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various genetical populations. I was introduced to this subject 

by my supervisor. Professor P.A.P. Moran, who has suggested 

most of the problems considered here and who has guided me 

throughout in their investigation. To him I give my most 

sincere thanks.

The contents are the original work of the author, except 

that Chapter 2 is based on a paper (Ewens and Gani, (1961) 

written jointly with J.M. Gani. It is difficult to sort out the 

contributions of Gani and myself, and of the part of the paper 

considered, roughly half is due to each author. Some material due 

entirely to Gani has been omitted here. Chapter 3 is based on 
a paper (Ewens (1963a)) of the author, but extra material has been 

included in this thesis. I should like to record my debt to 

Dr. G. A. Watterson for discussion on this paper. Chapter k is 

based on a paper (Ewens (1963c)) of the author, while the material 

of Chapter 5 is being prepared for publication. Chapter 6 is 

similarly based on published work (Ewens (1963b)), but extra 

material is here included. Chapters 7 and 8 jointly follow 
published work (Ewens (1963d)), as also does Chapter 9, (Ewens, 

(I963e)).
I should like to thank Mrs. Betty Moore for the excellent 

work she has done in typing this thesis. _
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SUMMARY

The various chapters form a consecutive discussion of 

the problems considered in this thesis. At the same time each 

chapter is to some extent self-contained and treats a particular 

facet of the main discussion. Apart from Chapter 1, which is 

introductory; the chapters may be summarized as follows.

Chapter 2 presents a general method for determining survival 

probabilities for any given allele in various genetical models.

If exact results may not be found a method for determining 

bounds is described. Comparison is then made with the results 

obtained by other methods. In Chapter 3 two concepts used in 
some of the remaining chapters are introduced. The first of 

these is the diffusion pseudo-transient distribution; together 

with an associated pseudo-transient function. These were derived 

originally to give a meaning to a function obtained by formal 

operations on a diffusion equation. (in Chapters k, 5; and 9 

some exact (discrete) pseudo-transient distributions and functions 

are introduced). The second concept introduced in Chapter 3 is 

that of an "almost-invariant" function; which is essentially either 

a martingale or a semi-martingale (cf. Doob; (1953)); and which is 

used subsequently to derive bounds for exact values for which 

diffusion methods supply approximations. Chapter 4 extends 

previous work by Watterson (l96l) on the mean time until homozygosity
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in the genetical model first introduced by Moran, (1958a-) •

The methods used here differ from those of Watterson. Chapter 5 

extends the results of Chapter 4 and provides methods for deriving 

most functions of interest when the transition matrix of the 

Markovian variate under consideration is a continuant. This 

allows a treatment to he made, amongst others, of the case where 

Moran* s model is generalized so that selective advantages may 

depend themselves on gene frequency. In Chapter 6 numerical 

values, obtained by using an electronic computor, are compared 

with diffusion approximations in the genetical model of Wright 

(l95l)^ for which very few exact results have been found. The 

result of this chapter is to show how remarkably accurate diffusion 

approximations can be even for extremely small population sizes.

The remaining three chapters treat diploid populations; Chapter 7 

covers the case where selective advantages are constant and 

Chapter 8 the case where they depend on gene frequency. For these 

two chapters exact results seem very difficult to derive and 

diffusion approximations only are considered. Chapter 9 is 

different to the remaining chapters in that it provides an example 

of a case where diffusion methods should not be used. Here the 

results obtained by previous authors are discussed and it is argued 

that diffusion methods have been used when they should not, and 

that even if diffusion methods were applicable, they have been used 

in the wrong way. An alternative method of analysis, and indeed an
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alternative problem to be discussed, are proposed and some 

exact results are obtained.



CHAPTER I

INTRODUCTION



1 .

This thesis presents a discussion of the stochastic 

behaviour of various genetical populations. It will he concerned 

with some characteristic of the individuals in the population under 

consideration which is controlled by a single locus on a chromosome, 

so that for example questions of linkage will not be considered.

Thus for convenience individuals will be referred to as being (say) 

AA, meaning that this is the genotype at the locus under 

consideration. The population will either be haploid, in which 

one of two possible alleles A and a is allowed at the locus, or else 

diploid, for which the possible genotypes are AA, Aa, and aa. The 

case where more than two alleles are allowed at any locus will be 

considered only for the case of self-sterility populations discussed 

in Chapter 9« The individuals will throughout be regarded as being 

monoecious, so that any individual may act as male or female parent. 

This presents a significant simplification over the case where the 

individuals are dioecious, that is either male or female, which is 

discussed later in this chapter.

In all cases the population size will be regarded as 

remaining effectively fixed (at a constant usually denoted W). Such 

an assumption will limit the application of the results obtained, but 

qualitatively the results should hold when the population size is 

reasonably stable. The above restriction is made in the first 

instance so that the population will not die out completely, but is 

also needed, as will be shown later, to ensure that for the 

populations under consideration a Markovian variate may be found in
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terms of which the behaviour of the population may be described.

The restriction to constancy of population size may be 

relaxed immediately to the case where the population size assumes 

a cyclic sequence of values, say ... ... , as has

been observed approximately in the Canadian lynx population. In 

such populations it will often be the case that a variate may be 

found which is Markovian in the sense that the values of this 

variate at successive instances when the population size is (say) 

form a Markov chain. In this case the transition matrix would 

probably be extremely complicated and of no direct use in describing 

the population behaviour, but the Markovian property by itself will 

be sufficient for the application of some of the methods considered 

later. It is, in fact, easily shown that if k is moderate and the 

are large, then the population behaves effectively as a population

of fixed size N, where kN = N-.̂  + ... + N.J 1 k
The fact that a single Markovian variate can often be 

found which describes the population behaviour will be used frequently 

in this thesis, and attention is restricted to the case where such a 

variate exists. The existence of such a variate will be useful in 

two ways. In the first instance it may be possible to use directly 

the transition matrix of the variate to find quantities of interest 

to the geneticist. Secondly if the transition matrix is too 

unwieldy for direct use, it will be possible in many cases to use 

diffusion methods to approximate to the required quantities, and the 

application of such methods depends on the Markovian nature of the
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variate under consideration. The case where no Markovian variate 

exists hut where a "quasi-Markovian" variate may he found has heen 

discussed hy Watterson (i960, 1962), who has shown that such 

variates may he treated hy using diffusion methods. However for 

these variates it would he very difficult to find the hounds on 

exact values which are derived here for the case in which a 

Markovian variate can in fact he found.

The restriction to the case where a Markovian variate 

exists is not so severe as might at first he thought. In Chapters 

7 and 8 a single Markovian variate may he found for diploid 

populations, which allow three possible genotypes. In this case 

only the Markovian nature of the variate is used to justify the 

use of diffusion methods and the transition matrix is not considered, 

In Chapter 2 a situation is discussed when a number of geographically 

distinct subpopulations exists for which the different suhpopulations 

have different genetic properties (e.g. different selective 

advantages for a given allele). Nevertheless, given a sufficient 

amount of migration between the suhpopulations it is possible to 

find a single Markovian variate describing the joint behaviour of 

the suhpopulations. The restriction to monoecious populations 

mentioned above is made so that a Markovian variate may he found; 

for dioecious populations this seems impossible under any reasonable 

population model.

If the population size remains fixed, then in general one 

or other of the alleles will eventually he lost from the population 

hy random elimination. Here the probability that the allele so
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eliminated is A, the mean time until elimination, the variance of 

this time, the probability that one or other allele has been 

eliminated by a particular time, the transient behaviour of the 

population, and other quantities, will be discussed. The effect on 

these quantities of selection, dominance, mutation, migration, and 

other influences, is considered. In the case where both alleles 

may mutate, a stationary distribution may be found for any allele, 

and the effect of the above influences on this distribution will 

also be considered. Some discussion is given to finding the latent 

roots of the transition matrix under consideration, and in particular 

to the largest non-unit latent root. This is done since by writing 

the transition matrix and its powers out in spectral form it is 

clear that these roots, and in particular the largest non-unit root, 

describe in a sense the rate of approach of the population to 

homozygosity (i.e. only one allele present), or to the stationary 

distribution in the case where this will exist. However the 

usefulness of the latent roots in this respect suffers since in 

general the corresponding spectral matrices are not known. It may 

in fact be more useful and even easier to find simply the mean and 

the variance of the time taken until homozygosity.

It has been mentioned previously that in many cases where 

exact treatment is too difficult it will be often possible to use 

diffusion methods to find approximations for the various quantities 

under consideration. Such diffusion methods are outlined in 

Chapter 3; "but here a slightly different derivation is used which 

enables bounds to be obtained for the exact value being
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approximated. The application of diffusion methods in genetics 

is very wide, and has the virtue that many of the resulting 

expressions are given in terms of quite simple functions. For this 

reason diffusion approximations may even he preferred to exact 

values, although the latter are known, if the expressions for the 

exact values are complicated. Needless to say diffusion methods 

have sometimes been used uncritically, and in Chapter 9 a population 

is discussed for which this is true. In Chapters 2, and 

exact values are derived which are shown analytically to he close 

to their various diffusion approximations, while in Chapter 6 a model 

is discussed where the diffusion approximations and exact values are 

compared numerically.

Broadly, the results of the thesis may he summarized as

follows.

(i) Diffusion methods provide very close approximations to 

exact values when they are applicable, even when the population size 

is small.

(ii) When diffusion methods are inapplicable the results 

derived formally from them are valueless.

(iii) It is possible to derive a diffusion approximation and 

in some cases exact values for a distribution which describes in a 

sense the transient behaviour of genetical populations, and this 

distribution may be used to derive other functions (e.g. absorption 

probabilities, mean absorption times, mean occupancy times, variances 

of absorption times).

(iv) Bounds derived by diffusion methods and similar in form 

to diffusion approximations may be found within which the value of
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a function must lie, when this value cannot he found explicitly.

(v) When individuals in the population die one hy one 

rather than a generation at a time, it is possible to derive exact 

results for most functions even when the various probabilities

in the transition matrix are complicated.

(vi) In some cases it is possible to use diffusion methods 

to find approximate results in the case where selective advantages 

are allowed to vary, and in some such cases the selective advantages 

may be ignored altogether, in other cases they may be treated as 

being constant.

(vii) The transient behaviour of a population may not be 

investigated by considering the stationary behaviour of the same 

population when mutation exists, with the mutation rates being 

allowed to approach zero. This occurs because of the different 

allocation of a certain fundamental constant in the two cases*.
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CHAPTER 2 .

ABSORPTION PROBABILITIES
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2.1 Introduction

In this chapter a general method is considered for 

determining survival probabilities or bounds for survival 

probabilities in haploid populations of fixed size N where selection 

is allowed. It is supposed that the two types of individual in 

the population are A and a, corresponding to the two possible 

alleles at the locus under consideration, and attention is 

concentrated on the number k of A individuals. The value of k at 

time t is denoted k^, and the aim is to find some non-zero constant 

0 (independent of k^) solving the equation

E exp e(kt+1 - kt) I kt 1 (2.1)

If it is not possible to solve this equation independently of k̂ _, 

then we try to find bounds for the solution of (2.1) as k^ takes 

all possible values.

Note that the expectation in (2.1) will henceforth be 

taken always to mean the expectation conditional on k^, so that 

explicit statement of this conditioning is dropped from now on.

Equations analogous to (2.1) are used to derive power 

and A.S.N. curves in sequential analysis, and in the case k^ = 1, 

(2.1) is equivalent to the equation

z = p(z) (2.2)

used to derive survival probabilities in branching processes.
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2.2 Description of Method

It is supposed that k is a Markovian variate, so that
X»

with it may he associated a (N+l)x(N+l) transition matrix

P = C P-pj) wbere

Pij = Prob { kt+l = «5 I kt = 1 I i; j = 0,1,...

If the state corresponds to the event "number of A individuals = i" 

(i = 0,1,...,N) then if there is no mutation the states E^ and E^ 
will be absorbing, all other states will be transient, and P may 

be written in the partitioned form
/ s

1 o' 0

p = Eo Q

0 o' 1
s s

where R^ , are column vectors having elements p ^
(i = 1,2,...,K-l) resp. It is well-known that the column vector

I

gives the set of survival probabilities for A individuals for 

kQ = 1,2,...,N-1, but this result is not useful for our purposes 
and we obtain £_ , or bounds for , as follows. Let the matrix 

P(d) be defined by

P(.0) = p ^  exp (j-i)6 j-
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so that P(o) = P. Then following Bartlett (1955), section 2.22, 

the moment-generating function (0|k ) of the variate k - kU u U
may he written as

mP) (e|k0) = r'Ĉ ) p* (e) + (2.3)

where r' (k^) is the row vector (O...010...0), where the unity 

occurs in the position k^, and f is a column vector each of whose 

elements is unity. It follows, since P is the transition matrix 

of a finite Markov chain with absorbing states, that

r  \
1 o' 0

h m &  (e) -t->°0 s0(e) 0 sN(e)

0
k.

o' 1

where S^(0), Ŝ T(0) are column vectors, each having N-l elements 

which are

P(0,i) exp(-i0), P(N,i) exp(N-i)0 (i=l,2,..,N-l)

respectively. The P(w,i) are survival probabilities for A 

individuals for k^ = i (i = 1,2,..,,N-l), and p(0,i) = 1-P(W,i).

Thus from (2.3) it follows that

lim M ^ ( e | k 0) =|l-p(w,k )[ exp(-k 0) + P(N,kQ) exp(U-ko)0 t->00 - k 5
... (2.4)

The right-hand side in (2.4) is unity for 0=0, and in general there
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■will exist a unique non-zero value of 0 for which the right-hand 

side in (2.̂ -) is again unity. If such a value of 0 is known it is

easy to solve for P(N, k^). It is now shown how such a value of 0 

may he found or approximated by relating the required value to the 

non-zero solution for 0 of the equation

M(e|k0) S M^(e|k0) = 1 (2.5)

To do this we establish 

Lemma 2.1

If for all i (i = 1,2, .,,N-l) M(01 i) ■* ~ as 0 + - oo, 
then the same is true of M^^(0|i) (t > l).

Proof

Since M(0|i) » as 0 > - there will exist two values

of 0, namely 0^ > 0 and 0^ < 0, for which

M(0|i) > 1 for 0 ^ 0u OJ 
1—
1 II•H

and M(01i) > 1 for 0 ^ 0| (i = 1,2,.

If M ^ ( 0 ) is the vector whose components are the

M^(0|i) (i-O.1,2, .. .,N ), then

M ^ ( 0 )  = Pt(0)\|( = Pt_1(0) P(0)i 

= Pt_1(0) M ^ ( 0 )

and for values of 0 greater than 0^ or less than Qĵ, this may be
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written

M^(e)  ̂Pt"1(0)\[£

= M̂ t_1̂ (0)

where one vector is defined as being greater than another if its 

elements are greater than the corresponding elements in the second. 

By induction it follows that M^^(0|i) -* oo as 0 -> - oo, so that the 

lemma is proved.

It is also clear that if nr is defined by

d0 M(0 1i)
0=0

and also if

,(t)
0=0

then nrX) (i = 1,2, ... ,N-l), implies m ( ^ > 0  (i = 1,2, ...,N-l) and 

that a similar statement holds, replacing >  by < . Also, since

d0
(01 i) = E ^ ( k t-i)2 exp 0(kt~i)j- ^ 0,

for all 0, each M ^(0|i) is a convex function. It follows that 

under the conditions of the lemma, and if the nr are all positive 

(or all negative), then for each M ^ ( 0 | i )  there exists a unique

non -zero value of 0, denoted for which
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M(t)(0(t)|i) = 1#

Theorem 2.1

If the conditions of lemma 2.1 hold, and if

ei"̂  = = •••* = 0n-1 = say> then M^(0*|i) = 1 for
all i and for all til.

Proof

For any til,

M(t)(6*) =

Pt(e*)i

pt_V )

= M^t"1 (̂e*)

Then since M (0*) = ^ it follows by iteration that M 

for all til, so that Theorem 2.1 is proved.

{ 1
!m (0*|i)

V
M(e |n-i) 

i

(e*| i)
.

M^(e*|N-i)
l
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Theorem 2.2
If the conditions of lemma 2.1 hold, and also if 

iru < 0 (i = 1,2,...,N-l) and 0 < a  ̂  ̂h (i = 1,2, .. .,N-l)
then

M^(a|i) £ 1 £ M^(b|i) (i = 1,2,...,N-l)

Proof
Since each M(ö|i) is convex,, then under the conditions 

of the theorem it follows that

M(a|i) ^ 1 M(h|i) (i = 1,2,...,N-l)

We may therefore write 

M(a)  ̂± < M(b)

Thus M^^(a) = p"k(a) \J/

= Pt_1(a) M(a)

 ̂Pt_1(a) £

= M̂ t-1̂ (a)

Hence hy iteration

M^^(a) ^ for t ^ 1.

It follows hy a similar argument that
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(t) * t for t 1 1,

so that Theorem 2.2 is established.

Using (2.4) and Theorem 2.1, it follows that for any 

transition matrix P for which the associated set of moment­

generating functions satisfy the conditions of Theorem 2.1,

-jl-P(N,i)j^ exp(-i0*) + P(N,i) exp(N-i)0‘

(i = 1,2,...,N-l)

so that

P(Nj i) = exPde*) - 1 
exp(N0*) - 1

(l = 1,2,...,N-1)

Further, for any transition matrix for which the associated set of 

moment-generating functions satisfy the conditions of Theorem 2.2, 

we have

l-P(N,i) exp(-ia) + P(Nji) exp(N-i)a ^ 1

S |l-P(N,i) exp(-ih) + P(h,i) exp(W-i)h

(i = l,2,...,B-l)

so that

S P(H,1) (1 = l,2,...,N-l)

Finally, it follows by arguments analogous to those used above that
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if nr > 0 (i = 1,2,...,N-l), so that 

a ^ ^ b < 0
l  -

then the same inequality -will hold also. The results of Theorems 

2.1 and 2.2 may he used to find exact values or hounds for the 

prohahility of survival of A individuals, given that initially 

the number of such individuals is i (i = 1,2,..., N-l), for various 

genetic models.

2.3 Applications

Case 1

We consider first the overlapping generation model 

introduced hy Moran (1958a). Here individuals die one hy one 

at random and are replaced hy new individuals which are A with 

prohahility proportional to the product of the number of A individuals 

before the birth-death event and the selective advantage of A 

individuals. If immediately before the birth-death event the 

number of A individuals is i, it will subsequently be i-1, i, 

or i+1 with respective probabilities

pi.i-l = p 2 id-i)

Pi,i = 1 - pi,i-l - pi,i-l

pi,i+i = Pi N ̂ qL i + iip(N-i)
-1
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where is the selective advantage of A individuals and p. is 
that of the a individuals. It follows that

M(0|i) = e-®p x + P1;1 + e6 P± +1

Clearly M(©|i) satisfies the conditions of lemma 2.1, and also 

if l-if i-i2 , then nr ^ 0. (The case = p2 may easily he treated 
separately.) Thus there exists a unique non-zero solution of

the equation M(0|i) = 1, given by

= ^ n ( q 2 /p1 )

This solution is independent of i and we may therefore write 

0* = tn (q2/ii1)

Thus the conditions of Theorem 2.1 hold, and it follows immediately 
that the probability P(N, k) of eventual survival of A individuals, 
given initially k such individuals, is given by

(Po/pf - 1
P(H,k) = ------------- (k = 1,2,

(Hg/ti) - 1

This result was established by Moran (1958a) "bat by a different 
method than that used above.

Case 2
We consider now the non-overlapping generation model
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(c.f. Moran (i960)), where the number of A individuals in any 

generation is a Markovian variate with transition matrix

p =  { pi j }  = { (  j ) ni (1-ni)W'J }

and
= 1 - exp(-20iN-1) 

i 1 - exp(-2$)

In this case

M(eIi) = e"10 + i-n.1
uN

(<t> > 0)

which satisfies the conditions of lemma 2.1 and also the
/ n \

condition nn f  0. The solution 0^X' of the equation M(0 |i) 

is given by

eU) = -24>

1

which is independent of i, so that we may write

e =  -24> .

Hence, using Theorem 2.1,

a result which has again been established by Moran (i960), 

but by using a different method than that used by him in 

establishing the result of case 1.
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Case 3

In the non-overlapping generation model due to Wright 

(l93l) the number of A individuals in any generation is a 

Markovian variate with transition matrix

p={piJ = {(")p̂
where p_̂  = (l+s)i (N+si) 1 .

This matrix is obtained by supposing that each individual 

produces offspring in a Poisson distribution, the parameter for 

each A parent being A(l+s) and that for a parents being A, 

conditioned by total population size in the next generation being 

N. In this case

M(e|i) = e 10 (pi e0 + l-p±)N (2.6)

These moment-generating functions satisfy the conditions of 

lemma 1, and since

te M(elx)
-10=0

si(N-i)(N+si)”1

the nn are either all positive or all negative for non-zero s.

' The case s = 0 is again easily treated separately. The solutions 

0^^ of the equations M(0|i) = 1, in the case s f 0, are not 
identical, so that it is necessary to find bounds a and b for the 

solutions 0^^ and to apply the result of Theorem 2.2 It is 

assumed for the moment that s > 0; a similar treatment holds



20.

for s < 0.

There are several ways of finding hounds (not necessarily 

as sharp as possible) for the solutions 0^^. A lower bound 

has been provided (c.f. Ewens and Gani (196l)) by noting that the 

value of 0 for which M(©|i) reaches its minimum is

0 = -^n(l+s)

so that it would be sufficient to put b = -̂ tn(l+s) . Also, 

considering the value 0/ defined by

exp Q' = (1-s)(1+s) ^

we have

M(07Ii) 1+s
1-s

1-sx
1+sx

-1where x - iN . It is readily shown (c.f. Ewens and Gani (1961)) 

that M(©/|i) > 1, so that a sufficient value for a is given by

a = -Ln (l-s) (l+s) 1 j-

Therefore it followsfrom Theorem 2.2 that

1+s -1
^ p(N,k) ^

1-s
1+s -1

(2.7)

1+s -1 1-s
1+s -1

this result being given incorrectly (with reversed inequalities)
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in Ewens and Gani (1961). By using a different method Moran 

(i960) has found the sharper hounds

exp(-2sk) - 1 ^ p^N ^  ^ exp{-2sk(l+s)-1] - 1 
exp(-2sN) - 1 exp{-2sN(l+s)_1] - 1

This set of inequalities possesses an interesting property 

of symmetry which may be used to improve the bounds in (2 .7). 

Suppose that the upper bound

exp(-2sk) 
exp(-2sN) j  i  P(N,k) (2.8)

has been established, but not the lower bound. Then the lower 

bound may be found by considering a individuals and deriving an 

upper bound similar to (2.8), which gives a lower bound for the 

probability of fixation of A individuals. The fact that the 

selective advantage of A individuals is 1+s means that when the 

selective advantage of a individuals is put equal to unity, that 

of A individuals becomes 1+s. Thus when the selective advantage 

of A individuals is put equal to unity, that of a individuals 

becomes not 1-s but (l+s) since in the model under consideration, 

at least, it is in their ratios rather than in their differences 

that selective advantages operate. Now

selective advantage of A individuals 
selective advantage of a individuals

so defining
z_ selective advantage of a individuals 

selective advantage of A individuals 1
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we get s/ = (l+s) 1 -1 = -s(l+s)-1 .

Then replacing k by N-k and s by s/ in (2.8) it follows that

Prob -< a individuals become fixed

exp 2s(N-k) (l+s) -1 1

exp 2s N(l+s)_1 1

Thus P( N, k) ^ 1 -
exp 2s(N-k)(l+s) -1 - 1

-1exp k 2s N(l+s) (- - 1

exp -j^-2sk(l+s) -1 - 1

exp -^-2sN(l+s) -1 - 1

which is the lower bound given by Moran. Therefore there is no 

reason to state that one or other of these bounds is sharper 

than the other, and in particular it is not true that the upper 

bound, which turns out to be the diffusion approximation for 

p(N, k) is any better than the lower bound.

An analogous symmetry relation may be used to improve 

the bounds (2 .7)• Clearly the lower bound may be improved by 

considering an upper bound for the survival probability of a 

individuals. Replacing k by N-k and s by -s(l+s) ^ in the upper 

bound in (2 .7) we get
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Prob (a individuals become fixed)

r i+sa+s)-1!1̂ . x
l-rs(l+s) ^ J _______

f l+sCl+s)-1 |N _ x 
L l-sCl+s)"1 J

(l+2s)W~k - 1 
(l+2s)N - 1

/n 0 \N-k
Thus P(N,k) * 1 - —  U --- —

(1+2s)N - 1

If the lower bound in (2.7) is replaced by (2.9)> the two bounds 
then provided differ from those of Moran by terms of order , 

and consequently the two sets of bounds are extremely close for 
small s. Also, the upper and lower bounds in each set will be 
close for small s, and the arithmetic mean of the bounds should 
give a very close approximation to the true probability.

Case k

The methods outlined above may be used to derive exact
values or bounds for survival probabilities in infinite 
populations subject to immigration. If we denote by f(0)
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the moment-generation function of the offspring distribution 

of any individual, then in the case of no immigration the equation 

M(©|i) = 1  reduces to

e-10 fi(e) = 1 

or f(e) = e0

the well-known branching process equation. In the case where 

immigration is present a more complicated equation is derived. 

Details are given in section 5 in Ewens and Gani (l96l); since 

this section is entirely due to Gani, further discussion is 

omitted here.

Case 9

As mentioned in Chapter 1, it is possible in some cases

to derive a Markovian variate for processes for which the entire

population is divided into subpopulations, with different selective

advantages of A individuals in each, provided that a sufficient

amount of migration takes place. As the simplest possible

example we consider the case where the total population, of

size Nn, is divided into n distinct subpopulations each of size N.

It is supposed that the selective advantage of A individuals in 
*bhthe i subpopulation is s_̂ (i = 1,2, ...,n) and that the proportion

"fclflof individuals in the i subpopulation that are A at any given

time is . Now suppose that a (large) intermigration takes

place between subpopulations, having the effect that the Nx^
"tilA individuals in the i subpopulation are equally distributed
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among the n subpopulations and that the same happens for the

N(l-x^) a individuals. A new generation is now formed within

each subpopulation as described in case 3 above, and then a new

migration takes place, and so on. We consider the population

immediately after the birth of two consecutive generations, before

migration occurs. The original number of A individuals is

W(x^ + ... + x ). For the next generation the number of A
"btlindividuals in the i subpopulation has moment-generating function

0 _P± e + l-pi
IN

where

■x i + + x )(1+s.) n'' i'

-1
n+s.(xn +iN 1 . + x ) n

If z = (x, + ... + x )n ^ then p. becomes z(l+s.)(l+zs.) ^1 n' -̂i x i,x i'
and the M.G.F. of the increase in the number of A individuals in 

the entire population from one generation to the next is

n
exp (-Nnz0 )

i=l

z(l+s^)e^ 1-z
■ -j- ■ ■ 11+s.z 1+s.zl l

- i N

= m (0|z) say, from which it is clear that z is a Markovian variate. 

From the fact that

M'(0|z) Nz(l-z)
n

I 8i<1+z8i>
i=l

it follows that if all the s^ are negative (or all positive)
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and are less than unity in absolute value, then M/(o|z) is 

always negative (or always positive) for all z. Since also the 

conditions of lemma 2.1 are satisfied bounds can be found for 

the probability of eventual survival of A individuals by using 

Theorem 2.2. Clearly bounds may be obtained quickly by using 

the maximum and minimum s^ and the methods of case however 

if the s_̂ differ to any great extent it should be possible to 

find sharper bounds by using m (0|z)directly.



2 7 .

CHAPTER 7.

DIFFUSION METHODS
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3.1 Introduction

In many cases in genetics it is difficult to find exact

formulae for quantities of interest. On the other hand it is

often possible and simple to use diffusion methods to derive

approximations for these quantities, provided that a single

Markovian variate exists in terms of which the population behaviour

may be described. For convenience we shall for the moment speak
"blflloosely of the value of a variate at the t generation, or perhaps 

at the t"^ birth-death event, as the value at time t. This 

implies that changes in the population structure can only take 

place at times 1,2,3>... •

Application of diffusion methods rests on the supposition 

that there exists a Markovian variate x whose value x^ at time t

C^N"01), where N is the population size and a a positive constant, 

and that higher moments are o (n _Q') . It is sufficient for our 

purposes to assume 0 ^ x ^ 1 and that x = 0 and x = 1 are absorbing 

barriers, so that once x reaches 0 or 1 it remains fixed. This 

corresponds genetically to the fixation of an allele in a populatior 

where mutation is absent. We sketch the derivation of the forward 

and backward Kolmogorov equations for comparison with methods 

used later. To do this the time axis must be rescaled so that 

unit time corresponds to I\P of the previous time units.
We let <t>(x;t) be the density function of x at time t, 

and \]/(u;x) be the probability that x next changes to x+u, so that

is such that E(x_t_+-̂ -x̂ .| x̂ _) and E -^(x^+^-x̂ _) ̂  | j>- are both
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ty(u;x) is the distribution of the jump u, given x. Then as a 

particular case of the Chapman-Kolmogorov equation we have

4> (x; t+h) O(x-u;t) \|/(u;x-u) du

(c.f. Moran (1962) p.75)• By expanding both sides in Taylor 

series and taking the leading terms, we obtain eventually

= - —  I" m(x) *(x;t) 1  + 1 h g  I  v(x) 4>(x;t) "l (3.1)ä t  ä x  t J 5 x d  I J
as the (forward) Kolmogorov (or Fokker-Planck) equation 

asymptotically satisfied by the distribution of x at time t.

Here m(x) and v(x) are the first two moments of the distribution 

of the jump u, given x.

The backward equation may be derived similarly (c.f. 

Barucha - Reid (i960) p.130), by considering a Chapman-Kolmogorov 

equation similar to the above, except that we consider a small 

increment of time immediately after the process starts. Thus if 

initially x = p, and if

x
0 (xjt) = j 4>(y;t) dy 

^ o-

the backward equation becomes

~  j©(x;t|p)1 = m(p) —  |e(x;t|p)T + je (x;t| p)j- (3-2)
dt t J dp 1 -J 2 dp L J
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This equation will usually he more useful to us than the 

equivalent equation

+ ! h i ! i (x;t|p)l2 I -J (3-3)

which is adjoint to (3.1).

In particular it follows from (3.2) by letting x take 

in turn the values 0+ and 1 , that the probability G(t;p)

that the process is absorbed at 0 (at l) before time t, given that 

initially x = p, is the solution of the equation

2
—  G(t;p) = m(p) —  G(t;p) + iLsl- G(t;p) (3-*0
<3t dp 2 dp

subject to appropriate boundary conditions in each case. By 

putting the left-hand in (3»*0 equal to zero and replacing G(t;p) 

by g (p ), the probability that eventually x = 0 may be found when 

appropriate boundary conditions are imposed.

It also follows from (3**0 after some manipulation 

(c.f. Feller (195*0) that the mean time U(p) until one or other 

boundary is reached, given that initially x = p, is the solution of 

the equation

1 = m(p) + dh dfukl >
dp 2 &[,

(3-5)

again with appropriate boundary conditions, and that the mean 

value of S(p) of the square of the time taken is the solution of
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-2U(p) = m(p) ^
dp 2 dp

(3.6)

again subject to the obvious boundary conditions.

3.2 Pseudo-transient distributions and functions

The concept of a "pseudo-transient" distribution was 

developed (c.f. Ewens (1963a)) to give a meaning to a function

interpretation of this formal solution is found later in this 

chapter^ and the function so derived will be useful in subsequent 

chapters.

where |(x) is an arbitrary polynomial which is 0(l)(possibly 

constant or zero) and a is a constant; also 0(l). The drift and 

diffusion coefficients in genetical applications are usually of 

this form; and to be definite it is supposed from now on, unless 

otherwise stated; that m(x) and v(x) are of the form (3*7). This 

implies; in the terminology of Feller; (1952; 195^0 that x = 0; 

x = 1 are "exit" boundaries; in other words the probability is 

unity that one or other boundary is reached in finite time, and 

once a boundary is reached the variate x remains fixed at that 

boundary.

derived from formal operations on equation (3.1)• The

We consider for the moment equation (3.1) In the

particular case where 0 ^ x ^ 1 and

m(x)

v(x)
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It is supposed that initially x = p. Then the 

probability P (p) that the boundary x = 0 is reached before the 

boundary x = 1 is given by the solution of

<*PQ(p) v(p) d P (p)
m(p) -----  + ---- ----ö—

dp dp
(3.8)

which is (3A) with the left-hand side put equal to zero, subject 

to the boundary conditions PQ(o) = 1, PQ(l) = 0. If P (p) is 

the probability that the boundary x = 1 is reached before the

boundary x = 0, then using (3.8),
I 1t(x)dx

PQ(p) = 1-P^p)

t(x)dx

(3-9)

where

ty(x) = exp -2 f  m(y)/v(y) ay (3.10)

It has been shown by Watterson (1962) that the rate of flux of 

probability into the "exit" x = 0 is given by

dPQ(p;t)
dt

lim 
xr> 0+ i Si v(x)f(x;t)y - m(x)f(x;t) (3.11)

where P^(p;t) is the probability that the process has been absorbed 

at x = 0 by time t . Similarly

dPx(p;t)
dt

lim
x>l-

1 ^jv(x)f(x;t) T  - m(x)f(x;t) (3.12)
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is the rate of flux of probability into the "exit" x = 1.

The derivation of (3.1l) and (3.12) is suggested by writing (3.1) 

formally as

ÖF
5t (x; t) 1.2 d )f(x;t) m(x)f(x;t) (3.13)

We also note that the solution of (3*3) subject to the 

boundary conditions U(o) = u(l) = 0, is

U(p)
1J fQ(x)dx +

1
f-| (x) dx 

P
(3.14)

where

fQ(x)
2Pq (p )-
"VÜT t (x)

-1 X

t(y)
0

and fx(x)
ßP^p)- V(x) -1

One of the purposes of deriving the pseudo-transient distribution 

is to provide a meaning for the two components on the right-hand 

side in(3-l4).

The formal operation used to derive the pseudo-transient 

distribution is to solve the "stationary" equation

1 d2 ■jv(x)f(x)j- - —  jm(x)f(x)j- = 0 (3.15)

obtained by equating the left-hand side in (3.1) to zero and by 

replacing f(x;t) by f(x). In the case under consideration such a



34 .

formal solution can be obtained easily but some controversy 

(see the discussion in Watterson (1962)) has been attached to its 

interpretation. This follows from the fact that the only true 

stationary distribution of the process is the trivial one where 

x takes the value 0 with probability Pq (p ) and the value 1 with 
probability P-̂ (p), while the formal solution gives a distribution 

on the interval (0,l).
By proceeding formally we obtain from (3*15) successively

1

and

-jv(x)f(x) j- - m(x)f(x) = C

t(x)
f(x)

t(x)

1

-1

^  jr

(3.16)

^(y)dy (3.IT)

which may be written alternatively (if C f 0)
-1 1

2 C.
f(x)

t(x)

^xT t(y)dy (3.18)

where the constant C is related to CU,. Clearly the formal 

solution (3*l8) is not a stationary distribution of the diffusion 

process, since with the choice (3«T) of m(x) and v(x) no non­

trivial stationary distribution can exist, and it remains to find 

a meaningful interpretation of (3.18) when the constants are 

allocated suitably.

To find such an interpretation it is useful to consider 

an associated "return" process, which is the same as the process 

considered above (i.e. the "non-return" process) except that once
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one of the boundaries x = 0 or x = 1 is reached the process is 

immediately restarted with x = p, the original value. For the 

new process probability does not accumulate at x = 0 or x = 1 

and a non-trivial stationary distribution will exist. It will 

be by finding this stationary distribution that an interpretation 

for (3.18) will be found in the non-return process. Return 

processes of the type discussed above have been considered by 

Feller (195*0 j who has given equations analogous to (3-l) and 

(3.2) satisfied by f(x;t) in the more general case where whenever 

a boundary is reached the process is restarted at a point y 

with distribution h^(y) or h-^(y), depending on the boundary just 

attained. In our case these are point distributions at y = p. 

Feller shows that the backward equation (3*2) continues to hold, 

but that the forward equation must be replaced, in our case, by

5 t .
J f(x;t)dx = J  h  |jfv(x)f(xjt)j- - m(x)f(xjt) (3.19)
a a

if p £ Ü (S2 any interval in (0,l)) 

and

8
cTt.J f(xjt)dx = J ^  jv(x)f(x;t)j- - m(x)f (x;t)

&

lim
xtO i |^|v(x)f(x;t)| - m(x)f(x;t)

lim
x->l

|j-[v(x)f(xjt)j- - m(x)f(x;t) (3.20)

if p s Ü .
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The interpretation to he attached to (3.20) is that the rate of 

change of probability mass in any interval covering p is equal 

to the net rate of change of probability mass due to flux through 

the interval, plus the rate of increase in probability allowing 

for the possibility that one or other boundary is reached and 

the process restarted at p. If the interval & does not cover p 

the latter terms must be eliminated, so that (3.19) is obtained 

for this case.

The return process admits a stationary distribution 

f(x) which satisfies, using (3.19)

/ d_
dx m(x)f (x) 0 (3.21)

where p £ £2.

Wow suppose that Ü is any interval of the form (0,-€), where 

"t < p. Since -L may be chosen arbitrarily in (0,p) we must have

i jv(x)f(x)j- “ m(x)f(x) = D± (3.22)

for (0 < x < p), where is a suitable constant. Similarly, 

by considering intervals of the type (k,l), where k > p, we obtain

i jv(x)f(x)j- “ m (x)f(x) = -D2 (3.23)

for (p < x < l), where is another suitable constant.

The constants and D2 will later be identified with flux rates

(c.f. equations (3.H) and (3.12)) , Using (3.22)and(3*23)we obtain
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f(x) 1 t(x)
-1 AJ V(y) dy 0 < x <

f(x) v(x) t(x)
-1 BJ t(y) dy p < X < 1

(3.24)

Equation (3*24) specifies the stationary distribution of the 

return process, and it remains to allocate the four constants 

A, B, and . The constants A and B are readily evaluated 

by noting that since f(x) is a density function, it is 

L - integrable on (0,p) and (p,l). Now with the choice (3*7) of 

m(x) and v(x),

\|r(x) exp polynomial in x

so that since v(x) = ax(l-x), it is necessary to put A = 0, 

B = 1 to satisfy the integrability condition. This leaves us

with

0 < x < p

p < x < 1

(3-25)

involving now only the two constants and • One relation 

between and may be obtained immediately from the fact that 

f(x) is a density function, so that its integral over (0,l) is 

unity. A second and independent relation is obtained by noting
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from (3*25) that

lim
x->0 f(x)

lim
x*l f(x) D2

This implies that whenever x is in one or other of the two intervals 

(0,s) and (1-s,l), (e arbitrarily small), the probability that it 

is in (0,s) is asymptotically

Dl+D2
+ 0(s)

Now Pq (p ) is differentiable at p = 0, so that given that x is in 

(0,s), the probability that the process next enters x = 0 rather 

than x = 1 can be made as close to unity as desired, by letting 

e*0. This implies that

Dl+D2 P0(p)

which provides a second relation between and D^. Solving the 

two simultaneous equations for and D i t  is found that

q  = p0(p)/u(p)
d2 = pid)AJ(p) (3.26)

It may be noted that this implies, using (3.11) and (3*12), that 

the rate of flux of probability into x = 0 in the return process is 

asymptotically PQ(p)/u(p), which might have been anticipated. An 

analogous result holds for x = 1. Using (3.25) and (3.26) we obtain 

finally for the stationary distribution of the return process
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f(x) =
2P0(P)

u(p) v(x)

X
dy 0 < x < p

f(x) =
2Pl(p )

U(p) v(x) ay P < X < 1

(3-27)

By using equation (3*9) it is immediately verified that f(x) is 

continuous at x = p, so that an alternative way of deriving the 

second relation between and would have been to prove f(x) 

continuous. However f(x) is not differentiable at x = p, but is 

differentiable elsewhere.

Our main interest in the return process stationary 

distribution is for the information it provides about the original 

process. It follows at once that the interpretation of f(x) in the

original non-return process is that
x~

u(p) J f(x) ax 0 ^ x-̂  < x^ = 1 (3.28)

is the mean time the process spends in the range (x-^x^) before 

absorption at 0 or 1. It may be noted by comparing (3.27) with 
(3.18) that the formal solution (3.18) of the "stationary" equation 

(3.15) will therefore admit this interpretation if the constants 
are allocated suitably.

Thus so far as the original process is concerned, (3.27) 
is not strictly the density function of any variate; however since 

it describes in a sense the behaviour of the process before



absorption it is named the "pseudo-transient distribution" of x. 

Similarly u(p)f(x) will be called the "pseudo-transient function".

In the case m(x) = 0, v(x) = x(l-x), it follows from

(3 .27) that

f(x) g(l-p)
U(p)(l-x)

f(x) 2p

0 < x < p

(3-29)
p < X < 1

where U(p) is given in this case by

U(p) = -2 ptnp + (l-p) 'tn(l-p)

It follows immediately that -2ptnp is the mean time the process 

spends in (o,p) before absorption and that -2(l-p)-t-n(l-p) is the 

mean time spent in (p,l), thus providing meanings for the two 

components on the right-hand side of (3.1^-) • Also, it may be noted 

that although

U(p) v(x) 'l'(x)
-1

\j/(y)dy dx

-1J ^(y)dy dx (3.30)

it is not necessarily true that

-1*

i
0

1 x
dy dx

is the mean time before absorption conditional on absorption at x =
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In fact in the next chapter a discrete process is discussed for 

which one may write equally well

or u(p) = PQ(p) £ n ( p ) +  Pi (p ) 02(p)

where t-^p)  ̂i2(p) and 0-^p) ^ ©2(p) . Thus lx(p), say, is not

necessarily the mean absorption time given absorption at x = 0, and 
the reason for the possibility of the alternative forms in (3.31)

p.3 Comments on the Pseudo-transient distribution

Before discussing other interpretations of formal 

solutions of (3*15); two comments may be made about the pseudo­
transient distribution (3-27)• Firstly, it is not the same as 

the limiting (t -* 00) distribution of x, given x is in the open 
interval (o, l). In fact it has been shown by Kimura (1955a) that 

in the case m(x) = 0, v(x) = x(l-x), the solution of the equation

u(p) = p0(p) q(p) + p^p) e1(p)

(3-3i)

is that a functional relation exists between P (p), |^(p), and

!2(p)•

is
00

<l>(x;t) = ^  --2^7+qj1 ~P"1 ^ _P (1-2p)t}_1 (l-2x)exp ĵ -J-i(i+l)tj-
i=l

where T^ ^(z) is a Gegenbauer polynomial which is defined in terms

of the hypergeometric function. The leading term in this
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expression for large t is

6p(l-p) exp(-t)

which is independent of x, so that the limiting distribution of x, 

conditional on no absorption, is rectangular, and not of the 

form (3.29)•

It should also be noted that (3*27) is not the same as 

the limiting distribution of x, given x is in (o, l), in the case 

where mutation in both directions is allowed, as the mutation 

rates tend to zero. The asymptotic conditional distribution 

in the case m(x) = 0, v(x) = x(l-x), is

f(x) const 1 K < N-l
x(l-x) N = x = N (3-32)

where N is the population size. This again is not of the form 

(3.29) although it may be noted that (3*32) is formally a solution 

of (3.15) • This asymptotic conditional distribution has been 

discussed by Moran (1962), p.129, and will be returned to in the 

next section.

The second comment about (3-27) is that it could be used 

for the purposes of making inferences about the initial value of 

x. A population under observation may well have been in existence 

for a long but unknown time before observation started, so that 

although it may be possible to make good estimates of the selective 

advantages, and to observe, say, that mutation is absent in the 

population, it is impossible to use the conditional distribution 

of x, (0 < x < l), for any initial value p and time to to make



inferences about p, since the value of t will be unknown. In such 

cases it seems reasonable to use the pseudo-transient distribution 

to estimate p. This could be done with one or several 

observations. If it is known that m(x) = 0, v(x) = x(l-x), then 

in the case of one observation x the maximum-likelihood estimator 

p of p is simply x. When m(x) ^ 0 it may no longer be true that
A

p = x, but here it would be more difficult to find p, due to the 

complexity of the pseudo-transient distribution and to the fact 

that it takes different functional forms in different ranges.

3.4 Other Interpretations

We now turn to other formal solutions of ^3.15)• Here it 

is useful to divide these solutions into two groups; those which 

put = 0 in (3*l6) and(3.17) and those which allow to remain 

arbitrary. The left-hand side in (3.16) has the interpretation 
of a probability flux (c.f. equation (3*13))> so that the 

restriction = 0 implies no asymptotic probability flux and may 

only be applied to those solutions of (3*15) which admit a true 
stationary distribution, (in genetical terms, those cases where 

a two-way mutation exists). Conversely if a true stationary 

distribution does exist, then must be put equal to zero, and 

by doing this we obtain (c.f. equation (3*17))
x

2 / m(y)/v(y) dyf(x) const exp

which is Wright1s well-known equation for stationary distributions.



It is therefore of prime importance to recognise, when formally 

solving (3*15)i whether the solution obtained is a true stationary 
distribution or a pseudo-transient distribution since the allocation 

of will depend on which of the two distributions is relevant.

This point has frequently been overlooked and incorrect results 

obtained by an incorrect allocation of C-̂ . It is pertinent to 

examine the discussion in Watterson (1962), section 6, on this point 

Here equation (3*17) bas been obtained for a particular value of 

m(x), (Watterson's equation (6.2)). In the case under discussion 

mutation is absent so that no true stationary distribution can exist 

and by a correct allocation of constants the pseudo-transient dis­

tribution can be derived from Watterson's equation (6.2). However 

Watterson is not here interested in pseudo-transient distributions 

and notes only that if the constants in his equation (6.2) are non­

zero and do not take different values in different ranges, then his 

f(x) is not integrable on (O, l) so that the true stationary 

distribution is purely discrete at x = 0 and x = 1.

We discuss three other interpretations of formal solutions 

of (3*15)• Feller (l95l) in an earlier investigation obtained 

the solution

f(X) = ^  (3-33)

in the case m(x) = 0, and stated that this solution is meaningless. 

However (3.33) bas been obtained by putting C-̂ = 0, which is not 

allowable, since no non-trivial stationary distribution exists for 

this choice of m(x) . The more general (C-̂ f 0) solution is



and this does admit a meaningful interpretation when A and B are suit­

ably allocated, as has been shown above (equation 3.29)*

A second interpretation has been given by Kolmogorov (1959); 

who obtains (3*3^0 as the formal solution of (3-15) when m(x) =0.

Here Kolmogorov does not allow A and B to take different values 

in (0;p) and (p; l) so that his interpretation of (3«3̂ ) cannot be 

the same as the interpretation of (3-29)• The abstract in which 

Kolmogorov’s interpretation of (3*3^) is given is extremely concise 

and very difficult to follow; however if his interpretation is 

similar to that given below by Moran, then A and B in equation 

(3.3^) should be put equal, since Moran’s interpretation considers 

the possibility of mutation, so that a true stationary distribution 

does exist and must be of the form (3*33) rather than (3*3^)•

The third interpretation of formal solutions of (3*15) has 

been given by Moran (1962), p.129* If we consider the distribution 

of the frequency of a given gene in a population for which mutation 

without selection is allowed, a stationary distribution of the form

ß-,-1 ßp-l 
f(x) = const x (l-x)

where ß^ and ß^ are related to the mutation rates, is obtained.

If ß^ and ß^ approach zero, this distribution will concentrate in 

the tail-ends of the interval [0,1], indicating that for very small 

mutation rates there is a large probability that at any given time
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one or other gene is not present in the population. The 

distribution

f(x) conströy A  < x < ^ 1  \
V2N " 2N '

(where 2N is the population size if the population is haploid and 

N is the population size if the population is diploid) is then 

a limiting distribution approached, though never attained, by 

the distribution of the frequency of a given gene, conditional 

on x j 0 or 1, for arbitrarily small mutation rates. This 

interpretation satisfies the criterion discussed above, that since 

a true stationary distribution does exist (since mutation is 

allowed), the solution has been derived by putting = 0 in (3»l6) 

and (3.17).

3.3 Mutation in one direction

It is possible to derive a meaningful pseudo-transient 

distribution in the case where equation (3*7) no longer holds.

As an example which will be useful subsequently we consider the 

situation where the drift and diffusion coefficients are given by

m(x) = -cx 

v(x) = ax(l-x)
(3.35)

These correspond genetically to the case where if x is the proportio] 

of the gene (say A) under consideration, and is Markovian, then 

mutation takes place (at rate c) from A to a but not in the reverse
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direction. The constant c is supposed of the same order as a.

With the coefficients (3*35) no selection occurs; however 

selection could he allowed by replacing m(x) by

m(x) = sx(l-x) - cx (3 -36)

This does not essentially alter the type of results obtained and 

for clarity the coefficients (3*35) are retained.

With the above choice of coefficients the process will 

eventually become "absorbed" with x = 0, and we wish to determine 

the mean absorption time, given that initially x = p. This may 

be done by modifying slightly the methods of the previous sections. 

The pseudo-transient distribution f(x) will satisfy equation (3*13) 

and hence

i “  jv(x)f(x)j- - m(x)f(x) = const. (3-37)

The allocation of the constant in (3*37) will depend on the value 

of x, since the left-hand side has the interpretation of a 

probability flux and consequently its value depends on whether 

x > p or x < p. Using the arguments of the previous sections it 

follows that the constant must be put equal to zero for p < x < 1 

and equal to [u(p)] 1 for 0 < x < p, where U(p) is the mean time 

for absorption at x = 0.

Considering first the case CKx<p it follows, using (3*35) 

and (3*37); that f(x) satisfies

fj{x(l-x)f(x)j + f(x) =



48.

or df(x)
~  +

l-2x+2ca
x(l-x) f(x) 2

ax(l-x) U(p)

This equation is solved easily by introducing the integrating 

factor x(l-x)^ ^Ca = x(l-x)^ say. The solution is

f(x) u(p)
-1

d"1 + k x'1(l-x)'d (3-38)

where k is a suitable constant, which may be derived from the 

requirement that f(x) be integrable near x = 0. From this it 

follows that f(x) is given by

f(x)
-1

(1—x)-a (3.39)

for 0 < x < p.

For p < x < 1 the constant in (3*37) must be put equal to zero, 

from which it follows eventually that

f(x) = const x 1(l-x) ^ (p < x < l) (3A0)

The constant in (3 »40) may be found by noting that the integral of 

f(x) over (0,l) must be unity, but it is simpler to assume the 

continuity of f(x) at x = p, thus fixing the constant, and then 

show that with this choice the integral of f(x) over (0,l) is in 

fact unity. By doing this we obtain the expression

-1 u(p)
-1 -1 l-(l-p)

for the constant in (3*4o), so that the pseudo-transient distribution

is given by
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f(x) = 2a 1 u(p)

1 
1

1—11X
1—1 nd 

rH

rHCÖOJII'’k

_
“1 n n T

u(p) -,-1 -1 d X

(l-x)'d -1 0 < X < p

l-(l-p) (l-x) -d p < x < 1

(5.40)

(5-4l)

and the pseudo-transient function is simply u(p)f(x). 

It follows that

U(p) 2a"1d"1 -1 (l-x)-d -1 dx

(5.42)

o -l.-l + 2a d i- (i-p) (l-x)"d dx (5-45)

All the above has assumed that 2ca d -1 f 0. However in this 

particular case the above expressions simplify and proceeding 

from (5*37) we find eventually

f (x) = -2a

f(x) = -2a

-1

-1

u(p)

u(p)

-1

-1

x 1 "tn(l-x) 0 <  x < p

(3 .44)
x 1 't-n(l-p) p < x < 1

Pr\
and u(p) = -2a"1 / x"1 -tn(l-x) dx

0
1

-2a 1 •'Ln(l-p) / X_1 (5.45)
P

3.6 Almost-invariant Functions

The second concept with which this chapter is concerned is 

that of an "almost-invariant" function. By using this concept it
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will be possible to obtain not only approximations (which will 

usually be identical to diffusion approximations) of quantities 

of genetical interest, but also strict bounds for the true 

values being approximated.

The methods used in deriving these functions are similar 

to those used at the beginning of this chapter. It is supposed 

that there exists a Markovian variate x̂_ (t=0,l,2,...)

(0 — x_j_ — l) for which

m(xt) = E(xt+1“xt) is OCN"05)

v(xt) ,= ^(x^^-x^)2 is also oCn -0)

/-y
but higher moments are o(n ). Here N is the population size 

and Ct is a positive constant. Consider firstly the case of 

absorption probabilities. Suppose that there exists a function 

4>(x) satisfying

E ' » K + P  - ' » ( x - P K 0 (3A6)

Note that finding a function 0(x) satisfying (3.46) is equivalent 

to finding some function (which is itself a random variable) of 

the random variable x^+. which possesses the martingale property, 

(c.f. Doob, 1953). Thus equations such as (3*^9) below could be 

derived strictly by using theorems on expectations of martingales 

with optional stopping.

By expanding o(x̂ .+-̂) in a Taylor series about x̂_ and 

ignoring terms which are o(N ) we obtain
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m(xt) <t> '(xt) + -Jv(xt) <l)//(xt) = 0 (5.47)
This differential equation is to he true for all x, ,X»
(o < x, < l), and it may he solved readily for $(x ). The

~G u

solution is

4>(x) A + B exp -2 m( z) /v( z) dz dy (3X8)

where A and B are arbitrary constants. By iteration in 

(3-46) it follows if the initial value of x is p, that since x^ 

is eventually either 0 (with probability P^(p) of 1 (with 

probability P-̂ (p)), that

P0(p) 0(0) + Px(p) 0(1) - 4>(p) = 0 (3-^9)

or P^p) = 1 - P0(p) = *{*} I »ioj

m( z) /v( z) d z ly

m( z) /v( z) dz

(3-50)

It is clear that this solution is identical to that which is 

obtained by solving (3*8). However (3*50) is in fact only a 

close approximation to the true value of P-̂ (p), since terms have 

been ignored in passing from (3*46) to (3*47)• On the other hand, 

if it is possible to find an increasing function 4>*(x), (which in
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practice will be equal to <Kx) with a slight modifying term) 

for which the inequality

E **(xt+1) - ^ 0

holds, then by carrying out an iteration as before we obtain 

P0(p) 4>*(0) + P (p) 4>*(l) - <D*(p) ^ 0

so that q(p) s $*(p) - $*(o)
<D*(1) <t>*(0) (3.51)

since 4>*(l) - <t>*(0) is positive.

Once more it may be noted that <t>*(x, ), as defined above, is a

semi-martingale, so that (3 *51) can be derived more strictly 

by using optional stopping theorems for semi-martingales. The 

inequality (3*5l) provides an upper bound for the exact value of 

P-̂ (p), approximated by (3*50)• Similarly if there exists an 

increasing function 4>**(x) for which

E 4>**(xt+i) - 0**(xt)|xt 1 0
then

px(p) a - »**(0) (3.52)

thus providing a lower bound for P^(p). In subsequent chapters 

bounds for P^(p) will be derived where exact evaluation is very 

difficult, and these bounds may be compared with those obtained 

by the methods of Chapter 2. It may be noted in this connection 

that if m(x) and v(x) are constant, then 0(x) will be of the form
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const exp(cx), and that this is identical to the "almost invariant 

(moment-generating) function” discussed in Chapter 2.

As a second use of such functions we consider the problem 

of finding an approximation, and also bounds, for the mean time 

until either x = 0 or x = 1 is reached. In this case it is 

supposed that the function $ (x) satisfies the boundary conditions 

0(o) =<t>(l) = 0  and also the relation

^t+l) " lx-t 1 t - N (3.53)

By expanding ^(x^+1) about x^ as before and ignoring terms which 

are o Cn ""01) it follows that

i(x) <l>/(x) + -J-v(x) ^''(x) = -1 (3-5*0

which is the same as (3-5). The solution of (3-5*0 > subject 

to <D(o) = 4>(l) = 0, is

x x y

<t>(x) = 2C ^(y)dy - 2 J 'l'(y) J v(z)^(z)
-1

dz dy

where

^(y) v(z)\(r(z)
-1

dz dy •¥ (̂y)Ty

and \|r(x) has been defined in (3*10).
By iterating in (3*53) until x = 0 or x 
since $(o) = <t>(l) = 0,

U(p) = 0(p)Na

(3.55)

1 is reached, we obtain,

(3.56)

where u(p) is the mean time until absorption at x = 0 or x = 1 and
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and p is the initial value of x. It may be verified, when 

allowance is made for the different time scales, that (3 .5 6) is 

identical to (3*1^)•

The solution (3*56) for U(p) is again only approximate, 

because of the terms which are ignored in passing from (3*53) to 

(3*5^)• However bounds may again be found foi^ u(p) by deriving 
functions 0*(x) and 4>**(x) for which

4>*(xt+1) - <D*(x+)|x.t 1 t ^ -N-a

and <fr**(xt+1) - 4>*(x+)|x.t 1 t ^ -N

It is found readily that

iP ^ U(p) ^ <D*(p),

and thus bounds are given for the true mean absorption time. 

Once more these bounds will be closely related functionally to 

the diffusion approximation I\P o(p) .
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CHAPTER k

THE MEAN ABSORPTION TIME 

IN A GEHETICAL MODEL
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4l. Introduction

In this chapter explicit expressions are obtained for 

both the mean time until homozygosity is reached and for the 

variance of this time in the genetical model introduced by Moran 

(l958a)• This model describes the behaviour of a haploid 

population of fixed size N with two possible alleles A and a. 

Attention is fixed on the number j of A individuals. Then in 

this model, j is a Markovian variate with transition matrix
r r -1 -1-1

p j,j-i ^ 2 j)

pj,j+i

N lip] + m-2(n -j)Ĵ

N -J nlej + |u2(N-j) - 1  =  T)

(4.1)

t .J J 1 ■ pj,j-l ' pj,j+l

This model is considered in Chapter 2 (as case l), and the result 
of Chapter 2 will be needed later. Watterson (1961) has obtained 
the mean time and the variance in the case of no selection 

(i.e. \i-^ = pi2,); thus the present results include his as a particular 

case. It should be noted that the methods given here are 

different from those of Watterson; the present argument proceeds 

by analogy with that of the previous chapter in considering pseudo­

transient distributions. In fact we shall find an exact (discrete) 

pseudo-transient distribution (which may be compared with the 

diffusion approximation pseudo-transient distribution) , the sum of 

whose terms gives the required mean time. Finally the exact 

results may be compared with those derived from equations (5 *5)
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and (3.6).

k.2 A Lemma

It is useful to establish the following lemma. 
Consider a finite Markov chain with two absorbing states, the 

remaining states being transient, the states being labelled so 
that the transition matrix appears in the form

' 1 0 0 0
>

0 1 0 ____0

R Q
j

Then (c.f. Kemeny and Snell (i960)) if the process starts in the
"tilk transient state, the mean time until an absorbing state is 

"bllentered is the k element in the column vector
-1

1 - Q

where \jr_ is a column vector of unities. If the process is amended 
so that whenever an absorbing state is entered, the process is 
restarted again in the initial state, then P must be amended to

00 /—01—10
'

0 0 0 1 0

R Q

V >

where the unities appear in the position corresponding to the 

initial state. All the states in the new process are persistent, 

and the process admits a stationary vector A satisfying
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y I ■ p* = o'

or i 0 0 -1 0
0 1 0 -1 0

A' -R I - Q

V

O'

If A is normalized so that the sum of its first two elements is

unity, and the normalized vector is written (A-̂  A^ A*)', then

A* I - Q V

where |' is a row vector all of whose elements are zero, except the

k , which is unity. Hence
-1

A*' = I' I - Q

and therefore A*'\|/ = £'
- -1

I - Q t (U.2)

Equation (4.2) states that the sum of the elements in A*is equal to 

the sum of the elements in the k ^ row of [I - Q ] i.e. is

equal to the k ^  element in m. The elements in m will in fact he 

derived for the particular Markov chain under consideration hy 

finding first the elements of A* .

4.5 Mean Absorption Time

If the state E^ in the genetical model (4.l) is defined 

as "number of A individuals = i, i = 0,1,2,...,N", then E^ and E^ 

are absorbing and the transition matrix is
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1 0 0 0

nl 1—1 0

0 n2 1 n2 r]2 .. 0

0 0 0 l
V. J

Suppose now that initially there were k A individuals. Then

the genetic model, and hence also P, is amended by putting POk

ii *d 3 II H If the amended transition matrix is P*,

r >
I - P* = 1 0 0 ... -1 --- 0

i—1
•t

n2+T|l -ri-L .... 0 ___  0

0 -ng u2+t)2 . . . 0 ___ 0
# • . . . # ....
0 0 0 -1 ___ 0V

Denote the stationary vector of the new process by A / = (An A0 'T '
and put A, P^ (a constant) for the moment. Then since

' [l-P*] = 0', consideration of the first two equations

A0 - A1n1 = 0

A1(n1 + t̂ ) - a2h2 = o

•

gives

h ■ pcA
A2 = -PQ(l-KX)/R,

where a M-1/m-2- Also A_. (l ^ i ^ k-3) obeys the recurrence

relation



6o.

-I .A. + (t). + n ) a - n. i0A. 0 = oi i  'i+l l+l l+l i+2 i+2 (k.k)

This relation is simplified by putting ILA^ = and by noting 

that tj /ft = OC = constant. Thus (4.k) becomes

h  + (a+1^ i+l  - h+2 “ 0 (^•5)

the solution of which is

= A + BX1 (A,B, arbitrary constants).

Using the boundary conditions (4.3), which are written more 

conveniently

= P'1 0

i2 =
(4.6)

we obtain

so that

A = -P0/(a-l) , B = pQ/(a-i)

5± =

and hence

\  = P o C « 1 - ! ) / H (a-l) ( i = l , 2 , (^-7)

The elements A^+1 .. . A^ are found as follows. Putting 

for the moment A^ = P^ (P^ a constant ) we obtain

■\-l AN-1 + pn °

‘\ - 2  AN-2 + ^N-l + ^N-l^ \ - l  “ 0
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Hence

\-l -V̂ N-l
\-2 Pm ^14<̂

(̂ .8)

If is now defined by £ = T)^v , then from the recurrence

relation (4.4) we obtain

-*i + - a'1 51+2 = 0

or
^  + (a+l) li+1 - ii+2 = 0

which is the same as (4.5)* Thus the general solution is

I = C + ECt:1 (C. D, arbitrary constants)

subject to the boundary conditions (4.8), which are more 

conveniently written

^N-l = PN

^N-2 = PN^l40:  ̂ *

These conditions fix C and D as

c = PN a1,/(aN-aM_1) , d = -PH/(aN^ w'1)
Therefore

i. = PjjCc*11« 1) /(aH-aH"1)

, N JJ-1\t] (a -a )

(4.9)

ana
A. = P^cZ-a1)/

(i = k+l,...,N-l)
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It remains to evaluate A , . We havek

'A0 " ^k-l \ - l  + ^ k  + nk^ Ak " nk+l Ak+1 " AN 0

or A, p° +pK +p° i aa_j) + ph ( + -I nk + \

(4.10)

Thus all elements in the stationary distribution have been evaluated

in terms of P^ and P^. These elements are now normalized so that

P0 + Fw 1 * Also it is clear that

Prob {absorption at 0 in absorbing case} 
Prob {absorption at N in absorbing case}

a M -k -l

a N -1
a M - aN~k 

a N -l

using the result of Chapter 2. Since P^ + P^ = 1 we have 

p
0 " a11 -1

aN - aM~k 
a N -1

Thus with these values of PQ and P , all elements in the normalized 

vector 7\/ are given explicitly by (4.7); (4.9); and (4.10). It 

follows, by using the above values for P^ and P^, that (4.10) 

simplifies to

A n q k -l 
a  - 1

</-k - 1 
II ( a w  -l)K
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which is what would have been obtained by putting i = k in (4.7)

or alternatively by putting i = k in (4.9), (although the

functional form of . .. A, differs from that of A, . . . A™. , ) .1 k-1 k+1 N-l
Thus the two sets of A1s "dovetail” at A^ . By using the results 

at the beginning of the chapter it follows that the mean time 

p(k) until one or other gene is eliminated, given initially k A 

individuals, is the sum of mean number of times the process is in 

each of the various transient states, i.e.

n(k) q M ~k -i 

aH -1
a1-!

i=i

N H-k rt N iOL -OL \ (X -OCr A / N N-lx
öl -1 . V, _ t) . (a -a )i=k+l l

. (^.n)

which is the required result. The various elements in(k .ll) 

constitute the exact pseudo-transient function of the process.

An alternative method for finding (4.1l) is to solve the 

difference equation (c.f. Feller (1957))^

q (k) = n^k-i) + (i-nk-tik) q(k) + rĵ Ck+i) + l (4.12)

However it is difficult to proceed directly from (4.12), and our 

interest in this equation is that it provides a check on the 

solution (4.11), and after some algebra it may be shown that the 

solution (4.1l) does in fact solve (4.12), as well as the 

boundary conditions |~i(o) = jj.(w) =0.
As a second (partial) check (of 4.1l) we proceed as 

follows. The method of deriving p(k) above indicates that the
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mean number In of times the process is in state i before absorption 

is given by

a 1 - 1
H (a-1)

i = k

c/^N-k
aN-l /  n  i s r - i xr\± ( a )

i > k

Now given that the process is in state E_̂ ; it will leave E^ 

after the next birth-death event with probability rL+r]^. If 

each in is multiplied by IL+tĵ  the product is the mean number of 

times the process is in E. and then leaves E_̂  at the next birth- 

death event. Thus the mean number of transitions is

N-l
(n.+

i=l
(^.13)

But for processes where transitions of the type E^ ->■ E^ are 

ignored the transition probabilities become

p(e. ->■ E.+1) = ni(n± + T)i)'1 = (ua)'1 

p(e. -► e.+1) = T).(n. + n-jT1 = a(na)'1
(4.i4)

These probabilities are those of a homogeneous asymmetric random 

walk; and the mean number of steps before one or other boundary 

is reached is given by (Feller (1957))

kd. +sa. m  . i-(oH -aN-k)
a - l1-Q5 l-a

(4.15)



65.

Thus (4.15) should equal (4.15), and it is a matter of algebra

to prove that this is so. In fact an alternative method of

finding (4.11) is to start from the fact that in the random walk

on [0,N] with initial point k, and with p. = (l-H2) k ,1,1 -1
p^ j,+-̂ = a(l-*a) , then the mean number of times n^ that the

process is at i before reaching either 0 or N is given by

aW"k - 1 a+i , i -Nn = — --- . -- • (a -1)
a - l 2-1

N N-k
« -a' Q+lN , * N+l N * V ;a -1 a -a

Multiplying each n. by (ll.+r).) k and adding over i = 1,2, . ..,N-1,

i ^ k

i >  k

(4.16)

J

i 1 'i
we re-obtain (4.1l).

In the particular case where there is no selection, then 

<2=1, and the above methods are inappropriate. However by 

letting 2 -* 1 in (4.1l), it follows that

q(k) (N-k) N(N-i) -1 + k
N-k-1
^  N(N-i)"1 
i=l

(4.17)

which is the result obtained by Watterson (1961). This result 

could be derived more strictly by considering difference equations 

similar to (4.4). In fact when <2=1, (4.4) becomes (putting 

H A  = ^  as before)

-h + 2h +l - h +2 ■ 0

the general solution of which is

i ± = A + Bi .
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P roceed in g  a s  b e f o r e, (4 .1 7 )  e v e n tu a l ly  fo llo w s . In  t h i s  case  

i t  i s  p o s s ib le  once more to  v e r i f y  t h a t  (4 .1 7 )  s a t i s f i e s  (4 .1 2 ) 

A p a r t i a l  check s im i la r  to  t h a t  g iv en  p re v io u s ly  i s  to  

n o te  t h a t  in  t h i s  case  II + tj = 2 i(N -i)N ~  , so t h a t  th e  mean 

number o f tim es  th e  p ro c e s s  i s  in  and th e n  le a v e s  i s

N(N-k) 2 i(N - i)

N -i h2

kW . 2 j (N -i)

1 N2

i   ̂ k

i  > k

(^•16)

Summing th e  te rm s in  ( 4 . l 8 )  g iv e s  th e  t o t a l  mean number o f  

t r a n s i t i o n s  a s  k (N -k ), th e  w ell-know n r e s u l t  f o r  th e  sym m etrica l 

random w alk .

Once more, (4 .1 7 )  co u ld  have been  o b ta in e d  by a rg u in g  in  

th e  re v e rs e  d i r e c t i o n .  We o b ta in  f i r s t l y  t h a t  f o r  th e  sym m etrica l 

random w alk on [0 ,N ], th e  mean number n_̂  o f  tim es  th e  p ro c e s s  i s  a t  

i  b e fo re  re a c h in g  0 o r  N i s  g iven  by

n = 2 i (W -k) /w  i   ̂ k

n = 2k ( w - i ) / w  i  >  k

M u ltip ly in g  each  n^ by 

g iv e s  ( 4 .1 7 ) .

2i(W -i)W -2 and ad d in g  ov er i 1 , 2 , . . N- l

4 .4  The V arian ce  o f  th e  A b so rp tio n  Time

In  o rd e r  to  f in d  an  e x a c t e x p re s s io n  f o r  th e  v a r ia n c e  i t

"til. —may be n o te d  t h a t  th e  e lem en ts  in  th e  k row o f [ I —Q] a re  th e
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various elements constituting the sums in (4.1l). Specifically; if

•H
CD a“'1 - 1 1—11Ö

aN - l  ’ H^(a-l)

h o
aN-aN_1 a" -oJ
aH - l  ' ^(a^-a^”1)

then
/ %
011 *12 *13 tl4 .. ^1;N-1

021 022 +23 *24 .. ^2;N-1

I-Q
-1 = ®3l 032 ®33 >  • •

0N-1;1 ÖN-1; 2 0N-1;3 0N-1;4 0N-1;N-1

Thus the variance of the absorption time (c.f. Kemeny and Snell

(i960)) is the element in the column vector

2(1 - Q )'L - I (I - Q)'1 I - 1

where | is a column vector of unities and \i is a column vector
p

of the \i ( k)'s. It follows that

i n-1k
2 £  0

i=l
ki 0 .  . +ij ij

j=l j=i+l

n-1 
+ 2 /

l-l i n-1
Z * k i { I ei j + I  } - (̂k) - ,2(k) (4.19)ki

i=k+l j=l j=i+l
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Letting OC -> 1,

e.j - N(N-i)/(N-j) 

i.J ■* Bi/j

and it is easily checked that in this case (4.19) agrees with 

the formula found by Watterson (l96l).

4.9 Diffusion Approximations

It is possible now to compare the formulae given above 

with those given by diffusion methods, and thus to test the 

adequacy of the latter. Before doing so it is useful to 

approximate (4.1l) by a formula involving integrations rather than 

summations. If the proportion of individuals in the population 

at time t that are A is denoted x , then diffusion methods mayU

only be used when E(x^+-̂ - x̂ _) is not of higher order of 

magnitude than E(x^+1 - x^) • For this to occur it is 

necessary that p, - p^ "be 0(N )̂ or o(N "*") • Therefore putting 

OC = \± ^ /± 2 = 1 + hN ^ , we have

o F  ~ exp(h) (4.20)

and if y = iW OC1 ~ exp(hy) .

Thus putting kh 1 = p, it follows, using (4.1l), that p(k) may 

be approximately
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h

reh(i-P )_
e /<hy - l)k1(y)dy

+
eh _ eh(l-p) h hy

S— --- k2(y)dy
e

(4.21)

where k^(y) and k2(y) are the "continuity" analogues of 

II. 2 and T). 2 and arel l

^iy + ^ 1-y) 11 iy + ia2(1-y)
~ “y(l-y) ■ - and niy(l-y) respectively.

For the diffusion approximation

m(x) = (î 1-p2)x(l-x) + ̂ 2(l-x)

hx(l-x)K-2 + o(N“2)

and
v(x) = 2x(l-x)N 2 +o(N 2)

2Thus (9.5) becomes, if unit time corresponds to N birth- 

death events,

h M £ I  + ^U(pI = p-l(l.p)-l
dp dp2

whose solution is (c.f. equation 3*55)
P P y

U(p) = C J exp(-hy)dy - J' exp( -hy) J z ^(l-z) 1 exp(hz)dz dy
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where

exp(-hy) / z ^(l-z) 1 exp(hz)dz dy -5-
j.J exp(-hz)dz

(4.22)

The similarity between (4.21) and (4.22) is not immediately obvious 

however (4.22) may be simplified by an integration by parts and 

by a subsequent rearrangement of terms. The result of doing this 

leads to the formula

"eh(l-p) 

L e
- 1
1
J y_1(l-y)"1 (ehy
o

1) dy

h h(l-p) e - e
h i e - 1

_LJ y"1(l-y)"1 e"hy (eh - ehy) dy (4.23)

(where time has now been rescaled to birth-death events). In this 

form the close agreement between (4.21) and (4.23) is apparent.

In fact it is clear that the entire pseudo-transient function is 

uniformly well-approximated by the diffusion expression.

In the case equation (4.23) becomes

U(p) = prtnp + (l-p) 'tn(l-p) j- (4.24)

which agrees closely with (4.17)• In this case the diffusion 

approximation to the pseudo-transient function possesses the 

remarkable property of being exact for all i, if this function 

is taken at discrete points. In fact, using (3-27) j the equation
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f(x) = N(l-p)/(l-x) 0 < x ^ p

f(x) = N p/x p < x < 1

is found for the (normalized) pseudo-transient function, and 

at points x = iW ^ this becomes

n (W-k)/(N-i) i = k

Wk/i i >  k

which is exact for all i.

We turn now to the comparison between the exact value 

(given by (4.19)) and the diffusion approximation (found by 

solving (9*6)) for the variance of the time until absorption. 

Considering (4.19) first, the first and last terms are of order 

N , while the second is of order N^ only. Therefore, to order N^, 

k N-l4 ■ 2 I eki + 2 I +ki “W  - ̂ 4k)
i=l i=k+l

since M-(i)
i N-l

j=l j=i+l

By putting p = kN ^ and x iN-1 and M-(k) = U(p), this expression

may be approximated by
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2N
r eh(l-p) ± P

h ie - 1
/ (ehy - l)k1(y)u(y) dy

eh _ h(l-p) p h _ hy
+ — E— -— - J — h—  k2(y)u(y)dye - 1 u e

- p. (k) (4.25)

For the diffusion approximation, the solution of the equation 

-2U(p) = Jv(p) fhpi + m(p) M p)
dp2 dp

satisfied hy the expected value S(p) of the square of the time 

taken until absorption, subject to boundary conditions S(o) =
= S(l) = 0, is found to be, after some simplification,

S(p) = N4
h(l-p) n
----^— 1—  f (e y - 1) U(y) [v(y)] " dy

e - 1 J

+
eh . ehd-p) p

eh - 1 J

h hy _
p fc u(y) [v(y)] dy (4.26)

Now 2k-^(y) ~ 2k^(y) ~ [v(y)] so that if the square of the 

diffusion approximation for |~i(k), (known to be a close approximation' 

is subtracted from (4.26), and the resulting expression compared 

with (4.25), it is observed that the diffusion approximation 

is once more remarkably close to (4.25) and thus close to the true 

value.
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CHAPTER 3.

ARBITRARY PROCESSES WITH 

CONTINUANT TRANSITION MATRICES
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5.1 Introduction

In this chapter the results of Chapter k are generalized, 
and expressions are derived for absorption probabilities, mean 

absorption times, variances, pseudo-transient functions, etc. 

in the case where the transition matrix of the variate under 
consideration is an arbitrary continuant. By doing this exact 

results may be obtained for any population with overlapping 
generations. We begin by noting a result which is a generalization 
of the results of the previous chapter.

A Theorem on Continuants

Let P be the transition matrix of a Markov chain with 
N+l states EQ, E^, ..., E , for which EQ and E are absorbing and 
the remaining states transient. Suppose also that P is a 

continuant, so that given the process is in state E^, it may next 
move only to states E^ Ê , and E^+ ,̂ with probabilities IL 

l"Hi"ni, anĈ  ^i resPectively- Let t>e the initial state.
Then the probability that the process is eventually absorbed in 

Eq rather than is

N-l N-l

p(0’k) ■{ I  P± M  I  pi} (5.1)

where pQ = 1,

•k i=0
il iw ..,. n.1 2 i

_rs ro •• \
(l > 0) .
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If each transition takes place at unit time intervals, then

the mean time before absorption in one or other absorbing state is

N-l
n(k) = V  n. (5.2)

i=l

where n^ is the mean time the process is in state E^ and is 

given by

ni

n.l

N-l i-1

j=k j=0

N-l

I b n i pi-l

c_
j. II O

k-1 N-l
V - 1

I pj I pj

C_
j. II O j=i

N-l

J=0

i = 1,2, ..,k

(5-3)

i = k+1,. . .,N-l

Further, the variance of the absorption time is given by 

equation (4.19) if we put
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ik

and

*ik

N-l i-1

I pj
•

I  h
j=o

N-l

I
j=0

p j

1—! •H
a•H

k - 1 N-l
X-1

I
j = 0

pj I  pj
j=i

N-l

I
j=0

pj \  pi

is defined by (5*2) and (5*3)

(5-4)

The result (^.l) is 'well-known. The mean number of steps 

before absorption, given jointly by (5*2) and (5*3) has been 

given (incorrectly) by Chung (i960), p.70, equation 8. The 

present derivation obtains all four quantities in question 

simultaneously.

Proof

As in Chapter 4 we consider the associated "return" 

process for which whenever the process enters either E^ or E^ 

it is immediately restarted at E^. If P* is the transition 

matrix of the return process, then
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I-P*

1 0 0 . - 1 - -  0

1—1
1=11 n ^ i • • • . 0 __  0

0 -h n 2 + r i 2  . . . . 0 0

0 0 0 . 0 - -  -T).
0 0 0 . - 1 ___ 1

N-l

The return process admits a stationary vector A7 satisfying

A7 I - P * (5-5)

The elements in A7 are now inflated so that the sum of the first 

and. last elements (now written P^ and P^ respectively), is unity. 

From the discussion in the previous chapter it is clear that P^ 

is in fact the probability P(0,k) that in the original non-return 

process, the state is eventually reached rather than E . 

Further, the remaining elements in A7 are the mean number of times 

in the original process that the process is in each of the various 

transient states before being absorbed in either or E^.

Denoting these elements A^, A^, ..., A^ ^ it follows, using (5*5);

that

po ni \
(n1 + ii1) a1 = n2A2 (5.6)

and in general, for 2 ^ i  ̂k-1,
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(^i + n  + t). A. l+l l+l *i-l l-l (5-7)

(5.7) may "be rewritten

n i+lAi+l " 71 i \  niAi " ^i-l^i-l

0r ,n̂ . ,n - T].A. = const., 2  ̂i  ̂k-1 l+l l+l 1 1  ’ (5.8)

By considering 1 = 2 ,  it follows that the constant in (5-8)

is P . Thus

niAi po

*2A2
' \  

“l J

n3A5
■ T)2 t,^!
1 n2 n2ni

and in general

n i h  = po
. "i-1 . \-l\-2 . . V l V a "  \_L +  —   +       +  000 +
n i-l TIi-lTTi-2 Pi-lP i-2 ni

... (5-9)

Considering now values of i > k, we obtain, using (5-8)

PN \ - l  \ - l

^N-lW-l + nN-l̂  \-2 \-2
(5.10)

Further, equations (5*7) and (5*8) both continue to hold provided
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that in (5.8) a possibly different constant is used and the 

range of i is altered to k ^ i ^ N-2. The (new) constant in 

(5.8) may be evaluated by using the case i = N-2, from which it is 

found that the constant is -P^. This gives

\-l  nN-l

nN-2

nN-l
^N-l

r n „ n «nN-2 . N-2 N-l
- ^N-2 \-2

and in general

A.n. 1 1
i. n.n. 
r  + ^ ± i  +
■i V i +i

nini+l'" nN-l
Vi+r 'N-l J

(5-11)

for i = k+1, k+2,...,N-1. 

(5.9) and (5.U) give together

Ai ni
' ^i-i
1 + n + 1-1

^i-l^i-2
n i-ini-2

+ • • • + ^i-l^i-2
ni-ini-2 1 J

i=l,2,..k-1

Ai Jl±
11 i n.n..,. 11+1, j ̂ i^i+1* nN-l
1 V m Vwi- Vi i=k+l,.,,N-1

(5.12)

Remembering the result in the paragraph preceding equation (4.11) 

in the previous chapter, it may be suspected that the two functions 

in (5.12) "dovetail" at i = k. If this were so, then we would have

- 'k-1
1 + n— + •**+k-1

\-l\ - 2  
nk-ink-2 * *ni -

rTIk + + nkTTk+l * * ,TTN-1
k'k+1 * * * 'N-l J

(5.13)
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Putting P = 1-Pq and solving for P , the equation

II .IT J[ J[1 k 1 k+1
if • • ik V  ' ’\+±

nr • ,ttn-iV**\-i
II1 nin2 

1  + —  + ----  + nin2* * ,TIN-1
1 *2* N-l

N-l N-l

i=k i=0
(5.1*0

where has been defined previously, is obtained. To show that

Pq , defined by (5*1*0; is the probability of absorption at zero,

P„ is written more fully as P_ 1 . Then if P_ , satisfies the 0 u 0,k 0,k
boundary conditions

P0,0 = 1 P = 0,N 0

as well as the difference equation

p = n p_ . n + (i -il -T) ) p + t] Pn 1 ̂0,k k 0,k-l k ‘k 0,k k 0,k+l

for 1 ^ k ^ N-l, then P is the required probability P(0,k).U, K
Clearly the boundary conditions are satisfied, and by writing the 

difference equation in the form

nk^P0,k-l " P0,k^ ^k^P0,k " P0,k+1^

it is easily verified that the difference equation is satisfied 

"by (5*1*0 • Therefore Pq k = p(0,k), the required probability.
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Equations (5 .12) and (5.14) may "be used jointly to 

show that the mean time the process is in state E^ before 

absorption is

n

n

N-l

N-l

k-1

j=0
N-l

j=0

i-1

«5=0
i=l>2,• • k

ni Pi-1

N-l
(5.15)

j=i
i=k+l,...,N-1

\  pi

which verifies (5*3)b and clearly the mean time until the process 

is absorbed at one or other barrier is

N-l
(5 .16)

i=l

Furthermore} the variance may be obtained immediately by noting
"tillthat the various elements in (5 *15) constitute the k row in 

(i-Q) \  where Q is the submatrix of P corresponding to 

transitions between transient states. Thus if we define
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0ik

N-l i-1I po D
Q

.

—
J

j=k C-
J. &

N-lI pj n ipi-l

C_
I. II 0

and \]/.. ik

k-1

N-l

<5=0

N-l

J=i

V i

(5-IT)

then the variance of the absorption time is given by equation 

(4.19); where p(k) is given by (5*2) and (5*3)*
The results (5.1)., (5*2), (5*3); and (5*4) may now be 

applied directly to various genetical models.

3 0  A  selection and dominance model

Consider first a haploid population of size N where the 

number of individuals which are A  is a Markovian variate with 

transition probabilities

i y i+1

i(N-i)N“2 -jl - is(iN_1 + h(N-2i)N_1) j- = Jl±

i(N-i)N~2 -jl + s(iN_1 + h(N-2i)N_1)j- = T]± (5.18)

1,1 1 P i,i-1 " P i; i+1

Here s and h are constants for which s is 0(N~P) and h
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is in (0,l) . This haploid population approximates to a diploid 

population with genotypes AA, Aa, and aa having selective 

advantages 1+s, 1+sh, and 1 respectively, with the three genotypes 

occurring with frequencies specified by the Hardy-Weinberg law.

Thus s is a measure of selection and h a measure of dominance.

This model generalizes a case considered by Moran (1963) which is 

discussed later. Then using the previous results it may be stated 

immediately that the probability P(0,k) that the process is 

eventually absorbed at 0, given initially k A individuals, is given 

by

P(0,k)

~l4s( jN'hhCu-g.i)!)'1) ' 
-l+|s(jN'1+h(w-2j)K'1) -

'l^sÜN'hhCN-a.^N-1) " 
-l+lsCjN'hhCU-gjjN"1) -

(5-19)

with empty products conventionally defined as unity (c.f. the

definition of Pq ).

Further, the mean number of times n^ the number of A

j is given by (5.15) where

n ^ ; j W 1 + h(N-2j)N'

j=l r
1+^S -ijW-1 + h(W-2j)W-1

(5-20)

The mean time until absorption will be the sum of the n^

(i=l,2,...,N-l), while the variance of the absorption time is given
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by (4.19) and (5.17), if p . is defined as in (5*20).
J

Now the above quantities, while being exact, are awkward 

and it would be useful to find approximations for them. Since 

s is o (n and therefore small,

1 * 4 s j N"1 + h(N-2j)N_1 j-

may be approximated by

exp -  is jjlf1 + hCw-a^H-1

Thus may be approximated by

exp -s jjk(i+l)N_1 + hi-hi(i+l)N-1

Therefore P(o,k) may be approximated by 
N-lJ exp - 2 -| î( i+l) N-1 + hi - hi(i+l)N_1j-
_k_______________ __________________
N-lJ exp - 2 -ĵ -i( i+l) N-1 + hi - hi(i+l)N+1 j-

di

exp
p

-cchx - ĈCx (l-2h) dx

exp -cchx - pCCx (l-2h)

(5.21)

p(o,k), say, where CC = sN and k = Np,
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Similarly, it may be shown after some algebra that the exact 

mean absorption time may be approximated by the expression
r p y

N2 P(o,k)J 2y 2(l-y) 2expjb3y+|<^2(l-2h)jy J" exp -baz-jaz2(l-2h) dz dy 
1 1

+ -|l-P(0, 2y 2(l-y) 2expjji3y+^y2(l-2h)^ exp(-ho:z-4az2(l-2h) dz dy
p y

... (5.22)

where the terms under the outer integrals constitute an 

approximation for the pseudo-transient function. Similarly an 

approximation for the variance can be made. We now wish to compare 

these approximate values with those given by diffusion methods, 

since with s being o(N 2) the drift and diffusion coefficients 
m(x) and v(x) are of the same order of magnitude. Using the 

transition probabilities (5.18), we have, in the notation of 

Chapter 5* when time is measured in units of N2 birth-death events,

i(x) = Qlx(l-x) -jx + h(l-2x)

v(x) = 2x(l-x)

Then using equations (5*9) and (3.IO), the diffusion approximation 

to the probability p(o,k) is given by

exp
o

-hxxx - -§ax (l-2h) dx

exp -hO!x - j& tx (l-2h)
o
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which is identical to the approximation P(0,k), given by equation 

(5*2l); and is therefore close to the true value (5.19)*

Similarly, it may he shown that the diffusion approximation 

(c.f. equation (3*30)) for the mean absorption time is identical 

to the approximation (5*22) and hence close to the true value, 

and that the complete pseudo-transient function is similarly 

closely approximated. Further, the diffusion approximation to the 

variance is also close to the true value.

The above model generalizes a model considered by Moran 

(1963) where the selective advantages are 1, 1+d, 1. Moran has 

found the mean absorption time in this case by using the symmetry 

of these selective advantages and considering an associated process 

with a single absorbing boundary (at zero) and a reflecting boundary 

at ^N. This allows the mean absorption time to be found by 

convolutions. The present method uses entirely different methods, 

since the symmetry property is absent.

5 .k Haploid populations with selection depending 
on gene frequency.

A second use of the methods given in section 5*2 is in 
the case of an overlapping generation haploid population of size N 

with selection depending on gene frequency. It is supposed that 

the two individuals A and a have selective advantages

1 + sw(x), 1 (5*23)

respectively, where x is the proportion of A individuals,
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s is 0(N "̂ ), and w(x) is an arbitrary polynomial which is 0(l) . 

Individuals are chosen at random to die and are replaced 

immediately by a new individual whose probability of being A 

is proportional to x{l + s w(x)} and whose probability of being a 

is proportional to (l-x). Then if the number of A individuals 

is i = xN, then i is Markovian with transition matrix

v± ±_1 = x(l-x)/-fl + sx w(x) j-

P

P

i,i+l :(l-x) -jl + s w(x) / -fl + sx w(x) j-

1 " Pi,i-1 " Pi,i+1

(5-24)

Then using the values (5*24) in equation (5*14), the 

probability that the A individuals are eventually lost from the 

population, given initially k A individuals, is given by (5.14) 

with in
3=1

1 + S w(j/n)
-1

(5.25)

Now may be approximated by

n
j=i

exp - s w( j/n)

exp
ji.- J a w(y)dy (5-26)

where a = Ns and x = iN_1 . Thus (5.14) is approximated by



p(0,k) p (5.27)

- C£ W(x)
o

dx

where w(x) is the indefinite integral of w(x)and p = kN

In order to find the diffusion approximation to P(o,k), 

it is noted that (5-24) implies, in the notation of Chapter 3>

m(x) = ccx(l-x) w(x)

v(x) = 2x(l-x)

where time is measured in units of birth-death events. 

Therefore, using (3*9); the diffusion approximation to P(0,k) is

- a w(x)

- a W(x)
0

dx

dx

which is identical to (5 .2 7 ); so that the diffusion approximation 

is close to the true value given by (5-14) and (5 .2 5 ).

Further, the mean time until homozygosity is given exactly 

by (5.15) and (5 .2 5 ). Using the approximation (5*26) for p^, 

it follows that this mean time is approximated by
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P(0,k )J x 1( 1 -x) ^exp[C£W(x) ]Ĵ  exp[-QW(y)] dy dx
0 0 

1 1
+ (l-P(0,k))jT x ^(l-x) ^exp[dW(x) ]Ĵ  exp[ Q!W(y)]dy dx 

p x
(5.28)

and using (3 *30), this is found to he identical to the diffusion 

approximation, which is therefore close to the true value.

Similarly the pseudo-transient function and the variance can he 

shown to he closely approximated hy diffusion expressions.

Finally, it is interesting to note the various forms that 

(5 .27) assumes in the important particular case when w(x) is a 

linear function of x. We put QW(x) = yx + -g-ßx , and note 

immediately that in the case 7 = ß = 0 hoth the diffusion 
approximation and the true prohahility hoth give P(0,k) = 1-kN 

It will in fact he more convenient for our purposes to consider 

the complimentary function P(w,k) = 1 - P(0,k). Then for 7 = ß = 0, 
p(u,k) = kh”1, and this value provides a standard against which 

the various values of

P(N,k) =

2
7y - ißy ay

/y - ißy ay

(5.29)

may he compared .

For ß = 0, (5 .29) gives
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P(N,k) I - exp(-7p) 
1 - exp(-7)

which may he compared with the exact value found in Chapter 2.

When ß t 0; it is useful to investigate the various forms that 

(5.29) takes for various 7.

(i) 7 = 0

Equation (5.29) gives

P(N,k)= — ----------------
1J exp(- |-ßy2)dy 
0

For ß > 0, p(n ,k) > kN 2 while for ß < 0, P(N,k) < kN- .̂

(ii) 7 - 4 ß

This case corresponds to selective advantages

where ß

1 + t(x-i )̂, 1

tW. Equation (5-29) gives

exp ißy - ißy2
P(N;k)

exp ißy - ißy2 dy

The nature of the curve of p (n ,k) against p may be of different forms. 

Suppose initially that ß > 0. Then
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dP(N,k)
dp < 1 

JP=1

so that in the neighbourhood of p 1, P(kN 2) > kh However

dP(N,k)

dp
T=0

exp(-ß/32)JA
exp(-|ßy2)dy

1"4

and numerically it is found that the solution of the equation P7(o) = 1 is 

approximately ß = 26.25, and that for ß less than this value P/(o) is 
greater than unity, while for ß greater than this value P/(o) is less than 
unity. Thus for ß < 26.25 the curve of P(N,k) lies entirely above the line 

p(N, k) = kN 2 , while for ß > 26.25 the curve is initially under this line, 

but subsequently crosses it and then remains above the line. Thus if 

the coefficient of the selective advantage is large and the initial value p 

is small to moderate, the large initial selective disadvantage has a strong 

effect (despite large selective advantages for large kN 2) . It is easily 

checked that the "crossing-point", i.e. the solution of P(h,k) = kN 2, 

lies in ( 0 for all ß > 26.25* In the case ß < 0 it also follows that 

the curve lies below the line P(N,k) = kh 

(iii) y = -?p

This corresponds to selective advantages

1 + t(x-J), 1

and we find
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exp ißy(i-y) dy
P(N,k)

exp ißy(i-y) ay

From symmetry, p (n , k) + P(N, N-k) = 1 

and in particular p (h ,-§-N) = \

For ß > 0 the curve is initially below the line P(N, k) kh-1

crosses the line at and then lies above the line, while for 

ß < 0 the reverse is the case.

(iv) y = - |p

Here the selective advantages are

1 + t(x - ^ /b) , 1

and we obtain

P(N,k) =

exp 3
£ ßy - ißy2 ay

dy

Considering first the case ß > 0, it is found that P/(o) < 1,

and P'(l) < 1 for ß < 26.25, P'(l) > 1 for ß > 26.25. Thus for 

ß < 26.25 the curve lies entirely below the line P(N,k) = kN 

for ß > 26.25  ̂ it is initially less, but crosses over and is 

subsequently above the line. For ß < 0 it may be checked that the
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curve always lies above the line.

(v) 7 = -P
It is easily verified that P(N,k) < kN 2 for negative ß, 

but P(w, k) > kN 2 for positive ß.

(vi)
When 7 is of the same sign as ß the nature of the curves 

is obvious.

It is interesting in the present case to try to find bounds 
for P(0,k) which are simple functions, despite the fact that an 
exact expression for P(0,k) is known. This is because the exact 
expressions are unwieldy, and also since the bounds will be of a 

form similar to the diffusion approximation, thus giving a measure 
of the error ofthe latter. As an example we consider the case 
7 =0, ß > 0. Then the diffusion approximation for P(0,k) is

p(0,k)
JL _L

J exp(-ißy2)dy ^ J exp(-|ßy2)dy

It is simpler to consider the associated process for which i -> i 
transitions are ignored. This will not affect P(0,k) and gives as 

new transition probabilities

pi,i-i =  <2 +

Pi, i+1 = C1 + tx)(2 + tx)’1

where x = iN 2 and t = ßN 2 . Then in order to find a strict lower
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bound, f o r  p(o ,k) i t  i s  n e c e s s a ry  ( c . f .  C hap ter 3) to  f in d  an 

in c re a s in g  fu n c tio n  d**(x^_) such t h a t

***(x t+ i )  - <!>**(x+_) I x.t '  1 t ^ 0 (5 .3 0 )

We t r y  to  f in d  a d**(x^_) w hich i s  o f  th e  form

$ **(x^) e x p ( - Jß y  + ey) dy (5 0 1 )

where e i s  o(w 2) and x, i s  th e  v a lu e  o f x a f t e r  th e  t un t r a n s i t i o n .

Then (5*30) and ( 5 . 31) g iv e

t+ 1

e x p (-Jß y 2 + ey) dy ^ 0 (5 -32 )

where a l l  e x p e c ta t io n s  a re  now to  be c o n d i t io n a l  on x ^ . 

z = y ' xt  ’ s t+ i  = xt+ i  - v  xt  = x> (5>32) g lves

P u t t in g

t+ 1

\ exp( -^-ßy2 - ßxz + ez) dz ^ 0 ( 5 . 33)

I f  th e  i n t e g r a l  in  ( 5 .33) i s  now w r i t t e n  a s  \|/(b ) ,  th e n
u t I

\|/(o) = 0 ; \ | / ( b )  = e x p ( -yßb -ßxb + eb)

^ ' ( b )  = (-ß b -ß x + e) exp(-jjrßb -ßxb+eb)

\|r/ 7/ (Ab) -ß + (ßAb+ßx-e)' exp(-JßA 2b2 -ßxAb+eAb)

f o r  any A in  ( 0 , l ) .
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Thus \|r'(o) = 1, \|// / (o) = e-ßx

//(Aö)| ^ (ß+4ß2) exp

Hence
r

\|/(5) tx N 1(2+tx) L+ J(e-ßx)l\f2 + R-1 -2

where R 1z txN'5 (ß+4ß2) exp |(l+ß)H"1j- = En say.

( 5 -34)

Thus (5.3 )̂ is - 0 if

\ €N"2 ^ JßxN-2 - ^ßxN'2(l+|tx)"1 + R

2 -1and this will be so for e = ß N 

Similarly (5.3*0 ^ 0 if e = -ß2N_1 .
Thus using the results of Chapter 3> bounds for the exact value 

P(o,k) are given by

which may in fact be more convenient than the exact value.

5.5 Mutation and stationary distribution

If a small amount of mutation in both directions is allowed 

(at rates A-̂  for A a and ~ĥ  for a -* A), then no absorption takes
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p la c e  and a  s t a t io n a r y  d i s t r i b u t i o n  may be o b ta in e d . T h is -w ill 

n o t be a  p s e u d o - t r a n s ie n t  d i s t r i b u t i o n  and th e  d i f f u s io n  

ap p ro x im atio n  to  i t  i s  g iv en  by th e  W right e q u a tio n

x

f (x ) co n s t [ y ( x ) ] " 1 exp m (y )/v (y )d y ( 5 -35)

where th e  n o ta t io n  o f  C hap ter 3 h as  been  u se d . Note t h a t  t h i s  

co rre sp o n d s  to  e q u a tio n  ( 3 *1 6 ) w ith  C-̂  = 0, i . e .  no asym ptotic 

p r o b a b i l i t y  f lu x .  I t  i s  now shown t h a t  u n d er th e  u s u a l  assum ptions 

e q u a tio n  (5*35) p ro v id e s  a c lo se  ap p ro x im a tio n  to  th e  t r u e  s t a t io n a r y  

d i s t r i b u t i o n  in  th e  case  w here th e  t r a n s i t i o n  m a tr ix  i s  a  c o n tin u a n t 

w ith  ^ = IL and p^ = rj^ and d i f f u s io n  ap p ro x im atio n s  a re

a l lo w a b le .  Then w ith  m u ta tio n , th e  p r o b a b i l i t i e s  T) , H a re  

p o s i t i v e .  A lso , i f  m(x) and  v (x ) a re  th e  d r i f t  on d i f f u s io n  

c o e f f i c i e n t s  p e r  b i r t h - d e a th  e v e n t, th e n  p u t t in g  i  = Nx, IL and  T)̂  

may be w r i t t e n

IL = \  W2 v (x ) - Nm(x)

\  -ĵ  N2 v (x ) + Nm(x)

Thus
IL W2 v (x ) - Wm(x)

tj . N2 v (x ) + Nm(x)

exp -2m(x) -I v (x )
-1 -1 (5 .36)

Wow th e  s t a t io n a r y  d i s t r i b u t i o n  V  s a t i s f i e s

V I  - P <y
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the typical equation being

“\ - l  \ - l  + ^n i + ^i^ A i " Ai+1 n i+l = 0 ^  = - N-1)

giving

^i n ± - A ±_1 T)1_1 = constant (i = 1,2,...,N) (5-37)

It is easy to see, by using the particular case i = 1, that the 

constant in (5.37) is zero. This is in contrast to the allocation 

of the constant in (5*8) where a pseudo-transient distribution is 

considered, and in fact this leads to the interpretation of

A. n.i i - A i-1 ni-l

as an asymptotic probability flux. This follows immediately by 

drawing an analogy between the two second order equations

i — P  X v(x)f(x) X -  —  -T m(x)f(x) 1 = 0  
dx  ̂ J  ̂ - J

and

" A i-1 ni-l + n̂ i+T1i ^ i  " A i+1 n i+l 0

The first is reduced to

i ̂ |v(x)f(x) 1  - m(x)f(x) = C-

and the second to

A i n i " A i-1 11 i-l C2 '

If a true stationary distribution exists, then C-̂  must be put equal 

to zero, and it has just been found that in the discrete case
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C2 must also be put equal to zero if a stationary distribution 

exists. On the other hand, if no non-trivial stationary 

distribution exists, then in the diffusion case has the 

interpretation of an asymptotic probability flux in the "return" 

process, so that by analogy a similar interpretation may be attached 

to in the "return" discrete process.

Returning now to the equation

A. n.l l - A i-i \ - i

we obtain

i = 1,2, • jN.

as the stationary vector of the process, where the constant Aq 

may be obtained by normalization. Using equation (5-36 ), 7\ may 

be approximated by

const
n.i

exp / j H v(j/H)| 
j=0

PS const
"^y exp

jL

2 J  m(y)/v(y) dy ( 5-38)

where y = jN ^ and x = iW ^ . Equation (5 .3 8) is identical to the 

Wright equation (5 -35); which may therefore be taken as being a close 

approximation to the exact stationary distribution. It is, in fact, 

possible to use (5 .3 6) to show similarly that when the assumptions 

necessary to use diffusion methods are satisfied, then the diffusion
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approximation to the pseudo-transient distribution is close 

to the true distribution.

It follows easily from (5*38) that in the case where 

mutation is allowed, (at the rates specified above) the diffusion 

approximation to the stationary distribution is

A2N-1 T^N-l r
f(x) = const, x (l-x) exp s - |(x)

where i(x) is that function for which 
P

P(N,Np)
f i(x) dx 
J 0

f  |(x) dx 
d n

in the corresponding process with no mutation. Thus the previous 

discussion on the various forms P(N, Np) may take may be used in 

discussing f(x) . For example, if, in the case A-̂ N = A2N=1, the 

stationary distribution is greatest for small values of x, then in 

the process without mutation the probability of reaching the upper 

boundary x = 1 rather than x = 0 tends to be small, as would be 

expected.
3.6 Mutation in one direction only

The above methods may be used to derive exact pseudo­

transient distributions in the case where mutation in one direction 

only is allowed. Consider, for example, the haploid population 

discussed by Moran (1962), p.132, with N individuals which are either 

A or a. If at any time the number of A individuals is i, then after 

the next birth-death event it will be i-1, i, or i+1, with 

probabilities given by
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-1
i,i-l lN qi ni

p i;i+1 = (N-i)N-1 p -  n± (5-39)

>1,1 = 1 ■ pi,i-l ' pi;i+l

where = i(l-A)W ^

q = iAtf1 + (K-i)N'1.

These probabilities correspond to mutation at rate 

A from A to a but no mutation from a to A. Thus it is certain that 

eventual elimination of A individuals will take place and the only 

question is how long this may be expected to take. The transition 

matrix of the Markovian variate i; the number of A individuals, is

1 0  ______ 0 0

■1 _T11 \  • • • •
0 0

2
i - n 2 -T]2  — 0 0

) 0  ______ l - n .

Now this matrix is identical to the general form of a transition 

matrix considered in Chapter 9* We may therefore use the results 

(9*9) and (9*12) found in that chapter to state that the pseudo- 

transient function is given by

A i J[± 'i-l
1  +  ■ +n i-l

VlV2
n i-in i-2

^i-l^i-2---711
TTi-lTTi-2‘

(5A0)
1 -I

for i 1, 2, .• •) k
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and

A
1

i = Üi
V--Vi
nk'' 'ni-l

\-r--Vi
nk-l-''ni-l

+ • • • +
nl-•-ni-l J

(5A 1)

for i = k+1, k+2, . N

where k is the initial number of A individuals. It will now be 

shown that (5A 0) and (5A 1) are closely approximated by the 

expressions derived from (3.40),(3Al), and (3A 2). Using (5*39)>

n1 (i-A)(u-i)
H Ai + N-i

and assuming that A is 0(n ■*")_, so that 7 = AN is 0(l), then

■i-j I
~  « 1 - AN(N-i) 
i

~ exp -j"- 7 (N-i) 1 "j-

Therefore

*i-l---
i-r • • ,ni-t exp

exp

- 7 -|(N-i+l) _1 + . .

I

- 7 J (N-i+n)_1dn

+ (N-i+t) -1

(N-i+l)(N-i+t) -1 (5.̂2)
Then putting i = Nx, H. ~ x(l-x); so that for 1 ^ i ^ k ,
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i

—  y
~ x_1(l-x)-1 / (N-i+l)(N-i-ft)"1 dl

0
x

0

= ifc'^i-r)"1 (i -x )7"1 -l (5-43)

For comparison with (3.4o), (3.4l) and (3.42) it is necessary to put 
a = 2 in the latter, since in the above model the diffusion

c = 7 . Then the constant d in (3.40) and (3.4l) becomes 1-7 and 
the identity between (3«4o) and (5*43) becomes obvious, when the 
different time scales are taken into account.

Similarly, for i > k, may be approximated by using 

(5*42) and (5.4i ). We have

where k = Np. By putting a = 2 and c = 7 in (3«4l) and (3.42), 

the identity with (3*44) is clear. Thus the diffusion method gives 

a close approximation for the complete pseudo-transient function, and 

therefore the mean time until A individuals are lost from the 

population is well-approximated by (3*43)»

approximation to the variance is 2x (1-x )n " , and similarly put

i-1

i-k

(where again i = Nx). This leads eventually to

~ Nx"1(l-7j1(l-x)7'1 1 - (l-p)1"7 (5.44)
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CHAPTER 6.

SOME NUMERICAL AND 

DIFFUSION RESULTS
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6.1 Introduction

In the overlapping generation models discussed in the 

previous two chapters, explicit expressions have been found for 

nearly all quantities of genetical interest (an exception being 

that in some cases it appears difficult to derive explicit 

expressions for latent roots of transition matrices).

In another genetical model (Wright, (1931)) all the members 

of a haploid population die simultaneously and are replaced by a 

new generation of the same size as the old. If states correspond 

to the number of A individuals in any generation, then in this 

model transition between all states in one generation is possible 

(except, of course, when mutation is absent, so that there are two 

absorbing states). This model is much harder to deal with than 

those for which transition to neighbouring states only is possible. 

In fact the only results known explicitly for this model occur 

when selection is not allowed. However it is easy to derive 

diffusion approximations for most quantities of interest, and it 

may be conjectured, after the previous two chapters, that the 

diffusion approximations will be reasonably accurate. In this 

chapter numerical results are given which support this conjecture 

but which present other problems.

The four quantities examined are (i) the probability that 

a given allele is eventually lost from the population; (ii) the 

mean time for elimination of one or other allele; (iii) the 

probability that a given allele is lost by the n ^  generation;
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(iv) the dominant non-unit latent root of the transition matrix.

The numerical results were obtained by using an electronic 

computor and are therefore subject to rounding error. Most of 

the results were obtained by successive powering of a transition 

matrix; and a check sum of the elements of each row for each powered 

matrix was obtained. This check sum differed from unity at the 

most in the sixth decimal place, so that the numerical results 

given here may be taken as being correct to the order in which they 

are given. In view of the size and speed of the computor the 

population size (twelve) considered is extremely small, but is in 

fact sufficient to draw useful conclusions.

It has been thought by some writers (Fisher (1930), 

Kolmogorov (l959)) that diffusion methods break down near the 

boundaries within which the variate under consideration lies and that 

branching process techniques are necessary to examine the behaviour 

of the process near such points. This has led, amongst other 

things, to the necessity for "fusing" the branching process results 

with the diffusion results in the neighbourhood of the boundaries. 

However, it is difficult to see from the nature and derivation of 

the diffusion equation why diffusion results should not hold down 

to the boundaries and the numerical results obtained here suggest 

that in fact the diffusion results may be more accurate, in an 

absolute sense, near the boundaries than in the interior of the 

interval. Such a result has also been found numerically by
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Knox (1962), some of whose results are abstracted, in this chapter.

In fact arguments at the end of the chapter suggest theoretically 

that in the case of the mean absorption time the diffusion results 

will be more accurate in an absolute sense near the boundaries, 

but on the other hand less accurate relatively than in the interior. 

This is observed here and in Knox’s numerical results.

0.2 Absorption probabilities

We consider first the probability that the A individuals 

are eventually fixed in the population, given that they have 

selective advantage 1+s, where s is 0(W and N is the population 

size. The transition matrix is

P }
where p^ = (l+s)i(N+si) ~. Bounds for absorption probabilities 

in this model have been given in Chapter 2 (as case (3))* To 

obtain the numerical values the transition matrix is raised to 

the 1,2,4,...,128^  power, by which time, for N = 12, the

probability that both alleles A and a are still present is very
-6small (of the order 10~ ). The diffusion approximation is

obtained by putting

m(x) = ccx(l-x) 

v(x) = x(l-x)
(6.1)

where OL = Ns, in equation (3.8), with Pq (p ) replaced by P-̂ (p) 

and with boundary conditions P^(o) = 0, P-^(l) = 1. Thus the
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diffusion approximation P1(p) to the probability of eventual 

fixation of A individuals in the population, given initial 

proportion p, is given by

p ( ̂  = 1 - exp (-2CKp)
1 - exp (-2a) (6.2)

For s = 0, diffusion methods give P-̂ (p) = p, which is the 

exact value. By giving s various (positive) values we 

are able to compute a set of exact probabilities and diffusion 

approximations for the probability of fixation of A individuals, 

for various values of p. These are tabled below (Table 6.1).

It will be noted that the diffusion approximations 

are close to the true values and also always exceed the true 

values, as was shown would happen in Chapter 2. The bounds 

in Chapter 2 may be applied and are reasonably sharp; for 

instance in the case s = .04, 12p = 6, the bounds derived 

from (2.7) and (2.9) are .613 -̂ and .6178, and the arithmetic 
mean of the bounds gives the exact value to the order of 

accuracy considered.
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T ab le  6 .1

E xac t v a lu e s  and d i f f u s io n  a p p ro x im a tio n s  (D .A .) f o r  th e  p r o b a b i l i t y

o f  f i x a t io n  o f  a  gene h av in g  s e le c t iv e  ad v an tag e  1 + s in  a  p o p u la tio n

o f s iz e  1 2 , p b e in g  th e  i n i t i a l  p ro p o r t io n .

r ~

12p E xact D .A .
f

E rro r E xact D .A .
" 7

E r r o r ; E xact D .A . E rro r

1 s  = 0 s  = .02 s = . 04

1 .0833 .0833 0 .1027  1 .1029 .0002 .1238 .1246 .0008
2 .1667 .1667 0 .2013 .2017 .0004 .2382 .2396 .0014
3 .2500 .2500 0 .2962 .2966 .0004 .3439 .3958 .0019
4 • 3333 • 3333 0 .3873 .3879 .0006 .4417 .4438 .0021
5 A 167 .4167 0 .4749 .4755 .0006 .5320 .5342 .0022
6 .5000 .5000 0 .5591 .5597 .0006 .6156 .6177 .0021
7 .5833 .5833 0 .6401 .6406 .0005 .6928 .6948 .0020
8 .6667 .6667 0 .7178 ■ .7183 .0005 .7642 .7660 .0018
9 .7500 • 7500 0 .7926 .7930 .0004 .8302 .8317 .0015

10 .8333 .8333 0 .8645 .8648 .0003 .8913 .8923 .0010

11
.9167 .9167 0 .9336 .9338 .0002 i .9478 .9483 .0005

s = .06

00011w s  = .10

l .1463 .1482 .0019 .1699 .1733 .0034
t
j .1940 .1994 .0054

2 I .2764 .2796 .0032 .3153 .3209 .0056 •3539 .3626 .OO87
3 .3921 .3962 .o o 4 i .4397 .4467 .0070 .4858 .4962 .0104

.4951 .4996 .0045 .5463 • 5539 .0076 .5946 .6056 .0110
5 j .5866 .5913 .0047 .6376 .6453 .0077 .6844 .6952 .OIOS
6 .6681 .6726 .0045 .7159 .7231 .0072 .7586 .7685 .0099
7 1 .7406 .7447 .0043 .7830 .7895 .0065 .8200 .8286 .0086
8 .8051 .8087 .0036 .8406 .8460 .0054 .8707 .8777 .0070
9 .8626 .8655 .0029 .8900 .8942 .0042 .9127 .9180 .0053

10 .9138 .9158 .0020 .9324 .9352 .0028 .9474 .9509 .0035
i i

— J

.9594

—

.9604 .0010 .9688 .9702 .0014 .9762 .9779 .0017
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6.3 Mean time for homozygosity

The vector of \i of mean times until homozygosity for 

various initial states, is given by

where Q is the submatrix of P corresponding to transitions 

between transient states and f is a column vector of unities. 

The diffusion approximation is found by solving (3.5) 'with 

the coefficients (6.1). The solution obtained is

where time has been rescaled to generations. The integrals 

have to be evaluated numerically by using Simpson’s rule.

By using (6.3) for exact results and (6.4) for the diffusion 

approximation, Table 6.2 below may be drawn up. Note that 

the mean times given are in terms of generations.

M- = (I - Q)'1 * (6 .3)

u(p)
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Talle 6 .2

Exact values and diffusion approximations (D.A.) for the mean 

time until homozygosity, p being the initial proportion of A 

genes and s the selective advantage.

1 12p Exact D.A. Error Exact D.A.
1

Error' Exact D.A. Error

s = 0 s = .02 s = . 04

1 6 .147 6.884 .737
1

6.943 7.200 .757 6.715
f

7 .490 • 775
2 9.766 10.813 1 .047 10.164 II.23I 1 .067 10.505 11.590 I.O85
3 12.306 13.496 1.190 12.680 13.886 1.206 12.963 l4 .l8l 1.218
4 14.004 15.276 I.272 14 .271 15.553 1.282 14 .424 15.707 1.283
5 14.984 16.300 1.316 15.095 16.4l4 1 .319 15.082 l6 .391 1.309
6 15.305 16.636 1 .3 3 1 15.240 16.566 1.326 15.056 16.359 1.303
7 14.984 16.300 1.316 14.752 16 .054 1.302 14.416 15.686 1.270
8 14.004 15.276 1.272 13.636 1 4.887 1 .251 13.190 14.402 1.212
9 12.306 13.496 1.190 11.860 13.025 I.165 11.367 12.490 1 .123

10 9.766 10.813 1 .047 9.328 10 .351 1.023 8.873 9.857 .984
li 6 .147 6.884 .737 5.840 6.559 .719 5-535 6.226 .691

s = .06 s = .08 s = .10

l 6.959 7.752 .793 7 .173 7.979 .806 7.356 8.171 .815
2 IO.783 11.881 1.098 10 .998 12.100 1.102 11.153 12 .248 1.095
3 13.156!14.575 1 .2 1 9 13.262 14 .468 1.206 13 .289 14.465 1.176
4 14 .469 15.739 1.270 !l4 .4l7 15.655 1.238 1 4.28o 15.466 1.186
5 14 .958 16.238 1.280 14.739 15.968 1 .229 14.442 15.602 I.160
6 14.770 16.030 1.260 14.403 15-599 1.196 13.976 15.089 1.113
T 13.998 15.215 1.217 13 .521 14 .666 1.145 13.006 14.062 1.056
8 12.689 13.843 1.156 12.154 13.232 1.078 11.606 12.595 .989
9 10 .847 11.912 1.065 10.318 11.312 .994 9.795 10.708 .913

10 8,415 9.397 .932 7 .966 8.839 .873 7.535 8.343 .808
11

_

5.239 5.895 .656 4.958 5.575 .617 4.695 5.270 .575
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In the first place it may he noted that the diffusion 

approximation always exceeds the true value. That this will 
always he so for sufficiently large N may he proved in the 

case s = 0 as follows. Firstly we note 
Lemma 6.1

Let x he the proportion of successes observed in N 

Bernoulli trials, with constant prohahility p of success. Then

E -ĵ x 'tn x +(l-x) 'Ln(l-x) j- ^ p "Ln p + (l-p)"Ln(l-p) +(2N) ^

-1 -1whenever N = P = (W-l)W and N ^ (Nq a suitable constant). 
Proof

(a) It is sufficient to prove the lemma for N ^ ^ p  ̂

by symmetry, and it is therefore assumed that p lies in this 
range.

(i>) H

ilr(x) = x -tn x + (l-x) 't-n(l-x) 

then the lemma asserts that

E I  i|r(x) - t(p) I  * (2N)"1 (6.5)

Put 5 = x - p, the deviation of x from its expected value.

Then the left-hand side in (6.5) becomes

e {&+'(p) +isV/(p) + |&V',(p) + iü«V1V)(p)

+ iiös5'l'(v)(p) + ̂ ösV vi)(0x + (i-e)p ) I
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where 6= 0(p) and lies in [0,1]. Now from the definition of

H v )  9

\l/7/(p) = p-1(l-p)-1, t//7(p) = p_2(l-p)"2(2p-l),

t(lv)(p) = 2p"3(l-p)'3(l-3p+3p2),

t ^ ( p ) =  6p-1*(l-p)-l!(2p-l)(l-2p+2p2), t ^ X^(y) > o for y in (0,1)

Also, from the central moments of the binomial distribution,

E (5) = 0, E(62) = p(l-p)H'1, E(S3) = p(l-p)(l-2p)N"2,

E (B4) = 3p2(1-p)2N'2+ p(l-p)(6p2-6p+l)lT3,

E(S3) = 10p2(l-p)2(l-2p)K-3 + p(l-p)(l-2p)(l-12p+12p2)N-2 

c
and Beb ) > 0 .  Thus the left-hand side in (6.5) may be written 

(2N)'1 + (l-p+p2)| 12p(l-p)H2|

+ |  -5+27(p-p2)-30(p-p2)2 I !  12p2(l-p)2 N3 I  

+ -f -(l-2p)2(l-2p+2p2)(l-12p+12p2)j-j" 20p3 1-p 3 li| + + Ve.

Now for 0 ^ p ^ \  , 1-p+p2 ^ ^ Ik

-5+27(p-p2) - 30(p-p2)2  ̂-5 

and -(l-2p)2(l-2p+2p2)(l-12p+12p2) ^ -1

Thus the left-hand side in (6.5) is greater than or equal to
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(2If)‘1+ I  l6p(l-p)N^ I  -5 I  12p2(l-p)2 U5|  - |20p5(l-p)3 ^  ̂

(2K)‘1+ |  löpCl-p)!!2 I 1 - 2o|3p (1-p )n |  - ilj5p2(l-p)2 H2 j

It is easy to show that the expression in square brackets is 

always positive for N ^ 100 and p ^ 8n \  so that the required 

inequality holds for these values. (6.6)

To show that the inequality holds for p = N 

2N 1,...,7N ^ for sufficiently large N, we note that since 

(l-x) 'Ln(l-x) is a convex function of x, then

- 1-

E -ĵ (l-x) 'Ln(l-x) ^ (l-p) 'tn(l-p)

so that it is sufficient to prove

E ̂  x "tn x 1 p 'tn p + (2N) -1

Equivalently, it is sufficient to prove

E ̂  y 'tn y ^ q -Ln \i i_2

where y is the number of successes in N Bernoulli trials with 

parameter qN (|_i = 1,2,...,7)> and N is sufficiently large. Now 

it may be verified that if y is the value observed in a Poisson 

distribution with parameter \±, that the following table is true.

We define T(i;q) by

T(i;q) = ^  (y y)qy exp(-q)/y!
y=o
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Table 6.3

p i T(i;u) p -vn p _rd , , th3 col.- 4 col.

1 9 • 573^ 0 .5734
2 12 1.9560 I.3863 .5697
3 Ik 3.8^31 3.2958 •5^73
k 17 6.0774 5.5^52 .5322
5 19 8.5705 8,0472 .5233
6 20 11.2685 10,7506 .5179
7 22 14.1358 13.5214 .5144

22
Thus ^  (y Z-n y) e^p^/y! exceeds p "Ln jjl by at least .5144 for

y=o
(jl = 1,2, But there is only a finite number of terms in
the above sum, so that since the terms in a binomial distribution

with index N and parameter pN ^ converge to those of a Poisson
distribution with parameter p as N -* 00 , there exists an

for which 
22
^  (y y) ( y ) (pN^^l-pN"1)1̂  > \  + p I n  p
y=o

for p = 1,2,...,7 and N * .

Using this result and (6.6) the lemma has been proved for 
N > max (100,Nq) = Wq . It may be noted also that numerical 
results suggest that the lemma is true for all positive integral N.

We may now use the lemma and the methods of section 3*6 
to prove the assertion that the diffusion approximation always 

exceeds the true value for sufficiently large N. In the case
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s = 0 (i.e. m(x) = 0), equation (3*54) yields

*(x) -2 x 'tn x + (l-x)'Ln(l-x) (6.7)

"tilNow the proportion x^ of A individuals in the (t+l) generation 

is obtained by binomial sampling from a distribution with parameter 
x_j_. Thus the lemma shows that for N sufficiently large

E 4>(xt+1) - *(xt: -N-1 (6.8) .

By iterating in (6.8) until homozygosity is reached, we find, 

since <t>(o) = <J>(l) =0, that

- *(p) * - Utp)!)'1
or U(p) ^ <*> (p)

= - 2N p "Ln p + (l-p) •-Ln(l-p) j- (6.9)

Since (6.9) is the diffusion approximation to the mean absorption 
time, the assertion that the diffusion approximation overestimates 
the true mean time for N sufficiently large is proved. Numerical 
results (c.f. Table 6.4) suggest that this assertion is true for 

all N.
In the paper (Ewens (1963 b)) in which the above results 

were first given, an attempt was made to explain the value of the 
discrepancy between the true value and the diffusion approximation 

along the following lines. Considering the analogous model 

discussed in Chapter 4, the exact expression (4.1l) for the mean 

time until homozygosity is approximated by a formula (4.21) which
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is close to the diffusion approximation (4.23)• However (4.21) 

and (4.23) would be closer approximations to (4.1l) if the terminals 

in the integrals were replaced by ^(2N) p and ^p, (2N-l)(2N) ^ ^  

respectively. If a similar change is made in (6.4) the value of the 

right-hand side would decrease, to a very close approximation, by

N
a

e2a(l-p)
2a e

1
1

to - e2a(l-p)
2N e33 - 1

Since a discrepancy of about unity is observed in Table 6.2 it was 

conjectured that subtracting unity from the diffusion approximation 

would increase the accuracy of the approximation. This conjecture 

seems to be true in the "analysis of variance" sense that a 

significant proportion of the discrepancy could be removed by such 

a subtraction, but the following argument suggests that a more 

accurate statement about the discrepancy can be made.

The argument uses both the concept of the pseudo-transient 

distribution as well as the almost-invariant function given in 

Chapter 3* The equation

e{
where ^(x) = 2 -ĵ

was obtained by expanding ^(x^-^) about in a Taylor series and 

ignoring terms which are ö (N ^). Iteration in (6.10) gives the 

diffusion approximation for the mean time. If the next term in

<Kxt+i) - *(xt) j- « N_1

x 'tn x - (l-x) 'Ln(l-x)

(6.10)
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the Taylor series is included we obtain more accurately 

e {  ♦(xt+i)-*(xt)} = 6xt(1-xt)N2|  + 0(N"5) (6.11)

Suppose that the mean number m. of generations (before homozygosity) 

that the proportion of A individuals assumes the value jN-1 

(j = 1,2, . ..,N-l) is known or can be approximated. Then iteration 

in (6.1l) gives

N-l 1
-*(p) « p(k)K'1 + ^  mJ(l-jN'1+j2H ‘2) I  6j(N-j) j  

j=l

so that a more accurate formula than

M- ( k) ~ -2Nĵ  p 'tn p + (l-p) ^tn(l-p) J- (6.12)
is

N-l

j=l
p(k) « -2njp-tn p + (l-p) -Ml-p)} - K"1 ^ m j(l-jN'1+j2N"2)|6j(w-j)

... (6.13)

-a

Now using pseudo-transient function methods it is possible to find 

close approximations for nm . In fact since p = kN ^ the diffusion 

approximations for the nm are

m = 2(N-k)(N-j)• V -1

m^ = 2kj -1

j - 1,2, .., k 

j = k+1,..,N-l
(6.14)

Using (6.13) and (6.l4) we obtain as a more accurate formula than 

(6.12) the equation
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M-(k) ~ -2N p "Ln p + (l-p) "Ln(l-p)

“(5N) -1

+

k
^  (N-k)(W2-Nj+j2)(N-j)"2j"1
j=l
N-l

k(N2-Wj+j2)j"2(N-j)-1
j=k+l

(6.15)

It is interesting to examine this more accurate formula in the cases 

k = 1, k = -g-N. For k = 1 it is found that (6.15) reduces

approximately to

n(l) « -2 -^-tn M'hCH-l) 'tn(l-K"1)\ - n2/l8 -(5N) "kr^N-l) - .192lUJ_1

... (6.16)

The first term on the right-hand side of (6.l6) is the diffusion

approximation, so that (6.l6) suggests that asymptotically the

diffusion approximation overestimates the true mean time by

H /l8 « .55, and further that the absolute value of the error of
the diffusion approximation decreases as N increases. Also the

2
relative error is approximately H /(56"Ln N ) which decreases 
very slowly with N.

In the case k = -yN, (6.15) becomes, after some reduction

1-l(Jn ) « -2N tn i N - j (l - tn2) (6.17)

Since the first term on the right-hand side of (6.17) is the 

diffusion approximation for p(-|-N), (6.17) suggests that the diffusion 

approximation overestimates the true mean time by a term whose 

leading element is y^n N, and which consequently increases with N,
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(in contrast to the case k = l). Further, the relative error is 
approximately

(-bn N)(6N bn 2) -1

These results may now he compared with numerical values 
found by Knox (1962), who has obtained exact results for 

N = 10, 20, ~$0, 40, 50, using a high-speed computor. The relevant 
values given by Knox are as follows.

Table 6.4
k=lN True value Diffusion Error Rel.Error $

Approx.
10 5 .7 5328 6 .5 0 1 6 6 .74838 1 3 .0 1
20 7.23122 7 .9^061 .70939 9 .8i
30 8 .0 7 5 9 9 8 .7 6 8 6 8 .69269 8 .5 8
40 8.66930 9.35255 .68325 7 .8 8
50 9.12677 9.80391 .67714 7.42

k=l-N
10 12.5905 13.8629 1.2724 1 0 .1 1
20 26.2295 27.7259 1.4964 5.70
30 39.9595 4l .5888 1.6293 4.08
4o 53.7280 55.^518 1.7238 3.21
30 67 .5 1 6 9 6 9 .31^7 1 .7 9 7 8 2 .6 6

It may be noted that all the results suggested by the
above theory are verified. For k = 1 the absolute error decreases
and appears to approach a limit between .5 and .6 . The relative
error decreases slowly, as; suggested. For k = -|N the absolute

error increases at a rate roughly proportional to 'bn N, as suggested
while the relative error decreases at a rate approximately 

(ln ION"1.
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The above arguments and numerical values make it plausible that for 

all N the diffusion approximation is most accurate near the 

boundaries, and hence it is unnecessary, as mentioned at the 

beginning of the chapter, to use branching process methods to 

estimate the mean absorption time when the initial value k is close 

to 0 or close to N.

" ttl6.4 Probability of absorption by the n generation

"tiiThe probability that by the n generation all the individual*

in the population are A can be obtained numerically by examining

the n p o w e r  of the transition matrix. For the diffusion

approximation attention is restricted to the case s = 0, since the

diffusion approximations for non-zero s are very complicated. In

the case s = 0 Kimura (1955a) has found the diffusion approximation

for the probability that the A individuals have become fixed in a
"tilpopulation of size N by the (Nn) generation, given initial 

proportion p. His expression is

Prob fixation by (Nx)^1 generation j- 

00

= P + (-1)1 ^ifi+iy1-^  Ti_i (1“2p ) exP 4 i(i+1)n |  (6.18)
i=l

where t  (z) is a Gegenhauer polynomial defined by

T ^ z )  =ii(i+l) F(i+2, 1-i, 2, i(l-z) ) .

To make a comparison with the numerical results it is necessary to 

put N = 12 and n = j/l2 (j = 1,2,4,...,128). If this is done it is
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found that the diffusion approximation becomes more accurate as j 
increases. For j = 128 the approximation is very close to the

true value, due to the fact that the right-hand side in (6.l8) is 

very close to p, as is the true probability. For j less than eight 

the diffusion approximation is poor. It may be noted from 

Table 6.5 below that the diffusion approximation underestimates 
the true probabilities for all values of p and j considered.

This corresponds to the fact that the diffusion approximation 

overestimates the mean time to homozygosity.

6.5 Latent roots

For s = 0 the latent roots are known (Feller (l95l))

to be

Ar = ( r ) rl w "r (r = 0,1, .. .,N) (6.19)

so that the largest non-unit latent root is 1-N ^ and is ll/l2

in our case. For s ^ 0 the latent roots are unknown, and the

largest non-unit latent root, which determines asymptotically the

rate of approach to homozygosity, may be estimated as follows. By

writing out the matrix P in spectral form we obtain
N

Pn = c + ^  Â 1 D. 1 > |A2| > ...> |Ah| (6.20) 
i=2

where the are spectral matrices corresponding to the (=A_̂ (s)) 

and C is a matrix having positive elements only in the first and 

last columns. These entries are elimination and fixation
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Table 6.3

Exact values and diffusion approximations (D.A.) for the probability

that the A genes have become fixed in a population of size 12 by the 

generation, given initial proportion of A genes = p.

C_
i. II 0
0 j  = 16

<f ?
12p Exact ' D.A. Error Exact D.A. Error

1 .0058 .0030 -.0 0 2 8 .0351 .0286 -.0065
2 .0175 .0100 -.0 0 7 5 .0778 .0652 -.0 1 2 6
3 .0371 .0228 -.0143 .1284 .1103 - . 0 l 8 l
h .0665 .0442 -.0223 .1874 .1644 - .0 2 3 0
5 .IO8 3 .0761 -.0 3 2 1 .2550 .2283 -.0267
6 .1649 .1230 -.0419 .3316 .3024 -.0 2 9 2
7 .2394 .1886 -.0 5 0 8 .4175 .3875 -.0 3 0 0

8 .3348 .2776 -.0572 .5132 .4842 -.0 2 9 0
9 .4547 .3966 -.0 5 8 1 .6189 .5931 - .0 2 5 8

10 .6027 .5513 -.0514 .7350 .7149 -.0 2 0 1
l i •7830

___ ,___ — __________________

.7495 -.0335 .8619 .8503 -.0 1 1 6

d = 32 J = 64

l .0706 .0675 -.0 0 3 1 .0825 .0822 -.0003
2 .1435 .1379 -.0 0 5 6 .1652 .1647 -.0005
3 .2187 .2111 -.0 0 7 6 .2481 .2473 - .0 0 0 8
4 .2962 .2871 -.0 0 9 1 .3310 •3301 -.0009
5 .3760 .3661 -.0099 .4142 .4131 - .0 0 1 1
6 .4581 .4479 -.0 10 2 .4974 .4964 - .0 0 1 0
7 .5426 .5326 -.0 1 0 0 .5808 .5798 -.0 0 1 0
8 .6294 .6202 -.0 0 9 2 .6644 .6634 -.0 0 1 0
9 .7185 .7108 -.0 0 7 7 .7481 .7473 -.0 0 0 8

10 .8100 .8043 -.0 0 5 7 .8319 .8313 -.0 0 0 6
l i .9038 .9006 -.0 0 3 2 .9159 .9156 -.0003
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probabilities for various initial values of the number of 

A individuals and their sum by rows is unity. For large 

n we have

Pn « C + D2

If = (100. .01)7 then C |_ = (ill. . .1)'= £

and also £/ = d = (d d ... d^ )/ say. Thus

-r,n . , -.n ,P ~ - A2 d

Letting T) . = (00. .010. .0)', where the 1 occurs in the 
■J

position (j = 0,1,2, . .,N ) we obtain

(i - Pn |_) « A2 d̂. = h(n, j) say

Thus an estimator of A2 (=A2(s)) is

A2(s) h(m, j)/h(n,j)

1
m-n

(6.21)

(6.22)

Ideally, values of m and n as large as possible would be 

used to estimate A2(s), since the effect of the other latent 

roots will then be relatively smaller. In the numerical 

example considered the best values for m and n are found 

to be 64 and 32 respectively, since if the value 128 is 

used for m the expression (6.21) becomes very small and of 

the same order of magnitude as the rounding error in the 

computor. The values 64 and 32 are sufficiently large
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to make the effects of the other latent roots negligible but 

not so large that the rounding error becomes important.

By varying j in (6.22) a set of estimators may be found 

for A,p(s) for each s. The results are summarized in Table 6.6 

below. In the table the arithmetic mean X^(s) of the estimates 

and the upper and lower bounds attained for various j are given.

Table 6.6

Arithmetic mean X^s) and bounds obtained from (5-3)•

s
:

0 .02 .04 .06 .08 .10

X2(b) .91664 .91618 .91490 .91283 .91001 .90652

rLower 
Range j

.916625 .916157 .91^855 .912771 .909949 .906437
HJpper .916647 .916206 .914955 .912862 .9ioo4o .906562

As a check, it is known that A2(o) = .916667 so that the

error in X^s) is in the fifth significant figure, so that errors

in X (s) for non-zero s may also be expected to be of this order.

The values in Table 6.6 may be used to estimate the

relation between A0(s) and s. If X^s) is regressed jointly on 
2s and s the sum of squares removed by the regression on s is small.

2 4Similarly regressing X^s) on s and s yields a small sum of
4 _ 2

squares for s . If X^(s) is regressed on s alone (the regression 

being constrained to pass through (0,ll/l2)) the estimated curve 

is

*  (s) = ll/l2 - 1.028s- (6.23)
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and this curve gives a very close fit to the observed values.

To derive for comparison the diffusion approximation 
for A^s) it is necessary to solve equation (3.1), when m(x) 

and v(x) are given by (6.l), for the distribution f(x;t) in 
the interval (o,l) of the proportion x of A individuals at time 

t(= tN generations) . This has been done by Kimura (l955t>) who 
obtains the solution

00

f(x;t) = ^  ci expC-A^t) V^(z) exp(-Jsz) (6.2 k)
i=0

where z = l-2x, the V-^( z) are linear sums of Gegenbauer 
polynomials, the c^ are constants and the A^ are certain 

(latent root) constants. For our purposes only the A_̂  are of 
interest and in particular the smallest (absolute) latent root Aq . 
Clearly the probability that the proportion x lies in the open 
interval decreases asymptotically at the rate exp(-AQ) per N 
generations on exp( -Aq /n) per generation. Kimura showed that 
this smallest latent root is given by

x = ^ s 2 lAs^
A0 " 1 + 10 " 7000 " 1,050,000 "

so that exp(-A^/w) is approximately

(N-l)lf1 - Ns2/l0 (6.25)

for the values we are considering. In the case N=12,
(6.25) becomes
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Il/l2 - 1.2s2 (6.26)

■which agrees reasonably well with the numerically-derived, 

result (6.23)•
It is possible to find explicitly the largest non-unit 

latent root in the cases N = 2, N = 3- If terms of order s are 

ignored; these are

H = 2 : A2(s) = \ - s2/8

N = 3 : A2(s) = I - 2s2/9
The diffusion approximations for these values are 

N = 2 : A2(s) = i - s2/5

N = 3 : A2(s) = I - 3s2/l0

These are used to draw up Table 6.7 below; which gives
the proportionate error of the diffusion approximation for the 

2coefficient of s compared with the true value. For this purpose 

the numerical result (6.23) is considered to be exact. Clearly 

the diffusion approximations are always too large (in absolute 

value); but the proportionate error decreases steadily. For 

N greater than about 50 the diffusion approximation should be 

reasonably accurate.
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Table 6 .J

2True value and diffusion approximation for coefficient of -s in 

with proportionate error of diffusion approximation.

N 2 f 52 3 . . . . 12

True Value . 1 2 5 0  .2222 . . . . 1 . 0 2 8

Diffusion Approximation .2000 . 3 0 0 0 1.200

Proportionate Error of 
Diffusion Approximation 6 0 .0 0 io 35-00io 1 6 .7 3%
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CHAPTER 7

DIPLOID POPULATIONS
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7.1 Introduction

The next two chapters consider monoecious diploid 

populations; which admit selection; as for haploid populations; 

hut also dominance; which is meaningless for haploid populations 

(except for artificial examples similar to that considered in 

Chapter section 2). The population size is fixed at N, giving 

2N alleles at the locus under consideration. The possible 

genotypes are AA, Aa, and aa, with selective advantages 1+s, 1+sh, 

and 1 respectively. Thus s is a measure of selection (which for 

our purposes is assumed 0(N and h is a measure of dominance.

If h = \ the selective advantage of the heterozygote is 

intermediate between those of the two homozygotes and there is 

no dominance.

If at the t *̂1 generation the numbers of PA, Aa, and 

aa individuals are k^, N-kj.-'t̂ , and respectively; then if the 

composition of the (t+l)̂ *1 generation is determined only by that 

of the t^ 1 generation; the pair (k^, 't̂) will be Markovian, so 

that in theory a transition matrix could be set up and all 

results derived from it. In practice this is not possible and 

all that can be done is to make further assumptions and/or to 

use diffusion methods.

It has been shown by Watterson (1962) that diffusion 

methods may be used if a variate can be found satisfying certain 

quasi-Markovian conditions, but it is necessary for the purposes 

of finding bounds along the lines indicated in Chapter 3 that
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that variate under consideration he strictly Markovian. For any 

overlapping-generation model analogous to those considered in 

Chapters 4 and 5; a single Markovian variate to replace the 

Markovian pair (k^, -4̂ ) could he found only hy making further 

assumptions. One such assumption would he that the numbers of the

three genotypes at any time t occur in the Hardy-Weinherg
1 2proportions p^, 2p_tq__(_, and q_ say. In this case p̂_ would he 

Markovian and diffusion methods could he used. However it is 

in general impossible that the Hardy-Weinherg relations should 

hold both before and after a birth-death event, and in any case 

it would he preferable to use a model which does not necessitate 

such a restriction. In this chapter it is shown that in the non­

overlapping generation model analogous to that of Chapter 6 it is 

possible to find a single Markovian variate, which is a function of 

k^ and "L̂ , which allows diffusion approximations and strict hounds 

to he made for various functions of interest.

7-2 Absorption Probabilities

The model considered (c.f. Moran (1950b)) is analogous 

to that considered in Chapter 6. With the selective advantages 

given above the relative outputs of the three genotypes are 

k^(l+s), (N-k^-^) (l+sh), and'L^ respectively, so that the expected 

proportion of A genes will be

p(A) = (l+s)kt +i(l+eh)(H-Ht-tt) (T>1)
(l+s)k + (l+sh)(N-kt-tt) + t
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(l+s)a^ + J(l+sh)(l-a^-b^)
1 + sa, + sh(l-a -b,) t t t

where a, = k, N 1 , b, = 't, N \  t t ; t t

(7-2)

It is supposed that each of the N offspring will he AA, Aa, or
2 2 aa with respective probabilities p (A), 2p(A) {l-p(A)}, (l-p(A)} .

It follows that the number of A genes in the next generation is 

a binomial variate with index 2N and parameter p(A).

The next step is to find a single Markovian variate 

describing the process. Watterson (1962) in considering an 

analogous problem for dioecious populations chose a "quasi- 

Markovian" variate which in the present case would reduce to 

z_j_ = (2N) ^N+kj.-T^.) . This is the proportion of A genes in the 

t ^  generation but is not a Markovian variate. This occurs 

because it is necessary to know not only how many A genes there 

are but also what proportion of these are in homozygous (AA) 

individuals, since the selective advantage of these differs from 

that of the heterozygotes. Thus does not provide complete 

information and it is more relevant to consider a weighted pro­

portion of A genes, the weights being proportional to the 

selective advantages. This leads to the consideration of the 

variate
(l+s)at + i(l+sh)(l-at-bt)

Xt - l+sa^.+sh( 1-a^ -b^)

which is identical to p(A) above, and which is seen then to be
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Markovian. The difference between and x^ is of order s

and is therefore small; it is this fact which allows ẑ_ to be

treated as a "quasi-Markovian" variate rather than x̂ _.

Having found a Markovian variate it is possible to

use diffusion methods to approximate to the probability that the

A genes eventually become fixed in the population. By expanding

the denominator in (TO) in series and ignoring for the moment 
2terms of order s we obtain

EK+f Ep-( 1+c't+l“bt+r h t+1 - at+1 â  b^ _ + t+1 t+1

+ b̂t+l " at+l^ h(1 " at+l " bt+l^

x, + ix 2 4.2
xt"xt+x^(l-xt)2+ |(l-xt)2-x2| h|l-x2-(l-xt)'

Therefore if = xt ’ 1 _ xt* bo or<̂ er s

E(St+1) = sxt(l-xt) jh + (l-2h) xt ”| (7-*0

and also

Var(6t+1) = (2N)"1 xt(l-xt) (7-5)

to the same order of accuracy.
Equations (7.4), (7.3), (3*9) and (3.IO) give the formula

exp -2aht + aDt

P(N,Nxn) (7.6)

exp -20ht + aDt
0



133.

as the diffusion approximation for the probability of eventual 

fixation of A genes, where a = 2Ns, D = 2h-l, and xQ the initial 

value of x_j.. Note that in general x^ is not the initial 

proportion of A genes but differs from this proportion by a term 

of order s. Equation (7*6) has been derived elsewhere 

(Watterson (1962), Kimura (l957))> except that in these cases 

Xq is to be interpreted as the initial proportion of A genes.

Similarly the diffusion approximation to the mean 

absorption time and to the pseudo- transient distribution may be 

obtained directly by using (7*4) and (7*5) in equations (3.14) 

and (3.27)•
It may be noted that in the case h = (no dominance), 

equation (7*6) reduces to

1 - exp(-ax^)
1 - exp( -a)

which is the same as equation (6.2) with C£ replaced by 205. This

replacement corresponds to the fact that with the present model 

a diploid population with selective advantages 1+s, l-Hjs, 1 

acts in the same way as a haploid population with selective 

advantages l-Hjs, 1. Equation (7*6) also corresponds, in the case 

h=§, to the value obtained in diploid populations with gametic 

selection and selective advantages 1+s, 1, but it should be noted 

that while this is so it does not follow that a population with 

gametic selection is equivalent to a population with zygotic 

selection with the heterozygote exactly intermediate in selective

P(M,Nx0)



advantage between the two homozygotes. This is most easily seen

in the case where in any generation all individuals are heterozygotes 

in the former selection still exists but in the latter the two 

alleles have equal selective advantages.

7.3 Bounds

The method outlined in Chapter 3 may be used to find 

bounds for the true fixation probability approximated by (j.6). 

Now (j.6) is essentially derived by noting that the function

exp -20ht + aDt2 dt

possess the "almost-invariant" property
"t+1 "t

exp -s -2aht + aDt exp -2Cdit + aDt dt (7.T)

where expectations are conditional on x^. 

bounds we seek a function of the form

-2aht + vN_1 + aDt2

Thus in order to find

dt

where v is 0(l), for which 
Xt+1
/ exps -2aht+vN_1t-K̂ Dt2 dt g / exp! -2aht+vN_1t4aDt2 V dt

"t+1
exp -{ -2aht+vN*"2t+aDt2 X dt ^ 0 (7-8)

Then by iteration it follows, using (3.51), that the true fixation
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probability P(N, NxQ) satisfies

P(N,Nx0) ^
exp -2cxht+vN 1t-to:Dt2 f dt

exp ̂  -2aht+vN 2t+aDt2 1 dt

(7-9)

Now equation (7*8) may be rewritten

t+1
exp<! -2o:hu+N 1 vu-KlDu2 +2qiDu.x  ̂ y du ^ 0 (7.10)

E { e(st+p } s 0 (7.11)

Putting c = 2ccDx̂  - 2cch + N v, we get

e(o) = o, e'(o) = l, e'^o) = c; e'"(o) = 2ccd+c2

e ^ 1V'(A 6 )  = ^ 6 ckD(2q;DA5+c) + (2aDAö+c) 3j-  exp(aDA25 2+cA6)

Since v is o(l) we have

| 0 / / / (O) |  ^ ha+Qot2 , | e ^ l v ^(A6) |  ^ ( 2 ^ a 2 +72cc5 ) e x p (3 a )  (7 -1 2 )

Now

E(xt+1) lEd+at+i-bt+i) + isE| aj;+1‘at+1+at+1bt+l+

+(h + i - a t +i ) h ( l -a t +i - b t +i> }  + ^ ‘‘■ t+ iA + P

(7.13)

where the function e (t)is rational in x , bounded in absolute
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value by 2, and vanishes at x^ = 0,1. Thus

E(5t+i) = sxt(l-xt) I*1 +(1“2h)xtj" + Ri xt^1_xt̂

p  —1
where | R-J ^ 8s + 2sN

the latter terms in the bound for R^ arising from covariance 

terns in the second factor on the right-hand side of (j.1 3) • 

Similarly

Var(&t+1) = xt(l-xt)(2N) 1 + R2 xt(l-xt) 

where |R^| = 2sN \

Also the third and fourth moments of 6^+^ about its mean are 

bounded in absolute value by x^(l-x^) (2R^) ^ and x̂ .(l-x̂ _) (4h^) ^ 

respectively, and the fourth moment of 5 ^ ^  about zero is also 

bounded by the latter bound. Therefore

I E ( t +1) I S var(&t+1) + a2 xf(l-xt)(cr2) ,

lE(5t+l)I s ^t(l-xt)(2K2)"1 + axt(l-xt)(4u2)‘1 .

Thus when 0(6, ) is expanded in a truncated Taylor series as far
U"rJ_

as the fourth derivative term and expectations taken, with the 

above bounds being used, then it is found that the last two terms 

in the expansion are bounded by

x^(l-x^) (4n ) 2cz+k(x +r̂  oP+(ot +3cP) exp( Ja)

Similarly the first two terms are greater than
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xt(l-xt)(4N2)_1 |v - -§
X o

■icr - to - 12a

Therefore the right-hand side in (7.11) will be positive if we put

v = v* 2^ 6a + l6a2 + 2a^ + (a2+3a^) exp (3a)j-

and will be negative if v = -v*. Thus by using equation (7*9) 

and a similar equation for a lower bound we have
L>

J  expj^-2aht+v*N 2+aDt2j- dt

exp^-2aht+v*N 2+aDt2l- dt

 ̂P(n,Nxq) *-

expj^-2aht-v*N 2+aDt2  ̂dt

exp< -2aht-v*N_1+aDt2 i- dt

It may be noted that the complications in the above model 

arise from the nature of the Markovian variate, which is a rational 

function of a^ and b^ rather than a polynomial. Therefore for 

the purposes of obtaining bounds it would be simpler to consider 

an equivalent model where p(A), defined in (7 .1); is replaced by

P*(A) = i(l+at-bt) + is |at-a2+atbt+(bt-at)h(l-at-bt)

2
which differs from p(A) by terms of order s . This difference 

is very small and of the same order of magnitude as approximations 

already implicit in (7*l); for example replacing a selective 

advantage of (l+s) by 1+sh. This is so because as has been 

remarked in Chapter 2, it is the ratio between selective advantages 

which matters and not the difference. Thus a selective advantage 

mid-way between (l+s) and 1 is not l+§-s but (l+s)2#
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By using the above model with p(A) replaced by 

p*(A) much more precise bounds could be found.
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CHAPTER 8

DIPLOID POPULATIONS WITH SELECTION 

DEPENDING OH GEHE FREQUENCY



iko

8.1 Introduction

The starting point in the previous chapter was provided 

by the recognition that in the diploid population model it was 

possible to find a single Markovian variate which can be used to 

describe the behaviour of the population. It is possible to extend

this model to the situation where selective advantages are no longer 

constant but depend themselves on the gene frequencies in the previous 

generation. Thus populations can be discussed for which the presence 

of similar genotypes hinders any individual, as would happen for 

example if similar genotypes competed for scarce food or shelter 

peculiar to them. The behaviour of such a population can be 

approximated by allowing the selective advantage of any individual 

to decrease as the proportion of individuals of similar genotype 

increases. Conversely, the case where the presence of similar 

genotypes favours any individual can be considered by allowing the 

selective advantage to increase with the proportion of individuals 

of similar genotype.

As in the previous chapter the existence of a Markovian 

variate is used solely to justify the use of diffusion methods, and 

for the derivation of bounds. Exact results would be extremely 

difficult to derive, due to the size and complexity of the transition 

matrix, and in any case the diffusion approximations may not only be 

expected to be close but are also relatively simple functions allowing 

simple interpretation of the effects of the frequency-dependent

factors.
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The simplest and perhaps most useful case is where the 

selective advantages depend linearly on gene frequencies, and this 

is the case considered at length here. The case of more general 

selective advantages is considered more briefly and a general 

formula only, without any specific examples, is given.

Since only ratios of selective advantages are important 

it is always possible to let one of these be unity, and for 

convenience the heterozygote is taken as having unit selective 

advantage from now on.

The quantities discussed are survival probabilities, mean 

absorption times, pseudo-transient distributions and stationary 

distributions in the case where a small amount of mutation in both 

directions is allowed. In the case where all genotypes have unit 

selective advantage the exact probability that the population 

eventually consists entirely of individuals being (say) AA is 

equal to the initial proportion of A genes, a result which is also 

given by the diffusion approximation. This provides a standard 

against which survival probabilities may be measured.

Before considering finite populations it is interesting 

to consider the (deterministic)behaviour of gene frequencies in 

infinite populations with selection depending on gene frequency. 

Suppose that the three genotypes AA, Aa, and aa occur in proportions 

given by the Hardy-Weinberg law. We are interested in the 

proportion p of A genes, and consider first the case discussed 

by Wright (19 8̂) and Moran (1962) where the selective advantages



are 1-s+tq, 1, 1+s-tq respectively, where q = 1-p, and s and t 
are both taken to be small and positive. Then the increase in p 

from one generation to the next is

If s > t, then p -> 0, but if s < t, then p -> 1-st ^ and this latter 

point is one of stable equilibrium. On the other hand if the 

selective advantages are 1-s+tk, 1, 1+s-tk respectively, where k 

is any constant, then there are no equilibrium points except p = 0,1. 

Thus the introduction of frequency-dependent selective advantages 
may lead to a non-trivial equilibrium point where no such point can 

exist for corresponding fixed selective advantages. However this 

will not necessarily happen, as is demonstrated in the situation 
where the selective advantages are 1+s+tp, 1, 1+s+tq, respectively. 
Here it is found that Ap = 0 for p =0, | or 1, but that the 
equilibrium at the point p = \ is unstable.

8.2 Absorption probabilities

For the finite population case we suppose that the 
population size is constant and equal to N (N large). Suppose 

that in generation i there are k^ AA individuals a n d a a  

individuals, and we put a^ = k^N ^ and b^ = We suppose also
that the selective advantages of AA, Aa, and aa individuals are

1 - s1 + t-̂ q̂ , t ^2 ” 2̂̂ -i



respectively, where ŝ , ŝ , t^ and t^ are small (i.e. of order N-'1')

and q^ is the proportion of a genes in generation i. Then by

considering the model analogous to that of the previous section,
“ththe number of A genes in the (i+l) generation is a binomial variate 

with index 2N and parameter
"I

1  I ‘  “1 ‘ 2 °11 - s + \ t ( l+b. -c A2 1 1-ai“l3i

-|l-s1+|t1(l+bi-ai)|- + (l-a.-bi)+bi l+s^t^l+tm-a..) j-

i(l+ai-bi) - s1ai + Jt1ai(l+bi-ai)
1_Slai+S2'bi+̂ tlai^1+l3i"aî  " "̂t2'bi^1+'bi”aî

ni will be called the "effective" proportion of A genes in constant 

to p^ = -^(l+a^-tu), the actual proportion. IL and p_̂  differ by 

terms of order N but as in the previous chapter IL is a Markovian 

variate whereas p^ is not, so that attention is concentrated on II. 

In order to use the methods of Chapter 5 we expand the denominator 

of IL in series, and ignoring terms which are o (n we obtain

II =  ^ - ( l + a  - b ^ )  - s ^ a ^  +  i t 1a i ( l + b i ~ a i )

- -JCn-a^b.) ^-s1ai+s2bi+ it1ai(l+bi-ai)-|t2bi(l+bi-ai) j-

2 2Therefore, since E(a^+-̂) = IL , E(b_̂ +-̂) = (l-IL)

V(a1+;L), T(D±+1) are o (H_1),

(where all expectations are conditional on IL),
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we have, to the same order of accuracy

E(n.+i) = n.-s^+t^U-n.)-!!. |-s1n^+S2(i-n.)2+t1n^(i-E.)-t2(i-n.)5|

Thus if 5 . _ = H . ,, - II. , to order N l+l l+l i'

e(b .+1) = n.(i-n.) |-E1n.+t1n.(i-n.)-s2(i-n.)+t£(i-n.)2|

Also v(s.+1) = v(n.+1)
n.(i-n.)(2N) -1

to the same order of accuracy. We now use equation (3*9) "to 
obtain for the diffusion approximation P(iIq ) to the probability 

that the whole population eventually consists of AA individuals 

the expression
nQ
J' exp|a1x2-a2(l-x)2-2ß1(-|-x2-y x5)+ I ß2(l-x)3 j- dx

(8.1)
1
J exp[a1x2^ 2(l-x)2-2ß1(|x2-i-x5)+ I ß2(l-x)3 j

where = 2Ns-̂ , ß-̂ = 2Nt^, Qh, = 2Ns£, ßg = 2Ntg.

It is worth noting that in the particular case ß^ = ß^ = ß say, 

i.e. when the coefficients of the frequency-dependent factors are 

the same for both homozygotes,
iu

2 2 2 exp ̂  C^x - a (l-x) + ß(l-x) dx

p(n0) = — (8.2)

J exp -ĵ axx2 . a2(l-x)2 + P(!-x)2 j" dx
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Thus P(TIq) is similar in form to the values obtained in the previous 
chapter where the selective advantages are fixed. In fact it 

will be shown later that it will frequently be possible to identify, 

so far as diffusion approximations are concerned, populations with 

selection depending linearly on gene frequency with some population 

having fixed selective advantages.

We may now consider the various foms that (8.1) and (8.2) 

may take for various selective advantages.

8.5 Particular Cases

Case 1 .

The selective advantages 

1+tq, 1, 1+tp

correspond to = 0, Oî  = = $2 = ß* •̂or positive t these
selective advantages could be used to consider the behaviour of a 

population for which like genotypes compete with like genotypes, 

since the selective advantage of each homozygote decreases steadily 

as the frequency of the corresponding gene increases. By 

inserting the above values in (8.l) or (8.2) it is found that

p(n0) - nQ

so that survival probabilities are independent of t and are the 

same as for the case when no selection operates. This is a 

particular example of a more general case considered later. The 

result is, of course, true only to the order of magnitude provided
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by diffusion methods, but it would be possible to derive exact 

bounds along the lines considered in the next section. It is 

often of interest to find survival probabilities for a single 

initial (mutant) gene, and taking this to be A in the present 

example the survival probability is clearly (2N) \

Case 2

If we put

«1 = -a, cc2 = 0, ß = -a, ß2 = ß (8.3)

the selective advantages become 

1+sp, 1, 1+tq

If s, t > 0 the presence of like genotypes favours like genotypes.

If s,t < 0 the selective advantage of each genotype decreases as 

the proportion of the corresponding gene increases, but it will 

turn out that the results are not the same as those of Case 1 above. 

Inserting the values (8.3) in (8.1) we obtain

J exp I ax5 - I ß(l-x)5 j-

P(n ) = —----------------------------------------------  (8A)
■ 1

J  exp I ax^ - j ß(l-x)5 j- 
0

In the case Ot  ̂ß a qualitative examination of (8 A) shows that 
whenever OC > ß, then P(HQ) > IIq , for all nQ, while for the case 

a < ß the opposite is true. Both these results would be expected 

qualitatively but numerical values would be harder to obtain.
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In the case of a single initial mutant^ to a close approximation^

P

1—11O
J exp (-

1
r f  2exp -j - j ax-
0

The particular case Oi = ß corresponds to selective advantages 1+sp, 

1, l+sq; and equation (8.4) reduces to

P(n0)
/ ° - » i 2cxx(l-x) j- dx
0 L J

1
r

f  exp -j 2cxx(l-x) [ dx

(8.5)

0

so that p(I-IIq) = I-P(TIq) and P(^) = \  for all OC. It is possible to 

calculate P(n^) for various a  and and some typical values are 

given below in Table 8.1. Because of the symmetry only values of

Hq ^ \  are considered.

Table 8.1

Values of P(ll ) (Equation 8.5)for various IÎ  and a

n o a  =16 a =  8 a =  4 a = 2 a = . 5 a =-.. 5 o c = -2 a = - 4 a = - 8

1.00 1 . 0 0 0 0 1.0000 1.0000 1 . 0 0 0 0 1.00 0 0 1 . 0 0 0 0 1 . 0 0 0 0 1.0000 1.0000

• 9 5 .9999 .9969 .9862 .9728 .9568 .9425 .9154 .8704 .7687
: . 9 0 .9993 • 9 9 0 5 . 9 6 6 4 . 9 4 2 4 .9115 .8875 . 8 4 4 9 .7803 .6571

.85 .9975 .9784 . 9 3 9 2 .9022 . 8 6 4 4 .8347 . 7 8 4 8 . 7 1 4 8 . 5 9 8 4

.80 .9918 .9593 . 9 0 3 3 .8599 .8157 .7838 .7326 . 6 6 6 8 .5650

. 7 5 .9773 .9233 .8576 .8088 .7654 .7342 .6863 . 6 2 6 4 . 5 4 4 4

• 7 0 .9452 .8728 .8019 .7554 .7139 .6860 . 6 4 4 4 • 5 9 4 6 .5306

. 6 5 .8850 .8033 .7365 .6959 .6613 .6386 .6057 . 5 6 7 4 .5207

.60 .7882 . 7 1 5 2 .6628 .6328 .6080 .5920 .5693 . 5 4 3 4 .5128

.6554 .6119

0COL
f\ .5670 .5542 .5459 .5343 . 5 2 1 3 .5062

. 5 0 .5000 I .5000 .5000 .5000 .5000 .5000 .5000 .5000

000L
f\
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If the values in this table are graphed it is noted 

that the curve of p(iIq ) against tends to be very flat for 

intermediate values of II ̂ and steep at the ends for negative OL.

For positive OL, p ( H q ) is very sensitive to for intermediate 

values but is flat in the extremities. This behaviour is 

expected; when the selective advantage decreases as the number of 

corresponding genes increases it does not matter much what the initial 

value of II is, so long as it is not too near either boundary and 

so long as -OL is at all large (greater than 10 or 12). This is 

so because there will be a strong tendency for II to drift to \.

In this case a large absorption time would also be expected. When 

OL is positive the initial value of H is important since there will 

be a tendency for II to drift towards the closer boundary. Further, 

once H is reasonably near one or other boundary, then it is very 

likely that that boundary will be reached rather than the other, 

so that the curve of P(n^) tends to be flat and close to the 

values 0,1, in the neighbourhood of the boundaries x = 0, x = 1 

respectively. We further expect a relatively smaller mean 

absorption time. If there is only a single initial mutant, then

p (n0) = (2H)-1
1

2ax(l-x)
0

dx

(8.6)

This is less than (2W) 1 for positive OL, being ,04l3(2N) 1 for

OL - 8. This shows the importance of the initial value of H,

for in this example there is a symmetrical relation between A and a



and yet the absorption probability differs greatly from (2W) 2 

even in the example considered. The large initial selective 

disadvantage thus influences the probability markedly.

Case 3 »

If t^ = t^ = 0 there are no frequency-dependent selective

advantages and the case of selection with dominance is obtained.

Putting = s(h-l) and s^ = -sh the selective advantages are
2

equivalent to (to order s )

1+s} 1+sh, 1

and inserting in (8.1) or (8.2) we obtain 
IU

p(h0)

p 2
/ exp( -2ahx + CCDx ) dx
_0_________________ __

1
f  exp(-2ahx + aDx2) dx

D = 2h-l (8.7)

which agrees with the result of the previous chapter,

Case k.

The case of complete dominance is obtained by putting

s, = t, =0. Using (8.1) we obtain eventually 
1 1  1

P(n0) 1-IL
exp -j -ay2 + I ßy5 dy

2 2 jexp -{ -ay + j ßy y dy

where y = 1-x, a^ = 0t, ß^ = ß for convenience. The nature of 

the curve of P(iIq ) against IIq can take various forms and is best
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examined by examples.

Example (i): (a=0)

In this case 
1

p ( y

0

(§ ßy3) <iy

(§ ßy3) dy

and clearly P(iIq ) > for ß > 0, while P(iIq ) < for ß < 0. 

Example ( ii) : (o!= y ß)

Here we have 
1

p(n0)
1

Tß(2y3-y2)

|ß(2y3-y2) dy}
and it may be shown that again P(H^) > TÎ  for f2>0 while 

P(n0) < nQ for ß < 0.

Example (iii): (cc=f- ß) .
5

Here

p(y
§ ßy2(i-y) }  ay

I ßy2(i-y) \ ay
0
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p(Hq ) has the property that for positive ß, P(iIq ) is greater 

than II ̂ for small II ̂ but less than for larger Hq . For negative 

ß the converse holds. Thus the selective factors have a marked 

effect on the curve.

Example (iv): (a= ß) .

In this case

p(h0)

and it is readily shown that p (iIq ) < II ̂ for ß > 0 while P(iIq ) > IIq 

for ß < 0. This contrasts markedly with the behaviour of P(iIq ) 

in Examples (i) and (ii) and Example (iii) is one of transition 

between the two types. In all examples it is easy to approximate 

to P^ (2N) f . The value of Ot (for fixed ß) for which

P -ĵ (2N) = (2N) ^ is very close to the solution of the equation

1
2 2 2 5exp (-o: + — ß) = I exp(-ay + -  ßjr) dy

which has been shown to lie in (— ß, ß) .

Case 5.

By putting s^ = s^ = t-̂  = t^ = s, so that 

«i = q;̂ = ßi = ß^ = 'the selective advantages become

1-sp, 1; 1+sp
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Then P(n^)

r° 2/ exp (ccx ) dx

exp (ax ) dx

(8.8)

Here it is expected that if s is positive, then P(Hq ) < IIq since 

the allele A -will have a smaller selective advantage than that of

a irrespective of p. Similarly, for s negative it is expected 

that p (IIq ) > Hq . Specific values may he found easily and are 

tabulated below for typical values of a and (Table 8 .2)

Table 8 .2

Values of P(Hq) (Equation 8.8) for various nQ and a
?--------r

no a=-4 a=-l a= l 05= 4

.95 • 9975 .9741 .9104 .7250

.90 .9937 .9457 .8308 .5373

.85 .9884 .9145 .7573 .4070

.80 .9809 .8806 .6897 .3141
• 75 .9706 .8439 .6274 .2467

• 70 .9568 .8043 .5696 .1968
■ 65 .9584 .7619 • 5757 .1591

. 6o .9146 .7166 .4651 .1300
• 55 .8845 .6687 .4176 .1072
.50 .8^67 .6177 .3725 .0888

.8007 .5642 .3297 .0738

.40 .7^56 .5084 .2887 .0613
• 55 .6810 .4502 .2494 .0506
.50 .6067 • 3900 .2113 .0413

• 25 .5250 .3279 .1745 .0331

.20 .4504 .2643 .1386 .0256

.15 • 5502 .1994 .1033 .0188

.10 .2258 .1355 .0685 .0123
L • 05__ .0130 .0669 .0342 .0061
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It may also be noted from the table that the effect of negative 

values of Ct seems to be stronger than that of the corresponding 

value s .

Case 6 .

If we put -s1 = s2 = s, t^ = = t, the selective

advantages become

1+s+tq, 1, 1+s-tq

For s >  t > 0 the homozygotes are favoured, for 0 > t > s the 

heterozygotes are favoured. Using (8.2) it follows that

An interesting case is where s = -§-t for which the selective 

advantages are

0

l+t(q+§-), 1, l+t(q-J)

and for which

l-exp(-ßH0)

l-exp(-ß)

which is remarkably similar to probabilities obtained for haploid 

populations, (c.f. equation 6.2). In the case s = t we obtain



154.

P(n0)

which is similar to the probability obtained for case 5; with 

ß replaced by -ß.

Case 7«

If s^ = -s-t, ŝ  = s, t^ = t^ = -t, then the selective 

advantages become

1+s+tp, 1, 1+s+tq

so that for t > 0, each genotype is favoured by the presence of 

like genotypes. Substituting in (8.2),

p(n0)
I exH 
0

2̂ (cc + ß) x(l-x)

lf expH12(a + ß) x(l-x)
0

dx

dx

For OC = -ß, p(Hq) = Hq as in case 1, as is otherwise obvious, 

that p(Hq) depends on a aniß only through their sum, so that by 

putting OL + ß = 7 and s + t = c, so that s = c-t, the selective 

advantages are of the type

1 + c - tq, 1, 1 + c - tp

and for these selective advantages p(Hq) is independent of t.

Note

This
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result extends that of Case 1 and enables a range of situations to 

be covered simultaneously. In particular by putting t = c 

Case 2 is recovered and by putting t = 0 a particular case of non­

frequency-dependent selection is obtained. This example shows 

how density-dependent selective advantages may sometimes be ignored 

or treated as being constant.

when t^ = t^ the survival probabilities are similar to those found 

in the previous chapter for selection with dominance or alternatively 

to those of Case 3 above. This makes it possible in some cases, to 

identify, so far as survival probabilities are concerned, some 

populations with selection depending on gene-frequency with populations 

with fixed selective advantages. It is convenient to write (8.7) 
in th<= form

for convenience in identification. Identifying this with the value 

found for Case 1 it is necessary to put a* = 0 giving all selective 

advantages unity, as has been observed. To identify (8.9) with

8.4 Identifications with fixed selective 
advantages

It was noted at the beginning of the last section that

(8.9)

0

(8.5) it is necessary to put

2a = -2a*h*

2a = -a*(2h*-l)
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and clearly for a ^ 0 these equations cannot be solved for Q!*,h*, 
so that identification is not possible.

In case 5 identification is possible if we put

a = a*(2h*-l)

0 = -2a*h*

Thus h* = 0, a = -cu*, so that it is possible to identify a population 
having selective advantages 1-s, 1, 1 with one having selective 
advantages 1-sp, 1, 1+sp.

For Case 6 the identification gives

2a - 2ß = -2cc*h*

-2a + ß = a*(2h*-l)

These equations give a* = ß, h* = 1 - aß so that a population 
with selective advantages 1+s+tq, 1, 1+s-tq may be identified with 
a population having selective advantages 1+t, 1+t-s, 1.

The reason why such an identification is not always 
possible is that with selective advantages of the form 1+s, 1+sh, 1, 

whenever the selective advantage of AA individuals is unity the 
selective advantage of Aa individuals is also unity.

8.5 Bounds
-2Since terms of order N have been ignored, the previous 

results are only close approximations, and bounds may be found 

within which the true fixation probability lies. The main result
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is that these hounds may he obtained hy adding a term of order 

N ^ to the diffusion approximation. As an example, consider 

Case 5 where it is supposed that a > 0. Suppose it is possible 

to find a function $*(lL) of the form

n .

**(!> = I exp(ax2 + ex) (8'10)
where € is o(N , for which

B*(I1+1) S ^(üi). (8.11)

Then from equation (3.51), such a function may he used to provide 

an upper hound for the true fixation probability. Note that all 

expectations are conditional on IL . 'Then (8.11) may be rewritten

Letting 6

ty(ö) =  J  exp (ay2 + 2aTLy + ey)dy, 
0

we obtain

^(b) = exp (ab2 + 20TI.S + eb)

o
xl///(5)= (G + 2ab + 20iL) exp (eb + ab + 2aiLb)
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'If'" (6) ( € +2Cfö +2QÜI ̂ ) + 2.0t exp (eS+a8 +20JL6)

*^(*8) (e+aaAS+2an.)3 + 6a(s+2aAS+a3in.) exp(e6+o;8 +2cflL8)

so t h a t  \|r(o) = o, ^ '( o )  = l ,  \|/7 / (o) = G+2QIL, \|/7 / / (o) = (e+20'n.,)2 + 2a

The left-hand side in (8.12) may he 'written

2 ^ b
♦(o) + 5+'(0) + §-^"(0) + |i////(o)+ |jt^1V (̂A8) (8.13)

where A is a function of Ö ^ and lies in (0,1).

Since e is o(N b) we have

I ^ / / / (0) I < 8a + 2a

I i/lv)(A5.+1) I < (72a3 + 2ha2) exp (3a)

By expanding out IL+^ we find

ni+l 2^1+ai+l"bi+l^ “ 2Sai+l^1+ai+l_bi+l^

" 4S(bi+l”ai+l^1+ai+l~bi+l) + s ^ ai+l,bi+l̂ (8.14)

where U ( ai+1ybi+1)I < ^

and E (̂ai+l,bi+l) is a rational function of H. and vanishesl

at I. = 0,1.
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Hence E(8i_ul) = -sIuCl-IL) + R^fl-IL) 

P —P —Pwhere | R, | < hot N + CCH

the latter term in the bound for R^ arising from covariance terms 

when expectations are taken in (8.1^). Similarly

v (6,̂ ,) = n.(i-n.)(2N)_1 + jyii(i-n.)i+lv

where

|r2 | < 2aN-2

so that

where

e(b2+1) = ni(1-n1)(2N) "1 + r3 “î 1'11!)

|e I < ^a2N"2 + 2an'2

Also

where

-2E(s^+1) = |n.(i-n.)w‘‘: + R4n.(i-n.) 

|r4 | < cm'2

and |e (6^+1)| < in.(i-n.)N"2

Thus (8.13) may be written

ni(i-n.) e(4N)_1 + Rc

where | R,_ | < N-2
-z p -z 2

2d? + 10a + 2a + + a ) exp(3a)

Thus by choosing e equal to

r-l 8a^ + ^oa2 + 8a + (3a^ + a2) exp(3a) (8.15)
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equation (8.1l) will be satisfied, and similarly by putting 

e = -€* the equation will hold with the inequality sign reversed. 

Thus an upper bound for the exact probability is

/ exp (-e*x + ax ) dx

J' exp (-e*x + ax2) dx

and a lower bound is

n.
P  ̂  2
/ exp (e*x + ax ) dx

JL

J° exp (e*x + ax2) dx

8.6 Arbitrary Selective Advantages

The above methods may be generalized immediately to the 

situation where the selective advantages are arbitrary functions of 

gene frequency, provided that these functions are sufficiently well- 

behaved in some sense. We suppose that the selective advantages 

are l+s£^(p), 1, l+si^Cp)• Then the probability that a gene chosen 

at random from the (i+l) generation will be A is

ai I1 + s i1(pi) j- + i(l - & ± - bi
n = — :-----------------------------------------

1 + sai l1(pi) + sb. I2(p)

2Ignoring terms of order s , it follows that
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^i+l ai+l{1+S^l^pi+l^} + 2(1_ai+i"bi+i)

- 2s(l+ai+1-bi+1)^ ai+1 ]̂.(Pi+1) + bi+i ^2^Pi+l^

2Now terms of order s are ignored for the moment, so that 

we may put, for instance,

E { s ai+i h (pi+P  } = sE(ai+f  M Epi+P

This gives

E(6i+i) = sn.(i-n.) I n. ^(n.) - (i-n.) e2(n.) j

and V(ö. n) = II. (l-II.) (2N) ^ to the same order of accuracy.i+ly iv i

Inserting these values in (3*9) we find as the diffusion approxi­

mation for the probability of fixation of A genes the expression 

n 0 r

P(n0)

J e x p - 2 a J t  6x(t) - (l-t) 62(t) dt
_o_ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ ;
1 X

J  exp - 2a J t ^(t) - (l-t) l2(t) dt

(8.16)

From this it follows immediately that if there exists a function 

g(p) for which

£x(p) = (l-p) g(p) 

i2(p) = pg(p)

Then p(n^)' = nQ . This extends the result of Case 1 which has
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g(p) = constant. Finally ^(p) and i2(p) will be "sufficiently 

well behaved" at least if i-̂ (p), £ (p) and their derivatives 

are all 0(l) for p in (0,l).

8.7 Stationary Distributions

When a small amount of mutation in each direction is allowed

a stationary distribution will result, given closely by equation

(5*35)* It is supposed that the effect of mutation is such that
"tillthe probability that a gene chosen at random in the (i+l) 

generation is A is no longer J[ but IL - A H. + qj(.- IL), (A, q 

of order N . This corresponds to mutation at rate A from A to 

a and \i from a to A. This gives

f(n) , _4]̂ l-i /-, _A iia-iconst H (1-H) exp - 5(n) (8.17)

where i(n) is that function for whichn
exp l(x)

p ( n 0 ) 1J exp |(x) j- dx

This shows immediately that if P(HQ) is independent of frequency- 

dependent factors, then so is f(n) . Also, when 4WA = 4l\|i = 1,

P(n0)

I  { f(n)}

dll

dn
0
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From this it follows that if the proportion of A genes in the 
stationary distribution tends to be small; then the probability 

of fixation of A genes in the corresponding case without mutation 
tends to be high; and vice versa. Equation (8.17) may now be 

applied directly to derive the stationary distributions for the 

cases considered in section 8.3. In the case 4NÄ = 4Np = 1 it 

may also be noted that the stationary distributions exhibit the 

feature that if the presence of like genes favours like genes, 

the curves tend to concentrate in the extremities, while if the 

presence of like genes hinders like genes the curves tend to 

concentrate in the centre of the interval.

8.8 Mean absorption times

To discuss the mean absorption time it will be sufficient 

to consider only the pseudo-transient function, since the mean 

time is the integral of this function over (0,1), and this function 

gives more information by showing the transient behaviour of the 

process. Again exact results are difficult and it is necessary 

to use the diffusion approximations (3.27) and (3.28). In 

applying these results it should be remembered that time is measured 

in units of N generations.

When the selective advantages are of the form 

l+s(l-p)g(p), 1, l+spg(p), then m(p) = 0 and equation (3*29) holds. 

The mean time until homozygosity is reached is given, in terms of 

generations, by
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u(n0) = -2h | nQtn nQ + (i-nQ) -tn(i-n0) }

For the other cases it is simply a matter of substitution 

in (3.27) and (3.28) to find the mean time. Unfortunately in most 

cases the resulting expressions cannot be expressed in a very 

simple form and numerical methods would be necessary for their 

evaluation.
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CHAPTER 9

SELF-STERILITY POPULATIONS.
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9«1 Introduction

In the preceding chapters it has been possible to use 

diffusion approximations for various quantities which are difficult 

to find exactly. However such methods may be used only under 

certain restrictions, and for our purposes self-sterility populations 

provide an example of a case where such methods cannot be applied. 

However some authors, in particular Fisher (1958) and Wright (i960), 

have used diffusion methods for these populations, and in this 

chapter it is shown why these methods are inapplicable and an 

alternative approach and alternative problem are developed.

An example of a self-sterility population sufficient for our 

purposes is the plant species Oenothera organensis. This species 

occurs in an isolated area and is not thought to total more than 

five hundred individuals in all. The number of alleles known is 4 5 

(Lewis, (19^-8)), and it appears typical for self-sterility populations 

to have a large number of different alleles even in small populations. 

The peculiar breeding mechanism of these plants means that pollen 

of type A or B is unacceptable on AB styles, so that the offspring 

from such styles will be AX with probability \ and BX with 

probability where X is any allele other than A and B and is 

derived from pollen.

The problem considered by Fisher and Wright is to find how 

much mutation is necessary in order to maintain a given number of 

alleles in a population of given size. The mutation rates indicated 

by their analyses are of the order 2.8 per thousand for the Oenothera



population, but this high mutation rate seems to be ruled out by 

the failure of Lewis (19̂ -8) to find a single mutant in 220 x 10^ 

cell divisions. Wright (i960) and Fisher (l96la) have attempted 

to explain this anomoly, and Fisher (l96lb) has further discussed 

Wright's explanation.

In order to examine the applicability of diffusion methods 

and to discuss the previous treatments it is sufficient to discuss 

Wright's analysis.

9.2 Wright's Analysis

Wright (i960) supposed that the population is of size N

and denoted the alleles S-̂ , ... with respective frequencies

q̂ , 0.2 ’ • • • 9.k * The method consists of considering the frequency

q of any particular allele (say S^). An expression was found for

the mean change A q of q from one generation to the next and also 
2for the variance of this change. By substitution in his 

steady-state formula (5*35) he obtained a steady-state distribution 

for the frequency q of any allele. This continuous approximation 

breaks down at q = 0, so that Wright restricted attention to "the 

probability distribution of alleles when present", i.e. to the 

distribution taken at discrete points (2N) 2(2N) ...,

and suitably normalized to give unit total probability. From this 

the mean number n of alleles was given by the formula n = q 

where q is the mean of the discrete distribution. Bounds for the 

mutation rate v necessary to maintain this number of alleles were 

found from a formula connecting the probabilities that 0 or 1 genes 

of the allele in question are present and the mutation rates.
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The methods and assumptions used by Wright have been 

questioned by Bennett (1956) and Moran (1962), p.163. The 

criticisms given by these authors are not exhaustive, and to them 

may be added the following. The "exact" value for given by 

Fisher (1958) and used by Wright is q(l-2q)(2N) \  This is 

incorrect since it implies determinate behaviour when q =

But it is clear that in this case the number of individuals in the 

next generation having as one allele is a binomial variate with 

parameter \ and index N. This follows since q = \ implies that 

each individual has exactly one allele which is S^. Therefore S-̂ 

pollen is not effective and the allele S-̂  may only be derived from 

the ova, with probability \ for each individual.

The above criticism is not too important since the error may 

be corrected readily. However the next two criticisms are 

fundamental and show that the results derived from an analysis such 

as that of Wright are not meaningful. The first of these major 

criticisms is that diffusion methods may not be used for self­

sterility populations, so that equation (5.35), which is derived by 

diffusion methods, is not applicable. The reason for this is that 

diffusion methods assume, for instance, that for all q, terns like 

(Aq) are small in comparison with Aq and cr and may be ignored 

for large N. However in self-sterility populations this assumption 

is not true (in contrast to populations discussed in previous

chapters). The reasoning given above to show that q(l-2q)(2W) 

cannot be the true variance indicates this clearly. If q = \

-1



then the number of individuals containing an S-̂  allele is

binomial with index N and parameter This leads to Aq = -ĵ,
22 —1 _____

c ^  = (i6n ) . Thus (Aq) is l/l6 and is certainly not small
—  2 2 compared with either Aq or q ; in fact it exceeds q by a

factor of W. It will be shown later that certain results

obtained formally by using diffusion methods when these methods

should not be used are completely inaccurate; thus any result

for self-sterility populations derived by diffusion methods may

also be expected to be inaccurate.

The second major criticism is that even if diffusion methods 

were allowable, then equation (5 05) would still not be relevant 

or meaningful, since no stationary distribution for self-sterility 

populations of fixed size can exist, even when mutation is 

allowed, contrasting with the populations considered in previous 

chapters. The fact that no stationary distribution can exist 

follows from the impossibility of forming homozygous individuals; 

in any generation there is positive probability that all 

individuals are of one genotype (S^ say) and that no mutation 

occurs. After such a generation the population will automatically 

die out. Thus eventual extinction is certain and stationarity 

has no meaning. It is more meaningful to discuss pseudo­

transient distributions, the mean time until the population dies 

out, the relevance of the values obtained and to consider the 

effect of mutation on these quantities.

If there are more than three alleles in the population,
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mathematical discussion is very difficult since no single 

Markovian variate exists, and we therefore consider here only the 

case of three possible alleles in any detail.

We consider in this section a population of fixed size N 

and admitting three alleles A, B, C. Suppose the population 

eventually dies out because in the final generation all individuals 

are BC, and suppose also that at any moment the number of AB or 

AC (briefly AX) individuals is i (i > 0). Then using a model 

analogous to that of Chapters 6 and 7> "the number of offspring 

from the styles of AX individuals is a binomial variate with 

parameter iN ^ and index N. The probability that any one of these 

is AX is so that conditional on there being M offspring from 

AX styles, the number of such offspring which are AX is a binomial 

variate with parameter \ and index M. All offspring from BC 

styles must be AX, since A is the only allele effective on such 

styles. From this it follows that the probability p^ . that 

altogether there will be j AX individuals in the next generation 

is the coefficient of 0^ in

A Non-Overlapping generation model

N

M=0

i.e. in



which is

( 1 - i(2H)_1 I J I i^N)'1 j- J (9.1)

For i = 0 the population dies out at the next generation. Thus 
the number of AX individuals is Markovian with transition matrix 

P given by

P00 = 1

ij ( j ) {l - l(2N)_1 j J I i^tj)"1 j
(9-2)

Since p ^  = -ĵ i(2N) ^ j- for i > 0 it follows that whatever the
initial number of AX individuals, the mean time until the population

Ndies out due to random elimination of the allele A is ^ 2 , since
, -1 > qNeach p .~ ^ 2 . lO

Suppose further that the initial number of AX individuals 

is N. Then a pseudo-transient distribution may be obtained from 
(9*2) by putting p^ =1. If the pseudo-transient distribution is 

A/ = (Aq A1 .. . A^) then Aq1 is the mean time until the population 
dies out, given initially N AX individuals. If P* is the 

transition matrix of the amended process, then A/ satisfies 

A' = VP*, which gives in particular
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Thus Aq is (2N) ^ times the moment of the stationary distribution, 

whose mean is — . It follows (c.f. Loeve (i960), p.156) that 

AQ ^ so that Aq1 ^ 3N- Thus A"1^  lies in [2,3] .

The method of Gani (1961) may he used to show that the 

latent roots 0^ of P* are given by

er = (-§)r ( " ) rl K‘r r = 0, H (9-3)

Thus if Q* is the submatrix of P* obtained by striking out the first 

row and first column of P*, we obtain

-1 N*7 = { i1 - 9*1} n d-ep (9-4)
i=l

as a closed expression for the mean time. However this expression 

is not very helpful and in particular the asymptotic behaviour 

of does not follow readily from it. The numerical results in
- ] / m ,Table 9*1 below suggest that A^ approaches a limit near 2.45«

Table

Population size (n )

2
3
4
56
78
9

10
11
12
13
14

9.1

O
 

I H -U n
0

7.0000 2.6457
17-3^37 2.5885
43.0830 2.5620
107.1627 2.5469
266.7205 2.5371
664.0886 2.5303

1,653.4802 2.5252
4,116.6843 2.5213
10,247.21 2 .5180
25,391.10 2.5143
62,846.63 2.5111
152,573.06 2 .5046
358,806.70 2.4933
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The above model has not led to simple explicit results 

and it is useful to consider a model allowing transitions only to

neighbouring states (as in Chapters k and 5) for which explicit 

results may be found.

9.k An overlapping-generation model

If individuals die and are replaced one by one rather 

than a generation at a time a transition matrix of the form considered 

in section 5*5 is obtained.

We suppose that individuals die at random one by one, 

and that the dying individual is replaced by a new individual 

derived from a style chosen at random from the population immediately 

before the birth-death event. If there are i(i > 0) AX individuals 

before the birth-death event, then Prob. { AX individual chosen 

to die) = Prob. {AX style chosen for pollination) = iN \  If an 

AX style is pollinated the A gene is transmitted to the offspring 

with probability \ . By considering the various contingencies it 

follows that after the birth-death event the number of AX individuals 

will be i-1, i, or i+1 with respective probabilities

p. = i(3W-2i)(2H2)'1 (9-5)

Pi,x+1 = (H-i)(2N-i)(2M2)'1

We also have p^ = 1. The mean time taken until the population dies 

out takes a simple form in the case where the initial number of AX
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individuals is unity, and we suppose for the moment that this is 

the case. Then the pseudo-transient distribution "will be obtained 

by putting p ^  =1. In this case (9-5) holds for all i. If the 

new matrix is denoted P*, then the pseudo-transient function A 7 

satisfies A^ = 1, A 7 = A 7P*. It is readily verified from (9*5) 

that the solution of these equations is

Ai i = 0, 1, . . N (9.6)

Thus since
N

i=0
the mean time until the population

dies out is also 3N
N This is of the order (27A )  birth-

death events and is consequently extremely large even for moderate N.

When the initial number of AX individuals is arbitrary 

the mean time may be found by using the methods considered in 

Chapter 5> although in this case the expressions are more involved. 

By writing for convenience

i, i-1 pi,i+1 \

the transition matrix P is given by

P =

1 0 0 0

1—1 
1=1 1 "Trl_T)l A 0

0 n2 i-n2-T)2 0

0 0 0 l-



If the initial number of AX individuals is k, then the modified 

matrix P* corresponding to the return process will satisfy

1 0 0 -1 0
-nl nl+\ • • • 0 0
0 -n2 n2+T)2 . . . 0 0

* • • • •
• • •• # • • •

0V 0 0 0 n

\

J
where the -1 in the first row is in the column corresponding to 

k AX individuals. The pseudo- transient function A' satisfies 

A q = 1 and the typical equation

_T)i-l^i-l + (n i+T)i)^i " n i+i^i+i

This equation holds for i = 2,3,..., k-1, k+1, ..., N-l. 

Now (9.7) gives

(9 * r)

Ilf Â  " ^  p Â  j. = conŝ an  ̂ (9.8) .

Since A^ = it follows that the constant in (9-8) is unity 

for 1 = 1, 2, ..., k. This leads to

A .-1 n i-11 + n—  +i-l
^i-l^i-2
TTi-lITi-2

+ + i-2
i-2

(9.9)

for i = 1, 2, ..., k.

For i >  k, equation 9*8 still holds, but by using the equation
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it follows that the constant in (9*8) is zero for these values of i. 

Thus

AN-l \  T)N-l

A ^  n N-l
N“2 N ^ N - A ^

and in general

A.l
11 A - l  ‘ ' ‘ ni+l
^N-l^N-2 * * * 71 i

(9.io)

This holds for i = k, k+1, . .., N-l, so that identifying (9*9) and 

(9-10) for i = k we obtain

A, -1 V '• N-l
nk‘ * ‘ nN-l

+ ^k-l* * ,T)N-1 
nk-l* ' ,TIN-1

1 '2‘ 'N-l
nin2‘ • 'nN-l

(9.11)

so that from (9.10) and (9.H),

A -1 'k* * ‘
nk*‘* ni-l

i-1 'k-l* • • ‘i-l
nk-l*' ,TTi-l

\V-Vi
n1n2‘' ,Tri-l

(9.12)

for i = k, k+1, N

Therefore the mean number of birth-death events until the population 

dies out is ^

£  A. (9.13)
i=0

where A^ is defined by (9•9) for i ^ k and by (9*12) for i l k .

In the case k = 1, this reduces to
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N

i=0

^ as expected.

A lower bound for (9.13) is given immediately by this value, 

since to get to zero from any k > 1 to process must pass through k = 1. 

The maximum of (9*13) occurs when k = N, but the corresponding value 

does not seem to simplify so readily.

9«3 Mutation to existing alleles

Even when mutation exists, self-sterility populations 

will eventually die out, and the effect of mutation on the mean 

dying-out time may be considered. For simplicity we suppose that 

all mutation rates are equal; thus the probability that the A allele 

in a newly formed AB individual mutates to C is CC, and so on. If 

the number of AX individuals before a birth-death event is i (i > 0) 

it will subsequently be i - 1 if either of the following 

contingencies occurs; (i) AX dies, BC born, no mutation, or 

(ii) AX dies, AX born, A mutates. The probability of this is

Pi ± _ ±  = i (2N-i)a + i(l-2a) | (2E2)"1 

Similarly
p = i(3W-2i)(2K2)'1+ a

and
Pi i+1 = (N-i)(2N-i)(2E2)"1- a(N-i)(2N-3i)(2N2)_1 (9.l6)

2N2-TNi+6i2 (2E2)-1 (9.15)
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and Pqq =1. In the case where there is a single initial A gene 

we amend the transition matrix by putting

0 0 II a

0 H II i-a
(9.17)

so that (9-ll); (9.15) and (9*16) hold for all i. The pseudo- 
transient distribution is readily found to be

A,
I M N  + A + l  ̂I M B  + 1

(9.18)
IM A + 1  ̂I M N  + B + 1

and

Ai V  i

r M A  + l ^ T M B  - A + 1
(9,19)

I M A  + i + l ^ I M B - A - i  + 1

where

A = 2Mx(l-3o:)-1, B = 2N(l-3Q:)"1

Thus the mean recurrence time of the state "no AX individuals" is

A -1
iM a  + 1 ^ r x N  + B + i

(9.20)
I M N + A  + l^rMB + l

Using (9.17), it is found that the mean time \i until the population 

dies out in the original process is the solutipn of
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n(l-a) + a .

so that

M- = (A"1 - a) (l-a)_1 .

This follows since in the process defined, by (9.17)> when the state 
"no AX individuals" is entered, the process stays in this state 

with probability a  or moves to the state "one AX individual" with 
probability l-a. Alternatively, this formula could be derived 
directly by using (9.12), and using (9-20) it is found that the two 

methods give the same result. For the very small values of a expected, 

|~i may be approximated by Aq1 . Using Stirling's formula,

i /n (ax)**
1
l-3a

which is very close to 2j/k for small a . Thus mutation has a small 
effect on the mean time until the population dies out.

In the more general case when the initial number of AX 
individuals is greater than unity, the mean dying-out time is given 

by (9*9); (9.12) and (9.13), where IL and y^ are given by (9.1*0 and 
(9.16) respectively.

9.6 Comparison with haploid models

For the haploid models of Chapters A and 6 it is possible 

to introduce mutation in both directions and thus obtain stationary 
distributions. It will now be shown that if the mutation rates are 
sufficiently high, the resulting process, and thus the resulting
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stationary distributions, become identical to processes and 

distributions considered earlier in this chapter.

The model of Chapter 6 is for non-overlapping generations

with

p={ pu }  ={( j)pi (1'pi)N'J} (9-21)

where p^ = iN ^ in the case of no selection. Suppose that mutation 

at rates from A to a and G!̂  from a to A now takes place. It is 

then necessary to replace p^ by

p = iU-O^Jh“1 + (N-i)a0 N"1 (9-22)

and the process now admits a stationary distribution. Suppose the 

mutation rates are very high, viz. = 1. Then

p. = (2N-i)(2M)'1 (i = 0,1,2,. .,N)

and the process 'is identical to the amended process of section 9*53 

(c.f. equation (9*2) when we put p^ = l).

Similarly in the model of Chapter k (c.f. equation 4.1) 

the transition probabilities are

Pi,i-i - H"2 = h , i+i

Pi,i = 1_Pi,i-l "Pi,i+1

when there is no selection. If mutation at the above rates is allowed

we will have



(9.23)pi.i = ipi N’1 + (N-1)<li H"1 

pi,i+l = <N-i)pi irl

-where p = 1-q = i(l-a:^)N 1 + (U-iJcUg N 1 .

By putting OL-̂ = \} = 1 as before we obtain the amended transition

matrix (9*5) of section 9.b if we put p ^  = 1. Moran (1962), p.132

has found the stationary distribution of the process defined by (9 *23)

for general and and has shown that if = ß^ W ^, oĉ  = ß^N ^,

and if ß^ and ß^ are kept fixed as N -*oo , then this stationary

distribution is given asymptotically by

ßp-1 ß-,-1
f(x) = const x (l-x)

This is essentially the distribution used by Wright for the "stationary 

distribution" of the frequency of one allele in a three-allele self- 

sterility population. But with <X̂  = 1 it is impossible

simultaneously to keep ß^ and ß^ fixed and let N -> oo . This is 

another way of stating that the conditions required for the application 

of diffusion methods are not met.

9»7 A formal pseudo-transient function

We consider the model of section 9 .k when there is a 

single initial AX individual. Then the methods there used show that 

the exact pseudo-transient function is
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p(i) = ( i ) ( 2™ ) (9-24)

The pseudo-transient function obtained formally by 

diffusion methods may be found when m(q) and v(q) are known. It 

follows from (9-5) that

i(cl) = i(2-3q)

vU) = iN_1 (2-3g+2q2 )

These lead formally to a pseudo-transient function proportional to

CL
(2-3q+2q2) 1 exp - 2N J (2-3x)(2-3x+2x2)-1 dx

y. rf exp 2N J (2-3y)(2-3y+2y2)_1 dy

which is not an approximation to (9.2k). Therefore since the 

diffusion approximation to the pseudo-transient function is 

inappropriate, the value obtained formally by diffusion methods for 

the mean time until the population dies out will also be inappropriate, 

since this is the integral over (0,l) of the pseudo-transient function.

9.8 Extensions

Extensions to the case of more than three alleles are 

very difficult unless additional assumptions are made. As an example 

of the sort of assumptions necessary we consider a population with k 

alleles ^...S^ for which is the first allele lost by random
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elimination. It is assumed that the alleles S0 ...S. occur with 
equal frequencies and that each individual produces exactly 

one offspring. Then using a non-overlapping model similar to that 

of section 9*3 if is found that the mean number of generations before 

the allele S-̂  is lost when initially each individual is of the type 
Sx S± (i = 2, .. .,k), is

where N is the population size. This will be only an extremely

rough approximation for the mean time derived without the above

assumptions, but it is worth noting that in the Oenothera population
with N = 500 and k = 45, the above expression is roughly 7 x 10^
generations. The mean time until a second allele is lost, under

f _f| N
similar assumptions, is -j (k-l) (k-3) V generations, and so on.
Thus an extremely long time may be expected to pass before the 
population dies out.

The results here obtained lead to a different explanation 

for the large number of alleles in self-sterility populations than 
that given by Fisher and Wright. It is clear that because of the 

peculiar breeding system in these populations, if initially a large 

number of different alleles existed, a large number of these alleles 
may still be expected to be present after an extremely long time.

On the other hand it only requires a minute mutation rate to new 
alleles to build up a large number of different alleles, so that 
while mathematically the behaviour of these populations is transient,
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any self-sterility population that is actually observed may 

be expected to contain a large number of different alleles.
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These amendments have been made at the request of the examiners.

NOTE

I should like to thank Dr. G". A. Watterson for pointing out 

that the arguments on pages 60-62 and 78-80 can be simplified greatly, an 

a more satisfactory derivation of the results obtained. The 

simplifications are as follows.

Equation (4.7) holds for i = 1,2,...,k (rather than 

i = 1,2, ...,k-l only, as given in this thesis). Also, equation (4.9) 

holds for i = k, k+1,...,N (rather than i = k+1, ...N). By equating 

(4.7) and (4.9) at i = k we obtain directly the values for T’q and P 
given on page 62, without reference to the results of Chapter 2. The 

derivation at the bottom of page 62 and the top of page 63 is now 

unnecessary.

(rather than i = 2,...,k-l, as given in this thesis). Thus equation 

(5.9) holds for the same values of i. Also (5.1l) holds for 

i = k,...,N-1, so that the ranges in equation (5*12) are i = 1,2,...,k 

and i = k,k+l,...,N. The two expressions in (5.12) can be equated
for i = k, from which the values of PQ and PN follow immediately.

The argument on page 80 is now unnecessary.

I should also like to thank both Dr. Watterson and 

Mr. J. E. Moyal for pointing out that the proof leading to 

formula (3.27) is not strict, and should be regarded as a heuristic 

derivation. The truth of the formula itself is not in doubt.
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l.IM , m m m —  n-_
Similarly, equation (5-8) also holds for i = 2,...,k


