusions of 

the study will be summarised. The limitations of the study and the 

ways in which they might be reduced in further work will be discussed. 

The prospects for applying the lessons of the study in practice will 

be considered. Finally, a perspective on the different approaches to 

breeding crops for disease resistance will be given.

7.2. Conclusions of the Study

The conclusions of the study emerge directly from the experi

mental results and may be summarised as follows. An examination of 

the results of the use of disease resistance genes using simulation 

modelling techniques, has shown that, from the point of view of optimal 

control theory, there is nothing inherently self-contradictory in the 

idea of using multiline crops despite the fact that they hasten the 

appearance of the superrace and probably increase the disease cover on 

the crop. The results however also suggest that the optimal use of 

multilines is transi tional,  unless certain special conditions obtain, 

in the sense that their use is to smooth the passage from a state in 

which the simpler races are abundant to one in which the superrace 

dominates. It appears that multilines would only be optimal in the 

long term if  some host-pathogen interaction such as an extremely strong 

cross-protection effect increases the yield of the multiline over the 

yield of the pure superline under the same superrace input, or i f  

stabilising selection acting against the superrace outside the crop 

increases the equilibrium yield of the multiline over that of the super

line. As suggested in section (3.4) the ar t i f ic ia l  use of spores of
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the simpler races was an important feature of the use of mu l t i l ines  in 

the optimal po l ic ies .  However the imposition of a cost on the use of 

spores prevented a d i rec t  tes t  of Theorem 2 of Chapter 3.

The resul ts  have fu r the r  suggested that the existence of 

s ta b i l i s in g  select ion is not, as had been supposed (Browning and Frey, 

1969), necessary fo r  there to be a use fo r  m u l t i l ines .  The precise 

s ignif icance of s ta b i l i s in g  select ion fo r  optimal gene use remains 

unclear. On the one hand there is  a suggestion that i t s  presence may 

increase the time period over which m u lt i l ines  are optimal, and even 

introduce the p o s s ib i l i t y  of continuous use. On the other hand, in a 

m u l t i l i n e  with s ta b i l i s in g  select ion the avoidable y ie ld  losses 

produced by using a m u l t i l i n e  are l i k e l y  to be increased. Moreover, 

a m u l t i l in e  which re l ies  on s ta b i l i s in g  select ion fo r  i t s  advantage is 

l i k e l y  to be more dependent on the behaviour of  the pathogen population 

outside the crop than one which does not, and th is  external behaviour 

of the pathogen is the most d i f f i c u l t  part of the crop/pathogen system 

to invest igate qu an t i ta t ive ly .

I t  has also been found that  a cross-protect ion e f fe c t ,  in the 

form modelled here, is conducive to m u l t i l in e  op t ima l i ty .  The evidence 

is  c o n f l ic t in g  here too. On the one hand an extremely strong cross

protect ion e f fec t  is  necessary fo r  any obvious and easily-measured 

change in epidemic dynamics to take place. On the other hand, i t  

appears that an e f fec t  l i t t l e  stronger than some that have been reported 

can be s u f f i c ie n t  to make a quite radical change in the optimal pol icy. 

This l a t t e r  resu l t  may mean that the baseline epidemic of the study was 

fo r tu i to u s ly  close to being an epidemic fo r  which mu l t i l ines  were 

optimal. This explanation is given some support by the fac t  that 

m u l t i l ines  were used in the (unconverged) subsistence baseline game.
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The last result of this study which bears d irectly  on the use 

of multilines is that the most important biological factor in deter

mining whether multilines are ever optimal is related to the natural 

rate of increase from year to year of the superrace of the pathogen 

and the relation between disease cover and yield loss in the crop.

This factor does not correspond precisely to any parameter of the 

model used, but i t  appears that i f  the natural saturation level of the 

superrace corresponds to an intermediate level of yield depression 

rather than to total loss of the crop, then multilines are more like ly  

to be optimal.

The other significant results obtained from the study relate 

to the place of multilines among other modes of use of disease 

resistance genes. Since the main mechanism inducing optimality is 

the interference of the simpler races on the crop (except where 

stab ilis ing selection is present), we can deduce that patterns of 

simultaneous use of multiline components as pure lines in separate 

regions w il l  be less effective than multilines. The regions planted 

to the superline component w il l  be less protected by the pathogen 

interaction because of the lack of nearby plants of the simpler lines, 

while farmers in the regions planted to the simpler lines w ill suffer 

excessive losses. The asynchronous use of pure crops of the simpler 

lines appears l ike ly  to suppress the simpler races more than the super

race (in the absence of adaptation effects - section (2.3.4)), and so 

would be expected to be less effective than the use of a multiline.

Finally, the essence of dealing with disease problems in crops 

of the type simulated is to reduce as far as possible the probability 

that the race which currently induces the greatest equilibrium yield 

loss w il l  disperse successfully to susceptible host tissue. I f  this
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cannot be done by the introduction of a variety with a high level of 

general resistance, then fallows, rotation with another crop or inter

cropping seem likely to be more effective than the use of multilines.

In this connection i t  is worth remembering that the controversy about 

the dwindling variability of crop gene pools is not only a controversy 

about decreasing variability within, for example, the wheat crop, but 

about reliance on a very limited number of staple crops (Day, 1973).

If the production of newer, more resistant version of these few crops 

is indeed a road that has a dead end, then the alternative routes that 

must be taken involve drastic changes in agribusiness practice and in 

food habits (and even population size) that will accommodate rotations 

that cause shortages in some years, intercroppings that are difficult

to farm mechanically, and the development of li tt le-used species as
/

staple crops. On the evidence of this study, multilines can only be 

an adjunct to these processes.

7.3. Limitations of the Study

The limitations of this study are to some extent voluntary ones, 

motivated by the wish to remain in contact where possible with the 

current level of debate on resistance gene use. To a much larger extent 

the limitations are those of time, computation, and lack of relevant 

information. They can be listed under three headings as follows.

7.3.1. Lack of Experimentally Determined Parameter Values

While the lack of information on the real values of the parameters 

used is to be expected in an exploratory theoretical study, i t  means 

that i t  is s t i l l  not known whether multilines are optimal in even one 

real crop. At present only a tiny minority of the parameters used can
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be estimated from the l i t e r a tu r e ,  and in order to achieve useful 

resul ts i t  was necessary to adopt the approach of tuning the model so 

that the disease free state was one of abundance and the baseline 

epidemic represented a serious disease problem. The d i f f i c u l t y  is 

simply that  physiological and pathological studies are not conducted 

with whole plant or crop modelling in mind; i t  is  hard to see how they 

could be in the absence of a spec i f ic  object ive at the whole plant or 

crop leve l .  In section (7.4) a systematic approach to th is  problem 

w i l l  be suggested fo r  the case where the object ive is to discover the 

optimal mode of gene use fo r  a pa r t icu la r  crop.

7.3.2. Lack of Realism in Modelling

This l im i ta t io n  was pa r t ly  dictated by the current state of 

debate, and also by the im poss ib i l i ty  of computing optimal controls 

fo r  any epidemic that took much longer to simulate than the one used, 

and by the lack of published ideas on how to model the in teract ion of 

a plant and i t s  pathogen. The real ism that was introduced by the use 

of a simple growth model is only a s ta r t .  The next candidate fo r  

inclusion should be a d i f fe re n t ia l  deposition of spores between the 

host plant and other plants as in Kiyosawa and Shiyomi (1972). Since 

the model used here lacks th is  feature i t  w i l l  tend to overestimate 

the disease escape of susceptible plants surrounded by res is tant  ones, 

and thus d i s to r t  the development of the simpler races.

7.3.3. Computational Deficiencies

The method used in th is  study is both computational ly laborious 

and, because of the use of l inear  in te rpo la t ion ,  prone to various kinds 

of error  which have already been discussed. In retrospect a more 

e f f i c i e n t  way to proceed might have been to construct a large, mu l t i -
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dimensional look-up table of the epidemic input/output relations for 

each experiment. This would have been, for the type of epidemic 

simulated here, an eight dimensional table (3 state variables + 4 

control variables + an output vector) and would have required special 

handling even in a large computer. In the long term, however, the 

number of function evaluations needed to find an optimal control might 

be handled faster by a look-up and interpolation routine than by 

repeated simulation.

It  is also desirable, though perhaps not practicable, that linear 

interpolation be replaced by a process in which interpolation 

functions are developed in parallel with the convergence of the control, 

so that the interpolation method conforms to the emerging shape of the 

control law and the cost function. I t  would obviously be diff icult  to 

do this for the complex functions discovered during the experiments on 

the agribusiness criterion. For a cost function like that of the 

subsistence criterion such an approach should improve the results of 

the control and the accuracy of estimation of the expected cost. In 

any case the intelligent choice of an interpolation method demands some 

familiarity with the results of computation in a specific case before 

a good functional form can be chosen.

7.4. Directions for Further Research

Some of the possible directions of further research into the 

subject of optimal gene use are explicit in the discussion in the last 

section of the limitations of this study. There remain some important 

topics that deserve separate consideration. They may be classified 

as theoretical, biological and practical.
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7.4.1. Theoretical Tasks

The principal theoretical problem that has been le f t  unsettled 

by this study is that of defining what biological properties of a 

crop/pathogen system induce not only the optimal use of multilines for 

short periods but the ir continued use for long periods after (or before) 

the arrival of the superrace. This study suggests that the existence 

of stab ilis ing selection leads to the optimality of prolonged use of 

multilines, yet none of the results described confirmed th is , despite 

the advantages offered in terms of equilibrium yield. This may have 

been the result of a deficiency in the optimiser, but there was also 

the disadvantage of a more variable yield in the particular form of 

stab ilis ing selection modelled here.

The f i r s t  step in attacking this theoretical problem by the 

methods of this study would be to consider a series of systems in 

which the natural saturation level of the superrace corresponded to 

successively greater yield depressions. For the subsistence criterion 

at least i t  appears that for an intermediate range of these depressions, 

i t  would be both important and feasible fo r the farmers to influence 

this saturation level by the use of multilines. Whether this would 

occur only in the presence of s tab ilis ing selection is not deducible 

from the present results. Similarly i t  is not clear whether the special 

form of stab ilis ing selection modelled here encourages the prolonged use 

of multilines because of some feature which is not representative of 

real instances of stab ilis ing selection. For instance, the inclusion 

of saturation of the wild hosts seems to play an important role, and 

i t  may be that a simple d iffe ren tia l survival rate of the superrace 

and the simpler races would not cause the long term yield advantage of 

multilines over the superline which is the most interesting feature of 

s tab ilis ing selection in this study. While i t  is important to note
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that in many cases in the study the introduction of suboptimal multi- 

lines did l i t t l e  harm, i t  is s t i l l  the lesson of the study that the 

use of multilines was transitional and made only small cost reductions. 

Until there is evidence that persistent use of multilines w il l  bring 

consistently measurable cost reductions, i t  would be premature to 

devote resources to the ir commercial development.

7.4.2. Biological Tasks

The principal biological problem that is relevant to the under

standing of the optimal use of resistance genes is that of investigating 

the nature of general resistance. This is important because of the 

role which the level of general resistance plays in determining the 

optimal use of major genes and, in particular, the optimality of multi- 

lines. I t  is even more important because the possib ility  of breeding 

for general resistance (as i t  has been defined in this study, following 

Caldwell (1968)), is i t s e l f  in doubt. While every plant has its  own 

level of general resistance, i t  was pointed out in Chapter 2 that there 

are no good explanations of the way in which a single gene or a group 

of genes w il l  sometimes apparently raise this level. (Such effects must 

be described as "apparent" because the presence of a form of resistance 

permanently invulnerable to pathogen mutation cannot be proved 

conclusively.) I f  there is to be any confidence that general resistance 

can be adjusted so as to harmonise with the use of major resistance 

genes in multilines, i ts  mechanism must be understood. We need to know 

why, in the pregnant words of I.A. Watson (1970b) some combinations of 

genes "place before the fungus barriers which are more d i f f ic u l t  to 

negotiate".
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7.4.3. Practical Tasks

The principal practical problem in multiline culture is , from 

the results of this study, to decide whether multilines are optimal for 

a given crop. Although both those in favour of multilines and those 

who are sceptical can draw support from the results, the important 

practical point is that the decision is a quantitative one, and that 

making i t  is l ike ly  to be very complex.

In a practical situation the simplifications of section (3.5.2) 

cannot usually be made. Environmental va r iab il i ty  w il l  have to be 

taken into account. There w il l  be d i f f ic u l ty  in establishing a 

correspondence between the infected area of the model which homo

geneously produces spores and which does not grow vegetatively and the 

lesions on the real plant. There is the poss ib ility  that not one but 

several pathogens may be involved. And there is the probability that 

the pathogen w il l  affect the plant in other ways than simply occupying 

photosynthetic tissue.

I f  the task of determining multiline optimality or suboptimality 

is to be attempted, the most promising line of attack is to start by 

establishing a yield/superrace output curve for a replacement series 

experiment, like the ones simulated for d ifferent parameter values in 

figures 6.6.1-3. I t  would not be possible at f i r s t  to measure the 

input to the next crop because even a large experiment like those of 

Cournoyer (1970) would not have much effect on the general population 

level of a rapidly dispersing pathogen. However i f  a substantial ratio 

of superrace depression to increase in-yield loss were found in the 

multiline plots, then this would encourage the taking of a second step. 

("Substantial" in this context would mean "s ta t is t ic a l ly  significant 

at several experimental sites in several years".)
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The second step would be to attempt to force the epidemic 

dynamics o f the crop/pathogen system in to  the mould of an epidemic 

model of about the complexity used here. The growth rate of the 

pathogen and the disease cover/y ie ld  loss re la tionsh ip  would already 

be known, and comparison of the pathogen growth rates in the mixtures 

of the replacement series might allow the estimation of the p ro b a b il i ty  

of successful spore dispersal as a function of host density. I f  these 

pieces of information were combined with what was known about o f f 

season dynamics and w ith an economic model appropriate to the crop's 

usual market, a t r i a l  optimal control could be computed. I f  the 

optimal po licy  fo r  th is  crude model suggested pers is tent use of m u lt i-  

l in e s ,  then refinements and improvements o f the type suggested in th is  

chapter should be made u n t i l  e i th e r  the plant breeder (and his 

employers) have confidence in the re su lt  or u n t i l  computational 

resources are exhausted. Confidence in the re su lt  would be enhanced 

by the absence of m u lt ip le  optima in the p o licy , because the chance 

that a maximum cost is  close to a minimum in control space is 

increased by the presence o f m u lt ip le  optima. In any case, i f  the pure 

superline were lo c a l ly  optimal i t  would be very r isky  to use m u lt i l in es  

because suboptimal resu lts  would be expected while they were being 

introduced, as a re su lt  of the previous predominance of the superline. 

Confidence would also be increased i f  the use o f m u lt i l in e s  were found 

to be robust in the minimax sense with respect to as many of the more 

uncertain parameters as possible. F in a l ly ,  nothing can increase 

confidence as much as the prospect o f substantial cost decreases from

the use of m u lt i l in e s .
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7.5. A Perspective on the Use of Crop Disease Resistance Genes

The previous debate about how to use resistance genes has 

centered on ideas of  s t a b i l i t y ,  even though the d i f fe re n t  points of 

view in the debate have corresponded to d i f fe re n t  de f in i t ions  of 

s t a b i l i t y .  Much trouble has been caused by the fac t  that there are 

so many possible de f in i t ion s  of s t a b i l i t y ,  and there is no l ike l ihood 

that  a single d e f in i t io n  can be agreed on. The t ra d i t ion a l  view of 

plant breeding - as instanced in Chapter 1 by Stanton et_ al_. (1934) - 

sought a s i tua t ion  that was stable in that the pathogen would not 

ex is t .  The crop/pathogen system would degenerate in to  the single 

disease free state.

The m u l t i l in e  point of view as expressed by Browning and Frey 

(1969) appears to conceive of  a crop/pathogen system in which state 

variables corresponding to a l l  pathogen races take non-zero values and 

an equi l ibr ium state ex is ts .  This concept is an essent ia l ly  deter

m in is t ic  one, and i t  is worth mentioning that even in th is  kind of 

system, which resembles the standard subject matter of topological 

dynamics, there are many a l te rna t ive  de f in i t ion s  of  s t a b i l i t y  

(S ibe rsk i i ,  1975). However the dif ferences between these de f in i t ions  

may not have any s ignif icance in pract ice.  I t  may be more important 

to remember that crop/pathogen systems are stochastic and that 

de f in i t ion s  of s t a b i l i t y  in stochastic systems are more elaborate and 

require the user to think about the expected d is t r ib u t io n  of system 

states rather than about single states (Kushner, 1971).

Current crop breeding pract ice,  by contrast with the t ra d i t ion a l  

and m u l t i l in e  a l te rnat ives is not e x p l i c i t l y  concerned with questions 

of the s t a b i l i t y  o f  the pathogen population, but instead seems to work 

to produce a state analogous to equi l ibr ium in an i r reve rs ib le
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thermodynamic process (Glansdorf and Prigogine, 1971). The continual 

tendency of the pathogen to produce new races (analogous to the loss 

of heat from a resistance element) is countered by the production of 

new resistant varieties (analogous to the inflow of current). Because 

of the small number of introductions compared to the number of 

electrons in a macroscopic resistor, the existence of an equilibrium 

state in plant breeding (constant and equal rates of irruptions of new 

races and introductions of new varieties) is hard to test. Whether 

such a state could be stable, as the analogous state in irreversible 

thermodynamics is ,  would be hard to discover. The burden of the points 

discussed in section (1.2.2) is not that the state is unstable but 

that the power source is exhaustible.

While i t  is possible to describe the use of multilines in terms 

of s tab ilis ing the pathogen population as though other plant breeding 

methods provoke in s ta b i l i ty ,  this approach is misleading. The type 

of crop/pathogen modelled here is inherently stable by most defin itions, 

including stochastic ones. As was suggested in section (3.2.2.2), this 

type of system resembles a Markov process with a fina l absorbing 

state - defined by the appearance of the superrace - which is stable 

i f  the superrace cannot be driven to extinction by the other races. On 

a more detailed level of description, there are only two possib ilit ies 

for the fina l state of the chain. Either the simpler races eventually 

disappear, or some of them w il l  persist. Either poss ib ility  represents 

a stable state. The problem is that the stable state may have 

economically undesirable properties, as may the trajectories that lead 

to i t .

What should be recognised in deciding on the best use of 

disease resistance genes is that i t  is not s ta b il i ty  that is important,
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but u t i l i t y .  The thought of discovering s ta b i l i ty  in a pathogen 

population is attractive to the disinterested researcher, but those 

who depend on the crop have other p r io r it ie s .  This study has suggested 

that looking at the use of resistance genes from the point of view 

of optimal control may c la r ify  debate and result in choices that are 

sensible as seen by the users of crops. A number of theoretical 

questions remain unanswered, but these are less important than the 

biological question of discovering the basis of lasting resistance and 

the practical question of whether enough information can be gathered 

and processed so that the quantitatively optimal choice can be made 

with confidence.



Appendix A - Listing of program OPTIPLANT.

(The parameter values in this l ist ing are those of a baseline- 

strength epidemic on the growing plant, using the subsistence 

cri teri on.)
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