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Abstract

This thesis describes an investigation of the andmalarial activity of a number of 

novel 10-phenylflavin analogues and includes a study of the structure activity 

relationships between several distinct series. This work was undertaken in order to 

define the structural features required for activity and to find analogues with improved 

activity and reduced toxicity.

One series of flavins was prepared to help identify the substitution profile in the 

10-phenyl moiety associated with the highest biological activity. Another series of 

compounds was prepared in which the substituents at the 3-N position were varied. This 

group of flavins gave some insight into the role that lipophility played in activity.

Altering the benzenoid ring-3 of the flavin to produce a series of 7,8,9-substituted 

3-methyl-10-(substituted phenyl)flavins and 10-(4'-chlorophenyl)-3-methyl-6,8- 

diazaflavin showed that changes to the ring-3 were not well tolerated.

Removing the ring-3 of the flavin to produce a series of 3-methyl-8-(substituted 

phenyl)pteridine-2,4(3//,8//)-diones showed that the 3-membered ring structure of the 

flavin was required for in vivo activity.

All of the above compounds were tested for antimalarial activity and the results 

discussed. Some of the above compounds were tested for antibabesial and anti-HTV 

activity and found to be inactive. The compound 3-ethyl-10-(3'-trifluoromethyl)flavin 

was tested for anticoccidial activity and found to be active.

The synthesis and some of the spectral properties of the above compounds are 

described and discussed.

The possibility that these flavins might exert their antimalarial action via the 

inhibition of host glutathione reductase was investigated and discounted.
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Nomenclature

In this thesis the following common names have been used; primary 

benzenamines are referred to as anilines, pyrimidine-2,4( l//,3//)-diones 

are referred to as uracils and benzo[g]pteridine-2,4(3//,10//)-diones are 

referred to as flavins.
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CHAPTER 1 Introduction

1-1 Malaria

1-1.1 The importance of malaria

Malaria is one of the world's major health problems. This is due to the wide 

distribution of the disease, the severity of its pathology and the resulting hindrance to 

socioeconomic development.

Malaria is distributed over approximately 100 countries, mostly in the tropical and 

highly populated areas of Africa, Asia, Central and South America. This means nearly 

45% of the world's population live in malaria endemic or potentially endemic areas [1,2]. 

In 1988 five million cases of malaria were reported world-wide (excluding Africa), 

though the actual number is probably much higher as many cases go unreported. 

According to the World Health Organization (WHO) 100 million people are clinically ill 

with malaria at any given time and around one million die from it each year [2-4].

Malaria is not only a problem confined to countries in which its infected vector is 

present. The greatly increased amount of travel to infected areas due to tourism or 

business from malaria free areas has lead to many cases of "imported" malaria in 

countries such as Britain, the United States, France and Australia [4-6].

1-1.2 Malaria - the disease

Malaria is an infectious disease caused by parasites belonging to the genus 

Plasmodium. The large number of species in this genus have a great variety of hosts 

including mammals, reptiles and birds. Malaria parasites, to a large extent, are host 

specific and are only known to parasitize other species when they are closely related to 

the normal host [7].

Human malaria is caused by four plasmodial species, these are Plasmodium 

ovale, P. malariae, P. vivax and P. falciparum. P. vivax and P. falciparum are the 

species of greatest epidemiological importance as they are responsible for most human



malaria. P .falciparum is the cause of malignant tertian malaria which often produces a 

sudden intense disease in the non-immune patient. If untreated the infection may rapidly 

progress to fatal termination, this is frequently the result of cerebral malaria. P. vivax, 

the cause of benign tertian malaria, is responsible for much debilitating illness though 

very few deaths. It is the human malaria best known for relapses after treatment.

P. ovale and P. malariae, broadly speaking, are less of a problem as they have a smaller 

distribution, are usually not fatal and have milder clinical symptoms.

The clinical symptoms of malaria may assume protean forms and a worthwhile 

review of the clinical features of malaria are given by Harinasuta and Bunnag [5].

Typical textbook cases of malaria involve a series of chronologically regular attacks. 

Briefly, the attack consists of firstly a feeling of chilliness and shivering followed by a 

feeling of intense heat. Both these stages of the disease are associated with a rise in 

temperature. The paroxysm can last for 2 to 6 hours and ends with profuse sweating and 

a gradual drop in temperature [4,8]. Between each attack patients may be asymptomatic. 

The periodicity of attacks is dependent upon the species of malaria. The intervals 

between attacks are less than 48 hours for P. falciparum, 48 hours for P. vivax and 

P. ovale, and 72 hours for P. malariae. Some of the prominent pathological features of 

the disease are enlargement of the liver and spleen, varying degrees of anaemia, and 

deposition of malarial pigment (the parasitic digestive residue of haemoglobin) in various 

organs and tissues of the body.

1-1.3 Life cycle of the parasite

Malaria parasites undergo a complex life cycle alternating between vertebrate and 

arthropod host. Figure 1-1 displays the life cycle of plasmodia in primates. What 

follows is a brief description of the generalized life cycle of the parasite in primates. 

More precise and exhaustive reviews of this subject are given in books by Peters [9a], 

Gamham [10a], and Peters and Richards [11].

The female Anopheles mosquito is the vector for malaria. Sporozoites are 

injected into the vertebrate host via the saliva during the blood feed of an infected vector.
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Fig 1-1 Life cycle of plasmodia in primates
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Once in the blood stream the sporozoites invade the parenchyma cells of the liver.

In this tissue phase the sporozoite becomes rounded as it develops into a 

schizont. The schizont's nucleus then undergoes repeated divisions. Once this is 

complete the cytoplasm segregates to form many merozoites inside the schizont. The 

now fully developed schizont and liver cell walls rupture to release large numbers of 

merozoites into the blood stream. This tissue phase of asexual reproduction is known as 

tissue or exoerythrocytic schizogony. In mammalian malaria only a single generation of 

exoerythrocytic schizogony occurs. In some species of plasmodia (eg P. vivax) not only 

do the sporozoites undergo tissue schizogony but some also form a latent stage, called 

hypnozoites, which lie dormant for varying time periods before undergoing 

exoerythrocytic schizogony. This latter event accounts for the "recurring" nature of 

P. vivax infections.

The blood phase starts with the invasion of erythrocytes by merozoites released 

from the tissue phase. After entering the cell the invading merozoite feeds on the 

haemoglobin of the cell. This uninuclear feeding form of the parasite is termed a 

trophozoite. The parasite now begins to go through another cycle of asexual 

multiplication. The nuclear material of the parasite increases and undergoes several 

divisions resulting in a number of nuclei which are situated in the cytoplasmic 

syncytium. At this stage the parasite is referred to as a preschizont. The preschizont 

becomes a mature schizont when the cytoplasmic syncytium divides to form completely 

differentiated merozoites. When the mature schizont bursts it liberates the merozoites 

(the number of merozoites released is species dependent) into the blood. These 

merozoites quickly infect other erythrocytes. This cycle of asexual reproduction is 

known as blood schizogony and is associated with disease symptoms.

After infecting a new erythrocyte the merozoite can either initiate a new cycle of 

blood schizogony or transform into either a micro (male) gametocyte or macro (female) 

gametocyte. Blood schizogony continues until either the parasite is completely eradicated 

by drug treatment, the host's immune system or the death of the host.

The sexual phase in the parasite's life cycle begins when the gametocytes are 

taken up by a suitable arthropod. In the insect's midgut the gametocytes shed the
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erythrocyte membrane and mature into gametes. The macrogametocyte quickly forms the 

macrogamete with few evident morphological changes, retaining its rounded structure. 

The micro game tocyte on the other hand undergoes a dramatic maturation process termed 

exflagellation. In this process the nucleus divides three times, forming usually eight 

nuclei which combine with the cytoplasm to form microgametes. These microgametes 

move through the mid-gut, with the aid of a flagellum, in search of a macrogamete.

Once a microgamete reaches a macrogamete fertilization takes place. The newly formed 

zygote remains quiescent for a period before it becomes mobile. The latter form, known 

as an ookinete, actively invades the intestinal ephithelium of the arthropod and lodges 

itself beneath the basal lamina, forming an oocyst. The diploid nucleus of the oocyst 

undergoes meiotic division, followed by intensive mitotic divisions, while the cytoplasm 

maintains its syncytial structure. Finally the cytoplasm divides to form sporozoites. The 

elongated and mobile sporozoites migrate from the oocyst to the salivary glands of the 

arthropod host, where they are ready to infect a new vertebrate host.

1-1.4 Chemotherapy of malaria

The chemotherapy of malaria is determined by the therapeutic objective of the 

treatment and the effectiveness of drugs against different species, strains and life cycle 

stages of the parasite.

As could be expected by the many forms that the parasite goes through in its life 

cycle, existing antimalarial drugs have differing levels of effectiveness on different stages 

in the parasite's life cycle. This has lead to the classification of drugs in terms of the 

section of the life cycle they effect. The following terms have been used:

Blood schizontocide - refers to a drug which acts upon asexual parasites in the blood; 

Tissue schizontocide - refers to a drug which acts upon asexual parasites in the tissues. 

This includes drugs active against hypnozoites, more specifically referred to as 

hypnozoitocides;

Gametocytocide - refers to a drug which acts upon the sexual forms of the parasite in the 

blood; and



Table 1-1: Action of some antimalarial drugs against different life

cycle stages of the malaria parasites a

Activity status against different life cycle stages of the human malaria parasites b’c

Antimalarial
Erythrocyctic 
asexual phase

Tissue phase
(excluding
hypnozoites)

Hypnozoites Gametoeytes

Chloroquine active and fast 
acting

not active not active active for P. vivax and 
P. malariae, not active for 
P. falciparum

Primaquine weak activity weak activity high activity high activity

Mefloquine active and fast 
acting

probably not 
active

probably not 
active

active for P. vivax and 
P. malariae, not active for 
P. falciparum

Proguanil active but slow 
acting

active against 
P. falciparum  
and P. ovale

not active highly active

Pyrimethamine active but slow 
acting

active some activity 
for P. vivax

uncertain

Sulfones and 
Sulfonamides

weak activity possible action uncertain uncertain

Tetracycline active but slow 
acting ( only 
known for 
P . fa lc iparum )

active ( only 
known for 
P. fa lciparum )

not active for 
P. vivax

not active ( only known for 
P. fa lciparum )

a Information for this table was obtained mostly from reference [16,16a]. b The sporozoites are not 

included in this table as none of these antimalarials is known to be active against them. c As more 

research in this area is conducted the information in this table is subject to change.
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Sporontocide - refers to a drug which acts upon the sporogonic forms in the mosquito 

after it has fed on the treated host

In Table 1-1 the differences in activities among some antimalarials against life cycle 

stages as well as between species are demonstrated

The interplay between the parasite life cycle and symptomatology of malaria 

needs to be understood when using drugs to treat malaria. The attacks of malaria occur 

during blood schizogony whereas no symptoms are noticeable in the tissue schizogony 

phase. To alleviate symptoms effective blood schizontocides should be used. The 

relapse phenomenon, in which months or even years after the initial infection has been 

cleared malaria reappears, is due to the dormant hypnozoites which is characteristic in the 

human plasmodia species P. vivax and P. ovale. In infections of this kind the use of 

hypnozoitocides must be considered.

Treatment regimens for malaria have different therapeutic goals which are related 

to the species of infecting plasmodia, the chances of reinfection, the severity of the 

infection and the toxicity of the drug to the individual. The development of drug 

resistance by plasmodia has lead to further complications in treatment. This means that 

not only the species of the infecting Plasmodium but also its likely drug resistant status 

should be known before treatment regimens are decided. Different treatment aims have 

been classified as follows:

Causal prophylaxis - this refers to the use of drugs that exert a lethal effect on malaria 

parasites during the pre-erythrocytic stages, i.e. the sporozoites and/or the tissue stages. 

In this way prevention of acute attacks of malaria is effected. This treatment is usually 

over long periods and accordingly the drug must be well tolerated.

Suppressive treatment - this refers to the use of blood schizontocides to prevent the 

clinical manifestation of the disease by elimination of asexual parasites from the blood. 

The treatment as for causal prophylaxis usually occurs over long periods so the drug 

used should be well tolerated.

Clinical cure - this refers to the termination of a clinical attack of malaria by interrupting 

blood schizogony with blood schizontocides. Drugs of choice here should be fast acting 

as the progress of the disease to fatality is often very rapid.
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Radical Cure - refers to treatment with drugs that eradicate all asexual stages from the 

body. There is little point trying to effect a radical cure while still in an endemic area 

because of possible reinfection.

Suppressive cure - refers to complete elimination of all asexual stages of the parasite by 

continued suppressive treatment

Gametocytocidal therapy - refers to agents which destroy the sexual forms of malarial 

parasites in human blood and thereby reduce the reservoir of infection.

1-1.5 Currently used antimalarial drugs 

(i) The 4-aminoquinolines

Chloroquine is a member of this group and is the most commonly used and well 

known of all the antimalarial drugs. Other compounds in this series include 

hydroxychloroquine and amodiaquine, the structure of chloroquine is shown in Fig 1-2. 

Chloroquine, the best example of the series, is very effective against the asexual 

erythrocytic forms of all human plasmodia. It is the drug of choice in the treatment of an 

acute malarial attack as it rapidly controls parasitemia and thus, clinical symptoms. The 

good blood schizontocidal activity coupled with chloroquine's low toxicity means it is 

commonly used for suppressive treatment It is not, however, effective against hepatic 

forms of the parasite and is only used to obtain suppressive cures usually in the case of 

P. falciparum where the tissue stage of the parasite does not persist. The spread of 

chloroquine-resistant plasmodia, especially P. falciparum, is increasing dramatically, 

making this drug less reliable as an effective treatment than it once was.
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F ig  1-2 C h em ica l s tru c tu re s  o f c u r re n t ly  u sed  a n tim a la r ia ls
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The mechanism of action is as yet uncertain but it appears, in part, to be a result 

of preferential accumulation in parasitized erythrocytes. Two of the present theories on 

its mode of action are [12];

(1) chloroquine concentrates inside the parasite’s food vacuole and raises the 

intralysosomal pH, thereby inhibiting digestion of host protein, and

(2) ferriprotoporphyrin IX, a product of the malaria parasite's digestion of haemoglobin, 

tightly binds chloroquine forming a toxic chloroquine-ferriprotoporphyrin complex.

(ii) The 8-aminoquinolines

Primaquine is the only example of an 8-aminoquinoline in common current 

clinical use; its structure is shown in Fig 1-2. Other members of this series include 

pamaquine and quinocide. Primaquine, unlike chloroquine has weak blood 

schizontocidal activity but is highly active against the exoerythrocytic forms of P. vivax 

and P .falciparum. Its great clinical value lies in its hynozoitocidal activity which allows 

radical cures in the case of P. vivax. Primaquine has to be administered with care as it 

can cause haemolytic anaemia in a significant proportion of the population which are 

genetically glucose-6-phosphate dehydrogenase deficient. Primaquine is also noted for 

its good gametocytocidal activity against all human malarias. This is probably 

responsible for the infrequent observation of primaquine resistance [13]. This is 

fortunate since the 8-aminoquinolines are the best antimalarial agents for elimination of 

the latent tissue stages of relapsing malaria. Little is known of the mode of action of the 

8-aminoquinolines.

(iii) The 4-quinolinemethanols

The two drugs of major interest from this series are quinine and mefloquine 

(structures shown in Fig 1-2). The alkaloid quinine was first used as an antimalarial in 

the sixteen hundreds in the form of a crude extract of the bark of the cinchona tree. Later 

it was isolated and used directly until early this century when synthetic antimalarials 

became available.

Although, quinine was superseded by newer less toxic synthetic drugs the advent
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and increase of multi-drug resistant strains of malaria has seen it brought back into use as 

an important alternate treatment Its primary action is as a rapid blood schizontocide for 

all human malarias and a gametocytocide for P. vivax and P. malariae.

Mefloquine is a relatively new derivative (clinical trials began in 1972) of quinine 

which has been found to be an effective, reasonably well tolerated and safe antimalarial 

drug. It is highly active against blood forms, with its major use as a treatment for 

chloroquine-resistant P . falciparum. Presently its use is being rigidly controlled in order 

to prevent the rapid occurrence of mefloquine resistance.

(iv) The biguanides

These drugs of which proguanil (shown in Fig 1-2) is representative, differ 

considerably in their structure from the already discussed antimalarials. It has been 

shown that biguanides act as a prodrug and the active form is a dihydrotriazine formed 

during the metabolism of the biguanides. These dihydrotriazines have themselves been 

made and used directly as antimalarials, an example of one of these is cycloguanil shown 

in Fig 1-2. The discovery of proguanil represents an important advance made in the 

chemotherapy of malaria. It is an effective blood schizontocide for all four human 

plasmodia and is one of the most innocuous of the antimalarials. These properties make 

it highly suitable for suppressive treatment Its use in achieving clinical cures is limited 

by a slow onset of action compared to the 4-aminoquinolines. Proguanil has 

gametocytocidal activity against P. falciparum and P. vivax and has activity against the 

tissue stages of P. falciparum and P. ovale but not against the hypnozoites of P. vivax. 

The biguanides exert their antimalarial activity by selectively inhibiting parasitic 

dihydrofolate reductase, a key enzyme in the folic acid cycle which is necessary for the 

synthesis of methionine, glycine, thymidine and the purines. The spread of proguanil 

resistance has been reported in all species of malaria except P. ovale [14]. To overcome 

this resistance potentiating combinations of drugs were introduced. The biguanicides are 

used in association with sulphones (usually dapsone) and sulphonamides (such as 

sulfadoxine) themselves mild antimalarials. The sulphones and sulphonamides inhibit 

another stage of the folic acid cycle of the parasite. Unlike man, plasmodia must
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synthesise folic acid de novo, the sulphones and sulphonamides inhibit this biosynthesis. 

These inhibitors of two different steps in the same biochemical pathway when used in 

combination have a strong synergistic effect.

(v) The diaminopyrimidines

Pyrimethamine (shown in Fig 1-2) and trimethoprim are the two compounds of 

this group used as antimalarials. Like the biguanides, they function by inhibition of 

parasitic dihydrofolate reductase and as such have many similar pharmacological 

properties. Pyrimethamine is active against blood forms of plasmodia generally and as 

such is used mainly in suppressive treatment. Like proguanil, pyrimethamine is slow 

acting and well tolerated. Resistance to pyrimethamine developed quickly in many areas 

of the world [14] and cross resistance to other antifolates meant that pyrimethamine, like 

the biguanides, is normally used in combination with sulfones or sulphonamides to 

increase its antimalarial activity. Maloprim, which contains pyrimethamine and dapsone, 

and Fansidar, which contains pyrimethamine and sulfadoxine, are two widely used 

examples of such pharmaceutical preparations.

A more complete and extensive review of the chemistry and pharmacology of 

antimalarials can be found in monographs by Thompson and Werbel [15], and Bruce- 

Chwatt etal. [16].

1-1.6 Drug resistance

A major threat to the effective control of malaria has been the development of 

drug resistance. Table 1-2 shows when some of the common antimalarials were first 

introduced and when resistance developed to them. P. falciparum has been most prone 

to develop drug resistance especially to chloroquine. This type of resistance is increasing 

at an astounding rate both in its intensity and geographically [17,18]. Chloroquine 

resistance is well established over large parts of South East Asia and the Amazon basin 

and is now spreading over Africa [18,19].
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Table 1-2: The occurrence of drug resistance to common antimalarials a

Antimalarial drug Year in which clinical use began Year and location in which resistance 

was reported for P. falciparum

Quinine ca 1630 1910 Brazil

Primaquine 1951 1963 Colombia

Chloroquine 1945 1960 Venezuela

Proguanil 1948 1949 Liverpool

Pyrimethamine 1951 1952 Gambia

Sulfadoxine 1964 1968 Cambodia

Dapsone 1965 1968 Cambodia

a Information obtained from reference [9b].

Furthermore, the appearance of strains of P. falciparum which are resistant to 

other drugs and even combinations of drugs have compounded the problems of increased 

virulence and drug resistance. Drug resistance has occurred as a result of wide-spread, 

indiscriminate, inappropriate or incomplete treatment and failure to combat transmission. 

These conditions are favourable for the occurrence of genetic changes in the parasite 

which allow it to develop tolerance to particular compounds [20].

A number of strategies have been introduced to overcome and slow the spread of 

resistance. These include developing new antimalarial agents, using combinations of 

drugs in treatment and more thoughtful dispensing practices for existing drugs.

The development of new drugs effective against malaria is a long slow process, 

only a few have become available over the last twenty years. The most valuable of the 

new compounds are those that have a unique mode of action; these avoid problems of 

cross resistance with the existing antimalarials.

In an endeavour to find new drugs to treat malaria some useful candidates have 

been identified including mefloquine, halofantrine, artemisinin and some antibiotics.
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Mefloquine (discussed in section l-1.5(iii)) has been made available for clinical use and 

acts as a potent blood schizontocide and is active against multi-drug resistant falciparum 

malaria. Mefloquine's structural similarity to quinine lead to concerns about the 

possibility of cross resistance occurring. This was borne out by reports of mefloquine 

resistance occurring in areas where mefloquine had not yet been used. The first of these 

were from Thailand where quinine-resistant strains were already wide-spread [21]. 

Halofantrine (structure shown below), though not at the same stage of development as 

mefloquine, has schizontocidal activity against chloroquine-resistant strains of 

P. falciparum [21]. Even though it is based on the phenanthrene ring, and not the 

quinoline ring structure, it is suspected that it has a similar mode of action to quinine and 

mefloquine, again raising the strong possibility of cross resistance occurring.

OH
I

HC— CH2CH2N[(CH2)3CH3]2

Halofantrine

Some antibiotics such as chloramphenicol and tetracycline have been shown to be 

antimalarials and have been used mostly to treat drug-resistant strains of malaria. 

Tetracycline has been shown to have some activity against liver stages and marked 

activity against blood stages of the parasite [9c]. The onset of activity of the antibiotics is 

slow so they are often used in combination with other fast acting antimalarials. The 

advantages of these antibiotics are that they probably have a different mode of action 

from other antimalarials and they are already in clinical use, thus reducing the need for 

extensive pretesting. The most exciting of the new antimalarials are compounds based 

on artemisinin (qinghaosu), a natural product first isolated and characterised in 1972 

from the wormwood, Artemisia annua Linnaeus. Extracts of this plant were used
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historically as a Chinese folk remedy to treat malaria and other fever-associated diseases, 

references to it date back to the middle of the fourth century [22]. Artemisinin has a 

structure (shown below) unlike all presently used antimalarial drugs. It is a 

sesquiterpene lactone consisting of four rings and contains a peroxide bridge. This novel 

compound has been shown to have a different mechanism of action from both 

chloroquine and the antifolate drugs [22]. The necessity of the endoperoxide bridge for 

activity [22] and the apparent interference to membrane structures of the parasite [23] 

have lead some authors to suggest that the mode of action may be due to free oxygen 

radical-induced stress [22,24,25]. Artemisinin and its derivatives are quick acting blood 

schizontocides with low toxicity, and low cross resistance to chloroquine and other 

antimalarials. Two reviews on artemisinin have been published by Luo and Shen [22], 

and Anand et al. [26].

Artemisinin

The use of appropriately selected drug combinations is a necessary practise in the 

treatment of malaria to retard the spread of drug resistance. Use of a single compound 

may lead to resistance by causing genetic alteration of some aspect of the parasite. The 

basis of combination drug therapy in overcoming drug resistance is that the development 

of genetic changes in the parasite allowing it to combat two or more drugs at once is far 

less likely.

It is possible with different combinations of the existing antimalarials to produce 

different effects. There are combinations of drugs which have complementary, additive 

and potentiating effects. Complementary combinations are those which may act on 

different stages of the parasite's life cycle such as a combination of chloroquine and
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primaquine. Chloroquine acts on the blood schizonts whereas primaquine eliminates the 

hypnozoites and the gametocytes. Combinations such as chloroquine and pyrimethamine 

have an additive effect when used together whereas the combination of antifolates in 

Maloprim and Fansidar are found to be synergistic. The use of combination drug 

therapy has been applied to slow the development of mefloquine resistance by the triple 

combination of mefloquine, sulfadoxine and pyrimethamine know collectively as 

Fansimef. Care must be taken not to use a drug combination in areas where malaria 

resistance to one of the drugs in the combination already exists, as this lessens the 

antimalarial activity of the combination and defeats the purpose of the combination 

therapy in slowing the development of resistance [27].

The realization that drug resistance is still likely to grow, even with the advent of 

new antimalarials and drug combinations, has prompted careful dispensing practices to 

be undertaken. These practices were stated by WHO [28 a] and include;

1) the cessation of mass distribution of antimalarial drugs and chemotherapeutic 

targeting to defined high risk groups or the control of epidemics,

2) use of new antimalarials should be tightly controlled and limited to cases involving 

drug resistant malaria,

3) knowledge of the drug resistant status of the parasite to allow the appropriate use of 

existing, new and combinations of antimalarials to minimize development of resistance, 

and

4) that a complete course of therapy be used to effect a successful treatment and prevent 

transmission.

The above points aim to reduce drug resistance by lowering the rate of contact or 

sub-therapeutic contact between the plasmodia and antimalarials or by lowering the 

chances of transmission of parasite populations which have been exposed to drugs.

A complete work on drug resistance in malaria has been written by Peters [9].

A recent review by Björkman and Phillips-Howard [29] deals with the current 

epidemiology of drug resistant malaria.

a Originally from, Advances in malaria chemotherapy, WHO Technical report series No. 711, WHO, 
Geneva, 1984.
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1-1.7 Malaria control and vaccine

Other methods of combating malaria besides the use of chemotherapy include the 

traditional method of vector control and the revived hope of a malaria vaccine. Vector 

control includes among other methods the use of insecticides, destruction of mosquito 

breeding areas, bed nets impregnated with insecticides, house screening and introduction 

of specific mosquito pathogens [4].

The hope first generated by the idea of a malaria vaccine was high, however, it 

has become apparent in the last few years that the high degree of antigenic polymorphism 

of the parasite makes vaccine development difficult [3,30]. This has been reflected in the 

disappointing trails of candidate vaccines against sporozoite and asexual blood stages of 

malaria [31].
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1-2 Flavins

1-2.1 Structure and nomenclature

The trivial though common names of benzo[g]pteridine-2,4(3//,10//)-dione are 

isoalloxazine and flavin. The new LU.P.A.C. numbering system of benzo[g]pteridine- 

2,4(3//, 10//)-dione, shown below in structure 1.1 replaces the original German 

numbering system shown in structure 1.2. For brevity benzo[g]pteridine-2,4(3//,10//)- 

dione will be referred to as flavin throughout the rest of this work and the numbering 

system in formula 1.1 will be used.

0  5

R N ^ 4 \ - ^ N\ 7

1 R 9

1? 10 5

7

1 R 8

1.1 1 .2

1-2.2 The history of flavins as antimalarials

The association between flavins and malaria began in 1944 with the observation 

of Seeler and Ott [32] that riboflavin deficiency in chicks infected with Plasmodium 

lophurae had the effect of depressing parasitemia during the course of the disease.

Thirty-nine years later this phenomenon was renoted by Thumham et al. [33] 

who found there was a relationship between riboflavin status in Papua New Guinean 

infants and their susceptibility to malaria. It was found that the number of infants with 

malaria and normal riboflavin levels was significantly higher than would be expected 

statistically compared to those infants with riboflavin deficiency. This suggested 

riboflavin deficiency may be malaria protective. To confirm this finding a similar 

experiment to that of Seeler and Ott was conducted by Kaikai and Thumham [34]. 

Using Plasmodium berghei in rats they showed that riboflavin deficiency depressed 

parasite counts and that the depression was inversely related to the riboflavin status.
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In an effort to determine the minimal nutritional requirements of P .falciparum in 

culture Divo et al. [35] found that the supply of exogenous riboflavin was not necessary 

for normal parasite growth over a 96 hour period This is a similar finding to that of 

Siddiqui and colleagues [36] who, in an in vitro study, found no effect on the growth of 

P. knowlesi after 24 hours of riboflavin deficiency. These findings seemingly conflict 

with the in vivo results above. However, the nutrients necessary for parasite success 

cannot always be identified by depleting them from the culture medium as there may be 

intraerythrocytic stores of nutrients that are sufficient for parasite viability. Divo et al. 

admits this in their paper and to quote William Träger [37], one of the pioneers in in vitro 

parasitology, "Only in such medium (an axenic parasite culture in which the host is 

excluded) can all of the nutritional requirements of an organism be determined

Geary, Divo and Jenson [38] undertook an antimalarial screen of antimetabolite 

drugs based on analogues of riboflavin, nicotinamide, pyridoxine and thiamin using the 

minimal medium developed by Divo et al. [35] in order to enhance any parasiticidal 

activity. This study showed P. falciparum growth inhibition was most profound for 

riboflavin analogues (antagonists) over 96 hours in the minimal medium.

Dutta et al. [39] in 1985 put forward the hypothesis that interference with 

riboflavin metabolism could possibly provide protection against malaria. They suggest 

that metabolic inhibitors of riboflavin metabolism should be investigated for their 

therapeutic potential as antimalarial agents. They state [40] "investigation of the possible 

chemotherapeutic efficacy of metabolic inhibitors of riboflavin which may have selective 

antagonistic effects on Plasmodium is vital".

Cowden et al. [41] reported the results of an in vivo antimalarial screen using a 

range of riboflavin analogues. In that work they found 10-(4'-chlorophenyl)-3- 

methylflavin (Fig 1-3) to have significant activity against P. vinckei vinckei in mice and 

against P. falciparum in culture. They also showed that 10-(4'-chlorophenyl)-3- 

methylflavin was well tolerated at the doses needed to obtain cures. In a continuation of 

this work a number of analogues based on 10-(4'-chlorophenyl)-3-methylflavin were 

synthesised and tested by Cowden et al. [42]. In that paper they were able to undertake a 

limited structure activity relationship (S AR) study, the main conclusions of which were;
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(1) for compounds with 4'-halo substituents the order of antimalarial activity 

was Br > Cl > F,

(2) 2'-substituents lowered or abolished activity,

(3) the 3-methyl group was required for activity, and

(4) the halophenyl group had to be directly attached to the N-10 position to maintain 

activity.

Fig 1-3 Chemical structures of riboflavin and its antimalarial

analogue 10-(4'-chlorophenyl)-3-methylflavin

O O

C H 3N
hnA ^ n^ ^ ch

A 1
c h 21

H C - O HV
Cl

H C - O H

H C - O H

C H 2O H

10-(4,-chlorophenyl)-3-methylflavin riboflavin

1-3 Scope of this thesis

10-(4,-Chlorophenyl)-3-methylflavin represents a structurally novel antimalarial 

compound. The spread of drug resistance has heightened the need for new malarial 

drugs. With this in mind the present study was undertaken, primarily to investigate the 

structure activity relationship between analogues of the lead compound and their 

antimalarial activity. This was done to define the structural features required for activity 

and to find analogues with improved activity and reduced toxicity. Other aspects dealt 

with and discussed are the syntheses and some of the physical characteristics of these 

compounds, the electrophilic substitution of the parent structure (10-phenylflavin) and an 

investigation of a possible mode of action of these compounds.
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In Chapters 2 and 3 the effects of varying the substituents on the 10-phenyl ring, 

and at the 3-N position and the 10-phenyl ring together are examined.

In Chapters 4 and 5 the effect of altering ring-3 of the flavin moiety by adding 

substituents, making a 6,8-diaza analogue and removing the ring to produce a series of 

pteridine-2,4(3//,8//)-diones are examined.

In these chapters the results of andmalarial testing in the P. vinckei vinckei mouse 

model were the main measure of andmalarial activity. A number of the compounds were 

also tested for activity against chloroquine-sensitive and chloroquine-resistant 

P. falciparum in culture as well as for anti-HIV, anticoccodial and antibabesial activity.

In Chapter 6 the possibility that these flavins may be exerting their antimalarial 

action via the inhibition of host glutathione reductase is investigated and discounted.

Finally, the experimental details of the organic syntheses and most of biological 

testing of the earlier chapters are collated in Chapter 7.



CHAPTER 2
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CHAPTER 2 Syntheses and antimalarial activity of some 3-methyI-10- 

(substituted phenyl)flavins

2-1 Introduction

In view of the antimalarial activity of the lead compound 10-(4'-chlorophenyl)-3- 

methylflavin and the highly variable response achieved by alterations made on the 10-N- 

phenyl ring [42] it was decided to undertake a systematic study of substituents in this 

position (including a quantitative structure-activity relationship study). In this chapter the 

synthesis and antimalarial activity of the 3-methyl-10-(substituted phenyl)flavins are 

discussed. The *H n.m.r., 13C n.m.r. and ultraviolet and visible (UV) spectra of this 

class of compounds are described and discussed. Some of the compounds produced 

were screened for activity against, drug resistant P. falciparum, Babesia microti and HTV 

and the results discussed. Additionally some of the compounds were submitted for in 

vitro testing against Giardia intestinalis and a number of human tumour cell lines.



Scheme 2-1
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2-2 Syntheses

2- 2.1 Introduction

The large number of synthetic routes known for the production of the flavin ring 

system has mainly stemmed from the interest in the production of the important vitamin 

riboflavin and closely related derivatives. Kuhn and co-workers reported the first flavin 

synthesis in 1934 as part of the effort to characterise the structure of riboflavin [43,44]. 

The synthesis involved the condensation of 4,5-dimethyl-N-methyl-1,2-benzenediamine 

and alloxan to produce 7,8,10-trimethylflavin (lumiflavin).

The synthesis and chemistry of flavins are reviewed by Lambooy [43], and Ohta, 

Wrigglesworth and Wood [45]. A brief review of several methods of flavin synthesis 

found in the literature and their potential usefulness in regard to the aim of producing

3- methyl-10-(substituted phenyl)flavins is outlined in the following sections.

2-2.2 Literature methods

(i) The condensation of N-substituted 1,2-benzenediamine with various pyrimidines as 

depicted in Scheme 2-1 involves the formation of the central pyrazine ring and has been 

the most commonly used synthesis of flavins [43,46,47]. The various pyrimidines that 

can be used in this condensation include alloxan, N-substituted alloxans, alloxantin, 

dialuric acid, 5-halo and 5,5-dihalobarbituric acids. Varying degrees of success have 

been obtained with all of these pyrimidines though the most favoured seems to be 

alloxan. Boric acid has been found to catalyse this reaction. The major difficulty 

associated with this reaction is preparing the desired 1,2-benzenediamine starting 

material.
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(ii) The reaction of 2-arylazobenzenamine with barbituric acid illustrated in Scheme 2-2 

was shown by Tishler et al. [48] to be a convenient high yielding method of producing 

flavins, not requiring the less accessible and unstable 1,2-benzenediamine starting 

material used in method (i) above.

The production of the 2-arylazobenzenamine starting material is achieved by the 

coupling of an aryl diazonium salt to an N-substituted benzenamine. It is necessary to 

block the activated 4-position of the N-substituted benzenamine with a substituent to 

ensure the electrophilic aromatic substitution occurs at the 2-position. Experience has 

shown that 3,4-substituted N-substituted benzenamines usually give the best yields in 

this reaction [43]. The practical implication of this limitation in preparing the starting 

material for this synthetic route is that it is restricted to producing 7,8-disubstituted 

flavins.

Scheme 2-2



Scheme 2-4
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(iii) The condensation of 5-nitrosobarbituric acid (violuric acid) with an N-substituted 

benzenamine is a method of producing flavins from very readily available starting 

materials. Since this condensation shown in Scheme 2-3 can take place via either the 2 or 

6 position of the N-substituted benzenamine the possibility exists for the formation of 

two isomers, depending upon the pattem of substitution in the benzene ring of the 

N-substituted benzenamine.

Scheme 2-3

Ac-
R

(iv) The preparation of flavins from quinoxalines involves the construction of the 

pyrimidine ring. There are only a few reports in the literature using this method of 

producing flavins. A novel route (Scheme 2-4a) used by Clerin et al. [49] involved the 

preparation of a 10-substituted 3-phenylflavin from the intermediate methyl l-alkyl-2- 

amino-l,5,6,7-tetrahydro-3-quinoxaline carboxylate by reaction with phenylisocyanate, 

followed by cyclization in the presence of triethylamine and subsequent dehydrogenation. 

Smith and Bruice [50] showed that the alkaline hydrolysis of a flavin (Scheme 2-4b) lead 

to the formation of a 2-(N-methylureido)-l-substituted quinoxaline-3-carboxylic acid. 

This reaction was reversible under acidic anaerobic conditions. This reaction shows that 

the appropriate quinoxaline intermediate for the synthesis of flavins would probably 

require a 3-carboxylic acid functionality. The synthesis of such quinoxalines usually 

involves a 1,2-benzenediamine starting material [51].



24

(v) Birch and Moye [52] found they could produce flavins by reacting 5-amino-6-(N- 

substituted amino)uracil with the biacetyl dimer as its hemiacetal. This, as shown in 

Scheme 2-5a, leads to the formation of a pteridine-2,4(3//,8//)-dione intermediate that 

readily undergoes cyclization to give the corresponding flavin. A variation on this 

procedure, depicted in Scheme 2-5b, involves the condensation of monomeric biacetyl 

with a 6,7-dimethylpteridine-2,4(3//,8//)-dione to form a 7,8-dimethylflavin [43,53].

Scheme 2-5 
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(vi) The condensation of 5-amino-6-(N-substituted amino)uracils with the dimer of 

3,4-dimethyl-1,2-benzoquinone has produced flavins in reasonable yields [54].

However, this reaction, shown in Scheme 2-6, seems to be restricted to the production of 

7,8-disubstituted flavins as 1,2-benzoquinone is reported [43,55] not to react with 

5,6-diaminouracils to form flavins. This could possibly be due to oxidation of the 

diaminouracils by the monomeric 1,2-benzoquinone [43,56].

Scheme 2-6

O O

dimer

(vii) Yoneda et al. [57] have shown that 6-(N-substituted anilino)uracils, upon 

nitrosation or nitration of the 5 position and subsequent cyclization, give 10-substituted 

flavin 5-N-oxides which are easily reduced to the corresponding flavins (Scheme 2-7a). 

Sakuma et al. [58], using a similar method, unsuccessfully attempted to produce 

3-methyl-10-phenylflavin by cyclization of 3-methyl-5-nitro-6-diphenylaminouracil. 

However, the expected flavin was obtained by reduction of the 5-nitro group to 5-amino 

followed by autoxidation (Scheme 2-7b). The 3-methyl-5-nitro-6-diphenylaminouracil 

used in this reaction was produced by condensation of 6-chloro-3-methyl-5-nitrouracil 

with N-phenylbenzenamine. This route was used probably as a consequence of the 

reported failure of the nucleophilic substitution of the less reactive 6-chlorouracils by 

N-phenylbenzenamines [59,60].
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(viii) A procedure pioneered by Yoneda et al. [60,61] specifically designed for the 

production of 10-arylflavins, involves the condensation of a 6-anilino-3-methyluracil with 

nitrosobenzene. The mechanism of the reaction suggested by Yoneda et al. [60] is shown 

in Scheme 2-8. It involves the formation of a 5-hydroxylamino intermediate followed by 

dehydration and cyclization to a 1,5-dihydroflavin, which is dehydrogenated with excess 

nitrosobenzene to the corresponding flavin.

(ix) The most recent new synthesis of flavins is reported by Sako et al. [62]. It involves 

the oxidative cyclization of 6-(substituted amino)-5-anilinouracils by heating in the 

presence of oxygen as seen in Scheme 2-9. The virtue of this method lies in the fact that 

the 10-N substituents and ring-3 of the flavin are introduced into the molecule in the form 

of primary amines and anilines, respectively, of which many substituted forms are 

commercially available. This allows a great variety of substituents to be introduced into 

these positions.

Scheme 2-9
O O
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2- 2.3 L iterature summary

The overall synthetic goal outlined in this chapter was to produce a large number of

3- methyl-10-(substituted phenyl)flavins. Of the literature methods discussed above, 

methods (ii), (v) and (vi) were deemed unsuitable as they are apparently restricted to the 

production of 7,8-disubstituted flavins. For 10-(substituted phenyl)flavin synthesis, 

methods (iii) and (vii) would require the often difficult to make N-(substituted 

phenyl)benzenamine starting material. Here, the appropriately substituted benzene is 

required to form the 10-phenyl ring of the flavin while the unsubstituted benzene ring 

forms the ring-3 of the flavin, however, the reverse of this can also occur, generating 

isomers for both routes. These two methods, therefore, were deemed not worthy of 

pursuit Methods (i) and (iv) would require the difficult and time consuming synthesis of 

N-(substituted phenyl)-1,2-benzenediamine starting materials for each 10-(substituted 

phenyl)flavin produced. Methods (i) and (iv) were therefore considered impractical 

because of the large number of flavins planned for synthesis. From Schemes 2-8 and 2-9 

it can be seen the remaining two methods (viii) and (ix) would use the common 

intermediate 6-(substituted anilino)-3-methyluracil. Method (viii) was considered 

superior to method (ix) for the present series because method (ix) has an additional two 

synthetic steps in the production of the flavins. Furthermore, method (viii) was 

considered the most appropriate reaction for the following reasons:

1) This reaction has been proven to be reliable in the production of 3-methyl-10- 

(substituted phenyl)flavins in reasonable yields [42].

2) The 10-substituted phenyl group can be introduced into the reaction sequence 

usually in the form of a commercially available aniline.

3) The site of variation in the molecule is added at the second last synthetic step 

allowing the use of a common starting material until late in the reaction sequence.
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2-2.4 Synthesis description

The majority of the 3-methyl- 10-(substituted phenyl)flavins (2.5) described in this 

chapter were formed by the condensation of 6-(substituted anilino)-3-methyluracil (2.4) 

with three equivalents of nitrosobenzene in the presence of acetic anhydride, essentially 

according to the method of Yoneda et al. [60]. The starting materials, methylurea, 

malonic acid, substituted anilines (excepting 2.3u and 2.3w) and nitrosobenzene, for 

the four step sequence outlined in Schemes 2-10 and 2-11 are commercially available.

Methylurea and malonic acid were cyclized to N-methylbarbituric acid (2.1) by the 

slow addition of the condensing agent, acetic anhydride, at 60° as described by Stein et al. 

[63]. This method was used in preference to the more common preparation of barbituric 

acids of condensation of malonic esters with urea or alkylated urea in the presence of 

sodium alkoxide. As this latter method has been reported to be less satisfactory in the 

preparation of N-methylbarbituric acid [63,64 a].

The monochlorination at the 6-position of N-methylbarbituric acid (2.1) was 

achieved by refluxing the barbituric acid in a mixture of phosphorus oxychloride and 

water [65,66].

Scheme 2-10
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e 2,4-Me2 w 4-Cl,3-Me nn 3-SMe
f 3,4-Me2 X 4-Cl,2-F oo 4-SMe
1

2-Et dd 3,4-F2 qq 4-CN
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Initially some of the 6-(substituted anilino)-3-methyluracils were prepared by 

heating three equivalents of the appropriate aniline with 6-chloro-3-methyluracil (2.2). 

This method, which was described previously [42,60,67,68], called for an excess of the 

aniline to be used. This procedure, in synthetic terms is satisfactory, however some of 

the aniline starting materials were either expensive or less readily available synthetically, 

therefore a new method was devised to conserve them. The latter consisted of reacting 

molar equivalents of the chlorouracil 2.2 and the appropriate aniline nucleophile 2.3 in 

the presence of two molar equivalents of N,N-diethylaniline. This method proved 

satisfactory, giving equivalent yields and fewer coloured by-products than the original 

method.

4-Chloro-3-methylaniline (2.3w) and 3-chloro-5-methylaniline (2.3u) were 

required reagents that were not available commercially. The 4-chloro-3-methylaniline 

was prepared according to a literature procedure [69] in which 2-methyl-4-nitroaniline is 

converted, via the Sandmeyer reaction to 2-chloro-5-nitrotoluene and the latter chemically 

reduced to the desired aniline. The 3-chloro-5-methylaniline was prepared according to 

the method of Browne and Dyson [70]. In that paper the starting material is misnamed as

5- nitro-o-toluidine instead of 4-nitro-o-toluidine (2-methyl-4-nitroaniline). The method 

of preparation involved the chlorination of 2-methyl-4-nitroaniline with potassium 

chlorate to give 2-chloro-6-methyl-4-nitroaniline. The latter was converted to the 

diazonium salt, the diazonium group was replaced with hydrogen by the action of sulfuric 

acid to give 3-nitro-5-chlorotoluene which was then chemically reduced to give the 

required aniline.

A number of the 3-methyl-10-(substituted phenyl)flavins were not synthesized by 

the method above. These were the 4'-NMe2 (2.5jj), 2',6'-Me2 (2.5h), 3'-NC>2 

(2.5ii), 4*-CC>2H (2.5rr) and 4'-SC>2Me (2.5pp) substituted compounds.

Attempts to condense 6-(4'-dimethylaminoanilino)-3-methyluracil with 

nitrosobenzene failed to give the expected product, possibly due to the activation of the

6- anilino ring to electrophilic substitution by the N,N-dimethylamino substituent. An 

alternate route (see sections 2-2.2(i), 3-2 and Scheme 2-12) involving the reaction of the 

N-^'-aminophenyty-N'jN’-dimethyl-M-benzenediamine and alloxan with boric acid as



Scheme 2-12

N(CH3)2 N(CH3)2
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a catalyst was undertaken. This gave the 10-(4'-dimethylaminophenyl)flavin which was 

then methylated with methyl iodide to give 10-(4'-dimethylaminophenyl)-3-methylflavin 

(2.5jj).

The 4'-C02H (2.5rr), 4'-SC>2Me (2.5pp) and 3'-N02 (2.5ii) substituted 

10-phenylflavins were derived from existing flavins. The 4'-carboxylate 2.5rr was 

prepared in good yield by acid hydrolysis of the corresponding nitrile 2.5qq. The 

4'-methylsulfonyl analogue 2.5pp was readily prepared by the action of peroxyacetic 

acid on the 4'-methylthio compound 2.5oo. The 3'-nitro compound 2.5ii was prepared 

from 10-phenylflavin by nitration with a mixture of nitric and sulfuric acid (nitronium 

ion) to give the 10-(3’-nitrophenyl)flavin. Methylation of this flavin gave 3-methyl-10- 

(3'-nitrophenyl)flavin (2.5ii). The electrophilic substitution of 10-phenylflavin is 

discussed in more detail in section 3-3.

The nucleophilic substitution of 6-chloro-3-methyluracil by 2,6-dimethylaniline 

failed to occur under the conditions used. This may be due to the steric hindrance 

occasioned by the two methyl groups ortho to the attracting amino group. The 2',6'-Me2 

compound 2.5h used in this study was a generous give from Dr F. Yoneda b . Two 

different syntheses for this compound have been reported by Sako et al. [62] and Main, 

Kasperek and Bruice [47].

Some flavins used in this study were made by Dr W. B. Cowden and are 

acknowledged as such.

The experimental details of the above section can be found in section 7-2.

b Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606, Japan.



2-3 Physical properties 

2-3.1 General

All the flavins are yellow high melting crystalline solids which are highly 

fluorescent under long wave ultraviolet light (ca 365 nm).

2-3.2 Nuclear magnetic resonance spectra 

(i) 1H Nuclear magnetic resonance

The signal due to the 3-N methyl group of this series appears as a singlet located 

between 3.24-3.27 ppm (Table 2-1). This methyl peak appears typically downfield 

because of the electron withdrawing effects of the neighbouring nitrogen and the two 

adjacent ß carbonyl groups.

The hydrogen atoms on the benzenoid ring-3 of the flavin differ enough in their 

electronic environments to allow accurate assignment of peaks. The peak for H 6 appears 

downfield between 8.20-8.28 ppm as a doublet, the signal for H 7 is a triplet with a shift 

range of 7.62-7.68 ppm, the signal from H 8 also occurs as a triplet between 7.76-7.80 

ppm and the signal due to H 9 is a doublet occurring considerably upfield at 6.70-7.00 

ppm. The spectral data of these hydrogen atoms are presented in Table 2-1. The 

resonance from H 9 has the largest range of chemical shifts of these four hydrogen atoms 

as it is in closest proximity, and most subject to effects of the 10-phenyl ring and the 

various electron withdrawing and donating groups present there.

The simple splitting pattem (apparently first order) that occurs in this spin system 

results from the almost equal coupling constants Jöj = J7,8  = ^8,9 = 8 Hz, the small 16,8 

and J7 ,9 coupling constants of approximately 1 Hz and the relative spread of chemical 

shifts of the peaks. The simulated splitting pattem c based on the above information 

about peak positions and coupling constants for 10-(3',5'-dimethylphenyl)-3- 

methylflavin (2.5g) and assuming an ABCD spin system is shown in Fig 2-lb.
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c Kindly run by Ms P. T. Culnane, University Nuclear Magnetic Resonance Centre, The Australian 
National University, using a Gemini 300 spin simulator.



Table 2-1: *H nana*, spectral data (S)a for 3-methyl-10-(substituted 

phenyDflavins

w  5

:h3n̂ Y NY^1 7

8

a Chemical shifts reported as parts per million (8) in CD3SOCD3. b Peaks appear as 
singlets with integration of 3H. c Peaks appear as doublets with integration of 1H, 
and J8,9 are 8.0 Hz.d Peaks appear as triplets with integration of 1H, 17$ is 8.0 Hz. 
e Peak obscured by hydrogen atom peaks of the 10-phenyl ring. f Compound provided 
by Dr W. B. Cowden. 8 Also synthesised in Chapter 3. h Compound provided by Dr F. 
Yoneda.
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Compound
no.

(X)n 3-N M eb H 6 c H 7 d H 8 d H 9 c

2.5a f .g H 3.25 8.24 e e 6.78
2 .5 b 2-Me 3.24 8.24 e e 6.70
2 . 5 c 3-Me 3.26 8.24 e e 6.82
2.5d f 4-M e 3.26 8.23 7.63 7.78 6.84
2 . 5 e 2,4-(Me)2 3.25 8.24 7.63 7.76 6.74
2 . 5 f 3,4-(Me)2 3.24 8.22 7.62 7.76 6.84
2 .5 g  f 3,5-(Me)2 3.26 8.23 7.64 7.78 6.84
2.5h h 2,6-(Me)2 3.27 8.28 7.67 7.80 6.70
2 .5  i 2-Et 3.25 8.24 e e 6.71
2.5j f 3-Et 3.27 8.22 7.64 7.78 6.80
2 .5 k 4-Et 3.25 8.23 7.63 7.77 6.81
2.51 f 4-/i-butyl 3.25 8.22 7.62 7.77 6.79
2 .5m  f 2-CI 3.25 8.28 e e 6.90
2.5n f 3-C1 3.25 8.25 e e 6.98

2 .Sof 4-C1 3.25 8.24 7.64 e 6.88
2.5p f 2,4-Cl2 3.25 8.28 e e 6.90
2.5q f 2,5-Cl2 3.25 8.28 e e 6.91
2.5r f 3,4-Cl2 3.26 8.25 7.66 7.79 6.99
2.5s  f 3,5-Cl2 3.26 8.26 e 7.81 7.00
2 .5 t 3-C l,4-M e 3.26 8.25 e e 6.91
2 .5 u 3-Cl,5-M e 3.25 8.24 7.65 7.79 6.89
2 .5v  f 4-C l,2-M e 3.25 8.25 e e 6.79
2 . 5 w 4-C l,3-M e 3.25 8.23 7.63 e 6.89
2 . 5 x 4-Cl,2-F 3.24 8.25 e e e
2 .5 y  f 4-Cl,3-CF3 3.26 8.26 e e 6.97
2 .5z  f 3-Br 3.25 8.24 e e 6.86
2.5aa f 4-Br 3.25 8.24 7.64 7.77 6.87
2.5bb f 3-F 3.25 8.24 e e 6.87
2 .5cc  f 4-F 3.25 8.23 7.63 7.77 6.85
2 .5 d d 3,4-F2 3.25 8.24 e e 6.96
2 . 5 e e f 3-OMe 3.25 8.23 e 7.78 6.86
2 .5 f f  f 4-OMe 3.25 8.21 7.62 7.77 6.87
2 - 5 g g 3,5-(OMe)2 3.26 8.22 7.64 7.79 6.94
2 .5 h h 4-OH 3.24 8.20 7.62 7.77 6.89
2 .5 i i 3-NO2 3.26 8.27 7.66 7.77 6.91
2.5jj 4-NMe2 3.25 8.21 7.62 7.77 e
2.5kk f 3-CF3 3.26 8.26 e e 6.81
2.511 4-CF3 3.25 8.21 e e 6.83
2 .5m m  f 3,5-(CF3)2 3.26 8.28 7.68 7.80 6.96
2 .5 n n 3-SM e 3.26 8.24 e 7.80 6.86
2 . 5 o o 4-SM e 3.25 8.23 7.63 7.77 6.88
2 .5 p p 4 -S 0 2Me 3.25 8.25 e e 6.82
2 .5 q q 4-CN 3.25 e e e 6.83
2.5rr 4-CO2H 3.25 e 7.64 7.76 6.82
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This simulated pattern verifies the assignment of the two doublets and two triplets in the 

observed spectrum (Fig 2-la). In the better resolved spectra the fine structure due to the 

long range hydrogen atom coupling can usually be seen and is similar to that in the 

simulated splitting pattern shown in Fig 2-lb.

The above assignments of peaks for the ring-3 hydrogens are in agreement with 

those made by Grande et al. [71] in their n.m.r. study of methyl substituted flavins. 

Furthermore, the *13 n.m.r. spectra of flavins substituted in the 7, 8 and 9 positions 

(discussed in section 4-3.1) are consistent with the assignments given. A decoupling 

experiment on 10-(2',6'-dimethylphenyl)-3-methylflavin (2.5h) in which the peak from 

H 6 was decoupled, resulted in the collapse of the H 7 triplet to a doublet while the 

decoupling of the peak from H 9 resulted in the collapse of the H 8 triplet to a doublet. 

This further confirms the assignment of the signals and splitting pattem of the spin 

system due to H 6, 7, 8 and 9.

The coupling and shifts of the variously substituted 10-phenyl rings are presented 

in Table 2-2. The chemical shifts, splitting patterns and integration of the 10-phenyl 

hydrogen atom peaks are consistent with the electronic nature of their substituents and 

substitution pattem. The peaks due to substituents ((X)n) containing hydrogen atoms are 

also in agreement with their assigned structure.

The multiplicity and integration of the most upfield peak in the 10-phenyl spin 

system of the following compounds indicate these upfield peaks are due to H 2’ (when 

present) and H 6':

(1) 2.5a (unsubstituted) in which it appears as a doublet that integrates for 

2H;

(2) 2.5g (3',5’-Me2), 2.5s (3\5’-Cl2), 2.5gg (3',5’-(OMe)2) and 

2.5mm (3',5’-(CF3)2) in which it appears as a singlet that integrates for 

2H; and

(3) 2.5b (2'-Me) and 2.5i (2'-Et) in which it appears as a doublet that 

integrates for 1H.



Table 2-2: 1H narur. spectral data (5)a for 3-methyl-10-(substituted

phenyDfiavins

a Chemical shifts reported as parts per million (8) in CD3SOCD3. b Data are presented in the following 

form; chemical shift, multiplicity, coupling constants (where appropriate) and integration. The following 

abbreviations were used: s (singlet); d (doublet); t (triplet); q (quartet); qu (quintet); sex (sextuplet); com 

(complex); and in cases where the coupling constants are the same in a spin system it is presented lastly. 

c For some compounds the hydrogen atom signals of the H 6,7 , 8 and/or 9 are inseparable from signals 

from the 10-phenyl hydrogen atoms. In these cases those signals which were not included in Table 2-1 

are incorporated in this column and are apparent by integration. d Also synthesised in Chapter 3. 

e Compound provided by Dr W. B. Cowden. f Compound provided by Dr F. Yoneda. S Two symmetrical 

doublets seem to be present within this complex splitting pattern.

4'



36

Cm pd
no.

(X)n (X )„ b 10-Substituted phenyl b’c

2 .5 a  d ’e H 7.43 d 8.0 Hz 2H , 7.60-7.81 com  5H
2 .5 b 2-M e 1.95 s 3H 7.30 d 7.0 H z 1H, 7 .46-7.84 com  5H
2 .5 c 3-M e 2.44 s 3H 7.20-7.84 com  6H

2 .5 d  e 4-M e 2.47 s 3H 7.32 d 2H , 7.53 d 2H  8.2 Hz
2 .5 e 2,4-(M e)2 1.90 s 3H , 2 .42 s 3H 7.14-7.35 com  4H
2 . 5 f 3,4-(M c)2 2.31 s 3H, 2 .36 s 3 H 7.11-7.49 com  4H

2 .5 g  e 3,5-(M e)2 2.39 s 6H 7.04 s 2 H , 7.31 s 1H

2 .5 h  f 2 ,6 -(M e)2 1.88 s 6H 7.36-7.52 com  4H
2 .5  i 2-E t 0.98 t 3H, 2.28 q 2H  7.6 Hz 7.29 d 8.0 Hz 1H, 7.46-7.84 com  5H

2 .5 j  e 3-Et 1.25 t 3H , 2.75 q  2H  7.6 Hz 7.24-7.55 com  4H
2 .5 k 4-E t 1.23 t 3H , 2.77 q 2H  7.6 Hz 7.33 d 2 H , 7.55 d 2 H  8.2 Hz

2 .51  e 4-n-butyl 0.95 t 3H , 1.40 sex 2H .1.68 
qu 2H , 2.73 1 2H  7.6 H z

7.32 d 2H , 7.53 d 2H  8.2 Hz

2 .5 m  e 2-C1 - 7.56-7.92 com  6H

2 .5 n  e 3-C1 - 7.42-7.84 com  6H

2 .5 o  e 4-C1 - 7.48 d  2H , 7.81 d  3H  8.6 Hz

2 .5 p  e 2 ,4 -C l2 - 6.60-8.13 com  5H

2 .5 q  e 2 ,5 -C l2 - 7.64-7.97 com  5H

2 .5 r  e 3 ,4 -C l2 - 7.50 d  1H, 7.84 s 1H, 8.03 d 1H 8.5 Hz

2 .5 s  e 3 ,5 -C l2 - 7.65 s 3H , 8.02 s 1H
2 . 5 t 3-C l,4-M e 2.50 s 3H 7.33-7.83 com  5H
2 .5 u 3 -C U -M e 2.43 s 3H 7.25 s 1H, 7 .40 s 1H, 7.61 s 1H

2 .5 v  e 4 -C U -M e 1.96 s 3H 7.56-7.83 com  5H
2 .5 w 4-C l,3-M e 2.43 s 3H 7.31 d  7.8 H z 1H, 7.44 s 1H, 7.79 d 8.2 Hz 2H
2 .5 x 4 -C U -F - 6.24-7.98 com  6H

2 .5 y  e 4 -C l,3 -C F 3 - 7.62-7.86 com  3H

2 .5 z  e 3*Br - 7.47-7.92 com  6H

2 .5 a a  e 4-Br - 7.41 d 2 H , 7.94 d 2 H  8.8 H z

2 .5 b b  e 3-F - 7.30-7.86 com  6H

2 .5 c c  e 4 -F - 7.46-7.60 com  4H
2 .5 d d 3 ,4 -F 2 - 7.31-7.92 com  5H

2 .5 e e  e 3-OM e 3.80 s 3H 6.98-7.67 com  5H

2 .5 f f  e 4-OM e 3.88 s 3H 7.24 d 2H , 7.35 d  2H  9.4 Hz
2 .5 g g 3,5-(O M e)2 3.78 s 6H 6.21 s 2H , 6.79 s 1H
2 .5 h h 4-OH - 7.03 d 2 H , 7.20 d 2 H  8.8 Hz
2 . 5 i i 3 -N 0 2 - 7.61-8.11 com  6H
2 . 5 j j 4 -N M e2 3.02 s 6H 6.94 d  3H , 7.17 d 2H  9.0 Hz

2 .5 k k  e 3-C F 3 - 7.61-8.11 com  6H
2 .511 4-CF3 - 7 .65-8.16 com  6H  g
2 .5 m m  e 3 ,5-(C F 3)2 - 8.33 s 2H , 8.55 s 1H
2 .5 n n 3-SM e 2.51 s 3H 7.19-7.71 com  5H
2 . 5 o o 4-SM e 2.59 s 3H 7.35 d 2 H , 7.57 d 2 H  8.4 Hz
2 .5 p p 4 -S 0 2M e 2.92 s 3H 7.60-8.10 com  6H
2 .5 q q 4-C N - 7.60-8.27 com  7H  g
2 .5 r r 4 -C O 2H * 7.56 d 2H , 8.26 d  3H  8.6 Hz



Table 2-3: Comparison of the chemical shift (ppm) of the carbon

atoms in 3,10-dimethylflavin a and (3',5’-dimethyIphenyl)- 

3-methylflavin

JL
3,10-dimethylflavin

7

8

Carbon 3,10-dimethyflavin b 2.5g c

C 2 156.6 155.1
C 4 160.3 159.3
C 4a d 138.4
C 5a 136.2 134.8
C 6 133.5 131.3
Cl 127.2 126.0
C 8 136.4 134.8
C 9 115.8 116.9
C 9a 133.8 133.9
C 10a 149.7 150.1
c  r - 135.7
C 2',6’ - 124.9
C 3',5' - 139.8
C 4' - 131.2
NCH3 28.8 28.0
3,5-(CH3)2 - 20.8
10-CH3 32.3 -

a Spectral data for 3,10-dimethylflavin obtained from reference [74].b Spectrum obtained 
in the solvent mixture CDCI3/CD3OD on a Varian XL 100 spectrometer. c Spectrum 
obtained in CD3SOCD3 on a Varian VXR 300 spectrometer. d Not observed.
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Most of the 4'-substituted 10-phenyl hydrogen atom peaks have a splitting pattern of two 

symmetrical doublets characteristic of para disubstituted benzene (either an AA'BB' or 

AA’XX' system).

(ii) 13C Nuclear magnetic resonance

A carbon-13 spectrum was run on 10-(3,,5'-dimethylphenyl)-3-methylflavin 

(2.5g) as a representative of this series. The spectrum revealed three carbon peaks at 

low field (159.3, 155.1 and 150.1 ppm), eleven peaks between 116 and 140 ppm and, 

two high field peaks at 28.0 and 20.8 ppm (Fig 2-2a,b).

The peak at 28.0 ppm was assigned to the deshielded 3-N methyl carbon and the 

intense peak at 20.8 ppm was assigned to the two equivalent carbons of the 3',5'- 

dimethyl groups on the 10-phenyl ring.

The tertiary carbons were unambiguously assigned with the aid of a two 

dimensional heteronuclear one-bond correlations plot (HETCOR) d . Fig 2-3 shows the 

HETCOR spectrum of the aromatic region of the hydrogen and carbon spectra making it 

possible to relate the assigned hydrogen spectrum to the carbon spectrum. The 

assignments made using the HETCOR spectrum for carbons 6, 7, 8, 9, 2’, 6' and 4' are 

shown in Table 2-3.

A hydrogen-detected carbon-13 heteronuclear multiple bond correlation (HMBC) 

experiment was also run on this compound d. The HMBC was used to detect long range 

carbon hydrogen atom coupling connectivities while suppressing the one bond coupling 

[72]. The aromatic region of this spectrum shown in Fig 2-4 consisted of a number of 

cross peaks (the intensity of which reflects the size of the long-range coupling) which are 

mostly due to three bond carbon-hydrogen coupling. These cross-peaks confirmed the 

assignment of the above tertiary carbons and allowed the assignment of the quartemary

d Kindly run by Ms P. Simmonds, University Nuclear Magnetic Resonance Centre, The Australian 
National University, using a Varian VXR 300 spectrometer.
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Figure 2-4 Two dimensional HMBC spectrum of 10-(3',5'- 

dimethylphenyI)-3-methy!flavin (2.5g)

H 2', 6'
H 4'



42

carbons 5a and 9a (Table 2-3). Carbon C-T was assigned on the basis of the weak cross 

peak between the resonance at 135.7 ppm and the hydrogen atom peak assigned to H 2\

6'. This cross-peak is due to two-bond coupling and agrees with the fact that two-bond 

coupling constants are usually smaller than three-bond coupling constants in aromatic 

systems [73].

The carbon peak at 139.8 ppm which integrated for 2 carbons was assigned to the 

equivalent quartemary carbons C-3' and C-5'.

Of the remaining four unassigned peaks carbons 2, 4 and 10a were assigned on 

the basis of the assignments made by Grande et al. [74] who used 13C enrichment 

techniques to study 3,10-dimethylflavin. By the process of elimination the resonance at 

138.4 ppm was assigned to C-4a. For comparison the assignments made by Grande et 

al. are given in Table 2-3. It can be seen that even though a different solvent system was 

used and the substituent at the 10-position is different there is good agreement between 

the two sets of peak positions.

2-3.3 Ultraviolet and visible spectra

The ultraviolet and visible (UV) spectral data for the 3-methyl-10-(substituted 

phenyl)flavins series are recorded in Table 2-4. The spectra consist of an intense broad 

peak at 263-270 nm (log e 4.27-4.69) and two well separated broad peaks at 326-340 nm 

(log e 3.60-4.00) and 436-442 nm (log e 3.65-4.05). These spectra are typical of the 

flavin chromophore and compare well with the ultraviolet and visible spectra of similar 

compounds reported by Yoneda et al. [60].

2-3.4 Mass spectra

The mass spectrum of 10-(4'-chlorophenyl)-3-methylflavin (2.5o) is discussed in

section 3-4.2.



Table 2-4: Ultraviolet and visible maxima of the 3-methyI-10-

(substituted phenyl)flavins a

a Experimental details are given in section 7-1. b Also synthesised in Chapter 3. 
c Compound provided by Dr W. B. Cowden. d Compound provided by Dr F. Yoneda. 
e Data taken from reference [42] and included for comparison and completeness.
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Compound no. (X)n X max nm (log e) (EtOH)

2.5a b>c 
2.5b  
2.5c  
2.5d c 
2.5e  
2 .5 f  
2.5g c 
2.5h d
2.5 i 
2.5j c 
2.5k  
2.51 c 
2.5m e 
2.5n e 
2.5p e 
2.5q e 
2.5r e 
2.5s e 
2.5t 
2.5u  
2.5v e
2.5 w 
2.5x  
2.5y c 
2.5z e 
2.5aa e 
2.5bb e 
2.5cc e 
2.5dd  
2 . 5 e e c 
2.5ff c 
2.5gg  
2.5hh
2.511 
2.5jj 
2.5kk c
2.511 
2.5mm c 
2.5nn  
2.5oo  
2.5pp  
2.5qq  
2.5rr

H
2- CH3
3- CH3
4- CH3
2.4- (CH3)2
3.4- (CH3)2
3.5- (CH3)2
2.6- (CH3)2
2- CH2CH3
3- CH2CH3
4- CH2CH3 
4-n-butyl
2- C1
3- C1
2.4- 0 2
2.5- Cl2
3.4- Cl2
3.5- Cl2 
3-Cl,4-CH3
3- Cl,5-CH3
4- Cl,2-CH3 
4-Cl,3-CH3 
4-C1.2-F 
4-Cl,3-CF3
3- Br
4- Br
3- F
4- F
3.4- F2
3- OCH3
4- OCH3
3.5- (OCH3)2 
4-OH
3- NO2
4- N(CH3)2
3- CF3
4- CF3
3.5- (CF3)2
3- SCH3
4- SCH3 
4-SO2CH3 
4-CN 
4-C02H

270 (4.27) 
269 (4.55) 
269 (4.48) 
269 (4.50)
269 (4.49)
270 (4.49) 
269 (4.52) 
269 (4.53)
269 (4.54)
270 (4.44) 
270 (4.50) 
270 (4.61) 
269 (4.48) 
269 (4.43)
268 (4.38)
269 (4.33)
268 (4.30) 
267 (4.36)
269 (4.51) 
269 (4.50) 
269 (4.39) 
269 (4.53) 
267 (4.52)
267 (4.25) 
269 (4.40)
268 (4.41)
268 (4.46)
269 (4.36) 
269 (4.47)
269 (4.55)
270 (4.54)
269 (4.54)
270 (4.50) 
265 (4.56) 
265 (4.69) 
269 (4.49) 
269 (4.50)
263 (4.43)
264 (4.59)
265 (4.52) 
267 (4.50) 
265 (4.48) 
269 (4.51)

332 (3.60)
334 (3.94) 
330 (3.85)
335 (3.96) 
334 (3.83) 
334 (3.84) 
334 (3.86) 
334 (3.94)
336 (3.97)
333 (3.85)
334 (3.87) 
334 (3.97) 
338 (3.90)
338 (3.85)
339 (3.86)
340 (3.78) 
340 (3.72) 
339 (3.78) 
336 (3.91) 
333 (3.90) 
339 (3.78)
333 (3.93)
336 (4.00)
332 (3.68)
338 (3.80)
337 (3.85) 
336(3.88)
339 (3.74)
334 (3.93)
333 (3.89)
335 (3.89)
334 (3.89) 
334 (3.86) 
334 (3.93) 
326 (3.86) 
333 (3.90) 
333 (3.88) 
333 (3.90)
333 (3.88)
334 (3.74)
335 (3.88) 
334 (3.90)
336 (3.87)

439 (3.65) 
439 (4.03) 
439 (3.89) 
441(3.96)
439 (3.94)
440 (3.93) 
440 (3.96)
437 (3.99) 
439 (4.03)
439 (3.81)
440 (3.94) 
440 (4.05)
438 (4.00) 
438 (3.93)
437 (3.96)
438 (3.89)
439 (3.85)
438 (3.90)
439 (3.99) 
438 (3.97)
438 (3.89)
439 (4.00) 
437 (4.05)
437 (3.73)
439 (3.90)
440 (3.93)
436 (3.94)
438 (3.86)
437 (3.97)
440 (3.97)
441 (3.98) 
440 (3.99)
442 (3.92)
438 (4.00) 
437 (3.95)
437 (3.98)
438 (3.95)
437 (3.98) 
440 (3.95) 
440 (3.98)
438 (3.99) 
437 (3.96) 
440 (3.97)
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The host specificity of the malaria parasite precludes the direct experimental study 

of human species of Plasmodium in vivo. The most commonly used in vivo models are 

the murine malarias as they are easily and relatively inexpensively maintained in the 

laboratory. The P. vinckei vinckei parasite was selected as an appropriate malaria model 

as it causes a virulent, fulminating and lethal infection, characteristics which make it 

suitable for chemotherapeutic studies. P. vinckei vinckei was first isolated from Shaba, 

Zaire and adapted to mice in 1952. Since then it has been used successfully in numerous 

malaria studies [10b]. This model provides a simple convenient method of monitoring 

blood schizontocial activity which has been shown to correlate well with antimalarial 

activity in primates [75].

2-4.2 Method

In this model the infection (after inoculation of CB A mice) was allowed to reach 

15 to 35% parasitemia when a single dose of the test compound was injected 

intraperitoneally. The groups of mice at each dose usually consisted of 4 to 6 animals. 

The three criteria used to judge the activity of compounds were the per cent of animals 

cured, the increase in mean survival time compared to controls and the percentage 

parasitemia on day two after treatment A control was provided by injecting vehicle 

alone, here there was a 100% mortality three days after treatment. The parasitemia on day 

two after treatment of the control animals was 79 ± 6% (n = 40). A test compound was 

considered toxic if it either reduced mean survival time or treated animals died even 

though parasite counts on day two were low enough to indicate that the mice should have 

been cured of the infection.

The experimental details of the murine model are given in section 7-3. l(i).
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Figure 2-5 Dose response curves for compounds 2.5gg (3',5'-(OMe)2) 

and 2.5o (4'-Cl)

Dose (mg/kg)

150

Each datum point represents the parasitemia of a single mouse on day two after treatment. 
The dose response curves shown here are for illustrative preposes only. See section 
7-3. l(i) for experimental details.
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2-4.3 Results

Tables 2-5 and 2-6 show the average per cent survival and the average mean 

extension in lifespan at doses ranging from 10 to 140 mg/kg for this flavin series (2.5a- 

2.5rr). Some of the flavins in these tables have been previously tested by Cowden et al. 

[42] and are indicated as such; these compounds in Table 2-5 were retested to allow direct 

comparison of biological activity between the new compounds and the previously 

reported compounds. Table 2-6 contains all those flavins with a 2'-substituent; the 

biological data of the compounds with substituents 2',4'-Cl2 (2.5p) and 2 '-CH3t 4'-Cl 

(2.5v) from the previous study are included for comparison.

Two examples of dose-response curves of the flavins 2.5gg and 2.5o are shown 

in Fig 2-5, in which the response is per cent parasitemia on day two after treatment

The ED40 value is the effective dose in mmoles/kg required to obtain a parasitemia 

of 40% on day two. The ED40 values were used as a measure of the relative 

schizontocidal activity of the active flavins. These values were estimated by interpolation 

from linear regression analysis of the logit biological response (log p/(100-p), where p is 

the parasitemia of individual mice on day 2) versus dose. The regression was restricted 

to the linear part of the plot corresponding to the change in activity. Alternate ED40 

values were also obtained using a similar technique except that logit biological response 

versus log dose were used. These values were similar to the other ED40 values, 

however, the fits were slightly poorer and, therefore, the logit biological response versus 

dose derived ED40 values were used in subsequent discussion and calculations. The 

ED40 values, as well as their upper and lower 95% confidence limits, are presented in 

Table 2-7 for all the compounds in Table 2-5 which were active excepting those 

compounds where ED40 determination was not possible because of toxicity or a lack of 

data due to activity only being detected in the upper part of the dose range tested.



Table 2-5: Antimalarial activity of 3-methyl-10-(substituted 

phenyl)flavins against P. vinckei vinckei in mice a

Cmpd no. (X)n

Per cent cured and increase in mean survival (days) at dose, mg/kg b

10 15 20 25 30

2.5a H 0(0) - - - 0(0)
2.5c 3-Me 0 (0.8) 0(0) 0 (0.5) 0(0) 0(0)
2.5d 4-Me 0(0)d - - - 0 (0.2)
2.5f 3,4-(Me)2 0 (0.3) - 0 (-0.2) - 0 (0.8)
2.5g 3,5-(Me)2 c 0(0) 60 (1.0) 100 100 100
2.5j 3-Et - 0(0) 0(0) 0(0) 0(0)
2.5k 4-Et 0 (0.2) - 0 (0.3) - 0(0)
2.51 4-n-butyl - - - - 0(0)
2.5n 3-C1 c - - - - -
2.5o 4-C1 c 20 (0.25) 80 (4.0) 100 100 100
2.5r 3,4-Cl2 c - - - - 0(0)
2.5s 3,5-Q 2 c 100 100 100 100 100
2.5t 3-Cl,4-Me - - - - 0 (0)d
2.5u 3-Cl,5-Me 0 (0.2) 60 (0.5) 80(1) 100 100
2.5w 4-Cl,3-Me - - - - -
2.5y 4-Cl,3-CF3 - - - - -

2.5z 3-Brc - 0(0) - - 0(0)
2.5aa 4-Brc 0 (1.3) 100 100 100 -

2.5bb 3-F c 0 (0.2) 0 (0.2) 0(0) 0(0) 0 (0.2)
2.5cc 4-F c 0(0) 0(0) 0 (13.4) 0(0) 80 (0)
2.5dd 3,4-F2 - - 0 (-0.5) - 0(0)
2.5ee 3-OMe 0(0) - 0(0) - 0(0)
2.5ff 4-OMe 0(1.0)d - - - 0 (0.4)
2-5gg 3,5-(OMe)2 - - - - -

2.5hh 4-OH 0 (0.5)d - - - 0 (0.2)
2.5ii 3-N02 - - - - 0(0)d
2.5jj 4-N(Me)2 0(0) - - - 0(0)
2.5kk 3-CF3 0(0) 100 100 100 100
2.511 4-CF3 0(0) - 0(0) - 80 (2.0)
2.5mm 3,5-(CF3)2 0(0) - 0(0) - 0(0)
2.5nn 3-SMe 0 (0.2) - 0(0) - 0(0)
2.5oo 4-SMe 0 (0.2) - 0 (0.5) - 0 (0.5)
2.5pp 4-S02Me 0(0)d - - - 0 (0.2)
2.5qq 4-CN 0 (0.5)d - - - 0(0) '
2.5rr 4-CO2H 0(1.0)d • 0 (0.2)

a See section 7-3.l(i) for experimental details. b Most groups consist of 4 to 6 animals. c Compounds 

which were retested, for previous testing see references [42,76]. d Denotes a group of two mice.e Toxic 

at 80 mg/kg.
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Cmpd no. (X)n

Per cent cured and increase in mean survival (days) at dose, mg/kg b

40 50 60 70 140

2.5a H - 0 (0.3) 20 (0.5) 60(0) e
2.5c 3-Me - 0 (0.6) - 0(0) 0(-1.5)d
2.5d 4-Me - 0 (0.3) - 0(0) 0 (0.5)d
2.5f 3,4-(Me)2 - 20 (0.25) 60 (0.5) 100 -

2.5g 3,5-(Me)2 c 100 60 (5.5) 0 (0.4) - -
2.5j 3-Et - - - 0 (0.3) -

2.5k 4-Et - 0 (0.5)d - 0 (-0.4) -

2.51 4-n-butyl - 0(0) - 0 (0.5) 0 (0.5)d
2.5n 3-C1c - 0 (0.4) 50 (-0.5) 100 -

2.5o 4-C1 c 100 20 (-0.8) - 0 (-1.0) -

2.5r 3 ,4 -0 2  c - 0(0) - 0(0) 100d
2.5s 3,5-Cl2 c 100 - - 60 (16.5) -
2.5t 3-Cl,4-Me - - - 0(0)d 100
2.5u 3-Cl,5-Me 100 100 - 100 -

2.5w 4-Cl,3-Me 0 (0.25) 25 (-0.33) 100 80 (2.0) 50 (0)d
2.5y 4-Cl,3-CF3 - - - 0 (0.2) 0(0)d
2.5z 3-Brc 0(0) 80 (1.0) 80 (-1.0) 100 -

2.5aa 4-B rc - 40 (9.0) - 0 (7.4) -

2.5bb 3-F c 0 (0.8) 20(0) - 0 (-1.0) -

2.5cc 4-F c 80(0) 20 (-0.5) - 0 (-0.6) -

2.5dd 3,4-F2 - - - 0(-1.0) -

2.5ee 3-OMe - - - 0(0) 0 (0.5)
2.5ff 4-OMe 20 (1.0) 75 (2.0) 40 (0.7) 60 (-0.5) -

2.5gg 3,5-(OMe>2 - 0(0) 20 (3.0) 100 100 d
2.5hh 4-OH - - - 0(0)d 0(0)d
2.5ii 3-N02 - - 0 (1.0)d 0 (-0.5)d 0(-1.0)d
2.5jj 4-N(Me)2 - - - 0(0)
2.5kk 3-CF3 100 100 40 (10) 0 (7.5)d -

2.511 4 -CF3 - 100 100 100 -

2.5mm 3,5-(CF3)2 - - - 0(0) 0(0)d
2.5nn 3-SMe - - - 0(0) 0(0)d
2.5oo 4-SMe - - - 0(0) 0 (1.5)d
2.5pp 4-S02Me 0 (-0.5) 0 (-0.8) - 0 (-2.0) -

2.5qq 4-CN - - - 0(0) 0(0)d
2.5rr 4 -CO2H “ • * 0 (-0.2) 0 (-0.5)d
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Table 2-6: Antimalarial activity of 3-methyI-10-(2'-substituted

phenyl)flavins against P. vinckei vinckei in mice a

Per cent cured and increase in mean survival (days) at dose, mg/kg b

Cmpd
no. (X)n 10 15 20 25 30 40 50 70

2.5b 2-Me 0 (-0.2) 0 (-1.0) 0 (-2.0) . .

2.5e 2,4-(Me>2 0 (0.4) - - - 20 (1.3) 40 (-1.7) 0 (-2.0) 0 (-2.0)

2.5h 2,6-(Me)2 0(0) - 0 (-0.3)c 0 (-2.0) - - - 0(-2.0)d
2.5i 2-Et 0(0) - 0 (-2.0) - 0 (-2.0) - - -

2.5m 2-C1 e - - - - 0 (-0.3) - - 0 (-2.0)

2.5p 2 ,4 -02  f o (1.7) 0 (0.5) 0(0) 0 (-1.2) 0(-1.0) - - -

2.5q 2,5-Cl2 e - - - - 0 (0.3) - - 0 (-0.6)8
2.5v 4-Cl,2-Me f 0 (0.5) 0 (1.2) 0(1.2) 0 (-1.4) 0 (-2.0) - - -

2.5 x 4-Cl,2-F 0 (1.0)d - 0 (4.0)d’h - 0 (-2.0)d - - -

a See section 7-3.l(i) for experimental details. b Most groups consist of 4 to 6 animals. c Activity 

detected by day two blood smear, average parasitemia 50%. d Denotes a group of two mice. 

e Compounds which were retested, for previous testing see reference [42]. f This compound included for 

comparison; see reference [42]. 8 Activity detected by day two blood smear, average parasitemia 56 %. 

h Activity detected by day two blood smear, average parasitemia 27 %.



Table 2-7: E D 40 values o f some active 3-m ethyl-10-(substituted

phenyl)flavins a

ch3n^ Vv̂ nN | x:::^

■(X) n

Cmpd no. (X)„ ED40
(mmoles/kg xlO'3)

95 % confidence limits 

lower upper

2.5aa 4-Br 38.4 35.4 40.9
2.5o 4-C1 38.8 35.5 41.6
2.5s 3,5-Cl2 40.2 36.0 44.1
2.5kk 3 -CF3 79.3 73.1 86.1
2.5u 3-Cl,5-Me 85.7 80.2 92.6
2.5cc 4-F 103 95.0 112
2.5g 3,5-(Me)2 105 94.2 118
2.511 4 -CF3 135 124 146
2.5hh 4-OMe 138 133 143
2.5z 3-Br 148 138 162
2.5w 4-Cl,3-Me 182 176 195
2 .5f 3,4-(Me)2 210 205 216
2-5gg 3,5-(OMe)2 219 210 229
2.5n 3-C1 229 221 242
2.5a H 248 235 290
2.5k 4-Et 281 271 292
2.5t 3-Cl,4-Me 456 363 582

a See section 2-4.3 for details.
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2-4.4 Discussion

(i) Structure activity relationships (SAR)

On enlarging the series of 3-methyl- 10-(substituted phenyl)flavins first 

investigated by Cowden ex al. [42,76], ten new active compounds were found though 

none were more active than the previously noted 4'-Br (2.5aa), 4’-Cl (2.5o) and 

3',5'-Cl2 (2.5s) substituted compounds. The two new compounds which showed the 

next best activity were the 3'-CF3 (2.5kk) and 3’-Cl, 5’-CH3 (2.5u) substituted flavins. 

The relative order of activity of the active compounds is shown in Table 2-7. The action 

of these compounds as blood schizontocides is clear by the suppression of parasitemia on 

day two after treatment

When activity was detected in a flavin with a single substituent it was noted that 

the 4'-substituted substance was more active than its 3'-substituted positional isomer, the 

only exception to this was the 3-methyl-10-(3'-trifluoromethylphenyl)flavin which was 

found to be more active than its 4'-substituted analogue. Of the disubstituted compounds 

those that were 3',5'-disubstituted and active, were always found to have higher potency 

than their 3',4'-disubstituted isomers. This is exemplified by the substituted flavins 

3',5'-Cl2 (2.5s), 3',5'-Me2 (2.5g) and 3'-Cl, 5-Me (2.5u) as seen in Table 2-5.

All the flavins in the subgroup comprising 2 -substituted compounds (activity 

shown in Table 2-6) showed toxicity in the dose range tested and were always more toxic 

than any other positional isomer tested. A number of these compounds had activity, the 

most obvious one being the 2',4'-Me2 compound (2.5e), which showed activity at 30 

and 40 mg/kg. Of the other 2'-substituted phenyl compounds activity could only be 

detected by examination of the day two parasite counts, since toxicity masked activity as 

gauged by percentage cured or extension in lifespan. The three other active 2'-substituted 

phenyl compounds included the 2',5'-Cl2 (2.5q), 2',6’-Me2 (2.5h) and 2'-F, 4'-Cl 

(2.5x) substituted derivatives.

It has been shown that large groups in the 2'-positions of similar 10-phenyl 

flavins restrict the rotation of the phenyl group around the C(l') - N(10) bond because of 

steric hindrance [77]. It was thought that steric hindrance by the groups in the 2' position
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and the resulting loss of free rotation of the 10-phenyl group may have been the common 

feature responsible for the high toxicity of this subgroup. To investigate this possibility 

the 2' position was substituted with the small fluoro group in the 2'-F, 4'-Cl compound 

2.5x. However, while this compound did show activity it still remained toxic indicating 

that the relatively high toxicity characteristic of this subgroup is apparently not dependent 

upon the steric bulk of the 2’-substituent. Because of the high toxicity and obvious low 

therapeutic index of these flavins work was terminated in this area after testing five new 

compounds.

(ii) Quantitative structure-activity analysis (QSAA)

A systematic method was required for selecting substituents to be introduced into 

the 10-phenyl ring that would lead to compounds with higher antimalarial activity. An 

approach dealing with this problem is quantitative structure-activity analysis (QSAA).

This technique assumes that congeners of a series are all acting in the biosystem by the 

same mechanism to produce biological activity and that the activity is related to the 

chemical structure of the compound. Fig 2-6 schematically illustrates the principles of 

this method [78]. The aim of this technique is to obtain a quantitative structure-activity 

relationship (QS AR) from the biological and molecular descriptive data obtained from a 

sample of compounds. The QS AR reveals the molecular parameters (descriptors) of 

importance to the biological response and how they are quantitatively related. This allows 

the prediction of activity of as yet unsynthesised compounds.

In the present case it is the substituents on the 10-phenyl ring that are varied and 

the biological activity is their in vivo antimalarial activity. Variation of the substituents on 

benzene rings is a common method used to change biological activity and has been 

utilized extensively, in combination with QSAA, in the study of compounds with 

antimalarial [79], antiallergic [80], antileishmanial [81] and antiviral activity [82] to cite 

but a few examples. The advantage, among others, of altering substituents on a benzene 

ring is that there exists a large literature data base of molecular descriptors available for 

such substituents [83-87]. This obviates the need for experimentally determining the



Table 2-8 Physicochemical parameters used in QSAA of the 3-methyI- 

lO -P '^ '^ '-substitu ted  phenyl)flavins

Physicochemical parameters a

Cmpd no. (X)n b
l 7 Cc I * d X r d l a I F I R S  MR

2.5a H 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.5c 3-Me 0.56 0.52 0.50 -0.07 -0.05 -0.05 4.70
2.5d 4-Me 0.56 0.60 0.48 -0.17 -0.05 -0.14 4.70
2.5f 3,4-(Me)2 1.12 1.12 0.98 -0.24 -0.10 -0.19 9.40
2.5g 3,5-(Me)2 1.12 1.04 1.00 -0.14 -0.10 -0.10 9.40
2.5j 3-Et 1.02 0.99 0.94 -0.07 -0.06 -0.04 9.40
2.5k 4-Et 1.02 1.10 0.98 -0.15 -0.07 -0.11 9.40
2.51 4-n-butyl 2.13 2.10 1.98 -0.16 -0.06 -0.13 18.7
2.5n 3-C1 0.71 0.77 1.04 0.37 0.68 -0.06 4.8
2.5o 4-C1 0.71 0.73 0.93 0.23 0.69 -0.16 4.8
2.5r 3,4-Cl2 1.42 1.50 1.97 0.60 1.37 -0.22 9.6
2.5s 3,5-Cl2 1.42 1.44 2.08 0.74 1.36 -0.12 9.6
2.5t 3-Cl,4-Me 1.27 1.37 1.52 0.06 0.63 -0.20 9.5
2.5u 3-Cl,5-Me 1.27 1.29 1.54 0.30 0.63 -0.11 9.5
2.5w 4-Cl,3-Me 1.27 1.25 1.43 0.16 0.64 -0.21 9.5
2.5y 4-Cl,3-CF3 1.59 1.83 2.42 0.66 1.31 -0.09 8.8
2.5z 3-Br 0.86 0.96 1.17 0.39 0.71 -0.06 7.6
2.5aa 4-Br 0.86 1.19 1.13 0.23 0.73 -0.18 7.6
2.5bb 3-F 0.14 0.22 0.47 0.34 0.69 -0.12 -0.04
2.5cc 4-F 0.14 0.15 0.31 0.06 0.71 -0.34 -0.04
2.5dd 3,4-F2 0.28 0.37 0.78 0.40 1.40 -0.46 -0.08
2.5ee 3-OMe -0.02 0.12 0.12 0.12 0.41 -0.17 6.5
2.5ff 4-OMe -0.02 -0.03 -0.12 -0.27 0.41 -0.50 6.5
2.5gg 3,5-(OMe>2 -0.04 0.24 0.24 0.24 0.82 -0.34 13.0
2.5hh 4-OH -0.67 -0.61 -0.87 -0.37 0.49 -0.64 1.5
2.5ii 3-N02 -0.28 0.11 0.54 0.71 1.09 0.05 6.0
2.5jj 4-N(Me>2 0.18 -0.08 -0.69 -0.83 0.03 -0.85 14.4
2.5kk 3-CF3 0.88 1.10 1.49 0.43 0.62 0.07 4.0
2.511 4 -CF3 0.88 1.04 1.05 0.54 0.63 0.19 4.0
2.5mm 3,5-(CF3)2 1.76 2.20 2.98 0.86 1.24 0.14 8.0
2.5nn 3-SMe 0.61 0.64 0.55 0.15 0.33 -0.07 13.0
2.5oo 4-SMe 0.61 0.87 0.32 0.00 0.33 -0.19 13.0
2.5pp 4-S02Me -1.63 -1.20 -1.02 0.72 0.90 0.22 12.5
2-5qq 4-CN -0.56 -0.33 0.14 0.66 0.85 0.18 5.2
2.5rr 4-C02H -4.36 e e 0.00 e e e

a Physicochemical parameters defined in section 2-4.4(ii).b Indicates substitution of the 10-phenyl of the 

flavins. c Obtained from reference [88].d Obtained from reference [86].e Not avialable.
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molecular parameters. It is therefore possible to attempt to relate changes in biological 

activity to changes in the molecular descriptors of the different substituents used.

The molecular descriptors are defined in terms of physicochemical properties 

which usually consist of the three major subgroups of lipophilic, electronic and steric 

parameters. In this study no mode of action was previously known and thus there was 

no guide suggesting which of these physicochemical properties might have been most 

important to antimalarial activity, so parameters related to all three properties were used in 

the following analysis. The 3-methyl-10-(substituted phenyl)flavins and their 

physicochemical parameters considered are shown in Table 2-8.

To define the relative lipophilicity of the substituents, k values were used (n 

values from model systems are defined by the equation 

7tx = log Px - log PH

where Px is the partition coefficient of a X-substituted derivative and Ph that of the parent 

compound). A positive k value indicates that relative to hydrogen the substituent is 

lipophilic, while a negative value indicates it hydrophilic vis-a-vis hydrogen. In Table 

2-8 the X tc values are the sum of the k values of substituents in the 3', 4' and 5’ 

positions. The three different X n values presented are based on: (1) % values obtained 

from Martin [88]; (2) n values obtained from Norrington et al. [86] in which k is 

positionally dependent; and (3) tC values also obtained from Norrington et al. which are 

based on a model system containing an electron donating side chain on the benzene ring. 

These three represent alternative measurements of the same property. The importance of 

the K parameter lies in its established correlation in binding to biological macromolecules 

and transport through biological systems.

The electronic properties of a compound were represented by the sum of the 

Hammett constants (a) of the 3', 4' and 5’ substituents on the 10-phenyl ring. The a  

constant is comprised of both inductive and mesomeric effects and therefore can also be 

represented by F and R values which are positionally weighted parameters indicating the 

inductive and mesomeric effects respectively, [86]. The X a, and X F and X R values 

represent two alternate measures of the electronic properties of the substituted flavins.
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The values used to obtain E a  were obtained from Martin [88] and those for E F and E R 

were obtained from Norrington et al. [86].

The steric properties of the substituents were represented by the sum of their 

molar reffactivity values (E MR). MR values are usually obtained experimentally by the 

Lorentz-Lorenz equation;

where V is molar volume and n is the refractive index. The MR values of common atoms 

and groups of atoms have been calculated using model systems. Since for liquid organic 

compounds n does not vary much, MR is really a "corrected" form of molar volume and 

as such represents a measure of the bulk of a substituent [83,85]. As MR increases so 

does the bulk of the substituents, the MR values used to obtain E MR were taken from 

Norrington et al. [86].

The importance of the electronic and steric properties of a drug relate to their 

intrinsic importance in the interactions, both physically and chemically, in the biosystem.

It was decided to use the methodology of QS AA as no obvious trend was 

observed between activity and any single one of the above parameters. It was thought 

that QS AA might indicate a relationship between activity and a combination of these 

parameters.

The first step in QSAA is choosing substituents to be used for synthesising a 

sample group of compounds. This group is referred to as the "training set", upon whose 

physicochemical and biological data the QS AR is to be based. The aim of this selection is 

to obtain a preliminary series in which all the physicochemical and structural properties 

that may be governing biological activity are varied systematically and independently from 

each other over a sufficiently large range. Different techniques for designing training 

series have been discussed by Craig [89], Wooldridge [90], Wootton et al. [91], Hansch 

et al. [92], and Dove et al. [93].

In the present study the training series was based on the expansion of an already
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congeners was made on the basis of the following:

1. With the aid of the TMIC (two-dimensional mapping of intraclass correlation matrices) 

method of Dove et al. [93], which allows the selection of single substituents that have 

high data variance and low collinearities of the major physicochemical parameters, by 

simple inspection of a two dimensional map of 35 possible single substituents;

2. For the majority of the disubstituted compounds, selection of substituents and position 

was made to determine the effect of various substitution patterns or, in an effort to 

increase activity, by combining single substituents which had shown activity; and

3. The selection processes above in 1. and 2. were subject to the synthetic feasibility of 

preparing potential congeners (see section 2-2).

The toxicity of and the difficulty in obtaining reliable physicochemical parameters 

for the 2'-substituted phenyl flavins meant that they were excluded from the following 

attempts at QS AA.

Initially an attempt was made to obtain a QSAR using the popular "Hansch" 

methodology. The Hansch method uses least squares multiple linear regression to 

correlate biological activity data to molecular parameters [94]. A requirement of the 

Hansch approach is that the biological data be in the form of a continuous quantity, 

usually the log molar dose of a drug required to produce a standard biological response. 

Of the training series made and tested shown in Table 2-5 such values were only 

obtainable for the subgroup of compounds in Table 2-7 in the form of ED40 values. For 

16 of the flavins in the training series ED40 determination was not possible usually 

because they were inactive in the dose range tested.

The physicochemical data used in the multiple regression analysis is shown in 

Table 2-8. As well as these parameters four indicator variables, indicating whether the 

flavins were 3'-, 4'-, 3',4'- or 3',5’- substituted, were included as the substitution 

pattem appeared to be a factor of importance from the S AR analysis.

In the hands of a statistical analyste a linear regression model was fitted;
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e The author is grateful to Mr R. Cunningham, statistical consultant, Statistics Department, The 
Australian National University, for the statistical analysis.



Table 2-9: Biological data used in QSAA and predicted ED40 values

Compound
no.

(X)n a Activity b e d 40c
(mmoles/kg x

Predicted ED40 d 
10'3) (mmoles/kg x 10'3)

2.5a H 1 248 204
2.5c 3-Me 0 - 201
2.5d 4-Me 0 - 201
2.5f 3,4-(Me>2 1 210 221
2.5g 3,5-(Me)2 1 105 221
2.5j 3-Et 0 - 214
2.5k 4-Et 1 281 216
2.51 4-n-butyl 0 - 214
2.5n 3-C1 1 229 113
2.5o 4-C1 1 38.8 112
2.5r 3,4-Cl2 1 - 62.7
2.5s 3,5-Cl2 1 40.2 62.7
2.5t 3-Cl,4-Me 1 456 118
2.5u 3-Cl,5-Me 1 85.7 118
2.5w 4-Cl,3-Me 1 182 118
2.5y 4-Cl,3-CF3 0 - 65.9
2.5z 3-Br 1 148 110
2.5aa 4-Br 1 38.4 109
2.5bb 3-F 1 - 112
2.5cc 4-F 1 103 110
2.5dd 3,4-F2 0 - 60.8
2.5ee 3-OMe 0 - 142
2.5ff 4-OMe 1 138 142
2.5gg 3,5-(OMe)2 1 219 100
2.5hh 4-OH 0 - 133
2.5ii 3-N02 0 - 79.6
2.5jj 4-N(Me)2 0 - 198
2.5kk 3-CF3 1 79.3 119
2.511 4-CF3 1 135 118
2.5mm 3,5-(CF3)2 0 - 69.9
2.5nn 3-SMe 0 - 153
2.5oo 4-SMe 0 - 153
2.5pp 4-SC^Me 0 - 93.5
2.5qq 4-CN 0 - 97.3
2.5rr 4-CC^H 0 * *

a Indicates substitution of the 10-phenyl of the flavins. b Activity is indicated by 1, inactivity by 0; based 

on the data in Table 2-5 .c ED40 values taken from Table 2-7. d ED40 values predicted using equation 2-1 

and parameters from Table 2-8.
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computations were executed using the statistical package Genstat 5. The analysis 

involved first using all the independent variables (i.e. the physicochemical parameters and 

the four indicator variables) in a full model followed by removing the variables 

individually. Using the F  distribution statistic (variance ratio) compared to the 

appropriate F  value (according to degrees of freedom) it was possible to determine the 

significance of each independent variable as it was removed The best model which could 

be found using this method is shown in equation 2-1.

ln (ED40) = -1.592 - 0.863 I F  Equation 2-1

(0.277) (0.426) estimated std errors

n = 17 R2adj = 16.2 s = 0.725

This equation indicates that the greater the inductive electron withdrawing effect (large 

positive I  F  values) of the substituents in the 3', 4' and 5' positions the higher the 

activity. However, the t statistic (2.02) is barely significant (considered significant if 

greater than 2.1), thus this was a poor model for predicting activity. This is highlighted 

by the inactivity of the 3'-NC>2, 3',5'-(CF3)2, 4’-S02CH3 and 4'-CN substituted flavins, 

which were not included in this analysis, but by equation 2-1 were predicted to have good 

activity (shown in Table 2-9).

This method, because of the type of statistical analysis used was limited to the 

biological data that was presented as ED40 values. This left out a large proportion of the 

training set, therefore limiting the physicochemical "space" covered in the model as well 

as reducing the number of compounds that could be included in the regression. The 

failure to use the entire training set could be responsible for the poor model produced.

To overcome this data gap an alternative statistical method was used that allowed 

inclusion of the entire series. This method, of logistic regression [95], allowed the 

biological response to be entered as binary data, in this case either as active or inactive. 

This method is similar to previously used methods of discriminant analysis [96,97] in that 

it allows the use of qualitative biological responses.

In this study logistic regression analysis was used to determine if the independent 

variables considered in the Hansch approach effect the probability of a compound being 

active or not Activity is defined by detection of antimalarial activity (Table 2-5) and is
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indicated by 1 in the activity column of Table 2-9; 0 indicates the compound to be 

inactive.

In a stepwise analysis of a full model similar to that done in the linear regression 

analysis, it was found that none of the terms were significant using the Chi-square test as 

a measure of significance and no equation could be found that was superior to the null 

hypothesis (the random probability of a compound being active).

Aliens [98] has listed and discussed eight factors that could be involved in the 

apparent lack of a structure-action relationship. These include:

1. A lack of a relationship between the physicochemical parameters used and 

those of importance in the bioreaction that produces activity.

2. It is a metabolite which is responsible for activity and not the administered 

drug itself.

3. The action of a drug can be the result of a sequence of complicated events often 

involving pharmacokinetic processes. Each event may be related differently to 

the physicochemical properties of the drugs. If the physicochemical property 

requirements between events relate to each other in a contradictory or incompatible 

fashion then drug action as a whole may not be easily related to physicochemical 

properties. This is because, in essence, they are not of an additive nature amongst 

the different processes.

4. The possibility of a mixture of isomeric compounds which have different 

effects biologically being administered as a single test compound. Obviously such 

occurrences would severely compromise the nature of the biological data.

5. It is assumed that all members of a series are working by the same mechanism 

of action and in in vivo models that they have similar pharmacokinetic 

mechanisms. If this is not the case a clear cut QS AR could not be expected.

6. The route of administration and the pharmaceutical preparation of compounds 

can often have large influences on the potency of drugs, for example, the particle 

size and crystal structure of a drug may influence its potency. The disparity that 

may be occasioned by these differences may obscure a structure-activity 

relationship.
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7. Drugs often have more than one biological action which may coincide or 

overlap to a considerable degree. Toxic side effects can be especially important in 

the in vivo model. Thus drugs which are multipotent have the ability to 

complicate the determination of a QSAR.

8. The diversity in drug action between species is well known, due in a large 

number of cases to pharmacokinetic differences amongst species. Such 

differences must be taken into account in formulating a QSAR.

With this in mind, it seems that the most likely reason for not obtaining a satisfactory 

QSAR for the flavins was the in vivo nature of the biological response. Thus, as noted in 

vivo results give valuable information about toxicity and compounds with favourable 

pharmacokinetics but in the determination of a QSAR this extra information may obscure 

the relationship. The possible factors that may be responsible in the present case include 

points 2, 3, 5, 6 and 7 from above. The importance of the complicated pharmacokinetic 

processes in this series is shown by the differences observed in the SAR of the in vitro 

and in vivo testing of these compounds (discussed in section 2-5.4) and the differences in 

the dose-response curves amongst the active flavins demonstrated in Fig 2-5.

The other major possibility of why no QSAR could to be obtained was that the 

descriptor parameters used were not those of importance to biological activity (point 1 

above). This is always a possibility in QSAA in systems where there is no mechanistic 

model available on which to base the choice of molecular descriptors. In this flavin 

QSAA the selection of parameters was based on those that have most frequently been 

shown to be important in determining biological activity. The additional inclusion of the 

many other possible molecular parameters available [83,99] was not considered as these 

other parameters are usually less well defined and often have a high degree of collinearity 

with those parameters already tested. Besides this, it has been shown there is a limit to 

the number of explanatory variables, relative to sample size, which may be used in QSAA 

before the occurrence of chance correlations [100]. It is necessary to increase the sample 

size before increasing the number of variables screened in order to avoid obtaining 

correlations of doubtful significance.

In conclusion, a large number of compounds with different substituents, in which
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the physicochemical properties were altered over a wide range, were made and tested. 

Since none were found to be more active than those in the original set prepared by 

Cowden et al. [42] and no useful predictive equation could be obtained using the methods 

outlined above, it was felt that further work on phenyl substitution to enhance potency 

was not warranted.

The information about the in vivo effects of substituents on the 10-phenyl ring 

was utilized to optimize activity when other structural changes were subsequently made in 

the following chapters.

2-5 In vitro antimalarial testing 

2-5.1 Introduction

With the advent of a continuous culture method for P. falciparum in human 

erythrocytes, made possible by the work of Träger and Jensen [101] in 1976, it became 

possible to routinely test compounds against the principal human malarial parasite in a 

model free of the majority of the undesirable pharmacokinetic effects characteristic of in 

vivo models. Desjardins et al. [102] utilized the methods of continuous culture to 

develop a rapid, semiautomated, microdilution technique to measure the antimalarial 

activity of compounds against the asexual intraerythrocytic forms of P . falciparum. Their 

technique involved the growing of cultures in 9 6-well microtiter plates and the addition of 

a radiolabelled substrate which would be incorporated into the nucleic acid of the 

parasites. The 96-well plate allowed for large scale testing of compounds as each 

microwell is capable of being treated with different drugs and concentrations. In this 

particular method parasite development, after an incubation period, is quickly and 

accurately measured by determining the level of 3H-hypoxanthine incorporation into the 

parasite using liquid scintillation counting.

The basic method of Desjardins et al. has been used successfully by numerous 

workers to, amongst other things, detect activity of potential antimalarials, identify the 

stage specificity of existing drugs and to investigate synergy of new and old antimalarials 

[102-105]. A brief review by Träger [106] relates the many applications of cultured



57

P. falciparum in both basic and applied malaria research.

In this investigation the Desjardins technique, with slight modifications, was used 

to confirm the activity of the flavins against the human parasite, look for cross resistance 

between the flavins and the established antimalarials chloroquine and pyrimethamine, and 

to carry out limited structure activity relationship studies in a situation free of many of the 

problems related to pharmacokinetics.

2-5.2 Materials and methods

In this work two variations of the Desjardins in vitro radioisotopic technique were 

used to determine the activity of ten flavins and three established antimalarials against 

P. falciparum. The first method (method 1) was conducted in collaboration with Dr G. 

A. Butcherf in which activity was determined against the chloroquine-sensitive FC-27 

strain. The second method (method 2) involved testing against both the chloroquine- 

sensitive FC-27 and chloroquine-resistant K-l strains. (The K-l strain is also resistant to 

other established antimalarial drugs, see Table 2-10.) This was kindly carried out by 

Dr K. A. Rockett 8 . In both methods incubation times were 48 hours to allow one 

complete cycle of blood schizogony.

The experimental details of both methods are contained in section 7-3. l(ii).

f Department of Pure and Applied Biology, Imperial College, Prince Consort Rd, London, SW7 2BB. 
8 Division of Cell Biology, John Curtin School of Medical Research, The Australian National 
University, Canberra, ACT, 2601, Australia.
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2-5.3 Results 

Method 1

The results of the P. falciparum (FC-27) assay are presented in Fig 2-7, in which 

the percentage inhibition of parasite growth is measured by the inhibition of the uptake of 

tritiated hypoxanthine in drug-treated parasite cultures compared to drug-free control 

cultures.

Figure 2-7 Inhibition of cultured P. falciparum (FC-27 chloroquine- 

sensitive) by 3-methyl-10-(substituted phenyl)flavins
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2.5nn (3'-SMe) 

2.5a (H)
2.5r (3\4'-diCl) 

2.5ff(4’-OMe)

[ Flavin ] (jiM)

Each datum point is the mean for the sample tested in triplicate in a single experiment. 
Substituents on the 10-phenyl ring are shown in brackets. The point used to compare 
activity is the concentration that inhibits the uptake of 3H-hypoxanthine by 50%.



Table 2-10: In vitro antimalarial activity of chloroquine,

pyrimethamine, quinine and flavins against 2 isolates of 

P. falciparum  (FC-27 and K-l)

Compound a IC50b-c (HM) 

FC-27 K-l

Factor of resistance in K -ld

Chloroquine 0.04 2.5 63

Pyrimethamine 0.34 >100 >294

Quinine 7.4 x 10-2 0.56 8

2.5kk (3'-CF3) 3.0 3.6 1.2

2.5s (3\5’-Cl2) 2.3 4.8 2.1

2.5g (3',5’-Me2) 5.6 13.6 2.4

2.5qq (4’-CN) 4.2 e -

2.5rr (4'-C02H) 24.7 e -

a Substitution of the 3-methyl-10-(substituted phenyl)flavins is indicated inside brackets. 
b IC50 is the concentration required to inhibit the uptake of 3H-hypoxanthine by the 
culture by 50%. c These results were obtained from a single experiment done in triplicate. 
d This value was obtained by dividing the K-l IC50 by the FC-27 IC50. e Not done.
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Method 2

Results of a typical assay for 3-methyl-10-(3'-trifluoromethylphenyl)flavin against 

both the VC-21 strain and K-l multidrug-resistant strain are shown in Fig 2-8. The IC50 

values (concentration of the compound causing 50% inhibition of 3H-hypoxanthine 

incorporation) of the flavins and other antimalarials are given in Table 2-10.

Figure 2-8 Inhibition of cultured P. falciparum strains FC-27

(chloroquine-sensitive) and K-l (chloroquine-resistant) by 

3-methyl-10-(3'-trifIuoromethylphenyl)flavin

FC-27 strain

K-l strain

[Flavin] (jiM)

Each datum point is the mean ± 1 Std Dev for the sample tested in triplicate in a single 
experiment. The point used to compare activity is the dose that inhibits the uptake of 
3H-hypoxanthine by 50%. The concentration is plotted on a log scale.



Table 2-11: 3-M ethyI-10-(substituted phenyl)flavins selected on the

basis of in vivo activity and physicochemical param eters

CH

O

X /  N 
[1ST

X
( X ) „

Compound (X)n 
no.

In vivo 
activity a

Z o b I i t b Z MR b

2.5o 4-C1 38.8 0.23 0.71 4.8

2.5nn 3-SMe not active 0.15 0.61 13.0

2.5a H 248 0.00 0.00 0.0

2.5ff 4-OMe 138 -0.27 -0.02 6.5

2.5r 3,4-Cl active c 0.60 1.42 9.6

a Activity is reported as ED40 values (mmoles/kg x 10‘3) from Table 2-7 or as active or 
not active according to results from Table 2-5. b Physicochemical parameters are the same 
as those in Table 2-8. c Activity was detected at a dose of 140 mg/kg.
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2-5.4 Discussion of results

Using method 1 a subgroup of five of the forty compounds in this series was 

selected for in vitro testing against P. falciparum (FC-27). The five compounds selected 

comprised a group that varied in in vivo activity and in their physicochemical properties 

(based on their 10-phenyl ring substituents). Table 2-11 shows the compounds selected, 

their in vivo activity and the physicochemical properties of the substituents. Figure 2-7 

shows that all these compounds were active in vitro confirming similar findings of 

Cowden et al. [41] and Becker et al. [107] who also noted good in vitro activity for 

members of this series. By interpolation from this graph, the five flavins have IC50 

values ranging from approximately 5 to 13 |i M.

This narrow range of potency from a series of compounds which vary widely in 

the nature of their substituents, makes it seem likely that variation of substituents on the 

10-phenyl ring of the flavin has little effect in terms of direct anti-parasitic action. The 

significance of this observation becomes apparent when compared to the in vivo results. 

The fact that the order of the in vivo activities of these compounds was not reflected in the 

in vitro activities strongly suggests that alteration of the substituents on the 10-phenyl ring 

is primarily important in terms of in vivo events such as drug transport, distribution and 

excretion after injection. This difference in activity between culture and in vivo testing is 

especially highlighted in the case of 3-methyl-10-(3'-methylthiophenyl)flavin (2.5nn) 

which was inactive in vivo but showed nearly equivalent in vitro activity to the highly (in 

vivo) active 10-(4'-chlorophenyl)-3-methylflavin (2.5o). This indicates the in vivo 

results are not direct indicators of mechanistic activity.

Using method 2 a different group of five 3-methyl-10-(substituted phenyl)flavins 

were tested against P. falciparum. All of these flavins were tested against the FC-27 strain 

and three of the five were tested against the drug resistant K-l strain.

The 10-(4'-carboxyphenyl)-3-methylflavin (2.5rr) is unique among the series of 

3-methyl- 10-(substituted phenyl)flavins in that at physiological pH it is likely to form a 

carboxylic acid anion. This compound was originally synthesised in order to take 

advantage of the reported increase in permeability to anions of malaria-infected
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erythrocyte cell membranes [108], however, it failed to show any activity in the in vivo 

testing. This compound was selected for in vitro testing to determine if its anion forming 

properties had any detectable benefit in this more direct testing system. The IC50 of this 

compound showed it to be the least efficacious of the flavins examined, thus indicating 

that anion formation in this case had no beneficial effect.

The IC50 values of the other four flavins examined against the FC-27 strain 

ranged from 2.3 to 5.6 |1 M. These values are not directly comparable to the results 

obtained using method 1 because of differences in experimental procedure. Nonetheless, 

the potency and narrow range of activity are similar to those observed in method 1 and 

confirm the conclusions that: (i) variation of the 10-phenyl substituents usually has only 

small effects on in vitro activity; and (ii) in vitro activity does not directly correlate with 

in vivo activity.

In a comparison of the drug sensitivity of the two P. falciparum strains PC-21 and 

K-l, the K-l strain was found to be resistant to the currently used antimalarial drugs 

pyrimethamine and quinine by factors of >294 and 8, respectively, as well as to 

chloroquine by a factor of 63. These findings are consistent with previous reports 

[105,109] and established that the K-l strain used in this study was indeed multidrug- 

resistant.

The results of testing the three flavins (2.5kk, 2.5s, 2.5g) against both the 

drug-sensitive and drug-resistant strains in Table 2-10 show that the flavins are 

consistently slightly less active against K-l than FC-27 by a factor of 1.2 to 2.4. These 

small differences in activity between strains, when compared to the large differences in 

the chloroquine and pyrimethamine sensitivities indicate there is no substantial cross 

resistance between these agents. This finding is important since it shows that these 

flavins, which have good in vivo activity, are of potential use in cases of chloroquine- 

and pyrimethamine-resistant malaria. This finding also indicates that the flavins' mode of 

action is most likely dissimilar to that of chloroquine and pyrimethamine.

In addition to the above findings the in vitro assay also provides an estimate of the 

plasma drug levels that need to be achieved for in vivo inhibition of the parasite. Studies 

on plasma levels of active and inactive flavins could be used to confirm that variation in



Figure 2-9 The ineffectiveness of flavins 2.5s (3',5'-Cl2) and 2.5o 

(4‘-Cl) against B. microti infection in mice

Control

Group 1 

Group 2 

Group 3

CU 30 -

Days

For all groups treatment began on day 1. Group 1 with a daily dose of 15 mg/kg of 
compound 2.5s for 5 days. Group 2 with a daily dose of 5 mg/kg of compound 2.5s 
for 5 days. Group 3 with a daily dose of 10 mg/kg of compound 2.5o for 4 days. The 
control received a daily injection of vehicle only for 5 days. Each datum point is the mean 
of the daily parasitemia of a group of 4-6 mice. For clarity only the control group has 
error bars representing ± 1 Std Dev.
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in vivo activity of the 3-methyl-10-(substituted phenyl)flavins is primarily a function of 

pharmacokinetics. Such a study could also yield information concerning the possibility 

that antimalarial activity might be due to an active metabolite. Though there is no 

evidence for this supposition, the apparent lack of correlation between in vivo and in vitro 

antimalarial activity and the failure to obtain a QS AR could be explained in these terms 

[110]. It should be noted, however, that the observed activity of these compounds both 

in vitro and in vivo would tend to indicate that this is not the case.

In this study only blood schizontocidal activity was studied. The development of 

new culturing techniques for the exoerythrocytic and gametocyte stages of the human 

malaria parasite in the 1980s [111-114] means that drug testing assays against these 

stages could soon become commonly available. If this happens it would be interesting to 

determine the activity of the flavins against these other parasite stages.

2-6 Other test systems

2-6.1 In vivo antibabesial testing

Babesiosis is a tick-borne disease of wild and domestic animals, its major 

economic importance is in the cattle industry. It is caused by an intraerythrocytic 

protozoan parasite of the genus Babesia. Occasionally human infection occurs, of these 

the majority of cases have been caused by Babesia microti, a parasite of rodents [115].

The morphological similarities between B. microti and malaria parasites and the 

overlap of effective drugs for both diseases [115] lead to the decision to screen two of the 

more effective antimalarial flavins for antibabesial activity.

This screening, using B. microti in mice [116] involved the daily intraperitoneal 

injection of 10-(3',5'-dichlorophenyl)-3-methylflavin (2.5s) at 5 and 15 mg/kg and 

10-(4’-chlorophenyl)-3-methylflavin (2.5o) at 10 mg/kg for 4-5 days after the disease 

first became patent. The result of this screen is seen in Fig 2-9 where the average daily 

percentage parasitemia of the treated groups are compared to a control group throughout 

the course of the disease. No significant suppression of parasitemia (the slight 

depression of the maximum parasitemia on day 6 in the treated groups was found not to
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be significant by Student's t test) and the resemblance of the curves of the treated groups 

to that of the control group indicated that these compounds had no activity against 

B. microti in mice over the dose range tested. The experimental details of this procedure 

are presented in section 7-3.2.

2-6.2 Giardia intestinalis

The protozoan parasite Giardia intestinalis is found world-wide and is an 

important cause of chronic and sometimes serious gastrointestinal disease especially in 

children. It has been shown that G. intestinalis is susceptible to l,3-bis(2-chloroethyl)-

1- nitrosourea (BCNU) and l-(2-chloroethyl)-3-(2-hydroxyethyl)-l-nitrosourea 

(HECNU) [117]. Both of these compounds are inhibitors of glutathione reductase (GR) 

and have been shown to have antimalarial activity [118-120]. Since the flavins are 

likewise antimalarials and inhibitors of GR (see Chapter 6) the two compounds 2.5o and 

2.5g have been submitted for screening against G. intestinalis h . The screening method 

to be used is that of Boreham, Phillips and Shepherd [121]. Results of this screen are 

pending.

2- 6.3 In vitro anti-HIV and anticancer testing

The National Cancer Institute* 1 has recently begun a world-wide screening 

program to discover new antiviral agents effective against the human immunodeficiency 

virus (HIV). The screening method used is described by Weislow et al. [122]. The 

following compounds were evaluated for in vitro anti-HTV activity and classified as 

inactive; 2.5b (2'-Me), 2.5d (4’-Me), 2.5e (2\4'-Me2), 2.5g (3\5’-Me2), 2.5i (2'- 

Et), 2.51 (4'-rt-butyl), 2.5n (3’-Cl), 2.5q (2',5'-Cl2), 2.5y (4'-Cl, 3'-CF3), 2.5z (3'- 

Br), 2.5aa (4'-Br), 2.5bb (3'-F), 2.5cc (4’-F), 2.5dd (3,,4,-F2), 2.5ee (3’-OMe),

h Testing is to be kindly carried out by Dr P. F. L. Boreham, Queensland Instituted of Medical Research, 
Bramston Terrace, Herston, Brisbane, Queensland, 4006.
i Dr V. L. Narayanan, Drug Synthesis and Chemistry Branch, Executive Plaza North, Suite 811, 
Bethesda, Maryland, 20892, USA.
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2.5hh (4'-0H), 2.5mm (3’,5’-(CF3)2) and 2.5nn (3'-SMe). These compounds were 

also submitted to the National Cancer Institute for an in vitro pre-screen consisting of 

human cell lines representing major tumour types such as lung, colon and melanoma. 

The results of this anticancer screen are pending.



CHAPTER 3
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CHAPTER 3 Syntheses and antimalarial activity of some 3-substituted 

10-(substituted phenyl)flavins

3-1 Introduction

In this chapter changes made at the 3-N position and to substituents on the 10- 

phenyl group of the flavin are outlined. The variation at the 3 position was undertaken 

primarily to effect changes in the overall lipophilicity of the flavins. Three subgroups 

were produced including a series of 3-ethyl-10-(substituted phenyl)flavins (3.4a-l), 

3-substituted 10-phenylflavins (3.7a, 2.5a, 3.4p-r) and 3-substituted 10-(4'- 

chlorophenyl)flavins (3.7b, 2.5o, 3.4m-o). These compounds were tested for in 

vivo antimalarial activity where gains in both activity and lower toxicity, compared to 

their 3-methyl analogues (Chapter 2), were noted in a number of compounds. The 

3-substituted 10-(4'-chlorophenyl)flavin series were tested in vitro against P. falciparum 

and found to have little variation in potency throughout the series.

The synthesis, chemistry (electrophilic substitution), mass spectra and *H n.m.r. 

spectral data, along with results of antimalarial, anti-HIV and anticoccidial testing of these 

flavins are discussed in the following sections.
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3-2 Syntheses

The two main routes used to produce the 3-substituted 10-(substituted 

phenyl)flavins were, firstly a modification of the main reaction pathway used to produce 

the flavins in Chapter 2 (shown in Scheme 3-1) and secondly, N-alkylation of the 

10-phenyl flavins formed from the reaction of N-phenyl-l,2-benzenediamines (3.6) with 

alloxan (Scheme 3-2).

The advantage of the latter method is that it allows the introduction of the 3-N 

substituent at the last step in the reaction sequence. This method does, however, have 

limitations in that the 3-phenyl derivative cannot be produced in this way (because of the 

inactivity of phenyl halides towards nucleophilic displacement) and the frequent difficulty 

encountered in producing the N-phenyl-l,2-benzenediamine starting materials.

Therefore, the former method is still advantageous when the aim of the synthesis is a 

concurrent alteration of substituents in both the 3-N position and the 10-phenyl ring or 

when a phenyl group is required at the 3 position.

A common method for the production of N-substituted barbituric acids, the 

starting material for Scheme 3-1, could not be found. The condensation of the 

monosubstituted ureas with malonic acid using acetic anhydride as a condensing agent 

was used to produce the N-ethyl and N-propyl barbituric acids [123].

Pure N-phenylbarbituric acid was produced in 40% yield by the literature method 

of MacBeth et al. [124] using N-phenylurea, malonic acid and the condensing agent 

phosphorus oxychloride. Brückmann and Isaacs [123] reported a 58% crude yield of 

N-phenylbarbituric acid using sodium methoxide as the condensing reagent which they 

reported to be a superior method to that of using acetic anhydride.

Only low yields of N-benzylbarbituric acid were obtained using acetic anhydride, 

as the condensing agent, due to the formation of large amounts of a by-product, probably 

5-acetyl-3-benzylbarbituric acid [63]. It was possible to convert this by-product to the 

desired N-benzylbarbituric acid by acid hydrolysis though only in low yields. An attempt 

to produce N-benzylbarbituric acid using phosphorous oxychloride as a condensing agent 

failed and starting material was recovered. A further attempt using the more reactive
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malonyl dichloride (instead of malonic acid) and N-benzylurea under similar conditions 

as those used by Whiteley [125] to make 1,3-diphenylbarbituric acid produced an 

intractable mixture. N-Benzylbarbituric acid was finally produced most satisfactorily in a 

high yielding clean reaction of N-benzylurea, diethyl malonate and sodium ethoxide.

Of the N-substituted ureas used to make the N-substituted barbituric acids (3.1) 

the ethyl and phenyl ureas are commercially available. The propyl and benzyl ureas were 

made by a modification of Wohler's famous synthesis of urea. An aqueous solution of 

sodium cyanate (isocyanic acid) was heated with the appropriate amine hydrochloride.

Monochlorination (position 6) of the barbituric acids (3.1a-d) was achieved in all 

cases with phosphorous oxychloride and water in yields of 22 to 55% after the method of 

Gauri [66]. The nucleophilic substitution of the 3-substituted 6-chlorouracils (3.2a-d) 

by the appropriate aniline produced 3-substituted 6-(substituted anilino)uracils (3.3a-p) 

which were reacted with nitrosobenzene to give the 3-substituted- 10-(substituted 

phenyl)flavins (3.4a-p). These preceding three steps were carried out essentially in the 

same fashion as discussed in section 2-2.4.

Cowden et al. [42] produced 6-(4'-chloroanilino)uracil by the transamination of 

6-aminouracil with excess 4-chloroaniline under harsh reaction conditions. A similar 

reaction, based on the method of Goldner et al. [68], using 3-trifluoromethylaniline 

hydrochloride and 6-aminouracil gave 6-(3'-trifluoromethylanilino)uracil (3.3s) in good 

yield; furthermore the reaction conditions required were less harsh. When this product 

was treated with nitrosobenzene in the usual way it formed 10-(3'-trifluoromethyl- 

phenyl)flavin (3.4s).

The production of the 2-nitro-N-phenylbenzenamines (3.5b,c) used as starting 

materials (Scheme 3-2) resulted from the action of two equivalents of 2-chloro-l- 

nitrobenzene on 1 equivalent of the appropriate aniline. Harsh reaction conditions were 

required as the 2-chloro is only activated towards nucleophilic substitution by the single 

nitro group. The reaction conditions required the reactants to be heated at 160-180° for 7 

to 10 hours with 4 equivalents of sodium acetate [126]. The two 2-nitro-N-(4'- 

substituted phenyl)benzenamines (3.5b,c) produced under these conditions were 

obtained in low yields. In the case of N,N-dimethyl-N'-(2'-nitrophenyl)-l,4-
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benzenediamine, the reaction was done under nitrogen to retard the degradation of the 

reactive benzenediamine compounds. Fortunately, the necessity to synthesise 2-nitro-N- 

phenylbenzenamine was obviated by its recent commercial availability a. The

2- nitrobenzenamines (3.5a-c) were easily reduced to the corresponding

1.2- benzenediamines (3.6a-c) with acidic stannous chloride. The condensation of these

1.2- benzenediamines (3.6a-c) with alloxan in the presence of boric acid offered a facile 

method of producing 3-unsubstituted flavins (3.7). Some of these flavins were then 

easily alkylated by methyl iodide, propyl iodide and/or benzyl bromide. Alkylations were 

carried out using a modification of the methylation procedure reported by Shinkai et al. 

[77]. Thus the flavin, potassium carbonate and alkylating agent were heated at 60° for 30 

minutes. All alkylations of flavins worked well giving moderate to good yields of 

products.

3- 3 Electrophilic reactions

The easy synthetic access to 10-phenylflavin (3.7a) (because of the commercial 

availability of 2-nitro-N-phenylbenzenamine (3.5a)) allowed a study of the electrophilic 

substitution of the parent structure to be undertaken.

Nitration of the 10-methyl and 3,10-dimethylflavin by stirring at room temperature 

for three days in a mixture of fuming nitric acid (d-1.5) and concentrated sulfuric acid 

(1:2 v/v) was reported by Knappe [127] to yield the 7-nitro derivatives. Under the same 

conditions (Scheme 3-3a) 10-phenylflavin gave 7-nitro-10-(3'-nitrophenyl)flavin (3.8), 

although, only a low yield was obtained as repeated recrystallizations were required to 

separate it from a small amount of contaminating 10-(3'-nitrophenyl)flavin.

Mononitration (Scheme 3-3a) was achieved by heating 10-phenylflavin and 1.1 

equivalents of fuming nitric acid (d-1.5) in concentrated sulfuric acid at 130° for 1.5 

hours to obtain 10-(3'-nitrophenyl)flavin (3.9a) in 34% yield.

McCormick [128] achieved the bromination and chlorination of 7,8,10- 

trimethylflavin (lumiflavin) in the 9-position by treatment with N-halogenosuccinimide in

a From the Aldrich Chemical Company, 1988-89 Catalog.
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trichloroacetic acid in the presence of catalytic amounts of benzoyl peroxide.

The 10-(S'-bromophenyl)flavin (3.9b) was produced by using an acidic solution 

of bromine and silver sulfate which favours the formation of the highly reactive bromine 

cation electrophile [129]. In the bromination one equivalent each of 10-phenylflavin, 

bromine and silver sulfate in 90% sulfuric acid were shaken for 16 hours to yield 25% of 

the product 3.9b. An attempt to dibrominate under the same reaction conditions using 

two equivalents of bromine failed and only resulted in the formation of compound 3.9b. 

A further attempt to form the dibrominated compound by brominating 10-(3'- 

bromophenyl)flavin and extending the reaction time to five days resulted in 

decomposition of the flavin.

The identity of the nitro 3.9a and dinitro 3.8 products above was confirmed by 

*H n.m.r. spectroscopy and decoupling experiments discussed in section 3-4.1. The 

identity of 10-(3'-bromophenyl)flavin was confirmed by forming the 3-N-methyl 

derivative (Scheme 3-3b) which was found to be identical by melting point, mass spectra 

and *13 n.m.r. spectra to an authentic sample of 10-(3'-bromophenyl)-3-methylflavin 

(sample provided by Dr W. B. Cowden).

The results of the above electrophilic reactions indicate that the 3' position of the 

10-phenyl ring is more reactive towards electrophilic substitution than the 7 position of 

the flavin. The meta orientation of this substitution indicates that the flavin ring system is 

electron withdrawing towards the 10-phenyl ring. This is not unexpected because under 

the highly acidic conditions of the above reactions the protonation of the flavin at the 1-N 

position and localization of a positive charge in the flavin ring system would occur [130].

A general review of the reactivities of the flavins is given by Berezovskii et al.

[ 131].



Table 3-1: n.m.r. spectral data (5)a for 3-subs ti tu ted 10- (4'-

chlorophenyl and phenyl)flavins

O
3

RN' 4

JLO i

x

7

8

Cmpd no. R X H 6 b H7 c H 9 b

3.7a H H 8.19 e 6.74
2.5a Me H 8.24 e 6.78
3.4a Et H 8.22 e 6.78

3.4q d Pr H 8.23 e 6.78

3.4p f Ph H 8.36 e 6.92

3.4r d.f PhCH2 H 8.29 e 6.86

3.7b d H Cl 8.19 e 6.84
2.5o Me a 8.24 7.64 6.78
3.4b Et a 8.23 7.63 6.84

3.4m f.g Pr a 8.34 e 6.92

3.4n f Ph Cl 8.38 e 6.96

3.4o d PhCH2 Cl 8.25 e 6.88

a Chemical shifts reported as parts per million in CD3SOCD3 obtained using a Varian XL 
200 spectrometer unless stated otherwise. b Peaks appear as doublets with integration of 
1H, Jö,7 and Js,9 ~ 8.0 Hz. c Peaks appear as triplets with integration of 1H, 17^ is 8.0 
Hz. d Obtained using a Joel FX 90 spectrometer. e Peak obscured by hydrogen atom 
peaks of the 10-phenyl ring and/or the 3-N substituent. f Recorded in CDCI3. 8 Obtained 
using a Varian VXR 300 spectrometer.



70

3-4 Physical properties

3-4.1 *H Nuclear magnetic resonance spectra

The *H n.m.r. spectral data of the two series of 3-substituted 10-(4'-chlorophenyl 

and phenyl)flavins are presented in Tables 3-1 and 3-2.

The 3-N substituents give the expected shifts and splitting patterns with the 

downfield influence of the N-3 nitrogen reflected in the chemical shifts of the signals of 

the adjacent methylene hydrogen atoms (Table 3-2). The remaining spectral features for 

the compounds are entirely consistent with the assignments made in section 2-3.2(i). In 

both the 4'-Cl substituted and unsubstituted 10-phenyl compounds the peaks due to H 6, 

H 7, H 8, H 9 and the 10-phenyl hydrogen atoms match (allowing for different solvent 

systems) that of the 3-N methyl analogues already discussed in Chapter 2.

The *H n.m.r. spectrum of 10-(3'-nitrophenyl)flavin (obtained in CD3SOCD3 

using a Varian XL 200 spectrometer) consisted of a doublet (8.0 Hz, 1H) at 6.86 ppm, a 

multiplet (2H) at 7.60-7.78 ppm, a multiplet (2H) at 7.92-8.08 ppm, a doublet (8.0 Hz, 

1H) at 8.21 ppm, a singlet (1H) at 8.42 ppm and a doublet (8.0 Hz, 1H) at 8.53 ppm. 

These peaks are assigned to H 9, H 7 and 8, H 5' and 6', H 6, H 2', and H 4', 

respectively.

The *H n.m.r. spectrum of the 7-nitro-10-(3’-nitrophenyl)flavin (obtained in 

CD3SOCD3 using a Varian XL 200 spectrometer) consisted of a doublet (9.4 Hz, 1H) at 

7.08 ppm, a multiplet (2H) at 7.92-8.13 ppm, a multiplet (2H) at 8.40-8.45 ppm, a 

doublet (8.0 Hz, 1H) at 8.56 ppm and a singlet (1H) at 8.96 ppm. These peaks were 

assigned to H 9, H 5' and 6', H 8 and 2', H 4', and H 6, respectively. This assignment 

is consistent with the above 10-(3'-nitrophenyl)flavin spectrum and the expected changes 

in the chemical shifts and coupling pattern that would occur with a 7-nitro substituent 

[132].

For both the mononitro 3.9a and the dinitro 3.8 compounds, decoupling 

experiments in which the doublets and multiplets of the spectra were decoupled confirmed 

the above assignments.



Table 3-2: 1H n.m.r. spectral data (5)a for 3-substituted 10-(4f- 

chlorophenyl and phenyDflavins

O
3

RN' 4 nY ^ iJL

X

7

8

a Chemical shifts reported as parts per million in CD3SOCD3 obtained using a Varian XL 
200 spectrometer unless stated otherwise. b Data are presented in the following form; 
chemical shift, multiplicity, coupling constants (where appropriate) and integration. The 
following abbreviations were used: s (singlet); d (doublet); t (triplet); q (quartet); sex 
(sextuplet); com (complex); and in cases where the coupling constants are the same in a 
spin system it is presented lastly. c For some compounds the hydrogen atom signals of 
the 3-N substituent or H 7 and H 8 are inseparable from signals from the 10-phenyl 
hydrogens. In these cases those signals which were not included in Table 3-1 or the 
adjacent column, are incorporated in this column and are apparent by integration. 
d Obtained using a Joel FX 90 spectrometer. e Recorded in CDCI3. f Peaks expected in 
the aromatic region are obscured by the hydrogen atom peaks of 10-phenyl ring, H 7 or 
H 8. S Two symmetrical doublets seem to be present within this complex splitting pattem. 
h Obtained using a Varian VXR 300 spectrometer.
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Cmpd no. R X R b 10-Substituted phenyl b*c

3 .7 a H H - 7.41 d 8.0 Hz 2H, 
7.55-7.78 com 5H

2 .5 a Me H 3.25 s 3H 7.43 d 8.0 Hz 2H, 
7.60-7.81 com 5H

3 .4 a Et H 1.13 t3 H , 3.89 q 2 H  6.8 Hz 7.44 d 8.0 Hz 2H, 
7.60-7.82 com 5H

3.4q d Pr H 0.88 t3 H , 1.57 sex 2H, 3.82 
12H 7.4 Hz

7.39-7.68 com 7H

3.4p  e Ph H f 7.26-8.20 com 12H

3 .4 r d.e PhCH2 H 5.25 s 2H f 7.21-7.66 com 12H

3.7b d H Cl - 7.42-7.85 com 6H

2 .5 o Me a 3.25 s 3H 7.48 d 2 H , 7.81 d 3H 
8.6 Hz

3 .4 b Et Cl 1.13 t3 H , 3.90 q 2 H  6.8 Hz 7.28 d 8.6 Hz 2H, 
7.73-7.85 com 3H g

3.4m  e«h Pr a 0.98 t3 H , 1.71 sex 2H, 4.03 
t 2H 6.0 Hz

7.28 d 8.6 Hz 2H, 
7.62-7.68 com 4H g

3 .4n  e Ph Cl f 7.27-7.68 com 11H

3.4o d PhCH2 Cl 5.08 s 2 H f 7.32-7.86 com l l H g



Table 3-3: Mass spectral data for 3-substituted 10-(4'-

cblorophenyl) flavins

Nominal mass m/z and intensities (relative % of base peak)
Cmpd
no.

R M+2 M M-l 281 253 246 239 218

3 . 7 b H 326 (12) 324 (24) 323 (96) ( I D (35) (10) (5) (17)
2 . 5 o Me 340 (13) 338 (31) 337 (100) (21) (31) (13) (8) (9)
3 . 4 b Et 354 (34) 352 (100) 351 (61) (39) (39) (16) (12) ( I D
3 . 4 m Pr 368 (38) 366 (100) 365 (9) (33) (30) (13) (10) ( i d

3 . 4 n Ph 402 (22) 400 (42) 399 (20) (100) (31) (18) (11) (8)
3 . 4 o PhCH2 416 (37) 414 (85) 413 (2) (100) (22) ( I D (10) (8)
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3-4.2 Mass spectra

The electron impact induced fragmentation of the 3-substituted 10-(4'- 

chlorophenyl)flavin series has been studied. From Table 3-3 it is seen that peaks at M+2, 

M, M -l, m/z 281, 253, 246, 239 and 218 appear throughout the series.

The M+2 peak is characteristic of chlorine containing molecules and results from a 

33 % natural abundance of the 37C1 isotope. The M-l peaks are seen to varying degrees 

throughout the series but are most pronounced in the 3-unsubstituted, 3-methyl and 

3-ethyl compounds.

A proposed fragmentation pattern for this series based on the fragmentation 

pattem of 3,7,8,10-tetramethylflavin described by Holzmann and coworkers [133] is 

shown in Fig 3-1. After the C-4a/C-4 bond cleavage of the molecular ion, the major 

fragmentation involves initial loss of RNCO depicted by a peak at 281. Subsequent 

losses of CO or Cl or NCO appear as peaks at 253, 246 and 239 respectively. The peak 

at 218 is probably formed by the further loss of CO from the 246 fragment. Exact mass 

measurements of the peaks at 281, 253, 246, 239 and 218 for 10-(4'-chlorophenyl)-3- 

methylflavin support the above proposition.

The direct cleavage of the R groups or fragments thereof from the molecular ion is 

seen in 10-(4'-chlorophenyl)-3-ethylflavin with peaks at m/z 337 (M-CH3) and 323 (M- 

C2H5) and for 10-(4'-chlorophenyl)-3-propylflavin with peaks at m/z 351 (M-CH3), 337 

(M-C2H5) and 323 (M-C3H7).

Details of experimental methods are given in section 7-1.
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Figure 3-1 Generalized fragm entation pathway of 3-substituted 10-(4'- 

ch lorop h en yl)flav in s

M-R
(or fragments of R)

281

- NCO

253 246 239

I - C O

218



Table 3-4: Antim alarial activity of 3-ethyI-10-(substituted 

phenyl)flavins against P. vinckei vinckei in mice a

Cmpd
no. (X)n

Per cent cured and increase in mean survival (days) at 
dose, mg/kg b

10 15 20 25 30

3 .4a H 0 (0.7) 0 (1.3) _ 100
3 .4b 4-Cl 100 - 100 100 100
3 .4c 4-Br 60 (2.0) c 80 (39) 100 80(7) 75 (8.0)
3 .4d 3-F 0 (0.4) - 20 (4.3) - 40 (2.3)
3 .4e 4-F 0 (0.6) - 50 (1.0) - 100
3 .4 f 3,5-Cl2 80 (9.0) d 20 (9.3) 0(10) 0 (12.2) 0 (12.2)
3 .4 g 3,5-Me2 0 (0.6) 0 (0.4) 0 (0.6) 0 (1.0) 0 (1.6) e
3 .4h 3-CFs 100 100 100 0 (-1.0) -
3 .4  i 3-CN 0(0) - 0(0) - 0 (-0.25)
3 - 4 j 4-CN 0 (0.4) o (1.2) 0 (0.6) 0 (0.8) 0(0)
3 .4k 3-SMe 0(0) - 0 (0.5) - 0 (1.2)
3.41 4-SMe 0(0) 0(0) 0(0)

a See section 7-3. l(i) for experimental details. b All groups consist of 4 to 6 animals. 
c Average per cent day 2 parasitemia of 29 %. d Average per cent day 2 parasitemia of 
12 %. e 100 Per cent cured at 70 mg/kg.
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3-5 Antimalarial activity 

3-5.1 Methods and results

The compounds prepared in this study were tested against P. vinckei vinckei in 

vivo as described in sections 2-4 and 7-3. l(i). For the 3-ethyl- 10-(substi tu ted 

phenyl)flavin series the dose range examined was 10 to 30 mg/kg. For the other 

members of the 3-substituted 10-(4'-chlorophenyl and 10-phenyl)flavin series the dose 

range examined was 10 to 70 mg/kg. The results of the in vivo testing are given in 

Tables 3-4 and 3-5. The 10-(3'-trifluoromethylphenyl)flavin (3.4s) tested was found to 

be inactive at 10, 20 and 30 mg/kg.

The 3-substituted 10-(4'-chlorophenyl)flavin series was tested in vitro for 

antimalarial activity against P.falciparum (FC-27). The method used was the same as in 

sections 2-5 and 7-3. l(ii) (method 1). The results of this screen are shown in Fig 3-2. 

Results for compound 3.4o, at all concentrations, and compound 3.4m at 20 faM could 

not be obtained due to their insolubility in the culture medium.

3-5.2 Discussion

The compounds described in this section are discussed in terms of three main 

subgroups. These are the 3-ethyl-10-(substituted phenyl)flavins (3.4a-I), the 

3-substituted 10-phenylflavins (3.7a, 2.5a and 3.4p-r) and the 3-substituted 10-(4'- 

chlorophenyl)flavins (3.7b, 2.5o and 3.4m-o).

Table 3-4 shows the in vivo antimalarial activity of the 3-ethyl-10-(substituted 

phenyl)flavins in the dose range tested. In terms of activity this series reflects the 

findings of the 3-methyl-10-(substituted phenyl)flavin series discussed in Chapter 2 

(except for compound 3.4i (3'-CN) for which no 3-methyl analogue was made).

All the active compounds of this series, except compound 3.4g (3',5'-Me2), had 

higher schizontocidal activity than their corresponding 3-methyl analogues as gauged by 

parasite counts on day 2 after treatment. When the active flavins in this series were 

compared to their 3-methyl analogues it was found that:



Table 3-5: Antim alarial activity of 3-substituted 10-(4'-chIorophenyl 

and phenyl)flavins against P. vinckei vinckei in mice a

Per cent cured and increase in mean survival (days) at 
__________________ dose, mg/kg b________________

Cmpd
no. R X 10 20 30 50 70

3 .7a H H 0 (0.4) 0(0)
2.5a c Me H 0(0) - 0(0) 0 (0.3) 60 (0)
3 .4a Et H 0 (0.7) 0 (1.3) 100 0 (-2.0) 0 (-2.0)
3 .4q Pr H 20 (0) 20 (1.0) 75 (3.0) 100 100
3 .4p Ph H - - - 0 (-0.2) 0 (-0.6)
3 .4 r PhCH2 H - - - 0 (0.4) 0 (2.8) e
3 .7b H a 0 (0 )d - 0(0) - 0(0)

2.5o c Me a 20 (0.25) 100 100 20 (-0.8) 0 (-1.0)
3 .4b Et a 100 100 100 - 100d
3.4 m Pr a 0 (0.5) d 0(0) 0(0) 80 (1.0) 100
3 .4n Ph a 0(0) 0(0) 0(0) - 0(0)
3 .4 o PhCH2 a 0(0) 0(0) 0(0) - 0(0)

a See section 7-3. l(i) for experimental details.b Most groups consist of 4 to 6 animals. 
c Data taken from Table 2-5. d Denotes a group of two mice. e A group of 2 mice failed to 
cure at 140 mg/kg.
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1. Compounds 3.4a (unsubstituted), 3.4b (4'-Cl), 3.4d (3'-F) and 3.4e (4'-F) had 

higher potency (while not showing any toxicity in the dose range tested).

2. Compound 3.4h (3'-CF3) was more active but also more toxic.

3. For compound 3.4f (3',5'-Cl2) and to a lesser degree compound 3.4c (4'-Br), it 

was noted that a number of mice and/or groups of mice with day two parasite counts 

low enough to indicate that a cure should be expected died after a mean extension of 

lifespan of 7 to 39 days. This curious discrepancy was probably due to the failure of 

these flavins to effect radical cures resulting in recrudescence and ultimately death from 

malaria.

To investigate the effect of modifying substituents at the 3-N position two series 

of compounds were produced by maintaining the 10-substituent as either phenyl or 

4'-chlorophenyl while the 3-N position was varied. The groups used as substituents as 

well as their associated n, a  and molar reff activity values are shown in Table 3-6.

Table 3-6: Some physicochemical parameters of the various 3- and

10-phenyl substituents of the flavins

3-N
substitutent

10-phenyl
substitutent

Physicochemical parameters a

7t (lipophilic) b a (electronic)b MR (steric)c

H _ 0.00 0.49 1.68
Me - 0.50 0.00 6.34
Et - 1.00 -0.10 11.0
Pr - 1.50 d 15.66
Ph - 2.13 0.60 25.66
CH2Ph - 2.69 0.22 31.32
- H e 0.00 0.00 1.68
- C le 0.71 0.23 6.64

a For definition of parameters see section 2-4.4(ii). b Parameter values obtained from 
reference [134]. c Parameter values obtained from reference [89]. d Not available. 
e Aromatic substituent parameters.
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Fig 3-2 Growth inhibition of P. falciparum in vitro after 48 hr 

incubation with 3-substituted 10-(4'-chlorophenyl)fIavins
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Details of this assay are given in sections 2-5 and 7-3.1(ii) (method 1).



76

In both series the 3-unsubstituted (as well as 10-(3'-trifluoromethylphenyl)flavin 

(3.4s)), 3-phenyl and 3-benzyl compounds failed to show any significant activity.

In the 10-(4'-chlorophenyl) series activity increased when the 3-substituent was 

changed from methyl to ethyl but decreased when changed to propyl. In the 

10-phenylflavin series the activity increased when the 3-substituents were changed from 

methyl to ethyl and again from ethyl to propyl (Table 3-5). These results indicate that 

overall lipophilicity may be related to activity. Two reasons for this assertion are:

1. The P. falciparum inhibition data (Fig 3-2) on the 3-substituted 10-(4'- 

chlorophenyl)flavin series indicates that alteration at the 3-N position has little effect 

on the activity in vitro. From this it is reasonable to assume that the differences in in 

vivo activity among this series are due to the pharmacokinetic processes of distribution 

and elimination occurring in vivo. A parameter of major importance in these processes 

is lipophilicity; and

2. Using the combined k values of the 3- and 10-phenyl substituents as an estimate of 

overall lipophilicity, it is apparent that the most active compound from each series, that 

is 10-(4'-chlorophenyl)-3-ethylflavin (Etc = 1.71) and 10-phenyl-3-propylflavin (Etc 

= 1.50) have similar overall calculated lipophilic values.

10-(4'-Chlorophenyl)-3-ethylflavin was not only the most active member of both 

series (Table 3-5) but is also better tolerated at higher doses than its 3-methyl analogue.

In conclusion, some activity and toxicological advantages have been gained by 

alteration of substituents at the 3-N position in the above two series of compounds.

These gains seem to be associated with increased lipophilicity, although, the benefit 

appears to be limited by either a natural lipophilic optimum or possibly the associated 

increase in bulk or changes in the electronic nature (albeit minor) occurring as the 

substituents at the 3 position increase in lipophilicity in these two series.
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3-6 Other biological screens

Compounds 3.4a and 3.41 were evaluated for in vitro anti-HIV activity by the 

National Cancer Institute as described in section 2-6.3 and classified as inactive.

It has been reported by Graham et al. [135], and Ryley and Wilson [136] that 

some riboflavin antagonists have activity against poultry coccidiosis. With this in mind, 

3-ethyl-10-(3'-trifluoromethylphenyl)flavin was tested b and found to have activity 

against the Coccidia Eimeria vermiformis in C57/BL6 mice. A reduction by 90% 

compared to controls of the number of oocysts expelled during the course of the disease 

was achieved by a daily oral dose of 25 mg/kg given for twelve days after infection. The 

experimental details of this coccidiosis screen are given in section 7-3.3.

b Testing was done by Mr C. Reiger and Dr K. Ovington of the Department of Zoology, The Australian 
National University, Canberra, ACT, 2601.
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CHAPTER 4 Syntheses and in vivo antimalarial activity of some 7,8,9- 

substituted 3-methyl-10-(substituted phenyl)flavins and a 

6,8-diazafIavin

4-1 Introduction

An investigation into substituent effects in the ring-3 of 10-phenylflavins are 

described in this chapter. A series of compounds with dimethyl or chloro substituents in 

the 7, 8 or 9 positions of the 10-phenylflavins and a 10-phenyl-6,8-diazaflavin were 

prepared (shown in Schemes 4-1, 4-2 and 4-4). These compounds were tested for 

antimalarial activity in vivo and found to be mostly inactive.

The syntheses, some of the physical properties, the results of biological testing 

and the rationale for preparing these compounds are presented and discussed in the 

following sections.

4-2 Syntheses

4-2.1 7,8,9-Substituted-10-(4’-chlorophenyl and phenyl)-3-methylflavins

The two routes considered for obtaining substituents on the ring-3 of the flavin are 

shown in Schemes 4-1 and 4-2 and were discussed generally in section 2-2. It is clear 

from these schemes that in both cases the formation of positional isomers is possible.

The starting materials for the first preparative programme were substituted 

nitrosobenzenes and 6-(4'-chloroanilino)-3-methyluracil (2.4o) (general synthesis 

discussed in section 2-2.4). The nitrosobenzenes for this reaction were prepared by 

oxidation of the appropriate anilines with Caro's acid (H2SO5) [137,138]. The formation 

of the 7,8,9-substituted-10-phenylflavins 4.2a-c and 4.3a,b involved the condensation 

of 6-(4'-chloroanilino)-3-methyluracil (2.4o) with 3 equivalents of the appropriately 

substituted nitrosobenzene in the presence of acetic anhydride, essentially according to the 

method of Yoneda et al. [60,61]. *H N.m.r. spectroscopy was used to detect the 

presence and proportion of the possible isomers.



Scheme 4-1

§0
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The condensation with 3-chloronitrosobenzene (4.1b) gave a mixture of 

approximately 1 to 2 of the 7- and 9-chloro isomers 4.2b and 4.3b, respectively. The 

9-chloro isomer 4.3b was isolated by fractional recrystallization from 

dimethylformamide. A 7-chloro isomer enriched mixture was recovered from the filtrate 

and recrystallized from glacial acetic acid to obtain the pure 7-chloro compound 4.2b.

By using the same reaction as described by Yoneda et al. [61], the condensation with the 

symmetrical 4-chloronitrosobenzene (4.1c) gave 8-chloro-10-(4'-chlorophenyl)-3- 

methylflavin (4.2c) in 37% yield.

The condensation of 3,4-dimethylnitrosobenzene (4.1a) gave a mixture of 

approximately one third of the 7,8-dimethyl isomer 4.2a and two thirds of the 

8,9-dimethyl isomer 4.3a. Only the 8,9-dimethylflavin 4.3a could be recovered from 

the isomer mixture by repeated recrystallizations with glacial acetic acid and 

dimethylformamide.

The above reaction scheme was successful in yielding the 7- (4.2b),8- (4.2c) 

and 9- (4.3b) monochlorinated and 8,9-dimethyl 4.3a compounds but failed to make 

available a pure sample of the 7,8-dimethyl flavin 4.2a. In the second synthetic scheme 

(Scheme 4-2) it was reported by Sako et al. [62] that ring closure of 6-anilino-5-(3',4'- 

dimethylanilino)-3-methyluracil (4.5a) gave only the 7,8-dimethyl isomer 4.2d. 

Therefore, this reaction sequence was undertaken in an effort to take advantage of this 

reported propensity to form a single isomer and apply it to produce 10-(4'-chlorophenyl)- 

3,7,8-trimethylflavin (4.2a).

The 5-bromouracil (4.4) starting materials for the reaction were prepared by 

bromination of the 6-anilino-3-methyluracils 2.4a and 2.4o. Two possible sites for 

bromination are found on 6-anilinouracils, they are the 4' position of the anilino group 

and the 5 position in the uracil ring. (Bromination of the 2' and 6’ positions of the anilino 

substituent is less likely on steric grounds.) In the bomination of 6-(4'-chloroanilino)-3- 

methyluracil only the 5-position is available but in the case of 6-anilino-3-methyluracil 

care had to be taken to keep the reaction mixture at -7° (in a salt-ethanol ice bath) during 

the addition of one equivalent of bromine to ensure monobromination of the slightly more 

active 5-position. Dibromination readily occurred at temperatures above this to give
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5- bromo-6-(4'-bromoanilino)-3-methyluracil (4.4c, X=Br). The 5-bromo compounds 

(4.4a,b) were treated with excess 3,4-dime thy laniline at room temperature for 17 hours. 

Nucleophilic substitution occurred smoothly under these conditions. The resulting

6- (substituted anilino)-5-(3',4'-dimethylanilino)-3-methyluracils (4.5a,b) were heated in 

an oxygen atmosphere at 120° for 2 hours in dime thy lformamide to achieve cyclization. 

The mechanism proposed for this reaction by Sako et al. [62] is shown in Scheme 4-3.

Sch em e 4-3

In this last synthetic step it was found that the 6-anilino-5-(3',4’-dimethylanilino)- 

3-methyluracil (4.5a) gave only the 7,8-dimethyl substituted flavin 4.2d as reported 

[62]. However, under the same reaction conditions the 6-(4'-chloroanilino)-5-(3",4"- 

dimethylanilino)-3-methyluracil (4.5b) gave a majority of 7,8-dimethyl isomer 4.2a but 

approximately 14% of the crude product consisted of the 8,9-dimethyl isomer 4.3a (as 

assessed by n.m.r. spectroscopy). This indicated that Scheme 4-2 cannot always be 

relied upon to give exclusively 7,8-dimethyl substituted flavins as obviously the 

substituent effect of the 4-chloro group promotes the formation of both possible isomers.



Scheme 4-4a,b

4.8 4.9
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The 7,8-dimethyl isomer (4.2a) was eventually obtained in its pure form by 

recrystallization of the above mixture from acetic acid and dimethylformamide.

4-2.2 10-(4'-Chlorophenyl)-3-methyl-6,8-diazaflavin

The synthetic pathway to the title compound is shown in Scheme 4-4. The last 

step (Scheme 4-4b) is a modification of the alloxan, N-substituted 1,2-benzenediamine 

flavin synthesis discussed in section 2-2.2(i). 3,10-Dimethyl-6,8-diazaflavin has been 

produced by Yano et al. [139,140] through condensation of N-methylalloxan and 

4-amino-5-methylaminopyrimidine. Therefore, 4-amino-5-(4'-chloroanilino)pyrimidine 

(4.8) was needed in order to obtain the desired 4'-chlorophenyl substituent in the 

10-position of the 6,8-diazaflavin 4.9. The synthesis of this key intermediate used an 

analogous method to that used by Bredereck et al. [141] in their synthesis of 4-amino-5- 

anilinopyrimidine.

Synthesis of the starting material 4'-chloroanilinoacetonitrile (4.6) was first 

attempted using the Strecker condensation with 4-chloroaniline, formaldehyde and 

sodium cyanide as described by Marxer [142]. It was latter found that the so-called 

"Knoevenagel-Bucherer" modification [143], which involves the initial formation of 

4-CIC6H4NHCH2S C>3'Na+ before addition of cyanide gave a better yield and was a 

simpler method for the production of 4'-chloroanilinoacetonitrile (4.6; Scheme 4-4a). 

The purine 4.7 was formed in a "one pot" reaction by refluxing 4'-chloroanilino- 

acetonitrile and 7.5 equivalents of formamidine acetate in 1-butanol. The volatile 7-aryl 

purine 4.7 was purified from reaction by-products by sublimation. The purine 4.7 was 

then readily hydrolysed with 0.5 M sodium hydroxide to give 4-amino-5-(4'- 

chloroanilino)pyrimidine (4.8) in excellent yield.

The N-methylalloxan required in the next step was formed by treatment of 

N-methylbarbituric acid with benzaldehyde to give 5-benzal-3-methylbarbituric acid, 

which following chromic acid oxidation gave N-methylalloxan in reasonable yield [144].

The 6,8-diazaflavin 4.9 was formed by heating a solution of the 

diaminopyrimidine 4.8, N-methylalloxan and boric acid at 60° for 30 minutes
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(Scheme 4-4b). The identity of the product was confirmed by n.m.r. spectroscopy, 

mass spectrometry and microanalysis.

The experimental details of the above syntheses (sections 4-2.1 and 4-2.2) are 

reported in section 7-2.

4-3 Physical properties

4-3.1 Nuclear magnetic resonance spectra

The lH n.m.r. data for this series of compounds is consistent with that obtained 

for the 3-methyl- 10-(substituted phenyl)flavins reported in section 2-3.2(i). The 

substituent location in ring-3 of the flavins was detected by both the absence of the 

positionally corresponding hydrogen atom peak and the new coupling pattem in the peaks 

of adjacent hydrogens.

For example, the 8-chloro flavin (4.2c) when compared to its 7,8,9-unsubstituted 

analogue (2.5o) has an H 7 doublet instead of a triplet and a H 9 singlet instead of a 

doublet and no signal for a corresponding H 8. The rest of the 7,8,9-substituted flavins 

presented in Table 4-1 are similarly consistent

The substituted chloro group has very little detectable effect on the shifts of the 

surrounding hydrogen atoms while the dimethyl substituents exerted a shielding effect of 

between 0.10-0.27 ppm on the two remaining hydrogen atoms in ring-3. The 9-Me 

hydrogen atoms in the 8,9-dimethyl isomer 4.3a were assigned to the peak at 1.58 ppm 

because of the shielded nature at the 9 position and by comparison with the unassigned 

methyl peaks in the 7,8-dimethyl isomers 4.2a and 4.2d.



Table 4-1: 1H rLm.r. spectral data (8)a for 7,8,9-substituted-3-methyl-10-

(substituted phenyl)flavins

a Chemical shifts reported as parts per million in CD3SOCD3 using a Varian XL 200 
spectrometer unless stated otherwise. Data are usually presented in the following form; 
chemical shift, multiplicity, coupling constants (where appropriate) and integration. The 
following abbreviations were used: s (singlet); d (doublet); t (triplet); com (complex); and 
in cases where the coupling constants are the same in a spin system it is presented lastly. 
b All peaks appear as singlets integrating for 3H. c All reported peaks integrate for 1H. 
d Spectral data taken from Tables 2-1 and 2-2 and included for comparison. e Peak 
obscured by hydrogen atom peaks of the 10-phenyl ring but detected by integration. 
f Spectrum recorded in CDCI3 using a Joel FX 90 spectrometer.
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Cmpd
no.

0 0 n X H 6 c H 7 c H 8 c H 9 c

2.5o d H a 8.24 d 8.0 Hz 7.64 t 8.0 Hz e 6.88 d 8.0 Hz

4 . 2 b 7-C1 Cl 8.39 s - e 6.89 d 8.6 Hz

4 . 2 c 8-C1 a 8.27 d 8.7 Hz 7.70 d 8.7 Hz - 6.85 s

4 . 3 b 9-C1 a 8.23 d 7.6 Hz e 7.89 d 
7.6 Hz

-

4 . 2 a 7,8-Me2 Cl 8.03 s - - 6.66 s

4 . 3 a 8,9-Me2 a 7.97 d 8.4 Hz 7.54 d 8.4 Hz - -

4 .2d  f 7,8-Me2 H 8.08 s - 6.65 s

Cmpd no. (Y)n X N M eb 10-substituted phenyl O 0 n b

2.5o d H a 3.25 7.48 d2 H , 7.81 d 3H 8.6 Hz
4 . 2 b 7-C1 a 3.25 7.47 d 2H, 7.81 d 3H 8.2 Hz
4 . 2 c 8 - 0 Cl 3.25 7.48 d 2 H , 7.81 d 2H 8 .1H z -

4 . 3 b 9-C1 Cl 3.24 7.44 d 2H, 7.66 d 3H 8.4 Hz
4 . 2a 7,8-Me2 a 3.22 7.46 d 2H, 7.79 d 2H 8.5 Hz 2.31, 2.38
4 . 3 a 8,9-Me2 Cl 3.22 7.46 d 2H, 7.68 d 2H 8.8 Hz 1.58, 2.38

4 .2d  f 7,8-Me2 H 3.47 7.27-7.66 com 5H 2.36, 2.42
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The n.m.r. spectrum of the 10-(4'-chlorophenyl)-3-methyl-6,8-diazaflavin 

(4.9) (obtained in CDCI3 on a Jeol FX 90 spectrometer) consisted of the following: 

a sharp singlet at 3.47 ppm assigned to the 3-N methyl group; a pair of symmetrical 

doublets (J2',3' = 8.6 Hz) at 7.34 and 7.70 ppm consistent with the 10-(4'-chlorophenyl) 

group; a singlet integrating for 1H at 8.64 ppm; and a singlet integrating for 1H at 9.35 

ppm. The unassigned peaks due to H 7 and H 9 appear considerably downfield 

undoubtedly due to the deshielding effect of the adjacent nitrogen atoms N-6 and N-8.

4-3.2 Mass spectra

The mass spectra (electron impact) of the three chloro isomers were nearly 

identical and offered no clear way of distinguishing between them. The spectra showed a 

molecular ion peak at m/z 372 and a closely associated but more intense peak at M-l.

Both these peaks had the associated +2 and 44 isotopic peaks characteristic of a 

compound containing two chlorine atoms. The expected ratio of these associated peaks 

was more pronounced for the M-l peak. The spectra also showed prominent peaks at 

m/z 315 (M-57) and 287 (M-85). These two peaks are consistent with the decomposition 

of the molecular ion by loss of CH3NCO (57) followed by further loss of CO (28). Such 

a fragmentation pattem is in accordance with that reported [133] for 3-methyl lumiflavin 

and that of the 3-substituted 10-(4'-chlorophenyl)flavins discussed in section 3-4.2.

The mass spectra (electron impact) of the 6,8-diaza compound (4.9) gave a peak 

corresponding to the molecular ion at m/z 340 which was associated with a more intense 

M-l peak at m/z 339 both of these peaks had an associated 42 peak typical of 

monochlorinated compounds. This spectrum is similar to those above for the flavins as it 

has prominent peaks at m/z 283 (M-57) and m/z 255 (M-85). It is interesting to note that 

chemical ionization with ammonia, which is usually associated with the formation of a 

quasi-molecular ion of M4l [145], gave a base peak of M43 and a M45 peak (37C1 

isotope peak) of approximately a third the intensity. This may indicate that the compound 

has become reduced during chemical ionization. Similar mass spectrometer reductions 

have been noted in the case of the benzoquinones [146].
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4-4 Results and discussion of in vivo testing

The compounds prepared in this chapter were tested for antimalarial activity 

against P. vinckei vinckei in mice. The results of this screen are presented in Table 4-2, 

the lead compound 10-(4'-chlorophenyl)-3-methylflavin has been included for 

comparison. The percentage cured, mean extension in lifespan and parasitemia on day 2 

were used to monitor activity. More details of this procedure are given in section 2-4.

Table 4-2: Antimalarial activity of 7,8,9-substituted-3-methyl-10- 

(substituted phenyl)flavins and 10-(4'-chlorophenyI)-3- 

methyl-6,8-diazaflavin against P. vinckei vinckei in mice a

Cmpd
no.

ring-3
subst.

10-phenyl
subst.

Per cent cured and increase in mean survival (days) 
at dose, mg/kg b

30 50 70 140

2.5o c - 4-C1 100 20 (-0.8) 0 (-1.0) -

4.2b 7-C1 4-C1 0(0) 0(-0.6)d 0 (-2.0) -

4.2c 8-C1 4-C1 0(0) - 0 (0.4) 0 (-1.0)

4.3b 9-C1 4-Cl - - 0 (0.5) e 0(0)

4.2a 7,8-Me2 4-C1 - - 0 (0.6) 0 (0 )e

4.3a 8,9-Me2 4-C1 - - 0(0) 0(0)

4.2d 7,8-Me2 H - - 0(0) 0 (-0.8)

4.9 6,8-diaza 4-C1 0(0) 0(0) 0 (-1.0) e

a See section 7-3.l(i) for experimental details. b Most groups consist of 4 to 6 animals. 
c Data taken from Table 2-5 and included for comparison. d Activity detected with day 
two blood smears. e Denotes a group of two mice.
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The rationale for introducing groups into ring-3 of the lead flavin compound are 

twofold.

Firstly, the introduction of 7,8-dimethyl substituents would produce a molecule 

that more closely resembles the natural flavin analogue riboflavin. If these compounds 

were inhibiting riboflavin metabolism a closer structural resemblance might be expected to 

improve their antagonism. Thus, the analogues produced and tested were the 10-phenyl 

and 10-(4'-chlorophenyl)-3,7,8-trimethylflavins as well as the incidentally produced 

10-(4'-chlorophenyl)-3,8,9-trimethylflavin. All of these flavins proved to be inactive 

over the same dose range in which their 7,8,9-unsubstituted analogues were active. 

Interestingly, their toxicity relative to their active analogue counterparts was reduced.

Flavins in many flavoproteins act as oxidizing agents for many biochemical 

reactions, some of these flavin enzymes include glucose oxidase, glycolate oxidase and 

amino acid oxidases. In all these cases, once the flavin is reduced it is reoxidized with 

molecular oxygen and hydrogen peroxide is produced. This ability for redox cycling is 

not exclusive to protein bound flavins. It has been shown that non-enzymatic oxidation 

of NADH by flavins occurs at moderate speeds in water at room temperature and that 

dihydroflavins are oxidized with molecular oxygen to form hydrogen peroxide [147]. 

This could create the possibility for a redox cycle as seen in Fig 4-1 to occur.

Fig 4-1 Flavin redox cycle

2 NAD + flavinH2

2 NADH flavin



87

The malaria parasite is very susceptible to oxidative stress. The naturally 

occurring pyrimidine aglycones divicine and isouramil (shown in Fig 4-2) are known to 

undergo redox cycling in which hydrogen peroxide is formed. It is believed that these 

compounds function as antimalarials by exerting oxidant stress on the parasite [25].

Fig 4-2 Chemical structure of divicine and isouramil

O O

H

divicine isouramil

A possible mode of antimalarial action for the flavin analogues under investigation 

could therefore be oxidative damage to the parasite due to hydrogen peroxide produced by 

redox cycling of the flavin compounds. This hypothesis would seem to be supported by 

the observation of Divo et al. [148] that the antimalarial flavin analogue 8-methylamino-8- 

desmethyl riboflavin had enhanced activity in vitro in a high per cent oxygen atmosphere. 

Though this hypothesis was not investigated as such it did suggest the production of the 

7-, 8- and 9-chloroflavin isomers (4.2b, 4.2c, 4.3b) and the 6,8-diazaflavin (4.9) 

might be worthwhile. This is because introducing electron withdrawing groups into the 

flavin ring system increases the oxidizing activity of the flavin [140]. Thus, in light of 

the above hypothesis this might have been a way of increasing oxidative stress on the 

parasite and therefore increasing the biological activity of the flavins.

Of the three positional chloro isomers synthesised only the 7-chloro compound 

(4.2b) showed activity. Even here, however, the activity was at a lower level than the 

lead compound (2.5o). The 7-chloro flavin which produced an average 80% 

suppression in parasitemia of the surviving mice on day two after treatment, was toxic at 

the dose where activity was observed. The 8- and 9- chloro substituted flavins were not 

active in the dose range tested but were less toxic than 10-(4'-chlorophenyl)-3-
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methylflavin.

The 6,8-diaza flavin compounds produced by Yano et al. have not only been 

found to be the most active flavin mimics known for oxidation of thiols and nitroalkanes 

but also redox cycle in the present of oxygen [139,140]. The 6,8-diaza flavin (4.9) 

produced in this study should therefore have high oxidative activity and avoid any 

problems which might be associated with any increased steric hindrance that occurs when 

substituents are introduced into the ring-3 to increase oxidative activity (such as in the 

chloro series above). However, the 10-(4’-chlorophenyl)-3-methyl-6,8-diazaflavin was 

found to be inactive though less toxic in comparison to the lead compound.

Although no attempt was made to investigate the above two hypotheses it is clear 

from the paucity of activity in this series that it can be concluded on a purely S AR basis 

that substitution in ring-3 of the flavin is detrimental to in vivo activity.

4-5 Other biological testing

Compounds 4.2a-c and 4.3a,b were evaluated for in vitro anti-HIV activity by 

the National Cancer Institute as described in section 2-6.3 and classified as inactive.
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5-1 Introduction

In this chapter the synthesis of a series of 6,7,8-substituted 3-methylpteridine- 

2,4(3//,8/f)-diones (Scheme 5-1) and their in vitro and in vivo antimalarial activity are 

described. This work was undertaken in order to examine the role of the benzenoid ring 

(ring-3) of the flavins in antimalarial activity. An interesting historical precedent 

paralleling this was the removal of the 7-methoxy containing benzenoid ring of the 

antimalarial acridine, quinacrine, to give the superior antimalarial chloroquine (see Fig 

5-1) [15a]. The pteridinediones were also of interest as it has been reported [15b] that 

agents with the pteridine ring structure such as 2,4-diamino-6,7-diphenylpteridine shown 

in Fig 5-2 have antimalarial activity (these agents probably act as antifolates).

The substituents 4'-chloro and 3',5'-dimethyl, in the 8-phenyl ring of the 

pteridinediones (5.3a-f, Scheme 5-1), were selected because of their previously 

demonstrated beneficial effect on antimalarial activity in the 3-methyl- 10-(substituted 

phenyl)flavin series (see Table 2-5, pg46).

It was shown that ring-3 of the flavin series is necessary for in vivo activity. 

Additionally only the 6,7-unsubstituted pteridinediones (5 Ja, 5.3b) were active in the 

in vitro screen.

Fig 5-1 Chemical structures of quinacrine and chloroquine

Quinacrine Chloroquine
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Fig 5-2 2,4-D iam ino-6,7-diphenyIpteridine

5-2 Syntheses

The synthesis of the 6,7,8-substituted 3-methylpteridine-2,4(3//,8//)-diones is 

shown in Scheme 5-1. Nitrosation of the 6-(substituted anilino)-3-methyluracils (2.4o, 

2.4g; general synthesis discussed in section 2-2.4) in trifluoroacetic acid readily gave the 

corresponding 6-(substituted anilino)-3-methyl-5-nitrosouracils (5.1a, 5.1b) as 

trifluoroacetic acid salts (not characterized) which were easily reduced with sodium 

dithionite to the corresponding 5-amino-6-(substituted anilino)-3-methyluracils (5.2a, 

5.2b). In an attempt to purify 5-amino-6-(3,,5'-dimethylanilino)-3-methyluracil (5.2b) 

by recrystallization it was found that an unexpected product formed. The *H n.m.r. and 

mass spectra of this compound indicated that it w'as 3,6,8-trimethylbenzo[g]pteridine- 

2,4(l//,3//)-dione (5.4). This is in accordance with reports that compounds of similar 

structure to the 5-nitroso (5.1a, 5.1b) and 5-amino (5.2a, 5.2b) uracils easily 

convert, via ring closure involving the 5-nitroso/amino group and C-2' of the anilino 

substituent, into the corresponding benzo[g]pteridinediones or their N-oxides 

[58,68,149]. It's structure was confirmed by preparing it in a similar manner to that used 

by Goldner et al. [68] to prepare similar compounds, by briefly heating 6-(3',5'- 

dimethylanilino)-3-methyl-5-nitrosouracil (5.1b) in acetic acid. Care was therefore taken 

not to allow the 5-nitroso (5.1a, 5.1b) and 5-amino (5.2a, 5.2b) uracils to be heated 

during their preparation. The final synthetic step in the preparation of the 8- or 6,7,8- 

substituted 3-methylpteridine-2,4(3//,8//)-diones (5.3a-f) involved the Gabriel and 

Colman condensation of the 5-amino compounds (5.2a, 5.2b) with a-dicarbonyl
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reagents. This gave the 6,7,8-substituted 3-methylpteridine-2,4(3//,8//)-diones 

(5.3a-f) in reasonable yields.

Ram et al. [150] have made similar compounds using an alternate reaction 

sequence shown in Scheme 5-2; this scheme was deemed less convenient to that used 

because the 6-(substituted anilino)-3-methyluracils were already available from previous 

syntheses and the straightforward conditions used in going from the 5-nitroso group to 

the 5-amino group were preferable to the more laborious process used by Ram and 

colleagues in going from the 5-nitro to the 5-amino group.

Scheme 5-2

Zn
HC02H

X



Table 5-1: *H N.m.r. spectral data (5)a for the 6,7,8-substituted-3-

m ethyIp terid ine-2 ,4(3 i/,8H )-d iones

O

Cmpd
no.

R (X)n NMeb (X)nc R 8-Substituted
phenyl

5.3a d H 4-C1 3.21 - 8.20 d 1H,
8.41 d 1H 4.0 Hz

7.60 d 2H,
7.72 d 2H 8.9 Hz

5.3b d H 3,5-Me2 3.21 2.35 8.17 d 1 H,
8.37 d 1H 4.0 Hz

7.15 s 2H, 
7.24 s 1H

5 . 3 c Me 4-C1 3.41 - 2.26 s 3H, 
2.67 s 3H

7.19 d 2H,
7.60 d 2H 8.9 Hz

5 . 3 d Me 3,5-Me2 3.45 2.39 2.26 s 3H, 
2.67 s 3H

6.77 s 2H, 
7.18 s 1H

5 . 3 e Ph 4-C1 3.47 - 7.00-7.30 complex 14H

5 . 3 f Ph 3,5-Me2 3.50 2.19 6.68-7.30 complex 13H

a Chemical shifts reported as parts per million in CDCI3 using a Varian XL 200 
spectrometer unless stated otherwise. Data are usually presented in the following form; 
chemical shift, multiplicity, coupling constants (where appropriate) and integration. The 
following abbreviations were used: s (singlet); d (doublet); and in cases where the 
coupling constants are the same in a spin system it is presented lastly. b All peaks appear 
as singlets integrating for 3H. c All reported peaks are singlets integrating for 6H. d This 
spectrum was recorded in CD3SOCD3.
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5-3 Nuclear magnetic resonance spectra

The differences in solubility throughout the series of pteridine-2,4(3//,8//)-diones 

meant that dimethyl-d6 sulfoxide was the solvent of choice to obtain the spectra of the

6.7- unsubstituted compounds while the spectra of the 6,7-dimethyl and 6,7-diphenyl 

pteridinediones were best obtained in deuterochloroform. Table 5-1 shows the peak 

assignments, multiplicity and coupling constants of this series.

The signal due to the 3-N methyl group of this series appears as a singlet at 3.21 

ppm in dimethyl-d^ sulfoxide and between 3.41-3.50 ppm in deuterochloroform. This 

methyl peak appears downfield as expected due to the electron withdrawing effects of the 

neighbouring nitrogen and adjacent ß-carbonyl groups.

In the spectra of the 6,7-unsubstituted pteridinediones the 6 and 7 hydrogen atoms 

(not specifically assigned) appear as two doublets with a coupling constant of 4.0 Hz at 

8.20 and 8.41 ppm for 5.3a, and 8.17 and 8.37 ppm for 5.3b. This spin system 

appears and can be interpreted as a first order AX coupling system (A8/J >10). The 

signals of these hydrogen atoms are downfield due to the 7t-deficient nature of the 

pteridine ring system.

The spectra of the 8-(substituted phenyl) hydrogen atoms for the 6,7- 

unsubstituted and 6,7-dimethyl pteridinediones are in accordance with their 4'-chloro or 

3',5'-dimethyl substitution pattern. The spectra of the 4'-chloro substituted compounds 

have an AA'BB' quartet, characteristic of para disubstituted benzenes. The spectra of the 

3',5'-dimethyl substituted compounds have two singlets, the more upfield peak integrates 

for two hydrogens indicating it results from H 2' and H 6' while the downfield peak 

integrates for one hydrogen H 4'. The signals (not specifically assigned) for the 6- and 

7-methyl groups appear as singlets at 2.26 and 2.67 ppm for both 5.3c and 5.3d.

In the 6,7-diphenyl substituted compounds the aromatic resonances of the

6.7- diphenyl and the 8-substituted phenyl groups overlap to present complex spectra in 

the aromatic region. This disallows assignment of peaks or interpretation of splitting 

patterns, nevertheless, the integration and chemical shifts of the peaks in this region are 

consistent with the structures of these compounds.
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Fig 5-3 Growth suppression of P. falciparum  after 48 hr incubation with 
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a 10-(4'-Chlorophenyl)-3-methylflavin (2.5o) is included for comparison.
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The unexpected 3,6,8-trimethylbenzo[g]pteridine-2,4(l//,3//)-dione (5.4) 

presents a simple spectrum which agrees with its predicted structure. The spectrum was 

obtained using dimethyl-d^ sulfoxide (on a Varian XL 200 spectrometer) and consists of 

five singlets (integration shown in brackets) at 2.51 (3H), 2.70 (3H), 3.30 (3H) ,7.47 

(1H) and 7.51 (1H) ppm. The two downfield peaks, though not specifically assigned, 

are due to the aromatic hydrogen atoms H 7 and H 9, the peak at 3.30 ppm was assigned 

to the N-methyl group, while the remaining peaks correspond to the methyl groups at 

positions 6 and 8 (not specifically assigned).

5-4 Biological activity, results and discussion

The two antimalarial screens used for this series of compounds were inhibition of 

the human parasite P. falciparum in vitro (method 1) and inhibition of lethal P. vinckei 

vinckei in mice. These screens have been discussed in sections 2-4 and 2-5 and the 

experimental details are in section 7-3.1.

The compounds which were unsubstituted in positions 6 and 7 (5.3a, 5.3b) 

showed activity in the in vitro screen over the same concentration range as the original 

lead compound 10-(4'-chlorophenyl)-3-methylflavin (2.5o) (Fig 5-3). The apparent lack 

of increased activity of compound 5.3b at higher concentrations was due to its poor 

solubility in the testing medium. The other four pteridinediones (5.3c-f) containing 6,7- 

dimethyl or 6,7-diphenyl substituents failed to show any activity in the dose range tested. 

This suggests that the presence of bulky groups in both the 6 and 7 positions abolishes 

antimalarial activity in the 6,7,8-substituted 3-methylpteridine-2,4(3/7,8//)-diones.

The complete series of pteridinediones (5.3a-f) and 3,6,8-trimethyl- 

benzo[g]pteridine-2,4(l//,3//)-dione (5.4) were tested in vivo and found to be inactive 

in the same dose range (10-70 mg/kg) over which the 10-(4'-chlorophenyl)-3- 

methylflavin had shown activity. In light of their in vitro activity compounds 5.3a and 

5.3b were tested at the higher dose of 200 mg/kg in mice where still no activity was 

seen. This inactivity of the pteridinediones, when compared with the high activity of the 

3-methyl-10-(substituted phenyl)flavins such as some of those in Chapter 2, could



Fig 5-5 National Cancer Institute anti-HIV testing sheet
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EC50 (Molar) 5.92 x 10 35.40 11335
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possibly be attributed to pharmacokinetic effects brought about by the absence of the 

3-benzenoid ring in the pteridine series. The results of the two types of antimalarial 

screens highlight the significance of this structure activity relationship.

As an aside, the 3,6,7-trimethyl-8-(substituted phenyl)pteridine-2,4(3//,8//)- 

diones are structural analogues of 6,7-dimethyl-8-(l'-D-ribityl) lumazine shown in 

Fig 5-4, which is the natural substrate of riboflavin synthase. As such this series 

represent an as yet untested group of potential riboflavin synthase inhibitors [151,152].

Fig 5-4 Chemical structure of 6,7-dimethyl-8-(l’-D-ribityI) lumazine

O

HC-OH
HC-OH
HC-OH

CH2OH

Compounds 5.3c and 5.3e were evaluated for in vitro anti-HIV activity by the 

National Cancer Institute as described in section 2-6.3 and classified as inactive. 

However, it is interesting to note that at higher doses compound 5.3e caused the number 

of uninfected drug treated control T4 lymphocytes (CEM-6 cell line) to increase relative to 

the uninfected and untreated control. The results of this screen are shown in Fig 5-5.
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CHAPTER 6 Antimalarial action of the flavins seems not to be due to the 

inhibition of glutathione reductase of host erythrocytes

6-1 Introduction

Reduced glutathione (GSH) plays an essential role in the anti-oxidant defence 

system of the red blood cell by the chemical reduction of hydrogen peroxide to water. 

Glutathione is maintained in its reduced form by the flavoenzyme, glutathione reductase 

(GR) which catalyses the reduction of oxidized glutathione (GSSG) at the expense of 

reduced nicotinamide adenine dinucleotide phosphate (NADPH) as shown in Fig 6-1.

The malaria parasite is susceptible to oxidant stress. It has been postulated that 

increased oxidant stress in the cell caused by increasing the production of reactive oxygen 

species and/or the suppression of normal anti-oxidant defense systems is an effective way 

of inhibiting Plasmodium species [24,25,107]. Two examples implicating suppression 

of anti-oxidant capacity as a major factor in preventing malaria are:

1. The high frequency of glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in 

traditional malarial areas has been explained in terms of a positive selection pressure 

for this disorder because it confers protection against malaria [153]. This is thought 

to be the result of G-6-PD deficient individuals having a poor capacity to recycle 

glutathione. This impairment is a direct effect of their limited ability to produce the 

NADPH needed to reduce the GSSG to the important anti-oxidant GSH (Fig 6-1).

The G-6-PD deficient erythrocyte is known to be a less viable environment for the 

intraerythrocytic malaria parasite when levels of oxidant stress are increased [153]; and

2. The inhibition of malaria both in vivo and in vitro by the well known glutathione 

reductase inhibitors l,3-bis(2-chloroethyl)-l-nitrosourea (BCNU) and l-(2- 

chloroethyl)-3-(2-hydroxyethyl)-l-nitrosourea (HECNU) reported by Schirmer et al. 

[118-120]. In their in vitro P. falciparum experiments they were able to correlate the 

level of glutathione reductase activity to parasite growth. It was also shown that 

HECNU had a curative effect in rats infected with P. vinckei.
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When Thumham and co-workers [33,34] reported that riboflavin deficiency 

suppressed P. falciparum infection in humans and P. berghei infection in rats they 

highlighted the necessity of riboflavin for GR activity, the possibility of GR activity being 

essential to the parasite and that GSH plays an important role in protecting the parasite 

from oxidant stress.

Some of the flavins of the present study including the lead compound 10-(4’- 

chlorophenyl)-3-methylflavin have been shown to be good inhibitors of GR [41,107]. 

The above information lead a number of workers [41,107] to suggest that the possible 

antimalarial mode of action of these compounds was by the inhibition of glutathione 

reductase.

To investigate this possibility, the structure activity relationship of a series of 

3-substituted 10-(4'-chlorophenyl)flavins was examined (Table 6-1). These analogues 

exhibited considerable variation in their ability to inhibit human GR, which did not 

correlate with their inhibition of P. falciparum growth in vitro. These findings suggest 

that inhibition of human erythrocyte GR is probably not the primary mode of antimalarial 

action of this class of flavins.

GR inhibition assays of 3-methyl-10-phenylflavin analogues in which 

substituents on the 10-phenyl ring (Table 6-2) were varied were also conducted and 

revealed only small variations in activity amongst this series.
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6-2 Materials and methods 

6-2.1 Inhibitors

The preparation of the 3-substituted 10-(4'-chlorophenyl)flavins and the 

3-methyl-10-(substituted phenyl)flavins used are described in sections 3-2 and 2-2.4.

6-2.2 Glutathione reductase assay

Enzyme activity was measured essentially by the method of Krohne-Ehrich et al. 

[154]. The GR reaction was monitored with a Varian DMS 100 UV/visible 

spectrophotometer at 25° using the decrease in absorbance at 340 nm that occurs when 

NADPH is oxidised to NADP+. The assay mixture had a volume of 1 ml and a pH of 

7.0. It contained 50 mM potassium phosphate, 200 mM KCl, 1 mM EDTA, 1 mM 

GSSG, 0.1 mM NADPH and 3 nM GR purified from human erythrocytes (a generous 

gift from Dr Heiner Schirmer, Heidelberg, FRG). The assay mixture had been incubated 

with various concentrations of the inhibitor for 2 minutes and the reaction was initiated by 

addition of GSSG. Inhibitor stock solutions (1 mM) of the flavin compounds in dimethyl 

sulfoxide were used. Reaction rates were obtained at various inhibitor concentrations; 

control samples contained dimethyl sulfoxide without inhibitor.

6-2.3 In vitro inhibition of P. falciparum  growth

The inhibition of the growth of P. falciparum (FC-27, a Papua New Guinea strain 

maintained in vitro over several years) by the 3-substituted 10-(4'-chlorophenyl)flavins 

was determined by 3H-hypoxanthine incorporation over 48 hours incubation as described 

in section 2-5 and 7-3.1(ii) (method 1).
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Fig 6-2 Inhibition of human glutathione reductase by 3-substituted

10-(4'-chlorophenyl)flavins

3.7b (R=H)

2.5o (R=Me) 

3.4b (R=Et)

3.4m (R=Propyl) 
3.4 n (R=Ph)

3.4o (R=Benzyl)



98

6-3 Results

6-3.1 Flavin inhibition of glutathione reductase

Concentration-inhibition curves for 3-substituted 10-(4'-chlorophenyl)flavins 

were determined (Fig 6-2). The values presented are the means of three experiments; the 

experimental values deviated from the mean by less than 7%. Double reciprocal plots of 

GR inhibition against flavin concentration gave straight lines (r 2 > 0.97), which allowed 

the calculation of IC50 values (Table 6-1). Based on the IC50 values the best inhibitor, 

10-(4'-chlorophenyl)-3-methylflavin, (IC50 = 0.8 |4M), was 57 times more active than 

the worst inhibitor, 10-(4'-chlorophenyl)-3-phenylflavin, (IC50 = 46.2 jiM).

The 3-methyl-10-(substituted phenyl)flavins were tested in a single experiment at 

the concentrations of 1, 2.5, 5, 10 and 20 pM. Double reciprocal plots of the GR 

inhibition against flavin concentration gave straight lines (r 2 values given in Table 6-2). 

The IC50 values given in Table 6-2 range from 0.8 |iM for 10-(4'-chlorophenyl)-3- 

methylflavin to 4.1 jiM for 10-(3'-methoxyphenyl)-3-methylflavin.

6-3.2 Flavin inhibition of P. falciparum growth in vitro

Figure 6-3 shows inhibition of P. falciparum growth by the 3-substituted 10-(4'- 

chlorophenyl)flavins; it can be seen that all compounds inhibited to a similar extent The 

IC50 of all the flavins lie in the narrow range of 6 to 9 |iM. Results for the 3-benzyl 

compound 3.4o, at all concentrations, and the 3-propyl derivative 3.4m at 20 |4M could 

not be obtained due to their insolubility in the testing medium.
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Table 6-1: Effects of 3-substituted 10-(4’-chIorophenyI)flavins on

human erythrocyte glutathione reductase 

O

Cl

Compound number R IC50a ( |iM )

3.7b H 1.1

2 .5o Me 0.8

3.4b Et 4.3

3.4m Pr 19.0

3.4n Ph 46.2

3 .4o PhCH2 5.7

a Concentration required to inhibit 50% of GR activity.
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Table 6-2: Effects of 3-methyl-10-(substituted phenyl)flavins on

human erythrocyte glutathione reductase

Compound no. X IC50 a (l^M) r2

2.5o*> 4-C1 0.8 1.00

2.5h 2,6-(Me)2 1.4 1.00

2.5n 3-C1 1.5 0.99

2.5z 3-Br 1.5 1.00

2.5nn 3-SMe 1.9 0.99

2.5a H 2.1 0.99

2.5j 3-Et 2.1 0.95

2.5kk 3-CF3 2.2 1.00

2.5bb 3-F 2.5 0.99

2.5rr 4-CO2H 2.6 1.00

2,5c 3-Me 3.3 0.99

2.5ee 3-OMe 4.1 0.97

a Concentration required to inhibit 50% of GR activity. b Data taken from Table 6-1.
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6-4 Discussion

The two series, 3-methyl-10-(substituted phenyl)flavins and 3-substituted 10-(4'- 

chlorophenyl)flavins were tested for their ability to inhibit human GR and found to be 

active. The 3-substituted 10-(4'-chlorophenyl)flavins demonstrated considerably greater 

variation in potency than the 3-methyl-10-(substituted phenyl)flavins, therefore it was 

decided that this series would be used to delineate the role for inhibition of host 

erythrocytic GR in the antimalarial activity of the flavin compounds.

This series of flavin analogues with its wide range of lipophilic, electronic and 

steric properties when tested against human GR demonstrated a substantial change in 

effectiveness across the series. On the other hand, in the P. falciparum assay, the 

compounds proved to be essentially equipotent throughout the series. This lack of 

correlation, throughout the series, between the two test systems suggests that inhibition 

of host erythrocytic GR is probably not the principal mode of antimalarial action of these 

agents. The possibility that the these compounds are metabolized within the erythrocyte 

or parasite to a common active metabolite which inhibits GR cannot, of course, be 

excluded though there is no evidence to support this proposition. These results also 

indicate the importance of the substituent in the 3-N position of 10-phenylflavins in terms 

of host red cell GR inhibition, a factor apparently not crucial in their antimalarial action 

against P. falciparum in culture.

In an effort to explain the antimalarial activity of 10-(4'-chlorophenyl)-3- 

methylflavin (2.5o), a number of erythrocytic enzymes have previously been 

investigated as possible targets by Becker et al. [107]. The enzymes in which no 

significant inhibition by compound 2.5o was noted include adenylate kinase, lactate 

dehydrogenase, pyruvate kinase, G-6-PD, hexokinase and adenylate kinase. They also 

showed that compound 2.5o does not affect pyrimidine or purine nucleotide biosynthesis 

or metabolism of the parasite or the erythrocyte. In that report, GR presented itself as the 

most likely drug target, however, they found that addition of GSH to parasite cultures did 

not block the antimalarial action of 10-(4'-chlorophenyl)-3-methylflavin against 

P . falciparum, an observation consistent with the present conclusion that inhibition of
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host erythrocytic GR is probably not the main site of antimalarial action for these drugs.

It should be noted that compound 2.5o has also been shown to be an inhibitor of the 

parasite’s GR [107] and the flavins could conceivably be exerting their antimalarial 

activity via this route.

The finding by Becker et al. [107] that compound 2.5o was not an inhibitor of its 

structural analogue, the cofactor flavin adenine dinucleotide (FAD), but that it 

competitively inhibited the binding of GSSG to GR, is of importance if further studies of 

flavins as GR inhibitors are to be undertaken.

In conclusion, the present work suggests that inhibition of human erythrocyte GR 

is probably not the primary mode of action of the 3-substituted 10-(4'-chlorophenyl)- 

flavin antimalarials. Additionally, substituents in the 3-N position of these compounds 

have a direct effect on their enzyme inhibitory activity, while the 10-phenyl substituted 

series showed only a small variation of 3.3 jiM over a wide range of substituents 

indicating that the enzyme is relatively insensitive to changes at this site in the molecule.



CHAPTER 7
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CHAPTER 7 Methods and materials

7-1 General

1. Melting points (mp) and decomposition points (dec) were taken with a Gallenkamp 

melting point apparatus and are uncorrected.

2. Analyses were performed by The Australian National University Analytical 

Services Unit, Canberra. All solids were dried for at least 3 hours under vacuum at 

appropriate temperatures prior to analysis.

3. *H Nuclear magnetic resonance spectra (*H n.m.r.) were recorded on either a Jeol 

FX 90, Varian XL 200 or Varian VXR 300 fourier-transform spectrometer. Data 

are presented in the following order: chemical shift (ppm); multiplicity; coupling 

constant (J) in Hz; and assignment (where possible). The following abbreviations 

were adopted: s (singlet); d (doublet); t (triplet); q (quartet); quint (quintet) and m 

(multiplet).

4. 13c  Nuclear magnetic resonance techniques were performed at 299.95 MHz on a 

Varian VXR 300 instrument at 25°.

5. Low resolution mass spectra (MS) were recorded on an Incos data system attached 

to a VG-Micromass 7070F double focusing mass spectrometer using electron 

impact (El) at 70 eV or chemical ionization (Cl) with ammonia. High resolution 

mass measurements were made by peak matching using perfluorokerosene as a 

reference. Data are presented in the following order, m/z value, relative intensity as 

a percentage of the base peak. The mass spectra in the following section are El 

unless stated otherwise.

6. Ultraviolet spectra were recorded on a Varian DMS 100 UV/visible 

spectrophotometer between 200-500 nm. Compounds were first dissolved in 

dimethyl sulfoxide and then diluted 1000 times with ethanol to a final concentration 

of 20 [iM.
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7. Analytical thin layer chromatography (t.l.c.) was performed on glass plates 

precoated with Merck Kieselgel 60 F254  of 0.25 mm thickness. Plates were 

visualized by both long and short wave ultraviolet light.

8 . Starting materials, unless stated otherwise, were obtained commercially, usually 

from the Aldrich Chemical Company.
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7-2 Synthetic experimental

Some of the 3-methyl-10-(substituted phenyl)flavins used in Chapter 2 were made 

by Dr W. B. Cowden. The description of the synthesis of those not reported in reference 

[42] has been included in this section.

The synthesis of some of the starting materials described below have been 

reported in the literature, however, conflicting results are often reported regarding 

reaction conditions, yields and characteristics for many of these. Thus, methods for their 

preparation are described herein.

N-Propylurea

Sodium cyanate (6.5 g, 0.1 mol) and «-propylamine hydrochloride (9.6 g,

0.1 mol) were dissolved in water (200 ml). The solution was brought to dryness on a 

steam-bath. The residue was recrystallized twice from the minimum amount of water to 

give white crystals which were dried over CaCl2 to give N-propylurea (3.6 g, 36%), 

mp 107° (lit mp 110° [155]).

N-Benzylurea

A solution of sodium cyanate (6.5 g, 0.1 mol) in water (200 ml) was added to a 

solution of benzylamine (10.7 g, 0.1 mol) in 5 M hydrochloric acid (20 ml) and stirred 

for 10 min. An exothermic reaction occurred after which the mixture was heated for an 

hour on a steam bath. An oil formed. The mixture was diluted with water (400 ml) and 

stirred overnight. Long needle-like crystals formed and were filtered off. The crystals 

were dried over CaCl2 to give N-benzylurea (90 g, 60%) mp 144-145° (lit mp 147-148° 

[155]).
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1-Ethylbarbituric acid (3.1a)

A mixture of carefully dried malonic acid (40.0 g, 0.4 mol) and N-ethylurea 

(30.0 g, 0.34 mol) in acetic acid (90 ml) was heated to 60° and stirred until the solids 

dissolved. Acetic anhydride (65 ml, 0.69 mol) was then added dropwise over 90 min. 

The temperature was then raised to 90° for three hours before the solution was cooled and 

concentrated under vacuum to a thick red syrup. The syrup was crystallized by dilution 

with ethanol (200 ml). Recrystallization from 90% ethanol gave 1-ethylbarbituric acid 

(3.1a) (29 g, 55%) mp 119-122° (lit mp 119-120° [155]).

1-Benzylbarbituric acid (3.1d)

Method 1

N-Benzylurea (synthesis described) (51 g, 0.34 mol) was treated as for 3.1a 

above. T.l.c. (ethanol) indicated the resulting crystals had a large amount of by-product 

present. Repeated recrystallizations from ethanol gave the title compound (3.Id) (0.7 g, 

6%) mp 146-151°. (Found: C, 60.4; H, 4.6; N, 12.6. C11H10N2O3 requires C, 60.6; 

H, 4.6; N, 12.8%).

The filtrates from the above recrystallizations were combined and reduced in 

volume under vacuum and the resulting crystals filtered off. By t.l.c. (ethanol) the 

crystals consisted mainly of the by-product. The crude by-product gave an ELMS 

molecular ion peak at 260. The unpurified by-product (44.2 g) in 5 M hydrochloric acid 

(700 ml) was refluxed for 11 hrs. The solution was brought to dryness under vacuum 

and the residue recrystallized from ethanol to give the title compound (3.1d) (9.3 g, 

13%) mp 147-151°. (Found: C, 60.5; H, 4.6; N, 12.9. C11H10N2O3 requires C, 60.6; 

H, 4.6; N, 12.8%).

Method 2

A mixture of phosphorous oxychloride (6 g, 40 mmol), malonic acid (2 g,

20 mmol) and N-benzylurea (synthesis described) (3 g, 20 mmol) in dry chloroform 

(20 ml) was heated under gentle reflux for 6 hrs. The chloroform was removed under 

vacuum, ice (2 g) was added and the mixture was allowed to stand for an hour before it
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was adjusted to pH 7.5 with saturated sodium bicarbonate solution. The solid was 

filtered off and recrystallized from ethanol to give N-benzylurea (1.5 g). On acidification 

of the filtrate with concentrated hydrochloric acid no precipitate formed, t.l.c. (ethanol) 

indicated the absence of 1-benzylbarbituric acid.

Method 3

A mixture of N-benzylurea (synthesis described) (3 g, 20 mmol), malonyl 

dichloride [156] (2.8 g, 20 mmol) and dry toluene (50 ml) was refluxed for 21 hrs. The 

solution was reduced to dryness under vacuum and the residue recrystallized from 90% 

ethanol. T.l.c. (ethanol) revealed two spots with close Rf values, one of which correlated 

to the Rf of 1-benzylbarbituric acid. Repeated recrystallization from ethanol and 90% 

ethanol failed to isolate the pure 1-benzylbarbituric acid.

Method 4

Sodium metal (0.85 g, 37.5 mmol) was dissolved in dry ethanol (20 ml) before 

diethyl malonate (5.0 g, 31 mmol) and N-benzylurea (synthesis described) (4.7 g,

31 mmol) were added to the stirred solution. The reaction mixture was refluxed for 

15 hrs. On cooling a precipitate formed. 2 M Hydrochloric acid (25 ml) was added to 

the reaction mixture with shaking. The solution was allowed to stand overnight before 

filtering off the precipitate, which after recrystallization from 90% ethanol gave 

1-benzylbarbituric acid (3.1d) (4.7 g, 69%) mp 145-147° (lit mp 148-150° [157]).
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3-Substituted 6-(substituted anilino)uracils (see Tables 7.1 and 7.2)

General method A

An intimate mixture of the appropriate 3-methyl (2.2) [63,66]; 3-ethyl (3.1a) 

[66]; 3-phenyl (3.1c) [124,66]; or 3-benzyl (3.1d) [66] -6-chlorouracil (10 mmol), the 

appropriate aniline (30 mmol) and acetic acid (0.5 ml) was heated in an oil bath at 180° for 

25 min, cooled briefly and poured into ethanol (ca 50 ml) and stirred for 15 min. The 

solid was filtered off, washed with ether (80 ml), recrystallized from acetic acid or 

methanol, and dried under vacuum. The compounds produced, their melting points and 

yields are found in Table 7-1 and microanalyses are presented in Table 7-2.

General method B

A mixture of the appropriate 3-methyl (2.2) [63,66]; 3-ethyl (3.1a) [66]; 

3-rt-propyl (3.1b) [123,158]; or 3-phenyl (3.1c) [66,124] -6-chlorouracil (10 mmol), 

the appropriate aniline (10 mmol; all except 2.3u [70] and 2.3w [69] were available 

from the Aldrich Chemical Company), N,N-diethylaniline (3 g, 3.2 ml, 20 mmol) and 

acetic acid (0.5 ml) was heated at 190° for 25 min, cooled briefly, poured into ethanol (ca 

50 ml) and stirred until crystallization was complete. The solid was filtered off, washed 

with ether and recrystallized from either methanol or acetic acid and then dried under 

vacuum. The compounds produced, their melting points and yields are found in 

Table 7-1 and microanalyses are presented in Table 7-2.

Attempted condensation of 2,6-dimethylaniIine and 6-chloro-3- 

methyluracil (2.2)

Using both general methods A and B above for 6-anilinouracil synthesis, the 

expected product was not formed as determined by t.l.c. (ethanol) and only starting 

materials were identified.



Table 7-1: Physical properties of 3-substituted 6-(substituted 

anilino)uraciIs produced by general methods A and B

a Literature mps are presented in brackets.b See reference [60]. c Synthesised by Dr W.B. Cowden. d See 

reference [159].e See reference [67].f See reference [160]. 8 See reference [161].h See reference [68].



Cmpd
no.

Substitutents 

R (X)n M elting point 
(°C) a

% yield Method

2.4a Me H 330 (336-338) b 91 B
2.4b Me 2-Me 237-239 67 B
2.4c Me 3-Me 273-274 (291) b 76 B
2 .4 d c Me 4-Me 311-313 (325) d 70 A
2.4e Me 2,4-M e2 290-292 59 B
2.4f Me 3,4-M c2 309-312 (309) e 88 B
2.4g Me 3,5-Me2 288 (275-277) f 87 B
2.4i Me 2-Et 223-226 22 B
2.4j c Me 3-Et 246-248 71 A
2.4k Me 4-Et 304-307 78 B
2.41 c Me 4-n-butyl 268-270 62 A
2.4o Me 4-C1 345-346 (297) b 49 B
2.4t Me 3-Cl,4-Me 299-300 88 B
2.4u Me 3-Cl,5-Me 303-304 60 B
2.4w Me 4-Cl,3-Me 334-335 76 B
2.4x Me 4-Cl,2-F 335-336 42 B
2.4y c Me 4-Cl,3-CF3 283-285 75 A
2.4dd Me 3,4-F2 333-337 71 B
2.4ee c Me 3-OMe 268-269 (276) e 69 A
2.4ff c Me 4-OMe 311 (290-292)8 75 A
2.4gg Me S ^-tO M e^ 298-299 88 B
2.4hh Me 4-OH 330-333 (>330) e 82 B
2.4jj Me 4-NMe2 dec 320 (>330)e 92 A
2.4kk Me 3-CF3 257-259 56 B
2.411 Me 4 -CF3 300-302 42 B
2.4mm c Me 3,5-(CF3)2 305-306 81 A
2.4nn Me 3-SMe 257-259 87 B
2.4oo Me 4-SMe 327-328 80 B
2.4qq Me 4-CN 353 (3 5 7 )b 30 B
3.3a Et H 328-329 91 B
3.3b Et 4-C1 267-268 65 A
3.3c Et 4-Br 292-294 55 B
3.3d Et 3-F 285-286 58 B
3.3e Et 4-F 284-285 72 B
3.3f Et 3,5-Cl2 285-287 40 B
3.3g Et 3,5-Me2 253-254 45 A

69 B
3.3h Et 3-CF3 250-251 41 B
3.3i Et 3-CN 292-294 52 B
3.3j Et 4-CN 318-320 37 B
3.3k Et 3-SMe 213-216 41 B
3.31 Et 4-SMe 316 71 B
3.3m Propyl 4-C1 263 46 B
3.3n Phenyl 4-C1 328-329 53 A

47 B
3.3o Benzyl 4-C1 279-280 45 A
3.3p Phenyl H 300 (308-310) h 41 B
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Table 7-2: Analytical data for the 3-substituted 6-(substituted

anilino)uracils

Cm pd
no.

Substitu  tents 

R  ( X ) n F orm ula

% calculated 

C H  N C

% found 

H N

2.4a M e H C i i H h N 3 0 2 60.8 5.1 19.3 60.8 5.4 19.6
2.4b M e 2-M e C i 2 H i 3 N 3 0 2 62.3 5.7 18.2 62.4 5.6 18.2
2.4c M e 3-M e " " tt tt 62.6 5.8 18.3
2.4d M e 4-M e tt tt tt tt 62.3 5.8 18.2
2.4e M e 2,4-M e2 C i 3 H i 5 N 3 0 2 63.7 6.2 17.1 63.9 6.3 17.2
2 .4 f M e 3,4-M e2 it tt tt tt 63.4 6.3 17.2
2 .4g M e 3,5-M e2 it tt tt tt 63.7 6.3 17.2
2 .4 i M e 2-Et tt " tt tt 63.8 6.1 17.1
2.4j M e 3-Et tt " tt tt 63.7 6 .2 16.9
2 .4k M e 4-E t " tt tt tt 63.8 6.3 17.2
2.41 M e 4-n-butyl C i 5 H i 9 N 3 0 2 65.9 7.0 15.4 66.1 7.1 15.4
2 .4 t M e 3-C l,4-M e C i 2 H i 2 C 1 N 3 0 2 54.3 4 .6 15.8 54.6 4.8 16.1
2.4u M e 3-C l,5-M e " tt tt " 54.2 4.7 15.7
2.4w M e 4-C l,3-M e " tt tt tt 54.0 4.5 15.8
2 .4x M e 4-C1.2-F C h H 9 C 1 F N 3 0 2 49.0 3.4 15.6 48 .9 3.2 15.7
2.4y M e 4-C l,3 -C F 3 C i 2 H 9 C 1F 3 N 3 0 2 45.1 2.8 13.1 44.8 2.8 13.1
2.4dd M e 3 ,4-F 2 C h H 9 F 2 N 3 0 2 52.2 3.6 16.6 52.5 3.8 16.6
2.4ee M e 3-OM e C 12H 13N 3O 3 58.3 5.3 17.0 58.5 5.3 17.1
2.4ff M e 4-OM e tt tt tt tt 58.6 5.4 17.1
2.4gg M e 3,5-(O M e)2 C 12H 19N 3O 4 56.3 5.5 15.2 56.2 5.6 15.2
2.4hh M e 4-OH C 11H 11N 3O 3 56.7 4.8 18.0 57.0 4.7 18.1
2.4jj M e 4-N M e2 C i 3 H i 6 N 4 0 2 60.0 6.2 21.5 59.8 6.5 21.5
2 .4kk M e 3-C F 3 C i 2 H i o F 3 N 3 0 2 50.5 3.5 14.7 50.3 3.3 14.5
2.411 M e 4 -C F 3 tt " tt tt 50.6 3.5 14.4
2 .4m m  M e 3 ,5-(C F 3)2 C i 3 H 9 F ö N 3 0 2 44.2 2 .6 11.9 44 .4 2.3 11.8
2.4nn M e 3-SM e C i 2 H i 3 N 3 0 2 S 54.7 5.0 16.0 54.6 5.2 16.2
2 .4oo M e 4-SM e tt tt " tt 55.0 5.1 16.1
2.4qq M e 4-CN C i 2 H i o N 4 0 2 59.5 4 .2 23.1 59.2 4 .2 23.0
3.3a E t H C i2H i3N 30 2 62.3 5.7 18.2 62.3 5.8 18.2
3.3b E t 4-C1 C i 2 H i 2 C 1 N 3 0 2 54.3 4 .2 15.8 54.0 4.5 15.7
3.3c E t 4-Br C i2H i2BrN 302 46.5 3.9 13.6 46.1 3.8 13.4
3.3d E t 3-F C 12H 12F N 3O 2 57.8 4 .9 16.9 58.1 5.0 17.1
3.3e E t 4 -F " tt tt tt 58.2 4 .9 17.0
3 .3 f E t 3 ,5 -C l2 C 12H 11CI2N 3O 2 48.0 3.7 14.0 48.3 3.7 13.9
3.3g E t 3,5-M e2 C 14H 17N 3O 2 64.9 6.6 16.2 65.1 6.8 16.3
3.3h E t 3-C F 3 C 13H 12F 3N 3O 2 52.2 4 .0 14.0 52.5 4.1 14.1
3 .3 i E t 3-CN C 13H 12N 4 O 2 60.9 4 .7 21.9 60.9 4 .7 21.9
3.3j E t 4-CN tt tt tt tt 60.6 5.0 21.8
3.3k E t 3-SM e C 13H 12N 3O 2S 56.3 5.5 15.2 56.5 5.7 15.2
3.31 E t 4-SM e tt tt tt tt 56.6 5.5 15.1
3.3m Propyl 4-C1 C 13H 14C IN 3O 2 55.8 5.0 15.0 56.1 5.1 15.0
3.3n Phenyl 4-C1 C i 6 H i 2 C 1 N 3 0 2 61.3 3.9 13.4 61.5 3.9 13.4
3.3o Benzyl 4-C1 C 17H 14C 1N 3 0 2 62.3 4.3 12.8 62.6 4.3 12.8
3.3p Phenyl H C 16H 13N 3 0 2 68.8 4 .7 15.1 69.1 4.8 15.3
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6 -(3 ,-Trifluorom ethylanilino)uracil (3.3s)

A mixture of 6-aminouracil (2.3 g, 18 mmol), 3-trifluoromethylaniline 

hydrochloride (4.1 g, 21 mmol), 3-trifluoromethylaniline (5.7 g, 36 mmol) and acetic 

acid (6 ml) were heated in an oil bath at 170° for 4 hrs. The melt was cooled and added to 

water (40 ml). The resulting solid was filtered off, washed with water and ethanol, and 

recrystallized from acetic acid to give the title compound (3.3s) (3.8 g, 78%) mp 325- 

327°. (Found: C, 48.8; H, 2.8; N, 15.5. C11H8F3N3O2 requires C, 48.7; H, 3.0; N, 

15.5%). n.m.r. (CD3SOCD3) 5 4.78, s, H 5; 7.50-7.58, m, H 2', 4’, 5’, 6’.

N-PhenyI-l,2-benzenediamine (3.6a)

To a solution of 2-nitro-N-phenylbenzenamine (4.3 g, 20 mmol) in acetic acid 

(100 ml) was added a solution of stannous chloride (22.6 g, 100 mmol) in concentrated 

hydrochloric acid (25 ml). The solution was warmed to 80° and stirred for 40 min. On 

cooling it was made strongly basic with 10 M sodium hydroxide solution, diluted with 

water (1 litre) and the residue was filtered off. The residue was washed with water 

(2 litres) and recrystallized from isopropanol to give the title compound (3.6a) (3.2 g, 

87%) mp 72° (tit mp 76° [155]).

N-(4'-Chlorophenyl)-l,2-benzenediamine (3.6b)

N-(4'-Chlorophenyl)-2-nitrobenzenamine [126] (4.3 g, 20 mmol) was treated as 

for 3.6a above. The product was recrystallized from a small amount of ethanol to give 

the title compound (3.6b) (3.5 g, 80%) mp 118° (tit mp 119° [126]).

10-PhenylfIavin (3.7a)

The title compound was prepared by a similar method to that of Kraus et al. [162]. 

The crude product was recrystallized from acetic acid to give the title compound (3.7a) 

(2.6 g, 77%) dec 330° (tit mp 250° [162]). (Found: C, 65.9; H, 3.4; N, 18.9. 

C16H10N4O2 requires C, 66.2; H, 3.5; N, 19.3%.). n.m.r. data are presented in 

Tables 3-1 (pg 70o) and 3-2 (pg 71). m/z (rel. int) 290 M (26), 289 (100), 246 (20), 

219 (51), 218 (75).
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10-(4'-Chlorophenyl) flavin (3.7 b)

A mixture of N-(4'-chlorophenyl)-l,2-benzenediamine (3.6b) (2.5 g,

11.5 mmol), alloxan tetrahydrate (2.9 g, 13.7 mmol), boric acid (0.9 g, 14.6 mmol) and 

acetic acid (300 ml) was heated and stirred at 60° for 25 min. After crystallization was 

complete the solid was filtered off and recrystallized from acetic acid to give yellow 

crystals of the title compound (3.7b) (1.3 g, 36%) mp > 360° (lit mp >370° [42]). 

(Found: C, 59.5; H, 2.8; N, 17.4. C16H9CIN4O2 requires C, 59.2; H, 2.8; N, 17.3%).

n.m.r. and mass spectral data are presented in Tables 3-1 (pg 70o) and 3-2 (pg 71), 

and Table 3-3 (pg 126), respectively.

N, N-Dimethyl-N'-(2'-ni trophenyl)-ly4-benzenediamine  (3.6c)

A mixture of 2-chloronitrobenzene (25 g, 0.16 mol) and sodium acetate (25 g,

O. 3 mol) was heated with stirring at 170-180° under a nitrogen atmosphere while 

N,N-dimethyl-l,4-benzenediamine (22.0 g, 0.16 mol) was added portionwise over

7 hrs. The resulting black tar was solubilized with a small volume of ethanol and made 

acidic with 1 M hydrochloric acid. The solution was steam distilled for 2.5 hrs to 

remove unreacted 2-chloronitrobenzene. The residue was made basic with aqueous 

ammonia and the resulting oil separated The oil was washed with water (3 x 20 ml) and 

extracted several times with ether. The ether extracts were combined, dried (Na2SC>4), 

filtered and the volatiles removed under reduced pressure. The resulting oily residue was 

dissolved in a small volume of hot ethanol, treated with charcoal, filtered, reduced in 

volume and chilled to give red crystals of the title compound (3.6c) (2.1 g, 5.1%). An 

analytical sample was recrystallized from isopropanol, mp 97-98°. (Found: C, 65.5; H, 

5.9; N, 16.5. C14H15N3O2 requires C, 65.4; H, 5.9; N, 16.3%). m/z (rel. int.) 257 M 

(100), 223 (65), 209 (31), 167 (32), 136 (42).
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10-(4 ’-D im ethylam inophenyl)flavin  (3.7c)

N,N-Dimethyl-N'-(2'-nitrophenyl)-l,4-benzenediamine (3.6c) (1.2 g,

4.7 mmol) was added to a nitrogen saturated solution of stannous chloride (5.3 g,

23 mmol) in concentrated hydrochloric acid (10 ml) and acetic acid (50 ml) at 60° with 

stirring. A stream of nitrogen was passed through the solution continuously while 

stirring was continued for 1.3 hrs. The reaction was cooled, made basic with nitrogen 

saturated 10 M sodium hydroxide solution and diluted with nitrogen saturated water to 

dissolve the remaining tin salts. The resulting oil was extracted into chloroform, dried 

(Na2SC>4), the chloroform removed under reduced pressure and the oil (1.0 g, 4.5 mmol) 

dissolved in acetic acid (10 ml). To this solution was added alloxan tetrahydrate (1.0 g, 

4.5 mmol) and boric acid (0.3 g, 4.8 mmol) and the mixture heated at 60° for 1 hr under a 

nitrogen atmosphere. After evaporation to dryness the residue was washed with a small 

volume of water and ether, and recrystallized from methanol to give the title compound 

(3.7c) (0.4 g, 23%) dec 330°. (Found: C, 65.9; H, 3.4; N, 18.9. C16H10N4O2 

requires C, 66.2; H, 3.5; N, 19.3%). *H n.m.r. (CD3SOCD3) 5 3.02, s, N(CH3)2;

6.93, d, 7.17, d, J2\y  7.7 Hz, H 2’, 3', 5’, 6’, 9; 7.53-7.82, m, H 7, 8; 8.16, d, J6,7 

7.2 Hz, H 6. m/z (rel. int.) 334 (19), 333 M (95), 332 (71), 318 (17), 262 (54), 261 

(100), 247 (25).

10-(3'-Nitrophenyl)ßavin (3.9a)

To a solution of 10-phenylflavin [162] (1.5 g, 5 mmol) in concentrated sulfuric 

acid (10 ml) was added fuming nitric acid (d-1.5, 0.34 g, 5.5 mmol). The solution was 

heated to 130° for 1.5 hrs, allowed to cool, poured onto ice (100 g) and adjusted to pH 6 

with concentrated ammonia solution. The precipitate was filtered off, washed with 

ethanol and recrystallized from methanol to give the title compound (3.9a) (0.6 g, 34%) 

dec 253°. (Found: C, 57.2; H, 2.7; N, 20.6. C16H9N5O4 requires C, 57.3; H, 2.7; N, 

20.9%). *H n.m.r. (CD3SOCD3) 5 6.86, d, J8,9 8.0 Hz, H 9; 7.60-7.78, m, H 7, 8; 

7.92-8.08, m, H 5', 6’; 8.21, d, J6J 8.0 Hz, H 6; 8.42, s, H 2'; 8.53, d, J4',5* 8.0 Hz, 

H 4’. m/z (rel. int.) 335 M (34), 334 (100), 292 (16), 291 (22), 290 (21), 289 (76), 

264 (19), 263 (30).
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7-Nitro-10-(3'-nitrophenyl)flavin (3.8)

10-Phenylflavin [162] (1.5 g, 5 mmol) was added to a solution of fuming nitric 

acid (d-1.5, 12.5 ml) and concentrated sulfuric acid (25 ml) at 0°, and stirred at room 

temperature for 4 days. The solution was poured onto ice, adjusted to pH 3 with 

concentrated ammonia solution and filtered. The filtrate was allowed to stand for 4 days 

to ensure complete crystallization, the yellow solid was filtered off and recrystallized three 

times from ethanol to give the title compound (3.8) (0.2 g, 11%) dec 341°. (Found: C, 

50.9; H, 1.9; N, 21.8. Ci6H8N60 6 requires C, 50.5; H, 2.1; N, 22.1%). lH n.m.r. 

(CD3SOCD3) 5 7.08, d, J8,9 9.4 Hz, H 9; 7.92-8.13, m, H 5’, 6’; 8.40-8.45, m, H 8,

2'; 8.56, d, JyA< 8.0 Hz, H 4'; 8.96, s, H 6. m/z (rel. int.) 380 M (11), 379 (37), 336 

(11), 335 (24), 334 (70), 308 (11), 292 (15), 291 (22), 263 (28).

10-(3 '-Bromophenyl) f lav in  (3.9b)

A mixture of 10-phenylflavin [162] (1 g, 3.3 mmol), concentrated sulfuric acid 

(10 ml), water (1 ml), silver sulfate (1.1 g, 3.3 mmol) and bromine (0.53 g, 3.3 mmol) 

was mechanically shaken for 16 hrs. The reaction mixture was poured onto ice (100 g) 

and filtered. The filtrate was adjusted to pH 6 with concentrated ammonia solution and 

the resulting precipitate was filtered off and recrystallized from acetic acid to give the title 

compound (3.9b) (0.3 g, 25%) dec 248°. (Found: C, 52.0; H, 2.3; N, 15.0. 

Ci6H9BrN402 requires C, 52.0; H, 2.5; N, 15.2%). *H n.m.r. (CD3SOCD3) 6 6.82, 

d, J8,9 6.8 Hz, H 9; 7.44-7.95, complex, H 2\ 4’, 5’, 6', 7, 8; 8.21, d, J6j  7.4 Hz,

H 6.

Attempted dibromination of 10-phenylflavin 

Method 1

10-Phenylflavin [162] (1 g, 3.3 mmol) was treated as for 3.9b above except that 

twice the amount of bromine (1.06 g, 6.6 mmol) was used. The precipitate was 

recrystallized from acetic acid to give 10-(3'-bromophenyl)flavin (3.9b) (0.65 g, 51%) 

dec 248°. *H n.m.r. (CD3SOCD3) identical to that isolated above.
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Method 2

10-(3'-Bromophenyl)flavin (3.9b) (1.2 g, 3.3 mmol) was treated as for 3.9b 

above except that the reaction time was increased to 5 days. The black precipitate was 

taken up in acetic acid and filtered. T.l.c. (ethyl acetate) of the acetic acid solution 

showed no spots visible under long wavelength ultraviolet light. Attempts to isolate a 

product failed.

3-Substituted 10-(substituted phenyl)flavins (see Tables 7-3 and 7-4)

General method A - Condensation of 3-substituted 6-anilinouracils (2.4, 3.3) with 

nitrosobenzene.

The appropriate 3-substituted 6-(substituted anilino)uracil (2.4, 3.3) (10 mmol) 

and nitrosobenzene (3.2 g, 30 mmol) were refluxed in a mixture of acetic anhydride 

(16 ml) and acetic acid (6 ml) for 35 min. The volume of the reaction mixture was then 

reduced by approximately 50% under reduced pressure and ethanol (10 ml) added. After 

crystallization was complete the yellow solid was filtered off, washed with ethanol and 

ether, and recrystallized from methanol or acetic acid. The compounds produced, their 

melting points and yields are found in Table 7.3 and microanalyses are presented in 

Table 7-4. Some of the compounds' n.m.r. data are presented in Tables 2-1 (pg 32), 

2-2 (pg 36), 3-1 (pg 70o) and 3-2 (pg 71). The UV and EIMS data of some of these 

compounds are presented in Tables 2-4 (pg 43) and 3-3 (pg 72o), respectively.

Attempted condensation of 6-(4'-dimethylaminoanilino)-3-methyluracil 

(2.4jj) with nitrosobenzene

6-(4'-Dimethylaminoanilino)-3-methyluracil (2.4jj) (2.6 g, 10 mmol) was treated 

according to general method A for flavin synthesis above. The t.l.c. (ethyl acetate) of the 

reaction mixture compared with an authentic sample of 10-(4'-dimethylaminophenyl)-3- 

methylflavin (2.5jj) revealed the flavin not to be present in the reaction mixture.
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10-(4 ,-Carboxyphenyl)-3-m ethylßavin  (2 .5 rr)

10-(4'-Cyanophenyl)-3-methylflavin (2.5qq) (0.5 g, 1.6 mmol) was refluxed in 

a mixture of acetic acid (100 ml) and 70% sulfuric acid (100 ml) for 2 hrs. The cooled 

mixture was poured onto ice (200 g) and the product precipitated with solid sodium 

carbonate. The solid was filtered off, washed with water and recrystallized from acetic 

acid to give the title compound (2.5rr) (0.19 g, 34%) mp >360°. (Found: C, 61.8; H, 

3.7; N, 16.1. C18H12N4O4 requires C, 62.1; H, 3.5; N, 16.1%). UV and JH n.m.r. 

data are presented in Table 2-4 (pg 43), and Tables 2-1 (pg 32) and 2-2 (pg 36), 

respectively, m/z (rel. int.) 348 M (38), 347 (100), 291 (22), 290 (28), 263 (35), 262 

(30).

3-Methyl-10-(4*-methylsulfonylphenyl)flavin (2.5pp)

3-Methyl-10-(4'-methylthiophenyl)flavin (2.5oo) (0.2 g, 0.57 mmol) was 

dissolved in acetic acid (50 ml) and cooled to 5°. To this solution was added 30% w/v 

hydrogen peroxide (0.26 g, 2.3 mmol), dropwise, with stirring over 1 hr. The mixture 

was allowed to come to room temperature and stirred for an additional 18 hrs. The acetic 

acid was evaporated off under a steam of nitrogen in an evaporating dish and the solid 

recrystallized from methanol to give the title compound (2.5pp) (0.1 g, 45%) mp 334- 

335°. (Found: C, 56.4; H, 3.8; N, 14.5. C18H14N4O4S requires C, 56.5; H, 3.7; N, 

14.5%). UV and n.m.r. data are presented in Table 2-4 (pg 43), and Tables 2-1 

(pg 32) and 2-2 (pg 36), respectively. MSCI m/z (rel. int.) 383 M+l (7), 369 (38), 368 

(43), 367 (91), 366 (16), 365 (37), 354 (21), 353 (78), 352 (76), 351 (100).

3-Substituted 10-(substituted phenyl)ßavins (see Tables 7-3 and 7-4)

General method B - Alkylation of 10-(substituted phenyl)flavins

To a solution of the appropriate 10-(substituted phenyl)flavin (3.7a, 3.7c, 3.9a 

or 3.9b; 3.5 mmol) in dimethylformamide (250 ml) was added powdered potassium 

carbonate (4.7 g, 35 mmol) followed by the appropriate alkylating agent (methyl iodide, 

propyl iodide or benzyl bromide; 4.6 mmol). The mixture was heated and stirred at
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50-55° for 1 hr, cooled, filtered and the filtrate added to chloroform (400 ml). This was 

washed with water (5 x 200 ml), dried ( N & S O 4), filtered and evaporated to dryness 

under reduced pressure. The solid residue was washed with ether, and recrystallized 

from methanol. The compounds produced, their melting points and yields are found in 

Table 7-3 and microanalyses are presented in Table7-4. Some of the compounds' *H 

n.m.r. data are presented in Tables 2-1 (pg 32), 2-2 (pg 36), 3-1 (pg 70o) and 3-2 (pg 

71). The UV and EIMS data of some of these compounds are presented in Tables 2-4 

(pg 43) and 3-3 (pg 72o), respectively.

The mass spectral data for 2.5jj and 2.5z are as follows: 

10-(4'-dimethylaminophenyl)-3-methylflavin (2.5jj); m/z (rel. int.) 348 (21), 347 M 

(100), 346 (85), 332 (12), 290 (11), 262 (37), 261 (66); and 

10-(3'-bromophenyl)-3-methylflavin (2.5z); m/z (rel. int.) 384 (27), 383 (88), 382 M 

(29), 381 (82), 327 (14), 326 (17), 325 (13), 324 (14).



Table 7-3: Physical properties of 3-substituted 10-(substituted 

phenyl)flavins produced by general methods A and B

a Literature mps are presented in brackets.b See reference [60].c See reference [47]. d Synthesised by 

Dr W.B. Cowden. e See reference [77]. f See reference [42]. 8 See reference [161].h See reference [163].
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Cm pd
no.

Substitu tents 

R (X)n M elting po in t 
(°C) a

% yield Method

2.5a Me H >360 (>360) b 56 B
2.5b Me 2-Me >360 (372) c 50 A
2.5c Me 3-Me 341 ( 3 2 6 )b 91 A
2.5d d Me 4-M e 367-368 64 A
2.5e Me 2,4-M e2 333 56 A
2 .5 f Me 3,4-M e2 333-334 ( 3 4 7 ) b 47 A
2.5g Me 3,5-M e2 318-319 51 A
2.5 i Me 2-Et 270 (2 6 2 -2 6 3 )e 23 A
2 .5 j d Me 3-Et 277-279 42 A
2.5k Me 4-Et 318-319 51 A
2.51 d Me 4-n-butyl 298-300 42 A
2.5t Me 3 -Cl,4-M e >355 39 A
2.5u Me 3-Cl,5-M e 355 34 A
2.5w Me 4-Cl,3-M e >360 20 A
2.5x Me 4-C1.2-F 274 26 A
2.5y d Me 4-C l,3-C F3 >360 44 A
2.5z Me 3-Br 353 (3 5 1 -3 5 3 )f 69 B
2.5dd Me 3,4-F2 >360 35 A
2 .5 e e d Me 3-OMe 322-323 48 A
2 .5 f fd Me 4-OMe 355 (> 3 0 0 )§ 56 A
2.5gg Me S.S-COMeh 341 45 A
2.5hh Me 4-OH >360 (>300) g 24 A
2 .5 ii Me. 3 -N 0 2 >360 76 B
2-5 jj Me 4-NM e2 326 36 B
2 .5 k k d Me 3-CF3 346-348 38 A
2.511 Me 4 -CF3 >360 15 A
2.5m m  ‘1 Me 3,5-(CF3)2 >360 40 A
2.5nn Me 3-SM e 304-305 35 A
2.5oo Me 4-SM e >360 38 A
2.5qq Me 4-CN >355 (> 3 6 0 )b 21 A
3.4a Et H 341 61 A
3.4b Et 4-C1 330 15 A
3.4c Et 4-Br > 360 42 A
3.4d Et 3-F >360 33 A
3.4e Et 4-F 322 25 A
3.4 f Et 3,5-C l2 317 44 A
3.4g Et 3,5-M e2 276 36 A
3.4h Et 3-CF3 297-299 31 A
3.4 i Et 3-CN 349-350 12 A
3.4j Et 4-CN >360 23 A
3.4k Et 3-SM e 341 43 A
3.41 Et 4-SM e 265 26 A
3.4m Propyl 4-C1 >360 34 A
3.4n Phenyl 4-C1 >360 (>300) 32 A
3.4o Benzyl 4-C1 351 31 A
3.4q Propyl H 325 90 B
3.4p Phenyl H dec 280 (>330) 23 A
3.4r Benzyl H 327 (3 2 5 -3 3 0 )h 92 B
3.4s H 3-CF3 >360 45 A



Table 7-4 Analytical data for the 3-substituted 10-(substituted 

phenyl)flavins

119

Cm pd
no.

Substitu ten ts 

R  ( X ) n Form ula

% calculated 

C H  N C

% found 

H N

2.5a M e H C n H i 2 N 4 0 2 67.1 4 .0 18.4 6 6 .8 3.8 18.4
2.5b M e 2-M e C i 8 H i 4 N 4 0 2 67.9 4 .4 17.6 68.3 4.3 17.8
2.5c M e 3-M e ft tt tt tt 68 .1 4.5 17.8
2.5d M e 4-M e " tt tt tt 67.7 4 .5 17.5
2.5e M e 2,4-M e2 C i 9 H i 6N 4 0 2 68.7 4.9 16.9 6 8 .8 4.9 17.0
2 .5 f M e 3,4-M e2

it tt " tt 68 .8 5.1 16.9
2.5g M e 3,5-M e2

tt tt tt tt 68.3 4 .8 16.7
2 .5 i M e 2-Et tt tt ” " 68.7 5.0 16.9
2.5j M e 3-Et tt tt tt tt 68.4 4 .9 17.1
2 .5k M e 4-E t tt tt tt tt 68.4 5.0 17.0
2.51 M e 4-n-butyl C 2 i H 2oN 4 0 2 70.0 5.6 15.6 69.7 5.7 15.3
2 .5 t M e 3-C l,4-M e C i 8H i 3c i n 4 o 2 61.3 3.7 15.9 61.0 3.6 15.8
2 .5u M e 3-C l,5-M e tt tt tt tt 61.1 3.9 16.2
2.5w M e 4-C l,3-M e tt " " tt 61.1 3.6 16.2
2.5x M e 4-C l,2-F C 1 7 H 1 0 C 1 F N 4 O O 57.2 2 .8 15.7 57.5 2 .8 15.9
2.5y M e 4-C l,3 -C F 3 C i 8H io C 1F 3N 4 0 2 53.2 2.5 13.8 53.2 2 .6 13.7
2.5z M e 3-Br C i7 H n B r N 4 0 2 53.3 2.9 14.6 53.0 2 .8 14.7
2.5dd M e 3.4-F2 C i 7H io F 2N 4 0 2 60.0 3.0 16.5 60.1 2.9 16.5
2.5ee M e 3-OM e C i 8 H i 4 N 4 0 3 64.7 4 .2 16.8 64.7 4.3 16.8
2.5ff M e 4-OM e tt tt tt tt 64.6 4 .4 16.8
2-5gg M e 3,5-(O M e)2 C 19H 16N 4 O 4 62.6 4 .4 15.4 62.3 4.3 15.4
2.5hh M e 4-OH C n H i 2 N 4 0 3 63.8 3.8 17.5 63.5 3.9 17.5
2 .5 ii M e 3 -N Q 2 C 17H 11N 5O 4 58.5 3 .2 2 0 .1 58.3 3.3 19.8
2.5jj M e 4-N M e2 C i 9 H i 7N 50 2 65.7 4 .9 2 0 .2 65.7 5.2 2 0 .2
2.5kk M e 3 -C F 3 C i 8H h F 3n 4 o 2 58.1 3 .0 15.1 57.8 3.1 15.2
2.511 M e 4 -C F 3 tt tt tt tt 58.2 3.1 14.8
2.5m m  M e 3,5-(C F3)2 C i9 H io F 6 N 4 0 2 50.5 2 .4 13.1 50.4 2 .1 12.7
2.5nn M e 3-SM e C i 8H i4 N 4 0 2S 61.7 4 .0 16.0 61.5 4.1 16.1
2.5oo M e 4-SM e tt tt tt tt 62.0 3.9 16.1
2.5qq M e 4-C N C i 8H n N 5 0 2 64.4 3.5 22 .1 64.6 3 .2 22 .1
3.4a E t H C i 8H 14N 4 0 2 67.9 4 .4 17.6 6 8 .0 4 .2 17.6
3.4b E t 4-C1 C i 8H i 3C1N4 0 2 61.3 3.7 15.9 61.1 3.6 15.8
3.4c E t 4-Br C i 8H i3 B rN 4 0 2 54.4 3.3 14.1 54.0 3.2 13.9
3.4d E t 3-F C i 8H i 3F N 40 2 64.3 3.9 16.7 64.1 3.9 16.7
3.4e E t 4-F tt " tt tt 64.6 3.8 16.7
3 .4f E t 3 ,5 -C l2 C i 8H i 2 C12N 40 2 55.8 3.1 14.5 56.1 3.1 14.6
3.4g E t 3,5-M e2 C 2oH i 8N 4 0 2 69.4 5.2 16.2 69.3 5.3 16.4
3.4h E t 3 -C F 3 C i9 H i3 F 3 N 4 0 2 59.1 3.4 14.5 59.3 3.4 14.5
3 .4i E t 3-CN C i9 H i3 N s 0 2 66.5 3.8 20.4 6 6 .6 3.9 2 0 .6
3.4j E t 4-C N " tt tt tt 6 6 .2 3.8 20.3
3.4k E t 3-SM e C i9 H i6 N 4 0 2S 62.6 4.4 15.4 62.3 4 .6 15.3
3.41 E t 4-SM e tt tt " tt 62.8 4 .5 15.5
3.4m P ropyl 4-C1 C i 9 H iö C 1N 402 62.2 4.1 15.3 62.1 4 .3 15.1
3.4n Phenyl 4-C1 c 22h 13c i n 4 o 2 65.9 3.3 14.0 65 .6 3 .2 13.8
3.4o Benzyl 4-C1 C 23H i 5C1N4 0 2 6 6 .6 3.7 13.5 66.7 3 .6 13.5
3.4q P ropyl H C i9 H i6 N 4 0 2 68.7 4 .9 16.9 6 8 .6 5.1 17.1
3.4p Phenyl H C 22 H i4 N 4 0 2 72.1 3.9 15.3 71.7 4 .2 14.9
3.4r Benzyl H C 2 3 H i6 N 4 0 2 72.6 4 .2 14.7 72.3 4 .3 15.0
3.4s H 3 -C F 3 C n H 9 F 3 N 4 0 2 57.0 2.5 15.6 56.6 2 .5 15.6
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Substituted nitrosobenzenes (4.1a-c)

Caro's acid - A paste of ground potassium persulfate (60 g, 0.22 mol) and 

concentrated sulfuric acid (60 ml) was well stirred for 1 hr at room temperature before 

being mixed with ice (1200 g). The solution was neutralized to a pH of 7 with solid 

potassium carbonate and acetic acid.

The Caro's acid solution from above was cooled to 0° before adding it to a cooled 

(0°) mixture of the appropriate aniline (60 mmol) in water (600 ml). The reaction mixture 

was allowed to stir for 5 hrs at 0°. The solution was filtered and the residue was then 

washed with water (2 litres), 1 M hydrochloric acid (800 ml) and water (500 ml). Steam 

distillation of the residue yielded the desired nitrosobenzene. Melting points of samples 

were determined on compounds recrystallization from ethanol: 4-chloronitrosobenzene 

(4.1c) mp 87° (lit mp 90°, prepared by the same method as above [137]); 3-chloro- 

nitrosobenzene (4.1b) mp 70° (lit mp 72° [164]); and 3,4-dimethylnitrosobenzene (4.1a) 

mp 44° (lit mp 44-45° [155]).

8- Chloro-10-(4'-chlorophenyl)-3-methylflavin (4.2c)

The title compound was prepared by a method similar to that of Yoneda et al.

[61]. The crude material was recrystallized from acetic acid to give the title compound 

(4.2c) (0.8 g, 37%) dec 346° (lit mp >360° [61]). (Found: C, 54.4; H, 2.6; N, 15.0. 

C17H 10CI2N4O2 requires C, 54.7; H, 2.7; N, 15.0%). m/z (rel. int.) 374 (18), 373 

(56), 372 M (27), 371 (83), 315 (18), 287 (25). *H n.m.r. spectral data are presented in 

Table 4-1 (pg 83).

9-  Chloro-10-(4'’Chlorophenyl)-3-methylflavin (4.3b)

A solution of 3-chloronitrosobenzene (4.1b) (2.6 g, 18 mmol) and 6-(4'- 

chloroanilino)-3-methyluracil (2.4o) (1.5 g, 6 mmol) in acetic anhydride (12 ml) and 

acetic acid (4 ml) was refluxed for 35 min. After crystallization was complete the solid 

was filtered off, washed with ether and recrystallization from acetic acid. The *H n.m.r. 

spectrum of the recrystallized material indicated it to be a mixture of the 7- and 9- chloro 

isomers. The mixture was twice recrystallized from dimethylformamide to give the title
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compound (4.3b) (0.4 g, 18%) mp >360°. (Found: C, 54.7; H, 2.8; N, 15.1. 

C17H10CI2N4O2 requires C, 54.7; H, 2.7; N, 15.0%). The above recrystallization 

filtrates were combined and retained for use below, m/z (rel. int.) 374 (18), 373 (29),

372 M (20), 371 (41), 315 (9), 287 (33). *H n.m.r. data are presented in Table 4.1 

(pg 83).

7-Chloro-10-(4,-chlorophenyl)-3-methylflavin (4.2b)

The filtrate from above was diluted with ether and the resulting solid was filtered 

off and recrystallized from acetic acid to give the title compound (4.2b) (0.25 g, 11%) 

dec 335°. (Found: C, 54.7; H, 2.8; N, 15.1. C17H10CI2N4O2 requires C, 54.7; H,

2.7; N, 15.0%). m/z (rel. int.) 374 (15), 373 (41), 372 M (20), 371 (64), 315 (14), 287 

(25). *H n.m.r. data are presented in Table 4.1 (pg 83).

10-(4'-Chlorophenyl)-3,8,9-trim ethyl flavin  (4.3a)

3,4-Dimethylnitrosobenzene (4.1a) (2.4 g, 18 mmol) was treated as for 4.3b 

above. The *H n.m.r. spectrum of the recrystallized material indicated it to be a mixture 

of the 7,8- and 8,9- dimethyl isomers. The mixture was recrystallized twice from acetic 

acid and then dimethylformamide to give the title compound (4.3a) (0.5 g, 23%) dec 

304°. (Found: C, 62.0; H, 4.0; N, 15.1. C19H15CIN4O2 requires C, 62.2; H, 4.1; N 

15.3%). n.m.r. data are presented in Table 4.1 (pg 83).

5-Bromo-6-(4,-chloroanilino)’3-methyluracil  (4.4b)

To a suspension of 6-(4'-chloroanilino)-3-methyluracil (2.4o) (3.8 g, 15 mmol) 

in methanol (50 ml), bromine (0.9 ml, 2.4 g, 18 mmol) was added and the mixture stirred 

for 1.5 hrs at room temperature. The resulting crystals were filtered off and recrystallized 

from acetic acid to give the title compound (4.4b) (3.2 g, 64%) mp 236°. (Found:

C, 39.9; H, 2.7; N, 12.7. C nH 9BrClN302 requires C, 40.0; H, 2.7; N, 12.7%.)

*H n.m.r. (CD3SOCD3) 5 3.14, s, CH3N; 7.16, d, 7.38, d, J2’,3’ 8.8 Hz, H 2’, 3’, 5’, 

6'; 8.72, s, NH.



6-(4 f-C hloroanilino)-5-(3”,4 ',-dim ethylanilino)-3-m ethyluracil (4.5b)

A mixture of 5-bromo-6-(4'-chloroanilino)-3-methyluracil (4.4b) (1.7 g,

5 mmol) and 3,4-dime thy laniline (6.1 g, 50 mmol) in dimethyl sulfoxide (20 ml) was 

stirred at room temperature for 17 hrs. The resulting crystals were filtered off and 

recrystallized from acetic acid to give the title compound (4.5b) (1.2 g, 65%) dec 250°. 

(Found: C, 62.0; H, 4.1; N, 15.4. C19H19CIN4O2 requires C, 62.2; H, 4.1; N,

15.3%). *H n.m.r. (CD3SOCD3) 5 2.06, s (CH3)2C6H3; 3.10, s, CH3N; 6.12, s, NH; 

6.18-6.82, complex, (CH3)2C6H3; 7.11, d, 7.31, d, J2’,3’ 8.5 Hz, C6H4CI; 8.47, s,

NH.

6-A nilino-5-brom o-3-m ethyluracil (4.4a)

A solution of 6-anilino-3-methyluracil (2.4a) (2.0 g, 9.2 mmol) in methanol and 

acetic acid (1:4, 1500 ml) was cooled to -7° in an ice salt/ethanol bath. A solution of 

bromine (1.8 g, 11 mmol) in acetic acid (30 ml) was added at once to the cold solution 

and stirred for 20 min. The reaction mixture was allowed to come to room temperature 

over 2 hrs and the solution was evaporated to dryness under vacuum. The residue was 

recrystallized from ethanol to give the title compound (4.4a) (1.9 g, 69%) mp 243°. 

(Found: C, 44.9; H, 3.5; N, 14.1. C n H i0BrN3O2 requires C, 44.6; H, 3.4; N, 

14.2%). !H n.m.r. (CD3SOCD3) 8 3.13, s, CH3N; 7.20-7.34, m, C6H5; 8.63, s, NH.

5 -Brom o-6-(4'-brom oanilino)-3-m ethyluracil (4.4c)

When 6-anilino-3-methyluracil (2.4a) (1.8 g, 8.3 mmol) was treated as for 4.4a 

above, except that the reaction was kept at 0°, the crude product was seen (*H n.m.r.) to 

contain a mixture of starting material (2.4a), 6-anilino-5-bromo-3-methyluracil (4.4a) 

and the title compound (4.4c). Recrystallization of this crude material from ethanol gave 

the title compound (4.4c) (0.5 g, 16%) mp 222°. (Found: C, 35.1; H, 2.6; N, 10.9. 

C iiH 9Br2N302 requires C, 35.2; H, 2.4; N, 11.2%). *H n.m.r. (CD3SOCD3) 5 3.13, 

s, CH3N; 7.09, d, 7.50, d, J2’,3' 9 Hz, H 2’, 3’, 5’, 6 '; 8.71, s, NH.
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6-A n ilino -5 -(3 ',4 ,-d im ethylanilino)-3-m ethyluracil (4.5a)

A mixture of 6-anilino-5-bromo-3-methyluracil (4.4a) (1.0 g, 3.4 mmol) and 

3,4-dime thy laniline (4.1 g, 34 mmol) in dimethyl sulfoxide (20 ml) was stirred at room 

temperature for 17 hrs. The solution was poured into cold 0.5 M hydrochloric acid 

(100 ml) and stirred for 20 min. The crystalline mass was filtered off, washed with ether 

(200 ml) and recrystallized from ethanol to give the title compound (4.5a) (1.0 g, 84%) 

mp 228°. (Found: C, 67.6; H, 6.0; N, 16.5. C19H20N4O2 requires C, 67.8; H, 6.0; N, 

16.7%). *H n.m.r. (CD3SOCD3) 5 2.06, s, (CH3)2C6H3; 3.10, s, CH3N; 6.12, s, NH; 

6.28-6.83, complex, (CH3)2CöH3; 7.14-7.40, m, C6H5; 8.35, s, NH.

3,7,8-Trimethyl-10-phenyIflavin (4.2d)

The title compound was prepared by a similar method to that of Sako et al. [62]. 

The *H n.m.r. spectrum of the crude material indicated the presence of only the 7,8- 

dimethyl isomer. The crude material (0.79 g) was recrystallized from acetic acid to give 

the title compound (4.2d) (0.52 g, 37%) dec 330° (lit mp >300° [62]). (Found: C, 69.0; 

H, 4.6; N, 16.7. C19H 16N4O2 requires C, 68.7; H, 4.9; N 16.9%). *H n.m.r. data are 

presented in Table 4-1 (pg 83).

10-(4 '-C hlorophenyl)-3,7,8‘trim ethylflavin  (4.2a)

A solution of 6-(4'-chloroanilino)-5-(3",4"-dimethylanilino)-3-methyluracil 

(4.5b) (1.1 g, 3 mmol) in dimethylformamide (30 ml) was heated at 120° for 2 hrs under 

oxygen. The solution was cooled and diluted with ether (100 ml) and the resulting 

yellow crystals were filtered off. The *H n.m.r. spectrum of the crude material indicated 

the presence of both the 7,8-dimethyl and 8,9-dimethyl isomers. The crude material 

(0.3 g) was recrystallized from acetic acid and then dimethylformamide to give the title 

compound (4.2a) (0.1 g, 9%) dec 330°. (Found: C 62.0; H, 4.1; N, 15.4. 

C19H15CIN4O2 requires C, 62.2; H, 4.1; N, 15.3%). n.m.r. data are presented in 

Table 4-1 (pg 83).
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7-(4f-Chlorophenyl)purine  (4.7)

A solution of 4'-chloroanilinoacetonitrile [142,143] (3.3 g, 20 mmol), 

formamidine acetate [165] (15.6 g, 150 mmol) and 1-butanol (20 ml) was refluxed for 

5 hrs. The butanol was distilled off under reduced pressure and the residue taken up in a 

mixture of chloroform (50 ml) and water (50 ml). The aqueous fraction was separated 

and extracted with chloroform (2 x 20 ml). The chloroform extracts were combined, 

dried (Na2S04), filtered and evaporated to dryness. The residue was washed with ether 

(100 ml) and allowed to air dry. The dry residue was sublimed at 220-240° (1 mm Hg) to 

give white crystals of the title compound (4.7) (2.4 g, 52%) mp 223°. (Found: C, 56.9; 

H, 3.0; N, 24.1. C11H7CIN4 requires C, 57.3; H, 3.1; N, 24.3%). lK  n.m.r. (CDCI3)

5 7.49, d, 7.65, d, J2->3- 8.8 Hz, H 2’, 3', 5’, 6'; 8.44, s, 9.04, s, 9.22, s, H 2, 6, 8.

4-Amino-5-(4,-chloroanilino)pyrimidine (4.8)

A suspension of 7-(4'-chlorophenyl)purine (4.7) (2 g, 8.7 mmol) in 0.5 M 

sodium hydroxide (80 ml) was refluxed for 10 min. The precipitate was filtered off and 

recrystallized from ether to give the title compound (4.8) (1.7 g, 89%) mp 204°. (Found: 

C, 54.7; H, 4.1; N, 25.4. C10H9CIN4 requires C, 54.4; H, 4.1; N, 25.4%). lH n.m.r. 

(CD3SOCD3) 5 6.70, d, 7.18, d, J2’,3’ 8.8 Hz, H 2\ 3’, 5', 6’; 7.40, s, NH; 8.00, s, 

8.18, s, H 2, 6.

10-(4r-Chlorophenyl)-3-methyl-6,8-diazaflavin  (4.9)

A mixture of 4-amino-5-(4'-chloroanilino)pyrimidine (4.8) (1.7 g, 7.7 mmol), 

N-methylalloxan [144] (1.5 g, 7.8 mmol), boric acid (0.6 g, 9.7 mmol) and acetic acid 

(130 ml) was heated and stirred at 60° for 30 min. After cooling, the solvent was 

removed under vacuum to give a dark syrup. The syrup was redissolved in acetic acid 

(20 ml) and diluted with ether (50 ml), the resulting precipitate was filtered off and 

recrystallized from isopropanol to give the title compound (4.9) (0.4 g, 15%) dec 298°. 

(Found: C, 53.3; H, 3.1; N, 24.3. C i5H9C1N60 2 requires C, 52.9; H, 2.7; N, 24.7%). 

m/z (rel. int.) 342 (15), 341 (26), 340 M (27), 339 (67), 283 (18), 255 (56). MSC1 m/z



125

(rel. int.) 345 (36), 344 (25), 343 (100), 342 (26), 231 (24). *H n.m.r. (CDC13) 5 3.47, 

s, CH3N; 7.34, d, 7.70, d, J2',3' 8.6 Hz, H 2’, 3', 5’, 6’; 8.64, s, 9.35, s, H 7, 9.

5-Amino-6-(4f-chloroanilino)-3-methyluracil (5.2 a)

To a stirred cooled solution of 6-(4'-chloroanilino)-3-methyluracil (2.4o) (7.7 g, 

30 mmol) in trifluoroacetic acid (50 ml) was added a sodium nitrite solution (3.2 g,

46 mmol) in water (20 ml) dropwise over 15 min. After stirring for an additional 10 min 

the resulting 6-(4'-chloroanilino)-3-methyl-5-nitrosouracil trifluoroacetic acid salt was 

filtered off, washed with ether, dried, pulverized and suspended in a solution of 1 M 

sodium hydroxide and methanol (4:1, 250 ml). Sodium dithionite was added with 

stirring until the suspension's red colour disappeared. The product was filtered off, 

washed with water and ether, and recrystallized from methanol to give the title compound 

(5.2a) as a white powder (4.6 g, 56%) mp 230-232°. (Found: C, 49.6; H, 4.2; N,

20.9. C11H11C1N40 2 requires C, 49.5; H, 4.2; N, 21.0%). m/z (rel. int.) 268 (32),

267 (15), 266 M (100), 154 (16), 138 (26). *H n.m.r. (CD3SOCD3) 5 3.15, s, CH3N; 

6.80, d, 7.25, d, J2-,3’ 8.9 Hz, H 2’, 3', 5’, 6'.

5-Amino-6-(3,,5'-dimethylanilino)-3‘methyluracil (5.2b)

6-(3',5'-Dimethylanilino)-3-methyluracil (2.4g) (7.35 g, 30 mmol) was treated 

as for 5.2a above to give the title compound (5.2b) (5.2 g, crude yield 67%).

3,6,8-T rim ethylbenzo[g]pteridine-2,4(l/7 ,3/0-dione (5.4)

(A) Recrystallization of crude 5-amino-6-(3',5'-dimethylanilino)-3-methyluracil 

(5.2b) (0.5 g, 2 mmol) from methanol gave 3,6,8-trimethylbenzo[g]pteridine- 

2,4(l//,3//)-dione (5.4) (0.3 g, 60%) mp 310-312° (lit mp 295-298° [160]). (Found:

C, 61.2; H, 5.0; N, 21.9. C13H12N40 2 requires C, 60.9; H, 4.7; N, 21.9%). m/z (rel. 

int.) 257 (15), 256 M (100), 199 (20), 171 (40), 156 (19). *H n.m.r. (CD3SOCD3)

5 2.51, s, 2.70, s, 6-, 8-CH3; 3.30, s, CH3N; 7.47, s, 7.51, s, H 7, 9.
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(B) Sodium nitrite solution (1.7 g, 25 mmol) in water (10 ml) was added to a hot 

(100°) stirred solution of 6-(3',5'-dimethylanilino)-3-methyluracil (2.4g) (1.2 g,

5 mmol) in acetic acid (50 ml); the mixture went fleetingly red before becoming yellow. 

On cooling crystals formed, which were filtered off, and washed with water and 

methanol. Recrystallization from acetic acid gave light yellow crystals of the title 

compound (5.4) (0.9 g, 70%) identical with the compound from (A) above by mp, mass 

spectrum and *H n.m.r. comparison (Found: C, 60.8; H, 5.0; N, 21.8).

8-(4 '-C hlorophenyl)-3-m ethylpteridine-2,4(3¥L,8H )-dione  (5.3a)

A glyoxal solution (1 g of 30% glyoxal solution, 5.6 mmol) in methanol (10 ml) 

was added to a suspension of 5-amino-6-(4'-chloroanilino)-3-methyluracil (5.2a) (1.5 g, 

5.6 mmol) in water (50 ml); after briefly stirring at room temperature the mixture was 

refluxed for 30 min. After crystallization was complete the solid was filtered off, washed 

with ether, and recrystallized from acetic acid to give yellow crystals of the title 

compound (5.3a) (0.75 g, 46%) dec 333°. (Found: C, 54.1; H, 3.2; N, 19.3. 

C13H9C1N40 2 requires C, 54.1; H, 3.1; N, 19.4%). m/z (rel. int.) 289 (9), 288 M (35),

287 (28), 286 (100), 230 (34), 202 (27). ^  n.m.r. data are presented in Table 5-1 

(pg 92o).

8 -(3 r,5 '-D im ethylphenyl)-3-m ethylp terid ine-2 ,4(3H ,8K )-d ione  (5 .3b)

5-Amino-6-(3',5,-dimethylanilino)-3-methyluracil (5.2b) (1.5 g, 5.6 mmol) was 

treated as for 5.3a above. The product was recrystallized from 70% ethanol to give 

brown orange crystals of the title compound (5.3b) (0.25 g, 16%) dec 280°. (Found:

C, 64.1; H, 5.0; N, 20.1. C15H 14N40 2 requires C, 63.8; H, 5.0; N, 19.9%). m/z (rel.

int.) 282 M (53), 281 (100), 267 (73), 225 (46), 224 (54), 210 (50), 197 (43), 196 (55). 

*H n.m.r. data are presented in Table 5-1 (pg 92o).
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8-(4 f-Chlorophenyl)-3,6,7-trimethylpteridine-2,4(3ll,8l l)-dione  (5.3c) 

Biacetyl (0.5 g, 5.6 mmol) in methanol (10 ml) was added to a suspension of 

5-amino-6-(4'-chloroanilino)-3-methyluracil (5.2a) (1.5 g, 5.6 mmol) in water (50 ml) 

and was refluxed for 1 hr. After crystallization was complete the solid was filtered off, 

washed with water and then ether, and recrystallized from methanol to give yellow 

crystals of the title compound (5.3c) (0.5 g, 28%) dec 261-263°. (Found: C, 56.6; H, 

4.1; N, 17.6. C15H13C1N40 2 requires C, 56.9; H, 4.1; N, 17.7%). m/z (rel. int.) 318

(18), 317 (39), 316 M (59), 315 (100), 258 (18), 231 (23). n.m.r. data are presented 

in Table 5-1 (pg 92o).

8-(3', 5 f-Dimethylphenyl)-3,6,7-trimethylpteridine-2,4(3H,8YL)- 

dione  (5 .3d )

5-Amino-6-(3',5'-dimethylanilino)-3-methyluracil (5.2b) (1.5 g, 5.6 mmol) was 

treated as for 5.3c above. The product was recrystallized from 70% ethanol to give 

brown orange crystals of the title compound (5.3d) (0.3 g, 17%) dec 280°. (Found: C, 

65.8; H, 6.0; N, 18.3. C17HlgN40 2 requires C, 65.8; H, 5.9; N, 18.1%). m/z (rel.

int.) 310 M (88), 309 (100), 295 (36), 253 (15), 252 (16), 238 (10), 225 (17), 224 (21). 

!H n.m.r. data are presented in Table 5-1 (pg 92o).

8-(4'-Chlorophenyl)-3-methyl-6,7-diphenylpteridine-2,4(3l{,8l{)-  

dione (5.3e)

A solution of benzil (1.3 g, 6 mmol) in methanol (30 ml) was added to 

5-amino-6-(4'-chloroanilino)-3-methyluracil (5.2a) (1.5 g, 5.6 mmol) in 50% 

acetic acid (50 ml), and refluxed for 2 hrs. After crystallization was complete the 

solid was filtered off, washed with water and then ether, and recrystallized from 

70% ethanol to give bright yellow crystals of the title compound (5.3e) (1.3 g,

49%) mp 313-314°. (Found: C, 67.9; H, 3.9; N, 12.8. C25H17C1N40 2 requires

C, 68.1; H, 3.9; N, 12.7%). m/z (rel. int.) 441 (16), 440 M (43), 439 (51), 438 

(100), 353 (24). lH n.m.r. data are presented in Table 5-1 (pg 92o).
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5-Amino-6-(3',5’-dimethylanilino)-3-methyluracil (5.2b) (1.6 g, 6 mmol) was 

treated as for 5.3e above. The product was recrystallized from 70% ethanol to give 

bright yellow crystals of the title compound (5.3f) (0.6 g, 24%) mp 331-333°. (Found: 

C, 75.0; H, 5.1; N, 12.8. requires C, 74.6; H, 5.1; N, 12.9%). m/z (rel.

int.) 434 M (65), 433 (100), 419 (21), 349 (11), 348 (33). *H n.m.r. data are presented 

in Table 5-1 (pg 92o).
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7-3 Biological activity experimental

7-3.1 Biological evaluation of antimalarial activity

(i) Antimalarial activity in vivo testing

Experimental animals

Female CBA/CaH mice (6-8 weeks old) were used in all experiments. These 

were bred and maintained in the John Curtin School of Medical Research Animal 

Breeding Establishment (under specific pathogen free conditions) and fed normal 

laboratory diet pellets and tap water ad libitum. Mice were usually put into groups of 4 to 

6 animals in which the weight range was no greater than 1 g.

Parasite

Plasmodium vinckei subsp. vinckei (originally from Dr D. Walliker, Institute of 

Animal Genetics, Edinburgh) was stored frozen in liquid nitrogen and had been passaged 

several times before experimental use in CBA/CaH mice. All infections were initiated by 

intraperitoneal injection of 1 x 106 or 1 x 105 parasitized erythrocytes in sterile saline to 

provide infected mice (15-35% parasitemia) in 5 or 6 days time, respectively. The 

percentage parasitemia was monitored by thin blood smears taken from the tail vein and 

stained with Diff-Quik stain (Australian Hospital Supply, Sydney) and examined under 

oil immersion microscopy. Counts of parasitized red blood cells were determined in 

microscopic fields with approximately 200 cells per field in which there were few 

overlapping erythrocytes.

Drug treatment

Purified drugs were ground to a fine powder using an agate mortar and pestle. If 

the compound failed to give a well separated fine powder at this stage it was put through a 

sieve (0.15 mm screen).

The doses given were calculated on the average weight of the group (when the 

weight range of the group was less than 1 g, otherwise the dose was based on the weight 

of individual mice). Test compounds were then evenly suspended in olive oil using a
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vortex mixer immediately prior to injection. Compounds were administered as a single 

100 (il (or 200 |il in cases where the dose was greater than 70 mg/kg) intraperitoneal 

injection when parasitemias were between 15 and 35%. Glass syringes (1 ml) and 23 

gauge needles were used to prevent clogging of the suspension during injection.

In control mice treated with olive oil alone, parasitemias rose to 40-60% one day 

post treatment and to 70-90% after 2 days. Death inevitably occurred on day 3.

The efficacy of the compounds tested was determined by the percentage of the 

animals in the group cured, the mean extension in lifespan and the percentage parasitemia 

two days after treatment (or 1 day after treatment if death occurred before day 2).

(ii) In vitro inhibition of P. falciparum  growth

(a) Method 1

This method was used in collaboration with Dr G. A. Butcher. It was similar to 

that quoted in reference [41]. A brief description of the method including differences 

from the referenced method are outlined below.

Parasites

A Papua New Guinea strain of P. falciparum (FC-27) isolated at the Walter and 

Eliza Hall Institute, Melbourne, and maintained in continuous culture by Dr G. A. 

Butcher [41,166] (Department of Pure and Applied Biology, Imperial College, Prince 

Consort Rd, London, SW7 2BB) was used. Parasites were maintained using group O 

erythrocytes at a hematocrit of 5%.
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Complete medium: The complete medium was RPMI 1640 supplemented with 

25 mM HEPES (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]), 26 mM 

sodium bicarbonate and 100 ng/ml gentamicin.

Culturing medium: Complete medium was supplemented with 10% (v/v) heat- 

inactivated human group O blood semm to produce normal culturing medium.

Drug preparation

The insolubility of the flavins required that they were first dissolved in dimethyl 

sulfoxide to obtain a stock solution which was diluted with complete medium 

supplemented with 40% (v/v) group O blood serum (the high serum concentration 

facilitated the solubilization of the drugs). A four fold dilution with complete medium 

gave culturing media with the highest drug concentration. Dilution of this with normal 

culturing medium gave the range of drug concentrations required for the assay.

Drug preparation was always carried out on the same day as the assay was begun. 

All drug treated culturing media were passed through millipore filters (0.22 pm) for 

sterilization and to ensure that all the test compounds were in solution.

Preparation and processing of microtiter plates

The drug treated culturing medium (100 p.1) was added in triplicate to the flat 

bottom wells of 96-well microtiter plates (Nunc). Control wells consisted of 100 pi of 

culturing medium containing equivalent volumes of dimethyl sulfoxide (max 0.25% v/v). 

This was followed by the addition of 1 p.1 of parasitized erythrocytes (0.5% - 5% 

parasitemia, asynchronous parasites) and 20 p.1 of 3H-hydroxanthine (1:100 dilution of 

1 mCi/ml, 2.8 Ci/mmol, Amersham, Australia) in RPMI as a combined mixture (21 p.1) to 

all wells. The final drug concentration range in the wells was 1-20 p.M.

The microtiter plates were incubated for 48 hours in the gas mixture 5% CO2,

5% 0 2, 90% N2 at 37°.

At the end of incubation the cells were harvested onto filters with a semi- 

automated cell harvester using distilled water as the washing fluid. The filters were then
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counted by liquid scintillation to determine the incorporation of 3H-hypoxanthine into the 

nucleic acid of the parasites.

(b) Method 2

This method, used by Dr K. A. Rockett, is similar to that quoted in reference 

[167]. A brief description of the method and the differences from the referenced method 

are outlined below.

Parasites

The strains of P. falciparum used were FC-27 as in method 1 and the multi-drug 

resistant K-l strain (a generous gift from Dr K. H. Rieckmann, Army Malaria Research 

Unit, Milpo, Inglebum, NSW, 2174, Australia) isolated in Bangkok, Thailand, and 

originating from Kanchanaburi, Thailand [168]. Parasites were maintained using 

group A+ erythrocytes at a hematocrit of 5%.

Media

As in method 1.

Drug preparation

Flavins were made up as stock solutions in dimethyl sulfoxide. Dilution of the 

stock solution followed by serial dilution with culturing media gave the desired 

concentrations of drug treated culturing media.

The antimalarials, chloroquine, pyrimethamine and quinine were dissolved in 

culturing media to the appropriate dilution and likewise serially diluted.

Preparation and processing of microtiter plates

To triplicate wells in 96-well microtiter plates were added 50 jil of each dilution of 

the drug treated culturing medium followed by the addition of another 50 pil culturing 

medium containing synchronized parasitized cells (at ring stage) adjusted to a parasitemia
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of between 0.5 and 1.0% at a hematocrit of 5%. The concentration range tested for 

flavins against the FC-27 strain was 0.756-48.4 jiM (in 4-fold dilution intervals) and 

against the K-l strain was 0.756-96.8 fiM (in 2-fold dilution intervals). The other 

antimalarials were tested in the concentration range 0.001 to 100 (iM. Controls consisted 

of wells treated with normal culturing medium and infected erythrocytes (100% control) 

or with normal culturing medium and non-infected erythrocytes (0% control). It had been 

previously shown that dimethyl sulfoxide at the concentration (max 0.2% v/v) used had 

no effect on parasite growth.

The plates were incubated under the same conditions as in method 1 for 24 hrs 

when 3H-hypoxanthine (0.4 p.Ci per well) was added to each well. After a further 24 hrs 

of incubation, the plates were treated as in method 1.

7-3.2 Antibabesial screen in mice

Experimental animals

The same as used in section 7-3. l(i).

Parasite

Babesia microti (King strain originally from Dr F. E. G. Cox, King’s College, 

London) was stored frozen in liquid nitrogen and had been passaged several times in 

CB A/CaH mice before experimental use. Infections were initiated by intraperitoneal 

injection of 1 x 107 parasitized erythrocytes in sterile saline and became patent 3 days 

later. The percentage parasitemia was monitored by tail vein thin blood smears stained 

with Giemsa's stain and examined under oil immersion microscopy. Parasitemias were 

expressed as the percentage of erythrocytes infected.
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Drug treatment

The test compounds were prepared and injected as described in section 7-3.1 (i). 

Four groups of mice were treated as follows:

Control group - Olive oil (100 pil) was injected daily for 5 days starting on day 3 after 

inoculation;

Group 1-15 Mg/kg of 10-(3',5’-dichlorophenyl)-3-methylflavin (2.5s) in olive oil 

(100 |il) was injected daily for 5 days starting on day 3 after inoculation;

Group 2 - 5  Mg/kg of 10-(3',5'-dichlorophenyl)-3-methylflavin (2.5s) in olive oil

(100 fil) was injected daily for 5 days starting on day 3 after inoculation; and 

Group 3 - 1 0  Mg/kg of 10-(4'-chlorophenyl)-3-methylflavin (2.5o) in olive oil (100 |il) 

was injected daily for 4 days starting on day 3 after inoculation. Only four 

injections were given to this group as signs of toxicity were noted after the 

fourth injection.

The course of the disease was monitored by daily blood smears for 10 days after 

the first injections.

7-3.3 Anticoccidial screen in mice

The testing of 3-ethyl-10-(3'-trifluoromethylphenyl)flavin (3.4h) against the 

Coccidia species, Eimeria vermiformis, a species of rodent Eimeria, was kindly carried 

out by Mr C. Reiger and Dr K. Ovington (Department of Zoology, The Australian 

National University, Canberra, ACT, 2601, Australia). Female C57/BL6 mice weighting 

approximately 18 g were infected orally with 1 x 103 oocysts. The infection was 

monitored by daily determinations of the numbers of oocysts present in the total faecal 

output of individual mice. Methods used for routine maintenance of the parasite, 

infection with oocysts and counting of oocysts were the same as those described by 

Rose, Owen and Hesketh [169]. Infections became patent on the seventh day after 

infection and continued for a further seven days.

To test for anticoccidial activity eight mice were fed a daily ration of 3 g of 

laboratory diet pellets into which the test compound was incorporated at a level of
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150 ppm. Treatment began on the day of infection and continued until day 14, excepting 

days 9 and 13 on which the mice were fed untreated food because of apparent signs of 

toxicity. The control group of 6 mice were also fed a daily ration of 3 g laboratory diet 

pellets, identical to the treated pellets except for the incorporated test compound. Both 

groups were given tap water ad libitum.

At the end of the experiment animals were kept for 7 days during which time no 

adverse effects were noted.
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