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t -1 , 

s t s t 

[s,t J s s 

[S,T] sgp{[s,t] | s e S , t e T ] 

Z(G) the centre of G 
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IHTRODUCTIuN 

In this thesis seven:! different problems concerning 

free groups are tackled. If there is a central theme^ it is 

provided not hy the problems tackled so much as by the method 

of solution. This is v;ith the exception of the last half of 

Chapter v/hich is something of a digression. 

Let 0 be a homomorphism of the group H onto the group 

G- , then 0 maps every set of generators of H onto a set of 

generators of C- . On the other handj simple examples shov/ that 

a set of generators of G need not bo the image under d of 

a set of generators of H . A set of generators of & which 

does have this property is said to have P(0) . Most of the 

problems tackled in this thesis are reduced to a problem of 

whether of not a certain set of generators of a group has p(0 ) 

for particular homomorphisms 9 . If Ker Q is finite, then 

Gaschiitz [6] has shown that a set of generators of G has 

p(0) provided only that the set has at least as many elements 

as a minimal set of generators of H . No such simple crit-

erion exists if Ker© is infinite. However a necessary con-

dition can be found if the factor group of H by its derived 



group is free abelian of rank n , where n is the minimal 

number of generators of H . This result is applied to give 

most of the main results of the thesis. 

Let TC be a fixed homomorphism of a free group of rank n 

onto a group G , then all the sets of n generators of G 

having PCng) , for some automorphism 3 of G j form a 

T-system. T-systems were introduced by B . H . Neumann and 

H . Neumann [14]: they are important in the study of charact-

eristic subgroups of free groups. The method I have outlined 

above provides a new way of distinguishing between the T-systems 

of a group. This is described in Chapter 2. 

In Chapter 3, groups G and H are constructed such that 

G is a homomorphic image of the n-generator group H and such 

that G has a set of n generators which does not have P(0) 

for any homomorphism 0 of H onto G . This provides a 

negative answer to a question raised by the Neumanns ([14], 

Problem 7.32) o A related question from [14] concerning the 

hypercharacteristic subgroups of free groups is also answered 

negatively. 

Let R and S be normal subgroups of the finitely gen-

erated free group F . If f/r and P/s are isomorphic and 

the derived group of f/r is finite, then the problem of 

whether p/Rn[p5P] and p/sn[P5i] are isomorphic can be 
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reduced to the problem of whether or not a particular set of 

generators of e/r has P(0) for any horaoraorphism 0 of 

F/Rn[F,P] onto P/R • This latter problem, and hence the 

original problem^ is almost completely solved in Chapter 4. 

Some results on the 1-systems of various soluble groups are 

also proved in Chapter 4. 

Chapter 5 concerns the properties of the group P/V(R) , 

where F is a free group, and V(R) is a word subgroup of 

the normal subgroup R of P , The problem of whether r/v(o) 

is isomorphic to P/V(R) can again be reduced to the sort of 

problem discussed above, if suitable restrictions are placed on 

P/R and v . The results obtained on this topic are given in 

the first half of the chapter. 

The residual finiteness of a group G cannot in general 

be deduced from the residual finiteness of a normal subgroup 

N and its factor group . However Baumslag [1] has shown 

that P/V(R) is residually finite if P/R and R/V^R) are 

residually finite. A new proof of this result is given in 

Chapter 5. It is shov/n that a subgroup topology of f̂ /R (in 

the sense of [3]) can be converted to a subgroup topology of 

?/V(R) in a simple way. jiaumslag's result follows fairly easily, 
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CHAPTr^R 1 

Introduction 

This chapter provides a background of notation and results 

that are used in this thesis. Most of the definitions and 

results come from the ITeuraanns' paper [14]. iiowever, I claim 

some originality for the treatment of ''n-transf ormations''. 

Some confusion about these mappings appears to exist in the above 

work, particularly in §4; Satz 4.6 is in fact trivially true 

(see Lemma 1.2). 

n-vectors 

An ordered set of n elements of a group G- is called 

an n-vector of G ; n-vectors will be denoted by small letters 

with a double underline, e.^'. g, h. If g is an n-vector, then 

the ith component of g is denoted by g^ s thus 

I = (s-,9 gg? g^^ ° 

The set of all n-vectors of G is denoted by (n,G) . If 0 

is a homomorphism and N a normal subgroup of G , then 

^ = ggS? •••5 s^e) 

and 

P = s^') 

are n-vectors of Gd , g/w respectively. If a e G , then 

_ a _ / a a\ 
g - ? g2? •••9 J • 
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If sgp{g} = & 5 then g is called a generating n-vector. 

The sot of all generating n-veotors of G- is denoted by [njG] 

Free groups 

Throughout, v/ill d'note the free group of rank n 

with generating n--vector z ; i.e.. 

If g is an n-voctor of a group G 5 there is a unique homo-

morphism of into Q such that = g ( [9] j p.93); 

Ker cp is called the relation grou;) of g and is denoted by 
i 

R(|) . Clearly ]?yR(|) s sgp{g} . 

Word mappings 

The map-oings j. , i = 1, ... , are defined as follows 1 

Dom 0 . 
1 

(S i ^ some group G , K ^ i} 

= Si • 

Word me^ppings are defined as follows:-

(a) Dg? ••• mappings 

- 1 

(b) if w 5 D are word mappings, then so is an: 

where 

Dom (jjo ' = fom w fl f̂ orn 

gu)\j ' = (gw;(e\3) '' • 
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- 1 - 1 
Thus ^ word mapping, where 

. . .-1 .-1 - 1 - 1 , , 
SD^Jg^l " §^§2^1 ' i ^ ' k ^ 2 . 

Lemma 1.1. Let w be a word mapping and 9 a homo-

morphism of G . Then gw0 = g0w for every g € (n,G) fl Com w 

(Kote that on the left-hand side of this equation Q acts on 

a single element, while on the right it acts on an n-vector.) 

Proof. This is a simple application of the homomorphism 

property of Q 

n-transformations 

Let w^ 5 cj^j . - • ? OĴ  he word mappings such that 

C Dom u)̂  , i =: 1, 2, . . . , n , then define a, to be 

the mapping 

Dom 0! = (g I g € (n^G) , for some group G} 

§a = ° 

If xQ: is a generating n-vector of , then (X is called 

an n-transformation. 

Lemma 1.2. Let a be an n-transformation and 0 a 

homomorphism of G , then 

gas = ^ea , I € (n^G) . 

Proof. The lemma follows immediately from Lemma 1.1. 
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L_e_mm_a l o ° An n-transformation is uniquely determined by 

the way it acts on the generating n-vector x of . 

Proof. Let O;, a' be n-transf ormations such that 

xa = xd , 

then for every n-vector g of an arbitrary group G- , 

ga x"? cc = = = = ga' . 

Thus a = a' , and the lemma is proved. 

The product a a ' of two n-transf ormations a, a' is 

defined by 

§(aa^) = (§a)a' , § e (n,G) . 

Theorem 1.4. The n-transformations with the above 

multiplication form a group isomorphic to • 

Pro_qf. firstly it will be shown that m ' is an n-trans-

formation if 0! and CX' are n-transf ormations. By definition 

xa is a generating n-vector of , it is therefore also a set 

of free generators of F̂ ^ (see [9], p.109). Thus there is an 

automorphism r of F^ such that xy = xa • Now, by Lemma 1.2, 

= xa' 

which generates F̂ ^ . Therefore (xa)a' generates F^ . 

Clearly there is an n-transf ormation a such that x ^ = (xa)a' ^ 



and, by applying Cp to both sides and repeated use of Lemma 1.2. 

it follows that ga* = (gQ;)a' for every n-vector g = There-

fore a a ' is an n-transformation. 

It will be shown that there is a 1-1 mapping p of 

onto the class of all n-transformations, and 

(r-ir2^p = r^pr2p 

for every T., ) • This ensures that the n-transform~ 
1 dl ^ ll 

ations form a group, and in fact suffices to prove the theorem. 

It has been seen that to every n-transformation a there 

IS an automorphism T of such that xO! = xr • Gonversely, 

to every automoriDhism r of P there is an n-transf ormation 
n 

a such that xa = x y > But by Lemma 1.3, this a is unique. 

Therefore a 1-1 mapping p of onto the set of all 

n-transformations can be defined such that 

- 1 

r p = a • 

Let T y To ^ ' ^ ^ r ) ' 

But by Lemma 1.2, 

(xr2p)r"' = (xrj')r2p = (xr.|P)r2p = x(r^pr2p) ? 

and since (r^r2)p and r^ PT^P are both n-transformations. 
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it follows from Lemma 1.3 that { r^T,^)^ = T^PrgP • 

Let K denote the group of all n-transformations. n 

Lemma 1.5- Every n-transformation a acts as a permutation 

on [n,G] . 
-1 

Proof • Since a has an inverse Oi , it suffices to 

prove that [n,G]cs; C [n?C-] » Let g e [n^S] , then 

G = sgp {(|0!)o:~'} C sgp{ga} C sgPtg} = ^ • 

Therefore g a € [n,G] and the result follows. 

The group of permutations of [njC-] obtained by restricting 

the n-transf ormations to [n,G] is denoted by A . 

T-systems 

If 3 is an automorphism of G , then the mapping 

I > 5 S € [n, 0] J 

also denoted by 0 j is easily seen to be a permutation of 

[n,G] . These permutations form a group B isomorphic to 0(g) 

Since ap = 3a if a e A and 3 € B , it follows that 

AB is a group of permutations of [n,G-] . The sets of trans-

itivity for A, B and AB are called A-classes, B-classes and 

T-systems respectively, if g e [n,G] , gA, gB and gAB 

denote the respective A-class, B-class and T-system containing 
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Theorem _1_«_6» Let g, h e [nsG] , then g, h belong to 

the same T-system if and only if 

R (g ) = R (h )r 

for some automorphism y of • 

£roof . Let g = hap s some a e and 3 e B . 

- 1 
Let X be the automorphism of P such that xy = xO! , 

n = = ' 

•1-, 

h ''iia 
then T = 5 for 

xy cp̂^ = xccq̂ ^ = xcp^a = ha . 

therefore 

R(ha3) = R(ha) - Ker ( r ' V ^ ) = (Ker cp^)r - R{h)r • 

Conversely, let R (g ) = R(h)y . Let a "be the n-transformation 

such that 

- 1 
xy xCC 3 

then as above y~ cp = cp and R(ha) = R(h)y . Therefore 
il xlLX — 

R(g ) = R(ha) and there is an automorphism P of G such that 

g = hap . 

Corollary 1 . 7 . The subgroup l ( g ) ^ Rih) is the 

hegAB 
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largest characteristic subgroup of contained in R(g) . 

Proof o 3y Theorem 1.6, 

i(s) = n H(|)r , 

and this is clearly a characteristic subgrou-o of P . If I' n 

is characteristic in and is contained in R(g) ^ then 

I' - I'r ^ M § ) r 

for every autornorj/hism x of Therefore I' ̂  l(g) , and 

the result is proved. 

HypercharacterisMc subgroups 

If G-, H are groups, then the set of all normal subgroups 

IT of H such that h/n = G is denoted by ^(rljG) ; i.e., 

F(H,G;-) = {r I II < K; II/N s G} . 

A normal subgroup iv of a group G- is said to be hyper -

characteristic in G- if K ^ N for every K € ^(GJCT/K) . 

Lemma 1oO. If K is hypercharacteristic in G , then K 

is characteristic in G . 

Proof. Let 3 be an automorphism of G , then G^ = G and 

G/K0 G3/K3 = G/K , 

that is Ke € S(G,G/K) . This means that 

K0 S K . 
-1 Similarly K3 ^ K , so that Kg .. , and the lemma is proved. 
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Lemma 1.9° The intersection 

I = n N 

H 
is a hypercharacteristic subgroup of S; . 

P r o o f . Let M e F. (HJH/i) . Let M- be an isomorphism of 

h/i onto h/m . If K e , let denote the normal 

subgroup containing M such that 
N^I/M = (N/I)^ . 

I ow 

M = n N(i . 
Nev(H5G) 

But K^i e , since 

HA ^ ^ ^ f ^ ^ H / -
Therefore M§I and the lemma is proved. 

In particular, f] N is a hypercharacteristic subgroup 

of F^ . But = {R(g) I g e [n,G-]} ; so that 

u^^(g) = n r(|) 
g€[n,G] 

is a hypercharacteristic subgroup of . 

One might suppose that 'Jĵ (C-) was the largest hyper-

characteristic subgroup of P̂ ^ contained in R(g) . This is 

not the case; in Chapter 3 an example is constructed, for a 

particular group G , of a hypercharacteristic subgroup of 

contained in R(g) but not contained in ' 
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Word subgroups 

Let W be a set of word mappings. The function v which 

takes every group G to a subgroup V(G) , where 

V(G) = sgp(GW I w E W, g e (k,G) N Dom U), k § 1 } 

is called a word subgroup function and V(G) a word subgroup 

of G . 

Lemma I. IQ0 If Q is a homomorphism of G- and v a 

word subgroup functionj then 

V(G0) - V(G)0 ; 

hence V(G) is a fully invariant subgroup of G- . 

Proof. The lemma follows immediately from Lemma 1.1. 

Lemma 1.11. A word subgroup of a group G- is hyper-

characteristic in G . 

Proof. Let V(G) be a word subgroup of G and suppose. 

G/N - G/V(G) . Let 0 be the natural homomorphism of G onto 

G/N , then v(GE) = V(G)0 . But v(GE) - S , since G0 = G/V(G; 

and so V(G) ^ Ker0 = N , proving the result. 

Corollary 1,12. Every fully invariant subgroup of a 

free group x-' is hypercharacteristic in P . 

Proof. The fully invariant subgroups of F are also 

word subgroups of P ([12], the corollary follows 

immediately. 
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Two word subgroup functions occur sufficiently often for 

them to be given special symbols. The word subgroup function 

-1 -1 
associated with the set of word mappings [j^ D^jg^ 

denoted by 5 ; thus 

6(&) = 

the derived group of the group G . The v;ord subgroup function 

associated with the set of word mappings ( j ̂  j g j ̂  j g ' ^ 

is denoted by V^ ; in particular, v ^ = 6 . 
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CHAPTER 2 

Introduction 

In [14] the Neumanns give representatives of the 19 

B-classes of generating 2~veGtors of the alternating group 

. They then show that there are two T-systems of generating 
— ^ 

2--vectors by considering the action on the E-classes of a set of 

generators of the group K^ of 2-transformations. Such a 

computation is feasible only if the number of B-classes is fairly 

smallo This means that one is usually restricted to the gen-

erating 2-voctors of a groap of fairly low order. by way of 

example, A^ has 53 B-classes of generating 2-vectors5 while 

has 1668 B-classes of generating 3-vectorSo 

In other cases some other method is required for disting-

uishing between the T-systems of a particular group. One such 

method is given by Higman's criterion: 

If g9 h are generating 2-vectors of the group G then 

g, h belong to the same T-system only if the commutators 

[h^^h^] have the same order. 

B. H. Neumann [13] constructed a group with two generating 

2-vectors g and h such that [g^,g2] has order 2 , while 

[h^jhg] has order 4 . Therefore g and h belong to diff-

erent T-systems. Clearly this method can only be applied to 
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generating 2-vectors, Also, if G is a metabelian group, it 

can be shown that the order of [g^jgg] is the same for every 

generating 2-vector g . Thus if there v/ere a metabelian group 

with more than one T-systera of generating 2-vectors, this method 

would fail to distinguish them. 

In this chapter a different method is described. If G 

is an n-generator group such that G/V^(G) = P '^^k^^n^ ' 

[n,G] can be partitioned into disjoint sets called T^-systems. 

Each T̂  -system is the union of T-systems. The T -systems of i-C K 

G can be determined comparatively easily, although some inform-

ation about 0I&) is required. 

To illustrate the method, the T^-systems of generating 

n-vectors of a certain group ^ are determined ( S actually 

depends on the integer n s 2 , and two primes p and q ). 

It is found that if p ^ 3 , S has more than one T -system. P 

Since S is a,lwe.ys metabelian, taking n - 2 provides an 

example of a 2-generator metabelian group with more than one 

T-system. 

T^-systems 

Let A^ be the free abelian group of rank n with gen-

erating n-vector a . Let A^ be the group (1, -l) under 

multiplication. 
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iiemma 2.1, Let 6 be the automorphism of A such that 

5. , 6 . 
A - ^ ^ „ • _ 1 O 

8 - . P — Q . . 9 1 — l o £ l o © • • q l l q 

X 1 n ' i J t f 

then the mapping t^ of such that 

= Dot (6.^) 

is a homomorphism into A . 

Proof. If the nxn matrices (s. .), (r• •) are associated 

with automorphisms y in the above manner^ then it is 
easily verified that (p . .) (r • •) is associated with 

1J 1J 

By the multiplicative property of determinants, 

stqTTO = (Pr)TQ . 2.1.1 

However if L is the identity automorphism 

(Tq = 1 . 2.1.2 

- 1 "1 
Thus pT^a Tq = 1 . 3ince St^ and 6 t^ are both integers., 

it follows that t^ is a mapping into . That t^ is a 

homomorphism follov/s immediately from 2o1.1 a,nd 2,1.2. 

Let 

A^^ = {i I (i,k) - 1, 1 ^ i ^ k} , Ic = 2, 3, 

then is a group under multiplication mod k. Let 

V, = v ( A ) , for k s 0 . 
k k n ' 



- 1 8 -

Lemma 2.2. Let 3 be the automorphism of ? 

k ^ 2 5 such that 

a V B = ^ -"isiY.J ^^ , i = 1, 2, n , -L i-C IK n i>-

then the mapping T^ of ' such that 

pT- = Det (0 . .) (mod k) 11 1J 

and 

1 g g k , 

is a homomorphism of Q(A /v ) into A 

n k K 

The proof is similar to that of Lemma 2.1. 

Lemma 2.3. The group A /v , k = 
just one B-class of generating n-vectors. 

Proof. If a'V is an arbitrary generating n-vector 

of /V^ 5 R(a'V ) := V (P ) I so that R(a'V ) = R ( a V j , n k = K i c n — K — it 

and there is an automorphism 3 of A /v such that n k 

aV 3 - a'V . = k = k 

A group G is said to be a (k5n)-group, for n = 1, 2, 

k = 0 5 2, ••• 9 if 

(a) Q can be generated by n elements, 

and 

(b) there is a homomorphism of G onto • 
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Let 6 be a homomorphisra of G- onto ' S 

a generating n-vector of G , then g0 is a generating n-vector 

of 9 ''̂y Lemma 2.3, there is an automorphism T of 

A /v, such that W k 

Let D^ be the function taking [njGl into ^ such that 

In general, D, v/ill depend on the particular choice of ® , 

which is called the specified homomorphism. 

Lemma 2.4. If 0 is an epimorphism of the group H 

onto the group G j and Ker d is characteristic in H , then 

to every automorphism 3 of H there is an induced automorphism 

Q 
9 of G such that 

30 = 06® . 

The mapping 3 >3® is a homomorphism of Oi(H) into Q.(a) . 
Q 

Proof. Let 6 be defined by 

h03® = hQ^l Q 

for every h e H . Then 8 is a mapping of G , for if 

h0 = h'0 , where h, h' e H , then h~''h' e Ker 6 , so 

(h ''h')3 £ Ker 0 , since Ker 0 is characteristic; that is 
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(h~\')8e = e 5 and so h03®= h'9|3® . The reverse argument 
e e shows that 3 is 1-1. The proof that 3 is a homoraorphism 

of onto itself is trivial. 

Let 3 e U(h) 5 then 39 = 03^ ^ so that 

0(3®)""^ = 3~^0 • 

But = 0(3"^)® , so that (8®)"^ = {q"^)^ . If 8, reaUi; 

then 379 - Q{Qrf • But 

(3r)0 = 80r® - 0 3 ^ ^ 

so that (3t)^ = 9 and the homomorphism property has been 

proved. 

If G is a (k5n)-group and 0 is the specified homo-

morphism of G onto A /v , then Ker 0 is characteristic n k ' 
in G ; for K^r 0 = r. (&) j which is in fact fully invariant 

in G , Let B^ be the homomorphism of '61(g) into Â ^ such 

that 

B^(3) 2.4.1 

for every 3 e G(g) . 

Lemma 2.5. If g e [n,G] , and 3 e U\(G) , then 

Proof. If aV^r = g0 ? then 
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g30 - ges® - 5 

so that 

Lemma 2.6. The function B, is independent of the spec-

ified homomorphism. 

Proof. Let 0' "be two homomorphisms of G onto 

A^/v^ J and let g be a generating n-vector of G , Then 

R(g0) = R(g0') J so that there is an automorphism U of 

such that 

0' = 0 . 2.6.1 

If 3 is an automorphism of G , then 

30' = 30M. = = 9 

so that 

0' 3 = ^ [3 la 

— 1 0 0 
But 3 )T = 3 T , since A is abelian. This completes 

iC IC .H. 

the proof of Jjemma 2.6. 

Lemma 2.7. Every (O,n)-group G is a (k5n)-group for 

k = 2, 3j ... 9 and if B^ is the homomorphism of U(g) int* 

A, as above, then 
Z i . 

Im \ C {1, k-1] . 



- 2 2 -

Proof. That G is a (k,n)~group for k = 2, J? 

follows immediately from the definition of a (k,n)-group. 

Let n be the natural homomorphism of A onto A /v̂  . n n k 

Let y be the automorphism of A^ such that 

V . ̂  T-i1 'in • _ -1 
Si, y — Qj. •••Q, J 1 — \ ^ ^ ••o^riy 1 i n 

then 

T • y' 
a.VY-"^ = = a.rJT - (a.Vj"'-^..(a V j . i k 1 1 i k n k 

But by Lemma 2.1 

Therefore 

Let (r. .) = +1 . 1 J 

y^T^^ = 1 or k-1 . 

Let d be a homomorphism of G- onto A , then by Lemma 2.6 n 
there is no loss of generality in taking en as the spec-

ified homomorphism of G onto . If 0 is an auto-

morphism of G , then 

= = (B^fT^ = 1 or k-1 , 

and the lemma is proved. 

Theorem 2.8. There is a homomorphism C^ of the group 

K of n-transformations into A, such that n k 



- 23 -

\(|Q;) = 2.8.1 

for every generating n-vector g of the (k5n)-group G- , and 

every cc € K ^ . 

The function C^ is independent of the specified homo-

morphismj and 

Im C^ = k-1} . 

P r o o f . Jjet p be the isomorphism of ) onto K 
n n 

given in Theorem I.45 and let B be the homoraorphism of ) 
xC n. 

into A ^ defined by 2.4.1. Let C^ be the mapping of K ^ 

into A defined by 
K 

C, (a) = (ap""^)"^ . a e K_ . 2.8.2 
ic xC n. 

Then C, is a homomorphism; for and P are homo-

m lorphisms, and the mapping taking every element of A ^ into 

its inverse is a homomorphism, since A ^ is abelian. Let 1 

be the specified homomorphism of & onto A /v . If cp^e 
n to 

is taken as the specified homomorphism of onto ' 

then 

and 

D, (xa) = a (xacp ) = J (xcp a ) = D (ga) . 
k;= k - g K -
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Therefore, in order to prove 2.8.1, it suffices to show that 

— 1 — 1 

But x a = x(ap ) 3 and by Lemma 2.5, 

By Lemma 2.6 and 2.8.2, C^ is independent of the spec-

ified homomorphism. Since is a (o,n)-group, it follows 

Im B,̂  C {1, k-1] . 

from Lemma 2.7 that 

'k 

That Im C^ ^^ (1, k-1} follows immediately from 2.8.2. If a^ 

is the n-transformation for which 

then C (a ) = k-1 . Thus {1, k-1} ^ Im C , and the theorem 
K! I — 

is proved. 

If G is a (k,n)-group, the image of a T-system' of gen-

erating n-vectors of G under D^ is called a D-class, thus 

if g is a fixed element of [n,G] , 

I a € A, 3 e B} 

is a D-class. 

Lemma 2.9. The D-classes are disjoint. In fact they are 

sets of transitivity of A ^ under a subgroup of its right 
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regular representation. 

p£oo^. The lemma follows immediately from Lemma 2.5 and 

Theorem 2.8 

The set of all generating n-vectors which map onto a 

particular D-class under D is called a T, -system of G . 
k k 

Theorem 2.10. Each T^-system is a union of T-systems. The 

T^-systems of a (k5n)-group G are independent of the specified 

homomorphism. 

Proof. The first part of the theorem follows immediately 

from Lemma 2.9. 

Let be two homomorphisms of G onto A /v, , 
n k 

and let D^, D^ be the associated mappings of [n^G] into 

A ^ . Now 0' 0(-i (see 2.6. l) for some automorphism U of 

A /v . If g e [n,G] and 
n k = ' 

aV^r = | 0 , 

then 

f ̂ k ^ " i 0' ^ 

so that 

But I-IT̂  is independent of g . It follows that if 
K = 
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h e [n,G] ^ then = D^(h) if and only if = 

The theorem follows immediately. 

An example 

Let p, q 1) be primes such that p divides q-1 . 

There is then an integer r such that 

r^ = 1 (mod q) , 

r ^ 1 (mod q) . 

Let P be the elementary p-group of order p"' with generating 

n-vector u . Let Q be the elementary q-group of order q^ 

with generating n-vector v . If M-̂  is the automorphism of 

Q such that 

vn^ = (v^j v^, v^ ̂  , . . o 5 v^) 5 1 ̂  i s n 5 

then M-̂  = C 5, the identity automorphism, and l̂ .M-. = M-.M-. . i 1 <] J ^ 

It follows that the splitting extension S of Q by P can 

be formed, in which u. induces the automorphism |j, . on w ; 

X. e. 5 

o = gp{u, V I u^ = v":̂  = [u.5U.] = [v.,v ] = ] = e, = — 1 1 i j i j -"-J 

u^V^u^ ^i ' i, j = 2, o.., n, i j } 

Let & be an automorphism of 3 . if 

= 3gp{ v^] 5 i = 1 , 2 5 . . . 5 n 5 
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then the cen t ra l i ze r of has order q'̂ p̂̂  , and the Ch 

are the only subgroups wi th t h i s property. Therefore 

, Pi P2 Pn 

V3 = (v^^, v^^, , 

where « i s a permutation of [ l , 2, . .o , n) ^ and q /f P^ ? 

i = 1, 2, . . 5 n . Since = e , i f i j , 

ue = (u^^, u^^j (mod q) , 2.10.2 

where P /f ^ ? i = 1, 2, n . Also 

-1 ^ ^ / 
9 'u 3 ) V 6 U.3 = (v.8) ' 1 1 1 1 

I . e . 

-V p V. p . r 
i i 1 1 . . ^ 

u . V u . = V , 0 IJt iTT 17T ITt 

I t fo l lows that 

V . 
-- - (mod q) . P.r = P^r 

But Q /f P . , therefore 
1 

V 
^ = r vî od q) 

so that 

V = 1 (mod p) 5 i = 1, 2, n 
i 

2.10.3 

I f n § 2 , S i s a (p,n)-group. For A^V^ i s a homomorphic 

image of S 5 and S can be generated by n elements, fo r 
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instance 

s = (u^v^, u^v^, u^v^) 2.10.4 

is a generating n-vector of S , since 

if i / i . Let 9 be the horaomorphism of S onto A /v 
n p 

such that aV . Then, by taking 0 as the specified 
= P 

homomorphism, it can be seen from 2.10.2 and 2.10.3 that 

Bp(B) - 1 

if n is an even permutation^ and 

= p-1 

if JT is an odd permutation. Now 

Im ^ ^2^3' ' 1 ^ m ^ p , 

is a generating n-vector of S , and 

D (s ) = m . 
p =m 

Thus Im D = . But it has been shown above and in 
P P 

Theorem 2.8 that Im B = Im C = (1, p-1} . Therefore the 
P P 

D-classes of S are the sets 

(m, p-m } , 1 ̂  m S p/2 . 

It follows that S has [p/2] T -systems of generating 
P 

n-vectors. Therefore, by Theorem 2.10, 3 has at least 

[p/2] T-systems of generating n-vectors. 
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CHAPTh'R 3 

Introduction 

In [14] the Neumanns posed the following problem: 

A. Let G and H be n~generator groups and let G be 

a homomorphic image of H . If g is a generating 

n-vector of G , does there exist a generating n-vector 

h of R , and a homoraorphism 0 of H onto G such 

that h0 = g ? 

Gaschutz [6] showed that the answer is yes if the kernel of 

a homomorphism of H onto G is finite. In this chapter 

it is shown that the answer is no in some other cases. If 

G is a finite (k,nJ-group with trivial centre, then a group 

H can be constructed such that every homomorphism of H onto 

G maps all the generating n-vectors of H into a particular 

T^-system of generating n-vectors of G . Examples of such 

groups are given. 

In Theorem 3.8 it is shown that the answer to A is no 

for a pair of groups to which the above method cannot be applied. 

Problem A was originally raised in connection with another 

problem ( [14], Problem 7.3.l): 

B. Let G, H be n-generator groups and let G be a homo-

morphic image of H , is then U^(h)C U^(g) ? 

A positive answer to A would imply a positive answer to 13. 
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For if to every ge [n,G] there is an h e [ n,H] which can 

be mapped homomorphically onto g , that is, there exists 

h e [n,H] such that R(h) ^ R(g) j•then 

U (H) = n R ( h ) g n R(G) = u (G) . 
h£[n,H] - i€[n,G] " 

Problem E is equivalent to the following problem; 

C. If R is a normal subgroup of , does 

contain every hypercharacteristic subgroup of 

contained in R ? 

î or suppose the answer to ij i s yes and 3 is a hypercharacter-

istic subgroup of contained in R , then ^^ ^ 

homomorphic image of T /s and so U 

But 3 = U ( P / s ) , since 3 is hypercharacteristic in , 

and so the answer to C is yes. Conversely, if the answer to 
C is yes and G, H are as in then there exist normal sub-
groups 1, J of P such that P /l = G , P /j s H and 
° ^ n n n 

J . But then U^(h) ^ J ^ I , and SO U^(h) ^ U ^ ( P Y I ) . 

But U (P /l) ^ U (G) 5 and so the answer to B is yes. n n n 

In the last section of this chapter groups Q and M are 

constructed such that M is a homomorphic image of Q but 

UgCw) ^ U2(m) . I have been unable to show that the answer 

to B and C is no for n > 2 . 
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The in_y_erse jjiages of g_̂ ne_ratjln_g under homomorphisms 

Let d be a homomorpliism of the group H onto the group 

G 5 then a generatin^^ n-vector g of G is said to have 

property P(0) , if there exists a generating n-vector h 

of H such that hS = g • 

The following theorem is due to Gaschutz ([6], Satz l), 

and is stated here for convenience. 

Theorem j_._1 . If 0 is a homomorphism of the n-generator 

group H onto the group G ; and Ker 9 is finite, then every 

generating n-vector g of G has P(0) . 

By means of a simple counter-examplej Gaschutz showed 

that the theorem is not true if the finiteness condition on 

Ker 6 is removed. It is perhaps worth noting in this connection 

that if S is a homomorphism of onto G , then g has 

P(0) if and only if it belongs to the same i-v-class as x0. 

?or suppose y^ = g 9 where y is a generating n-vector of 

X ? then xa= y for some n-transformation a , and 

g = ye = xae = xea : 

the reverse argument proves the converse. 

Let H be a group, then a generating n-vector g of 

the group G is said to have property P(h) if | has P(® ) 
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for some horaomorphisin 0 of H onto & . 

Every generating n-vector g of G has P(P ) , because 

F g = i • 

Lemma A generating n-vector G of G has P(H) 

if and only if there exists a generating n-vector h of H 

such that R(h) ^ R(g) . 

Proof. This is immediate from the definition of P(H) . 

Lemma 3.3. If G has P(H) J then so has GAS , where 

a is an n-transformation and 3 an automorphism of G . 

Proof. If h is a generating n-vector of H , and 9 

a homomorphism of H onto G such that h0 = g , then 

ga3 = ha>;3 = haS^ j by Lemma 1.2. It follows that ga6 has 

P(e5) , proving the lemma. 

Prom Lemma 3.3? it can be seen that the set of all gen-

erating n-vectors of G having P(H) is a union of T-systems. 

It will be shown that this set can be a proper subset of [n^G] 

Theorem 3.4. Let H be a (0,n)-group5 G a (k,n)-group 

and 9 a homomorphism of H onto G , then there exists a 

X e A such that D (hO) = X or k-X , for every generating k k = 

n-vector h of H . 
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Proof. Let Cp be the specified homomorphism of G 

onto A /v 5 and 9' a homomorphism of H onto A . Now 
n K 

R(h0<p) = V (f ) g ) = R(h(p') . 
— K n (J n = 

Therefore by Lemma 3.2, there is a homomorphism 0' of A 
n 

onto A /V such that h0q) = hcp'0' , and so the diagram 

G 

e 

I A /v ̂ 

0' 

K cp' n 

is commutative. Now A is a (k5n)-group5 and taking 0' as 
n 

the specified homomorphism of A onto A /v. 
n n' k 

D^(h(p') = . However, by Lemma 2.3? 

hep' = ay 

for some automorphism y of A . Thus, 
n 

by Lemma 2,5. But by Lemma 2.7, B (r) = 1 or k-1 , and the 
iC 

theorem follows by putting X. = ^^(a) • 

Lemma 3»5. If G and H are groups and r(H9&) con-

sists of the single element N 5 then a homomorphism ^ of 

h onto G maps a T-system of H into a T-system of G , and 

the mapping is independent of the particular homomorphism chosen. 
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Proof. Note that N is hypercharacteristic in H and 

hence, by Lemma 1.8, characteristic in H . Let P be an 

automorphism of H , then by Lemma 2.45 there is an automorphism 

of G such that = 30 . Let a be an n-transformation 

and let h be a generatin;^ n-vector of h , then 

6 6 
ha 00 = = h0aB > 

by Lemma 1.2. Clearly, M B is mapped into h0AB and the 

first part of the lemma is proved. If cp is another homo-

morphism of H onto G , then Kercp = Ker 9 = N , so that 

there is an automorphism ^ of G such that cp = 0 ^ . But 

then 

h(p = h0M. € h0B 5 

and the lemma is proved. 

Theorem 3.6. If H is a (O,n)-group and G is a 

(k,n)-group and has just one element, then every 

homomorphism of H onto G maps [n,Hl into a particular 

T -system of generating n-vectors of G . 
iC 

Proof. Let 0 be a homomorphism of H onto G , then 

by Theorem 3.4, [n,Hl is mapped into a T^^-system of G . 

But by Lemma 3.5, this T^-system, which is a union of T-systems, 

is independent of 9 . 
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It follows that if G^ H are as in Theorem 3.6 and 

G has more than one T -system? then the generating n-veotors 

K 

of G having P(H) will form a proper subset of LijG] . 

Example 3.7« There are groups G, H such that 

(a) G is a (p5n)-group5 where n S 2 , p is a prime, 

p > 3 J and G has more than one T^-system., 

(b) H is a (Ojn)-group, 

(c) ^^(HjG) consists of just one element. 

Details. Let G be the group S constructed at the 

end of Chapter 2; S satisfies condition (a). 
Let S. = sgp(u.j V,} , for ± 2, n , then 1 i 1 

M- V S is the direct product of the subgroups S^ . If z = u^v^ , 

2 X* ̂ then V = V , so that z commutes with v. only if i 1 ' 1 

V V V 
z = V . Lut V commutes with u. only if v = e . ihus i i 1 1 

= . JDut 

Z ( S ) = Z(S^) X X ... X Z(S^) , 

so that 3 has trivial centre. 

Let R = K(s) 5 where s is the generating n-vector of 

3 given by 2.10.4. Let 

H = x"' /Rn8(P ) , n n 
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so that H is a ( O , n ) - g r o u p . Let Q be a h o m o m o r p h i s m of 

H onto S 5 t h e n Z ( H ) e = E , since Z(h)0 ^ Z(H0) = Z(s) . 

N o w ^ R ? since R is n o r m a l in ; also 
n 

[ R j P ^ ] g • f o l l o w s that 

R / iLn5(? ) ^ z(h) ^ K e r 0 . 

B u t H / ( R / R n 6 ( P ^ ) ) s I^yR = ti . Since Ii/Ker0 s S and S 

is f i n i t e , it f o l l o w s that K e r 0 = R / R n 5 ( p ^ ) . Thus^ con-

d i t i o n (c) is s a t i s f i e d . 

There are examples of g r o u p s G and H such that the 

set of g e n e r a t i n g n - v e c t o r s of G having P (h ) is not a 

u n i o n of T - s y s t e m s . 
iC 

T h e o r e m 3 . 8 . Let A^ be the alternating g r o u p of perm-

u t a t i o n s on five s y m b o l s . L e t w be the free product of a 

cyclic g r o u p of order 2 and a cyclic g r o u p of order 3 . Then 

a g e n e r a t i n g 2 - v e c t o r h' of A ^ has P(V/) if and only if 

h ' b e l o n g s to the same T - s y s t e m as h = ( ( l 2 ) ( 3 4 ) , (135)) • 

P r o o f . L e t 

2 3 
W = g p { w ^ , w^ w^ = w^ = e } , 

t h e n R ( h ) ^ R (w ) , and so, by L e m m a 3.2, h has P(w) . By 

L e m m a 3 . 3 , h' has P ( w ) if h' b e l o n g s to the same T - s y s t e m 
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as h 

Conversely, suppose h' = w'0 for some generating 2-vector 

w' of vv J and some homomorphism 0 of W onto . By 

Grusko's Theorem (see [10], §39), w' = wo; for some n-trans-

formation Q! , so that h' = w0Q! . But of the represent-

atives of the 19 B-classes of A^ given in [14], §10, only 

g^g (= h) has a relation group containing R(w) . It follows 

that w0 = h3 for some automorphism p of , and h' = h30! , 

proving the theorem. 

The hypercharacteristic subgroups of 

Theorem 3.9» There exists a normal subgroup R of 

such that does not contain every hypercharacteristic 

subgroup of I'g contained in R . 

Proof. Let 

= gP (c^, . .. , 
11 1 1 

= e (i-j 4 +1 (mod 5)) 

1 ̂  i, k s 5} . 

Let 

D' gp{d^, d I [d^,d] ^ d " = d^^ = e) , 
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then D' has an automorphism P of order 11 such that 

1 

dp = d . 

Let D be the splitting extension of D' by a cyclic group 

of order 11 generated by an element d^ which induces p on 

D' . Then d = [d^^d^l , and D has the presentation 

11 11 
D = gp{d^p ...5 d^ d^ = d^ = d^ = d^ = d^ = e, 

[[ d ^ , d j , d ^ ] = [[d^.d^l^d^l = e, 

[ d ^ . d ^ ] " = e ) . 

Thus R(d) § R(c) , and there is a homomorphism ^ of C onto 

D such that cO = d . It follows that tc^jC^] / e , since 

[c^^c^le = e . The 5-vector 

I / 3 3 3 3 

is a generating 5-vector of G , and R(c') = R(c) , so that 

there is an automorphism V^ such that cV^ = c', Similarly 

there is an automorphism V^ such that 

/ 3 9 5 4x 
cv^ = (c^, c^, c^, c^, c^) . 

5 5 

It is easily verified that v:J = V^ = , the identity auto-

morphism; while if TC = ' 
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3 3 3 3 3 ' 

2 ' 
Grt = (ĉ , c;:;;, c:̂, c*;;, c 

5 "1 "1 "1 "1 and Tt = V~ Jt~ V̂  Jt = V~ I t " V̂  Tt L . Let 

K = k̂  I k̂  = k̂  = [k̂ k̂̂ ]̂  = [tk̂ k̂̂ ljk.l = e, 

i = 1, 2} , 
then; by the above, there is a homomorphism 9 of K into 
0(C) such that ^ = (v̂ , V̂ ) . Let M be the splitting 

extension of C by K in which k̂ , k̂  induce on C the 

respective automorphisms v̂ ? V2 • 

M = gp{ĉ j ĉ , k̂ j k̂  I reins, of G, reins, of K, 

_ / 3 3 3 3 3 n 
c - \ . C 2 ' 

, 3 9 5 
c = ( c ^ , c ^ , c ^ ) } 

Now m = (k̂ , ^ generating 2-vector of M | for 

[ĉ jk̂ ]̂  e 5 so that sgp̂ ĉ k̂ } = sgp{ĉ j k̂ ) ; but 

C^ sgp{ĉ , k̂  } , and the statement is proved. It follows that 

M is a (5,2)-group. The homomorphism t such that 
m T = a V ^ 

is taken as the specified homomorphism. If g e [2,1x1] and 
P P 

g H (k \ % k (mod 8(m); , 
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then 

= O f 2 " • 

If g, g S h are elements of a group G and Z(G) g 5(G) 

then [gg',h] = [g,h][gSh] and [h,gg'] = [h,g][h,g'] . 

Now 6(K) ^ Z(K) , and K = M/C . Therefore 

â  02 P -j p 2 " ^^ 

a^P2-a2Pi 

= [ k^.k^] 

Let w^ = [ x^ yx^]"^^ [x^ jX^] . Let g e 12,m] and 

let ri^(g) = 1 . It will be shown that w^cp^ € 6(c) . Now 

for some c e C . Therefore 

Also g^ € C J since K has exponent 5 , and fk^jk^l induces 

the automorphism n on C . But 7t induces on C/^(C) the 

automorphism which maps every element into its cube. Therefore 
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w^cpg = ( g ^ ^ g l j ^ ^ = e (mod 5 ( C ) ) . 

5 —20 

L e t Wg = [ x ^ j x ^ j x ^ [ x ^ s x g j x g . A s i m i l a r a r g u m e n t t o t h e 

a b o v e shows t h a t w^cp^ e 6 ( C ) i f D ^ ( g ) == 4 . N o t e t h a t 

i n d u c e s on C / 6 ( C ) t h e a u t o m o r p h i s m w h i c h maps e v e r y 

e l e m e n t i n t o i t s f o u r t h p o w e r . S i n c e K h a s e x p o n e n t 5 , 

^ l ^ g b e l o n g t o C r e g a r d l e s s o f t h e v a l u e 

o f . I f = 1 , w^cp^ € 8 ( C ) g Z ( o ) J so t h a t 

s i m i l a r l y , t h e a b o v e e q u a t i o n h o l d s i f D ^ ( g ) = 4 . T h u s 
5 = 

w = = e R(|) 

i f D ^ ( g ) = 1 o r 4 . 

L e t R = R ( m ) , l e t Q = ^ ^ ^ ^ ( F ^ ) ? a n d l e t n be t h e 

M 
h o m o m o r p h i s m o f Q o n t o s u c h t h a t 

x ( R n 5 ( F 2 ) ) ^ = m . 

2 

Now Q i s a ( O , n ) - g r o u p a n d D ^ ( m ) = 1 , so t h a t b y T h e o r e m 3 . 4 , 

D ^ ( q n ) = 1 o r 4 f o r e v e r y g e n e r a t i n g 2 - v e c t o r q o f Q . T h u s 
wcp fi = wcp = e . 

S ^ q n 

•R 
A l s o 8 ( q ) = 6 ( - ' 
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M 
since 5(X) is finite, maps 5(q) isomorphically onto 

M 
&(jL') • But wcp € 6(q) and |a = e . Therefore vxp = e 

a s S 

that is, w e R(q) for every generating n-vector q of Q , 

and so w e ' 

2 
let m' = ' ^ t^jM] and 

w^cp^, = (mod 5(c)) 

But 

4 5 9 3 

so that 

2 6 7 10 8 , , ft^pu 

r m' 1 2 4 5 

Similarly, 

" 2 % . " (mod 5(c)) 

3 
= 

Therefore 
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r 2 6 7 10 8 3. 

6 > i .A 

e . 

Thus w R(m') and so w U^Cm) . Since w e 112(1-,) , i"b 

follows that U2(q) ^ U2(m) = U^Ip^/R) • But U^Cq) ̂  , 

and so the theorem has been proved. 

Corollary 3.10. I'he union of two hypercharacteristic 

subgroups of r^ is not necessarily hypercharacteristic in P^ ' 

Proof. The group M = Pg/R constructed above is finite. 

Therefore ( [ul, Satz 7 , 6 ) P^/u^Cm) is finite. Suppose H is 

a hypercharacteristic subgroup of such that 

R ^ H ^ U2(M) , 

then by Theorem 3.1^ every element of ^^(P^jM) contains an 

element of . Therefore 

U^CM) ^ U^CPg/H) . 

But, since H is hypercharacteristic in P^ , every element of 

V, (p^jP^/h) contains K . Therefore 
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and so U^CM) = H . It has been shown that U^CM) is a 

maximal hypercharacteristic subgroup of contained in R . 

But U2(q)U2(m) is contained in R and properly contains 

U2(m) . Therefore U^CwjU^Ca) is not hypercharacteristic in 
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4 

Introduction 

The n-transformations play quite an important role in 

group theory: for instance Grusko's Theorem (see [10], §39) 

states that if g is a generating n~vector of a free product, 

then there exists an n-transiormation a such that every 

component of g a belongs to one of the free factors. It is 

therefore of some interest to investigate to what extent n-trans-

formations are transitive on the generating n-vcctors of an 

arbitrary group. In this connection the following problem is 

posed: 

D. If G is an m-generator group and g e [n^G-] , where 

n > m , does there exist an n-transf ormation o: such that 

each of the first n-m components of go: is e ? 

This is equivalent to the following problem: 

E. If R I"' and F At has m generators, does there 
n n 

exist a generating n-vector of F^ such that n-m of 

its components belong to R ? 

ji negative answer to D. would in turn provide a positive 

answer to the following question-

p . If G is an n-generator group, can G have more than one 

T-system of generating (n+1)-vectors? 
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i'heorem 4.1 shows that the answer to D is yes if G is 

soluble and its derived group is finite. However I think it 

very unlikely that the answer to D is yes in general: I suspect 

that the finite direct products of simple groups would provide 

counter-examples. 

Theorem 4.2 gives a complete description of the A-classes 

of finitely generated abelian groups. The theorem is closely 

related to some results of Liebeck [11 ] » 

The third section of the chapter is devoted to the 

following problem: 

G . If R, S <3 P and T' /h s i' /s , under what condition 
^ n n n ' 

is p /Rn5(p ) = P /sn6(p ) ? 

n n n n 

A sufficiency condition is found for the case when 

is finite. This condition is shown to be necessary when 

Z(F^/r) = a . The results for can be fairly 

easily extended to the group . 

Finally, using some of the previous results of this 

chapteri, a description is obtained of the T-systems of a 

rather restricted class of metabelian groups. 

The A-classes of £oluble groups 

If :n: is a permutation of the set {1, 2, .. , n } , 

then a will denote the n-transformation such that 
jt 
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If i, j € {l, 2, .. ., n ) J i / 3 ? then a a . . will 
-1 1: J 

denote the n-transformations for which 

• . • _ / - . - ^ 
- I'J - V^.]? •••J ^i^j' ^D+l' '**' ^n ' 

These n-transformations generate the group K ^ of all n-trans-

forraations (see [9]? p.11l). 

Theorem 4.1. Let G- he a soluble group with a finite 

derived g r o u p . If G can be generated by n-1 elements, 

then G- has just one A-class of generating n-vectors. 

Proof. The group G possesses a finite normal subgroup 

such that g/g* is free abelian of rank m < n . The 

proof of the theorem is by induction on the length c of a 

principal series of G-admissible subgroups of G* . If c = 0 , 

then G is free abelian of rank m . Let h g [m,Gl j 

g € [n,G] 5 and let A ^ be the free abelian group of rank n 

with generating n-vector a . There is a homomorphism 0 of 

A onto G such that 
n 

a9 - g . 

But since G is free abelian, there is a homomorphism cp of 

G into A ^ such that 
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hep == b 9 

where b is an arbitrary m-vector of A . Choose b so 
n = 

that 

b.0 = h. 
1 

then cpe is the identity automorphism. Also, if g e G , 

g = g(g0q))~^gecp . 

— 1 

However g(g0cp) e Ker 0 and g0cp elmcp . Thus 

G = Ker 0 x Im cp , 

since Im cp (1 Ker 0 = E . 

It is now clear that Ker 0 is free abelian of rank 

n-m and that if d is a generating (n-m)'-vector of K e r 0 , 

then 

f = (h^cpj h^cp, n̂ ĉp̂  d^, 

is a generating n-vector of G- . But A^ has just one 

A-class of generating n-vectors (see [2], p.90), so that there 

is an n-transformation CL such that f = aO: . Therefore 

f0 = aa0 = a 0a = ga . 

But f0 = (h^, h^j ...9 h^, e, e, ...J e) , so that every 

element of [n,G] belongs to the same n-class as 

(h^, h^j ĥ ĵ e, e, e) , and the theorem has been 

proved for c = 0 . 
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Suppose now that 

E = Mq < M^ < Mg < ... < M^ - G-* , 

where M^/m^ ^ is a minimal normal subgroup of ^ j for 

i = 1, 2, G . Let h 6 [n-ljG-] , g € [njG-] , then by 

the induction hypothesis there exists g' e gA such that 

- (e, h^, h^, (mod M^) 4.1.1 

If g!̂  = e 9 then G = sgplg^, g^ } and, by operating on 

g' by a product of the n-transf ormations CC . and their 
- D 5 I 

inverses a generating n-vector of G- is obtained satisfying 

4.1.1 and whose first component is non-trivial. It will be 

assumed, therefore, that e g^ = m € M^ . Let 

G' = sgp{g^, g M I if g € G , then g = nig for tn e Ĥ ,̂ 
/N 

g e G' . Therefore, since M^ is abelian, = m . Clearly 

g' = (m, g^? • •> . 9 g^) can be transformed into 

(g~Vg, g^, g^) by an n-transformation. Therefore, for 

every g e G , there is an n-transf ormation taking g' into 

g " = (m^, g^, g^) . ^ut 

= (m®' 

and 
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and since both these n-vectors satisfy 4.1.1, their first 

components can be transformed by g"'^ by means of an n-trans-

formation; i.e., g'' belongs to the same A-class as 

(m, m^g' g' g') or (m, m'^gj,, g' g' ) . It 
J 11 c J n 

follows that multiplying g^ by a product of conjugates of 

m and its inverse can be achieved by an n-transformation. 

But since M^ is a minimal normal subgroup of G , every 
I 

element of M^ is a product of conjugates of m and its 

inverse. Since h^ = for some m* e M^, g belongs to 

the same A-class as (m, h ^ g ^ , g^) . i3y extending 

this processj it is easily seen that g belongs to the same 

A-class as (m^ h^ , h^, -j) • However h is a gen-

erating (n-l)-vector of G , so that a product of the a^^^'s 

and their inverses will transform the above n-vector into 

(e, h^, h^j h^ . Thus every generating n-vector of 

G belongs to the same A-class as (e, h^ , h^, , 

and the theorem is proved. 
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Theorem 4-.2. If G is an abelian group and n is the 

minimal number of generators of G , then G is a (k5n)-group 

for some k = 3j »•. . 

If G is a (05n)-group, let k* = 0 j if not, let k* 

be the largest k for which G is a (k,n)-groupj then the sets 

= I i € [n,G] , = X or , X e A^^ , 

are the A-classes of generating n-vectors of G . 

Proof. The first part of the theorem follows immediately 

from the elementary divisor theorem (see [10], §20), Prom 

that theorem, it also follows that there is a generating 

n-vector h of G such that h^ = e . The homomorphism 

Q such that hS = aV, is taken as the specified homomorphism. = = k* 

Let g€ . Now G/sgp{h^) is a soluble group with a finite 

derived group and n-1 generators. Therefore, by Theorem 4.1, 

there exists g' e gA such that 

g' = (e, h^, h^) (mod sgp{h^]) . 

Now G/sgp{h^} has n-1 .venerators, and sgp{h^ } is minimal 

with respect to this property. But e sgp{h^) and 

G/sgp{g!|} has n-1 generators. Therefore sgp(h^} = sgp{g!|] . 

It follows that by applying a product of the ^̂  ̂ . ̂ ' ̂  and 

their inverses to g' , an n-vector g''e gA is obtained 
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such that 

g " = ( h ^ h^, h , h ) , — i n 

Now = ^ . But, by Theorera 2.8, = ^ or k*-

It follows that l-L or k*-^ , and g belongs to the same 

A-class as (h^, h^, h^, h^j . Thus each S^ is contained 

in an A-class. On the other hand, by Theorem 2.8, S^ is a 

union of A-classes. Thus the theorem has been proved for a 

particular choice of the specified homomorphism. However, it 

follows from 2.10.1 that the S^ will only be permuted if 

the specified homomorphism is changed, and so the theorem 

follows. 

The group 

?irst a useful lemma will be proved. This lemma is 

probably well known. 

Lemma 4»3. If & is a group and K a subgroup such 

that KZ(G) = G and KS(G) = G , then K = G . 

Proof. Let g e G , then g = kz for k e K , z e Z(G) , 

1 -1 

and g Kg = z Kz = K . Thus every element of G transiorms 

K into itself, that is K <3 G . How 

G/K = KZ(g)A s Z(G)/i(G)nK . 

But Z(G) is abelian, so that G/K is abelian. Therefore 
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K s 5(g) 5 and G = K6(g) = K . 

For the rest of this section G will denote an n-gen-

erator group with finite derived group, and 

H = P /Rn5(P ) , 
n n 

where R € r ( P jG) . 
n 

Lemma 4.4. If g e [n^G] , then F^/R(g)n6(P^) = H 

if and only if g has P ( h ) . 

Proo f. If g has p(h) ^ then by Lemma 3.2, there 

exists N € such that N ^ R(g) . "But H is a 

(0,n)-group5 therefore K ^ ' 

6 ( P ^ ) / N = 5 ( H ) = 6 ( P ^ ) / R N 6 ( P ^ ) = 5 ( X - ' ^ ) R / R = 6 ( G ) 

4.4.1 

and 

6(p^)/6(p^)nR(|) = 8 ( F ^ ) R ( | ) / R ( G ) = S(G) . 

But 5 ( g ) is finite, so that N and 5(P^)nR(g) both have 

the same finite index in 6(p^) . Thus, since II ^ 5(P^)^R(g) 

it follows that 

N = 5(F^)nR(g) , 

and so P y R ( | ) n 6 ( p ^ ) = h . 

Conversely, if H = P y R ( | ) n 5 ( P ^ ) , then 
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R(|)n6(F^)£ 5 and g has P(H) by Lemma 3.2. 

Lemma 4«5» If 0 is a homomorphism of K onto G , 

then Ker 0 G Z(H). 

Proof. Let h be a generating n-vector of H such 

that R(h) = Rn&(P^) . Then R(h0) R(_h) , and, as in the 

proof of Lemma 4.4? R(h) = R(h0)n5(p ) . Now n 

[Ker0,H] s [R(h0),P ] (mod Rn5(p )), = n n 

But 

[R(h0),rj ^ R(h0)n6(p^) , 

since R(h0) <5 P . Thereforeo since = n 

R(h0)n5(P^) = Rns(P^) , 4.5.1 

[ Ker 0 5 H] = E , 

and the lemma is proved. 

Let 0 be a homomorphism of H onto G- j let n , % 

be the natural homomorphisms of G- onto g/5(C-) and H 

onto K/FE(H) respectively. Then, since K/5(H) is free 

abelian, there is a homomorphism ^ of H/fe(H) onto 

such that the diagram 
TL 

G/6(G) 

r 
H-. > h/5(H) 

JT 
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i s commuta t ive5 i . e . , 0tc = ^^ ' 
Lemma 4 . 6 . Ix g € [njG] , t h e n g has P ( 0 ) i f and 

on ly i f gjt h a s P ( ^ ) . 

P r o o f . I f g has P ( 0 ) , t h e r e e x i s t s h e [n,E] such 

t h a t h 0 = g . Su t t h e n git = hOn = h^Q , so t h a t g^t has 

P ( 0 ) . 
C o n v e r s e l y J l e t / ra e Ln3H/8(H)] be such t h a t 

raO = g 7T . 

D e f i n e s e t s Sj S' a s f o l l o w s 
S = {s I s e ( n , G ) , s « = g n ) . 

S' = {t ! t € (n^H) , t t̂ = m} . 

Jr y? 

Now | s ! = |Ker jt ^ = | 5 (g ) ^ and |S' | = |Ke r n p = |S(h) n 

But 5 ( g ) = &(h) by 4 . 3 . 1 ? so t h a t |s 
t e S ' 5 t h e n t 0 e d , f o r 

t 0 a t = t n d - me = g J ^ ' 

A l so i f t , t ' € S ' and t 0 = t ' 0 , t h e n 

I f 

so t h a t 

~ 1 f t e Ker 0 1 1 
But 
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t.n = tljt= m. . 1 = 1 9 2 5 . . . , 1 1 , X 1 1 y s ? s 

SO that; 

t^t"^ e Kern = 6(H) ^ i = 2, n . 

However, by 4.5.1? 5(H) 0 Ker 0 = IZ , so that 

t^ = t, , I9 

that is ' = t . Thus 9 F.cts as a 1-1 mapping of S' 

into 3 . But |S'j = |s| , and so the mapping is also 

onto. Therefore, since g e S , there exists h e S' , 

such that h0 = g . It remains to show that h ,e [n^H] . 

Let K = sgp{ h] , then since h0 e [n,G-] , 

K Ker 0 = H , 

so that, by Lemma 4.5, KZ(H) = H . Also h^ € [n,H/^(H)] , 

so that K6(H) = K . Therefore, by Lemma 4.3, K = H , 

and the lemma is proved. 

Lemma 4.7. If G is (^ot a (k5n)-group for every 

k = 2, 3, ... , and 0 is a homomorphism of H onto G , 

then every g e [ n,G] has P(0) . If (x is a (k,n)-group 

for some k = 2, 3, •.. , and k* is defined as in Theorem 4.2, 

then the set of elements of [njCx] having P(H) is a union 

of T -systems. In fact if g' has p(0) and g belongs 

to the same T. .-system as g' , then there exists an auto-
n. ' — 
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morphism 3 of G such that g has P(0b) . 

Proof. :L.et |5 1' € [n^G], and let g' have P ( e ) . 

If G is (not a (k,n)-group for every k ^ 2 , then by Theorem 

4.2, g/6(g) has n-1 generators. Therefore, by Theorem 4.1, 

there exists an n-transformation a such that g'rta = gjt . 

Let h' e [n^E] be such that h'0 = g' , then h'Qrta = g « . 

But 

h'dna = h'^ea = h'^^cS , 4 . 7 . 1 

so that gjT has P(0) , and the first part of the lerarar. 

follows from Lemma 4.6. 

Let G be a (k,n)-group for some k = 2, 3j ••• > and 

let g belong to the same T^^_^-system as g' . By Theorem 2.8. 

there exists an automorphism 0 of G such that 

= V ( i ' ) - V ^ i ' ) • 

It follows from Theorem 4.2 that there is an n-transformation 

- 1 
a such that g'na = Jt . 

But from 4.7.1, it follows that g'Tra has P(§) , so that 

by Lemma 4-6, has P(0) , and so g has P(es ) , 

proving the lemna. 

Let 9 be a homomorphism of H onto G . If G has 
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trivial centre, then Z(H)0 = Z(HO) = E , and so Z(H) ̂  Ker 9 , 

But by Lemma 4.5? Ker 6 S Z(H) . It follows that 

Ker e = Z(H) , 4.7.2 

i.e., FCHJG) consists of just the one normal subgroup Z(H) . 

Hence, by Theorem 3.6, the set of generating n-vectors of 

A having P(H) is contained in a T^-system, if G is a 

, . \ tr. "'a (.k,n;-group. Therefore, combining this result with Theorem 4.7 

and Lemma 4.3? the following .theorem is obtained: 

Theorem 4.8. If G- is an n-generator group with a 

finite derived group and g, g' e [n,G] , then 

FyR(g)n6(P^) = P y R ( | ' 4 . 8 . 1 

if G is not a (k,n)-group. If G is a (k,n)-group for 

some k = 2, 3, ..o , and k* is defined as in Theorem 4.2, 

then 4.8.1 is satisfied if g and g' belong to the same 

T -system. This condition is necessary if G has trivial k* 

centre. 

The T-systems of some metabelian groups 

A group is called metabelian if its derived group is 

abelian. 

Lemma 4.9. If H is a metabelian (0,2)-group and h, h' 

are generating 2-vectors of H such that 

h5(H) = h'5(H) , 



- 59 -

then there is an automorphism r of H such that 

hr = h' . 

Proof. Let J denote the group-ring of h/5(h) over 

the integers. Just for the proof of this lemma S ( H ) will 

be regarded as an additive right J-module. If a = [h^jh^l , 

then every element of 5 ( H ) is a sum of conjugates of a 

and -a 9 that is S ( H ) = aJ . In particular 

a' = [h^,h'] - aj 

for some j e J . 

Let u e Pg ' then, since h5(H) = h'S(H) , 

uCp^8(H) = . 4.9.1 

Put u* = uCp^6(H) , then 

(u ^ [x^ jX2]u)cp 
h 

au* 

(u [x^jx^lu)^^, = a'u* 

by 4.9.1. It follows that if w e 8(P ) , so that 

wp^ = aj* 

for some j* e J , then 

wcp^, = a'j* 

But 
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a'j* - ajj* = , 

since J is commutative. Therefore aj- = 0 implies 

a'j* = 0 , that is wcp̂  = e implies = e ^ if w e . 

Since H is a (05 2)-group5 every element of R(h) belongs 

to . Therefore R(h) S R(h') . Similarly R(h') ^ R(h) , 

and the lemma follows immediately. 

Theorem 4.10. A metabelian (Oj2j-group H has just one 

T-system of generating 2-vectors, 

Proof. Let h, fi G . Now H/&(H) has just one 

A-class of generating 2-vectors (see [2], p.90). Therefore 

there exists a 2-transformation a such that 

FIA H h (mod 6(H)) . 

The theorem follows immediately from Lemma 4.9. 

Theorem 4.11. Let G be a finite 2-generator metabelian 

group with trivial centre. If G is [not a (k5 2)-group for 

every k § 2\, then G has just one T-system of generating 

2-vectors. If G is a (k,2)-group for some k s 2 , and k* 

is the largest integer for which this is so, then every 

T -system is a T-system of generating 2-vectors of G . k* 

Proof. Let g, g' belong to the same T^^-system, if 

G is a (k,2)-group for some k 5 2 ; if not, let g, g' 
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be arbitrary elements of [2,G] . Let 

H = F ^ M ^ ) m ( v ^ ) , 

and let 9 be a homomorphism of H onto G- such that g 

has P(0) . Then by Lemma 4.7, there is an automorphism 

0 of G such that g'6 has P(0) . Let h^ h e [2,h] " 

be such that 

h0 = I , 

h0 ^ g '3 . 

By Theorem 4.10, there is a 2-transformation a and an 

automorphism y of H ^ such that 

h a r = fi . 

Now by 4.7.2, K e r 0 = z,(h) j which is a characteristic 

subgroup of H . Therefore by Lemmas 2.4 and 1.2, 

9 ^ 0 
he = har9 = h a 0 r = h0a^;- ; 

that is J 

i s = i a r ? 

and the theorem is proved. 
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CHAPTER 5 

Introduction 

Let P be a free group and v a word subgroup function. 

If H is a normal subgroup of I , then so is v(r) . This 

chapter is devoted to an investigation of what properties of 

F / r are inherited by f / v ( r ) . Firstly^ the following 

problem is discussed: 

H. If f / r s f / s 5 is then f / v ( r ) s r/v(s) ? 

Oaschutz [5] showed that the answer is yes for a particular 

word subgroup function, if F is finitely generated and 

f/r is finite. Using a similar technique to that of Gaschiitz, 

it is shown in Theorem 5.3 that the answer to Ii is yes if 

r / v ( r ) is finite. 

However the answer to n is .no for some other word subgroup 

functions. In particular if F^/r is a (k5n)-group with more 

than one T^-system, then there exists a normal subgroup 3 

of F such that F /r ̂  F /S , but F /5(R) i • n n n n n 
This fact is a consequence of Theorem 5.4. I tried unsuccess-

fully to extend this result to the case when F ^ R has more 

than one T-system of generating n-vectors. In particular, if 

g, h are representatives of the two T-systems of generating 

2-vectors of (the alternating group on 5 symbols), it 
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is an unsolved question whether s r^/s(R(h)) . 

Recently Baumslag [1] proved that if F/R and R/V(r) 

are residually finite (or of p-power order), then F/V(R) has 

the same property. This result generalizes a theorem of 

Gruenberg ( [7]j Theorem 7.1;. Baumslag's result is obtained 

here (Theorem 5.1l) as a fairly immediate consequence of 

Theorem 5.10, v/hich; I thinkj is of some independent interest. 

Theorem 5.10 could be proved using techniques similar to those 

used by TaJsahasi in [16], but I think a more interesting 

approach is provided if Schreier systems are used^ as here. 

The isomorphism properties of }'yv(R) 

Let V be a non-trivial word subgroup function as 

described at the end of Chapter 1. 

The following theorem has recently been proved by 

^eter M. Neumann [15]. 

Theorem 5.1. If S and T are normal subgroups of a 

non-abelian free group, then v(s) ^ V(T) implies S S T . 

Hence v(s) = V(T) only if S = T . 

H group G is called a Hopf group if G is not iso-

morphic to any of its proper factor groups. 

Let G be an n-generator Hopf group, n > 2 , and let 

H = Fyv(R) , 

where R e ^(F^JG) . Let n be a homomorphism of H onto 
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G w i t h k e r n e l R / V ( R ) . 

L e t g e [n,G] , then P y v ( R ( g ) ) = k only 

if g has ?(7r0) f o r some a u t o m o r p h i s m 3 of G . This 

c o n d i t i o n is s u f f i c i e n t if G is finite and P /V(F ) is 
m m 

a Hopf g r o u p f o r every m ^ 1 , 

P r o o ^ . If h e [n^H] , then there exists an isomorphism 

L̂ of H onto P / R ( h ) such that 
n — 

htj, =: x R ( h ) . 

Now cp^^ = ' '^hM n a t u r a l homomorphism of 

J' onto R / R ( h ) . T h e r e f o r e 
n n 

K e r n = R(hTc)/R(h) . 

B u t k e K e r n if and only if k[i e K e r \i V . Hence ^ 

m a p s R / V ( R ) = K e r N i s o m o r p h i c a l l y onto R(hTt)/R(h) . 

If G is f i n i t e , R and R(hrt) are both free groups of 

rank 1 + |G|(n-l) (see [ 9 ] , p . 1 0 4 ) . If G is infinite, 

R and R(hiT) are b o t h free g r o u p s of countably infinite 

rank (see T h e o r e m 5 . ? ) . In either c a s e , t h e r e f o r e , R = R(hTt) , 

ana so 

R(hn)/v(R(hjt)) = R(hjt )/R(h) . 5.2.1 
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Therefore, by Lerama 1 . 1 1 , 

R(h) § v(R(h7T)) . 5.2.2 

I f p y v ( R ( | ) ) s H 5 cnoose h' e [n^H] such that 

R{h') = v(R(g)) . But then by 5o2.2, 

v(R(h'n)) g R(h') ^ v(R(|)) . 

I t follows from Theorem 5 . 1 , that R(h'jT) i R(g) . But G i s 

a Kopf groupj so that i n fact R(h' n) = R(g) , and there i s 

an automorphism 3 of G such that 

h'jr0 = g . 

I f G i s f i n i t e , then R(hjr) has f i n i t e rank. I f 

P / v ( F ) i s a Hopf group for every m § 1 , then clearly m m 

R(h :rt)/v(R(hTt)) i s a Hopf group. I t therefore follows from 

5 . 2 . 1 and 5 .2 .2 that 

R(h) = v(R(hrt)) . 

Let h* e [n,H] be such that h*jt3 = § , where 3 e {i(G) , 

then 

R(h*) = v(R(h*n)) - v(R(h*rtp)) - v(R(|)) , 

and the lemma i s proved. 

Theorem 5.3. Let P be a free group and let R, S 

be normal subgroups of P . I f ? /R = J'/S and R / V ( R ) i ; 
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finite, then P/V(R) = F/V(3) . 

Proof. If V(R) R , then v(s) = S , and the theorem 

is trivial. If V(R) R , and R/V(R) is finite, then R 

has finite rank, for if not, V(R) would contain a free gen-

erator of R and hence all of R . It follows from Theorem 

5 . 8 that F has finite rank and from Theorem 5.7 that F/R 

is finite. If P = , then F/R = implies R = S , 

and the theorem is trivial. Finally, suppose P = P for 

n g 2 5 and that S = , where g e [njP^/R] . Then by 

Lemma 5.2, I'^/v(s) s ?^/V(R) if g has P(7t3) for some 

automorphism 3 of J'̂ /R • But by Theorem 3.1, g has 

, and so the theorem is proved. 

Theorem 5.4. Let v be a word subgroup function such 

that V(A) = E for every abelian group h . Let G be a 

Hopf (k,n)-group for k, n § 2 , and let g, g' e [n,G] , then 

J^yv(R(g)) = Pyv(R(g'y) 5.4.1 

only if g and g' belong to the same T^-system. 

Proof. Let H = pyv(R(|)) , then H is a (O,n)-group, 

since 

v(R(g)) ^ 5(R(i)) ^ • 

Let Tt be the homomorphism of H onto G such that 
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then Ker ^ = R(g)/v(R(|)) . By Lemma 5.2, if 5-4.1 is sati; 

fied, then has p U b ) for some automorphism (3 of G , 

This implies that has p(n) . But by Theorem 3.4, 

\ ( i ) = D^Cg'e""') or k - , 

and the theorem is proved. 

Schreier systems 

Let X be a set of free generators of a free group P . 

Let f e P , f e 5 then f can be uniquely represented 

as a reduced word in the elements of XUx ^ ; say 

f = f^f^.-.f^^ , f^ e XUx"^ 5 i = l 5 2 j . . . , m . 

The length of f is denoted by f ; i.e., f = m . Also 

f^^^ - f f,...f. , 0 < i ̂  f , I <:. X 

= e . 

A set of elements T of P is said to be a Schreier system 

if 

(a) f e T implies that f^^^ £ T for 0 ̂  i ̂  f . 

Schreier (see, for instance, [9], p.95) showed that if U 

is a subgroup of P , then there is a Schreier system that 

is a complete set of right coset representatives of U . 
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The following lemma is a slight generalization of this result. 

Lemma 5.5. Let U be a subgroup of P . Let T be a 

Schrei or system such that for every pair t̂  t' s T 

(b) Ut = Ut' implies that t = t' . 

Then there is a Schreier system M that is a complete set of 

right coset representatives of U and such that T ^ M • 

Pr£of. Consider the set W of all Schreier systems 

T' such that T T' and which satisfy (b). If this set 

is ordered by set inclusion, then it is clear that the union 

of every simply ordered subset of "W belongs to W . By 

Zorn's Lemma, V/ contains a maximal element M . Let 

f = f^f^.-'f^ e F s let k be the largest integer such that 

Uf''̂ ^ = Ud for some d e w . If k < f , then 

is a Schreier system satisfying (b), since 

Udf ^ = Uf^^-'^^ ^ Ud' K+ I 

for every d' e M . This contradicts the raaximality of M . 

Therefore k = f , and M is a complete set of coset 

representatives of U . 

Since {e] is a Schrcier system satisfying (b), it 

follows that the existence of a ochreier system of right coset 

representatives of U has been proved. Let T be such a 

Schreier system, and let cp be the function of ? onto T 



- 69 -

such that 

Uf = Ucp(f) , f € P . 

Schreier's Theorem ^'heorem 7.2.1) is now stated for 

convenience in the following form. 

Theorem 5.6. Every subgroup U of P is a free group. 

The set 

{txcp(tx)~^ I t e T, X € x, tx/cp(tx)] 

is a set of distinct free generators of U . 

The following two theorems are well known. However I 

could not find proofs of them in the literature. 

Let r(H) denote the rank (a finite or infinite card-

inal) of a free group H . 

Theorem 5.7. Let W be a non-trivial normal subgroup 

of P and let p/ n have infinite order, then 

r(iO ^ !p/n1 • 

Proof. Let T be a Schreicr system ox right coset 

representatives of N ; thus | T | = | p / n | . Let n £ N , 

n / e J and let 
_ 1 

n . = n n . . . n , .n.eXUX , i = 1 , 2 j . . . 5 S , "1 S 1 

be the representation of n as a reduced word. Let T^ , 

0 ^ i g s-1 s be defined as follows: 

T = ( tn (^) I t , . T , i 
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If t e T , then tn ^ 1 , since Ntn = Nt . It follows 

that for every t e T , there exists an i such that 

tn^^^ e T^ , and clearly 

Since is infinite, for some r , 0 § r S s-1 

If e X 5 then by Theorem 5.6, 

V = [dn ,cp(dn J r+ V ^ r+1 
- 1 d e l } r 

is a subset of a set of free generators of N such that 

!v 

-1 -1 

while if e ^ ? V has the same property. This 

completes the proof of the theorem. 

Theorem 5.8. Let N be a non-trivial normal subgroup 

of P , then r(N) g r(j^) . 
Proof. If r(F), r(lO and I'/n are finite, then 

(see [9], P- 104) 

r(lO = 1 + 1 r/N|(r(p)-i) ; 

the result follows immediately for this case. 

A set of generators of together with a set of 

r e p r e s e n t a t i v e s of the cosets of N in F will form a set 

of generators of ? • Therefore 
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r(r) g r(lO + |iyN[ . 5.8.1 

It follows that if r(lO and !F/N| are finite, then so. is 

r(iO . It remains, therefore, to deal with the case when 

either r(N) or f/i-J is infinite. Inequality 5.8.1 

then becomes 

r(?) g Max (r(N), , 

and the theorem follows from Theorem 5.7 

The residual properties of f/v(R) 

Let V be a word subgroup functi on. Let ? be a Iree 

group and X a set of free generators of P , 

The following well known lemma about word subgroups of 

free groups will be required. 

Lemma 5.9« If C and j" = sgp{A'} , then 

V(F') = , 

and ]?'/v(F') is isomorphic to a subgroup of p/v(p) . 

Proof. Let a be the epimorphism of P onto P' 

such that 

x'a = x' , x' e X' , 

xa = e , x e ^ v , x ^ a ' . 

If f € F' , then f = fa . But X e V(F) implies that 

f0 € v(F') . Hence if f e P'nv(F; , then f = fa ev(F') : 

that is ? nv(F) ̂  v(F') . Trivially and 

the first part of the lemma is proved. Tinaliy, 
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Theorem 5»10. Let F be a set of subgroups of F , 

closed under finite intersections. If I = U , then 

Ue^ 

v(l) = . n v(u) . 
uer. 

Proof. Trivially v(l) ^ 0 v(u) » 

U€T 

Let u e I ^ u / v(l) , it will be shown that 

u / v(u) for some U e J' . Let T be a Schreier system 

of right coset representatives of I , and Y the set of 

free generators of I as given in Theorem 5.6, so that 

1 'r - - a , . < • < 
u = y^ yg •••y^. ? y^ e ^ ? '̂i == ? i ^ i ^ r 

— 1 
Let V = t x.(T)(t.x.) 5 t. € T o X. € X . Let 

•̂ i i 1 1 ' 1 1 

so that A C • Let 

B (a^^^ I a € A , O ^ i ^ a ] , 

so that b C T . Also is finite. Set 

C {bb~^ bo b e B , b b ) 1 

_ 1 

Let b, b^ € 3 , then bb^ e I implies that lb = Ib^ , 

and so b = b^ . It follows that if c e C , then c ^ I 
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T h u s t h e r e e x i s t s U e s u c h t h a t c ^ U . L e t 
c c 

J = n u , 
ceC ° 

t h e r i j s i n c e C i s f i n i t e , J e . I f J b = J b ^ , w h e r e 1 

•1 , , , - 1 bj b.̂  e 13 y then Jbb^ ' = J ^ and so bb^ £ J . I f b ^ b^ , 

_ -1 
t h e n b b ^ ' € C . 3 u t C a n d J a r e d i s j o i n t . T h e r e f o r e 

Jb = Jb^ implies b = b^ . Thus B is a Schreier system 

sat isfy ing condition (b) of Lemma 5.5 for subgroup J . 

Hence there is a Schreier system M that is a complete set 

of r ight coset representatives of J and such that B Vl . 

L e t 9 ' b e t h e f u n c t i o n o f F o n t o M g i v e n b y 

J C p ' ( f ) = J f , f 6 , 

then 

J c p ' ( t X . ) = J t X fe I t . x . = l c p ( t . x . ) . ^ i x^ i i 1 1 ^^ 1 i ' 

Hence Jcp'(t^x^) z= jcp(t^x^) . But ^(t^x^) e A Jm . 

Therefore cp'(t^x^) = ' 

Y ' = { d x c p ' ( d x ) " ' ' I d e M j x e X , d x / c p ' ( d x ) } 

i s a set of free generators for J . But t^ e A C M •> 

Therefore 
. -1 

V == t x . c p ( t . x . ) ~ - t . x . c p ' ( t . x ) ' e Y ' 
• > i i 1 i ' 1 1 1 1 

for i = 1, r . Let K = sgpfy^, y^? ••-? y^) ? 
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then by Lemma 5.9? 

V(K) = K N V ( I ) - K N V ( J ) . 

But u e K 5 u / v(l) o Therefore u / v(j) and the theorem 

follows immediately. 

A group G is said to have property P residually ifj 

for every g e G , g / e , there is a normal subgroup H 

such that g / N and g/n has property P . 

A group property P is called a root property if it 

satisfies the following conditions:-

1) if group G has P , then every subgroup of G 

has P ; 

2) if groups G and H have P , then the direct 

product G X H has P ; 

3) if G S H " tv is a series of subgroups, each normal 

in its predecessor, and G/H and H/K have P , 

then K contains a subgroup L , normal in G , 

such that G/L has P . 

This definition was introduced by Gruenberg [ 7] . Solubility, 

finiteness and "having p-power order" are all root properties 

([7], p.33). 

Theorem 11• let P be a root property. Let R be 

a normal subgroup of I' such that p/r and R/v(r) have 

P residually, then P/V(R) has P residually. 
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Proof. Let f E T , f ^ V(r) . It is required to find 

a normal subgroup N of ? , such that V(R) ^ N , f / H 

and f/r has F . 

Let 

r.p = {S I R ^ o <1 x'/s has P } 5 

then ([7I5 P«33) is closed under finite intersections 

and 

" n S = R 
S€' "P 

Therefore, by Theorem 5.10 

V(R) = N v(s) . 

In particular, there exists S' e such that f ^ v(S') . 

Since S' § R , r(S') ^ r(H; by Theorem 5.8. Therefore, 

by Lemma 5.95 S'/v(S') is isomorphic to a subgroup of 

R/V(R) . Since P satisfies 1J, it follows that 3'/v(S') 

has P residually. Therefore there exists a normal subgroup 

K/V(S') of S'/v(S') such that S'/K has P , but f / K . 

Since P satisfies 3) and since p/s' has P , there exists 

a normal subgroup N/V(O'; of P/v(S') such that p/N has 

P and K S K . Clearly f ̂  N and N > V(R) , so that 

N has the required properties. 
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