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PREFACE

This dissertation is an account of work carried out between
February 1972 and November 1974 at the Department of Applied Mathematics,
Research School of Physical Sciences, the Australian National University,

for the degree of Doctor of Philosophy.

Initially, studies commenced under the supervision of Dr. P.
Richmond on the dispersion interaction between optically active
molecules and on dynamical image interactions. A large portion of this
work entails the re-derivation of known results using much simpler
classical methods (Part III). However, the result on the three-body

interaction between optically active molecules is new.

In Part I, the work on the interaction between identical double
layers (Chapter 1) was carried out in collaboration with Dr. J.W. Perram,
Mr. L.R. White and with Dr. T.W. Healy of the Department of Physical
Chemistry, University of Melbourne. The study on the interaction between

dissimilar double layers (Chapter 2) was a joint effort with

Mr: LiRV*Rhite.

In Part II, the investigation on phase transitions in polymer
solutions (Chapter 1) was carried out in collaboration with Professor
B.W. Ninham, while that on polymer adsorption (Chapter 2) was with

Professor B.W. Ninham, Dr. D.J. Mitchell and Mr. L.R. White.

None of the work reported here has been submitted to any other

institution of learning for any degree.
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ABSTRACT

The subject matter of this thesis falls into three parts.

In Part I, the electrostatic interaction between plane parallel
double layers is investigated under the Gouy-Chapman approximation. Each
surface is considered to develop a surface charge by the association of
ionizable surface groups. The interaction process is assumed to be at
electrochemical equilibrium. An adsorption isotherm for potential
determining ions can then be derived relating the surface charge and the
surface potential in a self-consistent manner. This is used in place of
the usual constant charge or constant potential boundary condition. 1In
Chapter 1 the interaction between identical amphoteric surfaces are
studied in detail. The relation between this new boundary condition and
the constant charge or potential approximation is discussed. Numerical
calculations based on model systems for hydrous oxides are given. In
Chapter 2 the interaction between dissimilar amphoteric surfaces are
considered. A new method, similar to the method of isodynamic curves, is
developed to study this problem. This method can provide a qualitative
description of the salient features of the surface charge, the surface
potential and the pressure between the surfaces, as a function of

separation without first having to obtain an exact solution of the

problem,

In Parc II, Chapter 1, a physical theory of phase transitions
in polymer solutions is given in terms of long range dispersion
interactions between the solvent and the polymer. The theory is based on
a mean field approximation and the parameters used are given in terms of
measurable dielectric and spectroscopic properties of the polymer and
solvent. This provides a physical explanation of the 6 temperature and
also a criterion for the selection of 6 solvents. In Chapter 2, the
statistical mechanics of an adsorbed polymer is considered. The polymer
is modelled as a string of non-interacting beads confined to a half-space
by an impenetrable flat surface. Each bead interacts only with the

surface via a one-body potential. Conformational properties of the
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adsorbed polymer, such as the number of beads adsorbed, the spread of
adsorbed beads on the surface, the density of beads away from the surface
and the centre-of-mass of the polymer are derived. The behaviour of
these quantities are found to undergo an adsorption/desorption phase
transition at some critical value of the adsorption energy parameter,
Assuming that the substrate-polymer interaction is due primarily to
dispersion forces, it is possible to determine whether or not a given
polymer/solvent/substrate system will exist in the adsorbed state. It is
also found that temperature induced and mixed solvent induced phase

transitions are theoretically possible.

In Chapter 1 of Part III the two- and three-body dispersion
interaction energy between optically active molecules are studied using a
semi-classical method. In Chapter 2, classical electrodynamics is again
used to consider modifications to the static image potential between a
moving charge and a half space due to surface plasmon excitations. It is
demonstrated that in both examples, semi-classical methods are easy to
use and also give the same results derived using more elaborate quantum

mechanical analysis.
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PART 1

ELECTROSTATIC DOUBLE LAYER INTERACTIONS
AT ELECTROCHEMICAL EQUILIBRIUM



CHAPTER 1

DOUBLE LAYER INTERACTIONS UNDER SURFACE

IONIZATION EQUILIBRIUM — IDENTICAL SURFACES



1. INTRODUCTION

A central problem in colloid science is the determination of

: : 4 ; (1,2,33-36)
the particle-particle interaction potential.

(1) (2)

Deryaguin and

Landau and Verwey and Overbeek (DLVO) were the first to consider

"clean" particles with no

this problem in detail. They considered
adsorbed macromolecules and assumed the potential may be written as the

sum of electrodynamic (van der Waals or dispersion) and electrostatic

interactions.

In the DLVO formalism, it is assumed that the electrostatic
contribution can be evaluated separately from the electrodynamic
contribution. In solving the electrostatic problem, it has been usual to
assume, as boundary conditions, that constant charge or constant
potential is maintained on either or both surfaces throughout the
interaction. Typically, the surfaces acquire a net charge by one or more

of the following processes:(B’q)

(i) the presence of ionizable surface groups, such as -COOH, -NH,
or amphoteric groups (e.g. oxides), which by the dissociation or
association of potential determining ions (PDI) give the particles a net

charge;

(1i) the unequal dissolution of oppositely charged ions which make
up the particle (e.g. Agl crystals in water); and

(ii1) the selective adsorption of particular ion-types from the

surrounding medium.

For certain surfaces, where the charge is due, for example, to strong

acid sites, the constant charge assumption may indeed be correct.



However, there are as yet no criteria for selecting the extent to which
such an assumption is valid, nor are there criteria for determining a
priori whether a constant charge or constant potential interaction is
more appropriate for many other important colloidal systems. While Frens

(5,6)

and Overbeek did show that a perturbation of the bulk electrolyte
composition resulted in a relatively slow restitution of the equilibrium
potential of an Ag/Agl electrode, there is yet no direct measurement of
the ability or otherwise of particles to adjust ion populations at the
surface and in the interparticle fluid during collision.

A very extensive literature exists on the calculation of

interactions between charged flat plates(l’z’7”l7’55—58) an

(10+12,18~22)

d

under constant surface charge or potential. Cases

(23,24)

spheres

; : 25)
involving closed systems, !

(26,27) (28)

and other geometries such as cross cylinders

zero surface charge, "periodic"

surface charges,

D P iy
and arrays(La’“g’BO)

have also been studied. An alternative to the
constant charge or potential approach has also been developed where the
surface potential is related to surface concentration of PDI by the
(24) (31)

Nernst equation, r a Langmulr type adsorption isotherm.

In this chapter we shall extend a recent approach due to Ninham

and Parsegian(Bz) (hereafter referred to as NP) in which the
electrostatic potential of each of the interacting surfaces is reculated
during approach by those equilibria at the surface that are responsible
for the development of the surface charge. In other words, the magnitude
of the surface charge which determines the potential distribution in the
diffuse layer is itself given as a self-consistent functional of the
surface potential. This concept of a self-consistent relationship
between the surface charge and potential has in fact been exploited to
interpret adsorption data(37) and mobility and titration experiments on

~ . e S 5 3& "2Q-4L9
polystyrene lattlces( ) and hydrous Oxiden,(Jj 42 )



We shall consider the situation where the approach of the
interacting surfaces is sufficiently slow so that electrochemical
equilibrium is maintained at all times during collision. This is not an

"constant potential'. Indeed it will be shown that

assumption of
conditions can be such that both charge and potential may change
significantly during the interaction. Alternatively, if conditions are
favourable for regulation then changes in charge or potential will be
minimal during interaction.

We extend the NP model, which includes only basic surface

(32) (43)

groups, to a general amphoteric surface involving surface
equilibria that are controlled by the chemical potential of PDI in bulk
solution. We consider the simplest configuration of the two such plane
surfaces interacting across a 1:1 electrolyte which contains PDI. The
diffuse layer is assumed to be governed by the Poisson-Boltzmann (PB)
equation. (The problem of interacting charged cylinders bearing basic

(44)

surface groups has been considered by Brenner and McQuarrie using the
linearized Poisson-Boltzmann equation.) No attempt is made to model the

inner Stern region (see section 3).

It is not necessary to specify the nature of the PDI. However,
for the purposes of comparing theoretical results with experiments, it is
L I + - S i
convenlent to assume that H and OH are PDI as this is the case for
hydrous oxide colloids, e.g. Fe,05, Al,0,, TiO,, SiO, and organic

colloids with amine, carboxylate, sulphonate, etc. surface groups.

These restrictions simplify the mathematics and also allow us

to elucidate in a clear manner the physics underlying the influence ot

adsorption (of PDL) on particle-particle interaction.(45’46)
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2. FORMULATION

We consider initially a planar surface bearing ionizable
amphoteric groups in contact with a solution of 1:1 electrolyte. The
bulk concentration of PDI or the bulk pH (since H+ and OH are assumed to
be PDL) may be controlled. The reactions at the surface, written as
dissociation reactions, are

T P (2.1)

-+
BH = B +H . (2.2)

; : . ¢ 2 ¥
The relative concentrations of positive (AH ), neutral (A, BH), and
negative (B”) surface sites are related to the hydrogen ion concentration

at the surface [ﬁ]s in the form

(al-['], = [N ]K (2.3)

+-

[BH]-K , (2.4)

- ot
B Y9«fH

(BT [H ] i
where K+ and K_ are the effective surface dissociation constants for the

above processes.

The arguments involved in obtaining equations (2.3) and (2.4)
are as follows. Assuming that random mixing statistics apply, the total
(random) number of configurations available to n, charged and ny

uncharged species (AH+ and A say) iS(4,39)

NA is the total number of A-type sites per unit area. The electro-

chemical potential of a species i can then be written as

ﬁi = pitfkT btci-fkl hl'i , (2.5)

where the last term represents the concentration (ci) dependent part of

the free energy of interaction of species i with its environment. The
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electrochemical potential p; corresponding to some standard state, 1is
concentration independent. Contributions to the activity coefficients Yy
can be divided into two parts: an electrostatic interaction with charged
species on the surface and in the electrolyte, and a dispersion

interaction with neighbouring molecules. Hence for each species in the

reaction
AH+ S A+H+ (2.1)
we write
o S 0 ; + y .
TR ++kT n [AH ]+ kT In 1++e4:S (2.6)
AH AH
3 L 0 : L1,
A (Y +kT Iin [A]  +KkT iny, (2.7)
" i 0 P .
e, Thi + kT In [H ]S+k1 Zny++etps : (2.8)
H H HS

The electrical part of j should involve the micro-potential at the site,

but here only the mean surface potential wS will be used. This is

tantamount to neglecting discreteness-of-charge effects.(g) Equilibrium
requires
a = H,*p ’ (2.9)
.+.
AH il o
i B AL . g (47)
whence from equations (2.6) - (2.8) we have
+
[Al-[H ] Y .
RREl, LU B W (2.
[AH ] + +
H
s
where the bulk dissociation constant Kf is defined by
Ky = expl(u®  -u)-u’D/kT] . (2.11)
AH H

In general the ratio of activity coefficients in (2.10) is not
independent of [A], [AH+] and [H+] . To calculate the functional
S

dependence of this ratio upon the relevant concentrations would require

a statistical theory of surface activity coefficients for high




concentrations, and such a theory is not available. However to proceed
further without such a theory, all that is required is that the ratio of
activity coefficients remain sufficiently constant as the surfaces
approach each other so that the ratio of concentrations in (2.10) can be
given by an effective surface dissociation constant. The activity
coefficients vy, and y, measure the dispersion interaction of AH+ and A
with their environment. Since AH+ and A are similar molecular units,
their polarizabilities and hence dispersion interaction energies with
neighbouring molecules are expected to be similar, i.e. Yy " Yo The
surface activity coefficient of PDI is a function of the ionic
concentration at the surface, which in turn is determined by the surface
potential. As we shall show later, ws the surface potential remains
fairly constant in an equilibrium approach so the surface ionic
concentration does not change dramatically throughout the interaction.
Further, since activity coefficients are moderately insensitive functions

(59)

of concentration, the surface activity coefficient of the PDI at
infinite separation should be a good approximation to the surface

activity coefficient during approach.

These arguments imply that the ratio of concentration in (2.10)
is to a large degree constant throughout the approach of the surfaces and
hence justify, to a first approximation, the use of an equilibrium

dissociation constant given by

K - .—_‘__...___--— K . ( 2 . l 2 )

A similar argument should also apply regarding the use of the other
effective dissociation constant K . We should note here that the surface
dissociation constantsK+,K_ are accessible from measurements on stable

. . 38,48 .
colloid systems.( ) Returning now to equations (2.1) and (2.2), let




us consider the surface charge density that arises from the dissociation

reactions.

For NA and NB surface sites per unit area ftor each species, the

net surface charge density 1is

g = e[%%6+ - ef%gﬁ_ " (2.13)
Here
+ o+
AH AH
G+ = —"—%jmwj—”" = l“N““l (2.14)
[AH ] + [A] A
and
0. = — 1 . Ibl (2.15)
[BH] + [B ] B

are the fractions of positively and negatively charged sites, and e is
the protonic charge. 1f the local density of ions in the electrolyte is
related to the electrostatic potential Y at that point by the Boltzmann

distribution, then for a surface potential ws we have
+ ,
[H ]S = Hexp(-ey_ /kT) , (2.16)

where H is the concentration of hydrogen ions in the reservoir. Using
equations (2.3) and (2.4) we can rewrite the surface charge density as

e NA e N B -

Q ] I S s SSeans eS AA AAs  ayRTTs.  a A  W 2 i )
Jx+(K+/H) exp(ews/kT) l+~(H/K«)exp(-ewq/kT) : (24277
This can be considered as an adsorption isotherm of the PDI (H+) which,

for a given bulk pH, relates the surface charge density to the surface

potential.

For a bulk concentration ¢ (moles/litre) of positive or
negative species (PDI + inert supporting electrolyte) the net volume
R e =) NS i 0 D b 2 . : : :
charge density p (em ) at the point where the potential is ¢ is

(N = Avogadro's number)

i MRS I Neclexp (- ey/kT) - exp(ey/kT)] . (2.18)




The potential is in turn related to the charge density by Poisson's

equation

N Wy e (2.19)
where ¢ is the dielectric constant of the solvent.

We shall examine the behaviour of the surface charge, surface
potential and the free energy of interaction of two identical amphoteric
flat surfaces as a function of their separation. We set up a system of
Cartesian axes with the origin midway between the surfaces which are
situated at z=+L. From the symmetry of the problem, we can confine our
attention to the region 0<z<L. Combining equations (2.18) and (2.19)

(in one dimension) we get

2
‘g;gi o '%ggf [exp(ey/kT) - exp(-ey/kT)] . (2.20)

which must be solved together with the boundary conditions

dy N ﬂ@ﬁ (2.21)
dzi 3
z=L
dy & 0., (2.22)
dz
2=0
In terms of the reduced variables
y = ey/kT (2.23)
X = kz (2.24)
and
» _ Bm Ne’c :
¥ 7 10%ckT ° (2.23)

where k is the inverse Debye screening length, equation (2.20) becomes

2
¥ = siony . (2.26)

A first integration together with equation (2.22) gives
{éy. v

ax *2(coshy - coshy,) , (2.27)




9
where y0==ew(0)/kT is the reduced mid-plane potential. The remainig
boundary condition (2.21) gives

il 202 = 2(coshy, - coshy ) (2.28)
ex kT 7 i
where yL==ew(L)/kT==ewS/kT is the reduced surface potential.

The second integral of (2.27) can now be taken. The
mathematics involved is straightforward. The details are given in a
number of papers.(ég) A substitution

¢ = exp(- elwl/ZkT) =  exp(- ly]/2) (2.29)
enables us to write the solution in the form
Kz 2]
0(2) = 4, cd|gEsdr) s (2.30)

where cd(x3;k) is a Jacobi elliptic function of argument x and modulus

(50,51)

k In particular, using

bo = ¢(0) = exp(-e|yp(0)|/2kT) = exp(-|y,|/2) (2.31)
and
¢L = ¢(L) = exp(-el¢(L)]/2kT) = exp(-.]yL}/Q) (2.32)
= ¢, cd ‘Q%,I;'3"‘3] = exp(-ewsl/zkfr) (2.33)
3 0

equation (2.28) becomes

4me |? —2 -
[:Hi.i:] 8" oul (¢i+ quz) - (95t 9g°) . (2.34)

Equations (2.17), (2.33) and (2.34) constitute a single transcendental
equation to be solved for ¢p+ Thus given the bulk concentrations of PDI
(or equivalently, the value of the surface potential at infinite
separation) and supporting inert electrolyte, the surface potential ws
and the surface charge density ¢ may be found self-consistently as a
function of the separation (2L) .

Using the small argument asymptotic forms of the Jacobi

elliptic functions(Sl)
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cd(x;k) = 1+0(x*)+... (2.35)

it follows immediately from equations (2.17) and (2.34) that as L->0 (for

fixed «), 0 >0, and the surface potential is given by a Nernst

(6)

equation:
4 & kT : ,
Y (0) — ws > 2.303-2: (pHy - pH) . (2.36)

Here the constant Hy, is given by
0 b

1

N, |2 1

B L 2\ 73 & @
L i (KK ) [(L+y7) ¥l , (2.37)
A
where . | 5
N |[KN_|*
fue " ché kT fq‘é ;(iﬁg - (2.38)
B+ A

In the absence of specific adsorption (apart from PDI) pHy will be the
bulk pH corresponding to the point-of-zero charge (pzc).

In view of result (2.36), the repulsive pressure between the
i 2B
surfaces("ij)

P = =S [cosh(ey(0)/kT) - 1] (2.39)
remains finite for all separations.

The above analysis, where the acidic and basic groups are
distinct chemical species, is applicable to bio-colloids (BH =-COOH,
ot + ; ‘ ) , .
sH =-NHy). However, there are a large number of hydrous oxide colloids
where the same surface group can dissociate to give both positive and
negative sites (e.g. TiO,, Fe,0

, Al,0, and 5i0,). In general, these

23

dissociation processes have the form

At = an o+’ (K,)
S F + (W y,
¥ A +H (K ) | - (2.40)

Nov the above analysis still holds except rhat equation (2.17) for the

surface charge density should be replaced by (N amphoteric surface
S




"Fl.l..lllIIIll-----------------------—-—-—-l

11
groups/cm’)
(H/K,) exp(-ey /KT) - (K /H) exp(ey /KT)
| A N S K, RN . - . 5 (2.41)
2 e 1-+(H/K+)exp(—ews/kT)"f(K_/H) exp(e¢s/kT) ¥ :
And as before as L0
v(0) by + 2.303 %} (pH, - pH) , (2.36)
where
pH = (DK +pK.) . (2.42)

3. RESULTS AND DISCUSSIONS

In order to examine the effect of regulation on the surface
charge and potential, it is necessary to select values for the
dissociation constants K+ and K . An example of particular practical

; : ; . +
importance involves aqueous suspensions of hydrous oxides where H are
: . ;o : (52)
PDI. It is appropriate to consider two typical classes of surfaces
for which ApK %’.pK_--pK+ is small, ApK=3 say and, for which ApK is large
ApK =6, Since it is important, for the purposes of comparison, to keep «
constant while varying pH over a wide range, we have selected the
tollowing two cases:

A) PR 7 pK+==5.D , PK =8.5 , ApK = 3
(B) pHy, =7, pK, =4 pK_ =10 , ApK = 6
» also took : e - o . (52)
wWe also took the density of surface sites NS to be
N = 5x10'* cm?
s
Using the above data we calculated the surface potential, surface charge

and the free energy of interaction as a function of the particle

separation,

The variation of the surface potential § with separation for

o
e Syt A ‘ '
10 M electrolyte (1/k=96 &) for cases (A) and (B) is shown in




Figures 3.1 and 3.2 respectively. The variation of the surface charge
density o with separation is shown in Figure 3.3 for several values of
the surface potential at infinite separation. The effect of different
ionic strengths on the variation of Vg with separation is shown in

Figures 3.4 and 3.5 for concentrations of 107% and 107* M at ApK=6,3.

In Figure 3.6 we compare the interaction under constant charge
with that under the present regulation mechanism. The dashed lines
represent the variation in surface potential for interaction at constant
charge corresponding to the same surface potential at infinite

‘ m : : . =3
separations. The ionic strength is 10

M, ApK=3, pH =6. In Figure 3.7
we compare the electrostatic free energy of interaction (per unit area)
obtained from integrating numerically the repulsive pressure given by
} P ity = T e " ! _ , Reg. .
equation (2.39). The result of the present theory (V ) is contrasted
. : 0
with those obtained using the constant charge (V ) and constant

potential (Vw) approach, We now proceed to comment on the results and

discuss their implications in detail,

Ja. The Mechanism of Regulation

Ihe present model of two interacting double layers differs from
earlier models in that the association/dissociation of surface groups
provides a mechanism whereby electrochemical potentials are kept constant
during interaction. Equilibrium is maintained throughout the interaction
by the self-consistent relationship between the surface charge and the
surtace porential (equation (2.17) or (2.41)). Thus this surface
regulation model is not interaction at constant potential but interaction

while maintaining equilibrium.
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Figure 3.1: Variation of the surface potential ws with distance of
separation of two surfaces having points of zero charge at pH 7 for
ApK =3 and 107° M ionic strength. The potentials shown at the right

on each curve are the potentials at infinite separation.
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Figure 3.2: Variation of the surface potential ws with distance of
separation of two surfaces having points of zero charge at pH7 for
ApK=6 and 10™° M ionic strength. The potentials shown at the right

on each curve are the potentials at infinite separation.
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Figure 3.3: Variation of the surface charge o with distance of separation
of two surfaces having points of zero charge at pH 7 for ApK=3 (solid
lines) and ApK =6 (dashed lines). The potentials shown at the right
on each curve are the potentials (mV) at infinite separation. The

ionic strength is 107" M in all cases.
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separation of two surfaces having points of zero charge of 7 and for

ApK=3, 107* M ionic strength.
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Figure 3.5: Variation of the surface potential ¢S with distance of
separation of two surfaces having points of zero charge of 7 and for

ApK=6, 107 M ionic strength.
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Figure 3.6: Comparison of the change in surface potential ¢ during
s
interaction under constant charge conditions (dashed lines) and under
regulated interaction (solid lines). The ApK, ionic strength and

point of zero charge are 6, 10°° M and pH 6 respectively.
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Figure 3.7: Comparison of the electrostatic free energy (per unit area)
of interaction as a function of separation for interaction under
constant charge (VO), constant potential (V¢) and under regulation
(VR&g) imposed by 4pK=3 (dashed lines) and ~ApK=6 (solid lines) at
pzc 7. In all cases, the ionic strength is 10"? M. The potentials

shown at the right of each set of curves are the potentials at

infinite separation.
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Physically, surface regulation involves a feedback mechanism.
Consider two such surfaces (positive, say) as they approach each other.
As the double layers overlap, the surface potential at each surface rises
and thus (via the Boltzmann factor, cf. equation (2.15)) the surface
concentration of hydrogen ions goes down. This (temporary) depletion of
hydrogen ions at the surface will cause AH: and AH to dissociate, i.e.
reactions given in equation (2.40) will proceed to the '"right", to
maintain equilibrium. Therefore the surface charge density ¢ now becomes
less positive which according to equation (2.41) will result in a
decrease in the surface potential. In general terms, the feedback
mechanism is able to work because of the ability of the surface groups to
act as "buffers'. Surface regulation will minimize changes in surface
potential and charge. However, relatively small changes in the surface
potential will, because of the Boltzmann factor, result in relatively
large changes in the surface charge. Further at zero separation the
surface charge must vanish. The regulation effect is demonstrated
quantitatively in Figures 3.1 - 3.3 where it can be seen that neither

charge nor potential is constant during interaction.

3b. Factors Governing Regulation

Considering the change in potential with separation (Figures
3.1 and 3.2), it can be seen that the ability of the surface to regulate
depends strongly on ApK: as ApK increases the ability to regulate
decreases. The result can best be understood by considering Figure 3.8
where the magnitude of the (reduced) net surface charge is plotted
against the surface pH which is given by (cf. equations (2.16) and
(2.41))

e

pHS = pH + “2—.—3—(3‘3—@ 4}8 ; (3.1)
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Figure 3.8: Variation of the magnitude of the reduced surface charge
IJ/eNS] with surface pH (as defined by equation (3.1)) for ApK of

6, 3 and 0. The point of zero charge is taken as pH /.
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Three cases are shown ApK=6,3,0. The region where the surface charge o
is an insensitive function of pHS (i.e. where pHS ~ pH,) increases as ApK
increases. As the ability to regulate depends on the degree to which ©
can respond to changes in pHS (and hence the surface potential ws) this
agrees with the trend observed in Figures 3.1 and 3.2, namely, the
smaller ApK gives better regulation. For any ApK, the surface potential
¢5 is not well regulated at small surface charges, in particular, at
small separations where 0+ 0, Similarly if ws at infinite separation is

small, the proportional charge in ws increases.

The condition for optimal regulation at small surface charges

can be obtained as follows. We begin by rewriting equation (2.41) in the

form
: Pocprcyal § sinh(yN-yS) (3.2)
eNS 1+6 cosh(yN-yS)
where 1.
K1
6= glS] v pxgnAPKS2 (3.3)
+
s ™ 2.303(pH, - pH) (3.4)
yS = ews/kT . (3.5)

At low surface charges (L1|<< 1) we must have y_ ~ (cf. equation

N

(2.36)). Clearly the condition for optimal regulation in this regime is
when the surface charge is most sensitive to variations in the surface

potential y_. That is, when Idu/dysl evaluated at Yo =Yy is a maximum,

From equation (3.2) we obtain

da

i B 3.6
5 (3.6)

Vs N

It is clear then that optimal regulation is when 6 >=, that is, when

LPK > =, In this limit the surface charge has the simple form
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o = eNS tanh(yN-yS) » (3.7)

At large values of |¢s| where pHS >>pK_or pHS <<pK+ the
surfaces are almost fully charged (lo/eNS| <1) and o is an insensitive
function of pHS or ws. In this regime regulation will also be poor.
Here the system behaves almost like a constant charge approach until at

small separations where regulation will occur to reduce ¢ to zero.

An important consequence of the regulated interaction is that,
when the system can regulate, ws is kept remarkably constant during
approach, in contrast with the case at constant surface charge,

Figure 3.6.

3c. The Validity of the Constant Charge
and Constant Potential Approximation

In comparing the (repulsive) electrostatic free energy of
interaction, the regulated case should give the lowest energy of
interaction since equilibrium is maintained at all distances of approach.
However, we note in Figure 3.7 that the interaction under constant

e y . Reg
potential (V") is smaller than that under regulation (V ). Clearly
this 1s a physical impossibility. Further we note that a bigger ApK
L ; Y Reg , o "
gives a larger deviation of V' from V . The reason for this apparent
error is that the constant potential assumption is invalid for the
amphoteric systems considered here. There are, however, circumstances
under which the constant potential assumption holds approximately. We
now consider this case.

The constant potential case is in fact perfect regulation as

(2)

was stressed by Verwey and Overbeek. From equations (2.16) and (2.40)

it follows that
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kT kT [AHj]

e 90 308 = (pH "~ pR) "-'z= ln|— : (3.8)
S e 0 2e lA—]

This equation, in a slightly different form, has been discussed in detail

(39)

by Levine and Smith. The [n term represents a correction to the

Nernst equation

KT

b = 2.303 = (pH, - pH) (3.3)

or equivalently to the constant potential approximation. Provided

s o e . + =
[AH,]/[A ] is close enough to unity (at the pzc 0=0, [AH,]/[A ]=1, and
the Nernst equation holds, see equation (2.36)) for the In term to be
negligible, the Nernst equation or the constant potential approach is
valid. In the language of Levine and Smith, the correction to the Nernst
equation is small provided the fraction of reutral sites at the pzc is

small.

On the other hand, the constant charge approximation is a good
description of the interaction process when collision times are
sufficiently short such that the surfaces do not have time to make
adjustments. The interaction will no longer be at equilibrium.

& . y . o . 5 s A
[herefore the energy of interaction V 1is higher than that at equilibrium

Reg

yro= (Pigure 3.7).

Lo

oummary

The regulated approach of identical double layer interaction
has two important limits. VYor systems where the Nernst equation is
sensibly obeyed at infinite separation the interaction is to a good
approximation at constant potential. If the surtface potential ¢S is in
the regime of surface charge and potential such that o is insensitive to

changes in y , the interaction is effectively at constant charge until y
S| 5

enters the sensitive regimes, usually at smaller separations. Also if
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the rate of attainment of equilibrium is smaller than the rate of
approach of the two surfaces, the system cannot adjust during the 'time

of collision" and the constant charge interaction is appropriate.

1f particles cross a coagulation barrier that is due to a
constant charge interaction, the surface of particles in aggregate will
then have time to equilibrate their surface potential and aging under
regulation will occur. If the potential energy barrier under constant
charge conditions is of the order of or greater than the average kinetic
energy of the particles, then the velocity of approach may become slow
enough that a change during collision from constant charge to regulated
interaction is possible. The potential energy barrier under regulated
interaction is lower than that under constant charge approach and
instabilities that would not otherwise be predicted under constant charge

approach may be observed.

In the above analysis we have not accounted properly for the
inner region of the surface layer although there are a number of models
that can adequately characterize the surface (7 potential and titratable

charge).(39’42’52-55)

These models invoke the concept of site binding of
inert ions or the existence of a surface gel layer. These in themselves
provide further regulation of surface charge and potential. Here we have
been interested mainly in studying the consequences and implications of
surface regulation and it is not necessary at this stage to model the

surface region with a more sophisticated theory. We anticipate that

inclusion of these additional features would not drastically alter the

main conclusions.
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CHAPTER 2

DOUBLE LAYER INTERACTIONS UNDER SURFACE

IONIZATION EQUILIBRIUM — DISSIMILAR SURFACES
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1. INTRODUCTION

In a variety of situations that involve particles of colloidal

: . j . . ' . (1,2)

dimensions, for instance, in fibrous bed filtration of emulsions,

mineral flotation and separation, flocculation of mixed sols, and cell
(3)

adhesion, it is necessary to understand the interaction between

dissimilarly charged particles.

In the previous chapter, we have considered in detail the
electrical double layer interaction between two identically charged
planar surfaces. We studied the interaction at equilibrium, in
particular, where the surface charge and surface potential are related
self-consistently by surface ionization processes. In essence, this
approach includes the contribution of the surface chemical potential in
the thermodynamic argument that connects the surface potential and the

bulk concentration of potential determining ions (PDI).(10’17’27’28)

The
constant potential and constant charge boundary conditions emerge as

special limits. Here we extend this theory to include interacting

dissimilar amphoteric surfaces.

The problem of interacting dissimilar double layers has been
considered by a number of authors.(4—15’26) In all instances, the
constant charge or constant potential boundary condition was employed.
It has been recognized for some time that these boundary conditions lead
to an infinitely large surface potential or surface charge, as the case
may be, at small inter-particle separations. This difficulty can be

(16)

avoided by invoking some minimum cut-off in the separation or, perhaps

more satisfactorily, by a proper consideration of the chemical potential



30

of adsorbed ionic species at the Surface.(l7’18-19)

(17)

who derived a Langmuir-type

It is interesting to
note, in particular, the work of Bierman
isotherm describing the adsorption of cations. This theory gave the
surface potential as a function of the surface concentration of adsorbed
species, i.e. the surface charge. Although the mechanism of adsorption
was not specified, he was able to conclude that for interacting planar
double layers, the surface potentials become equal when the separation
approaches zero while the surface charges become equal in magnitude but
opposite in sign. In the special case where the two surfaces have the
same isoelectric point, the surface potentials at zero separation are
equal and are given by the Nernst equation (cf. results of the previous

chapter). Both surface charges reduce to zero in this limit.

Using the notions developed in the preceding chapter, we
consider the double layer interaction between two dissimilar amphoteric
surfaces. As before, we adopt the idea that each surface develops a

surface charge via dissociation equilibrium of the amphoteric surface

(20-23,27,28)

groups. The reactions may be written as:
+ +
AH, = AH + H (1.1)
- + )
AH = A + H (1.2)

Although the discussion is independent of the type of PDI, we shall
assume they are (univalent) hydrogen ions as, for example, in hydrous

(24)

metallic oxides. We assume that, for each reaction, the ratios of
the concentration of surface species are given by some surface

dissociation constants:

= K (1.3)

= K . (1.4)
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The dissociation constants K+,K_ are assumed to be only functions of
temperature and pressure. The validity of equations (1.3) and (1.4) has

been discussed in the previous chapter.

For NS surface groups per unit area, the net surface charge
density is (e = protonic charge)
+ -—
[AH,] - [A ]

o = eN = eN a ., (1.5)
S [AH] + [AHT]+ (A7) s

The fraction o, defined by equation (1.5), can assume any value between

plus and minus one.

In the Gouy-Chapman approximation, which we shall adopt, the
concentration of ionic species at any point is related to the bulk value
by the Boltzmann factor exp(-ey/kT). The electrostatic potential ¢ is
measured with respect to the value at the reservoir (taken to be zero).
In particular, the surface concentration of PDI is

[H+]S - }lexp(—»ews/kT) i (1.6)

where H is the bulk concentration of PDI and ws is the surface potential.

Combining equations (1.3), (1.4) and (1.6) the surface charge can be

written as
(H/K,) exp(-ey /kT) - (K_/H) exp(ey /kT)

i eNs li—(H/K+)exp(—ews/kT)-f(K_/H) exp(ews/kT) ‘

(1.7)

This is identical to equation (2.41) in the previous chapter. Given the
dissociation constants, K+ and K which characterizes the surface, and
the bulk concentration of PDI, equation (1.7) represents a canonical
relationship between the values of the surface charge and the surface
potential. It is used in place of the constant charge or potential
boundary condition for solving the Poisson-Boltzmann (PB) equation that

governs the distribution of the diffuse layer. 1f during the interaction
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the surface potential changes from ¢S to Wé the surface charge will
change from 0 to 0', where (wS,O) and (¢é,0') must satisfy equation (1.7).
Thus equation (1.7) is an "equation of state' of the surface. It

specifies all possible values of the '"co-ordinate" (ws,O).

It is instructive to rewrite equation (l1.7) in the form

S sinh[e(wN-wS)/kT]

bty Thg: cosh[e (¥ = ¥ ) /KT] el % » (1.8)
where .
K 2
- : -
n a2l (1.9)
K
+
and
Y PRy (1.10)
We shall call the potential

the Nernst potential since it is related to the point-of-zero-charge
(pzc)

pHy = 3(pK,_ + pK_) (1.12)

by the Nernst equation (1.11). We note from equation (1.8) that o = 0 if
% "¢N and 0 =0 when ws==wN. When the surface potential is far away
from the Nernst value, the surface charge attains the saturation values
teNS. In view of equations (1.10) to (1.12), the surface equation of

state can be completely specified by the pzc (pHy) and ApK together with

the bulk pH or equivalently the Nernst potential.

In the next section, we shall formulate the problem of the
double layer interaction between two planar amphoteric surfaces. (For

particles of other geometries, we can use the Deryaguin approximation at

. 2Iyd 0
close separatlons( e 0) and the overlap approximation when the

9)

surfaces are far apart. ) From the first integral of the PB equation
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and the boundary condition, we can predict the behaviour of the repulsive
pressure, surface potential and charge as a function of the separation.
Our analysis is analogous to the method of isodynamic curves due to

Deryaguin.(A)

The interaction between surfaces having like signs at
infinity (but different magnitudes in the charge and potential) is

discussed in Section 3; that between unlike surfaces, in Section 4.

2. FORMULATION

Consider the general Poisson-Boltzmann (PB) equation that

governs the electrostatic potential § in an electrolyte:

Vzw = - 42e z nivi_exp(—-eviw/kT) . (2.1)
:

In equation (2.1) n., is the bulk number density of ion types having

i

valence vi and € is the dielectric constant of the solvent. For the one-
dimensional problem of two charged flat surfaces at z=0 (hereafter
referred to as Surface 1) and at z=L (Surface 2) interacting across the

electrolyte, equation (2.1) can be written as

2

= - T exp(-ev kD) . (2.2)
: |

This has to be solved with the usual boundary conditions

d 41 , .

E%’ e —;L(% (¥, ) (2.3)
z2=0 ’

dy b

dz i _E—- M3 ('J"2) . (2°4)
z=L

According to equation (1.7) the surface charges 0,,0, are functions of

the surface potentials y, ,y, when we have dissociation equilibrium at the

surface. The exact forms of the functions are determined by the

dissocation constants of each surface and the bulk concentration of PDI.
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A first integral of (2.2) yields
Wl BWkT et o ,
[dz] v ijni[exp( eviu/kT)-FC] . (2.5)
Applying the boundary conditions, we get two equations for the surface
potentials y, , y, and the constant of integration C:
€  J83kT .. L
a, (¥, = Z;—{ : ijni[exp(-eviwl/kT)+-C]} (2.6)
%
e J8nkT .
= — 5 -
o, (¥,) yr { : t;ni[exp( eviwz/kT)-fc]} . (2.7)

We observe that if electrical neutrality were to be preserved in the

limit of small separations we must either have o =-0

(17)

or o, =(0=0, as

2 2

B+, In either case, both surface potentials must become the same

in this limit (see equations (2.6) and (2.7)). Further if both 0, ,0, >0
as L~>0 both surface potentials must approach their own Nernst values
(equation (1.8)), and this is only possible when both surfaces have the

same pzc (pH,) but different ApKs (to remain as dissimilar surfaces at

infinity).

The repulsive pressure between the plates (P >0 implies

repulsion) can be written in the physically perspicuous form

2
& . iy b i _ € |dy 5
P kT Zlni[exp\ eviw/kf) 1] ar [dz] . (2.8)

We can now use equation (2.5), giving

P = -2nkT(C+1) , (2.9)
where
n = % ; n.o. (2.10)
i
(31)

It is well known that the second integration of the PB

equation requires a knowledge of whether

(1) C<-=1 (i.e. P >0 repulsive) (2.11)
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(i1) |cl <1  (i.e. P<0 attractive) (2.12)
or {151} C*1X (i.e. P> 0 attractive) (2.13)

because the integration procedure is different for each case. Therefore,
a third relation between y,, ¥y, and C can be obtained. This, together
with equation (2.8) and (2.9) would enable us to obtain a complete

solution of the problem.

Before proceding further, we shall make one simplifying
assumption by considering only the case of a 1:1 electrolyte. The PB

equation (2.2) now takes on the simpler form

2

d _ 8mne | :
E“% = SR sinh(ey/kT) . (2.14)

A moment's reflection will reveal that only the three types of solution
illustrated in Table 2.1 are allowed. These results will be useful in

later discussions.

Table 2.1: Examples showing the three types of solutions
allowed by the Poisson-Boltzmann equation together
with some general relations between ¢ and .

I. Like chamges and like potentials
q”‘ ’Ol
[t loll < 1021 then |y,| = I‘l"z]
% 50
. 2
and vice versa.
I11. Unlike chamges and like potentials f
W1 20y
1f |o,| = |o,| then I
(ZRLP!
and vice versa.
lP; ,Ol
I11. Unlike chawges and unlike potentials
| d’y
At y=0, d}:‘_):O- \w2’02
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For notational convenience, we introduce the reduced potential

y = ey/kT , (2.15)
the Debye screening parameter
L
~_ [8mne* )
K = [ CKT ] R (2.16)
and the dimensionless constant
KNsi
¥y (T T ¢ i=1,2 . (2.17)

The subscripts 1,2 will refer, as before, to surface 1 and 2. Equations

(2.6) and (2.7) can now be written in the form

n(y,) = =%(C+1) = %(coshy, -1)-yjai(y])
= sinh® (y,/2) - viq} (y,) (2.18)
na(y;) = %(C+1) = sinh®(y,/2) - v30; (y,) (2.19)

where (cf. equations (1.5) and (1.8))

Si s1nh(yNi-yi)
a,(y.,) = = . i=1,2 . (2.20)
R | 1+6i cosh(yNi yi)

Since the pressure must be the same on both surfaces, the relation

must hold for the functions N, »n, defined by the above equations.

The key to solving the problem of interacting dissimilar
amphoteric surfaces lies in understanding the interplay between the curve
sinhz(y/Z) and the charge curves, y2a2(y), of each surface. Therefore,
it is important that we systematically characterize the manner in which
these curves intersect each other. To begin with, let us plot sinh?(y/2)
and Y2u2(y) as a function of the surface potential y. (Subscripts 1 and 2
will be suppressed when we are considering a general surface. The

surface potential y under consideration should not be confused with the
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potential at some general position y=y(z).) This is shown schematically
in Figure 2.1. We have shown, without loss of generality, values of the
concentration of PDI such that the Nernst potential, yN? is positive.

For ease of later discussions, it is useful to adopt the following
nomenclature. Since n(y) is the (vertical) difference between the two
curves, we can delineate regions where n>0, O0>n>-1, n<-1
corresponding to cases (i), (ii) and (iii) in equations (2.11) to (2.13).
We label the points of intersection between the two curves (where n=0)
as a, b, ¢ and d with the corresponding potentials Y Yo Yo and Yq°

The point a is defined as the intersection where Y, falls between the
origin and the Nernst potential YN Points b and ¢ are the intersections
where Y and Y. have the same sign as Yy* Under some circumstances there
may be no intersections b and c¢ or the points b and ¢ may coincide. The
point of intersection on the opposite side of the origin to YN is

labelled d.

For a single surface in equilibrium with a bulk solution
containing a given concentration of PDI, there is no net force exerted on
the surface. Therefore the pressure P is identically zero, that is,
n==%(C+l) = 0. Of the four points where n=0, only point a, where the
surface charge and the surface potential have the same sign, satisfies
the PB equation. Thus we obtain the general result that the surface
potential of an isolated amphoteric surface always lies between zero and
the Nernst potential. The only occasion when : 8 equals zero is when the
Nernst potential is zero. That is, the concentration of PDI is at the

point-of-zero-charge, pH=pH, and 0=0.

To study the electrostatic interaction between two dissimilar

amphoteric surfaces, we need to examine the functions n, (y,) and n, (y,)
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< 0<0 > /

\ qd0g>0 —»

Figure 2.1: A plot of the functions sinhz(y/Z) (———) and Yzaz(y) (—)
showing the points of intersection between these curves, and the

regions where the function n(y) and the surface charge o is positive

or negative.
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given in equations (2.18) and (2.19). This is best accomplished by
plotting (schematically) the two charge curves yfaf(y), ygag(y) and the
function sinhz(y/Z) on the same graph. See for example Figure 2.2 a,b.
We define y* to be the potential corresponding to that point of
intersection of the two charge curves which falls i¢n between the Nernst

potentials le and yNz.

The state of surface i (i =1,2) can be identified with the
co-ordinate (yi,oi). However, the values of the surface potential
wi==kTyi/e and the surface charge Oi cannot vary independently as they
are related by equation (1.7) or (1.8). In other words, the state of
each surface must correspond to some point (y,0) on its own charge curve
yzuz(y). As the surfaces approach each other, changes in the charge and
potential at each surface due to the interaction can be envisaged as
movements of these points along their own charge curves. Since the
surfaces are interacting, the loci of these two points must be correlated.
Firstly, the movement of these points must ensure that equation (2.21)
(cf. equations (2.18) and (2.19)) is satisfied. Secondly, the values of
y; and y, must satisfy the PB equation. That is, the relationship
between the charge and potential at each surface and between surfaces
must fall within one of the three types listed in Table 2.1. Thus it is
possible to obtain a description of the behaviour of the repulsive
pressure, surface potential and charges as a function of separation by
considering the charge curves yfuf(y), yza;(y) and the function
sinhz(y/Z). Most of the results we are about to describe can be deduced
from the fact that sinhz(y/2) increases monotonically as |y| increases

and that the charge curves y’o’ (y) have an absolute minimum at Y=Yy
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P--.--.-.--- - - e -

Figure 2.2a: Showing a typical arrangement of the charge curves of

surface 1 (—) and surface 2 (----) for surfaces having like

(positive) signs at infinite separation., Note that YN <y*<yN g
1 2

Surface 1 is defined as the surface that has the lower Nernst

potential (yN <yN ). The function sinhz(y/Z) is given in dashed
1 2

1ines [~+—=),
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Figure 2.2b: Showing a typical arrangement of the charge curves for

surface 1 ( ) and surface 2 (----) for surfaces having unlike

signs at infinite separation. Note that YN <iy*'<yN . Surface 1 is
1 2

defined as the surface that is negative at infinite separation

(yN <0). The function sinh?(y/2) is given in dashed lines (——-—).
2
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3. THE INTERACTION BETWEEN LIKE SURFACES

We have already shown in Section 2 that the surface potential
of a single surface in isolation falls between zero and the Nernst value.
Here we consider only those values of the bulk concentration of PDI where
the Nernst potentials of each surface has the same signs. That is, both
surfaces start off with the same sign at infinity. For the purpose of
this analysis, we can assume without loss of generality that the surfaces
are both positive and that surface 1 has a lower Nernst potential, i.e.
le<1yN2. (In fact, by reversing the sign of the Nernst potentials,
negative surfaces can be '"transformed'" into positive ones and the

following analysis will be applicable.)

For the interaction of surfaces having like signs at infinity,
there are three distinct cases classified by the number of times that the
repulsive pressure curve changes sign. Each is in turn determined by the

position of y* as follows:

Case 1: y*

IA

Case 2: Yy, < y* <y
1 1

Case 3: Y. £ y%.,

We shall consider each of these separately.

Ja. Case 1

The appropriate charge curves for this case are given in
Figure 3.1 a,b. The characteristic feature of these sets of curves is
that y* (the potential corresponding to the intersection of the two
charge curves that falls in between the Nernst potentials) is less than

yb . This case also includes the situation where surface 1 (defined to
1



Figure 3.la: Showing the relative positions between the charge curves

curves for Case 1 (ya <y*<yb ) for the situation where Surface 2
1

1
has the higher surface potential at infinite separation (ya 3>ya ).

2 1
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Figure 3.1b: Showing the relative positions of the charge curves for
Case 1 for the situation where Surface 1 has the higher surface

potential at infinite separation (ya e ¥,
1 2
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be the one with the lower Nernst potential) does not have the

intersection points b, and c, as for example in Figure 3.2a.

Since the arguments involved in deducing the behaviour of the
surfaces are rather tedious, we shall first summarize the results. The
(schematic) variations with separation for the repulsive pressure P,

surface charge and potential of each surface are given in Figures 3.3 and

3.4.

(i) In Case 1, the interaction is always repulsive, P >0,

(ii) If the function n, (y,) has a maximum in the range yal,gyl;gy*,
. max »
then the pressure has a maximum (P ) at y, =y, say, where
?l,zyN (Figure 3.3); otherwise the pressure increases
1

monotonically from zero at infinite separation to the final

value P* at zero separation (Figure 3.4).

(iii) At zero separation, the surface potentials are equal and the
surface charges are equal in magnitude but opposite in

(

sign L) (cf. discussion in Section 1).

The results summarized in Figures 3.3 and 3.4 can be deduced
from Figure 3.1 a,b if we bear in mind the discussion in Section 2

regarding the charge curves. We shall briefly summarize the main points:

(A) The surface charge and potential of each surface is related to
each other by equations (1.7) or (1.8). A state of the surface,
i.e. (y,0), can be represented by a point on the charge curve

Y ol (y).

(B) Changes in the surface charge and potential due to interaction

are described by the movement of this point along the charge

curve.
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Figure 3.2a: An example of the charge curves for Case 1 for the

situation where the intersection point b, does not exist.
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Figure 3.2b: An example of the charge curves for Case 1 for the

situation where the two surfaces have the same Nernst potential

Yy =Yy )
Nl N2
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Figure 3.3: Case 1. Showing the main features and schematic variations
of the pressure, surface potentials and surface charges as a function
of the separation between the surfaces for the case where n,(y,) has

a maximum between ¥ and y* (see text). The potential and charge of

Surface 1 are given 1n solid lines ( ). Those of Surface 2 are

given in dashed lines (———) when Y, >ya , and in dotted lines (-
2 1
when yaz‘\yal
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Figure 3.4: Case 1. Showing the main features and schematic variations

of the pressure, surface potentials and charges as a function of the

separation between the surfaces for the case where ”1(y1) does not

have a maximum between . and y* (see text). The potentials and
1
charge of Surface 1 are given in solid lines (——). Those of

Surface 2 are given in dashed lines (———) when Y, 7Y, o and in
2 1

dotted lines (+++-) when ik AR

2 al
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(C) The loci of the points for each surface must together satisfy

equation (2.21) and the PB equation (cf. Table 2.1).

(D) The function sinhz(y/2) increases monotonically as |yl

increases and similarly Yzaz(y) is a monotonic increasing

function of IyN-y

Using (A) - (D) above we now demonstrate how the results from
Figure 3.3 can be deduced from Figure 3.1 a,b. When the surfaces are far
apart, we have already shown in Section 2 the potentials of Surface 1 and

2 are ¥ and ¥s respectively. Referring to the charge curves, we say
2

1
Surface 1 is at the point a, and Surface 2 is at a,. We first consider

the case shown in Figure 3.2a where ) I>ya . We define
2 1

o = 0,(y*) = =-0,(y%) (3.1)

and observe that the surface charges at infinite separation, ol(ya h
1

02(y32), obey the relations

Oz(yaz) > g% ’ Ol(yal) (3-2)
but O‘(ya,) can be greater than or less than o%.

As the surfaces approach each other and just beginning to
interact, we know, by the overlap approximation that the surface
potentials must increase and the interaction is repulsive. That is P >0,
n,(y,)=n,(y,) >0 (cf. equations (2.9), (2.18- (2.21)). Therefore both
surfaces would move along its own charge curve towards their respective
Nernst potentials. While the surface potentials increase, the surface
charges decrease. This minimizes the interaction energy. As the
surfaces approach the rate of change of the charge and potential of each

surface with separation (i.e. the velocities along the charge curves)
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must of necessity be difficult since the equality n,(y,) =1, (y,) must be

maintained at all times.

We assume that the function n,(y,) has a maxima between yal and
y* (yal sy, Sy*); at §, say. It is clear from point (D) above that Y,
is between le and y* (le Sy, Sy*). Now, as the separation between the
surfaces decreases, both surfaces would move closer to their Nernst
potentials. When Surface 1, which has the lower Nernst potential,

reaches YN where its charge has decreased to zero, Surface 2 is still
1

below its Nernst value with a finite and positive surface charge.

As the separation further decreases, the potential of Surface 1
continues to increase beyond le, but with a surface charge of opposite
sign to that at infinity (cf. Figure 2.1). When Surface 1 reaches ¥y,
where n, (y,) has a maximum, Surface 2 is at y, where n, (¥,) =n,(¥,).

Again from point (D) we can deduce that

y* s ¥, < ¥y -
As Surface 1 proceeds beyond y, towards y*, n,(y,;) can only
decrease. Hence Surface 2 must retrace its path along the charge curve
from y, and approach y* from above. Therefore Surface 2, which has the

higher Nernst potential, never reaches YN and so its surface charge
2

always retain the same sign as that at infinite separation.

Now both surfaces must reach y* at the same time because
n, (y*) =n,(y*). Here we have yfai(y*)==y§a§(y*) and the potentials are
equal but the charges are equal and opposite. The surfaces cannot
proceed beyond y* as this would violate the PB equation (cf. Type II,
Table 2.1). Clearly, the boundary conditions y, =y,, 0, =-0, can only be

attained when the separation between the surfaces is zero.
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The above results are summarized in Figure 3.3. The variations
with separation of the charge and potential of Surface 1 are given in

solid lines, and those of Surface 2 in dashed lines.
It will be shown that:

(iv) for interactions between surfaces having like signs at
infinity, the surface with the lower Nernst potential would
always reach its Nernst potential and reverses the sign of

its surface charge while the other surface never changes sign.

Obviously, this excludes the degenerate case where both surfaces have the
same Nernst potential. In this instance, neither surface charge changes

sign.

Now it is possible for Surface 2, which by definition has the
higher Nernst potential, to have a lower surface potential than Surface 1
when they are far apart (see Figure 3.1b). It is clear from the figure

that the surface charges at infinity obey the inequalities

Ol(yal) 2 0, (ya2) > g%,

1f n,(yl) has a maximum in - £y, £ y*, the results for Surface 2 are
1
given in dotted lines in Figure 3.3. These can be derived using the

arguments given above. The only noticeable difference between this case

(y <iya ) and the previous case (ya

- >'ya ) are the cross-over points
2 1

2 1
between the charge and potential curves. These must occur when both 0,

and 0, are greater than o*, The behaviour of the repulsive pressure and

the properties of Surface 1 remain essentially the same for both cases.

If n,(y,) does not have a maxima in the range y, $Yisy*, the

1
interaction is still repulsive but there are no turning points in the

pressure, potential and charge curve (Figure 3.4). The arguments needed
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to deduce these results follow along the line of those given above. The

results pertaining to Surface 1 are given in solid curves.

1I£Ey 2y (y,., >y, ) the charges at infinite separation
a, a, N, N,

satisfy

02(ya2) > g% ’ 01 (yal)

but ol(ya ) can be greater or less than o*, The charge and potential for
1

Surface 2 for this case are given in dashed lines.

Ify %% (y.., >y, ) the results for Surface 2 are given in

a, a, N, N,

dotted lines. Here G‘(ya ) >0'2(ya ) > 0% and the cross-over points in the
1 2

potential and charge must occur when the charges of Surfaces 1 and 2

greater than o%,

When the Nernst potentials are very far apart (Figure 3.2a),
the pressure may exhibit a local minimum after the maximum. However the
pressure still remains positive for all separation (see Figure 3.5). The

charges and potentials will have corresponding maxima and minima.

In the degenerate case where the surfaces have the same Nernst
potential (i.e. the same pzc, see Figure 3.2b), e.g. identical surfaces,
then y*==yN .Yy and neither surface changes sign. The surface

1 2

potentials start off at . and ¥, 8 and increase monotonically towards

1 2

their Nernst values. The surface charges decrease monotonically to zero.
At zero separation, both potentials are equal and surface charges are

reduced to zero.

This completes the discussion on the various possible types of

behaviour under Case 1.



P*

Separation

Figure 3.5: Case 1. Showing the possibility of two turning points in
the pressure curve when the Nernst potentials are far apart in the

situation depicted in Figure 3.2a (see text).
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1. Casge 2

The appropriate charge curves for this case are shown in

Figure 3.6. The characteristic feature of this set of curves is that
< yk < .
yb, y YC1

The variations with separation of the repulsive pressure P, surface

potential and charge of each surface are given in Figures 3.7 and 3.8.

In Case 2 the interaction is initially repulsive (P >0) but

becomes attractive (P <0) as smaller separations. If (yl) has a

0] 1
Lo - min
minimum between yb and y* then the pressure has a local minimum P <0
1

at y, =y, and y, =y, say, where ¥, <y*.

Let us now deduce the results in Figures 3.7 and 3.8 from the
charge curves in Figure 3.6. As with Case 1, Surfaces 1 and 2 start at
a, and a, respectively, and move along their charge curves towards their
Nernst potentials as the surfaces approach. Clearly n, (y,) has a maximum
at some y, where le:§§l;§ybl. This maximum corresponds to the maximum

in the repulsive pressure. Thus as the potential of Surface 1 increases

from P to YN and then onto y,, its surface charge decreases to zero at
1

1
Yy =Yy and changes sign between YN and y, . Meanwhile the potential of
1 1
Surface 2 increases steadily from ya2 to y, where n,(y,) =n, (§,) while
the charge decreases from 02(ya ) to 0,(y,). Since y, <Yy the sign of
2 2

the charge on Surface 2 does not change.

As Surface 1 now moves from §l to ybl, n,(y,;) can only decrease;
therefore Surface 2 must return along its charge curve towards y
increasing the charge and decreasing the potential. When Surface 1
reaches the point b ,, Surface 2 reaches a, where nl(ybl) =0= n2(ya2) and

the pressure is zero at this point.
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Figure 3.6:

Case 2 (yb <<y*<iyc ¥,
1

Showing the relative

1

positions of the charge curves for
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Figure 3.7: Case 2. Showing the main features and schematic variations
of the pressure, surface potentials and charges as a function of the
separation between the surfaces for the case where the pressure has a
local minimum. The potential and charge of Surface 1 are given in
solid lines (——); those of Surface 2 are given in dashed lines
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Figure 3.8: Case 2. Showing the main features and schematic variations
of the pressure, surface potentials and charges as a function of the
separation between the surfaces for the situation where the pressure
does not have a local minimum. The potential and charge of Surface 1

are given in solid lines (——); those of Surface 2 are in dashed
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Between ybl and y*, n, =n, is negative which corresponds to
attraction. Now n, (y,) may have a minimum (i.e. Inl(yl)l a maximum) for
ybl.iyl_sy*. I1f this is indeed the case, the pressure will have a
minimum turning point (see Figure 3.7). Corresponding to this, the
potential of Surface 2 will decrease below y* and finally approaches y%*
from below. There will be a similar turning point for the charge on

Surface 2.

1f n,(y,) does not have a minimum in ybl<:yl;§y* the pressure
just decreases monotonically after turning attractive (see Figure 3.8).

Similarly the extra turning points in y, and o, would not occur.

From Figure 3.6 we obtain the following inequalities which hold

for all separations
Ya 771 » gy * 0,

and when the surfaces are far apart

> gk >
ya2 y Yal

ok > 02(ya y » Ol(ya,) .
2

3c. Case 3

The charge curves pertaining to this case are given in
Figure 3.9. They are characterized by the inequality y*>yC . The
1
variations with separation of the repulsive pressure, surface potential
and charge of each surface are given in Figure 3.10, These results can

be derived from the charge curves in Figure 3.9 by a similar

consideration to that given in the previous two cases.

In Case 3 the interaction is initially repulsive (P >0), then
it turns attractive (P <0) and finally becomes repulsive again as the

separation decreases from infinity to zero.
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Figure 3.9:

Showing the relative positions of the charge curves for

Case 3 (yC <ya’).

1 2
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Figure 3.10: Case 3. Showing the pressure, surface potentials and
charges as a function of separation between the surfaces. The
potentials and charge of Surface 1 are given in solid lines )3
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We note that if p"* < px then the potential (charge) curve of
Surface 2 would not extend above (below) y* (0*) at the corresponding

turning point.

4. THE INTERACTION BETWEEN UNLIKE SURFACES

In this section we consider those values of the bulk
concentration of PDI where the signs of the Nernst potentials are
different. This means that when the surfaces are far apart, the surfaces
have different signs. Given two unlike surfaces, we can always make a
transformation (e.g. reversing the signs of the potentials) so that
Surface 1 (ya ) is initially negative, Surface 2 (y ) is positive and

1 4,

that y* is also positive as well, (See for example Figure 2.2b.)

First let us define the nomenclature useful in describing how
the charge curve of Surface 1 (the negative surface) intersects with the
curve of sinhz(y/Z). This is done in Figure 4.1. Depending on the value
of le and ApK of Surface 1 it is possible that only one of the points

d,, e and f, exists. In this case we label this one point as d,.

In general there are four distinct cases where the interactions
are different. Again these are classified by the number of times the
repulsive pressure changes sign when the separation varies from zero to
infinity. These cases are determined by the position of y* and hence by

the relative position and shape of the charge curve of Surface 2 (the

positive surface). Each case is defined as follows:

Case 1. 0

< wk
y* = Ydl
Case 2. y < yk <y
d] . €,
Case 3. yel s y* < yﬁ
Case 4, Ye S y*




Figure 4.1: Showing the relative positions between the function
sinhz(y/Z) (——-), the charge curve of Surface 1 (—) and ot

Surface 2 (=---) for:

(1) Case 1 (y < yk <y )

al Lll
‘ag < x <
(2) Case 2 (ydl y yel)
ac < ® <
(3) Case 3 (yel y yfl)
(4) Case 4 (ye < y*)

when the surfaces have unlike signs at infinite separation.
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We shall only outline how the given results can be deduced from
the charge curve for Cases 1 and 2. The results of the other cases

| should be self evident,

4a. Case 1

In Case 1, where O,Sy*,Syd , the interaction is always
1

attractive (P <0).

The behaviour of the repulsive pressure, the surface potential
and charge are summarized in Figure 4.2, The results for Surface 1 are
given in solid lines, and for Surface 2 in dashed and dotted lines.
Referring to the curves for Case 1 in Figure 4.1 we can deduce these

results.

When the surfaces are far apart, Surface 1 is at a, and
Surface 2 is at a,. As they approach each other, we know (e.g. by the
overlap approximation) that the interaction is attractive, i.e. P <O,
ny, =n, <0, and the surface potentials must decrease in magnitude. These

conditions can be satisfied if both surfaces move along their charge

| curves towards y=0. This way the interaction energy is minimized (i.e.
‘ maximize attraction) by making the positive surface (2) more positive and

the negative surface (1) more negative.

We observe that if ”1(y1) has a minimum (Inl(yl)] a maximum)
for some y, (0 =y, <y*) then there would be a minimum in the pressure and
corresponding turning points in the potential and charge of Surface 2 —
see dashed lines in Figure 4.2, Otherwise, all quantities are monotonic

in the separation (dotted lines).

We note that since y,, where n,(y,)=n,(y.), is always

positive, the potential of Surface 2 never changes sign. (This is in
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Figure 4.2: Case 1. Variations of the pressure, surface potentials and

surface charges with the distance of separation between the surfaces.
The potential and charge of Surface 1 are shown in solid lines (—).
Those of Surface 2 are given in dashed lines (———) if the pressure
has a minimum; otherwise they are given instead by the portions in

dotted lines ('--').
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fact true in all cases of interaction between unlike surfaces.) On the
other hand, the potential of Surface 1 always changes sign. It is
worthwhile noting here for Cases 2 -4 that y, cannot rise above Yy 3

2

therefore the charge of Surface 2 also retains the same sign (positive).

At zero separation, the potentials are equal

4b. Case 2

In Case 2 (yd ;;y*;gye ) the interaction is initially
1 1
attractive (P <0) but would eventually turn repulsive. The results are

summarized in Figure 4.3.

Initially the surfaces start at P and ¥ and move towards

1 2

y=0 (cf. Case 1) and the interaction is attractive. Since ”1(y1) has a
minimum for O'Sy"sydl there will be a minimum in the pressure and a
corresponding turning in the potential of Surface 2. When Surface 1
changes sign and reaches ydl from below, y, returns to ya . Here the

2

pressure is zero (r]l(yd )=()=r12(ya ¥)»
) 2

When Surface 1 now moves from ydl to y* the interaction becomes
repulsive. If nl(yl) has a maximum between ydl and y* the potential of
Surface 2 will increase past y* and then return to approach y* from
above. There will also be a similar maximum in the pressure curve (see
dashed curves). If n,(y,) does not have this maximum there would not be

a final turning point for y, and P (see dotted curves).
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Figure 4.3: Case 2. Variations of the pressure, surface potentials and

charges with the distance of separation between the surfaces. The
potential and charge of Surface 1 are shown in solid lines =)
Those of Surface 2 are given in dashed lines (———) if the pressure
has a local maximum; otherwise they are given instead by the

portions in dotted lines (+:+-).




68

Again at zero separation
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e, Case 3

In Case 3 (ye .Sy*‘syf ), the interaction is at first
1 1

attractive, then turns repulsive and finally becomes attractive again.

The variations with separation of the potential and charge of

Surface 1 are given in solid lines in Figure 4.4. 1If n,(y,) has a
minimum (Inn(Y|)| a maximum) for y, between yel and y* the behaviour of
the pressure and the surface potential and charge of Surface 2 are given
the dashed lines; otherwise the results in the dotted portions would

hold.

We note that if Pmin is less than P* then the potential

(charge) of Surface 2 would extend below (above) y* (o%*) at the

corresponding turning point.

4d. Case 4

Case 4 is characterized by the condition that V¢ <y*,
1

The behaviour of the pressure, surface charges and potentials
are illustrated in Figure 4.5 — solid lines for Surface 1, dashed lines
for Surface 2. 1In the degenerate case where points e, and f, do not
exist, the portions of the curves indicated by dotted lines should hold
for the various quantities.

If P"@% . px the corresponding turning points for y, and o, will

extend beyond y* and o%,
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Figure 4.4: Case 3. Variations of the pressure, surface potentials and
charges with the distance of separation between the surfaces. The
potential and charge of Surface 1 are shown in solid lines (—).
Those of Surface 2 are given in dashed lines (--——) if the pressure
has two local minima. If there is only one local minimum, the

portions in dotted lines (+:-+) would apply.
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Figure 4.5: Case 4. Variations of the pressure, surface potentials and
charges with the distance of separation between the surfaces. The
potential and charge of Surface 1 are shown in solid lines (—).
Those of Surface 2 are in dashed lines (———). 1If the intersection
points d, and e, do not exist, this is equivalent to the Case 2

dotted lines (++--) (cf. Figure 4.3).
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This completes the discussion of all possible types of double
layer interactions between dissimilar amphoteric surfaces under
dissociation equilibrium. Although the above discussion cannot give the
actual values of the pressure and potentials, etc., yet relative
magnitudes of the surface potentials and charges and all the interesting
features of the pressure curve can be elucidated. To obtain numerical
values, we need to solve the PB equation. We show how this can be done

in the next section.

5. METHOD OF SOLUTION

For a 1:1 electrolyte, the first integral of the PB equation

(2.5) has the form

2
%(gﬁ} = k% (coshy+C) . (5.1)

To obtain a second integral, we need to know the value of the constant of

integration C. The solutions, in terms of Jacobi elliptic functions or

elliptical 1ntegrals,(32’33) are different depending on whether

(1) C<-1, (i1i) |C

<1, or (iii) C>1. These solutions are well known

and they can be written in terms of the reduced variable

¢(z) = exp(-el|y(z)]|/2kT) . (5.2)

(i) C< -1 Repulsive

Kz = z,)
¢$(z) = ¢, cd 1 5 (5.3)
0 24,
where ¢, =¢(z,) and at z =3z,
dy -
r 4 (5.4)
z=2,

Here z, can be inside or outside the range z=0 to L.




12

(ii) |C] <1 Attractive

(1 )%
sd{K|z-zol ;tl“EE} } " (5.5)

where at z =z,, the potential y(z,) =0, that is ¢, =¢(zy) =1.

(1i1i1) C»1 Attractive

kKlz -z, :

$(2) = ¢, scPK(/I-¢8) - ———; (L-4)°| . (5.6)

Here K(k) is the complete elliptic integral of the first kind of

modulus k. The constant C is given by

C = %(¢2+¢g2) (5.7)

and at z=12,, Y(z,) =0. Equation (5.7) is suitable for 0 <z, <L. For gz,

outside 0 to L, it is convenient to write the solution in the form

$(z) = ¢, sc{sc_l{%i} - éﬁ% ;/Ti:$§} i % > & (5.8)
= ¢, sc{sc—'{%il + é%%>;/TT:$§j 4 z <2y , (5.9)

where ¢, =¢ (z=0). In equations (5.3), (5.5), (5.6), (5.8) and (5.9)
cd(x;k), sd(x;k) and sc(x;k) are Jacobi elliptic functions of argument x

1

and modulus k, sc ' is the inverse function of sc with the same modulus.

These solutions match up at the transition points ¢ =11, as expected.

From equations (2.18) - (2.20) we can solve for values of the
surface potentials at C=-1,1, i.e. at n, =n, =0,-1. Putting the
appropriate values of the reduced potentials ¢, and ¢, at C=-1

(n,=n, =0) into equation (5.3) we can eliminate z, to give

» -y ” |¢1 - 4)2|“ %
(r&L)cz_1 = 2 tanh '“l“*:g;'\b‘—z"‘ ; (5.10)

The length (L)C=_1 is the value of the separation where the transition

from C<~-1 to |C| <1 takes place.
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Similarly from equations (2.18) - (2.20) we can obtain the
potential of Surfaces 1 and 2 at C=1 is n =-1=1,. Using these values

in equation (5.5) and setting C=1, we can eliminate 2z, to get

L
F, = +[(1-F)?sin(kL) F F, cos(xL)] for L >z,, (5.11)
where
[ | —¢;
Py = ‘i"¢; L w2 (5.12)

This gives us the separation where the transition from |C| <1 to C>1

occurs.

Hence given the dissociation constants for each surface, the
bulk concentration of PDI and the ionic strength, we know which of the
types of solutions (i), (ii) or (iii) to use for a given value of the
separation L. This then gives us a complete solution of the problem.
The qualitative descriptions given in the previous sections will enable
us to keep track of the signs and relative magnitudes of the potentials
and charges. Further it also helps in determining the position of z,,
that is, whether z, <0, 0<z, <L or z, >L, and choose the appropriate

solutions for the cases |C| <1 and C > 1.

The numerical solutions of the various cases listed are

presently under investigation.

6. DISCUSSION

In a practical situation, the dissociation constants of the
surfaces are fixed, only the concentration of PDI can be varied (provided
the particles do not dissolve at extreme concentrations of PDI!). 1In
terms of the charge curves, this means that the relative positions of the
two Nernst potentials are fixed. Any variations in the concentration of

PDI merely shift both charge curves relative to ainhz(y/Z) by the same
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+
amount. From the definition of the Nernst potential (assuming H are the
PDI)

yy = 2.303 (pHy -pH) = 2.303 4ApH , (6.1)

we see that YN is proportional to the change in pH. Therefore, for like
(positive, say) surfaces the effect of decreasing pH can be described by

the curves in Figure 6.1 a,b.

In Figure 6.la, yN‘ and yN2 are close together. As pH
increases we pass from Casel (pH,) to Case?2 (pH,). However when le and
yN2 are sufficiently far apart, Figure 6.1b, we pass from Case 1 (pH,) to
Case 3 (pH,;) to Case 2 (pH,) as pH increases. C(learly we can only
consider pH values smaller than the pzc of Surface 1 (the surface with
the lower pzc) otherwise we would not have like positive surfaces! Thus
on a plot of pH versus separation, we can construct regions where the
interaction is attractive or repulsive. In Figure 6.2 a,b we have
constructed such diagrams corresponding to the situations in Figure 6.1
a,b. The lines delineating the attractive and repulsive regions can be

obtained from equation (5.10) for various pH values., Notice that when we

are at the pzc of Surface 1, the interaction is always attractive.

We have developed a method whereby we can analyse the main
features of the force curve due to double layer interaction between two
dissimilar amphoteric surfaces under dissociation equilibrium. The
resultant free energy of interaction must of necessity be the lowest
possible since equilibrium is assumed to be maintained throughout the
approach of the particles. Depending on the characteristics of each
surface, it is possible to obtain force barriers and minima in the
repulsive pressure from just the electrostatics alone. When combined
with the contributions from van der Waals interactions (which in itself

may be repulsive and/or attractive) to form the total force curve needed
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in DVLO theory of colloid stability, very interesting interplay between

these two contributions may be observed.

We have only used the Gouy-Chapman model for the double layer
s0 we do not expect the present theory to be a good description of real
systems. Several successful models have been proposed to describe the

(21,22,27) These

inner region of the double layer at amphoteric surfaces.
models also use the concepts of surface dissociation giving rise to the
surface charge. 1In addition, new effects such as the binding of inert
ions or the existence of a gel layer have been included. These new
features are in themselves charge and potential regulating. Thus by
using the Gouy-Chapman model, we have embraced all the basic physical

principles behind equilibrium interaction. The main features predicted

here are essentially correct.

When the collision time is too fast tor the surfaces to
regulate, the constant charge approximation then becomes valid. Here the
charge curves are horizontal (constant charge for all potentials). At

constant charge, we expect the interaction between surfaces with

(i) 1like charges to be always repulsive
(ii) unlike charges to be attractive at large separations and
repulsive at small separations — except when the surfaces
have equal and opposite charges where the interaction is then
always attractive.
The pressure will always diverge at small separations except for the
"equal and opposite situation" where it remains finite.
When the regulation of potential is perfect, i.e. constant

pontential, the charge curve is essentially an infinitely narrow "V"

centred at the Nernst potential. There are no saturation plateaux when
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the potential is far from the Nernst value. Under constant potential

interaction, surfaces (at infinity) with

(i) unlike potentials will always attract
(ii) 1like (but not identical) potentials will repel at large
separations and attract at small separations. Identical

surfaces however will always repel.

The pressure is again divergent at small separations except for that

between identical surfaces.

Of the various cases given for interaction between like and
unlike surfaces under regulation, Case 3 for like surfaces and Cases 3
and 4 for unlike surfaces (Figures 3.10, 4.4, 4.5) cannot be predicted by
the constant potential or constant charge approximation. If the

equilibrium interaction is possible these cases may be observable.

A possible application of theory is to consider a mixture of
three different sols 1,2,3 (all positive) that is stable at some given
pH. That is, all the interaction 1-2, 1-3, 2-3 are all purely repulsive
(see Figure 6.3a). Now by increasing the pH we can make the 1-3
interaction unstable with respect to heterocoagulation (see Figure 6.3b),
while 1-2 and 2-3 are still stable. Thus by adjusting the bulk pH we

have a mechanism of separating the sols 1 and 3 from 2.



(a)

(b)

Figure 6.3:

pH,

pH

o

\J ~1; .\\J/{

0
YN, YN, n,

An illustration of how "selective coagulation'" can be

brought about by changing the bulk pH (PDI) (see text).
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PART 11

THE CONFORMATION OF MACROMOLECULES




CHAPTER 1

PHASE TRANSITIONS IN POLYMER SOLUTIONS

AND THE PREDICTION OF 6 TEMPERATURES




1. INTRODUCTION

Interest in the study of polymer conformation arises from the
diverse practical situations where polymers are involved: in industry
(paint, adhesion, lubrication), in technology (soil improvement, effluent
treatment) and in biology (conformation and adsorption of macromolecules
and polyelectrolytes) — just to name a few examples. In this chapter, we
shall consider some aspects of a polymer in dilute solution; and in the

next, some of the salient features of an adsorbed polymer.

One of the central problems in the theory of dilute polymer
solutions is the effect of intra-molecular forces on the shapes and
sizes of the polymer chains.(l) It has been shown that polymer chains in
dilute solution would tend to avoid configurations in which the domains
of different chains overlap extensively.(z) Theretore, a reasonable
model of dilute polymer solutions can be obtained by neglecting inter-
molecular interactions and considering only the effect of intra-molecular
and polymer-solvent interactions on the configurations of a single

isolated chain.

(3

Following Flory, ) we classify intra-molecular interactions
into short-range and long-range effects. By short-range effects, we
include restrictions on bond angles, rotational hindrances, and
interferences due to finite size or "hard-core" volume exclusion effects
of individual segments or monomer units. These factors are properties
of the polymer molecule alone and they exist under all conditions,
independent of the environment of the polymer. The single isolated

polymer molecule in solution is also subjected to osmotic action of the
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surrounding solvent. That is, long-range solvent-polymer and polymer-
polymer interactions also determine the conformation of the polymer.
These interactions are of electrostatic (e.g. polyelectrolytes in ionic
solution) or electrodynamic (e.g. van der Waals or dispersion forces) in
origin; therefore, long-range effects are dependent upon the environment
of the polymer. 1In particular they are functions of temperature, and of

the electrostatic and dielectric properties of the materials involved.

The presence of long-range interactions expands or contracts
the polymer about those configurations determined only by short-range
effects. An elastic reaction (not unlike that induced on deforming
rubber) consequently develops and balances the osmotic forces to maintain
equiliprium. Since polymer-solvent and polymer-polymer interactions are
temperature-dependent it is possible that, in certain solvent/polymer
systems, there is some temperature 6 at which the long-range interactions
exactly cancel all short-range excluded volume effects and the polymer
behaves like a random flight chain. The residual bond angle restrictions
and rotational hindrances can be handled by replacing these effects by an

(4)

"equivalent'" random flight chain with a new effective step size.

Of the various conformational properties of an isolated polymer
that can be extracted from experiments such as light scattering and
intrinsic viscosity measurements, the mean square radius, (r®), has
received a considerable amount of attention. Mathematically the problem
of an interacting polymer has been formulated as a self-avoiding random
walk, a problem of considerable complexity. Especially as a result of
Edwards' paper(s) some real progress has been made towards the solution
of the self-avoiding walk problem. It seems generally agreed by

(6) (7)

theorists and confirmed by experiments and computer

(8-17) (18-21)

simulations that the original prediction of Flory namely,
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1 ek - ¢ 3 5 /5 .
for a positive excluded volume effect (r’) ~N°’", where N is the number

of monomer units in the polymer, is correct. This is in contrast with
the volumeless random flight result (r’) ~ N which occurs at the 6 point.
And depending whether or not polymer-solvent interactions are favoured
over polymer-polymer interactions, the net result will be a positive or

negative excluded volume (self-avoidance) effect.

In this chapter we study the contribution of dispersion forces

to the long-range interactions in dilute polymer solutions. Using the

. i Sl b e KB L . (22)
simplified version of Edwards' analysis as given by de Gennes
together with the notion of the dispersion self-energy of a molecule

G (23) . L

developed by Mahanty and Ninham, we demonstrate how the polymer
segment density p(r) can be determined self-consistently and how the

6/5 to (r*) ~ N takes place. The theory is then

transition from (r®) ~N
applied to real polymer/solvent systems to demonstrate how dielectric and
spectroscopic properties can be used to provide a criterion for 6

solvents, and data from handbooks are used to test the conclusions of the

theory.

2. de GENNES' FORMULATION

Consider an "ideal" volumeless polymer. The equilibrium
configuration of a polymer is determined by distortions due to long-range
polymer-polymer and polymer-solvent interactions and by elastic reactions

(22)

as a result of entropy losses. In de Gennes' [ormulation the
entropic part of the free energy is related, in a mean field

approximation, to an external potential which expands or contracts the

polymer.



The polymer is pictured as a collection of beads located at
positions LSS SIPREEEY sep held at a fixed distance a==|£n+1-£nl apart. In
the presence of an external force field, the mean orientation of the

(n,ntl) link is (r -r YZu . For small orientational distortion of
~a+l ~n ~n
the link Ignl‘ﬁia, when 5n==0 corresponding to complete orientational

29
disorder, the associated decrease in entropy is(“‘) (k = Boltzmann

constant)
s ity 3k 2
Lbn a2 Y, (2.1)

For if p(6) denotes the probability of finding the mean orientation u at

angle 0, the most general form for p leading to a small polarization u

(u << a) 18(22)

2
u

cos 6 +

p(o) = %{1+3(§ f(e)+...] (2.2)

with f(6) arbitrary except the normalization of p

m
J p(o) sint d6 = 1 (2.3)
0
requires that
T
[ f(6) sinb d6 = 0O (2.4)
0
The entropy of the link is(zq)
fi
S = -k j p(6) Lnp(6) sin 6 dO (2.5)

0

which to leading order in u is the result given in equation (2.1).

With this decrease in entropy, the corresponding change in free
energy is

A Y = - . = SES p
L(Jn | Abn " -2 u . (2.6)

The total change in the free energy

kT 2 :
e Y - T -
2a? : ~nt1 'I\u) (2.7)

G o
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can be obtained by summing over all links. Differentation of the free
; . , ~ _th
energy with respect to X yields the force acting on the n bead. In

the continuum limit this force is

3G 3kT ([8°r )
E(r]{) o or . a? {an2] * (208)
~
This expression may be integrated to give
or
3kT ~ e Mt
¢(r) - EET_~3nJ = constant (2.9)

if the force can be derived from a potential:

(22)

In dealing with the excluded problem, de Gennes shows that
¢(£) is proportional to p(E) the average segment or bead density at r.
Further, if one assumes radial symmetry, the number of segments in the

range r to r +dr is

dn = 4ur? p(r) dr . (2.10)

The average bead density p(r) is defined such that N, the total number of

beads, is given by

P L
(\L ) ,
N = J 4nr” p(r) dr . (2.11)
0
Hence by setting
¢(r) = kTvp(r) , (2.12)

where v is the "excluded volume parameter', p(r) may be determined self-
consistently. If the excluded volume parameter is a constant,

substitution of equation (2.12) and (2.10) into (2.9) (with constant = 0)

4/3

gives p(r) ~r which from (2.11) yields (r®*) ~N®’% and no 6 point

exists,
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3. DISPERSION SELF-ENERGY AND POLYMER CONFORMATION

To examine the role of dispersion interactions in determining
polymer conformations in real polymer-solvent systems we require an
expression for m(;) as the equivalent one-body potential of a polymer
segment. This potential must be temperature- and density-dependent and
should be expressed in terms of the dielectric properties of the polymer
solution. In principle, knowledge of the dielectric properties of the
solvent and polymer should provide implicitly a good description of the
polymer-polymer, polymer-solvent and solvent-solvent interactions which

are ultimately responsible for the chain configuration.

We confine our attention to non-aqueous solvents, where
dispersion forces are the dominant interaction mechanism. Then with each
polymer segment, we identify the one-body potential with its dispersion

Self—energy.(23)

The dispersion self-energy of a molecule in vacuum can be
defined as the change in energy due to coupling with the electromagnetic
field. When in the presence of a material medium, this field is modified
by the surrounding molecules, and the self-energy of the molecule will
include all interactions with itself and with the molecules of the medium.

In the regime where linear response theory is valid, this self-energy

15(23)

4 4 . ‘4 1 .
G = 6’3"7['3"‘,“2“' kT X' ————- (3.1)
n=0 - n

where a and £ are respectively the frequency dependent (isotropic)
polarizability of the molecule and the homogeneous, isotropic dielectric
susceptibility of the medium, The constant b is a measure of the size of
the molecule. The summation is over imaginary frequencies, i€n==i2nnkT/h

with k the Boltzmann constant, T the absolute temperature, 2nh Planck's
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constant and the prime over the summation sign indicates half weight for

the n=0 term.

A detailed discussion of the concept of self-energy and the

derivation of equation (3.1) is given in reference (23).

If the polarizability up of each bead, of radius b, is assumed
to be isotropic, the self-energy per bead is

oo %P(iin)
- andie R - g s P .
G })31]3/2 KT =t € (1f,n) ’ (3.2)

n=0 m

where € is the dielectric susceptibility of the solution. G_p provides a
measure of the interaction between the polymer segment and the solvent as
well as the interaction between the polymer segment and all other such

segments.

To be precise, one should take into account the spatial
distribution of polymer segments, that is spatial variations in € when
evaluating the self-energy. This can be accomplished as follows. The
dispersion self-energy of a molecule given by equation (3.2) is derived

from a Green function G(r,r';w) which for a homogeneous medium satisfies

the equation
G = é(r-1") . (3.3)
If the dielectric susceptibility of the medium e is a function of

11

spatial co-ordinates (e.g. due to a spatial distribution of polymer

segments) the equation for G should be

e V2G+Ve VG = S(r-r') . (3.4)
m mn ™ g

Provided the polymer solution is dilute (typically the density of beads

(26)

2.
~ JZ)(ks) we may write

within the polymer domain is

[e >>p(5e /op)] where € 1is the dielectric

e =¢e€_+p(oe /9 :
5 P m P)p=u’ S m 4

m

susceptibility of the pure solvent. If the problem possesses radial




symmetry, we can write

IR | P 9

£ ; .
o\ m m dp|adL )
e = t [+ 2E|Z = S(x-x') . (3.5)
m oY L Y dp dr)ar ~i e~

When the solution is near the 6 point p(r) ~1/r so using this value of
p(r) we get

A (> o€ Va)

0“0 m | m\»b

| Wk ] e I W i 5

m dr? D/ 2e_9p |9r
~ m

J

- (_‘l(g—}:') » (3.0)

But since ¢ />p(dtm/0p) we can to leading order neglect spatial
S

variations in € when evaluating the self-energy.

Returning now to equation (3.2), we note that since only
molecules in the neighbourhood of the polymer bead in question contribute
significantly to its self-energy, so for a dilute solution we can account
for the distribution of other polymer segments by allowing £ in equation
(3.2) for the self-energy Gp’ to depend on the density p(r) of other

segments. For the one-body potential, we write

41 - va(jﬂu) up(i&)
P (r) = VR VB kT o+ 2 & e 3ratr uiads ¢ yreci A (3.7)
N n=0 (tm(ltu) .S(ig)l

where the second term describes the bead-solvent interaction in the
absence of all other polymer beads. Thus it follows that the constant of
integration in equation (2.9) is zero because far away from the polymer

€ =¢c_since p(») =0.
oS

To obtain an expression for the dielectric susceptibility of
the polymer solution € in terms of the bead density p(r) we assume that

the polarizabilities of the polymer beads and the segment molecules are

27
dddi[ive(‘ ) and are related to € by the Claussius-Mossotti
I
, . (28) . , ;

relation. Such assumptions are reasonablc¢ for non-polar media. We
write

Lnfnl 30

&
e L = Ip(r)o. +(n = plr))e 3.8
Lm+.? 3 [P( (kp ( S l( ‘)At)] ’ ( )
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where n_ is the density of solvent molecules in a pure solvent and is
taken to be constant. In other words we 'remove'" a solvent molecule and
"replace'" it by a monomer unit. The density of molecules in the solution
remains the same as that in the pure solvent. FEquation (3.8) may be

rearranged to give

8

ey * 5 P (e -a)/(1-0) i
i I 4 ’
1 - 3 p(r)(ap-—us)/(l-AS)
4 (a -aS) (4Tr)2(up“ds)2
~ -+ S SS— - — - 2 N - - 3
o~ tsi-p(L) (1"AS)2 + p" (1) 3(1"AS)3 F O™ {r)) sus 5{3:10)
where
Es"l 4n
AS = ;:-‘;’Z-; = "3“ nsl'ls i (3.11)

We now seek a solution of equation (2.9) for which p(r) is
radially symmetric. Combining equations (2.9), (2.10) and (3.10) we get,

to leading order in p(r)

(4'u)2kT :,, p s P 3 8 i, P :_P._...»S a
e et (1) + 5 D' Sy P (1)
b n h=0 € 4 AS) 3 0=0 (_S(]. AS)
FOQF(r)) = o o (3.12)

2a? (4nr?)?
In general, the p’(r) term always dominates the left hand side and we
have

wie) = Y . {r* )y ~ N*'% , (3.13)

This is the tamiliar situation where excluded volume effects are

& CRREY 58 o 3
significant. On the other hand, when the coefticient of p” (r) becomes
identically zero, then

p(x) ~ ! ;3 (r*) ~ N (3.14)

and the mean square radius is like that of a random flight chain. The

: ; ; e d" O 3 :
singular situation when the coefficient of p” (r) vanishes corresponds to




the 9 point. The physical significance of the coefficients of p(r) in

equation (3.12) can be seen as follows. The coefficient of pj(r) is

oo ( 6 - X & )

/ 1 ) S F

bo- Gt S Uty (5.15
BT n=0 ([ A )
and that of p4(r) is

2 (41) @ (a)u_u +u.).,‘
A4 - - 3 _J___T k_’]_‘ 2-" ! = _____L_-L)‘.P_m- ._l,_._ —. /\L . ( 3 . ]_ 6 )

3b - (-) oA ) ( ] )

= s}

We see that to leading order in a, A3 describes the competition between
two-body solvent-polymer and polymer-polymer inte eractions, and A4
describes the competition among the three-body polymer-polymer-polymer,
_ : : ) : : L r (36-38)
polymer-solvent-solvent and polymer-polymer-solvent interactions.
Under normal conditions the two-body interactions are dominant and they

. ' 2 4648 : .
glve rise to the (r*) ~N behaviour. However, under special
circumstances when the two-body interactions cancel exactly, the three-

_ . 2 o » ; - .
body term then give the (r®) ~ N, random flight contiguration. The sign
of any particular term in the sum Aj, corresponding to some frequency €.,
may be < 0 depending on whether (a0 « -a a ) 20 at &.. If
p s p P J
(apu -upup)?‘o polymer-solvent interactions are favoured over polymer-
S

polymer interactions and if (¢ « —-a a ) <0, the converse is true. It is
p s pp

quite possible that for a given polymer/solvent pair (upuﬁ*-upup) may
change sign during the course of the frequency summation. If the net
result is that A3z > 0, then on the whole polymer-solvent interactions are
preferred over polymer-polymer interactions and the polymer exhibit a
positive excluded volume effect. In other words, the solvent "expands'
the polymer. 1If A3 <0 the present theory predicts a collapse of the
polymer ((r2> <0!); however in this regime short-range effects need to

be taken into account. The condition under which the two-body terms

cancel (8-point) depends on a delicate balance of the absorption spectra
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of the materials and the complicated summation over imaginary frequencies
(ién==12nnkT/h). Therefore the existence of the 6 point for a given
polymer/solvent system depends critically on the dielectric properties of
both the solvent and the polymer as well as on the temperature, mainly
through variations in the dielectric constant. This point will be taken

further in the next section.

4. APPLICATION TO REAL POLYMER-SOLVENT SYSTEMS

Before applying our formulae to real systems it is worth while

to recapitulate the assumptions made so far.

(1) We have assumed the polymer can be modelled as a string of
beads held at a fixed distance a apart, and each bead has an isotropic

polarizability.

(ii) The solvent is assumed to be isotropic and structureless and

is only characterized by its dielectric susceptibility €y

(iii) Only long-range dipole-dipole dispersion interactions are
examined. Short-range effects such as fixed bond angles hindered
rotation and hard core volume effects are not considered. However, these
are unimportant provided we remain in the random flight or positive
excluded volume regimes. Evidently these assumptions are fairly
extreme. Nonetheless we have an order of magnitude agreement with

observed trends even at this level of sophistication.

To investigate the magnitude of the coefficient A3 near the 6
point, we need a representation of the frequency dependent
polarizabilities and dielectric susceptibilities along the imaginary
frequency axis. It has been found in work comnnected with the calculation

(29-33)

of dispersion forces between macroscopic bodies that it is
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sufficient to write

'y D

J RN A,. S S

+Y. Efw. 1+&£/Q °
j j r r

e(i€) = 142 3
T 1+ (E/uw,
J ( J)

The terms 1in Cj describe Lorentzian relaxations of strength cj at
frequency uj, and that in Dr’ simple Debye rotational relaxations. For
non-polar organic materials, where there are no Debye relaxations and the
band width ]j is always small compared with mj, the required dielectric

properties can be represented by the simple form

AR = Lk TrErT (4.1)
uv

R* -1
+

Here we have summarized the absorption spectra by one principal
absorption trequency Wy in the ultraviolet. The static dielectric

constant e(0) is related to the refractive index R by
e(0) = R, (4.2)

The polarizability is connected to the dielectric susceptibility via the

) . . . 28)
Claussius-Mossotti relatlon( f
2 el
s 3 i [Jln- ) T s o e ) ) i . o
S e *5—11f41, i=s8,p for solvent or polymer . (4.3)

The value of n, the density of molecules that contribute to dielectric

dispersion in a pure substance i, is uncertain. But since most organic
solvents and monomers have similar molecular weights and densities, it
seems reasonable to assume that the values for the solvent and the

polymer do not differ significantly. Henceforth we set n[ “noen . For
) 8

e(it) of the general form given in equation (4.1) it can be easily shown

that u(i@)
‘li(\())
a, (1¢) = pT— > (4.4)

, k2
], i ‘ /lu() )

where
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3 £(0) -1 3
( & = . ———— U — ~ SRS U 1 = .
ui(U) 4nni 51(0)-+2J ANnO Ai ’ L=S,P (4.5)

for the bulk material.

The absorption frequency w_  is different from CH
is the polarizability of a monomer or solvent molecule and

Since a,
i
can be

because of the lack of detailed spectroscopic data, T,

approximated by the gaseous first ionization potential of the appropriate

molecule. The form of «a(if), according to equations (4.4) and (4.5), is

represented schematically in Fig. 4.1.

Returning now to equation (3.15) we see that at the 0 point Aj
£ varies

must vanish, This dmplies that (qs--a ) must change sign as &

From equations (4.4) and (4.5) we see that

from O to «,
z&? A(’ ]
(“'g. — uﬂ)) o - 5 S - [) _)‘___"_. . (4.6)
s L+ (Elwy)® 1+ (6/ui)?)

Hence for (a -—u)) to change sign, the curves up(iﬁ) and u((iE) must
s s
intersect in the manner similar to that shown in Fig. 4.1. Therefore, a

necessary condition for a polymer/solvent pair to exhibit a 6 point
it

within a temperature range is that, within this range,

0 L0
/.\4 3 Ly ! ‘
0 0 bl 5 - A -
(2" - AT) 2 0 then “*iLy e w R ¢ (4.7)
5 P ( s° p° i
u)U U.)U )

and vice versa. The summation over frequencies in cquation (3.15)
samples the difference between the two curves in Fig. 4.1 at intervals
AE = 2ukT/f.  Geometrically, this summation is roughly the same as the
difference between the two shaded areas labelled 1 and 2. So for a
f-point to exist, a delicate balance of the absorption spectra of the
polymer and solvent is needed. 1In other words, for a polymer/solvent
pair that exhibits a 0 point, we conclude, under the present model, that
ionization

condition (4.7) should hold between the gascous tirsi
I, and the static dielectric constants, «(0), of the polymer

potentials,
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Figure 4.1: Schematic representation of the polarizabilities of the
polymer and solvent o« (if), a (if£) along the imaginary frequency
p 8

axis.
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and the solvent. We define

gl fwf ;o I, = hyy (4.8)
and

iRKO)-l . ES(O)- 1 .

e,@+2 ~ i T mir T e (4.9)

In Table 4.1 we tabulate the gaseous first ionization
potentials and refractive indices of a number of polymer/solvent pairs at
their 0 points. The values of the refractive indices, at the
corresponding ¢ temperatures, are estimated from tabulated data using the
formula

ol

R = RT + (6-1T) [’RJ . (4.10)
7T

Equation (4.10) only holds provided (6 -7T) does not exceed say + 30 °K.
This restriction means that we can only verify condition (4.7) for those
systems whose dielectric properties near the O temperature are available.
The handbook data from which Table 4.1 is constructed are listed in the
appendix at the end of this chapter. Indeed, for all the systems listed,

condition (4.7) does appear to be satisfied.

Measured Gaseous First .

R S N - , Refractive

System 0 Temperature lonization Potential B

. , Index at ©

("K) (eV)

Polyisobutene in 261 Q.23 1.516
toluene 8.82 1.574
Polyisobutene in 251 9.23 1.523
ethyl benzene 8.76 1.577
Polystyrene in 307 8.47 1.555
cyclohexane 9.80 1.422
Polystyrene in 304 8.47 1.554
decalin 9.61 1.481

Table 4.1: Data for polymers and sclvents (see Appendix).
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The criterion for a 0 point stated above is expected to be
satisfied by non-polar polymers in non-polar solvents. When the static
dielectric constants of the polymer and solvent are more nearly equal,
such as that for polystyrene in benzene, 6 =24 °C (see Appendix), a more
detailed knowledge of the higher ionization potentials and corresponding
oscillator strengths may be necessary to determine the 6 point. In
general where there is more than one relaxation frequency, it is possible
for the curves in Fig. 4.1 to cross several times. As for cases where
the polymer segments and/or the solvent molecules possess permanent
dipole moments (e.g. water) the position and degree of Debye relaxations
at lower frequencies will also influence the 6 point. If systems
involving polyelectrolytes are under study, the analysis must be
supplemented to include electrostatic contributions to the potential ¢.
The effect of charged segments in ionic solution is to expand the

polymer.(34’35)

5. A COMPARISON BETWEEN THEORY AND EXPERIMENT

Using available data at or near the 6 temperature, we would
like to check if this theory does predict a 6 point, that is, whether or
not the coefficient of p’(r) in equation (3.12) is "vanishingly small".
To facilitate a comparison, we rewrite equation (3.12), with the aid of

the following results

P'i_'l'\ 4
Ai = ‘t:'—-:;——z- = ”3— niui ’ 1=8,p (S.l)
i
n, Ba 3 i=gs,p (5.2)
to give
o IRTf p || (@]’ s _o3kT 1 '
b nd/2 {53-+s4[ o J} n, RO guiE 2a?  (4mr?)? (3.3)

where
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% 08, - &
s, = X' ;nl_agf (5.4)
n=0 s s
w AB(AS-—AP)2
. M U .
Sy A 83(1—A )3 (5 5)
n=0 s s

The 6 point is then taken to be where the ratio of the two dimensionless

coefficients |s,/s, | vanishes.

Since we are identifying o to be the polarizability of a
monomer or solvent molecule, we take hw, in equation (4.4)

_a(0)
1+¢£2/

—~

af{1E) = (4.4)

Y

on|

to be the gaseous first ionization potential. Using equation (5.1) we

find(39) (cf. equation (4.1))
e(1g) = 1+ lﬁfgz;;% : (5.6)
uv
where
B  _ [e@ -1])°
“av wb[l [E(O)'+2}] (5.7)
e(0) = R (5.8)

In other words, the ionization potentials of molecules is lowered in
passing from the vapour phase to the liquid or solid phase — a

(40,41)

phenomenon that has been known for some time. Although equation

(5.7) predicts reductions in the ionization potential that are

(42)

comparable to those observed experimentally, (for non-polar
dielectric at least) it would be much more satisfactory if optical and

spectroscopic data of the bulk material were available so that we can

construct €(if) directly.

We calculated the sums s; and s, (equations (5.4) and (5.5)) at
the 0 temperature by assuming that W, is given by the gaseous first

ionization potential for the various polymer/solvent pairs listed in
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Table 4.1, and found that the ratio |s,/s,| does not vanish (|s;|~1,
[s4|'~lO”J). But we know that the first ionization potential is only an
approximation to the absorption frequency w,. To see what deviations
from the tabulated ionization potential are needed to make |s,/s, |

vanish we use the tabulated ionization potential of the polymer (solvent)

and find the "new"

ionization potential of the solvent (polymer) for
which |s3/s4| vanishes. These ''mew'" values are given in brackets in

Table 5.1 for the various polymer/solvent systems, together with the

tabulated values.

System IP IS

Polyisobutene in 9.23 8.82
toluene (10.10) 8.82
9.23 (8.07)

Polyisobutene in 9.23 8.76
ethyl benzene (9.91) 8.76
9.23 (8.15)

Polystyrene in 8.47 9.80
cyclohexane (6.30) 9.80
8.47 (13.20)

Polystyrene in 8.47 9,61
decalin (7.83) 9.61
8.47 (10.40)

Table 5.1: '"New" values of the ionization potential (in brackets)

for which lsj/s4l vanishes at o,

From the results of Table 5.1 we see that a larger ditference
in the ionization potential is needed to produce a ¢ point. With the
exception of polystyrene/cyclohexane, a deviation of less than 107 from
the gaseous values is sufficient, This indicates that the existence of a
6 point (]sj/sqls;lomi) is very sensitive to dielectric and spectroscopic

data. The apparently large deviation needed for polystyrene/cyclohexane
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is due to the fact that the first ionization potential of cyclohexane is
a poor estimate of w,. In fact, it has been found that in a plot of
molar polarizability against frequency, the usual technique of
extrapolation to zero frequency indicates that cyclohexane has a strong

{
absorption peak at 866 A or about 13.6 eV.(*3)

Evidently we can see from the results that data available at
present cannot predict the 6 point correctly. This is because dielectric
data at the 6 temperature is not available and only a single frequency
representation for the absorption spectrum is used (and even then we are
uncertain of the exact value of this frequency). However, at this
unsophisticated level of approach, we cannot expect more than general
trends to emerge. It seems reasonable that a variation of less than 10%
in the gaseous first ionization potential is sufficient to produce a 6
point. We have also been able to obtain a criterion (4.7) for selecting
6 solvents for non-polar solvents and polymers in terms of the relative

values of the static dielectric constants and principal absorption peaks.

This theory also provides a physical basis for the phase
transition ( r’) ~N®’% to (r’) ~ N at the 6 point and gives some insight
into how the interplay between dielectric properties of the polymer and
solvent, and changes in temperature can bring about a 6 point. Until
more refined spectroscopic data come to hand,r not a great deal can be
gained by allowing for the possibility of an anisotropic polarizability
for the polymer segments or by the "correct" handling of the spatial
distribution of polymer segments in calculation of the effective one-body

potential.

However, we do not expect contributions from the far ultraviolet to be
important. This is because the solvents and monomers have similar
molecular weights and densities; therefore their far ultraviolet
spectra should be similar, (30,31)
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The following is a list of dielectric and spectroscopic data

for polymers and 6 solvents obtained from data handbooks.

(44-46) The

temperatures at which the values were measured, in °C, are given in

brackets next to the substance.

The first ionization potentials (in

electron volts) of the polymers, taken to be the gaseous first ionization

potential of the constituent monomer units, are assumed to be temperature

independent. When values of the change of refractive index with

temperature dR/dT are not available, they are assumed to

of a structurally similar compound.

For these non-polar

static dielectric constant can be taken as the square of

be close to that

substances, the

the refractive

index.
fapoas Flyst Refractive - (dR/dT) x 10°
Substance lonization Potential Lléﬁbx =
(eV) ot °c)
Polystyrene (20) 8.47 1.550" 1.42
Polyisobutene (25) 9.23 1.493 6
%
Benzene (25) 9.23 1.50 ~ 2
Toluene (-15) . *
9 571 ~
(Methyl benzene) e Lx 24 Z
*
Ethyl benzene (20) 8.76 1.552 ~ 2
Cyclohexane (25) 9.8 1.426 ~ 5*
Decalin (30) 9.61 1.48 ~ 5*

Styrene monomer.

x

Estimated from that of polystyrene.

Estimated from that of methyl cyclohexane.
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(21)
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CHAPTER 2

THE CONFORMATION OF AN ADSORBED POLYMER
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1. INTRODUCTION

As outlined in the introduction of the previous chapter, we
shall consider some distinguished features of a polymer in the adsorbed

state.

The conformational characteristics of an adsorbed polymer is of
interest and of fundamental importance to the understanding of phenomena

such as the influence of macromolecules on the stability of colloidal

(1433 (4)

dispersions, polymer bridging,

(5)

and the growth of polymer

(6,7)

lamellar crystals. has been

A fair amount of experimental data
accumulated on the conformation of adsorbed macromolecules which require

theoretical interpretation.

(8)

Historically, the first serious theoretical attempt at the

problem of polymer adsorption was by Frisch et aZ.(g-ll) who used a
random walk model where the substrate was represented by a reflecting

barrier. This model was later modified to include interactions between

(12-13)

the polymer and the surface. However, the general use of

reflecting barriers fails to assign adsorbed monomer units the correct

statistical weight.(lA)

The most successful lattice walk model was that due to

DiMarzio and McCrackin,(lS) (16,17)
(18,19)

and to Rubin. Their work and

.1.

subsequent extensions gave physically reasonable results for

characteristics such as the fraction of polymer adsorbed as a function of

t (18)

An error in this work
is in reference (21).

was noted in reference (20); the correction
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the adsorption energy. Unfortunately, quantities such as the degree of
spreading on the surface, the density distribution, and the position of
the centre-of-mass of the polymer are not readily accessible by this

method.

Another approach to the problem of polymer adsorption is
through a statistical mechanical formulation. Here, the adsorbed state
of a polymer is analysed in terms of distribution functions for loops
(segments of polymer with both ends adsorbed) and trains (segments of
polymer with all units adsorbed) obtained from random walk

(22-26)

statistics. The contribution from tails (segments with only one

end adsorbed) was later included when their importance in determining the

(27-29)

conformations of weakly adsorbed polymers was recognized. Results

obtained by this method support those of Rubin.

A third method, which circumvents the use of lattice or random

(14,30,31) In this

walk models, is the diffusion equation approximation.
quasi-continuum approach, the integral equation for the partition
function of a polymer is approximated by a diffusion equation. The error
involved in this replacement, in the absence of boundaries, is negligible
over distances that are large compared with the bond length and provided
the polymer is long (that is the number of monomers >> 1), However in
the vicinity of boundaries, the appropriate initial and boundary
conditions for the diffusion equation are uncertain, Further there is
also the question of the validity of replacing the integral equation by a
diffusion equation in the neighbourhood of boundaries because of the

piece-wise nature of the solution., These points will be taken up again

later on in this chapter (Section 6).

From the above brief introduction, we see that considerable

effort has been devoted to construct a realistic theory of polymer
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adsorption. Although these treatments bring out most of the qualitative

features of the conformation of adsorbed polymers, this is by no means
32 g ;

the complete story. To quote Edwards:( ) "... until the continuum

models of polymers have been fully understood one will not obtain

mastery over the problem of real polymers'.

In this chapter, we study the conformation of an adsorbed
polymer by considering the statistical mechanics of a polymer confined in
a half space by an impenetrable flat surface with which the polymer may
interact. The polymer is modelled by a string of non-interacting beads
(monomers) joined by freely rotating bonds whose length are governed
by a given probability density function. (It may be a fair conceit, but
perhaps appropriate, to draw an analogy between this model in the theory
of polymer adsorption and that of the ideal gas model in kinetic theory.)
We include only configurations where at least one bead is adsorbed. The
configurational partition function (CPF) for the polymer can be analysed
in terms of generating functions (GF) for the CPF for loops and tails.

We derive general expressions for important conformational
characteristics of an adsorbed polymer, namely, the average number of
beads adsorbed on the wall (n), the mean square end-to-end separation of
adsorbed beads on the wall (pz), the centre-of-mass of the polymer (x),
and the density of beads off the wall n(x), in terms of the CPF for loops
and tails. A modified Wiener-Hopf method is used to obtain appropriate
asymptotic solutions of the integral equation for the GF of the CPF for
loops and tails. The conformational characteristics of the polymer,
obtained for various regimes of the adsorption energy parameter W, are
found to have a phase transition at some critical value wc. An explicit
expression for W is given assuming only dispersion interactions between

the polymer and the wall. From this expression, numerical values of W
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are obtained, using available dielectric and spectroscopic data, for
several real polymer/solvent/wall systems. It is found that this
adsorption/desorption phase transition can be induced by temperature
variations or by varying the dielectric properties of the solvent through

changing the composition of mixed solvents.

2. THE FORMULATION

We consider a '"mon-interacting' polymer consisting of N freely
rotating links (N+1 beads) confined in the half-space x>0 by an
unpenetrable flat surface. By 'non-interacting' we mean that the
potential energy of the polymer is the sum of one-particle potentials

& bead (monomer unit). That

V(Ei)’ X, being the position vector of the i
is, bead-bead interactions and excluded volume effects are ignored. In
real systems, there is an ill-defined though narrow interfacial region
within which a bead interacts strongly with the wall and may be

considered to be adsorbed. Thus V(Ii) may be replaced by the sum of an

adsorption potential w(xi) and an external potential ¢(£i)°

Since the adsorption potential is short-range, we shall replace

the Boltzmann factor by a pseudo-potential
=Bv{x,) -Bo(r,) =—By(x,)
e 3 = e i ¢ = (2.1)

~Be(x,)
~ e [8(x1)~kw é(xi)] R (2.2)

where B =1/kT and the adsorption energy parameter

T e J e BV ®) 4y 4y (2.3)
0

is reminiscent of the '"second virial coefficient'. The unit step

function 6(x) is defined as




and 6(x) is the Dirac delta function. The replacement (2.2) is a
convenient mathematical method of handling the interfacial region. It
assigns the adsorption region with the correct weight while avoiding the

necessity of treating such a region with finite thickness.

The length of each of the freely rotating links,
IEi,i—l' = Izi'-Ei—l" which join neighbouring beads, is determined by a

normalized probability density function f(l{i i—ll)' The configurational
o

partition function (CPF) for the polymer is then

N
: {8 - B 2 V()

QN » J ..J d°ry...d'x .H f({{i,i_ll) e i , (2.5)

i=1
where
N N
~ARENTIEN(T,) -8 .2 ¢(r;) N
R Ll B e L e 0 [6(x.)+W 6(x.)] . (2.6)
i=0 5 1

Expanding the product of Boltzmann factors and performing the x
integration wherever a §-function occurs, we obtain

n

N
' . 2; it 2 iR 14 . 2’) -—f 3 B ) -f
Qu W J J dpyeeedip GM,(QI) }} (M,(Ki—l’hi) Cy ()
i=2 i nt+l

-Bo(p_)
X e R (2.7)

i 8

p. is the transverse component of the position vector r, and we use the

convention

n

i £ = 1 for n<z . (2.8)
The quantity a;(g) is the CPF of a (free) tail of M links (M+l beads)

with the zeroth bead on the wall and all others in the half-space x> 0.

That is



110
-f
bo(g) = 1 (2.9)
M
f g 3 M ‘ I -B 'Elq)(};j)
gl {23 Bt - J ...J g PSRN i S f( r. ., 41) @ J= ,
M '~ (xi>0) ~M et i,i-1
(M>l) £0=£) . (2.10)

The quantity EM(R,D') is the CPF of a loop of M links (Mt+l beads) with
the zeroth bead on the wall (x=0) at [ and the Mth bead on the wall at

p' and all others in the half-space x>0. That is

~

Go(p,p') = 0 (2.11)
Gi(p.p") = E(lp-p']) e PR (2.12)
M-1
: Mo -8 2 9(ry)
GylR,p") = J J dr, ...d3£M_l I f(|£i’i_l|) e J=0 ,
(x,>0)

=p") . (2.13)

Thus equation (2.7) for QN represents the sum of all diagrams shown in
Figure 2.1. Although not specifically shown, "train'-type diagrams are
merely a succession of loops of one link (él). The index n counts the
number of beads adsorbed on the wall. The symbol éi for a given n
indicates that what follows is to be summed over all possible sets of
numbers {Mi} = (M M, ""’Mn+l) with the restrictions 0 <M, <N and, since

Mi represents the number of links in a loop or tail,
+
2 M, = N. (2.14)

As we are only interested in adsorbed polymers, the term corresponding to
n=0 in equation (2.5) has been omitted in equation (2.7). This is
equivalent to requiring there be at least one contact with the wall, and

the polymer is not free to move arbitrarily far from the wall.

Let us consider the properties of the normalized probability
density function ?(]EI) which determines the distance between successive

beads. Since the polymer links are, by assumption, free to rotate
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Figure 2,1: The first few diagrams in the partition function QN
corresponding to one, two and three adsorbed beads showing the
contributions of loop partition functions EM(p,p') and free tail

e . : ~f
partition functions GM(p).
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f(|£|) is only a function of the magnitude r==|£|. Hence
f(|x|)d’r=4nf(|x|)r?dr is the a priori probability of a link having a
magnitude in the range r »r+dr (in any direction). We further require

that f(k), the Fourier transform of f(]r]), exists, that is

f(k) = f Pr F(|r|) X (2.15)
- | e [[arg Eqrp g) o (2.16)
= 'J dx F(x|K) Rl £(z|K) . (2.17)

Equation (2.17) serves to define F(x|K) as the Fourier transform of
f(|r|) over the transverse components of r. Since f(|r|) is only a
function of the magnitude r==|£|, its Fourier transform is a function of

k==|£| only, that is
£(k) = £ (/22 +KD) = £(z|K) (2.18)

and that F(x|K) is even in x

F(x|K) = F(-x|K) . (2.19)
Further, normalization requires that
£(0) = 1 = £(0|0) (2.20)

so that F(x[O) has the properties of a probability density function in

one dimension. We can define its variance o by

o = f dx x* F(x]0) (2.21)
- 3 J Cre?e(e]) . (2.22)
From (2.16) and (2.17) we find
~1Ke (p,=p. .)
f(lzi-£i_1|) - 'IE%Y? f d2§'F(xi-—xi_l|K) e ~dl ==l (2.23)

(p,p') and Q

Further simplification of the quantities ai(p), GM N

is not possible unless we assume the external potential ¢(r) is a

function of x only. We shall be mainly concerned in this chapter with

the case ¢(x) =0.




Using this simplification and the result (2.23) we may carry

out the transverse integrations in equations (2.10) and (2.13) to yield

L g by Ui

Cr(p) = G,(0) , (2.24)
where

Gg(O) . 1 (2.25)

@m)=J.“J dx, ... dx, F(x,[0) F(x, =% [0) ... FOx =%, 1]0)

M
~'B iél ¢(xi)

X e

. (M>0) . (2.26)

The argument in Gi(O) indicates that the zeroth bead of the tail is at

the wall x=0. Also

= X 3 1. 2 -iKe+(p=-p"')
Culisl her T J &K G (O]K) e~ =% 7, (2.27)
where
Go(0|K) = 0
6, (0]k) = F(0|k) e PO (2.29)
G, (0|K) = L L dx, ... dx, . F(x [K) F(x, =% [K) o0 Flxy g - %y o [K)
M-1
Bz e(xy)
x F(x, (1K) e 17 , (M>1, % =0) . (2.30)

The argument 0 in GM(OIM) indicates that the zeroth bead of the loop

starts at x=0.

Substituting equations (2.24) and (2.27) into the partition

function, equation (2.7), we obtain

-59(0) ~iK (g,
bs Rl 2 2 2 ~ ‘~n AN
W = e [ o ” d*p, d'p e a4y (K) (2.31)
where
N . 5 .
(&) = X W' X G, (0) I G, (0[K) G, (0) . (2.32)
n=1 {Mi} M’ i=2 i n+1

The quantity Ipl defined by
(2.33)

5
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is the distance between the first and last beads on the wall. Its
expectation value is a measure of the spread of the polymer on the wall.

After a change of variables (2.33), the partition function becomes

(o R
s g =BE(0) 2 ~ =-iKep
i S Bkl J &p () (2.35)

where A' is the area on the wall to which the polymer is confined. The

quantity EN(p) is defined by equation (2.35). For convenience, we write

A=A" e-8¢(0), and perform the integrals in equation (2.34) to yield

= A 5, (0)
! r o F
= A Z W T ¢, (0 I g (0o) G, (0) . (2.36)
o DR T S S O Tl | n+l

i

This expression can be simplified by forming the generating function (GF)

as) = T s (Qy/A) . (2.37)
N=1

Then (QN/A) is just the coefficient of sN in the Taylor expansion of Q(s)

(about s=0) which we shall denote by

Qy = Al . (2.38)

Multiplying both sides of equation (2.36) by SN we obtain

£, 2
where
0e.0) = I & cﬁ(u) (2.40)
M=0
G(s,0K) = % & G, (0|K) (2.41)
M=0

are respectively the GF of the CPF for tails and loops. Therefore
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f 2
= W G (s,0)
Ry " A[l-w G(s,O]O)}N (2.42)
and similarly
f 2
_ |_WG (s,0)

3. THE EXPECTATION VALUES OF
CONFORMATION CHARACTERISTICS

We shall derive general expressions for four characteristics

which describe the polymer configuration near an interacting wall. These

are:

(a) (n) , the average number of beads adsorbed on the wall,

(b) (p?) , the mean square end-to-end distance (''spread") of beads

on the wall,
(¢) n(x), the density of beads off the wall,

(d) X, the distance of the centre-of-mass of the polymer from the

wall.

Two fundamental relations between these quantities are:

X = E%—_T J xn(x) dx (3.1)
0
N+l = J n(x)dx + {(n) . (3.2)

0
Relation (3.2) serves as a self-consistent check on the results derived

for n(x) and (n).

3a. Number of beads adsorbed (n)

Since the index n in equation (2.36) for QN counts the number

of beads on the wall, it follows that



4O £ £
fd s = % n W X G, (0) I Gy (0]0) G, (0)
N n=1 {M,} i=2 i n+l
(n) = W= (In Q) (3.3)
3 oW N .
3b. The spread of the polymer on the wall (p?)
From equation (2.35), it is clear that
2 TR 2 2 -
(p%) = d"p % qy(e) . (3.4)
Qq o
But it follows from the definition of EN(p), (2.34), that
2 2 = _ _ 2
J d'p p” qulp) = Vi Ay (K N (3.5)
K=0
where Vé is the two-dimensional Laplacian. Therefore we have
2 . L :
sl I it Ve 4y (3.6)
N =~ K=0
U 2 2 1
= — |WG (s,0) [} % — J ’ (3.7)
Qy | K 1-W G(s,0[K) ] ol

where the second equality follows from equation (2.43).

In the next section, equation (4.87), it will be shown quite

generally that

4
dK

G(s,OlK)\K=O = 0. (3.8)
Since G(s,O[K) depends on K==|5| only (F(XIK) depends on IEI only) we

obtain

W[V; G(s,0[K) 1
[1-W G(s,0[0)]?

T

" Yk T-W 6(s,0K)

(3.9)

K=0

Substituting this into equation (3.7) we have

2 2
5 Y WG (s,0) _ g2
(p*) = Q [;.-w G(S,O|O£} [ Ve G(s,OlK{}KzO . (3.10)




3c. The density of beads off the wall

We derive formulae for the density of beads off the wall for

three cases of interest:
: 1 4 : , 3
(i) a tail of N links (Figure 3.1la), nN(x),

(ii) a loop of N links (Figure 3.1b), nﬁ(x),

(iii) the general problem of an N-link polymer whose zeroth and Nt

bead may be anywhere in n >0 (Figure 3.1 c-e), n(x).

Before we can proceed it is necessary to introduce

h

generalizations of the quantities Gé(O) and GM(OlO), namely G;(x) and

GM(x|O) defined by

1

GS(X)

(3.11)

f i i A
G () =+ ‘{ L J dx, ... dxy, F(x-x%x,]0) F(x,-%,/0) ... F(xM-xM_IIO)

0 0
M
-6 T e(xy)
x ¢ 171 , (M>0) (3.12)
and
G, (x|0) = 1 (3.13)
G, (x|0) = F(x|0) e PO (x) (3.14)
GM(XIO) = J & s J dx’ «t' dxM_l F(x-x, |0) F(xQ-xllO)...
0 0
M-1 (3.15)
-8 iEO 9 (x;)
X F(xM_l-xM_ZIO) F(xM_llO) e , (M>1, x, =x)

They are interpreted physically as follows:

Gi(x) is the CPF of an M-link segment whose zeroth bead is at

X (> 0) and all others are in the half-space x> 0;

GM(x|O) is the CPF of an M-link segment whose zeroth bead is at

h

x {0}, the M© bead is on the wall (x=0), and all others are in the

half-space x> 0.



Qr(X)

Uth bead

Figure 3.1: Diagrams used to derive expressions for the density of beads
off the wall for the cases:
(a) a tail with one end on an impenetrable wall,
(b) a loop with both ends on an impenetrable wall,
(¢), (d) and (e) an adsorbed polymer with many possible
contacts, In this case the r[h bead can be in any one of the

positions shown.
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Note from the definitions that in Gi(x) the zeroth bead is not weighted
with the Boltzmann factor e_8¢(x) whereas in GM(x]O) the zeroth bead is

so weighted.

(i) Density'of an N-link tail, ng(x)

From Figure 3.la it is easily seen that the probability of

finding the r'® bead at x 1is

f
G (x[0) Gy (%)

F (3.16)
Gy (0)

The density of beads at x is the probability of finding any one of the

(N+1) beads at x, therefore

N =2

nf(x) = c_(x|0) Gg_r(x)//Gg(O) . (3.17)

r=0
£ f ; ; . .
We form the GF of [GN(O) nN(x)] by multiplying both sides of equation

(3.17) by sN and summing over N, Inverting the result, we obtain

i) = = [6(s,x]0) 6 (s,M ] (3.18)
G, (0)
N
where
G(s,x|0) = X g GM(XIO) (3.19)
M=0
and
cfs,x) = T 8" e (3.20)
M=0

are generalizations of the GF G(s,OlO) and Gf(s,O) given in equations

(2.40) and (2.41).

(ii) Density of an N-link loop, nﬁ(x)

Following the line of reasoning given for the case of a tail,

ye ohtain £he probability of finding the r'> bead at x,




G | o )
_(x[0) 6y (x[0)

Bo (x)
e ’ (3.21)
GN(O!O)
and hence the density of a loop
¢ Bp(x) |
ng(x) = E;TGTET [G(s,x|0) Iy * (3.22)

ghe ; ; t
The Boltzmann factor corrects the overweighting of the r & bead.

(iii) Density of an adsorbed polymer, n(x)

We generalize the CPF QN of equation (2.36) to the function
QN(x) which can be intérpreted, apart from the constant A, as the CPF for
an N link polymer whose Nth bead is at x and has at least one bead on the

wall. From (2.36) we have

3 N £ B
iRl = & % ¥ Z ¢, (0 1 GM‘(O]O) Gy (x]|0) (3.23)

n {Mi} 1 i=2 4 n+l

i
=

and its GF Q(s,x) is given by (cf. equation (2.39))

W Gf(s,O) G(s,x'O)
1-W G(s,O]O)

Q(s,x) = (3.25)

By considering Figure 3.1 c,d,e we see that the probability of

finding the rth bead at x 1s

1 % i . ) f eHgD(X) ,
Qg GE By 00 +Q,00 6 (0 + S5 0 ) Q0] - (3.26)

The first, second, and third term represent contributions from diagrams

in Figure 3.1 ¢, d and e respectively. A summation over all beads yields

the density

1 §\ ¢ | f o (x) ~
n(x) = '6; r:O {br(X) Qu_, (¥ Q. (%) SN € e Q_ (%) QN_r(X)}
(3.27)

In terms of the GF and equation (3.25) this becomes
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nx). = 2 [P g2 (g,%) +2q(s,x) Gf<s,x>J (3.28)
Oy L N
: T 2
A | Be(x) [WG (s,0) G(s,x]0)
Rizyras Qy " { 1-W G(s,0[0) }

f
N 26t (5,006 (5, 6(s,x[0)| 5.,y
1-W G(s,O[O) N. '
In summary, the conformational properties of an adsorbed
_ f
polymer are determined by the quantities G(s,0|K), G(s,x|0) and G (s,x)

as follows:

d(Lln QN) .
4T T R (3.3)
4 ; :
3 Ahd fospe® 66,00 } [ I J
(p?y = = || S - V. 6(s,0|K) (3.10)
Q LLl‘W G(s,0]0) K K=0|N
i b i 2
A | Bo(x) [W G (s,0) G(s,x|0)
ol Ty { 1-W G(s,0]0) }

-

i ZDJGf(s,O)Gt(s,x)G(s,xlO)
1-W G(S,OIO)

(3.29)
N

”""lfi J xn(x) dx . (3.1)
0

o
!

(N+

4. THE GENERATING FUNCTIONS
G(s,x|K) AND G(s,x)

In this section, we shall evaluate the functions G(s,le) and
* A ;
G (s,x) for the case where the external potential is zero, 1.e.

¢ (x) =0.

From the definitions (3.12) and (3.15) we can write down the

following recurrence relations



J GM(x]O) dx , (M>1) (4.1)
0

f
- Gy (0)

(x|K)

GM+l J F(x-x") GM(x'IK) dx' , M>1) . (4.2)

0

Multiplying (4.2) by sM+l and summing from M=1 to infinity we obtain the

integral equation for the GF

G(S,XIK) = sF(x{K)*—s J F(x-—x'|K) G(s,x'|K) dx' , (4.3)
0

where we have used equation (3.14) for G,(xIK). A similar operation on
equation (4.1) yields

Gf(s,O) = 1+J G(s,x|0) dx . (4.4)
0

Owing to the nature of the physical problem we are faced with
integral equations involving half-range convolutions, whose solution
require some amount of mathematical manipulations. For ease of later
reference, we shall first summarize the results and then present their

derivations.

It turns out that if we wish to study the conformation of the
polymer as a function of the adsorption energy parameter W, only the
results for s near zero (s~0) and s close to but less than one (s <1)
are needed. The quantities necessary to evaluate polymer conformational
characteristics are given in Table 4.1. These results are asymptotic
unless stated otherwise. During the course of the derivation, we find
it convenient to define the '"one-dimensional' variance of the probability

density function f((£!) by (cf. equations (2.21) and (2.22))

© 2
0? = J f(lgl))ﬁ d’r = J F(xlO):xzdx = - 4°£Cz)

2 ’
dz 2=0

and the "two-dimensional" variance of the probability density function

£(|r|) when r is confined to the plane x=0, by



Table 4.1:

Summary of results for the generating functions for s near 0 and s near 1.

Numbers in brackets refer to the corresponding equations in the text.

G(s,xiO)

3G(s,010)
s

G (s,x)

vé G(s,0|K)
at K=0

s ~0

lee)

o |
sF(x|0) +s* | F(x-x'|0) F(x'|0) dx' +...

0

F(0|0)

x=0

-1
(1-s) * exact

x>0

l+sj F(x—x'lO) dx'+...
0

- s A2 F(0|0)

x=0

L 1
G(1,0]0) - 2%(1~-s) %o

( T gy
= = —— 1
{0(1,010) Snel
1 1
(4.49) 2%(1%s) *x/o >> 1
e X
o e-22(1—s)2x/o
o
(4.66) —
2%(1-s) %o
x=0
%
(4.68) (1-s) 2 exact
L 'y
22(1-s)*s/o >>1
1, 1
-2°(1-s)“x/0
l1-e
(4.84a) T
5
“.99)| -2
(1-s)?

(4.

(4.

(4

(4.

(4.

.64)

61)

67)

.68)

84)

92)

XA




We also adopt the convention that when K=0, the K argument in all

functions are suppressed, that is
G(s,x!O) = G(s,x)
F(x|0) = F(x)

The remainder of this section is devoted to deriving the

results given in Table 4.1 and may be omitted by the reader without loss

of continuity.

4a. The Function G(s,x)

We first study the integral equation (4.3) for K=0, namely

G(s,x) = sF(x)+s J F(x-x") G(s,x') dx' . (4.5)

0

In general the solution of this equation, if one exists, may or may not

be unique. However, the only admissible solution in this problem is the

unique solution that is analytic in the neighbourhood of s =0 because the

Taylor expansion of G(s,x) about s =0 is equivalent to the recurrence

relation (4.2). The integral equation (4.5) may be solved using a
(33,34)

variation of the Wiener-Hopf method to yield a Fourier '

transformable solution analytic at s =0,

Before solving this equation, we examine the solution P(s,x) of

the full range equation,
P(s,x) = sF(x)+s J F(x-x') P(s,x') dx' . (4.6)
Physically,

PIgax) 52

4 8

bN PN(X)

N=1

is the GF of the CPF, PN(x), for an N-link polymer in full space
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t i
(== < x <®) whose zeroth bead is at x=0 and the N B bead at x. Equation

(4.6) can be solved in the usual manner by taking a Fourier transform,

defined by
Big,z) = J P(s, x) qor dx , (4.7)
to yield
p(s,z) = sf(z)+sf(z) p(s,z) . (4.8)
Therefore
. sf(z)
p(S,Z) l_sf(z) (409)
and by the inversion formula
gt ive anlioffc IBE(E) "+ niex
P(s,x) 5 J-m T oot (2) e dz . (4.10)
We define the functions
+
G (s,x) = 6(x) G(s,x) (4.11)
G (s,x) = 6(-x) G(s,x) , (4.12)
where 6(x) is the step function. The Fourier transform of these
functions,
(¢ o] + )
g+(s,z) = G (s,x) et ?* d4x (4.13)
)
and .
- ° -~ . lzx
g (s,z) = G (s,x) e dx , (4.14)
J -0

are analytic in the upper half plane (UHP) and the lower half plare (LHP)
respectively. We assume that G(s,x) has a continuous Fourier transform

in the conventional sense (for z real). It then follows that

g (s,z) + 0 (4.15)

1

+
as |z|-+w in their respective analytic HPs and that g (s,z) is continuous
on the real axis. Following the standard Wiener-Hopf method, we take the

Fourier transform of equation (4.5) and obtain

g+(s,2)+g—(s,2) = sf(z) +sf(2) g+(s,Z) (4.16)
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or

g (s,2) (1-5f(z)) = sf(z)-g (s,z) . (4.17)

We then seek a factorization of (l-—sf(z)) in the form

+ ] )
{ Pgitzy = TEABasl (4.18)

Y (s,2z)
such that y+(s,z) and Y_(s,z) are analytic and free of zeros in the UHP
and LHP respectively and are continuous on the real z axis. Further, we

shall require

v ek} » 1 (4.19)

as ]zl—w0 in their respective analytic HPs. Provided such a

factorization can be found, equation (4.17) may be rearranged to yield
+ + | -(y -
Bulesi(l g (a,2)) = v (L-g (a,2)) . (4.20)

The LHS represents a function analytic in the UHP and the RHS,
a function analytic in the LHP and the two functions are continuous and

(34)

equal on the real axis. This is sufficient to ensure that the RH
function represents the analytic continuation of the LH function into the

LHP. Therefore the function E(z) defined by
i + + - —
E(z) = v (s,2)(1+g (s,2)) = v (s,2)(1-8 (s,2))  (4.21)

is an entire function. Further we deduce from equations (4.15) and
[}

(4.19) that
E(z) » 1 (4.22)

as |z| »w. Thus E(z) is a bounded entire function and, by Liouville's

theorem, is a constant, namely

E(z) = 1. (4.23)

Therefore we have
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g (s,2) = ——— -1 (4.24)

Y+(S,Z)
— (4.25)
Y (s,2)

g—(s,z) = )

It remains then to determine the appropriate factorization of
1 -sf(z) that has the properties invoked above. The factorization of

1-sf(z) is equivalent to splitting

n(1-8f(z)) = Iny (s,2) - In ¥ (s,2) . (4.26)
The function

h(s,z) = - In(l-sf(z)) (4.27)

can be written as the sum

h(s,z) = h (s,z) +h (s,2) (4.28)
| 2
by the formulae(3')
n¥(s,2) = o7 J Bl) 4o, amz>0) (4.29)
gofor. g (w.2) fo fTumisgt)
h (8,2) i J—m aps dt , (Im z <0) (4.30)

: s - ) g i
such that h and h  are continuous on the real axis and are analytic and
vanishing as |z| » « in the UHP and LHP respectively. With these
+
properties, we can obtain from h ', using equations (4.26) and (4.28),

ey
+ ~h (s,2z)
e

v 'LB.2) = "(4.31)

S(s52) (4.32)

Il

Y (s,z)
+ . . P :
Now y and y have the required analytic properties. Therefore, from

(4.25) and (4.26)

+
eh (s,z) ’,

g+(s,z) 1 (4.33)

e-h (s,2)

(4.34)

g (s,2z)
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From equations (4.9) and (4.27) we see that

)
his,z) = ( -Ei%jil ds (4.35)
0
» f(z)
= J l—Sf’(_;)_ S . (4.36)
0
Thus the function
H(s,x) = g%-J BiE.2) B ds (4.37)
is given by
s
H(s,z) = J Eiéjﬁl-ds (4.38)
0

, + - 4
and, h (s,z) and h (s,z) are Fourier transforms of

H+(s,x) 6(x) H(s,x) (4.39)

and

H (s,z) 6(~-x) H(s,x) (4.40)

respectively.

Useful results now emerge from the above analysis. Inversion

of the expression for g+(s,z) in equation (4.33) yields, for x>0,

G(s,x) = H+(s,x) + é%'J H+(s,x—x') H+(s,x') dx'

+ ~3'~1;- J J H-’h(‘s,x—x') 1-1+(s,x'-—x") H+(s,x") dx' dx"

— OO

P sww . (4.41)

T . i
But since H (s,x) =0 for x<0, it follows that

lim G(s,x) = G(s,0) = H (s,0) (4.42)
va+
S )
B} J P2:0) g (4.43)

0

From equation (4.10) we deduce the result, for s<1,
R

N

8 }‘ [ECe}]™ 'de . & sN P (0) (4.44)

™8

1
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since for z real f(z) £1 (cf. equations (2.17) and (2.20)). Consequently,

o N @x 8]
Gls.0) = 51}— » EN—J [Etg) 1" dz = £ & Gy (0) (4.45)
N=1 . N=1

A comparison of equations (4.44) and (4.45) reveals an
interesting side result
h |

GN(O) = ﬁ-PN(O) . (4.46)

In other words, for any given N-link polymer, whose bond distribution
function f(|£l) satisfies the above requirements, the number of
configurations starting and ending at the plane x=0 that can be taken up
by such a polymer in full space is exactly N times that for the

corresponding situation in a half-space (x>0, say).

Since F(x) is a real even function, f(z) and therefore h(s,z)

is even in z. Therefore

ht(s,00 = h(s,00 = %h(s,0) (4.47)
and from the definition of h(s,z), (4.27), we have

+ ) -

h (s,0) = =-%In(l-s) = h (s,0) . (4.48)

For a given bond distribution function f(l£|), or f(z),
equations (4.33) and (4.34) constitute an exact solution of the integral
equation (4.5). However, to obtain physically interesting results, we
only need solutions in the neighbourhood of s=0 and s=1. In these
regimes, the problem becomes amenable to further formal asymptotic
analysis.

Around s =0, the solution can be obtained by iteration

(¢ ¢

G(s,x) = sF(x)+s? J F(x-x") F(x") dx"+... . (4.49)
0

In the neighbourhood of s=1, the function G(s,x) is more

complicated. Since f(z) is even, then if z, is a (in general, complex)
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zero of 1-f(z), so is -zo. For s less than but close to one (ssl),
there are two zero *z, in the neighbourhood of z=0, and as s>1 from
below, the two zeros converge to the origin. Consider the integral

taken along the real axis (cf. equations (4.9) and (4.29))

+ . SRl 3 sf(t) dt . |
p (s,2) = J_w Tosfit) to2 ° (Im z > 0) (4.50)

2mi

which diverges at s =1 on account of the pole in the integrand at

t =z,=0. Due to the coalescence at the origin of the two poles from
above and below the real axis, p+(s,z) will have a branch point at s=1.
For s s 1, the main contribution to the integral in (4.50) will come from
t near zero so that we can replace f(t) by its Taylor expansion about

t =0. From the properties of the bond distribution function we have (see

Section 2)

f(0) = 1
£'{0) = 1 J x F(x) dx = 0
f" ) = - J x* F(x) dx = -02,
therefore we can write
f(z) = 1 = Xo?2%+... (4.51)
for z near zero.
Thus in the regime s s 1, we have
+ 4 WEN_(w 1 dt
LI a8 |uc (1-8) +%0°%t? t-2z ° Lm z 20 (4.52)
1.—2; 12
1/(2°(1~-s8) “o
. 22 ;/) (4.53)
z+12%(1-s) ?/o
and from equation (4.35)
+ ) % ¢
h (s,z) = - lnlz+12°(1-8) “/o) , (ssl) . (4.54)

: j L L +
From this we see that for s s1 and z near z, =-12°(1-s) */o, g (s,z) has
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the form
+
g (s,z) = et (82) _
gt Tl (4.55)
z -z,
But we have
+ lf+(9 0) :
g (s,0) = e = -1 (4.56)
g " (4te) (ss1) , (4.57)
therefore it follows from equation (4.48) that
12}2(1-521/2 h' (s,0)
A - . (el ? - 1)
1.
s 42%a . (4.58)
Thus we have the asymptotic solution
>
+ .
S PN i . Fouer, (sS1) (4.59)

9 1
z+12°(1-s) ?/o

where smaller contributions from poles further away from the real axis
’ ; x . . .
have been omitted. We obtain G (s,%x) by the inverse Fourier transform

o

g T ~1zx
(" (b,X) | 2" J

8+(S,2) e dz (4.60)

which may be evaluated using Cauchy's Theorem by completing the contour
in the LHP. However, when x is sufficiently large, only the pole of
+ i
g (s,z) with the smallest imaginary part will contribute significantly.
Contributions from other poles will be  exponentially small. Substituting
equation (4.59) into (4.60) we obtain, for ss 1, and x large (i.e.
L L
2‘(l-s)zx/o/w'l),
1 3 L

2° -=2%(1-s)%x/o

e +

+
G (8.,8) ‘= oy

i b n (4.61)

o : - \+ = 2
l'o obtain an expression for G (s,0) for s <1, we consider the

expression for P(s,0), namely
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- LJ __sf(z)

T o 1=8f(z) : (4, 62)
As before for s <1 we expand f(z) about z=0 to obtain
od 1
B(s,0) = o J_w (-s) + 50727 42
1
= . . (4.63)
2°%(1-8) %
Since
2 "
G (s,0) = 1lim G(s,x)
x—*O+
we have from equations (4.43) and (4.63)
L L
Elal) = B@,0=2%1~8)%o » 851, (4.64)
where the numerical constant G(1,0) is given by
1 (o 0]
G(L,0) = - _ﬁj In(1-£(z)) dz . (4.65)
We also note that
d el
i G(s,0) = : P(s,0)
=~  F(0) for s ~0 (4.66)
and
. A for ssgl (4.67)

4b. The Function Gf(s,x)

The expression for Gf(s,O) follows from equations (4.4), (4.13)

and (4.33)

Gf(s,O)

1-+J G+(s,x) dx
()

1+g (s,0)

eh+(s,0)

But since




h'(s,0) = =% In(l-s) (4.48)

we obtain the exact result for all 0<s<1

cf(s,0) = (1—5)‘;é i (4.68)

For x > 0, we introduce the function G(s,x,x') which is the
generating function for a chain which starts at x and ends at x' (>0).

. /3 . ;
Then the GF for a chain starting at x, G (s,x), .is given by

Gf(s,x) = l+—J G(s,x,x") dx' . (4.69)

0

1t is easily seen that G(s,x,x') satisfies the integral equation

G(8,x,x') = sF(x-x')*-sJ F(x'-t) G(s,x,t) dt . (4.70)
0

As before, we take the Fourier transform wrt x' to yield

+ Y - i +

g (s,x,2)+g (s,x,2) = ge *? £(z) +s8f(z) g (8,%,2) -« (4.71)
Using the splitting

"(s,2)
1-sf(z) = YA8a2) (4.18)
Y (8,2)

+
where Y have their usual properties, we obtain
+ + - - ixz r = +
Y (8,2) g (8,%,2) +Y (8,2) & (s,%x,2) = e (y (8,2) -y (s8,2))

= q(8,%,2) (4.72)
Applying the formulae (4.29) and (4.30) we split q(s,x,z) into a sum of
+ \ -
q (s,x,z) and q (s,x,z) which are analytic in the UHP and LHP

respectively and vanishing as }z}-*w in their respective analytic HPs.

Equation (4.72) can then be rearranged to yield

t + + s - =
i (S,Z) 4 (S,X)Z)"q (S,X,Z) q (S,X,Z) -y (S,Z) 24 (S,X,Z)
E(z) (4.73)

which defines an entire function E(z) because the RHS (analytic in the



134

LHP) is now the analytic continuation of the LHS (analytic in the UHP)
F & + +
into the LHP. The asymptotic behaviour (|z|'+W) of vy , g and q give

E(z) »0 as |z| >« which implies E(z) =0. Therefore

+ T )
g (s,x,2) = L-—aXaZ (4.74)

+
Y (s,x)

and it follows from (4.69) that
f i :
Cife ) 1= L1#+g (8,%,0) . (4.75)
From equations (4.31) and (4.48) we know that
+ , +e
Y (s,0) = (1l-s) (4.76)
+ +
so to calculate g (s,x,0) we need only q (s,x,0).

From equations (4.29) and (4.72) we have

UJ—-.6
[ % ixt dt

q (e,2,0) = X (v (s,t) -y (s,0)) S, G

Y
where the contour has been displaced just below the real axis. The poles
of the integrand above the contour are the poles of y-(s,t) in the UHP
and the pole at t=0. For s<l, we can derive an expression for h (s,z)
in a similar manner to the derivation of equation (4.54) for h+(s,z).
(Alternatively, we can deduce this by consldering equations (4.27),

(4.28) and (4.54) for z~0 and s <1.) We get
- 1. 1
h (s,z) = - In(z-1i2°(1-s)?/o)+... (4.78)

which according to equation (4.32) shows that for s g1, vy (s,z) has a
pole at

L 3
z, = i2%(1-s8) %/o . (4.79)
As before, we write for ssl, z~z,~0
y—(s,z) = (4.80)

so that
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B e-h (S,O)

Y-(S,O) ~ ? = ]1- (4-81)

Now for x large, we displace the contour in equation (4.77)
over the poles at t=0 and t =2z, up to z,, the next pole or singularity
of Y-(s,z). The original integral is then the sum of the residues at
t=0 and z, plus the integral along the line Imt = Imz, -6, which is
exponentially small if x is large. Thus q+(s,x,0) can be approximated by
only contributions from the first two poles,

IZOX

+ - - B
q (s,%,0) = (v7(s,0) -7 (8,0)) + =— (4.82)
0
which from equation (4.81) may be rewritten as
+ - i +
q (s,%x,0) = Y (s,0)(1-e%%) -y"(s,0) . (4.83)

And finally from equations (4.74) - (4.76) and (4.79) we obtain

% 5
l-e_2 (1-s) “x/o

1 L
¢ (s,x) = — ,  (ss1, 22(1-s)%x/0>>1) . (4.84)

For s ~0, successive iterations of equation (4.70) yield

G(s,x,x"') = sF(x-x')-+sz'[ F(x'-t) F(x-t) dt
0

whence from (4.69) gives

Gf(s,x) = 1*‘SJ' F(x-x"') dx'+ ... , (s~0) . (4.84a)
0

4e. The Function vy G(s,0[K) at K=0

Since G(s,0|K) is a function of K==|§J only, we may write the

2

two-dimensional BK

operator as

vz:a2 1 3

K oK? K 3K ° (4.85)

In a similar manner to the derivation of equation (4.41) for

+
G (s,O)EEG(s,OIO) we derive
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G(s,0|K) = - -2% J n(1l-sf(¥z2 +K?)) dz . (4.86)

Therefore a differentiation with respect to K yields

= oy
acgsaJKolKl 9 51;[ sf' (V22 +K?) K 4, 4.87)
—® 1 -sf(Vz2 +K2) Vz2 +K?
which gives the result quoted in (3.8), namely
BG(SB,KOIK) 5 - o
K=0

and the relation

1 3G(s,0/K) 1 [T sf'(z) dz
[K oK ]K=O T 2w J_ml-sf(z) z (4.89)

A second differentiation of equation (4.87) gives

32G(s,0|K) 1 r sf'(z) dz
: = . (4.90)
aK K=0 2m } 1-sf(z) =z
Therefore from equations (4.85), (4.87) and (4.90) we have
2 e T sf'(z) dz

Since 1imf'(z)/z=£"(0) =-0? is finite, so for s <1, we can again expand
z=0
the denominator (l-—sf(z)) as before and obtain the approximate

expression

B
v2 G(s,0 o WG BT < 4.92
g 6(s,0[K) |, = - , (ss1) . (4.92)

L
0 (1-8)2
Finally we also require this quantity for s~0. From the
integral equation (4.3) we have by successive iteration

G(s,0|K) = sF(O|K)+... . (4.93)

Therefore

-vf(c(s,olx),l@o = -5V FO|K) (4.94)

K=O+...

Now from equation (2.17)

F(O|K) = Jf(lgl) o= £ d’p (4.95)
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SO

2 s 2 ,2
_VKF(OIK)IK=O J E(le]) o d%p (4.96)
= A* F(0) , (4.97)
where
[ £(lp]) e a’p
¥ o= - (4.98)
[ £l d%

is the "two-dimensional'" variance of the link distribution function

f(|£|) where r is confined to the plane x=0. Therefore for s near zero

2 & - ~
=V G(s,0[K) | o = sAF(O) , (s~0) (4.99)

We have now derived all the results tabulated at the beginning

of this section.

5. POLYMER CONFORMATION AS A FUNCTION OF W

We recall from section 2, the partition function

WGf(s,O)2 ] ’ (2.42)
N

O T A[l ~WG(s,0[0)

where [...]N denotes the coefficient of sN of the Taylor expansion of the

function inside the brackets. From the results of the previous section,

we see that the quantity

f 2
N WG (s,0)
Qiad o7 1-WG(s,0]0)

(5.1)

has two singularities: a branch point or square root singularity at s=1

and a pole at s=s,, where

1-WG(sy,0/0) = 0 . (5.2)

The zero s; nearest the origin of 1-WG(s,y,0/0) is always on
the positive real s axis. This follows from the fact that the CPFs
Gm(0|0), from which the GF G(s,OIO) is formed, are all strictly positive.

For very large W corresponding to the case of a very attractive wall, the
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pole s, is near the origin since G(so,OlO) must tend to zero as W>®, As
W decreases, s, moves away from the origin along the positive real axis.
At a critical value of W==WC, the pole s, coincides with the branch point
at s=1. We can see from equations (5.2) and Table 4.1 that

X 1 |
"¢ T ©@,00 T ©@,0 (3.3)

When W is just bigger than Wc, sy, s1l. For O‘<W<:WC, there is no pole s,
for |s| <1.

(35) h

According to Darboux's Theorem the N'® coefficient in a
Taylor expansion of a function f(s) is given asymptotically by the
coefficient of sN in the dominant term of f(s) about its singularity
nearest the origin. Hence as W changes from W:>WC to W<<WC, the
singulérity of the function, (5.1), nearest the origin changes from the
pole s=s, to the branch point at s=1. The positions of the
singularities in the s-plane are illustrated in Figure 5.1 for four

regimes of interest. We now discuss the conformational characteristics

of the polymer in each regime.

5a. W>>W
c

We first derive an expression for the pole s=s, which is the
singularity of Q(s) nearest the origin. For W very large, we expect

8=89~0. From Table 4.1 we have (s~0)

o]

G(s,0|0) = sF(O)-Fsz-[ F(t)? dt+... (5.4)
0

which from equation (5.2) gives

l-W[soF(O)-Fsz'[ F(t)? dt] = 0 (5.5)

or ° ,
- 1 _ i F(t)
ooty (-3 [ )« 50

to second order in 1/W. Therefore for s~s, we have



So
W>>W, )( +IIIIIIIIII-IIII
s=1
So
Wza2W )G+IIIIIIIIIIIIIIII
c
gs=]
So
W= meessasasz s
g=]

Figure 5.1: The positions of the singularities of the generating
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function for the partition function that are nearest the origin of

the s-plane in the various regimes of W.
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4G(s,,0/0)
l-—WG(s,O{O) = - (8=85)W 3 (5.7)
and the partition function becomes
c* (sg,0)° ?
QN = -— A -F)G(SO,O!O) LS"SO:‘N (508)
L o8
K 3 2
wy A % ey s—(N+%) (5.9)
SG(SO,OIO)} ° ’ y
\ Js )
The number of beads adsorbed is, from equation (3.3)
3 In s,
o)y = = NWT (5.10)
¢ 1 (7 (F))* )
~ N{l 0 L) [F(O)J dtf . (5.11)

Similarly, the mean square spread of adsorbed beads on the wall

is, from equation (3.10),
2

: S \ 6" (59,0) .
3t 6;{'%U“%”°W’hqﬁ 3G (s0,0]0) Ls-aﬂﬁN (3123
L_ s
and from Table 4.1 and equation (5.9) this gives
(p?)y = NA* ., | (5.13)

The density of beads off the wall is obtained from equations
(3.29) ($=0). At s=s , the dominant term comes from the second order

pole in the first term of Therefore

..]N.

[.
f 2
i Jc (54,0) G(s“,xto)g -
RN A B 66,00 {fs—soﬁ}N (3=14)

| 3s J

G(s, ,x|0)?

0?2

. N [F))?
= o [‘ | (5.15)
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to first order in 1/W. Note that to this order in 1/W, equation (3.2) is

satisfied, that is,

N = j n(x) dx + (n) .
0

The centre-of-mass of the polymer, given by equation (3.1), is
2 . L[ [ (5.16)
W 0 F(0) ’ ’

5b. szc

When W is close to but still greater than WC==1/G(1,O) the
dominant singular is still the pole at §=8y; but now s; 1. From
Table 4.1 we can write (ss1)

1 L
G(s,0 0) = —‘71— - 2%(1-8)%/5 . (5.17)
C

Substituting this into equation (5.2), we can solve for So

2 2
. o” |1 _1
So - 1 - 2 {w w} (5-18)

c
for WE:WC. The formal expressions derived for the case w:»>wc still
holds for the various polymer characteristics (n), (p2), etc. provided S,
is not too close to 1 so that contributions from the branch point is
still unimportant. However we must bear in mind that generating

functions from Table 4.1 for the limit s <1 and equation (5.17) should

now be used.

The number of adsorbed beads is now

P beso
(n) = - NW —— (5.10)
No? (1 _1 (5.19)
WoW, W .

and the spread of these beads on the wall is
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N(—‘ch(so,olx)',_ )
2 W R !  1K=0

o
= 2No* . (5.20)
The density of beads off the wall is as before

. 3G (sq ,%|0)*

n(x) = g;‘*zﬂfai;jﬁwﬁj"‘ (5.14)
ds
Since we know G(so,x|0) only for x=0 and x large we derive, using
Table 4.1
Mot (1 1
g ¢
and A R
1 1 Su wc o
= 9 i e e !
n(x) 2N wC W] (5.22)

for x large. Using the expression for n(x) for large x (equation (5.22))

we obtain

j n(x)dx = N .
0

This is consistent with the result (5.19) which shows that although (n)

is of the order N, it vanishes as W approaches wc. That is, to leading

order in W oW the results satisfy the relation
C
J n(x)dx +{(n) = N .
0 L

The centre-of-mass of this density distribution is

b 1
X = (5.23)
2[1 1}

which tends to infinity as W tends to wC from above.
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5¢c. W=W
c

At w==wc the pole s, is coincident with the branch point at
s=1=s;,. The analytic structure of Q(s) in equation (5.1) needs to be

investigated. From Table 4.1 we have (ss1)

)
2°wW "
1-W_ G(s,0[0) = vk § 20 (5.24)
and
f -
G (s,0) = (1-s) A (5.25)
Thus the partition is given by
Ao 1
QN " 1/2 [ 3/2} . (5-26)
2 (1-s) N
From the identity(36)
" al e
(ibgyF e g WNF,(MI.N) S (5.27)
N=g N+ T

which is independent of W at w==wc.

To evaluate the expectation value (n), we must differentiate
the more general expression for QN given by equation (5.1). From

equation (3.3) we have

f 2 i f 2
_ WA WG (s,0)® G(s,0[0) G (s,0)
(ll) QN l: (]_—wG(S’O'O))Z + I_WG(S’OIO)}N . (5.30)

At w==wc the contribution from the second term to the coefficient of s
can be neglected to leading order in N. Therefore from equations (5.24),

(5.25) and (5.29) we have
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1
oy 2
(o LS ATIOTE [(l_ls)z] (5.3)
4wCN2 N
1,2 .
(—24—“—)w—9- N2, (5.32)
c

Similarly, the spread of adsorbed beads on the wall can be obtained from

Table 4.1 and equations (3.10), (5.24) and (5.29)

2
(p?2) = «'/’Tﬁ [(1—3)'5”]N (5.33)
2N *
_ 20°
= : N . (5.34)
The density of beads off from equation (3.29) is (¢ =0)
- £ B 1 f f
n(x) = Al|E (s,0) G(s,x[0)| , 2WG (5,0) G (s,x) G(s,x|0) 5,353
Q) 1-WG(s,0[0) 1-WG(s,x|0) = .

For w==wc and x non-zero, both terms contribute. From the results of

Table 4.1, we have

n(x) =

1 1 2 1
1 ~22%(1-s)?x/a -2"° (1-s)%x/o
P -
Cﬁ{% % e e i (5.36)
N

1 _,‘2
2UN2 (l 5)
The coefficient of sN of a function of the form

1.
N2
(1-s) % © y(1-s) is given in Appendix A. In this case, we use the

result
['-y(l-S)zw
P S B e ey '
t (1-s)? JN
. ] £ 2]
- 2N{}t“-+5) erfct - —— e J , (A.15)
Al
i3
where t = %y N °. Therefore we have
2.8
E ) ,
n(x) = i:ﬂ%—ji- L(Zuz-fl) erfcu - (4u” +%) erfc 2u
) _—t =
N T )1 i (5.37)
VI d
where
g = i = (5.38)
(2N) *
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As discussed in Appendix A, this result holds for (x/0) of the order of

1

NZ

We note that using the result for large x (equation (5.37)) the

result

J n(x)dx = N
0

is consistent with the fact that
L
(n) = O0O(N") << N

for N large, and the relation

J n{x)dx +{(n) = N
0
is again satisfied.

For the density at x=0, we find that the first term in

equation (5.35) is the dominant term and from Table 4.1

1
2
n(0} = Sgl%“%‘[(l~5)"2]N (5.39)
4WSN?
€
&
(2m) 3
we—bfee gN ™~ (5.40)
AWC
The centre-of-mass of the polymer is
x = J xn(x) dx (3.1)
0
B '
_7_,(-2_’2‘_2__ ON? . (5.41)

The "reduced" density

n(x)/((ZNn)Q/uj

is plotted in Figure 5.2.



Density
o
w

| | |

Lot 2.0

Distance

Figure 5.2: The density of beads off the wall at W==WC as a function of

the distance from the wall. The density is in reduced units

o
n(x)/(v21N/o ). The distance is scaled to x/(¥2 oN?).




5d. W< WC

For w«<wc, the singularity of Q(s) nearest the origin is the
branch point at s=1. The results for ss1 in Table 4.1 are now

applicable, i.e.

1-WG(s,0[0) = 1 -+ (5.42)
c
so equation (5.1) for QN becomes
AW TR e
W T ToWA [=s) "y
il
= l—W/w . (5051)
g
The expectation value (n) is then
(n) = —am (5.52)
l-W/WC '

which tends to 1 as W> 0. This is consistent with the original
assumption that led to equation (2.7). That is, at least one bead is
attached to the wall. The mean square end-to-end distance of contacts

on the wall is found to be

-3 . _¥YZ oW RS- T
G
ST
o~ /ﬁ 1 —’w*/w'(" ¥ (3.53)

Since (n) » 0 as W~ 0, <p2) also vanishes in this limit as expected.

When the branch point (s=1) is the dominant singularity the
first term in the general expression for the bead density n(x), equation
(5.35), may be neglected. This leads to

1 1 1 1
fifosp®irisy®x/o -2 3(1-8) *x/
, _ 232 g 2°(1-s) “x/ (1-e (1-s) h/3;1
n(x) = — e (5.54)

O 3/2

Using the result from Appendix A (t = 2y N °)
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|
| 1,,(y) = [e‘Y(l‘S)Q<1—s>‘3’2JN
= 2N [71—17 e-t2 -t erfc tJ (A.14)
we obtain (u=x/(/2N o)
n(x) = —Z-S%E E}—“_ 8 L TS sy derfo 2u)J . (5.55)

We note, as usual,

J n(x)dx = N
0

which is consistent with the relation

J n(x)dx +(n) = N
0

since (n) is of the order unity. The density at x=0 is from equation

(5.35) (retaining both terms)

X W/W : 2(W/W )
— —_—— J ————— s + B DY RT. o N - -1
2(0) 9. 11T=w/W o [ L3S
N | c 2
1 2 - W/wc
T OW_|T-w/iw |° (5.56)
£ 1t c
The centre-of-mass is
25/2 B
X = —— gN? . (5.57)
Al

L
The reduced density n(x)/((ZnN)z/oJ is plotted in Figure 5.3.

6. DISCUSSION

We have calculated four quantities which characterize the
conformation of a long polymer adsorbed at an impenetrable flat surface
as a function of the adsorption energy W: the average number of beads
adsorbed (n); the mean square end-to-end distance of adsorbed beads
(p?); the position of the centre-of-mass of the polymer x; and the

density of beads off the wall n(x). The expressions for these quantities
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Figure 5.3: The density of beads off the wall in regime W<:wc as a

function of the distance from the wall.

The density is in reduced

A |5
units n(x)/{VZHN o). The distance is scaled to x/(/§ UN‘).
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are shown in Table 6.1 for an arbitrary link probability density function
f(|£|). The corresponding results for a polymer with a fixed bond length
a where E(I£i,i—ll) o g G(a-igi-zi_l') are presented in Table 6.2.
As is evident from these tables, the conformational properties of the
polymer differ markedly in the various regimes of W, namely, w:w>wc,
W2fwc, w==wc, W<<wc. For instance, (n) is proportional to N for W->WC,
for w==wc and is independent of N for W<:wc; {n) is a monotonic
increasing function of W. (pz), also a monotonic increasing function of
W, is proportional to N for w;:wc and N}é for w<<wc. On the other hand,
X, a monotonic decreasing function of W, is N independent for w:)wc and

i

is proportional to N? for w;gwc. The density n(x) changes from an

exponential distribution for w:>wc to a peaked distribution for w(:wc.

From these results, a physical picture emerges. For a very
attractive wall WIX>WC, most of the polymer is adsorbed in the train
configuration and in very small loops off the wall. We note that (p?) is
just the mean square radius, Az, if a two-dimensional random walk whose
step-sizes are distributed according to the probability density function
f(\g}). As the wall becomes less attractive, w—»wc, the number of
contacts with the wall decreases; the centre-of-mass of the polymer
moves away from the wall; and the spread of the polymer on the wall
tends to that of the two-dimensional projection to that of the

unrestricted polymer in free space.

As W passes through WC, the number of adsorbed beads decreases
sharply to become independent of N and the bulk of the polymer moves away
1

from the wall, x ~ oN2. These results are illustrated schematically in

Figure 6.1.

The phase transition at w==wc is due to the classical

competition between energy gained on adsorption and the consequent loss



Table 6.1: Expectation values of polymer characteristics in the various regimes of W

(see text) for a general link probability density function E(I'Ei i__ll).

W>>W W>W W=W W<W
c < C e
17 (F)? No® (1 1 LI P’
(n) N[l"wf [F(O)} dx] R 4w L=
0 c c 1 c
)
(o) 2
(p?) | M 2No’ 2 No? _23} 20W
3 m W
\ 1 T_
Y\."
5
o i
X A F(x) ) dx . l 7/2m N%o e (40)
1 W) XF(O)J W 32 Ln, ‘
)
o w&
N [F(x))? No® [1 1 Yar % 1 c
n(x) — ( ] e B e (x=0) —— N “o (x=0) (x=0)
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1 1 . CJ
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(x>>0) - (4t2-+%) erfc 2t - t(erfc t-Qercht)}
2t . —-t* =4t
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(x>>0)
t = x/(0V2N) £ = x/(0v2N)
1 L (7
G(l,OIO) =u - 3;'[ n(l-1£(z)) dz
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Table 6.2: Expectation values of polymer characteristics in various regimes of W

.- .

: - 1
(see text) for the fixed-length bond law f(]{i’i_ll) = Znal 6(a-—|£i—-£i_1]).
W>>W Wz>W W=W W<W
c c c c
‘ 1 =
( a) Nwz [ 1 l) f2ﬂ =75 5 Wl
-3 22 A L2 N 1 - —
L R | S W l\;c W J (3) 4w W
%
2 2 2 2 P - 2N 2aW
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W
c
82 1 1 = an\lé 74 9 2N\1/2
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3 oW ‘{w w] X e (375 (42)
C
( W
2 ( ‘1/2 1 o ﬁ—
v L 2 5 1
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i - et W
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1 1
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Figure 6.1: Schematic representation of the state of the adsorbed polymer as a function of W.
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of configurational entropy. The existence of a critical adsorption

energy was first suggested by Silberberg.(za) Later Rubin(l6’l7) an

(15)

d
DiMarzio and McCrackin derived the critical adsorption energy for
lattice models in terms of the co-ordination number of the lattice type.

As shown in equations (4.65) and (5.3), WC in the continuum model is a

functional of the link distribution function E(IEI)-

For W<:wc, most of the polymer is off the wall. As expected,
the density n(x) is dominated by the tails. Had we required one or both
ends of the polymer to be on the wall, the density distribution would be

quantitatively different. For both ends on the wall and W<iwc

: . 2lip 3
n) = [g] o~ hEX 197 R) (6.1)
and for one end on the wall, W<:wc
n(x) = £2%§l-[erfc(x/o/gN)-erfc(/E x/o/ﬁ)] . (6.2)

These results are respectively the density for a loop nﬁ(x) (3.22) and

for a tail ni(x) (3.18).

Regarding the question of the validity of the diffusion
equation approximation near boundaries, we observe that for N large, we

may pick out the coefficient of sN in G(s,xlO) to obtain (x large)

% jeyxy 2
B X -(x°/2No“)
L 810) = ey (6.3)
It is easily seen that GN(x{O) satisfies the diffusion equation
3G, (x]0) 2 %G, (x|0)
Sml ge PHEE e

oN 2 ox 2
for N and x/o large, but not for small x or small N. This follows from
the fact that although equation (6.3) for GN(x[O) 75 1s the appropriate
solution of the diffusion equation, it does not agree with the exact

value of GN(xiO) at x=0 which can be obtained from G(s,0) (Table 4.1).
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To completely determine GN(xlO) from (6.4) one would need initial or
boundary conditions. However, we cannot use initial conditions at x=0
and N=0 even if they are known because the diffusion equation breaks

down in these regions.

We have considered the conformation of an adsorbed polymer
which does not interact with itself. The next logical step is to
examine the effect of intramolecular interactions in the various
conformational characteristics. Since an ab initio calculation would
soon become intractable, perhaps a solution may be obtained by perturbing
about the non-interacting polymer using a method similar to that

developed by Flory(37)

for studying the excluded volume effect.
Dispersion force theory can then be used to estimate the magnitude of the
excluded volume parameter and its influence on the phase transition.
There are already some attempts at this problem using computer

(38,39) (17,19)

simulation and correlated lattice walk models.

Another important extension of ideas developed here is to
consider the problem of a polymer confined between two adsorbing surfaces.
Some aspects of this problem have already been considered by a number of

authors,(ao—Az) especially with reference to the influence of polymers on

the stability of colloidal systems.(7,43—45)

/. NUMERICAL VALUES OF W FOR SOME
SYSTEMS OF POLYMER/SOLVENT/SUBSTRATE

Before making numerical estimates of the adsorption energy
parameter W, it is worthwhile to recall the assumptions made in deriving
W. We have assumed that the potential energy of the whole polymer is
just the sum of one-body potentials for the beads (monomers). Each bead

interacts independently with the substrate via a one-dimensional
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potential Y(x). The adsorption energy parameter W is defined as

e T
W = J (e b (x) /k -1) dx . (2.3)
0
For situations where dispersion interactions are dominant one
can calculate the value of Y(x). The dispersion interaction energy

between a molecule of frequency dependent polarizability aM(w) in a

solvent and a half-space is (equation (B.9), Appendix B)

‘ P
() ) P a i€ A i
S, w -%r B % 2 +2 M( n) ws( gn) (7.1)
P 8¢ (if )d?® ’
n=0 P=1 S n

Here

e (1€ ) =€ (i€))
CR W TR S (7.2)
Wg ew(lgn)-+€S(lén)

and, € and e, are respectively the frequency dependent relative
permittivity or dielectric constant of the substrate (wall) and the
solvent evaluated at imaginary frequencies igniEiZanT/h with (27h) the
Planck's constant. The prime on the n-sum denotes half-weight for the

n=0 term,

For the purpose of calculating W for organic polymers in
organic solvents, the first term in Gy (P=1) of equation (7.1) is an
adequate representation for V(d). The reasoning for this is as follows.

Along the imaginary frequency axis, the dielectric constant decreases

(46)

monotonically from its static value to unity. Therefore we have the

-

relation ]AWS]-\I. However with non-polar organic materials, € ~ 2-3 and

| <0.2. Further since the static

a more realistic limit is lAws
polarizability uM(O) is of the order of the volume of the molecule (bead),

the first term (P=1) will indeed be a good approximation for V(d)

provided d is larger than the molecular size.
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On the other hand, the dispersion energy given in equation

(7.1) treats the monomer as a polarizable dipole. At small distances,
this approximation is inaccurate as higher multi-pole interactions and
electron overlap effects become important. Since the substrate is, by
assumption, impenetrable, we shall account for the short range
interactions by assuming that there is some distance of closest approach
to the wall b (> 0) for the monomers, and that the dipole approximation
is valid for d zb. Typically this cut-off distance is of the order of

1/3
am(O) .

In view of the above comments, it is clear that the phase space
of the monomer X > 0 corresponds to the region d 2b. Therefore, the
interaction energy Y(x) of the monomer can be taken to be the dispersion

energy V(x+b). Thus W becomes

W = J exp[(A/ka3)-l] dx , (7.3)
b
s i © (i€ ) & (iE )
B o KT o B e (7.4)
n=0 -
The integral can be taken to give
® J
% 1 A
= b . .
W N deisd) QirD) [ka3] #2230

Therefore the calculation of W requires a knowledge of the dielectric

constants at imaginary frequencies. It has been found in work connected

(47)

with the calculation of dispersion forces between macroscopic bodies

that the representation

R? -1
14 (€ Jug )

e(ig) = 1 + (7.6)

is adequate for non-polar organic materials. Here R is taken to be the
refractive index. In principle, wy, should be the Lorentzian relaxation

frequency in the ultra-violet for the bul/ medium., However in the
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absence of detailed spectroscopic data, this is approximated by the first
ionization potential. The polarizability of the monomer is estimated
from the dielectric constants of the polymer Ep using the Claussius-

Mossotti relation

3 ép(i&) -1
m

4mp (Ep(ii)'+2 ’ (7.7)

aM(iE) =

where p is the number density of monomer units.

Using the dielectric and spectroscopic data listed in
Appendix C we calculate the quantity (W/wc) for a number of polymer/
solvent pairs against a glass substrate at 300 °K; we use wc==0.62439a as
tabulated in Table 6.2. We have assumed that the relative permittivity
of glass has the simple representation given by equation (7.6). Clearly
there is some laxitude in the choice of the bond length a and the cut-off
distance b. Following earlier work on the dispersion contribution to

(49

we choose b ~ 2 K. The value a

(51)

surface energies of organic liquids,
is estimated from the linear dimensions of the monomer units. For

polystyrene, we take a to be 4 A and for polyisobutene, a=3 ) (see

Appendix C).

Table 7.1: Values of W/W_ for various polymer/solvent pairs
C

against a glass substrate at 300 °K.

'\ P
olymer v : _
\\\‘\\\ Polystyrene Polyisobutene
Solvent
Cyclohexane 1.49 1.06
Methyl cyclohexane 1.58 1.1
Decalin 0.63 0.50
Benzene 0.42 0.35
Toluene 0.04 0.04
Ethyl benzene 0.19 0.17
Diphenyl ether 0.04 0.04
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With reference to the results in Table 7.1, the consistently
higher values of w/wc for polystyrene is attributed to the larger
polarizability of the phenyl group of the styrene monomer unit. We note
also that for a given polymer and substrate, W/wC decreases (thus
favouring the desorbed state) as the refractive index of the solvent
increases (cf. Table Cl, Appendix C). This is because it is
energetically more favourable for a molecule to be in a region of higher

dielectric permittivity.

Calculations for a metal substrate yield values of W/wC ~ 10°.

Here we used the representation

e(ig) = 1+u;/g2 (7.8)

for the permittivity of a metal. The plasma frequency wp is typically of

(48)

the order of 2 x 10'® rad/sec. The corresponding large values of W/wC
obtained for a metal substrate is due, of course, to the very large
dielectric constant at low frequencies. Although we have neglected
spatially dispersive effects which are important for metallic substrates

at short distances, none the less the large values of W/wC obtained

should be a general characteristic for metallic walls.

On the other hand, for a teflon substrate the values of w/wc
are negative for all polymer solvent pairs, thus strongly favouring the
desorbed state. This can be accounted for by the unusually low value of

the refractive index of teflon as compared with those of the solvents.

The uncertainties in a,b and in the ultra-violet relaxation
frequencies w, mean that the values of w/wc in Table 7.1 must be treated
as approximate only. However dispersion theory does predict values of
w/wc for a glass substrate that are distributed about unity where the

phase transition occurs. This suggests that it might be possible to
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induce adsorption-desorption phase transitions by varying external

conditions.

7a. Temperature Induced Phase Transitions

In Table 7.2 we list W/wC as a function of temperature for
polyisobutene in cyclohexane and in methyl cyclohexane against a glass
substrate. We see that reasonable changes in temperature can bring W/wc
through unity. The temperature dependence of W is due mainly to the 1/T
term in the Boltzmann factor in equation (7.3). Temperature variations
in the dielectric properties of the polymer, solvent or substrate and
the temperature dependence in the frequency summation (equation (7.4))
are all second order effects. To see this, we replace the sum in

equation (7.4) by an integral

and the constant A becomes temperature ''independent'. This procedure

ol g - ; 50
is justified when w, is in the ultra—v1olet.( )

Table 7.2: Values of W/wC as a function of temperature
for polyisobutene in cyclohexane and in methyl

cyclohexane against a glass substrate.

Temperature °K Cyclohexane Methyl Cyclohexane
280 1,21 1.28
300 1430 1.17
320 1.01 1.06
340 0.93 0.98
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7b. Mixed Solvent Effects

From Table 7.1 we see that for polystyrene in methyl
cyclohexane W/WC==1.58, while in decalin W/WC==O.63. This immediately
suggests that by changing the composition of an appropriate mixed solvent
we can take the polymer/solvent/substrate system through the adsorption-
desorption transition point at W/wc==l. In Figure 7.1 W/wC is given as a
function of the volume fraction v of that component of the mixed solvent
which favours adsorption, for three systems. We assume, as a first
approximation, that the excess volume of mixing is negligible and that
the Claussius-Mossotti relation holds. Under these approximations, the
dielectric constant of the mixed solvent o is then

E. =1 Ey =1 Ey ™= 1

il + |——| (1-v) (7.9)
e +2 e, +2| @ |e, +2 ’ :
ms 2

where v is the volume fraction of solvent component 1, and €, and €, are
the permittivities of the two pure components. The existence of a
critical volume fraction vC (w==wc) indicates that solvent induced

adsorption-desorption phase transitions should be experimentally

observable.

In the above calculations, we have used the "fixed-bond"

)= 8(a-|r |) which gives

probability density function f(l£i Li,i=1

si-1
wC==0.62439a (Table 6.2). Clearly had we used another probability
density function, the values of the phase transition temperature and
critical volume fraction which give W/WC==1 would be different. However,
as mentioned earlier the values of W/wC are only approximate, therefore
our particular choice of value for wc should not invalidate the main

conclusions regarding temperature and mixed solvent induced phase

transitions.
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Figure 7.1: W/WC as a function of the volume fraction v of methyl

cyclohexane for the following mixed solvent systems:

(a) Polystyrene in methyl cyclohexane + decalin;

(b) Polystyrene in methyl cyclohexane + benzene;

(c) Polyisobutene in mehtyl cyclyhexane + decalin

against a glass substrate at 300 °K.
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APPENDIX A

MATHEMATICS OF FINDING THE COEFFICIENT OF SN

; . N
We wish to derive expressions for the coefficient of s for

functions of the form

1
2
’ y(1-s)

(1-s)”

We designate this coefficient by

Ia(y)

> )

X
AR
1 § ds e Y(1-8)
21mi SN+l (l—s)u

where the contour excludes all but the (N+1) order pole at s =0.

We first consider

1

gl ]l=g) *

Bthiom e T 40 e
1 P
- [coshy(l—s)z]N - [SiIﬁly(l-S)z]N . (A.1)
Since
L - '
coshy(l-s)? = X (2;). y U (1-s)™
m=0 '

: . . N
the terms for which m <N do not contribute to the coefficient of s . For
y sufficiently small, contributions from the remaining terms (m2>N) will
1

also be negligible and a sufficient condition for this is y ~ N%  Now we

can expand the sinh term as



Using the reflection formula

and from the duplication formula

Nt 2mt1
. . i 4 s
sinhy(l-s) " = fo Fomz) (17s)

o5} m+ oo N

e st 5 (=) T'(m+3/2)
r) —
o M(au2) T T(H1)T(m - N+3/2)
(36)

2 _sinmz |
Dll-z) | i r'(z)
we obtain
N-m-1
1 R 3 i —
F{]l ~ (Nrm—s)) " I (N-m~%2)

(36)

Il
3
[N}

[ (z+3)

we get

ﬂ% 2-(2m+l) ['(2(2mt]1)

I'(mHl+s) = I (m+1)

Substituting (A.4) and (A.5) into (A.3) we get

N

. = 2m+1
'-Sinhy(l—s)% = 5w SN D (-fn(y/Z) n I' (N-m-"3)
N=0 sl Jm T(N+1) T (mt+l)
therefore
~-[sinh (1—5)1/2] _ Y v GH0" T (-m)
ol N 2~ T(utl) T(N+D)
m=0
(36)

Now for z large

AT (2ﬂ)1/2(l+0(l/z) + ...

hence for N>>1

TEREB) % B-1 o
F(NFL) N i N B .
Therefore, if y is sufficiently small, then
“[sinhy(1-8) 7] = ——tyrr p AN
sinhy N  2/7 N3/? B [ (mt+1)

b
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(A.2)

(A.

(A.

(A.

(A.

(A.

(A.

(A.

3)

4)

5)

6)

7)

8)

9)
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Equation (A.9) holds provided we can replace I'(N-m-%)/T(N+1l) by
N_(mj+3/2) for all m. However this replacement is valid only when m <<N.
But if when mz N, the term (y2/4)m/F(m+l) becomes sufficiently small so
that the remaining part of the m-series is negligible anyway then the

approximation invoked in deriving equation (A.9) will be valid. That is

we require

2 m
deda) =
TR | when m~N

1

which implies y ~ N°. Therefore the contribution from the term

L
coshy(l—s)2 is indeed negligible.

Returning to equation (A.l), we have

3 y? ~y /4N
Is(y) = YR T e (A.10)
I%(Y) g [ IO(Y') dy' (A.11)
J
2
A e A (A.12)
/T N2
and
Liiy)y = [ I (y") dy'
) 2
y
1/,
= erfc(y/2N%) , (A.13)
where erfc(x) is the complementary error funccion.(36) Integrating
again, we have
L 08, 8 [ L (y") dy'
Y
1.
2 oy 2 L
= gy:_—'e y /4N-y erfc(y/2N%) (A.14)

v

and

L {y) J I, (y") dy'

b §

o

2
4N -

. 2
erfe(y/2N?) - ~—Ji—7-e Y /4§} . (A.15)

2/ N2
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APPENDIX B

DISPERSION INTERACTION BETWEEN AN

ISOTROPIC POINT DIPOLE AND A FLAT SURFACE

We consider the non-retarded dispersion interaction energy
between an isotropic point dipole of polarizability a(w), immersed in a
solvent of dielectric constant es(w), and a wall of dielectric constant

aw(w) at a distance d away.

(53=56) by a number of

(57)

A similar problem has previously been considered,
authors. The effect of a finite size dipole has also been studied
but the algebra involved in obtaining the next correction term is
extremely cumbersome.

We shall adopt the van Kampen normal mode formalism where the

P ) ; L (58-60)
interaction energy is given by

V(d) = kT Z' log D(it_;d) , (B.1)

0

™4 8

n
where D(i&n;d) is the secular determinant for allowed modes evaluated at

imaginary frequencies i€n==in(2ﬂkT/h), where k is the Boltzmann constant,
T the absolute temperature and (2mh) the Planck's constant. The prime on
the summation sign means that the n=0 term must be multiplied by %.

D(ign;d) is derived as follows.
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The dipole moment for the dipole at r due to an electric field
E(r) is

p(x) = aE(r) (B.2)
while the field at r' due to a dipole at r is

Bl(z') = g(g',r) p(r) . (B.3)

D(i&n;g) = lim Ll'ﬂg(i"E)l . (B.4)

We note that the Green function Q contains a term for the self-
interaction of the dipole. Since we are only interested in the
interaction between the dipole and the wall we shall not include this

term in (B.4).
Now G(r,r') is given by
G(x,x') = =-V'G(L,r') , (B.5)

where G(r,£') is the solution of

VG (r,r') = -%Tld(r—r') (B.6)

S
. g aG :
subject to the usual boundary conditions, namely, G, € 5n continuous

across a dielectric discontinuity. The solution of equation (B.6) for

this problem is

G(r,r") = = b, LGx=x) +(y=y)? * (e +2) 170+ e

After some straightforward algebra we obtain (neglecting the

self-energy term)

& { 1 0 O
g(E’E) 3 SEWZB 0 1 0 > r= (O)O,d) s (B.7)
¥ t 0 0 2

where Aws==(gw-es)/(uw-+es). Inserting equation (B.7) into (B.1l) and



(B.4) we get

V(d)

@ qu
kT 2Z2' Inil|l - -
g
n=0 8bsd
< kT, B & é (2" + 2)
n=0 m=1
@ al
o~ kT E wS 3
g |28,4° 64

al
wSs

S

(B.8)

(B.9)

(B.10)
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APPENDIX C

DATA FOR CALCULATING THE

ABSORPTION ENERGY PARAMETER W

The dielectric and spectroscopic data for the polymer, solvents
and substrates are listed below in Table Cl. The absorption frequency uw,
is taken to be the gaseous first ionization potential of molecules of the

solvent or monomer units of polymers.

The density of monomer unit p (see equation (7.10)) and the

bond length a for each polymer is obtained as follows:

Polyisobutene

CT3 // C}|13 \\ CT’!
—cylz—(l:—cug—(l:—gzﬂz—f—cy{z—
CH, . CH, CH,

The repeating unit is taken to be C,H; which has molecular weight 56.
The C-C bond distance is 1.54 A and the density of polyisobutene is
0.79 gm/cc. Therefore we taken the "bond" length a to be 3 A and the

density of monomer units to be
p = (6.023x10%%) x (0.79) * ['éléJ

8.51 x 10%! cc™!
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Polystyrene

© ©
| |
— CH, — CH — CH; — CH —CH, — CH — CH, —

i v l {L
| . @ |

-~ -

’ The repeat unit is CgHg of molecular weight 104. It is approximated by a
| cylinder of diameter 3 & and length 5 X. This has the same volume as a

I

i sphere of diameter 4 &. We shall take this as a '"bond" length a. The

density of polystyrene is 1.07 gm/cc. This means that the density of

monomer units is

©
I

(6.023 x 10*3) x (1.07) x {T(ITZ}

6.08 x 10%! cc!

The data contained in this Appendix are obtained from

references (61) to (64).

Table C1
-
Material Refractive Indices Absorptién ol e

in eV
Cyclohexane 1.43 9.80
Methyl Cyclohexane 1.42 9.85
Decalin 1.48 9.61
Benzene fsDl 9.24
Toluene .57 d.82
Ethyl Benzene 1,35 8.76
Diphenyl Ether 157 8.82
Polystyrene 1.55 8.47
Polyisobutene 1.49 9.23
Glass 1.54 9.90
Teflon 1,30 12.00
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11.

125

13

14.

155

l16.

17.

18.

19.

20,
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VAN DER WAALS AND DYNAMICAL INTERACTIONS



——

CHAPTER 1

TWO- AND THREE-BODY INTERACTIONS BETWEEN OPTICALLY

ACTIVE MOLECULES - A SEMI-CLASSICAL APPROACH
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1. INTRODUCTION

The phenomenon of optical activity has been observed as early

(1)

as 1811 when Arago discovered that quartz rotates the polarization of

linearly polarized light that is directed along its optic axis. A

(2)

similar effect was also noted by Biot in certain liquids.

The optical activity of a medium refers to the phenomenon of
optical rotation and circular dichroism associated with light propagation

(3)

through the medium. Both effects arise from differences in the
response of a medium to iight of different polarization states. In
optical rotation, the plane of polarization of linearly polarized light
is rotated because the left and right circularly polarized components
have different refractive indices and hence different phase velocities.
Positive rotation and the direction of propagation is related by the left
hand screw. In circular dichroism, the absorption coefficients of left

and right circularly polarized light are different so that linearly

polarized light become elliptically polanrized.Jr

In crystals such as quartz, the spatial arrangement of atoms or
molecules account for optical rotation. However, in media without
special symmetry or long-range ordering, such as liquids (e.g. in sugar
solutions the rotation amounts to tens of degrees per decimetre), the
optical activity must be due to intrinsic properties of the constituent

(4-11)

molecules.

Linearly polarized light can always be considered as a superposition
of a right circularly polarized wave with a phase el(S and a left

circularly polarized wave with phase e =~ . See reference (54) for a
P

detailed discussion.
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