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ABSTRACT

1. Some relationships between the carbohydrate status and the rates 
of photosynthesis and respiration in the light and in the dark have 

been studied at the leaf level in wheat and other species. The 

physiological responses were analysed on the basis of the current 

biochemical knowledge of photosynthetic and respiratory pathways. On 
the other hand, some preliminary studies on the relationship between 
photorespiration and respiration at the mitochondrial level are also 
presented.
2. The rate of net C02 assimilation, A, of wheat leaves usually 
declined with time under constant environmental conditions, the rate 
of decline increasing with the C02 concentration. Stomatal 
conductance, gg, also declined with time in some cases, but this was 
not the primary cause of the decrease in A. Treatments reducing the 
rate of translocation (e.g. lower temperatures, chilling the base of 

the leaf) produced a marked decline in A at atmospheric and high C02 

concentrations. A period of photosynthesis at high C02 concentrations 

(but not at low C02) reduced the upper part of the curve of A vs 

intercellular C02 partial pressure, p^. The initial slope of this 

curve, however, was not affected in either case. Photosynthetic rates 

in the upper part of this curve generally recovered after a short 
period of darkness. The stimulation of A by 2% 02 (the so-called 
Warburg effect), and the apparent quantum yield, decreased after 

several hours in the light. Carbohydrate levels were also measured,
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and the results suggest that end product inhibition of photosynthesis 

occurs in wheat leaves. Carbohydrate accumulation was also associated 

with a decrease in g^ and with an increased sensitivity of stomata to 

C°2 •

3. The rate of dark C02 efflux from mature wheat leaves at the end 

of the night was less than that found after a period of photosynthesis. 

After photosynthesis the dark C02 efflux showed a complex dependence 

on time and temperature. For about 30 min after darkening, C02 efflux 

included a component (15-20% of total) which was abolished by 

transferring illuminated leaves to 3% 02 and 330 ybar C02 before 

darkening. After 30 min of darkness, a relatively steady-state C02 

efflux was obtained. The temperature dependence of steady-state dark 

C02 efflux at the end of the night differed from that after a period 

of photosynthesis. The higher rate of dark C02 efflux following 

photosynthesis was correlated with accumulated net C02 assimilation 

and with an increase in the free glucose and fructose, sucrose, and 

starch levels in the leaf. It was also correlated with an increase in 

the C02 compensation point in 21% 02, and an increase in the light 

compensation point. The interactions between C02 efflux from carbo­

hydrate oxidation and photorespiration are discussed. It is concluded 

that the rate of C02 efflux by respiration is comparable in darkened 

and illuminated wheat leaves.

4. The rate of 02 uptake by wheat leaves in the dark was much lower 

in leaves harvested at the end of the night than that in leaves 

harvested after a period of photosynthesis. 02 uptake by both sets of 

leaves displayed substantial resistance to cyanide, but in the absence 

of inhibitors, the alternative pathway contributed to 02 uptake only 

in the leaves harvested after a period of photosynthesis. Spinach
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leaves showed similar trends in respiration in the dark, and in both 

spinach and wheat the level of free sugars and other carbohydrate 

fractions fell during the night. In pea leaves, free sugar levels 

remained high during the night and no change in either the rate of 02 

uptake or its inhibitor response was observed during the diurnal cycle. 

The respiratory properties of mitochondria isolated from matures leaves 

of wheat, spinach and peas did not vary significantly during the 

diurnal cycle.

Thin slices cut from wheat leaves harvested at the end of the 

night were insensitive to the alternative path inhibitor SHAM when it 

was applied in the absence of KCN. Adding sucrose to these slices 

stimulated 02 uptake which was then sensitive to SHAM alone. In 

slices from leaves harvested after a light period, endogenous sugar 

levels and respiratory rates were higher, and this increase was due in 

part to the engagement of the alternative pathway. The uncoupler FCCP 

did not significantly stimulate 02 uptake rates ipev se in slices from 

leaves harvested after a light period. However, it stimulated flux 

through the cytochrome path at the expense of that through the 

alternative path. When both FCCP and sucrose were added together to 

slices from leaves harvested after a light period, 02 uptake was 

stimulated, and this stimulation was due to engagement of the alter­

native pathway .

These results suggest that wheat leaf respiration in the dark is 

regulated by both cell carbohydrate levels and by adenylate control of 

the mitochondrial respiratory chain. When leaf carbohydrate levels 

are substantial, the alternative path becomes engaged because the 

cytochrome chain is restricted. When leaf sugar levels are low, 

respiration is limited by substrate supply to the mitochondria, and
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the alternative pathway is not expressed.

5. The rate of 02 uptake in the dark in bean leaves and leaf slices 

decreased during development, showing a similar pattern to that of 

dark C02 efflux. The activity and capacity of the cytochrome path 

decreased but the capacity of the alternative path remained more or 

less constant with leaf expansion, and thus percentage cyanide 

resistance of respiration increased with leaf expansion. However, 

young leaves showed higher sensitivity to SHAM than mature leaves. 

Respiration of bean leaf slices was stimulated by the uncoupler FCCP 

at all ages, the stimulation being more pronounced in young leaves. 

Uncoupled leaf slice respiration was also sensitive to SHAM alone.

The rate of overall respiration, the activities of the cytochrome and 

alternative pathways, and the extent to which FCCP stimulated 

respiration in bean leaf slices were positively correlated with 

endogenous free sugar levels, and negatively correlated with starch 

levels during aging. The results suggest that respiration of bean 

leaves during growth is regulated mainly by coarse control of the 

capacities of glycolysis and the cytochrome pathway, and these 

capacities decrease with leaf age. However, fine control of 

respiration by substrate and adenylate levels also occurs at all 

developmental stages within the limits imposed by the coarse control.

6. Mitochondria isolated from mature leaves of spinach, peas and 

wheat simultaneously oxidized glycine and TCA cycle substrates. The 

sensitivity of mitochondrial respiration to antimycin A and SHAM (or 

disulfiram) varied depending on whether glycine or TCA cycle 

substrates were used. NAD-linked substrates of the TCA cycle competed 

between them for access to the electron chain in pea mitochondria, but 

glycine, which is also NAD-linked, did not apparently compete with TCA
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cycle substrates. The state 4 rate of 02 uptake with malate or 

succinate was greatly stimulated by glycine, and vvee Versa, via 

increased alternative pathway. These results suggest that some of the 

electron transport of these preparations was specifically associated 

with glycine decarboxylase, including the alternative oxidase. This 

in turn suggests that mitochondrial electron transport functions in 

the light during photorespiration. The low degree of competition 

between glycine and TCA cycle substrates could be due either to 

intramitochondrial compartmentation of enzymes and cofactors, or to 

the existence of two distinct populations of mitochondria in leaves.
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CHAPTER 1
INTRODUCTION

1.1 THE FATE OF CARBOHYDRATES IN LEAVES:
INTRODUCTORY HYPOTHESES AND FRAMEWORK

Carbohydrates are the end products of photosynthesis and their 

synthesis in higher plants takes place mainly in the leaves. Carbo­

hydrates are subsequently exported to other organs and growing leaves, 

but a substantial fraction may remain in leaves, being either 

temporarily stored or used to satisfy their synthetic and energetic 

needs. The balance between carbohydrate production, utilization in 

metabolism, and export greatly depends on the developmental status of 

the leaf (Geiger, 1979), but other factors can be also important, 

especially in mature leaves. It has been hypothesized that excess 

carbohydrate accumulation in leaves can regulate the rate of photo­

synthesis by a feedback mechanism, although the evidence obtained with 

intact leaves is contradictory (Herold, 1980). On the other hand, 

carbohydrate is the main substrate for respiration under most 

conditions (ap Rees, 1980a), and increased substrate availability 

could increase the rate of this process. There is some evidence that 

plants which have lower respiratory rates in their mature leaves may 

give significantly higher dry matter yields (Heichel, 1971b; Wilson, 

1975). It therefore appears that excess carbohydrate accumulation in 

leaves could influence several physiological processes (see Fig. 1.1) 

resulting in possible deleterious consequences for the plant carbon
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Fig. 1.1: Principal physiological processes involved in carbohydrate
production and utilization in leaves. The dotted arrows 
indicate possible regulatory feedback interactions on the 
rate of these processes.

economy, since leaves constitute a large fraction of total plant 

biomass.

The basic purpose of this thesis is to study the extent to which 

the carbohydrate status affects the rates of photosynthesis and 

respiration in the light and in the dark in intact mature wheat leaves. 

The physiological responses observed will be analysed on the basis of 

the current knowledge of the photosynthetic and respiratory carbo­

hydrate metabolism, which will be reviewed in this Introduction.

1.2 CARBOHYDRATE ACCUMULATION IN 
LEAVES DURING PHOTOSYNTHESIS

Carbon dioxide is mostly fixed by photosynthesis into two end 

carbohydrate fractions: starch, a chloroplastic storage poly­

saccharide, and sucrose, a transport sugar (ap Rees, 1980b). In some 

species other types of storage polysaccharides (e.g. fructosans,



Kandier and Hopf, 1980), and transport sugars (e.g. raffinose, 

Kandier and Hope, 1980; Giaquinta, 1980), also occur in leaves.

3

The rate of accumulation of carbon in the leaf in the form of 

starch, sucrose, and other carbohydrates increases with light 

intensity (Gordon et at. , 1980a) and especially with C02 concentration 

(Platt et at., 1977; Guinn and Mauney, 1980; Kramer, 1981), as a 

result of increased rates of photosynthesis. Leaf carbohydrate levels 

usually increase during the light period (Chatterton, 1973; Upmeyer 

and Koller, 1973; Challa, 1976), and decrease during the night (Challa, 

1976; Gordon et at., 1980a,b). Low temperature promotes starch and 

sugar accumulation (Neales and Incoll, 1968; Levitt, 1980a), 

especially in leaves of cool-intolerant C4 plants (Hilliard and West, 

1970; Lush and Evans, 1974; Ku et at., 1978). Some interactions seem 

to exist between temperature and C02 concentration in this respect 

(Hofstra and Hesketh, 1975). Carbohydrate accumulation is often 

observed under water stress (Levitt, 1980b). Levitt (1980a,b) 

concluded that the accumulation of carbohydrates in leaves under water 

and low temperature stresses is due to the fact that the rate of 

utilization of carbohydrates for growth is relatively more affected by 

the cited stresses than their rate of synthesis. The decline in the 

rate of translocation observed under these stresses (Wardlaw, 1968; 

Geiger and Sovonik, 1975) may also contribute to affect leaf carbo­

hydrate levels.

Carbohydrate build-up in leaves also increases with low sink 

demand, e.g. by defruiting, depodding, ear removal, petiole girdling, 

etc. (King et at., 1967; Neales and Incoll, 1968; Tanaka, 1977; Ho, 

1979; Avery et at., 1979; Setter et at., 1980; Clough et at., 1981).
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1.2.1 Sucrose and Starch Synthesis in Leaves

The interaction between starch and sucrose formation appears to 

be very dynamic. The degree to which carbon is partitioned between 

starch and sucrose varies greatly among species (Huber, 1981a,b; 

leaves of CAM plants accumulate mainly starch, Osmond and Holtum,

1981), and with many different internal and external factors for a 

particular species. The capacity to synthesize sucrose and other 

transport sugars is very small in young leaves which are net importers 

of carbohydrates. However, this capacity increases sharply 

coincidentally with the leaf import to export transition (Giaquinta, 

1980). In contrast to sucrose, young leaves can synthesize 

significant amounts of starch (Silvius et at. , 1978). The rate of 

starch synthesis is inversely related with the length of the daily 

photosynthetic period (Huber and Israel, 1982; Sicher et at., 1982), 

and increases with low sink demand (Ho, 1979; Huber and Israel, 1982).

The metabolic pathways involved in the synthesis of starch and 

sucrose in leaves have been recently reviewed by Preiss (1982). It is 

well established that starch is synthesized within the chloroplast and 

sucrose in the cytosol (see Fig. 1.2). Triose-phosphates (TP) 

synthesized in the Calvin cycle are the common precursors of both 

starch and sucrose molecules. Triose phosphates, mainly dihydroxy- 

acetonephosphate, are transported to the cytosol in counterexchange 

for orthophosphate (P̂ ) via the phosphate translocator of the inner 

envelope membrane (Heber and Heldt, 1981). The phosphate translocator 

can transport also 3-phosphoglyceraldehyde and 3-phosphoglycerate 

(3-PGA). However, this carrier only transports these compounds as 

divalent anions; 3-PGA is predominantly a trivalent anion at pH 8.0- 

8.5, the physiological pH of the chloroplast stroma in the light, and
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Fig. 1.2: Metabolic pathways involved in the synthesis of starch and
sucrose in photosynthetic cells, showing important points 
of metabolic control (dotted arrows). Abbreviations of 
metabolites: TP, triose-phosphate; P^, inorganic ortho­
phosphate; F-1(2),6-BP, fructose-l(2),6-bisphosphate;
F6P, fructose-6-phosphate; G6P, glucose-6-phosphate;
G1P, glucose-l-phosphate: UDPG, uridinediphosphate glucose;
PP^, pyrophosphate; ADPG, adenosinediphosphate glucose;
PGA, 3-phosphoglycerate.

Enzymes and metabolic sequences involved: PCR cycle,
photosynthetic carbon reduction cycle; (1) phosphate 
translocator; (2) fructose-1,6-bisphosphate aldolase;
(3) fructose-1,6-bisphosphatase; (4) phosphohexose 
isomerase; (5) phosphoglucomutase; (6) UDP-glucose pyro- 
phosphorylase; (7) pyrophosphatase; (8) nucleoside 
phosphate kinase; (9) sucrose-phosphate synthetase;
(10) sucrose phosphate phosphatase; (11) ADP-glucose pyro- 
phosphorylase; (12) starch synthetase.

Reactions are shown in the direction of sucrose and 
starch synthesis, but in fact all enzymes other than 3, 7, 
and 10 catalyse physiologically reversible reactions.
(After Kelly and Latzko, 1980; Herold, 1980; Preiss, 1982).
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it is not significantly exported from the chloroplast during photo­

synthesis. The availability of cytosolic P^ is undoubtedly the most 

important factor regulating the activity of the phosphate translocator 

(Heber and Heldt, 1981). Low P^ concentrations in the cytosol inhibit 

TP export from cloroplasts, and high P̂, concentrations increase 

excessively the rate of TP export and the Calvin cycle becomes 

depleted of intermediates; in both cases, the rate of photosynthesis 

of isolated chloroplasts results inhibited (Usuda and Edwards, 1982). 

In the intact cell, the vacuole stores large amounts of P^ which are 

in continuous exchange with cytosolic P^ (Kelly and Latzko, 1980).

This system could be useful for buffering cytosolic P^ concentration 

in order to maintain an optimal adjustment between- the rate of photo­

synthesis and the rate of TP export from the chloroplasts (Kelly and 

Latzko, 1980). Similarly, sucrose can also be temporarily stored in 

the vacuole of leaf cells (Herold, 1980; Kaiser et at., 1982).

Herold (1980) and Robinson and Walker (1981) have reviewed the 

regulation of sucrose and starch synthesis (see Figs. 1.2 and 1.3). 

Sucrose-phosphate synthetase and fructose-1,6-bisphosphatase seem to 

be the most important regulatory enzymes of sucrose synthesis, since 

their activities are similar to the observed rates of sucrose 

formation in vivo. Sucrose-phosphate synthetase and sucrose-phosphate 

phosphatase are inhibited by sucrose-phosphate and sucrose, the 

products of their respective reactions (Hawker, 1967; Amir and Preiss, 

1982). Sucrose phosphate synthetase from spinach leaves is also 

inhibited by P_̂ , especially at low fructose-6-phosphate concentrations 

(Amir and Preiss, 1982), and in some species is inhibited by sucrose 

(Huber 1981b). Fructose-1,6-bisphosphatase is inhibited by fructose- 

1, 6-bisphosphate and by fructose-2,6-bisphosphate, a recently
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LOW Pj HIGH Pj

Starch

SucroseSucrose

Fig. 1.3: The regulation of photosynthetic carbon partitioning
between sucrose and starch in green cells by cytosolic 
levels. The thick arrows indicate the pathway stimulated 
under different conditions. Abbreviations: PCR cycle,
photosynthetic carbon reduction cycle; TP, triose- 
phosphate; P^, inorganic orthophosphate. (After Robinson 
and Walker, 1981.)

discovered new metabolite in green cells, the importance of which is 

still unknown (Cseke et at. , 1982a) .
Sucrose accumulation in the cytosol is likely to produce an 

increased concentration of triose-phosphate in the chloroplasts, and 

sugar phosphates in the chloroplasts and cytosol [sugar phosphates do 
not appear to be transferred to the vacuoles (Kaiser et at. , 1982)]. 

These effects can be due to a complicated chain of feedback inhibition 

of several enzymes, such as fructose-1,6-bisphosphatase, sucrose- 

phosphate synthetase, and sucrose-phosphate phosphatase (see above), 

or to a mass action effect (Herold, 1980). As a result, the P^ 

concentration can decrease in the cytosol, and TP export from the



8

chloroplasts is reduced. Under these conditions the 3-PGA/P_^ ratio in 

the chloroplast rises and causes allosteric activation of ADP-glucose 

pyrophosphorylase, a key enzyme in the starch synthesis pathway 

(Robinson and Walker, 1981; Preis, 1982; see Figs. 1.2 and 1.3). The 

3-PGA/P_^ ratio in the chloroplasts of CAM plants is thought to be high 

under the conditions prevailing during deacidification, and this may 

explain the predominance of starch in these plants (Osmond and Holtum, 

1981). Starch accumulation, unlike sucrose, does not result in P^ 

sequestration (Fig. 1.2). Recent studies suggest that starch is 

simultaneously synthesized and degraded in the light, the balance, 

which is very dependent on P^ levels, being normally in favour of 

synthesis (Stitt and Heldt, 1981). In the dark starch is degraded in 

the chloroplasts presumably due to a decrease in the ratio of 3-PGA to 

P^. However, some interactions between starch degradation and sucrose 

metabolism can still occur in the dark. Gordon et at. (1980b) 

reported that massive starch degradation in barley leaves starts when 

sucrose levels decline to a low critical value, usually after several 

hours in the dark depending on the initial sucrose concentration.

Another mechanism of regulation of sucrose and starch 

partitioning could be the levels of enzyme activities that are present 

in the starch and sucrose biosynthetic pathways in leaves. Huber 

(1981b) reported that species such as wheat, barley, and spinach that 

accumulate more sucrose than starch in mesophyll cells, had higher 

sucrose-phosphate synthetase activity than those species accumulating 

mainly starch (tobacco, peanuts, beans). Variations in the activities 

of sucrose-phosphate synthetase, ADP-glucose pyrophosphorylase and 

other enzymes have also been related to changes in the carbon 

partitioning patterns between sucrose and starch observed under
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different photoperiod length (Robinson et at. , 1931; Huber and Israel, 

1982), under different sink demand of nodulated and non-nodulated 

soybean plants (Huber and Israel, 1982), and throughout leaf develop­

ment (Giaquinta, 1980).

The physiological consequences for the plant of starch or sucrose 

accumulation in leaves are not obvious. The biochemical mechanism of 

regulation of the synthesis of these two products suggests that starch 

is a buffer of sucrose metabolism. However, a high sucrose 

concentration relative to starch could be advantageous in terms of 

agricultural productivity. Huber (1981a) reported that isolated 

protoplasts from high yielding wheat varieties partitioned less carbon 

into starch and more into sucrose than protoplasts isolated from low 

yielding varieties. High sucrose content relative to starch may 

favour the rate of sugar translocation to metabolic sinks because 

starch is not directly available for extracellular transport, and on 

the other hand the concentration of sucrose in the leaf is an 

important factor governing the rate of translocation (Troughton et 

at., 1977; Giaquinta, 1980).

The role of large daily accumulation of starch in leaves, most of 

which is either respired or translocated during the following dark 

period, is not obvious. Some advantage may result from an available 

carbohydrate source for growth in the dark when leaf water potential 

is often more favourable for growth than in the light. Another 

possible effect of differences in the carbon partitioning into sucrose 

and starch relates to the end product control of photosynthesis (see 

next section).
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1.2.2 Mechanisms of End Product Control of Photosynthesis

Accumulation of carbohydrates in leaves during photosynthesis is 

a common phenomenon which can be enhanced by several means including 

high photosynthesis rates, low translocation rates, or low sink 

demand, as discussed in Section 1.2. It has been long hypothesized 

that "the accumulation of assimilates in an illuminated leaf may be 

responsible for a reduction in the net photosynthesis rate of that 

leaf" (Boussingault, 1868; see Neales and Incoll, 1968). Literature 

on this topic is very abundant and it has been recently reviewed 

several times (Neales and Incoll, 1968; Geiger, 1976; Guinn and 

Mauney, 1980; Herold, 1980). At present, there is still no good 

evidence of the occurrence of end product inhibition of photosynthesis. 

The conclusions are often complicated by the fact that hormonal 

interactions may occur following defoliation and sink manipulation, 

especially in long term experiments. However, it seems that high C02 

concentrations may have a deleterious effect on the rate of photo­

synthesis and growth, which can be accentuated when the sink demand 

and temperature are low (Hofstra and Hesketh, 1975; Guinn and Mauney, 

1980; Clough et at. , 1981). The elimination of this effect, which 

could be due to the massive amounts of carbohydrates accumulated, 

might result in increased plant yields in a program of C02 

fertilization. It may also be relevant to responses of plant 

production to elevated atmospheric C02 concentration.

Various types of end product (or feedback) control of the rate of 

C02 fixation are possible depending on the nature of the carbohydrate 

fraction accumulated, and this aspect will be examined in this section 

on the basis of the current knowledge of the regulation of starch and 

sucrose synthesis pathways. Sucrose accumulation in the cytosol is

i
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likely to produce a decrease in the P^ concentration in the cytosol, 

as discussed in the previous section. Two main types of feedback 

control of photosynthesis can then occur. Sufficiently low P^ levels 

in the cytosol will inhibit the rate of TP export from the chloro- 

plasts due to the properties of the phosphate translocator. Under 

these conditions the 3-PGA/P_^ ratio in the chloroplast increases 

causing activation of the enzyme ADP-glucose pyrophosphorylase, and 

promoting starch synthesis. Excessive starch accumulation has been 

suggested to inhibit the rate of net photosynthesis via several 

mechanisms, including physical damage to the chloroplast (Cave et at. , 

1981), interference with the pathways of light to the thylakoids and 

C02 to the fixations site, and binding of Mg2+ ions (see reviews by 

Neales and Incoll, 1968; Guinn and Mauney, 1980; and Herold, 1980). 

There is no definite proof to support these effects of starch, but it 

seems feasible that extremely high starch levels can lead to 

mechanical chloroplast damage.

Alternatively, very low P^ levels inside the chloroplast can 

restrict the rates of photophosphorylation and electron transport, 

probably via a decreased ATP/ADP ratio, which in turn, would limit the 

rate of ribulose-bisphosphate regeneration by the Calvin cycle 

(Robinson and Walker, 1981). Additionally, high sugar-phosphate 

levels which are present at low P^ concentrations, can compete with 

ribulose-bisphosphate for binding on RuBP-carboxylase (Badger and 

Lorimer, 1981). The decline in photosynthetic rates observed in 

isolated chloroplasts and in intact leaf tissues treated with mannose, 

a sequester of P_̂  (Herold, 1980; Robinson and Walker, 1981) suggests 

that photosynthesis in vivo could be inhibited by low P_̂  levels.

Leaves photosynthesizing at ambient C02 and 02 levels (330 ybar,
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21%) export most of the carbon from the chloroplasts as TP and 

glycolate, resulting from the carboxylation and oxygenation of RuBP. 

Oxygenation does not result in consumption of phosphate (Usuda and 

Edwards, 1982). However, the levels of TP and phosphorylated sugars 

increase very much in conditions where the oxygenation reaction is 

suppressed (e.g. high C02 and/or low 02 levels) (Badger et at., 1983), 

leading to a lower P^ availability in relation to ambient C02 and 02 

conditions. Therefore, the rate of photosynthesis could decline 

faster with time when the oxygenase reaction is inhibited due to the 

reduction in the RuBP regeneration capacity. Several observations are 

consistent with this hypothesis (Canvin, 1978; von Caemmerer and 

Farquhar, 1981). Further support is given by the fact that feeding 

spinach leaf discs with mannose produces a progressive decrease in the 

capacity of 2% 02 to stimulate photosynthesis, which is finally lost 

(Harris et at., 1981).

The extent by which end product control of photosynthesis is 

exerted by starch or sucrose accumulation may depend on differences in 

the capacities of their respective synthetic pathways, which are known 

to vary greatly among species (Huber, 1981a,b). The possible 

occurrence of end product control of photosynthesis in intact leaves 

of wheat, a species known to partition more photosynthetically fixed 

carbon into sucrose relative to starch (Huber, 1981a,b), will be 

experimentally examined in the next chapter.

1.3 CARBOHYDRATE AS SUBSTRATE FOR RESPIRATION

Respiration is a fundamental process for the performance of 

plants as living organisms. Early in the history of plant physiology, 

respiration was mainly regarded as "a path of energy degradation"
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(James, 1953). Beevers (1960, 1970, 1974) integrated a more 

comprehensive knowledge on the biochemistry of respiration and linked 
this process to the rest of the plant cell metabolism. Beevers (1970) 

concluded that "respiration is the source of intermediates used in the 

synthesis of permanent cellular constituents as well as the source of 
ATP and reduced nucleotides, the driving force of these syntheses".
He also argued that respiratory losses by a tissue were most likely a 
reflection of the demand of that tissue for ATP and reduced pyridine 

nucleotides, rather than the capacity of the tissue to catalyse 
respiratory reactions. In normal tissue the regeneration of these 
limiting metabolites is most probably linked to essential biosynthetic 
and maintenance activities of the cells. The concept thus emerged of 
a respiratory machinery governed by the pace of those reactions which 
consume its products.

McCree (1970) noted that a substantial portion of respiration of 
white clover plants was proportional to the daily net carbon gain by 
photosynthesis, while the remainder was proportional to existing plant 
biomass. This division of respiration led to the concept of a portion 
of respiration associated with growth (and directly linked to photo­
synthesis) and another portion linked to the maintenance of the life 
functions of the plant (Penning de Vries, 1972; Thornley, 1977). 

Penning de Vries et at. (1974) and Penning de Vries (1975) made a 
theoretical study linking the biochemistry of many known metabolic 

pathways with growth and maintenance respiration.

A variety of substrates can be respired, including carbohydrate, 

lipid, and protein, through pathways converging on the tricarboxylic 

acid cycle and thence on to respiratory chain phosphorylation. The 

contribution of these substrates to plant respiration has been
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recently assessed by ap Rees (1980a) who concluded that most plant 

cells for most of their life use carbohydrate as their major 

respiratory substrate. Leaves are not an exception in this respect.

He ascribed this dominance of carbohydrate as respiratory substrate in 

plants, which is more marked than in animals or micro-organisms, to 

the fact that carbohydrate is the principal product of photosynthesis 

and the main form in which carbon is moved about the plant. The 

pathways of carbohydrate utilization in respiration shall be outlined 

in the next sections. Although some of the information presented on 

these pathways has been obtained from non-photosyiithetic organs, it is 

assumed that it also applies for leaves (unless otherwise stated).

Leaf respiration constitutes a very important, fraction of total 

plant respiration, given the large contribution of leaves to plant 

biomass. There are some indications suggesting that a reduction in 

the rate of mature leaf respiration is associated with significant 

increases in dry matter yields in maize and perennial ryegrass 

(Heichel, 1971b; Wilson, 1975). That is, it appears that a fraction of 

leaf respiration appears to be wasteful. However, the nature of this 

wasteful respiration is not known. Little is known about the 

regulation of respiration in intact leaves and the possible influence 

of photosynthesis in this respect. It is also not known to what 

extent proposed biochemical mechanisms of regulation operate and 

interact with other mechanisms (e.g. carbohydrate supply) in leaves in 

vivo. It is obviously important, particularly in view of Wilson's and 

Heichel's results, to gain such information, since it may have a large 

impact on the manipulation of plant growth.
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1.3.1 Pathways of Carbohydrate Respiration in Leaves

1.3.1.1 Glycolysis, oxidative pentose phosphate (OPP) pathway 
and tricarboxylic acid (TCA) cycle in the dark

Sucrose and starch, the major respiratory substrates, are 

converted to fructose-6-phosphate and glucose-6-phosphate which are 

oxidized via glycolysis and OPP pathway; the products are metabolized 

via the TCA cycle, and C02 is produced (Fig. 1.4). The principal 

locations of these pathways in the photosynthetic cell are the cytosol 

(glycolysis and OPP pathway) and the mitochondrion (TCA cycle). The 

chloroplast is also capable of a complete OPP pathway and a partial 

glycolysis as far as 3-PGA [the enzyme phosphoglycerate mutase is 

absent in pea chloroplasts (ap Rees, 1980b) but this question still is 

in dispute (see Dennis and Miernyk, 1982)]. However, glycolysis can 

still proceed in chloroplasts if 2-PGA is supplied externally, because 

enolase, pyruvate kinase, and pyruvate dehydrogenase are present in 

these organelles (ap Rees, 1980b; Dennis and Miernyk, 1982).

Glucose is mainly oxidized under aerobic conditions through 

glycolysis and TCA cycle in leaf tissues (Stitt and ap Rees, 1978; 

ap Rees, 1980a,b); the contribution of total OPP pathway to glucose 

metabolism has been estimated to be well below 30%, and may only be 

10-15% of the total C02 released (ap Rees, 1980a,b). An estimate of 

no more than 30% was reported for wheat leaves, although some inter­

ference could result from C02 released during pentan synthesis from 

hexose (e. g. xylose, arabinose, which are constituents of cell walls), 

which is significant in wheat leaves (Stitt and ap Rees, 1978). 

Chloroplasts are capable of considerable rates of OPP pathway during 

starch breakdown. The function of the OPP pathway is probably to 

provide NADPH for reductive biosyntheses in the first instance, and 

secondarily to supply pentose-phosphate and erythrose-phosphate for



Fig. 1.4: Pathways of carbohydrate oxidation in aerobic conditions in
leaf cells, showing important points of metabolic control 
(dotted arrows).

Abbreviations of metabolites: Glu, glucose; Fru,
fructose; G1P, glucose-l-phosphate; G6P, glucose-6- 
phosphate; F6P, fructose-6-phosphate; F-1(2),6-BP,
fructose-1(2),6-bisphosphate; 3-PGAL, 3-phosphoglyceral- 
dehyde; DHAP, dihydroxyacetonephosphate; 1,3-DiPGA, 1,3- 
diphosphoglycerate; 3-PGA, 3-phosphoglycerate; 2-PGA, 
2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, 
pyruvate; OAA, oxalacetate; ASP, aspartate; Mai, malate; 
AcCoA, acetylcoenzyme A; a-KG, a-ketoglutarate; Ru5P, 
ribulose-5-phosphate; R5P, ribose-5-phosphate; Xu5P, 
xylulose-5-phosphate; S7P, sedoheptulose-7-phosphate;
E4P, erythrose-4-phosphate.

Enzymes and metabolic sequences involved: (1) starch
phosphorylase; (2) amylases and other hydrolytic enzymes; 
(3) invertase; (4) glucokinase; (5) fructokinase;
(6) phosphoglucomutase; (7) phosphohexose isomerase;
(8) phosphofructokinase; (9) fructose-1,6-bisphosphate 
aldolase; (10) triosephosphate isomerase; (11) NAD- 
specific glyceraldehydephosphate dehydrogenase;
(12) phosphoglycerate kinase; (13) phosphoglyceromutase; 
(14) enolase; (15) pyruvate kinase; (16) phosphoenol­
pyruvate carboxylase; (17) malate dehydrogenase;
(18) transaminase; (19) NAD-specific malic enzyme;
(20) pyruvate dehydrogenase; (21) acetyl-CoA hydrolase;
(22) citrate synthetase; (23) aconitase; (24) isocitrate 
dehydrogenase; (25) a-ketoglutarate dehydrogenase;
(26) succinyl-CoA synthetase; (27) succinate dehydrogenase; 
(28) fumarase; (29) glucose-6-phosphate dehydrogenase;
(30) 6-phosphogluconate dehydrogenase; (31) ribose- 
phosphate isomerase; (32) ribulose-phosphate-3-epimerase; 
(33) transketolase; (34) transaldolase. (Modified after 
ap Rees, 1980a,b; Turner and Turner, 1980; Wiskich, 1980.)
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synthetic reactions (e.g. nucleic acids, phenilpropanoid compounds)

(ap Rees, 1980b). Some NADPH can be directly oxidized by the 

respiratory chain, resulting in ATP formation (see later).

The integration of glycolysis in the cytosol and the TCA cycle in 

the mitochondrion is achieved by the existence of several transport 

systems in the inner mitochondrial membrane (Wiskich, 1977, 1980). 

Pyruvate transport appears to be insufficient to sustain the maximum 

rates of TCA cycle activity observed in vitro and Day and Hanson 

(1977) proposed that malate, which is very rapidly transported by the 

dicarboxylate carrier, supplements the cycle with extra pyruvate 

through its oxidative decarboxylation by NAD-dependent malic enzyme, a 

unique enzyme of plant mitochondria. The operation of PEP-carboxylase 

and malate dehydrogenase can continuously supply oxalacetate and 

malate in the cytosol at significant rates. This system would permit 

the diversion or drainage of TCA cycle intermediates (e.g. 

oxalacetate, acetate, a-ketoglutarate) for biosynthetic or anaplerotic 

reactions without affecting the rate of regeneration of citrate. 

Another interesting feature of this scheme is that it results in a 

bypass of an important regulatory glycolytic enzyme, pyruvate kinase 

(Fig. 1.4).

(i) Regulation

The regulation of glycolysis, OPP pathway and TCA cycle in the 

dark is very complex and involves many factors (Turner and Turner, 

1980; Wiskich, 1980; ap Rees, 1980b). The main regulatory enzymes of 

these pathways are hexose kinases, glucose-6-phosphate dehydrogenase, 

phosphofructokinase (PFK) and pyruvate kinase (PK), which catalyse 

non-equilibrium reactions under in vivo conditions and are
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strategically located at initial points of metabolic pathways (Fig. 

1.4). Other possible regulatory steps are pyruvate dehydrogenase, 

citrate synthetase, and other TCA cycle dehydrogenases. Glucose-6- 

phosphate dehydrogenase is inhibited by NADPH, and it is probably 

controlled in vivo by the ratio NADP to NADPH (ap Rees, 1980b). The 

application of the cross-over theorem suggests that PFK and PK are the 

main enzymes regulating glycolytic flux (Turner and Turner, 1980).

Both enzymes are inhibited by ATP and citrate, and are activated by 

NH^ salts. Phosphofructokinase is additionally inhibited by ADP, AMP, 

some glycolytic intermediates (especially phospho-enolpyruvate, PEP), 

and by 6-phosphogluconate, and is stimulated by P^. Buchanan’s group 

recently reported that fructose-2,6-bisphosphate stimulates PFK 

activity in leaves (Cseke et at. , 1982a), but the factors controlling 

the synthesis of this metabolite in plants are unknown at present.

The fact that PK can be bypassed (see above) and that PFK is 

affected by a wider range of potential regulators suggest that this 

latter enzyme can affect most decisively the rate of carbohydrate 

utilization in glycolysis.

The integrated control of glycolysis and TCA cycle in plant 

tissues and particularly in leaves in vivo, is still not very well 

understood. The rate of respiration in leaves has been found to be 

correlated with the rate of prior photosynthesis, and it is also 

frequently stimulated upon addition of exogenous sugars, especially in 

starved leaves (see Section 1.3.2.1). These facts suggest that 

glycolysis could be regulated by the substrate supply. On the other 

hand, it has been suggested that carbohydrate oxidation is mainly 

regulated by the energy charge*, or in other words, by the energy

* The energy charge, a concept developed by Atkinson (1977), is a
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demand (Beevers, 1974), as in animals cells (Atkinson, 1977). However, 

the control of PFK in plants and animals appears fundamentally 

different, in the sense that AMP stimulates the animal enzyme but 

inhibits the plant enzyme (Turner and Turner, 1980). The activation 

of PFK from mammalian tissues and yeast by AMP was one of the factors 

supporting the control of glycolysis and TCA cycle by energy charge. 

The stronger inhibition of plant PFK by the phosphorylated inter­

mediates of glycolysis, especially PEP, and by the initial metabolites 

of the OPP pathway (6-phosphogluconate) and the TCA cycle (citrate) 

suggests that the activity of this enzyme may be regulated 'in vivo not 

only by the rate at which ATP is used, but also by the demand of 

biosynthetic intermediates. The regulation of glycolysis by substrate 

supply would be consistent with this suggestion. In this sense, the 

stimulation of glycolytic flux by NH* may reflect an increased demand 

of carbon skeletons for amino acid synthesis (Bassham et at. , 1981). 

Consistently, the enzyme AMP deaminase, which produces NH^ from AMP, 

has been found to activate PFK and PK in yeast (Yoshino and Murakami, 

1982). Interestingly, this enzyme is also present in plants (see 

Yoshino and Murakami, 1982).

1.3.1.2 Mitochondrial Electron Transport 
and Oxidative Phosphorylation

TCA cycle intermediates are oxidized in the mitochondrial matrix,

measure of the metabolic energy stored in the adenine nucleotide 
system, and is given by the ratio

(ATP) +%ADP 
(ATP) + (ADP) + (AMP) *

The system is fully charged when all the adenylate present is 
converted to ATP (energy charge = 1), and fully discharged when only 
AMP is present (energy charge = 0).
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and the electrons are subsequently transferred via NADH or FADH to the 

mitochondrial respiratory chain. The structure of the respiratory 

chain of plant mitochondria is more complex than its mammalian 

counterpart (Fig. 1.5). In addition to the traditional sequence of 

electron carriers from substrate to cytochrome oxidase, which is 

inhibited by rotenone, antimycin A and KCN, and is associated to three 

energy transducing sites, plant mitochondria possess sequences of 

redox components resistant to several inhibitors. These are the 

rotenone-resistant NADH dehydrogenase (see next section) and the 

cyanide and antimycin A-resistant, alternative terminal oxidase (see 

Section 1.3.1.2.2); both pathways bypass energy transducing sites. 

Plant mitochondria can oxidize malate via NAD-linked malic enzyme in 

addition to malate dehydrogenase, and leaf mitochondria oxidatively 

decarboxylate glycine via an NAD-linked glycine decarboxylase; in 

both cases the NADH formed can be oxidized by the respiratory chain 

with the formation of three molecules of ATP (Hanson and Day, 1980) 

(see also Section 1.3.2.2.1). Plant mitochondria also 

characteristically oxidize external NAD(P)H (see next section).

This complex respiratory chain makes it possible to transfer 

electrons to oxygen without the synthesis of ATP (e.g. by electron 

transport through the rotenone and cyanide-resistant pathways, Fig. 

1.5). The organization of the respiratory chain has been recently 

reviewed by Storey (1980), Day et dl. (1980) and Palmer and Miller 

(1982).

The respiratory chain is located in the inner membrane of mito- 

condria, and during electron transport to oxygen through the cyto­

chrome chain protons are translocated out of the matrix to create a 

proton motive force (pmf) across the inner membrane (which is
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Fig. 1.5: Schematic diagram of the respiratory chain in the inner
membrane of plant mitochondria, showing the electron 
transport carriers, the proton translocation sites, and the 
sites of inhibition (inhibitors are shown in brackets). 
Abbreviations: Fp, flavoproteins; FeS, iron sulfur
proteins; Q, ubiquinone; Cyt, cytochromes; SHAM, salicyl 
hydroxamic acid; disulfiram, tetraethylthiuram disulfide 
(modified after Storey, 1980; Day et at. , 1980; and Hanson 
and Day, 1980).

relatively impermeable to H+). According to the chemiosmotic 

hypothesis (Mitchel, 1966) this pmf is used to drive phosphorylation 

of ADP; H+ move back across the membrane through the ATPase complex 

catalysing the synthesis of ATP from ADP to P^. Electron flow that is 

coupled to H+ translocation is subject to control by the pmf. In the 

presence of ADP and P^, the pmf is dissipated and electron flow is 

rapid; in the absence of ADP, the pmf is high and exerts a "back 

pressure" on electron transport, inhibiting it. This constitutes the 

familiar respiratory control seen with isolated mitochondria (see 

Appendix III). A high extramitochondrial ATP/ADP ratio will also 

inhibit oxidative phosphorylation and hence electron transport.



22

Adenine nucleotides communicate with the matrix (and therefore the 

catalytic site of the ATPase complex, which is localized in the matrix 

side of the inner membrane) via a specific carrier which catalyses 

A D P A T P t r a n s p o r t  (Klingenberg, 1980). Due to the electrogenic 

nature of this transport, this exchange of ADP for ATP is essentially 

unidirectional in energized mitochondria, resulting in a higher 

ATP/ADP ratio in the cytosol than in the mitochondria (Klingenberg, 

1980). However, when external ATP is very high, and ADP low, uptake 

of the latter is inhibited, oxidative phosphorylation is also 

inhibited and hence electron transport is restricted. Thus cytosolic 

ATP/ADP (+P^ —  the phosphate potential) may determine, at least in 

part, respiratory 02 consumption in vivo.

There is some evidence that extramitochondrial ATP/ADP ratio 

controls the rate of electron transport to oxygen in isolated plant 

mitochondria, but only when this ratio exceeds approximately 20 (Dry 

and Wiskich, 1982). However, the sensitivity of respiration to the 

ATP/ADP ratio increases when the ADP concentration is very low, and 

therefore, it may depend more on total adenylate concentration than 

relative concentration (Dry and Wiskich, 1982). Cytosolic ATP/ADP 

ratios measured in vivo are much lower than 20, and usually less than 
10 (Heber, 1974; Hampp et al. , 1982; Stitt et at., 1982), but still 
respiration seems controlled by adenylate turnover as shown by the 

effect of uncouplers of oxidative phosphorylation (e.g. FCCP) in 

intact tissues (Beevers, 1974; Day et dl., 1980; Wiskich, 1980). 
However, the technical problems of directly measuring the ATP/ADP 

ratio in the cells in vivo, which arise because the adenylate system 

has a very fast turnover, may have been the reason for these

contrasting results.
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Other factors can affect electron transport rates. For example, 

the availability of respiratory substrate from glycolysis (which in 

turn would depend on the carbohydrate status), the rate of substrate 

transport through several mitochondrial carriers (e.g. pyruvate, 

dycarboxylate) (Day and Hanson, 1977; Wiskich, 1977, 1980), and the 

capacity of the various respiratory linked dehydrogenases. These 

latter enzymes appear to have lower activities than the capacity of 

the cytochrome chain, as shown by the observation that the oxidation 

of substrate alone does not saturate the cytochrome pathway, nor 

necessarily two substrates simultaneously oxidized (Day and Wiskich, 

1977). Likewise the operation of non-phosphorylating electron 

transport pathways in plant mitochondria (see below) is not restricted 

by adenylate turnover, and may principally depend on the availability 

of reducing equivalents from the TCA cycle. Obviously, the control of 

electron transport in plant mitochondria is a very complex phenomenon, 

which still is not fully understood -in vivo.

(i) NAD(P)H oxidation pathways

NAD(P)H oxidation by plant mitochondria is a complex process 

involving at least three distinct dehydrogenases (Palmer and Miller, 

1982). Exogenous NAD(P)H, which can be produced in glycolysis and OPP 

pathway, can be oxidized by a dehydrogenase system, which may involve 

specific dehydrogenases for NADH and NADPH, located on the outer 

surface of the inner membrane. This system donates electrons to 

ubiquinone with the formation of 2 molecules of ATP upon subsequent 

transfer to cytochrome oxidase. The physiological significance of the 

external NAD(P)H oxidation is not known, but Palmer and Miller (1982) 

suggested that it could be a mechanism to regulate the cytosolic
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NAD(P)H/NAD(P) ratio.

Endogenous NADH is preferably oxidized by a rotenone-sensitive

NADH-dehydrogenase coupled to three energy transducing sites, as in

mammalian mitochondria. However, endogenous NADH can also be

oxidized by a rotenone-resistant dehydrogenase which bypasses the

first energy transducing site (Fig. 1.5). The nature of this latter

enzyme is not known, but its affinity for NADH (K , 80 ]iM) is much

lower than that of the rotenone-sensitive oxidase (K , 8 ]iM) (Millerm
and Palmer, 1982). This property suggests that the rotenone-resistant 

NADH dehydrogenase can be significantly engaged in respiration only 

when NADH levels are very high, which can occur when cytosolic malate 

concentration increases or when the rate of electron flow through the 

normal respiratory chain is suppressed by the phosphorylation 

potential. Palmer and Miller (1982) suggested that the operation of 

this dehydrogenase could permit TCA cycle turnover for production of 

biosynthetic intermediates in the presence of a high NADH/NAD ratio.

(ii) The alternative pathway

A striking feature of plant mitochondria is the presence of a 

pathway resistant to inhibitors of the cytochrome path (e.g. antimycin 

A, cyanide). The alternative path has recently been extensively 

reviewed (Day et dl. , 1980; Laties, 1982), but the precise nature of 

the components of this path is still unclear. A flavoprotein 

containing copper and a quinol-oxidoreductase (perhaps the terminal 

oxidase?) have been implicated (Rich, 1978; Huq and Palmer, 1978). It 

is well known that the alternative path branches from the conventional 

electron transport chain at the ubiquinone level (Storey, 1976); the 

alternative oxidase has a lower affinity for oxygen (K̂ , 10-30 yM)
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than does the cytochrome oxidase (K , <1 ]iM) (Solomos, 1977; Kano and 

Kageyama, 1977), and it is not coupled to ATP synthesis, i.e. it leads 

mainly to production of heat.

The regulation of the electron flow through the alternative path 

is a controversial issue. The most accepted model (Bahr and Bonner, 

1973) suggests that the alternative pathway becomes engaged only when 

the level of ubiquinone reduction is very high, and this can occur 

when the cytochrome path is either saturated (state 3 — see Appendix 

III — or uncoupled respiration in the presence of adequate substrate 

levels) or restricted (e.g. by oxidative phosphorylation). A 

considerable experimental and theoretical body of evidence supports 

the validity of this model (Laties, 1982).

The contribution of the alternative pathway to respiration can be 

estimated by using inhibitors of the cytochrome and alternative paths, 

in titration experiments (Day et at. , 1980). Inhibitors of the 

alternative pathway are hydroxamic acids, propyl gallate and 

disulfiram (Schonbaum et at., 1971; Grover and Laties, 1981; Laties, 

1982); hydroxamic acids in particular have been widely used for 

studies with isolated mitochondria, cells, and intact tissues (Day et 

at., 1980; Laties, 1982, Lambers, 1982). These techniques are 

discussed in depth in Chapter 5 and in Appendix IV.

The presence of the alternative path in most plant tissues, 

including leaves, has been clearly established (Henry and Nyms, 1975; 

Laties, 1982; Lambers, 1982). However, there is more uncertainty 

about the operation of this path in normal respiration especially in 

intact tissues, and about its possible function. It is known that the 

rate of respiration of mature leaves is little inhibited or sometimes 

is stimulated by cyanide (James, 1953; Ducet and Rosenberg, 1962), and
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that a combination of SHAM and KCN almost fully inhibits leaf 

respiration (Lambers et al. , 1979; Kinraide and Marek, 1980). However, 

these latter authors reported that the sensitivity of shoots of 

Senecio aquations and leaves of Bryophyllum tubiftorum to SHAM alone 

was very low, suggesting that the alternative pathway, although 

present, is not engaged in normal respiration in these leaves„

The carbohydrate status seems to affect the degree of engagement 

of the alternative pathway in roots and in Chlorella cells (see 

Lambers, 1982), but there is no information for leaves. This aspect 

will be studied in this thesis.

Apart from its role in thermogenesis in the male reproductive 

organs of the Araceae (Meeuse, 1975), the function(s) of the 

alternative pathway remains a mystery. Several hypotheses have been 

proposed, but the experimental evidence is not conclusive (Laties, 

1982). It has been suggested that the alternative path serves to 

remove excess carbohydrate from the cell in an energy overflow 

mechanism (Lambers, 1982). The results of Yoshida and Tagawa (1979) 

suggest that the alternative path may be involved in the resistance of 

plant tissues to chilling temperatures (see also Laties, 1982). This 

pathway could also play a role in seed germination and in defense 

against infections by other organisms (Laties, 1982). Nothing is 

known about the possible function of the alternative path in leaf 

respiration.

1.3.2 Relationship between Photosynthesis 
and Respiration in Leaves

1.3.2.1 Substrate supply as a factor in 
leaf respiration in the dark

The rate of respiration of leaves in the dark is usually higher
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after a light period than after a dark period (James, 1953; Stoy,

1965; Heichel, 1971a). The carbohydrate level in the leaves 

constantly decline during a dark period, and complete starvation may 

occur if the dark period is sufficiently long (James, 1953). Ludwig 

et at. (1975) and Challa (1976) measured the C02 output of tomato and 

cucumber leaves, respectively, during the whole night after a light 

period in which the rate of photosynthesis was varied by changing the 

light level or C02 concentration. They found that the integrated rate 

of respiration during the night increased proportionally to the 

integrated rate of net photosynthesis in the preceding light period.

In contrast, Heichel (1970) reported that the rate of C02 released 

into a stream of C02-free air by attached maize leaves after a period 

of illumination reached a maximum 20 min after darkening. The maximal 

rate of respiration was quantitatively related to the light intensity 

during the previous light period, but appeared to be independent of 

the rate of net C02 fixation.

However, a similar relationship between photosynthesis and 

respiration than that observed in cucumber and tomato leaves (see 

above) has also been repeatedly demonstrated by several workers in 

whole plants (Ludwig et at., 1965; McCree and Troughton, 1966; McCree, 

1970, 1974; Penning de Vries, 1972, etc.). It is remarkable that the 

relationship between photosynthesis and respiration is maintained 

during water stress. Ferrar (1980) subjected two woody species from 

South African savannas to slow water stress and found that the rate of 

dark C02 efflux of whole shoots (including leaves) measured at the end 

of the night declined with leaf water potential. Plotting respiration 

at different water potentials against average photosynthesis of the 

previous day resulted in a linear relationship except at the highest
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photosynthesis rates. This relationship differed depending on whether 

the plants had experienced water stress or not. Pre-stressed plants 
showed lower respiration rates for any given rate of photosynthesis 
than non-stressed plants, and the ratio of respiration to photo­

synthesis was also much lower in pre-stressed plants.
McCree (1970) fitted an empirical equation in which the rate of 

dark C02 output of white clover plants is proportional to photo­

synthesis and dry weight of living material on the plant. This 
information served to develop the theoretical concepts of growth and 

maintenance respiration (see Section 1.3). Considerable experimental 

evidence agrees with the conclusions of this model of respiration 
(Hunt and Loomis, 1979) but some results are contradictory, as in the 
case of Lottum ipevenne plants grown in the field (Jones et at. , 1978) 
or in barley plants (Winzeler et at. , 1976; Farrar, 1980). From a 
biochemical point of view, there is still no clear distinction between 
growth and maintenance respiration, and it is also not clear what the 
relationships between them and the non-phosphorylating pathways of 

electron transport in mitochondria (see above) are. These pathways 
consume carbohydrate without producing energy. However, growth and 

maintenance respiration seem to differ in their response to 

temperature. Whereas the fraction of total plant respiration 

proportional to the daily net photosynthetic carbon input (i.e. growth 

regulation) is relatively insensitive to temperature changes in the 

physiological range, the maintenance component increases dramatically 

with temperature (McCree, 1974; Ryle et at. , 1976; Breeze and Elston, 
1978).

The application of this model of respiration to leaves is not 

very successful. In contrast to the explanation given for whole and
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rapidly growing plants, the large enhancement in the rate of leaf 

respiration associated with photosynthesis (see above) cannot be 

primarily related to growth requirements because mature leaves were 

used in these studies. An alternative explanation is that respiration 

is used for synthesis of compounds (e.g. amino acids) in the leaf 
which can be utilized for growth in other plant parts, and/or that 

respiration provides energy for transport of assimilates (Ho and 
Thornley, 1978), whose concentration increases after a period of 

photosynthesis. However, these requirements cannot be the primary 
mechanism regulating the rate of leaf respiration'since experiments in 

which the rate of leaf export was decreased by lowering temperature 
and sink demand (e.g. by defruiting, depodding) have shown that the 

rate of mature leaf respiration increased in relation to control 
plants which were not manipulated (Rook, 1969; Tanaka, 1977; Ho, 1979; 
Avery et al. , 1979). Similar results have been reported for wheat 
plants after ear removal (Birecka, 1968; Birecka et at., 1969). An 
increase in leaf carbohydrate levels was found in these conditions. A 
similar correlation between leaf respiration and carbohydrate 

concentration was obtained even in conditions where the sink demand 
was not altered (Challa, 1976; Cunningham and Syvertsen, 1976; 
Coggeshall and Hodges, 1980; Moser et al. , 1982). Similar relation­
ships between carbohydrates and respiration are found in other plant 

organs (James, 1953; Saglio and Pradet, 1980; Moser et al. , 1982), and 

in whole plants (Alberda, 1968; Breeze and Elston, 1978; Penning de 

Vries et al. , 1979).
Respiration of leaves is stimulated upon addition of several 

sugar solutions (James, 1953; Tetley and Thimann, 1974; Goldthwaite, 

1974), especially in starved leaves (James, 1953). Similar
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observations have been made with other plant organs, e.g. roots, 

coleoptiles, meristems, carrot slices, embryos, etc. (James, 1953; 
Saglio and Pradet, 1980).

The evidence presented here suggests that carbohydrate 
availability may play an important role in regulating the rate of leaf 

respiration, which could account for the proportionality between the 
rates of photosynthesis and respiration observed in leaves, and 
perhaps in whole plants. However, it is not known which is the 

biochemical basis of the increase in respiration due to carbohydrate 

accumulation. There is little or no information about the existence 
of other possible regulatory mechanisms, such as the adenylate system, 

in leaves in vivo, nor on the possible interactions between these 
mechanisms and the regulation by substrate supply. The stimulatory 
effects of uncouplers of oxidative phosphorylation (e.g. 2,4-dinitro- 
phenol) on plant respiration, including leaves (Beevers, 1953; Porter 
and Runeckles, 1956) suggests that respiration can also be regulated 
by adenylate turnover (Beevers, 1970, 1974). However, it seems clear 
that the regulation of respiration is not simply due to the growth and 

maintenance requirements, at least in mature leaves.

1.3.2.2 Leaf respiratory metabolism during photosynthesis

The central problem in the study of relationships between photo­

synthesis and respiration is the question of whether or to what extent 

the respiratory pathways function in illuminated leaves. This topic 

has been recently reviewed in length by Graham (1980), but it seems 

that the question is far from being solved. Classically, it has been 

considered that respiration is inhibited in the light by the increased 

cytosolic phosphorylation potential (Heber, 1974; Heber and Heidt,
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1981), but Graham (1980) argued that the TCA cycle is operative in the 

light. Evidently, respiration is a very complex phenomenon and 

control by a single mechanism seems unlikely (see above).

The evidence suggests that partial glycolysis and OPP pathway in 

the chloroplasts (see Section 1.3.1.1) are inhibited in the light; 

otherwise the reactions would interfere with the starch synthesis and 

the Calvin cycle (see ap Rees, 1980b; Buchanan, 1980; Dennis and 

Miernyk, 1982). Mechanisms of inhibition include the inactivation of 

the enzymes phosphofructokinase and glucose-6-phosphate dehydrogenase 

by the increased NADPH/NADP ratio, and a light modulation of the 

latter enzyme (Buchanan, 1980; Dennis and Miernyk, 1982; Cseke et at, , 

1982b). These and other chloroplastic enzymes differ in their 

regulatory properties from their cytosolic counterparts (Dennis and 

Miernyk, 1982).

The situation is more complex in the rest of the cell. Complete 

suppression of glycolysis and TCA cycle is unlikely because these 

pathways are the unique net source in the cell of several compounds 

(e.g. acetate, a-ketoacids) which are required for numerous 

biosynthetic reactions known to occur very rapidly in the light.

These include amino acid and lipid synthesis. Chloroplasts are the 

sites of formation of many amino acids (Miflin and Lea, 1977) and most 

fatty acids (Stumpf, 1980). However, these organelles are unable to 

synthesize a-ketoacids (e.g. pyruvate, oxalacetate, a-ketoglutarate), 

which must be supplied by other cell compartments (Miflin and Lea, 

1977; Larsson, 1979) due to the absence of phosphoglyceromutase, PEP- 

carboxylase, citrate synthetase and other enzymes of the TCA cycle (ap 

Rees, 1980b; Randall and Givan, 1981). Liedvogel and Stumpf (1982) 

concluded that acetate utilized in fatty acid synthesis in spinach
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chloroplasts is mainly provided by the mitochondrion.

The biochemical evidence suggests that glycolysis and the TCA 

cycle can operate in the light, although some modifications probably 

occur in relation to the dark pattern (Graham, 1980). Studies in 

which leaves were fed with radioactive carbon compounds (e.g. C02 , TCA 

cycle intermediates) are consistent with the view that the TCA cycle 

has a marked anaplerotic function in the light, as proposed by Kent 

(1979) and Woo and Canvin (1980) , since radioactivity traversing TCA 

cycle intermediates (e.g. citrate) accumulates in amino acids and 

other compounds to a greater extent in the light than in the dark 

(Bidwell, 1963; Graham, 1980). The anaplerotic flow through the TCA 

cycle also increases with C02 concentration (Platt et at. , 1977).

A mechanism for replenishing the carbon compounds of glycolysis 

and TCA cycle used in synthetic reactions probably involves the 

cooperation of the enzymes PEP carboxylase and malate dehydrogenase in 

the cytosol, and NAD-malic enzyme in the mitochondrion (see Fig. 1.4). 

The higher reducing conditions of the cell during photosynthesis, 

which are reflected by the increased malate to aspartate ratio 

(Graham, 1980), would favour the operation of cytosolic malate 

dehydrogenase towards malate formation, and hence it would increase 

the availability of this compound for mitochondria.

The origin of PEP in the light is uncertain. In this sense, 

leaves metabolize exogenous glucose through glycolysis and TCA cycle 

in the dark, but do not do so significantly in the light; in contrast, 

exogenous malate is equally well metabolized in the light and in the 

dark (Graham, 1980). These results suggest that glucose catabolism is 

blocked in the light, probably at the phosphofructokinase step. This 

enzyme is controlled by adenylate turnover and many other factors and
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it is thought that it is the main enzyme regulating glycolysis (see 

above). The inhibition of PFK during photosynthesis would 

avoid the existence of a futile cycle between fructose-6-P and 

fructose-1,6-bisphosphate, involving the enzymes fructose-1,6- 

bisphosphatase, a key enzyme in the sucrose synthesis pathway (see 

Fig. 1.2), and PFK. Interestingly, a recently discovered metabolite, 

fructose-2,6-bisphosphate, inhibits the enzyme fructose-1,6- 

bisphosphatase, and stimulates PFK (Cseke et al. , 1982a). The 

importance of this metabolite for regulating these enzymes in the 

light is unknown. Pyruvate kinase, which is also controlled by the 

adenylate system, can be bypassed by the mechanism involving PEP 

carboxylase and malic enzyme. Therefore, it is probable that PEP used 

in anaplerotic reactions is mainly generated from triose-phosphate 

from current photosynthesis rather than from stored sugars. However, 

Bassham et al. (1981) suggested that NH* can increase the anaplerotic 

flow for amino acid synthesis through activation of phosphofructo- 

kinase and pyruvate kinase.

The operation of the anaplerotic reactions of TCA cycle results 

in net C02 production (e.g. 1 molecule of C02 per molecule of 

glutamine formed from two molecules of PEP). However, it is not known 

how significant the rate of this C02 production in intact leaves in 

the light may be, compared to that in the dark. Several authors 

support the view that respiratory C02 production is very small in the 

light (Mangat et al. , 1974; Canvin et al. , 1976; Peisker and Apel, 

1980), but others suggest that it may be significant (Graham, 1980; 

Azcön-Bieto et al., 1981). This aspect will be studied in detail in 

wheat leaves in this thesis.

NADH generated in the mitochondrion can be transported to other
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cell compartments through several metabolic shuttle systems, e.g. 

malate/oxalacetate (Woo et at., 1980; Day and Wiskich, 1981, Fig. 1.6) 

and malate/aspartate (Journet et at., 1981). However, it is not known 

if the TCA cycle operates beyond succinate oxidation in the light 

because this reaction requires the operation of the mitochondrial 

electron chain, a more uncertain aspect of the problem. The most 

widely accepted view is that electron transport coupled to oxidative 

phosphorylation is inhibited in the light by the increased cytosolic 

ATP/ADP ratio (Heber, 1974; Hampp et at., 1982). However, Stitt et 

at. (1982) measured the levels of ATP, ADP and AMP in the chloroplasts, 

cytosol and mitochondria of wheat protoplasts using a technique which 

permitted to kill the protoplasts in about 0.1 sec, and found that the 

cytosolic ATP/ADP ratio was lower in the light than in the dark, but 

that the mitochondria appeared to be de-energized. They concluded 

that oxidative phosphorylation was restricted by a mechanism other 

than the ATP/ADP ratio. Similarly, Dry and Wiskich (1982) have found 

that the ATP/ADP ratio restricts respiration in isolated mitochondria 

only when its value exceeds approximately 20, which is much higher 

than the values commonly found in vivo (see above). They suggested 

that the absolute concentration of ADP may be more important in 

regulating respiration. The technical problems in measuring correctly 

the ATP/ADP ratio in vivo (see Section 1.3.1.2) may have been the 

reason for these contrasting results.

The possibility that uncoupled electron transport to oxygen (e.g. 

by increased membrane permeability to protons or by the operation of 

the rotenone and cyanide resistant pathways — see Section 1.3.1.2) 

occurs in the light cannot be ruled out. This would permit the 

reoxidation of NADH produced in the TCA cycle without affecting the 

energy status of the cell.
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Fig. 1.6: Scheme of the malate/oxalacetate shuttle for transferring
reducing equivalents generated in the glycine decarboxyl­
ation reaction from the mitochondrion to the peroxisome. 
Enzymes: (1) glycine decarboxylase complex; (2) malate
dehydrogenase; (3) transaminase; (4) hydroxypyruvate 
reductase (after Day and Wiskich, 1981).

(i) Relationships between respiration and photorespiration

Photorespiration, defined as the process associated with the 

metabolism of glycolic acid, differs greatly from the process of 

respiration as defined in this Introduction (Tolbert, 1980; Lorimer 

and Andrews, 1981). However, several connections can occur between 

both processes.

The principal reaction contributing to C02 evolution during 

photorespiration in leaves is the oxidative decarboxylation of glycine 

in mitochondria (Osmond, 1981; Lorimer and Andrews, 1981). This 

reaction involves an inner membrane-bound glycine-decarboxylase linked
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to serine hydroxymethyltransferase in the matrix space, which can 

donate electrons to the respiratory electron chain with formation of 3 

molecules of ATP (Woo and Osmond, 1976; Moore et at. , 1977; Keys,
1980). However, reoxidation of the NADH generated in the glycine 

decarboxylation can also occur via malate dehydrogenase when 

oxalacetate is present (Woo and Osmond, 1976; Moore et at. , 1977; Day 
and Wiskich, 1981). On this basis, it has been suggested that a 

shuttle system (e.g. malate/oxalacetate, malate-glutamate/aspartate- 

a-ketoglutarate) could operate for transferring reducing equivalents 

from the mitochondria to the peroxisomes (Day and Wiskich, 1981;

Journet et at., 1981, Fig. 1.6). The operation of the shuttle could 

inhibit electron transport since it has been shown that addition of 

oxalacetate to mitochondria oxidizing glycine causes a severe, 

although not complete, inhibition of oxygen consumption in the 

presence of ADP (Moore et at. , 1977; Day and Wiskich, 1981), and it 
also de-energizes the mitochondria (Moore, A.L., unpublished).

However, the mechanism by which NADH generated in the glycine 

decarboxylation reaction is reoxidized in vivo is not known. Uhote 
cett estimates of the rates of glycine oxidation linked to the 
electron chain or to the shuttle system in isolated pea leaf mito­

chondria are only just sufficient to account for the most conservative 

estimates of leaf photorespiration rates (Day and Wiskich, 1981). If 

oxidative phosphorylation is inhibited in the light, which is possible 

(see above), the shuttle system could be functional. Reoxidation of 

NADH by non-phosphorylating electron transport pathways, which are 

independent of the phosphate potential, is unlikely to be a major 

mechanism, since the capacity of these pathways in leaf mitochondria 

is much lower than that of the phosphorylating pathway (Day and
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Wiskich, 1981). However, they may supplement a shuttle mechanism.

Photorespiratory glycine decarboxylation could also interact with 

TCA cycle oxidations through a competition for available NAD. Little 

is known about this important question, but oxidative glycine 

decarboxylation was not inhibited by concurrent oxidation of malate, 

succinate and a-ketoglutarate in pea leaf mitochondria (Day and 

Wiskich, 1981).

1.4 PROPOSAL OF STUDY

The evidence reviewed in this Introduction indicates that we know 

little about the possible interactions between carbohydrates, photo­

synthesis, and respiration, especially at the intact leaf level.

There is no definite experimental evidence, for instance, that photo­

synthesis is regulated by the end product in vivo, although several 

biochemical mechanisms have been advanced. Likewise, the regulation 

of respiration in the dark and in the light in intact leaves by the 

products of photosynthesis, particularly carbohydrates, and the extent 

to what other proposed biochemical mechanisms of regulation (e.g. 

adenylate control) operate and interact in vivo with the former are 

problems still not very well understood. The indication that some 

leaf respiration appears to be wasteful and that its elimination could 

result in improved plant yields (Heichel, 1971b; Wilson, 1975) 

justifies the study of such questions. Particularly important in this 

context is the possibility that respiratory carbon losses, other than 

those caused by photorespiration, occur in illuminated leaves. The 

answer to this question is of critical importance for the calculation 

of the daily carbon balances in plants, since the carbon losses might 

be very important during the day given that the availability of
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respiratory substrate and temperatures are normally higher than during 

the night.

The participation of the alternative pathway, which apparently 

consumes carbohydrate wastefully, at least in terms of energy 

conservation, in leaf respiration has been very little studied, and 

absolutely nothing is known about the regulation (e.g. by carbohydrate 

levels) and function of this pathway in leaves.

The basic purpose of the present thesis is to try to answer these 

questions by designing gas exchange experiments using intact leaves 

(mainly wheat), and to establish appropriate links with mechanisms 

proposed at the molecular and cellular levels. Some preliminary 

studies on the relationship between the oxidation of respiratory and 

photorespiratory substrates at the mitochondrial level are also 

included.
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CHAPTER 2
INHIBITION OF PHOTOSYNTHESIS BY 
CARBOHYDRATES IN WHEAT LEAVES

2.1 INTRODUCTION

As discussed in the previous chapter, manipulation of the sink 

for photosynthate can cause accumulation of carbohydrates in leaves 

and result in lower rates of photosynthesis (Neales and Incoll, 1968; 

Guinn and Mauney, 1980; Herold, 1980). Evidence for end product 

inhibition of photosynthesis in wheat leaves is equivocal. Birecka 

and Dakic-Wlodkowska (1963) and King et at. (1967) were able to 

inhibit flag leaf photosynthesis by removing the sink (removal of the 

ear) and stimulate flag leaf photosynthesis by spraying the ear with 

DCMU (which inhibited photosynthesis in the ear, thereby increasing 

the sink). However, Austin and Edrich (1975) were unable to confirm 

the ear removal response. Nevertheless, King et at. (1967) showed 

that ear removal caused an accumulation of carbohydrates in the flag 

leaf. They were able to simulate this response by keeping plants in 

continuous light for a week. Leaf carbohydrates built up and photo­

synthesis was inhibited.

Although these results suggest the occurrence of end product 

inhibition of photosynthesis in wheat, the treatments and the measure­

ment methods used do not exclude other factors. Hormonal and stomatal 

responses could be involved. Thus, in this chapter I describe 

experiments which are designed to avoid these difficulties and to
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determine if the photosynthetic rate is related to the carbohydrate 

status in wheat leaves. Carbohydrate status was increased by 

increasing the rate of photosynthesis under otherwise comparable 

conditions, by increasing C02 concentration or reducing 02 

concentration. In other experiments a portion of the leaf, below the 

region in which photosynthesis was monitored, was chilled to reduce 

transport of photosynthate (Wardlaw, 1968; Geiger and Sovonik, 1975). 

All these treatments produced the expected increase in soluble sugars 

in photosynthetic tissues. Starch does not normally accumulate in 

wheat leaves (Evans et at. , 1975).

2.2 MATERIALS AND METHODS

2.2.1 Plant Material

Tritioum aestivum (cv. Gabo) plants were grown from seed in a 

controlled environment cabinet in pots of soil. They were watered 

twice a day, and were fertilized every other day with nitrate-type 

Hewitt's solution containing: KN03, 4 mM; Ca(N03)2, 4 mM; MgS04, 

1.5 mM; NaH2P04, 1.33 mM; EDTA FeNa, 60 yM; MnS04, 10 yM; ZnS04,

1 yM; CuS04, 1 yM; H 3B03, 50 yM; Na2Mo04, 0.5 yM; NaCl, 0.1 mM; 

Co (N03)2, 0.2 yM. The pH of the solution was 6.5. Quantum flux 

(400-700 nm) was about 600-700 yE.m~2.s”1. The day/night temperature 

regime was 25/20 °C with a daylength of 13 h. Relative humidity was 

between 60 and 80%.

2.2.2 General Experimental Conditions

Wheat plants were selected from the growth cabinet near the end 

of the night period (10 a.m.). One or two attached recently mature 

leaves were enclosed in a photosynthetic chamber, which received an
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incident quantum flux of 1000 yE.m-2.s-1. The rest of the plant, 

which was kept intact, was also illuminated. C02 and water exchanges 

were measured in leaves using an open system gas analysis apparatus 

described in Appendix I. Calculations of gas exchange parameters 

were made as described in Appendix II. Water vapour pressure 

deficits were maintained at about 8-12 mbar at 20-23 °C and at 20-23 

mbar at 30 °C in most experiments.

2.2.3 Light Responses of Photosynthesis

Net C02 assimilation (A) was measured in wheat leaves for 1 h at 

a quantum flux of 1000 yE.m 2.s 1 to open stomata. Incident quantum 

flux was measured with a quantum sensor (Lambda Instruments, model 

LI-190 SR, Lincoln, Nebraska, U.S.A.). Quantum flux was then 

decreased by interposing copper screens, and A was measured at every 

step. Finally, dark C02 efflux was measured. Leaf temperature was 

kept constant during these procedures. These measurements were 

repeated after a period of 4 h at a quantum flux of 1000 yE.m 2.s 1. 

The leaf temperature and C02 pressure were varied as indicated in the 

text. Each experiment was replicated three times.

2.2.4 C02 Responses of Photosynthesis

Net C02 assimilation (A) and transpiration rates were first 

measured in flag wheat leaves at ambient C02 and 02 pressures for 

about 1 h until steady-state rates were reached. Measurements were 

then repeated at several C02 concentrations below ambient, and finally 

at C02 pressures higher than ambient. After the determination of the 

first curve of A versus intercellular partial pressure of C02 (p^), 

which took 2%-3 h from the start of the light period, leaves were
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allowed to photosynthesize for 5 h at external partial pressures of 

C02 of either 800 ybar (Expt A) or 50-60 ybar (Expt B). The curve of 

A versus p_̂ was then determined again over the next 1^-2 h. At the 

end of this time, a piece of the enclosed leaf was taken for carbo­

hydrate analysis. This piece was obtained by carefully sectioning the 

leaf with a sharp razor blade. In the experiments where the rate of 

photosynthesis declined with time (Expt A), the remaining leaf 

fragment was kept in darkness for 3 h. At the end of this period, the 

curve of A versus p^ was determined again for studying recovery. The 

rest of the leaf was then used for carbohydrate analysis. Expt A was 

performed three times and Expt B two times. Leaf temperatures during 

the light and dark periods were 20 and 18 °C, respectively.

2.2.5 Leaf Base Chilling Methods

A small portion (about 2 cm2) of the base of a wheat leaf, whose 

upper part was enclosed in the photosynthetic chamber, was chilled by 

circulating icy water from a bath through a sandwich-type brass jacket 

in close contact with both sides of the leaf. The surface of both 

sides of the jacket formed a square of 4 cm . Temperature of the leaf 

region in contact with the jacket was 0-2 °C. These procedures did 

not produce alterations in the temperature of the enclosed portion of 

the leaf, which was kept at 21 °C. Two experimental procedures were 

adopted:

(1) A leaf was allowed to photosynthesize for 4 h at external C02 

pressures of either 350 ybar or 700 ybar. Then the chilling treatment 

was applied as described above and the gas exchanges of the enclosed 

part of the leaf were monitored for a subsequent period of 4 h. At 

the end of this period, the cooling jacket was removed, and the leaf
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gas exchanges were measured for about another hour.

(2) In other experiments, leaves were subjected to the chilling 

treatment from the start of the light period, and the gas exchanges 

were monitored for 5 h. C02 pressures inside the chamber were either 

310 ybar or 800 ybar. The C02 compensation point, which was measured 

using a closed system (see Section 4.2.2), and the rate of dark C02 

efflux in air 30 min after the light was turned off, were determined 

consecutively before and after the chilling period.

All experiments were duplicated.

2.2.6 Carbohydrate Determination

Leaf segments were killed in liquid nitrogen -and freeze-dried. 

Sugars were extracted in boiling water for 15 min and analysed using 

enzymatic methods. Free glucose plus fructose were measured from the 

leaf extract using a glucose specific assay (Calbiochem-Behring 

Glucose s.v.r. No. 870104), after converting fructose to glucose with 

phosphoglucoisomerase (Sigma P-5381). Glucose was converted to 

glucose-6-phosphate in the presence of hexokinase, and then oxidized 

to 6-phosphogluconate by glucose-6-phosphate dehydrogenase, reducing a 

molar equivalent of NADP. The change in absorbance at 340 nm is 

proportional to the glucose concentration in the range from 0 to 

10 ng.ml-1, and was measured with a Varian 634 spectrophotometer. The 

assay was performed at room temperature and was initiated by adding an 

aliquot of sample. Sucrose was hydrolysed by incubating the leaf 

extract at 37 °C for 2 h in a water bath with invertase (Sigma 1-5875) 

in 0.1 N acetate buffer (pH 4.6). Since invertase also has been 

reported to hydrolyse some small fructosans (Tetley and Thimann, 1974) 

the sugars resulting from the action of this enzyme are referred to as
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the invertase fraction. This fraction was obtained by subtracting the 
amount of free glucose plus fructose from the total glucose assayed. 
Starch content was obtained by incubating the leaf extract at 37 °C 

for 48 h in a water bath with 0.5% "Clarase 900" (Miles Laboratories) 

and 0.2% amyloglucosidase (Sigma A-7255) in 0.1 N acetate buffer (pH 
4.6). "Clarase 900" is a mixture of several digestive enzymes which 

hydrolyse starch and sucrose to hexoses. Starch was estimated by 
subtracting the glucose in glucose plus fructose and invertase 
fractions from total glucose assayed in the Clarase digest.

2.3 RESULTS

2.3.1 Changes in the Rate of Net C02 
Assimilation Throughout the Day

The rate of net C02 assimilation (A) of wheat leaves measured at 
ambient C02 and 02 levels reached a maximal value within the first 
hours of the light period and then slowly declined in the next hours. 

This pattern was frequently observed in leaves photosynthesizing at 

temperatures lower than 25 °C, especially when the initial rate of 
photosynthesis was high, but was not normally seen at higher 

temperatures. Typical examples are shown in Fig. 2.1. Leaf 
conductance to diffusion of water vapour, however, remained constant 
or slightly increased. The intercellular C02 partial pressure, p^, 
therefore increased with time especially in leaves photosynthesizing 

at 22 °C (Fig. 2.1). In this latter case, p_̂  typically varied from 

about 260 ybar to 280 ybar during the examined period. When the C02 

partial pressure during the photosynthetic period was about twice the 

ambient level, A declined more rapidly (Fig. 2.2). In contrast, A 
remained constant during 6 h when C02 pressure inside the chamber was 

low (Fig. 2.2). Stomatal conductance to water vapour (gg) increased
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Fig. 2.1: Time-course of net C02 assimilation (*,a ) and total leaf
conductance to diffusion of water vapour (o ,a ) in wheat 
leaves at two temperatures. External C02 pressure was 
340 pbar and 02 concentration was 21%.
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Fig. 2.2: Time-course of net C02 assimilation in wheat leaves at
several external C02 pressures. Leaf temperature was 22 °C, 
and 02 concentration was 21%.
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with time at low C02 pressures, but it slightly decreased at high C02 

pressures (not shown). In this latter case, p^ values increased from 

580 ybar in the first hour to 625 ybar in the sixth hour, suggesting 

that stomatal closure was not responsible for the assimilation decline.

Leaf carbohydrate concentration was very low at the end of the 

night and increased during the light period more or less 

proportionally to the integrated net C02 assimilation (Fig. 2.3). 

Invertase sugars (mostly sucrose) were the main carbohydrate fraction 

accumulated. Sucrose accumulated more rapidly in the leaf for a given 

increase in the integrated carbon assimilation when the internal level 

of sucrose was low. This suggests that sucrose translocation is more 

efficient when sucrose levels are high, as has been proposed by 

Troughton et aZ. (1977).

The effects of high C02 levels on the time-courses of A and gg 

were studied in some detail at two temperatures. Assimilation 

declined considerably with time in wheat leaves at both 20 and 30 °C 

(Table 2.1). Stomatal conductance declined in parallel with A during 

the first 4 h of the light period, so p_̂  remained constant. However, 

ĝ  declined relatively more rapidly over the next 3 h, and therefore 

p^ values slightly decreased at the end of the 7th hour in the light, 

but not enough to explain the observed changes in A. Leaf carbo­

hydrate levels increased with time, being very high after 7 h in the 

light. Carbohydrate accumulated significantly less in leaves photo- 

synthesizing at 30 °C than at 20 °C, in spite of the much higher 

assimilation rates observed at 30 °C (however, free sugars were an 

exception in this respect) (Table 2.1). This suggests that trans­

location of recently accumulated assimilates is more efficient at 

30 °C. Similar effects of temperature on translocation have been
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Fig. 2.3: Relationship between several carbohydrate fractions and
integrated net C02 assimilation in wheat leaves obtained by 
varying the length of the light period and the C02 
concentration. Leaf temperature was 23.5 °C.
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reported earlier (Geiger and Sovonik, 1975). A period of only 2 h in 

darkness was sufficient to produce substantial recovery of A (Table 

2.1). Leaf carbohydrate levels decreased substantially during the 

dark period, presumably due to translocation and respiration of 

assimilates.

If wheat leaves were given 740 ybar C02 and 2% 02 at 20 °C the 

initially high rates of photosynthesis (29 ymol C02 nf2 . s~ 1 ) declined 

dramatically (to 19 ymol C02 nf2 . s- 1 after 9 h). In this experiment, 

carbohydrates accumulated to very high levels (total 582 mmol C.m 2 = 

sucrose 398 mmol C.m-2 + free glucose and fructose 51 mmol C.m 2 + 

starch 133 mmol C.m-2).

The rate of decline of photosynthesis with time in a wheat leaf 

was apparently increased by chilling the base of that leaf (Fig. 2.4A). 

This effect was more marked when the leaf had been pre-illuminated for 

several hours at high C02 concentration. The chilling treatment of 

the leaf base did not initially affect the value of p^, indicating 

that A and g^ were declining in parallel. However, in the experiments 

performed at high C02 , gg declined relatively more rapidly about 1.5 h 

after the start of the chilling treatment, and therefore p_̂  values 

decreased (Fig. 2.4A). When the chilling treatment was halted, neither 

A nor gg showed signs of recovery, at least within the first hour 

(Fig. 2.4A). Very high carbohydrate levels were measured in these 

leaves at the end of the experiments, ranging from 400 to 600 mmol C. 

m-2. When the leaf base was chilled without a pre-illumination period, 

A also declined with time (Fig. 2.4B). Assimilation declined more 

rapidly with time at high C02 pressures, and p^ and g^ showed similar 

patterns to those observed in the previous experiment. The C02 

compensation point and the rate of dark C02 efflux increased
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Fig. 2.4: Effect of chilling the base of a wheat leaf on the rate of
net C02 assimilation and in the rest of that leaf. The 
chilling treatment was applied (as indicated by the arrows) 
either after 4 h of photosynthesis (A) or at the beginning 
of the photosynthetic period (B). These experiments were 
performed either at high (•) or ambient (o) C02 
concentrations. Typical experiments at each C02 
concentration are shown. For further details see Section 
2.2.5.
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Table 2.2
Effect of chilling the base of wheat leaves for 5 h in the light

on the C09 compensation point (T) and dark C09 efflux (R ). The ̂ n
experimental conditions are described in Section 2.2.5. The values 
shown are means ±S.E. of four experiments.

T Rn

ybar C02 ymol C02 m-2.s-1 
34.5 ± 0.5 0.64 ±.0.01

42 ±1.5 1.10 ±0.02

considerably after the chilling period (Table 2.2). These responses 
were consistent with an increase in the rate of C02 efflux by 
respiration in the light, as discussed in depth in Chapter 4.

2.3.2 Changes in the Properties of
Photosynthesis Throughout the Day
The light dependence of photosynthesis was also affected by a 

period of light. The initial slope of the curve of A versus incident 
quantum flux (the apparent quantum yield) was significantly lower 

after a 4 h period of photosynthesis at ambient C02 levels (Fig. 2.5). 
This pattern was observed at 20 °C but not at 30 °C. The light- 
dependence of stomatal conductance was not affected by this treatment 
at either 20 or 30 °C (not shown). Similar reductions in the quantum 

yield were obtained by increasing C02 pressures to about double 

ambient levels (Fig. 2.6), even at 30 °C. In this latter case the 

quantum yield varied from 0.075 to 0.062 mol C02.Einstein 1 after 4 h 
in the light. Stomatal conductance declined after a high C02 treat­

ment but p^ levels were not significantly decreased: they ranged from

At the end of the night
After a chilling period 
of 5 h in the light
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Incident quantum flux (fjEnrf2s 1

Fig. 2.5: Light response curves of net C02 assimilation in wheat
leaves determined before (closed symbols) and after (open 
symbols) a period of photosynthesis of 4 h. External C02 
partial pressures were 320-330 ybar. Two typical 
experiments performed at two temperatures are shown. The 
apparent quantum yield values (which were calculated 
without the rate of dark C02 efflux) were: At 20 °C:
0.064 (before;*) and 0.051 (afterjo) mol C02.Einstein 1. 
At 30 °C: 0.047 (before;A) and 0.046 (after;A) mol C02.
Einstein-1. For further experimental details see Section 
2.2.3.
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Before 
0.068.

After
0.048

Incident quantum flux (pEm 2s ])

Fig. 2.6: Effect of a period of photosynthesis of 4 h at 640 ybar C02
on the light response curve of net C02 assimilation in 
wheat leaves. Temperature was 20 °C. For further details, 
see legend of Fig. 2.5. A typical experiment is shown.
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610 to 620 ybar during the determination of the first curve of A vs 

quantum flux, and from 575 to 610 ybar during the determination of the 

second curve.

The increase in the rate of respiration observed after a period 

of photosynthesis (see Figs. 2.5 and 2.6) appears to be insufficient 

to account for the differences in A observed. Changes in the light 

transmission properties of the leaf during the day, which were studied 

by placing a silicon cell under the leaf, did not occur at any of the 

temperatures examined (20, 25 and 30 °C). Transmitted light in these 

leaves was only 6-7% of total incident light. Leaf absorbance could 

not be measured in the same conditions as the experiments were 

performed, but it is unlikely that changes in absorbance were large 

enough to account for the large variations observed in the apparent 

quantum yield. Once again, it is probable that the carbohydrate 

status is involved in these responses.

The C02 response curve of photosynthesis in flag wheat leaves was 

affected in a complex way after a 5 h period of photosynthesis at high 

C02 concentrations: the upper part of the curve of A vs p_̂  decreased

substantially but the initial slope (up to about 150 ybar C02) was 

unaffected (Fig. 2.7A). However, the initial part of this curve was 

slightly displaced towards higher p^ values, presumably due to an 

increase in respiration (see Chapter 4), resulting in an increase in 

the C02 compensation point (Fig. 2.1k). The upper part of the curve 

of A vs p^ almost recovered to the level observed at the beginning of 

the day after a period of 3 h in darkness (Fig. 2.7A). In contrast, 

the curve of A vs p_̂ was not affected at all after a 5 h period of 

photosynthesis at C02 pressures near the compensation point (Fig. 

2.7B). These results suggest that photoinhibition and photoperiodical
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Fig. 2.7: Effect of a period of photosynthesis on the curve of A
versus p^ in flag wheat leaves. See 2.2.4 for experimental 
details. (A): the curve A versus p^ was determined at the 
beginning of the light period (•), after 5 h in the light 
at 800 ybar C02 (o), and after a further 3 h in the dark 
(a) . (B) : the curve of A versus p_̂  was determined at the
beginning of the light period (•) and after 5 h in the 
light at 50-60 ybar C02 (o). Two typical experiments are 
shown. The arrows indicate the direction in which the p^ 
level was changed (i.e. increased or decreased).
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effects cannot be responsible for the decline in A, since light 

intensity and timing were the same in both cases.

Stomatal conductance to water vapour (gs) was rather insensitive 
to p^ changes at the beginning of the light period, but it decreased 
and showed sensitivity to p_̂  after a high C02 light period (Fig. 2.8A). 
In contrast, the stomatal responses to p^ were not affected by a 

period of photosynthesis at low C02 pressures (Fig. 2.8B). Leaf 
carbohydrate levels were measured after the determinations of the 

curves of A vs p_̂ (see Section 2.2.4). Carbohydrate levels were much 
higher after a period of photosynthesis at high C02 pressures than at 
low C02 pressures, and they decreased considerably after a dark period 

(Table 2.3).
The 02 sensitivity of C02 fixation (the Warburg effect) in wheat 

leaves also declined following an extended period of photosynthesis 

(Fig. 2.9). The reduction in the 02 sensitivity of photosynthesis was 
less in leaves with lower photosynthetic rates (Table 2.4).

2.4 DISCUSSION
Several physiological processes were affected in wheat leaves when 

carbohydrate accumulated during short periods of photosynthesis, viz., 
net C02 assimilation (A) and stomatal conductance (gg) significantly 
declined, while C02 efflux by respiration increased. The relationship 

between carbohydrate levels and respiration in the dark and in the 

light is analysed in detail in Chapters 3, 4 and 5.

A similar decline in A has been observed in leaves of many 

species: soybean (Upmeyer and Koller, 1973; Bhagsari et al. , 1977;

but see Potter and Breen, 1980), alfalfa (Chatterton, 1973), cucumber 

(Hopkinson, 1964; Challa, 1976), Mimulus (Milner and Hiesey, 1964),
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In tercel lu lar par t ia l  pressure of C 0 2 (jjbar)

Fig. 2.8: Effect of a period of photosynthesis on the sensitivity of
stomata to C02 in flag wheat leaves. The symbols and 
experimental conditions are the same as in Fig. 2.7. The 
horizontal arrows on the curves indicate the direction in 
which measurements proceeded. The asterisks indicate the 
first measurement in each curve. In two of these curves, 
the first measurement was made at ambient C02 levels and 
the next one was made at high C02 levels (see the curve 
symbolized by the triangles in A, and the curve symbolized 
by the closed circles in B).
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21°/oO 21°/oO

_____________ I____________ I_____________ I_____________I_____________ L
0 1 2 3 4 5

Time in the light (Hours)

Fig. 2.9: Time-course of the 02 sensitivity of photosynthesis in
wheat leaves. The rate of net C02 assimilation (A) was 
normally measured at 21% 02, but measurements of A at 2% 02 
were intercalated approximately every 1.5 h. The arrows 
indicate transfer to 2% 02 or 21% 02, and the dotted lines 
represent the periods at 2% 02 during which measurements 
were not taken. External C02 pressure was 330 ]ibar and 
temperature was 21 °C. A typical experiment is shown.
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Table 2.4

Effect of decreasing 02 concentration from 21 to 2% on the rate 
of net C02 assimilation (A) at different times during the light period.
Temperature was 21 °C. For other details see legend to Fig. 2.9.

Time in the light, Hours
Experiment l%-2 4 - 5

A21 A2 Increase A2 1 a 2 Increase

ymol C02 m- 2.s-1 % ymol C02 m_2.s_1 %

1 19.3 25.2 31 18.8 21 12

2 21.9 29.0 32 19.9 21 6

3 12.5 19.2 54 13.5 18 33

Panieim vivgatum (Ku e t  d l . , 1978), Populus trenruloides (Bate and 
Canvin, 1971), D igdtaida decimibens (Chatterton e t  a l . , 1972), etc. 

However, A remained more or less constant during the normal light 

period in leaves of beans (Geiger, 1976) and sunflower (Bate and 

Canvin, 1971; Potter and Breen, 1980).

Cooling a short portion of the translocation path to near 0 °C 

produces in most cases a severe inhibitory effect on the rate of sugar 

export, at least for a few hours (Wardlaw, 1968; Geiger and Sovonik, 

1975). In this case carbohydrate will accumulate more rapidly in the 

leaf. The use of this technique for studying variations in A has 

provided contradictory results (see Neales and Incoll, 1968, for a 

review). Coulson e t  a l . (1972) observed that A declined about 1.7% 

per hour after cooling a 4 cm zone of the petiole of a sugat beet leaf 

to 0.7-2.5 °C. Geiger (1976) chilled the primary leaf petiole and 

node of a bean plant but no effect on the rate of photosynthesis of

that leaf was observed. In both cases the rate of translocation was
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reduced. However, A was low in these studies (about 11 and 2 ymol 
C02.nf 2.s~\ respectively) and a large carbohydrate build-up is not 

expected under these conditions.
My results are consistent with the occurrence of end product 

inhibition of photosynthesis in wheat leaves, as suggested by Birecka 
and Dakic-Wlodkowska (1963) and King et at. (1967), since A declined 
more rapidly under conditions favouring large carbohydrate build-up 
(e.g. high C02 and low 02 pressures in the air, lower translocation 

rates) and the increase in respiration was not large enough to account 

for this decline. On the other hand, A substantially recovered after 
a short period of darkness in which carbohydrates were significantly 
removed from the leaf. Factors such as stomatal closure, photo­

inhibition and timing effects were not significantly involved in the 
diurnal changes in A.

The mechanism of this inhibition is not clear but it is 
correlated with accumulation of soluble carbohydrates. Starch is a 
relatively small carbohydrate fraction in wheat leaves. This 
mechanism may differ from that occurring in species accumulating 
mainly starch (Guinn and Mauney, 1980; Herold, 1980). The possible 
effects of fructosans have not been investigated here. According to 
recent photosynthetic models (Farquhar et at. , 1980; Farquhar and von 

Caemmerer, 1982), photosynthesis can be divided into a ribulose-1,5- 

bisphosphate (RuBP)-limited region and a RuBP-saturated region. RuBP- 

limited photosynthesis occurs when the concentration of RuBP falls 

below the concentration of RuBP binding sites of the enzyme RuBP 

carboxylase-oxygenase (Rubisco). Such conditions occur at high p_̂ 

where carboxylation capacity exceeds the RuBP regeneration capacity of 

the electron transport system. Conversely, when p_̂ is low and the
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capacity to regenerate RuBP exceeds carboxylation and oxygenation 

demands, RuBP will increase above the Rubisco site concentration and 

be saturating. Considerable experimental evidence supports this model 

(von Caemmerer and Farquhar, 1981; Farquhar and Sharkey, 1982; Badger 

et at. , 1983). Badger et at. (1983) have measured levels of photo­

synthetic intermediates in rapidly killed bean leaves and have 

observed that the levels of these intermediates are in agreement with 

the predictions of Farquhar et at. (1980). They have conclusively 

shown that the concentration of RuBP is saturating for photosynthesis 

at low C02 pressures and limiting at high C02 pressures.

My results suggest that carbohydrate accumulation in wheat leaves 

is associated with a reduction in the RuBP regeneration capacity, but 

does not affect the RuBP carboxylation (and oxygenation) capacity of 

the leaves (Fig. 2.7). The decline in the apparent quantum yield when 

carbohydrate accumulate (Figs. 2.5 and 2.6) is consistent with the 

reduction in RuBP regeneration capacity. It has been suggested that 

soluble sugar accumulation may reduce the rate of RuBP regeneration by 

decreasing available stromal inorganic phosphate, P_̂  (Herold, 1980; 

see Section 1.2.2). Very low P^ levels inside the chloroplast can 

restrict the rates of photophosphorylation and electron transport, 

probably via a decreased ATP/ADP ratio (Robinson and Walker, 1981).

The use of mannose, which sequestrates P^ in isolated chloroplasts and 

in intact leaf tissues, produces a decline in A which is consistent 

with this hypothesis (Herold, 1980; Robinson and Walker, 1981).

The faster decline in A in conditions where photorespiration is 

suppressed, i.e. high C02 and low 02 pressures (see also Milner and 

Hiesey, 1964) and the reduction in the magnitude of the Warburg effect 

when carbohydrate accumulated (Fig. 2.9) or when leaf discs were fed
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with mannose (Harris et al. , 1981), are likely to reflect the 

limitation of photosynthesis by availability. Carboxylation of 

RuBP results in a consumption of P_̂  (which is later released when 

starch or sucrose is synthesized), but oxygenation does not result in 

P^ consumption (Usuda and Edwards, 1982). An increase in the 

carboxylation rate relative to the oxygenation rate produces a rise in 

the level of phosphorylated compounds (Badger et al. , 1983), leading 

to lower stromal P^ concentration which in turn may result in 

reduction of the RuBP regeneration capacity, and therefore of the 

photosynthetic rate.

Carbohydrate accumulation also affected stomatal conductance, gg, 

in wheat leaves, especially at high C02 pressures.- Stomatal 

conductance initially declined with time more or less in parallel with 

A, so the intercellular partial pressure of C02, p_̂ , remained 

constant; however, this proportionality was lost when carbohydrate 

accumulation was very large (Fig. 2.4, Table 2.1). The decline in A 

was not always associated with that of gg, especially when the C02 

pressure in the air was kept at ambient levels (Fig. 2.1), suggesting 

that the decline in A preceded that of gg. Stomatal conductance also 

decreased with time of the day in leaves of unaltered plants of 

soybean (Upmeyer and Koller, 1973) and Panlcum virgatum (Ku et al. , 

1978) , but in both cases the decline in A also seemed to occur 

earlier. Plants with altered source-sink relations also show 

accumulation of carbohydrate in the leaves and a decrease in ĝ , 

although the interpretation of this correlation is complicated by the 

possible variations induced by the artificial manipulations, e.g. 

depodding, girdling the petiole (Setter et al. , 1980).

The increase in the carbohydrate content in wheat leaves not only
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decreased gg but also sensitized stomata to C02. It is interesting 
that this phenomenon has also been observed under several stresses, 

e.g. water stress (Xanthium strumarium, Raschke, 1975; Phaseolus 

vulgaris, von Caemmerer, 1981), chilling (Xccnthium strumarium, Drake 

and Raschke, 1974; Raschke et al. , 1976) and salinity (mangroves,
Ball, 1981). Stomata was more sensitive to C02 in the presence of 
externally applied abscisic acid (ABA) (several species, Raschke, 1975; 
Dubbe et dl. , 1978). Interestingly, these authors also observed 
reductions in the RuBP regeneration capacity of the leaf. Since leaf 

ABA levels increase in response to water stress, chilling and salinity 

(Raschke et al. , 1976; Itai and Benzioni, 1976; Walton, 1980), it is 
easy to explain why stomata are more sensitive to C02 under the 
mentioned stresses. As far as I am aware, the effects of carbohydrate 

status on ABA levels are not known. When translocation from soybean 
leaves is reduced by girdling the petiole or depodding, leaf carbo­
hydrate and free ABA levels increased (Setter et al. , 1980). This 
correlation is interesting but may be casual since as the authors 

argue, the translocation-obstructing treatments may have produced an 

accumulation of ABA if the synthesis of this compound remains 
unaltered. Setter et al. (1980) do not support the view that increase 
in ABA levels are related to carbohydrate accumulation, although the 
experimental evidence they provide is inconclusive in my opinion.
More experiments are needed in the absence of alterations in the 
source-sink relations.

Other explanations for the effect of carbohydrate build-up on g^ 

may be possible. The initially parallel declines on A and gg, due to 
carbohydrate accumulation, which has been observed in many other 

situations (Wong et al. , 1979) may suggest that stomata respond
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directly to the photosynthetic activity (i.e. accumulation of photo­

synthetic metabolites, perhaps sugars). In this sense, it has been 

shown that a variety of compounds (including sugars) can be 

transported from the mesophyll cells to the epidermal cells (Dittrich 

and Raschke, 1977; Thorpe, 1980). Osmotical effects caused by sugar 

increases may also affect stomatal aperture (Raschke, 1970).

In summary, decline in A and gg in wheat leaves under constant 

environmental conditions appears to be associated with an increase in 

the leaf carbohydrate level. My results are consistent with a 

decrease in stromal phosphate availability being responsible for the 

decline in A. The mechanism(s) for the decline in gg are even more 

speculative at this stage although they might involve signals from the 

mesophyll cells to the stomata (e.g. movements of ABA, sugars, etc.).

Information about the intracellular and intercellular 

distribution of sugars and phosphate, and about hormonal changes (e.g. 

ABA, cytokinins) produced by carbohydrate accumulation is necessary to 

determine the nature of the complex relationships between carbohydrate 

build-up and photosynthesis and stomatal responses.
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CHAPTER 3
THE EFFECT OF CARBOHYDRATE STATUS AND TEMPERATURE ON 

THE RATE OF DARK C02 EFFLUX IN WHEAT LEAVES

3.1 INTRODUCTION
The rate of C02 efflux by respiration from single leaves and 

whole plants in the dark is linearly related to the rate of previous 
photosynthesis when the latter is varied by changing the light level 

or C02 concentration (McCree, 1970, 1974; Ludwig et al. , 1975; Challa, 
1976). McCree (1970) fitted an empirical equation in which the rate 
of dark C02 efflux is proportional to photosynthesis and dry weight of 
living material on the plant. This information served to develop the 
theoretical concepts of growth and maintenance respiration (Penning de 
Vries, 1972; Penning de Vries et al. , 1974; Thornley, 1977). Both of 
these components of respiration are thought to involve, principally, 
carbohydrate oxidation through glycolysis, the pentose phosphate path­

way, and the tricarboxylic acid (TCA) cycle. Growth respiration 
appears to be less sensitive to temperature than maintenance 

respiration (McCree, 1974; Ryle et al., 1976; Breeze and Elston, 1978). 

Explanations of the complex interaction between photosynthesis, 

temperature and dark respiration are uncertain, although it is 

probable that the interaction may be mediated by the carbohydrate 
level (Alberda, 1968; Challa, 1976; Breeze and Elston, 1978).

The experiments described in this chapter investigate the 

relationship between photosynthesis, its products (particularly
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carbohydrates), temperature, and C02 efflux by respiration in the dark 

in mature wheat leaves.

3.2 MATERIALS AND METHODS

3.2.1 General Experimental Conditions
Mature leaves from wheat plants grown in the conditions described 

in Section 2.2.1 were used. The open gas exchange system used in the 

experiments reported in this chapter has been described in Appendix I. 

Several carbohydrate fractions (free glucose plus fructose, sucrose 
and starch) were measured as described in Section'2.2.6.

3.2.2 Effect of a Period of Photosynthesis 
on the Rate of C02 Efflux in the Dark

A pair of mature wheat leaves from the same plant was enclosed in 
the photosynthetic chamber and the rate of dark C02 efflux in ambient 
air was monitored for 2 h at the end of the night and after a period 
of photosynthesis of 6.25 h at ambient C02 and 02 levels. Leaf 

temperatures were 13.5, 20, 24, 27, and 30 °C in darkness. Leaf 
temperatures during the light period were 2-4 °C higher than in the 
dark period. This experiment was repeated three times at every leaf 
temperature, using a different plant each time.

In a similar experiment, the rate of dark C02 efflux was 
monitored for 1 h at the end of the night and after a period of photo­

synthesis of 6.25 h during which the oxygen content of the air in the 

last 20 min was 3%. In this experiment temperature was kept constant 
in the light and in the dark. In the experiments performed at 30 °C, 

the 02 concentration in the dark period was 21 or 3%. Three 

replicates were done at every 02 concentration in the dark, but no 

difference was found in the time course of dark C02 efflux after the
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l i g h t  p e r i o d ,  and th e  d a t a  w ere  m ixed . T h is  e x p e r im e n t  was a l s o  

pe rfo rm ed  a t  20 °C i n  l e a v e s  s e l e c t e d  from  s ix  p l a n t s ,  b u t  t h e  0 2 

c o n c e n t r a t i o n  i n  t h e  d a r k  p e r io d  was 21%.

3 . 2 . 3  R e l a t i o n s h i p  Between D ark  C02 E f f l u x  
and L ea f  C a rb o h y d ra te  S t a t u s

M atu re  w hea t  l e a v e s  w ere  a l lo w e d  to  p h o t o s y n t h e s i z e  f o r  v a r i a b l e  

p e r i o d s  o f  t im e  up to  7 h ,  a t  am b ien t  and h ig h  (800 y b a r )  e x t e r n a l  C02 

p a r t i a l  p r e s s u r e s ;  t h e  r a t e  o f  d a rk  C02 e f f l u x  was t h e n  m easured  

30 min a f t e r  t h e  t e r m i n a t i o n  o f  t h e  p h o t o s y n t h e t i c  p e r i o d .  L eaves 

w ere  im m e d ia te ly  k i l l e d  i n  l i q u i d  n i t r o g e n  and s t o r e d  f r o z e n  f o r  

c a r b o h y d r a te  d e t e r m i n a t i o n .  L e a f  t e m p e r a tu r e  was 21 °C i n  d a rk n e s s  

and 2 3 .5  °C i n  t h e  l i g h t .

3 . 2 . 4  S tudy  o f  t h e  T e m p era tu re  Dependence of Dark C02 E f f l u x

The r a t e  o f  d a r k  C02 e f f l u x  o f  m a tu re  w hea t  l e a v e s  s e l e c t e d  a t  

th e  end o f  t h e  n i g h t  was m easured  a t  d i f f e r e n t  t e m p e r a t u r e s  up to  

40 °C. The f i r s t  m easurem ent was made a t  11 °C. O the r  l e a v e s  w ere  

a l lo w ed  to  p h o t o s y n t h e s i z e  f o r  6 .2 5  h a t  22 ° C , a t  am b ien t  C02 and 0 2 

l e v e l s .  Then d a r k  C02 e f f l u x  was m easured  a t  20 °C ,3 0  min a f t e r  t h e  

l i g h t  was s w i tc h e d  o f f ;  l e a f  t e m p e r a tu r e  was i n c r e a s e d  i n  s t e p s  to  

42 ° C in  some e x p e r im e n t s ,  o r  d e c re a s e d  to  8 ° C in  o t h e r  e x p e r im e n t s .

3 .3  RESULTS

3 . 3 . 1  P r o p e r t i e s  o f  D ark  C02 E f f l u x

D ark  C02 e f f l u x  m easured  a f t e r  a p e r i o d  o f  p h o t o s y n t h e s i s  was 

much h i g h e r  th a n  a t  t h e  end o f  t h e  p r e c e d in g  n i g h t  p e r io d  ( F ig u r e  3 . 1 ) .  

The c u rv e s  r e p r e s e n t i n g  th e  t im e - c o u r s e  o f  d a r k  C02 e f f l u x  ( s e e  a l s o  

F ig u re  3 .2 )  a r e  a v e ra g e s  o f  t h r e e  o r  s i x  i n d i v i d u a l  c u r v e s .  The
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13.5 C

Time in the dark (minutes)

Figure 3.1: Time-course of dark C02 efflux of mature wheat leaves
after a period of photosynthesis of 6.25 h at ambient C02 
and 02 levels (solid lines). The dashed lines correspond 
to the rate of dark C02 efflux at the end of the 
preceding night period. See Section 3.2.2 for other 
experimental details.
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statistical variation of the data was very small and it is not shown. 

The standard errors were less than 5% of the absolute values and 

ranged between 9.01 and 0.08 ymol C02.m .s , the lower values being 

more common especially at lower temperatures. This increase occurred 

at all temperatures studied. However, the increase in total dark C02 

efflux due to the effect of photosynthetic activity was relatively 

higher at lower temperatures (e.g. 20°C) . At higher temperatures 

(e.g. 30°C) the rate of dark C02 efflux returned to the level at the 

end of the night within 2 h. At lower temperatures it took longer 

(e.g. 5 h at 20 °C) . That is, the effect of the pliotosynthetic 

activity on dark C02 efflux was more accentuated and lasted longer at 

lower temperatures.

It was commonly found especially at high temperatures (e.g. 30 °C) 

that the rate of dark C02 efflux was higher in the first 30 min after 

illumination and did not attain a steady slow rate of change until 

after about 60 min of darkness. When the 02 concentration of the 

atmosphere was lowered from 21% to 3% during the last 20 min of the 

light period and the rate of dark C02 efflux measured at 30 °C in 

either 21 or 3% 02, a different pattern was obtained (Figure 3.2).

The rate of dark C02 efflux was lower within 30 min after darkening 

and attained a slow rate of change after about 10 min of darkness. 

Similar results were obtained at 20°C except that the rate of dark C02 

efflux after a light period in which the 02 concentration during the 

last 20 min was 3%, was initially low and increased within 30 min to 

the level of leaves kept in 21% 02 throughout the photosynthetic 

period (Figure 3.2). This suggests that adjustments in the rate of 

respiration during the light/dark transient take place more rapidly at 

high temperatures. In all subsequent experiments dark C02 efflux 

rates were measured 30 min after darkening of the leaves.
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Figure 3.2: Time-course of dark C02 efflux of mature wheat leaves
after a period of photosynthesis of 6.25 h in which the 
02 concentration in the air in the last 20 min was 3% 
(solid lines). The time-course of dark C02 efflux after 
a period of 6.25 h of photosynthesis at ambient 02 
concentration (see Figure 3.1) is given for comparison 
(line of small dashes). The end-of-night level of dark 
C02 efflux is also shown (line of big dashes).
Section 3.2.2 for other experimental details.

See
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Table 3.1

Effect of different photosynthetic pretreatments on the specific 
leaf weight and total carbohydrate concentration — except fructosans — 
of mature wheat leaves. Leaf temperature was 21 °C. Mean values are 
given with standard errors.

Specific Leaf 
Weight

Carbohydrate
Cone.

- 2 g.m g glucose 
equiv.m-2

At the end of the night 33.8 ±1.2 0.30 ±0.13

After 6.25 
at ambient

h of photosynthesis 
C02 concentrations 40.8 ±0.4 5.11 ±0.11

After 5-7 h of photosynthesis at 
high C02 concentration (800 ybar) 44.8 ±0.9 7.50 ±0.25

The rate of dark C02 efflux 30 min after the termination of the 

photosynthetic period increased in proportion with the total net C02 

assimilation which had occurred during this period (Figure 3.3). Dark 

C02 efflux was also positively correlated with specific leaf weight 

(Figure 3.4) which greatly increased during the light period due to 

the accumulation of products derived from photosynthesis, mostly 

carbohydrates (Table 3.1). All measured carbohydrate fractions 

increased with increased net photosynthesis (see Figure 2.3 of 

Chapter 2). Dark C02 efflux was unspecifically correlated with all 

measured carbohydrate fractions (Figure 3.5). The relationship 

between dark C02 efflux and fructosans was not investigated here.

3.3.2 Temperature Dependence of Dark C02 Efflux

The data from the experiment shown in Figure 3.1 have been used 

for studying the effect of temperature on the rate of dark C02 efflux
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Figure 3.3:

Integrated net C 0 2 assimilation (mmol nrT2)

Relationship between dark C02 efflux and integrated net 
C02 assimilation in mature wheat leaves. Symbols:
(•) leaves selected at the end of the night; (o) leaves 
photosynthesizing at ambient C02 levels; (±) leaves 
photosynthesizing at 800 ybar C02. See Section 3.2.3 for 
other experimental details.



D
ar

k 
C

02
 e

ffl
ux

 
(y

m
ol

m
"2

s

75

Specific leaf weight (g dry matter m"2)

F ig u re  3 .4 :  R e l a t i o n s h i p  b e tw een  s p e c i f i c  l e a f  w e ig h t  and d a rk  C02

e f f l u x  o f  m a tu re  w hea t l e a v e s .  Symbols and c o n d i t i o n s  

a r e  t h e  same a s  i n  F ig u r e  3 . 3 .
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Carbohydrate concentration ( g glucose equiv m"2)

Free glucose +  fructose
i

Starch . ̂ —

Carbohydrate concentration (m molCm"2)

Figure 3.5: Relationship between dark C02 efflux and several
carbohydrate fractions in mature wheat leaves. See 
Section 3.2.3 for other experimental details.
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at the end of the night and 30 min after the termination of a light 
period in mature wheat leaves (Figure 3.6), which differed in their 
carbohydrate content (Table 3.1). The rate of dark C02 efflux at the 
end of the night increased exponentially with temperature with a 

single apparent activation energy (E ) of 12.9 kcal.mol-1 (which3

corresponds to a Q10 of 2 between 20 and 30 °C) . However, dark C02 

efflux after a light period showed a very irregular pattern in 
response to temperature, which apparently depended more closely on the 
'mean’ net C02 assimilation rate of the preceding light period (Figure 
3.6). This latter parameter did not present a regular dependence with 

temperature because of slight individual differences in the photo­
synthetic capacity of the leaves used throughout the experimental 
period (4 weeks).

These results suggested that dark C02 efflux of high carbohydrate 

leaves is less sensitive to temperature changes than that of low 
carbohydrate leaves, especially in the range from 20 °C to 30°C. This 
suggestion was confirmed in another set of experiments in which the 
rate of dark C02 efflux of a leaf was measured at several temperatures, 

as described in Section 3.2.4. As previously found, dark C02 efflux 

of end-of-night leaves showed an exponential relationship with 
temperature (Figure 3.7). However, the rate of dark C02 efflux after 
a period of photosynthesis at ambient C02 and 02 levels was higher at 
all temperatures but was less in the range from 20 °C to 40 °C and 

higher in the range from 10°C to 20°C (Figure 3.7). E in the range3

from 20 °C to 40 °C was even lower (6.7 kcal.mol-1) if the external C02 

concentration during the light period was 750 ybar.
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End of light period %

V  1.5

End of night period

Leaf temperature (°C)

Figure 3.6: Effect of temperature on the rate of dark C02 efflux of
mature wheat leaves measured at the end of the night and 
30 min after the termination of a period of photo­
synthesis of 6.25 h at ambient C02 and 02 levels. ’Mean’ 
net C02 assimilation is also shown. See Section 3.2.2 
for other experimental details.
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Leaf temperature (°C)

40 30 20 10

*♦/>

Figure 3.7: Arrhenius plots for dark C02 efflux of mature wheat
leaves selected at the end of the night period (•) or at 
the end of a period of photosynthesis of 6.25 h at 
ambient C02 and 02 pressures (a). See Section 3.2.4 for 
experimental details. Apparent activation energies (E )

cl
are expressed in kcal.mol-1. They can be converted to 
Qj 0 values by using the formula 'log Qx 0 = 2190.E / T l , T 2 \

cl
where T1-T2 =10 K.
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3.4 DISCUSSION
Dark C0o efflux, R , of mature wheat leaves increased 1 n

considerably after a long period of photosynthesis, as also found in 
leaves of several species (Stoy, 1965; Ludwig et al. 1975; Challa, 
1976). At least two groups of substrates contributed to the C02 
efflux. Approximately 15-20% of the C02 evolved in the first 30 min 

of darkness was abolished if leaves were kept in low oxygen during 
the latter part of the photosynthetic period. I conclude that this 

C02 arose from photorespiratory substrates. In this sense, the levels 
of glycine measured in wheat leaves during the light period —
1.5-2 mmol.m-2 (M. Berger, personal communication) — are high enough 
to sustain glycine decarboxylation in the dark for- about 30 min at the 

rates observed in our experiments. This observation contrasts with 
the idea that the photorespiratory post-illumination burst of C02 in 
leaves is restricted to the first few minutes (2-5) in darkness, as 
commonly found in many species including wheat (Heichel, 1971a; 

Doehlert et al., 1979). However, this discrepancy may be explained by 
the short length of the preceding light period utilized in previous 
studies (often only a few minutes, i.e. 10-20 min) compared to the 
present experiments. The variability of the post-illumination burst 

is also reflected by the fact that it can be eliminated by starving 
leaves after prolonged darkness (Heichel, 1971a).

The remaining C02 efflux, which became the only source of C02 

after 30 min in the dark, was closely correlated with several 
carbohydrate fractions. This C02 is presumably associated with TCA 

cycle and pentose phosphate pathway oxidationrof carbohydrate derived 

substrates. A similar correlation between dark C02 efflux and 

carbohydrates has also been found in leaves of Cucumis sativa (Challa,
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1976), and Gtydne max (Coggeshall and Hodges, 1980), and also in 
shoots of Larrea tridentata (Cunningham and Syvertsen, 1977), in maize 

root tips (Saglio and Pradet, 1980) and in whole plants of Vida faba, 
Lolium perenne, Zea mays and Triticum aestivum (Breeze and Elston,

1978* Penning de Vries et at. , 1979). The linear relationship between 
the rate of photosynthesis and the subsequent rate of dark C02 efflux 

in leaves (see also Ludwig et at. , 1975; Challa, 1976) may also be 
explained in terms of quantitative changes in carbohydrates.

The rate of respiration measured 30 min after darkening the wheat 

leaves used here showed a positive value in the (extrapolated) absence 

of carbohydrate accumulation (Figure 3.5). This value may represent 

maintenance respiration (Penning de Vries et at., -1979). It is 
unlikely that the enhancement of leaf respiration by carbohydrate 
accumulation is related to growth respiration because the leaves used 
here were fully expanded. Nevertheless, this additional respiration 
might be associated with assimilates in at least two ways. The 

synthesis of compounds (such as amino acids) in mature leaves for 
growth in other plant parts, and even the transport of these compounds 

and sugars may require respiratory energy (Ho and Thornley, 1978). 
However, respiration increased in leaves and other organs (e.g. wheat 
stems) when carbohydrate accumulated after treatments (e.g. cooling, 

lowering sink demand by removing fruits, ears, etc.) which inhibited 

transport (Birecka, 1968; Birecka et at., 1969; Rook, 1969; Tanaka, 

1977; Ho, 1979; Avery et at., 1979). Thus we must also consider the 
possibility that when carbohydrates accumulate they can be respired 
without any particular growth, maintenance or other requirements.

The temperature dependence of respiration in leaves can also be 

used to distinguish two types of processes. Respiration of wheat



82

leaves at the end of the night, which had a very low carbohydrate 
content in our growth conditions, increased exponentially with 
temperature. This behaviour is consistent with the temperature 
dependence of maintenance respiration described by other authors 

(McCree, 1974; Ryle et al. , 1976; Breeze and Elston, 1978). However, 

when carbohydrates accumulate inside the leaf as a result of the 
photosynthetic activity, the rate of dark C02 efflux increases and the 
shape of its temperature dependence changes dramatically', showing 

different apparent activation energies (E ) above and below 20 °C.
cL

The presence of a break in the Arrhenius plot for dark C02 efflux 
only when the sugar level is high is unlikely to be attributed to 
membrane phase transitions (Raison, 1980) because mitochondrial 
respiration is presumably involved in both instances. The mechanism 
underlying this behaviour may involve the effect of substrate 
concentration on the temperature dependence of enzymatic reactions.

The apparent E^ of an enzymatic reaction decreases at low substrate 
availability since the of enzymes for their substrates generally 
increases with temperature (Dixon and Webb, 1979). Therefore, a fixed 
substrate concentration could be saturating or limiting depending on 

temperature, and E should be consequently affected. In our case,
cl

respiration considered as a multi-enzyme system would be saturated by 
substrates at low temperature after a period of photosynthesis, and 

its E should be very high. However, E would decline at higher
3 3

temperatures as soon as substrates are present at concentrations close
to or below the of key enzymes. Respiration in low carbohydrate
leaves may have not shown any break because substrates are low to

start with (^ K ), and hence K increases will not have much effect, m m
A break in the Arrhenius plot of the cyanide-resistant pathway at
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about 17.5°C in wheat coleoptile mitochondria has been reported 

(McCaig and Hill, 1977). At higher temperatures the capacity of the 

alternative pathway declined. Since wheat leaves present an active 

alternative pathway when their carbohydrate content is high but not 

when it is low (see Chapter 5) this may also contribute to the 

temperature dependence of high carbohydrate leaves.

These explanations of the interaction between carbohydrate levels 

and temperature on respiratory C02 efflux assume that there is a 

direct regulation of respiration by substrate availability. My data 

suggest that glycolysis and mitochondrial reactions in wheat leaves 

are not necessarily limited by energy parameters in a very narrow 

range, at least when substrate levels are low (cf.- Beevers, 1974). A 

similar conclusion was reached by Saglio and Pradet (1980) who have 

shown that oxygen uptake of maize root tips varied widely in response 

to sugars while the energy charge remained constant. Atkinson (1977) 

would say that the fact that energy charge did not change indicates 

that it is a regulatory parameter. However, in this case, the balance 

between energy utilization and production is obviously adjusted to 

meet substrate levels, i.e. somehow energy charge flux responds to 

substrate availability. It is possible that wheat leaf respiration is 

regulated in a complex way. Further studies on the nature and 

regulation of this enhanced respiration will be described in Chapter 5.

In summary, the rate of dark C02 efflux from wheat leaves 

measured 30 min after darkening is correlated with the rate of prior 

C02 assimilation via carbohydrate accumulation. The temperature 

dependence of dark C02 efflux may also be affected by the leaf 

carbohydrate status.
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CHAPTER 4
RELATIONSHIP BETWEEN THE C02 AND LIGHT COMPENSATION POINTS 
AND THE RATE OF C02 EFFLUX BY RESPIRATION IN WHEAT LEAVES

4.1 INTRODUCTION

The extent to which respiration occurs in photosynthesizing 

leaves is uncertain (Kowallik, 1982). Graham (1980) supports the view 

that the TCA cycle can operate in leaves under steady-state photo­

synthesis at rates comparable to those in darkness'. However, evidence 

that respiratory C02 is released at significant rates from intact 

illuminated leaves is conflictive. For example, studies in which the 

specific 14C activity of C02 evolved in light and darkness was 

measured after feeding leaves with 14C02 have been interpreted to show 

that respiration is suppressed in the light at least 75% (Mangat et 

at. , 1974; Canvin et at., 1976), or as that no inhibition occurs 

(Ludwig and Canvin, 1971).

The C02 compensation point, T, is that C02 concentration at which 

the net rate of assimilation of C02 is zero. T can be used for 

estimating the rate of C02 production by respiration in the light 

because this parameter reflects a balance between the photosynthetic 

carboxylation capacity and the total C02 production in the light 

(Azcon-Bieto et at. , 1981). This balance can be expressed in 

mathematical terms (Peisker and Apel, 1980; Tenhunen et at. , 1980; 

Farquhar and von Caemmerer, 1982). Peisker and Apel (1980) studied 

the relationship between the rate of C02 evolution in darkness, R ,
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and the oxygen dependencies of T and the carboxylation resistance in 

wheat leaves and they concluded that respiration is inhibited in the 

light by about 70%. Peisker et dl. (1981) observed a relationship 

between T and during the ontogeny of bean leaves. They concluded 

that C02 evolution by leaf respiration was inhibited by about 40-50% 

at the C02 compensation point. Holmgren and Jarvis (1967) reported 

that r of leaves of Rumex aoetosa decreased after a period of 2 h in 

darkness; this could reflect a change in the rate of respiration in 

the light.

The linear relationship between T and 02 concentration frequently

extrapolates to values of V of zero and this has been used to argue

against the operation of sources other than photorespiration in the

light (R^); however, finite values of T in the (extrapolated) absence

of 02 have been found in many other cases (see Azcon-Bieto et dl. ,

1981, for a review). The value of this extrapolation probably depends

on the ratio between the rate of respiration in the light and the

maximal velocity of leaf carboxylation, R./V , rather than on R,d c dmax
alone, as discussed by Azcon-Bieto et dl. (1981). These latter 

authors also concluded that R^ was a significant component of T in 

Lollum pevenne although no quantification was attempted. Marked 

seasonal variations of T were also interpreted in terms of changes of 

R^ (Azcon-Bieto et dl. , 1981).

A new approach for studying the problem has been made in this 

chapter. As shown in Chapter 3 the rate of C02 efflux in darkness,

R , after a period of photosynthesis, varied in the same leaf. I used 

this treatment to examine whether the C02 and light compensation 

points responded to varying rates of respiratory C02 output.
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4.2 MATERIALS AND METHODS

4.2.1 Plant Material and Gas Exchange Apparatus

Tritzcum aestivum, Eucalyptus grandis, Vicia faba and Lolium 
perenne plants were grown as described in Section 2.2.1. The open 

system used for measuring the gas exchanges of leaves has been 

described in Appendix I.

4.2.2 Measurement of the C02 and Light Compensation Points

The C02 compensation point, F, was either measured by using a 

closed system and allowing the leaf to equilibrate with its C02 

atmosphere, or by interpolation of a curve of net C02 assimilation vs 

intercellular C02 partial pressure (A vs p^) to zero assimilation 

(Figure 4.1). It was noticeable that the initial part of this curve 

was not straight at both 02 concentrations, even turning backwards at 

very low intercellular C02 pressures. This phenomenon will be 

discussed in Section 4.3.2. The gas exchange apparatus was modified 

by the inclusion of a closed system. A metal bellows pump (Metal 

Bellows Corp., model MB-21E, Sharon, Massachusetts, U.S.A.) circulated 

the air through the system. Plug valves (Nupro Co., model B-4P4T, 

Cleveland, Ohio, U.S.A.) were used to manually switch from open to 

closed system or vice-versa. Both methods were compared in the same 

leaf of wheat at two 02 concentrations (21% and 2.5%) yielding 

identical results (Table 4.1). In the experiments where T was 

measured in closed system, its value was taken after 60 min in order 

to obtain perfect steady-state values; then, the rate of dark C02 

efflux was measured 30 min after the light was switched off, in order 

to avoid interference with photorespiratory substrates (see Chapter 3).

The light compensation point was measured by interpolation of a
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_< * Intercellu lar CO2

C O iE v o lu t io n  partia l pressure ( pbar 
in CO2 free air

Figure 4.1: Curves of net C02 assimilation vs intercellular C02
partial pressure of mature wheat leaves at two 02 
concentrations. Leaf temperature was 20 °C and quantum 
flux was 1000 yE nf2 s~1. Leaves were selected at the 
end of the night period. The arrows indicate the 
direction in which measurements proceeded. This 
experiment was performed three times, but only a typical 
example is shown.
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Table 4.1

Comparison of two methods for measuring the C02 compensation 
point, T, in mature wheat leaves at two 02 concentrations.
A. Interpolation of a curve of net C02 assimilation vs intercellular 
C02 partial pressure to zero assimilation. B. Closed system. Leaf 
temperature was 20 °C and irradiance was 1000 yE m’2 s’"1. Leaves were 
selected at the end of the night period.

% 02
C02 compensation point

A B

ybar

30 30
21 30 31

31 31

6 5.5
2.5 6 6.5

6 5.5

curve of ’net C02 assimilation vs quantum flux’ to zero assimilation. 

Light intensity was changed by interposing copper screens.

4.3 RESULTS

4.3.1 Relationship Between Dark C02 Efflux, Carbohydrate 
Status, and C02 and Light Compensation Points

The C02 compensation point, T, in 21% 02 increased coincidently 

with the rate of respiration following a period of photosynthesis (see 

Chapter 3, Table 4.2, Figure 4.2). Interestingly the values for V 

showed the largest increases after treatments in which photo­

respiration would have been least, but the rate of carbohydrate 

formation would have been maximal (800 ytbar C02, 2% 02). These
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C 0 2 Evolution
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Figure 4.2: Curve of net C02 assimilation vs intercellular C02
partial pressure measured at the end of the night and 
after a period of photosynthesis of 3 h at 800 ybar C02 
in the same leaf of wheat. Leaf temperature was 21 °C. 
Measurements proceeded from high to low C02 partial 
pressures, as indicated by the arrows.
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correlations were confirmed in another set of experiments in which a 

leaf was initially illuminated for 4 h in air containing 750 ybar C02, 

21% 02 (low photorespiration), then in air containing low C02 

pressures (slightly above F) for a second period of 4 h (high photo­

respiration) . Table 4.3 shows again that T was higher after the 

period in which the rates of photorespiration were lower and the rates 

of carbohydrate formation were higher.

Measurements of V from many experiments in which dark C02 efflux, 

R , was varied by varying C02 and 02 partial pressures during the 

period of photosynthesis are shown in Figure 4.3. Extrapolation of 

this relationship to zero presumably yields the photorespiratory 

component of F in these mature wheat leaves.

The correlation between an increase in T in 21% 0. and R2 n
following a period of photosynthesis was also observed at temperatures 

other than 21 °C(e.g. 15 °C and 3 0 °C) (Table 4.4) and in other species

Table 4.3

T and R of a mature wheat leaf measured after two consecutive n
periods of photosynthesis of 4 h at high and low C02 partial 
pressures. 02 concentration was 21%. The rates of net C02 
assimilation during the first (A) and second (B) periods were about 
23 and 2 ymol C02 .iif 2 . s~ 1, respectively. Two independent experiments 
were performed. The rest of the conditions were the same as in Table 
4.2.

CO2 partial pressure during 
the photosynthetic period r Rn

ybar ymol C02.m 2.!

A. 750 ybar C02 43 ± 1 1.48 ±0.02
B. 50-75 ybar C02 37 ± 2 0.80 ±0.05
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y-30+9.4x 
r = 0.83

Dark CO2 efflux, Rn (pmol rrf2s_1)

Relationship between the C02 compensation point and dark 
C02 efflux in mature wheat leaves at 21 °C.

Figure 4.3:
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Table 4.4

T and R of a mature wheat leaf measured at the end of the night n
and after a period of photosynthesis of 5 h at 800 ybar C02, 21% 02. 
The rates of net C02 assimilation were about 15 and 26 ymol C02 
m-2.s"1 at 15 °C and 30 °C, respectively. The values shown are means 
± standard errors of three independent experiments. See Table 4.2 for 
other experimental conditions.

Leaf
Temperature

At the
r

end of the night 
Rn

After 5
r

h in the light 
Rn

°C ybar ymol C02.m-2.s-1 ybar ymol C02.m_2.s_1

15 33 ±0.5 0.45 ±0.03 38 ±2.0 0.59 ±0.06
30 50 ± 1.0 1.20 ±0.13 53 ± 1.0 1.52 ±0.13

(Table 4.5). However this correlation did not occur when T was

measured at 2% 02 (Table 4.6). The increase in T in 21% 02 following 

a period of photosynthesis was reflected in a decrease in net rate of 

photosynthesis over a range of C02 partial pressures and was not due 

to a change in the slope of the curve of net C02 assimilation vs 

intercellular C02 partial pressure (Figure 4.2, see also Chapter 2). 

The displacement of this curve was 1.0 ±0.2 ymol C02.nf 2.s-1, which is 

an average value obtained in four experiments including that shown in 

Figure 4.2 (see also Chapter 2). This value compares well with the 

increase in the rate of dark C02 efflux observed after a period of 

photosynthesis. The rate of C02 efflux into C02-free air in the light 

was also higher following a period of photosynthesis (Figure 4.2).

The light compensation point also increased in the same leaf 

after a period of active photosynthesis (Figure 4.4, see also Chapter 

2). Figure 4.5 shoî s the correlation between the light compensation
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Table 4.6
T (measured at 2% 02) and (measured in ambient air) measured 

at the end of the night and after a period of photosynthesis of 4 h in 
the same leaf of wheat. Leaf temperature was 21 °C. C02 partial
pressures during the light period were either 330 ybar or 800 ybar, 
but they did not make any difference to the results. The values shown 
are averages of three independent experiments. For other experimental 
details see Table 4.2.

r R - n

ybar ymol C02.m_2.s"1
At the end of the night 6 ±0.3 0.51 ±0.01
After 4 h in the light 5 ±0.2 0.95 ±0.12

point and dark C02 efflux which was varied by the period of prior 
photosynthesis under different conditions of temperature and C02 
partial pressures. The displacement of the curve of net C02 
assimilation vs quantum flux following a period of photosynthesis was 
not exclusively accounted for by variations in the rate of dark C02 

efflux (Figure 4.4). The carbohydrate status can also affect the 

slope of this curve, as discussed in Chapter 2. The correlation 
between the light compensation point and dark C02 efflux shown in 

Figure 4.5 is even improved if the variation due to the changes in the 
slope of the curve of net C02 assimilation vs quantum flux is taken 
into account. It was noticeable that the relationship between the 
rate of photosynthesis and light intensity deviated from linearity 

near the light compensation point (Figure 4.4, but see also Figure 

2.5). This phenomenon, firstly described by Kok (1949) in unicellular 
algae is known as the ’Kok effect’. Figure 4.6 shows the dependence
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Before

Incident quantum flux (pEm2s_1)

Figure 4.4: Initial part of the curve of net C02 assimilation vs
quantum flux of a mature wheat leaf, measured before and 
after a period of photosynthesis of 4 h at ambient C02 
pressures and saturating quantum flux (1000 yE m"2 s~1). 
Leaf temperature was 20 °C. The leaf was initially 
selected at the end of the night period.



97

■eLU

Oa
co
o
ooCa>aE
ou

y-13.4x
r=0.99

Figure 4.5: Relationship between the light compensation point and
dark C02 efflux in mature wheat leaves. Symbols:
(•) leaf temperature, 20 °C, external C02 partial 
pressure, 330 ybar; (o) 30 °C, 330 ybar C02; (a) 20 °C,
640 ybar C02; (a) 30 °C, 640 ybar C02.
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•30.5C
• 23.5C

Incident quantum flux (|jEm2s'')

Figure 4.6: Effect of decreasing quantum flux on T of mature wheat
leaves at three temperatures. Quantum flux was varied 
by interposing copper screens; leaf temperature was 
subsequently adjusted.
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of the C02 compensation point on the quantum flux at three 

temperatures.

4.3.2 Analysis of the Response of Net C02 Assimilation (A) to Low
Intercellular Partial Pressures of C02 (p̂ ) in Wheat Leaves
It was a common observation that the slope of the 'A vs p/ curve 

deviated from linearity at internal C02 pressures near to or below T, 

even turning backwards at very low p^ values (Figures 4.1 and 4.2).

This phenomenon has been also observed by other authors in wheat 
(Meidner, 1970; Doehlert et at. , 1979) and in other species (Holmgren 

and Jarvis, 1967; Meidner, 1970), and it can be explained by 
considering that the enzyme RuBP carboxylase oxygenase may be not 
fully activated in the leaf and that RuBP levels may be limiting at 

very low internal C02 pressures (Farquhar and Sharkey, 1982; Badger et 
al. , 1983; Farquhar and von Caemmerer, 1982).

4.4 DISCUSSION
4.4.1 The C02 Compensation Point and Respiration

The C02 compensation point in 21% 02 of mature leaves of wheat 

and other C3 species varied during the photoperiod, its value being 
low at the end of the night period, but increasing during the day 
period. Similar changes of T after periods of light or darkness have 
been reported in leaves of wheat (Peisker and Apel, 1980) and Rumex 

aeetosa (Holmgren and Jarvis, 1967). In contrast to these results, T 

did not vary after prolonged exposure to darkness leading to 
starvation in leaves of Ntcottana tabacum (Heichel, 1971a).

In order to investigate the nature of the changes of T in wheat 

leaves, the C02 and 02 partial pressures in the atmosphere were varied
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during the photosynthetic period with the object of having different 
rates of photorespiration and photosynthetic sugar formation. The 
variations in T during the photoperiod are principally related to 

processes other than photorespiration, and presumably associated with 
respiration, because T and increased maximally after periods in 

which the gas composition of the air favoured high rates of photo­
synthetic carbohydrate formation and minimal rates of photorespiration 

(low 02 and high C02 pressures). Conversely, T and were low 
following a period in which the rate of photorespiration was maximal 
and the rate of carbohydrate synthesis was very reduced (low C02 and 

ambient 02 pressures). This conclusion is further supported by the 

strong correlation found between T in 21% 02 and R^ (Figure 4.3). It 
appears from this relationship that V has a positive value when R^ is 
zero, which presumably reflects its photorespiratory component.

If a value for R^ of 1 ymol C02.m .s is chosen, which is an 
average value at 21 °C, the contribution of day respiration, the C02 
efflux by respiration in the light, R^, to F of mature wheat leaves is 
about 25%. We have also concluded in an earlier paper (Azcon-Bieto et 
al. , 1981) that R^ is a significant component of T in Lolium perenne. 
However, the contribution of R^ to T is variable, and it is correlated 
with the carbohydrate level. This conclusion is consistent with the 
fact that externally added sugars increase the C02 compensation point 

and the rate of respiration of leaves (Tetley and Thimann, 1974; Smith 

et al., 1976; see Chapter 5).

The rate of respiration in the light, R^, can be estimated from 

the displacement on the curve of net C02 assimilation vs intercellular 

C02 partial pressure by varying the rate of respiration in the dark, 

R^, through changes in the leaf carbohydrate concentration. It can be
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concluded from the results obtained that and are comparable in 

wheat leaves.

In contrast to my results, Peisker and Apel (1980) analysed the 

responses of T, its oxygen dependence, and respiration in the dark 

after a dark period and after an extended light period (18 h) at high 

C02 concentrations in wheat leaves, and they concluded that 

respiration is inhibited by about 70% in the light. For calculating 

this number they combined the data obtained after both treatments. 

However, the same analysis would have yielded different results if 

applied to the data from either of the single treatments considered 

separately, which suggests that different populations of leaves were 

probably involved in both cases.

Graham (1980) reviewed the literature and concluded that 

glycolysis and TCA cycle can operate in illuminated green cells 

although some modifications probably occur in relation to the dark 

pattern (see Section 1.3.2.2). This is suggested by the increase in 

the malate/aspartate ratio and the different labelling patterns after 

administration of radioactive carbon compounds (e.g. C02, TCA cycle 

intermediates, amino acids, sugars) into citrate and other TCA cycle 

intermediates and related compounds, such as glutamate, glutamine, 

etc. (Bidwell, 1963; Graham, 1980). The evidence is consistent 

with the suggestion that glycolysis and TCA cycle are modified in the 

light to allow a continuous anaplerotic carbon flow for supplying a- 

ketoacids which the chloroplast is unable to make (see Section 

1.3.2.2). These compounds can be used for a variety of synthetic 

reactions including amino acid and lipid formation. Important 

features of this anaplerotic flow are the probable operation of PEP 

carboxylase in the cytosol and malic enzyme in the mitochondrion to
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replenish carbon loss from the TCA cycle (ap Rees, 1980a; Day and 
Hanson, 1977; see Figure 1.4). It is not known if the TCA cycle 
operates beyond succinate oxidation because this would depend on the 
operation of the mitochondrial electron chain in the light, a more 

uncertain aspect of the problem (see Section 1.3.2.2). The C02 

arising from the above mentioned reactions (e.g. 1 mol of C02 released 

per mol of glutamine formed) could well be responsible for most of the 

rate of respiration in illuminated leaves observed in our experiments. 
Non green cells would also contribute to R^, but it is not known 
whether photosynthesis exerts the same influence on their respiratory 
metabolism as in green cells.

The effect of the photosynthetic activity on the rate of 

respiration in the light may be mediated by the supply of PEP from 
recently synthesized triose-phosphate or from sugars. The latter 
alternative seems more unlikely in view of the fact that exogenous 
glucose is not metabolized through glycolysis in illuminated leaves 
including wheat (Bidwell et at. , 1955; Graham, 1980). High C02 
concentration enhances the carbon traffic through the TCA cycle and 

related compounds, presumably by increasing the supply of substrates 

for PEP carboxylase (Platt et at. , 1977). This may help to explain 
why some authors have failed to find significant C02 efflux by 

respiration in illuminated leaves into C02-free air conditions (Mangat 
et at., 1974). This also suggests that respiration in daytime, R^, 
may be underestimated at the C02 compensation concentration.

The observation that V measured at 2% 02 did not increase after a 

period of photosynthesis was rather surprising. Following the same 

reasoning used for analysing the diurnal variation of T measured at 
physiological 02 concentration, we should conclude that respiration in
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wheat leaves does not respond to the photosynthetic activity at 2% 02 
as it does at 21% 02. This reasoning suggests that the production of 
C02 by respiration is probably inhibited when the leaf is at 

compensation point in 2% 02. Explanation of this different behaviour 

is not easy. The partial pressure of C02 inside the leaf in 
equilibrium with air at 2% 02 was very low (5-6 ybar) and perhaps it 
is limiting for allowing significant anaplerotic flow through 
glycolysis and TCA cycle via PEP-carboxylase. This mechanism has been 

used to explain the lower growth rates of plant tissues in the dark 
when they are exposed to C02-free air (Splittstoesser, 1966; Bown et 
dl. , 1974; Bown and Aung, 1974). However, other mechanisms may also 
be possible because studies on the distribution of. photosynthetically 
fixed 14C02 in wheat leaves have shown that the 14C-incorporation in 
PEP, malate and aspartate was lower under 2% 02 than 21% 02, in 
contrast to the pattern shown by alanine, which accumulated at 2% 02 
at the expense of PEP (Coudret et dl. , 1981). This labelling pattern 
is consistent with a decreased anaplerotic flow through the TCA cycle 
at low 02 concentration. Also consistent with this view is the 

observation that the rate of protein synthesis in Linum plants was 
lower at 2% 02 than at 21% 02, in spite of the higher rate of photo­

synthetic 14C02 fixation observed at low oxygen (Moutot and Jolivet, 
1981).

4.4.2 The Light Compensation Point and Respiration

The light compensation point of mature wheat leaves also increased 

during the day, being correlated to the rate of respiration. This 

relationship extrapolated to the origin suggesting that respiration is 

a major component of the light compensation point. These results are
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consistent with the increase of the C02 compensation point at low 

light intensities (see also von Caemmerer, 1981; Catsky and Tichä,

1979) which is due to the fact that the respiratory fluxes become 

relatively more important at these low quantum fluxes, as discussed by 

von Caemmerer (1981) using a mathematical model of C02 assimilation.

The idea that the Kok effect can be interpreted in terms of an 

inhibition of respiration by light as suggested by Kok (1949) is not 

supported here. Ishii and Schmid (1981) suggested that the Kok effect 

seems to be due to the starting of photorespiration rather than to an 

inhibition of respiration. One of the arguments used is that the Kok 

effect is suppressed at high C02 concentrations. The slight Kok 

effect at ambient conditions shown in Figure 4.4 was also completely 

abolished at high C02 pressures (see Figure 2.6). Farquhar and Ogawa 

(unpublished) have shown that the Kok effect does not occur if the 

intercellular C02 partial pressure is kept constant during the 

determination of the light response curve of photosynthesis. This 

suggests that the ratio of C02/02 levels at the fixation sites may be 

important in determining the presence of the Kok effect.

The shift of the light response curve of photosynthesis following 

a period of photosynthesis presumably includes a respiratory component, 

but also can include a component associated with the effect of 

carbohydrate accumulation on photosynthesis (see Chapter 2). Similar 

shifts have been also observed in leaves of Xanthium strumarium 
(Sharkey, unpublished) and in rice leaves (Farquhar and Ogawa, 

unpublished).

In conclusion, the rate of C02 production by respiration in the 

light in 21% 02 (other than photorespiration per se) is comparable to
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that occurring in the dark, and it makes a significant contribution to 
total C02 efflux in illuminated wheat leaves.
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CHAPTER 5
THE EFFECT OF CARBOHYDRATE STATUS ON THE RATE, 
PROPERTIES AND REGULATION OF MITOCHONDRIAL 02 

UPTAKE IN DARKENED WHEAT LEAVES

5.1 INTRODUCTION

Several lines of evidence suggest that there is a direct 

relationship between the rate of respiration and the carbohydrate 

content of plant tissues. It has been shown in Chapter 3 that the 

rate of respiratory C02 efflux of mature wheat leaves is correlated 

with the rate of prior C02 assimilation, via carbohydrate accumulation, 

and similar correlations have been found in leaves of other species 

(Ludwig et al. , 1975; Challa, 1976; Coggeshall and Hodges, 1980;

Ferrar, 1980; Moser et al. , 1982). Exogenous sugars stimulate C02 

efflux and 02 consumption in the dark in the leaves of Rumex aoetosa 

(Goldthwaite, 1974) and Avena sativa (Tetley and Thimann, 1974), and 

similar effects have been reported with maize root tips (Saglio and 

Pradet, 1980).

The biochemical processes responsible for the mentioned 

respiration in leaves of high carbohydrate status are not known. It 

is known that the rate of respiration of mature leaves of many plant 

species is little inhibited or is even frequently stimulated in the 

presence of cyanide (Allen and Goddard, 1938; MacDonald and De Kok, 

1958; Ducet and Rosenberg, 1962; Tetley and Thimann, 1974; Lambers et 

al., 1979; Kinraide and Marek, 1980). Cyanide is the most frequently
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used inhibitor of the cytochrome pathway in studies in vivo, and the 

rate of respiration in its presence gives an estimate of the 

capacity of the alternative pathway.

The alternative path is a non-phosphorylating cyanide and 

antimycin A-resistant electron transport pathway, branching from the 

respiratory chain at ubiquinone (see Section 1.3.1.2). The activity 

of the alternative pathway can be determined using specific inhibitors 

such as hydroxamic acids (e.g. salicylhydroxamic acid, SHAM), which 

were introduced by Schonbaum et at. (1971) (see the reviews of Day et 

dl. , 1980, and Lambers, 1982).

The alternative pathway of intact leaves has been very little 

studied, and absolutely nothing is known about the regulation and 

function of this pathway in leaves in vivo. A combination of KCN and 

SHAM abolished respiration in shoots of Senecio aquatious (Lambers et 

dl. , 1979) and in leaves of Bryophyllum tubiflorum (Kinraide and Marek, 

1980). SHAM alone, however, had no effect on the rate of respiration 

in both cases, which suggests that the alternative pathway, although 

present, is not engaged in normal respiration in these leaves.

The experiments described in this chapter investigate the 

relationship between the carbohydrate status and the rate of 

mitochondrial electron transport to oxygen in mature wheat leaves.

The contribution of the cytochrome and alternative pathways to 02 

consumption under different carbohydrate levels will also be evaluated.

5.2 MATERIALS AND METHODS 

5.2.1 Plant Material

Wheat plants were grown as described in Section 2.2.1.
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5.2.2 Preparation of Leaf Slices 
and 02 Uptake Measurements

Leaves were transversally cut in 1 mm-thick. slices with a sharp 

razor blade under a solution containing 50 mM HEPES, 10 mM MES buffer, 

pH 6.6, 0.2 mM CaCl2. The slices used in the experiments of Section

5.3.3 were prepared under a 0.2 mM CaCl2 solution. The slices were 

washed for 10 to 60 min in the same solution, which was renewed 

several times. The rate of 02 uptake was measured with a Rank 02 

electrode in 4 ml of an air saturated solution (see legends of figures 

and tables). A nylon net separated the slices from the stirrer and 

the electrode. SHAM was added from a stock solution of 1 M in 

2-methoxy-ethanol. Typical 02 electrode traces are shown in Figure 

5.4.

5.2.3 Measurement of 02 Uptake
in the Dark in Leaf Segments

Wheat leaf segments (about 70 cm2 area) were placed in an 02 

electrode cuvette containing 105 ml of reaction medium (50 mM HEPES,

10 mM HEPES buffer, pH 6.6, 0.2 mM CaCl2). The segments (5-8 cm long) 

were obtained by sectioning leaves perpendicularly to the veins under 

buffer (see above) with a sharp razor blade. The linear depletion of 

the 02 concentration in a closed system was then measured 

polarographically using a Clark 02 electrode. The solution was 

strongly stirred and 02 became limiting for respiration only at 

concentrations less than 100 yM. Measurements were made in the dark 

between 250 and 150 yM 02. When the effect of SHAM was investigated, 

the original solution was replaced by a similar solution containing 

the desired concentration of SHAM, and the rate of 02 uptake measured 

again. In the titration experiment (Fig. 5.2) a new batch of leaves
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was used for each concentration of SHAM to eliminate the problems 
caused by accumulation of the inhibitor with time (see Section 
5.3.2.1). KCN was added directly to the solution. The rate of 02 
uptake was expressed per leaf area, which was measured with a leaf 
area meter (Lambda Instruments, model LI-3050A, Lincoln, Nebraska,
USA) .

5.2.4 Determination of the Respiratory Quotient of a 
Wheat Leaf Before and After a Period of Light
The rates of dark C02 efflux and 02 uptake were measured 

independently by using an infrared gas analyser (see Appendix I) and 

an oxygen electrode (Rank Bros., Cambridge, England), respectively. A 
leaf was selected at the end of the night and was enclosed in a photo­

synthetic chamber; the leaf remained attached to the plant and its 
rate of dark C02 efflux was monitored. Simultaneously, the rate of 02 
uptake of a fragment (approx. 2 cm2) previously cut from the upper 

portion of this leaf was measured. The leaf fragment was immersed in 
4 ml of a solution (10 mM HEPES, 10 mM MES buffer, pH 6.6, 0.2 mM 
CaCl2) in equilibrium with air; a nylon net separated the leaf 
fragment from the electrode and the stirrer. The enclosed leaf was 
then illuminated for 6 h at saturating quantum flux for photosynthesis 

(1000 yE. nf 2.s”1), and the rate of the latter was recorded 
periodically. The rate of dark C02 efflux was measured again 30 min 

after the light was switched off to avoid interference from photo- 
respiratory substrates (see Chapter 3). Another fragment of the 

leaf was transferred immediately into the oxygen electrode cuvette and 

the rate of 02 uptake measured. The temperatures during the dark and 

light periods were 21 °C and 23 °C, respectively.
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5.2.5 Isolation of Mitochondria

Wheat leaves (15-20 g) were deribbed and homogenized for 1-2 sec 

using a Polytron (Kinematica, GmbH, Model K, Kriens-Luzern,

Switzerland) with a probe PTA-35/2 (setting #7) in 150 ml of medium 

containing 0.3 M sorbitol, 50 mM TES buffer, 10 mM KH2P04, 1 mM EDTA,

10 mM isoascorbate, 0.2% (w/v) bovine serum albumin (BSA) and 0.5% 

PVP-40, adjusted to pH 7.6 with KOH/NaOH. The homogenate was filtered 

through 4 layers of miracloth and centrifuged at 4000 rpm for 5 min in 

a Sorvall SS-3 Automatic centrifuge. The supernatant was 

recentrifuged at 10,000 rpm for 15 min and the pellet resuspended in 

approximately 40 ml of wash medium (0.3 M sorbitol, 20 mM TES buffer 

pH 7.2, 0.1% BSA). This suspension was centrifuged at 10,000 rpm for 

15 min. The pellet was resuspended in 2-3 ml of wash medium and kept 

in ice. Temperature during the isolation procedures was 2-4 °C.

02 uptake was measured using a Rank 02 electrode in 2 ml of 

reaction medium containing 0.3 M sorbitol, 10 mM TES buffer pH 7.1,

5 mM KH2P04, 2 mM MgS04 and 0.1% BSA, at 22.5 °C. SHAM was added from 

a stock solution of 1 M in 2-methoxy-ethanol. Other details are 

provided in the legend of Table 5.2.

5.2.6 Carbohydrate, Protein and Chlorophyll Determination

Free glucose plus fructose, invertase sugars and starch fractions 

were measured as described in Section 2.2.6.

Protein was estimated according to Lowry et at. (1951) with BSA 

as standard, and chlorophyll according to Arnon (1949). The 

contribution of contaminating thylakoids to mitochondrial protein 

estimations was corrected for by assuming a thylakoid protein to 

chlorophyll ratio of 7 to 1 (Day, 1980).
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5.3 RESULTS AND DISCUSSION

5.3.1 The Effect of Carbohydrate Status on 
the Rate of 02 Uptake by Leaves

The rate of 02 uptake by wheat leaves in the dark was much lower 

in leaves harvested at the end of the night than that in leaves 

harvested after a period of photosynthesis (Table 5.1; note that 

respiration was measured about 30 min after the light was turned off, 

in these experiments). The rate of dark C02 efflux also increased, 

but to a greater extent than the rate of 02 uptake, resulting in an 

increase in the respiratory quotient (Table 5.1). Concomitant with 

this decrease in respiration during the night was a decrease in the 

carbohydrate content of the leaves (Table 5.1).

5.3.2 The Effect of Carbohydrate Status on Alternative 
Pathway Activity in Wheat Leaves and Leaf Slices

5.3.2.1 On the validity of using SHAM

The contribution of the cytochrome and alternative pathways to

leaf respiration was estimated using the inhibitors KCN and SHAM.

SHAM has been the inhibitor most widely used for studying the activity

of the alternative path in intact organs (see Lambers, 1982), but

there have been some doubts raised about the validity of these

techniques in vivo (Laties, 1982).

SHAM concentrations higher than 2 mM also inhibit the cytochrome

pathway in isolated mitochondria (Schonbaum et at. , 1971; Lambers et

at. , 1982). However, the concentrations of SHAM needed in studies in

vivo have been frequently ten times or higher, as in the present

study; this presumably reflects the poor penetration of this

inhibitor into intact tissues, and/or its sequestration within the

tissues.
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Table 5.1

The effect of a period of photosynthesis of 6 h on the rate of 
dark respiration, the respiratory quotient (R.Q.), and carbohydrate 
levels of wheat leaves. Net C02 assimilation during the light period 
was 33 ±1.5 limol.m .s . External C02 concentration was 375 ybar and 
irradiance was 1000 yE.m 2.s 1. The values of respiration are means ± 
SE of 3 experiments. The experimental procedures are detailed in 
Section 5.2.4. Carbohydrate levels were determined in leaves selected 
from the growth cabinet and the values shown represent averages of 5 
to 10 leaves.

Parameter Measured At the end 
of the night

After 6 h 
in the light

C02 efflux (ymol.m-2.s”1) 0.51 ±0.06 1.32 ±0.18
02 uptake (ymol.m~2.s”1) 0.55 ±0.06 0.73 ±0.08
R.Q. 0.93 ±0.03 1.80 ±0.21
Free glucose and fructose (mmol C.m-2) 4.8 16
Invertase sugars 2 58
Starch 3.2 18
Total carbohydrate 10 92

The titration of respiration with SHAM in the presence and in the 

absence of a constant cyanide concentration (Bahr and Bonner, 1973; 

Theologis and Laties, 1978) can be used as a method for determining 

the influence of SHAM on the cytochrome path. A plot of both sets of 

values should yield a straight line if SHAM does not affect the 

cytochrome pathway (Day et at. , 1980). The slope of this line (p) 

represents the extent to which the alternative pathway is engaged in 

the absence of inhibitors. Figure 5.3 shows that this is the case for 

wheat leaves, and similar results have been reported for maize and 

wheat roots (Lambers et at. , 1983). These latter authors also 

*
See Appendix IV for a detailed discussion of this analysis.
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examined the SHAM sensitivity of mitochondria isolated from wheat and 
maize roots, and concluded that SHAM concentrations above 2 mM are not 
reached within the tissues studied when exposed to high external SHAM 

concentrations for short periods of time. The results that I have 

obtained in wheat leaves (see later) support this conclusion.

Unfortunately, SHAM, as well as the rest of the hydroxamic acids, 
also inhibit other oxidase systems as well as the alternative oxidase, 
including lipoxygenase (Parrish and Leopold, 1978). This enzyme which 

seems to be localized in other cell compartments (Douillard, 1981; 
Neuburger et dt. , 1982) often contaminates washed mitochondria and may 

be of importance in damaged tissues. Goldstein et at. (1980) have 
shown that the cyanide-insensitive 02 uptake measured with 
mitochondria obtained from wheat seedlings by differential 
centrifugation was due to the oxygenation of linoleate by lipoxygenase; 
this contaminating lipoxygenase could be eliminated by purifying the 
mitochondria using a linear Percoll density gradient. On this basis, 
Goldstein et at. (1982) proposed a model which can account for most of 

the kinetic data obtained with isolated mitochondria. However, this 
model depends on lipoxygenase being associated with the mitochondria. 

This may happen with isolated mitochondria since contamination with 

other cell compartments may occur during organelle preparation. In 
vivo, the situation is most unlikely to arise because lipoxygenase is 
confined either to plastids, vacuoles or lysozomes (Douillard, 1981). 

Laties (1982) also concluded that lipoxygenase should not be a 

problem in intact tissues in most conditions.

Fortunately, the compound tetraethylthiuram disulfide 

(disulfiram) inhibits the alternative pathway (Grover and Laties, 

1981), but does not affect lipoxygenase (Miller and Obendorf, 1981).
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It is important to note in this context that SHAM and disulfiram 

inhibited to the same extent the antimycin A-resistant rate of 02 

uptake of isolated wheat leaf mitochondria (Table 5.2), suggesting 

that the contribution of lipoxygenase to 02 uptake by these 

mitochondria was negligible. Similar results have been reported for 

pea leaf mitochondria (Lambers et at., 1983) and for aged potato 

slice mitochondria (Shingles et at. , 1982). Unfortunately, the use of 

disulfiram for studies in vivo is not possible due to either a limited 

penetration into the tissue or its dissipation in the cytosol (Grover 

and Laties, 1981). The contribution of plastid of vacuolar 

lipoxygenase to 02 uptake per se is likely to be very small in intact 

tissue due to lack of appropriate substrate. The respiratory quotient 

measured in wheat leaves (Table 5.1) suggests that carbohydrate was 

the main source of 02 uptake, as does the correlation between carbo­

hydrate status and 02 uptake.

I therefore conclude that the techniques used in this chapter are 

suitable for correctly estimating the contributions of the alternative 

and cytochrome pathways to wheat leaf respiration. The fact that SHAM 

concentrations as high as 25 mM (in the absence of KCN) did not 

inhibit respiration of wheat leaves in which the alternative pathway 

was not engaged (see Fig. 5.2A) supports this conclusion, as does the 

observation that 02 uptake was completely inhibited by the 

presentation of SHAM and KCN together (i.e. residual respiration is 

negligible in these leaves). In the following sections and chapters, 

therefore, it can be assumed that the 02 uptake resistant to KCN 

represents alternative path activity, while the 02 uptake resistant to 

SHAM represents cytochrome path activity.
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Table 5.2

Comparison of antimycin A-resistant 02 uptake by mitochondria 
isolated from wheat leaves harvested at different times of the photo­
period. 02 uptake was measured in the presence of 10 mM malate, 10 mM 
glutamate, 10 mM succinate, 10 mM glycine, 0.1 mM thiamine 
pyrophosphate and 1.5 ymole ADP. Antimycin A and SHAM were added at 
5 ]iM and 1.8 mM, respectively. Disulfiram was used at 100 yM (see 
line marked by the asterisk). Mitochondria showed respiratory control 
ratios with glycine as substrate of about 2.

Leaves harvested State

02 uptake 

3 + Antimycin A
+ Antimycin A 
+ SHAM (or 
disulfiram*)

nmol.min-1.mg-1 protein

At the end of the night 76 23 6.5
73 23 7 *

After 5 h light 82 26 11
86 29 12 *

5.3.2.2 Results obtained with wheat leaf
segments, slices, and isolated mitochondria

Figure 5.1 shows that the alternative oxidase capacity of wheat 

leaves, that 02 uptake not inhibited by KCN, was very substantial, 

being about 80% of total measured respiration in leaves harvested 

after a period in the light (Fig. 5.IB). In leaves harvested at the 

end of the night, the capacity of the alternative pathway was greater 

than the flux of reducing equivalents to the respiratory chain, as 

shown by the fact that KCN had either no effect on 02 uptake or 

slightly stimulated it (Fig. 5.1A). This stimulation presumably was 

via a Pasteur-type effect, since a decrease in the production of ATP
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Figure 5.1: The effect of KCN concentration on the rate of oxygen
uptake of wheat leaves in the presence (o) and in the 
absence (•) of 20 mM SHAM. Leaves were selected at the 
end of the night (A) or after 5-7 h in the light (B). 
Each curve represents a typical experiment with one 
batch of leaves. Temperature was 22.5 °C.
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might enhance glycolytic flux (Day et at. , 1980). When appropriate 

levels of KCN and SHAM were used together, oxygen uptake was 

completely inhibited.

Titrating respiration with SHAM (Fig. 5.2) showed that the 

alternative pathway contributed substantially to the observed 

respiratory rate in leaves harvested after a period of photosynthesis; 

that is, SHAM inhibited in the absence of KCN (Fig. 5.2B). A plot of 

the rates of 02 uptake in the presence of SHAM alone, against those 

obtained in the presence of both KCN and SHAM, yields a straight line 

(Fig. 5.3), whose slope (p) is 0.53. That is, after a period in the 

light, the alternative pathway was used at approximately half its 

capacity. In leaves harvested at the end of the night, on the other 

hand, SHAM alone had no effect (p =0), indicating that the alternative 

path was not engaged (Fig. 5.2A). The lack of effect of SHAM in the 

end-of-night leaves was not due to poor penetration of the inhibitor, 

since subsequent addition of KCN inhibited 02 uptake (Fig. 5.1A). A 

comparison of Figures 5.2A and 5.2B shows that much of the increase in 

respiration observed after a period of photosynthesis was due to the 

engagement of the alternative pathway.

Residual respiration, defined as the rate of 02 uptake resistant 

to a combination of SHAM and KCN (Theologis and Laties, 1978) was 

absent or very small in leaf segments, and always absent in leaf 

slices (see later). The residual component observed sometimes is 

probably the result of either penetration problems of inhibitors into 

the leaves or of some possible chemical interactions between KCN and 

SHAM (Lambers et at. , 1983) rather than as the result of the operation 

of an oxidase system other than the cytochrome and alternative 

oxidases. As discussed above, the straight line obtained in the p-
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Figure 5.2: The effect of SHAM concentration on the rate of 02 uptake
of wheat leaves in the presence (o) and in the absence 
(•) of 0.3 mM KCN. Leaves were taken from the growth 
cabinet at the end of the night (A) or after 5-7 h in the 
light (B). Temperature was 22.5 °C. The rate of 02 
uptake was firstly recorded in the absence of any 
inhibitor. Then SHAM and KCN were sequentially added. 
Only one concentration of SHAM was used for every batch 
of leaves. Mean values ±S.E. of 2-3 observations are 
shown. For other details see Section 5.2.3.
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Figure 5.3: Plot of the rate of 02 uptake of wheat leaves harvested
after 5-7 h in the light at different SHAM concentrations 
(V̂ ) versus a similar set of values obtained in the 
presence of 0.3 mM KCN [g(i) - ]. v .is the rate of

a i t  eye
the cytochrome pathway. For other details see legend of 
Figure 5.2.
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plot indicates that SHAM did not affect the cytochrome pathway. This, 

together with the observation that SHAM alone did not inhibit 02 

uptake in the end-of-night leaves, and the lack of significant 

residual respiration indicate that SHAM inhibition gives a reliable 

estimate of alternative path activity in wheat leaf tissue.

When slices were prepared carefully as described in Section 5.2.2, 

their rates of 02 uptake and their sensitivity to KCN and SHAM were 

very similar to those measured with intact leaves (Table 5.3). This 

indicates that wounding effects on slice respiration were negligible. 

The lower concentration of SHAM which was required to fully inhibit 

cyanide-resistant respiration in slices (5 mM), compared to leaves 

(20 mM; Table 5.3, Fig. 5.1), probably reflects increased 

permeability to the inhibitor in the slices. Typical 02 electrode 

traces obtained with slices are shown in Figure 5.4. Slice 

respiration had similar properties to leaf respiration, the overall 

rate and SHAM-sensitivity increasing after a period of photosynthesis.

Adding sucrose to slices cut from leaves harvested at the end of 

night stimulated 02 uptake almost to the rate observed with slices cut 

from leaves harvested after several hours in the light (Fig. 5.4 and 

Table 5.4). Subsequent addition of SHAM reduced the rate of 02 uptake 

to a value similar to that observed before adding sugars. That is, 

the respiration of slices taken at the end of night resembled that of 

slices taken after light treatment, when sucrose was provided 

externally. A similar effect of sugars was seen with slices from 

Panicum miliaoeum (02 uptake increased from 0.53 to 0.70 jjmol.m- 2.s~1 

with 45 mM glucose) and starved pea leaves (see Chapter 6). Table 5.5 

shows the effect of various sugars on the respiration of wheat leaf 

slices; only sucrose, glucose, and fructose gave significant
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45mM Sucrose5 mM SHAM

5 mMSHAM

13.9
y, 5 mM SHAM0.3m M 

v KCN 0.3mM KCN

0.3mM KCN 
0n mol O-

15min

Figure 5.4: Typical traces of oxygen consumption by wheat leaf
slices. Leaves were selected at the end of the night 
(A and C) and after 5-7 h in the light (B). Temperature 
was 22 °C. Rates shown on traces are expressed as nmol 
02.min_1. Leaf areas were 4.05, 3.44 and 2.72 cm2 for A, 
B and C, respectively. For further details see Section 
5.2.2 and Table 5.3.
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Table 5.3

Respiration of wheat leaf slices. The slices were prepared as 
described in Section 5.2.2. The reaction medium contained 50 mM 
HEPES, 10 mM MES buffer pH 6.6, 0.2 mM CaCl2. Temperature was 22 °C. 
The rates of 02 uptake shown are means ±S.E. of 2-4 determinations.

Additions to vessel
Oxygen

Leaves from end 
of night

Consumption
Leaves after 5-7 
hours in the light

ymol -2 -1 . m s

Expt 1: -

None 0.39 ±0.06 0.81 ±0.07
5 mM SHAM 0.39 ±0.06 0.62 ±0.06
5 mM SHAM + 0.3 mM KCN 0.0 0.0

Expt 2:
None 0.49 ±0.06 0.97 ±0.02
0.3 mM KCN 0.49 ±0.06 0.84 ± 0.05
0.03 mM KCN + 5 mM SHAM 0.0 0.0

Table 5.4

Effect of SHAM on the sucrose-dependent stimulation of 02 uptake 
in wheat leaf slices harvested at the end of the night. The values 
are means ±S.E. of three independent experiments. For further details 
see Table 5.3.

Sequential Additions 
to Vessel

None
45 mM sucrose 
5 mM SHAM 
0.3 mM KCN

Oxygen Consumption

ymol.m-2.s-1

0.51 ± 0.06 
0.74 ±0.07 
0.61 ±0.04 
0.0
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Table 5.5
Effect of different sugars on the rate of 02 consumption of wheat 

leaf slices. Slices were cut from leaves harvested at the end of the 
night. Mean values ±S.E. (n = at least 3) are shown. For further 
details see Table 5.3.

Sugar Added Oxygen Consumption 
Control rate + 45 mM sugar

ymol.m"■2.s_1
Sucrose 0.45 ±0.05 0.68 ± 0.06
Glucose 0.38 ±0.07 0.53 ±0.07
Fructose 0.49 ±0.02 0.58 ±0.02
Ribose 0.51 ±0.01 0.52 ±0.01
Mannitol 0.52 ±0.03 0.50 ±0.03

stimulations. The lack of effect of mannitol shows that the 
stimulation did not involve osmotic effects on the slices; only those 
sugars which can be readily metabolized through glycolysis stimulated 

02 uptake.
The effect of varying sucrose concentration on the rate of 02 

uptake in flag wheat leaf slices is shown in Figure 5.5. Preliminary 

studies indicated that the maximal response of respiration to 

exogenously added sucrose occurred at about pH 5.5-6.0. Respiration 

was stimulated maximally by 60 mM sucrose at 22 °C. High 
concentrations of mannitol, on the other hand, slightly inhibited 02 

uptake (Fig. 5.5A); this may be due to an osmotic effect on the 
slices and may also occur with sucrose, in which case the stimulation 

by sucrose would be underestimated. Sucrose also stimulated 

considerably the rate of 02 uptake by leaf slices at 13 °C and 30 °C 
(Fig. 5.5B).
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Sucrose or manni to l  concentrat ion (mM)

Figure 5.5: The effect of sucrose and mannitol concentration on the
rate of 02 uptake (expressed as per cent of the basal 
rate) of flag wheat leaf slices selected at the end of 
the night. A. The effect of sucrose (•) and mannitol (o) 
at 22 °C. B. The effect of sucrose at 13 °C (■) and at 
30 °C (a ). The basal rates (expressed as ymol 02.m-2.s-1) 
were 0.36 ±0.01 at 13 °C: 0.80 ± 0.05 at 22 °C; 1.19 ±0.16
at 30 °C. Each point is an average of 3-10 determinations 
The bars show the standard errors. For other details see 
Table 5.6.
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Mitochondria isolated from wheat leaves showed no significant 

differences in the capacity of the alternative pathway, regardless of 

whether the organelles were prepared from leaves harvested at the end 

of the night or after several hours in the light (Table 5.2; see also 

Table 6.6). As mentioned earlier in this section, contribution of 

lipoxygenase to the antimycin A-insensitive 02 uptake of these 

mitochondria appeared to be negligible on the basis of disulfiram 

inhibition of this portion of respiration (cf. Miller and Obendorf, 

1981). That is, disulfiram and SHAM inhibited to the same extent.

The results in Tables 5.2 and 6.6 show that the changes observed in 

alternative path activity in wheat leaves, following a period of 

photosynthesis, were not due to changes in the mitochondria themselves.

5.3.3 Regulation of Flag Leaf Slice Respiration

The interactions between the effects of sucrose, glycine, the 

uncoupler FCCP, and SHAM on slice respiration were examined in detail 

using slices cut from flag wheat leaves. The rates of 02 uptake per 

leaf area of these slices were slightly higher than those of slices 

used in the experiments reported above but their respiratory 

properties in relation to added sugars and inhibitors of electron 

transport were the same (Table 5.6, experiments 1, 2 and 3). That is, 

the rate of 02 uptake of end-of-night leaf slices was stimulated by 

added KCN and sucrose, and was not inhibited by SHAM; respiration of 

slices from leaves harvested after a period of light increased, and 

showed sensitivity to both KCN and SHAM.

Sucrose stimulated respiration of end-of-night leaf slices 

through an increase in the activities of both the cytochrome and 

alternative pathways (Table 5.6, Expt 3). However, sucrose did not
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Table 5.6

Respiratory properties of flag wheat leaf slices. The slices 
were prepared as described in Section 5.2.2. The reaction medium 
contained 10 mM HEPES, 10 mM MES buffer pH 6, 0.2 mM CaCl2. 
Temperature was 22 °C. KCN and SHAM were added at 0.3 mM and 5 mM, 
respectively. Sucrose and glycine were added at 60 mM and 100 mM, 
respectively. Values shown are means ± S.E. of 3-8 measurements.

Sequential Additions
Oxygen Uptake by Leaf Slices
At the end After. 5-7 h
of the night in the light

ymol.m 2 - 1. S

Exp t 1: None 0.69 ±0.03 0.97 ± 0.02
KCN 0.76 ± 0.10 0.84 ± 0.05
SHAM 0.0 0.0

Expt 2: None 0.72 ±0.02 1.12 ± 0.06
SHAM 0.72 ±0.02 0.80 ±0.02
KCN 0.0 0.0

Expt 3: None 0.65 ±0.05 1.04 ±0.08
Sucrose 0.93 ±0.10 1.04 ±0.08
SHAM 0.77 ±0.07 -
KCN 0.0 -

Expt 4: None 0.71 ±0.05 0.90 ±0.02
Glycine 0.87 ±0.01 0.93 ±0.02
SHAM 0.78 ±0.02 -
KCN 0.0 -

stimulate the rate of respiration of slices from leaves harvested 

after a period of light of several hours (Table 5.6, Expt 3), which 

already had the alternative pathway engaged to some extent (Table 5.6, 

Expts 1 and 2). The average level of endogenous sugars (fructose, 

glucose and sucrose) was much higher in these latter leaves than in
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leaves harvested at the end of the night period — these values were 52 

and 6.2 mmol carbon.m-2, respectively.

External glycine also stimulated the rate of 02 uptake in end-of- 

night slices but not in slices from leaves harvested after a light 

period (Table 5.6, Expt 4). The stimulatory effect of glycine on 

slice respiration occurred very rapidly upon addition, and it is 

presumably due to the action of glycine decarboxylase, as suggested by 

studies made in pea leaf slices (Grodzinsky and Woodrow, 1981).

The absence of stimulation of respiration in high carbohydrate 

leaf slices by added sucrose or glycine cannot be explained by 

considering that the electron transport chain was saturated, since the 

alternative pathway at least was not fully engaged in these slices 

(Table 5.6, Expts 1 and 2). The uncoupler FCCP was used to test the 

possibility that respiration was under adenylate control. FCCP 

produced only a slight stimulation of respiration in slices from 

leaves harvested at the end of the night or after a light period (Table 

5.7); when sucrose or glycine was added to the slices, however, FCCP 

stimulated respiration substantially in all cases (Tables 5.7 and 5.8). 

The small effect of FCCP in the absence of added sugars suggests that 

the level of endogenous substrates was never in excess for slice 

respiration. It also appears that respiration of slices from leaves 

harvested after a light period was more tightly controlled by 

adenylates than that of end-of-night slices, since respiration could 

only be stimulated by exogenous substrates when this control was 

removed by using an uncoupler. In end-of-night slices, on the other 

hand, exogenous sucrose stimulated in the absence of FCCP.

Although FCCP alone had very little effect on the rate of 02 

uptake, it prevented subsequent inhibition by SHAM (Table 5.8, Expt 1).
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Table 5.7
Effect of FCCP 

of flag wheat leaf 
means ±S.E. of 3-6

plus sucrose 
slices. FCCP 
measurements.

or glycine on the rate of 02 uptake 
was added at 1 pM. Values shown are 
For other details see Table 5.6.

Oxygen Uptake by Leaf Slices
Sequential Additions At the end After 5-7 h

of the night in the light
pmol. - 2 -1 m . s

Expt 1: None 0.68 ± 0.03 0.97 ±0.03
FCCP 0.75 ±0.06 1.04 ±0.04
Sucrose 1.25 ±0.04 1.25 ±0.04

Expt 2: None - 0.96 ±0.08
FCCP - 1.05 ±0.05
Glycine - • 1.17 ±0.07

However, SHAM clearly inhibited respiration in the presence of FCCP 
when sucrose was added (Table 5.8, Expt 2) and in the absence of both 
FCCP and added sucrose (Table 5.6). The rate of respiration resistant 
to SHAM, which is an estimate of the activity of the cytochrome path­
way (the SHAM-resistant 02 uptake was completely inhibited by KCN) was 

about 30% higher in slices exposed to FCCP than that of slices not 

treated with FCCP (Table 5.8; see also Table 5.6).

The results in Tables 5.6 to 5.8 are summarized in Table 5.9.
Here I use V to signify the total measured rate of 02 uptake in the

absence of inhibitors, while v and v . (determined using KCN andcyt alt °
SHAM as explained in the legend of Table 5.9) represent the activities 

of the cytochrome and alternative paths respectively. In leaves 

harvested at the end of the night, when sugars and respiratory rates 

are low, V is due solely to 02 uptake by the cytochrome pathway
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Table 5.8

Effect of sucrose and uncoupler on the respiration of slices from 
flag wheat leaves harvested after 5-7 h in the light. For 
experimental details see Tables 5.6 and 5.7. Values shown are means ± 
S.E. of 3-6 independent measurements.

Sequential Additions Oxygen Uptake
—  2pmol.rn .s

Expt 1: None 1.02 ±0.09
FCCP 1.06 ±0.09
SHAM 1.00 ±0.07
Sucrose 1.03 ±0.07
KCN 0.0

Expt 2: None 1.06 ±0.06
Sucrose 1.06 ±0.06
FCCP 1.28 ±0.06
SHAM 1.04 ±0.02
KCN 0.0

Expt 3: None 1.13 ±0.06
SHAM 0.80 ±0.02
FCCP 0.90 ±0.04
Sucrose 0.97 ±0.10
KCN 0.0

(Table 5.9A). In leaves harvested after several hours in the light, 

increases, and this increase is due to higher cytochrome pathway 

activity and to engagement of the alternative path (Table 5.9B). This 

situation also holds for end of night leaves supplied with sucrose 

exogenously (not shown in Table 5.9, but see Table 5.6, Expt 3). When 

FCCP is added to leaves harvested after a period of light, remains 

unchanged but v  ̂increases at the expense of va^t (Table 5.9C).

That is, electrons are re-routed from the alternative to the
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Table 5.9
Estimation of the activities of respiratory pathways in flag 

wheat leaf slices. The values shown were calculated from experiments 
similar to those described in Tables 5.6, 5.7 and 5.8, and are means 
± S.E. from 6 to 29 independent measurements. V is the measured 
rate of 02 uptake in the absence of inhibitors. v  ̂i-s the activity 
of the cytochrome path, estimated by measuring 02 uptake in the 
presence of SHAM. va^t is the activity of the alternative pathway, 
and is calculated by subtracting v  ̂from V^. p is the fraction of 
the maximum capacity of the alternative path that is expressed; 
p =vapt/^ait> where V ^  is the capacity of the alternative path, 
estimated by measuring 02 uptake in the presence of KCN, sucrose and 
FCCP. valt= 0 -84 hmol 02. m"2 . s~ 1 .

Experimental Conditions V cy t Valt P
_ 2 —ymol 02. m . s • l ratio

A. Leaves from end of night 0.69 ±0.02 0.69 ± 0.02 0.0 0
B. Leaves after 6 h light 1.03 ±0.03 0.78 ± 0.02 0.25 ± 0.02 0.3
C. Leaves after 6 h light 

+ FCCP 1.06 ±0.09 1.0 ±0.07 0.0 0.0
D. Leaves after 6 h light 

+ FCCP + sucrose 1.25 ±0.04 1.02 ±0.04 0.23 ±0.04 0.27

cytochrome path when the latter is uncoupled (the alternative path per 

se is not coupled to phosphorylation of ADP; Day et al. , 1980). This 

strongly suggests that in these leaves the cytochrome path is 
restricted by oxidative phosphorylation, and this suggestion is 

supported by the observation that glycine (which feeds electrons 

directly to the respiratory chain via glycine decarboxylase, and 

therefore bypasses glycolysis) only stimulates respiration in these 

leaves when FCCP is also added (Table 5.7, Expt 2). When both sucrose 
and FCCP are added to leaves harvested after light treatment, V is
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increased, and this increase is due to engagement of the alternative 

path (Table 5.9D).

The data shown in Table 5.9 imply that respiration in wheat 

leaves is regulated in the following manner. When carbohydrate 

(probably free sugars are the more important fraction in this respect, 

as we will see in the next chapters) levels are low, respiration is 

restricted by substrate supply from glycolysis to the mitochondria, 

and all 02 uptake occurs via cytochrome oxidase. When leaf carbo­

hydrate levels are increased (e.g. by a period of photosynthesis), 

substrate supply to the mitochondria is increased, but the activity of 

the cytochrome chain is restricted by cytosolic adenylate levels; 

under these conditions the glycolytic supply of reducing equivalents 

to the mitochondria is greater than that which can be handled by the 

cytochrome chain, and electrons therefore spill-over into the 

alternative path. However, even when leaf carbohydrate levels are 

high (e.g. in leaves harvested after a period of photosynthesis, in 

the presence of exogenous sugars), the mitochondrial electron 

transport pathways are not fully expressed, and they are not further 

stimulated by the addition of exogenous sugars in the absence of 

uncoupler. Only when uncoupler is also added is respiration 

stimulated. This suggests that glycolysis as well as the cytochrome 

chain is restricted by adenylate levels; if so, FCCP presumably 

stimulates via a Pasteur-type of effect (Day et dl. , 1980). 

Alternatively, alternative path activity may be limited by respiratory 

control of electron transport through the first site of energy 

transduction; that is, under these conditions the flux of reducing 

equivalents from substrates to ubiquinone (the branch point of the 

alternative path and cytochrome path) may be less than the capacity of 

the pathways from ubiquinone to 02 (Laties, 1982).



132

5.4 GENERAL DISCUSSION
In summary, the results obtained in this chapter suggest that 

wheat leaf respiration is subject to control by both carbohydrates 
(e.g. sugars) and adenylates, the relative influence of the two 

substrates varying with the photoperiod and the rate of prior photo­

synthesis .
Although the results suggest that adenylate levels regulate 

glycolysis as well as the cytochrome chain, the control of the latter 

appears to be tighter. That is, regulation of glycolytic flux is more 
flexible than that of the cytochrome pathway. Similar conclusions 

have been drawn concerning the regulation of root respiration (Lambers 
et at. , 1983). An important consequence of this is that the rate of 

glycolysis can exceed the activity of the cytochrome chain, thus 
allowing expression of the non-phosphorylating alternative path. How 
this is achieved in the face of cytosolic energy charge values high 
enough to restrict the cytochrome path is not certain. Very high 
ATP/ADP ratios are needed to significantly inhibit coupled mito­
chondrial electron transport in vitro (Dry and Wiskich, 1982) and one 

might have expected glycolysis also to be restricted under these 

conditions. A possible mechanism may involve a bypass of the pyruvate 
kinase step in glycolysis. PEP could be converted to malate via PEP 
carboxylase and malate dehydrogenase in the cytosol, and the malate 

could then be decarboxylated via NAD-linked malic enzyme in the mito­

chondrial matrix to yield pyruvate (Day and Hanson, 1977; ap Rees, 
1980a; see Section 1.3.1.1 and Figure 1.4). Plant phosphofructokinase 

is less tightly controlled by adenylates than its animal counterpart 

(Turner and Turner, 1980), and hence need not be tied so tightly to 

ATP turnover (Pradet and Raymond, 1982). Whatever the mechanism, it
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is apparent that in wheat leaves which have an active alternative 

pathway, the rate of glycolysis is not strictly matched to meet the 
energy demands of the cell.

The regulation of the distribution of electrons between the cyto­
chrome and alternative pathways in wheat leaves is in accord with the 
model of branched electron transport proposed by Bahr and Bonner 

(1973) from studies in isolated mitochondria. This model suggests 

that the alternative pathway only operates when the cytochrome pathway 
is either saturated (e.g. state 3 or uncoupled respiration in the 

presence of adequate substrates) or restricted (e.g. by oxidative 

phosphorylation). This hypothesis was also supported by work with 
slices from storage tissues (Theologis and Laties,' 1978) where it has 
been shown that the alternative pathway is unoperative unless the 
cytochrome pathway is saturated with electrons. In this case 
saturation of the cytochrome pathway and engagement of the alternative 

pathway was observed only upon adding an uncoupler, suggesting that in 
these tissue slices glycolysis is restricted by adenylate energy 
charge (uncouplers stimulate via a Pasteur effect). The model of 
De Troostembergh and Nyns (1978), which proposes that the assignment 
of the electrons takes place at the level of ubiquinone in proportion 

to the capacity of the cytochrome and the alternative pathways (i.e. 
that the two pathways compete for reduced ubiquinone) is not supported 

by the results obtained in wheat leaves.

The higher respiratory quotient in the high carbohydrate leaves 

(Table 5.1) implies that the carbohydrates in these leaves are used in 

processes other than mitochondrial respiration. Oxidative pentose- 

phosphate pathway activity in the chloroplasts and cytosol, and pentan 

biosynthesis (ap Rees, 1980a), may contribute substantially to C02
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release here; obviously the activity of these processes is also 

regulated at least in part by leaf carbohydrate levels. Some 

electrons could also be used for reducing nitrate and nitrite in the 

dark (Aslam et al. , 1979) instead of reducing oxygen. The rate of 

these reactions has been found to depend on the carbohydrate status in 

barley seedlings under dark aerobic conditions (Aslam et al. , 1979).

In summary, my results suggest that wheat leaf respiration in the 

dark is regulated by both cell carbohydrate levels and by adenylate 

control of the mitochondrial respiratory chain. When leaf carbo­

hydrate levels are substantial, the alternative path becomes engaged 

because the cytochrome chain is restricted. When leaf sugar levels 

are low, respiration is limited by substrate supply to the mito­

chondria, and the alternative pathway is not expressed.
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CHAPTER 6
RESPIRATION OF PEA AND SPINACH LEAVES 

AND ISOLATED MITOCHONDRIA

6.1 INTRODUCTION

The results obtained in the previous chapters have shown that 

marked diurnal variations in the rates of total (uninhibited) and 

alternative pathway respiration occur in mature wheat leaves, and 

these variations are directly correlated with prior photosynthesis via 

carbohydrate accumulation.

The purpose of the work described in this chapter is to determine 

the participation of the alternative path in respiration of leaves of 

several C3 species, and to study the possible occurrence of diurnal 

variations in leaves of peas and spinach. These species were chosen 

because they are suitable material for extraction of mitochondria and 

the respiratory properties of isolated mitochondria will be examined 

at different times of the diurnal cycle.

The methods used for determining the contribution of the various 

pathways to leaf and mitochondrial respiration involved the 

utilization of inhibitors of the cytochrome chain (KCN and antimycin A) 

and the alternative path (SHAM and disulfiram) as discussed previously 

(Chapter 5). The experiments shown in this chapter were made in 

collaboration with Drs. D.A. Day and H. Lambers.
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6.2 MATERIALS AND METHODS 

6.2.1 Plant Material

Plants of Spinacea oleracea L. (cv. Hybrid 102, New World seeds, 

Australia) and Pisum sativum L. (cvs. Alaska and Massey) were grown 

for 4-5 weeks in half-strength Hewitt’s solution (see Section 2.2.1 

for the composition of the full-strength solution). Seedlings of 

Visum sativum (cv. Massey) were also grown for two weeks in 

Vermiculite. Triticum aestivum L. (cv. Gabo) plants were grown in 

pots of soil as described in Section 2.2.1. In all these cases, 

quantum flux (400-700 mm) was about 600-700 yE.m ?.s 1. The day/night 

temperature regime was 25/20 °C with a daylength of 13 h. Relative 

humidity was between 60 and 80%.

Plants of Cucumis sativus L. (cv. Green Gem), Gossipium hirsutum 

L. (cv. Deltapine), Helianthus annuus L. (cv. Suncross 52),

Lycopersicum esculentum Mill. (cv. Grosse Lisse), Phaseolus aureus L. 

(cv. Celera), Phaseolus vulgaris L. (cv. Epicure) and Spinacea 

oleracea L. (Hybrid 102, New World seeds) were also grown in culture 

solution (see above). However, the temperature during growth was 25 °C 

(day and night). The light intensity was 350-500 yE.m-2.s-1 supplied 

by Sylvania Gro-Lux and Sylvania Cool White (ratio 3:8) fluorescent 

tubes during 16 hper day. Mature leaves were used in the experiments.

6.2.2 Measurements of 02 Uptake by Intact 
Leaves and Isolated Mitochondria

The rate of 02 uptake by intact leaves was described in Section 

5.2.3. Slices from leaves were obtained as shown in Section 5.2.2. 

Mitochondria were isolated as described in Section 5.2.5. Carbo­

hydrate concentration was determined following the procedures described

in Section 2.2.6.
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6.3 RESULTS AND DISCUSSION
6.3.1 Effect of a Period of Photosynthesis on the

Respiration of Intact Leaves and Mitochondria
After several hours in the light leaf respiration displayed

considerable cyanide-resistance in all species examined (except
perhaps in Phaseolus aureus) (Table 6.1), as also observed in wheat

(see Chapter 5; Allen and Goddard, 1938), and in other species

(MacDonald and De Kok, 1958; Ducet and Rosenberg, 1962; Tetley and

Thimann, 1974; Lambers et at., 1979; Kinraide and Marek, 1980). Leaf
respiration was sensitive to SHAM, with the exceptions of Phaseolus

vulgaris and Helianthus annuus (Table 6.1). Low SHAM sensitivity has
also been observed in shoots of Seneeio aquaticus (Lambers et at.,
1979) and in leaves of Bryophyltum tubiflorum (Kinraide and Marek,
1980) . Some residual respiration (resistant to a combination of SHAM 

and KCN) was observed in some species (Table 6.1). This is probably 
due to the fact that SHAM concentration used (10 mM) may have not been 
saturating in these species, as found in titration experiments 
performed later in wheat leaves (see Fig. 5.2).

The rate of 02 uptake in spinach leaves was lower at the end of 
the night than after a period of several hours in the light (Table 

6.2). Concomitant with this increase in respiration was an increase 

in all the carbohydrate fractions of the spinach leaves (Table 6.3). 

This trend was similar to that found in wheat leaves (see Chapter 5). 

In pea leaves, on the other hand, the variation in total carbohydrates 

after a period of light was less marked, and the levels of free 
glucose and fructose actually decreased (Table 6.3). In these leaves 

there was no increase in respiratory rates after a light period (Table
6 . 2) .
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Table 6.2
Respiration of intact pea and spinach leaves at 23 °C. The values 

are means ±S.E. of 3-4 determinations. The values in brackets are the 
per cent contribution of SHAM-sensitive respiration to total 02 uptake.

Leaves Harvested
None

02 Uptake 
+ 0.4 mM KCN + 20 mM SHAM

ymol.m-2.s-1 -
Spinach

at the end of the 
night 0.51 ±0.05 0.34 ±0.05 0.37 ±0.01(27)

after 5-7 h in the 
light 0.80 ±0.07 0.36 ±0.03 0.57 ± 0.09(29)

Peas
at the end of the 
night 0.71 ±0.05 0.66 ± 0.09 0.55 ± 0.07(23)

after 5-7 h in the 
light 0.67 ±0.05 0.66 ±0.10 0.46 ±0.08(31)

Table 6.3
Carbohydrate levels in pea and spinach leaves at different times 

of the photoperiod. The values shown are averages of 6 to 20 leaves 
selected at random from the cabinet.

Leaves Harvested Free Glucose 
+ Fructose

Invertase
Sugars Starch Total

mmol C.nf2

Spinach
at the end of the night 0.9 1.7 3.0 5.6
after 6-10 h in the light 3.3 15.0 25.5 43.8

Peas
at the end of the night 11.0 17.5 18.0 46.5
after 6-10 h in the light 9.3 55.0 29.8 94.1
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The addition of exogenous sugars did not affect the rate of 02 
uptake of slices obtained from pea leaves harvested at the end of the 

night or after a light period (not shown). However, when peas were 

kept in the dark for 48 h, the free sugar levels did decrease to very 

low values, and respiratory rates of leaf slices declined to 

0.49 ±0.03 ymol 02.m 2.s 1 (n =4). Addition of sugars (glucose, 

sucrose) to these starved slices increased the rate of 02 uptake to 

almost the values observed in non-starved leaves (0.64 ±0.03 ]imol. 
m .s ). It thus appears that the level of free fructose and glucose 
is a controlling factor of the rate of respiration in the leaves of 
the species examined.

The capacity of the alternative pathway was estimated using KCN 
and did not vary after a light period in either spinach or pea leaves 
(Table 6.2). The extent of engagement of the alternative pathway 

(determined by SHAM inhibition) in spinach leaves increased after a 
period of photosynthesis although the per cent contribution to total 
respiration was the same (Table 6.2). The rate of 02 uptake resistant 
to SHAM, which is an estimate of the activity of the cytochrome path­

way, increased after a period of photosynthesis. In peas, where no 

significant change in respiration occurred after the light treatment, 

alternative pathway contribution was approximately the same before and 
after the light period (Table 6.2). Thus, similarly to wheat leaves, 
alternative path involvement in these leaves seems to be correlated 
with the level of free sugars in the leaf.

Mitochondria were isolated from the same batches of spinach and 
pea leaves used in the respiration studies with intact tissues. No 

significant differences in the mitochondrial properties (e.g. 

responses to several substrates, contribution of the cytochrome and
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alternative pathways — see next section) were noticed, regardless of 

whether the organelles were prepared from leaves harvested at the end 

of the night or after several hours in the light (Tables 6.4 and 6.5). 

Similar results were obtained with wheat leaf mitochondria (Table 6.6; 

see also Table 5.2). These results show that the changes observed in 

alternative path activity following a period of photosynthesis were 

not due to changes in the mitochondria themselves. The mitochondrial 

data intrinsically presented some interesting characteristics which I 

decided to investigate further.

6.3.2 Oxidation of Different Substrates by Isolated
Mitochondria: Effects on the Alternative Pathway

Mitochondria isolated from mature leaves of spinach, pea and 

wheat oxidized glycine in the presence of ADP at faster rates than TCA 

cycle substrates (Tables 6.4, 6.5 and 6.6). These mitochondria showed 

good respiratory control and ADP/O values (see legends of tables; and 

Fig. 6.2). Some apparently low RCR values (for instance, 1.7 in some 

pea leaf mitochondria) are probably due to the large engagement of the 

alternative pathway (see below).

Simultaneous oxidation of two or more substrates gave 02 uptake 

rates faster than those observed with any single substrate, as 

observed also in mitochondria from other tissues (Day and Wiskich,

1977, 1981; Wiskich and Day, 1982), especially when glycine was added 

in the presence of malate, a-ketoglutarate and succinate (Tables 6.7, 

6.8 and 6.9). The fastest rates of 02 uptake by pea leaf mitochondria 

were observed in the presence of malate, succinate, NADH, and glycine, 

added in this order (Table 6.7).

The antimycin A-resistant rate of 02 uptake, which is an estimate 

of the capacity of the alternative path when residual respiration is
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taken into account, was found to vary depending on the substrate(s) 

being oxidized. This rate was similar when malate, succinate and 

glycine were oxidized separately by leaf mitochondria from two pea 

cultivars (Tables 6.5, 6.7 and 6.8), but was slightly lower with NADH 

(Table 6.7), as observed with other tissues (see Day et at. , 1980).

In mitochondria from mature pea leaves concurrent oxidation of 

malate and succinate either did not affect or only slightly increased 

the antimycin A-resistant 02 uptake rate (Table 6.7, Fig. 6.1A and B), 

but further addition of glycine considerable stimulated this rate 

(Tables 6.5, 6.7 and Fig. 6.1A and B). Similar results were obtained 

in wheat leaf mitochondria (Table 6.6) and, to a lesser extent, in 

spinach leaf mitochondria (Table 6.4). However, mitochondria from 

leaves of pea seedlings (two weeks of age) in contrast to those of 

older plants, showed less resistance to antimycin A, and the 

antimycin A-resistant rate was not significantly altered depending on 

the substrate(s) being oxidized (Table 6.8, Fig. 6.1C). Reasons for 

these differences are not obvious, but they might be related to the 

developmental status of the plant.

The extent of engagement of the alternative path (p) in pea leaf 

mitochondria was estimated by measuring the rate of 02 uptake 

suppressed by SHAM or disulfiram (since the effects of these compounds 

were found to be the same, I conclude that lipoxygenase is not at 

issue). When single substrates were oxidized, SHAM (or disulfiram) 

had a greater effect on S3 rates with glycine than those with either 

malate or succinate. That is, p was substantially higher with glycine 

as substrate (Tables 6.5, 6.7, 6.8); in fact, with this substrate, 

the alternative path was almost fully expressed. When a cocktail of 

malate, succinate and glycine was used, the absolute rate of 02 uptake
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Fig. 6.1: Effect of several substrates on the antimycin A-resistant
rate of 02 uptake by pea leaf mitochondria. A: cv. Alaska; 
B and C: cv. Massey; A and B: four week-old plants;
C: two week-old seedlings. Assay conditions as in Tables 
6.7 (A and B) and 6.8 (C). Numbers on traces refer to nmol 
02.min-1.mg-1 protein.
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inhibited by SHAM was greater than with any single substrate (i.e. 

more electrons were flowing to the alternative oxidase with multiple 

substrates); however, the maximal capacity of the alternative pathway 

was greater when these three substrates were used together, and thus p 

was less than that with glycine alone (actually, p with glycine + 

succinate + malate approximated the numerical average of the p values 

calculated with the substrates individually). SHAM-sensitive 02 

uptake was also stimulated when glycine was used with either succinate 

or malate alone (not shown). However, SHAM sensitivity with malate 

plus succinate was not much different from that with these substrates 

individually.

The cytochrome pathway, estimated as the rate of 02 uptake 

resistant to SHAM or disulfiram, also increased substantially when 

glycine was used either alone or in combination with other substrates 

(Tables 6.4, 6.5, 6.7 and 6.8).

These results suggest that, in mature leaf mitochondria, some

electron transport capacity (both cytochrome and alternative pathways)

is accessible to glycine but not to TCA cycle substrates. That is the

activity of both the cytochrome and alternative pathways is higher
•kwhen glycine is being oxidized.

The conclusion related to the alternative path’s engagement is 
correct only if SHAM and disulfiram have no effect on the glycine 
decarboxylation reaction itself. Some kinetic studies (Grover and 
Laties, 1981; Dizengremel et at. , 1982) show that these compounds 
inhibit the alternative pathway by different mechanisms. Since SHAM 
and disulfiram inhibited glycine oxidation to the same extent (Table 
6.7), it is very likely that their effects are only on the alternative 
pathway.
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6.3.3 Interactions Between Oxidation of NAD-Linked
Substrates in Pea Leaf Mitochondria

Malate oxidation in plant mitochondria is catalysed by two 

enzymes — malate dehydrogenase (MDH) and NAD-linked malic enzyme (ME). 

Under the conditions employed here (pH 7.1), both enzymes will be 

active (Wiskich, 1980). A problem associated with the operation of 

MDH in isolated mitochondria is the production of oxalacetate (OAA).

In vivo, of course, OAA is condensed with acetyl CoA to form citrate, 

but in isolated mitochondria OAA can accumulate and inhibit 02 uptake 

by reversing the MDH reaction (Wiskich, 1980). To prevent this, 

glutamate was added together with malate to remove OAA via 

transamination. Glutamate itself contributes little to 02 uptake, 

while the oxidation of a-ketoglutarate (a-KG, a product of the 

transamination of OAA and glutamate) does not proceed unless thiamine 

pyrophosphate (TPP, a cofactor leached from the mitochondria during 

isolation) is also added (Hanson and Day, 1980). The product of ME is 

pyruvate, and TPP is also necessary for its oxidation (Wiskich, 1980). 

Thus, in the presence of glutamate plus malate, but no TPP, 02 uptake 

is largely due to malate oxidation alone (note, however, that when TPP 

is also present, the oxidation of pyruvate, citrate and a-KG may also 

contribute to 02 uptake).

Oxidation of a-KG by mitochondria produces succinate, whose 

oxidation may also contribute to 02 uptake. Thus when a-KG was used, 

small quantities of malonate were added to inhibit succinic 

dehydrogenase. When ADP was present, the malate-dependent rate of 02 

uptake was considerably inhibited by subsequent addition of a-keto­

glutarate and citrate (Table 6.9, Expt 1), but was greatly stimulated 

by glycine (Table 6.9, Expt 2), as also observed by Day and Wiskich
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(1981). The oxidation of a-ketoglutarate was slow and was further 
inhibited by citrate (Table 6.9, Expt 4), but stimulated by malate 

(Table 6.9, Expt 5). Glycine always stimulated 02 uptake on top of 
malate, a-ketoglutarate and citrate, added in any order (Table 6.9, 

Expts 1, 4 and 5).
Why a-KG and citrate inhibited 02 uptake with malate is not 

readily apparent, but may be due, at least in part, to competition for 

transport across the inner membrane (Wiskich, 1977). However, despite 
such competition, one would still expect to see a stimulation of 02 

uptake if a-KG and citrate had access to NAD and/or NADH dehydrogenase 

molecules not used during malate oxidation, since such stimulation is 

seen when succinate (which can also compete with malate for transport) 
is added to mitochondria oxidizing malate. Succinate oxidation, of 
course, is FAD-linked, and hence malate and succinate only compete for 
electron transport capacity at or beyond the ubiquinone step (Day and 
Wiskich, 1977). Since 02 uptake is greater with malate plus succinate 
than either substrate alone, the electron transport chains beyond 
(i.e. on the 02 side) of ubiquinone cannot be saturated by oxidation 

of only a single substrate. Since 02 uptake with malate plus a-KG 
plus citrate (all NAD-linked) is either the same, or less, than that 

with malate alone, I conclude that these substrates compete for a 
common pool of NAD and/or NADH dehydrogenase(s). Similar conclusions 

have been drawn from studies with mitochondria from other plant 

tissues (Day and Wiskich, 1977; Wiskich and Day, 1982).

However, addition of glycine with other NAD-linked substrates 

always stimulated 02 uptake. This suggests that glycine has access to 
either an NAD pool or to NADH dehydrogenases not accessible to the TCA 

cycle substrates. Day and Wiskich (1981) also suggested this. On the
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Table 6.9
Concurrent oxidation of several NAD-linked substrates by pea 

(cv. Alaska) leaf mitochondria in the presence of ADP (initially added 
at 2 ymole). All substrates were added to 10 mM. 0.1 mM thiamine 
pyrophysphate and 1 mM malonate were included when a-ketoglutarate was 
used. Glutamate (10 mM) was added with malate. The pH of the medium 
was 7.1. Temperature was 23 °C.

Sequential Additions 
to Vessel State 3 Oxygen Uptake

nmol.min x.mg 1 protein
Expt 1: malate + ADP 85

a-ketoglutarate 70
citrate 54
glycine 135

Expt 2: malate +ADP 87
glycine 154
a-ketoglutarate 147
citrate 134

Expt 3: glycine + ADP 96
a-ketoglutarate 106
malate 125

Expt 4: a-ketoglutarate +ADP 33
citrate 16
malate 68
glycine 145

Expt 5: a-ketoglutarate +ADP 26
malate 87
citrate 62
glycine 128
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other hand, S3 rates with glycine plus TCA cycle substrates was less 

than the sum of the individual rates (Table 6.9; see also Tables 6.4 

to 6.8), showing that glycine does compete eventually for electron 

transport. That is, although glycine has access to additional 

electron transport capacity in these preparations, it can also use 

those shared by the TCA cycle substrates.

The state 4 rate of 02 uptake with malate (Fig. 6.2A) and 

succinate (not shown) was also stimulated substantially by addition of 

glycine. However, the stimulated rate was very sensitive to 

disulfiram (Fig. 6.2B), and the disulfiram-resistant rate was only 

slightly higher than the state 4 rate with malate alone (Fig. 6.2B).

The glycine-dependent state 4 rate of 02 uptake was also 

stimulated by malate (or succinate), but again the increase was fully 

sensitive to disulfiram (Fig. 6.2C). As expected, malate had 

practically no effect on the S4 rate when disulfiram was added during 

the previous state 3 with glycine (Fig. 6.2D). The effects of 

disulfiram suggest that the stimulation of S4 oxygen uptake by 

addition of a second substrate was due to the engagement of additional 

alternative path electron transport; since this pathway is non- 

phosphorylating, S4 rates are higher with multiple substrates. These 

results also suggest that control of electron flow through the first 

site of energy transduction (i.e., that part of the respiratory chain 

between internal NADH dehydrogenase and ubiquinone) by oxidative 

phosphorylation is not great enough to prevent operation of the 

alternative pathway. The recently demonstrated bypass of the first 

site of energy transduction (H translocation) may be involved under 

these conditions (Palmer and Miller, 1982).
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glycine
glycinema latema la te

0.4 p mol ADP
0. 5 p mol  

ADP 0 .5  p mol ADP

A D P / O  -  2.3'A D P / O  = 2.8A D P / O  -  2.1

disul f i ram

glyc i ne

glyci ne

disul f i ram
m al a te

ma l a t e

5 0 nm ol  O}
disu l f i ram

succinate

a nt i my ci n  A
ant imy ci n A

Fig. 6.2: Concurrent oxidation of malate and glycine by pea leaf
mitochondria in the absence of ADP. A: cv. Alaska; B, C 
and D: cv. Massey; C and D are experiments from the same 
preparation. Assay conditions as in Table 6.7. Numbers on 
traces refer to nmol 02.min"1.mg 1 protein.
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6.3.4 Implications for Photorespiration
The results presented in this chapter indicate that leaf mito­

chondria can oxidize glycine and TCA cycle substrates simultaneously 
via the respiratory chain, either in the presence or in the absence of 
ADP. Possible mechanisms for avoiding (in part) competition between 
these substrates may include independent electron transport (cyto­
chrome and alternative) pathways, and perhaps different NAD pools 

and/or NADH dehydrogenases. However, at this time it is not possible 

to say whether the indicated compartmentation of glycine and TCA cycle 
intermediates occurs in the same mitochondrion, or whether two 

separate populations (one primarily involved in photorespiration in 

vivo) were present in the mitochondrial preparations used. What is 

clear, however, is that there is in leaf cells some mitochondrial 
electron transport (including the alternative oxidase) exclusively 
associated with glycine oxidation.

The mechanism(s) by which NADH produced during glycine 
decarboxylation is reoxidized in vivo are still not known. As 
discussed in the Introduction, NADH can be reoxidized either via the 

respiratory chain or via a substrate shuttle in vitro, but there is 
little information to indicate which mechanism operates in vivo.

Recent experiments with pea leaves (H. Lambers, D.A. Day,

J. Azcon-Bieto, unpublished) have shown that the decarboxylation of 
accumulated photorespiratory intermediates during the immediate 

post-illumination period (Chapter 3) is linked to 02 uptake; 02 

uptake immediately following a 20 min period of photosynthesis was 

substantially greater than that before illumination, and the 

alternative path was fully engaged. That is, decarboxylation of 

glycine in vivo in the dark is linked to 02 uptake via the respiratory
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chain. Whether this is indicative of a similar mechanism operating in 

the light is not known. It is possible that the cell may switch from 

a shuttle-supported system to an electron transport-supported system 

as soon as the light is switched off. However, it is most unlikely 

that a specific electron transport capacity for the oxidation of 

glycine in leaf mitochondria evolved only to be used for a few minutes 

a day. It seems more probable that at least some of this electron 

transport is coupled to glycine decarboxylation during the light 

period, as well as in the dark. In the extreme case that oxidative 

phosphorylation is totally restricted by high cytosolic ATP/ADP ratios 

in the light, glycine could still be oxidized by the non- 

phosphorylating alternative pathway with little or no competition from 

TCA cycle substrates. This idea is supported by the observation that 

isolated leaf mitochondria can simultaneously oxidize TCA cycle 

substrates and glycine in state four, but only when the alternative 

pathway is not inhibited (Fig. 6.2).

However, it is unlikely that the reoxidation of the NADH produced 

in the glycine decarboxylation occurs exclusively via the alternative 

oxidase, because the capacity of this pathway in leaves is not big 

enough to account for the photorespiratory fluxes observed in vivo 
(Day and Wiskich, 1981). Further, this capacity appears to be very 

variable depending on the species and probably on the developmental 

status of the plant (see Sections 6.3.1 and 6.3.2). Therefore, the 

alternative pathway needs to be supplemented by either the cytochrome 

chain or by a shuttle system (see below) for handling high photo- 

respiratory fluxes.

Addition of oxaloacetate (OAA) to mitochondria oxidizing glycine 

greatly inhibits 02 uptake while not affecting (or sometimes
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stimulating) glycine decarboxylation (Woo and Osmond, 1976; Moore et 
dl. , 1977; Day and Wiskich, 1981). The equilibrium constant of the 

reaction catalysed by the enzyme malate dehydrogenase (MDH) favours 

the formation of malate from OAA under these conditions. It has been 

proposed that the reducing equivalents produced in the glycine 

decarboxylation can be transferred to the peroxisomes using shuttle 

systems involving malate (Day and Wiskich, 1981; Journet et dl. , 1981). 
The reducing equivalents produced in other mitochondrial reactions 

(e.g. TCA cycle) can also be transferred to the cytosol using these 

shuttles (Woo et dl. , 1980). The potential capacity of these shuttles 

in the pea leaf mitochondria used in the present study, appears to be 

very high and adequate to support simultaneous oxidation of glycine 

and TCA cycle substrates, since addition of OAA to mitochondria 

oxidizing either glycine alone or in combination with malate and 

succinate greatly inhibited 02 uptake, the small resistant rate being 

the same in both cases (Table 6.10). That is, the capacity of MDH and 

the intramitochondrial NAD pool is adequate to cope with the NADH 

produced by both glycine decarboxylation and malate oxidation.

It therefore appears that malate dehydrogenase would not limit 

the in vivo operation of the shuttles described. However, the degree 

of coupling between mitochondria and peroxisomes, and the capacity of 

the carriers involved in these shuttles, could greatly influence the 

activity of these shuttles in vivo. The extent to which these 

limitations occur is not known, but a reconstituted OAA/malate shuttle 

in pea leaf mitochondria (Day and Wiskich, 1981) appeared to be 

limited by the rate of malate efflux from the mitochondria, and "whole 

cell" rates of glycine decarboxylation with the shuttle were less than 

those calculated for the respiratory chain.
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Table 6.10

Effect of oxaloacetate on the respiration of pea (cv. Massey) 
leaf mitochondria. Assay conditions as in Table 6.7. Oxaloacetate 
was provided at 2 mM.

Substrates State 3 Oxygen Uptake 
Control + Oxaloacetate
nmol min-1.mg-1 protein

glycine 118 32
glycine +malate + succinate 231 32

I propose on the basis of the evidence presented here that the 

alternative pathway contributes to the reoxidation of NADH generated 

in the decarboxylation of glycine, but may act as an overflow of other 
quantitatively more important mechanisms (e.g. cytochrome pathway 
and/or shuttle mechanisms).

Finally, I wish to make the point that the reactions of the TCA 
cycle are not expected to be significantly restricted in the light, 
either in the presence or in the absence of ADP, as a result of 
concomitant photorespiratory glycine decarboxylation, because these 

reactions do not apparently compete at the mitochondrial level. The 
reducing equivalents generated in the TCA cycle (or in the anaplerotic 

reactions of this cycle, as discussed in Chapter 4) can be oxidized by 
alternative and cytochrome chains which are probably different to 

those used by glycine, or can be transferred to the cytosol using a 

shuttle (see above). The findings that there is turnover of organic 

acids via the TCA cycle in the light (Graham, 1980) and that 

significant C02 is evolved from illuminated leaves from sources other



than photorespiration (see Chapter 4) are consistent with these

conclusions.
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CHAPTER 7
RESPIRATORY CHARACTERISTICS DURING 

DEVELOPMENT OF BEAN LEAVES

7.1 INTRODUCTION

The preceding chapters described several aspects of respiration 

in mature leaves of wheat and other species. This chapter mainly 
deals with a study of respiratory responses of bean leaves, a common 

material for these sort of studies, from the initial stages of 
development to maturity. Wheat leaves have not been used here because 
they do not develop uniformly along their length.

It has been known since 1921 that the rate of respiration in the 
dark of a growing leaf decreases from high values to a relatively 
constant low value when maturity is reached (Kidd et at. , 1921). 
However, the contribution of the cytochrome and alternative pathways 
to respiration in developing leaves has not been evaluated.

Several reports indicate that respiration of young leaves is 
severely inhibited by cyanide, while that of mature leaves is little 
affected or even stimulated by cyanide (Marsh and Goddard, 1939; 
McDonald and De Kok, 1958; Ducet and Rosenberg, 1962). These 

observations suggest that the balance between the cytochrome and 

alternative pathways may change during development. Interestingly, 

Marsh and Goddard (1939) proposed the existence of an oxidase system 

other than cytochrome oxidase which was insensitive to cyanide; they 

suggested that both oxidases operate in young leaves, but the cyanide-
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sensitive oxidase is lost during leaf development. The latter part of 
this hypothesis is obviously wrong because the phosphorylating cyto­
chrome pathway must be present in mature leaves (see Chapters 5 and 6). 
Of course Marsh and Goddard could not foresee that the electrons can 
be diverted from the cytochrome pathway to the alternative path when 
the former was inhibited.

The C02 compensation point, T, includes a respiratory component 

(see Chapter 4) and, therefore, it can be used for monitoring changes 
in respiration in the light during leaf development. Several studies 

have shown that T follows a pattern similar to that of respiration in 
the dark (see Tichä and Catsky, 1981, for a review). A linear 

relationship between T and dark C02 efflux has been observed sometimes 

during leaf ontogeny (Catsky et al. , 1976; Peisker et al., 1981).
The experiments described in this chapter investigate the 

developmental patterns of respiratory pathways and the relationship 
between T and dark C02 efflux in bean leaves.

7.2 MATERIALS AND METHODS 

7.2.1 Plant Material
Phaseolus Vulgaris (cv. Hawkesbury Wonder) plants were grown in 

pots of soil as described in Section 2.2.1. Leaflets of the fourth 

trifolium (in chronological order of appearance) were used. Phaseolus 

Vulgaris (cv. Epicure) plants were grown hydroponically as described 

in Section 6.2.1. Leaflets of the second trifolium were used. Leaves 

were utilized after a period of several hours in the light. New 

leaves were used for every individual measurement.

Leaf age was calculated in days, and "day zero" was arbitrarily 

established as the first day in which the leaflets of the selected
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trifolium were fully unfolded; this occurred approximately 3 or 4 

days after the appearance of the corresponding foliar bud. Leaf area 

at day zero was less than 5% of maximal area which occurred at about 

days 6-7.

7.2.2 Measurement of 02 Uptake in the
Dark in Leaves and Leaf Slices

The rate of 02 uptake of intact bean leaves (cv. Epicure) was 

measured at 25 °C as described in Section 5.2.3. 02 uptake by bean 

leaf slices (cv. Hawkesbury Wonder) was measured at 22 °c as described 

in Section 5.2.2. Leaves were cut under a 0.2 mM CaCl2 solution. The 

reaction medium contained 10 mM HEPES, 10 mM MES buffer pH 6, 0.2 mM 

CaCl2.

7.2.3 Gas Exchange Techniques

The open system used for measuring C02 and water exchanges of 

intact attached leaves has been described in Appendix I. V was 

measured at 21% 02 by interpolation of a curve of net C02 assimilation 

versus intercellular C02 partial pressure to zero assimilation. T was 

also measured at 2% 02 using a closed system (see Section 4.2.2). 

Assuming a linear relationship between T and 02 concentration (Azcon- 

Bieto et at., 1981), a coefficient y expressing the 02 dependence of T 

was calculated as AT/A [02]. Dark C02 efflux was measured 30 min after 

the light was turned off in ambient air (330 ybar C02, 21% 02).

7.2.4 Carbohydrate and Chlorophyll Determination

Free glucose plus fructose, invertase sugars, and starch 

fractions were measured as described in Section 2.2.6. Chlorophyll 

was measured using the method of Arnon (1949).
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7.3 RESULTS

7.3.1 Relationship between the C02 Compensation
Point and Dark C02 Efflux during Development

The photosynthetic capacity of young bean leaves was low, but

progressively increased with leaf expansion (Fig. 7.1). In contrast,

dark C02 efflux (R̂ ) and the C02 compensation point at 21% 02, T21>

decreased rapidly over this period (Fig. 7.2). T measured at 2% 02,

T2, was low in young bean leaves and decreased more slowly than T21

with leaf age. Similar low values of T2 were also found in young

leaves of PopuZus (not shown). The slope of the relationship (Y)

between T and 02 concentration also declined very rapidly as leaf

growth progressed (Fig. 7.3). Similar developmental patterns to those

described here have been found by other authors in leaves of beans and

other species (Dickmann et aZ. , 1975; Catsky et aZ. , 1976; Smith et

aZ. , 1976; Peisker et aZ. , 1981; Tichä and Catsky, 1981). The

relationship between T21 and R^ was very strong in young leaves, but

it was not strictly linear over the range of leaf ages studied, in

contrast to the results of Peisker et aZ. (1981). This relationship

mainly deviated from linearity because T21 reached a constant value

earlier than R (Fig. 7.2), which has also been observed in other n
species (Dickmann et aZ. , 1975; Smith et aZ. , 1976).

The relationship between T2 and R^ also appeared to be linear

over a certain range of R^ values, but T2 increased less dramatically

as R increased (Fig. 7.3). A similar observation was made by Peisker n
et aZ. (1981).

7.3.2 Properties of Leaf Respiration during Development

The rate of 02 uptake by bean leaves and leaf slices in the dark 

decreased during their growth period (see V column in Tables 7.3 and
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VA days

Intercellu lar CO2 pa rtia l pressure (pbar)

Figure 7.1: Relationship between net C02 assimilation and inter­
cellular C02 partial pressure in growing leaves of 
PhaseoZus vuZgarZs (cv. Hawkesbury Wonder). Leaf 
temperature was 25°C and quantum flux was 1000 yE.m-2.s_1. 
02 concentration was 21%. See Sections 7.2.1 and 7.2.3 
for further experimental details.
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Figure 7.2: Changes in the C02 compensation point and dark C02 efflux
with age in bean leaves. T was measured at 21 and 2% 02. 
For other details see legend of Figure 7.1.
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Dark C 0 2 efflux, Rn( pmol nn'V1)

Relationships between the C02 compensation point at 21 
and 2% 02, the 02 dependence of T (y) and the rate of dark 
C02 efflux in growing bean leaves. For other details see 
legend of Figure 7.1.
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7.5), showing a similar pattern to that of dark C02 efflux (Fig. 7.2). 

Expressing the rate of respiration on a chlorophyll basis does not 
alter the observed ontogenetic trend of respiration, since chlorophyll 
concentration per unit leaf area did not vary significantly throughout 
leaf development (Table 7.1).

The contribution of the cytochrome and alternative pathways to 
leaf respiration was estimated using the inhibitors KCN and SHAM. The 

reliability of this method in intact leaves and leaf slices has been 
discussed in Section 5.3.2.1. The percentage cyanide-resistance of 

respiration of leaves and leaf slices progressively increased with 
leaf maturation (see Experiment 1 of Tables 7.2 and 7.4). Sensitivity 
of respiration to SHAM alone was slightly different in intact leaves 

and in leaf slices. Whereas the rate of 02 uptake of leaf slices 
showed some sensitivity to SHAM at all developmental stages studied, 
that of intact leaves was only inhibited by SHAM at 1-2 days of age 
(see Experiment 2 of Tables 7.2 and 7.4). These slight differences 
might have been due either to the fact that different bean cultivars 
were used or to the different growth conditions.

The combination of SHAM and KCN did not inhibit 02 uptake 

completely, the residual component being about 10% of total 
respiration (Tables 7.2 and 7.4). Increasing SHAM and KCN 

concentrations did not abolish this residual respiration.

Respiration of bean leaf slices was stimulated by the uncoupling 
agent FCCP, the stimulation being more pronounced in young leaves 

(Table 7.4, Experiment 3). Uncoupled leaf slice respiration was also 

sensitive to SHAM alone (Table 7.4, Experiment 3). Exogenous sucrose 

(60 mM) did not stimulate the rate of 02 uptake of leaf slices at any 

age either in the presence or in the absence of FCCP (not shown).
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Table 7.1

Chlorophyll concentration and chlorophyll a/b ratio in bean 
leaves during development. The values shown are averages of at least 
3 leaves.

Cultivar
Leaf Age Hawkesbury Wonder Epicure

Chi a+b Chi a/b Chi a+b Chi a/b

days _ 9mmol.m ratio mmol.m’ ratio

h. 0.22 2.51 0.42 2.48
l-ih 0.34 2.64 0.42 2.44
2-3 0.30 2.47 0.44 2.62
3-4 0.30 2.66 0.37 2.80
6 0.32 2.70 0.44 2.84
14 - - 0.29 2.94

The results obtained in Tables 7.2 and 7.4 are summarized in

Tables 7.3, 7.5 and 7.6 taking into account residual respiration.

Here I use V to signify the total measured rate of 02 uptake in the

absence of inhibitors, while v and v ., determined as explained incyt alt
the legend of Table 7.3, represent the activities of the cytochrome

and alternative pathways, respectively. V in the absence of FCCP

declined with leaf expansion mainly due to the decrease in the

activity of the cytochrome path (Tables 7.3 and 7.5). The activity of

the alternative path and the rate of residual respiration, V , also

tended to decline during this period. However, the capacity of the

alternative path, V remained more or less constant throughout leaf

development. The ratio v /V , , therefore, declined, and thiscyt alt
explains why the percentage cyanide-resistance of respiration 

increases with leaf expansion (see Introduction).
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Table 7.4

Respiration of bean leaf slices during development. KCN and SHAM 
were added at 0.3 mM and 5 mM, respectively. FCCP was added at 1 yM. 
For other details see Section 7.2.2. Values shown are means ±S.E. of 
4-5 measurements.

Sequential Days of Age
Additions 0 2 4-5 7

ymol 02.ni-2 - 1l . S

Expt 1: None 2.80 ± 0.10 2.19 ±0.15 1.57 ± 0.07 1.16 ±0.08
KCN 1.28 ±0.09 1.25 ± 0.13 1.42 ± 0.07 1.15 ±0.08
SHAM 0.33 ±0.05 0.28 ±0.06 0.15 ± 0.04 0.10 ±0.02

Expt 2: None 2.67 ±0.06 2.32 ±0.09 1.75 ±0.08 1.07 ±0.04
SHAM 2.43 ±0.06 2.04 ±0.03 1.59 ± 0.05 0.96 ± 0.02
KCN 0.29 ±0.05 0.25 ±0.02 0.22 ±0.02 0.12 ± 0.01

Expt 3: None 2.61 ±0.09 2.26 ± 0.12 1.52 ±0.04 1.15 ± 0.04
FCCP 3.07 ±0.05 2.69 ±0.13 1.80 ±0.08 1.29 ±0.06
SHAM 2.76 ±0.09 2.39 ±0.10 1.55 ±0.06 1.19 ± 0.06
KCN 0.19 ± 0.04 0.21 ± 0.02 0.10 ±0.06 0.15 ±0.01

The described developmental patterns of respiratory pathways were

not altered by the presence of FCCP (Table 7.6). It is remarkable

that the activity of the cytochrome path was higher when FCCP was

present, and that the alternative pathway remained similarly engaged 

in these conditions. Since the alternative path was also at least 
partially engaged in the presence of FCCP, I assume that the estimated 

flux through the cytochrome path in Table 7.6 represents the total 

capacity of this pathway.
Carbohydrate levels were measured in the same leaves used for 

obtaining the slices (Table 7.7). Free fructose plus glucose 
concentration decreased but starch levels increased with leaf
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Table 7.6

Estimation of the activities of respiratory pathways in bean leaf
slices in the presence of 1 yM FCCP. The values shown were calculated
from the experiments described in Table 7.4. Symbols and definitions
are the same as in Table 7.3. The values of V _ and V used foralt res
calculations were the same as in Table 7.3.

Leaf Age h vcyt Valt P v /V _- cyt alt

days ymol 02.m~ 2.s-l ratio ratio

rX*1o 3.07 ±0.05 2.57 ±0.07 0.31 ±0.05 0.33 2.71
2 2.69 ±0.13 2.18 ± 0.09 0.30 ± 0.05 0.31 2.27

4-5 1.80 ±0.08 1.45 ±0.02 0.26 ±0.06 0.20 1.14
7 1.29 ±0.06 1.04 ± 0.05 0.11 ±0.02 0.10 1.00

Table 7.7

Carbohydrate levels in bean leaves (cv. Hawkesbury Wonder) 
during development. The values shown are averages of at least 5 
leaves.

Leaf Age Free Fructose 
plus Glucose

Invertase
Sugars Starch Total

days mmol carbon.m-2

A"io 19.2 8.1 9.9 37.2
2 15.0 2.0 20.5 37.5

4-5 11.2 16.1 28.5 55.8
7 4.5 10.5 78.0 93.0

expansion. Sucrose showed a more irregular pattern, tending to 

increase in mature leaves. Therefore, the rate of respiration of bean 

leaf slices was correlated with the free fructose plus glucose 

fraction. The activity of the cytochrome pathway (Table 7.5), the 

extent to which FCCP stimulated respiration (Table 7.4, Experiment 3),
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and the degree of engagement of the alternative path (Tables 7.5 and 
7.6), were all correlated with the levels of free sugars, which feed 
glycolysis directly.

7.4 DISCUSSION

Bean leaf respiration seems to be regulated in a complex manner 
during development. The evidence suggests that both coarse and fine 

controls of respiration (see ap Rees, 1980b) operate in developing 
bean leaves.

The capacity of the phosphorylating cytochrome pathway per unit 

of leaf area declined with leaf expansion (Table 7.6), and this was a 
major factor influencing respiration in bean leaves. Geronimo and 

Beevers (1964) found that the amount of several electron transport 
enzymes, including cytochromes, decreased with age in pea leaves. In 
contrast, the capacity of the non phosphorylating alternative pathway 
remained constant during development, suggesting that the rates of 
synthesis and/or turnover of the components of these two pathways are 
subject to different control mechanisms as the leaf ages.

Adding sucrose does not stimulate 02 uptake in the presence of 
FCCP. This latter observation contrasts with the fact that sucrose 
did stimulate respiration (mainly the alternative path) of wheat 

leaves in the presence of FCCP. These different responses may be due 

to several reasons. First, active sucrose uptake may have been 
inhibited by the uncoupling action of FCCP (Delrot and Bonnemain, 

1981); the passive transport of sucrose may have not been sufficient 

to stimulate respiration in bean leaf slices (however, this seems 

unlikely because it appeared to be sufficient in wheat leaf slices). 

The second possibility, which seems more feasible, suggests that the
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level of endogenous substrates was high enough to saturate glycolysis 
in the presence of FCCP, at all leaf ages. Since 02 uptake rates in 
the presence of FCCP and added sugars decrease with leaf age but are 
always lower than the maximal capacity of mitochondrial electron 
transport at any age (determined as the sum of the capacities of the 

cytochrome and alternative paths), it is likely that the capacity of 

glycolysis also declines with leaf age. For example, levels of 

glycolytic enzymes may decrease (Smillie, 1962). The levels of free 

sugars, which feed glycolysis directly, varied in accordance with the 
coarse capacity of glycolysis. Despite the relatively large capacity 
of the alternative path, its engagement in normal respiration was 

relatively small or sometimes absent. Perhaps the apparently parallel 
decline in the capacities of glycolysis and cytochrome path during 
aging prevented full expression of the alternative path (at least 
under the conditions examined here). It is unclear why the alternative 
pathway is maintained throughout leaf development, but it is possible 
that the leaf cell might need to use the alternative path fully under 
some conditions (perhaps during the light period?).

There is also evidence that fine control of respiration operates 

in bean leaves at all developmental stages, in a similar manner to 
that observed in wheat leaf slices (see Chapter 5). The alternative 

path was partially engaged on top of a restricted cytochrome pathway 
in bean leaf slices at all developmental stages. Addition of FCCP 
increased the flux of electrons through both the cytochrome and 
alternative pathways, the greater effect being observed in young 

leaves (Tables 7.4, 7.5 and 7.6). Similar results were found in 

mature wheat leaves harvested after a period of photosynthesis, except 

that addition of FCCP stimulated the activity of the cytochrome path
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at the expense of the alternative path, which then was not engaged 

(see Table 5.9B,C). This suggests that the amount of endogenous 
respiratory substrates was high enough in bean leaves, but not in 

wheat leaves, to keep the alternative path engaged on top of a 
saturated cytochrome pathway.

Since exogenous sucrose had no effect on the rate of 02 uptake of 
bean leaf slices in the absence of FCCP, but FCCP stimulated in the 

absence of exogenous sucrose, it appears that glycolysis was also 
controlled by adenylates in bean leaves. However, glycolysis appears 

to be less tightly regulated by adenylates than oxidative 
phosphorylation in young bean leaves and mature wheat leaves (glyco­
lytic flux must have been in excess of that through the cytochrome 
path for the alternative pathway to be engaged). In mature bean leaves, 
on the other hand, the rate of glycolysis appears to meet more closely 
the energy demands of the cell (FCCP stimulates only slightly and the 

alternative path is less active: Tables 7.5 and 7.6).
It is not known if either of the mitochondrial electron transport

pathways operates in illuminated growing leaves (see Section 1.3.2.2).
Some information in relation to the fluxes of C02 can be obtained by
studying the C02 compensation point, V. The strong correlation found
between T (measured at 21% CL) and the rate of dark CO, efflux, R ,z  ̂ n
during leaf aging suggests that considerable C02 production by 
respiration occurs in illuminated bean leaves. However, I do not 

expect that the ontogenetic changes of T are exclusively due to 
changes in respiration (but see Charles-Edwards, 1978), since the 

value of T in leaves of C3 plants also depends on the kinetic 

properties of the enzyme rubisco (Farquhar et at. , 1980; Peisker et 
at. , 1981). The capacity for carboxylation (and presumably for
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oxygenation) also varies during ontogeny, as indicated by the C02
responses of net C02 assimilation (Fig. 7.1), and this is probably
correlated with increases in the rubisco concentration per unit leaf
area during leaf expansion (O’Toole et at. , 1977; Secor et at. > 1982).
The lack of linearity in the relationship between Y and over the

whole range of ages studied supports this conclusion. Peisker et at.
(1981) also concluded that the changes of Y during leaf development

are probably related to simultaneous and opposite variations of the

rates of respiration and carboxylation, despite the fact that they
observed a linear relationship between Y and R during leaf ontogeny.n

The model of Y (Farquhar et at. , 1980; Azcon-Bieto et at. , 1981) 
also predicts that the values of Y measured at 2% 0 , T2, at a given 

age should be considerably higher (approximately double) than those 
observed experimentally if the same rate of respiratory C02 efflux is 
assumed to occur in the light at 21 and 2% 02. This suggests that C02 
production by respiration is less when the leaf is in compensation 
point at 2% 02 than that occurring at 21% 02. A similar conclusion 

was reached with mature wheat leaves by studying the effect of a 
period of photosynthesis on the value of T2 (see Section 4.4). The 
mechanism of this inhibition is unknown, but it must be related to the 
presence of light because the rates of C02 efflux in the dark of bean 

and wheat leaves were found not be initially affected by decreasing 02 
concentrations to 2% (see also Dickmann et at., 1975).

In summary, respiration of bean leaves during growth appears to 

be regulated mainly by coarse control of the capacities of glycolysis 

and the cytochrome pathway. However, fine control of respiration also 

occurs at all developmental stages within the limits imposed by the
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coarse control and also involves the alternative path. It appears 

that both glycolysis and oxidative phosphorylation are restricted by 

adenylates. The availability of substrate for respiration was never a 

limiting factor in the conditions examined. The contribution of 

respiratory processes to decarboxylation in photosynthesizing bean 

leaves appears to be of considerable magnitude, as judged by the 

responses of T21 to changes in the subsequent rate of dark C02 efflux. 

However, nothing is known about the operation of mitochondrial 

electron transport in the light. The answer to this question may help 

to explain the apparent paradox that the capacity of a relatively 

little used pathway in the dark (the alternative path) is maintained 

constant during leaf expansion while the capacity of active pathways 

(glycolysis and cytochrome path) decreases under these conditions.
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CHAPTER 8
SYNTHESIS AND SPECULATION

8.1 CARBOHYDRATE STRESS IN WHEAT LEAVES

The results obtained in this thesis suggest that accumulation of 

carbohydrates in wheat leaves during rapid photosynthesis is directly 

responsible for a reduction in the rate of photosynthesis and in the 

stomatal conductance, and an increase in the rate of respiration. The 

decline in the rate of photosynthesis was not apparently due to photo­

inhibition, or stomatal or timing effects. The increase in 

respiration in the light, which can be attributed to the higher 

substrate availability from recently fixed carbon, was not 

sufficiently large to account for all the observed inhibition of 

photosynthesis. Rather, the responses are consistent with the 

occurrence of end product inhibition of photosynthesis by a mechanism 

involving a decrease in cytosolic and stromal free phosphate 

availability upon soluble sugar accumulation (Herold, 1980; Chapter 2). 

Starch also accumulated in wheat leaves, but to a much less extent 

than soluble sugars. However, accumulation of starch in leaves of 

other species has also been negatively correlated with the rate of 

photosynthesis at both ambient (Upmeyer and Koller, 1973; Guinn and 

Mauney, 1980) and at high C02 concentrations (Guinn and Mauney, 1980). 

Cave et dl. (1981) reported that the large starch accumulation as 

irregularly shaped grains appeared to disrupt normal chloroplast 

structure in high C02 grown Trifolium subterraneum plants.
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The evidence is consistent with the notion that carbohydrate 

accumulated in excess may constitute a primary stress (see Levitt,

1980a, for terminology) on leaf physiology. Carbohydrate stress 

appears to be of a reversible nature, at least in wheat leaves under 

the conditions studied, but its persistent occurrence could 

substantially limit the potential plant productivity even under 

apparently optimal conditions. Plants growing at high C02 

concentrations could be particularly affected by this stress.

Carbohydrates may also accumulate in leaves as a secondary 

consequence of an environmental stress, such as water stress, low 

temperature and flooding, presumably because the rate of utilization 

of carbohydrates for growth is relatively more affected by the primary 

stress than the rate of synthesis (Levitt, 1980a,b). In some cases 

there might exist an interaction between the effects of the primary 

stress and the specific effects of carbohydrate accumulation as, for 

instance, in plants growing at low temperatures and high C02 

concentration (Hofstra and Hesketh, 1975), or in some C4 plants 

subjected to cold nights (Hilliard and West, 1970; Lush and Evans,

1974). However, the accumulation of carbohydrates may decrease the 

osmotic potential and the freezing point of cellular solutions, and 

therefore, may occasionally be advantageous as a mechanism of 

resistance to water and low temperature stresses (see Levitt, 1980a,b).

Hormonal changes occur under most stresses. Itai and Benzioni 

(1976) concluded that the balance between cytokinins, growth promoters, 

and ABA, a growth retardant, decreases in response to several stresses, 

such as water stress, low and high temperatures, salinity, mineral 

deprivation, etc. (see also Levitt, 1980a,b). There are indications 

that variations in ABA levels might also occur in wheat leaves during
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carbohydrate stress. Wheat stomata closed and showed greater 
sensitivity to C02 when carbohydrate levels were high (Chapter 2).
This response is similar to that produced by either exogenously 
applied ABA to non-stressed leaves (Raschke, 1975; Dubbe et at. , 1978), 
or by endogenously produced ABA under several stresses (e.g. water 

stress — Raschke, 1975; chilling — Raschke et at. , 1976).

On this basis, one can speculate that changes similar to those 

occurring in the balance between cytokinins and ABA under several 
other stresses could also occur under carbohydrate stress. These 
hormonal changes could contribute to the coordination of several 
processes (e.g. photosynthesis, respiration, translocation, stomata) 
for adjusting the balance between carbohydrate production and 

utilization when carbohydrate is in excess.

8.2 REGULATION OF RESPIRATION AND THE 
ALTERNATIVE PATHWAY IN LEAVES
The rate of respiration in the dark in mature leaves is 

apparently controlled by substrate availability and adenylate levels. 

In some species, such as wheat or spinach, carbohydrate levels, and 
particularly free sugars, may fluctuate diurnally, as a result of the 

photosynthetic activity, within limits that are regulatory for 

respiration. However, in peas, for instance, high free sugar levels 

are maintained during the diurnal cycle in spite of changes in other 
carbohydrate fractions, and the regulation of respiration by 
adenylates may predominate. In wheat leaves, whether or not the 
adenylate control of respiration occurs depends on the substrate 

levels (Chapters 5 and 6).
Mature leaf respiration usually shows high cyanide resistance, 

the resistant respiration being sensitive to the alternative path
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inhibitor SHAM. This non-phosphorylating pathway is engaged (usually 

as a small fraction of its total capacity, i.e. p < 0.5) under normal 

respiration in the dark in several species. The use of uncouplers of 

phosphorylation (e.g. FCCP) showed that the alternative path operates 

in the dark on top of a non-saturated cytochrome path (presumably 

restricted by adenylate turnover) in wheat and bean leaves (Chapters 5 

and 7). The distribution of electrons between the cytochrome and 

alternative paths is apparently consistent with the overflow model of 

Bahr and Bonner (1973).

Glycolysis in leaves appears to be less tightly regulated by 

adenylate levels than oxidative phosphorylation, since the rate of 

glycolysis can exceed the activity of the cytochrome chain, thus 

allowing expression of the alternative pathway. The mechanism by 

which this could be achieved has been discussed in Chapter 5, but 

whatever the mechanism, it is apparent that in leaves which have an 

active alternative pathway, the rate of glycolysis is not strictly 

matched to meet the energy demands of the cell. The activity of the 

alternative path in leaves in the dark appears to be controlled in the 

last instance by the availability of substrate for glycolysis (e.g. 

sugars), which in turn can be determined by the photosynthetic 

activity during the previous light period. A similar control of this 

path by sugars also seems to occur in other plant organs (e.g. roots) 

as discussed by Lambers (1982).

Respiration of bean leaves during growth appears to be mainly 

regulated by coarse control of the capacities of glycolysis and the 

cytochrome pathway. In contrast, the capacity of the alternative path 

remained constant during development suggesting that the rates of 

synthesis and/or turnover of the components of these pathways are
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subjected to different control mechanisms as the leaf ages. On the 

other hand, the mechanisms of fine control of respiration appear not 

to greatly differ in young and mature leaves, but they operate within 

the limits imposed by the coarse control. The cytochrome path appears 

to be restricted in the dark by adenylates at any age, and the 

alternative path can operate on top of this path, especially in young 

leaves (Chapter 7).

The function of the alternative pathway in leaves is not known, 

but the persistence of this pathway during leaf growth (Chapter 7) 

suggests that the leaf cell might need to use the alternative path 

fully under some conditions. The correlation between the capacity of 

the alternative path and the sugar levels is consistent with the idea 

that this non-phosphorylating pathway may serve as a means of 

permitting higher rates of respiration in the face of high cytosolic 

energy charge (see Laties, 1982). Such respiration could be used 

either to remove excess carbohydrate from the cell in an energy over­

flow mechanism (Lambers, 1982), or to facilitate the utilization of 

carbohydrates in biosynthetic processes independently of their 

utilization in energy production. It has also been suggested that the 

alternative pathway could have a role in special cases, as for 

instance under chilling temperatures or during infections by other 

organisms (see Laties, 1982).

The hypothesis that the alternative path functions ’primarily as 

an energy overflow in leaves seems unlikely in my view because the 

oxidation of excess carbohydrates by the alternative oxidase could be 

avoided by means of a tighter adenylate control of glycolysis. This 

situation apparently occurs in slices from storage organs where the 

alternative path is usually only engaged in the presence of an
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uncoupler of phosphorylation (Theologis and Laties, 1978; Laties,
1982).

As I have discussed in Chapter 4, the evidence suggests that an 

important function of the TCA cycle in the light may be the supply of 
carbon skeletons for biosynthetic reactions in the cell. Since the 

alternative path can operate in leaves on top of a restricted 
cytochrome path in the dark (Chapters 5 and 7), the possibility that 

the alternative pathway can also operate in the light on top of a 

possibly more restricted cytochrome path cannot be excluded. In this 
case, the alternative path could contribute to the reoxidation of the 

NADH generated in the anaplerotic reactions of the TCA cycle.

It is important to determine if the alternative path participates 
in either the anabolic or in the catabolic metabolism of the leaf, or 
in both, because it has implications for the biochemical 
characterization of growth and maintenance respiration (Penning de 
Vries, 1972; Thornley, 1977). Growth respiration could include a 
component due to the alternative path if this path is involved in the 
anabolic metabolism of the cell. On the other hand, it appears that, 
at least in wheat leaves, maintenance respiration, which resembles the 
end-of-night rate of respiration (Chapter 3), does not include the 

operation of the alternative path (Chapter 5).

There are some indications that glycine has access to different 

alternative pathway chains than TCA cycle substrates in mature leaf 

mitochondria, and it was suggested in Chapter 6 that the alternative 

path may contribute to the reoxidation of NADH produced in the glycine 

decarboxylation reaction, but mainly acting as an overflow of the 
cytochrome path and/or metabolite shuttle systems. The very fact that 

glycine is associated with specific electron transport chains in
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itself implies that these operate in the light.

In summary, I favour the view that the alternative pathway in 

growing and mature leaves of C3 plants is mainly involved in the 

synthetic respiratory metabolism, both in the light and in the dark, 

and that it also participates in photorespiratory metabolism. However, 

other functions of this path (e.g. energy overflow mechanism) cannot 

be excluded at this stage, especially when carbohydrates are present 

in excess of the demands of the plant. Information about the 

alternative path during senescence, and in leaves of C4 and CAM plants, 

would be very useful in order to understand the precise function of 

this pathway in leaves.

8.3 LEAF RESPIRATION AND PLANT PRODUCTIVITY

Leaves actively evolve C02 by respiration not only during the 

night but also during the day time (Chapter 4). Since these organs 

constitute a large fraction of plant biomass, total leaf respiration 

is potentially an important factor affecting plant productivity. The 

results of Heichel (1971b) and Wilson (1975) confirm this suggestion. 

These authors found that plants of maize and perennial ryegrass with 

lower rates of mature leaf respiration consistently produced higher 

dry matter yields. Furthermore, Wilson (1982) and Wilson and Jones 

(1982) showed that this characteristic can be genetically selected in 

perennial ryegrass. These results strongly suggest that some 

respiration in leaves is apparently wasteful in terms of yield.

It has been discussed in Chapter 3 that, by virtue of the 

response of leaf respiration to substrate levels, some carbohydrate 

accumulated in excess could be respired in the leaves without any 

particular growth, maintenance, or other requirements. Many examples
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consistent with this suggestion were given. A similar explanation was 

suggested by Pearman et at. (1981) to account for some apparently 

wasteful respiration in the stem and ears of wheat plants. The 

operation of the alternative pathway, which also depends on substrate 

availability, appears to be wasteful, at least in terms of energy 

production, and it is possible that when the biosynthetic demands of 

the leaf are already met, the carbohydrates present in excess are 

removed by the alternative path acting as an energy overflow system.

8.4 COROLLARY

The evidence presented in this thesis suggests that accumulation 

of carbohydrates in wheat leaves can be an important negative factor 

contributing to plant yield. On this basis, it is suggested that the 

efforts of plant physiologists and breeders for increasing plant 

productivity should not only be destined to improve the efficiency of 

carbohydrate production, but also to increase the efficiency of 

carbohydrate utilization at the plant level. Some possible 

objectives could include the increase in the sink capacity of the 

plant, and the improvement of the efficiencies of translocation and of 

the biochemical control of respiration (by decreasing the alternative 

pathway perhaps?).
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APPENDICES

I. GAS EXCHANGE APPARATUS

C02 and water exchanges were measured in leaves using an open 

system gas analysis apparatus, utilizing an IR C02 analyzer (Beckman 

Instruments, model 865, Fullerton, California, U.S.A.) which was 

operated in both differential and absolute modes, and a dew point 

hygrometer (Cambridge Systems, model 880, Waltham, Massachusetts, 

U.S.A.).

One or two attached intact leaves were inserted in a glass and 

aluminium leaf chamber (total volume 150 ml). A small horizontal fan 

circulated the air past the leaf and provided rapid mixing within the 

chamber so as to ensure that the composition of the air is virtually 

uniform. Illumination was provided by a 2.5 kW water-cooled, high 

pressure, xenon-arc lamp (Osram, model XBF 2500), the UV and IR 

components being removed with a Schott KG 2B filter. Quantum flux 

density (400-700 nm) was 1000 yE.m-2.s-1 and was measured with a 

quantum sensor (Lambda Instruments, model LI-190 SR, Lincoln, Nebraska, 

U.S.A.). Leaf temperature, which was controlled by circulating water 

through a jacket, was measured with two copper-constantan thermo­

couples (42 S.W.G., 0.1 mm diameter) in contact with the lower surface.

Air with the desired partial pressure of C02 was obtained by 

injection of 5% C02 in air into C02-free air through a stainless steel
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capillary tubing. A self-venting pressure regulator (Clippard 

Minimatic, model MAR-IP, Cincinati, Ohio, U.S.A.) and a pressure gauge 

were used to control the injection rate. C02-free air with different 

oxygen concentrations was obtained by mixing compressed ambient air 

with nitrogen from a cylinder, and then by passing the resulting gas 

through two columns of soda lime (Carbosorb, self-indicating, BDH 

Chemicals Ltd, Poole, England). The oxygen concentration was measured 

with an oxygen electrode (YSI, model 5331, Yellow Springs, Ohio,

U.S.A.). The gas was then humidified in a gas washing bottle with a 

scintered disc. The dew point of the gas was maintained by passing 

the gas through a glass condenser, the temperature of the latter being 

controlled by circulating the water from a temperature controlled 

water bath. Air flow through the leaf chamber was monitored with a 

mass flowmeter (Hastings, model AFSC-10K, Hampton, Virginia, U.S.A.). 

Flowmeters with needle valves and solenoid valves were used to 

distribute gas flow throughout the system. Copper tubing was used in 

the circuit. The gas circuit described is shown in Figure A.l.

The outputs of all sensors were registered on a digital voltmeter 

and the outputs from the C02 analyzer and dew point hygrometer were 

continuously recorded on a two pen potentiometric recorder.

II. CALCULATION OF GAS EXCHANGE PARAMETERS

The equations used to calculate the rate of net C02 uptake or 

efflux, transpiration rate, stomatal conductance, and intercellular 

C02 partial pressure were those given by von Caemmerer and Farquhar 

(1981). The rate of transpiration of a leaf with surface area of one 

side a (m2), is measured as the difference between the rate of water 

vapour entering the chamber and that leaving the chamber. Thus,
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Figure A.l: Gas circuit of the open gas exchange system for whole
leaf experiments.
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u w  - u w  o o e e (Al)

where E is the rate of transpiration per unit leaf area (mol water, 

m .s ); u^, uq are the molar flows of air entering and leaving the

chamber (mol.s 1), and wg, w^ are the mole fractions of water vapour 

(bar water.bar 1 air) of the incoming and outgoing airstreams, 

respectively. Similarly,

A
u c - u c e e o o (A2)

_2where A is the rate of C02 assimilation per unit leaf area (mol.m 

s~1) and c^ and cq are the mole fractions of C02 (bar C02.bar_1 air) 

in the incoming and outcoming airstreams.

The uptake of C02 in the chamber is balanced by an efflux of 

oxygen, but the efflux of water vapour from the leaf increases the 

flow out of the chamber by the amount aE. Therefore from Eq. (Al)

u + aE . e (A3)

Combining (Al) and (A3) one obtains

E =
u (w - w ) e o e

(1- w ) o
(A4)

Ice traps were used to reduce water vapour concentration in the air­

streams entering the IRGA to a standard magnitude. The effect of 

humidification on the estimation of C02 assimilation rate is then 

eliminated. However the effect of water condensation at the ice traps

reeds to be considered. If u. is the flow rate at the ice traps andice
v ^ the mole fraction of water vapour at ice point

ice
(1 - w£)

(A5)

and then
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u . u (1 - w )
A = 1Ce (c - c )  = —  * (c - C ) * yr---- --  .a e o a e o (1 - w . )ice

Total conductance to water vapour transfer, g, was found as

(A6)

(w. -w ) 1 o
+ E

(w. -w ) l o (A7)

where w_̂ , the mol fraction of water vapour in the intercellular spaces, 

is taken as the saturation vapour mol fraction at leaf temperature.

The dimensions of g are the same as E, i.e. molar flux density. The 

term
(w. -w )„ 1 o

which typically accounts only for 3% of the estimate of E, is 

introduced to account for the molecular collisions between water 

vapour and air (see von Caemmerer and Farquhar, 1981).

The boundary layer conductance to water vapour, g^, was 2.2 mol. 

nf2.s-1. Stomatal conductance to water vapour, gg, is calculated from

g ^  gs (A8)

Stomatal (and cuticular) conductance to C02 can be calculated as 

gs/1.6, and boundary layer conductance to C02 can be calculated as 

g^/1.37, where 1.6 is the ratio of diffusivities of C02 and water in 

air, and 1.37 is the ratio of diffusivities of C02 and water vapour in 

the boundary layer. Total diffusive conductance to C02, g , is 

calculated analogously to that to water (see Eq. A8).

Intercellular C02 mol fraction, c , can be calculated from the 

equation
(c +c.)

A = gC(co - C;.) - E ° 1 . (A9)

The term
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(c +c.)O 1

is introduced to account for the interference produced by the molar 

flux of water leaving the stomatal pore to the entry of C02. 

Rearranging Eq. (A9) ,

(gc -E/2) cq -A 

gC +E/2
(A10)

The intercellular C02 partial pressure, p_̂ , is then given by the 

product of c^ and the total pressure.

III. RESPIRATORY CONTROL IN ISOLATED MITOCHONDRIA

Isolated mitochondria show several states of oxygen consumption 

(Chance and Williams, 1956) (see Fig. A.2). In the presence of an 

oxidizable substrate and ADP (P is always present in excess) the rate 

of electron transport is rapid and ATP is synthesized, resulting in 

what is termed state 3 oxygen consumption. When ADP is depleted the 

rate of oxygen consumption abruptly decreases to what is known as 

state 4 rate. This phenomenon is called respiratory control. The 

ratio of state 3 to state 4, the respiratory control ratio (RCR), 

gives an indication of the degree to which the level of phosphate 

acceptor can control the rate of oxidation, and it is used to 

determine the degree of intactness of isolated mitochondria. State 4 

rates can be substantial if the proton motive force is partly 

dissipated by metabolite ion transport or leakage of protons (due to 

membrane damage), if ATP is hydrolyzed by ATPase activity of disrupted 

mitochondria or from other origin (Wiskich, 1980), or if electron 

transport is diverted to the non-phosphorylating alternative pathway 

(Day et al. , 1980). The state 4 respiration rate also depends on the
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nature of the substrate used; it is slow with malate and faster with 

succinate or glycine (in leaf mitochondria). It is unlikely that 
state 4 respiration is realized in vivo since ADP content is unlikely 
to be zero (Atkinson, 1977).

In the presence of an uncoupling agent (e.g., FCCP), which 

eliminates the obligatory dependence of electron flow on 
phosphorylation, the rate of respiration in the absence of ADP is as 

high as the state 3 rate (Fig. A.2); this suggests that state 3 rates 

are not limited by phosphorylation (Wiskich, 1980). Mitochondria in 

intact tissues probably operate somewhere between state 3 and state 4 

rates, since uncouplers stimulate the rate of respiration of intact 

tissues in most cases (Day et ail., 1980; Wiskich, 1980).

m itochondr ia
{ c substrate(e.g. g lyc ine 

— * ---- 1 ° i  x c

Figure A.2: Idealized oxygen electrode trace of isolated leaf
mitochondria showing different states (s) of activity.
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IV. MEASUREMENT OF THE ACTIVITY OF THE ALTERNATIVE 
PATHWAY USING A TITRATION TECHNIQUE

The contribution of the alternative path to respiration (v^ ) can 

be estimated by titration with inhibitors of the alternative pathway. 

This technique was introduced by Bahr (see Bahr and Bonner, 1973), and 

has been reviewed in detail by Solomos (1977), Day et at. (1980) and 

Laties (1982). The capacity of the alternative path (V ^ )  is 

established by measuring the rate of 02 uptake in the presence of an 

inhibitor of the cytochrome chain (e.g. KCN, antimycin A). The alter­

native path is then titrated with an inhibitor of this path (e.g. SHAM). 

The titration values obtained are represented by g(i)^t and denote 

the maximal possible alternative path activity in the presence of a 

given SHAM concentration. The titration is then repeated in the 

absence of cyanide (or antimycin A) to obtain V^, the value of respiration 

at each SHAM concentration (see Fig. 2 in Chapter 5). V^ is then plotted 

against g(i)a^t (Fig. A.3). If such a plot yields a straight line, 

which is usually the case (Day et at. , 1980), it indicates that the 

alternative path is superimposed on a constant contribution of the

cytochrome path, v *. That is, varying the rate of alternative path cy u
does not affect the rate of the cytochrome path. Thus V^ = v t + 

pg(i)a^t> where the intercept respresents the activity of the cyto­

chrome path, and p, the slope of the line, represents the fraction of 

the maximum capacity of the alternative pathway that is expressed. The 

rate of the alternative path in the absence of inhibitors is pg(i)
alt

When p= l  the full capacity of the alternative path is realized, and 

when p = 0  there is no contribution by the alternative path to V , and 

in a plot of V^ against g(i)  ̂ the line will be horizontal (Fig. A.3).

vcyt does not necessarily denote the maximum capacity of the 
cytochrome pathway.
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If the cytochrome path were operating less than maximally and

SHAM inhibition of the alternative path diverted electrons to the

cytochrome path, then v t would not be constant and a plot of vs

g(i)a^t would not give a straight line. A similar result would also

be obtained if SHAM inhibited the cytochrome path in addition to the

alternative path. SHAM concentrations higher than 2 mM inhibit the

cytochrome path in isolated mitochondria (Schonbaum et at. , 1971).

In cases where respiration is not completely inhibited by the

simultaneous addition of SHAM and cyanide (or antimycin A) at

appropriate concentrations, the expression above should be modified as

follows: = p.g(i) _ + v +V , where V represents the so-T alt cyt res res
called residual respiration, a value that is subtracted in graphical 

analyses to give V ’ which is plotted against g(i) n to yield a-L 3. _L L-

rectilinear curve with slope p (Theologis and Laties, 1978).

P =0.5

Fig. A.3: Plot of the rate of 02 uptake obtained at several
concentrations of an inhibitor of the alternative path, VT , 
against a similar set of values obtained in the presence of 
an inhibitor of the cytochrome path, g(i)aXf the
example shown, the capacity of the alternative path is 60% 
of the total electron chain capacity.
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