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Abstract

Acoustic metamaterials are materials engineered to manipulate and structure acous-

tic fields to a degree with no parallel in natural materials. They are created from

small sub-wavelength sized unit building blocks referred to as meta-atoms. These

are generally arranged in a periodic array to form what behaves as a continuous

metamaterial. There are many potential applications of acoustic metamaterials all

with novel properties not seen in other devices; such as cloaking, super-efficient

sound absorbers and thin spatially compact acoustic lenses. Meta-atom scatter-

ing terms of monopolar and dipolar symmetry have been shown to relate to the

effective bulk modulus and effective fluid mass density of a homogenised metama-

terial. Where, taken together these parameters define the acoustic wave propagation

through a material. Due to their importance in acoustic metamaterials, this thesis

describes the development and implementation of a method to experimentally de-

termine the monopole and dipole scattering coefficients of meta-atoms. To do this,

an acoustic measurement apparatus is modified and characterised to ensure accur-

ate two-dimensional acoustic field data can be obtained. A method of extracting

the monopole and dipole scattering coefficients from recorded acoustic data is then

defined. This method is based on fitting the experimental incident and scattered

field data of meta-atoms to acoustic multipole expansions. The scattering coeffi-

cients of a rigid circular cylinder is then determined using the developed method,

and found to agree well with analytical values. Better agreement is seen at frequen-

cies over 1000 Hz, where experimental error from the measurement apparatus is

reduced. Meta-atoms previously presented in the literature are also fabricated, and

their scattering coefficients determined. These are found to agree with simulated

values of monopolar and dipolar resonances also taken from the literature. Where,

better agreement is again observed at resonances above 1000 Hz.
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Chapter 1

Introduction

This thesis is chiefly concerned with the scattering coefficients of acoustic meta-

atoms. As a topic, this sits within the field of acoustic metamaterials (AMM), which

is itself a subset of the broader realm of metamaterials. This chapter will provide a

brief introduction to the subject of metamaterials as a whole, and seek to motivate

why specifically determining the monopole and dipole scattering coefficients of meta-

atoms is useful to the field of AMM. Objectives of the thesis will also be discussed

as will relevant previous work in experimental AMM.

1.1 Overview of Metamaterials

The name metamaterials was coined by early pioneers of the field and is derived

from the greek meta, meaning beyond; implying a class of materials which in some

way go beyond conventional materials [2]. In general a metamaterial is any mater-

ial that has been designed to produce properties that has no naturally occurring

equivalent. In practice, most metamaterials are macroscopic composites that derive

their unique properties from their carefully engineered structure and composition

[30]. These structures are typically (but not necessarily) periodic and composed of

small, sub-wavelength sized meta-atoms that in the bulk behave as a continuous

material with unusual effective properties. Here ‘meta-atom’ refers to the unit-cell,

or singular building block that a homogenisation scheme is applied to so that the

effective properties of the bulk metamaterial can be derived. The first true metama-

terial was made in 2000 and consisted of an array of sub-wavelength meta-atoms

composed of copper split-ring resonators and wire elements deposited onto a circuit

board substrate. It was engineered to produce an effective negative refractive index

for microwave frequency electromagnetic (EM) waves [24]. This was a phenomenon

which had only been theorised to exist, and which allowed for many un-before seen

applications such as the creation of super-resolution lenses that surpass the diffrac-

tion limit [24]. Since their inception, the type and variety of metamaterials has

grown to include acoustic, elastodynamic and mechanical; with applications span-
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Chapter 1 Introduction

ning multiple domains such as holography, cloaking devices, enhanced photovoltaics,

earthquake protection and focused ultrasound surgery [2, 29, 6].

1.2 Overview of Acoustic Metamaterials (AMM)

In AMM the governing equation is the scalar acoustic wave equation (see chapter 2)

∂2p

∂t2
− K

ρ
∇2p = 0, (1.1)

where p is the acoustic pressure, ρ the fluid mass density and K the bulk modulus.

Here the key parameters that control wave propagation are K and ρ, and so these

are the main properties of interest when designing AMM. In naturally occurring

materials K and ρ are defined by the materials chemical composition and are always

positive [6]. To go ‘beyond’ these natural materials involves creating negative or near

zero values for K and ρ, which is a goal of AMM. The implications of negative or

zero values for these parameters can be understood by examining how they effect

wave propagation. For an acoustic wave travelling with wave vector ~k, and frequency

ω, the magnitude of ~k and index of refraction n are given by [13]

k = nω, n =
√
ρ/K. (1.2)

If we now imagine a scenario where the wave is propagating under a regime where

effective values of ρ or K are negative, then we find that the phase velocity vp = k/ω

is purely imaginary which corresponds to exponential decay of the wave and opaque

materials. In the case that ρ ≈ 0 we can obtain a media that can transmit sound with

very little distortion and zero phase change along its length [6]. For the interesting

case where both the effective ρ and K are negative, it has been shown that n

becomes negative [13] and the incident sound wave refracts in the opposite direction

to conventional materials, which as in the case of EM metamaterials can be used to

produce acoustic super-lenses and sub-wavelength imaging devices [6]. In Fig. 1.1 a

diagram shows the material design space for AMM and gives some further examples

of the type of applications possible.
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Chapter 1 Introduction

This figure is omitted to avoid infringing copyright. See
Haberman [9, pg. 32] for the original.

Figure 1.1: Material design space of AMM for different values of effective fluid density ρ
and bulk compressibility C = 1/K, which is the inverse of the bulk modulus defined in text.
Here TA stands for transformation acoustics, which uses form invariant transformations
of the acoustic wave equation to design materials which can arbitrarily shape sound, such
as in cloaking devices [2]. Image taken from Haberman [9].

1.3 Resonant Meta-atoms, Metasurfaces and the

Importance of Monopolar/Dipolar Scattering

This figure is omitted to avoid
infringing copyright. See Haberman
[9, pg. 33] for the original.

This figure is omitted to avoid
infringing copyright. See Liu et al.
[16, pg. 1734] for the original.

Figure 1.2: Left: AMM consisting of a periodic array of Helmholtz resonators and
membranes to generate negative ρeff and Keff , taken from Haberman [9]. Right: One
of the first AMM consisting of metal and rubber meta-atoms in an epoxy resin. A close
up of the meta-atom is shown (A) and the bulk metamaterial (B). Image taken from Liu
et al. [16].

One method of accessing the design space of Fig. 1.1 is by constructing AMM from

resonant meta-atoms. These typically generate negative effective mass density (ρeff )

or bulk modulus (Keff ) when the incident field acts as a driving term at frequency

just above resonance [13]. Under these circumstances the negative effective para-
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Chapter 1 Introduction

meters are a dynamic effect and are often referred to as dynamic bulk modulus/mass

density [22]. One simple resonant structure that exhibits −ρeff consists of a tube

with membranes fixed to the ends [6]. The fluid inside behaves like a driven mass

spring system and can experience oscillations 180° out of phase with the driving

term, whereby it accelerates in the opposing direction of the applied force hence

achieving −ρeff . Similar structures can be used to produce −Keff . These consist

of closed cavities connected to a waveguide via a narrow channel to form Helmholtz

resonators [6]. Just above the cavities natural frequency the resonator acts as a

dynamic volume source allowing for volume expansion under a compressive load;

producing −Keff . Carefully designed combinations of these structures can produce

both −ρeff and −Keff over some frequency band. An example of this type of AMM

is shown in Fig. 1.2. Although these are some of the simplest resonant meta-atom

systems to conceptualise many more exist in the literature [5, 17, 16], and the most

relevant to this thesis are of form of spherical or cylindrical scatterers. These are

generally studied in the long wavelength limit, where most inhomogeneities can be

approximated by an effective medium description of spherical/cylindrical inclusions

with acoustic scattering dominated by Mie-type monopole and dipole terms [13]. In

this instance it has been found that the symmetric expansion/contraction associ-

ated with monopolar meta-atom modes gives rise to a resonant response of Keff ,

whereas the antisymmetry of dipolar modes create a resonant response in ρeff [13].

Higher order modes have been shown to have interesting effects in elastodynamic

materials [18], but have not been directly associated with useful design parameters

in AMM. One of the first AMM ever made used this scheme. It was created from a

cubic lattice array of sub-wavelength scale meta-atoms with overlapping dipole and

monopole resonances, enabling simultaneous negative ρeff and Keff . The meta-

atoms consisted of a metal sphere coated with a soft rubber and were embedded

into an epoxy matrix [16]. An image of this AMM is also given in Fig. 1.2.

Another type of AMM are acoustic metasurfaces. These are characterised as having

a sub-wavelength thickness and can produce much of the complex acoustic field

manipulations as bulk AMM but in a highly spatially compact form [29]. They can

be made from resonant meta-atoms [29, 4] but are also associated with labyrinthine

structures that make use of the generalised Snell’s law to generate a phase gradient

along the surface to shape the acoustic wavefront [15]. Their principle of operation

is that the acoustic field propagates through the narrow sub-wavelength passages

of the structure with very little distortion [23]. The winding meta-atom structure

then allows for a full 0 to 2π phase shift via changing some design parameter such

as the number of windings or the width of the channels [23]. This then allows the

phase gradient needed to produce the desired output wavefront, to be discretised
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Chapter 1 Introduction

and implemented with an array of the phase shifting meta-atoms. An example of a

reflecting and transmitting metasurface generated in this way is given in Fig. 1.3.

This figure is omitted to avoid infringing copyright. See Li
et al. [15, pg. 2] for the original.

This figure is
omitted to avoid
infringing
copyright. See Xie
et al. [28, pg. 2] for
the original.

Figure 1.3: Examples of phase gradient style acoustic metasurfaces. Left: labyrinthine
meta-atoms designed to control a reflected wave. Image taken from Li et al. [15]. Right:
array of meta-atoms used to control a transmitted wave. Image taken from Xie et al. [28].

These labyrinthine acoustic metasurfaces have been shown to exhibit excellent wave-

front shaping potential [15, 23, 29]. However, recent research has found that using

the generalised Snell’s law alone to design the phase gradient imposes fundamental

limitations on the energy efficiency of the transmitted or reflected wavefront; with

some energy always lost to undesired directions even for lossless metasurfaces [7]. It

was found that in the case of transmitted waves, in order to realise full control over

acoustic energy flow a local and non-symmetric acoustic response of the meta-atoms

is required [7]. In acoustic meta-atoms it has been shown that this non-symmetric

response equates to the coupling of the ρeff and Keff parameters [22], which in turn

relates to the coupling of the monopolar and dipolar scattering terms [13].

1.4 Previous Work in Experimental AMM

There have been numerous experimental studies in acoustic metamaterials and

acoustics in general which are of relevance to the experimentation carried out in

this thesis. As the acoustic fields considered here were collected inside of a parallel

plate waveguide (see chapter 3) they are exclusively 2D, so that previous work in 2D

acoustics is especially pertinent. When designing and testing AMM a 2D regime is

often preffered due to the reduction in complexity and ease of acoustic field record-

ing it affords. This is especially true in the case of metasurfaces as their geometry

lends itself to a 2D design method.
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Chapter 1 Introduction

This figure is omitted to avoid
infringing copyright. See Li et al. [15,
pg. 2] for the original.

(a)

This figure is omitted to avoid
infringing copyright. See Zigoneanu
[30, pg. 48] for the original.

(b)
Figure 1.4: (a) Layout of experimental apparatus used in [15] to record the 2D acoustic
field of a metasurface. The edges shown are perfectly matched layer (PML) boundaries
consisting of anechoic wedge shaped foam. (b) Image of 2D acoustic field measurement
apparatus used in [30]. The microphone gantry arm and stepper motors are visible on top
of the black parallel plate waveguide.

When testing a reflective metasurface Li et al. [15] successfully used the experimental

apparatus shown in Fig. 1.4a. It consisted of a parallel plate waveguide (1.2 m ×
1.5 m) into which the sample was placed. The edges of the waveguide were insulated

using anechoic wedge shaped foam to minimise reflections back into the waveguide,

and the spacing of the plates was 2.1 cm. A 30 mm diameter loudspeaker was

placed outside but very near the top of the waveguide, and propogated sound into

the chamber via a 20 mm diameter hole cut into the top plate. They recorded

the field inside of the chamber by using two microphones. One was a reference

microphone fixed near the loudspeaker opening, and the other was moveable and

scanned the 2D field in the region indicated. The relative phase and magnitude of the

field was retrieved by analysing the cross spectrum of the two microphones, and the

scattered field was taken as the difference between the incident field recorded in an

empty chamber and the total field recorded with the metasurface. The parallel plate

waveguide used ensures a 2D propagating wave so long as higher order modes are

not supported between the plates. This leads to a cut-off frequency fc of fc = c/2d

where c is the velocity of sound and d is the separation of the plates. For the

waveguide in [15] the 2.1 cm separation gives a cut-off of 8.17 kHz. Although Li

et al. [15] report accurate 2D field measurements, a limitation of their paper is

that they do not discuss further details as to the microphone movement system and

the exact type of anechoic foam used. However, the general approach shown of

using a waveguide to ensure 2D sound propagation, a scanning microphone set-up,

and an analysis of the cross spectrum with a reference microphone to record the

phase and magnitude of the field appears to be exemplary of the approach used by

many others in the field with very similar apparatus successfully used in [23, 27, 31,

28]. Another more detailed example of this type of 2D acoustic field measurement
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Chapter 1 Introduction

apparatus was presented in Zigoneanu [30], and is shown in Fig. 1.4b. Here the

author used a 1.2 m2 parallel plate waveguide, with a 5.08 cm plate separation

giving a cut-off of 3.38 kHz. The waveguide also had anechoic foam edging in the

form of wedge shaped foam. The loudspeaker was placed inside of the waveguide,

and the field recorded using a reference and scanning microphone. The author

also explicitly describes that the mechanism for moving the second microphone is

through two stepper motors controlled via an interface with MATLAB software on

a PC, where the microphone itself is attached to a gantry arm to move in the xy

plane. Unfortunately none of the studies presented above give any detail about

the exact type of wedge shaped anechoic foam used beyond a cursory description.

Fortunately, other work in acoustics has investigated the use of different foams.

A study by Beranek and Sleeper [3] on the design and construction of anechoic

chambers found an optimal anechoic foam design they titled the ‘harvard linear

wedge’. This was created from an open-cell foam and had a wedge that was 80%

of the foams total thickness and a wedge tip angle of 11.2°. Additionally, a slightly

contradictory study by Kang and Bolton [12] found that in the explicitly 2D case,

keeping the wedge 80% of the foams thickness but using a broader wedge tip of 36%

was optimal. Taken together these results fully describe the type and function of

the acoustic field measurement apparatus most commonly used to record 2D field

when studying AMM.

1.5 Research Objective and Motivation

AMM offer powerful new ways of manipulating acoustic fields for a variety of applic-

ations. These include cloaking, efficient sound absorbers, spatially compact imaging

devices and more generally arbitrary control over an acoustic wavefront [6, 8, 24].

Mie-type monopolar and dipolar resonant meta-atoms play an important role in

AMM, being one of the first types of meta-atom designs they have since been used to

create a variety of metasurfaces and bulk AMM with novel properties such as negat-

ive refractive index, near-zero refractive index and very high absorption [4, 14, 18].

Furthermore, it has been found that creating a local non-symmetric response of

meta-atoms would improve the performance of existing transmissive metasurfaces

[7], an effect which may be realised by accessing the monopolar and dipolar scat-

tering terms [22]. Clearly the acoustic monopole/dipole scattering coefficients of

meta-atoms have a significant importance in the field of AMM, but to date have not

been experimentally measured; with most designs relying on simulations or indirect

observations of resonances attributed to the monopolar and dipolar modes [4, 14].

This thesis aims to address this gap in the literature by experimentally determining
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Chapter 1 Introduction

the monopole and dipole scattering coefficients of acoustic meta-atoms. To achieve

this aim, there are three main objectives: 1. Modify and characterise an existing 2D

acoustic field measurement apparatus to ensure accurate data can be recorded. 2.

Develop a method of extracting the monopole and dipole scattering coefficients, and

verify the method by comparison with the analytical scattering coefficients of a rigid

cylinder. 3. Successfully apply this method to determine the scattering coefficients

of a meta-atom design presented in the literature.
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Chapter 2

Theory

This chapter will present the relevant acoustic theory used in this thesis, starting

with a derivation of the acoustic wave equation. The scattering problem of a 2D

rigid cylinder will then be solved, and the analytical monopole and dipole scattering

coefficients of the cylinder defined for later comparison in chapter 4. The general

acoustic multiple expansion will also be described and applied to determine the

scattering coefficients of arbitrary 2D geometries, which forms the basis of the meta-

atom scattering coefficient extraction method defined in chapter 4.

2.1 The Acoustic Wave Equation

Consider an isotropic and homogeneous fluid described by scalar pressure and dens-

ity fields p and ρ, and velocity vector field ~u. Here the fluid is modelled as a

continuum and these fields represent average values for some infinitesimal volume of

the fluid. As we are interested only in fluctuations in the fluid due to some disturb-

ance from an equilibrium position, these fields further represent only the difference

in the fluid from it’s equilibrium pressure, density and velocity.

The total rate of change of some property F of the fluid from a time t to t + dt is

given by
dF

dt
=
∂F

∂t
+ ~u · ∇F (2.1)

where the second term takes into account that the infinitesimal fluid volume element

moves by a distance ~udt during the time slice. The linear acoustic approximation will

now be taken in deriving the acoustic wave equation, in that the spatial variation of

a fluid property ∇F is neglected in comparison with the time variation ∂F/∂t. The

consequence of this simplification is that non-linear effects such as overmodulation

of the medium are not accounted for [21].

The net particle flux through a surface S, enclosing a volume V can be related to
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the divergence of the momentum via Guass’s law∫
S

(ρ~u) · d~a =

∫
V

∇ · (ρ~u)dV, (2.2)

where ~a is the unit normal vector of surface S. This in turn is equal to the rate of

mass lost from V, which gives∫
V

∇ · (ρ~u)dV = − d

dt

∫
V

ρdV = −
∫
V

∂

∂t
ρdV. (2.3)

As this must hold for arbitrary V the two integrands are equal; resulting in a state-

ment of conservation of mass in a fluid, or the continuity equation

∇ · (ρ~u) = −∂ρ
∂t
. (2.4)

If a pressure gradient is present in the fluid, it results in a force causing the fluid to

flow towards the region of low pressure. Using Newton’s second law, mathematically

this is

∇p = − ∂

∂t
(ρ~u). (2.5)

Furthermore if a region of the fluid undergoes expansion, that region experiences a

decrease in pressure proportional to the incompressibility, or bulk modulus K of the

fluid. As the expansion rate is given as the divergence of the fluid velocity, the rate

of change of the pressure is then given by

∂p

∂t
= −K∇ · ~u. (2.6)

If we now take the divergence of both sides of (2.5) and substitute (2.6) we get

∇ · ∇p = − ∂

∂t
∇ · (ρ~u) =

ρ

K

∂2p

∂t2
. (2.7)

Denoting ∇2 as the Laplacian operator results in the acoustic wave equation for the

pressure field
∂2p

∂t2
=
K

ρ
∇2p = c2∇2p, (2.8)

where the speed of the wave c =
√
K/ρ. From the continuity equation (2.4) it ap-

pears that in the case of a compressible fluid (such as air), the volume changes asso-

ciated with a propagating acoustic wave result in a density field implicitly dependant

on pressure. This complexity however, can be removed by using the definition of
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the bulk modulus [19].

K = −V dp

dV
. (2.9)

It has been experimentally shown that the rapid pressure changes occurring in acous-

tic wave propagation in a compressible fluid do not exchange heat with their sur-

roundings and are hence adiabatic [19]. For adiabatic processes in an ideal gas pV γ

is a constant, where γ = Cp/Cv is the ratio of heat capacities at a specific pressure

and volume. Putting this relationship into (2.9) gives the general result

K = γp (2.10)

for adiabatic processes. Now using the ideal gas law p = ρRT , where R is the

specific gas constant of the fluid and T is the absolute temperature, we find

ρ =
p

RT
. (2.11)

Substituting (2.10) and (2.11) into (2.8), results in an acoustic pressure wave speed

for a compressible fluid of

c =
√
γRT , (2.12)

which is only dependent on material constants. In dry air at 20 ℃ this speed has

been measured to be about 343 m/s [11].

2.2 The Multipole Scattering Coefficients of a 2D

Rigid Circular Cylinder

Having defined the acoustic wave equation, the problem of acoustic scattering from

an object can now be approached. This section will derive the scattering coefficients

of a 2D rigid circular cylinder and introduce relevant 2D acoustic scattering theory.

In 2D the simplest scattering problem is that of a plane wave of wave vector ~k

incident on a rigid circular cylinder of radius a which is of infinite length in the out

of plane direction. A diagram of this is given in Fig. 2.1 below.
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θ0

~k a

y

x

Figure 2.1: Plane wave with wave vector ~k offset by from the x-axis by angle θ0 incident
on a rigid circular cylinder of radius a.

The time dependant acoustic pressure field over the domain can be written as

P (x, y, t) = Re[p(x, y)e−iωt] (2.13)

where frequency ω = kc and k is the wave number, such that using (2.8) we find

p(x, y) is subject to the Helmholtz equation

∇2p+ k2p = 0. (2.14)

The total pressure amplitude p is equal to the sum of the incident and scattered

waves

p = pI + pS (2.15)

where the incident plane wave is

pI = p0e
i~k·~r, (2.16)

with implicit harmonic time dependence from (2.13). Here ~r is a position vector

from the origin located at the centre of the cylinder as shown in Fig. 2.1. The radial

symmetry of the scattering problem lends itself to polar coordinates, where r is the

radial distance from the origin and θ the angle from the x-axis. The plane wave can

now be re-written using θ0 as the angle of incidence of the plane wave with respect

to the x-axis, such that we get

~k = k(cos θ0, sin θ0), ~r = r(cos θ, sin θ) (2.17)

which gives

pI = p0exp[ikr(cos θ0 cos θ + sin θ0 sin θ)] = p0e
ikr cos(θ−θ0). (2.18)
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The key aspect to solving this scattering problem is to perform a partial wave

expansion of the incident plane wave. This will proceed as follows. Let φ = θ − θ0,
such that it is clear eik cosφ is periodic in φ and can be expanded in terms of a Fourier

series,

eikr cosφ =
∞∑

n=−∞

cne
inφ (2.19)

where

cn =
1

2π

∫ 2π

0

eikr cosφe−inφdφ =
1

2π

∫ 2π

0

eikr cosφ[cosnφ− i sinnφ]dφ. (2.20)

As eik cosφ is even in φ the sine term goes to zero such that

cn =
1

2π

∫ 2π

0

eikr cosφ cosnφdφ =
1

π

∫ π

0

eikr cosφ cosnφdφ = inJn(kr), (2.21)

where the last equality is found using a standard integral representation of the Bessel

function of the first kind, Jn(z) [20]. Applying this to (2.19) gives

eikr cos(θ−θ0) =
∞∑

n=−∞

inJn(kr)ein(θ−θ0). (2.22)

so we finally get

pI = p0e
ikr cos(θ−θ0) = p0

∞∑
n=−∞

inJn(kr)ein(θ−θ0). (2.23)

Each term in the plane wave expansion series represents a distinct angular variation

and is known as a partial wave. Having described the incident field as a partial

wave expansion in polar coordinates, we can now turn to the scattered field. Using

separation of variables, the scattered field is represented as

pS = R(r)Θ(θ). (2.24)

Applying the Helmholtz equation (2.14) to pS gives

r2R′′ + rR′ + (k2r2 − n2)R = 0, Θ′′ + n2Θ = 0 (2.25)

where n ∈ Z are integer eigenvalues so that Θ is periodic in θ. The most general
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solutions to (2.25) are

Θn = Ane
inθ +Bne

−inθ, Rn = CnH
(1)
n (kr) +DnH

(2)
n (kr) (2.26)

where H
(1)
n and H

(2)
n are Hankel functions of the first and second kind. As r →∞,

pS must be an outgoing wave, to satisfy the radiation condition of the scattered

field. Due to fact that in the far field H
(2)
n behaves as incoming radiation [20], Dn

is immediately set to zero, leaving

pS =
∞∑

n=−∞

(Ane
inθ +Bne

−inθ)(CnHn(kr)) (2.27)

where H
(1)
n will be denoted as Hn from now on. At the surface of an acoustically

hard surface the fluid velocity component normal to the surface must be zero. Using

the conservation of momentum relationship in (2.5) this results in the Neumann

boundary condition at the surface of the cylinder:

∂pI
∂r

+
∂pS
∂r

= 0, r = a. (2.28)

Applying this to (2.27) and (2.23) gives

kCnH
′
n(ka)(Ane

inθ +Bne
−inθ) = −kp0inJ ′n(ka)ein(θ−θ0). (2.29)

Without loss of generality, we can now set the angle of incidence to zero θ0 = 0, and

Bn = 0 so that

GnkH
′
n(ka)einθ = −kp0inJ ′n(ka)einθ. (2.30)

Where the unknown coefficients are multiplied into Gn, which is found to be

Gn = −p0in
J ′n(ka)

H ′n(ka)
(2.31)

So we get a scattered pressure wave

pS = −p0
∞∑

n=−∞

in
J ′n(ka)

H ′n(ka)
Hn(kr)ein(θ−θ0), (2.32)

where the angle of incidence has been re-introduced as a simple coordinate transla-

tion. This gives a total time dependent pressure field of

P (r, θ, t) = Re

[
p0e
−iωt

∞∑
n=−∞

in
(
Jn(kr)− J ′n(ka)

H ′n(ka)
Hn(kr)

)
ein(θ−θ0)

]
(2.33)
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In Fig. 2.2 below, a plot of the total pressure field at time t = 0, for ka = 1 is shown

truncated at n = ±20 terms, along with a plot of the amplitude of the total field.

Figure 2.2: Plots of the pressure field defined in (2.33) for ka = 1, θ0 = 0 andt = 0,
truncated at 20th order terms. The circular cylinder the incident plane wave scatters off
is shown in white, and the plane wave is incident from the left.

The benefit of the partial wave expansion, is that the field due to distinct angular

variations is immediately obtained. The n = 0 term is called the acoustic monopole,

the n = 1 term the dipole, n = 2 the quadrapole and so on. More generally this type

of solution to the Helmholtz equation in distinct angular and radial components is

known as a multipole expansion [20] and due to it’s role in Mie scattering theory in

EM, resonances of the partial wave terms are often referred to as Mie-type in the

field of AMM [18]. As an example of the angular and radial dependence of individual

multipole terms, the real part of the n = 0, 1, 2 terms of the plane wave multipole

expansion are given below in Fig. 2.3.

Figure 2.3: Plots showing the real part of the monopole, dipole and quadrupole terms
(n = 0, 1, 2) in the multipole expansion of the plane wave given in (2.22) for θ0 = 0.

We can now determine the multipole scattering coefficients of the rigid 2D cylinder

by using the multipole expansions of the scattered and incident fields given in (2.32)
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and (2.23) respectively. So, ignoring the spatial dependency of (2.32) and (2.23) we

can write

~pS =
∞∑

n=−∞

(−p0)in
J ′n(ka)

H ′n(ka)
= α · ~pI =

∞∑
n=−∞

αnp0i
n

⇒ αn = − J
′
n(ka)

H ′n(ka)
,

(2.34)

where αn is the scattering coefficient of the nth multipole term, and pS and pI have

been written as vectors over the distinct angular variation orders. From (2.33) it can

be seen that for the rigid cylinder, each multipole incident term only scatters into a

multipole of the same order so that αn relates the radiating nth order scattered field

to the nth order incident field. In this regime the form of α is a diagonal matrix with

entries αn. As both the Hankel and Bessel spatial dependencies have zero phase at

the origin, αn describes the relative phase and amplitude of the nth order scattering

coefficient, with reference to the incident field.

2.3 The Multipole Scattering Coefficients of 2D

Meta-atoms

In chapter 5 the monopole and dipole scattering coefficients of meta-atoms are de-

termined by fitting their incident and scattered fields to multipole expansions. In

the previous section the scattered field of a rigid cylinder exposed to a plane wave

was found to naturally lend itself to this form of expansion in solving the Helmholtz

equation in polar coordinates. This section will present a brief mathematical argu-

ment as to the validity of a multipole expansion representing an arbitrary 2D field,

such that the multipole scattering coefficients of an arbitrary 2D object (such as a

meta-atom), which has been exposed to an arbitrary incident field can be defined

in a similar way as they were for the cylinder.

In general, any 2D function f(x, y) can be written in terms of its Fourier transform

F (kx, ky) via

f(x, y) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

F (kx, ky)e
i~k·~rdkxdky. (2.35)

Defining a polar coordinate transformation

~k = k(cos θk, sin θk), ~r = r(cos θ, sin θ), (2.36)

where θk is the angle of ~k from the θ = 0 axis, the inverse Fourier transform in polar
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coordinates becomes

f(r, θ) =
1

(2π)2

∫ ∞
0

∫ 2π

0

F (k, θk)e
ikr cos(θ−θk)kdkdθk, (2.37)

where similar working has been used as in (2.18). As F (k, θk) is periodic in θk it

can be represented as the Fourier series

F (k, θk) =
∞∑

n=−∞

Fn(k)einθk (2.38)

where Fn(k) gives the spatial frequency dependence of each angular term. Putting

this into (2.37) gives

f(r, θ) =
1

(2π)2

∞∑
n=−∞

∫ ∞
0

∫ 2π

0

Fn(k)einθkeikr cos(θ−θk)kdkdθk (2.39)

Now setting ϕ = θ − θk we get

f(r, θ) =
1

(2π)2

∞∑
n=−∞

einθ
∫ ∞
0

∫ 2π

0

Fn(k)e−inϕeikr cosϕkdkdϕ. (2.40)

Using the same working as (2.21),

1

2π

∫ 2π

0

e−inϕeikr cosϕdϕ = inJn(kr) (2.41)

so that

f(r, θ) =
1

2π

∞∑
n=−∞

ineinθ
∫ ∞
0

Fn(k)Jn(kr)kdk. (2.42)

As the above Equation is an inverse Fourier transform of f(r, θ), it is inherently

based on the orthogonality of the complex exponential and Bessel functions [10]:∫ ∞
0

Jn(k1r)Jn(k2r)rdr =
δ(k1 − k2)

k1∫ 2π

0

einxe−imxdx = 2πδ(n−m).

(2.43)

So that an equivalent definition of the inverse transform is just

f(r, θ) =
∞∑

n=−∞

ineinθ
∫ ∞
0

Fn(k)Jn(kr)dk. (2.44)

where the factor of k/2π which appears due to orthogonality relations (2.43) can
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just be placed in front of the forward Fourier transform. Now recognising that the

function f(r, θ) is periodic in θ it can be seen that the inverse Fourier transform is

essentially a multipole expansion in θ with coefficients in
∫∞
0
Fn(k)Jn(kr)dk:

f(r, θ) =
∞∑

n=−∞

(
in
∫ ∞
0

Fn(k)Jn(kr)dk

)
einθ. (2.45)

The above the result is completely general and shows that any function defined on

the whole space can be represented as a multipole expansion, where similar results

may be obtained in three dimensions, and for bounded functions [10]. In the case

of an acoustic field of a single frequency satisfying the Helmoholtz equation (which

is the type of filed exclusively of interest to this thesis) the integral over spatial

frequency in (2.45) is only non-zero at the spatial frequency of interest k0, and we

have for the acoustic field f(r, θ)k0 :

f(r, θ)k0 =
∞∑

n=−∞

inFnJn(k0r)e
inθ

=
∞∑

n=−∞

βnJn(k0r)e
inθ

(2.46)

where Fn(k) is no longer a function of k and is instead denoted Fn, and the inFn terms

have been multiplied together into βn for convenience. Theoretically the expansion

coefficients can now immediately be determined via the orthogonality relations in

(2.43):

βn =
k0
2π

∫ 2π

0

∫ ∞
0

f(r, θ)k0Jn(k0r)e
inθrdrdθ. (2.47)

However, as will be discussed further in chapter 4 it is difficult in practise to perform

this integration on experimental data.

The multipole series (2.46) should converge for an arbitrary acoustic field, although

in the case of a scattered field the form of (2.46) is non-physical. This is due to fact

that the field scattered of an object placed at the origin should obey the radiation

condition for large radius, and the asymptotic behaviour of the Bessel function has

both outgoing and incoming wave components [20]. To fix this, Jn(k0r) can be

replaced with the Hankel function of the first kind Hn(k0r), which has the correct

asymptotic behaviour in r. This is valid for a general 2D function representing a

scattered field, as both Hn(kr) and Jn(kr) solve the radial part of the Helmholtz

equation, and by Sturm–Liouville theory Hn(kr) is also orthogonal over the whole
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domain. So in the case of a scattered field we get

f(r, θ)k0 =
∞∑

n=−∞

γnHn(k0r)e
inθ, (2.48)

with multipole terms γn. The explicit multipole expansions of general incident and

scattered 2D fields can now be defined as

Incident field = pI =
∞∑

n=−∞

βnJn(k0r)e
in(θ−θ0)

Scattered field = pS =
∞∑

n=−∞

γnHn(k0r)e
in(θ−θ0),

(2.49)

Where θ0 is the angle of the incident field with respect to the x-axis (as defined in

Fig. 2.1) and the coordinate transform θ → θ − θ0 has been introduced so that

these fields are defined with reference to the incident field. As before, ignoring the

spatial dependency of the fields and writing them as vectors in the space of angular

variations we have

~pS = α · ~pI . (2.50)

In the case of a rigid cylinder nth order incident terms only scatter into like terms

so that α is a diagonal matrix. In the general case an object may scatter nth order

terms into any other angular variation, such that the general form of α should

be a full matrix of scattering coefficients with the cylinder being a special case

where off-diagonal elements are zero. These off-diagonals couple the monopole and

dipole response of the object, which in [22] was attributed to asymmetries in the

scattering objects geometry. As this thesis only considers meta-atoms with high

angular symmetry (see chapter 5), the assumption is made that these off-diagonals

are also zero or small enough to be ignored so that multipole scattering coefficients

can be defined similarly to (2.34):

αn = γn/βn. (2.51)

2.4 Summary

The acoustic wave equation was derived and the form of the monopole (α0) and

dipole (α1) scattering coefficients of both a 2D rigid circular cylinder and general

2D geometry were defined. In the general case it was assumed multipole angular

orders only scatter into like orders such that αn can be determined directly from
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the multipole expansion of the incident and scattered fields. This will be used

extensively in chapters 4 and 5 when applied to meta-atoms.
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Chapter 3

Experimental Apparatus and

Methods

This chapter describes the acoustic measurement apparatus used in all experiment-

ation contributing to this thesis. It details the modification and characterisation

process of the apparatus, that was undertaken to ensure it is able to obtain accurate

acoustic data. The experimental method developed to record the acoustic data is

also defined.

3.1 Overview and Function of the Acoustic Field

Measurement Apparatus

The main components of the apparatus used during experimentation consist of a

sample test chamber constructed from a perspex parallel plate waveguide insulated

along its edges with anechoic foam, a small loudspeaker placed inside of the wave-

guide which creates the acoustic field the samples are exposed to, and a low profile

microphone mounted on an x/y axis gantry arm that records the 2D field. Labelled

photographs and a diagram of the acoustic measurement system are given in Figs.

3.1 - 3.2, with relevant dimensions of the system also included. The waveguide

structure and the mechanical and electrical components controlling the loudspeaker

and microphone were assembled by a previous student, and are described in detail

in [25].
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Figure 3.1: Top left: Diagram of acoustic measurement apparatus, showing the layout of
components from above the parallel plate waveguide. The coordinate system convention
used is in data analysis is also indicated. Top right: Side on and close up photograph
of the waveguide with plates closed. The function of the microphone arm is indicated,
showing the necessary gap to allow movement. Bottom: Close up of microphone sitting
on top of perspex waveguide plate, it is glued to the driving belt.

Figure 3.2: Side on view of the entire acoustic field measurement apparatus with the
top plate lifted to allow access to the test chamber. The main functional components are
labelled.

Both the input to the loudspeaker and the output signal from the microphone (Ada-
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fruit electret with MAX9814 amplifier) are processed by a microcontroller (Teensy

3.2 with an audio shield) which in turn is connected to a computer via USB. Move-

ment of the microphone is actuated by two stepper motors (NEMA17), which are

controlled by a separate microcontroller (Arduino Mega 2560 with RAMPS v1.4

shield and A4988 stepper motor drivers), also connected to the computer. These

stepper motors move the microphone using drive belts in the x and y directions

as defined in Fig. 3.1. The microphone is attached to a belt (see bottom of Fig.

3.1) which actuates in the x direction, and the gantry arm the microphone belt is

supported by, moves along the linear bearings to actuate in the y direction. This

gives the microphone full movement in the xy plane. To allow this movement a

small 1 cm gap is needed underneath the anechoic foam boundary (See Fig. 3.1).

The microcontrollers are programmed in C++ to perform basic data recording or

movement functions only, with more elaborate control structures being implemented

through the computer using a Python environment as the interface. To record the

acoustic field in the waveguide, the in phase and quadrature components (IQ) of the

2D acoustic field with reference to the loudspeaker source are sampled by scanning

the microphone along a 2D grid path defined by a Python routine. IQ components

are obtained using a cross-spectrum analysis algorithm implemented by the micro-

controller that handles both the input and output audio signals. Here the reference

signal is the internal digital output to the microphone. Further acoustic field data

analysis is also performed in Python. Access to the inside of the waveguide is gained

by lifting the top plate using the winch shown in Fig. 3.2, and the distance between

the parallel plates can be set by using the adjustable feet.

3.2 Characterisation and Modification of Meas-

urement System

3.2.1 Mechanical control over microphone

In order to accurately collect two-dimensional acoustic field data, complete control

over the microphone position is required. During system testing, two primary is-

sues effecting mechanical control over the microphone were identified. These were

shudder in the microphone belt and arm whilst travelling in the y direction of the

waveguide, and insufficient torque in the stepper motors while moving the micro-

phone in the x direction. Both of these problems result in the driving stepper motor

skipping steps; wherein the actual distance it has moved the microphone is less than

what it was programmed to move. The effect on the acoustic data is that the re-
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corded field becomes distorted due to inaccurate positional information at each at

point. An example of this is shown in Fig. 3.3.

Figure 3.3: Left: Amplitude of acoustic field where the effects of the stepper motor
skipping are apparent. Right: Comparison of previous cable guide system and the current
one installed as part of the solution to the stepper motor skipping problem.

Further investigation of the shudder effect along the ’y’ direction found that it was

caused by irregularities in the linear bearings that the microphone arm moves along.

The irregularities were found to have a resonant character, such that at certain

travel speeds large undamped vibrations in the microphone arm and noticeable

shudder were observed. The solution to this was to first increase the acceleration

and deceleration rate of the y-axis stepper motor to their maximum value so that

resonant speeds are skipped over quickly, and secondly to select a stepper motor

speed through trial and error that avoided shudder. In the final measurement system

set-up, the microcontroller connected to the stepper motors was programmed to

allow a speed of 87 steps/s along the y-axis and 300 steps/s along the x-axis.

Insufficient torque in the x-axis stepper motor was found to be due to incorrect

python code at the computer to microcontroller interface level, and a faulty micro-

phone cable management system. The cable management system initially installed

on the microphone arm consisted of a guide wire parallel to the microphone belt,

with rubber loops attaching the cable to the wire. A cable tray underneath the arm

would collect slack, and the microphone cable would be pulled with the belt, kept

close to the belt by the guide wire (See Fig. 3.3). The problem with this system

is that as the rubber loops pass over the belt pulley, they prevent the cable from

bending causing it to stick at that point. A new cable management system was

installed to overcome this issue. This consisted of a simple pulley attached to a

hollow weight, so that the cable is fed through the weight’s pulley, a guide bracket,

and then onto the belt. The microphone cable is kept close to the belt by the ten-

sion caused by the weight, and it’s hollow so that it’s mass and subsequent tension
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can be adjusted by adding or removing material. An image of this is given in Fig.

3.3. Although this system also applies a resistive torque to the stepper motor, the

magnitude of the torque was reduced to an appropriate level by adjusting the mass

in the weight. The error in the python code running on the computer was found to

be a control structure in which the serial port object that microcontroller commands

were written to was re-initialised for every command. This had the effect of turning

the stepper motors on and off at every command, as the new serial port call initiates

a stepper motor start up routine. When the motors are off they loose torque, and so

should remain energised during use. The error was corrected for simply by altering

the python code so that a single serial port object is made during a session. The

benefits of these modifications can be seen in Fig. 3.6, where no distortion in the

acoustic field is apparent.

3.2.2 Acoustic boundaries and parallel plate separation of

waveguide

Acoustic reflections from the edges of the waveguide can significantly impact recor-

ded field data. This is due to the fact that the analytical models results are compared

with deal with the whole space, with radiation and/or boundary conditions applied

for r → ∞. It is therefore difficult to analytically account for them and remove

their effect through post-processing. As such, the choice of acoustic boundaries

in the waveguide that minimise reflections is essential. At the onset of testing the

Figure 3.4: Left: Labelling and measurements of each anechoic foam tested to minimise
relfections from waveguide edges. The number of each foam is highlighted blue. Right:
Reflection test results of each foam, with 0 cm being near the loudspeaker and ∼140 cm
being as close to the acoustic boundary as possible. The amplitude is recorded in arbitrary
units (a.u.), and the test acoustic frequency used was 2500 Hz.
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measurement system, two types of open cell acoustic foam were available to evaluate

as waveguide boundary material. Both were of the general anechoic wedge shape

designed to minimise reflections highlighted in the previous work section. These are

labelled foam 1 and 2 in Fig. 3.4. Foam 1 was an off the shelf commercial product,

and foam 2 was custom designed and cut by a previous student to have a geometry

which better matched the general theory of acoustic anechoic wedges. In order to

characterise the reflections from the foams a test was procedure was developed. The

microphone was placed in the middle of the waveguide along the x-axis and the

amplitude of the field recorded as a function of distance from the loudspeaker along

the y-axis. The edging furthest from the speaker was altered from having no foam

through to each foam tested while all other components of the waveguide were kept

constant. The results of the testing are given in Fig. 3.4, and these clearly show

the large decease in interference due to reflections that foam 2 provides. This is

in accordance with the literature as the shape of foam 2 closely matches the op-

timal linear harvard wedge design given in [3], with a wedge length being roughly

80% of total thickness and a wedge tip angle of 13°, whereas foam 1 has an overly

large wedge tip at 50°and small wedge length of 43% total thickness. A significant

disadvantage of the foam 1 design is that its small wedges are difficult to pattern

and custom cut. Due to this, and the fact that the numerical optimisation study in

[12] found that broader wedge tips at 36°outperformed the narrower, an additional

sample of the design labelled as foam 3 in Fig. 3.4 was created and tested in the

same manner as previous foams. This design kept the foam 2 thickness of 25 cm,

but broadened the wedge tips to 36°. As can be seen from Fig. 3.4, the broader

tip design performs approximately equally as well as foam 2. Such that, as foam 3

was easier to produce and equally as effective it was selected to cover the remaining

three boundary edges leaving foam 2 along the edge furthest from the speaker.

Another consideration in minimising the effects of boundary reflections is the gap

beneath the anechoic foam to allow microphone movement. During system testing

it was determined that the top plate had bowed upwards under it’s own weight

at the point of the winch connection. At the apex of the bowing the plates were

measured to be 6.6 cm apart. Including this effect, the cutoff frequency of the

waveguide is calculated using the same method given in the previous work section

to be fc = c/2d = (343 ms−1)/(2 × 0.066 m) ≈ 2598 Hz. Although the top plate

could be lowered to increase the usable frequency range, there is a practical limit

as to how small the plate separation may be due to the function of the acoustic

anechoic foam edging. As shown in Fig. 3.1 the belt the microphone is mounted to

requires a 1 cm gap underneath the foam to allow it move freely. When decreasing

the plate separation the ratio of the gap to plate separation increases, which reduces
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the efficacy of the anechoic foam allowing for more reflections from the edges. A

practical trade-off at 6.6 cm was found, setting the gap under the foam to be ∼16%

of total plate separation. To accommodate this gap the anechoic foam along the y

direction is mounted to the top plate using double sided tape.

3.2.3 Function and placement of loudspeaker

During testing of meta-atoms or cylindrical samples, the acoustic field from the

loudspeaker is used to approximate a plane wave incident on the sample. In order

to meet this approximation, the phase front of the field must be as flat as possible and

the amplitude have minimal variation. Theoretically this can be achieved by a single

speaker acting as a point source, with the sample placed a number of wavelengths

away where the phase front is flatter. During measurement system modification

and testing, a number of different loudspeaker types and arrangements were trialled

until a satisfactory incident field was produced.

Figure 3.5: a) Phase of acoustic field in waveguide using an external 9 cm diameter
loudspeaker source. b) The amplitude of the same field measured in arbitrary units (a.u.).
c) Phase of the acoustic filed using an internal 5 cm diameter loudspeaker. d) Amplitude
of internal loudspeaker field. The acoustic frequency in all plots is 2250 Hz.

The first loudspeaker arrangement tested consisted of 9 cm diameter loudspeaker

placed at the external edge of the waveguide so that the field radiates into the

test chamber. The acoustic foam boundary inside the waveguide was cut into a V

shape with the speaker placed at its apex so that the field could propagate into the

chamber with minimal reflections or diffraction effects due to the edging. This type

of arrangement with an external speaker radiating into the chamber was described in

the previous work section, and was successfully used in [15]. The recorded amplitude

and phase inside the waveguide using this set up is given in Fig. 3.5. The phase of the

recorded field closely resembles that of a point source, however the amplitude shows

a distinct standing wave interference pattern. This interference was found to be
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caused by the comparatively large reflective surface that the loudspeaker diaphragm

presents over the frequency range of interest. After trialling different anechoic foam

and loudspeaker configurations, it was determined that to remove the interference

a much smaller 5 cm diameter speaker should be installed and placed inside of the

waveguide. This was positioned flush with the anechoic foam wedge tips, shown in

Fig. 3.1. As can be seen from the phase and amplitude plots in Fig. 3.5, the smaller

speaker behaves much more like an ideal point source, and so was used for further

experimentation.

3.2.4 Characterisation of finalised acoustic measurement ap-

paratus

Figure 3.6: Top: Phase and amplitude of acoustic field in finalised measurement system
at 2250 Hz. Bottom: Amplitude of acoustic field as a function of distance away from
microphone (0 cm being closest), plotted for frequencies in the range 500 - 2500 Hz in 100
Hz increments. Amplitudes shown in arbitrary units (a.u.).

The acoustic measurement system was characterised once all modifications were

completed, the results of which are given in Fig. 3.6. Here it can be seen that in the

waveguide the phase of 5 cm diameter loudspeaker closely approximates that of a

point source, and from the amplitude plots as a function of distance; that reflections
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from the edges are minimal and smaller than in Fig. 3.4. Also all distortions in the

recorded 2D field are now removed. However from the 2D plot of the amplitude,

there are still reflections present in the waveguide, although these are assumed to

be at acceptable levels.

3.3 Method of Obtaining Acoustic Field Data

The method used to record the 2D acoustic field data of meta-atom samples can be

summarised as follows. The sample was placed in the centre of of the x-axis of the

waveguide 67 cm away from the speaker along the y-axis where the phase front is

relatively flat. The height of the sample was kept at 66 mm, so that the both the top

and bottom surfaces would sit relatively flush with the waveguide plates. A Python

routine was then ran which records the total field in it’s complex IQ components

over a range of frequencies. This was done by scanning the microphone along the

x and y directions, and recording the field at 1 cm increment points along the path

over the frequency range of interest. The sample was then removed and the complex

incident field recorded at the same points and frequencies as before. The scattered

field can then be obtained by subtracting the incident field from the total field.

To simplify later data analysis, the recorded scattered and incident fields should

have an origin which is aligned with the geometric centre of the sample. To achieve

this, a mark was made on the vertical side of the sample that coincides with an

axis passing through it’s geometric centre. At the start of the acoustic scan the

microphone was positioned as close as possible to the sample, in line with the mark

and hence the samples geometric centre. Given this initial condition and the known

diameter of the meta-atom sample a Python function was written that correctly

defines the position of the microphone with reference to the samples centre, and

scans the 2D field.

As the microphone is attached to a stepper motor belt spanning the waveguide,

the total field has to be recorded in two parts with one on either side of the meta-

atom. To do this the scan was paused once the first side was completed, the sample

was removed while the microphone was repositioned to the other side, and then the

sample was replaced and the scan continued. The microphone movement was always

performed programmatically to maintain accurate position information.

An important factor in ensuring the accuracy of the field data was to allow enough

time for the system to come to rest before recording the acoustic field at that point.

Specifically the time between a microphone movement instruction and data capture,
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and the time between individual frequency data capture was critical. After a move-

ment instruction, the microphones position would be unstable for approximately 1.5

s, so that a puase of this length was included in the Pyhon code. This instability

was due to a combination of friction with the surface of the waveguide and relat-

ively large oscillations of the cable weight, which would damp out quickly. Smaller

oscillations of the cable weight taking longer to damp out were not able to move the

microphone and did not generate any measurable acoustic interference. It was also

found that in order to avoid frequency overlap caused by lag in the input/output

response of the measurement system, a pause of at least 0.3 s was necessary between

successive frequency inputs to the loudspeaker.

To avoid noise in the lab or other sources of acoustic interference detracting from

results, multiple measurements at each microphone position were recorded and the

average taken. However, the number of repetitions was kept relatively low at 2 to 3

as a scan could take 15-20 hrs to complete for a typical frequency range of interest,

and increasing the time to complete a scan further was not feasible. To improve the

accuracy without increasing scan time, the validity of the data was checked at each

point using a number of condition statements included in the Python code. The first

of these was to check that the maximum variance in the repetitions was less than a

threshold value in order to account for any significant noise lasting a short period

of time occurring at that microphone position. The second was that the difference

in maximum amplitude of neighbouring points should also be less than a threshold

value to account for sources of noise which may last a longer period of time and be

constant over all repetitions at a point. If any of these checks failed, the system

would pause for a period of time and then attempt to retake the data point. If a

number of these attempts failed it would wait until further input from a person to

check on the scan and allow it to continue.

During all scans the maximum frequency used was 2500 Hz, below that of the cut-off

frequency of 2598 Hz, so that it could be ensured a 2D propagating field with no

higher order modes existed in the waveguide.

3.4 Summary

The steps taken to modify and characterise the acoustic measurement apparatus

were outlined. A characterisation of the finalised measurement system found that

all distortions in the recorded acoustic field data had been removed, and that some

reflections from the edges of the waveguide are still apparent, but have been minim-

ised. The method used to record experimental acoustic field data was also described.
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Data Analysis

In the previous chapter the function of the acoustic measurement system was defined

and the method used to collect experimental acoustic data described. This chapter

will develop the data analysis method used to extract the monopole and dipole

scattering coefficients from that data. The method will also be verified by com-

paring experimental determined scattering coefficients of a rigid cylinder, with the

analytical expression from chapter 2.

4.1 Method of Extracting the Monopole and Di-

pole Scattering Coefficients from Experimental

Data

Figure 4.1: Diagram of the acoustic field measurement apparatus while performing a
scan. The regions of the xy plane accessible to the microphone are labelled.

In order to extract the multipole scattering coefficients from recorded acoustic field

data αn, and specifically the monopole α0 and dipole α1 terms the multipole ex-

pansion coefficients βn and γn of the incident and scattered must be determined.
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The most theoretically robust way of doing this would be to integrate the acous-

tic field data as in (2.46), where the relationship Jn(kr) = 1
2

(
H

(1)
n (kr) +H

(2)
n (kr)

)
[20] could be used in the case of the scattered field to find the components corres-

ponding to the radiating H
(1)
n (kr) spatial dependency. This method would ensure

that only the angular variation of interest contributes to the coefficient being cal-

culated. However, as mentioned in section 2.3 this cannot be performed on the

acoustic data recorded. This is because in the measurement apparatus the entire

2D domain around the sample is not accessible by the microphone. As can be seen

in Fig. 4.1, only the regions in front of and behind the sample shown in white can

be scanned, whereas the microphone belt prevents the regions in red from being

reached. In this subset of the 2D domain, the angular basis functions einθ are not

orthogonal, such that the relationship in (2.46) no longer holds. To overcome this,

a data fitting scheme was adopted instead of numerical integration. Recognising

that from (2.49) the incident and scattered fields are linear in βn and γn a complex

linear least squares fitting procedure was performed using (2.46) with βn and γn as

the fit parameters. Once the expansion coefficients were determined via fitting, the

scattering coefficients could then be found using (2.51). In comparison to integra-

tion, this method has a drawback in that it is possible for the effects of higher order

angular terms to be fitted into the β0/β1 and γ0/γ1 coefficients, or that effects from

these coefficients themselves are fitted into higher order terms. Although, as will be

shown in the following sections this does not appear to significantly detract from

results.

4.2 Complex Linear Least Squares Fitting and

Error Analysis

The algorithm used to perform the complex linear least squares fitting was the

gelsy routine from the LAPACK library [1], implemented using the Scipy package

in Python. The residuals function that the was minimised by the algorithm was

defined as

χ2 = |~y −X · ~a|2 (4.1)

where |..| denotes the l2-norm, ~y is the vector of all recorded acoustic field data

points, ~a is the vector of containing the fit parameters and X is the matrix containing

the spatial dependency of the multipole expansions, with the columns representing

distinct angular variations. In the case of fitting an incident field the components

an = βn and X is determined using Jn(k0r)e
in(θ−θ0) with distinct n along its columns.

Although the acoustic field data recorded is the average of a few repetitions, the re-
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siduals function does not contain any weights based on the variance of the data

points in ~y to avoid skewing the fit process. Despite the fact a particular yi might

have a low variance, this does not capture the effects of reflections from the wave-

guide edges or other systematic errors in the measurement apparatus, and so the

weights were left out. Under this regime, the covariance matrix of the fit parameters

C is given by [26]:

C =
|~y −X · ~amin|2

Nfree

(X† ·X)−1

= σ2
f (X

† ·X)−1,

(4.2)

where ~amin are the parameters found that minimise χ2, Nfree is the degrees of

freedom of the fit and X† indicates the hermitian transpose of X. In the above, the

variance of the overall fit σ2
f is used to estimate the error in the recorded data and

scale the covariance terms appropriately. The standard deviation of the error in the

fit parameters was then taken from the diagonals of the covariance:

σan =
√
cnn. (4.3)

During analysis the normalised residuals of a fit were also examined to gauge the

relative error, where this can be defined as

|~y −X · ~amin|2

|~y|2
. (4.4)

4.3 Verification of Extraction Method

Figure 4.2: Left: Rigid cylinder scattering coefficients were extracted from. Right: Plots
showing the normalised residuals of fitting the scattered and incident fields of the cylinder
to (2.49) for various orders of n.

To verify that the least squares fitting method was able to accurately extract the

monopole and dipole scattering coefficients, the coefficients of a rigid cylinder were
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determined using the fitting method, and compared to the analytically derived values

in (2.34). The experimental rigid cylinder was a 66 mm length of solid aluminium

rod, with a 50 mm diameter shown in Fig. 4.2, and the results of extracting it’s

scattering coefficients are given in Fig. 4.3. During the analysis, the speed of sound

used in calculations was 343 m/s, taken at 20℃ [11], and the largest angular variation

fitted to the data was of 10th order. This number was reached using trial and error

to try and minimise the normalised residuals over the frequency range of interest.

As can be seen from Fig. 4.2, only using up to 5th order terms causes poor fitting in

the incident field, whereas going beyond 10 up 15th order dramatically over-fits the

scattered field. Using −10 ≤ n ≤ 10 provides normalised residuals less than about

5% above frequencies of 1000 Hz, so this was chosen to calculate the coefficients

for the rigid cylinder and the meta-atoms considered in chapter 5. The generally

large residuals below 1000 Hz seen for all angular orders is caused be the small 5

cm radius loudspeaker in the measurement apparatus being unable to accurately

reproduce these low frequencies, and the fact that the anechoic foam boundaries

absorb sound better at higher frequencies [3].

Figure 4.3: Results of extracting the monopole (α0) and dipole (α1) scattering coeffi-
cients of a 50 mm diameter rigid cylinder by fitting the experimental fields to (2.49) and
comparing the results to (2.34). Error bars show ±2σ in α0 and α1.
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Figure 4.4: Examples of fitting the incident and scattered fields of a 50 mm diameter
rigid cylinder to the multipole expansions in (2.49) to 10th order terms. The experimental
and fitted fields are shown, as are the amplitude of the fields in arbitrary units and the
phase in degrees. The acoustic field is incident from the bottom (θ0 = π/2) and the centre
of the cylinder is situated at the origin. The acoustic frequency in all plots is 2000 Hz.

Examining the results of extracting the coefficients in Fig. 4.3, above 1000 Hz they

generally agree reasonably well with the theoretical values of the scattering coeffi-

cients, with experimental values converging to the theoretical at higher frequencies.

This is in keeping with the observation that the residuals decrease with increas-

ing frequency, implying that systematic errors in the measurement apparatus are

lessened at higher frequencies and the observed scattering is closer to the theoret-
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ical. The main exception to this is that there is a trend for the dipole amplitude to

be slightly lower than theoretical values, especially near 2000 Hz where it diverges

away from the theoretical curve. The error in the phase and amplitude of α0/α1 was

taken from error in the βn/γn multipole expansion coefficients defined in (4.3) and

then propagated using standard error propagation methods. In the plots the size

of the errorbars is 2 standard deviations (±2σ) of the error in α0/α1, as assuming

normally distributed parameters, this represents the 95% confidence interval of the

fit parameters, and shows that the theoretical coefficients generally do lie within the

error margin of the experimental parameters, even at higher frequencies where the

standard error becomes small.

In Fig. 4.4 examples of the experimental and fitted acoustic fields are provided. This

shows some possible explanations for the slight discrepancies between theoretical and

experimental coefficients in Fig. 4.3. The phases of the fitted fields closely match

those of experimental, whereas the amplitude of the bottom part of experimental

scattered field has some variations not captured by the fitting, most likely due to

small reflections in the waveguide. This is in keeping with the observation that

phase of the determined dipole coefficient has less discrepancy than it’s amplitude,

as well as the characterisation of the measurement apparatus in chapter 3.

4.4 Summary

A method of extracting the monopole and dipole scattering coefficients from the

recorded 2D acoustic field data was developed. This uses a complex linear fitting

algorithm to fit the recorded data to the multipole expansions of the incident and

scattered fields described in chapter 2. The method was also verified by comparing

experimental values of the scattering coefficients of a rigid cylinder with the analyt-

ical values. These were found to agree, especially at higher frequencies where there

is less experimental error present in the measurement system.
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Design, Fabrication and

Characterisation of Meta-atoms

Having developed a method of extracting the monopole and dipole scattering coef-

ficients in the previous chapter, this chapter will apply this method to fabricated

meta-atoms. Designs previously presented in the literature will be characterised and

the results compared to simulated values also taken from the literature. Modified

versions of one of these designs will also be examined, for the sake of interest.

5.1 Selected Meta-atom Designs and Fabrication

Methods

In total four meta-atoms were fabricated and characterised for this thesis. Two

of these had already been presented in [4] and [17] and the others consisted of

slight modifications to the design in [4] in order to try and observe a shift in the

monopole and dipole resonances. The designs in [4] and [17] were selected as they

had been numerically modelled to determine expected multipole resonances and their

symmetrical geometry was shown to not couple the monopole and dipole scattering

in [4] which is an important assumption of the extraction method. Diagrams of the

designs are shown in Fig. 5.1, and photos of the fabricated meta-atoms in Fig. 5.2.

All of the designs were fabricated by 3D printing them using PLA plastic with a 0.1

mm layer thickness, to a height of 66 mm. The top of the meta-atom is left open

to ease fabrication, and due to it sitting relatively flush with the top plate of the

waveguide a printed top is not necessary. The working principle of these meta-atom

designs is similar to that of the labyrinthine meta-surfaces described earlier. Here,

the narrow sub-wavelength zig-zag channels increase the propagation length of a

sound wave has to travel as it enters the exterior to the centre radius. Consequently

it possess a high refractive index relative to the background medium [4], and the

eight-fold angular symmetry allows for multipolar resonances to be sustained. Where
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changing the met-atoms internal geometry allows for the frequency of the resonances

to be controlled [4].

Figure 5.1: Diagrams of the meta-atom designs that were characterised. Meta-atom A
was taken from [4], B from [17] and C and D modified versions of A. The diagram of
meta-atom B defines the parameters wall thickness ‘t’, channel width ‘w’ and meta-atom
radius ‘R’. For A: R = 50 mm, w = 4 mm and t = 1 mm B: R = 40 mm, w = 6 mm, t =
2 mm. C: R = 25 mm, w = 4 mm, t = 1 mm. D: R = 25 mm, w = 2 mm, t = 0.5 mm.

Figure 5.2: Fabricated meta-atoms, the diagrams of which are in Fig. 5.1. All meta-
atoms were 3D printed using PLA plastic with a 0.1 mm layer thickness to a 66 mm
height.

5.2 Determining the Acoustic Scattering Coeffi-

cients of Meta-atoms

5.2.1 Meta-atoms presented in the literature

Meta-atom A

In the paper featuring meta-atom A, Cheng et al. [4] perform a semi-analytical de-

rivation of the multipole expansion coefficients of the scattered field (γn) with the

aid of numerical simulations. They found that the meta-atom should have a mono-

pole resonance at 518 Hz and a dipole resonance at 1080 Hz. The results of their

calculations are given in Fig. 5.4, where they also include the calculated quadro-

pole expansion coefficient. To compare with those results the dipole and monopole

38



Chapter 5 Design, Fabrication and Characterisation of Meta-atoms

scattering coefficients of meta-atom A were experimentally determined by fitting

the scattered and incident fields to the multipole expansions in (2.49) as described

in chapter 4, the results of which are in Fig. 5.3, as is the normalised residuals of

the fitting. As in [4] they present the multipole expansion coefficients (γn) of the

scattered field, and not the scattering coefficients which have been normalised with

respect to the incident field (αn) as defined here, the determined αn need to be

modified for a direct comparison. This can be done by approximating the incident

field as a perfect plane wave, in which case from (2.34) γn = inαn. This conversion

has also been included in Fig. 5.3 to facilitate a direct comparison, however it does

not effect the monopole phase or either coefficients amplitude.

Figure 5.3: Top and middle: Results of extracting the scattering coefficients of meta-
atom A. The zero crossings of the phase, associated with resonances have been indicated
in red, for α0 at 630 Hz, α1 at 1220 Hz. Bottom left: Scattered field expansion coefficient
iα1 for comparison with Fig. 5.4. Error bars correspond to a standard deviation in the
error propagated from the fit parameters. Bottom right: Normalised residuals of fitting
the scattered and incident fields.
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Comparing Figs. 5.3 and 5.4, the experimentally observed resonance in the amp-

litude of the dipole coefficient is much broader than that derived in [4], which is

most likely due to increased loss in the real meta-atom such as viscous drag with

the surface that was not fully accounted for in [4]. As the resonance peak is broad,

the experimental resonant frequency is instead defined where the scattered field is in

phase with the incident field such that the phase of the scattering coefficient is zero.

These zero crossings are easily seen in Fig. 5.3 and marked in red. Here the mono-

pole resonance is found to be at 630 Hz, and the dipole at 1220 Hz which are 112

and 140 Hz respectively, above the calculated resonances. This shift is again likely

due to effects not considered in [4], such as non-perfectly rigid walls transmitting

some of the sound or other properties of the real meta-atom material.

Figure 5.4: Semi-analytically derived scattered field expansion coefficients of meta-atom
A, taken from [4]. Here m represents the angular order of the coefficient.

Looking at the phases in Fig. 5.4 compared to the phases of α0 and iα1, the exper-

imental values behave similarly. For α0 in both plots there is a sharp increase to

180° before resonance, followed by a dip to -180° and a plateau at about -100°. iα1

is less similar with an anomalous peak to 180° near 500 Hz, however the rise from

near -180° to 0° slightly after resonance can be seen in both. These findings are also

effected due to the error in the experimental values in Fig. 5.3 being quite large,

especially at low frequencies where the monopole resonance cannot be discerned in

the amplitude plot. This is most likely due to to the size of the meta-atom relative

to the acoustic scan area. The scan area was kept to an area below or equal to
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40 cm X 40 cm when characterising meta-atoms to avoid reflections from the edges

and reduce the length of time for a scan. The large meta-atom A radius at 50 mm

reduces the percentage of the angular field captured around it, which would increase

the error of the fitting.

Meta-atom B

Figure 5.5: Top and middle: Results of extracting the scattering coefficients of meta-
atom B. The zero crossing of the phase associated with the resonance has been indicated
in red, for α0 at 1330 Hz. Error bars correspond to a standard deviation in the error
propagated from the fit parameters Bottom: Normalised residuals of fitting the scattered
and incident fields.

In the experimentally determined scattering coefficients of meta-atom A the dipole

resonance is reasonably distinct, however the monopole resonance near 500 Hz is

more difficult to discern as this low frequency region is subject to the most error.

In order to see a monopole resonance more clearly, Meta-atom B was selected, as
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Lu et al. [17] derive using the same method as in [4] that Meta-atom B should

have a monopole resonance at 1360 Hz which would place it in a less error prone

frequency region. Lu et al. [17] do not calculate any other resonances apart from

the monopole, so Meta-atom B was characterised only to compare this value. The

results of determining its scattering coefficients are provided in Fig. 5.5. From this

figure the experimentally determined monopole frequency is 1330 Hz, a result which

is within the 50 Hz data point spacing from the expected 1360 Hz. This is much

more accurate than the resonances seen in meta-atom A, and there is also a large

reduction in the error of the scattering coefficients. This could be due to a number

of reasons, one of which is the reduced 40 mm radius allowing for a larger angular

percentage of it’s field to be captured in an acoustic scan. Also, the thicker walls of

meta-atom B (2 mm compared to 1 mm of meta-atom A) and the wider channels

(6 mm compared to 4 mm) would reduce the effects of material properties such as

transmission through a wall or viscous drag with the edges of the channels.

5.2.2 Modified meta-atom designs

Meta-atom C

Having experimentally observed reasonably distinct monopolar and dipolar reson-

ances in the scattering coefficients of meta-atoms A and B, meta-atoms C and D were

designed by modifying A to try and shift these resonance frequencies. As neither

of these designs were modelled, the modifications were simply based on heuristic

principles derived from the meta-atoms working principles in [4]. Meta-atom C was

designed by keeping the internal channel structure of meta-atom A, but reducing it’s

external radius by half; to 25 mm. The assumption here being that having the same

effective properties, but a halved radius should shift the monopole resonance from

630 Hz observed previously, to somewhere above 1200 Hz. The results of this are

given in Fig. 5.6. Here there is a distinct resonance at 2170 Hz; higher than what

was expected, which most likely indicates some non-linearities in the properties of

this type of meta-atom. Due to the estimate nature of the expected resonance, this

result to some extent confirms that decreasing the meta-atom radius while keep-

ing other parameters constant will increase it’s monopolar resonance. The error

in the scattering coefficients here is also reduced when compared to the results of

meta-atom A, which is in keeping with the trend that smaller met-atoms allow for

improved fitting of the acoustic fields.
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Figure 5.6: Top and middle: Results of extracting the scattering coefficients of meta-
atom C. The zero crossing of the phase associated with resonance has been indicated
in red, for α0 at 2170 Hz. Error bars correspond to a standard deviation in the error
propagated from the fit parameters Bottom: Normalised residuals of fitting the scattered
and incident fields.

43



Chapter 5 Design, Fabrication and Characterisation of Meta-atoms

Meta-atom D

Figure 5.7: Top and middle: Results of extracting the scattering coefficients of meta-
atom D. Some zero crossings of the phase can tentatively be observed to indicate resonance,
these have been indicated in red, for α0 at 925 Hz and α1 at 580 Hz. Error bars corres-
pond to a standard deviation in the error propagated from the fit parameters Bottom:
Normalised residuals of fitting the scattered and incident fields.

Meta-atom D was design by scaling all the dimensions of meta-atom A down by half,

so that it’s radius was the same as meta-atom C but it’s internal structure was much

narrower and had more zig-zag channels. This was done to to observe how this would

effect the resonances, with assumption being that they would have a similar profile to

meta-atom A, except potentially shifted higher in frequency. From the results in Fig.

5.7, this assumption is immediately shown to be invalid. The scattering coefficients

have a much more complicated profile than the other meta-atoms characterised,

with potential zero phase crossings corresponding to resonances at 925 Hz in α0

and 580 Hz in α1. However, due to the large error in the plots these are tenuous
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observations. The main source of error in these results is that the residuals in the

scattered field are large; much larger than meta-atom C, even though it has the

same radius and angular percentage of the acoustic field recorded. This could be

due to the scattered field of the small features in the geometry being more sensitive

to reflections and interference in the acoustic measurement apparatus, or that the

thinner 0.5 mm wall thickness and small internal channel width tends to transmit

low frequency sound which decreases the ability of the mutlipole expansions in (2.49)

to accurately represent the acoustic field.

5.3 Summary

The monopole and dipole scattering coefficients of four fabricated meta-atoms were

successfully determined using the method from chapter 4. The experimental results

of meta-atoms A and B, which had had been previously described in the literature,

were found to agree with simulations performed in the papers the meta-atoms were

taken from. Error at low frequencies detracted from observed resonances in design

A, but design B had excellent agreement. The designs C and D were modified

from A and also characterised. Here, the monopolar and dipolar resonances were

found to be shifted from the original design, with meta-atom D gaining additional

complexities in the profile of it’s scattering coefficients.
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Conclusions and Future Work

6.1 Conclusions

This thesis detailed the development of an experimental method to determine the

monopole and dipole scattering coefficients of meta-atoms. As the monopolar and

dipolar response of meta-atoms have been associated with parameters critical to

the design and performance of AMM and metasurfaces, experiemntally determin-

ing these scattering coefficients represents a significant step toward realising the

potential of AMM to arbitrarily control and structure acoustic fields.

To reach this aim, three main objectives were met. The first of which was to modify

an existing acoustic field measurement apparatus in order to accurately record 2D

acoustic field data. Chapter 3 described the modifications and testing that was per-

formed on the system during this process. This focussed on removing distortions

in the recorded field and minimising interference due to reflections by optimising

the anechoic foam edging of the apparatus, adapting the cable management system

and microphone control programs to provide accurate positional information, and

changing the acoustic source to a small 5 cm diameter loudspeaker to better ap-

proximate a point source. Chapter 3 also defined the experimental procedure used

to record accurate field data. The second objective was to develop and verify a

method of extracting the multipole scattering coefficients from the acoustic data.

This was presented in chapter 4. Where, based on the theory of acoustic scattering

and multipole expansions outlined in chapter 2, a method using a complex linear

fitting of the scattered and incident acoustic field data was described. This method

was then verified by extracting the scattering coefficients of a rigid cylinder and

comparing them to analytically derived values. The experimental values were found

to agree with the analytical, with better agreement seen at higher frequencies above

1000 Hz, where both the small loudspeaker and anechoic foam boundaries of the

measurement apparatus have better performance, and the experimental error of the

method is decreased. The final objective was to successfully apply this method to

meta-atoms, which was the topic of chapter 5. Here two designs already existing in
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the literature were characterised. Both of these were experimentally found to have

monopolar and dipolar scattering coefficients closely matching simulated values of

the resonances taken from the literature. Error at low frequencies somewhat de-

tracted from the results, however higher frequency monopolar resonance above 1000

Hz was found to have excellent agreement with the expected value. Two additional

meta-atom designs were also characterised, where these were slightly modified ver-

sions of a meta-atom previously tested. Due to the modifications, shifted monopolar

and dipolar resonances were also observed.

6.2 Suggestions for Future Work

Suggestions for future work focus mainly on further developing and improving the

experimental apparatus and method of determining monopole and dipole scatter-

ing coefficients, as well as characterising more advanced meta-atom geometries. As

the experimental error in the method decreases at higher frequencies, increasing

the cut-off frequency of the acoustic measurement system would provide a larger

range of accessible low error acoustic frequencies. This could be done by modifying

the microphone gantry arm to allow the microphone belt to sit flush with the bot-

tom of the parallel plate waveguide, such that the two plates can be brought closer

together while maintaining the efficacy of the anechoic edging. Another improve-

ment to the apparatus that may decrease measurement error would be to correct

the slight bowing in the top parallel plate, however the level of difficulty to do so

might be restrictive. The scattering coefficient extraction method could also be

further improved by determining the optimal area of an acoustic scan for a given

meta-atom size. This would look at the trade-off between reflections from edges and

the relative percentage of the angular field recorded, as optimising this may signi-

ficantly decrease the error seen when characterising a larger meta-atom. Finally,

the extraction method could also be extended to experimentally investigate more

advanced meta-atom designs. This could look at asymmetrical meta-atoms that

couple monopolar and dipolar responses for applications in improved transmissive

acoustic metasurfaces.

47



Bibliography

[1] LAPACK - gelsy. https://software.intel.com/en-us/mkl-developer-reference-c-

gelsy.

[2] Banerjee, B., 2011. An Introduction to Metamaterials and Waves in Com-

posites. CRC Press/Taylor & Francis Group, Boca Raton, FL. ISBN 978-1-

4398-4158-7. OCLC: 861618489.

[3] Beranek, L. L. and Sleeper, H. P., 1946. The Design and Construction of

Anechoic Sound Chambers. The Journal of the Acoustical Society of America,

18, 1 (Jul. 1946), 140–150. doi:10.1121/1.1916351.

[4] Cheng, Y.; Zhou, C.; Yuan, B. G.; Wu, D. J.; Wei, Q.; and Liu, X. J.,

2015. Ultra-sparse metasurface for high reflection of low-frequency sound based

on artificial Mie resonances. Nature Materials, 14, 10 (Aug. 2015), 1013–1019.

doi:10.1038/nmat4393.

[5] Craster, R. V. and Guenneau, S. (Eds.), 2013. Acoustic Metamaterials:

Negative Refraction, Imaging, Lensing and Cloaking. No. v. 166 in Springer

series in materials science. Springer, Dordrecht ; New York. ISBN 978-94-007-

4812-5. OCLC: ocn815367245.

[6] Cummer, S. A.; Christensen, J.; and Alù, A., 2016. Controlling sound
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