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INTRODUCTION 

The work reported in this thesis is a contribution to the 

young, but growing, theory of metabelian varieties (i.e. 

varieties of metabelian groups). The basic (but in its full 

generality entirely hopeless) problem in this theory is to 

describe all metabelian varieties and the lattice lat(AA) they 

form, and indeed most of the results obtained so far concern 

aspects of this problera. 

Probably the most general, and certainly the most well-

known, of these results is due to D.E. Cohen [3], who has shown 

that lat(AA) has minimum condition. Other authors, such as 

Warren Brisley [l], R.A. Bryce [2], P.J. Cossey [h], L.G. 

Kovacs and M.F. Newman (unpublished), and P.M. Weichsel [9], 

have given descriptions of various sublattices of lat(AA). 

These sublattices are all distributive, whereas lat(AA) itself 

is not, as has been shown by R.A. Bryce [2]. 

It follows from Cohen's result that every variety V in 

lat(AA) can be expressed as the irredundant join of finitely 

many join-irreducible varieties. Owing to non-distributivity 

not every V has a unique expression of this kind, nevertheless 

a classification of the join-irreducible subvarieties of AA 

would clearly provide a great deal of information about lat(AA) 

In this direction L.G. Kovacs and M.F. Newman, in work as yet 
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u n p u b l i s h e d , h a v e c l a s s i f i e d the j o i n - i r r e d u c i b l e s of i n f i n i t e 

e x p o n e n t , a n d h a v e s h o w n f u r t h e r t h a t for any V e l a t ( A A ) the 

i n f i n i t e e x p o n e n t c o m p o n e n t s in the e x p r e s s i o n s for V as an 

i r r e d u n d a n t j o i n o f j o i n - i r r e d u c i h l e s are u n i q u e . The j o i n -

i r r e d u c i h l e s of f i n i t e , c o m p o s i t e e x p o n e n t h a v e b e e n c o n s i d e r e d 

b y R . A . B r y c e , w h o h a s o b t a i n e d a r e d u c t i o n t h e o r e m r e l a t i n g 

to t h e i r c l a s s i f i c a t i o n . A l t h o u g h this t h e o r e m , w h i c h is also 

u n p u b l i s h e d , does n o t a c t u a l l y l e a d to a c l a s s i f i c a t i o n , it 

does i n d i c a t e t h a t any s u c h c l a s s i f i c a t i o n m u s t n e c e s s a r i l y b e 

e x t r e m e l y c o m p l i c a t e d . The r e m a i n i n g case is t h a t of the 

p r i m e - p o w e r e x p o n e n t j o i n - i r r e d u c i b l e s , and it is to c e r t a i n 

a s p e c t s of t h e p r o b l e m of c l a s s i f y i n g t h e m t h a t t h i s t h e s i s is 

d e v o t e d . 

The p r i n c i p a l r e s u l t , w h i c h is e x p r e s s e d in the f i r s t 

p a r t of T h e o r e m 2 . 1 . 2 , is a c o m p l e t e c l a s s i f i c a t i o n of the 

n o n - n i I p o t e n t j o i n - i r r e d u c i b l e s in l a t ( ^ p A ^ 2 ) , w h e r e p is an 

a r b i t r a r y p r i m e . It is s h o w n t h a t t h e s e n o n - n i I p o t e n t j o i n -

i r r e d u c i b l e s f o r m an a s c e n d i n g c h a i n , so t h a t any n o n - n i I p o t e n t 

v a r i e t y V e l a t ( A A 2) can b e w r i t t e n Y = I v L w h e r e I is a 
~ ~ P ~ P _ _ - -

n o n - n i l p o t e n t j o i n - i r r e d u c i b l e , a n d L is n i l p o t e n t . The 

s e c o n d p a r t of Theorem. 2 . 1 . 2 s a y s t h a t t h i s I is u n i q u e 

( c o m p a r e the r e s u l t of L . G . K o v a c s a n d M . F . N e w m a n m.entioned 

a b o v e ) , b u t in C h a p t e r 3 it is s h o w n t h a t at l e a s t latC.^i^i^' 

is n o n - d i s t r i b u t i v e , a n d , in p a r t i c u l a r , t h a t the n i l p o t e n t 
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conponent L of V is not alvays unique, even when "minimised". 

(See Remark 2.1.3). In addition to these results, a 

conjecture (item 2.9-5) is made regarding the non-nilpotent 

join-irreducibles in lat(A A „ .) which, if true, would 
=p=pp+-'-

reduce the classification problem of the join-irreducibles in 

lat(A A o -) to that of the nilpotent join-irreducibles in 
= p = p P + -l-

the same lattice. This conjecture, which is similar to the 

reduction theorem of Bryce in the composite exponent 

situation, is proved for the case 6 = 1 . Unfortunately, the 

classification problem for the nilpotent join-irreducibles 

appears very difficult. 

The proof of Theorem 2.1.2 consists almost entirely of 

commutator calculations. In fact, such an extensive use is 

made of commutator calculus that it has been worthwhile to 

develop a new form of it which is tailor-made for the 

metabelian situation. This is described in Chapter 1 and is 

used there to provide a basis for the derived group of 

F (A A ). Although this result is only needed for the case <» =m=n 
m = p, n = p^, it is given for general m,n as this does not 

make the proof any more difficult. 
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NOTATION AND TERMINOLOGY 

Notation and terminology generally follows that in 

Hanna Neumann. Varieties of Groups. Berlin, 

Heidelterg and New York. Springer 196?. 

References to this book are frequent, and are indicated 

"by the letters HN, usually followed by the relevant item 

number. Any notation or terminology neither explained below 

nor in the body of the thesis has exactly the meaning 

attached to it in HN. Note, however, that German letters 

are here represented by double-underlined Rom&n letters. 

Logic and Sets; 

logical implication 

// "end of proof" or, sometimes "no proof" 

4-4- signifies that a proof appears later. If the proof 

appears in a different section then the symbol is 

followed by the relevant section number. 

0 the empty set 

w the least infinite ordinal 

^Q the smallest infinite cardinal 

1 the set of non-negative integers 

l"̂  the set of positive integers 



(x) 

Groups; 

The trivial element of every group is denoted by 1. 

For the definitions below let H be a group; 

jHg J ... sub groups of H; hĵ  ,h2 j ... elements of H with 

h = {h^jhp,...}; r2sr2j... £ I; and k e I \{l}. 

H^ _< H H^ is a subgroup) of H 

gp(h) the subgroup of H generated by h 

(h) the fully invariant closure of h in H 
- 1 

- 1 ^ 2 
[h^.hg] ĥ L h3_ 

[ hj^, . . . ] defined recursively: 

= [ [ b , . . . J ] ] 

[h^jr^hg] defined recursively: [h^jOh^l = h^, 

[h^.rgh^] = [[h^,(r2-l)h2].h^] 

[h^.r^h^ , . . . jTĵ hĵ ] again defined recursively in the obvious 

nanne r 

[H^.H^] g p ( { [ h ^ , h 2 ] e H^, h^ £ H2>) 

[H^jr^H^] defined recursively: sini^arly to.above 

H, V [ H , ( C - 1 ) H ] defined for all c £ I ( c ) 
The exponent of H is the smallest positive integer e 

such that h^ = 1 for all h e H. If no such integer exists H 

is said to have infinite exponent. 
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Mi s ce11aneous: 

GF(p) the field of integers modulo the prime p 

suppS Let S he any set. The support of a function 

5 : S I, denoted by supp6, is defined hy 

suppiS = {s e S | 5 ( s ) =1=0} 

[q] the integer part of the non-negative rs.tional 

number q, i.e. [q] e l , q - 1 < [ q] _< q. 

lat(v) the lattice of subvarieties of the variety V 

The exponent of a variety Y is the least positive 

integer e such that Y c or is infinite if no such e 

exists. 



CHAPTER 1 

THE DERIVED GROUP OF F (A A ) 00 =m=n 

In t h i s c h a p t e r t h e s t r u c t u r e o f t h e d e r i r e d group 

F ' ( A a ) o f F ( a a ) i s i n v e s t i g a t e d . S i n c e Â  i s the 00 =m=n oo =in=n =1 
v a r i e t v o f t r i v i a l g r o u p s , the v a r i e t y A A i s a h e l i a n i f =m=n 
m o r n i s 1 , s o t h a t in t h e s e c a s e s F ' ( A A ) i s t r i v i a l . 00 =m=n 
On t h e o t h e r hand when n = 0 t h e s t r u c t u r e o f F ' ( A A ) oo =m=n 
becomes more c o m p l i c a t e d than can be h a n d l e d by the methods 

p r e s e n t e d h e r e . For a l l o t h e r c a s e s i t i s shown t h a t 

F ' ( A a ) i s f r e e a b e l i a n o f e x p o n e n t m, and, more oo =!ii=n 

i m p o r t a n t l y , an e x p l i c i t b a s i s f o r i t i s e x h i b i t e d . The 

d e s c r i p t i o n o f t h i s b a s i s and a f o r m a l s t a t e m e n t o f 

r e s u l t s , i s g i v e n i n s e c t i o n 1 , 2 , a f t e r t h e r e q u i s i t e 

n o t a t i o n has b e e n i n t r o d u c e d in 1 . 1 . The p r o o f o f t h e s e 

r e s u l t s , modulo t h r e e p r i n c i p a l lemmas, i s g i v e n in 1 . 3 , 

w h i l e t h e p r o o f s o f the t h r e e lemmas o c c u p y s e c t i o n s l . h 

t h r o u g h 1 . 6 . F i n a l l y , in 1 . 7 an a l t e r n a t i v e b a s i s f o r 

F ' ( A a ) i s d e s c r i b e d w h i c h , a l t h o u g h e a s i l y o b t a i n a b l e 
oo =m.=n 

f r o m t h e o r i g i n a l , i s o f a r a t h e r d i f f e r e n t n a t u r e . 



1 . 1 A Coininut a t o r C a l c u l u s f o r Meta"bel ian Groups 

T h i s s e c t i o n d e a l s w i t h t h e c o n v e n t i o n s , n o t a t i o n and 

t e r m i n o l o g y t h a t w i l l he a d o p t e d w i t h r e g a r d t o what i s 

p e r h a p s t h e most i n t e n s i v e l y e x p l o i t e d method o f p r o o f in 

t h i s t h e s i s , namely commutator c a l c u l u s . 

An i n c o n v e n i e n c e i n h e r e n t in commutator c a l c u l u s in 

g e n e r a l i s t h a t t h e word " c o m m u t a t o r " i s u s u a l l y 

c o n s i d e r e d as h a v i n g , s i m u l t a n e o u s l y , two d i s t i n c t 

m e a n i n g s ; on t h e one hand i t i s the name g i v e n t o c e r t a i n 

ELEMENTS o f t h e g r o u p under c o n s i d e r a t i o n , w h i l e on t h e 

o t h e r i t i s t h e name g i v e n t o c e r t a i n p u r e l y FORMAL 

EXPRESSIONS t o which the a t t r i b u t e s such as w e i g h t can be 

a s c r i b e d . A l t h o u g h in most c a s e s t h i s p r e s e n t s no r e a l 

d i f f i c u l t i e s , f o r t h e p u r p o s e s o f t h i s t h e s i s i t d o e s , and 

c o n s e q u e n t l y I s h a l l use t h e n o n - s t a n d a r d n o t a t i o n and 

t e r m i n o l o g y d e f i n e d b e l o w . P a r t o f the i n t u i t i v e c o n t e n t 

o f t h e d e f i n i t i o n s i s t h a t t h e word " c o m m u t a t o r " w i l l be 

r e s e r v e d f o r t h e s e c o n d o f t h e meanings m e n t i o n e d a b o v e , 

and " c o m m u t a t o r - e l e m e n t " w i l l be used f o r the f i r s t . 

F u r t h e r , t h e two w i l l be d i s t i n g u i s h e d n o t a t i o n a l l y by 

u s i n g p a r e n t h e s e s i n w r i t i n g c o m m u t a t o r s , and b r a c k e t s in 

w r i t i n g c o m m u t a t o r - e l e m e n t s . 
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The groups to vhich commutator calculus will be applied 

will almost always be meta.belian and accordingly the 

definitions below are made with metabelian groups in mind, 

even though most of them are formulated in terms of arbitrary 

groups, 

1.1.1 Definition; Let H be any group and let k £ l"''\{l}. 

A commutator of wei ght k in H is an ordered 

k~tuplet c = (h^ , . . . with h^j . . . e H. For 1 _< i £ k 

the element h^ is referred to as the i-th entry of c. 

The set of all commutators in H is denoted by C(H) 
00 

C(H) (i.e. t, = '^H^), and the weight of a com.mutator c £ C(H) is 
k = 2 

denoted by wt(c). 

1.1.2 Definition: Let H be any group. The value of a 

commutator in H is defined as the element 

[h, of H. Any element of H that is the value of some 

commutator in H is called a commutator-element. 

1,1.3 Definition; Let c be a commutator in a group H. 

The degree function of c, denoted by is defined as follows 

For any h e H define X^ : H I by X^(h) = 1 and X^ (h' ) = 0 

for all b' =1= h. Then for c = (h,,...,h,) the degree function 
k " ^ 

: H ^ I is defined as ^ X- . c i=l ^i 



1 . 1 . ^ Remarks ; Let H be any g r o u p ; c a commutator 

i n H; and h e H. Then i t f o l l o w s i m m e d i a t e l y f r o m 

D e f i n i t i o n 1 . 1 . 1 and 1 . 1 . 3 t h a t : -

( i ) t h e s e t o f e n t r i e s o f c i s p r e c i s e l y s u p p 6 ^ ; 
c 

( i i ) supp6-. i s f i n i t e "but n o n - e m p t y ; 

( i i i ) i s t h e number o f t i m e s h o c c u r s as an 
c 

e n t r y in c ; 

( i v ) w t ( c ) = E 
heH ^ 

1 . 1 . 5 D e f i n i t i o n ; Let H be any g r o u p . A p a i r o f 

c ommutators i n H are c a l l e d s i m i l a r i f , and o n l y i f , ^hoy 

have t h e same f i r s t e n t r y , t h e same s e c o n d e n t r y and t h e 

same d e g r e e f u n c t i o n . 

For any g r o u p H i t i s c l e a r t h a t s i m i l a r i t y d e f i n e s 

an e q u i v a l e n c e r e l a t i o n on C(H) and hence t h a t C(H) i s 

t h e u n i o n o f p a i r - v i s e n o n - i n t e r s e c t i n g " s i m i l a r i t y 

c l a s s e s " . These s i m i l a r i t y c l a s s e s are the s u b j e c t o f 

t h e n e x t d e f i n i t i o n : 
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1.1.6 Def ini t i on : Let H be p.ny group. Denote by 

the (non-empty) similarity class containing 

conmutators in H with degree function 5 and first and 

second entries h^ and h^ respectively. Then (h^,h2 56) is 

called the pseudo-co rarau t at o r in II with first entry h^ , 

second entry h^, and degree function 6. Third, fourth 

and further entries are not defined as such, but never-

theless any h e supp6 is called an entry of (h^,h2,6). 

The set of all ps eudo-corimut at or s in H is denoted by 

P(H). 

It follows from. 1.1.^(iv) that similar comiuutators 

have the sane weight, Thus:-

1.1.7 De finition; The wei ght of pseudo-comnutator 

p is defined to be the common weight of its members, and 

IS denoted by wt(p). 

1.1.8 Remark: Let H be any group, and let (h^jhgjS) 

be a T.>s eudo-commutator in E. Then wt((h, ,hp,6)) = Z 6(h). 
• - h£H 

For metabelian groups the concept of pseudo-commutators 

is particularly useful. This is on account of the following 

well-known result. (See, for example, HN3^.5l)' 
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1.1.9 Lemma: Let H be a metabelian group, and let 

e K, k >_ 2 . Then for any permutation u of 

. . . - [h^.h^.hg^, . . . . // 

1.1.10 Corollary; In a metabelian group similar 

com.mutators have identical values. // 

The above corollary makes possible the following 

definition, which provides the key to a simplified notation 

for elements of the derived group of a metabelian group. 

1.1.11 Definition; Let H be a metabelian group. The 

value of a pseudo-comm.utator (hj,h2,6) in H is defined to 

be the common value of its members, and is denoted by 

[h^,h2 ,6] . 

A disadvantage of the (h^ ,h2,6)-notation for pseudo-

commutators is that it is generic rather than explicit. To 

overcome this, the degree function 6 will, when necessary, 

be "listed" in the form {6(h)h|h e supp6}. For exam.ple, 

the pseudo-com.mutator containing ( h^ jhg jhj ,h2 ) m-ay 

be denoted by ( h^ ,h2 , { , Shg , lh3} ) . The notation will also 

be carried over to values of pseudo-commutators in the 

obvious manner. 
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1.2 Statement of the Main Theorem 

For the remainder of this chapter let n denote an 

arbitrary but fixed integer greater than 1, and let 

G(n) = a ) where m e I , m =1' 1 • Further, let 

g(m) = {g . |i E I"^} denote a free generating set for G(EI), 

vhere it is to be understood that g(n) is well ordered by 

its indexing set, i.e. g . < g . if, and only if, i < j. mx "" mj " 

.2.1 Definition ; A ps eudo-commut ato r (a,b,6) in G(m) 

will be called basic if, and only if, 

(l) suppo C g(m) 

(?) b = minsuT)p6 (i.e. b is the least element in supp6 ) 

(3) a f b 

(1|) either (i) 6 ( a) _< n and 

Vg e gin) (g . k a (g .) < n) 'HI - mi mi 

or (ii) 6(b) = , a = maxsuppS and 

Vg e g(m) (g f= b (g . ) < n) 
mi = mi mi 

The set of basic pseudo-commutators in G(m) will be denoted 

by B(m). 
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The main result of this chapter can now "be stated as 

follovrs : 

1.2.2 Theoren: The derived grout) G'(ni) of G(in) is free 

abelian of exponent n. Further, the A^aluation mapping 

(j)(]ii) : B(m) G(rri) is one-to-one, and B (n) (j) (m) is a basis for 

G'(m). ++(1.3) 

It should perhaps be reiriarked that, in terns of basic 

conEut.ators* , as defined in HS31.51, the basis B(m)(t)(n) for 

G'(m) consists of images under a (where a : X^ G(ir.) is the 

epinorphisn induced by the natural map from x to g(n)) of 

left-ncrmed basic commutators in which no letter occurs more 

than (n-l) times, except that, in specific cases, one of the 

first two entries may occur n tim..es . However, we shall not 

use basic commutator methods for the proof of 1.2.2, or, 

indeed, anywhere in this thesis. 

1.3 Skeletal Proof of 1.2.2 

The bulk of the proof of 1.2,2 will be carried out in 

finitely generated subgroups of G(0). For any integer r 

greater than 1 let g^ ( 0 ) = ^ SQ.! ' ' ° ' ' r ̂  ' ̂  '̂'' E s(0)), and 

^Caution: In this paragraph only, the word "commutator" is 
being used in the standard sense, and not as defined in 1.1.1 
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l e t G ^ ( 0 ) = g p ( g ^ ( 0 ) ) . L e t B (O) d e n o t e t h e set of t a s i c _r 

p s e u d o - - c o m m u t a t o r s in G^ (0) ; i . e . B ^ ( o ) = B ( 0 ) n P ( G ^ ( 0 ) ) . 

In t h i s s e c t i o n it is sho-wn h o v 1 . 2 . 2 is d e d u c e d f r o m 

t h e follovT-ing t h r e e leramas: 

1 . 3 . 1 L e m m a : F o r all r _> 2 the d e r i v e d g r o u p (G) of 

G ^ ( 0 ) is f r e e a b e l i a n of e x p o n e n t 0 and rank ( r - l ) ( n ^ - l ) . i4-(l.U) 

1 . 3 . 2 Lerr.ma; F o r all r ^ 2 |B^(0)| = ( r - l ) ( n ^ - l ) . i>l'(l.5) 

. 3 . 3 Lem.ma: F o r all r > 2 G^ ( 0 ) = gp ( B^, ( 0 ) cj) ( 0 ) ) . 

A c t u a l l y , t h e r a n k of G^v 0 ) and the c a r d i n a l i t y of B ^ ( 0 ) 

are n o t i m p o r t a n t in themselv-es; o n l y t h e i r e q u a l i t y is 

r e q u i r e d , and t h i s is u s e d to p r o v e : 

1 . 3 . U L e m m a : F o r any i n t e g e r r ^ 2 the v a l u a t i o n 

m a p p i n g (}) (0 ) { g : B ^ ( 0 ) G^, (0 ) is o n e - t o - o n e , and 

B (0)(t)(0) is a b a s i s for G ' ( 0 ) . 
r ^ 

P r o o f : F r o m 1 . 3 . 2 iB^(0)d)(0)| < ( r - l ) ( n - - l ) , and 

e q u a l i t y h o l d s o n l y if cf) (0) j G ^QS is o n e - t o - o n e . On t h e 

o t h e r h a n d , s i n c e f r o m 1 . 3 . 3 B (0)(t)(0) is a g e n e r a t i n g set 

f o r G ' ( 0 ) , it f o l l o v s f r o m 1 . 3 . 1 t h a t |B^(0)4'(0) I > ( r - l ) ( n - l ) , 
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and equality holds here only if B^(0)(1)(0) is a basis for 

g;(O). // 

Proof of 1.2.2; We deal first Xvith the case m = 0. 

Firstly, the mapping cj) (C) : B(0) G(0) is one-to-one 

because any two distinct basic pseudo-connutators belonging 

to B(O) are also laembcrs of B^(0) for sufficiently large r, 

and therefore have distinct values, since (|) (0) ~ ^ ^ is one-

to-one (fron 1.3.U). 

Secondly, B ( 0 ) ({) ( 0 ) generates G'(0) because any element 

w in G'(0) is also a member of G'(0) for large enough r, and r 
G^(0) gp(B^(0)(})(0) £ gp(B(0)(^(0) ) . (We have used 1.3.3). 

To verify that B (0) (|) (0) is in fact a basis for G'(0), it 

remains to show that no non-trivial relation exists among 

its members. How if any such non-trivial relation did 

exist, say involving the values of basic pseudo-commutators 

then, choosing r so that £ B^(0), it 

would also provide an example of a non-trivial relation 

among the members of B^(0)(j)(0). But this would mean that 

B^(0)(|)(0) could not be a basi.s for G^(0), contradicting 

I.3.U. 

Finally, we must show that G'(0) is free abelian of 

exponent 0, but since we have already exhibited a basis for 

G'(0), it suffices to show that G'(0) is torsion-free. For 
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this simply note that G ( 0 ) is torsion-free for every r 2 

h y 1 . 3 . 1 , a n d G ' ( 0 ) = U g ' ( O ) . 
r = 2 ^ 

To complete the proof of 1.2.2 ve must deal with the 

case m > 1, and this we shall now do, essentially "by showing 

that the restriction of the natural epimorphisin 6 : G(0) G(m) 

has the necessary properties. 

For the remainder of this proof, let m denote an 

arbitrary but fixed integer greater than 1. Since A A is a =m=n 

subvariety of A^A , the natural mapping 9 : g(0) g(m), 

given by gQ^S = g^^ for all i e I"^, extends to an 

epimorDhism 6 : G ( O ) G ( M ) with kernel A (A ( G ( 0 ) ) ) . From m n 
HN12.31, A ( G ( 0 ) e ) = A ( G ( 0 ) e , so G'(m) = G ' ( 0 ) e , and hence 

G'(m) will be shown to be free abelian of exponent m if we 

can show that 

1.3.5... ker(e = B (G'(0)) G ' ( 0 ) m 

To prove this, let F denote an absolutely free group of 

rank Vb , so that G(0) = F/A(A (F)). In the same notation 0 n 

G'(0) = />(G(0)) = A(F/A(A (F))) = A(F).A(A (F))/A(A (F)) = n n n 
A(F)/A(A (F)) n 

and hence G ( 0 ) / G ' ( 0 ) S F / A ( F ) = Kence G(0)/G'(0) is 
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free abelian (of exponent O) and it follows that 

A^(G(0))/G'(0), being a subgroup of a free abelian group, is 

also free abelian. ([5]p.llj3). Now i\^(G(0)) is abelian, 

(since A(A^(G(O))) = {1}), and it follows that G'(0) is a 

direct factor of A^(G(0)). ([5]p.lU)4). Hence denoting by C 

any complement of G'(0) in A (G(0)), we have n 

kere = A^(A^(G(0))) = B^(A^(g(0))) = B^(G'(0)XC) = B̂ ^ ( G ' ( 0 ) ) XB^ ( C ) 

But this proves 1.3.5 for ke r ( 6 i ̂ ,̂ ̂  ̂  ̂  ) = kere nG'(O). 

Vfe show next that 

1.3.6... If is a basis for G'(o) then 6 ^ is one-to-one 

and be is a basis for G'(m). 

Let b = {b. i e I"*"} and suppose we have a relation of the kind = 1 

^̂ k 

where e ,...,e are integers, and the b. ,...,b. e b are 
1 k ij, -

pair-wise distinct. Then 

a.®2 , =k b b. ...b. e ker(ei(.,(Q)) 
1 2 k 

and since fron 1.3.5 {T^^ji e is a basis for ker(e|Q,^Q)) 

it follows that n|e. for each j e {l,...,k}. Fron this we 
J 

conclude firstly that eu is one-to-one, because if i f j 

then the relation (b . 6 ) (b . 6) ~ = 1 cannot hold in G'(r.), ^ J 
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and secondly that bS is an independent set in G ' ( N ) , as the 

onlj'- relations that can hold anong the nenbers of bQ are the 

trivial ones, (We are using the fact that G'(N) has exponent 

ri) . This completes the proof of 1.3.6 because 

G'(n) = G'(0)e = gp(fe)e = gp(ge), that is, GE generates G'(E) 

Before we can proceed further, we riust relate the basic 

pseudo-connutators in G(ri) to those in G(0). To do this, for 

any p s 5(0), say p = ( ̂ oi ̂  '-Oi , ' ̂  S, i ̂  " ' " ^kSoi, > ̂  

are pair-wise distinct positive integers, let 

J - t". J . . r ^ 

Reference to 1.2.1 shows that p9* e B(m) and, in fact, that 

: B(0) B(n) is onto. 

The definition of 9* shows further that 

p9*(|)(ri) = p(L)(0)9 for every p e B(o), or in other words that 

the diagran 

1.3.7... 9* 
B(0) — >B(n) 

e IB (0) (f) (0) j 
B ( 0 ) c|) ( 0 ) — - -- B ( D.) (|)( n) is 

coFmut at i v( 
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This fact, together with 1.3.6, we now use to complete the 

outstanding parts of the proof 1.1.2, i.e. to prove that 

(j)(m) is one-to-one and that B(n)(j)(in) is a basis for G'(n). 

Since, as we have already renarked, 6* : B(0) B(n) is 

onto, and !i(n) : B(ri) i(n)4)(n) is onto by definition, it 

follows from 1.3.7 that ^ ( ̂  ) « ) 9 | ( 0 ) ( o ) " 

Taking ^ to be B (0) d) (0) in 1.3.6 therefore shows that 

B( IT.) f+)( m) is a basis for G'(?i). Similarly, 1.3.6 shows that 

®IB''0 )4'(0) ^^ one-to-one, and hence, using that (J)(0) is one-

to-one and 6* is onto, 1.3.T shows that (})(m) is also one-to-

one. / / 

l.U The Proof of 1.3.1 

We will need the following simple observation: 

].1.1 Lemma: If R is a free abelian group of rank r 

(and exponent O), T a subgroup of R such that R/T = Q^ x q^ 

where Q.̂  is free abelian of rank q and is finite, then 

T is free abelian of rank r - c. 

Proof: The freeness of T is immediate, since every 

subgroup of a free abelian group is free abelian. Let the 

rank of T be t. Denoting the torsion-free-rank of an 
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a b e l i a n g r o u p X iDy r ^ ( X ) , [ 5 ] p . l l | 0 g i v e s r ^ ( R ) = T q ( R / T ) + r Q ( T ) . 

( S e e , f o r e x a m p l e , [ 5 ] p . l l - ; 0 , b u t n o t e t h a t t h e a u t h o r m e a n s 

" t o r s i o n - f r e e - r a n k " w h e n h e s a y s " r a n k " ) . B u t ( R ) = r , 

r ^ C T ) = t a n d r Q ( R / T ) = ( Q,̂  ) + = q + 0 = q . / / 

P r o o f o f 1 . 3 . 1 : 

A . ( F ) n 

A ( F J 

A ( A ( F ) ) 
n r 

F i g . 1 . 
V e r b a. 1 
S u b g r o u p s 
o f F ^ . 

L e t F ^ b e a n a b s o l u t e l y f r e e g r o u p o f 

r a n k r , a n d w i t h i n i t c o n s i d e r t h e v e r b a l 

s u b g r o u p s A ( P ) , A ( F ^ ) a n d /i ( A ( F ) ) ; c l e a r l y 
11 r J- n I 

t h e s e c , r e a r > ' a , n e : e d a s i n F i g . 1 . We c l a i m : 

( i ) F / A ( F ) i s f i n i t e , a n d h a s o r d e r n -
r )i r ' 

( i i ) F ^ / A ( F ^ ) i s f r e e a . b e l i a n o f r a n k r 

( i i i ) A ^ ( F ^ ) / A ( F ^ ) i s f r e e a b e l i a n o f r a n k r 

( i v ) F ^ ) / A ( F ^ . ) ) i s f r e e a b e l i a n o f 

r a n k ( r - l ) n + 1 

( v ) A ( F ^ ) / A ( A ^ ^ ( F ^ . ) ) i s f r e e a b e l i a n o f 

r a n k ( r - . l ) ( n ^ - l ) 

F o r t h e p r o o f s w e h a v e : 

( i ) = F ^ ( A ^ ) a n d s o i s f r e e 

a b e l i a n o f e x p o n e n t n a n d r a n k r . 

( i i ) S i m i l a r l y F ^ / A ( F ^ ) = F ^ ( a ) 
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(iii) Use (i), (ii) and 1.4.1 

(iv) Froir. Schreier's formula and (i), A (F ) is 
n r 

(a"bsolutely) free of rank (r-l)n +1, and hence 

(V) Use (iii), (i v) an d 1.U.1. 

But (v) is the required conclusion, for 

= and hence 

G;(O) = H(G^(O)) = = A{F^)/A(A^(F^)). // 

1.3 The Proof of 1.3.2 

Clearly, a basic pseudo-conmutator (a,h,5) in G(0) is a 

nenber of B^(0) if, and only if, supp6 c S^ (^) • 

merely have to count the pseudo-commutators that satisfy the 

conditions (2) - ( U) of 1.2.1 (vrith m = 0 in ik)) and a 

strengthened version of condition (l), namely 

(1)* supp6 c §^(0) 

We count those (a,b,6) e B̂ . (O) with a given set of 

entries, say supp6 = = where in view of 

conditions (l)* and (3) a c and 2 < s < r, and we 

nay assune without loss of generality that a^ = nina and 
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a naxa. Since any TDS eudo-connut at or (a,BJ6) with s = 
suppS = a autonatically satisfies the condition (l)*, 

conditions (2) and (3) reduce this task to that of 

counting those nenbers of the set 

S ( a) = {( a. , a , { d a , . . . , d a } ) I 2 < i < s ; d . . . . , d e I } = 1 ]. 1 1 s s — 1 s 

that satisfy condition {h). JJow for 

( 5,. 5 a J { d a , . . . 5 d a }) e S(a) to satisfy condition (U)(i) 1 1 1 1 s s = 
i can "be chosen in (s-l) ways; d. in n ways; and the 1 
renaining nenbers of {d j-.-jd^} in (n-l) ways each. 

Alternatively, for ( a . , a . { d . . . . , d a^ } ) e S(a) to 1 1 1 J. s s ~ 
satisfy condition (U)(ii) i nust be s; d^ nust be n; and 

d ,...,d can be chosen in (n-l) ways each. Since {k){i) 
2 s 

and U(ii) are nutually exclusive conditions this gives a 

total of (s-l)n(n-l)^~^- + basic pseudo-

connutators in S(a). That is 

B (0) o S(a) = (s-l)n(n-l)^~^ + (n-l r 

= n s(n-l)'-^ - (n-l) 

Row let D = { a | a o g^(0), |aj > 2}. Then it follows 

inmediatel.y fron the various definitions that 
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(i) ^ e B^(0) a a e D : p e S(a) 

(i i ) V a^,^^ £ D a., == a = x =2 

( i i i ) I { a I a e D ; I a I = s } ! = [ s _ 

= ) S(g^) A sCa^) = 

r 

Hence |b^(0) Z B. (0) o G(g) 
aeD ^ 

r 
E 

s = 2 

r _r 
Z s 

s=2 

{ns n - ± ; n - D ^ 

r-1 
n s ( n - s-1 r 

Z 
s=2 

(n-1) 

= rn ( (l + (n-l) - ((l + (n-l))'-r(rL-l)-l) 

= I r 

1.6 The Proof of 1.3.3 

The proof of 1.3.3 consists entirely of calculations 

vith connutator-elenents, and will nake nuch use of the 

fol].oving well-known identities: 

1.6.1 Remarks : Let T "be any netahelian group, 

,... £ T. Then 



19. 

(1) T' is abelian and hence = 1 whenever 

t T' or t. £ T' for i > 3. 
1 ^ 1 — 

(2) I f d , d , . . . £ T ' then [nd.,t ,t ...] =n[.d.,t 1 2 i l 2 i l 2 

(3) ' "" (2) this generalises 

to: If (t ,t ,6) £ F(T) then [t ,t ,6][t ,t ,5] = 1, 1 2 1 2 2 1 
t 

(5) [t., ,t t ][t t t ][t t t ] = 1. Using (2) this 
A. C. ^ o J - * ^ 

generalises to: If e P(T) then for any 

t^ £ suppS = 1. 

In the sequel the indnntities 1.6.l(l)-(5) will 

frequently "be used without explicit nention. Another useful 

identity is the following: 

1«6.2 Lenna: Let T bo a raetabelian group; t,u £ T; 
k 

k 
and k £ I . Then [ t, û ^ ] = H [t,iu] 

1 = 1 

Pi'oof: V/e use induction on k. The case k = 1 is 

innediate, and the inductive step is 
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[ t,u] [ t ] [ t 

k-1 
k-1 
i k-1 

= [t,u]( n [t,iu] )( n [t,u,iu] 
i=l i=l 

k-1 
i 

k-1 'k-l" 
k k-1 i + i-1 

= [t,u] ( n.;[t,iu] 
i=2 

)[t,ku] 

= n [t,iu] . // 
i=l 

Note that with the help of 1.6.1(2) and (3) this result 

hecoraos applicable in nore general situations. For ezanple 

[t^-,t t ] = n [t, ,t2,(i-i)t^,t3] 
k 

'2 ' "3 1=1 

Of course, to prove 1.3.3 we need to know nore about 

G^(0) than just that it satisfies the metabelian law. The 

further information that is needed is contained in: 

1.6.3 Lenna: For any n,n e 1 
n 

A (A ) = ([[w,x] ,[v,z]] ,[x,y] , n n 
\ 
/ • 

Proof: Denoting the right-hand side above by V, we 

have iBinediately that .> - To prove the reverse 

inclusion let H be any group for which W(H) = {l}. Then 
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m 
the 1 aws [['w,x],[y,z]] a,nd. [x,y] snsure "thai:; 

m 
A^(A(H)) = {1}, and the laws and (x^) ensure that 

A (B (H)) = {l}. Farther, A(H) and B (H) commute element-a n 
wise, [xjy^z'^'] being a law in H. Hence A (A (H)) = m n 
A ( A ( K ) . B ( H ) ) = { L } . We have thus shown that for any group in n ^ ' 
H; VJ(K) = {1} A (A (h)) = {l}, and this means that m n 
W > A^(A^). // ~ n n 

Actually, 1.6.3 will not bo needed in its entirety until 

the next chapter; here we siznply use the laws and 

[x'^^y'^] to deduce some further identities (Lemmas 1.6.k-1.6.f) 

that hold in groups belonging to AA . Of course, G (O) £ AA — n r — n 

for all r e l"*", and in fact all of these further identities 

will be needed for the proof of 1.3.3. 

1.6.^ Lemma; Let T e t,u e T. Then 
K \ n-1 

n "li-1. 
[t,u~ ] = n [t,iu] 

i=l 

Proof: V/e have 

= [t,u-lu^] = [t,u-l][t,u^^][t,u-l,u^], 

and hence, since = 1 (by 1.6.3), 

-1 
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Using 1.6.2, we conclude that 

- 1 
n-1 

n-1 
i n -1 

[t,u'"] = ( n [t,iu] ~ • )( n [t,iu] ) 
i=l 

n 
n-1 
i-1 

n [t,iu] 
i = l 

// 

1.6.5 Lenna: Let T e AA ; t,u,v £ T; k e I. Then • •• I •• ^ 

there exist integers e^(k ),..., (k) such that 

n-1 e.(k) 
[t,u,kv] =•• n [t,u,iv] 

i=0 

Proof: The proof is hy induction on k. For 

0 < k < n - 1 there is nothing to prove. For k = n, ve 

n 
have froin 1.6.2 and 1.6.3 that 1 = [t.u.v'^l = [t,u,iv] 

n-1 
and hence [t,u,nv] = IT [t,u,iv] 

i = l 
for k > n, is 

n 

The inductive step 

[t,u,(k+l)v] = [t,u,kv,v] 

n-1 e.(k) 
= [ n [t,u,iv] ' ,v] 

i=l 



n-x e. ^(k) 
= ( n [t,u,iv] )[t,u,nv] 

1 = ̂  

2 3 . 

= ( n 
i=2 

e. ^ (k) n-1 
)( n [t,u,iv] 

i = l 

n~l e.(h+l) 
= n [t,u,iv] 

i=l 

where o^(k+l) = F.nd e^(k + l) = 

for 2 < 5. < n - 1. // 

i ^ J 

1.6.6 Lenna; Let T e AA ; (t,u,6) e P(T) vith = = R 
_ 

n n .ij b. 
6 = {nt,nu}. Then [t,u,6] = H H [t,u,6 ] 

i=l j=l 
i+j<2n 

where 

6.. = {it,ju}. ^ J 

Proi if: We have, fron 1.6.2 and 1.6.3, 

•n̂  
J- n n ( f j 

n 
l.j J 

1 = u""] = n [t'^.ju]^ n ( n [t,u,at,ju}] ) 
j=i j=i i=i 

and the result follows. // 

1.6.T Lenna: Let T e A/^; t,u,T £ T. Then 

n-1 
n^ 
1 

[t ,nu,v] = [v,nu,t]._]l ( [ v , iu , t ] [ t , iu , v ] " ̂  ) 
1 = x 
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Proof: From 1 . 6.3, 1 . 6.1(5) and (3), and 1 . 6.2, we 

h ave 

r ̂  r ^ T r ^ -I 1 = [t,v,ii ] = [t,u ,v][v,u ,t] 
- 1 

n 
n 
li; n - 1 

= ( IT [t,iii,v] )( IT [v,iu,t] ) , 
i=l i=l 

and the result follows. // 

We are now ready to prove 1.3.3. Throughout the proof 

we shall abbreviate G-j.(0), B^(0), (!> ( 0 ) and ^^{O) {gg^ , . . . , gQr ̂  

to Ĝ ., 3^., <t> and g^ = "fgis'-'j^r^ respectively; no ambiguity 

should result from this. 

Proof of 1.3.3; The proof is broken into five steps. 

Defining subsets of P(G^) by 

S^ = {p e P(G^)jwt(p) = 2} 

= {(a,b,6) e P(G^)!supp6 c u where g"^ = {g:j ̂ , . . . , g^,^} 

S^ = {(a,b,6) e P(G^)|supp6 ^ g^) 

Sĵ  = {(p,b,6) £ S^lb = ransu;Dp6; a f b } 

S^ = {(a,b,6) £ S^ I 6(a) £ n; 6(b) _< n; 6(a) + 6(b) < 2n; 

6(c) < n f o r a = } = c = t ' ^ ^ 

= {(a,b,6) e S^|6(b) = n a = inaxsupp6} = E^ 
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we show in the i-th step that gp (S ̂  ) . VJe then have 

that 

G; = gp([a,h] a,h e G^) = gp(S^(]5) ^ gp(Ŝ _(j)) e-• 

... ^ gp(Sg(j)) = gp(B^c!)) o C-' r 

and hence G^ = gp(B^(f)) as the lenma claims. 

Stop 1: For any a,b e C-̂  we can write a = . . . a^^ ̂  j 

and h = " ° ("b) ^ Ir ir^ 

i £ {l,...,il(a)}, j £ Then 

[a,b] = can be "expanded" using 

1.6.l(U) and (2) to give an expression of the forn 
s 

[a,b] = H [ c, ,d, ,6 ] where for each k £ {l,...,s} 
k=l ^ ^ ^ 

C b^ , . . . ^^ ) } , Thus [a,b] £ gp(S2(i>) 

and hence c gp(S24>). 

^ - 1 
Step 2: Let (a,b,6) £ E 6 (g. ) = s . If s = 0 1=1 

then already (a,b,6) £ S,, so certainly [a,b,6] £ 

For s > 0, assume inductively that if (a',b',6') £ Sg with 

- 1 E 6'(gT ) < s then [a',b',6'] £ gp(S,̂ (|)). Choosing 
i =1 

k £ {l,...,r} such that 6(g~') > 0, 1.6.1+ shows 
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n 
n-1 
j-1 

[a,l3,5] IT [a,b,6.] where 6- = 5 - x^ T+ . 

j = I,...,]!. But for each j e {l,...,n} E = s - 1, 
i = l ^ 

and it follows that [a,b,6] p Hence Ŝcj) ̂  gp(S24'). 

Step 3: Let p = (a,13,6) e S^. Then using 1.6.1(5) and 
-1 

(3), for any c e supp6 pcj) = [ c , cS ] [ h , c , 5 ] . In particular, 

putting c = minsupp6, this ohows that pep £ gp(Sj^4)). (The 

cases a = c and/or "b = c do not upset this, since, of course, 

[c,c,6] = 1). Hence 3,4) c gp(S^(i)). 

Step k: Let p e Sĵ , say p = ( â  , ag , {d^ a^ , . . . , d̂, â^ } ) 
where ^ g^ and d^ , , . . , d^ £ I"̂ , for some s, 
2 ^ s _< r. Then vrriting 

P(f) = [ a^ , a^ , ( d^~l) a^ , ( dj3-l) a2 , d^a^ , . . . , d̂ â ^ ] , 

we can use 1.6.5 to give 

n-1 n-1 n-1 ^̂  • 
1.6.8... pcf) = n n... n [a^,a2 . . . .i^a^ ] 

î  =0 î '-O 

where, in the notation of 1.6.5, 

e. , = e. (d,-l).e. (d,-l).e. (d3)...e.^fd^) 
' 1 s 1 - J 
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Of t h e p s e u d o - c o m m u t a t o r s 

( a^ , a^ , { ( i ) a^ , ( i g +1) a^ , i 3 a^ , . . . , i g a^ } ) 

v h o s e v a l u e s o c c u r as f a c t o r s o f t h e p r o d u c t on the r i g h t -

hand s i d e o f 1 . 6 . 8 t h e o n l y ones which are n o t members o f 

S^ are t h o s e i n wh i ch i , = i , , = n - 1 . However , f o r t h e s e 
J -L ^ 

1 . 6 . 6 g i v e s 

1 . 6 . 9 . . 0 [ a^ , a^ J n a ^ . n a ^ , . . . a^} ] 

u J 
n 

n n I i 
= n n [ a^ , a^ , { i a^ , j a2 , i ^a , , . . . , i g â ^ } 3 

i = l j = l 
i+, i<2n 

and h e r e e v e r y [ a^ , a^ , { i a^ , j a^ , i 3 a^ , . • . , i g a^ } ] e S ĉp . H e n c e , 

b e t w e e n them, 1 . 6 . 8 and 1 . 6 . 9 show t h a t pcj) e gp(S^(f) ) , and so 

c gp( ) . 

S t e p 5: Le t p e S^ , s a y p = ( a ^ , a 2 , 6 ) where 

supp6 = { a ^ , . . . , a g } ( c g^) f o r rome s ; 2 < s £ r . I f p S^ 

t h e n n e c e s s a r i l y 5 ( a^) = n and a., maxsupp5 . In t h i s c a s e , 

a s s u m i n g maxsuppS = â ^ ( t h e r e i s no l o s s o f g e n e r a l i t y in t h i s 

a s s u m p t i o n ) we o b t a i n f r o m 1 . 6 . 7 t h a t 
n 

n - 1 - l U 
1 . 6 . 1 0 . . .pc!) = [ a ^ , a 2 , 6 ] = [ â ^ , a^ , 0 1 _ ( [ a^ , a^ , 6 • ] [ a^ , ag , 6 ̂ J ) 

where 6 . = 6 - ( n - i ) x f o r i = l , . . . , n - 1 . But each o f 
1 ^o 
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the pseudo-commutators ( a , a„ , 6 ) , ( a , a^ , 6 ) , ( â  , a„ , 6 • ) , 
. S c . 1 

i = l,..o,n-l, whose value, occurs as factors of the product 

on the right-hand side of 1.6.10 is a neraber of S^, so 

p(|) e gp(Sg(j)). Hence Ŝ cj) ̂  gp(Sg(|)) and the proof of 1.3.3 

is conplete. // 

l.T An Alternative Basis for G'(n) 

We shall need only one preliminary lemma, which is, as 

it were, the "reverse" of 1. 6 . : 

l.T.l Lemma; Let T he a metabelian group; t,u e T; 

k-i 
k , (-1) 

and k e l"̂ . Then [t,ku] = II [t,u""] 

Proof: The proof is "by induction on k, and is 

analagous to that of 1.6.2. We therefore omit the details. // 

1.7.2 Definition; The mapping Kin) : B(m) ^ P(G(m)) 

is defined by the following rule: For any (a^,a^,5) e B(m) 

with supp6 = (o g(in)), s > 2, say, let 

X , 5(ai) 6(ap) r,Ji^i) 6(a^).. 

We shall denote the set B(m)5(ra) by D(m). 
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N o t e t h a t ^ ( i n ) i s c l e a r l y o n e - t o - o n e . 

T h e p r o m i s e d a l t e r n a t i v e " b a s i s f o r G ' ( m ) i s g i v e n b y 

t h e f o l l o w i n g : 

1 . 7 . 3 T h e o r e i a : T h e v a l u a t i o n n a p p i n g i | i ( n ) : D ( r a ) G ( m ) 

i s o n e - t o - o n e , a n d 5 ( m j i j ; ( m ) i s a b a s i s f o r C - ' ( i n ) . 

P r o o f : I t i s c l e a r t h a t YTQ n e e d o n l y p r o v e t h e 

a n a l o g u e s o f 1 , 3 . 2 a n d 1 . 3 . 3 . T o b e p r e c i s e , f o r a n y r _> 2 

l e t 5 ^ ( 0 ) = 0 ) ^ ( 0 ) . T h e n t h e t h e o r e m i s p r o v e d o n c e we 

h a v e v e r i f i e d t h e f o l l o w i n g t w o s t a t e m e n t s : 

1 . 7 . . . . F o r a n y r > 2 D ^ ( 0 ) = ( r - l ) ( n ' " - l ) 

1 . 7 . 5 . . . F o r a n y r > 2 G ^ ( 0 ) = g p ( D ^ ( 0 ( 0 ) ) . 

1 s Now 1 , 7 . ) 4 i s i m m e d i a t e f r o m 1 , 3 . 2 , s i n c e ^ ( o ) ! ^ /q^, 
"" r ' 

o n e - t o - o n e . T o v e r i f y 1 . 7 . 5 i t i s s u f f i c i e n t , i n v i e w o f 

1 . 3 . 3 , t o s h o w t h a t B ^ ( 0 ) ( f ) ( 0 ) c g p ( ( 0 ) ip ( 0 ) ) . B u t t h i s i s 

a l m o s t i m m e d i a t e , f o r i f ( a ^ , a ^ , { d ^ a ^ , . . . , d^ a^ } ) e ^ ^ . ( G ) 
- >» 

( w h e r e , a s u s u a l , f o r s o m e s , 2 _< s £ r , i a ^ , . , . , a^ j c , g. 

a n d £ l ' ) t h e n 1 . 7 , 1 g i v e s 

(0 ) 
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3 d . - i j d . 
n ( - 1 ) " ^ i ] 

= n . . . TI [ a-i . . . . j l a ^ " } ] 

a n d , s i n c e 1 < i . < d . , f o r e a c h j £ { l , . . . , s } , o a c h 
- J - J 

1 2 1 
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CHAPTER 2 

THE SUBVARIETIES OF A A 2 
=P=P 

P\or the whole of this chaptcr lot p denote a prime 

nudber, arbitrarily chosen, but fixed throughout. 

The main result is stated in 2.1, and conccrns the 

structure of lat(A A ?,). The proof of this result, modulo -p-p 

seven principal lennar. , is given in 2.2, while the seven 

leninas are proved in sections 2.3 through 2.T. The powerful 

result of D.E. Cohen [ 3 ] , that has minimun 

condition, is not used in any of these proofs, and in fact, 

as is shown in 2.8, the rninimum condition for latC^^^^a) may 

be independently deduced from the nain result presented here. 

In section 2.9, the last in this chapter, an interesting 

relationship between lat(A A ) and lat(A A 2 ) is discussed. =P=P =P=P 

2.1 Staterient of the Main Theorem 

2.1.1 Definition: For all a e. l"̂  the varieties C^ and 

I are defined as follows: = a 

C = W A A A A 2 = a =a=p =p^p 

ia = 
C a B 2 I < a < p - 1 =a =p _ ~ 
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2.1.2 T h e o r e m The varieties I^jlg,... form a 

properly ascending infinite chain of (proper) subvarieties 

of A A 2. This chain, with A A 2 itself adjoined, makes up =p=p =p=p 

a complete list of non-nilpotent join-irreducible sub-

varieties of . Moreover, to every non-nilpotent 

proper subvariety V of A A t h e r e exists a nilpotent _ =:p_p 

variety L and a uni que such that V = v L. 4'4-(2.2) 

2.1.3 Remark; Let Y be an arbitrary, but fixed non-

nilpotent subvariety of • By Theorem 2.1.2 we have 

2.1. . , Y = V L 

where I is uniquely determined by V, and L is nilpotent. 

Clearly L is not uniquely determined by Y; for example, it 

can always be enlarged by adjoining a nilpotent subvariety 

of I of sufficiently high class. Nevertheless, since by =a 

Lyndon [ T ] lat(L) has minimum condition, there does 

exist an L which is minimal with respect to satisfying 2.1.U, 

and the question naturally arises as to whether such a 

minimal L is unique. This question is taken up in Chapter 3 

where it is shown by way of an example of non-distributivity 

in lat(4249^ that, in general, the answer is negative. 
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2.2 Skeletal Proof of 2.1.2 

This section comprises a series of lemmas which culminate 

in the proof of 2.1.2. In the interests of simplicity of 

presentation the proofs of seven of the most fundamental of 

the lemmas are postponed until later sections, but apart from 

these the argument is complete. 

Many of the lemmas describe properties of 

and these are built up from, the foundations laid in Chapter 

1. This group is denoted throughout the chapter 

by G, Theorem 1.2.2tells us that G' is free abelian of 

exponent p, and the basis for G' that it exhibits enables us 

to express elements of G' in a canonic fashion. In the 

present context, however, the notation may be simplified 

somewhat, and so, for the sake of clarity, the basis for G' 

is redescribed here. 

Let g = {gj' I i £ l"*"} "be a free generating set for G, 

ordered by the rule: g. < g. if, and only if, i £ j• Basic ^ J 
pseudo-coi.imutators are defined ap. follows: 

2,2.1 Definition: A pseudo-commutator (a,b,6) in G 

is called basic if, and only if, 

(1) supp6 o g 

(2) b = minsupp6 
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(3) a f b 

( h ) e i t h e r ( i ) 6 ( a) <_ p^ and £ g ( g. =|= a 6 ( g. ) < p2 ) 

or (ii) 6 ( b ) p^ , a = naxsiapp6 

and V g . £ g (g. ^ h =4- 6 ( g . ) < p M . 

D e n o t i n g t h e s e t of b a s i c p s e u d o - c o m m u t a t o r s in G b y B , 

the b a s i s f o r G ' g i v e n b y ,1.2.2 m a y n o w be e x p r e s s e d b y : 

2 . 2 . 2 T h e o r e m ; The valiiation n a p p i n g (f) : B G is 

o n e - t o - o n e , and Bcf) is a b a s i s f o r G ' . // 

T h e n o t i o n of e x p r e s s i n g e l e m e n t s of G ' c a n o n i c a l l y in 

t e r m s of Bcf) is f o r m a l i s e d as f o l l o w s : 

2 . 2 . 3 D e f i n i t i o n : If w e G ' , w :(= 1 , t h e n w is s a i d to 

b e e x p r e s s e d in n o r m a l f o r m w h e n w r i t t e n w = , 

w h e r e b-|,...,bg are p a i r - w i s e d i s t i n c t m e m b e r s of BfJ) and 

e-,,...,e are i n t e g e r s s a t i s f y i n g e- ^ O ( m o d p ) for each 
J- s J 

j e { l , . . . s } . 

C l e a r l y , an e x p r e s s i o n of an e l e m e n t of G ' in n o r m a l 

f o r m is u n i q u e up to t h e e r r a u g e m e n t of the p r o d u c t and 

c o n g r u e n c e m o d u l o p of t h e i n d i c e s . T h a t i s , if w e G ' 

= 1 '̂s 
is e x p r e s s e d in n o r m a l f o r m b o t h b y w = and b y 
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^t 

w = , t h e n s = t ?.nd, f o r s o n e p e r m u t a t i o n tt of 

{ l , . . . , s } , b . = c. and e . E f. ( m o d p) for each 1 1 IT 1 1 IT i e { l , . . . , s } . 

In a d d i t i o n to b a s i c p s o u d o - c o m m u t a t o r s , " s p e c i a l " 

p s e u d o - c o m m u t a t o r s , and the a c c o m p a n y i n g a t t r i b u t e of 

" p - c o m p l e x i t y " , w i l l b e n e e d e d . T h e s e are d e f i n e d as 

f o l l o w s : 

2.2.)+ D e f i n i t i on ; A ps eudo-comm.ut a t o r ( a , b , 6 ) in G is 

c a l l e d s p e c i a l i f , a n d o n l y i f , 

(1) SUT^plS c g 

(2) b = g ^ 

(3) a = 

(h) 6 ( a ) = 6 ( b ) = 1 . 

T h e p - c o m p l e x i t y of a s p e c i a l p s e u d o - c o m m u t a t o r 
CO 

q = ( a , b , 6 ) in G is d e f i n e d as (l + 2 [ 6 ( g . ) / p ] ) and is 

i = 3 ^ 

d e n o t e d b y c o m p ( q ) . 

T h e d e f i n i t i o n of n o r m a l f o r m m a k e s p o s s i b l e the 

d e f i n i t i o n of " w e i g h t " f o r e l e m e n t s of G ' . In a d d i t i o n , 

s i n c e b a s i c p s e u d o - c o m m u t a t o r s m a y also be s p e c i a l , " s p e c i a l " 

e l e m e n t s (of G ' ) a n d t h e "p~ com.plexi ty" of " s p e c i a l " 

e l e m e n t s can b e d e f i n e d . T h i s is all d o n e as f o l l o w s : 
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2 . 2 . 5 D e f i n i t i o n ; L e t \T b e a n o n - t r i v i a l e l e m e n t o f G ' , 
e e 

e x p r e s s e d i n n o r m a l f o r m b y w = b l . . b T h e n t h e w e i g h t of 
1 s — 

w, d e n o t e d b y w t ( w ) , i s d e f i n e d a s r . i n ( w t (b • (}) ) | j e { l , . . . , s } ) , 
J 

F u r t h e r , i f b - 4 i s s p e c i a l f o r e a c h j e { l , . . . 5 3 } , t h e n w i s 

i t s e l f c a l l e d s p e c i a l ^ a n d i t s p - c o n p l e x i t y , d e n o t e d b y c o n p ( w ) 

i s d e f i n e d a s m i n ( c o n p ( b • (f* ) I ;i £ { 1 , . . . , s } ) . The t r i v i a l 

e l e m e n t i s a l s o c o n s i d e r e d t c b e s p e c i a l , b u t b o t h i t s w e i g h t 

a n d i t s p - c o n p l e x i t y a r e t a k e n a s g r e a t e r t h a n t h a t o f e v e r y 

n o n - t r i v i a l e l e m e n t ; s a y w t ( l ) = c o n p ( l ) = w. 

N o t e t h a t f o r w^^jwj e G ' wt(w]_w2) n ( w t ( w^ ) , wt (W2 ) ) 

a n d t h a t t h i s i n e q u a l i t y c a n b e s t r i c t . A l s o i f w^ a n d W2 

a r e b o t h s p e c i a l t h e n s o i s w ^ w p , a n d 

comp(wQ_W2) compCwj ) , c o m p ( w 2 ) ) J w h e r e a g a i n t h e i n e q u a l i t y 

c a n b e s t r i c t . 

S i n c e f o r c e r t a i n c o n s i d e r a t i o n s s p e c i a l e l e m e n t s a r e 

p a r t i c u l a r l y c o n v e n i e n t , i t i s u s e f u l t o h a v e a m e t h o d o f 

o b t a i n i n g s p e c i a l e l e m e n t s f rom, n o n - s p e c i a l o n e s . What i s 

m e a n t b y t h i s , a n d how i t i s d o n e , i s e x p l a i n e d b y t h e 

f o l l o w i n g d e f i n i t i o n a n d l e m m a , b u t f o r s i m p l i c i t y " n o n -

s p e c i a l " i s g e n e r a l i s e d t o " a r b i t r a r y " : 

2 . 2 . 6 D e f i n i t i o n : L e t x : G G a n d ^ : G G, 

i e l "^ , b e t h e e n d o m o r p h i s m s o f G i n d u c e d r e s p e c t i v e l y b y 

t h e m a p s 
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T : I ^ g; g^T = for all j e l"̂ , 

and K.: g - > G ; g.K.= 1 S ' 1 
g j [ gg > % ] 5 j = i 
g. otherwise J 

Then for all w e G', and all i e l"*", define w^^^ by 

= (wTK. 
X +C. 

2.2.7 Lenna; For all w e G', and all i £ l"̂ , is 

special. Moreover, if w is non-trivial then so is v^"^ for 

at least one value of i. Hi'P.k) 

This completes the prepatory remarks about elements of 

G. Of course, the information about G required to prove 

2.1.2 concerns the verbal subgroups of G, and in this 

connection the follov^ing notation vill be used: The lattice 

of fully invariant subgroups (equivalently; verbal subgroups) 

of G is denoted by lat(G), and if U e lat(G) then id(U) 

denotes the ideal in lat(G) generated by U; i.e. 

id(lJ) = {V £ lat(G)|v < U}, Also, an economy in writing 

will often be achieved by setting i d'" (U) = id(u)\{{l}}. 

The lattice dual-i s omo rphi s m y : ^ ^ lat(G), 

defined by Vy = V(G) for all V £ ^^ 

particularly its inverse., will be employed to interpret 
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statements about 1 at(G) as statements about lat(A A p), and 
=P=P 

those properties of ]l which are described in, or follow 

immediateljr from, sections 3 and of KN will often be used 

without explicit mention. 

Throughout this chapter the A^-subgroup of G is denoted 

by M. Thus M = A (G) = A y and hence M is the unique maximal P =P 

verbal subgroup of G. The first major step towards the 

proof of 2.1.2 is the following: 

u 

Lemma; For all ¥ e id'(G') there exist 

c,d £ l'^, d f 1, such that W = M^^^ O W.G^^^. ^^ 

To see how far this gets us, note firstly that for all 

a e l"̂  "̂ '''(a+l) ^ -a^' Secondly, note that if 
u 

some W £ id (G') can be written W = M^^^ n W.G^^^ for some 

d > then W > G/.n and hence is nilpotent. Noting ~ — ( a; 
finally that G* = A(g) = A^3(g), we have 

2.2.9 Corollary; Let W bo a non-nilpotent proper 

sub variety of 4p4p2, W of exponent p^. Then there exists 

a e l"̂  and a nilpotent variety h such that 1 = SQ̂  ^ L. // 

The proof of 2.2.8 depends on the following five lemmas: 
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2 . 2 . 1 0 L e m n e . ; I f f o r a n o n - t r i v i a l e l e m e n t v e G ' 

t h e i n t e g e r s c a n d . d a r e d e f i n e d b y 

c = m i n ( c o inp ( V ' ̂ ^ ) j i e I ) 

a n d d = m a x ( 0 ,-wt ( w ) - c p ) 

t h e n w e [ M , x , d O ] . + -i- ( 2 . ) {c ) ' 

2.2.11 L e m m a : L e t w "be a n o n - t r i v i a l s p e c i a l 

e l e m e n t o f G ' , w i t h c o m p ( w ) = c . T h e n t h e r e e x i s t s e e l " * " 

s u c h t h a t (w> >_ 

2 . 2 . 1 2 L e m m a : I f w e G 

w t ( v ) > k . m2.3) 

( k ) 
, w h e r e k £ t h e n 

2 . 2 . 1 3 L e m m a ; F o r a l l c ^ e e I , c ^ 2 , 

( c ) ( c - l ) 

2 . 2 . 1 U L e m m a : F o r a l l c e l"^ [ M ( ^ ) , p G ] > 

I n c o n s e q u e n c e o f t h e f i r s t t v o o f t h e s e l e m m a s v c h a v e : 

2 . 2 . 1 5 L e m m a : L e t w e G ' , v + 1 . T h e n t h e r e e x i s t 

e e l"" s u c h t h a t M ( ^ ) > (v) > [ M ^ ^ ^ . e G ] , w h e r e 

c = m i n ( c o m p ( w ^ ̂  ^ ) Ii e I ) . 
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P r o o f : I t i s i m m e d i a t e f r o m t h e d e f i n i t i o n ( 2 . 2 . 6 ) 

( i ) 
t h a t w ^ e {w) f o r a l l i e I . I n p a r t i c u l a r , c h o o s i n i n g a n 

+ 
i n t e g e r i ^ £ I s u c h t h a t 

comp(-w ) = m m ( c o m p (V?- ) i e I ) = c, 

(i H 

i t f o l l o w s t h a t <w> ^ a n d h e n c e , f r o m 2 . 2 . 1 1 , t h a t 

t h e r e e x i s t s e e l s u c h t h a t (w) ^ O n t h e o t h e r 

h a n d , 2 . 2 . 1 0 s p e c i f i e s a n i n t e g e r d £ I s u c h t h a t 

w e a n d f r o m t h i s w e h a v e , a f o r t i o r i , t h a t 

w £ '^^(r)* H e n c e M ^ ^ ^ (w) a n d t h e l e m m a is p r o v e d . // 

T h e a h o v e l e m m a e a s i l y g e n e r a l i s e s t o g i v e t h e f o l l o w i n g ; 

2 . 2 . 1 6 L e m m a ; L e t W £ i d'̂  ( G ' ) • T h e n t h e r e e x i s t 

i n t e g e r s c , e £ l"^ s u c h t h a t M ( ^ ) ^ ^̂  1 t^'-(c)'®^^' 

P r o o f : L e t { w ^ J X £ A } h e t h e c o m p l e t e s e t o f n o n - t r i v i a l 

e l e m e n t s o f W . F r o m 2 . 2 . 1 5 v o h a v e t h a t f o r e a c h X e A t h e r e 

e x i s t £ l"" s u c h t h a t ^ > a n d 

s i n c e W = i t f o l l o v s t h a t ^ ^ / ^ { c ^ ) ^ x V a ^ X) '"" ^ 
> £ A 

N o w c h o o s e A £ A s u c h t h a t c = n i n ( c |A £ A) a n d w r i t e c = c 
A ^ 

a n d e = e _ . T h e n , s i n c e M ^ ^ ^ > M ^ ^ ^ ^ ) > w e h a v e 

A 

( c ) A £ A ^ A^ 
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The proof of 2.2.8 comes easily from 2.2.l6 and one 

further lemma, 2.2.18 below. The proof of the latter uses 

the following observation, which is very similar to 2.2.12 

2.2.17 Lemma: If w e M, . O G', k e I"̂ , then — (k) 
min ( comp (w^ ̂  ̂  ) I i e I"*") > k. 

Proof: If w = 1 the lemma is im.mediate, so assume w f 1 

Then from 2.2,15 there exists e e l"̂  such that 

\w/ ^ [m^^J^JCG], where k' = mi n ( comp (w ^ ̂  ) | i £ l"^). From 

this it follows that ^ but unless k' ^ k 

this contradicts 2.2.13. // 

2.2.18 Lemma: For all c,e e l"̂ , 

> ^c) ^̂  ̂ (cp.e)-

Proof: It is sufficient to show that every non-trivial 

element of M^^) O G^^^^^) is a member of [M^^^JCGI. SO let 

w be any such element. Then from 2.2.12 and 2.2.17 there 

exist a^.a^ e I such that wt(w) = cp + e + a^ and 

min(comp(w^^^)|i e l"") = c + a^. Hence by 2.2.10, 

W e [M/ ^,dG] where d = max(0,cp+e+a -(c+a2)P) = 
(, c +a2 i 

max(0,e + a,-a^p) . Nov it follows from 2.2.lli that 

[M, -.dG] < [M. w(d^a2p)a] and thus w £ [M(^),d'G] where ( c + â  J ' — V c.) 



d' = d + a^p = max(0,e+a^-a^p) + agP 

= inax( a2P , e+a^ ) 

> e + a, > e. 

This shows that w e [M, N J G G ] , as required. // ( c ) 

Proof of 2.2»8; From 2.2.l6 and 2.2.18 it fol3.ows that 

for all W £ i d# (G' ) there exists c,e e l"̂  such that 

M, , > W > M, , A G. .. Sotting d = cp + e (note that (cj - ~ (c) U p + e) 
d ^ 2) this gives 

v; = ^ G,^)) = M(^) W.G,^), 

the latter equality holding hy reason of the modularity of 

lat(G). // 

The second stop towards the proof of 2.1.2 is the 

following: 

2.2.19 Lemma; For all c,d e l'^, c ^ 1, 

U ) -- {c-l) (d) 

, + 
Proof: Assume to the contrary that for some c,d £ I , 

c > 2, M, > M, ^ n G. .. Then, since clearly 
— {c) ~ [c-1) V d J 

M, . n G. . > [M. it follows that M ^^ i 
(c~l; (d) ~ IC-Ij 

and this contradicts 2.2.13. // 



2 . 2 . 2 0 C o r o l l a r y ( i ) ; The v a r i e t y C^ i s n o n - n i I p o t e n t 

P r o o f : I f Ĉ  we re n i l p o t e n t then we would have t h a t 

o) ^ '^^(d) some d e l"^. But t h i s i s i m p o s s i b l e , s i n c e 

2 .2 . , / : l C o r o l l a r y ( i i ) : Le t a , 3 e l"^ w i t h a < g , and 

l e t L he a n i l p o t e n t s u b v a r i e t y of . Then C^ y ^ gĵ  • 

P r o o f : Assume t h e c o n t r a r y . Then f o r some a , 3 , d e l"*", 

and some W £ l a t ( C T ) , where a < 3 and W we have 

^̂ (̂a + l ) — S e t t i n g c = a + 2 and a = 3 - a ( so 

a _> 1 and c _> 3) ve c o n c l u d e t h a t 

wh i ch c o n t r a d i c t s 2 . 2 . 1 9 . // 

The n e x t s t e p i n t h e a rgument i s Lemma 2 , 2 . 2 2 b e l o w . 
2 

In t h i s lemma, and f r e q u e n t l y t h e r e a f t e r , t h e n o t a t i o n G 

i s u s e d as a s h o r t h a n d f o r t h e v e r b a l subgroup B ^ z C g ) . 

A l t h o u g h t h i s n o t a t i o n c o n f l i c t s w i t h t h a t f o r c a r t e s i a n 

p o w e r s , t h e mean ing w i l l a l w a y s be c l e a r from t h e c o n t e x t . 

2 . 2 . 2 2 .Lemma: For each c e { 2 , . . . , p } , 
2 



H . 

2 . 2 . 2 3 C o r o l l a r y : F o r each a e { l , . . . , p - l } , 

C = I V A 3 , I I =a =a ^ =p ^ ' ' 

The p r o o f o f 2 . 2 . 2 2 depends on t he f o l l o w i n g lemma 

2,2.2h Lemma; M, v > G - ^ o G ' . 4-4^(2.6) 
V p y — 

P r o o f o f 2 . 2 . 2 2 ; I f c ^ 2 t h e n M^ ^ ^ <_ G ' , so f o r 

c e { 2 , . . . p } we have f r o m 2 . 2 . 2 U t h a t 

H e n c e , u s i n g m o d u l a r i t y , we have 

2 2 
M. X = M, O G ' ) = M/ x.G^ O G ' . // 

I c j I c j I c j 

The c o r o l l a r y t o Lemma 2 . 2 . 8 c o n s i d e r e d the n o n - n i I p o t e n t 

s u b v a r i e t i e s o f A A « w h i c h have e x p o n e n t p ^ . The c o r o l l a r y =p = p2 
2 

to t he f o l l o w i n g lemma c o n c e r n s t h o s e h a v i n g e xponen t p . 

2 . 2 . 2 5 Lemma; L e t V = G^.'v/, W e i d ( G ' ) . Then t h e r e 

e x i s t c,.d £ 1 " * " , c £ p , d > 1 , s u c h t h a t V = ^ V . G ^ ^ ^ . i ^ 

2 . 2 . 2 6 C o r o l l a r y ; L e t Y a n o n - n i I p o t e n t ( p r o p e r ) 

s u b v a r i e t y o f A A o, V o f e x p o n e n t p ^ . Then t h e r e e x i s t s 

a e { l , . . . , p - l } and a n i l p o t e n t v a r i e t y L s u c h t h a t Y = ^ = ' 



P r o o f : I f Y e l a t l ^ ^ ^ ^ ^ a ) has exponent p^ t h e n 

Y y = V = G" .¥ f o r some W £ i d ( G ' ) , and f r o m 2 .2 .25 

V = G^ .M^^) o V .G^^^ f o r some c , d £ l , c j < p , d ^ l -

Wow i f c = 1 t h e n V _> making Y = Vu ^ n i l p o t e n t 

Hence i f V i s n o n - n i l p o t e n t t h e n 

where L i s n i l p o t e n t and a = c - 1 e { l , . . . , p - l } . The 

c o n c l u s i o n f o l l o w s . // 

The f o l l o w i n g t h r e e lemmas l e a d up t o the p r o o f o f 2 .2 .25 

- 1 - 1 

2 . 2 . 2 7 Lemma: L e t a e G; b £ G ' ; and r e I . Then 

( a b ) r _ 

r 

a n [ b , ( i - 1 ) a ] ' ' . 
i = l 

P r o o f : R o u t i n e i n d u c t i o n on r . // 

. 2 . 2 8 Lemma; [ g 2 » S i > ( P ^ ^ § 3 ^ ^ ^̂  

P r o o f : From 2 . 2 . 2 7 we have 

2 P 

r P 
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2 P but for each i e { 1 , , . . , p ^ - 1 } , ^ 

G' has exponent p t h i s leads to 

- O(mod p), and since 

2 n P P 
(§3 ) (g3[g2.g;L]) = ] . 

The conclusion fol lows: / / 

2 . 2 . 2 9 Lemma; Let VJ e i d ( G ' ) , ¥ _ > G^ G'. Then ther€ 

ex ist c ,d £ l"^, c < p, d =[: 1 , such that W = M/ v n W.G, 
~ ( c} ( d) 

Proof: In view of 2 . 2 . 8 i t i s only required to prove 

that c < p. To do t h i s , note from 2 .2 .28 that 

f g2 5 gĵ ) (p^-1) g3^ ^ '^(c) since [ g2 , > ( P^-1) S 3 3 i s special 

with p-complexity p i t follows from 2 . 2 . 1 1 that 

-''(c) some e c l"*". But from 2 . 2 . 1 3 this i s 

im-possihle unless c p. / / 

2 2 2 
Proof of 2 . 2 . 2 ^ : Since G .̂W = . G ' ) , we may 

2 
assume without loss of genera l i ty that W 2 ( ' ' • G')* Hence, 

using 2 . 2 . 2 9 , 2 . 2 . 2 2 and modularity, there exist c £ { l , . . . , p } , 

d £ such that 

2 2 
V = GP.W = ^ '^^-^(d)^ 



Sufficient material is now available to prove the 

following two lemmas, and from these Theorem 2.1.2 will be 

deduced. 

2.2.30 Lemma; Let V be a non-niIpotent proper 

subvariety of A A 2. Then there exists a £ I and a nilpotent -p-p 
variety L such that Y = I V L-cx 

Proof: The exponent of V is either p^ or p^, for the 

exponent must divide p^ and cannot be p since by Meier-

Wunderli [ 8 ] any metabelian variety of prime exponent is 

nilpotent. If the exponent is p^ then 2.2.26 applies 

leaving nothing to prove. If, on the other hand, Y has 

exponent p^ then from 2.2.9 there exists a e l"*" and a 

nilpotent variety L such that Y = Ŝ ^ v h' either « ^ p, 

so C = I and we are finished, or a £ {!,...,p-D in which 
=a =a 

case Q^ = v by 2.2.23, and thus I = v (Ap3 v . 

Sincc V L is nilpotent, this completes the proof. // 

2.2.31 Lemma; The varieties I^, a £ l"̂ , are non-

nilpotont, and if a < 3 then v h ^ nilpotent 

subvariety L of A A 2 . - -P ~P 



Proof: By 2.2.23 = v , and by 2.2.20 g^ is 

non-nilpotent. It follows that I^, and hence for all 

a £ l"*", is non-nilpotent. 

To prove the second part, note that for all a 8 I C ~ cx 
has exponent p^, so that C 3 A 3 and hence, trivially, -u -p 
C^ = C V A 3. Combining this with 2.2.23 it follows that — LX — Ui "" X̂  
-a ia =p^ all a £ l"̂ . Now let L e latC^^^^^a), L 

nilpotent, and let a,3 £ I w i t h a < 3. Suppose, contrary 

to lemma, that v L 3 Then it follows that 

s/ L) V A 3 r> V A 3 , i . e. that C^ V L Co, and = a = _p _ _p =u = — =p 
this contradicts 2.2.21. // 

Proof of 2.1.2? That ca ch member of the infinite 

ascending chain of (proper) subvarieties S. 1,2 - ..-is 

non-nilpotent is given by 2.2.31, and from the same source 

it is clear that the chain ascends properly. (Put L = E 

and 3 = a + 1 ) . Jumping now to the last part of the theorem, 

in view of 2.2.30 it is only required to show that if 

a,3 £ I"̂ , a i 3, and L ,L are nilpotent subvarieties of ' » T > =i'=2 
A A ,, then I v L 4 I v I. . But this follows from 2.2.31, 
=p=p'' =a =1 =3 =2 
for we may assume without loss of generality that a < 3, so 

that I V L d> I and therefore, in particular, 
=a =1 =3 

I '̂ L " I V L„ . =a =1 ^ =3 =2 
Now let Q = {I la £ 1+} U {A A 2} and let fi* denote the 

• =a =p=p 



set of non-nilpotent join-irreducible subvarieties of A A 2 . 
=p=p 

From 2.2.30 it is clear that fi* c Q., so that the proof will 

be complete once it has been shown that every member of fi is 

join-irreducible. 

Firstly, is join-irreducible because by 2.2.30 it 

has no non-nilpotent proper subvarieties. Secondly, 

I., 3 e r \ { l } is join-irreducible because of the following 

cons i derati on: 

Suppose to the contrary that = V. v V_ where each of = fi -L =d 
V^ and V^ is a proper subvariety of Then at least one 

of Iĵ i'̂ p must be non-nilpotent, say V^ , so using 2.2.30 we 

can write V = I v L « where L is nilpotent and 1 < a < B. = 1 =a. =1' =1 -
(The latter because V is a proper subvariety of ). 

= 1 =p 

Regarding V^, either it is nilpotent, say V^ = L^, or non-

nilpotent, say V^ = ly nilpotent and without 

loss of generality we may assume that 1 ^ Y £ Setting 
L = L V L , both cases give Ip = L, which is impossible. 
= = 1 = 2 - P -

Finally we must show that A A 2 is join-irreducible. -p=p 
But if it were not, then, as before, we would have that 

^ A 2 = I V L for some a e I"'' and nilpotent variety L, and 
=P=P =a 
this is impossible, for it implies that v L = // 

2.3 The Proof of 2.2.12: 

The fact that the p-group G has derived group of 
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exponent p leads to several simplifications in calculations 

involving commutator elements of G. Essentially, these 

simplifications result from the four identities listed in 

the following lemma: 

r. .3.1 Lemma: Let u,v,w e G. Then 

( i ) [u ,pv] = [u,vP] 

(ii) [u,v,p^vr] = 1 

(iii) [u,v,{p^Ujp-v}] = 1 

( i v ) [u,p^w,v] = [ V J P ^ W J U ] . 

Proof: (i) By 1 .6.2: 

P 
[u,v^] = n [ u , i v ] 

i = l 

But for i £ {l,...,p-l} 

follows. 

E O(raod p) and the conclusion 

(ii) By 1.6.3, [x,y,z^ ] is a law in G, and 

hence using 1.6.2 we have 

1 = [u,v,w^ ] = n [ u , v , iw ] 
i = l 
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But for i e {1, . . . ,p-l} 

follows . 

= oCmod p) and the conclusion 

(iii) By 1.6,6: 

[u,v,{p u,p v)] = 
2 2 P P 

n n [u,v,iu,jv] 
i=i j=i 
i+j<2p' 

2 ̂  r 2 ̂  P p 
J . 

and the conclusion follows as before. 

(iv) By 1,6.7: 

p'-l -1 i 
[u,TD^w,v] = [v,p^w,u] n ( [ v,iw,u] [u,iw,v] ) 

i=l 

and the conclusion again follows similarly. // 

The next lemma is more directly relevant to the aim of 

this section, "but before moving on to this lemma it is 

perhaps helpful to remark on a convention used in its proof 

(and in the proofs of future lemmas too). When an arbitrary 

finite subset of g is denoted by {a , i t is r ^ 

assumed that a <...< a , although of course it ^s assumed 1 s 
that P ^ a if i j. However, note that a phrase such as 

i j 
"Let (a ,a ,6) £ B with suppo = {a , t a c i t l y 
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i n v o l v e s t h e a s s u m p t i o n t h a t m i n { a , . . . , a } = a , a n d t h a t 
^ 5 ^ 

-m a x { a . , . . . , a } = a , i f 6 ( a ^ ) = p 
i. s 1 2 

2 , 3 . 2 L e m m a ; L e t ( a ^ , a ^ , 5 ) "be a p s e u d o - c o m m u t a t o r i n 

G w i t h s u p p 6 c g a n d n o n - t r i v i a l v a l u e . T h e n 

w t ( f a-, , a g , <S ] ) = w t ( ( a ^ , a ^ , 5 ) ) . 

P r o o f : L e t s u p p 6 = { a j _ , . . . , a^ } v h e r e s 2 s i n c e a ^ f ag . 

F r o m 2 . 3 . l ( i i ) a n d ( i i i ) a n d t h e a s s u m p t i o n t h a t [ a j , a 2 , 5 ] f 1 

i t f o l l o w s t h a t ^ ( ) p ; 6 ( a g ) < p ; ^ ( a^ ) < p ^ f o r 

j e { 3 , . . . , s } ; a n d 5 ( a3_) a n d 5 ( a g ) c a n n o t b o t h b e p ^ . 

T h e r e a r e n o w t w o c a s e s t o c o n s i d e r . 

( i ) S u p p o s e m i n { } = a i , w h e r e a ^ ^ a i ^ a 2 . 

B y 1 . 6 . 1 ( 5 ) a n d ( 3 ) [ a ^ , a 2 , 5 ] = [ a ^ , a ^ , <5 ] [ a j , a^^, 6 ] a n d i t 

f o l l o w s f r o m t h e r e s t r i c t i o n s o n t h e v a l u e s o f t h e ( a • ) 

,i = l , . . . , s t h a t t h e p s e u d o - c o m m u t a t o r ( a j , a £ , 5 ) i s b a s i c 

u n l e s s ^ ( a g ) = P ^ , i n w h i c h c a s e = 1 ( b y 2 . 3 . l ( i i ) ) . 

A s i m i l a r s t a t e m e n t h o l d s f o r ( a g , a ^ , 5 ) , s o we c o n c l u d e t h a t 

t h e e x p r e s s i o n i n n o r m a l f o r m [ a i , a 2 , ^ ] i n v o l v e s o n l y t h e 

v a l u e s o f b a s i c p s e u d o - c o m m u t a t o r s w i t h d e g r e e f u n c t i o n <5. 

T h u s w t ( [ a i , a 2 , 5 ] ) = 6 ( a j ) = w t ( ( a i , a 2 , M ) . 

J = 1 
( i i ) T h e a l t e r n a t i v e c a s e o c c u r s w h e n m m 1 - a ^ , . . . , ag •fai a o ^ i 1 s 

a ^ o r a 2 . I n f a c t we m a y a s s u m e i t i s a 2 f o r c l e a r l y 

w t ( ( a i , a 2 , ' 5 ) ) = w t ( ( a j , a i , 5 ) ) a n d w t ( [ a i , a j , ] ) 

= w t ( [ a 2 , a i , < S ] ~ ^ = w t ( [ a 2 , a i , 5 ] ) . F u r t h e r , i f 5 ( ^ 2 ) = p ' 

t h e n wo m a y a s s u m e t h a t m a x { a i , . . . , a ^ > = a i . F o r i f t h e m a x i s 
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then [p.^ja^.S] = (by 2 . 3 .1 ( i v) ) , 

and thus 

wt ( [ a^ , a^ , 6 ] ) = wt ( [ , a^ , 6 ] ) . 

At this stage we are in fact assuming that (a^,a^,6) 

is hasic, so there is now nothing to prove. // 

2.3.3 Corollary; Let (a^,a^,6) be a pseudo-commutator 

in G with supp6 c g and non-trivial value. Then for all 

a e g 

wt([[a^,a2,5],a]) > wt([a^,a^,6]) + 1. // 

The above corollary generalises considerably: 

2.3.U Lemma: Let w e G', v e G, with w f 1 ^ v. Then 

wt([w,v]) ^ wt(w) + 1. 

Proof: Since G has finite exponent v = g. g. ...g- s 
for some e (not necessarily all distinct). Thus 1' ' s 
[w,v] = [w,g. ...g. ] and we may now proceed by induction on 

s. To deal with the preliminary case, s = 1, first express 
e, e. 

w in normal form by w = b^ ••'^'t ^ ' ^^^ 

each j e {l,...,t} w > wt(bj) > wt(w). Then 



e, e 
w t ( [ w , g . ]) = wt( [ b ^ . . .D ,g. ]) 

1 ̂  1 ^ 1 

G Q 

= ] . .[b, ,g. ] 
1 ^ ^ 1 

> m i n ( w t ( [ b . , g . ])|j £ { l , . . . , t } ) 
J "l 

^ m i n ( w t ( b . ) + l|j e { l , . . . , t } ) (by 2 . 3 . 3 ) 
J 

>_ min( w t (b . ) I j £ { l , . . . , t } ) + 1 
J 

^ w t ( w ) + 1. 

The i n d u c t i v e s t e p is as fo3.1ows : 

w t ( [ w , g . . . . g • ]) = w t ( [ w , g . ...g- H w , g - . . . g - ,g- ] [ v , g ^ ] ) 
^s s - 1 1 s - 1 s s 

> Eiin(wt( . . .g. ] ) ,wt( [w,g. . . .g. ,g. ] ) ,vt( [w,g. ])) 
^ s - 1 - s - 1 ^s ^s 

^ n i n ( w t ( w ) + 1 , w t ( w ) + 2 , w t ( w ) + l ) ( i n d u c t i v e h?/pothesis 
a n d case s = l) 

> v t ( w ) + 1. // 

r r o o f of 2 . 2 . 1 2 : S i n c e + = ^^(c)'*^^ ^^^ 

c e l"^, L e m m a 2 . 2 , 1 2 e a s i l y f o l l o v s f r o m 2 . 3 . ^ b y i n d u c t i o n 

on c. II 
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2.U The Proofs of 2.2.7, 2.2.10 and 2„2.lU 

We deal with Lemma 2.2.1U first, as it is needed for 

the proof of 2.2.10. However, rather than proving 2.2.lk 

di re ctly, we first prove a stronger result. Lemma 2»h,2 

below, and s ub s e quen t Ijr deduce 2.2.11+ as a corollary. The 

reason for this indirect approach is that Lemma 2.h.2 will 

be needed in section 2,5. 

We begin with a definition: 

2.U.1 Definition: For all c £ l"^, e e l the verbal 

subgroups U(c,e) and V(c,e) of G are defined as follows: 

U(c,e) = 

V(c,e) = . . . . . . } ( G ) 

The following examples should remove any uncertainty 

as to the intended meaning of the notation used in the 

defi ni ti on : 

U ( 1 , 0 ) = { y ^ } ( G ) = B (G); V ( l , 0 ) = { [ x , , X 2 ] } ( G ) = A(G); 

U(2,2) = ,Zp]}(G); V(2,2) = {[x^,Xg,y2' '"2^^^^^' •1' 2 

Similar notations will be used frequently in the sequel, 

but no further comments on interpretation should be necessary. 
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2.U.2 Lerama: For all c e l"̂  and e e I, 

[M^^^ ,eCT] = U(c,e) .V(c,e) . ^ + 

The proof of 2.h.2 uses the following two lemmas: 

2.U.3 Lemma: Let m £ M. Then there exist v e G and 

v' £ G' such that m = v^v'. 

Proof: Clearly m E v?...v^(mod G') for some 

V e G. But E ( V-, . . . v^ mod G'). Thus 
_i_ S S - 1 - i - j 

V 

writing v = we have m = v^v' for some e G' // 

Lemma: Let c e 1 \{l}; £ G; and 

v' ...,v' £ G'. Then 1 c 
-1 

Proof: The proof is hy induction on c. For c - 2 

V ' V ' V ' V I 
= [t^.t,] ^ ^[v'.tg] 

-1 
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For c > 2 the inductive step is as follows: 
= 

= 

•[[̂ i"; 

= [ t^ , . . . , t^] [ v^ , t^, t^ , . . . . . . .// 

Proof of 2>U.2; It is immediate that 

>_ U( c , e ) . V( c , e ) ; only the reverse inclusion 

requires proof. Now by definition 

c) ' • • '^^^c'^l' • ' • '̂ ê' i • • • • • • ' 

so that in view of 2. . 3 it is sufficient to provu 

2.k,5... Vv^, . . . . . . e G; e G'; 

e U(c,e).V(c,e). 

In proving 2.U.5 the case c = 1 is a little exceptional, 

so we consider it separately first: If e = 0 the statement 

is trivial, for it merely asserts that £ G^G' for all 
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e G, v] £ G'. If, on the other hand, e > 0 then 

[ , . . . = [ [ . . . 
P 

= [ vj , . . . [ , . . . 

so 2.^.5 follows because clearly [ w^^, . . . ,Wg ] e U(l,e) 

and, since V(l,e) = G(2+e)> ^ » • • • »^^ ] £ V(l,e). 

For the proof of 2..h.2 it now remains to prove 

2 . . 5 for the case c 2 : Using Z.h.k we have 

[ vfvj;, . . . , . . . 

- 1 
r P P 1 r J P P P 1 = L vj , . . . , v-̂  , . . . J L v^ ,vj, v^, . . . , v^ , . . . J 

• [ , v ^ , . . . , v ^ , ... 

Further, any v' £ G' can of course "be written in the form 

k e. 
v' = u that we deduce from the equation 

i =1 

immediately above that 

[v^v^, . , . .V^V^jW^, . . . 

=1 

for some integers i^,,..,f^ and for some , U 2 • , ^ 2 ^ , • • • ^ G, 

i = 1,...,^. This finishes the proof, for 
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[ v ^ , . . . , Y ^ , . . . ] e U(c,e) and 

' • • • " • •'^e^ £ V(c,e) for each 

i £ {l, . . . // 

Proof of 2.2.1k: In view of 2.h.2 it is sufficient to 

show that for all c £ I U(c,x?) ^ U(c+1,0) and 

V(c,p) _> V(c + ].,0). Only the first of these two inclusions 

is proved here, since the proof of the second follows a 

completely parallel course. 

U(c,p) = {[y^, . . . , . . . }(G) 

= gp( [ v^^, . . . . . . ,Wp] I v^, . . . . . . ,Wp £ G) 

I gp( [ v^, . . . I V3_ , . . . £ G) 

= £ G) (by 2.3.l(i)) 

= U(c + 1,0). // 

We come now to the proofs of 2.2.7 f'-nd 2.2.10. 

It is clear from Definition 2.2.6 that for each (fixed) 

i £ I the mapping of G' into itself given by w w lor 

all w £ G' is an endomorphism of G'. The first objective, 

therefore, wi^l be to describo the effect of these 
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endomorphisms of G' on members of the basis Bcj), Such a 

description is a little too involved to give in a single 

statement, but all the necessary information is contained 

in items 2 . i;. 5 through 2.U.8 below: 

2 . li, 5 Definition: For any function 6 : g I, and 

any i £ l"*", define the function by the following rules 

S ^ ^ ^ g ^ ) = S ^ ^ ^ g ^ ) = 1 

= M g . ) - 1 

= for all j £ r\{l,2,i+2}. J J ^ 

2.4.6 Lemma: Let ( ĝ . , ĝ- ,6) be a pseudo-commutator 

in G with supp6 - g. Then 

(i ) 
(i) [g. ,g. ,6] = i M a. ̂  12 ^ ^ 

(^p) (i ) 
(ii) [g- ,gi .5] = 

1 2 

(i) 
(iii) [g. ,g. ,6] = 1 for all i £l+\{i ,1 }. I T -2 

Proof: Let sm5p6 = {g. , . . • , g - > ^̂ nd set d = 5 ( g • _ ) , 
^s "J 

j = l,...,s. Then we can write 
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and so 

t S,- , g • , 6 1 T 

Now by definition 

( i j -1 

but 

[ g,- ,6]TK- .p 

2 3 s 

-L 2 X 2 J o 

^ (by 2..U.k) 
= [ g,- ,6 ]t[ gp ,g. ,6 ] 

and part (i) of the lemma follows. The proof of part (ii) is 

so similar that we omit it. Part (iii) is again proved along 

similar lines, except in this case the application of 

2,k,k gives 
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"" for all i e 

But this, of course, is just wha„t we need. // 

2.U.7 Remark: It is clear from 2 . . 5 that if 

(g- jg- j6) is a pseudo-commutator in G with supp6 c g then 
^ 1 ^ 2 ^ J 'i )= 

the pseudo-commutators (gp , g^, 6 1 ) and (gp,g^,6 "'"2 ) are 

s pe ci al. 

2.U.8 Lemma; Let (g. ,g. ,6) e B and let {k,£} = {1,2}. 

Then for both k = 1 and k = 2 

(i) 6(g. ) < p^ e B 

(ii) 6(g, ) = p2 =# [ g p , g . = 1 

Proof: From the definition and the fact that 

(g£ is basic it follows that < P^ for all 
^ + ( i' ) j e l"̂  unless 6(g- ) = p^, in which case 5 ^^ ~ 

£ ^ 

Part (i) of the lemma now follows immediately and for part 

(ii) simply observe that [gg^g^'P^Si +2^ = 1 by 2.3.l(ii) // 

We are now in possession of enough information to prove 

the first part of Lemma 2.2.7, viz: 
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2.U.9 Lemma; For all w e G' and all i e l"*", is 

spe ci al. 

Proof: For v = 1 there is nothing to prove, so let w 

he expressed in normal form hy w = • •'^t > "t ̂  i • Then 

for anĵ  i e I w = (b^ ) ...(h^ ) and since a product 

of special e2ments is itself special it is sufficient to 

prove 

2.I4.IO... If (g. ,g. , 6 ) e B then [ g. ,g. , 6 ] is special 
1 2 

for all i e l"̂ . 

Now if i^ i =1= î ^ then 2.U.10 is immediate from 

2.f|.6(iii). Consider next the case i = i^. From 2 . . 6 ( i ) 

[g. ,g. = [gp,gT c.nd hence f rom 2 . . 8 ( i i ) 

[g. ,g. = 1 if 6(g. ) = p ^ On the other hand if 
-2 

6(g. ) < v^ then from 2.U.8(i) and 2.k.T ( gg , gj > ^ ̂ ^ ̂  ) 

both basic and special and hence ^^ special 

(but this time non-trivial). The proof for the case i = 

is similar, but starts with 2.U.6(ii). // 
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As will l)e shown presently, the second part of Lemma 

2.2.7 follows from Lemma 2.i+.ll below. However, I should 

point out that 2.U.11 is not really essential for this, 

since a proof of the result can also be obtained by putting 

together suitable parts of the various subsequent lemmas. 

But although such a proof might be more natural, the proof 

given here is tidier and more direct. Moreover, Lemma 

2.U.11 is of interest on another score, for it may well also 

provide the starting point for a shorter proof of 2.2.10 

than is given here. (Unfortunately my efforts in this 

direction have been unsuccessful). 

2,U.ll Lemma; For all w e G' and all v e G 

[w,v] e I i e l"̂ ) . ^ + 

The proof of 2.k.ll uses the following definition, lemma 

and corollary: 

2.U.12 Sefinition; For each v e G and i £ I let 

a(v,i) : g G be the mapping defined by 

g^a(v,i) = V 

g^a(v,i) = g^ 

g.a(v,i) = g._2 j ^ I'-^d.S}. 
J J 
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Then define a(v,i) : G ^ G to be the endomorphism of G 

induced by mapping a(v,i). 

2.^^.13 Lerama; For all (g. ,g. ,6) e B, and all v e G, 

(i^) (ig) 
([g- ,5] a(v,i ))([g. ,6] a(v,i )) 

= [ [ g,- ,6] ,v] . 
1 2 

Proof: One checks easily that 

and 

Hence we have 

([g. ,g. ,6] a(v,i ))([g. ,gi ,6] a(v,i2)) 

_1 (by 2.U.6) 

= [g- ,g- .5+X ^ 1.6.1(3) and (?)) 

= [[g. ,gi ,6],v]. // 1 -, X 2 
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2.U.1U Corollary; Let ( g. ,g. ,6) e B; let v e G: 

and let J be Q' finite sutset of I such that {ij,io} c_ J. 
Then 

( j ) 
n ([gi ,gi ,6] a(v,j)) - [[g- ,6],v] 

jej 1 2 '•2 

Proof: The proof is imiiiedi ate from 2Ji-.13 and 2.U.6(iii)// 

Proof of 2.U.11: For w = 1 there is nothing to prove, 

so let w be expressed in normal form by w = . • .b^ » ^ ^ • 

For each k e {l,...,t} let " = (g,- , g^ ,5,) and set 
t ^ "̂Ik 2k "" 

J = ' / {g. ,g- }. Then for any v e G \re have 
k=l ^Ik ^2k 

/ • N t e, (j ) 
n = n (( n b^"") a(v,j)) 

jej jej k=l 

= n (( n ( b p h ) a ( v j ) ) 
jcj k=l 

n ( n 
jej k=l ' 

n ( n 
k=l jej 

k=i ^ 
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t ej^ 
= [ n bj^ , v ] (by 1 . 6 . 1 ( 2 ) ) 

k = l 

= [ w , v ] 

Hence [ w , v ] e e j ) ^ and 2 . 4 . 1 1 f o l l o w s . / / 

P r o o f o f 2 . 2 . 7 ; In v i e w o f 2 . U . 9 and 2 . U . 1 1 i t i s now 

s u f f i c i e n t t o show t h a t i f w £ G, w ^ 1 then t h e r e e x i s t s 

V e G such t h a t [ w , v ] j= 1 . 

Let w be e x p r e s s e d i n normal f o r m by w = b . . .b , -L "C 
where f o r j = l , . . . , t = ( a . , b . , 6 . ) s a y , and c h o o s e 

^ J J J J 
V such t h a t v e g \ l ^ s u - D p 6 . . Then 

= j = l ' ^ 

t e . t e . 
[ w , v ] = [ n b , v ] = n [b . , v ] 

and h e n c e 

t e . 
2 .1| .15 . . . [ w , v ] = n [ a . , b . ,6 1 ^ . J J o V 

But t h e p s e u d o - c o m m u t a t o r s ( a^ , b^ , 6 ̂ ) , . • • , ( a^ , b^ , 6 ^ ) 

are a l l b a s i c ( b e c a u s e o f t h e c h o i c e o f v ) and are p a i r w i s e 

d i s t i n c t ( b e c a u s e are p a i r w i s e d i s t i n c t ) , so t h a t X K 

[ w , v ] i s i n f a c t e x p r e s s e d i n normal f o r m by I't 

f o l l o w s t h a t [ w , v ] 1= 1 . / / 
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The remainder of this section is concerned solely with 

proving Lemma 2.2.10. To simplify the language of the 

argument the following notation and terminology has been 

adopted: 

2.U,l6 Hotation; For any w e G' denote 

min( comp(w^ ̂  ̂  ) j i e l"'") by mic(w). 

2.U.17 Definition: Let w be a non-trivial element of 

G' and set c = mic(w) and d = max(0,wt(w)-cp). Then w is 

said to be well-behaved if, and only if, w e 

In terms of 2.^.17 Lemm.a 2.2.10 says precisely that 

every non-trivial element of G' is well-behaved. The 

following lemma indicates how the task of proving this 

statement is reduced: 

k 
2.H.18 Lemma; If w = H w^ f 1, where, 

i =1 

(1) w,,...,w, are well-behaved members of G' 

(2) wt(w) = min(wt(w^)|i e {l,...,k}) 

( 3 ) mi c (w ) = mi n ( mi c (w ̂  ) I i £ {1, . . . , k } ) , 

then w is well-beha-ved. 
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P r o o f : S e t c = m i c ( w ) , d = m a x ( 0 , v t ( w ) - c p ) and f o r 

each i e { l , . . . , k } s e t ĉ . = m i c ( v r ^ ) , d^ = max( 0 , wt ( ) - c^ p) 

For any i e { l , . . . , k } we know f r o m ( l ) t h a t 

^ ^ c . ) f r o m ( 3 ) t h a t c^ ^ c . F u r t h e r , f rom 

2 . 2 . 1 ^ i t f o l l o w s t h a t 

and h e n c e t h a t w^ £ [ ^̂ ^ ^ ) > ' G] , where 

d ' = d^ + ( c ^ - c ) p 

= max ( 0 ,wt (w^ ) - c^p ) + ( c ^ - c ) ; 

= max( ( c^.-c )p ,wt (w^ ) - c p ) 

max ( 0 ,wt (w^ ) - cp ) 

> m a x ( 0 , w t ( w ) - c p ) ( f r o m ( 2 ) ) 

= d . 

I t f o l l o w s t h a t w^ e f o r each i e { l , . . . , k } and 

c n n s c q u e n t l y t h a t w £ [ M ^ ^ ^ . d G ] , That i s , w i s w e l l -

b e h a v e d . / / 

I t i s p e r h a p s w o r t h r e m a r k i n g t h a t n e i t h e r c o n d i t i o n 

( 2 ) n o r ( 3 ) o f 2 . 4 . 1 8 i s a u t o m a t i c a l l y s a t i s f i e d . 
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In order to make use of 2.U.18 we obviously need some 

well-behaved elements to start with. The following lemma 

provides some: 

2.U.19 Lemma; Every element w e G' whose expression 

in normal form is of the kind w = b^ (b £ B(!)) is well-

behaved. 4-4' 

In addition to the description of the elements b^^^ 

given by 2 . . 5 through 2.U.8, the proof of 2.i|.19 uses 

Lemmas 2.^.21 through 2.h.2k below. These four lemmas have 

in common the following hypothesis: 

2.U.20 Hypothesis ; Let (g- ,g- ,6) be a pseudo-

commutator in G with supp6 = {g- ,...,g- } (c g)j where 
s 

s ^ 2. For each j e {l,...,s} vrrite 6 (g^ _ ) = q^p + r ̂ , 
t] 

where 0 < r. < p. 
~ J 

2.i|.21 Lem,ma: Let ( g • , g • ,6) be as in 2.1+.20. Then 
1 2 

for both k = l a n d k = 2 

s 

comp( (ggjg^j'^''^^^ )) = < 

1 + E q. if r^ t 0 
.j=l 

? if ^k = ° 
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Proof: From the definition of we have 

E )/p] 
i = 3 

2 [6(gJ/p] + [(6(g. )-l)/p] 
i=l ^ ^k 

Z [(q.p + r.)/p] + [ ( p + r, -l)/p] 
j=l .1- J -

k 

(E q.) - l i f r ^ ^ = 0 

and the lemma follows. // 

2.14.22 Lemma: In addition to 2.i|.20 let (g. ,g. ,6) £ B 1 ̂  12 
Then for both k = 1, 1 = 2 and k = 2, £ = 1 

comp([f.;, ,g. ,6] ) -

w if <5(g. ) = p 

1 + q. if 6(g. ) < p^ and r, i= 0 
j=l ^ ^ 

E q. if 6(g- ) < P^ and r, = 0 
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Proof: The lemma is a straightforward deduction from 

2.U.6(i) and (ii), 2.1+, 8 and 2.i|.21. The details are 

therefore omitted. // 

2.^.23 Lemma; In addition to 2.U.20 let 

(g. ,g. ,6) e B. Then 

mic([g ,g ,5]) = 
1 2 

1 + E q. if r ^ 0 
j =1 ^ ^ 

:: r 

E q. otherwise 
i =1 <1 
f I 

Proof: Use 2.)|.6(iii), 2.h,22 and the fact that 6(g. ) 

and 6(g. ) cannot both be p^. // 
^2 

2A.2h Lemma: Let (g. ,g. ,6) be as in Let 

integers c' and d' be defined as follows: 

(i) If r i 0 and r^ =f= 0 then set c' = 1 + Z q and 1 2 J 

d' = ( E r.) - 2 

(ii) If r =1= 0 and r^ = 0 then set c' = E q. and ' • ' • • 1 ^ 2 i =1 J 

d ' = ( E r . ) - 2 + p 
j=l 



( i i i ) I f r = 0 and. r f 0 t h e n s e t c ' = Z q . and 
1 ^ j = l J 

d ' = ( Z r . ) ~ 2 + p 

( i v ) I f r^ = 0 and r _ = 0 t h e n s e t c ' = Z q. and 
.3=1""^ 

s 
d ' = E r . 

J j = l 

Then [ g . , g . , 6 ] £ 

P r o o f : W r i t i n g w for [ g^ , <S ] we h a v e 
1 2 

w = [g- ,g- ,-f(q-,P + r ) g . P + r g ) g . >] 
1 2 1 s 

U s i n g 2 . 3 « l ( i ) we can r e w r i t e w i n t h e f o l l o w i n g f o r m s : 

F o r c a s e ( i ) : ~ 

V = [ [ g . , g i ] , ( r ^ - l ) g i ' 
1 2 1 s 1 2 

3 s 

F o r c a s e ( i i ) : -

V = [ [ S i , g i . q ^ g ? ' • • • ' ^ B ^ i K ^ - l - D S i ^ 
1 2 

( p - l ) g . ] . 
2 3 s 
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F o r c a s e ( i i i ) : -

w = [ [ g . , g . , ( q - l ) g ? , q g ? g ? ] , ( p - l ) g , 

( r ^ - D S i , r g g . ^ 

2 3 s 

F o r c a s e ( i v ) : -

w 

i I 3 s 

F r o m t h e s e e x p r e s s i o n s t h e l e m m a f o l l o w s i m x a e d r a t e l y . / / 

P r o o f o f 2 . U . 1 9 ; C h o o s e b e: Be a n d a n i n t e g e r 

e I O ( m o d p ) a r b i t r a r i l y , a n d s e t w = b ^ . A s u s u a l , 

s e t c = i ! i i c ( w ) a n d d = m a x ( 0 , w t ( w ) - c p ) . N o w i t f o l l o w s f r o m 

t h e r e l e v a n t d e f i n i t i o n s t h a t w t ( b ^ ) = w t ( b ) a n d 

( i ) f • 1 ^ f 1 ) 
c o m p ( ( b ) ) = CO m p ( ( b ^ ^ M ) = c o m p ( b ^ M f o r a l l i e I . 

T h u s c a n d d a r e i n d e p e n d e n t o f e , s o t h a t w e m a y a s s u m e 

w i t h o u t l o s s o f g e n e r a l i t y t h a t e = 1 , f o r i f b e [ M ( ^ ) , d G ] 

t h e n c e r t a i n l y b ^ e C o n s e q u e n t l y w e h a v e 

w = b = [ g . , g . , 6 ] f o r s o m e ( fr. , g . , 6 ) £ B , a n d a s i n 
I 2 I 2 

2 . 1 , 2 0 w e w r i t e s u p p 6 = { g - } , s _> 2 , a n d 
s 

6 ( g . ) q . p + r . , 0 < r . < r » J = N o t e t h a t i n 
1 ^ J J J 

J 
t e r m s o f t h i s n o t a t i o n w e h a v e 
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wt(w) = p Z q- + Z r-, for 
J =1 J =1 

wt(w) = vtih) = wt(b(l)'^) =wt((g. ,g. ,6)) 

°° s s 
= E 5(g. ) = E 6(g. ) = Z (g.p + r . ) . 

i=l ^ j=l "-j j=l ^ 

The proof of the lemma renuires the consideration of 

three cases, delimited according to the values of r^ and r^ 

Case 1: Assume that r.̂  =1= 0 =|= r^ • From 2.U.23 

s 

c = q^ + 1, and hence from 2.U.21+ w e [M^^^d'G] where 

s 
d' = ( E r.) - 2. It remains to show that d' > d. But 

j=l ^ s 

d' =wt(w) - p E q. - 2 

= wt(w) - p(c-1) - 2 

= (wt(w)--pc) + (p-2) 

_> wt (w ) - pc , 

amd since clearly d' ^ 0 we have 
d' > max(0,wt(w)-pc) = d. 
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Case 2: Assume that either r^ ^ 0 = r^ or r^ = 0 ^ r^. 

s 
Then froir 2.U.23 c = E q, and hence from 2.k.2h 

e where 

s 
d ' = ( E r . ) - 2 + p 

j=l ^ 
s 

= w t ( v j - ) - p Z q . - 2 + p 
i=l J 

= (wt(w)-pc) + (p-2) 

_> wt ( w ) - pc . 

But again d' ^ > that d' _> d and thus w e 

Case 3: The only remaining possibility for the values 
of r^ and r^ is r^ = r^ = 0. For this case 2.l4o23 and 

s 
2.U.21,' give w e [M/ w d ' G ] where c = E q. and ^c; ^^^ J 

d' = E r. = wt(w) - p E Q. 

= wt(w) - cp 

d (since wt(w) - cp = d' _> O). 

Thus, once again, w e and the lemma is proved. // 

In order to make full use of 2.h.lQ we need a larger 

initial set of well-hehaved elements than is provided by 
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2,k.l9' We need, in fact, the set of "elementary" elements 

of G'; where an "elementary" element is defined as follows: 

2.^.25 Definiti on; Let w be a non-trivial element of 

G' expressed in normal form by w = b ...b . Then w is X X 
called elementary, with degree function 6 if, and only if, 

the basic pseudo-commutators b ̂  , , . . ,b̂ <{)~ ̂  all have (the 

same) degree function 5. 

The next step in the 8rgum_ent, therefore, is to prove 

the following: 

2.U.26 Lemma; Every non-trivial elementary element 

of G' is well-behaved. 

Proof: Let w be an arbitrary non-trivial element of 

G' expressed in normal form by w = b^ • •'^t ^ ' where 

b.cf)"̂  = (g. ,g. ,6), j = l,...,t and supp5 = {ĝ . , . . . , g • J ij Iq "0 s 
s > t. As usual, write 5(g- ) = q-p + r. for each 

j e {0,...,s}. In addition, s e t w . = b . , j -l,.,.,t J 
since, where possible, we shall be using 2 . . l8 . 

Observe that if t = 1 then w is well-behaved by 2.U.19, 

so we shall assume that t > 1. The assumption implies that 

6(g. ) < p^ for all j e {o,...,s> (as otherwise there is 
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only one "basic pseudo—coi!iiiiU"ta,"tor with degree function 6) 

and consequently 

2.U.2T... is basic for every i e l"̂ . 

Another fact that we need is the following: 

s s 
2.U.28,.. wt(w) = wt(w^) = ... = wt(w ) = p E q. + Z r.. 

•t j=o J j=0 J 

The proof of 2.h.28 is quite straightforward and is 

therefore omitted. 

From 2.U.28 we have in particular that 

wt(w) = ffiin(wt(w.)Ij e {l,...,t}). Since from 2.k.l9 each 
J 

w. is well-behaved it now follows from 2.'4.l8 that if 
J 

mic(w) min(mic(w. ) I j e {l,...,t}) then w is well-behaved. 
J 

Consequently we now make the added assumption that 

2.U.29... mic(w) ffiin(mic(w. ) Ij e { 1 , . . . ,t}) . J 

In order to show that w is well-behaved despite this 

assumption (as the lemma cl&ims) it is necessary to first 

enumerate the situations for which the assumption is valid. 

Now from 2.U.6 we have 
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( ' ) ( ' ) ^ ' 
^ ^ j = j ] ± " o r e a c h j e { l , . . . , t } 

= 1 f o r a l l i e I i , . . . , i } 
U o 

a n d s o i t f o l l o v s f r o m 2 , k . 2 7 t h a t 

2.U.30. .. mic(w) = 

m i n ( c o m p ( ( g _ - " J ' ) ) 1 j £ { 0 , . . . , t } ) i f Z e . ^ O ( m o d p ) 
^ j = l 

( • ) 
m i n ( c o m p ( M ) 1 j £ { 1 , . . . , t } ) i f Z e . E O ( m o d p ) 

. - 1 j^ l J 

O n t h e o t h e r h a n d f o r j e { l , . , . , t } 2.k,6 g i v e s 

(in) r 

(in) r X ( i i)1^j J = [g2,gi»5 J J 

= 1 f o r a l l i £ 
J " J 

a n d h e n c e , u s i n g 2.h.T w e h a v e 

n i i c ( w . ) = m i n i c o m v i i g ^ , . 
J 

T h u s 

2 . I 4 . 3 I . . . m i n ( K i c ( w . ) I j £ { l , . . . , t } ) = J 
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If 2. U. 30 and 2.U.31 are now compared, then Lenma 

2,k.21 shows that 2.U.29 is satisfied if, and only if, 

2.)+ . 32 . . 

t 
(i) E e 

j=l ^ 

(ii) T . •• (ii) "J 

(iii) 

(iv) mi c ( 

Thus to complete the proof of the lemma we must show 

that under conditions 2 .'4 , 32 w e [M^^^jdG], where 
s 

c = 1 + E a- and d = max(0,wt(w)-cp). To do this first 

note that 
w = 

j=i J 0 

= (hy 1.6.1(5) and (3)) 

t 

j=2 

t 
= n [g. ,g-

j=2 

e . J 
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Now f rom 2 . i | . 3 2 ( i i ) and 2,k.2k i t f o l l o w s t h a t f o r 
s 

j = 2 , . . . , t [ g . , 6 ] e [M^ where c ' = 1 + Z q. 
i j 11 ( c M j = 0 

s 
and d ' = ( E r • ) - 2 . Hence w e [ M/ w d ' G ] and i t o n l y 

j = 0 J 

remains t o show t h a t d ' > d . But 

s s 
d ' = ( E r . ) - 2 = wt (w) - p E q. - 2 (by 2.1|.28) 

j = 0 j = 0 ^ 

= w t ( w ) - p ( c - l ) - 2 

= ( w t ( w ) - p c ) + ( p - 2 ) 

_> wt ( w ) - pc , 

and s i n c e r^ _> 1 , — ^ a l s o have d ' _> 0 . Thus 

d ' _> m a x ( 0 , w t ( w ) - p c ) = d and the p r o o f i s c o m p l e t e . / / 

Of c o u r s e , n o t e v e r y n o n - t r i v i a l e lement o f G' i s 

e l e m e n t a r y , and we now c o n s i d e r the q u e s t i o n o f e x p r e s s i n g 

an a r b i t r a r y e l ement in terms o f e l ementary o n e s . 

Le t w be a n o n - t r i v i a l e l ement o f G' e x p r e s s e d in 

normal f o r m by w = b^ . . .b^ . By r e a r r a n g i n g the o r d e r o f 

b ^ ' s i f n e c e s s a r y , t h i s e x p r e s s i o n can be w r i t t e n in the 

f orm 

w 
®11 ® l t ( l ) ®21 ^ ° 2 t ( 2 ) ® s t ( s ) 

= t i i - ' . ^ i t d ) ^ 2 1 - ' • ^ 2 t ( 2 ) • • - ^ s l - • • ^ s t ( s ) 

= Wn . . .W^ say J-
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where, for j = = b ̂  ̂ ^ . . b ̂  5 "j ̂  is elementary 

with degre e function S • s a,y , and are pai rw i s e 
distinct. Thus the equation w = expresses w as the X s 

product of its elementary parts. Note that by definition 

wt(w) = min(wt(bjj^({)~^) I j e {l,...,s}, k e {1, . . . , t ( j ) } ) 

= min(min(wt(b^^_(})~^) |k e { 1, . . . , t ( j ) } ) | j e {l,...,s}) 

so that we have 

wt(w) = m.in (wt (w . ) I j e {l,...,s}). 
J 

Moreover, as we shall now prove, we also have 

mic(w) = min(mic(w.)Ij e {l,...,sl). <3 

Let i e l"*". Then w^^^ = ŵ ^ ̂  ̂  . . . w^ ̂  ̂  , and in turn 1 s * 

J J1 J t (J j J1 1 (.]) 

for all j = l,...,s. Now from 2.k.6 and 2.k.d it follows 

that for any k £ {l,...,t(j)} either bf,^^ = 1 or 
±1 . 

hfj^ = where ( gg » , ̂  • ^ ) is basic. 

Consequently, if wf^^ is non-trivial then it is expressed 
M ( i ) e ( i , j ) 

in normal form by w. = [go5S-,><5- ] for some 
J J 

integer e(i,j) ^ O(nod ij ) . Since fi!^^ ^ S^]] if j ^ j' 
( i ) it now follows that by defining J. = {j £ {l,...,s}Iw =1= l} 1 J 

ve can express v ^ in normal form "by 
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(i) ^ (i) , (i) w = n w 
J jeJi jeJi 

(For the degenerate case of J^ = 0 we have, of course, 
(i) w = 1). Hence 

= inin( coinp( ^ ) ) I j e J^ ) 

• / . • = inin ( comp (vr • ) j e J-} 

= min(comp(wj^^)Ij £ {l,...,s}) 

(since comp(l) = w) 

Using this, we conclude finally that 

(i) . + 
inic(w) = min(coinp(w ) i I ) 

= min(rain( comp(w4 ) I j e (l,...,s})li e I ) 

= min (min ( comp (w j ' )|i £ I )!,] £ "tl,...,s}) 

= min(iai c(w • ) I j £ {1, . . . , s } ) , 

which is precisely the claiiii we set out to prove. 

To summarise, we have shown by the above remarks that: 

2.1+.33 Lenma: If a non-trivial element of w £ G' is 

expressed as the product of its elementary parts by 

w = W]_...W2 then 
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V7t(w) = nin(wt(w.)|j r, {l,...,s}) 
J 

and nic(w) = nin(nic(w.)jj e {l,...,s}) // 
J 

The above lonna provides the necessary connecting link 

between Lenmas 2.U.18 and 2.k,26, for taken together the 

three leninas imply that every non-trivial element of G' is 

well-behaved. In other words, we have proved Lemma 2.2.10. 

2.^ The Proof of 2.2.11 

Many of the m.ethods employed in this section have their 

origin in the Ph.D. thesis of R.A. Bryce [2]. In order to 

indicate the exact extent of this "borrowing" I have included 

at each relevant point in the section the item number of the 

analagous definition or lemma in [2]. It will be observed, 

however, that Bryce's results (in contrast to his methods) 

cannot be em.ployed here, since they relate to bigroups rather 

than groups. Consequently, all the following lemmas require, 

and are given, proof, so that in this sense the entire 

section in independent of [2]. 

\Je begin by proving two results, Lem.mas 2.5.^ and 2.5.6, 

which lead to a more convenient formulation of 2.2.11. The 

first of these results requires the following definitions: 
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2 . 5 . 1 D e f i n i t i o n ; Let w be a n o n - t r i v i a l e l e m e n t o f 
e , e 

G' e x p r e s s e d i n n o r n a l f o r m by w = b T - . b , and f o r each 
X Xi 

i £ { l , . . . , t } l e t have d e g r e e f u n c t i o n Then the 

s e t o f e n t r i es o f w, d e n o t e d by E(w) i s d e f i n e d by 
t 

E(w) = \ ^ s u p p 6 . . In a d d i t i o n , d e f i n e E ( l ) t o be 0 , and 
i = l ^ El 

f o r any j • • • ^ (denote V J E ( w ^ ) by E ( vr̂  , . . . , w^ ) . 
i =1 

?.. 5 . 2 Def i n i t i on ; Let v be a n o n - t r i v i a l e l e m e n t o f 

G' e x p r e s s e d i n n o r n a l f o r n by w = b , . . . b . Then w i s X X 
c a l l e d homogeneous i f , and o n l y i f , 

E ( b ^ ) = ECb^) = . . . = ^^(^t^ ^ "" E ( w ) ) . 

C l e a r l y , any n o n - t r i v i a l e l e m e n t w e G' i s the p r o d u c t 

o f i t s hom.ogeneous p a r t s ; i . e . w = w ^ . - . w ^ where 

are n o n - t r i v i a l homogeneous e l e m e n t s o f G' w i t h E(w^) f E ( w j ) 

i f 1 T .1 In c o n n e c t i o n w i t h t h i s we have 

2 . 5 . 3 Lemm-a; I f w i s a n o n - t r i v i a l e l e m e n t o f G' 

t h e n { v ) _> ^w') f o r e v e r y homogeneous p a r t w ' o f w. 

P r o o f : The lemma i s a s p e c i a l c a s e o f HN33.U5. / / 
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Now if w is a non-trivial special element of G' it is 

clear that the homogeneous parts of w are themselves special 

and that at least one of them has the same p-conplexity as 

w. Thus from 2.5.3 ve have immediately: 

2.5.^ Lemm.a; Let w "be a non-trivial special element 

of G' , with Gom.p(w) = c. Then there exists a non-trivial 

homogeneous special element of w' £ G', also having p-

com.plexity c, such that ^w) ^ (w') . // 

The second result concerns the subgroups U(c,e) and 

V(c,e) defined by 2. 1, and is a consequence of 2.^.2 and 

the following lemma: 

2.5.5 Lemma; For all c e I , e £ I, 

V(c,e ) ̂  U(c,e + l) . 

Proof: It is sufficient to show that 

[ v ^ , . . . , . . . £ V(c,e) 

where the integers c and e, c £ l"̂ , e £ I, have been chosen 

arbitrarily, as have the elements ^^ , . . . , v^ , w^ , . . . , £ G. 

Now from the definition of V(c,e) it is immediate that 
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Hence 

[w 
e+1' 1 

and 

p . . . 
• ' " e . l 

c' 1 

- 1 
• • • ""ê  ^ V ( c , e ) 

But by 1,6.1(3) and ( 5 ) 

and the r e s u l t f o l l o w s . / / 

2 . 5 . 6 Lemaa; For a l l c , e £ l"^, V ( c , e - l ) ^ 

P r o o f : T r i v i a l l y , V ( c , e - l ) _> V ( c , e ) , so f r o n 2 . 5 . 5 

and 2 . i + . 2 ve have V ( c , e - l ) ^ U ( c , e ) . V ( c , e ) = [M^^^.eCr]. / / 

F r o n 2.5.^4 and 2 . 5.6 i t f o l l o w s t h a t Lenna 2 . 2 . 1 1 i s 

e q u i v a l e n t to the f o l l o w i n g : 

2 . 5 . 7 . Lenna: Let w be a n o n - t r i v i a l honogeneous 

s p e c i a l element of G ' , w i t h coKp(w) = c . Then t h e r e e x i s t s 

e £ I such t h a t 'w/ > V ( c , e ) . 
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The proof of 2,5.7 is preceded by a sequence of 

preliminary lennas, and it is the proofs of these that 

Bryce's methods are employed. I should perhaps remark that 

my original proof of 2.5.7, obtained before Bryce's work 

was available, was very much more complicated, so much so 

in fact, that I am. not entirely convinced that it was valid, 

2 . 5 . 8 Lemma; For all u,v e G, w £ G' and I e l"̂ , 

(uv)^] = [w,u^v^]. 

'roof: For som.e c e G' (uv)^ = u^ ^ 

. . c 

V c, so 

[w,(uv)^] = [wjU^v^c] = [w,u^v^] [w,c] = [w,u^v^]. // 

2.5.9 Lemma; (c.f. U . 2 . 5 in [2]) 

If W e id(G'), and if for fixed elements e G' 
m ^ 

and all v e G n [w.,v 1 e W, then for all 
i=l ^ 

^ r m m-l 1 ^ TT 

Proof: The proof is by induction on m. For m = 1 

there is nothing to prove, so assume the assertion is true 

for m = k - 1 e l"*" and now consider the case m = k. 
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Suppose, then, that for some > • • • e 

k 
2.5.10... n [w.,v^] e W for all v £ G. 

i=l ^ 

k 
It follows immediately that for any v G H [ w. , (v v) ] e V-

k i=i 1 

for all V e G, and hence, "by 2.5.8, that 

k . . . . 
n [w. e W for all v £ G. 
i = l " 

Using 2.5.10 again, we conclude that 

k 
n £ w for all v £ G. 

1 = 1 

Since W is normal in G, 2.5.10 also implies that 

k -1 

k 
n [ŵ . £ W for all V £ G (by 1.6.1(2)). Thus 

i=l 

^ - " - - all V £ G. 2.5.11... n £ W for 
i=l 

Setting w! = t ̂ i+1' ^ ^ " 

identity [ w S , v] " \ w ! , v" ] = ve can rewrite 

2.5&II in ths-forn'- i 
k-1 . V 
n [w?,v ] £W for all v e G. 

i = l ^ 
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Since W is normal it follows that 

k-1 
n [ w.' , v^ ] £ w for all v £ G, 

i=l ^ 

By the inductive hypothesis this implies that 

But Wĵ  ^ = [ 5 ] "'s-s chosen arbitrarily, so the 

induction is complete. // 

2.5.12 Definition: (c.f. h.2.6 in [2]). 

For each W £ id(G') and q,e £ I the subset W of G' is q, e 
defined by 

W = {u £ G ' I . . . , . . . ] £ ¥ for all q, e 1 Q. -L s 

v^,. . . . . . £ gI. 

2.5»13 Lemma; If W £ id(G') and q,q',e,e' £ I then 

(ii) W„ „ id(G') q, e 

Proof: Since (i) is immediate from the definition we 

need only prove (ii). Now W^^^ is a subgroup by 1.6.1(2) 

so it only remains to show that W is fully invariant. q , <-
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Let u e W and let 9 be an endomorphism of G, u and y. > -

G chosen arbitrarily. How choose a set 

{ a^ , . . . , , . . . } c g\E(u). Then for any 

v^ 5 . . . , v^ , . . . e G there exists an endoraorphism 6* of 
G such that uB^ = uG, a.B* = v. i = and b-G* = w.. 1 1 5 3-13 ^ ^ , 
i = l,...,e. Since [ u , a ^ , . . , , a ^ , , . . s b ^ ] e W, and W is 

fully invariant, application of the endomorphism G* shows 

that [uG,v^,...,v^,w,,....w ] £ W. Hence uG e W and the ' 1 ' ' q ' l ' ' e q,e 
lemma is proved. // 

2.5.1^ Lem.ma: If w e G'; W e id(G'); i e I^; and if 

for all V e G [w,v^] e W then 

(i) g.c.d(i,pM = 1 =4 [w,v] e W for all v e G 

(ii) g.c.d(i,pM = p [w,v-] e W for all v e G. 

Proof: (i) There exist integers a and b such that 

ai + bp^ = 1 and since G has exponent p^ it follows that 

[w,v] = = = e W. 

(ii) In this case we have a'i + b'p = p for 

some integers a',b' and the conclusion follows similarly. // 
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2 . 5 . 1 5 L e m m a : ( c . f . 5 . 3 . 1 i n [ 2 ] ) . 
m. 

L e t e ¥ , v h e r e 0 < m = q p + r , O j < q , r < p , 

^ G ' , a e g \ E ( w ^ , . . . , a n d W £ i d ( G ' ) . T h e n 

w e V/ 
m q , m - q 

P r o o f : U s i n g L e m m a 1 . 7 . 1 w e h a v e 

J 
m m . m ' 
n [w. ,ia] = n w h e r e w! = n w. ( - i ) J - ^ 

1 
J 1 - 1 , . . . , m 

N o t e t h a t w ^ = w ^ . W o w for any v £ G t h e r e e x i s t s an 

e n d o m o r p h i s m 6 of G s u c h that w | 9 = w | , i = l , . . . , m and 

a6 = V, so it f o l l o w s t h a t 

m 
n £ W for all v £ G. 

i = l 

T h u s , b y 2 . 5 - 9 , [ w ' , v " , , . . . , v ] £ ¥ a n d , s i n c e w ' = w , ' m ' m ' m - l ' ' ' m m» 

t h e c o n c l u s i o n follov/s "by emploj'-ing 2 . 5 . 1 ^ . // 

2 . 5 . 1 6 L e m m a : ( c . f . , a g a i n , 5 . 3 . 1 i n [ 2 ] ) . 

p ^ - 1 

L e t w = n [ w ^ , i a ] , w h e r e w ^ , . . . , w 2 ^ ^ G ' a n d 
i = l ^ ^ 

a £ g \ E ( w ^ , . . . , w ^ 2 T h e i i ^ 'c i r e a c h i £ { l , . . . , p - l ) 

t h e r e e x i s t s e - £ I s u c h t h a t w . £ ( v ) , w h e r e q . = [ i / p ] . 
1 1 q . , e . 
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Proof: If in the previous lemma we put 

m = p^ - 1 = (p-l)p + (p-l) and W = <w>, the case i = p^ -1 

follows immediately (with e^2 ^ = (p~l)p). 

In particular this means that 

(p2-l)a] = [w^2_i > (p-1) (P-I)^] e 

But trivially w e ^w) q (p-i)2' therefore 

If we now employ 2.5.15 again, but this time with 

m = p2 - 2 and W = (w)^ (the latter is permissible 

by 2.5.13(ii)), we obtain the assertion of the lemma for 

the case i = p^ - 2. 

With another p^ - 3 applications of this procedure, 

the lemma is proved. // 

2.5.17 Lemma; (c.f. 5-3.2 in [2]). 

Let s £ l"" and let D = {1, . . . , p^-1 > % so that each d £ D is 

an s-tuplet d = (d ) with 1 £ 5 P^ " ^ 1 s 
for 

Let w = n where £ G' for all 
d£D -



d £ D and c g\E(w^|d e D). Then for each d £ D 

there exists e, £ I such that w^ £ (w) , vhere 

= S [d./pl. - -
~ i =1 

Proof: The proof is by induction on s. For s = 1 the 

lemma reduces to 2.5.16, and the inductii'-e step is as 

follows: 

For each d^ £ {l , . . . ,p -l} set D , = { ( d' . . . , d' ) £ D | d' = d } S —Ci ̂  -J- s •— s s 

an d let 

2.5.18... w = n [w d a ,. . , ^a^ 
• s "" 

s 

p^-1 
We then have w = ' IT [w. ,d^a J, and thus, by 2.5'.l6, for 

each d £ {l,...,p^-l} there exists e £ I such that s ' ' d^ 

2.5.19... e 'w) where q = [d /p] 

Further, from 2.5.18 and the inductive hypothesis we 

have that if d £ D, then there exists e' £ I such that — —a s 

^̂ d ^ ^^d 'Id = [^i/P^-
— s d' d — 1 = 1 
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T h u s , u s i n g 2 . 5 . 1 9 5 w e h a v e f o r a n y d. = ( d , . . . 5 d ) e _D 
-L S 

" " d ^ ^ " " d / ' a ' e ' - - ~ ^ 
- s ^ d ' d 

s s — ~ 

w h e r e = e ^ + e ^ . T h i s c o m p l e t e s t h e p r o o f . / / 

P r o o f o f L e t w b e a n o n - t r i v i a l h o m o g e n e o u s 

s p e c i a l e l e m e n t o f G ' w i t h c o m p l w ) = c a n d 

E ( w ) = { g , g , a , . . . , a } a n d l e t w h e e x p r e s s e d i n n o r m a l 
1 2 1 s 

f o r m b y 

t e . 

w = n [ g , g , 5 . ] ^ 

i = l ^ ^ 

S e t t i n g 6 . ( a . ) = d . . f o r a l l i e { l , . . . , t } , j £ { l , . 
1 J 1 J 

w e c a n r e w r i t e t h i s e x x i r e s s i o n i n t h e f o r m 

. , s } , 

e . 

w 

i = l 

a n d t h u s , i n t h e n o t a t i o n o f 2 . 5 . 1 ' ^ 

w = n [ w , d a , . . . , d a ] 

d £ D ^ ^ 

w h e r e f o r d = ( d , w ^ i s d e f i n e d b y 

e . 

r ^ 1 ^ i f d . . = d . f o r j = 1 , . . . , ; 

w . = 
a 

1 o t h e r w i s e 
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The assumption that Gomp(w) = c implies that for some 
s 

£ {l,...,t}, c = 1 + Z Ltl.^./pj, and hence that there 
j =1 e. , 

exists d^ £ D such that = ^ ' ^ ^ 

notation of 2.5.17, = c - 1. Thus we conclude from 

2.5.17 that there exists e £ I (namely c = e^^) such that 
^ .ji — 

£ ^^'^/c-l.e' ^^ follows that [g^.g^l £ . 

and consequently that [u^,u ] £ (w) for all £ G, 
C. C •• J- J O _L 

That is, for all u^ ,u^,v^,...,v^,w^,...,w^ £ G 

and this says precisely that V(c,e) £ (w}. 11 

2.6 The Proof of 

The following simple observation will be required: 

2,6.1 Lemma; Let R be a reduced free group of rank 

and let r be a. member of some free generating set for R. 
o - o Then for any integer e, r £ F:' only if r = 1 . 

Proof: Let r = {r^|i £ l"'') be a free generating set 

for Pi chosen in such a way that r^ = r. Now if r' £ R' for 

some e e l"̂  then, denoting gp(rj^) by R^ , we have 

r® e A(R) ^ R, . But by 11^13.^+2 A(R) ^ R^ = A(R^), and 

since R^ is abelian the conclusion follows. // 
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The proof of 2.2,2U depends on the characterisation 
of G^ n G' given by Lemma 2.6.2 below. The idea for the 
proof of this lemma was suggested to me by L.G. Kovacs. 

2 2 2 2 2-6.2 Lemma: G^ O G' = <g^- g^^ (g^g^)^). 

2 2 2 Proof: Set V ^ (ĝ '̂ g^^ Since 
TO ^ "D ^ T) ^ 

( g ^ g g ) - ^ = g ^ gg C f o r s o m e c e G', i t i s c l e a r t h a t 
2 

V < Ĝ ^̂  n G' . Hence, if we write H = G/V and H^ = B 2(H), 
ir-

then we shall have completed the proof when we have shown 
that H^^ H' = {1} . 

tP^ „ „ „ _ Go let w e ir ; say w = â  a^ • • • f o r some 
a.,...,a e H. Now from the definition of H it follows 1 ' ' s 

2 2 2 2 2 that for all a,b e H (ab)^ = a^ b^ = b̂  â  . (The second 
2 2 

equality holds because [x- ,y- ] is a law in G). 
^ * 1 ^ ' ( * ) Thus, writing â  = ̂ ^ ̂ ^ . . . h^ Jj-- ) for each i e {l,...,s} 

where for all i , ,i e- . --= ± 1 and h • • is a member of some 1 J -i- J 

(fixed) free generating set h, we have 

w 

2 

h ^^ ...h w 11 s£(s 

a.p^ a, P^ say 
^ k 
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where h. are pair-wise distinct members of h and 

a.,...,a, are integers. -L K 

Now assume additionally that w e H'. Then if for 

,i £ {l,...,k} the endomorphisms a. : H ->• H are defined "by 
f] 

h. a. = h. ,h.a. = 1 for i i • , it follows that 

a. p^ h. = wa . e H' for each j e {l,...,k}. Hence, from 2.6.1, 

h. = h. = ... = h. = 1, and thus w = 1. This completes 1 1 1 ' 1 2 k 

the proof. // 

Proof of 2.2.2U; In view of 2.6.2 it is sufficient to 
2 2 2 -P _-P _ ^P show that gg §1 (g]_g2) ^ "̂ '̂ (p)' equivalently that 

2 2 2 
(g^g^)^ = g2 ^(p)^' this, first write 

" where d e G', and note that g J, g^, d e M. 

Now M/M^p^ is a p-group of class less than p and as such is 

regular . Thus 

and the result follows since d^ = 1. (G' has exponent p). // 

2.1 Proof of 2.2.13 

Many of the ideas for this section were suggested to 
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me by L.G. Kovacs. 

Let c,e e I , c ^ 2, c and e otherwise arbitrary but 

fixed throughout. A wreath product of finite p-groups, 

denoted by G*, is defined by G* = Rwr(SXT), where 

R = gp(r r^ = l) 

S = S. = gpCsJsP = 1), i e {l,...,c-2} 

T = TQX...xT^; • T. = Sp(t.|t? = l), j e {0,...,e}, 

and of course S = {l} if c - 2. The base group of G* will 

be denoted by K, and is to be considered as consisting of 

all functions from S x T into R, with multiplication 

defined component-wise. Additionally, for each 

i e {l,,.,,c-2}, j £ {0,...,o}5 notation will be abused to 

the extent of considering S. and T. (and so also S and T) 1 J 
as subgroups of G* via the standard em.bedding. 

If we now define M* = A^(G*), then it is clear that 

since G* e A A 2 it is sufficient for the proof of 2.2.13 = p=p 
to show: 

2.7.1 Lemma; ( c ) i ^ ( c-1) ' ® ^ ' ^^ 

To prove 2.7.1 two facts about G* will be required 
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These are 2,7.2 and 2,7.3 "below, toth of which follow from 

results of H. Liehock [6]. 

Proof: Clearly M* _< K.3^ ~ M* say. Now from the proof 

of HN22.1U it follows that M* = R^wr S^ where R^ denotes the 

direct product of |T| copies of R. Thus, from [6] Theorem 

5-1, M* has nilpotency class (c-2)(p-l) + 1 and the 

conclusion follows. // 

2,7.3 Lemma: Let k £ K he defined "by k(l) = r and 

k(v) = 1 for all v £ ( S X T ) \ { I } . Then 

[k,tQ, (p-l)s^, . , . , (p-l)s^_2,t^, . . , =}= 1. 

Proof: It follows from, part (a) of the proof of Theorem 

5.1 in [6] that 

and hence, a fortiori, that 

[ k ,( p-1 )ps ,.,.,( p-1 )ps ' •̂ e ̂  ^ 
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By using 2.3.l(i) this is equivalent to 

[ k, (p-l)sP , . . . , (p-1 )sP ,t ,t ,o..,t ] 1 
1 c-2 0 1 e 

and the conclusion follows since by [6] Corollary 5.7 an 

alteration of the order of entries occurring after k leaves 

the cominut at or-element unchanged. // 

Proof of 2.7.1: With k defined as in 2.7.3 let 

w = [ k , t^ , s^ , . . . , s^ 2 3 9 • • • 5 •tg ̂  • Since clearly 

w e ^ ( c 2.7.1 will be proved when it is shown 

that w ^ M*/^^. If we suppose to the contrary that 

w £ M*/ N, then it follows that ( c j ' 

i.e. that 

But from 2.7.2 and 2.7.3 this is impossible. // 

2.8 Two Consequences of the Main Theorem 

F.-ither of the two theorems about lat(A A 2) proved in -p-p 

this section are original, but are included here as by-

products of Theorem 2.1.2. 

Firstly: 
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2.8.1 Theorem; 1 at(A A has minimum condition. =p=p2 

As already remarked, this is a special case of D.E. 

Cohen's result [3] that lat(AA) has minimum condition. 

However, the proof of 2.8.1 given below is quite independent 

of Cohen and is of interest for two reasons: 

(1) It ma,kes no use of any kind of representation 

theory (in contrast to Cohen's proof). 

(2) It is a measure of the strength of Theorem 2.1.2. 

The proof of 2.8.1 uses the following consideration: 

A lattice A is called .ioin -continuous if for every 

X e A and every chain {y |y £ T A, x /̂  / y ) = ' ' ( x v y ) 
Y yer ' yeT 

It is readily checked that lat(Y) is join-continuous for 
every variety V, so that the following unpublished theorem 

iS 
of L.G. Kovacs i:̂  relevant: 

2.8.2 Theorem: Let A be a complete modular and join-

continuous lattice. Then A has minimum condition if 

(i) every element of A is the join of finitely many 

join-irreducible elements 

and (ii) the set of join-irreducible elements of A has 

minimum condition (with respect to the partial 

order it inherits from A). // 
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The converse of 2.8.2 is also true; the second part of 

that is trivial and, as is well-known, the first part 

follows by very elementary considerations. 

Proof of 2.6.1; It will be shown that 2.8,2(i) and 

(ii) are satisfied when A = lat{A A a)' -p-p 
(i) Let V e l at (A A 2) A minimal counter-example. ~ ~P ~P 

Then by 2.1.2 V is nilpotent, which is impossible 

since bj-̂  Lyndon [7] lat(L) has minim.um condition 

for every nilpotent "arietj^ 

(ii) Suppose there exists a properly descending infinite 

chain of join-irreduciLle subvarieties Y^ jp Y g ^ ••• 

From the classification of non-nilpotent join-

irreducible subvarieties given by 2.1.2 it is 

immediate that every properly descending chain of 

non-nilpotent join-irreducibles breaks off, so that 

y^ is nilpotent for some k £ l"*". But this is 

impossible since has minimum condition 

(again by Lyndon). // 

The other consequence cf 2.1.2 to be noted here is the 

following, which is a special case of a result of L.G, Kovacs 

and M.F. Newman (unpublished). 
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2.8.3 Theorem; A subvariety of ^^ non-nilpotent 

if, and only if, it contains A A . 
= P = P 

2.S.h Corollary; Every proper subvariety of A A is -p-p 
nilpotent. // 

From 2.1.2 the variety is non-nilpotent and contained 

in all non-nilpotent subvarieties of h^^^z • Thus for the 

proof of 2.8.3 we need only show: 

2.8.5 Lemma; = A^A^ 

Proof: By definition = AA^ ^ =p-p^ =p ̂  ' ^^ ^^ 

immediate that I A A . For the reverse inclusion use =1 - =P=P 
1.6.3 to show that A(A ).A (A 2)•B i > A (A ). // p P P P ~ P P 

2.9 An Alternative Description of the Varieties 

2 , 9 . 1 Definition; For each a £ l"̂  define a variety 

I as follows; =a 

I =a 

r N . A A B a e {1, . . . ,p-l } 
=a ^ =P=P =P 

H A A A a > P =a ^ =r=p 
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2.9.2 Theorem: For all a e l"̂  

I = I A Ax A A 2- > + =a =a=p =p=p 

One lemma is required: 

2.9.3. Lemma: For each c £ {2,...,p} 
2 

, , .MP = M, , .G-P . ( c ) ( c ) 

Proof: Since M > G^ it is immediate that 

M .mF > M, .gP . For the reverse inclusion it is clearly 
( c ) — ( c) ^ 

sufficient to show that M^ < M. ..G^ . Now an arbitrary — I p) 
element of M can be written in the form wPw^-.-w^c with 

e G and c e G'. Hence an arbitrary element w e M^ 
1 s 

can be written 

where the intended meaning of the notation is clear. As in 

the proof of 2.2.2U (section 2.6) we now use the facts that 

M/M, , is regular and G' has exponent p to deduce that (p) 

2 

But this shows that w e M^^^-GP and hence that M^ < M^^^G^ 

as required. // 
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Proof of 2.9«2; The case a_> p is immediate, for then 

I A A A A 2 = (IT . A A )A /y A A 2 = a = p =p=p^ =a ^ =P=P =P =P = P^ 

= n A /V A A A A 4 ik 2 (ty HN21.23) =P=P=P =P-P 

= N A A A A 2 = a=P ^ =p=p'' 

= C = I = a =a 

Now let a e {l,...,p-l}. Then it follows from 2,9.3 that 

(S„4p fip£'p2) A d p A p Aj^ip.) = ( M p 4p4p^> (Sp2 A 4pip2) 

and hence that 

C ^ B A = C^ ^ B 2 = 

Thus 

I A A A 2 = (N /., B ^ A A )A A A 2 =a=p =p=p =a =p =p=p =p =p=p 

= N A , B A ^̂  A A A A A 2 =a = p ^̂  =p=p =p=p=p =P=P 

= C . B A // =a ^ =p=p =a 

On page IO8 the description of lat(A A ) obtained hy P ? 
M.F.Nevman (oral communication) is reproduced, and from this 

it is immediate that T is join-irreducible for every a e I . 
— LX 

It is this fact that makes Theorem 2.9.2 interesting, for one 
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wonders whether a similar situation occurs in general for 

varieties A A o, S e I. I suspect that this is true, and =p=pP 
express the conjecture formally by means of the following 

definition: 

2.9.h Definition; For all 3 £ 1 let the mapping 

Xn : lat(A A o) lat(A A d . n ) "be defined by P =p = p» =p=pP + -'-
UX„ = UA A A A for all U £ lat(A A g). = 3 ==p ^ =p=p3+l = =p=pP 

2.9.5 Conjecture; For all 3 £ I, every non-niIpotent 

join irreducible subvariety of is the image under 
Xa of some join-irreducible (but possibly nilpotent) p 

subvariety of 

From 2 . . h it is immediate that the conjecture is 

true for 3 = 0 , and from 2.1.2, 2.9.2 and the remarks 

proceeding 2.9. it follows that the conjecture is also true 

for 3 = 1 . Further supporting evidence is provided by R.A. 

Bryce's study in [2] of "b i vari e t i es" o 4p3> ^^^^ 

be admitted that this evidence is very indirect. 

Finally, note that not every join-irreducible 

subvariety of leads via Ag to a join-irreducible of P Jr • 
A c. ^-r example, the subvariety A 2 of A A is join-
=p=pP ' ~P P P 
irreducible, but, as is easily checked, A 2A = A A v A 3* — p 1 P JL-' P 
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FIG. 2 

A 

To A A = U j , eel 

= Xp 

N* = XP 
N 
= AP-1 

Notes; 

(i) It is to be understood 

that all marked varieties are 

intersected with A A ^ -p-p 

(ii) For each A £ I the variety 

N?" is defined by the law: = Ap 

J i ^ [ x ^ , x ^ , . . . » • • • » ^Xp ̂  

ip ^ Sp.x 

= Si 
ip - i p ^ ^ 
B ^ K = A =p ^ =1 =p 

THE SUBVARIETY LATTICE OF 
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CHAPTER 3 

REMARKS ON NON-DISTRIBIJTIVITY 

This last chapter consists essentially of negative 

results, and for that reason, has heen kept brief. 

Section 3.1 is taken up with a demonstration of non-

diStributivity in lat(A^A^) and in 3.2 the same example is 

used to fulfil a promise made in Remark 2.1.3 of Chapter 2. 

Finally in 3.3 a few further remarks of a more general 

nature are made. 

3.1 An Example of Won-Distributivity in lat(AoA^) 

In this and in the next section we shall use without 

further comment much of the notation and terminology of 

Chapter 2, with the proviso that p = 3 throughout. Thus in 

particular, we write G = g = {gi|i e ^̂  ^^ee 

generating set of G; gg = {g]_, gg ̂  ' '̂2 ^ ^^ 

addition, for any relatively free group H denote by lat(K) 

the lattice of verbal subgroups of H. The first objective 

is to prove the existence of a lattice epimorphism from 

lat(G) to lat(G^): 
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Let : G ^ G^ be the natural projection endomorphism. 

If W e lat(G) then W = V(G) for some closed set of words V, 

and hence by HN12.31. 

3,1.1... W?^ = V(G)C^ = V(GC^) = VCG^) e latCG^) 

Thus induces an onto mapping : lat(G) lat(G2) 

defined "by 

3.1.2... WH^ = for all W £ lat(G). 

From H W 1 3 . U 2 V C G ^ ) = V ( G ) G^ for any closed set of words 

V so that from 3.1.1 and 3.1.2 we have 

3.1.3... WH^ = w G^ for all V? £ lat(G). 

From 3.1.2 it is clear that is a join-homomorphism while 

from 3.1.3 it is equally clear that is a meet-

homomorphism, so that is, in fact, a lattice epimorphism. 

Now set G* = ^2 ' ^2 

natural epimorphism. If :lat(G2) lat(G*) is now 

defined by analogy with 3.1.2 then by HN13.32 is also a 

lattice epimorphism. Thus 5 = E^H^ : lat(G) lat(G*) is a 

lattice epimorphism and it follows that the non-distributivity 

of lat(G), and hence of lat(434^), will be established by 

demonstrating non-distributivity in lat(G*). 
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The example ve sball provide occurs anong the subgroups 

of course, is the least non-trivial term of 

the lower central series of G*. We need the following 

description of 

Let g^Cg = g* and g^E^ = g*, so that g* = {g*,g*} is a 

free generating set for G*. If now for each i e {2, ...,9} 

we set w. = [ g* , ig* , (10-i ) g*] then, we claim, ) ^^ ^^ 

elementary 3-group with basis The first part 

is immediate, for G' is free abqlian of exponent 3. For 

the second part note that 

and that it follows from Lemma 2.2.12 that 

has a basis consisting of the values of all basic pseudo-

commutators in G with set of entries {g^,g^^ and weight not 

less than 11. Of these kills all those, and only those, 

of weight not less than 12 (again by 2.2.12) and what 

remains is precisely the set Thus 

generate and it is easy to see that any dependence 

among them would involve dependence among the basis for 

( 11) 2 
The next task is to obtain a usable criterion by 

which to determine whether any given subgroup of is 

fully invariant in G*: 
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Let a,6,Y "be the automorphisins of G* given by 

g*a = 

g*a = gj 

g*3 = g* 

= g^ 

g*Y = 

8*Y = S 

Let M* = Â (Ct1I and for any endomorphism r\ of G* denote -by 

n/i'* the endomorphism of G*/M* induced by n . Ws claim that 

{a/M*,3/M*,y/M*} forms a generating set for the automorphism 

group of G*/M*. To see this, note that G*/M* is just a 

two-dimensional vector space over GF(3) so that with a 

suitable interpretation we can write 

aV-M* = 1 1 
0 1 3/M* = 0 1 

1 0 y/m* = '-1 0 
0 1 

and it is readily checked that these three matrices generate 

GL(2,3) = Aut(G*/M*). To make use of this information we 

need the following two results which can be proved easily 

from the facts that G^^g) ~ ^ ^fll) ^^^ exponent 3. 

(i) If endomorphisms of G* such that 

n /M* = n^/M* then n, = n. 

(ii) If n is an endomorphism of G* such that 

ker(n/M«) ^ {1} then ker(ri ) = G* . 
^(11) ^ ^ 

Now suppose that S is a subgroup of "that admits 

the automorphisms a,3,Y, and let p, be an arbitrary 
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endomorphism of G*. Either ker(n ) = G* in which 
' G* (11) 

(11) 

case certainly admits n, or, by (ii), n/M* e Aut(G*/M*) 

In the latter case we have n/M* = v/M* for some v £ gp(a,6,Y) 

and since S admits v it follows from (i) that S admits n. 

We have thus shown that a subgroup S of is fully 

invariant in Ĝ ^ if (and trivially only if) it admits 

The action of these automorphisms on w ,...,w is easilv 2' ' 9 

calculated and has been tabulated on page llU. From these 

tables it is a purely routine matter to verify that the 

subgrou]3S 

D = gp ( w V, , w w w , w, w ̂  w „ , w w ) 2 ^^ 2 h' 3 5 1 h 6 8' 1 9 

each admit a,3jY hence are fully invariant in G*, but that 

S.l.ii... {1} = (U ^ =1= U "" " 

which gives the required non-distributivity. A diagram of the 

full sublattice of lat(G*) contained in given by 

Fig. 3. 
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1 --
i 

THE ACTION OF THE AUTOMORPHISMS a ,S ,Y 

1 w^a 
1 v . Y 

- 1 

- 1 - 1 
" 3 

- 1 

t v^ - 1 - 1 

- 1 

t w-^ - 1 

t V^ W-^V-- V^Vg - 1 
W3 

" 9 
^ - 1 1 " 9 

t JJ.B. For d i s p l a y purposes on ly the e lements in 
these products are not a l l j u x t a p o s e d . 

F IG. 3. A SUBLATTICE OF l a t ( G * ) 
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3.2 A Uon-Unigeness Result 

Continuing with the example in the last section we show 

next that U = M* Since My, , = (M,, , G )r , we will do (U) (U) (U) 2 
this by showing that the image under of o G^ is 

generated "by ŵ ^ and w^ . 

IMote from 2.3.l(i) and 2.U.2 (with e = 0 in the latter) 
that M,,, < Thus by 2..2.12 if w £ M > ̂  G is 

(h) - (11) e^ ^^ ^ 

as 
expressed in normal form by w = then 

wt(b^(i)'^) = wt(b£) 11 for each i £ {l,...,t}. However, 

we are only interested in the image of w under we may 

assume that wt(b^) = 11 for each i. Using the notation of 

2.!+.16 we now claim further that mic(bj_) k for each i. 

The justification for this is as follows: Because w £ G^ 

the elem.ents b^ , . . . are the elementary parts of w and 

thus by 2.U.33 mic(w) = min(mic(bi)Ii e {l,...,t}), since 

clearly ) = mic(bi). From this the. claim follows, 

for since w £ we have by 2.2.17 that mi c (w) > . To 

complete the argument note that the only elements 

bi £ B'l) ̂  G^ which have weight 11 are the elements 

[gp.jSi^^lO - = ^ 2,. ..,9, and of these 
it can be checked by using the methods of 2.h that 

mic(w, ) = mic(w J = ^^ and that mic(wj) = 3 for M .1 ̂  T . 
h T 

Since = Wj, we are home. 
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Now d e f i n e D^^D^ e l a t ( G ) by 

D = ({w ,w w V w w ,v }> .G, 
1 2 3 5 7 U 6 7 9 ( 1 2 ) 

D = \{'w w, .w w w ,w w^w w 
2 2 U' 3 5 7 U 6 7 7 9 ( 1 2 ) 

T h e a , c l e a r l y , D 5 = D and D 5 = D . As we a l s o have 
1 1 2 2 

M,, ,H = M* , = U, i t f o l l o w s f r o m 3 . 1 . U ( a n d the f a c t t h a t 
[h) [k) 

5 i s a l a t t i c e homomorphism) t h a t 

I n t e r n s o f v a r i e t i e s t h i s means 

3 . 2 . 1 . . . ( I ^ V L ^ ) A ( I ^ L^) ^ ^ (L^ A L^) 

w h e r e L and L a r e n i l p o t e n t . I f now L ' L ' and V a r e 
=1 =2 =2 = 

d e f i n e d by 

= ' " =1 ^=3 =2^ 

L ' = L^ A ( I 3 V L^) 

t h e n , by u s i n g 3 . 2 . 1 and m o d u l a r i t y , we have ( i ) I ^ 1 3 ^ l l 

( i i ) I = ^3 ^ =2 

( i i i ) V ^ I V (L^ A 
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This is just the situation we need to ansver the question 

posed in 2.1.3, for if there existed a unique minimal 

(nilpotent) variety L satisfying 1 = h then from (i) and 

(ii) ve would have Lj ^̂  L, L^ = L and hence ~ =' 

that is impossible, for we would then have 

V = ig ^ S i3 V A L^) 2 i3 y £ = Y 

which contradicts (iii). 

3.3 Further Remarks 

It is clear that the example we have seen of non-

distributivity in lat(G*) not only demonstrates that lat(^2i9) 

is non-distributive; it in fact demonstrates that 

lat(A^A„ A ,) is non-distributive. Even this can be =3=9 =11 
sharpened, for by a similar example it can be shown that 

latC^^I^ is non-distributive. (The "larger" example 

was chosen for inclusion here because it yields, in addition, 
the result of 3.2). 

I have also shown, by an example similar to the second 

example mentioned above, that a ^^ 

distributive, and I am convinced that this example can be 

generalised to cover lati^^A^i A l^z) for all odd primes p. 

However, a general example such as this involves some rather 
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complicated identities in GF(p) which at present I an unahle 

to handle. 

With regard to lat(A A, ), it appears that lat(F (A A, )) = 2 = 1+ 2 =2 = 1+ 
is distributive; whether or not lat(F (A A, )) is non-r =2 = 1+ 
distributive for some r e l"̂ , I do not know. 

Lastly, by way of contrast, it is worth remarking that 

M.F. Newman (unpublished) has shown that lat(A 2-'̂  ) i® =P =P — 
distributive for all primes p. 
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