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Abstract

Today many application domains, such as national statistics, healthcare, business an-
alytic, fraud detection, and national security, require data to be integrated from mul-
tiple databases. Record linkage (RL) is a process used in data integration which links
multiple databases to identify matching records that belong to the same entity. RL
enriches the usefulness of data by removing duplicates, errors, and inconsistencies
which improves the effectiveness of decision making in data analytic applications.

Often, organisations are not willing or authorised to share the sensitive infor-
mation in their databases with any other party due to privacy and confidentiality
regulations. The linkage of databases of different organisations is an emerging re-
search area known as privacy-preserving record linkage (PPRL). PPRL facilitates the
linkage of databases by ensuring the privacy of the entities in these databases.

In multidatabase (MD) context, PPRL is significantly challenged by the intrinsic
exponential growth in the number of potential record pair comparisons. Such linkage
often requires significant time and computational resources to produce the resulting
matching sets of records. Due to increased risk of collusion, preserving the privacy
of the data is more problematic with an increase of number of parties involved in the
linkage process.

Blocking is commonly used to scale the linkage of large databases. The aim of
blocking is to remove those record pairs that correspond to non-matches (refer to
different entities). Many techniques have been proposed for RL and PPRL for block-
ing two databases. However, many of these techniques are not suitable for blocking
multiple databases. This creates a need to develop blocking technique for the mul-
tidatabase linkage context as real-world applications increasingly require more than
two databases.

This thesis is the first to conduct extensive research on blocking for multidatabase
privacy-preserved record linkage (MD-PPRL). We consider several research prob-
lems in blocking of MD-PPRL. First, we start with a broad background literature on
PPRL. This allow us to identify the main research gaps that need to be investigated
in MD-PPRL. Second, we introduce a blocking framework for MD-PPRL which pro-
vides more flexibility and control to database owners in the block generation process.
Third, we propose different techniques that are used in our framework for (1) block-
ing of multiple databases, (2) identifying blocks that need to be compared across
subgroups of these databases, and (3) filtering redundant record pair comparisons
by the efficient scheduling of block comparisons to improve the scalability of MD-
PPRL. Each of these techniques covers an important aspect of blocking in real-world
MD-PPRL applications. Finally, this thesis reports on an extensive evaluation of the
combined application of these methods with real datasets, which illustrates that they
outperform existing approaches in term of scalability, accuracy, and privacy.
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Chapter 1

Introduction

In this chapter we provide an introduction to the work presented in this thesis. We
describe multidatabase privacy-preserving record linkage (MD-PPRL) and the appli-
cation areas of multidatabase linkage in Section 1.1. We then describe the research
problem addressed by this thesis in Section 1.2, the aim of the research study in
Section 1.3, our contributions towards the research problem in Section 1.4, and the
methodology addressing the research problem in Section 1.5. Lastly, we provide the
organisation of the thesis in Section 1.6.

1.1 Multidatabase Privacy-preserving Record Linkage

Many organisations, including businesses, government agencies and research or-
ganisations, are collecting vast amounts of data into their databases. Such data is
stored, processed, and analysed for interesting patterns and knowledge that sup-
port efficient and quality decision making for the improvement of the organisations’
works [70, 121, 217]. These databases often contain many thousands or even millions
of records. The size of databases is continuously increasing, and developing tech-
niques for efficient processing, analysing and mining has gained much recognition
in both academia and industry [22, 24, 74, 151, 191].

To improve the efficiency and effectiveness in decision making and to conduct
sophisticated data analysis it is often required the databases from different organisa-
tions to be integrated [179]. Data integration not only enriches data, but it can also
improve the quality of data by identifying duplicate or similar records that refer to
the same real-world entity [66, 96, 155]. A real-world entity represented by a record
in a database can be a person, a product, a business, or any other object that exists
in the real world. The process of matching and aggregating records that relate to
the same entity from different data sources is known as record linkage, data match-
ing or entity resolution [66, 71, 96]. For the rest of this thesis we will use the term
record linkage (RL). RL is often performed on databases where records are about
people [35].

In most situations the linkage of records from multiple sources requires large
computational resources for processing. The linkage process becomes even more
challenging when records do not contain unique entity identifiers across all the

1



2 Introduction

databases that need to be linked. Though personal information contained in those
records (such as first name, last name, address details, age, etc.) could be used for
linking records, organisations commonly do not want such sensitive information to
be revealed to other data sources due to growing privacy and confidentiality con-
cerns [177, 189, 216].

The emerging research area to find records in multiple data sources that relate to
the same entity without revealing personal information is known as privacy-preserving
record linkage, blind data linkage or private record linkage [3, 42, 88, 189, 218]. For the
rest of this thesis we will use the term privacy-preserving record linkage (PPRL). The
record pairs or sets that refer to the same entity are known as matches and the record
pairs or sets that refer to different entities are known as non-matches [35]. Figure 1.1
illustrates an application scenario of PPRL.

Any linkage application that performs the task of identifying and matching records
that refer to the same entities from multiple databases faces various challenges. Scal-
ability, linkage quality, and privacy are the three key challenges that are associated
with PPRL [176, 212].

1. Scalability: The Big Data era generates major concerns in record linkage ap-
plications as many of the linkage techniques employed in these applications
are not scalable to very large databases [36, 66, 216, 217]. Scalability generally
depends on the complexity of the linkage techniques employed as they can
create bottlenecks in the whole linkage process. In two database linkage, as a
naïve approach, each record in one database can be compared with every other
record in other database to identify the matches. The quadratic complexity con-
sists in the naïve pair-wise comparison of records across two databases which
does not scale when the numbers of records are increasing in each database. As
we discuss in Section 1.2, this becomes even more problematic when the num-
ber of databases to be linked is increasing as the naïve pair-wise comparison of
records grows exponentially. For example, in a linkage of three databases each
record pair resulted in the linkage of first two databases needs to be compared
with each record in a third database. Multidatabase linkage, the task of link-
ing more than two databases, requires more sophisticated and efficient ways to
reduce the record comparison space to make the linkage process more scalable
to larger databases as well as an increasing number of databases.

2. Linkage Quality: The classification of record sets from multiple databases into
matches and non-matches is the main aim of record linkage [38]. Such clas-
sification is performed based on the similarity vectors generated by the com-
parison functions (such as edit distance, Jaccard, Jaro, and Jaro-Winkler string
similarity functions [35]) applied on different attributes of record pairs [35, 58].
On occasions where unique identifiers for entities are available across all the
databases to be linked, a simple database join can be used to identify the match-
ing pairs of records. However, in most cases such a common identifier is not
available in all databases to be linked.
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Figure 1.1: An example health surveillance system that uses PPRL to link different
databases. In this example, the researchers and a data analyst (also known as data
consumer) aim to investigate correlations between illnesses and different drugs and
how people pay for their treatments. This requires data from government depart-
ments, hospitals, pharmaceutical companies, and health insurance companies to be
linked. Once the linkage is performed the data consumers only receive an aggregated
result (selected attribute values that cannot be used to identify personal information)

of the matching record sets.

A possibility to overcome this issue is to use quasi-identifiers (QID) such as first
name, last name, address details, age, and so on [95]. The QIDs used in record
comparisons can produce ambiguous results as real-world data can contain
errors, variations, missing values, and values that can be out of date [174].
Therefore, exact matching of QID values is not sufficient to achieve accurate
linkage between databases, and approximate matching techniques are generally
required to achieve high linkage quality in RL applications [96, 220].

3. Privacy: In PPRL, the use of QIDs that contain personal information for linking
different databases poses the challenge of protecting the privacy of the data or
the privacy of the entities, to whom the data relates to, being used for the link-
age [177, 219]. For example, information such as medical or financial details
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of individuals cannot be revealed or communicated unless such information
is appropriately de-identified (anonymised) or encrypted when linking data
from multiple databases [29]. When personal information is used for linking
databases across organisations, privacy of this information needs to be con-
sidered because when linked, detailed information about individuals that is
even more revealing might become available. For example, de-duplicated in-
formation can be matched with publicly available information to re-identify the
individual to which the data belongs to. To avoid such re-identification process,
it is required that the data used for linking across multiple databases and the
identities of entities represented by data, as well as the sensitive details of the
matching results of the linkage, are privacy preserved throughout the record
linkage process [44, 216].

As shown in Figure 1.1, PPRL only outputs an aggregated result to the data
consumers that does not contain any personal or sensitive information.

Given these three main challenges, any PPRL application should be capable of: (1)
handling large numbers of records from multiple databases, (2) correctly identifying
the true matching records to achieve high linkage quality, and (3) preserving the
privacy of sensitive attribute values of all records. We formally define multidatabase
PPRL (MD-PPRL) as follows [216]:

Definition 1.1. Multidatabase privacy-preserving record linkage (MD-PPRL)
Assume DOA, DOB, · · · , DOX are d database owners with their respective databases
DA, DB, · · · , DX. The linkage across all these databases determines which of their
records RA

i ∈ DA, RB
j ∈ DB,· · · , RX

k ∈ DX match according to a decision model
C(〈RA

i, RB
j,· · · ,RX

k〉), that accepts a tuple of records 〈RA
i, RB

j,· · · ,RX
k〉 as input,

where 1 ≤ i ≤ |DA|, 1 ≤ j ≤ |DB|, and 1 ≤ k ≤ |DX|, and |D| represents the number
of records in a database D. C(〈RA

i, RB
j,· · · ,RX

k〉) assigns each 〈RA
i, RB

j,· · · ,RX
k〉

into the two sets M of matches (where records RA
i, RB

j,· · · , and RX
k are assumed

to refer to the same entity, i.e. M = {〈RA
i, RB

j,· · · ,RX
k〉|RA

i = RB
j = · · · = RX

k})
and U of non-matches (where the records refer to different entities, i.e. U = {〈RA

i,
RB

j,· · · ,RX
k〉|RA

i 6= RB
j 6= · · · 6= RX

k}). Each such tuple contains records from two or
more databases. The objective of MD-PPRL is that at the end of the linkage process
the database owners learn only which records they have in common according to
C without revealing the actual values of the records Ri

A, Rj
B,· · · ,Rk

X with any other
database owner or any party external to the database owners.

1.1.1 Applications of Multidatabase Linkage

Many application domains require information from multiple sources to be inte-
grated and combined in order to improve data quality and to facilitate further anal-
ysis of data [22, 66]. The following are some example application scenarios that
illustrate why multidatabase record linkage (MDRL) is important and valuable.
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1.1.1.1 Census

As a first example, assume a government census agency collects data about various
aspects of the population and economy of a country. The information collected is
used to generate a diverse range of statistical reports for planning the allocation of
funding and resources by the government [77]. Generally, each census is collected
at a different point in time and likely into a different database with same schemas
(assuming same information is collected about individuals in each different point
in time), allowing multiple such databases to be integrated to compile new statisti-
cal information. Each database commonly contains longitudinal information about
individuals, such as age, gender, birthplace, birth year, religion, race, highest ed-
ucational qualification, and so on12. It is commonly accepted that such data are
important sources of information to help identify the characteristics of a population
as it changes over time [41, 131, 188]. This potentially requires the linkage of such
large census databases collected over several decades [78].

1.1.1.2 Health Analytics

Another real-world example application, as shown in Figure 1.1, would be a health
surveillance system that continuously integrates and links data from hospitals, phar-
macies, insurance companies, and government departments [22, 29]. The data col-
lected from these sources can help to investigate the geographical and temporal ef-
fects of diseases and drug usages in certain patient groups. Such a system requires
the collection and linkage of different databases, as illustrated in Figure 1.2, from
certain regions of a country, each potentially containing many hundreds of thou-
sands of patient records, where each record needs to be linked across all the different
databases to identify how patient groups with different illnesses react to different
drugs and medical treatments [24].

As illustrated in Figures 1.1 and 1.2, the databases from different organisations
often contain different schemas which require a health surveillance system to select
possible attributes that are common in all databases for linking. Next, the values of
these attributes are encoded (masked) to preserve privacy. The linkage of records is
then performed by comparing the encoded values, and the resulting sets of matching
record identifiers are sent to the database owners. Finally, the surveillance system
generates a linked database that contains the required sets of attribute values of these
matched records that can be used for making decisions [24, 29, 57].

1.1.1.3 National Security and Crime Investigation

Another real-world scenario is an counter-terrorism application34 to track known
terrorists or criminal suspects within a country [72, 180]. These applications are gen-

1http://www.abs.gov.au/websitedbs/censushome.nsf/home/2016?opendocument&navpos=110
2https://www.census.gov/
3https://www.globalsecurity.org/security/systems/tia.htm
4https://www.dhs.gov/sites/default/files/publications/privacy-matrix-122006.pdf
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Figure 1.2: Example steps involved in a health surveillance system to link databases
from different data sources, such as government departments, hospitals, pharmaceu-

tical companies, and insurance companies, as shown in Figure 1.1.

erally utilised by governments by combining with third-party security agencies or
security services [146]. Such an application needs to link transactional data such as
store or online purchases, hospital admissions, mobile phone records, airline mani-
fests, hotel registrations, etc. to identify suspicious activities of the identified entities.
This requires databases from hotels, airlines, car rentals, banks and so on. to be in-
tegrated. Nevertheless, such data integration or matching needs to be performed in
real-time because the identification of a suspect is often required in real-time.
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However, such a system has to provide two levels of data privacy of the entities in
the databases [146]. (1) Since the databases to be matched are very large and diverse,
the people who are in the suspect list should not be revealed to any of the database
owners or organisations. In most occasions the number of individuals on terrorism
watch lists are likely ordinary citizens that show similar characteristics to actual ter-
rorists. Revealing information of such non-terrorist individuals as suspects could
violate their privacy because these individuals can be scrutinised when they interact
with data sources. (2) Subjects or entities who are not in the suspect list should be
protected from these counter-terrorism applications because revealing such sensitive
data about innocent citizens to third-party or government agencies for matching and
analysis purposes without consent can invade their privacy.

1.1.1.4 Fraud Detection and Prevention

As we are living in the Big Data era, financial and transactional data are generated in
many different formats and with huge volumes. Analysing such data requires more
sophisticated information systems than traditional methods of data analysis [159].
Traditional methods often require complex and time-consuming investigations to
deal with different domains of knowledge like financial, economics, business prac-
tices and law. Record linkage is an integral component in modern fraud detection
systems that link records across databases from government departments, law en-
forcement agencies, and financial institutions. Linkage of these databases allows ac-
curate identification of individuals or groups of individuals who are suspected to be
fraudsters by verifying the personal credentials they present when they, for example,
apply for a credit card or a loan [35, 167, 221].

Fraudsters usually provide fake or modified identification information, such as
addresses, dates of birth, or social security numbers, when user credential informa-
tion is requested by different organisations. Such fake information creates a major
challenge in linkage applications, since such data could be viewed as erroneous data
that is available in databases due to data entry errors. Furthermore, fraudsters delib-
erately modify personal details because they do not want to be identified, and they
try to make these changes to look like real valid variations [159, 167].

Record linkage provides a way for identifying such falsified identities in databases
by linking records across different organisations and matching the credentials pro-
vided by each person. This potentially assists in identifying the details provided by
an individual as either valid or fake. However, for such a linkage to be employed in
fraud detection systems it needs to be capable of matching records in real-time while
preserving the privacy of sensitive personal information, as well as being scalable to
an increasing number of databases that need to be linked [35, 216].

1.2 Research Problem

When matching multiple databases, potentially each record from one database needs
to be compared with all records in the other databases in order to determine if a
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Table 1.1: Number of candidate record tuples generated with multiple databases for
different sizes (number of records) of databases and blocks.

Number of databases (d)
Database size / Block size 3 5 7 10

10,000 / 10 106 108 1010 1013

10,000 / 100 108 1012 1016 1022

10,000 / 1,000 1010 1016 1022 1031

100,000 / 10 107 109 1011 1014

100,000 / 100 109 1013 1017 1023

100,000 / 1,000 1011 1017 1023 1032

1,000,000 / 10 108 1010 1012 1015

1,000,000 / 100 1010 1014 1018 1024

1,000,000 / 1,000 1012 1018 1024 1033

pair or a set of records corresponds to the same entity or not. The number of naïve
pair-wise record comparisons of multiple databases grows quadratically as the sizes
(number of records) of databases to be linked get larger, and exponentially with
the number of databases. In such situations, methods or techniques to reduce the
comparison space are needed.

In the record linkage process, blocking (indexing) is generally used to scale the
linkage to large databases [36, 165]. Blocking identifies candidate records for com-
parison and classification by grouping similar records into the same blocks and dis-
similar records into different blocks. This enables the record comparison space to
only consist of likely true matching record comparisons while removing as many
of the true non-matching record comparisons as possible. As a result, blocking of
databases decreases the amount of computational efforts required when comparing
larger databases. Generally records are grouped according to some criteria (known
as a blocking or sorting key [36]) and only the records in the same block are compared
in detail using expensive comparison functions [14, 36].

In recent years, various blocking techniques have been proposed for RL and PPRL
(this topic is further discussed in Chapters 2 and 3). However, these blocking tech-
niques are mainly aimed at the linkage of two databases only, which makes them
unsuitable in a multidatabase context. In this thesis we focus on the blocking step of
the MD-PPRL process (see Chapter 2). Apart from the three key challenges of PPRL
presented in Section 1.1, we aim to address the following challenges that are related
to blocking in a MD-PPRL context:

• Challenge 1: Number of databases. When the number of databases is increas-
ing the naïve record comparison space grows exponentially. For example, with
d databases each containing nr records the total number of record pair compar-
isons required can be specified as nr

d. Nevertheless, as shown by Sadinle and
Fienberg [183], separate pairwise matchings of databases do not guarantee the
transitivity of the linkage decisions and thus require resolving discrepancies
(we will discuss the inapplicability of bipartite matching in a multidatabase
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linkage context in more detail in Section 4.4 on page 78). This makes multi-
database linkage applications currently not scalable with regard to an increas-
ing number of records and databases.

As shown in Table 1.1, the number of candidate record tuples (tuples of records
from different databases that need to be compared, as we will define in Sec-
tion 4.4.2 on page 81) grows exponentially with the number of databases to
be linked for a multidatabase linkage, and even with very small sized blocks
(such as 10 records per block per database) the number of candidate record
tuples can become prohibitively large. Therefore more sophisticated blocking
mechanisms are required for MDRL and MD-PPRL applications.

• Challenge 2: Database Sizes. Everyday, organisations generate and store many
millions of records in their databases. In the context of these unprecedented
volumes of records, existing blocking techniques generate blocks that contain
large numbers of records that could potentially require large number of record
pairs or sets to be compared. Ultimately, the comparison of these blocks leads
to an inefficient linkage.

However, the generation of a large number of blocks with a small number of
records each, or a small number of blocks with a large number of records each,
could potentially improve the efficiency of blocking. However, such blocking
leads to a poor linkage performance as more record pairs need to be com-
pared. Furthermore, many of these comparisons could potentially generate
more non-matches [170]. Table 1.1 illustrates this problem for MD-PPRL which
shows the number of candidate record tuples generated for different num-
bers of databases of various sizes and different block sizes (by assuming all
blocks have the same size). Therefore, blocking techniques employed in a mul-
tidatabase context should be capable of grouping similar records into the same
blocks to minimise the number of potential non-matches while controlling the
maximum block size to achieve a highly efficient blocking process.

• Challenge 3: Data Quality. In most cases, organisations collect their data
through semi-automated processes that cannot filter information of low qual-
ity [96, 228]. Often, these collected data contains noise, which includes du-
plicate records, or records with missing and inconsistent values. In a multi-
database context the effectiveness of the overall linkage is potentially reduced
by the variations and erroneous values in records as the diverse nature of data
increases with the number of data sources [95]. Therefore, the blocking tech-
niques deployed in a multidatabase linkage should be robust with regard to
different types of noise in the databases to be linked.

• Challenge 4: Collusion. Privacy is a major concern in any PPRL application
which performs linkage on databases from different organisations. In a PPRL
context, the parties who are participating in the linkage process can potentially
collude with each other to learn about the sensitive data of a party that does not
collude. In a multidatabase linkage context the risk of collusion increases with
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the number of parties that participate in the linkage. This requires the block-
ing techniques employed in a multidatabase context to be collusion resistant.
However, the techniques that are used in blocking to preserve the privacy of
sensitive data also need to be computationally efficient and effective to ensure
the scalability and quality of the overall linkage.

• Challenge 5: Redundant record comparisons. As illustrated in Table 1.1, con-
ducting multidatabase linkage on block collections from different databases still
requires a very large number of similarity comparisons because each record in a
block needs to be compared with all records in the same block originating from
the other databases (that have the same or similar blocking key values). Assum-
ing d databases, each containing nr records, split evenly into nB blocks of size
( nr

nB
) records results in nB

d potential candidate block tuples (CBTs). We formally
define a candidate block tuple in Section 4.2 on page 65. The pair-wise compar-
ison of these CBTs will result in nB·( nr

nB
)d record pair comparisons. However, a

large portion of these candidate block comparisons between different databases
consists of redundant record pair comparisons that occur due to repetitive and
superfluous comparisons of record pairs, where the latter are comparisons with
record pairs that have previously been classified as non-matches [164]. Such
redundant record comparisons involve unnecessary computation costs in clas-
sification and comparison techniques in the linkage process. Removal of these
redundant comparisons in the blocking stage not only improves the effective-
ness (reduces non-matches), but also increases the efficiency (reduces the num-
ber of record pair comparisons) of the overall linkage.

Therefore, novel blocking techniques are required that process each candidate
block tuple by identifying and purging unnecessary comparisons in multi-
database linkage in order to increase the overall efficiency. Furthermore, these
techniques should not affect the overall effectiveness of the linkage by removing
truly matching record sets.

• Challenge 6: Subgroup structures. The primary goal of MDRL and MD-PPRL
is to identify similar records that exist across all the databases. However, in
real-world applications, being able to identify matching records that occur in
two or more databases is important for decision making activities [22]. The
sets of matching records across subgroups of databases can be valuable for
conducting analytical studies and decision making about sub-populations or
groups that exist within a larger population [41, 131].

In order to identify subgroups of records that are matching across multiple
databases, the linkage between records from different subgroups of these data-
bases is required. However, as the number of databases to be linked increases
the number of subgroup combinations of different sizes increases exponentially.
For example, with d databases the potential number of subgroups is equal to
∑d

n=1 (
d
n) = 2d − 1. Table 1.2 shows the potential number of subgroups of sizes

2 to d that can be generated for different number of databases. Furthermore,
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Table 1.2: Number of subgroups of sizes 2 to d possible across different number of
databases.

Number of databases (d) Number of possible
subgroup combinations

3 4
5 26
7 120
10 1013

the use of existing blocking techniques multiple times for linking subgroups of
different sizes of databases is not computationally feasible. Therefore, blocking
techniques for multidatabase linkage should be capable of identifying similar
records in subgroups of databases efficiently.

We focus on developing novel blocking approaches for MD-PPRL that go be-
yond existing blocking techniques by addressing the challenges specified above. In
the following section we describe the aims of our research in more detail, while in
Sections 1.4 and 1.5 we describe the contributions arising from this thesis and the
research methodology we followed to address these challenges, respectively.

1.3 Aims and objectives of this research

As we have described in Section 1.2, the comparison of records of multiple databases
requires significant computational time and resources. Importantly, the techniques
used in MD-PPRL should be scalable to an increase in the size and number of
databases to be linked. Furthermore, the techniques used in a MD-PPRL applica-
tion should provide enough privacy for sensitive data in those databases to be linked
as the collusion risk increases with the number of parties involved in a linkage.

During the past few decades many approaches have been proposed to perform
record linkage between two databases [36, 71, 184]. However, as explained in Sec-
tion 1.2, the linkage between multiple databases is still an open research problem
that requires further investigation. As many real applications require data to be inte-
grated from multiple sources, this demands the development of scalable technique in
the multidatabase linkage context. Also, these techniques should be able to achieve
high linkage quality without compromising the privacy of the sensitive data in those
databases.

The main aim of this thesis is to design and develop blocking techniques that can
be applied in a MD-PPRL context. Our aim is to develop techniques that can scale
with the size and number of databases to be linked, as described in Section 1.1. We
aim to use different privacy techniques (as detailed in Chapter 2) to develop efficient
blocking techniques that help to preserve the privacy of the databases to be linked.
Based on our aims we define several objectives to accomplish in this study:
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Figure 1.3: Multidatabase linkage models, (a) with a linkage unit and (b) without
a linkage unit. In these models the communication among the participating parties
can be given as: (1) exchange of parameter values, (2) communicate the (somewhat)

encoded records of databases, and (3) exchange or send the linkage result.

1. Develop blocking techniques that can be applied in different MD-PPRL link-
age models. In a multidatabase context the linkage of different databases can
be performed with or without a linkage unit (LU) (more details of this topic are
given in Chapters 2 and 3) as illustrated in Figure 1.3 [22, 176, 219]. A LU is
a special party or organisation that participates in a protocol to conduct the
linkage of the data sent to it by the owners of the databases. We define the LU
in more detail in Section 2.4. In a privacy-preserving context the common com-
munication steps that can occur between the participating parties within these
linkage models can be given as: (1) exchange of parameters, pre-processing
standards, secret keys, etc. between the database owners, (2) exchange of the
encoded (masked) values in the databases, and (3) exchange of the linkage re-
sults. In this thesis we develop blocking techniques under both these linkage
models shown in Figure 1.3.

As shown by Mitchell et al. [149], most of the practical linkage applications,
such as Microdata Linkage at Statistics Canada5, E-health informatics research
in UK6, and health data linkage in Australia7, use LUs (data linkage cen-
tres) to facilitate and conduct the linkage of different databases compared to
database owners performing the linkage by themselves. As we describe in Sec-
tion 2.3, the linkage of databases without a LU can become more computation-
ally and communicationally expensive compared to the linkage applications
with a LU because of the use of more sophisticated encoding or encryption
mechanisms [66]. However, linking records at a central location can potentially

5https://www.statcan.gc.ca/eng/record/gen
6http://www.cancerresearchuk.org/funding-for-researchers/how-we-deliver-research/our-

research-partnerships/the-farr-institute-of-health-informatics-research
7http://www.cherel.org.au/how-record-linkage-works
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increase the risk of privacy attacks because the LU can use the frequency in-
formation of these encoded values to deduct a sensitive plain-text value of a
database. We explain privacy attacks in Section 2.4.5.

Under these linkage models the privacy of the data needs to be considered for
different adversary (security) models as described in Chapter 2. First we inves-
tigate and identify which PPRL techniques are more suitable for each linkage
model and each adversary model. By doing so, a good understanding can
be gained about MD-PPRL techniques and their limitations, efficiency, and ef-
fectiveness under different adversary models. This will help us to develop
different blocking techniques under these linkage models.

2. Develop blocking techniques that are more collusion resistant. As we de-
scribed in Section 1.2, the potential risk of collusion between participating par-
ties (including database owners, linkage units, or any external organisations
participating in the linkage) increases with the number of parties. This in-
creases the privacy risk in blocking since a group of participating parties can
collude with each other in the blocking step to identify sensitive record values
in a database of another database owner that does not collude. Therefore, we
investigate the applicability of different techniques to improve the privacy in
our multidatabase blocking approaches.

3. Develop blocking techniques that support subgroup blocking. In a multi-
database environment, subsets of matching records could also be available in
two or more databases to be linked. These subsets of matching records provide
important information about the specific entity groups that exist within the
whole population. However, to identify subsets of matching records, we need
to identify candidate blocks that need to be compared for different subgroups
across all the databases to be linked. Therefore, we focus on developing ap-
proaches that support subgroup blocking in a multidatabase linkage scenario.

4. Efficiently remove redundant record set comparisons. As shown in Table 1.1,
the record comparison space in a multidatabase linkage results in an exces-
sively high number of candidate record tuples that need to be compared even
when a blocking technique is applied. However, the record comparison space
generated by a blocking technique could encompass redundant record com-
parisons that are repetitive and/or superfluous. Our objective is to develop
filtering techniques that can be incorporated with the blocking step for mul-
tidatabase linkage to remove these redundant record comparisons. This helps
to maximise the overall efficiency while retaining the original or high levels of
effectiveness in the overall linkage.

1.4 Contributions

This thesis is concerned with PPRL on multiple databases. We focus mainly on
the blocking step of the PPRL process (as described in Section 2.3 on page 22) and
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propose solutions to address the main challenges involved in blocking of multiple
databases in a privacy-preserving context. Our contributions can be grouped into six
main sections:

1. A blocking framework for MD-PPRL: A major shortcoming in the MD-PPRL
context is that a blocking framework that could address the challenges related
to multidatabase blocking has so far not been developed. This requires database
owners or PPRL practitioners to use PPRL techniques that are not applicable in
real-world applications. To address this issue we propose a blocking framework
for MD-PPRL that goes beyond existing solutions in three different ways:

• our framework is designed to deal with the challenges of MD-PPRL (as
detailed in Section 1.3),

• it divides the blocking process into different steps, which allows users to
maximise the overall efficiency and effectiveness of the linkage of multiple
large databases, and

• it provides PPRL practitioners and users with different techniques, ap-
proaches, and protocols to create highly scalable MD-PPRL solutions that
can be easily tailored to the particular settings and requirements of a given
application.

The blocking techniques that are developed in our proposed framework are
grouped into different layers. Each layer is responsible for a specific aspect
of blocking in the MD-PPRL process and receives as input the output of the
previous layer. The goal of this framework is to produce an output from each
layer that improves the effectiveness and/or the efficiency of the input pro-
vided by the previous layer. This proposed blocking framework is presented in
Chapter 4.

2. Scalable blocking techniques for MD-PPRL: As discussed in Section 1.3, we
propose several blocking approaches for MD-PPRL. We use a multidatabase
linkage model without a linkage unit, as shown in Figure 1.3 (b), in these pro-
posed approaches as it provides more privacy in generating blocks. We propose
three blocking techniques that use an efficient tree data structure and two clus-
tering techniques for generating blocks of multiple databases that need to be
linked. The proposed blocking techniques are described in Chapters 5 and 6.

3. A distributed blocking approach for MD-PPRL: As will be detailed in Chap-
ter 3, most blocking techniques proposed in the literature do not provide the
database owners (DOs) with flexibility and control over the blocking process.
To address this issue, we propose a blocking technique that allows database
owners to perform their blocking process independently and then identify the
blocks that need to be compared. Our blocking approach follows the multi-
database linkage model with a linkage unit, as shown in Figure 1.3 (a), where
we use the linkage unit to identify the block tuples that need to be compared.
This contribution is described in Chapter 7.



§1.5 Research methodology 15

4. A subgroup blocking approach for MD-PPRL: As detailed in Section 1.2, a ma-
jor challenge in MD-PPRL is to identify records across different databases that
need to be compared across subgroups of these databases. To address this prob-
lem we propose a subgroup blocking technique that groups records into blocks
and identifies candidate blocks from different databases that need to be com-
pared for subgroup combinations of different sizes across those databases. The
proposed technique consists of a graph data structure based candidate block
generation method for identifying blocks that need to be compared for differ-
ent subgroup combinations. The proposed approach is presented in Chapter 8.

5. A meta-blocking approach to reduce redundant record comparisons: In any
multidatabase linkage application, a major portion of the record comparison
space consists of repeated and superfluous record comparisons, as we detailed
in Section 1.3. We propose a non-parametric meta-blocking approach that can
be employed between the blocking and the comparison and classification steps
of the MD-PPRL pipeline. The proposed approach efficiently schedules block
pairs for comparison ensuring repeated and superfluous record comparisons
are eliminated without reducing the effectiveness of the overall linkage. Our
approach is designed in such a manner that it can be incorporated into any RL
or PPRL applications. The proposed contribution is presented in Chapter 9.

6. A comprehensive evaluation of the proposed techniques: We conduct a com-
prehensive experimental evaluation of our proposed techniques in terms of
scalability, blocking quality and privacy using multiple large real and synthetic
datasets. We provide a comparative evaluation of our proposed approaches and
several state-of-the-art blocking techniques [36, 56, 119] for different MD-PPRL
scenarios. The results are presented in Chapter 10.

In addition, all proposed approaches presented in this thesis are conceptually
analysed with regard to complexity, blocking quality, and privacy, which are detailed
in each corresponding chapter.

1.5 Research methodology

In this thesis the used methodology for designing and developing algorithms for
MD-PPRL consists of several steps, as shown in Figure 1.4:

1. Preliminary study: In this step a basic understanding about record linkage was
gathered by broadly studying the literature which helped to recognise different
research problems in the record linkage context.

2. Formulating research problem: In this step we defined the research problem
under the MD-PPRL context.

3. Literature review: This step consisted of an extensive and ongoing study of
the current literature available on record linkage, which helped to better un-
derstand the research problem. The study was conducted in two streams to
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Figure 1.4: The used research methodology.

understand about, (1) concepts and theories and (2) previous research findings
in the context of record linkage. This knowledge was used to refine the research
problem, design solutions, implement prototypes, and experimental design.

4. Designing algorithms: In this step new approaches were proposed to address
the identified research problem.

5. Theoretical modeling: In this step the proposed approaches were theoretically
analysed in terms of scalability, blocking quality, and privacy.

6. Prototype development: Prototypes of the proposed approaches were devel-
oped to be used as proof-of-concept implementations. We developed all the
prototypes using the Python programming language [142] as separate mod-
ules. More information on prototype development is given in Section 4.4 on
page 84.

7. Experimental setup: In this step the setup of experiments to be run on the
developed prototypes was constructed by selecting suitable datasets, evaluation
metrics, parameter settings, and selecting other state-of-the-art techniques for
comparisons.
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8. Experimental study: The set of experiments on the developed prototypes were
conducted to gather results for the experimental evaluation.

9. Evaluation: The experimental results were evaluated with regard to scalability,
blocking quality, and privacy to validate the theoretical analysis.

1.6 Thesis Outline

This thesis is structured as follows. In the following chapter we provide the back-
ground about overall privacy-preserving record linkage (PPRL), and its concepts.
Then, in Chapter 3, we present a review of the literature of existing PPRL approaches.
We propose our blocking framework in Chapter 4 and the techniques used in our
framework are detailed in the following chapters. Chapters 5, 6, and 7 provide de-
tails on different blocking techniques for MD-PPRL, while Chapter 8 details our
subgroup blocking technique. A novel meta-blocking protocol for further reduction
of the number of record comparisons is then presented in Chapter 9. In Chapter 10
we provide a comparative evaluation between the proposed approaches and several
existing blocking techniques. Finally, Chapter 11 concludes the study, summarises
the achieved results, and discusses directions for future work of this research area.
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Chapter 2

Background

In this chapter, we present background knowledge for the following chapters of this
thesis. In Section 2.1 we describe the traditional record linkage (RL) process. We
provide a detailed description about privacy-preserving record linkage (PPRL) in
Section 2.2, and describe each step in the PPRL process in more detail in Section 2.3.
In Section 2.4, we provide a detailed description on different privacy aspects related
to PPRL, and we describe evaluation measures used in PPRL in Section 2.5.

2.1 Record Linkage

Linking records of different databases has a long history. The term Record Linkage
was first introduced by Halbert L. Dunn in 1946 [55]. The article he published in
the American Journal of Public Health1 describes an idea of creating a book named
book of life for every individual in the world. Each book of an individual person
contains pages covering the principle events of a life, such as the individuals’ contacts
with the health and social security systems from birth to death. In his article, Dunn
highlighted the importance of having such records about individuals for government
statistics and services, and for the identification of individuals. However, collection
of such data in real-world could become difficult due to data quality issues.

Over the past few decades an increasing interest has been seen into research
in the area of record linkage or data matching in domains such as computer sci-
ence, statistics, and the health and social sciences. The probabilistic foundation
of modern record linkage has been proposed by Newcombe et al. [156]. In their
work phonetic encoding [35, 66] is applied to attribute values to overcome variations
in the data. A calculation based on the distribution of records was used to group
records into matches and non-matches. This idea was then formalised by Ivan Fel-
legi and Alan Sunter who proved that a probabilistic decision rule can be optimal
when the comparison of quasi identifier (QID) attributes [94], such as first name,
last name, address details, age, etc., are conditionally independent [71]. Even today
their work remains the mathematical foundation for many record linkage applica-
tions [28, 61, 88, 127, 147, 178, 183, 184, 226, 227].

1http://ajph.aphapublications.org/

19
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As organisations, including banks, government departments, and businesses,
collect large quantities of data in their databases, linking records from different
databases to improve the quality of data analysis and data mining has become in-
creasingly important [22, 66, 228]. Example application areas are national census,
health-care, crime and fraud detection, national security and business applications
as described in Chapter 1. In national census, record linkage is used as an important
tool for census statistics which can help to reduce costs and efforts for conducting
large scale census collections [77, 82, 181]. In the health-care sector, linking data from
multiple databases can generate important information which is required in drug
management, disease prevention, and disease outbreak detection [22, 24, 123, 157].
To detect unusual patterns within and across a variety of databases, record linkage
is used in the national security domain [106, 221] which is challenging due to the
heterogeneous nature of data in those databases, including database schemas, data
formats, and data quality (errors and inconsistencies).

In general, record linkage is a classification problem where record tuples (pairs
or sets) from different databases are grouped into the two classes of matches and
non-matches, or into three classes which also include potential matches as the third
class [36, 71]. The class of matches contains the record tuples that refer to the same
real-world entity (a person, an organisation, or an object), while the class of non-
matches refers to those record tuples that do not refer to the same entity. The class
of potential matches refers to record tuples that cannot be automatically classified
as either matches or non-matches. A clerical review process is required to manu-
ally classify the records in the class of potential matches as matches or non-matches.
The process of performing this classification in any record linkage application is
challenging because of the two primary requirements of scalability and linkage qual-
ity [35, 66].

2.2 Privacy-preserving Record Linkage

On occasions where unique identifiers for entities are available across all the databases
to be linked, a simple database join would be trivial for the purpose of identifying
the matching pairs of records. However, due to the lack of unique entity identifiers,
the linkage of databases generally needs to be based on the personal details, such as
names and addresses, of the individuals whose records are stored in these databases.
These attributes generally allow to accurately link records. However, if the databases
to be linked belong to different organisations, such linkage will reveal personal in-
formation of a database to other organisations that participate in the linking process,
which raises privacy and confidentiality issues [23, 29, 217].

During the past decades the challenge of protecting the privacy of personal infor-
mation, such as names and addresses of people, has gained significant attention in
many application domains. Often privacy and confidentiality regulations prevent the
owners of databases from sharing any sensitive details of their records with any other
organisation. The Beyond 2011 Programme [75] established by the Office for National



§2.2 Privacy-preserving Record Linkage 21

Statistics (ONS) in the UK for the production of population and socio-demographic
statistics has indicated the importance of anonymisation of data to ensure privacy.
As we detail in Section 2.4, data anonymisation is the process of either encrypting
or removing personally identifiable information from databases, so that the entities
or individuals who are described by the data remain anonymous. Data can be con-
sidered anonymised when it does not allow re-identification of the individuals to
whom it relates, and it is not possible that any individual can be identified from the
anonymised data by any further processing or by processing it together with other
(public) information which is available or likely to become available in future [67].

Recently, the European Council has made pseudonymisation of record linkage
identifiers factually mandatory. In contrast to data anonymisation, data pseudonymi-
sation substitutes or replaces any identifying characteristics of data of an individual
or an entity with a pseudonym in such a way that additional information is required
to re-identify the individual so that an entity cannot be identified directly by using
such data [203]. Due to increasing privacy concerns, in 2016 the European Coun-
cil Parliament and Commission agreed on a new General Data Protection Regulation2

that demands pseudonymisation techniques on personal data before any personal
information can be used on any projects [67]. This regulation requires all 28 member
states of the European Union to implement rules in their national jurisdictions by
May 2018.

The Data-Matching Program Act3 and Australian Commonwealth Privacy Act
(1988)4 in Australia, the Health Insurance Portability and Accountability Act (HIPAA)5,
Children’s Online Privacy Protection Act (COPPA)6, Gramm-Leach-Bliley Act (GLB)7,
and Privacy Act of 19748 in the USA, the Data Protection Act9 in the UK, and the
Privacy Act 198510 in Canada are some examples that describe the legal restrictions
of disclosing private or sensitive data across organisations.

In the last two decades the increase of data privacy concerns in organisations
has led to a significant attention in the research community to further investigate
how to link records across organisations without compromising the privacy of the
entities represented by these records [189, 194, 216]. The research paradigm of finding
records in multiple databases that relate to the same entity or having approximately
the same values for a set of quasi identifiers, such as names and addresses, without
revealing any private or sensitive information is known as privacy-preserving record
linkage (PPRL) [36, 88, 189, 218], private record linkage [3, 13, 98, 224, 231], or blind-
folded record linkage [42].

2http://www.eugdpr.org/
3http://www.oaic.gov.au/privacy/privacy-act/government-data-matching
4https://www.oaic.gov.au/privacy-law/privacy-act/
5http://www.hhs.gov/ocr/privacy/
6http://www.inc.com/encyclopedia/childrens-online-privacy-protection-act-coppa.html
7http://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
8https://www.justice.gov/opcl/privacy-act-1974
9https://www.gov.uk/data-protection

10http://laws-lois.justice.gc.ca/eng/acts/p-21/
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Figure 2.1: Outline of the privacy-preserving record linkage pipeline as detailed in
Section 2.3 for linking d databases owned by different databases owners (DOs). This
thesis mainly focuses on the emphasised blocking step of the PPRL process which is

showed in dark blue.

In PPRL, the linkage is based on different privacy techniques, such as encoding,
to ensure the privacy of data. We will describe different privacy techniques used in
PPRL in Section 2.4. As we discussed in Section 1.1, the database owners need to
reveal some information (records that have been classified as matches, or a selected
set of attribute values from the matched records) at the end of the linkage process.
However, each step in the record linkage process needs to preserve the privacy of
the sensitive details of the data to be linked [23, 189, 216, 218]. The following section
provides more details about the steps involved in the PPRL process.

2.3 The PPRL Process

Figure 2.1 illustrates the main steps involved in the PPRL process for d databases.
The PPRL process has the same set of steps as in a traditional record linkage process,
however, data privacy needs to be considered in each step [212, 217, 219].

Since most real-world databases contain incomplete and inconsistent data [169,
174], data pre-processing often has to be applied first in the PPRL process. To im-
prove linkage quality, the databases to be linked must use the same process of data
cleaning and standardisation [43]. As illustrated in Figure 2.1, each database owner
(DO) can conduct the data pre-processing step independently while agreeing upon
the techniques to be used for pre-processing and the set of attributes to be used for
linkage.
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Once the databases are pre-processed, the values in the attributes used for the
linkage of the records need to be encoded (masked or encrypted) to ensure no sen-
sitive information that can be used to infer individual records and their attribute
values is revealed to any party that participates in the linkage process, or to any
external adversary [212, 218]. Each DO needs to agree on the encoding technique
and relevant parameter settings to be used to ensure the same encoding process is
applied across all the databases to be linked. As shown in Figure 2.1, each database
D is encoded into a masked database DM using an appropriate encoding technique.
We will discuss different encoding techniques used in PPRL in Section 2.4.

As we have described in Section 1.2, the naive pair-wise comparison of multiple
databases is of exponential and quadratic complexity in terms of the number and
size of databases, respectively, which makes PPRL applications not scalable to linking
multiple databases [170, 210]. Blocking is used in the linkage process with the aim
to improve scalability [36, 165]. Blocking reduces the number of potential record
comparisons by removing as many record tuples as possible that correspond to non-
matches, such that expensive similarity calculations are only required on a smaller
number of record pair comparisons. In PPRL, blocking needs to be applied and
conducted on encoded attribute values to ensure no participating party can infer
individual records and/or attribute values [212, 218].

As shown in Figure 2.1, after the blocking step is finished the records of blocks
from different databases, called candidate record tuples (to be formally defined in
Chapter 4), need to be compared in the comparison step. The similarities between
the corresponding attribute values of the candidate record tuples are computed by
using approximate comparison functions, such as edit distance, Jaccard similarity, or
Jaro-Winkler similarity [33, 47, 226].

However in PPRL, due to the encoding process similar attribute values could gen-
erate completely different encoded values due to errors and inconsistencies in those
values. Comparison of such encoding values often requires approximate comparison
functions rather than exact comparison to compute their similarities appropriately.
By assuming a set of common attributes has been used in the linkage across all
databases, this step outputs a similarity vector for each candidate record tuple [210].

As discussed in Section 2.1, the aim of linkage is to classify the generated can-
didate record tuples into the classes of matches, non-matches, or possible matches.
In the classification step the similarity vectors generated for candidate record tuples
are classified using an appropriate decision model [85], as we have defined in Defini-
tion 1.1. In RL, different classification techniques have been developed. These include
threshold based [35], machine learning [6, 16, 34, 66, 222], rule based [155], and prob-
abilistic [71, 127, 183, 227] classification techniques. However, mostly threshold based
classification techniques have been adapted for PPRL so far [176, 195, 210, 214, 224].

The classification technique that is used in the PPRL process should output only
the record tuples that have been classified as matches. This ensures the privacy of
the records that do not match. Also, the similarity values of the compared record
tuples and the similarity distribution across all compared record tuples should not
be revealed to any party that participates in the linkage because of possible privacy
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attacks [23, 216]. We will provide details about different privacy attacks in Section 2.4.
As illustrated in Figure 2.1, the final step of the PPRL process, evaluation, measures
the performance of a linkage application in terms of efficiency and effectiveness.
Efficiency provides a quantitative measure on the scalability of the techniques used
in a linkage process [35]. Effectiveness measures the accuracy of the classification
performed by the linkage process.

For evaluating the scalability and linkage quality different measures can be used
(we present linkage quality measures for MD-PPRL in Section 4.4.2). Evaluation of
linkage quality is more challenging in a privacy-preserving context because accessing
the actual record values would likely reveal sensitive private information. Evaluating
the amount of privacy protection provided by a PPRL technique is the least devel-
oped aspect in PPRL research [212]. More details of these evaluation techniques and
metrics are given in Section 2.5.

2.4 Privacy Aspects in PPRL

This section provides a detailed description of the privacy aspects that need to be
considered when performing record linkage between different organisations.

2.4.1 Role of Parties

In a PPRL context, depending on the linkage model used, different parties can par-
ticipate in the linkage process. The roles of these parties can be categorised as:

• Database owner
The database owners (DOs) are the providers of the databases to be linked [35].
According to the linkage model employed, the database owners may or may
not participate in the record matching or comparison step (where databases
are sent to another party, such as a linkage unit, to perform the linkage) .
Financial institutions, medical service providers, or government departments
are some examples of database owners. Database owners are also known as
data custodians [212].

• Linkage unit
A linkage unit (LU) is a special party that participates in the linkage process
such that it may or may not be external to the DOs [22, 23, 176, 196, 209]. In
general, a LU does not have any data itself but conducts the linkage of the data
sent to it by the DOs. In PPRL various protocols have been developed that use
a LU to conduct the linkage. These protocols use different privacy techniques,
as we will describe in Section 2.4.4, to protect the privacy of individuals and to
maintain the security of data that are communicated between the participating
parties and the LU [23, 219].
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• Global facilitator
A global facilitator (GF) is someone who helps a group of DOs to understand
their common objectives and assists them to plan on how to achieve these ob-
jectives in the linkage process [143]. The objectives can include the communi-
cation and exchange of parameters and attribute selection among the database
owners. A GF is not involved in the actual linkage process.

• Global Authority
A global authority (GA) is another special party which plays the role of a cen-
tral public semi-trusted regulatory agency in a linkage model [114, 119]. A
GA can create a global summary (or view) about the data at some stage of
the protocol which can be used by the DOs to make decisions about the next
steps in the protocol. For example, in [114] a GA is used to generate global
synopses to compute the intersection of different sets of different parties (we
explain this approach in more detail in Chapter 3). Some GAs, called as key au-
thorities, can be used to generate the necessary secret keys (public and private)
for cryptographic functions (encryption and decryption) used in the linkage
process [120].

• Data Consumers
Data consumers are the data users in the linkage process [17]. After the linkage
process is completed, the matching or linkage results (such as record identi-
fiers or values from a few selected non-identifiable attributes) are sent to data
consumers. Database owners, data analysts, and external researchers can be
considered as data consumers as shown in Figure 1.1.

2.4.2 Number of Parties

By assuming each database that is to be linked is owned by a different owner, a
linkage protocol that is used in a privacy-preserving context can be categorised based
on the number of databases that are to be linked.

• Two database protocols with a LU
In this scenario two DOs are performing PPRL on their databases through a
LU [23, 28, 111, 116, 176, 209, 224]. In general the two DOs start the process by
sharing any required information such as parameters, pre-processing methods,
encoding methods, secret keys etc. After the records are encoded they will be
sent to the LU to perform the matching by calculating the similarities between
the encoded records. The matching results are sent back to the DOs to either
exchange the details of the matched records or to send only a selected set of
attribute values of the matched records to a data consumer.

However, the LU can collude with a DO to infer the attribute values for the
other DO, though these protocols are more efficient due to centralised process-
ing of records. Also, sending all encoded records to the LU can potentially
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increase the risk of privacy attacks because the LU can use the frequency in-
formation of these encoded values to deduct a sensitive plain-text value of a
database. We explain privacy attacks in Section 2.4.5.

• Two database protocols without a LU
Two database protocols are proposed as an alternative to overcome the general
drawback of requiring a LU in the linkage process. In two database protocols
the DOs directly communicate with each other to perform the matching of their
records [99, 137, 208, 215, 231]. This will make the protocol more secure com-
pared to two database protocols with a LU because no collusion (as described
in Section 2.4.5) can occur between the DOs. However, two database proto-
cols can become more complex and expensive in terms of computation and
communication due to the use of more sophisticated encoding or encryption
mechanisms [66].

• Multidatabase protocols with a LU
As shown in Figure 1.3 (a) on page 12, in these protocols more than two DOs are
participating in a linkage process by using a LU for performing the linkage [108,
127, 160]. Similar to three-party protocols, the DOs have to agree on the set of
parameters, set of attributes, and pre-processing methods which will be used in
the linkage process. However, the linkage process needs to be conducted using
more scalable and efficient techniques due to the exponential growth of the
comparison space with the number of databases to be linked and their sizes.

• Multidatabase protocols without a LU
Similar to two database protocols without a LU, the security of multidatabase
scenarios can be increased by removing the LU in the linkage process [135, 152,
210]. With an increased number of databases involved in the linkage more so-
phisticated computation and communication techniques are required to guar-
antee the efficiency and privacy of the attribute values in the databases. An
example of a multidatabase protocol without a LU is shown in Figure 1.3 (b).

In general, multidatabase protocols are more susceptible to collusion risks as DOs
can collude with each other or with the linkage unit to learn about the sensitive data
of one or more DOs that are not colluding [212]. Therefore, more secure as well as
more efficient linkage techniques are required for MD-PPRL scenarios. Hence, this
thesis concentrates on developing multidatabase blocking approaches for the last two
types of protocols. In Chapters 5 and 6 we propose several blocking techniques for
MD-PPRL protocols without a linkage unit and in Chapters 7, 8, and 9 we propose
different blocking techniques that can be employed in MD-PPRL with a linkage unit.
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2.4.3 Adversary Models

In the protocols discussed in Section 2.4.2, the parties (DOs and the LU) are assumed
to behave in one of several different adversary models.

• Honest-but-curious (HBC) adversary
Most of the PPRL protocols proposed in the literature follow the honest-but-
curious (HBC) adversary model [3, 170, 208, 214]. This model is also known
as the semi-honest and passive adversary model [88, 140]. In this model, all
parties that participate in a linkage follow the steps of the protocol, but they are
curious in learning about the data of another party [83, 215]. While following
the steps, a DO or the LU can store information and the results it received from
other DOs. This information can be used to infer sensitive attribute values of
a database by using a frequency analysis or cryptanalysis technique [39, 132].
For example, a DO can perform a frequency analysis on the received data to
get a frequency distribution of sensitive attribute values.

A linkage protocol can be considered as secure under the HBC adversary model
only if all parties that participate in the protocol cannot infer any sensitive in-
formation other than the records classified as matches from the protocol. How-
ever, under the HBC adversary model collusion between the parties is possible
where several DOs can use the information they received during the protocol
together to learn about the sensitive data of another DO [140]. We will explain
collusion in more detail in Section 2.4.5.

• Malicious adversary
The malicious adversary model assumes that the parties involved in the pro-
tocol may not follow the steps of the protocol, rather they can behave arbitrar-
ily [88, 140]. In the protocol steps a malicious DO can send malicious data to
learn about any sensitive information of another DO. PPRL protocols devel-
oped under the malicious adversary model mainly use secure multi-party com-
putation (SMC) techniques [233] which use encryption and encoding techniques
to ensure no malicious party can learn any sensitive information of any other
party [137, 152]. This makes PPRL protocols under the malicious adversary
model to have higher communication and computation complexities compared
to the linkage protocols which follow the HBC model.

• Covert adversary
Typically, in most PPRL protocols the participating parties are assumed to be
following either the HBC or malicious adversary models. However, in many
real-world settings, the assumption regarding the HBC behaviour does not suf-
fice, while security in the presence of malicious adversaries is excessive and
expensive to achieve. The covert adversary model lies between the semi-honest
and malicious models, where it matches with many real-world settings by as-
suming parties may deviate arbitrarily from the protocol specification in an
attempt to cheat until they are being caught [10, 140]. This suggests that a DO
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who is cheating in a protocol can be caught by an honest DO with a given
probability. This probability is known as the deterrence factor [140]. For example
let us assume the deterrence factor is equal to ε. Then, any attempt to cheat
by an adversary is detected by the honest parties with probability of at least
ε. The higher the value of ε, the greater the probability that the adversary is
caught and thus the greater the deterrent to cheat. The protocols developed for
this adversary model generally use computationally more expensive oblivious
transfers and homomorphic encryption schemes to perform the communication
between parties [10, 11].

• Accountability computing
Accountability computing (also called accountable computing) is a framework
which is practical for many real-world applications without the complexity and
computational cost required for a linkage protocol that uses SMC techniques
under the malicious adversary model [103, 139]. The idea behind accountability
computing is that a DO that correctly follows the protocol can be proven to have
done so and consequently it can be proven if some other DO has disclosed data
or deviated from the protocol. This enables practical utility over HBC protocols
while providing detection capability over the malicious model.

2.4.4 Privacy Techniques

In a privacy-preserving context, different privacy techniques can be employed in the
record linkage process to preserve the privacy of data and to prevent re-identification
of individuals (entities) represented by such data. These techniques can be cate-
gorised into two main groups as follows.

1. Perturbation methods
Perturbation or data sanitisation methods modify sensitive private data to pre-
vent re-identification of individuals by inferring records or attribute values.
Some of the techniques that can be given under this category are:

• Embedding approaches
In embedding approaches attribute values are mapped to objects in a
multi-dimensional Euclidean [19] or Hamming [115] space, whereby the
similarities between the attribute values are preserved. Embedding ap-
proaches have been used in several PPRL approaches [19, 186, 231], how-
ever, one drawback with these approaches is that it is often difficult to
determine appropriate dimensions of the multi-dimensional space.

• Bloom filters
Bloom filter is a space efficient probabilistic data structure proposed by
Bloom [18] in 1970 for checking element membership in a given set [26]. A
Bloom filter is a bit vector where elements in a set are hashed or mapped
into using a set of hash functions. When an item is queried from a Bloom
filter, false positives [35] can occur, however, false negatives [35] are always
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not possible. As more elements are added to a Bloom filter, the probability
of false positives increases [150]. We describe Bloom filters in more detail
in Section 4.3.
In 2009, Schnell et al. [190] proposed a approximate matching technique
for textual (string) values using Bloom filters for PPRL, while Vatsalan and
Christen [211] recently proposed an approximation matching technique
for numerical attributes, as we describe in Chapter 3. Recently, Bloom
filters have been widely used in the PPRL context as they provide con-
siderable privacy guarantee [28, 53, 59, 166, 190, 192, 194, 208, 212, 224].
In this thesis, we use Bloom filters as a building block for our blocking
techniques proposed in Chapters 5 and 6.

• Count-min sketches
Count-min sketches are probabilistic data structures that can serve as fre-
quency tables of values in a stream of data [49]. They use a set of hash
functions to map values along with their frequencies using sub-linear
space. Count-min sketches are similar to counting Bloom filters (that are
integer vectors that contain a count value in each position than a 1 or
0) [69], however, typically they have a sub-linear number of cells in their
table of values. Recently, count-min sketches have been used in PPRL to
identify the frequency of occurrences of matching record pairs [114].

• k-anonymisation
k-anonymisation [200] is a data generalisation mechanism, which has been
used widely in the PPRL context [107, 111], to overcome the problem of
re-identification of individual records by generalising the sensitive data in
such a way that re-identification from the perturbed data is not feasible.
In k-anonymisation a database is said to have the k-anonymity property
if an individual that is represented by a record in the database cannot be
distinguished from at least k − 1 individuals whose information also ap-
pears in a database. The idea behind k-anonymisation in PPRL is that a
given record in a database cannot be re-identified from a group of at least
k records where the other records also share the same values (every com-
bination of (masked) quasi-identifier values) in a certain set of attributes
as the given record [200].

• Use of public reference values / random values
Several PPRL approaches have used reference values from public data-
bases or values made-up randomly to calculate distances between attribute
values and reference values and share these distances to identify the match-
ing pairs of records [186, 214, 215, 231].

• Differential privacy
Differential privacy has emerged as an alternative to randomisation noise
addition technique for PPRL that provides strong privacy guarantees [62].
Initially, differential privacy was designed to support interactive queries
and aggregate results presentation by adding noise to each statistical query
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result (such as Count or Sum) with the magnitude of noise depending on
a privacy parameter ε and sensitivity of a given query set [63]. The main
idea in differential privacy is that an adversary that attempts to attack the
privacy of some individual entity will not be able to distinguish from the
interaction with a database whether a record representing that entity is
available in this database or not [19, 30, 99, 134]. In a context of PPRL
each database owner could use a randomised sanitisation scheme on their
database in order to achieve differential privacy. To improve the privacy
of individual records a certain amount of random noise is added to each
query result. Then, only the perturbed result of a set of statistical queries
could be revealed to another database owner. Such technique can be used
to prevent PPRL techniques from releasing information which would iden-
tify individuals in the databases [30, 99].

2. Secure multi-party computations (SMC) based methods
Secure multi-party computation has been introduced as a solution to overcome
the problem of performing computations on sensitive data across organisations.
SMC enables several parties to be involved in a computation with their pri-
vate input data, where at the end of the computation no party learns anything
about any other parties’ private data except the final result of the computation.
Besides PPRL [53, 189, 213], SMC has been used in application areas includ-
ing privacy-preserving data mining [45] and privacy-preserving data publish-
ing [79].

In 1986 Yao [233] introduced the idea of secure computation between two data
owners which was extended by Goldrich et al. [84] in 1987 for multiple data
owners. Under SMC protocols, a variety of encryption schemes, such as homo-
morphic encryption [161], and techniques such as secure summation, secure set
union, secure set intersection, and secure scalar product, have been proposed.

These techniques are used in PPRL for accurate computation while preserving
privacy [45, 53, 118, 176, 213]. Some of the techniques that can be categorised
under SMC are:

• One-way hash encoding
One-way hash encoding has been used in PPRL due to its property of
converting a attribute value into a hash code [21, 190, 214]. Some well
known one-way hash algorithms such as the message digest (for exam-
ple, MD5) [128] and secure hash algorithms (SHA-1 and SHA-2) [128, 187]
are commonly used to encode attribute values. Conversion of an attribute
value into a one-way hash code makes it difficult for an adversary to learn
the original attribute value from its hash code [187]. A major drawback
of using hash encoding for matching records between databases is that er-
rors or variations in attribute values will lead to different hash codes [21].
This becomes problematic with real-world data as these can contain errors,
variations, missing values, and values that can be out of date [95].
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• Oblivious transfer protocols
Oblivious transfer (OT) protocols [168] have been used in several PPRL
techniques [88, 108, 160, 224] due to their capability of exchanging infor-
mation among parties that participate in a linkage protocol while preserv-
ing privacy. OT protocols allow a sender to send parts of its input to a
receiver in such a manner that protects the sensitive input data of both
the sender and receiver by ensuring that the sender does not know which
part of its data is received by the receiver, and the receiver does not learn
any information about the other parts of the sender’s input. In general,
OT protocols are computationally and communicationally expensive, and
often become the efficiency bottleneck in protocol design [88, 100].

• Homomorphic encryption
Homomorphic encryption (HE) schemes allow computations between data
to be performed in an encrypted form (ciphertext) and output an en-
crypted result [81, 118, 213]. HE ensures that the decrypted result matches
the result of the same function performed with the unencrypted data. For
example, assume two given numbers n1 and n2 belong to data owners Al-
ice and Bob, respectively. First, Alice and Bob encrypt their numbers n1

and n2 into an encrypted form ε1 and ε2, respectively, using an encryption
function E(), where ε1 ← E(n1) and ε2 ← E(n2). Based on a homomor-
phic addition scheme, Alice and Bob can compute the summation of ε1

and ε2, denoted as (ε1 + ε2). The decryption of (ε1 + ε2) equals to the addi-
tion of the plain counterparts n1 and n2, denoted as (n1 + n2) = D(ε1 + ε2),
where D() is a decryption function.
Homomorphic encryption can be categorised into fully and partially (some-
what) homomorphic schemes [154]. Fully homomorphic schemes can per-
form addition and multiplication [161] or any arbitrary calculation [81].
However, these schemes are computationally not efficient due to their
complex encryption and decryption operations. Partially homomorphic
encryption schemes only support a limited number of operations on en-
crypted data, however, they are much faster and thus more practical [154].
In homomorphic encryption schemes a key pair, known as public and
private (secret), is used to encrypt and decrypt the private input data ac-
cordingly [161]. The public key is kept publicly available to any party
that participates in a protocol while private key is not shared and kept
secret by the party who generate the key pair. Successive encryption of
the same value using the same public key generates different encrypted
values with high probability, and decrypting the encrypted values using a
private key returns the correct original value. Homomorphic encryption
has been used in PPRL to compute similarities between private input data
held by different data sources [76, 107, 118, 175, 213].
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Figure 2.2: An example of secure summation protocol between database owners
DOA, DOB, and DOC to compute their private input values nA, nB, and nC, respec-
tively. In this example, DOA initialises the protocol by generating a random number
r (step 1) and adds r to its private input nA (step 2). In steps 3 and 4, DOB and DOC,
respectively, updates the partial sum it received from previous DO by adding its own
private input value and sends the updated partial sum value to the next DO. Finally,
in step 5 DOA sends the final sum to other DOs by subtracting the r from the partial

sum value it received from DOC.

• Secure summation protocol
Secure summation is an SMC protocol that has been used in several PPRL
approaches [45, 140, 160]. This protocol allows multiple cooperating DOs
(more than two) to compute the sum of their individual input values (as-
sumed to be numbers) without revealing their data to the other parties
participating in the protocol.

By assuming three DOs, DOA, DOB, and DOC, the idea behind the secure
summation protocol for can be described as follows [45]. Let us assume
private numerical values, nA, nB, and nC held by three DOs, DOA, DOB,
and DOC, respectively. These DOs want to compute the summation of
their numbers. Initially DOA chooses a large random number r and then
adds r to its input nA. Then DOA sends this partially summed value to
DOB. Since r is random, DOB learns effectively nothing about nA.

DOB adds its private input number nB to (r + nA), and sends the result
(r + nA + nB) to DOC. Following the same steps of DOB, DOC adds its nC
to the partial sum it received from DOB, and the newly computed partial
sum (r+ nA + nB + nC) is sent to DOA. Then DOA subtracts r from the final
partial sum value and the resulting sum (nA + nB + nC) is sent to DOB and
DOC. Once the computation is finished each DO only knows the total sum,
from which they are unable to derive the other DOs’ numbers. Figure 2.2
illustrates an example of computing the summation of numerical values,
nA, nB, and nC held by DOs, DOA, DOB, and DOC, respectively.

As we will discuss in Chapters 5 and 6, we use secure summation proto-
col as a building block in our blocking approaches. However, the secure
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summation protocol described above is susceptible to different privacy
risks (as will be discussed in Section 2.4.5), especially collusion, as DOs
can share with each other their own data and partially computed results
they receive from other DOs to compute an input for a DO that does not
collude. In Section 4.3.3, we analyse existing secure summation protocols
in terms of their privacy risk and we propose a novel secure summation
protocol that addresses these privacy risks.

• Secure set intersection
Secure set intersection (SSI) protocols have been used in PPRL approaches
to compute the intersection of sets of records in different databases with-
out revealing any additional information about the values that are not
common in those databases [3, 53, 224]. SSI protocols generally use ei-
ther commutative [2] or homomorphic [148] encryption schemes. Several
efficient SSI protocols have been introduced with linear communication
complexity [224]. However, these protocols are computationally expensive
since they are based on complex encryption algorithms, which therefore
need to be scalable by running computations in parallel [53]. Furthermore,
SSI protocols can be used in PPRL scenarios where a trusted third party is
not available to carry out the linkage [125, 205, 206].

2.4.5 Privacy Attacks

As we will describe in Chapter 3, over the past years various linkage techniques, that
are based on different perturbation and SMC methods described above, have been
proposed for PPRL. Though perturbation techniques are more efficient compared to
SMC techniques, these techniques are vulnerable to various privacy attacks due to the
presence of partially revealed information [212]. The main attacks and vulnerabilities
of PPRL techniques are:

1. Frequency attack
Frequency attacks are based on the frequency distribution of a set of encoded
(masked) values as compared to the frequency distribution of a set of known
plain-text values. Even without knowing the parameters used in the encoding
function, the encoded values can be re-identified by matching their frequen-
cies with the frequency distribution of plain-text values in a known global
database [39, 141]. An attacker does not require any prior knowledge about
the encoding process used in the masking of attribute values, but only re-
quires knowledge on which attributes are encoded and have access to a public
database of these attribute values and their frequencies from the same domain
as the encoded database [39].

2. Dictionary attack
Dictionary attacks require an adversary to know about the encoding function
and some of the parameter values used in a PPRL protocol [212]. Similar to
frequency attacks, an attacker uses a publicly available database to analyse the



34 Background

encoded attribute values. To identify encoded attribute values, the attacker ap-
plies the same encoding function and parameter values to encode the attribute
values in the public database until a matching encoded value is found. Dictio-
nary attacks can be overcome by using secret key (or hashed key [128]) based
encoding functions which makes a dictionary attack harder without knowing
the correct secret key.

3. Composition attack
In composition attacks, an adversary needs to have background knowledge
(auxiliary information) about the individual databases that are to be linked
and/or certain records of these databases. Using this auxiliary information
from different databases that have been linked, an attacker could learn the dis-
tances or similarities between sensitive attribute values of a given record [80,
138]. As an example of such an attack, assume two hospitals in the same city re-
lease anonymised patient-discharge information. Because they are in the same
city, some patients may visit both hospitals with similar illnesses. By using
the overlapping patient population in these anonymised databases, an attacker
could identify an illness of a person he knows and who lives in this city.

Known schema attack is a type of composition attack that can also be applied in
a PPRL context, where an attacker knows the details of the encoding methods
that are used by the database owners and tries to break the encoding scheme
by utilising the knowledge of the encoding methods [52].

4. Cryptanalysis attack
A cryptanalysis attack is a sub-category of a frequency attack, where an attacker
uses a set of encoded values and a publicly available database to identify the
sensitive attribute values by conducting a frequency analysis based on the en-
coded values [132]. In PPRL, Bloom filter based techniques are vulnerable to
cryptanalysis attacks [39, 56, 190]. Because of the distribution of 0 and 1 bits
in Bloom filters, an attacker can potentially learn the characteristics of the hash
functions that were used to map attribute values into these Bloom filters.

Existing cryptanalysis attacks are feasible only based on assumptions made
about the parameter settings used in the Bloom filter encoding phase and they
also require excessive computational resources making them not practical in
real settings [130, 132, 133, 158]. However, a recent cryptanalysis attack by
Christen et al. is capable of re-identifying encoded attribute values in Bloom fil-
ters based on the construction principle of how q-grams are hashed into Bloom
filters [39]. This attack is independent of the encoding function and its param-
eters used, and computationally inexpensive.

5. Collusion
In multi-party protocols, collusion can occur between the participating par-
ties [44, 160, 212]. Recently in different application domains, such as online
rating, auctioning, and mobile computing, many data related applications in-
volving multiple parties have experienced collusive behaviour in their partici-
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pating parties that are trying to gain access to unauthorised data [4, 20, 50, 202].
The aim of collusion is to learn the sensitive data of another not colluding party
by the colluding parties sharing their own data and parameter settings [3, 219].
This requires any application that is used in a semi-honest or malicious con-
text to be collusion resistant [5, 140]. Different types of collusion scenarios
might occur with regard to the linkage model employed in MD-PPRL as one or
several DOs collude with the linkage unit, or alternatively a subgroup of DOs
collude to learn about other DOs’ sensitive data. We will discuss these different
collusion scenarios in detail in Section 4.3.

2.5 Evaluation Measures

The final step of a linkage process is to measure the performance of the linkage con-
ducted. In RL the performance is measured by evaluating the efficiency and effec-
tiveness of the techniques used, while in PPRL privacy is also measured as another
evaluation criterion. We discuss different measures that are used for both RL and
PPRL for evaluating scalability and linkage quality, and privacy measures that are
used in a PPRL context.

2.5.1 Efficiency (Scalability) Evaluation

Efficiency measures the scalability of a technique used in the linkage process. Scala-
bility can be measured using metrics based on the computational environment or the
number of candidate record pairs generated by an algorithm for comparison. The
measures that can be used based on the computational environment are:

1. Runtime
This measure is based on the time requirements to produce the results of a
linkage. It can include the time required for the different steps in the linkage
process, including pre-processing, blocking, comparison, and classification.

2. Communication Usage
In a linkage across several organisations, it is important to measure how much
data (total and average message sizes) are communicated between the partici-
pating parties. The communication usage is measured as the number of mes-
sages and their sizes (in bytes). Also, the total number of messages communi-
cated between the participating parties or the average number of messages sent
by a party can also be used to measure the amount of communication usage of
a linkage protocol.

3. Memory Usage
For computations, the data need to be read from secondary memory into main
memory for easy and fast accessibility. This metric measures the total main
memory usage by an algorithm when performing the linkage.
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In RL and PPRL, scalability of blocking can also be measured based on the num-
ber of record pairs generated by the blocking technique [36].

1. Reduction Ratio (RR)
Reduction ratio is a commonly used scalability measure in RL which provides
information about the size of the comparison space generated by a blocking
technique. RR requires two metrics, (1) the number of candidate record pairs
generated by blocking and (2) the number of all possible record pairs that can
be generated across the databases. Based on these two metrics the reduction
ratio can be calculated as:

RR = 1.0− number o f candidate record pairs
number o f all possible record pairs

We will define an adapted reduction ratio measure for a MD-PPRL protocol in
Section 4.4.

2.5.2 Effectiveness (Quality) Evaluation

Effectiveness measures the accuracy of a linkage process. In a RL or PPRL protocol
the quality of blocking and classification can be measured separately. In order to
measure the effectiveness for linkage of two databases, the values of the number
of true match (TM) and true non-match (TN) record pairs identified by the blocking
algorithm, and the total number of true match (NM) and true non-match (NN) record
pairs available across these two databases need to be counted. The blocking quality
can be measured as follows:

1. Pairs Completeness (PC)
Pairs completeness measures the effectiveness of grouping the true matching
records into blocks [36]. A lower pairs completeness value indicates that more
true matching record pairs were removed by a blocking technique from the
comparison space. Pairs completeness is similar to the recall measure as used
in information retrieval [229] and is defined as:

PC =
TM

NM

2. Pairs Quality (PQ)
Pairs quality is another metric that measures the quality of the blocking step in
the linkage process [36]. It assesses the number of actual true matching record
pairs included in the candidate record pairs generated by a blocking technique.
Pairs quality is computed as:

PQ =
TM

TM + TN
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The accuracy of the classification model can be measured by evaluating the num-
ber of true match (CM) and true non-match (CN) record pairs identified by a classifier.

1. Precision
Precision is commonly used as a measure in information retrieval to measure
the quality of a search (query) result [36, 229]. In RL and PPRL precision pro-
vides an assessment about the number of true matching record pairs classified
as matches by a classification model used in the linkage process. This measure
is similar to pairs quality. In RL and PPRL precision is calculated as:

Precision =
CM

CM + CN

2. Recall
In RL and PPRL recall is used to measure the number of true matches cor-
rectly classified by the classification model compared to the total number of
true matches available across the databases [36, 229]. This measure is also
known as sensitivity [136]. Similar to PC, recall is measured as:

Recall =
CM

NM

3. F-measure/ F-Score
The F-measure is often used in information retrieval to measure the accuracy
and performance of a binary classification technique [229]. The F-measure is
the harmonic mean of precision and recall. Based on the precision and recall
measures given above the F-measure (FM) can be calculated as:

FM = 2×
(

Precision× Recall
Precision + Recall

)

Recently, Hand and Christen showed that the F-measure can be alternatively
calculated by using a weighted arithmetic mean between precision and recall [92].
The weights are used to assign a relative importance to precision and recall. These
weights are computed based on the number of predicted matched record pairs and
the similarity threshold used in the classification technique. The selection of these
weights is important in comparative studies when different classification or linkage
techniques are to be evaluated equally. To assign the same weights for precision and
recall for all methods, each method must classify the same number of record pairs as
matches. To accomplish this Hand and Christen suggested to use different choices
of the similarity threshold for different methods so they classify the same number
of record pairs as matches. Furthermore they showed that the computation of these
weights depends on the linkage problem and should be chosen by the researcher or
user, and it would be beneficial for future studies to report these weight choices in
any comparative study.
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Several other measures such as accuracy, error rate, and specificity can also be
used to measure the quality of the classification model used in the linkage process.
However, these measures are not suitable because the classification step generally is
a class imbalance problem as many more record pairs are classified as non-matches
compared to matches [38]. The number of true non-matches can significantly bias
the computed values of these measures. Precision, recall and F-measure are the most
commonly used measures for assessing the quality of the classification in RL [35].

2.5.3 Privacy Evaluation

Privacy is a crucial aspect in any step of PPRL. Several standard information theory
measures such as entropy, information gain (IG), and relative information gain (RIG) have
been used in PPRL to assess the privacy of deducing a record in a database [56, 112]
using a publicly available global database. These measures are calculated based
on a simulation attack on the encoded (masked) database (DM) using the original
database D such that these measures assess the possibility of inferring records in the
original database given its encoded version.

In information theory entropy measures the amount of information contained in
a message [197]. Entropy is a function of the probability distribution over the set of
all possible messages. The entropy (H) of a message X with x being an element in X
is defined as:

H(X) = − ∑
x∈X

p(x) · log2 p(x).

Following Durham [56] and Karaksidis et al. [112], in PPRL the entropy of a
database D can be calculated as:

H(D) = − ∑
R∈D

(n/|DM|) · log2 (n/|DM|),

where n denotes the number of records in DM that match with a record R in D, and
|DM| is the total number of records in DM.

Information Gain (IG) is closely related to the entropy measure. IG is a metric
which can be used to assess the difficulty of inferring the original database (D),
having only its encoded version (DM), or how the knowledge of DM can reduce the
uncertainty of inferring D [56, 110]. IG between D and DM is defined as:

IG(D|DM) = H(D)− H(D|DM),

with H(D|DM) being the conditional entropy between D and DM. Lower IG means
that it is more difficult to infer D from DM. Relative information gain (RIG) provides
a normalised scale with regard to the entropy of D and is defined as:

RIG(D|DM) =
IG(D|DM)

H(D)
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However, according to Vatsalan et al. [212], a standard and normalised set of mea-
sures are required to quantify privacy based on simulated attacks [134]. Vatsalan et
al. [216] introduced a set of disclosure risk (DR) measures that can be used to eval-
uate and compare different private blocking and classification solutions. The assess-
ment of DR uses a measure of re-identifiability of a record in DM by using an exter-
nal global database (G) which is practically perform by conducting re-identification
studies by linking values from DM to (G) [54]. This is measured by calculating the
probability of suspicion (PS) value which provides how many records in G can be
linked with a corresponding record in DM. This measure of PS is normalised into 0
and 1, where 1 indicates that a record in DM can be exactly re-identified with a record
in G based on one-to-one matching, and 0 means a record in DM could correspond
to any record in G and therefore it cannot be re-identified.

If ng is the number of records in a global database G that match to a record R in
the encoded database DM then the normalised PS of R is calculated as:

PS(R) =
1

ng
− 1
|G|

1− 1
|G|

,

where |G| represents the number of records in G. Based on the normalised PS values
for each record in DM several statistical DR measures can be defined [212].

1. Maximum disclosure risk (DRMax)
This measures the maximum PS for a record in DM which can be computed as:

DRMax = max
R∈DM

(PS(R))

2. Mean disclosure risk (DRMean)
This measures the average of PS values to evaluate the average disclosure risk
which is:

DRMean =
∑R∈DM(PS(R))

|DM|

where |DM| corresponds to the total number of records in DM.

3. Median disclosure risk (DRMed)
The median DR gives the center of the distribution of DR values by taking into
account the distribution of PS values in the encoded database DM. By assuming
the PS values of records in DM are sorted from the lowest to the highest, the
median disclosure risk can be calculated as:

DRMed =


PS(R |DM |

2

) + PS(R |DM |+1
2

)

2 and R |DM |
2

, R |DM |+1
2
∈ DM if |DM| is even

PS(R |DM |
2
) and R |DM |

2
∈ DM if |DM| is odd
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4. Marketer disclosure risk (DRMkt)
This measure defines how many values in the encoded database can be exactly
re-identified where their PS value is 1.

DRMkt =
|{R|PS(R) = 1 and R ∈ DM}|

|DM| .

2.6 Summary

In this chapter, we have provided the background on the concepts, principles, and
techniques which lay the foundation for the contributions in this thesis. We covered
traditional record linkage (RL) followed by a detailed description of the privacy-
preserving record linkage (PPRL) process. We described different privacy aspects in
PPRL and finally presented the evaluation measures used in both RL and PPRL. In
the next chapter, we will survey the related relevant work in PPRL. We will use these
surveyed research papers as inspiration and guidance for the novel contributions of
this thesis in the later chapters.



Chapter 3

Current Progress in
Privacy-Preserving Record Linkage

This chapter provides a detailed description of the current progress in the PPRL
research area. Details of different algorithms and techniques developed in PPRL are
provided for the blocking and classification steps of the linkage process. For each
step we categorise the techniques based on the number of databases to be linked and
each category is ordered according to the year of publication.

3.1 Blocking Techniques for PPRL

Blocking techniques are employed to facilitate a linkage to scale to very large databases
that contain millions of records. In PPRL, blocking becomes challenging because of
privacy concerns. This introduces a trade-off in the blocking step not only between
accuracy and efficiency, but also privacy.

Recently, a variety of blocking approaches have been developed for reducing can-
didate record pairs (or sets) that need to be compared in record linkage. In the
surveys by Papadakis et al. [165] and Christen [36] comprehensive reviews about
existing blocking mechanisms are provided. Some of the developed approaches
have been adapted for PPRL [56, 109, 118, 134, 216] based on existing blocking
techniques, such as standard blocking [71], mapping based blocking [110], cluster-
ing [48, 134, 144, 215], and locality sensitive hash (LSH) functions [56, 101].

3.1.1 Two Database Protocols with a Linkage Unit

• Al-Lawati et al. [3] introduced a blocking mechanism for PPRL which increases
the performance of the overall linkage process. They based their approach on
the linkage model with a linkage unit (LU) under the honest-but-curious (HBC)
adversary model. A trusted third party (TTP) is used as the LU to do the
comparison of the records sent to it by the database owners.

In their approach three blocking methods have been developed to reduce the
complexity of the linkage process. They are simple blocking, record-aware
blocking, and frugal third-party blocking mechanisms. In simple blocking,
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hash signatures of records are assigned to blocks. However, in simple blocking
the similarity of a record pair may be computed multiple times if records are
assigned to multiple blocks. To overcome this problem the authors introduced
a record-aware blocking mechanism which can reduce this overhead by com-
bining an identifier with the hash signature of each record which provides a
higher reduction ratio than the simple blocking mechanism. The frugal third-
party blocking uses a secure set intersection (SSI) SMC protocol to reduce the
cost of transferring the whole databases to the LU by first identifying the hash
signatures that occur in both databases.

In this approach the record pairs are classified using a threshold based classifi-
cation model. The LU matches the TF-IDF distances of the hash signatures to
measure the matching of candidate record pairs over a given threshold value
using the Jaccard similarity metric [35]. The Jaccard similarity simJ between two
hash signatures of hA and hB is calculated as,

simJ(hA, hB) =
|hA ∩ hB|
|hA ∪ hB|

, (3.1)

where |hA ∩ hB| and |hA ∪ hB| are defined as the cardinality (size) of the inter-
section and union of hash signatures hA and hB, respectively.

• Inan et al. [98] proposed a hybrid approach that combines value generalisation
and cryptographic techniques for PPRL. Their blocking approach uses a value
generalisation hierarchy on the blocking attributes. The records are assigned to
the corresponding block in the value hierarchy based on the blocking attribute
values. However, the record pairs that cannot be blocked are compared in a
computationally expensive secure multi-party computation (SMC) approach us-
ing cryptographic techniques. Experiments conducted on real datasets show
that their blocking approach can significantly reduce the number of candidate
record pairs that need to be compared in the SMC step and yields much more
accurate matching results compared to sanitisation techniques, even when the
datasets are perturbed extensively. However, their method is useful only with
attributes that can form hierarchies.

• Karakasidis and Verykios [111] introduced a blocking approach for PPRL which
uses a LU with the HBC adversary model. The authors used a reference value
based blocking mechanism that exhibits better performance than other refer-
ence value based methods [110, 112, 186, 190] available in the PPRL context.
The proposed approach uses the nearest neighbour clustering algorithm for
forming initial clusters using a common set of reference values. The database
owners need to have an agreement on the set of attributes which will be used
for the blocking and matching of record pairs. The reference values are selected
for each cluster ensuring that all the clusters contain at least k reference values
to guarantee k-anonymous privacy.
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The set of blocks are created by each database owner (DO) by assigning each
record in their database to the respective block based on the similarity between
the attribute values and the reference values in the clusters. The Dice-coefficient
(Dice similarity) [35] is used to assess the similarity between these reference
values and attribute values. Dice similarity (simD) for two sets A and B is
calculated as follows,

simD(A, B) =
2 · |A ∩ B|
|A|+ |B| . (3.2)

After blocking is performed each DO sends their blocks to the LU. The LU
merges the corresponding blocks from two DOs to generate candidate record
pairs for comparison. The empirical study conducted on synthetic datasets has
shown that the proposed approach performs accurately and provides high ro-
bustness to frequency attacks but with higher computational time requirements
than the simple blocking approach proposed by Al-Lawati et al. [3].

• Karakasidis and Verykios [113] then introduced another blocking technique for
PPRL based on sorted neighbourhood clustering [95]. The proposed approach
uses reference values to generate initial clusters similar to their previous block-
ing approach [111]. However, in the suggested approach the authors use the
k-medoid clustering technique to assign reference values into clusters. Both
DOs need to agree on the same parameter settings to ensure the same cluster-
ing is generated for each database.

Once the clusters are generated each DO assigns the records in its database
by calculating the edit distance between each blocking attribute value of each
record and the clusters of the clusterings. Based on the calculated distance a
record might be assigned to several clusters. Each DO performs these steps
independently to generate their clusters.

These generated clusters are then sent to the LU. The LU merges the corre-
sponding clusters sent by the DOs and includes the records from each pair of
clusters into a single adjacency list. Then the records in each of these lists are
sorted by a score calculated by the sum of their distances from the respective
clusters.

Finally, the LU applies a sorted neighbourhood approach on these sorted lists
to generate candidate record pairs for comparison. A fixed size window is
moved over each of the adjacency lists and those records from two databases
falling within this window are paired together for comparison.

• In 2012, Durham et al. [56] proposed a Bloom filter (BF) based method for
private blocking and classification based on record level Bloom filter (RBF) [59]
encodings. RBFs are made from attribute level Bloom filters of dynamic size by
a weighted sampling of random bits as measured by the discriminatory power
of different attributes.
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According to the authors their blocking technique has three main steps, which
are:

– Blocking variable identification
In the first step RBFs are generated for blocking attributes of each record
in the database. The suggested RBF encodings can be used to overcome
the problem of cryptanalysis attacks associated with attribute level Bloom
filter encodings.

– Spatial partitioning
The term spatial partitioning is particularly relevant when each record is
viewed as a single point in a multidimensional space. The goal of this
step of the blocking process is to generate a partition of this space, such
that similar records are placed in the same partition. Once the blocking
variable is selected, it will be used to divide the set of records into different
partitions. A Hamming distance based locality-sensitive hashing (HLSH)
approach is used for spatial partitioning of RBFs by selecting a group of
dimensions or bit positions in a Bloom filter for each block. RBFs which
have the same values in these bit positions are added to the same block.

– Record pair generation
Record pairs are generated from all the records in the same blocks.

This approach uses a class of LSH functions that approximate Hamming dis-
tance based on bit sampling. HLSH accepts RBF encodings corresponding to
a set of records as input, and generates the list of record pairs that need to be
considered in the classification step of linkage. The performance of HLSH is
varying depending upon the number of hash functions used and the number
of iterations used in the block generation.

Durham et al. argued that the application of HLSH on RBF encodings provides
the relevant privacy guarantee on the databases where an attacker could not
use the blocks to determine information about the attribute values. Also, an at-
tacker cannot infer knowledge about the attribute values through the frequency
distribution of the bits in RBFs because they are generated by randomly select-
ing bits from individual attribute level BFs. Empirical studies conducted on real
databases showed that HLSH performed better than the token based blocking
approach [35] while achieving higher accuracy in the linkage and faster run-
time.

• In 2013, Vatsalan and Christen [209] also utilise a sorted neighbourhood clus-
tering approach for blocking in PPRL. The authors also use reference values
to form initial blocks which are shared between the two DOs. In this ap-
proach each DO sorts the set of reference values and then inserts its records
into the sorted list according to their sorting key. In the initial cluster genera-
tion each reference value is assigned to a single cluster and records are added
to these clusters. To ensure k-anonymity, these initial clusters are merged into
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larger blocks containing at least k records. For merging of clusters the authors
suggested two techniques based on similarity or size constraints. Once the
k-anonymous blocks are generated each DO sends their blocks with encoded
records to the LU for comparison which follows similar as [111].

• The concept of using LSH functions in PPRL for blocking has been extended
further by Karapiperis and Verykios [118]. The authors presented a Λ-fold
redundant blocking framework that relies on LSH for identifying candidate
record pairs that need to be compared. The proposed approach uses a LU and
assumes the HBC adversary model. The proposed approach can be employed
with three families of hash functions, namely the Hamming family (as used by
Durham et al. [56]), the Min-Hash family and the ρ-stable distributions-based
family. Before the records are grouped into blocks each DO anonymises their
records by using either Bloom filters or an embedding method in the Euclidean
space.

The LU generates the required set of hash functions based on an agreed hash
family. This set of hash functions is sent to the DOs to hash the anonymised
records and populate blocks accordingly. The matching of the record pairs in
these blocks can be implemented by performing simple distance computations
or by a more sophisticated SMC-based protocol based on homomorphic dis-
tance computations. The experimental results indicated that LSH based block-
ing approaches can significantly reduce the number of candidate pairs that
need to be compared.

The same authors [117] recently extended this blocking approach into a dis-
tributed framework which relies on Apache Hadoop based MapReduce frame-
work1 in order to distribute computations among under-utilised commodity
hardware resources uniformly, without imposing extra overhead on the exist-
ing infrastructure. In this approach, records are encoded into Bloom filters in
order to protect the privacy of the underlying data, and then they are submit-
ted to the LU that splits and distributes these Bloom filters to a file system
with replication capabilities to improve scalability. The Min-Hash LSH tech-
nique [25] is applied on each Bloom filter to arrange Bloom filters into blocks.
The evaluation of this parallel LSH approach was limited to small datasets and
distributed computer nodes which makes the overall scalability of the approach
unclear.

• Cao et al. [30] proposed a private record linkage framework based on differ-
ential privacy (as was described in page 28). The main idea of this approach
is to allow database owners to partition their databases into non-overlapping
subsets independently and release a synopsis of each subset to a LU to identify
similar subsets of records that need to be compared by measuring the distance
between those synopsis. In this approach the LU’s knowledge on records is
kept to a minimal value by generating all these synopsis differentially private.

1http://hadoop.apache.org/
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During the database partitioning step, each DO follows a hierarchical approach
to partition its database forming a tree. It starts from a single node (i.e., the
root) that covers all the records in a database. Then, it recursively partitions the
nodes. Whenever a node in the tree needs to be split, it dynamically allocates
a privacy budget based on the node size. The privacy budget is used to check
whether to split nodes and if the leaves contain appropriate number of records
to ensure privacy. Finally, the subsets of records in each leaf is sent to the LU
to identify the matching records. The experimental results showed that this
approach is more efficient and accurate compared to a previous differentially
private linkage approach [99].

• The use of reference values for blocking in PPRL has recently been further
extended by Karakasidis et al. [109]. They proposed a blocking technique that
groups records into blocks by comparing them against a reference set. The aim
of this approach is to use multiple reference set samples which can assign a
record into multiple blocks. The multiple assignments of a record in blocks
introduce redundancy in the blocking process. This differs from [111, 113, 209]
which use a single reference set as the comparison basis.

In the suggested approach, both DOs need to agree on the parameters for
generating identical reference sets. The DOs share a reference value database
where they sample sets of reference values using the Durstenfeld shuffle algo-
rithm [60]. Each DO then independently assigns the records in their databases
to blocks based on the edit distance between the reference values and the at-
tribute values. To improve the redundancy of blocking several blocking key
attributes are used to form blocks.

Once the blocking is finished, each DO sends their blocks with record identi-
fiers to a LU to identify candidate record pairs for comparison. The LU merges
the corresponding blocks from each DO to generate candidate record pairs and
finally the DOs can send their encrypted record values to the LU for these gen-
erated candidate pairs to compare using any private matching method [216].
Empirical evaluations with real databases showed that the suggested approach
can achieve high linkage quality and link dirty data due to the redundancy
in blocking based on the use of multiple reference set samples and multiple
record to block assignments.

• Karapiperis and Verykios [119] recently proposed a blocking scheme by using
Hamming locality-sensitive hashing (HLSH) technique as done by Durham et
al. [56]. The main idea behind this approach is to encode records into the Ham-
ming metric space by using the Bloom filter encoding [18] and assign these
Bloom filters into independent blocking groups by applying the HLSH tech-
nique.

First each DO encodes all the records in their databases into Bloom filters (BFs)
based on an agreed set of encoding parameters. These generated BFs are then
sent to a LU. The LU then uses a HLSH based blocking technique to block the
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received BFs and formulate BF pairs for comparison. In the blocking process
record pairs are hashed into several hash buckets forming redundant blocks.

To identify the pairs to be compared the LU counts the number of collisions
(number of times a given pair of BFs is hashed into the same hash bucket). The
LU calculates the minimum number of collisions required by a BF pair to con-
sider it to be compared and then performs the Hamming distance computations
only for these pairs that exhibit this minimum number of collisions. Empirical
results showed significant improvement in running time due to a drastic reduc-
tion of candidate pairs by the HLSH technique, while achieving high blocking
quality.

• Recently, Han et al. [90] proposed a private blocking approach for PPRL based
on dynamic k-anonymous blocking and the Paillier cryptosystem. The pro-
posed approach can only be used on numerical values since the suggested k-
anonymous blocking dynamically generates blocks by using numerical values
as reference values to assign k records into blocks for satisfying k-anonymity.
However, the suggested approach is different from the approach by Vatsalan
and Christen [209], since the suggested approach does not use any publicly
available reference dataset to generate blocks, but uses the attribute values in
the database as reference values.

First the DOs agree on the parameter settings, including blocking key attributes
and minimum k to be used in the block generation process. Each DO then
forms blocks on their database ensuring each value of blocking key attribute
constructs one block. To ensure k-anonymity, similar blocks are merged to-
gether until the number of records in a block being at least k.

Once the blocks are formed locally, each DO computes reference values for
each block. The smallest and the largest values in a block are selected as the
reference values for each given block. To identify similar blocks that need to be
compared one DO needs to release its reference values to the other party. Before
sending these reference values each database owner encrypts these values by
using a public key sent to them by a LU.

Once the reference values are encrypted one DO sends these values to the
other DO to compute the similarity by using the Paillier cryptosystem [161].
The computed encrypted similarity values are sent back to the LU to decrypt
by using the private key. The decrypted results are then sent back to the DOs
where based on the received similarity values they decide whether correspond-
ing blocks need to be compared or not. Experiments with a real dataset showed
that the suggested approach can achieve higher accuracy and privacy, but does
not scale to database with large number of records.

• Recently, Chi et al. [31] proposed a technique for linking two databases in the
presence of missing values. Their approach uses the attribute values of the near-
est neighbours of a record to impute missing values. The proposed approach
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uses a Bloom filter based traditional blocking technique to improve the scal-
ability, but requires a quadratic computation complexity in the missing value
imputation process. Nevertheless, for the imputation process, the authors as-
sumed that the record with a missing value and its nearest neighbour records
have similar values for the corresponding attribute. However, such an assump-
tion is not always realistic in real-world situations. For example, the people
who live at the same address can share different last name or telephone num-
bers. Hence, as we discuss in Section 11.4, an extension of such an approach
to MD-PPRL requires further research because such techniques need to scale to
an increasing numbers and sizes of databases.

3.1.2 Two Database Protocols without a Linkage Unit

• A protocol proposed by Song et al. [198] tried to address the problem of approx-
imate matching by calculating enciphered permutations for private approxi-
mate record matching. The proposed technique provides remote searching on
encrypted data using an untrusted server and provides proofs of security for
the resulting crypto systems. The encryption and search algorithms only need
O(nr) stream and block cipher operations for a database with nr records.

A query can either be a single word or multiple words which is/are sent to
the server to perform a search. If an encrypted word matches at least one
of the enciphered permutations, then the pair of words can be considered as a
match. The use of an encrypted block data structure provides an efficient search
even when the document size is large. However, the approach is vulnerable to
frequency attacks if a certain number of words are being queried, and therefore
not suitable for real-world applications.

• Inan et al. [99] proposed a novel blocking mechanism which is based on differ-
ential privacy. Records in a database are partitioned into subsets with the aim
of reducing the cost of private record linkage. The approach uses specialised
multi-dimensional tree index data structure to improve the scalability of the
partitioning step. Based on a given distance function, values in each partition
are evaluated by a decision rule. The pairs that are considered as matches
by the decision rule will be classified by a SMC technique. Experimental re-
sults showed that differential privacy provides strong privacy guarantees and
a trade-off between accuracy, privacy, and scalability.

• Karakasidis and Verykios [110] proposed a complete framework for PPRL for
two database scenarios. The authors enhanced edit distance based methods
used for conventional approximate record matching with privacy-preserving
characteristics and increased the matching performance by facilitating a secure
blocking component.

In this approach phonetic encoding was used as a blocking component, which
matches words based on their pronunciation and has fault tolerance against
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typographical errors. The authors used the Soundex [35] and Metaphone [35]
algorithms to perform the phonetic encodings and the MD5 hashing algorithm
to encrypt the phonetic encodings into ciphers. The phonetic encodings were
injected with a random number of records consisting of fake phonetic codes to
ensure that the phonetic values exhibit uniform distributions. Identical ciphers
are grouped together for matching.

In their proposed approach, for each of the generated groups of encrypted pho-
netic encodings a secure matching mechanism was used to perform approxi-
mate matching between the records. For the value held by each field in the
record each of its characters are extracted. These characters are appended with
a number to indicate its position which results in a set of tokens. Every token
is then encoded into a Bloom filter. The set of Bloom filters are then exchanged
to perform the matching process. Recently, Etienne et al. [68] also evaluated the
use of phonetic codes in private blocking techniques which showed how errors
and modifications in string values affect the quality of blocking.

• The applicability of multi-bit tree data structures as a blocking mechanism was
explored by Schnell [188] for PPRL. The multi-bit tree data structure was pro-
posed by Kristensen et al. [129] to efficiently find similar chemical fingerprints
in a database based on Bloom filters and a user defined similarity threshold
value. According to the experiments conducted by the authors, it was noted
that the performance of the queries increased with the use of this tree data
structure. The tree reduced the amount of comparison calculations and com-
putationally scaled linearly when the size of the datasets was increasing.

The concept of multi-bit trees was further examined by Bachteler et al. [12] as a
new blocking method for record linkage. The string values in the attributes are
first converted into sets of q-grams, which are then mapped into a Bloom filter.
The generated Bloom filters are then partitioned into separate bins according
to the number of bits set to 1 in them. All the Bloom filters in each bin are
stored in a multi-bit data structure. A given Bloom filter is queried against all
Bloom filters that are stored in the multi-bit tree and at each node the similarity
is calculated to find matches.

Similar to the approach by Bachteler et al. [12], Schnell suggested that records
in a database can also be mapped into Bloom filters in PPRL. However, to in-
crease the security of the Bloom filter encodings, rather than creating a Bloom
filter for each identifier separately, Schnell suggested to include encodings of
the set of attributes into one Bloom filter for each record. The resulting Bloom
filter is called a Cryptographic Long-term Key (CLK) [189]. The generated CLKs
are then stored in a multi-bit data structure which can be queried against
to generate candidate record pairs. According to the experiments, Schnell
showed that the proposed approach is having a linear computational complex-
ity with increasing number of records in a dataset. Recently, several PPRL
approaches [27, 188, 192, 194] have been suggested that use multi-bit tree based
blocking.
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• Following the same concept of using public reference values by Karakasidis
and Verykios [111], Vatsalan et al. [215] suggested an efficient two-party pri-
vate blocking technique based on a sorted nearest neighbourhood clustering
approach which provides k-anonymous privacy. In this approach each DO
needs to select a set of reference values from a publicly available database. The
selected reference values are used to cluster the records in each database. Once
the clusters are generated each DO merges them in order to ensure each cluster
contains at least k records. This provides k-anonymous privacy characteristics,
as each record in the database can be seen to be similar to at least k-1 other
records.

Once the k-anonymous clusters are generated, reference values corresponding
to each cluster need to be exchanged between the DOs. By using the exchanged
reference values the candidate clusters can be identified by each DO. The sorted
nearest neighbourhood approach [95] is used to achieve this goal. Each of the
candidate clusters that are identified will be considered as a separate block for
the matching and classification steps. In their approach, linkage quality and
privacy mainly depend on the reference values selected for blocking.

• A private blocking mechanism based on hierarchical clustering and differen-
tial privacy was introduced by Kuzu et al. [134] for two database protocols.
Initially global clusters are generated for a set of reference values using hierar-
chical clustering. Then each DO assigns their records to these global clusters
based on their similarity. Differential privacy is used to ensure privacy against
inference due to clusters released between the DOs. Since the resulting clusters
contain fake records that are added as noise, only a SMC-based private com-
parison and classification technique can be applied on the candidate record
pairs. The approach is not scalable due to computationally expensive similarity
calculations.

3.1.3 Multidatabase Protocols

As we have reviewed above, there have been various blocking approaches proposed
for PPRL. However, most work so far has considered only on blocking records
from two databases. Some approaches [91, 113, 115, 119] initially proposed for
two database scenarios have also been investigated for blocking of three or more
databases, although these techniques were never properly evaluated in terms of scal-
ability to multiple databases.

• Recently, Han et al. [91] extended their two database dynamic k-anonymous
blocking approach [90] to multiple databases using the Pallier cryptosystem.
Similar to [90], the suggested blocking approach can only be applied on numer-
ical attributes where numerical values are used as reference values to generate
blocks. Each DO encrypts the reference values of its blocks by using a public
key sent by a LU. Then all DOs participate in a ring communication to perform
a homomorphic addition of the encrypted reference values for each block. Once
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the homomorphic addition is finished the first DO sent the summed encrypted
reference values of each set of blocks to the LU to decide whether to compare
records among multiple blocks based on their similarity. However, the pro-
posed approach requires expensive computation and communication steps in
measuring the similarity between blocks which makes the approach not scal-
able to multiple databases and large database sizes.

However, as we have discussed in Chapter 1, linking records from multiple
databases is increasingly being required for Big Data applications, therefore creat-
ing an increased demand for scalable blocking techniques for MD-PPRL.

3.1.4 Filtering and Meta-blocking Techniques

Apart from these blocking techniques, filtering techniques could also be used to
reduce the record comparison space by removing those record pairs that have a sim-
ilarity below a given threshold value. In these filtering based PPRL approaches it
is assumed that all DOs send their masked records to a LU to apply the filtering
technique. For PPRL several such filtering based techniques [195, 196] have been
proposed.

• In 2015 Sehili et al. [195] proposed a filtering technique based on the PPJoin
technique [230], known as P4Join, for PPRL. In this approach the records in two
databases are encoded into Bloom filters which are then compared for similar-
ity. PPJoin is a signature-based similarity join algorithm that applies several
optimisation techniques for improved efficiency, in particular a length filter, a
prefix filter, and a position filter. The length filter remove those Bloom filter
pairs that differ by a certain number of bits based on the predefined similarity
threshold value. The prefix filter is based on the fact that similar Bloom filters
need a high degree of overlap in their 1-bit positions in order to satisfy the
similarity threshold. Pairs of records can thus be excluded from comparison if
they have an insufficient overlap. The position filter can remove the comparison
of two Bloom filters even if their prefixes overlap depending on the positions
where the overlap occurs.

The authors also investigated the applicability of parallisation of P4Join in a
PPRL approach. P4Join based similarity calculations are performed in a graph-
ical processing unit (GPU) where many calculations can be executed in parallel
depending on the number of execution units in a GPU. The authors showed
that the utilisation of GPUs can speed-up the similarity computations. Modern
GPUs provide thousands of cores that allow for a massively-parallel applica-
tion of the same instruction set to disjoint data partitions. The authors used
an OpenCL2 framework to simplify the utilisation of GPUs to parallelise algo-
rithms.

2https://www.khronos.org/opencl/
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• Recently, Sehili and Rahm [196] proposed a metric space based filtering ap-
proach which showed improved efficiency and linkage quality compared to
previous PPRL approaches [190, 195]. In this approach records in two databases
are encoded into Bloom filters (BFs). The BFs of the first database are added to
the metric space by using a pivot based technique that selects a certain number
of BFs from a sample of this database as pivots. Next, BFs are assigned to the
closest pivot by computing the Hamming distance between the pivots and the
BFs. Pivots are iteratively determined from the sample set of BFs such that the
BF with the greatest distance to all previously determined pivots becomes the
next pivot. Next, the BF of the second database is queried in the metric space
by searching for the pivots within a given minimum distance. For the BFs of
the relevant pivots the triangle inequality [216] is further used to prune BFs
from the comparison with the query BF.

In addition, several block processing techniques have been proposed in record
linkage (RL) and PPRL to reduce the record comparison space. These techniques are
utilised in between the blocking and comparison step of the linkage process.

• Whang et al. [225] were the first to introduce an interactive block processing
technique to reduce record comparison space for database de-duplication. In
their approach, each individual block is repeatedly examined to detect du-
plicates. The result of record pair comparisons from each processed block is
propagated to inform decisions in subsequent blocks. Two records in a block
are merged if they are identified as a match and the resulting new merged
record is propagated to other blocks. This approach can reduce the number
of pair-wise comparisons in subsequent blocks since repeated comparisons are
avoided. The same concept was extended further by Kim and Lee [124] who
used locality sensitive hashing (LSH) for cleaning and merging datasets.

• Papadakis et al. [163] suggested a de-duplication approach using two cate-
gories of block processing methods to improve the performance of the link-
age of two databases. Block refining methods, such as block purging (discard
non-matching record pair comparisons by removing blocks that contain records
more than a given upper size limit) and block scheduling (sort the set of blocks
for comparison to reduce the number of duplicate record pair comparison),
operate at the coarse level of processing individual blocks.

The second category of comparison-refinement methods, such as comparison
propagation (order the record pair comparisons to avoid any repetitive compar-
isons), duplicate propagation (remove record pairs in blocks if their are already
been identified as duplicates), comparison pruning (remove any record pair
comparisons that are unlikely to be match), and comparison scheduling (order
the record pair comparisons of a given block such that record pairs that are
likely to be matched are compared first), consider a finer level of block process-
ing at the level of individual comparisons within blocks. The results presented
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by the authors showed that such refinement methods improve the efficiency of
the overall de-duplication process.

• In 2014 Papadakis et al. [164] introduced the concept of meta-blocking for record
linkage (RL). It aims to restructure a collection of blocks to reduce the number
of record pairs within blocks. The suggested approach takes a block collection
as input and uses a supervised classification technique based on block-feature
vectors to distinguish promising comparisons. However, the suggested ap-
proach requires the selection of suitable features and training data to achieve
accurate pruning of candidate comparisons. To improve the efficiency of meta-
blocking further, Efthymiou et al. [64] have proposed a parallelised variation
of the meta-blocking approach based on MapReduce [51]. Meta-blocking has
recently been extended by Karakasidis et al. [109] for PPRL. In this approach,
sorted neighbourhood blocking [95] based on reference values is used as a
meta-blocking technique to further reduce the comparison space.

3.2 Classification Techniques in PPRL

The candidate record pairs or tuples that are generated in the blocking step are com-
pared and classified into matches and non-matches in the next step of the PPRL
process. The comparison and classification step addresses the linkage quality chal-
lenge by using private approximate comparison and classification techniques, while
preserving the privacy of all non matching records in the databases that are being
linked. In the following subsections we review the existing classification techniques
under different database linkage scenarios.

3.2.1 Two Database Protocols with a Linkage Unit

• Van Eycken et al. [207] proposed a secure three-party protocol that uses an
exact matching technique to classify health records from different databases.
The suggested approach is based on exact matching of hash codes, which are
generated by a secure one-way hashing function and a public key encryption
algorithm in order to prevent dictionary attacks.

In this approach, both database owners merge the values of their linkage at-
tributes into a single hash string. These hash strings are then sent to a link-
age unit (LU) to classify the records using a deterministic classification tech-
nique [35]. Experiments conducted on health databases showed that the accu-
racy of the classification increases if the concatenated string includes the full
date of birth value. While this approach is cost effective, it is inappropriate in
real-world applications since it can only perform exact matching of attribute
values.
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• Churches and Christen [42] proposed an approximate classification technique
for performing secure record linkage on two databases based on hash encod-
ing, public key encryption, and q-gram similarity comparison techniques. Us-
ing this approach PPRL can be performed blindly where neither of the DOs
will need to share any information, even the meta-data of the databases, such
as database schemas. A LU is used to conduct the linkage. To perform the
attribute based comparison, the suggested approach uses subsets of q-gram
sets of attribute values to calculate the Dice similarity between attribute val-
ues. These subsets are encoded and sent to the LU to classify each record
pair as a match or non-match using a threshold based classification technique.
However, the construction of the subsets of the q-grams is not feasible for real-
world applications because of high computational requirements which makes
the suggested approach not scalable to large databases.

• A protocol to provide privacy for both record and schema matching without
revealing any information was presented by Scannapieco et al. [186]. This ap-
proach uses a set of reference values to embed records into a metric space while
preserving the distances between attribute values of these records. An approx-
imate comparison function is used to measure the distances between records.
The computed distances are then sent to a LU to perform the linkage. The
authors use a greedy heuristic re-sampling method for arranging records into
blocks to improve the efficiency of the approach. However, the experimental
results shows that the linkage quality is affected by this greedy heuristic re-
sampling method. Recently, Bonomi et al. [19] extended this approach by using
frequent q-grams of attribute values where the sample for the embedding is
mined by the DOs using a prefix tree to satisfy differential privacy.

• A reference string based scalable approximate matching protocol was proposed
by Pang et al. [162] based on an embedding approach. The authors use a
common set of reference strings to find the matching record pairs. The DOs
compute the distance between the reference strings and their values and send
the results to a LU which can calculate the similarity between values using the
triangular inequality property. The performance of this approach depends on
the set of reference strings used.

• Weber et al. [223] have proposed a simple heuristic method for privately linking
medical data using a LU. They hypothesised that the use of encoded identifiers
based on name prefix and date of birth provides better comparison results than
using identifiers with full name and social security number (SSN). String values
of the identifiers are encoded using a secret key shared between the DOs, and
the encoded values are sent to a LU to perform the comparison. According
to the experimental results, the authors concluded that composite identifiers
perform better in terms of sensitivity and specificity than using identifiers with
full name or SSN. The composite identifiers are useful for situations where the
exchange of these identifiers is impossible.
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3.2.2 Two Database Protocols without a Linkage Unit

• Atallah et al. [9] proposed an approximate matching protocol for securely com-
paring sequences in genome sequence databases. The suggested approach uses
the edit-distance [35] method to calculate the similarity between sequences. The
edit-distance matrix is split between the DOs such that the minimum cost of the
edit-distance is calculated additively by each DO. A blind and permute proto-
col, which uses a homomorphic encryption scheme, is introduced to minimise
the information learned by each DO. However, this approach is not appropri-
ate for linkage of large databases due to excessive communication overhead
required to compute the edit-distance matrix.

• Freedman et al. [76] proposed an efficient privacy-preserving keyword search
algorithm for Privacy-Preserving Information Retrieval (PPIR) applications. The
proposed approach considers the linkage of two databases under both the
honest-but-curious (HBC) and malicious adversary models. For a given key-
word by a client, the proposed approach uses homomorphic encryption and
oblivious pseudo-random functions to search for matching keyword and pay-
load pairs in a database. The theoretical proofs provided by the authors show
that the proposed approach is having a linear computational complexity and a
poly-logarithmic communication complexity in the size of the databases.

• Yakout et al. [231] proposed an approximate classification technique based on
the work by Scannapieco et al. [186]. Similar to [186], this approach transforms
records into objects in an embedding metric space using a set of reference val-
ues, while preserving the distances between records. In this approach attribute
values are represented as vectors. Using these vectors, complex numbers are
calculated to create a complex plane and the likely matched pairs are computed
by moving an adjustable width slab across this complex plane. The Euclidean
distance [35] is used to measure the approximate similarity between records.
Based on these distances, similar record pairs are classified as those that are
within the slab width. These similar pairs are then compared in detail in the
second phase of the protocol using a secure scalar product protocol based on
randomised vectors. Experimental results showed that the scalability and link-
age quality depend on the slab width.

• Li et al. [137] proposed a classification technique for privacy-preserving group
linkage (PPGL) to measure the similarity of groups of records rather than indi-
viduals. Threshold-based PPGL methods were proposed for both exact and ap-
proximate matching. The proposed approach is adopted for both the HBC and
malicious adversary models. The authors developed two protocols for exact
matching with commutative and homomorphic encryption, which use Jaccard
similarity to calculate the group level similarity. The approximate matching
protocol uses the Cosine similarity [229] measure with a private scalar product
protocol to find the similarity between groups. According to the experiments
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results the proposed approach does not scale with an increase of group size
due to its exponential computational complexity.

• Vatsalan et al. [214] proposed an approximate classification protocol which fol-
lows the HBC adversary model. The authors used a set of reference values,
which are extracted from a publicly available database agreed upon by both
DOs, for calculating the similarities between attribute values. To improve the
scalability a phonetic based blocking technique is used. Each DO calculates
similarities between the reference values and the linkage attribute values which
are then generalised into bins. The bin values are securely exchanged between
the two DOs. Record pairs that have the same similarity bin combinations in
their attributes, or that have a similarity binning distance less than a maxi-
mum binning distance, are classified as matches. However, the number of bins
and bin value ranges need to be chosen carefully, as they provide a trade-off
between scalability, privacy, and linkage accuracy.

• An iterative approximate classification protocol was recently proposed by Vat-
salan and Christen [208] which reveals selected bits in records encoded into
BFs between two DOs. The approach classifies record pairs into matches, non-
matches, and possible matches in an iterative way to reduce the number of
record pairs with unknown match status at each iteration without compromis-
ing privacy. At each iteration the minimum similarity based on the revealed
bit positions is calculated using the Dice-coefficient. The authors used a length
filtering technique to reduce the number of record comparisons.

3.2.3 Multidatabase Protocols

• O’Keefe et al. [160] proposed a secure multi-party computation (SMC) based
exact classification approach for multidatabase PPRL and privacy-preserving
extraction of a cohort of an individual’s data from a database without revealing
the identity of these individuals to the DOs. This approach improves on the se-
curity and information leakage characteristics compared to an earlier approach
developed by Agrawal et al. [2] which provided the basis for the proposed ap-
proach. The proposed approach is however computationally expensive due the
use of SMC based calculations. Though the initial approach was proposed for
linking of two databases, the authors have also proposed an extended version
of the protocol, where more than two database owners can link their data pri-
vately. However, the proposed approach is not capable of linking records that
contain errors and variations in the attribute values.

• A multidatabase classification approach was proposed by Lai et al. [135] that
uses Bloom filters (BFs) to securely compare records between multiple databases
for private set intersection. All records in a database are encoded into one
Bloom filter (BF) and segmented according to the number of DOs involved in
the protocol. These segments are shared among the parties, where each DO re-
ceives segments of the BFs from all the other DOs and then performs a logical
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conjunction (AND) on its received segments. These logically conjuncted seg-
ments are shared across all the DOs to combine into a one conjuncted BF. Each
DO compares its own full BF with the conjuncted BF for identifying matches.
Evaluation results showed that the false positive rate increases with the number
of DOs involved in the protocol, where none of the DOs will be able to guess
the existence of a given record correctly.

• Kantarcioglu et al. [108] proposed a multidatabase approach based on the k-
anonymity [216] generalisation technique for person specific biomedical data.
This approach performs efficient secure joins of encrypted databases by a link-
age unit via encrypted identifiers. The DOs perform a generalisation algorithm
using k-anonymity based on the common set of quasi-identifying attributes. Be-
fore the linkage unit performs the equi-join operation, blocks are constructed
corresponding to each combination of k-anonymous values. The number of
secure equi-joins required by the protocol is drastically reduced when a k-
anonymous equi-join is applied, compared to the full comparison of all record
sets. However, the suggested approach has a complexity of O(n2) for applying
generalisation to each database with n records and required significant commu-
nication between the database owners and the linkage unit which make this ap-
proach not scalable to multiple databases. Nevertheless the proposed approach
is only applicable to categorical data, though the proposed approach can also
be used for other data types by using proposer discretisation techniques [89].

• Mohammed et al. [152] proposed an approximate classification approach for
multidatabase PPRL using the k-anonymity based generalisation privacy tech-
nique without the need of a linkage unit. This work is based on the secure
distributed k-anonymity framework proposed by Jiang and Clifton [104] for in-
tegrating two private databases into a k-anonymous database. The proposed
approach uses game theory concepts to prevent DOs from sending false val-
ues in a malicious adversary model. The proposed approach uses an adapted
version of the C4.5 decision tree classifier to recursively block and classify the
records in databases. According to the experimental results the proposed ap-
proach outperforms [104] in terms of algorithmic complexity and scalable for
large database sizes. However, the proposed approach does not scale for multi-
ple number of databases because of the expensive communication required by
the participating database owners.

• Vatsalan and Christen [210] proposed a multidatabase approximate classifica-
tion approach following the work by Lai et al. [135]. The protocol combines
the BFs, secure summation, and the Dice coefficient with the aim to identify all
records held by the different DOs that have a similarity above a certain thresh-
old. The protocol has a communication complexity that is linear in the number
of DOs and the size of the databases that are linked, however, it requires an ex-
ponential number of record comparisons which makes the protocol not scalable
to applications where records from many databases need to be linked.
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• In 2015 Karapiperis et al. [114] proposed a multidatabase PPRL approach for
categorical data using a Count-Min sketch data structure (as was defined on
page 28). Sketches are used to summarise the local set of elements which are
then intersected to provide a global synopsis. First each DO independently
summarises its records in a local synopsis, which is implemented by a Count-
Min sketch. Then these local synopses are intersected in order to create the
global synopsis. This global synopsis provides collective count estimates for
the common elements attained in those databases and hides the contribution of
each DO to these estimates. The authors proposed two protocols for generating
global synopsis where the first one uses homomorphic operations that provide
improved privacy and accuracy with high communication costs, and the second
protocol uses a secure summation protocol which exhibits improved efficiency.

• In 2016 Vatsalan et al. [213] proposed a multidatabase protocol for PPRL that
is based on Counting Bloom filters (CBFs). The proposed approach allows
approximate matching of attribute values that are encoded into BFs. To enable
more secure approximate matching CBFs are used to count the number of 1’s
in each bit position of a given set of BFs. To sum the number of 1’s in each bit
position this approach uses a secure summation protocol which is initiated by
a linkage unit (LU). A secure summation protocol is performed for each record
in a database which makes the protocol communicationally expensive.

Based on the CBF of each set of BFs the LU computes the Dice similarity to clas-
sify the corresponding set of records as either matches or non-matches based on
a similarity threshold value. To improve the scalability of the approach the au-
thors used a Soundex based phonetic blocking technique for each database. To
reduce communication overhead and the number of required computations the
authors proposed a ring based communication pattern where DOs are grouped
into rings. The experiments using real datasets showed that the proposed ap-
proach is scalable in terms of database size and provides improved privacy
compared to earlier approaches [135, 210].

• Recently, Saeedi et al. [185] conducted a comparative evaluation of clustering
schemes for multidatabase record linkage. The authors evaluated different clus-
tering techniques, including correlation [32], center [93], merge center [93], and
star [8] clustering, upon a framework called fast multi-source entity resolution
system (FAMER). This system accepts a set of databases as input and outputs
a collection of clusters. All records within a cluster is considered as matches
(belongs to the same entity) while different clusters refer to different entities.

In FAMER, first the records are blocked into a set of groups and a similarity
graph is computed based on the comparison between records in these blocks. A
clustering technique is then applied upon the similarity graph to group entities
such that the similarity between entities within a cluster is maximised while
the similarity between entities of different clusters is minimised. The authors
also proposed parallelised versions of the clustering techniques using Apache
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Flink 3. The experiments using real and synthetic datasets showed that the use
of clustering improves the linkage quality while the scalability of linkage can
be improved by parallelising the clustering techniques.

3.3 Summary

In this chapter we have presented a survey of historical and current state-of-the-art
techniques for PPRL. As detailed in this chapter, most of the current blocking tech-
niques proposed for PPRL can only block two databases. Nevertheless, some clas-
sification protocols proposed for multiple databases mainly depend on traditional
blocking techniques, which are not secure as we shown in Chapter 10, while oth-
ers do not use any blocking technique to scale to multiple databases. Therefore,
the development of scalable and secure blocking techniques that can block multiple
databases (more than two) is an important requirement in any multidatabase linkage
that has not been addressed in enough details so far. In the next chapter we will pro-
pose a novel blocking framework for multidatabase PPRL to address the challenges
related to multidatabase linkage, as described in Chapter 1.

3https://flink.apache.org/
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Chapter 4

A Blocking Framework for
Multidatabase Privacy-Preserving
Record Linkage

As we discussed in Chapter 1, the non-availability of a blocking framework is a ma-
jor limitation we have identified in a multidatabase linkage context. Having such a
framework would be highly beneficial for RL and PPRL practitioners to identify dif-
ferent methods and techniques that can be used to block multiple databases under
various real-world scenarios. In this chapter we address this limitation by intro-
ducing a blocking framework that can be used in multidatabase privacy-preserving
record linkage (MD-PPRL).

In Section 4.1 we highlight the importance of a framework for blocking in a MD-
PPRL context and in Section 4.2 we describe our framework. In Section 4.3 we then
provide details on different building blocks that are used for developing the tech-
niques used in our framework. In Section 4.4, we provide details about different
datasets and measures that are used for evaluation in our framework, and the com-
putational platform that will be used to evaluate our proposed framework. Sec-
tion 4.5 provides a detailed description about an attack method that will be used for
privacy analysis of our proposed techniques. In Section 4.6, we provide an outline of
our framework. Table 4.1 summarises the notation we use in this chapter.

4.1 Introduction

As discussed in Chapter 1, blocking is an important step in the PPRL process [35,
216]. Blocking makes the linkage process scalable by grouping similar records into
blocks while ensuring dissimilar records are inserted into different blocks. As we
have reviewed in Chapter 3, over the past two decades many blocking techniques
have been introduced for PPRL. These blocking techniques use different grouping
methods such as clustering [111, 162], reference values [109, 111], hashing [118, 119,
127], or embedding [108]. Below, we consider the usability and applicability of these
existing blocking techniques in a multidatabase PPRL context.

61
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Table 4.1: Notation and terminology used in this chapter

B A set of blocks
D A database
E Total summed value
G Global (publicly available) database
B A block of records
CBT Candidate block tuple
CRT Candidate record tuple
DR Disclosure risk value
H Set of hash functions
PS Probability of suspicion value
Q A queue data structure
R, R.a, R.id A record, record attribute value, and record identifier
S A set of q-grams
ε An encrypted value
d Number of database owners (or databases)
f p False positive rate
h(·) A hash function used for mapping a value into a Bloom Filter
nh, nq, nr Number of hash functions, q-grams, and records
lq, lb f Length of a q-gram and a Bloom filter
q A q-gram
r A random number
sp A partially summed value

BF Bloom filter
BKV Blocking key value
DO Database owner
LU Linkage unit
MD-PPRL Multidatabase PPRL
MDRL Multidatabase record linkage
PC Pairs completeness
PQ Pairs quality
PPRL Privacy-preserving record linkage
RR Reduction ratio
SMC Secure multi-party computation

First of all, most of the blocking techniques that have been proposed for PPRL are
capable of blocking only two databases [56, 111, 215]. These blocking techniques are
not capable of blocking multiple databases which creates a necessity in developing
blocking techniques for a MD-PPRL context. Also, these existing blocking techniques
do not provide flexibility and control for the database owners (DOs) in the block
generation process on their own databases since all the DOs need to agree on the
same parameter settings, such as the number of blocks to be generated and their
sizes, when blocking their databases [36, 165].
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Secondly, subgroup blocking is an important aspect that needs to be considered
for a multidatabase record linkage (MDRL). As we explained in Chapter 1, an anal-
ysis of subgroup populations can be important as they describe different features
and aspects within a larger population [22, 131]. In a MDRL context subgroups of
databases need to be linked to identify the subsets of matching records in different
databases. The existing blocking techniques that have been proposed for PPRL are
not capable of performing blocking for subgroups of databases.

Thirdly, in a PPRL context, these existing blocking techniques result in a record
comparison space where most of the record pair comparisons are potentially iden-
tified as non-matches [164]. These record pair comparisons incur additional com-
putational costs in linkage applications which creates a need for efficient filtering
techniques that can be incorporated with blocking to remove redundant record pair
comparisons. In general, such filtering techniques can be employed in between the
blocking and comparison steps of the linkage process [163]. Several filtering tech-
niques have been proposed for the de-duplication of a database, however, these tech-
niques are not generally suitable for MD-PPRL since they do not guarantee the pri-
vacy of records that are linked (we will provide more details about these existing
filtering techniques in Chapter 9).

Finally, a framework that can be used to combine these three different aspects
of (1) control and flexibility in block generation, (2) subgroup blocking, and (3) fil-
tering of redundant record comparisons in blocking has not yet been developed for
MD-PPRL. Each of these aspects has its own objective, however, they are interrelated
in the context of blocking. A combination of these three aspects into a framework
will generate a flexible blocking platform for various PPRL applications where dif-
ferent techniques could be used to maximise the overall efficiency and effectiveness
in linking multiple databases.

As we have reviewed in Chapter 3, over the past two decades several frameworks
have been proposed in PPRL. Durham proposed a linkage framework for perform-
ing private record linkage between two databases [56]. The proposed framework
employs a three-party linkage scenario (as was described in Chapter 2) where the
encoded records of the two databases are sent to a trusted third party (such as a
linkage unit, LU) to identify the matching records. However, the proposed frame-
work is only applicable in the context of linking two databases and does not provide
any functionalities for subgroup blocking or efficient filtering of unwanted record
comparisons.

Papadakis et al. [163] recently proposed a blocking framework for record link-
age on two databases. The proposed framework considers blocking of databases
with heterogeneous schemes, and provides a filtering technique that can be used to
remove record comparisons that can be considered as non-matches. However, block-
ing of multiple databases and identification of blocks that need to be compared in
subgroups of databases are not supported in this proposed framework.

Recently, Karapiperis and Verykios proposed a blocking framework for PPRL of
two databases [117]. The proposed framework uses locality sensitive hashing (LSH) [101]
for grouping similar records into blocks. Each block is then sent to a LU to compare
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Figure 4.1: An overview of our multidatabase blocking framework. The left side
represents an example of blocking of three databases of DA, DB, and DC, while the
right side represents each corresponding layer with its functionality in our frame-
work. We use the notation BA, BB, and BC to represent blocks of DA, DB, and DC,
respectively. In the block generation layer, the records are assigned into blocks by
using an appropriate blocking technique. These generated blocks can then be input
to subgroup blocking layer where similar blocks that need to be compared for differ-
ent subgroup combination of these databases are identified. Finally, these identified
blocks can be input to the third layer, called meta-blocking, to remove unnecessary

block comparisons that reduce the number of unwanted record comparisons.

record pairs from the same blocks to identify matches. The proposed framework is
built on top of a Map/Reduce paradigm in order to distribute computations among
underutilised commodity hardware resources uniformly. However, the proposed
framework does not support linking of multiple databases, subgroup blocking, or
removal of unwanted record pair comparisons.
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4.2 Framework Overview

To facilitate the three different aspects of blocking mentioned in Section 4.1, we pro-
pose a blocking framework that can be used for MD-PPRL. The main aim of our
framework is to provide a flexible platform for PPRL researchers and practitioners to
work with different techniques that can be used for blocking of multiple databases.
As a goal this framework allows users to employ different blocking techniques that
can be used appropriately under different MD-PPRL scenarios. We next describe our
framework in more details.

As illustrated in Figure 4.1, we consider three main aspects of multidatabase
blocking, which are (1) the generation of blocks of each database to be linked, (2)
identifying blocks that need to be compared across two or more databases, and (3)
reducing the number of record pair comparisons by removing redundant and su-
perfluous comparisons as we will discuss in Chapter 9, as separate functionalities.
To facilitate each functionality, we follow a layered approach where each layer con-
sists of several techniques that support a specific functionality. Each layer receives
as input the output of the previous layer with the aim to produce an output that
improves either effectiveness or efficiency (or both aspects) of the input. Since each
layer comprises multiple techniques, the techniques provided in each layer can be
combined to perform different multidatabase blocking workflows. Hence, users are
provided with flexibility to select different combinations of techniques suitable for
their linkage scenario to maximise scalability, blocking quality, and privacy.

Our framework accepts d databases as input, and outputs a set of candidate block
tuples (CBT) that need to be compared using a private comparison and classification
technique (as described in Chapter 2). Each candidate block tuple (CBT) contains
blocks from at least 2 databases to at most d databases with a maximum of one block
from each database. We define a CBT as:

Definition 4.1. Candidate block tuple (CBT)
Assume B1, B2 · · · , Bd are sets of blocks from respective databases D1, · · · , Dd held

by database owners DO1, · · · , DOd. A candidate block tuple CBT = 〈Bx
i , · · · , By

j 〉,
where Bx

i ∈ Bi, By
j ∈ Bj, 1 ≤ i, j ≤ d, i 6= j, 1 ≤ x ≤ |Bi|, 1 ≤ y ≤ |Bj| and

2 ≤ |CBT| ≤ d.

The comparison of records in each block in a given CBT of size 2 ≤ |CBT| ≤ d
results in a set of candidate record tuples where each candidate record tuple (CRT)
can be defined as:

Definition 4.2. Candidate record tuple (CRT)
Assume 〈Bx

i , · · · , By
j 〉 is a candidate block tuple CBT, with 2 ≤ |CBT| ≤ d, that needs

to be compared from the respective databases D1, D2, · · · , Dd. A candidate record
tuple CRT = 〈Rm

i , · · · , Rn
j 〉, where Rm

i ∈ Bx
i , Rn

j ∈ By
j , 1 ≤ m ≤ |Bx

i | and 1 ≤ n ≤ |By
j |.

It is important to note that our framework provides the capability for each layer
to function independently. The framework does not require all three layers to be
combined together to generate the blocks for comparison and classification, but once
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coupled they increase either the effectiveness, the efficiency, or both of the overall
linkage. Depending upon the availability of computational resources or cost budgets
these layers can be de-coupled as shown in Figure 4.1.

As can be seen in the right-hand side of Figure 4.1, a user is given the opportunity
to decide the next functionality they require once the blocks are formed for their
databases. These generated blocks can be input to either the second or third layers,
or can be used directly for comparison. Following the same principle the output of
the second layer can be used for comparison without using any functionality from
the third layer. We next describe the layers of our proposed framework in more
detail.

4.2.1 Layer 1: Block Generation

As illustrated in Figure 4.1 the first layer, named block generation, is aimed at blocking
the records in each database to be linked into a set of blocks. The block generation
layer accepts databases as input and outputs a set of blocks Bi for each database Di.
The block generation layer can be divided into three different steps.

1. Parameter setup: Based on the technique used in the block generation layer,
certain parameters likely need to be set. As shown in Figure 1.3, in MD-PPRL
without a LU all the DOs need to agree upon the set of parameters to be used.
On the other hand the parameters can be set by the LU if the blocking of these
databases is conduced by a LU.

2. Database masking: Once the parameters are agreed, each record of these databases
needs to be masked into an appropriate encoding format in accordance with the
technique to be used in the block generation process. For masking of individual
records different encoding techniques can be used as described in Chapter 2.

3. Blocks construction: The encoded records in those databases are grouped into
blocks by using an appropriate blocking technique available in the framework.
We propose three different multidatabase blocking techniques that can be used
in this layer and they are described in Chapters 5 to 7 in more detail.

As can be seen in the left-hand side of Figure 4.1, once the block generation
process is finished, blocks BA = {B1

A, B2
A}, BB = {B1

B, B2
B, B3

B}, and BC = {B1
C, B2

C}
have been generated from the databases DA, DB, and DC, respectively.

4.2.2 Layer 2: Subgroup Blocking

As shown in the right-hand side of Figure 4.1, the block generation layer outputs
sets of blocks for each database as input to the second layer which we name sub-
group blocking. The aim of this second layer is to generate the CBTs that need to
be compared across different subgroups of the databases to be linked. Assuming
d databases are to be blocked, our framework is capable of generating CBTs for
∑d

i=2 (
d
i) subgroup combinations. The subgroup blocking layer outputs a list of sets
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where each set contains CBTs that need to be compared for a given subgroup com-
bination of the databases that need to be linked. Our subgroup blocking techniques
are described in more detail in Chapter 8.

As can be seen in Figure 4.1, for databases DA, DB, and DC the subgroup blocking
layer generates CBTs for subgroup combinations (DA, DB), (DA, DC), and (DB, DC)
and (DA, DB, DC), of sizes 2 and 3, respectively. The user can then input these gen-
erated CBTs to the third layer, which we will be described next.

4.2.3 Layer 3: Meta-blocking

As we discussed in Chapter 1, MDRL requires an exponential number of record pair
comparisons even after a blocking technique has been applied. The third layer of our
framework, called meta-blocking, focuses on addressing this problem by reducing the
number of redundant record pair comparisons in a given set of CBTs to improve the
efficiency of a linkage with no loss in effectiveness.

We consider two categories of redundant record comparisons, which are repeated
and superfluous comparisons (as will be formally defined in Chapter 9), to be re-
moved from the overall record comparison space. Repeated record comparisons oc-
cur when the same pair of records is compared repeatedly for multiple CBTs, while
superfluous comparisons occur between records in a CBT where previously a non-
match classification has been made, therefore rendering further comparisons with
other records in the same CBT unnecessary as they cannot lead to a set of matching
records across databases. We propose several techniques that can be used to remove
these unwanted CRTs which will be described in more detail in Chapter 9.

As shown in the example in Figure 4.1, the block comparisons 〈B2
A, B2

B, B2
C〉 and

〈B2
A, B3

B, B2
C〉 of subgroup (DA, DB, DC) are removed from the block comparison space

since they lead to unwanted record comparisons, for example, if there are no match-
ing records found for block pair comparison (B2

A, B2
C). This improves the efficiency

and effectiveness of the overall linkage of the three databases DA, DB, and DC, with-
out any loss in blocking quality.

4.3 Building Blocks used in Blocking Framework

Since each layer in our framework contains multiple techniques that can be employed
in blocking, some building blocks (components and methods) used are common
across those techniques. In this section we describe the building blocks used in
our framework.

4.3.1 Q-grams

We use character q-grams (also known as n-grams) in our blocking approaches to
encode attribute values (also known as blocking key values, BKV) to Bloom filters
(which will be described next). A q-gram is a character sub-string of length lq in
a given string such as a first name or an address [35]. A q-gram of length 2 is
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{_P, PE, ET, TE, ER, R_}

PETER

1 0 1 0 1 1 1 0 1 1

S

bf

BKV

Figure 4.2: Mapping of a padded BKV value PETER into a Bloom filter of lb f = 10
bits by using nh = 2 hash functions.

known as a bigram or digram, while a q-gram of length 3 is known as a trigram.
Often string values are prefixed and suffixed, which is also known as padding, with
a special character before they are converted into q-grams. This padding character
helps to identify the first and last characters of a string. A string of length ls contains
(lq − (lq + 1)) q-grams. For example, the string PETER can be padded with character
‘_’ and the resulting bigram (nq = 2) set is S = {_P, PE, ET, TE, ER, R_}. We use
q-grams in the masking step of the blocking techniques described in Chapters 5 to 7.

4.3.2 Bloom Filters

As detailed in Chapter 2, Bloom filters (BFs), which were proposed by Bloom [18],
have widely been used for encoding of records in PPRL approaches [59, 190, 193, 208].
BF encoding is commonly used in PPRL for matching records due to its efficiency
for encoding elements of a set and for querying if an element is a member of a set
hashed into a BF [26].

A BF is a bit vector of length lb f , where initially all the bits are set to 0. In
order to hash (encode) an element into the domain between 0 and lb f − 1 of a BF, nh
independent hash functions H = {h1, h2, · · · , hnh} are used. Furthermore, to store n
elements of the set S = {s1, s2, · · · , sn} into a BF, each element si ∈ S, 1 ≤ i ≤ n, is
encoded using these nh hash functions, and all bit (index) positions hj(si), 1 ≤ j ≤ nh,
are set to 1. In our blocking approaches we encode the BKVs of each record into one
BF. Figure 4.2 illustrates the encoding of a BKV into a BF. We use BFs in Chapters 5
to 7.

4.3.2.1 Optimal Parameter Settings for Bloom Filters

When generating BFs, it is crucial to use the optimal parameter settings in generating
BFs which balances the aspects of blocking quality, scalability, and privacy in PPRL
applications [189]. In this section we describe the calculation of optimal parameter
settings for BF encodings based on the attribute values in a given database.
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For a given BF length, lb f , and the expected number of q-grams generated for an
attribute value, nq, the optimal number of hash functions, nh, that minimises the false
positive rate, f p, can be calculated as [150]

nh =
lb f

nq
ln(2), (4.1)

leading to a false positive rate of

f p =

(
1

2ln(2)

) lb f
nq

. (4.2)

We can calculate the value for nq by analysing the attribute values of blocking keys
of a database that needs to be blocked in PPRL by calculating the average number
of q-grams that are generated from a record (i.e. we convert attribute values into q-
grams as described in Section 4.3.1 and count how many q-grams are generated on
average for a record).

For a given BF length lb f , we can calculate nh based on nq as calculated from
the database. For a given database and nq, longer BF (larger lb f ) will require more
hash functions. However, a larger nh would require more computations as more
hash values need to be calculated and encoded into a BF for each attribute value in a
record.

While nh and lb f determine the computational aspects of generating BFs, quality
and privacy will be determined by the false positive rate f p. A higher f p value
would result in a larger number of false positive matches (i.e. a set of non-matching
records classified to correspond to the same entity), and thus lower quality of the
linkage. At the same time, a higher f p will improve privacy, as it is more difficult for
an adversary to identify a record that corresponds to a certain BF with a higher false
positive rate [56, 190, 208].

It was shown by Mitzenmacher et al. that a BF should ideally have half of its bits
set to 1 (i.e. 50% filled) to achieve the lowest possible false positive probability for
given values of nq, lb f and nh [150]. Equations 4.1 and 4.2 in fact lead to a probability
that a bit position i of b f is set to 1 as [150]:

Pr[b f [i] ≡ 1] = e
−nh ·nq

lb f = 0.5 (4.3)

In PPRL, using optimal settings is important, because the bit patterns and their
frequencies in a set of BFs can be exploited by a cryptanalysis attack [39, 134]. Such
an attack exploits the fact that less frequent 1 bits in BFs can provide information
about rare q-grams and thus rare attribute values. In our experimental evaluation we
will set the BF parameters for our approach according to the discussion presented
here and following earlier BF based approaches in PPRL [190].
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Algorithm 4.1: Basic secure summation protocol (BSS)
Input : d - Number of DOs

ni - The secret input of DOi, 1 ≤ i ≤ d

Output: E - Final sum where E ← ∑d
1 ni

1 DO1 generates a random number r
2 DO1 computes partial sum sp1 ← n1 + r
3 DO1 sends sp1 to DO2
4 DO2 receives sp1
5 for i ∈ [2, 3, · · · , d] do // DO2 to DOd follow the same steps

6 DOi computes partial sum spi ← spi−1 + ni
7 if i == d then // Check if the current DO is DOd

8 DOi sends spi to DO1
9 DO1 receives spi

10 end
11 else
12 DOi sends spi to DOi+1
13 DOi+1 receives spi
14 end
15 end
16 DO1 computes final sum E ← spd − r // Substract r from final partial sum

17 DO1 sends final sum E to other DOs
18 Other DOs receive final sum E

4.3.3 Secure Summation protocols

As detailed in Section 2.4, secure summation is a secure multi-party computation
(SMC) protocol that can be used to calculate a global summation over private nu-
merical inputs held by multiple DOs [45]. We use the secure summation protocol as
a communication protocol in our blocking approaches in Chapters 5 and 6.

As we detailed in Chapter 2, secure summation protocols are susceptible to col-
lusion risk [45]. In the following sub-sections, we describe several existing secure
summation protocols and we then propose a new protocol that exhibits improved
security with regard to different types of collusion compared to these existing pro-
tocols. We provide an algorithmic description of each protocol, where we assume
the two inputs to each protocol are: d ≥ 3, the number of participating DOs, and
the private numerical input to the protocol by each DOi, ni, with 1 ≤ i ≤ d. Each
protocol securely calculates and returns the final sum E = ∑d

i=1 ni without revealing
any of the ni to any other DOs.

4.3.3.1 Basic Secure Summation Protocol (BSS)

Algorithm 4.1 describes the steps involved in this basic protocol [45, 122]. Initially
DO1 chooses a large random number r (line 1) which it keeps secret from all other
DOs. It then adds r to its input n1 (line 2) to generate the partial sum sp1. Then DO1

sends sp1 to DO2 (line 3). Since r is random, DO2 can not learn anything about n1.
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Algorithm 4.2: Encrypted secure summation protocol (ESS)
Input : d - Number of DOs

ni - The secret input of DOi, 1 ≤ i ≤ d

Output: E - Final sum where E ← ∑d
1 ni

1 LU generates pk and sk of public and private key pair, respectively
2 LU sends pk to all DOs
3 DOs receive pk
4 for i ∈ [1, 2, · · · , d] do // All DOs follow the same steps

5 εi ← E(ni,pk) // Encrypt the secret input

6 if i == 1 then // Check if the current DO is DO1

7 DO1 sends ε1 to DO2
8 DO2 receives ε1
9 end

10 else
11 DOi computes partial sum spi ← spi−1 + εi
12 if i == d then // Check if the current DO is DOd

13 DOd sends spd to LU
14 LU receives spd
15 end
16 else
17 DOi sends spi to DOi+1
18 LU receives spi
19 end
20 end
21 end
22 LU gets the E ← D(spd, sk) // Decrypt the received patial sum value

23 LU sends final sum E to DOs
24 DOs receive final sum E

DO2 then adds its value n2 to sp1 (n1 + R), and sends the result to DO3. This
process is repeated (lines 5 to 15) until all the DOs have added their values, and the
partial sum spd = r + n1 + · · ·+ nd is received by DO1 (line 9). Now DO1 subtracts
r from spd (line 16) and the resulting sum E is distributed to all other DOs (line 17).
Figure 2.2 on page 32 shows an example of BSS for three DOs.

4.3.3.2 Encrypted Secure Summation Protocol (ESS)

The idea of this protocol is to use a public and private key pair for encrypting and de-
crypting of private inputs, respectively, as detailed in Algorithm 4.2 [213, 232]. ESS
uses the partially homomorphic Paillier cryptosystem [161]. As detailed in Chap-
ter 2, homomorphic encryption is a reliable SMC technique for performing secure
computation among several DOs.

In this protocol a linkage unit (LU), a trusted third party, generates the public
(pk) and private (sk) key pairs. We assume a LU is employed to facilitate the secure
summation across d DOs. The LU sends pk to all DOs to encrypt their private inputs,
while sk is kept secret with the LU (lines 1 and 2).
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As shown in Algorithm 4.2, each DOi encrypts its own private input ni using the
function E() and the public key pk (line 5). The encrypted input ε i is then sent to the
next DOi+1 which adds ε i with its own encrypted input ε i+1 (lines 6 to 20). The final
encrypted sum spd is sent to back to the LU (line 13). Then the LU decrypts spd in
function D() using sk to get the final sum E (line 22). The final sum E is sent to all
DOs (line 23).

4.3.3.3 Salted Secure Summation Protocol

Salting is a technique that has been used to improve privacy against dictionary at-
tacks on one-way hash functions where an additional string is concatenated with the
value that is to be encrypted [189, 213]. As detailed in Algorithm 4.3, each DOi adds
an additional random (salt) value ri to its own private input ni. Similar to ESS, the
SSS protocol requires a trusted third party because individual salt values cannot be
shared between the DOs to prevent collusion. Let us assume a LU is employed in
this protocol.

Algorithm 4.3: Salted secure summation protocol (SSS)
Input : d - Number of DOs

ni - The secret input of DOi, 1 ≤ i ≤ d

Output: E - Final sum where E ← ∑d
1 ni

1 for i ∈ [1, 2, · · · , d] do // All DOs follow the same steps

2 DOi computes a random salting value ri
3 DOi sends ri to the LU
4 LU receives ri
5 if i == 1 then // Check if the current DO is DO1

6 DO1 computes partial sum sp1 ← n1 + r1
7 DO1 sends sp1 to DO2
8 DO2 receives sp1
9 end

10 else
11 DOi computes partial sum spi ← spi−1 + ni + ri
12 if i == d then // Check if the current DO is DOd

13 DOd sends spd to LU
14 LU receives spd
15 end
16 else
17 DOi sends Ei to DOi+1
18 DOi+1 receives Ei
19 end
20 end
21 end
22 LU computes r ← ∑d

i=1 ri // Add all random salt values

23 LU computes final sum E ← spd − r // Substract salt values from final partial sum

24 LU sends final sum E to DOs
25 DOs receive final sum E
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In lines 2 and 3, each DOi starts by generating a random salting value ri and
sends it to the LU. Then DO1 adds n1 with r1 and the resulting sum sp1 is sent to
DO2 (lines 6 and 7). Following the same steps, each other DOi (with i > 1) adds
its own private input ni and ri to partial sum spi−1 sent to it by the previous DO
(lines 10 to 20). For example, DO2 adds its private input n2 and r2 with sp1 and the
resulting sum sp2 is sent to DO3. Finally, DOd sends the final partial sum spd to the
LU (line 13). The LU computes the final sum E by subtracting the random salts of all
DOs from spd (lines 22 and 23) and the resulting E is sent to all DOs (line 24).

4.3.3.4 Randomly-shared Secure Summation Protocol (RSS)

As detailed in Algorithm 4.4, the RSS protocol uses a set of d random shares of each
private input value ni to compute the final summation [201]. Similar to BSS, the RSS
protocol can be used in linkage scenarios where no trusted third party is available.
Each DOi first computes d random shares (rj

i , with 1 ≤ j ≤ d) of its ni by using the
function computeShares() (line 2). Each share rj

i is then sent to the corresponding DOj
(lines 3 to 7). Each DOi then adds all the random shares it receives from the other
DOs with the random share of its own ni to calculate its partial sum spi (line 9). Each
DOi then sends spi to DO1 (lines 10 to 13). DO1 adds all sps to compute the final
summation E (line 15). Finally, the computed E is sent to all other DOs (line 16).

Algorithm 4.4: Randomly-shared secure summation protocol (RSS)
Input : d - Number of DOs

ni - The secret input of DOi, 1 ≤ i ≤ d

Output: E - Final sum where E ← ∑d
1 ni

1 for i ∈ [1, 2, · · · , d] do // All DOs follow the same steps

2 DOi computes a list of random shares Ri ← computeShares(ni, d), such that

∑d
j=1 rj

i ∈ Ri = ni

3 for j ∈ [1, 2, · · · , d] do // All DOs follow the same steps

4 if i 6= j then // Send each share to its corresponding DO

5 DOi sends a random share rj
i to DOj

6 DOj receives rj
i

7 end
8 end
9 DOi computes spi = ∑d

j=1 ri
j // Add all the received shares

10 if i 6= 1 then // Check if the current DO is not DO1

11 DOi sends spi to DO1
12 DO1 receives spi
13 end
14 end
15 DO1 computes final sum E ← ∑d

i=1 spi // Add all the partial sum values

16 DO1 sends final sum E to all other DOs
17 Other DOs receive final sum E
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4.3.3.5 Homomorphically Salted Secure Summation Protocol (HSS)

As detailed in Algorithm 4.5, we now propose a novel secure summation (HSS) pro-
tocol which is a hybrid approach between ESS and SSS, that is to combine the homo-
morphic encryption scheme with salting to perform secure communication between
the DOs which is less vulnerable to collusion, as we discuss in the following sub-
section. Similar to both ESS and SSS, the HSS protocol employs a LU to compute the
final summation value.

First, the LU generates the required public (pk) and private (sk) key pair for
encryption and decryption of messages (line 1). Then the LU distributes pk to all
DOs (line 2). As with SSS, each DOi first generates a random salting value ri (line 5)
and then adds its private input ni to ri to compute the partial sum value spi (line 6).
Each DOi then encrypts ri and spi using pk into r′i and ε i (lines 7 and 8).

Algorithm 4.5: Homomorphically salted secure summation protocol (HSS)
Input : d - Number of DOs

ni - The secret input of DOi, 1 ≤ i ≤ d

Output: E - Final sum where E ← ∑d
1 ni

1 LU generates pk and sk of public and private key pair, respectively
2 LU sends pk to all DOs
3 DOs receives pk
4 for i ∈ [1, 2, · · · , d] do // All DOs follow the same steps

5 DOi computes a random salting value ri
6 spi ← ni + ri // Add the secret input and the salting value

7 r′i ← E(ri,pk) // Encrypt the salting value

8 εi ← E(spi,pk) // Encrypt the partial sum value

9 if i == 1 then // Check if the current DO is DO1

10 DO1 sends ε1 and R′i to DO2
11 DO2 receives ε1 and r′i
12 end
13 else
14 DOi computes partial sum εi ← εi−1 + εi
15 DOi computes r′i ← r′i−1 + r′i
16 if i == d then // Check if the current DO is DOd

17 DOd sends εd and r′d to LU
18 LU receives εd and r′d
19 end
20 else
21 DOi sends εi and r′i to DOi+1
22 DOi+1 receives εi and r′i
23 end
24 end
25 end
26 LU computes final sum E ← D(εd, sk)− D(r′d, sk) // Decrypt the received values

27 LU sends final sum E to DOs
28 DOs receive final sum E
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Figure 4.3: Collusion scenarios that are possible in MD-PPRL.

DO1 then sends its encrypted values ε1 and r′1 to DO2. DO2 updates its encrypted
results ε2 and r′2 by adding ε1 and r′1 as received from DO1. DO2 then sends the
updated ε2 and r′2 to DO3. All the other DOs follow the same process (lines 13 to 24),
and finally DOd sends εd and r′d to the LU (line 17). The LU computes the final sum
E by subtracting the decrypted sum of random salts from the decrypted final partial
sum (line 26) and then sends E to all DOs (line 27).

4.3.3.6 Overall assessment of secure summation protocols

We now analyse the privacy of the five presented secure summation protocols with
regard to different collusion scenarios and then evaluate their complexities in terms
of computation and communication aspects with different numbers of DOs and input
data sizes. As illustrated in Figure 1.3, we analyse the applicability of each protocol
according to the two MD-PPRL models which are, (1) only DOs are participating and
(2) a linkage unit (LU) is also involved in the linkage. We assume d ≥ 3 DOs.

Privacy Analysis: As detailed in Section 2.4.5 collusion between the participating
parties is a privacy risk in many real-world multi-party applications. Figure 4.3
shows the privacy of all presented protocols under different collusion scenarios.

As shown in Figure 4.3, for the linkage model without the LU, a group of DOs
can collude with each other to identify the private input of one or more other DO(s).
We consider three possible collusion scenarios under this model: (1) no collusion; (2)
two DOs collude, where they aim to identify the private input of a third DO they
communicate with; and (3) d− 1 DOs collude with the aim of identifying the private
input of the only non-colluding DO. This third scenario is the most challenging one.

For the linkage model with a LU, collusion can occur either between the DOs, or
between the LU and one or more DOs. Apart from the collusion scenarios described
above, DOs can collude with the LU in three different ways: (1) one DO colludes
with the LU to identify the private input of another DO that it communicates with;
(2) two or more DOs collude with the LU to learn the private input(s) of one or more
other DO(s); and (3) d− 1 DOs collude with the LU to identify the private input of
the only non-colluding DO.
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We now analyse the privacy of each presented secure summation protocol in
terms of these collusion scenarios. The BSS protocol is most susceptible to collusion
since the private input of any DO can be identified if its adjacent DOs collude with
each other. For example, the BSS protocol with 3 DOs has a collusion risk if DO1

and DO3 collude with each other, which enables them to learn the private input of
DO2. Hence, the adding of a random value in BSS does not provide privacy against
collusion for partially summed values computed in the intermediate protocol steps.

The ESS protocol uses a homomorphic encryption scheme to sum the private
inputs of the participating DOs. However, ESS requires a LU to generate the keys
(public and private) for the encryption and decryption of messages. Any collusion
between DOs is not possible because the private key is only known to the LU. How-
ever, a collusion between DOs and the LU can compromise the privacy of the private
input of another DO since each encrypted message with a partially summed result
can be decrypted by the LU which can reveal the private input of a DO.

The SSS protocol allows each DO to generate their own random value (salt) to
add to their private input value. Since the DOs that do not collude do not share their
own random value with any other DO, collusion between DOs does not compromise
the privacy of the private input values. However, the SSS protocol requires each
individual salt value to be sent to the LU to compute the final summed value. Any
collusion between DOs and the LU compromises the privacy of SSS as DOs can
obtain the private value of another DO.

Compared to BSS, the RSS protocol is secure against collusion between DOs to
learn another DO’s private input since each DO keeps a random share of its own
private value hidden from all the other DOs. However, since each DO sends its
partially summed random shares to the first DO (DO1), collusion between DO1 and
two or more other DOs can compromise the privacy of the protocol. For example if
DO1 colludes with d− 2 other DOs, then DO1 can identify the private value of the
remaining DO by subtracting each shared private input from the final summation.

Our proposed HSS protocol improves overall privacy of the secure summation
in two ways. First, each DO generates its own random salt value to be added to its
private input. The salt value of a given DO is only shared with the other DOs and the
LU in an encrypted form. This ensures even a collusion between d− 1 DOs cannot
deduce the random salt value of another DO. Second, each DO adds the encrypted
summation value of its private and salt values to the encrypted partial sums received
from the previous DO. Therefore, even if several DOs collude with the LU, neither
the LU nor a DO can calculate the private value of any other DO.

However, if d − 1 DOs collude with the LU, then the LU can calculate the pri-
vate input of the remaining DO which will compromise the HSS protocol. This is
still an open challenge for collusion scenarios where d− 1 DOs collude. Another re-
cently proposed secure summation protocol based on the ElGamal cryptosystem [65]
by Mehnaz et al. [145] also provides privacy against d− 2 DOs collusion scenarios,
however, their approach requires longer runtime and complex computations com-
pared to our HSS approach. We left the comparison of this novel protocol with our
HSS protocol as future work.
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Figure 4.4: (a) Average runtime with different number of database owners (DOs),
(b) average runtime for different vector sizes, (c) total number of messages commu-
nicated between DOs, and (d) average number of kilo bytes (KB) communicated in

each protocol. Note that plots have different y-axis scales.

Complexity: To evaluate the computation and communication complexities of
each presented secure summation protocol we experimented all secure summation
protocols with 3, 5, 7, and 10 DOs. In each experiment we used a vector with 50,
100, 500, and 1,000 integer values as private input to each DO. For ESS and HSS we
set the public and private key length to 128 bits. We ran all the experiments in a
computational environment which will be detailed in Section 4.4.

As shown in Figure 4.4, we measured the average runtime of each protocol with
different number of DOs and different input sizes, and the total number of messages
communicated between the participants in each protocol. As Figure 4.4 (a) shows,
as excepted ESS and HSS require longer average runtime per integer value commu-
nicated compared to the BSS, RSS, and SSS protocols. SSS is more efficient than
ESS and HSS as both these protocols use homomorphic encryption and decryption
functions on messages which are computationally expensive.

Figure 4.4 (b) shows that HSS requires longer runtime compared to the other
protocols. However, as can be seen from Figure 4.4 (c), RSS requires a much larger
number of messages to be communicated (as the number of DOs increases) because
random shares have to be exchanged between each pair of DOs. In real-world sce-
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Table 4.2: Categorisation of secure summation protocols in terms of privacy against
collusion between different parties participating in the linkage.

Linkage models Collusion scenarios

No
collusion

2 DOs
collude

(d− 1) DOs
collude

1 DO
colludes

with the LU

2 or more DOs
collude

with the LU

(d− 1) DOs
collude

with the LU

Without a LU BSS
RSS RSS No known protocol N/A N/A N/A

With a LU
ESS
SSS
HSS

ESS
SSS
HSS

ESS
SSS
HSS

ESS
SSS
HSS

HSS No known protocol

narios RSS will possibly require longer runtime due to communication delays.
As shown in Figure 4.4 (d), ESS and HSS both send more as well as larger mes-

sages compared to BSS, RSS, and SSS since each message contains an encrypted
value. However, the total message size of RSS increases quadratically with the num-
ber of DOs because of the pair-wise communication pattern of RSS. This potentially
becomes expensive for large numbers of DOs.

Table 4.2 summarises the applicability of each of these secure summation proto-
cols under different collusion scenarios. Overall, RSS and SSS are more suitable for
linkage scenarios with and without a TP, respectively, in terms of efficiency. How-
ever, for scenarios where collusion is possible between the participating parties HSS
is more suitable compared to all the other secure summation protocols as it provides
the highest security.

4.4 Experimental Setup

In this thesis we evaluate our proposed framework with regard to the challenges
of MD-PPRL (as described in Chapter 1). In Section 4.4.1 we provide a description
of the datasets used to conduct the experimental evaluation in this thesis. Then, in
Section 4.4.2, we describe the evaluation measures for assessing the three main prop-
erties of scalability, blocking quality, and privacy and we describe the implementation
environment in Section 4.4.3.

4.4.1 Datasets

We use two real-world datasets to empirically evaluate and compare the performance
of our proposed multidatabase PPRL framework. Table 4.3 provides an overview of
the datasets we use in our experiments in Chapters 5 to 10.

1. NC: This is a large real-world database that contains voter registration data
from the US state of North Carolina (NC)1. The NC dataset contains the names,
addresses, and ages of over 7 million voters, as well as their voter registration
numbers. This dataset has been used for the evaluation of various other RL and

1Available from: http://dl.ncsbe.gov/

http://dl.ncsbe.gov/
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Table 4.3: Datasets use in our experimental evaluations. ‘No. of databases’ is the
number of individual data files (each considered as a different database) used in the
experiments. ‘Dataset Size (min-max)’ is the minimum and maximum number of
records in the dataset. ‘Avg. overlap’ is the average percentage of records matched

across the dataset.
Datasets No. of databases Dataset size (min-max) Avg. overlap Provenance

NC-ORG 16 7,453,886 - 7,773,541 90% Real
NC-CLN 16 5,614,747 - 7,453,886 90% Real
NC-DRT 16 72,903 - 1,308,796 20% Real
NC-SYN 10 5,000 - 1,000,000 50% Synthetic

UK 6 17,033 - 31,059 5,000 records Real

PPRL approaches [59, 90, 91, 109, 119, 212, 213, 216]. We are not aware of any
other available large real-world datasets that contain records from more than
two databases that could be used to evaluate techniques for MD-PPRL.

To allow the evaluation of our MD-PPRL approaches on different number of
databases with different sizes we use 16 voter registration data files down-
loaded between February 2014 and December 2016 for our experiments. We
assume each data file as a separate database that belongs to a different DO. The
records in these data files can be categorised into one of three categories: (1)
exact matching: those are records that are matching exactly with other records
in a different data file over time, (2) unique: those are records that only appear
in one data file, and (3) updated: those are records where at least one attribute
value has changed across two data files collected at different points in time.
We keep the identifiers of the records, which allows us to identify true and
false matches and therefore calculate various blocking quality as discussed in
Chapter 2 and Section 4.4.2.

In these NC datasets we use the given name, surname, city, and Postcode (Zipcode)
attributes as blocking key attributes, as these are commonly used for RL [35,
174]. We use four different variations of the NC datasets in the experiments as
described below.

• NC-ORG: This dataset contains 16 original voter registration data files
each containing between 7,453,886 and 7,773,541 records. Each data file
of NC-ORG contains all three types of exact matching, unique, and updated
records.

• NC-CLN: From the NC dataset we extract unique and exact matching records
in each data file into a separate dataset NC-CLN (clean), where each data
file contains between 5,614,747 and 7,453,886 records and in each pair of
data files more than 90% of records are exact matches. Due to the skew-
ness of exact matching records we use the NC-CLN dataset only to evaluate
the scalability of our blocking techniques.
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• NC-DRT: We extract unique and updated records from each NC data file
where the data files in NC-DRT (dirty) contain between 72, 903 and 1,308,
796 records. Since each update in an attribute value across different points
in time is considered as a modification in a record, these data files are
used to evaluate the effect of real-world dirty data on the blocking quality
of our approaches.

• NC-SYN: In order to evaluate our approach with different levels of data
quality, we use a synthetic dataset (NC-SYN) that is created by extracting
records from the original NC dataset. We used and modified a recently
proposed personal data generation and corruption tool (GeCo)2 to gener-
ate these synthetic datasets [40, 204].

This dataset contains subsets including 3, 5, 7 and 10 databases, where
each subset contains datasets with 5, 000, 10, 000, 50, 000, 100, 000, 500, 000
and 1, 000, 000 records. In each of these subsets, 50% of records were
matches, i.e. half of all records occur in the subsets of all databases.

We also created groups of datasets where we included a varying number
of corrupted records into the sets of overlapping records (ranging from 0%
to 80% corruption, in 20% steps). We applied various corruption functions
in different numbers (ranging from 1 to 3) to randomly selected attribute
values. This allows us to investigate how our techniques can handle dirty
data. We applied various corruption functions, including character edit
operations (insertions, deletions, substitutions, and transpositions), and
optical character recognition and phonetic modifications based on look-
up tables and corruption rules [40].

As a result, in these synthetic datasets a certain percentage of records in
the overlap were modified for randomly selected databases. Therefore,
some of these records are exact matching across some databases, while in
other databases these records cannot be exactly matched. This simulates
for example the situation where three out of five hospitals have the correct
and complete contact details (like name and address) of a certain patient,
while in the fourth and fifth hospital some of the details of the same pa-
tient are changed, contain errors, or are missing.

2. UK: This dataset, as used in and provided by [77], consists of census records
collected from the years 1851 to 1901 in 10 year intervals for the town of Rawten-
stall and surrounds in the United Kingdom (UK). It contains approximately
150,000 individual records of 32,000 households. Nearly 5,000 records have
been manually linked by domain experts providing partial gold standard data
for testing. We consider data for each census year as a different database which
allows us to evaluate our approaches with six different databases.

2Available online: http://dmm.anu.edu.au/geco [204]
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4.4.2 Evaluation Measures

For the empirical evaluation of our proposed framework we consider the three prop-
erties of privacy, scalability, and blocking quality of PPRL. As we will describe next,
scalability and blocking quality are measured based on the candidate record tuples
(CBTs) generated by our framework.

4.4.2.1 Privacy Measures

To evaluate the privacy of different techniques proposed in our framework we assess
the risk of disclosure by calculating the probability that an attacker can correctly
identify a value in a database (as described in Section 2.5 on page 38). To calculate
the risk of disclosure of each attribute value (BKV) an attacker can use a publicly
available database (global database) to conduct a frequency analysis on the attribute
values (as described in Section 2.4).

To evaluate the privacy under the worst case scenario, we assume a publicly avail-
able database G which can be considered to be equivalent to the linked database D,
even though this might not be practical in many real-world situation. We consider
the assumption G ≡ D since the calculation of disclosure risks using an external
global database depends on the choice of the global database [54]. In addition, an
external global dataset might not be available for privacy evaluation. Hence, con-
ducting a privacy attack using the database D as G provides the highest possible risk
of disclosure of a real-world PPRL protocol if an attacker has access to such database.

As described in Section 2.5, we use the normalised probability of suspicion (PS)
and disclosure risk (DR) measures to evaluate the overall privacy of each technique
in our framework. Since MD-PPRL involves several DOs (d ≥ 3) we compute the DR
values for each database to be linked separately and compute the average to assess
the overall privacy of our framework. The set of DR measures that are used in our
framework is given below.

Average maximum disclosure risk (Avg.DRMax) =
∑d

i=1 DRMax(i)
d

(4.4)

Average mean disclosure risk (Avg.DRMean) =
∑d

i=1 DRMean(i)
d

(4.5)

Average median disclosure risk (Avg.DRMed) =
∑d

i=1 DRMed(i)
d

(4.6)

Average marketer disclosure risk (Avg.DRMkt) =
∑d

i=1 DRMkt(i)
d

(4.7)

We also measure the corresponding minimum, maximum, and median of these
disclosure risk values from d databases as well.
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4.4.2.2 Scalability Measures

Scalability is the second property that needs to be measured in a multidatabase link-
age. Scalability of a blocking technique depends on the complexity of the algorithms
used which is in general measured using the big-O notation [7]. We measure the
complexity of our approaches in terms of the number of record pair comparisons
that are generated by blocking (records pairs that need to be compared in a given set
of CRTs).

As detailed in Chapter 2, blocking reduces the number of record pair comparisons
by removing those pairs that are unlikely to refer to matches without comparing them
in detail in the comparison step of both RL and PPRL. As we detailed in Section 1.2,
the naïve pairwise comparison of multiple databases is of exponential and quadratic
complexities in the number and size of the databases to be linked, respectively.

In a MDRL context, separate pairwise matchings of records do not guarantee the
transitivity of the linkage decisions and thus require calculating similarities for each
record pair [73]. The records in each CRT need to be compared pairwise to identify
each CRT as a match or a non-match [183, 184].

For example, let us assume a CRT = 〈r1
A, r1

B, r1
C〉 of databases DA, DB, and DC,

where r1
A ∈ DA, r1

B ∈ DB, and r1
C ∈ DC. The comparison of these three records

requires to solve five linkage possibilities (clusterings): (1) r1
A and r1

B refer to the
same entity but r1

C refers to a different entity, (2) r1
A and r1

C refer to the same entity
but r1

B refers to a different entity, (3) r1
B and r1

C refer to the same entity but r1
A refers

to a different entity, (4) r1
A, r1

B, and r1
C refer to three different entities, and (5) r1

A, r1
B,

and r1
C refer to the same entity.

However, due to errors in attribute values of these records only using the calcu-
lated similarities of record pairs (r1

A, r1
B) and (r1

B, r1
C) can not resolve all these linkage

possibilities, because r1
C might not be matched with r1

A. Therefore, the linkage be-
tween r1

A, r1
B, and also r1

C requires r1
A to be compared with r1

C. Hence, each CRT with
records from d databases requires d×(d−1)

2 record pair comparisons. We now define
scalability measures for the MDRL context.

As described in Section 2.5, reduction ratio (RR) is a standard measure used in
record linkage to assess the efficiency of a blocking technique [36]. RR measures
how many candidate record pairs a blocking technique is able to reduce compared
to all possible record pairs. Assuming each database contains nr records, the total
comparison space results in ntotal = (nr)d × d×(d−1)

2 record pair comparisons for the
naïve pairwise comparison of d databases. We calculate the RR of blocking of d
databases as:

RR =
number o f candidate record tuples× d×(d−1)

2
ntotal

, (4.8)

where each candidate record tuple is of size d. This RR can be further simplified as:

RR =
number o f candidate record tuples

(nr)d , (4.9)
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Table 4.4: Different linkage possibilities of a CRT = 〈r1
A, r1

B, r1
C〉 with r1

A ∈ DA, r1
B ∈

DB, and r1
C ∈ DC. The match and non-match status are considered for the linkage

across all three databases DA, DB, and DC (i.e. no subset matching is considered). In
this example, = and 6= represent a match and non-match, respectively.

Clustering Linkage Possibility Match or Non-match
(1) 〈r1

A, r1
B, r1

C〉 (r1
A = r1

B), (r
1
A = r1

C), (r
1
B = r1

C) Match
(2) 〈(r1

A, r1
B), r1

C〉 (r1
A = r1

B), (r
1
A 6= r1

C), (r
1
B 6= r1

C) Non-match
(3) 〈r1

A, (r1
B, r1

C)〉 (r1
A 6= r1

B), (r
1
A 6= r1

C), (r
1
B = r1

C) Non-match
(4) 〈(r1

A, r1
C), r1

B〉 (r1
A 6= r1

B), (r
1
A = r1

C), (r
1
B 6= r1

C) Non-match
(5) 〈(r1

A), (r
1
B), (r

1
C)〉 (r1

A 6= r1
B), (r

1
A 6= r1

C), (r
1
B 6= r1

C) Non-match

To practically evaluate the efficiency and scalability of a blocking technique that
is used in our framework, we use several measures that are dependent on the com-
puting platform and the networking infrastructure used. To measure the scalability
of each blocking technique in terms of size of the databases we compute the average
runtime per DO that is required to perform blocking on a database with nr records
(assuming each DO performs blocking upon its database in its own computing envi-
ronment). We also use the total runtime of the entire protocol (summation of runtime
of all steps in a protocol including the communication steps) to measure the scalabil-
ity in terms of the number of databases to be linked. We also measure the memory
space required to perform the blocking, and the size and the number of messages
communicated between different parties (as defined in Section 2.4) that participate
in a linkage.

4.4.2.3 Quality Measures

Quality of blocking measures the effectiveness of the grouping of records into blocks.
In practice, the quality of blocking is assessed based on the available truth data which
is often difficult because no truth data with known match status are available in many
real-world applications [38].

In a multidatabase context, to consider a CRT of size d as a true match for the
linkage of corresponding d databases, all record pairs of the CRT need to be matched.
For example, to consider a CRT = 〈r1

A, r1
B, r1

C〉 as a true match it requires the record
pairs (r1

A, r1
B), (r1

A, r1
C), and (r1

B, r1
C) to be matched and all the other linkage possibilities

((2) to (5) as discussed in Table 4.4) between these three records are considered as
non-matches for the linkage of three databases. Table 4.4 summarises the different
linkage possibilities of this CRT for the linkage of databases DA, DB, and DC and
their match and non-match status.

Similarly, for subgroups of databases of different sizes that need to be linked, the
matches between subsets of record pairs are considered. For example, the record
clusterings (2), (3), and (4) shown in Table 4.4 are considered as matches for linkages
between databases (DA,DB), (DB,DC), and (DA,DC), respectively. Similarly as men-
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tioned above in Section 4.4.2, due to errors and variations in attribute values, out of
the record pairs (r1

A, r1
B), (r1

A, r1
C), and (r1

B, r1
C) of CRT = 〈r1

A, r1
B, r1

C〉, only (r1
A, r1

B) and
(r1

A, r1
C) could potentially be matches which makes the given CRT a match for the

only linkage of subgroups (DA,DB) and (DA,DC) of databases DA, DB, and DC.
In both RL and PPRL the quality of blocking is measured based on the classifica-

tion of the number of true matches (TM), false matches (FM), false non-matches (FN),
and true non-matches (TN), as well as true matches included in the candidate record
pairs generated by blocking (BM), and true non-matches included in the candidate
record pairs (BN), as described in Section 2.5.

We use the measures pairs completeness (PC) and pairs quality (PQ) for mea-
suring the quality of blocking [35]. We adapted the TM, FM, FN, and TN count as
the number of true matching, false matching, false non-matching, true non-matching
record tuples, and BM and BN as true matching and true non-matching CRT, as
discussed above, included in the generated CBTs, respectively, to facilitate the as-
sessment of blocking quality in MDRL and MD-PPRL contexts. We define the PC
and PQ for blocking of d databases as:

PC =
BM

TM + FN
(4.10)

PQ =
BM

BM + BN
(4.11)

As detailed in Section 2.5, F-measure (FM) is commonly used in RL applications
to measure the quality of classification [35, 229]. We adapted F-measure to measure
the effectiveness of blocking by computing the harmonic mean between PC and RR
which is calculated as:

FM = 2×
(

PC× RR
PC + RR

)
. (4.12)

4.4.3 Implementation Environment

We implemented all our proposed approaches using the Python programming lan-
guage [142] (version 2.7.3) since Python is flexible and supportive for writing pro-
grammes and scripts for rapid prototype development, and is ideally suitable for
iterative development of prototypes. We ran all our experiments on a server with 64-
bit Intel Xeon (2.4 GHz) CPUs, 128 GBytes of main memory, 4 TBytes of disk space,
and running Ubuntu 14.04.

To simulate the communication between the database owners and other parties
involved in a linkage, we created separate directories for each party that participates
in the linkage to store its data. These directories are used to read and write data into
files to represent communication of messages between corresponding parties in the
linkage. An advantage of this approach is that during the execution of communi-
cation steps no additional memory is needed to keep the communicated data. This
mechanism enables us to simulate RL and PPRL among multiple parties on the same
machine without requiring different individual machines.
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4.5 Cryptanalysis based Privacy Evaluation for MD-PPRL

As detailed in Section 2.4 on page 33, PPRL techniques are susceptible to privacy
attacks. In such attacks, an adversary can try to link records from an encoded
(masked) database to records in a global (publicly available) database in order to
re-identify records and/or attribute values in the encoded database (i.e. match en-
coded records, such as Bloom filters, to plain text records). We use a recently pro-
posed re-identification (cryptanalysis) attack method [39] to evaluate the privacy of
the proposed blocking techniques of our framework.

In our privacy evaluation we consider possible privacy attacks by parties involved
in the linkage. A privacy attack by a participating party provides the worst case
scenario of a privacy leakage, since a participating party has likely access to more
information than an external adversary, including knowledge about the PPRL pro-
tocol used, as well as the encoding methods and parameter values of the linkage
techniques and encoding algorithms used.

We use the attack method proposed by Christen et al. [39] to simulate a frequency
attack on the proposed Bloom filter (BF) based blocking techniques (as described
in Chapters 5, 6, and 7) used in our framework. As described in Section 2.4, the
proposed frequency attack method uses frequency counts and patterns in a set of
BFs to iteratively map bit patterns to known attribute values, aiming to re-identify
the encoded sensitive attribute values. This attack method does not require any
assumption on the BF parameters used when sensitive attribute values were encoded
which is appropriate in real-world scenarios.

The overview of this attack method is shown in Figure 4.5. In this method the
attacker has access to a set of encoded BFs, B, and their frequencies. Since the
attacker does not know anything about the set of parameters that has been used
in the encoding process, he can sample attribute values from a publicly available
database G (such as a telephone directory) and select a set of frequent values, V,
from an attribute that has a frequency distribution similar to the distribution of B. As
shown by Schnell and Borgs [193], the attacker can guess which attribute(s) has/have
been encoded based on the frequency distribution of the number of 1-bits (Hamming
weights) in B, because different attributes have distinctive frequency distributions.

As shown in Figure 4.5, in step (1a), the attacker first aligns BFs and attribute
values according to their frequencies and selects the set of most frequent values to
analyse further in the attack. Next he analyses each bit position in these selected BFs
and generates the sets of possible q-grams that can be assigned to each of these bit
positions. As shown in Figure 4.5, for each bit position i in the BFs, all corresponding
q-grams of the attribute values that have bit i set to 1 are added to the set c+[i]. The
set of q-grams of all attribute values with a value of 0 at bit position i are added
to the set c−[i] of not possible q-grams for that position, because a 0-bit means no
q-gram of an attribute value could have been mapped to position i.

In step (1b), for each position i an attacker obtains the set c[i] = c+[i] \ c−[i] of
q-grams that potentially could have been hashed to position i. Based on the attribute
values from G the attacker can try to identify which BF possibly encodes which value
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Figure 4.5: Outline of the cryptanalysis attack (adapted from [39]).

in G by considering the sets of possible q-grams in list C = [c[1], . . . , c[lb f ]], where
lb f is the length of a BF.

As shown in Figure. 4.5, in step (2) an attacker can analyse each BF in B and
remove those attribute values from G that are not possible matches according to C
because they do not contain any q-grams that would have been hashed to a certain
1-bit. For example, for the most frequent BF1 in Figure. 4.5, jone is a possible attribute
value because the 1-bits in positions 1 and 2 contain the set of q-grams of jo, on, and
ne.

4.6 Summary

In this chapter we have introduced our novel blocking framework that can be used
to block multiple databases efficiently and effectively. The proposed framework
contains three layers each contributing to a specific aspect in blocking in a multi-
database context. In our framework the first layer generates blocks for each database
that needs to be linked, the second layer identifies the blocks that need to be com-
pared across different subgroup combinations of these databases, and the third layer
reduces the record comparison space by removing redundant record comparisons.
Each layer comprises different techniques that can be used to facilitate the linkage
between databases according to user requirements.
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We also provided details on the building blocks (components, data structures, and
communication methods) that are used in our approaches followed by a detailed de-
scription of the experimental setup including the datasets, evaluation measures, and
computation environment that we use in the experiments. Finally, we provided a de-
tailed description about a cryptanalysis method that we use to evaluate the privacy
of our proposed techniques. Each of the following chapters describes in detail one
of our proposed novel MD-PPRL blocking techniques that are used in our frame-
work. We will then empirically evaluate these techniques in Chapter 10 using the
experimental setup presented in this chapter.
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Chapter 5

Tree based Blocking for
Multidatabase Privacy-preserving
Record Linkage

Addressing the scalability challenge in MD-PPRL is a primary dimension we con-
sider in our research. As mentioned in Chapter 1, the record pair comparison space
grows exponentially with an increase in the number of databases. In this chapter we
propose an efficient blocking technique that can be used in our blocking framework.
In Section 5.1 we introduce the aim of our blocking technique and in Section 5.2 we
provide an overview of our approach. As detailed in Section 5.3, our proposed ap-
proach minimises the multidatabase record comparison space by effectively group-
ing records into blocks using Bloom filters and a tree data structure. We analyse
our blocking technique in terms of complexity, blocking quality, and privacy in Sec-
tion 5.4, and empirically validate our analysis with a set of experiments as detailed
in Section 5.5. Finally, we summarise our findings in Section 5.6.

5.1 Introduction

Scalability is one prominent challenge that needs to be tackled by any linkage ap-
plication. As detailed in Chapter 1, when the number of databases to be linked is
increasing the record comparison space grows exponentially which makes the MD-
PPRL process significantly more challenging. Blocking (indexing) has been used for
many years in linking of two databases. Blocking reduces the large number of po-
tential comparisons by removing as many record pairs as possible that correspond
to non-matches. As a result, blocking decreases the amount of computational and
communication efforts required for the comparison of large databases. As surveyed
by Christen [36], Papakasidis et al. [165], and Steorts et al. [199], most existing block-
ing techniques are only considering the linkage of two databases. This provides us
with the motivation to develop blocking techniques for MD-PPRL that scale with an
increase in the number of databases to be linked.

89
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Table 5.1: Notation and terminology used in this chapter

BF Inverted index of Bloom filters
BT Block tree structure
D A database
A Set of blocking attributes
B0, B1 Block of Bloom filters having 0 and 1 in a given bit position
H Set of hash functions
Q A queue data structure
R, R.a, R.id A record, record attribute value, and a record identifier
S A set of q-grams
VR, VR, VG Ratio vector, random vector, and a global summed ratio vector
b f A Bloom filter in BF
bmin, bmax Minimum block size and maximum block size
d Number of database owners (or databases)
fij Ratio of bit position j of DOi
f p False positive rate
h(·) A hash function used for mapping a value into a Bloom Filter
jG Best splitting bit position
nh, nq, nr Number of hash functions, q-grams, and records
lq, lb f Length of a q-gram and a Bloom filter
oij Number of 1’s in bit position j for DOi
q A q-gram
v, v0, v1 A node, node with B0, and a node with B1

BF Bloom filter
BK Blocking key attribute
BKV Blocking key value
DO Database owner
PPRL Privacy-preserving record linkage
QID Quasi-identifier
MD-PPRL Multidatabase PPRL
SBT Single bit tree

In this chapter we propose a blocking technique for MD-PPRL that can provide
improved scalability, blocking quality, and privacy, which are important factors for
any practical PPRL applications. Our approach is based on an efficient tree data
structure to group records into blocks. The primary aim of our blocking approach is
to allow the database owners (DOs) to block their databases collaboratively without
using a linkage unit (LU). As we will describe in Section 5.4, this improves the privacy
of our approach since the participating DOs are less likely to collude [216]. This
makes our approach suitable for practical linkage scenarios where no LU is available
or can be used to conduct the linkage. We also use a secure multi-party computation
(SMC) protocol, as described in Section 4.3 to perform computations securely across
the DOs. The following subsections provide the proposed approaches in more detail.
Table 5.1 provides the notation and terminology we use in this chapter.
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Figure 5.1: A high-level overview of our approach. DA, DB, and DC represent the
databases held by the database owners DOA, DOB, and DOC, respectively. In step 1
all database owners need to agree on the parameter settings. In step 2 the database
owners independently encode their databases. In step 3 these encoded databases are
blocked by the database owners as we describe in Section 5.3. The output of step 3 is
a block tree structure for each database where the blocks are represented as leaves.
As we describe in Section 5.3, the blocks of each corresponding leaf in the block trees
need to be compared because each block tree is constructed in the same manner.
These corresponding blocks from different databases can then be compared using a
private comparison and classification technique [216]. For example, blocks 〈B1

A, B1
B,

B1
C〉, 〈B2

A, B2
B, B2

C〉, 〈B3
A, B3

B, B3
C〉, and 〈B4

A, B4
B, B4

C〉 are being compared because they
are in the leaves with the same path.

5.2 Overview of our approach

One major problem in currently available blocking solutions is that they do not pro-
vide enough control to the DOs over the block generation process. In the com-
parison step the blocks that contain a larger number of records will require more
computational time because more records need to be compared as we explained in
Section 4.4.2. On the other hand, blocks generated with a small number of records
are vulnerable to privacy attacks as we will explain in more detail in Section 5.4. To
overcome these problems, we suggest a parameterised blocking approach, where the
user can control the size of the blocks that will be generated. A high-level overview
of our approach is shown in Figure 5.1.

As illustrated in this figure, our approach has three main steps. In the first step
the DOs need to agree upon the parameters used for the blocking. Once the blocking
parameters are agreed upon, each DO encodes each of their records into Bloom filters
(BFs), as explained in Section 4.3 on page 68, to mask its original record values
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from the other DOs in step 2. This record encoding process improves the privacy
of the individual attribute values since the computations in the next phase are only
performed on these encoded values rather than on the original values. This record
encoding process is performed by each DO independently based upon the agreed
parameter values.

As illustrated in Figure 5.1, in the third step of our approach, each DO constructs
a balanced binary tree data structure (which we named as block tree) where the leaf
nodes contain the blocks generated for their database. As we reviewed in Chapter 3,
Schnell was the first to use a binary tree data structure as a blocking mechanism for
two database PPRL [188]. In our approach the tree construction process is performed
collaboratively where all DOs securely compute how the records in their respective
databases are arranged into blocks by using a secure communication protocol. Once
the blocking is completed each participating DO will have the same block tree struc-
ture where the records in the respective blocks can be compared using any private
comparison and classification technique [212].

We assume d DOs in our approach each with a database, and d ≥ 3. We also
assume a set A of quasi-identifiers [94], such as first name, last name, address details,
etc., are common to all the databases. These attributes in A are used as blocking key
(BK) attributes to group similar records into blocks.

5.3 Tree Based Scalable Blocking Approach

In this section we describe each phase of our approach in detail.

1. Parameter Agreement

In step 1 of our approach, all DOs agree upon the set of parameters to be used
for the block generation process. For the encoding of records in step 2, each
DO needs to agree upon the length of the BF, lb f , the length (in characters) of
q-grams, lq, the number nh of hash functions (H), and the set A of attributes
to be used as BKs. To control the size of the blocks generated by our approach
we introduce the two parameters minimum block size, bmin, and maximum block
size, bmax. These parameters specify the minimum and maximum number of
records that need to be included in a block, respectively. The DOs need to agree
upon the bmin and bmax parameter values before starting to construct their tree
structures.

2. Record Encoding

In the second step of our approach, each DOi encodes the records in its database
Di into BFs as detailed in Algorithm 5.1. In line 2, each DOi iterates over its
database and each record R is encoded into a BF. The function genBloomFilter()
creates a bit vector b f of length lb f with all bits set to 0 (line 3).

In lines 4 and 5, each blocking key value (BKV) in R.a for each BK a ∈ A is
converted into a set S of q-grams by using the function genQGrams(). Each
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Algorithm 5.1: Bloom filter generation by DOi

Input : Di - Database belonging to DOi
A - Set of selected BK attributes
lq - Character length of a q-gram
lb f - Length of a Bloom filter
H - Set of hash functions, where |H| = nh

Output: BFi - Inverted index of Bloom filters

1 BFi ← {} // Initialisation of the inverted index

2 foreach R ∈ Di do // Iterate over each record

3 S← ∅, b f ← genBloomFilter(lb f ) // Generates an empty Bloom filter

4 foreach a ∈ A do // Iterate over each blocking attribute

5 S.add(genQGrams(R.a, lq)) // Generates set of q-grams

6 foreach q ∈ S do // Iterate over each q-gram

7 foreach h ∈ H do // Iterate over each hash function

8 j← h(q) // Get the bit position

9 b f [j]← 1 // Set the bit position to 1

10 end
11 end
12 end
13 BFi[R.id]← b f // Add the generated Bloom filter to BFi

14 end
15 return BFi

q-gram in a set S is then hashed using the set H of hash functions, and the
respective index positions in b f are set to 1 (lines 6 to 9). Finally, each BF b f is
added to an inverted index data structure BFi using its record identifier (R.id)
as a key (line 13). The BFi is used in the next step of our approach to construct
the block tree structure.

3. Block Tree Construction

In the third step of our approach, each DO constructs its block tree based on
a single-bit tree data structure by using the generated BFi from their database.
A single-bit tree (SBT) is a binary tree data structure that can be used to store
information about a set of bit vectors. SBT was proposed by Kristensen et
al. [129] to efficiently find similar chemical fingerprints in a database (as was
described in Chapter 3 on page 48).

The construction of the tree starts from the root node, where all bit vectors are
assigned to the root. At each node in the tree a position i in the bit vector
is chosen to best split all the BFs of the node into two partitions of ideally
equal size, which in turn will keep the tree as balanced as possible. All bit
vectors with a 0 at position i are stored in the left sub-tree while all bit vectors
with a 1 at position i are stored in the right sub-tree. This division is repeated
recursively until all the bit vectors in a given node are the same, or all the bit
positions have been used for the construction, or all blocks in leaf nodes are
within the required size limit. Figure 5.2 shows an example of a SBT.
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Figure 5.2: An illustrative example of a single-bit tree. In this example, the blue
squares represent the bit positions chosen for the given node, while the light gray
squares mark bit positions chosen at an ancestor. The blue triangles represent sub-
trees that are not shown. The percentage value under each chosen bit position shows
the number of bit vectors that contain a 0 or 1 in the selected position out of all the

bit vectors processed in a node.

It is not directly apparent how best to choose which bit position to split the data
on at a given node when building the tree structure. The selection of the best
splitting bit position requires information about all the bit vectors (BFs) held
by a given node when building the tree. This requires all the BFs assigned to a
given node to be inspected, and then to select a bit position which contains 0 in
as close to half of all the BFs as possible and 1 in the others. The construction
of a SBT for an individual DO is shown in Algorithm 5.2.

In the beginning of the tree construction, a root node is created and the full
inverted index BFi is assigned to this root node as its data (line 1). A queue
Q is created to hold the nodes, where initially the root node is assigned into
the queue (line 2). We designed the tree construction to compute nodes in an
iterative manner rather than recursively which is more efficient in processing
nodes according to a set of experiments. In each iteration the node at the
beginning of Q is processed. The processing of a node can be split into three
sub-steps, which are:

3.a Perform secure summation to find the best splitting bit position.

3.b Split the set of BFs at the node.

3.c Generate the child nodes of the tree and assign BFs to these child nodes.

The iteration of processing nodes continues until the queue becomes empty as
per line 3 in Algorithm 5.2. We next describe each of these sub-steps for a given
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Algorithm 5.2: Block tree construction by DOi

Input : BFi - An inverted index of BFs belonging to DOi
bmin - Minimum block size
bmax - Maximum block size

Output: BTi - Block tree of database Di

1 BTi.root← makeNode(BFi) // Create the root node

2 Q← [BTi.root] // Initialisation of queue

3 while Q 6= ∅ do // Iterate until queue is empty

4 v← Q.pop() // Get the current node

// Sub-step 3.a

5 Vi
R ← genRatios(v) // Generate local bit ratios

6 VG ← secureSummation(Vi
R) // Compute bit ratios globally

7 jG ← getBestBit(VG) // Get the best bit position for splitting

// Sub-step 3.b

8 v0, v1 ← splitNode(v, jG) // Split current node data

// Sub-step 3.c

9 if (|v0.B| ≥ bmin) AND (|v1.B| ≥ bmin) then // Check the block sizes

10 v.left← v0 // Add v0 as the left child of the current node

11 v.right← v1 // Add v1 as the right child of the current node

12 if (|v0.B| ≥ bmax) then // If block too large

13 Q.push(v0) // Add to queue for futher processing

14 end
15 if (|v1.B| ≥ bmax) then // If block too large

16 Q.push(v1) // Add to queue for futher processing

17 end
18 end
19 end
20 return BTi

iteration in more detail. Figures 5.3 to 5.6 illustrate the steps of this algorithm
with an example of three DOs.

3.a Find best bit position for splitting
At each iteration the node v that is available at the front of the Q is pro-
cessed. The function genRatios() processes the BFs available in node v to
generate a vector Vi

R of length lb f . Vi
R contains the ratios fij between the

number of 0’s and 1’s for each bit position j in a set of BFs (line 5), as is
calculated using Equation 5.1:

fij = abs(0.5−
oij

nb f
), (5.1)

where fij is the 0/1 ratio of bit position j of DOi, oij is the number of BFs
in v that have a 1-bit at position j, nb f = |v| is the size of v, and Vi

R =
[ fi1, fi2, fi3,· · · , filb f ].
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Database Owner A (DOA) Database Owner B (DOB) Database Owner C (DOC)

BFA BFB BFC
b f 1

A 0 1 1 0 0 b f 1
B 1 0 0 1 1 b f 1

C 0 1 1 1 0
b f 2

A 1 0 1 0 1 b f 2
B 1 0 1 0 1 b f 2

C 0 1 0 1 0
b f 3

A 1 0 0 0 0 b f 3
B 0 0 1 1 0 b f 3

C 1 0 1 1 0
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A 0 1 1 1 0 b f 4

B 1 1 1 1 1 b f 4
C 1 1 0 0 1

b f 5
A 0 1 0 0 1 b f 5

B 1 1 0 0 0 b f 5
C 0 0 1 0 0

b f 6
A 1 1 0 1 0 b f 6

B 0 0 1 0 1 b f 6
C 1 0 0 1 0

b f 7
A 0 1 1 1 0 b f 7

B 0 0 0 1 1 b f 7
C 0 1 1 0 1

b f 8
A 0 1 0 0 0 b f 8

B 1 0 1 1 1 b f 8
C 0 1 0 1 0

Abs Diff from 0.5 Abs Diff from 0.5 Abs Diff from 0.5
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R = 1/8 1/4 0 1/8 1/4 VB
R = 1/8 1/4 1/8 1/8 1/4 VC

R = 1/8 1/8 0 1/8 1/4

Figure 5.3: Bloom filter generation and calculation of 0/1 bit ratios and absolute
differences from 50% filled (line 5 in Algorithm 5.2).

Random vector (VR) = 10 5 12 13 6

VR + VA
R VR + VA

R + VB
R VR + VA

R + VB
R + VC

R
10.125 5.25 12.0 13.125 6.25 → 10.25 5.5 12.125 13.25 6.5 → 10.375 5.625 12.125 13.375 6.75

Globally summed ratio vector (VG): 0.375 0.625 0.125 0.375 0.75

Ranking of bit positions based on VG: 2 3 1 2 4

Best splitting bit position (jG) = 3

Figure 5.4: Secure summation of absolute differences and selecting best bit position
for splitting (lines 6 and 7 in Algorithm 5.2). In this example bit 3 will be selected as

the best bit position for splitting.

The bit positions that have a 1-bit in half of the BFs in a given node will
have the lowest ratio value of 0, and the bit positions that have a 1-bit or
0-bit in all the BFs are given the highest ratio value of 0.5. An example of
this ratio calculation is illustrated in Figure 5.3.

Once all DOs have computed their ratio vectors, VRs, locally based on their
node data, a common bit position needs to be selected as the best bit for
splitting the set of BFs for the child nodes in the next level of the tree. For
computing the global bit position jG, we extend Algorithm 4.1 (on page 70)
in the function secureSummation() to securely compute the summation of
these VRs of ratios (each being a vector of length lb f ), where each DO’s
VR is considered as private input (line 6 in Algorithm 5.2). Similar to
Algorithm 4.1, DO1 generates a random vector VR of length lb f and follows
the steps in Algorithm 4.1 to compute a globally summed ratio vector VG.

Next the best splitting bit position jG is calculated and selected by ranking
the index positions in VG according to the summed values. The function
getBestBit() ranks the index positions in VG (line 7 in Algorithm 5.2), where
the index position with the lowest sum of fij’s gets the highest rank as
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Database Owner A (DOA) Database Owner B (DOB) Database Owner C (DOC)

BFA 0 BFB 0 BFC 0
b f 3

A 1 0 0 0 0 b f 1
B 1 0 0 1 1 b f 2

C 0 1 0 1 0
b f 5

A 0 1 0 0 1 b f 5
B 1 1 0 0 0 b f 4

C 1 1 0 0 1
b f 6

A 1 1 0 1 0 b f 7
B 0 0 0 1 1 b f 6

C 1 0 0 1 0
b f 8

A 0 1 0 0 0 b f 8
C 0 1 0 1 0

Abs Diff from 0.5 Abs Diff from 0.5 Abs Diff from 0.5
VA

R = 0 1/4 – 1/4 1/4 VB
R = 1/6 1/6 – 1/6 1/6 VC

R = 0 1/4 – 1/4 1/4

Random vector (VR) = 12 4 – 15 11

VR + VA
R VR + VA

R + VB
R VR + VA

R + VB
R + VC

R
12.0 4.25 – 15.25 11.25 → 12.167 4.417 – 15.417 11.417 → 12.167 4.667 – 15.667 11.667

Globally summed ratio vector (VG): 0.167 0.667 – 0.667 0.667

Ranking of bit positions based on VG: 1 2 – 2 2

Best splitting bit position (jG) = 1

Figure 5.5: The Next splitting iteration of the list of BFs in Figure 5.3 where bit
position 3 is 0 (i.e. left branch of the block tree). As in Figure 5.3, first the absolute
difference of 0/1 bit ratios from 50% filled is calculated for all bit positions except bit
position 3. Next a secure summation is performed on these absolute differences and
the bit position is selected for splitting. In this example, bit position jG = 1 will be

selected as the best position for splitting.

shown in Equation 5.2.

jG = argmin{j : (
d
2
−

d

∑
j=1

fij)}, (5.2)

This best index position jG is selected as the position for splitting the set of
BFs in the current node v. Figure 5.4 illustrates an example of computing
jG for the set of BFs illustrated in Figure 5.3. In this example bit position
3 is selected as the best bit position for splitting because it has the lowest
sum of ratio values.

3.b Splitting the set of Bloom filters
The selected global best bit position jG is used to split the set of BFs, B, of
the current node into two lists of BFs B0 and B1. In the function splitNode()
used in Algorithm 5.2 (line 8), all the BFs that contain a 0 in the best bit
position jG are assigned to the list B0 (left branch of the tree) and all others
are assigned to the list B1 (right branch of the tree). Next, two new nodes
v0 and v1 are created, where B0 and B1 are assigned as the data of v0 and
v1, respectively. Figures 5.5 and 5.6 illustrate an example of splitting a set
of BFs. The nodes v0 and v1 will be added to Q to be processed in the next
iterations depending upon the number of BFs contained in B0 and B1 as
explained next.
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Database Owner A (DOA) Database Owner B (DOB) Database Owner C (DOC)

BFA 1 BFB 1 BFC 1
b f 1

A 0 1 1 0 0 b f 2
B 1 0 1 0 1 b f 1

C 0 1 1 1 0
b f 2

A 1 0 1 0 1 b f 3
B 0 0 1 1 0 b f 3

C 1 0 1 1 0
b f 4

A 0 1 1 1 0 b f 4
B 1 1 1 1 1 b f 5

C 0 0 1 0 0
b f 7

A 0 1 1 1 0 b f 6
B 0 0 1 0 1 b f 7

C 0 1 1 0 1
b f 8

B 1 0 1 1 1

Abs Diff from 0.5 Abs Diff from 0.5 Abs Diff from 0.5
VA

R = 1/4 1/4 – 0 1/4 VB
R = 1/10 3/10 – 1/10 3/10 VC

R = 1/4 0 – 0 1/4

Random vector (VR) = 16 8 – 7 14

VR + VA
R VR + VA

R + VB
R VR + VA

R + VB
R + VC

R
16.25 8.25 – 7.00 14.25 → 16.35 8.55 – 7.10 14.55 → 16.60 8.55 – 7.10 14.80

Globally summed ratio vector (VG): 0.60 0.55 – 0.10 0.80

Ranking of bit positions based on VG: 3 2 – 1 4

Best splitting bit position (jG) = 4

Figure 5.6: Second splitting iteration of list of BFs in Figure 5.3 where bit position 3 is
1 (i.e. right branch of the block tree). As in Figure 5.3, first the absolute difference of
0/1 bit ratios from 50% filled is calculated for all bit positions (except bit position 3).
Next a secure summation is performed on these absolute differences and bit position

jG = 4 (with the lowest ratio value) is selected for splitting.

3.c Generate the child nodes

According to the selected best bit position, jG, the two lists B0 and B1 may
contain an uneven number of BFs, i.e. one list contains a smaller number
of BFs than the other. The disadvantage of such a division is that sensitive
information can potentially be revealed about the blocks that are having
a smaller number of BFs, where an adversary can potentially re-identify
individual records [200].

As a solution the proposed parameter minimum block size (bmin) guaran-
tees that every block in a given block tree structure contains at least bmin
records. After splitting, if any of the resulting two lists, B0 and B1, of a
given node contains less than bmin records, then these lists will not be as-
signed to any new node in the block tree. Instead, the original set of BFs
in that node, B, is included as a relevant block in the parent of the current
node.

If the two lists, B0 and B1, contain a number of records greater than bmin,
then these newly created nodes are assigned as child nodes to the current
node, i.e. the node with the list B0 becomes the left child of the current
node and the list B1 becomes the right child respectively (lines 10 and 11
in Algorithm 5.2).

One important consideration in the tree construction phase is to have con-
trol over the number of blocks created in the tree. The parameter maximum
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Figure 5.7: The resulting three single-bit trees as generated by the database owners
DOA, DOB, and DOC based on the example in Figures 5.3 to 5.6 with blocks across

the three databases.

block size (bmax) allows the user to control the maximum number of records
that can be contained in a block, which indirectly controls the number of
iterations that occur when creating sub-trees. After splitting the current
node’s set of BFs, the two resulting lists, B0 and B1, are checked against
bmax (lines 12 and 15).
If the number of records in both B0 and B1 is greater than bmax, then these
two child nodes are added to the queue Q for future splitting (lines 13 and
16). Therefore the splitting process continues until all generated blocks
are within the size range of [bmin, bmax]. Figure 5.7 illustrates the resulting
block tree structures for the set of BFs from Figure 5.3 after three splitting
iterations were conducted, where bit position 3, 1, and 4 were selected,
respectively, in each iteration.

5.4 Conceptual Analysis of Tree based Blocking

In this section we analyse our single-bit tree based blocking approach in terms of
complexity, quality of blocking, and privacy.

5.4.1 Complexity

We analyse the computational and communication complexities of our blocking ap-
proach in terms of a single database owner (DO). Let us assume there are nr = |D|
records in a database with each having an average of nq q-grams. In the record
encoding step all the records are encoded using nh hash functions. Therefore, the
second step of our approach has a computational complexity of O(nh · nq · nr) for the
encoding of all records in D into BFs.

In the third step the block tree construction starts once the records are encoded
into nr BFs. As we discussed in the previous section, the parameter bmax is used to
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control the number of blocks, which indirectly controls the number of levels gener-
ated in the trees. At one extreme, if bmax is equal to nr, then the number of levels
in the trees becomes 1 (all the records are assigned to the root node), while at the
other extreme if bmax is equal to nr/2 then the trees will have two levels (root node
with two child nodes). When bmax is equal to 1 the single-bit tree is constructed with
log2(nr) levels. Therefore the number of levels in a single-bit tree can be calculated
as log2(

nr
bmax

).

At each level of the block tree a total of nr records are processed, where combined
all child nodes at a given level hold a total of nr records. Therefore the insertion of nr

BFs into a block tree requires a computational complexity of O(nr · log( nr
bmax

)). Also,
for a given iteration in the block tree construction, the computation of the secure
summation protocol requires each DO to process the set of BFs that is assigned to
the currently processed node, which requires each BF to be scanned for each bit
position to get a count of the number of 1’s. Therefore, line 5 of Algorithm 5.2 has a
computational complexity of O(lb f · nr) for each level in the tree.

In our approach, the DOs only need to communicate with each other in the pa-
rameter agreement step and to perform the secure summation protocol to find the
best bit for splitting. This requires a communication between the DOs when each
node is created. By assuming each DO is directly connected to all other DOs, the
distribution of the final ratio vector VG to d DOs requires d messages for each node
in the block tree structure, where each message is of size of lb f bits, where lb f is the
length of a BF. Therefore the entire approach has a communication complexity of
O(lb f · d · log2(

nr
bmax

)) for d DOs.

5.4.2 Blocking Quality

We analyse the quality of our approach in terms of effectiveness, which requires that
all similar records to be grouped into the same block, and efficiency, which requires
the number of candidate record tuples (CRT), as described on page 65, generated
to be as small as possible while including all true matching record sets [216]. By
assuming each block tree of d DOs contains nB = nr

bmax
blocks, each containing bmax

records, the number of CRTs generated by our approach is equal to nB · bd
max for d

databases.

The parameter bmax decides the number of child nodes that are created in a block
tree, which in turn controls the number of blocks generated. If the value of bmax

is increased, then the number of blocks that are generated becomes lower. How-
ever, a larger bmax value increases the number of CRT comparisons required by the
comparison and classification step which would increase the overall runtime of the
linkage process. Therefore, bmax needs to be selected by considering factors such as
the database sizes (nr) and the number of DOs (d) such that both effectiveness and
efficiency are achieved while guaranteeing sufficient privacy as well.
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5.4.3 Privacy

We assume all DOs follow the honest-but-curious (semi-honest) adversary model
[3, 186], where each DO follows the steps of the approach while trying to find as
much as possible about the databases being blocked by the other DOs. We consider
the amount of information a DO can learn about other databases in the tree con-
struction step in this privacy analysis. In our approach, as described above, the DOs
communicate with each other to compute the global best bit position for splitting.

During the secure summation, each DO sums its ratio vector VR with the partial
resulting vector sent to it by the previous DO, but a DO will not be able to learn any
information about the ratio values of another database since the random vector VR

is only known to the DO that initiated the protocol. Once the first DO received the
final partial sum vector, it subtracts the random vector VR from the summed values,
but is not capable of learning anything about the other ratio vector values.

However, as we have discussed in Section 2.4 on page 33, collusion is possible
between DOs under the honest-but-curious model. Collusion between several DOs
compromises the privacy of the secure summation protocol. Therefore, as we have
detailed in Section 4.3 on page 70, a more collusion resistant secure summation pro-
tocol can be used to overcome such attacks.

At the end of our blocking approach, a private comparison and classification
technique [9, 59, 208, 212] can be used to compare each respective set of blocks among
the DOs, which should not reveal any information regarding the sensitive attribute
values and non-matching record sets. However, the privacy of such a technique is
outside the scope of this chapter.

Also, our approach allows each DO to perform a generalisation strategy on its
blocks that makes the re-identification from the BFs not possible [200]. The pa-
rameter minimum block size (bmin) is used to guarantee that every block in the block
tree structure contains at least bmin BFs. This ensures all blocks that are generated
have the same minimum number of BFs, which makes a frequency attack or a dictio-
nary attack, where an adversary hash-encodes values from a large publicly available
database using existing hash encoding functions, much more difficult [212].

However, due to the iterative splitting process in the block tree construction, a DO
can learn partial information about the BFs of other DOs based on the bit positions
selected for splitting. For example, in a given splitting iteration the list of BFs in the
left most node in a block tree contains 0’s and the BFs in the right most node contains
1’s for all previously selected splitting bit positions. An attacker could use this infor-
mation to conduct a cryptanalysis on the BFs to identify q-grams encoded in these
BFs [39, 132]. Developing such a cryptanalysis method for a blocking tree structure
to identify the attribute values that are encoded in BFs for privacy evaluation is left
for future work.
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Table 5.2: Parameter settings used in the experimental evaluation.
Parameter Value range

Dataset name NC-SYN
Number of databases (d) 3, 5, 7, 10

Number of records in each database (nR) 5,000 to 1,000,000
Blocking key attributes (A) Given name, Surname, City (suburb), and Postcode

Corruption levels 0%, 20%, and 40%
Bloom filter length (lb f ) 500, 1000, 2000

Number of hash functions (nh) 30 and optimal (calculated as discussed in Section 4.3 on page 68)
Character length of q-gram (nq) 2, 3, 4

Minimum block size (bmin) 25, 50, 250, 500
Maximum block size (bmax) 50, 100, 500, 1000

Table 5.3: Average maximum memory in Megabytes (MB) used by the tree based
blocking approach.

Database size (nr) BF generation BT construction
5,000 20 23

10,000 33 47
50,000 112 117

100,000 340 370
500,000 970 987

1,000,000 1, 920 1, 958

5.5 Experimental Evaluation and Discussion

In this section, we present and discuss the results of the experimental evaluation of
our tree based blocking approach conducted on the datasets described in Section 4.4
(on page 78). Table 5.2 summarises the parameter values used in our approach.

5.5.1 Scalability

Figures 5.8 shows the scalability of our approach in terms of computation and com-
munication costs. We measured the average runtime required for generating Bloom
filters (BFs) and for constructing a block tree (BT) for a single database. As shown
in Figure 5.8 (a), the average runtime for the BT construction increases linearly with
the database size. As we expected the BF generation increases linearly with database
size as more time is required to encode more records into BFs.

As shown in Figure 5.8 (b), the total runtime required for our approach increases
with the number of databases to be blocked as more communication is required in
the BT construction process. Figure 5.8 (c) shows that more messages are communi-
cated as the number of database owners (DOs) increases, which increases the overall
communication costs. As the database sizes increase, more messages need to be sent
between DOs since more splitting iterations are required in the BT construction step.

We also measured the average maximum memory consumption per DO for the
two steps BF generation and BT construction of our approach. As shown in Table 5.3,
the average memory required increases with the database size, however, it consumed
less than 2 GByte of memory for blocking a database with 1 million records.
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Figure 5.8: (a) Average runtime for Bloom filter (BF) generation and block tree (BT)
construction, (b) total runtime with different number of databases to be blocked, and
(c) total number of messages communicated in the BT construction with different
database sizes. K represents 1000 records. Note that plots have different y-axis

scales.

As illustrated in Figures 5.9, we also investigated the runtime of BF generation
with different number of hash functions (nh), q-gram lengths (lq), BF length (lb f ), and
blocking key attributes (A). As we described in Section 4.3 (on page 68), the BF gen-
eration step required longer runtime with the optimal number of hash functions used
when the BF length increases, as shown in Figure 5.9 (a). This occurs because more
hash functions are required to encode each q-gram into a BF when lb f is increasing
under the optimal BF parameter settings.

As can be seen in Figure 5.9 (b), the runtime required to encode an attribute value
into a BF decreases with lq as less q-grams are generated for a record. However, as
shown in Figure 5.9 (b), more runtime is required with BFs with a larger lb f compared
to a smaller length even for a larger q-gram length since more hash functions are used
to encode an attribute value. As can be seen in Figure 5.9 (c), the BF generation time
of our approach increases with the number of blocking key attributes because more
q-grams are generated for a record.
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(b) BF generation time with q-gram length
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Figure 5.9: Average BF generation time for different (a) number of hash functions
(nh), (b) q-gram length (lq), and (c) blocking key (A) attributes. Note that plots have

different y-axis scales.
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Figure 5.10: Reduction ratio (RR) with different (a) database sizes and (b) maximum
block sizes. Note that plots have different y-axis scales.

As we have described in Section 2.5 on page 35, the scalability of a blocking tech-
nique can also be measured based on the number of record comparisons. We used the
adopted reduction ratio (RR) metric, which we described in Section 4.4 (see page 82)
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Table 5.4: Number of candidate record pairs (CRTs) generated for the linkage of 3
databases.

Database size (nr) without blocking with our approach (bmax = 50)
5,000 1.25 x 1011 1.64 x 109

10,000 1.0 x 1012 1.73 x 109

50,000 1.25 x 1014 3.78 x 1011

100,000 1.0 x 1015 1.66 x 1012

500,000 1.25 x 1017 3.14 x 1012

1,000,000 1.0 x 1018 6.67 x 1014

to measure the scalability of our approach. As can be seen in Figure 5.10 (a), RR re-
mains closer to 1 for different database sizes and for a different number of databases
(when d = 5, RR ≈ 0.9999), which illustrates our approach is reducing the number
of total candidate record tuples (CRTs) that need to be compared dramatically. The
reason for this behaviour is that once the blocks are generated only the blocks of
each corresponding leaf in the block trees are compared across all the databases to
be blocked. Table 5.4 shows the number of candidate record pairs (CRTs) generated
for the linkage of 3 databases with our blocking approach and without any blocking.

We also investigated the RR with different maximum blocks sizes (bmax). As
shown in Figure 5.10 (b), RR decreases with the increase of bmax. This is because
more CRTs are generated for larger blocks compared to blocks with a smaller num-
ber of records. A larger bmax also reduces the overall runtime of our approach as
less splitting iterations are required in the BT construction, which reduces the total
number of messages to be communicated between DOs. However, we have seen that
for a large number of databases RR remains closer to 1 even for larger bmax since the
number of CRTs generated by our approach is significantly smaller compared to the
total record comparisons required between databases (see Figure 5.10 (b)).

5.5.2 Blocking Quality

We measure the blocking quality of our approach in terms of the pairs completeness
(PC) and F-measure (FM), as we described in Section 4.4 on page 83. We used the
NC-SYN datasets with corrupted records (as detailed in Section 4.4 on page 78) to
evaluate the blocking quality of our approach. We used the datasets with corruption
levels 0%, 20%, and 40% as these datasets represent realistic scenarios with dirty
data [40].

As illustrated in Figure 5.11 (a), our blocking approach achieves a PC of 1.0 for
0% corruption with different number of databases d. However, we noted that the
blocking quality of our approach is affected by the quality of the data and PC is
decreasing rapidly with the number of databases with low quality data (20% and
40% corruption levels). Since BFs of the corrupted records of the same entity result
in different bit patterns (due to the different q-grams extracted from corrupted at-
tribute values), these BFs will be assigned to different blocks in the splitting process.
This results in similar records not being compared in the comparison step which
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Figure 5.11: (a) Pair completeness (PC) and (b) F-measure (FM) with different num-
ber of databases for different corruption levels.
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Figure 5.12: Pair completeness (PC) with different (a) maximum block sizes and (b)
blocking key attributes for different corruption levels. Note that plots have different

y-axis scales.

potentially reduces the overall quality of the linkage. Figure 5.11 (b) shows that FM
also decreases with the corruption level as the number of databases to be blocked
increases.

As shown in Figure 5.12 (a), PC increases when the size of the blocks is in-
creased. The block sizes are controlled with the parameter bmax, where high PC
values are achieved with larger bmax values. This is because more CRTs are gener-
ated for larger bmax values which potentially increases the number of true matches
in blocks by assigning similar records into the same block. Figure 5.12 (b) illustrates
PC with different corruption levels for different blocking key attributes. It shows
that for databases with corrupted records high PC values can be achieved by using
less blocking key attributes compared to using more attributes. Therefore, in applica-
tions where databases are having more corrupted records the use of few attributes for
blocking could decrease the overall number of missed true matches in our approach.
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Figure 5.13: (a) Average block sizes with minimum block size (bmin), (b) probability
of suspicion (PS), and (c) disclosure risk values with maximum block size (bmax) for

a 1,000K database. K represents 1,000 records.

5.5.3 Privacy

To evaluate the privacy of our approach we studied the block sizes generated for
different minimum block size (bmin) values (with bmax = 2 · bmin), as shown in Fig-
ure 5.13 (a). This figure illustrates that our approach guarantees that all generated
blocks contain at least bmin records ensuring k-anonymous privacy where k = bmin.
However, we noted that for smaller bmin values more large size blocks are generated
due to the iterative splitting step. This could increase the overall number of CRTs to
be compared in the comparison step of the PPRL process.

We computed average probability of suspicion (PS) values (for the frequency
based linkage attack described in Section 2.4 on page 38) for a database with 1 million
records for different bmax by assuming all block trees contain similar block structures.
As shown in Figure 5.13 (b), our approach is having a maximum PS value of less than
(1/bmin) for each bmax value, which indicates a record in a block can be matched to
more than bmin values in a global database G (under the worst case assumption of
G being equal to the blocked database). For bmax = 50 our blocking approach has a
maximum PS of 0.0192 because the smallest block contains 52 records (see Figure 5.13
(b)).
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Figure 5.14: A cryptanalysis attack performed upon the generated blocks of a 1,000K
database with different frequent values for (a) different Bloom filter length and (b)

different q-gram length.

We also measured the average (DSMean), median (DSMed), and maximum (DSMax)
disclosure risk values with different bmax values (as we described in Section 4.4). As
shown in Figure 5.13 (c), the DR values decrease for large block sizes as more records
are included in a given block making our blocking approach more secure against
frequency attacks.

Finally, we conducted the cryptanalysis attack we described in Section 4.5 on
page 85. We conducted this attack assuming an external attacker under the scenarios
of an attacker gains access to a generated block of a database. In here an attacker tries
to re-identify an attribute value encoded in a BF by using the frequency distributions
of 1-bits in the BFs and q-grams of a publicly available G. However, note that such
attacks are realistically highly unlikely since only the database owners (DOs) are
participating in the block generation process and each DO does not send its own
database or a block to any other party during the block tree construction process.

We evaluate the accuracy of our attack by calculating (1) the percentage of cor-
rect guesses with 1-to-1 matching, (2) the percentage of correct guesses with 1-to-m
(many) matching, (3) the percentage of wrong guesses, and (4) the percentage of no
guesses, where these four percentages sum to 100. These four categories are labelled
as 1-1 corr, 1-m corr, Wrong, and No in Figure 5.14, respectively.

For the first scenario, we conducted the attack for each generated block of a
database with 1 million records. We set the parameter bmax and blocking key at-
tribute (A) to 1, 000 and Given name, respectively, and performed the cryptanalysis
for different BF lengths and q-gram values. As illustrated in Figure 5.14, an attacker
could not re-identify a value of A as block contains no enough frequency informa-
tion to identify q-grams that are encoded in the BFs. Therefore, conducting such
cryptanalysis to correctly re-identify attribute values at the block level is impossible.

5.6 Summary

In this chapter, we have presented a novel blocking approach for MD-PPRL based
on Bloom filters and a single-bit tree data structure. Each database owner constructs
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the block tree structure based on the Bloom filters generated on their database. The
database owners communicate with each other using a secure summation protocol
to collaborate on the construction of their blocking tree structures. The proposed
approach was validated by an experimental evaluation, where we performed experi-
ments on different databases of size of up-to one million records.

The evaluation results indicated that our approach scales linearly with both the
size of the databases to be linked and the number of database owners. As described
in Section 5.4.2, the selection of minimum (bmin) and maximum (bmax) block sizes
controls the runtime and blocking quality of this approach. A specific future research
avenue is to tackle the problem of finding the optimal value for bmin and bmax by
considering the scalability and blocking quality. Another extension of our current
work is to investigate the parallelisation of Algorithm 5.2, which can further improve
the performance of our approach. Extending Algorithm 5.2 to different adversary
models is another future research avenue of our approach.

As we have seen in Section 5.5, due to the recursive splitting process in the block
tree construction, similar Bloom filters could be assigned to different blocks. This
requires an additional step in the block generation process to reassign these similar
Bloom filters again into the same block. In the next chapter, we aim to study how
a clustering approach can be used to minimise such wrong assignments of Bloom
filters into different blocks. We also investigate how to improve the runtime of our
current work by selecting multiple bits for splitting in each iteration.
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Chapter 6

Clustering based Blocking for
Multidatabase Privacy-Preserving
Record Linkage

In this chapter we propose a clustering based scalable blocking approach for privacy-
preserving record linkage (PPRL) between multiple (more than two) databases where
database owners collaboratively participate in the block generation process. In Sec-
tions 6.1 and 6.2 we provide an introduction and overview of our blocking approach,
respectively. As we describe in Section 6.3, we propose a clustering based splitting
and merging technique to generate blocks of the databases. In Section 6.4, we pro-
vide a detailed analysis of our approach with regard to complexity, blocking quality,
and privacy. In Section 6.5 we then validate this analysis through an experimental
study, and finally we summarise our findings in Section 6.6. Table 6.1 summarises
the notation we use in this chapter.

6.1 Introduction

As detailed in Chapter 2, a blocking technique should output a reduced set of candi-
date record pair or sets for comparison and classification by keeping true matching
record pairs or tuples while removing as many of the true non-matching record pairs
or tuples as possible. As a result, expensive similarity comparisons are then only re-
quired on a smaller number of candidate record pairs or tuples. In our previous tree
based blocking approach described in Chapter 5, we noted that the blocks generated
across different databases could result in low blocking quality because of the recur-
sive splitting of the binary tree data structures which can lead to a reduction of the
overall quality and accuracy of the linkage.

With the primary aim of improving the quality in blocking, in this chapter we
propose a novel blocking approach that uses a splitting and merging technique to
generate blocks. In this approach we first split the databases into smaller blocks,
which we call mini-blocks, and then we merge these mini-blocks based on their simi-
larity by using a clustering algorithm.

111
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Table 6.1: Notation and terminology used in this chapter

B Set of blocks
BF Inverted index of Bloom filters
D A database
MB Set of mini-blocks
A Set of blocking attributes
B A block
BC Set of bit combinations
I List of splitting bit positions
MB List of mini-blocks of a given block B
Q A queue data structure
R, R.a, R.id A record, record attribute value, and record identifier
S A set of q-grams
VC, VR, VG Combination vector, ratio vector, and a global summed ratio vector
b f A Bloom filter
bmin Minimum merged block size
bst Bit selection threshold
c, cj A medoid
d Number of database owners (or databases)
fij Ratio of bit position j of DOi
lq, lb f Length of a q-gram and a Bloom filter
mb A mini-block
mbmin, mbmax Minimum and maximum size of a mini-block
nb, nh, nq Number of splitting bit positions, hash functions and q-grams
oij Number of 1’s in bit position j for DOi
simH() A Hamming distance based similarity function
tst, lst Tight and loose similarity thresholds

BF Bloom filter
BK Blocking key attribute
DO Database owner
PPRL Privacy-preserving record linkage
MD-PPRL Multidatabase PPRL
MDRL Multidatabase record linkage

Clustering is the process of grouping records or data objects such that records
within a cluster are similar to each other, while dissimilar records are in different
clusters. As discussed in Section 3.1, few clustering approaches have been adapted
for private blocking [110, 134, 215]. Karakasidis et al. [110] proposed a blocking
mechanism based on k-nearest neighbour clustering that uses reference values to
generate clusters. Following the same concept of using reference values, Vatsalan
et al. [215] suggested an two-party private blocking technique based on a sorted
nearest neighbourhood clustering approach which provides k-anonymous privacy.
In their approach, linkage quality and privacy mainly depend on the reference values
selected for blocking. A private blocking mechanism based on hierarchical clustering
was introduced by Kuzu et al. [134], however this approach is not scalable due to the
computationally expensive similarity calculations it requires. Furthermore, neither
of these techniques considered blocking of more than two databases.



§6.2 Overview of our approach 113

bit 4

bit 3

bit 4

bit 3

bit 4

bit 3

(DO
A

) (DO
B

) (DO
C

)

3B
A

bf
1
A

bf
2
A

4B
A

bf
4
A

bf
7
A bf

6
B

3 3 4

4B
B

bf
8
B

Database owner A Database owner B Database owner C

0

101

0110 0 1 1 1 0

01110

bf
2
B

1

0 0 1 0 1

1010

B
B

B
C

B
C

bf
3
B

0 0 1 1 0

bf
7
C

bf
5
C

0 1 1 0 1

0 0 1 0 0

bf
3
C

bf
1
C

0 1 1 1 0

1 0 1 1 0bf
4
B

1 0 1 1 1

1 1 1 1 10

0 1

0 1 1

1 1

1

0

0

0

0

1

Figure 6.1: An example splitting iteration that illustrates how similar Bloom filters
(BFs) are assigned to different blocks due to bit selection in the splitting process
(from Figure 5.7). In this example BFs b f 2

A and b f 8
B (shown in bold) are assigned to

different blocks (B3
A and B4

B, respectively) since they have different values in bit po-
sition 4 (shown in red), although they have the same bit values in all other positions.
This leads to b f 2

A and b f 8
B potentially not being compared in the comparison step,

ultimately resulting in a missed match (a false negative). The blue triangles represent
sub-trees that are not shown.

In our approach we use canopy clustering [48, 144] for merging mini-blocks,
which is a technique for clustering large high dimensional databases that has not
been applied in PPRL so far. Canopy clustering can achieve a computationally cheap
generation of candidate record tuples (CRTs), as defined on page 65, by efficiently
calculating distances between blocking key values. Records are inserted into one or
more overlapping clusters based on their similarity to the cluster medoids (a record
that has the highest average similarity to all the other records in a cluster). Each
cluster then becomes a block from which CRTs are generated.

6.2 Overview of our approach

As detailed in Chapter 2, a blocking technique used in any linkage application should
be capable of reducing the comparison space as much as possible without removing
record comparisons that correspond to true matches. Using an iterative splitting
method, our tree based blocking approach described in Chapter 5 groups records
into different blocks depending upon the 1/0 ratio values held at each bit position in
the Bloom filters (BFs) selected for splitting. However, at a given iteration two similar
records might be blocked into two different blocks even if they only differ by a single
splitting bit position selected at the given iteration. This can cause our tree based
blocking approach to miss true matches when constructing the block tree structures
since the same corresponding blocks in each tree structure are compared with each
other, which can result in a decrease of the quality of the overall linkage process. An
example of such a splitting iteration is shown in Figure 6.1.
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Figure 6.2: A high-level overview of our clustering based blocking approach. In this
example DA, DB, and DC represent the databases held by database owners DOA,
DOB, and DOC, respectively. Once the blocks are generated in step 4, the correspond-
ing blocks from different databases can be compared using a private comparison and
classification technique [216]. For example, block tuples 〈B1

A, B1
B, B1

C〉, 〈B2
A, B2

B, B2
C〉,

· · · , and 〈B4
A, B4

B, B4
C〉 are compared.

To address this issue, we propose a novel blocking approach which follows a
split and merge technique to generate blocks. The aim of our approach is to split
the databases iteratively into smaller mini-blocks and then merge them together un-
til each final block contains a specific number of records. The merging process is
conducted based on the similarities calculated between the medoids of these mini-
blocks. The goal of this merging process is to minimise the quality loss occurred
in the splitting process by grouping similar records into the same block that were
assigned to different blocks during the splitting process. A high-level overview of
our approach is shown in Figure 6.2.

As illustrated in Figure 6.2, our approach has four main steps. In the first step
the database owners (DOs) need to agree upon the parameter settings used in our
approach. The set of parameters used will be explained in more detail in Sec-
tion 6.3. Once all the DOs have agreed upon the set of parameters, each record
in their databases needs to be encoded before these records are grouped into blocks.
Similar to our previous tree based blocking approach, Bloom filters (BFs) are used to
encode records as BF encoding is the only applicable technique that can be used in
the second step of our approach.
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As shown in Figure 6.2 in the third step of our approach the DOs split the gener-
ated BFs iteratively into a set of smaller blocks which we call mini-blocks. In contrast
to our previous approach, the proposed approach selects multiple bit positions to
split the BFs in a given iteration in order to make the splitting process more efficient.
However, all the DOs collaboratively participate in computing the bit positions for
splitting in each iterations. The details of the splitting step will be described in Sec-
tion 6.3. In the example given in Figure 6.2, three bit positions have been selected for
splitting, resulting in eight mini-blocks in step 3.

In the fourth step of our approach, the DOs merge the generated mini-blocks
until the size of a merged block reaches an acceptable minimum size. The DOs
communicate among themselves to decide which similar mini-blocks to merge. As
shown in step 4 in Figure 6.2, mini-blocks with bit patterns (000, 001), (111, 011),
(101, 100), and (110, 010) are merged together. Finally these merged blocks can be
compared using private comparison and classification techniques to determine the
matching record sets in different databases [210].

We use the q-grams, BFs, and our extended secure summation protocol as de-
scribed in Chapter 4 as building blocks of the proposed approach and we refer the
reader to Section 4.3 for more details of each of these building blocks. We next
describe each step of our approach in more detail.

6.3 Clustering based Scalable Blocking Approach

We assume d DOs are participating in this blocking approach each with a database,
and d ≥ 3. We assume a set A of quasi-identifiers [94] (QID), such as first name, last
name, address details, etc., are common to all the databases. These attributes in A
are used as blocking key (BK) attributes to group similar records into blocks.

1. Parameter Agreement

In step 1 all DOs need to agree upon the set of parameter values to be used. For
the record encoding process in step 2, the DOs needs to agree upon the length
of a BF, lb f , the length (in characters) of grams, lq, the nh hash functions, and
the set A of BKs.

To control the size of the mini-blocks generated in multi-bit splitting in the
third step of our approach, all DOs need to agree upon the minimum and the
maximum size of a mini-block, mbmin and mbmax, respectively. Also, all the
DOs need to agree upon the maximum number of bit positions, nb, and the bit
section threshold, bst, which will be used to find the best splitting bit positions
in each iteration, as described below.

For the merging of mini-blocks in the forth step of our approach, the DOs need
to agree upon two thresholds of the clustering technique which are a tight
similarity threshold, tst, and a loose similarity threshold ,lst, and the minimum
size (number of records) of a merged block, bmin. We will describe the use of
each of these parameters in more detail in the following sections.
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2. Record Encoding

In the second step of our approach, each DO encodes the records in its database
D into BFs. To generate BFs for each D, we use Algorithm 5.1 in Section 5.3
(on page 93), where each DO iterates over its database and each record R is
encoded in a BF b f . Each b f is then added to an inverted index data structure,
BF, using its record identifier (R.id) as its key. BF is used in the next step of
our approach to construct the set of mini-blocks.

3. Multi-bit Splitting

As the third step of our approach, the generated set of BFs need to be split into
sets of mini-blocks. The parameters mbmin and mbmax specify the lower and
upper bounds on the size of a mini-block, respectively. The overall splitting
approach for a given database owner, DOi, with 1 ≥ i ≥ d, is outlined in
Algorithm 6.1.

In line 1, each DO adds its BF into a queue Q as a single block. In each iteration
the first block of BFs, B, that is available at the beginning of Q is processed (line
3). In line 4, the function genRatios() calculates a vector VR of length lb f that
contains the ratios between the number of 0’s and 1’s for each bit position of
the BFs in B, using Equation 6.1:

fij = abs(0.5−
oij

nb f
), (6.1)

where fij is the 1/0 ratio of bit position j of DOi, oij is the number of 1’s in
position j, and nb f is the number of BFs available in B, i.e. nb f = |B|. The
lowest ratio value is given to the bit positions that have a value of 1 in half of
the BFs and the highest ratio value of 0.5 is given to the bit positions that have
a value of 1 or 0 in all the BFs in B.

Once all DOs have calculated their ratio vectors locally the function secure-
Summation() performs an extended secure summation protocol, as described
in Chapter 4, to identify the common bit positions suitable for splitting (line
5). Once the secure summation step is finished the resulting globally summed
ratio vector VG is used to find the nb best splitting bit positions by using the
function getCombinations() (in line 6). In this function, first the bit positions
with a globally summed ratio value less than the bit selection threshold bst are
selected into the set I of splitting bit positions as shown in Equation 6.2. The
nb bit positions in I with the lowest ratio values (which we call match-bits) are
selected as the best splitting bit positions. Fig. 6.3 illustrates an example of
selecting the best splitting bits.

I = {j | (d
2
−

d

∑
i=1

fij) < bst} (6.2)
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Algorithm 6.1: Multi-bit Bloom filter splitting by DOi, with 1 ≤ i ≤ d
Input : BFi - An inverted index of BFs belonging to DOi

mbmin - Minimum size of a mini-block
mbmax - Maximum size of a mini-block
nb - Maximum number of bit positions for splitting
bst - Bit selection threshold

Output: MBi - Set of mini-blocks

1 Q←[BFi] // Initialisation of queue

2 while Q 6= [] do
3 B← Q.pop() // Get the current block

4 VR ← genRatios(B) // Generate local bit ratios

5 VG ← secureSummation(VR) // Get ratios globally

6 BC ← getCombinations(VG, nb, bst) // Get bit combinations

7 VC ← getCombSuitability(B, BC, mbmin) // Check bit combinations suitability

8 VG ← secureSummation(VC) // Perform a secure summation

9 bcG ← getGlobalCommbination(VG,BC) // Get globally best bit combinarion

10 if bcG 6= -1 then // Check if a globally best bit combination is available

11 MB← splitBlock(bcG, B) // Compute mini-blocks

12 foreach mb ∈ MB do
13 if |mb| ≥ mbmax then // Check if the mini-block is too large

14 Q.push(mb) // Add to queue for further splitting

15 end
16 else
17 MBi ∪mb // Add the mini-block to the final set of mini-blocks

18 end
19 end
20 end
21 else
22 MBi ∪ B // Add current block to the set of mini-blocks

23 end
24 end
25 return MBi

Based on the selected bit positions the function getCombinations() returns the
set of all possible bit combinations BC. As shown in Figure 6.3, bit posi-
tions {2, 4, 5} would generate the set of combinations of {{2, 4, 5}, {2, 4}, {2, 5},
{4, 5}, {2}, {4}, {5}}. It is important to consider every possible bit combination
across these selected bit positions for splitting and select the most suitable com-
bination, as we describe below. This is because some bit combinations could
potentially split B into a set of mini-blocks that do not satisfy the required size
bounds (from mbmin to mbmax).

For each combination in BC, the BFs in the current block B are counted to
analyse the sizes of resulting mini-blocks under different bit patterns by the
function getCombSuitability() in line 7. For example, for the bit combination
{2, 4} in BC, the sets of bit patterns considered are {00, 01, 10, 11}. Once the
current block is processed for all possible bit combinations, the function get-
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Database Owner A (DOA) Database Owner B (DOB) Database Owner C (DOC)

Bloom filter set A (BFA) Bloom filter set B (BFB) Bloom filter set C (BFC)
b f 1

A 0 1 1 0 0 b f 1
B 1 1 0 1 0 b f 1

C 1 1 1 1 0
b f 2

A 1 0 1 0 1 b f 2
B 1 0 1 0 1 b f 2

C 1 0 1 1 0
b f 3

A 1 0 0 0 0 b f 3
B 0 0 1 0 0 b f 3

C 1 1 1 0 0
b f 4

A 1 1 1 1 0 b f 4
B 1 1 1 1 1 b f 4

C 1 0 0 0 1

Abs Diff from 0.5 Abs Diff from 0.5 Abs Diff from 0.5
VA

R = 1/4 0 1/4 1/4 1/4 VB
R = 1/4 0 1/4 0 0 VC

R = 1/2 0 1/4 0 1/4

Bloom filter generation and calculation of 0/1 bit ratios and absolute differences from 50% filled.

Random vector (VR) = 10 5 12 13 6

VR + VA
R VR + VA

R + VB
R VR + VA

R + VB
R + VC

R
10.25 5 12.25 13.25 6.25 → 10.5 5 12.5 13.25 6.25 → 11 5 12.75 13.25 6.5

Globally summed ratio vector (VG): 1.0 0 0.75 0.25 0.50

Ranking of bit positions based on VG : 5 1 4 2 3

Selected bit positions (I): {2, 4, 5}

Secure summation of absolute differences and selecting best bit positions for splitting (nb = 3, and bst = 0.2)

Figure 6.3: Selecting best bit positions for multi-bit Bloom filter splitting

CombSuitability() outputs a binary vector VC of length |BC|. Each bit value in
VC corresponds to a combination in BC. For a given combination in BC, if all
the resulting mini-blocks have at least mbmin BFs then the corresponding bit in
VC is set to 1, otherwise it is set to 0. For bit positions {2, 4, 5} in the example
above, if only bit combinations {2, 4} and {2} generate the mini-blocks with
mbmin BFs then VC = [0, 1, 0, 0, 1, 0, 0], where the 1-bit at 2 and 5 correspond to
{2, 4} and {2}, respectively.

Once all the DOs generate their VCs, a secure summation is performed again to
find the common best bit combination in line 8. Based on the globally summed
vector VG, the function getGlobalCommbination returns a bit combination as the
globally accepted bit combination bcG (line 9). In VG the bit combination that
has its corresponding bit in VC equals to d (number of DOs) is selected as
best combination bcG. This ensures the selected bit combination could generate
mini-blocks with at least mbmin BFs across all the DOs. However, if more than
one combination could be selected as a possible bcG then the combination with
most number of bits is selected for the splitting. Such a selection approach
ensures in each splitting iteration B is split into as many mini-blocks as possible.
Following the same example above, {2, 4} is selected as bcG from the list of
suitable combinations [{2, 4}, {2}]. B is split into a set of mini-blocks (MB)
according to the selected bcG by using function splitBlock() (line 11).

In line 10, if neither of the combinations in BC can be used to split B (bcG =
-1), then the current block B is added to a set MB (line 22). All the mini-blocks
in MB that contain more than mbmax BFs are added back into the queue Q for
further splitting (lines 13 and 14). The parameters mbmin and mbmax allow the
DOs to control the sizes of the mini-blocks generated in Algorithm 6.1.
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4. Step 4 - Mini-block Merging

Once the set of mini-blocks MB is generated, each DO merges similar mini-
blocks into larger blocks based on their similarities to facilitate computationally
efficient blocking. We use a canopy clustering technique [48, 144] to merge
these mini-blocks together. In our merging step we consider each mini-block
generated by the multi-bit splitting algorithm as a separate cluster.

To merge mini-blocks we first select a BF b fk as a medoid of each cluster. This
BF b fk is selected based on the Hamming distances between the BFs in a mini-
block mb that has the minimum distance to all the other BFs in mb. For this
selection process we suggest a maximum average Hamming distance based
similarity calculation which is shown in Equation 6.3.

b fk = argmax
k

{
∑|mb|

k=1 simH(b fk, b fl)

|mb| | b fk, b fl ∈ mb, 1 ≤ k, l ≤ |mb|, k 6= l

}
(6.3)

The function simH() computes the similarity of two BFs b fi and b f j by comput-
ing the normalised Hamming distance between them as shown in Equation 6.4:

simH(b fk, b fl) = 1− x
lb f

, (6.4)

where x represents the number of bit positions that differ in b fk and b fl . For
the merging of mini-blocks we suggest to use the following two canopy based
clustering algorithms:

4.a Standard canopy clustering: Mini-blocks are merged until the resulting block
size increases to bmin. This algorithm allows to merge a set of similar mini-
blocks greedily in a given iteration.

4.b Hierarchical canopy clustering: The merging of mini-blocks is based on an
agglomerative clustering approach. In a given iteration, the two most sim-
ilar mini-blocks are merged, thereby guaranteeing that the sizes of all the
resulting blocks have a lower bound of bmin.

The blocks generated by these clustering approaches can be compared using an
appropriate private comparison and classification technique later in the PPRL
pipeline [212, 213]. We next describe both these clustering algorithms in more
detail.

4.a Merge mini-blocks with standard canopy clustering

The suggested standard canopy clustering algorithm for the merging of
mini-blocks is shown in Algorithm 6.2. In line 2, each DOi iterates over
its set of mini-blocks MBi. At each iteration the mini-block mb f at the
beginning of MB is processed as the initial cluster (line 3). The function
getMedoid() computes the medoid c f of mini-block mb f (line 4). This func-
tion uses Equation 6.3 to compute medoids.
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Algorithm 6.2: Merge mini-blocks using standard canopy clustering
Input : MBi - Set of mini-blocks of DOi

tst - Tight similarity threshold
lst - Loose similarity threshold
bmin - Minimum size of merged block

Output: Bi - Set of merged blocks

1 Bi ← ∅ // Initialisation of the set of merged blocks

2 while MBi 6= ∅ do
3 mb f ← MBi.pop() // Get the frist mini-block

4 c f ←getMedoid(mb f ) // Compute the centroide of the mini-block

5 B← mb f // Initialise the merging block

6 while |B| < bmin do // Merge blocks until the minimum block size is met

7 mbk ← MBi.next() // Get the next mini-block

8 ck ←getMedoid(mbk) // Compute the medoids of the mini-block

9 s← simH(c f , ck) // Compute the Hamming distance between the medoids

10 if s ≥ tst then // Check if tight similarity threshold is met

11 B← B ∪mbk // Merge the two mini-blocks

12 MBi.delete(mbk) // Remove the merged mini-block

13 end
14 else if s ≥ lst then // Check if loose similarity threshold is met

15 B← B ∪mbk // Merge the mini-blocks

16 end
17 end
18 Bi.add(B) // Add the merged block to the set of merged blocks

19 end
20 return Bi

The initial cluster mb f is compared and merged with all other mini-blocks
in MB until the size of the merged block B reaches bmin as in lines 6 to 18.
For each mini-block mbk in MBi a medoid ck is computed in line 8. Next,
a Hamming similarity value s is computed using Equation 6.4 between
medoids c f and ck (line 9).

At the merging step, the computed similarity value s between the medoids
is checked against the tight and loose thresholds tst and lst, with tst ≥ lst.
As per lines 10 to 13, if s is equal to or greater than the tight threshold tst

then the mini-block mbk is merged with mb. Next, the merged mini-blocks
are removed from the set MBi to avoid them being considered again as
clusters in a following iteration (line 12). If s is equal to or greater than the
loose threshold lst only the initial cluster mb is removed from the set MB
(lines 14 to 16) and the other mini-blocks (that were merged with mb) are
left in MB to be used again in the following iterations.

Once the size of the resulting merged block B reaches bmin, B is added to
the set of merged blocks Bi in line 18. Therefore at each iteration a set of
mini-blocks which are similar to the initial cluster mb are merged together
until the resulting block size bmin is reached.
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Algorithm 6.3: Merge mini-blocks using hierarchical canopy clustering
Input : MBi - Set of mini-blocks of DOi

tst - Tight similarity threshold
bmin - Minimum size of merged block

Output: Bi - Set of merged blocks

1 Bi ← ∅ // Initialisation of the set of merged blocks

2 while MBi 6= ∅ do
3 mb f ← MBi.pop() // Get the frist mini-block

4 c f ←getMedoid(mb f ) // Compute the medoid of the mini-block

5 mbk, ck ← getMiniBlock(c f ) // Get the mini-block for merging

6 B← mb f ∪mbk // Merge the two mini-blocks

7 if simH(c f , ck) ≥ tst then // Check if tight similarity threshold is met

8 MBi.delete(mbk) // Remove the merged mini-block

9 end
10 if |B| < bmin then // Check the merged block size

11 MBi.add(B) // Add the merged block back to MBi

12 end
13 else
14 Bi.add(B) // Add the merged block to the set of merged blocks

15 end
16 end
17 return Bi

4.b Merge mini-blocks with hierarchical canopy clustering

The standard canopy clustering approach described above merges a set of
similar mini-blocks in a given iteration until the resulting merged block
reaches the minimum block size bmin. However, due to this greedy merg-
ing of mini-blocks the size of a merged block can go beyond the bmin size
limit which results in a large number of candidate record tuples to be gen-
erated. Also, in the merging process mini-blocks are merged iteratively
if they satisfy the tight and loose similarity thresholds tst and lst. This
could result in a mini-block that is highly similar to the initial mini-block
selected not to be merged if the merged block already has reached bmin.

To address this issue we propose a novel threshold based hierarchical
agglomerative canopy clustering approach which merges the two most
similar mini-blocks in a given iteration until the acceptable block size is
reached. Our mini-block merging algorithm based on hierarchical canopy
clustering is shown in Algorithm 6.3.

To merge mini-blocks each DO iterates over the set of mini-blocks MB
(line 2). At each iteration, a mini-block mb f (initial cluster) is selected
and the medoid c f is computed using Equation 6.3 (lines 3 and 4). The
function getMiniBlock() computes the mini-block mbk that is most similar
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to mb f using Equation 6.5, and returns with its medoid ck (line 5).

mbk = argmax
j
{simH(c, ck) | ∀(mb, mbk) ∈ MB, 1 ≤ k ≤ |MB|} (6.5)

The selected mini-block mbk is merged with mb f into a new block B (line
6). If the similarity between the medoids c f and ck is greater than or equal
to the tight similarity threshold tst then the mini-block mbk is removed
from the set of mini-blocks MB (lines 7 to 9).

Finally, the size of the resulting merged block B is checked against the size
limit bmin (lines 10 to 12). If the size of B is less than bmin, then B is added
into MB as a new mini-block for further merging (line 11). This enables B
to be merged further with other similar mini-blocks.

In the next iteration, a new medoid is computed for B based on all the BFs
grouped in the previous merging of mini-blocks. This means only the two
most similar mini-blocks are merged in each iteration. B is added into the
final set of merged blocks B once it reaches bmin (line 14).

6.4 Conceptual Analysis of Clustering based Blocking

In this section we analyse our private blocking approach in terms of complexity,
privacy, and quality of blocking.

6.4.1 Complexity

We analyse the computational and communication complexities of our blocking ap-
proach in terms of a single DO. Let us assume there are |D| = nr records in a database
with each containing an average of nq q-grams. In the second step of our approach,
as shown in Figure 6.2, all records are encoded using nh hash functions. The Bloom
filter generation for a single DO therefore has a complexity of O(nh · nq · nr).

In the multi-bit splitting step (step 3 in Figure 6.2), the parameters mbmin and
mbmax are used to control the size of mini-blocks generated. The sizes of mini-blocks
decide the number of iterations that are required in the splitting phase. At each
iteration a given block B is split into |MB| = 2nb mini-blocks if nb bit positions are
selected for splitting. The number of iterations in the splitting phase can be calculated
as ni = log(nr/mbmax)/log(|MB|). Therefore the splitting of nr Bloom filters into a
set of mini-blocks is of O(nr · ni).

In the forth step of our approach, merging mini-blocks requires the processing
of |MB| mini-blocks. The computation of the medoids for all mini-blocks is of
O(mb2

max · |MB|) complexity because for each mini-block in MB a medoid needs to
be computed. Merging mini-blocks using the standard canopy clustering technique
requires a total computation of O( bmin

mbmax
· |B|), where at each iteration bmin

mbmax
clusters
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are merged. At each iteration of the hierarchical canopy clustering approach the two
most similar mini-blocks are merged which requires a total of O(|B|2) computations.

The DOs only need to communicate with each other to perform the secure sum-
mation protocol. By assuming each of the d DOs is directly connected to all other
DOs, d messages each of size lb f need to be exchanged in each iteration. Therefore
the entire clustering based blocking approach has a communication complexity of
O(d · ni) for d database owners.

6.4.2 Blocking Quality

We analyse the quality of the multi-bit splitting (step 3 in Figure 6.2) and merging
(step 4 in Figure 6.2) processes of our blocking approach in terms of effectiveness
and efficiency [215]. In multi-bit splitting the selection of bit positions is computed
globally based on the BFs across all the DOs. However, due to the splitting process
similar BFs in a given database could be grouped into different mini-blocks, since
each DO has different 1/0 ratios in their current processed blocks in a given splitting
iteration. This could potentially decrease the quality of blocking if no merging is
used later in our approach. However, using multiple bits rather than a single bit in
each splitting iteration increases the efficiency of the overall blocking process because
in a given iteration a block is split into multiple smaller blocks instead of only two
blocks.

In step 4 of our approach, the standard canopy clustering algorithm merges mini-
blocks greedily, making the block generation process more efficient compared to
the hierarchical canopy clustering algorithm. Hierarchical canopy clustering merges
mini-blocks in an agglomerative manner which potentially requires more merging it-
erations. However, in each merging iteration the hierarchical canopy clustering algo-
rithm merges the two most similar mini-blocks while in standard canopy clustering
mini-blocks are merged if they satisfy the similarity thresholds. Furthermore, once
two mini-blocks are merged a new mediod is computed to calculate the similarity be-
tween other mini-blocks in the hierarchical canopy clustering technique. This ensures
BFs that have the lowest Hamming distance (highest similarity) are grouped together
in each iteration (as detailed in Algorithm 6.3). Therefore, hierarchical canopy clus-
tering can group highly similar BFs together, while in standard canopy clustering it
is more likely that two highly similar mini-blocks would not be merged due to the
sequential merging process of Algorithm 6.2.

However, both clustering approaches could potentially generate blocks with a
number of records larger than bmin. For |B| merged blocks, with each containing
bmin records, the number of candidate record tuples (CRTs) generated for d DOs is
(bmin)

d · |B|. In the merging process the parameter bmin limits the sizes of the blocks
generated by the clustering algorithms which indirectly determines the number of
merged blocks generated by the blocking approach. However, in the worst case
scenario a merged block could contain 2(bmin − 1) records if the two mini-blocks
that are to be merged are of size bmin − 1. Therefore, an appropriate value for bmin
needs to be set by the DOs considering factors such as their database size and the
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number of DOs that are participating in blocking because more messages need to be
communicated in the merging process if bmin is set to a larger value (more merging
iterations). We leave the work on how to calculate optimal values for parameters
mbmin, mbmax, and bmin as a future research.

6.4.3 Privacy

Privacy needs to be considered thoroughly to assess the amount of information a
DO can learn from the data it receives from the other DOs when they communi-
cate among each other. We assume each DO follows the honest-but-curious (HBC)
adversary model [212], as described in Section 2.4 on page 27.

In our blocking approach each DO participates in a secure summation protocol
for exchanging of ratio values of BFs with other DOs as described in Section 6.3.
During these summations, each DO computes their ratio values but neither of the
DOs is capable of deducing anything about any other DOs’ private inputs since the
random vector VR is only known to the DO that initiated the protocol. However, as
we described in Section 5.4 on page 101, DOs are susceptible to collude with each
other to learn about data of a non-colluding DO. To address this a collusion resistant
secure summation protocol (as described in Section 4.3 on page 70) can be used.

Our approach performs a generalisation strategy on the blocks by merging mini-
blocks together to generate larger blocks. The parameter bmin is used to guarantee
that every resulting merged block contains at least bmin records. This ensures all the
blocks generated have the same minimum number of records, which guarantees k-
anonymous (k = bmin) privacy [110, 215]. The merging of mini-blocks to create larger
blocks makes this blocking approach less vulnerable to a dictionary or frequency
attack [212] because all the blocks contain the same minimum number of records
which gives less information about the frequency distributions of attribute values
to an attacker. A higher value for bmin provides stronger privacy guarantees but
would require more computations as more candidate record tuples (CRTs) will be
generated. Therefore the parameter bmin needs to be chosen carefully.

One main aspect of canopy clustering is that it can generate overlapping clusters.
In the PPRL context overlapping clusters can disclose information about the records
that appear in multiple blocks. The parameters tst and lst need to be adjusted appro-
priately in order to keep the overlap between the generated blocks at a minimum.
In both clustering techniques if tst = lst then there would not be any overlap present
among the generated blocks because in each iteration all merged mini-blocks are
removed to avoid them being considered again as clusters [35]. This ensures each
BF will only be inserted into one block. However, such a setting might reduce the
overall linkage quality because each block is compared only with its corresponding
blocks from other DOs and similar BFs that are assigned in different blocks will not
be compared. Therefore, lst needs to be set smaller and closer to tst to increase the
linkage quality, but also to keep overlapping blocks at a minimum. We leave the
development of a method to calculate the optimal values for tst and lst in terms of
overlapping and linkage quality as a future work.
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Table 6.2: Parameter settings used in the experimental evaluation
Parameter Value range

Dataset name NC-SYN
Number of databases (d) 3, 5, 7, 10

Number of records in each database (nR) 5,000 to 1,000,000
Blocking key attributes (A) Given name, Surname, City (suburb), and Postcode

Corruption levels 0%, 20%, and 40%
Bloom filter length (lb f ) 1000

Number of hash functions (nh) 30
Character length of q-gram (nq) 2

Minimum mini-block size (mbmin) 10
Maximum mini-block size (mbmax) 20

Number of splitting bit positions (nb) 1, 2, 3
Bit selection threshold (bst) 0.1

Tight similarity threshold (tst) 0.9
Loose similarity threshold (lst) 0.8

Minimum merged block size (bmin) 50, 100, 500, 1000

Once the blocks are generated, we assume the DOs use an appropriate private
comparison and classification technique [210] to match CRTs, which must not reveal
any information regarding the sensitive attributes and non-matches. However, the
comparison and classification of CRTs is not a step in our blocking approach.

6.5 Experimental Evaluation

In this section, we present and discuss the results of the experimental evaluation
study of our clustering based blocking approach conducted on the datasets described
in Section 4.4 (on page 78). Table 6.2 summarises the parameter values used in
our approach. In this section we use the terms MBS, SCC, and HCC to indicate
multi-bit splitting, standard canopy clustering, and hierarchical canopy clustering,
respectively.

6.5.1 Scalability

We measured the average and total runtime of our clustering based blocking ap-
proaches to evaluate the complexity. Figure 6.4 (a) shows the scalability of steps 1
and 2 of our approaches in terms of database sizes. As expected the runtime required
for Bloom filter (BF) generation increases linearly with database size as more time is
required to encode records into BFs. As can be seen in this figure, the efficiency of
the multi-bit splitting step depends on the number of splitting bit (nb) selection. The
splitting step requires less runtime when nb increases because more mini-blocks are
generated in each iteration which reduces the overall number of splitting iterations
required by Algorithm 6.1.

As shown in Figure 6.4 (b), the total runtime required for blocking increases
with the number of databases because more messages are communicated between
the participating DOs during the multi-bit splitting and clustering steps. However,
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Figure 6.4: (a) Average runtime for BF generation and multi-bit splitting with dif-
ferent minimum number of splitting bits, (b) total runtime with different number of
databases, and average runtime for (c) standard canopy clustering and (d) hierarchi-

cal canopy clustering. Note that plots have different y-axis scales.

blocking with standard canopy clustering (SCC) consumes less runtime compared to
hierarchical canopy clustering (HCC) since more merging iterations are required in
HCC than SCC.

Figures 6.4 (c) and (d) show the average runtime required for our blocking ap-
proach with SCC and HCC for different minimum block sizes (bmin), respectively.
As shown in Figure 6.4 (c), for a larger bmin the runtime required by SCC decreases
because more mini-blocks are merged in each iteration which reduces the overall
merging iterations required by the SCC technique. As shown in Figure 6.4 (d), the
average runtime required by HCC increases with bmin because more iterations are
required due to its hierarchical merging approach. However, both SCC and HCC
show a linear scalability with the size and number of the databases that are blocked.
We also measured the average memory required by our blocking approach, which
increases with the database size. However, it consumed just over 1 GByte of memory
for blocking a database with 1 million of records.
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Figure 6.5: Reduction ratio (RR) of our blocking approach with standard canopy
clustering (SCC) technique for different (a) database sizes and (b) minimum block

sizes (bmin).
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Figure 6.6: Reduction ratio (RR) of our blocking approach with hierarchical canopy
clustering (HCC) for different (a) database sizes and (b) minimum block sizes (bmin).

We also measured the scalability of our blocking approach in terms of the adapted
reduction ratio (RR) measure described in Section 2.5 on page 35. As can be seen in
Figures 6.5 (a) and 6.6 (a), RR remains close to 1 for different number of databases for
both of the clustering techniques. This indicates that our clustering based blocking
approach reduces the number of total candidate record tuples (CRTs) that need to
be compared dramatically. The number of CRTs that need to be compared is only
around 0.0001% of the total number of possible record tuple comparisons across
all databases to be linked. Similar to our tree based blocking approach described in
Chapter 5, such a reduction is achieved because only the corresponding blocks across
all the blocked databases are compared which limits the number of candidate block
tuples to be compared (see also Table 5.4 on page 105). A similar behaviour can also
be seen with different values for bmin where RR remains closer to 1 even when bmin
is increased, as shown in Figures 6.5 (b) and 6.6 (b).
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(c) PC with corruption levels - HCC
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Figure 6.7: (a) and (c) Pairs completeness (PC), and (b) and (d) F-measure (FM) with
different number of databases for different corruption levels for standard canopy

clustering (SCC) and hierarchical canopy clustering (HCC), respectively.

6.5.2 Blocking Quality

We measure the blocking quality of our blocking approach in terms of pairs com-
pleteness (PC) and F-measure (FM), as described in Section 4.4 on page 83. We used
the corruption levels 0%, 20%, and 40% of the NC-SYN dataset (as detailed in Sec-
tion 4.4 on page 78) to evaluate the blocking quality of our approach.

As illustrated in Figures 6.7 (a) and (c), our approach achieves a PC of 1 for 0%
corruption with different number of databases for both SCC and HCC. As can be
seen in these figures, both clustering approaches achieve acceptable level of PC even
in the presence of dirty data. As we expected our blocking approach achieves higher
PC rates with HCC compared to SCC because in each iteration the two most similar
mini-blocks are merged. This improves the overall blocking quality as more similar
BFs are grouped together. Figures 6.7 (b) and (d) show that the F-measure (FM)
also decreases with the corruption level as the number of databases to be blocked
increases.

However, we noted that PC decreases with the number of databases which sug-
gests that similar BFs are grouped into different blocks due to the collaboration of
DOs in the multi-bit splitting and merging processes. The presence of dirty data
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Figure 6.8: Average block sizes with minimum block size (bmin) for (a) standard
canopy clustering (SCC) and (b) hierarchical canopy clustering (HCC) for a 1,000K

database. K represents 1,000 records.

in these databases effects the bit selection process in multi-bit splitting as well as
the selection of the mini-blocks in the merging process. However, as can be seen in
Figure 6.7, the merging of mini-blocks using HCC improves the blocking quality of
our approach which suggests HCC is more suitable compared to SCC for blocking
databases with dirty data.

6.5.3 Privacy

To evaluate the privacy of our approach we studied the block sizes generated for
different minimum block size (bmin) values, as shown in Figures 6.8. These figures
illustrate that both clustering approaches generate blocks that contain at least bmin
records ensuring k-anonymous privacy where k =bmin. However, as can be seen in
Figure 6.8 (b), we noted that the variance between block sizes generated by HCC is
lower compared to SCC (see Figure 6.8 (a)). This suggests that HCC can be used for
block generation in scenarios where more control is needed in their sizes. However,
we also noted that for smaller bmin (when bmin = 50) both SCC and HCC could result
many blocks with large number of records (> bmin). We noted that many of these
large blocks occur in the multi-bit splitting step where they are not processed in the
merging step since these blocks already satisfy the minimum block size. This could
potentially increase the overall number of CRTs to be compared in the comparison
step of the PPRL process. Therefore, based on the parameters mbmin and mbmax a DO
might need to set a suitable value for bmin.

We computed average probability of suspicion (PS) values (for the frequency
linkage attack described in Section 2.5 on page 38) for a database with 1 million
records for different bmin. As shown in Figure 6.9, our blocking approach results in
a maximum PS value less than (1/bmin) for each bmin value, which indicates a record
in a block can be matched to more than bmin values in a global database G (under
the worst case assumption of G is being equal to the blocked database). As shown
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Figure 6.9: Probability of suspicion (PS) with minimum block size (bmin) for (a) stan-
dard canopy clustering (SCC) and (b) hierarchical canopy clustering (HCC) for a

1,000K database. In here K represents 1,000 records.

in Figure 6.9, HCC provides better privacy compared to SCC because most of the
generated blocks are within the acceptable size limit.

We also measured the average (DSMean), median (DSMed), and maximum (DSMax)
disclosure risk values with different bmin values (as we described in Section 4.4). As
shown in Figures 6.10 (a) and (b), the DR values decrease for larger block sizes as
more records are included in a given block making our blocking approach more
secure against frequency attacks. As can be seen, SCC has lower DSMed values for
every bmin compared to HCC because more larger blocks are generated by SCC.

Finally, we conducted the cryptanalysis attack we described in Section 4.5 on
page 85. We evaluate the accuracy of our attack by calculating (1) the percentage
of correct guesses with 1-to-1 matching, (2) the percentage of correct guesses with
1-to-m (many) matching, (3) the percentage of wrong guesses, and (4) the percentage
of no guesses, where these four percentages sum to 100. These four categories are
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Figure 6.10: Disclosure risk values with minimum block size (bmin) for (a) stan-
dard canopy clustering (SCC) and (b) hierarchical canopy clustering (HCC), and (c)
the cryptanalysis attack results performed upon the generated blocks for a 1,000K

database. K represents 1,000 records.

labelled as 1-1 corr, 1-m corr, Wrong, and No in Figure 6.10 (c), respectively. We
also set the parameters bmin and blocking key attribute (A) to 1, 000 and Given name,
respectively.

Similar to Section 5.5 on page 107, we conducted the attack for each generated
block of a database with 1 million records. As illustrated in Figure 6.10 (c), for
both SCC and HCC most of the guesses result in no guesses. This indicates that an
attacker could not re-identify an attribute value of Given name as each block does not
contain enough frequency information to identify q-grams that are encoded in BFs.
Therefore, conducting such cryptanalysis to correctly re-identify attribute values at
the blocking level is impossible.

6.6 Summary

In this chapter we proposed a blocking approach for MD-PPRL based on multi-bit
Bloom filter splitting and canopy clustering. We also suggested an agglomerative
hierarchical canopy clustering algorithm which generates blocks (clusters) within a
specific size range. We demonstrated the efficiency and effectiveness of our approach
on large datasets containing up-to one million records. The evaluation results indi-
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cated that our approach is scalable with both the size and the number of databases.
As mentioned earlier, the number of splitting bit positions (nb), the minimum

(mbmin) and maximum (mbmax) mini-block size used in the multi-bit splitting step,
and bmin used during clustering generate a trade-off between efficiency, effectiveness,
and privacy of our clustering based blocking approach. As future work, we aim
to investigate how to calculate optimal values for these parameters to improve the
quality of blocking without compromising privacy. Parallelisation of Algorithms 6.1,
6.2, and 6.3 is another possible future research avenue of this approach.

Similar to our tree based blocking approach, one limitation in this approach is
that the generation of blocks depends upon the collaborative participation of the DOs
which requires frequent communication among them. To overcome this issue, in the
next chapter we aim to investigate how to allow DOs to block their databases inde-
pendently without frequent communication, and once blocks are generated locally
by the DOs how to identify similar blocks across DOs that need to be compared.



Chapter 7

A Distributed Blocking Scheme for
Multidatabase Privacy-preserving
Record Linkage

The blocking techniques described in Chapters 5 and 6 require database owners to
participate collaboratively to generate the blocks for their databases. In this chap-
ter we propose a scalable distributed blocking scheme for multidatabase privacy-
preserving record linkage (MD-PPRL). Our approach allows each database owner
to perform blocking independently except for the initial agreement of parameter
settings and a final central hashing-based clustering that efficiently and effectively
prunes the record sets that are unlikely to match. In Section 7.1 we highlight the
importance of distributed blocking in a multidatabase linkage context. In Section 7.2
we provide an overview of the proposed approach, and in Section 7.3 we describe the
steps of our proposed approach in more detail. In Section 7.4, we provide a detailed
analysis of our approach with regards to complexity, blocking quality, and privacy.
In Section 7.5, we validate this analysis through an empirical experimental study.
Finally, we summarise our findings in Section 7.6.

7.1 Introduction

As detailed in Chapter 1, the linkage of multiple databases across several database
owners (DOs) can be performed by using two models. As illustrated in Figure 1.3
(on page 12) the linkage of different databases can be performed (1) only by the
participation of DOs, or (2) with the participation of a linkage unit (LU) to facilitate
the linkage.

Our blocking techniques described in Chapters 5 and 6 follow the first linkage
model where only the DOs are participating in the blocking step to collaboratively
block their own databases. However, such collaboration requires DOs to agree on
the same parameter settings in the block generation process. Furthermore, our tree
and clustering based blocking approaches require all DOs to communicate frequently
which incurs an additional cost to the block generation process.

133
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Table 7.1: Notation and terminology used in this chapter

B Set of blocks of a database owner
BF Inverted index of Bloom filters
CBT Set of candidate block tuples
D A database
MB Set of mini-blocks
A List of blocking attributes
B, Bi A block and a block identifier
BC Set of bit combinations
CBT A candidate block tuple
Q An queue data structure
R, R.a, R.id A record, attribute value, and record identifier
RG A list of globally ranked bit positions
S A set of q-grams
VB, VR A binary and ratio vector
b f A Bloom filter
bmin, bmax Minimum and maximum block size
c, cx, cy A centroid of a block
d Number of database owners (or databases)
lb f , lmhs Length of a Bloom filter, and Min-Hash signature
mb A mini-block
mbmin, mbmax Minimum and maximum mini-block size

nb, nB, nCBT, nd, nh, nq, nr

Number of bits for splitting, bands,
candidate block tuples, top-most dense bit positions,
q-grams, and records

oi Number of 1’s in bit position i
rseed Random seed value
simC(), simJ() Cosine and Jaccard similarity functions
bu A hashed bucket in locality sensitive hashing
λ A set of Min-Hash values
µi An average value of bit position i

BF Bloom filter
BK Blocking key attribute
BKV Blocking key value
BRP Block representative pair
DO A database owner
LSH Locality sensitive hashing
PPRL Privacy-preserving record linkage
MHS Min-Hash signature
MD-PPRL Multidatabase PPRL

To provide the DOs with control over the block generation process (in terms of the
sizes and numbers of blocks) we propose a novel distributed blocking mechanism for
MD-PPRL. Our proposed approach allows each DO to generate its set of blocks by
clustering its own database independently without revealing any private information
to any other DO.

Our proposed blocking approach follows the second linkage model described in
Section 1.3 (on page 11) where we employ a LU to facilitate the identification of simi-
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Figure 7.1: A high-level overview of our proposed approach for three database own-
ers DOA, DOB, and DOC, where DA, DB, and DC represent the databases of DOA,
DOB, and DOC, respectively. In step 1 all DOs need to agree on the parameter set-
tings. In step 2 each DO independently encodes its database. In step 3 these encoded
databases are blocked by the DOs independently as we describe in Section 7.3. Due
to the independent nature of blocking each DO can have different number of blocks
at the end of step 3. In step 4 each DO generates a set of block representatives for its
generated blocks while in step 5 a list of candidate block tuples (CBTs) that need to

be compared is generated based on these block representatives.

lar blocks for comparison. Once the blocks have been generated, each DO sends a set
of representatives of its blocks to the LU. Then the LU applies a clustering technique
on these sets of representatives to generate tuples of candidate blocks (described
in more detail in Section 7.3 below) that need to be compared later in the privacy
preserving record linkage (PPRL) process. Besides an initial exchange of parameter
settings and the final central clustering step by the LU, our approach does not re-
quire any communication among the participating DOs. In Table 7.1 we summarise
the notation we use in this chapter, and we next describe our approach in more detail.

7.2 Overview of our approach

As explained in Section 7.1 the main aim of our approach is to allow each DO to
block their databases completely independently. Importantly, it allows DOs to block
their databases according to their computational resources and privacy requirements
(we will analyse privacy in detail in Section 7.4).

For ease of presentation we assume that the databases held by the DOs have the
same database schema. If the databases have different schemas, a private schema
matching approach can be used to align the different schemas [186]. Figure 7.1
illustrates a high-level overview of our approach.
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As illustrated in Figure 7.1 our approach contains five main steps, which are:

1. Parameter Agreement: The DOs need to agree upon the parameter settings used
in the record encoding and block representative generation process. The set of
parameters will be described in more detail in Section 7.3.

2. Record Encoding: Each record in a database needs to be encoded before they are
being grouped into blocks. It is important to note that the encoding technique
depends on the blocking technique used in step 3 of our approach. How-
ever, for illustrative purposes we use q-grams and Bloom filters as described in
Chapter 4 in the same way as in Chapters 5 and 6 as building blocks of the pro-
posed approach for the encoding of records. We refer the reader to Section 4.3
for more details of each of these building blocks.

3. Local Block Generation: In this step each DO independently blocks its database.
For the illustrative purpose we propose a clustering technique that can be used
in this step where each DO performs clustering until the size of the generated
blocks (clusters) falls within a specific lower and upper size range. In contrast
to our previous blocking approaches (as detailed in Chapters 5 and 6) each DO
can independently decide the size and number of blocks they want to generate.

4. Block Representative Generation: Once the blocks have been generated locally,
each DO computes a lower dimensional representative for each of its blocks.
Each DO then sends these representatives together with a block identifier to
the LU. We will explain the generation of these representatives in more detail
in Section 7.3.

5. Candidate Block Tuple Generation: To identify the blocks that need to be com-
pared the LU applies a hashing based clustering technique on the received
block representatives to generate candidate block tuples (CBTs).

Finally these merged blocks can be compared using private comparison and classifi-
cation techniques to determine the matching record tuples in different databases [210].
We next describe each step of our approach in more details.

7.3 Distributed Scalable Blocking Approach

We assume d DOs are participating in our approach, each with a database and with
d ≥ 3. We assume a set A of quasi-identifiers [94], such as first name, last name,
address details, etc., are common to all the databases. The attributes in A are used
as blocking key (BK) attributes to group similar records into blocks. An illustrative
example of our proposed approach is shown in Figure 7.2 and each step is discussed
further below.
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Figure 7.2: An illustrative example of candidate block tuple (CBTs) generation for
three database owners DOA, DOB, and DOC. In this example DA, DB, and DC rep-
resent the databases of DOA, DOB, and DOC, respectively. In step 2 each DO uses
Bloom filters (BFs) to encode its records. In step 3 the DOs block their databases
independently, while in step 4 each DO sends a set of Min-Hash signatures (MHSs)
as block representatives along with their identifiers to a linkage unit (LU). The LU
applies a locality sensitive hashing technique on the received MHSs to generate can-

didate block tuples in step 5.

1. Parameter Agreement

In step 1 of our approach, all DOs need to agree upon the set of parameters to
be used for the record encoding and block representative generation. Since we
are using Bloom filter (BF) encoding for illustrative purposes each DO needs to
agree on the length of the BF, lb f , the length (in characters) of q-grams, lq, the
number of hash functions, nh, and the set A of BKs.

To identify the similar blocks across different databases each DO needs to send
a set of block representatives to the LU. We use Min-Hash signatures [25, 101]
(MSH) as block representatives in our approach. To compute MSHs all DOs
need to agree upon the number of top-most dense bit positions, nd, Min-Hash
signature length, lmhs, and a random seed value, rseed. We will describe each of
these parameters in more details below.

2. Record Encoding

As the second step of our approach, each DO independently encodes its database
records into BFs as shown in Figure 7.2. We follow the same steps as in Algo-
rithm 5.2 in Chapter 5, where each DO iterates over its database D and each
record R ∈ D is encoded into a BF b f . Each b f is added to an inverted index
data structure BF using its record identifier, R.id, as a key. Each DO then uses
BF in the next step of the proposed approach to generate its set of blocks.



138A Distributed Blocking Scheme for Multidatabase Privacy-preserving Record Linkage

3. Local Block Generation

As illustrated in Figure 7.2, the third step of our approach is to perform block-
ing over the BFs independently by each DO to generate a set of blocks. The dis-
tributed nature of our protocol allows each DO to select an appropriate block-
ing technique depending upon their computational resources. A key point is
that the local block generation process can be considered as a black box where
any blocking technique can be used same across the DOs as long as the mini-
mum (bmin) and maximum (bmax) size of a block can be controlled. Each DO can
set bmin and bmax independently without making any agreements with other
DOs, which provides more control over the block generation process for the
DOs. The output of this local block generation step is a set of blocks each
containing a group of BFs.

Clustering based Independent Blocking

To allow each DO to independently block their databases we propose a novel
threshold based hierarchical clustering technique based on the split and merge
principle described in Chapter 6. Similar to the blocking technique proposed
in Chapter 6, each DO first splits its inverted index BF into a set of mini-blocks.

Algorithm 7.1: Bloom filter splitting by a DO, adapted from Algorithm 6.1.
Input : BF - An inverted index of BFs

mbmin - Minimum size of a mini-block
mbmax - Maximum size of a mini-block
nb - Maximum number of bit positions for splitting
RG - Global ranking of bit positions

Output: MB - Set of mini-blocks

1 Q←[BF] // Initialisation of queue with the inverted index BF
2 while Q 6= [] do
3 B← Q.pop() // Get the larget block at the front

4 BC ← getCombinations(B, RG, nb) // Get bit combinations

5 MB← splitData(BC, B) // Compute mini-blocks

6 if ∀mb∈MB|mb| ≥ mbmin then // Check if all mini-blocks are large than mbmin

7 foreach mb ∈ MB do
8 if |mb| ≥ mbmax then // Check if the mini-block is too large

9 Q.push(mb) // Add to queue for further splitting

10 end
11 else
12 MB ∪mb // Add the mini-block to the final set of mini-blocks

13 end
14 end
15 end
16 else // All bit combinations generate mini-blocks that are smaller than mbmin

17 MB ∪ B // Add current block to the set of mini-blocks

18 end
19 end
20 return MB
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Database owner A (DOA) Database owner B (DOB) Database owner C (DOC)
Bit pattern {00} Bit pattern {0} Bit pattern {00}

b f 5
A 0 1 0 0 1 b f 1

B 1 0 0 1 1 b f 2
C 0 1 0 1 0

b f 8
A 0 1 0 0 0 b f 5

B 1 1 0 0 0 b f 8
C 0 1 0 1 0

b f 7
B 0 0 0 1 1

Bit pattern {01} Bit pattern {01}
b f 1

A 0 1 1 0 0 Bit pattern {1} b f 1
C 0 1 1 1 0

b f 4
A 0 1 1 1 0 b f 2

B 1 0 1 0 1 b f 5
C 0 0 1 0 0

b f 7
A 0 1 1 1 0 b f 3

B 0 0 1 1 0 b f 7
C 0 1 1 0 1

b f 4
B 1 1 1 1 1

Bit pattern {10} b f 6
B 0 0 1 0 1 Bit pattern {10}

b f 3
A 1 0 0 0 0 b f 8

B 1 0 1 1 1 b f 4
C 1 1 0 0 1

b f 6
A 1 1 0 1 0 b f 6

C 1 0 0 1 0

Bit pattern {11} Bit pattern {11}
b f 2

A 1 0 1 0 1 b f 3
C 1 0 1 1 0

Figure 7.3: Mini-block generation according to a bit combination (by assuming DOA,
DOB, and DOC have set nb as 2, 1, and 2, respectively). Assuming a global ranking
of bit positions RG = {3, 1, 4, 2, 5}, DOA, DOB, and DOC select index positions {3,1},
{3}, and {3,1}, respectively, as splitting bit positions. According to the selected bit
positions the respective BFs of DOA, DOB, and DOC in Figure 5.3 (on page 96) are

split into 4, 2, and 4 mini-blocks. The selected bit positions are shown in bold.

These generated mini-blocks are then merged until the size of a merged block
reaches a minimum size, bmin, using a hierarchical merging approach. We next
describe our clustering approach in more detail.

Splitting Phase

As the first step in our clustering technique, the BFs are split into sets of mini-
blocks. Before starting the splitting process, the bit positions in BFs are ranked
according to the ratios between the number of 0’s and 1’s for each bit position.
We use Equation 6.1 on page 116 to calculate the 1/0 ratios of each bit position.
We follow the same method described in Section 6.3 to rank the bit positions.

For example, the index positions of the globally summed ratio vector, VG, in
Figure 5.4 (on page 96), which is generated from inverted indexes of BFA, BFB,
and BFC of DOA, DOB, and DOC, respectively, in Figure 5.3 (on page 96), can
be ranked into a list of splitting bit positions, RG, where RG = {3, 1, 4, 2, 5}.
The computed RG is used to split the set of BFs of each DO iteratively until the
BFs are grouped into smaller blocks within a specified size range, as outlined
in Algorithm 7.1.

In contrast to Algorithm 6.1 on page 117, Algorithm 7.1 allows each DO to set
parameters minimum (mbmin) and maximum (mbmax) mini-block size, and the
number of splitting bit positions (nb) independently. The parameters mbmin,
mbmax, and nb allow each DO to control the number of iterations that occur in
the splitting algorithm as we will explain in more details in Section 7.4. As we
have explained in Section 6.3, in each iteration the largest block of BFs that is
available at the front of the queue Q is split into a set of mini-blocks by using
nb index positions in RG as splitting bit positions (lines 3 to 5 in Algorithm 7.1).
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Algorithm 7.2: Merging mini-blocks using hierarchical clustering
Input : MB - Set of mini-blocks

bmin - Minimum size of a merged block

Output: B - Set of merged blocks

1 B← ∅ // Initialisation of the set of merged blocks

2 while MB 6= ∅ do
3 mbx ← MB.pop() // Get the frist mini-block

4 cx ←computeCentroid(mbx) // Compute the centroide

5 S← [] // Initialise a list to keep similarities

6 for mby ∈ MB do // Iterate through remaining mini-blocks

7 cy ← computeCentroid(mby) // Compute the centroide

8 s← simC(cx, cy) // Compute the similarity between the centroides

9 S.add(s) // Add the similarity to the similarity list

10 end
11 mby ← getMinBlock(S,MB) // Get the mini-block with the highest similarity

12 B← mbx ∪mby // Merged the mini-blocks

13 MB.delete(mbx,mby) // Delete the merged mini-blocks

14 if |B| < bmin then // Check if the merged block is not large enough

15 MB.add(B) // Add the merged block back to set of mini-blocks

16 end
17 else
18 B.add(B) // Add the merged block to the set of merged blocks

19 end
20 end
21 return B

If all of the resulting mini-blocks contain BFs greater than mbmin (line 6), then
each mb ∈ MB is checked against the value of mbmax (lines 7 to 9). Similar
to Algorithm 6.1, any mini-block that is larger than mbmax is added to Q for
future splitting (line 9), while others are added to the set of mini-blocks MB
(line 12). In the next phase the mini-blocks in MB are merged until the resulting
blocks contain a minimum number of BFs. We refer the reader to Section 6.3
on page 115 for more details on the mini-block generation process. Figure 7.3
provides an example of generating mini-blocks for the sets of BFs in Figure 5.3.

Merging Phase

For merging of mini-blocks we suggest a threshold based hierarchical clustering
algorithm which guarantees that mini-blocks are only merged upto the mini-
mum size limit bmin, as outlined in Algorithm 7.2. As explained in Section 6.3
limiting the minimum block size allows us to perform computationally efficient
blocking. Before starting the clustering algorithm, each DO can independently
set an appropriate value for bmin which controls the size of its merged blocks.
However, due to the iterative merging of mini-blocks, the parameter bmax can
only be within the size range of bmin ≤ bmax ≤ 2(bmin− 1) because each merged
block contains at least bmin and at most 2(bmin − 1) BFs where latter occurs
when two mini-blocks of size (bmin − 1) are merged.
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As detailed in Algorithm 7.2, to merge mini-blocks each DO iterates over its set
of mini-blocks MB (line 2). At each iteration one mini-block mbx is selected and
the respective centroid cx is computed (lines 3 and 4). The function compute-
Centroid() computes centroid c = [µ1, µ2, µ3, · · · , µlb f ] as a ratio vector for each
mini-block, where µi is the average number of BFs that have a 1 bit at position i
and lb f is the length of a BF. For a given mini-block mb, µi can be calculated as
µi =

oi
|mb| , 1 ≤ i ≤ lb f , where oi is number BFs that have a 1-bit at position i and

|mb| is the number of BFs in mb. We use the Cosine similarity (simC) between
centroids for computing the similarity of mini-blocks because this similarity
function is commonly used in high dimensional similarity calculations [229].
simC between two centroids cx and cy is calculated using Equation 7.1:

simC(cx, cy) =
cx · cy

||cx|||cy||
=

∑
lb f
i=1 ci

x × ci
y√

∑
lb f
i=1(c

i
x)

2 ×
√

∑
lb f
i=1(c

i
y)

2
(7.1)

This similarity is computed between the initial mini-block mbx and every other
mini-block mby in MB (lines 6 to 10). The mini-block mby that has the highest
similarity with mbx is merged with mbx into the new block of B (lines 11 and
12). The merged mini-blocks mbx and mby are removed from MB to avoid
repetitive merging with other mini-blocks (line 13).

After the selected two mini-blocks have been merged the size of the resulting
block B is checked against the minimum block size bmin (line 14). If the size
of B is less than bmin, B is added back into MB (line 15). This enables B to be
merged further with other similar mini-blocks. Once the size of B reaches at
least bmin, B is added to the final set of merged blocks B (line 18).

However, a DO could use the canopy clustering techniques as described in
Section 6.3 for the merging of mini-blocks. To do so each DO needs to select
their own similarity (loose and tight) thresholds and follow the steps outlined
in Algorithms 6.2 and 6.3. Hence, a BF needs to be computed as the centroid for
each mini-block, and mini-blocks are merged based on the Hamming similarity
as calculated in Equation 6.4.

4. Block Representative Generation

As illustrated in Figure 7.1, in the fourth step in our approach each DO gen-
erates a block representative pair (BRP) for each merged block B in B. A BRP
consists of a block identifier (Bi) and a Min-Hash signature (MHS) [25] in the
form of 〈Bi, MHS〉.

Prior to the BRP generation, for each block B ∈ B a ratio vector VR is computed
that defines the densities of all lb f bit positions of the BFs in a cluster, which
allows each DO to select the most dense bit positions in a block for the signa-
ture generation, and hide information about less dense bit positions which can
potentially reveal sensitive information to other DOs [56, 132]. The density of
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a bit position i is calculated as µi =
oi
|B| , 1 ≤ i ≤ lb f , where oi is the number of

1-bits in position i and |B| is the number of BFs in a given block B. Then, the
bit positions in VR are ranked according to the density values in descending
order and the nd(< lb f ) top-most dense bit positions are selected. Each VR is
then converted into a bit vector VB, where all the selected nd bits are set to 1
and the other (lb f − nd) positions are set to 0. Finally, a VB is used to generate
the MHS for its block B.

For example, assume a VR = [0.125, 0.1, 0.01, 0.5, 0.25] for a given block B. Sup-
pose we set the nd = 3 which allows to select the top three dense bit positions
at most. According to the ranking order the bit positions selected are (1, 4, 5).
Thus, the resulting bit vector VB for VR of B is < 1, 0, 0, 1, 1 >.

Min-Hash is a class of hash functions that approximate the Jaccard similar-
ity [25]. The idea behind using Min-Hash is that the probability of two binary
vectors VB and V ′B to generate the same Min-Hash value equals the Jaccard sim-
ilarity of those two vectors. Formally, the probability that VB and V ′B will gen-
erate the same min-hash for a hash function gi can be defined as follows [25]:

Pr[gi(VB) = gi(V ′B)] =
|VB ∩V ′B|
|VB ∪V ′B|

= simJ(VB, V ′B), (7.2)

where |VB ∩V ′B| is the number of 1-bits common in VB and V ′B, |VB ∪V ′B| is the
number 1-bits appearing in both VB and V ′B, and simJ() is the Jaccard similar-
ity between VB and V ′B. Hence, the probability Pr increases with the Jaccard
similarity between the two vectors.

To compute a MHS, we select lmhs independent hash values for each index
in VB by using a random seed value rseed, which defines lmhs random permuta-
tions [25]. Using a single pass over the set of VB, the corresponding nl Min-Hash
values g1(VB), g2(VB), · · · , glmhs(VB) are determined for each VB under each of
the lmhs random permutations. Note that each gi() returns the index (i.e., posi-
tion) in which the first 1-bit occurs in VB which becomes ith of component of a
MHS. Finally, the generated MHS is used in the BRP for each block.

As an example of generating a MHS, let us assume a binary vector VB =
[1, 0, 1, 1, 0]. Let us create the MHS of VB = {g1, g2}. Suppose we select two
random permutations RP1 = (2, 3, 5, 4, 1) and RP2 = (5, 4, 1, 3, 2) for the two
hash functions g1 and g2, respectively. By applying the RP1 to VB we get the
permuted VB as RP1([1, 0, 1, 1, 0]) = [0, 1, 0, 1, 1]. To compute the Min-Hash
value of g1(VB) we then apply the hash function g1 to the permuted VB which
gives the Min-Hash value of g1([0, 1, 0, 1, 1]) = 3. Similarly, for hash function g2

we get the Min-Hash value g2(VB) = RP2([1, 0, 1, 1, 0]) = g2([0, 1, 1, 1, 0]) = 4.
Hence, the MHS of VB = {g1, g2} = {3, 4}. Before generating the BRPs inde-
pendently, all DOs need to agree on the parameters nd, lmhs, and rseed, and the
importance of each is described next.
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Number of top-most dense bit positions (nd): All DOs need to use the same
number of top most dense bit positions, since a different number of dense bit
positions can generate different MHS for similar blocks at different DOs. This
would result in these blocks not being considered as candidates for comparison
in step 4 of our protocol. However, before agreeing on a common nd value
the DOs can calculate an interval of the minimum and maximum number of
dense bit positions that can be selected [212]. The maximum number of dense
bit positions is important in terms of privacy because less dense bit positions
could potentially provide frequency information about rare q-grams. On the
other hand, the minimum number of dense bit positions provides a limitation
on the overlap between the MSHs of clusters because the use of only the few
most dense bit positions can generate the same Min-Hash values for all clusters
which potentially end up with the same MSH for all clusters. Therefore, each
DO could share its interval nd value ranges with other DOs and select a suitable
value for nd that is within all these intervals. We leave the development of a
technique to calculate an optimal value for nd as a future work.

The length of a Min-Hash signature (lmhs): The length lmhs provides a trade-
off between accuracy and computational cost in step 5 of our approach. In
general, the probability that two bit vectors VB and V ′B generate the same Min-
Hash value for a hash function gi is computed using Equation 7.2.

For MHSs of length lmhs, the simJ(VB, V ′B) can be estimated as,

simJ(VB, V ′B) ≈ y/lmhs = |{i|1 ≤ i ≤ lmhs and gi(VB) = gi(V ′B)}|/lmhs, (7.3)

where y is the number of hash functions for which gi(VB) = gi(V ′B). If simJ(VB, V ′B)
deviates from y/lmhs with an error ε, then the probability that y = (1− ε) ·
simJ(VB, V ′B) · lmhs Min-Hash values of VB and V ′B are equal can be defined as:

Pr[y, l, simJ(VB, V ′B)] =
y

∑
j=0

(
l
y

)
simJ(VB, V ′B)

j · (1− simJ(VB, V ′B))
l−j (7.4)

By applying the Chernoff Bound [153] to Equation 7.4, the probability that
simJ(VB,V ′B) deviates from y/lmhs up to an error bound ε is given by:

Pr[|simJ(VB, V ′B)− (y/lmhs)| ≤ ε] ≤ 2e−
ε2

2+ε lmhs < δ, (7.5)

where 0 < ε ≤ 1. Equation 7.5 must satisfy l ≥ (2 + ε)/ε2 · ln(2/δ) = O(1/ε2)
with a probability δ > 0 [46]. To this end, for any constant lmhs = O(1/ε2) the
expected error of the similarity estimate is at most ε. Based on estimation of ε

the DOs can agree upon an appropriate value for lmhs (with lmhs < lb f ).

Random seed value for permutation generation (rseed): The value rseed needs
to be shared among the DOs to generate the same set of lmhs permutations for
the MHS generation using a pseudo-random generator.
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Algorithm 7.3: Generating candidate block tuples using Locality Sensitive
Hashing (LSH) by the LU

Input : BRP - Sets of BRPs from DOs
nB - Number of bands considered in a MHS
lmhs - Length of a MHS
nCBT - Number of candidate block tuples need to be matched

Output: CBT - Set of candidate block tuples

1 MHSB ← []; CBT← ∅; CT ← {} // Initialisation of variables

2 λ← lmhs/nB // Calculate the number of hash values in a band

3 foreach i ∈ 1, 2, . . . , nB do // Each MHS is hashed for all the bands

4 MHSB[i]← {} // Create an inverted index for band i
5 foreach j ∈ 1, 2, . . . , d do // Hash MHSs from all the DOs

6 foreach 〈Bid, BMHS〉 ∈ BRP[j] do
7 bu← getMinHashValues(BMHS, i, λ) // Get corresponding Min-Hashes

8 if bu ∈ MHSB[i] then // Check if a bucket is available with hash key bu
9 MHSB[i][bu].add(Bid) // Add the Bid to the bucket

10 end
11 else
12 MHSB[i][bu]← [Bid] // Create a new bucket with λ Min-Hash values

13 end
14 end
15 end
16 foreach bu ∈ MHSB[i] do // Iterate over each bucket

17 C ← createCandidateTuples(MHSB[i][bu]) // Compute candidate block tuples

18 foreach CBT ∈ C do
19 CT[CBT]←incrementCounter(CT, CBT) // Increment the band counter by 1

20 end
21 end
22 end
23 CBT← getCandidateTuples(CT,nCBT) // Get nCBT candidate block tuples

24 return CBT

5. Candidate Block Tuple Generation

In the last step of our approach, each DO sends its generated BRPs to the LU
as illustrated in Figure 7.1. In order to identify the candidate block tuples
(CBTs), as a naive approach the LU can compute the similarities between all
MHSs and based on these similarity values group the BRPs into different CBTs.
This would require a complexity of O(|B|d), if each of the d DOs generates |B|
blocks, which can become infeasible in terms of the number of computations.
To improve the efficiency of generating CBTs, a Locality Sensitive Hashing
(LSH) approach is used, as outlined in Algorithm 7.3. LSH is commonly used
for searching nearest neighbours in high dimensional data [101]. LSH has been
used in a PPRL context where Durham [56] proposed Hamming distance based
LSH functions to efficiently generate candidate record pairs, while Karapiperis
and Verykios [118] have suggested a two database PPRL blocking framework
which also uses LSH functions for blocking.
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LSH uses a set of hash functions to map objects into partitions in such a way
that similar objects are mapped to the same partition (bucket) with high proba-
bility, while guaranteeing that dissimilar objects are not mapped into the same
bucket with high probability [101]. In our approach the LU applies LSH over
the MHSs sent by the DOs to group these MHSs into different buckets with
the aim that dissimilar MHSs will never hash to the same bucket while similar
MHSs will hash to the same bucket under at least one of the hash values in
these signatures.

LSH involves the use of a family of hash functions, which in our approach can
be defined as follows. The MHSs of each DO are divided into nB bands each
consisting of λ Min-Hash values where lmhs = nB · λ. If two signatures, MHS1

and MHS2, have a Jaccard similarity s, then the probability that the signatures
agree in all λ Min-Hash values of one particular band is sλ [101]. Thus, the
probability that MHS1 and MHS2 agree in all λ hash values of at least one band
to become a candidate pair is 1 – (1 – sλ)nB (we refer the reader to [25] for
more details). This defines the LSH family to be (s1, s2, 1 – (1 – sλ

1 )
nB , 1 – (1 –

sλ
2 )

nB)-sensitive if,

• simJ(MHS1,MHS2)≥ s1, then Pri∈1,...,nB [{bai|MHS1} = {bai|MHS2}] ≥ p1,
and

• simJ(MHS1,MHS2)≤ s2, then Pri∈1,...,nB [{bai|MHS1} = {bai|MHS2}] ≤ p2,

where p1 and p2 are two probabilities such that p1 > p2, bai is a band in a MHS,
and s1, s2 (with 1 ≥ s1 > s2 ≥ 0) are two Jaccard similarity thresholds.

As outlined in Algorithm 7.3, the MHSs of all DOs are hashed for each ith
band into a list of inverted indexes MHSB (lines 2 to 10). For a given ith band
bai, the Min-Hash values of a MHS are used as the hashing key of a bucket
bu ∈ MHSB[i] by concatenating all Min-Hash values and the corresponding
Bid is added to bu (lines 7 to 10). If MHSs of different DOs have the same λ

values for band bai then the corresponding Bids are added to the same bucket
in MHSB[i] which become a CBT to be compared.

The LU then generates CBTs using the function createCandidateTuples() which
provides the set of CBTs that need to be compared among all the DOs (line
17). For example if a bucket u contains Bids B1

A and B2
A of DOA, B1

B of DOB,
and B1

C of DOC then the function createCandidateTuples() returns a list C =
[〈B1

A, B1
B, B1

C〉, 〈B2
A, B1

B, B1
C〉] containing two CBTs of size three. Each CBT that

is generated for a given bucket bu is added to an inverted index CT with a
counter value, defining the number of times a given CBT is generated for nB
bands (lines 18 to 20). A CBT gets a higher counter value if its respective MHSs
are more similar compared to a CBT with its respective MHSs are dissimilar.

Rather than comparing each CBT in CT, the DOs can agree upon the number
of CBTs that are to be compared in the comparison step later in the PPRL
pipeline. The parameter nCBT specifies the maximum number of CBTs that
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are to be generated by the LU, and is computed based on an approximation
of the reduction ratio (RR). By assuming each DO generates |B| blocks (each
of the same size), then the total number of block comparisons for d DOs is
equal to nT = |B|d. The approximate RR can be considered as the fraction of
block comparisons reduced from nT, computed as RRapprox ≈ 1− (nCBT/nT).
All DOs need to agree on a suitable value for RRapprox to calculate how many
block comparisons they want to perform in the comparison and classification
step later in the PPRL pipeline.

The selection of nCBT CBTs allows the LU to identify the block tuples which
are more likely to be similar among all the CBTs generated. To identify the
required CBTs that need to be compared, first the CBTs are ranked in a de-
scending order based on the respective counter values in CT which defines
how often a given CBT is generated for a bucket bu ∈ MHSB. A CBT gener-
ated for all bu ∈ MHSB gets the highest rank. The top nCBT CBTs are returned
from the function getCandidateTuples() and are added to the set CBT (line 23).
Finally, CBT is sent to all DOs as shown in Figure 7.1.

7.4 Conceptual Analysis of Distributed Blocking Scheme

In this section we analyse our private blocking approach in terms of complexity,
privacy, and quality of blocking.

7.4.1 Complexity

Let us assume d ≥ 3 database owners (DOs) are participating in our approach with
each having a database D to be blocked. By assuming there are nr records in D with
each record R having an average of nq q-grams in blocking attributes A, we analyse
the computational and communication complexities in terms of a single DO.

In step 2 of our approach we assume each DO encodes all records in its database
D into Bloom filters (BFs) of length lb f using nh hash functions independently. The
record encoding step is of O(nh · nq · nr) complexity since the BF encoding is applied
to all records in a linear manner.

In step 3, each DO needs to block its generated BFs. Let as assume the proposed
clustering based independent blocking approach is used in this step. In the split-
ting phase of our proposed hierarchical clustering technique the parameters mbmin
and mbmax are used to control the size of mini-blocks that are generated. In each
splitting iteration a given block B is split into |MB| = 2|BC| mini-blocks according
to a selected bit combination BC. Therefore, log|MB|(

nr
mbmax

) splitting iterations are
required to split nr records. Hence, the splitting of nr BFs into a set of mini-blocks is
of O(nr · log|MB|(

nr
mbmax

)).
In the merging phase of our clustering technique the mini-blocks are merged

based on the similarities of centroids in each merging iteration. The computation
of a centroid for a given mini-block mb requires to generate a ratio vector VR. The
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generation of each VR is of O(lb f · |mb|) complexity. In each merging iteration the
two most similar mini-blocks are merged together. Therefore, the merging phase of
our clustering technique requires a total of O(( nr

mbmax
)2) computations.

In step 4 we assume each DO generates nr
bmin

blocks. To compute MHSs as block
representatives, each DO calculates a VR for each of its generated blocks. This re-
quires a complexity of O(lb f · nr

bmin
), where bmin defines the minimum number of BFs

in a block. Consequently, generating lmhs length MHSs for all blocks has a complexity
of O(lmhs · nr

bmin
). In step 5 the LU needs to hash MHSs of all the d DOs into nB bands

which has a complexity of O(nB · d · nr
bmin

). For each bucket in MHSB the function
createCandidateTuples() returns a list of candidate block tuples which requires a total
computational complexity of O(nB ·∑nB

i=1 |MHSB[i]|).
By excluding the initial parameter agreements in our approach, which has a con-

stant complexity, the DOs communicate with the LU only in step 4 where each DO
sends its generated set of BRPs to the LU. The LU receives d messages each contain-
ing nr

bmin
BRPs which leads to an overall communication complexity of O(lmhs · d · nr

bmin
).

7.4.2 Blocking Quality

We analyse the quality of our protocol in terms of effectiveness and efficiency [35].
Since each DO performs local blocking independently in step 3 of our approach, the
overall blocking quality depends upon the blocking technique used by the DOs.

The lower (mbmin) and upper (mbmax) size bound of the clusters generated by
each party determine the number of mini-blocks generated in the splitting step in
the proposed hierarchical clustering technique. As we have discussed in Section 7.3,
splitting sets of BFs into smaller mini-blocks and merging similar mini-blocks up-
to bmin ensures similar records are grouped into blocks which improves the overall
quality of our approach. The parameter nb needs to be selected appropriately since
the process of generating bit combinations grows exponentially with nb which can
increase the overall runtime of our approach. However, as we have seen in Section 6.5,
an increase of nb improves the quality of blocking since more similar BFs are grouped
into mini-blocks which improves the effectiveness of merging in clustering.

In step 4 of our approach, the length lmhs of a MHS provides a trade-off between
effectiveness and efficiency of the candidate block tuple (CBT) generation in step
5. An increase of lmhs decreases the error ε of the similarity estimation by ε =
O(1/

√
lmhs), which would decrease the false negative rate [36], but would increase

the number of false positives [36] in the CBT generation.
For a given signature length lmhs, the runtime and quality of the CBT generation

in step 5 depends upon the number of bands nB considered by the LU. As nB de-
creases the probability that MHSs are mapped to the same bucket decreases, which
leads to the number of false positives to decrease, but it would also increase the
number of false negatives. On the other hand, incrementing nB requires more com-
putational time as each MHS is hashed more often which leads to an increase in the
number of CBTs. To assess the blocking quality we evaluate our approach in the next
section with different large datasets under different parameter settings.
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7.4.3 Privacy

We assume each DO follows the honest-but-curious (HBC) adversary model (as de-
scribed in Chapter 2). In steps 1 to 4 of our approach, each DO performs its compu-
tations independently without any communication across the DOs except for the
parameter agreements, which does not reveal any private information about the
databases held by the DOs. In step 3 of our approach each DO selects the values
of mbmin, mbmax, and bmin according to their privacy requirements. This improves the
overall privacy of our approach since the number of records in blocks of a given DO
is not known to any other party participating in our approach. Also, the parameter
bmin guarantees that every merged block of a DO contains at least bmin records, which
guarantees k-anonymous mapping (k = bmin) privacy [212, 216].

The LU is not capable of deducing anything about the DO’s databases as the LU
only receives a set of BRPs from each DO. The parameters used in the BF genera-
tion, the values for nd, rseed, and the sizes of the blocks, all are unknown to the LU.
Therefore, the LU cannot learn the frequency distribution of the blocks generated to
conduct a frequency attack [212].

However, under the HBC model collusion is possible [140, 212]. In our approach
one or more DOs can collude with the LU to deduce information about other DOs.
A colluding DO can reveal the set of parameters used in the BF and MHS generation
processes to the LU. However, our approach guarantees the privacy of a database
of a DO in two different ways. Firstly, the local block generation allows each DO
to block their database independently without sharing its blocking parameters with
any other DO. This ensures that even if a DO reveals its encoding parameters to the
LU, the LU still does not know block sizes to conduct a frequency analysis. Secondly,
the generated blocks are not being sent to the LU except for a set of representatives.
In the signature generation process the parameter top most dense bit position (nd)
ensures the LU cannot learn any frequency information about the rare q-grams as-
signed to less dense bit positions. Therefore, the LU cannot exactly match a record
to a MHS even if it would regenerate the respective binary vectors of MHSs that it
received from a non-colluding DO.

7.5 Experimental Evaluation

In this section, we present the experimental evaluation of our distributed blocking
scheme. Table 7.2 summarises the datasets and parameter values used. We use the
clustering approach proposed in Section 7.3 in the local block generation step of our
approach.
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Table 7.2: Parameter settings used in the experimental evaluation
Parameter Value range

Dataset name NC-SYN
Number of databases (d) 3, 5, 7, 10

Number of records in each database (nR) 5,000 to 1,000,000
Blocking key attributes (A) Given name, Surname, City (suburb), and Postcode

Corruption levels 0%, 20%, and 40%
Bloom filter length (lb f ) 1000

Number of hash functions (nh) 30
Character length of q-gram (nq) 2

Minimum mini-block size (mbmin) 10
Maximum mini-block size (mbmax) 20

Number of splitting bit positions (nb) 3
Minimum merged block size (bmin) 50, 100, 500, 1000

Number of top-most dense bit positions (nd) 500
Length of a Min-Hash signature (lmhs) 250, 500, 1000

Number of Min-Hash values in a band (λ) 2, 5, 10
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Figure 7.4: (a) Average runtime for each step of our distributed blocking scheme
with database size, (b) the total runtime with different number of databases, and
average runtime for (c) block representative pair (BRP) generation and (d) the candi-
date block tuples (CBTs) generation with minimum block size (bmin). Note that plots

have different y-axis scales.
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7.5.1 Scalability

Similar to Chapters 5 and 6, we measured the average and total runtime of our
distributed blocking approach to evaluate the complexity. Figure 7.4 (a) shows the
scalability of each step of our approach in terms of database sizes. As expected the
runtime required for Bloom filter (BF) generation increases linearly with database
size as more time is required to encode more records into BFs. As can be seen in this
figure, the local block generation step uses more runtime to generate blocks when
the database size is increasing because of the hierarchical merging process in the
clustering technique used. However, the efficiency of local block generation can be
improved by using a blocking technique proposed in Chapters 5 or 6.

As can be seen in Figure 7.4 (a), the runtime required for block representative
pair (BRP) generation increases linearly with database size because more blocks are
generated for a given minimum block size (bmin) when database size is increasing.
The average runtime requires for CBT generation increases linearly with database
size because more BRPs are hashed into different buckets in the LSH process.

Figure 7.4 (b) shows the total runtime required for steps 1 to 4 of our approach
with different numbers of databases (d). For steps 1 to 3 our approach requires the
same runtime for different number of databases because each DO performs these
steps independently (assuming all DOs perform step 1 to 3 at the same time). How-
ever, this figure shows that the runtime required for CBT generation increases with
d because more hashing is performed by the LU in the LSH process.

Figures 7.4 (c) and (d) shows the average runtime required for the BRP and CBT
generation steps with different minimum block sizes (bmin) for a database with 1 mil-
lion records. As can be seen in Figure 7.4 (c), the average runtime for BRP generation
increases linearly with the Min-Hash signature length (lmhs) because more random
permutations are used to generate the required number of Min-Hash values. Fig-
ure 7.4 (d) shows the average runtime for CBT generation decreases with the band
size (λ) used in the LSH process. This is because the number of buckets generated
in LSH decreases when λ increases that reduces the overall runtime required in the
CBT generation step. However, these figures show the average runtime required for
BRP and CBT generation steps decreases as bmin increases. This is because a smaller
number of blocks are generated per database when bmin increases.

7.5.2 Blocking Quality

We measured the blocking quality of our approach in terms of pairs completeness
(PC) for approximated reduction ratio (RR) calculated as described in Section 7.3.
Figure 7.5 illustrates PC against RR for a database with 1 million records for dif-
ferent number of databases and different corruption levels (0%, 20%, 40%) when all
databases have been blocked using the same block size. According to the results
illustrated in this figure, our approach achieves high PC rates even in the presence
of dirty data in these databases. We noted that PC is increasing with the number
of databases with low quality data (20% and 40% corruption levels) for a given RR
value. This is because more CBTs are compared for a larger number of databases
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Figure 7.5: Pairs completeness (PC) measured against reduction ratio (RR) with dif-
ferent number of databases for (a) 0%, (b) 20%, and (c) 40% corruption levels for

databases with 1,000,000 records. Note that plots have different y-axis scales.

based on the computed RR value. As a result, with the increment in the number of
databases that need to be blocked, a lower RR value would require more candidate
record tuples (CRTs) to be compared in the private comparison and classification
step in PPRL.

Figure 7.6 shows PC for blocking of three databases with the use of different
Min-Hash signature lengths (lmhs) and band sizes (λ) in the generation of BDPs and
CBTs, respectively. As can be seen in Figure 7.6 (a), PC increases with lmhs because
more similar blocks are hashed into the same bucket in the LSH process during the
CBT generation. However, PC decreases with λ because similar blocks might not
be hashed to the same bucket based on the selected Min-Hash values. Therefore,
the use of larger Min-Hash signatures with a small band size in the CBT generation
improves blocking quality of our approach, however, it will also increase the overall
runtime as seen in Figures 7.4 (c) and (d). Figure 7.6 (d) illustrates PC against RR
for blocking of three databases with 1 million of records with different block sizes,
which shows our approach provides high blocking quality for lower block sizes and
even when the DOs used different block sizes.
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(c) PC with different block sizes

bmin = (50, 50, 50)

bmin = (50, 100, 500)

bmin = (100, 500, 500)

bmin = (1000, 1000, 1000)

Figure 7.6: Pairs completeness (PC) with different (a) Min-Hash signature length
(lmhs), (b) band sizes (λ), and (c) block sizes (bmin) for blocking of 3 databases. Note

that plots have different y-axis scales.

7.5.3 Privacy

As shown in Figure 7.7 (a), we measured the average (DSMean), median (DSMed), and
maximum (DSMax) disclosure risk values with different bmin values (as we described
in Section 4.4.2). As shown in this figure, the DR values decrease for large block sizes
as more records are included in a given block making our blocking approach more
secure against frequency attacks.

We also studied the sizes of blocks generated for different minimum block size
(bmin) values, as shown in Figure 7.7 (b). This figure illustrates that our proposed
clustering approach generates blocks that contain at least bmin records ensuring k-
anonymous privacy where k =bmin. We also noted that the variance between block
sizes generated by the clustering approach gets lower when bmin increases. This sug-
gests that the generation of blocks independently provides more control for the DOs
over their block sizes. Similar to the clustering approaches proposed in Chapter 6, we
noted that for smaller bmin (when bmin = 50) the hierarchical clustering could result
in blocks with a large number of records (> bmin) due to the iterative splitting used.
However, the number of such large blocks decreases when bmin is increased.
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Figure 7.7: (a) disclosure risk values, (b) block sizes, (c) probability of suspicion (PS),
and (d) the cryptanalysis attack results performed upon the generated blocks with
minimum block size (bmin) for a 1,000K database. In here K represents 1,000 records.

Note that plots have different y-axis scales.

As shown in Figure 7.7 (c), we computed average probability of suspicion (PS)
values for a database with 1 million records for different bmin. Our distributed
blocking approach has a maximum PS value less than (1/bmin) for each bmin value,
which indicates a record in a block can be matched to more than bmin values in a
global database G (under the worst case assumption of G being equal to the blocked
database). As shown in this figure, our distributed blocking scheme provides strong
privacy because most of the generated blocks are within the acceptable size limit.

Similar to Section 5.5, we conducted a cryptanalysis attack for each generated
block of a database with 1 million records. We used the same parameter settings
described in Section 5.5 to conduct this attack. As illustrated in Figure 7.7 (d), for
smaller block sizes (bmin = 50 and 100) most of the re-identification guesses resulted
in no guesses. We also noted that when bmin increases the number of 1-to-m (many)
correct guesses also increases. However, it is important to note that 1-to-1 correct
re-identifications are not possible for all bmin values. This indicates that an attacker
could not re-identify an attribute value in a given block because it does not contain
enough frequency information to identify q-grams that are encoded in BFs.
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7.6 Summary

In this chapter we have proposed a scalable and efficient distributed blocking ap-
proach which allows each database owner to perform their blocking independently.
This distributed blocking approach can be utilised in a linkage scenario where a link-
age unit (LU) is available to facilitate the linkage. We used the LU to efficiently iden-
tify the blocks that need to be compared using a locality sensitive hashing technique.
We evaluated our approach with large databases which indicates this approach is
scalable with both the size and the number of databases. Next we describe an ef-
ficient way to identify the candidate block tuples that need to be compared across
subgroups of database owners for the linkage situations where matches across sub-
sets of records have to be found.



Chapter 8

Scalable Subgroup Blocking for
Multidatabase Privacy-Preserving
Record Linkage

As detailed in Chapter 1, the identification of similar blocks for different subgroups
of databases is a primary challenge in any multidatabase privacy-preserving record
linkage (MD-PPRL) application. In this chapter we propose a scalable subgroup
blocking technique that can be used in both classical and privacy-preserving multi-
database linkage applications. In Section 8.1 we discuss the importance and different
challenges that occur when subgroups are to be identified. In Section 8.2 we will
outline the main steps of our proposed approach, followed by a detailed descrip-
tion of each step in Section 8.3. In Section 8.4, we then provide a detailed analysis
of our proposed approach in terms of complexity, blocking quality, and privacy. In
Section 8.5 we describe the empirical study we conducted using large datasets and
finally we summarise our findings in Section 8.6.

8.1 Introduction

In the previous Chapters 5, 6, and 7 we proposed several blocking techniques that
can be used in a MD-PPRL context. However, these blocking techniques are only
capable of generating candidate block tuples (CBTs) across all the databases that
are to be linked. Neither of these techniques is capable of efficiently identifying
CBTs across subgroups of databases. In real-world applications it would not be
possible to identify sets of records that match in subgroups of databases if the linkage
is performed across all databases. The sets of matching records across subgroups
of databases can be valuable in conducting analytical studies and decision making
about sub-populations or groups that exist within large entity populations [22].

For example, as we have described in Section 1.1 (on page 4), data analytic appli-
cations upon census databases are required to identify the sets of matching records
across subgroups of census databases as these subset matching records are valu-
able for conducting analytical studies and decision making about sub-populations or

155
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Table 8.1: Notation and terminology used in this chapter
B Set of blocks of a database owner
BDP List of block description pairs
C Set of cliques
CBT List of candidate block tuples
CG Set of candidate groups
D A database
G Candidate blocking graph

B A block
Bi, Bj Block identifiers
Brep A block representative
BDP Block description pairs
C A clique in graph G
CBT A candidate block tuple
E List of edges
F List of fixed databases
SG A subgroup
V List of vertices

d Number of databases
e An edge in a graph
gα, gβ Minimum and maximum subgroup size
nr Number of records in a database
sg subgroup size
sim() A similarity function
vi, vj A vertex in a graph
w Weight of an edge
wt Weight threshold

BKV Blocking key value
DO Database owner
LSH Locality sensitive hashing
LU Linkage unit
MD-PPRL Multidatabase privacy-preserving record linkage

groups that exist within a larger population [41, 131, 188]. Another real-world exam-
ple application would be a health surveillance system that continuously integrates
and links data from hospitals and pharmacies to study the geographical and tempo-
ral effects of diseases and adverse drug reactions in certain patient groups [22, 24, 35].
Such analyses require subgroup linkage of such large databases collected over sev-
eral years since the linkage across all databases would not be sufficient to identify
subset matching records.

In order to identify the subsets of records that match in multiple databases, it
must be possible to link records from subgroups of these databases. However, the
usage of an existing blocking technique to identify similar blocks across subgroups
in MD-PPRL is not computationally feasible for two reasons. (1) Existing blocking
techniques for MD-PPRL are only capable of generating candidate blocks across all
the databases, or for a subgroup of databases of a specific size [173, 183, 184]. (2)
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The application of existing blocking techniques multiple times for linking subgroups
of different sizes is computationally infeasible due to the large number of potential
subgroup combinations to be considered in a MD-PPRL.

For example, with 5 databases, candidate block tuples (tuples of blocks of dif-
ferent databases that need to be compared, as defined in Section 4.2 on page 65)
would be required for different subgroup combinations that consist of 2, 3, and 4
databases. More generally, assuming d databases are to be linked, the total num-
ber of subgroup combinations required is equal to ∑d

|SG|=2 (
d
|SG|), where |SG| is the

number of databases in a given subgroup SG. This makes MD-PPRL applications
currently not scalable with regard to an increasing number of databases to be linked.
Therefore, blocking techniques to be used in a MD-PPRL context should be capable
of identifying similar records in subgroups of different sizes efficiently.

To address this problem, we propose a subgroup blocking approach for MD-PPRL
which identifies blocks of records within a specific subgroup size range that need to
be compared. As explained in Section 4.2, we utilise our proposed subgroup blocking
approach in the second layer of our MD-PPRL blocking framework (Figure 4.1 on
page 64). Our subgroup blocking approach accepts sets of blocks of the databases
that are to be linked as input, and it generates a list of candidate block tuples for each
selected subgroup that are to be compared in more detail using a private comparison
and classification technique in the PPRL pipeline [35]. We next describe our approach
in more detail. Table 8.1 summarises the notation we use in this chapter.

8.2 Overview of our approach

We assume d database owners (DOs) are participating in our subgroup blocking
approach each with a database D to be linked, with d ≥ 2. We use the notation
DA, DB, DC, DD, and so on for different databases. As described above the main aim
of our approach is to generate candidate block tuples (CBTs) for different subgroups
of different sizes. As defined in Chapter 4 on page 65, each candidate block tuple
CBT ∈ CBT contains identifiers of blocks from between 2 and d databases, and
a maximum of one block identifier per database. An overview of our subgroup
blocking approach is shown in Figure 8.1.

Our proposed blocking approach follows the second linkage model described
in Section 1.3 (on page 11) where we employ a linkage unit (LU) to facilitate the
generation of CBTs for comparison. Similar to our distributed blocking scheme de-
scribed in Chapter 7, to generate the CBTs across subgroups of databases, first each
database needs to be blocked. We assume the blocking technique to be a black box,
where any blocking technique can be used to generate the set of blocks for each
database [35, 165]. In practice, blocking of all these databases can either be per-
formed by the LU or locally by the database owners (DOs) on their own databases
using our proposed blocking techniques described in Chapters 5, 6, and 7. Once the
blocks are been generated, each DO sends a set of representatives of its blocks to the
LU. We provide more details of the block representative generation in Section 8.3.
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Figure 8.1: Overview of our subgroup blocking with its three main steps. As detailed
in Section 8.3, first the sets of blocks generated for each database are grouped into a
set of candidate groups in step 1. In step 2, a graph is constructed by adding these
blocks as vertices, where these vertices are connected using edges if their correspond-
ing blocks are grouped in the same candidate group. In step 3, the candidate block

tuples are identified for different subgroup combinations based on this graph.

To generate CBTs for subgroups of different databases, we introduce two user
defined parameters, gα and gβ, which limit the subgroup size range. gα and gβ

specify the minimum and maximum number of databases that can be included in
subgroup combinations. As shown in Figure 8.1, our approach contains three steps:

1. Potential Candidate Grouping: To identify the blocks of different databases that
are likely to be similar the LU uses a grouping technique upon the blocks
of each database to generate a set of candidate groups (CG). Based on the
received block representatives, the LU assigns these representatives into can-
didate groups by using an appropriate blocking or grouping technique. We
provide more details on this candidate grouping in Section 8.3. A candidate
group CG ∈ CG helps to identify the potential candidates that need to be con-
sidered for comparison among the sets of blocks from different databases. This
grouping also reduces the overall number of block comparisons since only the
blocks that are grouped into a CG will be compared next in the comparison and
classification step of the PPRL process. Reducing the number of block compar-
isons therefore removes record comparisons that are unlikely to be matched.

2. Candidate Graph Construction: A candidate graph G is constructed based on the
generated candidate groups CG. The LU iterates over each candidate group
CG in CG to create vertices and edges in G. The blocks from each CG ∈
CG become vertices, and a pair of vertices is connected by an edge if both
vertices appear in the same CG. Then the LU updates the candidate graph into
a weighted G by computing a weight for each edge. The weights are calculated
based on the similarity between the block representatives, as we discuss in
detail in the following sub-section.

3. Subgroup Candidate Block Tuple Generation: In this step the LU generates CBTs for
each subgroup combination using G. As we explain below, a weight threshold
is used to prune low weighted edges (pairs of blocks) in G. The pruning of
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Figure 8.2: An illustrative example of distributed blocking of four databases using
Soundex based blocking. The values in the surname attribute (SN) are used as block-
ing key values (BKVs). Each database, DA to DD, is blocked independently and the
linkage unit (LU) identifies the blocks that need to be compared between subgroups
of different databases based on the edit distance between Soundex encodings of the

BKVs (with maximum edit distance of 1).

low weighted edges ensures any pair of blocks that has a low similarity is not
considered in the CBT generation for any subgroup combination that includes
the corresponding databases of the blocks in these pairs.

To identify the CBTs that need to be compared across subgroups using the con-
structed graph G, we introduce a novel constraint-based algorithm that uses a depth-
first search over G. Based on the parameters gα and gα our subgroup blocking ap-
proach is capable of generating CBTs for all possible subgroup combinations across
databases that need to be linked. Optionally, we also allow the user to define the set
F of databases that must be included in every subgroup to be generated. We next
describe our subgroup blocking approach in more detail.

8.3 Scalable Subgroup Blocking Approach

Without loss of generality let us assume each database is blocked independently by
the owner (DO) of the database, and the same technique is used to perform blocking
by each DO. Such blocking provides flexibility and efficiency over the block genera-
tion process and also ensures the same grouping strategy will be used when blocking
the different databases, as we described in Chapter 7.

However, in practice any blocking technique such as those described in Chap-
ters 5 to 7 can be used to generate blocks. For illustrative purposes, a simple block
generation process using phonetic blocking [35] is shown in Figure 8.2. We use
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Figure 8.3: An illustrative example of our subgroup blocking approach with its three
main steps. In this example, the sets of blocks generated in Figure 8.2 are assigned
into the set of candidate groups (CG) in step 1. As we explain in Algorithm 8.1,
a candidate graph G is constructed based on CG. In this example, each edge is
assigned with a normalised weight that corresponds to the number of groups in CG
that contain a given pair of blocks. In step 3, the candidate block tuples are identified
for different subgroup combinations. In this example, the minimum and maximum

subgroup sizes (gα, gβ) are set to (2, 4).

the notation BA, BB ,BC, and BD to represent the sets of blocks generated for the
databases DA, DB, DC, and DD, respectively.

Similar to Chapter 7, each DO generates a block description pair for each of its
blocks. We consider the generation of block description pairs as a black box. Each
block description pair BDP = (Bi, Bi

rep) consists of a block identifier (Bi) and a cor-
responding block representative (Bi

rep). We use the notation BA, BB, BC, and BD to
represent Bis of blocks of DA, DB, DC, and DD, respectively.

A Brep can be generated in different forms, such as a Min-Hash signature [101]
(as we have described in Section 7.3 on page 136), a Bloom filter [190], or a phonetic
encoding [35], as long as the same technique is used by all DOs to generate Breps
that allow the calculation of similarities between the pairs of blocks that need to be
compared across databases. As shown in Figure 8.2, the phonetic encoding of BKVs
of the surname attribute is used as Breps for the generated blocks.

Next, each DO sends its set of BDPs to the LU. These generated BDPs are
added to a set BDP to identify the blocks that need to be compared, across dif-
ferent subgroups of databases using appropriate comparison and classification tech-
niques [35, 210, 216]. As illustrated in Figure 8.2, based on the edit distance [35]
between the Breps of the blocks of different databases, the LU generates a set of CBTs
for comparison for each subgroup of different sizes.

An illustrative example of subgroup blocking for four databases DA, DB, DC, and
DD with (gα, gβ) set to (2,4) is shown in Figure 8.3. As can be seen, the CBTs are
generated for different group combinations across these four databases for subgroup
sizes 2, 3, and 4. Based on the parameters (gα, gβ), our subgroup blocking is capable
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of generating CBTs for the following three different scenarios with d databases:

1. gα = gβ = d : This setting gives the linkage between all databases only, i.e.
only matching sets of blocks across all databases are generated. Following
the example in Figure 8.3, if (gα, gβ) = (4, 4) then CBTs are generated only for
subgroup combination (DA, DB, DC, DD).

2. 2 ≤ gα ≤ gβ < d : This setting gives all possible linkages for subgroups with
blocks from at least gα to at most gβ databases. As illustrated in Figure 8.3,
if (gα, gβ) is set to (2, 4) then all subgroup combinations of size 2 and 3 across
databases DA, DB, DC, and DD are considered in CBT generation.

3. F = {Di, Dj, · · · , Dx}, 2 ≤ gα ≤ gβ < d : This setting generates candidate
tuples for subgroups with size at least gα to maximum size of gβ out of d
databases, where databases Di, Dj, · · · , Dx are fixed and |F| ≤ gα. In this sce-
nario, databases Di, Dj, · · · , Dx must appear in every subgroup combination.
As illustrated in Figure 8.3, for example, if F = {DA} and (gα, gβ) = (2, 3)
then the subgroup combinations that will be considered in our approach are,
for subgroups of size 2: (DA, DB), (DA, DC), and (DA, DD), and for subgroups
of size 3: (DA, DB, DC), (DA, DB, DD), and (DA, DC, DD).

Each of these scenarios represents a real-world situation that can occur in a MD-
PPRL context. In Section 8.5, we will experimentally evaluate our subgroup blocking
approach for each of these scenarios. We next describe each step in our proposed
subgroup blocking approach in more detail.

1. Potential Candidate Grouping

As shown in Figure 8.1, in the first step the LU identifies the potential candi-
dates among the sets of blocks of each database by grouping the corresponding
BDPs into a set of candidate groups (CG). We consider the generation of CG
to be a black box as the grouping technique depends on the Breps generated for
all databases.

For example, a Jaccard based locality sensitive hashing (LSH) [101, 116] tech-
nique (as discussed in Chapter 7) can be used with Breps based on Min-Hash
signatures, where Breps that hash to the same bucket become candidates and
each bucket is considered as a CG and is added to CG. As an alternative (as
illustrated in Figure 8.2) the blocks with the same or similar phonetic encodings
can be added to the same CG.

Each group CG ∈ CG contains similar BDPs from different databases. The
BDPs in a CG can be used to generate different CBT combinations, as potential
candidates, for subgroup comparisons. For example in Figure 8.3, B1

A, B1
B, B1

C,
and B1

D in CG1 generate (B1
A,B1

B), (B1
A,B1

C), (B1
A,B1

D), (B1
B,B1

C), (B1
B,B1

D), (B1
C,B1

D),
〈B1

A,B1
B,B1

C〉, 〈B1
A,B1

C,B1
D〉, 〈B1

A,B1
B,B1

D〉, and 〈B1
B,B1

C,B1
D〉 as potential candidates

for comparison for subgroups of sizes 2 and 3, respectively, because B1
A, B1

B, B1
C,

and B1
D are likely to be similar.
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Algorithm 8.1: Candidate graph construction
Input : CG - Set of candidate groups

Output: G - Candidate graph

1 V ← ∅, E← ∅ // Initialise an empty graph

2 foreach CG ∈ CG do // Iterate over every CG

3 foreach (Bi, Bi
rep) ∈ CG do // Add each BDP to graph

4 v← Bi // Create a new vertex

5 V.add(v) // Add the newly created vertex to graph

6 foreach (Bj, Bj
rep) ∈ CG do // Add each candidate block to graph

7 if Bi 6= Bj ∧ (Bi, Bj) 6= E then // Check the edge is already created

8 E.add((Bi, Bj)) // Create a new edge

9 (Bi, Bj).w← calcWeight((Bi, Bi
rep), (Bj, Bj

rep)) // Compute weight w

10 end
11 end
12 end
13 end
14 return G = (V, E)

If a group of blocks appears in multiple CGs it is more likely that these blocks
are more similar. In Figure 8.3 (step 1) for example, the pair (B1

A,B1
C) is more

likely to be similar compared to the pair (B1
A,B2

C), because (B1
A,B1

C) occurs in two
CGs while (B1

A, B2
C) only occurs in one CG in CG.

2. Step 2 - Candidate Graph Construction

As shown in Figure 8.3, the second step of our approach is to construct the
candidate graph G = (V, E) from CG. We use a graph data structure to rep-
resent similarity relationships between the blocks from different databases. We
consider each block as a vertex in the graph where the set of edges between
those vertices represents the comparisons between blocks. In this approach we
use a d-partite graph [1] since the vertices in G generally represent different
blocks of d databases. We formally define the candidate graph G as follows.

Definition 8.1. Candidate Graph G
Given a set CG of candidate groups, the undirected candidate graph derived
from CG is a d-partite graph G = (V, E), where V is a set of vertices and E is
a set of undirected edges that each is an unordered pair of elements of V. V
represents all unique blocks in CG, i.e. V = {∪ B ∈ CG : ∀ CG ∈ CG}, while E
contains all undirected edges between pairs of vetices such that E = {(Bi, Bj) :
(Bi ∈ CG) ∧ (Bj ∈ CG) ∧ (i 6= j), ∀ CG ∈ CG}.

The construction of G is outlined in Algorithm 8.1. First the LU iterates over
each candidate group CG in the set CG generated in step 1 of our approach
(line 2). For each block appearing in a CG ∈ CG its corresponding block
identifier (Bi) is added into the graph G as a new vertex v ∈ V (lines 3 and 4).
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An edge e ∈ E is created between two vertices, vi and vj, if their corresponding
blocks Bi and Bj appear in a CG, such that edges are created only between
blocks from different databases (lines 6 to 8).

As shown in Figure 8.3 (step 2), a normalised weight w is calculated, 0 ≤ w ≤ 1,
for each edge (Bi, Bj) using the function calcWeight() (line 9). The weight w of
edge (Bi, Bj) can be computed in different ways based on the generated BDPs,
such as the similarity between the corresponding block representatives Bi

rep and

Bj
rep, or the cardinality of (Bi, Bj) which is w = {|{CG : ∀CG∈CG (Bi, Bj) ∈ CG}|}

/ |CG|, where | · | represents the cardinality of a given set.

We assume Breps (that depend upon the actual blocking technique used) can be
compared using an appropriate similarity function sim(Bi

rep, Bj
rep) to measure

their similarity. For example, the Jaccard coefficient [216], Dice coefficient [216],
and edit distance [35] can be used with Min-Hash signatures [25], Bloom fil-
ters [190], and phonetic encodings [35], respectively. These weights are used in
the next step of our approach to generate candidate block tuples.

3. Subgroup Candidate Generation

In third step of our subgroup blocking approach, the LU generates candidate
block tuples (CBT) for each subgroup combination required, as illustrated in
Figure 8.1. For a given subgroup combination of size gα a CBT contains a
maximum of one block per database, and blocks from at least gα databases. We
consider each CBT to be a clique C ∈ G, where each C ⊆ V, such that all pairs
of vertices in C are connected by an edge, i.e., ∀vi, vj ∈ C : (vi, vj) ∈ E.

To control the number of CBTs generated for each subgroup, we use a con-
straint on the weight w of each edge e ∈ E which we name the weight threshold,
wt. This weight constraint specifies the minimum weight that e must have to
be considered in the clique generation. The weight constraint helps to control
the density of G by efficiently pruning edges with weights lower than wt. This
pruning of edges of G ensures block pairs with weights below wt are not being
considered. In practice, different wts can be specified for different subgroup
database combinations depending on the DOs’ requirements.

Depth-first based Candidate Generation

In order to identify the set of CBTs for a given subgroup size gα, we propose a
depth-first algorithm where the set of CBTs of a given subgroup combination
is generated using a depth first traversal through the graph G [1]. As outlined
in Algorithm 8.2, this depth-first based candidate generation approach uses an
iterative deepening depth-first search algorithm [182] which generates CBTs
from size gα to gβ by incrementally expanding the size of subgroups.

The depth-first candidate generation approach is based on a multi-branch re-
cursion that allows the graph G to be searched in a depth-first manner, where
the algorithm progressively searches for similar blocks for a given subgroup
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Algorithm 8.2: Depth-first based candidate generation
Input : G - Undirected candidate graph

wt - Weight threshold
gα - Minimum subgroup size
gβ - Maximum subgroup size
d - Number of databases
F - Set of fixed databases
BDP - Set of block description pairs

Output: CBT - Inverted index of subgroup candidate block tuples

1 CBT← {}, SG← {} // Initialise variables

2 K.add(genSubgroupComb(gα, gβ, d, F)) // Generate subgroup combinations

3 foreach sg ∈ SG.keys() do // Process each subgroup size

4 foreach SG ∈ SG[sg] do // Process each subgroup combination of size sg
5 CBT[SG].add(genCandidates(G, SG, wt, BDP)) // Generate block tuples

6 end
7 end
8 return CBT

9 Function genCandidates(G, SG, wt, BDP):
10 C← [] // Initialise a list to hold block tuples

11 if SG = 2 then // Check subgroups size equals 2

12 C←getEdges(G, SG, wt) // Get edges with weight ≥ wt

13 return C
14 end
15 else
16 D, BL← getDBWithMinBlocks(BDP, SG) // Get D with minimum |BDP|
17 foreach (Bi, Bi

rep) ∈ BL do // Iterate over every BDP

18 L← getNeighbours(G, {subgroup−D}, wt, Bi) // Get neighbour vertices

19 C ← genCandidates(G, {subgroup−D}, wt, L) // Generate block tuples

20 C.add(updateCandidates(C, Bi)) // Concatenate Bi with generated tuples

21 end
22 end
23 return C
24 end

combination of databases based on the similarities between the corresponding
Breps until the required subgroup size is reached.

Our proposed depth-first candidate generation algorithm starts by generating
all the required subgroup combinations to be considered in the candidate gen-
eration for all databases using the function genSubgroupComb() (line 2 in Algo-
rithm 8.2). This function accepts the minimum and maximum subgroup size
gα and gβ, the number of databases, and the set of fixed databases (F) as in-
puts and computes the required subgroup combinations for each subgroup size
from gα to gβ. These generated combinations are added to an inverted index
SG (initialised in line 1) where the subgroup sizes are used as keys and possible
combinations are added as values.
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For example, with (gα, gβ) = (2, 3) of a linkage between databases DA, DB, DC,
and DD, SG[2] contains the list of combinations (DA, DB), (DA, DC), (DA, DD),
(DB, DC) and (DB, DD), and (DC, DD) while SG[3] contains the group combi-
nations (DA, DB, DC), (DA, DB, DD), (DA, DC, DD), and (DB, DC, DD).

For each subgroup combination in SG the recursive function genCandidates()
is called to generate the set of CBTs (in lines 3 to 7). The function getEdges()
identifies the trivial cliques for each subgroup SG of size sg = 2 which are the
set of edges e ∈ E of G for the pair of databases that satisfy the weight threshold
wt (lines 11 to 14 in Algorithm 8.2). In line 5, these computed edges are added
to the inverted index CBT using each corresponding subgroup combination as
a key.

For subgroup sizes greater than 2, the function genCandidates() selects the data-
base D with the minimum number of blocks BL using a function getDBWith-
MinBlocks(). The selection of D with the minimum number of blocks is impor-
tant in Algorithm 8.2 because it decides the maximum number of recursive gen-
Candidates() executions required in the CBT generation when processing each
database in a given subgroup (line 16). Assuming a subgroup combination (DA,
DB, DC, DD) for example, DA is selected first because it only has two blocks (as
shown in Figure 8.2) to be considered in the CBT generation that require only
two genCandidates() calls. Next, for each (Bi, Bi

rep) in BL, the function getNeigh-
bours() computes the neighbouring vertices for the remaining set of databases
that connect with Bi (line 18 in Algorithm 8.2). Those pairs of vertices that have
an edge weight greater than or equal to wt are added to the list L.

For each BDP in BL the function genCandidates() is called recursively with the
list of neighbouring nodes, wt, and the set of remaining databases as inputs
(line 19). Each of these recursive calls returns a list of block tuples C, where each
tuple in C is updated with the current processed BDP using the function update-
Candidates() (line 20). As shown in Figure 8.3, for block B1

A of database DA for
example, if the recursive call returns a list of block pairs [(B1

B, B1
C),(B1

B, B2
C),· · · ]

between DB and DC then each block pair is concatenated with B1
A to generate

tuples 〈B1
A, B1

B, B1
C〉, 〈B1

A, B1
B, B2

C〉, and so on. This allows Algorithm 8.2 to
progressively generate the cliques until they reach the required size gα. These
generated CBTs are finally added to an inverted index CBT using subgroups
as their keys (line 5 in Algorithm 8.2).

8.4 Conceptual Analysis of Subgroup Blocking

We analyse our subgroup blocking approach in terms of complexity and blocking
quality. We also analyse the privacy of our approach assuming it is employed in a
privacy-preserving context. We assume d databases are to be linked in our approach.
Let us assume each database is blocked using the same blocking technique and a list
of blocks B is being formed for each database.
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8.4.1 Complexity

In step 1 of our subgroup blocking approach (as shown in Figure 8.1), the complexity
of the approach depends on the technique used to generate the set of candidate
groups (CG). We assume each candidate group CG ∈ CG contains d BDPs from
different databases. In step 2, the CG is used to construct the candidate graph G.
This requires an iteration through each CG ∈ CG to add a vertex v to G, and to create
edges between vertices if they share the same CG. A CG with d BDPs generates d(d−1)

2
edges in G. Hence, the construction of G has a complexity of O(CG · d2).

Based on the values of gα and gβ, in step 3 the proposed depth-first based can-
didate generation technique (Algorithm 8.2) requires to generate CBTs for ∑

gβ

gα=2 (
d
gα
)

subgroup combinations. For each combination, Algorithm 8.2 uses a multi-branch
recursion to generate CBTs. In the function genCandidates(), at each recursion a
database D out of gα databases with the minimum number of vertices is selected
(line 16 of Algorithm 8.2). Without loss of generality, let us assume the number of
BDPs selected for D is m. m defines the maximum recursion branch factor of D. The
total number of vertex traversals in G for a given subgroup combination of size gα

is gα ·m + (gα − 1) ·m2 + · · ·+ 2 ·mgα−1 + mg
α which is ∑

gα

i=0(gα + 1− i) ·mi. Hence,
for ∑

gβ

gα=2 (
d
gα
) subgroup combinations the proposed depth-first candidate generation

algorithm has a complexity of O(∑
gβ

gα=2 ∑
gα

i=0 (
d
gα
)(gα + 1− i) ·mi). However, this algo-

rithm would require a worst-case complexity of O(∑
gβ

gα=2 (
d
gα
) · |B|gα) if G is a complete

graph with ∀e ∈ E : e.w ≥ wt.
In our approach, if databases from several organisations are to be linked, then

communication only occurs once when the CBTs are generated and sent to the LU.
For a given subgroup SG of size gα our approach will send a message to each DO
in SG with the list C of generated CBTs. Therefore, the entire subgroup blocking
approach has a communication complexity of O(∑

gβ

gα=2 (
d
gα
) · gα) messages each of

size |C|, where C contains tuples of blocks of size |SG|.

8.4.2 Blocking Quality

We analyse the quality of our subgroup blocking in terms of efficiency and effective-
ness. The overall quality depends upon the blocking process and the generated block
description pairs (BDPs) which are considered as black boxes in our approach. In step
1 of our approach the effectiveness of the candidate grouping depends on the Breps
and the accuracy of the grouping technique used on those Breps.

In step 2, the density of graph G depends on the number of different blocks in
each candidate group CG ∈ CG from different databases to be linked. A large num-
ber of blocks in a CG will increase the effectiveness of the CBT generation process as
more edges are created in G. However, this would increase the runtime of candidate
graph construction as more blocks are added into G as vertices and new edges are
created between these vertices when the LU iterates through each CG ∈ CG.

In step 3 of our approach, the weight threshold wt provides a trade-off between
quality and efficiency of the candidate block tuple generation process. The threshold
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wt is used to prune the edges (block pairs) with weights lower than wt. A lower
wt will generate more cliques (CBTs) as more edges are considered in the candidate
block tuple generation process for a given subgroup. This will increases the number
of true matches [35] as more candidate block tuples are generated to be compared in
the comparison and classification step, which improves the effectiveness of the overall
linkage. However, a lower wt will potentially also increase the overall runtime and
space requirements of our approach since more block pairs are considered for a given
subgroup combination.

8.4.3 Privacy

We next analyse the privacy of our subgroup blocking approach. We assume each
party (DOs and the LU) participating in our approach follows the honest-but-curious
(HBC) adversary model [212] as discussed in Section 2.4 (on page 27).

We assume each DO generates its blocks independently by using a private block-
ing technique as described in Chapter 7. Besides an initial agreement of parameter
settings to be used, this technique does not require any further communication be-
tween the DOs that would reveal information about their blocks. We also assume
each block contains at least k = nr

|B| records, where nr is the total number of records
in a database D (assuming all databases are of size nr = |D|) and |B| is the number
of blocks generated for D, to ensure k-anonymous privacy [200]. Therefore, no DO
can learn anything about any other DO’s sensitive data during the blocking step.

In our approach each DO sends a list of block description pairs (BDPs) to the
LU where each pair contains a block identifier and a block representative (Brep).
Apart from this information the LU does not learn anything regarding the encoding
methods used for records and the parameter values used in the blocking techniques
used by the DOs. As discussed in Section 8.2, a Brep can be generated in different
forms while the parameter setting used in the generation of Breps is also unknown to
the LU.

If the LU is conducting the linkage of pairs of blocks sent to it by the DOs, it
potentially can conduct frequency attacks on the masked records, the block sizes, as
well as the number of matched records. However, as has been shown in [132], even
sophisticated cryptanalysis attacks based on a constrained satisfaction solvers that
can learn information about some individual records in a block are only successful
for certain parameter settings of the encoding methods used.

Because each DO can perform a generalisation strategy (k-anonymisation) [200]
on its blocks independently, and each database likely contains different frequency
distributions of values, a frequency attack based on block sizes becomes more diffi-
cult for the LU to conduct compared to a frequency attack on a single set of blocks
only. Additionally, encoding techniques that use record level rather than attribute
level encodings [56, 216] can be employed to further secure the overall PPRL process
and reduce the risk of information leakage to the LU.
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Table 8.2: Parameter settings used in the experimental evaluation
Parameter Value range

Dataset name NC-SYN
Number of databases (d) 3, 5, 7, 10

Number of records in each database (nR) 5,000 to 1,000,000
Blocking key attributes (A) Given name, Surname, City (suburb), and Postcode

Corruption levels 0%, 20%, and 40%
Minimum subgroup size (gα) 2
Maximum subgroup size (gβ) 3 to 10

Number of fixed databases (|F|) 1 to 4
Weight threshold (wt) 0.2 to 0.8

Number of candidate groups (|CG|) 100, 150, 200, 250

However, under the HBC model collusion is possible between the participating
parties. Any collusion between a DO and the LU would increase the risk of frequency
attacks on another DO’s database. The colluding DO can reveal the parameter set-
tings used in blocking and the Breps generation process to the LU. However, as we
have shown in Section 7.5, since each DO performs its blocking independently and
does not share any information about its set of blocks it is not possible to conduct a
frequency analysis on a database of a non-colluding DO.

8.5 Experimental Evaluation

In this section, we present and discuss the results of the experimental evaluation
study of our subgroup blocking approach conducted on the datasets described in
Section 4.4 (on page 78). Table 8.2 summarises the parameter values used in our
approach. We use the distributed blocking scheme proposed in Chapter 7 to generate
the blocks for all databases. We use the same initial steps and parameter settings as
in Table 7.2 (on page 149) to generate the blocks. We use Min-Hash signatures as
block representatives (breps) in block description pairs (BDPs). These breps are then
hashed into a set of buckets using locality sensitive hashing (LSH). We follow the
same parameter settings and steps described in Section 7.3 (on page 136) to generate
these breps and to conduct LSH. Each bucket is added to the list CG as a candidate
group. To measure the similarity between the breps in step 2 of our approach we use
the Jaccard coefficient [35].

8.5.1 Scalability

As shown in Figures 8.4 (a) and (b), we measure the average runtime for potential
candidate grouping and candidate graph construction of our approach, respectively,
with different number of databases (d). As can be seen in Figure 8.4 (a), the average
runtime for candidate grouping increases linearly with d because more block descrip-
tion pairs (BDPs) of different databases need to be hashed into buckets in LSH. This
figure also shows that the average runtime increases with the number of BDPs which
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|CG| = 100

|CG| = 150

|CG| = 200

|CG| = 250

3 5 7 10
Subgroup sizes (gα=2,gβ)

100

101

102

103

104

105

106

107

R
u
n
ti
m
e
 (
s)

(d) Average runtime with subgroup sizes

wt  = 0.2

wt  = 0.4

wt  = 0.6

wt  = 0.8

Figure 8.4: Average runtime for (a) candidate grouping for different number of block
description pairs (BDPs) and (b) candidate graph construction for different number
of candidate groups for different number of databases, d. (c) and (d) show the total
runtime with different d and average runtime with different subgroup sizes for CBT

generation, respectively. Note that plots have different y-axis scales.

depends on the block generation process by each databases owner (DO). However, it
took only 26.7 seconds to hash 1,000 BDPs of 10 databases.

Figure 8.4 (b) shows the average runtime required for the candidate graph (G)
construction with different numbers of candidate groups (|CG|) for different num-
bers of databases. As can be seen in this figure, the average runtime increases linearly
with |CG| because the LU iterates through each CG ∈ CG in Algorithm 8.1. This
figure also shows that the construction of G requires more time with an increasing
number of databases which suggests that more BDPs are added to G as vertices and
more block pairs are being generated across these databases, which increases the
number of edges in graph G.

Figures 8.4 (c) and (d) illustrate the total and average runtime required for the
CBT generation with different numbers of databases and subgroup sizes, respec-
tively. As shown in Figure 8.4 (c), total runtime increases exponentially as the number
∑d

gα=2 (
d
gα
) of subgroup combinations grows exponentially with d (while the runtime

grows linearly with d for a given subgroup size). We also noted that the runtime
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Figure 8.5: (a) Average runtime for CBT generation with different fixed number
databases (|F|) and (b) reduction ratio with different weight thresholds (wt) for dif-

ferent maximum subgroup sizes (gβ). Note that plots have different y-axis scales.

increases linearly with |CG| because more BDPs are added into graph G and more
edges are considered in generating CBTs in Algorithm 8.2.

As expected the average runtime decreases with an increase in the weight thresh-
old (wt) as shown in Figure 8.4 (d). As the weight constraint wt increases, edges with
lower similarity between their corresponding breps are not considered in the CBT
generation. However, the runtime increases linearly with the size of subgroups as
more subgroup combinations are considered in CBT generation.

Figures 8.5 (a) and (b) show the average runtime required for generating CBTs
for different subgroup sizes with a set of databases (F) fixed and reduction ratio
(RR) with wt for different maximum subgroup sizes (gβ). As expected, the average
runtime decreases when more databases are included in F since the number of sub-
group combinations considered in each subgroup size decreases with the size of F,
as shown in Figure 8.5 (a). As shown in Figure 8.5 (b), RR increases with wt which
suggests that fewer CBTs are generated for each subgroup combination considered
in Algorithm 8.2 for a given maximum subgroup size gβ.

8.5.2 Blocking Quality

Similar to previous chapters we measure the pairs completeness (PC) and F-measure
(FM) to evaluate the effectiveness of our subgroup blocking approach. Figures 8.6 (a)
and (b) show the PC with wt and |CG| for different gβ and d, respectively. As shown
in Figures 8.6 (a), a lower wt value increases PC by generating more CBTs at each
iteration in Algorithm 8.2, which increases the overall runtime of our approach (see
Figure 8.4 (d)). However, as can be seen in Figure 8.5 (b), a lower wt increases the
overall number of candidate record tuple (CRT) comparisons which decreases RR of
our subgroup blocking approach.

Figure 8.6 (b) shows average PC for different numbers of databases for differ-
ent subgroup combinations with subgroup sizes (gα, gβ) set to (2, 3), respectively. PC
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(b) PC with (gα,gβ) = (2, 3) for 20% corruption

d = 3

d = 5

d = 7

d = 10

100 150 200 250
Number of candidate groups

0.0

0.2

0.4

0.6

0.8

1.0

F-
m
e
a
su

re
 (
FM

)

(c) F-measure for 20% corruption
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Figure 8.6: Pairs completeness (PC) with (a) weight threshold (wt) for different maxi-
mum subgroup size (gβ) and (b) different number of databases (d) for different num-
ber of candidate groups (|CG|). F-measure (FM) with different number of databases

for different |CG| with (c) 20% and (d) 40% corrupted databases.

increases with |CG| because more block pairs (edges) are considered in the CBT gen-
eration process. However, we note that PC decreases with the number of databases.
This is because some true matches are missed due to the low similarities between
corresponding Breps. This suggests that by using more candidate groups in step 1
our approach can achieve high PC values even when the databases have low quality
data.

Figures 8.6 (c) and (d) show the FM with different corruption levels for different
number of candidate groups. FM increases with |CG| which suggests that CBT gen-
eration becomes more fine grained as the candidate graph G becomes more dense.
However, an increment of |CG| could potentially increase the runtime of our ap-
proach as shown in Figure 8.4 (c). As can be seen in these figures, FM decreases with
an increase in the corruption level which suggests that our approach is affected by
the quality of the data.
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Figure 8.7: The cryptanalysis attack performed with different (a) number of block
description pairs (BDPs) and (b) length of Min-Hash signatures (lmhs).

8.5.3 Privacy

To evaluate the privacy of our approach we conducted the cryptanalysis attack (de-
scribed in Section 4.5 on page 85) upon block representatives (Breps) because this is
the only information a DO shares with another party about its generated blocks. We
conducted this attack assuming an external attacker (such as the LU) colludes with
a DO to learn about the parameter settings used in the Breps generation process. By
using this information the attacker can regenerate the set of binary vectors (VB) that
were used to generate the set of Min-Hash signatures (see Section 7.3 on page 141).
Then, the attacker tries to re-identify a record in the database D of a non-colluding
DO by using VB. We also assume the attacker uses a publicly available databases G

which is a superset of the database D (i.e. D ⊆ G).
As illustrated in Figure 8.7 (a), we calculated the percentages of (1-to-1 correct,

1-to-m correct, wrong, and no) guesses with different number of block description
pairs (BDPs). We noted that even with a set of 1,000 BDPs an attacker could not
correctly re-identify an attribute value of a record in D. We also conducted the
cryptanalysis attack for different length of Min-Hash signatures (lmsh) as shown in
Figure 8.7 (b). This figure shows that most of the re-identification guesses resulted
in no guesses. This suggests that even when colluding with a DO an attacker still
could not re-identify an attribute value of a record of a database D by using the
representatives of the generated blocks of D.

8.6 Summary

In this chapter we have proposed a novel scalable subgroup blocking technique that
can be used in both classical and privacy-preserving multidatabase linkage scenarios.
Based on the parameters minimum and maximum subgroup sizes, our approach
can be used under different real-world scenarios. The approach uses a weighted
graph structure for identifying similar blocks of different databases that need to be
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compared using a graph based candidate generation technique based on a depth-first
based iterative deepening algorithm. The evaluation with several large real datasets
indicated that our approach is scalable with the size of subgroups and number of
databases and improves efficiency in candidate blocks generation.

As future work, we aim to improve the efficiency of our approach by adapting
pattern growth methodologies [1]. One limitation we noted in the depth-first based
candidate generation algorithm is that it requires a large number of recursive calls to
generate candidate block tuples for increasing number of databases. Parallelisation
of Algorithm 8.2 can help to overcome this limitation which is another future research
avenue of our approach.

All the blocking techniques we have proposed so far in this thesis output a list
of candidate block tuples that need to be compared later in the PPRL process by
using an appropriate private comparison and classification technique. However, for
a given subgroup of databases these candidate block tuples could potentially con-
tain redundant record comparisons that result from repetitive and superfluous block
comparisons. In the next chapter we describe a novel meta-blocking approach that
improves the overall efficiency of the linkage process by removing such redundant
record pair comparisons in the generated candidate block tuples.
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Chapter 9

Scalable Meta-Blocking for
Multidatabase Privacy-Preserving
Record Linkage

As detailed in the previous chapters, blocking reduces the record comparison space
by removing a large number of potential comparisons that correspond to non-matches,
such that expensive similarity comparisons are only required on a smaller number of
candidate record tuples. However, due to the increase in the number of databases, all
multidatabase record linkage (MDRL) applications experience an exponential com-
parison space even after blocking. In this chapter we propose a novel scalable meta-
blocking approach that can be used in both classical and privacy-preserving mul-
tidatabase record linkage (MD-PPRL) applications to significantly reduce the com-
plexity of the comparison and classification step. In Section 9.1, we discuss the im-
portance of removing unwanted record comparisons in a MD-PPRL application, and
in Section 9.2, we provide an overview of our proposed approach. As detailed in
Section 9.3, our approach utilises a graph data structure to schedule the comparison
of pairs of blocks with the aim of minimising the number of unwanted comparisons
between records. In Section 9.4, we provide a detailed analysis of our approach in
terms of complexity, blocking quality, and privacy. In Section 9.5, we will describe
the empirical study we conducted using large datasets, and finally we summarise
our findings in Section 9.6.

9.1 Introduction

As discussed in Chapter 7, the use of distributed bocking in MDRL and MD-PPRL
improves the overall efficiency in blocking since each database owner (DO) can per-
form blocking independently. However, even with distributed blocking, MD-PPRL
still leads to a very large number of similarity comparisons because each record in
a block needs to be compared with all records in the same block that originate from
the other databases (that have the same or similar blocking key values, BKVs). As-
suming d databases, each containing nr records, split evenly into a set of blocks B of

175
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Table 9.1: Notations and terminologies used in this chapter

B Set of blocks of a database owner
BDP List of BDPs
CBT List of candidate block tuples
D Database to be linked
G, Gw Blocking graph and weighted blocking graph
M Set of matching blocks
B A block
Bi, Bj A block identifier
Brep, Bsize A block representative and block size
BDP List of block description pairs
CBT A candidate block tuple
E List of edges
M Set of matching records
R, RA, RB A record
V List of vertices
bmin Minimum block size
d Number of database owners (or databases)
e An edge in a graph
nCBT, nr Number of CBTs and records
sim() A similarity function
u, v A vertex in a graph
w Weight of an edge

BKV Blocking key value
DO Database owner
LSH Locality sensitive hashing
LU Linkage unit
MD-PPRL Multidatabase privacy-preserving record linkage
RL Record linkage

size nr
|B| records each, will result in |B| · ( nr

|B| )
d record pairs that need to be compared.

Nevertheless, sending all databases to one party for linkage (such as a linkage unit,
LU) does not reduce the above complexity since in a block each record needs to be
compared with every other record. Therefore, some filtering techniques are required
in between the blocking and comparison steps of MD-PPRL to reduce the record
comparison space further.

To minimise the number of comparisons between records in MD-PPRL, we pro-
pose a novel graph based meta-blocking approach. Our approach is utilised in the
third layer of our proposed blocking framework as explained in Chapter 4 on page 67.
This meta-blocking step can be incorporated between the blocking and comparison
steps in both the MDRL and MD-PPRL pipelines. As will be described in Section 9.3,
our approach schedules pairs of blocks for comparison based on a list of candidate
block tuples (CBTs). As shown in Figure 4.1 (on page 64), this list of CBTs can be
generated either by the block generation or the sub-group blocking layers in our frame-
work.
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Figure 9.1: An overview of our meta-blocking approach with its three main steps.
As detailed in Section 9.3, the input to our approach is a list CBT of candidate block
tuples. The linkage unit (LU) constructs a graph in step 1 using the CBT, where each
block in a candidate block tuple (CBT ∈ CBT) becomes a vertex, and two vertices are
connected if they occur in the same CBT. In step 2, a normalised weight is calculated
for each edge, while in step 3 block pairs in the CBT are sorted according to their

edge weights to schedule pairs of blocks for comparison.

As we have reviewed in Chapter 3, several block processing and filtering tech-
niques have been proposed for both RL and PPRL to reduce the record comparison
space. The main drawback of these existing techniques is that their performance de-
pends mainly on fine-tuning of application and data specific parameters. In contrast,
our proposed approach does not require any data dependent parameters to be set.
It aims to reduce the number of expensive record pair comparisons by discarding
unwanted comparisons between records. Table 9.1 summarises the notation we use
in this chapter and we next describe our approach in more details.

9.2 Overview of our approach

We assume d database owners (DOs), each with a database D, are participating in
our approach, with d ≥ 3. We use the notation DA, DB, DC, etc. to represent each
database of DOA, DOB, DOC, and so on. An overview of our proposed meta-blocking
approach is shown in Figure 9.1. We employ a linkage unit (LU) to determine the
ordering of pairs of blocks that need to be compared, and to coordinate the matching
of blocks using appropriate comparison and classification techniques [35].

As detailed in Section 9.1 the main aim of our meta-blocking approach is to
schedule pairs of blocks in a list of CBTs, CBT, to remove unwanted record pair
comparisons to achieve high efficiency with no loss in effectiveness in the linkage
process. As defined in Chapter 4 (on page 65) each candidate block tuple CBT ∈
CBT contains identifiers of blocks that have the same or similar blocking key values
(BKVs) from between 2 and d databases, and a maximum of one block identifier per
database. We use the notation BA, BB, BC, and BD to represent identifiers of blocks
of DA, DB, DC, and DD, respectively. Figure 9.2 shows an illustrative example of our
approach with a list CBT generated from these four databases.
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Figure 9.2: An illustrative example of our meta-blocking approach. In this example
the list of candidate block tuples (CBT) contains blocks from databases DA, DB, DC,
and DD. In step 1, these blocks are added to a blocking graph G as vertices and
edges are created between these vertices. As describe in Section 9.3, each edge is
assigned with a weight, in this example the cardinality (number of times a pair of
blocks appears in CBT). In step 3, block pairs (edges) are ranked based on their
weights for comparison. In this example the block pair (B1

A, B1
B) will be compared

first because it has the highest edge weight (4) in the graph.

In our approach we consider two types of unwanted record comparisons to be
removed which are (1) repeated and (2) superfluous record pair comparisons, as we
define below. Repeated record pair comparisons occur when the same pair of blocks
is compared repeatedly for multiple CBTs, while superfluous comparisons occur be-
tween records in a CBT where previously a non-match classification has been made,
therefore rendering further comparisons with other records in the same CBT unnec-
essary as they cannot lead to a set of matching records across d databases.

The record pairs to be generated from the list CBT can comprise repeated and
superfluous comparisons that affect the overall efficiency of a linkage protocol. Both
constitute an excess of computation cost. We formally define repeated and superflu-
ous comparisons as follows:

Definition 9.1. Repeated Comparison
If a record pair comparison (RA, RB) in a block pair (BA, BB), with RA ∈ BA, RB ∈ BB
and (BA, BB) ∈ CBTx, has been compared, then (RA, RB) of (BA, BB) ∈ ∀CBTy ∈ CBT,
and CBTx 6= CBTy, is considered as a repeated comparison.

Definition 9.2. Superfluous Comparison
By assuming a linkage of three databases DA, DB, and DC, a given CBTx = 〈BA, BB, BC〉,
a record pair comparison (RA, RC) with RA ∈ BA, RC ∈ BC is considered as a superflu-
ous comparison if ¬∃ RB ∈ BB that has been classified as a match with RA in the block
pair (BA, BB). Records RA and RC only need to be compared if both pairs (RA, RB)
and (RB, RC) have been classified as matches in the two block pairs (BA, BB) and
(BB, BC), respectively.
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For example, in Figure 9.2 all record comparisons in block pair (B2
A, B3

B) would be
repeated once (conducted twice) if we compare B2

A and B3
B for each CBT it occurs in,

namely in 〈B2
A, B3

B, B3
C〉 and 〈B2

A, B3
B, B4

D〉. For CBT1 = 〈B1
A, B1

B, B1
C, B1

D〉 in Figure 9.2, a
comparison of record RB ∈ B1

B with any record RC ∈ B1
C is considered as a superflu-

ous comparison if RB has already been classified as not matching with any record in
B1

A in block pair comparison (B1
A, B1

B).
As illustrated in Figure 9.1, our approach accepts a CBT as input and outputs

an ordering (ranking) of pairs of blocks that need to be compared in the matching
(comparison and classification) step of PPRL. The CBT is used to construct an undi-
rected graph where the block pairs in each CBT are scheduled for comparison based
on the ordering of the calculated edge weights. As illustrated in Figure 9.1, our
meta-blocking approach consists of three main steps:

1. Blocking Graph Construction: The LU constructs the blocking graph G based on
the list CBT output by a previous layer in our framework. The blocks of each
DO become vertices in G and edges are created between blocks in each CBT.

2. Edge Weight Calculation: The LU calculates a weight for each edge in G. These
weights are used to rank the edges in the order of how they are to be processed.
We propose five schemes for calculating edge weights in the generated graph
which are described in more details in the following section.

3. Block Comparison Scheduling: Based on the calculated edge weights in G, the LU
uses a block scheduling method to order the block pair comparisons in CBT.
In the following section we will propose four block scheduling methods for
ranking the block pair comparisons.

For example as shown in Figure 9.2, for CBT1 = 〈B1
A, B1

B, B1
C, B1

D〉 and CBT2 =
〈B1

A, B1
B, B1

C, B3
D〉, we aim to find an efficient ordering of the pairs of blocks in these

two CBTs to be compared such that the ordering minimises the number of repeated
and superfluous record pair comparisons. Two example possible orderings for these
two CBTs are (B1

A, B1
B) → (B1

B,B1
C) → (B1

C,B1
D) → (B1

C,B3
D), or (B1

A, B1
B) → (B1

B, B1
C) →

(B1
A,B1

D)→ (B1
A,B3

D). We next describe our meta-blocking approach in more detail.

9.3 Scalable Meta-Blocking Approach

As illustrated in Figure 9.1, a list CBT of candidate block tuples that need to be
compared across the databases in the comparison and classification step are input to
our approach. We consider the generation of CBT to be a black box where CBTs can
be generated by using any multidatabase blocking technique, such as those proposed
in Chapters 5 to 8.

Apart from the list CBT, the LU requires additional information of a block to
conduct the scheduling of block pairs. For every block in CBT, the LU requires
a block representative (Brep) and its block size (Bsize). As described in Section 7.3 on
page 136, a Brep can be generated in different forms, for example as a representative
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Algorithm 9.1: Blocking Graph Construction by the LU
Input : CBT - List of candidate block tuples (CBTs)

L - List of pairs of (Brep, Bsize)s, where L← [L1, · · · , Ld]

Output: G - Undirected blocking graph

1 V ← ∅, E← ∅ // Initialise an empty graph

2 foreach CBT ∈ CBT do // Iterate over every CBT
3 foreach Bi ∈ CBT do // Add each candidate block to graph

4 (Bi
rep, Bi

size)←getBlockInfo(L, Bi) // Get the corresponding pair of (Brep, Bsize)

5 v← Bi // Create a new vertex

6 v.rep← Bi
rep // Add the block representative as an attribute

7 v.size← Bi
size // Add the block size as an attribute

8 V.add(v) // Add the newly created vertex to graph

9 foreach Bj ∈ CBT do // Add each candidate block to graph

10 if Bi 6= Bj ∧ (Bi, Bj) 6= E then // Check if the edge already exists

11 E.add((Bi, Bj)) // Create a new edge

12 end
13 end
14 end
15 end
16 return G = (V, E)

Min-Hash signature [25, 101], a representative Bloom filter [190], or as a phonetic
encoding [35]. Bsize is the number of records in a block. The pairs of (Brep, Bsize) are
used in step 2 of our approach to calculate the weights of each edge between blocks.

The technique used to generate Breps needs to be the same in all databases as the
same type of Breps are required to allow the calculation of similarities between pairs
of blocks that need to be compared across databases. Each DOi sends a list of pairs
of (Brep, Bsize), Li, to the LU for its corresponding blocks in CBT.

However, it is important to note that in a PPRL context revealing pairs of (Brep,
Bsize) can increase the potential risk of frequency based cryptanalysis attacks as ex-
plained in Section 2.4 on page 33. We will analyse the privacy of each step of our
meta-blocking approach within a PPRL context in Section 9.4. We next discuss each
step of our approach in more detail.

1. Blocking Graph Construction

As illustrated in Figure 9.1, in step 1 of our approach an undirected blocking
graph G is created from the CBT. Similar to the candidate graph defined in Sec-
tion 8.3 (on page 162), the blocks of different databases in CBT are represented
as vertices in the blocking graph, however, the edges are created between these
vertices only if their corresponding blocks appear in the same CBT ∈ CBT. We
formally define a blocking graph as follows.

Definition 9.3. Blocking Graph G
Given a list CBT of candidate block tuples, the undirected blocking graph de-
rived from CBT is a d-partite graph G = (V, E), where V is a set of vertices and



§9.3 Scalable Meta-Blocking Approach 181

E is a set of undirected edges that each is an unordered pair of elements of V. V
represents all unique blocks in CBT, i.e. V = {∪ Bi ∈ CBTj : ∀ CBTj ∈ CBT},
while E contains all undirected edges between pairs of vetices (Bi, Bj) ∈ V such
that E = {(Bi, Bj) : (Bi ∈ CBT) ∧ (Bj ∈ CBT) ∧ (i 6= j), ∀ CBT ∈ CBT}.

The blocking graph construction is outlined in Algorithm 9.1. In line 2 the LU
iterates through each CBT in CBT. Each Bi which represents a candidate block
in a CBT is added as a new vertex v in G (lines 3 to 8). In line 4 the function
getBlockInfo() returns the corresponding block description pair (Bi

rep, Bi
size) for

each Bi. These are then added as attributes of v (lines 6 and 7). An edge is
created between two vertices if a pair of Bis appears in a CBT, such that edges
are created only between candidate blocks of different databases (lines 9 to 11).

2. Edge Weight Calculation

As shown in Figure 9.1, in the second step of our approach the blocking graph
G is converted into an undirected weighted blocking graph Gw by calculating
a normalised weight w ∈ [0, 1] for each edge e ∈ E. Below we describe five
weighting schemes to calculate edge weights, denoted by e.w, on characteris-
tics drawn from the pair of vertices which created the edge. The general idea
behind these weighting schemes is to recognise the block pairs’ expected ben-
efit of processing based on the blocks’ characteristics. Block pairs with higher
weights should be compared before the block pairs with lower weights to im-
prove the efficiency of the overall linkage process.

• Cardinality Based Weighting (wcard) This weighting scheme considers
the importance of a pair of blocks in the list CBT as described by the
cardinality of its corresponding edge in G. The cardinality of an edge (i.e.
a block pair) is defined as the number of times the given pair of (Bi, Bj)
appears in a CBT ∈ CBT. The normalised weight wcard of edge e(Bi ,Bj) is
formally defined as:

wcard(Bi, Bj) =
|{(Bi, Bj) ∈ CBT : CBT ∈ CBT}|

max
∀(Bi ,Bj)∈E

(|{(Bi, Bj) ∈ CBT, CBT ∈ CBT}|) , (9.1)

where | · | represents the cardinality of a given set and max() returns
the maximum cardinality of the set of edges in E. For example, in Fig-
ure 9.2 the block pair (B1

A, B1
B) has a cardinality of 4. Hence, the block pair

(B1
A, B1

B) has a wcard of 1.0.
This scheme expresses the hypothesis that the more often a block pair
occurs in the CBT, the more beneficial it would be to compare the pair at
an early stage as this can improve the efficiency of the comparison step by
reducing the number of repeated record pair comparisons in later block
processing.
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• Comparison Based Weighting (wcomp)
This scheme is based on the number of record pair comparisons that need
to be performed between two blocks as calculated based on their block
sizes. More formally, the normalised weight wcomp of edge (Bi, Bj) is de-
fined as:

wcomp(Bi, Bj) = 1−
Bi

size · B
j
size

max({Bi
size · B

j
size : ∀(Bi, Bj) ∈ E})

, (9.2)

where Bi
size and Bj

size are the size (number of records) of the vertices Bi
and Bj, respectively, that connect the edge (Bi, Bj), and max() returns the
maximum number of record pair comparisons required between any pair
of blocks in CBT.
This scheme identifies the pairs of blocks that require a smaller number
of record pair comparisons since an edge between the smallest blocks will
receive the highest weight. Comparing smaller sized block pairs at an
early stage will avoid superfluous record pair comparisons in later block
comparisons.

• Matching Based Weighting (wmatch)
In this scheme, we calculate a weight for each edge (Bi, Bj) between ver-
tices Bi and Bj proportional to the cost of comparing the corresponding
blocks (number of record pair comparisons) of the edge against the poten-
tial maximum number of matches that can be gained by comparing those
two blocks (assuming the blocks contain no duplicate records). More for-
mally, the normalised weight wmatch of edge (Bi, Bj) is defined as:

wmatch(Bi, Bj) =
min(Bi

size, Bj
size)

Bi
size · B

j
size

=
1

max(Bi
size, Bj

size)
. (9.3)

where min() returns the minimum of two block sizes Bi
size and Bj

size.
The hypothesis behind this matching based weighting scheme is to iden-
tify the block pairs that have a larger number of potential matches. Com-
parison of these block pairs at an early stage during block processing
would effectively propagate the resulting matching record pairs into the
neighbouring vertices in Gw thereby avoid superfluous comparisons be-
cause non-matching records will not be compared with the records in cor-
responding blocks of neighbouring vertices.

• Similarity Based Weighting (wsim)
In this scheme, the similarity between block representatives (Breps) of a
pair of blocks is used as the weight of an edge connecting those two blocks.
We assume Breps (that depend upon the actual blocking technique used)
can be compared using appropriate similarity functions to measure their
similarity. For example, the Jaccard coefficient [35], Dice coefficient [216],
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and edit-distance [35] can be used with Min-Hash signature, Bloom fil-
ter, and phonetic encoding representatives, respectively. Hence, the nor-
malised weight wsim of edge (Bi, Bj) is defined as:

wsim(Bi, Bj) = sim(Bi
rep, Bj

rep), (9.4)

where Bi
rep and Bj

rep are the block representatives of vertices Bi and Bj,
respectively, and sim() is an appropriate similarity function that calculates
the similarity between Bi

rep and Bj
rep, with 0 ≤ sim() ≤ 1.

This scheme is based on the hypothesis that the more similar two block
representatives are, the more likely the corresponding blocks contain more
matching record pairs. Comparing more similar blocks at an early stage
enables the identification of a set of matching records that reduces the
number of superfluous record comparisons in later block comparisons.

• Combined Weighting (wcomb)
This weighting scheme is a combination of the previous four schemes,
where each scheme is given a weight value to differentiate the importance
of each scheme in the overall edge weight. For each edge (Bi, Bj) ∈ E in the
graph the weight wcomb is calculated as a generic score which is formally
defined as (with α, β, δ, γ ≥ 0):

w = α · wcard(Bi, Bj) + β · wcomp(Bi, Bj) + δ · wmatch(Bi, Bj) + γ · wsim(Bi, Bj)

wcomb(Bi, Bj) =
w

α + β + δ + γ
, where (α + β + δ + γ) > 0.

(9.5)

3. Block Comparison Scheduling

The third step of our approach aims to rank (order) the edges E in the graph Gw

according to their weights, as shown in Figure 9.2. This ranking provides an
order for the comparison of block pairs in the CBT that allows for a significant
reduction in the overall number of repeated and superfluous record pair com-
parisons during the comparison and classification step in MDRL or MD-PPRL
pipeline.

For the scheduling of block comparisons we consider two aspects of: (1) propa-
gation of previous comparison results to subsequent block comparisons, and (2)
distribution of block processing. The first aspect consists of the two categories
static and dynamic based upon if the blocking graph with the comparison results
is updated or not during the scheduling process. In the static approach, the set
of edges E is ranked only once and the graph Gw is not updated with any re-
sults from the conducted block pair comparisons. In the dynamic approach the
comparison results of the previous block pair comparisons are added to Gw as
new nodes and E is re-ranked after each compared block pair.
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Figure 9.3: An example of generating the block of matching records M for block
pair (B1

A, B1
B) under the (1) centralised and (2) distributed match settings. In the cen-

tralised setting a three party comparison and classification (matching) technique is
used where the database owners (DOA and DOB) send their blocks to the linkage
unit (LU) to compare the blocks. In the distributed setting the DOs participate in a
two party matching protocol to generate M. Arrows represent the communication

between parties.

In the second aspect we consider how the actual matching of block pairs is
conducted, categorised into centralised and distributed. An example of the com-
parison of block pair (B1

A, B1
B) under these two categories is shown in Figure 9.3.

In the centralised setting we assume all the blocks are compared by the LU or
by another external party using existing comparison and classification tech-
niques [215] based on the blocks sent to it by the DOs. In the distributed
category we assume the DOs compare blocks among themselves without any
involvement of a third party.

Based on these two aspects we propose four block comparison scheduling
methods as described below. We assume a function matchBlocks() which con-
ducts the comparison and classification for a given pair of blocks, and which
returns a set of matching records (M) [15].

• Static Centralised Block Scheduling
Algorithm 9.2 outlines the main steps involved in the static centralised
block comparison scheduling method. This approach can be used in a
scenario where the LU [174] performs the record comparisons between
the blocks that have been sent to it by the DOs. Block pairs are processed
sequentially and the graph Gw is not updated after a pair of blocks has
been compared.
In lines 2 and 3 of Algorithm 9.2, the edges in Gw are ranked in descend-
ing order according to their weights. Once a block pair is compared (line
5), the set of records that are classified as matches M is added to a list Vc

of matched records (line 6) for later comparisons [15]. To avoid any super-
fluous comparisons in later block pair comparisons in the CBTs, the set of
matches M is used to update the corresponding block pair comparisons
accordingly in the relevant CBTs (lines 7 to 9).
For example, once compared, the block pair comparison (B1

A, B1
B) is up-

dated in CBT1 and CBT2 given in Figure 9.2, with M as 〈M, B1
C, B1

D〉 and
〈M, B1

C, B3
D〉, respectively. This ensures that previously compared block
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Algorithm 9.2: Static Centralised Block Scheduling
Input : Gw - Undirected weighted blocking graph

CBT - List of candidate block tuples (CBTs)

Output: M - Matching records sets

1 Vc ← [], M← ∅ // Initialise the variables

2 E←getEdges(Gw) // Get set of edges from Gw

3 Er ←rankEdges(E) // Rank the set of edges

4 foreach (Bi, Bj) ∈ Er do // Iterate over the ranked edges

5 M← matchBlocks(Bi, Bj, []) // Compare the two blocks

6 Vc.add(M) // Add the set of matched records to Vc

7 foreach CBT ∈ CBT do // Iterate over the CBTs
8 CBT ← updateCandidateSet(CBT,M) // Update the corresponding CBTs
9 end

10 end
11 foreach CBT ∈ CBT do // Iterate over the CBTs
12 foreach (Bi, Bj) ∈ CBT do // Compare the remaining blocks

13 M←matchBlocks(Bi, Bj, Vc) // Compare the blocks

14 M← M ∪M // Add to final matched record set

15 end
16 end
17 return M

pairs are not compared repeatedly in later block pair comparisons of any
CBT ∈ CBT. Finally, the remaining block pairs in Vc, which are not up-
dated in Gw, are compared (lines 11 to 16) and the set of matching records
are added to the final set of matching records M in line 14.

• Dynamic Centralised Block Scheduling
Similar to the static centralised scheduling method, the dynamic centralised
block comparison scheduling method also processes each edge (Bi, Bj) be-
tween vertices u and v in Gw sequentially, but Gw is updated according
to the results obtained from comparing the block pair of (Bi, Bj) (i.e., set
of compared records that are classified as matches M). As outlined in Al-
gorithm 9.3, this method iterates through the set of edges E in Gw (line
2) where at a given iteration the edge (Bi, Bj) with the highest weight is
identified for comparison by the function getTopWeightEdge() (line 3).

In line 4 in Algorithm 9.3, the set M of matching records between the two
compared blocks is generated. The processed edge (Bi, Bj) is examined for
any adjacent (neighbouring) nodes which share the same CBT (line 5). If
the processed edge (Bi, Bj) is the last block pair in a given CBT then M is
added to the final set of matches M (lines 13 and 14).

If the edge (Bi, Bj) contains neighbouring nodes, Gw needs to be updated
with the compound block of matches M (lines 5 to 12). To represent M
in Gw a new vertex (let us assume as v′) is created by generating a new
block identifier and the respective attribute values (size and block repre-
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Algorithm 9.3: Dynamic Centralised Block Scheduling
Input : Gw - Undirected weighted blocking graph

ws - Weighting scheme

Output: M - Matching records sets

1 M← ∅ // Initialise an empty set of matching records

2 while Gw.E 6= ∅ do // Iterate through all the edges in Gw

3 (Bi, Bj)← getTopWeightEdge(Gw.E) // Get the highest weighted edge

4 M← matchBlocks(Bi, Bj, []) // Compare the two blocks

5 if (Bi, Bj).neighbours() 6= ∅ then // Check for neighbouring vertices

6 Gw.V ← createVertex(M) // Create a new vertex

7 foreach v ∈ (Bi, Bj).neighbours() do // Iterate over each neighbour

8 Gw.E← createEdge(v, (Bi, Bj)) // Create a new edge

9 end
10 Gw.E← updateWeights(Gw.E, ws) // Recalculate the edge weightes

11 Gw.E← removeEdges((Bi, Bj), (Bi, Bj).neighbours()) // remove unwanted edges

12 end
13 else
14 M← M ∪M // Add to final matched record set

15 end
16 Gw.V ← removeVertices(Bi, Bj, Gw.V, Gw.E) // Remove compred vertices from G

17 end
18 return M

sentative) of v′ are added based the characteristics of M (line 6). v′.size is
updated with the number of records in M as the block size (Bsize = |M|),
however, the attribute v′.rep is excluded because the LU does not know
the parameter settings used by the DOs in the Brep generation.

Since v′ does not contain a Brep for later similarity calculations for the
similarity based (wsim) and combined (wcomb) weighting schemes we use
the average similarity. The average similarity is computed by taking the
average of similarities between the Breps of Bi and Bj, with the Brep of
neighbouring vertex.

Once the new vertex v′ is added into Gw, new edges are created between
each neighbouring vertices of (Bi, Bj) and v′ (lines 7 and 8). This ensures
that superfluous comparisons are not included in the later block compar-
isons of the neighbouring edges that share the same CBT. The weights of
these new edges are recalculated (line 10) according to the edge weighting
scheme ws that is being used in Gw (as discussed for step 2 above).

The set of edges that connects the neighbours of (Bi, Bj) with vertices Bi
and Bj are removed from Gw by the function removeEdges() (line 11). To
avoid repeated comparisons, this function also removes the edge (Bi, Bj)
to ensure that the corresponding block pair will not be compared in any
later CBTs. Finally, the function removeVertices() removes vertices Bi and Bj
from Gw only if they are not connected with any other vertices (line 16).
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Algorithm 9.4: Static Distributed Block Scheduling
Input : Gw - Undirected weighted blocking graph

CBT - List of candidate block tuples (CBTs)
d - Number of database owners (DOs)

Output: M - Matching records sets

1 Vc ← [], M← ∅ // Initialise the variables

2 E←getEdges(Gw) // Get set of edges from Gw

3 I←getEdgeIndex(E, d) // Add edges into an inverted index

4 foreach k ∈ |I| do // Iterate over the edge index

5 foreach (Bi, Bj) ∈ I[k] do // Iterate over each edge in I[k]

6 M← matchBlocks(Bi, Bj, []) // Compare the two blocks

7 Vc.add(M) // Add the set of matched records to Vc

8 foreach CBT ∈ CBT do // Iterate over the CBTs
9 if Bi ∈ CBT ∧ Bj ∈ CBT then // Check if both blocks are in a CBT

10 CBT ← updateCandidateSet(CBT, M) // Update corresponding CBTs
11 end
12 end
13 end
14 end
15 foreach CBT ∈ CBT do // Iterate over the CBTs
16 foreach (Bi, Bj) ∈ CBT do // Compare the remaining blocks

17 M←matchBlocks(Bi, Bj, Vc) // Compare the blocks

18 M← M ∪M // Add to final matched record set

19 end
20 end
21 return M

• Static Distributed Block Scheduling
The aim of this block scheduling approach is to order pairs of blocks such
that they can be compared in a distributed manner across DOs without
any involvement of a LU, as outlined in Algorithm 9.4. In Figure 9.2, for
example, the block pair (B1

A, B1
B) can be compared by the owners of DA

and DB, and independently (B1
C, B1

D) by the owners of DC and DD.
In Algorithm 9.4, Gw, CBT, and the number of DOs d are provided as
inputs. The set of edges E in graph Gw is added into an inverted index I
by the function getEdgeIndex() (lines 1 to 3). Each list I[k] holds the d edges
that can be processed independently in a given iteration. These edges
are selected considering the adjacent vertices (neighbours) and CBTs that
include these pairs of blocks. Any block pairs that share a common neigh-
bour, or if any of their corresponding blocks appears in the same CBT, are
not added to the same list in I. In line 6, each block pair in I[k] is sent to
the relevant DOs to compare the records in the corresponding blocks.
Similar to Algorithm 9.2, CBT is updated (lines 8 to 12) to avoid any re-
peated and superfluous comparisons. Compared to Algorithm 9.2, how-
ever, Algorithm 9.4 enables block pairs to be compared independently.
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Algorithm 9.5: Dynamic Distributed Block Scheduling
Input : Gw - Undirected weighted blocking graph

ws - Weighting scheme
d - Number of database owners (DOs)

Output: M - Matching records sets

1 Vc ← [], M← ∅ // Initialise the variables

2 while Gw.E 6= ∅ do // Iterate over all the edges in Gw

3 Ed ← getTopWeightEdges(Gw.E, d) // Get d highest weighted edges

4 foreach (Bi, Bj) ∈ Ed do // Iterate over selected edges

5 M← matchBlocks(Bi, Bj, []) // Compare the two blocks

6 if (Bi, Bj).neighbours() 6= ∅ then // Check for neighbouring vertices

7 Vc.add(M) // Add the set of matched records to Vc

8 end
9 else

10 M← M ∪M // Add to final matched record set

11 end
12 end
13 if Vc 6= [] then // Check if there are Ms that has neighbours

14 Gw ← addVerticesEdges(Gw, Vc, Ed) // Create new vertices and edges

15 Gw.E← updateWeights(Gw.E, ws) // Recalculate the edge weightes

16 foreach (Bi, Bj) ∈ Ed do // Iterate over each compared edges

17 Gw.V ← removeVertices(Bi, Bj, Gw.V, Gw.E) // Remove compared vertices

18 end
19 end
20 end
21 return M

• Dynamic Distributed Block Scheduling

Similar to dynamic centralised scheduling, dynamic distributed schedul-
ing updates the graph Gw according to record pair comparisons performed
while the corresponding blocks of each edge are processed distributively
among the DOs.

As outlined in Algorithm 9.5, this method iterates through the set of edges
in Gw (line 2). In line 3, the function getTopWeightEdges() ranks the set of
edges Gw.E according to their weights and identifies the set of edges Ed
that can be compared independently across the DOs. At a given iteration,
Ed contains upto d edges (the number of databases to be linked). Similar
to Algorithm 9.4, each block pair in Ed is assigned to the relevant DOs to
perform the comparison and classification of the record pairs formed from
these two blocks (lines 4 and 5).

Similar to Algorithm 9.3, the blocking graph Gw is updated accordingly
with the set of matching records M (lines 13 to 19). If a compared edge
(Bi, Bj) contains neighbouring vertices then a new vertex is created for M
and new edges are created appropriately with the neighbouring vertices
(line 14) otherwise M is added to the final matching record set M (line 10).
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Depending upon the weighting scheme ws used, the weights are calculated
for the newly created edges by the function updateWeights() (line 15). To
avoid repeated comparisons, the function removeVertices() then removes
vertices Bi and Bj (line 17). This ensures the corresponding pair of blocks
of Bi and Bj is not compared in any later CBTs. Updating Gw ensures
that any superfluous comparisons in the neighbouring edges and repeated
block pair comparisons will be avoided in later comparisons.

9.4 Conceptual Analysis of Meta Blocking Approach

We now analyse our meta-blocking approach in terms of complexity, blocking qual-
ity, and privacy assuming a MD-PPRL context. We assume the comparison and
classification techniques used in our scheduling methods are accurate and provide
enough privacy against possible privacy attacks.

9.4.1 Complexity

Let us assume d ≥ 3 DOs participate in our approach with each having a database
D to be linked. We assume there are nCBT = |CBT| candidate block tuples (CBT)
to be compared. Each CBT consists of d blocks, one each for the d databases. We
do not consider the complexities of the CBT generation and private comparison and
classification technique used since they are outside of our meta-blocking approach.

In step 1 of our approach, the nCBT CBTs are added to the graph G as outlined
in Algorithm 9.1. This requires the LU to iterate through each Bi ∈ CBT to add as
a vertex v to G, and to create edges between vertices if they share the same CBT. A
CBT with d candidate blocks generates d(d−1)

2 edges in G. Hence, the construction of
G is of complexity of O(|E|), where |E| = nCBT · d2.

In step 2 of the approach, weights need to be calculated for each edge in the graph
G which requires the LU to iterate through the set of edges E in G. This process has
a computational complexity of O(|E|).

In step 3, we assume the sorting algorithm used in the ranking function has a
complexity of O(|E| · log(|E|)). At a given iteration both centralised block scheduling
methods select an edge for processing. Static centralised block scheduling has a
complexity of O(|E| · log(|E|) + |E|) since it does not update Gw after a pair of blocks
has been compared. On the other hand, dynamic centralised block scheduling has a
complexity of O(|E|2 · log(|E|) + |V| · |E|) as it updates Gw after each comparison of
a block pair.

The two distributed block scheduling methods select upto d edges for comparing
block pairs in each iteration. This results in static distributed block scheduling to
have a complexity of O(|E| · log(|E|)+ |E| · nCBT · d), while dynamic distributed block
scheduling has a complexity of O(|E|2 · log(|E|) + nCBT · d + |V| · |E|) because Gw

needs to be updated after pairs of blocks have been compared independently by the
DOs.
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9.4.2 Blocking Quality

Our meta-blocking approach ensures that all unique block pairs in the input CBT are
considered in the block scheduling step. This means no block pairs are excluded for
comparisons. Therefore, the number of true matching record sets in the CBT given
as input to our approach remains the same as the number of true matching record
sets output by our approach. This leads to no loss in effectiveness as no true matches
are excluded for comparison by our approach.

In step 2, the weighting scheme applied on the graph Gw influences the reduction
in the number of repeated and superfluous record pair comparisons. Block pair
scheduling using the cardinality (wcard) based weighting scheme can reduce more
repeated comparisons than the other schemes since block pairs whose edges have
a high cardinality are compared first. On the other hand, using the comparison
(wcomp) based weighting scheme leads to the comparison of block pairs with the
lowest number of comparisons first, which can reduce more superfluous comparisons
compared to the other schemes.

The matching (wmatch) and similarity (wsim) based weighting schemes calculate
edge weights based on the number of potential matches and the similarity between
block representatives, respectively. The reduction of record pair comparisons when
using one of these two schemes, therefore, depends upon the blocking, comparison
and classification techniques used.

In step 3 of our approach, compared to static block scheduling, the dynamic block
scheduling methods update Gw with the resulting set of matching records once a pair
of blocks has been compared. This ensures that comparison results are propagated to
subsequent block comparisons to obtain the edge in Gw with the highest weight for
the next comparison, leading to an efficient reduction in the number of record pair
comparisons. In the distributed block scheduling methods, block pairs in the list of
edges are compared independently which ensures Gw is processed more efficiently
compared to when using the centralised block scheduling methods.

9.4.3 Privacy

We assume each party that participates in our approach follows the honest-but-
curious (HBC) adversary model [212], as described in Section 2.4 on page 27. We
assume each DO generates its blocks independently by using a private blocking tech-
nique as described in Chapter 7. Besides agreement of parameters, this technique
does not require any further communication between the DOs that would reveal in-
formation about their blocks. We also assume each block contains at least k = nr

|B|
records to ensure k-anonymous privacy [200]. Therefore, no DO can learn anything
about any other DO’s sensitive data during the blocking step.

Once the blocks are generated, the LU could use the techniques described in
Chapters 7 or 8 to generate the list of candidate block tuples (CBTs) for comparison.
As we described in Section 8.4 on page 167, the LU cannot learn about the individual
records in the CBT generation process. Apart from the block identifiers each DO
needs to send the block representatives (Breps) and sizes (Bsizes) of its blocks to the
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LU. However, as we have shown in Section 8.5 (on page 168), the LU cannot re-
identify a record in a block even if a DO reveals the parameter settings of the Brep

generation process to the LU.
The centralised scheduling methods presented in Section 9.3 require a third-party

to conduct the private comparison and classification step [56, 176]. Either the LU or
a separate external party is engaged to perform the linkage of masked records from
individual pairs of blocks. We assume such a private comparison and classification
protocol is available, where during the block pair comparison process no informa-
tion about sensitive data is leaked between the DOs and the LU, or to any other
party [216]. We do not analyse the privacy risk involved in this private comparison
and classification protocol since it is not included as a step in our meta-blocking ap-
proach. However, as we described in Section 8.4, the LU is not capable of performing
a cryptanalysis attack on the matching results of the block pair comparisons even if
it conducts the linkage of pairs of blocks sent to it by the DOs, because an individ-
ual block does not contain enough frequency information to conduct such an attack.
Furthermore, it has been shown in the past [132], even sophisticated cryptanalysis
attacks based on a constrained satisfaction solver that learns information about some
individual records in a block are only successful for certain parameter settings of the
encoding methods used.

In the static and dynamic distributed scheduling techniques each block pair is
compared using a two-party private comparison and classification technique without
involvement of a LU. For the private comparison and classification step, for the dis-
tributed scheduling methods presented in Section 9.3, we assume the private match-
ing protocol used is secure and no sensitive information is leaked to the individual
DOs about each others’ data.

In the dynamic distributed scheduling method, once a block pair is compared
the blocking graph Gw needs to be updated with the information of the resulting
set of match records M. This requires the DOs to send the size of M to the LU
which reveals information about the frequency distribution of the blocks. However,
as we have described above, since the LU does not know anything about the block
representative generation and the masking of the records it becomes harder for the
LU to infer information about individual records in a block.

9.5 Experimental Evaluation

In this section, we present and discuss the results of the experimental evaluation
study of our meta-blocking approach conducted on the datasets described in Sec-
tion 4.4 (on page 78). We name the four different block comparison scheduling meth-
ods as SCS for static centralised scheduling, DCS for dynamic centralised scheduling,
SDS for static distributed scheduling, and DDS for dynamic distributed scheduling,
respectively.

We use the same initial steps and parameter settings described in Chapter 8 to
generate the set of candidate block tuples (CBTs). To evaluate how many record pairs
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Figure 9.4: Average runtime for (a) blocking graph generation and (b) edge weight
calculation with different number of candidate block tuples (CBTs). (c) shows the
average record pair comparisons and (d) shows the total record comparisons required
for different number of databases with 500K CBTs (the total number of comparisons
required for the NOR approach for 5, 7 and 10 databases is higher than 1018, and

therefore not visible). Note that plots have different y-axis scales.

Table 9.2: Parameter settings used in the experimental evaluation
Parameter Value range

Dataset name NC-SYN
Number of databases (d) 3, 5, 7, 10

Number of records in each database (nR) 1,000,000
Blocking key attributes (A) Given name, Surname, City (suburb), and Postcode

Corruption levels 0%, 20%, and 40%
Number of candidate block tuples (nCBT) 1,000 to 500,000

are reduced by our approach we use block pair comparison with normal scheduling
(NOR) as a baseline approach. In the NOR approach block pairs of a CBT are com-
pared sequentially where each record in a block is compared with every record in all
other blocks of a CBT. For example, the block pairs of CBT1 = 〈B1

A, B1
B, B1

C, B1
D〉 in

Figure 9.2 is compared as (B1
A, B1

B) → (B1
B,B1

C) → (B1
C,B1

D). Table 9.2 summarises the
parameter values used in our approach.
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Figure 9.5: The average number of record pair comparisons required for (a) different
weighting schemes and (b) for different weighting scheme combinations for different
scheduling methods on 500K CBTs. Reduction in the number of (c) repeated and (d)
superfluous comparisons achieved by different scheduling methods on 500K CBTs.

Note that plots have different y-axis scales.

9.5.1 Scalability

Figures 9.4 (a) and (b) show the average runtime required for the blocking graph
(G) construction and edge weight calculation steps of our approach. The runtime
required for constructing G increases linearly with the number of candidate block
tuples (nCBT). We noted that the average runtime increases with the number of
databases (d) as more blocks are added to G as vertices and d(d− 1)/2 edges are
created for each CBT. As we expected the runtime for the edge weight calculation
step increases with nCBT as weights need to be calculated for more edges in G.

Figure 9.4 (c) shows the scalability of our approach in terms of average record
comparisons required with nCBT and d. As can be seen, the average number of
record comparisons required by each scheduling method scales linearly with nCBT.
NOR required more record comparisons because records are compared across all
the blocks in a CBT. Figure 9.4 (d) shows the total number of record comparisons
required by each scheduling method scales linearly with d. However, the number of
record comparisons increases with d as more block pairs need to be processed.
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Figure 9.5 (a) illustrates the average number of record pair comparisons per-
formed per database with different weighting schemes and scheduling methods. As
expected the dynamic distributed scheduling (DDS) method leads to a higher reduc-
tion in record pair comparisons compared to the other scheduling methods. This is
also illustrated in Figures 9.4 (c) and (d) as DDS compares block pairs completely
distributed leading to an improvement in the overall efficiency of the protocol.

As shown in Figure 9.5 (a), compared to the cardinality (wcard), matching (wmatch),
and similarity (wsim) based weighting schemes, the comparison (wcomp) based weight-
ing scheme performs better as it is capable of removing more record pair compar-
isons. This happens because wcomp selects the block pairs with the smallest number
of record pair comparisons first and therefore removes more non matching record
pairs at an early stage of the comparison process.

Figure 9.5 (b) shows the number of record pair comparisons required by each
block scheduling method with the combination based weighting (wcomb) scheme. We
set the constants α, β, δ, and γ in wcomb to either 0 or 1 such that 1 ≤ α+ β+ δ+γ ≤ 4,
and we measure the average number of record pair comparisons per database for
different such combinations. The results show that the number of comparisons can
be reduced better when several weighting schemes are combined.

Figures 9.5 (c) and (d) illustrate the number of repeated and superfluous record
comparisons removed by each scheduling method with 500,000 CBTs for different
weighting schemes. In Figure 9.5 (c), each scheduling method removes more re-
peated comparisons when used with wcard weighting compared to the other weight-
ing schemes. This is because with wcard a block pair that is shared by multiple CBTs
is compared first, and before block pairs that only occur once in a CBT. wcard also
helps to shrink the block graph G by selecting the edges with highest cardinality
which indirectly improves the overall efficiency of the linkage process.

As shown in Figure 9.5 (d), with the wcomp scheme more superfluous record pair
comparisons are removed by all scheduling methods compared to the other schemes.
As shown in these figures, while wcard and wcomp are better capable to either reduce
repeated or superfluous comparisons (but not both), wmatch and wsim can reduce both
types however less efficiently than wcard and wcomp. Overall, the dynamic scheduling
methods perform more effectively than the static approaches, and the distributed
approaches compare block pairs more efficiently than the centralised approaches.

9.5.2 Blocking Quality

Figure 9.6 (a) illustrates the effectiveness of our meta-blocking approach in terms
of pairs completeness (PC) and reduction ratio (RR) measured for different block
scheduling methods for 500,000 CBTs. This figure shows scheduling does not reduce
the number of true matches in the compared pairs of blocks, while each scheduling
method increases the RR considerably compared to the NOR baseline. Figure 9.6 (b)
shows the use of scheduling can improve the overall effectiveness of linkage even for
large numbers of CBTs compared to NOR which leads to lower FM values due to its
large number of record comparisons.
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Figure 9.6: (a) Pairs completeness (PC) and reduction ratio (RR), and (b) F-measure
(FM) with different scheduling methods for three databases, and FM with differ-
ent number of database for different scheduling methods with (c) 20% and (d) 40%

corrupted databases. Note that plots have different y-axis scales.

Figures 9.6 (c) and (d) show the effectiveness of our approach in terms of F-
measure (FM) with different number of databases with 500,000 CBTs. These figures
show that the scheduling approaches can achieve better FM compared to NOR be-
cause scheduling improves the RR considerably by removing redundant record pair
comparisons. Therefore, the use of our proposed meta-blocking approach before the
comparison and classification step in a linkage application can achieve high efficiency
and scalability with no loss in effectiveness.

9.5.3 Privacy

To evaluate the privacy of our approach we conducted the cryptanalysis attack de-
scribed in Section 5.5 with each scheduling technique for each generated block of a
database with 1 million records. We used the same parameter settings described in
Section 5.5 to conduct this cryptanalysis attack. As shown in Figure 9.7 (a), most of
the re-identification guesses resulted in wrong and no guesses. This indicates that an
attacker could not re-identify an attribute value in a given block because it does not
contain enough frequency information to identify q-grams that are encoded in BFs.
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As shown in Figure 9.7 (b), we computed average probability of suspicion (PS)
values (for the frequency linkage attack described in Section 2.5 on page 38) for the
comparisons of block pairs of three databases with 1 million records. The PS values
are measured for the matching records that are resulted in each block pair compari-
son in a given scheduling iteration. As can be seen in this figure, the PS value of a
record increases in the later scheduling iterations of any given scheduling method.
This is because the later block pair comparisons result in very small block sizes (set
of matching records) which are added as new blocks into the blocking graph G. This
could potentially increase the risk of frequency attacks in the centralised and dis-
tributed comparison scenarios. To overcome the risk of such attacks, a secure com-
parison and classification technique needs to be used in our scheduling techniques.
However, it is important to note that such a privacy breach can only happen at the
comparison and classification step which is outside of our meta-blocking approach.

9.6 Summary

In this chapter we have proposed a novel scalable meta-blocking approach for multi-
database privacy-preserving record linkage (MD-PPRL). Our approach accepts a list
of candidate block tuples (that consist of blocks from multiple databases) as input
and orders pairs of blocks in these tuples to minimise the number of repeated and
superfluous record pair comparisons, where the latter are comparisons of records
with record pairs that have previously been classified as non-matches. Our approach
uses a graph structure to schedule the comparison of pairs of blocks based on a rank-
ing of edge weights. As explained in Section 9.3, we propose five different weighting
schemes that can be used to calculate the weights of pairs of blocks, and four schedul-
ing methods to order pairs of blocks for comparisons.
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As discussed in Section 9.5 we evaluated our approach with large databases
which indicated our approach is scalable with both the size and the number of
databases. Our experimental results showed that the proposed approach can sig-
nificantly reduce the number of record pair comparisons required which improves
the efficiency of the overall linkage.
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Chapter 10

Comparative Evaluation of
Proposed Techniques

As we have described in Chapter 1, multidatabase privacy-preserving record linkage
(MD-PPRL) inherits several challenges. In Chapter 4 we have introduced a blocking
framework for MD-PPRL to address the challenges related to blocking. We have pro-
posed several novel techniques that can be incorporated with our proposed blocking
framework in Chapters 5 to 9. In this chapter, we comparatively evaluate our pro-
posed blocking approaches with several state-of-the-art techniques that can be used
for blocking in a MD-PPRL context. We first introduce the state-of-the-art solutions
used in this comparative evaluation and their parameter settings in Section 10.1.
Next, we present the empirical evaluation results and discuss our findings in Sec-
tion 10.2. Finally, we summarise our evaluation in Section 10.3.

10.1 Introduction

In MD-PPRL, blocking plays a major role in the linkage process. Blocking reduces
the exponential and quadratic candidate record comparison space that occurs in the
linkage process when the number and size of the databases to be linked are increas-
ing, respectively, by removing those record tuples that are unlikely to be matching.
As we have discussed in Section 1.3, blocking in MD-PPRL can be performed with or
without a linkage unit (LU). The blocking techniques proposed in Chapters 5 (labelled
as SBT for single-bit tree based blocking) and 6 (labelled as SCC and HCC for standard
and hierarchical canopy clustering based blocking, respectively) can be used in a MD-
PPRL context without a LU, while in Chapter 7 we proposed a distributed blocking
scheme (labelled as DBS for distributed blocking scheme) that uses a LU to identify the
blocks that need to be compared. In Chapter 8 we proposed a blocking technique
(labelled as SGB for subgroup blocking) that identifies candidate block tuples (CBTs)
for different subgroup combinations across a set of databases that need to be linked.
The meta-blocking technique (labelled as MBS for meta-blocking scheme) proposed in
Chapter 9 that schedules block pairs for comparisons can be used in MD-PPRL for
removing redundant record pair comparisons. We use the same parameter settings
described in these chapters for the empirical evaluation describe in this chapter.

199
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Table 10.1: Notation and terminology used in this chapter
CBT List of candidate block tuples
D A database
G Candidate blocking graph

CBT Candidate block tuple
d Number of databases
F List of fixed databases
G Publicly available (global) database
SG A subgroup
R A record

ACG Apriori based candidate generation algorithm described in Algorithm 10.1
BF Bloom filter
BK Blocking key
BKV Blocking key value
DBS Distributed blocking scheme described in Chapter 7
DCG Depth first based candidate generation algorithm described in Algorithm 8.2
DO Database owner
FPS Frequent pair blocking scheme technique proposed in [119]
HBH Hamming based hashing technique proposed in [56]
HCC Hierarchical canopy clustering based blocking approach described in Chapter 6
LSH Locality sensitive hashing
LU Linkage unit
MBS Meta-blocking approach described in Chapter 9
MD-PPRL Multidatabase privacy-preserving record linkage
NOR Normal block scheduling method
PHO Phonetic encoding based blocking used in [36, 71]
RAD Random block scheduling method
SBT Tree based blocking appproach described in Chapter 5
SCC Standard canopy clustering based blocking approach described in Chapter 6
SGB Subgroup blocking approach described in Chapter 8

10.1.1 Comparative Evaluation Techniques

In the following, we compare and evaluate our proposed solutions with some of the
state-of-the-art solutions with regard to efficiency (scalability), effectiveness (blocking
quality), and privacy. We prototyped all the comparison techniques in Python version
2.7.3 (as detailed in Section 4.4.3 on page 84), and all the experiments were conducted
on the datasets (see Table 4.3 on page 79) described in Section 4.4.1. We use the given
name, surname, city, and postcode attributes as blocking key (BK) attributes. Table 10.1
summarises the notations we use in this chapter. We next describe the techniques
used in this comparative evaluation in more details.

• Block Generation

For comparative evaluation we use a traditional and two state-of-the-art block-
ing solutions [56, 71, 119]. The traditional approach we use for comparative
evaluation is a standard blocking approach [36, 71] using phonetic encod-
ing [35, 110] (labelled as PHO). In this approach we use Soundex [35] as en-
coding function for the given name, surname and city attributes, while for the
postcode attribute the first three digits of a postcode value are used as BKs.
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We assume a LU is employed in this approach to conduct blocking. All the
database owners (DOs) send the phonetic encodings of the attribute values
of each record of their databases to the LU along with the record identifiers.
Then, the LU groups the records from different databases together based on
the encoded values of one or a combination of record attributes. For example,
if the given name and surname attributes are used as BKs, each generated block
will contain only records that have the same concatenated Soundex encodings
of given name and surname attribute values.

To illustrate how PHO works, let us assume three given records R1, R2, and R3

with respective values John Smith, Jone Smith, and Peter Smith for given name
and surname attributes. If we use the concatenated Soundex encodings of given
name and surname attribute values as blocking key values (BKVs), the records
R1 and R2 will be assigned to the same block because both R1 and R2 would
result in J500S530 as their corresponding BKVs. However, the record R3 will be
assigned to a different block as its BKV would result in P360S530. Such pho-
netic encoding based blocking technique is illustrated in Figure 8.2 on page 159.

As a second baseline method, we use an adapted version of a state-of-the-
art Hamming distance based locality sensitive hashing (LSH) private blocking
technique with a LU proposed by Durham [56] (labelled as HBH for Hamming
based hashing). As reviewed in Section 3.1 on page 41, in this approach all DOs
first encode the records in their databases into Bloom filters (BFs) which are
then sent to a LU to group into blocks using LSH.

As the third comparative technique, we use the state-of-the-art frequent pair
blocking scheme recently proposed by Karapiperis and Verykios [119] (labelled
as FPS for frequent pair scheme). As detailed in Section 3.1, this approach also
uses a Hamming distance based LSH technique to assign records into inde-
pendent blocking groups. We use the parameter settings for the HBH and FPS
methods in similar ranges as used by the authors of these private blocking tech-
niques. Please note that apart from these three blocking techniques the recent
multi-party PPRL blocking approach proposed by Han et al. [91] can only be
applied to numerical attributes, therefore, can not be compared directly with
our blocking approaches.

In the HBH method the parameters set as, the number of iterations (µ) = 40,
the number of hash functions (nh) = 30, the length of BFs (lb f ) = 1,000 bits, and
the number of bits to be sampled from the BFs at each iteration (σ) = 45. In
the FPS technique, nh and lb f are set to 30 and 1,000 bits, respectively, and the
Hamming distance (ϑ), the confidence parameter (δ), and number of blocking
groups (LC) are set to 100 bits, 0.01, and 20, respectively.

• Subgroup Blocking

For the comparative evaluation of our subgroup blocking approach (in Chap-
ter 8), we propose an Apriori based candidate block tuple generation algorithm
(labelled as ACG) because to best of our knowledge there are no other subgroup
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Algorithm 10.1: Apriori based Candidate Generation
Input : G - Undirected candidate graph (as described in Section 8.3)

wt - Weight threshold
gα - Minimum subgroup size
gβ - Maximum subgroup size
d - Number of databases
F - Set of fixed databases

Output: CBT - Inverted index of subgroup candidate block tuples

1 CBT← {}, sg← 2, SG← {} // Initialise variables

2 if sg < gα then // Check if minimum subgroup size is larger than sg
3 SG.add(genAdditionalgroupComb(sg, gα, d, F)) // Generate auxiliary combinations

4 end
5 SG.add(genSubgroupComb(gα, gβ, d, F)) // Generate required group combinations

6 foreach SG ∈ SG[2] do // Process every subgroup combination of size 2

7 C2.add(getEdges(G, SG, wt)) // Process the edges in G
8 end
9 CBT[2]← C2 // Add the generated cliques of size 2 to CBT

10 sg← 3 // Increment sg to 3

11 while sg ≤ gβ and Csg−1 6= ∅ do // Iterate over every subgroup combination

12 Csg ← genCliques(G, SG[sg], wt, Csg−1) // Compute cliques of size sg

13 if gα ≤ sg then
14 CBT[sg]← Csg // Add the generated cliques of size sg to CBT

15 end
16 sg← sg + 1 // Increment subgroup size by 1

17 end
18 return G = (V, E)

blocking techniques available for MD-PPRL. As outlined in Algorithm 10.1, we
adapted Algorithm 8.2 on page 164 to incorporate the Apriori technique [1, 102]
to generate CBTs. This approach uses a breadth first search over the candidate
graph G (see Definition 8.1 on page 162) in the CBT generation. In this ap-
proach the CBT generation starts with a minimum subgroup size of 2 and iter-
atively extends the CBT generation for larger subgroup sizes by incrementing
the subgroup size by 1 until it reaches the maximum subgroup size gβ.

In situations where a user specifies 2 < gα our approach still requires to gen-
erate sets of subgroups combinations of sizes 2 to gα − 1 (line 3). For example
to generate CBTs for the subgroup combination (DA, DB, DC), Algorithm 10.1
needs to generate CBTs for either (DA, DB), (DA, DC), or (DB, DC). These
additional subgroups are required due to the Apriori based clique (CBT) gen-
eration process.

Algorithm 10.1 follows an iterative approach to identify cliques of size sg from
the cliques of size sg− 1 that are identified in the previous iteration (starting
from pairs, i.e. sg = 2). The function genAdditionalgroupComb() computes the
additional subgroup combinations required based on gα, d, and F (line 3).
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Similar to Algorithm 8.2, the function getEdges() (in lines 6 to 8) of Algo-
rithm 10.1 identifies the trivial cliques for each subgroup SG of size sg = 2
which are the set of edges e ∈ E of G that satisfy the weight threshold wt. In
lines 9, these computed edges are added to the inverted index CBT using each
corresponding subgroup combination as a key. In lines 11 to 13, the function
genCliques() uses a breadth-first search over G to identify the cliques of size sg.
These are then added to the set Csg.

In the next iteration (sg + 1), these identified cliques Csg are used to generate
the set of CBTs for the next sets of subgroups by increasing the subgroup size
sg by 1 (line 16). This clique generation process in Algorithm 10.1 continues
until sg reaches gβ and Csg 6= ∅ (line 11). All the generated CBTs are added
to an inverted index CBT appropriately for under each subgroup combination
(line 14). We use the same parameter setting described in Section 8.5 for the
evaluation of Algorithm 10.1.

• Meta-blocking

For the comparative evaluation purposes of our meta-blocking approach we use
two naïve block scheduling approaches, normal record set comparison (labelled
as NOR) and random record set comparison (labelled as RAD). The first is the
standard approach of comparing each record in a block with every record in all
other blocks of a CBT (as we have described in Section 9.5), while the second
performs record pair comparisons between randomly ordered block pairs of a
given collection of CBTs. Note that there are no other block scheduling and
meta-blocking techniques for MD-PPRL which can be directly compared with
our meta-blocking approach.

10.2 Experimental Evaluation

In this section we present the empirical evaluation results and discuss our findings
with regard to the three main properties of scalability, blocking quality, and privacy.

10.2.1 Block Generation

Figure 10.1 shows the scalability of the seven private blocking approaches in terms
of runtime. We measure the average runtime required per database and the total
runtime required for different number of databases. As can be seen in this figure,
PHO and HLSH require less runtime than the other blocking approaches. SBT, SCC,
and HCC require more runtime because they require frequent communication be-
tween DOs while DBS runs faster due its independent nature in the block generation
process. However, as can be seen all of our blocking approaches are scalable to large
and increasing number of databases.
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Figure 10.1: Average and total runtime results for the seven blocking approaches,
where plots (a) and (b) are for the NC-CLN (clean), (c) and (d) for the NC-DRT
(dirty), and (e) and (f) for the UK datasets. (a), (c), and (e) show the average runtime
(left column) for block generation with different sizes of databases. (b), (d), and (f)
show the total runtime (right column) requires with different number of databases
for different blocking approaches. K and M represent 1,000 and 1,000,000 records,

respectively. Note that plots have different y-axis scales.
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Figure 10.2: Average pair completeness (PC) and reduction ratio (RR) with different
blocking techniques for the NC-SYN datasets with (a) 0%, (b) 20%, and (c) 40%
corruption levels and with (d) the NC-DRT dataset. Note that plots have different

y-axis scales.

The efficiency and effectiveness of blocking, measured by reduction ratio (RR)
and average pairs completeness (PC), respectively, of the seven blocking approaches
are compared on the NC-SYN and NC-DRT datasets in Figure 10.2. As can be seen in
Figure 10.2 (a), all these blocking approaches achieve higher PC and RR rate for 0%
corrupted NC-SYN dataset. Figures 10.2 (b), (c), and (d) show the trade-off between
the scalability (efficiency) and quality (effectiveness) of blocking in the presence of
dirty data. As can be seen in these figures, the DBS approach achieves the highest
PC at the cost of some reduction in RR, while the other approaches comparatively
have lower PC with RR being almost 1.0.

Finally, we evaluated the privacy protection of these blocking approaches using
the evaluation measures presented in Section 4.4 on page 81 and conducted the crypt-
analysis attack described in Section 4.5 on the NC-ORG dataset. We used the original
dataset (D) as the global dataset (G), i.e. G ≡ D, for privacy evaluation under the
worst case assumption and minimum block size (bmin) is set to 1,000.

Figure 10.3 (a) illustrates the comparison of the size of blocks generated by the
seven private blocking approaches shown in a box-and-whisker plot. As can be seen
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Figure 10.3: (a) Block sizes, (b) probability of suspicion (PS), (c) disclosure risk (DR)
values, and (d) re-identification percentages of cryptanalysis attack with the NC-
ORG dataset. Note that plots have different y-axis scales and M represents 1,000,000

records.

in this figure, the PHO, HBH, and FPS approaches generate that blocks contain only 1
record compared to our proposed blocking approaches SBT, SCC, HCC, and DBS. All
these blocks might reveal private information and thus these approaches should not
be used for blocking in MD-PPRL. We noted that HBH and FPS generate overlapping
blocks of smaller sizes and the variance between block sizes is comparatively very
high. Our proposed blocking approaches have lower variances between the block
sizes which makes a frequency attack using block sizes more difficult, where the
DBS approach shows the lowest variance compares to the other approaches. This
indicates that independent blocking provides the DOs more control over their block
generation process that improves the privacy against frequency attacks.

It is important to note that in SBT, SCC and HCC only the DOs are participating
in the block generation process. In DBS the LU only receives a set of block represen-
tatives of the generated blocks by each DO with regard to their databases. Hence, in
DBS a frequency attack by an external attacker is not possible. This is because the
attacker does not know the parameter values that can be used to mount a frequency
attack using G and therefore learning the BKs or their values in D is difficult [212].
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Figure 10.3 (b) shows the distributions of probability of suspicion (PS) values in
the NC-ORG dataset blocked by the seven private blocking approaches. The records
in the datasets are sorted according to their PS values. As can be seen in this figure,
DBS generates the lowest probability of suspicion curve compared to other blocking
approaches. However, the maximum PS of PHO, HBH, and FPS goes higher (PS =
1) because many of their generated blocks contains only one record.

Figure 10.3 (c) shows a comparison of disclosure risk (DR) measures (DRMax,
DRMean, DRMed, and DRMkt calculated from the probability of suspicion values PS,
as shown in Figure 10.3 (b) and explained in Section 4.4 (on page 81) of the seven
private blocking approaches on the NC-ORG dataset. As shown in this figure our
proposed blocking approaches have much lower values for DR measures compared
to PHO, HBH, and FPS. We noted that DRMax of PHO, HBH, and FPS is 1.0 even
when we use the all four attributes (the given name, surname, city, and postcode) as
BKs. We also noted that DRMkt of PHO, HBH, and FPS reaches 0.122, 0.034, and
0.051, respectively, as more blocks are generated by these approaches contain only
one record, while our blocking approaches has DRMkt as 0.

In the cryptanalysis attack, we assumed the LU would act as an attacker and tries
to re-identify an attribute value encoded in the Bloom filters (BFs). We conducted the
attack upon encoded BFs of the six blocking approaches (except for PHO as it uses
Soundex as the encoding mechanism) that only contain values of given name under
the worst case assumption. This is because the re-identification of attribute values
becomes harder as BFs are encoded with more attribute values [39]. We conducted
the attack for 10, 50, and 100 most frequent attribute values.

As shown in Figure 10.3 (d), an attacker (the LU) can correctly re-identify all
values of given name when the number of frequent values is 10 while it can still re-
identify 6% of 100 frequent names of the blocks generated by HBH and FPS. This is
because each DO sends its encoded database (BFs) to the LU to generate blocks. As
shown in this figure, most of the re-identification guesses of our blocking approaches
resulted in wrong or no guesses. Also, such an attack could not really happen in our
blocking approaches as the DOs do not reveal their encoded BFs to any other party.
The re-identification results shown in this figure indicate that conducting such a
cryptanalysis attack to correctly re-identify attribute values at the block level of our
blocking approaches is impossible.

Overall this privacy evaluation shows that our blocking approaches provide better
privacy compared to these other baseline blocking approaches, making our blocking
approaches more practical and secure to be used in real MD-PPRL applications.

10.2.2 Subgroup Blocking

To evaluate our subgroup blocking (SGB) approach we use the sets of blocks gener-
ated for each DO using DBS. We follow the same set of steps described in Section 7.3
on page 136 to generate Min-Hash signatures as block representatives.

Figure 10.4 illustrates the scalability of SGB in terms of runtime for different
subgroup blocking scenarios described in Section 8.3 on page 159. We measure the
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Figure 10.4: Average runtime results for subgroup blocking approach (SGB), where
plots (a), (c), and (e) show the results for the NC-CLN datasets, and plots (b), (d),
and (f) show the results for the NC-DRT datasets. (a) and (b) show the average
runtime for candidate grouping (step 1) and candidate graph construction (step 2) of
SGB with different number of candidate groups (CGs). (c) and (d) show the average
runtime with different weight thresholds (wt) for different subgroup sizes, and (e)
and (f) the average runtime required for the depth-first candidate generation (DCG)
algorithm with different number of databases fixed (|F|) in subgroup combinations.

Note that plots have different y-axis scales.
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Figure 10.5: (a) Reduction ratio (RR) and (b) pairs completeness (PC) for different
weight thresholds (wt) for different number of subgroup combinations, and (c) com-
bined F-measure (FM) with different number of candidate groups (CGs) with differ-

ent number of databases (d) for the NC-DRT datasets.

runtime required for each step in SGB for different d and different minimum (gα)
and maximum (gβ) subgroup sizes for NC-CLN and NC-DRT datasets.

As shown in Figure 10.4 (a) and (b), the average runtime required for steps 1 and
2 of SGB increases linearly with the number of databases d. We observed that the
average runtime also increases linearly with the number of candidate groups (|CG|),
which suggests that more block pairs are being generated across these databases
which increases the number of edges in the candidate graph G.

As expected the average runtime decreases with an increase in the weight thresh-
old (wt) as shown in Figures 10.4 (c) and (d). As the weight constraint wt increases,
edges with lower similarity between their corresponding blocks are not considered
in the CBT generation. However, the runtime increases linearly with the size of
subgroups as more combinations are considered in the CBT generation process. Fig-
ures 10.4 (e) and (f) show the average runtime required for generating CBTs for
different subgroup sizes with a certain set of databases (F) fixed. As expected the
runtime decreases when more databases are included in F since the number of group
combinations considered in each subgroup size decreases with the size of F.
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Figure 10.6: Average runtime for candidate block tuple (CBT) generation in our sub-
group blocking approach for different subgroup combinations with (a) the NC-DRT
and (b) the UK datasets, (c) average runtime for CBT generation, and (d) pairs com-
pleteness (PC) with the Apriori (ACG) and depth-first (DCG) candidate generation

algorithms for the NC-SYN datasets.

Figure 10.5 (a) illustrates the scalability of our subgroup blocking approach in
terms of reduction ratio (RR). As can be seen in this figure, RR increases with wt

which suggests that less CBTs are generated for a given subgroup size. As can be
seen in Figure 10.5 (b), an increase in wt results in pairs completeness (PC) to decrease
as true matching record pair comparisons are missed due to the decreased number
of block tuple comparisons.

Figure 10.5 (c) illustrates the blocking quality of SBG in terms of combined F-
measure (FM) for different candidate groups (CG) with different number of databases
(d). As shown in this figure, FM increases with |CG| which suggests that CBT gener-
ation becomes more fine grained as G becomes more dense. However, an increment
of |CG| could potentially increase the runtime of SGB as shown in Figure 10.4.

In step 3 of our SGB approach, the generation of CBTs can be conducted by using
the Apriori based candidate generation (ACG) algorithm (Algorithm 10.1 discussed
in Section 10.1). In terms of time and space complexity ACG would require a com-
plexity of O(ngα) [102] if each of the gα databases generates n blocks. In line 12
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of Algorithm 10.1, the generation of cliques of size sg depends on the number of
(sg− 1) size cliques (Csg−1) generated previously. Hence, the complexity of ACG is
O(E + ∑

gβ

gα=3 (
gα
gβ
) · |Cgα−1|2), where |E| is the number of edges in G. This becomes

computationally infeasible when n, gα, and gβ are increasing.
As shown in Figure 10.6 we compare the runtime required for the CBT generation

for different subgroup sizes with the ACG and DCG based candidate generation al-
gorithms for datasets NC-DRT, UK, and NC-SYN. As can be seen in this figure, DCG
requires less runtime compared to ACG, which validates that DCG is more efficient
in CBT generation. We also measured the memory required for the CBT generation
where in average our DCG algorithm only uses below 10% of the total memory re-
quired by ACG. We were unable to conduct experiments for ACG with subgroup
size larger than 5 due to its memory requirements. Such memory consumption oc-
curs due to the Apriori nature in CBT generation because it requires the previously
generated list of block tuples for the subsequent candidate generation iterations.

As shown in Figure 10.6 (d), we also noted that both ACG and DCG achieve the
same PC values which suggests that both ACG and DCG generate the same set of
CBTs for a given RR value. As can be seen in Figure 10.6, AGC is still competitive
with our proposed iterative deepening depth-first based technique if the number of
blocks from each database remains small. However, with the increase of subgroup
sizes DCG outperform ACG by generating CBTs more efficiently which suggests that
in practice DCG is more appropriate in MD-PPRL applications than ACG.

10.2.3 Meta-Blocking

To evaluate our meta-blocking (MBS) approach with baseline techniques we use the
lists of CBTs of subgroup combinations 2, 4, 8, and 16 for the NC-CLN and NC-DRT
datasets, and 3, 4, 5, and 6 for the UK dataset generated with a weight threshold wt

set to 0.5. We name the four different block comparison scheduling methods as SCS
for static centralised scheduling, DCS for dynamic centralised scheduling, SDS for static
distributed scheduling, and DDS for dynamic distributed scheduling.

Figure 10.7 illustrates the scalability of MBS in terms of the number of record
comparisons required for different block scheduling methods with different number
of databases and weighting schemes. As can be seen from Figures 10.7 (a), (c), and (e)
the total number of record comparisons required by each scheduling method scales
linearly with the number of databases. However, the number of record comparisons
increases with the number of databases as more block pairs need to be processed.

Figures 10.7 (b), (d), and (f) illustrate the average number of record pair com-
parisons performed per database with different weighting schemes and scheduling
methods (see Section 9.3 on page 179). Similar as in Section 9.5, DDS leads to a higher
reduction in record pair comparisons compared to the other scheduling methods as
DDS compares block pairs completely distributed leading to an improvement in the
overall efficiency of MBS. Similarly, the comparison (wcomp) based weighting scheme
performs better as it is capable of removing more record pair comparisons compared
to the cardinality (wcard, matching (wmatch), and similarity (wsim) based weighting
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Figure 10.7: Total and average number of record comparisons with our meta-blocking
approach with different scheduling techniques. Results show (a) and (b) for the NC-
CLN, (c) and (d) for the NC-DRT, and (e) and (f) for the UK datasets. Note that plots

have different y-axis scales.

schemes. This is because wcomp selects the block pairs with the smallest number of
record pair comparisons first and therefore removes more non matching record pairs
at an early stage of the comparison process. These figures also show that a better
reduction can be achieved when weighting schemes are combined.
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Figure 10.8: (a) Reduction ratio (RR), (b) pairs completeness (PC), and (c) combine
F-measure (FM) for different number of subgroup combinations for the NC-DRT

datasets.

Figure 10.8 illustrates the effectiveness of our MBS approach in terms of RR, PC,
and FM with the NC-DRT dataset. As can be seen in this figure, MBS increases the
RR considerably compared to the NOR and RAD baselines. Figure 10.8 (a) shows
our scheduling techniques reduce the number of record pair comparisons included
in the sets of CBTs, however, they do not reduce the number of true matches in the
compared pairs of blocks as shown in Figure 10.8 (b). Figure 10.8 (c) shows how the
use of scheduling can improve the effectiveness of MD-PPRL even for large numbers
of databases compared to NOR and RAD which lead to lower FM values due to their
large number of record pair comparisons. Overall, based on the discussed results, we
conclude that the scheduling methods perform more effectively than the NOR and
RAD approaches without sacrificing the effectiveness of the linkage process.

10.3 Summary

In this chapter, we have conducted a comprehensive evaluation and comparison of
our proposed MD-PPRL approaches with several existing state-of-the-art techniques
on large real-world databases using the experimental setup described in Chapter 4.
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The experimental results on these databases showed that our proposed blocking ap-
proaches achieve better blocking quality and scalability while providing strong pri-
vacy against frequency and cryptanalysis attacks compared to several existing solu-
tions. Our subgroup blocking approach is scalable with the size of subgroups and it
outperforms a baseline approach in terms of subgroup candidate blocks generation,
while our meta-blocking approach improves the efficiency of the overall MD-PPRL
process without any loss in effectiveness.

Further work on large scale empirical evaluation using other real datasets or re-
alistic synthetic datasets with different characteristics is required to investigate if our
proposed techniques are suitable for different datasets. Such datasets could include
records with longer attribute values or attributes other than names and addresses.
Investigating efficient and interactive cryptanalysis attacks for privacy evaluation
would be another direction for future research. As we discuss in Chapter 11, mea-
suring the practicality, such as ease of implementation, of the proposed techniques is
another direction for future work.



Chapter 11

Conclusion and Future Directions

This thesis is the first to present comprehensive research in the area of blocking of
multidatabase privacy-preserving record linkage (MD-PPRL). In the previous chap-
ters, we have described the MD-PPRL process and challenges related to blocking
in MD-PPRL, and proposed several solutions that address these challenges. In this
chapter, we first outline the research problem and challenges we have identified in
the area of MD-PPRL with regards to blocking in Sections 11.1 and 11.2, respectively.
Then, we summarise our contributions in Section 11.3, and outline possible future
directions of research in Section 11.4. Finally, we conclude this thesis in Section 11.5
with a summary.

11.1 Outline of the Research Problem

As we have described in Chapter 1, the linkage of multiple databases potentially re-
quires each record from one database to be compared with all records in the other
databases in order to determine the set of records that correspond to the same en-
tity. Scalability, linkage quality, and privacy are the three main challenges that are
associated with any privacy-preserving record linkage (PPRL) application [176, 212].

In record linkage (RL) and PPRL, blocking is generally used to scale the linkage
of databases that contain large numbers of records [36, 165]. Blocking groups similar
records into blocks and ensures dissimilar records are assigned into different blocks.
By doing so, blocking reduces the record comparison space to only those compar-
isons that are likely to be matches (correspond to the same entity) while removing as
many non-matching record comparisons as possible.

As we have reviewed in Chapter 3, many blocking techniques have been pro-
posed for linking of two databases [36, 165]. However, most of these techniques are
not suitable in PPRL for multiple databases. The naive pair-wise comparison of mul-
tiple databases grows quadratically as the databases to be matched get larger, and
exponentially as the number of databases to be linked increases. Hence, novel block-
ing techniques that can scale the MD-PPRL process to large databases are required.
These techniques must not compromise the privacy and confidentiality of the records
in these databases. We next briefly outline the challenges that are related to blocking
in a MD-PPRL context.

215
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11.2 Challenges of blocking in a MD-PPRL context

As we described in Section 1.2, apart from the three key challenges above, blocking
in MD-PPRL is challenged by several other reasons.

1. Number of databases

In MD-PPRL, when the number of databases is increasing the naive record com-
parison space grows exponentially. This makes multidatabase linkage applica-
tions currently not scalable with regard to an increasing number of databases.

2. Database size

MD-PPRL generally involves linking databases with large number of records.
The techniques used in MD-PPRL should be capable of generating blocks where
their average sizes remain small to achieve a highly efficient blocking process.

3. Data quality

In both RL and PPRL, the quality of data could decrease rapidly with the in-
creasing number of databases to be linked, because of the different character-
istics (heterogeneity), variations, and erroneous (including missing) values in
records. This leads to the effectiveness of the overall linkage process to be re-
duced. Therefore, the blocking techniques used in MD-PPRL should be capable
of generating blocks effectively even in the presence of noisy data in order to
provide high blocking quality.

4. Collusion between participating parties

A linkage conducted across databases held by different organisations often
raises privacy and confidentiality concerns. In a MD-PPRL application, the col-
lusion risk can increase with the number of participating parties. This requires
the blocking techniques deployed in MD-PPRL to be resistant to collusion such
that the sensitive information of a non-colluding database owner is protected.

5. Subgroups structures

The subsets of matching records across subgroups of databases are valuable
for conducting analytical studies about sub-populations within a large popula-
tion [41, 131]. In order to identify such subsets, a blocking technique used in a
MD-PPRL application should be capable of generating blocks that need to be
compared across subgroups of databases.

6. Redundant record comparisons

As we have described in Chapter 1 and experimentally evaluated in Chapter 9,
the block comparisons in MD-PPRL can contain redundant (repetitive and su-
perfluous) record pair comparisons that occur due to repetitive block compar-
isons, as well as comparisons of records with record pairs that have previously
been classified as non-matches [164]. Therefore, novel techniques are required
to remove these redundant record comparisons efficiently without affecting the
effectiveness of the overall linkage.
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11.3 Summary of Our Contributions

This section provides a list of the main contributions presented in this thesis:

1. Scalable blocking techniques for MD-PPRL

Based on the identified need for novel efficient blocking techniques that are
suitable for a MD-PPRL application we proposed two different techniques that
are scalable to an increasing number of databases and their sizes. These pro-
posed approaches are specifically suitable for linkage applications where a link-
age unit (LU) is not available.

• A tree based blocking technique
In Chapter 5 we proposed a tree based blocking approach that uses a
single-bit tree data structure for assigning records into blocks [170]. We
used Bloom filter (BF) encoding as the privacy technique to encode the
records in the databases to be blocked. The aim of this approach is to
allow database owners to block their databases collaboratively by only
sharing a set of bit positions used for splitting.

• A clustering based blocking technique
In Chapter 6 we proposed a clustering based blocking technique for MD-
PPRL [171], with two variations of a clustering technique that can be used
in this approach. The first is based on standard canopy clustering while
the second is a novel hierarchical canopy clustering technique. Similar
to our tree based blocking approach all the records are encoded into BFs
before they are arranged into blocks. We also proposed a novel multi-bit
splitting approach to increase the efficiency of blocking.

According to the experiments conducted with different databases with a large
number of records, these proposed approaches are scalable to an increasing
number of databases and their sizes. The empirical evaluation showed that
the blocks generated by these approaches are secure against the cryptanalysis
attack described in Section 4.5, while providing higher reduction ratio and pairs
completeness for the linkage of an increasing number of databases even with
dirty data.

2. A distributed blocking approach for MD-PPRL

In Chapter 7 we proposed a distributed blocking technique for MD-PPRL [173].
This approach can be utilised in a multidatabase linkage model with a LU. The
aim of this approach is to allow database owners (DO) to block their databases
independently without any communication. Such blocking provides the DOs
with flexibility and control over their blocking process. The LU identifies the
block tuples that need to be compared based on block representatives sent to it
by the DOs. While this approach allows DOs to use any existing technique for
blocking, we proposed a hierarchical clustering approach that uses a splitting
and merging technique for generating blocks.
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3. A subgroup blocking approach for MD-PPRL

In Chapter 8 we proposed a novel subgroup blocking technique for MD-PPRL.
This approach uses a LU to generate the candidate block tuples that need to
be compared across different subgroups of databases. Our approach allows the
LU to specify the minimum and maximum number of databases that can be
included in subgroup combinations. The LU first generates a weighted graph
structure based on sets of block description pairs it received by the DOs. The
LU then uses this graph to identify candidate block tuples for subgroups of
different sizes. The proposed approach uses a depth-first based iterative deep-
ening algorithm for generating candidate block tuples for different subgroups
combinations. The evaluation with several large real datasets indicated that our
approach is scalable with the size of subgroups and number of databases and
improves efficiency of candidate blocks generation with no loss in effectiveness.

4. A meta-blocking approach to reduce redundant record comparisons

In Chapter 9 we proposed an efficient non-parametric meta-blocking technique
for MD-PPRL that can be used to remove redundant record comparisons [172].
The aim of the proposed approach is to schedule block pair comparisons such
that repeated and superfluous record comparisons are removed from the record
comparison space. We proposed four variations of scheduling techniques that
are suitable for both multidatabase linkage models described in Section 1.3. The
proposed approach uses a weighted graph to identify the ordering of block
pairs to be compared. We also proposed five different methods to calculate
weights for the edges of this graph. An empirical evaluation study conducted
on real-world datasets has shown that our approach can improve the overall
efficiency of the linkage by scheduling the block pair comparisons effectively
without sacrificing the linkage quality.

5. A blocking framework for MD-PPRL

The contributions presented so far have aimed to address a specific aspect
related to blocking in a MD-PPRL application. In Chapter 4 we proposed
a framework that incorporates all these techniques. This framework enables
PPRL practitioners to work with different techniques and to combine them into
a single workflow. This allows them to run these techniques using different
parameter settings and investigate the applicability of each technique under
different real-world linkage situations.

As we have described in Chapter 4, the proposed blocking framework follows
a layered architecture where each layer is responsible for a specific aspect of
blocking in a MD-PPRL context. The goal of this framework is to provide a
flexible platform for combining different blocking techniques for the linkage
of multiple large databases while guaranteeing either the efficiency or effec-
tiveness (or both) of the linkage is always maximised at each layer without
compromising privacy.
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6. A collusion resistant secure multi-party computation protocol

The blocking approaches proposed in Chapters 5 and 6 use a secure summation
protocol to compute a global summed value securely without compromising
the privacy of data held by each database owner. However, the basic secure
summation protocol [45] is susceptible to collusion attacks which can compro-
mise the privacy of these blocking techniques. To address this issue, in Chap-
ter 4 we investigated the applicability of several existing secure summation
protocols under different collusion scenarios. We consider possible collusions
that can occur in both linkage models discussed in Section 1.3. We proposed a
novel secure summation protocol in Section 4.3 (on page 74) that provides im-
proved privacy compared to the existing secure summation protocols. The use
of such a protocol in our blocking techniques makes them more secure against
collusion attacks.

7. A comprehensive evaluation for the proposed techniques

In Chapter 10 we conducted a comprehensive experimental evaluation of our
proposed techniques in terms of scalability, blocking quality and privacy us-
ing multiple large real-world and synthetic datasets. The aim of our empirical
evaluation was to examine if the proposed approaches are suitable for use in
MD-PPRL under different linkage scenarios. We compared our proposed ap-
proaches with several state-of-the-art blocking techniques [36, 56, 119]. This
extensive experimental study has led to a better understanding of the charac-
teristics of different techniques and their applicability in real-world scenarios.

11.4 Future Directions

The research presented in this thesis opens various questions that could be explored
in the future. These research questions include are:

1. Parallelisation of blocking in MD-PPRL

Parallelising computations among different computational resources can be
used to improve the scalability of MD-PPRL. All the blocking techniques pre-
sented in this thesis can be parallelised using distributed computing frame-
works such as MapReduce [51]. Several initial works on parallelism in record
linkage and PPRL have been proposed [64, 86, 116, 126], however, further in-
vestigation is required for multidatabase linkage. Therefore, investigating how
parallelism can improve the scalability of our proposed algorithms without
compromising privacy is one avenue for future research that could explore fur-
ther.

2. Private blocking for other adversarial models

One limitation of all our proposed blocking approaches is the assumption of
the honest but curious (HBC) adversarial model. Though the HBC model has
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been widely assumed in PPRL, this model is not sufficient in many real-world
applications. In the HBC model we assume all parties are following the steps
of our blocking approaches while trying to learn as much as possible about the
other parties’ data.

However, in real applications, dishonest parties could deviate from our block-
ing approaches by providing invalid input that could compromise the privacy
of the entire linkage protocol. In PPRL limited work has been conducted
using the malicious adversarial model that provides strong privacy guaran-
tees [137, 152]. A problem with the malicious model is that it generally requires
computationally more expensive privacy techniques. This makes it difficult to
be adopted in practice and therefore not suitable for MD-PPRL.

On the other hand, adversary models (described in Section 2.4 on page 27)
such as covert and accountable computing provide an appropriate level of pri-
vacy even when the participating parties behave dishonestly [10, 103, 105]. The
covert model guarantees that the participating parties can identify the dishon-
est behaviour of another party with high probability [10], while the accountable
computing model provides accountability for privacy compromises by a party
without excessive complexity and cost compared to the malicious model [105].
Therefore, extending the proposed blocking techniques in this thesis into these
adversary models and proving the privacy of solutions under these models will
require further research.

3. Blocking for dynamic and temporal MD-PPRL

All the blocking techniques presented in this thesis are applicable only to static
databases where their records do not change over time. However, real applica-
tions in organisations, such as banks, online stores, social networks, etc., often
generate records with timestamps. In such databases records are potentially
updated when attribute values related to entities are changing. For example
in a government department, when a person informs the department about
changes to his name, address, or phone number then all records relating to
this person need to be updated accordingly. These updated records are given
a new timestamp in the relevant databases to reflect the changes that occurred
in these records.

In general, databases are changed frequently by new records being inserted or
by updates or deletions of existing records. In such situations, the technique
used for blocking should be able to adopt to these changes by updating the gen-
erated blocks accordingly. This will ensure the records in temporal databases
are assigned to blocks not only by considering their attribute values but also
based on the temporal constraints. Initial work has recently been proposed in
record linkage for linking temporal databases [37, 97], though these techniques
are not yet mature enough to be adapted into PPRL. Therefore, developing
techniques that can be used to block temporal and dynamic databases while
preserving the privacy is an open question that requires more investigation.
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4. Blocking techniques for different data types

As we are living in a Big Data era, databases increasingly store records with
different data types such as numeric, date, time, geographic, categorical, etc.
Developing techniques to incorporate different data types in blocking is ben-
eficial in order to improve the quality of blocking [174, 176]. Several tech-
niques have been proposed in PPRL that can perform linkage upon different
data types [90, 211, 216], however, only a few have been proposed for a multi-
database context [91, 119]. The techniques presented in this thesis are capable
of blocking records with textual (string) attribute values, however, they cannot
be used with other data types. Therefore, further investigation is required to
develop techniques (for a multidatabase linkage context) that can block differ-
ent data types.

5. Blocking in the presence of missing values

In record linkage and PPRL, current techniques compare the attribute values
that are generally available in a pair of records to identify a pair as a match
or a non-match. In various domains, missing values may be present in records
for a variety of reasons, such as unknown or non-existence, not able to be
revealed due to privacy reasons, or due to data entry errors. However, in real
applications how to conduct an effective linkage in the presence of missing
data is a fundamental question that has not be answered yet. Therefore, the
blocking technique used in PPRL should be still capable of assigning records
with missing values into blocks.

In statistical analysis, a variety of methods has been developed to address the
problems of missing values [87]. In general, the removal of records with miss-
ing values in the analysis could be used as a possible solution, but potentially
limits the value of the analysis result. Another possible approach would be to
impute missing values with the most likely value using a rule or classification
based technique. Recently, Chi et al. [31] proposed a technique for linking two
databases in the presence of missing values. Their approach uses the attribute
values of the nearest neighbours of a record to impute missing values. How-
ever, an extension of such an approach to MD-PPRL requires further research
because such techniques need to scale to an increasing numbers and sizes of
databases.

6. Efficient filtering techniques for MD-PPRL

As we have discussed in Chapter 1, MD-PPRL often consists of redundant
record pair comparisons that contain unnecessary computations in the overall
linkage process. To overcome this issue, in Chapter 9 we proposed an efficient
meta-blocking technique to schedule the block pair comparisons that can re-
duce the number of repeated and superfluous record pair comparisons. How-
ever, the comparison space of MD-PPRL still contains a large number of po-
tential non-matches that requires further filtering before the classification step.
Such filtering techniques help to prune potential non-matching record pairs
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based on their properties (e.g. length differences of their attribute values). As
we have reviewed in Section 3.1 on page 41, several filtering techniques have
been proposed in PPRL for the linkage of two databases that can efficiently re-
move non-matching record pairs [195, 196]. However, to extend or adapt these
techniques into a MD-PPRL context requires further investigation.

7. Cryptanalysis methods for MD-PPRL

The proposed blocking techniques in this thesis use a generalisation in blocking
by ensuring all the generated blocks contain at least the same minimum num-
ber of records, which provides k-anonymous privacy [200]. Based on the crypt-
analysis method we described in Section 4.5, we showed that it is impossible to
re-identify individual attribute values in blocks generated by our approaches.
However, a limitation of using this cryptanalysis method is that it does not con-
sider the information shared between the participating parties when analysing
the frequency distributions of the attribute values. Hence, the development
of cryptanalysis method that can incorporate the information communicated
between participating parties is another future direction in MD-PPRL.

8. An evaluation framework for MD-PPRL

This thesis mainly focused on developing a blocking framework for MD-PPRL.
As we have described in Chapter 4, our framework allows PPRL practition-
ers to combine different techniques into a workflow that can block multiple
databases efficiently and effectively. However, extending our blocking frame-
work into an overall MD-PPRL framework (a practical linkage toolbox) that
also includes techniques for private comparison and classification is another
area of future work that needs further research. Such a framework should be
able to incorporate different techniques to perform both blocking and classifi-
cation in MD-PPRL while also providing functions for the main building blocks
of PPRL, the required communication protocols, as well as user and key man-
agement functionalities.

Nevertheless, such evaluation framework allows data linkage researches, prac-
titioners, and novice users to work with different linkage techniques, approaches,
and protocols to create highly scalable MD-PPRL solutions that can be eas-
ily tailored to the particular settings and requirements of a given application.
This also enables users to understand and differentiate the capabilities (advan-
tages and disadvantages) of existing linkage techniques under different linkage
contexts. Such practical understanding will assist linkage users to use more
state-of-the-art techniques on their linkage applications rather depend on tra-
ditional techniques and provided with flexibility to select different combina-
tions of techniques suitable for their linkage scenario to maximise scalability,
blocking quality, and privacy. Furthermore, such framework needs to be kept
freely accessible for any user who is interested in doing record linkage. This
would help the linkage techniques that are utilised in this framework to be used
widely.
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Furthermore, a common standard set of measures to evaluate scalability, link-
age quality, and privacy is also required because PPRL techniques developed
by various research groups around the world use a variety of metrics in their
evaluations [92]. Having such a standard set of measures will enable PPRL
practitioners to conduct comparative evaluations more appropriately which ul-
timately enables them to select the most suitable techniques for their require-
ments. Nevertheless, to the best of our knowledge, no PPRL literature has
considered the practical aspects, such as ease of implementation, complexity of
the protocol, requirement of external software, and the dependability of com-
putation platforms, etc., in their evaluations. However, such measures help
novice users to understand the practicality of PPRL techniques before these
techniques can be deployed in their linkage applications.

Apart from these future research directions, providing a way to calculate optimal
parameter settings for our blocking approaches requires further research. Also, ex-
tending our blocking approaches to use other encoding techniques (not only Bloom
filters) is another area of future work that needs further investigation.

11.5 Conclusion

This thesis is the first to present comprehensive research in the area of multidatabase
privacy-preserving record linkage (MD-PPRL). First, based on an extensive review
of existing PPRL techniques we have identified several research questions related to
blocking in MD-PPRL. To address these identified gaps, we have proposed a scal-
able framework for blocking in MD-PPRL that can be used to combine different
techniques to create an efficient blocking workflow. We proposed several MD-PPRL
blocking techniques that are applicable to both multidatabase linkage models that
are performed with or without a linkage unit. We also proposed a scalable subgroup
blocking technique for MD-PPRL that efficiently generates blocks to be compared
across different subgroups. Our proposed meta-blocking techniques improve the ef-
ficiency of the overall linkage process by removing repetitive and superfluous record
comparisons without sacrificing the linkage quality. We have conducted a compre-
hensive comparative evaluation of our proposed solutions and several other state-of-
the-art blocking solutions with regard to their efficiency, effectiveness, and privacy.
The empirical results showed that our approaches are scalable to increasing number
of databases and their sizes while achieving better blocking quality in the presence
of dirty data. The results also showed that our approaches provide strong privacy
against different privacy attacks compared to existing blocking solutions which make
our blocking approach more suitable for MD-PPRL applications.

To conclude, the work presented in this thesis provides an insight into the impor-
tance of improving the scalability of MD-PPRL by using blocking. We believe that
the proposed techniques can be used practically in many real-world multidatabase
linkage scenario where blocking is required.



224 Conclusion and Future Directions



Bibliography

1. Aggarwal, C. C. and Wang, H., 2010. Managing and Mining Graph Data.
Springer. (cited on pages 162, 163, 173, and 202)

2. Agrawal, R.; Evfimievski, A.; and Srikant, R., 2003. Information sharing
across private databases. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, 86–97. ACM. (cited on pages 33 and 56)

3. Al-Lawati, A.; Lee, D.; and McDaniel, P., 2005. Blocking-aware private record
linkage. In International Workshop on Information Quality in Information Systems,
59–68. (cited on pages 2, 21, 27, 33, 35, 41, 43, and 101)

4. Allahbakhsh, M.; Ignjatovic, A.; Benatallah, B.; Beheshti, S.-M.-R.;
Bertino, E.; and Foo, N., 2013. Collusion detection in online rating systems.
In Web Technologies and Applications, 196–207. Springer Berlin Heidelberg. (cited
on page 35)

5. Alwen, J.; Katz, J.; Lindell, Y.; Persiano, G.; shelat, a.; and Visconti, I.,
2009. Collusion-free multiparty computation in the mediated model. In Ad-
vances in Cryptology, 524–540. (cited on page 35)

6. Arasu, A.; Götz, M.; and Kaushik, R., 2010. On active learning of record
matching packages. In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of data, 783–794. ACM. (cited on page 23)

7. Arora, S. and Barak, B., 2009. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 1st edn. (cited on page 82)

8. Aslam, J. A.; Pelekhov, E.; and Rus, D., 2004. The star clustering algorithm for
static and dynamic information organization. J. Graph Algorithms Appl., 8 (2004),
95–129. (cited on page 58)

9. Atallah, M.; Kerschbaum, F.; and Du, W., 2003. Secure and private sequence
comparisons. In ACM workshop on Privacy in the Electronic Society, 39–44. (cited
on pages 55 and 101)

10. Aumann, Y. and Lindell, Y., 2007. Security against covert adversaries: Efficient
protocols for realistic adversaries. In TCC. (cited on pages 27, 28, and 220)

11. Aumann, Y. and Lindell, Y., 2008. Efficient two party and multi-party com-
putation against covert adversaries. In Advances in Cryptology, Springer-Verlag
LNCS, 289–306. (cited on page 28)

225



226 BIBLIOGRAPHY

12. Bachteler, T.; Reiher, J.; and Schnell, R., 2013. Similarity filtering with
multibit trees for record linkage. Technical report, Working Paper WP-GRLC-
2013-02, German Record Linkage Center, Nuremberg. (cited on page 49)

13. Bachteler, T.; Schnell, R.; and Reiher, J., 2010. An empirical comparison of
approaches to approximate string matching in private record linkage. In Pro-
ceedings of Statistics Canada Symposium 2010. Social Statistics: The Interplay among
Censuses, Surveys and Administrative Data. (cited on page 21)

14. Baxter, R.; Christen, P.; and Churches, T., 2003. A comparison of fast block-
ing methods for record linkage. In ACM SIGKDD’03 workshop on Data Cleaning,
Record Linkage and Object Consolidation, 25–27. Washington DC. (cited on page
8)

15. Benjelloun, O.; Garcia-Molina, H.; Menestrina, D.; et al., 2009. Swoosh: a
generic approach to entity resolution. VLDB, (2009). (cited on page 184)

16. Bilenko, M. and Mooney, R. J., 2003. Adaptive duplicate detection using learn-
able string similarity measures. In Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, 39–48. ACM. (cited on
page 23)

17. Bizer, C.; Heath, T.; and Berners-Lee, T., 2009. Linked data-the story so far.
Semantic services, interoperability and web applications: emerging concepts, (2009),
205–227. (cited on page 25)

18. Bloom, B., 1970. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13, 7 (1970), 422–426. (cited on pages 28, 46, and 68)

19. Bonomi, L.; Xiong, L.; Chen, R.; and Fung, B., 2012. Frequent grams based em-
bedding for privacy preserving record linkage. In Proceedings of the 21st ACM in-
ternational conference on Information and knowledge management, 1597–1601. ACM.
(cited on pages 28, 30, and 54)

20. Bosu, A.; Liu, F.; Yao, D. D.; and Wang, G., 2017. Collusive data leak and
more: Large-scale threat analysis of inter-app communications. In Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications Security, 71–85.
(cited on page 35)

21. Bouzelat, H.; Quantin, C.; and Dusserre, L., 1996. Extraction and anonymity
protocol of medical file. In Proceedings of the AMIA Annual Fall Symposium, 323.
American Medical Informatics Association. (cited on page 30)

22. Boyd, J. H.; Ferrante, A. M.; O‘Keefe, C. M.; Bass, A. J.; Randall, S. M.; and

Semmens, J. B., 2012. Data linkage infrastructure for cross-jurisdictional health-
related research in australia. BMC health services research, 12, 1 (2012), 480. (cited
on pages 1, 4, 5, 10, 12, 20, 24, 63, 155, and 156)



BIBLIOGRAPHY 227

23. Boyd, J. H.; Randall, S. M.; and Ferrante, A. M., 2015. Application of privacy-
preserving techniques in operational record linkage centres. In Medical Data
Privacy Handbook, 267–287. Springer. (cited on pages 20, 22, 24, and 25)

24. Boyd, J. H.; Randall, S. M.; Ferrante, A. M.; Bauer, J. K.; McInneny, K.;
Brown, A. P.; Spilsbury, K.; Gillies, M.; and Semmens, J. B., 2015. Accuracy
and completeness of patient pathways–the benefits of national data linkage in
australia. BMC health services research, 15, 1 (2015), 312. (cited on pages 1, 5, 20,
and 156)

25. Broder, A., 1997. On the resemblance and containment of documents. In Com-
pression and Complexity of Sequences 1997. Proceedings, 21–29. (cited on pages 45,
137, 141, 142, 145, 163, and 180)

26. Broder, A.; Mitzenmacher, M.; and Mitzenmacher, A., 2002. Network ap-
plications of bloom filters: A survey. In Internet Mathematics. Citeseer. (cited on
pages 28 and 68)

27. Brown, A.; Borgs, C.; Randall, S.; and Schnell, R., 2017. High quality link-
age using multibit trees for privacy-preserving blocking. International Journal for
Population Data Science, 1, 1 (2017). (cited on page 49)

28. Brown, A.; Randall, S.; Ferrante, A.; Semmens, J.; and Boyd, J., 2017. Esti-
mating parameters for probabilistic linkage of privacy-preserved datasets. BMC
Medical Research Methodology, 17, 1 (2017), 95. (cited on pages 19, 25, and 29)

29. Brown, A. P.; Ferrante, A. M.; Randall, S. M.; Boyd, J. H.; and Semmens,
J. B., 2017. Ensuring privacy when integrating patient-based datasets: New
methods and developments in record linkage. Frontiers in Public Health, 5, 34
(2017). (cited on pages 4, 5, and 20)

30. Cao, J.; Rao, F.-Y.; Bertino, E.; and Kantarcioglu, M., 2015. A hybrid private
record linkage scheme: separating differentially private synopses from match-
ing records. In IEEE ICDE, 1011–1022. IEEE. (cited on pages 30 and 45)

31. Chi, Y.; Hong, J.; Jurek, A.; Liu, W.; and O‘Reilly, D., 2017. Privacy preserving
record linkage in the presence of missing values. Information Systems, (2017).
(cited on pages 47 and 221)

32. Chierichetti, F.; Dalvi, N.; and Kumar, R., 2014. Correlation clustering in
mapreduce. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 641–650. ACM. (cited on page 58)

33. Christen, P., 2006. A comparison of personal name matching: Techniques and
practical issues. In Workshop on Mining Complex Data, held at IEEE ICDM’06.
Hong Kong. (cited on page 23)



228 BIBLIOGRAPHY

34. Christen, P., 2008. Automatic record linkage using seeded nearest neighbour
and support vector machine classification. In ACM SIGKDD’08, 151–159. Las
Vegas. (cited on page 23)

35. Christen, P., 2012. Data Matching – Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer. (cited on pages 1, 2, 7, 19,
20, 23, 24, 28, 38, 42, 43, 44, 49, 53, 55, 61, 67, 79, 84, 124, 147, 156, 157, 159, 160,
163, 167, 168, 177, 180, 182, 183, and 200)

36. Christen, P., 2012. A survey of indexing techniques for scalable record linkage
and deduplication. IEEE TKDE, 24, 9 (2012), 1537–1555. (cited on pages 2, 8,
11, 15, 20, 21, 23, 36, 37, 41, 62, 82, 89, 147, 200, 215, and 219)

37. Christen, P. and Gayler, R. W., 2013. Adaptive temporal entity resolution on
dynamic databases. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, 558–569. Springer. (cited on page 220)

38. Christen, P. and Goiser, K., 2007. Quality and complexity measures for data
linkage and deduplication. In Quality Measures in Data Mining, vol. 43 of Studies
in Computational Intelligence, 127–151. Springer. (cited on pages 2, 38, and 83)

39. Christen, P.; Rainer, S.; Vatsalan, D.; and Thilina, R., 2017. Efficient crypt-
analysis of bloom filters for privacy-preserving record linkage. In PAKDD.
Soeul, South Korea. (cited on pages 27, 33, 34, 69, 85, 86, 101, and 207)

40. Christen, P. and Vatsalan, D., 2013. Flexible and extensible generation and
corruption of personal data. In ACM CIKM, 1165–1168. San Francisco. (cited
on pages 80 and 105)

41. Christen, P.; Vatsalan, D.; and Fu, Z., 2015. Advanced record linkage meth-
ods and privacy aspects for population reconstruction—a survey and case stud-
ies. In Population Reconstruction (Eds. G. Bloothooft; P. Christen; K. Man-
demakers; and M. Schraagen), 87–110. Springer. (cited on pages 5, 10, 156,
and 216)

42. Churches, T. and Christen, P., 2004. Some methods for blindfolded record
linkage. BioMed Central Medical Informatics and Decision Making, 4, 9 (2004).
(cited on pages 2, 21, and 54)

43. Churches, T.; Christen, P.; Lim, K.; and Zhu, J. X., 2002. Preparation of
name and address data for record linkage using hidden Markov models. BioMed
Central Medical Informatics and Decision Making, 2, 9 (2002). (cited on page 22)

44. Clifton, C.; Kantarcioglu, M.; Doan, A.; Schadow, G.; Vaidya, J.; Elma-
garmid, A.; and Suciu, D., 2004. Privacy-preserving data integration and shar-
ing. In Proceedings of the 9th ACM SIGMOD workshop on Research issues in data
mining and knowledge discovery, 19–26. ACM. (cited on pages 4 and 34)



BIBLIOGRAPHY 229

45. Clifton, C.; Kantarcioglu, M.; Vaidya, J.; Lin, X.; and Zhu, M., 2002. Tools
for privacy preserving distributed data mining. SIGKDD Explorations, 4, 2
(2002), 28–34. (cited on pages 30, 32, 70, and 219)

46. Cohen, E.; Datar, M.; Fujiwara, S.; Gionis, A.; Indyk, P.; Motwani, R.; et al.,
2001. Finding interesting associations without support pruning. IEEE TKDE,
(2001). (cited on page 143)

47. Cohen, W. W.; Ravikumar, P.; and Fienberg, S., 2003. A comparison of string
distance metrics for name-matching tasks. In Workshop on Information Integration
on the Web, held at IJCAI’03. Acapulco. (cited on page 23)

48. Cohen, W. W. and Richman, J., 2002. Learning to match and cluster large
high-dimensional data sets for data integration. In ACM SIGKDD’02, 475–480.
Edmonton. (cited on pages 41, 113, and 119)

49. Cormode, G., 2009. Count-min sketch. In Encyclopedia of Database Systems, 511–
516. Springer. (cited on page 29)

50. Cramton, P. and Schwartz, J. A., 2000. Collusive bidding: Lessons from the
fcc spectrum auctions. Journal of Regulatory Economics, 17, 3 (2000), 229–252.
(cited on page 35)

51. Dean, J. and Ghemawat, S., 2008. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51, 1 (2008), 107–113. (cited on pages
53 and 219)

52. Dong, B.; Liu, R.; and Wang, W. H., 2014. Prada: Privacy-preserving data-
deduplication-as-a-service. In Proceedings of the 23rd ACM International Confer-
ence on Conference on Information and Knowledge Management, 1559–1568. ACM.
(cited on page 34)

53. Dong, C.; Chen, L.; and Wen, Z., 2013. When private set intersection meets big
data: an efficient and scalable protocol. In Proceedings of the 2013 ACM SIGSAC
conference on Computer and communications security, 789–800. (cited on pages 29,
30, and 33)

54. Duncan, G. T. and Elliot, M. J., 2011. Statistical confidentiality: principles and
practice. Springer. (cited on pages 39 and 81)

55. Dunn, H., 1946. Record linkage. American Journal of Public Health, 36, 12 (1946),
1412. (cited on page 19)

56. Durham, E., 2012. A framework for accurate, efficient private record linkage. Ph.D.
thesis, Faculty of the Graduate School of Vanderbilt University, Nashville, TN.
(cited on pages 15, 34, 38, 41, 43, 45, 46, 62, 63, 69, 141, 144, 167, 191, 200, 201,
and 219)



230 BIBLIOGRAPHY

57. Durham, E.; Xue, Y.; Kantarcioglu, M.; and Malin, B., 2010. Private medical
record linkage with approximate matching. In AMIA Annual Symposium Pro-
ceedings, vol. 2010, 182. American Medical Informatics Association. (cited on
page 5)

58. Durham, E.; Xue, Y.; Kantarcioglu, M.; and Malin, B., 2012. Quantifying
the correctness, computational complexity, and security of privacy-preserving
string comparators for record linkage. Information Fusion, 13, 4 (2012), 245–259.
(cited on page 2)

59. Durham, E. A.; Toth, C.; Kuzu, M.; Kantarcioglu, M.; Xue, Y.; and Malin,
B., 2013. Composite bloom filters for secure record linkage. IEEE Transactions on
Knowledge and Data Engineering, (2013). (cited on pages 29, 43, 68, 79, and 101)

60. Durstenfeld, R., 1964. Algorithm 235: Random permutation. Commun. ACM,
7, 7 (1964), 420–. (cited on page 46)

61. DuVall, S. L.; Kerber, R. A.; and Thomas, A., 2010. Extending the fellegi–
sunter probabilistic record linkage method for approximate field comparators.
Journal of biomedical informatics, 43, 1 (2010), 24–30. (cited on page 19)

62. Dwork, C., 2006. Differential privacy. International Colloquium on Automata,
Languages and Programming, (2006), 1–12. (cited on page 29)

63. Dwork, C.; Roth, A.; et al., 2014. The algorithmic foundations of differential
privacy. Foundations and Trends R© in Theoretical Computer Science, 9, 3–4 (2014),
211–407. (cited on page 30)

64. Efthymiou, V.; Papadakis, G.; Papastefanatos, G.; Stefanidis, K.; and Pal-
panas, T., 2017. Parallel meta-blocking for scaling entity resolution over big
heterogeneous data. Information Systems, 65 (2017), 137–157. (cited on pages 53
and 219)

65. Elgamal, T., 1985. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, 31, 4 (1985),
469–472. (cited on page 76)

66. Elmagarmid, A.; Ipeirotis, P.; and Verykios, V. S., 2007. Duplicate record
detection: A survey. IEEE Transactions on Knowledge and Data Engineering, 19, 1
(2007), 1–16. (cited on pages 1, 2, 4, 12, 19, 20, 23, and 26)

67. Esayas, S. Y., 2015. The role of anonymisation and pseudonymisation under the
eu data privacy rules: beyond the âĂŸall or nothingâĂŹ approach. European
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