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We introduce a new basis function (the spherical Gaussian) for electronic structure calculations
on spheres of any dimension D. We find general expressions for the one- and two-electron inte-
grals and propose an efficient computational algorithm incorporating the Cauchy-Schwarz bound.
Using numerical calculations for the D = 2 case, we show that spherical Gaussians are more
efficient than spherical harmonics when the electrons are strongly localized. C 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4903984]

I. INTRODUCTION

Consider electronic structure calculations in which the
electrons move in D-dimensional Cartesian space RD. If the
molecular orbitals (MOs) are delocalized throughout space,
the plane waves1

qk(r)= exp(ik ·r), r ∈RD (1)

form a good basis, because the product of two is a third

qk1(r)qk2(r)= qk1+k2(r). (2)

If the MOs are localized, the Cartesian Gaussians2

gA
α(r)= exp(−α|r−A|2), r ∈RD (3)

are effective, again because the product of two is a third

gA
α(r)gB

β(r)=KgP
α+β(r), (4)

K = exp(−αβ |A−B|2/(α+ β)), (5)
P= (αA+ βB)/(α+ β). (6)

Now consider calculations3–10 in which the electrons
move on the D-dimensional sphere SD, i.e., on the surface of
a (D+1)-dimensional unit ball. If the average interelectronic
separation rs is small, the MOs are delocalized over the sphere
and the (hyper)spherical harmonics11

Qk,K(r)=Yk,K(r), r ∈ SD (7)

(where K is a composite index) provide a useful basis because
they are single-valued and the product of two of these functions
is a finite sum of several others,

Qk1,K1(r)Qk2,K2(r)=

k


K

ck,KQk,K(r), (8)

where ck,K is a generalized Clebsch-Gordan coefficient.
However, if rs is large and the MOs are localized, what
are good basis functions?

In this paper, we propose that spherical Gaussian
functions (SGFs) are a natural basis set for localized MOs
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on a sphere. In Sec. II, we define SGFs and show that the
product of two is a third. In Sec. III, we resolve the Coulomb
operator on a sphere and use this to derive expressions for
integrals over SGFs on the unit sphere. Section IV discusses
implementation details of our integral formulae and Sec. V
presents some numerical results for Wigner molecules on a
2-sphere. Atomic units are used throughout.

II. SPHERICAL GAUSSIAN FUNCTIONS

The normalized SGF is

GA
α(r)= exp(αA ·r)

2π(π/α)λIλ(2α)
, r ∈ SD (9)

where A ∈ SD is a fixed center, α ≥ 0 is a fixed exponent, Iλ is
a modified Bessel function12 and

λ= (D−1)/2. (10)

If we define u = r−A then, for a unit sphere, we have u2

= 2(1−A · r) and GA
α(r)∝ exp

�
α(1−u2/2)�, therefore, decays

as a Cartesian Gaussian in u. (See Fig. 1). The SGF is
single-valued and smooth and decays from a maximum at
r=A to a minimum at r=−A. If α is small, the SGF is almost
constant over the sphere; if α is large, the SGF is strongly
peaked around A. For this reason, it is a natural basis function
for a localized MO on a sphere.

The product of two SGFs is a third SGF, because

exp(αA ·r)exp(βB ·r)= exp(ζP ·r), (11)

ζ =


α2+ β2+2αβcos θ, (12)

P= (αA+ βB)/ζ, (13)

where cosθ =A ·B. (See Fig. 1.)

III. INTEGRALS OVER SPHERICAL GAUSSIANS

The hyperspherical harmonic addition theorem13 for
points on the unit D-sphere that subtend an angle ω is

0021-9606/2014/141(24)/244102/4/$30.00 141, 244102-1 © 2014 AIP Publishing LLC
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FIG. 1. An example of the SGF product rule on the unit ring, where α = 25,
A = (cos[π/3], sin[π/3]), β = 50 and B = (cos π, sin π) yields ζ = 25

√
3

and P = (cos[5π/6], sin[5π/6]).

Cλn(cos ω)= 2π
n+λ

πλ

Γ(λ)

K

Y ∗n,K(r1)Yn,K(r2), (14)

where Cλn is a Gegenbauer polynomial and Γ is the Gamma
function.12 The resolution of the Coulomb operator on the
D-sphere is therefore

r−1
12 = (2−2cos ω)−1/2

=

∞
n=0


(2−2cos ω)−1/2|Cλn(cos ω)�


Cλn(cos ω)|Cλn(cos ω)� Cλn(cos ω)

=
4λΓ(λ)2

2π

∞
n=0

Γ
�
n+ 1

2

�(n+λ)
Γ
�
n+ 1

2 +2λ
� Cλn(cos ω)

= (4π)λ
∞
n=0

Γ
�
n+ 1

2

�
Γ(λ)

Γ
�
n+ 1

2 +2λ
�

K

Y ∗n,K(r1)Yn,K(r2). (15)

The product rule (11) yields the overlap integral

(
GA

α |GB
β

)
=

Iλ(ζ)/ζλ
Iλ(2α)Iλ(2β)/(4αβ)λ (16)

and re-normalized kinetic integral (with T̂ ≡−∇2/2)

(
GA

α

�
T̂
�
GB

β

)(
GA

α |GB
β

) = Iλ+1(ζ)
Iλ(ζ)

(2λ+1)αβcosθ
2ζ

− Iλ+2(ζ)
Iλ(ζ)

(αβsinθ)2
2ζ2 . (17)

Using the Coulomb resolution (15), it can be shown that the
re-normalized electron repulsion integral (ERI), in chemist’s
notation,14 is(

GA
αGB

β |GC
γGD

δ

)(
GA

α |GB
β

) �
GC

γ |GD
δ

� =
4λΓ(λ)2

2π

∞
n=0

Γ
�
n+ 1

2

�(n+λ)
Γ
�
n+ 1

2 +2λ
�

× In+λ(ζ)
Iλ(ζ)

In+λ(η)
Iλ(η) Cλn(cos χ), (18)

where η and Q are ket analogs of ζ and P, respectively, and
cos χ = P ·Q. Special cases of these formulae for D = 1 (a
ring), D = 2 (a normal sphere), and D = 3 (a glome) are given
in Table I. (It should be noted that the ERI for D = 1 is the
finite part of an infinite quantity10).

IV. COMPUTATIONAL EFFICIENCY

In a calculation using N SGFs, computing the non-
negligible ERIs is often the most time-consuming step and,
for efficiency, one should use both two-center and four-center
cutoffs.15 The Cauchy-Schwarz bound16,17(

GA
αGB

β |GC
γGD

δ

)
≤ ZαβZγδ (19)

is particularly useful because the required factors

Zαβ = (GA
αGB

β |GA
αGB

β)1/2

=

(
GA

α |GB
β

)
Iλ(ζ)/ζλ


1F2

�
λ+ 1

2 ,λ+1,2λ+ 1
2 ,ζ

2
�

2λ Γ
�
2λ+ 1

2

�√
π

(20)

(where 1F2 is the generalized hypergeometric function12) can
be found in closed form. For example, for D = 2,

Zαβ =

(
GA

α |GB
β

)
i0(ζ)


π

2
L0(2ζ)

2ζ
, (21)

where L0 is a modified Struve function.12

In practice, the sum in (18) must be truncated after M
terms but this is not problematic because the series converges
rapidly.

TABLE I. Overlap, kinetic, and electron repulsion integralsa over SGFs on the unit D-sphere.

D
(
GA

α |GB
β

) (
GA

α

�
T̂
�
GB

β

)
/
(
GA

α |GB
β

) (
GA

αG
B
β |GC

γG
D
δ

)
/
(
GA

α |GB
β

)
/
(
GC

γ |GD
δ

)
1

I0(ζ)
I0(2α)I0(2β)

I1(ζ)
I0(ζ)

αβ cos θ
2ζ

− I2(ζ)
I0(ζ)

(αβ sin θ)2
2ζ2 − 4

π

∞
n=1

In(ζ)
I0(ζ)

In(η)
I0(η) snTn(cos χ)

2
i0(ζ)

i0(2α)i0(2β)
i1(ζ)
i0(ζ)

αβ cos θ
ζ

− i2(ζ)
i0(ζ)

(αβ sin θ)2
2ζ2

∞
n=0

in(ζ)
i0(ζ)

in(η)
i0(η) Pn(cos χ)

3
I1(ζ)/ζ

I1(2α)I1(2β)/(4αβ)
I2(ζ)
I1(ζ)

3αβ cos θ
2ζ

− I3(ζ)
I1(ζ)

(αβ sin θ)2
2ζ2

2
π

∞
n=1

In(ζ)
I1(ζ)

In(η)
I1(η)

nUn−1(cos χ)
n2 − 1/4

a in is a modified spherical Bessel function, Pn is a Legendre polynomial, Tn and Un are Chebyshev polynomials12 and
sn =

n
p=1(2p − 1)−1 is a harmonic number.
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In summary, we recommend the following algorithm:
1: npairs ← 0
2: for i = 1,N do
3: for j = i,N do
4: if (Gi |G j) > threshold then
5: npairs ← npairs + 1
6: Compute In+λ(ζ)/Iλ(ζ) for 0 ≤ n ≤M

7: Compute Ti j = (Gi |T̂ |G j)
8: Compute Zi j =

(GiG j |GiG j)
9: end if

10: end for
11: end for
12: for i j = 1,npairs do
13: for kl = i j ,npairs do
14: if Zi jZkl > threshold then
15: Compute (GiG j |GkGl)
16: end if
17: end for
18: end for

The Gegenbauer polynomials needed in step 15 (see Table I)
should be found by forward recursion, e.g.,

Tn(z)= 2zTn−1(z)−Tn−2(z), (22)

Pn(z)= 2n−1
n

zPn−1(z)− n−1
n

Pn−2(z), (23)

Un(z)= 2zUn−1(z)−Un−2(z). (24)

V. NUMERICAL RESULTS

In 1904, J. J. Thomson asked18 what arrangement of n
identical charges on a sphere minimizes their electrostatic
energy E0. This deceptively simple question and its various
generalizations have led to much work19 and, although rigorous
mathematical proofs are rare,20 careful numerical investiga-
tions21 have provided optimal or near-optimal arrangements
for many values of n.

Thirty years later, Wigner discovered22 that a low-density
electron gas will spontaneously “crystallize”: each electron
moving with small amplitude around a lattice site in what is
now called a “Wigner crystal” (or, in case of a finite number
of particles, a Wigner molecule). Such crystals have also been

observed for electrons confined within harmonic wells,23–27

cubes,28 squares,29 and spheres.3

The exact energy of a Wigner molecule can be approxi-
mated by the sum of its Thomson energy E0 and the harmonic
zero-point energy E1 of the electrons as they vibrate around the
lattice sites.30 These vibrations can be classified according to
their irreducible representations Γvib within the point group of
the Thomson lattice31 (see Table II).

To illustrate the usefulness of SGFs, we have studied n
same-spin electrons on a 2-sphere with radius R and Wigner-
Seitz radius rs = R

√
2= 100, for seven n values.

We first consider n = 2, for which the Thomson lattice
consists of points at the north and south poles of the sphere.
If we place SGFs with exponent α at each pole and minimize
the Hartree-Fock (HF) energy14 with respect to α, we obtain
the minimal-basis energy

Eα
HF= 0.008 270. (25)

Adding a second SGF (with exponent β) at each pole and
optimizing with respect to both exponents yields the split-
valence energy

Eα,β
HF = 0.008 263. (26)

This energy, which is obtained using only NG = 4 SGFs,
can also be obtained using a spherical harmonic basis, but
only by using harmonics with 0 ≤ ℓ ≤ 5, of which there are
NY = (5+ 1)2 = 36. This example reveals how much more
efficient SGFs are than spherical harmonics for problems in
which the MOs are strongly localized. It can be shown3 that
the exact energy is

E = 0.007 993, (27)

which implies that the reduced (i.e., per electron) correlation
energy14 is Ēc =−0.135 mEh.

We have performed analogous calculations for all values
of n where the Thomson lattice sites are equivalent. It turns
out that there are seven such cases and the results for n = 2, 3,
4, 6, 8, 12, 24 are given in Table II.

Although the Wigner-Seitz radius (the average distance
between neighboring electrons) is rs = 100 in all cases, we note

TABLE II. Thomson lattices, point groups, vibrational representations Γvib, Wigner energiesa E0 and E1, optimal single-zeta exponents α, double-zeta HF
energies EHF, exact energies E , and reduced correlation energies Ēc (all in mEh) for n same-spin electrons on a 2-sphere with Seitz radius rs = 2R/

√
n = 100.

The final two rows give the number NG of spherical Gaussians and number NY of spherical harmonics required to achieve EHF.

n 2 3 4 6 8 12 24
Lattice Diameter Triangle Tetrahedron Octahedron Anti-cube Icosahedron Snub cube
Point group D∞h D3h Td Oh D4d Ih O

Γvib Πu A′′2 + E′ E + T2 T2g + A1 + B1 + B2+ Gg + Hg + 2A1 + 2A2+

T1u + T2u 2E1 + 2E2 + E3 T1u +Gu + Hu 4E + 5T1 + 6T2

E0 7.071 20.000 36.742 81.529 139.125 283.856 911.811
E0 + E1 7.912 21.525 39.125 85.573 144.727 292.832 930.387
α 0.050 0.071 0.084 0.107 0.127 0.156 0.227
EHF 8.263 22.194 39.822 86.438 145.929 294.256 933.275
E 7.993 21.589 39.102 — — — —
−Ēc 0.135 0.202 0.180 ∼0.14 ∼0.15 ∼0.12 ∼0.12
NG 2 6 8 12 16 24 48
NY 36 36 81 196 144 ≥225 ≥225

aE0 is the Coulomb energy of the Thomson lattice; E1 is the harmonic zero-point vibrational energy of the lattice.
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that the minimal-basis exponent α grows, i.e., the electrons
become more localized, as n increases.

For n ≥ 6, we have not been able to calculate the exact
energy E, so we have estimated the reduced correlation
energies in these cases using E ≈ E0+E1. The resulting Ēc

values appear to decrease slowly with n.
Finally, we note that the superior efficiency of SGFs,

compared with spherical harmonics, is observed for all n values
that we have considered. In each case, the number NY of spher-
ical harmonics required to achieve the HF energy in Table II
was an order of magnitude larger than the number NG of SGFs.
In fact, for n= 12 and n= 24, not even 196 spherical harmonics
(i.e., 0 ≤ ℓ ≤ 13) were able to match the energy of the split-
valence SGF basis.

VI. CONCLUDING REMARKS

Cartesian Gaussian basis functions, which are widely used
in quantum chemical calculations in RD, can be successfully
generalized to SGFs for calculations on the sphere SD. We
have derived formulae for the required overlap, kinetic energy,
and electron repulsion integrals and the worst of these involves
a rapidly converging infinite series.

In quantum chemical calculations in RD, it is common
to use both s-type Cartesian Gaussians (3) and Gaussians of
higher angular momentum (i.e., p-type and d-type). Integrals
over these higher functions can be obtained2,15 from the funda-
mental integrals over s-type functions by differentiating with
respect to the Cartesian coordinates of the Gaussian center.
In a similar way, if desired, one can obtain higher SGFs, and
their integrals, by differentiating (9), (16), (17), and (18) with
respect to the Cartesian coordinates of A, B, C, and/or D.

We are using SGFs in a systematic study of electrons on
2-spheres and 3-spheres and will report our results elsewhere.
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