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Preface

This thesis considers the mathematical behaviour of
various genetical populations. I was introduced to this subject
by my supervisor, Professor P.A.P. Moran,  who has suggested
most of the problems considered here and who has guided me
throughout in their investigation. To him I give my most
sincere thanks.

The contents are the original work of the author, except
that Chapter 2 is based on a paper (Ewens and Gani, (1961)
written jointly with J.M. Gani. It is difficult to sort out the
contributions of Gani and myself, and of the part of the paper
considered, roughly half is due to each author. Some material due
entirely to Gani has been omitted here. Chapter 3 is based on
a paper (Ewens (1963%a)) of the author, but extra material has been
included in this thesis. I should like to record my debt to
Dr. G. A. Watterson for discussion on this paper. Chapter 4 is
based on a paper (Ewens (1963c)) of the author, while the material
of Chapter 5 is being prepared.for publication. Chapter 6 is
similarly based on publishedlwork (Bwens (1963b)), but extra
material is here dncluded. Chapters T and 8 jointly follow
published work (Ewens (1963d)), as also does Chapter 9, (Ewens,
(1963€)) . ‘

I should like to thank Mrs. Betty Moore for the excellent

u-’j.g“’“”

work she has done in typing this thesis.
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SUMMARY

The various chapters form a consecutive discussion of
the problems considered in this thesis. At the same time each
chapter is to some extent self-contained and treats a particulér
facet of the main discussion. Apart from Chapter 1, which is
introductory, the chapters may be summarized as follows.

Chapter 2 presents a general method for determining survival
probabilities for any given allele in various genetical models.

If exact results may not be found a method for determining

bounds is described. Comparison is then made with the results
obtained by other methods. In Chapter 3 two concepts used in
some of the remaining chapters are introduced. The first of
these is the diffusion pseudo-transient distribution, together
with an associated pseudo-transient function. These Werevderived
Qriginally to give a meaning to a function obtained by formal
operations on a diffusion equation. (In Chapters 4, 5, and 9
gome exact (discrete) pseudo-transient distributions and functions
are introduced). Tﬁe second concept introduced in Chapter 3 is
that of an "o lmost-invariant” function, which is essentially either |
a martingale or a semi-martingale (cf. Doob,"(l95§)), and which is
used subsequently to derive bounds for exact valueé-for which
diffusion methods supply approximétions. Chapter 4 extends

previous work by Watterson (1961) on the mean time until homozygosity



(11)
in the genetical model first introduced by Moran, (1958a).
The methods used here differ from those of Watterson. Chapter 5
extends the results of Chapter L4 and provides methods for deriving
most functions of interest when the transition matrix of the
Markovian variate under consideration is a continuant. This
allows a treatment to be made, amongst others, of the case where
Moran's model is generalized so that selective advantages may
depend themselves on gene frequency. In Chapter 6 numerical
values, obtained by using an electronic computor, are compared
with diffusion approximations in the genetical model of Wright
(1951), for which very few exact results have been found. The
resulf of this chapter is to show how remarkably'aécurate diffusion
approximations can be even for extremely small population sizes.
The remaining three chapters treat diploid populations; Chapter T
covers the case where selective advantages are constant and
Chapter 8 the case where fhey depehd on gene frequency. For these
two chapters exact reéults seem very difficult to derive and
diffusion approximations only are considered. Chapter 9 is
different to the remaining chapters in that it provides an example
of a case where diffusion methods should not be used. Here the
results obtained by previous authors are discussed and it is argued
that diffusion methods have been used when they should not, and
that even if diffusion methods were applicable, they have been used

in the wrong way. An alternative method of analysis, and indeed an



(iii)
alternative problem to be discussed, are proposed and some

exact results are obtained.



CHAPTER T

INTRODUCTION




1.

This thesis presents a discussion of the stochastic
behaviour of various genetical populations. It will be concerned
with some characteristic of the individuals in the population under
considerétion which is controlled by a single locus on a chromosome,
s0 that for example guestions of linkage will not be considered.
Thus for convenience individuals will be referred to as being (say)
AA, meaning that this is the genotype atvthe locus under |
consideration. The population will either be haploid, in which
one of two possible‘alleles A and a is allowed at the locus, or else
diploid, for which the possible genotypes are AA, Aa, and aa. The
case where more than two alleles are allowed at any locus will be
considered only for the case of self-sterility populations discussed
in Chaptef 9. The individuals will throughout be regarded as being
monoecidus, so that any individual may act as male or female parent.
This preseﬁts a significant simplificétion over the case where the
individuals are dioecious, that is either male or feﬁale, which is
diséussed later in this chapter.

In all cases the population size will be regarded as
remdining effectively fixed (at a constantvusually denoted N). Such
an assumption will limit the application of the results obtained, but
qualitatively the results should hold when the population‘Size is
reasonably stable. The above restriction is made in the first
instance so that the population will not die out completely, but is
also needed, as will be shown later, to ensure that for the

populations under consideration a Markovian variate may be found in
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terms of which the behaviour of the population may be described.

The restriction to constancy of population size may be
relaxed immediately to the case where the population size assumes
a cyclic sequence of values, say Nl N2 “ee Nk Nl N2 .«« , a8 has
been observed approximately in the Canadian lynx population. In
such populations it will often be the case that a variate may be
Tound which is Markovian in the sense that the values of this
variate at successive instances when the population size is (say)
Nl form a Markov chain. In this case the transition matrix wouid
probably be extremely complicated and of no direct use in describing
the population behaviour, but the Markovian property by itself will
be sufficient for the application of some of thevmethods considered
later; It is, in fact, easily shown that if k is moderate and the
Ni ére large, then the population behaves effectively as a population
of fixed size N, where Kyt = Nj__l + el + N;:l.

The fact that a single Markovian variate can often be
found which describes the population behaviour will be used frequently |
in this thesis, and attention is restricted to the caée where such a
variate exists. The existence of such a variate_will be useful in
two ways. In the first instance it may be possible to use directly
the transition matrix of the variate to find quantities of intereét
to the geneticist. Secondly if the transition matrix is too
unwieldy for direct use, it will be possible in many cases to use

diffusion methods to approximate to the required quantities, and the

application of such methods depends on the Markovian nature of the
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variate under consideration. The case where no Markovian variate
exists but where a "quasi-Markovian" variate may be found has been
discussed by Watterson (1960, 1962), who has shown that such
variates may be treated by using diffusion methods. However for
these variates it would be very difficult to find the bounds on
exact values which are derived here for the case in which a
Markovian variate can in fact be found.

The restriction té the case where a Markovian variate
exists 1s not so severe as might at first be thought. In Chapters
T and_8 a single Markovian variate may be found for diploid
populations, which allow three possible genotypes. In this case
only the Markovian nature of the variate is used to Jjustify the
use of diffusion methods and the transition matrix is not éonsidered.
In Chapter 2 a gituation is discussed when a number of geographically
distinct subpopulations exists for which the different subpopulations
have different genetic properties (e.g. different selective
advantages for a given allele). Nevertheless, given a sufficient
amount of migration between tﬁe-subpopulations it is possible to
find a single Markovian variate describing the joint behaviour of
the subpopulations. The restriction to monoecious populations
mentioned above is made so that a Markovian variate may be found;
for dioecious populations this seems impossible under any reasonable
population model.

If the population size remains fixed, then in general one
or other of the alleles will eventually be lost frém the population

by random elimination. Here the probability that the allele so



L.
eliminated is A, the mean time until elimination, the variance of
this time, the probability that one or other allele has been
eliminated by a particular time, the transient behaviour of the
population, and other quantities, will be discussed. The effect on
these quantities of selection, dominance, mutation, migration, and
other influences, is considered. In the case where both alleles
may mutate, 8 stationary distribution may be found for any allele,
and the effect of the above influences on this distribution will
also be considered. Some discussion is given to finding the latent
roots of the transition matrix under consideration, and in particular
to the largest non-unit latent root. This is done since by writing
the transition matrix and its powers out in spectral form it is
clear that these roots, and in particular the largest non-unit root,
describe in a sense the rate of approach of the population to
homozygosity (i.e. only one allele present), or to the stationary
distribution in the case where this will eiist. However the
usefulness of the latent roots in this respect suffers since in
general the corresponding spectral matrices are not known. It may
in fact be more useful and even easier to find simply the mean and
the variance of the time taken until homozygosity.

It has been mentioned previously that in many cases where
exact tresatment is too difficult it will be often possible to use
diffusion methods to find approximations for the various quantities
under consideration. Such diffusion methods are outlined in
Chapter 3, but here a slightly different derivation is used which

enables bounds to be obtained for the exact value belng
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approximated., The application of diffusion methods in genetics
is very wide, and has the virtue that many of the resulting
expressions are given in terms of quite simple functions. For this
regson diffusion approximations may even be preferred to exact
values, although the latter are known, if the expressions for the
exact values are complicated. Needless to say diffusion methods
have sometimes been used uncriticgily, and in Chapter 9 a population
is discussed for which this is true. TIn Chapters 2; k4, and 5,
exact values are derived which are shown analytically to be close
to their various diffusion approximations, while in Chapter 6 a model
is discussed where the diffusion approximations and exact values are
- compared numerically.

Broadly, the results of the thesis may be summarized as
follows.

(ilw Diffusion methods provide very close approximations to
exact vélues when they are applicable, even when the population size
is small.

(ii) When diffusion methods are inapplicable the results
derived formally from them are valueless.

(iii) It is possible to derive a diffusion approximation and
in some céses exact values for a distribution which describes in a
sense the transient behaviour of genetical populations, and this
distribution may be used to derive other functions (e.g. absorption
probabilities, mean absorption times, mean occupancy times, variances
of absorption times).

(iv) Bounds aerived by diffusioﬁ methods and similar in form

to diffusion approximations may be found within which the value of
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a function must lie, when this value cannot be found explicitly.
(v) When individuals in the population die one by one
rather fhan a generation at a time, it is possible to derive exact
results for most functions even when the various probabilities

in the transition matrix are complicated.

(vi) In some cases it is possible to use diffusion methods

- to find approximate results in the case where -selective advantages

are allowed to vary, and in some such cases the selective advantages
may be ignored altogether, in other cases they may be treated as
being constant.

(vii) The transient behaviour of a population may not be
investigafed by considering the statlonary behaviocur of the same
ropulation when mutation exists, with the mutation rates’being
allowed to approach zero. This occurs because of the different

allocation of a certain fundamental constant in the two casess



CHAPTER 2.

ABSORPTION PROBABILITTES




8.

2.1 Introduction

In this chapter a general method is considered for
determining survival probabilities or bounds for survival
probabilities in haploid popﬁlations of fixed size N where selection
is allowed. It is supposed that the two types of individual in
the population are A and a, corresponding to the two possible
alleles at the locus under consideration, and attention is
concentrated on the number k of A individualsf The value of k at
~timé t 1s denoted kt’ and fheAaim,is to find some non-zero constant

6 (independent of kﬁ) solving the_equétibn
B [exp -e(.kt+l - k—t') | ky } =1 : . (2.1)

t
then we try to find bounds for the solutidn éf (2.1).aé.kt“takes

If it is not possible to solve this equation independently of k.,

all possible values.

Note that the expectation in (2.1) will henceforth be
taken always to mean the expectation conditional on kt? so that
explicit statement of this conditioning is dropped from_now on.

Equations analogous to (2.1)-are used to derive power
and A.S.N. curves in sequeniial analyéis, and in the case kt =1,

(2.1) is equivalent to the equation

z = p(z) (2f2)

used to derive survival probabilities in branching processes.
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2.2 Description of Method

It is supposed that kt is a Markovian variate, so that
with 1t may be associated a (N+l)x(N+l) transition matrix

P = {pij), where

By = Prob-{ Kpq = | %, =1 }- i, = O,1l,.0.,N

If the state E; corresponds to the event "number of A individuals = i"
(1 = 0,1,...,N) then if there is no mutation the states Eo and EN
“will be absorbing, all other states will be transient, and P may

be written in the partitioned form

( )
101 o o0
P = Fo ¢ Q@ ¢ By
o : o i 1
N ‘ /

where R. , BN are column vectors having elements PiO pi

=0 N

(1 = 1,2,...,N-1) resp. It is well-known that the column vector

to[-e]"s

gives the set of survival probabilities for A individuals for
ko =1,2,...,N-1, but this result is not useful for our purposes
and we obtain § , or bounds for § , as follows. Let the matrix

P(6) be defined by

P(e? =-{ Py SXP (j—i?@:}
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so that P(0) = P. Then following Bartlett (1955), section 2.22,
the moment-generating function M(t? (leo) of the variate kt - ko
may be written as

) (6]x) = =/ (x,) 2 (0) v (2.3)

where 5’ (ko) is the row vector (0...010...0), where the unity
occurs in thé position ko, and ¥ is a column>vector each of whose
elements is unity. It follows, since P is the transition matrix
of a finite Markov chain with absorbing states, that

e ‘ - \
Lim 3t (8) = sb(e)f 0 : 5,,(6)

. - .
L R R R R A A N A A A N N

L o : o i1
where SO(G), SN(G) are column vectors, each having N-1 elements
which are

P(0,1i) exp(-i6), P(N,i) exp(N-i)6 . (i=1,2,..,N-1)

respectively. The P(N,i) are survival probabilities for A

0
Thus from (2.3) it follows that

individuals for k. = i (i = 1,2,...,N-1), and P(0,i) = L-P(N,1i).

lim M(t?(e]ko? =-{1-P(N,ko?}-exp(-koe) + P(N,ko?feXP(N-kO?e

t>oo .
ces (2.4)

The rightshand side in (2.4) is unity for 6=0, and in general there
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will exist a unique non-zero value of 6 for which the right-hand
side in (2.4) is again unity. If such a value of 6 is known it is
easy to solvé for P(N;ko). It is now shown how such a value of 6
may be found or approximéted by relating the required value to the

non-zero solution for 6 of the equation
- ulD ¢
M(GIKO) =M _(e|1«:o) =1 : (2.5)

To do this we establish

Lemms 2.1

If for all i (i = 1,2,..,N-1) M(6]i) + w as 6 » L w,
then the same is true of M(t?(eli) (t > 1).
Proof

_Since M(Gli) + o as 6 » t o, there will exist two values

of 6, namely Gu > 0 and Q£ < 0, for which

v
(o}

“

M(e|i) > 1 for o 1,2,...,N-1)

1A

and M(6]1) > 1 for 6= 6 (1 =1,2,...,N-1)

If yft?(e) is the vector whose components are the

M“?(@\i)- (iaé,l,e, .».;,N-Q), then
u(®) (o) = P¥(o)y = B M(o) B(o)y

- 256y uP (o)

and for values of 6 greater than eu or less than 6p, this may be
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written

v

(¥ (6) = P o)y

_ b_a(t'l?(e)

where one vector is defined as being greater than another if its
elements are greater than the corresponding elements in the second.
By induction it followsvthath(t?(eli) + o as 6 > I o, 80 that the
lemma is proved. » | |

It is also clear that if m, is defined by
a

m, = [— M(6|i)}

i de 1 om0

and also if

mgt?= [%‘e‘ M(t)_(eli{‘

=0

then m >0 (i =1,2,...,N-1), implies mgt)_>0 (1 =1,2,...,N-1) and

that a similar statement holds, replacing > by <. Also, since

2
Ze—em(t)_(eli) = E {(kt-i)e exp _6(kt—i)} z 0,

for all 6, each M(t?(eli),is a convex function. It follows that
under the conditions of the lemma, and ifvther-mi are all positive
(or all negative), then for each M(t?(eli) there exists a unique

non-zero value of €, denoted th?, for which
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M(t)(egt?|i) - 1.

Theorem 2.1
"If the conditions of lemma 2.1 hold, and if
1 1 1 t .
Gi ? = Gg ? = aeee = 9&_; = 0¥ say, ‘then M( )(e*ll) = 1 for

all i and for all t = 1.

Proof

For any t 2 1,

/ 1 ~

M(t?ge*ll)

ul®) (6*) :
‘ 1(®) (6| m-1)
N _
\ J
- P*(eM)y
(1]
!M(G*Il)
- Pt-l(e*) E' ; .
- m(e’|n-1)
v
_ Pt-l(e*)y
= M(t'l?(e*)

Then since M (e*) =y it fol}ows by iteration that M(t?(e*) =y

for all t 2 1, so that Theorem 2.1 is proved.
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Theorem 2.2
If the conditions of lemms 2.1 hold, and also if
m, <0 (i =1,2,...,N-1) and 0 < a = egl? b (i=1,2...,N-1)

then

M(t?(ali) <1s M(t?(b|i) (i =1,2,...,N-1)

Proof

Since each M(eli) is convex, then under the conditions

of the theorem it follows that

M(a]i) =1 = M(b|i) (i =1,2,...,N-1)

We may therefore write

M(a) =y = ulb)
Thus M(t?(a? ey
= P Ha) u(e)
< Pt-l(a? v
_ Mﬂt-l?(a)

Hence by iteration

Mft?(a) sy fortzl.

It follows by a similar argument that
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M(t)_(b) 2y fort z1l,

s0 that Theorem 2.2 is established.
Using (2.4) and Theorem 2.1, it follows that for any
transition matrix P for which the associated set of moment-

generating functions satisfy the conditions of Theorem 2.1,

1
=

{l-P(l\T,i)} exp(-10") + P(N,1i) exp(N-i)e*®

1,2, v o,N"‘l)

(i
so that |

exp(io”®) - 1 o
exp(We™) - 1

P(N,i) = 1,2,...,N-1)

Further, for any transition matrix for which the associated set of
moment-generating functions satisfy the conditions of Theorem 2.2,

we have

{1-13(-1\1,1)} exp(~ia) + P(N,i) exp(N-i)a = 1

< {1-P(N,i)} exp(»-ib) + P(N,i) exp(N-i)b
(i =1,2,...,N-1)
so that |

< p(w,i) s SRMA)-L 5 g oL N-1)

exp(Nb exp(Na) =1

Finally, it follows by arguments analogous to those used above that
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if m; >0 (i = 1,2,...,N-1), so that

aéej(__l?éb<0

then the same inequality.will hold also. The results of Theorems
2.1 and 2.2 may be used to find exact values or bounds for the
probability of survival of A individuals, given that initially
the number of such individuals is i (i = 1,2,...,N-1), for various

genetic models.

2.3 rApplications

Case 1

We considér first the overlapping geheration model
introduced by Moran (19586)}. Here indi#iduals die one by one
at random and are replaced'by new individuals which are A with
probability proportional td the product of the number of A individuals
before the birth-death event and the selective advantage of A
individuals. It immediately‘before the birth-death event the
number of A individuals is i, it will subsequently be i-1, i,

or i+l with respective probabilities

pg‘i(N'i) [Nf{?ii+ ue(N—i?}_]'l

i,1i T =P 4017 P5,50

Piia1

g
1]

o 09 [rfus o) ]
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where Wy is the selective advantage of A individuals and Mo is

that of the a individuals. It follows that

N =0 6

u(6]1) =eTpy sy TRyt By

Clearly M(Gli) satisfies the conditions of lemma 2.1, and also

if Hq % P then m, # 0. (Thevcase by = By may easily be treated
separately.) Thus there exists a unique non=-zero solution egl? of
the equation M(6|i) = 1, given by

NG
@g ? {n(pl i- l/ 1 1+l)

= ’E’n(u2/“l?
This solution is independent of i and we may therefore write
* .

Thus the conditions of Theorem 2.1 hold, and it follows immediately
that the probablllty P(N k) of eventual survival of A individuals, -

given initially k such 1nd1v1duals, is given by

. k )
P(N,k) = '(u2/91)N : (k = 1,2,...,N-1)
(Hg/p‘l) = : -

This result was established by Moran (1958a) but by a different
method than that used above.

Case 2

We consider now the non-overlapping generation model
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(c.f. Moran (1960)), where the number of A individuals in any

generation is a Markovian variate with transition matrix

e {na}- () 0a]

o =L- exp(-2¢iN-l)
i 1 - exp(-2¢9)

and

(¢ > 0)

In this case
. N
M(o|1) = ™30 ["n. SR ]
/ i i

which satisfies the conditions of lemma 2.1 and also the
condition m, #£ 0. The solution egl? of the equation M(6]|i) =1
is given by

egl? = 20

which is independent of i, so that we may write

6" = 20

Hence, using Theorem 2.1,

exp(-20k) - 1
exp(-20N) - 1

P(N,k) =

a result which has again been established by Moran (19€0),
but by using a different method than that used by him in

establishing the result of case 1.
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Case 3
In the non-overlapping generation model due to Wright
(1951) the number of A individuals in any generation is a

Markovian variate with transition matrix

e { oy b - {(1) 6f G}

where p; = (1+s)i (l\T-l-si)-:L .

This matrix is obtained by supposing that each individual
produces offspring in a Poisson distribution, the parameter for
each A parent being A(1l+s) and that for a parents being A,
conditioned by total popuiétion size iﬁ tﬁe next generation being

. In this case

6

M(e|i) = e-ie (pi e + l-pi)N (2.6)

These moment-generating functions satisfy the conditions of

lemma 1, and since

1% i = si(N-1)(ei) "t
[ = m(6| ) L:o (v }(N+ )

the m, are either all positive or all negative for non-zero s.

"The case s = 0 i1s again easily treated separately. The solutions

Ggl) of the equations M(G]i) =1, in the case s % 0, are not
identical, so that it is'necessary to find bounds a and b for the
solutions Ggl? and to apply the result of Theorem 2.2 It is

assumed for the moment that s > 0; a similar treatment holds
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for s < 0.

There are several ways of finding bounds (not necessarily
as sharp as possible) for the solutions 9§l). A lower bound
has been provided (c;f. Ewens and Gani (1961)) by noting that the

value of 6 for which M(6|i) reaches its minimum is

6 = An(1+s)

so that it would be sufficient to put b = ~fn(l+s). Also,

considering the value 6/ defined by
, .. -1
exp 6/ = (1:s8)(L+s)

we have

ol -[ () (52)]

where x - iN"T. Tt is readily shown (c.f. Ewens and Gani (1961)) o

that M(6/]|1) > 1, so that a sufficient value for a is given by
: -1
a = /f/n{ (1-s8) (1+s) }
Therefore it follows, from Theorem 2.2 that
L k_l i-s k_l
1+s 1+s
——— = PNk) S —m8—
L N_l ' i-s N_l
1+s 1+s

this result being given incorrectly (With reversed inequalities)

(2.7)
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in Ewens and Gani (1961). By using a different method Moran

(1960) hes found the sharper bounds

exp( -2sk) - 1 > B(I,k) = exp{-@sk(l+é)-l}b- 1

exp(-2sN) - 1 : vexp{—EsN(l%é)-l} -1

This set of inequalities possesses an interesting property
of symmetry which may be used to improve the bounds in (2.7).
Suppose that the upper bound

exp(-2sk) - 1
exp(-2sN) - 1

= P(N, k) ’ (2.8)

has been established, but not the lower bound. Then the lower
bound may be found by considering a individuals and deriving an
upper bound similar to (2.8), which gives a lower bound for the

~ probability of fixation of A individuals. The fact that the
selective advantage of A individuals 1s l+s means that when the
selective advantage of é individuals is put equal to unity, that
of A individuals becomes l+s. Thus when the selective advantage
of A individuals is put equal to unity, that of a individuals
becomes not 1-s but (l+s)—l, since in the model under consideration, .
at least, it is in their‘ratios rather than in their differences
that selecﬁive advantages operate. Now

selective advantage of A individuals
selective advantage of a individuals

s0 defining
selective advantage of a individuals
selective advantage of A individuals
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we get 8’ = (l+s)-:L -1l = —s(l+s)-l .

Then replacing k by N-k and s by s’ in (2.8) it follows that

Prob-{ a individuals become fixed:}

exp{ 2s(N-k?(l+s)'l} -1

exp{ 2s N(l+s)'l } -1

exp-{ 25(N-k)(l+s?_l'}--"l

Thus P(N, k) z1-
exp-{ 2s N(l+s)_l'}-- 1
-1
exp-{-Esk(l+s) }--~l
: -1
exp < -2sN(1+s) -1
which is the lower bound given by Moran. Therefore there is no

reason to state that one or other of these bounds is sharper
than the other, and in particular it is not true that the upper
bound, which turns out to be the diffusion approximation for
P(N,k) is any better than the lower bound.

‘ An anaiogous symmetry relation may be used to-improve ‘
the bounds (2.7). Clearly the lower bound may be improved by
considering an ﬁpper bound for the survival probability of a
individuals. Replacing k by N-k and s by -s(l+s)-l in the upper

bound in (2.7) we get
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Prob (a individuals become fixed)

_{ 1+s(l+s)” }F'k

1+s(1+s)

A

{ 1+s(1+s)” }

l-s(l+s)

(1+2s)N'k -1
(1+25)" -1

(l+2$) -1
(l+2s) -1

1 ‘k
1+2s /

= ‘ (2.9)

1
1+2s

If the lower bound in (2. T) is replaced by (2. 9); the two bounds
3

then provided differ from thOSe of Moran by terms of order s7,

[\
=

Thus P(N,k) =

and consequently the two sets of bounds are extremely close for
small s. -Also, the upper and lower bounds in each set will be
close for small s, and the arithmetic mean of the bounds should

give a very close approximation to the true probability.

Case 4
The methods outlined above may be used to derive exact
values or bounds for survival probabilities in infinite

populations subject to immigration. If we denote by f(G)
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the moment-generation function of the offspring distribution
of any individual, then in the case of no immigration the equation

M(6|i) = 1 reduces to

the well-known branching process equation. In the case where
immigration is present & more complicated equatibn is derived.
Details are given in section 5 in Ewens and Geni (1961); since
this section is entirely due to Gani, further discussién is

omitted here.

Case 5

As mentioned in Chapter 1, it is possible in some cases
to derive a Markovian variate for processes for which the entire
population is divided into subpopulations, with different Selective%
advantages of A individuals in each, provided that a sufficient
amount of migration takes place. As the simplest possible
example we consider the case where the total population, of‘
size Nn, is divided into n distinct subpopulations each of size N.
It is supposed that the selectivé advantage of A-individuals in
the‘itl’l subpopulation is si(i =1,2,...,n) and'that the pwoportion
of individuals in thevith subpopulation tﬂat.are A at any given
time is x,.  Now suppose that a (large) intermigration takes
place between subpopulations, having thé effect that the in

A individuals in the ith subpopulation are equally distributed
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among the n subpopulations and that the same happens for the
N(l-xi) a individuals. A new generation is now formed within
each snbpopulation as described in case 5 above, and then a new
migration takes place, and so on. We consider the population
immediately after the birth of two consecutive generations, before
migration occurs. The original number of A individuals is

_N(xl S xn). For the next generation the number of A

individuals in the ith subpopulation has moment-generating function

N
e
[ pi e + J.-p:.L ]

where

-1
By =~(Xl + oee. + xn)(l+si) [n+si(x:L + oo+ xn) } ,

-1 -1
If z = (xl Foee. + xn?n then p, becomes z(l+si?(l+zsi?
and ithe M.G.F. of the increase in the number of A individuals in

the entire population from one generation to the next is

n

. z(l+s.)ee l-z N
1
exp (-Nnzé ) II [ Tisa | Ts.2 ]
oy et i

= M(QIZ) say, from which it is clear that z is a Markovian variate.

From the fact that

n

M (0|z) = Nz(1l-z) }; Si(l+zsi)_l
. e .

it follows that if all the s; are negative (or all positive)
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and are less than unity in absolute value, then M’(OIZ) is
always negative (or always positive) for al} Z. Sincé also the
conditions of lemma 2.1 are satisfiéd bounds can be found for
the probability of eventual survival of A individuals by using
Theorem 2.2. Clearly bounds may be obtained gquickly by using
the maximum and minimum si and the methods of case 3; however
if the s differ to any great extent it should be possible to

find sharper bounds by using M(6|z)directly.
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CHAPTER 3.

DIFFUSION METHODS
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5.1 Introduction

In many cases in genetics it is difficult to find exact
formulae for quantities of interest. vOn the other hand it is
often possible and simple to use diffusion methods to derive
approximations for these quantities, provided that a single
Markovian variate exists in terms of which the population behaviour
may be described. For convenience we shall for the moment speak
loosely of the value of a variate at the tth generation, or perhaps
at the tth birth-death event, as the value at time t. This
implies that changes in the population structure can only take
place at times 1,2,3,... .

Application of diffusion methods rests on the supposition
that there exists a Markovian variate x whose value X at time t
is such that E(x,-x|x,) end E {(Xt_l_l-xt 2|xt} are both
O(Nix), where N is the pobulation size andAa a positive constant,
and tﬁat higher moments are (N ). Tt is sufficient for our
purposes to assume O = x = 1 and £hat'x = 0 and x = 1 are absorbing
barriers, so that once x reaches Q or 1 it remains fixed. This
corresponds genetically to the fixation of an allele in a populatior
where mutation is absent. We sketch the derivation of the forward
_and backward Kolmogorov equations for comparison with methods
used later. To do this the time axis must be rescaled so that
unit time corresponqs to Na of the previous time units.

We let ¢(x;t) be the density function of x at time t,

and W(u;x) be the probability that x next changes to x+u, so that
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W(u;x) 1s the distribution of the jump u, given x. Then as a

particular case of the Chapman-Kolmogorov equation we have

o(x;t+h) = U/\dS(x-u;t) Y(usx-u) du

(c.f. Moran (1962) o 75) By expanding both sides in Taylor

series and taking the leadlng terms, we obtain eventually

st -2 L) 0w | ok 5 L{voewn G

as the (forward) Kolmogorov (or Fokker-Planck) equation
asymptotically éatisfied by the distribution éf x at time t.
Here'm(x) and v(x) are the first two moments of the distribution
of the;jﬁmp u, gi&en X,

The backward equation may be derived similarly (c.f.
Barucha - Reid (1960) D. 150), by considering a Chapman-Kolmogorov
equation similar to the above, except that we consider a small
increment of time immediately after the process starts. Thus if
initially x = p, and if

e (x;t) = f o(y;t) dy

Om=

the backward equation becomes

- o Gestl )} = (o) :—p{@(x;tlp}}+%ﬁl§{@(x;tm} '<3-2)
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This equation will usually be more useful to us than the

equivalent equation

_{¢(X,t|p)} —{cb(x,tlp)} i)-a ¢(xt|p)} (5.5)

which is adjoint to (3.1).
In particular it follows from (5.2), by letting x take
~in turn the values O_and 1_, that the probablllty G(t,p)
that the process is absorbed at O (at l) before tlme t, glven that
initially x = p, is the solution of the equation
§—G(t')= ()é—G(t) Még_ .
;p) = n(p ;p) + == == 6(t;0) (3.4)
ot . - Jp : 2 3p . .
subject to appropriate boundary conditions in each case. By
putting phe left-hand in (3.4) equal to zero and replacing G(t;p)
by G(p), the probability that'eventually x = O may be found When.
appropfiaﬁe boﬁndary conditions are imposed.
It also folloﬁs from (5.4) after some manipulation
(c.f. Feller (1954)) that the mean pime U(p) until one or other
boundary is reachea; given that initially x‘= p, is the solution of
the equation ‘ :
;—il=m(p)d—m£,l+md—%¥l, (3.5)
- dp 2 dp -
again with appropriate boundary conditions, and that the mean

value of S(p) of the square of the time taken is the solution of
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2.5

2
-20(p) = m(p) dS(P? + V(p? 2 5(p) (3.6)
: - dp | 2 dp :

again subject to the obvious boundary conditions.

3.2 Pseudo-transient distributions and functions

The concept of a "pseudo-transient" distribution was
developed (c.f. Ewens (l965a)) to give a meaning to a functlon
derlved from formal operatlons on equation (5 l) The
interpretation of this formal solution is found later in this

chapter, and the function so derived will be useful in subsequent

chapters.

We consider for the moment equation (3.1) in the

particular case where O £ x = 1 and

m(x)

v(xj = ax(l-x)

x(1-x) §(X)
} (3.7)

where é(x) is an arbitrary polynomial which is O(l)(p0551bly
constant or zero) and a is a constant, also O(1l). The drift aﬁd
diffusion coeffiéients in genetical applicationé are usually of
this form, and to be definite it is supposed from now on, unless
otherwise stated, that m(x) and v(x) are of the form (3. 7) This
implies, in the termlnology of Feller, (1952 l95h) that x = 0,

= 1 are "exit" boundaries; in other words the probablllty is
unity that one or other,boundarybis reached in finite time, and

once a boundary is reached the variate x remains fixed at that

boundary.
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It 1s supposed that initially x = p. Then the
probability Po(p) that the boundary x = 0 is reached before the

boundary x = 1 is given by the solution of

a (p) v(p) &P (p)
n(p) —> p-+ > ng =0 (3.8)
- dp 2 ap .

which is (3.L4) with the left-hand side put equal to zero, subject
to the boundai«y conditions PO(O) =1, Po(l) =0, If Pl(p) is
the probability that the boundafy x =1 is>reached before fhe
boundary x = O, then using (3.8),
R
Po(p) = 1-P,(p) = SRR (3.9)

| fl\lf(X)dx
5
where | ) |
w(x) = exp[ -zfxm(y)_/v(y)_ dy} (3.10)~

Tt has been shown by Watterson (1962) that the rate of flux of

probability into the "exit" x = 0 is given by

ap (p;t) i > |
__%_ = x:;[ 3 5= ;v(x)f(x';t)} = m(x)£(x;t) } (3.11)

where Po(p;t) is the probability that the process has been absorbed

at x = 0 by time t. Similarly

ap, (p;t) lim d ,
"‘%—' = - 1 [ 3 52 9v(x)E(xs5t) } - m{x)£(x;t) } (3.12)
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is the rate of flux of probability into the "exit" x = 1.

The derivation of (3.11) and (3.12) is suggested by writing (3.1)

formalliy as

T 5t (x5t) =3 %{v(x)f(xst)} - m(x)£(x;t) (3.13)

We also note that the solution of (3.5) subject to the
boundary conditions U(0) = U(1) = 0, is

P o1
U(p)=f fo(x)d_x +f fl(x)d.x (3.14)

0 P

£olx) = i’—(-?{ ¥ (x)]-lf Wy) a
and fl(x? EE%£§Z[ W(X)}_l \/ﬁ w(Y) dy

One of the purposes of deriving the pseudo~transient distribution

where

is to provide a meaning for the two components on the right-hand
side in(3.14).
The formal operation used to derive the pseudo-transient

distribution is to solve the "stationary" equation

% -‘i—g— v(x)_f(x)} - i{m(x)f(x?} =0 (5.15?

obtained by equating the left-hand side in (5.1) to zero and by

replacing f(x;t) by f(x). In the case under consideration such a
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formal solution can be obtained easily but some controversy

(see the discussion in Watterson (1962)) has been attached to its
interpretation. This follows from thé.fact that the only true
stationary distribution of the process islﬁhe trivial one where

x takes the value O with probability Po(p)‘and the value 1 with
probability Pl(p), while the formal solutién gives a distribution
on the interval (O,l).

By proceeding formally we obtain from (5.15) successively
3 %3 v(x)£(x) } - m(x)£(x) = ¢ (3.16)

end | @ Pl
#(x) = CEVEL ] = = E(L il fxw(y}dy (5173

which may be written alternatively (if ¢y £ 0)

o]

v(x) o

£(x) = ¥(y)dy (3.18)

where the constant C is related to 02. -Clearly the formal
solution (3.18) is not a stationary distribution of the diffusion
process, since.with the choice (3.7) of m(x) and v(x) no non-
trivial stationary distribution can-exist, énd it reﬁains to find
a meaningful interpretation of (3.18) when the constants are
allocated suitably. »

To find such an interprétation it is useful to consider

an associated "return” process, which is the same as the process

considered above (i.e. the "non-return" process) except that once
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one df the boundaries x = O or x = 1 is reached the process is
immediately restarted with x = p, the original value. For the
new process probability does not accumulate at x = 0 or x = 1
and a non-trivial stationary distribution will exist. It will
be by finding this stationary distribution that an interpretation
for (3.18) will be found in the non-return process. Return
processes‘of the type discussed above have been considered by
Feller (l95h), who has given equations analogous to (3. l) and
(5 2) satisfied by f(x,t) in the more general case where whenever
a boundary is reached the process is restarted at a point y
with distribution ho(y) or hl(y), depending on the boundary just
attained. In our casé these afe point distributions at y = p.’
Feller shows that the backward equation (3.2) continues to hold,

but that the forward equation must be replaced, in our case, by

ggb/ﬂf(x;t)dx = L/\ g; [g;{v(x)f(x;ti} - m(x)f(x;t) de (3.19)
Q ' Q ' ' ' ‘ ‘

if p ¢ Q (Q any interval in (0,1))

and
%ff(x;t)d.x = f %SZ [%X v(x)f(x;t)} - m{x)£(x;t) jqu
Q ' Q ' ' ‘ '
+ pa[F & (o) -stastn
T 7
- }Jﬁ ] 1 g-}; v(x?f(x;t?} - m(x}f(x;t} | (5-20)_

ifpe Q.
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The interpretation to be attached to (5.20) is that the rate of
change of probability mass in any interval-covering p is equal
to the net rate of change of probability mass due to flux through
the interval, plus the rate of increase in probability allowing
for the possibility that one or other boundary is reached and
the process restarted at p. If the interval @ does not cover p
the latter terms must be eliminated, so that (3.19) is obtained
for this case. |

The return process admits a stationary distribution

f(x) which satisfies, using (3.19)

f %[ i S—X- v(x)f(x)} - m(x)£(x) il =0 (3.21)
A R S :

where p $ Q.
Now suppose that @ is any interval of the form (O;ﬂ), where

1 < . Since 4 may be chosen arbitrarily in (O,p) we must have

3 %; v(x?f(x{} - m(x?f(x?_= D, _ (3.22?

for (0 < x < p), where Dl is a suitable consfant. Similarly,

by considering intervals of the type (k,l), where k > p, we obtain
d
3 L{vG)} - mte) = -, G

for (p < x < 1), where D, is another suitable constant.

The constants Dl and D2 will later be identified with flux rates

(c.f. equations (3.11) and (3.12)), Using (3.22)and(3.23)we obtain
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f&)=§§[¢&)yljﬁww)w 0< x<p
. ’ A ’

(3.24)

f(X} = 2%53 [ w(x) }-l L/ﬂB W(y) dy p<x<1

Equation (3.24) specifies the stationary distribution of the
return process; and it remains to allocate the four constants
A, B, Dl and D2. The constants A and B are readily evaluated
by noting that4since £(x) is a density function, it is

I - integrable on (0,p) and (p,1). Now with the choice (3.7) of

m(x) and V(X),

¥(x) = exp [polynomial in x ]

so that since v(x) = ax(l-x), it is necessary to put A = O,
B = 1 to satisfy the integrability condition. This leaves us

with

- 0. ' -1 pF -
£(x) = 75 wu)} ]‘wW)w 0<x<p
S A S
o . i _ (3.25)
7(x) = q% w&)] jij)w p<x<1
)L o

involving now only the two constants Dl and D2. One relation

between Dl and D may be obtained immediately from the fact that

f(x) is a density functlon, so that its integral over (O l) is

unlty. A second and independent relation is obtained by notlng
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from (3.25) that

lim
wo TG Dy
1lim
x1 f(x? D,

" This implies that whenever x is in one or other of the two intervals
(0,e) and (1-€,1), (e arbitrarily small), the probability that it
is in (0,8) is asymptotically

D

1
Dl-l-‘D2 _

Now‘Po(p) is differentiable at p = O, so that given that x is in
(O,S), the probability that the process next enters x = O rather
than x = 1 can be made as close to unity as desired, by letting
g*0. This implies that

D

1
= P.(p)
D+, 0¥

which provides a second relation between Dl and DE' Solving the

two simultaneous equations for Dl and D2’ it is found that

D, = Py(p)/U(p) }

A (3.26)
P, (p) /u(p) <

D

1l

2

It may be noted that this implies, using (5.11) and (5.12), that

the rate‘of flux of probability into x = O in fhe return érocess is
asymptotically Po(p)/U(p), which might have been anticipaﬁed. B
analogous resuit hoids fér x = 1. Using (3.25) and (3.26) we obtain

- finally for the stationary distribution of the return process



39.

EPO(p? [W(X)]-l x

(x) = TG G ¥(y) &y 0<x<p
, (p) (=) 5
. (3.27)
2P, (») [w(x)} 1
£(x) = 6] el Wy) @y  p<zx<1
. - X :

By using equation (3.9) it is immediately verified that f£(x) is
continuous at x = p, sé that an alternative way of deriving.the
second relation between Dlvand_D2 would have been to prove f(x)
continuous. However f(x) is not differentiable at x = p, but‘is
differentiable elsewhere..

Our main interest in the return process stationary
distribution is for the ihformation it provides about the original

process} It follows at once that the interpretation of f(x) in the

original non~return process is that

p s

U(p) fzf(x) ax 0sx <x,=1 (3.28)

. x, . .
is the mean time the process spends in the range (Xl’XE) before
absorption at O or 1. It may be noted by comparing (5;27) With
(3.18), that the formal solution (3.18) of the "stationary;' equation
(5.155 will therefore admit this interﬁretation if the constants
are ailocated suitably.
Thus so far as the‘original process is concerned, (5.27)

is not strictly the density function of any'variatej however sinée

it describes in a sense the behaviour of the process before
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absorption it is named the "pseudo-transient distribution"” of x.
Similarly U(p)f(x) will be called the "pseudo-transient function".
In the case m(x) = 0, v(x) = x(1-x), it follows from

(3.27) that

f(x) = %ﬁﬁy 0< x<p
" ' (3.29)
f(x) = Ueg ’

X Pp<x<1

where U(p) is given in this case by

U(p)_ = -2 I:pf/np + (1-39} ’&n(l-p?} .

It follows immediately that -2p£np is the mean time the process
spends in (O,p) before absorption and that -2(l—p){n(l-p) is the
mean time spenf in (p,l), thus providing meanings for the-two
components on the right;hand side of (3.14). Also, it may be noted

that although
D 4 X
u(e) = Po(p}f %ch[w(x}] f W(y)ay ax
0 - ’ 0 ’

:Pl<p>_ / l,f—@ [w(x}]'l / lwcy)d& ax (5.30)
P T X

it is not necessarily true that

Iy 71X
f ﬁg[w(x)] ﬁr(y) ay dx
) 0 - ’ 0 i

is the mean time before absorption conditional on absorption at x =

0.
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In fact in the next chapter a discrete process is discussed for

which one may write equally well

U(p) = Py(p) &,(p) + P, (p) 6,(p)

(3.31)

or  U(p) Fo(p) &5(p) + P, (p) 65(p)

vhere &,(p) # €,(p) and 6,(p) # 6,(p). Thus &,(p), say, is not
necessarily the mean absorption time given absorption at x = 0, and
the reason for the possibility of the alternative forms in (3;31)
is that a functional relation exists between Po(p), §l(p), and

£, (p).

5.5 Comments on the Pseudo-transient distribution

Before discussing other interpretations of formal
solutions of (5.15),‘two comments may be made about the pseudo-
transient distribu%ion (3.27).’Firstly, it is not the same as
the limiting (t + =) distribﬁtion of x, given x is in thg open
interval (o0, 1). Iﬁ fact it has been shown by Kimura (1955a) that

in the case m(x) = 0, v(x) = x(1-x), the solution of the equation

2 .
ot 5 éx

is

¢(x;t? = 4(2i?§l§§l‘P? Ti-l (1-2p?Ti_l (l-éx?éx§ {-%i(i+i?{}.
i=1 -

where T%_l(z) is a Gegenbauer polynomial which is defined in terms

of the hypergeometric function. The leading term in this
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expression for large t is
ép(1-p) exp(-t)

which is independent of x, so that the limiting distribution of x,
conditional on no absorption, is rectangular, and not of the
form (3.29). |

ItAshould also be noted that (5.27) is not the same as
the limiting distribution of x, given x isvin (o, 1), in the case
where mutation in both directions is allowed, as thé mutation
rates tend to zero. The asymptotic conditional distribution

in the case m(x) = 0, v(x) = x(1-x), is

const

- Loy iL
M0 = oy §¥E*SF (5.32)
where N is the population size. This again is not of the form

(3.29) although it may be noted that (3.32) is formally a solution
of (3;15). This asymptotic conditional diétribution has been
discussea by Moran (1962), p.129, and will be returned to in the
next section. 4

The second comment about (5.27) is that it could‘be~used
for the purposes of making inferences ébout the initial value of
x. A population under observation may well have been in existence
for a long but unknown time before observation started, so thaf
although it may be possible to make good estimates of the selective
advantageé, and to observe, say, that mutation is absent in the
population, it 1s impossible to usé the conditional distribution

of x, (0 < x < 1), for any initial value p and time to to make
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inferences about p, since the value of t will be unknown. In such
cases it seems reasonable to use the pseudo-transient distribution
to estimate P. This could be done with one or several
observations. If it is known that m(x) = 0, v(x) = x(1-x), then
in the case of one observation x the méximum-likélihood eétimator
£ of p is simply x. When m(x) # O it may no longer be true that
; = x, but here it would be more difficult to find %, due to the

complexity of the pseudo-transient distribution and to the fact

that it takes different functional forms in different ranges.

3.4 Other Interpretations

We now turn to other formal solutions of (5w15). Here it
is useful to divide these solutions into two groups; those which
put € = 0 in (3.16) and(3.17) and those which allow C, to remain
arbitrary. The left-hand siae in (3.16) has the interpretation
of a probability flux (c.f. equation (3.13)), so that the
restfiction Cl = 0 implies no asymptotic pfébébility flux and may
only be applied to those solutions of (5.15) which admit a true
stationary distribution, (in genetical termé, those cases where
a two-way mutation exists). Conversely if a trué stationary
distribution does exist, fhen Cl.must be put equal to~£éro, and
by doing fhis we obtain (c.f. equation (3.17))

X N
£(x) = E%§E a@[Ejﬁmhﬂﬁﬂw %ﬁ

VX

which is Wright's well-known equation for stationary distributions.
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It is therefore of prime importance to recognise, when formally
solving (3.15), whether the solution obtained is a true stationary
distribution ér a pseudo-transient distribution since the allocation
of Cl will depepd on which of the two distributions is relevant.
This point has frequently been overlooked and incorrect results
obtained by an incorrect allocation of Cl' It is pertinent to
examine the discussion in Watterson (1962), section 6, on this point.
Here equation (3.17) has been obtained fof a particular value of
m(x), (Watterson's équation,(6.2)). Tn the case under discussion
mutétion is absent so that no trﬁé stationary distribution can exist,
and by a correct allocation of constants the pseudo-transiént dis-
tribution can be derived from Watterson's eqﬁation (6.2). However
Watterson is not here interested in pseudo—transient'diétributions
ana notes only that if the constants in his equation (6.2) are non-
zero and do not take different values in different ranges; then his
f(x) is not integrable on (O, 1) so that the true stationary‘
dis£ribution is purely discrete-at x =0and x = 1L,

‘We discuss three othér interpretations of formal solutions
of (3.15). Feller (1951) in an earlier investigation obtained

the solution
(%) = j—{‘(’% » (3.33)

0, and stated that this solution is meaningless.

in the case m(x)
However (5.55) has been obtained by putting Cl = 0, which 1s not
allowable, since no non-trivial stationary distribution exists for

this choice of m(x). The more general (Cl # 0) solution is
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f(x) =

P
I—‘lb:l
I

(3.3L)

and this does admit a meaningful interpretation when A and B are suit-

ably allocated, as has been shown above (equation 3. 29)

A second interpretation has been given by Kolmogorov (1959),
who obtains (3. 5&) as the formal solutlon of (3. 15) when m(x) = 0.
Here Kblnmgorov does not allow A and B to take dlfferent values
in (O,p) and (p, ) so that his interpretation of (3.34) cannot be
the same as the interpretation of (3. 29) The abstractAin which
Kblmogorov‘s interpretation of (5.5&) is given 1s extremely concise
and very difficult to follow; howe&er if his interpretation is
similar to that given below by Moran, then A and B in equation
(5.54) should be put equal, since Moran's interpretation considers
the péssibility of mutation, so that a true stationary distribution
does exist and must be of the form (3. 55) rather than (3.34).

The third interpretation of formal solutions of (3. 15) has
been given by Moran (1962), p.129. If we consider the dlstrlbutlon
of the frequency of a givén gene in a population for which mutation
without selection is allowed, a stationary distribution of the form

B, -1 B~-1
f(x) = const x 1 (1-x) 2

where Bl and 52 are related to the mutation rates, is obtained.
It Bl and 82 approach zero, this distribution will concentrate in
the tail-ends of the interval [O,l], indicating that for very small

mutation rates there is a large probability that at any given time
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one or other gene is not present in the population. The
distribution
f(X) const (l_ < x < 2N=-1 )

- xll—xi

(where 2N is the population size if the population is haploid and
N is the population size if the population is diploid) is then

a limiting distribution approached, though never atfained, by

the distribution of the frequency of a given. gene, conditional

on x # O or 1, for arbitrarily small mutation rates. This
interpretation satisfies the criterion discussed above, that since
a true stationary distribution does exist (since ﬁutation is

allowed), the solution has been derived by putting C

L =0 in (3616?

and (5.i7).

3.5 Mutation in one direction

It i1s possible to derive a meaningful pseudo-transient
distribution in the case where equation (3.7) no longer holds.
As an example which will be useful subsequently we consider the ‘

situation where the drift and diffusion coefficients are given by

m(x)

(x)

-cx v ,

} . (3.35)
ax(1-x) ]
These correspond genetically to the case where if x is the proportio

of the gene (say A) under consideration, and is Markovian, then

mutation takes place (at rate c¢) from A té a but not in the reverse
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direction. The constant ¢ is supposed of the same order as a.
With the coefficients (5.55) no selection occurs; however

selection could be allowed by replacing m(x) by

m(x) = sx(1-x) - cx (3.36)

This does not essentially alter the type of results obtained and
for clarity the coefficients (5.55) are retained.

With the above choice of céefficienté the process will
eventually become “"absorbed" with x = 0, and we wish to determine
the mean absorption time, given that initially x = p. This may
be done by modifying slightiy the ﬁethods of the previous sections.
The pseudo-transient distribution f(x) will satisfy equation (3.15)

and hence
L, . ,
3= V(X?f(xi} - m(x?f(x? = const. (5-37?

The allocation of the constant in (3.37) will depend on the value
of X, since the left-hand side has the interpretation of a
probability flux and consequently its value depends on whether
X> D or x <-p. Using the arguments of the previous sections it
follows that the constant must be put equal-to zero for p < x< 1
and equal to [U(p)]-l for‘O < x< p, where‘@(p) is the mean time
for absorption‘at‘x = 0. -

Considering first the case O<x<p it followé, using (3.35)

and (3.37), that £(x) satisfies

%E-{x(l-x?f(xi} + §§§ f(x?’= 5%(57
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or

ar(x) . [ 1-ox+2ca™t 2
ax_x-*[ 1) X} 72 = T W)

This equation is solved easily by introducing the integrating

1-2ca™t

factor x(1-x) =_x(l—x)d say. The solution is

#(x) = 28”1kt [U(p)}—l at sk xH(1-x)"¢ (3.38)

where k is a suitable constant, which may be derived from the
requirement that f(x) be integrable near x = O, From this it

follows that f(x) is given by

1

f(x? =227t x-l-[U(p?]_ at [(1-x?'d -1 } (5-39?

for 0 < x < p.

For p < x < 1 the constant in (3.37) must be put equal to zZero,

from which it follows eventually that
f(x) = const x-l(l—x)-d (p<x< l? (3.40)

The constant in (5.&0) may be found by noting that the integral of
f(x) over (0,1) must ﬁe unity, but it is simpler to assume the
confinuity of f(x) at x = p, thus fixing the constant, and then
show that with this choice the integral of f(x) over (0,1) is in

fact unity. By doing this we obtain the expression

o [ o]

for the constant in (5.40), so that the pseudo-transient distribution

is given by
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-1
(x) = 28t [U(p)} a tyt [(l-x)-d -l} 0<x<7p (3.40)
-1
(%) = 08t [U(p)} atxt [l-(l-p)d}{(l-x)_d] p<x<1l (3.41)
and the pseudo-transient function is simply U(p)f(x) . {3:k2)

It follows that

U(p? = 2a—ld-lh/g z "t [(l—x?-d —l}'dx

0
+ 28747t E- (1-p}‘ﬂfl (1-@’d ax . | (E.MB?
P

* -1 % 0. However in this

All the above has assumed that 2ca’
particular case the above expressions simplify and proceeding

from (3.37) we find eventually

I VR e

f(x) = -2a™ | u(p) x — Aa(1-x) 0< x<7p
i ] (3.44)
f(x) = 28"t U(p) X-l<£ﬁ(l—p) p<x<1 ‘

and U(p) = o8t \/Px_l An(1-x) ax
. o . ,
1

20~ 2a(1-p) f L ax (5.45)
Y .

3.6 Almost-invariant Functions

The second concept with which this chapter is concerned is

that of an "almost-invariant" function. By using this concept it
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will be possible to obtain not only approximations (which will
usually be identical to diffusion approximations) of quantities
of genetical interest, but also strict bounds fof the true
values being approximated.

The methods used in deriving these functions are similar
to those used at the beginning of this chapter. It is supposed
that there exists a Markovian variate x, (t=O,l?2,...)

(o= x, € 1) for which

m(xt) = E(x

A | Y
tfl-xt? is O(N ?,

2 . P
X )< is also o(N ?

vlxg) = By )
but higher moments are o(NAu). Here N is the population size
and & is a positive constant. Consider firstly the case of

absorption probabilities. Suppose that there exists a function

¢(x) satisfying
E [ o(xy,q) - o(x) %, ] =0 (3.46)

Note that finding a function ¢(x) satisfying (3.46) is equivalent
to finding some function (which is itself a random variable) of

the random variable Xt+l
(c.f. Doob, 1953). Thus equations such as (3.49) below could be

which possesses the martingale property,

derived strictly by using theorems on expectations of martingales
with optional stopping.

By expanding ¢(x

t+l) in a Taylor series about x, and

t

ignoring terms which are o(N*x) we obtain
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m(x,) ¢ (x, ) gv(x 07 () = (3.47)
This differential equation is to be true for all Xy
(o< %, < 1), and it may be solved readily for ¢(xt). The

solution is

¢(x? = A + BL/§exp[ L/y m(z)/v(z)dz} (5.&8?

where A and B are arbitrary constants. By iteration in

(3.46) it follows if the initial value of x is p, that since X,

is eventually either O (with probability Po(p) or 1 (with

probability Pl(p)), that

Po(p) ¢(0) + By(p) (1) - ¢(p) =0 (3.49)

o - 9(0
(1) - ¢(0

li

or Pl(p) =1 - PO(P)

_ o I (3.50)
1 : - '
'b/ﬂexp -2\/y m(z) /v(z)dz
- AR

It is clear that this solution is identical to that which is
obtained by solving (3. 8) However (3. 50) is in fact only a
close approx1mat10n to the true value of P (p), since terms have
been ignored in passing from (3. 46) to (3. MT) On the other hand,

if it is possible to find an increasing functlon ¢*(x), (which in
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practice will be equal to ¢(x) with a slight modifying term)

for which the inequality
* - O¥ =
E [ ¢ (Xt+l? ¢ (xt?lxt } =0
holds, then by carrying out an iteration as before we obtain

Po(p)_ _<b*(o)_ + Pl(p? ¢*(1} - ¢}*(p)‘ = 0

so that Pl(p? = iigfg = iiggg _ (5,51?

since ¢*(1) - ¢*(0) is positive.
Once more it may bé noted that ¢*(xt+l), as defined above, is a
semi-martingale, so that (5.51) can be.derived more strictly
by using optional stopping theérems for semi-martingales. The
inequality (3.51) provides an upper bound for the exact value of
Pl(p), approximafed by (3.50). Similarly if there exists an
incréasing function ¢**(x)ifér which

E-[ ¢**(xt+l) ',¢**(Xt)|xt ] z 0
then | .

Pl(p? = i:’;é% - z::gg% (5.52?

thus providing a lower bound for Pl(p). In subsequent chapters
bounds for Pl(p) will be derived wheré exact evaluation is-very
difficult, and %hese bounds may be compared with those obtained
by the methods of Chapter 2. It may be ndted in this connection

that if m(x) and v(x) are constant, then ¢(x) will be of the form
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const exp(cx), and that this is identical to the "almost invariant
(moment-genefating) function" discussed in Chapter 2.

As a secoﬁd use of such functions we consider the problem
of finding an approximation, and also bounds, for the mean time
until either x = O or x = 1 is reached. In this case it is
supposed that the function ~¢’(x) satisfies the boundary conditions

¢(0) = ¢(1) = O and also the relation

oY

E:[ ¢(xt+l) - ¢(xt?|xt } = - “~— (3-55?

By expanding ¢(Xt+l) about X, as before and'ignoring terms which

are o(N"%) it follows that
m(x) ¢/(x) + 2v(x) ¢//(x) = -1 (3.54)

which is the same as (3.5). The solution of (3.5L4), subject

to ¢(0) = ¢(1) =0, is

¢(x)_ =2Cf w(y)dy-efx ¥(y) ﬁ{v(z)w(z)]_ldz dy
SV o Y |

~ Where

o[ [ v [ [woma e o [[srw] o9

and V(x) has been defined in (3.10).
By iterating in (3.53) until x = 0 or x = 1 1s reached, we obtain,

since ¢(0) = ¢(1) = o;
u(p) = o)  (3.56)

where U(p) is the mean time until absorption at x = 0 or x =1 and
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and p is the initial value of x. It may be verified, when
allowance is made for the different time scales, that (5.56) is
identical to (3.14). -

The solution (3.56) for U(p) is again only approximate,
because of the terms which ére ignoréd in passing from.(5.55) to
(5.5&). However bounds may again be found fon'U(p) by deriviﬁg

functions ¢*(x) and ¢¥¥(x) for which

|
1
=

E [ ¢*(xt+l? - ¢*(xt?|xt }

[
1
=

*% - 0%
and E [¢ (Xt+l? o (Xt?lxt }
It is found readily that

i oxx(p) = U(p) = I o*(p),

and thus bounds are given for the true mean absorption time.
Once more these bounds will be closely related functionally to

the diffusion approximation N° ¢(p).
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CHAPTER L

THE MEAN ABSORPTION TIME

IN A GENETICAL MODEL




P

56.

41, Introduction

In this chapter explicit expressions are cbtained for
both the mean time until homozygosity is reached and for the
variance of this time in the genetical model introduced by Moran
(1958a) . This model describes the behaviour of a haploid
_populaiidn of fixed size N with two possible alleles A and a.
Attention is fixed on the number j of A individuals. Then in

this model, J is a Markovian variate with transition matrix

Py, 5-1 7 “23(N'J)[N‘{ bd + ug(Nkj?}-}-l I,

il
-

Dy sl = ula'(N-j}[N{ hyd + uE(N-j)H—l' Y (1)

23,3

1 - = 1-ll.~n..
D b 3 ﬂJ

3,3-1 7 Py,54
This model is considered in Chapter 2 (as case 1), and the result

of Chapter 2 will be needed later. Watterson (i961) has obtained
the mean time and the variance in the case of no seléction

(i.e. By = ue); thus the present results include his as a particular
case. It shéuld be noted that the methods given here are

different from those of Watterson; the present argument proceeds
by analogy with that of the previous chapter in considering pseudo-
transient distfibutions.. In fact we shall find an exact (discrete)
pseudo-transient distribution (which may be compared with the ‘
diffusion approximation pseudo-transient distribution), the sum of

whose terms gives the required mean time. Finally the exact

results may be compared with those derived from equations (3.5)



and (3.6).

L.2 A Lemma

It is useful to establish the following lemma.
Consider a finite Markov chain with two absorbing states, the
remaining states being transient, the states being labelled so
that the transition matrix appears in the form |

(1 0:0....0]

6 1.0....0

.
.
.
.
.
® o e 00 e 000 v s 000
P .
.
.
.
.
.

R Q-

L )

Then (c.f. Kemeny and Snell (1960)) if the process starts in the

kth transient state, the mean time until an absorbihg state is

entered is the k#h element in the column vector

-1
o [aa]s

where V¥ is a column vector of unities. If the process is amended
so that whenever an absorbing state is entered, the process is

restarted again in the initial state, then P must be amended to

~

(0 0:0 1 O

O 0:0 1 O©

P*: .".'U.:...‘l".t'.
R Q

\ ’ -

where the unities appear in the position corresponding to the
initial state. A1l the states in the new process are persistent,

and the process admits a stationary vector b satisfying



or 1 0.

N -R . I-q = 0/

~

If b is normalized so that the sum of its first two elements is

unity, and the normalized vector is written (Al A A¥)7, then

ofeee]s

where £/ is a row vector all of whose elements are zero, except the

kﬁh, which is unity. Hence

o
Z\*l= §/|:I - Q:I )

-1
_ and therefore 2\‘*,Y - g’[l -Q ] Y . , (4.2)

Equation (4.2) states that the sum of the elements in A¥*is equal to
the sum of the elements in the K row of [T -q ]—l; i.e. is
equal to the kth element in m. The elements in m will in fact be
derived for the particular Markov chain uhder consideration by

finding first the elements of A¥ .

4.3 Mean Absorption Time

If the state E; in the genetical model (4.1) is defined

as "number of A individuals = i, i = 0,1,2,...,N", then E, and E

are absorbing and the transition matrix is
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e ~
1 0 O  veeen 0
Hl léﬂl-nl My eeeen 0
0 H2 l'Hg'ng ceeas 0]
P =
0 0 0 veea 1
\. S
Suppose now that initially there were k A individuals. Then
the genetic model, and hence also P, is amended by ?utting POk =
= Py = 1. If the amended transition matrix is P*, then
’ P
I - P* - l O O -l v oo O
""I[l ].-[2+nl T]l .. O . .o O
0 €H2 H2+n2 . 0 cene 0
LO 0 0 ees =1 e 0]
. -’

Denote the stationary vector of the new process by b’ = (Ko %l - KN)

and put %O = PO

N [1-P*] = O/, consideration of the first two equations

(a constant) for the moment. Then since

A, - Kiﬂl =0

A (I, + “1? - M, =0
gives
A = B/l
} (1.3)
A, = Bo(140) /1, :

where O pl/hz. Also Ai (¥ = 1 = k-3) obeys the recurrence

relation
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) A

Sy (g T ) 0 (b.4)

i~ Tigohiae =
This relation is simplified by putting Hi%i = gi and by noting
that ni/ﬁi = o = constant. Thus (4.4) becomes

g, + (oHL)E, ) - &, =0 (L.5)

the solution of which is

£, = A+ B (A,B, arbitrary constants).

Using the boundary conditions (4.3), which are written more

conveniently

=P

nTh s

£y Po(l«x?

we obtain

A= -PO/(a-l) , B= PO/(a-l)

so that

ure
Il

Poor-1) A1)

and hence

A

i

Po(ai-l)/ [ Hi(d-l)} (i=1,2,...,k=-1) (L.7)

The elements %k+l cese KN are found as follows. Putting

for the moment Kﬁ = Py (PN a constant ) we obtain

"My Mgy TPy =0

A (@ ) A

Mo My T Uyl + yq) Ay =0
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Hence

A

n-1 = /My
(L.8)

-1
M-z = Bylba ) Ay,

If Ei is now defined by Ei = niki , then from the recurrence

relation (L4.4) we obtain

-1 -1
£ (140 ?§i+l -0 B =0
or
by k(D) £y -8 =0
which is the same as (4.5). Thus the general solution is

£, =C+ D (¢, D, arbitrary constants)
subject to the boundary conditions (4.8), which are more
conveniently written

En-1 = Py

-1
S PN(l+oz )

These conditions fix C and D as
C =Py o:N/(ocl_\T-ozN'l) , D= -PN/(ozN-ozN'l)

Therefore
N i N N-1
E, = PN(oz -ozl)/(oz < )

e A, = PN(ozN-ozi?/[ ni(aN-ozN'l)}

(i = k+l,...,N-1) (h-9?
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It remains to evaluate Kk' We have

No = My Mo F (g I Ay - Ty Mgy - Py = 0

ool N 1k
or?x {PO+P +PO<—__3_>+‘PN< T 1\Tl>} {I[ +'q}

(4.10)

Thus all elements in the stationary distribution have been evaluated

in terms of PO and PN' These elements are now normalized so that
Py + Py =1.  Also it is clear that
P, .Prob {absorption at O in ahsorbing case}
?ﬁ ~ Prob {absorption at N in absorbing casel
- QEEfi_iL . 9524:1%?25
a1 ol
using the result of Chapter 2. Since PO + PN = 1 we have
P - oA E
0 aN -1
. _ aN - aN‘k
N aN -1

Thus‘with these values of PO and PN’ all elements in the normalized

vector A’ are given explicitly by (L. T), (L. 9), and (4.10). Tt
follows, by using the above values for P, and PN, that (M lO)

simplifies to

2 =Otk -1 ok g
kgl nk(aN -1)
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which is what would have been obtained by putting i = k in (4.7)

or alternatively by putting i = k in (4.9), (although the

functional form of kl... A

k1 differs from that of kk+l v A

N-l)'

Thus the two sets of A;s "dovetail" at Ak . By using the results
a£ the beginning of the chapter it follows that the mean time

w (k) ﬁntil one or other gene is eliminated, given initially k A
individuals, is the'sum of mean number of times the process is in

each of the various transient states, i.e.

k N o
g A EL \ ot oM oot
(k) = = TR "N N-1
A ] I[i(oz-l?‘ ol <L ni(oz Ty

oo (b.11)

which is the required result. The various elements in(h.ll)
constitute the exact pseudo-transient function of the process.
An alternative method for finding (L4.11) is to solve the

difference equation (c.f. Feller (1957)),

k) = Mu(k-1) + (1M -n,) (k) Mlg(kﬂ) +1 (k.12)

However it is difficult to proceed directly from (h.lQ},~and our
interest in this eqﬁation is that it provides a check-én the
solution (h.ll), and after some algebra it may be shown that the
solution (h.llj does in fact solve (4.12), as well as the
Eoundary condi£ions n(o) = pu(N) = o. |

As a second (paftial) éheck (of 4.11) we proceed as

- follows. The method of deriving w(k) above indicates that the
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mean number hi of times the process is in state 1 before absorption

is given by

oAE g of -1 .
by = —ww— - T+ 1=k
a -1 Hi(a-l)
ok oot .
TS S . S APy LK
o -1 ni(oz )

Now given that the process is in state Ei’ it will leave Ei
after the next birth-death event with probability Hi+ni' It
each hi is multiplied by'Hi+ﬁi, the product is the mean number of
times the process is in'Ei and then leaves Ei at the next birth-
death event. Thus the mean number of transitions 1s

N-1
(m ”i? n, (h.li)

i=1
But for processes where transitions of the type Ei > Ei are

ignored the transition probabilities become

]
]

B, ~ B,

A

} (u.lh)_

-1 -1
P(Ei - Ei+l)_ ni(ni + ”i? o&(l+o¢?

These probabilities are those of a homogeneous asymmetric random
walk, and the mean number of steps before one or other boundary

is reached is given by (Feller (1957))

L +@Q N O ) (4.15)
1o 1w d-l | ,
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Thus (L4.13) should equal (L4.15), and it is a matter of algebra
to prove that this is so. In}fact an alternative methaa of
finding (h.ll) is to start from the fact that in the random walk
on [0,N] With-initial point k, and with Py 4.1 = (lﬂm)-l s
pi,i+l = a(l+a?'l, then the mean number of times ny %hat the

process is at 1 before reaching either O or N is given by

N-k .
n, = % N'— Lo, (o--1) i<k
o - 1 -1 -
(4.16)
N N-k -
o - o4l N i ,
= = . N+:L-N~'(O"a) i>k
o -1 o= -

Multiplying each n, by (Hi+ni)-l and adding over i = 1,2,...,N-1,
we re-obtain (4.11). ‘

In the parﬁicular case where there is no selectidn, then
& =1, and the above methods are inappropriate. However by

letting o » 1 in (4.11), it follows that

N-k-1
pw(x) = (N-kx) ii N(N-i)'l + k }: N(N-i)'l (4.17)
- C il B | ' '

which is the result obtained by Watterson (1961). This result
could be derived more strictly by considering difference equations
similar to (4.4). In fact when a=l, (4.4) becomes (putting

_ nixi = ¢, as before)

ey Tk b =0

the general solution of which is

§i=A+B;.
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Proceeding as before, (4.17) eventually follows. In this case

it is possible once more to-verify that (4.17) satisfies (4.12).
A partial check similar to that given-previously is to-

note that in this case I, + 0, = 21(N-1)N'2, so that the mean

number of times the process is in Ei and then leaves is

N( N-k) ' 2i(N-1)

CN-i Vel

-
1A
b

o (4.18)
=L 21(w-1) P>k o
I T

Sunming the terms in (4.18) gives the total mean number of
transitions as k(N-k), the-well-known result for the symmetrical
random walk. .

Once more, (4.17) could have been obtained by arguing in
the reverse direction. .we obtain firstly that for the symmetrical
random walk on [0,N], the mean number ni of times the process is at

i before reaching O or N is given by

[n]
]
A
b

2i(N-k) /I i

n.
L

1l

ok(N-1) /N i>k

-1
Multiplying each n, hy [2:’.(1\I-i)1\7-2 }' , and adding over i = 1,2,..N-1

gives (L.17).

4.4 The Variance of the Absorption Time

In order to -find an exact expression for the variance it

may be noted that the elements in the K row of [I-Q]_l.are the
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various elements constituting the sums in (4.11). Specifically, if

N-i

g o -1 ad -1
1 o -1 T (a-1)
. .00, C .

157N nj(aN_aN-l)

then | : }
911 Vo Vi3 Vo Vina
| %21 P Vo3 Vau ., Yoy
[I—‘Q] ST % %2 % Va L Vs

eN-l,l 9N-1,2 6N-1,5 GN-l,h eN-l,N-l

N J

Thus the variance of the absorption time (c.f. Kemeny and Snell

(1960)) is the K*™® clement in the column vector

- - a-a?y

. s 2 .
where £ is a column vector of unities and u~ is a column vector

of the uz(k)'s. Tt follows that

i n=1
_22 {29 Z“’ia‘
ci=1 J=1 Jiﬂ

2D o ) v }eue e

1=k+1 j= J=i+1
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Letting & » 1,

0,5 > Mn-1)/(n-3)

Vis Ni/J

and it is easily checked that in this case (4.19) agrees with

the formula found by Watterson (1961).

4,5 Diffusion Approximations

It is possible now to compare the formulae given above
with those given by diffusion methods, and thus to test the_
adequacy of the latter. Before doing so it is useful to
approximate (h;ll) by a formula involving integratiéns rafﬁer than
summations. If £he proportion of -individuals in the population

at time t that are A is denoted x_, then diffusion methodsimay

-t)
only be used when E(xt+l - Xt) is not of higher order of

2

megnitude than E(x - xt) . TFor this to occur it is

T+l
necessary that u; - u, be O(N-l),or o(N-l). Therefore putting

-1
a = “1/h2 = l.+ hN ™, we have

oM~ exp(n) (k4.20)

and if y = iVT, o ~ exp(hy).
Thus putting vt = p, it follows, using (4.11), that u(k) may

be approximately
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h(1-p) _
- f (7 - 1k (v)ay

e

[

h

h h(1-p) Loq hy :
+ & =€ f E - l; < ke(y)dy :| (4.21)
e -1 e . -

b

where kl(y) and ke(y) are the "continuity" analogues of

IITl and n?l and are
i i

My + o(1-y) g Pt 1o (1-y)
by (1-y) byy(1-y)

respectively,

For the diffusion approximation

. -1
m(x) = (bq+,)x(1-x) [N{ by + pp(1l-x) }]
= nx(1-x)N"°  + 6(n"2)
and .
v(x) = 2:<:(l-x)l\T-2 +a>(1\1-2)

Thus (3.5) becomes, if unit time corresponds to 1\]2 birth-

death events,

h dU(p) + dngp)_ _ p-l(

-1
: = )
dp dp

1-p

whose solution is (c.f. equation 3.55)

. .
U(p) = Cfe@(-hy)dy —fexp( hy) [ 27H(1-2)"" exp(hz)az ay

o} o
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where

C = [L/}exp(-hy}k/yz-l(l—z?-l exp(hz)dz dy } + [k/} exp( -hz)dz }
o - o '

(Lk.22)

The similarity between (k. 21) and (4. 22) is not immediately obvious;
however (L. 22) may be s1mpllf1ed by an 1ntegratlon by parts and
by a subsequent rearrangement of terms. The result of doing this

leads to the formula

n(1-p) p
U(p) = x .[9___33_:_£ U/\ vy (Y -1y ey

h -1
o}

1
ho_ _h(1-p)
ceze [ tag T e (B ) ay | ()
e’ =1 : . .
b

(where time has now been rescaled to birth-death events) In this
form the close agreement between (4.21) and (k4. 25) is apparent
In fact it is clear that the entire pseudo-tran51ent function 1is
uniformly well-approximated by the diffusion expression.

Tn the case pu, = p,, equation (4.23) becomes
. l 2 -

(o) - -Ne{ otap + (1-p) An(1-p) } (k.21)

which agrees closely with (h.lT). In this case the diffusion
approximation to the pseudo-transient function possesses the
remarkable property of being exact for all i, if this function

is taken at discrete points. In fact, using (3.27), the equation
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f(x)

(1-p) /(1-x) 0< x=p

N p/x p<x<1l

£(x)

is found for the (normalized) pseudo~transient function, and

at points x = iN! this becomes

A
b

n(N-k) /(N-1) i
k/1 i>k

which is exact for all i.

We turn now to the comparison between the exact value
(given by (4.19)) and the diffusion approximation (found by
solving (3.6)) fér the variance of the time until absorption.

Considering (4.19) first, the first and last terms are of order

Nu, while the second is of order N2 only. Therefore, to order N5,
k N-1
o2 =2 ) o u1) +2 ) v u(i) -3k
k ki ' ki ' .
i=1 i=k+1 )
i N-1
since }.L(l? = Z eij + Z wij
J=1 J=1i+1

By putting p = K and x = iN-l, and (k) = U(p), this expression

may be approximated by
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(1-p)
21\#[——————— f (" - Dy (NUly) dy
h h(1-p) h hy '
e G R I

For the diffusion apprdximation, the solution of the equation

2
‘ - dp~ R

satisfied by the expected value S(p) of the square of the time
taken until absorption, subject to boundary conditions S(O) =

= 8(1) =0, is found to be, after some simplification,

h(1-p)
S(p) = i [ ——p-—— /P (™ - l) U(.V) [V(V)

1
h h(1-p) h hy
e -~ € - e -1
+ = UWy) [v(y)17~ ay | (4.26)
h h ,
e” -~ 1 e - - .
b
Now 2k (y) ~ 2k (y) [v(y)]-l, g0 that if the square of the
diffusion approx1matlon for u(k), (known to be a close approximation,
is subtracted from (4.26), and the resulting expression compared
with (4.25), it is observed that the diffusion approximation
is once more remarkably close to (4.25) and thus close to the true

value.
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CHAPTER 5.

ARBITRARY PROCESSES WITH

CONTINUANT TRANSITION MATRICES




Th.

5.1 Introduction

In this chapter the results of Chapter 4 are generalized,
and expressions are derived for absorption probabilities, mean
absorption times, variances, pseudo-transient functions, etc.
in the case where the transition matrix of the variate under
consideration is an arbitrary continuant. By déing this exact
results may be obtained for any population with overlapping
generations. We begin by noting a result which is a generalization

of the results of the previous chapter.

5.2 A Theorem on Continuants

Let P be the transition matrix of a Markov chain with

N+l states EO’ E E _, for which E andAEN are absorbing and

N’ 0

the remaining states transient. Suppose aléo that P is a

l, ey

continuant, so that given the process is in sgtate Ei’ it may next

move only to states Ei Ei’ and Ei+l’,With probabilities Hi

-1’

léﬁi-ni, and ni respectively. Let Ek be the initial state.

Then the probability that the process is eventually absorbed in

EO rather than EN is

N-1 N-1
.P(o,k) ={ ]Zk pi}%{;} pi} ' (5.1}

Hl H2 "'»Hi

T]l T]2 e T

where py =1, p; = (i >0).

i
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If each transition takes place at unit time ihtervals, then
the mean time before absorption in one or other absorbing state is

N-1
(k) = E: n; (5.2)

i=1

where n, is the mean time the process is in state Ei and is

given by
N-1 i-1
Z P Z 3
J=k J=0
n, = : i=12,..,k
N-1
}; 3 Ty Pioy
Jj=0
(5.3)
k-1 -1 '
E; pj pJ
J=0 J=i
n, = —_—— Y ——— i = ktl,...,N=1
N-1
Py n, ey
J=0

Further, the variance of the absorption time is given by

equation (4.19) if we put



ik —

and

1IIik

6.

N-1 1-1
E: 3 }: 3
j=k 3=0
-1
P TPy
J=0
(5.4)
k-1 N-1 '
Ps Py
J=0 J=i
N-1
}; o Ny Py
J=0

and p(k) is defined by (5.2) and (5.3).

The result (5.1) is well-known. The mean number of steps

before absorption, given jointly by (5.2) and (5.3) has been

given (incorrectly) by Chung (1960), p.70, equation 8. The

present derivation obtains all four quantities in gquestion

simultaneously.

Proof

process for which whenever the process enters either E

As in Chapter 4 we consider the associated "return"

o °F By

it is immediately restarted at Ek' If P*¥ is the transition

matrix of the return process, then
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2 N
1 0 0  v.v. =1 0
L L Y 0 0
0 | S | S 0 0

I-P* = ) 2 2.2

0 0 O weee O aeee e
0 0 0 ..o.. =1 ... 1

L J

The return process admits a stationary vector A’ satisfying

5'[1-13*} o’ (5.5)

The elements in A are now inflated so that the sum of the first

0 and PN

From the discussion in the previous chapter it is clear that PO

is in fact the probability P(O,k) that in the original non-return

and last elements (now written P respectively), is unity.

the state E

0 is eventually reached rather than E

rocess .
P 2 N

Fufther, the remaining elements in A/ are the mean number of times

in the original process that the process is in each of the various

transient states before being absorbed in either E. or EN'

0]

Denoting these elements Al"Ag’ ces kN-l it follows, using (5.5),

that
Fo =11N
(nl + nl) A= TN, (5-6}

and in general, for 2 = i

< k-1,
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(T +m )N =T N+ (5.7)

(5-7) may be rewritten

TiaPia = 05N = A - 0590

or -
MM - N

const., 2 £ i £ k-1 . (5.8)

By considering i = 2, it follows that the constant in (5.8)

is PO. Thus
T[l7\l=Po
1
1'[27\2=PO l+I-—I-—
1
Mo Toly
I A, =P [l + == —= }
53 0 T, = Iy
and in general
Me 1 My oM My My pee Mg 7
A = Po‘[l + Hl L, Hl lnl N Hl lnl 2 Hl ]
i-1 i-1"i-2 i=-1"i-2"° 1

(5.9)

Considering now values of i > k, we obtain, using (5.8)

} (5.10_)

Further, equations (5.7) and (5.8) both continue to hold provided

Py = Ayop My

I =My Mo

Mpoaliyy * Ty
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that in (5.8) a possibly different constant is used and the
range of i is altered to k £ i £ N-2. The (new) constant in

(5.8) may be evaluated by using the case i = N-2, from which it is

found that the constant is —PN. This gives
I
N-1
A o L. =P ——=
N-1N-1 T W A
i
v-2 . y-2 Ty-1
Mz Tyep = Py *
| Iy-2  My-2 g1
and in general
n. ILIL 1S N 1
AT = Py [ N O S .S L } (5.11)
M M30i49 T334 Mya1 -
for i = k+l, k+2,...,N-1.
(5.9) and (5.11) give together
P UPURT PO PO (PR PR
Ay = ﬁQ-[l + LN e e PPt }i=l,2,..k-l
i i-l  i-lTi-2 1-11i-2 "t
P I, I.I. LI, ... I
Ai _ ﬁﬂ;[ EE i+l R i+l N-1 } i=ktl, .., N-1
i LM MMy ERFERERIN

. (5.12)

Remembering the result in the paragraph preceding equation (4.11)
in the previous chapter, it may be suspected that the two functions

in (5.12) "dovetail" at i = k. If this were so, then we would have

S M 1Men oM I LI SR
) IR P i 2 |

k-1 M o Ty e Mg My

.. (5.13)




(£I.4) notdsups matbeserq dasvesteq odd nt dluaer eodd pulvedmsmes
gnotdonut owd odf dedi bedosqawz od yvem Ji (xé:;gsr{o auokvorg odd ol

oved bluow ow medd (o2 etew aldd 1T .o = I de "[ietevob" (Q[.2) at

Lot ey g AR s 2 L v L R
. AR Bl S s s AL T SRR R
I Qual el Lot

L™ pealaf A"

(zr.2) ...
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Putting PN = 1-P. and solving for P., the eqguation

0] 0’

LS SR | S . L...I o
TpeeeMe Myeee Mgy My -lya
PO =
Hl Hlng HlHE"'HN-l
1+ =+ + ...+
T MM M foe My,
N-1 N-1
= { z o, }—{ z pl} (5.14)
i=k i= ’
where Py has been defined previously, is obtained. To show that

PO’ defined by (5.14), is the probability of absorption at zero,

PO is written more fully as PO,k' Then if Pojk.satlsfles the

boundary conditions

Fo,o=%t » Poy=0

as well as the difference equation

Fo,k = Mk Po k-1 * (l*nk'"k? Fo,x T Mo, k41

for 1 = k £ N-1, then P is the required probability P(O,k).

0,k

Clearly the boundary conditions are satisfied, and by writing the

difference equation in the form

T (Po, k-1 = Po,x) = "lFo,x

B PO,k+l)

it is easily verified that the difference equatibﬁ is satisfied

by (5.14). Therefore PO k= P(0,k), the required probability. = : -
, ’ i

i
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Equations (5.12) and (5.14) may be used jointly to
show that the mean time the process is in state Ei before

absorption is

N-1 i-1
Z P Z P
J=k J=0
n; = —_—_— i=1,2,..., k
N-1
}; pj Hl Pi1
J= .
(5.15)
k-1 N-1 ’
Z 3 Z 3
J= J=1 ' :
ng = — i=k+l,...,N-1
N-1 '
J=0

which verifies (5.5), and clearly the mean time until the process

is absorbed at one or other barrier is

E: n, (5.16?

Furthermore, the variance may be obtained immediately by noting
that the various elements in (5.15) constitute the kth row in
(I-Q)-l, where Q is the submatrix of P corresponding to

transitions between transient states. Thus if we define
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N-1 i-1
P Py
J=k J=0
Ok =
N-1
}Z pj H1p1—l
J':
(5.17)
k=1 N-1 .
¥ Py
J=0 J=1
and wik =
N-1
J=0

then the variance of the absorption time is given by equation
(4.19), where u(k) is given by (5.2) and (5.3).
. The results (5.1), (5.2), (5.3), and (5.4) may now be

applied directly to various genetical models.

5.3 A selection and dominance model

Consider first a haploid population of size N where the
number of individuals which are A is g Markovian variate with

transition probabilities

=-i(N-i)N-2-{? - Le(an ™t + h(N-ei)N'l)}-= I,

Pi,i-1

N2 =1 R N
Pi 341 = 1(N-1)N ;{1 + s(iNT + h(N-el)N ?}-_ ny (5.18?
Pi,i =1 -0p,

i,i-1 " Pi 41

Here s and h are constants for which s is O(N'l) and h
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is in (O,l). This hapleid population approximates to a diploid
population‘with genotypes AA, Aa, and aa having selective
advantages l+é, 1+sh, and 1 respectively, with the three genotypes
occurring with frequencies specified by the Hardy-Weinberg law.
Thus s is a measure of selection and h a measure of dominance.

This model generalizes a case considered by Moran (1965) which is
discussed later. Then using the previous results it méy bé stated
immediately that the probability P(O,k) that the process is

eventually absorbed at O, given initially k A individuals, is given

by
N=-1 i . i
[pgs(w‘lﬂ»h(m-ejm'l) ]
142s( 3 tn(m-23)8Y)
i=k  J=1 ‘ S
P(0,k) = (5.19)
SN /

,}; f& {l~%S(JN'l+h(N-2J)N'lZ_]

l+%s(jN-l+h(N-23)N-l)

with empty products conventionally defined as unity (c.f. the
definition of pg ).
Further, £he mean number of times nj the number of.A
individuals is J is given by (5.15) where
! l%f{ﬁfl+1KN2ﬁN4}
Py = ;11 - — (5.20)

4l+%s-{jN-l + h(N-2j)N-£}

The mean time until absorption will be the sum of the ng

(i=l,2,...,N-l), while the variance of the absorption time is given
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by (4.19) and (5.17), if py is defined as in (5.20).
Now the above quantities, while being exact, are awkward
and it would be useful to find approximstions for them. Since

s is O(N-l) and therefore small,

1 1 %s{ gt o+ h(N-2j)N-l}

may be approximated by

exp [ T {jN'l + h(N-2j?N-l} }

Thus p; may be approximated by

€xp ['S {%i(iﬂ)_l\l'l +-.<hi-hi(;+1?N'l } ]

Therefore P(0,k) may be approximated by
N-1 ’

- lii. L ini - mi(s = i
fk xp[ 2{2(‘+1?1\1 +h h(+l?1\T }}d

N-1

f exp [- 2 {%i(iﬂ)m'l + hi - hi(ie))WE } ]di
O . - . .

1
f exp [-ahx-%ocxe(l-ah) dx
~ b ‘

~ : (5.21)

f exp |:-O£hx - %ax2(1-2h) dx
. )

= P(0,k), say, where & = sN and k = Np.
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Similarly, it may be shown after some algebra that the exact

mean absorption time may be approximated by the expression

NE[P(O,RZ/?2y-l(l-y?-lexp{h1y+%ay2(l-Ehi}b/yexp -haz-%uzg(l-Eh?dz ay

+-{1-P(o,k{}h/}2y'1(l-y)'lexp{ﬁay+%1y2(l-EhZ/}exp(-hJZ~%%ZQ(l-2h?dZ ay ]

Y ¥
oo (5.22)
where the terms under the outer integrals constitute an
approximation for the pseudo-transient function. Similarly an

approxima’gion for the variance can be made. We now wish to compare
these approximate values withvﬁhose given by diffusion methods,
gsince with s being O(N_l) the drift and diffusion ccoefficients

m(x) and v(x) are of the same order of magnitude. Using the
trans:Lt:Lon probabllltles (5 18), we have, in the notation of

Chapter 3, when time is measured in units of l\]2 birth-death events,

m(x) = ax(1l-x) <x + h{1-2x%) }

v(x) 2x(l-x)

Then usmg equations (5 9) and (5 lO) , the diffusion approximation

to the probability P(0, k) is given by
1 .
f exp |:-hocx - %Ozx2(l—2h) dx
5 _
L
f exp [-ho.’x - —%axg(l—Eh) dx

(o]
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which is identical to the approximation P(O k), given by equation
(5. 21), and is therefore close to the true value (5. 19)
Slmllarly, it may be shown that the diffusion approx1matlon
(c.f. equation (3.30)) for the mean absorption time is identical
to the approximation4(5.22) and hence close to the tzrue value,
and that the complete pseuao-transient function is similarly
closely approximated. Further, the diffusion approximation to the
variance is also close to the true value.

The above model generalizes a model considered by Moran
(1965) where the selective advantages are 1, 1+d, 1. Moran has
found-the»mean absorptionltime in this case by using the symmetry
of these selective advantages and considering an associated process
with a single absorbing boundary (at zero) and a reflecting boundary
at 2N. This allows the mean absorption fime to be found by
convolutions. The present method uses entirely different methéds,
since the symmetry property is absent.

5.4 Haploid populations with selection depending
on gene frequency.

A second use of the methods given in section 5.2 is in
the case of an overlapping generation haploid population of size N -
with selection depending on gene frequency. It is supposed that

the two individuals A and a have selective advantages

1+ sw(x), 1 (5.23)

respectively, where x is the proportion of A individuals,
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s is O(N-l), and w(x) is an arbitrary polynomisl which is 0(1).
Individualé are chosén at rapdom to die and are replaced |
immediately by a new individual whose probability of being A

is proportional to x{1 + s w(x)} and whose probability of being a
is proportional to (1-x). Thén if the number of A individuals

is 1 = xN, then i is Markovian with transition matrix

Py, 5.1 = x(l-x?/-{l + sx W(X?j}

By 1y = (2) {1 e } /{a+ o ) } (5.24)

1-p

Pi,i i,1-1 ~ P

i,i+l

Then using the values (5.24) in equation (5.14), the
probability that the A individuals are eventually lost from the
population, given initially k A individuals, is given by (5.14)
with .

l -
p. = ] [l.+ s w(3/m) ] (5.25)

i
J=1

Now Py may be approximated.by

ﬁ exp [— s w(j/m) }
3=l :
~ exp [-f{ % w(y?d,y ] ‘ | (5.26?»

where @ = Ns and x = iN© .  Thus (5.14) is approximated by
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- W(x) dx

(0, k) L - (5.27)

-aw(x) | ax

where W(x) is the indefinite integral of w(x)and p = L,
In order to find the diffusion approximation to P(O,k),

it is noted that (5.24) implies, in the notation of Chapter 3,

1l

m( x)

ax(1l-x) w(x)

]

v(x)

2x(1-x)

where time is measured in units of N2 birth-death events.

Therefore, using (3.9), the diffusion approximation to P(O,k) is

b/\ exp F_ a_W(x? | ax

- 1.
\/ﬁ exp | - a W(x) | ax
which is identical to (5.27), 80 that the diffusion approximation
is close to the true value given by (5.1k4) and (5.25).

Further, the mean time until homozygosity is given exactly
by (5.15) and (5.25). Using the approximation (5.26) for Py

it follows that this mean time is approximated by
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NE[F(O,k{/Px_l(l-X)_lexp[aW(x)1/1exp[%XW(y)l dy dx
° 1 ° 1
¥ (1—P(o,k)1/ﬁx’l(l-x)'lexp[aW(x){/mexp[ am(y)lay dax } (5.28)

b X

and using (3.50), this is‘found to bé identical to the diffusion
approximation, thch is therefore close to the true value.
Similarly the pseudo-transient function.and the variance can be
shown to be closely approximéted by diffusion expressions.

Finally, it is interesting to note the various forms that
(5.27) assumes in the important particular case when w(x) is a
lineaf function of x. We put aW(x) = yx + %Bxg, and nofe
immediately that in the case y = B ; 0 both the diffusion
approximation and the true probability both give P(O,k) = l-kN_l.
It will in fact be more convenient for ouf purposes to‘consider
the complimentary function P(N,x) = 1 - P(O,k). Then for y =B = O,

-1

P(N,k) = kN 7, and this value provides a standard against which

the various values of

ﬁ exp | - 7y - %By2 dy
B(N, k) = 0 ' (5.29)
. 1 - i : _ .
1.2
f exp | - 7y - 3By dy
0 - -

may be compared:

For B = 0, (5.29) gives
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- 1 - exp( -~
) - R

which may be compared with the exact value found in Chapter 2.

When B # 0, 1t is useful to investigate the various forms that

(5.29) takes for various .
(1) y =0

Equation (5.29) gives

f exp(-4py°) dy

f exo(- 1py°)ay

0

For B > 0, B(N,x) > K while for B <0, B(n,x) < eyt

(11) 7 = B
This case corresponds to selective advantages

1+ t(x-t), 1

where B = tN. Equation (5.29) gives

p o -
a1

f exp | By - 3BY dy

o “

1

fexp By - 2By | dy

0

B(w, k)=

The nature of the curve of P(N,k) against p may be of different forms.

Suppose initially that B.> O. Then




dp - =1

]
b

so that in the neighbourhood of p = 1, P(kN-l) S KT, However

[@;_k)_ _ __exp(-B/32)
| 0 A '

2
dp f exp(-38y°) dy
. .

I

and numerically itkis found that the solution of the equation B/(0) =1 is
approximately B = 26.25, and that for B less than this value f’(O)‘is
greater than unity, while for B greater than this value P’(O) is less than
unity. Thus for B < 26.25 the curve of P(N, k) lies entlrely above the line
B(w,x) = 1yt s while for B > 26.25 the curve is initially under this line,
but sﬁbsequently crosses it and then remains above the lire. Thus‘if

the coefficient of the selective advantage is large and the initial value p
is small to moderate, the ;arge initial selective disadvantage has a strong
effect (desPite large selective advantages for large kNil) It is easily

-1

checked that the "crossing-point", i. e. the solution of P(N,k) = kN —,

lies in (o0, u) for all B > 26.25. In the case B < O it also follows that

the curve lies below the line B(N, k) - wy L.

(iii) 7 = 28
This corresponds to selective advantages
1+ t(x-3), 1

and we find
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b
q[\ exp [ 28y(1-y) } dy
B(n,x) = -
- 1
U/ﬁ exp [ 28y(1-y) } dy
o .
From symmetry, ?(N,k) + P(N,N-k) =1
and in particular B(mw,aN) =4 .

-1

)

For B > O the curve is initially below the line P(N,k) = kN
crosses the line at %, and then lies above the line, while for

B < 0 the reversgse is the case.

(1v) 7 = - 28

Here the selective advantages are
1+ t(x -2/, 1

and we obtain

U/w exp [ 2 8y - 38y ] dy
0

JF exp [‘% By - 36y° } dy
. ‘

Considering first the case B > 0, it is found that P’(O) < 1,

and B/ (1) < 1 for B < 26.25, /(1) > 1 for B > 26.25. Thus for
B < 26.25 the curve lies entirely below the line B{N,k) = kN_l,
for B > 26.25, it is initially less, but crosses over and is

subsequently above the line. For B < O it may be checked that the
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curve always lies above the line.
(v) 7 = -8

| It is easily verified that P(N,k) < kN-l Tor negative B,
but B(N,k) > N for positive B. -
gzil .

‘ When v i§ of the same sign as B the nature of the curves
1s obvious.

It is interesting in the present case to try to find bounds
for:E(O,k) which are simple functions, despite the fact that an
exact expfession for P(O,k) is known. This is because the exact
expressions are unwieldy, énd also since the bounds will be of a
form similar to the diffusion approximation, thus giving.a measure
of the error ofthe latter. As an example we consider the case

y =0, B> 0. Then the diffusion approximation for P(0,k) is

B(0,k) =[ fl exp('-%ByE)dy] + [ fl exp(-%Byg)dy}
. . _ . .

It is simpler to consider the associated process for which i -+ i
transitions are ignored. This will not affect P(O,k) and gives as

new transition probabilities

D (2 + tx)-l

i,i-1

It

P (1 + tx)(2 + tx)'l

i,i4l

where x = iN-l and t = BN-l. Then in order to find a strict lower
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bound for P(O,k) it is necessary (c.f. Chapter 5) to find an

increasing function ¢**(xt) such that
E [ ¢**(xt+l) - ¢**(xt)lxt } 2 0 (5.50)

We try to find a ¢**(xt) which is of the form

Xt

o#*(x,) = u/i exp(- 487" + ey) ay | (5.31)

=00

where € is O(N—l) and Xy is the value of x after the tth transition.

Then (5.30) and (5.51) give
- X .

t+1
. 2
Ef exp(=38y~ +¢y) dy 2 0 (5.32)
x, 4 .
where all expectations are now to be conditional on Xy Putting

Zo=yXg , Oy =X g - X, X =X, (5.52) gives

6t+l

Ef exp(-48y° - Bxz + ez) dz 2 O (5.33)
. . _

If the integral in (5.33) is now written as (5 then

t+l)’
¥(0) =0, ¥ (8) = e#p(-%sag-sxa + €3)
W7(8) = (-Bo-pxte) exp(-bpo -Bxb+ed)
¥ (N8) = [-5 + (BNo+Bx-€) }exp(-%ﬁkgag-sxka+€%6)

for any A in (O,l).
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Thus ¥/ (0) = 1, ¥/ /(0) = e-px

[/ 77 ()| = (B+he®) exp J((l+s)N'l}
Hence

E [-w(a)} = tx N'l(2+tx)‘l+ %(G-BX)N_E + R (5.34)

where R £ % th-5 (B+462) exp-{(l+B)N-§} = R; say.

Thus (5.34) is = 0 if

1 en? 2 %BXN-E - %BXN_2(1+%tX)-l + Ry
. , 2 =1

and this will be so for € = BN .

Similarly (5.34) = 0 if € = ;32N'l .

Thus using the results of Chapter 3, bounds for the exact value

P(0,k) are given by

1 1
2 2 -1 2 2 -1
u/\ exp( 2By 87y )dy L/q exp( gy~ -8"yN ) ay
P s P(0,k) = -2
1 : 1
2 2 -1 2 2 -1
u/\ exp( 3By +8"yN ~)dy L/W exp( -2y -8"yN ) dy
0 ' 0 ’

which may in fact be more convenient than the exact wvalue.

5.5 Mutation and stationary distribution

If a small amount of mutation in both directions is allowed

(at rates N; for A > a and A, for a = A), then no absorption takes
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place and a stationary distribution may be obtained. This will
not be a pseudo-transient distribution and the diffusion

approximation to it is given by the Wright equation

f(X? = const [V(X)]'l exp [EL/$ m(y)/V(y}dy } (5-55)

where the notation of Chapter 3 has been used. Note that this
corresponds to equation (3.16) with C, = 0, i.e. nossymptotic
probability flux. It is nowAshown that under the usuai assunmptions
equation (5.55) provides a close appfoximation to the true stationary
distribution iﬁ the case where the transition matrix is a continuant
with P, = Hi and p = ni and diffusion approximations are

,i-1 1,1+l

allowable. Then with mutation, the probabilities Moy HN are
positive. Also, if m(x) and v(x) are the drift on diffusion
coefficients per birth-death event, then putting i = Nx, Hi and ni

may be written

=
I

%{ & v(x? - Nm(x? }

; %{ ¥ v(x) + tin(x) }

P
1l

I, . v(x) - Mm(x)

Thu = =
® ny N2 v(x) + Nm(x)

~ exP [-2m(x?-{ V(X? }fl vt } (5~56?

Now the stationary distribution A’/ satisfies

b’ [ I-P ] = 9’
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the typical equation being

Ay i+ (0 ) A gy Ty =

giving

A, I, - A
i

5 1.1 Ny_q = comstant (i =1,2,...,8)  (5.37)

It is easy to see, by using the particular case 1 = 1, that the
constant in (5.57) is zero. This is in contrast to the allocation
of the constant in (5.8) where a pseudo-transient distribution is

considered, and in fact this leads to the interpfetation of

T ]

as an asymptotic probability flux. This follows immediately by

drawing an analogy between the two second order equations

S { ot } - £ Lt } -

- A

N

and

g Myop F (A = Ay Ty =0

The first is reduced to

14 _ -
? = v(x?f(x? }- m(x?f(x? = C;
and the second to

= C

M =M Mg = G

If a true stationary distribution exists, then Cl must be put equal

to zero, and it has just been found that in the discrete case
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02 must also be put equal to zero if a stationary distribution
exists. On the other hand, if no non-trivial stationary
distribution exists, then in the diffusion case Cl has the
interpretation of an asymptotic probability flux in the "return"

process, so that by analogy a similar interpretation may be attached

to C, in the "return" discrete process.

2
Returning now to the equation
ATy m Ay =0
we obtain
MNooools

0 i-1 .

7\1—7\0<W> i=2142,...,N.
1 i

as the stationary vector of the process, where the constant AO
may be obtained by normalization. Using equation ('5.36), A; may

be approximated by

A, = 9-01?—“ exp [2 izl { m(j/N)} /{ N v(j/N)}}
i iz : :

~ 9%1(%0' eXP [Efx m(y) /v(y) dy } (5.38)

where y = JN T and x = iN Y. Equation (5.38) is identical to the
Wright equation (5.55), which may therefore bé téken as being a close
approximation to the éxact stationary distribution. It is, in fact,
possible to use (5.56) to show similarly that when the assumptions

necessary to use diffusion methods are satisfied, then the diffusion
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approximation to the pseudo-transient distribution is close
to the true distribution.

It follows easily from (5.38) that in the case where
mutation is allowed, (at the rates spécified above) the diffusion

approximation to the stationary distribution is
AEN-l AlN—l :
f(x) = const. x (1-x) exp-{- g(x):}

where £(x) is that function for which

. D .
} va (%) dx
B(w,mp) = Y 0O -
' 1
f £(x) ax
0 .

in the corresponding process with no mutation. Thus the previous

discussion on the various forms ?(N,Np)_may take may be used in
discussing f(#). For example, if, in £he case %lN = R2N=l, the
stationary disfribution is greatest for small values of x, then in
the process without mutation the probability of reaching the upper
“boundary x = 1 rather than x = O tends to be small, as would be

expected.

5.6 Mutation in one direction only

The above methods may be used to derive exact pseudo-
transient distributions in the case where mutation in one direction
“only is allowed. Consider, for example, the haploid population
discussed by Moran (1962), p.132, with N individuals which are either
A or a. If at any time £he number of A individuals is i, then after
the next birth-death event it will be i-1l, i, or i+l, with

probabilities given by
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Py i-1 gy = 1
D = (m-1)8" p,= (5.39)
1,141 / i 0y +27)
Py T 7P 400 TP i
. -1
where p, = i(1-A)N
q = Nt s (N-i)N'l.

These probabilities correspond to mutation at rate
A from A to a but nd mutation from a to A. Thus it is certain that
eventual elimination of A individuals will take place and the only
guestion is how long this may be expected to take. The transition

matrix of the Markovian variate i, the number of A individuals, is

N
(l O O e v O O
I, I - 0 0
O I[a l‘He-ne LU Y] O O
o 0 o0 cee Ly, 10
. ~

Now this matrix is identical to the general form of a transition
matrix considered in Chapter 9. We may therefore use the results
(9.9) and (9.12) found in that chapter to state that the pseudo-

transient function is given by

1 Ui My My o Ny AN peeee
7\i=H—[l+nll+n1]‘nl2+...+ﬁl ].'le, Hl:l (5.40)
i i=1 i-1"1-2 i-171-2° 7L -

fori=1, 2, ..., k
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and
Pl MM Mt Mg Tefia
7\i=H— i = + 5 = oot = (5.41)
i L S k-1""""i-1 17" il .
for i = k+l, k+2, ..., N
where k is the initial number of A individuals. It will now be

shown that (5.40) and (5.41) are closely approximated by the

expressions deri%ed from (B;MO),(B.hl), and (3.42). Using (5.39),

n; (1) (n-1)
M7 M + -1

and assuming that A is O(N-l), so that y = AN is 0(1), then

=2
2

1 - 7\1\1(1\7-1)'l

~ e {- 70 |

Therefore
gi'l"";i“a' ~ exp [- y-{(N-i+1)'l o + (N-i+&)i§} ].
i-1" i ) : | :
~ exp [— 7;/\ (N—i+n)?¥d%
1 i
s ' \
= [ (N-1+1) (W-i+L) } (5.42)

Then putting i = Nx, I, ~ x(1-x), so that for L £ 1 £ k ,
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A = x'l(l-x)'l L/h [(N-i+l)(N—i+£ylf ’ &
_ o . ]
~ 1\Tx"]'(l-x)-l\/.T [ (l-x)(l—x+y)_l— 7'dy
_ 5 . o
= Nx—l(l—y)-l [ (l-x)y_l -1 ] (5.45)

For comparison with (3.40), (3.41) and (3.42) it is necessary to put
a = 2 in the latter, sincé in the‘above modei the diffusion
approximation to the variance is 2x(l-x)N-2, and similarly put

c =7. Then the constant d in (3.L0) énd (3.41) becomes 1~y and
the identity between (3.40) and (5.#55 becomes oﬁvious, when the
different time scales are faken into éccount.

| \ Similarly, for i > k, A; may be approximated by using

(5.42) ana (5.41). We have

A, = x'l(l-x?'lb/}-l[ (N-i+l?(N-i+£?—l]7 al

i
i-k

(where again i = Nx). This leads eventually to

>
2

N1y T (1-x)7 7T [ 1 - (1-p)*7 } (5.44)

where k = Np. By putting a = 2 and ¢ =7 in (3.41) and (3.k2),

the identity with (5.44) is clear. Thus the diffuéion method‘gives
a close approximation fér the complete pséudo-transient function, and
therefore the mean time until A individuals are lost from the

population is well-approximated by (3.43).
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CHAPTER 6.

SOME NUMERICAL AND

DIFFUSION RESULTS
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6.1 Introduction

In the overlapping generation modeis discussed in the
previocus two chapters, explicit expressions have been found for
nearly all quantities of genetical interest (an exception being
that in some cases it appears difficult to derive explicit
expressipns for latent roots of transition matrices).

In another genetical model (Wright, (1951)5 all the members
of a haploid population die simultaneously and arehfeplaced by a
new generation of the same size as the old. If states correspond
to the number of A individuals in any generation, then in this
model transition between all states in one generation is possible
(except, of course, wheﬁ mutation is absent, so that there are two
absorbing states). This model is much harder to deal with than
those for which £ransition to neighbouring states only is possible.
In fact the only results known explicitly for this model occur
when selectlion is not allowed. However it is easy to derive
diffusion approximations for most gquantities of interest, and it
may be conjectured, after the previous two chapters, that the
diffusion approximations will be reasonably accurate. In this
chapter numerical results are given which support‘this conjecture
but which present other problems.

The four quantities examined are (i) the probability that
a given allele is eventually lost from the pépulation; Qii) the
mean time for elimination of one or other allele; (iii) the_

probability that a given allele is lost by the nth generation;
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(iv) the dominant non-unit latent root of the transition matrix.

‘ The numerical results were obtained by using an electronic
computor and are therefore subject to rounding error. Most of
the results were obtained by successive powering of a transition

matrix, and a check sum of the elements of each row for each powered

matrix was obtained. This check sum differed from unity at the

most in the sixth decimal place, so that the numerical results
given here may be taken as being correct to the order in which they
are given. In view of the size and speed of the computor the |
population size (twelve) considered is extremely small, but is in
fact sufficient to draw.useful conclusions.

Tt has been thought by some writers (Fisher)(193%0),
Kolmogorov (1959)) that diffusion methods break down~near Jche
boundaries Withiﬁ‘which the variate under consideration lies and that-
branching process techniques are necessary to examine the behaviour
of the process near such points. This has led, amongst other
things, to the necessity for "fusing" the branching process results
with the diffusion results in the neighbourhood of the boundaries.
However, it is difficult to see from the nature andlderivation of
the diffusion equation why diffusion results should not hold down
to the boundaries and the numeriéal results obtained here suggest
that in fact the diffusion results may be more accurate, in an
absolute sense, near the boundaries than in the interior of the

interval. Such a result has also been found numerically by
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Knox (1962), some of whose results are abstracted in this chapter.
In fact aréuments at the end of the chapter suggest theoretically
that in the case of the mean absorption time the diffusion results
will be more accurate ih an absolute sense near the boundaries,

but on the other hand less accurate relatively than in the interior.

This is observed here and in Knox's numerical results.

6.2 Absorption probabilities

We consider first the probability that the A individuals
are eventually fixed in the population, given that they have
selective advantage l+s, where s is O(N'l) and N is the population

size, The transition matrix is

e {a )L () et Gn ) )

where p; = (l+s)i(N+si)-l. Bounds for absorption probabilities
in this model}héve beeﬁ given in Chapter 2 (as case (3)). To
obtain the numerical values the transition matrix is réised to
the 1,2,&,...,128th power, by which time, for N = 12, the
probability that both alleles A and a are still present is very
°)

~small (of the order 10 ~ ). The diffusion approximation is

obtained by putting

m(x)
v(x)

ax(1-2) } (6.2)

x(l4x)‘

where @ = Ns, in equation (3.8), with Po(p)vreplaced by Pl(p)

and with boundary conditions Pl(O) = 0, Pl(l) = 1. Thus the
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diffusion approximation Py(p) to the probability of eventual
fixation of A individuals in the population, giVen initial

proportion p, is given by

_ L1 -exp (—aap) ) (6.2)

For s = 0, diffusion methods give Pl(p) = p, which is the

“exact value. By giving s various (poéitive)'ﬁalues we

are able to compute a set of exact probabilifies and diffusion
approximations for the probability of fixation of A individuals,

for various values of p. These are tabled below (Table 6.1).

It will be noted that the diffusion approximations.
are close to the true values and also always exceed the true
values, as was shown would: happen in Chapter 2. The bounds
in Chapter 2 may be applied and are reasonably sharp; for
instance in the case s = .04, 12p = 6, the bounds derived
from (2.7) and (2.9) are .6134 and .6178, and the arithmétic
mean of the bounds éives the exact value to the order of

accuracy considered.
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Table 6.1

Exact values and diffusion approximations (D.A.) for the probability
of fixation of a gene having selective advantage 1 + s in a population

of size 12, p being the initial proportion.

! ‘ \ , ]
"12p || Exact D.A. Error| Exact. D.A. Error| Exact D.A. - Error
s =0 s = .02 s = .0k
f R

1 .0833 |.0833 0 1027 .1029‘.0002 .1238 | .1246 | .0008
2 L1667 |.1667 0 .2013 | .2017].000k || .2382 | .2396 | .00LL
3 .2500 |.2500 0 .2962 { .2966| .000k || 3439 | .3458 | .0019
L .3333 |.3333 0 .3873 | .3879].00061 .4h17 | 4438 | .0021
5 L167 | 4167 0 L7ho | L7551 .0006] L5320 | 5342 | L0022
6 .5000 | .5000 0 .5591 { .5597].0006{| .6156 | .617T | .0021
7 .5833 | .5833 0 L6hOL | .6L06|.0005 || L6928 | L6948 | .0020
8 6667 | L6667 0 L7178 1 . 71831 .0005 || L7642 | . 7660 | .0018
9 .7500 |.7500 | © L7926 | 7930 .000k || .8302:} .8317 | .0015

10 .8333 | .8333 0 .86L5 | .8648|.0003 || .8913 | .8923 | .0010

11 L9167 | L9167 0 .9336 | .9338|.0002 || .9478 | .9483 | .0005

s = 06 s = ,08 g = .10

1 463 | 1482 | .0019] L1699 | .1733|.003L || L1940 | .1994 | .0054
2 2764 | 2796 | .0032| .3153 | .3209|.0056 || .353%9 | .3626 | .0087
3 .3921 | .3962 | .o041| .4397 | .Lu6T|.0070 || .4858 | .4962 | .010k
4 L4951 | L4996 | .oobks5| L5463 | .5539.0076 || L5946 | .6056 | .0110
5 .5866 | .591% | .0OLT| .6376| .6453|.007T || .684L | .6952 | .0108
6 L6681 | .6726 | .00L5} .T159 | .T231{.0072 || .7586 | .7685 |.0099
T LThO6 | 7T | .ook3| .7830 | .7895(.0065 || .8200 | .8286 |.0086
8 .805L | .8087 | .0036| .8406| .8460|.0054 ||.8707 |.8777 |.00T0
9 .8626 | .8655 | .0029) .8900 | .89k2|.00k2 ||.9127 |.9180 |.0053

10 .9138 | .9158 | .0020{ .932k | .9352|.0028 || .9kTk | .9509 |.0035

11 L9594 | ,960k | .0010| .9688 | .9702}.001k {|.9762 | .9779 | .00LT
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6.3 Mean time for homozygosity

The vector of p of mean times until homozygosity for

various initial states, is given by

p=(T-7y ' (6.3)

where Q is the submatrix of P corresponding to transitions
between transient states and ¥ is a column vector of unities.
The diffusion approximation is found by solving (5.5) with

the coefficients (6.1). The solution obtained is

-1) b
N eam(l P/ eaxy -1
U(p) == 200 dy
oabeT -1 Yoo y(3y)
o2 ax(l-p) Sy
+ 205 f 205 dy :l (6.ll-)
e e y(l-y) V -
where time has been rescaled to generations. The integrals

have to be evaluated numerically by using Simpson's rule.
By using (6. 5) for exact results and (6. 4) for the diffusion
approxlmatlon, Table 6. 2 below may be drawn up. Note that

the mean times given are in terms of generations.
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Table 6.

2

Exact values and diffusion approximations (D.A.) for the mean

time until homozygosity, p being the initial proportion of A

genes and s the selective advantage.

12p | Exact D.A. Error|] Exact D.A. Error! Exact D.A. Error
s =0 s = .02 s = .0k
1 6.147| 6.884 | 737 6.443] T.200| 7574 6.715 T.490| .7T75
2 9.766(10.813 |1.047(|10.164{11.231|1.06T7[10.505 11.590|1.085
3 12.306(13.496 |1.190}j12.680{13.886|1.20612.963% 14.181|1.218
I 14,004 {15.276 |1.272]|14.271|15.553|1.282] 14 . kol | 15,707| 1.283
5 14.984116.300 }17316{|15.095|16.414|1.319{15.082}16.391|1.309
6 15.305|16.636.| L.33L||15.240|16.566|1.326|15.056(16.359|1.3%03
T 14,984116.300 |1.316||1k.752{16.054!1.302(14.416|15.686|1.270
8 14,004115.276 | 1.272||13.636]14.887|1.251[13.190|1k.ko2| 1.212
9 12.306(13.496 {1.190{/11..860|13.025|1.165}|11.367|12.490{1.123
1.0 9.766{10.813 | 1.047|| 9.328{10.351|1.023| 8.873| 9.857| .98k
11 6.147) 6.884 | .737) 5.840| 6.559| .Ti9|| 5.535| 6.226] .69
s = .06 s = .08 s = .10
1 6.959| 7.752 | 793! T.173| T7.979] .806|| T.356{ 8.1T71| .815
2 10.78%|11.881 | 1.098(}10.998|12.100}1.102}|111.153|12.248|1.095
3 13.156!14.375 | 1.219||13.262| 14 .468|1.206(|13.289 |14 . 465[1.176
L 14,469|15.739 | 1.270||14 . 417 15.655]1.238||14.280|15.466]1.1.86
5 14,958116.238 | 1.280|j14.739|15.968{1.229(14 . 4kk2|15.602|1.160
6 14,770|16.030 | 1.260||14.403{15.599{1.196||13.976|15.089|1.113
T 1%.998|15.215 | 1.217}{13.521| 14.666]1.145(13.006|14.062|1.056
8 12.689|13.843 | 1.156||12.154|13.232|1.078||11.606|12.595| .989
9 10.847|11.912 | 1.065(10.318{ 11.312| .994|| 9.795|10.708| .913
10 8.h15| 9.347 | .932| T7.966| 8.839| .873|| 7.535]| 8.343| .80E
11 5.239 5.895 | .656| 4.958| 5.575| .61T|| %.695| 5.270| .575
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In the first place it may be noted that the diffusion
approximation always exceeds the true value. That this will
always be so for sufficiently large N may be proved in the
case 85 = 0 as follows.r Firstly we note
Lemma, 6.1

Let x be the proportion of successes observed in N

Bernoulli trials, with constant probability p of success. Then

E-{ x-%nlx +(l-x) {n(l-xj }-z pAnp+ (l—p){n(l;p) +(8N)fl

whenever N T = p = (N-l)N—l and N 2 NO»(NO a suitable constant).
Proof

(2) It is sufficient to prove the lemms for vt s p =<3,
by symmetry, and it is therefore assumed that p lies in this
range.

(p) If | |
Wx) = x4n x + (l—x)'ﬁn(l—x)

then the lemma asserts tha£ '
E{ ¥(x) - ¥(p) } = (2m)" (6.5)

Put © = x - p, the deviation of x from its expected value.

- Then the left-hand side in (6.5) becomes
E{ o/ (2) + 35277 (p) + 2%/ (p) + 2po W V) (o)

+ )+ E8 e+ 10)p) |
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where 6= 6(p) and lies in [0,1]. Now from the definition of

W(P) ’

W”(p? = p'l(l-p?'l, W”’(p) = p'e(lrp?'e(Epfl?,

ol iv?(p}' = 2p"5(1-p) '5(1-5p+5p2),

¥ )= 671 Hep-0) (1-2ps26”), W () >0 for i (0,1)
Also; from the central moments of the binomial distribution,

E (5? = 0, E(ag? = p(l-p?N-l, E(65? = p(l-p?(l-2p?N_2,

B (5) = 5%(1-0)20 2 p(1-5) (65260411,

B(5”) = lope(l-P)g(l-EP)N-B " p(l-p)(l-ep)(‘1-12p+12p2)N'”

and E(86) > 0. Thus the left-hand side in (6. 5) may be written

(em) ™ + (1-pip }{ lEp(l-p)Né}

+{ -5+27(p-5") -30(p-2") " }{ 126°(1-p)° NB}

| N
+{ -(1-2p) 2(1—2p+2p2)(1-12p+12p2)}{ 20p° 1-p 2 Nl*}, S

Now for O £ p s % , 1-p+p2 > 3/,
2 2,2
-5+27(p-p") - 30(p-p7)~ = -
2 2 2
and -(1-2p)“(1-2p+ep”) (L-12p+12p~) =z -

Thus the left-~hand side in (6.5) is greater than or equal to
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(2N) -1 { l6p(l-p)1\]2} -5{ 12p (l-p) NB} {2Op5(1 P)B A}

- (21\1? 'l+{ 16p( 1-p?N2 }-l [1 } 20{51)(1_15?.1“}'1_ L»{spe( l_p?e 2 }'11

It is easy to show that the expression in square brackets is
always positive for N 2 lOO and p 8N s 80 that the required
inequality holds for these values. v (6.6)

To show that the inequality holds for p = N-l,

2N-l ...,TN_l for sufficiently large N, we note that since

(l-x)'ﬁn(l-x) is a convex functlon of x, then

{ (l-x) 2n(1-x) } (1-p) %n(l-p)
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