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Abstract

We study the behaviour of (non-convex) solutions of a large class of fully non-linear cur-
vature flows; specifically, we consider the evolution of closed, immersed hypersurfaces of
Fuclidean spaces whose pointwise normal speed is prescribed by a monotone function of
their curvature which is homogeneous of degree one.

It is well-known that solutions of such flows necessarily suffer finite time singularities.
On the other hand, under various natural conditions, singularities are characterised by
a curvature blow-up. Our first main area of study concerns the asymptotic behaviour
of the curvature at a singularity. We first prove a quantitative convexity estimate for
positive solutions (that is, solutions moving with inward normal speed everywhere posi-
tive) under one of the following additional assumptions: either the evolving hypersurfaces
are of dimension two, or the flow speed is a convex function of the curvature. Roughly
speaking, the convexity estimate states that, for positive solutions, the normalised Wein-
garten curvature operator is asymptotically non-negative at a singularity. We then prove
a family of cylindrical estimates for flows by convex speed functions. Roughly speaking,
these estimates state that, for (m + 1)-positive solutions (that is, solutions with (m 4+ 1)-
positive Weingarten curvature), the Weingarten curvature is asymptotically m-cylindrical
at a singularity unless it becomes m-positive. The convexity and cylindrical estimates
yield a detailed description of the possible singularities which may form under surface
flows and flows by convex speeds. Moreover, they are uniform across the class of solutions
with given dimension, flow speed, and initial volume, diameter and curvature hull, which
should make them useful for applications such as the development of flows with surgeries.

Our second main area of study concerns the development, in the fully non-linear setting,
of the recently discovered non-collapsing phenomena for the mean curvature flow; namely,
we prove that embedded solutions of flows by concave speeds are interior non-collapsing,
whilst embedded solutions of flows by convex or inverse-concave speeds are ezterior non-
collapsing. The non-collapsing results complement the above curvature estimates by ruling
out certain types of asymptotic behaviour which the curvature estimates do not. (This
is mainly due to the non-local nature of the non-collapsing estimates.) As a particular
application, we show how non-collapsing gives rise to a particularly efficient proof of the
Andrews—Huisken theorem on the convergence of convex hypersurfaces to round points

under such flows.
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1. Introduction

One of the oldest and most natural questions in Riemannian geometry asks how the
curvature of a manifold, a local invariant, is related to its topology, a global invariant.
Analogously, one can ask how the extrinsic curvature of a submanifold is related to its
topology, and the topology of its ambient space. A natural approach to studying such
questions is to allow submanifolds to change shape with velocity prescribed in some way
by their curvature. One motivation for doing so is that, in many cases, the resulting
evolution equations (referred to as curvature flows) are parabolic; this guarantees that
solutions exist and that the evolving submanifold ‘improves’: diffusion tends to make it
smoother and homogenize its curvature (at least for a short time). One then hopes that
the solution exists long enough to converge to something well-understood, and thereby
provide information about the initial submanifold and the ambient space. Unfortunately,
however, singularities will generally occur before this can happen. Understanding and
overcoming singularity formation is the primary challenge in carrying out this program.

In this thesis, we will consider the evolution of hypersurfaces of Euclidean spaces.
More precisely, given a smooth, connected manifold .Z" of dimension n, we study smooth
one-parameter families of smooth, complete immersions 2 (-, t) : .#™ — R™"! which solve
an equation of the form

0X
S = —Fla v, (CF)

where v(+,t) is a unit normal field for 27(-,¢) and F' is determined by

F(z,t) = f(R(z,1))

for some smooth function f:I' C R” — R of K(-,t) = (k1(-,t),...,kn(-,t)), the n-tuple of
principal curvatures of Z7(,t).
We will generally require that the speed defining function f : I' C R™ — R satisfy

additional conditions, the most important of which are as follows:
Conditions 1 (Admissibility Conditions).

(i) Symmetry: f is a symmetric function.

(ii) Parabolicity: f is monotone increasing in each variable.
(i4i) Homogeneity: f is homogeneous of degree one.

(iv) Positivity: f > 0.



2 1. Introduction

We will refer to a smooth function f : I' € R™ — R satisfying Conditions [1] (i)—(ii)
as an admissible speed function for (CF]) (or simply an admissible speed). If, in addition,
holds, then f will be deemed a positive admissible speed function for (CF]). We shall
discuss the purpose of these conditions in

Convex hypersurfaces

Perhaps the first curvature flow to receive significant attention was the mean curvature
flow, under which the velocity at each point of the submanifold is given by the mean
curvature vector at that point. Huisken (1984)) proved that smooth, compact, convex initial
hypersurfaces (of dimension at least two) of Euclidean spaces admit a unique solution to
this flow, which shrinks to a point in finite time, becoming asymptotically round in the
process. He then showed that an appropriate rescaling of the solution about the final
point yields a family of hypersurfaces which converges smoothly to a round sphere. The
corresponding result for smooth, closed, embedded, convex curves in the plane was proved
soon after by Gage and Hamilton (1986)) (note that, without the embeddedness condition,
the Gage-Hamilton statement is false).

After Huisken’s result appeared, a variety of other curvature flows were studied, and
similar behaviour was observed: Chow (1985), building on work of Chou (Tso |1985),
showed that convex hypersurfaces of R"*! evolving by the n-th root of the GauB curvature
also shrink to points in finite time, and become asymptotically round in the process. He
also observed this behaviour for flows by the square root of the scalar curvature, so long
as the initial hypersurface is already sufficiently round (in the sense of an explicit pinching
condition for the principal curvatures) (Chow [1987). These results were later generalized
and improved by Andrews (1994a; 2007), who studied flows by degree one homogeneous
functions of the curvature which satisfy one of a list of natural additional conditions.
Moreover, Andrews later found that flows of surfaces (that is, when the spatial dimension
is two) by any parabolic, degree one homogeneous speed function will contract convex
initial data to round points (Andrews|2010). Andrews, McCoy, and Zheng (2013) showed
that this latter result fails in higher dimensions. Moreover, by constructing and studying
counterexamples, they were able to formulate rather sharp conditions under which the

behaviour described by Huisken’s theorem should hold.

Non-convex hypersurfaces

If the initial hypersurface is not convex, much less is known about the long term behaviour
of solutions of equation ; although, the one dimensional case is now well-understood:
Every smooth, closed, embedded curve evolves to become convex, thereafter shrinking
to a round point according to the Gage-Hamilton Theorem (Grayson 1987) (see also
the more recent proofs by Hamilton (1995c¢)), Huisken (1998), and Andrews and Bryan

(2011))). In higher dimensions, the situation is not so straightforward, since, in general,



the solution hypersurfaces will become singular before becoming convex (of course, this
must be the case, since in higher dimensions there are non-convex hypersurfaces which are
not diffeomorphic to a sphere). On the other hand, Huisken and Sinestrari (1999bj 1999a;
2009) and White (2000 [2003) have developed a detailed structure theory for solutions
of mean-conver mean curvature flow; that is, mean curvature flow of hypersurfaces with
positive mean curvature. In particular, Huisken and Sinestrari have developed a surgery
program to allow the continuation of compact, mean convex mean curvature flows through
singularities. This program was implemented for 2-convex mean curvature flows (that is,
mean curvature flows of hypersurfaces with smallest two principal curvatures summing
everywhere to a non-negative value) of dimension n > 3. In addition, Brendle and Huisken
(2013)) have recently announced a construction of mean curvature flow with surgery for
flows of surfaces. As a consequence, Huisken and Sinestrari prove that any compact, 2-
convex hypersurface of R"*!, n > 3. is diffeomorphic either to a sphere S™ bounding a
smooth (n + 1)-dimensional disk, or to a connected sum of tori S"~! x S! bounding a
smooth (n + 1)-dimensional handlebody (Huisken and Sinestrari |[2009)).

In order to define a flow-with-surgery, one requires a detailed knowledge of the geometry
of the hypersurface in a neighbourhood of a singular point, close to the singular time.
The main ingredients here are the ‘convexity estimate’, (Huisken and Sinestrari (1999a,
Theorem 1.1). Cf. White (2003, Theorem 1)), and the ‘cylindrical estimate’ (Huisken and
Sinestrari 2009, Theorem 1.5), as well as a gradient estimate (Huisken and Sinestrari 2009,

Theorem 1.6) which depends only locally on the value of the mean curvature.

The convexity estimate

Roughly speaking, the convexity estimate asserts that the hypersurface becomes (weakly)
convex at any point at which the mean curvature becomes large. In particular, it implies
that any limit of rescalings of the flow about a singularity must be a convex solution of the
mean curvature flow. This, together with the monotonicity formula of Huisken (1990) and
the Harnack inequality of Hamilton (1995b)) gives rise to a rather complete description of

singularities in the positive mean curvature case.

Cylindrical estimates

The Huisken—Sinestrari cylindrical estimate applies to 2-convex solutions of the mean
curvature flow, and states that the hypersurface becomes either convex, or cylindrical (in
that the Weingarten map is close to the Weingarten map of a cylinder R x S™~! of small
radius) at any point at which the mean curvature becomes large. This estimate refines
the classification of singular profiles described above, such that the only possibilities are
either a shrinking sphere, S, a strictly convex translating solution, or a shrinking cylinder,
S x R.

Motivated by these results, our main goal is to investigate the singular behaviour of

(non-convex) solutions of more general curvature flows. This is an important step towards
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extending the Huisken—Sinestrari program to allow a larger class of evolution equations,
which is of great interest since it would increase the geometric and topological applications.
Let us conclude with an overview of the contents of this thesis, including a brief

description of our main results.

Overview

We begin, in with some background material. In particular, we prove some basic
results about curvature functions, which provide the natural class of flow speeds, and
time-dependent immersions, which provide the natural class of solutions.

In we will study the local properties of solutions of . We shall see that the
parabolicity condition, Conditions , guarantees the initial value problem for (CF)) is
well-posed (Theorem and gives rise to most of the tools we shall employ to study
solutions of , especially the maximum principle.

In §4 we study the global properties of solutions. In general, this problem depends
on the form of the speed function F'; however, the homogeneity condition, Conditions
, already ensures that solutions share some global properties. For example, it ensures
that convex hypersurfaces contract. Homogeneity also ensures that the flow is invariant
under parabolic rescaling (see , which is a useful tool for studying the behaviour
of solutions at a singularity. Finally, by Euler’s theorem for homogeneous functions, the
degree one homogeneity of F' implies that its derivative is homogeneous of degree zero. In
a certain sense, this means that diffusion is equally effective at all scales.

These properties place some restrictions on the long-time behaviour of solutions; how-
ever, it is still possible for solutions to behave quite badly. For example, there are flows
by admissible speed functions which can evolve hypersurfaces to lose higher regularity, or
for which the speed F' can blow-up whilst the hypersurface remains regular (See Andrews,
McCoy, and Zheng 2013| §§5-6). In order to rule this behaviour out, we introduce addi-
tional conditions on the speed function F. We will, at various points, make use of one or

more of the following conditions:
Conditions 2 (Auxiliary conditions).
(v) Surface flows: n = 2.
(vi) Concavity: f is concave.
(vit) Convexity: f is convex.
(viii) Inverse-concavity: f is inverse-concave.
(iz) Preserved cones: The flow (CF|) admits preserved cones.

Note that, although Conditions f will usually be assumed, the Auxiliary Con-
ditions — will only be assumed as need arises. See for a discussion of these

conditions, where we also provide some examples of speeds satisfying them.



The purpose of the auxiliary conditions is two-fold: First, some such condition is
needed in the (scalar and tensor) maximum principle arguments of §4|to show that some
form of initial curvature pinching is preserved under the flow. This ensures that, whilever
the curvature is bounded, the principal curvature n-tuple remains in a compact subset
of the cone of definition of the speed. Second, except in two space dimensions (Andrews
2004)), some concavity condition is required in order to deduce Holder continuity of the
Weingarten curvature using the estimates of Krylov (1982)) and Evans (1982), which is the
bootstrap for the Schauder estimates to deduce higher regularity whilever the curvature
is bounded (see appendix .

In we will study the asymptotic behaviour of solutions where the curvature blows-
up. Since the results of Andrews, McCoy, and Zheng (2013)) already tell a rather complete
story for flows of convex hypersurfaces by degree one homogeneous speeds, we focus our
attention on the behaviour of non-convex hypersurfaces, the understanding of which is far
less developed. The main result of §f]is an asymptotic estimate on the principal curvatures
which shows, for a large class of flows, that the curvature approaches an asymptotically
optimal set near a singularity. More precisely, we shall prove, in a convexity estimate
(Theorem, which shows that, at a singularity, the solution is becoming weakly convex,
and, in a family of cylindrical estimates (Theorem , which show that, if the so-
lution is already (m + 1)-convex, then, at a singularity, it is either becoming m-cylindrical
or strictly m-convex. These estimates lead, in particular, to a detailed infinitesimal de-
scription of singularities for positive solutions of .

Finally, in §6|, we study two new extrinsic quantities related to embedded hypersurfaces:
the interior and exterior ball curvatures. The interior ball curvature is defined at each
point of a (compact) hypersurface as the curvature of the largest ball which is enclosed
by the hypersurface and touches it at that point. The exterior ball curvature is defined
similarly by considering enclosing regions. We will prove that flows by concave speeds
preserve the ratio of the interior ball curvature to the speed, and flows by convex or
inverse-concave speeds preserve the ratio of exterior ball curvature to the speed so long as
the latter is positive. These estimates provide useful information about the formation of
singularities in embedded solutions which complements the curvature estimates described
above. In particular, we are able to give a new, and rather short, proof of a theorem of
Andrews (2007) on the convergence to round points of convex hypersurfaces under flows
by concave, inverse-concave speeds (Theorem .






2. Some background material

Before we begin our study of curvature flows, let us pause to develop a little machinery (and
notation) which allows us to talk more rigorously about solutions of equation . In
we study time-dependent immersions; these are simply smooth maps of the product of a
manifold .# with an interval I into Euclidean space (or, more generally, any Riemannian
manifold) such that fixing the ‘time’ parameter ¢ € I defines an immersion. When we
consider solutions of , we will always mean a smooth time-dependent immersion. It
will be convenient to develop a ‘time-dependent’ hypersurface geometry associated to such
maps; this is the primary purpose of In the direction of ‘spatial’ tangent vectors,
this geometry is simply the standard hypersurface geometry for ‘stationary’ immersions;
however, there are useful additional identities for the ‘temporal’ direction which may be
understood as evolution equations. We shall only consider the case that the ambient
space is Euclidean and the codimension is one, since that is the setting in which we
study the equation . A more detailed discussion of time-dependent hypersurfaces,
which covers the general setting, is developed in the thesis of Baker (2010)). In we
study curvature functions. Given an (time-dependent) immersion, a curvature function
F is a smooth, symmetric function of the principal curvatures. Due to Theorems of
Glaeser (1963) and Schwarz (1975), this is equivalent to prescribing a smooth (base-point
independent) function of the Weingarten curvature. The relationship between the function
F' considered as a function of the Weingarten curvature W and its eigenvalues k; will be
studied. We will conclude by giving precise definitions of Conditions and providing
some examples of speed functions satisfying them.

We assume the reader is already familiar with basic concepts from Riemannian ge-
ometry, for which there are many excellent expositions; for example, the book of Chavel
(1993)). We also recommend the thesis of Baker (2010) and the book of Andrews and
Hopper (2011) for expositions with curvature flows in mind. For some background on the
theory of vector bundles, we recommend the book of Hirsch (1994).

A reader already comfortable with this material may fearlessly skip to Section [3] re-

turning here as need dictates.

2.1 Time-dependent hypersurfaces

Let .#™ be a smooth n-dimensional manifold, I C R an interval, and 2 : .#™ x I — R**!

a smooth time-dependent immersion; that is, 2" is a smooth map such that 27 := 27(-,t)
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is an immersion for each t € I. Observe that the tangent bundle T'(.#Z™ x I) splits into
a direct sum of the spatial tangent bundle & = {{ € T(A# x I) : dt(§) = 0} with
the line bundle R9;. We will subsequently abuse notation by denoting . = & but,
for clarity, we will continue to use the notation & in this section. The spatial tangent
bundle admits an induced geometry akin to the standard sub-Riemannian geometry of a
‘stationary’ immersion, but possesses additional information about the evolution of the
immersions 23 = 27(-,t). It will be useful to spend some time developing this ‘time-
dependent submanifold geometry’ since it will be ubiquitous throughout this thesis. This
will serve both to set down some basic machinery for subsequent ease of application, and
to familiarize the reader with our perhaps unfamiliar notation.

We begin by equipping the pullback bundle 2*TR"! with the pullback metric
# (., .), which is defined on each fibre by

2w, t,u), (z,1,0)) = (2 (2, 1), u), (Z(2,1),0)),

where (-, -) is the metric on TR"*'. Here (z,t,u) and (z,t,v) are elements of
(Z*TR™ 1), 4, so that, by definition of the pullback bundle, (2 (z,t),u) and (2 (z,t),v)
are elements of Ty, nR" .

The pullback bundle also inherits the pullback connection, #D, defined by

De2*V = Dy V

for every ¢ € T(.#" x I) and every pulled-back section 2*V € I'(Z*TR"*+1). This extends
to all sections of I'(Z*TR" ™) via the Leibniz rule, as we can always form a local basis of
pulled-back sections. Here 2 : T(.# x I) — 2*TR"*! denotes the push-forward of 2.

The push-forward .2°,& of the spatial tangent bundle is a sub-bundle of Z*TR"*! of
rank n. Its orthogonal complement in 2*TR™! with respect to? (-, -) is a sub-bundle
of rank 1, which we denote by 91 and refer to as the normal bundle of Z". Subsequently,
we will denote N.# = 9t—which is the common notation for the normal bundle of a
stationary immersion—but for this section we continue to use 91 in order to distinguish
the two. Thus Z*T.#4" = 2.6 & IN. We refer to the orthogonal projections (with respect
to the pullback metric) 7TT: TR — 27,6 and 7Jf: ZFTR™1 5 M as, respectively, the
tangential and normal projection.

The spatial tangent bundle & inherits an induced metric g € I'(G&* ©® &*) and an

induced connection V from the pullback metric and connection. These are defined by
g(u,v) 3:%<<%*’U,,=%‘*’U>, uaveg(z,t)a (%,t)G%XI,

d
an - - :
X, VeV = ( Dgf&”*V) . Vel(®), ceT(a"x1I)

respectively.
For each t € I, the restrictions of & and 9 to .#Z™ x {t} may be canonically identified
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with the tangent and normal bundles of the immersion 2. Under this identification, g is
the induced metric of the immersion 27 and, in spatial directions £ € &, V is the induced
connection on 2 (which is the Levi-Civita connection of the induced metric). In fact, by
the same straightforward computation as in the stationary setting, we find that V satisfies

the Levi-Civita conditions:
Vug=0, ues, (2.1)
and
VoV -VyU-[U,V]=0, UVel(6). (2.2)

Note that the connection on &* @ &* (and similarly for the full tensor algebra of &) is

defined, as usual, by commuting with contractions:
§9(U,V) =Veg(U, V) +g(VeU, V) +g(U, Ve V)

forall E €e T(#™ x I) and all U,V € I'(S).

The normal part of the pullback connection, restricted to &, is a (normal bundle
valued) symmetric two-tensor, which we call the vector second fundamental form of Z,
and denote by ZZ. More precisely, ZZ € I'(6* ® &* @ N) is defined by

T (u,v) —7 (‘%Duﬁif*v> . (2.3)

That this is actually a well-defined tensor follows, just as in the stationary setting, from

the calculation
T (%Du%* fv) _7 (%Du f%*v) _7 ((u N2V + f’%Du,%*V> — 7 (fpu%*v) ,

which holds for any u € &, f € C®°(#" x I), and V € I'(&). Symmetry of Z follows

(just as in the stationary setting) from the orthogonal decomposition
DyX\V =2, Ny V +I(U,V)

and the Levi-Civita condition Since 7 is a symmetric two-tensor (taking values in
the normal bundle), for every normal vector there is an associated g-self-adjoint endomor-
phism. This is encoded in the vector Weingarten tensor W : I'(M) — I(6* @ &). Just as
in the stationary setting, W is given explicitly by (see Proposition

%*Wl,(u) = %Dul/, vel'MN),ued. (2.4)

If .#™ is orientable, we may choose a global unit normal field v € T'(SO), with respect
to which we may define the second fundamental form, I, by IL(u,v) = —IL(u,v)r and
the Weingarten tensor, W, by Z . W(u) = ?D,v. The eigenvalues of W are the principal
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curvatures of 2 (with respect to v), which we denote by k1,..., K.

In the presence of a metric, we will generally not distinguish between tensors related
by the metric induced isomorphism of tensor bundles. We shall therefore (apart from in
the present section) denote both the (vector) second fundamental form and the (vector)
Weingarten tensor of a time-dependent immersion using the symbol, (V_V) W.

The above constructions yield a time-dependent intrinsic and extrinsic geometry for 2
which at each time ¢t € I reduces to the intrinsic and extrinsic geometry of the immersion
Z. So we do not appear to have gained anything as yet; however, we have only considered
the information coming from the spatial tangent bundle. There is additional information
to be obtained from the temporal direction. This ‘temporal” information gives an invariant
characterization of the evolution of the geometry of Z7.

First, we exhaust the temporal information contained in the pullback metric by as-
suming that the velocity of 2" is in its normal direction; that is, we assume 2, 9y = —Fv
for some scalar F'. Note that this can be achieved for any time-dependent immersion by
introducing a ‘time-dependent diffeomorphism’ of .#": Let 2 : .#™ x I — R""! be a
time-dependent immersion, and let ¢ : .#™ x I — .#™ be the flow of the negative of the
tangential part of the velocity of Z; that is,

d¢
ar —Toop,
where 2T :;Tr (Z+0¢). Then the velocity of the time-dependent immersion % defined

by # (y,t) := Z (p(x,t),t) is

d¢

1
¢% +3&”*¢8t =T (%*¢8t) .

Y 0 =X

Thus, modulo a time-dependent diffeomorphism of .Z", we lose no information by assum-
ing the velocity is in the normal direction.
Next consider the temporal Lie derivative of the metric: Computing in a codrdinate

basis, we find

Ligij = 0t gij = <%Di=9f* O, X 3j> + <%* 0i, "D 8t>
—- <'%Di(Fu) e aj> - <3&’ 0;, %Dj(Fy)>
= —2FW;;. (2.5)

Finally, we consider the temporal information in the pullback connection: Given V &€

G, we have

DAV =Dy X 0y +2 |04, V]
= — "Dy (Fv) +2.[0, V]
= —dF(V)v — FZW(V) + 2.0, V]. (2.6)
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The tangential part of (2.6)) yields the ‘temporal component’ of the connection V (cf.
Andrews and Hopper [2011, Theorem 5.1):

VoV = Lo,V — FW(V).
It follows that
Vig(u,v) = Lig(u,v) + g((Le — Vi)u,v) + g(u, (L — Vi)v) =0.

The normal component of (2.6) yields the ‘temporal second fundamental form’:

—

Ty(u) =7 (‘%Dt%*u) = —dF(u)v. (2.7)

In this way, we may consider T as a section of T* (A" x I)®S* @M. Similarly, we may
consider W, as a section of T*(.#" x I) ® & by setting

W, (8y) :=="Dyv . (2.8)

Let us note that, when we consider the temporal component of the time-dependent
connection V, we will always be explicit; that is, we reserve the notation VV for the
spatial covariant differential of V.

We now state the structure equations for the time-dependent immersion 2" In the spa-
tial directions, these reduce to the standard structure equations for a stationary immersion

but yield additional ‘evolution’ identities for the temporal direction.

Proposition 2.1 (Structure equations for time-dependent hypersurfaces). Let 2 : 4™ x
I — R be an om'entecﬂ time-dependent immersion with unit normal v € T'(SN), and
velocity Z'« 0y = —Fv. Then,

— The Weingarten equation: For any & € T(.# x I), and any u € &, we have

gW(§),u) = —IL(&, u). (2.9)

This reduces to the standard Weingarten equation when £ € &. Setting & = 0y yields

the additional temporal Weingarten equation

D =2, grad F. (2.10)

— The Gaufl equation: For any § € T(M x I) and any u,v € S, we have

where R(§,u)v = Ve(Vyv) — Vy(Vev) = Vig v is the curvature of (&,V). This
reduces to the standard Gaufs equation when & € &. Setting & = 0¢ yields the

1This assumption is not strictly necessary; we have merely assumed it for clarity of exposition.
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additional temporal Gaufl equation

R(0¢,u)v = I (u,v)dF — dF(v)W(u). (2.12)

— The Codazzi equation: For any & € T(# x I) and any u € S, we have
Ve (W(u) = Vu V(&) = W([E, ul) - (2.13)
This reduces to the standard Codazzi equation
Ve W(u) =V, W() =0
when £ € &. Setting & = 0y yields the additional temporal Codazzi equation

Vi W =Vgrad F + FW?. (2.14)

Proof. The proofs are the same as in the stationary setting. The temporal equations follow
easily. O

-

Remark 2.1. From now on, the (vector) second fundamental form (ZZ) ZZ and (vector)
Weingarten tensor (W) W will refer only to the ‘spatial’ tensors introduced in and
and we shall use the definitions (2.7) and (2.8) explicitly when we require the temporal

components.
We now recall the fundamental commutation formula of Simons for the (spatial) Hes-

sian of the second fundamental form Simons [1968l
Proposition 2.2. Given any spatial tangent vectors u,v,w,z € &, we have

Vu VoI (w,2) — Vi V., I(u,v) = I(u,v)IL*(w, z) — I(w, 2)IL*(u,v), (2.15)
where L% is the symmetric two-tensor corresponding to W?; that is, T*(u,v) =
g (W(u),v) = g W(u), W(v)).

Proof. We compute on a set of arbitrary commuting vectors u,v,w,z € &. We first
invoke the symmetry of VW coming from the Codazzi equation ([2.13]) and then commute

covariant derivatives using the definition of the curvature tensor R:

VuVoIL(w, z) = Vy Vi I (v, 2)
= Vu Vu I (v, z) + (R(u,w)IL) (v, z)
= Vu VyI(v,2) — IL(R(u,w)v, z) — IL(v, R(u,w)z) .
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Using the Gaufl equation (2.11]) and once more the Codazzi equation we obtain

VuVoIL(w, z) = Vi Vo I (v, 2) — (2, ZL(w,v)V(u) — IL(u, v)W(w))
— (v, L(w, z)WV(u) — IL(u, 2)W(w))
= Vi V. I (u,v) + I (u,v) T (w, 2) — IL(w, 2)IL>(u,v) .

O]

The trace of equation (2.15)) plays an important role in minimal surface theory and
mean curvature flow. We will make similar use of it in the fully non-linear setting (see
Lemma and the remarks thereafter).

We also note the following evolution equation for the induced Riemannian measure:

Proposition 2.3. Let 2 : .# x I — R be a time-dependent immersion satisfying
2«0y = —Fv. Then the induced Riemannian measure . of 2 satisfies

d
Zdn = ~FHdp, (2.16)

where H := tr(W) is the mean curvature; that is, for any compact K C ., it holds that

d

[ du=— | P
dat | A; a

Proof. Since the velocity of £ is normal, this is simply the standard computation for the
first variation of area: Assume that K lies in a single codrdinate chart =1 : U ¢ R"® — /.
Then

dt ,u—/ Vdet(z*g) dot
= —/det(z*g) dat ... dz"
[, 37V
Now compute
1 1
0 \/det(z*g) = 5 (det(x*g)) 2 Oy det(z*g)

1

= L (det(z7g)) 7} - [det(a*g) tr ("g) " D427 9)) |

2
= % (det(m*g))_% . [det(w*g) tr ((m*g)*lx*ﬁtg)]
= — (det(z"g))? 2*(FH),

where we used (2.5)) in the last line. Thus,
d
du— —/ a:*(FH)\/det(x*g)dxl...dx”:—/ FHdu
dt z=1(K) K

as required. The general case follows by the same computation on each chart of a covering
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of K by an atlas with a subordinate partition of unity (see, for example, Chavel (1993,
6I11.3)). O

2.2 Curvature functions

Recall that we are interested in the behaviour of a hypersurface which is moved with

normal speed F' determined by

F:f(ﬁlv"'aﬁn)‘

Since the ordering of the principal curvatures is arbitrary, it is natural to assume that f is
symmetric under permutations of its variables. T'wo questions naturally arise: First, since
we want the operator F' to be smooth, how are the differentiability properties of F' related
to those of f?7 And, second, which invariants can be realized in this way? To answer the

first question, we need some facts about symmetric functions.

2.2.1 Symmetric functions and their differentiability properties

Definition 2.4 (Symmetric functions). A function q : @ C R™ — R is P,-invariant (or
simply symmetric) if (25(1); - 20m)) € Q and q(z1,...,20) = q(Z5(1)s- -+ Zo(n)) for all
o € P,, where P, is the group of permutations of the set {1,...,n}.

Let Sym(n) denote the set of symmetric n X n matrices. Then a function q : O C
Sym(n) — R is GL(n)-invariant (or simply symmetric) if 1. Z-% € O and ¢(Z) =
q(X7t-Z-%) for all ¥ € GL(n), where GL(n) is the general linear group of degree n.

The two types of symmetric function defined above are clearly related: Denote by
A : Sym(n) — R”™ the eigenvalue map; that is, the multi-valued map which assigns to a
symmetric matrix Z the set of n-tuples with components given by its eigenvalues, which we
denote in no particular order by A1(Z),..., A\,(Z). Then, given any P,-invariant function
g, we obtain a GL(n)-invariant function ¢ by setting ¢(Z) = ¢(z) for any z € A(Z).
Since ¢ is P,-invariant, it takes the same value on any choice of z € A(Z), hence § is
well-defined. Conversely, we obtain a P,-invariant function ¢ from any GL(n)-invariant
function ¢ by setting ¢(z) = ¢(Z), for any Z € A71([z]), where [z] is the orbit of 2 under
the P,-action. Since ¢ is GL(n)-invariant, it takes the same value on any two matrices
with equal eigenvalues; hence ¢ is well-defined. Thus every P,-invariant function gives
rise to a canonical GL(n)-invariant function and vice versa. We will henceforth make the
notational abuse of using the same letter (g, say) to denote any two functions related in
the above way, and speak of ¢ either ‘as a function of matrix variables’ or ‘as a function of
eigenvalue variables’. We will refer to O C Sym(n) as the matriz domain of ¢ and Q C R™
as the eigenvalue domain of q.

Since the eigenvalues of a symmetric matrix are not smooth at points of multiplicity, we
might expect that a symmetric function is less regular with respect to the matrix variables

than with respect to the eigenvalue variables; however, the following theorem shows that
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the eigenvalue map behaves with respect to smooth, symmetry preserving compositions

as if it were a smooth function:

Theorem 2.5 (Glaeser (1963) and Schwarz (1975)). Let ¢ be a symmetric function. Then
q is smooth with respect to the matriz variables if and only if it is smooth with respect to the
etgenvalue variables. Moreover, the first and second derivatives are related by the following
formulae:

For any diagonal matrix Z in the matrix domain of q with eigenvalue n-tuple z €

{\2)}, we have
iy = gt (2.17)
and, if the eigenvalues are all distinct, we have

Y -q
~Dq. T8 . z — Yz 2
P Vg Vos = @ VipVag +2Y =L (17,,)7. (2.18)

Zp — X%
p>q P q

for any V € Sym(n), where we denote

» d?
G0 = - _ q(z+sv), Gl = 7| q(z + sv)
for z in the eigenvalue domain of ¢ and v € R™, and
. 2
Gy Vij == s QqZ+sV), G Ve Ves = 12 q(Z +sV)
s=0 s=0

for Z in the matriz domain of ¢ and V € Sym(n).

Proof. The proof the ‘if” implication is due to Glaeser (1963)), and the proof of the ‘only if’
implication is due to Schwarz (1975)). Proofs of the relations (2.17)) and (2.18)) are given by
Gerhardt (1996). See also Gerhardt (2006, Lemma 2.1.14) and Andrews (2007, Theorem
5.1). O

In fact, analogues of Theorem hold under much weaker regularity requirements
(Ball (1984). See also Gerhardt (2006, Chapter 2)).

Unless otherwise stated, we will henceforth assume all symmetric functions are smooth.

2.2.2 Curvature functions

Now suppose that we are in possession of a time-dependent immersion 2~ with principal
curvature n-tuple & := (k1,...,K,) and a symmetric function ¢q. Then, so long as the
eigenvalue domain of ¢ contains the image of the principal curvatures of 2, we can form
the function Q(z,t) := q(K(x,t)). We shall refer to a function so defined as a curvature
function.

Denote by # the bundle of endomorphisms of T.# which are self-adjoint with respect

to the induced metric. Note that a choice of (time-dependent) smooth local orthonormal
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frame {e;}?" ; provides a local identification of the fibres of # with Sym(n). This allows
us to write @ (locally) as Q = ¢(W), where W is the local chart for # which takes a
self-adjoint endomorphism of T.# to its matrix of components with respect to the chosen
frame (and, as usual, we are using the same letter ¢ to denote the symmetric function
as a function of either eigenvalue or matrix variables). We will therefore, by a further
slight abuse of notation, often write @ = ¢(WW). It then follows from Theorem that
Q@ is smooth. In fact, we can obtain explicit, invariant formulae for the derivatives of Q)
in terms of derivatives of ¢ and the covariant derivatives of WW: Computing at a point

(x0,t0), we may choose {e;}I"; such that W is diagonalized at (xo,tp), so that
O Wij = Vg Wij + Tyij (K — ki),

where I'y;; := g(Vj €;,€;) are the (anti-symmetric) connection coefficients. Similarly, we

obtain
8t Wij = Vt Wij + Ftij(/ij — /ﬁ:i) s

where I'y;; := g(V; 0;,0;). Since, by identity (2.17)) of Theorem ¢ is diagonalized at

(x0,t0), we obtain the invariant formulae

ViQ=Q"V, Wy =Q(V:W),
VeQ = Q" ViWu =Q(V: W),
ViV;iQ = Q" Vi Vi Wi + QP9 Vi Wy V Wi
=Q(Vi;V; W)+ Q(Vi W, V,; W),

etc, where we are denoting the derivatives of ) with respect to the curvature using dots,

just as for ¢; for example, Q € I'(#*) is the tensor defined by

d
ds

d
ds

q(W + sA)
s=0

Q(m,t) ("4) =

q(R + sa),
s=0

where W and A are the component matrices of W, ) and A € (T*M# @ TM)(,4) with
respect to some local frame, and « denotes the eigenvalue n-tuple of A. In particular,

with respect to an orthonormal frame, we have the expressions

el <kl APG,Ts __ =Pq;TS
Q = 4w qu ™= QW )

QF =gk, Q" =g,
etc.

Remark 2.2. In the following sections, when we consider curvature functions along solu-

tions of (CFJ), it will be much more convenient to use the same letter (the roman capital
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@, say) to denote a symmetric function ¢ : I' C R™ — R and its corresponding curvature
function @ = g(W).

2.2.3 The admissibility conditions

We now summarize the admissibility conditions (Conditions |1 for the flow (CF)).

Symmetry

The symmetry condition (Conditions ) requires that the flow speed F' be given by a
smooth symmetric function f : I' C R® — R of the principal curvatures. This ensures
that F' can also be written as a smooth, basis invariant function of the components of the
Weingarten tensor. Theorem [2.5] shows that F' is smooth with respect to space and time

and provides explicit expressions for its derivatives in terms of those of f and W.

Parabolicity

The parabolicity condition (Conditions ) requires that the symmetric function f
defining the flow speed be monotone increasing in each variable. Note that, by Theorem
monotonicity of f with respect to the eigenvalues is equivalent to monotonicity with
respect to the symmetric matrices (and their canonical partial ordering). Thus, since f is
smooth, the monotonicity condition requires, equivalently, that fk > ( for each k or that
the matrix fkl is positive definite. In particular, this implies that F¥ > 0 for each k and
F* > 0 along any solution of the flow.

Homogeneity

The homogeneity condition (Conditions ) requires that the symmetric function f
defining the flow speed be homogeneous of degree one. Clearly homogeneity with respect to
the eigenvalue variables is equivalent to homogeneity with respect to the matrix variables.

In particular, since the curvature of a hypersurface scales inversely with distance, this

gives rise to invariance of ((CF|) under parabolic rescaling (see §3.1.5)).
A further useful property of homogeneous functions is provided by Euler’s Theorem:

Proposition 2.6 (Euler’s theorem for homogeneous functions). Let E be a finite di-
mensional normed linear space and suppose that q : C C E — R is a smooth degree «

homogeneous function. Then

Df| (2) = aq,
where Df‘z is the derivative of f at z.

Proof. Suppose that ¢ is homogeneous of degree a. Then

aq(z) = — (1+8)%(2) q(z + sz) = Df| (2).

ds|,_g ds|,_g
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Positivity

The positivity condition (Conditions ) requires that the symmetric function f which
defines the flow speed be positive. This ensures that solutions of always move in
their ‘inwards’ normal direction with positive speed. Moreover, since F' is a solution of the
linearization of (see , positivity of F' is very useful in comparison arguments,
as many natural quantities can be shown to be sub- or supersolutions of the linearized
equation.

Note that, by Euler’s theorem, any admissible flow speed is automatically positive
(negative) at points in the positive cone I'"! := {z € R" : z; > 0 for each i} (negative cone
" :={-z:2eTy}).

2.2.4 The auxiliary conditions

Next, we consider the Auxiliary Conditions (Conditions [2)).

Surface flows

The first of the Auxiliary Conditions (Conditions ) requires that the spatial dimension
of the evolving hypersurface be twﬂ The derivatives of f (equations (2.17)) and (2.18))

take a somewhat simpler form in this case. Combining this with the symmetry of VW

and the fact that, in two dimensions, VW can have no totally off-diagonal components
(such as V1 Wh3) allows us, in some cases, to obtain results without the need for any of

the other auxiliary conditions. These results are special to two dimensions.

Concavity

The convexity and concavity conditions (Conditions and ) require that f be,
respectively, a convex or concave function of the eigenvalue Variable&ﬂ We shall now prove
that this is equivalent to convexity, respectively concavity, with respect to the matrix

variables:

Lemma 2.7 (Cf. Ecker and Huisken (1989) and Andrews (1994a))). Let g : @ C R" -+ R
be a smooth, symmetric function. If q is concave, then, for all z € Q with zx pairwise
distinct, it holds that

d_
L=F (2.19)

Zi—Zj

for alli # j.

2We note that, by the homogeneity condition, up to scaling, the only admissible flow in one spatial
dimension is the curve shortening flow.

3In fact, we shall assume a slightly weaker definition of concavity than the usual one, which allows the
set I" to be non-convex (see Remark .
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Proof. Suppose that ¢ is concave. Then, for any v € R™ and s > 0 such that z + sv € €,

we have
2 d .
0> —q(z+sv) = —q"(z + sv)v; 2.20
> Lz 4 sv) = iz s (2.20)
so that
i (z + sv)v; < ¢ (2)v; .
Setting v = —(e; — e;), where e; is the basis vector in the direction of the i-th codrdinate,
we obtain

(¢ =), < (@ = @)]oyere -

We may assume z; > z;. Then there is some sy > 0 such that

(z — sole; — ej))i = (z — sp(e; — ej))j .

By symmetry and convexity, z—sg(e; —e;) € Q (this point lies on the line joining z and the
point obtained from z by switching its i-th and j-th coordinates). Since ¢ is symmetric,

¢" = ¢’ at this point and the claim follows. O

Remark 2.3. Note that, if strict inequality holds in then strict inequality also holds
in 2.19

Corollary 2.8. Let q: Q2 CR™ — R be a smooth symmetric function. Then q is concave
(convex) with respect to the eigenvalues if and only if it is concave (convex) with respect

to the matrix components.

Proof. From the identity (2.18) of Theorem we have, for any symmetric matrix V,

GOV Vi = ViV +2 ) %%)Q
i>j Tt

at any diagonal matrix Z with distinct eigenvalues z;. So suppose that Z is a diagonal
matrix with distinct eigenvalues z; = \;(Z). Clearly concavity of ¢ at Z with respect to
the matrix components implies concavity of ¢ at z with respect to the eigenvalues. The
converse follows from Lemma 2.7

To see that the claim holds at any diagonal matrix Z, we need only observe that this
is the limiting case along a sequence Z*) of diagonal matrices with distinct eigenvalues
which limits to Z.

Finally, the general case follows from the invariance of ¢ with respect to similarity

transformations.

O
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Remark 2.4. Note that Lemma [2.7] and Corollary [2.8 also hold in some cases when the set
) is not convex: If € is not convex, but ¢ :  — R is smooth and locally convex, then,
whenever ¢ has a smooth, convex extension to a convex set containing 2, the proof of
Lemma goes through unchanged. In fact, we do not need to assume that the extension
is smooth, since, outside of €2, derivatives of ¢ may be replaced by difference quotients
(See Andrews, Langford, and McCoy |2014b, Lemma 2.2). For this reason, given any open,
symmetric set {2 C R™, we will say that a smooth, symmetric function ¢ : Q2 C R” — R is
concave if q is locally concave and either €2 is convex or ¢ extends to a concave function on
a convex set containing {2 (and similarly for convexity of ¢). The reason for this definition
is that a speed function may be concave on a large convex set but only parabolic (or

positive, or smooth) on a non-convex subset.

It will also be useful to consider curvature functions (not necessarily speed functions)
which possess some strict concavity; observe, though, that the Hessian of a degree one
(or zero) homogeneous function ¢ is always degenerate in the radial direction (that is, the

direction of the argument), since Euler’s Theorem implies that
q? ZiZj = 0.
We will call a symmetric function g strictly concave (convex) in non-radial directions if

Gy < 0(>0)

for all z and all vectors v transverse to z; that is, v € R" \ {kz : kK € R}. By Lemma
(see Remark this is equivalent to requiring

(‘jg’leiijl <0 (> 0)

for all Z and all V € Sym(n) \ {kZ : k € R}. Similarly, we call a curvature function @
strictly concave in non-radial directions if its defining symmetric function possesses the

corresponding property.

Ezample 2.1. Consider the symmetric function n which gives the norm of a non-zero

symmetric matrix:
n(A)? = tr(AAT) = tr(4?) = <Z )\i(A)2> :
=1

With respect to the eigenvalue codrdinates {z;}7;, we have

and
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Thus,
ﬁijij - 1 (|U|2n2 —(z- U)Q) .
n3

By the Cauchy-Schwarz inequality, this is non-negative, and strictly positive if v is non-

radial. It follows that n is strictly convex in non-radial directions.

Inverse-concavity

We next consider the inverse-concavity condition (Conditions ) This is defined as

follows.

Definition 2.9 (Inverse-concavity). Suppose that ¢ : I} C R™ — R is a positive P,-
invariant function, where I'"t := {z € R™ : z; > 0 for each i} is the positive cone. Then q
is inverse-concave if the function q. : I'} — R defined by

-1 -1

s (zl yereyZn ) = q(z1,. . 20) "

1S concave.

Similarly, let ¢ : Sym,(n) — R be a positive GL(n)-invariant function, where
Sym,(n) := {Z € Sym(n) : Z > 0}. Then q is inverse-concave if the function
¢« : Sym, (n) — R defined by

1S concave.

Note that, by Corollary a symmetric function is inverse-concave with respect to
the eigenvalue variables if and only if it is inverse-concave with respect to the matrix
variables.

Let us now prove some useful characterizations of inverse-concavity.

Lemma 2.10. Let g be a positive symmetric function. Then q is inverse-concave if and

only if the quadratic form Qz : Sym(n) x Sym(n) — R defined by

24z(V)gz(V)
q(2)

is non-negative definite for all Z € Sym  (n), where juztaposition of matriz variables de-

Qz(V.V) = iz(V,V) — +24z(VZ7V)

notes matrix multiplication. Equivalently, q is inverse-concave if and only if the quadratic
form Q : R™ x R™ — R defined by

24 (v)qG.(v)
q(z

1

Q.(v,v) := q.(v,v) — + 2q,(vz""v)
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is non-negative definite for all z € I} and it holds that

-7, 2,9 59
Zi—Zj Zj Zj

for each i # j wherever the eigenvalues z, are pairwise distinct, where z71 =

(zfl,...,zgl) and juztaposition of eigenvalue variables denotes component-wise multi-

plication.

Proof. Differentiating ¢.(Z~') with respect to Z € Sym,(n) in the direction of V €
Sym(n) yields

Gz (Z7VZTY) = q(2)242(V). (2.21)

Differentiating once more yields

) e _ iy 1y @z(V)? Gz(V,V)
Qo7 (27VETL 2TV ET) + 200 (27VETVET) = S W22
Applying yields
~Guy(Z27VZ 2TV
p— .. ] V 2 3 -
—q(2)2 (qz(V, V)—Q(qgéz)))—i-QQZ(VZ 1V)> - (222)

The first claim follows.
For the second claim, we differentiate g.(z~!) with respect to z to obtain, for any
z €I and any v € R",

Qyz1 (z_lvz_l) - Q<z)_2q.z(v) . (223)
Differentiating once more and applying ([2.23]), we obtain

(4-(v))*
q(v)

o1 (27 0z 2 ) = g(2) 72 <c'jz(v,v) -2 + 2q'z(vz_1v)> .

Next, consider

. .
Qyz—1 — D1 1 1,2 J 52
o P — ) (¢22] — d2zj)

_ 2% (q;—q;+q;+qz>

B q(2)* \zi—z  z oz
The second claim now follows from Lemma O

For admissible flow speeds, the local characterization of inverse-concavity is simplified:
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Lemma 2.11. Let ¢ : I} C R® — R be an admissible flow speed. Then q is inverse-
concave if and only if the quadratic form @Z : Sym(n) x Sym(n) — R defined by

Qz(V,V):=iz(V,V)+2¢(VZ~'V)

is non-negative definite for every Z € Sym, (n).
FEquivalently, q is inverse-concave if and only if the quadratic form @Z R"xR" = R
defined by

~

Q-(v,v) == §.(v,v) + 24, (vz"10)
is non-negative definite for each z € I'"} and it holds that

i - -7
LZE L Ty
Zi—Zj Z]' Z

for each p # q wherever the eigenvalues z; are distinct.

Proof. Since ¢ is homogeneous of degree one, g, is homogeneous of degree one. Thus,
recalling Euler’s theorem implies @Qz(V,-) = 0 whenever V' o« Z. Thus, Qyz is
non-negative definite if and only if it is non-negative definite on the transversal subspace
Sz :={V € Sym(n) : 4|z(V) = 0}. But, given V € Sz,

Qz(V,V) =iz(V,V)+24z(VZ~'V).

This implies the first claim. The second claim follows similarly.
O

Lemma 2.12. Let q : I} — R be an admissible flow speed. Then q is inverse-concave if

and only if the symmetric function x : It — R defined by

x(z71) = —q(2)

satisfies

Proof. This follows from Lemma since, with respect to the matrix variables, we have
Xz-1(V) = z(2V Z)
and

~Xz-1(V,V) = §z(ZVZ,ZVZ) +247(ZVZV Z).
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The flow admits preserved cones

The final auxiliary condition requires that the flow (with speed f : I' C R"” — R) admit
preserved conesE| (Conditions ); that is, given any solution 2" : .#™ x[0,T) — R"*! for
there exists a cone I'g C R” satisfying 'y € T'\ {0} such that #(.# x[0,T)) C T'g. This
condition functions as a uniform parabolicity condition since it ensures that the curvature
of the solution stays away from the boundary of I'. Existence of a preserved cone and
the presence of one of the auxiliary conditions — are the crucial components of the
long-time existence theorem (Theorem . In we will see that many admissible
flow speeds automatically admit preserved cones; in particular, surface flows with positive
speed, flows by positive, convex speeds f : I' C R” — R such that 't C I, and flows
by inverse-concave speeds admit preserved cones. Flows by concave speeds f : I' - R
will also admit preserved cones when restricted to an explicit ‘small” cone (determined by
the speed function) or if f|yr = 0; however, in general, flows by concave speeds may not

admit preserved cones (see Andrews, McCoy, and Zheng [2013} §5).

2.2.5 Examples

We now describe some examples of curvature functions which define admissible flow speeds,
and discuss subsets of these which satisfy each of the auxiliary conditions. The cases for
which no proof or reference is given are easily checked.

Let us first recall that the elementary symmetric polynomials (in n-variables) are the
functions S; : R — R, k =0, ..., n defined by

-1
Sk(21, ...y 2n) = <Z> Z Zip .o %y, fork=1,...,n,

1<ig<--<ip<n

So(zl,...,zn) =1.

We note that, along an immersion, the elementary symmetric polynomials give rise to
several well-known curvature invariants, such as the mean curvature, H = nS;(&), the
scalar curvature, Scal = n(n — 1)S2(R), and the GauBl curvature, K = S, (i).

Ezample 2.2 (Admissible flow speeds). The following symmetric functions define admissi-

ble flow speeds:

1. The curve shortening flow: Up to a rescaling of the time parameter, the only ad-
missible flow speed for the flow (CF)) in one space dimension is f(z) = z. The

corresponding flow is called the curve shortening flow.

2. The arithmetic mean,

4See Definition
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defines an admissible flow speed on all of R™. It is positive on the positive mean
half-space, I'; := {z € R": z1+---+ 2, > 0}. The corresponding curvature function
is the (normalized) mean curvature and the corresponding flow is (up to a rescaling

of the time parameter) the well-known mean curvature flow.

3. The power means,

define positive admissible flow speeds on the cone I', := {z € R™ : >, 27 >
0,2 ~' > 0 for each i}. Note that T, contains the positive cone T'y := {z € R" : z; >
0 for each i}. The corresponding curvature functions include (up to normalization)
the mean curvature (r = 1), the harmonic mean curvature (r = —1), the magnitude
of the second fundamental form (r = 2), and the n-th root of the Gaufl curvature

(r=0).
4. Ratios of consecutive elementary symmetric polynomials: The functions

Sk—1’

f k=1,....n

define positive admissible speeds on the cone T'y := {z € R" : Sj(2) > 0 forl <
k} (see, for example, Lieberman 1996, Chapter XV). Note that I'j contains the
positive cone I'y; in fact, I'y D --- D I, = I'; (see, for example, Huisken and
Sinestrari 1999a, Proposition 2.6). The corresponding curvature functions include

(up to normalization) the mean curvature (n = 1) and the harmonic mean curvature

(k=mn).

5. Roots of the elementary symmetric polynomials: The functions
1
f=8k=1,...,n

define positive admissible speeds on the cone T'y := {z € R" : Sj(2) > 0 for ] <
k} (see, for example, Lieberman (1996, Chapter XV, or Example |8 below). The
corresponding curvature functions include (up to normalization) the mean curvature
(n = 1), the square root of the scalar curvature (n = 2), and the n-th root of the

Gauf} curvature (k =n).

6. Positive linear combinations

f= sz’fi (such that w; > 0 for each i) ,
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of (positive) admissible flow speeds f; : I' — R define (positive) admissible flow
speeds f: ' — R.

7. Weighted geometric means
N N
f= Hflwl (such that w; > 0 for each 7 and Zwi = 1> ,
i=1 =1

of positive admissible flow speeds f; : I' = R define positive admissible flow speeds
f:I'—=R.

8. Roots of ratios of elementary symmetric polynomials: The function

1
S k—1
f= (’“) L 0<l<k<n,
Si
is the geometric mean of f; = Sfil fori=1+1,...,k, and hence defines a positive

admissible speed function on the cone I'y := {z € R™ : S;(z) > 0 for each i < k}.

9. Homogeneous functions of admissible speeds: If f; : ' = R, ¢ =1,..., N are admis-
sible speeds and ¢ : @i]\;lfi(F) c RV — R is a smooth, degree one homogeneous

(positive) function which is monotone increasing in each variable, then

fi=0(f1,- -, IN)

is a (positive) admissible speed.

We next consider flow speeds which satisfy one of the auxiliary conditions.

Surface flows

Ezample 2.3 (Admissible surface flows). The following symmetric functions define admis-

sible speeds for surface flows:
1. Admissible speeds: All of the examples from Example (with n = 2).

2. A general construction for positive admissible speeds: Write z1, zo in polar coordi-

nates (r,0) with angle measured anti-clockwise from the positive ray; that is,

7“:\/224—2:2 cos@:ﬁ Sjngzﬂ
e 27+ 23) V2(23 + 23)
Then, writing f = r¢(f) for some ¢ : (—6p,6y) — R, Conditions [1] ({)—~(iv) become:
0y < 3mw/4, ¢ > 0, and
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where
—00, 0 c (—3m/4, —m/4];
Ay {0 O
oy 0 € (=7m/4,3m/4);
and
cos O+sin O .
B(0) = Snocosg» 0 € (=31/4,7/4);

+00, 0 € [r/4,31/4).

In particular, given any smooth, odd function v : (—6p,60y) — R, with 0 < 6y < 37/4,
satisfying A(0) < ¢(6) < B(#), the function

f=rexp (/Oew(a)d(f)

is a positive admissible speed function on the cone I'p, := {z € R? : §(2) € (—0,06)}.

Flows by concave speeds

Ezample 2.4 (Concave admissible flow speeds). The following symmetric functions define

concave admissible flow speeds:

1. The power means H, with r < 1 define positive concave admissible flow speeds.

2. The consecutive ratios of the elementary symmetric polynomials, %, k=1,...,n
define positive concave admissible flow speeds (see, for example, Lieberman [1996]

Chapter XV).

3. Concave combinations: If f; :I' - R, ¢ =1,..., N define concave admissible speeds,
and ¢ : @i]\ilfi(r) C RN — R is a smooth (positive) concave, degree one homoge-

neous function, then the function

f:zd)(flv""fN)

defines a (positive) concave admissible flow speed. In particular, (positive) linear
combinations of (positive) concave admissible speeds are (positive) concave admissi-
ble speeds and geometric means of positive admissible speeds are positive admissible

speeds.

. . . S, \ B—1
4. The roots of ratios of the elementary symmetric polynomials, (#j) ,0<I<k<

n, define positive concave admissible flow speeds.

Flows by convex speeds

Ezample 2.5 (Convex admissible flow speeds). The following symmetric functions define

convex admissible flow speeds:
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. The power means: H, for r > 1 on the cone T, := {z € R" : H.(2) > 0,2/ ! >

0 for each i}.

. Positive linear combinations of positive, convex admissible flow speeds define pos-

itive, convex admissible flow speeds. For example, the functions of the form
f = > ,wHy, w, > 0, define positive, convex, admissible flow speeds on cones
containing I'y. In particular, f. := Hy + ﬁHg, e € (0,1), defines a positive, convex
admissible flow speed on the round cone I'; := {z € R" : H{(2) + %Hg(z) > 0}.

We note that I'. contains the positive mean half-space.

. Conver combinations: If f; : ' = R, ¢ =1,..., N define convex admissible speeds,

and ¢ : @Y, f;(T) is a smooth (positive) convex, degree one homogeneous function,

then the function

= (f1,..., fN)

defines a (positive) convex admissible flow speed. For example, the function
fe(z1,..0y2n) = Hye(z1 +€H, ...,z +€H), r > 1 on the cone I'. := {z € R" :

zi +¢eH > 0 for each i} defines a convex admissible speed.

. Concave functions: If g : I' — R is a concave admissible speed, then the function

fi=H-egonT.:={2€l:g <1foreachi, (H > eg)} defines a (positive)

convex admissible speed.

Flows by inverse-concave speeds

Ezample 2.6 (Inverse-concave admissible flow speeds (cf. Andrews (2007) and Andrews,

McCoy, and Zheng (2013))). The following symmetric functions define inverse-concave

admissible flow speeds:

1. Convex admissible speeds f:T'y — R are inverse-concave (this follows from Lemma

2.11)). In particular, the power means, H, with r > 1 are inverse-concave.

. Concave admissible speeds: 1f f : ' — R is a concave admissible speed, then

f« : 'y — R is an inverse-concave admissible speed. For example, the harmonic

mean H_; = (Hj). is inverse-concave.

. If f: T4 — Ris an inverse-concave admissible speed and r € [0, 1], then the function

fr : T4+ — R defined by

1
T

fr(ziy oo oyzn) = (f(21,. -0, %)) (2.24)

defines an inverse-concave admissible speed function (see Andrews 2007, Theorem
3.2).

If f : T4 — R is a concave admissible speed and r € [—1,0], then the function

fr : T4 — R defined by ([2.24]) defines an inverse-concave admissible speed function
(see Andrews [2007, Theorem 3.2).
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5. The power means H, with r € [—1,1] are therefore concave, inverse-concave admis-

sible speeds.

6. The ratios of consecutive elementary symmetric polynomials, f = Sffl, 0 <k <n,

. .. . . Sp—
are concave, inverse-concave admissible speeds, since f is concave and f, = gikzl
.
is of the same type.
7. Inverse-concave combinations: If f;; i = 1,...,N are (concave) inverse-concave

admissible speeds, and ¢ : Ff — R is a strictly monotone increasing, degree one

homogeneous (concave) inverse-concave function, then the function

fi=ao(f1,- fn)

is a (concave) inverse-concave admissible speed. In particular, positive linear com-
binations and weighted geometric means of (concave) inverse-concave speeds are

(concave) inverse-concave speeds.

8. The roots of ratios of the elementary symmetric polynomials, f := (%’;) Tl, 0<i<

k < n, are concave, inverse-concave admissible speeds.

Flows which admit preserved cones

Ezample 2.7 (Admissible speeds whose flows admit preserved cones). The following sym-
metric functions define admissible speeds which give rise to flows that admit preserved

cones:
1. Surface flows by positive admissible speeds admit preserved cones (Corollary 4.15)).

2. Flows by positive, convex admissible speeds f : I' — R satisfying I'y C I" admit
preserved cones (Corollary |4.19)).

3. Flows by inverse-concave admissible speeds admit preserved cones (this follows, for
example, from Theorem See also Andrews (2007)).

4. Admissible flow speeds f : I' — R for which I'y5g C I'\ {0}, where I'j~g:= {2z €T":
f(z) > 0} preserve the cone I'f+( (Proposition ; for example, this holds for the
speed f := Hy — ﬁHQ, and many similar speeds which are admissible on I' = R".

5. Concave admissible speeds f : I' — R for which liminfy g % > (C preserve the
cone 'c:={A eI : Hi(\) <Cf(\)} (Proposition 4.12]).

6. Concave admissible speeds f : ' — R such that f = 0 on 9I'. This is a special case
of the previous example. It holds, for example, for the speeds H, : 'y — R, r < 0.






3. Short-time behaviour

In this section we will derive several results about the flow equation and its solutions.
We begin by describing some invariance properties, and use these to construct some special
solutions of the flow. Next, we introduce the linearized flow equation, and use the invari-
ance properties of to construct some special solutions of the linearized equation. We
then prove local existence of solutions of the initial value problem for , which we do
by reducing the flow equation to an equivalent scalar equation, and then appealing to a

known existence result for (fully non-linear) scalar parabolic equations.

3.1 Invariance properties

We begin by deriving some invariance properties of the equation (CFJ), which allow us to

generate new solutions from old.

3.1.1 Time translation

The simplest invariance property is invariance under time translation: Let 2 : . x
(t1,t2) — R"! be a solution of (CF]). Then the family 27 : 4 x (t1 — 7,to — 7) — R* !
defined by 2 (x,t) := 2 (2,t + 7) also solves (CF)), since 8; 2 (z,t) = 0s Z(x,t + 7) and
Wi (z,t) = W(z,t + 7), where W; is the Weingarten map of 2.

3.1.2 Ambient isometries

Since is defined in terms of the induced geometry of 2", we expect that it should
be invariant under isometries of the ambient space, and indeed this is the case, so long
as the isometry is orientation preservinﬂ Let 2 : M x I — R"! be a solution of
and let ® be an isometry of R®™!. Then the family Z¢ : # x I — R™"! defined by
Z(z,t) = ®(Z(x,1)) is also a solution of (CE)). This is because ® is affine (and hence its
second derivative vanishes) and the induced Weingarten map is invariant under ambient

isometries: First note that

0t Zop(x,t) = P, 0¢ Z(x,t) = —F(x,t)Puv(x,t).

! Orientation reversing isometries leave the flow invariant if F is given by an odd function of the principal

curvatures (See §3.1.6)).

31
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Next we compute, with respect to some local coérdinates,
0;iZp=0,0; 2.

In particular, the induced metric and normal for Z°¢ are given by gq’ij = gij, and vp = P,v.

Now, since ® is affine, we obtain
0,02 =9,0,0, 2.
It follows that the Weingarten map Ws of 23 satisfies Wq’ij = Wjj, so that Fp :=

FWs)ve = F(W)®,v = FO,v as required.

3.1.3 Reparametrization

Let 2 : .# x I — R"! be a solution of (CF]) and let ¢ be a diffeomorphism of .#. Then
the time-dependent immersion 2y : 4 x I — R"™ defined by 2 (z,t) = Z(¢(x),t)

satisfies
N Zp(x,t) =0 2(d(x),1) = —FW(o(x),1))v(¢(2), 1) = —F(Wy(,1))ve(z,t)

where W, and v, are, respectively, the Weingarten map and normal of 2. Thus 2y is
also a solution of (CF)).
3.1.4 Time-dependent reparametrization

We observe that the previous calculation does not, in general, work if the reparametrization
depends on time: Let 2 : .# x I — R"*! be a solution of and let p : A x I — M be
a time-dependent diffeomorphism (a smooth one parameter family of diffeomorphisms
¢(-,t)). Then the new time-dependent immersion 27, : .# x I — R""! defined by
Xo(x,t) =2 (p(x,1),t) satisfies

O %cp(xa t) = r9//>o<(<,o(gv,t),t) O Sp(xv t) - F(SO('T’ t)v t)V(gO(:E, t)v t) :

So 0; Z , has an extra tangential term, 2 0y ¢.
Thus, (CF)) is not invariant under time-dependent diffeomorphisms of .#; however,

this calculation has a useful converse: Suppose that % : .# x I — R"*! satisfies
<8t @7 V> =—F.

Then, if we set Z(x,t) := # (¢(x,t),t) for some time-dependent diffeomorphism ¢, we

obtain
0 =%0p+T—Fv,

where the vector field T € T'(Z*TR"*!) is the component of d; % tangent to the image
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hypersurface. If we now let ¢ be the solution of the ordinary differential equation

YO =-T
90('7 0) =id y
then we obtain
6153{ =—-Fv.

Therefore, any solution of the equation (0; % , v) = —F gives rise to a solution of (CF)

via a (unique) time-dependent reparametrization.

3.1.5 Space-time rescaling

Homogeneity of the speed implies a further useful invariance property: Observe that
dilation of a hypersurface by a factor A > 0 rescales the Weingarten curvature, and, due
to homogeneity, the speed, by a factor A='. This factor can be compensated by rescaling
the time variable by a factor A™2: Let 2 : .# x I — R™*! be a solution of and
suppose A > 0. Define 2'y(x,t) := A2 (z, \"2t). Then

Oy Ia(x,t) = N1 0, 2, AT2t)
= — NLEW(z, A7) w( A7)
= — ATEOW (2, )ua(z, 1)
= — FWa(z,t))va(w,t),

where vy and W, are the normal and corresponding Weingarten map of 2.

3.1.6 Orientation reversal

If the speed function is an odd function of the curvature, then the flow is also invariant

under orientation reversals, since in that case
—FWy)v = F(-W_,)(-v) = =F(W-,)(-v),

where W, denotes the Weingarten map of v and W_,, the Weingarten map of —v.

3.2 Generating solutions from symmetries

Let us now introduce the soliton solutions of . Broadly speaking, a soliton solution of
an evolution equation is a solution whose image evolves purely by a one-parameter family
of symmetries of the equation. Such solutions are, in a sense, ‘stationary’ solutions of the
flow. We will see in that they arise as limits of dilations of singularities.
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3.2.1 Solutions generated by ambient isometries

As we have seen in the orientation preserving isometries of R"*! generate sym-
metries of . These form the Lie group isom(n + 1), which is generated by rota-
tions O € SO(n + 1) and translations T € R""!. The Lie algebra of isom(n + 1), de-
noted by isom(n + 1), is generated by the infinitesimal rotations (antisymmetric matrices)
A € so(n+ 1) and translations 7' € R™+1,

Given a Killing vector field K € T'(isom(n + 1)), let us refer to a solution 2 :
M x T — RV of as a K-soliton if it is generated by the flow of K that is, if
Z(p(x,t),t) = ®(t,Zo(x)) for some time-dependent reparametrization ¢ : A x [ — A
satisfying ¢(-,0) = id, where ® : R x R*"*! — R"*+! is the flow of K (cf. Hungerbiihler
and Smoczyk [2000).

Let 2" be a K-soliton solution. Then differentiation of the defining relation yields

02 4P

dy 7‘ _ a2
(zt) Ot lp@zt)t)  dt (¢20(x))

La(plet)t) gy

Setting t = 0 and using the fact that (-, 0) is the identity, we obtain
—Fy(z) = (K(Zo()) , w(z)) . (3.1)

Thus, a solution of the stationary equation (3.1)) determines a K-soliton solution of the
flow, since the subsequent (and antecedent) evolution of the initial immersion is determined
by the flow of K.

Translating solutions

We shall refer to soliton solutions generated by translation as translating solutions. The
infinitesimal translations are just the constant vector fields T' € R™*!; thus, from equation
(3.1), we find that the translating solutions must satisfy

—~Fy(z) = (T, w(x)) .

The resulting solution is then given at other times, up to a time-dependent reparametriza-

tion ¢, by applying the translation 74(X) = X + tT"
Z(p(z,t),t) = Zo(z) + 1T .

We note that translating solutions are eternal; that is, they exist for all times ¢ € R.

Proposition 3.1. The Grim Reaper curve I' : (=5,5) x R — R? defined by
I(z,t) := (x, —log cosx + t)

18, up to a time-dependent reparametrization, a translating solution of the curve shortening

flow.
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More generally, if F' is homogeneous of degree one, then the time-dependent immersion
I": ((=3,%) x R") x R — R™™! defined by

2
I'"(z,t) .= (z,—logcosxy +t)
is, up to a time-dependent reparametrization, a translating solution of (CF)).

Proof. We will show that I'g, the graph of —logcosz, satisfies (T, vy) = —Fp, where
T :=(0,1). We have

ry(z) = (1, tanx)
so that

vo(x) (tanz,—1) = (sinz, — cos x)

T 1ftan’zx

is the ‘downward’ normal. Differentiating the tangent vector, we obtain
I (2) = (0,sec’ @),

so that

is the curvature of I'g. Therefore,
Fy(z) = F(ro(z)) = cos’z = — (T, v(x))

as required.
The higher dimensional result follows similarly, with T" = e, 1, since the only compo-
nent of the curvature is in the e; direction. ]

Rotating solutions

We shall refer to soliton solutions generated by rotations as rotating solutions. The rotation
generators are the vector fields R4 : X — A(X), where A € so(n) is an anti-self-adjoint
endomorphism of R**!. From (3.1]), we find that the rotating solutions must satisfy

*Fo = <A(31/r0), l/(]) .

The resulting solution 2 is then given at other times, up to a time-dependent

reparametrization ¢, by applying the rotation p,(X) = exp(tA)X:

Z(p(z,t),t) = exp(tA)Zo(z).
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We observe that rotating solutions are also eternal solutions. Rotating solutions of the

mean curvature flow have been studied by Hungerbiihler and Smoczyk (2000).

3.2.2 Solutions generated by parabolic dilations

Since the flow speed is homogeneous of degree 1, one-parameter families of parabolic

dilations J) generate symmetries of (CF)) (see §3.1.5). Recall that these are given by
HZ (2, ) = (1+ N2 (2, (1+A) %)
for A € (—1,00).

Expanding solutions

We refer to a solution 2 : .# x [0,T) — R*""! of (CF) as an expanding solution if 2" is

generated by positive dilations; that is, if, up to a time translation,
2 (p(x,t),t) = 02 (2,0) = (1 +¢)2(z,0)

for some time-dependent reparametrization ¢ satisfying ¢(+,0) = id.

Differentiation yields

dy 1
%*(gp(w,t),t)a (@.8) - F(gp(w,t),t)u(gp(w,t),t) - %((E,O) - m%(@(%,t),ﬂ
Thus, 2" satisfies
1
F(So(x7t)>t) = _m <‘%(90(xat)7t)7 V((P(x¢t)7t)> :

In particular, at time ¢t = 0, 2" must satisfy the stationary equation
Fo - — <<%07 V0> . (32)

Conversely, it is easily checked that any solution 27 : .# — R™! of gives
rise (up to a time-dependent reparametrization ¢) to an expanding solution: 27(z,t) :=
(1+t)Z(p(x,t),0).

Observe that expanding solutions are immortal: they may be defined for t — oc.

Expanding solutions of the mean curvature flow (and their stability) have been studied
by Clutterbuck and Schniirer (2011)).

Shrinking solutions

We refer to a solution 2 : .# x (—T,0] — R"*! of (CF)) as a shrinking solution if 2" is

generated by negative dilations; that is, if, up to a time translation,

Z(p(x,t),t) = 62 (x,0) = (1 — )2 (x,0)
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for some time-dependent reparametrization ¢ satisfying ¢(-,0) = id.

Differentiation yields

st |, ~ FO@ 0 00((0,0).6) = ~2(2,0) = =, 2T(w0).
Thus, 2" satisfies
Flol,0),1) = 7 (2 olw,0),0), w(o(,0),1)
In particular, at time t = 0, 2" must satisfy the stationary equation
Fo=(Z0o, vo) - (3.3)

Conversely, it is easily checked that any solution 27 : .# — R"*! of (3.3) gives rise
(up to a time-dependent reparametrization ¢) to a shrinking solution Z(z,t) = (1 —
t)%o(ﬁp(lb, t)? O)

We observe that shrinking solutions are ancient: they may be defined for ¢t — —oo.

Proposition 3.2 (The shrinking sphere). Let F' : I' — R be an admissible flow speed
1

and let g : 8™ — R be the inclusion of S™(rq), the sphere of radius ro = ¢, where

co:=F(1,...,1). Then,

X 8™ x (—00,1) — R
(z,t) = (1 —)Zo(x)

is a shrinking solution of (CF)).

Proof. Since £ is the sphere of radius rg, we have (Zo, ) = 1o and Fy =
F(rgt,...,rgY) = rg'F(1,...,1) = rg. Therefore 2 satisfies (3.3). The claim fol-
lows. O

A similar observation yields the following more general statement:

Proposition 3.3 (Shrinking cylinders). Let F' : I' — R be an admissible flow speed
defined on T \ {0} and, for each k € {0,...,n — 1}, let 29 : R¥ x S»=F — R+ pe
the inclusion of R¥ x S"%(r.), the round orthogonal cylinder of radius ), := c%, where
c, = F(0,...,0,1,...,1). Then,

———

k-times
X RF % §"7F x (—o00,1) — R
(2,1) = (1 = )% (a)

is (modulo a time-dependent reparametrization) a shrinking solution of (CFJ).

Proof. The proof is similar to the proof of Proposition ]
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Mean convex shrinking solutions of the mean curvature flow have been classified by
Huisken (1990; 1993|) and Abresch and Langer (1986)). In the embedded case, the only
possibilities are the cylinders R¥ x S"~*. There also exist non-mean convex shrinking
solutions of the mean curvature flow, such as Angenent’s torus (Angenent|1992). Moreover,
Huisken’s classification results have been extended in several ways to the fully non-linear
setting by McCoy (2011). Finally, we mention that Halldorsson (2012) has classified all

self-similar solutions of the curve shortening flow.

3.3 The linearized flow

An important equation related to the curvature flow (CF)) is the linear equation
dru=Lu+FWHu, (LF)

where .Z, the linearization of F, is the operator which acts by contracting the covariant
Hessian with F (thus, in a local orthonormal frame, £ = Fii v, V;), and F (W?) denotes
the contraction of W? with F (thus, in a local orthonormal frame of eigenvectors of W,
FOW?) = FRIW?, = FFi?).

Given a curvature flow , we will refer to as the corresponding linearized
flow. This equation arises naturally as the equation satisfied by the normal variation of a
smooth family of solutions of :

Lemma 3.4. Let 2 : .4 x I x (—eg,e0) — R"™ be a smooth family of solutions of (CF)
with Z'|c=0 =: Zy. Then the normal component,

vi= (2% 0e, V)|

of the variation is a solution of the linearized flow (LFJ).

Proof. Let {e;}" ; be an orthonormal frame of eigenvectors of W. Observing that Dev L

v, a short computation yields

)

Viv = (<‘%D5<%”*ei, V> + <3£”* 86,%Di1/>>

e=0

and

0
9 Wi + (Z4 0, VWZ‘j>|€:0
€ e=0

+ <%DE%*€Z',<%DjV>

Hessv;j = —

0 + <‘%D5%*6j,£fDiV>
e=

2
— W%, V.
e=0 7']}5:0

The time derivative of v is

F+ (Z.0., grad F)|

e=0 >
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where we invoked the identity (2.10]) (Proposition . It follows that

(8 —L)v = v F(W?)

e=0

since

F (<‘%D€5&”*ei,%Djy> + <%D5%*€j,%Dil/>)

=2 leﬂz <%D€</GLV*€Z' s 3?,/*€Z>

e=0 e=0

= F'k; 0. (Zwei, Zies)

e=0
=0.

O]

Corollary 3.5. Let 2 : 4 x I — R"! be a solution of (CF). Then the following scalars
solve the linearized flow (LF)):

1. The speed function F.

2. The functions defined by

u(z,t) = (v(z,t), T), TeR".

3. The functions defined by

u(z,t) .= (v(z,t), AZ(z,t)), Acso(n+1).

4. The function defined by

u(z,t) == (v(x,t), Z(z,t)) + 2tF(x,t).

5. Linear combinations of the above examples.

Proof. These functions arise from one parameter families of solutions of (CFJ|) constructed
from the invariance properties described in O

By the maximum principle, the minimum of any initially positive supersolution of (LF))
is non-decreasing. In particular, the inequality F' > 0 is preserved.
Moreover, any subsolution (supersolution) u of (LF])) may be compared from above

(below) with any positive solution v, since

u 1 U 2 Uu
2 U
<) (v, Vo).

Thus, it is useful to have a positive solution of (CFJ|) at our disposal.
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Remarks 3.1. — Part 2. of Corollary may be used to show that any inequality of
the form (v, T) < 0, T' € R**!, is preserved; that is, if the image of the Gaufl map
of a (non-compact) solution of (CF) lies in a hemisphere at time ¢ = 0, it continues

to lie in this hemisphere at later times.

— Nowhere in the proof of Lemma did we use the fact that F is homogeneous.
Homogeneity of F' was used in Corollary only to derive the fourth claim.

— Positivity of F' on the initial data is necessary for our main results (Theorems
and ; however, in light of the preceding observation, we note that it is
possible to obtain similar estimates by working with different positive solutions of
the linearized flow. One situation where this works is when the initial datum is star-
shaped, for in that case there is some p € R"*! such that (2 — p, 1) > 0. Thus,
by the maximum principle, the function u(x,t) = (2 (z,t) — p, v(x,t)) +2tF(x,t) is
a positive solution of the linearized flow. Smoczyk has made use of this observation
to obtain, in particular, a convexity estimate for star-shaped surfaces evolving by

mean curvature flow (Smoczyk [1998).

3.4 Evolving graphs

We now consider solutions of (CF|) which may be written as graphs, either over a hyper-
plane or over some other fixed hypersurface of R**1. Of course, such parametrizations

always exist locally, for a short time.

3.4.1 Graphs over a hyperplane

Let Q" be a domain in R™ and consider a function u : Q™ x I — R for some time interval

1. Consider the ‘time-dependent graph’ of u:

Gy : 0" x I —>R"xRxR!
(x,t) = (z,u(zx,t)),

where we have identified R” with the hypersurface {z € R**! : 27! = 0} of R**1. Then,

with respect to the induced Euclidean codrdinates {z'}_;, we obtain
0i Gy = 0; +u; Oy,

where we are denoting u; := 0; u. Thus,

v (Du—0u) (3.4)

1+ || Dul|?
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is the ‘downward’ normal to G, where || - || and D denote the (fixed) Euclidean norm and

derivative on R™*!. Tt follows that the induced metric components are given by

gij = 0ij + uiu;
and ¢Y =69 - —L .
1+ ||Dul?
The second fundamental form is therefore given by
Usj

Wij = —(0;0; Gy, V) = ————x=.
1+ || Dul?
Thus, the Weingarten map is given by

*D? 1
w=_924% _
VI+IDulP 1+ (Dul?
1

D D
(I— U u2>D2u
1+ || Dul

( 9 D2u(Du)®Du>
U —
2

where ¢* is the map T4 Q T* 4 — T*# @ T.# = End(T.#) defined by ‘raising an

index’ with the inverse metric; that is,

g(g"S(u),v) := S(u,v).

It will be convenient to rewrite this in the form
PTD2upP
W = -z , (3.5)
1+ || Dul?

where P is a square root of the inverse metric and juxtaposition denotes matrix multi-
plication (Urbas [1991). Writing P = I — A™!Du ® Du, it is not difficult to compute P

explicitly. In fact, we find X\ solves
A2—2(1+HDMF)A+HDMP(1+HDMF>:0

so we may take

A =1+|Du|*+\/1+||Du|*;

that is,
Du® Du

P=17— .
1+ [|Dul? <1+ 1+ ||Du\|2>

Since the time derivative of G, is just 0; G, = u; 0,41, we see that G, gives rise to a
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solution of (CF)) (up to a unique time-dependent reparametrization) if u is a solution of

1 D?u(D D
ug = \/1+||Du|*F [ —— {D%— 1“( III;;QTIQ al
+ U

1+ || Dul?
PT D2y P

= \/1+||Dul)PF | ———— | . (3.6)
1+ || Dul|?

We note the converse only holds locally, since not all hypersurfaces can be represented
as graphs, and an evolving graph will not necessarily remain a graph.
3.4.2 Graphs over a hypersurface

More generally, we may consider time-dependent graphs over any fixed oriented hyper-
surface 2 : 4 — R"™! (cf. Huisken and Polden [1999): First note that, since 27 is an

immersion, we may choose ¢q sufficiently small that the map

XM x (—60,60) — RH—H
(z,h) = Zo(x) + hip(x)

is itself an immersion, where 1 is a choice of unit normal field for 2. Let g denote the
metric induced on .# := .# x (—gg,e0) by X. Then, by the Gaufl lemma, g admits the

decomposition
g=g, +dh®dh,

where g, is the metric induced on the hypersurface .# x {h} by the immersion X :=
X(-,h).

Now consider the time-dependent graph

Gy: M x1— M xR
(z,1) = (z,u(z,t))

of a smooth function v : .# x I — R. Then, if u satisfies sup ;. |u| < €9, Gy is a

time-dependent immersion, with (time-dependent) pullback metric given by
v:=(G,9) =7, +du®du.
The inverse of « is given by

«  _. grad,u® grad,u
YV =Gy — 2
1+ [dul2

i

where grad, is the gradient operator, and | - |5, the norm, induced by the metric g, (in
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codrdinates, grad,u is given by grad,u’ = g,*ug, where uj = 0ju).

It is also straightforward to compute a unit normal vector to G,; we find
Ty = l (graduu — 8h) ,
N
where
N :=+/1+3, (du,du).
The second fundamental form of G, is therefore given by

Wij = — g (% D;iGuys 95, 74)

g (Do, 0; +us; O, grad, u — Oy)

2|~

2l=zl=
]

’LDJU7

where D is the connection induced on .# x (—&g,e0) by X and D is the pullback of D
to 4 x I by G,. Since the bundle of connections over .# is affine, we may rewrite this in

terms of the connection VY induced by the initial immersion 2 as
Wij = Vi Viu+oy,
where ¢ is the tensor defined by
o(Y,Z) :=du (““DyZ - V% Z) .

Importantly for the following section, we note that ¢ depends on u only up to first order.
Thus, the components of the Weingarten curvature are

. . s g]pu quu
Wi =75 Wy, = <93k - #

0 <0
> (Vi Viu+oi) .
Next, we compose X with G, to obtain the time-dependent immersion 2 (z,t) =
Zo(x) +u(x,t)vo(x). Note first that, since X is an isometric embedding, the curvature of
2 oG, agrees with that of G,. Moreover, the normal part of the time derivative of Z o G,

1S

1
(02, v) = ug (vy, Xuly) = Ut

We conclude that 2" solves (CF|) (up to a unique time-dependent reparametrization)
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if and only if u solves

S 1 d d
o\ |dul 1+ |dulg,
where the symbol ¢’ denotes the tensor contraction (U - V)7 = UM*Vj.

3.5 Local existence of solutions

The parabolicity condition (Conditions ) ensures that is locally a (fully non-
linear) parabolic system of partial differential equations. However, the invariance of
under reparametrization ensures that this system is degenerate in tangential directions
(cf. Hamilton (1982, §4), so that existence of solutions is not readily obtained from the
literature. Such issues are common to geometric partial differential equations, and the
degeneracy problems may be removed by fixing some special coordinates in such a way
that the degeneracies in the highest order term vanish, leaving a non-degenerate system, to
which the parabolic theory applies (Foures-Bruhat [1952; DeTurck 1981 /82; DeTurck 1983}
Huisken [1984; Baker 2010). These methods are also applicable in our setting; however,
we have chosen to take a different approach: By considering time-dependent immersions
which may be written as graphs over the initial immersion, we showed in the previous
section that is equivalent (for a short time) to a strictly parabolic scalar equation
(cf. Urbas 1991; Giga and Goto 1992; Andrews 1994a; Huisken and Polden [1999). We
then need only appeal to the local existence theory for scalar parabolic equations, which

we have documented in Appendix [A]

Definition 3.6. Let F : I' C R™ — R be an admissible flow speed. Then an admissible
initial datum for (CF)) is a smooth immersion 2o : A™ — R"™! with §(x) € T for all
x € M.

Theorem 3.7 (Local existence of solutions). Let F': I' C R® — R, n > 1, be an admissible
flow speed and X : A" — R™1 an admissible initial datum for (CF). Then there exists
§ > 0 and a unique, smooth time-dependent immersion 2 : M x [0,8) — R satisfying

the initial value problem

aa%(:r,t) = —F (R(z,t))v(z,t) (z,t) € 4 x(0,0)
Z(x,0) =Zo(z) xeM.

Proof. We saw in the previous section that the statement of the theorem is equivalent to

the existence of a solution u : .# x [0,d) — R of the initial value problem

= a 0 OU.I Ouac u\xr X X X
{ut(x,t) = F(V'V%u(z,t), VOu(z,t),u(z,t),2,t) (x,t) €4 x (0,6) 58)

u(z,0) = 0 x €M,
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where VY is the connection on .# induced by 2 and

“r+o(p,h,z,t)]

o / 1 —% g*p@)g*p
F(T,p,h,x,t) = 1+|p|%hF B gh_%
,/l—Hp%h 1+|p|§h

By Theorem of Appendix [A] it suffices to show that the initial value problem (3.8]) is
uniformly parabolic. First note that, since .#Z™ is compact, there is a compact set I'g C T’
such that (.#) C T'g. Then, since F is positive definite on T, we have

Mgl < B &gy < A€

for all £ € R”, where A := min{F%(z): z € Ty, 1 <4,j <n} >0 and A := max{F"(z) :
z€Ty,1<i,j7<n}<oo.

On the other hand, since ug = 0, a simple computation yields

OF

— £ (/(,0))
o ((x,0))

(VO VO ug(z),V° ug (:p),uo(a:),x,O)

This proves the required uniform parabolicity, and hence the theorem.

Remark 3.1. Note that homogeneity of F' was not used in the proof of Theorem [3.7]






4. Long-time behaviour

Now that we have established short-time existence of solutions for the class of flows ad-
mitted by Conditions [1 the next challenge is to understand the long-time change in the
shape of solutions, and to characterize their asymptotic behaviour. The present section is
concerned with the preservation of certain geometric properties of the initial datum. Our
main tool is the maximum principle. We begin by deriving parabolic evolution equations
for the Weingarten curvature and scalars constructed from it. We then show that the
maximum principle may be applied to conclude that initial curvature cones are preserved
by the flow, so long as certain natural auxiliary conditions for the speed function are
met. This leads to a global existence theorem, Theorem (Assuming the presence
of auxiliary conditions) solutions remain smooth until the curvature blows-up. This is
achieved by analysing a scalar equation related to a local graphical parametrization and
appealing to the scalar parabolic theory. The remainder of the section is concerned with
results of a more geometric flavour, including a comparison principle and the preservation

of embeddedness.

4.1 Evolution of the curvature

We begin by deriving parabolic evolution equations for the Weingarten curvature and its

scalar invariants. We will need the following lemma.

Lemma 4.1 (Simons-type identities). Let F': I' C R" — R be an admissible flow speed.
Then, along any solution of (CF|), the Weingarten curvature satisfies

LWij = Hess Fyj — F(V; W, V; W) + FOV)W?; — FEOVHW,; . (4.1)
Let G : T' = R be a curvature function. Then, along any solution of , we have
LG =GIN;V;F—26r(VNW, VW) + Zar(W), (4.2)
where we have defined

a0 (VW, VW) = (GRS - FREGITS) 7, W, Vi W, (4.3)

47
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and
P r (W) = GPEM (W W2, — Wy Wi) = (quFkl - quc';’fl) WeW2,. (4.4

Proof. We compute locally, beginning with the commutation formula (2.15)):

Vi ViWij = Vi Vi Wit + WiaW?i5 — WiyW2 i + WigWi = W .
Contracting this with F' yields

LWij = FFN VWi + FFWaW?, — FFW W2,
On the other hand, we know that
ViV F =F"N, NV Wi+ FPY N, Wy Vi Wys

so that

LWij = ViV, F — FPP N, Wy Vi Wi + FFW W2 — FFW,; W2,

This proves the first identity.

Now consider a curvature function G. Then

LG = FIVL VG = B (G950 Wy Vi Wey + GP VW1 W)
= FMGPETS X W, Vi Wies + G 2W,
- (Fkléws - G'MFPW) Vi Wag Vi Whs + GV, V, F
+ FMWLGPIWE, — G Wi FPOWE

O]

Remark 4.1. In fact, the formulae and of Lemma hold for any (time-
dependent) immersion and any pair of curvature functions F' and G along it. The formulae
with F' = H and G = |W|? have been used to prove rigidity results for minimal hy-
persurfaces (Simons (1968). See also Ecker and Huisken (1989) where non-linear functions
of W are considered). These identities also play an important role in the mean curvature
flow, where they are used in arguments to control the asymptotic behaviour of the Wein-
garten curvature (See Huisken (1984; 1987)) and Huisken and Sinestrari (1999b; |1999a;
2009)). In Section [5, we will show that similar estimates for more general flows can be
obtained with the help of the identity . Estimates for the terms 2 and & are key.

Proposition 4.2. Let F': ' C R" — R be an admissible flow speed, and Z": M# x I —
R q solution of (CF)). Then the Weingarten curvature of 2 satisfies

(Vi —LYW,j = F(ViW,V,; W) + FOW)W;; . (4.5)
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Proof. Recalling equation ([2.14]), the claim follows directly from (4.1) and Euler’s theorem

for homogeneous functions. O

Next, we derive an evolution equation for local scalar invariants constructed from the

Weingarten curvature.

Proposition 4.3. Suppose that G is a curvature function. Then
(0 —L)G = 26 r(VW, VW) + GIW)F(W?), (4.6)
In particular, if G is homogeneous of degree a,
(0; —L)G = 26 r(NW, VW) + aGF(W?).

Proof. Computing locally, we have 9; G = G* V; Wj;. The claims now follow by applying
equations (2.14]) and (4.2), and Euler’s theorem for homogeneous functions. O

Remark 4.2. Equations and are, via the maximum principle, crucial to pre-
serving certain curvature sets, which is a fundamental step towards controlling the long
term behaviour of solutions. Note that the degree one homogeneity of F' enters here: The
‘reaction’ term of equation is F' times the square of W. Due to Euler’s theorem,
this is cancelled by the term F'(W)W? which arises when we contract V2 W with F. Thus,
without the homogeneity condition, there is an extra term, (F — F'(W))W?2, in the evolu-
tion equation for W (which cannot a priori be controlled). A similar cancellation occurs

for the evolution equation for G.

4.2 Preserving curvature cones

In this section we will study conditions under which a given curvature set is preserved by

the equation (CF)).

Definition 4.4 (Preserved cones). Let F' : I' C R" — R be an admissible flow speed.
Given a cone Ty C R", let us write To CC T to convey that Ty \ {0} C T.

We say that a cone I'g CC T is preserved by the flow if every solution X : M x
[0,T) — R*"L of satisfying R(.# x {0}) C Ty satisfies B(.# x [0,T)) C To. We say
that T'g is strongly preserved by the flow if, in addition, either R(.# % [0,T)) C 0T
or B(A x (0,T)) C int(I'y).

We say that the flow by speed I admits preserved cones if given any solution
XM x [0,T) — R there exists a preserved cone To CC T with R(.# x {0}) C Ty.

Preserved cones play a crucial role in controlling the long time behaviour of solutions
of (CT).
The maximum principle is the main tool for showing that curvature cones are preserved;

the simplest application is the following;:
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Proposition 4.5. Suppose F : I' — R is an admissible speed such that Ty := {z € T :
F(z) >0} cCT. Then Ty is strongly preserved by (CFJ).

Proof. Since F satisfies (LF]), the claim follows immediately from the strong maximum
principle. O

4.2.1 Cones defined by curvature scalars

It is possible to show that other curvature cones are preserved by applying the maximum
principle to the evolution equation for a given curvature function G. For example, if G
is homogeneous of degree one and 2 r(VW, VW) < 0 (at least wherever V G = 0) then
the cones defined by G < C'F' are preserved by . On the other hand, the expression
2a¢.r(VW, VW) is in general rather complicated, so that finding curvature functions
which satisfy 2 r(VW, VW) < 0 is no easy task. The following lemma provides a

useful decomposition.

Lemma 4.6. Let F: T CR” =2 R and G : I' C R® = R be smooth symmetric functions.
For any diagonal matriz B with distinct eigenvalue n-tuple A = (A1,...,\,) € ' and any
totally symmetric T € R" @ R™ @ R, we have

(GM fwars _ Fkl(qu,m)‘BTkqulrs = (GFFPa — Fk(;pq)‘ATkpkaqq
(FPGI — (';qu)’
+2 Z FEDY A ((quq)2 + (qup)2>
p — g
p>q

+2 Z (G x FP)| - Nopg (Tiopg)* (4.7)
k>p>q

where ‘<X’ and ‘-’ are the three dimensional cross and dot product respectively, and the
vectors ﬁkpq, G gnd kaq are defined by

ﬁkpq = (Fk,Fp7Fq)7 ékpq = (Gk7Gp7Gq)a

T T
(>\k - )\p)()\k - )‘q) ()\k - )\p)()‘p - )‘q) ()‘p - Aq)()\k - >‘q)

Proof. Since B is diagonal, the identity (2.18)) of Theorem yields (suppressing the

dependence on B)

(Gk‘lﬁqu,rs _ Fklépq,rs)Tkquvlrs _ Z(Gkaq _ FkGPQ)Tkpkaqq

k.p,q
. P _ [ LGP — (e
+ 2 (€L o — (Ty, )2
;( Ap — Aq Ap_Aq) P
p>q

= Q1+ Q2.
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We now decompose the second term, (Qo, into the terms with £k = p, & = ¢q, k > p,
p >k > q, and q > k respectively:

. FP _ [ . GP— (e
= p — FP Topo)?
Q2 Z (G M — Ay M — g ) (Tppq)

p>q

(T,

Fp _ Fa .qu_(;q> E
apq

- G ~F
1;( Ap = A Ap = g

. FP _ Fa LGP — (1
[ L L - —— AT
(e 3 (e - S
k>p>q p>k>q p>q>k
=: Q21 + Q22 + Q23
The first two sums add to
FPGY — GP Y
Q21 + Q22 =2 Z R W S ((quq)2 + (qup)Q) ;
p q

p>q

and the remaining term may be rewritten as

LEv B o ge L Pk pa . Gk g
k k

- N - b A S - D
Q= D, (G I S U v Yy

k>p>q
. EFk_ Frp .Gk _qGr
q _ 1 T 2
T M—AP>(“”

.. .. 1 1
= PE9 _ FAGP _
Z <(G “ )<)‘k_>\p >‘k_)‘q>

k>p>q
(€ I L) (R
A AN

e s 1 1
k}ﬂ)—<Fk D _ T 2
+ (G G ) )\p _ )\q )\k _ )\q ( kpq)

- Z (G0 % FMPT) - Xipg(Thopg)* -
k>p>q

Convex speeds

The task of finding curvature functions G satisfying 2 r < 0 is made easier if the speed
function F is convex (in particular, any convex, monotone decreasing G will do).

First, we note the following simple application of equation (4.6)):

Proposition 4.7 (Cf. Andrews (1994a), Theorem 4.1). Let F : I' — R be a con-
vex admissible speed function. Let G : I' — R be any smooth, degree one homo-

geneous curvature function which is convexr and monotone decreasing. Suppose that
e ={ el :G\) <CF\)} ccT for some C € R. Then T'c is strongly preserved by
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the flow .

Remark 4.3. In particular, if I' C {z € R" : H(z) > 0}, where H(\) := > | A\;, we can
take G(A) == HA) Y/ ¢ (%) in Proposition where ¢ : R — R4 U {0} is any
smooth function which is positive and strictly convex, except on the set Ry := {r ¢ R:
r > 0}, where it vanishes identically. This implies that the cones {I'c := N {A € T":
Ai > —CF (M)} are preserved, so long as I'c CC I'. We will generalize this estimate in
Proposition to flows by convex speeds which may be defined on larger sets than the

positive mean half-space {H(\) > 0}.

Proof of Proposition[{.7. This follows immediately by applying the strong maximum prin-
ciple to the evolution equation (4.6) (for G—CF) since the assumptions on G and F ensure
2ar(VW, VW) <0. O

Next, we will show that flows by positive, convex speeds preserve the pinching ratios
k1/F > —e for any € > 0. This estimate has a natural geometric interpretation: Observe
that the distance from a point A € R" to the positive cone I'; is given by dist(A\,I'}) =
max{—Amin, 0}, where Apin = min; A;. Thus, the pinching estimate k; > —eF says that
the distance of the normalized curvature i/F to the positive cone I'; does not decrease
under the flow. In Section |5 we will prove that this distance asymptotes to zero at points

where F' is blowing up.

Proposition 4.8. Let F': ' C R™ — R be a positive, conver admissible speed function, and
e any positive number. Suppose that Ty CC T, where To:= M {\ €T : \; > —cF(\)}.
Then Ty is strongly preserved by (CF)).

Proof. We will apply the maximum principle to the evolution equation for a smooth ap-
proximation to the function max{—x1/F,0}. To this end, let ¢ : R — R be any smooth
function which is positive and strictly convex, except on the set Ry := {r € R : r > 0},

where it vanishes identically. For example, we could take

4,—%5
r¥e 2 if r<0;

0 if »>0.

o(r) =

Now consider the curvature function G : I' = R defined by

GO = F) Y ¢ < FA(A)> | (4.8)
=1

Observe that G is non-negative and vanishes on (and only on) the set I NI". Furthermore,

G is clearly smooth, symmetric, and homogeneous of degree one. We will show that
0> QG,F‘z(Tv T) = (G'klﬁqu,rs - Fklép%rs)‘szqu‘lrs (49)

for any Z € Sym(n) with eigenvalue n-tuple A € T' and any totally symmetric T €
R™ ® R™ ® R™. In fact, it suffices to prove (4.9) for diagonal Z with distinct eigenvalues,
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since the general case follows from continuity and G'L(n)-invariance of 2¢ p. In this case,
the identity ([2.18) of Theorem implies (omitting the dependence on Z and \)

(G EPars _ pRERTSY T T = (GREP— ERCPY T Tr

Fr—F1  GP—GY
2 g P Tipg)” -
" ;(G N Ag /\p—)\q>< kpa)
1
P>q

First, observe that
a A Ai -
k ) k 1 1k
3o (1) e () (- 5)
| ;

/ k Sk . Ai Ai / i
= 5 F il il 200
@<F)+ > [+ ()5 (7).
Next, we compute
. I i A Ai
GP1 — [Pa vy v
> [ (7)-7 (7).
1 Ai

It follows that

(GkF P —F kaq)Tkpkaqq =¢' ( k) FP T oppThqq
n

Finally, applying Proposition we find

L EP_F L G LN Fr— fa
§ : k k 2__§ : / k E: 2
k> (G Ap =g - Ap = Ag ) Tipa)” = i <F> Ap = Aq (i)
1, k=1 p>q
p>q

ey ()= (8)
o p>q

The maximum principle now implies that upper bounds for G/F' are preserved. It

follows from the construction of ¢ that negative lower bounds for k1 /F are preserved. [

Next, we consider the evolution of (m + 1)-convex hypersurfaces, m € {0,...,n — 2};

that is, those satisfying 1 + - - + Kmy1 > 0 at all points, or, equivalently, & € T',,41 at
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all points, where

Ty = m {AeR": )\0(1) +---+ )\g(erl) > 0}
UGP’FL

and P, is the group of permutations of the set {1,...,n}. For convenience, we also define
To:={k(1,...,1): k> 0}.
We will show that flows of (m+ 1)-convex hypersurfaces by convex speeds preserve the

pinching ratios (k1 + -+ + kmi1 — ¢, F)/F > —¢ for any € > 0, where

m—times

is the value F' takes on the unit cylinder R™ x S~ . Let us first provide an interpretation

of this estimate: Define the curvature cones

A, = ﬂ {)\ el: Ao-(l) + - +)‘a(m+1) - nglF()‘) 2 O} ’
o€P,

Notice that, by the monotonicity of F', Ay is the positive ray {(A,...,A) : A > 0}; thus,
a hypersurface satisfying x1 > ¢y 'F is a round sphere. The following lemma shows that,
more generally, a hypersurface satisfying x1 + -+ + Kmp1 > ¢, ' F at all points must be
strictly m-convex, k1 +- -+ Ky > 0, wherever it is not ‘(n—m)-umbilic’: K14+ Ky =0

and K41 = - = K.

Lemma 4.9. The cones Ay, m € {0,...,n — 2}, are convex and satisfy Ay C .

Moreover,

Ap M OT,, = U {)\ER”ZAU(l):-":)\U(m):O, )\J(m+1):"':)\a(n)>0} .
oebly,

Proof. Convexity of A, follows from concavity of the defining functions, G, := Ay(1) +
o Ag(man) — 6 F
Next, we note that the point A" := (0,...,0,1...,1) satisfies
N——

m-times
)\T—i—""f‘)\%-ﬂ —cr_an(/_\’m) =1 —F(Xm)_lF(Xm) =0.

Thus, X € 8 A

To see that A,, C I',,, we will show that the half-space H,, 1 := {z € R" : 21 +
-+ 4+ zm+1 > 0} is a supporting half-space for A,, at xm (see Definition . The claim
then follows from convexity of A, and symmetry (see Lemma 1.). To this end, note
that (by differentiating the defining relations) the inward normal cone to H,,11 at ™ s
generated by the vector

F=(1,...,1,0,...,0)
——

m-times
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and the inward normal cone to A, at ™ s generated by the vectors

—

b, = (1—07711]71,...,1 —c VFM e VT —cfanp,...,—c;llF"> i

Noting that F1(X™) = ... = F™(X™) =: 7 and (using Euler’s theorem) that ™1 (X™) =

cee = F”(Xm) = cm—n_lm, we find

- 1 1 1
Kp:<7",...,7“,— B e, — )
—_—— n—m n—m n—m
m-times —
p-th position

It follows that >°7 ., [p = r(n — m)Z, so that £ is in the inward normal cone to A,, at
A™. Thus, as claimed, Hy,11 is a supporting half-space for A,, at A"™.

To prove the final claim, suppose that A € A, M dT,,. Without loss of generality,
assume that Ay < --- < A\,. Then, making use of symmetry, monotonicity, homogeneity,

and convexity of F,

o F(A) S A+ 4 A

= )\m—i-l
=, F(0,...,0, Aty - s Amg1)
H/_/
m-times
< c;le(Ov e '707 )‘erla )‘m+2a R )\n)
H.,_/
m-times
= L PO 4 F Xy AL Ay Aoty At 1s - - 5 An)
m-times
1
:cmln7mF(()\l,...,)\m,)\m+1,...,)\n)—|—(Ag,...,Am,)\l,AmH,...,/\n)
+-~+(/\m,/\l,...,Am_l,)\m+1,...,>\n)>
<c lF()).

The claim follows since, by strict monotonicity of F', the second inequality is strict unless
Amtl = - = An. O

Thus, the pinching estimate k1 + - -+ + K1 — ' F > —cF says that the distance
of the normalized curvature i#/F to the cone A,, does not deteriorate under the flow, so
that, in the sense of Lemma [4.9] the hypersurface does not become ‘less m-convex’. In
Section [5| we will show that the distance of K/F to the cone A, (T asymptotes to zero
at points where F' is blowing up. This suggests that the hypersurface is becoming convex

and either m-cylindrical or strictly m-convex at a singularity (see Theorem [5.15]).

Proposition 4.10. Let F' : T' C R® — R be a conver admissible speed function and m
an integer from the set {0,...,n —2}. Suppose that Ty := MNyep, {Ao(1) + -+ Agm+1) —
cLF(\) > —eF(A)} CcC T for some e > 0. Then Iy is strongly preserved by (CF).
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Remarks 4.1. 1. Taking ¢ = ¢,,,}, we find, in particular, that the cones I',;1 are pre-

served for each m € {0,...n — 2}.

2. Note also that the m = 0 case of the proposition yields the pinching estimates
ki1/F > (cq L _ &) for flows of convex hypersurfaces. It follows that every convex

admissible flow speed F' : I'y C R” — R admits preserved cones.

Proof of Proposition[f.10. We will apply the maximum principle to the evolution equation
for a smooth approximation to the function max{—(k1 + -+ + kms1 — ¢, F),0}, m €
{0,...,n—2}.

For each m € {0,...,n — 2}, define Gy, : I' = R by

m+1 —
Gn(N) i= F()) Z o <Zi:1 Aa(i) = leF(/\)> 7 (4.10)

oc€EH,

where H,, is the quotient of P,, by the equivalence relation
or~w if o({l,....om+1})=w{l,...,m+1}),

and, just as in the proof of Proposition 4.8] ¢ : R — R is a smooth function which is
strictly convex and positive, except on R, where it vanishes identically.
We will show, using Lemma that

2¢,,7(T,T) = (G FPrrs — pRGrers)| Ty, Tys <0

for any totally symmetric 7 € R" ® R” ® R" and any symmetric Z € Sym(n) with
eigenvalue n-tuple A € I'y. As before, by continuity and GL(n)-invariance of 2¢,, F, it
suffices to prove the estimate for diagonal Z with distinct eigenvalues A1 < - -+ < Ap.

We first compute

m+1 )
Ch=F* Y o)+ X ¢ ) 3 (b~ )

oc€Hm o€H, =1
: S N mtl
= F* Z (‘P (ro) — ¢ (ro) ZF> + Z Z o (ry) 5a(i)k ,
oceHy, oceH,, i=1

and




§4.2  Preserving curvature cones 57

m+1 .1
izt Aoty —om FO) g4 e that

where we are denoting r,(\) := =00
. .. . . m+1 ..
GR P — FRGR = % " N ¢l (1) 3p(s) P
c€EH,, i=1
" m+1 m+1
ok ¢"(ro) Aoti) Aot
DI D <5”<">p‘ 7)) 2 (P =)
oc€eH,, i=1 =1
Fixing the index k and setting &, = Tk, we find
m—+1 .
C,O/(Tg) Z 5a(i)kaq£p§q <0
i=1

for each o, and

& ¢00) R Aoti)
R <5a<i>p— F

occH,, =1 1=1
m—+1 2
& ©"(ro) Asli)
==Y 2 D e - ) &
<0.

Since both inequalities hold for all k, we deduce that

(anppq - Fké%)Tkpkaqq <0.

Next, consider

m+1
FPGI, —GPFI= > Y o (rg) (50(1‘)qu - 5(7(1‘)qu>
oc€EH,, =1
= Z ¢ (ro)FP — Z ¢ (ro)F9 |, (4.11)
0€0qy o€0p

where we have introduced the index sets O, := {0 € H,,, : a € c({1,...,m + 1})}. For

Ap > Ag, Proposition yields

FPGh, —GhLET<FP | Yy o) = Y (o)

0€0q o€0p

We now show that the term in brackets is non-positive whenever A, > A,:
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Lemma 4.11. If \, > A, then

Z @' (ro) — Z ¢'(ro) > 0.

o€0p 0€0q
Moreover, equality holds only if either A\, = Xg or 15(AX) >0 for all 0 € Oy p := Oy \ Op.

Proof of Lemma[4.11 First note that

Z ¢ (re) — Z ¢'(rq) = Z ¢'(re) — Z ¢'(ro),

€0y 0€0q 0€0p 4 0€0q,p
where Ogp := O, \ Op. Next, observe that, if o € Oy, 4, then
Aoy 7 F Agma1) = Ap + As(in) - Asinm) (4.12)

for some 6 € Hp,—2(p,q) := Po—2(p,q)/ ~, where P,,_2(p, q) is the set of permutations of
{1,...,n}\ {p, ¢}, {i1,...,im} are a choice of m elements of {1,...,n}\ {p,q}, and ~ is
defined by

G it 5. sim)) =01, im)).

Observe also that the converse holds (that is, (4.12)) defines a bijection), so that

m oy — el
Z ¢'(re) — Z @' (ro) = Z [‘Pl (Ap + 2 ;\:(Zk) m F)
(p,a)

O'EOp7q O'EOQJ) 0€EH o
—¢ (Aq + 2 k1 Aoin) — c;#F> }

F

The claim now follows from (strict) convexity of ¢ (where it is positive). O

Thus,

FPGY, — Gh 1
Z N\ ((quq)2 + (qup)2> <0.
P>q P q

We now compute

. Gm sy )\O' 7 = flany
Gt = <F IR AD F”) Fri gy @ (10) D (000" 00y 0oy

oc€Hm i=1 c€H, i=1
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so that
m+1
(G%’q X kaq) “Mkpg = Z Z ¢ (ro) [(5a(i)ka6cf(i)pv6a(i)q) X kaq} - Mkpq
oc€H,, i=1
o (A = Ap)(Ae = Ag)

By F® = 85" F1) (A — Ag)
(A = Ap)(Ap — Ag)
Bo()"EP = 850y PF*) (A — Ap)

()‘k - )‘q)()‘p - )‘q) ]

+

Removing the positive factor agp, == [(Ax — Ap) (A — Ag)(Ap — Ag)] ™! and setting Q* :=
> vco, ¢ (rs), we obtain
(Gl F491) - Ky = g [(QVFT = QUEP) (0 = 0)? + (QUFF = QFT) (0 — Ay)?
+(QFF = QPEM) (v = A7)
Applying Lemma, yields
(G0 x F99) . S,

< oy (QUFF = QUF) [k = A0 = (= 4 = (= A)°] -
Since the term in square brackets is non-negative, applying Lemma once more yields

(G0 P90) Sy < 0.

Concave speeds

Next, we consider flows by concave speed functions. We first observe the following simple
application of equation (|4.6l):

Proposition 4.12 (Cf. Andrews (1994a)), Theorem 4.1). Let F' : I' — R be a con-
cave admissible speed function. Let G : I' — R be any smooth, degree one homo-

geneous curvature function which is convexr and monotone increasing. Suppose that
Fog:={AeTl:G\) <CF(\)} cCT for some C € R. Then I'¢ is strongly preserved by

the flow (CFJ).

Remark 4.4. In particular, we can take G(\) = H(X) := Y ;" | A; in Proposition This
implies that the cone I'c ;= {A € I': H(\) < CF(\)} is preserved, so long as I'c CC T

This is the case, for example, if C' < liminfy_ g1 %
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Proof of Proposition[{.13 This follows immediately by applying the strong maximum
principle to the evolution equation (4.6) (for G — C'F) since the assumptions on G and F
ensure 2 p(VW, VW) <0. O

Next, we consider flows of (m + 1)-convex hypersurfaces by concave speeds.

Proposition 4.13. Let F': I' C R™ — R be a concave admissible speed function and m
an integer in the set {0,...,n — 2}. Suppose that Ty := mgepn{)\o(l) + ot Ag(me) —
e, LF(\) <eF(A)} CcC T for some e > 0. Then Ty is strongly preserved by (CF)).

Remark 4.5. We will only make use of the case m = 0, which yields the pinching estimate
Fn < (051 + ¢)F. Note that, if F' is concave and 8 < 01_1, then the cone I'g := {\ €
I': i < BF(A) for each i} satisfies I'g CC I'y. Thus, flows by concave speeds preserve
sufficiently tight initial curvature pinching. We will show in Section [5| that this estimate

improves at a singularity for such flows.

Proof of Proposition[{.13 The proof is similar to Proposition replacing the pinching

functions defined there with

GulN) = FO) Y <cm1F(A)F_(AZ)?:1 Aa(i))
oeP,

and arguing from concavity, rather than convexity, of F'. O

Surface flows

In two space dimensions, the gradient of the second fundamental form has no totally off-
diagonal components. This allows us to isolate the dependence of 2 r on the second

derivatives of F":

Lemma 4.14 (Cf. Andrews (2010)). Let F : T C R? — R be a positive admissible speed
function and let G : T' — R be any smooth, symmetric, degree zero homogeneous function.
Let Z be any diagonal matriz with eigenvalues X = (A1, \2) € T satisfying A1 < Aa. Suppose
that G is non-degenerate at Z. Then, for every totally symmetric T € R" @ R @ R", we

have

QG,F}Z(T, T)= fklpa (GlTkn + Gsz22) Tipq

2FGE 2 2
m [(TUQ) + (T212) ]
FLGU /. . 2 F2(22 . 2
- aa (GlTlll + G2T122> — Ea <G1T211 + G2T222>
F1 2 _fpl : .
+ (2)\2 - >\2—>\1> (G1T111 + G2T122) Ti22

2 2 pt ) .
(- ) (O 6rn)
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Remarks 4.2. 1. If G is degenerate at Z, then a careful inspection of the proof of Lemma
reveals that QGF‘Z = 0.

2. The significance of Lemma [£.14]is the following observation: If G is evaluated on the
curvature of a solution of the flow (CFJ), then VG = GPIV,, Whe = GV Wi +
G?V\, Wy and Lemma yields

2FGY

Lar(VW VW) = e — )

2 2
(Vi) + (Vo W)
at any critical point of G. The maximum principle (applied to equation (|4.6))
now implies that sub-level (super-level) sets of any monotone non-increasing (non-

decreasing) degree zero homogeneous curvature function G are preserved.
3. The decomposition also plays an important role in Section

Proof. We first show that A\; # 0 and Ay # A; wherever G is non-degenerate: First note
that, by the identity of Theorem , Gkl = GF§* so that G* # 0 for each
k. Next, observe that G'A\; + G*X2 = 0 by Euler’s theorem for homogeneous functions.
Suppose now that 0 # A; = Xo. Then 0 = (G + G?) g, so that G' = —G2. On the other
hand, since G is symmetric, we have G! = G? whenever Ay = A;. Thus, G! = G2 = 0,
a contradiction. Now suppose that A\; = 0. Then 0 = G2)\,. But, since F is positive,
Euler’s theorem implies 0 < FIN| + F2)\y = F2),. Since F is monotone, we find Ay > 0,
and conclude that G2 = 0, another contradiction.
Now we apply the decomposition of Lemma, to obtain

GlFQ _ GQFI

26,p(T,T) = (GHFPT = FRGP) Ty Tigq + 2= —
2 A1

((T112)? + (T212)?) .
Consider the terms involving the second derivatives of F’:

Q1 = GFFMTy, Ty = P (G (T110)? + G2(Ton)?)
+2f12 <G1T111T122 + G2T211T222)

+ F22 (Gl(leg)2 + G2(T222)2> .
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We write this in terms of the ‘gradient’ DG := (GlTkn + GQTkQQ) as follows:

) G2 )
Q1= (Tlll (DlG - G2T122) + aTzn (DQG - GQT222)>
+ 212 (C.;1T111(T122)2 + G2T211(T222)2>

el
+ B2 7T122(D1G G?Th11) + GPThon(D2G — G T211)>

N
_ Ja F12 (il 27T
= 2 1114122

Gl

F11 2F12 + F22 | Ty, Togo

G2 . Gl
Tyt <D1GT111 + GlDZGTle) + 22 ((;'QDlGT122 + DQGT222> ) (4.13)

Now note that, due to Euler’s Theorem for homogeneous functions, any smooth, homoge-

neous degree v function k of two variables, y1, 2, satisfies the following identities:

By + kyo = vk
kllyl + 7%12y2 _ (,_y o 1)]{71 :
7%22y2 + 7%12y1 — (,y o 1)]{72 :
and B (y1)? + 26y + E2(y2)? = v(y — Dk

(4.14)

The first of these identities implies G2 / Gl= -\ /A2. Combining this with the fourth, we
observe that the bracketed terms in the first and second lines of (4.13) vanish. Applying
the second and third of the identities (4.14)) to the remaining terms yields

Q1 = F1D\GTi11 + FY2DyGToy 4+ F?2DyGThgs + F2 D1 GTas .

Recalling the identity ([2.18]), we conclude

F?2 - [t

= FKrap, G, -
Q1 kGTipg — e

(D1GTi99 + DoGTo11) .

We now turn our attention to the terms involving second derivatives of G; a similar
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computation as in (4.13)) yields

QQ = Fkéqukpkaqq

. . LN 2
N2 Gl G'\ .
_ G2a an EGH + (G2> G2 | 111 T2

. LN 2 :
. 2 G2 N Gl .
— Gl& <Gl) G — EGIQ + G* | To11Tozo

1 [ F? F? oo [ F1 a2
+ GH aDlGﬂn + aDQGTQll + G*? EDlGTnz + EDQGTQQQ
As above, the first and second lines vanish. We write the third line as

aio, ) e
(G1)2 <F1D1G <D1G — G2T122) + F2F2G1D2GT211>

(gi; (F1G201GT122 + F2DyG (DQG _ G’ngH))

. . 2 . . 2
Fl ) el .. 2 (. G2 .
= a GH — <G2> G*? D1GTy99 + a G*? — (G’l) el DoGTo11

Q2 =

+

Gll Fl G22 F2
tara DO (PO

Now, using the second and third of the identities (4.14)), we find

G22)\ +G2 G12 G'll)\ +G1

It follows that

AL A1
and, similarly,
a2\’ 2
G22 _ = Gll —_9=
Gt A2
We conclude
Jallert! F2 (22 Jal 2
= ——(D ——D —2—D1GTi99 — 2— D> G
Q2 o Gl( 1G)? —I—G e (D2G)? )\ 1GT122 N 2GTo11 .

Finally, the coefficient of the remaining term may be rewritten with the help of the
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first of the identities (4.14)) as

2G1F2 (2! _ GLF2 )\, — GQ%Fl)\l _ GYE2)\y + ng—;Fl , CLF
Ao — A A2(A2 — A1) A2(Aa — A\p) A2(A2 — A1)
This completes the proof of the lemma. O

Corollary 4.15. Let F : T C R? — R be any positive admissible speed function. Then
every curvature cone I'g CC I' is strongly preserved by the flow (CF)).

Proof. First note that, in polar codrdinates (r,#) with angle measured from the positive
ray (recall Example , we have Tp = {A € R? : —f0y < 6(\1,A\2) < g} for some
0o € [0,37/4]. Equivalently, Tg = {\ € R? : cosf(\1,A2) > o} for some g9 > —1/1/2.

Thus, it suffices to show that the inequalities

A1+ A2

TS
1 2

G(A1,A2) :=cosB(Ai, A2) =

are preserved for each ¢ > —1/ V2.
Noting that

VaG! — A2(A2 — A1)
(A3 +A)2

is monotone non-decreasing at any A € I'g such that Ay > A1, the claim follows from

Lemma [£.14) and the maximum principle. O

4.2.2 Cones defined by the Weingarten curvature

It is also possible to obtain preserved cones more directly from the evolution equation
for the full Weingarten curvature. In this section, we will derive a useful condition under
which a given convex cone of curvatures will be preserved by (CF)).

First, we shall need to recall some definitions and results from convex geometry:
Definition 4.16. Let A be a non-empty, closed, convex subset of R™.

1. A supporting affine functional for A at a € A is an affine function £ : R™ — R such
that ||V L|| =1, £(z) > 0 for all z € A, and £(a) = 0. Given a non-empty, closed,
convex set A C R™, we shall denote the set of all supporting affine functionals for A
at a € A by SAF,(A), and SAF(A) := UsecaSAF,(A).

2. A supporting half-space for A is any half-space of the form Hy:={z € R"™ : {(z) >
0, £ € SAF(A)}.

3. The signed distance to the boundary of A is the function distg 4 : R — R defined
by distg o(z) := inf{l(z) : £ € SAF(A)}.
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4. The normal cone to A at a € 9 A is the cone NyA := {{ € (R")* : l(z —a) >
0 for all z € A}. We also set NA := e aNGA.

Lemma 4.17. Let A C R" be a non-empty, closed, convex set. Then the following

statements hold:

1. A is the intersection of its supporting half-spaces: A = (Nyegar(ayHe, where Hy :=
{z € R":{(z) > 0}.

2. The signed distance satisfies

dist(z,0A4) if ze€ A

distg 4(z) =
—dist(z,0A4) if zeR"\ A,

where, given a set B C R", dist(z, B) := infpep ||z — b]|.
3. If A is a cone (with vertex at the origin), then SAF,(A) = {f € N A : ||{|| =1}.

Proof. To prove the first claim, we follow Andrews and Hopper (2011, Theorem B1).
First note that, by the Hahn—Banach Theorem, SAF(A) is non-empty. Next, note that
the intersection yeg AF(A)H¢ contains A since, by definition, each of the half-spaces Hy
contains A. To prove the reverse inclusion, it suffices to show that, for any y ¢ A, there
is some ¢ € SAF(A) such that ¢(y) < 0. To this end, let = be a closest point of A to y (in
fact, there is a unique such point) and define ¢ by ¢(z) := — <z -, ﬁ> Note that ¢
is an affine functional satisfying ||V ¢|| = 1. We claim that ¢ € SAF(A); in fact, suppose,
to the contrary, that ¢(w) < 0 for some w € A. Then, by convexity of A, v+ s(w—x) € A
for 0 <s <1, and

d 2

o _OHy— (@ +s(w—a))||" = -2(w—-z,y—a)=20(w)|ly — || <0.

S=

But this contradicts the fact that x is a closest point of A to y. Since ¢(z) = 0, we conclude
that ¢ € SAF(A). The claim follows since ¢(y) = — ||y — z|| < 0.

To prove the second claim, we follow Evans (2010, Lemma 2.3). First consider the
case z € A. To prove that distg4(z) > dist(z,0 A), note that every ¢ € SAF,(A) is of
the form ¢(w) = (w — a, v) for some a € Hy and some ‘inward pointing normal’ v € S™.
Let @ := z — dist(z, 0 Hy)v be the nearest point of 0 Hy to z. Then ¢(z) = (z —a, v) =
(z—a)+ (@a—a),v)=(z—a,v) =dist(z,0 Hy). Since the line segment joining z and @
must intersect d A, it follows that ¢(z) > dist(z,0 A). On the other hand, if a is a closest
point of d A to z, then, for any ¢ € SAF,(A), we have {(z) = ||z — al|| = dist(z,0 A), and
so it follows that distg 4(z) = ¢(z). The proof for points z € R™ \ A is similar.

The final claim follows from the fact that the boundaries of all supporting half-spaces

contain the origin. O

Theorem 4.18 (Maximum Principle for the Weingarten curvature). Let F': T' C R — R

be an admissible flow speed and T'y C T' a convex, symmetric cone. Let B € R be any
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constant such that T'g := {\ € T : distap,(A) > BF(A)} CC I'. Suppose that, for every
diagonal matriz W with eigenvalue n-tuple satisfying A € 0I'g \ {0}, it holds that

sup {ei (FPW(W)Tipqz;m 2R (W) A0 Thip — AP AP (A — )\i)])} >0 (4.15)
A

for every (Ao, l) € NT¢ such that distap,(X) = dist(\, o) and every totally symmetric
T € R*" @ R* @ R" satisfying (T = BF'Ty;:, where the supremum is taken over {A €
R" @ R" @ R™ : Agi; + Agj; = 0}. Then I'g is strongly preserved by (CEF)).

Remarks 4.3. 1. In fact, given any degree one homogeneous curvature function G which
is a subsolution of (LF]), we may replace the cone I'z := {\ € T : distgr,(\) >
BF(A)} in Theorem .18 by {\ € T : distar,(A) > G(A)} (replacing also the gradient
condition by ¢T}; = G kii)-

2. It is instructive to consider the case 8§ = 0, which is the case we will mostly be

interested in.

3. The useful extra terms involving the coefficients A are non-trivial: They do not arise

in the evolution of scalar functions of the curvature.
4. Theorem also has an elliptic analogue.

Proof of Theorem[].18. The proof is a slight improvement of similar results of Hamilton
(1986, Theorem 4.3) and Andrews (2007, Theorem 3.2). Our proof is also influenced by
ideas of Evans (2010)).

We will show that, given a supporting half-space Hy := {z € R" : {(z) > 0} for I, the
function dy(x,t) := distp g, (K(x,t)) = €(K) is a viscosity supersolutiorﬂ of the equation

(0r L) f = EOVA)f + sup{ ¢ [E(V,W, 9, )
A
F2ER (2047 Ny Wip — AP AP (15, — ﬁi))} } . (4.16)

Since I'g is the intersection of its supporting half-spaces, and F' satisfies , the claims
then follow from the strong maximum principle (see, for example, Da Lio 2004).

In order to show that dy is a viscosity supersolution of , we fix an arbitrary point
(xo,t0) € A x [0, T) and consider an arbitrary lower support function ¢ for dy at (zo,to);
that is, ¢ is smooth on a parabolic ball Q,(x¢,t0) = B,(x0) x (to — 2, to] centred at (g, o)
with dy > ¢ and equality at (zo,%p). Then we need to show that ¢ is a supersolution of
(4.16]).

Consider the endomorphism L° € (T*.# ® T M ) (1 t0) defined by LO:=%" et @ey,
where {e;}?_; is an orthonormal basis of eigenvectors of W(zg,t9). Now extend L° to
a neighbourhood of (zg,tp) by parallel translation with respect to an arbitrary (time-

dependent) metric compatible connection V. The metric compatibility of V ensures that

1See, for example, Crandall, Ishii, and Lions (1992).
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L remains unit length, which, in turn, implies that dy(z,t) < LOWV(z,t)). Since equality
holds at (xg,ty), we conclude that ¢ is a lower support function for L(W) at (zg, tp). But

since L is smooth, we have
0= V(LOWV) - ¢) (4.17)

and
0> (9 =Z)(LW) - ¢) (4.18)

at (zo,t0).
On the other hand, a straightforward calculation gives

(0 =Z) (LW)) = (Ve L)(W) + L (Ve =ZL)W)
— FM 2V, L(ViW) + Vi Vi LW)) .

Now, since the space of connections is affine, we have V = V +A for some (local)
section A of (T*.# ®RO;) ® T* M @ TA. Metric compatibility of V implies the anti-
symmetries Ag;; + Ay = 0 and Ay + Agj; = 0, but otherwise A;; and Ay;; may take any
value at (xo,to).

Next, we compute
Vel =LY (AriPep @ ej + Apjle; ®eq) .
Similarly,
VL =LY (AtiPep @ €5 + Ajle; @ eq) .

In particular, the antisymmetry of A in the final two entries implies Vi, L(W) = V, L(W) =

0. Next, we compute

ViV L= LY ( Vi NiiPep, ® €5 + AlipAkpqeq RKe;j+ Ali”Aquep ® eq
+V; Aquei ®eq+ AquAkqpei Kep+ AquA]m'pep & eq) .

As above, the gradient terms are killed when contracted with W; thus, recalling (4.18]),
we obtain
0y —L)p > FIW2)L(W) + LY (F’(vi W,V W)
F2EH (2847 Vi Wiy — A At Wy — Aiihig" W)
—FW2)(R) + ¢ (F(vi W, V; W)

2R 2N L Vi Wiy — AP AP (k) — Hz’)])
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at (zo,t0). Since { satisfies £(K) = dy at (xo,t0), and we may choose Ay;j(xo,to) arbitrary
(modulo the required antisymmetry), this implies that dy is a viscosity supersolution of
(4.16)). Since F' is a solution of , it follows that, for any 8 € R, the function dg :=
dy — BF is a viscosity supersolution of (see also Remarks 1.).

Note, finally, that the gradient identity implies that Vjd, = ¢V, W;; in the

viscosity sense; that is, given any (upper or lower) support function ¢ for dy, we have
Vid = L(ViW) = L(Vi W + A(W)) = LV W) = £/ Vi, W,

at the point of support.
The claim now follows from the strong maximum principle.

O]

Remark 4.6. Since k1 = distgr, (K), we obtain the following evolution equation (in the

viscosity sense) for the smallest principal curvature:

(8t —g)lil > F(W2)K,1 + F(Vl W, Vy W)
+2 sup FF 207 Vi Wiy, — (AP)2(kp — 51)] (4.19)
Ak1=0
An analogous argument (using the fact that k,(z,t) = SUDyes , .t W(v,v) to obtain a
lower support function for ,) also yields an evolution equation (in the viscosity sense)

for the largest principal curvature:

(0t —L)kin < FOV )k + F (Vo W, V, W)
+2 Ai’f}i . FF 2017 V3, Wi — (AP (55 — K] - (4.20)
The maximum principle for the Weingarten curvature has several useful consequences.
In particular, since the inward normal to the boundary of a cone of the form {G > 0} is
given by (¢ = G, we can quickly recover the results of the preceding section. On the other
hand, since we no longer require G to be smooth, and we have gained a non-trivial extra

term, we are able to derive some stronger results.

Convex speeds

We first consider flows by convex speed functions. Our first result shows, in particular,
that every convex cone I'g CC I which contains the positive cone is preserved under such

flows.

Corollary 4.19. Let F : I' € R® — R be a convex admissible speed function. Let
[y be any symmetric, conver cone which contains the positive cone I'y. Suppose that

I'g:={X el :distagr,(A) > BF(N)} CcC T for some € R. Then T'g is strongly preserved
by (CE).
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Proof. By the maximum principle (Theorem |4.18)), it suffices to show that
CEP T Tirs > 0

at any boundary point A € 9T \ {0}, for any ¢/ € N[y and any totally symmetric
T € R" ® R" ® R satisfying ¢/T};; = 0 for each k, where NV\I'g is the inward normal cone

to I'g at A. Since F' is convex, the claim follows from the following lemma:

Lemma 4.20. Let I'g be a symmetric, convex cone which contains I'y.. Then, for any
A € 0T, we have N3y C T'y.

Proof. Since I'y, C T'g, we have iy := A +¢; € Iy for any A € 9T, and any codrdinate
direction e;. Thus, for any ¢ € NIy, we have

0< <€ay_/\> :<£7€Z>:£Z
The claim follows. O

This proves Corollary O

For flows of convex hypersurfaces, the strong version of Theorem yields the fol-

lowing splitting theorem:

Theorem 4.21 (Splitting theorem for flows by convex speeds). Let F: T' C R" = R be a
convex admissible flow speed such that T CC T, and 2 : .M x [0,T) — R a (possibly
non-compact) solution of satisfying K(z,0) € Ty \ {0} for all = € 4. Then, either
%‘///x(o,T) 18 strictly convex or A splits isometrically off a plane; that is, A = R™ x X"~
for some 1 < m < n —1 and there exists T,, € (0,T) such that ‘%|RWX{E}X(O,Tm} 1s flat
for each T € ¥ and %‘{O}in_mx(omi] L X (0, T),] = R 2 [, ker(W)] T s
a strictly conver solution of in R"="%1 by the restriction of F to the face reme
{zel iz1=-=2n=0,2p41,...,2p > 0}.

Proof. Counsider, for each 1 < i < n, the function d; := dist(&, H;) which gives the
distance of the curvature n-tuple i to the hyperplane H; := {\ € R" : \; = 0}. Recalling
the proof of Theorem by the strong maximum principle, either di‘( ax(0T) > 0 or
di‘///x[o,ti] = 0 for some t; € (0,7). Thus, either %‘//ZX(O,T) is strictly convex or there is
some m € {1,...,n— 1} and T, € (0,T) such that di‘(%x[ova] =0foreachi=1,...,m

and d; ’//M( > 0 for each ¢ = m+1,...,n. In particular (recalling the proof of Theorem

0,Tm]
4.18)), for each ¢ < m we obtain, in an orthonormal frame of eigenvectors of W,

0=Vid; =V Wi (4.21)
and

0= (0 —L)d; > F(V;W,V; W) + 2sup F* [2A1,7 Vi, Wy, — (Agi®)? (kp — K7)] -
A
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Vi W; . .
ﬁ when p > m and zero otherwise, we obtain
D i

Taking Ay =

. . n ) 2
0= (0 —L)di > F(V;W, Vi W) +2FF 3~ (Vi Wip)®

p=m+1

>0 4.22
2 (422)

for each i = 1,...,m. Since F is convex and strictly monotone, we conclude from (4.21))
and (4.22)) that V, W = 0 for all v € ker(W). Now consider, for any v € I'(ker(WW)),

0=Vi(W()) =V W(v) + W(Viv) = W(Vi0).

Thus, Viv € I'(ker(W)) whenever v € TI'(ker(W)); that is, ker(W) is invariant under

parallel translation in space. Since, for any v € I'(ker W) and any u € T.#, we have
‘%Du%*v =2 Vv —Wu,v)v =2 Vv € Ziker W,

this implies that 2", ker W is parallel (in space) with respect to “D.
Moreover, using the evolution equation (4.5)) for W, we obtain

VW) = W) + F(Vo W, VW) + EOV)W(v)
= 2W(v)
= FMV,ViW(v)
= FM VL (ViW() = ViIV(Viv)) = W(V; Vi 0)]
= ()7

so that
W(Vt ’U) = Vt(W(v)) — Vt W(’U) = 0;

that is, ker W is also invariant with respect to V. Since, for any v € I'(ker(W)), we have
V, F = F¥'\/, Wy, = 0, this implies that

%Dt%*U:VvFV—i—%*Vtv:%*Vtv,

so that 2, ker W is also parallel in time. We conclude that the orthogonal compliment of
Z '« ker(W) is a constant subspace of R"*1.
Now consider any geodesic v : R — .# x {to}, to € (0,T,,], with 4/(0) € ker(W). Then,

since ker(W) is invariant under parallel translation, 7/(s) € ker(W) for all s, so that
DX =X Vs — W(H,7 v =0.

Thus, 2 o v is geodesic in R, We may now conclude that 2" splits off an m-plane:
M= R™ x "™ such that R™ is flat (TR™ is spanned by the flat principal directions

{e;}™,) and X"7™ is strictly convex (T2"~"™ is spanned by the positively curved principal
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n

1L ~ mn—m+1
i=n—m-+1 =R .

directions {e;} ) and maps into the constant subspace (2, ker(W))

It follows that ‘%’{o}xzwmx(o o] satisfies

8, 2(3,t) = —F(3,t)p(3,1),

for all (z,t) € {0} x X"™ x (0,T,,], where v = V‘{o}xe(OT ] and F is the restriction of

FtoF’}r_m%{zeer:21:'--:zm:0,zm+1>(),...,zn>()}. O

Surface flows

For surface flows, we have already proved the following result; however, the proof using
Theorem seems more direct:

Corollary 4.22 (Cf. Andrews (2010)). Let F : T' C R? — R be a positive admissible speed
function for (CF)). Then every convex, symmetric cone I'o CC T is strongly preserved by

(CH.

Proof. First observe that any (closed) convex, symmetric cone of curvatures containing
the positive ray may be defined by the inequality min{A;, A2} > e max{A;, A2} for some
e € [-1,1]. In view of Theorem let A be a non-origin boundary point of T'y =
{min{A1, A2} > emax{\1, A2} }. Without loss of generality, suppose that A\; < Ag. Then
the inward normal cone to Iy at A is generated by ¢ := (1, —¢). Thus, we need to show
that

Skl
Ay — A\
(F%2 4 eFY) ((T112)2 + (T122)2)

0 < qu,rs (Tlqulrs - ETquTQTS) + 2(1 + E)

Tr12T712

.. 2
= P (ThppTiqq — €ToppTaqq) + v—
Ao — M\
for any T such that Tp11 = €Troo.
To show that the first term is non-negative, we make use of the gradient and zero
order conditions, and the homogeneity of F': Replacing 7111 by €T120 and Th11 by €Th99,

we obtain

FP9 (T1ppT1q — eToppTagq) = (8}5“ +2eF"2 + F”) ((Th22)* — e(T5))

Making use of the zero order condition, \; = €\, and noting that Ay is positive yields

.. 1

P (Tlppquq - 5T2ppT2qq) = 22 (A%Fn + 2)\1)\2pu + )‘%F22> ((T122)2 - 5(T222)2) )
2

which vanishes by Euler’s theorem.

Using the zero order condition and Euler’s theorem, the remaining term is

2F
A2(A2 — A1)

(F? 4 eFY) ((T112)2 + (T122)2) = ((Tllz)2 + (T221)2) 2 0.

A2 — A1
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We also obtain a splitting theorem for admissible flows of weakly convex surfaces:

Theorem 4.23 (Splitting theorem for surface flows). Let F : ' C R? — R be an admissible
flow speed such that Ty CC T, and 2 : M4 x[0,T) — R3 a (possibly non-compact) solution
of (CF) satisfying #(x,0) € Ty \ {0} for all x € 4. Then either %‘///x(o T is strictly
convex or M splits isometrically off a line; that is, # = R x X and there exists Ty € (0,T)
o P 2% (0,71] —» R? =

(2 ke is a strictly conve solution of the scaled curve shortening flow

such that ‘%‘Rx{s}x(o 7] is flat for each s € ¥ and %‘{O}XEX(

Ovy=—c1kv ¢ :=F(0,1).

Proof. In light of the proof of Corollary [£.:22] the proof is similar to the proof of theorem
4211 O

Inverse-concave speeds

Finally, we consider flows by inverse-concave speeds.

Corollary 4.24 (Andrews (2007)). Let F': I' C R™ — R be an admissible speed function

such that 'y CC T and F|F+ is inverse-concave. Then I' is strongly preserved.

Remarks 4.4. 1. Note that it suffices to assume that the restriction of F' to the face

F’f[l ={(0,A2,...,An) : A2, ..., A, > 0} is inverse-concave.

2. Flows by inverse-concave speeds F' : I'y — R also preserve the curvature cones
{k1 > eH}, e > 0 (Andrews (2007), see also Theorem [6.1).

Proof. The proof is essentially that of a similar result of Andrews (2007, Theorem 3.3)
since, for speeds defined on Iy, Theorem reduces to Andrews (2007, Theorem 3.2).
We include the proof here as we will consider flows by inverse-concave speeds in Sections
Bl and [6

To apply the maximum principle (Theorem , we need to show that

sup { € (FP7 Ty Tins + 28 (2047 Thgy — AP A" O — A)]) } 2 0
A

at any boundary point A € 9T \ {0}, for any ¢ € N,Ip and any totally symmetric
T € R" ® R" ® R satisfying ¢*T}; = 0 for each k.

So fix A € 9Ty \ {0}. Without loss of generality, we may assume that A\; = 0. Assume
further that Ay < -+ < A,. Then the inward normal cone at A is generated by ¢ = ey.

Thus, in this case, we need only show that

0 S sup {qu’mTlquMS + QFM [2Aka11p — AkpAlp()\p — )\1)]}
A

= sup qu’”Tlqulm + 2
A P Ap

k ) 2
Ty — R, <Akp - T’““”) ] ,

k>1,p>2
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where the supremum is now taken over A;; € R” ® R". The supremum is clearly attained
with the choice

Applying the derivative identity (2.18]), we obtain

Fk
FPOrsTy, Tipst2 > = (Tiap)?
k>1p>2 P
L o ok (Tikp)?
= FPIT1,,Tigq + 22 - (T1pg)” + 287> T;
p>q p=2
FP— R4 Fp— F!
= Fp Tlppquq + 2 Z 7)\(T1pq)2 + 2 Z )\7(11])1)2
p>q>1 p q p>1 P
n
F Fp
+2Z Tllp +2Z Tlpp +2 ) ( ) (T1pq)?
p>1 p p>1 p>q>1
FP§
= Z (FP‘I + 2)\) Tlppquq
p,q#1 P

P _Fa Fa  EP
+2 > <++ >(T1pq).
g1 A=A A A

The claim now follows from Lemma 210l

The general case, for which A\; may not be distinct, follows as a limiting case: For
any A € T'; \ {0}, there exists a sequence of points A(™ € T, \ {0} with /\gm) pairwise
distinct which converges to A. The claim follows since the term we wish to estimate is

upper semi-continuous in A, and non-negative along the sequence. ]

We expect that Theorem will have further applications to flows of non-convex

hypersurfaces by concave speeds.

4.2.3 Estimating homogeneous functions of the curvature

An important consequence of the existence of a preserved cone is the following simple

observation, which will be used extensively in Section

Lemma 4.25. Let Z : ' — R be a symmetric function which is homogeneous of degree
zero. Suppose that I'o CC I'. Then the extrema sup{Z(X) : A € I'o} andinf{Z(\): A € Ty}
are attained. Moreover, if Z >0 on T, then the infimum inf{Z(X\) : X\ € T'o} is positive.

Proof. Since Z is degree zero homogeneous, its value at a point A agrees with its value
at the projection of A onto the unit sphere. The claims now follow from compactness of
I'pynsm. O]

As a particular application, we obtain the following uniform parabolicity estimate:
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Proposition 4.26 (Uniform parabolicity). Let F': I' C R™ — R be an admissible speed,

and Ty CC T a curvature cone. Then there erxists a constant C' (depending only on
F and Ty) such that along any solution 2 : # x [0,T) — R""! of (CF)) satisfying
R(A x [0,T)) C Ty it holds that

O™, yoivs < FL yoivy < Cgp, o, (4.23)

for all (x,t) € 4 x [0,T) and all v € Ty M .

Proof. In an orthonormal frame of eigenvectors of the Weingarten map, we have, by (2.17)),
that F*lygu, = F* (v)2. Since F is strictly monotone and homogeneous of degree one, the

claim follows from the preceding lemma. O

It will be useful to introduce the following notation:
(u,v)p := Frlyn,
and
v|% = F*ou .

By Proposition[d.26} (-, -) and | - |r define an inner product and norm on T.# uniformly

equivalent to g and its induced norm whenever the flow admits a preserved cone.

4.3 Global existence

Having established the existence of solutions of (CF|) for a short time, we now examine
their long time regularity. By writing solutions locally as graphs over a tangent plane,
we will be able to make use of the existing regularity theory for fully non-linear parabolic

scalar equations. We have collected the required results in Appendix [A]

Proposition 4.27. Let F': T' C R® — R, n € N, be an admissible flow speed. Suppose
that one of the following holds:

1. n=2; or
2. F is convex; or
3. F is concave.

Then, given a curvature bound, Cy < oo, and a curvature cone, I'yo CC I', the following
estimate holds: For every m € N there exists C,, < oo, depending only on n, F, Cp,
and Tg, such that every smooth solution 2 : .#™ x (0,T] — R*""1 of satisfying
SUp,_x (/2,1 IW| < Co and E(z,t) € Lo for all (x,t) € A x [T'/2,T] satisfies

sup |[VTW| <Oy, .
MX[T)2,T)
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Remarks 4.5. 1. We have only assumed the speed conditions 1-3 in order that
admits Holder estimates for the curvature; that is, so that, for any compact subset
K Cc T and any T > 0, there exist a € (0,1] and C' > 0 (depending only on K and T')
such that for any solution 2 : .Z™ x [0, T] — R"*! of with R(Z x [0,T]) C K
it holds that | WI|co.a(zxpr/2m) < C-

2. Let F: T' C R™ — R be an admissible speed function. Then (by Proposition
and Corollaries |4.19] |4.15] and |4.24]) the assumption &(.# x [T/2,T]) C Iy cC T
automatically holds for some cone I'y (which depends only on F' and the immersion
Z'rs2) if F'is concave and T'g = {x, < SF} for some 8 < ¢! (see Remark , or

I'y ¢ T'and F'is convex, or n = 2, or I'g = I'y and F'is concave and inverse-concave.

Proof. In order to make use of the estimates of Appendix [A] we write the solution locally
as an evolving graph: Fix any (x1,t1) € 4 x [T/2,T]; up to an ambient isometry, we
may assume that 27(x1,t1) is the origin and v(z1,t1) = ep+1. An application of the
rank theorem implies the existence of neighbourhoods U of x; and I of ¢;, an open set
V € R"™ a diffeomorphism ¢ : V — U, and a smooth function u : U x I — R such that
Z (7 y),t) = (y,u(y,t)) forally € U and t € I.

Observe that the Weingarten curvature of 2 and its derivatives are controlled near

(1,t1) by w and its derivatives near (yi,%1), where y; = ¢(z1): We computed, in §3.4.1]

Ui
Wi = u =
1+ [|Dul
and
gij — Su uiuj
1+ [|Dul?

Note also that the connection coefficients are given in the graphical coérdinates by

ro o[ BX 0N
ij‘_ ayzay] 9 8yk _uljuk"

It follows that, with respect to the graphical codrdinates, the components V' W;; of
the m-th covariant derivative of W are given by an expression which depends on D*u
for 1 < k < m+ 2. Since the induced metric depends only on first derivatives of u, we
conclude that | V™ W)| is bounded once the derivatives of u up to order m+2 are bounded.

Thus, to estimate | V™ W)| at (x1,t1), it suffices to obtain estimates for the derivatives
of u at (y1,t1) up to order m + 2. We first obtain a local bound for ||[Dul|| depending
only on the bound for sup s /2,71 |W|: Observe that the Weingarten curvature is given

locally by

9 U
7
90U \ \/1+||Dul?
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Integrating the trace elements, we obtain

—VCoy < —2 < \/Coy'.

1+ || Dul?
It follows that
Dul|?
DR gl
1+ ||Dul]

2
Thus, [[Dul|” <1 on By, /555(0) x I.
We next prove a C%%estimate for u: Recall from §3.4.1] that u satisfies

8;u = F(D*u, Du) := F(PD*uP), (4.24)

where
Du® Du

P=1— .
1+ || Dul” (1 +4/1+ HDuH2>

Note that F = ﬁ(r, p) is smooth (and therefore, in particular, Lipschitz) in each argument,
and satisfies

OF
0Tl

= Fraplkpl.

(D2u,Du)

Since the cone I'y is preserved, it follows from Proposition that equation is
uniformly parabolic (with constants depending only on Cp, F, and I'g). Moreover, since
F(PD2uP) = \/1+ ||Dul|?F(W) = \/1+ ||Du||*F¥Wy,, we have that 8, u is bounded
by a constant that depends only on Cy, F', and I'y.

If n = 2, then a parabolic C?> estimate (with constants depending only on Cy, F, and
I'y) for u now follows from Theorem [A.3

For the remaining cases, observe that

02 F

m Mklen = qu,rs PPkaqlelPrszlel .

’PD2’U,

(D2u,Du)

If F is concave, we obtain a C%® estimate from Theorem (with constants depending
only on n, Co, F, and I'g). If F is convex, we similarly obtain a C%® estimate for —u,

since v := —u satisfies the equation
v = F\*(ng, Dv),

where ﬁ*(r,p) = —ﬁ(—r, D).

Next, we consider the evolution equations for the spatial derivatives of u: Set v = w;.
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Then v satisfies the equation

Uy = aijvij + bivi , (425)
where
ai = 98 = FPip,ip,J
8Tij (D2u,Du)
and
- OF 1 . 20 Uy U Uy
Ipi 1+ ||Du|f? ' TP 14| [Du))?

(D2u,Du)

In particular, the coefficients a”’ and b* are bounded by constants that depend only on
bounds for || D?u|| and ||Dul| (which we have seen depend only on C). Furthermore, we
have seen that @ is uniformly positive definite (with constants depending only on Cy, F
and I'y). Finally, the C*® estimate for v implies that the coefficients of are Holder
continuous. We may therefore apply Theorem yielding C*“ bounds for v. Higher
regularity follows by applying Theorem inductively: The higher derivatives of u satisfy
equations similar to . Holder continuity of the m-th spatial derivatives of u permits
us to apply Theorem to the evolution equation for the (m — 1)-st spatial derivatives,
yielding Holder continuity of the (m + 1)-st derivatives. By induction, this yields bounds
on all spatial derivatives of u (which depend only on n, Cp, F', and I'y). ]

Definition 4.28. Let 2 : .# x [0,T) — R"™ (T possibly infinite) be a solution of
(CE). Then Z is maximal if for every solution % : .# x [0,S) — R satisfying
Y (x,t) =2 (x,t) for all (z,t) € A x (]0,T)N]0,S5)) we have S < T.

Theorem 4.29 (Global existence). Let F' : T' C R™, n > 1 be an admissible speed. Suppose
that one of the following conditions hold:

1. n=2; or
2. F is convex; or
3. F 1is concave.

LetTo CC T be a curvature cone and 2 : M x[0,T) — R" 1 a maximal (compact) solution
of (CE)) such that K(.# x [0,T)) CTo. Then T < oo, and limsup,_,q Sup 4 1y [W| = oo.

Proof. That T < oo follows (for compact solutions of flows by any admissible speed)
from the avoidance principle (Theorem below) since the initial hypersurface .# :=
Z (A ,0) may be enclosed by some sufficiently large sphere, which shrinks homothetically
under to a point after finite time.

The remaining claim follows easily from Proposition and Theorem Suppose,
contrary to the conclusion of the theorem, that Co := sup 40,1 IW| < co. We will show
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that the solution Z27(-,t) converges to a smooth limit immersion as ¢ — 7. This limit
can be used as initial data for , which, by the short time existence theorem, may be
flowed for a small time, yielding a contradiction to the maximality of 2.

We first derive a C°-limit (cf. Huisken [1984): Since [W| is bounded and the flow
admits preserved curvature cones, we have a speed bound F' < C. Thus, for any € .#
and t; <ty €[0,7),

t2

|2 (x,t2) — Z(x,t1)] =

Ot %(IB, t)dt‘

t1

to
/ 10 2 (z, t)| dt

t1

- /tz (2, 1) dt

t1

IN

< Olty — ta].

Thus, 2 is Cauchy continuous with respect to ¢ and therefore converges in C° to a unique
limit 7 : 4 — R"™ ast — T.

We next show that 27 is an immersion (cf. Hamilton 1982, Lemma 14.2): Using the
evolution equation for the metric, and the uniform parabolicity estimate , we
have, for any t; <ty € [0,7T) and any (z,v) € T,

Yo (:0)|

o)
'log / ? Bt tn)
9(x,t1) (U’ U) t1 9(z,) (U, U)
0
< /t2 519z, (v, 0) @t
t1 g(m,) ('U, U)
2| W, (v,
_ / PRACSICEIY
t 9(a,) (v, v)
< 2C)(ty — t1). (4.26)

It follows that

e 2l 0y (1,0) < glagy (V,v) < PG o) (0,0)
for any t € [0,7) and any (x,t) € T.#. It follows that 27 is a regular immersion.
Smoothness of Z'p follows from Proposition and the evolution equations (CF|) and
2.9).

Finally, using the smooth limit immersion 21 as an initial datum for , the short-
time existence theorem allows us to extend 2 for a short time beyond T', contradicting

the maximality assumption. O
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4.4 Bounds for the maximal time

We now prove two estimates for the maximal time of existence of solutions of (CFJ).

Let us first prove a lower bound for the speed:

Lemma 4.30. Let F': T' C R” — R be an admissible flow speed and 2" : # x [0,T) — R
a solution of (CF|) satisfying R(.# x [0,T)) C T'g for some cone 'y CCT'. Then

Fmin
1—2cF2?. t

min

F(z,t) >

for all (z,t) € 4 x [0,T), where Frin :=min, 4 0y F and ¢ := max{F(X)2/FF(A\)A? : X €
To}.

Proof. Recalling that F satisfies the linearized flow (LE]) and estimating [W|% > cF?, we
obtain
(0r —ZL)F > cF°

The claim now follows from the maximum principle by comparing min 4, ;3 F' with the

solution of the ordinary differential equation

d
d—?:gu?’.

O

Proposition 4.31. Let F' : I' C R® — R be an admissible speed function and I' C Ty
a curvature cone. Suppose X : M x [0,T) — R"! is a solution of (CF)) satisfying
R(# < [0,T)) CT'g. Then the following hold:

(i) T < M, where ¢o := F(1,...,1) and r4.(#) is the circumradius of the initial

0
co

hypersurface My = Z (M ,0).

i) IfR(#x[0,T)) C Tg for someTy CCT, thenT < —L—, where Fpiy := min 4y o1 F
2cF {0}
and ¢ := max{F*(\)A2/F()\)?: A € T}

min

Proof. The first estimate follows from the avoidance principle (Theorem [4.32)) by consid-
ering the evolution of all spheres which enclose the initial datum (recall Proposition .
The second estimate follows immediately from the lower speed bound, Lemma O

4.5 The avoidance principle

In this section we prove a comparison principle for solutions of (CF|), which is well-known.

Theorem 4.32 (The avoidance principle). Let F' : I' € R™ — R be an admissible flow
speed with a well-defined odd extension F(z) := —F(—z) for z € —I' :== {—z : z €
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I} and let Z; : A; x [0,T) — R i = 1,2 be two compact solutions of (CF) with
X1 (AM1,0) Lo (M2,0) = 0. Then the distance

Apmin(t) := i Z1(x,t) — Z(y,t
(0=, win 230 - 20

is non-decreasing in t, and, in particular, Z1 (M 1,t) NZo (Mo, t) =0 fort € [0,T).

Proof. Define the extrinsic distance function d : #1 x .4 x [0,T) — R by
d(x7y7t) = ||’%'1 (.fU,t) -2 (yat)H :

We will show that the time derivative of d is non-negative at a spatial minimum. The

claim then follows from the maximum principle. To simplify notation, we define

%1 (x,t) —%2 (y,t)
d(z,y,t) ’

w(x,y,t) =

and use scripts x and y to denote geometric quantities defined on .#1 X .# 5 by pulling back
those from 277 and 2% by the respective projections; for example, Fy(§,n,7) := F(&, 7).
With this notation in place, we find that d satisfies

0
ad = (w, —Fpvy + Fyvy) . (4.27)
Suppose there is a spatial minimum of d at (g, yo, to). Then, at this point, V#1424 =
0 and Hess?1*#2 4 > ().
Let {l‘i}?zl and {yi}?zl be coordinates defined on neighbourhoods of xg and g re-

spectively, and write 07 := %—if; and 9} := %—%. Then
Oy; d = (0], w) and 0,id=— (07, w). (4.28)

These vanish at the minimum (zg, yo,t0); that is, w(zo,yo,to) is orthogonal both to the
tangent plane to 27 at (xg,%o) and the tangent plane to 2% at (yo,tp). Now, the assump-
tion that F' is odd implies the flow is invariant under change of orientation, since the sign
of the Weingarten map changes with the orientation of the normal. So we may choose the
orientations of .#1 and .#5 such thatE| vy =1y = w at (2o, Yo, t0)-

Next, using the vanishing of the gradients , we obtain, at the point (z9, yo, to),
the identities

1
VIV = W (v, w) + g, (4.29)
1

2See also the second Remark following the proof.
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and

1
VTSl = WY (v w0) + (4.31)

Thus, for any vector v € R", we find
0 < (Vv d+ 29V d+ V)

- 1. - T B
= —Wiv' (v, w) + ggfjvlvj + Wi (vy, w) + gg%vlv] - gvlvj (o7, 07)

at the point (zg,yo,t0). We now choose the coodrdinates {xi}?zl and {yi}?zl to be or-
thonormal codrdinates centred at xg and yg respectively. Since the tangent planes of the
two hypersurfaces are parallel at 2o and yo, we may further assume that 9 = 9! for all

at the point (z¢, yo,to). Then, since 95 = gfj = 0;; at (zo,Y0,t0), we obtain
ijvivj < Wf’jvivj

at that point. It follows that W < Wfé at any spatial minimum of d. Since F' is monotone,
this implies F, < F), at such a point. Thus, by (4.27), we obtain

od
at any spatial minimum of d. O
Remarks 4.6. 1. The homogeneity condition was not needed in the proof of Theorem

4.52)

2. The assumption that the speed is an odd function of the curvature can be relaxed
if we make an additional topological assumption on the hypersurfaces to guarantee
the correct orientation: If we require that 27 (.#1,0) = 0Q and Zo( A 2,0) = 9 Qs
such that Q; C Qo € R™*! and the unit normal to .#; points out of €; for i = 1,2,
then the above argument goes through unharmed, since this guarantees v, = w = v,
at the distance minimizing pair (g, o). This observation means that we can still
compare compact solutions of with enclosing spheres, even if F' has no odd

extension.

The following example shows that the avoidance principle can be violated if the speed

function is not odd and the topological assumption of the preceding remarks is not met.

Ezample 4.1. Observe that the function F(2) := z1+ 22+ % \/m defines an admissible
speed function on the cone I' = R2. Under the corresponding flow, surfaces with opposite
orientation can move closer together (and even cross): Consider the torus T obtained by
rotating the circle {z € R3 : (27 — 1)2 4 22 = r2, 23 = 0}, 7 < 1, about the z axis. If we
orient T with its inward pointing unit normal, we obtain Frp(p) = (% — % + %\/ % + %2)
at the point p = (R,0,0), where R := 1 —r. On the other hand, the cylinder C obtained
by rotating the line {z € R®: 21 = R, z3 = 0} about the 2 axis satisfies Fo(p) = —55 if
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we also orient using the inward pointing normal. Note that Frp(p) > % — 2—176 Thus, we can
achieve Frp(p) > —Fc(p) if % > %; that is, if r > % Since the normals of the two surfaces
are pointing in opposite directions at the point p, this implies that the surfaces will begin
to cross. Scaling down the cylinder by a small factor and capping off its ends sufficiently

far away from the origin yields a configuration which contradicts the avoidance principle.

4.6 Preservation of embeddedness

In this section we prove that embedded initial data remain embedded under the evolution
by (CF)). This result is well-known.

Theorem 4.33. Let F': I' C R™ — R be an admissible flow speecﬂ with a well-defined odd
extension F(z) == —F(=z2) for 2z € =T :={—z:2 €T}, and Z : 4 x [0,T) — R"* ¢
solution of . Suppose that Zo = Z(-,0) is an embedding. Then Zy := Z(-,t) is an
embedding for all t € [0,T).

Remark 4.7. In view of Theorem we shall refer to a solution 2 : A" x I — R*+1 of
(CF)) as an embedded solution if 7 := Z(-,t) is an embedding for each t € I.

Proof. Away from the diagonal D := {(z,x) : © € 4} C M X M, the proof is the same as
that of the avoidance principle: At an off-diagonal local minimum of the distance function,
the distance is non-decreasing. However, we must be more careful at points close to the
diagonal D := {(x,z) : x € .4}, on which d is neither smooth nor positive. We will
show that a bound on [W)| implies the existence of a neighbourhood E of D on which
d(x,y,t) =0 if and only if x = y, completing the proof.

We begin by restricting to a compact set: Fixing o € (0,7"), we will prove the claim for
t € [0,0]. Set Cy 1= max 4o, |W| < o0 and let d denote the extrinsic distance function,
d(z,y,t) == ||Z(x,t) — Z(y,t)||. We will show that there is a neighbourhood of D, which
depends on C,, for which d(x,y,t) = 0 if and only if x = y. To this end, consider points
x,y € A and a unit speed, length-minimizing geodesic v : [0, 5] — .# joining them (such
that v(0) = = and v(8) = y). Denote by s the parameter for 7, by 7/ = v, J its tangent
vector, and by ZD the pullback connection of the Euclidean connection D on R"t!. Then

the curvature bound implies
["D20)|| = W < G
for all t € [0,0]. Applying the Cauchy-Schwarz inequality, we obtain

|05 (217 (5), 207 (0))| = V(' 7)(8) (v (7(5)), 2" (0)))|
< Cs

3Note that, as in the proof of the avoidance principle, we will not actually require the speed be homo-
geneous.
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for all s € [0, 5] and all ¢ € [0,0]. We now have

(21 (5), 217/ (0)) = 1] = (217" (5), Z17'(0)) — (2147 (0), 2147 (0)) |

/OS e (X' (€), 217/ (0)) de

IN

/05 0 (X0 (€), 217/ (0)) | de

<Css < CO'B

for all s € [0, 5] and all ¢ € [0, o]. So, denoting by L the intrinsic distance function on .,
whenever L(z,y) < (2C,)~! we must have

< (217 (5), 207/ (0))

N |

for all s € [0, ] and all t € [0,0]. Utilising the Cauchy-Schwarz inequality once more, we
find

d(xayvt) = H’%V(x7t) _%(yat)H > K'%V(x?t) _%(yat%%t*f}/(o)ﬂ

B
| 0@ 6.0,/ ©) s

B
/0 <c%/t*7/(5)a=%t*’)’/(0)> ds

B _ L(z,y)
2 2

>

We have proved that, d(x,y,t) = 0 if and only if x = y whenever ¢ € [0,0] and (z,y)
lies in the strip F := {(x,y) eEMXM: Lx,y) < ﬁ} Thus, up to time o, failure of
embeddedness can only occur away from D. But this possibility may be ruled out as

described above. Since ¢ was arbitrary, the claim follows. O

Note that, by similar considerations as in Example the conclusion of Theorem
fails without the oddness assumption for the flow speed.






5. A priori estimates for the curvature

5.1 Introduction

In we saw that, so long as the second derivatives of the speed function which arise in
the evolution equation for the curvature are not harmful, each solution of the flow
admits a preserved cone of curvatures. Faith in the influence of diffusion leads to the belief
that these cones should actually ‘improve’. In the present section, we will see that this is
indeed the case: Wherever the speed is becoming large, the curvature of the solution is
pinched onto an optimal cone of curvatures. More precisely, we shall prove the following

a priori estimate:

Theorem 5.1 (Curvature pinching, Andrews, Langford and McCoy (2014b; 2014a), An-
drews and Langford (2014)). Let F: T' C R™ — R, n > 2, be a positive admissible speed

function, and assume that one of the following auxiliary conditions is satisfied:
1. F is convex; or
2. n=2; or
3. I'=T4 and F is concave.

Then, given a curvature cone I'o CC I', an initial volume scale o > 0, an initial distance
scale R > 0, and any € > 0, there exists a constant C. < oo (depending only on n, F,
To, a, R, and &) such that, given any solution 2 : M™ x [0,T) — R" L of with
curvature satisfying R(# x [0,T)) C Ty, initial volume satisfying po(A#) < o, and initial
curvature satisfying min 4 oy F > R~ (alternatively, diam(Zo(.#)) < R), the following

estimate holds:
dist (R(z,t), A)) < eF(z,t) + Ce
for all (x,t) € 4 x [0,T), where m € {0,...,n — 1} is the smallest integer such that

maePn{Z ceR": Za(1) + -+ Zo(m+1) > 0} me <n-—1
F() CcC Pm—l—l =

ifm=n-—1,

and, recalling that ¢, := F(0,...,0,1,...,1) is the value F takes on the unit cylinder
——

m—times

85
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m n—m
R™ x S ,
R

At {moePn{Z el : Zo(1) T F Zo(ma1) A F(z1,...,20)} ifm<n—1

T, ifm=n-—1.

Remarks 5.1. 1. Recall from Lemma [4.9| that a hypersurface satisfying 7 € A,,, \ {0} at
all points is m-cylindrical (k1 = -+ = Ky, = 0 and K41 = -+ - = Ky > 0) wherever

it is not strictly m-convex (k1 + -+ + Ky > 0).

2. Given any speed function F': I' C R"™ — R satisfying the hypotheses of the theorem,
any preserved cone I'y CC I', and constants a > 0, 0 < R < oo, and € > 0, the
estimate applies, with the same constant, C'(F, Ty, a, R,¢€), to all solutions arising
from the class C(To, , R) of initial data 2 : .#™ — R""! satisfying &(.#) C T,
w(A) < o, and min 4, F > R™! (alternatively, diam(2o(.#)) < R).

3. Recall that preserved cones always exist for surface flows and flows by convex speeds,
but not in general for flows by concave speed functions (see Andrews, McCoy, and
Zheng 2013} §5 for a counter example); although, as we have seen, if, in addition to
concavity, F' is inverse-concave, or if the curvature of the initial datum is sufficiently

pinched, or if F' vanishes on 01Ty, then the flow will admit a preserved cone.

4. Theorem [5.1|is sharp in the sense that, whenever A C Ty, it is possible to construct
a sequence of solutions of (CF]) with curvature satisfying & € T'g at all points which

converges to a shrinking cylinder solution R x S" ™ 75 (Note that the curvature

of R™ x S™ ™ v lies in the boundary of A}f.)

e

Theorem [5.1] consists of two parts: The convexity estimate, Theorem and the
cylindrical estimates, Theorem [5.15] The convexity estimate, which corresponds to the
m = n — 1 case of Theorem shows that positive solutions of the flow are becoming
locally convex, in the sense that the scaling invariant ratio x;/F is becoming non-negative,
at any point at which the curvature is becoming large. The cylindrical estimate says that
it is possible to do better if the solution possesses better convexity properties; namely,
if the solution is uniformly (m + 1)-convex, ki + -+ + K41 > BF, B > 0, then, at any
point at which the curvature is becoming large, the solution is becoming m-cylindrical:
Klyeooybm X0, Kyl & -+ & Ky, or strictly m-convex, k1+- - -+ky, > 0 (note that uniform
(m + 1)-convexity is just enough to rule out the obstructions discussed in Remarks
Moreover, by Proposition it is preserved under the flow).

As the reader is no doubt aware, pinching estimates of the flavour of Theorem
are now a standard means of studying singularities of geometric flow equations: Hamilton
(1982) demonstrated that compact three-manifolds with positive Ricci curvature evolving
by Ricci flow become isotropic at points where the scalar curvature is becoming large
(see also Huisken [1985). This was the main step in the proof that three-manifolds with

positive Ricci curvature converge to round spheres under the normalized Ricci flow. Soon
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afterwards, Huisken (1984)) showed that compact hypersurfacesﬂ with positive Weingarten
curvature evolving by the mean curvature flow become umbilic wherever the mean cur-
vature is becoming large. This was the main step in proving that convex hypersurfaces
evolving by the normalized mean curvature flow converge to round spheres. Note that
Huisken’s estimate is contained in Theorem m (take F' = H and suppose m = 0). Sub-
sequently, Hamilton (1995d) and Ivey (1993|) proved a pinching estimate for solutions of
the three-dimensional Ricci flow which implies that the curvature operator is becoming
non-negative wherever its magnitude is large, which is a key diagnostic tool for Ricci flow
with surgery (see, for example, Hamilton 1995a). The pinching phenomena for the Ricci
flow were generalized by Bohm and Wilking (2008), who obtained conditions under which
a general ‘pinching set’” will be preserved, and their methods were soon used by Brendle
and Schoen (2009)) to prove the 1/4-pinched differentiable sphere theorem (see also Nguyen
(2008))). For the mean curvature flow, Huisken and Sinestrari (1999b; [1999al) proved that
solutions with positive mean curvature are becoming convex wherever the mean curvature
is becoming large, and, later, that 2-convex solutions are either becoming strictly convex or
1-cylindrical wherever the mean curvature is becoming large (Huisken and Sinestrari 2009,
§5), both of which estimates are key components of Huisken and Sinestrari’s construction
of mean curvature flow with surgery (Huisken and Sinestrari [2009). The convexity and
cylindrical estimates of Huisken and Sinestrari correspond to the m =n —1 and m =1
cases of Theorem respectively.

It is interesting to note that, although the Hamilton and Hamilton-Ivey pinching esti-
mates were obtained from clever maximum principle arguments, the Huisken and Huisken—
Sinestrari pinching estimates could not be obtained so easily, requiring instead integral
estimates and an iteration argument which makes use of the Michael-Simon Sobolev in-

equality. The latter methods play an important role in our proof of Theorem

5.1.1 Outline of the proof of the pinching theorem

Theorem [5.1] combines the convexity estimate, Theorem[5.2] with the cylindrical estimates,
Theorem [5.15, Each of these estimates is proved by analysing an appropriate ‘pinching
function’ G for the ‘pinching cone’ in question (that is, a degree one homogeneous function
whose zero set is the pinching cone), and seeking, for any ¢ > 0, an upper bound for the
function G¢, := (G/F — ¢)F? for some o > 0. If this is possible, then we obtain

G/F <e+CF™, (5.1)

which, exploiting homogeneity, is enough to obtain the result.
Recall that, given a degree zero homogeneous curvature function G, the curvature
cones I'c := {z € I' : G(z) < C} will be preserved by the flow so long as G satisfies the

IThat is, of dimension at least two. The corresponding result in one space dimension is due to Gage
and Hamilton (1986).
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purely algebraic condition
0> (T, T) := (GFFPers — FRGrarsyy Ty,

for any totally symmetric three-tensor 7' (at least wherever the auxiliary conditions
GHTyy = 0and G = 0 hold). This was an easy consequence of the maximum princi-
ple; however, the upper bound for G., cannot be obtained so readily, since there is a
reaction term appearing in its evolution which is not favourable (regardless of any alge-
braic condition we might imposdﬂ on (). Consequently, we need to work much harder
to obtain the estimate . Namely, following ideas of Huisken, we seek to obtain a
supremum bound by exploiting good integral estimates using Stampacchia’s lemma and
the Michael-Simon Sobolev inequality. The linchpin in the argument is the estimate

d
dt H(Ge,o)-i-HLp(//(X{t}) < Keop (5.2)

for sufficiently large p, and small o, where (G¢ )+ is the positive part of G, and K. 5,

is a constant.

5.2 The convexity estimate

The purpose of this section is to prove the first half of Theorem

Theorem 5.2 (Asymptotic convexity estimate, Andrews, Langford and McCoy (2014b;
2014al)). Let F: ™ C R™ — R, n > 2, be a positive admissible speed function, and assume

that one of the following auxiliary conditions is satisfied:
1. F s convex; or
2. n=2.

Then, given a curvature cone I'g CC I', an initial volume scale o > 0, an initial distance
scale R > 0, and any € > 0, there exists a constant C. > 0 (depending only on n, F, Ty,
a, R, and €) such that, given any solution 2 : M x [0,T) — R*" L of with curvature
satisfying R(# x [0,T)) C Ty, initial volume satisfying po(#) < «, and initial curvature
satisfying min g 1oy F > R~ (alternatively, diam(Zo(.#)) < R), the following estimate
holds:

dist (R(z,t),T4) < eF(z,t) + C:

for all (xz,t) € 4 x [0,T).

The first part of the proof concerns the construction of a suitable pinching function G

for the pinching cone A := T', and the derivation of its key properties. We will then show

20n the other hand, for certain special choices of the flow speed F, such estimates are indeed amenable to
maximum principle arguments (see, for example, Schulze |2006; Alessandroni and Sinestrari|2010; Andrews
and McCoy [2012)
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Figure 5.1: Intersection of the curvature space, R3, of a three-dimensional hypersurface with the
unit sphere. The red curve is the boundary of some initial cone, I'y. The blue curves are the
boundaries of the cones I'c :=N3_,{z € g : z; > —F(z)} which ‘pinch’ onto 'y as & — 0.

that these properties are sufficient to obtain the essential integral estimate ([5.2]) for the
positive part of the function G, , := (G/F — ¢)F?. Finally, we adapt Huisken’s iteration
argument to obtain a supremum bound for (G: )+, which quickly implies the desired

estimate.

5.2.1 The pinching function

Our first task is to construct an appropriate pinching function G : I'g — R. The construc-
tion is slightly different in each of the two cases considered.

Flows by convex speeds

Recall the curvature function defined by (4.8]) in the proof of Proposition which was

used to show that the curvature inequalities k1 > —eF', € > 0, are preserved. Our pinching
function is a slight modification of this function: First, let G; : I' =& R be defined as in

([4.8)); next, let G2 : T\ {0} — R be given by
Ga(N) = ME(N) + () — Al (53)

where tr(A) = Y7 | A and M := 2max{([|A]| — tr(X))/F(X) : A € I'o}; finally, let
K :]0,00) x (0,00) — R be given by

K(z,y) = —. (5.4)
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Then our pinching function G : Ty \ {0} — R is defined by
G(A) := K(G1()\),Ga(N)) . (5.5)

Note, in particular, that, just as for G1, G is non-negative, homogeneous of degree one,
and vanishes if and only if A € T'y NTy. The gain in making the modification is a small

amount of convexity which allows us to obtain the following uniform estimate:

Lemma 5.3 (Cf. Andrews (1994a), Lemma 7.10). Let G be the curvature function defined
by (5.5). Then, for every e > 0, there exists a constant v > 0 (which depends only on F,
Ty, and €) such that

Al

2a.F

W) = (GH s — e | 1y i, <

= VB (5.6)

for all diagonal W € Sym(n) with eigenvalue n-tuple A € T'. := {z € T': G(z) > eF(z)},
and all totally symmetric T € R™ @ R™ @ R".

Proof. First, observe that

(le}';'upq,rs _ Fklépq,rs) _ Kl (Gliclﬁapq,rs _ Fk:lé]fq,rs) + K2 (Glglﬁwpq,rs o Fklégq,rs)
e

Noting that K'(z,y) > 0, K2(z,y) < 0, and K (z,y) > 0 whenever z and y are positive,
Go > MF, and recalling from the proof of Proposition that

(G’lflppq’TS . Fklé{%rs) TkqulTS < 0,
we see that

(le}'ﬁpq,rs - Fklépq,rs) Tkpqﬂrs < K2 <Gl2€l}';'1pq,rs _ Fklégqn’s) Tkpqﬂrs

< KQFkleq’rsTkpq,Tlrs < 07

where N(z) := ||z||. Since N is strictly convex in non-radial directions (recall Example
, equality occurs only if T' is radial; that is, if for each k we have Ty, = ppWp for
some constant ug. Since W is diagonal, it follows that T is also diagonal: Tk, # 0 only
if k =1=m. Since W # 0, we must have A, > 0. But, since Tiun = pcWin = i A0im,
we have, for any k,
Tk = %Tknn-
n

But Ty, vanishes unless k = n. Thus T has at most one non-zero component: Tj,,. It
follows that W has at most one non-zero eigenvalue: If instead we had \; # 0 for some
q < n, then we could obtain the contradiction T, = %ann = 0. But this implies
that G(W) = 0, which contradicts W € K. We conclude that 2 r can only vanish if
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T vanishes. In particular, qub\(T, TYF(N)/||T||* attains a negative maximum on the
compact set {(A\,T) € Top x R" @ R* ® R" : ||A|| = [|T|| = 1}. The estimate (5.6) now

follows from homogeneity. O

We shall also require the following estimate for the zeroth order term which arises in
the Simons-type identity (4.2)):

Lemma 5.4. Let G be the curvature function defined by (5.5). For every ¢ > 0, there
exists a constant 6 > 0 (which depends only on F, Ty, and ) such that

P |y (W) 1= (FP9G7 = GPET™) | Wiy WE < —5F(W) [ WP (5.7)

for all diagonal W € Sym(n) with eigenvalue n-tuple A € . :={z € 'y : G(z) > eF(z)}.
Proof. First, observe that
2a,p|yy (W) = FPIGH (W Wi — WiWy)

= K'FPIG (Wp Wi — Wi W)
= Ki,,%i,F\W(W) )

Since K2 <0 and GQ > 0, it follows that
QpQF}W(W) < KlgGI’F‘W(W) .

Since K' = 2G1/G+ is bounded below by the constant 2 minr_ (G1/G2) > 0 (which depends
only on F, 'y and ¢) on the set I';, it suffices to prove the estimate for .Q’GhF!W(W).

So consider

By, pl o (W) = (FCY — GLEFYWY < FGEAZ.

Since G’f is homogeneous of degree zero, and strictly negative on I';, we obtain
gG,Flw(W) S _5F HAHQ )
where —¢ := max{GF(\): A €T, 1<k <n} <O0. O

Surface flows

We next consider the case that n =2 and F : ' ¢ R? — R is any positive admissible flow
speed. Note that, by positivity and homogeneity of F, I' C {z € R? : max{z;, 22} > 0}.
Thus, there exists a constant a > 0 (which depends on Tg) such that Ty C {z € R? :
min{z1, 20} > —§ max{z1, 22}}. Define ¢ : [~a/2,00) — R by
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Then our pinching function G : T'g \ {0} — R is defined by

GO 1= Fp (322 ). (5.5)

)\max

where Apin := min{A1, Ao} and Apax := max{A;, A2}. Observe that G is homogeneous of
degree one and G(A) <0 if and only if Ay > 0. Furthermore, although G is not smooth
at the positive ray, we shall only require smoothness outside of the positive cone.

We will need the following estimate, which corresponds to the estimate of Lemma |5.3

Lemma 5.5. Let G be the curvature function defined by (5.8) and set Z := G/F. Then,
for every € > 0, there exists v > 0 (which depends only on F, Ty, and €) such that

D6 (T,T) = (leﬁpq’rs _ F“GWS) TipaTirs

< FFMrs znay T + C|(DZ) % T| — 2FM Z2PT,, FT5 T,
2
il
-

- (5.9)

at any diagonal W € Sym(n) with eigenvalue pair A € T. :={z €T : G(z) > eF(2)}n{z €
R? : 290 > 21} and all totally symmetric T € R" @ R" ® R", where C' < 0o is a constant
(which depends only on F' and Ty) and

(DZ) % T := (Z'T111 + Z°T192) Tha2 + (Z To11 + Z%To92)Tors -
Proof. Writing G = ZF', we have
96 r(T,T) = F27p(T,T) — 2F* ZP1T},, , F" T, .

Since Z is degree zero homogeneous, Lemma [4.14] implies

A

2 T.T) = Fkurs zeaq, T =z
ZvF}W( ’ ) kpgtirs + )\2()\2 _ Al)

[(71112)2 + (T212)2]

P, ) 2 2722 . 2
o (ZlT111 + ZQT122) ¥ (ZszH + ZQT222)
Fl F2 o Fl . .
+ (2 X H) (#8271 Ti
FQ F2 - Fl . .
+ (2 N H) (#1711 + 2Tz ) ot

Consider together the terms

A

2 2
Q1A T) = 09— M) [(THZ) + (To12) }
) A . 2 F2722 . . 2
T (ZlTlll + Z2T122> T (ZlTQH + ZQT222>
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We will show that there exists v > 0 (depending only on F, I'g, and ) such that

[als
QAT) <~y

By homogeneity, it suffices to show that Q1 (A, T) := F(A\)2Q1(\, T)/||T||* has a negative
upper bound on the compact set K :=T. N {||A\|| =1} x {||T|| = 1}. First note that

. A1) 1
Zl — / L o

and
A\ A1
r(
7\ ) D)2
Since
N —a
SO(T) - (’I“%CL)Q <07

we have Z1(\) < 0 and Z2(\) # 0 for all A € I'g \ T Next, we compute

. A\ 1
le — N () ]
7\ ) Dw)?

Since

2a
"(r) = >0,
#(r) (r+a)3

we have Z'()\) > 0 for all A € Ty \ ;.. By homogeneity of Z (using the second and third
of the identities (4.14)), this implies Z%(\) > 0 on T \ T';. for each 4, j. It follows that
Q1 < 0 on K. Suppose that Q(\,T) vanishes for some (A\,T) € K. Then 0 = Tj1p =
Tigo = (Z 11 + Z22Ti9) = (Z To11 + Z%Thsy). But this implies that T = 0. Thus Q
cannot vanish on K. By compactness of K we obtain the desired bound.

Finally, setting C := max{C}, Cs}, where

C = maX{F()\) <2F;(2)\) - Fz(ii:il()\)> TN E To} )

and

- E’(\) PPN - F'(V )
Ch .maX{F()\) <2 N J— ) ./\eFa} ;
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we obtain

C F'OF2_FVY /. :
F’DZ *T| > (2)\2 E v (Zle + ZQT122> Th22

F2 FQ - Fl . .
(o - ) (2]

We also obtain the desired estimate for the zero order term:

Lemma 5.6. Let G be the curvature function defined by (5.8)). Then, for every e > 0,
there exists a constant 6 > 0 (which depends only on F, Ty, and €) such that

Loy (W) 1= (FPG = GPE™) | WoW2 < —SFOW) W[ (5.10)

for all diagonal W € Sym(n) with eigenvalue n-tuple A\ € Tz :={z € 'y : G(2) > eF(2)}.

Proof. The proof is similar to the proof of Lemma [5.4 O

Evolution of the pinching function

Recall that our goal is to obtain, for any £ > 0, an upper bound for the function

Geo = (? — 5) F°

for some o > 0. The first step is to understand the evolution of G¢ ;.

Lemma 5.7. In case F is convex, let G be defined by (5.5). In case n = 2, let G be
defined by (5.8)). Then the function G., satisfies the following evolution equation (away

from umbilic points in case n = 2):

(01 —L)G.y = FOHGMFPs — FRMGPITS) 71 W, Vi Wi
2(1-o0) o(l—o)
+ T<VGE,O'>VF>F - T

+0Ge oW (5.11)

|V F%

Proof. We first compute

_ G
VG.,=Fo"! <VG— FVF> +%GE7JVF.

It follows that

c—1

LGy = Fo < ZG — ?3}7) + %G&U,}?F —2 (V G,V F)p

o(l—o)

+ ja

Geo|V F|%. (5.12)
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Therefore,
(01 —Z)Geg = F°! <(at e %(at —$)F> + %Gw(at —#)F
l-0o o(l—o) 9
+2 F <VGE,O'7VF>F_?G6,O'IVF’F-

The claim now follows by applying (4.6]).

5.2.2 The integral estimates

Note that the final term of the evolution equation (5.11]) is an obstruction to any appli-
cation of the maximum principle when ¢ > 0. Instead, we will extract, by iteration, a

supremum bound from the following integral estimate:

Proposition 5.8 (LP-estimate). In case F' is convez, let G be defined by (5.5). In case
n = 2, let G be defined by (5.8). Then there exist constants £ > 0 and L < oo (which
depend only on F, 'y, and ) such that

<0

L (A, u(t))

] [CHEON

forallp> L and all o € (O,Ep_%>, where (G:4)+ = max{Ge 4,0} is the positive part of
Ge o

First observe that the evolution equations for G., (5.11)) and the induced measure g
(2.16)) yield the following evolution equation:

d

o | (Geo)du=p / (Geo) ' LGegdp+p / (Geo) ' FO 26 p(VW, VY W) du

1{(VG.,,VF
p [VFI%

—o(1— U)p/\(G57g)+ 2 dp + Up/(Gs,a)i’W%d/‘
- / (Geo)? HF dp. (5.13)

We will use Young’s inequality and the estimates of Lemmata and to control

all but the two zero order terms:

Lemma 5.9. There exist positive constants Ay, Ao, By, Bo, By C1 which depend only on
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F, Ty, and € such that

d 3 _
p /(Ge,o)ﬁdu < - (Aw(p —-1)- A2p2) /(Ge,a)ﬁ |V Gl dp

» | VW2
+ F2

+Cilop+1) [ (Geoli WP (5.14)

- (Blp — Boop — B3p%> /(Ga,a) du

for allp > 2 and o € (0,1].
Remarks 5.2. 1. In fact, except for Bj, the constants are independent of ¢.
2. In the case that F' is convex, By can be taken to be zero.

Proof of Lemma[5.9 The proof of the estimate is slightly different in each of the two cases

at hand. We consider first the case that F' is convex:

Case I: F is convex

Recall equation (5.13)). We first integrate the diffusion term by parts:

p (G LG dn= = 1o =) [ (G TV Gl i
0 [(Gea Vi P9, G ¥y Wh
< —cop(p—1) /(Gs,a)ﬁQI V Geol? dp
= [(GeaV T FP 0, G ¥y Wha
where ¢o = min{F(\) : A € Ty, 1 < i < n} > 0. This yields a useful gradient term, but
spits out an additional bad term due to the non-divergence form of the diffusion operator;

however, due to homogeneity, the latter is easily estimated (wherever G., > 0) using

Young’s inequality:

- VpGeo Vg Wrs 3 -
b [ i e Een TR gy < it (602 Gl
£,0

VW3
/(Gs,o)ﬁ| F2 |F d/.L,

NI

+ c1p

where ¢; = max{F()\)qu’”()\) :AeTly, 1<p,q,r,s< n} Comparing | - |p with |- |, we

arrive at

p/(Ga,a)ﬁ_liﬂGe,a dp < (creap? — cop(p — 1)) /(Ga,a)ﬁ_Q\ V Ge ol du

» | VW2
+ F2

+0102p% /(Ggp) du (5.15)
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where ¢y := max{F*(\): A € Tp, 1 <i < n}.
A further useful term is obtained from the second term of ([5.13)) via Lemma

_ _ . o va
p/(GS’U)g_ 1FU 1°‘OZG7F(V vaw) dp < —"yp/(G&J)ﬁ_ 1F 1‘F|dﬂ
_ vV W|?
< - lvp/(Gs,a)i| = Cau. (516

where c3 = max{G(\)/F(\) : A € I'o} and v > 0 is the constant from Lemma (which
depends only on F, Ty, and ¢).

The inner product term is estimated (wherever G, > 0) using Young’s inequality:

V6., VF s .
2(1 - 0)p/<Ga,a>ﬁ 20 22N du< (1-o)p? /(Gw)’i ?|V Ge ol dpe
Cew ' F /),

i V F|2
+(1—o0)p2 /(Ga,a)g_’ F2’F dp
< cop? / (Geo)V%|V Ge o dp

1 \VALUE
+ eaph / oot . 5a7)

Whereﬁ cy=c3.
Assuming o € (0,1), we may discard the third to last term.

The final term is easily estimated using homogeneity of the integrandlﬂ
- [GeoriF < s [(GeolWPan, (5.18)

where ¢; = max{—F(A\) 32", A/ [|A||> : A € Tp}. Combining the estimates (5.15)(5.18)
yields the claim.
Case II: n =2

We again begin by integrating the diffusion term by parts:

p / (GeaV ' LGy = —plp—1) / (Gew V2V G2 dp
—p / (Geo)V EPI™ Y, Ge o Vg Wys dp

— 1) / (Geo)? 2|V Gt dn

_ .. G
—p /(Gs,a)ﬁ L o fopg.rs vy (F) Vg Wrsdp

.. v, F
- 0]0/(GE’U)]f;_F:"q’r“(”}D7 Ve Wrsdp.

3Note that |V F|% = FFEPEIN . W, Vi We,.
4Note that we are allowing the possibility that H < 0 at some points of the hypersurface.
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Applying Lemma to the second term of ((5.13)) yields

p/(GS,U)ﬂ_IFJ_1£G7F(V W, VW)du

1| VWP
< —w/(Ga,a)’i 1po ] F2| dp

_ .. G

_ G VF
~2p [(Goa T <v () , > du
+ F F /.

—1 o—
+Op / (Gog)? TP

\Y % * VW‘ du,
where v > 0 and C' < oo are the constants from Lemma [5.5] and
G G G
\Y <F) * VW :=V; (F) Vi Waa + Vs (F) VoW1

= (F7V1Geo —0F 177G, , V1 F) Vi Wy
+ (FV32Gey —0F 177G, s Vo F) Vo Wiy . (5.19)

Estimating Ge , < ¢3F7 and (-, -) < 2| - |?, we obtain

p / (Geo) ' LG du+p / (Geo) ' FT 26 p(VW, VW) dp

< - CQP(p - 1) /(Gs,a)g-_2‘ \Y Ga,a‘Q d,UJ

v W|?
- CS’YP/(GE,O’)I—)‘,—’FJ dﬂ

. V., F
—op / (G FP7* =2 Vg Wy dp

- 2p/(Ge,a)ﬁ_1F"_l <V <G> ; VF> dp
F F

+ Cp/(GE,U)ﬁlFU_I

vi*vw‘ dp .

This provides the two good terms we need. The remaining terms can now be controlled by

utilizing the homogeneity of F' in conjunction with Young’s inequality: First, we estimate

» | VW?
+ F2

. V, F
—O'p/(Ga,U)I—)&—Fqu’TS;,Q vq Wesdp < Clc2o'p/(GE7U) dp.
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Next, substituting Vy Ge o = F7 Vi(G/F) + %G s Vi F, we estimate
_ G VG VF
—2 U da =t FY du= / o) w2 d
p/(Ga,)+ <V<F),V >F p=p [ (Geo) G F ),
|V F;
— (I])/(Clﬁ_;7¢,){’F 7 Edu
<t [(Ger)7|V Gl d
1 vV W|?
+ c4p2 /(GE,U){:-| 2 | dp .
Using (5.19)), we similarly estimate the term
_ _ G C s _
Cp [[(Geop Fr v S s vw’ A< 5ot [(Ge) 71V G di
Cy/1 |V W|?
+ 5 <p2 + czap) /(Gaaﬁ_ 7 | du .
The remaining terms are estimated as in the case that F' is convex. O

To show that the remaining bad term can be compensated by the two good terms, we

need an estimate which involves both zero order and gradient terms. This is achieved by
integrating the Simons-type identity (4.2)), applying Lemmata and and controlling

the error terms.

Lemma 5.10 (Poincaré-type inequality). There exist positive constants As, Ay, As, By,

Bs, which depend only on F', I'g, and €, such that

/ (Geo LW < (Asp? + Aup} + As) / (Geo)2|V Gey? dp

+ (Bapt + Bs) [(Gealt (5.20)
for allp > 2 and o € (0,1].
Proof. Recall equation
LGy =F1 (ZG - §$F> + %GMZF %G, V),
— WGMVF%. (5.21)

Applying the identity (4.2) yields

LGy = —F 190 p(VW, VW) + FF2(FGH — GFMYV, V| F
(1-0)

— FO % p(W) + %GW.XF ) (VE,VGey)p

o(l—o)

Geo|VF|%. (5.22)
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We now estimate Z¢ p(W) using Lemmata [5.4| and This yields

SW|? < F 1251 (W)
= —F %G — F'20r(VW, VW) + F 2 FG" - GFFYV, V| F
+0F G, LF —2(1 - 0)F V" (VF,VGeo)F
+0(1-0)F 277G ,|VF%.

Multiplying by (Ge,g)ﬁ’r and integrating over .#, we obtain

5 [(GoalWE < — [(Go )P LG
_ / (Geo)F ' 26 0(V W,V W) du
+ / (Gep) L F2(FGM — GFMY Vv, F du
+o / (Geo) T P0G, » L F dp
—2(1—0) /(GE,U)ﬁF_l_"(V F\V Geo)rdp
+o0(1—0) / (Geo)L F 2 °Gey| VF|3dp. (5.23)

We will estimate each of the terms on the right similarly as in the proof of Lemma [5.9

Integrating the first term by parts yields

_/(Ga,a)g_FggGap d/~L :p/(Gap)ﬁ__qu VG&O"%'d/'l’
—0 / (Gew)LF 7YV Gey, VF)pdu

+ /(Gs,o)g_F_aFklms Vk; Wrs vl Gs,a' d,u .

Estimating FE <e¢p, Fi<ey G /F < ¢3, and o < 1, and applying Young’s inequality to

the second and third terms, we obtain

_ / (Geo)l F0 LG dp < (cae3(p+ 1) + c163) / (Geo) 2|V Gel? du

VW
+ (c3es + cics) /(G&o)]ﬂ 73 | dp.

The second term is easily estimated by bounding

26 r(VW, VW) > —cs| VW|*/F,
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where —c4 := min{F(\)(GF FPars — [RLGParsy(X) : A € Tg,1 < k,1,p,q,7,5 < n}, yielding

p | VWP
+ F2

~ (Gl BT W YW i < 1 [ (G .

The third and fourth terms of ([5.23]) are estimated similarly to the first: For the third,

we obtain
/ (G} F2(FGM — GEM) Y, Vi Fdp = / (Geo)? 2N NV, Y, F dp
= - /p(Ga,a)g_lzkl Vk Ggyg Vl Fd,u

- /(G&U)Ij-zklyrs ViWes VI F d,Uz

Njw

< csp / (Geo)? 2V Gl du

1 vV W|?
+ (C5C§p2 + 06) /(G&U)’j_‘Fz’ du,

where Z = G/F, ¢5 = max{F(N\)Z*(\) : X € Tg,1 < k < n}, and ¢ :=
max{F(A\)2FF(\)ZPs7s(\) = X € Ty, 1 < k,I,p,q,r,s < n}. For the fourth term, we

obtain
o [Ceali P LE = —olp+1) [(GeoliF T VLG Vi
+o(l+0) / (Geo)P T 2|V FI3 dp

—0 / (Ge o) PLmo RS 7 W, V) F dp

N

< Besolp+1)p / (Geo)2|V oo ? dp

p | VWP
+ F2

tes(Ep+ Dp i+ dter) / (Ges) i,

where c¢7 := max{F(A\)FF(\)FPe™s(\) : X € To, 1 < k,1,p,q, 7,5 <n}.

The penultimate term is easily estimated using Young’s inequality:

F F2 50'2

F? G2,

vV W|? |V G.,|?
< Gs,a (03| +c2 : .
2 F2 G2,

The final term is estimated by applying |V F|% < 3| VW% O
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Combining Lemmata and yields

d

5 3 _
7 (Geo)ldp < — (ozop2 — a10p? — ap? — asp) /(Ge,a)’l °|G. o |? dp

» | VW2

+ 2 dpt

~ (Bop ~ Brov? — paop — punt) [ (G

for some positive constants «; and [;, which depend only on F', I'g, and ¢.
It is clear that constants L < oo and ¢ > 0 (depending only on F, T'g, and €) may be

chosen such that
2 5 3

(aop — Q1 op? — op? — a3p> >0

and
3 1
(5019 — Propz — Baop — 531?2) >0
1 X .

for all p > L and 0 < o < £p~2. This completes the proof of Proposition

5.2.3 The supremum estimate

We now extract an L*°-bound for (G, )4+ from the LP-estimate of the previous section.

We will make use of the following lemma:

Lemma 5.11 (Stampacchia (1966)). Let ¢ : [ko,00) — R be a non-negative, non-

increasing function satisfying

¢ —o(k)’,  h>k> ko, (5.24)

‘P(h) < W

for some constants C' >0, a >0 and 8 > 1. Then
o(ko+d) =0,

B
where d* = Cp(ko)P~125-1.
Proof. We reproduce the proof from Stampacchia (1966): Consider the sequence defined

by

d
by =ko+d——, r=0,1,2,....

2'!'
By assumption, we have

2(r+1)a
de

@(kr-i-l) < C @(kr)ﬁ (5'25)
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for all r =0,1,.... We will now prove by induction that
@(kr) < p(ko)2™"" (5.26)

for all » € N, where p := ﬁ > 0. Clearly (5.26]) holds trivially for » = 0. Supposing
(5.26)) holds up to some integer r, we find by (5.25) and the definition of d that

9(r+1)a

1) < O (ko) "2

= Sp(ko)2*(r+l),uﬁ
which completes the proof of (5.26]). Now, by the monotonicity assumption, we have
0 < (ko +d) < p(ky) forall r=0,1,....

But, by (5.26), ¢(k,) — 0 as r — oc. O

Now, given any k > ko, where ko := sup,¢(o,1) SUp.z Ge,0(+,0), set

and  Ag(t) :={x € .4 :vi(x,t) > 0}.

=+ rors

vg(z,t) = (ngg(x,t) - k)

We will show that |Ag| := fOT fAk(t) du(-,t)dt, k > kq, satisfies the conditions of Stam-
pacchia’s Lemma for some k1 > kg. This provides us with a constant d for which |Ag, +4|
vanishes. Theorem follows. Since |Ag| is clearly non-negative and non-increasing with
respect to k, it remains to demonstrate that an inequality of the form holds.

We begin by noting that

Lemma 5.12. There are constants Ly > L, 0 < {1 < ¢, and ¢y, ca > 0 (depending only
on F, Ty, and €) such that, for allp > L; and o < €1p_%, the following estimate holds:

d 1
pr v dp + — / | Vur|?dp < ca(op+1) G§7UF2 du. (5.27)
C1 Ay,

Proof. Observe that

d _
G [etdn= [ pGea =KV 0,6 d— [ tHF
and

2
Vil = (G — 2V Gl
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Thus, proceeding as in Lemma (5.9)), we obtain

d 4 3
G [ ebdn <= 5 (Auntp—1) = 4 ) [ 10 a

dt
p | VWP
+ F2

- (Blp — Byop — B3p%) /(Ge,a — k) dp

+ Ci(op+1) /(GEJ — k)L F2dy

for some positive constants A, Ag, B, Ba, Bs, and Cy (which depend only on F', I'y, and
€). The claim follows. O

Now set o/ = o + %. Then

mn nGg,O' — —
/A F dung Fr—_rdu =k P/A G du <k P/(Gw,)i du. (5.28)
k k k

If p > max {Ll, %2} and o < %p_%, then p > L; and o/ < €1p_%, so that, by Proposition
1

B8

[ <07 [ (G0, o < ot (B2 (529

k

Choosing k sufficiently large, the right hand side of this inequality can be made arbitrarily
small. We will use this fact in conjunction with the Michael-Simon Sobolev inequality to
exploit the good gradient term in ([5.27]).

Theorem 5.13 (Michael-Simon Sobolev inequality (Michael and Simon (1973))). Let .#™,
n > 2, be a smooth, immersed submanifold of R** of dimension n, and let u be a non-
negative, smooth function with compact support. Then there exists a constant cg > 0,

which depends only on n, such that the following estimate holds:

n—1
</u"n1du> " ses [(19ul+ ),

where  is the induced measure of A, H its mean curvature vector, and |- | its induced

norm.

An application of Hélder’s inequality to the Michael-Simon Sobolev inequality yields
the following Gagliardo—Nirenberg type inequality:

Corollary 5.14 (Cf. Huisken (1984). See also Baker (2010)). Let u be as above. Then

(o)’ <= (frowran)} oo (furan)' (f o)

for any 1 < p < n, where ]% =

3=

1
P
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Proof. Applying the Michael-Simon Sobolev inequality to the function v := u®, where

B > 0 is to be chosen, we obtain

—

n—1
</u'8nn1du> ! gcsﬁ/uﬁ_lyvu\du—i—cS/]ﬁ|uﬁdu.

Applying the Holder inequality to both of the integrals on the right yields

n-1 p-1 1
</u,8n"1du> "< esB </u<6—1)pﬂ du) ’ </|Vupdu>”
n—1

1 n-1
+cs (/]ﬁ]"d,u)n </u5nr—11du> !

for any 1 < p < n. Setting 3 := p(n — 1)/(n — p), so that p* = 15 = (f — 1)%, the

claim follows. O

We want to take advantage of the good gradient term in (5.27]), so we need the corollary
with p = 2. Setting ¢ := n/(n —2) if n > 2, or any positive number if n = 2, and squaring

both sides, we obtain

(J ) <o f 15 fea) (o)

where 8 =p(n —1)/(n —p).
Finally, setting c3 := max{| Y 1 ; \il/F(X) : A € I'y}, we obtain the desired inequality:

</viqdu>; §2(035)2/|Vvk|2du+c§63 </F"du>i (/viqdu>;
<y (/]VkaQdu—i—(/F”du)i</vzqdu>;) , (5.30)

where ¢4 := max{2c%?%, c%cs}.
It follows from (5.29) and (5.30) that, for any p > max{Li,4n?/¢?} and o < %pfé,

we have
1
(/vzqdu> §2C4/]Vvk]2du

for all k& > ki, where k; is chosen such that k) > 2cqpo( Akl (for example, ki :=
1
(2c400)? ko).
Therefore, from ((5.27)), we have, for all k > kq,

1
! /vzqd,u ’ <02(ap+1)/ F2GP du
= €,0 .

2c1¢4 Ay,

Integrating this over time, noting that Ax(0) = ), and assuming, without loss of generality,

d
7 v dp +
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that cicq > %, we find

T 1 T
sup </ v} du) —I—/ </ v du) Tat < cs(op + 1)/ FQGZ;U dpdt, (5.31)
0,7) \J 4, 0 0 Jag

where c5 := 4cicocs. We now exploit the interpolation inequality for LP spaces:

11l < A2 NAIS (5.32)

where 6 € (0,1) and q% = 24— 1%6. Setting r = 1 and # = -, we may assume that
1 < go < ¢. Then, applying (5.32)), we find

q0—1
/ vzqo dp < </ v3 d,u) </ v2 d,u)

Applying the Holder inequality yields

T o “s /o 1 w
(/ / vzqo du dt> < | sup / vi dp / </ v d,u) dt .
0 JAg [0,T) J Ay 0 Ag

a0
Using Young’s inequality, ab < <1 — q%) a®n-1 4 qiobqo, on the right hand side, we obtain

2qo0 1 1 T 2q %
/ / dudt 1-—— sup/ vkdu—i—— / vdp | dt
Ay, 40/ [0,1) J Ay 40 Ay,
T ‘
sup / v dp + / (/ v* du) dt .
0,7)J A, 0 Ax

| /\

N

Recalling (5.31)), we arrive at

1
© T
(/ / 2q° dudt) ’ < cs(op+ 1)/ / FQG";J dudt. (5.33)
Ay, o Ja,

We now use the Holder inequality to estimate

1
T T 1
/ F2GP  dpdt < | Ay~ </ / F%Gfg;,dﬂ,dt) < cglAp"r (5.34)
0 Ay 0 Ag

and

/OT/Akvkdudt<]Ak] (// 2q°dudt> (5.35)

, and 2r > Lo := max{L1,4l7§ ’12} where cg = k3 (Tuo(A))7.

[SIE
S =

whenever o < lzlp_
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Finally, for h > k > k1, we may estimate

]Ah]_//dudt // LA +dudt<// eo — K +d,udt
Ap Ah EO'_ Ap -

Since Ap(t) C Ag(t) for all t € [0,T) and h > k, and v} := (G-, — k)%, we obtain

T
(h—k:)p|Ah|§/0 /Au,idudt. (5.36)
k

Putting together estimates (5.33)), (5.34)), (5.35) and (5.36)), we arrive at

csce(op +1)

Ap| <
Al < =

| Ax[”

1

for all h > k > ki, where v := 2 — q% — % Now fix p := 2L2 and choose 0 < %p_2

o2 -, Ly}, so that v > 1, we
may apply Stampacchia’s Lemma. We conclude that |Ag| = 0 for all & > kj + d, where
dP = C5c62%+1|Ak1 |7=1. We note that d is finite, since T is finite and

Geo )t _ -
/ dM < / ( Zp)+ d,U < /61 p/(Gs,o)i dﬂ < klp/(GE,o('vo))i d,u()y
Akl Akl 1

where the final estimate follows from Proposition It follows that

sufficiently small that op < 1. Then, choosing r > max

G<eF+ (ki +d)F'™
< 2eF +C: (5.37)

for some constant C., which depends only on ¢, k; 4+ d, and o (hence only on n, F, Iy,
wo(A), T, and ¢).

Now, to see that an analogous estimate holds for the function D := dist(<,I';), define,
for any n > 0, I'y := {2z € T'o : D(2) > nF(2)} and set A, := maxr, L (which is finite by
homogeneity of D and G, and positivity of G on I';)). Then, from , we obtain, for
any 6 > 0,

D < AsG

0
< As <A5F + C&/(2A5)> =0F + AgCg/(gAg)

whenever D > §F.

Since, by Proposition [£.31], 7" may be bounded by a constant depending only on F', T,
and R, this completes the proof of Theorem

5.3 The cylindrical estimates

We now prove the second part of Theorem the cylindrical estimates:
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Theorem 5.15 (Cylindrical estimates, Andrews and Langford (2014))). Let F: T' C R" —
R, n > 2, be a positive admissible speed function, and assume that one of the following

auxiliary conditions is satisfied:
1. F s convex; or
2. n=2; or
3. I'=T4 and F is concave.

Then, given m € {0,...,n — 2}, a curvature cone I'y CC I satisfying
I'g cCTypgr = ﬂgepn{z cR": Zo(1) + -+ Zo(m+1) > 0},

an nitial volume scale o > 0, an initial distance scale R > 0, and any € > 0, there exists
a constant Ce, < 00 (depending only on n, F, T'g, o, m, and ) such that, given any
solution 2 : M"™ x [0,T) — R*L of with curvature satisfying R(A4 x [0,T)) C I'o,
initial volume satisfying po(A) < «, and initial curvature satisfying min o F > R!
(alternatively, diam(Zo(#)) < R), the following estimate holds:

dist (R(z,t), A}) < eF(x,t) + C:

for all (z,t) € A x [0,T), where, recalling that ¢, :== F(0,...,0,1,...,1) is the value F
———

m—times
takes on the unit cylinder R™ x S™™,

A= Myep, {2z €Ty : Ze) 0 F Zo(mt1) = il F(21,. .., 20)}

5.3.1 The pinching functions

As for the convexity estimate, we begin by constructing appropriate pinching functions
G, for the pinching cones A,,. Our construction of G, will be independent of the choice

of m; so let us fix m € {0,...,n — 2} and assume that I'g CC T'y,.

Flows by convex speeds

Recall the function defined by (4.10) in Proposition and used to show that the
curvature inequalities k1 + - -+ + kpmy1 — ' F > —cF are preserved. We modify this

function just as in the proof of the convexity estimate; more precisely, we set
G .= K(Gl, GQ) s (5.38)

where K and Gy are defined, respectively, as in (5.4) and (5.3)), and G is defined by (4.10))

(for our fixed m).

The purpose of the modification is the following estimate:
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(1V3,-1/V3,1V3) (0,0,1) (-1V3,1/V3,1V3)

[——— R ——p——
——— e —
—_—— _——

— -

/
r ==l =

N AN21y2.0) 7
\/ /

(1/V3,1V3,-1/V3)

Figure 5.2: Intersection of the curvature space, R3, of a three-dimensional hypersurface with
the unit sphere. The red curve is the boundary of the initial cone, I';. The blue curves are the
boundaries of the cones I'. := Nyep,{z € [0 : 2,1) + 20(2) — ¢; ' F(2) > —eF(z)}, which ‘pinch’
onto A; as € — 0. Note that the initial condition is just enough to rule out the ‘cylindrical points’
(1,0,0), (0,1,0), and (0,0,1).

Lemma 5.16. Let G be the curvature function defined by (5.38)). Then, for every e > 0,
there exists a constant v > 0 (which depends only on F, Ty, m and €) such that

2
17|

o il pg, Kl i,
QG,F'[/V(T7 T) T (G FPors — PG TS) ’WTkqu‘lrs < - F(W)

(5.39)
for all diagonal W € Sym(n) with eigenvalue n-tuple A\ € I'. :={z € I' : G(z) > eF(2)},
and all totally symmetric T € R™ @ R™” ® R".

Proof. Since we proved in Proposition that
(G“FPWS - F’”GWS) TinTirs < 0
1 1 kpglirs =Y,

the proof is exactly the same as the proof of Lemma [5.3 O

The estimate for the zero order term 2 is slightly different for the cylindrical estimates
than for the convexity estimate due to the fact that the support of G contains points lying
inside and points lying outside of the positive cone. We use the convexity estimate to

control the points lying outside:

Lemma 5.17. Let G be defined as in (5.38|). Then, for every § > 0, ¢ > 0, and C > 0,
there exist constants y1 > 0, v2 > 0 (depending only on F, Ty, n, and €) and 73 > 0
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(depending only on F', Ty, and n) such that
Y rly (W) == (FGM — GFM)|, W2 > nF*(G — 6% F)|,, — 3CF?|,,

for all diagonal matrices W with eigenvalue n-tuple A € I'. 50 = e NT's o, where I'c :=
{z€Tv:G(2) >ecF(2)} and 'sc :={z €Ty : 2> —0F(2) — C for each i}.

Remark 5.1. Note that, by the convexity estimate (Theorem , for every > 0 there
exists C5 > 0 (depending only on n, F', I'g, a, R and §) such that the set I's ¢, is preserved.

Proof of Lemmal[5.17. First note that, just as in the proof of Lemmal[5.4] it suffices to prove
the estimate for Zg, p. So let W be a diagonal matrix with eigenvalues Ay < --- < A,.
Let [ € {0,...,m} be the number of non-positive eigenvalues. Then, recalling equation
@11),

P p(W) =D (GRFT = GIFP)\pAg(Ap — Ag)
p>q

- Z (Qppq _ Qqu)/\pAq(Ap — )

p>q

- Z + Z + Z (Qqu - Qqu))‘p)‘q()‘p —Ag)
p>q>l p>l2q  12p>q
where Q¢ := 3" o ¢'(r5), Ou := {0 € Hy, : a € o({1,...,m + 1})} (see Proposition
1710).
Recalling (see Lemma [4.11)) that QPEY — QIFP > FP(QP — Q7) > 0 whenever )\, > ),

we may discard the final sum and part of the first to obtain

n m+1
gGl,F(W) > Z Z (Qqu - Qqu))‘p)‘q(/\p - /\q)
p=m+2 g=I+1
n l
+ Z Z (Qqu o Qqu)Ap)‘q(/\p - )‘q)
p=l+1 q=1
n m—+1 ] ] l
= Z Z (Qqu_Qqu))‘p)‘q()‘p_Aq)_F2Z)‘i
p=m-+2 q—l+1 i=1
+F2Z)\ + Z Z (QPFT — QIEP)\A(Np — Ay) -
p=Il+1g=1
So consider the function
n m—+1 l
= > > (@EFE) - QUAEE))zz(zp — 20) — F()P Y 2.
p=m+2 q=I+1 =1

Observe that Z; > 0. We claim that Z; > 0 on the cone F?l ={zel.:z1<-- <z <
0 < zi41 < -+- < z,}: Suppose, to the contrary, that Z;(z) = 0 for some z € F€>l. Then
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z1=---=2z =0and (Qp(z)Fq(z) - Qq(z)Fp(z)> 2p2q(2p—24) = 0forallp > m+1> g >
[. But, by Lemma @7 the latter implies that, for all p > m +1 > ¢ > [, either z, = 2,
or 7o(A) > 0 for all ¢ € O, . Note that the latter case cannot occur: Since p > m+1 > g,
there is a permutation o € Oy, such that 0 < r,(2) = (21 + -+ + 2mt1 — ¢, F(2))/F(2),
which implies G(z) = 0, contradicting z € I'.. On the other hand, if z, = z, for all
p > m-+1 > g > I then, by convexity of A,, (Lemma , A € A, so that we again
obtain the contradiction G(z) = 0. Thus, Z; > 0 on F;l. Since Z; is homogeneous of

degree three, it follows that
Z1(\) > a1 F(V)2G(N),

where ¢ := min minps>l FZTlG > 0.

Now consider
l n l
Zy=F2Y N+ > S (QPET— QU ) A0 — Ay)
i=1 p=I+1g=1
Note that, by homogeneity, ¢y := sup{QP(2)F9(z) —Q4(2)FP(z) : z € Ty, 1 < p, ¢ <n} <
oo. Thus, Zs is easily controlled using the ‘convexity estimate’ Ay > —0F — C:

l
Zy > —IF*(6F + C) + (n = Deadn Y Ag(An — Ag)
q=1

l

> —nF?(6F + C) + 2ncacs F? Z Ag
q=1

> —nF?*(6F + C) — 2ncecs F2(SF + C)

> —n(l42cc3)F?(0F + C),

where ¢z := max{|\;|/F(\) : A € Tp,1 <i <n}.
The claim follows. O

Surface flows

In the setting of surface flows, we are left only with the choice m = 0. In this case, our
initial cone satisfies I'y CC I'y, and our pinching set is the positive ray. We define our

pinching function by

2[[A[* — tr(A)
(tr(A))?

Lemma 5.18. Let G : T'g — R be the curvature function defined by (5.40) and set Z :=
G/F. Then, for every € > 0, there exists v > 0 (which depends only on F, Ty, and ¢)

O

GO = FO) (7 =

(5.40)
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such that

D (T,T) = (G’“FPWS _ F’CZGPWS) TipqTirs
< FEMrs zeaTy Tips + C|(DZ) % T| — 2FM ZP T, F75 Ty
|17]”

—T (5.41)

at any diagonal W € Sym(n) with eigenvalue pair X € T'. := {z € Ty : G(z) > eF(2)} and
all totally symmetric T € R" @ R" @ R™, where C' < oo is a constant (which depends only
on F and T'y) and

(DZ) + T := (Z 111 + Z°T192)Thoz + (2 To11 + Z%Toz2)Tor1 -

Proof. The proof is similar to that of Lemma [5.5 O

Since in the case of surface flows our solution is already convex, the estimate for the

zero order term is simplified:

Lemma 5.19. Let G be defined as in (5.40). Then, for every e > 0, there exists v > 0
(depending only on F, Ty, and €) such that

Za.ply (W) = (FGM — GF*)| W} > vF*G

w
for all diagonal matrices W with eigenvalue pair A € I'c :={z € g : G(2) > eF(2)}.

Proof. Let W be any diagonal 2 x 2 matrix with positive eigenvalues A1 < Ao. First note
that

FGW?) — GE(W?) = F2Z(W?),

where Z is defined by

G (A2 —)\1)2
ZAN) = == —— .
( ) F ()\1 —l—)\2)2
Since
. Ao (A2 — A1) o 41 (A2 — A1)
Zl)\) = - == d Z°\N) = —"7-——-,
( ) ()\1 +)\2)3 an ( ) ()\1 +)\2)3
we find
: 4F(N)?
F2ZW?) = —22_XXa(da — \)2 > 0.
( ) ()\1+)\2)3 1 2( 2 1)

The claim now follows from homogeneity; precisely, we have

F2Z(W?) > ~.F*G,
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where

. 4X Ao
= — 2 . )eT .
Je T { FOVOu + o) }

Flows by concave speeds

Note that the only case we consider for flows by concave speeds is the m = 0 case. Our
pinching function in this case is constructed as in the m = 0 case for flows by convex

speeds, but with G given by

B - - gL F(N\) — )\
G(\) = G1(\) == F(\) ;Qp <0F(A)> (5.42)

as in the proof of Proposition Proceeding as in Lemma yields the following

estimate:

Lemma 5.20. Let G be the curvature function defined by (5.42)). Then, for every e > 0,
there exists a constant v > 0 (which depends only on F', T'g, m and €) such that

lals
F(W)

QG,F|W(T, T) = (szpm,rs B Fklép!I,TS) ’WTkqulrs < —x (5.43)

for all diagonal W € Sym(n) with eigenvalue n-tuple A € Te :={z € T': G(z) > eF(z)},
and all totally symmetric T € R™ @ R" ® R™.

Proceeding as in Lemma (and using the fact that Tg CC I'y) yields the following

estimate for the zero order term:

Lemma 5.21. Let G be defined as in (5.42)). Then, fore > 0 there exists v > 0 (depending
only on F, Ty, and €) such that

Zar|y (W) = (FGM — GF™)|,, W > yF(W)*G(W)

w

for all diagonal matrices W with eigenvalue n-tuple A € I'c :={z € Ty : G(z) > eF(z)}.

5.3.2 The integral estimate

Now consider, for any € > 0 and ¢ > 0, the function

G
Geo = (F—s) Fo.

We will proceed much as in the proof of the convexity estimate to obtain the following

integral estimate:
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Proposition 5.22 (LP-estimate). In case F is convez, let G be defined by . In case
n = 2, let G be defined by . In case F is concave, let G be defined by . Then
there exist constants ¢ > 0, L < oo (which depend only on F, Ty, n, and ) and K > 0
(which depends only on F, Ty, n, «, €, o, and p) such that

<K

Lo (A, (1))

d

),
forallp> L and all o € <0,€p_%), where (Ge o)+ = max{G. ,0} is the positive part of
Geo

Exactly as in the proof of the convexity estimate (using Lemmata and we

obtain

Lemma 5.23. There exist positive constants A1, Aa, B1, Bo, By Cy which depend only
on F, Iy, m, and € such that

d 3 _
pr /(Ga,a)ﬁdﬂ < - (Aw(p -1)- Azzﬂ) /(Ga,o)ﬂ *|V Gl dps
1 VW2
— (Blp — Boop — ng2> /(Gs,o)i‘ 72 | dp
+Cilop+1) [ (Geo WP (5.44)

for allp > 2 and o € (0,1].
To estimate the final term, we make use of Lemmata and
Lemma 5.24 (Cf. Huisken and Sinestrari (2009), §5 ). There exist positive constants As,

Ay, As, Bs, By, Co which depend only on F, I'g, m, and ¢ such that:

Z(W _
/(Gs,o)g_(lj) d# < (ASP% + A4P% + AS) /(Gs,o')g_ 2’ VGE,O' 2 d,u

p | VW2
+ F2

+ (ng% + By) /(Gg,g) dp .

Proof. As in Lemma contraction of the commutation formula for V2 W with F' and
G yields the identity

LGy = —F 190 p(VW, VW) + FO 124 p (W) + FOXHFGM — GF*"YV, V| F

o 1—0 o(l—o
+ 5GeoLF = 2( = )<v F,VGeo)r + (F2)Gwy VF|%.

The claim is now proved by integrating against (G )% F~7 and estimating the error
terms using integration by parts, Young’s inequality, and homogeneity (via Lemma [4.25))

similarly as in Lemma [5.10 O

Now recall Lemmata and In case F is convex, we set 6 = £/(272) and apply
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the convexity estimate (Theorem [5.2)) to obtain

Zar(W)

€
—mF? < ia

5 +73C% /(240) F (5.45)

whenever G > ¢F. In case n = 2 or F' is concave, (5.45)) holds wherever G > ¢F with
73 = 0.
We now use Young’s inequality to estimate (Cf. Huisken and Sinestrari 2009, §5)

F = F—apFH-ap < Fop (Z)qqpq(l-&-ap) + bq/q )

for any b > 0 and ¢ > 0, where ¢ is the Holder conjugate of ¢: % + % = 1. Choosing
q= ﬁgg’ so that ¢’ = 2 4+ op, we obtain

a 7(2+Up)
F S bfio‘z 1 + ap 2 b

For

2+o0p 24+ o0p
< biior f2 4 p-(ron) pop

14+op

— em 24op
Now choose b := (4%05/(272)) , so that

€ —0
1502y F < S P2+ KF 77,

where

—(14o0p)
€M
K = ’73Cs/(272) (47306/(% )> :
2

Returning to equation ([5.45)), we find

Zar(W) '

ﬂFQ < KF°P 4
4 F

Bounding G, < ¢1F7, where ¢ := max{G(\)/F(\) : A € Ip}, and |[W|? < coF?, where
¢ := max{||A||? /F(\)? : X € Ty}, we obtain

_ v ow
(Geo) LW < K + 03(Ga,a)ﬁc;§w<)7

for some constants K > 0 (depending only on n, F', I'g, €, 0 and p), and ¢3 > 0 (depending
only on n, F, I'y, and ¢).
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Combining Lemma Propositionlﬂ and inequality (5.44) now yields

d ~ 5 3 _
= [ (GeoVidn < Kpo(oat) = (aop® = crop? — asp? — agp) / (Ge)t *|Ge,ol* du
3 1 VW 2
- (ﬁop— Bropz — Baop — ﬁ3p2) /(Ge,a)ﬁ‘ 72 | dp

for some positive constants «; and f3; (which depend only on n, F, T'g, and ¢), and K
(which depends only on n, F, T'g, €, o and p).
It is clear that L < co and ¢ > 0 may be chosen such that

2 5 3
(aop —Q1op2 — Qp? — a3p> >0
and
3 1
(5017 — Brop2 — Baop — 53132) >0

forallp>Land 0 <o < Ep_%. This proves Proposition
The proof of Theorem [5.15|is now completed by proceeding with Huisken’s iteration
argument.

5.3.3 The supremum estimate

The argument has already been laid out in The main difference which appears is in
the estimate ([5.29)), where Proposition instead yields

p
/ Frdp < kP <KT+/(G€7U,(.7O)){; dlm) < KT+ 0K,
Ak

The rest of the proof goes through with only minor changes.

5.4 An infinitesimal description of singularities

We now apply scaling techniques and the curvature estimates of the preceding sections
to analyse the structure of singularities of the flow (CF]). We will see that the convexity
estimate (through the splitting theorems, Theorems and forces an infinitesimal
separation of variables at a singularity. As a consequence, we deduce that a certain se-
quence of rescalings of the flow about a singularity converges to a product of flat directions
with a strictly convex solution of a lower dimensional flow. Moreover, if the singularity is
occurring at a sufficiently fast rate, then (through Andrews’ Harnack inequality, Theorem
the strictly convex part must move by translation. In the special case of flows of

convex hypersurfaces, we find that the only rescaling limits are shrinking spheres.

5Note that, since I'y is convex, we have H > 0.
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Theorem 5.25 (Infinitesimal description of singularities). Let n > 2 be an integer and
F: T CR" = R an admissible flow speed, and suppose that one of the following auziliary

conditions hold:

1. F 1is convex; or
2. n=2; or

3. I'=T4 and F is concave.

Let Tg cC T be a curvature cone and 2 : M x [0,T) — R a compact solution of (CF))
satisfying R(# x [0,T)) C Ty, and consider a sequence {Zk}ren of rescaled solutions
defined by

%k c M X [Oék,Tk] — Rn+1

(@,t) = Ak (ﬁ” <xk,tk - )\%) —e%(l'k,tk)> 7 (5.46)

where {\ }ken s a sequence of positive numbers, {(xg, tr) }ken is a sequence of points, and
for each k we have set oy, := —)\%tk and Ty, :=T — t, — % Then the following statements
hold:

— Type-1 singularities: If limsup, ~p (\/T —tmax (1 \W|) < 00, choose the se-
quences { g }ken and {(zk, tx) }ren such that

A= max  (W]E = W (x, tr)]?.

MX[0,T—L

Then the sequence ([5.46) converges locally smoothly along a sub-sequence to a maxi-
mal, ancient limit solution Z '« : (Rk X E”*k) X (=00, The) = R 0 <k <n-—1,

T < 00, where the product is isometric and Z is strictly con-

’{O}in_kx(foo,Too)
vex, maps into an (n — k + 1)-dimensional subspace, and solves the flow (CF)) with
speed given by the restriction of F' to F:Lfk. If, moreover, Ty CC Ty, := Nyep, {2z €
R™ @ 25(1) + -+ + 2o(m+1) > 0} for some m € {0,...,n — 2}, then either k < m or

k=m, X" "= 8" and X' is a shrinking cylinder.

- Type-1I singularities: If limsup; - (\/T — tmax {1} ]W|) = 00, choose the se-
quences { g }ken and {(zk, tr) }ren such that

1 1
A= max W(z,t)? (T —z= t> = W (zk, tr)|? (T — % tk> .
(@,t)edx[0,T—%]
Then the sequence (5.46|) converges locally smoothly along a sub-sequence to an eter-
nal limit solution X5 : (]Rk X E"‘k) X (—00,00) = R" M 0 <k <n—1, where
the product is isometric and %’{O}in,kx(_mm) 1s strictly convex, maps into an
(n — k + 1)-dimensional subspace, and solves the flow (CF)) with speed given by the
restriction of F' to Fﬁfk. If, moreover, Ty CC Ty, for some m € {0,...,n—2}, then

k < m. Finally, in the case that F is convex, Z o moves by translation.



118 5. A priori estimates for the curvature

Remarks 5.3. 1. In particular, if I' = I'; (so that the solutions are convex) the only

possible rescaling limit is the shrinking sphere.

2. As remarked in Remark the existence of preserved cones in the first two cases
is automatic. For concave speeds, additional assumptions are necessary (inverse-
concavity, strong enough initial curvature pinching, or vanishing of F' on 0T are

sufficient).

3. When the speed is given by the mean curvature, it is further known that the limit
flows of type-I singularities are necessarily either shrinking cylinders or products of an
(n—1)-plane with one of the (non-embedded) shrinking Abresch-Langer solutions of
the curve shortening flow (see Abresch and Langer (1986), Huisken (1990; 1993), and
Stone (1994)); however, this fact relies on Huisken’s monotonicity formula (Huisken
1990, Theorem 3.1), which, as yet, has no replacement for flows other than the mean
curvature flow. On the other hand, for (m + 1)-convex flows, our result yields new
information even for the mean curvature flow (except in the cases m = 0, 1, which
follow from the work of Huisken (1984) and Huisken and Sinestrari (2009)), owing
to the new cylindrical estimates (Theorem [5.15).

We shall first prove that the respective sequences converge, sub-sequentially, to an
ancient, respectively eternal, limit solution. This follows from the following lemma by

applying the compactness theorem (Theorem |C.4)):
Lemma 5.26 (Cf. Huisken and Sinestrari (1999b))).
(i) For each k € N, 2% (xy,0) = 0.
(ii) For each k € N, [Wg(zk,0)| = 1, where Wy, is the Weingarten curvature of Z.

(iii) As k — oo, we have
t, =T, A =00, ap——0c0, and T, = Ty,

where 0 < Ty < o0 if the singularity is of type-1 and Too = o0 if it is of type-11.

(iv) In the type-I case, we have Max yy|a, 1) (Wi| <1 for all k € N. In the type-II case,
we have the following estimate: For any € > 0 and any T > 0 there exists kg € N
such that

max_ Wil <14¢ (5.47)
MX[CM,WT]

for all k > ky.

Proof. The proof is essentially that of Huisken and Sinestrari (1999b}, §4), who considered
the case that 2 is a solution of the mean curvature flow.
Parts (i) and are immediate from the definitions and the scaling behaviour of W;.
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Next consider part : First note that, if the singularity is of type-I, then there is

some constant C' > 0 such that

1
Tii= Wion ) (T - 1 ) < Wlen 0 (T - 1) <.

Thus, T} is bounded. Now,
Tir1 — T = Mt (T — thpn) = AT = 1) > AZ(trgr — ) -

Moreover, for type-I singularities, tx1 > tx; this is because max x| |[W| cannot

07— 747]
occur at an earlier time than max , 0.7 1] IW|. So T} is non-decreasing, and must
/x[0,7-1
therefore approach some finite limit T'.
If instead the singularity is of type-II, then, for all R > 0, there exist tr € [0,7") and

xrr € M such that
W(zg,tr)|*(T —tr) > 2R.

On the other hand, there is some sufficiently large kr € N such that

1 1
tR<T*E, ‘W(JUR,tR)‘Q (Tk‘tR) >R

for all k > kgr. Therefore, by definition,

L=, me V@ (T - % - t) > Wiz, t)? <T - % - tR) >R
for all k > kg. Since R was arbitrary, we find T — co as k — oo.

Since (T — % — tk) is bounded, it follows from the definition of T} that A\, — oo as
k — oo. Therefore, since |[W| remains bounded whilst ¢t < T, we must have ¢t — T. It
follows that ay — —oo0.

Finally, we consider part : Since the statement for type-I singularities is trivially
satisfied, we consider the type-II case: Note first that

Wiz, 7)[* = A2 W, AT + )2

By the definition of \; and the choice of (zy, %), we also have

W+ P (T = O b)) < o (T - 0)

k
Therefore,
T—l—tk Tk T
Wi(z,7)? < k = -1+ '
Welz.7)l TT-Lt, N T—T Tp—7

Since Ty, — oo and 7 < T, the claim follows. O
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We now complete the proof of Theorem [5.25

Proof of Theorem [5.25. Parts and of the lemma allow us to apply Theorem
to extract, for each k, sub-limits (2o, # oo X [—ag, Tk, (To0,0)) of the blow-up
sequence. Taking a diagonal sub-sequence and applying part , we conclude that
(2, M X [—ag, Tk], (xk,0)) has a sub-sequence which converges locally smoothly (in space-
time) to a limit solution (2 ac, # o X (—00, Tro), (o0, 0)), where 0 < T' < oo if the sequence
is of type-I and T' = oo if the sequence is of type-II.

Applying Theorem we deduce that the limit solutions 2 », are weakly convex and,
if the underlying flow is (m + 1)-convex, (strictly) m-convex (unless 2 is a shrinking
m-cylinder).

Next, we apply the splitting theorems (Theorems to deduce that the limit
splits as a product of k flat directions (with k& < m if the flow is (m + 1)-convex) with
a strictly convex solution of the corresponding (n — k)-dimensional flow. Finally, for

(s

=) moves by

flows by convex speeds, Proposition implies that %00|{0}><Ek X (—00,00)
translation, since, by Lemma (iv)), the maximal value of [W| (and hence F') is

attained at (2o, 0). O
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Towards the end of Section [4] we studied the extrinsic distance function d, and used its
evolution under the flow to prove two useful geometric statements: that initially disjoint
solutions remain disjoint, and initially embedded solutions remain embedded under .
In this section, we study two new extrinsic quantities, the interior and exterior ball cur-
vatures. The interior ball curvature is defined at each point of a (compact) hypersurface
as the curvature of the largest ball which is enclosed by the hypersurface and touches it
at that point. The exterior ball curvature is defined similarly by considering enclosing
regions (precise definitions are given in Definition . We will prove that, under certain
concavity conditions on the flow speed, embedded solutions of preserve ratios of one
or both of the ball curvatures to the speed, so long as the latter is positiveﬂ Namely, we

shall prove the following statements:

Theorem 6.1 (Non-collapsing, Andrews, Langford, and McCoy (2013) and Andrews and
Langford (2013)). Let F : T' C R™ — R, n > 1, be a positive admissible speed function
and let ' = M x [0,T) — R be an embedded solution of (CF). Then the following

statements hold:

1. If F is convex, or if ' = I'y and F is inverse-concave, then 2 is exterior non-

collapsing; that is,
E(xat) > koF(fL’,t)

for all (x,t) € A x [0,T), where k(-,t) is the exterior ball curvature of Z and
ko :=1inf (0} (%)

2. If F is concave, then 2 is interior non-collapsing; that is,

k(z,t) < KoF(z,t),

for all (x,t) € M x [0,T), where k(-,t) is the interior ball curvature of 2} and
Ky := SUp_x {0} (%)
Remarks 6.1. 1. Recall (Theorem 4.33)) that embeddedness is preserved by (CF) if F

has an odd extension. In particular, this is the case if its cone of definition lies in the

positive mean half-space (which automatically holds if F' is concave and positive).

n fact, the speed may be replaced by any positive solution of the linearized flow.

121
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2. Theorem also holds, with a suitable modification, for flows in space-forms (see
Andrews et al. (2014)) and Andrews and Langford (2013])). We omit the proof of this

fact here, since the rest of this thesis is concerned with flows in R**1.

Theorem constitutes a generalization of a result of Andrews (2012) and Sheng and
Wang (2009) for the mean curvature flow to flows by a large class of non-linear speed
functions.

We shall complete the section with some applications of Theorem [6.1] including a new
proof that convex hypersurfaces shrink to round points under flows by concave, inverse-

concave speeds.

6.1 The interior and exterior ball curvatures

Let us recall the following classical result:

Lemma 6.2 (Jordan—Brouwer Separation Theorem). FEvery smooth, connected, properly
embedded hypersurface Z : M™ — R" separates R"*! into two regions; that is R\
X (M) is open and has two connected components; moreover, if 2 (M) is compact, then

one of the components is pre-compact, and the other is unbounded.
We now define the interior and exterior ball curvatures:

Definition 6.3 (Interior and exterior ball curvatures). Let 2 : .#™ — R"™1 n > 1, be
a smooth, connected, proper (but possibly non-compact) hypersurface embedding equipped
with a smooth ‘outer’ unit normal field v. We shall say that a smooth hypersurface embed-
ding @ : N — R" with ‘outer’ normal u touches 2 at x € M if X(M) and X (N)
agree to first order at Z(x); that is, there is a point y € AN such that Z(x) = % (y) and
v(x) = uly).

Let Qe and Qext = R \ﬁint be the open regions separated by the hypersurface
X (A™) such that v points out of Qing; that is, for each x € M, X (x) — sv(z) € Qing for
all sufficiently small s. Then the interior ball curvature of 2 is the function k : # — R
which at a point x € A is equal to the boundary curvature of the largest smooth, connected
region with totally umbilic boundary which is contained in Qi and touches Z at x and the
exterior ball curvature of 2" at x is the function k : # — R which at each point © € A
gives the boundary curvature of the largest smooth, connected region with totally umbilic

boundary which is contained in Qext and touches Z at x.

Remarks 6.2. 1. The interior and exterior ball curvatures are well-defined since every
complete umbilic hypersurface of R™*! is either a round sphere or a hyperplane (and
hence, given any two smooth regions €2; and 29 with touching, umbilic boundaries,
either Q; C Qg or Qp C Q).

2. Note that the boundary curvature of a touching ball is positive, that of a touching

half-space is zero, and that of a touching ball compliment is negative.
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The proof of Theorem is an application of the maximum principle. The following

Proposition gives a useful analytic characterization of k and k:

Proposition 6.4. Consider the function k : M4 x M\ {(z,x) : x € #} — R defined by

k($7y) =

Then the interior ball curvature of Z is given by

>

(x) = sup k(z,y)
yes\{z}

and the exterior ball curvature of Z is given by

k(z) = inf k(z,y).
k)= inf k()

Proof. Observe that supyc , () k(z,y) = £ € R if and only if
2(2(x) = 2(y),v(x)) < k[|2(z) - 2 (W) forally € .4\ {z} (6.1)

and there is no smaller number satisfying (6.1)).
Suppose that (6.1]) holds for some x € R. If k¥ > 0, then (6.1]) is equivalent to

(2 (x) - K (z)) - Z(y)|| = k1 forally € 4\ {z};

that is, the ball of boundary curvature x centred at 2'(z) — k= v(z) is contained in €.

Therefore, supye s (23 k(2,y) < &, with £ > 0, if and only if there is a ball of boundary
curvature x contained in €23 whose boundary contains 2 ().
If k <0, then (6.1]) is equivalent to

|(2(z) - K (z)) -2 ()| < —— forally € 4\ {z};

that is, the complement of the ball of boundary curvature x centred at 2(z) — k= 'v(z)
is contained in ;. Therefore, k < s < 0, if and only if there is a ball compliment of
boundary curvature x contained in €; and whose boundary contains 2 (z).

Finally, if x = 0, then

2(Z(x) = Z(y),v(z)) <0 forallye.#\{z},

which implies that the half-space L := {Y € R*""!: (27(x) — Yv(x)) > 0} is contained in
Q1. Working backwards, we see that the converse also holds. Therefore k(x) < 0 if and
only if there is a half-space contained in 23 whose boundary contains Z7(x).

The first claim now follows. The proof of the second claim is the same. ]

The function k is also closely related to the principal curvatures of the hypersurface:
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X(y2)

Figure 6.1: Exterior and interior ball curvatures. At x;, we have k(z;) = k(x1,%1) and k(z1) =
k1(21) < 0. At 29, we have k(72) = Ky, (22) and k(z1) = k(z2,y2) > 0.

Proposition 6.5. Let 2" : .#™ — R""! be a proper embedding and ~ : (—so,s0) — M

any regular curve. Then

We(v,v)
gz (v, )

I

lim k(z,(s) =
where ¥(0) = x and v'(0) = v. In particular, k(z) > ky(z) and k(z) < k1(x), and k and
k are both bounded on any smooth, compact embedded hypersurface.

Proof. By definition, we have

2(2(z) — 2(v(s)), v(@))
12 (x) = 27(v(s))II*

k(z,7(s)) =

Since 2 is an embedding, the extrinsic distance is comparable to the intrinsic distance,

so that the denominator is comparable to s%|y'(0)|? for small s; in fact, setting d(s) :=

|2 (x) — Z(~(s))||, we easily compute
d*(s) = s°[y'(0)]* + O(s%) .
Next, observe that the numerator, f(s) := 2(2(z) — Z(y(s)), v(z)), expands as

fs) = s"W(7'(0),7'(0)) + O(s°).
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Thus,

k(z,~(s)) = 52)/\)(7/(0),7’(0)) + (9(33) B W(+(0),7'(0)) + O(s)
e 5219/(0)[2 + O(s3) - I (0)]2 + O(s) .

The claim follows. O

Next, we show that, for strictly convex hypersurfaces, the interior (resp. exterior) ball
curvature and the largest (resp. smallest) principal curvature must agree at a point where
the former is maximized (resp. minimized). This will be used in

Proposition 6.6. Let 2 : . #™ — R"" be a strictly convex proper embedding.
1. Suppose that sup , k is attained at a point xg € M, then k(xo) = kn(z0).
2. Suppose that inf 4 k is attained at a point o € M, then k(zg) = k1(x0).

Proof. To prove the first claim, set x := sup ,k = sup a0\ p k and suppose, to the
contrary, that there exists a point (xo,y0) € A4 x 4 \ D such that r,(x0) < k(xo,y0) =

k(xzg) = k. We claim that the tangent planes 2, Ty,.# and 2", T,,.# must be parallel. To
prove this, observe that, for any v € Ty, #,

2 (Z(x0) = Z(yo) , Wao — KI)(v))

0=V, k(zo,y0) = 12 (o) — 2 (o)

Since Wy, < kI, we find 2(zo9) — Z(yo) = ||[Z(x0) — Z(yo)||v(z0). The claim follows,
since 2Ty, # is tangent to the ball B := By, (Z(0) — v(z0)/k).

Next, we claim that k is constant on .#; in fact, since 2" is a proper, convex embedding,
Qint is a convex region, which therefore lies between the planes 2, T,,.# and 2Ty, % .
But this implies that every ball contained in €,y has boundary curvature no less than x,
which, since x = sup , k, implies the claim.

Finally, we claim that 2 (#) = 0 B, contradicting the assumption r,(zg) < k. So
suppose, to the contrary, that there is a point z € 2(.#)\ & B. Then, since k is constant,
the largest interior ball touching 2" at 2'(z) must touch 2Ty, #, (at 2/, say). But this
point must lie on Z(A), since Z () lies in between Ty, .# and Qin. It follows from
convexity that the line joining 27(z') and 27(zo) lies in Z(#), which contradicts strict
convexity of Z".

To prove the second claim, set x := inf 4 k = inf 4, 4 p k and suppose, to the contrary,
that there exists a point (xg,yo) € 4 x A\ D such that k1(xg) > k(zo,y0) = k. Note that
k > 0, since, otherwise (by convexity of (i), the line joining 2 (x¢) and 2 (yo) would be
contained in Z(#) = 0 Qint, contradicting strict convexity. In particular, this implies that
Z (M) is compact, since it lies inside the closure of the ball B := By ,.(Z(z0) — v(w0)/k).
Next, we note that, for similar reasons as above, the tangent planes 2, T .# and 2, Ty, #
must be parallel. But this implies that diam(2(#)) = ||Z(z0) — Z(yo)|| = 2/k. Thus,
every other enclosing ball must have diameter at least diam(2°(.#)), and hence curvature
at most k. But, since k = inf k, it follows that k£ = x. But this implies that 2 (.#) = 0 B,
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since the only closed ball of boundary curvature x which contains 2(zo) and 2 (yo) is B.

This contradicts the assumption k1 (xg) > k, proving the claim.
]

To prove Theorem we will show, by using the smooth quantity k£ as an upper
(lower) support function, that k (k) is a subsolution (supersolution) of the linearized flow
. Unfortunately, k is defined on a non-compact set. Motivated by Proposition we
will show that, in the case that .# is compact, k extends naturally to a continuous function
on a suitable compactification of #Z x . \ {(x,z) : x € #A}: The diagonal, D := {(x, ) :
x € M}, is a (compact) submanifold of .# x .# of dimension and codimension n. The
normal space N, ;D of D at (z,z) is the n-dimensional subspace {(u, —u) : u € T4}
of Ty o) (M X M) = Ty x Ty M. The tubular neighbourhood theorem ensures that there
is some r > 0 such that the exponential map is a diffeomorphism on {((z,u), (z, —u)) €
T(# x A): 0< |ul <r}. We ‘blow-up’ along D to define a manifold with boundary
~# which compactifies (M x )\ D as follows: As a set, A is defined as the disjoint
union of (# x .#)\ D with the unit tangent bundle S = {(z,v) € T.# : |v| = 1}.
The manifold-with-boundary structure is defined by the atlas generated by all charts for
(A x )\ D, together with the charts Y from S.4 x (0,7) defined by taking a chart Y for
S.#, and setting Y (z, s) := (exp(sY(2)),exp(—sY (z))). The extension of k to M x [0,7)
is then defined by setting

k(z,y) :=Wa(y,y)

for every (z,y) € S = oM.
Lemma 6.7. The extension k : ;/\/ — R s continuous.

Proof. Continuity clearly holds away from O.4. The proof of continuity at O is similar
to the proof of Proposition [6.5 O

6.2 Evolution of the ball curvatures under the flow

We now investigate how motion of the embedding affects the interior and exterior ball
curvatures. So let 27 : 4™ x (0,T) — R""! be a smooth family of smooth embeddings
with ‘outer’ unit normal field v. Then we can define an interior and exterior ball curvature
of the embedding at each time; that is, we define the interior ball curvature, k, of 2" at
(x,t) € M x (0,T) as the boundary curvature of the largest region with totally umbilic
boundary contained in €, and the exterior ball curvature, k, of Z at (x,t) € .4 x (0,T)
as the boundary curvature of the largest region with totally umbilic boundary contained
in R"*1\ ©;, where ), is the open region in R"*! with boundary 27 (.#) that v(-,t) points
out of. It then follows from Proposition [6.4] that

k(xvt) = sup k‘(l‘,y,t)
yeM\{z}
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and

k(zx,t)= inf k(z,y,1),
k(z,1) y%\{x}( y,t)

where

2(Z(x,t) — Z(y,t), vz, t))
12 (2, t) — 2 (y, 1)

k(z,y,t):=
if (2,y,t) € int (7/1 X {t}) = (M x M)\ D x {t} and

k(z,y,t) .= Wy (y, )

if (2,,y) € S =0 (/7/ X {t}).

Just as for the proof of the avoidance principle, we shall need to compute derivatives,
up to second order, over the product .# x .#. We note, however, that the computation
here has an important difference: Previously, the two points ‘x’ and ‘y’ have appeared in a
symmetric way, so that the choice of coefficients of the highest order term was necessarily
determined by information at both points. However, in the present situation, z and y
play different roles. Accordingly, we are able to make a choice of coefficients in the second
derivatives which depends on z but not on y, thus removing any need to compare the

curvature at different points. We therefore consider operators of the form
Z = EMy \Y
. x 8zk +ARP 8yp 811 +Alp8yp .

where A is an arbitrary matrix. We shall compute the relevant derivatives working in local
normal coordinates {z'} near 2o and {y'} near yo # zo. As in the previous computations
over M X M, we define

d(.%',y,t) = ‘%(.I‘,t)—%(y,t)‘; w(x,y,t) = )

and

and use sub- and super-scripts z and y to denote, respectively, pullback by the projections
onto the first and second factors of the product .# x #; for example: F,(&,n,7) = F(&, 7).

With these notations in place, we find

2 . @
Vami +AP Dyp k= 7z (<aZ —AP 8%7 Vg — kd’w> + (dw, W (8zz)>)
Since k and k are defined by taking extrema over the second factor, we only need

to compute the derivatives of k at such an extremum. Observe that the vanishing of the
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y-derivatives at an ‘off-diagonal’ extremum y € .Z\ {x} of k(x, -, t) determines the tangent

plane at y:

Lemma 6.8. Suppose that the point (xg,y0) is an off-diagonal extremum of k at time to;
That is, yo € A \ {x0} is an extremum of k(xo,-,to). Then

vy = vy — dkw

at (l‘o, Yo, t(])

Proof of Lemmal6.8 By Proposition there is an interior ball B of radius 1/k touching
at 2 (xg,to) and 2 (yo,tp). The outward normals to B at these points agree with the

outward normals to the hypersurface 2 (4, tp). In particular,

(Yo, to) = k(xo, Yo, o) <5{(3/07t0) - <%(xo,t0) - k(xolyoto)l/(ﬂﬁo, to)))

— (vp — dkw)](

x0,Y0,t0) *

We now compute the second derivatives:

vazj +A;7 Oyp Vazi +AP Oyp k
2
_ ?{ (W30 + APNIWY oy, v — kduw) + (97 AP DY, W51 0%
— Vo, 4000, k(07 —NP Y, dw) — k(97 —AP DY, OF —A;70Y)
+ <8§ —qu ag , w=eP 6$> + <dw, AV Wxij — (Wm)l2]VI>

Vo tara, k(05 010, dw) |
The time derivative is

2
Ok =—

2 ((=Fpvg + Fyvy , vy — kdw) + (dw, V Fy)) .

At an off-diagonal extremum (zg, 3o, tp) we obtain
72 : 2 2 Sij A P A WY
(00-2 ) k= kE(V2) + ﬁ{(Fy — EOAPA W) vy s v — heduw)

+RED (07 AP OY, 0% —Nj10Y) — 2F (9% A1 9Y, WP 0T
+2F7 (Vo vama, k) (05 0570y, dw) }.

Since the tangent plane at yq is the reflection of the tangent plane at xg, we may choose

the orthonormal basis at yg to be the reflection of the one at xq; that is, we may choose

8?28?—2<8f,w>w.
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Moreover, we have 0, k = 0 at (0, Yo, to). Making use of these observations, we obtain
2
a2
+F {(’ﬂsz’j = W¥ij) = 20" (kdpj — W) + AP A9 (kdpq — Wypq)} }

(at fo?) k= E,OV2)k + 2E9 0, kOW* — kI)™' (0, k) + {Fy _F, (6.2)

at an off-diagonal extremum.

Observe that the first term on the right is exactly the reaction term appearing in the
linearized flow. Moreover, the gradient term is negative at an off-diagonal y-maximum of
k, where k = k > Ky, and positive at an off-diagonal y-minimum, where k = k < x1 (note
that equation only holds at interior points). We will now show that, under certain
conditions, the final term can also be controlled. The boundary case is more direct, since

we are able to use , (k1) as a support function for k (k).

6.3 Flows by convex speed functions

We first consider flows by convex speed functions. We will prove that solutions are exterior

non-collapsing. This is a direct consequence of the following statement:

Theorem 6.9. Let ' : ' C R" — R, n > 1, be a convex admissible speed function.
Then the exterior ball curvature k of any embedded solution of the flow (CF)) is a viscosity
supersolution of the linearized flow (LF)).

Before proving Theorem we note that it implies the desired non-collapsing esti-

mate:

Corollary 6.10 (Exterior non-collapsing for flows by convex speed functions). Let F :
I'cR® =R, n>1, be a convex admissible speed function. Then every embedded solution

XM x[0,T) — R of 1s exterior non-collapsing; that is,
E > k0F7

where k is the exterior ball curvature of 2" and ko := inf 4, 01 (%)

Remark 6.1. Of course, we may replace the speed function by any positive subsolution of

[CF).

Proof of Corollary[6.10. The claim follows immediately from the maximum principle (see,
for example, Da Lio (2004)), or the direct argument of Andrews, Langford, and McCoy
(2013)).

O

We now prove Theorem

Proof of Theorem [6.9. Consider, for an arbitrary point (zo,to) € .# x [0,T), an arbitrary
lower support function ¢ for k; that is, ¢ is C? on a neighbourhood of (g, t) in . x [0, to],
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and lies below k with equality at (xo,tp). Then we need to prove the differential inequality
for ¢ at (zo, to).

Observe that, for all  close to zg and all t < ¢ close to tg, we have k(z,y,t) > k(x,t) >
¢(z,t) for each y # = in A and k(x,¢,t) > k(z,t) > ¢(z,t) for all (v,t,§) € Sy A.
Furthermore, equality k = ¢ holds when (x,t) = (xo, to).

Now, by the definition of k, we may divide the proof into the following dichotomy:
Either we have k(zo,v0,t0) = k(xo,t0) < r1(zo,to) for some yy # xp, or we have
k(z0,&0,t0) = k(w0,t0) = Wiag o) (€0, 60) = K1(w0, to) for some (zo,t0,80) € Sag,t0)4 -

We consider the latter case first:

The boundary case

Suppose that the infimum is attained on the diagonal; that is, k(xo, o) = x1(z0o,t0). Since
k < k1, ¢ is a lower support for k1 at (xg, ). But recall (see in Remark [4.6)) that

satisfies

(0 —L)k1 > W|hk1 + F(VIW, VI W)
+ 2 sup F* [QAkp ViWip — (Akp)2(/€p - /%1)]
AM:O

in the viscosity sense. Thus,

(0 =2)¢ > WIipo+ F(Vi W, Vi W)
+2 sup F* [2047 Vi Wiy — (AP)* (kp — )] -
Ak1=0

The claim now follows from convexity of F' (take, say, A = 0).

The interior case

Next consider the case that the infimum is not attained on the diagonal. Then ¢(xg,ty) =
k(zo,t0) = k(o,Yo0,t0) < k1(zo,t0) for some yo # zo, and k(z,y,t) > k(z,t) > é(z,1)
for all points = near g, times ¢ < ¢y near to, and all y € .# \ {x}. This implies that
%(mo,to) > %(mo,yo,to), that the gradient of ¢ — k on .# X .4 vanishes at (xg,yo, o)

and that the Hessian of ¢ — k on .# X .# is non-positive definite at (zo, yo,to). Thus, from

(6.2), we obtain

o~

0> (0 —2Z)(k—9)
= (0 —L)b+ FOV) + 25 0, k(W — kD)L P(9, k) + %{Fy B,

+ F7 | (k6i; — W*i5) — 20 (kbp; — W) + AP A4 (kg — Wypq)} } :
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If we simply choose A to be the identity matrix, then
(0r—L)¢ = FONV?)k + 2F7 0; kOV™ — kI) ™! (9, k)
2 i T
+E{Fy—Fx—FmJ Wiy = wey| |
Convexity of F' implies
F(B) > F(A) + Fa (B — A) = F(A) + Fa(B) — Fa(A) (6.3)

for any A, B € Sym(n) with eigenvalue n-tuples in I". So the term on the second line is
non-positive. Moreover, since k1 > k when the supremum is not attained on the diagonal,
the operator (W?® — kI)~1! is positive definite at (xg,yo, o), so that and the gradient term

is non-negative. Putting this together, we arrive at

(0:=L)p = FOV)p + 25 0; k(WT — o)™ (0 k) = FOV?) . (6.4)
as required.
This completes the proof of Theorem O

6.4 Flows by concave speed functions

Next, we consider flows by concave speed functions. We will prove that solutions are

interior non-collapsing. This follows from the following statement:

Theorem 6.11. Let F': T' C R" — R, n > 1, be a concave admissible speed function.
Then the interior ball curvature of any embedded solution of the flow (CF)) is a viscosity
subsolution of the linearized flow (LF)).

Corollary 6.12 (Interior non-collapsing for flows by concave speed functions). Let F' :
I' cR" - R, n > 1, be a concave admissible speed function for the flow. Then every
embedded solution 2" : .M x [0,T) — R of is interior non-collapsing; that is,

k < KyF,

where k is the interior ball curvature of 2" and Ky : SUP_x {0} (%) .

Remark 6.2. Of course, we may replace the speed function by any positive supersolution

of (LE).
Proof of Theorem |6.11] The proof is similar to the proof of Theorem Note that the

viscosity inequalities are reversed and now k > K, (whereas before we had k < k1) with
strict inequality in the interior case. Thus, to prove the boundary case, we apply the
subsolution property and concavity of F'. To prove the interior case, we replace the
inequality with the corresponding inequality for concave functions. O
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6.5 Flows by inverse-concave speed functions

Finally, we consider flows by concave speed functions. We will show, by modifying the

proof of Theorem that solutions are exterior non-collapsing.

Theorem 6.13. Let F : I'y C R" — R, n > 1, be an inverse-concave admissible speed
function. Then the exterior ball curvature of any embedded solution of the flow (CF)) is a
viscosity supersolution of the linearized flow (LF)).

Corollary 6.14 (Exterior non-collapsing for flows by inverse-concave speed functions).
Let F : Ty C R® = R, n > 1, be an inverse-concave admissible speed function. Then
every embedded solution 2 : M x [0,T) — R"+! of is exterior non-collapsing; that s,

k> koF,

where k is the exterior ball curvature of " and 0 < ko := inf ;. 10} (%)

Remark 6.3. Of course, we may replace the speed function by any positive subsolution of

[CH).

Proof of Theorem [6.13 We consider first the boundary case.

The boundary case

Let (zo,t0) be any point in .# x [0,T") such that k(xo,to) = Kk1(x0, o) and let ¢ be a lower
support function for k at (xo,tp). Then, just as in the proof of Theorem it suffices to
show that

E(ViW,ViW) +2 sup F* 2047 V1 Wi, — (AP)?(kp — ¢)] >0
Ap1=0

at (930, to).
First, we make use of an observation of Brendle:

Lemma 6.15 (Brendle (2013b), Proposition 8). Let 2 : .#™ — R™ ! be a properly
embedded hypersurface and suppose that k = k1 at a point xg € A . Then V1 W11 vanishes

at xg, where ey is a principal direction of k1.

Proof of Lemmal[6.15 Consider the function Z : .# x .# — R defined by
Z(w,y) =22 () = 2(y), v(z)) — m(2) ||2(x) - 2(W)||* .

Note that, for each x € #, Z(x,y) > 0 for all y € .# with equality at y = x. Let
7 : R — . be the geodesic defined by 7(s) := exp,, se1. We consider the Taylor expansion
of f(s):= Z(x0,7(s)). First note that f(0) = 0. Next, we compute

f'==2(Z", v(x0)) + 261 (20) (27" X (w0) =2 (7)) -
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In particular, f/(0) = 0. Next, we compute

" =2W0E A )Ww(y), v(xo)) — 261 (z0) (WY v (r) s Z(x0) = Z1(7)) — 281 (20) -

Thus, f”(0) = 0. Finally, we compute

" =2(Vy WH A Wwy) + WHE A IWE), vixe))
—2r1(x0) (Vo W, A W) + W, AIWE) , Z(0) = 2(7)) -

Thus, f”(0) =2V, W11|ZO. We conclude that

3
f(s) = % ViWil, +O(sh).

Since f > 0, it follows that V4 Wll‘xo =0. O

Applying Lemmal6.15| and the following proposition completes the proof in the bound-

ary case:

Proposition 6.16. Let F : ' CR" - R, n > 1, be an inverse-concave admissible speed
function. Then, for all diagonal W € GL(n) with positive eigenvalues \y < --- < A\, and
all symmetric B € GL(n) with By = 0, it holds that

qu,rsquBm 492 Asup FFk |:2Akkap - (Akp)2(>‘p - /\1)} =0
11=0

at W.

Proof of Proposition[6.16. Note that it suffices to prove the claim in the case all \; are
distinct. Set

Q := FP¥"*B, B, + 2Asup FF 2017 By, — (ARP)2(N\p — M)] -
i1=0

Observe that the supremum occurs when A, = (A, — A1) "' By, for p > 1. With this
choice, we obtain
Q = FP¥"* B, B,s + 2F* RP1By, By, ,

where RP? := (\, — A1) 1674 for p, ¢ # 1 and zero otherwise. Therefore, it suffices to prove
that

0 < (£v0r° 4 207 R®) By By,
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for any symmetric B with By; = 0. Applying Theorem we obtain

(£0975 4 267" R) ByyByy = F By, Byy + Z +2
Ap )\ — )\1
pF£q p=1,q=2
. FPspa
= quBppB qq T2 Z Bpquq
p>1, q>1
P —
2
2 A .+ Z P
P#£q
EP
2 B, .
+ Ag — M
p>1,g>1,
P#q
We first estimate
FPgra . FP
quBppB q¢ +2 Z DY BppBeq = FPBpyBgg + 2 Z W 6" Bpp Byq
p>1,q>1 1 p:2’q:2

. P
- <qu +25 5W> BppByg >0,
P

where the final inequality follows from inverse-concavity of F' (Lemma [2.11]). The remain-

ing terms are

P _
+2 By +2
s )\p—)\ Z/\ -\ p>1zq>1 _)\1
p#q
Fp _ Fa Ep pe_ g i
- +2 B2
pgq;’(&’” & —M) Z(M—M Ap—A1> "
PF#q
EFP_ 4 P Fa
> ) (/\_/\+/\ ) +ZZ<)\—/\>
p>1,¢q>1, 1
pFq

The second term is clearly non-negative. Non-negativity of the first term follows from

inverse-concavity of F' (Lemma [2.11). This completes the proof. O

The interior case

Let (zg,t0) be any point in .# x [0,T) such that k(xo,to) = k(zo,yo,t0) > k1(zo,to) for
some yo € A x # \ D and let ¢ be a lower support function for k at (x,tp). Then, just
as in the proof of Theorem it suffices to show that

Fy — Fyp + F7 [(kbij — W7i5) — 207 (kGp; — WWp5) + AP A (kdpg — Wpe)] > 0.

This follows from the following proposition.

Proposition 6.17. Let ' : T'y C R® — R, n > 1, be an inverse-concave admissible
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speed function. Then, for any k € R, any diagonal, positive definite B € GL(n), and any
positive definite A € GL(n) with k < min;{\;(A)}, we have

0< F(B) — F(A) + FU(A) sup (k&w — Al]) — 2A1p(k25p — Ap)
A
+ AP A (kdpg — qu)} :

Proof of Proposition[6.17. Since the expression in the square brackets is quadratic in A,
it is easy to see that the supremum is attained with the choice A = (A — kI)(B — kI)~ !,
where I denotes the identity matrix. Thus, given any positive definite A, we need to show
that

0<Q(B):=F(B) - F(A)
_ FiA) ((A_ KDy — [(A—kI)- (B — kD)™ (A~ kI)] ) .

v

Since B is diagonal, and the expression Q(B) is invariant under similarity transformations

with respect to A, we may diagonalize A to obtain

wa:ﬂw—ﬂ@—ﬁ@k%—@—%ﬂf}’

where we have set a = \(A) and b = A\(B). We are led to consider the function ¢ defined
on 'y by

=t).

o(2) = F(2) = Fla) = F(a) [0 — ) - (4

We compute

i (@i k)z
i gt p
q (a) (Zz — k‘)2 ’

and

PP (e —k)? o e FSY Gt

YW= FY +2F"(a)—50"Y = FY + 2 -2 .

q + (a)(zi—k‘)?’ + Zi—/{? Zi—k‘
It follows that

g dgi . g . Figi
éjl]+2q — F 49 > FY 49 >0, (65)
2 — k Z; — k Z

where the final inequality follows from inverse-concavity of F' (Lemma [2.11)).
It follows that ¢ has a unique local minimum at the point z = a, where it vanishes.

This completes the proof of Proposition [6.17] O

This completes the proof of Theorem [6.13 O
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6.6 Some consequences of the non-collapsing estimates

We shall now derive some consequences of the non-collapsing estimates. The main result
is our new proof of the convergence theorem for flows of convex hypersurfaces, Theorem
[6.24} although it seems Proposition[6.18 and Lemmal[6.21] should also prove useful for flows
of non-convex hypersurfaces.

First, we observe that, since the ratio k/F is scaling invariant, interior collapsing
solutions such as the Grim Reaper cannot arise as blow-up limits of solutions which are

interior non-collapsing:

Proposition 6.18. Let F' : ' C R™ — R be a concave admissible speed. Let X : M —
R"™*L be a limit of rescalings of a compact, embedded solution of (CF). Then 2 is interior

non-collapsing, and, in particular, not a product of the Grim Reaper.

Proof. The first claim follows from scaling invariance of k/F. Now, recall that the Grim

Reaper is the curve
D(w,t) = (2,7(x) + 1)

where v : (—7/2,7/2) — R is defined by v(z) := —logcosz. Recall (from the proof of
Proposition [3.1)) that the curvature of v at z is k(z) = cosz. Thus, k(z) — 0 as x — £m/2.
On the other hand, since R*~! x I'y(—7/2,7/2) lies between the planes z,, = +7/2, the
interior ball curvature is bounded by 2/7. Thus, k/F « k/k — oo as x, — +7/2. The

claim follows. O

For flows of convex hypersurfaces, non-collapsing quickly implies that the ratio of

circumradius to inradius remains bounded:

Proposition 6.19. Let F' : I} — R, n > 1, be a positive admissible speed function
and let & : A" x [0,T) — R be a compact, embedded solution of . Define
the circumradius v (t) := inf{r : Q C B,(p) for somep € R} and the inradius
r_(t) := sup{r : B,(p) C Q4 for some p € R*" '} of (M) (recall that Qy is the region
enclosed by Z(M)). Then the following estimates hold:

1. If F' is convex or inverse-concave, then

T+ < — (66)

5k0007"
where co := F(1,...,1), 0 :=min . 10} K1/Kn and ko := min, 4, oy k/F.

2. If F is concave and there exists § > 0 such that the pinching estimate k1 > 0Ky
holds, then

T’_<t) > ?07’+(t)7 (67)

where Ko := max . (0} k/F.
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Proof. To prove the first claim, we estimate 71 (t) < 1/max 4,0k < 1/komax 4y F
using exterior non-collapsing. Next, we estimate F' > cyx1 using monotonicity of F, and
K1 > O0ky using the fact that the cone T'g := {k1/F > ko} CC I'; is preserved. Finally,
it follows from Proposition that, at a point of .# where k,(-,t) is maximized, the ball
tangent to 2 of radius 1/ky, is enclosed by 27 (), so that r_(t) > 1/ max 4 (1} kn-

The proof of the second claim is similar: By interior non-collapsing, we have r_(¢) >
1/min//lx{t}% > 1/Komin 4, F. Monotonicity of F' implies F' < cokip, so that, from
the pinching assumption, F' < ¢gd 'k1. Finally, it follows from Proposition that, at
a point of .#Z where k1(-,t) is minimized, the ball tangent to 2" of radius 1/k; encloses
Zy(AM), so that v (t) < 1/min 4y K1 O

Two-sided non-collapsing also quickly yields the following instantaneous Harnack esti-

mate for flows of convex hypersurfaces by concave, inverse-concave speeds:

Proposition 6.20. Let F': I'"! — R be an admissible flow speed and X" : M x [0,T) —
R a solution of (CF)). Suppose that F is concave and inverse-concave. Then, for all
t €[0,T), it holds that

min F > ﬁ max F,
AMX{t} Ko . x{t}

where ko = min 4, 0y k/F and Ko := max 4, (o} k/F.

Proof. Observe that, since k is the curvature of an enclosed sphere, and k is the curvature
of an enclosing sphere, we have max ;. (1} £ < min 4y () k. The proof is now a simple

application of the non-collapsing estimates. ]

Next, we make use of the gradient term in the evolution of the ball curvatures in

conjunction with the strong maximum principle:

Lemma 6.21. Let F: T' C R®" — R, n > 1, be a positive admissible speed function and let
X M x (—a,0] = R™ L be an embedded (connected but possibly non-compact) solution
of (CF). Set ¢y := F(0,...,0,1,...,1) (if it is defined) for each k € {0,...,n — 1}.
~——
k-times
1. Suppose that F is convex. Then, if k/F attains a non-negative global minimum,

either k =0 or 2 is a shrinking sphere: Z (M ,t) = S"\l/—t/Q.
ro—Co

2. Suppose that I' = T'y and F is inverse-concave. Then, if k/F attains a positive

global minimum, 2 is a shrinking sphere.

3. Suppose that F is concave. Then, if k/F attains its global mazimum, 2 is a shrinking

. . _ ok n—k _
cylinder: Z(M,t) =R xsmforsomeke{o,...,n 1}.

Proof. Consider first the case that F' is convex. Set ko := min s (_q,0 k/F. Since F' is a
solution of , Theorem implies that k—koF' is a non-negative viscosity supersolution
of . By the strong maximum principle, we conclude that k = kgF'. In particular, k is
smooth. Now consider, for any ty € (—a, 0], the set Uy, := {z € A : k(z,t9) < r1(z,%0)}.
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By construction, for every xo € Uy,, there is a point yo € .# \ {zo} such that k(zo,t9) =
k(zo,y0,t0). Since k > k = koF, we have k(z,y,t) — koF(z,t) > 0, with equality at
(20, Y0, to). Thus, recalling the inequality (6.4), we obtain

0> (0 =Z)(k—koF) > Y F'-*—->0

i=1 '

K

at (zo,t0). Since z¢ € Uy, was arbitrary, it follows that 0 = Vk = ko V F on Uy, x {to}.
Therefore, either £ = 0 or ky > 0 and F' is constant on Uy, x {tp}. Consider the latter
case: Since Uy, is open and k1 > k > 0 on Uy, it follows from a result of Ecker and
Huisken (1989) that 27%,(Uy,) is umbilic. Since a single, complete round sphere satisfies
k1 = k, we are forced to conclude that Uy, C .. In that case, either Uy, is empty or
it has a non-empty boundary in .#. The latter case is easily ruled out: Suppose that
Ui, is non-empty, so that there is a point xg € 9U;,. By continuity, (xo,%p) is also an
umbilic point, so that CalF(J}(],to) = k1(xo,tg) = k(xo,to) = koF(x0,tg). We conclude
ko = co ! which implies 2 to(«#) is a round sphere, again contradicting the assumption
that Uy, is non-empty. Thus Uy, is empty; that is, x1(-,t0) = k(-, to) = koF' (-, t0). In this
case, Lemma implies that V k1(-,t0) = 0, so that V F(-,ty) = 0. Since k; = k > 0,
we conclude, from the Ecker—Huisken result, that 27%,(.#) is a round sphere. The claim
follows since ty was arbitrary.

The proof of the statement for inverse-concave speeds is similar, since the result of
Ecker and Huisken also applies to inverse-concave functions (seeE| Andrews, McCoy, and
Zheng 2013, Lemma 11 and the remark following it).

Finally, consider the case that F' is concave. Set Ko := max z(—q,0] k/F. As above,
by applying the strong maximum principle to the evolution of k — KyF, we obtain k =
KoF. Consider now the set Vi, := {x € 4 : k(x,ty) > kn(z,t9)}. By construction, for
any g € Vj,, there is a point yo € .# \ {zo} such that k(zo,to) = k(wo,yo,t0). Since
k <k = KoF, we have k(z,y,t) — KoF(x,t) <0, with equality at (2o, yo,t0). Thus,

n
0> (0 —Z)(KoF — k) > ZF"'M >0
o k-

K

at (wo,to). Since zg € V;, was arbitrary, it follows that 0 = Vk = KoV F on Vj, x
{to}. It now follows from the Ecker-Huisken result that 27%,(V4,) is isoparametric with at
most two distinct principal curvatures, and hence a union of parts of a round, orthogonal
hypercylinder /4, := R¥ x §"F for some 0 < k < n — 1. Since a complete cylinder
RF x S”_k, 0 < k < n —1 satisfies k, = k, we are forced to conclude that Vie © A.
In that case, either V;, is empty or it has a non-empty boundary in .#. As before, the
latter case is easily ruled out: Suppose that V;, is non-empty, then, calculating at an
interior point z¢ € V4,, we find C;lF(CEO, to) = kn(z0,t0) < k(z0,t0) = KoF(x0,t0) so that
Ky > c];l. But, since V3, C .#, the same calculation at a boundary point xg € 9 V4, yields

2The result is also easily obtained by applying the maximum principle to the elliptic counterparts of

equations (4.19) and (4.20).
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Ky = c,;l, a contradiction. We conclude that V;, is empty, in which case &,, = k. In this
case, a similar computation as in Lemma implies that V k, = 0 on .# x {to}. It follows
that VF =0 on .# x {to}, which, by the Ecker—Huisken result, implies that 2°(.#,t¢) is

a round, orthogonal hypercylinder. The claim follows since tg was arbitrary. ]

By applying Lemma to a limit of rescalings about a singularity, we are able to
deduce that the collapsing ratios improve asymptotically along flows of convex hypersur-

faces:

Corollary 6.22. Let F': T} — R, n > 1, be a positive admissible speed function and let
X M %[0, T) — R be a compact, embedde(ﬂ solution of (CF)). Setco:= F(1,...,1).

Suppose that F' is concave and inverse-concave. Then we obtain the following estimates:

1. For every e > 0, there exists F. < oo such that

F(z,t)>F. = k(z,t)>(1—¢e)cy F(z,t).

2. For every € > 0, there exists F. < oo such that

Flz,t)>F. = k(z,t)<(1+e)y Fla,t).

Proof. Suppose the first estimate is false. Then there exists g > 0 and a sequence (z;,t;) €
M % [0,T) such that t; AT, F(z;,t;) 7 0o, and min gy, & = & (zi,t;) — (1 —€0)cg
Note that, by Theorem [6.1] g9 < 1.

Set \; :== F'(x;,t;) and consider the blow-up sequence
%Z'(CE, t) = )\i (% (:L’, )\i_Qt + ti) — f%z('futz)) .

Note that, by Proposition [6.20] and since min F' is monotone non-decreasing, there is a
constant C' such that, for all ¢ € [-);2,0] and all i € N, the estimate max gy Fi < C
holds. Since, furthermore, 27;(x;,0) = 0 for each i € N, it follows from Theorem that
the sequence Z; converges locally smoothly along a sub-sequence to a smooth limit flow
L oo t Moo X (—00,0] — R L. Moreover, since the ratio k/F is invariant under rescaling,
we have
Ei e 0) = (it > ko > 0,
F; F -
which implies that the image of each Z’; is contained in a compact set. We conclude that
the convergence is global and A4, = .4 .

Finally, we note that, by construction, inf . (_o0 &/ F is attained at time ¢ = 0. We
can now conclude from Lemma that 2w is a shrinking sphere, which contradicts the
assumption g > 0, proving the first claim.

The proof of the second estimate is similar, making use of the third statement of
Lemma [6.21] O

3For n > 2, the embeddedness assumption is superfluous: Every smooth, convex, compact immersed
submanifold of R**! n > 2, is embedded.
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Remark 6.4. We expect that Lemma [6.21] should also prove useful for flows of non-convex
hypersurfaces when combined with Theorem however, at present, we are unable to
obtain a smooth blow-up limit which attains inf £/ F (or sup k/F) in the non-compact case.
This problem has recently been overcome by Haslhofer and Kleiner (2013a) and Haslhofer
and Kleiner (2013b)) and Brendle (2013a)) in the case of the mean curvature flow: Haslhofer
and Kleiner exploited two-sided non-collapsing to obtain local estimates for the derivatives
of W depending only on the value of H at a single point, thereby allowing a local blow-up
procedure. Brendle, on the other hand, proved asymptotically improving estimates for k
and k directly using a weak version of Huisken’s iteration argument and incorporating the

Huisken—Sinestrari convexity and cylindrical estimates.

It now follows from Proposition that, for flows by concave, inverse-concave speeds,

the ratio of circumradius to inradius improves to unity as the maximal time is approached.

Corollary 6.23. Let F': I} — R, n > 1, be a positive admissible speed function and let
XM % [0,T) — R be a compact, embedded solution of (CF]). Suppose that F is

concave and inverse-concave. Then, for all € > 0, there exists F. < oo such that

max F'>F, = ryt)<(1+e)r_(1). (6.8)
ML)
This quickly implies that flows by concave, inverse-concave speeds shrink convex hy-

persurfaces to round points:

Theorem 6.24 (Huisken (1984) and Andrews (2007)). Let F : Ty € R™ — R be an
admissible speed function for and let Zy : MA™ — R" ! be a smooth, compact, convex
embedding. Suppose that F' is concave and inverse-concave. Then there exists a unique
mazimal solution 2 : A" x [0,T) — R" L of the curvature flow with Z(-,0) =2
such that T < oo, the maps Xy = Z(-,t) converge in C° to a constant map p € R"! as
t — T, and the rescaled embeddings 2y = EZV(, t) defined by

Fla,t) = 22D P
T 2(T —t)

converge in C? to a limit embedding with image equal to the sphere Sg,l of radius cy Las
0
t — T, where ¢ := F(1,...,1).

Remark 6.5. Following Huisken (1984, §§9-10), the convergence statement can be im-
proved to C* using the curvature derivative estimates from Proposition [4.27} however, as
the new ingredient in our proof is the use of the non-collapsing estimates, we have chosen

to omit these details.

Proof of Theorem [6.24]. Without loss of generality, we assume cy = 1. First note that, by
the local and global existence Theorems and there exists 7' < oo and a unique
smooth time-dependent immersion 2" : .#™ x [0,T) — R"™! satisfying such that
Z(+,0) = Zo and max 4y F' — 00 as t — T. Moreover, by Theorem Z is an
embedding for each t € [0,T).
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Next, we show that the solution converges uniformly to a point p € R™"! in the
Hausdorff metric: Observe that |2 (x1,t) — 2 (x2,t)| < 2r4(t) for every x1, x9 € A and
every t € [0,T'), where r1 (t) denotes the circumradius of Z(.#). Since F' > 0, 2 remains
in the compact region Qg enclosed by 2(.#). Thus, it suffices to show that ry — 0 as
t — T. But this follows directly from non-collapsing: Since k(z,?) is the curvature of the
smallest ball which encloses the hypersurface Z(.#,t), and touches it at Z(z,t), we have

LZ max k > kg max F'.
[ MX{t} At}
But max (4 £ — oo.

We shall now prove Hausdorff convergence of the rescaled hypersurfaces A (A, t) to
the unit sphere: Note that, by Corollary [6.23] the ratio of circumradius to inradius of the
solution approaches unity as ¢ — T there exists, for every € > 0, a time t. € [0,7") such
that ro(t) < (14+¢e)r_(t) for all t € [t.,T). Now, by the avoidance principle, the remaining
time of existence at each time ¢ is no less than the lifespan of a shrinking sphere of initial
radius r_(t), and no greater than the lifespan of a shrinking sphere of initial radius r (¢).

This observation yields
r—(t) <AV2(T—t) <ri(t) < (T+e)r_(t). (6.9)

for all t € [t.,T). It follows that the circum- and in-radii of the rescaled solution each
approach unity as ¢ — T. We can also control the distance from the final point p to the
centre p; of any in-sphere of Z(.#,t): For any t' € [¢,T), the final point p is enclosed by
X (A1), which is enclosed by the sphere of radius /7 (t)2 — 2(¢ —t) about p;. Taking
t" — T and applying gives

p—pi) < Vre®)2 —2(T —t) < V(1 +e)2-2(T —t) - 2(T — 1),

Thus

powl Ao (6.10)

2T — 1)

This yields the desired Hausdorff convergence of 2 to the unit sphere.

Next, we obtain bounds for the curvature of the rescaled solution 2 Using Corollary
Proposition and the inequalities r_(t) < \/2(T —t) < r(t) derived above, we
obtain, for any € > 0,

< < min k(z,t) < (1 +¢) min F
2T —t) T_(t) T zed ( )= ( )me,///

1+¢ 1+e¢
in k t) < i t
T mink(z,t) < 7 min m(2,1),

IN
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and
1 1
> > max k(x,t) > (1 — &) max F
2(T — t) Ty (t) xeM zeM
1—¢ — 1—¢
k(x,t) > t
2 Toe mas k(@) 2 o max (1)

for t sufficiently close to T'. It follows that, for any € > 0, the rescaled hypersurfaces satisfy

1—¢
1+¢

1+e¢
1—=¢

1 9
< — <
_\/ﬁ‘W‘ -

for ¢ sufficiently close to T'. This yields convergence of the second derivatives of Z.
Convergence of the rescaled metric, and hence the first derivatives of Z , now follows

similarly as in (4.26]). O

Remark 6.6. The proof of Theorem was particularly facilitated by the use of two-
sided non-collapsing. We note also that, via Proposition [6.19, one-sided non-collapsing
also simplifies the arguments of Andrews (1994a) for the convergence of flows by convex

speeds, or flows of sufficiently pinched initial data by concave speeds.



A. Fully non-linear scalar parabolic PDE

In this appendix, we collect results from the literature on scalar parabolic equations which

are needed to obtain, in Section [3] local existence and, in Section {4} global regularity of

solutions of (CF)).

A.1 Local existence

The first result we require is a local existence theorem for fully non-linear scalar parabolic

equations on closed Riemannian manifolds. This will be used to obtain short-time existence

of solutions of (CF) (Theorem [3.7).

The following result will suffice; for a proof, we refer the reader to Baker (2010, Main
Theorem 5).

Theorem A.1. Let (4, g) be a smooth, closed, n-dimensional Riemannian manifold with

Lewvi-Civita connection V. Consider the following initial value problem:

{8,5 u(z,t) = F (V2 u(w,t), VU($7t)7u($7t)7x7t) (A1)

u(z,0) = up(x),

where ug € C°(A). Suppose that F' is smooth, and uniformly elliptic at ug; that is, there
exist constants 0 < A < A < oo such that

MIE]] < F9(VZugp(x), Vug(x), ug(x), 2, 0)&€5 < A €]

for all ¢ € R™ and x € M, where F is the deriwative of F with respect to its first variable.
Then there exists B > 0, and u € C®(A™ x [0,0)) satisfying (A.l). Moreover, u is
unique: For any smooth u' : 4 x [0,") — R satisfying (A.1) with u'(-,0) = ug, we have

U x([0,8)N[0,8")) = uf///x([o,ﬁ)ﬁ[o,ﬁ’))'

A.2 Global regularity

Next we require some regularity results for fully non-linear parabolic scalar PDE on do-

mains 2 C R™. These results are used to obtain long-time regularity results for solutions

of (CF)) (Theorem [4.29).

143
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So consider fully non-linear equations
Oru(x,t) =F (Dzu(x,t), Du(x,t),u(z,t), x,t) , (A.2)

where F' € C?(0) for some open subset & C Sym” xR™ x R x R™. It will be useful to
define the parabolic balls Q,(x,t) := B,(z) x (t —72,t], Q, := Q,(0,0).

The following theorem of Andrews (2004, Theorem 6), which slightly generalizes well-
known results of Evans (1982)) and Krylov (1982), provides Holder continuity up to second
order of a solution of equation (A.2)):

Theorem A.2. Let Q be a domain in R, T > 0. Let u € C*(Q x (0,T)) be a solution

of the fully non-linear equation
Oru(z,t) =F (Dzu(x,t),Du(:c,t),u(a:,t),ac,t) ,

where F : Sym(n) x R* x R x Q x (0,T] is C%. Suppose that there exist 0 < A\ < A < o0
such that \I < F < AI, where F' is the derivative of F with respect to the first argument.
Suppose in addition that there exists K < oo such that qu””sMqum < KquF”MquTS
for any M € Sym(n), where F is the second derivative of F with respect to the first
argument. Then for any 7 € (0,T) and Q' CC Q, there exist a € (0,1), C > 0 such that

sup (Iﬁtumt) —Oyu(y,t)] | |D?u(x,t) — D*(y, t)|>
(@) Ay, eUx[mT] \ |z —y|* +[s —t|2 |z —y|*+[s —t]2
Du(z,t) — D
v swp | Du(z,1) Hg(sc, s)| <C.
z€QY, s#te[r,T) |S — t’T

The constant o depends on A and A, and the constant C depends on A, A, T,
SUPQx (0,71 (|D2u\ + \Du!), SUPQ (0,7] |0cu|, d(Y,09Q), K, and bounds for the first and

second derivatives of F'.

The above Holder estimate requires convexity of the level sets of F'; in two space
dimensions we require the following stronger result (Andrews 2004, Theorem 5), which

dispenses with this additional assumption:

Theorem A.3. Let Q be a domain in R? and T > 0. Letu € C%(Q x [0,T)) be a solution

of the fully non-linear equation
Oru(z,t) =F (DQU(I,t),Du(az,t),u(a},t),x,t) ,

where F : Sym(2) x R? x R x Q x (0,T] is Lipschitz in all arguments. Suppose that there
exist 0 < A < A < oo such that \I < F < AI, where F is the derivative of F with respect
to the first argument. Then for any T € (0,T) and ' CC Q, there exist a € (0,1), C >0
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such that
t) — t D? t) — D? t
- <|atu<a:, )= 2wl |D%u(a ) u(y;M)
(@)#@,) eV x[r,T) \ |z —y|*+ [s —¢[2 |z —y[* + [s — ]2
D t)— D
b wp D@0 -Dusl
zeQ, s£te[r, T ’S — t’T

The constant « depends on A and A, and the constant C depends on X\, A, T,
SUPQ (0,7] (|D?*u| + |Dul), SUPqx (0,7 | Ot ul, d(§',0Q), and bounds for the first derivatives
of F.

We now state the all important Schauder estimate (see, for example, Lieberman 1996/,
Theorem 4.9):

Theorem A.4. Given constants 0 < A < A < o0, A, B, C >0, and o € (0,1), there
erists K < oo depending only on n, A\, A, A, B, C, and « such that for any smooth

solution v : Q1 — R of an equation
Oru = aijuij + blu; + cu+ f (A.3)

which is uniformly parabolic: X ||€||> < a¥(x,1)&&; < M| for all (z,t) € Q1 and all

§ € R"; and has bounded, Hélder continuous coefficients: supg, la| < A, supg, Ib'| < B,
. |a" (z,t)—a" (y,5)] |6 (,t) b’ (y.5)]

Sule ‘C’ S C; Sup(x,t);é(y,s)ECh Hx_yHOL-Ht—S‘% S A7 Sup(z,t)yﬁ(y,s)te Hx—y||°‘+|t—s\% — Y

SUD (2.,) 4 (y,5)€Q1 % < C, the following estimate holds:

sup (|| Dul| + [ D*ul| + ||0¢ ul])

1/2
b <| duuta, 1) —0uly, )| |Dule, 1) - D2<y,5>\>
(@D£w)EQ \ T =yl + s — 12 |z —yl*+|s —t]2
n sup |Du(z,t) — Du(zx, s)]

2€B, )5(0),ste(~1/40] |7 —y|*+[s —t|2

) — f(y,t
<K (swp(u+1f)+ sup HL@DZJ@OL)
& (@) #(y,9)eQr [T —y|* + |5 —t]2







B. The differential Harnack estimate

In this appendix we use the following differential Harnack estimate of Andrews to prove
that strictly convex, eternal solutions of flows by convex or inverse-concave speeds neces-

sarily move by translation.

Theorem B.1 (Differential Harnack estimate, Andrews (1994b)). Let F': T C R" - R
be an admissible speed function and X : A" x [0,T) — R*"L a (strictly convex) solution
of (CE)). Suppose that F is inverse-concave. Then

F
8tF—W_1(VF,VF)+2—t >0.

Remark B.1. Recall that, in particular, every convex speed function defined on I'y is

inverse-concave.

We note that a similar estimate for the mean curvature flow was also proved by Hamil-
ton (1995b) (see also Chow ([1991) and the recent work of Ecker (2007; |2014)) relating
Harnack inequalities to entropy monotonicity), and used to show that convex, eternal
solutions of the mean curvature flow, on which the maximum of the mean curvature is
attained, necessarily move by translation. We utilize Theorem to prove a similar
statement for the class of flows by inverse-concave admissible speeds. But first, we give

an outline of Andrews’ proof of Theorem [B.1

Proof of Theorem [B.1l The proof of Theorem is a consequence of the following obser-

vation:

Lemma B.2 (Andrews (1994b), Lemma 5.1). Let F' : 'Y C R® — R be an admissible
speed function and 2 : M™ x [0,T) — R"™! a (strictly convez) solution of (CE)). Define
the speed as a function of the principal radii, p:= (/@fl, ook D), of X by setting x(z,t) =
x(p(z,t)), where x : Ty — R is defined by

XA = = F( ).
Then, in the Gaufs map parametrization, the ‘Harnack quantity’ P := 0; x satisfies

0; P = X"V;V;P+tr(x)P +X(Q,Q), (B.1)

where YV is the canonical (time-independent) connection on S™, and Q := V; W™1.
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148 B. The differential Harnack estimate

Proof. The proof is a short computation which makes use of identities related to the

support function and the Gaul map parametrization. See Andrews (1994b, Lemma 5.1).
O

Now consider the function R := 2t0d;x + x. From Lemma and the evolution
equation for x (Andrews 1994b, Theorem 3.6),

dex = XIViVix + tr(X)x
we obtain
9t R=X"V,V;R+tr(x)R + 2P + 2t3(Q, Q) .

Applying Lemma [2.12| now yields

L 2P
8,5 R < )'(UVZ‘VJ‘R +R <tI‘(X) + X> .

Since R is initially non-positive, the maximum principle yields P 4 & < 0 for all ¢ > 0.
The claim now follows since P = — d; F, which is equal to —d; F + W~Y(V F,V F) with

respect to the flow’s original parametrization (Andrews |1994b, Lemma 3.10). ]

We now use Theorem to prove that strictly convex eternal solutions necessarily

move by translation:

Proposition B.3 (Cf. Hamilton (1995b)). Let n > 1 be an integer and F : 'y C R" —
R an inverse-concave admissible speed. Let 2~ : " x (—00,00) — R be a strictly
convez, eternal solution of (CF|) such that sups,y(_og o0y £ is attained. Then 2" moves by

translation.

Proof. Since F' is inverse-concave and the flow is invariant under time-translations, The-
orem implies that every solution 2 : .# x [tg, T) — R"*! of (CF) satisfies

F
—_ -1 - >
OF—W (VF,VF)+2(t_tO) >0 (B.2)

for all t > tg. Thus, fixing ¢ and taking t) — —oo, we see that any strictly convex, eternal

solution of (CFJ) satisfies
HWEF-W Y VEVF)>0

for all £ € R. Equivalently, P < 0 for all t € R in the Gaufl map parametrization.
Now, since y is a concave function of W', equation (B.1I)) implies

8 P < XV;V;P +tr(x)P.
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Thus, by the strong maximum principle, P = 0 at an interior space-time point only if
equality holds identically. Since P = 0 at the point where sup F' is attained, we deduce
that P vanishes identically on ¥ x (—o00, 00). In particular, from (B.1]), we obtain

0=Q=V; W,

since, by Lemma [2.12] and strict monotonicity of F', x is strictly concave. Returning to the

original parametrization (using, for example, Andrews 1994b, Lemma 3.10), we obtain
0=V W+ Vy W,

where we define V := —W~1(grad F)). Substituting V; W = V grad F + FW?, we obtain,
for any u € T,

0= Vygrad F + FW?(u) + V, W(V)
= Vu(grad F + W(V)) + W(FW(u) — V, V).

It follows that VV — FW = 0.
Now define the vector field T := 2,V — Fv. Then, for any u € TY,

DT =2 (Vo V — FW(u)) — g W(V) +grad F,u) v = 0
and
DT =*Dy X,V — 0y Fv — FZ, grad F .
Since P = 0, the second equation becomes

DT ="Di% .V — gOW Y (grad F), grad F)v — FZ', grad F
=DV + g(V,grad F)v — FZ', grad F .

Since V is tangential, we have
<%Dt%*v, 1/> - _ <3£”*V : %Dtu> — —g(V,grad F).

It follows that the normal component of #D;T is zero. Finally, the tangential part of
2Dy V is, by definition, (*Du2, V)T = 2. ViV = ~-FZW(V) = FZ . grad F; so the
tangential component of #D,T" also vanishes. That is, T is parallel.

Now set 2(z,t) := Z(¢(x,t),t), where ¢ is the solution of ddi: = V' with initial
condition ¢(z,0) = x, so that

OX  oxd¢t O

9t ez a Tar L

This completes the proof. O






C. A compactness theorem

Given an admissible speed function, we consider the set of all solutions of the flow .
Under an appropriate topology, we will prove that subsets with uniform initial curvature
control are compact, so long as the flow admits preserved cones and Holder estimates for
the curvature (by the results of Section [4] this is the case, for example, if n = 2; or if
the speed function F : I' C R®™ — R is convex and I'y. C I'; or if F' is concave and either
I' =Ty and F is inverse-concave, or I' C T'y is sufficiently ‘pinched’).

We will first introduce a topology on the space C°(.#,RY) of smooth maps 2" :
A — RN, and prove that, in the case of immersions, subsets with uniformly bounded
extrinsic geometry are compact. The compactness theorem for solutions of is a
simple extension of this result. We note that our topology is weaker than other topologies
that have been considered in similar settings (cf. Langer (1985), Breuning (2011), and
Baker (2010)), in that we assume no local area bound. As a result, our convergence result
is local, in that each convergent sub-sequence only picks up a single connected component
of the limit.

The result relies on the well-known Cheeger—Gromov compactness theorem for Rie-

mannian manifolds, which we now state:

Theorem C.1 (Compactness theorem for Riemannian manifolds, Gromov (1981) and
Hamilton (1995a)). Suppose that {(#k, gi,Or)}ren s a sequence of pointed, complete

Riemannian manifolds satisfying the following conditions:

(i) Uniformly bounded geometry: For each m € N there exists Cp, > 0 such that
¥ V™ Ry| < Cy, for every k € N, where ¥V, and Ry, denote the Levi-Civita con-

nection and Riemann tensor of gi, and

(71) Injectivity radius bound: There exists k > 0 such that Inj,(Ox) > K for every k € N,

where Inj;, denotes the injectivity radius of gy.

Then there exists a sub-sequence of {(My,gx,Ok)}ken which converges in the Cheeger—
Gromov topology to a pointed complete Riemannian manifold (M ,goo, Oco); that is,
there exists an erhaustion {Uy}ren of M~ such that O € Uy and a sequence of dif-
feomorphisms @, = U, — Vi, C M}, such that ®,(Os) = O and Pigr converges
ZTD (T Mo @ T* M) to goo on compact subsets of M. Moreover, the limit
(M 50, goo, Oco) satisfies | V™ Roo| < Cp, for every m € N and Inj(Ox) > k.

!See, for example, Andrews and Hopper (2011, Chapter 8) for a discussion of smooth convergence of
sections of vector bundles.
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C.1 Local-smooth convergence of immersions

As above, given a manifold .#™ of dimension n, we denote by C°°(.Z",R") the space of
smooth maps 2 : .Z" — RN. We equip C®(.#",R") with the topology induced by the

following notion of convergence:

Definition C.2 (Local-smooth convergence of pointed maps). For each k € NU {oco} let
M1, be a smooth, complete manifold, i a point of My, and X7, : M1, — RN a smooth map.
We say that the sequence {(Zk, Ak, xk) }ken of pointed maps converges locally smoothly
t0 (Lo, M 0, o) if there exists an exhaustion {Uy}ren of M~ with T € Uy, and a
sequence of smooth diffeomorphisms {®y : Uy — Vi C My} ren such that P (xs) = g
for every k € N and ®;.27, converges to ' in Co (M, RM).

Consider now the subspace Imm(.#") C C*(.#,R" ™) of smooth hypersurface immer-
sions 2 : A™ — R™L. Our next result is a compactness theorem for subsets of Imm (.2").
The result follows directly from the compactness theorem for Riemannian manifolds and

the Arzela—Ascoli theorem.

Theorem C.3 (Local compactness theorem for pointed submanifolds). Let 27 : A} —
RN be a sequence of smooth immersions of smooth, complete manifolds M, of dimension

n, and x € M, a sequence of points. Suppose that the following hold:

(i) Bounded extrinsic geometry: For every m € NU {0} there exists Cy, > 0 such that
Prevm Wk 2, < Cp, for every k € N, where 2k, Wk and | -
the Levi-Civita connection, Weingarten tensor, and norm induced by the immersion

X

2, are respectively

(7i) Accumulation: There exists R > 0 such that 2 (zy) € Br(0) for every k € N.

Then there is a sub-sequence of {(Zg, M1, k) }ken which converges locally smoothly to a
pointed immersion (2 se, M o, Too) Wwhich satisfies [2ooV™ W* e 2., < Cp for allm e N
and X ~(7) € Br(0).

Remark C.1. We note that the statement of Theorem is a special case of a more
general result of Cooper (2010)).

Proof of Theorem|[C.3 Our first step is to extract a sub-sequence of {(.#y, gk, Tk)}ken
(where gi denotes the metric induced on .#} by 27) which converges in the sense of
Cheeger—Gromov. Note first that, by Klingenberg’s Lemma (see, for example, Chavel
1993, Theorem III.2.4), the injectivity radii of the sequence are bounded by a constant
depending only on the uniform curvature bound (see also the proof of Theorem .
Note next that, via the Gaufl equation, the extrinsic geometry bounds of condition
yield uniform bounds on the Riemann tensor of g; and its covariant derivatives. Thus the
conditions of the compactness theorem for pointed Riemannian manifolds are met, and

we obtain a sub-sequence of {(.Z, gk, k) }ken which converges to a pointed, complete
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Riemannian manifold (.# , goo, Zoo) in the sense of Cheeger—Gromov. That is (passing to
the convergent sub-sequence) there exists an exhaustion {Uy}ren of A o with x4 € Uy,
and a sequence of diffeomorphisms {®y : Uy — Vi C My }ren with @p(zo) = zp such
that ®} g, converges smoothly to g, on each compact set K C .Z.

The next step is an application of the Arzela—Ascoli theorem to extract a limit im-
mersion (in the sense of Definition . We claim that, for any integer, m > 0, and any
compact set, K C .#, the m-th derivative of ;.27 is bounded on K with respect to
Joo, independent of k. To see this, first note that the Cheeger-Gromov convergence of
the metrics yields the claim for m = 1 (the claim being trivial for m = 0). Since smooth
convergence of the metrics ®; g, implies smooth convergence of their induced Levi-Civita
connections, the claim for the higher derivatives follows easily by induction, employing the
Gauf} equation and the extrinsic geometry bounds assumed by condition . It now follows
from condition and the Arzela—Ascoli theorem that, passing to a further sub-sequence,
we have CP° (A o, R"T1)-convergence of @527 to a limit immersion 2o : A oo — R
such that [Z>V™ W?*=|y_ < Cp, for all m € N and 2 5 (200) € Br(0). O

C.2 Local-smooth convergence of curvature flows

We will now use Theorem to prove the compactness theorem for solutions of (CF)).

Theorem C.4 (Local compactness theorem for curvature flows). Let F' : I' C R" —
R be an admissible flow speed which admits curvature derivative estimates (that is, the
conclusion of Proposition holds) and let Ty CC T be a curvature cone. Let {Z; :
My, % (—0,0] = R} o be a sequence of solutions of the curvature flow satisfying
KE( x (—,0]) C Tg for every k, and let {x}ren be a sequence of points xy € My.
Suppose that the following hold:

(i) Curvature bound: There exists Co > 0 such that sup 4, «(—q0 Wkl < Co for all
ke N.

(7i) Accumulation: There exists R > 0 such that 2% (zk,0) € Br(0) for every k € N.

Then there is a sub-sequence of (2, M x|—0c/2,0], x) which converges, in the sense of def-
inition [C-3, to a complete, pointed time-dependent immersion (% oo, M oo X [—0/2,0], o)
which solves and satisfies k(Moo X [~0/2,0]) C Lo, SUP 4 «[-0/2,0] [ Weo| < Co, and
Z oo(20,0) € Br(0).

Remarks C.1. 1. In order to obtain the conclusion of Proposition it suffices that
the Weingarten tensor of the solution admits C?® estimates (see Remarks |4.5))

2. If the cone Ty is preserved, the assumption ¥ C T'g need only be made at some
initial time ¢y < —o /2 (see Remarks [4.5]).

Proof of Theorem[C-4 By Proposition the bound on W, implies bounds on the
derivatives of Wy to all orders (which depend only on n, F, Cy and T'y) uniformly in
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time. Thus, in particular, we may apply Theorem to the sequence of immersions
Zro = Zk(-,0) to extract a smooth, complete manifold .#Z, a point zo € A, an
immersion 2w @ Mo — R™H1 an exhaustion {Ug}reny of # o, and a sequence of
smooth diffeomorphisms @y, : Uy — Vi C 4} such that @y (z) = xp for each k, and
% k‘//lx{o}
the diffeomorphisms

converges locally smoothly along a sub-sequence to 2 '« o. Let us now define

\Ifk : U]C X [—0'/2,0] — Vk X [—0'/2,0]
(z,t) = (Pr(z),1).

We claim that the sequence W2 converges subsequentially in CF (A s x [—0/2, 0], R™T1)
to a limit map 2 : M oo X [—0/2,0] — R* ™! (which necessarily solves (CF)); In fact, it
follows (as in the proof of Theorem from the curvature derivative estimates mentioned
above that U327, has uniform bounds for its spatial derivatives to all orders (independent
of time). Bounds for the time derivatives and mixed spatial-temporal derivatives then
follow from the evolution equation . The claim now follows from the Arzela—Ascoli

theorem. O
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