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SUMMARY

This thesis describes an in vivo study of presynaptic and postsynaptic 

inhibition in the lumbar spinal cord of the cat.

Postsynaptic inhibition was examined using current and voltage clamp 

techniques to record inhibitory postsynaptic potentials (IPSPs) and currents 

(IPSCs) in motoneurones during reciprocal inhibition. IPSPs evoked in 

motoneurones during reciprocal inhibition were blocked by the iontophoretic 

application of strychnine hydrochloride providing strong evidence that this 

inhibition is mediated by the neurotransmitter glycine. A single electrode voltage 

clamp was used to record IPSCs in motoneurones generated by a population of la 

reciprocal inhibitory interneurones (population IPSCs), and by individual la 

reciprocal inhibitory interneurones (unitary IPSCs). Both population and unitary 

IPSCs were recorded over a range of membrane potentials and the voltage 

dependence of their amplitude and time course determined.

Population IPSCs had an average rise time of 0.51 ± 0.02 ms (±S.E.M., 

n= 22) and decayed exponentially with an average time constant of 0.99 ± 0.04 ms 

at resting membrane potentials (37°C). Unitary IPSCs, recorded following spike 

triggered averaging from single la reciprocal interneurones, had amplitudes of 120 

to 220 pA and an average rise time of 0.40 ± 0.06 ms { n -5). The decay of these 

unitary currents was exponential with an average time constant of 0.82 ± 0.07 ms at 

resting membrane potentials (37°C). If the rate of decay of these unitary IPSCs is 

determined by the open time of the channels activated following the release of 

glycine, then the average channel open time of glycine activated channels at this 

synapse will be ~0.8 ms at resting membrane potentials. The time course of IPSCs 

was unaffected by either pentobarbitone or a-chloralose at concentrations 

necessary for deep anaesthesia.



The peak synaptic current varied linearly with the membrane potential over 

the range -90 to -30 mV, and had an average reversal potential of -80.7 ± 1.5 mV 

(±S.E.M., n = 6) when measured using KCH3S 04 filled electrodes. The reversal 

potential for the IPSC was used to calculate [Cl"]- from the Nernst equation. This 

was estimated to be 6.5 mM assuming that the inhibitory synaptic current was 

carried purely by Cl" ions. The possibilty that H C 03“ ions contribute to the ionic 

current that flows during reciprocal inhibition is discussed.

The rate of decay of both population and unitary IPSCs was exponentially 

dependent on the membrane potential, the decay time constant increasing e-fold 

for a 91 mV depolarisation. This result was independent of [Cl"] - or the magnitude 

of the inhibitory synaptic current and was interpreted as a voltage dependence of 

the glycine channel open time. The voltage dependence of the channel open time, 

together with the direct effect of the membrane potential on the peak inhibitory 

current, will act to enhance the strength of reciprocal inhibition as the 

motoneurone membrane potential approaches threshold.

The average peak conductance of unitary IPSCs was 9.1 ± 1.7 nS (n= 5). 

This was approximately twenty times smaller than the average peak conductance 

of population IPSCs (167 ± 30 nS; n = 11) suggesting than on average twenty la 

reciprocal interneurones synapse with each motoneurone. Assuming a mainstate 

glycine single channel conductance of 46 pS (Bormann, Hamill & Sakmann, 1987), 

it was calculated that following activation of a single la reciprocal interneurone 

approximately 200 postsynaptic Cl" channels will be opened at the synaptic 

contacts formed by with a motoneurone. The number of Cl" channels opened by 

the release of a single quantum of glycine at each release site could be ten times 

smaller than the above figure of 200, i.e. a single quantum of glycine probably 

opens as few as 20 postsynaptic Cl" channels at this synapse.

A detailed study was made of the pharmacology and mechanisms of 

presynaptic inhibition of synaptic transmission at the la afferent/motoneurone 

synapse.



The role of GABAa and GABAß receptors in presynaptic inhibition was 

studied by the application of specific GABAa and GABAß receptor antagonists by 

iontophoresis during intracellular recording in motoneurones of presynaptic 

inhibition of group la afferent excitatory postsynaptic potentials (EPSPs).

The GABAa receptor antagonist bicuculline methochloride (BMC) was 

found to block presynaptic inhibition of both compound and unitary la EPSPs by 

up to 85%. BMC also substantially reduced, and occasionally abolished, the late 

part of the IPSP evoked in motoneurones during presynaptic inhibition. The early 

part of this IPSP was found to be sensitive to strychnine.

The GABAß receptor antagonist 2-OH-saclofen was used to investigate 

whether GABAß receptors were involved in presynaptic inhibition. To first 

establish that 2-OH-saclofen could antagonize GABAß receptors, its ability to 

antagonize the effect of the GABAß agonist baclofen was examined. 2-OH- 

saclofen was found to antagonize the reduction in amplitude of la EPSPs produced 

by baclofen and also to cause a slight reduction in presynaptic inhibition of la 

EPSPs. In contrast, baclofen caused a large decrease in the amplitude of la EPSPs, 

but was relatively ineffective in reducing presynaptic inhibition.

It was concluded that at the la afferent/motoneurone synapse presynaptic 

inhibition is mediated primarily through the activation of GABAa receptors. The 

activation of GABAß receptors appears to play only a minor role in presynaptic 

inhibition at this synapse. This contrasts with the relative ease with which baclofen, 

presumably via the activation of GABAß receptors, can reduce transmitter release 

from la afferent terminals and suggests that the receptors which are activated by 

baclofen are predominantly extrasynaptic.

The interaction between paired-pulse facilitation and presynaptic inhibition 

of la EPSPs was also investigated. The main finding from this study was that 

paired-pulse facilitation was enhanced during presynaptic inhibition. This finding is 

analogous to that seen at other synapses in vitro when the probability of transmitter 

release is lowered by reducing the extracellular calcium or raising the extracellular 

magnesium concentration.



The results from this study provide further evidence that presynaptic 

inhibition is associated with a reduction in the probability of transmitter release. 

By analogy with the effects of reduced calcium influx on paired-pulse facilitation at 

other synapses, the results support the idea that presynaptic inhibition is associated 

with a decrease in calcium influx into la afferent terminals.
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Chapter one:

GENERAL INTRODUCTION

Inhibition of synaptic transmission in the mammalian central nervous 

system (CNS) can be mediated in two different ways. One way decreases the 

depolarising effects of excitatory synaptic currents, and the other decreases 

transmitter release from excitatory nerve terminals. The first type of inhibition is 

called ‘postsynaptic inhibition’ and involves an increase in membrane conductance 

of a postsynaptic cell to an ion (or ions) with a reversal potential more negative 

than the membrane potential required to reach threshold. The second type of 

inhibition is called ‘presynaptic inhibition’ and is thought to occur following a 

reduction in the probability of transmitter release. This introduction gives a brief 

overview of some of the properties of these two types of inhibition.

Historical perspective

The first documented observation of inhibition in the nervous system dates 

back to 1845 when the Weber brothers demonstrated that stimulation of the vagus 

nerve could stop the heart. By the early 1900’s Sherrington had greatly extended 

our knowledge of inhibition in the CNS, particularly in the spinal cord. One of the 

fundamental inhibitory reflex pathways described by Sherrington was what he 

termed ‘reciprocal innervation’. This inhibition, which is now usually termed 

reciprocal inhibition, describes the inhibition of motoneurones innervating 

antagonistic muscles by the activation of stretch receptors in the agonist muscle. 

The properties of the synaptic currents generated in motoneurones during 

reciprocal inhibition will be described in detail in Chapter three of this thesis.

Although the importance of inhibition in the CNS was well established by 

the 1940’s, the mechanisms involved in mediating inhibition were not. There were 

two schools of thought; one believed that inhibition was mediated electrically, the
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other believed inhibition was mediated by chemical means. Despite a considerable 

amount of evidence for the chemical hypothesis (Loewi demonstrating the 

chemical nature of vagal inhibition in 1921), Brooks and Eccles (1947) came out in 

favour of an electrical hypothesis for inhibition called the Golgi-cell hypothesis. 

They proposed that a Golgi cell (or interneurone) was interposed between the 

excitatory fibres and the inhibited cell in such a way that following excitation of the 

Golgi cell, outward current from the synaptic knobs (terminals) of its axon would 

lead to a hyperpolarisation of the area of contact with the postsynaptic cell. There 

would be an accompanying depolarisation of equal magnitude distributed diffusely 

over the remainder of the postsynaptic cell and no net change in membrane 

potential. This somewhat far-fetched idea was abandoned after the first 

intracellular recordings showed that postsynaptic inhibition was associated with a 

direct hyperpolarisation of the postsynaptic cell (Brock, Coombs & Eccles, 

1952a,b). This left the chemical hypothesis to explain inhibition. Brock, Coombs 

and Eccles (1952a,b) proposed that inhibition was mediated by a specific inhibitory 

transmitter which caused an active hyperpolarisation of the postsynaptic cell. This 

hyperpolarisation is known as the inhibitory postsynaptic potential, or IPSP.

Postsynaptic inhibition

The first direct evidence of a change in membrane properties during 

postsynaptic inhibition was obtained by Fatt and Katz (1953) at the crustacean 

neuromuscular junction. They showed that during postsynaptic inhibition, which 

often occurred in the absence of postsynaptic hyperpolarisation, there was an 

increase in the rate of decay of the end-plate potential. Fatt and Katz also found 

that depolarisation of the postsynaptic cell could unmasked an IPSP, whereas 

hyperpolarisation could reverse the IPSP into a depolarising potential. These 

findings were explained by an increase in membrane conductance of the 

postsynaptic cell to an ion, or ions, that were at equilibrium at a membrane 

potential close to the resting membrane potential of crustacean muscle. (It was
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later shown by Dudel and Kuffler (19616) that some of the inhibition observed by 

Fatt and Katz was presynaptic.)

A subsequent, more detailed study by Coombs, Eccles and Fatt (1955a) on 

postsynaptic inhibition in motoneurones concluded that "the inhibitory transmitter 

substance that is liberated from the inhibitory presynaptic terminals acts on 

inhibitory patches of the post-synaptic membrane and greatly increases their 

permeability to all ions below a critical size". They also suggested that this increase 

in permeability was to both K + and Cl" ions.

Mechanisms o f postsynaptic inhibition

These early studies lead to the idea that postsynaptic inhibition reduces the 

excitability of the postsynaptic cell via an increase in membrane conductance 

which is often accompanied by a hyperpolarisation. An increase in membrane 

conductance will shunt excitatory synaptic currents, decreasing the ability of 

excitatory inputs to bring the cell to threshold, whereas hyperpolarisation of the 

postsynaptic cell shifts the membrane potential away from that required for 

initiation of an action potential.

The ability of postsynaptic inhibition to shunt excitatory synaptic currents 

will depend not only on the size and duration of the inhibitory conductance, but 

also on its location and on the location of the excitatory input. Theoretical studies 

on the passive cable properties of nerve cells, originally developed by Rail in the 

early sixties, suggest that in general postsynaptic inhibition is most effective in 

reducing all excitatory inputs to the postsynaptic cell, independent of their 

location, if the inhibitory synapses are located on or near the soma (Rail, 1964; 

Jack, Noble & Tsien, 1975). This is exactly where most postsynaptic inhibition in 

the mammalian CNS is found to be located. For postsynaptic inhibition to be 

selective for a particular excitatory input it is best located directly adjacent to that 

excitatory input (Jack et al. 1975). This type of selective postsynaptic inhibition is 

most suited to excitatory inputs which are generated on the most distal parts of the 

dendritic tree.
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Inhibitory transmitters and their actions

The classical inhibitory transmitters in the mammalian CNS are the amino 

acids 7-aminobutyric acid (GABA) and glycine. Their identification as putative 

inhibitory transmitters began with the work of Curtis and Watkins (1960) who 

showed that these amino acids reduced the excitability of neurones in the spinal 

cord. It was later found that the distribution of GABA and glycine in the spinal 

cord was consistent with a role of these amino acids as inhibitory transmitters 

(Aprison, Graham, Baxter & Werman, 1965; Aprison & Werman, 1965). 

Convincing evidence came from the observations that when applied 

iontophoretically GABA and glycine could mimic the postsynaptic response of the 

naturally released transmitter (Werman, Davidoff & Aprison, 1966; Krnjevic & 

Schwartz, 1967). For example, the glycine induced hyperpolarisation of 

motoneurones reverses at the same potential as IPSPs generated during reciprocal 

inhibition and shows the same dependence on the intracellular chloride 

concentration (Curtis, Hosli, Johnston & Johnston, 1968).

Glycinergic inhibition can be selectively blocked by strychnine (Bradley, 

Easton & Eccles, 1953; Curtis et al. 1968; Akaike & Kaneda, 1989), whereas 

classically GABA mediated inhibition is selectively blocked by picrotoxin or 

bicuculline (van der Kloot, Robbins & Cook, 1958; Curtis, Duggan, Felix & 

Johnston, 1971). More recent studies have shown that there are at least two types 

of pharmacologically distinct GABA receptors. The classical bicuculline-sensitive 

GABAa receptor and the bicuculline-insensitive GABAß receptor. GABAß 

receptors can be selectively activated by (-)-baclofen, a /J-p-chlorophenyl 

derivative of GABA (Bowery, Dobel, Hill, Hudson, Shaw & Turnbull, 1979; Hill & 

Bowery, 1981; Bowery, Dobel, Hill, Hudson, Shaw, Turnbull & Warrington, 1981) 

and blocked by the antagonists phaclofen (Kerr, Ong Prager, Gynther & Curtis, 

1987; Dutar & Nicoll, 1988a) and the more potent 2-OH-saclofen (Kerr, Ong, 

Johnston, Abbenante & Prager, 1988; Curtis, Gynther, Beattie, Kerr & Prager, 

1988). A new GABAß antagonist which can cross the blood brain barrier has also 

recently been found (Olpe, Karlsson, Pozza, Brugger, Steinmann, Riezen, Fagg,
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Hall, Froestl & Bittiger, 1990). In addition to GABAß receptors, some recent 

reports have suggested that there may be other types of bicuculline-insensitive 

GABA receptors (Muller & Misgeld, 1989; Solis & Nicoll, 1990).

Due to similarities in the primary structures of the GABAa and glycine 

receptors it has been suggested that these ligand-gated receptors form part of a 

superfamily of ion channel/receptor proteins (Schofield, Darlison, Fujita, Burt, 

Stephenson, Rodriguez, Rhee, Ramachandran, Reale, Glencorse, Seeburg & 

Barnard, 1987; Grenningloh, Rienitz, Schmitt, Methfessel, Zensen, Beyreuther, 

Gundelfinger & Betz, 1987; Barnard, Darlison & Seeburg, 1987). The GABAß 

receptor is thought to belong to a different superfamily of receptor proteins in 

which the receptor is coupled to a GTP-binding protein (Hill, Bowery & Hudson, 

1984; Holz, Rane & Dunlap, 1986; Andrade, Malenka & Nicoll, 1986; Dolphin & 

Scott, 1987; Birnbaumer, Abramowitz & Brown, 1990).

Activation of both GABAa and glycine receptors causes a transient 

increase in membrane conductance to Cl" ions (Bormann, Hamill & Sakmann, 

1987). This increase in membrane conductance is selective for Cl" ions and 

impermeable to K+ ions (Bormann et al. 1987). The increase in Cl" conductance 

produced by GABA and glycine are thought to be very similar, as they show almost 

identical single channel sub-conductance states and ion permeability (Bormann et 

al. 1987). However, the main conductance state of GABA activated Cl" channels 

(30 pS) is thought it be different from that of glycine activated Cl" channels (46 pS; 

Bormann et al. 1987).

The conformational change leading to the opening of these channels is 

thought to require the binding to two molecules of GABA or glycine to the 

GABAa and glycine receptors (Akaike, Inoue & Krishtal, 1986; Akaike & 

Kaneda, 1989). The KD for binding of GABA to the GABAa receptor is 

approximately 10 nM (Akaike et al. 1986), whereas glycine is thought to bind to its 

receptor with a KD of approximately 90 fiM (Akaike & Kaneda, 1989). The 

GABAa and glycine receptors differ, not only in their selectivity for different 

agonist and antagonists, but also because the increase in Cl" conductance activated



6

by GABAa receptors can be enhanced by clinically important drugs such as 

benzodiazepines and barbituates (Olsen, 1982). This potentiation is thought to 

occur due to an increase in the GABAa single channel open time and burst 

duration (Study & Barker, 1981; MacDonald, Rogers & Twyman, 1989).

Activation of GABAß receptors by either baclofen or GABA, in the 

presence of bicuculline, decrease a voltage dependent calcium conductance in the 

cell bodies of dorsal root ganglion cells (Dunlap & Fischbach, 1978, 1981; Dunlap, 

1981 a,b\ Deisz & Lux, 1985; Dolphin & Scott, 1986, 1987; Robertson & Taylor, 

1986). This effect has been shown to be mediated through a pertussis toxin 

sensitive GTP-binding protein (Holz et dl. 1986; Dolphin & Scott, 1987) and may 

involve a protein kinase C-dependent phosphorylation of voltage dependent 

calcium channels (Rane & Dunlap, 1986; Rane, Walsh, McDonald & Dunlap, 

1989). The reduction in calcium conductance in the presence of GABA or baclofen 

is thought to be due to a transmitter-induced change in the voltage-dependence 

with which these channels are opened (Bean, 1989; Grassi & Lux, 1989).

The activation of GABAß receptors on nerve terminals could cause a 

reduction in calcium influx during the presynaptic action potential. As the 

relationship between the intracellular calcium concentration in nerve terminals 

and transmitter release is thought to be highly nonlinear (Dodge & Rahamimoff, 

1967; Augustine, Charlton & Smith, 1985), a small reduction in calcium influx 

would be expected to cause a substantial reduction in transmitter release. 

Although it has not been directly demonstrated, the ability of baclofen to cause a 

reduction in a voltage dependent calcium conductance on nerve terminals can 

probably explain the presynaptic actions of baclofen in the CNS (see Discussion in 

Chapter four). A recent report has shown that the reduction in calcium 

conductance produced by baclofen can be partially blocked by phaclofen, but 

curiously not by 2-OH-saclofen (Huston, Scott & Dolphin, 1990).

Activation of GABAß receptors can also cause an increase in a potassium 

conductance in many central neurones (Newberry & Nicoll, 1985; Inoue, Matsuo 

& Ogata, 1985; Gahwiler & Brown, 1985). This effect has also been shown to be



7

mediated through a pertussis toxin sensitive GTP-binding protein (Andrade et al. 

1986; Dutar & Nicoll, 19886). It has been suggested that the increase in potassium 

conductance produced by GABA and baclofen may be mediated via a direct 

coupling of the GTP-binding protein to the potassium channel (Andrade et al. 

1986). The increase in potassium conductance produced by baclofen can be 

completely blocked by GABAß antagonists (Duter & Nicoll, 1988a,6; Solis & 

Nicoll, 1990). A potassium dependent IPSP has been reported in many regions of 

the brain which can also be blocked by GABAß antagonists (Dutar & Nicoll, 

1988a; Soltesz, Haby, Leresche & Crunelli, 1988; Hasuo & Gallagher, 1988; 

Lambert, Harrison, Kerr, Ong, Prager & Teyler, 1989). This IPSP is thought to be 

mediated by the activation of GABAß receptors.

A recent report also suggests that GABA and baclofen can shift the voltage 

dependence of inactivation of a transient potassium current, recorded in the cell 

bodies of cultured hippocampal neurones, to more depolarised potentials (Saint, 

Thomas & Gage, 1990). If this occurs in nerve terminals it could shorten the 

duration of the presynaptic action potential, reducing calcium influx and 

transmitter release.

Beside GABA and glycine, there are also a number of other putative 

transmitters which have been shown to decrease neuronal excitability. These 

include acetylcholine, norepinephrine, dopamine, serotonin, adenosine and the 

neuropeptides enkephalin and somatostatin (reviewed by Nicoll, Malenka & 

Kauer, 1990). The inhibitory effect of these transmitters is mediated through an 

increase in a potassium conductance which is qualitatively similar to that produced 

by GABA acting at GABAß receptors. In many cases this increase in potassium 

conductance is thought to be mediated through a GTP-binding protein. 

Acetylcholine, norepinephrine, adenosine and the neuropeptides dynorphin and 

neuropeptide Y can also reduce voltage dependent calcium conductances in dorsal 

root ganglion cells and so could potentially reduce calcium influx into nerve 

terminals and reduce transmitter release. For many of these putative transmitters 

this effect has been shown to be mediated through a pertussis toxin sensitive GTP-
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binding protein and may involve a protein kinase C-dependent phosphorylation of 

voltage dependent calcium channels.

Inhibitory postsynaptic currents

The time course of the conductance change underlying an IPSP can be 

measured by a technique introduced by Cole in 1949 called the voltage clamp. 

Accurate measurement of this conductance change can only be obtained if the 

membrane through which the ionic current flows is isopotential with the voltage 

clamp. Under these conditions the current that flows during an IPSP will be 

identical to the current required to clamp the membrane potential. This current 

can be measured and is called the inhibitory postsynaptic current, or IPSC. The 

time course of the IPSC will be the same as the time course of the increase in 

membrane conductance underlying the IPSP.

Araki and Terzuolo (1962) were the first to record IPSCs in mammalian 

central neurones. They showed that the IPSC recorded in motoneurones during 

reciprocal inhibition was brief, lasting only a few milliseconds, and reversed at 

approximately -80 mV. This reversal potential was the same as had been previously 

reported for the reversal potential of IPSPs recorded during reciprocal inhibition 

(Coombs et al. 1955a). The brief nature of the conductance change underlying 

these IPSPs was in agreement with earlier attempts to measure the time course of 

this conductance change by investigating the interaction between these IPSPs and 

either EPSPs or antidromically activated action potentials (Coombs et al. 19556; 

Curtis & Eccles, 1959). A study on the change in impedance during reciprocal 

inhibition also concluded that the increase in membrane conductance underlying 

IPSPs generated during reciprocal inhibition lasted only a few milliseconds (Smith, 

Wuerker & Frank, 1967).

If the decay of the inhibitory synaptic current is determined by the average 

open time of the synaptically activated channels, then a description of the time 

course of these currents, and effects which alter this time course, will provide
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valuable information about the properties of the membrane channels underlying 

the increase in conductance which occurs during postsynaptic inhibition.

In the mammalian CNS, GABAa mediated IPSCs have been studied in 

vitro in slices of hippocampus (Collingridge, Gage & Robertson, 1984; Sakmann, 

Edwards, Konnerth & Takahashi, 1989; Edwards, Konnerth & Sakmann, 1990; 

Ropert, Miles & Korn, 1990) and neocortex (Kriegstein & LoTurco, 1990). 

GABAg receptor mediated IPSCs have also recently been recorded in vitro from 

CA1 neurones in the hippocampus (Davies, Davies & Collingridge, 1990). It is 

doubtful if the time course of these GABAg mediated IPSCs reflects the true time 

course of the synaptic current, as the synapses generating these IPSCs are thought 

to be located on the distal dendrites and so would not be isopotential with a 

somatically located voltage clamp.

Glycinergic IPSCs have previously been investigated in goldfish Mauthner 

cells (Faber & Korn, 1987, 1988) and lamprey Muller cells (Gold & Martin, 

1983a), however have not been characterised in the mammalian CNS. Araki and 

Terzuolo (1962) recorded IPSCs evoked during strychnine-sensitive reciprocal 

inhibition in the mammalian spinal cord, but did not analyse the time course of 

these IPSCs or dependence on the membrane potential. Only a brief report on 

some properties of glycinergic IPSCs recorded in spinal cord slices in vitro has been 

published (Konnerth, Takahashi, Edwards & Sakmann, 1988). A detailed analysis 

of the properties of glycinergic IPSCs evoked during reciprocal inhibition in the 

mammalian spinal cord in vivo is described in Chapter three.

Presynaptic inhibition

Inhibition of synaptic transmission can also be mediated via a reduction in 

the amount of excitatory transmitter released from nerve terminals. In the 

mammalian CNS this type of inhibition was first described by Frank and Fuortes in 

1957. They reported that prior conditioning stimulation could reduce the 

amplitude of monosynaptic la EPSPs recorded in cat spinal motoneurones without 

causing a hyperpolarisation or a change in the motoneurone’s excitability. It was
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concluded that this inhibition occurred presynaptically. In a later report Frank 

(1959) suggested the alternative explanation that the reduction in la EPSPs could 

occur via postsynaptic inhibition "at a distance from the cell body where the effect 

of the inhibitory volley alone cannot be ‘seen’ by the microelectrode." Frank 

termed this type of inhibition remote inhibition.

Work by Eccles in the early 60’s supported the original hypothesis of Frank 

and Fuortes that the reduction in la EPSPs occurred via presynaptic inhibition. 

This inhibition was correlated with the presence of the dorsal root potential, which 

was found to have a similar duration as the time course of the inhibition of la 

EPSPs (Eccles, Eccles & Magni, 1961). These findings lead Eccles, Eccles & 

Magni (1961) to postulate that "presynaptic depolarization results in EPSP 

depression because it depresses the size of the presynaptic impulse and hence 

decreases the liberation of excitatory transmitter". Possible mechanisms involved 

in mediating presynaptic inhibition will be discussed later.

A morphological basis for presynaptic inhibition came from observations by 

Gray (1962) of the presence of axo-axonic synapses (axon terminals forming 

synaptic contacts with other axon terminals) in an electron microscopic study of cat 

spinal cord. Axo-axonic synapses have since been shown to occur on la afferent 

terminals in the ventral horn (Conradi, 1969; Fyffe & Light, 1984), on la and lb 

afferent terminals in Clark’s column (Walmsley, Wieniawa-Narkiewicz & Nicol, 

1987) and in the dorsal horn (Barber, Vaughn, Saito, McLaughlin & Roberts, 

1978; Zhu, Sandri & Alkert, 1981). Axo-axonic synapses have not, however, been 

found on nerve terminals of neurones which have their cell bodies within the CNS.

Additional evidence for presynaptic inhibition was supplied by Eide, Jurna 

and Lundberg (1968) who showed that the same conditioning stimulation which 

depressed la EPSPs did not affect a monosynaptic EPSP evoked in motoneurones 

by stimulation of descending spinal tracts.

Frank’s suggestion that the inhibition of la EPSPs could be produced by 

remote inhibition gained some support following the findings of Kellerth (1968) 

and Cook and Cangiano (1972) that the conditioning stimulation used to produced
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presynaptic inhibition could also caused postsynaptic inhibition. This postsynaptic 

inhibition was often associated with a small IPSP in motoneurones and a small or 

undetectable change in membrane conductance. It was concluded that these 

properties were consistent with a remote dendritic origin of this postsynaptic 

inhibition (Cook & Cangiano, 1972). However, as was pointed out by Cook and 

Cangiano, this postsynaptic inhibition could not account for all of the reduction in 

la EPSPs produced by the conditioning stimulation.

Recent evidence for presynaptic inhibition comes from the work of 

Clements, Forsythe and Redman (1987) using quantal analysis of the fluctuations 

in amplitude of unitary la EPSPs before and after the conditioning stimulus used 

to evoke presynaptic inhibition (see also Kuno, 1964). To avoid problems 

associated with postsynaptic inhibition, quantal analysis was only performed on 

somatic or near somatic unitary EPSPs evoked at latencies of 70 to 100 ms after 

the conditioning stimulus. Due to the brief nature of the synaptic current 

underlying somatic la EPSPs (Finkel & Redman, 1983a), the peak voltage of a 

somatic la EPSP will be determined largely by the flow of current across the 

membrane capacitance and so will be insensitive to any increase in membrane 

conductance that may occur during the conditioning stimulation used to evoke 

presynaptic inhibition (see Gage & McBurney, 1973; Edwards, Hirst & Silinsky, 

1976). It has been shown that the peak amplitude of a somatic la EPSP will be 

unaffected by an increase in the membrane conductance, unless the membrane 

conductance is increased to more than ten times its original valve (Edwards, 

Redman & Walmsley, 1976c). Quantal analysis of EPSPs before and after 

conditioning showed that the conditioning stimulation decreased the number of 

quanta contributing to the inhibited EPSP without changing the quantal size, 

thereby confirming the original proposal of Frank and Fuortes (1957) that the 

reduction in amplitude of la EPSPs occurs via presynaptic inhibition.
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Pharmacology of presynaptic inhibition

Before reviewing the literature on the pharmacology of presynaptic 

inhibition, it should be stressed that while it is now generally accepted that in the 

mammalian spinal cord presynaptic inhibition of transmitter release from primary 

afferent fibres is mediated by the release of GABA at axo-axonic synapses, much 

of the evidence for this is indirect.

Evidence for the role of GABA as the transmitter mediating presynaptic 

inhibition comes from a number of different sources. In the first study on the 

pharmacology of presynaptic inhibition in the mammalian CNS, Eccles, Schmidt 

and Willis (1963a) showed that picrotoxin could reduce both the ‘prolonged 

inhibition’ of ventral root reflexes and the dorsal root potential evoked by the 

conditioning stimulation. Picrotoxin has since been shown to antagonize the 

GABAa activated increase in Cl" conductance by a direct block of the Cl" channel 

(Gallagher, Higashi & Nishi, 1978; Akaike, Yakushiji, Tokutomi & Carpenter, 

1987). The more specific GABAa receptor antagonist bicuculline has also been 

shown to reduce both prolonged inhibition and dorsal root potentials (Curtis et al. 

1971).

GABA was found to depolarize primary afferent fibres, mimicking the 

depolarising dorsal root potential (Eccles et al. 1963a). In agreement with this 

finding GAEA has also been found to depolarize the cell bodies of dorsal root 

ganglion cells (Feltz & Rasminsky, 1974; Nishi, Minota & Karczmar, 1974; 

Gallagher et al. 1978). This depolarisation, which has a reversal potential of 

approximately -30 mV, is associated with an increase in Cl" conductance and can 

be blocked by GABAa antagonists. Of perhaps more physiological significance is 

the finding that GABA can also cause a bicuculline-sensitive depolarisation of the 

terminals of primary afferent fibres (Gmelin & Cerletti, 1976; Sastry, 1979a; Curtis 

& Lodge, 1982). This depolarisation is presumably caused by the outward 

movement of Cl" ions following activation of GABAa receptors on primary 

afferent terminals. These findings suggests that a high intracellular Cl"
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concentration is maintained in the cell bodies and nerve terminals of dorsal root 

ganglion cells by an inwardly directed Cl' pump.

Eccles, Schmidt and Willis (1963a) also found that prolonged inhibition and 

the dorsal root potential were not reduced by strychnine, and that the barbiturate 

sodium pentobarbitone could enhance prolonged inhibition and increase the size 

of dorsal root potentials. The significance of this later finding, while not 

appreciated at the time, can be explained by the ability of barbituates to potentiate 

the effect of GABA acting at GABAa receptors. More recent studies have also 

shown that prolonged inhibition and dorsal root potentials can be enhanced by 

benzodiazepines (Haefely & Pole, 1986).

Additional pharmacological evidence for the proposal that GABA mediates 

presynaptic inhibition comes from the finding that depletion of GABA from the 

CNS by inhibitors of the production of glutamate decarboxylase (GAD), the 

enzyme responsible for the synthesis of GABA, reduce both prolonged inhibition 

and dorsal root potentials (Bell & Anderson, 1972). Immunocytochemical 

evidence for a role of GABA in presynaptic inhibition has also been demonstrated, 

with both GAD (a proposed marker for GABA) and GABA being localised in 

nerve terminals presynaptic to terminals of primary afferent fibres (Barber et al. 

1978; Magoul, Onteniente, Geffard & Calas, 1987; Maxwell, Christie, Short & 

Brown, 1990).

These studies provide good pharmacological and morphological evidence 

that GABA is the transmitter released from axo-axonic synapses during 

presynaptic inhibition. There is also good evidence that the release of GABA 

during presynaptic inhibition causes a bicuculline-sensitive depolarisation of the 

terminals of primary afferent fibres.

While there have been many studies on the pharmacology of prolonged 

inhibition of ventral root reflexes, to date there have been no pharmacological 

studies on presynaptic inhibition. While much of the evidence suggests that 

prolonged inhibition of ventral root reflexes is mediated, at least in part, through 

the activation of GABAa receptors, this inhibition is complicated by the
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postsynaptic inhibition that occurs in conjunction with presynaptic inhibition 

(Kellerth, 1968; Cook & Cangiano, 1972). There is clearly a need for a 

reassessment of the pharmacology of presynaptic inhibition in the mammalian 

CNS using more direct techniques to monitor presynaptic inhibition. This has 

become even more important following the discovery over the last ten years that 

GABA can activate at least two different types of GABA receptors, GABAa and 

GABAg. While it has been traditionally thought that presynaptic inhibition is 

mediated through the classical GABAa receptor, the possibility that GABA 

reduces the release of transmitter from primary afferent terminals by acting at 

bicuculline-insensitive GABAg receptors must be considered. Chapter four of this 

thesis involves a pharmacological investigation into the role of GABAa and 

GABAg receptors in presynaptic inhibition of intracellularly recorded la EPSPs.

Mechanisms of presynaptic inhibition

The mechanisms involved in mediating presynaptic inhibition in the 

mammalian CNS are poorly understood. Fundamental to our understanding of 

presynaptic inhibition is the knowledge of what type(s) of receptors mediate this 

inhibition. As discussed above, there is now considerable evidence which suggests 

that presynaptic inhibition of synaptic transmission is mediated by the release of 

GABA at axo-axonic synapses. However, we know very little about how GABA 

causes presynaptic inhibition.

Presynaptic inhibition of transmitter release from the terminals of la 

afferents has been shown to be associated with a reduction in the number of 

quantal events contributing to the inhibited EPSP without a change in the quantal 

size (Kuno, 1964; Clements et al. 1987). It is most likely that this occurs due to 

reduced calcium influx into the nerve terminals of la afferent fibres during 

presynaptic inhibition. Some evidence for this is give in Chapter five. At many 

synapses the relationship between calcium influx into nerve terminals and 

transmitter release is highly nonlinear (Dodge & Rahamimoff, 1967; Augustine et 

al. 1985). If the same relationship exists at primary afferent terminals, then a small
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reduction in calcium influx could lead to a substantial reduction in transmitter 

release. The question becomes how does synaptically released GABA cause a 

reduction in calcium influx into primary afferent nerve terminals during 

presynaptic inhibition?

Calcium influx into nerve terminals is thought to enter through voltage 

activated calcium channels (VACCs). These channels, which are believed to be 

present on nerve terminals close to the site of transmitter release, are thought to 

be activated by the voltage change associated with action potential invasion of the 

nerve terminal. There are three ways that presynaptic inhibition could reduce 

calcium influx through VACCs. Firstly, presynaptic inhibition could reduce the 

amplitude and/or duration of the presynaptic action potential, causing a 

subsequent reduction in activation of VACCs. Secondly, prior depolarisation of the 

presynaptic terminal could cause inactivation of VACCs, reducing the number of 

VACCs available to be activated during the presynaptic action potential and 

thirdly, presynaptic inhibition could directly affect activation of VACCs.

A reduction in the amplitude and/or duration of the presynaptic action 

potential could occur following an increase in membrane conductance of primary 

afferent terminals (Segev, 1990). As the relationship between the size of the 

presynaptic action potential and transmitter release is highly nonlinear (Hagiwara 

& Tasaki, 1958; Takeuchi & Takeuchi, 1962; Katz & Miledi, 1967), a small 

decrease in the amplitude of the presynaptic action potential would be expected to 

cause a marked reduction in transmitter release. A steep relationship is also 

thought to exist between the duration of the presynaptic action potential and 

transmitter release (Katz & Miledi, 1967; Dudel, 1984). As an increase in the 

membrane conductance has been observed during primary afferent depolarisation 

(Curtis & Lodge, 1982; Padjen & Hashiguchi, 1983; Curtis, Gynther & Malik, 

1986), it is likely that presynaptic inhibition is mediated, at least in part, by this 

mechanism.

It is also possible that the depolarisation of primary afferent terminals that 

occurs in conjunction with presynaptic inhibition (Wall, 1958; Eccles, Magni &
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Willis, 1962; Gmelin & Creletti, 1976; Curtis & Lodge, 1982) could lead to the 

inactivation voltage dependent sodium channels located on presynaptic terminals 

or at the last node(s) of Ranvier. Voltage activated sodium channels on the cell 

bodies of dorsal root ganglion cells are 50% inactivated at a membrane potential 

of ~-40 mV (Carbone & Lux, 1986). As the conditioning stimulus used to evoke 

presynaptic inhibition is thought to depolarize the terminals of primary afferent 

fibres by at least 5 to 10 mV from a resting membrane potential of —70 mV 

(Eccles et al. 1962; Padjen & Hashiguchi, 1983; Bagust, Forsythe & Kerkut, 1985), 

this depolarisation could cause some inactivation of these channels. This would be 

expected to decrease the amplitude of the presynaptic action potential and reduce 

transmitter release. At many synapses depolarisation of the nerve terminal has 

been shown to decrease the size of the presynaptic action potential and reduce 

transmitter release (Hagiwara & Tasaki, 1958; Takeuchi & Takeuchi, 1962; Eccles, 

Kostyuk & Schmidt, 1962/?; Hubbard & Willis, 1968; Llinas, 1968).

The depolarisation of primary afferent terminals could also cause 

inactivation of VACCs. This would depend on both the size of the depolarisation 

that occurs in primary afferent terminals during presynaptic inhibition and on the 

voltage dependence of inactivation of the VACCs which contribute to the calcium 

influx that triggers release.

Three different types of VACCs have been identified in the cell bodies of 

dorsal root ganglion cells (Fox, Nowycky & Tsien, 1987a,/?; Kostyuk, Shuba & 

Savchenko, 1988). A low-threshold, transient VACC (T-type), which is activated at 

membrane potentials more positive that —70 mV, and two high-threshold 

VACCs. A non-inactivating high-threshold VACC (L-type), activated at membrane 

potentials more positive than—-10 mV, and a slowly inactivating VACC (N-type), 

activated at membrane potentials more positive than —30 mV. Recent studies 

suggest that vertebrate nerve terminals contain only high-threshold VACCs 

(Lindgren & Moore, 1989; Lemos & Nowycky, 1989; Yawo, 1990). Consistent with 

this finding, there is some evidence that in the mammalian CNS transmitter 

release is mediated primarily through the activation of high-threshold N-type
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VACCs (Kamiya, Sawada & Yamamoto, 1988; Rascol, Duter, Potier & Lamour, 

1990). N-type VACCs are thought to be 50% inactivated at membrane potentials 

of between -60 and -70 mV (Fox et al. 1987a,/?). A depolarisation of 5 to 10 mV 

during presynaptic inhibition could cause an increase the fraction of N-type 

VACCs which are inactivated, and therefore could reduce calcium influx and 

transmitter release.

Finally, the transmitter released during presynaptic inhibition could reduce 

the activation of VACCs via an action on the channels themselves. This effect 

could occur through the activation of GABAß receptors on primary afferent 

terminals. As mentioned earlier, activation of these receptors has been shown to 

reduce a voltage dependent calcium conductance in the cell bodies of dorsal root 

ganglion cells.

The contribution of GABAa and GABAß receptors to these different 

possible mechanisms underlying presynaptic inhibition is discussed in detail in 

Chapter four.
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Chapter two:

GENERAL METHODS

This chapter deals with the general methods which were used in the 

experiments described in Chapters three, four and five. Each of these experimental 

chapters also has its own methods section which deals with specific details related 

to particular experimental work described in that chapter.

The preparation

All experiments were preformed on male or female adult cats weighing 

between 1.5 and 3.5 kg. Cats were initially anaesthetised either by an intra- 

peritoneal injection of sodium pentobarbitone (40 mg kg-1) or by breathing a 

mixture of halothane and nitrous oxide with oxygen. The trachea, left common 

carotid artery and left cephalic vein were then cannulated, and anaesthesia 

continued by either intravenous injection of sodium pentobarbitone in animals 

initially anaesthetised with pentobarbitone (approximately 6mg/hour, or as 

required), or by a-chloralose (initial dose 60 mg kg-1) in animals initially 

anaesthetised with halothane and nitrous oxide. Ten to twenty minutes were given 

for this dose of a-chloralose to take full effect and then the halothane/nitrous 

oxide anaesthesia was slowly discontinued and anaesthesia maintained by 

intravenous injection of a-chloralose (5 mg kg-1 as required). In addition, some 

experiments in Chapter three were performed on animals initially anaesthetised 

with halothane and nitrous oxide followed by an intercollicular decerebration.

Blood pressure, heart rate, and end-tidal C 0 2 levels were monitored 

continuously throughout the experiment. Body temperature was measured by a 

thermocouple place behind the scapula and maintained at 37±1 °C by a feedback 

controlled electric blanket. A bilateral pneumothorax was induced and the animals 

were artificially respired. End tidal C 0 2 levels were maintained at 4%. The
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neuromuscular blocking agent pancuronium bromide (Pavulon, Organon, Holland) 

was given to maintain stability of recordings; supplementary doses were given only 

after recovery from the previous dose, and only after the level of anaesthesia had 

been checked by corneal and toe pinch reflexes. The level of anaesthesia was also 

monitored by the level of muscular tone in the jaw and the degree of pupillary 

constriction.

The left hindlimb was dissected to expose various muscle nerves for 

stimulation. As the particular muscle nerves exposed depended on the 

experimental requirements a description of the different hindlimb nerve 

dissections will be given in the methods section of each experimental chapter.

Following the hindlimb dissection the cat was mounted in a rigid steel 

frame and a laminectomy was performed to expose the spinal segments from L4 to 

SI. The dura was cut longitudinally and a dural sling constructed by gentle 

retraction of the cut edges of the dura using 5-0 silk sutures. A silver/silver 

chloride electrode was secured to the exposed muscle next to the spinal cord to act 

as the indifferent electrode and this was connected to the equipment ground. The 

spinal cord and surrounding tissue were then covered with warm liquid paraffin 

and heated by radiant heat. A separate leg pool was formed and the hindlimb 

muscle nerves were covered with warm liquid paraffin. In some experiments 

different ventral roots on the left side of the spinal cord were cut and mounted on 

stimulating electrodes.

Stimulation procedures

All electrical stimuli to leg muscle nerves and ventral roots were applied via 

bipolar stimulating electrodes using isolated stimulators (Digitimer, Model DS2). 

Stimulus pulses of 0.2 ms duration were used. The isolated stimulators were 

triggered with either a time sequence generator (designed by Prof. Redman) or 

Digitimers (Model D4030).
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Recording procedures

All intracellular and extracellular recording was performed using Axoclamp 

2A amplifiers and headstages (Axon instruments). Intracellular, intra-axonal and 

extracellular recordings were made using conventional microelectrodes with the 

aid of a stepping motor-drive. These were pulled from 1.5 mm (o.d) thin walled 

glass capillary tubing (Clark Electromedical Instruments, GC150TF-15) using a 

vertical puller (Narishige Scientific). For intracellular recording from 

motoneurones and extracellular recording from interneurones the tips of these 

electrodes were broken back to approximately 1 /xm by advancing them into a glass 

bead under high magnification. These electrodes typically had resistances of 

approximately 10 MO when filled with 2M KCH3S 0 4. Intra-axonal recordings were 

performed with electrodes with unbroken tips, usually with resistances of 20 to 30 

MO when filled with 3M KC1.

A ball electrode was routinely used to record the arrival of the afferent 

volley from the cord dorsum. This ball electrode was also used to gently retract the 

L7 dorsal root medially, allowing access to the motoneurone pools in the ventral 

horn of the L7/S1 spinal segments.

Voltage and current clamping procedures and electrodes

Motoneurones were voltage or current clamped using a discontinuous 

single electrode voltage or current clamp. A block diagram of the single electrode 

voltage clamp (SEVC) used is shown in Fig. 2.L4. This figure is taken from Finkel 

and Redman (1985). A brief description of the operation of the SEVC is outlined 

below. The membrane voltage (V ), combined with the voltage drop across the 

electrode resistance and capacitance (V ) was fed into a unity-gain high-speed 

amplifier (A l) and then into a sample-and-hold device (SHI). The sampled 

voltage (V ) was then compared to the command voltage (Vc) in a differential 

amplifier (A2). The output of this amplifier, which is proportional to the difference 

between the sampled voltage and the command voltage, was then used to drive a 

controlled current source (CCS) if the switch SI was in the current passing
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Fig. 2.1. Single electrode voltage clamp (SEVC). A,  block diagram of the SEVC 

circuit from Finkel and Redman (1985). B, multiple sweeps of the input to the 

sample and hold device during SEVC (switching at 20 kHz). The voltage can be 

seen to settle back to the baseline before it is sampled by the clamp circuitry (at 

the white arrows). Vertical calibration voltage (arbitrary units).
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position. The output of the CSS was regulated by the gain GT. A current IQ will 

then be applied to the cell via the electrode. The sampled voltage (Vms) and the 

current I were recorded and give the membrane voltage and current. The input to 

the sample and hold device was also monitored to determine if it had settled back 

to the baseline before being sampled, as shown in Fig. 2.Iß  (white arrows).

The protocol used during voltage clamping experiments is outlined below. 

After obtaining a stable intracellular recording the amplifier was switched to 

discontinuous current clamp mode (DCC). A few nanoampers of constant 

hyperpolarising current were then injected into the cell and, while monitoring the 

input to the sample and hold device (Fig. 2. Iß), the capacitance neutralization and 

switching rate were adjusted to their optimum settings (Finkel & Redman, 1985). 

The potentiometer which controls the holding potential during voltage clamp was 

adjusted to the resting membrane potential. The gain control on the CCS (Gx) and 

the anti-alias filter were set to zero. The amplifier was then switched to SEVC. 

The clamp gain (Gx) was then increased as much as possible (usually to between 8 

and 25 nA/mV) while monitoring the input to the sample and hold device. 

Adjustment of the capacitance neutralization was made if necessary. The 

membrane voltage and current were then averaged. The membrane potential was 

voltage clamped at different membrane potentials by adjustment of the holding 

potential to the desired level.

The voltage clamp work described in Chapter three required specially 

designed electrodes which could switch at fast rates (up to 30 kHz) while clamping 

the membrane of neurones several millimetres below the surface of the spinal 

cord. These electrodes needed to have low resistance and capacitance. The 

electrode resistance was reduced by using an electrode of large tip diameter. The 

transmural electrode capacitance was reduced by shielding the electrode almost to 

its tip and connecting this shield to the unity gain output of the voltage clamping 

amplifier. This unity gain output is related to the output of the CSS such that 

whenever the current I is passed into the voltage clamping electrode a current 

equal in magnitude will be passed to the driven shield. This driven shield must be
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electrically isolated from the bathing solution or tissue due to the large voltage 

changes which will occur during current passing (up to ±15 V).

The design and manufacture of these electrodes is described in detail by 

Finkel and Redman (1983/?) and only a brief summary will be given here. 

Manufacture started with a conventional electrode which was coated with a very 

thin gold film using a vacuum sputterer. The electrode was filled with electrolyte 

and the gold etched back from the tip approximately 150 /im by advancing the 

electrode under microscopic control into a droplet of a non-fuming gold etch (KI 

solution) (Fig. 2.2A). A second electrode was pulled using thin walled soft glass 

tubing (Kimax 51) with a taper that exceeded the taper of the gold coated 

electrode by approximately 30% over the first 10 mm back from the tip. The tip of 

this electrode was broken back to give an outside diameter of ~ 10 /mi, and a 10 

mm length of the tapered region back from the tip snapped off. This small glass 

jacket was fixed to a metal rod attached to a micromanipulator using modelling 

clay. The gold coated electrode (attached to another micromanipulator) was then 

advanced through the glass jacket, using a binocular dissecting microscope for 

guidance, until it fitted tightly. The gold shield usually ended about 20 ßm from the 

tip of the glass jacket. If it ended any less than this the jacket was discarded and 

another one used. Once a tight fit was established the gold coated electrode was 

withdrawn a few hundred microns (Fig. 2.25) and a droplet of fast setting epoxy 

glue (5 minute Araldite, Ciba-Geigy) introduced to the tip of the glass jacket from 

were it moved rapidly back down the inside of the glass jacket via capillary action. 

Once the glue had moved back approximately 100 ßm from the tip of the glass 

jacket the gold coated electrode was advanced through the glue until a tight seal 

was again formed between the gold coated electrode and the glass jacket (Fig. 

2.2C). Excess glue was removed by placing a droplet of glue over the electrode tip 

and slowly withdrawing the droplet. Once dry, the broad end of the glass jacket was 

secured to the inner electrode and a fine wire was then wound around the gold 

coated recording electrode and electrical continuity with the gold coat formed by a 

drop of silver paint. This wire was connected to the unitary gain output of the
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Fig. 2.2. A schematic diagram of the construction of a single barrel voltage 

clamping electrode. A, shows a conventional microelectrode which has been gold 

coated using a vacuum splutterer and then had the gold film etched back 150 ßm 

from the tip. B, shows placement of the glass jacket over the gold coated electrode. 

C, shows the tip region of the completed SEVC electrode.
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microelectrode amplifier. The tip of the microelectrode was then either bevelled 

or broken back to give a tip diameter of approximately 1.5 ßm. The resistance of 

these electrodes was around 5 Mß when filled with either 2M KCH3S 04 or 3M 

KC1. Finally, the microelectrode tip was immersed several millimetres below the 

surface of a saline bath and the insulation resistance between the shield and the 

bath was measured. Microelectrodes with insulation resistances of less than 1000 

MO were discarded.

Iontophoretic electrodes and current passing procedures

The iontophoretic work described in Chapters three and four required 

intracellular recording from motoneurones during extracellular iontophoresis of 

different compounds. The electrodes used contained two extracellular 

iontophoretic barrels and were largely based on the "parallel" micropipettes used 

and designed by Prof. D.R. Curtis in the late sixties (Curtis, 1968). A brief 

description of the construction of these electrodes is given below.

First, a double barrelled iontophoretic electrode was pulled from double 

barrel 1.5 mm (o.d.) thick walled capillary tubing (Clark Electromedical 

Instruments, 2GC150F-15). The tip of this electrode was broken back to 

approximately 6 ßm, giving an outside diameter of 2 to 3 microns per barrel and 

the final 5 mm of this electrode bent to an angle of approximately 15° to the axis of 

the shaft using a micro-forge. The micro-forge consisted of a thin piece of platinum 

wire suspended tightly between two metal rods and connected to a variable 

transformer (Zenth). A conventional electrode was then pulled as described 

previously and the two microelectrodes were axially aligned using separate micro- 

manipulators with the aid of a small surface mirror, angled at 45°, and a binocular 

microscope. The double barrelled extracellular iontophoretic electrode was offset 

approximately 100 ßm back from the tip of the intracellular recording electrode 

(Fig 2.3). Once the two electrodes were aligned correctly a droplet of fast setting 

epoxy glue was placed near the bend of the iontophoretic electrode and moved 

several hundred microns towards the tips of the electrodes by capillary action.



Side view

Top view

6 jo. outside diameter

1 jj. outside diameter

Fig. 2.3. A schematic diagram of the side and top views of the tip region of an 

iontophoretic electrode used for intracellular recording from motoneurones during 

extracellular iontophoresis of different compounds.
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Small lengths of electrode glass were glued across both microelectrode barrels to 

provide mechanical support. Once the glue was dry, alignment of the two 

electrodes in both the horizontal and vertical directions was checked under high 

magnification. If aligned correctly the intracellular recording electrode was filled 

with 2M KCH3S 04 and the tip broken back to approximately 1 /im.

Iontophoretic barrels were filled with either (-)-baclofen (5 mM in 150 mM 

NaCl, pH 3.0), bicuculline methochloride (BMC, 10 mM in 150 mM NaCl, pH 

3.0), 2-OH-saclofen (20 mM in 80 mM NaCl, pH 3.0) or strychnine hydrochloride 

(5 mM in 150 mM NaCl, pH 3.0). The pH of these solutions was adjusted with 

weak hydrochloric acid. The baclofen, BMC and strychnine were gifts from Prof. 

D.R. Curtis and the 2-OH-Saclofen was purchased from Tocris Neuramin 

(England). All compounds were ejected as cations. Iontophoretic electrodes 

typically had resistances of 50 M0 and retaining currents of -20 nA were routinely 

used. The magnitude of ejection currents was measured (and is quoted) in 

nanoamperes (nA). The coupling resistance between the iontophoretic barrels and 

the intracellular recording barrel was less than 10 kO. Hence, the passage of a 

cationic current of 100 nA resulted in a coupling artifact on the intracellular 

electrode of less than 1 mV in the depolarising direction.

The intracellular barrel was connected to one input of a two channel 

microelectrode amplifier (Axoclamp 2A). One of the extracellular iontophoretic 

barrels was connected to the other input of the same amplifier. This extracellular 

iontophoretic electrode was used for both iontophoretic application of compounds 

(the Axoclamp 2A amplifier can pass up to ±100 nA of constant current) and 

extracellular recording. The other iontophoretic barrel was connected to a more 

powerful current passing unit. This current passing unit was made by the author 

based on a design by Prof. D.R. Curtis. It could be used to pass currents of up to 

±600 nA, with a working input voltage range of ±90 V (a circuit diagram and more 

detailed description of this current passing unit is given in Fig. 2.4).
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Data acquisition and analysis

High gain voltage and current signals were filtered by a single pole filter at 

3 kHz, passed through a sample-and-hold device and displayed differentially on a 

digital oscilloscope (Tektronix 5223). A low gain DC recording of the membrane 

potential was displayed on another channel of the same oscilloscope and also 

monitored on a chart recorder. The high gain voltage and current signals were then 

passed via the analog output of the oscilloscope to a 12 bit A /D board in a 

microcomputer (Cromemco, System One). The collection programs for the 

microcomputer were written by Dr. F. Edwards. Records were digitised at either 

10 or 20 kHz and displayed on a monitor (Type 611, Tektronix). After each 

experiment the data were transferred to a Mainframe computer (Pyramid 90X, 

and later Sun 4, 280) for off-line analysis. The software programs for data analysis 

and graphics plotting were written in Fortran mainly by Dr. J. Clements with some 

modifications made by the author.
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Chapter three:

VOLTAGE DEPENDENCE OF INHIBITORY GLYCINERGIC SYNAPTIC 

CURRENTS IN SPINAL MOTONEURONES

Introduction

Glycine is considered to be an important inhibitory neurotransmitter in the 

mammalian CNS (Aprison & Werman, 1965; Werman et al. 1966; Curtis et al. 

1968; van den Pol & Gores, 1988). However, while glycine activated channels have 

been studied in cultured and acutely isolated neurones (Barker & McBurney, 1979; 

Barker, McBurney & MacDonald, 1982; Hamill, Bormann & Sakmann, 1983; 

Bormann et al. 1987; Krishtal, Osipchuk & Vrublevsky, 1988; Akaike & Kaneda, 

1989), Xenopus oocytes (Gundersen, Miledi & Parker, 1984, 1986), lamprey Müller 

cells (Gold & Martin, 1982, 1983a,b), the goldfish Mauthner cell (Faber & Korn, 

1982, 1987, 1988) and recently in mammalian spinal cord slices, in vitro (Konnerth 

et al. 1988), there is still very little known about the channels opened by the 

synaptic release of glycine in the mammal, in vivo.

The synaptic current generated at synapses mediating reciprocal inhibition 

of spinal motoneurones provides an opportunity to study glycine channels in the 

intact mammalian CNS. In the cat this inhibition is mediated by a disynaptic 

pathway (Eccles, Fatt & Landgren, 1956; Eccles & Lundberg, 1958) involving la 

reciprocal interneurones (Hultborn, Jankowska & Lindstrom, 1971o,6; Jankowska 

& Roberts, 1972*3,6). Primarily on the basis of antagonism by strychnine, the 

inhibitory neurotransmitter released by these interneurones is considered to be 

glycine (Bradley et al. 1953; Curtis et al. 1968). In addition, electrophysiological 

and histological studies suggest that la reciprocal interneurones synapse 

predominantly on the soma of motoneurones (Fig. 3.1; Smith et al. 1967; Burke, 

Fedina & Lundberg, 1968, 1971; Jankowska & Roberts, 19726; Fyffe, 1981, 1987),



Fig. 3.1. Locations of synaptic contacts made by axon collaterals of a HRP stained 

la reciprocal interneurone onto counterstained motoneurones in the lumbar spinal 

cord of the cat. The dashed lines represent motoneurone cell bodies and the 

numbers represent the presumed number of synaptic contacts made by the la 

reciprocal interneurone with each motoneurone. It is clear that juxtasomatic 

connections predominate in this system. This figure is taken from Fyffe, 1981.
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thereby allowing the undistorted measurement of synaptic currents by a 

somatically located voltage clamp. In the present study inhibitory postsynaptic 

currents generated by single la reciprocal interneurones, and by a population of 

these interneurones, have been recorded in motoneurones over a range of 

membrane potentials and the voltage dependence of their amplitude and time 

course determined.

Methods

The experiments were performed on adult cats anaesthetised with either 

pentobarbitone or a-chloralose, or on unanaesthetised decerebrated preparations. 

Initial surgery was performed as described in Chapter two. The hindlimb was 

dissected as follows. The nerves to posterior biceps and semitendinosus (PBSt) in 

the left hind limb were separated from surrounding tissue, cut distally and 

mounted on a stimulating electrode. All other branches of the sciatic nerve were 

cut and crushed. The ipsilateral quadriceps (Q) muscle nerve was also freed from 

the surrounding tissue, cut distally, and mounted on a buried electrode. In 

experiments where individual Q la reciprocal interneurones were identified, the 

L6 ventral root was cut and mounted on a stimulating electrode.

Recording

Intracellular recordings were made from antidromically identified PBSt 

motoneurones (resting membrane potentials more negative than -55 mV; spike 

height greater than 60 mV) using single barrel voltage clamping electrodes 

previously described in Chapter two. These electrodes were filled with either 2M 

KCH3S 0 4 or 3M KC1.

Experiments involving iontophoresis used iontophoretic electrodes and 

current passing procedures also described in Chapter two. One of the two 

extracellular iontophoretic barrels was filled with a 5 mM solution of strychnine 

hydrochloride and connected to the current passing unit. The other extracellular
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barrel and the intracellular microelectrode were both filled with 2M KCH3S 04 

and were connected to different headstages of the same microelectrode amplifier.

A schematic diagram of the experimental set-up is shown in Fig. 3.2. 

Inhibitory postsynaptic potentials (IPSPs) were evoked in PBSt motoneurones by 

stimulation of the Q muscle nerve at 1.5 x group I threshold (T, as determined 

from the cord dorsum potential), giving a compound or population IPSP. Unitary 

IPSPs were recorded by spike triggered averaging from the extracellular spikes of 

an identified Q la reciprocal interneurone (see below, Jankowska & Roberts, 

I912a,b). The motoneurone membrane potential was then voltage clamped and 

the current record averaged to reveal the underlying population or unitary 

inhibitory postsynaptic current (IPSC).

Unitary IPSCs were obtained in the following way. Extracellular recordings 

were obtained from interneurones dorsomedial to antidromically identified Q 

motoneurones using a second microelectrode filled with a 1M solution of the 

excitatory amino acid DL-homocysteic acid (DLH) in 1M NaCl, and were 

identified as Q la reciprocal interneurones by the following criteria: 1) 

monosynaptic, low threshold activation by the Q muscle nerve, 2) inhibition by 

Renshaw cells activated following stimulation of the L6 ventral root and 3) ability 

to follow Q nerve stimulation at frequencies greater than 100 Hz (Fig. 3.3; 

Hultborn et al. 1911b). A single barrel voltage clamping electrode was then placed 

in the previously identified PBSt motoneurone pool and brief current pulses (up to 

10 /iA, 100 /xs duration), generated by an isolated constant current source, were 

used in an attempt to antidromically activate the identified interneurone. Once 

antidromic activation was achieved the position of the microelectrode was adjusted 

until a location was found where the identified interneurone could be 

antidromically activated with only 1 to 3 /xA of current. The SEVC electrode was 

then switched from stimulation mode to record mode by a remote electronic relay 

and PBSt motoneurones in this region were impaled and the extracellular spikes 

recorded from the interneurone (occurring spontaneously or by iontophoresis of 

DLH) were used as a trigger to determine if a unitary IPSP could be recorded in
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1.2 xT

t
L6 VR Q 1.2 xT

c

Q 300 Hz

Q 1.2 xT

PBSt MN pool 3 jjA

1 mV

5 ms
Fig. 3.3. Identification of a la reciprocal interneurone. A,  extracellular recording 

from an interneurone receiving short latency, low threshold excitation following 

stimulation of the quadriceps (Q) nerve. B, Q evoked activity is inhibited by prior 

activation of the L6 ventral root (VR). C, the interneurone could follow Q nerve 

stimulation at 300 Hz. D, this interneurone could also be antidromically activated 

( a ) from the PBSt motoneurone pool by brief (100 /zs), 3 /zA, negative going 

current pulses. Each record is made up of 5 to 10 superimposed single sweeps.
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the impaled PBST motoneurone. If a unitary IPSP was present the membrane 

potential was voltage clamped and the current record averaged to give the unitary 

IPSC.

Data analysis

Five hundred to 1000 trials were averaged and the data stored on a 

microcomputer as described in Chapter two. The averaged IPSCs were analysed to 

obtain the magnitude of the peak current, the 10 to 90% rise time and the time 

constant of decay (td). This time constant was measured by displaying the IPSC 

semi-logarithmically and fitting a linear regression line to the decay phase of the 

IPSC using a least squares procedure for the best fit.

Results

Pharmacology o f I  PSPs generated during reciprocal inhibition

An example of the effect of iontophoresis of strychnine hydrochloride on 

the population IPSP evoked in a motoneurone during reciprocal inhibition is 

shown in Fig. 3.4. This application of strychnine almost completely abolish this 

IPSP, providing strong evidence that the receptors mediating this inhibition are 

glycinergic.

Time course o f population IPSCs

An example of the current underlying a population IPSP is illustrated in 

Fig. 3.5. The upper record shows the population IPSC, the middle record the 

clamped voltage and the lower record the unclamped population IPSP. The 

synaptic current at -50 mV (using a KCH3S 0 4 filled electrode) was outward, rising 

steeply and decayed with a single exponential as shown by the continuous line. The 

10 to 90% rise time was 0.47 ms and the IPSC decayed with a time constant of 

1.0 ms.



Strychnine +100nA, 10 minutes

Fig. 3.4. Antagonism of population IPSPs evoked during reciprocal inhibition by 

iontophoretic application of strychnine. The control record shows a population 

IPSP recorded intracellularly in a PBSt motoneurone (KCH3SO4 filled electrode) 

following activation of the whole Q muscle nerve at 1.5 x threshold. This IPSP was 

almost completely abolished by the local application of strychnine (+100 nA, 10 

minutes) from an extracellular iontophoretic electrode. Recovery was slow and still 

incomplete after 75 minutes.



Clamped IPSP

Unclamped IPSP

2 nA 

2 mV

3 ms

Fig. 3.5. Recording of the population inhibitory current. The upper record is the 

synaptic current, the middle record the clamped IPSP and the lower record the 

unclamped population IPSP. Both the clamped and unclamped records were 

obtained at a membrane potential of -50 mV, using a KCH3SO4 filled electrode. 

1000 trials were averaged to obtain the clamp records. The decay phase of the 

synaptic current has been fitted by a single exponential with a time constant (td) of 

1.0 ms.
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Population IPSCs were recorded in 22 different voltage clamped PBSt 

motoneurones using both KCH3S 04 and KC1 filled electrodes. The average 10 to 

90% rise times and td for all 22 population IPSCs, obtained over a range of resting 

membrane potentials from -56 to -68 mV, was 0.51 ± 0.02 ms and 0.99 ± 0.04 ms 

(±S.E.M., n - 22) respectively. There was no difference in the time courses of 

IPSCs recorded with KC1 or KCH3S 04 electrodes.

As reciprocal inhibition is mediated by a disynaptic pathway, the synaptic 

current evoked by stimulation of the whole Q muscle nerve may contain some 

spatial and temporal distortion which would tend to overestimate both the rise 

time and rD. The amount of spatial distortion arising from the presence of 

synapses which are not isopotential with the voltage clamp should be small as la 

reciprocal interneurones synapse predominantly on the soma of motoneurones 

(Introduction, and below). However, differences in the activation times and 

conduction velocities of single la afferent fibres coupled with variability in synaptic 

delays and in the excitability of individual la reciprocal interneurones will lead to 

some temporal dispersion of the population current. These temporal problems can 

be avoided by obtaining unitary synaptic currents by spike triggered averaging 

from the extracellular spikes of identified Q la reciprocal interneurones. Results 

from these experiments show that, despite the above reservations, the population 

current gives a good approximation of the time course of the true synaptic current.

Unitary IPSPs

Unitary IPSPs were recorded in twelve different PBSt motoneurones using 

KCH3S 0 4 filled electrodes. They ranged in size from 25 to 215 /*V with a mean of 

68.5 ± 15.7 iiW (±S.E.M). An example of unitary IPSPs recorded in three different 

PBSt motoneurones following spike triggered averaging from the extracellular 

spikes of the same la reciprocal interneurone is shown in Fig. 3.6.



Fig. 3.6. Unitary IPSPs. A - C show examples of unitary IPSPs recorded in different 

PBSt motoneurones at the membrane potentials indicated following spike 

triggered averaging from the extracellular spikes of the same la reciprocal 

interneurone (shown in the top record), n.b. the variability in size, but similarity in 

time course of the different unitary IPSPs. All IPSPs were recorded using 

KCH3SO4 filled electrodes.
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Time course o f unitary IPSCs

The membrane potential of five motoneurones in which unitary IPSPs were 

recorded was successfully voltage clamped to reveal the underlying unitary IPSC. 

An example of one of these successful experiments is shown in Fig. 3.7. In this case 

the bottom record shows the population IPSP evoked in a PBSt motoneurone 

following stimulation of the whole Q muscle nerve. After identification of an 

interneurone excited at short latency by low threshold stimulation of the Q muscle 

nerve and inhibited by L6 ventral root stimulation, spike triggered averaging from 

spontaneous extracellular spikes recorded from this interneurone revealed a 

unitary IPSP in the same motoneurone. This unitary IPSP (Fig. 3.7C) had a similar 

time course to the population IPSP, but its amplitude was approximately twenty 

times smaller. Fig. 3.7Ö shows the clamped voltage record and the corresponding 

underlying unitary current is shown in Fig. 3.1 A . The unitary synaptic current 

recorded at -67 mV rose from 10 to 90% of its peak of 150 pA in only 0.29 ms and 

the decay was fitted with a single exponential having a time constant of 0.67 ms as 

shown by the continuous line.

At resting membrane potentials (-55 to -67 mV) unitary IPSCs had peak 

amplitudes of between 120 pA and 220 pA, mean 160 ± 17 pA (±S.E.M., « = 5), 

and 10 to 90% rise times of between 0.25 to 0.57 ms, mean 0.40 ± 0.06 ms. These 

measured values overestimate the true rise time and underestimate the peak 

current because of inadequate clamping of the fast rising phase of the unitary 

IPSP. The td of unitary IPSCs ranged from 0.67 to 1.01 ms, with a mean of 0.82 ± 

0.07 ms. When the data for both population and unitary IPSCs were compared the 

rise times of the unitary currents appeared to be only slightly faster and the td 

slightly shorter than those measured for the population IPSCs (Fig. 3.8).

Location o f synapses from la reciprocal intemeurones

The similarity in the rise times and rD of population and unitary IPSCs (Fig. 

3.8) suggests that the ionic current generated during reciprocal inhibition is 

localised to a very spatially restricted area of the motoneurone surface membrane,



UNITARY

c

D

IPSP s

POPULATION
IPSP

A
B,C
D

Fig. 3.7. Recording of the unitary inhibitory current. A , the unitary synaptic 

current. B, the clamped unitary IPSP. C, the unclamped unitary IPSP. D, the 

averaged population IPSP. All records were obtained at -67 mV in the same 

motoneurone, using a KCH3SO4 filled electrode. 1000 responses were used to 

obtain the clamped records. The decay phase of the synaptic current has been 

fitted by a single exponential with a time constant (td) of 0.67 ms.



A
10

Time constant (ms)

Population |

Unitary d j

Fig. 3.8. Pooled time course data for 22 population and 5 unitary IPSCs. A , 

histogram of the 10-90% rise times of population (filled) and unitary (open) IPSCs 

recorded at their resting membrane potentials (-55 to -68 mV). B, histogram of the 

decay time constants of population (filled) and unitary (open) IPSCs recorded at 

their resting membrane potentials (-55 to -68 mV).
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implying that individual la reciprocal interneurones must synapse at very similar 

electrotonic distances from the motoneurone soma.

Evidence for a predominantly somatic location of these synapses comes 

from an analysis of the rise times and durations at half peak amplitude (half­

widths) of population and unitary IPSPs (Jankowska & Roberts, 19726). The 

unnormalised rise time and half-width data for a sample of 11 population IPSPs 

(filled circles) and all 12 unitary IPSPs (open circles) has been plotted in Fig. 3.9 

and is compared to the data previously obtained for unitary EPSPs recorded in 

motoneurones following the activation of single la afferents (Jack, Miller, Porter & 

Redman, 1971). This comparison is made on the shape indices of unnormalised 

data as a reliable measure of the membrane time constant was not obtained during 

the IPSP experiments. It can be seen that most of the IPSPs have shape indices 

comparable to the fastest unitary EPSPs which are thought to be generated by 

synapses on the soma of motoneurones (Rail, Burke, Smith, Nelson & Frank, 1967; 

Jack et al 1971). That the rise times and half-widths of the unitary IPSPs are 

slightly longer than that of the fastest EPSPs can be accounted for in part by the 

finding that the duration of synaptic current underlying unitary IPSPs is 

approximately twice as long as the synaptic current underlying unitary la EPSPs 

(Rail, 1967; Jack & Redman, 1971; Finkel & Redman, 1983a). Given this 

difference the data shown in Fig. 3.9 suggests that the synapses which generate 

unitary IPSPs have shape indices consistent with a location on, or very close to, the 

soma of motoneurones.

Effects o f anaesthetics

While most experiments were performed on cats anaesthetised with a- 

chloralose, some measurements were also obtained in animals anaesthetised with 

pentobarbitone and in unanaesthetised, decerebrated preparations. When the rise 

times and rD for population IPSCs recorded from voltage clamped PBSt 

motoneurones in these different preparations were compared there was no 

apparent difference between decerebrated, a-chloralose or pentobarbitone
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Fig. 3.9. Plot of the 10-90% rise time against half-width for 11 population IPSPs 

(filled circles) and 12 unitary IPSPs (open circles). These points are compared with 

the range of 10-90% rise times and half-widths of unitary la EPSPs recorded in 

lumbar motoneurones by Jack, Miller, Porter & Redman (1971), falling within the 

bounds of the continuous line. All IPSPs were recorded using KCH3SO4 filled 

electrodes.
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anaesthetised preparations (Fig. 3.10). This suggests that the time course of the 

synaptic current was unaffected by the presence of either a-chloralose or 

pentobarbitone at concentrations necessary for deep anaesthesia.

Effects o f membrane potential on IPSPs

Changing the membrane potential was found to effect both the peak 

amplitude and the time course of the IPSP. In agreement with Coombs, Eccles and 

Fatt (1955«) the peak of the IPSP was found to decrease as the membrane 

potential was hyperpolarised and reversed at a membrane potential close to -80 

mV (Fig. 3.11).

Interestingly, Fig. 3.1L4 shows that the rate of decay of the IPSP was 

changed by membrane depolarisation. At membrane potentials more depolarised 

than approximately -50 mV IPSPs decayed faster than would be expected by the 

membrane time constant, the decay phase of these IPSPs often overshooting the 

baseline. This suggests that inward current is flowing during the decay of the IPSP 

at depolarised membrane potentials. The increase in the rate of decay of IPSPs at 

depolarised potentials probably occurs following the activation of a voltage 

dependent conductance. There are two possibilities. The first is that a voltage 

dependent conductance leading to the flow of inward current is turned on by 

repolarisation of the membrane potential during the decay of the IPSP. The 

second possibility is that a non-inactivating outward current is turned off by the 

rapid hyperpolarisation at the start of the IPSP. The most obvious candidate for 

the latter possibility is the delayed rectifier current, which in motoneurones is 

present at membrane potentials more positive than -50 mV (Takahashi, 1990).

Effects o f membrane potential on IPSCs

The membrane potential was found to affect both the peak amplitude and 

the time course of IPSCs. An example of the effect of different membrane 

potentials on the peak current is shown in Fig. 3.12. In agreement with Araki & 

Terzuolo (1962) the peak current decreased as the membrane potential became
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Fig. 3.10. The rise time and decay time constant of 22 population IPSCs recorded 

in different motoneurones at their resting membrane potentials (-56 to -68 mV) in 

either pentobarbitone (squares) or a-chloralose (circles) anaesthetised 

preparations, or in unanaesthetised, decerebrated preparations (triangles).
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Fig. 3.11. The effect of membrane potential on the IPSP. .4, population IPSPs were 

recorded using a KCH3SO4 filled electrode at the membrane potentials indicated 

on each record in discontinuous current clamp, n.b. the decay of the IPSP recorded 

at -40 mV overshoots the baseline. B, the voltage at the peak of the IPSP shown in 

A is plotted against the holding potential. The data have been fitted with straight 

line with a correlation coefficient of -0.98.
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Fig. 3.12. The effect of membrane potential on peak currents, population IPSCs 

were recorded at the membrane potentials indicated on each record using a 

KCH3SO4 filled electrode. 500 responses were used to obtain each record. Peak 

current measurements have been made from these and other averaged records 

from the same motoneurone and plotted in B as a function of membrane potential. 

The magnitude of the peak synaptic current at -76 mV was monitored frequently 

during recording. The straight line is the linear regression fit to these points 

(correlation coefficient of 0.98) and indicates a reversal potential of ~-82 mV.
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more negative (using a KCH3S 0 4 filled electrode) and at -88 mV had clearly 

reversed to become an inward current.

The peak current/voltage relationship for the population IPSC shown Fig. 

3.124 is shown in Fig. 3.12B. The data were well fitted by a straight line with a 

correlation coefficient of 0.98. The regression fit through these points is given by 

the equation:

IP = 0.13 Vm + 10.9

where /  is the peak current (nA) and Vm the membrane potential (mV). The 

calculated reversal potential is — 82 mV. Data from six different motoneurones 

where complete reversal of the synaptic current was achieved gave reversal 

potentials of between -75 and -84 mV, with an average reversal potential of -80.7 ± 

1.5 mV (±S.E.M., n = 6). The slope of the regression line in Fig. 3.125 gives a 

measure of the peak conductance change generated by the population IPSC which, 

in this example, was 133 nS. The slopes of the peak current/voltage relationships 

for population IPSCs from 11 cells gave an average peak conductance of 167 ± 30 

nS (± S.E.M.)

To establish if the quality of the voltage clamp was affected by changing the 

membrane potential, the residual IPSP voltage during voltage clamp (the error 

voltage) was routinely compared to the peak IPSC at each clamped membrane 

potential (Fig. 3.13). In the example shown in Fig. 3.13, and in all cells in which it 

was examined, the relationship between the error voltage and the peak current was 

linear. A linear relationship implies that there has been no change in the ability of 

the voltage clamp to clamp the membrane at different membrane potentials.

The decay of the synaptic current was slowed by depolarisation. This is 

shown clearly in Fig. 3.14A, where td of a population IPSC increased from 0.97 ms 

to 1.79 ms following a depolarisation from -76 mV to + 4 mV. In this case the 

PBSt motoneurone had been impaled with a 3M KC1 filled electrode. Passive 

diffusion of chloride from the electrode into the motoneurone shifted the reversal
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- 0.6

Fig. 3.13. The error voltage left during voltage clamp was measured and has been 

plotted against the peak current for the same cell as shown in Fig. 3.12. The 

relationship between the error voltage and the peak current is linear with a 

correlation coefficient of 0.97.
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Fig. 3.14. Effect of membrane potential on the decay of the population IPSC. A, 

the upper record is the population current recorded at a membrane potential of 

+ 4 mV and the lower record is the current recorded at a membrane potential of - 

76 mV, using a KC1 filled electrode. The decay phase of the synaptic currents have 

been fitted with a single exponential of time constant, td . B, the time constant of 

decay of population IPSCs recorded in the same cell as shown in A have been 

plotted against the holding potential.
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potential for the IPSC to about -25 mV. The relationship between td and the 

membrane potential for the population IPSC recorded in this motoneurone is 

shown in Fig. 3.145.

The decay of unitary IPSCs was also slowed by membrane depolarisation. 

This is shown in Fig. 15.4, where rD of a unitary IPSC increased from 0.70 ms to 

1.09 ms following a depolarisation from -68 mV to -40 mV (using a KCH3S 04 

filled electrode). The relationship between td and the membrane potential for this 

unitary IPSC is shown in Fig. 3.155.

When the data from population IPSCs and unitary IPSCs at different 

membrane potentials were pooled the rate of decay of IPSCs was found to be 

exponentially dependent on the membrane potential. This is shown in Fig. 3.16. 

Here, the natural logarithm of the normalised decay time constant (td ')  for 

population IPSCs (14 neurones; filled circles) and unitary IPSCs (five neurones; 

open circles) has been plotted against the corresponding clamped membrane 

potential (K ). Decay time constants were normalised to the rD measured at the 

resting membrane potential for each neurone (between -55 and -68 mV). This 

reduce scatter introduced by variation between different neurones and 

preparations. The data were well fitted by a straight line with a correlation 

coefficient of 0.89. The regression fit through these points is given by the equation:

In td ' =0.74 + Vm /  91

This result indicates that the time constant of decay of the synaptic current is 

exponentially dependent on the postsynaptic membrane potential, increasing e-fold 

for a 91 mV depolarisation.
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Fig. 3.15. Effect of membrane potential on the decay of the unitary IPSC. A, the 

upper record is the unitary current recorded at a membrane potential of -40 mV 

and the lower record is the current recorded at a membrane potential of -68 mV, 

using a KCH3SO4 filled electrode. The decay phase of the synaptic currents have 

been fitted with a single exponential of time constant, rD. B, the time constant of 

decay of unitary IPSCs recorded in the same cell as shown in A have been plotted 

against the corresponding holding potential.
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Fig. 3.16 The natural logarithm of the normalised decay time constant of 

population (filled circles) and unitary (open circles) IPSCs has been plotted 

against the corresponding clamped membrane potential. The straight line through 

these points has a correlation coefficient 0.89.
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Five of the 14 population IPSCs in Fig. 3.16 were recorded with 3M KC1 

filled electrodes, shifting the reversal potential for these IPSCs to more positive 

membrane potentials. This increased the size of IPSCs recorded at hyperpolarised 

membrane potentials and also allowed investigation of the effect of changing the 

intracellular chloride concentration ([C/"]-) on the time course of the IPSC. 

Despite large changes in [C/"]- (reversal potentials for IPSCs recorded with KC1 

electrodes ranged from -70 to -20 mV) these IPSCs had similar rise times and rD to 

those recorded with KCH3S 04 electrodes.

If the ionic current flowing during the IPSC is carried purely by Cl" ions, 

then the reversal potential for the IPSC (Erev) will be identical to the Cl" 

equilibrium potential and can be used to calculate [C/"]f- from the Nernst equation 

assuming [Cl']Q is 134 mM (Vogh & Maren, 1975).

The td of population IPSCs measured at the resting membrane potential 

for six neurones where reversal of IPSCs was observed using 2M KCH3S 04 

electrodes and for five neurones where reversal was observed with 3M KC1 

electrodes has been plotted against the calculated [Cl~]i in Fig. 3.17. This figure 

shows that despite large changes in [C/"]f- (between 5.4 and 63.4 mM) all IPSCs had 

similar decay time constants. The mean td for population IPSCs recorded with 

KCH3S 0 4 electrodes was 0.99 ± 0.07 ms (± S.E.M., n = 6), whereas the mean rD for 

population IPSCs recorded with KC1 electrodes was 0.96 ± 0.08 ms (± S.E.M., 

n = 5). These means were not significantly different (Students Mest, P > 0.25). 

Recordings obtained with KC1 electrodes also showed the same voltage dependent 

properties as those obtained with KCH3S 04 electrodes indicating that the voltage 

sensitivity in the decay of these IPSCs was not dependent on the intracellular 

chloride concentration or on the magnitude of the synaptic current.

The effect of membrane potential on the rise times of the synaptic currents 

was also investigated. The normalised IPSC rise time (R T ' ) for population IPSCs 

(14 neurones; filled circles) and unitary IPSCs (five neurones; open circles) has 

been plotted against the corresponding clamped membrane potential (F  ) in Fig. 

3.18. Rise times were normalised to the rise time measured at the resting
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Fig. 3.17. The time constant of decay of population IPSCs recorded at resting 

membrane potentials (-55 to -68 mV) for six neurones where complete reversal of 

the IPSC was observed using KCH3SO4 filled electrodes and for five neurones 

recorded with KC1 filled electrodes have been plotted against the internal Cl" 

concentration calculated from the Nernst equation (see text).
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Fig. 3.18. The normalised 10-90% rise times of population (filled circles) and 

unitary (open circles) IPSCs have been plotted against the corresponding clamped 

membrane potential. The straight line through these points has a correlation 

coefficient 0.34.
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membrane potential for each neurone (between -55 and -68 mV). The data were 

fitted by a straight line with a correlation coefficient of 0.34 and a slope of -0.02. 

The regression fit through these points is given by the equation:

RT' = 1.9 x 10‘3 V +1.12m

This relationship suggests a slight trend for longer rise times at more depolarised 

membrane potentials.

Discussion

Time course o f the inhibitory synaptic current

Both population and unitary currents were recorded in voltage clamped 

motoneurones during reciprocal inhibition. Unitary currents peaked in only 0.4 ms 

and decayed exponentially with an average time constant of ~0.8 ms at resting 

membrane potentials. This decay was fitted with a single exponential as have been 

the decays of glycinergic IPSCs recorded in the goldfish (Faber & Korn, 1987, 

1988) and the lamprey (Gold & Martin, 1983a). The decay of glycinergic IPSCs 

recorded in rat spinal cord slices was fitted with a double exponential (Konnerth et 

al. 1988). The glycinergic IPSCs recorded in the present study were considerably 

briefer than glycinergic synaptic currents recorded previously (Faber & Korn, 

1987, 1988; Gold & Martin, 1983a; Konnerth et al. 1988). This difference can, 

however, be attributed largely to the lower temperatures used in other 

preparations. A comparison of the decay time constants of glycinergic IPSCs 

recorded in different preparations adjusted to 37°C is shown in Table 3.1.

Some distortion of the population IPSC may have occurred. Temporal 

dispersion of the timing of transmitter release at the many release sites activated 

by stimulation of the whole Q nerve will distort or prolong the rising phase and, to 

a lesser extent, the decay phase of the population IPSC. In addition, inadequate 

voltage control of the fast rising phase of both population and unitary IPSPs will



TABLE 3.1. Comparison of the rD of glycinergic IPSCs recorded at the resting 

membrane potential in different preparations adjusted to 37°C.

Preparation Average r D Temperature t d  adjusted to 37°C

(ms) (°C) (ms)*

Gold fish 
Mauthner cell1 5.7 17-20 0.7-1.0

Lamprey 
Müller cell2 32 5 2.2

Rat spinal 
cord slices3 r x= 4.6 22-24 1.0-1.2

t2=25.8 22-24 5.5-6.8

Cat spinal 
motoneurones4 0.8 37 0.8

tFaber & Korn, 1980; 2Gold & Martin, 1983a; 3Konnerth et al. 1988; 4this report.

* An estimate of the rD of IPSCs at 37°C was calculated using a Q 10 °f 2.8. This is 

an average Q 10 ° f  the rD of IPSCs and EPSCs recorded at many different synapses 

(Magleby & Stevens, 1972b; Anderson & Stevens, 1973; Onodera & Takeuchi, 

1979; Collingridge et al. 1984).
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distort and prolong the rise time of the recorded synaptic current. For these 

reasons, the measured rise times and time constants of decay should be considered 

as maximum values.

Large changes in the membrane potential, especially in the depolarising 

direction, may affect the spatial extent of the voltage clamp. This could occur if 

activation of voltage dependent conductances cause a significant decrease in the 

membrane resistance. A decrease in the specific membrane resistance (Rm) will 

decrease the steady state space constant (X) according to the following 

relationship:

A « J (Rm /  R,.)

where Rf is the specific resistance of the cytoplasm. A decrease in \  means that the 

cell will be less electrically compact and will reduce the spatial extent of the 

voltage clamp. This would only become important if some inhibitory synapses 

located on proximal dendrites and isopotential at the resting membrane potential 

become non-isopotential during large changes in the membrane potential. That 

both unitary and population IPSCs consistently showed the same voltage 

dependent properties suggests this did not occur. The finding that population 

IPSCs rose and decayed slightly more slowly than the unitary IPSCs can be 

accounted for by temporal dispersion of the population current.

The time constant of decay of many synaptic currents has been shown to 

reflect the average open time of the transmitter activated channels (Anderson & 

Stevens, 1973; Crawford & McBurney, 1976; Faber & Korn, 1980, 1982; Gold & 

Martin, 1983^,6; Segal & Barker, 1984^,6; Konnerth et al. 1988). This is generally 

thought to only occur if the concentration of transmitter within the synaptic cleft 

decreases rapidly compared with the average channel open time (Magleby & 

Stevens, 19726; Katz & Miledi, 1973). However, recent experiments using the 

rapid application of glutamate agonists has lead some authors to suggest that the 

rate of decay of fast excitatory synaptic currents can be determine by the rate of
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desensitization of the synaptically activated channels (Trussed & Fischbach, 1989; 

Dudel, Franke & Hatt, 1990). This idea has been recently challenged by the 

finding that concanavalin A, a tetrametric lectin which binds to specific 

carbohydrate residues, reduces desensitization of channels activated by externally 

applied glutamate, but has no effect on the decay of fast excitatory synaptic 

currents (Mayer & Vyklicky, 1989). Comparable data on the desensitization of 

glycine activated currents shows that desensitization takes hundreds of 

milliseconds (Krishtal et al 1988; Akaike & Kaneda, 1989). As this is many orders 

of magnitude longer than the decay time constant of the IPSCs recorded in the 

present study it suggests that desensitization does not play an important role in 

determining of the decay of glycinergic IPSCs.

If we assume that the decay of the IPSCs generated during reciprocal 

inhibition reflects the average channel open time, then the average channel open 

time at 37°C for glycine activated channels at the synapse between la reciprocal 

interneurones and motoneurones will be approximately 0.8 ms at the resting 

membrane potential. Available data on the estimated open times of glycine 

activated channels in different preparations adjusted to 37°C is shown in Table 3.2. 

This table shows that the estimated glycine single channel open time from the 

present study (0.8 ms) is comparable to that estimated from fluctuation analysis or 

single channel recording in other systems. This finding is consistent with the idea 

that the decay of the glycinergic IPSCs recorded in motoneurones during 

reciprocal inhibition is determined by the single channel open time of the glycine 

activated channels. Presumably this occurs as following transmitter release the 

concentration of glycine in the synaptic cleft falls rapidly below the KD for binding 

to its receptor (90 /iM; Akaike & Kaneda, 1989).



TABLE 3.2. Comparison of the estimated glycine single channel open time in 

different preparations adjusted to 37°C.

Preparation Open time 

(ms)*

Temperature

(°C)

Open time adjusted to 37°C 

(ms)t

Cultured spinal 
cord neurones1 ~5 26 1.6

Gold fish 
Mauthner cell2 7.2 17-20 0.9-1.2

Cultured spinal 
cord neurones3 ~8 24 2.1

Lamprey 
Müller cell4 34 5 2.4

Cultured spinal 
cord neurones5 <10* 22-24 <2.1-2.9

Rat spinal 
cord slices6 r 1= 2.5 22-24 0.5-0.7

t2=27 22-24 5.8-7.1

1Barker & McBurney, 1979; 2Faber & Korn 1980; 3Barker, McBurney & 

MacDonald, 1982; 4Gold & Martin 1983b; 5Hamill et al. 1983; 6Konnerth et al. 

1988.

* Open time estimated from fluctuation analysis studies 1 to 4, from single channel 

recording studies 5 and 6.

t Where the Q 10 of the single channel open time was not measured an estimate of 

the open time at 37°C was calculated using a Q 10 of 2.8. This value is the Q 10 of 

the open time of ACh gated channels at the neuromuscular junction (Anderson & 

Stevens, 1973).

$ extracellular glycine concentration 5 jLtM
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Number o f channels opened by transmitter release from a single la reciprocal 

intemeurone

Unitary IPSCs recorded at resting membrane potentials ranged in size from 

120 to 220 pA. The synaptic conductance associated with these unitary IPSC (gIPSC) 

can be calculated from the equation:

£ ipsc = Apsc /  (^ h " ^ ipsc)

where / IPSC is the peak unitary current, VH is the holding potential and £ IPSC is the 

reversal potential for the IPSC. Unitary peak conductances ranged from 6 to 15 nS, 

with an average unitary peak conductance of 9.1 ± 1.7 nS (±S.E.M., n = 5). 

Comparison of the average unitary peak conductance to the average peak 

conductance associated with the population IPSC (167 nS) suggests that, on 

average, each PBSt motoneurone receives input from approximately 20 Q la 

reciprocal interneurones. This is fewer than previously reported (Jankowska & 

Roberts, 19726; maximum of 70 la reciprocal intemeurones in contact with each 

motoneurone).

If we assume a mainstate glycine single channel conductance of 46 pS 

(mouse cultured spinal neurones; Bormann et al. 1987), then following activation 

of a single la  reciprocal interneurone on average approximately 200 postsynaptic 

chloride channels will be opened by the release of glycine at the synapses formed 

with a motoneurone.

Due to high noise levels miniature IPSCs could not be identified in the 

present study (unitary IPSCs were usually obtained from averages of 500 to 1000 

single sweeps, see Fig. 3.7). This makes it difficult to estimate the conductance 

change generated at an individual release site by the release of a single quantum of 

the glycine. However, it is known that la  reciprocal intemeurones make multiple 

synaptic contacts with each motoneurone (see Fig. 3.1; range: 4 to 11 contacts per 

motoneurone, also Gad, Jankowska, McCrea & Rastad, 1983) and that each 

synaptic contact contains from one to three possible release sites (Rastad, 1981).
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In addition, the average probability of transmitter release at each release site has 

been estimated to be ~0.5 (Kuno & Weakly, 1972). From this it can be estimated 

that the number of channels opened by the release of a single quantum of glycine 

could be ten times smaller than the number opened at the termination of a single 

la reciprocal interneurone with a motoneurone. For example, if there are on 

average 20 release sites associated with each la reciprocal

interneurone/motoneurone connection, each with an average probability of 

transmitter release of 0.5, then the average conductance change generated at an 

individual release site following the release of a single quantum of glycine will be 

(9 nS /  20 release sites) /  0.5. This value of 0.9 nS corresponds to the opening of 

only -2 0  postsynaptic channels per quantum of glycine, assuming a single channel 

conductance of 46 pS. This simplistic calculation is used to demonstrate that the 

quantal response at this glycinergic inhibitory synapse probably involves the 

activation of only a small number of channels.

This estimate is considerably lower than the 1,500 to 2,000 chloride 

channels thought to be opened by a single quantum of glycine in the goldfish 

(Korn, Mallet, Triller & Faber, 1982; Korn, Burnod & Faber, 1987) and the 

lamprey (Gold & Martin, 1983a). However, it is of similar magnitude to the 15 to 

20 chloride channels thought to be opened by a single quantum of glycine in 

mammalian spinal cord slices (Konnerth et al. 1988). The release of a single 

quantum of GABA is also thought to open only a small number (12 to 30) of 

chloride channels (Ropert et al. 1990; Edwards et al. 1990; Kriegstein & Lo Turco, 

1990).

Gundersen, Miledi & Parker (1984) using human glycine receptors 

expressed in Xenopus oocytes have suggested that the binding of three molecules 

of glycine to its receptor may be required to open a single glycine activated 

membrane channel. However, a more recent study using acutely isolated 

hypothalamic neurones has suggested that only two molecules of glycine are 

required to bind to its receptor to allow activation of the associated membrane 

channel (Akaike & Kaneda, 1989). Given that only 200 postsynaptic channels are
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opened by transmitter release at the termination of a single la reciprocal 

interneurone with a motoneurone and that as few as 20 channels are probably 

opened at each individual release site, then only 40 to 60 molecules of glycine 

would be required to open all postsynaptic channels at each release site. This is 

considerably smaller than the number of transmitter molecules thought to be 

contained within a single presynaptic vesicle (-5000; Kuffler & Yoshikami, 1975; 

Riveros, Fiedler, Lagos, Munoz & Orrego, 1986) and suggests that at this 

mammalian central synapse the contents of a single vesicle should be more than 

sufficient to open all available postsynaptic channels.

Effects o f anaesthetics

Although the effects of different anaesthetics were not studied in detail, it 

was observed that there was no apparent difference in the time course of IPSCs 

recorded in pentobarbitone or a-chloralose anaesthetised preparations compared 

to those recorded in unanaesthetised, decerebrated preparations (Fig. 3.10). This 

suggests that neither pentobarbitone nor a-chloralose acts directly to modify the 

kinetics of glycine activated channels.

In contrast, GABAa activated IPSPs and IPSCs are prolonged by 

pentobarbitone (Nicoll, Eccles, Oshima & Rubia, 1975; Segal & Barker, 19846; 

Collingridge et al. 1984). This has been attributed to an increase in the GABAa 

single channel open time (Study & Barker, 1981; Segal & Barker, 19846). A more 

recent study has shown that barbiturates alter the rate constants which regulate 

entry into different open states in such a way that entry into the longest open state 

is favoured over shorter open states (MacDonald et al. 1989).

The difference in the effects of pentobarbitone on glycine and GABAa 

mediated events can probably be most simply explained by differences between the 

GABAa and glycine receptors, as it has been argued that both GABA and glycine 

open a common ion channel (Barker & McBurney, 1979; Hamill et al. 1983; 

McBurney, Smith & Zorec, 1985; Bormann et al. 1987). Presumably the GABAa 

receptor includes a barbiturate binding site whereas the glycine receptor does not.
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Dependence o f the peak current on membrane potential

The amplitude of the peak current varied linearly with the membrane 

potential over the range of potentials studied in these experiments (--20  to -90 

mV). While the effect of membrane potential on the peak current was not 

investigated at more hyperpolarised potentials, the amplitude of synaptically 

mediated glycinergic currents and whole cell currents activated by glycine have 

been seen to plateau at membrane potentials more negative than -90 to -100 mV 

(Gundersen et al 1984, 1986; Faber & Korn, 1987, 1988; Bormman et al. 1987, 

Akaike & Kaneda, 1989). This outward rectification is thought to be caused by a 

voltage dependence of the glycine channel open time (Gundersen et al 1986; 

Bormann et al 1987).

Estimation o f [Cl' ] .

IPSCs reversed to become inward currents at an average membrane 

potential of -80.7 mV (using KCH3S 04 filled electrodes). This result agrees with 

earlier work of Araki and Terzuolo (1962). While it was originally suggested that 

the ionic current flowing at this synapse is carried by both Cl" and K+ ions 

(Coombs et al. 1955a), more recent work on glycinergic currents in cultured spinal 

neurones (Bormann et al. 1987) and isolated hypothalamic neurones (Akaike & 

Kaneda, 1989), suggests that glycine activated channels are impermeable to K+ 

ions. If the ionic current flowing during the IPSC is carried purely by Cl" ions then 

the reversal potential for the IPSC will be identical to the Cl" equilibrium potential 

(Ecl) and this can be used to calculate the intracellular chloride concentration, 

[C/"]-, from the Nernst equation.

Assuming [Cl']Q is 134 mM (Vogh & Maren, 1975), then at 37°C [Cl']i will 

be 6.5 mM. This is lower than would be expected if Cl" was passive distributed 

across the membrane (Coombs et al. 1955a) and gives further evidence for the 

presence of an outwardly directed Cl" pump in motoneurones (Lux, 1971). This 

value of 6.5 mM is close to the 6.6 mM estimated for [Cl']i in rat spinal 

motoneurones (Forsythe & Redman, 1988).
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The above calculation will be in error if the reversal potential for the IPSC 

is not identical to the Cl" equilibrium potential. This will occur if the ionic current 

flowing during the IPSC is partly carried by ions other than Cl". The only other 

small anion that is available in sufficient concentrations to contribute to this ionic 

current is the bicarbonate ion (H C 03").

While it was originally thought that the synaptic channels opened during 

reciprocal inhibition are impermeable to H C 03" (Coombs et al. 1955a), recent 

work by Bormann, Hamill and Sakmann (1987) on glycine activated currents in 

cultured mouse spinal neurones suggests that glycine activated channels are 

somewhat permeable to H C 03". These authors give a permeability ratio of H C 03" 

to Cl" (Pj_jco3 : *ci) °f 0*11* If only Cl" and H C 0 3" ions contribute to the ionic 

current flowing during the IPSC, then this permeability ratio can be used to 

determine [C/"]f- using a modified form of the Goldman-Hogkin-Katz voltage 

equation:

Em  = R T/F  In [(Pa  [C/-],. + PHCQ3 [HC03 \) /(P a  [ C l \  + PHCm [\HC03% )]

where Erev is the reversal potential for the IPSC and [HC03 ]Q , [HC03 ]t , [Cl~]Q 

and [C/']- are the extracellular and intracellular H C 03" and Cl" concentrations. 

Erev was found to be -80.7 mV and [HC03 ]Q and [C/"]0 are thought to be 22 and 

134 mM respectively (Vogh & Maren, 1975). While the [HCO3"]. is unknown it can 

be calculated from the following equation, which comes from Gallard & Dupont 

(1990), given the intracellular and extracellular pH ( pH  ̂and pHo ) and [HC03 ]Q:

[h c o 3 \  = [HC03-]0 x 10 (P» " PH°)

If the pH; is between 7.1 and 7.3 (Gallard & Dupont, 1990; Silver & Erecinska, 

1990), pHo is 7.4 and [HC03 ]o is 22 mM, then [HCO3 ]t will range from 11 to

17 mM.
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Substitution of these values into the modified form of the Goldman- 

Hogkin-Katz equation given above gives values of [C/-]- from 4.8 to 5.4 mM. Using 

this to recalculate Ea  from the Nernst equation gives a Cl" equilibrium potential 

of between -86 and -89 mV. Whether these alternative estimates of [Cl~\ and Ea  

are correct depends largely on how permeable the chloride channels opened by the 

release of glycine from la reciprocal interneurones are to H C 03". This is unknown; 

however, if these channels are permeable to H C 03", then will be lower than 

previously estimated and Ecl more negative than Ergv.

Some evidence that suggests this may be the case comes from work on 

GAEA activated currents in crayfish muscle fibres where, in the presence of 

physiological concentrations of H C 03'  ions, Ea  is more negative than EGABA by 

~10 mV (Kaila & Voipio, 1987; Kaila, Pasternack, Saarikoski & Voipio, 1989). In 

addition, a recent report has shown that an intracellular alkalosis (and associated 

increase in [H C O ^  ) causes a positive shift in the reversal potential of 

GABAergic IPSPs in mammalian cortical neurones (Kaila, Pasternack, Voipio & 

Deisz, 1990). This finding suggests that the inhibitory synaptic current underlying 

these IPSPs is carried in part by H C 03".

Dependence o f the decay time constant on membrane potential

Perhaps the most important finding from this work is that a clear voltage 

dependence in the rate of decay of glycinergic IPSCs was observed at a 

mammalian central synapse, in vivo. During this study Faber & Korn (1987) 

reported a similar voltage dependence in the decay of glycinergic IPSCs in the 

goldfish Mauthner cell; the decay time constant for these IPSCs increasing e-fold 

for a 45mV depolarisation. Curiously, however, the same authors report that the 

decay of spontaneous glycinergic IPSCs in the goldfish Mauthner cell is voltage 

insensitive (Korn et al. 1987). Gold and Martin (1983a) have also reported the 

absence of any voltage dependence in the rate of decay of spontaneous glycinergic 

IPSCs recorded in the lamprey Müller cells.
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It is difficult to understand why there would appear to be a difference in the 

voltage dependence of the rate of decay of evoked and spontaneous IPSCs. One 

possibility is that spontaneous IPSCs are generated at distal sites, and so are not 

isopotential with the somatically located voltage clamp. If so spontaneous IPSCs 

would not ‘see’ the same voltage change as recorded at the soma and 

consequentially the rate of decay of these IPSCs may appear less sensitive voltage. 

It is also possible that a voltage dependence in the rate of decay of spontaneous 

glycinergic IPSCs was missed as only a narrow range of membrane potentials were 

examined in these studies. The rate of decay of both evoked and spontaneous 

synaptic currents generated by the release of GABA and acetylcholine have 

previously been shown to be voltage dependent (Gage, 1976; Onodera & 

Taheuchi, 1976, 1979; Dudel, 1977; Collingridge et al. 1984; Cull-Candy, 1986; 

Barker & Harrison, 1988; Kriegstein & Lo Turco, 1990).

If the decay of IPSCs generated during reciprocal inhibition reflects the 

open time of the synaptically activated channels, then a voltage dependence in the 

rate of decay of glycinergic IPSCs can be interpreted as a voltage dependence of 

the glycine channel open time. A voltage dependence of the glycine channel open 

time has been suggested by others (Gundersen et al. 1984, 1986; Bormann et al. 

1987; Faber & Korn, 1987).

The decay of GABAa IPSCs and the open times of Cl' channels gated by 

GABA are also prolonged by membrane depolarisation (Onodera & Taheuchi, 

1976, 1979; Dudel, 1977; Collingridge et al. 1984; Segal & Barker, 1984a,b: Cull- 

Candy, 1986; Bormann et al. 1987; Barker & Harrison, 1988; Robertson, 1989; 

Kriegstein & Lo Turco, 1990), increasing e-fold for depolarisations of from 103 to 

188 mV. This similarity in the voltage dependence of the glycine and GABA gated 

currents suggests that the channel associated with both the GABA and glycine 

receptors has similar properties.

In contrast, the rate of decay of excitatory synaptic currents is thought to be 

relatively insensitive to changes in the membrane potential (Onodera & Takeuchi, 

1978; Finkel & Redman, 1983a; Nelson, Pun & Westbrook, 1986; Hestrin, Nicoll,
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Perkel & Sah, 1990; however, see Dudel, 1974; Cull-Candy & Miledi, 1982; 

Konnerth, Kellar, Ballanyi & Yarri, 1990).

Voltage dependence in the rate of decay of transmitter activated currents 

was first observed at the neuromuscular junction (Takeuchi & Takeuchi, 1959; 

Gage & Armstrong, 1968; Kordas, 1969; Magelby & Stevens, 1972«) and can be 

explained by the following hypothesis originally developed by Magelby and Stevens 

(1912b). The gating of a channel into or out of the open state was proposed to 

require a conformational change in the receptor/channel molecule. This 

conformational change was proposed to be associated with a change in a dipole 

moment normal to the membrane surface. Changing the membrane potential 

would change the electric field surrounding this dipole moment and so could 

regulate the rate at which the channel enters or leaves the open state. If correct, 

this hypothesis predicts that the rate limiting step that determines the decay of 

transmitter activation currents is this conformational change in the 

receptor/channel molecule.

The voltage dependence of the channel open time, together with the direct 

effect of membrane potential on the peak inhibitory current, will act to enhance 

the strength of reciprocal inhibition as the motoneurone membrane potential 

approaches threshold. A change in membrane potential from -70 mV to -50 mV 

will cause a 3 fold increase in peak current and a 25% increase in the duration of 

the IPSC (calculated from the relationship shown in Fig. 3.16). This will result in a 

275% increase in the total negative charge associated with the inhibitory current 

(see Fig. 3.19). While this enhancement is dominated by the increase in peak 

current, a significant contribution is made by the prolonged decay of the synaptic 

current at the more depolarised membrane potential.



Time

Fig. 3.19. Schematic diagram showing the effect of depolarisation on the IPSC 

peak and time course, a, shows an idealized IPSC of the form y = e "^/r at -70 mV, 

decaying with a time constant (r) of 1 ms. b, the solid line shows the idealized 

IPSC at -50 mV, decaying now with a r of 1.25 ms. The dotted line shows the IPSC 

at -50 mV decaying with a r of 1 ms. i.e. decaying with the same r as at -70 mV. 

The difference in the area below the solid and dotted lines in b gives the 

contribution to the synaptic current at -50 mV made by the increase in r at the 

more depolarised membrane potential. The total negative charge transferred 

during the IPSC can be calculated by integrating the area under each curve. If the 

total negative charge transferred at -70 mV is 1 pC (assuming a peak current of 1 

nA, r = 1 ms), then the total negative charge transferred at -50 mV will be 3.75 

pC, given a 3 fold increase in the peak current and a 25% increase in r. The area 

under the dotted line in b gives the total negative charge transferred at -50 mV 

assuming r is unchanged by the depolarisation and is 3 pC.
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Chapter four:

THE ROLE OF GABAa AND GABAß RECEPTORS IN PRESYNAPTIC 

INHIBITION OF la EPSPS

Introduction

It is now generally accepted that in the mammalian spinal cord presynaptic 

inhibition of transmitter release from primary afferent fibres is mediated by the 

release of GABA at axo-axonic synapses (Eccles et al. 1963a; Curtis et al. 1971; 

Bell & Anderson, 1972; Gmelin & Cerletti, 1976; Barber et al. 1978; Curtis & 

Lodge, 1982; Curtis et al. 1986; Magoul et al. 1987; Maxwell et al. 1990). However, 

the mechanism by which GABA reduces transmitter release is unknown. As 

GABA has been shown to activate two types of receptors, GABAa and GABAß 

(Hill & Bowery, 1981), and both types of GABA receptors appear to be present on 

primary afferent terminals (Eccles et al. 1963a; Curtis et al. 1971; Pierau & 

Zimmermann, 1973; Sastry, 1979a; Davies, 1981; Curtis & Lodge, 1982; Curtis, 

Lodge, Bornstein & Peet, 1981; Price, Wilkin, Turnbull & Bowery, 1984; Price, 

Kelly & Bowery, 1987; Peng & Frank, 1989a,/?; Edwards, Harrison & Jack, 1989; 

Curtis, 1990), it is possible that either, or both, of these GABA receptors may be 

involved in mediating presynaptic inhibition.

Activation of GABAa receptors is usually associated with an increase in 

chloride conductance (Bormann et al. 1987), whereas activation of GABAß 

receptors has been shown to increase a potassium conductance in many central 

neurones (Newberry & Nicoll, 1985; Inoue et al. 1985; Gahwiler & Brown, 1985) 

and also to decrease a voltage dependent calcium conductance in the cell bodies of 

dorsal root ganglion cells (Dunlap & Fischbach, 1978, 1981; Dunlap, 1981a,/?; 

Deisz & Lux, 1985; Dolphin & Scott, 1986, 1987; Robertson & Taylor, 1986). A 

recent report also suggests that GABA and baclofen, a GABAß agonist (Bowery et
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al. 1979; Bowery et al. 1981), can shift the voltage dependence of inactivation of a 

transient potassium current, recorded in the cell bodies of cultured hippocampal 

neurones, to more depolarised potentials (Saint et al. 1990). Any one of these 

actions, if present during invasion of an action potential into primary afferent 

terminals, could reduce calcium influx and decrease the probability of transmitter 

release.

Previous studies on the pharmacology of presynaptic inhibition in the 

mammalian spinal cord have used relatively indirect methods to assess 

"presynaptic" inhibition. Presynaptic inhibition has usually been measured by 

changes in the inhibition of ventral root reflexes or the dorsal root potential 

evoked by the conditioning stimulation (Eccles et al. 1963a; Curtis et al. 1971). The 

‘prolonged inhibition’ of ventral root reflexes will undoubtedly be complicated by 

the postsynaptic hyperpolarisation which occurs in conjunction with presynaptic 

inhibition (see Results; Kellerth, 1968; Cook & Cangiano, 1972), whereas the 

dorsal root potential merely indicates depolarisation of primary afferent fibres and 

is not itself a measure of presynaptic inhibition. In addition, previous 

pharmacological studies have usually examined the effects of drugs administered 

either by systemic injection or topical application (however, see Gmelin & Cerletti, 

1976; Curtis & Lodge, 1982; Curtis et al. 1986), which may modify synaptic 

transmission through the polysynaptic pathways which mediate presynaptic 

inhibition (Eccles, Kostyuk & Schmidt, 1962a; Jankowska, McCrea, Rudomin & 

Sykova, 1981; Rudomin, Solodkin & Jimenez, 1987).

The present study has attempted to overcome many of these problems by 

combining the local application of specific antagonists by iontophoresis with 

intracellular recording of presynaptic inhibition of monosynaptic excitatory 

postsynaptic potentials (EPSPs). The aim of the study was to evaluate the role of 

GABAa and GABAß receptors in presynaptic inhibition of la EPSPs in the 

mammalian spinal cord.
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Methods

Initial surgery was performed on adult cats as described in Chapter two. All 

experiments were performed on cats anaesthetised with sodium pentobarbitone. 

As sodium pentobarbitone is known to enhance presynaptic inhibition (Eccles et 

al. 1963a), supplementary doses were only given after a recording session with a 

particular cell.

The hindlimb was dissected as follows. The nerves to posterior biceps and 

semitendinosus (PBSt) in the left hindlimb were separated from surrounding 

tissue, cut distally and mounted on a stimulating electrode. Usually the most 

proximal branch of posterior biceps, which usually runs together with a branch of 

anterior biceps, was not used. The nerve to medial gastrocnemius (MG) was also 

freed from surrounding tissue, mounted on a stimulating electrode and usually cut 

distally. In the experiments were single la afferent fibres were stimulated the MG 

muscle nerve was left intact and the MG muscle separated as much as possible 

from surrounding tissue. A thread was tied around the MG muscle tendon and the 

tendon cut distally.

Recording

Intracellular recordings were made from antidromically identified MG 

motoneurones (resting membrane potentials greater than -55 mV, spike height 

greater than 60 mV) using iontophoretic electrodes described in Chapter two. The 

intracellular recording electrode was filled with 2M KCH3S 0 4 and the 

extracellular iontophoretic barrels were filled with either (-)-baclofen (baclofen), 

bicuculline methochloride (BMC), 2-OH-saclofen, or strychnine hydrochloride 

(strychnine). See Chapter two for concentrations and current passing procedures.

Compound la EPSPs were recorded from MG motoneurones following 

stimulation of the MG muscle nerve at 1.5 x group I threshold (T, determined from 

the cord dorsum potential). Unitary EPSPs were recorded following the activation 

of single MG la afferent fibres and were obtained in the following way (see also
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Honig, Collins & Mendell, 1983). Firstly, dorsal root filaments close to the L7/S1 

entry zone were placed on a bipolar recording electrode and the number of la 

afferents in each filament assessed by the level of activity recorded during brief, 

passive stretch of the MG muscle. Once a filament was found which contained 

many la afferents, a small platform was positioned under the filament just distal to 

the bipolar recording electrode. This platform stabilized the filament during intra- 

axonal recording which was made using a second microelectrode filled with 3M 

KC1. The MG muscle nerve was stimulated and penetrated axons identified as MG 

la afferents by their conduction velocity, stimulus threshold and response to brief, 

passive stretch of the MG muscle. Once a stable recording from a MG la afferent 

was established action potentials were evoked in this axon by passing brief (1 to 2 

ms in duration, up to 10 nA in magnitude) depolarising current pulses through the 

intra-axonal microelectrode. MG motoneurones were then impaled and 

intracellular records averaged to determine if a unitary la EPSP was present in 

response to axonal stimulation.

A schematic diagram of the experimental arrangement is shown in Fig. 4.1. 

Presynaptic inhibition of compound or unitary MG la EPSPs was produced by 

prior stimulation of the PBSt muscle nerve. This activates groups of inhibitory 

interneurones which synapse "presynaptically" onto MG la afferent terminals and 

"postsynaptically" onto MG motoneurones. Conditioning PBSt stimulation, 

composed of 3 stimuli at 300 Hz, 2 x T, always preceded EPSPs by at least 50 ms 

and was repeated at 1 second intervals. Alternate records of conditioned and 

unconditioned EPSPs were stored in separate buffers in a microcomputer and 

averaged. Usually 10 to 20 complete sequences of conditioned and unconditioned 

EPSPs were collected and averaged for compound EPSPs, whereas several 

hundred complete sequences were averaged for unitary EPSPs.

Data analysis

The peak amplitude, 10 to 90% rise time and duration at half peak 

amplitude (half-width) of unconditioned and conditioned compound and unitary
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EPSPs was measured. The time constant of decay of EPSPs and membrane time 

constant were determined by displaying the decay phase of the EPSP 

semilogarithmically and fitting a linear regression line to the final decay phase, 

using a least-squares procedure for the best fit. Input resistance measurements 

were made using a discontinuous single electrode current clamp (see Chapter two) 

using switching rates of between 3 and 5 kHz. The input resistance was determined 

from the steady-state voltage response to 1 or 2 nA hyperpolarising current pulses 

of between 10 and 30 ms duration. This voltage response was also used to 

determine the membrane time constant using the same procedure as described for 

determining the membrane time constant from the decay of the EPSP.

As the conditioned EPSP was often superimposed on the repolarising phase 

of an inhibitory postsynaptic potential (IPSP), a linear, sloping baseline was used in 

an attempt to overcome the distortion of the conditioned EPSP caused by the 

repolarising IPSP.

The amount of presynaptic inhibition is expressed as the percentage 

decrease in the peak amplitude of the unconditioned EPSP produced by the 

conditioning PBSt stimulation. Unless otherwise stated, only the results obtained 

from cells where complete recovery from a particular drug application was 

established have been included.

Results

Presynaptic inhibition

The procedure for studing presynaptic inhibition of MG la EPSPs is shown 

in Fig. 4.2. Stimulation of the MG muscle nerve at 1.5 x T evoked a compound, 

monosynaptic EPSP in the MG motoneurone shown in Fig. 4.24. Prior 

conditioning stimulation of the PBSt muscle nerve 50 ms before this EPSP (using 

three stimuli at 300 Hz, 2 x T) evoked an IPSP in this motoneurone and caused the 

EPSP to be reduced in amplitude (Fig. 4.2Ö). A comparison of the unconditioned 

and conditioned EPSPs indicated that the peak amplitude of the conditioned EPSP



B
MG 1.5 x T

c

MG 1.5 x T

PBSt 2 x T, 300 Hz 1 mV

20 ms

Unconditioned EPSP

Conditioned EPSP

2 ms

1 mV

Fig. 4.2. Experimental protocol used to study presynaptic inhibition. A, 

unconditioned compound EPSP evoked in a MG motoneurone by stimulation of 

the MG muscle nerve. B, conditioning PBSt stimulation evokes an IPSP in this 

motoneurone and causes a reduction in the compound EPSP evoked 50 ms after 

the conditioning stimulus. C, the unconditioned and conditioned EPSPs are 

displayed and compared on an expanded time scale. The conditioned EPSP was 

reduced in amplitude by 20%.
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was reduced by 20% (Fig. 4.2C). This reduction in the amplitude of the 

conditioned EPSP is considered to occur as a consequence of a presynaptic 

decrease in transmitter release, as originally proposed by Frank and Fuortes in 

1957.

Supporting evidence for this idea comes from the finding that the input 

resistance measured 50 to 70 ms after the conditioning stimulation, often during 

the decay of the IPSP, was not significantly different from that measured without 

the conditioning stimulation. An example of this is shown in Fig. 4.3. The average 

input resistance measured with conditioning stimulation was 1.33 ± 0.19 MO (± 

S.E.M., n - 5), compared to 1.34 ± 0.19 MO (± S.E.M., n - 5) in unconditioned 

motoneurones. This finding is in agreement with previous findings by many authors 

(Eide et al. 1968; Kellerth, 1968; Cook & Cangiano, 1972; Sypert, Munson & 

Fleshman, 1980; however see also Carlen, Werman & Yaari, 1980). It does not, 

however, exclude the possibility that postsynaptic inhibition is involved in reducing 

the conditioned EPSP, as it may not be possible to detect a change in input 

resistance at the soma if the synapses which generate the IPSP are located on the 

distal parts of the motoneurone dendritic tree.

Additional evidence for a presynaptic decrease in transmitter release comes 

from the finding, also previously observed by many authors, that the time course of 

compound EPSPs is not significantly changed by the conditioning stimulation 

(Frank & Fuortes, 1957; Eccles et al. 1961a; Eide et al. 1968; Cook & Cangiano, 

1972, McCrea, Shefchyk & Carlen, 1990, however also Carlen et al. 1980; Sypert et 

al. 1980; Lev-Tov, Fleshman & Burke, 1983). In a sample of eight compound 

EPSPs reduced in amplitude by an average of 18.3% during presynaptic inhibition, 

the average rise time was 0.62 ± 0.04 ms, compared with 0.64 ± 0.04 ms (± S.E.M., 

n -  8) for unconditioned EPSPs. Half-widths for conditioned and unconditioned 

EPSPs were 4.0 ± 0.4 ms and 4.0 ± 0.5 ms (± S.E.M., n = 8) respectively, and decay 

time constants were 5.0 ± 0.7 ms and 5.1 ± 0.8 ms (± S.E.M., n = 8) respectively.

The most convincing evidence for a presynaptic locus for the inhibition of 

MG la EPSPs following the PBSt conditioning stimulation comes from the work of

<



A

B

1 mV

40 ms

1 mV

5 ms

Fig. 4.3. Effect of the conditioning stimulation on the input resistance of a MG 

motoneurone. A,  response of a MG motoneurone to a 10 ms, -2 nA current pulse.

B , response to the same current pulse 70 ms after conditioning PBSt stimulation.

C, the unconditioned and conditioned response to the current pulse in A  and B are 

displayed on an expanded time scale and show that there was no effect of the 

conditioning stimulation on the input resistance of this motoneurone. Records 

were made using discontinuous current clamp switching at 4 KHz.
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Clements, Forsythe and Redman (1987, see also Kuno, 1964), where quantal 

analysis of the fluctuations in amplitude of la EPSPs before and after conditioning 

showed that the conditioning stimulation decreased the number of quanta 

contributing to the conditioned EPSP without changing the quantal size.

The results from the quantal analysis experiments, together with the results 

from the present study (see also Chapter five), provide strong evidence that the 

reduction in the amplitude of MG la EPSPs evoked more than 50 ms after the 

conditioning PBSt muscle nerve stimulation occurs via a presynaptic decrease in 

the release of excitatory transmitter from the terminals of MG la afferent fibres.

Postsynaptic inhibition

As mentioned above, conditioning stimulation of the PBSt muscle nerve 

evoked a small IPSP in MG motoneurones (see also Kellerth, 1968; Cook & 

Cangiano, 1972). In the present study the conditioning stimulation almost always 

evoked an IPSP in every MG motoneurone examined. This IPSP varied in size 

from only a few hundred microvolts to up to several millivolts, had a latency to 

peak of between 20 to 30 ms measured from the start of the conditioning stimulus 

and usually had a duration of several hundred milliseconds.

Examples of different types of IPSPs recorded during the same experiment 

in different MG motoneurones are shown in Fig. 4.4. All responses were evoked by 

the same PBSt conditioning stimulation (3 pulses, 300 Hz, 2 x T), but had quite 

different time courses. The response in Fig 4.4/1 appeared to be a pure IPSP, 

whereas the response shown in Fig 4.4B was a mixture of an early EPSP and an 

IPSP. The IPSP shown in Fig 4.4C also suggests the presence of a early EPSP. 

These records were typical of those seen in this study and suggest that the 

postsynaptic response associated with the conditioning PBSt stimulation does not 

consist purely of an IPSP, but includes an early EPSP often masked by the more 

dominant IPSP. This finding is in agreement with the earlier work of Cook and 

Cangiano (1972, see also Wilson & Kato, 1965). The amplitude and the nature of 

the early part of the response to PBSt conditioning stimulation will depend on the



A

B

C

20 ms

0.5 mV

Fig. 4.4A-C. Examples of IPSPs evoked in different MG motoneurones by the 

same conditioning PBSt stimulation. Note the difference in the time course of 

responses and the appearance of an early EPSP in the response shown in B. The 

membrane potential of motoneurones at the time the responses shown in A, B and 

C were recorded was -61, -70 and -59 mV respectively.
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membrane potential and on the relative strength of the synaptic projections 

mediating the early EPSP and the IPSP. As the membrane potential of a 

motoneurone approaches the reversal potential for the IPSP the early EPSP, if 

present, would be expected to become more dominant.

Pharmacology of postsynaptic inhibition

The early part of the IPSP appeared to be selectively reduced by the 

iontophoretic application of the glycine antagonist strychnine hydrochloride. An 

example of this is shown in Fig. 4.5. This application of strychnine had no effect on 

the late part of the IPSP and appeared to convert the early hyperpolarising 

response into a depolarising response, unmasking an early EPSP (c.f. Fig. 4.45). 

The late part of the IPSP, as will be shown later, was found to be reduced by the 

GABAa receptor antagonist bicuculline methochloride (see Fig. 4.6, 4.7, 4.13).

As the ventral roots were left intact during most experiments the early IPSP 

will, in part, be mediated via Renshaw cells as MG motoneurones receive a small 

amount of presumably strychnine sensitive recurrent inhibition following 

antidromic activation of motor fibres in the posterior biceps muscle nerve (Eccles, 

Eccles, Iggo & Ito, 1961). The finding that there are strychnine and bicuculline 

sensitive components to the hyperpolarisation evoked in MG motoneurones by 

PBSt stimulation is consistent with the early work of Kellerth (1968).

Effect o f the GABAa  antagonist bicuculline methochloride on presynaptic inhibition 

of compound EPSPs

To investigate whether GABAa receptors were involved in mediating 

presynaptic inhibition the GABAa receptor antagonist bicuculline methochloride 

(BMC) was used. When applied iontophoretically during presynaptic inhibition 

BMC reduced both presynaptic inhibition of compound la EPSPs and the IPSP 

evoked in MG motoneurones by the conditioning PBSt stimulation. Examples of 

this are shown in Fig. 4.6 and Fig. 4.7. In Fig. 4.6A the application of +80 nA of 

BMC for 10 minutes reduced the amount of presynaptic inhibition from 20 to 10%,



20 ms

Fig. 4.5. The effect of the iontophoresis of strychnine hydrochloride ( + 50 nA for 5 

minutes) on the IPSP evoked in a MG motoneurone by the conditioning PBSt 

stimulation. This application of strychnine selectively reduces the early part of the 

IPSP with no effect on the late part of this IPSP.
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a -50%  reduction in presynaptic inhibition, with complete recovery within 15 

minutes. Iontophoresis of +150 nA of BMC for 5 minutes in a different 

motoneurone (Fig. 4.7-4) substantially reduced the amount of presynaptic 

inhibition of this EPSP from 17 to 5%, a -70%  reduction in presynaptic inhibition, 

with full recovery in 20 minutes. Fig. 4.6B and Fig. 4.7B also clearly show than the 

same application of BMC markedly reduced the late part of the IPSP.

BMC also caused a slight increase in the peak amplitude, half-width and 

time constant of decay of the unconditioned EPSP. These increases were not 

statistically different from the control values, however suggest that the application 

of bicuculline may remove a small amount of tonic presynaptic and postsynaptic 

GABAa mediated inhibition.

Iontophoresis of BMC reduced presynaptic inhibition of compound EPSPs 

by between 42 and 76%, using iontophoretic currents of from 40 to 340 nA. The 

percentage decrease in presynaptic inhibition of compound EPSPs was found to be 

roughly related to the iontophoretic current used to eject BMC. This relationship is 

shown in Fig. 4.8. The line gives the linear regression fit to the data and has a 

correlation coefficient of 0.70. However, even the highest iontophoretic currents 

used could not completely abolish presynaptic inhibition.

There was also a roughly linear relationship between the percentage 

decrease in the amount of presynaptic inhibition of compound EPSPs during the 

application of BMC and the percentage decrease in the late part of the IPSP 

(measured between 20 and 30 ms after the start of the conditioning stimulus). This 

is shown in Fig. 4.9, the line gives the linear regression fit to the data and has a 

correlation coefficient of 0.78. Presynaptic inhibition could not, however, be 

completely abolished by the iontophoretic application of BMC, even when BMC 

completely abolished the late part of the IPSP.

There are two possible explanations for the inability of the iontophoretic 

application of BMC to completely abolish presynaptic inhibition of compound 

EPSPs. The most likely explanation is that with such a localised application of 

BMC, presumably close to the soma of the motoneurone, it was not possible to
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Fig. 4.8. Relationship between the iontophoretic current used to eject bicuculline 

methochloride and the percentage decrease in the level of presynaptic inhibition of 

compound EPSPs. The line gives the linear regression fit to the data and has a 

correlation coefficient of 0.70.
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% decrease in IPSP

Fig. 4.9. The relationship between the percentage decrease in the IPSP, measured 

20 to 30 ms after the conditioning PBSt stimulation, and the percentage decrease 

in the level of presynaptic inhibition of compound EPSPs during the application of 

bicuculline methochloride. The line gives the linear regression fit to the data and 

has a correlation coefficient of 0.78.
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block presynaptic inhibition of EPSPs generated on distal regions of the 

motoneurone dendritic tree. The second possibility is that while presynaptic 

inhibition of la EPSPs appears to be mediated mainly by BMC sensitive GABAa 

receptors, a BMC insensitive receptor may also be involved.

To address the first possibility, the effect of the iontophoretic application of 

BMC was investigated on presynaptic inhibition of unitary EPSPs generated by 

synapses located near the soma. Presumably the local concentration of BMC 

around these synapses will be higher than at more distal synapses and so it would 

be expected that if presynaptic inhibition was generated purely through the 

activation of BMC sensitive GABAa receptors, then presynaptic inhibition of 

these near somatic, unitary EPSPs should be more easily blocked by the 

iontophoretic application of BMC .

Presynaptic inhibition of unitary EPSPs

Unitary EPSPs were evoked using the technique originally described by 

Honig, Collins & Mendell (1983) and described briefly in the Methods section. 

Once a recording from a single la afferent fibre from the MG muscle was 

established, brief (1 to 2 ms in duration, up to 10 nA in magnitude) depolarising 

current pulses were used to evoke an orthodromic action potentials in only that la 

afferent (Fig. 4.1CL4). Recordings were then made from MG motoneurones, and 

several hundred single sweeps of the membrane potential averaged to determine if 

the la afferent projected to that particular motoneurone (Fig. 4A0B-E). If a unitary 

EPSP was present, the rise time and half-width were measured to determine if they 

were consistent with a near somatic location (unitary EPSPs were sought which 

had unnormalised rise times of around 200 ßs and half-widths of less than 2 ms; 

Jack et al. 1971).

Some examples of the effect of the conditioning PBSt stimulation on unitary 

EPSPs generated at different distances from the soma are shown in Fig. 4.11. As 

can be seen from Fig. 4.11 unitary EPSPs were decreased by different amounts by 

the conditioning stimulation (percentage decreases of unitary EPSPs ranged from



Fig. 4.10. Experimental protocol for recording unitary EPSPs. A, recording of an 

action potential evoked in a MG la afferent by a brief depolarising current pulse. 

B-D, single sweeps of the membrane potential of a MG motoneurone following the 

activation of the MG la afferent shown in A  E, the average unitary EPSP made up 

from 50 single sweeps like those shown in B-D.



Somatic

Fig. 4.11. Some examples of presynaptic inhibition of unitary EPSPs. A, unitary, 

somatic EPSP reduced in amplitude by 22% during the conditioning PBSt 

stimulation. B,C, two unitary EPSPs 0.2 A from the soma reduced 49 and 35% 

respectively by the conditioning PBSt stimulation. D, a unitary EPSP 0.4 A from the 

soma reduced by 26% during the conditioning PBSt stimulation.
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4 to 55%). This is consistent with similar findings by Clements, Forsythe and 

Redman (1987), as is the finding that the amount of presynaptic inhibition of 

unitary EPSPs did not depend on their location, i.e. somatic EPSPs were inhibited 

by similar amounts to EPSPs generated at more distal locations. That the time 

course of the compound EPSP is unchanged during presynaptic inhibition (see 

above) also suggests a rather uniform inhibition of transmitter release from all la 

afferent synapses during presynaptic inhibition.

Effect o f the GABAa  antagonist bicuculline methochloride on presynaptic inhibition 

of near somatic unitary EPSPs

As expected, iontophoretic application of BMC also reduced the amount of 

presynaptic inhibition of unitary EPSPs generated near the soma. An example is 

shown in Fig. 4.12, where presynaptic inhibition of a unitary EPSP was reduced 

from 26 to 9% during the application of +100 nA of BMC for 5 minutes with 

recovery 30 minutes later; a reduction in presynaptic inhibition of 65%.

The effect of BMC was examined on presynaptic inhibition of six near 

somatic unitary la EPSPs. Five of these unitary EPSPs had normalised rise times 

and half-widths consistent with a location 0.2A from the soma (Jack et al. 1971), the 

other unitary EPSP had a somatic location. Iontophoresis of BMC (100 to 200 nA) 

reduced presynaptic inhibition for these unitary EPSPs by between 47% to 85%. 

The same application of BMC reduced IPSPs recorded in these motoneurones by 

between 65 to 95%. Two of these unitary EPSP were lost during the application of 

BMC and so have not been included in further analysis (these EPSP showed 

reductions in presynaptic inhibition of 52 and 39%).

As with the compound la EPSPs the iontophoretic application of BMC did 

not completely abolish presynaptic inhibition of unitary la EPSPs located near the 

soma. This suggests that presynaptic inhibition may be mediated in part through a 

BMC insensitive receptor. As there is considerable evidence to suggest that the 

transmitter released during presynaptic inhibition is GABA, it seemed likely that 

GABA could also be acting at BMC insensitive GABAß receptors.
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The possibility that GABAß receptors are involved in mediating 

presynaptic inhibition has been suggested by many authors since the discovery by 

Dunlap and Fischbach (1978) that GABA could decrease the calcium component 

of action potentials recorded in the cell bodies of dorsal root ganglion cells grown 

in culture. This effect of GABA was not blocked by BMC and could be mimicked 

by the GABAß agonist baclofen (Dunlap, 1981 a,b). If the same phenomenon 

occurs in the nerve terminals of these cells then this would be an effective way of 

deceasing transmitter release. This idea was supported by the finding that baclofen 

and GABA acting through a BMC insensitive mechanism, could decrease the K +- 

evoked release of noradrenaline, dopamine and serotonin from mammalian brain 

slices (Bowery et al. 1980).

To investigate the possibility that GABAß receptors are involved in 

mediating presynaptic inhibition the GABAß receptor antagonist 2-OH-saclofen 

was used (Kerr et al. 1988; Curtis et al. 1988). However, before investigating the 

effect of 2-OH-saclofen on presynaptic inhibition, it was felt necessary to first 

establish that 2-OH-saclofen could antagonize GABAß receptors. Therefore the 

ability of 2-OH-saclofen to antagonize the effect of the GABAß agonist (-)- 

baclofen was examined.

Effect o f the GABAß agonist (-)-baclofen on compound EPSPs

When applied iontophoretically baclofen reduced the amplitude of la 

EPSPs. This was in agreement with previous findings using systemic injections of 

baclofen (Pierau & Zimmermann, 1973; Lev-Tov, Meyers & Burke, 1988; Edwards 

et al. 1989) and with the findings of Fox, Krnjevic, Morris, Puil and Werman (1978) 

using the iontophoretic application of baclofen. An example of this is shown in Fig. 

4.13. Here, the peak amplitude of a compound EPSP was reduced by 18% by the 

application of baclofen ( + 20 nA for 1 minute). The decrease in amplitude of 

compound EPSPs occurred rapidly and usually recovered within 3 to 5 minutes 

(Fig. 4.135).
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BACLOFEN 
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Fig. 4.13. Effect of (-)-bacIofen on compound EPSPs. A, the application of 

baclofen ( + 20 nA for 1 minute) reduced the amplitude of a compound EPSP by 

18%. The control response is the average of that recorded before and after 

recovery from baclofen. S, the time course of this effect of baclofen on the 

amplitude of the EPSP.
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The iontophoretic application of baclofen in the experiments described in 

this study caused no detectable change in the membrane potential, input resistance 

or membrane time constant of MG motoneurones. An example of the effect of 

baclofen on the input resistance of a motoneurone is shown in Fig. 4.144. Here, 

despite a large decrease in the peak amplitude of the compound EPSP by almost 

50%, the input resistance measured by the voltage response to a 30 ms, -1 nA 

current pulse was unchanged. In five motoneurones where this was examined the 

average input resistance measured before and after recovery from baclofen was 2.5 

± 0.4 MO (±S.E.M., n = 5), compared to 2.5 ± 0.3 M0 (±S.E.M., n - 5) during the 

application of baclofen. The same application of baclofen decreased la EPSPs 

recorded in these motoneurones by between 17 and 48%. The membrane time 

constant of these motoneurones was also unchanged during the application of 

baclofen. Aji example of this is shown in Fig. 4.14B. Here the membrane time 

constant, measured from the voltage responses shown in Fig 4.144, was 8.7 ms 

before baclofen and 7.9 ms during the application of baclofen (this difference is 

within the bounds of experimental error for this type of measurement). The 

average membrane time constant measured before and after recovery from 

baclofen (5.3 ± 2.9 ms? ±S.E.M., n - 5) was identical to that measured in 

motoneurones during the application of baclofen (5.3 ± 2.9 m s; ±S.E.M., n -  5).

The lack of any effect of baclofen on the input resistance or membrane time 

constant of motoneurones is in agreement with previous findings by many authors 

(Pierau & Zimmermann, 1973; Lev-Tov et al. 1988; Peng & Frank, 1989a; Edwards 

et al. 1989, however see Fox et al. 1978; Wang & Dun, 1990) and consistent with 

the idea that baclofen, presumably via the activation of GAEAß receptors, 

decreases the probability of transmitter release from primary afferent terminals 

(Peng & Frank, 1989a; Edwards et al 1989).
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- I  nA 1 mV
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>
E
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Fig. 4.14. Effect of (-)-baclofen on the input resistance and membrane time 

constant. A, response of a MG motoneurone to a 30 ms, -1 nA current pulse 

followed by a compound EPSP without (control) and during baclofen ( + 20 nA for 

1 minute). The control response is the average of that recorded before and after 

recovery from baclofen. B, the final phase of the voltage responses shown in A 

have been displayed semilogarithmically and a linear regression line fitted to the 

control response between the two stars.
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Antagonism by 2-OH-saclofen of the decrease in amplitude of compound EPSPs 

produced by ( - ) -baclofen

To establish that 2-OH-saclofen could block the activation of GABAß 

receptors, the ability of 2-OH-saclofen to reduce the decrease in amplitude of la 

EPSPs produced by baclofen was investigated. Antagonism by 2-OH-saclofen 

proved difficult to demonstrate, as often the iontophoretic application of 2-OH- 

saclofen had either no effect on the reduction in EPSP amplitude produced by the 

application of baclofen (from the adjacent barrel of the iontophoretic electrode) or 

2-OH-saclofen alone reduced the amplitude of la EPSPs. An example of this is 

shown in Fig. 4.15.4, where the application of 2-OH-saclofen ( + 250 nA for 2 

minutes) reduced the peak amplitude of the EPSP by 27%. For reference, a 

reduction in the amplitude of the same EPSP by a comparable amount could be 

produced by the application of baclofen ( + 40 nA for 1 minute) from the adjacent 

barrel of the iontophoretic electrode (Fig. 4.15B). While the onset of the reduction 

in the amplitude of la EPSPs produced by 2-OH-saclofen occured rapidly (within 

less than 1 minute), the recovery from this effect was slow; EPSPs usually taking 5 

to 10 minutes to return to the control amlitude. Taking into account the 

concentrations of baclofen and 2-OH-saclofen in the iontophoretic electrodes and 

the currents used to eject them, 2-OH-saclofen was considerably less potent than 

baclofen in reducing the amplitude of la EPSPs (approximately 50 times less 

potent in the example shown in Fig. 4.15, assuming equal ionisation of the two 

compounds).

2-OH-Saclofen reduced the amplitude of EPSPs without any change in the 

membrane potential or the membrane time constant, an action which appeared to 

be very similar to that of baclofen. This suggests that 2-OH-saclofen can, under 

certain circumstances, act as a weak GABAß agonist, as has been previously 

suggested by Curtis et al. (1988).

It was possible on some occasions to demonstrate antagonism by 2-OH- 

saclofen of the decrease in amplitude of la EPSPs produced by baclofen. An 

example of this is shown in Fig. 4.16. The control record shows that baclofen



A
CONTROL

SACLOFEN 
+250 nA, 2 minutes

CONTROL

BACLOFEN ' 
+40 nA, 1 minute

2 mV

2 ms

Fig. 4.15. Effect of 2-OH-saclofen on a compound EPSP. A, the application of 

saclofen ( + 250 nA for 2 minutes) reduced the amplitude of a compound EPSP by 

27%. B, the application of (-)-baclofen ( + 20 nA for 1 minute) from the adjacent 

iontophoretic electrode reduced the amplitude of this EPSP by 26%.
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reduced the unconditioned EPSP by 16% with recovery within 3 minutes (Fig. 

4.16/1). During the application of 2-OH-saclofen (which caused little or no change 

in the size of the control EPSP), baclofen reduced the amplitude of the EPSP by 

only 5% (Fig. 4.162?). The EPSP returned to the control amplitude 6 minutes later, 

where the application of baclofen reduced the EPSP amplitude by 18% (Fig. 

4.16C). This result is consistent with antagonism by 2-OH-saclofen of the decrease 

in amplitude of la EPSPs produced by baclofen. The time course of the 

antagonism between 2-OH-saclofen and the effect of baclofen is shown in Fig. 

4.17. As baclofen presumably reduces the amplitude of la EPSPs by acting at 

presynaptic GABAß receptors on la afferent terminals these results suggest that 2- 

OH-saclofen can block the activation of presynaptic GABAß receptors on these 

terminals.

Effect o f the GABAß antagonist 2-OH-saclofen on presynaptic inhibition of 

compound EPSPs

Once it was established that 2-OH-saclofen could reduce the effects of 

baclofen, the effect of 2-OH-saclofen was examined on presynaptic inhibition of 

the same la EPSP.

Examples of the effect of 2-OH-saclofen on presynaptic inhibition of two 

compound EPSPs are shown in Fig. 4.18. Presynaptic inhibition of the EPSP shown 

in Fig. 4.1&4 was not, or was only very slightly, reduced in the presence of 2-OH- 

saclofen. However, the amount of presynaptic inhibition of the EPSP shown in Fig. 

4.182? was clearly reduced from 16 to 12% during the application of 2-OH- 

saclofen; a 25% decrease in presynaptic inhibition. Presynaptic inhibition of all five 

compound EPSPs examined was reduced to some extent by 2-OH-saclofen. The 

reduction in presynaptic inhibition produced by 2-OH-saclofen ranged from only 

4% (Fig. 4.18/1) to 25% (Fig. 4.182?), using iontophoretic currents of 100 to 200 nA 

(n.b. two cells did not show complete recovery back to the control level of 

presynaptic inhibition after the application of 2-OH-saclofen).
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Fig. 4.17. Time course of antagonism by 2-OH-saclofen (+100 nA for 2 minutes) of 

the decrease by (-)-baclofen (Baclo; +20 nA for 1 minute) in amplitude of the 

compound EPSP shown in Fig. 4.16.
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2-OH-saclofen also produced a slight decrease in the amplitude of 

unconditioned EPSPs by 1 to 13% (see Fig 4.18). This presumably occurred as a 

consequence of this compound acting as a weak GABAß agonist. As the reduction 

in presynaptic inhibition produced by 2-OH-saclofen was always associated with a 

decrease in the amplitude of the unconditioned EPSP, it was thought possible that 

this could be responsible for the decrease in presynaptic inhibition. To investigate 

this possibility the ability of baclofen to reduce presynaptic inhibition was 

examined.

Effect o f the GABAß agonist ( - ) -baclofen on presynaptic inhibition of compound 

EPSPs

When applied iontophoretically using currents of between 20 or 40 nA for 1 

to 2 minutes, baclofen reduced the amplitude of unconditioned EPSPs by between 

16 and 60%. This reduction in amplitude of unconditioned EPSPs was usually not 

associated with any change in the amount of presynaptic inhibition or in the 

magnitude of the IPSP evoked in motoneurones by the conditioning stimulation. 

An example of this is shown in Fig. 4.19. Here, the application of baclofen ( + 40 

nA for 2 minutes) reduced the unconditioned EPSP by 33% with no change in the 

amount of presynaptic inhibition.

The percentage change in the amplitude of the unconditioned EPSP during 

the application of baclofen has been plotted against the percentage change in the 

amount of presynaptic inhibition in Fig. 4.20. This figure shows a weak correlation 

between the percentage change in the amplitude of the unconditioned EPSP and 

the percentage change in the amount of presynaptic inhibition (correlation 

coefficient of 0.53, slope 0.37), however, for reductions in the amplitude of 

unconditioned EPSPs of less than 20% there appeared to be no significant effect of 

baclofen on presynaptic inhibition. As the maximum reduction in the amplitude of 

the unconditioned EPSP during the application of 2-OH-saclofen was 13%, this 

would suggest that the decrease in presynaptic inhibition of la EPSPs observed in
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the presence of 2-OH-saclofen was not due to the activation of GABAg receptors.

Combined effects of bicuculline methochloride, 2-OH-saclofen and (-)-baclofen on 

presynaptic inhibition of la EPSPs

The pooled data for the effects of BMC, 2-OH-saclofen and baclofen have 

been combined and are shown in Fig. 4.21. As in Fig. 4.20, the percentage change 

in the amplitude of the unconditioned EPSP has been plotted against the 

percentage change in the amount of presynaptic inhibition. The BMC data include 

the results obtained from both compound (filled circles) and unitary (open circles) 

EPSPs. This figure shows that BMC, a GABAa antagonist, often caused a slight 

increase in the amplitude of the unconditioned EPSP and a large decrease in the 

amount of presynaptic inhibition of la EPSPs by 42 to 85%. 2-OH-saclofen, a 

GABAg antagonist (open squares), caused a slight decrease in the amplitude of 

unconditioned EPSPs and a small reduction in the amount of presynaptic 

inhibition of la EPSPs by 4 to 25%. In contrast, baclofen, a GABAg agonist (filled 

triangles), caused a large decrease in the amplitude of the unconditioned EPSP, 

but was relatively ineffective in reducing presynaptic inhibition.

Discussion

Presynaptic inhibition of la EPSPs was markedly reduced during the 

iontophoretic application of BMC. This is consistent with earlier findings which 

had shown that picrotoxin and bicuculline (both GABAa antagonists) reduced 

both prolonged inhibition and dorsal root potentials (Eccles et al. 1963a; Curtis et 

al 1971) and suggests that at this synapse presynaptic inhibition is mediated 

primarily through the activation of GABAa receptors. The small reduction in 

presynaptic inhibition produced by 2-OH-saclofen suggests that GABAg receptors 

may also play a minor role in presynaptic inhibition of la EPSPs.
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The effect of 2-OH-saclofen on presynaptic inhibition was complicated by 

its ability to reduce the unconditioned EPSP. This action of 2-OH-saclofen was 

very similar to that of baclofen and suggested that 2-OH-saclofen can, under 

certain circumstances, act as a partial agonist at GABAß receptors. However, 

recent in vitro studies, using concentrations of 2-OH-saclofen of up to 500 /iM, 

have not observed any effect of 2-OH-saclofen on the amplitude of EPSPs in CA1 

neurones of the hippocampus (Randall, Schofield, Davies & Collingridge, 1990; 

Harrison, Lovinger, Lambert, Teyler, Prager, Ong & Kerr, 1990). As the only other 

study to apply 2-OH-saclofen iontophoretically also reported a weak baclofen like 

action of 2-OH-saclofen (Curtis et al. 1988), the reduction in the amplitude of la 

EPSPs by 2-OH-saclofen may occur as a consequence of the iontophoretic 

application of 2-OH-saclofen. High local concentrations of 2-OH-saclofen might 

be expected to occur close to the tip of the iontophorectic electrode during 

iontophoresis. If at high concentrations 2-OH-saclofen can act as a partial GABAß 

agonist this may explain the effects of 2-OH-saclofen observed in the present study.

Experiments designed to investigate the effect of activation of GABAß 

receptors on presynaptic inhibition, using the GABAß agonist baclofen, suggested 

that activation of GABAß receptors did not account for the small reduction in 

presynaptic inhibition observed in the presence of 2-OH-saclofen. This supports 

the suggestion that, to some extent, GABAß receptors are activated during 

presynaptic inhibition of la EPSPs.

It is also possible that 2-OH-saclofen could have decreased presynaptic 

inhibition by blocking the action of GABA at GABAa receptors. A recent report 

has cautioned that high concentrations of 2-OH-saclofen will displace the binding 

of muscimol, a GABAa receptor agonist (Al-Dahan, Jalilian Tehrani & Thalmann, 

1990). However, this finding is difficult to interpret as muscimol has previously 

been shown to also have some affinity for GABAß receptors (Hill & Bowery, 1981; 

Bowery, Hill & Hudson, 1983). Therefore, the displacement of muscimol binding 

by 2-OH-saclofen may simply reflect 2-OH-saclofen’s ability to displace the 

binding of muscimol to GABAß receptors. To establish if 2-OH-saclofen can
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antagonize binding to GABAa receptors it would be necessary to establish if 2- 

OH-saclofen can displace the binding of a specific GABAa receptor agonist which 

has no affinity for the GABAß receptor, such as piperidine-4-sulphonic acid 

(Bowery et al. 1983). Previous studies have shown that 2-OH-saclofen, in 

concentrations necessary to antagonize GABAß receptors, has little or no effect on 

the activation of GABAa receptors (Kerr et al. 1988; Curtis et al. 1988).

The only evidence available from the present study to suggest that 2-OH- 

saclofen did not antagonize GABAa receptors comes from the observation that 2- 

OH-saclofen had little or no effect on the IPSP evoked in MG motoneurones by 

the conditioning PBSt stimulation. The late part of this IPSP could occasionally be 

completely abolished by BMC and so is presumably mediated exclusively by the 

activation of GABAa receptors. The lack of an effect of 2-OH-saclofen on this 

IPSP suggests that 2-OH-saclofen does not antagonize GABAa receptors, at least 

postsynaptically.

Pharmacology o f postsynaptic inhibition

The early part of the IPSP evoked in motoneurones by the conditioning 

PBSt stimulation could be reduced by the iontophoretic application of strychnine. 

This would suggest that the early part of this IPSP is mediated by inhibitory 

glycinergic interneurones which activate postsynaptic glycine receptors on 

motoneurones and presumably lead to an increase in chloride conductance 

(Bormann et al. 1987). The application of BMC reduced, and occasionally 

completely abolished, the late part of this IPSP. This suggests that this BMC- 

sensitive IPSP is mediated by another interneuronal pathway with last order 

GABAergic interneurones which activate postsynaptic GABAa receptors and 

presumably also cause an increase in chloride conductance in motoneurones 

(Bormann et al. 1987). As this GABAergic IPSP could occasionally be completely 

abolished by BMC, it is presumably mediated exclusively through the activation of 

GABAa receptors. There was no suggestion of a BMC insensitive component to
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this IPSP, as has been observed to follow GABAa mediated IPSPs in the 

hippocampus (Newberry & Nicoll, 1984; Dutar & Nicoll, 1988a).

The presence of axo-axonic synapses on la afferent terminals which are also 

presynaptic to motoneurones (Fyffe & Light, 1984) raises the possibility that axo­

axonic synapses can mediate both presynaptic and postsynaptic inhibition. As the 

transmitter released at these synapses is thought to be GABA, the BMC sensitive 

IPSP evoked in MG motoneurones by the conditioning PBSt stimulation is 

probably produced partly by the release of GABA from these ‘triadic’ axo-axonic 

synapses.

Effects o f bicuculline methochloride on the unconditioned EPSP

As can be seen from Fig. 4.21, application of BMC often caused a slight 

increase in the amplitude of the unconditioned EPSP. This presumably reflects the 

removal of background GABAa mediated presynaptic inhibition of these EPSPs 

caused by the spontaneous release of GABA from axo-axonic synapses. The 

greatest increase in peak amplitude was 10%, with about half the EPSPs showing 

no increase in amplitude in the presence of BMC. This suggests that in the spinal 

cord of the barbiturate anaesthetized cat background levels of tonic presynaptic 

inhibition are low.

BMC also caused a slight increase in the half-width and final time constant 

of decay of EPSPs. This probably occurred due to a small increase in the 

membrane time constant of motoneurones. An increase in the membrane time 

constant can be most easily explained by the removal of tonic GABAa mediated 

postsynaptic inhibition by BMC, presumably from the release of GABA by 

spontaneously active GABAergic inhibitory interneurones. Apart from this slight 

increase in the membrane time constant there was no indication of any direct 

effect of BMC on the resting conductance of motoneurones, as has been suggested 

by some authors (Krnjevic, Puil & Werman, 1977; Chase, Soja & Morales, 1989).
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Mechanisms of presynaptic inhibition

If presynaptic inhibition of la EPSPs is mediated primarily through the 

activation of GABAa receptors, as the present study would suggest, how does 

activation of GABAa receptors cause a decrease in the probability of transmitter 

release?

GABAa receptors are thought to form part of a receptor/channel protein 

which when activated by GABA leads to an increase in chloride conductance 

(Scholfield et al. 1987; Bormann et al. 1987). The application of GABA to the cell 

bodies of primary afferent fibres (Nishi et al. 1974; Feltz & Raminsky, 1974; 

Gallagher et al. 1978) and to their terminals (Gmelin & Creletti,1976; Sastry, 

1979a; Curtis & Lodge, 1982) has been shown to cause an increase in membrane 

conductance and depolarisation. Both of these effects are bicuculline-sensitive and 

are thought to occur due to an increase in chloride conductance following the 

activation of GABAa receptors. Similarly, the conditioning stimulation used to 

evoke presynaptic inhibition also causes a depolarisation of primary afferent fibres 

(Eccles et al. 1961 a) and terminals (Wall, 1958; Eccles et al. 1962; Gmelin & 

Creletti,1976; Curtis & Lodge, 1982). This depolarisation is also blocked by 

bicuculline (Curtis et al. 1971; Curtis & Lodge, 1982) and is thought to be 

associated with an increase in the membrane conductance (Curtis & Lodge, 1982; 

Padjen & Hashiguchi, 1983; Curtis et al. 1986). Presumably, the depolarisation and 

increase in membrane conductance of primary afferent fibres which occurs in 

conjunction with presynaptic inhibition also results from an increase in chloride 

conductance following the activation of GABAa receptors on primary afferent 

terminals.

It has been suggested that during presynaptic inhibition the depolarisation 

of primary afferent terminals leads to a decrease in transmitter release (Eccles et 

al. 1961a; Eccles, 1964; Schmidt, 1971; Lev-Tov et al. 1983). As mentioned in 

Chapter one this depolarisation could cause inactivation of voltage dependent 

calcium or sodium channels. While it is possible that this could cause a decrease in 

transmitter release, it seems more likely that during presynaptic inhibition the
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increase in the membrane conductance of primary afferent terminals plays a more 

important role than the depolarisation per se (Deschenes, Feltz & Lamour, 1976; 

Ryall, 1978; Nicoll & Alger, 1979; Levy, 1980; Padjen & Hashiguchi, 1983; Segev, 

1990).

This increase in membrane conductance could shunt the presynaptic action 

potential, decreasing its amplitude and/or duration. This would lead to reduced 

activation of voltage dependent calcium channels, reduced calcium influx and 

hence decreased transmitter release. Some experimental evidence for this comes 

from the findings that action potentials recorded intra-axonally near la afferent 

terminals and field potentials which are thought to reflect action potential invasion 

into la afferent terminals are both reduced during presynaptic inhibition (Eccles et 

al. 1963/?; Sypert et al. 1980). In addition, the presynaptic decrease in transmitter 

release produced by the GABAa agonist muscimol is also associated with a 

decrease in the amplitude of the field potential thought to reflect action potential 

invasion into la afferent terminals (Peng & Frank, 1989b).

Presynaptic actions of ( - ) -baclofen on la afferent terminals

Baclofen caused a marked reduction in the amplitude of la EPSPs without 

any effect on the membrane potential, input resistance or the membrane time 

constant of motoneurones. This was in agreement with previous findings and 

consistent with the idea that baclofen, presumably through the activation of 

GABAg receptors, causes a decrease in the probability of transmitter release from 

la afferent terminals (Pierau & Zimmermann, 1973; Lev-Tov et al. 1988; Peng & 

Frank, 1989a; Edwards et al 1989).

However, how baclofen leads to a decrease in transmitter release is 

unknown. As baclofen can cause an increase in a potassium conductance in many 

central neurones (Newberry & Nicoll, 1985; Inoue et al. 1985; Gahwiler & Brown, 

1985), it is possible that baclofen could reduce transmitter release by causing an 

increase in the potassium conductance of primary afferent terminals. This could 

shunt the presynaptic action potential, reducing calcium influx through voltage
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activated calcium channels and decrease transmitter release. There are two 

reasons why this probably does not happen. Firstly, such an effect should decrease 

the size of the field potential thought to reflect action potential invasion into la 

afferent terminals. Baclofen has, however, been shown to cause a marked 

reduction in transmitter release from la afferent fibres without any effect on this 

field potential (Lev-Tov et al. 1988; Peng & Frank, 1989a). Secondly, activation of 

a potassium conductance would be expected to hyperpolarize la afferent terminals 

and so should cause a decrease in the excitability of these terminals. However, 

baclofen has no direct effect on the excitability of la afferent terminals (Curtis et 

al. 1981; Curtis et al. 1986).

Baclofen has also been shown to decrease a voltage dependent calcium 

conductance in the cell bodies of dorsal root ganglion cells (Dunlap & Fischbach, 

1978; Dunlap, 1981a,6; Deisz & Lux, 1985; Dolphin & Scott, 1986; Robertson & 

Taylor, 1986). Such an effect at the terminals of la afferents would reduce calcium 

influx and decrease transmitter release. This would probably not have any 

detectable effect on the field potential reflecting invasion of la afferent terminals 

or on the resting excitability of these terminals. Some experimental evidence for 

such an action of baclofen on primary afferent terminals comes from the finding 

that a small calcium component of the presynaptic action potential in la afferent 

terminals (Sastry, 19796) is thought to be reduced by baclofen (Curtis, 1990), an 

effect blocked by the GABAß antagonist 2-OH-saclofen.

A recent report suggests that baclofen can shift the voltage dependence of 

inactivation of a transient potassium current, recorded in the cell bodies of 

cultured hippocampal neurones, to more depolarised potentials (Saint et al. 1990). 

This could also be responsible for the decrease in transmitter release produced by 

baclofen. Such an effect at primary afferent terminals could reduce the duration of 

the presynaptic action potential, leading to reduced calcium influx and decreased 

transmitter release. This effect of baclofen would probably also cause no 

detectable change in the field potential reflecting invasion of la afferent terminals
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or the resting excitability of these terminals. At present, however, there is no 

experimental evidence available to suggest that this occurs at la  afferent synapses.

Antagonism o f presynaptic GABAß receptors

Early reports using the then new GABAß receptor antagonist phaclofen 

(Kerr et al. 1987) found that phaclofen could selectively antagonize GABAß 

receptor mediated responses produced by either baclofen or GABA, in the 

presence of BMC (Kerr et al. 1987, Dutar & Nicoll, 1988a). However, many 

presynaptic effects of baclofen in the CNS have been found to be insensitive to 

phaclofen (Dutar & Nicoll, 19886; Wang & Dun, 1990; Harrison, 1990). This lead 

to the suggestion that there may be pharmacological differences between pre- and 

postsynaptic GABAß receptors in the mammalian CNS (Dutar & Nicoll, 19886). 

However, recently the more potent GABAß receptor antagonist 2-OH-saclofen 

(Kerr et al. 1988; Curtis et al. 1988) has been shown to antagonize the presynaptic 

effects of baclofen in the hippocampus (Davies et al. 1990; Randall et al. 1990; 

Harrison et al, 1990). The results from the present study show that in the 

mammalian spinal cord the presynaptic action of baclofen can also be antagonized 

by 2-OH-saclofen.

Effect o f (-)-baclofen on presynaptic inhibition

In contrast to the ease with which baclofen reduced transmitter release 

from la afferent terminals, it was relatively ineffective in reducing presynaptic 

inhibition. The interpretation of this result is complicated, as both baclofen and 

presynaptic inhibition are thought to effect calcium influx into la afferent 

terminals. As the relationship between calcium influx and transmitter release is 

thought to be highly non-linear (Dodge & Rahamimoff, 1967; Augustine et al. 

1985), it is extremely difficult to predict the effect baclofen will have on presynatic 

inhibition.

A simplistic interpretation would be that the slight decrease in presynaptic 

inhibition observed during the application of baclofen is due to a reduction in
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transmitter release at axo-axonic synapses. Consistent with this idea baclofen is 

thought to reduce transmitter release at axo-axonic synapses as primary afferent 

depolarisation of single la afferent terminals has been shown to be reduced by the 

iontophoretic application baclofen, without any effect on the sensitivity of these 

terminals to GABAa agonists (Curtis et al. 1981; Curtis et al. 1986).

The finding that only small reductions in presynaptic inhibition were 

observed following large reductions in the amplitude of the unconditioned EPSP 

suggests that GABAß receptors on axo-axonic terminals are less effective in 

reducing transmitter release than similar receptors on la afferent terminals. This is 

consistent with previous reports that in the spinal cord transmitter release from the 

terminals of interneurones and descending spinal projections is less sensitive to 

baclofen than transmitter release from the terminals of primary afferent fibres 

(Pierau & Zimmermann, 1973; Kato, Waldmann & Murakami, 1978; Davies, 1981; 

Curtis et al. 1981; Curtis & Malik, 1985; Edwards et al. 1989; Rudomin, Jimenez & 

Enriquez, 1989).

Conclusion

The main findings from this study suggest that at the la 

afferent/motoneurone synapse presynaptic inhibition is mediated primarily 

through the activation of GABAa receptors. The activation of GABAß receptors 

appears to play only a minor role in presynaptic inhibition at this synapse. This 

contrasts with the relative ease with which baclofen, presumably via the activation 

of GABAß receptors, can reduce transmitter release from la afferent terminals 

and suggests that the receptors that are activated by baclofen are predominantly 

extrasynaptic.



73

Chapter five:

PAIRED-PULSE FACILITATION IS ENHANCED DURING PRESYNAPTIC 

INHIBITION OF la EPSPS

Introduction

Paired-pulse facilitation (PPF) is a short-term form of synaptic plasticity in 

which the response to the second of two paired stimuli is facilitated relative to the 

first. The facilitation of the response to the second stimulus is thought to occur due 

to a transient increase in the probability of transmitter release (Castillo & Katz, 

1954; Dudel & Kuffler, 1961a; Kuno, 1964; Zucker, 1973; Hirst, Redman & Wong, 

1981; Lin & Faber, 1988), which has been attributed to the presence of residual 

calcium within the presynaptic nerve terminal following action potential invasion 

and calcium influx during the first stimulus (Katz & Miledi, 1965, 1968; Charlton, 

Smith & Zucker, 1982; Dudel, 1990).

This form of potentiation has proved a valuable tool for the elucidation of 

the mechanisms underlying synaptic transmission, particularly at the 

neuromuscular junction (Castillo & Katz, 1954; Katz & Miledi, 1968; Mailart & 

Martin, 1968; Parnas, Dudel & Parnas, 1982; Dudel, 1990; Parnas & Segel, 1989). 

Many studies have shown that changes which directly effect calcium influx into 

nerve terminals alter PPF. Decreasing the probability of transmitter release by 

lowering the extracellular calcium concentration or raising the extracellular 

magnesium concentration either unmasks or enhances PPF, whereas increasing the 

probability of transmitter release by raising the extracellular calcium concentration 

reduces PPF (Lundberg & Quilisch, 1953; Castillo & Katz, 1954; Takeuchi, 1958; 

Thies, 1965; Rahamimoff, 1968; Mailart & Martin, 1968; McNaughton, 1980; 

Parnas et al. 1982; Harris & Cotman, 1983; Dudel, 1989; Muller & Lynch, 1989; 

Trombley & Westbrook, 1990).
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The aim of the present study was to investigate the effect of presynaptic 

inhibition on PPF of la EPSPs in the mammalian spinal cord in vivo. The results 

indicate that PPF is enhanced during presynaptic inhibition. This increase in PPF 

is analogous to that seen in vitro at many other synapses under conditions that 

would be expected to reduce calcium influx and supports the idea that presynaptic 

inhibition la EPSPs is associated with a reduction in calcium influx into la afferent 

terminals.

Methods

Initial surgery was performed on adult cats as described in Chapter two. All 

experiments were preformed on cats anaesthetised with sodium pentobarbitone. 

As sodium pentobarbitone is known to enhance presynaptic inhibition (Eccles et 

al. 1963a), supplementary doses were only given after a recording session with a 

particular cell.

The hindlimb was dissected as follows. The nerves to posterior biceps and 

semitendinosus (PBSt) in the left hindlimb were separated from surrounding 

tissue, cut distally and mounted on a stimulating electrode. Usually the most 

medial branch of posterior biceps, which usually runs together with a branch of 

anterior biceps, was not used. The nerves to medial gastrocnemius (MG) and 

lateral gastrocnemius-soleus (LGS) were also carefully freed from surrounding 

tissue, cut distally and mounted on stimulating electrodes. Ventral roots SI, L7 and 

L6 were cut and the SI and L7 ventral roots were mounted on a stimulation 

electrode.

Recording

Intracellular recordings were made from antidromically identified 

motoneurones in the L7/S1 spinal segment using conventional glass 

microelectrodes filled with 2M KCH3S 04 (resting membrane potentials greater 

than -60 mV, spike height greater than 70 mV). Monosynaptic la excitatory
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postsynaptic potentials (EPSPs) were evoked in these motoneurones by 

stimulation of either the MG or LGS muscle nerves using a stimulus intensity 

supermaximal for activation of la  afferents (usually 2 to 3 x group I threshold). The 

use of supermaximal stimuli ensured that the second stimulus, evoked briefly after 

the first, was of sufficient strength to activate all available la  afferent fibres. To 

reduce problems associated with nonlinear summation of EPSPs only small la 

EPSPs were used (2 to 4 mV in amplitude).

PPF was evoked by recording the response to two paired stimuli separated 

by intervals of 2 to 10 ms. The amount of potentiation was expressed as the 

percentage increase in the peak amplitude of the second EPSP relative to the first 

EPSP. The protocol for evoking PPF is shown in Fig. 5.1. Single and paired EPSPs 

were evoked on alternate sweeps at 1 Hz, stored in separate buffers in a 

microcomputer and averaged. Offline, the response to the first stimulus alone (Fig. 

5. Iß) was digitally subtracted from that containing the response to the paired 

stimuli (Fig. 5.L4), leaving the response to the second stimulus alone (Fig. 5.1C). 

The peak amplitude of the first and second EPSPs were determined and the 

increase in the amplitude of the second EPSP relative to the first expressed as a 

percentage. The individual EPSPs evoked by the first and second stimuli during 

PPF (Fig. 5.1ß,C) have been plotted together in Fig. 5.ID and show that in this 

example the amplitude of second EPSP was increased by 13% relative to the first.

Presynaptic inhibition of EPSPs was evoked by prior conditioning 

stimulation of the PBSt muscle nerve. This conditioning PBSt stimulation was 

composed of a train of 2 to 14 stimuli evoked at 300 Hz, 2 x group I threshold, 

initiated 50 ms prior to la EPSPs and repeated at one second intervals (see 

Chapter four, Fig. 4.1 and 4.2). By changing the number of stimuli applied to the 

PBSt muscle nerve it was possible to vary the amount of presynaptic inhibition of a 

particular la  EPSP (Eccles et al. 1961a). Alternate records of conditioned and 

unconditioned EPSPs were stored in separate buffers in a microcomputer and 

averaged. As the conditioned EPSP was often superimposed on the repolarising



A

D

1 mV

4 ms

Fig. 5.1. Protocol used to evoke paired-pulse facilitation. .4, the response in a MG 

motoneurone to paired stimuli (3 ms interval) of the MG muscle nerve. B, the 

response in the same motoneurone to a single stimulus to the MG muscle nerve. C, 

the response to the second stimulus alone, obtained following digital subtraction of 

trace B from trace A. D, trace B and C shown together. The second EPSP was 

potentiated in amplitude by 13% relative to the first.
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phase of an inhibitory postsynaptic potential (IPSP), a linear, sloping baseline was 

used in an attempt to overcome the distortion of the conditioned EPSP caused by 

the repolarising IPSP. The amount of presynaptic inhibition is expressed as the 

percentage decrease in the peak amplitude of la EPSPs produced by the 

conditioning PBSt stimulation.

The effect of presynaptic inhibition on PPF was determined by recording 

the response to alternate single and paired stimuli evoked 50 ms after the initiation 

of the conditioning PBSt stimulation. The response to the first stimulus was then 

subtracted from the response during the paired stimuli. The peak amplitude of this 

second EPSP during presynaptic inhibition was then compared to the amplitude of 

the first EPSP during presynaptic inhibition (see Results).

Results

Paired-pulse facilitation

When a second EPSP was evoked briefly after the first EPSP its amplitude 

was often increased. An example of this is shown in Fig. 5.1. Here, the amplitude 

of the second EPSP evoked by stimulation of the MG muscle nerve 3 ms after the 

first stimulus was potentiated, in this case by 13%. Potentiation of the second 

EPSP was not always observed (see also Hirst et al. 1981) and ranged from zero to 

22 %, using stimulus intervals between the first and second EPSPs of 2 to 4 ms. 

The average percentage increase in the amplitude of the second EPSP during PPF 

was 11 ± 2 % (±S.E.M., « = 10). This average value for the amount of PPF of 

compound la EPSPs is very similar to that observed by Hirst, Redman and Wong 

(1981) during PPF of single fibre la EPSPs.

The second EPSP usually decayed faster than the first (Fig. 5.1). The most 

likely explanation for this is that during PPF the supermaximal stimulus used 

activates a polysynaptic inhibitory pathway which increases the rate of decay of the 

response to the paired stimulus. If this inhibition was active during the peak of the 

second EPSP it could decrease the amplitude of this EPSP, decreasing the amount
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of PPF. The average amount of PPF of the compound EPSPs in the present study 

was not, however, significantly different from that found under similar 

experimental conditions using single fibre EPSPs (Hirst et al. 1981). As single fibre 

EPSPs would not be expected to cause activation of polysynaptic inhibitory 

pathways, this suggests that polysynaptic inhibition probably has little effect on the 

amount of PPF of the peak amplitude of compound la EPSPs .

The amount of potentiation of the second EPSP during PPF was dependent 

on the interval between the first and the second EPSPs. An example of the effect 

of changing the delay between the first and second EPSPs on the percentage 

increase in the peak amplitude of the second EPSP is shown in Fig. 5.2. In 

agreement with previous work on PPF at the la afferent/motoneurone synapse by 

Curtis and Eccles (1960), as the delay between the first and second EPSPs was 

increased the amount of PPF of the second EPSP decreased, the maximum 

amount of PPF occurring for separations between the first and second EPSPs of 

only a few milliseconds.

Paired-pulse facilitation and presynaptic inhibition

The main observation from the present study was that during presynaptic 

inhibition PPF was enhanced. An example of this is shown in Fig. 5.3. In the 

absence of any presynaptic inhibition the second EPSP, evoked at a delay of 2 ms, 

was increased in amplitude by 11% (Fig. 5.3/4). During presynaptic inhibition, 

which caused a 24% decrease in the amplitude of the first EPSP, the percentage 

increase in the amplitude of the second EPSP was 33% (Fig. 5.3B). Increasing the 

amount of presynaptic inhibition by increasing the number of conditioning stimuli 

applied to the PBSt muscle nerve caused an even greater increase in the amount of 

PPF of the second EPSP. Following a 44% decrease in the first EPSP during 

presynaptic inhibition the percentage increase in the second EPSP was 55% (Fig. 

5.3C).

The pooled data on the effect of different amounts of presynaptic inhibition 

on the percentage increase in the second EPSP is shown in Fig. 5.4. Fig. 5.4/4
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Fig. 5.4. The effect of presynaptic inhibition on paired-pulse facilitation (PPF). A, 

a schematic diagram of PPF in the absence (control) and during presynaptic 

inhibition. The amplitudes of the first and second EPSPs are a and a' in the 

absence of presynaptic inhibition b and b' during presynaptic inhibition. B, the 

relationship between the percentage change in the first EPSP during presynaptic 

inhibition, (b/a - 1) x 100, and the percentage increase in the second EPSP relative 

to the first during PPF, (b '/b  - 1) x 100.
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shows a schematic diagram of PPF in the absence (control) and during presynaptic 

inhibition. The percentage change in the amplitude of the first EPSP during 

presynaptic inhibition is given by:

(b/a - 1) x 100 ......1

The percentage increase in the second EPSP relative to the first during PPF is 

given by:

(b '/b  - 1) x 100 ......2

Fig. 5.45 plots the relationship between equation 1 and equation 2. Fig. 5.45 

clearly shows that as the amplitude of the first EPSP is decreased during 

presynaptic inhibition the amount of PPF is increased, i.e. there is an inverse 

relationship between the size of the first EPSP during presynaptic inhibition and 

the amount of PPF.

It was also of interest to investigate how effective presynaptic inhibition was 

during PPF. This is shown in Fig. 5.5, where the relationship between the 

percentage decrease in the first EPSP during presynaptic inhibition has been 

plotted against the percentage decrease in the second EPSP during presynaptic 

inhibition. Fig. 5.5v4 again shows a schematic diagram of PPF in the absence 

(control) and during presynaptic inhibition. The percentage decrease in the first 

EPSP during presynaptic inhibition is given by:

(1 - b /a) x 100 ......3

The percentage decrease in the second EPSP during presynaptic inhibition is given 

by:

(1 -  b ' / a ' ) x l 0 0 4



A
CONTROL PRESYNAPTIC INHIBITION

B

% decrease in first EPSP during presynaptic inhibition 

= (1 - b /a )x100

Fig. 5.5. The effectiveness of presynaptic inhibition during paired-pulse facilitation 

(PPF). A , a schematic diagram of PPF in the absence (control) and during 

presynaptic inhibition. The amplitudes of the first and second EPSPs are a and a' 

in the absence of presynaptic inhibition b and b' during presynaptic inhibition. B, 

the relationship between the percentage decrease in the first EPSP during 

presynaptic inhibition, (1 - b/a) x 100, and the percentage decrease in the second 

EPSP during presynaptic inhibition, (1 - b '/a ')  x 100. The diagonal line has a 

slope of 1.
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Fig. 5.5B plots the relationship between equation 3 and equation 4. If there was no 

difference in the ability of presynaptic inhibition to decrease the first and second 

EPSPs during PPF, then the points should lie on or close to the diagonal line which 

has a slope of 1. The finding that all the points lie below this line shows that 

presynaptic inhibition is less effective in reducing the potentiated second EPSP 

during PPF.

Discussion

The main finding from this study is that PPF is enhanced during presynaptic 

inhibition of compound la EPSPs. The interaction between presynaptic inhibition 

and PPF suggests that both presynaptic inhibition and PPF are acting at a common 

site. As PPF is thought to act presynaptically to increase transmitter release 

(Castillo & Katz, 1954; Dudel & Kuffler, 1961a; Kuno, 1964; Zucker, 1973; Hirst et 

al. 1981; Lin & Faber, 1988) this would suggest that presynaptic inhibition is also 

acting presynaptically to modify transmitter release, as has been suggested by many 

previous authors (Frank & Fuortes, 1957; Eccles et al. 1961a; Kuno, 1964; Eide et 

al. 1968; Clements et al. 1987; McCrea et al. 1990). In addition, as the amount of 

PPF at many synapses has been shown to be altered by changes that directly affect 

calcium influx into presynaptic terminals (Lundberg & Quilisch, 1953; Castillo & 

Katz, 1954; Takeuchi, 1958; Thies, 1965; Rahamimoff, 1968; Maliart & Martin, 

1968; McNaughton, 1980; Parnas et al. 1982; Harris & Cotman, 1983; Dudel, 1989; 

Muller & Lynch, 1989; Trombley & Westbrook, 1990), the interaction between 

presynaptic inhibition and PPF at the la afferent/motoneurone synapse suggests 

that presynaptic inhibition may also act to modulate calcium influx.

Other possible explanations

It is possible that the increase in PPF observed during presynaptic 

inhibition does not involve an interaction between the mechanisms underlying PPF
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and presynaptic inhibition. For example, if nonlinear summation of the second 

EPSP occurs during PPF, then it could be argued that a decrease in the amplitude 

of the first EPSP during presynaptic inhibition may reduce the amount of 

nonlinear summation of the second EPSP. This would result in an increase in PPF 

during presynaptic inhibition. However, the amount of nonlinear summation of the 

second EPSP is probably only small, as the voltage change that occurs in the 

dendrites during the first EPSP will decay rapidly back to the resting level in only a 

few milliseconds (i.e. its time course will be much briefer than recorded at the 

soma), making it impossible for nonlinear summation of the second EPSP to occur 

unless the second EPSP is evoked almost similtaneously with the first EPSP 

(Ianslek & Redman, 1973). In addition, previous experimental evidence has shown 

that nonlinear summation of different compound la EPSPs occurs infrequently 

(Burke, 1968). On the occassions when nonlinear summation was observed Burke 

(1968) found that it could be removed by seperating the two compound la EPSPs 

by only a few milliseconds. A recent theoretical study also suggests that nonlinear 

summation will have only a small effect on the amplitude of compound la EPSPs 

(Segev, Fleshman & Burke, 1990).

Another possible explanation for the increase in PPF during presynaptic 

inhibition is that it could be due to the activation of polysynaptic pathways. If 

during presynaptic inhibition, polysynaptic excitatory input to the motoneurone 

was enhanced or inhibitory input reduced, this could lead to a greater increase in 

the second EPSP.

An increase in the activation of a polysynaptic excitatory pathway during 

presynaptic inhibition seems unlikely as the afferent input to such a pathway would 

be expected to be reduced during presynaptic inhibition. A reduction in 

polysynaptic inhibition of the second EPSP during presynaptic inhibition is 

possible. The second EPSP evoked during PPF usually decayed faster than the 

first, which suggests that some polysynaptic inhibition occured during the decay 

phase of the second EPSP. It is conceivable that during presynaptic inhibition this
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polysynaptic inhibition could be reduced due to reduced afferent input and this 

could lead to an increase in PPF during presynaptic inhibition.

However, the time course of the second EPSP during presynaptic inhibition 

was not significantly different from the time course of the second EPSP in the 

absence of presynaptic inhibition. The 10 to 90% rise time and duration at half 

peak amplitude (half-width) of the second EPSP in the absence of presynaptic 

inhibition was 0.57 ± 0.05 ms and 3.8 ± 0.32 ms (±S.E.M., n = 10) respectively, 

compared to 0.55 ± 0.02 ms and 3.9 ± 0.27 ms (±S.E.M., « = 15) during presynaptic 

inhibition (percentage decrease in first EPSP ranged from 8 to 53%). As the half­

width of the second EPSP should be particularly sensitive to the changes in the 

level of polysynaptic excitation or inhibition, this finding suggests that presynaptic 

inhibition does not significantly change the level of polysynaptic input to 

motoneurones during the second EPSP.

Comparisons with paired-pulse facilitation in low calcium or high magnesium

PPF is enhanced at many synapses in vitro, when the probability of 

transmitter release is lowered by lowering the extracellular calcium concentration 

or raising the extracellular magnesium concentration (Lundberg & Quilisch, 1953; 

Thies, 1965; Rahamimoff, 1968; Maliart & Martin, 1968; McNaughton, 1980; 

Parnas et al. 1982; Harris & Cotman, 1983; Dudel, 1989; Muller & Lynch, 1989; 

Trombley & Westbrook, 1990). Under these conditions calcium influx into 

presynaptic nerve terminals would be expected to be reduced. By analogy, the 

increase in PPF observed in the present study during presynaptic inhibition 

suggests firstly, that presynaptic inhibition is associated with a decrease in the 

probability of transmitter release and secondly, that presynaptic inhibition of la 

EPSPs is acting to reduce calcium influx into la afferent terminals. Quantal 

analysis of synaptic transmission during presynaptic inhibition also suggests that 

presynaptic inhibition is associated with a decrease in the probability of transmitter 

release (Kuno, 1964; Clements et al. 1987).
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How does a decrease in the probability o f transmitter release lead to an increase in 

paired-pulse facilitation ?

It is thought that during PPF two opposing factors act to modulate 

transmitter release during the second response; residual calcium in the presynaptic 

nerve terminal (Katz & Miledi, 1965, 1968), leading to an increase in the 

probability of transmitter release and ‘synaptic depression’ (Castillo & Katz, 1954; 

Takeuchi, 1958; Thies, 1965; Mallart & Martin, 1968; Kusano & Landau, 1975; 

Zucker, 1989), leading to a decrease in the probability of transmitter release. As 

the amount of synaptic depression of the second response directly correlates with 

the amount of transmitter released during the first response, synaptic depression 

has been attributed to depletion of the ‘immediately avaliable store of releasable 

transmitter’ (Thies, 1965; Mallart & Martin, 1968; Kusano & Landau, 1975; 

Zucker, 1989). An increase in PPF could then occur if the probability of 

transmitter release is lowered as this would reduce synaptic depression, allowing 

increased potentiation of the second EPSP due to the presence of residual calcium. 

Evidence for synaptic depression at the la afferent/motoneurone synapse has been 

observed previously (Curtis & Eccles, 1960; Kuno, 1964).

A formal representation o f the effect o f residual calcium and synaptic depression on 

paired-pulse facilitation

If transmitter release at different release sites at the la 

afferent/motoneurone synapse occurs independently (Edwards et al. 1976a,6), 

then for a population of n release sites with an average probability of transmitter 

release p, the average number of release sites that release transmitter will be np 

and the average number which do not release will be n{ 1 - p). At la afferent 

synapses the value of p  is thought to be different at different release sites (Jack, 

Redman & Wong, 1981; Walmsley, Edwards & Tracey, 1988). An average value of 

p  for all release sites can, however, be obtained if a large number of release sites 

are sampled over many trials. At the la afferent/motoneurone synapse this 

average value of p  will be directly related to the amplitude of the compound la
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EPSP, assuming that there is linear summation of quantal events and that the 

quantal size recorded at the soma is the same for all release sites (Jack et al. 1981).

The probability of release on the second trial will depend on the previous 

history of transmitter release. Following transmitter release on the first trial, the 

probability of transmitter release on the second trial will be increased due to the 

presence of residual calcium and decreased due to depletion of the releasable 

store of transmitter (synaptic depression). If these two factors are independent 

(Maliart & Martin, 1968), then the probability of transmitter release on the second 

trial will be determined by the combined effects of residual calcium and synaptic 

depression. If there is no transmitter release on the first trial, then the probability 

of transmitter release on the second trial will be determined only by the increased 

probability of transmitter release due to residual calcium. This is shown 

schematically in Fig. 5.6. At some time t after the first trial curve A  gives the 

increased probability of transmitter release on the second trial due to residual 

calcium, while curve B gives the decreased probability of transmitter release on the 

second trial due to synaptic depression. The curve labelled A + B gives the 

combined change in the probability of transmitter release due to residual calcium 

and synaptic depression. The probability of release on the first trial is /?. If there is 

release on the first trial then the probability of release on the second trial is given 

by /?', where p '  = p  + A /?'. If there is no release on the first trial then the 

probability of release on the second trial is given by/?", wherep" = p  + A/?".

The values of/?' and/?" will be different for each release site. However, if a 

large number of release sites are sampled over many trials an average value of p ' 

and p" can be obtained. The value of /?' will depend on the magnitude of the 

effects of synaptic depression and residual calcium on the probability of 

transmitter release on the second trial and may be greater than or less than the 

probability of transmitter release on the first trial, p. In reality, the duration of the 

synaptic depression far exceeds the increase in the probability of release due to 

residual calcium (Thies, 1965; Mallart & Martin, 1968; Kusano & Landau, 1975).
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An expression can now be derived describing the amount of facilitation for 

different values of p. If the average number of release sites that release transmitter 

on the first trial is np and the average number of release sites that do not release 

transmitter on the first trial is n(l - p), then the average number of release sites 

that release transmitter on the second trial will be:

npp' + n( 1 - p)p"

Assuming the quantal size recorded at the soma is the same for all release sites 

and that there is no nonlinear summation of quantal events, the amount of 

facilitation (F) of the second EPSP can be expressed as the ratio of the number of 

release sites that release transmitter during the second EPSP compared to the 

number of release sites that release transmitter during the first EPSP. i.e.

F = [npp' + n( 1 -p)p" ] / np

* f  = [p p ’ + ] j p

* F = ( p " / p ) + p ’ - p"

This equation has been graphed in Fig. 5.7 and predicts that the amount of 

facilitation (F) of the second EPSP will be inversely related to the probability of 

transmitter release (p). This type of relationship is very similar to that found 

experimentally by others as the probability of transmitter release is altered over a 

large range by changing the extracellular calcium or magnesium concentrations 

(see Rahamimoff, 1968; Mailart & Martin, 1968; Parnas et al. 1982; Dudel, 1989). 

It is also similar to the relationship between the amount of facilitation of the 

second EPSP and the amount of presynaptic inhibition of the first EPSP shown in 

Fig. 5.4. As the amplitude of the first EPSP was decreased during presynaptic 

inhibition the amount of facilitation of the second EPSP increased. However, the



Fig. 5.7. A schematic grapical representation of the 

relationship:

F = ( p " / p ) + p '  - p

0 < p <1; at p = 1, F = p '
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relationship between the amount of facilitation and the amount of presynaptic 

inhibition shown in Fig. 5.4 appeared to be linear rather than hyperbolic, as 

predicted by the above equation. There are a number of possible explanations for 

this apparent discrepancy. Firstly, the range of possible p ’s examined in the present 

study may be quite small. Even a -50%  reduction in the first EPSP, suggesting a 

50% reduction in p (however, see below), will represent only a small absolute 

change in p  if the resting probability of transmitter release is low, as is thought to 

be the case at the la afferent/motoneurone synapse (Clamann, Mathis & Luscher, 

1989). Secondly, as the amount of presynaptic inhibition was increased, by 

increasing the number of conditioning stimuli applied to the PBSt muscle nerve, its 

is possible that some of the observed inhibition in the first EPSP occurs due to 

postsynaptic rather than presynaptic inhibition. This would lead to an over­

estimation of the decrease in p for a given amount of facilitation, converting the 

hyperbolic relationship shown in Fig. 5.7 into one that more closely resembles a 

straight line, as seen in Fig. 5.4.

The effectiveness of presynaptic inhibition during paired-pulse facilitation

The present study has also shown that during PPF presynaptic inhibition of 

the second EPSP is reduced (Fig. 5.5). This finding, which could have functional 

implications during high frequency activation of la  afferents, is contrary to a 

related finding by Lev-Tov, Fleshman and Burke (1983) who found that during 

posttetanic potentiation, presynaptic inhibition was enhanced. At the la 

afferent/motoneurone synapse posttetanic potentiation and PPF are thought to 

involve similar mechanisms (Hirst et al. 1981). This makes it difficult to reconcile 

the findings of Lev-Tov, Fleshman and Burke with the results from the present 

study. One possibility is that during posttetanic potentiation the observed 

enhancement in presynaptic inhibition is mediated via a mechanism unrelated to 

the direct effect posttetanic potentiation has on the probability of transmitter 

release. As presynaptic inhibition of la afferent synaptic transmission can be 

evoked by prior activation of the same la afferent fibres (Decandia, Provini &
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Taborikova, 1966, 1967), perhaps the high frequency train used by Lev-Tov, 

Fleshman and Burke to evoke posttetanic potentiation (500 Hz for 20 seconds) 

also potentiates the pathways mediating presynaptic inhibition.

Conclusion

The main findings from this study are three fold. Firstly, the increase in PPF 

during presynaptic inhibition provides further evidence that presynaptic inhibition 

is associated with a reduction in the probability of transmitter release. Secondly, 

presynaptic inhibition was found to be less effective in reducing the amplitude of 

the second EPSP during PPF and thirdly, by analogy with the increase in PPF seen 

at other synapses under conditions that would be expected to reduce calcium 

influx, the increase in PPF observed during presynaptic inhibition supports the 

idea that presynaptic inhibition of la EPSPs is associated with a reduction in 

calcium influx into la afferent terminals.
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Chapter six:

GENERAL DISCUSSION

This thesis has focused on some aspects of presynaptic and postsynaptic 

inhibition in the mammalian CNS. These two types of inhibition will shape 

excitation in different ways. Postsynaptic inhibition at the soma will act to inhibit 

all excitatory inputs to a neurone, whereas presynaptic inhibition will selectively 

inhibit only those excitatory inputs which have axo-axonic synapses on their 

terminals.

The cell bodies of all excitatory neurones within the CNS receive 

postsynaptic inhibition; only the excitatory inputs from dorsal root ganglion cells, 

which form part of the peripheral nervous system, do not receive postsynaptic 

inhibition. For this reason, it is perhaps not surprising that axo-axonic synapses are 

located exclusively on the nerve terminals of these cells. In the absence of the 

ability of the CNS to selectively inhibit the monosynaptic excitatory input from 

primary afferent fibres via postsynaptic inhibition, nature has devised an ingenious 

method to inhibit this input presynaptically.

In the mammalian spinal cord postsynaptic inhibition is mediated primarily 

by the neurotransmitter glycine, whereas presynaptic inhibition, at least of la 

afferent fibres, is mediated by the neurotransmitter GABA. In order to more fully 

understand postsynaptic inhibition a detailed study was made of glycinergic 

postsynaptic inhibition in lumbar spinal motoneurones. The results from this study 

were described in Chapter three. The main findings were 1) that the time course of 

the inhibitory synaptic current underlying glycinergic postsynaptic inhibition was 

brief, with a rise time of ~0.4 ms and decay time constant of -0 .8  ms at resting 

membrane potentials (37°C), and 2) that the rate of decay of glycinergic IPSCs was 

slowed by depolarisation. The time constant of decay of IPSCs was found to
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increase e-fold for a 91 mV depolarisation. This later result was interpreted as a 

voltage dependence of the glycine channel open time.

The voltage dependence of the decay of glycinergic inhibitory synaptic 

currents, together with the direct effect of the membrane potential on the peak 

inhibitory current, will act to enhance the strength of postsynaptic inhibition as the 

membrane potential of the postsynaptic cell approaches threshold.

The pharmacology of presynaptic inhibition of transmitter release from the 

terminals of la afferent fibres was described in Chapter four. Of particular interest 

was the role of GABAa and GABAß receptors in presynaptic inhibition. Specific 

pharmacological blockers were applied locally by iontophoresis. The main finding 

from this study was that presynaptic inhibition of transmitter release at the la 

afferent/motoneurone synapse is mediated primarily through the activation of 

GABAa receptors.

Activation of GABAa receptors during presynaptic inhibition will result in 

an increase in Cl" conductance of la afferent terminals. This increase in membrane 

conductance would be expected to shunt the presynaptic action potential in la 

afferent nerve terminals, decreasing its amplitude and/or duration. A smaller 

presynaptic action potential would open fewer voltage activated calcium channels, 

which would result in reduced calcium influx and decreased transmitter release.

There are other possibilities. It has been known for some time that 

presynaptic inhibition occurs in conjunction with depolarisation of primary afferent 

fibres. This depolarisation, which presumably results from the efflux of Cl" ions 

following the activation of GABAa receptors, may also contribute to presynaptic 

inhibition. As discussed in Chapter one this could occur via inactivation of voltage 

activated calcium or sodium channels. At present it is not known whether either of 

these mechanisms contribute to presynaptic inhibition.

An investigation on the interaction between paired-pulse facilitation and 

presynaptic inhibition of la EPSPs was described in Chapter five. The main finding 

from this study was that paired-pulse facilitation was enhanced during presynaptic 

inhibition of compound la EPSPs. This finding is analogous to that seen at other
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synapses in vitro, when the probability of transmitter release is lowered by reducing 

the extracellular calcium concentration.

The results from this study provided further evidence that presynaptic 

inhibition is associated with a reduction in the probability of transmitter release. 

By analogy with the effects of reduced calcium influx on paired-pulse facilitation at 

other synapses, this study supported the idea that presynaptic inhibition is 

associated with a decrease in calcium influx into primary afferent terminals.

Suggestions for future experiments

The experiments on unitary glycinergic IPSCs were technically difficult. An 

alternative approach would be to use an in vitro preparation. The most attractive 

possibility would be to use whole cell recording techniques to record spontaneous 

glycinergic IPSCs from motoneurones in spinal cord slices (Edwards, Konnerth, 

Sakmann & Takahashi, 1989; Blanton, Lo Turco & Kriegstein, 1989; Takahashi, 

1990). Pharmacological blockers could be used to isolate only those spontaneous 

events due to the release of glycine. To reduce problems due to spontaneous 

events which are generated at locations not adequately space clamped, TTX could 

be added to the external medium and hypertonic saline applied to the soma of 

motoneurones from an extracellular pipette. This would increase the frequency of 

spontaneous quantal events generated near the soma (Bekkers & Stevens, 1989).

A more difficult, but potentially rewarding experiment would be to record 

intracellularly from glycinergic interneurones in contact with motoneurones. 

Quantal analysis of IPSCs evoked in motoneurones following activation of single 

glycinergic intemeurones would help to elucidate the junctional mechanisms 

operating between inhibitory interneurones and motoneurones in the spinal cord. 

Both cells could be filled with different fluorescent dyes and the morphology of the 

synaptic connections between them determined using confocal microscopy.

There are still many unanswered questions relating to presynaptic 

inhibition. While the results presented in Chapter four showed that at the la 

afferent/motoneurone synapse this inhibition was mediated primarily by GABAa
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receptors, it is possible that different receptors may be involved in mediating 

presynaptic inhibition at axo-axonic synapses on terminals of other primary 

afferents. A study of the pharmacology of presynaptic inhibition of cutaneous 

afferent fibres in the dorsal horn could prove interesting. It might be expected that 

the long term regulation of transmitter release, for example during suppression of 

tonic cutaneous input to the spinal cord, may be mediated via receptors coupled to 

second messenger systems. Perhaps GABAa receptors mediate presynaptic 

inhibition of la afferent transmission, while GABAß receptors mediate presynaptic 

inhibition of input from cutaneous afferents. In favour of such a proposal is the 

finding that the highest density of GABAß receptors in the spinal cord is on the 

terminals of primary afferents in the dorsal horn (Price et al. 1984; Price et al. 

1987).

One of the major problems encountered in the pharmacological 

experiments on presynaptic inhibition described in Chapter four was that the 

application of drugs by iontophoresis resulted in nonuniform, unknown 

concentrations within the spinal cord. One way around this would be to bath apply 

known concentrations of drugs using an in vitro preparation. The difficulty here is 

to find an in vitro preparation of presynaptic inhibition. Possibly the hemisected 

neonatal rat spinal cord preparation with attached hind limb nerves could be used 

for this purpose.

As mentioned earlier it is unknown how activation of GABAa receptors 

leads to presynaptic inhibition. While presynaptic inhibition will undoubtably be 

mediated, at least in part, by an increase in conductance of la afferent terminals, 

the possibility that depolarisation of la afferent fibres also reduces transmitter 

release cannot be ruled out. One way to investigate the contribution of 

depolarisation of primary afferents to presynaptic inhibition would be to monitor 

presynaptic inhibition before and after the removal of this depolarisation by 

abolishing the gradient for Ch efflux from primary afferent terminals.

Using an in vitro preparation this could be achieved in two ways. Either by 

the application of compounds that inhibit active transport of Cl" ions, causing
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passive redistribution of Cl" ions across the membrane of primary afferent fibres, 

or alternatively by raising the extracellular Cl' concentration.
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