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PREFACE 

This dissertation is an account of work carried out between 

February 1972 and November 1974 at the Department of Applied Mathematics, 

Research School of Physical Sciences, the Australian National University, 

for the degree of Doctor of Philosophy. 

Initially , studies commenced under the supervision of Dr. P. 

Richmond on the dispersion interaction between optically active 

molecules and on dynamical image interactions. A large portion of this 

work entails the re-derivation of known r es ults using much simpler 

classical methods (Part III). However, the result on the three-body 

interaction between optically active molecules is new. 

In Part I, the work on the interaction between identical double 

layers (Chapter 1) was carried out in collaboration with Dr. J.W. Perram, 

Mr. L.R . White and with Dr. T.W. Healy of the Department of Physical 

Ch mistry, University of Melbourne. The study on the interaction between 

d·ssimilar double layers (Chapter 2) was a joint effort with 

Mr. L.R . White. 

In Part II, the investigation on phase transitions in polymer 

solu tions (Chapter 1) was carried out in collaboration with Professor 

B.W. Ninh m, whil that on polymer adsorption (Chapt er 2) was with 

Professor B.W. Ninham, Dr. D.J. Mitchell and Mr. L.R. White. 

None of the work report ed here has been submitted to any other 

institution of learning for any degree . 

(D. CHAN) 
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ABSTRACT 

The subject matter of this thesis falls into three parts. 

In Part I, the electrostatic interaction between plane parallel 

double lay rs is investigated under the Gouy-Chapman approximation. Each 

surface is considered to develop a surface charge by the association of 

ionizable surface groups. The interaction process is assumed to be at 

electrochemical equilibrium. An adsorption isotherm for potential 

determining ions can then be derived relating the surface charge and the 

surface potential in a self-consistent manner. This is used in place of 

the usual constant charge or constant potential boundary condition. In 

Chapter 1 the interaction between identical amphoteric surfaces are 

st udied in detail. The relation between this new boundary condition and 

the constant charge or potential approximation is discussed . Numerical 

calculations based on model systems for hydrous oxides are given. In 

Chapter 2 the interaction between dissimilar amphoteric surfaces are 

considered . A new method, similar to the method of isodynamic curves, is 

developed to study this problem. This method can provide a qualitative 

d scrip tion of the salient features of the surface charge , the surface 

pot ntial and the pressure between the surfaces, as a function of 

spar t'on without f'rst having to obtain an exact solut ion of the 

problem . 

In Part II, Chapter 1, a physical theory of phase transitions 

in polymer solutions is given in terms of long range dispersion 

inter ctions b · tween the solvent and the polymer. The theory is based on 

am n fi ld approximation and th parameters used are given in terms of 

m surabl dielectric and spectroscopic properties of the polymer and 

solv nt . This provides a physical explana tion of the 8 temperature and 

also a criterion for the selection of 8 solvents . In Chapter 2, the 

st tiscical me hanics of an adsorbed polymer is considered . The polymer 

is modell d as a string of non-int racting beads confined to a half-space 

by an impenetr ble flat surfac e . Each bead interacts only with the 

sur ce vi · a one-body potential . Conformation 1 prop rties of the 
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dsorb d polym ~r, such as th number of beads adsorbed, the spread of 

adsorb d beads on the surface, the density of beads away from the surface 

and the centre-of -mass of the polymer are derived. The behaviour of 

these quantities are found to undergo an adsorption/desorption phase 

transition at some critical value of the adsorption energy parameter. 

Assuming that the substrate-polymer interaction is due primarily to 

dispersion forces , it is possible to determine whether or not a given 

polyrner/solv nt/substrate system will exist in the adsorbed state. It is 

also found that temperature induced and mixed solvent induced phase 

transitions ar theoretically possible. 

In Chapter 1 of Part III the two- and three-body dispersion 

interaction energy between optically active molecules are studied using a 

semi-classical method. In Chapter 2, classical electrodynamics is again 

us d to consid r modifications to the static image potential between a 

moving charge and a half space due to surface plasmon excitations. It is 

demonstrated that in both examples, semi-classical methods are easy to 

use and also give the same results derived using more elaborate quantum 

mechanical analysis. 
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PART I 

ELECTROSTATIC DOUBLE LAYER INTERACTIONS 

AT ELECTROCHEMICAL EQUILIBRIUM 



CHAPTER 1 

DOUBLE LAYER INTERACTIONS UNDER SURFACE 

IONIZATION EQUILIBRIUM - IDENTICAL SURFACES 



l o INTRODUCTION 

A central problem in colloid science is the determination of 

th . l . . i l (1,2,33-36) particle-part1c e 1nteract1on potent a • Deryaguin and 

Land u(l) and Verwey and Overbeek( 2
) (DLVO) were the first to consider 

thls problem in detail. They considered " clean" particles with no 

adsorbed macromolecules and assumed the potential may be written as the 

sum of electrodynamic (van der W als or disper ion) and electrostatic 

interac ions . 

In the DLVO formalism, it is assumed that the electrostatic 

ontribution can be evaluated separately from tl1e e lectrodynamic 

contribution. In solving the electrostatic problem, it has been usual to 

as s um, as boundary conditions , that constant harg or constant 

potent ' al is maintained on eith r or both surfac s throughout the 

int ra·tion. Typically, the surfaces acquire a net charge by one or more 

of the following pro sses : ( 3 , 4) 

( i.) th pres nee of ioniz bl . s urfac groups, such as -COOH, -NH 3 

0 rnphot ri groups (e.g. oxides which by the dissociation or 
' 

so l r ti n 0 potential det rmining ions (PDI) give the particles a net 

g . , 

(ii) the un 

up th p i .l ( 

(.ii) th. s 

s rounding m,diu 

•or c rt n ur 

cl<l t> ts , th 

qu 1 di 

. g. Agl 

1 tiv 

. 

es , wh r 

solution of oppositely C arged ions which make 

crystal 

ad 0 ·p 

th 

in water) ; 

i.on of 

I a g i 

parti 

du :i 

' 

a nd 

ular ion-type f rom the 

or A mpl , to s trong 

nst nt charge as ump ion may lnd _ db cor rect. 



How v r, t 1er are as yet no rit ria for sel ting the ex ent to which 

such an assumption is valid, nor are there criteria for determining a 

priori whether a constant charge or constant potential interaction is 

2 

m r appropriate for many other important colloidal systems. While Frens 

(5 6) 
nd Ov rbe k ' did show that a perturbation of th bulk electrolyte 

·omposition r sulted in a relatively slow restitution of the equilibrium 

pt nti 1 fan Ag/Agl electrode , there is yet no direct measurement of 

he ability or otherwise of particles to adjust ion populations at the 

sur c and in the interparticle fluid during c llision. 

int r 

A very extensive literature exists on th· calculation of 

(] 2 7- 17 55-58) ·tions b tween charged flat plates . , ' ' and 

sph 
(10-12,18-22) 

s under constant surfa e ·harge or potential . Cases 

1nvo1v·ng closed systems , C23 ,z 4) zero surface charge, (2S) "periodic" 

(26 27) . (28) 
surfa - ch rg s , ' and oth r geom tries such as cross cylinders 

nd 
(24 ,29 30) . 

rr ys ' have also been studied. An alcernativ to the 

~on tanc h rge or potential pproach has also b en developed where the 

s urfa e pot ntial is related to surfac one ntration of PDI by the 

:'.l n t riu tin, <24 ) or a Langmni typ d . . -h (31) a sorption 1sot erm. 

In this chapter we shall extend a recent approach due to Hinham 

nd arsegian( 2) 
(h reafter referred to NP) jn which the as 

1 tr<JSt ti por rrt ial of ea h of th int ·- r cting surf ac£· is r (:! ( r u ] a t l~ d ~· 
during h by those quilibria at th su fac that are responsible 

h v _lopm nt of th surf ·harg. In th r words , the magnitude 

of the su f · a g which J _t min s tl porenti ~l distribution in the 

di u ~ J ye is it s 1 giv n as a sel - onsi tent functional of th 

surf · po rt · 1 . This cone pt of a s •lf-consist · nt r lationship 

h '[W n h u E ch rg nd potential s in f t b en exploited to 

int rpr t d rption d t 
( 7) 

nd mobilit nd titr tion xperim nts on 

pv L sLyr•n ] c Lt i (3 8 
and t.ydc i l . (3 -;2) 

u 0 . 



We shall consider the situation where the ap proach of the 

int racting surfaces is sufficiently slow so that electrochemical 

quilibrium is maintained at all times during collision. This is not an 

assumption of "constant potential". Indeed it will be shown that 

nditions can be such that bot h charge and potential may change 

signi icantly during the interaction. Alternatively, if conditions are 

av urable for regulation then changes in charge or potential will be 

minimal during interaction. 

We extend the NP model, which includes only basic surface 

g oups ,( 32 ) to a general amphoteric surface(43 ) involving surfac e 

quilibria that are controlled by the chemical potential of PDI in bulk 

so lution. We consider the simplest configuration of the two such plane 

surfa .es interacting across a 1:1 electrolyte which contains PDI. The 

diff use layer is assumed to be governed by the Poisson-Boltzmann (PB) 

equ tion. (The problem of interacting charged cylinders bearing basic 

3 

surface groups has been considered by Brenner and McQuarrie(44 ) using the 

lin arized Poisson-Boltzmann equation.) No attempt is made to model the 

inn r S rn region (see section 3). 

I t is not necessary to specify th natur . of the PDI. Howeve r , 

fr th purpos s of comparing t heoretical r esult s wi th experiments, i t is 

+ onv ni nt to assume that H and OH ar PDI as chis is the case fo r 

~ 11 ids with amine , carboxylate , sulphonate, etc . surface groups. 

These restrictions simplify the mathematic and also allow us 

t lu 'dat in a lear manner the physics un lerlying the influence of 

ad~orpti n (o f PDI) on particle-part icle intera . (45,4 6) 
ion. 
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2o FORMULATION 

We onsider initially a planar surface bearing ionizable 

amphoteric groups in contact with a solution of 1:1 electrolyte. The 

+ -
bulk concentration of PDI or the bulk pH (since H and OH are assumed to 

b PDI) may be controlled. The reactions at the surface, written as 

diss ciation reactions, are 

AH
+ _.. + 

~ A+H 

BH 
+ 

B +H 

The relative concentrations of positive (AH+), neutral (A, BH), and 

(2.1) 

(2. 2) 

n gative (B-) surface sites are related to the hydrogen ion concentration 

at the surface [Hl in the form 
s 

= (2. 3) 

= [BH] • K (2. 4) 

wh r K+ and K_ are the effective surface di.ssociation constants for the 

above process s. 

Th arguments involve d in obtaining _quations (2.3) and (2.4) 

ar . ll w. Assum ng tl a random mix ' n g st j st cs apply, the tota l 

(random) numb r of configurations available ton+ charged and n 0 

un h rg d sp cies (AH+ and A say) is(4 , 39 ) 

A . s th to al number of A-typ sites per unit ar a . The electro-

, h mi alp t nti 1 of asp ci i can then be wri ten as 

= '. I ,
0 + k 'f I 

v.l + k 'f I 
V. t-' /,, TL i /,, r l I i (2.5) 

wh r th lat errn r pr sent th e con ntration ( .) d pendent part of 
1-

h f r n rgy of interaction of spe ·is i with its environment . The 
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electrochemical potential µ? corresponding to some standard state, is 
l 

concentration independent. Contributions to the activity coefficients y, 
l 

c n be divided into two parts: an electrostatic interac tion with charged 

sp cies on the surface and in the electrolyte, and a dispersion 

interaction with neighbouring molecules. Hence for each species in the 

rea tin 

(2.1) 

w r i_ e 
0 l + µ = µ + kT n [ AH ] + kT ln y + e 

AR+ AH+ + s 
(2. 6) 

µA = 0 
µA + kT ln [A] +k Zn Yo (2. 7 J 

0 + kT ln 
+ 

µ + = µ + [ H ] + kT ln y + e ljJ 

H H 
s H+ s 

s 

(2. 8) 

Th le trial part of P should involve the micro-potential at the site, 

but h · 
s 

only the mean surface potential will be used. 

tant mount to neglecting discreteness-of-charge effe ts. (
9

) 

qui re::s 

µ = - + ~ 
AR+ 

µA µ + , 
H 

hen m qu tions (2 . 6) - ( 2 . 8) e have( 47 ) 

[A] • [H+] 
0 s Ko = ---

[AH+] y -y + + ' + H 
s 

wh th bulk dissociation onstant K 0 is d fined by 
+ 

= [( o o o I J exp - µ - µ ) k T • 
AH+ A H 

This is 

Equilibrium 

(2.9) 

(2 .10) 

(2.11) 

ln genera th ratio of activity coefficients in (2.10) i s not 

i P nd nc of [A], [ H+] and [H+] • To al ulat the functional 
s 

tl p nd n f this ratio up n the relevant on entracions would require 

st ist· al theory of surfac ctivity coeffi ients for high 



cone trations, and such a theory is not available. However to proceed 

u th r without su ha theory, all that is required is that the ratio of 

ctlvity coefficients remain sufficiently constant as the surfaces 

approach each other so that the ratio of concentrations in (2.10) can be 

giv n by an effective surface dissociation constant. The activity 

co ff'cients Y+ and Yo measure the dispersion interaction of AH+ and A 

with their environment . Since AH+ and A are similar molecular units, 

their polarizabilities and hence dispersion interaction energies with 

neighbouring molecules are expected to be similar, i.e. Y+ ::: y O • The 

surfac tivity coeffici nt of PDI is a function of the ionic 

6 

cone ntration at the surface, which in turn ic determined by the surface 

poc ntial. As we shall show later, ~s the surface potential remains 

airly constant in an equilibrium approach so the surface ionic 

nc ntration does not change dramatically throughout the interaction. 

Further, since activity coefficients are moderately insensitive functions 

of concentration,( 59 ) the surface activity coefficient of the PDI at 

infinite separation should be a good approximation to the surface 

c ivity o fficient during approach. 

'h a gum nts imply that the ratio of 01 entration in (2.10) 

ic to a 1 rg d gree constant throughout the approach of the surfaces and 

h justify, co a first approximation, the use of an equilibrium 

d 's ·iation c nstant giv n by 

K 
+ = 

Y+ 

Yo Y + 
H 

s 

(2.12) 

A sim'la r rgument s hould also apply regarding the us e of the other 

e tiv di~ . ociation constant K • We should not here that the surface 

diss lc ti n 

loid sy t 

onstants K+,K- ar ac essible f om m a s urements on stable 

(38,48) 
ms. Returning nowt equations (2.1) and (2.2), let 
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us consider the surface charge density that arises from the dissociation 

r actions . 

For NA and NB surface sites per unit area for each species, the 

n t surface charge density is 

(2 .13) 

e r 

e+ 
[AH ] li:_H+j_ 

= = 
[AH+] + [A] 

N 
A 

(2.14) 

and 
-· l_B-=._t 

8 = 
[B ____ ] -

--· - NB [BH] + [B ] 
(2 .15) 

a the fra tions of positively and negatively charged sites, and e is 

th protonic charge . If the local density of ions in the electrolyte is 

related to the electrostatic potential~ at that point by the Boltzmann 

di tribution, then for a s urface potential iµ we h ve 
s 

[ H +] = H exp ( - e lV / k T) , 
s s 

(2.16) 

w1er His ch con entration of hydrogen ions in tl1e reservoir. Using 

qu ti 11s (2. ) and (2.4) we can rewrite the surface charge density as 

= 
e NA 

l+ (K+/H) exp( iµ
8

/kT) 

e NB 

1 + (H/K ) xp (- e 4J /kT) • 
- s 

(2.17) 

T1 i _ n b nsid~red as an adsorption isothe rm of the POI (H+) whi ch, 

f o r giv n bulk pH, relates the surfac charg density to the surface 

p 1 . 

For bulk cone ntration · (moles /l i t e ) of po.:>itive or 

n ~g ttv sp is (PDI + inert supporting el ctroly te) the net volume 

g l n ity P ( rn- ) at the point whe r e th pot ential i s iµ is 

( = .. v g d r ' numb r) 

p = 10- 3 N [ p( -eiµ /l'f) - ~p( eijJ /kT)] . (2.18) 
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The potential is in turn related to the charge density by Poisson's 

equation 

4 n 
E p ' (2.19) 

where E is the dielectric constant of the solvent. 

We shall examine the behaviour of the surface charge, surface 

potential and the free energy of interaction of two identical amphoteric 

lat s urfaces as a function of their separation. We set up a system of 

Cartesian axes with the origin midway between the surfaces which are 

situated at z= ±L. From the symmetry of the problem, we can confine our 

attention to the region O~z~L. Combining equations (2.18) and (2.19) 

(in one dimension) we get 

sf1 
dz 2 = 

4n Nee 
~ 

10
3 E [exp(e4'/kT) - exp(- e-iµ/kT) J • 

which must be so lved together with the boundary conditions 

~ 
dz 

_d l~ 
dz 

In terms of the reduced va riables 

and 

2 
K 

y 

X 

z=L 

z=O 

= 

= 

= 

= 

4n o 
E 

0 • 

eiµ/kT 

KZ 

(2. 20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

where is th inverse Debye screening length , equation (2 .20) become s 

E:_y 
dx2 = s inh y • (2 . 26) 

A first integration t ogether wi th equation (2. 22 ) gives 

[f)' = 2 ( osh y - cash y
0

) , (2.27) 



wh r Yo= eip(O)/kT is th r duced mid-plane potential. The rernainig 

boundary condition (2. 21) gives 

9 

41re 2 

[ ] 

2 

EK kT O 
= 2 (cash y

1 
- cash y 0) , (2. 28) 

wh r y = eip (L) /kT = eip /kT is the reduced surface potential. 
L s 

The second integral of (2.27) can now be taken. The 

mathematics involved is straightforward. The details are given in a 

numbe of pap rs. 
(49) 

A s ubst i tut ion 

<P = exp (- e I lJi I/ 2kT) = exp (- I y I/ 2) (2.29) 

· nabl s us to write the solution in the form 

¢ (z) 
[ 

KZ 2 J 
q> 0 Cd ·2 'Po ; ¢ 0 , (2.30) 

wher cd(x;k) is a Jacob· elliptic function of argument x and modulus 

k~(SO,Sl) In particular, using 

<Po ·- ct> (0) = exp (- e I lJJ ( 0) j / 2kT) = exp (- I Yo I / 2) (2.31) 

nd 

¢1 - ct> (L) = exp(- el~1(L) I /2kT) - exp ( - I y L I / 2) (2.32) 

= ¢0 c:d [-~!:.. . ~ l - exp ( - e I lJ; I / 2kT) 
2 <Po ' 8 

(2.33) 

uat · n ( .... 2 8) becomes 

[ 4n r er 2 ( 2 - 2 ( 2 - 2) = <PL + qiL ) - Cfi o + <Po E' kT 
. (2.34) 

E ua i.on (2.17), (2.33) and (?.34) constitute a single transcendental 

qua on to b solved for cp 0 • Thus given the bulk concentrations of PDI 

( r quival nt y, the value of the surfac potential at infinite 

a cti n) and supporting ine t lectrolyt: , th surface IJOtential iJJ 
s 

and h 

tun on 

11·p ' 

ur c charg d nsity o may be found s lf-consistently as a 

h s paration (21). 

U ing th small argum nt asympt ti orrns of the Jacobi 

. (51) un t1ons 
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cd(x·k) ~ l+O(x2
) (2.35) 

j oll .· imm ' diately fro m e quat ion::; ( 2 . 17) and ( 2.34) that as L -+ O (for 

f . d ) o O nd the surface pot ntial is given by a Nernst l X , , 

. ( ) 
quation : 

H r ::. h 

wh re 

1/J (O) ljJ -+ 2 . 303 .k T (pH 0 - pH) . 
s 

on s c nt H0 is given by 

= 

y 

( 2 . 36) 

(2.37) 

(2.38) 

1. the: ah.·eric ~ of specifi adsorption (ap a rt from PDI) pH0 will be the 

t ull pH rresponding to the point-of-zero charge (pzc). 

ln view of result (2.36), the r pulsive pressure between the 

( 2 ,1 3) 

r = 
2NckT _ 
1 ~ [cosh( e.~1(0) /kT) - l] (2.39) 

r ::. m i s fini _ for all separations. 

Th above an lysis wh -re che a id ic and basic groups are 

i s tlr t .h mic al s pe _l s, iv applicabl _ to bio·-colloids (BH = -COOH, 

+ 
L H = - t H ) • How v r, ther are a la1·ge numb r of hydrous oxide colloids 

wh r th am · surf e grou p can disso " iate to giv both positive and 

g ctL iv s it s ( . g . Ti0
2

, F 
2 

03 , Al
2 

0
2 

and Si02 ). In g n ral, the ::, 

s ur f a ..., 

tiun pro ss s hav h form 

AH~ ~ AH + H + ( K ) 

AH ~ A ( K ) (2.40) 

nalysi s till hold. ex pt rhat qua tion (2 .17) for the 

h ge d n::;ity should b r p la ed by (N amphoteric surface 
s 



2 group / ·m ) 

(H/K) exp(- iJ; /kT) - (K /H) exp(etjJ /kT) 

11 

0 = eN 
s 

+ s - s 
_l _+_(_H_/_K_-._)- exp(- eiJ;s/kT) + (K_/H) exp (eij;s/kT) · (2 · 41 ) 

Alld s be or as L 0 

41 ~ 2. 303 k: (pH 0 - pH) , 
s 

(2. 36) 

wh 

= (2.42) 

ULTS AND DISCUSSIONS 

In ord to examine the effect of regulation on the surface 

and potential, it is necessary to select values for the 

disso i c tion onstants K+ and K_. An example of particular practical 

j pot nc involves aqueous susp nsions of hydro us oxides where H+ are 

PDI. c is appropr:iat 
. (52) 

to consid r two typical classes of surfaces 

i or \v h j h p K = p K _ - p K + is s ma 11 , 6 K = 3 say and , f or which 6 p K is 1 a r g e 

l\pK = 6. Sine it is important, for the purpos s of omparison, to keep K 

c ns ant whil varying pH over a wide range, we have elected the 

fullowlng wo ass : 

A) pl\ = 7 , pK+= .5 , pK_=8.5, t, pK = 3 

B) pH0 = 7 , pK = 4 , pK_=lO, D. pK=6. 

· al ~o t k h 4ensity of su -face sites N to be(S 2) 
s 

Using th 

d h Cl 

b " Pc dti n. 

1 - J M 

b V <l ta W 

n gy 

N 
s 

= 5 1014 - 2 cm 

alculat d the surface pot ntiaJ, surface charge 

intra - Lon as a fun tion f the particle 

h v r ia ti n of th s u f · p c n t ial ~ ith s paration for 

1 11 = 9 'A) r ' ses A) nd (B) is shown in 



ig rs .1 nd 3.2 e~p tiv ly. The variation o th surface charge 

n icy o with separation is shown in Figure 3.3 for several values of 

th s ucfa e poce ti 1 at infinite separation. The effect of different 

i ni strengths on the variation of 1J; with separation is shown in 
s 

igu - ~ 3.4 and 3.5 £ r oncentrations of 10- 2 and 1.0- 4 M at llpK = 6,3. 

12 

In Figu J.6 we compare the interaction under constant charge 

i h Lh t und th pres nt regulation mechanism. The dashed lines 

pr s - n th v riation in surfac potential for inte action at constant 

g e ·ponding to the sarn surfac pot nti 1 at infinite 

-3 6 s par d ti n s • Th ion i · s tr en gt h is 10 M, ti p K = 3 , p H
0 

= • In Figure 3. 7 

w · ·o npa the let ostatic free energy of interaction (per unit area) 

ob ained from integrating numeri ally the repulsive pressure given by 

( 2 3 9 ) 1, h 1 f h h ( V Reg) 1· s d . . e esu to t e present t ory contraste 

wi l Lh s ob ain d using the constant harg (V
0

) and constant 

J (V) approa h. We now pro eed to corrun _nt on the results and 

di · u s th ir impli ations in detail. 

3 . h M ·hanism o R gulacion 

b pr nt model o two inte a ·ting d ubl layers differs roru 

· 1 ll · modes in th t th as s o , iation/dissociation of surface group s 

p 1 vLd s d m => h ni m wli r _by l e r ch rni ca l p t ntials are kept constant 

urin int r a ti n. Equilibrium is maintain _d th ugh ut the interaction 

by h s lf- · nsi bt nt _ la iJnship betw en th surf ce charge and the 

s 1 1. po t n ial ( qua tion (2.17) r ( 2. 41)). Thus this surface 

g l c tJon m d ~l iti not intra tion at on tant potential but interaction 

h1l ., inla ini. 1 quilib ium. 
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ljJ s = -so + 
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0 so 100 150 

SEPARATION (A) 

igu e . 1: Variation of the surface potential ljJ with distance of 
s 

s par tion of two surfaces having po i nts of zero charge at pH 7 for 

~pK = 3 and 10-
3 

M ionic strength . The potentials shown at the right 

n cl curve are the potentials at infinite separation. 
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0 50 100 150 

SEPARATION (A) 

•igur 3. 2 : Variation of the surface potential lJJ with distance of 
s 

sep r tion of two surfaces having points of zero charge at pH 7 for 

ti pK = and 10- 3 M . . h ionic strengt . The potentials shown at the right 

on ach curve are the potentials at infinite separation. 
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gu r _ 3 . Vari tin of the surfa e charg o with distance of separation 

o tw s urface having points of zero charge at pH 7 for l:ipK = 3 (solid 

lin ) and t pK = 6 (da s hed lines) . The pot ntials s hown at the right 

n urv th potentials (mV) at infinite separation . The 

J ni str ng his 10- 1 Min all ass . 
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0 50 100 150 

SEPARATION (A) 

Figure J. L~: Vari tion of the surface potential lJJ with distance of 
s 

epar tlon of two surfaces having points of zero charge of 7 and for 

ti pK= 3 , 10 - 4 M ionic strength. 
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Flgur 3 .5 : Variation of the surface potenti a l ~ with distance of 
s 

s p rati n of two surfaces having points of zero charge of 7 and for 

p = 6, 10 - M ionic strength . 
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Figur 3 . 

inc ction under onstant charg conditions (dashed lines) and under 

gul · d 'nt ractjon (solid lin s) . Th 6pK, ionic strength and 

oint z ro char ge are 6 , 10- 3 M and pH 6 r pectively . 
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igur 3 . 7: mparison o the electrostatic ree energy (pe r un i t area) 

o int r ct·on as a function of separation for interaction under 

nst nt harge (V
0
), constant potential cvW) and under regulation 

( g) imposed by 6 pK = 3 (dashed lines) and ~pK = 6 (solid lines) at 

pzc 7 . In al 1 ca es , the ionic strength is 10 - 3 N. The potentials 

hown t the right of ea h st o curves re the potentials at 

infini s paration . 
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Physi cally, surface regulation involves a feedback mechanism. 

Consid r two su h surfaces (positive, say) as they approach each other. 

As the double layers overlap, the surface potential at each surface rises 

and thus (vi a the Boltzmann factor, cf . equation (2. 15)) the surface 

cone ntration of hydrogen ions goes down. This (temporary) depletion of 

+ hydrogen ions at the surface will cause~ and AH to dissociate, i.e. 

r actions given in equation (2.40) will proceed to the "right", to 

m intain equilibrium. Therefore the surface charge density o now becomes 

1 ss positive which according to equation (2.41) will result in a 

de r ase in the surface potential. In general terms, the feedback 

mechanism is able to work because of the ability of the surface groups to 

ct as "buffers 11
• Surface regulation will minimize changes in surface 

potential and charge. However, relatively small changes in the surface 

potential will, because of the Boltzmann factor, result in relatively 

large changes in the surface charge. Further at zero separation the 

sur ace charge must vanish. The regulation effect is demonstrated 

quantitatively in Figures 3 .1 - 3. 3 where it can be seen that neither 

hag nor potential is constant during interaction. 

b . Factors Governing Regulation 

Considering the change in potential with s eparation (Figures 

3 .1 nd . 2) , it an be seen that the ability of the surface to regulate 

dep nds str ngly on 6pK: a ~pK i.ncreases th e ability to r egulate 

d ~r 

wh r th 

s . Th r sult can best b un1erstood by considering Figure 3 .8 

gnitud o the (reduced) net surface charge is plotted 

ainst tl surfac pH whi ch is given by (cf. equations (2.16) and 

. 1)) 

pH = 
s pH+ 2 . 303 kT s 

(3. 1) 



1.0 

0.5 

2 4 

pH 
s 

6 8 

Figur 3.8 : Variation of the magnitude of the reduced surface charge 

lo/ I with surface pH (as defined by equation (3.1)) for ~pK of 
~ 

6, 3 and 0. Th point of z ro charge is taken as pH 7. 

21 
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Thr e c s s are shown ~pK = 6, 3, 0. The region where the surf ace charge a 

is an insensitive function of pHs (i.e. where pHs ~ pH
0

) increases as 6pK 

increases. As the ability to regulate depends on the degree to which CJ 

c an spond to changes in pHs (and hence the surface potential ljJ
8

) this 

agre s with the trend observed in· Figures 3.1 and 3.2, namely, the 

mall r 6 pK gives better regulation. For any 6 pK, the surface potential 

~ i not w 11 regulat d at small surface charges, in particular, at 

small separations where o 0. Similarly if~ at infinite separation is 
s 

small, the proportional charge in~ increases . 
s 

The condition for optimal regulation at small surface charges 

an be obtained as follows. We begin by rewriting equation (2.41) in the 

form 

- [e~sl 
c5 sinh (yN - y 

8
) 

a - = -
1 + 6 cosh(yN -ys) 

, (3.2) 

hr ~ 

(K-r 2 x 10-~pK/ 2 0 = 2 K- = 
+ 

(3.3) 

YN = 2 . 303 (pH 0 - · pH) (3.4) 

ys = (3.5) 

t l ow vurfa e charges ( I I << 1) we must have y 
8 
~ yN (cf. equation 

(2 . 3 ) ) . 1 arly the condition for optimal r gulation in this regime is 

wh en h s urf c cha rge is mo s t s ensitive to v a riations in the surface 

pt ntial y u. That i , wh n j d /dysj evaluat d at y ~ = yN is a maximum. 

From qua ion (3.2) w obtain 

dct 

dys y =y 
s N 

6 
1+ 6 

< 1 . 

It i s l _ r th nth t optima regulation is wh e n 6 oo , that is, when 

· pK ->- -c.o . In this limit the surfac charg has t h simple form 

(3.6) 
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(3.7) 

At large values of I tjJ s I where pHs >> pK _ or pHs << pK+ the 

su fa s ar almost fully charged (j o /eN I $ 1) and o is an insensitive 
s 

un tion of pH or tjJ. In this regime regulation will also be poor. 
s s 

H e the s ystem behaves almost like a constant charge approach until at 

mall separations where regulation will occ ur to reduce a to zero. 

An important consequence of the regulated interaction is that, 

wh n the syst rn can regulate, VJ is kept remarkably constant during 
s 

approach, n c ntrast w .th the case at constant surface charge, 

Figur 3.6. 

3c. The Validity of the Constant Charge 
and Constant Potential Approximation 

Inc mpar.ing the (repu]sive) electrostatic free energy of 

int racti n, the regulated case should give the lowest energy of 

' nt ration since equilibrium is maintained at all distances of approach. 

How _v r, we note in Figure 3.7 that the interaction under constant 

pot ntial (VW) is small r than that under regulation (VReg). Clearly 

his i a ltys _al impossibility. Further w not that a bigger ~pK 

giv a larger deviation of VtjJ from VReg. The reason for this apparent 

error is th t the onstant potential assumption is invalid for the 

amph ter· s ys tem consider d hr. Ther are, however, circumstances 

un - r whi h th constant pt nt al assumption holds approximately. We 

now nside his s . 

Tl ~ onstanl potential a se i in f ct p _rfect regulation as 

w s st ss d by V rw y nd Ov rb k. (2) From quations (2.16) and (2.40) 

it follows h 
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tjJ s = [ 
+ l kT kT [AH2] 

2. 30 3 - (pH - pH) ·- - ln . 
e o 2e [A-] 

(3 . 8) 

' ·s .qu tion , in a slightly different form, has been discussed in detail 

nd S "th. ( 39 ) The z~ term represents a correction to the 

e. n c q tion 

tµ t> = 2 . 303 l~T (pl\ - pH) (3.J) 

r i r l ncly t the c onstant potential approximation . Provided 

+ ·- + -[1 1-1
2 
]/ [A 1 is close enou gh to unity (at the pzc o = O, [AH

2
]/[A ] = 1 , and 

the rn t equation hold s , see quation (2 . 36)) for the Zn term to be 

n •gl"gibl , h Nernst quation or th constant pocential approach is 

Vclid. I th l anguage of Levine and Smith, the correction to the Nernst 

qu tion is sma ll provid cl the f raction of neutral s ites at the pzc is 

small. 

n t l ther hand, the constant charge app roximation is a good 

d~3' ·ip tion of th inte ction process wh n collis ion times are 

s1 f- " ~j ntly s hort such that the surfaces do not have time to make 

aj stm 0 ts. Th intera tion will no longer be at e quilibrium. 

Tl for 
0 

th e energy of interaction V is higher than that at equilibrium 

I E· ) 
V (Fig 

3 a. .. mm· .ry 

• 7) . 

Th r gulat d p roa h of id ncic · 1 double layer interaction 

h s tw ·mport~nt limit s F r sys t ms wh r e th e Nernst quation is 

sensibly ob y d t infinit s p ration th int ra ction i s to a good 

cl r 6 111 

Lion t cons tan t pot nti · l. If th surfac potential tjJ is in 
s 

S r f C harg nd pot ntial such that o is insensi tive to 

d1 ng .... b in , t I in ca i n i ff ctiv l y at cons tant charg e until 

L e~ ti - s nsitive Jgim s , u ually t smaller s p rations . Also if 

c• u 



the rate of attainment of equilibrium is smaller than the rate of 

approach of the two surfaces, the system cannot adjust during the "time 

of co llision" and the constant charge interaction is appropriate. 

If particles cross a coagulation barrier that is due to a 

con s tant charge interaction, the surface of particles in aggregate will 

then have time to equilibrate their surface potential and aging under 

25 

reg lation will occur. If the potential energy barrier under constant 

charge conditions is of the order of or greater than the average kinetic 

en rgy of the particles, then the velocity of approach may become slow 

enough that a change during collision from constant charge to regulated 

int e raction is possible. The potential energy barrier under regulated 

int e raction is lower than that under constant charge approach and 

instabilities that would not otherwise be predicted under constant charge 

approach may be observed. 

In the above analysis we have not accounted properly for the 

inner region of the surface layer although there are a number of models 

that can adequately characterize the surface ( ~ potential and titratable 

h ) (39,42,52-55) 
arge. These models invoke the concept of site binding of 

in rt ions or the exist nee of a surface gel layer. These in themselves 

provide further regulation of surface charge and potential. Here we have 

be n int rested mainly in studying the consequences and implications of 

surf ce regulation and it is not necessary at this stage to model the 

sur f acer gion with a mores phisticated theory. We anticipate that 

inclusion of these additional features would not drastically alter the 

main on lusions. 
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CHAPTER 2 

DOUBLE LAYER INTERACTIONS UNDER SURFACE 

IONIZATION EQUILIBRIUM - DISSIMILAR SURFACES 
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l. INTRODUCTION 

In a variety of situations that involve particles of colloidal 

dim nsions, for instance, in fibrous bed filtration of emulsions,(l,
2

) 

mineral flotation and separation, flocculation of mixed sols, and cell 

adhesion, (J) it is necessary to understand the interaction between 

dissimilarly charged particles. 

In the previous chapter, we have considered in detail the 

e lectrical double layer interaction between two identically charged 

planar surfaces. We studied the interaction at equilibrium, in 

particular, where the surface charge and surface potential are related 

self-con istently by surface ionization processes. In essence, this 

pproach includes the contribution of the surface chemical potential in 

th thermodynamic argument that connects the surface potential and the 

bulk concentration of potential determining ions (PDI). (lO,l 7 , 27 , 23 ) The 

constant potential and constant charge boundary conditions emerge as 

special limits. Here we extend this theory to include interacting 

dissimilar amphoteric surfaces. 

Th problem of interacting dis similar double layers has been 

' ons ide ed by a number of authors . (4-l 5 , 26 ) In all instances, the 

const ant charge or constant pot ential bound ry condition was employed. 

It has been recognized for som time that chese boundary conditions lead 

to an infinitely large surface po tential or surface charge, as the case 

my be, at small inter- particl _ s parations. This difficulty can be 

v ided by invoking some minim m cut-off in th separation(l6) or, pe rhaps 

mor satisfa torily, by a prop r onsider tion of the chemical potential 
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of a sorbed ionic species at the surface . (l 7 ,lB-l9) It is interesting to 

note, in particular, the work of Bierman(ll) who derived a Langmuir- type 

isotherm describing the adsorption of cations. This theory gave the 

su r face potential as a function of the surface concentration of adsorbed 

spe ies , i.e. the surface charge. Although the mechanism of adsorption 

as not sp cified, he was able to conclude that for interacting planar 

ouble layers, the surface potentials become equal when the separation 

approaches z ero while the surface charges become equal in magnitude but 

pposite in s ign. In the special case where ·the two surfaces have the 

same isoel ctric point , the surface potentials at zero separation are 

equal and are given by the Nernst equation (cf . results of the previous 

hapter) . Both surface charges reduce to zero in this limit. 

Using the notions developed in the preceding chapter, we 

ons ider the double layer interac tion betw en two dissimilar amphoteric 

surfaces . As before , we adopt the idea that each surface develops a 

su face charge via dissociation equilibrium of the amphot e ric surface 

groups . (20-23,27 , 28) 
The reactions may b e written as : 

+ H+ (1.1) AH
2 

__,_ 
AH + ..-

AH 
__,_ 

A + (1.2) ..- + H 

Alt ough ch disc ussion is inde enden t of th e type of PDI, we shall 

ssum thy r (univalent) hydrogen ions as, for example, in hydrous 

t lli oxid s . 2 ) assum thac, for each r eaction, the ratios of 

th concencr tion of surface sp cies ar e given by some s ur face 

dissoci t i on onstants: 

= 

[AH] = K 

(1.3) 

(1.4) 
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The dissociation constants K+,K- are assumed to be only functions of 

temperature and pressure. The validity of equations (1.3) and (1.4) has 

been discussed in the previous chapter. 

For N surface groups per unit area, the net surface charge 
s 

density is (e = protonic charge) 

a = eN 
s 

[AH~] - [A-] 

[AH]+ [AH+]+ [A-] 
2 

eN a • 
s 

(1.5) 

The fraction a, defined by equation (1.5), can assume any value between 

plus and minus one. 

In the Gouy-Chapman approximation, which we shall adopt, the 

concentration of ionic species at any point is related to the bulk value 

by the Boltzmann factor exp(-eiµ/kT). The electrostatic potential iµ is 

measured with respect to the value at the reservoir (taken to be zero). 

In particular, the surface concentration of PDI is 

[H+] = H exp(- eiµ /kT) , 
s s 

(1.6) 

where His the bulk concentration of PDI and iµ is the surface potential. 
s 

Combining equations (1.3), (1.4) and (1.6) the surface charge can be 

writt n as 

0 = eN 
s 

(H/K +) exp (- e iµ 
8 

/kT) - (K_ /H) exp ( e1J\ /kT) 

1 + (H/K+) exp (- eiµ /kT) + (K /H) exp ( e\J) /kT) • 
s - s 

(1.7) 

his is idencical to equation (2.41) in the previous chapter. Given the 

dissociation constants, K+ and K which characterizes the surface, and 

the bulk concentration of PDI, equation (1.7) represents a canonical 

rel tionship b tween the values of the surface charge and the surface 

pot ntial. It i s used in place of the constant charge or potential 

boundary condition for solving the Poisson-Boltzmann (PB) equation that 

governs the distribution of the di £us layer. If during the interaction 
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the surface potential changes from to~· the surface charge will 
s s 

change from o too', where (~s,o) and ( l/J ~, o ') must satisfy equation (1.7). 

Thus equation (1.7) is an "equation of state" of the surface. It 

specifies all possible values of the "co-ordinate" (l/J ,o). 
s 

were 

and 

It is instructive to rewrite equation (1.7) in the form 

a = eN 
s 

8 

o sinh[ e (l/JN - l/J s) /kT] 

l+o cosh[e(~N-~'s)/kT] 

= 2 X 10-L"ipK/2 = 

6pK = pK_ - pK+. 

eN a , 
s 

W shall call the potential 

l/JN 
kT 

= - 2. 303 (pH0 - pH) 
e 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

the Nernst potential since it is related to the point-of-zero-charge 

(pz ) 

PI-lo = ~(pK+ + pK_) (1.12) 

by the N rnst equation (1.11). We note from equation (1.8) that o ~ 0 if 

l/J s ::::>= iµ N and o = 0 when iµ s = l/JN. When the surface potential is far away 

s value, the surf ce charge attains the saturation values 

+ N • In vi w of equations (1.10) to (1.12), the surface equation of 
s 

s t c n be completely specified by the pzc (pl-Io) and 6pK together with 

the bulk pH or equivalently the Nernst potential. 

In the next section, we shall formulate the problem of the 

doubl lay r interaction between two plan r amphoteric surfaces. (For 

p rti 1 s of o her geometries, we can use the Deryaguin approximation at 

los . (25 26 10) 
s parations ' ' and the ov rlap approximation when the 

surf es ar far apart. (9)) From the first integral of the PB equation 
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and the boundary condition, we can predict the behaviour of the repulsive 

pressure, surface potential and charge as a function of the separation. 

Our nalysis is analogous to the method of isodynamic curves due to 

Deryaguin. (4) The interaction between surfaces having like signs at 

infinity (but different magnitudes in the charge and potential) is 

discussed in Section 3; that between unlike surfaces, in Section 4. 

2. FORMULATION 

Consider the general Poisson-Boltzmann (PB) equation that 

gov rns the electrostatic potential tjJ in an electrolyte: 

4ne ~ / 
-- .t..J n. v. exp (- ev. lJ! kT) • 

E . 1. 1 1. 
1. 

In equation (2.1) n. is the bulk number density of ion types having 
1 

(2.1) 

valence v. and E is the dielectric constant of the solvent. For the one-
1. 

dimensional problem of two charged flat surfaces at z = 0 (hereafter 

referred to as Surf ace 1) and at z = L (Surf ace 2) interacting across the 

1 trolyte, equation (2.1) can be written as 

D 
dz2 = 

4
n~ L n. v . exp(- ev . tjJ /kT) 
E 1 l 1. 

i 
(2.2) 

Thi has to be solved with the usual boundary conditions 

~ 
dz 

z=O 
= (2. 3) 

~ 
dz 

z=L 
= (2.4) 

Acco ding t o equation (1.7) the s ur face charg s o
1 

, o
2 

are functions of 

the surf e potentials iJ!1 , tjJ 2 when we have dis sociation equilibrium at the 

sur e . The xact forms of the functions are determined by the 

dis ocation canst nts of ach surface and the bulk concentration of PDI. 



A first integral of (2.2) yields 

= BnkT L n. [ exp (- ev. ~1/kT) + C] 
£ . 1 1 

1 
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(2.5) 

Applying the boundary conditions, we get two equations for the surface 

po ntials t/; 1 , t/;2 and the constant of integration C: 

= 

= 

k 

£ {8n£kT } 
2 

L n . [ exp ( - e v . tjJ 
1 

/ kT) + C ] 
4n . 1 1 

1 

_
4
£ {B·rrkT L n. [ exp (- ev. t/;

2 
/kT) + C] }\ • 

7T E • 1 1 
1 

(2. 6) 

(2. 7) 

We observe that if electrical neutrality were to be preserved in the 

limit of small separations we must either have o
1 

= - o
2 

or o
1 

= 0 = o
2 

as 

L-+ 0. (l 7) In either case, both surface potentials must become the same 

in this limit (see equations (2.6) and (2.7)). Further if both o1 ,o2 -+O 

as L O both surface potentials must approach their own Nernst values 

(equation (1.8)), and this is only possible when both surfaces have the 

same pzc (pl-Io) but different 6pKs (to remain as dissimilar surfaces at 

infinity). 

The repulsive pressure between the plates (P > 0 implies 

repulsion) can be written in the physically perspicuous form 

p = kT Ln.[exp(-ev.tjJ/kT) -1] 
. 1 1 
1 

-~ [~J2 
8n dz · 

We c n now use equation (2.5), giving 

P = - 2nkT(C+l) , 

wh re 

n = k:2 ""' ~ n . • 
i 

1 

(2.8) 

(2. 9) 

(2.10) 

It i~ w 11 known(Jl) that the second integration of the PB 

qu tion r quires a knowledge o wh ther 

(i) C < -1 (i.e. P > 0 repulsive) (2.11) 
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(ii) !cl < 1 (i.e. P < 0 attractive) (2.12) 

or (iii) C > 1 (i. e . P > 0 attractive) (2.13) 

because the integration procedure is different for each case. Therefore, 

a third r elation between ~1 , ~ 2 and C can be obtained. This, together 

with equation (2.8) and (2 . 9) would enable us to obtain a complete 

solution of the problem. 

Before preceding f urther, we shall make one simplifying 

assumption by considering only the case of a 1:1 electrolyte. The PB 

equation (2.2) now takes on the simpler form 

g 
dz = 8nne . sinh ( e iJ; /kT) 

E 
(2 .14) 

A moment's reflection will reveal that only the three types of solution 

illustrat din Table 2.1 are allowed. These results will be useful in 

1 t er dis cuss ions. 

Tab l e 2 .1: Examples showing the three types of solutions 
allowed by the Poisson-Boltzmann equation together 
with some general relations between o and~. 

I. Like hamyes and l i ke po t entials 

nd vice versa. 

II . Un like ha,L e and ike potentials 

and vice v r s a . 

III . Unlike cha,f(_qes and unlike otential 

t =O , = 0 • 
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For notational convenience, we introduce the reduced potential 

the Debye screening parameter 

and the dimensionless constant 

y. 
1 

= 

y = 

K = 

KN . 
81 

4n 

e\JJ/kT, (2.15) 

( 
2 J \ 8nne 

EkT , (2 .16) 

' 
i=l,2. (2. 17) 

The subscripts 1,2 will refer, as before, to surface 1 and 2. Equations 

(2.6) and (2.7) can now be written in the form 

-\(C + 1) = \(cash y - 1) - y 2
a 2 (y 2

) 
I 1 1 1 

~(C + 1) = 

where (cf. equations (1.5) and (1.8)) 

a. (y.) 
1 1 

= 

o . s in h ( yN - y . ) 
1 . 1 

1 

1 + o i cash (y N. - y i) ' 
1 

i=l,2. 

Since the pressure must be the same on both surfaces, the relation 

= 

must hold for the functions n
1

, ~ defined by the above equations. 

(2 .18) 

(2.19) 

(2.20) 

(2.21) 

The key to solving the problem of interacting dissimilar 

amphoteric surfaces lies in understandin g the interplay between the curve 

sinh 2 (y /2) and the charge curves, y2 a 2 (y), of each surface. Therefore, 

it is important that we systematically characterize the manner in which 

these curv s intersect each other. To begin with, let us plot sinh 2 (y/2) 

and ·y2ct2 (y) as a function of the surfa e potential y. (Subscripts 1 and 2 

will be suppressed when wear considering a general surface. The 

sur-fa e potential y und er consideration should not be confused with the 
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potential at some general position y=y(z).) This is shown schematically 

in Figure 2.1. We have shown, without loss of generality, values of the 

concentration of PDI such that the Nernst potential, yN, is positive. 

For ease of later discussions, it is useful to adopt the following 

nomenclature. Since n(y) is the (vertical) difference between the two 

c. urves, we can delineate regions where n > 0, 0 > n > -1, n < -1 

corresponding to cases (i), (ii) and (iii) in equations (2.11) to (2.13). 

We label the points of intersection between the two curves (where n = O) 

as a, b, c and d with the corresponding potentials ya, yb, ye and yd. 

The point a is defined as the intersection where y falls between the 
a 

origin and the Nernst potential yN. Points band care the intersections 

where yb and ye have the same sign as yN. Under some circumstances there 

may be no intersections band c or the points band c may coincide. The 

point of intersection on the opposite side of the origin to yN is 

labelled d. 

For a single surface in equilibrium with a bulk solution 

containing a given concentration of PDI, there is no net force exerted on 

the surface. Therefore the pressure Pis identically zero, that is, 

n = -~(C+l) = 0. Of the four points where n = 0, only point a, where the 

surface charge and the surface potential have the same sign, satisfies 

th PB equation. Thus we obtain the general result that the surface 

p tential of an isolated amphoteric surface always lies between zero and 

the Nernst potential. The only occasion when y equals zero is when the 
a 

Nernst potential is zero. That is, the concentration of PDI is at the 

point-of-zero-charge, pH= pH 0 and o = 0. 

To study the electrostatic interaction between two dissimilar 

amphoteric surfaces, we need to examine the functions n 1 (y 1 ) and n2 (y 2 ) 
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I 

n < o + n > o -+ i + n < o +: 

Figure 2.1: A plot of the functions sinh2 (y/2) (---) and y 2 a 2 (y) (--) 

showing the points of intersection between these curves, and the 

regions where the function n(y) and the surface charge a is positive 

or negative. 



given in equations (2.18) and (2.19). This is best accomplished by 

plotting (schematically) the two charge curves y;a; (y), y;a; (y) and the 

function sinh 2 (y/2) on the same graph. See for example Figure 2.2 a,b. 

We define y* to be the potential corresponding to that point of 

intersection of the two charge curves which falls in between the Nernst 

potentials yN and YN • 
1 2 

The state of surface i (i = 1,2) can be identified with the 

co-ordinate (y.,o.). However, the values of the surface potential 
l 1. 

~- = kTy./e and the surface charge a. cannot vary independently as they 
1 1 1 

are related by equation (1.7) or (1.8). In other words, the state of 
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each surface must correspond to some point (y, a ) on its own charge curve 

y 2 2 (y). As the surfaces approach each other, changes in the charge and 

potential at each surface due to the interaction can be envisaged as 

movements of these points along their own charge curves. Since the 

surfaces are interacting, the loci of these two points must be correlated. 

Firstly, the movement of these points must ensure that equation (2.21) 

(cf. equations (2.18) and (2.19)) is satisfied. Secondly, the values of 

y 1 and y 2 must satisfy the PB equation. That is, the relationship 

between the charge and potential at each surface and between surfaces 

must fall within one of the three types listed in Table 2.1. Thus it is 

possible to obtain a description of the behaviour of the repulsive 

pressure, surface potential and charges as a function of separation by 

' d ' h 2 2() 2 2 ( ) . consi ering t e charge curves y
1

a 1 y, y
2
a

2 
y and the function 

sinh 2 (y/2). Most of the results we are about to describe can be deduced 

from the fact that sinh2 (y/2) increases monotonically as jyj increases 

and that th charge curves y 2 cl (y) have an absolute minimum at y = yN. 
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Figure 2 . 2a: Showing a typical arrangement of the charge curves of 

surface 1 (~~·-) and surface 2 (----) for surfaces having like 

(po tive) signs at infinite separation. Note that yN < y* < yN . 
l 2 

Surface 1 is defined as the surface that has the lower Nernst 

potential (yN < yN ) . The function sinh 2 (y/2) is given in dashed 
1 2 

lines (---). 
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Figure 2.2b: Showing a typical arrangement of the charge curves for 

surface 1 (~~) and surface 2 (----) for surfaces having unlike 

signs at infinit separation. Note that yN < y* < yN • Surface 1 is 
1 2 

defined as the surface that is negative at infinite separation 

(yN < O). The function sinh 2 (y/2) is given in dashed lines (---). 
2 
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3. THE INTERACTION BETWEEN LIKE SURFACES 

We have already shown in Section 2 that the surface potential 

of a single surface in isolation falls between zero and the Nernst value. 

Here we consider only those values of the bulk concentration of PDI where 

the Nernst potentials of each surface has the same signs. That is, both 

surfaces start off with the same sign at infinity. For the purpose of 

this analysis, we can assume without loss of generality that the surfaces 

are both positive and that surface 1 has a lower Nernst potential, i.e. 

yN < yN • (In fact, by reversing the sign of the Nernst potentials, 
1 2 

negative surfaces can be "transformed" into positive ones and the 

following analysis will be applicable.) 

For the interaction of surfaces having like signs at infinity, 

there are three distinct cases classified by the number of times that the 

r pulsive pressure curve changes sign. Each is in turn determined by the 

position of y* as follows: 

Case 1: 

Case 2: < y* < y 

Case 3: y s y*. 
C l 

shal l consider each of these separately. 

3a. Case 1 

C 
1 

Th appropriace charge curves for this case are given in 

Figure 3.1 a,b. The characteristic feature of these sets of curves is 

that y* (th potential corresponding to the intersection of the two 

rg curves that falls in between the Ne rnst potentials) is less than 

Yb . This ca e also includes the situation where surface 1 (defined to 
1 
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be the one with the lower Nernst potential) does not have the 

intersection points b 1 and c 1 as for example in Figure 3.2a. 

Since the arguments involved in deducing the behaviour of the 

surfaces are rather tedious, we shall' first summarize the results. The 

(schematic) variations with separation for the repulsive pressure P, 

surface charge and potential of each surface are given in Figures 3.3 and 

3.4. 

(i) 

(ii) 

In Case 1, the interaction is always repulsive, P > 0. 

If the function n1 (y1 ) has a maximum in the range y :S y1 ;Sy*, 
a1 

h h h . (Pmax) _ h t en t e pressure as a maximum at y1 = y1 say, w ere 

y
1 

2: yN (Figure 3. 3); otherwise the pressure increases 
1 

monotonically from zero at infinite separation to the final 

value P* at zero separation (Figure 3.4). 

(iii) At zero separation, the surface potentials are equal and the 

surface charges are equal in magnitude but opposite in 

· <17 ) ( f d · . . S . 1) sign c. 1scussion in ection . 

The results summarized in Figures 3.3 and 3.4 can be deduced 

from Figure 3.1 a,b if we bear in mind the discussion in Section 2 

regarding the charge curves. We shall briefly summarize the main points: 

(A) The surface charge and potential of each surface is related to 

each other by equations (1.7) or (1.8 ) . A state of the surface, 

i .. (y, o), can be represented by a point on the charge curve 

2 2 (y) • 

(B) Changes in the surface charge and potential due to interaction 

are described by the movement of this point along the charge 

curve. 
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Figure 3.2a: An example of the charge curves for Case 1 for the 

situation where the intersection point b 1 does not exist. 
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Figure 3.2b: An example of the charge curves for Case 1 for the 

situation where the two surfaces have the same Nernst potential 
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Figure 3.3: Case 1 . Showing the main features and schematic variations 

of the pressure , surface potentials and surface charges as a function 

o the separation between the surfaces for the case where n 1 (y 1 ) has 

a maximum between ya and y* (see text). The potential and charge of 
1 

Surfac 1 are g·ven in solid lines ( ) . Those of Surface 2 are 

given in dashed lines (---) when ya > y , and in dotted lines ( · · · •) 
2 al 

when y y • 
8i ~ 
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igure 3 . 4 : Case 1 . Showing the main features and schematic variations 

of the pressure , surface potentials and charges as a function of the 

s paration betwe n the surfaces for the case where n
1 

(y
1

) does not 

have a maximum between y and y* ( see text ) . The potentials and 
al 

charge of Surface 1 are given in solid lin s (~~) . Those of 

Surface 2 are given in dashed lines (---) 

dotted lines ( · • · · ) when ya < y • 
2 a1 

when y 
a 

2 

> y , and in 
a1 



(C) The loci of the points for each surface must together satisfy 

equation (2.21) and the PB equation (cf. Table 2.1). 

(D) The function sinh2 (y/2) increases monotonically as jyj 

d i il 1 2 2 ( ) i . . . increases an s m ar y Ya y s a monotonic 1ncreas1ng 

function of I yN - y j. 
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Using (A) - (D) above we now demonstrate how the results from 

Figure 3.3 can be deduced from Figure 3.1 a,b. When the surfaces are far 

apart, we have already shown in Section 2 the potentials of Surface 1 and 

2 are y and y respectively. Referring to the charge curves, we say 
a1 a2 

Surface 1 is at the point a 1 and Surface 2 is at a 2 • We first consider 

the case shown in Figure 3. 2a where y > y • We define 
a2 at 

(3.1) 

and observe that the surface charges at infinite separation, o 1 (y ), 
a1 

o2 (y ), obey the relations 
~ 

> a* , ot (ya ) 
l 

but o1 (y ) can be greater than or less than o*. 
a1 

(3.2) 

As the surfac s approach each other and just beginning to 

interact, we know, by the overlap approximation that the surface 

potentials must increase and the interaction is repulsive. That is P > 0, 

n1 (y 1 ) = n2 (y2 ) > 0 (cf. equations (2.9), (2.18- (2.21)). Therefore both 

surfaces would move along its own charge curve towards their respective 

Nernst potentials. While the surface potentials increase, the surface 

charges decrease. This minimizes the interaction energy. As the 

surfaces approach the rate of change of the charge and potential of each 

sur f ac withs paration (i.e. the velocities along the charge curves) 
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must of necessity be difficult since the equality n1 (y1) = n2 (y2 ) must be 

maintained at all times. 

We assume that the function n1(Y1 ) has a maxima between y and 
at 

-y* (ya < y < y*) . - 1 - , at Y1 say. It is clear from point (D) above that Y1 
1 

is between YN1 and y* (yN ~ Y1 ~ y*). Now, as the separation between the 
1 

surfaces decreases, both surfaces would move closer to their Nernst 

potentials. When Surface 1, which has the lower Nernst potential, 

reaches yN where its charge has decreased to zero, Surface 2 is still 
l 

below its Nernst value with a finite and positive surface charge. 

As the separation further decreases, the potential of Surface 1 

continues to increase beyond yN, but with a surface charge of opposite 
1 

sign to that at infinity (cf .• Figure 2 .1). When Surface 1 reaches y1 

where n 
1 

(y 
1

) has a maximum, Surface 2 is at y2 where n1 (y1 ) = n2 (y2 ). 

Again from point (D) we can deduce that 

As Surface 1 proceeds beyond y1 towards y*, n1 (y 1 ) can only 

decrease. Hence Surface 2 must retrace its path along the charge curve 

from y2 and approach y* from above. Therefore Surface 2, which has the 

higher Nernst potential, never reaches yN and so its surface charge 
2 

always retain the same sign as that at infinite separation. 

Now both surfaces must reach y* at the same time because 

Here we have y 2 a 2 (y*) = y 2 c? (y*) and the potentials are 
l l 2 2 

equal but the charges are equal and opposite. The surfaces cannot 

proceed beyond y* as this would violate the PB equation (cf. Type II, 

Table 2 .1). Clearly, the boundary conditions y
1 

= y
2 

, o 
1 

= -o2 can only be 

attained when the separation between the surfaces is zero. 
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The above results are summarized in Figure 3.3. The variations 

with separation of the charge and potential of Surface 1 are given in 

solid lines, and those of Surface 2 in dashed lines. 

It will be shown that: 

(iv) for interactions between surfaces having like signs at 

infinity, the surface with the lower Nernst potential would 

always reach its Nernst potential and reverses the sign of 

its surface charge while the other surface never changes sign. 

Obviously, this excludes the degenerate case where both surfaces have the 

same Nernst potential. In this instance, neither surface charge changes 

sign. 

Now it is possible for Surface 2, which by definition has the 

higher Nernst potential, to have a lower surface potential than Surface 1 

when they are far apart (see Figure 3.lb). It is clear from the figure 

that the surface charges at infinity obey the inequalities 

o 1 (y ) > o2 (y ) > o*. 
at ~ 

If 11 1 (y 
1

) has a maximum in ya :: y1 ~ y*, the results for Surface 2 are 
J 

given in dotted lines in Figure 3.3. These can be derived using the 

arguments given above. The only noticeable difference between this case 

(y < y ) and the previous case (y ,,. y ) are the cross-over points 
a2 a1 a2 a1 

betwe n the charge and potential curves. These must occur when both o 1 

and o1 are greater than o*. The behaviour of the repulsive pressure and 

the prop rties of Surfa e 1 r main essentially th same for both cases. 

If 11 1 (y 1 ) does not have a maxima in th range ya ~ y 1 Sy*, the 
1 

int raction is still repulsive but th re are no turning points in the 

pr ssure, potential and charge curve (Figur 3.4) . The arguments needed 
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to deduce these results follow along the line of those given above. The 

results pertaining to Surface 1 are given in solid curves. 

satisfy 

If ya > ya (yN > yN ) the charges at infinite separation 
2 1 2 t 

o2(Y ) > a*, 
~ 

but o
1 

(y ) can be greater or less than a*. The charge and potential for 
a1 

Surface 2 for this case are given in dashed lines. 

If y < y (yN > yN ) the results for Surf ace 2 are given in 
a2 a 1 2 1 

dotted lines. Here o 1 (y ) > o2 (y ) > o* and the cross-over points in the 
a1 a2 

potential and charge must occur when the charges of Surfaces 1 and 2 

greater than o*. 

When the Nernst potentials are very far apart (Figure 3.2a), 

the pressure may exhibit a local minimum after the maximum. However the 

pressure still remains positive for all separation (see Figure 3.5). The 

charges and potentials will have corresponding maxima and minima. 

In the degenerate case where the surfaces have the same Nernst 

potential (i.e. the same pzc, see Figure 3.2b), e.g. identical surfaces, 

t hen y* = y = y and neither surface changes sign. The surface 
N1 N2 

potentials start off at y and y , and increase monotonically towards 
al a2 

their Nernst values. The surface charges decrease monotonically to zero. 

At zero separation, both potentials are equal and surface charges are 

reduc d to zero. 

This completes the discussion on th e various possible types of 

behaviour under Case 1. 



Separation 

Figure 3.5: Case 1. Showing the possibility of two turning points in 

the pressure curve when the Nernst potentials are far apart in the 

situation depicted in Figure 3.2a (see text). 
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3b. Case 2 

The appropriate charge curves for this case are shown in 

Figure 3.6. The characteristic feature of this set of curves is that 

The variations with separation of the repulsive pressure P, surface 

potential and charge of each surface are given in Figures 3.7 and 3.8. 

55 

In Case 2 the interaction is initially repulsive (P > O) but 

becomes attractive (P < O) as smaller separations. If n1 (y 1 ) has a 

minimum between yb and y* then the pressure has a local minimum Pmin < 0 
1 

at y 
1 

= y 
1 

and y 2 = y 2 say, where y 2 ~ y*. 

Let us now deduce the results in Figures 3.7 and 3.8 from the 

charge curves in Figure 3 .6. As with Case 1, Surfaces 1 and 2 start at 

a
1 

and a
2 

respectively, and move along their charge curves towards their 

Nernst potentials as the surfaces approach. Clearly n1 (y 1 ) has a maximum 

-at some y 
1 

where yN .S y
1 

.S yb • This maximum corresponds to the maximum 
) l 

in the repulsive pressure. Thus as the potential of Surface 1 increases 

from y to yN and then onto y 1 , its surface charge decreases to zero at 
a 1 I 

y
1 

= YN and cl1ang s sign between yN and y 1 • Meanwhile the potential of 
l 1 

Surface 2 increases steadily from y to y2 where n2 (y2 ) = n1 (y 1 ) while 
a2 

the charg decreases from o 2 (y ) to o 2 (y2 ). 
a2 

the charge on Surface 2 does not change. 

Since y2 < y , the sign of 
N2 

As Surfa e 1 now moves from y
1 

to yb , n1 (y1 ) can only decrease; 
l 

therefore Surface 2 must return along its charge curve towards y 
~ 

increasing the charge and decreasing the potential. When Surface 1 

reach s the point b 
1 

, Surface 2 reaches a 2 where n 1 (yb ) = 0 = n2 (y ) and 
I ~ 

the pr ssur is zero at this point. 
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Figure 3 . 6 : Showi ng the r elative positions of the charge curves for 

Case 2 (yb < y* < y ) • 
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Figure 3.7: Case 2 . Showing the main featur sand schematic variations 

of the pressure, surface potentials and ch rges as a function of the 

separation between the surfaces for the case where the pressure has a 

local minimum . The potential and charge of Surface 1 are given in 

solid lines (~~); thos e of Surface 2 are given in dashed lines 

(---) . 
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Figure 3 . 8: Case 2. Showing the main features and schematic variations 

of the pressure, surface potentials and charges as a function of the 

separation between the surfaces or the situation where the pressure 

does not have a local minimum. The potential and charge of Surface 1 

are given in solid lines (~~); those of Surface 2 are in dashed 

lines (---) . 



Between yb and y*, 11
1 

= T)2 is negative which corresponds to 
1 

at traction. Now n1 (y
1 

) may have a minimum (i.e. I n1 (y1 ) I a maximum) for 

yb _s y
1 
~ y*. If this is indeed the case, the pressure will have a 

1 

minimum turning point (see Figure 3.7). Corresponding to this, the 

potential of Surface 2 will decrease below y* and finally approaches y* 

from below. There will be a similar turning point for the charge on 

Surface 2. 

If 11 1 (y1 ) does not have a minimum in yb ~ y1 ~ y* the pressure 
l 

just decreases monotonically after turning attractive (see Figure 3.8). 

Similarly the extra turning points in y 2 and o 2 would not occur. 

From Figure 3.6 we obtain the following inequalities which hold 

for all separations 

and when the surfaces are far apart 

3c. Case 3 

> y* > y 
a 1 

Th charge curv s pertaining to this case are given in 

Figur 3 . 9. They ar characterized by the inequality y* > y . 
c1 

The 

variations with s paration of the repulsive pressure , surface pot8n tial 

and harge of each surface are g en in Figure 3.10 . These res ults can 

be d riv d rom th charge curves in Figure 3.9 by a similar 

consid ration to that giv n in the previous two cases . 

In Cas 3 he 1.nterac ion is initially r pulsive (P > 0), then 

it tur s attractive (P O) and inally becom repulsive again as the 

separation d reases from infinity to zero. 
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Figure 3 . 10 : Cas 3 . Showing the pressure, surface potentials and 

harg as a function of separation betwe n the surfaces . The 

potentials and charg of Surfa e 1 are given in solid lines(~ ~); 

those o Surfa e 2 are in dashed lin s (----) . 



We note that if Pmax < P* then the potential (charge) curve of 

Sur fac 2 would not extend above (below) y* (o* ) at the corresponding 

turning point. 

4. THE INTERACTION BETWEEN UNLIKE SURFACES 
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In this section we consider those values o f the bulk 

concentration of PDI where the signs of the Nernst potentials are 

different. This means that when the surfaces are far apart, the surfaces 

have different signs. Given two unlike surfaces, we can always make a 

transformation (e.g. reversing the signs of the potentials) so that 

Surface 1 (y ) 
a1 

is initially negative, Surface 2 (y ) is positive and 
a2 

that y* is also positive as well. (See for example Figure 2.2b.) 

First let us define the nomenclature useful in describing how 

the c1arge curve of Surface 1 (the negative surface) intersects with the 

curve of sin.h 2 (y/2). This is done in Figure 4 .1. Depending on the value 

of yN and ~p K of Surface 1 it is possible that only one of the points 
l 

d 1 , e1 and f 1 exists. In this case we label this one point as d 1 • 

In general there are four distinct cases where the interactions 

are differ nt. Again these are classified by the number of times the 

repulsive pr ssur chan.g s sign wh n the separat'on varies f rom zero to 

infinity . Th s ass ar det rmined by the posicion of y* and hence by 

th r la iv position and shape of the charge urve of Surface 2 (the 

positiv surface). Each ase is defined a s follows : 

Cas 1. 0 .:S y* yd 
1 

Cas 2. yd < y* y - -
] 

Case 3 . y < .... < " y f 
l 

Cas 4. yf .$ y* . 
1 
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We shall only outline how the given results can be deduced from 

the charge curve for Cases 1 and 2. The results of the other cases 

should be self evid nt. 

4a. Case l 

In Case 1, where O .:Sy* .s yd , the interaction is always 
1 

attractive (P < 0). 

The behaviour of the repulsive pressure , the surface potential 

and charge are summarized in Figure 4.2. The results for Surface 1 are 

given in solid lines, and for Surface 2 in dashed and dotted lines. 

Referring to the curves for Case 1 in Figure 4.1 we can deduce these 

results. 

When the surfa es are far apart, Surface 1 is at a 1 and 

Surface 2 is at~. As they approach each other) we know (e.g. by the 

overlap approximation) that the interaction is at ractive, i.e. P < O, 

n1 = n2 < 0, and the surface potentials must decrease in magnitude. These 

conditions can be satisfied if both surfaces move along their charge 

curves towards y = 0. This way th interaction ene rgy is minimized (i.e. 

maximize attraction) by making the positive surfa e (2) more positive and 

the negative surfa e (1) more negative. 

We observe that if 11 1 (y1 ) has a minimum ( ln1 (y1 ) I a maximum) 

for some y1 (O .S y1 .s y*) then ther would be a minimum in the pressure and 

corresponding turning points in the potential and charge of Surface 2 -

see dashed lines in Figure 4.2. Otherwis , all quantities are monotonic 

in the separation (dotted lines). 

We note that sine y
2

, wh re 11
1 
(y

1
) = 11

2 
(y_) , is always 

positive, the potential o Surfac 2 n ver hangs sign. (Thi s is in 
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Figure 4.2: Case 1. Variations of the pressu , s u f a e potentials and 

surface charges with the distance of separat ion between the surfaces. 

The pot ntial and charge of Surface 1 ar s hown in solid lines (~~). 

Those of Surface 2 are given in dashed lin es (---) if the pressure 

has a min'mum; oth rwi e thy are given inste d by the portions in 

dotted lines (· ·· ·). 



fat true in all cases of interaction between unlike ~urfaces.) On the 

other hand, the potential of Surface 1 a l way s hanges sign . It is 

worthwhile noting here for Cases 2 - 4 that y 2 nnot rise above YN ; 
2 
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therefore the charge of Surface 2 also retains the same sign (positive). 

At zero separation, the potentials are qual 

= y* = 

and the charges are equal and opposite 

= a* = (J > 0 . - I 

4b. Case 2 

In Case 2 (yd ,::: y* .s ye ) the interaction is initially 
1 1 

attractiv (P 0) but would eventually turn repulsive. The results are 

summarized in Figure 4.3. 

Initially the surfaces start at y and y and move towards 
a1 a2 

y=O (cf . Case 1) and the interaction is attra tive. Since n
1

(y 1 ) has a 

minimum for O ~ y 1 _yd there will be a minimum in the pressure and a 
l 

arr spending turning in the potential of Surface 2 . When Surface 1 

changes sign and reaches yd 
l 

from below, y
2 

returns toy • 
a2 

Here the 

pressure is zero (n 1 (yd ) = 0 = n2 (y ) ) . 
I a 2 

repulsive . 

Wh n Surfa 1 now mov s from yd to y j t he interaction becomes 
1 

f n1 (y 1 ) has a maximum between yd and y* the potential of 
I 

Surface 2 will incr as pasty* and then return to approach y* from 

above. Ther will also b a similar maximum in the pressure curve (see 

dash d curv s) . I n1 (y1 ) dos not hav this maximum there would not be 

a final turn·ng pint for y 2 and P (se dott d urv s). 
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Figure 4.J: Case 2. Variations of the pressure, surface potentials and 

charges with the distance of separation between the surfaces. The 

potential and charge of Surface 1 are shown ·n solid lines ( ). 

Those of Surface 2 are giv n in dashed lines (---) if the pressure 

has a lo al maximum; otherw·s they are giv n i nstead by the 

portions in dott d lin s (·· · ·). 



Again at zero separation 

= y* = 

and 

= a* = a > 0 - 1 • 

4c. Case 3 

In Case 3 (y .s y* .Sy f ) , the interaction is at first 
e1 1 

attractive, then turns repulsive and finaily becomes attractive again. 

The variations with separation of the potential and charge of 

Surface 1 are given in solid lines in Figure 4.4. If n 1 (y 1 ) has a 

minimum (ln1 (y 1 ) I a maximum) for y 1 between y and y* the behaviour of 
e1 

8 

the pressure and the surface potential and charge of Surface 2 are given 

the dashed lines; otherwise the results in the dotted portions would 

hold. 

We note that if Prnin is less than P* then the potential 

(charge) of Surface 2 would extend below (above) y* (o*) at the 

corresponding turning point. 

4d. Case 4 

Case 4 is characterized by the condition that y f .s y*. 
1 

The behaviour of the pressure, sur ac harges and potentials 

are illustrated in Figure 4.5 - solid lines for Surface 1, dashed lines 

for Surface 2. In the degen rat ase where points e1 and f 1 do not 

exist, the portions of the curves indicated by dott d lines should hold 

for the various quanti ies. 

max If P > P* the orresp nding turning po i nts for y
2 

and o
2 

will 

ext nd beyond y* and o*. 



Q.) 
H 
::, 
C/l 
C/l 
Q.) 
H 
~ 

1' 
I 1 \ 

/ Separation 
O 1------1~--+--_.:r------------------=--=---

,.,- --. 
.. · · ·1 I 

P* ··1f -1 I I 
-11 

' ,,- ---~ min 

y * 

a* 

0 

-a* 

I I I I I 

I I I _I. 
11 ~~~ L - -----·~--y 

· · ·>'1 I ' ,,,,_.. __. a 2 

·>; ITl~ --

I I 

I 

I 
~ 

I 

I 

I I 

1 

+++-~"'- -
• • • • • _J_ ~ -- "._ JI----- ~-"!!!... 0 ( y ) 

-+- 2 8 2 
S paration 

69 

Figure 4 . 4: V r'ations of the pres u e , surface potentials and 

charges with the distance of separa ion b tween the surfaces. The 

potential and charg of Surface 1 are shown in solid lines (~~). 

Those of Surface 2 are given in dashed l i es (- --) if the pressure 

has tw local minima . If there is only one lo al minimum, the 

portions in dotted lin s (····) would apply . 
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Figur 4.5: Case 4. Variations of the pressure , s ur f a c e potentials and 

charges w'th the distance of separation betw e n the surfaces. The 

potential and charge of Surface 1 are shown i n solid lines (- ). 

Thos of Surface 2 are in dashed lines (- --) . If the intersection 

points d
1 

and e
1 

do not exist, this is equival nt to the Case 2 

dotted 1 n s (····) ( £. i gure 4.3). 
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This completes the discussion of all possible types of double 

layer interactions between dissimilar amphoteri c surfaces under 

dissociation equilibrium . Although the above discussion cannot give the 

actual values of the pressure and potentials, etc ., yet relative 

magnitudes of the surface potentials and charges and all the interesting 

features of the pressure urve can be elucidated. To obtain numerical 

values, we need to solve the PB equation. We show how this can be done 

in th next section. 

5. METHOD OF SOLUTION 

For a 1:1 electrolyte , the first integral of the PB equation 

(2.5) has the form 

~[~]

2 

= K
2 (coshy+C) 

dz 
(5.1) 

To obtain seco d ·ntegral , we need to know th . valu of the constant of 

integration C. The solutions, in terms of Jacobi elliptic functions or 

elliptical int grals, <32 , 33 ) are different depending on whether 

C) C < -1 
' 

(ii) lei < 1, r (iii) C > 1. These solut·ons are well known 

and h y n b wri ten int ms f the r du d variable 

cp ( z ) = xp ( - e I 4J ( z ) I / 2 k T ) . (5.2) 

(i) C -1 R pulsiv 

qi ( 2 ) = qi O d [ K( z 2 ~ oz O ) ; ~ ~ J ' (5.3) 

wh r 0 = ep ( z O ) and at z = z 0 

d 
0 (5.4) - . 

dz 
z=z0 

He Zo can b n · d or ut ·ct th ran, z=O to L. 



72 

(ii) IC I < 1 Attractive 

(5. 5) 

where at z = z 0 , the potential lJJ (z 0 ) = 0, that is <Po=¢ (z 0 ) = 1. 

(iii) C > 1 Attractive 

<j> ( z ) = <j> 
0 

s c [J, K ( ri-=-4 g ) 4 72 lz-z 0 I 1] 
cp O ; ( 1 - ¢0 ) • (5.6) 

Here K(k) is the compl te elliptic integral of the first kind of 

modulus k. The constant C is given by 

(5.7) 

and at z = z0 , \jJ(Zc,) = O. Equation (5. 7) is suitable for O < z0 < L. For z0 

outside Oto L, it is convenient to write the solution in the form 

q> (z) = cp 0 { -,[<I>'] SC SC cp-;- _ _ z . Ii -q,4} 
2¢o , o ' 

(5. 8) 

= ¢0 { -, (<I>'] SC SC ~-;-
KZ ;r-:- 1 + - . 1- ~4 f 2<Po , . o , Z < z0 , (5.9) 

w h r e <P 
1 

= ¢ ( z = 0) . In e qua t ions ( 5 . 3 ) , ( 5 . 5 ) , ( 5 . 6 ) , ( 5 . 8 ) and ( 5 . 9 ) 

d(x;k), sd(x;k) and sc(x;k) are Jacobi lliptic functions o f argument x 

and modulus k, s - i is th invers function of s with the same modulus. 

Th se solutions mat h up at the transition points c = :!: l, as expected. 

sur a 

From equat ons (2.18) - (2.2) we can solve or values of the 

pot ntials at C=-1,1, i.e. at n 1 =n 2 =0 ,-1. Putting the 

appropriate valu s of the reduced potentials cp 1 and ¢2 at C = -1 

(n
1 

=n
2 

=O) into equation (5.3) we can liminat z 0 to give 

( L ) =-1 = 2 tanh- 1 (5 .10) 

The length (L)C=-l is the value o the paration wh the transition 

rom C < -1 to IC I ,,. 1 tak pl C • 



73 

S'm.ilarly from equations (2.18) - (2.20) we can obtain the 

pot ntial o Surfaces 1 and 2 at C = 1 is n1 = -1 = n 2 • Using these values 

in quation (5. 5) and setting C = 1, we can eliminate z0 to get 

where 

1: 
_ [(1-F;) 2 sin( L) + F 1 cos( L)] 

F. = 
1 

2 1. - . 
l 

1 + ¢ ~ ' 
l 

i=l,2 . 

for (5. 11) 

(5.12) 

This gives us the separation where the transition f m IC I < 1 to C > 1 

occurs. 

Hen e given the di sociation constan s f or each surface, the 

bulk oncentr tion of PDI and the ionic strength 1 we know wh ich of the 

typ s of solutions (i), (ii) or (iii) to use or a given value of the 

separation L. This then gives us a complete solucion of the problem. 

The ualita ive descriptions given in the previous s tions will enable 

us toke pt ck of the signs and relative magnitudes of the potentials 

and harg s. Further it also helps in determining the position of z 0 , 

that is, whether z
0 

< 0, 0 < z 
O 

< L or z 0 > L, and choose the appropriate 

solutions for the cas s IC I 1 and C > 1. 

h num rical solutions of the various cas s listed are 

present y un r inv stigation . 

6. D SCUSSION 

Jn a pr t.:t · cal s·tuati n, the disso iation onstants of t 1e 

surfa es ar ix d, only the con mtration f PDI an be varied (provided 

th particl do not dis · lv at xtrem con ntration of PDI!). In 

t rms 0 th cha g curv , his means that th r lativ positions of the 

two rn t po ential ar ix Any varjations in the con entration of 

PDI m ly shit bo h harg urv s r lativ inl (y / 2) by the sam 
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amount . From the d finition of the Nernst pot ntial (assuming H+ are the 

POI) 

= 2. 303 (pHo - pH) = 2.303 tipH , (6.1) 

we se that yN is proportional to the change in pH. Therefore , for like 

(positive, say) surfaces the effect of d creabing pH can be described by 

th curves ·n Figure 6.1 a,b. 

In Figure 6.la, yN and yN are close together. As pH 
l 2 

increases we pass from Case 1 (pH 1 ) to Case 2 (p~). However when yN and 
1 

yN are sufficiently far apart, Figure 6.lb, we pass from Case 1 (pH 1 ) to 
2 

Cas 3 (pH 3 ) to Case 2 (pH 2 ) as pH increases. Clearly we can only 

conside r pH values smaller than the pzc of Surface 1 (the surface with 

the lower pzc) otherwise we would not have like positive sur faces! Thus 

on a plot of pH v rsus separation, we can construct regions where the 

inter tion is attractiv or repul ive . I n Figure 6.2 a,b we have 

constructed such diagrams co responding to the ~it ations in Figure 6.1 

a,b. The lines delineating the attractive and repulsive regions can be 

obtain d from equation (5.10) for various pH values. Notice that when we 

ar at th pzc o Surface 1, the interaction i always attractive. 

f atures 

W have developed a me hod wh ereby w can analyse the main 

the fore curve due to doubl lay r interaction betwe n two 

dissimilar amphot ric surfa sunder di ociation equilib rium. The 

r sultant f e energy o intra tin must of neces ity be the lowest 

possible in equilibr um is assumed to be maintained throughout the 

approach o the part· 1 s. Depending on the h act ristics of e ch 

surf _ , ·tis pas 'bl to b a·n f re barri rs and minima in th 

r pul iv pr ssur rom just th let o ta ic al n . Wh n ombin. d 

with h contributions from van d r Waals int erac ions (which in itself 

may b_ r ulsiv an /or attra tiv) to form th tal ore curve reeded 
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Figu 6 . 1 ,b: Sh wing th r la ive position of the charge curves and 

th unct n sinh 2 (y/2) as th bulk concent ation o PDI (bulk pH) is 

var·ed. 
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Figure 6.2 , b : Showing h schematic variation of the regi ons of 

r pulsion and at raction for given valu s of bulk pH (PDI) and 

separation (se t xt). 
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in DVL t1 ory of colloid stability, very interesting interplay between 

tbes two contributions may be observed. 

We have only used the Gouy-Chapman model for the double layer 

so we do not expect the present theory to be a good description of real 

syst ms. Several successful mod ls have been proposed to describe the 
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. (21 22 27) 
inner region of the double layer at amphoteric surfaces. ' ' These 

models als use the concepts of surface dissociation giving rise to the 

surface charg. In addition, new effects such as the binding of inert 

ins or the existence of a gel layer have been included. These new 

f atures a e in th mselves charge and potential regulating. Thus by 

using th Gouy-Chapman model, we have embraced all the basic physical 

principles behind equilibrium interaction. The main features predicted 

here are essentially correct. 

When the collision time is too ast for the surfaces to 

regulate, the onstant charge approximation then becomes valid. Here the 

large curves are horizontal (constant charge for all potentials). At 

onstant charg, we expect the interaction between surfaces with 

(i) lik barge to be always r pulsiv 

(ii) unlike cha ges t b attractive at large separations and 

r pulsiv at sma]l eparations - xaep t when the surfaces 

l,av ual and pposit charg s wl re th :Lnt raetion is then 

a]ways · ttrac iv . 

Th pres ur w·1 - lways div g at small sep rations except for the 

"equ i a id oppo i t e ... 1.:tuatio " where it remains finite. 

Wh n th r gulation o - potential i s p rt ·t , i .. constant 

pon ntial, th ch rge curv is sent ally an in 'nit ly narrow "V" 

ntr d al h rnst p te tial. Th r ar n satura ion plateaux when 



the potential is far from the Nernst value . Under constant potential 

interaction, surfaces (at infinity) with 

( i) unlike potentials will always attract 

(ii) like (but not identical) potentials will repel at large 

separations and attract at small separations . Identical 

surfaces however will always repel . 

The pressure is again divergent at small separations except for that 

b tween id ntical surfaces . 

f the various cases given for interaction betw like and 
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unlike surfaces under regulation, Case 3 for like surfaces and Cases 3 

and 4 for unlik surfa es (Figures 3 . 10, 4.4, 4.5) cannot be predicted by 

th constant potential or onstant charge approximation. If the 

equil'brium interaction is possible these cas s may be observable . 

A possible application of theory is to con~ider a mixture of 

thre different sols 1,2,3 (all positive) that is stable at some given 

pH. That is, all the interaction 1-2 , 1-3, 2-3 are all purely repulsive 

(see Figure 6.3a) . Now by in reasing the pH we can make the 1-3 

i era tion unstable with r spect to heterocoagulation (see Figur 6.3b), 

while 1-2 and 2-3 are still stable. Thus by adjusting the bulk pH we 

hav a me hanism of separating th sols 1 and 3 from 2. 



(a) 

I sinh2 (y/2) 

\ I \ . 
I / . 

(b) pl-12 (> pH i) \ I 

•tgur 6 . : An illuul arion f li w "s 1 , ~riv · agul · tion 11 can bt 

brought bout by 'hanging the bulk pH (PDI) (se t xt). 

79 
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PART II 

THE CONFORMATION OF MACROMOLECULES 



CHAPTER 1 

PHASE TRANSITIONS IN POLYMER SOLUTIONS 

AND THE PREDICTION OF e TEMPERATURES 
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l e INTRODUCTION 

Int rest in tl study of polymer conformation arises from the 

div r.·e practi al situations where polymers are involved: in industry 

(paint , adhesion, lubrication) , in technology (.oil improvem nt , effluent 

tre tm nt) and in biolo 1 y (conformation and adsorpcion of ma ·romolecules 

and polyel ctr lytes) - just to name a few examples. In this chapter, we 

shall onsider some aspe ·ts of a polymer in dilut solution; and in the 

next , som of the salient features of an adsorbed polymer . 

One of the central problems in the theory of dilute polymer 

solutions is the effect of intra-molecular for es on the shapes and 

siz s of h~ polymer hains . (l) It has been sh )Wll that polymer chains in 

dilute solution would t nd to avoid ·onfigurat ions in which the domains 

f d . f h . 1 · 1 <2 ) o · 1 . r nt ains over ap extensiv y . Therefore, a reasonable 

model of dilut polymer solutions an be obtain d by neglecting inte1i

mole ular int r ctions and consid ing only the effect of intr·a- molecular 

and polymer-solv nt intera tions on the configuration.:> of a single 

· ol ted chain . 

Following Flory , (3) we classify intra-molecular interactions 

i.nt sh rt- ange and Jong-- range effec s . By sh rt- ange ffec ts, we 

in luJe r ous on bond angl 
' 

ot tional hindrances, and 

inter r nc s du to finite siz or "hard- or II voJ um exclusion effects 

ndividual .:> gm nts r monomer unlts . Th s . fa tor are propert.ies 

of th polym r molecule lon and th y xi.st md all conditions, 

ind p nder t h nvironm nt f th polym Th singl isolated 

polym 1." mole ule in s lution is also subje d 0 0 motic action of he 
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surrounding solvent. That is, long-range solvent-polymer and polymer

polymer interactions also determine the conformation of the polymer. 

These interactions are of electrostatic (e.g. polyelectrolytes in ionic 

solution) or electrodynamic (e.g. van der Waals or dispersion forces) in 

origin; therefore, long-range effects are dependent upon the environment 

of the polymer. In particular they are functions of temperature, and of 

the electrostatic and dielectric properties of the materials involved. 

The presence of long-range interactions expands or contracts 

the polymer about those configurations determined only by short-range 

effects. An elastic reaction (not unlike that induced on deforming 

rubber) consequently develops and balances the osmotic forces to maintain 

equiliprium. Since polymer-solvent and polymer-polymer interactions are 

temperature-dependent it is possible that, in certain solvent/polymer 

systems, there is some temperature 8 at which the long-range interactions 

exactly cancel all short-range excluded volume effects and the polymer 

behaves like a random flight chain. The residual bond angle restrictions 

and rotational hindrances can be handled by replacing these effects by an 

"equivalent" random flight chain with a new effective step size. (4) 

Of the various conformational properties of an isolated polymer 

that can be extracted from experiments such as light scattering and 

intrinsic viscosity measurements, the mean square radius, ( r 2 
), has 

received a considerable amount of attention. Mathematically the problem 

of an interacting polymer has been formulated as a self-avoiding random 

walk, a problem of considerable complexity. Especially as a result of 

Ed d ' (5) 1 . wars paper some rea progress has been made towards the solution 

of the self-avoiding walk problem. It seems generally agreed by 

theorists( 6) and confirmed by experiments(]) and computer 

simulations(B-ll) that the original prediction of Flory(lB-Zl) namely, 
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for a ir.i e 1 u d e d volume e f f '- t r 2 
) · N (J 

1 5 
, w h re is the number 

0 rn namer u its in the polymer, i corr ct. This is in contras t. with 

th volum les random flight result ( r2 ) "' N whi h occ urs at the 8 point. 

And p nd·ng wh cher or not polyrn r-solvent interactions are favoured 

ov po ymer-p lymer interactions, the net result will be a positive or 

negative exclud d volume (self-avoidance) effect. 

In this chapter we study the contribution of dispersion forces 

to the long-range interactions in dilute polym r solutions. Using the 

impli ied v rsi n f Edwards' analysis(S) as giv n by de Gennes(
22 ) 

tog ther with the notion of the dispersion sel f -energy of a molecule 

(2 3) 
developed by Mahanty and Ninham, we demonstrate how the polymer 

segment density p(r) can be de ermined self- onsistently and how the 
"' 

transit ion ram ( r 2 
) "' N 6 1 5 to ( r 2 

) "' N takes pla e. The theory is then 

a pli d tor al polymer/solvent systems to d mon s trate how dielectric and 

p ct ro copi prope ties c n be used to provid a riterion for 8 

solv nts, and data from handbooks are us d to test the conclusions of the 

·h ory. 

2. d GE tES ' FORMULATION 

Consid an 11 id al" volumeless polym r. Th equilib r:lum 

c n igu ation o polym r is d t rrnin d by <lj_ s tort i ns due to long-range 

polym r - p lym .r n<l polymer-s lv • t inte a tJons and by elastic reactions 

as a r oult o . nt opy losses. ln d G nnes ' [ rmul t ion (22 ) the 

entropi par £ the r en rgy is relat d, in a mea n field 

appr xima ion, to an xLernal pt t ntial whl h __. xpand , or contracts the 

p lym r. 
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The polymer is pictur d as a coll ction uf beads located at 

positions £i ,h , ... ,L , held at a ixed dis tan e a= lfn+l -~ I apart. In 

th presence o an external force field, them an orientation of the 

(n,n+l) link is ( r - r ) = u .. For small ori.entational distortion of 
"-11. + 1 "'11 "1] 

the link I u l << a, when u = 0 corresponding to complete orientational 
"-ll "'-Tl 

disord r, th a so iated decreas in entropy is <
22

) (k = Boltzmann 

o stant) 

~s = 
n 

3k 2 
- ~ - u 2a n 

(2 .1) 

For if p(8) d notes the probability of finding the mean orientation ,1:!, at 

angle 8 , th most gen ral form for~ leading to a small polarizati n ~ 

(u a) is <22 ) 

w·th (8) arbitrary xc pt th normalization f p 

r quir s ht. 

The ntropy o th 

J
1T 

p(O) sin8 d8 

0 

= 1 

r £ ( 8 ) sin 8 dB = 0 . 
0 

link is(2 ) 

s = - k r p( B) lnP e) slne rn 
0 

(2.2) 

(2. 3) 

(2.4) 

(2.5) 

whi h - 1 adlng rd r in u j ch r sul t glv n in equation (2 .1 ) . 

With hi d _c ease in entr py, th ·orre ponding ange ln free 

nergy j 

G ·- T tiS 
3kT u2 = = 

n n 2 2 n 
(2. 6) 

Th total ·hang n th r rgy 

C 
JkT 

2: ( ) l = +1 - r 1 2a2 
(2. 7) 

n 
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n b btained by summing over all links . Differ ntation of the free 

. ld h f . l th b d nergy w'th respect tor yie st e ore acting on t1e n ea. 
"-0 

In 

th cont·nuum limit this force is 

F(r) 
,..._, "' 

= G 3kT 
-- -+ --ar a2 

,-0 
[~] 
8n2 • 

(2. 8) 

Th ' s expr ssion may b integrated to give 

[aa ,....,nr] 
2 

A. (r) _ 3kT 
~ 2a 2 = constant (2. 9) 

if the force can b d rived from a potential: 

F = - v1 ¢ 
"-

In dealing with the excluded pr blem, d Gennes (2Z) shows that 

~() ·s prop rtional to p(r) the average segm nt or bead density at r. 
"- ""' ,..., 

Furth r , if one assumes radial symmetry, the number of segments in the 

rang r to r + dr is 

dn = 41rr2 p(r) dr (2 . 10) 

Th av rage bead density p(r) is defined such tha t N, the total number of 

b <ls , is given by 

N = p ( ) d (2 . 11) 

H n e by S-'L ing 

qi ( r) - kT v p ( r) , 2.12) 

wh r v th II 
x lud ld volume param t r", r;(r) may be determined self-

c nsis ently. If the xclud d volume par meter is a constant, 

subst'tuti n of equat· n (2.1 2) and (2.10) lnt (2 . 9) (with constanL - O) 

giv s p ( ) - 4 I 
wl i ·h from (2 . 11) yi lds ( r 2 

) N6 / S d , , an no tl point 

x :Ls t . 
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3. DISPERSION SELF-ENERGY AND POLYMER CONFORMATION 

To x mine the rol of dispersion interactions in determining 

polym r c nformations in real polymer-solv nt systems we require an 

expression for ~ (r) as the equivalent one-body potential of a polymer 

segment. This potential must be temperature- nd density-dependent and 

should be expresse I in terms of the dielect r i · properties of the polymer 

solution. In principle, knowledge of the d ' ele ctric prop rties of the 

olvent and polymer sho ld provide implicitly a good description of the 

polymer-polym r, polymer-solvent and solvent-solvent interactions which 

are ultimat ly r sponsibl for the chain configuration . 

We confine our attention to non-aque ms solvents, where 

d" persion fores are the dominant intera c tion mechanism. Then with each 

polym rs gment, we identi y the one-body potential with its dispersion 

s 1 f- .ne gy. ( 2 3 ) 

Th dispersion self-ene gy of a rnol cule in vacuum can be 

defin d as th change in energy due to coupling with the electromagnetic. 

i ld. When in the pr sen e of a material med i um, this field is modified 

by b surr u ding mole ·ul s , and the s l f-·n rgy o f the molecule wiJl 

in lud all jnteractions with it s •lf and with the molec ules of the medium. 

Tn ti e r ·g i.m wh r lin r r - s ponse th ory ls v lid , this s l f - ne gy 

. ( 2 J) 
l .S 

G = 
(i t, ) 

4'IT ')'I l 

~/2 kT J.J L ( j [, ) ' 
n=O ·n 

(3.1) 

wl1ere , nd ar . r sp tiv ly the r eq uen y d·pend nt (i so tropic) 

p larizabillty - th m J cul and th horn gen ~ous , i ·otropic diel c tric 

u et bility 

th ~ mol .ul . 

t e m dlum. Th c ns ar b ls am sure of the size of 

The summation is ov r imag1.nnry r que ncies , i~ = i2 TTI1 kT/h 
n 

wit l th Boltzmann on stant, T the bsolute Lemp rat ur , 2rrh Plan ·k's 
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con tant and the prim over the summation sign indicates half weight for 

th ... n = 0 term . 

A <l tailed discuss·on of the concept of self-energy and the 

d riv tion o equation (3 . 1) is given in r ferenc (23) . 

I tl polarizability a of each bead, of radius b, is assumed 
p 

to be isotropic, th s lf-en rgy per bead j s 

00 p(l ( n) Lnr ~· (3 . 2) G = - ---- kT 
p b3 1T3 / 2 E (i~ ) ' n=O m n 

wh r 
m 

s the di. J ctr'c susceptibiJ.ity of he so lution . G provides a 
p 

ru asur of the int raction between the polymers gment and the solvent as 

w 11 as tl1e intra tion between the polymers gment and all other su·h 

segments . 

To be pr _ise, one sh uld take into ac e unt the patial 

distributi n of polym rs gm nt s , that is spat i al variations in E when 
m 

valu ing th sel r -- ne gy . This ·an b a omplished as follows. Th 

dispersions lf-ene gy of a mol cule given by equation (3 . 2) is derived 

fr m reen fun tion G(r r ' ·w) which for 
....._, ' '"'-' ' homogeneous medium satis ies 

h quati n 

the di _l 

C 
rn 

ri · us pt.ibility 

sp ltidl c -· lin l ~ (e.g. du t 

= 6 (r -r 1
) 

..._ " 

f Lhe m•Jium 2 is a fun tion of 
m 

sp tial d i::; rributiou of polymer 

segm n s) th equation for G sl1ould be 

m 
c · v7G = o ( r - r 1 

) 
rn "" 

(3.3) 

(J .4) 

Provid d lh p lym - r solutlon J.s dilut ( ypi ·ally th ' density of beads 

within th J ! .. 1%)(25) po ym r c mo n is ~ c w 

= L 
rn 3 

rnt.1. y w· · t 
(26) 

€ i s the di l c tri 
s 

SUS ptibility of 1 pu solv nc . l tli p ub l 111 po s tiS s radial 



symm try, we can writ 

2 ' 
0 

E ~ + m r [
2 d E ] ·1 

~ + ~ 5!.E.. -~
r p r r 

= o(r - r ') (3.5) 
,-., 

Wh n th so lucion is n ar the 8 point p ( r) 1 / r so using t his value of 

p (r ) w g t 

a'G 
2£m[ dt J G £. - - +--1 - E m = o (r-r') m d 2 r 2 EID 8p r "' '"""' 

Bul sin E >> p ( ml p) we can to leading oder neglect 

ariations in~ wh n valuating t he sel f - n rgy . 
m 

spatial 

R turning now t o equation (3.2), w note that since only 

(3. 6) 

mole ules in the neighb urhood of the polyme bead in question contribut e 

s·gni icantly to its s lf-energy, so for a dilute solution we can account 

fo r the distribution o f other polymer segm nts by allowing E in equation 
m 

( .2) for the self-en gy G , to depend ou the dens ity p( r) of other 
p 

s gm nts. or the one-b dy potential, we writ 

C(J 

{ ~~-~ _ a!' (iO} cp ( r) 411 
kT 1: ' = b2 n3 1 2 (i E, ) (i ~) ' n;;Q m ·n s 

wher th ond t 'rm d s rib the be · d-solv -nc iuteractiun in th 

( J . 7) 

abs n aJl other polym r b d . Thus it follows chat the c >n stant f 

int gr· i n ln qu i n (2 . 9) is zero becaus far way from th polymer 

E = E 
m 

in ' p ( ) = 0 . 

To obtain an 1 xp r ssion fo r th di lectrlc sus eptlbility of 

th p >lyru r ~olutlon E int rms of th bud deusity p(r) we assume that 
m 

th polarizablliti s h p lyme beads nd he 'egment molecules are 

ddlciv 7) 
and l t d by th C .Ju · s i us -Mos.:> o t t i 

m 

r lain . (
2

) Suh a ssun~tions r r aso1abl · for non-polar media. We 

writ 

m 

+2 
m 

L, 1T 
= [p(r) p (n -p( )) ] ' s 

( . 8) 



where n is the density of solvent molecules in a pure solvent and is 
s 
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taken to be constant . In oth r words we "remove" a solvent molecul and 

"replace" it by a monomer unit. The density of molecules in the solution 

r mains the sam as that in the pure solvent. Equation (3.8) may be 

ear anged to give 

81r 
E + -

3 
p (r) ( - a ) / (1 - 6 ) 

E = 
m 

s -~ s s 
4·11 

1 - -- p (r) (a - a ) / (1 - b. ) 
3 p s s 

(3.9) 

4n( - a ) (4n )2 (a - a ) 2 

s + p (: ) -(1.:_~ ) ~ - + p 2 ( r) .3 ( 1 - Pb. _) 3 s . + 0 ( p J ( r) ) . . • , ( 3 • 10) 
s b 

wh r 

6 
s 

C - 1 
s 

-- --· = 
E + 2 

s 

41r 
·- n a 
3 s s 

(3.11) 

We now seek a solution of equation (2.9) for which p(r) is 

radially symmetric. Combining equations (2. 9), (2.10) and (3.10) we get, 

to 1 ading order in p(r) 

{

- 00 

:z: ' 
n :.:= Q 

a ( - a ) oo a (a - u ) 2 

p o _L 3 ( ) + 8n ,, .L p s 
E2 ( 1 - b. ) 2 p r 3 1,..; c1 ( 1 - b. ) 3 

s s n=O s s 

+ O(p5 (r)) (3.12) 

11 g n ral, th r 3 (r) term alwa s dominates th .... l :. ft hand side and we 

hav 

P (r) - 4 / 3 r ; < r2) (3.13) 

Thi is the · miliar situati n wher excluded volum effects are 

ignificant . On the uth r hand, when the co ffici nl of p3 (r) becomes 

id nti lly z o , then 

P (r) - r r N (3.14) 

and th me n oqu Jius i Jjk ~ Lha t o a 1·andorn light hain. The 

ingu]ar situation wh n Lhe f · i cien t of p ( r) vanj hes c r responds to 



the~ point . The physical significance of the coefficients of p(r) in 

quation (3 . 12) can b seen as follows . The co f£i ient of p 3 (r) is 

00 ( ci a - Q u. ) 
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= ( L~ '.!) 2 kT 
b) 1TJ / 2 

~' - p s ____ _El __ 
€ (1-l\ ) 2 (3.15) 

n=O s s 
and that of p4 (r) is 

) 

2 ( 41T) kT 
Jb3 'ff3 I 2 ~· 

n=O 

( -.t ex + a a Lt -· 2a a a ) 
p p p ___ ..e_ s . b ·-- p p s 

E3(1 -l\ )3 
s s 

(3.16) 

We see that to leading order in u., ~ des ribes the competition between 

two-body solvent-polymer and polymer-polymer interactions , and A4 

describes th comp titian among the three- body polymer-polymer-polymer , 

1 1 1 d 1 ] 1 
· . . (36-38) po ymer-so vent-so v nt an po ymer-po .ymer- so vent interactions. 

Under normal co iditions the two-body interactions are dominant and they 

g ;v. r1· se to the < r 2 ) ""' N6 1 5 bel1avi· our . ll d · 1 L -owever, un er spec ia 

circumstances wh n the two-body interactions cancel exactly, the three

body term then give the< r
2

) - N, random flight configuration . The sign 

any pa · ti ular term in the sum AJ, corresponding to some frequency ~- , 
J 

m y be ~ 0 dependi.ng on whether (a: a - a a ) ~ 0 at , . . .If 
p s p p J 

(a - ct ) > 0 polymer-solvent interactions are favo ured over polymer-p p p 

polym r interactions and if ( ct o. - a C( ) , 0, the conver se is true . It is 
p s p p 

quit possibl hat or a given polymer/solvent pair (a a - a a) may 
p s p p 

' 11 ng sign duri tg the _uurs " o f the f r queney summation . lf the net 

ult is that A3 > O, then on tl e wllole po lym:i r· ·solvent int r actions are 

pr f rr d ov ~r p 1 rmer-polymer interactions an d th polymer exhibit a 

positiv' xclud d volum effe t . In other words, the solvent "expands" 

th polym r. If A3 0 the pr s nc th ory Jr d i ·ts collaps e of the 

polym r (< 
2 

) ; 0 ! ) ; h< w ver in this r glm short- ange ef fe e. ts need to 

b tal· 1 . nto count. Th cond :LLion unJ - r whicl1 Lhe two-body te rms 

ar 1 (8 - po ' n ) depends on a d licat t= balan _ of tl1 absorpt i on spectra 
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of th materials and the complicated summation over imaginary frequencies 

(i ~ = i21rnkT /h) . Therefore the existence of the 8 poin t for a given n 

polymer/solvent ys tem depends critically on the dielec tric properties of 

b o th the solvent and t he polymer as well as on t he temperature , ma i nly 

though variations in th di ectric constant . This point will be taken 

f urth r in th n ext sect·on. 

4. APPLICATION TO REAL POLYMER-SOLVENT SYSTEMS 

Befor applying our formula e tor al systems it is worth while 

tor .capitula ·e the assumptions made so far. 

(i) We have assumed the polyme r can be modelled as a string of 

beads held at a ixed distance a apart, and ea h bead has an isotropic 

polar·zability . 

(i') Th _ solvent is assumed t o be isotropic and st ructureless and 

j _ only haract ized by its diele ~tric susceptibility E • 
s 

(lli) Only 1 ng-range dipo le-dipole <lisp r ion i nteractions are 

examin d . Short-r ng effects su has fixed bond angles hindered 

rati n aud har d r vo1um ·f · t. ar no ' n id d. However, these 

ar un'mport an t provid d we r main in th e random fli gh t or positive 

x lud d vol um r gimes. Evidently th se assun,pti.ons a re fairly 

xt.r me . on theless w have an order of magnituLle agreement with 

ob rv,:.d tr ~nds v n at his 1 ve o sopliisti cation . 

Tu in st · gat them gnitude of h~ coeffi ient A 3 near the 8 

pint, r presenlatiun of the r qu ·n y depend nt 

p u 1 d r i z · b i l 1 i ti n d d l 1 ., c tr i ~ s us · , p t i b 11 i c s c1101 g the lma g i na r y 

r -qu n ·y axib . le has en und in wor k -· on1J e · t d with th calculation 

of disp r Lon · o s b wen uw r scopi b 
. (2SI-JJ) l . . 

rdi~b t1at it is 



suf icient tow ite 

c. 
(i~ l+.., l+ ( s / w.) 2 +y .~ ~ + 

j J J J 
= ...., 

D 
r 

l+s/D . 
r r 

The terms in . d scribe Lorentzian relaxati 1s f strength c. at 
J J 

r quen y w . ' 
J 

·md that in Dr , simple D__.by r tational relaxatjons . 
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For 

nJr-pol r orga i materials , wh ere ther are no Debye relaxations and the 

b · nd width) . is always small compared with w. , the required dielectric 
J J 

pr p rti s c n be pre.sented by the stmple form 

= 

H r we have sununarized the absorption spectra by one principal 

absorption fr quency w in the ultraviolet . The static dielectric 
UV 

constant (O) is relat d to the refra tive index R by 

E (Q) 
1 = R 

( 4 . 1) 

(L • • 2) 

Th pola J z bility is onnected to the dielect ric su ceptibility via the 

( 28) 
'laussius-M s otti relation 

c . - 1 
' 

l L.nr 
/..). ' -- ··- --· = n . . - + 2 3 i ' J - l 

l 

i= s ,p for solvent or polym r . (4.3) 

Th, v lu£:! o.E n. , th" d nsity of nml :, cul :-. s that <..:L ntribute to dielectric 

d l pers ion in pure substan ·e i , is un rtain . But since most organic 

sol v 0•nts · nd monume s h ve sJ_o1ila.r mo]t , ula r weigllts and densities , it 

se ms r(_ s nabl co c:JSsun1e that lh values [or the olvent and the 

H n c ef Jl th w s t n ::.:: n '.::'. n • 
p O 8 

For o not di ·er olgni r· , antly . 

F- li t,, f t ll g ;.neral foi:m giv n. in 13q ua l1 o n (L, .1) it can be Easily ;::ihown 

t.11...iL u (j C) 

i ( LC: ) 

. (0) 
l = --------

l+U/u/L) 2 

' - 0 
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a. (0) l . = 
3 

4.1rn. 
l lei (0) - ~1 

E. (0)+2 
J_ 

i = s , P (4. 5) 3 - ---- ~ 0 

4 7Tl.10 i 

The a sorption f i 
ul in 

0 
1uen y different fr m w 

UV 
foe the bulk material. 

Since a . is the p lariz · bllity of a monomer or solv _n t molecule and 
l 

because of th la ·k £ ]etailed spect r oscopic data, 1Llu
0 

can be 

ppruximated by the ga eous first ionization potenti · l of the app r op r iate 

molecu]e . Th form o u(iF,) , a co ding to .(111ations (4 . 4) and (4 . 5 ), is 

r pre nt - d sch matically in Fig . 4 . 1 . 

R turning n w to quat'on (3.15) we s that at the 8 point A 3 

must vanish. This implies that ( a -· ct ) mus t changt~ sign as ~ var ies 
s p 

f m Oto oo From equat· ns ( 4 . 4) and (4 . 5) we see chat 

b 0 ---~ ---1 ( ct - 1- ) 
s 

a: 

[;-+- ( [/ 6 ) ' 
. s 

1 + ( I; / w ~;) 
2 J -- ;;, Wo 

( 4 . 6 ) 

11 n ~ · or ( et - u ) c o ch ng sign, the urv _s et (i i;) and a (i ~ ) must 
s p p s 

inters •ct ln tl1 ! man r cimilar to that showu in Fi [.; . 4 . 1 . Therefore , a 

n ss ry condition for. a polyme r/ s olv ent pair to e2~ hibit a e point 

w:i.thin a t rnp · r- tur range j s that, within this nrn ·,c , :Lf 

~ 0 th .! rl :::?., 0 ) 

and vi. ver a . Th summation v r fr q I nci s jn t ~1ation (3.15) 

. cJmples ch iff renc . b-- 1.::.w n the two ·urv s in Fi g. L• . l at intervals 

l~ = ?,r kT/ti. Geom t1i Ly, his s ummati.on is roughly the same as the 

di · f r n c b t w err che two shad d rea s Jal llec.l 1 2.mJ 2. So for 

8- poinL o xis , d lic:a te br:lan e oi Lil aboorpt i.u n spectra of the 

pulym and solvent is 11 de d . n 0th•r worJ s , foe~ polym - r/solvent 

paj r th L xllib L s J O p int, we concluJ ~ und c th L p esent model, that 

oncJici n (4. 7) al10 1l d buJ d b •cv, ·~ n t h '.Jdfii.;. uU.3 ir t>L ionization 

lJ c nli 1~, J, an rh s - ti "' ui · lL~· tri c cJn tan ts, r (O), o · the polym r 



---------------- · - ~-------------""' 

u (i t;, ) 

POL'{MER 

SOL VENT J. (i~) 
s 

p 
(J I 

u 

Fig ire 4. J: S hem· tj c r .p s ,nt ti.on ot the po larizabilities o f th 

l)olyrn I" and solv •n t u (i t,, ) · (i [, ) a n r h .Lmaginary frequency p , 8 

,xlt,-
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· d the ·0lv1t . 

and 

I 
p 

= 

f- (0)-1 
_ _E_ ____ _ 

· (0) +2 
p 

= 6 0 • 
p , 

I = 
s 

E (O) - 1 

E (O) 2 
s 
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(4.8) 

= (4.9) 

In Tab 1 e L~ • 1 ( tabulate the gaseou s first ionization 

potentials · nd re ra Live indic sofa numb · r of polymer / solvent pairs at 

their 8 point • the valu so - th refractiv ~ indi es , at the 

corr bpond ·ng b t mperatures , are estimal d from tabulated data us ing t he 

formula 

= [ u RJ R +( 8 -T) --; 
T en T 

( 4. 10) 

Equation (4 .10) only holds [ roviJ d ( 8 ·- T) do •s not. exceed say ± 30 °K . 

This · estrict·on means that w can only v rjfy condition (/+.7) for those 

s y ~tems whu' di 1 ct;_ , pr p rti es near th _ b r mp rature are available . 

The handbook data from which Tabl 4.1 is on t:>c ru te d are lis t ed in the 

pp ndix t the nd of this chapter . fnc.l} .d, f o all the sys t ems lis t ed , 

condit'on (4 .7 ) dos app ar to u satisfied. 

1------------- ------- -- -·- --- -~ 
M asured 

Sy cem 8 '1' I mpera _ure 
OK) 

Ga. ,)us Fl rst 
loni zacion f' t ntial 

( V) 

Refractive 
Index at 8 

,----- -----·-- --- ----- --··---·------·--- --1 

Polyis butene in 
tolu n . 

P lyl.obut n ~ in 
LhyJ benz ne 

Polysty _n in 
·y 1 h xan 

P lystyr n in 
d C lin 

-----·--- __ __.,_ ----

., l 

251 

307 

304 

9 . 23 
~ .8 2 

9 .2 3 
8 .76 

8 .47 
.80 

1 . 516 
1 . 574 

1 . 523 
1 . 577 

1.555 
1 . 422 

1 . 554 
1 .481 

·---------- ----- -··-------- --' 

T b 1 ' 4 . 1 : D a _ f r p ) y m · r ' a n d s l v · n L s ( f:; Appendix) . 
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The criterion fo r a 8 point stated above is expected to be 

s tisfied by non-polar polymers in non-polar s olvents . When the static 

dielect ric con. tants of the polymer and solvent are more near l y equal, 

such as that for polystyrene in benzene, 8 = 24 °C (see App endix), a more 

d tailed knowledge of the higher ionization potentials and corresponding 

oscillator strengths may be necessary to determine t he 8 point. In 

general where there is more than one relaxation frequency , it is possible 

for the curves in Fig. 4.1 to cross several times . As for cases where 

the polymer segments and/or the solvent molecules possess permanent 

dipole moments (e.g. water) the position and degree of Debye relaxations 

at lower frequencies will also influence the e point. If systems 

involving polyelec trolytes are under study, the analysis must be 

supplemented to include electrostatic contributions to the potential ¢ . 

The ef fect o charged segments in ionic solution is to expand the 

( 34 35) polym r. , 

5 . A COMPARISON BETWEEN THEORY AND EXPERIMENT 

Using available data at or near thee t empera ture, we would 

li~ o ch kif this theory doe s p d iet a 8 point , that i , wh ethe r o r 

not the coe ff icient of p3 (r) in equation (3. 12) is "vanish i ngly small" . 

To fac ilitate a comparison , we r ewr i te equa tion (3 . 12), with the aid of 

th a llowing results 

11 • - [~~1 Lrn 
- = - n. a. -

E . + 2 3 l l l 
l 

(5.1) 

-ni ::::. n , i = s ' p (5. 2) 

to give 

3kT 1 
2a 2 (4 1r r 2 ) 2 (5. J) 

wh r 
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co 6 (6 - ~ ) 

83 = 2:' E 8 E 
£2 ( 1 - ~ ) 2 

n=O s s 
(5. 4) 

co 6 (~ - 6 ) 2 

S4 = 2 ~· E 8 E 
s 3 (1- 6 ) 3 

n=O s s 
(5.5) 

The 8 point is then taken to be where the ratio of the two dimensionless 

coe f · cien ts I s3 / s4 I vanishes. 

Since we are identifying a to be the polarizability of a 

rn nomer or solvent molecule, we take ~ w0 in quation (4.4) 

a (if,;) = 
a (0) 

l+t?/w 2 
0 

(4.4) 

to be the ga eous first ionization potential. Using equation (5.1) we 

find( 39 ) (cf. equation (4.1)) 

E: (if,;) = 1 + 
s (O) - 1 

1 + t=,;2 / w 2 , 
UV 

(5. 6) 

wher 

[ [ Jt · (0) - 1 
u.) = Wo l- s (0)+2 UV 

(5. 7) 

E (O) = R2 . (5.8) 

In other word~, the ionization potentials of molecules is lowered in 

passing from the vapour phase to the liquid or solid phase - a 

phenomenon that has been known for some time. (40, 4l) Although equation 

(5.7) predi ts reductions in the ionization potential that are 

omparable to those observed experimentally, <42
) (for non-polar 

d"ele tri at 1 ast) it would be much more ~atisfa tory if optical and 

p ctros opic data of the bulk material we 

onstru t - (i~) directly. 

available so that we can 

W al _ulat jd the sums 3 and s 4 ( •quat· ns (5.4) and (5.5)) at 

th 8 t mperatur by a suming that w
0 

is given by the gas ous first 

ionization potential for the various polym r/solv nt pairs listed in 
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Tabl 4.1, and ound that the ratio js 3 /s 4 j does not vanish (js 3 j......,l, 

is 4 j ---..,10 - ) . But we know that the first ionization potential is only an 

approximation to the absorption frequency w
0

• To see what deviations 

from the tabulated ionization potential are needed to make ls 3 /s 4 I 
vanish we us the tabulated ionization potential of the polymer (solvent) 

and ind the "n w" ionization potential of the solv nt (polymer) for 

which ls 3 /s 4 1 vanishes. These "new" valu s are given in brackets in 

Table 5.1 for the various polymer/solvent systems, t ogether with the 

tabulated v lues. 

System I I 
p s 

Polyisobutene in 9.23 8.82 
toluene (10.10) 8,82 

9.23 (8 . 07) 

Polyisobutene in 9.23 8.76 
ethyl benzene (9.91) 8 . 76 

9.23 (8.15) 

Polystyr ne in 8.47 9.80 
cyclohexane (6.30) 9.80 

8 . 47 (1 .20) 

Polystyrene in 8.47 9.61 
decalin (7 .83) 9.61 

8. 4 7 (10.40) 

T bl 5.1: "New" values of the ionization pot ntial (in brackets) 

for whi h ls 3 /s 4 1 vanishes at b . 

From the r sults of Table 5.1 w see th · t a larger diff rence 

in the ·onizati n po enti 1 is need d to produce a G point. With the 

exception of polys yren /cy loh xan , a deviation or 1 ss than 10% from 

h g seous v lu sis sufficient . This indica t s that the existence of a 

8 point ( js /s 4 1 ~ 10- 5
) is very s nsitiv to diele ~tric and spectroscopic 

data . The appar ntly large deviation n ed d or polystyrene/cyclohexane 
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is due to the fact that the first ionization potential of cyclohexane is 

a poor estimate of w0 • In fact, it has be n fo und that in a plot of 

molar polarizability against frequency , the usual technique of 

extr polation to zero requency indicates that cyclohexane has a strong 

absorption peak at 866 ! or about 13 . 6 eV. C43 ) 

Evidently we can see from the results that data available at 

present cannot predict the 8 point correctly. Thi~ is because dielectric 

data at the 8 temperature is not available and only a single frequency 

r pr sentation for the absorption spectrum is used (and even then we are 

ncertain o th exa t va lue of this frequen y). However, at this 

unsophisticated level of approach, we cannot expect more than general 

trends to merge . It seems reasonable that a vari tion of less than 10% 

ln the gaseous first ionization potential is sufficient to produce a 8 

pain . We have also been able to obtain a riteriJn (4.7) for selecting 

8 solvents or non-polar solvents and polymers in terms of the relative 

v lues of the ~tatic dielectri constants and princi pal absorption peaks. 

This theory also provides a physical basis for the phase 

transition ( r 2
) - N615 to ( r 2

) ~ Nat the 8 point and gives some insight 

into how ti int rplay b tween dielectric p operti s of the polymer and 

solv nt, nd ·hanges in temp r ture an bring about a 8 point. Until 

t rnor refln d spe ·troscopic data come to hand, not a great deal an be 

gin d by 11 ing or tl possibility of an nisotropic polarizability 

£ r th p lym r segm nts or by the "cor ect 11 handling of the spatial 

discribut· n f polym r egments in calcul tion of the effective one-body 

potenti 1. 

T 
H w •v r , ~ do not pct c ntributlons 
import · nL. Thi i b us the olv ts 
mol cul r wight and densities; th e 
sp tra s hould b sim"lar.(30,31) 

om th fa r ultraviol t to be 
nd mon m s h · ve similar 

r th l r far ultraviolet 
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APPENDIX 

DIELECTRIC DATA FOR SOME POLYMERS AND SOLVENTS 

The following is a list of dielectric and spectroscopic data 

for polymers and e solv nts obtained from data handbooks. (44- 46 ) The 

temperatures at which the values were measured, in °C, are given in 

brackets next to the substance . The fir s t ionization potentials (in 

elec tron volts) of the polymers, taken to be the gaseous first ionization 

potential of the constituent monomer units, are assumed to be temperature 

independent. When values of the change of refractive index with 

temperature dR/dT are not available, they are assumed to be close to that 

of a structurally similar compound. For these non-polar substances, the 

stati diel ctric constant can be taken as the square of the refractive 

index. 

Gaseous First 
Refractive (dR/dT) X 104 -Sub s tan Ionization Potential 

( -V) Ind e x (oc - 1) 

Polystyren ( 20) 8.47 1.5 -ot 1.42 

Polyisobut n (25) 9.23 1.493 6 
* B nz ne (25 ) 9.23 1.50 "-' 2 

Tolu ne (-15) * 
( l thyl b nzene) 8.82 l.57L~ ,..,._, 2 

* Ethyl benz ne ( 2 0 ) 8.76 1 . 552 ,..,._, 2 

Cycloh x n (25 ) 9.8 1 . 426 ,..,._, sf 
D c lin (JO) 9 .61 1 .48 ,...,__ sf 

t St yren monom r. 
* Es imat d fr om that of p lysLyr n . 
I Es timat d f rom chat of thyl lohexan m cy . 



102 

REFERENCES 

(1) C. Domb, Polymer 15, 259 (1974). 

(2) P .J. Flory, Principles of Polymer Chem-is try , Cornell University 
Press (1953), Ch. XII. 

(3) Ibid., Ch. X. 

(4) For a review on the application of the theory of random walks to 
polymer conformation problems see M.N. Barber and B.W. Ninham, 
Random and Restricted Walks, Gordon and Breach, N.Y. (1970). 

( S) S.F. Edwards, Proc. Phys. Soc . 85_, 613 (1965). 

(6) H. Fujita, K. Okita and T. Norisuye, J. Chem. Phys . 47, 2723 (1967). 

(7) G.C. Berry, J. Chem. Phys. 44, 4550 (1966); see also Ch. XIV of 
reference (2). 

(8) J.M. Hammersley and D.C. Handscomb, Monte Ca1?lo Methods , Methuen 
and Co., London (1964). 

(9) F.T. Wall, s. Windwer and P.J. Gans, J. Chem. Phys . 38, 2220 (1963). 

(10) F.T. Wall, s. Windwer and P.J. Gans, J. Chem. Phys . 38, 2228 (1963). 

(11) s. Windwer, J. Chem . Phys . 43, 115 (1965). 

(12) J. Mazur, J. Res . Nat . Bur . Std . A69, 355 (1965). 

(13) J. Mazur, J. Chem . Phys . 43, 4354 (1965). 

(14) s. Blues tone and M.J. Vo ld , J . Polymer Sci . A2, 289 (1964). 

(15) C. Domb, J. Gillis and G. Wilmers, Proc . Roy . Soc . _85, 625 (1965). 

(16) C. Domb, A.J. Barrett and M. Lax , J . Phys . A&_ , L82 (1973). 

(17) A. Bellemans, Phys-ica 68, 209 (1973). 

(18) P.J. Flory, J. Chem. Phys . 17 , 303 (1949) . 

(19) P.J. Flory and W. R. Krigbaum, J . Chem . Phy. 18, 1086 (1950). 

(2 0) P .J. Flory and S. Fis k, J . Chem . Phys . 44_, 2243 (1966). 

(21) See also reference (2) , Ch. XIV. 

(22) P.G. deGennes, Rep . Progr . Phys . 32 , 187 (1969) . 



103 

(23) J . Mahanty and B.W. Ninham, J. Chem . Ph s . 59, 6157 (1973). 

(24) Se for xample G.W. Castellan, Physi al Chemistr-y , Addison-Wesley, 
R ading, Mass. (1972), Ch. 28. 

(25) Reference (2), Ch. XIV. 

(26) I .E. Dzyaloshinskii, E.M. Lifshitz and L.P. Pitaevskii, Adv . Phys. 
10, 165 (1961). 

(27) R.C. Weast (ed.), Handbook of Chemistry and Physics, Chemical 
Rubber Publishing Co., Cleveland, Ohio (1971-2). 

(28) See for example J .H. Van Vleck, The Theor1y of Electric and Magnetic 
Susceptibilities, Oxford U.P. (1965). 

(29) V.A. Parsegian and B.W. Ninham, Biophys . J. 10, 664 (1970). 

(30) V.A. Pa.rsegian and B.W. Ninham, J. Chem . Phys . 52 , 4578 (1970). 

(31) B.W. Ninham and V.A. Parsegian, J. Chem . Phys. 53, 3398 (1970). 

(32) P. Richmond, B.W. Ninham and R.H. Ottewill, J. Colloid Interface 
Sci . 45, 69 (1973). 

(33) See also references cited in B.W. Ninham and P. Richmond, J. Chem. 
So ., Faraday II 69, 658 (1973), an d J. Mahanty and 
B.W. Ninham , Dispe11sion Forces , Academic Press, London (1975). 

(34) Reference (2), Ch. XIV. 

(35) P. Richmond, J . Phys . A.§_, 1109 (1973). 

(36) A.D. McLachlan, Proc . Roy . Soc . A27l 387 (1963); ibid., A274, 80 
(1963); Mol . Phys . .§_, 423 (196 3); i.bicl. , ]_ , 381 (1964); 
Di c..; . Farad . Soc . _40, 239 (1965). 

(37) D.J. Mithell , B.W. Ninham and P. Richmond, Au t . J . Phys . 25, 33 
(1972). 

(JS) J.N. Isr elachvili , Pro . Roy . Soc . A331, 39 (1972). 

(39) L. R. Whit , Privat communication. 

(40) L. E. Ly ns and J.C. Mackie, Pro . Chem . So . 71, (1962). 

(Lil) L.E. Lyons and J.C. Mackie, Nature (London) 19 7, 589 (1963). 

(42) R. Evans and D. H. Napper, J . Colloid I ,te11 ace Sci . 45, 138 (1973). 

(43) W. Kauzmann , Quantum Ch mi try , Academi Press , N.Y. (1957). 

(44) J. Brandrup and E.H. Imm rgut ( ds.), Polyme11 Handbook , 
Interscience , N.Y. (1966). 



104 

(45) J. Timmermans , Physico- Chemical Constants of Pure Organic Compounds, 
Elsevier , Amsterdam, Vol. I (1960), Vol. II (1965). 

(46) See also reference (27). 



CHAPTER 2 

THE CONFORMATION OF AN ADSORBED POLYMER 
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l o INTRODUCTION 

As outlined in the introduction of the previous chapter, we 

shall consider some distinguished features of a polymer in the adsorbed 

state. 

The conformational characteristics of an adsorbed polymer is of 

interest and of fundamental importance to the understanding of phenomena 

such as the influence of macromolecules on the stability of colloidal 

dispersions, (l-3) polymer bridging, (4 ) and the growt h of polymer 

lamellar crystals. (S) A fair amount of experimental data( 6 , 7) has been 

accumulated on the conformation of adsorbed macromolecules which require 

theoretical interpretation. 

Historically,(B) the first serious theoretical attempt at the 

(9-11) 
problem of po lymer adsorption was by Frisch et al . who used a 

random walk model where the substrate was represented by a reflecting 

barrier. This model was later modified to include interactions between 

th e polymer and the surface.<12-l 3) However, the general use of 

re flecting barriers fails to assign adso rb ed monomer units the correct 

s t atistic 1 wight. (l 4) 

The most sue essful lat tice walk mod l was that due to 

DiMarzio and Mccrackin , (lS) and to Rubin . (l 6 , l 7) Their work and 

. (18 19)t 
subs quent extensions ' gave physically r asonable results for 

characteristics such as the fraction of polym r ad s orbed as a f unction of 

t 
An error in this work(lB) was noted in re fe rence (20) ; 
is in ref r nee (21) . 

the correction 
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the adsorption energy. Unfortunately, quantities such as the degree of 

spreading on the surface, the density distribution, and the position of 

the centre-of-mass of the polymer are not readily accessible by this 

method. 

Another approach to the problem of polymer adsorption is 

through a statistical mechanical formulation. Here, the adsorbed state 

of a polymer is analysed in terms of distribution functions for loops 

(segments of polymer with both ends adsorbed) and trains (segments of 

polymer with all units adsorbed) obtained from random walk 

statistics . <22- 26 ) The contribution from tails (segments with only one 

end adsorbed) was later included when their importance in determining the 

conformations of weakly adsorbed polymers was recognized. <27- 29 ) Results 

obtained by this method support those of Rubin. 

A third method, which circumvents the use of lattice or random 

lk d 1 · h d ·ff . . . . (14, 30, 31) wa mo es, is t e 1 usion equation approximation. In this 

quasi-continuum approach, the integral equation for the partition 

function of a polymer is approximated by a diffusion equation. The error 

involved in this replacement, in the absence of boundaries, is negligible 

over distances that are large compared with the bond length and provided 

the polymer is long (that is the number of monomers>> 1). However in 

the vicinity of boundaries, the appropriate initial and boundary 

conditions for the diffusion equation are uncertain. Further there is 

also the question of the validity of replacing the integral equation by a 

diffusion equation in the neighbourhood of boundaries because of the 

piece-wise nature of the solution. These points will be taken up again 

later on in this chapt r (Section 6). 

From the above brief introduction, we see that considerable 

effort has been devoted to construct a realistic t heory of polymer 
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adsorption. Although these treatments bring out most of the qualitative 

eatures of the conformation of adsorbed polymers, this is by no means 

the complete story. To quote Edwards:( 32 ) " ..• until the continuum 

models of polymers have been fully understood one will not obtain 

mastery over the problem of real polymers". 

In this chapter, we study the conformation of an adsorbed 

polymer by considering the statistical mechanics of a polymer confined in 

a half space by an impenetrable flat surface with which the polymer may 

interact. The polymer is modelled by a string of non-interacting beads 

(monomers) joined by freely rotating bonds whose length are governed 

by a given probability density function. (It may be a fair conceit, but 

perhaps appropriate, to draw an analogy between this model in the theory 

of polymer adsorption and that of the ideal gas model in kinetic theory.) 

We include only configurations where at least one bead is adsorbed. The 

configurational partition function (CPF) for the polymer can be analysed 

in terms of generating functions (GF) for the CPF for loops and tails. 

We derive general expressions for important conformational 

characteristics of an adsorbed polymer, namely, the average number of 

b ads adsorbed on the wall ( n), th mean square end-to-end separation of 

adsorbed beads on the wall ( p2 
) , the centre-of-mass of the polymer ( x), 

and the density of beads off the wall n(x), in terms of the CPF for loops 

and tails. A modified Wiener-Hopf method is used to obtain appropriate 

asymptotic solutions of the integral equation for the GF of the CPF for 

loops and tails. The conformational characteristics of the polymer, 

obtained for various regimes of the adsorption energy parameter W, are 

found to have a phase transition at some critical value W. An explicit 
C 

expression or Wis given assuming only dispersion interactions between 

the polymer and the wall. From this expression, numerical values of W 
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are obtained, using available dielectric and spectroscopic data, for 

several real polymer/solvent/wall systems. It is found that this 

adsorption/desorption phase t ransition can be induced by temperature 

variations or by varying the dielectric properties of the solvent through 

changing the composition of mixed solvents. 

2. THE FORMULATION 

We consider a "non-interacting" polymer consisting of N freely 

rotating links (N+l beads) confined in the half-space x > 0 by an 

unpenetrable flat surface. By "non-interacting" we mean that the 

potential energy of the polymer is the sum of one-particle potentials 

V(r.), r. being the position vector of the ith bead (monomer unit). That 
"'-'1. ""1 

is, bead-bead interactions and excluded volume effects are ignored. In 

real systems, there is an ill-defined though narrow interfacial region 

within which a bead interacts strongly with the wall and may be 

considered to be adsorbed. Thus V(r.) may be replaced by the sum of an 
""1 

adsorption potential tjJ(x
1

) and an external potential</>(~). 

Since the adsorption potential is short-range, we shall replace 

the Boltzmann factor by a pseudo-potential 

- SV(r.) - Scj>(r.) - /3tjJ (x.) 
......,l ""l l (2.1) e = e e 

- /3cj> (r.) 
""1 

[ 8 (x . ) + W o (x.) ] (2. 2) ~ e , 
l l 

wher 8 = 1/kT and the adsorption energy parameter 

J
oo 

W = (e - /3 tjJ (x) - 1) dx 

0 

(2. 3) 

i s r minis ent f the "second virial co f fici nt". The unit step 

unction 8 (x) is d find as 
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8 (x) = 1 , X > 0 

= 0 ' x<O (2.4) 

and o(x) is the Dirac delta function. The replacement (2.2) is a 

convenient mathematical method of handling the interfacial region. It 

assigns the adsorption region with the correct weight while avoiding the 

necessity of treating such a region with finite thickness. 

The length of each of the freely rotating links, 

Ir. . 
1

1 = Ir. - r. 
1

1, which join neighbouring beads, is determined by a 
"'l, 1- "-'1. "'-'l. -

normalized probability density function f(l4, 1_1 !). The configurational 

partition function (CPF) for the polymer is then 

= 

where 

- B 
e 

N 

I ... J 
N - S L V(r.) 

d3,S) • • • d3~ IT f(l£i i-11) e j=O "'J 
i=l , 

, (2.5) 

N 
L 

j=O 
V (r.) 

·"'-J = e 

N 
- S L <P(r.) 

j=O "-'l 
N 
n 

i=O 
[ 8(x .) +w o(x.)] . (2.6) 

l l 

Expanding the product of Boltzmann factors and performing the x 

integration wherever a a-function occurs, we obtain 

(M.} 
J .. . J 

2 ••• d 
"--0 

1. 

-f n -f 
GM1. (£} ) 11 GM ( p . l' P . ) GM (o ) 

· 2 · '"'-'1. - .-.....1. ·n+l "'11 
] .= 1. 

- S¢ (p ) 
n 

X e (2. 7) 

p . is th tr nsverse component of the position vector r. and we use the 
"-'l "-'l. 

convention 

n 
n 

i=2 
f. 

1. 
= 1 for n < 2 • (2.8) 

The quantity CM(_e) is the CPF of a (free) tail of M links (M+l beads) 

with the zeroth b ad on the wa ll and all others in the half-space x > 0. 

That is 
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-f G0 (p) = 1 ,..., 
(2.9) 

M 

= fcx. >0) • •• J 
l 

M -S 
d

3 Li ... d 
3 
!:u TI f ( Ir. . 1 1 ) e 
· -n ,...;_i_, l-

i=l 

L q>(r.) 
j =l "'] 

(2.10) 

The quantity GM(.e_,.e_') is the CPF of a loop of M links (M+l beads) with 

the zeroth b ad on the wall (x = O) at p and the Mth bead on the wall at ,...., 

p ' and all others in the half-space x > 0. That is 
....... 

Go(P,P') = 0 (2.11) 
,...., ,...., 

(2.12) 
M-1 

= J · · · J a!) ·· · a-'41_1 ~ f(IIi,i-11) e- S 
(xi>O) i=l 

1: q>(r.) 
j =O "'1. , 

(M > 2, Eo = £, rM = _e:) • (2.13) 

Thus quation (2. 7) for QN represents the sum of all diagrams shown in 

Figur 2.1. Although not specifically shown, "train"-type diagrams are 

merely a succession of loops of one link (G 1 ). The index n counts the 

number of beads adsorbed on the wall. The symbol 1: for a given n 
{M,} 

l 

indicates that what follows is to be summed over all possible sets of 

numb rs {Mi}=(~,~, .•. ,Mn+l) with the restrictions O <Mi~ N and, since 

M. r pres nt s the number of links in a loop or tail, 
l 

n+l 
~ 

i=l 
M. 

l 
= N • (2 .14) 

As w are nly interested in adsorbed polymers, the term corresponding to 

n=O in equ tion (2.5) has been omitted in quation (2.7). This is 

quivalent t r quiring there be at least one contact with the wall, and 

the polym r i not free to move arbitrarily far from the wall. 

Lt us con ider the properties of th normalized probability 

d nsity un tion f( j~ j ) which d termin s th di tanc between successive 

b ads. Sin th polym r links ar, by assumption, ree to rotate 



n=l 

n=l 

n=3 

F'gure 2.1: The first few diagrams in the partition function QN 

corresponding to one, two and three adsorbed beads showing the 

contributions of loop partition functions GM(£,,£,') and free tail 
-£ 

partition functions GM(,e_,). 
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f (Ir. I) is only a function of the magnitude r = 1£1 . Hence 

f( l£ l )d 3 r=4nf ( r£ 1)r 2 dr is the a priori probability of a link having a 

magnitude in the range r-+ r + dr (in any direction). We further require 

that f(k), the Fourier transform of f( l r l ), exists, that is ,..., 

f(k) = I d' r f (III) ei!,•£ 

= [oo dx [ I d2e_ f (III) iK• pl e ...._""' 
izx 

e 

- • [

00 

dx F(xlK) 
izx 

e f ( z I K) • 

Equation (2.17) serves to define F(xjK) as the Fourier transform of 

£(1£1) over the transverse components of r• Since f(jrl) is only a ,..., 

(2 .15) 

(2.16) 

(2.17) 

function of the magnitude r = Ir!, its Fourier transform is a function of 

k = I k I only, that is ,..._, 

f(k) = f (/z2 +K 2 ) = f(z!K) 

and that F(x !K) is even in x 

F (x I K) = F (- x I K) • 

Further, normalization requires that 

£(0) = 1 = f(O!O) 

(2.18) 

(2.19) 

(2.20) 

so that F(x!O) has the properties of a probability density function in 

one dimension. We can define its variance a by 

2 
0 

From (2.16) and (2.17) we find 

= 

dx x 2 F(x.! 0) 

-iK•(p ,-p ) 
,...., "'l .-.i-1 

e 

(2. 21) 

(2.22) 

. (2.23) 

-f -Further simplification of the quantities GM(~), GM(~,~') and QN 

is not possibl unless we assume the external potential ~ (r) is a ,..., 

function o x only. We shall be mainly concerned in this chapter with 

the case ¢(x) =O. 
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Using this simplification and the result (2.23) we may carry 

out the transverse integrations in equations (2.10) and (2.13) to yield 

-f 
G!(O) GM(£) = 

' 
where 

G~(O) = 1 

G~(O) ; r ... r dx, ••• d"M F(x, I 0) F(x, - xi I 0) ••• F("M- "M-1 I 0) 
0 0 

X e 

M 
- S L <P(x.) 

i=l 1 

' 
(M > O) • 

(2.24) 

(2.25) 

(2.26) 

The argument in G!(O) indicates that the zeroth bead of the tail is at 

the wall x = 0. Also 

= (2.27) 

where 

= F(OIK) e 
- Scp (O) (2.29) 

GiO I K) ; r ... r dx I ••• d"M-1 F(><i I K) F(x, - "i I K) ••• F(xM-1 - "M-2 I K) 
0 0 

M-1 
- s L qi (x.) 

i=O 1 (M > 1, Xo = 0) • ( 2. 30) , 

The argument O in GM(OIM) indicates that the zeroth bead of the loop 

starts at x = 0. 

Substi uting equations (2.24) and (2.27) into the partition 

un tion, equation (2.7), we obtain 

- Scp (O) 
f d'!S II d'J2J 

-iK• ( p -12; ) 

QN 
e 

d2 £ n 
,..._, "'fl 

qN(K) = e 
(2 ·rr) 2 ' 

(2.31) 

where 
N n 

Gf qN(K) = L if L G~ (0) n GM. (0 I K) (0) . 
n=l {M.} i=2 1. Mn+l 

l 

(2.32) 

The quantity IPI defined by 

p = £N- £i .,...._, (2.33) 
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is the distance between the first and last beads on the wall. Its 

expectation value is a measure of the spread of the polymer on the wall. 

After a ch nge of variables (2.33), the partition function becomes 

- scp co) 
J 

[I <l
2

K l 
QN A' 

2 ,..., -iK• p (2.34) = e d t (2n)2 e ~,..., qN(K) 

- A' -S<t> (O) 
J d2 £, qN (p) (2.35) - e - ' 

where A' is the area on the wall to which the polymer is confined. The 

quantity qN(p) is defined by equation (2.35). For convenience, we write 

A= A' e-Scp(O), and perform the integrals in equation (2.34) to yield 

QN = A qN(O) 

N 
G!

1 
(O) 

n 
Gf = A L w11 1: TI GM. (O IO) (O) (2.36) 

Mn+l 
. 

n=l {Mi} i=2 l 

This expression can be simplified by forming the generating function (GF) 

00 

Q (s) = (2.37) 

Then (QN/A) is just the coefficient of sN in the Taylor expansion of Q(s) 

(about s = 0) which we shall denote by 

= A[Q(s)]N. 

N Multiplying both sides of equation (2.36) bys we obtain 

Q (s) = 

wher 

f G (s,O) 

G(s,O jK) 

are resp ctiv ly the GF f th 

= 

= 

W(Gf(s,0)] 2 

1-W G(s,O jO) ' 

00 

1: M 
G!(O) s 

M=O 

00 

L sM GM(OjK) 
M=O 

PF for t ails and loops . Therefore 

(2.38) 

(2. 39) 

(2.40) 

(2.41) 



QN = 
A W G (s, O) t f 2 j 

1-WG(s,OjO) N 

and similarly 

qN(K) = t W Gf(s,022 j 
1-W G(s,O[K) N • 

3. THE EXPECTATION VALUES OF 
CONFORMATION CHARACTERISTICS 
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(2. 42) 

(2.43) 

We shall derive general expressions for four characteristics 

which describe the polymer configuration near an interacting wall. These 

are: 

(a) (n) , the average number of beads adsorbed on the wall, 

(b) ( p 2 ) , the mean square end-to-end distance ("spread") of beads 

on the wall, 

n(x), the density of beads off the wall, (c) 

(d) -x, the distance of the centre-of-mass of the polymer from the 

wall . 

Two fundamental relations between these quantities are: 

i = N!l r xn(x) dx 
0 

N+l = r n (x) dx + ( n) • 
0 

(3.1) 

(3.2) 

R lation (3.2) serves as a self-consistent check on the results derived 

for n (x) and ( n). 

3a. Number of beads adsorbed (n) 

Since the index n in equation (2.36) for QN counts the number 

of beads on the wall, it follows that 



( n) 
A N n 

= - L n w0 L c! 
1 

( o) 11 GM ( o I O) / ( O) 
QN n=l {M. } i=2 i Mn+l 

1. 

( n) 

3b o The spread of the polymer on the wall {p
2

) 

From equation (2.35), it is clear that 

But it fo l lows from the definition of ijN(p), (2.34), that 

' 

where V2 is the two-dimensional Laplacian. Therefore we have 
K 

= 

where the second equality follows from equation (2.43). 
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(3.3) 

(3.4) 

(3. 5) 

(3.6) 

(3.7) 

In t he next section, equation (4.87), it will be shown quite 

generally t hat 

d
dK G(s,OIK) = 0. K=O 

(3.8) 

Since G(s,O IK) depends on K= IKI only (F(x !K) depends on !Kl only) we 
,..._, "' 

obtain 

v2 1 
K 1-W G(s,O jK) K=O 

W[ V~ G(s,O IK)]K=O 

[1-W G(s,0 10)] 2 • 
= - (3.9) 

Substituting this into equation (3.7) we have 

_ ~ [ [ W Gf (s ,O) ]
2 

[ 

- QN L1-w G(s,O IO)j - ~ G ( s, 0 I K)J . J . 
K=O N 

(3.10) 
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3c ~ The density of beads off the wall 

We derive formulae for the density of beads off the wall for 

three cases of interest: 

(i) a tail of N links (Figure 3. la) , 
f 

nN(x), 

(ii) of (Figure 3.lb), 
l 

a loop N links nN(x), 

(iii) the general problem of an N-link polymer whose zeroth and Nth 

bead may be anywhere in n 2: 0 (Figure 3.1 c-e), n(x). 

Before we can proceed it is necessary to introduce 

f f 
generalizations of the quantities GM(O) and GM(OjO), namely GM(x) and 

GM(xjO) defined by 

f 
G

0
(x) = 1 (3.11) 

c!(x) = r ... r dx, ••• dxM F(x - x. t 0) F(x2 - X1 t 0) ••• F("M- "M-1 t 0) 
0 0 

and 

- s 
X e 

G0 (x IO) = 1 

= F(xjO) 

M 
L <P(x.) 

i=l l 

e 
- S<P (x) 

' 
(M > O) 

= r ... r dx 1 ••• d"M-l F(x- x 1 to) F(x, - x1 to) 
0 0 

. . . 

(3.12) 

(3.13) 

(3.14) 

M-1 
- S L 

F (~-1 - ~-2 1 O) F(~-1 j 0) e i=O 
¢ (x . ) 

l , 

(3.15) 

(M > 1, Xo = x) • 

They ar interpreted physically as follows: 

G! (x) is the CPF of an M-link segment whose zeroth bead is at 

x ( .::: 0) and all others are in the half-space x > 0; 

GM(xjO) i the CPF of an M-link segment whose zeroth bead is at 

x (2 O), the Mth bead is on the wall (x = O), and all others are in the 

hal -space x > 0. 
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X 
th 

r bead 

(a) + 
bead 

(b) 

G (x iO) 
r 

0th bead 

bead 

(c) (d) 

bead 

bead 0th bead 

QN-r(x) 

th 
r bead (e) X + 

Q (x) 
r 

bead 

Figure 3.1: Diagrams used to derive expressions for the density of beads 

off th wall for the cases: 

(a) a tail with one end on an impenetrable wall, 

(b) a loop with both ends on an impenetrable wall, 

(), (d) and (e) an adsorbed polymer with many possible 

contacts . In this case the rth bead can be in any one of the 

positions shown . 
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Note from l d initions that in c!(x) the zeroth bead is not weighted 

- S~(x) I with the Boltzmann factor e whe reas in GM(x 0) the zeroth bead is 

so weight d. 

(i) 
f 

Density of an N-link tail, ~(x) 

From Figure 3.la it is easily seen that the probability of 

th finding the r bead at xis 

Gr(xjO) c!_r(x) 

c!co) 
(3.16) 

Th density of beads at xis the probability of finding any one of the 

(N+l) beads at x, therefore 

n!(x) = r~O Gr(x[O) c!_r(x) ~c!(O) . (3.17) 

f £ 
We form the GF of [GN(O) ~(x)] by multiplying both sides of equation 

N (3.17) bys and summing over N. Invert ing the result , we obtain 

(3.18) 

where 
00 

G(s,xlO) ~ 
M 

GM(xjO) = s 
M=O 

(3.19) 

and 
00 

£ ~ 
M f 

G (s,x) = s GM(x) 
M=O 

(3.20) 

f 
reg n ralizati ns of the GF G(s,OIO) and G (s,O) given in equations 

(2.40) and (2.41). 

(ii) Dens'ty o 
l 

an N-link loop, ~(x) 

•allowing th line of r asoning given for the case of a tail, 

w btain th pr bability of inding the rth bead at x, 
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' 
(3.21) 

and henc the density of a loop 

= (3.22) 

Th B 1 ' f h · h · of the rth bead. e o tzmann actor corrects t e overwe1.g t ing 

(iii) Density of an adsorbed polymer, n(x) 

We generalize the CPF QN of equation (2.36) to the function 

QN (x) which can be interpreted , apart from the constant A, as the CPF for 

th an N link polymer whose N bead is at x and has at least one bead on the 

wall. From (2.36) we have 

N n 

= A 2: W11 

n=l 
~ c! ( o) rr GM . < o I o ) GM < x I o) 

{M.} 1 i=2 1. n+l 
1. 

and its GF Q(s , x) is given by (cf. equation (2 .39)) 

Q(s , x ) = 
W Gf(s,O) G(s ,x i O) 

1-W G(s,O jO) 

(3.23) 

(3.25) 

By considering Figure 3.1 c,d,e we see that the probability of 

finding th 
h r beac.1 at xis 

~ 
f 8¢ (x) J 

Q
l Gf (x) QN (x) + Q (x) GN-r (x) + -'=---- Q (x) Q (x) . 
N r -r r A r N-r · 

(3.26) 

The fir s t, second , and third term represent contributions from diagrams 

in Figure 3 . 1 c , d and e r espectively . A summation over all beads yields 

the density 

n (x) 
1 N { f f e S<P (x) 

_: G ( x) Q N ( x) + Q ( x) GN-_ r ( x) + A Q ( X) 
Q r -r r r 

N r=O 
= 

In terms of the CF and equ tion (3 . 25) this becomes 

QN-r(x)} · 

(3.27) 

I' 
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n (x) . 
A [ Sq,{x) 2 f J (3. 28) = - Q (s , x) + 2Q (s, x) G (s, x) N 

Q 

A e Scp (x) - f I }' 
n(x) 

{W G (s,O) G(s,x 0) 
= -

QN 1 -W G(s,O !O) 

+ 2 WGf(s,O) Gf (s,x) G(s,xlo)] ( 3 29 ) 
1 -W G(s,OjO) jN. 

0 

In summary , the con f ormational properties of an adsorbed 

polym r ar determined by t he quantities G(s,O!K), G(s,x!O) and Gf(s,x) 

as follows : 

( n) = W (3.3) 

< p 2 ) 
A [t W Gf(s , O) r [- 17K G(s,OIK)J J (3 .10) = --

QN 1-W G(s , O!O) K=O N 

n(x) 
A [ S~ (x) {w Gf(s,O) G(s,x lo)}' 

= - e 1-W G(s ,O jO ) QN 

+ 2 WGf( s ,O) cf_(s,x) G(s,xlo)J (3 29 ) 
1-W G(s,O!O) N · 

- l r xn (x)dx . X = 
(N+l) 

0 

4 ~ THE GENERATING FUNCTIONS 
G(s,x !K) AND Gf(s,x) 

(3.1) 

In chis s ction , we shall evaluate the f unctions G(s,x jK) and 

E G s,x) for the ase wh re Lhe external potential is zero, i.e. 

<P (x) = 0. 

From th d fini tions (3 . 12) and (3.15) we can write down the 

following r t.tr r nc r lati n 



G!(O) = f
00 

GM(x i O) dx 
0 

' 

GM+l(x l K) = r F(x-x') GM(x'IK) dx' • 
0 
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(M > 1) (4.1) 

(M ~ 1) • (4.2) 

Multiplying (4. 2) by sM+l and summing from M = 1 to infinity we obtain the 

integral equation for the GF 

G(s,,.:IK) = sF(xlK) +s r F(x- x' IK) G(s,x' IK) dx' • 
0 

(4. 3) 

where we have used equation (3.14) for G1 (x!K). A similar operation on 

equation (4.1) yields 

Gf ( s , 0) = 1 + r G ( s , x I O) dx , 
0 

(4.4) 

Owing to the nature of the physical problem we are faced with 

integral equations involving half-range convolutions, whose solution 

require some amount of mathematical manipulations. For ease of later 

reference, we shall first summarize the results and then present their 

derivations. 

It turns out that if we wish to study the conformation of the 

polymer as a function of the adsorption energy parameter W, only the 

results for s near zero (s -0) and s close to but less than one (s $ 1) 

are needed. The quantities necessary to evaluate polymer conformational 

characteristics are given in Table 4.1. These results are asymptotic 

unless stated otherwise. During the course of the derivation, we find 

it convenient to define the "one-dimensional" variance of the probability 

density function i( jr j) by (cf. equations (2.21) and (2.22)) ,..., 

02 = = = . 
' z=O 

and the ''two-di mension l" variance of th e probability density function 

f ( Ir I) when r is confined to the plane x = 0, by ......, ,..,_,, 



G(s ,x jO) 

c)G(s zo l o) 
as 

f 
G (s,x) 

v; G(s , OIK) 
at K = 0 

Table 4.1: Summary of results for the generating functions for s near O ands near 1 . 
Numbers in brackets refer to the corresponding equations in the text. 

s '"" 0 s ~ 1 

I 
i x=O I 
I I I k k I 

G(l , O jO) - 2 2 (1-s) 2/ o 

[ G ( 1, 0 IO) = - 2\ r in ( 1- f ( z)) dz l 
sF(x jO) +s 2 

(

00 

F(x-x ' j o) F(x ' jO) dx ' + . .. 
- CO 

(4 . 49) k k 
I Jo 

2 2 (1-s) 2 x/o >> 1 

j k k k 

l I 
2 2 - 2 2 (1- s) 2 x/o -e 
0 

F(O jO) (4.66) 1 
k k 

2 2 (1-s) 2
0 
~ 

I x = O I X = 0 1 

- ~2 I -~ (4.68) l (1-s) exact (1-s) exact 

I 
k k 

X > 0 2 2 (1- s) 2 s/o >> 1 
1,. l . 
' 2 72 

1 + s r F (x-x ' I 0) dx ' + ... 1 -2 (1-s ) x / o 

(4.84a) I -e 
1-s 

0 

k 

- s>?F (O lo) 
2 2 

0 
(4.99) - k 

(1 - s) 2 . 

(4 . 64) 

(4.61) 

(4.67) 

(4.68) 

(4. 84 ) 

(4.9 2) 

I-' 
N 
w 

1 



124 

= = (4.98) 
F(O jO ) 

We al o ad pt th conv ntion that when K= 0, the K argument in all 

functions are suppr ssed, that is 

G(s,x !O) G ( s, x) 

F(xjO) F(x) . 

The remainder of this section is devot d to deriving the 

results giv n in Table 4.1 and may be omitted by the reader without loss 

o ontinui y. 

4a. The Function G(s,x) 

We first study the integral equation (4.3) for K=O, namely 

G ( s ' X) = s F ( X) + s r F ( X - X f ) G ( s ' X • ) dx f • 

0 

(4.5) 

Ing neral th solution of this equation, if one exists , may or may not 

b uniqu . However, the only admissible solution in this problem is the 

unique solution that is analytic in the neighbourhood of s = 0 because the 

Taylor xp n i n of (., ,:x) about s:.: 0 is equival nt to the recurrence 

r lat ion (4 . ... ) . The integral equation (4. 5) may be solved using a 

( 3 3 34) variation of the Wiener-Hopf method , to yield a Fourier 

t ans formable s l tion analytic a s = 0. 

B r olving thi equation, we examine the solution P(s,x) of 

the full rang 

Phy i ally , 

qu ion , 

SF(x) +s 
J

oo-P(s x) = F(x - x') P(s,x') dx' . 

P ( s , x) 

CX) 

~ s P (x) 
=l 

s th GF t h CPF , P (x) , for an -l ink polym r in full space 

(4.6) 
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(- < x < oo) whos zeroth bead is at x = 0 and the Nth bead at x. Equation 

(4 . ) an b solv din t he usua l manner by taking a Fourier transform, 

defined by 

o yield 

There or 

p(s ,z) 
izx 

P(s,x) e dx, = 

p (s, z) = sf(z) +sf(z) p(s,z) • 

p (s, z) = sf(z) 
1-sf(z) 

and by the inversion formula 

P (s , x ) 
00 ' 

1 J sf ( z ) -izx 
2n 1-sf(z) e dz· 

- 00 

= 

We define the f unctions 

+ G (s, x ) = 8(x) G(s,x) 

G-(s,x) = 8(-x) G(s,x) , 

where e(x) is the step funct ion . The Fourier transform of these 

functions , 
00 

+ I. G+(s,x) 
i zx 

g (s, z) = e dx 

and 0 

- [00 - lzx 
g (s,z) - G (s,x) e dx 

' 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

are analytic in the upper. half plane (UHP) and the lower half pla~e (LHP) 

r sp tiv ly . We assum tha G(s,x) has a continuo us Fourier transform 

in th onventiona s nse (for z eal) . It t hen follows that 

(4.15) 

+ 
in th ir r .sp c t i ve analytic HPs and that g-( s,z) is continuous 

on th r 1 axis . Following t standard Wier r-Hopf method, we take the 

F uri.er rans rm of equation (4.5) and obtain 

+ - + g (s , z) + g (s z) = sf(z ) +sf(z) g (s,z) (4. 16) 
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g+(s,z)(l-sf(z) ) = sf(z)-g-(s,z) (4.17) 

We then seek a factorization of (1 - sf (z)) in the form 

1-sf(z) 
+ 

y (s,z) (4.18) = 
y-(s ,z) 

such that + (s,z) and y-(s,z) are analytic and free of zeros in the UHP 

and LHP respectively and are continuous on the real z axis. Further, we 

shall require 

+ 
y-(s,z) -+ 1 (4.19) 

as I z I -+ 00 in their respective analytic HPs. Provided such a 

factorization can be foun d, equation (4.17) may be rearranged to yield 

(4.20) 

Th LHS repr sents a function analytic in the UHP and the RHS, 

a unction analytic in the LHP and the two functions are continuous and 

qu l on the re 1 axis. This is suf fi ient( 34 ) to ensure that the RH 

function represents the analytic continuation of the LH function into the 

LHP . Therefor the function E(z) defined by 

E (z) = + ( + ) (s,z) l+g (s,z) (4.21) 

i an ntire function. Further we deduce from equations (4.15) and 

(4 . 19) that 

E (z) + 1 (4.22) 

as lzl oo Thu E(z) is a bounded entire function and, by Liouville's 

theorem, is a nstan , nam ly 

E(z) = 1 . (4.23) 

Ther fore w have 
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+ g (s,z) = 
1 ---- - 1 

+ y (s,z) 
(4.24) 

1 (4.25) 
y (s,z) 

It remains then to determine the appropriate factorization of 

1 - sf (z) that has the properties invoked above. The factorization of 

1- f (z) is equivalent to splitting 

l n ( l - sf ( z)) ln + (s,z) - Zn y-(s , z) . 

The fun tion 

h(s , z) - Zr~(l - sf(z) ) 

an b written as the sum 

by th 
( JL1) 

ormulae 

h ( s z ) 

h (s, z) 
+ -= h (s,z) + h (s,z) 

1 Joo h(s,t) dt 
2ni t - z ' 

-00 

1 Joo h(s...i.!l dt , 
2ni t-z 

- 00 

( Im z > O) 

(Im z < 0) 

(4.26) 

(4.27) 

(4. 28 ) 

(4.29) 

( 4. 30) 

+ su h that h and h are continuous on the real axis and are analytic and 

vanishing s lzl -+ 00 in the UHP and LHP respectively. With these 

+ 
pop rties, w can obtain from h- , using equations (4.26) and (4.28), 

+ -h (s z) 
e ' + y (s,z) = 

1

(4. 31) 

y (s,z) = 
h (s,z) (4.32) 

+ ow and y have the requir d analytic properties. Therefore, from 

(4.25) and (4.~6) 

= 
+ 

eh (s,z) _ 1 (4. 33) 

g (s,z) = l-e-h (s,z) • (4.34) 
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Fr om qu a .ions (4.9) and (4 . 27) we see that 

h(s,z) = r :e(s iz ) ds 
s 

0 

(4.35) 

= r f{z) ds 
1- sf(z) • 

0 

(4.36) 

Thus the function 

H (s, x) 
1 Joo -izx 
2

.rr h(s,z) e dz 
- 00 

(4.37) = 

is given by 

H(s,z) = r P{s,;'_x). ds 

0 

( 4. 38) 

and , h+(s,z) nd h-(s,z) are Fourier transforms of 

+ H (s,x) = 8(x) H(s,x) (4.39) 

and 
H-(s,z) = 8(-x) H(s,x) ( 4. 40) 

respectively . 

' Useful results now emerge from the above analysis. Inversion 

+ o f the expression for g (s, z) in equation (4.33) yields, for x > 0, 

+ 1 Joo + + G(s,x) = H (s,x) + 
21 

-co H (s,x-x') H (s,x') dx' 

+ 1 f00 

Jex) 1-{t-(s ,x-x' )H+(s,x '-x")H+(s,x")dx'dx" 
3! 

-00 -00 

+ ... · , (4.41) 

+ But since H (s ,x)=O f or x " O, i[ f ollows that 

G ( s , x) G(s ,O) + 
lim = = H (s,O) (4.42) 

x...,.O 
+ 

= r P(s
8

,0) ds • 

0 

(4.43) 

•ram equati n ( 4 .10) we dedu e th r es ult , f or s < 1, 

P (s,O) 1 

Loo 
sf(z) 

dz = 2 'IT 1- sf ( z) 

00 

r 
00 

1 ! N - L N 
PN(O) = - s [f( z )] dz - s 

2n N:l 
-

, - N=l 
(4.44) 
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since for z real f(z) .S 1 (cf. equations (2.17) and (2.20)). Consequently, 

= _l_ ; s N Joo [ f ( z) ] N dz -
2n N=l N - co 

co 

G(s,0) (4.45) 

A comparison of equations (4.44) and (4.45) reveals an 

interesting side result 

1 = -- p (0) 
N N (4.46) 

In other words, for any given N-link polymer, whose bond distribution 

function f(jrj) satisfies the above requirements, the number of 
"' 

configurations starting and ending at the plane x = 0 that can be taken up 

by such a polymer in full space is exactly N times that for the 

corresponding situation in a half-space (x > 0, say). 

Since F(x) is a real even function, f(z) and therefore h(s,z) 

is ev n in z. There£ re 

+ h (s,O) = h-(s,O) = ~h(s,O) 

and from the definition of h(s,z), (4.27), we have 

+ h (s,O) = - ~ Zn(l-s) = h (s,O) • 

(4.47) 

(4.48) 

For given bond d · strib ution function f(j£_j), or f(z), 

quat ' ons (4. 3' ) and (4. ' 4) constitute an exact solution of the integral 

quation (4.5). However, to obtain physically interes ting results, we 

only need solutions in th neighbourhood of s = 0 and s = 1. In these 

. gim , th p obl m becomes am nable to further formal asymptotic 

nalysi. 

Around s = 0 , th solution can be obtained by iteration 

00 

G(s ,x) = sF(x) +s 2 F ( x - x ' ) F ( x ' ) dx ' + ... 
0 

In the neighbourhood o s = 1, the function G (s, x) is more 

(4.49) 

complicat d. Since (z) is even, then if z 0 is a (in general, complex) 
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z ro of l - f (z) , so is - z 0 • For s less than but close to one (s $ 1), 

there are two zero ±z 0 in the neighbourhood of z = 0, and as s-+ 1 from 

below, the two zeros converge to the origin. Consider the integral 

taken along the real axis (cf. equations (4.9) and (4.29)) 

+ 
p ( 'z) = 1 

21Ti 
sf(t) 

1 -s f (t) 
dt 

t - z , (Im z > O) 

which diverges at s = 1 on account of the pole in the integrand at 

( 4. 50) 

t = z 0 = 0. Due to the coalescence at the origin of the two poles from 

above and below the real axis, p+(s,z) will have a branch point at s=l. 

For s $ 1 , the main contribution to the integral in (4.50) will come from 

t near zero so that we can replace f(t) by its Taylor expansion about 

t = 0. From the properties of the bond distribution function we have (see 

Sc. ion 2) 

f (0) = 

f ' (0) = i Loo X 
F(x) dx = 

-r x2 F (x) <lx ---
-oo 

f "(O) = 

therefore w can wr ite 

f. ( g) 1 - !!i02 l.2 + ... 

or z n ar z ro. 

Tl us in th regime s $ 1, we have 

+ p (s , z) s f 'Iii 
- CO 

1 dt 
( 1-s ) + 120 2 t '2 t - z ' 

nd rom q t~on (4.35) 

+ h (s, 2 ) 
l l 

= - l ( z + i 2 ~ ( 1-s ) /2 
/ a) , 

0 

-o 2 , 

(4.51) 

(Im z > 0) (4.52) 

(4.53) 

(s $ 1) (4.54) 

From thi w see that or s 
k k + 

nd z n ar z
0 

= -i2 2 (1-s) 2 / 0 , g (s,z) has 



th arm 
+ + h (s , z) g (s,z) = e - 1 

A 
~ 

Z - z0 

But we have 
+ + h (s ,O) g (s,O) = e - 1 

A 
(s $ 1) ~ , 

- z o 

th refore it f ollows from equation (4.L~ 8) that 

1/ h: + 
A = 

. 2' 2 c1-s2 2 
(eh (s,O) - 1) 

0 

h: 
= i2 2 / a . 

Thus we have the asymptotic solution 

+ g (s , z) 
k 

i2 2 / a 
= - 1 1 + ... , 

Xi ~ 
z + i2 '(1-s) / o 
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(4.55) 

(4.56) 

, (4.57) 

(4.58) 

(s $ 1) (4.59) 

wh e ·m· 11 r 01 t r ibuti ns from poles f urther away from the real axis 

hav b en omitted . t 
We obtain G (s,x) by the inverse Fourier transform 

+ 
G (s,x) J

oo 

l + - izx 
2n· g (s,z) e dz 

-00 

(4.60) = 

which may b . v luated using Cau hy ' s Theorem by completing the contour 

in th LHP . How ver, wh n xis sufficiently large , only the pole of 

g+( · , z) with th small st imaginary part will contribute significahtly. 

Contributions from otl1er poles will be · exponentially small . Substituting 

qu Li on (4 . 5 ) into (4 . 60) we bta·n , for s S l , and x large ( i . e. 
C l 

2, ( 1- S f 2 
X / 0 ;, ,, 1 , 

+ G (s ,x (4.61) 
I} 

To bLajn n pr ssion + 
r G (s , O) for s $ 1 , we consid r the 

·xpr ssion for P(s , 0), namely 



P(s,O) J
oo 

= _!_ sf (z) dz 
2TI 1-sf(z) • 

-00 

As before for s $ 1 we expand f (z) about z = 0 to obtain 

P(s,O) 
1 dz ( 1-s ) + \a 2 z 2 

1 
= 

Since 

+ G (s,O) = lim G(s,x) 
x+O+ 

we have from equations (4.43) and (4.63) 

k: k: 
G(s,O) ~ G(l,O) - 2 2 (1-s) 2 /a , s :5 1 , 

where the numerical constant G(l,O) is given by 

G ( 1, 0) = -
2
1

1T r ln ( 1 - f ( z) ) dz • 
-00 

We also note that 

d 
ds G(s,O) 

and 

4b. The Function Gf(s,x) 

1 
= - P(s,O) 

s 

~ F(O) 

1 

for s --o 

for s $ 1 . 
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(4.62) 

(4.63) 

( 4. 64) 

(4.65) 

(4.66) 

(4.67) 

f The expression for G (s,O) follows from equations (4.4), (4.13) 

and (4.33) 

f 
l+ r G+(s,x) G (s, O) = dx 

0 

+ = l+g (s,O) 

+ 
= h (s,O) 

e • 

But since 
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+ h s,O) = - ~ ln (l-s) (4.4 8) 

w obtain th exact result for all O.:::: s < 1 

(4.68) 

For x > 0 , we i ntroduce the function G(s, x , x ') which is the 

gen rating function for a chain which st art s at x and ends at x' ( > O). 

Then the GF .for a cha in starting at x , Gf (s , x) , .is given by 

f 1 + JC() 
G (s ,x) = G(s , x , x ') dx' • 

0 

lt is asily s~en that G(s ,x, x ') satisfies the i nt egral equation 

G(s , x , x ') = sF ( x- x ' ) + s f00 

F (x ' -t ) G(s ,x,t) dt • 
0 

As befo r e , we take the Four ier transform wrt x ' t o yield 

+ - ixz + 
g (s , x , z) + g (s ,x,z) = se f (z ) +sf (z ) g (s,x,z) • 

Using the split t ing 

1- sf ( z) 
+ 

y (s , z) 
' = 

y ( s , z) 

where y have t heir us ual proper- ies , we obtain 

(4.69) 

(4.70) 

(4. 71) 

(4.18) 

+ + - -(s , z ) g ( s , x , z) +y (s , z) g (s , x , z ) ixz ( - + ) e . y ( s ,z) - y ( s ,z) 

q (s ,x, z ) (4.72 ) 

Applying the formu]a (4.29) and (4 . 30) we split q(s , x , z ) i nto a sum of 

+ q (s , x , z) and CJ-(s , x , z) whtch are analytic in th UHP and LHP 

resp ctively nd v nisl ing as lzl 00 in their respective analy t ic HPs . 

· 1u· tlon (4 . 72) an th n b rearranged to yield 

+ . + + -
( ,z) g (s,x , z) - q (s,x z) = q (s,x,z) - (s , z) g (s ,x, z ) 

E(z ; ( 4. 73) 

wh' ch d fineb dn ntlr e functjon E(z ) becaus - the RHS (analytic in t he 
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LH) is now th analy i~ continuation of t he LHS (analytic in the UHP) 
+ + + 

into the LHP . Th syrnptocic behaviour c l z l + 00
) of , g and q- give 

(z) 0 as lz cc, hi h impli s E (z) = 0 . Therefor e 

+ + q (s , x ,z) 
g (s, x,z) = 

+ y (s, x) 
(4. 74) 

and it ollow from ( 4. 69) that 

f + I 

G (s,x) = l+g (s, x ,O) (4.75) 

Fr m quati ns (4.31) and (4.4 8) we know tha t 

(4.76) 

so to a ulal + + g (s,x,O) we need only q (s, x ,O). 

F um equations (4. 29) and (4 .7 2) w have 

+ q (s ,x,O) (4. 77) = 

wher th concour ha been displaced j ust below the real axis. The poles 

of the integrand above the contour ar e the poles of y- (s,t) in the UHP 

and the pole at t = 0 . Fors ~ 1, we can derive an expression for h-(s,z) 

i n a similar manne r to th 
+ rivation of equation (4.54) for h (s,z). 

(Al l j 11 tivt! y , w ~ c n cJ du this by consid ing equations (4.27), 

(4 . 28) and (t'.~ . 54) fo z ""'O ands S 1.) We get 

l 1 

l 1 ( o , z ) = - l n ( z - i 2 ~ ( 1- s /
2 

/ o ) + . . . (4.78) 

which ccording to quct ion (4 . 32) show that for ssl , y-(s,z) has a 

p 1 t 

(4.79 ) 

, \v wri.t, ur s ,. l z ....... z ---- 0 - , 0 

(s , z) 
B (4. 80) 

0th t 
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( 4. 81) 

Now for x large, we displace the contour in equation (4.77) 

over the poles at t = 0 and t = z 0 up to z 1 , the next pole or singularity 

of y (s,z). The original integral is then the sum of the residues at 

t = 0 and z 0 plus the integral along the line Im t = Im z 1 - o, which is 

exponentially small if xis large. + Thus q (s,x,O) can be approximated by 

only contributions from the first two poles, 

+ q (s,x,O) ~ (4.82) 

which from equation (4.81) may be rewritten as 

(4. 83) 

And finally from equations (4.74) - (4.76) and (4.79) we obtain 

f 
G (s,x) 

.k .k 
(s $ 1, 2 2 (1-s) 2 x/o >> 1) . (4. 84) 

' 1-s 

For s --o, successive iterations of equation (4. 70) yield 

G (s ,x,x') = sF(x-x 1 ) + s 2 r F (x'-t) F (x-t) dt 
0 

whence from (4.69) gives 

Gf(s,x) ~ l+s J00 

F(x-x') dx' + ••• , 
0 

4c o The Function vf G(s, 0 I K) at K = 0 

(s--0) • (4.84a) 

Since G(s,O IK) is a function of K = l~I only, we may write the 

two-dimensional a~ operator as 

r::;2 
K = 

In a similar manner to the derivation of equation (4.41) for 

+ G (s,O) = G(s,OjO) we derive 

( 4. 85) 



G(s,OIK) = - 2l'IT r ln(1-sf(lz2 +K2
)) dz. 

-ex> 

Therefore a differentiation with respect to K yields 

3G(s,OIK) 
3K = 2\ r _ oo 

sf ' ( / z 2 + K2 ) K - dz 
1- sf(lz2 +K2) l,__z2_+_K2 _ 

which gives the result quoted in (3.8), namely 

and the relation 

aG(s,olK) 
aK 

K=O 
= 0 ' 

dz [1 aG (s, o I K)] 

U< aK JK=O 

1 JCX) s f ' ( z ) 
= 2 7T -00 1 - s f ( z ) z • 

A second differentiation of equation (4.87) gives 

32 G(s,OIK) 
3K2 

K=O 

1 J00 

sf' (z) 
= 2n _

00 
1 - sf (z) z · 

dz 

Therefore from equations (4.85), (4.87) and (4.90) we have 

2 = .! Joo sf'(z) dz 
VK G(s,OIK) K=O n 1- sf(z) z • 

-00 
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( 4. 86) 

(4.87) 

( 4. 88) 

(4.89) 

(4. 90) 

(4.91) 

Since lim f' (z) /z = f" (O) = -cr 2 is finite, so for s $ 1, we can again expand 
z=O 

the denominator (1 - sf (z)) as before and obtain the approximate 

expression 

v~ G(s,OIK) K=O 

k 
2 2 a 

k , 
(1-s) 2 

(s $ 1) • 

Finally we also require this quantity for s --o. From the 

integral equation (4.3) we have by successive iteration 

G(s,O IK) = sF(O IK) + ••• 

Therefore 

-v'~G(s,O jK) K=O = -s v~ F(O jK) K=O+ •••• 

Now from equation (2.17) 

F(O jK) = I f< ltl l ei!·e d2 £_ 

(4.92) 

(4.93) 

(4.94) 

(4.95) 
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so 

= (4.96) 

= 1? F(O) , (4.97) 

where 

J f(IPI) p2 d2p 
"' "' = (4.98) 

f f(jpj) d 2 p 
"' "' 

is the "two-dimensional" variance of the link distribution function 

where r is con£ ined to the plane x = 0. Therefore for s near zero 
"' 

sA 2 F(O), (s"'O) (4.99) 

We have now derived all the results tabulated at the beginning 

of this section. 

5. POLYMER CONFORMATION AS A FUNCTION OF W 

We recall from section 2, the partition function 

= 
[ WGf ( s, 0) 2 

] 

All-WG(s,OjO)jN' 
(2.42) 

N where [ ••• ]N denotes the coefficient of s of the Taylor expansion of the 

function inside the brackets. From the results of the previous section, 

we see that the quantity 

Q(s) = 
WGf(s,0) 2 

1 - WG ( s, 0 j O) 
(5.1) 

has two singularities: a branch point or square root singularity at s = 1 

and a pole at s = s0 , where 

1 - WG (s 0 , 0 IO) = 0 . (5.2) 

The zero s
0 

nearest the origin of 1 - WG (s 0 , 0 IO) is always on 

the positive reals axis. This follows from the fact that the CPFs 

Gm(O IO), from which the GF G(s,O jO) is formed, are all strictly positive. 

For very large W corresponding to the case of a very attractive wall, the 
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pole Bo is near the origin since G(s0 ,0 I 0) must tend to zero as W-+ 00 • As 

W decreases, So moves away from the origin along the positive real axis. 

At a critical value of W = W , the pole s0 coincides with the branch point 
C 

at s = 1. We can see from equations (5. 2) and Table 4.1 that 

w = 
C 

1 
G(l,OjO) 

1 = G(l,O) • (5.3) 

When W is just bigger than W c, s0 $ 1. 

for jsj<l. 

For O < W < W , there is no pole s
0 C 

According to Darboux's Theorem( 35) the Nth coefficient in a 

Taylor expansion of a function f(s) is given asymptotically by the 

coefficient of sN in the dominant term of f(s) about its singularity 

nearest the origin. Hence as W changes from W > W to W < W , the 
C C 

singularity of the function, (5.1), nearest the origin changes from the 

pole s = s 0 to the branch point at s = 1. The positions of the 

singularities in the s-plane are illustrated in Figure 5.1 for four 

regimes of interest. We now discuss the conformational characteristics 

of the polymer in each regime. 

Sao W>>W 
C 

We first derive an expression for the pole s = s 0 which is the 

singularity of Q(s) nearest the origin. For W very large, we expect 

s = s 0 "'0. From Table 4 .1 we have (s "'0) 

G(s,OjO) = sF(O)+s2 rF{t) 2 dt+ ••• 
0 

which from equation (5.2) gives 

or 

l-W[s0 F(O) +s 2 r F{t)
2 

dt) = 0 
0 

so ~ WF~O) { l t r [!~~;r dt} 
0 

to second order in 1/W. Therefore for s ...._ s 0 we have 

(5.4) 

(5.5) 

(5.6) 



w >> w 
C 

w ;;,i; w 
C 

w = w 
C 

w < w 
C 
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s=l 

s=l 

s=l 

s=l 

Figure 5.1: The positions of the singularities of the generating 

function for the partition function that are nearest the origin of 

the a-plane in the various regimes of W. 

-



1 -WG(s ,O j O) == - (s - s0 ) 

and the p rtition function b com s 

cf (so O) ·2 

- A r. G c so , o ' a)] 
l dS 

= 

The number of beads adsorbed is, from equation (3.3) 

(n) == -NW 
a Zn So 

aw 

tr [; ~gr dt} . 
0 
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(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

Simjlarly , th mean square spread of ad orbed beads on the wall 

i-· u , f )111 equa ion (J. 10 ), 

f 2 

( p 2 ) 
A [-v; G(s 0 ,O !K) K;Ql 

G (s 0 ,0) 

tcs -1sol2t = -
QN aG(s 0 ,0 IO) 

(5.12) 

- --- - --
as 

and from Table 4.1 and equation 5.9) this gives 

( fJ ) = (5.13) 

The densi ty of beads off the wall is obtained from equations 

(3 . 29) (qi= 0). At s = s
0

, the dominant term comes from the second order 

pole in th firs t term of [ ... ]N . Therefore 

f G (s 0 , 0) G(s 0 ,x !o)_1' [ 1 J 

l a cc s 0 , o I o) j~ LC s - s0 )2 J N 

as 

n(x) (5. 14 ) 

== ( (x) J2 

F(O) 
(5.15) 
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to first order in 1/W. Note that to this order in 1/W, equation (3.2) is 

satisfied, that is, 

N = r n (x) dx + ( n ) , 
0 

The centre-of-mass of the polymer, given by equation (3.1), is 

i = ~ r x [:~~ff dx • (5.16) 

Sb. W>W 
- C 

0 

When W is close to but still greater than W = 1/G(l,O) the 
C 

dominant singular is still the pole at s = s
0

; but now s
0 

$ 1. From 

Table 4 .1 we can write (s ~ 1) 

G(s,0 O) 1 
w 

C 

(5 .17) 

Substituting this into equation (5.2), we can solve for s
0 

l _ SI:_ [_l_ _ l] 2 

2 W W (5.18) 
C 

for W" W • The formal expressions derived for the case W >> W still 
C C 

holds for the various polymer characteristics (n), (p2 ), etc. provided s 

is not too close to 1 so that contributions from the branch point is 

still unimportant. However we must bear in mind that generating 

functions from Table 4.1 for the limit s $ l and equation (5.17) should 

now be used. 

The number of adsorbed beads is now 

0 

( n) = - NW 
a Zn s

0 

aw (5.10) 

= No
2 [_!_ _ 1_) 

w w w 
C 

(5.19) 

and the spread of these beads on the wall i s 
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( p2 ) = (5.12) 

= 2Na2 
• (5.20) 

The density of beads off the wall is as before 

N a G ( So ' X I O ) 
2 

:::: 

s0 ["G~~:: 0 I 0) l (5.14) n(x) 

Since w know G (s
0 

, x I O) only for x = 0 and x l arge we derive, using 

Table 4 . 1 

n (O) = No 2 [_l_ _ ll w2 w w 
C C 

(5.21) 

and -2xR -~l 
n(x) = 2N [ic - ~] e (5.22) 

for x large . Using the expression for n(x) for large x (equation (5.22)) 

we ob ain 

r n (x) dx = N • 
0 

TI is is consistent with the result (5.19) which shows that although (n) 

is of the order N, it vanishes as W approaches W. That is, to leading 
C 

order in [w~ - t] the results satisfy the r e lation 

r n (x) dx + ( n) = N • 
0 

The c => ntre-of-rnass of this density dis·tribution is 

-
X 

1 (5.23) = 

whi h tends to infinity as W tends to W from above . 
C 



143 

Sc W = W 
C 

At = W the pole s0 is coincident with the branch point at 
C 

s == 1 = s
0

• The analytic structure of Q(s) in equation (5.1) needs to be 

investigated. From Table 4 .1 we have ( s $ 1) 

1 -w G(s,o l o) 
C 0 

= 

and 

f 
G (s,O) = 

1 -72 
(1-s) 

Thus the partition is given by 

QN 
Ao 

[ 1 J = k 3/2 
22 (1-s) N 

From the identity(J6 ) 

(X) 

-M 
~ 

f(M+N) 
(1-s) = NI f(M) 

N=O 

(1-s) 

. 

N 
s , 

k 2 (5.24) 

(5.25) 

(5.26) 

(5.27) 

where r (x) is the gamma function , for N large and M << N we deduce that 

Th refore we have (r (3/2) = ~ n)) 

Q = 

whi h is ind p nd nt of W at W = W • 
C 

;i-1 
r (M) • 

1: 
f2. AoN 2 

k 2 
TI 

(5.28) 

(5.29) 

To valuat th expectation. valu (n) , we must differentiate 

th mor gener 1 expression or Q given by equ tion (5.1). From 

equation (3.3) w hav 

( n ) == 
\A WG (s,O) G(s , O O) + G (s,O) 

~

t 2 I f 2 J 
Q N ( 1 - WG ( s , 0 IO) ) 2 1 - WG ( s, 0 j O) N • 

(5.30) 

At \ == th contribution rm tl e second t -rm to the coefficient of sN 
C 

can b negl ct d to leading order in Ther for from equations (5.24), 

(5.25) and (5.29) w h ve 
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1:: 

t(l-ls)2t ( n) = 
(2n) 2a 

1:: 
4W N2 

(5.3) 

C 

1:: 
(2n) 2a 1:: 

= N2 
4W 

. (5. 32) 
C 

Similarly, the spread of adsorbed beads on the wall can be obtained from 

Table 4.1 and equations (3.10), (5.24) and (5.29) 

( p2 ) 
;; 02 

[(l-s) -s12 ]N = 1:: 
2N 2 

(5.33) 

2a2 

= - N . 
3 

(5.34) 

Th density of beads off from equation (3.29) is ( cp =O) 

n(x) = ~[[wGf(s,O) G(s,xjo)]
2 

+ 2WGf(s,O) Gf(s,x) G(s,xlo)l 
QN 1-WG(s,O IO) 1-WG(s,x!O) JN 

(5.35) 

For W = W and x non-zero, both terms contribute. From the results of 
C 

Tabl 4.1, we have 

n(x) = 

1- 1:: 3 I 2 1:: 
!2 t -2 

2 
( 1-s ) 

2 
x / o - 2 ( 1-s ) 

2 
x / aj (2n ) 2 e - e 

1 ( ) 2 • 
2oN~ l-s N 

The coefficient of sN of a function of the form 
1:: 

- a -y(l-s) 2 

(1-s) e is given in Appendix A. In this case, we use the 

r sul t 

wh er 

wh r 

1:: 

~

e -y (1- s ) j 
(1-s) 2 = 

= 

l 
1 - ~ 

t = ' 2 y N Th for w ha ve 

N 

t 
rfc t -

Irr 
- t

2J e ' 

1:: 1 

(2 11 )
2
N'

2 
[ n (x) = (2u 2 + 1) erfc u 

0 
(4u2 + ~ ) erfc 2u 

2u -u -4u
2 J ( e - e ) , 

1T 

1 X 
u = 1 • 

(2N) ~ o 

(5.36) 

(A . 15) 

(5. 37) 

(5.38) 
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As discussed in ppendix A, this result holds for (x/o) of the order of 

k 2 

We note that using the result for large x (equation (5 . 37)) the 

result r n(x) dx = N 
0 

is consistent with the fact that 

k 
(n) = O(N 2

) << N 

for N large , and the relation 

is again satisfied . 

r n ( x) dx + ( n ) 
0 

N 

For the density at x = 0 , we find that the first term in 

equation (5.35) is the dominant term and from Table 

n(O) :::: 

= 

The centre-of-mass of 

-
X = 

= 

k 
(2n) 2

0 
[ (1·-s)- 2

] 
k 

4 W2 N 2 

C 

k 
(2n) 2 k 

4W 2 oN 2 

C 

the polymer 

f 00 x n (x) dx 
0 

k 
7(2 Tf ) 2 k 

- o N 2 

32 

is 

Th '"' "r due d" density 

is plott din Figure 5 . 2. 

k 
n(x)/ ((2N n ) 

2 / 0) 

N 

4.1 

(5. 39) 

(5.40) 

(3 .1) 

(5.41) 
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1.0 2.0 

Distance 

Figur 5. 2 : The density of beads of the wall at W = W as a function of 
C 

the dist n .e from tlt · wal l . The d ensity i s in reduced units 
1:: 

n(x)/( 12nN/cr ). The distanc is sc led to x /( 2 oN2
) . 
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For W < W , the singulari ty of Q (s) nearest the origin is the 
C 

branch point at s = 1. The results for s $ 1 in Table 4 .1 are now 

applicable, i.e. 

1 - WG ( s , 0 I O) 1 - w 
w 

C 

so equation (5.1) fo r QN becomes 

= 

:::: 

AW - 1 
1-W/W [(l-s) ]N 

C 

AW 
1 -W/W 

C 

The expectation value ( n) is then 

( n) = 1 
1-W/W 

C 

(5.42) 

(5.51) 

(5.52) 

which tends to 1 as W-+ 0 . This is consistent with the original 

assumption that led to e quat ion (2 .7). That is , at least one bead is 

attached to the wall . The mean square end-to-e nd distance of contac ts 

on the wall is found to b e 

= 
12 ow 

1- W/W 
C 

) / 2 k 
2 oN 2 W ---rrr· 1 - W/W 

(5. 53) 

C. 

Since ( n) -r O as W-r 0 , ( p 2
) also vanishes in this limit as expected . 

n the branch point ( s = 1) is th• dominant singularity th e 

f irst t rm in the g neral xpre s sion for the b ead d ensity n(x), e quation 

(5 . 35) , may be n glect d . This l e ads to 

n(x) = 
2 / 2 

0 r 
1
2 \ 1-2 !2 J - 2~- (l-s ) x/ o (l - -2 (1- s ) x/ o ) 

( ) 
3 / 2 

1- s 

Using the r sul t f rom Appendix A ( t = !2 y 

(5.54) 



I 312 (y) = 

!.::: 
[e-y(l-s) 2(1- s ) -3 12] 

N 

[ 
1 -t 

2 l = 2N - e - t e r f c t ;; 

we obtain (u = x/ ( v'2N a ) 

n(x) = 

We note, a s us ual, 

!.::: 
2s I 2 N 2 tl 2 4 2 J - ( e - u - e - u ) - u (er f c u -2e r f c 2 u) . 

a In 

r n(x) dx = N 
0 

which is cons i stent with the r e lation 

r n (x) dx + ( n ) = N 
0 

148 

(A .14) 

(5.55) 

since ( n) is o f the order unity. The densit y at x = 0 is from equation 

(5. 35) (retaining both terms) 

A { [ W/W r 2(W/W )} 
-

1 - W/~ c 
+ ~ --~c~ [(l-s) - 1] 

QN 1 - W/W N 
C 

n (O) = 

= 
1 r2-W/W l 

1 - W/W: ' 
(5.56) 

w 
C 

Th centr e-o f - mas s is 

-
X = (5.57) 

!.::: 
The r educed d ns ity n (x) / ( ( 2nN ) 2/ o) is plo tted in Figure 5. 3 . 

6. DISCUSSION 

W have ·alculated our quantities which charac t eriz e the 

con orm tion of a long polymer adso r b d at an impene trable f l a t s ur face 

as fun Lion of th adso r ption ene r gy W: che av rage numbe r of beads 

adsorb I ( n ) ; th mean squar nd - to- nd distance of adso~bed beads 

( µ 2
) ; th -p sition of the c n cr -of- mass oi the polymer x; and the 

d nsi t y o b ds off the wall n (x) . Th xpressions fo r t hese quan t ities 



0 . 5 

0 . 4 

0 . 3 

0 . 2 

0 . 1 

1 . 0 2. 0 

Distance 

Figur. 5 . 3 : The d nsity of beads off the wall in r e gime W < W as a 
C 
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fun tion of the distance from the wall . The d nsity is in reduced 
k 

units n (x) / ( /2,rN/ o ) . The distance is scaled to x/ ( fi aN 2
) • 
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are shown in Table 6.1 for an arbitrary link probability density function 

f(lr l ). The corresponding results for a polymer with a fixed bond length 
'"" 

a where f (Ir. . 
1

1) = 
4 

1 
2 o (a - Ir. - r. 

1
1) are presented in Table 6. 2. 

~1,1- na ""'l ""'l-

As is evident from these tables, the conforma tional properties of the 

polymer differ markedly in the various regimes of W, namely, W >> W c, 

W ?'. W , W = W , W < W . For instance, ( n) is proportional to N for W > W , 
C C C C 

L 
--2 N for W = W and is independent of N for W < W ; ( n) is a monotonic 

C C 

increasing function of W. 2 ( p ), also a monotonic increasing function of 

!-.:: 
W, is proportional to N for W > W and N 2 for W < W . On the other hand, 

- C C 

x, a monotonic decreasing function of W, is N independent for W > W and 
C 

!-.:: 
is proportional to N 2 for W < W • The density n (x) changes from an 

- C 

exponential distribution for W > W to a peaked distribution for W < W . 
C C 

From these results, a physical picture emerges . For a very 

attractive wall W>> W, most of the polymer is adsorbed in the train 
C 

configuration and in very small loops off the wall. We note that ( p2
) is 

just the mean square radius, A2
, if a two-dimensional random walk whose 

st p-sizes are distributed according to the probability density function 

As the wall becomes less attractive, W-+ W , the number of 
C 

contacts with the wal l decreas s; the centre-of-mass of the polymer 

moves away from the wall; and the spread of the polymer on the wall 

tends to that of the two-dimensional projection to that of the 

unrestricted polymer in free space . 

As W passes through W, the number of adsorbed beads decreases 
C 

sharply to become inde pendent of N and the bulk of the polymer moves away 

from the wall, 

Figure 6 . 1. 

These results are illustrated schematically in 

The phase transition at W = W is du to the classical 
C 

competition between energy gained on adsorption and the consequent loss 
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( p 2 ) 

-
X 

n(x) 

Table 6 . 1 : Expectation values of polymer characteristics in the various regimes of W 

(see text) for a general link probability density function f(jr .. 
1

j ) . 
-i,i-

w >> w 
C 

( lr [F(x)r l INl-w F(O) dx 
0 

I N,\ 
2 

1 foo [F(x)J2 dx 
w X F(O) 

0 

ii [F(x)J 2 

W F(O) 

I 

I 

w~w 

~ [-1__ 1] 
w w w 

C 

2Na
2 

' 2 -
L [_l l]-l 

w w 
C 

Na
2 

[ l ] 
W~ We-! 

C 

(x = O) 

r 

-2x[_l l] 
2N wl - ~] e w c - w 

l C 

(x >> 0) 

I 

c--
v21T G ~ 

4W N 
C 

2 N 2 - a 
3 

r:.:- L 
7 v 2n N/ 20 

32 

r:.:- l , 

~ N/20 

4W~ 

W=W 
C 

(x = O) 

{ (2t
2 + 1) erfc t 

1/ 

( 2nN) ' 2 

a 

- (4t
2 +\) erfc 2t 

2t -t
2 

-4t
2 

} - - (e - e ) 
In 

(x >> O) 

r:---
t = x/(ov2N) 

I 1 -G(l,O 0) = w -
C 

- _l_ Joo 
2n 

- oo 

n (l - f(z)) dz 

w <.. w 
C 

(1 -1:J' 
[ 2rrN ]'' I 2:~1 

1 hr 
C 

]~ 
[ 2,rN ( 4,1) 

1 
w 

C 

\. 

2 -

1 -

1 

4 ( 2N) 2 

a 

w '\ 
w 

C 

.J 

w 
C 

{J; 

(x = 0) 

' ., 
-t "" -4t-

(e - e ) 

- t ( e c fr t -2e r f c 2.t ) } 
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T.:ible 6 . 2 : Expectation values of polymer characteristics in various r egimes of W 

( sec t ex t) for the fixed-length bond law f ( Ir .. 
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j ) = 
4 

1 
2 6 (a - Ir. - r. I ) . 

"'l ,1- na ~1 ~1-l 

.., 
No -

3h' 

( ] l\; 
') ., 
- N • 
3 

w:w 
C 

-ll w 

1 [ 1 ll- l 
WC - w 

3Na 2 

[1fc - t] ., 
\1-
'i c 

(x = O) 

2N [.1__ ll [ 
1 ll - 2xwc - w I 

We - W 
e 

(x >> 0) 

[23n r a i 

4W N 
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211 7a N~ [ J 
\~ 1 

3 32 

[?TI]\ 0 !2 
~ -N - .., 
3 4W~ 

W=W 
C 

( 6nN) 
12 

( (2t2 + 1) erf c t 

- (4t 2 + \ ) erfc 2t 

2 2 J 2t -t -4t 
- - ( e - e ) 

In 

t = /J x/ (ai2N) 

(x = O) 

(x >> O) 

f(jr . . 1 1) = 4 12 cS (a- Ir. - r. 1 1); 
-i ,i- na ~i ~i-

W = 0. 62439a ; 
C 

~ 

W<W 
C 

[1 -1:J' 
[~~ t 11 2-a~l 

k: [;~ r (4a) 

1 
w 

C 

/ 

2 - Ji_ 
w 

C 

w 
1 - w 

c, 

( x = O) 

(6N) \~ !±_ [_!_ (e-t2 - e-4t2) 
a Irr 

- t (erfc t -2erfc 2t)} 

(x >> 0) 

t = ~ x/(anN) 

a 2 = a 2 /3 
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Schematic representation of the state of the adsorbed polymer as a function of W. 
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o configurational entropy . The existence of a critical adsorption 

energy wa irst suggested by Silberberg . <24
) L Rb . (16,17) and ater u in 

D ·M · d M C k. (l 5) d . d h . . 1 d . f 1 arz10 an c rac in er1ve t e cr1t1ca a sorpt1on energy or 

1 ttice mod ls in terms of the co-ordination number of the lattice type. 

As shown in quations (4 . 65) and (5 . 3) , W in the continuum model is a 
C 

unctional of the link distribution function f(jrl) . ,.._, 

For W < W , most of the polymer is off the wall. As expected, 
C 

the density n(x) i s dominated by the tails . Had we required one or both 

ends of the polymer to be on the wall , the density distribution would be 

qu ntitativ ly differ nt. For both ends on the wall and W < W 
C 

n(x) = ~rr [~) e-(2x
2

/ o
2

N) 

and for one end on the wall, W < W 
C 

n (x) = 
!-:: 

( 2 N) 2 

_n _ _ [erfc(x/ohN) - erfc(fi x/offl)] . 
a 

(6 . 1) 

(6 . 2) 

l 
These results are respectively the density for a loop nN(x) (3 . 22) and 

for a tail n!<x) (3.18) . 

R garding the question of the validity of the diffusion 

qu tion approxjmation ne r boundaries , w observe that for N large, we 

may pick out the coefficient of sN in G(s,x !O ) to obtain (x large) 

G (x !O ) = 
2 / 2 x - (x 2Na ) 

e Irr o2 N3 t 2 
(6 . 3) 

It i asily s n that GN(x !O) satisfies th diffusion equation 

dGN(x i O) 0 2 2GN(x !O) 
0 = 3N 2 x2 

(6.4) 

or and x/ o larg , but not for small x or small N. This follows from 

tl £ c th t lthough equation (6 . 3) for C (x !O) i. ~· is the appropriate 

s lu ion o· th di ·usion qu tion, it dos no t agr e with the exact 

v lu o G (x jO) t x= 0 wh ·ch can b obtain d from G(s,O) (Table 4.1). 
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To compl tely <let rmin GN(xjO) from (6.4) one would need initial or 

boundary con itions. However, w cannot us initial conditions at x=O 

and N=O ev n if they are known because the diffusion equation breaks 

d wn in these regions. 

W have considered th conformation of an adsorbed polymer 

hi h dos not interact with itself. The next logi al step is to 

examine thee ect of intramolecular interactions in the various 

conformational characteristics. Since an ab initio calculation would 

soon become intractable, perhaps a solution may be obtained by perturbing 

about the non-interacting polym r using a method similar to that 

developed by FloryC 37 ) for studying the excluded volume effect. 

Dispersion force theory can then be used to estimate the magnitude of the 

excluded volume parameter and its influence on the phase transition. 

Th r ar lr ady some tternpts at this problem using computer 

simulation(JB, 39 ) and correlated lattice walk models. (l 7,l9) 

Another important extension of ides dev loped here is to 

consider th problem of a polymer confined between two adsorbing surfaces . 

Sorn asp ts o this problem have already been considered by a number of 

(40-42) 
authors, especially with reference to the influence of polymers on 

(7 43-45) the stability of colloidal systems . ' 

7 J NUMERICAL VALUES OF W FOR SOME 
SYSTEMS OF POLYMER/SOLVENT/SUBSTRATE 

Bf re making numerical estimates of the adsorption energy 

par met r W, it is worthwhil to recall the assumptions made in deriving 

W. We have assum d that the potential en rgy o the whole polymer is 

just th sum of on -body pot nti ls for the beads (monomers) . Each bead 

interacts ind pendently wi h th substrat via a one-dimensional 



potential ~(x). The adsorption energy parameter Wis defined as 

W = r (e - tj, (x) /kT - 1) dx 

0 
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(2.3) 

For situations where dispersion interactions are dominant one 

can c lculate the value of ~ (x). The dispersion interaction energy 

between a molecule of frequency dependent polarizability aM( w) in a 

solvent and a half-space is (equation (B.9), Appendix B) 

V(d) = 

Here 

co 

- kT I: ' 
n=O 

t:, (if,; ) 
ws n 

E (i f,; ) - E (i f,; ) 
w n a n 

= 
E (i f,; ) + E ( if,; ) 

w n s n 

and, E and E are respectively the frequency dependent relative 
w s 

permittivity or dielectric constant of the substrate (wall) and t he 

(7.1) 

(7.2) 

solvent ev luated at imaginary frequencies i ~ = i2rrnkT/fl with (2rrn) the 
n 

Planck's onstant . The prime on then-sum d enotes half-weight for the 

n = 0 term. 

for the purpose of calculating W for organic polymers in 

· g · n Rolv nts, th first term in oM (P = 1) of equation (7 .1) is an 

adequate representation for V(d). The reasoning for this is as follows. 

Along the im ginary frequ ncy axis, th diel - tric constant decreases 

. ( 46) 
monotoni ally from its static value to unity. Therefore we have the 

r lation I J < 1. However with non-polar organic materials, E ,...._, 2-3 and 
ws 

a mor r al i s tic limit is jt:i JS 0 . 2 . Further since the static 
ws 

polariz bility ·M(O) is o th ord r of the volume of the molecule (bead), 

th first t rm (P = 1) will ind ed be a good ap proximation for V(d) 

provided dis larger than th mol cular siz . 
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On the other hand, the dispersion energy given in equation 

(7.1) treat s the monomer as a polarizable dipole . At small distances, 

this approxim tion is inaccurate as higher multi-pole interactions and 

electron overlap effects become important . Since the substrate is, by 

assumption, impenetrable , we shall account for the short range 

interactions by assuming that there is some distance of closest approach 

to the wall b ( > 0) for the monomers , and that the dipole approximation 

is valid ford~ b . Typically this cut-off distance is of the order of 

a (0) 1 13
• 

m 

In view of the above comments , it is c lear that the phase space 

of the monomer x ~ 0 corresponds to the region d 2: b. Therefore, the 

interaction energy W(x) of the monomer can be taken to be the dispersion 

energy V (x + b) • Thus W becomes 

w = I: exp [ (A/kTx3
) - 1] dx , 

where 
00 a (i f; ) ~ (i f,: ) 

A kT 'V I rn n ws n = "- 2 E ( if; ) 
n=O s n 

The integral can be taken to give 

W = b ; j! (3\-1) [kT~3 lj . 
j=l 

(7. 3) 

(7.4) 

(7. 5) 

Ther fore th calculation of W r equires a knowledge of the dielectric 

const nts at imaginary frequencies. It has been found in work connected 

· h h 1 1 · f d. · f b · b d. <47 ) wit t e ca cu at1on o 1spers1on orces etween macroscopic o ies 

that the r pr sentation 

E(i f; ) 
R2 

- 1 
= l+ ---

1 + ( E; I w0 ) 2 (7. 6) 

is ad quat 0 for non-polar organic mat rials. Here R is taken to be the 

r fr tiv ind x. In p inciple, w0 should be the Lorentzian relaxation 

f requ ncy in th ultra-violet for the bulk m dium . However in the 
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absence of detailed spectroscopic data, this is approximated by the first 

ionization potential. The polarizability of the monomer is estimated 

from the dielectric constants of the polymer E using the Claussius-
p 

Mossotti relation 

= 3 
4rr p [

Ep(i~) -11 
E (i~)+2 ' 

p 

where p is the number density of monomer units. 

Using the dielectric and spectroscopic data listed in 

Appendix C we calculate the quantity (W/W) for a number of polymer/ 
C 

(7. 7) 

solv nt pairs against a glass substrate at 300 °K; we use W = 0. 62439a as 
C 

tabulated in Table 6.2. We have assumed that the relative permittivity 

of glass has the simple representation given by equation (7.6). Clearly 

there is some laxitude in the choice of th e bond length a and the cut-off 

distan e b. Following earlier work on the dispersion contribution to 

f . f . 1· "d C49 ) h b 2 " sur ac energies o organic iqui s, we c oose ~ A. The value a 

is estimated from the linear dimensions of the monomer units. (5l) For 

p lystyrene, we take a to be 4 A and for polyisobutene, a= 3 A (see 

Appendix C). 

Table 7.1: Value s of W/W for various polymer/solvent pairs 
C 

against a glass substrate at 300 °K . 

Polystyrene Polyisobutene 
Solve~t 

Cyclohexane 1.49 1.06 

Methyl cycloh xane 1.58 1.12 

D calin 0.63 0.50 

Benzene 0 .4 2 0.35 

Toluene 0 .04 0.04 

Ethyl benzen 0.19 0.17 

Diphenyl eth r 0.04 0.04 
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With re fe renc e to the r es ults in Table 7.1, the consistently 

higher values of W/W for polystyrene is attrib uted to the larger 
C 

polarizability of the phenyl group of the styrene monomer unit. We note 

also that for a given polymer and substrate , W/W decreases (thus 
C 

favouring th desorbed state) as the re f ractive index of the solvent 

increases (cf . Table Cl, Appendix C) . This i s because it is 

en erge tically more favourable for a molecule to be in a region of higher 

<li 1 c tri c p e rmittivity. 

Calculations for a metal substrate yield values of W/W ~ 103
• 

C 

Here we used the representation 

E(i~) = 1 + w 2 / ~2 
p 

(7.8) 

for the permittivity of a metal. The plasma freq uency w is typically of 
p 

th o rd e r of 2 X 101 6 rad/sec. 
(48) 

The corresponding large values of W/W 

obt in d f r a metal s ubstrate is due , of course , to the very large 

diel c tric constant at low frequ e ncies. Altho ugh we have n e glected 

spa tially dispersive effects which are important for metallic substrates 

at short dist nces, none the less the large values of W/W obtained 
C 

should be a general characteristic for metalli c walls. 

On the other hand , for a teflon substrate the values of W/W 
C 

are n gative for a ll polymer solvent pairs, thus strongly favouring the 

desorbed sta t e . This c n be accounted f or by the unus ua lly low value of 

th r fr ·ti ind ex oft flon as compared with those o f the solvents. 

Th uncertaintie in a , b and in the ultra-violet relaxation 

frequ n ls w0 m an that t h values of W/W in Table 7 .1 must be treated 

s approxim te only . H w ver dispersion t h ory dos pr edic t values of 

/ fo r a gl ss substr t th a t re dist rib ut e d about unity where the 

phas transi Lion oc'urs . This sugges t s tha t lt might be pos s ible to 

C 
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indu e dsorption-desorption phase transitions by varying external 

condition s . 

7a. Temperature Induced Phase Transi tions 

In Table 7.2 we list W/W as a function of temperature for 
C 

polyisobutene in cyclohexane and in methyl cyclohexane against a glass 

substrate. We see that reasonable changes in temperature can bring W/W 
C 

through unity. The temperature dependence of Wis due mainly to the 1/T 

term in the Boltzmann factor in equation (7.3 ) . Temperature variations 

in the die lectric properties of the polymer, oolvent or substrate and 

the tempe r ature dependence in the frequency summation (equation (7.4)) 

are all second order effects. To see this, we r eplace the sum in 

eq uation (7.4) by an integral 

00 

kT ~ ' 
n=O 

and the constant A becomes temperature "indepe ndent". This procedure 

( 50) 
is justified when w0 is in the ultra-violet. 

Table 7. 2 : Val u e s of W/W as a f unction of temperature 
C 

for polyisobutene in cyc lohexan and in methyl 

cyclohexane against a glass subs Lrate. 

Temperatur e OK Cyclohexane Me thyl Cyclohexane 

280 1.21 1.28 

300 1.10 1.17 

320 1.01 1.06 

340 0 . 93 0 .98 

-
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7b. Mixed Solvent Effects 

From Table 7.1 we see that for polysty rene in methyl 

cyclohexane W /W = 1. 58, while in decalin W /W = 0 . 63. This immediately 
C C 

suggests that by changing the composition of an appropriate mixed solvent 

we can take the polymer/solvent/substrate system through the adsorption

desorption transition point at W/W = 1. In Figure 7 .1 W/W is given as a 
C C 

fun ction of the volume fraction v of that component of the mixed solvent 

which favours adsorption, for three systems. We assume, as a first 

approximation, that the excess volume of mixing is negligible and that 

the Claus sius -Mossotti relation holds. Under these approximations, the 

dielectric constant of the mixed solvent E is then 
ms 

[
E l - ll V + [-=-=-~_!_] (1-v) ' 
E 1 +2 E

2
+2 

(7.9) 

wher vis the volume fraction of solvent component 1, and E
1 

and E
2 

are 

the permittivities of the two pure components. The existence of a 

critic 1 volume fraction v (W = W ) indicates that solvent induced 
C C 

adsorption- deso rption phase transitions should be exp erimentally 

obs rvable. 

In the above calculations , we have used the "fixed-bond" 

· - I I 1 I I probability density function f ( r. . 
1 

) = 
4 2 cS (a - r. . 

1 
) which gives 

~i ,i- na -i,1-

= 0 . 62439a (Table 6.2). Clearly had we used another probability 
C 

density fun tion , the values of the phase transition temperature and 

critical volume fra tion which give W/H = 1 would be different . However, 
C 

as m ntion d arli r the values of W/W are only approxima t e , the refore 
C 

our p rticul r choice of value for W should not invalidate the main 
C 

con lusions r garding temp rature and mixed solvent induced phase 

tr nsitions. 
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ADSORPI'ION 

DESORPTION 

o ________ _._ ______________________ __ 
0 . 5 

Volume Fraction v 

Figur 7 . 1 : W/W as a function of the volume fraction v of methyl 
C 

cyclohexan for the following mixed solvent systems: 

(a) Polystyrene in methyl cyclohexane + decalin; 

(b) Polystyrene in methyl cyclohexane + benzene ; 

(c) Polyisobutene in mehtyl cyclyhexane + decalin 

against a glass substrate at 300 OK . 

1 . 0 



APPENDIX A 

MATHEMATICS OF FINDING THE COEFFICIENT OF sN 

We wish to derive expressions for the coefficient of sN for 

functions of the form 

We designate this coefficient 

I (y) 
a 

!,: 
-y (1-s) 2 

e 

(1-s) 
a 

by 

1-

= [e -y(l-s~ J 
(1-s) N 

= 
1 

2ni 
l ds 
J N+l 

s 

!,: 
- y(l-s) 2 

e 

(1-s) 
a 

, 

where the contour excludes all but the (N+l) order pole at s = 0. 

We first consider 

= 

!,: 
-y (1-· s ) 2 

[e ]N 
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= 
!,: 

[sinh y(l-s) 2 ]N • (A.l) 

Since 

!,: 
coshy(l-s) 2 = 

th terms for which m < N do no t contribute to the coefficient of N s . For 

y sufficiently s.mall, contributions from the remaining terms (m ~ N) will 

!,: 
also be negligible and a sufficient condition for this is y - N2

• Now we 

c n expand the sinh term as 



... 

00 2m+l !,;: y 
sinh y (1-s) 2 = L 

m=O 
f (2m+2 ) 

00 2rn+l 
L y = f (2m+2) 

m=O 

Using the refl ec tion formula( 36 ) 

1 = f (l-z) 

w obtain 

1 = 

(1-s)m+\ 

00 

(-)N r (m+ 3/2) 
L 

r (N+ 1) r ( m - N + 3 / 2 ) 
N=O 

sin nz 
TI 

r (z) 

N-m-1 
(-) 

r (1 - (N-m-\ )) 

and fr om the duplication formula( 36 ) 

'IT 

f (z+\ ) = 

we ge t 

r (m+l+\ ) = 

\ 2-2z+l r (2z ) 
TI r (z) 

'IT\ 2-(2m+l) f (2(2m+l) 
r (m+l) 

Substit uting (A.4) and (A.5) into (A.3) we ge t 

N s 

1:: 
- sinh y (1-s) 2 = 

00 00 

L SN L 
ID 2m+l 1 (-) (y/ 2) f (N-m-~) . 

ther efore 

!,;: 

-[sinh y (1-s) 2 ]N 

N=O m=O 

00 

= y z.; 
2 m=O 

/rr f (N+l) f (m+l) ' 

(y2 /4) m f (N-m~) 
f(m+l) f (N+l) 

Now fo r z large(J6) 

h nee for N >> 1 

1 1 

r (z) :: e - z z2
- ~ (2n)~(1 + 0 (1/z ) + ... ) 

f (N+S ) 
f (N+l) 

:: S-1 
N ' N >> B • 

Therefor e , if y is sufficiently small, then 

00 

(y2/2N)m !,;: y 
-[ sinh y (l-s) 2 ]N :: L 

2 /rr N3 1 2 

m=O 
r (m+l) 

= "i. -y 2 /4N 
2 Irr N3 I 2 

e . 
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(A. 2) 

• (A. 3) 

(A. 4) 

(A. 5) 

(A. 6) 

(A. 7) 

(A. 8 ) 

(A. 9) 
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Equation (A.9) holds provided we can replace f (N-m-\)/f(N+l) by 

N- (m + 312 ) for all m. However this replacement is valid only when m << N. 

But if when m ~ N, the term (y2 
/ 4) m / r (m+l) becomes sufficiently small so 

that the remaining part of them-series is negligible anyway then the 

approximation invoked in deriving equation (A.9) will be valid. That is 

we require 

( 
2 14 )m 

y < 1 
f(rn+l) - when m,...,,_, N 

1: 
which implies y "'N 2

• Therefore the contribution from the term 

1: 
cosh y (1-s) 2 is indeed negligible. 

Returning to equation (A.l), we have 

Io (y) 

and 

= 

= 

= 

= 

2 2/ y -y 4N 
2/rr N3; 2 

e 

r Io(y') dy' 
y 

1 -y2 /4N 
e 

f
00 

I (y') dy' 
) \ y 

1: 
= erfc(y/2N 2 ) , 

where erfc(x) is the complementary error function. (J 6 ) Integrating 

a ga i n, we have 

and 

I] /2 (y) - r r, (y I) dy I 
y 

1: 
2N 2 

-
2 

/ 4N 1: = - -e y -yerfc(y/2N 2
) 

= 

= 

;:; 

r 1,12 (y') dy' 
y 

2N [[~ + i,J erfc(y/2Nl,) - y -y
2 

/4NJ _ ...........__1:_ e • 

2frr N 2 

(A.10) 

(A.11) 

(A .1 2) 

(A.13) 

(A.14) 

(A.15) 
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DISPERSION INTERACTION BETWEEN AN 

ISOTROPIC POINT DIPOLE AND A FLAT SURFACE 
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We consider the non-retarded dispersion interaction energy 

between an isotropic point dipole of polarizability a (w) , innnersed in a 

solvent of dielectric constant E (w), and a wall of dielectric constant 
s 

E ( w) at a distanced away. 
w 

E 
w 

E 
s 

+ d ~ 

a 
z 

A similar problem has previously been considered, (
53

-
56

) by a number of 

authors . The effect of a finite size dipole has also been studied(Sl) 

but the algebra involved in obtaining the next correction term is 

extremely cumbersome. 

We shall adopt the van Kampen normal mode formalism where the 

by
(58-60) 

inter ction energy is given 

OJ 

V(d ) = kT I ' log D(i ~ ;d) n , 
n=O 

(B.l) 

where D(i~ ;d) is the secular determinant for allowed modes evaluated at 
n 

imaginary requencies i ~ = in(2 nkT/~), where k is the Boltzmann constant, 
n 

T the ab so lute temperature and (2 ) the Planck's constant. The prime on 

the summation sign means that then= 0 term must be multiplied by~-

D(i ~ ;d) is deriv d as follows. 
n 
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The dipole moment fo r the dipole at£ due to an electric field 

E(r) is ,...._, 

= aE (r) ,..., ,..., 

while the f i eld at r' due to a dipole at r is 

E(r') = G(r',r) p(r) . 
,.....,_, -- ~ ,__ ,...._, ,-....., ,-...,,,, 

Combining (B.2) and (B.3) we get the secular determinant 

D(i E,; ;r) n ,..., = 1 im I l. - Q (£' , £) I . 
r-+r' ""' ,..., 

We note that the Green f unction G contains a term for the self
~ 

(B.2) 

(B.3) 

(B.4) 

interaction of the dipole. Since we are only interested in the 

interaction between the dipole and the wall we shall not include this 

term in (B.4). 

Now G(r ,r') is given by 
~ -- --

~/£, £' ) = - 'v 'v ' G (£ '£' ) ' 

where G(r,r') is the solution of 
"-' ,..., 

'v 2 G(r,r') = 4 'IT o(r-r ') 
E 

s 

(B.5) 

(B.6) 

subj ect to the usual boundary conditions , namely, G, E ~ ~ continuous 

a cross a dielectric dis continuity . The solution of equation (B.6) for 

this problem i s 

G(r,r') ....., ....., 

L 1 
t:, [ ( X - X ' )2 + ( y - y ' ) 2 + ( Z + Z 1 

) 
2 

] _ _,
2 + --

W S I£ - r' I · 

After some straightforward algebra we obtain (neglecting the 

self-energy t rm) 

G(r,r) 
;:::::; -- -- = 

t:, 
ws 

8 £: d 3 

s 

1 

0 

0 

0 

1 

0 

0 

0 

2 

, r = (0,0,d) , ,...._, (B.7) 

wher [). = ( E - E ) / ( E + E ) • Inserting equa tion (B. 7) into (B .1) and 
ws w s w s 
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(B. 4) we get 

00 

ln{[1 a6 r [1 4aE6:;, l} V (d) kT z:, ws (B.8) = 8s
8

d3 

n=O 

00 00 

[ a6 r = - kT I:• L l (2rn+2) 
8£sw;, (B.9) 

n=O m=l m 

00 

r 6 c? ... } . - kT L ws + _]_ tl (B.10) = 2s
8

d3 d6 + 
n=O 

64 ws 
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DATA FOR CALCULATING THE 

ABSORPTION ENERGY PARAMETER W 
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The dielectric and spectroscopic data for the polymer, solvents 

and substrates are listed below in Table Cl. The absorption frequency w0 

is taken to be the gaseous first ionization potential of molecules of the 

solvent or monomer units of polymers. 

The density of monomer unit p (see equation (7.10)) and the 

bond length a for each polymer is obtained as follows: 

Polyisobutene 

--CH
3 

I' CH ' C1:lJ 
I 13 I 

- Cl-~ - C c~ - C - CH C - c~ -
I I 

I 2 

I I 

Cl-~ '' -~~ 
/ c~ 

Th r p ating unit is taken to be C
4

H
8 

which has molecular weight 56. 

Th C - C bond distance is 1. 54 A and the density of polyisobutene is 

0 . 79 gm / cc . Th refore w 
0 

taken the "bond " length a to be 3 A and the 

d n ity o monom r units to be 

p = (6.023 X 1023
) X (0. 79) < [s16] 

= 8.5l xlQ2 1 cc- 1 
• 



r-

Polystyrene 

- CH 
2 

@) 
I 

CH - CH I - CH - 'cH 
-4 { 2 

l - l- / I 

/ 

@) I 
I 

' ) 

@) 
I 

- CH - CH
2 
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The repeat unit is C8 H8 of molecular weight 104. It is approximated by a 

cylinder of diameter 3 A and length 5 A. This has the same volume as a 

sphere of diameter 4 A. We shall take this as a "bond" length a. The 

density of polystyrene is 1.07 gm/cc. This means that the density of 

monomer units is 

p = (6.023 X 1023
) X (1.07) X [ 1~4] 

The data contained in this Appendix are obtained from 

references (61) to (64). 

Material 

Cyclohexane 

M t hyl Cyclohexane 

Decalin 

Benzene 

Toluene 

Ethyl B nz ne 

Diphenyl Ether 

Polys tyren e 

Polyisobuten 

Glass 

Teflon 

Table Cl 

Refractive Indices 

1.43 

1.42 

1.48 

1.51 

1.57 

1.55 

1.57 

1.55 

1.49 

1.54 

1.30 

Absorption Frequency 
in eV 

9.80 

9.85 

9.61 

9.24 

8.82 

8.76 

8.82 

8.47 

9.23 

9.90 

12.00 
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PART III 

VAN DER WAALS AND DYNAMICAL INTERACTIONS 



CHAPTER 1 

TWO- AND THREE-BODY INTERACTIONS BETWEEN OPTICALLY 

ACTIVE MOLECULES - A SEMI-CLASSICAL APPROACH 
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l o INTRODUCTION 

The phenomenon of optical activity has been observed as early 

as 1811 when Arago(l) discovered that quartz rotates the polarization of 

linearly polarized light that is directed along its optic axis. A 

. · 1 ff 1 d b B. (Z) . . 1 · . d sirru are ect was a so note y iot in certain iqui s. 

The optical activity of a medium refers to the phenomenon of 

optical rotation and circular dichroism associated with light propagation 

h h h d
. (3) 

t r oug t e me ium. Both effects arise from differences in the 

response of a medium to light of different polarization states. In 

optical rotation, the plane of polarization of linearly polarized light 

is ro tated b ec ause the left and right circularly polarized components 

have different refractive indices and hence dif fe r ent phase velocities. 

Positive rotation and the direction of propagation is related by the l ef t 

hand screw. In circular dichroism, the absorption c oefficients of left 

and right circularly polarized light are di ffe r en t so that linearly 

polarized light become elliptically polarized. t 

In crystals such as quartz, the spatial arrangement of atoms o r 

molecules account for optical rotation. However , in media without 

special synunetry or long- range order ing, such as liquids (e .g. in sugar 

solutions t h rotation amounts to tens of degrees per decime tre), the 

optical ac tivit y must be due to intrinsic properties of the const i tuent 

mol cules . (4-11) 

t 
Linearly polariz d light can always be considered as a supe r position 

i o 
o right circ ularly polarized wave with a phase e and a left 

-io 
circularly polarized wav e with pl ase e See refe ren ce (54) for a 

detailed discussion . 



The fact that molecular properties can be responsible for a 

medium becoming optically active l eads one to ask the interesting 

question : can the interaction between such molecules differ from 

optically inactive ones? It has been observed that the interaction 

between optically active chemical species possessing optical isomers 
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the laevo (l ) and dextro (d) form - is discriminative; the interaction 

of a dextro molecule of species A with a dextro molecule of species Bis 

(12-18) 
not the same as with a laevo B. From the difference in solubility 

between the l and d isomers of a compound in the presence of another 

(12-14) 
optically active sp ecies, Dwyer and co-workers concluded that the 

thermodynamic activity coefficients of lA and dA isomers are different in 

the presence of another optically active species l B say. In other words, 

the interaction energies dA with dB and lA with l B are different. This 

difference is exploited in the Pasteur Method of separating optical 

isom rs in a racemic mixture [equimolar mixture of l and d forms of the 

same chemical species]. This "configurational activity" as termed by 

Dwyer also manifests itself in dif fe rences in redox potentials, rates of 

mixing and diffusion between d and l species in the presence of d and l 

sp cies of another type. (lS) Thus, it is important to have an 

understanding of the interaction between optically active molecules and 

b tween opti ally active and inactive molecules. This may enable us to 

have ab tter understanding of ph nomena such as the Pfeiffer 

ff (16-18) [ h 1 f f e ect the c ange in optic rotation o a solution o an 

optically active solution upon the addition of racemic mixtures of 

certain other optically active compounds] and induced optical 

activity . (l
9

) Many molecules of biological importance are optically 

active or ontain optically a ctive groups( 20) and a knowledge of how such 

mol cules interact will give us a better insight into specificity in 

biological proc sses. 
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The two-body interaction (dispersive and inductive) energy 

between optically active molecules in the dipole app roximation has been 

(21-23) 
treated by a number of authors. They approac~ed the problem using 

. (22 23) (21) 
quantum mechanical perturbative ' and field theoretic techniques 

and fo und that the interaction between isomers is discriminative . That 

is, the interaction of a dextro molecule of species A with a dextro Bis 

different from that with a laevo B. The results have been applied to 

investigate the dispersive contribution to the cohesive energy of 

optically active crystals. <24 ) 

Here we employ a semi-classical method< 25) to calculate the 

dispersion interaction between non-polar optically active molecules 

r ep resented as dipoles. This simple non-perturbative approach gives the 

energy exactly for all distances of separation between the molecules and 

reduces to the London( 26 ) or Casimir-Polder< 27 ) limit respectively at 

small or large sepa·rations. The basis of thi s theory is Maxwell's 

equations and Planck 's hypothesis. The interaction energy is .taken as 

the change of the zero-point energy of the allowed modes of 

electromagnetic oscillations as determined by Maxwell 's equations and the 

linear respons e function of the molecules. This me thod has been 

explo ited extensively in evaluating the dispersion interaction energy 

b 1 1 (28-31) . b d. (32-50) d h d. . etw n mo ecu es , macroscopic o ies an t e ispersion 

.b . f . (51) contri ut ion to sur ace energies. 

2 c THE RESPONSE FUNCTION OF 
OPTICALLY ACTIVE MOLECULES 

Th interaction of an op tically active molecule with an 

external lectromagnetic field was f irst treated by Rosenfeld. (S
2 ) Since 

then similar problems have be n considered by a numbe r of workers . (53- 57 ) 



175 

Here we rec pitulate their results and rederive the complete response 

function for optically active molecules. (In previous work, the 

molecules are assumed to be non-magnetic, that is, the term n given by 
;::::: 

equation (2.21) is assumed to be zero.) 

In the semi-classical treatment of radiation, the Hamiltonian 

of molecule in an external electromagnetic field specified by vector 

and scalar potentials A and¢ is(SS) 
"-' 

H = _1_ L (p . - ~ A ( r . , t ) J 2 + L e ¢ ( r . , t ) 
2m . l C ""'""l . ""'l 

l l 

e int - - I s.•'vxA(r. t) +V 
me "'l ,...., "-l' 

i 
(2.1) 

In the Coulomb gauge ('v•A= 0 = ¢) the Hamiltonian can be linearized to ,.._., 

give 

where 

= 

V(t) = 

H = H0 + V (t) , 

_!_ I 2 +Vint 
2 

p, 
m . i 

l 

~ L A ( r. , t) • p. + s. • ('v x A ( r. , t)) • 
ill C . ""' ""'l "'l. ""l ""' "-l 

l 

(2.2) 

(2.3) 

(2. 4) 

The summation is taken over all electrons which have charge e, mass m and 

e int 
spin magnetic moment s . . V denotes a sum over all electron-me ....... l 

electron, lectron-nuclei and nuclei-nuclei interactions in the molecule. 

The int raction between the external field and the nuclei can be 

negl cted sine the nuclei are more massive than the electrons . The wave 

functio orr sponding to Hin equation (2.2) can be expanded in terms of 

the ig nst tes of the unperturbed Hamiltonian H0 (equation (2.3)), 

= 10> 
wh r 

-iw0 t -iw t 
+Lc (t) jn)e n 

n 
11 

E I n) 
n 

= i'lw I n) . 
n 

' 
(2. 5) 

(2 . 6) 

Th coeffi ients (t) are given by first order perturbation theory(SS) 
n 

as 



a 
in ~ C (t) 

o t n = 
i w t 

(nlV(t)IO) e no 

wh n the system is initially in state IO) with w = w - w • 
no n o 

hence 

wh ere 

For an incident plane wave we have 

A(r , t) 
........ "' 

= 

(n!V(t)/0) iwt 
e 
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(2. 7) 

(2. 8) 

' (2.9) 

<nlV_lo> - ~ ( n l I; 
me 

ik · r. [ ik · r.l "' ......,l e ,....., "'l 
e a • p. IO) - - ( n I :E s. · ik x a e IO) 

,..__ ,,.._, l m C . "'l "" "" 
l 

= 
i 

'.:: - ~ ( n I L a • p. IO) - ~ ( n I L ( ik · r.) (a • p.) JO) 
me ,,.._, ,,.._,l me ,...., ~1 ~ ""l 

i i 

- ~ ( n I L s. • ( ik x a) IO) . 
me . ~ "' ~ 

l 

(2.10) 

(2 . 11) 

The approximation ik • r 
e ........ ~ '.:: 1 + ik · r made in the first term of equation ,..., "-' 

(2.10) is equivalent to assuming that the wavelength A of the external 

field is large compared with the molecular sized , and only first order 

correction terms in (d/ A) are taken into account. The electric dipole 

moment of the molecule is 

= I; er. 
i 

"-'l 

and the magnetic dipole moment of the molecule is 

m = ,..__ -2
1 

[-- r. x u. + 2s.] m C . ""'l A..,l ""'l 
l 

Substituting these expressions int o equation (2 .11) we obtain(59 ) 

< n I v_ Jo> = a • 
i w 

no 

(2 .12) 

(2.13) 

(2 .14) 

Hr the small correction term corresponding to the quad rupole moment 

Q = L er. r. has be n omitted since it does not contribute to any new 
~ i "-'l 1. 

ffects . (
54

) Similarly , we have 



= 
i w 

* 
no 

- a I 

,.._ C 
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(2. 15) 

Henc equation (2. 7) may be integrated to give (taking V(t) = 0 at t = - 00 ) 

-l{( nl v_lO> i(w -w)t ( n l v+ IO> i(w +w)t} 
c ( t) = e no + + e no . ( 2 .16) 

n ti w -w w w 
no oo 

Now the change in the expectation value of an observable O due 

to interactions with the external field is, to first order in V, given by 

1:J(O) = ( !JJIO!!JJ> - ( 01010> 

{ 

< ojOjn)(niV_ l o> -i·wt 
- 2R L------

11(w - w) e 
n no 

= 

< o I o I n >< n I v+ I o > . } Hut 
+ L fl (w + w) e ' 

n no 
(2.17) 

where R{ ... } denotes the real part of the expression in braces. In 

particular, the resultant electric and magnetic moments induced in a 

molecule by the electric field E (= - 1/ C 8A/'dt) and magnetic field B ,.._ ,.._, ,.._ 

(= V X A) are ,.._, 

'dB ,.._ 

£, = a • E - B • - + y •B (2.18) 
~ ,...._, ~ a t ~"" 

3E 
"" m ;;; ~ • -- + n•B + .:t, •E (2. 19) ....., -- d t ~,...._, -....~ ' 

wh r 

2 
w R{( Ojpj n><n jpjO)} 

~ no ,...._, ,..._ 

(2.20) a = 
--..., fl ..., (w 2 - w 2) "" n no 

lL 
w R{( o !~l n)(n l~IO)} no 

1l = (2.21) 
'"'-' ti (w2 - w2 ) 

n no 

2 
I {( Oipjn)(njmjO)} 

8 ' ....., "' (2.2 2 ) = 
ti 

_, 
(w 2 - w2 ) ~ 

n nu 
and 

2 
w R{( Ojpjn)(njm jO)} 

no ....., "-' 

(2.2 3) y = 
( w 2 - w2) ----

ti ..., 
"" n no 

(wh re I { ... } denot s the imaginary part), a and n are respectively the 
;::::::: ~ 
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electric and magnetic polarizability tensors, ~ and I are responsible for 

optical rotation when the various matrix elements are non-zero. The term 

y only has a second order effect( 54 ) and will henceforth be omitted in 
~ 

the following discussion. 

3. PROPERTIES OF THE OPTICAL 
ROTATORY PSEUDO TENSORS 

We now consider some of the properties of the optical rotatory 

pseudo tensor. From equation (2.22) we have 

= 
R 

2 ~ _ L __ _ 
1'l w2 -w2' 

n no 

where we define the rotating strength R for the transition O-+ n by 
~o 

R = I {(Oip jn)(n imj O) } . :::::::n O ,.._, ,...._, 

It is clear that the relation 

R 
~o 

R 
~on 

(3.1) 

(3.2) 

(3.3) 

holds, since interchanging O and n replaces the matrix elements by its 

complex conjugate which reverses the sign of the imaginary part. The 

(60) 
Kuhn sum rule then follows immediately, i.e., 

LR = L I{(O jpjn)(njmjO)} = I{(OjpmiO)} = 0. :::::::n O ,...._, ,.._, ,...._, ,..._, 
(3.4) 

n n 

We observe that S is frequency dependent, and therefore should 
~ 

giv rise to an additional dispersion interaction between optically 

active molecules, provided the rotatory strengths are non-zero. For 

ther to be optical rotation (non-zero R ) the states JO) and Jn) must be 
~ 

connected by both electric and magnetic dipole t r ansi tions; or taking a 

mor mechanistic vi wpoint, a displacement of charges (associated with a 

0 -r n transition) must be accompanied by a circulation of charged and vice 
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versa. This coupling of electric and magnetic effects arises because we 

have taken into account , to first order, the spatial variation of the 

fields over the molecule( 6l) (cf. equation (2.11)) and because the 

molecule possesses an intrinsic left or right handedness in its structure 

so as to react preferentially to light of different polarization 

states. ( 7) From the response equations (2.18) and (2 .19) (neglecting the 

terms in x) a time varying magnetic field gives ris e to an electric 
,.._, 

dipole moment. But according to Maxwell's equations, time variations in 

the magnetic field are associated with spatial inhomogeneities in the 

electric field, so we can say that spatial variations in the electric 

field also contribute to the electric dipole moment of optically active 

molecules.( 6l) (Corrections to the dipole term due to quadrupole effects 

are small . Also these effects do not produce any new type of light 

propagation nor contribute to the discriminative energy .) Similar 

remarks also apply to that part of the magnetic moment due to time 

varying electric fields or inhomogeneous magnetic fields. Further, it 

also follows from this discussion that optical activity vanishes in the 

static limit as well as in the high frequency limit (cf. equation (2.18)). 

From equation (3.2) we see that the rotatory strength R is a 
:=::::no 

diadic made up of a polar vector p and an axial vector m. ,.._, This means 

that ~ is a pseudo tensor, that is, i t changes sign on passing from a 
~ 

right-hand d to a 1 ft -handed co-ordinate system . In other words, two 

molecules that are mirror images of each other (optical isomers) will 

have equal and opposite rotatory strengths. 



4. RETARDED AND NON-RETARDED 
TWO-BODY INTERACTIONS 
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Cons i de r two optically active molecu l es with one of them at the 

origin of a cartesian co-ordinate system and the other at a distance r 

away along the z axis. The mutually induced electric and magnetic dipole 

moments interact to give the two-body interaction energy. 

Suppose that the instantaneous electric and magnetic dipole 

-iwt -iwt 
moments of a molecule are, respectively, p (t) = p e and m(t) = m e . 

~ ............. ,-..,.., ,....,_,, 

Th e electric and magnetic fields generated at a distance r ( >> molecular 

dimens ions) are( 62 ) 

E (r,t) E 
-iwt 

F·p 
-iwt 

= e = e "'P ,..._, p ::::::: ,..._, (4.1) 

E (r,t) E 
-iwt G•m -iwt 

= e = e 
'"'-{Il ,..._, '"'-{Il ::::::: ,.._, 

( 4. 2) 

B (r,t) B 
-iwt 

Q·p 
-iwt 

= e = e 
p"' p ,..._, ,..._, ( 4. 3) 

B (r,t) B 
-iwt 

F•m -iwt 
= e = e "-'l1l ,..,_, "'ill ~ ~ 

, (4.4) 

where 

f(r) 0 0 

F = 0 
::::::: 

f(r) 0 (4.5) 

0 0 g (r) 

0 -k(r) 0 

G = k (r) 0 0 
::::::: (4.6) 

0 0 0 

[[w;) 2 

+ [i~r) -l] i wr/ c 
f(r) e 

= r3 (4.7) 

2 [1 - i~~ 
i wr/ c 

g(r) e = r 3 ( 4. 8) 

[[w; r + [i~r ]] i wr/ c 
l· ( r) e 

= r 3 (4. 9) 

and c is th veloc i ty of light in vacuo. 
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We specify the response of a molecule according to the 

consti tutive equations derived in Sec tion 2 (equations (2.18) and (2.19) 

without the terms in y ). Thus for molecule "a" we have 
~ 

p (a) ,..,_, = £(a) •£ (a)+ i wf (a ) · B(a) 
"'-' -....., -...., .......... 

rn(a) ,..,_, = - i wf (a)· E (a ) + ], (a)· B (a) , 
,..._ ........... -- ,..._, 

(4.10) 

(4.11 ) 

where E(a) and B(a) are the electric and magn e tic fields produced by the ,..,_, ,..,_, 

e l ec tric and magnetic moments of molecule "b" at molecule "a" and a , n 
~ ~ 

and S are the electric polarizability, magnetic polarizability and 
~ 

optical rotatory pseudo tensor given by equations (2 . 20) to (2.22 ) . 

From equations (4 . 1) to (4.4), (4.10) and (4. 11) we obtain 

[ 
£, (a) ] = [ 
m(a) ,...._, 

a (a)F 
~ ~ 

+ i wS (a) G 
~ ~ -g/a)g +iwt (a)r][ _£,(b) ] 

i wS (a )G + n (a)F m(b) 
~ ~ ~ ~ ,..._, 

-iwf (a) F + n (a) G 
,...._, ~ ~ ~ 

[ 
p(b) l g (a) ,..,_, . 

rn (b) 
"' 

(4.12) 

Molecule "b" responds similarly to the fields f rom molecule "a". The 

dispersion relation for allowed modes is the condition for non-trivial 

solutions for the electric and magnetic dipole momen ts: 

Det[I - n (a) Q(b)J = O . 
~ ~ ~ 

(4.13) 

Strictly this calc ulation should be done by enclosing the dipoles in a 

large box of volume v and letting v -+ oo after obtaining equation (4.15). 

Otherwise (4.1 3) has no zeros in the retard ed case . 

The interact ion energy at zero temperat ur e is related to the 

. (4 8 49 51) s cular determinant by ' ' 

V (r) 2!i f dw(~ ) 
d 

ln Det[I ~ (a) r2 (b) ] = 
dw ~ ~ ~ 

(4.14 ) 

= _:ll__ r d E; ln De t[I Q(a) ft (b) ] 2n ~ ~ "' ,..,_, 
0 

(4.15) 
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wh er e in the firs t integral , which essentially assigns as zero point 

energy of (~ n w) to each allowed mode , the contour encloses the posi tive 

real axis . It is then mapped into the inte gral along the imaginary 

frequency axis w = i ~ in the second integral. For large separations r 

(i.e. a /r
3

, wB /r
3

, n /r
3 

< 1 ) we can expand the logarithm to leading order 

in 1/r t o giv e 

V (r) ~ 
--h r d~ Trace[ - r2 ( a) Q (b) ] 2n ::::::: ~ 

0 

11 r dU D1 + D2 + n, + D4 + D, ] ( 4. 16) 2 n 
0 

= 

The five terms in brackets are as follows : 

(i) V1 = - ~rr r d ( Trace[g{a)J; g (b)J;] , 
0 

(4 . 17) 

This yields the dispersion energy due to electric dipole fluctuations. A 

detailed discussion f or a general polarizability t ensor £ has been given 
,.._, 

(28 63) 
elsewhere . ' However for ident ical isotropic polari zab ilities , 

namely (a) = a (b) = I we obtain in the non-retarded London limit 
;:::::; ~ ~ 

').t:... a2 
.JUW O 0 

4r 6 

or in the retarded Casimir-Folder limit (~r/c >> 1) 

= 

2 23ftc a.0 

4n r 7 

(L1 .l8) 

(4 .19) 

where w0 is the characteristic absorption (angular) frequency of t he 

dipoles and O the static polarizability . 

(ii) = ( 4. 20) 

This i the magnetic analogue of th pr viou s t rm wh re the electric 

1 . b. 1. . 1 d b · l · b · 1 · · ( 64 ) po ariza l iti s ar r p ac y magne tic po ar iza i ities . In 

g n r al , this t rm is small becaus the magneti c polarizabilities are 

small . 
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(iii) V3 = ;" r d~ Trace[g,(a)g J,l(b)g+ J,l(a)g g,(b)f) . 
0 

(4.21) 

This term is only non-zero when retardation effects are taken into 

account. The electric (magnetic) dipole moment of one molecule produces 

a magnetic (electric) field which then induces a magnetic (electric) 

dipole moment on the other molecule and vice versa. In the special case 

of isotropic polarizabilities we obtain 

= 7tic 
7 [a0 (a) n0 (b) + a 0 (b) n0 (a)] , 

nr 
(4.22) 

where a0 and no are the static polarizabilities. This result has been 

b . d 1 · b f. ld h · h · ( 64 ) o taine ear ier y ie t eoretic tee n1ques. It is interesting to 

note that the contributions to the interaction energy from V1 and V2 are 

always attractive while that from V3 is always repulsive . 

We are primarily interested in the discrimination energy. 

These are given in terms (iv) and (v): 

(iv) V 4 = ;,r r d~ ~ Trace [g,(a) { t (b) g + t (a) g ,';', (b) { 
0 

+ a(a)G 12, (b)F + S (a)F a (b)G 
~ ~ "-' ~ ~ ~ ~ ~ 

(4.23) 

(v) V5 = ;n r d~ 2~
2 

Trace [g (a){ g (b ){ - g (a)g t (b) gJ . 
0 

(4.24) 

Using equations (4 .5 ) and (4.6) we can expand equation (4.23) to give 

= 
2
11 J

00 

d t,; s [{ ([a (a) S (b) + a (a) S (b) 
n xx xy xy yy 

0 

- a (a) B (b) - a (a) B (b)] +[a~ bJ) f(r)k(r) 
yx xx yy yx 

+ ( .. (a) ~ B .. (a); .. (b) 'r B .. (b) ) f(r)k(r) 
lJ l] lJ lJ 

+ ([a (a) e (b) - (a) B (b)] + fa~ b J) g(r)k(r)} 
xz zy zy zx 

+ { 
ij n .. }] , 

l] 
(4.25) 



184 

where a .. , S .. and n .. are elements of the polarizability tensors in the 
lJ lJ lJ 

laboratory or space frame of reference. In the freely rotating limit 

(a .. = 0 = S .. = n .. for i -I- j) or in the non-retarded limit [k(r) = O] this 
lJ lJ lJ 

term vanishes identically. In the retarded regime (w0 r/c >> 1) 

V0 "' ;TT Ao rd~~ f(r)k(r) + ~ Bo rd~~ g(r)k(r) , 
0 0 

(4.26) 

where A0 and B0 are the coefficients of f(r)k(r) and g(r)k(r) in equation 

(4. 25) evaluated at ~ = 0. Using the definitions of f (r), g(r) and k(r) 

in equations (4.7) - (4.9) we get 

V 4 = :TTc: B [ 
3
} '\ - 7 Bo l (4.27) 

which can be an attractive or repulsive contribution to the interaction 

energy depending on the relat ive static values of a .. , n .. and S .. in Ao 
lJ lJ lJ 

and B0 • 

The other contribu t io~ to the discrimination energy (V 5 ) 

remains finite in both the retarded and non-retarded limits. To proceed 

further, we choose the rotatory tensor i ' in the body frame such that ,...., 

S ~. = S for i = j = z' and zero otherwise. S' is related to its counterpart 
lJ ~ 

in the space frame ~ by( 6S) 
,...., 

= (4.28) 

where the unitary transformation matrix in terms of the Euler angles 

(8 , ¢ , iµ ) between the space and body axes is 

cos ¢ cos iµ sin ¢ sin 1jJ sin e sin iµ - cos e sin ¢ sin + cos e cos¢ sin iµ 

- cos e sin ¢ cos tJJ cos e cos ¢ cos iµ R = sin e cos i.J> 
~ - cos¢ sin iµ - sin ¢ sin iµ 

sin e sin¢ - sin e cos ¢ cos e 

(4.29) 

and RT is its transpose . From equation (3.1) we take S to be of the form 
~ 
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B = 
R 

l ~ no 
"'h (w 2 - w2) ' (4.30) 

n no 

where R = I {( o jpln)·( n lmlo> } is the rotational strength for the no ~ ~ 

absorption at frequency w • 
no 

Case (a) : << 1 = max{w } say) . 
no 

1 This is the non-retarded l i mit and we can replace f(r) by 

2 

- r3 , 

g(r) by r 3 and k(r) by zero in equation (4 . 24). This together with 

equations (4 . 28) - (4 . 30) gives 

= 
2(cos y- 3 cos ea cos 8b) 

r6 

R (a) R (b) 
mo no 

~ 1'l [ w (a) + w (b) ] ' 
m,n mo no 

(4.31) 

where the molecules are allowed to rotate freely about the z' body axis. 

Here y is the angle between the z ' ax s of the molecules and 8a , 8b are 

the angles between the z ' body axes of molecules "a" and "b" and the line 

joining the centres of the molecules (the z axis in the space frame) . 

Further averaging over the remaining angles yields the non-retarded two

body discrimination energy in the freely rotating limit 

Vs = 
4 

3r 6 

R (a) R (b) 
mo no 

(4.32) ~ 1'l [ w (a) + w (b) ] • 
m,n mo no 

The results in (4 . 31) and (4.32) have been obtained previously using 

(22 23) quantum mechanical methods. ' 

Case (b): >> 1 = min {w } say) . 
no 

Here we must use the forms of f(r), g (r) and k(r) given by 

equations (4.7) - (4.9) (with the replacement w i ~) in equation (4.24) 

for Vs, but the B' s can be replaced by their stati c values. The 

resultant expression for the discrimination en r gy , in the freely 

. 1 · . b ( 21) rotating imit, ecom s 
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Vs 
1i.c3 

[ S(a) S (b) ) ~ =O r dx x
2 = 9nr 9 

0 

x e - 2 x [ 2 ( x2 + x+ 1) 2 + 2 (x2 +.x) 2 +4(x+1) 2
] 

3 R (a) R (b) 
70 C 

~ 
mo no = - TI1i.r9 3 w 2 (a) W 2 (b) . (4 . 33) 

rn , n mo no 

From the above calculation we conclude that the rotatory power 

of optically active molecules gives rise to additional terms in the 

dispersion interact ion between molecules. This contribution is a 

f unction of the rotatory strength R which has different signs for laevo 
no 

and dextro isomers. In particular, the term Vs is positive for the 

interaction between similar optical species and negative for dissimilar 

species . Hence like species repel and unlike attract . This extra 

contribution to the dispersion energy is relatively short-ranged - it 

-6 -8 - 9 passes from a r dependence at small separations to a r , r dependence 

at large separations . Thus it se-ems that when the non-polar optically 

active molecules are far apart (retarded) the dominant interaction is the 

Casimir- Folder potential , and they are unable to dif fe rentiate between 

) 
-6 different isom rs . However at close separations (non-retarded the r 

discrimin ting term b comes op rative and like/unlilc spec es will be 

able to "recognize" each other . The distance at which the transition 

from the retarded to the non-ret~rded behaviour takes place is of the 

order of c/w0 where w0 is the principle absorption frequency (typically 

,....., 1016 rad/sec). 

Before going on to make a comparison between the relative 

strengths of the discrimination energy and the ordinary dispersion 

energy , let us first consider the problem of three interacting optically 

active molecules . 
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5. NON-RETARDED THREE-BODY I NTERACTIONS 

Cons ider t hree optical ly a ctive molecules that are located at 

the vertices of a triangle as shown in Figure 5. 1 . Let 

( . ) (.) -iwt ( ) ( ) -iwt p i , t =pl e and m i , t =mi e be the i nstantaneous electric 
"-' "-' ~ ~ 

and magnetic dipole moments of molecule i =A, B, C. To avoid cumbersome 

algebra , we shall only consider the problem in the non-retarded regime. 

The electric and magnetic fi e l ds E and Bat a dis t ance r .. f rom dipole i ,..., ~ lJ 

are respectively T .. o (i) and T .. m(i), wh e r e T . . = r~~ (3r .. r .. - 1). 
~ lJ A, ~ lJ ~ ~lJ lJ ~lJ"-'l.J 

Proceeding as before , we let each dipole res pond to the field of the 

other two dipoles according to constitutive equa tions used in the 

previous section. We obtai n 

along with similar equations for · dipoles Band C. 

To carry out the algebraic manipulat ions, it is convenient to 

de f ine the matrix (see Fi gure 5 . 1) 

2 0 0 

T . 
1 

0 -1 0 i = 1 , 2 , 3 = 
~ r 3. ' 

. (5. 3 ) 
l 

0 0 -1 

Therefore 

T = J:BA = I3 ~ 

kA = T = R T RT 
::::;AC ~A~1 ~A 

(5.4 ) 

lcB J:Bc 
T 

= = !BI> !n ' 
wh r e 

cos e . - sin e . 0 
J J 

R. = sin e. cos e . 0 j = A, B 
~J J J 

(5. 5 ) 

0 0 0 

and t he s uperscrip t T denotes the transpose matrix . 
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y 

C 

8 = 8 
A 2 

X 

A B 

Figur 5 . 1: Diagr m sho ing th relative positions of the dipoles for 

the thr ee-body problem . All three molecules lie in the x-y plane . 
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We shall assume that in the body frame S' has only one non-zero 
~ 

element , namely S ' = S . In t h e fr eely rotating limit , which we shall zz 

assume for this problem, f reduces to a scalar: 

isotropic . 

S/3 and a and n become 
~ ~ 

Substituting equations (5.3) - (5 . 5) in to (5 . 1) and (5.2) and 

the corresponding equations for molecules Band C, we obtain 18 

homogeneous linear equations with the spatial components of the electric 

and magnetic dipole moments as unknowns . The condition for non-t r ivial 

solution yie l ds the dispersion relation D(w) = 0 . The function D(w) is 

the 18 x 18 secular determinant from which we can evaluate the 

interac t ion energy between the three molecule s us ing equation (4 .15) 

V ~ ;TI f00 

d~ l n D(i( ) . 
0 

However , the s ix equations for the z-component s of p and mare 
"- ,...., 

independent of the other twelve involving the x ,y-cornponents . 

Consequently , D(w) can be factorized to give 

D( w) = D ( w) D (w) , 
z xy 

where D (w) is the determinant of the 6 x 6 matri x in the following z 

equation 

1 (A) a (A) 
0 i wS (A) i wS(A)' 

(A) r3 r 3 Jr1 Jr J pz 3 l J l 

o. (B) 
1 

a (B) i t.iS (B) 
0 

iwp (B) 
p (B) r 3 rJ Jr3 3r 3 z 3 2 J l 

~C) (C) 
1 i wf3 (C) i wS (C) 

0 p (C) r3 r3 Jr3 Jr3 l 2 l 2 z 
= 0 

0 i w ( ) i wS (A) 
1 

ri (A) 11 (A) 
m (A) Jr3 3r 3 r 3 r J 3 l 3 l z 

i wS ~B) 
0 i w§ (B) ri (B) 

1 
n(B) 

m (B) 3r3 JrJ r 3 r3 3 2 3 2 
z 

i wB (C) i wS (C) 
0 !] ( C) n (C) 

1 m (C) 3r 3 3r 3 r 3 r J l 2 I 2 z 

( 5 . 6) 

(5 . 7) 
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and D is the determin nt in the 12 x 12 matrix in 
xy 

with 

l:!11 = 
"' 

1 

0 

0 

0 

1 

0 

~I 

~12 

t;2 2 

-2a (A) £3 

0 

1 

0 

p (A) 
X 

p (A) 
y 

p (B) 
X 

m (A) 
X 

• 

m (C) 
y 

0 

0 

1 

= 0 (5. 8) 

-a(A)f1 VA -a(A)f1 SA 

-a(A)f1 SA -a(A)f1 WA 

-a(B)~VB -a(B)~SB 

-a (B) £2 SB -a (B) £ 2 WB 

-a(C)f1 VA -a(C)f1 SA -a(C)f2 VB - a(C)f2 SB 1 0 

1 - a(C)f1 SA - a (C)£1 WA -a(C)f2 SB - a(C)f2 WB 0 

0 

0 

-2y (B) £3 

0 

0 

0 

0 

-2y (A) £3 

0 

0 

0 

0 

0 

0 

-y(A)£1 VA -y(A)f1 SA 

-y(A)f1 SA -y(A)f1 WA 

-y(B)~VB -y(B)~SB 

- y (B) £2 SB -y (B) f 2 WB 

-y(C) f 1 VA -y(C)f1 SA - y(C)f2 VB - y(C)f2 SB 0 0 

0 - y(C)f 1 SA -y(C)f1 WA - y(C)f2 SB -y(C)f2 WB 0 



~I= 

wher 

0 

0 

2y (B) f 3 

0 

1 

0 

-2n(B)f3 

0 

0 

0 

0 

-y (B) f 3 

y (C) f 1 SA 

y (C) f 1 WA 

0 

1 

0 

2y (A) f3 

0 

0 

0 

0 

0 

0 
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'r (A) f 1 VA (A) f 1 SA 

y (A) f I SA y (A) f 1 WA 

y ( B) f 2 VB y ( B) f 2 SB 

y ( B) f 2 SB y ( B) f 2 W B 

(C) f 2 VB (C) £2 SB 0 0 

0 (C)f2 SB y(C)f2 WB 0 

-2n (A) f 3 

0 

1 

0 

0 

0 

1 

- n (A)fl VA - n(A)fl SA 

- n (A)f1 SA - n(A)f1 WA 

-n(B)f2 VB - n(B)f2 SB 

- n (B)~SB - n(B)f2WB 

- n(C)fl VA -n(C)fl SA -n(C)f2 VB -n(C) f2 SB 1 0 

1 -n(C)f]SA - n ( C)flWA -n(C)f2SB -n(C)f2WB 0 

f. 
l 

= -3 r. 
l 

) 

S. = 3 cos 8. sin e. 
J J J 

W. = (3 sin2 8 . - 1) 
J J 

V. = (3 COS
2 8 , -1), 

J J 

= iwS/3. 

i=l, 2 ,3 

j = A, B 

W now xpand the logarithm in equation (5.6) and neglect terms 

of order r-
12 

and high r . Thi s pro cedur yi eld s th - two- and three-body 

terms 



V = 

where 

-1!_ J
00 

df,;{- 6 [?:._(A) (C) + a(B)a(C) + a (A) a (B)] 
2n r 6 r 6 r 6 

o 1 2 3 

X 

+ 6 [ 1 + 3 cos e1 

_ 6[ n(A)n(C) + n (B)~(C) + n(A)n(B)l 
r b y6 ro ) 

1 2 J 

+ 6[1+3cos 81 cos 82 
c, ] n(A)n(B)n(C) 

COS v3 
6 (r1r2r3) 

! ~2 
[S(A) S(B)a(C) + B(A)a(B)S(C) + a (A) S(B)S(C) 

+ S(A) B(B)n(C) + S(A) n(B)B(C) + n(A)S(B) S(C )] 

_[_1_+~3_c_o_s_·_e_1 ~c_o_s_e_2~c_9_s~e_3 _] [~l-l} 
( ) 3 + 0 p ' r 1 r 2 r 3 r - J 

81 = 7T - e 
B 

82 = 8A 

83 = eB - 8 A 

(see Figure 5 . 1) . The first two terms gives the familiar 

(21 , 26,28 , 63) d h b d (28,66-69) 'b . h two- an tree- o y contr1 ut1ons tote 
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(5 . 9) 

dispersion energy. The next two are corresponding magnetic analogues. 

We shall not consider these further. Th fifth t rm is the two-body 

non-retarded discrimination nergy (see equation (4.32)). The last t erm 

in equation (5.9) is the three-body dis rimination nergy. This term can 

enhance or r due the discrimination effect of the two-body term 

depending on the sign of the angular factor. 

Let us consider a special cas . wher th magnetic 

polarizabilities ar small ( n ~ O) and only two molecules A and B say are 

optically active ( (C) = 0). Take for simplicity 
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a = (5.10) 

= 1+(s/Wo) 2 (5.11) 

then the two-body discrimination term is 

V(2) = (5.12) 

and the three-body term is 

i"lw~ 
V(3) = 13 o (A) s o ( B) ao ( c) [ 1 + 3 c os e I cos e 2 cos e 3 J • ( 5 . 13) 48 (r1 r 2 r 3 ) 3 

Comparing the relative magnitudes of V(2) and V( 3), it is clear that the 

three-body term can only be important when th e optically inactive 

molecule (C) is close to the other two. In particular, the strongest 

effect is obtained when molecule C lies midway b tween molecules A and B. 

Then r 1 = r 2 = r 3 /2 and (1 + 3 os 61 cos 82 cos 8
3

] = -2 , and we obtain 

V (3) 
V(2) 

= 
16 eta (C) 

rJ 
3 

Choosing some typical values r 3 
,....., 8 - 10 A, 0 (C) ---- 5 A, we obtain 

V(3)/V(2) ,..,_, 8 -16% whi h is a significant contribution . 

It is beli ved that many-body effects ar important for a 

th rough und rstanding of the structure of molecul r crystals. 
(70,71) 

th crystals are compos ed of both optically active and inactive 

molecules, the terms d rived h re may likewise be important for a 

complete und rstanding of th e properti s of the sys tem. 

6. SOME NUMERICAL ESTIMATES 

It is instructi e to compar the r lativ magni tudes of the 

two-body disp rsion (Vd. ) and discrimina ion (Vd ) nergy in the 
isp Lsc 

non- etarde<l limit. For th cas of id ntjcal mol ules, w fin d rom 

equations (2.20), (3.2), (4 . 18) and (4.J) th t 

If 



vd. lSC 

vd. 
lSP , 

= 
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2 [I{( 0 n) ( n l cl_Qj_}l2 

9 R{( Ojpjn) ( n p [0) 1-
( 6 .1) 

Now the electric dipole matrix element ( Ojpj n) may f or simple molecules 

be expected to be of the order of the electron charge times the first 

Bohr radius a 0 and the magnetic dipole mat rix elem nt ( njm!O) may 

likewise be of the order of the Bohr ma gneton eh / 2mc. We therefore 

obtain 

Vd. lSC 

Vd . isp 

,..., 2 [ ( ea o) ( h/ 2mc) r 
9 (ea 0 ) (eao) J 

,..., L [Q .927 X 0-
20] 2 

9 2. 54 X 10- ] S 

However for more complex molecules such as those o cur ring in bio l ogical 

systems the magnetic dipol transition moments may be considerably larger 

and it is for these typ es of molecules wh ere we exp ect the discriminat ing 

effect to play a signi fican t role . 
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CLASSICAL THEORY OF DYNAMICAL 

IMAGE INTERACTION 
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l o INTRODUCTION 

Of the various types of experimental techniques used in the 

investigation of bulk and surface properties of solids, perhaps the most 

(1) 
important involves the use of charged particles as probes. It is 

essential then to know the interaction potential of the charged particle 

with the solid surface in order, for example, t o deduce from fast 

electron spectroscopy the collective excitations(2- 4) and the heights of 

surface barrier from lower energy electron diffraction (LEED). (S) In 

principle, a complete quantum mechanical calculation should yield all we 

need to know about the system. However, owing to our rudimentary 

knowledge of the dynamical properties of solids, such a calculation 

involves considerable difficulties. 

It has been recognized for some time tha t classical 

electrodynamics can be used to obtain surface plasmon(l-ll) and magneto 

1 <12- 14 ) d · · 1 · f · 1 f d f · 1 11 p asmon 1spers1on re ations or singe sur aces an 1 ms as we 

as for the energy loss of fast charged particles due to bulk and surface 

1 . . (15-19) p asmon excitations. The results are identical to those obtained 

. 1 b h · 1 h d <20- 23) using more ea orate quantum mec anica met o s. However, the 

interaction potential of moving charged pa rticles with surfaces has 

genera lly been treated using quantum mechanical methods ( 24
-

26 ) although 

classical treatments of the similar problems have appear ed recently. <27 ) 

Calculations have shown that asymptotically , moving charges do 

b have like a classical particle in a "modified " image pot ential . (6) 

Here we derive the dynamical image potential using classical 

electrodynamics . The result agrees with that obtained previously by 
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quantum mechanical methods that included multiple plasmon excitations. 

When classical methods are applicable, they are generally much simpler to 

use than quantum mechanical procedures and as shown by many recent 

calculations of van der Waals forces, where retardation effects, non-planar 

surfaces and inhomogeneous interfaces can be readily handled. ( 2S) To 

avoid obscuring the main points, we suppose the surface is planar and 

ignore retardation effects. For "fast" particles which are reflected at 

the surface, we can assume that the velocity v remains constant. The ,..._, 

definition of a "fast" particle will depend on the type of excitations in 

the solid. Here, "fast" particles means those whose recoil associated 

with the process of emission or absorption of collective excitations may 

be neglected. In the case where the particles are electrons, the 

typical energy range is 10 - 105 eV. 

2. THE IMAGE POTENTIAL 

Consider a particle with charge q in the half space (vacuum) 

z > 0 impinging upon a planar solid surface, of dielectric susceptibility 

£ (w), at z = 0. We assume that the particle has some constant velocity 

v and is reflected elastically off the surface at time t = O. We can 
"' 

always chose a co-ordinate system such that the position vector of the 

particle is~·= (0, v
11 
t, v1 I ti), where'!= (0, v

11
,v1 ), so that the charge 

density is p = qo (x) o (y - v
11 
t) o (z - v1 I t I). 

If we ignore retardation effects due to the finite velocity of 

light, the el ctric scalar potential can be determine d from Poisson's 

equation 

= (2 .1) 

together with th usual boundary conditions. Using the Fourier expansion 
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<I>(x,y,z;t) 
1 

= (2 1f)3 
-iWt I e ¢ (k , k ; w z) 

X y 

(2.2) 

we can obtain the solution of equation (2 .1) for z < 0, where there are no 

f h (k2 -- k2 + k2) ree c arges, 
X y 

1 
J d

2

~ [00 
i(k x+k y) 

-iWt kz 
<I> = 

(21T)3 
dwe x Y e e B(k ,k ;w) (2. 3) 

X y 

and for z > 0, 

1 J d2~r i(k x+k y) 
-iwt -kz 

<I> = 
(2n) 3 dwe x Y e e A(k , k ;w) 

X y 
-00 

+ 1 • 

[ 2 2 I I 2 J72 x + ( y - v
1 
I t ) + ( z - v 1 t ) 

(2.4) 

Both equations (2.3) and (2.4) follows from the condition that <I>-+O as 

z -+±00 • The first term in equation (2.4) is the induced potential due to 

the presence of the interface at z = O. The second term is the "direct" 

potential of the moving charge which can be rewritten as 

-iwt 
e 

• 

(2. 5) 

From the continuity of the potential and the normal component of the 

displacement vector at the boundary (z = O) we can solve for the Fourier 

coefficients, giving 

A _ (E - ll 
E+l 

4nqv1 
(2.6) = 

( W - k V ) 2 + k2 v2 

Y 11 1 

4 nqv 1 
(2. 7) B 

2 
= 

( W - k V ) 2 + k2 v2 

Y 11 1 
( E + 1) 

Therefore the induced potential is 



1 
= - (2 n ) 3 J

oo Joo Joo i(kXx+k y) y -iwt 
dk dk d w e e 

X y _oo _oo _oo 

X [ E ( W) - lJ 
E ( w) + 1 

-kz 
4nqv1 e 

(f ) . by(29,30) The image ree energy is given 

V = 

= 

X [ E (W) -lJ 
E (w) + 1 

-kz 
e 

where in equation (2 . 10) z = v1 It I • For a particle approaching the 

s urface , t < 0 , z = - v1 t , we can do the w- integral by completing the 

contour in the upper half complex w plane to give 

V = 
2 J · - 2kz _g_ d2 k _e __ 

4 n ,.._, k 
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(2.8) 

(2. 9) 

(2.10) 

(2 . 11) 

This is a general r esult for the image potential (z > 0) since causality 

guarantees that E(w) is analytic and well behaved in the upper half of 

th com 1 x r quency w- plan . 
(16) 

3 Q SPECIAL RESULTS AND DISCUSSION 

For a metalli medium with a dielec tric suscep tibility 

E ( w) -- l- w2 / w2 , (l6) r. re f ( 2 ) w get rom equation .11 
p 

= - £ J 4n 

d 2 k -2kz ,..._, e 

k 1- 2(kyvll +ikv1 )2 / w; · 
(3 . 1) 

If the particle is trav lling parallel to the surface , i . e . v1 = 0 , and i f 

a
11 

= Ii wpz/vll >> 1 , this reduces to 
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0 11 >> l (3.2) 

which yields a force in the normal direction 

avmet al 

FIi z 
II = dZ 

2 [ l _.9.__ -2 -4 = - 4z 2 1 + 3all + 0 ( all ) . (3. 3) 

The last result has been obtained earlier by Takimoto . (l 7) 

On the other hand , for normal incidence, v
11 

= 0, we get, from 

equation (3 .1), (a1 = fi w z/v1 ) 
p 

where 

vmetal 
1 

f(a) 

= 

= 

(3.4) 

J
oo - a. x 

o dx -t-+-x-2 , (3.Sa) 

This result is identical to that obtained by Ray and M.ahan(
26

) using the 

h . 1 d 1 H ·1 . f S . . d L <23 ) h" h quantum mec anica mo e ami tonian o unJic an ucas w ic 

included multiple plasmon excitations . Complete asymptotic expansions 

can be obtained by doing the Laplace transform to obtain(3l) 

f (a) = [\n - Si (a )] cos a + Ci (a ) sin a 

(see Figure 3.1) 

vmetal 
1 = 

and 
2 

q al 

4z 

a1 << 1 , 

where =0 . 5772 •.• is Euler's constant.( 3l) For a1 >> 1, we get 

vmetal 
1 = 3..:_ -2 - 4 

2 { } -
42 

1 - 2a1 + 0(a1 ) , 

(3.Sb) 

(3.6) 

(3.7) 

For the case of normal incidence (vii = O) upon a dielectric, 

whose diel ctric susceptibility a l ong the imaginary f requency (w = ikv1 ) 

axis can be written as( 32 ) 
Eo - 1 

E (i t,, ) = 1 + -----
1 + ( F,, / wo)2 ' 

(3.8) 



1.0 

0.5 

0 2 4 6 8 

X 

Figure 3.1: A plot of the function xf(x) (equation (3.Sb)) 

xf (x) = x{ [; - Si (x)] cos x + Ci (x) sin x} . 

Special values: 

X xf(x) 

"' 0 
TT - x 
2 

-+ 00 -+ 1 

1.0 0.62 

0.6 0.5 
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we get 

vdiel _q_ [ £ 0 - l l d d = - 4z E
0 

+ 1 a f ( a ) 1 , 

where k 

d w0 ( E 0 + 1) 2z 
a = 12 . 

vl 

(3.9) 

(3.10) 

k 
This reduces to the result for metal if we let E0 -+ 00 , w0 ( s0 + 1) 2

-+ w • 
p 

Looking at the results for normal incidence we see that one of 

the two asymptotic forms (3.6) or (3.7) holds depending on whether a.1 is 

greater than or less than unity. For a given material (w) and velocity 
p 

v1 (assumed constant) this corresponds to a "far away" or "close up" form 

of the potential. At z=O, we see that (equation (3.6)) the energy has a 

finite value equal to - nq2 w /4/2 v1 . The transition between the large 
p 

distance and the small distance form of the potential occurs at a1 "'1. 

Typically for a metal such as copper w "' 2 x 1016 rad/sec, (33 ) such that 
p 

when a.1 "'1, v2 /z,...., 5 where the ~eparation z is measured in angstroms and 

v 2 in electron volts. Therefore deviations from the 1/z potential should 

in practice be observable before any quantum effects such as overlap of -

wave functions are significant. 

We have demonstrated how a very simple method based on 

classical electrodynamics can be used to account for modifications of the 

static image potential due to plasmon excitations. The generalization of 

this method to more complicated geometries including thin films and 

surface layers or spatially dispersive media is relatively straight

forward . (34 ) There are, also, other refinements such as diffusen ess of 

(35 36) the surface, ' retardation and quantum e ffec ts which a more rigorous 

theory should include . It can be argued that the assumption regarding a 

constant velocity of approach may be invalid at low velocities or 

energies. A more satisfactory approach would be t o a ssume some general 



206 

particle trajectory (as a function of position and time) , and calculate 

the potential and hence the force acting on the particle . The trajectory 

function can then be determined self-consistently using the equation of 

. (27) 
motion . 
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