ON VARIETIES OF

METABEIAN GROUPS OF PRIME-POWER EXPONENT

 byM.S. BROOKS

A thesis presented to the Australian National University for the degree of Doctor of Philosophy in the Department of Mathematics.

STATEMENT

The results presented in this thesis are my own except where otherwise stated.

M.9. Brooks

M.S. Brooks.

PREFACE

The work for this thesis was carried out during my tenure of an Australian National University research scholarship. I much appreciate the generous financial assistance that this provided; not only has it supported me over the past three years but it also paid my return fare from Great Britain.

It is with pleasure that I express gratitude to my co-supervisors, Dr. L.G. Kovács and Dr. M.F. Newman for their ready availability and ever helpful advice whenever I have needed guidance.

The stencils for the thesis were typed by my wife, Whom I thank both for this and for her continued encouragement.

Finally, I thank Mr. R.A. Bryce for many long and useful discussions and for his assistance with the proof reading.

Notation and Terminology

Chapter 1 The Derived Group of $F_{\infty}\left(A_{m}^{A} A_{n}\right)$ I
1.1 A Commutator Calculus for Metabelian Groups 2
1.2 Statement of the Main Theorem 7
1.3 Skeletal Proof of l.2.2 8
1.4 The Proof of $1.3 .1 \quad 14$
1.5 The Proof of 1.3 .216
1.6 The Proof of $1.3 .3 \quad 18$
1.7 An Alternative Basis for $G^{\circ}(m) \quad 28$

Chapter 2 The Subvarieties of $A_{p} \bigwedge_{p}{ }^{2} \quad 31$
2.1 Statement of the Main Theorem 31
2.2 Skeletal Proof of 2.1.2 33
2.3 The Proof of 2.2.12 49
2.4 The Proofs of 2.2.7,2.2.10 and 2.2.14 55
2.5 The Proof of 2.2.11 84
2.6 The Proof of 2.2.4 96
2.7 The Proof of $2.2 .13 \quad 98$
2.8 Two Consequences of the Main Theorem 101
2.9 An Alternative Description of the Varieties I_{α}
Chapter 3 Remarks on Non-Distributivity 109
3.1 An Example of Non-Distributivity in $\operatorname{lat}\left(\begin{array}{l}A \\ = \\ =9\end{array}\right)$ 109
3.2 A Non-Uniqueness Result 115
3.3 Further Remarks 117
References 119

INTRODUCTION

The work reported in this thesis is a contribution to the young, but growing, theory of metabelian varieties (ie. varieties of metabelian groups). The basic (but in its full generality entirely hopeless) problem in this theory is to describe all metabelian varieties and the lattice lat(A) they form, and indeed most of the results obtained so far concern aspects of this problem.

Probably the most general, and certainly the most wellknown, of these results is due to D.E. Cohen [3], who has shown that lat $(\underset{=A}{A})$ has minimum condition. Other authors, such as Warren Brisiey [1], R.A. Bryce [2], P.J. Cossey [4], L.G. Kovács and M.F. Newman (unpublished), and P.M. Weichsel [9], have given descriptions of various sublattices of lat($\underset{=}{=}$). These sublattices are $\quad . l l$ distributive, whereas lat $(\underset{=}{A A})$ itself is not, as has been shown by R.A. Bryce [2].

It follows from Cohen's result that every variety $\underset{=}{V}$ in $\operatorname{lat}(\underset{=}{A})$ can be expressed as the irredundant join of finitely many join-irreducible varieties. Owing to non-distributivity not every $V=$ has a unique expression of this kind, nevertheless a classification of the join-irreducible subvarieties of $A \cap$ would clearly provide a great deal of information about lat($\underset{=}{\mathrm{AA}}$). In this direction L.G. Kovács and M.F. Newman, in work as yet
unpublished, have classified the join-irreducibles of infinite exponent, and have shown further that for any $\underline{\underline{V}} \varepsilon$ lat (AA) the infinite exponent components in the expressions for V as an irredundant join of join-irreducibles are unique. The joinirreducibles of finite, composite exponent have been considered by R.A. Bryce, who has obtained a reduction theorem relating to their classification. Although this theorem, which is also unpublished, does not actually lead to a classification, it does indicate that any such classification must necessarily be extremely complicated. The remaining case is that of the prime-power exponent join-irreducibles, and it is to certain aspects of the problem of classifying them that this thesis is devoted.

The principal result, which is expressed in the first part of Theorem 2.1.2, is a complete classification of the non-nilpotent join-irreducibles in lat $\left(A_{p} A_{p}{ }^{2}\right)$, where p is an arbitrary prime. It is shown that these non-nilpotent joinirreducibles form an ascending chain, so that any non-nilpotent variety $\underline{\underline{V}} \in \operatorname{lat}\left(\bigwedge_{p} \hat{A}_{p}{ }^{2}\right)$ can be written $\underline{\underline{V}}=I V$ where I is a non-nilpotent join-irreducible, and $£$ is nilpotent. The second part of Theorem 2.1 .2 says that this \xlongequal{I} is unique (compare the result of I.G. KovEcs and M.F. Newman mentioned above), but in Chapter 3 it is shown that at least lat ($\hat{A}_{3} A_{9}$) is non-distributive, and, in particular, that the nilpotent
component $\underset{=}{=}$ of $\underset{=}{=}$ not always unique, even when "minimised". (See Remark 2.l.3). In addition to these results, a conjecture (item 2.9 .5) is made regarding the non-nilpotent join-irreducibles in lat $(\underset{=p=p}{A} \beta+1)$ which, if true, would reduce the classification problem of the join-irreducibles in $\operatorname{lat}\left(A_{p}^{A}={ }_{p} \beta+1\right)$ to that of the nilpotent join-irreducibles in the same lattice. This conjecture, which is similar to the reduction theorem of Bryce in the composite exponent situation, is proved for the case $\beta=1$. Unfortunately, the classification problem for the nilpotent join-irreducibles appears very difficult.

The proof of Theorem 2.1.2 consists almost entirely of commutator calculations. In fact, such an extensive use is made of commutator calculus that it has been worthwhile to develop a new form of it which is tailor-made for the metabelian situation. This is described in Chapter I and is used there to provide a basis for the derived group of $F_{\infty}\left(A_{=m} A_{n}\right)$. Although this result is only needed for the case $m=p, n=p^{2}$, it is given for general m, n as this does not make the proof any more difficult.

NOTATION AND TERMINOLOGY

Notation and terminology generally follows that in Hanna Neumann. Varieties of Groups. Berlin, Heidelberg and New York. Springer 1967 .

References to this book are frequent, and are indicated by the letters $H N$, usually followed by the relevant item number. Any notation or terminology neither explained below nor in the body of the thesis has exactly the meaning attached to it in $H N$. Note, however, that German letters are here represented by double-underlined Roman letters.

Logic and Sets:

$\Rightarrow \quad$ logical implication
// "end of proof" or, sometimes "no proof"
$\psi \psi$ signifies that a proof appears later. If the proof appears in a different section then the symbol is followed by the relevant section number.
$\varnothing \quad$ the empty set
$\omega \quad$ the least infinite ordinal
So the smallest infinite cardinal
I the set of nonnegative integers
I^{+}the set of positive integers

Groups:

The trivial element of every group is denoted by 1.
For the definitions below let H be a group;
$\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots$ subgroups of $\mathrm{H} ; \mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots$ elements of H with $\underline{\underline{h}}=\left\{h_{1}, h_{2}, \ldots\right\} ; r_{2}, r_{3}, \ldots \varepsilon I ;$ and $k \varepsilon I^{+} \backslash\{I\}$.
$\mathrm{H}_{\mathrm{I}} \leq \mathrm{H}$
H_{1} is a subgroup of H
$g p(\underline{\underline{h}})$
the subgroup of H generated by $\xlongequal{\underline{n}}$
$\left\langle h_{h_{2}}\right.$
h_{I}
$\left[h_{1}, h_{2}\right]$
the fully invariant closure of \xlongequal{h} in H
$h_{2}^{-1} h_{1} h_{2}$
$h_{1}^{-1} h_{1}$
$\left[h_{1}, \ldots, h_{k}\right]$
defined recursively:
$\left[h_{1}, \ldots, h_{k}\right]=\left[\left[h_{1}, \ldots, h_{k-1}\right], h_{k}\right]$
$\left[h_{1}, r_{2} h_{2}\right]$
defined recursively: $\left[h_{1}, 0 h_{2}\right]=h_{I}$,
$\left[h_{1}, r_{2} h_{2}\right]=\left[\left[h_{1},\left(r_{2}-1\right) h_{2}\right], h_{2}\right]$
$\left[h_{1}, r_{2} h_{2}, \ldots, r_{k} h_{k}\right]$ again defined recursively in the obvious manner
$\left[\mathrm{H}_{1}, \mathrm{H}_{2}\right]$
$\operatorname{gp}\left(\left\{\left[h_{I}, h_{2}\right] \mid h_{I} \varepsilon H_{1}, h_{2} \varepsilon H_{2}\right\}\right)$
$\left[\mathrm{H}_{1}, r_{2} \mathrm{H}_{2}\right.$]
defined recursively: similarly to above
${ }^{H}$ (c)
[H, (c-I)H] defined for all c εI^{+}
The exponent of H is the smallest positive integer e
such that $h^{e}=1$ for all $h \varepsilon H$. If no such integer exists H is said to have infinite exponent.

Miscellaneous:

GF(p) the field of integers modulo the prime p supp \quad Let S be any set. The support of a function
 supp $\delta=\{s \varepsilon s \mid \delta(s) \neq 0\}$
[q] the integer part of the nonnegative rational number q, ie. $[q] \varepsilon I, q-I<[q] \leq q$.
lat($\underline{\underline{V}})$ the lattice of subvarieties of the variety $\underline{\underline{V}}$

The exponent of a variety $\underline{\underline{V}}$ is the least positive integer e such that $\underline{\underline{V}} \subseteq \underline{\underline{B}}_{e}$ or is infinite if no such e exists.

CHAPTER I

THE DERIVED GROUP OF $F_{\infty}\left(A_{m} A_{n}\right)$

In this chapter the structure of the derived group $F_{\infty}^{\prime}\left(A_{m} A_{n}\right)$ of $F_{\infty}\left(A_{m} A_{n}\right)$ is investigated. Since A_{1} is the variety of trivial groups, the variety $\underset{=m=n}{A}$ is abeljan if m or n is 1 , so that in these cases $F_{\infty}^{\prime}(\underset{=m}{A} \underset{=}{A})$ is trivial. On the other hand when $n=0$ the structure of $E_{\infty}^{\prime}\left(A_{m=n}^{A}\right)$ becomes more complicated than can be handled by the methods presented here. For all other cases it is shown that $F_{\infty}^{\prime}(A, A)$ is free abelian of exponent m, and, more importartly, an explicit basis for it is exhibited. The description of this basis and a formal statement of results, is given in section 1.2 , after the requisite notation has been introduced in l.I. The proof of these results, modulo three principal lemmas, is given in 3.3 , while the proofs of the three lemmas occupy sections I. 4 through 1.6. Finally, in 1.7 an alternative basis for $F_{\infty}^{\prime}(\underset{=m}{A} \underset{=}{A})$ is described which, although easily obtainablo from the original, is of a rather different nature.

1.I A Commutator Calculus for Metabelian Groups

This section deals with the conventions, notation and terminology that will be adopted with regard to what is perhaps the most intensively exploited method of proof in this thesis, $n a m e l y$ commutator calculus.

An inconvenience inherent in commutator calculus in general is that the word "commutator" is usually considered as having, simultaneously, two distinct meanings; on the one hand it is the name given to certain ELEMENTS of the group under consideration, while on the other it is the name given to certain purely FORMAL EXPRESSIONS to which the attributes such as weight can be ascribed. Although in most cases this presents no real difficulties, for the purposes of this thesis it does, and consequently I shall use the non-standard notation and terminology defined below. Part of the intuitive content of the definitions is that the word "commutator" will be reserved for the second of the meanings mentioned above, and "commutator-element" will be used for the first. Further, the two will be distinguished notationally by using parentheses in writing commutators, and brackets in writing commutator-elements.

The groups to which commutator calculus will be applied will almost always be metabelian and accordingly the definitions below are made with metabelian groups in mind, even though most of them are formulated in terms of arbitrary groups.
1.1.I Definition: Let H be any group and let $k \in I^{+} \backslash\{ \}$ 。 A commutator of weight k in H is an ordered $k-t u p l e t ~ \tilde{c}=\left(h_{I}, \ldots, h_{k}\right)$ with $h_{I} \ldots . . h_{k} \varepsilon H$. For $I \leq i \leq k$ the element h_{i} is referred to as the $\underline{i-t h e n t r y ~ o f ~} \tilde{c}$. The set of all commutators in H is denoted by $\tilde{C}(H)$
$\tilde{C}(H)$ (i.e. $\tilde{H}=\bigcup_{H^{k}}^{\infty}$), and the weight of a commutator $\tilde{c} \varepsilon \tilde{C}(H)$ is $k=2$ denoted by wt($\tilde{c})$.
I.I.2 Definition: Let H be any group. The value of a commutator $\left(h_{1}, \ldots, h_{k}\right)$ in H is defined as the element [h_{I}, \ldots, h_{k}] of H. Any element of H that is the value of some commutator in H is called a commutator-element.
1.1.3 Definition: Let \tilde{c} be a commutator in a group H. The degree function of \tilde{c}, denoted $b y \delta_{\tilde{c}}$, is defined as follows: For any $h \in H$ define $X_{h}: H \rightarrow I$ by $X_{h}(h)=I$ and $X_{h}\left(h^{p}\right)=0$ for alI $h^{9} \neq h$. Then for $\tilde{c}=\left(h_{1}, \ldots, h_{k}\right)$ the degree function $\delta_{\tilde{c}}: H \rightarrow I$ is defined as $\sum_{i=1}^{k} X_{n_{i}}$.
1.I.4 Remarks: Let H be any group; \tilde{c} a commutator in H; and $h \in H$. Then it follows immediately from Definition 1.l.I and 1.l.3 that:-
(i) the set of entries of \tilde{c} is precisely supp $\tilde{c}_{\tilde{c}}$;
(ii) $\operatorname{supp} \delta_{\tilde{c}}$ is finite but nonempty;
(iii) $\delta_{\tilde{c}}(h)$ is the number of times h occurs as an entry in \tilde{c};
(iv) wt $(\tilde{c})=\sum_{h \in H} \delta_{\tilde{c}}(h)$.
1.1.5 Definition: Let H be any group. A pair of commutators in H are called similar if, and only if, they have the same first entry, the same second entry and the same degree function.

For any group H it is clear that similarity defines an equivalence relation on $\tilde{C}(H)$ and hence that $\tilde{C}(H)$ is the union of pairwise non-intersecting "similarity classes". These similarity classes are the subject of the next definition:
1.1.6 Definition: Let H be any group. Denote by $\left(h_{1}, h_{2}, \delta\right)$ the (non-empty) similarity class containing commutators in H with degree function δ and first and second entries h_{1} and h_{2} respectively. Then ($\left.h_{1}, h_{2}, \delta\right)$ is called the pseudo-comrnutator in H with first entry h_{1}, second entry h_{2}, and degree function δ. Third, fourth and further entries are not defined as such, but nevertholes any $h \in \operatorname{supp} \delta$ is called on entry of $\left(h_{1}, h_{2}, \delta\right)$. The set of all pseudo-commutators in H is denoted by $\tilde{\mathrm{P}}(\mathrm{H})$.

It follows from leI. 4 (iv) that similar commutators have the same weight. Thus:-
1.l.7 Definition: The weight of pseudo-commutator \tilde{p} is defined to be the common weight of its members, and is denoted by wt (\tilde{p}).
1.I. 8 Remark: Let H be any group, and let $\left(h_{1}, h_{2}, \delta\right)$ be a pseudo-commutator in H. Then $w t\left(\left(h_{I}, h_{2}, \delta\right)\right)=\sum_{h \varepsilon H} \delta(h)$.

For metabelian groups the concept of pseudo-commutators is particularly useful. This is on account of the following well-known result. (See, for example, HN34.51).
1.1.9 Lemma: Let H be a metabelian group, and let $h_{1}, \ldots, h_{k} \in H, k \geq 2$. Then for any permutation π of $\{3, \ldots, k\}$

$$
\left[h_{1}, h_{2}, h_{3}, \ldots, h_{k}\right]=\left[h_{1}, h_{2}, h_{3 \pi}, \ldots, h_{k \pi}\right] . / /
$$

1.1.10 Corollary: In a metabelian group similar commutators have identical values. //

The above corollary makes possible the following definition, which provides the key to a simplified notation for elements of the derived group of a metabelian group.
1.1. ll Definition: Let H be a metabelian group. The Value of a pseudo-commatator $\left(h_{1}, h_{2}, \delta\right)$ in H is defined to be the common value of its members, and is denoted by $\left[h_{1}, h_{2}, \delta\right]$.

A disadvantage of the $\left(h_{1}, h_{2}, \delta\right)$-notation for pseudocommutators is that it is generic rather than explicit. To overcome this, the degree function δ will, when necessary, be "listed" in the form $\{\delta(h) h \mid h \varepsilon$ supp $\delta\}$. For example, the pseudo-commutator containing ($h_{1}, h_{2}, h_{2}, h_{1}, h_{3}, h_{1}, h_{1}$) may be denoted by ($h_{1}, h_{2},\left\{4 h_{1}, 2 h_{2}, I h_{3}\right\}$). The notation will also be carried over to values of pseudo-commutators in the

1.2 Statement of the Main Theorem

For the remainder of this chapter let n denote an arbitrary but fixed integer greater than 1 , and let $G(m)=F_{\infty}\left(A_{m} A_{n}\right)$ where $m \in I^{+}, m \neq 1$. Further, let $\underline{\underline{g}}(\mathrm{~m})=\left\{g_{\mathrm{mi}} \mid i \varepsilon I^{+}\right\}$denote a free generating set for $G(m)$, Where it is to be understood that $g(m)$ is well ordered by its indexing set, ie. $g_{m i} \leq g_{m j}$ if, and only if, $i \leq j$.
1.2.1 Definition: A pscudo-commutator (a, b, δ) in $G(m)$ will be called basic if, and only if,
(I) $\operatorname{suppo} \subseteq g(m)$
(2) $\mathrm{b}=$ minsuppo (ie. b is the least element in supp)
(3) $a \neq b$
(4) either (i) $\delta(a) \leq n$ and

$$
V_{g_{m i}} \varepsilon \underset{=}{g}(m)\left(g_{m i} \neq a \Rightarrow\left(g_{m i}\right)<n\right)
$$

or

$$
\begin{aligned}
& \text { (ii) } \delta(b)=a, a=\operatorname{maxsupp\delta } \text { and } \\
& \forall_{g_{\mathrm{mi}}} \varepsilon \underset{\equiv}{g}(m)\left(g_{\mathrm{mi}} \neq b \Rightarrow\left(g_{\mathrm{mi}}\right)<\mathrm{n}\right)
\end{aligned}
$$

The set of basic pseudo-commutators in $G(m)$ will be denoted by $\tilde{B}(m)$.

The main result of this chapter can now be stated as follows:
1.2.2 Theorem: The derived group $G^{\prime}(m)$ of $G(m)$ is free abelian of exponent m. Further, the valuation mapping $\phi(m): \tilde{B}(m) \rightarrow G(m)$ is one-to-one, and $\tilde{B}(n) \phi(m)$ is a basis for $G^{9}(\mathrm{~m}) \cdot \psi \psi(1.3)$

It should perhaps be remarked that, in terms of basic commutators*, as defined in HM 31.51, the basis $\tilde{B}(m) \phi(m)$ for $G^{\prime}(n)$ consists of images under α (where $\alpha: X_{\infty} \rightarrow G(m)$ is the epirorphism induced by the natural map from $\underset{=}{x}$ to $g(m))$ of left-ncrmed basic commutators in which no letter occurs more than (n-I) times, except that, in specific cases, one of the first two entries may occur n times. However, we shall not use basic commutator methods for the proof of 1.2 .2 , or, indeed, anywhere in this thesis.

1.3 Skeletal Proof of 1.2.2

The bulk of the proof of 1.2 .2 will be carried out in finitely generated subgroups of $G(0)$. For any integer r

[^0]let $G_{r}(0)=g p\left({\underset{\sim}{g}}_{r}(0)\right)$. Let $\tilde{B}_{r}(0)$ denote the set of basic pseudo-comrutators in $G_{r}(0)$; ie. $\tilde{B}_{r}(0)=\tilde{B}(0) \cap \tilde{\mathbb{P}}\left(G_{r}(0)\right)$. In this section it is shown how 1.2 .2 is deduced from the following three leas:
1.3.1 Lemma: For all $r \geq 2$ the derived group $G_{r}^{\prime}(0)$ of $G_{r}(0)$ is free abelian of exponent 0 and rank $(r-1)\left(n^{r}-1\right) . \downarrow \downarrow(1.4)$
1.3.2 Lemma: For all $r \geq$? $\left|\tilde{B}_{r}(0)\right|=(r-1)\left(n^{r}-1\right) \cdot \psi \psi(1.5)$
1.3.3 Lemma: For all $r \geq 2 G_{r}^{\prime}(0)=\operatorname{gp}\left(\tilde{B}_{r}(0) \phi(0)\right) \cdot \downarrow \downarrow(1.6)$

Actually, the rank of $G_{r}^{\prime}(0)$ and the cardinality of $\tilde{B}_{r}(0)$ are not important in themselves; only their equality is required, and this is used to prove:
1.3.4 Lemma: For any integer $r \geq 2$ the valuation mapping $\phi(0) \mid \tilde{B}_{r}(0): \tilde{B}_{r}(0) \rightarrow G_{r}(0)$ is one-to-one, and $\tilde{B}_{r}(0) \phi(0)$ is a basis for $G_{r}^{r}(0)$.

Proof: From $1.3 .2\left|\tilde{B}_{r}(0) \phi(0)\right| \leq(r-1)\left(n^{r}-1\right)$, and equality holds only if $\phi(0) \mid \tilde{B}_{r}(0)$ is one-to-one. On the other hand, since from $3.3 .3{\underset{\mathrm{E}}{\mathrm{B}}}_{\mathrm{r}}(0) \phi(0)$ is a generating set for $G_{r}^{p}(0)$, it follows from 1.3.1 that $\left|\tilde{B}_{r}(0) \phi(0)\right| \geq(r-1)\left(n^{r}-1\right)$,
and equality holds here only if $\tilde{B}_{r}(0) \phi(0)$ is a basis for $G_{r}^{\prime}(0) \cdot 1 /$

Proof of 1.2.2: We deal first with the case $m=0$. Firstly, the mapping $\phi(0): \tilde{B}(0) \rightarrow G(0)$ is one-to-one because any two distinct basic pseudo-commutators belonging to $\tilde{B}(0)$ are also members of $\tilde{B}_{r}(0)$ for sufficiently large r, and therefore have distinct values, since $\phi(0) \mid \tilde{B}_{r}(0)$ is one-to-one (from I.3.4).

Secondly, $\tilde{B}(0) \phi(0)$ generates $G^{\prime}(0)$ because any element W in $G^{\prime}(0)$ is also a member of $G_{r}^{\prime}(0)$ for large enough x, and $G_{r}^{\prime}(0)=\operatorname{gp}\left(\tilde{B}_{r}(0) \phi(0) \leq \operatorname{gp}(\tilde{B}(0) \phi(0))\right.$ 。(We have used 1.3.3). To verify that $\tilde{B}(0) \phi(0)$ is in fact a basis for $G^{\circ}(0)$, it remains to show that no non-trivial relation exists among its members. Now if any such non-trivial relation did exist, say involving the values of basic pseudo-commutators $\tilde{p}_{1}, \ldots ., \tilde{\mathrm{p}}_{\mathrm{k}}$, then, choosing r so that $\tilde{p}_{1}, \ldots, \tilde{p}_{k} \varepsilon \tilde{B}_{r}(0)$, it would also provide an example oi a nontrivial relation among the members of $\tilde{B}_{r}(0) \phi(0)$. But this would mean that $\tilde{B}_{r}(0) \phi(0)$ could not be a basis for $G_{r}^{\prime}(0)$, contradicting 1.3.4.

Finally, we must show that $G^{9}(0)$ is free abelian of exponent o, but since we have already exhibited a basis for $G^{\prime}(0)$, it suffices to show that $G^{\prime}(0)$ is torsionmfrec. For
this simply note that $G_{\underset{\infty}{r}}^{r}(0)$ is torsion-free for every $r \geq 2$ by 1.3 .1 , and $G^{P}(0)=\bigcup_{r=2} G_{r}^{?}(0)$.

To complete the proof of 1.2 .2 we must deal with the case $m>1$, and this we shall now do, essentially by showing that the restriction of the $n a t u r a l$ epimorphism $\theta: G(0) \rightarrow G(m)$ has the necessary properties.

For the remainder of this proof, let m denote ar arbitrary but fixed integer greater than 1 . Since $A_{=m=n}^{A}$ is a subvariety of $\stackrel{A}{=}=A_{n}$, the natural mapping $\bar{\theta}: \underset{\underline{g}}{g(0)} \rightarrow \underset{=}{g}(m)$, given by $g_{0 i} \bar{\theta}=g_{m i}$ for all $\dot{\varepsilon} I^{+}$, extends to an epimorphism $\theta: G(0) \rightarrow G(m)$ with kernel $A_{m}\left(A_{n}(G(0))\right)$. From HN12.31, $A(G(0) \theta)=A\left(G(0) \theta\right.$, so $G^{\prime}(\mathrm{m})=G^{\prime}(0) \theta$, and hence $G^{\prime}(m)$ will be shown to be free abelian of exponent m if we can show that

$$
1.3 .5 \ldots \quad \operatorname{ker}\left(\left.\theta\right|_{G^{\prime}(0)}\right)=B_{m}\left(G^{\prime}(0)\right)
$$

To prove this, let F denote an absolutely free group of rank H_{0}, so that $G(0) \cong F / A\left(A_{n}(F)\right)$. In the same notation

$$
\begin{aligned}
G^{Q}(0)=A(G(0)) \cong A\left(F / A\left(A_{n}(F)\right)\right)= & A(F) \cdot A_{n}\left(A_{n}(F)\right) / A\left(A_{n}(F)\right)= \\
& A(F) / A_{n}\left(A_{n}(F)\right)
\end{aligned}
$$

and hence $G(0) / G^{\prime}(0) \cong F / A(F) \cong F_{\infty}(\stackrel{A}{=})$. Hence $G(0) / G^{9}(0)$ is
free abelian (of exponent 0) and it follows that $A_{n}(G(0)) / G^{\prime}(0)$, being a subgroup of a free abelian group, is also free abelian. ([5]p.I43). Now $A_{n}(G(0))$ is abelian, (since $\left.A\left(A_{n}(G(0))\right)=\{I\}\right)$, and it follows that $G^{9}(0)$ is a direct factor of $A_{n}(G(0))$. ([5]p.I44). Hence denoting by C any complement of $G^{P}(0)$ in $\Lambda_{n}(G(0))$, we have
$\operatorname{ker} \theta=A_{m}\left(A_{n}(G(0))\right)=B_{m}\left(A_{n}(G(0))\right)=B_{m}\left(G^{p}(0) \times C\right)=B_{n}\left(G^{p}(0)\right) \times B_{m}(0)$.

But this proves 1.3 .5 for $\operatorname{ker}\left(\theta \mid G^{\prime}(0)\right)=\operatorname{ker}^{\prime} \cap G^{1}(0)$.
We show next that
1.3.6... If $\underline{\underline{b}}$ is a basis for $G^{i}(0)$ then $\theta \mid \underline{\underline{b}}$ is one-to-one and $\underset{=}{=} \theta$ is a basis for $G^{\prime}(m)$.

Let $\underset{=}{b}=\left\{b_{i} \mid i \varepsilon J^{+}\right\}$and suppose we have a relation of the kind

$$
\left(b_{i_{1}} \theta\right)^{e_{1}}\left(b_{i_{2}} \theta\right)^{e_{2}} \ldots\left(b_{i_{k}} \theta\right)^{e_{k}}=I
$$

where e_{I}, \ldots, e_{k} are integers, and the $b_{i_{I}}, \ldots, b_{j_{k}} \stackrel{b}{=}$ are pair-wise distinct. Then

$$
b_{i}^{e_{1}} b_{i_{2}}^{e_{2}} \ldots b_{i}^{e_{k}} \varepsilon \operatorname{ker}\left(\left.\theta\right|_{G^{p}}(0)\right)
$$

and since from $1.3 .5\left\{b_{i}^{m} \mid i \in I^{+}\right\}$is a basis for $\operatorname{ker}\left(\left.\theta\right|_{G^{\prime}}(0)\right)$ it follows that me for each $j \in\{I, \ldots, k\}$. From this we conclude firstly that $\theta \mid \underline{\underline{b}}$ is one-to-one, because if if $\neq j$ then the relation $\left(b_{i} \theta\right)\left(b_{j} \theta\right)^{-1}=1$ cannot hold in $G^{\prime}(m)$,
and secondly that $\underset{\approx}{\mathrm{b}} \theta$ is an independent set in $G^{9}\left(r_{1}\right)$, as the only relations that can hold among the members of b θ are the trivial ones. (We are using the fact that $G^{\prime}(m)$ has exponent m). This completes the proof of $\mathbf{1 . 3 . 6}$ because
$G^{\prime}(m)=G^{\prime}(0) \theta=g p(\underline{\underline{b}}) \theta=g p(\underline{\underline{b}} \theta)$, that is, b generates $G^{\prime}(m)$ 。
Before we can proceed further, we must relate the basic pseudo-comutators in $G(n)$ to those in $G(0)$. To do this, for any $\tilde{p} \varepsilon \tilde{B}(0)$, say $\tilde{p}=\left(g_{0 i_{1}}, \varepsilon_{0 i_{2}},\left\{d_{1} g_{0 i_{1}}, \ldots, d_{k} g_{0 i_{k}}\right\}\right)$ where i_{1}, \ldots, i_{k} are pairwise distinct positive integers, let
$\tilde{p} \theta^{*}=\left(\varepsilon_{0 i_{1}} \theta, g_{0 i_{2}} \theta,\left\{d_{1} g_{0 i_{1}} \theta, \ldots, d_{k} g_{0 i_{k}} \theta\right\}\right)=$

$$
\left(g_{m i_{I}}, g_{m i_{2}},\left\{d_{I} g_{m i}, \ldots, a_{k} g_{m i_{k}}\right\}\right) .
$$

Reference to 1.2 .1 shows that $\tilde{\mathcal{P}} \theta^{*} \varepsilon \tilde{B}(m)$ and, in fact, that $\theta^{*}: \tilde{B}(0) \rightarrow \tilde{B}(m)$ is onto.

Tho definition or θ^{*} shows further that
$\tilde{p} \theta^{*} \phi(m)=\tilde{p} \phi(0) \theta$ for every $\tilde{p} \varepsilon \tilde{B}(0)$, or in other words that the diagram
1.3.7...

This fact, together with 1.3 .6 , we now use to complete the outstanding parts of the proof I.I.2, i.c. to prove that $\phi(m)$ is one-to-one and that $\tilde{B}(m) \phi(m)$ is a basis for $G^{9}(m)$. Since, as we have already remarked, $\theta^{*}: \tilde{B}(0) \rightarrow \tilde{B}(m)$ is onto, and $\phi(m): \tilde{B}(n) \rightarrow \tilde{B}(m) \phi(m)$ is onto by definition, it follows from $1 \cdot 3 \cdot 7$ that $\tilde{B}(0) \phi(0) \theta \mid \tilde{B}(0) \phi(0)=\tilde{B}(m) \phi(m)$ 。 Taking $\underline{\#}$ b to be $\tilde{B}(0) \phi(0)$ in $\mathbf{\lambda} \cdot 3.6$ therefore shows that $\tilde{B}(\mathrm{~m}) \phi(\mathrm{m})$ is a basis for $G^{P}(\mathrm{~m})$ 。 Similarly, 1.3 .6 shows that $\theta \mid \tilde{B}(0) \phi(0)$ is one-to-one, and hence, using that $\phi(0)$ is one-to-one and θ^{*} is onto, $\boldsymbol{l} \cdot 3.7$ shows that $\phi(m)$ is also one-toone. //
1.4 The Proof of 1.3.1

We will need the following simple observation:
1.4.1 Lemma: If R is a free abelian group of rank r (and exponent 0), T a subgroup of R such that $R / T \cong Q_{1} \times Q_{2}$ where Q_{1} is free abelian of rank q and Q_{2} is finite, then T is free abelian of rank r - .

Proof: The freeness of \mathbb{T} is immediate, since every subgroup of a free abelian group is free abelian. Let the rank of T be t. Denoting the torsion-free-rank of an
abelian group X by $r_{0}(X),[5] p \cdot 140$ gives $r_{0}(R)=r_{0}(R / \mathbb{T})+r_{0}(\mathbb{T})$. (See, for example, [5] p. 140 , but note that the author means "torsion-free-rank" when he says "rank"). But $r_{0}(R)=r$, $r_{0}(T)=t$ and $r_{0}(R / T)=r_{0}\left(Q_{1}\right)+r_{0}\left(Q_{2}\right)=q+0=q \cdot 1 /$

Proof of 1.3.1:

Let ${ }^{F} r$ be an absolutely free group of rank r, and within it consider the verbal
F_{r} subgroups $\Lambda_{n}\left(P_{r}\right), \Lambda\left(F_{r}\right)$ and $A\left(A_{n}\left(F_{r}\right)\right) ;$ clearly
these are arranged as in Fig. l. We claim:
(i) $\mathbb{F}_{r} / A_{n}\left(\mathbb{F}_{r}\right)$ is finite, and has order n^{r}
(ii) $F_{r} / A\left(F_{r}\right)$ is free abelian of rank r
$A\left(A_{n}\left(F_{r}\right)\right)$
(iii) $A_{n}\left(F_{r}\right) / A\left(\mathbb{T}_{r}\right)$ is free abelian of rank r

Fig. 1.
Verbal
Subgroups of F_{r} 。
(iv) $A_{n}\left(F_{r}\right) / A\left(A_{n}\left(F_{r}\right)\right)$ is free abelian of rank $(r-l) n^{r}+1$
(v) $\quad \Lambda\left(F_{r}\right) / A\left(A_{n}\left(F_{r}\right)\right)$ is free abelian of rank $(r-1)\left(n^{r}-1\right)$

For the proofs we have:
(i) $F_{r} / A_{n}\left(F_{r}\right) \cong F_{r}\left(A_{n}\right)$ and so $F_{r} / A_{n}\left(F_{r}\right)$ is free
abelian of exponent n and rank r.
(ii) Similarly $F_{r} / A\left(F_{r}\right) \cong F_{r}(A)$
(iii) Use (i), (ii) and l.4.I
(iv) From Schreier's formula and (i), $A_{n}\left(F_{r}\right)$ is (absolutely) free of rank $(r-1) n^{r}+1$, and hence

$$
\begin{aligned}
& A_{n}\left(F_{r}\right) / A\left(A_{n}\left(F_{r}\right)\right) \cong F(r-1) n^{r}+1 / A\left(P(r-1) n^{r}+1\right) \cong F_{(r-1) n^{r}+1}(A) \\
& (v) \quad \text { Use (iii), (iv) and 1.4.1. }
\end{aligned}
$$

But (v) is the required conclusion, for $G_{r}(0) \cong F_{r} / A\left(A_{n}\left(F_{r}\right)\right)$ and hence
$G_{r}^{\prime}(0)=A\left(G_{r}(0)\right) \cong A\left(F_{r} / A\left(A_{n}\left(\mathbb{F}_{r}\right)\right)\right)=A\left(F_{r}\right) / A\left(A_{n}\left(\mathbb{F}_{r}\right)\right) \cdot / /$

1.5 The Proof of 1.3.2

Clearly, a basic pseudo-commutator (a, b, δ) in $G(0)$ is a member of $\tilde{B}_{r}(0)$ if, and only if, supp $\delta \subseteq{\underset{\sim}{E}}^{(0)}$. Thus we merely have to count the pseudo -commutators that satisfy the conditions (2)-(4) of 1.2.I (with $m=0$ in (4)) and a strengthened version of condition (1), namely

$$
(I) * \operatorname{supp} \delta \subseteq{\underset{\underline{g}}{r}}^{g_{r}}(0)
$$

We count those $(a, b, \delta) \in \tilde{B}_{r}(0)$ with a given set of entries, say supp $\delta=\cong=\left\{a_{1}, \ldots, a_{s}\right\}$, where in view of conditions $(1) *$ and $(3) \xlongequal{\varrho} \subseteq \underset{=}{G}(0)$ and $2 \leq s \leq r$, and we may assume without loss of generality that $a_{1}=$ ming and
$a_{s}=$ max. Since any pseudo-commetator (a, b, δ) with supp $\delta=$ automatically satisfies the condition (I)*, conditions (2) and (3) reduce this task to that of counting those members of the set
$\tilde{S}(\underset{=}{a})=\left\{\left(a_{i}, a_{1},\left\{a_{1} a_{1}, \ldots, a_{s} a_{s}\right\}\right) \mid z \leq i \leq s ; a_{I}, \ldots, a_{s} \in I^{+}\right\}$
that satisfy condition (4). Now for
$\left(a_{i}, a_{1},\left\{a_{1} a_{1}, \ldots, a_{s} a_{s}\right\}\right) \varepsilon \tilde{S}\left(\Omega_{\underline{I}}\right)$ to satisfy condition (4)(i) i can be chosen in (suI) ways; d_{i} in n ways; and the remaining members of $\left\{d_{1}, \ldots, d_{s}\right\}$ in $(n-1)$ ways each. Alternatively, for $\left(a_{i}, a_{1},\left\{a_{1} a_{1}, \ldots, a_{s} a_{s}\right\}\right) \varepsilon \tilde{S}(\underset{=}{(a)}$ to satisfy condition (4)(ii) i must be $s ; \bar{a}_{1}$ must be n; and d_{2}, \ldots, d_{s} can be chosen in ($n-1$) ways each. Since (4)(i) and $4(i i)$ are mutually exclusive conditions this gives a total of $(s-1) n(n-1)^{s-1}+(n-1)^{s-1}$ basic pseudocommutators in $\tilde{S}(\underset{\underline{a}}{\text { a }})$. That is

$$
\begin{aligned}
\left|\tilde{B}_{r}(0) \cap \tilde{S}(\underset{\underline{a}}{\underline{a}})\right| & =(s-1) n(n-1)^{s-1}+(n-1)^{s-1} \\
& =n s(n-1)^{s-1}-(n-1)^{s}
\end{aligned}
$$

Now let $D=\left\{\underset{\underline{a}}{\underline{a}} \underline{\underline{a}} \underline{E}_{r}(0),|\underline{\underline{a}}| \geq 2\right\}$. Then it follows immediately from the various definitions that
(i) $\tilde{p} \in \tilde{B}_{\tilde{r}}(0) \Longrightarrow$ 平 $\cong \varepsilon D: \tilde{p} \in \tilde{S}(\cong)$,

(iii) $\left|\left\{\underline{\underline{a}}|\underline{\underline{a}} \varepsilon D ;|\underline{\underline{a}}|=s\} \left\lvert\,=\binom{r}{s}\right.\right.\right.$.

Hence $\left|\tilde{B}_{r}(0)\right|=\sum_{a \in D} \mid \tilde{B}_{r}(0) \cap \tilde{S}(\underset{\cong}{(2)} \mid$

$$
=\sum_{s=2}^{r}\binom{r}{s}\left\{n s(n-1)^{s-1}-(n-1)^{s}\right\}
$$

$$
=\sum_{s=2}^{r} \frac{r}{s}\binom{r-1}{s-1} n s(n-1)^{s-1}-\sum_{s=2}^{r}\binom{r}{s}(n-1)^{s}
$$

$$
=r n\left((1+(n-1))^{r-1}-1\right)-\left((1+(n-1))^{r}-r(n-1)-1\right)
$$

$$
=(r-1)\left(n^{r}-1\right) \cdot / /
$$

1.6 The Proof of 1.3 .3

The proof of 1.3 .3 consists entirely of calculations with commutator-elements, and will make much use of the following well-known identities:
1.6.1 Remarks: Let T be any metabelian group, $t_{1}, t_{2}, \cdots \varepsilon T$. Then
(I) T^{\prime} is abelian and hence $\left[t_{1}, t_{2}, \ldots\right]=I$ whenever t_{1}, t_{2}. εT^{r} or $t_{i} \varepsilon T^{\prime}$ for $i \geq 3$.
(2) If $d_{1}, d_{2}, \ldots \varepsilon T^{\prime}$ then $\left[\Pi d_{i}, t_{1}, t_{2} \ldots\right]=\pi\left[\bar{a}_{i}, t_{1}, t_{2} \ldots\right]$.
(3) $\left[t_{1}, t_{2}\right]\left[t_{2}, t_{1}\right]=I$. Using (2) this generalises to: If $\left(t_{I}, t_{2}, \delta\right) \varepsilon \tilde{P}(T)$ then $\left[t_{I}, t_{2}, \delta\right]\left[t_{2}, t_{I}, \delta\right]=1$.
(4) $\left[t_{1} t_{2}, t_{3}\right]=\left[t_{1}, t_{3}\right]_{t_{2}}^{t_{2}}\left[t_{2}, t_{3}\right]=\left[t_{1}, t_{3}\right]\left[t_{2}, t_{3}\right]\left[t_{1}, t_{3}, t_{2}\right]$

$$
\left[t_{1}, t_{2} t_{3}\right]=\left[t_{1}, t_{2}\right]^{3}\left[t_{1}, t_{2}\right]=\left[t_{1}, t_{2}\right]\left[t_{1}, t_{3}\right]\left[t_{1}, t_{2}, t_{3}\right]
$$

(5) $\left[t_{1}, t_{2}, t_{3}\right]\left[t_{2}, t_{3}, t_{1}\right]\left[t_{3}, t_{1}, t_{2}\right]=1$. Using (2) this generalises to: If $\left(t_{1}, t_{2}, \delta\right) \varepsilon \tilde{P}(\mathbb{T})$ then for any $t_{3} \varepsilon \operatorname{supp} \delta\left[t_{1}, t_{2}, \delta\right]\left[t_{2}, t_{3}, \delta\right]\left[t_{3}, t_{1}, \delta\right]=1$.

In the sequel the indentities l.6.1(1)-(5) will frequently be used without explicit mention. Another useful identity is the following:
1.6.2 Lemma: Let T be a metabelian group; $t, u \in T ;$ $1.6 . \quad$ Lemma: wet $\binom{k}{i}$ and $k \in I^{+}$. Then $\left[t, u^{k}\right]=\pi[t, i u]$.

$$
i=1
$$

Proof: We use induction on k. The case $k=1$ is immediate, and the inductive step is

$$
\begin{aligned}
& {\left[t, u^{k}\right]=\left[t, u u^{k-1}\right]=[t, u]\left[t, u^{k-1}\right]\left[t, u, u^{k-1}\right]} \\
& \left.=[t, u]_{i=1}^{k-1}[t, i u]^{\binom{k-1}{i}}\right)\left(\prod_{i=1}^{k-1}[t, u, i u]^{\binom{k-1}{i}}\right. \\
& =[t, u]_{\left.\underset{i=2}{k} \prod_{i=1}^{k-1}[t, i u]^{(k-1} \begin{array}{c}
k \\
i
\end{array}\right)+\binom{k-1}{i-1}}^{(t, k u]} \\
& =\prod_{i=1}^{k}[t, i u]^{\binom{k}{i}} \cdot / /
\end{aligned}
$$

Note that with the help of I. $6.1(2)$ and (3) this result becomes applicable in more general situations. For example

$$
\left[t_{1}^{k}, t_{2}, t_{3}\right]=\prod_{i=1}^{k}\left[t_{1}, t_{2},(i-1) t_{1}, t_{3}\right]^{\binom{k}{i}}
$$

Of course, to prove 1.3 .3 we need to know more about $G_{r}(0)$ than just that it satisfies the metabelian law. The further information that is needed is contained in:
1.6.3 Lemma: For any $m, n \varepsilon I$

$$
A_{m}\left(A_{n}\right)=\left\langle[[w, x],[y, z]],\left[w, y, z^{n}\right],\left[x^{n}, y^{n}\right],[x, y]^{m}, x^{m n}\right\rangle
$$

Proof: Denoting the right-hand side above by w, we have immediately that $\Lambda_{m}\left(A_{n}\right) \geq W$. To prove the reverse inclusion let H be any group for which $W(H)=\{I\}$. Then
the laws $[[w, x],[y, z]]$ and $[x, y]^{m}$ ensure that $A_{m}(A(H))=\{I\}$, and the laws $\left[x^{n}, y^{n}\right]$ and $\left(x^{n}\right)^{m}$ ensure that $A_{m}\left(B_{n}(H)\right)=\{I\}$. Further, $A(H)$ and $B_{n}(H)$ comminute elementwise, $\left[x, y, z^{n}\right]$ being a law in H. Hence $A_{m}\left(A_{n}(H)\right)=$ $A_{m}\left(A(H) \cdot B_{n}(H)\right)=\{I\}$. We have thus shown that for any group $H ; W(H)=\{I\} \Rightarrow A_{m}\left(A_{n}(H)\right)=\{I\}$, and this means that $W \geq A_{m}\left(A_{n}\right) \cdot \quad / /$

Actually, 1.6.3 will not be needed in its entirety until the next chapter; here we simply use the laws $\left[x, y, z^{n}\right]$ and $\left[x^{n}, y^{n}\right]$ to deduce some further identities (Lemmas 1.6.4-1.6.7) that hold in groups belonging to $A_{=}^{A_{n}}$. Of course, $G_{r}(0) \varepsilon A_{n}$ for all r εI^{+}, and in fact all of these further identities will be needed for the proof of $1.3 \cdot 3$.
1.6.4 Lemme: Let $T \varepsilon \underset{A_{n}}{A_{n}}$; t, u εT. Then
$[t,-1]=n^{n}[t, i u]^{-\binom{n-1}{i-1}}$
$\left[t, u^{-1}\right]=\prod_{i=1}[t, i u]$

Proof: We have

$$
\left[t, u^{n-1}\right]=\left[t, u^{-1} u^{n}\right]=\left[t, u^{-1}\right]\left[t, u^{n}\right]\left[t, u^{-1}, u^{n}\right]
$$

and hence, since $\left[t, u^{-1}, u^{n}\right]=1 \quad(b y 1.6 .3)$,

$$
\left[t, u^{-1}\right]=\left[t, u^{n-1}\right]\left[t, u^{n}\right]^{-1}
$$

Using I. 6.2 , we conclude that

$$
\begin{aligned}
{\left[t, u^{-1}\right] } & =\left(\prod_{i=1}^{n-1}[t, i u]^{\binom{n-1}{i}}\right)\left(\prod_{i=1}^{n}[t, i u]^{\binom{n}{i}}\right)^{-1} \\
& =\prod_{i=1}^{n}[t, i u]^{-\binom{n-1}{i-1}} . / /
\end{aligned}
$$

1.6.5 Lemma: Let $T \in A_{A_{n}} ; t, u, v \in T ; k \varepsilon I$. Then there exist integers $e_{0}(k), \ldots, e_{n-1}(k)$ such that

$$
[t, u, k v]=\prod_{i=0}^{n-1}[t, u, i v]^{e_{j}(k)} .
$$

Proof: The proof is by induction on k. For $0 \leq k \leq n-1$ there is nothing to prove. For $k=n$, we
$\left.n, n+\begin{array}{l}n \\ n\end{array}\right]$ have from 1.6 .2 and $I \cdot 6.3$ that $I=\left[t, u, v^{n}\right]=\prod_{i=1}^{n}[t, u, i v]$ and hence $[t, u, n v]=\prod_{i=1}^{n-1}[t, u, i v]^{-\binom{n}{i}}$. The inductive step for $k \geq n$, is

$$
\begin{aligned}
{[t, u,(k+l) v] } & =[t, u, k v, v] \\
& =\left[\prod_{i=1}^{n-1}[t, u, j . v] e_{i}^{(k)}, v\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\prod_{i=2}^{n-1}[t, u, i v]^{e} j-1(k)\right)[t, u, n v]^{e} n-1(k) \\
& =\left(\prod_{i=2}^{n-1}[t, u, i v]^{e} i-1(k)\right)\left(\prod_{i=1}^{n-1}[t, u, i v]^{-\binom{n}{i}}\right)_{n-1}^{c_{n}(k)} \\
& =\prod_{i=1}^{n-1}[t, u, i v] e_{i}(k+1)
\end{aligned}
$$

where $e_{1}(k+1)=-n e_{n-1}(k)$ end $\epsilon_{i}(k+1)=e_{i-1}(k)-\binom{n}{i} \epsilon_{n-1}(k)$ for $2 \leq i \leq n-1$. //
1.6.6 Lemma: Let $T \varepsilon \underset{=n}{=} ;(t, u, \delta) \varepsilon \tilde{P}(T)$ with
$\delta=\{n t, n u\}$. Then $[t, u, \delta]=\prod_{\substack{i=1 \\ i+j<2 n}}^{n} \prod_{\substack{n=1}}^{n}\left[t, u, \delta_{i j}\right]\binom{n}{i}\left(\begin{array}{l}n \\ j \\ j\end{array}\right)$, where

$$
\delta_{i j}=\{i t, j u\}
$$

Proof: We have, from .6 .2 and 1.6 .3 ,
$I=\left[t^{n}, u^{n}\right]=\prod_{j=1}^{n}\left[t^{n}, j u\right]^{\binom{n}{j}}=\prod_{j=1}^{n}\left(\prod_{i=1}^{n}[t, u,\{i t, j u\}]^{\binom{n}{i}},\binom{n}{j}\right.$,
and the result follows. //
1.6.7 Lemma: Let T ع $\xlongequal[=]{=}$; $t, u, v \in T$. Then

$$
[t, n u, v]=[v, n u, t] \cdot \prod_{i=1}^{n-1}\left([v, i u, t][t, i u, v]^{-1}\right)^{\binom{n}{i}}
$$

Proof: From 1.6.3, 1.6.1(5) and (3), and 1.6.2, we have

$$
\begin{aligned}
1=\left[t, v, u^{n}\right] & =\left[t, u^{n}, v\right]\left[v, u^{n}, t\right]^{-1} \\
& =\left(\prod_{i=1}^{n}[t, i u, v]\binom{n}{i}\right)\left(\prod_{i=1}^{n}[v, i u, t]\binom{n}{i}\right)^{-1},
\end{aligned}
$$

and the result follows. //

We are now ready to prove 1.3 .3 . Throughout the proof we shall abbreviate $G_{r}(0), \tilde{B}_{r}(0), \phi(0)$ and $\underline{\underline{g}}_{r}(0)=\left\{\operatorname{EOL}_{01}, \ldots, g_{0 r}\right\}$ to $G_{r}, \tilde{B}_{r}, \phi$ and $g_{Y}=\left\{g_{1}, \ldots, g_{r}\right\}$ respectively; no ambiguity should result from this.

Proof of 3.3.3: The proof is broken into five steps. Defining subsets $\tilde{S}_{1}, \ldots, \tilde{S}_{6}$ of $\tilde{\mathcal{P}}\left(G_{r}\right)$ by
$\tilde{S}_{1}=\left\{\tilde{p} \in \tilde{P}\left(G_{r}\right) \mid w t(\tilde{p})=2\right\}$
$\tilde{S}_{2}=\left\{(a, b, \delta) \varepsilon \tilde{P}\left(G_{r}\right) \mid \operatorname{supp}^{\delta} \subseteq g_{r} \cup \underline{\underline{g}}_{r}^{-1}\right\}$ where $\underline{\underline{g}}_{r}^{-1}=\left\{g_{1}^{-1}, \ldots, g_{r}^{-1}\right\}$
$\tilde{S}_{3}=\left\{(a, b, \delta) \in \tilde{P}\left(G_{r}\right) \mid \operatorname{supp} \delta \subseteq \underline{E}_{r}\right\}$
$\tilde{S}_{4}=\left\{(a, b, \delta) \in \tilde{S}_{3} \mid b=\operatorname{minsunp} \delta ; a \neq b\right\}$
$\tilde{S}_{5}=\left\{(a, b, \delta) \varepsilon \tilde{S}_{4} \mid \delta(a) \leq n ; \delta(b) \leq n ; \delta(a)+\delta(b)<2 n ;\right.$ $\delta(c)<n$ for $a \neq c \neq b\}$
$\tilde{S}_{6}=\left\{(a, b, \delta) \varepsilon \tilde{S}_{5} \mid \delta(b)=n \Rightarrow a=\operatorname{maxsupp} \delta\right\}=\tilde{B}_{r}$
we show in the $i-t h$ step that $\tilde{S}_{i} \phi=\operatorname{gp}\left(\tilde{S}_{i+1} \phi\right)$. We then have that

$$
\begin{array}{r}
G_{r}^{q}=\operatorname{gp}\left([a, b] a, b \varepsilon G_{r}\right)=\operatorname{gp}\left(\tilde{S}_{1} \phi\right) \subseteq \operatorname{gp}\left(\tilde{S}_{2} \phi\right) \subseteq \cdots \\
\cdots \subseteq \operatorname{gp}\left(\tilde{S}_{6} \phi\right)=\operatorname{gp}\left(\tilde{B}_{r} \phi\right) \subseteq G_{r}^{\prime}
\end{array}
$$

and hence $G_{r}^{\prime}=\operatorname{gp}\left(\tilde{B}_{r} \phi\right)$ as the Lemma claims.

Step 1: For any $a, b \in G_{r}$ we can write $a=a_{1} a_{2} \ldots a_{\ell}(a)$ and $b=b_{1} b_{2} \cdots b_{\ell}(b)$ where $a_{i}, b_{j} \varepsilon \underline{E}_{r} V_{g_{r}^{-1}}$ for each i $\varepsilon\{1, \ldots, \ell(a)\}, j \varepsilon\{1, \ldots, \ell(b)\}$. Then
$[a, b]=\left[a_{1} \ldots a_{\ell(a)}, b_{1} \ldots b_{\ell(b)}\right]$ can be "expanded" using 1.6.1(4) and (2) to give an expression of the form $[a, b]=\prod_{k=1}^{s}\left[c_{k}, d_{k}, \delta_{k}\right]$ where for $\operatorname{cach} k \in\{I, \ldots, s\}$ $\operatorname{supp} \delta_{k} \subseteq\left\{a_{1}, \ldots, a_{\ell(a)}, b_{1}, \ldots, b_{\ell(b)}\right\}$. Thus $[a, b] \varepsilon \operatorname{gn}\left(\tilde{S}_{2} \phi\right)$ and hence $\tilde{S}_{1} \phi \subseteq \operatorname{gp}\left(\tilde{S}_{2} \phi\right)$.

Step 2: Let $(a, b, \delta) \in \tilde{S}_{2}$ with $\sum_{i=1}^{r} \delta\left(g_{i}^{-1}\right)=s$. If $s=0$ then already $(0, b, \delta) \in \tilde{S}_{3}$, so certainly $[a, b, \delta] \in \operatorname{gp}\left(\tilde{S}_{3} \phi\right)$. For $s>0$, assume inductively that if $\left(a^{\prime}, b^{\prime}, \delta^{\prime}\right) \varepsilon \tilde{S}_{2}$ with $\sum_{i=1}^{r} \delta^{\prime}\left(E_{i}^{-1}\right)<s$ then $\left[a^{\prime}, b^{\prime}, \delta^{\prime}\right] \varepsilon \operatorname{gp}\left(\tilde{S}_{3} \phi\right)$. Choosing $k \varepsilon\{1, \ldots, r\}$ such that $\delta\left(\varepsilon_{k}^{-1}\right)>0,1.6 .4$ shows
$[a, b, \delta]=\prod_{j=1}^{n}\left[a, b, \delta_{j}\right] \quad-\binom{n-1}{j-1}$ where $\delta_{j}=\delta-x_{g_{k} I^{+}} i x_{E_{k}}$, $j=1, \ldots, n$. But for each $j \varepsilon\{1, \ldots, n\} \sum_{i=1}^{r} \delta j\left(g_{j}^{-l}\right)=s-1$, and it follows that $[\varepsilon, b, \delta] \varepsilon \operatorname{gp}\left(\tilde{S}_{3} \phi\right)$. Hence $\tilde{S}_{2} \phi \subseteq \operatorname{ge}\left(\tilde{S}_{3} \phi\right)$.

Step 3: Let $\tilde{p}=(a, b, \delta) \varepsilon \tilde{S}_{3}$. Then using 1.6.I(5) and (3), for any $c \in \operatorname{supp} \delta \tilde{p} \phi=[a, c, \delta][b, c, \delta]$. In particular, putting $c=$ minsupps, this shows that $\tilde{p} \phi \varepsilon g p\left(\tilde{S}_{4} \phi\right)$. (The cases $a=c$ andor $b=c$ do not upset this, since, of course, $[c, c, \delta]=1)$. Hence $\tilde{S}_{3} \phi \subseteq \operatorname{mo}\left(\tilde{S}_{4} \phi\right)$.

Step 4: Let $\tilde{p} \in \tilde{S}_{4}$, say $\tilde{p}=\left(a_{1}, a_{2},\left\{d_{1} a_{1}, \ldots, a_{s} a_{S}\right\}\right)$ Where $\left\{a_{1}, \ldots, a_{s}\right\}=\underline{g}_{r}$ and $a_{1}, \ldots, d_{s} \in I^{+}$, for some s, $2 \leq s \leq r$. Then writing

$$
\tilde{p} \phi=\left[a_{1}, a_{2},\left(a_{1}-1\right) a_{1},\left(a_{2}-1\right) a_{2}, a_{3} a_{3}, \ldots, a_{s} a_{s}\right],
$$

we can uso 1.6.5 to give
$\ldots .6 .8 \ldots \tilde{p} \phi=\prod_{i_{1}=0}^{n-1}{\underset{i}{2}}_{n-1}^{n} \ldots \prod_{i_{s}}^{n-1}\left[a_{1}, a_{2}, i_{1} a_{1}, \ldots, i_{s} a_{s}\right]^{i_{1}} i_{1} i_{2} \ldots i_{s}$
where, in the notation of 1.6.5,

$$
e_{i_{1}} i_{2} \ldots i_{s}=e_{i_{1}}\left(d_{1}-1\right) \cdot e_{i_{2}}\left(d_{2}-1\right) \cdot e_{i_{3}}\left(a_{3}\right) \cdots_{i_{s}}\left(d_{s}\right)
$$

Of the pseudo-commutators

$$
\left(a_{1}, a_{2},\left\{\left(i_{1}+1\right) a_{1},\left(i_{2}+1\right) a_{2}, i_{3} a_{3}, \ldots, i_{s} a_{s}\right\}\right)
$$

whose values occur as factors of the product on the righthand side of $\mathbf{I} .6 .8$ the only ones which are not members of \tilde{S}_{5} are those in which $i_{1}=i_{2}=n-1$. However, for these 1.6 .6 gives
$1.6 .9 \ldots \quad\left[a_{1}, a_{2},\left\{n a_{1}, n a_{2}, i_{3} a_{3}, \ldots, i_{s} a_{s}\right\}\right]$

$$
\left.=\prod_{\substack{i=1 \\ i+j<2 n}}^{n} \prod_{\substack{j=1}}^{n}\left[a_{1}, a_{2},\left\{i a_{1}, j a_{2}, i_{3} a_{3}, \ldots, i_{s} a_{s}\right\}\right]\right]^{-\binom{n}{i}\binom{n}{j}}
$$

and here every $\left[a_{1}, a_{2},\left\{i a_{1}, j a_{2}, i_{3} a_{3}, \ldots, i_{s} z_{s}\right\}\right] \varepsilon \tilde{S}_{5} \phi$. Hence, between them, I. 6.8 and I. 6.9 show that $\tilde{p} \phi \varepsilon \operatorname{gp}\left(\tilde{S}_{5} \phi\right)$, and so $\tilde{S}_{4} \phi \leq \operatorname{gp}\left(\tilde{S}_{5} \phi\right)$.

Step 5: Let $\tilde{p} \varepsilon \tilde{S}_{5}$, say $\tilde{\mathrm{P}}=\left(a_{1}, a_{2}, \delta\right)$ where supp $=\left\{a_{1}, \ldots, a_{s}\right\}\left(\underline{c}_{\underline{g_{r}}}\right)$ for some $s ; 2 \leq s \leq r$. If \tilde{p} \& \tilde{S}_{6} then necessarily $\delta\left(a_{2}\right)=n$ and $a_{1} \neq$ maxsupp . In this case, assuming maxsupp $=a_{s}$ (there is no loss of generality in this assumption) we obtain from 1.6 .7 that
$I .6 .10 \ldots \tilde{D} \phi=\left[a_{1}, a_{2}, \delta\right]=\left[a_{s}, a_{2}, \delta\right]_{i=1}^{n-1}\left(\left[a_{S}, a_{2}, \delta_{i}\right]\left[a_{1}, a_{2}, \delta_{i}\right]^{-1}\right)\binom{n}{i}$
where $\delta_{i}=\delta-(n-i) x_{a_{2}}$ for $i=l, \ldots, n-1$. But each of
the pseudo-commutators $\left(a_{s}, a_{2}, \delta\right),\left(a_{s}, a_{2}, \delta_{i}\right),\left(a_{1}, a_{2}, \delta_{i}\right)$, $i=l, \ldots, n-l$, whose value occurs as factors of the product on the right-hand side of 1.6 .10 is a member of $\tilde{\tilde{S}}_{6}$, so $\tilde{p} \phi \in g p\left(\tilde{S}_{6} \phi\right)$. Hence $\tilde{S}_{5} \phi \subseteq g p\left(\tilde{S}_{6} \phi\right)$ and the proof of $1.3 \cdot 3$ is complete. //

1.7 An Alternative Basis for $C^{\prime}(\mathrm{m})$

We shall need only ono preliminary lemma, which is, as it were, the "reverse" of 1.6.2:
1.7.1 Lemma: Let T be a metabelian group; to εT;
and $k \in I^{+} . \operatorname{Then}[t, k u]=\prod_{i=1}^{k}\left[t, u^{i}\right]^{(-I)^{k-i}\binom{k}{i}}$

Proof: The proof is $b y$ induction on k, and is analagous to that of 1.6.2. We therefore omit the details. //
1.7.2 Definition: The mapping $\xi(\mathrm{m}): \tilde{B}(\mathrm{~m}) \rightarrow \tilde{\mathrm{P}}(\mathrm{G}(\mathrm{m}))$ is defined by the following rule: For any $\left(a_{1}, a_{2}, \delta\right) \varepsilon \tilde{B}(m)$ with supp $=\left\{a_{1}, \ldots, a_{s}\right\}(\subseteq \underline{g}(m)), s \geq 2$, say, let

$$
\left(a_{1}, a_{2}, \delta\right) \xi(n)=\left(a_{1}^{\delta\left(a_{1}\right)}, \delta\left(a_{2}\right),\left\{1 a_{1}^{\delta\left(a_{1}\right)}, \ldots, 1 a_{s}^{\delta\left(a_{s}\right)}\right\}\right) .
$$

We shall denote the set $\tilde{B}(m) \xi(m)$ by $\tilde{D}(m)$.

Note that $\xi(m)$ is clearly one-to-one.
The promised alternative basis for $G^{9}(m)$ is given by the following:
1.7.3 Theorem: The valuation mapping $\psi(\mathrm{m}): \tilde{D}(\mathrm{~m}) \rightarrow G(\mathrm{~m})$ is one-to-one, and $\tilde{D}(m) \psi(m)$ is a basis for $G^{?}(m)$.

Proof: It is clear that we need only prove the analogues of 1.3 .2 and 1.3 .3 . To be precise, for any $r \geq 2$ Let $\tilde{D}_{r}(0)=\tilde{B}_{r}(0) \xi(0)$. Then the theorem is proved once we have verified the following two statements:
1.7.4... For any $r \geq 2\left|\tilde{D}_{r}(0)\right|=(r-1)\left(n^{r}-1\right)$
1.7.5... For any $r \geq 2 G_{r}^{\prime}(0)=\operatorname{go}\left(\tilde{D}_{r}(0) \psi(0)\right)$.

Now I. 7.4 is immediate from 1.3 .2 , since $\left.\xi(0)\right|_{\tilde{B}_{r}}(0)$ is one-to-one. To verify 1.7 .5 it is sufficient, in view of 1.3.3, to show that $\tilde{B}_{r}(0) \phi(0) \subseteq \operatorname{gr}\left(\tilde{D}_{r}(0) \psi(0)\right)$. But this is almost immediate, for if $\left(a_{1}, a_{2},\left\{a_{1} a_{1}, \ldots, a_{s} a_{s}\right\}\right) \varepsilon \tilde{B}_{r}(0)$ (where, as usual, for some $s, 2 \leq s \leq r,\left\{a_{1}, \ldots, a_{s}\right\} \leq{\underset{y}{r}}(0)$ and $d_{1}, \ldots, d_{S} \in I^{+}$) then $1.7 \cdot 1$ gives

$$
\begin{aligned}
& {\left[a_{1}, a_{2},\left\{a_{1} a_{1}, \ldots, d_{s} a_{s}\right\}\right]} \\
& =\prod_{i_{1}=1}^{d_{1}} \cdots \prod_{i_{s}}^{d_{s}}\left[a_{1}, a_{2}^{i_{1}},\left\{1 a_{1}, \ldots, 1 a_{s}^{i_{s}}\right\}\right]^{j=} \\
& \prod_{j=1}^{s}(-1)^{\alpha_{j}-i} j\left(\begin{array}{l}
\alpha_{j} \\
i \\
j
\end{array}\right) \\
& \text { and, since } l \leq i_{j} \leq a_{j} \text {, for each } j \in\{1, \ldots, s\} \text {, ac } \\
& {\left[a_{1}^{i_{1}}, a_{2}^{i_{2}},\left\{1 a_{1}^{i_{1}}, \ldots, I a_{s}^{i_{s}}\right\}\right] \varepsilon \tilde{D}_{I_{1}}(0) \psi(0) . / /}
\end{aligned}
$$

CHAPTER ?

THE SUBVARIETIES OF $A p A{ }^{A}{ }^{2}$

Fox the whole of this chapter let p denote a prime number, arbitrarily chosen, but fixed throughout.

The main result is stated in 2.1 , and concerns the
 seven principal lemmas, is given in 2.2 , while the seven lemmas are proved in sections 2.3 through 2.7 . The powerful result of D.E. Cohen [3], that $\operatorname{Iat}(\underset{=}{A}$) has minimum condition, is not used in any of these proofs, and in fact, as is shown in 2.8 , the minimum condition for lat $\left(\hat{=} \hat{p}^{n} \mathrm{p}^{2}\right)$ may be independently deduced from the main result presented here.

In section 2.9, the last in this chapter, an interesting relationship between $\operatorname{lat}(\underset{=p}{A}=p)$ and $\operatorname{lat}\left(A A_{=}^{A}=p^{2}\right)$ is discussed.

2.1 Statement of the Main Theorem

2.1.1 Definition: For all $\alpha \in I^{+}$the varieties $\underset{=}{C} \alpha$ and ${ }_{=}=\alpha$ are defined as follows:

$$
\begin{aligned}
& {\underset{=}{C}}=\quad \mathbb{N}{ }_{\alpha}=p \wedge A_{p} A_{p}^{2} \\
& I_{\alpha}= \begin{cases}\underline{C}_{\alpha} \wedge \underline{B}_{p^{2}} & 1 \leq \alpha \leq p-1 \\
\underline{\underline{C}}_{\alpha} & \alpha \geq p\end{cases}
\end{aligned}
$$

2.1.2 Theorem: The varieties $I_{1}, \bar{I}_{2}, \ldots$ form a properly ascending infinite chain of (proper) subvarieties of $\hat{A}_{p} A_{p}{ }^{2}$. This chain, with $A_{p} A_{p}{ }^{2}$ itself adjoined, makes up a complete list of non-nilnotent join-irreducible subvarieties of $\cong_{p} A_{p}$. Moreover, to every non-nilpotent proper subvariety $\underline{\underline{V}}$ of $A_{p} \hat{p}^{2}$ there exists a nilpotent

2.J. 3 Remark: Let $\underline{\underline{V}}$ be an arbitrary, but fixed nonnilpotent subvariety of $A_{p} \triangleq_{p}$. By Theorem 2.1.2 we have 2.1.4...

$$
\underline{\underline{V}}=\underline{I}_{\alpha} v \leqq
$$

where I_{α} is uniquely determined by $\underline{\underline{V}}$, and $\xlongequal[\equiv]{ }$ is nilpotent. Clearly \cong is not uniquely determined by $\underset{\underline{V}}{ }$; for example, it can always be enlarged by adjoining a nilpotent subvariety of I_{α} of sufficiently high class. Nevertheless, since by Lyndon [7] lat (I) has minimum condition, there does exist on \cong which is minimal with respect to satisfying 2.1.4, and the question naturally arises as to whether such a minimal \cong is unique. This question is taken up in Chapter 3 where it is shown by way of an example of non-distributivity in lat $\left(\hat{A}_{3}\{9\right.$) that, in general, the answer is negative.

2.2 Skeletal Proof of 2.1.2

This section comprises a series of lemmas which culminate in the proof of 2.1 .2 . In the interests of simplicity of presentation the proofs of seven of the most fundamental of the lemmas are postponed until later sections, but apart from these the argument is complete.

Many of the lemmas describe properties of $F_{\infty}\left(A_{=} A_{=}{ }^{2}\right)$, and these are built up from the foundations laid in Chapter 1. This group $F_{o \infty}\left(A_{p} A_{p}{ }^{2}\right)$ is denoted throughout the chapter by G. Theorem I.2.2tells us that G^{\prime} is free abelian of exponent p, and the basis for G^{9} that it exhibits enables us to express elements of G^{\prime} in a canonic fashion. In the present context, however, the notation may be simplified somewhat, and so, for the sake of clarity, the basis for G^{\prime} is redescribed here.

$$
\text { Let } g=\left\{g_{j} \mid i \varepsilon I^{+}\right\} \text {be a free generating set for } G
$$ ordered by the rule: $g_{i} \leq g_{j} i f$, and only if, $i \leq j$. Basic pseudo-commutators are defined as follows:

2.2.1 Definition: A pseudo-commutator (a, b, δ) in G is called basic if, and only if,
(I) $\operatorname{supp} \delta \leq \underline{=}$
(2) $\quad b=\operatorname{minsupp} \delta$
(3) $a \neq b$
(4) either (i) $\delta(a) \leq p^{2}$ and $\forall g_{i} \varepsilon \underline{\underline{g}}\left(g_{i} \neq a \Rightarrow \delta\left(g_{i}\right)<p^{2}\right)$ or (ii) $\delta(b)=p^{2}, a=\operatorname{maxsupp} \delta$

$$
\text { and } V g_{i} \varepsilon \xlongequal{=}\left(g_{i} \neq b \Longrightarrow \delta\left(g_{i}\right)<p^{2}\right)
$$

Denoting the set of basic pseudo-commutators in G by \tilde{B}, the basis for G^{\prime} given by I.2.2 may now be expressed by:
2.2.2 Theorem: The valuation mapping $\phi: \tilde{B} \rightarrow G$ is one-to-one, and $\tilde{B} \phi$ is a basis for G^{\prime}. //

The notion of expressing elements of G^{\prime} canonically in terms of $\tilde{B} \phi$ is formalised as follows:
2.2.3 Definition: If $w \in G^{9}, w \neq 1$, then w is said to be expressed in normal form when written $w=b_{I} e_{I} \ldots{ }_{s}{ }_{s}$, where $b_{\mathcal{I}}, \ldots, b_{s}$ are pair-wise distinct members of $\tilde{B} \phi$ and e_{1}, \ldots, e_{s} are integers satisfying e_{j} 丰 $0(\bmod p)$ for aah $j \in\{1, \ldots s\}$.

Clearly, an expression of an element of G^{\prime} in normal form is unique up to the arrangement of the product and congruence modulo p of the indices. That is, if $w \in G^{\prime}$ is expressed in normal form both by $w=b_{1}{ }_{I} \ldots{ }_{s}{ }_{s}$ and by
$w=c_{1} f_{1} \ldots c_{t}^{f_{t}}$, then $s=t$ and, for some permutation π of $\{I, \ldots, s\}, b_{i}=c_{i \pi}$ and $c_{i} \equiv f_{i \pi}(\bmod p)$ for each i $\varepsilon\{I, \ldots, s\}$.

In addition to basic pscudo-commutators, "special" pseudo-comutators, and the accompanying attribute of "p-complexity", will be needed. These are defined as follows:
2.2.4 Definition: A pseudo-commutator (a, b, δ) in G is called special if, and only if,
(I) $\operatorname{supp} \delta \subseteq \underline{E}$
(2) $b=g_{I}$
(3) $\quad a=g_{2}$
(4) $\delta(a)=\delta(b)=1$.

The p-complexity of a special pseudo-commutator $\tilde{q}=(a, b, \delta)$ in G is defined as $\left(1+\sum_{i=3}^{\infty}\left[\delta\left(g_{i}\right) / p\right]\right)$ and is denoted by $\operatorname{comp}(\tilde{q})$.

The definition of normal form makes possible the definition of "weight" for elements of G ". In addition, since basic pseudo-commutators may also be special, "special" elements (of G^{8}) and the "p-complexity" of "special" elements can be defined. This is all done as follows:
2.2.5 Definition: Let w be a non-trivial element of G^{9}, expressed in normal form by $w=b_{I}^{e}!\ldots b_{s}^{e}$. Then the weight of w, denoted by wt (w), is defined as $\min \left(w t\left(b_{j} \phi^{-1}\right) \mid j \varepsilon\{1, \ldots, s\}\right)$. Further, if $b_{j} \phi^{-1}$ is special for each $j \varepsilon\{1, \ldots, s\}$, then w is itself called special, and its p-complexity, denoted by comp(w) is defined as min $\left(\operatorname{comp}\left(b_{j} \phi^{-l}\right) \mid j \varepsilon\{1, \ldots, s\}\right)$. The trivial element is also considered to be special, but both its weight and its p-complexity are taken as greater than that of every non-trivial element; say wt (I) $=\operatorname{comp}(1)=\omega$.

Note that for $W_{1}, W_{2} \varepsilon G^{9} w^{\prime}\left(w_{1} w_{2}\right) \geq \min \left(w_{t}\left(w_{1}\right)\right.$,wt $\left.\left(w_{2}\right)\right)$ and that this inequality can be strict. Also if wh and W_{2} are both special then so is $W_{1} W_{2}$, and $\operatorname{comp}\left(w_{1} W_{2}\right) \geq \min \left(\operatorname{comp}\left(w_{1}\right), \operatorname{comp}\left(w_{2}\right)\right)$, where again the inequality can be strict.

Since for certain considerations special elements are particularly convenient, it is useful to have a method of obtaining special elements from non-special ones. What is meant by this, and how it is dore, is explained by the following definition and lemma, but for simplicity "nonspecial" is generalised to "arbitrary":

$$
\text { 2.2.6 Deinition: Let } \tau: G \rightarrow G \text { and }{\underset{i}{i}: G \rightarrow G, ~}_{G}: G \text {, }
$$

i εI^{+}, be the endomorphisms of G induced respectively by the maps

$$
\begin{aligned}
& \bar{\tau}: \underline{\underline{g}} \rightarrow g_{j} \bar{\tau}=g_{j+2} \text { for all } j \varepsilon I^{+}, \\
& \text {and } \bar{K}_{i}: g \rightarrow G ; g_{j} \bar{k}_{i}=\left[\begin{array}{l}
g_{j}\left[g_{2}, g_{1}\right], j=i \\
g_{j} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Then for all $w \in G^{\prime}$, and all i εI^{+}, define ${ }^{(i)}$ by

$$
w^{(i)}=\left(w \tau K_{i+2}\right)(w \tau)^{-1}
$$

2.2.7 Lemme: For all w εG^{\prime}, and all $i \varepsilon I^{+}$, $\mathrm{w}^{(\mathrm{i})}$ is special. Moreover, if w is nontrivial then so is ${ }^{(i)}$ for att least one value of i. $\psi \downarrow(2.4)$

This completes the prepatory remarks about elements of G. Of course, the information about G required to prove 2.1.2 concerns the verbal subgroups of G, and in this connection the following notation will be used: The lattice of fully invariant subgroups (equivalently; verbal subgroups) of G is denoted by lat (G), and if $U \varepsilon \operatorname{lat}(G)$ then id(U) denotes the ideal in lat (G) generated by U; ie. $i d(U)=\{V \varepsilon \operatorname{lat}(G) \mid V \leq U\}$. Also, an economy in writing will often be achieved by setting $i d^{\# \#}(U)=i d(U) \backslash\{\{I\}\}$.

The lattice dual-isomorphism $\mu: \operatorname{lat}\left(A_{=p}^{A} A^{2}\right) \rightarrow \operatorname{lat}(G)$, defined by $\underset{=}{V} \mu=V(G)$ for all $\underset{=}{V} \in \operatorname{lat}\left(\underset{=1}{A}=\underline{p}^{2}\right)$, or more particularly its inverse, will be employed to interpret
 those properties of μ which are described in, or follow immediately from, sections 3 and 4 of $H N$ will often be used without explicit mention.

Throughout this chapter the A_{p}-subgroup of G is denoted by M. Thus $M=A_{p}(G)=A_{p} \mu$ and hence M is the unique maximal verbal subgroup of G. The first major step towards the proof of 2.1.2 is the following:
2.2.8 Lemma: For all $W \in \mathrm{i}^{\#^{\prime \prime}}\left(\mathrm{G}^{\prime}\right)$ there exist $c, a \in I^{+}, d \neq I$, such that $W=M(c)^{\cap W \cdot G(d) \cdot \downarrow \psi}$

To see how far this gets us, note firstly that for all $\alpha \varepsilon I^{+}{ }^{M}(\alpha+1)=\mathbb{N}_{\alpha}\left(A_{p}(G)\right)=\cong_{\alpha}{ }^{\mu}$. Secondly, note that if some $W \in i d^{\#}\left(G^{r}\right)$ can be written $W=M(I) \cap W \cdot G(a)$ for some $d \geq$? then $W \geq G(d)$ and hence $W \mu^{-1}$ is nilpotent. Noting finally that $G^{\prime}=A(G)=A_{p^{3}}(G)$, we have
2.2.9 Corollary: Let $\underset{=}{W}$ be non-nilpotent proper subvariety of $\cong_{p} \triangleq_{p}{ }^{2}$, W of exponent y^{3}. Then there exists $\alpha \varepsilon I^{+}$and a nilpotent variety \cong such that $\underset{\underline{W}}{=} \cong_{\alpha} \vee \underline{I} . / /$

The proof of 2.2 .8 depends on the following five lemmas:
2.2.10 Lemma: If for a nontrivial clement $w \in G^{\prime}$ the integers c and d are defined by

$$
c=\min \left(\operatorname{comp}\left(w^{(i)}\right) \mid i \varepsilon I^{+}\right)
$$

and $\quad d=\max (0, w t(w)-c y)$
then $w \in[M(c), \dot{d} G] . \psi \downarrow(2.4)$
2.2.11 Lemma: Let w be a nontrivial special
element of G°, with comp (w) $=c$. Then there exists e εI^{+} such that $\langle w\rangle \geq\left[M_{(c)}, e G\right] . \downarrow \psi(2.5)$
 $w t(w) \geq k \cdot \quad \psi \downarrow(2.3)$
2.2.13 Lemma: For ali $c, e \varepsilon I, c \geq 2$,
$M_{(c)} \nsupseteq\left[M_{(c-1)}, e G\right] . \quad \psi \downarrow(2.7)$
2.2.14 Lemma: For all $c \in I^{+}[M(c), p G] \geq M_{(c+1)} \cdot \psi \downarrow(2.4)$

In consequence of the first two of these lemmas wo have:
2.2.15 Lemma: Let $w \in G^{\prime}, w^{\prime} \neq 1$. Then there exist $e \varepsilon I^{+}$such that $M(c) \geq\langle w\rangle \geq[M(c), e G]$, where $c=\min \left(\operatorname{comp}\left(w^{(i)}\right) \mid i \varepsilon I^{+}\right)$.

Proof: It is immediate from the definition (2.2.6) that ${ }^{(i)} \varepsilon\langle w\rangle$ for all $i \varepsilon I^{+}$. In particular, choosing an integer $i_{W} \varepsilon I^{+}$such that

$$
\operatorname{comp}\left(w^{\left(i_{W}\right)}\right)=\min \left(\operatorname{comp}\left(\mathrm{w}^{(i)}\right) \mid i \varepsilon I^{+}\right)=c,
$$

it follows that $\langle w\rangle \geq\left\langle{ }^{\prime}{ }^{\left(i_{w}\right)}\right\rangle$ and hence, from 2.2.11, that there exists $e \varepsilon I$ such that $\langle w\rangle \geq[M(c), e G]$. On the other hand, 2.2.10 specifies an integer $d \in I$ such that w $\varepsilon[M(c), d G]$, and from this we have, a fortiori, that $w \in M_{(c)}$. Hence $M(c) \geq\langle w\rangle$ and the lemma is proved. //

The above lemma easily generalises to give the following:
2.2.16 Lemma: Let $W \in$ id\# (G'). Then there exist integers $c, e \in I^{+}$such that $M(c) \geq W \geq[M(c), e G]$.

Proof: Let $\left\{{ }_{\mathrm{w}}^{\lambda}{ }_{\lambda} \mid \lambda \varepsilon \Lambda\right\}$ bc the complete set of nontrivial elements of W. From 2.2.15 wo have that for each $\lambda \varepsilon \Lambda$ there exist $c_{\lambda}, e_{\lambda} \varepsilon I^{+}$such that $\left.M\left(c_{\lambda}\right) \geq\left\langle_{\lambda}\right\rangle \geq\left[M_{(} c_{\lambda}\right), e_{\lambda}{ }^{G}\right]$, and since $W=\bigcup_{\lambda \varepsilon \Lambda}\left\langle_{W_{\lambda}}\right\rangle$ it follows that $\bigcup_{\lambda \varepsilon \Lambda} M_{\lambda}\left(c_{\lambda}\right) \geq W \geq \bigcup_{\lambda \varepsilon \Lambda}\left[M\left(c_{\lambda}\right), c_{\lambda}{ }^{G}\right]$. Now choose $\bar{\lambda} \varepsilon \Lambda$ such that $c_{\bar{\lambda}}=\min \left(c_{\lambda} \mid \lambda \varepsilon \Lambda\right)$ and write $c=c_{\bar{\lambda}}$
and $e=e_{\bar{\lambda}}$. Then, since $M^{M}(c) \geq M^{M}(c+1) \geq \ldots$, we have

$$
M_{(c)}=\bigcup_{\lambda \varepsilon \Lambda}^{M}\left(c_{\lambda}\right) \geq W \geq \bigcup_{\lambda \varepsilon \Lambda}\left[M_{\left(c_{\lambda}\right)}, e_{\lambda}^{G}\right] \geq[M(c), e G] . \quad / /
$$

The proof of 2.2 .8 comes easily from 2.2 .16 and one further lemma, 2.2.18 below. The proof of the latter uses the following observation, which is very similar to 2.2.12:
2.2.17 Lemma: If $w \in M_{(k)}^{M_{1}} G^{\rho}$, $k \varepsilon I^{+}$, then $\min \left(\operatorname{comp}\left(w^{(i)}\right) \mid i \varepsilon I^{+}\right) \geq k$.

Proof: If $w=1$ the lemma is immediate, so assume $w \neq 1$. Then from 2.2.15 there exists $0 \varepsilon I^{+}$such that $\left\langle w^{\prime}\right\rangle \geq\left[M\left(k^{\rho}\right), e G^{\prime}\right]$, where $k^{\prime}=\min \left(\operatorname{comp}\left(w^{(i)}\right) \mid i \varepsilon I^{+}\right)$. From this it follows that $M_{(k)} \geq\left[M_{(k)}\right)^{\text {eG] }}$, but unless $k^{\circ} \geq k$ this contradicts 2.2.13. //
2.2.18 Lemma: For ali $c, c \varepsilon I^{+}$,
$\left[M_{(c)}, \in G\right] \geq M^{M}(c) \cap G^{(c p+e)} \cdot$

Proof: It is sufficient to show that every nontrivial element of $M_{(c)} \cap^{G}(c p+e)$ is a member of $[M(c)$, eG]. So let w be any such element. Then from 2.2 .12 and 2.2 .17 there exist $a_{1}, a_{2} \varepsilon$ I such that wt (w) $=c p+e+a_{1}$ and $\min \left(\operatorname{comp}\left({ }^{(}{ }^{(i)}\right) \mid i \varepsilon I^{+}\right)=c+a_{2}$. Hence by 2.2.10, $\left.w \varepsilon\left[M_{\left(c+a_{2}\right)}\right), d G\right]$ where $d=\max \left(0, c p+e+a_{1}-\left(c+a_{2}\right) p\right)=$ $\max \left(0, a_{1}-a_{2} p\right)$. Now it follows from 2.2 .14 that $\left.\left[M_{\left(c+a_{2}\right)}\right), d G\right] \leq\left[M_{(c)},\left(a+2_{2} p\right) G\right]$ and thus $w \in\left[M(c), d^{\prime} G\right]$ where

$$
\begin{aligned}
d^{p}=d+a_{2} p & =\max \left(0, e+a_{1}-a_{2} p\right)+a_{2} p \\
& =\max \left(a_{2} p, \theta+a_{1}\right) \\
& \geq e+a_{1} \geq e
\end{aligned}
$$

This shows that $w \in\left[M_{(c)}, e G\right]$, as required. //

Proof of 2.2.8: From 2.2.16 and 2.2.18 it follows that for all $W \in i d \#\left(G^{\prime}\right)$ there exists $c, e \varepsilon I^{+}$such that $M_{(c)} \geq \mathbb{W} \geq M_{(c)} \cap G(c p+e)$. Setting $d=c p+e$ (note that d \geq 2) this gives

$$
W=W(M(c) \cap G(d))=M_{(c)} \cap W \cdot G(d)^{\prime}
$$

the latter equality holding by reason of the modularity of lat (G). //

The second step towards the proof of 2.1 .2 is the following:
2.2.19 Lemma: For all c, d $\varepsilon I^{+}, c \neq 1$, $M_{(c)} \not{ }^{\left.M_{(c-1}\right)}{ }^{n} G_{(d)}$.

Proof: Assume to the contrary that for some $c, d \in I^{+}$, $c \geq 2, M_{(c)} \geq M_{(c-1)} \cap G_{(d)}$. Then, since clearly $M_{(c-1)} \cap_{(a)} \geq\left[M_{(c-1)}, a G\right]$, it follows that $M_{(c)} \geq\left[M_{(c-1)}, d G\right]$, and this contradicts 2.2.13.
2.2.20 Corollary (i): The variety \underline{N}_{1} is non-nilpotent.

Proof: If $\underline{\underline{C}}_{1}$ were nilpotent then we would have that ${ }^{M}(2) \geq{ }^{G}(d)$ for some $d \in I^{+}$. But this is impossible, since $G_{(d)}=M_{(1)} \cap G_{(d)}$ and $M_{(2)} \neq M_{(1)}{ }^{G}(a) \cdot / /$
2.2.21 Corollary (ii): Let $\alpha, \beta \in I^{+}$with $\alpha<\beta$, and

Proof: Assume the contrary. Then for some $\alpha, \beta, \alpha \in I^{+}$, and some $W \in \operatorname{lat}(G)$, where $\alpha<\beta$ and $W \geq G(a)$, we have ${ }^{M}(\alpha+1) \cap W \leq{ }^{M}(\beta+1) \cdot$ Setting $c=\alpha+2$ and $a=\beta-\alpha$ (so $a \geq 1$ and $c \geq 3$) we conclude that

$$
{ }^{M}(c-1) \cap G(d) \leq M^{M}(c-1) \cap W \leq M_{(c+a-1)} \leq M^{M}(c)
$$

which contradicts 2.2.19. //

The next step in the argument is Lemma 2.2 .22 below. In this lemma, and frequently thereafter, the notation $G^{p^{2}}$ is used as a shorthand for the verbal subgroup $B_{p^{2}}(G)$. Although this notation conflicts with that for cartesian powers, the meaning will always be clear from the context.

$$
\begin{aligned}
& 2 \cdot 2 \cdot 22 \cdot \text { Lemma: For each } c \varepsilon\{2, \ldots, p\}, \\
M(c) & =M(c) \cdot G^{p^{2}} \cap G^{?} \cdot \psi \psi
\end{aligned}
$$

$$
\begin{aligned}
& 2.2 .23 \text { Corollary: For each } \alpha \in\{1, \ldots, p-1\}, \\
\cong_{\alpha}= & I_{\alpha}^{I} \vee \stackrel{A}{p}^{3} \cdot / /
\end{aligned}
$$

The proof of 2.2 .22 depends on the following lemma:
2.2.24 Lemma: $M(p) \geq G^{p^{2}} \cap G^{2} \cdot \psi \psi(2.6)$

Proof of 2.2.22: If $c \geq 2$ then $M^{M}(c) \leq G^{1}$, so for c $\varepsilon\{2, \ldots p\}$ we have from 2.2 .24 that

$$
G^{\prime} \geq M^{M}(c) \geq M^{M}(p) \geq G^{p^{2}} \cap G^{9}
$$

Hence, using modularity, we have

$$
M_{(c)}=M_{(c)} \cdot\left(G^{p^{2}} \cap G^{r}\right)=M_{(c)} \cdot G^{p^{2}} \cap G^{1} \cdot / /
$$

The corollary to Lemma 2.2 .8 considered the non-nilpotent subvarieties of $A_{p} A_{p^{2}}$ which have exponent p^{3}. The corollary to the following lemma concerns those having exponent p^{2}.
2.2.25 Lemma: Let $V=G^{p^{2}}, W, W \varepsilon i d\left(G^{\prime}\right)$. Then there exist $c, d \in I^{+}, c \leq p, d>I$, such that $V=G^{p^{2}} \cdot M(c)^{\cap V \cdot G}(d) \cdot \psi \psi$

$$
\text { 2.2.26 Corollary: Let } \underline{\underline{V}} \text { be a non-nilpotent (proper) }
$$

subvariety of $A A_{p} \cong_{p^{2}}$, $\underline{=}$ of exponent p^{2}. Then there exists $\alpha \in\{1, \ldots, p-1\}$ and a nilpotent variety \cong such that $\xlongequal{\mathrm{V}}=\underset{\equiv}{I} \downarrow$.

Proof: If $\underline{\underline{V}} \varepsilon \operatorname{lat}\left(\underline{\underline{E}}_{\underline{p}} \underline{A}^{2}\right)$ has exponent p^{2} then $\underline{\underline{V}} \mu=V=G^{p^{2}} \cdot W$ for some $W \in i a\left(G^{\prime}\right)$, and from $2 \cdot 2.25$ $V=G P^{2} \cdot M(c) \cap V \cdot G(d)$ for some $c, d \varepsilon I^{+}, c \leq p, d \neq I$. Now if $c=1$ then $V \geq{ }^{G}(a)$, making $V=V \mu^{-1}$ nilpotent. Hence if $\underline{\underline{V}}$ is non-nilpotent then

$$
\underline{\underline{V}}=\left(G^{p^{2}} \cdot M(c)\right) \mu^{-1} \vee(V \cdot G(\alpha)) \mu^{-1}=\left(\underline{\underline{B}}_{p^{2}} \wedge \underline{\underline{C}}_{\alpha}\right) \vee \underline{\underline{L}}
$$

where $£$ is nilpotent and $\alpha=c-1 \varepsilon\{1, \ldots, p-1\}$. The conclusion follows. //

The following three lemmas lead up to the proof of 2.2.25:
2.2.27 Lemma: Let $a \varepsilon G ; b \varepsilon G^{r} ;$ and $r \varepsilon I^{+}$. Then
$(a b)^{r}=a^{r} \prod_{i=1}^{r}[b,(i-1) a]^{\binom{r}{i}}$.

Proof: Routine induction on r. //
2.2.28 Lemma: $\left[g_{2}, g_{1},\left(p^{2}-1\right) g_{3}\right] \varepsilon G_{G} p^{2}$.

Proof: From 2.2.27 we have

$$
\left(g_{3}\left[g_{2}, g_{1}\right]\right)^{p^{2}}=g_{3} p^{2} \prod_{i=1}^{p^{2}}\left[g_{2}, g_{1},(i-I) g_{3}\right]\binom{p^{2}}{i}
$$

but for each i $\varepsilon\left\{1, \ldots, p^{2}-I\right\}\binom{p^{2}}{i} \equiv O(\bmod p)$, and since G^{\prime} has exponent p this leads to

$$
\left(g_{3}^{-1}\right)^{p^{2}}\left(g_{3}\left[g_{2}, g_{1}\right]\right)^{p^{2}}=\left[g_{2}, g_{1},\left(p^{2}-1\right) g_{3}\right]
$$

The conclusion follows: //
2.2.29 Lemma: Let $W \varepsilon i d\left(G^{\prime}\right), W \geq G^{2} \cap G^{\prime}$. Then there exist $c, d \in I^{+}, c \leq p, d \neq I$, such that $W=M^{M}(c) \cap W \cdot G(d)^{\circ}$

Proof: In view of 2.2 .8 it is only required to prove that $c \leq p$. To do this, note from 2.2.28 that $\left[g_{2}, g_{1},\left(p^{2}-1\right) g_{3}\right] \varepsilon M_{(c)}$ ana since $\left[g_{2}, g_{1},\left(p^{2}-1\right) g_{3}\right]$ is special with p-complexity p it follows from 2.2 .11 that $\left[M_{(p)}, e G\right] \leq{ }^{M}(c)$ for some e εI^{+}. But from 2.2 .13 this is impossible unless $c \leq p . / /$

Proof of 2.2.25: Since $G^{p^{2}} \cdot W=G^{2} \cdot W \cdot\left(G^{p^{2}} \quad G\right)$, we may assume without loss of generality that $W \geq\left(G^{p} G^{\prime}\right)$. Hence, using $2.2 .29,2.2 .22$ and modularity, there exist $c \in\{1, \ldots, p\}$, d $\varepsilon I^{+} \backslash\{I\}$ such that

$$
\begin{aligned}
V=G P^{2} \cdot W & =G^{P^{2}} \cdot(M(c) \\
& =G^{P^{2}}\left(G^{P^{2}} \cdot M \cdot G(c)\right) \\
& =G^{P^{2}}\left(G^{P^{2}} \cdot M(c) W \cdot G(d)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =G^{p^{2}} \cdot M(c) \cap G^{p^{2}} \cdot W \cdot G(d) \\
& =G^{P^{2}} \cdot M(c) \cap V \cdot G(d) \cdot / /
\end{aligned}
$$

Sufficient material is now available to prove the following two lemmas, and from these Theorem 2.1 .2 will be deduced.
2.2.30 Lemma: Let $\underset{=}{V}$ be a non-nilpotent proper subvariety of $A_{p} \hat{A}_{p}$. Then there exists $\alpha \varepsilon I^{+}$and a nilpotent variety $\underset{\equiv}{\underline{L}}$ such that $\stackrel{V}{=} I_{\alpha} \vee \stackrel{I}{I}$.

Proof: The exponent of $\underset{V}{V}$ is either p^{2} or p^{3}, for the exponent must divide p^{3} and cannot be p since by MeierWunderli [8] any metabelian variety of prime exponent is nilpotent. If the exponent is p^{2} then 2.2 .26 applies leaving nothing to prove. If, on the other hand, V has exponent p^{3} then from 2.2.9 there exists $\alpha \in I^{+}$and a nilpotent variety \cong such that $V=\cong_{\alpha} \vee \mathbb{I}$. Now either $\alpha \geq p$, so $\cong_{\alpha}={ }_{=}^{I}$ and we are finished, or $\alpha \in\{I, \ldots, p-I\}$ in which
 Since $\triangleq_{D^{3}} \vee \underset{\underline{L}}{ }$ is nilpotent, this completes the proof. //
2.2.31 Lemma: The varieties $I_{=\alpha}, \alpha \varepsilon I^{+}$, are nonnilpotent, and if $\alpha<\beta$ then $\underline{I}_{\alpha} \vee \equiv \not \equiv \xlongequal{\underline{I}} \beta$ for any nilpotent subvariety $\underline{\equiv}$ of $A_{p} \underline{A}^{2}$.

Proof: By 2.2.23 $\underline{C}_{1}=I_{I} \vee A_{p^{3}}$, and by $2 \cdot 2 \cdot 20 \underline{\underline{C}}_{1}$ is non-nilpotent. It follows that I_{1}, and hence $I_{=}$, for all $\alpha \varepsilon I^{+}$, is non-nilpotent.

To prove the second part, note that for all $\alpha \varepsilon I^{+} \underset{=}{C}$ has exponent p^{3}, so that $\cong_{\alpha}^{C} \supseteq \mathscr{E}_{p^{3}}$ and hence, trivially, $\underline{C}_{\alpha}=C_{\alpha} \vee{\underset{\mathrm{A}}{ }}^{3}$. Combining this with 2.2 .23 it follows that
 nilpotent, and let $\alpha, \beta \in I^{+}$with $\alpha<\beta$. Suppose, contrary to lemma, that $I \alpha v \cong \supseteq I^{I} \beta$. Then it follows that
 this contradicts 2.2.21. //

Proof of 2.1.2: That each member of the infinite ascending chain of (proper) subvarieties $I_{1} \subseteq I_{2} \subseteq \cdots$ is non-nilpotent is given by 2.2 .31 , and from the same source it is clear that the chain ascends properly. (Put $\underset{=}{E}=$ and $\beta=\alpha+1$). Jumping now to the last part of the theorem, in view of $2 \cdot 2 \cdot 30$ it is only required to show that if $\alpha, \beta \varepsilon I^{+}, \alpha \neq \beta$, and ${\underset{I}{I}}_{=}^{=}{\underset{=}{=}}_{2}$ are nilpotent subvarieties of
 for we may assume without loss of generality that $\alpha<\beta$, so that $I_{=\alpha} \vee I_{=1} ¥ I_{=}^{I}$ and therefore, in particular, $I_{\alpha} \times{ }_{=1} \neq I_{=}^{I} \vee \stackrel{L}{=}_{=2}$.

Now let $\Omega=\left\{{\underset{I}{I} \alpha}^{\alpha} \mid \alpha \varepsilon I^{+}\right\} U\left\{\underset{=p=p}{A_{p}} A_{2}\right\}$ and let $\Omega *$ denote the
set of non-nilpotent join-irreducible subvarieties of $A A_{=p}^{A} p^{2}$. From 2.2.30 it is clear that $\Omega^{*} \subseteq \Omega$, so that the proof will be complete once it has been shown that every member of Ω is join-irreducible.

Firstly, I_{I} is join-irreducible because by 2.2.30 it has no non-nilpotent proper subvarieties. Secondly, $I_{\beta}, \beta \in I^{+} \backslash\{I\}$ is join-irreducible because of the following consideration:

Suppose to the contrary that $\underline{=}_{\beta}=\underline{\underline{V}}_{I} \vee \underline{\underline{V}}_{2}$ where each of $\stackrel{V}{=}$ and $\stackrel{V}{=}$ is a proper subvariety of $I_{=} \beta$. Then at least one of $\mathrm{V}_{-1}, \mathrm{~V}_{2}$ must be non-nilpotent, say $\mathrm{V}_{=1}$, so using 2.2 .30 we
 (The later because ${ }_{=1}$ is a proper subvariety of I_{B}). Regarding $\underset{=}{V}$, either it is nilpotent, say $\underset{=2}{V}={\underset{=2}{ }}_{2}$, or nonnilpotent, say $\underset{=}{V}=\frac{I}{=} \gamma \vee \stackrel{L_{2}}{=}$ where ${\underset{=}{=}}_{2}$ is nilpotent and without loss of generality we may assume that $1 \leq \gamma \leq \alpha$. Setting

Finally we must show that $A A_{p} A p^{2}$ is join-irreducible. But if it were not, then, as before, we would have that
 this is impossible, for it implies that $\xlongequal[=]{I} \vee \stackrel{I}{\cong}=\alpha+1 \vee \stackrel{I}{=} \cdot / /$

2.3 The Proof of 2.2.12:

The fact that the p-group G has derived group of
exponent p leads to several simplifications in calculations involving commutator elements of G. Essentially, these simplifications result from the four identities listed in the following lemma:
2.3.1 Lemma: Let $u, v, w \in G$. Then
(i) $[u, p v]=\left[u, v^{p}\right]$
(ii) $\left[u, v, p^{2} w\right]=1$
(iii) $\left[u, v,\left\{p^{2} u, p^{2} v\right\}\right]=1$
(iv) $\left[u, p^{2} w, v\right]=\left[v, p^{2} w, u\right]$.

Proof: (i) By 1.6.2:

$$
\left[u, v^{p}\right]=\prod_{i=1}^{p}[u, i v]\binom{p}{i}
$$

But for $i \in\{1, \ldots, p-1\}\binom{p}{i} \equiv O(\bmod p)$ and the conclusion follows.

$$
\text { (ii) By i.6.3, }\left[x, y, z^{p^{2}}\right] \text { is a law in } G \text {, and }
$$

hence using 1.6.2 we have

$$
l=\left[u, v, w^{p^{2}}\right]=\prod_{i=1}^{p^{2}}[u, v, i w]\binom{p^{2}}{i}
$$

But for $i \varepsilon\{1, \ldots, p-1\}\binom{p^{2}}{i} \equiv O(\bmod p)$ and the conclusion follows.

$$
\begin{aligned}
& \text { (iii) By } 1.6 .6: \\
& {\left[u, v,\left\{p^{2} u, p^{2} v\right\}\right]=\prod_{\substack{i=1 \\
i+j<2 p^{2}}}^{p^{2}} \prod^{2}[u, v, i u, j v]}
\end{aligned}-\binom{p^{2}}{i}\binom{p^{2}}{j}
$$

and the conclusion follows as before.

$$
\begin{gathered}
\text { (iv) By l. } 6.7: \\
{\left[u, p^{2} w, v\right]=\left[v, p^{2} w, u\right]_{i=1}^{p^{2}-1}\left([v, i w, u][u, i w, v]^{-1}\right)^{\left(p^{2}\right)}}
\end{gathered}
$$

and the conclusion again follows similarly. //

The next lemma is more directly relevant to the aim of this section, but before moving on to this lemma it is perhaps helpful to remark on a convention used in its proof (and in the proofs of future lemmas too). When an arbitrary finite subset of g is denoted by $\left\{a_{1}, \ldots, a_{s}\right\}$ it is not assumed that $a_{1}<\ldots<a_{s}$, although of course it is assumed that $a_{i} \neq a_{j}$ if $i \neq j$. However, note that a phrase such as "Let $\left(a_{1}, a_{2}, \delta\right) \varepsilon \tilde{B}$ with supp $\delta=\left\{a_{1}, \ldots, a_{s}\right\} "$ tacitly
involves the assumption that $\min \left\{a_{1}, \ldots, a_{s}\right\}=a_{2}$, and that $\max \left\{a_{1}, \ldots, a_{s}\right\}=a_{1}$ if $\delta\left(a_{2}\right)=p^{2}$.
2.3.2 Lemma: Let $\left(a_{1}, a_{2}, \delta\right)$ be a pseudo-commutator in G with supp $\delta \subseteq \underset{=}{g}$ and nontrivial value. Then $w t\left(\left[a_{1}, a_{2}, \delta\right]\right)=w t\left(\left(a_{1}, a_{2}, \delta\right)\right)$.

Proof: Let supp $\delta=\left\{a_{1}, \ldots, a_{s}\right\}$ where $s \geq 2$ since $a_{1} \neq a_{2}$. From 2.3.1(ii) and (iii) and the assumption that $\left[a_{1}, a_{2}, \delta\right] \neq 1$ it follows that $\delta\left(a_{1}\right) \leq p ; \delta\left(a_{2}\right) \leq p ; \delta\left(a_{j}\right)<p^{2}$ for $j \varepsilon\{3, \ldots, s\}$; and $\delta\left(a_{1}\right)$ and $\delta\left(a_{2}\right)$ cannot both be p^{2}.

There are now two cases to consider.
(i) Suppose $\min \left\{a_{1}, \ldots, a_{s}\right\}=a_{i}$, where $a_{1} \neq a_{-1} \neq a_{2}$. By 1.6.1 (5) and (3) $\left[a_{1}, a_{2}, \delta\right]=\left[a_{1}, a_{i}, \delta\right]\left[a_{2}, a_{i}, \delta\right]$ and it follows from the restrictions on the values of the $\delta\left(a_{j}\right)$ $j=1, \ldots$, s that the pseudo-commutator $\left(a_{1}, a_{i}, \delta\right)$ is basic unless $\delta\left(a_{2}\right)=p^{2}$, in which case $\left[a_{1}, a_{i}, \delta\right]=1(b y$ 2.3.I(ii)). A similar statement holds for $\left(a_{2}, a_{i}, \delta\right)$, so we conclude that the expression in normal form $\left[a_{1}, a_{2}, \delta\right]$ involves only the values of basic pseudo-commutators with degree function δ. Thus wt $\left(\left[a_{1}, a_{2}, \delta\right]\right)=\sum_{j=1}^{s} \delta\left(a_{j}\right)=w t\left(\left(a_{1}, a_{2}, \delta\right)\right)$.
(ii) The alternative case occurs when $\min \left\{a_{1}, \ldots, a_{s}\right\}$ is
a_{1} or a_{2}. In fact we may assume it is an for clearly
$w t\left(\left(a_{1}, a_{2}, \delta\right)\right)=w t\left(\left(a_{2}, a_{1}, \delta\right)\right)$ and wt $\left(\left[a_{1}, a_{2}, \delta\right]\right)$
$=w t\left(\left[a_{2}, a_{1}, \delta\right]^{-1}\right)=w t\left(\left[a_{2}, a_{1}, \delta\right]\right)$. Further, if $\delta\left(a_{2}\right)=p^{2}$
then we may assume that $\max \left\{a_{1}, \ldots, a_{s}\right\}=a_{1}$. For if the \max is
a_{j} then $\left[a_{1}, a_{2}, \delta\right]=\left[a_{j}, a_{2}, \delta\right] \quad$ (by 2.3.1(iv)),
and thus

$$
w t\left(\left[a_{1}, a_{2}, \delta\right]\right)=w t\left(\left[a_{j}, a_{2}, \delta\right]\right) .
$$

At this stage we are in fact assuming that (a_{1}, a_{2}, δ) is basic, so there is now nothing to prove. //
2.3.3 Corollary: Let $\left(a_{1}, a_{2}, \delta\right)$ be a pseudo-commutator in G with $\operatorname{supp} \delta \subseteq \underline{g}$ and non-trivial value. Then for all a $\varepsilon \stackrel{g}{\underline{g}}$

$$
w t\left(\left[\left[a_{1}, a_{2}, \delta\right], a\right]\right) \geq w t\left(\left[a_{1}, a_{2}, \delta\right]\right)+1 . / /
$$

The above corollary generalises considerably:
2.3.4 Lemma: Let w εG^{\prime}, $v \varepsilon G$, with w $\neq 1 \neq v$. Then $\mathrm{wt}([\mathrm{w}, \mathrm{v}]) \geq \mathrm{wt}(\mathrm{w})+\mathrm{I}$.

Proof: Since G has finite exponent $v=g_{i_{1}} g_{i_{2}} \cdots g_{i_{s}}$ for some $i_{I}, \ldots, i_{s} \varepsilon I^{+}$(not necessarily all distinct). Thus $[w, v]=\left[w, g_{i_{1}} \ldots g_{i_{s}}\right]$ and we may now proceed by induction on s. To deal with the preliminary case, $s=1$, first express w in normal form by $w=b_{1}{ }_{I} \ldots b_{t}{ }_{t}$ say, and note that for each $j \in\{I, \ldots, t\} \omega>w t\left(b_{j}\right) \geq w t(w)$. Then

$$
\begin{aligned}
w t\left(\left[w, g_{i_{I}}\right]\right) & =w t\left(\left[b_{I}^{e} \ldots b_{t}^{e}, g_{j_{I}}\right]\right) \\
& =w t\left(\left[b_{I}, \varepsilon_{i_{I}}\right]^{e} \ldots\left[b_{t}, g_{i_{I}}\right]^{e} t\right) \\
& \geq \min \left(w t\left(\left[b_{j}, E_{i_{I}}\right]\right) \mid j \varepsilon\{I, \ldots, t\}\right) \\
& \geq \min \left(w t\left(b_{j}\right)+I \mid j \varepsilon\{I, \ldots, t\}\right) \quad(b y 2 \cdot 3 \cdot 3) \\
& \geq \min \left(w t\left(b_{j}\right) \mid j \varepsilon\{I, \ldots, t\}\right)+I \\
& \geq w t(w)+I .
\end{aligned}
$$

The inductive step is as follows:

$$
\begin{aligned}
& w t\left(\left[w, g_{i_{I}} \ldots g_{i_{s}}\right]\right)=w t\left(\left[w, g_{i_{I}} \ldots g_{i_{s-1}}\right]\left[w, g_{i} \ldots g_{i_{s-1}}, g_{i_{s}}\right]\left[w, g_{i_{s}}\right]\right) \\
& \quad \geq \min \left(w t\left(\left[w, g_{i} \ldots g_{i_{s-1}}\right]\right), w t\left(\left[w, g_{i_{i}} \ldots g_{i_{s-1}}, g_{i_{s}}\right]\right), w t\left(\left[w, g_{i}\right]\right)\right. \\
& \geq \min (w t(w)+1, w t(w)+2, w t(w)+1) \quad \text { (inductive hypothesis } \\
& \quad \text { and case }=1)
\end{aligned}
$$

Proof of 2.2.12: Since ${ }^{G}(c+1)=\left[{ }^{G}(c),{ }^{G}\right]$ for all c εI^{+}, Lemma 2.2.12 easily follows from 2.3 .4 by induction on c. //

We deal with Lemma 2.2.14 first, as it is needed for the proof of 2.2.10. However, rather than proving 2.2.14 directly, we first prove a stronger result, Lemma 2.4.2 below, and subsequently deduce 2.2 .14 as a corollary. The reason for this indirect approach is that Lemma 2.4.2 will be needed in section 2.5 .

We begin with a definition:
2.4.1 Definition: For all c εI^{+}, e εI the verbal subgroups $U(c, e)$ and $V(c, e)$ of G are defined as follows:

$$
\begin{aligned}
& U(c, e)=\left\{\left[y_{1}^{p}, \ldots, y_{c}^{p}, z_{1}, \ldots, z_{e}\right]\right\}(G) \\
& V(c, c)=\left\{\left[x_{1}, x_{2}, y_{2}^{p}, \ldots, y_{c}^{p}, z_{1}, \ldots, z_{e}\right]\right\}(G)
\end{aligned}
$$

The following examples should remove any uncertainty as to the intended meaning of the notation used in the definition:

$$
\begin{array}{ll}
U(I, 0)=\left\{y_{1}^{p}\right\}(G)=B_{p}(G) ; & V(I, 0)=\left\{\left[x_{1}, x_{2}\right]\right\}(G)=A(G) ; \\
U(2,2)=\left\{\left[y_{1}^{p}, y_{2}^{p}, z_{1}, z_{2}\right]\right\}(G) ; & V(2,2)=\left\{\left[x_{1}, x_{2}, y_{2}^{p}, z_{1}, z_{2}\right]\right\}(G) .
\end{array}
$$

Similar notations will be used frequently in the sequel, but no further comments on interpretation should be necessary.
2.1.2 Lemma: For all $c \varepsilon I^{+}$and $e \varepsilon I$,

$$
\left[{ }^{M}(c), e^{G}\right]=U(c, e) \cdot V(c, e) \cdot \downarrow \downarrow
$$

The proof of 2.4 .2 uses the following two lemmas:
2.4.3 Lemma: Let $m \in M$. Then there exist $V \varepsilon G$ and $V^{8} \varepsilon G^{8}$ such that $m=v^{p} v^{p}$ 。

Proof: Clearly $m \equiv v_{I}^{p} \ldots v_{S}^{P}\left(\bmod G^{\prime}\right)$ for some $v_{1}, \ldots, v_{s} \in G$. But $v_{1}^{p} \ldots v_{s}^{p} \equiv\left(v_{I} \ldots v_{s}\right)^{p}\left(\bmod G^{\prime}\right)$. Thus writing $v=v_{I} \ldots v_{s}$, we have $m=v^{p} v^{p}$ for some $v^{p} \varepsilon G^{p} / /$
2.4.4 Lemina: Let $c \in I^{+} \backslash\{1\} ; t_{1}, \ldots, t_{c} \varepsilon G$; and $v_{1}, \ldots, v_{c}^{q} \in G^{p}$. Then

$$
\left[t_{1} v_{1}^{\prime}, \ldots, t_{c} v_{c}^{\prime}\right]=\left[t_{1}, \ldots, t_{c}\right]\left[v_{2}^{\ell}, t_{1}, t_{3}, \ldots, t_{c}\right]^{-1}\left[v_{1}^{\prime}, t_{2}, \ldots, t_{c}\right] .
$$

Proof: The proof is by induction on c. For $c=2$

$$
\begin{aligned}
{\left[t_{1} v_{1}^{\prime}, t_{2} v_{2}^{p}\right] } & =\left[t_{1}, t_{2}\right]^{v_{1}^{\prime} v_{2}^{\prime}}\left[t_{1}, v_{2}^{\prime}\right]^{v_{1}^{\prime}}\left[v_{1}^{\prime}, t_{2}\right]^{v_{2}^{\prime}}\left[v_{1}^{\prime}, v_{2}^{\prime}\right] \\
& =\left[t_{1}, t_{2}\right]\left[t_{1}, v_{2}^{\prime}\right]\left[v_{1}^{\prime}, t_{2}\right] \\
& =\left[t_{1}, t_{2}\right]\left[v_{2}^{\prime}, t_{1}\right]^{-1}\left[v_{1}^{\prime}, t_{2}\right] .
\end{aligned}
$$

For $c>2$ the inductive step is as follows:

$$
\begin{aligned}
& {\left[t_{I} v_{I}^{p}, \ldots, t_{c} v_{c}^{\prime}\right]=\left[\left[t_{I} v_{I}^{\prime}, \ldots, t_{c-1} v_{c-1}^{\prime}\right], t_{c} v_{c}^{1}\right]} \\
& =\left[\left[t_{1} v_{1}^{\prime}, \ldots, t_{c-1} v_{c-1}^{\prime}\right], t_{c}\right]^{v_{c}^{\prime}} \\
& \cdot\left[\left[t_{I} v_{1}^{8}, \ldots, t_{c-1} v_{c-1}^{i}\right], v_{c}^{8}\right] \\
& =\left[\left[t_{1} v_{1}^{Q}, \ldots, t_{c-1} v_{c-1}^{p}\right], t_{c}\right] \\
& =\left[\left[t_{1}, \ldots, t_{c-1}\right]\left[v_{2}^{\frac{1}{2}}, t_{1}, t_{3}, \ldots, t_{c-1}\right]^{-1}\right. \\
& \left.\left[v_{1}, t_{2}, \ldots, t_{c-1}\right], t_{c}\right] \\
& =\left[t_{1}, \ldots, t_{c}\right]\left[v_{2}^{1}, t_{1}, t_{3}, \ldots, t_{c}\right]^{-1}\left[v_{1}^{1}, t_{2}, \ldots, t_{c}\right] . / /
\end{aligned}
$$

Proof of 2.4.2: It is immediate that

$\left[M_{(c)}, e G\right] \geq U(c, e) \cdot V(c, e) ;$ on My the reverse inclusion requires proof. Now by definition

$$
\left[M_{(c)}, e G\right]=\operatorname{gp}\left(\left.\left[m_{1}, \ldots, m_{c}, w_{1}, \ldots, w_{e}\right]\right|_{I}, \ldots, m_{c} \varepsilon M_{1} ; w_{1}, \ldots, w_{e} e^{\varepsilon G)}\right.
$$

so that in view of $2 \cdot 4.3$ it is sufficient to prove

$$
\begin{aligned}
2.4 .5 \ldots & V_{1}, \ldots, v_{c}, w_{1}, \ldots, w_{e} \varepsilon G_{j} V_{V_{1}^{1}}, \ldots, v_{c}^{q} \varepsilon G^{\prime} ; \\
& {\left[v_{1}^{p} v_{1}^{1}, \ldots, v_{c}^{p} v_{c}^{q}, w_{1}, \ldots, w_{e}\right] \varepsilon U(c, e) \cdot v(c, e) . }
\end{aligned}
$$

In proving 2.4 .5 the case $c=1$ is a little exceptional, so we consider it separately first: If $=0$ the statement is trivial, for it merely asserts that $V_{I}^{D} V_{I}^{q} G_{G}^{D}$ for all
$v_{I} \varepsilon G, v_{j} \varepsilon G^{9}$. If, on the other hand, $e>0$ then

$$
\begin{aligned}
{\left[v_{1}^{p} v_{1}^{i}, w_{1}, \ldots, w_{e}\right] } & =\left[\left[v_{1}^{p} v_{1}^{i}, w_{1}\right], w_{2}, \ldots, w_{e}\right] \\
& =\left[\left[v_{1}^{p}, w_{1}\right]^{v_{1}^{\prime}}\left[v_{1}^{q}, w_{1}\right], w_{2}, \ldots, w_{e}\right] \\
& =\left[v_{1}^{p}, w_{1}, \ldots, w_{e}\right]\left[v_{1}^{\ell}, w_{1}, \ldots, w_{e}\right]
\end{aligned}
$$

so 2.4.5 follows because clearly $\left[\mathrm{v}_{\mathrm{l}}{ }^{\mathrm{p}},{ }^{\mathrm{w}}{ }_{1}, \ldots, \mathrm{w}_{\mathrm{e}}\right] \varepsilon \mathrm{U}(\mathrm{I}, \mathrm{e})$ and, since $V(l, e)=G_{(}^{G}(e),\left[V_{1}, W_{l}, \ldots, w_{e}\right] \varepsilon V(l, e)$ 。

For the proof of 2.4 .2 it now remains to prove
2.4.5 for the case $c \geq 2$: Using 2.4.4 we have

$$
\begin{aligned}
& {\left[v_{1}^{p} v_{1}^{1}, \ldots, v_{c}^{p} v_{c}^{1}, w_{1}, \ldots, w_{e}\right]} \\
& =\left[v_{1}^{p}, \ldots, v_{c}^{p}, w_{1}, \ldots, w_{e}\right]\left[v_{2}^{q}, v_{1}^{p}, v_{3}^{p}, \ldots, v_{c}^{p}, w_{1}, \ldots, w_{e}\right]^{-1} \\
& \\
& \quad \cdot\left[v_{1}^{p}, v_{2}^{p}, \ldots, v_{c}^{p}, w_{1}, \ldots, w_{e}\right]
\end{aligned}
$$

Further, any $v^{\prime} \varepsilon G^{\prime}$ can of course be written in the form
 immediately above that

$$
\begin{aligned}
& {\left[v_{1}^{p} v_{1}^{\prime}, \ldots, v_{c}^{p} v_{c}^{\prime}, w_{1}, \ldots, w_{e}\right] } \\
= & {\left[v_{1}^{p}, \ldots, v_{c}^{p}, w_{1}, \ldots, w_{e}\right] \cdot \prod_{i=1}^{\ell}\left[u_{1 i}, u_{2 i}, v_{2 i}^{p}, \ldots, v_{c i}^{p}, w_{1}, \ldots, w_{e}\right]^{f} i_{i} }
\end{aligned}
$$

for some integers r_{1}, \ldots, f_{ℓ} and for some $u_{1 i}, u_{2 i}, v_{2 i}, \ldots v_{c i}{ }^{\varepsilon}{ }_{G}$, $i=1, \ldots, l$. This finishes the proof, for
$\left[v_{1}^{p}, \ldots, v_{c}^{p}, w_{1}, \ldots, w_{e}\right] \in U(c, e)$ and
$\left[u_{1 i}, u_{2 i}, v_{2 i}^{p}, \ldots, v_{c i}, w_{1}, \ldots, w_{e}\right] \varepsilon V(c, e)$ for each i $\varepsilon\{1, \ldots, \ell\}$. //

Proof of 2.2.14: In view of 2.4 .2 it is sufficient to show that for all $c \in I^{+} U(c, p) \geq U(c+1,0)$ and $V(c, p) \geq V(c+1,0)$. Only the first of these two inclusions is proved here, since the proof of the second follows a completely parallel course.

$$
\begin{aligned}
U(c, p) & =\left\{\left[y_{1}^{p}, \ldots, v_{c}^{p}, z_{1}, \ldots, z_{p}\right]\right\}(G) \\
& =\operatorname{gp}\left(\left[v_{1}^{p}, \ldots, v_{c}^{p}, w_{1}, \ldots, w_{p}\right] \mid v_{1}, \ldots, v_{c}, w_{1}, \ldots, w_{p} \in G\right) \\
& \geq \operatorname{gp}\left(\left[v_{1}^{p}, \ldots, v_{c}^{p}, p v_{c+1}\right] \mid v_{1}, \ldots, v_{c+1} \varepsilon G\right) \\
& =\operatorname{gp}\left(\left[v_{1}^{p}, \ldots, v_{c+1}^{p}\right] \mid v_{1}, \ldots, v_{c+1} \varepsilon G\right)\left(b y{ }_{c}, 3 \cdot 1(i)\right) \\
& =\left\{\left[y_{1}^{p}, \ldots, y_{c+1}^{p}\right]\right\}(G)=U(c+1,0) . / /
\end{aligned}
$$

We come now to the proofs of 2.2 .7 and 2.2 .10 .

It is clear from Definition 2.2.6 that for each (fixed) i εI^{+}the mapping of G^{\wedge} into itself given by $w \rightarrow{ }_{w}^{(i)}$ for all $W \in G^{\prime}$ is an endomorphism of G^{\prime}. The first objective, therefore, will be to describe the effect of these
endomorphisms of G^{r} on members of the basis $\tilde{B} \phi$. Such a description is a little too involved to give in a single statement, but all the necessary information is contained in items 2.4 .5 through 2.4 .8 below:
2.4.5 Definition: For any function $\delta: \underset{=}{g} \rightarrow$, and any $i \varepsilon I^{+}$, define the function $\delta^{(i)}$ by the following rules:

$$
\begin{aligned}
& \delta^{(i)}\left(g_{1}\right)=\delta^{(i)}\left(g_{2}\right)=1 \\
& \delta^{(i)}\left(g_{i+2}\right)=\delta\left(g_{i}\right)-1 \\
& \delta^{(i)}\left(g_{j}\right)=\delta\left(\varepsilon_{j-2}\right) \text { for all } j \varepsilon I^{+} \backslash\{1,2, i+2\} .
\end{aligned}
$$

2.4.6 Lemma: Let $\left(g_{i_{1}}, g_{i_{2}}, \delta\right)$ be a pseudo-commutator in G with supp $=\stackrel{\text { g. Then }}{=}$
(i) $\left[g_{i_{1}}, g_{i_{2}}, \delta\right]^{\left(i_{1}\right)}=\left[g_{2}, g_{1}, \delta^{\left(i_{1}\right)}\right]$
(ii) $\left[g_{i_{1}}, s_{i_{2}}, \delta\right]^{\left(i_{2}\right)}=\left[\varepsilon_{2}, g_{1}, \delta\left(i_{2}\right)\right]^{-1}$
(i)
(iii) $\left[g_{i_{1}}, g_{i_{2}}, \delta\right]=1$ for 211 i $\varepsilon I^{+} \backslash\left\{i_{1}, i_{2}\right\}$ 。

Proof: Let supp $\delta=\left\{g_{i_{1}}, \ldots, g_{i_{s}}\right\}$ and set $\alpha_{j}=\delta\left(g_{j_{j}}\right)$, $j=1, \ldots, s$. Then we can write

$$
\left[\varepsilon_{i_{1}}, g_{i_{2}}, \delta\right]=\left[g_{i_{1}}, g_{i_{2}},\left(d_{1}-1\right) g_{i_{1}},\left(d_{2}-1\right) g_{i_{2}}, d_{3} g_{i}, \ldots, d_{s} g_{i_{s}}\right]
$$ and so

$\left[s_{i_{1}}, s_{i_{2}}, \delta\right]_{\tau}$
$=\left[g_{i_{1}+2}, g_{i_{2}+2},\left(d_{1}-1\right) g_{i_{1}+2},\left(d_{2}-1\right) g_{i_{2}+2}, d_{3} g_{i_{3}+2}, \ldots, d_{s} g_{i_{s}+2}\right]$.
Now by definition

$$
\left[g_{i_{1}}, g_{i_{2}}, \delta\right]^{\left(i_{1}\right)}=\left[g_{i_{1}}, g_{i_{2}}, \delta\right]_{\tau k_{i_{1}}+2}\left(\left[g_{i_{1}}, g_{i_{2}}, \delta\right]\right)^{-1}
$$

but

$$
\left[g_{i_{1}}, \varepsilon_{i_{2}}, \delta\right] \tau \kappa_{i_{1}}+2
$$

$$
=\left[g_{i_{1}+2}\left[g_{2}, g_{1}\right], g_{i_{2}+2},\left(d_{1}-1\right) g_{i_{1}+2}\left[g_{2}, g_{1}\right]\right.
$$

$$
\left.,\left(d_{2}-1\right) g_{i_{2}+2}, d_{3} g_{i_{3}}+2, \ldots, d_{s} g_{i_{s}+2}\right]
$$

$$
=\left[g_{i_{1}+2}, g_{i_{2}+2},\left(d_{1}-1\right) g_{i_{1}+2},\left(d_{2}-1\right) g_{i_{2}+2}, d_{3} g_{i_{3}+2}, \ldots, d_{s} g_{i_{s}+2}\right]
$$

$$
\cdot\left[g_{2}, g_{1}, g_{i_{2}+2},\left(d_{1}-1\right) g_{i_{1}+2},\left(d_{2}-1\right) g_{i_{2}+2}, d_{3} g_{i_{3}+2}, \ldots, a_{s} g_{i_{s}+2}\right]
$$

$=\left[g_{i_{1}}, \varepsilon_{i_{2}}, \delta\right] \tau\left[g_{2}, \varepsilon_{1}, \delta\left(i_{I}\right)\right]$
(by 2.4.4)
and part (i) of the lemma follows. The proof of part (ii) is so similar that we omit it. Part (iii) is again proved along similar lines, except in this case the application of 2.4.4 gives

$$
\left[g_{i_{1}}, g_{i_{2}}, \delta\right] \tau k_{i+2}=\left[g_{i_{1}}, g_{i_{2}}, \delta\right] \tau \text { for all i } \varepsilon I^{+} \backslash\left\{i_{1}, i_{2}\right\}
$$ But this, of course, is just what we need. //

$$
\text { 2.4.7 Remark: It is clear from } 2.4 .5 \text { that if }
$$

$\left(g_{i_{1}}, g_{i_{2}}, \delta\right)$ is a pseudo-commutator in G with supp $\delta S g$ then the pseudo-commutators $\left(g_{2}, g_{1}, \delta^{\left(i_{1}\right)}\right)$ and $\left(g_{2}, g_{1}, \delta^{\left(i_{2}\right)}\right)$ are special.
2.4.8 Lemma: Let $\left(g_{i_{I}}, g_{i_{2}}, \delta\right) \varepsilon \tilde{B}$ and let $\{k, l\}=\{1,2\}$. Then for both $k=1$ and $k=2$
(i) $\quad \delta\left(g_{i_{\ell}}\right)<p^{2} \Rightarrow\left(g_{2}, g_{1}, \delta^{\left(i_{k}\right)}\right) \varepsilon \tilde{B}$
(ii) $\delta\left(g_{i_{l}}\right)=p^{2} \Rightarrow\left[g_{2}, g_{I}, \delta\left(i_{k}\right)\right]=1$

Proof: From the definition $\delta^{\left(i_{k}\right)}$ and the fact that $\left(g_{i_{1}}, g_{i_{2}}, \delta\right)$ is basic it follows that $\delta^{\left(i_{k}\right)}\left(g_{j}\right)<p^{2}$ for all $j \varepsilon I^{+}$unless $\delta\left(g_{i_{\ell}}\right)=p^{2}$, in which case $\delta^{\left(i_{k}\right)}\left(g_{i_{\ell}+2}\right)=p^{2}$. Part (i) of the lemma now follows immediately and for part (ii) simply observe that $\left[g_{2}, g_{1}, p^{2} g_{e^{+2}}\right]=1$ by $2 \cdot 3.1(i i) / /$

We are now in possession of enough information to prove the first part of Lemma 2.2.7, viz:
2.4.9 Lemma: For all $W \in G^{\circ}$ and all $i \varepsilon I^{+}, W^{(i)}$ is special.

Proof: For w = l there is nothing to prove, so let w be expressed in normal form by $w=b_{1}{ }^{1} \ldots b_{t}{ }_{t}$, $t \geq I$. Then for any $i \in I^{+}{ }_{W}^{(i)}=\left(b_{I}^{(i)}\right)^{e_{I}} \ldots\left(b_{t}^{(i)}\right)^{e_{t}}$ and since a product of special elements is itself special it is sufficient to prove
2.4.10... If $\left(g_{i_{I}}, g_{i_{2}}, \delta\right) \varepsilon \tilde{B}$ then $\left[g_{i_{I}}, g_{i_{2}}, \delta\right]$ is special for all $i \in I^{+}$.

Now is $i_{1} \neq i \neq i_{2}$ then 2.4 .10 is immediate from 2.4.6(iii). Consider next the case $i=i_{I}$. From 2.4.6(i) $\left[g_{i_{1}}, g_{i_{2}}, \delta\right]^{\left(i_{I}\right)}=\left[g_{2}, \delta_{1}, \delta^{\left(i_{I}\right)}\right]$ and hence from $2 \cdot 4(i i)$ $\left[g_{i_{1}}, g_{i_{2}}, \delta\right]^{\left(i_{1}\right)}=1$ if $\delta\left(g_{i_{2}}\right)=p^{2}$. On the other hand if $\delta\left(g_{i_{2}}\right)<\underline{p}^{2}$ then from $2.4 \cdot 8(i)$ and $2 \cdot 4 \cdot 7\left(g_{2}, g_{1}, \delta\left(i_{1}\right)\right.$) is both basic and special and hence $\left[g_{i_{1}}, g_{i_{2}}, \delta\right]^{\left(i_{1}\right)}$ is special (but this time non-trivial). The proof for the case $i=i_{2}$ is similar, but starts with 2.4.6(ii). //

As will be shown presently, the second part of Lemma 2.2.7 follows from Lemma 2.4.11 below. However, I should point out that 2.4.11 is not really essential for this, since a proof of the result can also be obtained by putting together suitable parts of the various subsequent lemmas. But although such a proof might be more natural, the proof given here is tidier and more direct. Moreover, Lemma 2.4.11 is of interest on another score, for it may well also provide the starting point for a shorter proof of 2.2 .10 than is given here. (Unfortunately my efforts in this direction have been unsuccessful).
2.4.11 Lemma: For all $w \in G^{9}$ and all $v \varepsilon G$ $[w, v] \in\left\langle{ }_{w}{ }^{(i)} \mid i \in I^{+}\right\rangle . \psi \psi$

The proof of 2.4.11 uses the following definition, lemma and corollary:

$$
\text { 2.4.12 Definition: For each } v \varepsilon G \text { and } i \varepsilon I^{+} \text {let }
$$ $\bar{\sigma}(v, i): \underline{g} \rightarrow G$ be the mapping defined by

$$
\begin{aligned}
& g_{1} \bar{\sigma}(v, i)=v \\
& g_{2} \bar{\sigma}(v, i)=g_{i} \\
& g_{j} \bar{\sigma}(v, i)=g_{j-2} \text { for all } j \varepsilon I^{+} \backslash\{I, 2\} .
\end{aligned}
$$

Then define $\sigma(v, i): G \rightarrow G$ to be the endomorphism of G induced by mapping $\bar{\sigma}(v, i)$.
2.4.13 Lemma: For all $\left(g_{i_{1}}, g_{i_{2}}, \delta\right) \varepsilon \tilde{B}$, and all $v \varepsilon G$,

$$
\begin{aligned}
\left(\left[\varepsilon_{i_{I}}, g_{i_{2}}, \delta\right]^{\left(i_{I}\right)} \sigma\left(v, i_{I}\right)\right)\left(\left[\varepsilon_{i_{1}}, \varepsilon_{i_{2}}, \delta\right]^{\left(i_{2}\right)}\right. & \left.\sigma\left(v, i_{2}\right)\right) \\
& =\left[\left[g_{i_{1}}, s_{i_{2}}, \delta\right], v\right]
\end{aligned}
$$

Proof: One checks easily that

$$
\left[g_{2}, g_{I}, \delta^{\left(i_{I}\right)}\right] \sigma\left(v, i_{I}\right)=\left[g_{i_{I}}, v, \delta+\chi_{V}\right]
$$

and

$$
\left[g_{2}, \varepsilon_{1}, \delta{ }^{\left(i_{2}\right)}\right] \sigma\left(v, i_{2}\right)=\left[g_{i_{2}}, v, \delta+x_{v}\right]
$$

Hence we have

$$
\begin{aligned}
& \left.\left(\left[g_{i_{1}}, g_{i_{2}}, \delta\right]^{\left(i_{I}\right)}{ }_{\sigma\left(v, i_{1}\right.}\right)\right)\left(\left[g_{i_{1}}, g_{i_{2}}, \delta\right]^{\left(i_{2}\right)}{ }_{\left.\sigma\left(v, i_{2}\right)\right)}\right. \\
& =\left(\left[g_{2}, g_{1}, \delta^{\left(i_{1}\right)}\right] \sigma\left(v, i_{1}\right)\right)\left(\left[g_{2}, g_{1}, \delta^{\left(i_{2}\right)}\right]^{-1} \sigma\left(v, i_{2}\right)\right) \\
& -1 \text { (by 2.4.6) } \\
& =\left[g_{i_{1}}, v, \delta+\chi_{V}\right]\left[g_{i_{2}}, v, \delta+\chi_{V}\right] \\
& =\left[g_{i_{1}}, g_{i_{2}}, \delta+x_{V}\right] \quad(b y \quad 1.6 .1(3) \text { and }(5)) \\
& =\left[\left[g_{i_{1}}, \varepsilon_{i_{2}}, \delta\right], v\right] \cdot / /
\end{aligned}
$$

2.4.14 Corollary: Let $\left(E_{i_{1}}, g_{i_{2}}, \delta\right) \varepsilon \tilde{B}$; let $v \varepsilon G$; and let J be a finite subset of I such that $\left\{i_{1}, i_{2}\right\} \leq J$. Then

$$
\begin{equation*}
\Pi_{j \varepsilon J}\left(\left[g_{i_{1}}, g_{i_{2}}, \delta\right] \quad \sigma(v, j)\right)=\left[\left[g_{i_{1}}, g_{i_{2}}, \delta\right], v\right] \tag{j}
\end{equation*}
$$

Proof: The proof is immediate from 2.4.13 and 2.4.6(iii)//

Proof of 2.4.11: For $w=1$ there is nothing to prove, so let w be expressed in normal form by $w=b_{l}{ }_{l} \ldots b_{t}{ }^{t}, t \geq 1$. For each $k \in\{1, \ldots, t\}$ let $b_{k} \phi^{-l}=\left(g_{j_{1 k}}, \delta_{i_{2 k}}, \delta_{k}\right)$ ana set

$$
\left.\left.\prod_{j \varepsilon J}(w n)(j) \sigma(v, j)\right)=\prod_{j \varepsilon J}\left(\prod_{k=1}^{t} b_{k}^{e_{k}}\right)(j) \sigma(v, j)\right)
$$

$$
=\prod_{j \varepsilon J}\left(\left(\prod_{k=1}^{t}\left(b_{k}^{(}(j)\right)^{e_{k}}\right) \sigma(v, j)\right)
$$

$$
=\prod_{j \varepsilon J}\left(\prod_{k=1}^{t}\left(b_{k}^{(j)} \sigma(v, j)\right)^{e_{k}}\right)
$$

$$
=\prod_{k=1}^{t}\left(\prod_{j \varepsilon J}\left(b_{k}^{(j)} \sigma(v, j)\right)\right)^{e_{k}}
$$

$$
\begin{equation*}
=\prod_{k=1}^{t}\left[b_{k}, v\right]^{e_{k}} \tag{by2.4.14}
\end{equation*}
$$

$$
\begin{aligned}
& =\left[\prod_{k=1}^{t} \quad b_{k}^{e}, v\right] \quad(b y \quad 1,6 \cdot I(2)) \\
& =[w, v]
\end{aligned}
$$

Hence $[w, v] \varepsilon\left\langle{ }^{(j)} \mid j \varepsilon J\right\rangle$, and 2.4.ll follows. //

Proof of 2.2.7: In view oi 2.4.9 and 2.4.11 it is now sufficient to show that if $\mathbb{W} G, W \neq I$ then there exists $\mathrm{v} \varepsilon \mathrm{G}$ such that $[\mathrm{w}, \mathrm{v}] \neq 1$.

Let w be expressed in normal form by $w=b_{1}{ }_{I} \ldots b_{t}{ }_{t}$, where for $j=1, \ldots, t b_{j} \phi^{-1}=\left(a_{j}, b_{j}, \delta_{j}\right)$ say, and choose v such that $v \varepsilon \stackrel{g}{=} \bigcup_{j=1} \operatorname{supp}_{j}$. Then

$$
[w, v]=\left[\prod_{j=1}^{t} b_{j}^{e}, v\right]=\prod_{j=1}^{t}\left[b_{j}, v\right]^{e}{ }_{j}
$$

and hence

$$
\text { 2.4.15... }[w, v]=\prod_{j=1}^{t}\left[a_{j}, b_{j}, \delta_{j}+\chi_{v}\right]^{e} j .
$$

But the pseudo-commutators ($\left.a_{I}, b_{I}, \delta_{I}+\chi_{v}\right), \ldots,\left(a_{t}, b_{t}, \delta_{t}+\chi_{v}\right)$ are all basic (because of the choice of v) and are pairwise distinct (because $\delta_{\mathcal{I}}, \ldots, \delta_{k}$ are pairwise distinct), so that $[\mathrm{w}, \mathrm{v}]$ is in fact expressed in normal form by 2.4.15. It follows that $[\mathrm{w}, \mathrm{v}] \neq 1 . / /$

The remainder of this section is concerned solely with proving Lemma 2.2 .10 . To simplify the language of the argument the following notation and terminology has been adopted:
2.4.16 Notation: For any $w G^{\circ}$ denote $\min \left(\operatorname{comp}\left(w^{(i)}\right) \mid i \varepsilon I^{+}\right)$by $\operatorname{mic}(w)$.
2.4.17 Definition: Let w be non-trivial element of G^{\prime} and set $c=\operatorname{mic}(w)$ and $d=\max (0, w t(w)-c p)$. Then w is said to be well-behaved if, and only if, $w \in[M(c)$, aG$]$.

In terms of $2 \cdot 4.17$ Lemma 2.2 .10 says precisely that every non-trivial element of G^{\prime} is well-behaved. The following lemma indicates how the task of proving this statement is reduced:
2.4.18 Lemma: If $w=\prod_{i=1}^{k} w_{i} \neq 1$, where,
(I) w_{1}, \ldots, w_{k} are well-behaved members of G^{\prime}
(2) $\operatorname{wt}(w)=\min \left(w t\left(w_{i}\right) \mid i \varepsilon\{I, \ldots, k\}\right)$
(3) $\operatorname{mic}(w)=\min \left(\operatorname{mic}\left(w_{i}\right) \mid i \in\{1, \ldots, k\}\right)$,

Proof: Set $c=\operatorname{mic}(w), d=\max (0, w t(w)-c p)$ and for each i $\varepsilon\{1, \ldots, k\} \operatorname{set} c_{i}=\operatorname{mic}\left(w_{i}\right), d_{i}=\max \left(0, w t\left(w_{i}\right)-c_{i} p\right)$. For any i $\varepsilon\{1, \ldots, k\}$ we know from (I) that $w_{i} \varepsilon\left[M_{\left(c_{i}\right)}, d_{i}^{G]}\right.$ and from (3) that $c_{i} \geq c$. Further, from 2.2 .14 it follows that
$\left[M_{\left(c_{i}\right)}, d_{i}^{G}\right]=\left[M_{\left(c+\left(c_{i}-c\right)\right)}, d_{i} G\right] \leq\left[M_{(c)},\left(d_{i}+\left(c_{i}-c\right) p\right) G\right]$
and hence that $w_{i} \varepsilon\left[M_{(c)}{ }^{\mathrm{d}} \mathrm{G}\right]$, where

$$
\begin{aligned}
& d^{\prime}=d_{i}+\left(c_{i}-c\right) p \\
&=\max \left(0, w t\left(w_{i}\right)-c_{i} p\right)+\left(c_{i}-c\right) p \\
&=\max \left(\left(c_{i}-c\right) p, w t\left(w_{i}\right)-c p\right) \\
& \geq \max \left(0, w t\left(w_{i}\right)-c p\right) \\
&\geq \max (0, w t(w)-c p) \quad \text { (from }(2)) \\
&=d .
\end{aligned}
$$

It follows that $w_{i} \varepsilon\left[M_{(c)}, d G\right]$ for each $i \varepsilon\{1, \ldots, k\}$ and consequently that $w \in[M(c), d G]$. That is, w is wellbehaved. //

It is perhaps worth remarking that neither condition (2) nor (3) of 2.4 .18 is automatically satisfied.

In order to make use of 2.4 .18 we obviously need some well-behaved elements to start with. The following lemma provides some:
2.4.19 Lemma: Every element $\mathrm{w}^{\boldsymbol{E}} G^{\prime}$ whose expression in normal form is of the kind $w=b^{e}(b \in \tilde{B} \phi)$ is wellbehaved. $\downarrow \downarrow$

In addition to the description of the elements b given by 2.4 .5 through 2.4 .8 , the proof of 2.4 .19 uses Lemmas 2.4.21 through 2.4.24 below. These four lemmas have in common the following hypothesis:
2.4.20 Hypothesis: Let $\left(g_{i_{1}}, g_{i_{2}}, \delta\right)$ be a pseudocommutator in G with $\operatorname{supp} \delta=\left\{\tilde{E}_{i_{1}}, \ldots, \varepsilon_{i_{s}}\right\}(\underset{=}{G})$, where $s \geq 2$. For each $j \in\{1, \ldots, s\}$ write $\delta\left(\varepsilon_{i}\right)=q_{j} p+r_{j}$, where $0 \leq r_{j}<p$.
2.4.21 Lemma: Let $\left(g_{i_{1}}, E_{i_{2}}, \delta\right)$ be as in 2.4.20. Then for both $k=1$ and $k=2$

$$
\operatorname{comp}\left(\left(g_{2}, \delta_{I}, \delta\left(i_{k}\right)\right)\right)=\left\{\begin{array}{l}
1+\sum_{j=1}^{s} q_{j} \text { if } r_{k} \neq 0 \\
\sum_{j=1}^{s} q_{j} \text { if } r_{k}=0
\end{array}\right.
$$

Proof: From the definition of $\delta^{\left(i_{k}\right)}$ we have

$$
\begin{aligned}
\sum_{i=3}^{\infty}\left[\delta\left(i_{k}\right)\left(g_{i}\right) / p\right] & =\sum_{\substack{i=1 \\
i \neq i_{k}}}^{\infty}\left[\delta\left(g_{i}\right) / p\right]+\left[\left(\delta\left(g_{i_{k}}\right)-1\right) / p\right] \\
& =\sum_{\substack{j=1 \\
j \neq i_{k}}}^{s}\left[\left(q_{j} p+r_{j}\right) / p\right]+\left[\left(q_{k} p+r_{k}-1\right) / p\right] \\
& =\left\{\begin{array}{l}
\sum_{j=1}^{s} q_{j} \text { if } r_{k} \neq 0 \\
\left(\sum_{j=1}^{s} q_{j}\right)-I \text { if } r_{k}=0
\end{array}\right.
\end{aligned}
$$

and the lemma follows. //
2.4.22 Lemma: In addition to 2.4.20 $\operatorname{let}\left(g_{i_{1}}, E_{i_{2}}, \delta\right) \varepsilon \tilde{B}$. Then for both $k=1, \ell=2$ and $k=2, \ell=1$

$$
\operatorname{comp}\left(\left[g_{i_{I}}, g_{i_{2}}, \delta\right]_{k}\left(i_{k}\right)=\left\{\begin{array}{c}
\omega i \rho \delta\left(g_{i_{l}}\right)=p^{2} \\
I+\sum_{j=1}^{s} q_{j} \text { ir } \delta\left(g_{i_{l}}\right)<p^{2} \text { and } r_{k} \neq 0 \\
\sum_{j=1}^{s} q_{j} \text { if } \delta\left(g_{i_{l}}\right)<p^{2} \text { and } r_{k}=0
\end{array}\right.\right.
$$

Proof: The lemma is a straightforward deduction from 2.4.6(i) and (ii), 2.4.8 and 2.4.21. The details are therefore omitted. //
2.4.23 Lemma: In addition to 2.4.20 let $\left(g_{i_{1}}, g_{i_{2}}, \delta\right) \varepsilon \tilde{B}$. Then

$$
\operatorname{mic}\left(\left[g_{i_{1}}, g_{i_{2}}, \delta\right]\right)=\left\{\begin{array}{l}
1+\sum_{j=1}^{r} q_{j} \text { if } r_{1} \neq 0 \neq r_{2} \\
\sum_{j=1}^{s} q_{j} \text { otherwise }
\end{array}\right.
$$

Proof: Use 2.4.6(iii), 2.4.22 and the fact that $\delta\left(g_{i_{1}}\right)$ and $\delta\left(\mathrm{g}_{\mathrm{i}_{2}}\right)$ cannot both be p^{2}. //
2.4.24 Lemma: Let $\left(g_{i_{1}}, g_{i_{2}}, \delta\right)$ be as in 2.4.20. Let integers c^{\prime} end d^{\prime} be defined as follows:
(i) If $r_{1} \neq 0$ and $r_{2} \neq 0$ then set $c^{i}=1+\sum_{j=1}^{s} q_{j}$ and

$$
d^{\prime}=\left(\sum_{j=1}^{s} r_{j}\right)-2
$$

(ii) If $r_{1} \neq 0$ and $r_{2}=0$ then set $c^{\prime}=\sum_{j=1}^{s} q_{j}$ and

$$
d^{\prime}=\left(\sum_{j=1}^{s} r_{j}\right)-2+p
$$

(iii) If $r_{1}=0$ and $r_{2} \neq 0$ then set $c^{\prime}=\sum_{j=1}^{s} q_{j}$ and

$$
d^{v}=\left(\sum_{j=1}^{s} r_{j}\right)-2+p
$$

(iv) If $r_{I}=0$ and $r_{2}=0$ then set $c^{\prime}=\sum_{j=1}^{s}{ }^{q} j$ and

$$
d^{\prime}=\sum_{j=1}^{s} r_{j}
$$

Then $\left[g_{i_{1}}, g_{i_{2}}, \delta\right] \varepsilon\left[M\left(c^{\prime}\right), d^{\prime} G\right]$.

$$
\begin{aligned}
& \text { Proof: Writing w for }\left[g_{i_{I}}, g_{i_{2}}, \delta\right] \text { we have } \\
& w=\left[g_{i_{I}}, g_{i_{2}},\left\{\left(q_{I} p+r_{I}\right) g_{i_{I}}, \ldots,\left(q_{s} p+r_{s}\right) g_{i_{s}}\right\}\right]
\end{aligned}
$$

Using 2.3.I(i) we can rewrite w in the following forms: For case (i):-

$$
\begin{aligned}
w=\left[\left[g_{i_{1}}, g_{i_{2}}, q_{I} g_{i_{1}}^{p}, \ldots, q_{s} g_{i_{s}}^{p}\right],\left(r_{1}-1\right) g_{i_{1}},\left(r_{2}-1\right) g_{i_{2}}\right.
\end{aligned},
$$

For case (ii):-

$$
\begin{aligned}
& w=\left[\left[g_{i_{1}}, g_{i_{2}}, q_{1} g_{i_{1}}^{p},\left(q_{2}-1\right) g_{i_{2}}^{p}, q_{3} g_{i_{3}}^{p}, \ldots, q_{s} g_{i_{s}}^{p}\right],\left(r_{1}-1\right) g_{i_{1}},\right. \\
&\left.(p-1) g_{i_{2}}, r_{3} g_{i_{3}}, \ldots, r_{s} g_{i_{s}}\right] .
\end{aligned}
$$

For case (iii):-

$$
\begin{aligned}
w=\left[\left[g_{i_{I}}, g_{i_{2}},\left(q_{I}-1\right) g_{i_{I}}^{p}, q_{2} g_{i_{2}}^{p}, \ldots, q_{s} g_{i_{s}}^{p}\right],(p-1) g_{i_{1}},\right.
\end{aligned} \quad \begin{aligned}
& \left.\left(r_{2}-1\right) g_{i_{2}}, r_{3} g_{i_{3}}, \ldots, r_{s} g_{i_{s}}\right] .
\end{aligned}
$$

For case (iv):-
$w=\left[\left[g_{i_{1}}^{p}, g_{i_{2}}^{p},\left(q_{1}-I\right) g_{i_{1}}^{p},\left(q_{2}-I\right) g_{i_{2}}^{p}, q_{3} g_{i_{3}}^{p}, \ldots, q_{s} g_{i_{s}}^{p}\right]\right.$,

$$
\left.r_{3} g_{i_{3}}, \ldots, r_{s} \varepsilon_{i_{s}}\right]
$$

From these expressions the lemma follows immediately. //

Proof of 2.4.19: Choose $b \varepsilon \tilde{B}$ and an integer e 丰 O(mod p) arbitrarily, and set $w=b^{e}$. As usual, set $c=\operatorname{mic}(w)$ and $d=\max (0, w t(w)-c p)$. Now it follows from the relevant definitions that $w t\left(b^{e}\right)=w t(b)$ and $\operatorname{comp}\left(\left(b^{e}\right)^{(i)}\right)=\operatorname{comp}\left(\left(b^{(i)}\right)^{e}\right)=\operatorname{comp}\left(b^{(i)}\right)$ for all i εI^{+}. Thus c and d are independent of e, so that we may assume without loss of generality that $e=1$, for if $b \varepsilon[M(c)$, $d G]$ then certainly $b^{e} \varepsilon\left[M_{(c)}, \bar{d} G\right]$. Consequently we have $w=b=\left[g_{i_{1}}, g_{i_{2}}, \delta\right]$ for some $\left(\varepsilon_{i_{1}}, g_{i_{2}}, \delta\right) \varepsilon \tilde{B}$, and as in 2.4.20 we write supp $\delta=\left\{g_{i_{I}}, \ldots, g_{i_{s}}\right\}, s \geq 2$, and $\delta\left(g_{i}\right)=q_{j} p+r_{j}, 0 \leq r_{j}<n, j=1, \ldots, s$. Note that in terms of this notation we have

$$
\begin{aligned}
& w t(w)=p \sum_{j=1}^{s} q_{j}+\sum_{j=1}^{s} r_{j}, \text { for } \\
& w t(w)=w t(b)=w t\left(b \phi^{-1}\right)=w t\left(\left(g_{i_{1}}, g_{i_{2}}, \delta\right)\right) \\
& =\sum_{i=1}^{\infty} \delta\left(g_{i}\right)=\sum_{j=1}^{s} \delta\left(g_{i}\right)=\sum_{j=1}^{s}\left(q_{j} p+r_{j}\right) .
\end{aligned}
$$

The proof of the lemma requires the consideration of three cases, delimited according to the values of r_{1} and r_{2} :

Case 1: Assume that $r_{1} \neq 0 \neq r_{2}$. From 2.4.23
$c=\sum_{j=1}^{s} q_{j}+1$, and hence from 2.4.24 w $\in\left[M(c), d^{\prime} G\right]$ where
$\mathrm{d}^{\prime}=\left(\sum_{j=1}^{S} r_{j}\right)-2$. It remains to show that $d^{\prime} \geq d$. But $d^{\prime}=w t(w)-p \sum_{j=1}^{S} q_{j}-2$

$$
=w t(w)-p(c-1)-2
$$

$$
=(w t(w)-p c)+(p-2)
$$

$$
\geq w t(w)-p c,
$$

amd since clearly $d^{\prime} \geq 0$ we have

$$
d^{\prime} \geq \max (0, w t(w)-p c)=d .
$$

Case 2: Assume that either $r_{1} \neq 0=r_{2}$ or $r_{I}=0 \neq r_{2}$. Then from 2.4.23 $c=\sum_{j=1}^{s} q_{j}$ and hence from 2.4.24 W $\varepsilon\left[{ }^{M}(c), d^{i} G\right]$ where

$$
\begin{aligned}
d^{\prime} & =\left(\sum_{j=1}^{s} r_{j}\right)-2+p \\
& =w t(w)-p \sum_{i=1}^{s} q_{j}-2+p \\
& =(w t(w)-p c)+(p-2) \\
& \geq w t(w)-p c .
\end{aligned}
$$

But again $d^{\prime} \geq 0$, so that $d^{\prime} \geq d$ and thus $w \in[M(c), d G]$.

Case 3: The only remaining possibility for the values of r_{1} and r_{2} is $r_{1}=r_{2}=0$. For this case 2.4 .23 and 2.4.24 give $w \in\left[M(c)\right.$, $\left.d^{\prime} G\right]$ where $c=\sum_{j=1}^{s} q_{j}$ and

$$
\begin{aligned}
d^{\prime}=\sum_{j=1}^{s} r_{j} & =w t(w)-p \sum_{j=1}^{s} q_{j} \\
& =w t(w)-c p \\
& =d\left(\text { since } w t(w)-c p=d^{\prime} \geq 0\right) .
\end{aligned}
$$

Thus, once again, $W \in\left[M_{(c)}, d G\right]$, and the lemma is proved. //

In order to make full use of $2 \cdot 4.18$ we need a larger initial set of well-behaved elements than is provided by
2.4.19. We need, in fact, the set of "elementary" elements of G^{\prime}; where an "elementary" element is defined as follows:
2.4.25 Definition: Let w be a non-trivial element of G^{\prime} expressed in normal form by w $=b_{l}{ }_{I}{ }^{I} \ldots b_{t}{ }^{t}$. Then w is called elementary, with degree function δ if, and only if, the basic pseudo-commutators $b_{1} \phi^{-1}, \ldots, b_{t} \phi^{-1}$ all have (the same) degree function δ.

The next step in the argument, therefore, is to prove the following:
2.4.26 Lemma: Every nontrivial elementary element of G^{\prime} is well-behaved.

Proof: Let w be an arbitrary nontrivial element of G^{\prime} expressed in normal form by $w=b_{1}{ }^{I_{I}} \ldots b_{t}{ }^{t}$ say, where $b_{j} \phi^{-1}=\left(g_{i_{j}}, E_{i_{0}}, \delta\right), j=1, \ldots, t$ and $\operatorname{supp} \delta=\left\{g_{i_{0}}, \ldots, g_{i_{s}}\right\}$, $s \geq t . A s$ usual, write $\delta\left(g_{i_{j}}\right)=q_{j} p+r_{j}$ for each $j \in\{0, \ldots, s\}$. In addition, set $w_{j}=b_{j}^{j}, j=1, \ldots, t$ since, where possible, we shall be using 2.4.18.

Observe that if $t=1$ then W is well-behaved by 2.4.19, so we shall assume that $t>1$. The assumption implies that $\delta\left(g_{i_{j}}\right)<p^{2}$ for all $j \in\{0, \ldots, s\}$ (as otherwise there is
only one basic pseudo-commutator with degree function δ) and consequently
2.4.27... $\left(g_{2}, g_{I}, \delta^{(i)}\right)$ is basic for every i εI^{+}.

Another fact that we need is the following:
2.4.28... wt $(w)=w t\left(w_{l}\right)=\ldots=w t\left(w_{t}\right)=p \sum_{j=0}^{s} q_{j}+\sum_{j=0}^{s} r_{j}$.

The proof of $2 \cdot 4.28$ is quite straightforward and is therefore omitted.

From 2.4.28 we have in particular that
$w t(w)=\min \left(w t\left(w_{j}\right) \mid j \varepsilon\{1, \ldots, t\}\right)$. Since from 2. 4.19 each w_{j} is well-behaved it now follows from 2.4.18 that if $\operatorname{mic}(w)=\min \left(\operatorname{mic}\left(w_{j}\right) \mid j \varepsilon\{1, \ldots, t\}\right)$ then w is well-behaved. Consequently we now make the added assumption that
2.4.29... $\operatorname{mic}(w) \neq \min \left(\operatorname{mic}\left(w_{j}\right) \mid j \varepsilon\{I, \ldots, t\}\right)$.

In order to show that w is well-behaved despite this assumption (as the lemma claims) it is necessary to first enumerate the situations for which the assumption is valid. Now from 2.4 .6 we have

$$
\begin{aligned}
& W_{W}\left(i_{0}\right)=\left[g_{2}, g_{1}, \delta^{\left(i_{0}\right)}\right]^{-\sum_{j=1}^{t} e_{j}} \\
& \left(i_{j}\right)=\left[g_{2}, g_{I}, \delta^{\left(i_{j}\right)}\right]^{e} j \text { for each } j \varepsilon\{I, \ldots, t\} \\
& W(i)=I \text { for all } i \varepsilon I^{+} \backslash\left\{i_{0}, \ldots, i_{t}\right\}
\end{aligned}
$$

and so it follows from 2.4.27 that
2.4.30... mic (w) $=$

$$
= \begin{cases}\left.\min \left(\operatorname{comp}\left(\left(g_{2}, g_{1}, \delta^{(i j}\right)\right)\right) \mid j \varepsilon\{0, \ldots, t\}\right) & \text { if } \sum_{j=1}^{t} e_{j} \neq 0(\bmod p) \\ \min \left(\operatorname{comp}\left(\left(g_{2}, g_{1}, \delta^{(i} i_{j}\right)\right) \mid j \varepsilon\{1, \ldots, t\}\right) \text { if } \sum_{j=1}^{t} e_{j} \equiv O(\bmod p)\end{cases}
$$

On the other hand for $j \in\{1, \ldots, t\} 2.4 .6$ gives

$$
\begin{aligned}
& w_{j}^{\left(i_{0}\right)}=\left[g_{2}, g_{1}, \delta\left(i_{0}\right)\right]^{-e} j \\
& w_{j}^{\left(i_{j}\right)}=\left[g_{2}, g_{1}, \delta\left(i_{j}\right)\right]^{e} j \\
& w_{j}^{(i)}=1 \text { for all i } \varepsilon I^{+} \backslash\left\{i_{0}, i_{j}\right\}
\end{aligned}
$$

and hence, using 2.4.7 we have

$$
\operatorname{mic}\left(w_{j}\right)=\min \left(\operatorname{comp}\left(\left(g_{2}, g_{1}, \delta^{\left(i_{0}\right)}\right)\right), \operatorname{comp}\left(\left(g_{2}, g_{1}, \delta^{\left(i_{j}\right)}\right)\right)\right)
$$

Thus

$$
\begin{aligned}
& 2 \cdot 4 \cdot 31 \ldots \min \left(\operatorname{mic}\left(w_{j}\right) \mid j \in\{1, \ldots, t\}\right)= \\
& \min \left(\operatorname{comp}\left(\left(g_{2}, g_{1}, \delta\left(i_{j}\right)\right)\right) \mid j \varepsilon\{0, \ldots, t\}\right)
\end{aligned}
$$

If 2.4 .30 and 2.4 .31 are now compared then Lemma 2.4.2l shows that 2.4 .29 is satisfied if, and only if,
$2.4 .32 \ldots \begin{cases}\text { (i) } & \sum_{j=1}^{t} e_{j} \equiv 0(\bmod p) \\ (\text { ii) } & r_{j} \neq 0 \text { for each } j \varepsilon\{1, \ldots, t\} \\ \text { (iii) } & r_{0}=0 \\ \text { (iv) } & \operatorname{mic}(w)=I+\sum_{j=0}^{s}{ }^{q_{j}}\end{cases}$

Thus to complete the proof of the lemma we must show that under conditions 2.4.32 w $\varepsilon[M(c), d G]$, where $c=1+\sum_{j=0}^{S} q_{j}$ and $d=\max (0, w t(w)-c p)$. To do this first
note that

$$
\begin{align*}
& w=\prod_{j=1}^{t}\left[g_{i_{j}}, g_{i_{0}}, \delta\right]^{e}{ }^{j} \\
& =\prod_{j=1}^{t}\left(\left[g_{i_{j}}, g_{i_{1}}, \delta\right]\left[g_{i_{1}}, g_{i_{0}}, \delta\right]\right)^{e} j \quad(\text { by } 1.6 \cdot 1(5) \text { and } \tag{3}\\
& \left.=\left(\prod_{j=2}^{t}\left[g_{i_{j}}, g_{i_{1}}, \delta\right]^{e}\right)_{\left[g_{i_{1}}\right.}, g_{i_{0}}, \delta\right] \sum_{j=1}^{t} e_{j} \\
& =\prod_{j=2}^{t}\left[g_{i_{j}}, g_{i_{1}}, \delta\right]^{e} j
\end{align*}
$$

Now from 2.4.32(ii) and 2.4 .24 it follows that for $j=2, \ldots, t\left[g_{i_{j}}, g_{i_{I}}, \delta\right] \varepsilon\left[M_{\left(c^{\prime}\right)}, d^{\prime} G\right]$ where $c^{\prime}=I+\sum_{j=0}^{s} q_{j}$ and $d^{\prime}=\left(\sum_{j=0}^{s} r_{j}\right)-2$. Hence $w \varepsilon\left[M_{(c)}, d^{d} G\right]$ and it only remains to show that $d^{\prime} \geq d$. But

$$
\begin{aligned}
d^{\prime}=\left(\sum_{j=0}^{S} r_{j}\right)-2 & =w t(w)-p \sum_{j=0}^{s} q_{j}-2(b y \text { 2.4.28) } \\
& =w t(w)-p(c-1)-2 \\
& =(w t(w)-p c)+(p-2) \\
& \geq w t(w)-p c .
\end{aligned}
$$

and since $r_{1} \geq 1, r_{2} \geq 1$ we also have $d^{\prime} \geq 0$. Thus $d^{\prime} \geq \max (0, w t(w)-p c)=d$ and the proof is complete. //

Of course, not every non-trivial element of G^{\prime} is elementary, and we now consider the question of expressing an arbitrary element in terms of elementary ones.

Let w be a nontrivial element of G° expressed in normal form by $w=b_{I} e_{I} \ldots b_{t}{ }_{t}$. By rearranging the order of b_{i} 's if necessary, this expression can be written in the form

$$
\begin{aligned}
& =w_{1} \ldots w_{s} \text { say }
\end{aligned}
$$

where，for $j=1, \ldots, s, w_{j}=b_{j l}^{{ }_{j 1}} \ldots{ }^{e}{ }_{j t(j)}^{j t(j)}$ is elementary with degree function δ_{j} say，and $\delta_{1}, \ldots, \delta_{s}$ are pairwise distinct．Thus the equation $w=w_{1} \cdots w_{s}$ expresses w as the product of its elementary parts．Note that by definition

$$
\begin{aligned}
w t(w) & =\min \left(w t\left(b_{j k} \phi^{-1}\right) \mid j \varepsilon\{1, \ldots, s\}, k \varepsilon\{1, \ldots, t(j)\}\right) \\
& =\min \left(\min \left(w t\left(b k_{k} \phi^{-1}\right) \mid k \varepsilon\{1, \ldots, t(j)\}\right) \mid j \varepsilon\{1, \ldots, s\}\right)
\end{aligned}
$$

so that we have

$$
w t(w)=\min \left(w t\left(w_{j}\right) \mid j \in\{I, \ldots, s\}\right) .
$$

Moreover，as we shall now prove，we also have

$$
\operatorname{mic}(w)=\min \left(\operatorname{mic}\left(w_{j}\right) \mid j \varepsilon\{I, \ldots, s \mid) .\right.
$$

Let $i \varepsilon I^{+}$．Then $w^{(i)}=w_{l}^{(i)} \ldots w_{s}^{(i)}$ ，and in turn
$\left.w_{j}^{(i)}=\left(b_{j l}^{e}\right)^{j l}\right)^{(i)} \ldots\left(b_{j t(j)}^{e j t(j)}\right)^{(i)}=\left(b_{j l}^{(i)}\right)^{e j l} \ldots\left(b_{j t(j)}^{(i)}\right)^{e j t(j)}$
for all $j=1, \ldots, s$. Now from 2.4 .6 and 2.4 .8 it follows that for any $k \in\{I, \ldots, t(j)\}$ either $b_{j k}^{(i)}=I$ or
 Consequently，if ${ }_{j}^{(i)}$ is non－trivial then ${ }_{j}{ }^{i t}$ is expressed in normal form by $W_{j}^{(i)}=\left[\varepsilon_{2}, \delta_{1}, \delta j_{j}^{(i)}\right]^{e(i, j)}$ for some integer e（i，j）$⿻ 三 丨$ it now follows that by defining $J_{i}=\left\{\left.j \varepsilon\{1, \ldots, s\}\right|_{j}(i) \neq 1\right\}$ we can express ${ }^{(i)}$ in normal form by

$$
W^{(i)}=\prod_{j \varepsilon J_{i}} w_{j}^{(i)}=\prod_{j \varepsilon J_{i}}\left[g_{2}, g_{l}, \delta \frac{1}{j}_{(i)}{ }^{e(i, j)}\right.
$$

(For the degenerate case of $J_{i}=\varnothing$ we have, of course, $\mathrm{w}^{(\mathrm{i})}=1$). Hence

$$
\begin{aligned}
& \operatorname{comp}(w(i))= \min \left(\operatorname{comp}\left(\left(g_{2}, g_{1}, \delta_{j}^{(i)}\right)\right) \mid j \varepsilon J_{i}\right) \\
&= \min \left(\operatorname{comp}\left(w j_{j}^{(i)}\right) \mid j \varepsilon J_{i}\right) \\
&= \min \left(\operatorname{comp}\left(w{ }_{j}^{(i)}\right) \mid j \varepsilon\{1, \ldots, s\}\right) \\
& \quad(\text { since } \operatorname{comp}(1)=\omega)
\end{aligned}
$$

Using this, we conclude finally that

$$
\begin{aligned}
\operatorname{mic}(w) & =\min \left(\operatorname{comp}\left(w^{(i)}\right) \mid i \varepsilon I^{+}\right) \\
& =\min \left(\min \left(\operatorname{comp}\left(w j^{(i)}\right) \mid j \varepsilon\{1, \ldots, s\}\right) \mid i \varepsilon I^{+}\right) \\
& =\min \left(\min \left(\operatorname{comp}\left(w_{j}^{(i)}\right) \mid i \varepsilon I^{+}\right) \mid j \varepsilon\{1, \ldots, s\}\right) \\
& =\min (\operatorname{mic}(w j) \mid j \varepsilon\{1, \ldots, s\}),
\end{aligned}
$$

which is precisely the clair we set out to prove.
To summarise, we have shown by the above remarks that:

$$
\text { 2.4.33 Lemma: If a nontrivial element of } w \in G^{\prime} \text { is }
$$ expressed as the product of its elementary parts by $w=w_{1} \ldots w_{2}$ then

$$
\begin{aligned}
w t(w) & =\min \left(w_{t}\left(w_{j}\right) \mid j \varepsilon\{1, \ldots, s\}\right) \\
\text { and } \operatorname{mic}(w) & =\min \left(\operatorname{mic}\left(w_{j}\right) \mid j \varepsilon\{1, \ldots, s\}\right) \quad / /
\end{aligned}
$$

The above lemma provides the necessary connecting link between Lemmas $2 \cdot 4.18$ and $2 \cdot 4 \cdot 26$, for taken together the three lemmas imply that every nontrivial element of G^{\prime} is well-behaved. In other words, we have proved Lemma 2.2.10.

2.5 The Proof of 2.2.11

Many of the methods employed in this section have their origin in the $\mathrm{Ph} . \mathrm{D}$. thesis of R.A. Bryce [2]. In order to indicate the exact extent of this "borrowing" I have included at each relevant point in the section the item number of the analagous definition or lemma in [2]. It will be observed, however, that Bryce's results (in contrast to his methods) cannot be employed here, since they relate to bigroups rather than groups. Consequently, all the following lemmas require, and are given, proof, so that in this sense the entire section in independent of [2].

We begin by proving two results, Lemmas 2.5 .4 and 2.5.6, which lead to a more convenient formulation of 2.2 .11 . The first of these results requires the following definitions:
2.5.1 Definition: Let w be a nontrivial element of G^{r} expressed in normal form by $w=b_{1}^{e} I_{t} b_{t}{ }_{t}$, and for each $i \varepsilon\{1, \ldots, t\}$ let $b_{i} \phi^{-1}$ have degree function δ_{i}. Then the $\frac{\text { set of entries }}{t}$ of w, denoted by $E(w)$ is defined by $\mathbb{E}(w)=\bigcup_{i=1} \operatorname{supp}_{i}$. In addition, define $\mathbb{E}(1)$ to be \varnothing, and for any $w_{1}, \ldots, w_{m} \in G^{\prime}$ denote $\bigcup_{i=1}^{\mathbb{E}} \mathbb{E}\left(w_{i}\right)$ by $\mathbb{E}\left(w_{1}, \ldots, w_{m i}\right)$.
2.5.2 Definition: Let w be a nontrivial element of G' expressed in normal form by w $=b_{I}{ }_{I} \ldots b_{t}{ }_{t}$. Then wis called homogeneous if, and only if,

$$
E\left(b_{1}\right)=E\left(b_{2}\right)=\ldots=E\left(b_{t}\right)(=E(w)) .
$$

Clearly, any nontrivial element $w \in G^{\prime}$ is the product of its homogeneous parts; i.e. $w^{\prime}=w_{1} \ldots{ }_{s}$ where w_{1}, \ldots, w_{s} are nontrivial homogeneous elements of G with $E\left(w_{i}\right) \neq \mathbb{E}\left(w_{j}\right)$ if i $\neq j$. In connection with this we have
2.5.3 Lemma: If w is a nontrivial element of G^{\prime} then $\langle w\rangle \geq\langle w\rangle$ for every homogeneous part w^{\prime} of w.

Proof: The lemma is a special case of Hin 33.45 . //

Now if w is a non-trivial special element of G° it is clear that the homogeneous parts of w are themselves special and that at least one of them has the same p-complexity as w. Thus from 2.5.3 we have immediately:
2.5.4 Lemma: Let w be a nontrivial special element of G^{\prime}, with $\operatorname{comp}(w)=c$. Then there exists a nontrivial homogeneous special element of $W{ }^{9} \varepsilon G^{9}$, also having pcomplexity c, such that $\left.\langle w\rangle \geq\left\langle_{w}\right\rangle^{\prime}\right\rangle$. //

The second result concerns the subgroups $U(c, e)$ and $V(c, e)$ defined by 2.4.1, and is a consequence of 2.4 .2 and the following lemma:
2.5.5 Lemma: For all c εI^{+}, e εI, $V(c, e) \geq U(c, e+1)$.

Proof: It is sufficient to show that

$$
\left[v_{1}^{p}, \ldots, v_{c}^{p}, w_{1}, \ldots, w_{e+1}\right] \varepsilon v(c, e)
$$

where the integers c and e, $c \varepsilon I^{+}$, $e \varepsilon I$, have been chosen arbitrarily, as have the elements $v_{1}, \ldots, v_{c}, w_{1}, \ldots,{ }^{w} e+1 \varepsilon G$. Now from the definition of $V(c, e)$ it is immediate that

$$
\begin{aligned}
& {\left[w_{e+1}, v_{I}^{p}, v_{2}^{p}, \ldots, v_{c}^{p}, w_{I}, \ldots, w_{e}\right] \varepsilon V(c, e) } \\
\text { and } & {\left[w_{e+1}, v_{2}^{p}, v_{1}^{p}, \ldots, v_{c}^{p}, w_{I}, \ldots, w_{e}\right] \varepsilon v(c, e) }
\end{aligned}
$$

Hence

$$
\begin{aligned}
& {\left[w_{e+1}, v_{2}^{p}, v_{1}^{p}, \ldots, v_{c}^{p}, w_{1}, \ldots, w_{e}\right]} \\
& \quad \cdot\left[w_{e+1}, v_{1}^{p}, v_{2}^{p}, \ldots, v_{c}^{p}, w_{1}, \ldots, w_{e}\right]^{-1} \varepsilon v(c, e) .
\end{aligned}
$$

But by 1.6.1(3) and (5)

$$
\left[w_{e+1}, v_{2}^{p}, v_{1}^{p}\right]\left[w_{e+1}, v_{1}^{p}, v_{2}^{p}\right]^{-1}=\left[v_{1}^{p}, v_{2}^{p}, w_{e+1}\right]
$$

and the result follows. //
2.5.6 Lemma: For all $c, e \varepsilon I^{+}, V(c, e-1) \geq[M(c), e G]$.

Proof: Trivially, $V(c, e-1) \geq V(c, e)$, so from 2.5 .5 and $2 \cdot 4.2$ we have $V(c, e-1) \geq U(c, e) \cdot V(c, e)=[M(c), e G] . / /$

From 2.5 .4 and 2.5 .6 it follows that Lemma 2.2.11 is equivalent to the following:
2.5.7. Lemma: Let w be a nontrivial homogeneous special element of $G^{\text { }}$, with $\operatorname{comp}(w)=c$. Then there exists e ε I such that $\langle w \geqslant V(c, e) . \downarrow \downarrow$

The proof of $2 \cdot 5.7$ is preceded by a sequence of preliminary lemmas, and it is the proofs of these that Bryce's methods are employed. I should perhaps remark that my original proof of 2.5 .7 , obtained before Bryce ${ }^{\circ}$ s work was available, was very much more complicated, so much so in fact, that I am not entirely convinced that it was valid.
2.5.8 Lemma: For all $u, v \in G, w^{\prime} \varepsilon G^{\prime}$ and $I \varepsilon I^{+}$, $\left[\cdot(u v)^{i}\right]=\left[w, u^{i} v^{i}\right]$.

Proof: For some c $\varepsilon G^{\prime}(u \cdot v)^{i}=u^{i} v^{i} c$, so

$$
\left[w,(u v)^{i}\right]=\left[w, u^{i} v^{i} c\right]=\left[w, u^{i} v^{i}\right]^{c}[w, c]=\left[w, u^{i} v^{i}\right] . / /
$$

2.5.9 Lemma: (c.f. 4.2.5 in [2])

If $W \in \operatorname{id}\left(G^{\wedge}\right)$, and if for fixed elements $W_{I}, \ldots, W_{m} \varepsilon G{ }^{\wedge}$ and a.11 $v \in G \prod_{i=1}^{n}\left[W_{i}, v^{i}\right] \in W$, then for all

$$
v_{1}, \ldots, v_{m} \varepsilon G\left[w_{m}, v_{m}^{m}, v_{m-1}^{m-1}, \ldots, v_{1}\right] \varepsilon W .
$$

Proof: The proof is by induction on m. For $m=1$ there is nothing to prove, so assume the assertion is true for $m=k-I \varepsilon I^{+}$and now consider the case $m=k$.

Suppose, then, that for some $W_{I}, \ldots,{ }_{k} \in G{ }^{\prime}$
2.5.10...

$$
\prod_{i=1}^{k}\left[W_{i}, v^{i}\right] \varepsilon W^{W} \text { for all } v \varepsilon G .
$$

It follows immediately that for any $v_{k} \quad G \quad \prod_{i=1}^{k}\left[w_{i},\left(v_{k} v\right)^{i}\right] \varepsilon W$
for all $v \in G$, and hence, by 2.5.8, that

$$
\prod_{i=1}^{k}\left[w_{i}, v_{k}^{i}\right]\left[w_{i}, v^{i}\right]\left[w_{i}, v_{k}^{i}, v^{i}\right] \varepsilon W \text { for all } v \varepsilon G .
$$

Using 2.5.10 again, we conclude that

$$
\prod_{i=1}^{k}\left[w_{i}, v_{k}^{i}, v^{i}\right] \in W \text { for all } v \varepsilon G .
$$

Since W is normal in $G, 2.5 .10$ also implies that $\prod_{i=1}^{k}\left[W_{i}, V_{k}^{i}, v\right] \varepsilon W$ for all $v \varepsilon G(b y \operatorname{l.6} \cdot 1(2))$. Thus $2.5 .11 \ldots \quad \prod_{i=1}^{k}\left[w_{i}, v_{k}^{i}, v\right]^{-1}\left[w_{i}, v_{k}^{i}, v^{i}\right] \quad \varepsilon W$ for all $v \varepsilon G$.

Setting $w_{i}^{?}=\left[w_{i+1}, v_{m}^{i+l}\right]$ for $i=0, \ldots, k-l$, and using the identity $\left[w_{i}^{!}, v\right]^{-1}\left[w_{i}^{!}, v^{i+1}\right]=\left[w_{i}^{?}, v^{i}\right]^{v}$, we can rewrite 2.5.11 in the form is i

$$
\prod_{i=1}^{k-1}\left[w_{i}^{?}, v^{i}\right]^{v} \varepsilon W \text { for all } v \varepsilon G \text {. }
$$

Since W is normal it follows that

$$
\prod_{i=1}^{k-1}\left[w_{i}^{?}, v^{i}\right] \& W \text { for all } v \in G \text {. }
$$

By the inductive hypothesis this implies that

$$
\left[w_{k-1}^{q}, v_{k-1}^{k-1}, v_{k-2}^{k-2}, \ldots, v_{1}\right] \varepsilon W \text { for all } v_{k-1}, \ldots, v_{1} \in G .
$$

But $w_{k-1}^{q}=\left[w_{k}, v_{k}^{k}\right]$ and v_{k} was chosen arbitrarily, so the induction is complete. //
2.5.12 Definition: (c.f. 4.2.6 in [2]).

For each $W \varepsilon i d\left(G^{p}\right)$ and $q, e \varepsilon$ I the subset $W_{q, e}$ of G^{p} is defined by
$W_{q, e}=\left\{u \varepsilon G^{r} \mid\left[u, v_{1}^{p}, \ldots, v_{q}^{p}, W_{1}, \ldots, W_{e}\right] \in W\right.$ for all

$$
\left.v_{1}, \ldots, v_{q}, w_{1}, \ldots, w_{e} \varepsilon G\right\} .
$$

2.5.13 Lemma: If $W \varepsilon$ id($\left.G^{\circ}\right)$ and $q, q^{\circ}, e, e^{p} \varepsilon I$ then
(i) $\quad\left(W_{q, e}\right)_{q^{i}, e}=W_{q+q^{i}}, e+e^{p}$
(ii) $W_{q, e} \varepsilon i d\left(G^{q}\right)$

Proof: Since (i) is immediate from the definition we need only prove (ii). Now W_{q}, $e^{\text {is a subgroup by I. } 6 . I(2)}$ so it only remains to show that $\mathbb{W}_{q, e}$ is fully invariant.

Let $u \varepsilon W_{q, e}$ and let θ be an endomorphism of G, u and θ chosen arbitrarily. Now choose a set
$\left\{a_{1}, \ldots, a_{q}, b_{1}, \ldots, b_{e}\right\} \leq \underline{\underline{g}} \backslash E(u)$. Then for any
$v_{1}, \ldots, v_{q}, w_{1}, \ldots, w_{e} \varepsilon G$ there exists an endomorphism $\theta^{*} \circ f$ G such that $u \theta^{*}=u \theta, a_{i} \theta^{*}=v_{i} \quad i=I, \ldots, q^{\prime}$, and $b_{i} \theta^{*}=w_{i}$, $i=1, \ldots, e \cdot \operatorname{Since}\left[u, a_{1}^{p}, \ldots, a_{q}^{p}, b_{1}, \ldots, b_{e}\right] \varepsilon W$, and W is fully invariant, application of the endomorphism θ^{*} shows that $\left[u \theta, v_{1}^{p}, \ldots, v_{q}^{p}, W_{I}, \ldots . W_{e}\right] \varepsilon W$. Hence $u \theta \varepsilon W_{q, e}$ and the lemma is proved. //
2.5.14 Lemma: If $W \varepsilon G^{\circ} ; W \varepsilon$ id $\left(G^{9}\right) ; i \varepsilon I^{+}$; and if for all $v \in G\left[w, v^{i}\right] \varepsilon W$ then
(i) g.c.d(i, $\left.{ }^{3}\right)=I \Rightarrow[W, V] \varepsilon W$ for all $V \varepsilon G$
(ii) $g \cdot c \cdot d\left(i, p^{3}\right)=p \Rightarrow\left[W, v^{p}\right] \varepsilon W$ for all $v \varepsilon G$.

Proof: (i) There exist integers a and b such that $a i+b p^{3}=1$ and since G has exponent p^{3} it follows that

$$
[w, v]=\left[w, v^{a i+b p^{3}}\right]=\left[w,\left(v^{a}\right)^{i}\left(v^{b}\right)^{p^{3}}\right]=\left[w,\left(v^{e}\right)^{i}\right] \varepsilon w
$$

(ii) In this case we have $a^{\prime} i+b^{i} p=p$ for some integers a°, b° and the conclusion follows similarly. //

2.5.15 Lemma: (c.f. 5.3.1 in [2]).

m
Let $\prod_{i=1}\left[w_{i}, i a\right] \varepsilon W$, where $0<m=q p+r, 0 \leq q, r<p$, $W_{I}, \ldots, W_{m} \varepsilon G^{r}$, $a \varepsilon \underset{=}{g} \backslash E\left(W_{1}, \ldots, W_{m}\right)$, and $W \varepsilon \operatorname{id}\left(G^{9}\right)$. Then $\mathrm{w}_{\mathrm{m}} \varepsilon \mathrm{W}_{\mathrm{q}, \mathrm{m}-\mathrm{q}}$.

Proof: Using Lemma l.7.I we have

$$
\begin{aligned}
& \text { Proof: Using Lemma 1.7.1 we have } \\
& \prod_{i=1}^{m}\left[w_{i}, i a\right]=\prod_{i=1}^{m}\left[w_{i}^{!}, a^{i}\right] \text {, where } w_{i}^{q}=\prod_{j=1}^{m} w_{j}^{(-1)^{j-1}\binom{j}{i}, i=1, \ldots, m}
\end{aligned}
$$

Note that $W_{m}^{r}=W_{m}$. Now for any $v \in G$ there exists an endomorphism θ of G such that $w_{i}^{\theta}=w_{i}^{p}, i=1, \ldots, m$ and a $\theta=\mathrm{v}$, so it follows that

$$
\prod_{i=1}^{m}\left[w_{i}^{!}, v^{i}\right] \varepsilon W \text { for all } v \varepsilon G \text {. }
$$

Thus, by $2.5 .9,\left[\mathrm{w}_{\mathrm{m}}^{\mathrm{q}}, \mathrm{v}_{\mathrm{m}}^{\mathrm{m}}, \mathrm{v}_{\mathrm{m}-\mathrm{I}}^{\mathrm{m}}, \ldots, \mathrm{v}\right] \varepsilon \mathrm{W}$ and, since $\mathrm{w}_{\mathrm{m}}^{\prime}=\mathrm{w}_{\mathrm{m}}$, the conclusion follows by employing 2.5.14. //
2.5.16 Lemma: (c.f., again, 5.3.1 in [2]).

Let $w=\prod_{i=1}^{p^{2}-1}\left[w_{i}, i a\right]$, where ${ }^{w}{ }_{1}, \ldots, w_{p}{ }^{2}-1 \in G^{1}$ and a $\varepsilon \underset{=}{g} \backslash E\left(w_{1}, \ldots, w_{p}{ }^{2}-1\right)$. Then for each i $\varepsilon\left\{I, \ldots, p^{2}-I\right\}$ there exists $e_{i} \varepsilon$ I such that $w_{i} \varepsilon\langle w\rangle q_{i}, e_{i}$, where $q_{i}=[i / p]$.

Proof: If in the previous lemma we put $m=p^{2}-1=(p-1) p+(p-1)$ and $W=\langle w\rangle$, the case $i=p^{2}-1$ follows immediately (with $e_{p}{ }^{2}-1=(p-1) p$).

In particular this means that

$$
\left[w_{p}{ }^{2}-1,\left(p^{2}-1\right) a\right]=\left[w_{p^{2}-1},(p-1) a^{p},(p-I) a\right] \varepsilon\langle w\rangle_{O},(p-1)^{2}
$$

But trivially w $\varepsilon\langle w\rangle_{0,(p-1)^{2} \text {, and therefore }}$

$$
\prod_{i=1}^{p^{2}-2}\left[w_{i}, i a\right] \varepsilon\langle w\rangle_{0,(p-1)^{2}}
$$

If we now employ $2 \cdot 5.15$ again, but this time with $m=p^{2}-2$ and $W=\langle W\rangle_{O,(p-1)^{2}}$ (the latter is permissible by 2.5.13(ii)), we obtain the assertion of the lemma for the case $i=p^{2}-2$ 。

With another $p^{2}-3$ applications of this procedure, the lemma is proved. //
2.5.17 Lemma: (c.f. $5 \cdot 3.2$ in [2]). Let $s \varepsilon I^{+}$and let $\underline{D}=\left\{1, \ldots, p^{2}-1\right\}^{s}$, so that each $\underline{d} \varepsilon \underline{D}$ is an s-tuplet $\underline{a}=\left(\bar{a}_{1}, \ldots, a_{s}\right)$ with $I \leq d_{i} \leq p^{2}-1$ for $i=1, \ldots, s$.

Let $w=\underset{\underline{d} \varepsilon \underline{D}}{\prod_{\underline{d}}}\left[w_{\underline{d}}, d_{I} a_{1}, \ldots, a_{s} a_{s}\right]$ where $w_{\underline{d}} \varepsilon G^{\prime}$ for all
d. $\varepsilon \underline{D}$ and $\left\{a_{1}, \ldots, a_{s}\right\} \subseteq \underset{=}{g} \backslash E\left(w_{\underline{d}} \mid \underline{d} \varepsilon \underline{D}\right)$. Then for each $\underline{\alpha} \varepsilon \underline{D}$ there exists $e_{\underline{d}} \varepsilon I$ such that ${ }_{\underline{w}}{ }_{\underline{a}} \varepsilon\left\langle{ }^{(w)}{\underset{\underline{q}}{\underline{d}}}, e_{\underline{a}}\right.$, where $q_{\underline{d}}=\sum_{i=1}^{S}\left[d_{i} / p\right]$.

Proof: The proof is by induction on s. For $s=1$ the lemma reduces to $2 \cdot 5 \cdot 16$, and the inductive step is as follows:

For each $d_{S} \varepsilon\{1, \ldots, p-1\}$ set $\underline{d}_{d_{S}}=\left\{\left(a_{1}^{p}, \ldots, a_{s}^{\eta}\right) \varepsilon D \mid a_{S}^{\prime}=a_{S}\right\}$
and let
2.5.18...

$$
w_{a_{s}}=\prod_{\underline{d}^{-} \underline{D}_{d_{s}}}\left[w_{d}, a_{1} a_{1}, \ldots, a_{s-1} a_{s-1}\right]
$$

We then have $w=\frac{p^{2}-1}{d_{s}=1}\left[w_{d}, d_{s} a_{s}\right]$, and thus, by 2.5.16, for each $\alpha_{s} \varepsilon\left\{1, \ldots, p^{2}-1\right\}$ there exists $e_{d_{s}} \varepsilon$ I such that
2.5.19... ${ }^{w}{ }_{d_{s}} \varepsilon \quad\left\langle w{ }_{q_{d_{s}}}, e_{d_{s}}\right.$ where $q_{d_{s}}=\left[d_{s} / p\right]$

Further, from 2.5.18 and the inductive hypothesis we have that if $\underset{\alpha}{d} \underline{D}_{\alpha_{s}}$ then there exists $e_{d}^{\prime} \varepsilon$ I such that

$$
\underline{w}_{\underline{d}} \varepsilon\left\langle w_{d_{s}}\right\rangle_{q_{\underline{d}}^{\prime}, e_{\underline{d}}^{\prime}, \text { where } q_{\underline{d}}^{\prime}}=\sum_{i=1}^{s-1}\left[d_{i} / p\right] .
$$

Thus, using 2.5 .19 , we have for any $\underline{a}=\left(d_{1}, \ldots, d_{s}\right) \varepsilon \underline{D}$

$$
{ }^{w_{\underline{d}}} \varepsilon\left\langle w_{d_{s}}\right\rangle_{q_{\underline{d}}^{p}}, e_{\underline{d}}^{p} \leq\left(\left\langle w_{q_{d_{s}}}, e_{d_{s}}\right)_{q_{\underline{d}}^{\prime}}, e_{\underline{d}}^{\dot{d}}=\langle w\rangle_{\underline{q_{d}}}, e_{\underline{d}}\right.
$$

where ${\underset{\underline{d}}{\underline{d}}}=e_{d_{s}}+e_{\underline{d}}^{\underline{d}}$. This completes the proof. //

Proof of 2.5.7: Let w be a nontrivial homogeneous special element of G^{\wedge} with $\operatorname{comp}(w)=c$ and $\mathbb{E}(w)=\left\{g_{1}, g_{2}, a_{1}, \ldots, a_{s}\right\}$ and let we expressed in normal form by

$$
w=\prod_{i=1}^{t}\left[g_{2}, g_{1}, \delta_{i}\right]^{e} .
$$

Setting $\delta_{i}\left(a_{j}\right)=a_{i j}$ for all $i \varepsilon\{1, \ldots, t\}, j \varepsilon\{1, \ldots, s\}$, we can rewrite this expression in the form

$$
w=\prod_{i=1}^{t}\left[\left[g_{2}, g_{1}\right]^{e}{ }_{i}, a_{i l} a_{1}, \ldots, d_{i s} a_{s}\right]
$$

and thus, in the notation of $2.5 \cdot 17$

$$
w_{\underline{d} \varepsilon \underline{D}}^{\prod_{\underline{d}}}\left[w_{1}, a_{1}, \ldots, d_{s} a_{s}\right]
$$

where for $\underline{a}=\left(\alpha_{1}, \ldots, \bar{d}_{s}\right){ }_{\underline{a}}$ is defined by

$$
W_{\underline{a}}=\left\{\begin{array}{l}
{\left[g_{2}, s_{1}\right]^{e}{ }_{i} \text { if }_{i j}=\alpha_{j} \text { for } j=1, \ldots, s} \\
1 \text { otherwise }
\end{array}\right.
$$

The assumption that comp (w) = c implies that for some $i^{*} \varepsilon\{I, \ldots, t\}, c=I+\sum_{j=1}^{s}\left[a_{i}{ }_{j} / p\right]$, and hence that there exists $\underline{a}^{*} \varepsilon \underline{D}$ such that $\underline{W}_{\underline{d} *}^{j}=\left[g_{2}, g_{1}\right]^{i} i^{*}$ and, again in the notation of $2.5 .17, \underline{q}_{d^{*}}=c-1$. Thus we conclude from 2.5.17 that there exists e ε (namely $e=e_{d_{d}}$) such that $\left[g_{2}, g_{1}\right]^{e} i^{*} \varepsilon\langle w\rangle_{c-1}, e$. It follows that $\left[g_{2}, \varepsilon_{1}\right] \varepsilon\langle w\rangle_{c-1, e}$
 That is, for all $u_{1}, u_{2}, v_{2}, \ldots, v_{c}, w_{1}, \ldots, w_{e} \varepsilon_{G}$

$$
\left[u_{1}, u_{2}, v_{2}^{p}, \ldots, v_{c}^{p}, w_{1}, \ldots, w_{e}\right] \varepsilon\langle w\rangle,
$$

and this says precisely that $V(e, e) \leq\langle w\rangle . / /$
2.6 The Proof of 2.2 .24

The following simple observation will be required:
2.6.1 Lemma: Let R be a reduced free group of rank 40 and let r be a member of some free generating set for R. Then for any integer e, $r^{c} \varepsilon R^{\prime}$ only if $r^{c}=I$.

Proof: Let $\underset{=}{r}=\left\{r_{i} \mid i \varepsilon I^{+}\right\}$be a free generating set for R chosen in such a way that $r_{I}=r$. Now if $r^{e} \in R^{\prime}$ for some e εI^{+}then, denoting $g p\left(r_{1}\right)$ by R_{I}, we have $r^{e} \varepsilon A(R) \sim R_{1}$. But by HiNl3.42 $A(R) \cap R_{1}=A\left(R_{1}\right)$, and since R_{I} is abelian the conclusion follows. //

The proof of 2.2 .24 depends on the characterisation of $G^{P^{2}} \cap G^{\prime}$ given by Lemma 2.6 .2 below. The idea for the proof of this lemma was suggested to me by L.G. Kovács.
2.6.2 Lemma: $G^{p^{2}} \cap G^{2}=\left\langle g_{2}^{-p^{2}} g_{1}^{-p^{2}}\left(g_{1} g_{2}\right)^{p^{2}}\right\rangle$.

Proof: Set $V=\left\langle g_{2}^{-p^{2}} g_{1}^{-p^{2}}\left(g_{1} g_{2}\right)^{p^{2}}\right\rangle$. Since $\left(g_{1} g_{2}\right) p^{2}=g_{1}^{p^{2}} g_{2}^{p^{2}} c$ for some $c \varepsilon G^{\wedge}$, it is clear that $V \leq G^{P^{2}} \cap G^{P}$. Hence, if we write $H=G / V$ and $H^{p^{2}}=B_{p^{2}}(H)$, then we shall have completed the proof when we have shown that $H^{p^{2}} \cap H^{8}=\{工\}$ 。

So let $w \in H^{p^{2}}$; say $w=a_{1}^{p^{2}} a_{2}^{p^{2}} \ldots a_{s}^{p^{2}}$ for some $a_{1}, \ldots, a_{S} \varepsilon H$. Now from the definition of H it follows that for all $a, b \in H(a b)^{p^{2}}=a^{p^{2}} b^{p^{2}}=b^{p^{2}} a^{p^{2}}$. (The second equality holds because $\left[x^{p^{2}}, y^{p^{2}}\right]$ is a 1 aw in $\left.G\right)$. Thus, writing $a_{i}=h_{i l}^{e_{i l}} \ldots{ }^{e_{i \ell}(i)}$ for each i $\varepsilon\{1, \ldots, s\}$ Where for all $i, j \quad e_{i j}= \pm l$ and $h_{i j}$ is a member of some (fixed) free generating set $\xlongequal[=]{\text { h }}$, we have

$$
\begin{aligned}
& \left.W=\left(h_{l l}^{e_{l l}} \ldots h_{l l(l)}^{e}\right)^{e_{l l(l)}}\right)^{p^{2}} \ldots\left(h_{s l}^{e_{s l}} \ldots h_{s l(s)}^{e_{s l(s)}}\right)^{p^{2}} \\
& =h_{l l}^{e_{11}} p^{p^{2}} \ldots h_{s \ell(s)}^{e}{ }_{s l(s)}^{p^{2}} \\
& =h_{i_{1}}^{\alpha_{1} p^{2}} \ldots h_{i_{k}}^{\alpha_{k} p^{2}} \text { say }
\end{aligned}
$$

where $h_{i_{1}}, \ldots, h_{i_{k}}$ are pair-wise distinct members of $\xlongequal[=]{h}$ and $\alpha_{1}, \ldots, \alpha_{k}$ are integers.

Now assume additionally that $w \in H^{9}$. Then if for $j \varepsilon\{1, \ldots, k\}$ the endomorphisms $\sigma_{j}: H \rightarrow H$ are defined by $h_{i}{ }_{j}{ }_{j}=h_{i j}, h_{i} \sigma_{j}=1$ for $i \neq i_{j}$, it follows that $h_{j}^{\alpha}{ }_{j} p^{2}=w \sigma_{j} \varepsilon H^{\prime}$ for each $j \varepsilon\{I, \ldots, k\}$. Hence, from 2.6.I, $h_{i_{1}}^{\alpha} p^{p^{2}}=h_{i_{2}}^{\alpha} p^{p^{2}}=\ldots=h_{i_{k}}^{\alpha_{k} p^{2}}=1$, and thus $w=1$. This completes the proof. //

Proof of 2.2.24: In view of 2.6 .2 it is sufficient to show that $g_{2}^{-p^{2}} g_{1}^{-p^{2}}\left(g_{1} g_{2}\right)^{p^{2}} \varepsilon M_{(p)}$, or equivalently that $\left(g_{1} g_{2}\right)^{p^{2}} \equiv g_{1}^{p^{2}} g_{2}^{p^{2}}(\bmod M(p))$. To do this, first write $\left(g_{1} g_{2}\right)^{p}=g_{1}^{p} g_{2}^{p} \alpha$, where $a \varepsilon G^{q}$, and note that $g_{1}^{p}, g_{2}^{p}, a \varepsilon M$. Now $M / M(p)$ is a p-group of class less than p and as such is regular. Thus
$\left(g_{1} g_{2}\right)^{p^{2}}=\left(\left(g_{1} g_{2}\right)^{p}\right)^{p}=\left(g_{1}^{p} g_{2}^{p}\right)^{p} \equiv\left(g_{1}^{p}\right)^{p}\left(g_{2}^{p}\right)^{p} d^{p}\left(\bmod { }^{m}(p)\right)$
and the result follows since $d^{P}=1$. (G^{\prime} has exponent p). //
2.7 Proof of 2.2 .13
me by L.G. Kovács.

Let $c, e \varepsilon I^{+}, c \geq 2, c$ and e otherwise arbitrary but fixed throughout. A wreath product of finite p-groups, denoted by G^{*}, is defined $b y G^{*}=\operatorname{Rwr}(S \times T)$, where

$$
\begin{aligned}
& R=g p\left(r \mid r^{p}=1\right) \\
& S=S_{I} \times \ldots \times S_{c-2} ; S_{i}=g p\left(s_{i} \mid s_{i}^{p^{2}}=1\right), i \varepsilon\{1, \ldots, c-2\} \\
& T=T_{0} \times \ldots \times T_{e} ; T_{j}=g p\left(t_{j} \mid t_{j}^{p}=1\right), j \varepsilon\{0, \ldots, e\},
\end{aligned}
$$

and of course $S=\{1\}$ if $c=$ 2. The base group of G^{*} will be denoted by K, and is to be considered as consisting of all functions from $S \times T$ into R, with multiplication defined component-wise. Additionally, for each i $\varepsilon\{1, \ldots, c-2\}, j \in\{0, \ldots, c\}$, notation will be abused to the extent of considering S_{i} and T_{j} (and so also S and T) ass subgroups of G^{*} via the standard embedding.

If we now define $M^{*}=A_{p}\left(G^{*}\right)$, then it is clear that since $G^{*} \varepsilon \underset{=}{A} A_{p}{ }^{2}$ it is sufficient for the proof of 2.2 .13 to show:
2.7.1 Lemma: $M^{*}(c) \neq\left[M^{*}(c-1), e G^{*}\right] \cdot \downarrow \downarrow$

To prove 2.7.1 two facts about G^{*} will be required.

These are 2.7 .2 and 2.7 .3 below, both of which follow from results of H. Liebeck [6].

$$
2.7 .2 \text { Lemma: } M^{*}((c-2)(p-1)+2)=\{1\} .
$$

Proof: Clearly $M^{*} \leq K \cdot S^{P}=\bar{M}^{*}$ say. Now from the proof of HN22.I4 it follows that $\bar{M}^{*} \cong R^{T}$ mr S^{p} where R^{T} denotes the direct product of $|T|$ copies of R. Thus, from [6] Theorem 5.1, \bar{M}^{*} has nilpotency class $(c-2)(p-1)+1$ and the conclusion follows. //
2.7.3 Lemma: Let $k \in K$ be defined $b y k(I)=r$ and $K(v)=1$ for all $v \in(S \times J)\{I\}$. Then

$$
\left[k, t_{0},(p-1) s \frac{p}{1}, \ldots,(p-1) s_{c-2}^{p}, t_{1}, \ldots, t_{e}\right] \neq 1
$$

Proof: It follows from part (a) of the proof of Theorem 5.1 in [6] that

$$
\left[k_{,}\left(p^{2}-1\right)_{s}, \ldots,\left(p^{2}-1\right) s_{c-2},(p-1) t_{0}, \ldots,(p-1) t_{e}\right] \neq 1
$$

and hence, a fortiori, that

$$
\left[k,(p-1) p s_{1}, \ldots,(p-1) p s_{c-2}, t_{0}, \ldots, t_{e}\right] \neq 1
$$

By using 2.3.1(i) this is equivalent to

$$
\left[k,(p-1) s \frac{p}{1}, \ldots,(p-1) s_{c-2}^{p}, t_{0}, t_{1}, \ldots, t_{e}\right] \neq 1
$$

and the conclusion follows since by [6] Corollary 5.7 an alteration of the order of entries occurring after k leaves the commutator-element unchanged. //

Proof of 2.7.1: With k defined as in 2.7.3 let $w=\left[k, t_{0}, s_{1}^{p}, \ldots, s_{c-2}^{p}, t_{I}, \ldots, t_{e}\right]$. Since clearly $W \in\left[\mathbb{M}^{*}(c-1), e G^{*}\right], 2 \cdot 7.1$ will be proved when it is shown that $w \notin M^{*}(c) \cdot$ If we suppose to the contrary that $w \in M^{*}(c)$, then it follows that

$$
\left[w,(p-2) s_{1}^{p}, \ldots,(p-2) s_{c-2}^{p}\right] \varepsilon M^{*}(c+(c-2)(p-2))
$$

ie. that

$$
\left[k, t_{0},(p-1) s_{1}^{p}, \ldots,(p-1) s_{c-2}^{p}, t_{1}, \ldots, t_{e}\right] \varepsilon M^{*}\left((c-2)\left(p-\frac{1}{4}\right)+2\right)
$$

But from 2.7.2 and 2.7.3 this is impossible. //

2. 8 Two Consequences of the Main Theorem

Neither of the two theorems about $\operatorname{lat}(\underset{=}{A} \underset{=}{A} 2)$ proved in this section are original, but are included here as byproducts of Theorem 2.1.2.

Firstly:
2.8.1 Theorem: $\operatorname{lat}\left({\underset{N}{A}}_{=}^{A} p^{2}\right)$ has minimum condition.

As already remarked, this is a special case of D.E. Cohen's result [3] that lat($\underset{=}{A}=$) has minimum condition. However, the proof of 2.8.1 given below is quite independent of Cohen and is of interest for two reasons:
(1) It makes no use of any kind of representation theory (in contrast to Cohen's proof).
(2) It is a measure of the strength of Theorem 2.I.2.

The proof of 2.8.l uses the following consideration: A lattice Λ is called join-continuous if for every
 It is readily checked that lat (V) is join-continuous for every variety $\underset{\underline{V}}{\underline{V}}$, so that the following unpublished theorem of L.G. Kovács is relevant:
2.8.2 Theorem: Let Λ be a complete modular and joincontinuous lattice. Then Λ has minimum condition if
(i) every element of Λ is the join of finitely many join-irreducible elements
and (ii) the set of join-irreducible elements of Λ has minimum condition (with respect to the partial order it inherits from Λ). //

The converse of 2.8 .2 is also true; the second part of that is trivial and, as is well-known, the first part follows by very elementary considerations.

Proof of 2.8.1: It will be shown that $2.8 .2(i)$ and (ii) are satisfied when $\Lambda=\operatorname{lat}\left(\hat{A}_{\mathrm{p}} \hat{A}_{\mathrm{p}}{ }^{2}\right)$.
(i) Let $\stackrel{V}{\underline{V}} \in \operatorname{lat}\left(\hat{\underline{A}}_{\mathrm{p}} A_{p^{2}}\right)$ be a minimal counter-example. Then by 2.I.2 V is nilpotent, which is impossible since by Lyndon [7] lat($\underset{\underline{I}}{\text {) has minimum condition }}$ for every nilpotent variety $\underline{\equiv}^{\text {. }}$
(ii) Suppose there exists a properly descending infinite chain of join-irreducille subvarieties $\underline{\underline{V}}_{\underline{1}}=\underline{\underline{V}}_{2}=\ldots$ From the classification of non-nilpotent joinirreducible subvarieties given by 2.1 .2 it is immediate that every properly descending chain of non-nilpotent join-irreducibles breaks off, so that $\stackrel{V}{V}_{k}$ is nilpotent for some $k \in I^{+}$. But this is impossible since lat $\left(\underline{\underline{V}}_{k}\right)$ has minimum condition (again by Lyndon). //

The other consequence of 2.1.2 to be noted here is the following, which is a special case of a result of L.G. Kovacs and M.F. Newman (unpublished).
2.8.3 Theorem: A subvariety of $A \underset{=}{A} A{ }^{A} p^{2}$ is non-nilpotent if, and only if, it contains $A \underset{=p=p}{A} \cdot \psi \psi$
2.8.4 Corollary: Every proper subvariety of $A \underset{=}{A} A$ is nilpotent. //

From 2.1.2 the variety $\underset{=}{I}$ is non-nilpotent and contained in all non-nilpotent subvarieties of $A A_{n} A^{2}$. Thus for the proof of 2.8 .3 we need only show:

$$
\text { 2.8.5 Lemma: } \quad I_{I}=A_{p}=
$$

Proof: By definition $I_{1}=\underset{=A A}{=} \wedge{ }_{=}^{A} p A_{=} p^{2} \wedge{ }_{=}^{B} p^{2}$, so it is immediate that $I_{=1} A_{=}^{A} \stackrel{A}{=}$. For the reverse inclusion use 1.6.3 to show that $A\left(A_{p}\right) \cdot A_{p}\left(A_{p^{2}}\right) \cdot B_{p} \geq A_{p}\left(A_{p}\right) \cdot 1 /$

2.9 An Alternative Description of the Varieties $I_{\alpha} \alpha$

2.9.1 Definition: For each $\alpha \in I^{+}$define a variety \bar{I}_{α} as follows:

$$
\overline{\bar{I}_{=}^{=} \alpha}= \begin{cases}\stackrel{\mathbb{N}}{=} \alpha \wedge \stackrel{A}{=} p \wedge \stackrel{A}{=} \wedge p & \alpha \in\{1, \ldots, p-I\} \\ \stackrel{I N}{=} \alpha \wedge \stackrel{A}{=} \frac{A}{=} p & \alpha \geq p\end{cases}
$$

2.9.2 Theorem: For $0.11 \alpha \varepsilon \mathrm{I}^{+}$
$I_{\alpha}=\bar{I}_{\alpha} A=p \quad A \stackrel{A}{=} A_{p}^{A} p^{2} \quad \psi \psi$

One lemma is required:
2.9.3. Lemma: For each c $\varepsilon\{2, \ldots, p\}$
$M_{(c)} \cdot M^{P}=M_{(c)} \cdot G^{P^{2}}$.

Proof: Since $M \geq G^{\text {P }}$ it is immediate that $M_{(c)} \cdot M^{P} \geq M_{(c)} \cdot G^{P^{2}}$. For the reverse inclusion it is clearly sufficient to show that $M^{p} \leq M(p) \cdot G^{p^{2}}$. Now an arbitrary element of M can be written in the form $W_{1}^{p}{ }_{2}^{p} \ldots W_{S}^{P} c$ with $W_{1}, \ldots, W_{S} \varepsilon G$ and $c \varepsilon G^{9}$. Hence an arbitrary element $W \in M^{p}$ can be written

where the intended meaning of the notation is clear. As in the proof of 2.2 .24 (section 2.6) we now use the facts that $M / M(p)$ is regular and G^{p} has exponent p to deduce that

$$
w=w \frac{p^{2}}{11} \cdots w^{p^{2}} t_{s}(t) \quad(\bmod M(p))
$$

But this shows that $W \in M_{(p)} \cdot G^{P^{2}}$ and hence that $M^{P} \leq M(p) G^{p^{2}}$ as required. //

Proof of 2.9.2: The case $\alpha \geq p$ is immediate, for then

$$
\begin{aligned}
& =\mathbb{N}_{\alpha} A A_{p} A A_{p}^{A}=\frac{A}{=} \wedge A_{p}=_{p} \text { (by HN21.23) } \\
& =\frac{N}{=} \alpha \hat{=} \mathrm{p} \stackrel{\mathrm{~A}}{=} \stackrel{\mathrm{p}}{=}{ }^{2} \\
& =\underline{\underline{C}}_{\alpha}=I_{\alpha}
\end{aligned}
$$

Now let $\alpha \in\{1, \ldots, p-1\}$. Then it follows from 2.9.3 that
 and hence that

$$
\stackrel{C}{=} \alpha \wedge \stackrel{B}{=} A_{=p}^{=}=\stackrel{C}{=} \alpha \wedge \stackrel{B}{=} p^{2}=\frac{I}{=} \alpha
$$

Thus

$$
\begin{aligned}
& =\stackrel{C}{=} \alpha \wedge \stackrel{B}{=} \stackrel{A}{=}=\frac{I}{=} \alpha \cdot \quad / /
\end{aligned}
$$

On page 108 the description of $\operatorname{lat}\left(\underset{=\sim}{A} A_{p}\right)$ obtained by M. R. Newman (oral communication) is reproduced, and from this it is immediate that $\underset{=}{\bar{I}_{\alpha}}$ is join-irreducible for every $\alpha \varepsilon I^{+}$. It is this fact that makes Theorem 2.9.2 interesting, for one
wonders whether a similar situation occurs in general for varieties $A_{=p}^{A} \beta, \beta \in I$. I suspect that this is true, and express the conjecture formally by means of the following definition:
2.9.4 Definition: For all $\beta \in$ I let the mapping $\lambda_{\beta}: \operatorname{Iat}\left(A_{p} A_{p} B\right) \rightarrow \operatorname{lat}\left(A_{p} A_{p} \beta+I\right)$ be defined by $\underline{\underline{U}} \lambda_{\beta}=\underline{\underline{U}} A_{p} \wedge A_{p} \hat{A}_{p} \beta+1$ for all $\underline{=} \varepsilon \operatorname{lat}\left(A_{p} A_{p} \beta\right)$.
2.9.5 Conjecture: For all $\beta \in I$, every non-nilpotent join irreducible subvariety of $A_{p} \wedge_{p} \beta+1$ is the image under λ_{β} of some join-irreducible (but possibly nilpotent) subvariety of $A p \equiv p$.

From 2 . 8. . 4 it is immediate that the conjecture is true for $\beta=0$, and from 2.1.2, 2.9.2 and the remarks proceeding 2.9.4 it follows that the conjecture is also true for $\beta=1$. Further supporting evidence is provided by R.A. Bryce's study in [2] of "bivarieties" $\bigwedge_{p} \alpha \circ \triangleq_{\mathrm{p}} \beta$, but it must be admitted that this evidence is very indirect.

Finally, note that not every join-irreducible subvariety of $A_{p} A_{p} \beta$ leads via λ_{β} to a join-irreducible of $A_{=p} A_{p} \beta$. For example, the subvariety $A_{=}^{2}$ of $A_{=p}^{A} A$ is join-

$$
\begin{aligned}
& T O A_{p} A_{p}=\bigcup_{c \varepsilon I}+\underline{N}_{c}
\end{aligned}
$$

> (i) It is to be understood that all marked varieties are
> intersected with $A_{p} A_{p}$
> (ii) For each $\lambda \in I^{+}$the variety

REMARKS ON NON-DISTRIBUTIVITY

This last chapter consists essentially of negative results, and for that reasori, has been kept brief.

Section 3.1 is taken up with a demonstration of nondistributivity in $\operatorname{lat}\left({\underset{N}{A}}_{=9}{ }_{9}\right)$ and in 3.2 the same example is used to fulfil a promise made in Remark 2.l. 3 of Chapter 2. Finally in 3.3 a few further remarks of a more general nature are made.
3.1 An Example of Non-Distributivity in lat ($\hat{A}_{3}{ }_{=} 9$)

In this and in the next section we shall use without further comment much of the notation and terminology of Chapter 2, with the proviso that $p=3$ throughout. Thus in particular, we write $G=F_{\infty}(\underset{=3}{A} \underset{=9}{A}) ; \underset{\underline{E}}{\underline{g}}=\left\{g_{i} \mid i \varepsilon I^{+}\right\}$a free generating set of $G ; \underline{\underline{g}}_{2}=\left\{g_{1}, g_{2}\right\}$; and $G_{2}=g p\left(g_{2}\right)$. In addition, for any relatively free group H denote by lat (H) the lattice of verbal subgroups of H. The first objective is to prove the existence of a lattice epimorphism from $\operatorname{lat}(G)$ to $\operatorname{lat}\left(G_{2}\right)$:

Let $\xi_{1}: G \rightarrow G_{2}$ be the natural projection endomorphism. If $W \in \operatorname{lat}(G)$ then $W=V(G)$ for some closed set of words V, and hence by HNl2.31.
3.1.1... $\quad W \xi_{I}=V(G) \xi_{I}=V\left(G \xi_{1}\right)=V\left(G_{2}\right) \varepsilon \operatorname{lat}\left(G_{2}\right)$

Thus ξ_{1} induces an onto mapping $\Xi_{1}: \operatorname{lat}(G) \rightarrow \operatorname{lat}\left(G_{2}\right)$ defined by
3.1.2...

$$
W E_{I}=W \xi_{1} \text { for all } W \varepsilon \operatorname{lat}(G) .
$$

From HNl3.42 $V\left(G_{2}\right)=V(G) \cap G_{2}$ for any closed set of words V so that from 3.1.1 and 3.1 .2 we have

$$
\text { 3.1.3... } W E_{1}=W \curvearrowleft G_{2} \text { for all } W \varepsilon \operatorname{lat}(G) \text {. }
$$

From 3.1.2 it is clear that Ξ_{1} is a join-homomorphism while from 3.1.3 it is equally clear that Ξ_{1} is a meethomomorphism, so that Ξ_{I} is, in fact, a lattice epimorphism. Now set $G^{*}=G_{2} /\left(G_{2}\right)(12)$ and let $\xi_{2}: G_{2} \rightarrow G^{*}$ be the natural epimorphism. If $\Xi_{2}: \operatorname{lat}\left(G_{2}\right) \rightarrow \operatorname{lat}\left(G^{*}\right)$ is now defined by analogy with 3.1 .2 then by HNI $3.32 \bar{E}_{2}$ is also a lattice epimorphism. Thus $\Xi=\Xi_{1} \Xi_{2}: \operatorname{lat}(G) \rightarrow \operatorname{lat}\left(G^{*}\right)$ is a lattice epimorphism and it follows that the non-distributivity of lat (G), and hence of lat $\left(\hat{S}_{3} \hat{S}_{9}\right)$, will be established by demonstrating non-distributivity in lat(G^{*}).

The example we shall provide occurs among the subgroups of $G^{*}(11)$ which, of course, is the least nontrivial term of the lower central series of G^{*}. We need the following description of $\mathrm{G}_{(11)}^{(1)}$

$$
\text { Let } g_{1} \xi_{2}=\xi_{1}^{*} \text { and } g_{2} \xi_{2}=g_{2}^{*} \text {, so that } \underset{=}{g^{*}}=\left\{g_{1}^{*}, E_{2}^{*}\right\} \text { is a }
$$ free generating set for G^{*}. If now for each i $\varepsilon\{2, \ldots, 9\}$ we set ${ }_{i}=\left[g_{2}^{*}, i \varepsilon_{1}^{*},(10-i) g_{2}^{*}\right]$ then, we claim, $G_{(11)}^{*}$ is an elementary 3 -group with basis $\left\{\mathrm{w}_{2}, \ldots, \mathrm{w}_{9}\right\}$. The first part is immediate, for G is free abelian of exponent 3. For the second part note that

$$
G_{(1 I)}^{*}=\left(G_{2}\right){(I I)^{\prime}}^{\xi_{2}}=\left(G_{(I I)} \cap G_{2}\right) \xi_{2}
$$

and that it follows from Lemma 2.2.12 that ${ }^{G}(11)^{n} G_{2}$ has a basis consisting of the values of all basic pseudocommutators in G with set of entries $\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}\right\}$ and weight not less than ll. Of these ξ_{2} kills all those, and only those, of weight not less than 12 (again by 2.2 .12) and what remains is precisely the set $\left\{_{w_{2}}, \ldots, w_{9}\right\}$. Thus w_{2}, \ldots, w_{9} generate $G_{(11)}^{*}$ and it is easy to see that any dependence among them would involve dependence among the basis for $G_{(11)} \wedge_{2}^{G}$.

The next task is to obtain a usable criterion by which to determine whether any given subgroup of $G_{(11)}^{*}$ is fully invariant in G^{*} :

Let α, β, γ be the automorphisms of G^{*} given by

$$
\begin{array}{lll}
g_{1}^{*} \alpha=g_{1}^{*} g_{2}^{*} & g_{1}^{*} \beta=g_{2}^{*} & g_{1}^{*} \gamma=g_{1}^{*-1} \\
g_{2}^{*} \alpha=g_{2}^{*} & g_{2}^{*} \beta=g_{1}^{*} & g_{2}^{*} \gamma=g_{2}^{*}
\end{array}
$$

Let $M^{*}=A_{p}\left(G^{*}\right)$ and for any endomorphism η of G^{*} denote by n / M^{*} the endomorphism of G^{*} / M^{*} induced by η. We claim that $\left\{\alpha / M^{*}, \beta / M^{*}, \gamma / M^{*}\right\}$ forms a generating set for the automorphism group of G^{*} / M^{*}. To see this, note that G^{*} / M^{*} is just a two-dimensional vector space over GF(3) so that with a suitable interpretation we can write

$$
\alpha / M^{*}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad B / M^{*}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \gamma / M^{*}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

and it is readily checked that these three matrices generate $G L(2,3) \cong \operatorname{Aut}\left(\mathrm{G}^{*} / \mathrm{M}^{*}\right)$. To make use of this information we need the following two results which can be proved easily from the facts that $G(12)=1$ and $G_{(11)}^{*}$ has exponent 3 .
(i) If η_{1}, η_{2} are endomorphisms of G^{*} such that

$$
\eta_{I} / M^{*}=\eta_{2} / M^{*} \text { then } \eta_{I} G_{(I I)}^{*}=\eta_{2} G_{(I I)}^{*}
$$

(ii) If η is an endomorphism of G^{*} such that

$$
\operatorname{ker}\left(n / M^{*}\right) \neq\{I\} \text { then } \operatorname{ker}\left(\eta \mid G_{(11)}^{*}\right)=G_{(I I)}^{*} .
$$

Now suppose that S is a subgroup of $G_{(11)}^{*}$ that admits the automorphisms α, β, γ, and let η be an arbitrary
endomorphism of G^{*}. Either $\operatorname{ker}\left(\left.\eta\right|_{\left.G_{(I I)}^{*}\right)}\right)=G_{(I I)}^{*}$ in which case $G_{(11)}^{*}$ certainly admits η, or, by (ii), $n / M^{*} \varepsilon \operatorname{Aut}\left(G^{*} / M^{*}\right)$. In the latter case we have $\eta / M^{*}=\nu / M^{*}$ for some $v \in \operatorname{gp}(\alpha, \beta, \gamma)$ and since S admits v it follows from (i) that S admits η. We have thus shown that a subgroup S of $G^{*}(I I)$ is fully invariant in G^{*} if (and trivially only if) it admits α, β, γ. The action of these automorphisms on $w_{2}, \ldots,{ }_{9}$ is easily calculated and has been tabulated on page ll 4. From these tables it is a purely routine matter to verify that the subgroups

$$
\begin{aligned}
& D_{1}=g p\left(W_{2},{ }_{3} 3^{W_{5}}{ }^{W_{7}},{ }_{4}{ }_{4} 6^{W_{8}}, W_{9}\right) \\
& D_{2}=g p\left(W_{2} W_{4}, W_{3} W_{5} W_{7}, W_{4} W_{6} 6^{W}, W_{7} W_{9}\right) \\
& U=g p\left(W_{4}, W_{7}\right)
\end{aligned}
$$

each admit α, β, γ and hence are fully invariant in G^{*}, but that $3.1 .4 \ldots$

$$
\{I\}=\left(U \cap D_{1}\right) \cdot\left(U \cap D_{2}\right) \neq U \wedge D_{1} \cdot D_{2}=U
$$

which gives the required non-distributivity. A diagram of the full sublattice of lat($\left.G^{*}\right)$ contained in $G_{(I I)}^{*}$ is given by Fig. 3 .

+ N.B. For display purposes only the elements in these products are not all juxtaposed.

FIG. 3. A SUBLATTICE OF lat (G*)

3.2 A Non-Unigeness Result

Continuing with the example in the last section we show next that $U=M_{(4)}^{*}$. Since $M_{(4)}^{*}=\left(M_{(4)}{ }^{n} G_{2}\right) \xi_{2}$, we will do this by showing that the image under ξ_{2} of $M_{(4)} \cap G_{2}$ is generated by W_{4} and ${ }_{7}$.

Note from 2.3.1(i) and 2.4.2 (with $e=0$ in the latter)
 expressed in normal form by $w=b_{I}{ }^{e} I b_{t}{ }^{e} t$ then $w t\left(b_{i} \phi^{-1}\right)=w t\left(b_{i}\right) \geq 11$ for each $i \varepsilon\{1, \ldots, t\}$. However, as we are only interested in the image of w under ξ_{2} we may assume that $w t\left(b_{i}\right)=l l$ for each i. Using the notation of 2.4.16 we now claim further that mic $\left(b_{i}\right) \geq 4$ for each i. The justification for this is as follows: Because w ε_{2} the elements $b_{I}{ }^{e}, \ldots, b_{t} e_{t}$ are the elementary parts of w and thus by $2.4 .33 \operatorname{mic}(w)=\min \left(\operatorname{mic}\left(b_{i}\right) \mid i \varepsilon\{1, \ldots, t\}\right)$, since clearly $\operatorname{mic}\left(b_{i}\right)=\operatorname{mic}\left(b_{i}\right)$. From this the claim follows, for since $w \in M_{(4)}$ we have by 2.2 .17 that $\operatorname{mic}(w) \geq 4$. To complete the argument note that the only elements $\mathrm{b}_{\mathrm{i}} \varepsilon \tilde{B} \phi \cap \mathrm{G}_{2}$ which have weight ll are the elements $\left[g_{2}, j g_{1},(10-j) g_{2}\right]=\bar{w}_{j}$ say, where $j=2, \ldots, 9$, and of these it can be checked by using the methods of 2.4 that $\operatorname{mic}\left(\bar{w}_{4}\right)=\operatorname{mic}\left(\bar{w}_{7}\right)=4$, and that $\operatorname{mic}\left(\bar{w}_{j}\right)=3$ for $4 \neq j \neq 7$. Since $\overline{\mathrm{W}}_{j} \xi_{2}=\mathrm{w}_{j}$, we are home.

Now define $\bar{D}_{1}, \bar{D}_{2} \varepsilon \operatorname{lat}(G)$ by

$$
\begin{aligned}
& \bar{D}_{1}=\left\langle\left\{\bar{W}_{2}, \bar{W}_{3} \bar{W}_{7}, \bar{W}_{4}, \bar{W}_{6^{W}}, \bar{W}_{9}\right\} \bar{W}_{(12)}^{\bar{W}_{2}}\right. \\
& \left.\bar{D}_{2}=\left\langle\left\{\bar{W}_{2} \bar{W}_{4}, \bar{W}_{3} \bar{W}_{5} \bar{W}_{7}, \bar{W}_{4} \bar{W}_{7}, \bar{W}_{7}, \bar{W}_{9}\right\}\right\rangle \cdot \bar{W}_{(12)}\right)
\end{aligned}
$$

Then, clearly, $\bar{D}_{1} \Xi=D_{1}$ and $\bar{D}_{2} \Xi=D_{2}$. As we also have $M_{(4)} \Xi=M_{(4)}^{*}=U$, it follows from 3.1.4 (and the fact that E is a lattice homomorphism) that

$$
\left(M_{(4)} \cap \bar{D}_{1}\right) \cdot\left(M_{(4)} M \bar{D}_{2}\right) \neq M(4) \cap \bar{D}_{1} \cdot \bar{D}_{2}
$$

In terms of varieties this means

$$
3 \cdot 2 \cdot 1 \ldots\left(I_{=3} \vee I_{=1}\right) \wedge\left(I_{=3}{\underset{=2}{L}) \neq I_{=3} \vee\left(I_{1}^{L} \wedge I_{=2}\right)}^{I_{1}}\right.
$$

where $I_{=1}$ and ${\underset{=}{=}}_{2}$ are nilpotent. If now $I_{=1}^{P}, L_{=2}^{\prime}$ and $\underset{=}{V}$ are defined by
then, by using 3.2.1 and modularity, we have

$$
\text { (i) } \quad \stackrel{V}{=}=\frac{I}{=} \vee \stackrel{I}{=}=1
$$

$$
\text { (ii) } \quad \stackrel{V}{=}=I_{=3} \vee \mathrm{~L}_{=}^{\prime}
$$

$$
\text { (iii) } \left.\quad \stackrel{V}{=} \neq 3 \vee \stackrel{\left(I_{=}^{\prime} \wedge I_{=}^{I}\right.}{=}{ }_{2}^{\prime}\right)
$$

$$
\begin{aligned}
& \mathrm{L}_{=1}{ }_{I} \mathrm{I}_{=1} \wedge\left(\mathrm{I}_{=3} \vee \mathrm{I}_{=2}\right) \\
& \mathrm{L}_{=2}^{\prime}=\mathrm{I}_{=2} \wedge\left({\underset{=}{I}}_{I_{3}} \vee{\left.\underset{=1}{I_{2}}\right)}^{\prime}\right.
\end{aligned}
$$

This is just the situation we need to answer the question posed in 2.1.3, for if there existed a unique minimal (nilpotent) variety $\xlongequal[\cong]{\text { L satisfying }} \underset{\underline{V}}{=} I_{3} \vee \xlongequal{\underline{L}}$ then from (i) and
 that is impossible, for we would then have

$$
\underline{\underline{V}}=I_{3} \vee I_{1}^{\prime} \supseteq I_{3} \vee\left(I_{1}^{\prime} \wedge \underline{\#}_{2}^{\prime}\right) \supseteq I_{3} \vee \leqq=\underline{\underline{V}}
$$

which contradicts (iii).

3.3 Further Remarks

It is clear that the example we have seen of non-
 is non-distributive; it in fact demonstrates that lat $\left(A_{=}^{A} \xlongequal[=]{A} N_{I I}\right)$ is non-distributive. Even this can be sharpened, for by a similar example it can be shown that
 was chosen for inclusion here because it yields, in addition, the result of 3.2).

I have also shown, by an example similar to the second example mentioned above, that lat $\left(\hat{A}_{5} \hat{A}_{25} \wedge \underline{\underline{N}}_{25}\right)$ is nondistributive, and I am convinced that this example can be generalised to cover lat $\left(A_{p} \underline{A}_{p}{ }^{2} \wedge \mathbb{N}_{p}{ }^{2}\right)$ for all odd primes p. However, a general example such as this involves some rather
complicated identities in $G F(p)$ which at present I am unable to handle.

With regard to $\operatorname{lat}\left(A_{=2} A_{=}\right)$, it appears that $\operatorname{lat}\left(F_{2}\left(A_{=2} A_{4}\right)\right.$) is distributive; whether or not $\operatorname{lat}\left(\operatorname{Fr}_{r}\left(A_{=2} A_{4}\right)\right)$ is nondistributive for some $r \varepsilon I^{+}$, I do not know.

Lastly, by way of contrast, it is worth remarking that M.F. Newman (unpublished) has shown that $\operatorname{lat}\left(\underset{=p^{2}}{A}=p\right.$ is distributive for all primes p.

REFERENGES

[1] Warren Brisley. On varieties of metabelian p-groups and their laws. J.Austral. Math. Soc. I(1967), 64-80.
[2] R.A. Bryce. On certain varieties of metabelian groups. Ph.D. Thesis, A.N.U., 1967.
[3] D.E. Cohen. On the laws of a metabelian variety. J. Algebra 5 (1967), 267-273.
[4] P.J. Cossey. On varieties of A-groups. Ph.D. Thesis, A.T.U., 1966.
[5] A.G. Kurosh. The theory of groups, vol l. Translat. from the Russian and edit. by K.A. Hirsch, 2nd ed. New York: Chelsea 1960.
[6] Hans Liebeck. Concerning nilpotent wreath products. Proc. Cambridge Philos. Soc. 58(1962), 443-451.
[7] R.C. Iyndon. Two notes on nilpotent groups. Proc. Amer. Math. Soc. 3 (1952), 579-583.
[8] H. Meier-Wunderli. Metabelsche Gruppen. Comment. Math. Helvet. 25(195I), I-10.
[9] Paul M. Weichsel. On metabelian p-groups. J. Austral. Math. Soc. I(1967), 55--53.

[^0]: *Caution: In this paragraph only, the word "commutator" is being used in the standard sense, and not as defined in l.l.l.

