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INTRODUCTION

Bhe work reported in this thesis i1s & contribution te the
youns, bt iocrewing, theory of metabelian varieties [i.e.
Warietics (of metabelian greups)..  The basic (but in its full
generality entirely hopeless) problem in this theory is to
describe all metabelian varieties and the lattice lat(éé) they
form, and lindeed, most of. .bhe resulté:obtained 2@ HEd CEnEE
aspects of this problem.

Probably the most general, and certainly the most well-
known, of these results is due to D,E. Cohen [3], who h&s =hown
that lat(éé) has minimum condition. Other suthors, stech as
Warren Bric ey i} RoAL Bryee [2], Pude Cossey [h], E26:
Kovdcs and M.F. Newman (unpublished), and P.M. Weichsel [9],
have given descriptions of varicus sublattices of lat(éé).
These sublattieces mre all distributive, wheress latlAl) itself
ig. not, as has beenschown by RB.A. Bryece [2].

It follows from Cohen's result that every variety L in

lat(AA) can be expressed. as the irredundant join of finitely

Iy

many join-irreducible varieties. Owing to non-distributivity
not every V has a unigue expression of this kind, nevertheless

a classification of the join-irreducible subvarieties of

1>
=

+

(

x>
=2

would clearly provide a great deal of information about lat

{

In this direction L.G. Kovdcs and M.F. Newman, in work as yet
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unpublished, have classified the join-irreducibles of infinite
exponent, and have shown further that for any e lat(gé) the
infinite exponent components in the expressions for V as an
irredundant join of join-irreducibles are unigue. The join=-
irreducibles of finite, composite cxponent have been considered
by R.A. Bryce, who has obtained a reduction theorem relating
to their elassifieation. Although this theorem, which is alse
unpublished, "decs 'not actually lead to & clasgificsbion, it
does indicate that any such classification must necessarily be
extremcly complicated. The remaining case is. that of the
prime-power exponent join-irreducibles, and it is to certain
aspeets of the problem of classifying them that this thesis is
devoted.

The prineipal result, which is expressed in the first
part of Theegrem 2.1.2, is a complete classification eof ithe
non=-nilpotent join-irreducibles in 1at(épén2)’ where p is an
arbitrary prime. It is shown that these non-nilpotent join-
irreducibles form an ascending chain, so that any non-nilpotent

variety V € lat(ﬁnépz) een be written ¥ = I w» L where icEs o
= =p2 A =

o)

non-nilpotent join~irredueible, and L is nilpetent. The
B undipErt of Theorodn 000 02 soys that this I 1s unique
(compare the result of L.G. Kovécs and M.F., Newman mentioned
sbove) ., but in Chapter 3 it is shown that at least lat(é3§9>

saMion-dicstributive, and, in particular, that the nilpotent
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compenent L of ¥V is not always unique, even when "minimised".
(See Remark 2.1.3). In addition to these PEEHILES o 2
conjecture (item 2.9.5) is made regarding the non-nilpotent
join-irreducibles in lat(épép6+l

reduce the classification problem of the join-irreducibles in

I Swhieh, i€ trues would

lat(a A

B+l) to that of the nilpotent join-irreducibles in
== P

the same lattiee. This conjecture, which is similar to the
reduction theorem of Bryce in the composite exponent
situatien,. is proved for the case B = 1, Unfortunately, the
classification problem for the nilpotent join-irreducibles
appears very difficult.

The proof of Theorem 2.1.2 consists almost entirely of
commutatoer caleculations. In fact, such an extensive use 1is
made of commutator calculus that it has been worthwhile to
develop a new form of it which is tailcr-made for the
metabelian situation. This is described in Chapter 1 and 1is

used there to provide a basis for the derived group of

A" AlEhaugh Ghis resull is only needed Tor the cese
=n

M= P, 0= pz, it is gilven for general m,n as this does notk

make the proof any more difficult.



NOTATION AND TERMINOLOGY

Hotation and terminology genrerally follows that in

Hanna Neumann. Varieties of Groups. Berlin,

Heidelberg and New York. Springer 1967.

References to this book are frequent, and are indicated
by the letters HN, usually followed by the relevant itenm
number. Any notation or terminology neither explained below
nor in the body of the thesis has exactly the meaning
attached to it in HN. Note, however, that German letters

are here represented by double-underlined Romen letters.

Logic and Sets:

= iggieal impliecation
7y "end of proof" or, sometimes "no proof"
¥ signifies that a proof appears later. If the proof

appears in a different section then the symbol is

followed by the relevant section nunber.

? the enpty set

W the lesst infinite ordinsl

<ﬁo the smallest infinite cardinal

I the set of non-negative integers
+

I the set of positive integers



Grougs:

The trivial element of every group is denoted by 1.
For the definitions below let H be a. group;
Hy,Hy,...s5ubgroups of H; hy;,h,,...elements of H with

+
e o Ll o rasees B TG andike e T WAkl

iy Hq iga suboreup of H

gp(g) the subgroup of H generated by b

(h) the fully inveariant closure af “hintH

_h2 ] =
L

fn nyhy

e e | defined recursively: 3
[hl,n..,hk] = [[hl,'..’hk"l]’hk]

[hl’rQhZ] defined recursively: [hl,Ohg] = hy,
[hl,rehg] = [[hl,(rg-l)hz],he]

[hl’r2h2""’rkhk] again defined recursively in the obvious

manner
TH il | gp({[hl,h2]lhl e H S h e i)
[Hl’r2H°] defined recursively: similar%y to .above
+
Hie) [8.(c~2)H] defined for all e €1
c

The exponent of H is the smallest positive integer e
s eh S tine G B =1 Por all h e H, If no such integer exists H

is said to have infinite exponent.



Miscellanecous:

GF(p) the field of integers modulo the prime p
suppd Lelts & Heany set.  The support of a funetion

gt 8 > T, denoted by suppé, 1s defined by
suppd = {s ¢ 8|68(s) % 0}
[q] the integer part of the non-negative rational

nambe rig s gl onT o g = 1< [al < qe.

lat(Y) the lattice of subvarieties of the variety ¥

The lexponent of a variety YV is the least pomitive
integer e 'such that ¥ < Be oFr 1s 1Infinite 1Ff no skeli’e

EoeiisHt S

{xi)



CHAPTER 1

THE DERIVED GROUP OF F (A A )
co =m=n

In this chapter the structure of the derived group

F'(A A

LA e R 1) s dnvestipated.  Since LA iz the
col =il =i con =TI=T =

1

Yarichty of trivial groups, the variety A A 1is sbelisn if

=m=n
B arin i i seibHat in these cases F'(8 4 ) dis trivial.
On the other hand when n = O the structure of F'(A A )

beccomes more complicated than can be handled by the methods
presented here. For all other cases it is shown that
F;(éwgn) is free abelian of exponent m, and, more
imporbantly, an explicit basis for it is exhibited., The
description of this basis and a formal statement of
resulitsa, is giwen in section 1.2, after the requisite
notation has been introduced in l.1l. The proof of these
results, modulo three principsl lemmas, is given in 1.3,
while the proofs of the three lemmas occupy sections T il
through 1.6. Finally, in 1.7 an alternative basis for
F'(A A ) is described which, although easily obtainable

from the original, is of a .rather different nature,



el A Commutator Caleulus for Metabelian Groups

This'seetion deals with the conventions, notation and
terminology that will be adopted with regard to what is
perhaps the most intensively exploited method of proof in
this thesis, namely commutator calculus.

An inconvenience inherent in commutator calculus in
general is that the word "commutator" is usually
considered as having, simultaneously, two distinct
meanings; on the one hand it is the name given to certain
ELEMENTS of the group under consideration, while on the
other 1t dsithe name given to certain purely FORMAL
EXPRESSIONS to which the attributes such as weight can be
aseribed. Although in most cases this presents no real
diffieulbtics, for the purposes of this thesis it does, and
consequently I shall use the non-standard notation and
terminology defined below. Part of the intuitive content
of the definitions is that the word "commutator" will be
reserved for the second of the meanings mentioned above,
and "commutator-element" will be used for the first.
Further, the two will be distinguished notationally by
using parentheses in writing commutators, and brackets in

writing commutator-elements.



glici s roups to whieh commutator calculus will be applied
will almost always be metabelian and accordingly the
definitions below are made with metabelian groups in mind,
even though most of them are formulated in terms of arbitrary

BTroups.

ORI s +
el Dt pit ion: - et H be any. proup and letie o Tl

A commufater of weight k in H is an ordered

- bl etlie o (B oo sl ) eith b e e e T e

1 ls'..’k

the element hi 15 ‘e ferved to as the i-th entry of c.

The set of all commutators in H is denoted by C(H)
[ee]
files é = \v,Hk), and the weight of a conmmutator ¢ € C(H) is

k=2
denoted by wt(c).

e s ifien: Let H be any groups The value of &

commutator (hl""’hk) in H is defined as the element

[h.,...,h. ] of H. Any element of H that is the value of some

k

commutator in H is called a commutator-elemente.

1.1.3 Definition: Let ¢ be a commutator in a group H.

The degree function of e, denoted by 66’ is defined as follows:

fani

For any h € H define X, S By (B = 1 and R L

For all L' X h, Then far ) the degree function

= (hl,...,hk

8 Sl ST s defined. as

T il e i



1.1.4 Remarks: Let H be any group; ¢ a commutator
il tand . g H. "Then dtafollows immediately from

Dol dndtren sl gl ol apd 151 .3 thatis

G ) the''slet OF entries of @ is preeisely suppé. s
c

fad) suppdy is finite but non-empty:
¢

(s (R ) e thel number of times h ocelurs a5 an
¢

entry in €;

DY

R T
hell ©

(i) Wk

I s i nd L ons Calet H be any group.’ A peir of

computators in H are called similar if, and only 1f,; they
have fthe seme first entry, the same second entry and the

same degree function.

For any group H it is clear that similarity defines

147]

an equivalence relation on C(H) and hence that C(H) i

- . - - " - . -
the union of palr-wise non-lntersecting siml L ar ey

=

clesses™ These similarity classes are the subject o

& .

w

the next definition:



Lol Wefinition: et H be' any sroup: ~ Denote by

(hl,h §) the (non-empty) similarity class containing

29

eommutators in H with degree function 6 and first =and

second entries hl

and

B Tespecebively. Then [k St

2 13]’*23

eadlilled e psende-conmutetor in H with first cntry ho o,

second entry hg’ and degree fupetion §. Third, fourth

aBd furtheéer enbries are not defined as suchy but never-

thelecsl any h e suppd  is called an entry of (hl,he,S)-

e =et of all pseudo-commutators in H is decnoted by

T 4
o1 |

have the same weight.

L Follows from 1.1l.4(iwv) that similar commutators

Thus : -

i.1.7. Definition: The welght of pseudo-commutator

e

]
[¢7]

1.1.8  Bemark

denioLed by wtipls

is defined to be the common weight of its members, and

Let Hi be any group, and let <hl’h2’6>

be a pseudo-commutator in H. Then wt((hl,hg,ﬁ)) = B8l k)

hEeH

For metabelian groups the concept of pseudo-commutators

is particularly useful. This is on account of the following

well-known result.

(

See, for example, HNZL.51).



e hemwe st Eed H bea metabelian group, and let
hl,...,hk gl B Ra. i Then iforiany permutiation g of

i k]

[hyshyhg,e.s,h [

L= = [h h

el ol st D

Ll o

el Bl 0 SCerollary: “In o metabelian group similsr

eommutators have identical wvalues. [/
The above corollary makes possible the following
definition, which provides the key to a simplified notation

for elements of the derived group of a metabelian group.

g Definition:  Let H be a metabelian proup. %he

value of a pseudo-commutator (hl,hg,d) in H is defined "to

be the common value of its members, and is denoted by

Lo

A disadvantage of the (hl,hg,é)-notation for pseudo-
commutators is that it is generic rather than explicit. To
overcome this, the degree function 8§ will, when necessary,
be "listed" in the form {8(h)h|h € suppS}. For exemple,
the pseudo-commutator containing (hl’hQ’h2’hl’h3’hl’hl) may
be denoted by (hl,hg,{hhl,2h2,1h3}). The notation will also
be carried over to values of pscudo-commutators in the

obvious manner.



2 S aitemenitl o f ithie Main Mheorem

For the remainder of this chapter let n denote an

arbitrary but fixed integer greater than 1, and let

G(m) = Fm(émén) where m ¢ I, n 20 0e FElivhhery Aot
g(m) = {e .’i € I+} denote a free generating set for G(m),
= iglat

where it is to be understoocd that g(m) is well ordered by

Mol Bndebine Sehr duew @ et - dforand enly R0l o2 g

1.2.1 Definition: A pseudo-commutator (a,b,§) in G(m)

g be ol el hasie Af, and only 4f,

(2) b = minsuppd (i.c. b is the least element in supps)

el eI B

el L a = (g.)< n)
e = mi F mi
or (ii) "@lb) = n, a = maxsuppd and
e el )l & v = g - ei k)
mi = mi mi

- - y . / A\ . z = N
The set of basiec pseudo-commutators 1in G(m) will be denoted



The main result of this chapter can now be stated as

eltifow s

Ui 2.2 "Mheorem: "The derived group G'(m) of ¢lm) iz free
ghieds anof exponent m. Further, the valuastion mapping
e 5 ~ . .
gkm) = "Elm} SNClw] i one-to-cmne, and Bl{mldlm) 15 a basis For

eIy

Gilm). "4t (1.3)

It should perhaps be remarked that, in terms of basic
conmutators*, as defined in HN31.51, the basis B(m)¢(m) for
Erln) consists of images under o (vhere o : X. > Glm) is the
epimerphism induced by the neturael map from x to glm}) ‘of
1 Bt-—rnorncd basic commutators in whieh no letter cceurs mere

pecific ecases, "one of Ghk

0

i1 Ctames , except that, i

fiie=w? by entries may oecur n times. However, we shall noet

0oy
z

e ba=ie commutator methods for the proof of l.2.2, or,

indeed, anywhere in this thesis.

|__.|
w
T2
i
)
1y
®
i
(8V]
=
HJ
-
G
O
H=h
(©)
)
}.._l
no
N

The bulk of the proof of 1.2.2 will be carried out in

\

nitely generated subgroups of EL0), For any integer r

e

&

rescer bhan 1 let g H0) =l .08 r} R B 2(0)), and

3 L

. " ) W e
£ @t one In this paragreph only, the word "conmmutator” 1s
beino used in the standard sense, and not as defined in l.l.1.



let Gr(O) =tonlie B ) o i Tiet ﬁT(O) denote the set of basic
pseudo~comnutators in Gr(O); ke ﬁr(o) = B0 e ?(GT(O)).
g EhdsVscetion 1t 15 shown how 1.2.2 is dedneed from

the following three lenmnas:

ls8. Eemma: For-all r > 2 the derived group G110} o

Gr(O) is free . abelian of exponent 0 and rank (e lmiaa ). FELL
2.5.2 Lemma: For sll + > 2 |B (0)| = (z=1)(n"=1), ++(1:5}
(0) = gp(ﬁr(o)¢(o)). y4(1.6)

Betually, the rank of G'(0) and the cardinslity of Br(O)
are not important in themselves; only their equality 1s

rewiuired, and fhis is used to prove:

i.3.4h TLemma: For any integer r > 2 the valuation
mapping ¢(0)|§ (oo Boiln) = GV(O) is one-to-one, and
r

B (0)g(0) is @ basis for g,
r

Pebofy From 1y3.2 B (0)s(0)] < (r-1)(n¥-1), and

equality belds ogaly if ¢(O)!ﬁ (0) is one-to-one. On the
e
other hand, since from 1.3.3 B _(0)¢(0) is a gencrating set

~ . 65
(0), it follows from 1.3.1 that |B_(0)¢(0)| > (r-1)(n"-1),

C :

I ¢
f o 5



10.

and equality holds here only if Er(0)¢(0) 58 bEsd st for

G (G

?
A0

Preogi o 2,28 e deall #ilests Gawh ohie @ase @m = 0

Firstly, the mapping ¢(0) : B(0) » G(0) is one-to-one
beeceise any twe distinect basic psendo-commnutators belonging
%0 B(0O) are also members of %r(o) for suffieiently larege T,
and therefore have distinect values, since ¢(O)|§r(o) is one-
to=one (Ffrom 1.3.h].

Secondly, B(0)¢(0) generates G'(0) because any element
sp e RO ST s sl ole "o member of G%(O) for large enomgh =, and
G;(O) = gp(ﬁr(o)¢(o) < gp(B(0)9(0)). (We have used 1.3.3).
o e tny et BU0)G(0) 15 in Taet s bazis for BI(O) T
remains to show that no non-trivial relation exists among
its members. Now if any such non-trivial relation did
exist, say involving the values of basic pseudo-commutators
51""’5k’ then, choosing r =o that 51""’§k € ﬁr(O), ik
would also provide an example of a non-trivial relation
among the members of Br(0)¢(0). But this would mean that
ﬁr(0)¢(0) could not be a basis for G;(O), contradicting
Lo elss

Flu-lly. we must show that G'(0) is free abelisnm of
exponent 0, but since we have already exhibited a basis for

. Suffices to show that G'(0) is torsion-free. For



10

this simply note that G'(0) is torsion-free for every r > 2

e L8l e lend (GU0) = G

PoL eomplete the prEef of: 1.2.2 we must deal with the
gase m > 1, and this we shsll now do, essentially by shewing
that the restriction of the natural epimorphism 6 : G(0) - G(m)

has the necessary properties.

Por, the remaimder of this proof, let m denote an

arbitrary but. fixed integer greater than 1. Since 4 AL is &

=m=n
subvariety of AOA , the natural mapping @ : g(0) + g(m),
=\Ui=i = =
given by goi§ =i gor el e I+, extends to an

epimorphism 6 : G(0) » G(m) with kernel Am(An(G(O))). From
ENl2.33, Alc(o)e) = a(c(0)8, so G'(m) = @'(0)6, and henece
'(m] willi be shown to be free sbelian of exponent @m 1f we

can show that
. .rlt Ll k
1S er(elG

To prave this, let F dencte an absolutely free group of

rank Vb’ so that (0] = P/A(A'NF)), I the same notation
il

1

@rln ) =ale(o)) A(F/A(An(F))) = A(F).A(A (F))/A(a (F)) =

It
i
—

amg wEneo. {0}/ LD E RIA(E)



L2

Biec abel izn (of exponent 0) and it follows that
An(G(O))/G'(O), being a subgroup of a free abelian group, 1is
Sllze diree alhied i any ([50] pallis) o Now An(G(O)) is abelian,
(since A(AH(G(O))) =S b follows sthebe B (0) s g
direet faetor of An(G(O)). (IslpLilb).  Hence denoting by €

sny complements ofs G (0)F dneh (6(0) ) we have

1l

kerg = AM(AH(G(O))) = Bm(An((}(D))) =B (G*(0)xe )= B et ba ) g

Bt bliis proves dn3Eoe for kerlo

G

We show next that

T o B E@ialis: o blaisi s for 61 (@) then elb is one=to~one

and bf is a basis for G'(m).
Let b = {b,Ii e I7} and suppose we have a relation of the kind
= i

& (& &
(biriied 1(133,L Bl by 6] k=
) 2 Ty

mlc el L L e areidimtesers, and the b, yese5b, T o g
1 k =

pair—wise distinet. 'Then

SRl Ssinte o R rom iacsic 5 {b?li S hige s basilis Tor ker(@lc,(o))

a6 Tollaws that n|ej Fopticlell e 1. ...k}, From this we

gonclude firstly that 6|b is one-to-one, because if 1 o

)-]_

then the relation (bje)(bje = 1 cannot hold in G'(m)},



and secondly that b6 is an independent set in G*'(n)

13.

5 B8 wlae

only relations that can hold anong the menmbers of b® are the

Before we

pseudo-comnutat

?

arlen oL Bl D) L

Reference to 1.
g% B(0) » B(m

The
Po*¥p(m) = Bo(0)

the diagran

ST =

<5oile=50i29’{dlgoil°’°°°’dkgoi

def il v renon

(We are using the

fiaelt that G'(m) heos exponent

etes 'bhe proef of 1.3.6 because

= eplB)b = 2p(bE), that is, b6 generates G'(m).
ean proeceed Turcher, we nust relate  Lhe hasie
ors in Glm) ke theceo ip C(0) % Te-de thisy fop
a 3 = ( 7 o e opa SRS . where
&y P ‘g011’~01_9{d15011’ ’dkgOlv}) sl

5]

(gmil 2
2.1 shows that $6* e B(m)

) is ento.
O s oS

5§ £or every D E BLO

al J
e
6(0)
015 (0)e(0)
L G

0})
k

’gmim’{dlgmil”"’dkgmi

8
are pair-wise distinct positive integers, let

}).

k

fnirt e rthiat

), or in other words that

0

B(m)¢(m) 1

commutative.



3. 4

glet i Fact, bepether with 1.3.6, we now use to complete the
Elitcstanding parts of the proof gdlce . Hilesto prove that
¢(m) is one-to-one and that ﬁ(n)¢(m) o e Basic Rom El ol
Since, as we have already renarked, 6% : B(0) - B(n) is
onto, and ¢(n) : B(n) - ﬁ(m)@(m) s onte by definition, &t
Bolllows From 1.3.7 that %(”)¢(O)9!; T E(m)@(m).
Taking b to be B(0)¢{0) in 1.3.6 therefore shows that

5

pesis s Beor Gl (mle T Simillianly, (13306 shiow = Eilal

g / is one-to-one, and hence e bl 0O) 1s one=-
B'Ek”)¢k0) s one-to-one, and hence, using that ¢(0)

=

Go-agnel=and 6F d4s onto, 1.3.7 shows that ¢l(m}) 15 slso one-fto—

1 he Proor of 1.3.1

We will need the following simple observeation:

F.L.1 Lemma: e os 2 froe abelien group of ‘renk ¥

=ty

bende iponent 0, T 5 subgroup of R such that R/T = @, X G

Wlie re 0 s ‘free abelimn of rank q asnd Q, 1s fianite, then
=

L

g eee abeliaon of TEnk r o= q.

Proof: The freeness of T is immediate, since every
subgroup of a free abelian group is free abelian. Let the

#=enk of T be t. /Denoting the torsion-free-rank of an



1o

abelian group X by rO(X), folpillo =ives rO(R) = rO(R/T)+rO(T).

)

el \for example, [ 51 p.140, but note that the author means

" . =
torsion-free-rank" when he says "rank"). But rO(R) = r,

rO(T) = 0 and r (R/E) = E e e lde isin 0 Sl

BNEle © i @R ST

Tett i he an abis eiluitie v Erelel i o roll e

rank v, and within it ednsider the werbai

e smbsrenps A (e 0 A (E ) amd AGA (B S lelc andy
[ L £ ES
it these ave arranged as in 'Fig. 1. 'We claim:
7
An(ir)
| (i ®oJn () is finite, and hHas erxder nt
i
ALE)
I 2
! T S .
i ; ) Fr/A(Fr) 1s free abelian of vank o
ARl )
S ) Aq(Fr)/A(Fr) is free abelian of rank r
{5
Pigs 1.
Verbal (iv) An(Fr)/A(An(Fr)) is free abelian of
Subgroups -
o¥: PR renk (r-1)n _+ 1
(v) A(Fr)/A(Ap(Fr)) is free abelian f

rank (r—l)(nr~l)

For the proofs we have:

1S

- & - ! -f'
(i) Fr/An(Fr) BG4 8 and s0 Fr/An(Fr) is dypee

abelian of exponent n and rank r.
\
)

{1i i milariy w oy alE ] = P
i i Bamilarly Fr/x( r) r(

=
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Fs e - - - 3
Pl i Y and 001
iy From Schreier's formula and (i), A (F ) is
R
5 o S
(2bsolutely) free of rank (r-1)n +1, and hence

~

A ‘.;\‘/;‘_{A i A ¥ nlc
e e T BT
(v) Hae Liia s “bav) and 00l 20,

—_ !/ \ . - -
Bustas S iaisE S bhic Sre g e d cenclusaon, for

ne

R e (6)) = (e fala (g 0)) = AUF /Al (B ) s il

Clearly, a basic pseudo-commutator (a,b,8) in G(0) is a

4

(1)
=]

lenber of B_(0) if, and only if, supp ¢ gr(O). Thus wWe

4

merely have to count the pseudo-commutators that satiely ‘hhE

()

o e Ui fwith =0 in (L)) =snd =

strengthened versiocn of conditicn (1), namely

(0)

Q

(1)*  suppd &

.’r

We count those (a2,b,8) € B_(0) with a given set of

entries, say suppl = g = {al,...,as}, where in view of
e s ln)® ona (1) 2 g (D) and 2 € 8 < 7, and we
= = —r S

may assume without loss of generality that a; = nina and



il
o]
-7
Q0
[ o]

0
[y
o}
S

il
)

Fendiltien

counting

’.
&

1 can be
renaining
ML e

sfy

a)
1S4

and
wowed @i

comnnutato

Neow et B

immediat

natively,

. Since any pseudo-co

aibteomatiecally

s (20 Bnd (3) redipce

those nembers of the

=
(=)

o
S

| fav]
N—r

= e

{dl

0N

Eis

we

nenmnbers ol Sieiion:
for (a
bnditien (L)(

can be chosen in

s
1) arze mutnally exelusive

e

(s~—1

P é( P e

@

|B (

i

) |

e

{elac ¢

B8y

SEokRs T

Ll

Now

it

n(n-l‘)s"'1 + (n~l)s

mputator (a,b;6) wi
es
i

a
(=)

et

nNo

for

e ‘setisfy eondlitaon

A

aL

i n Ways:;

@

i il

0

o
D

(n-1) way

nust

) ways ecach. Sinece

-1 pasic pseudo-

Then 1%t

T5gl e

The condition [

FEiE B BT ©E

conditions this gives

"5l

1

and the

s

and
@RECT

a

follows

17-



14,

(i) S ﬁr(o) — Ha£D: p € §(g),
(34.) \7’42.1,12 = B g, 4-,: 8, == :v(gl) N é(i-ld) =
) el l
(lll) '{c:‘l;c-‘ & D) Igl = o}' = 5 1
Hence |3r(o)| T IBr(O) n 5(a)|
QCD
(
r {r
=i Lo}{HG(H—L)J—J = e
g=72
r £(r~l\ ; r [r
= sLs—lln*(n~;) el z ls](L—l)s
s=2 =0
S T s SRR R B R
= e

B he Proof of) 1. 353

]
L e

e preef of L.3.5 ecnsistoMentirely of celeulstious
with commutator-elements, and will make muech use of the

following well-known identities:

1.6.1 Remarks: Let T be any metabelian group,
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s e ey andhienice [t ot s ac .l = 1 whenever

L e S s o T SR LS o S -

{ ) {t’,t?][t se =0 lisiae (2) fhis generalisies

1 2
tor Tf (bt ,%,6) ¢ P(T) then [tl,tg,é][t2,tl,6] = 1.
to
e i [ +2,t3] =i ,t3]t~Ft2,t3] = [tl,t3][tp,t;][tl,t3,
[tL,t?ts] = [tl,tz] 3(tl,t2] = [tl,t ][tl,tSJ[tl,tg,t

&l s Lt s ralle stk L Usine B2 e

] 2 3 SRR gL
generalises to: If (tj,t?,é) e P(T) then for any
£ s G odn R R S T [ e N T B

3 e 2y e
in the seguel the indentities 1.6,101)-(5} will
Freguently be uUsed without explicit mention. Amother useful

s@entity o 1is the fellowing:

a2 lemmia: et "Tible i a metabelian groups L.U0 B0

k
i )

and X € IT., Then [t,uk] e e .

Broof: We use induetion on k. The case k = 1 is

immediate, and the inductive step is



20.

foel = tona v

iloe that with the bhelp of 1,6.1(2) and (3) this wesult

becomes applicable in more general situations. For exanple

@f comrse, bto prove l.3.3 we necd to know more about
Gr(O) than just that it satisfies the metabelian law. The

Purther information that is needed is contained in:

g ol eamar ) WFer aay man e 1

hod |
) n n mnn

L DR B S B i T

n n

Proof: Denoting the right-hand side above by W, we
: g £

have immediately that A An) M. 1o prove the reverse

uk

inclusion let H be any group for which w(g) = {1}. Then



2L -

m
Bhc daws [lw,x] . ly,2z]] and [x,y] ensure that

Am(A(H)) = {1}, and the laws [x",y"] and (x®) ensure that

Am(Bn(H)) = {a2}. BPurther ) A(H) and Bn(H) commute element-

wise, [X,y,zn] being 'a dlaw "n B, Henece Am(An(H)) =
Am(A(H)an(H)) = {1}. We have thus shown that for any group

e e = — Am(An(H)) = {1}, and this means that

Betucil Tyl 06 3 Syl nlotiibe heeded 1in Hte ‘entilrety untii
thie ‘pext chapter; lere we simply use the laws [x,y,zn] and

n n
]

L to' deduec seme Turther identities (Lemmas 1.6.k-—1 .65

&hat hold in 'grouwps belonging to

>
s

H

A, Of course, Go{@) e 0l
n e ==n

& o é 5l
e S e e T v andian Faekblgll of these further idenbitics

i petineeide d S ort itlhie prioof of 1.3.3.

el hemme ek T E L s h,n e i Then
_(n—l
n {i-l
=Tt L]
i=1

IE0E)oE A We have

¥ = =
e G e R L TR e
and hence, since [t,u_l,un] N 1..6.3),
5 g -1



Using 1.6.2, we conclude that

g [
- n-1 [ni J n [?} -1
e IelisEs )
1=1 i=1
n-1
n _(i—l]
= H [t’iu] . //
1=1

et s5  Lemma:zt Let T e AD s tyu,v E Ty k B L. Then

=1

there exist integers eo(k),...,en (k) sueh that
oy

[t,u,kv]

1]
=l

et
(e
v
-

=

| S—)
.

Proof: The proof is by induction on k. For

Bk < n — 1 Cthere 7= mething to-prove. - For k = myswe

howe From L.b6.2 'end 1.6.3 Shat 1 = [t,u,vn] =Eaudl [t,u,iv]
i=1
e
n-1 o
and hence [t,u,nv] =il [t,u,iv] . The inductiye shep
i=1
e B2 0,715
e vl = Tt kv ]
o e (k)
e o TR TSR , V]
1i=1
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n-1 e 1(k) e _l(k)
A el s W i 1] t,0,nv]
i=2
(n
n~1 2 l(k) n=1 —LJ} Cl-l(k)
= ( IT [tQu’i‘V] )( 1L [t,u,lV] ) :
1=2 Q=10
n-1 e.(k+1)
=W fEau,iv]
i=1
(n
where el(k+l) = —nun_l(k) sud el 1) = e; (k) - {iJen_l(k)
7 e Rl T SRR
e e e B 8 e BT i
e ——— ::n
_(1’1\ fn\
s 1) 3
8= lnt.aul. Then [$t,u,86] = [T I [t,u,éij] , Wwhere
i=1 5=1 :
i+)<2n
6i_j REE P
Proof: We have, from 1.6.2 and 1.6.3,
(n\ (n\ |(an
n . 1jJ n n . liJ CJ
= [tn,un] = AL i ] St e e eyt k] o :
j=1 j=1 i=1

and the result follovs. £

1.6.7 Lemma: Let T e A2 ;3 i, v £ 0 THen

-
Ui )
-
<
-
=l
-
cht
el
r—y
C
-
[~
()
-

4
<
d
I

A

-

[t,nu,v] = [v,nu,t]. T
1=1



2

o e R a6 B0 1 621 (5) 'and (3), snd 1.6.2, we

have

n
R e e e ]

QA i ] T s 10t s
S =1 i=1

Zac e pefult Teolllews o L/

e fiPe aeyy wEesly B0 9Eewe loSoss  HapeuEdetis Blie [9ieee
we shall abbreviate G,.(0), ﬁr(o), $(0) ana g,(0) = {gOl""’gOr}
g6 G, B., ¢ and e {gl,...,gr} respectively; no ambiguity

Shenilcl weswlly EEom ke

Erometeor . 2.2 The mreof 15 broken inte Five ciieps.

~ ~ ~

Defining subsets S;,...,55 of P(Gr) by
él = {p ¢ E(Gr)lwt(ﬁ) =2}
§2 A %(Gr)|supp5 £loi g;l} where g;l = {gzl,...,g;l}
§, = {(a,,8) e P(c)|supps < g}
éh e R §3|b = minsuppé; a § b}
55 = 1(a,b,6) ¢ §h|6(a) gt < ) 6la) ¢ 8 b)) & 2ng
8(e) < n for a F e # b}
56 mlfel s 8) € 5516(b) = 4 = maxsuppdél = tr



we show in the 1-th step that §i¢ = gpiB. .0). We then have

that

and hence G; = gp(§r¢) as the lemma claims.

e s Moy @y Ghylo & Gr we can write a = alaQ"'ag(a)
d b = . e e Ao cach
and b ble bz(b) where 1,JJ € g.u 8 for each

e s sl o Faeg el SRR LS b S L THen

e blcs Hatii.a Dasaibern e an be "expanded' usine
: 1 e it )

g () and (2) te give an expression of the form

e b el [ck,dk,ﬁk] where for each k € {1,...,s}

suppé. c {al""’al(a)’ bl""’bQ(b)}° Thus [a,b]l € gp(52¢)

Lo

and hence §l¢ & gp(§2¢).

Tl) il o, s e

Ao(gl
1

Tt B e & pith

n
c.i.
®
3
n

no

(]t

i

then elready (a,b,8) € gg, so certainly [a,b,8] € gp(53¢).

- - 1 L= \ i -
Fors 500, gssume inductively that if (a',b',6') € 8, with

-~

SWg;l) < s then [a',b',8'] ¢ gp(§3¢). Choosing
: ; -

fit BAH

i

-1 >
B el el enen thell e ) > O, 1.6.4 shows



N
o\
-

E n-_1
n J=1

L83tsn] = N [BsBab,] where §. = § - ¥ Yo ity
1 J J el &
. = wl
Jo- o sssuy Tt To¥ d2¢0 duaf bliicish) % Gj(gi') C o
i=1

L4

gnd it followe Chiat [ &4bis] ¢ gp(u3 )¢ Hence §2¢ = gp(S3¢).

Step 3¢ Let B = (a,b,8) ¢ S5/ Then using 1.6.1(5) end
-1
L3l for any € & BupEsd Td € [Lsesd][bgcegl < In. pa¥tifulay,

pitting ¢ # minsuppSy this shows thdt po € gp(S,9). (The

cones 2= e ghd/or b= e do nmot upset thHis, Bince, cif cBlirscy
fe,e, 8] = 1}  Hemee S.0 c gp(5h¢).
e
Gesp b et nie By, BEY DS (al,ag,{dlal,...,dsas})

vhere {al,...,as} c g, and d3,...,d

2io = o v Then writing

(A
T
2 =

Po [al,a?,(dl~l)8

Me can use l.b.5 te glive

where, in the notation of 1,6.5,

il = e. (dl-l).e-)kdg-l).e

Tl i i s o
1L dgibing 1 2 3
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Of the pseudo-commutators

(al’aQ’{(il+l>a1’(i +1

5 )ag,i3a3,...,isa )

whose values ocecur as factors of the product on the right-

hand side of 1.6,8 bhe only ones which are not nmembers of

5 arc Gthoese 1In whiech il = 1 =tn. =,  However, for tiEsc
7

SE G N e [al,ag,{nal,nag,iga?,...,isas}]
i
n n Ak jJ
=0 II [EH ,ap,{ial,jag,i3a3,...,isas}}
Rl g =il o :
iarg<2m

~

and here every [al,ag,{ial,ja2,13a3,...,1Sas}] > SSQ. Hence,

between them, 1.6.8 and 1.6.2 show that D¢ € gp(SS¢), and so

Ene

= gp(§5¢)-

Stepis: Lekt bt S5, say = (al,a2,6) where

suppd = {al,...,aq}(E_g o lsone 5y 28 5% v BELE ¢ S¢

then necessarily §(a,) B and a, ¥ maxsuppd. In this case,

2 i . L
assuming maxsuppl = ag (there is no loss of generality in this

assumption) we obtain from 06,7 thet

(n

n-1 =1i1

lsbali i vpd = [al,ag,é] = {fq,zg,é].Hl([as,ag,éi][ﬂl,(?,éﬂ )
l:



2ida

the pseudo-commutators (as,a2,6),((s,n2,6i),(al,ag,ﬁi),

gat= el e sl whose walle ocelrs as facters of theipreduet

~

en the ripht-hand side of '1.6.10 is s member of B

Pl

6

6¢). Hence §5¢ < gp(§6¢) and ‘the proof of Liids
it

e ]

Wy S Nl tovnative Basis for &8'im)

We shall need only one preliminary lemms, which is, as

L mere, the "peverse" of 1.6.2:

Ll Dewmes: Let T be & metabelisn proup; SHiyihaE Sie

k-1 [k
; = i

e .

o
it

and k € 1¥. Then Ftokul . =

=i

=
i
| |

Proof: The proof is by induction on k, and is

analagous to that of 1.6.2. We therefore omit the details.

~

. 7.2 Pefiniiiont The mepping.E(m) : B(m) » P(c(m))

~

ig defined by the following rule: For any (al,ag,ﬁ) € B(m)

with suppd = {al,...,as} (efelm)), & > 2, say, let
Gl i) o Blag) 5(ag)
(al,az,é)g(m) = (a; L iy siley LOGNPIERI = o b 10

S arote the et Bim}E(m) by Dlm).

/17
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Note that £(m) is clearly one-to-one.
Phe promised zlternative basis for G'(m) is given'by

the follewing:

L.7.3 Theoven: 'The valuation mapping Ylm) : Dim) > 6lm}

i onc-to-ione,; amd Dim)ylm) is a basiz for G'(m}.

PiRg@at 5 It is clear that we need only prove %the
i loouer of 1:3.2 and 1.3.3, To be precice; TOF dnesry u
let 5r(C) = ﬁr(O)E(O). Then the theorem is proved once we
have verified the following two statements:
e , o
L L Tor any w22 ‘Dr(o)l = (r=-1)(n -1)
B0 .. . Eor Eay e 2 6 I(0) = gp(D_(0)yp(0)).

i

Now 1l.T.t is immediate from 1.3.2, since £(0)

=~ is
B_(0)

. olone: WooweriEy Ui LY Gt ig o pufficient, in viewy' ol
1.2.3," tg show thab ﬁr(0)¢(0) c gp(Dr(O)w(O)). But this 4=

/

almost immediate, for if \al,ag,{dlal,...,ﬂsas 48

)
—
N
M
o ¢
o
N~—

{rhere, a5 ususl, fer some 8, 2 < 8 < T, {al""’ﬂ.j =

4.

and d;,...,d; € T i ghen JoTal gives



d
3 ‘[ o a o
e * @ - r . .
L(L_l"( ' P
L ’{1&1]
9 0 0 o 1
9 4. L
S

; A
[a i 01?‘ :
Do e :
el B o D
(o)v(o).



'EHAPTER 2

THE SUBVARIETIES OF Ap

=
o)
)

Tor the whole of this chapter let p denote a prime

pumber, arbitrarily chosen, but fixed throughout.

Phe main result 18 sStated 1n 2.1, and concerns the

1

LPAPQ). Phe proof of this resulty module

al dlemmas, 1s pgiven in 2.2, while the sewven

>

s

structure of 1latl

seven princi

3

lemmeas =are proved 1n sections 2.3 through 2.7« The poweriul
#e=wit of B.F. Cehen [3:0" that lat(éé) has minimun
eondition, is not used in any of these proofs, and im Fachi
as is shown in 2.8, the minimum condition for lat(éPQPZ) may
be independently deduced from the main result presented here.

In section 2.9, the last in this chapter, an interesting

relationship between lat(A A ) and lat(A A ») is discussed.
=D=D SiH=D
2NN s bemen b, e shiet Main iiihe@ren
L I + : : % :
Eslesl e e ainiE il on e Do 2akal e e it thies varlietles Ea and
Ia Sire defined as follows:
= N A (AR
ga =u£p * “h"Dz
@At B o I s S R ]
: =0 = — o
I, = L
i Bl
o -
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il 2 Theoren: The varieties 11’12"" Form 8

properly ascending infinite chain of (proper) subvarieties
of 2 épz. Mhis echain, with épépz itself adjoined, makes up
a complete list of non-nilpotent join-irreducible sub-

mar e bics o0

>

pA 2. Moreover, to every non-nilpotent

p
proper subvariety

<

of 4 & 2 there exists & nilpotent

6]

wariecety L and a2 unigue I ‘"suech that V = I,v L. ¥¥(2,2

2els 3 "Remark: (Let ¥V ke an arbitrary, but fized Hom=

nilpotent subvariety of A A ,. By Theorem 2.1.2 we have

2.1.)“‘.0

n<

]
{ Lot
<
i

where la is uniquely determined by ¥, and L 1is nilpoten o
Clearly L is not unigquely determined by ¥; for example, g
can always be enlarged by adjoining a nilpotent subvariety

of of sufficiently high class. Nevertheless, since by

1]

(o}

Q_,

Lyndon [ 7] lat(L) has minimum condition, there does

exist an L which is minimal with respect to satisfying 2oty
and the question naturally arises as to whether such a
minimal L is unigque. This question is taken up in Chapter 3
where it is shown by way of an example of non-distributivity

in lat(A ) that, in general, the answer 1s negative.

'
fhe

4=
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25 skalletel JEecen e 2 e

This section comprises a series of lemmas which culminate
R hhe peoof i ef 2.1.2. In The interests of simplicity of
presentation the proofs of seven of the most fundamental of
the Jemntias are postponed until later sections, but apart fronm
these the argument is complete.

Many of the lemmas describe properties of Fm(é A s
and these are built up from the foundations laid in Chapter
I This sroup Fw(épépz) is denoted throughout the chapter
By 0. "Theowvem 1.2:2tellcs vs that G' is fres abelian oFf
exponent p, =nd the basis for " that it exhibits ensbles us
to express elements of G' in a canonic fashion. In the
present context, however, the notation may be simplified
somewhat, and so, for the sake of clarity, the basis fecr G'
is rcdescribed here.

+ : g

Let 2= {gili E W ‘I be a free-generating sct for G,

Sy by the rule:r g, < g, 1f, and only 1if, i< j." Sasie

pseudo-commutators are defined as follows:

4 .
g1 Defipnition: A pseundo-commutator (a,b,6) in G

S 1 1ed basic 1if, and only if,

i suppd o g

{7 b = minsuppd



3k,

(3) a b
e her (1) 50a) e petian @ looe = (g. # a = 6(g.) < p?)
= Tl 3
e 8 (b)) = p%, a = maxsupps

and Vg. € g (zi % b =$>5(gi) < pz).

Denoting the set of basic pseudo-commutators in G by B,

the basis for G' given by 1.2.2 may now be expressed by

2hc w2 - Theorem: The volunation mapping ¢ & B> @ 39

one-to-one, and Bd is o basis Ffor G'. [/

n

The notion of expressing elements of G' canonically in

Lerms of By is formalised as Tollows?

Bl Heind s ion: o IF v e G, w1, then woda ged e
cq e
be expressed in ncrmal form when written w = bl...b

ol
I

S b}

where b ,...,b  are pair-wise distinct members of B¢ and

] s
€15.4+5€_ are integers satisfying e £ 0(mod p) for each

g T R N

Clearly, an expression of an element of G' in normal
form is unique up to the errangement of the product and
- - . oy 1]
congruence modulo p of the indices. That is, 1f w € G

is expressed in normal form both by w = by...b, and by
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ft
w o= cl...ct g cacrc =0t and, for some permutation 5 of

s s S D= : an S = 5 m r ea
1 55}, 5 e nd e flﬂ (nmod p) for each

i € {:’L,.."S}.

Taeaddition o basie pseudo-commputators, "speeial™
pseudo~commutators, and the accompanying attribute of
" : - 1 ~ = *
p-complexity , will be needed. These eare defined as

o iiowis e

el Petinition: A paeudo-commmtater.(a,b,0) ipg G G-

eablled speedal 1€, ond . enly if,

{L) " cuppd c =

(2] =
{ &,
(3) (2 s s 1;32
(L) Gl gl =0l =11,
The p~-complexity of a special pseudo-~conmutator
(o]
8 o b 0] .20 G is defined as (1 +% 1 B(gi)/p]) and is
1=3

denoted by comp(q).

definition of normal form makes possible the

=
ooy
@

definition of "weight" for elements of G'. 1In addition,
. . “ i al 1 ial"
since basic pseudo-commutatcrs may also be special, "specla
T 1 . . 1 F " ecial®
elements (of G') and the "p-complexity o specia

elements can be defined. This is all done as follows:
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ER o s lel i L on: let w. be & non-trivial element of A

e e
expressed in normal form by w = bl%..b 0 TUlhen the weight of
- Helpuu

: : S -1
% denmeted by wt(w), is defined as mln(wt(bj¢ Flg & g o
Fatrther, 1f bj¢_ 3= bepeninl @or eaeh § & 11,...,80, thell 5 00
itself called special, and its p-complexity, denoted by comp(w)

! : . -1.. et
i5 defined as mln(comp(bj¢ M e e vl st The triweel

element is also considered tc be special, but both its weight
and its p-complexity are tazken as greater than that of every
non-trivial element; say wt(l) = comp(l) = w.

Note that for wy,ws, € G' wt(wywy) > min(wt(wy),wt(wy))

N,

gmd thed this dpeguality can be striect. Also if wy and ¥s
are both speeigl then 80 18 Wwo, end
comp(wywy) > min(comp(wy),comp(wy)), where again the inequality
gan 'be stricta

Since for certain considerations special elements are
particularly convenient, it is useful to have a method of
obtaining special elements from non-special ones. What is
neant by this, and how it is done, is explained by the

"

following definition and lemma, but for simplicity "non-

. - = 1 - " ",
special™ is generalised to "arbitrary :

<3
=y

5 5 6 Definition: Let T : G > G and ¥4 ¢ G * &,

o+ ; ESTany. e
i €I , be the endomorphisms of G induced respectively by

the naps
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—_ = < +
T B rogs gJT = gj+2 5o o oI ER R S i
i el e g =
SnCEE KRR oGl e e = gl
L o z
& et hierwaisie
J
g 8 . ¢ + < {0
Taew dor gl W &Gy endall 1 ¢ & - define w by
fi ) -
W =ik n Flare)
IRy e 1 [} R o it 1)
diz s lenme s TaFopaall e Gy and 511,31 B B G- 13
Las)

special. Morecver, if w is non-trivial then so is w

at least one velue of i. +Y+¥(2.h)

This completes the prepatory remarks about elements of
&€, Of epeurse, the information about G reguired to prove
2.1.2 concerns the verbal subgroups of G, and in this
conncetion the following nctation will be used: The lattice
of fully invariant subgroups (equivalently; verbal subgroups)
N 0o cd by iat(c). and-if U e lat(G) then dally
denctes the ideal in 1lat(G) generated by Uj; i.e.
adln) =1y € lat(G)|V < U}. Also, an economy in writing
will often be achieved by sctting id#(U) = ia(u)\{{1}}.

The lattice dual-isomorphism M : lat(énénz) > 1atlaly

i

defined by Yu = V(G) for all 7 e lat(i A ,), or more

particulerly its inverse, will be employed to interpret



s o

statements about lat(G) as statements about lat(épépz), and
Edese i pRepertics of |l whieh are described in, or follow
immedsately from, sections 3 and L4 of HN will often be nsed
without explieit mention.

Throughout this chapter the Ap-subgroup of G is denobed

B s s M = A (E) = A4 U =nd hence M is the unigue max mal

it =1
verbeal sgberoup of G. The first major step towards the
pEees o, 21,0 Us the following:
T, "J# L § 7 - -
2L .8 Iemmo: Hor 2l W E id (G') there exist
s

; at W = } W.G T

ed e @ T, such that ey (&)

s =ee how far this gets us, note firstly that for all

+
GIRNE M
o)

some W € id#(G') can be written W = M(l) N W'G(d) for some

OU. Secondly, note that if

Ho

= Na(AP(G)) =

@i o ahen W2 G(,\ and hence wu"l is mnilpotent. Hoting
— — a)

sl

Finslily thal @' = A(€) = & 3(G), we have

d

2,2.9 Corollary: Let ¥ be a non-nilpotent proper
3 e
supvariety of Apgrz, W of exponent p . Then there exists
» ] - - — b \ /
@ e I and a iilpotent -variety L such that W = £, V L. £

1ds © S ing five lemmas:
Phe proef of 2,2.8 depends on the followlng Ba el a
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202 g0 hEnuaEs L few & nonowelviall cllomens w & o

)

the integers ¢ and 4 ar:

U

defined by

q

i i :
c = mln(comp(w‘l))ll S
and d = max{0,wt{w)-cp)

then W E [M( Gl d I S

e
2,211, Lenme:s Let w be &2 non=trivial speeié&l
: L +
Elenent ©of B, wish ecomplyl = c.  Then there exists ¢ £1

sueh that (w ' > [M(c),eG]. bkl 25

o

+
a2l enmas - Loy € G(k)’ where k € 1 \{l}, Glien

sehilw e e b (203

22 o3 liemime 2 Hewliallic e © 1 'ci 2.2,

M) 3 M _qyse6l. wv(2.7)

v¥(2.L)

+
gl Renmes p Por8all e £ 1 [M( ),pG] M

c+l)"

(&

In consequence of the first two of these lemmas we have:

R - 4 N > 3
S Jewpe:  Let w £ G'y W 1 1. Then there exist

e I+ Suehs thab M(C) T G E [M(C)aec']a where
(i) +y

¢ = min(conmp(w B S



Lo,

g aF i e i mmediate From the defimition (2.2%6)

b} . * .
that w = <w> Fewtigiil i el . In.partieular, choosing an

sas soeml e 1 such thet
; 0 : +
= min(comp(w e ) = e

1 SEENET
i Helllenrs  tlaehs (w) - (w L > ands encel, from2ro2is st hiais

there exists e € I such thaot <w) > [M(C),eG]. On the other

P

hapd, - .2.10 specifies . an integer d .1 suelh thst
w € [M(p\,dG], and from this we have, a fortiori, that
~ /

w € M¢.y. Hence My = {v) znd the lemma is proved. [/
The above lemma easily generalises to give the following:

e s et o WeE i@ (el Then thers cEidE

interers | c,e € I' such that M(c> e [M(C),eG].

Brootis Let {w>ll e A} be the complete set of non-trivial
S

el it .. Frem 2.2.15 we haveE that for each A € A there

7 ~
gxisl ci,ey E I sueh that M(CX\ = <WA) = [M Ck)’OAU]’ and
since W = \/<w ) it follows dhat U M(p y 2 L)[” Ll ),CAG].
re Aeh A = el A
Now chcose A € A such that c¢_ = min(ck|k g A) snd write . C = CK
A
and e = (:’m. L}‘\en, Since N((‘) : IK(C+1) ._.>. oo nm WiE nasy
A
Ve S >w > U [u yeqdl > [ug y,e6). 7/
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Bl "preet of 2.2.0 comes easily from 2.2.16 and one
SEEthcy lemma . 2.2.18 below. The proof of the latter uses

Lcselil eows i oboervation, whieh is very similar to 2.2.12:

= e lenne: lEgn e Mo, 0 ST Ot e
min(comp(w(l))li Sl G T N
Proof: If w = 1 the lemma is immediate, so assume W £

: +
hlen S Eroms 2R2 NS hieire Seeaic it s e Fen e h SEhiat

\ Nk i i : +
Swe > [M( eCl, where ' = mln(comp(w(l))ll e 1 ). Fronm

kv)a
this 1kt Ffellows that M(k) 2 [M(?,),eG], but unless k' > k&

Lhiis centradicts 2:2.13. [/

1 +
2t 1B Cilennies " Horiglliege BoL

[M(.y,eGl 2 My n G

c)?

Proof: It is sufficicnt to show that every non-trivial

! T a o e 1 78 [N Gl i, let
element of M(c) () G(cp+e) s Falim e e et LJ(C),ea]

w be a2ny such element. Then from 2.2.12 and 2.2.17 there

exist a,,a, € I such that wt{w) = cp + e + a; and

min(comp(w(l))li e 1) = ¢ + a,. Hence by 2.2.10,

=

M T I d
W E [M(c+a2)’dC] where

max(O,e+a1—a2D). Bow 1t follows from c

s

\ \ R
max(0,cpteta -(c+32)p) =
t

vl ’
[M(c+q )=4G] e [M(C),(d+a2p)ﬂ] RO R TS [M(c)’d e
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= a?p max(O,e+al-&2P) it

~

o1

max(a,p,e+ay)
e e

Phi=s shows that w e [M JeCll . assreauired. /[

(c)

Brned lof 2aa. 0 From S D16 and 2.2, 18 0t FPolloss SUHE

for all W € 1a#(G') there exists c,e € I° such that

e W M . Setting d = e¢p + e {(note that

e e )

el this sives

) = Hu

W o= W(M i
(M o

N WGy

NG
(e) (a)
Slie Gotter eguality helding by reason of the modularity of

iy

The second step towards the proof of 2.1.2 is the

follewing:

- : -+
el @l emne:  Bor alloe,d €20 @ % b
"‘ G °
(a)
Proof: Assume to the contrary that For. SOME 1€l aes
. S hen, sinee elearly

M a > [ M aG], it follows thet M, 2 [M . 1)@

) (1)
and this contradicts 2.2.13. L
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e B Ebrollary (i): The variety g is non-nilpotent.

L o CURN S Ql vere nilpotent then we would have that

M(o) = G(d) for some d ¢ I . But this is impossible, since

Sl e R G S DR VR

) i ¥ Tl :
BR2L et Borallary (11): “liet @B el with g < fs and

+

i=f b ¢ = nilpotent subvariety of épépz. Then ga v

1=
ll@}

8"

+

-

Bremrf: Assume the contrary. Then for some §,B & e

and ceme' W £ 1at(G), where @ < B and W = G(d)’ we have
\ Y 1 E & > = + 2 d. g, = = (SO
M(a+l) 2 e A M(B+l) setting e o and a B

S0e 1 =nd e > 3) we conelude that

v - i W \ M
B )0 Y S Meretn) = e

Yhieh contradicts '2.2.19. 1/

The next step in the argument is Lemma 2.2.22 below.
' 2

i p
In this lemme, and frequently thereafter, the notationsG
is used as a shorthand for the verbal subgroup Bﬁz(G).
¥ -
Although this notation conflicts with that for cartesian

1 i a7 s : ) e context
powers, the meaning will alweays be clear from the c .

S 0 Temma: For each ¢ € SRR

P2 ? g
= .G B g,
M(c) o)
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e bre lsry: | For edchiogoe {1,...0p-1],

{[@]
]

;E.OLV£-p3° //

The proof of 2.2.22 depends on the following lemma:

T L R e
0

Lhen el a2 22 U adf e > 2 "Ehen M(c) RN e
Ee e . vp) 'we have from 2.2.20 that

BV S > M SRRy
— TR

Hence, using modulerity, we have

M, = M(C).(szﬁ gr) = M(c).szﬂ @ Lk

The corollary to Lemma 2.2.8 considered the non-nilpotent

subvarieties of Apé which have exponent p’. The corollary

pz

- o o .‘2
to the following lemma concerns those having exponent p .

2
2,2.25 Lemma: Let V = ¢P.w, W ¢ ia(G'). Then there

: + ) b2
&~ e,d e T, c <p, d> 1, such that V = GP.M(C) A TGyt

800 G nlleavy: Let ¥ be a non-nilpotent {proper]
—— _—

2, V of exponent p?. Then there exists

subvariety of
p =
n

4

=

p

I ...p-1] and a nilpotent variety [k such that ¥ = L, v L.



Beapta: 1T U ¢ lat(épépg) has exponent p> then
: T
yu =V = G°.W for some W £ id(G'), and from 2.2.25
T oL
vV =G .M(C)

How 289 e = 1 then ¥V > G(d)’

Henmee if ¥ is non-nilpotent then

2 )
Y = (6P.m ) hu™" v (V.g

‘d))u =(§2/\g)v_ye

where L is nilpotent and o = c-1 ¢ {1,...,p-1}. The

eonclusion Tollows. [/
The following three lemmas lead up to the proof
: +
P o wet. Let 8 e Gy b e G's and roe L.

r
e = e (a1 )a] >

Proof: Routine induction on r. [/

N 2 e .
2L.2.28  Lenma: [gg,gl,(p l,bj] ESRG

+
N V°G(d) ferisomenegd E =L o e S pj-d + oL

L5,

making ¥V = Vu—l nilpotent.

ik el 25

Then
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23
1Y
) 2 St
s ee coch 0 e {l,...,D —l}{l.J = 0(mod p), and since

G' has exponent p this leads to
2 2
1Y 1Y

- ol 5 ) = [gz,g

2
ELE e (pi=dbe 1.

74 B

The conelusion follows: i/

2
2.2.29 Lemma: Let W e id(G'), W > ¢P n ¢'. Then there

+

el e it PRl B, o L, such that W = Moy N WG

g3
Eroeds’ In yiew of 272.8 1t is only required to' pronc
Ehat e = p. Mo do this, note from 2.2.28 that

[gg,gl,(pz-l)gs] > M(c) ard since [gg,gl,

(pz—l)g3] is special
sl D—complexity p it Follows from 2.2.11 that
[M e e for some e E I+. But from 2.2.13 Thiaia
(p) — ={e)
ddpbssitile unless ¢ < p. [/
02 2 pz
Fiooof 2.2.25° sinece 6PN = & .W.(ef - g'), we ey

2
assume without loss of generality that W > (6P o~ Gf). Hetigey

B e 2020, 2.2.22 and modularity, there exist e £ {1,...,p},

(0] cueh that



L.

]
(]
IS
[
7o)
[

= GPTM(C) 8! V.G( //

Sufficient material is now available to prove the
following two lemmas, and from these Theorem 2.1.2 will be

deduced.

202 SO cemn g Lew W -be = non-nilpotent proper

: . L+ :
Sitibaz eile s v o érApz. Then there ‘exists o e [ ‘and a nilpeitcnts

variety L such that ¥ = £u N

Proof: The exponent of ¥ is either p? or p?, for the
exponent must divide p? and cannot be p since by Meier-
Wunderli [ 8 ] any metabelian variety of prime exponent is
Yilpatent. If the exponent 1s p2 then 2.2.26 applies
leaving nothing to prove. If, on the other hand, ¥ has

b +
gxponent p3 then from 2.2.9 there exists o e I &and &

nilpotent variety L such that ¥ = C + L. Now either @ 2 p,
L = lu and we are finished, or o € {l,...,p=1} in which
] ) 3 by 2.2.23, and thus ¥ .= 1 W (Q 3¢ é)-

o D =0 =P

Q
Since A 3 v L is nilpotent, this completes the proof. [/
=P - 2

+
B "1l lemma: The varieties ;a, g € 1 , are nons
Eotent, and if o < B then £a\/ L j ;8 for any nilpotent

gibvariety L of épépz.
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srEe s By 2,2.23 C

I}
|

1

Mop—malpotent. It follows that I and henee I " For =iy

19

o .
CEECEMEE IS on —n 1 ipeitenitie

To Preove wie Seeemel 19T & euE  anldehg arokd sl @) & I+

i

Ifaisite wplonicint ps, slamGihiail go'g éus and henecey Triviallygs

| (@]
H

3 Begnmbiving thie ' with '2.2.23 1% feollows itaeal

v
P

=

o a

v

[[@]
i

| L

=

S es oiive e mow TeviTE Tanlan

p P=F
R
ot enmt i and let 0,8 €. I with o <8, Suppose, eptirary

HE?

o o 2)’

d

to lemma, that I, v L p £B' Then 1t Tollows that
RS P e s Ss Res oty - © IS e, and
Gl ecnbvadiete 2221}/

Be o of 24102 That each member of the infimite
ascending chain of (proper) subvarieties El = £2 & e e

Sion i lpotent 'is miven by 2.2.31, and from the same{saures

it is clear that the chain ascends properly. {(Put

1=
i
e

and B = 0 + 1). Jumping now to the last part of the theorem,
in view of 2.2.30 it is only required to show that if
T e S Y gl,gp are nilpotent subvarieties of

viL 47 & L., But this follows from 2.25985
P=pP o =1 =R =2

for we may assume without loss of generality that o < B, B0

A A 5, then I

ot T v Ll' I and therefore, in particular,
=u - —

i
=0

it = {Iala e I+} v {épénz} and let % denote the
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set of non=nilpotent join-irreducible subvarieties of épépz'
S . SS0 b ds elear that O € O, so that the proof will
be complete once it has been shown that every member of f is
join-irreducible.

Hirstiy, 21 is join-irreducible because by 2.2.30 it
has no non-nilpotent proper subvarieties. Secondly,

& 5 AR & 3 y
;B, B S Jein~irreducible because of the Ffolleowing

consideration:

cuppose . bo ' the eentizrary that gB = Xl 1% ¥2 where each of
Zl and Zg 1s @ proper subvariety of £B' Then at least one
of Xl’ZQ must be non-nilpotent, say Zl’ g0 using 2,2,30 we
can write Xl = £a‘v 51’ where 21 is nilpotent and I S o <Ee

(e 1 atter because V. - is a proper subvariety of I )

Regarding Zg’ cather (1t is nilpotent, sSay z2 = 22, or non-

nilpetent, say V2 = IY \V; . where L_ is nilpotent and without
= = = =

loss of generality we may assume that 1 < Yy < a., Setting

=
[}
| [l

v 22’ both cases give I, = I v L, which is impossible.

ik

Finally we must show that A A » is join-irreducible.
i 2dd
Bul lif it were not, then, as before, we would have that

oY ERSEeaNSiome o 1t and nilpotent variety L, and

=

=
N
i}

=

15 1= imppossible, for it implies that Eav’ L = £a+1v

{4

ne

SR Proof of 2.2.12:

The fact that the p-group G has derived group of
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Exponent p lcads fo several simplifications in calculations
involving commutator elements of G. Essentially, these
Ssmplifications result from the four identities ligsted in

the following lemma:

£ 8.1 Hemmpsy Let B,Vgw & G, Then

(1) [u:PV] = [u,v

i
s

(1i1) [u,v,p2w]
ey (e et bl =

(iw) To,pfwyvlos [vpiw,ul,

Proofs (i) By 1.6.2:

R

=g i |
=1

i

)
p -
SEt for . £ Ud,sasap-17 li; 0(mod p) and the conclusion

Roldl 1 ews .

2
as )L Byidsb .3, [x,y,zp ] is & law i@ G- end

hence using 1.6.2 we have

IN]
—
atlre]

P
AT R
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1Y
Bukiforsive {1l 0is,p=1} (i J = O({mod p)-and the conclusien
Holllaws
ey R
2 [[.&
o -]
J
2 WL
[uava{P uapzv}] = 0 i [u,v,lu,gv]
i=1 j=1
: i+j<op?

and the conclusion follows as before.

fav) By L. 6.7

1'\2
B =i L (1 ]

P = w0 (v vl u il
i=1

and the conclusion again follows similarly. //

The next lemma is more directly relevant to the aim of
this section, but before moving on to this lemma 14 =
perhaps helpful to remark on a convention used in its proof

(and in the proofs of future lemmas too). When an arbitrary

Finite subset of g is denoted by {al,...,ac} it 18 Wet

assuned that al<...< a2 § although of eourse g v
s

a

et 2. + N o + j. However, note that a phrease such &8
1 J

(<)

= - o 3 .
"Let (al,ah,é) € B with suppé = {al,...,a Y Eseitily
2 s
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involves the assumption that min{al,...,a [ a,, and that
s

83 = 1 = p2
max{al,...,as} a, if 6(a2) D e

2.2 Temnmg: ‘Let (a 8) be a pseudo-commutator in

138‘29

G with suppd ¢ and non-trivial value. Then

i m

wt(fal,ag,ﬁ]) = Wt((al,ag,5))-

Proot: Lt suppd =‘bl,...,as} where 5. 22  since aj % p e
Reop 223113 )0 ona (ii1) end the assumption that [al,ag,ﬁ] £
it foldows Bhat ©(ay) = p 5 O(ag) < p ; 5(aj) < pf P
Jedlis b i ana (e ) and S(a,) cannot both be 2.

There are now two cases to consider.

(i) Suppose min{al,...,as} = a;, Wwhere aj : 2. + as .
By Ll6 5] ana (3) [aj,8,,8] = [al,ai,5][a2,ai,5]— snd it
follows from the restrictions on the values of the 5(aj)
3 = 1. ..,s that the pseudo-commutator (al,ai,5) is basic
unless 6(ay) = p?, in which case [al,ai,ﬁ] =l flbyde 3. il
A similar statement holds for (ag,ai,5), so we conclude that
the expression in normal form [al,ag,é] involves only the
values of basic pseudo-commutators with degree function §.
Thus Wt([al,ag,S]) = .E 6(aj) = wt((al,az,ﬁ)).

J=1
(ii) The alternative case occurs when min{al,...,as} is

iy er =25.'1p Tact we may assume it is ao for clearly

wt((ag,00,8)) = wt((ag,a1,8)) end wt(lay,a2,%1)
2

(o2]

Al : 2
= Wt([ﬂg,al,é] J'=wt(las,a,9]1). Further, if 8(ap) = p

- n ) o NC 'S
then we may assume that max{al,..-,as} gl For  1f .Goe Mas ik
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25 then [al,ag,é] = [aj,az,é] {(by 2301w} ),
and thus
wt([al,ag,é]) = Wt([aj,ag,é]).
At this stage we are in fact assuming that (al,ag,é)

is basaye. so there 1s how mnothing to prove. i/

SN Corel o YL (al,ag,d) be a pseudo-commutator
18 Ciwith sSuppd € ¢ and non-trivial value. Then for all

anE

1109

a

Sl sy o

wt ([ [ Gl el e wella

8’138’23 19 29

The above corollary generalises considerably:

gis il Temma:, et w e @'y v E G, with w £ + v, " Then

il vl > wElw ko

Rrae s Since @ has finite exponent v = g. g. e¢<¢g.
e 1s

. & J - .
HolElsieme il,...,lo € I (not necessarily all distinet) .  Thus

[w,v] = [W,gil...gi 1 and we may now proceed by induction on
S
s. To deal with the preliminary case, s = 1, first express
ey ey
¢ intnornsl form by w = bl'...bt say, and note that for

San e - N s AR, 4 S Wt(bj) > wt(w). Then



Gl

el et
wt([w,gil]) = wt([bl "'Dt ,g]l])
e e
= wellby,g; 1 0uuulby,e 10)
i i

| v

min(wt(bj) T b ISR AR

v

min(wt(bj)|j TS G e

I ) R e

The inductive step is as follows:

Wt([w g = e e e ]) = Wt([W Ee o sle - ][W,g-...g' ,g- ][V,g‘])
e ts ety o] LN P s

e min(wt([w,g....g. ]),wt([w,gi...g{ ,gi ]),wt([w,gih)
ll ls«l ili Tg=1 S S

| v

nin(wt(w)+1l, wt(w)+2, wt(w)+l) (inductive hypothesis
and case s = 1)

| v

Wt(W) e ///

n

iioiof 20010y 8ince G ..y = [G(C),G] for all

+ ; T W et :
c € I , Lemma 2.2.12 easily follows from 2.3.4 by 1nduction

fogie. [/
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2.0 "®he " ProsFsiior P e 2N 1 8ol 22,10

WEe de-itvith Lemma 2,2.14 Pirst, as it is needed for
F S meaaf of 2.0.10,. Howeyer, rather than proving 2.2.114
giveecly, we first prowe a stronpger result, Lemma 2.k.2
below, and subsequently deduce 2.2.1k4 '‘as a corollary. The
reason for thisg indireet approach 1s that Lemma 2.4.2 will
be needed in section 2.5.

We hegin with a definition:

ar
2.1 " Defipition: Hakeia i Sethes Sl e et e Gl oliv:e el

subproups Ule,e) and Vlie,e) of € are defined as follows:

U(c,e) = {[yf,...,yg,zl,...,ze]}(e>

. P \
Fle.e) = {[xl,xg,yg,.,.,yc,zl,...,ze]}<G/

The following examples should remove any uncertainty
as to the intended meaning of the notation used in the

definition:

U(1,0) = {yf}(e) = B _(c); wlig0) = [hx =, 1H0) = al
. , P
U(2,2) = {[y0,75,2,,2,13(¢);  v(2,2) = {[x),x,,y5.2,,2,1}1(0).

Similar notations will be used freguently in the sequel,

= . g > &I‘ .
but no further comments on interpretation should be necessary



2.l

[M(c),CG] w

2.3 lemme: Let m e M. Then there exist v £ G and
v' £ G' such that m = viv'.

Proof: Clearly m = V?...vg(mod G') for some
VyseeesV, € Go B v?...vf = (vl...vc)p(mod gY¥ )% o Thue
writing v = ViseaVy, WE heve m = viv' for some v' € G' //

hgons

galigliedicmmeas | Let © e L %1} tyseeent € G5 and
vi,...,vé g G¥e " Then

-1
e ) s [tl,...,tc][vé,tl,tB,...,tc] Lo}, bhamiine
Frpgfs 'The mroof is by induction.on go -~ Bor e =2
3y b g
2 il 2
s il e T B RR ST R
1 :
= [tl,tej[tl,rg][vi,te]
S ]
= =
s e R R SR SRR IR

emmeszs ol iaild et ¢ i gl @z Ik

e el o¥le,e). 44

Bhe ‘proeot of 2.4.2 wse the following two lemmas:

56.
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Eapel i Ehe inductive step 1s as follows:

([t

{jma=ge |
(1P
=1
<
L s
v
-
L]
L]
w
c+
e}
<t
QD =
| Sy
|

Vi,...,t V' ]’t V']

ik c-1 c=1 CRC

=it v! £ ol odiaa ]

L
\Jl l’.ﬂ.’

I

(( it

g 2 7
tlvl’°'°’“c—lvc-l

= [[tl,...,t ][vé,tl,t3,...,t ]

c=1 c-1

][vé,tl,t3,...,tc] fr2 tz,...,tc].//

Procf of 2.,0.2: It 1s immediate that

[M(c),eG] > U(eye).V(ec,e); only the reverse inclusion

requires proof. Now by definition
= o 7 T -
[M(c)DeG] = gp([ml"""rflc’wl,-tn,"re.] Iﬂl,...,mch-:,l-«l,...,neEG),

Eaeehal dn wiew of 2.4.3 it 1s sufficient to prove

Y. 9 c o

Ealln L, WV seeesV sWyseee, ¥ E G Vo aenala W il

[v?vi,...,vgvé,wl,...,we] € U(c,e).V(c,e).

In proving 2.4.5 the case ¢ = 1 is a little exceptional,
B coti=ider it separately first: If e =

38 trivial, for it merely asserts that v;Vy



e G, vi e it on the other hend, e > 0 then

Y 2
[vlvi,wl,...,we] = [[vivi,wW],WQ,...,we]

9
57 Vl

= [[vl,wl] [vi,wl],wg,...,we]

[Viswl"°'swe][vi’wl’°"’we]

s 2.41.5 followe beeause eliclanily {vl€wl,...,we] £ U(l,e)

Bue. Simee Wl e) = Glose)s [vi,wl,...,we] E Ll el
Hey the'preef of 2.14.2 it now remains to prove

2.1.5 for (the casewe > 21 Using 2,h.L we have

b b
[Vlvi"‘"ché’wl""’we]
B 2 D &
= [vl,...,VC,Wl,...,we][vé,vg,vg,...,vg,wl,...,we]
.[vi,vg,...,vg,wl,...,we]

Birehiey, Any v € G’ ean of course be written in the Torm

(o
1 .
] s So that we deduce from the egquation

[
1

==

v! =

1 . 1wl :
: g B 2

immediately above that

D_q D
[vlvl,...,vcvc,wl,...,WO]
. ]
P r m i r P b
—[v:‘L"’",vc,Wl" ..’WO]..“,][U‘:L]'_ ,U.Qi,vgi,.o.,vci,‘wl,.-.,W'e
i=1
for some integers fl""’fz apd for some uli’uQi’VZi"°'V

B~ X, This finishes the proof, for

58

1L



1Y P
[vl,...,vc,wl,...,we] € Wllleloc) ang

P
[uli’uEi’VQi""’Vci’wl"°"We] € V(c,e) for each

et e o SHER

Eeg o on e T view of 2.h.2 .3t ig suffticient Lo

+
el i el e e 0. Ule,p) > U(e+1,0) and
Bley ) > Wletl 0). Only the Tirst of these two inclusions
is proved here, since the proof of the second follows a

compiifet e lvilplair il clleNe ouirsie,
P
={ p'.. ¥ Z o o ° }/G
U(C,p) [yla syc, o ,ZP] i )

p D
= gp([vl,...,vc,wl,...,wp]!vl,...,vc,wl,...,wp EG)

P b
gp([vl’o..’vc,pvc_i_l]IVl,oo.,'\rC+l € G)

| v

Ty 1Y : .
gp(lvl,...,vc+l]|vl,...,vc+l € ) (by 2.3.ii

»

S o e 00 )

e eome mow 4o the proofs -ef 2.2.T7 and 2.2,10.

(fixed)

el
(e
W for

It is clear from Definition 2.2.6 that for ea
=) i . o . . - <) —
e the mapping of G' into 1tself given by W

g - P Jenr 3 =1
all w € @' is an endomorphism of G'. The first objective,

therefore, will be to describe the effect of these



endomorphisms of G' on members of the basis B, Such a
desler piion is & little too involved to give in a single
statement, but all the necessary information is contained

indtems 2.1.5 through 2.4.% below:

galS  Bofinition: | For any function 6

” e : : 1
Eny e 0 dofine the function 5(1)

= Lzl

I or

by the following rules:

S e ) -

L )

2 it
1 =7 gl
5(1)(QJ) = 6('&3—2) for -all 980 \\{1,2,1'0'2}.

2. 4.6 Lemma: Let (gi )83 ,6) be a pseudo-commutator

Al 2
1p Gy bl suppd ¢ g. © Then
i .
i o)
e e o] =le e ot oA
il 2
) . =1
2 il
(ll) [gl ,gi ,6} = [rr)sglaé 2 ]
il 2
(i) e s
i34 ) [gi . 38 ] =fer pll d Bk \{11,12 .
gt
B 1. suppd =z, ,.vss8. )} 8nd set 4. = S(Si.),
- 14 1, J j

Bt ...S. Then we can write
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[gi Qgi 9‘3] = [gl ’gi ,(d —l)gi ’(dQ—l)gi ,dqg.

(=]
N
)
no
J=t
no
(
'_l
0]
)
1]

E [gil+2’gi2+2’(dl'l)gil+2’(d2‘1)8i2+2’d3gi3+2’""dsgis+2]'
Now by definition
‘ ](ll) ~ L
~€1ls612,5 = [gil,gi2,6]TKil+2({gil,gi2,6])

. [gil+2[52=g1]’gi2+2’(d1‘1)gil+2[32’81]

’(dz'l)gio+2’d3gi +2""’dsgis+2]

3

[gi +2285 400

(a.-1)g. sGd=1) e, sl
- o it 1l+2 2 1;+2 S

. 3+2""’dsgi"+2]

.[gg,gl,gi2+2,\dl-l)gil+2,(62—1)8i2+2,d38i3+2,o..,dsgig+2J
i (by 2.k.4)
g

e = Bltle, ey 0 ]

e 2.

and part (i) of the lemma follows. The proof of part (ii) is
e 5 g . . et
so similar that we omit it. Part (iii) is again proved along

similar lines, except in this case the application of

BVbi.h gives
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- o S ) it . .
[gil,gie,leKi+2 = [gil,gig,é]l Tom ALl 1 el TR Sl

BuwNEhis 0 of course, 1s just what we need. [/

2.4.7 Remark: It is cleer from 2.4.5 that if

T 8. ,8) is & pseudo-commutator in G with suppé c g ks

aih. 0  Lempa: . Let (gil,gin,é) & B and let {k 4} =5 Ui

Tamm ftee beoee ki = 1L @aecl k= 2
A R sl
&5, D 855875
ALY 2 \ (ik) -
b ak ) 6(g1 ) = B == [52’81’6 } =l
2

S i
Proof: Ereomthic i de o ntitlon 6( k) Cligilol aelaye  TRE ey ol

(gi 12 )

il
2 (ik) 2

A K i)

W B s bassc it follows that 6( Kl e:) < piotorinEe
e = p2, in whi 5 TR ( ) =
ST unless S(giz) = .p,. in whieh case gi2+2 p2

art (i) of the lemma now follows immediately and for part

(ii) simply observe that [gg,gl,ngi£+2] = 1 by Z«3Jila il

We are now in possession of enough information to prove

§ first part of Lemma 2.2.7, viz:
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+ :

EE N o Fer all w e G' and all i e I w(l) is
special.,

Frovi v VPer 51 = 1 the®fe is noething to prove, so let =

Sl .k
be expressed in normal form by w = by e..by , t > 1. Then
L e D2 Gl S ,
Far mny 1 e 10 w e B e and since a product
of special elments is itself special it is sufficient to
prove
E (i)
R e o 5 e R ophen [o. g8 is special
i SR

N R A

Now if i, =i i then 20010 15 inmediste Fron
(a8

o h.6(iii). Consider next the case i = il. From 2.4.6(1)

S(il)] and hence from 2.k.8(ii)

—

o

-

(o)}

-
(o7
[l

|

[ggagl’

\
} -
S ,6] - i) Gaf 5(@12) = pz. On the other hand 1%
s I

(o3}
02
N
I3
N
(—f.
ey
()
=)
Hy
=
O
=]
N
L]
=
-
EO
—~
=
S~
Q_\J
)
Q
no
=
G
C = |
(0]
N
v
oQ
},_J
w
%)
'..I
—
H
©

both basic and special and hence [gi ,gi2,5] i pe
i

(but this time non-trivial). The proof for the case 1 = 1,

is similar, but starts with 2.4.6(ii). //
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As will be shown presently, the second part of Lemma
2.2.7 follows from Lemma 2.4.11 below. However, I should
Eois out that 2.k.11 is not really essential for this,
gince a proof of the result can also be obtained by putting
together suitable parts of the various subsequent lemmas.
Bubt slthough sueh a proof might be more natural, the proof
given here is tidier and more direct. Moreover, Lemma
gl 1l 1s of interest on another score, for it may well alse
i evide tile startine peint for a shorter proof of 2.2.10
than is5 given here. (Unfortunately my efforts in this

direction have been unsuccessful).

sl Cienna: ' For 211 w e G' and all v e G
5 ko3 : +
fwavl e <W(1)|l T B
The proof of 2.4.11 uses the following definition, lemma

anidiS e ool o

o.4.12 Tefinition: For each v € G and i ¢ I let

g(v,i) : g - G be the mapping defined by

golv,i) = v

}_J

geO(V,l) g

il
Q
H
(@)
=
{0y}
=
2]
(IS
m

- g . +\
gjc(v,l) g. or ¢ : ALY e T - 8



Then define g(v,i) : G » G to be the endomorphism of G

induced by nmapping g(v,i).

2.,4.13 Lenmma For all (gi )85 sl ) e By and e E il
1 B2
(i,) (1,)
> Y 5 1 ([ » R 1
([!‘J‘l,gig’ﬁj O(Isll))\[bil:blg,é] U(vﬁlg))
= [he: iomengtil e
S5 8
Proof: One checks easily that
A1) y6(v,10) = Ly 4va64x,)
[ggaglaé ]O Voll i gi_‘s s XV
and
[g s E :(S(ig)]g(v9i2) = [g' 5V36+Xv]-
2 il 12
Hence we have
(] (12)
. :
([gll,gigaél o\v,ll))([{;ll,slm,ﬁ] gl i
8 -1
(2. ] : &0
S st L lo(v,i;))(le,,8:,8 2] colydudl
=L (by r.h.6)
= [3 ,'J,6+XV][€;- ’V36+XV]
— 1 2 a ':,\
= [gil,gio’6+xv] (b/ 4_.6.;(_)) nd ( ))

65.
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EEH ik Coreollary: ~Let (gil,gig,é) e B; let v & Gy
- - +
SalaNTe R R e s 2 i subset of T suech that {il,im} cdia

Hhen
(3)
']g'r([gl ’gl ’6] G(V,j)) = [[gl Dgl ’6]5V]
J = =
Proai: The proof is immediate from 2.4.13 and 2.h.6%1 1 NEg
Erpof of 2.0,31: For w = 1 there is nothing to prove:
: el C.t
so let w be expressed in normal form by w = by ...by , t > 1.
=3 :
Baeemeh doe {1, ...t} let b ¢ = (g5 225 ,5k) and set
" e
T Ude. e e Shen Tor mny v.E G welhauwe
e ok
: R N
: , T .
I (W(J)U(V,J)) I by ) AE ISR
JEJ JES k=1 °
i - e
‘ k
= AT (b(‘])) Yo (500
Jedn k=
+ e
(5 k
e el B
God =1 o
't = ek
SR Y o, )
S R
t z
= I [bk,V] : (Oy E'h lh)
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e ey
= ] bag Tebonl 2
k=1
= [w,v]
S/ (j) . + \ \
Heice [w,v] e \w e g 2l Poltows. v b

BiRcoF o e @ D In- view of 2.4.9 and 2. h.11 9t ds now

sufficient to show that if w € G, w # 1 then there exists

e euelh that [w,v] # 15

t
t 2

2 2
i

Lel "w be "expressed in normel form by w = bl «sab

B re 0T § = 1,..045t b.¢-1 = (a.:b:.6.) say, sndicheess

= J J J
@ve ok v 2 5 XL Jsuppd.. Then
= J'=l J
;i 55 ei 1 ej
B = [ m bi“,v] = [bj’V]
j:l ¢ J-‘-l
and hence
i ej
20’4015... [VT,V] H [q')b‘ss'*—x ] .
e

But the pseudo-commutators (al:blsél+xv)""’(at’bt’6t+xv)

) e p i ‘
are all basic (because of the choice of v) and are palrwlse

! ¢ . . - s 1 S that
distinct (because 61""’6k are pairwise distinct), so a

. . . 3 (;
[w,v] is in fact cxpressed in normal form by 2.4.15. It

gellows that [w,v] % Lig =i f
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The remainder of this section is concerned solely with
proving Lemma 2.2.10. To simplify the language of the
argument the following notation and terminclogy has been

gadopted:

2al 16 Notation: For any w & G' denote

; i : + . \
min(comp(w 1))I1 e F by mie(w) .

2Ll 1T Definition: et "w be a non-—htrivial elcmentyof

G' and set ¢ = mic(w) and 4 = max(0,wt(w)-ep). Then w is

said to be well-behaved if, and only if, w ¢ [M(C),(‘;G].

Bn e rns of 2,L.1T Lemma 2,.2.10 says precigely thet
Every non-trivial element of G' is well-behaved. ' The
following lemme indicates how the task of proving this

statement 1s reduced:

gl Lenma:  I1f w =

W - 1, where
% t 1 g
1

L

=y

(1) Wqsees,W, are well-behaved members of G'
te) wklw) = min(wt(wi)li T R o
(3) mic(w) = min(mic(wi)li Th I i

then w 1s well-behaved.



Proof: Set ¢ = mic(w), d = max(0,wt(w)-cp) and for

= e [, ... ,k) set e e mic(wi), d, = max(O,wt(wi)-cip).

For any i € {1,...,k} we know from (1) that

v, € [M(ci),diG] and from™(3) that ¢, 2 c. Further, from
oL it follows that

[ M,

b

),diG] = [M( )),diG] < [M(C),(di+(ci—c)p)G]

@i

i c+(ci—c

and hence that L > [M(C),d'G], where

i = e
a d; + (c1 c)p

max(O,wt(wi)-cip} + (c.=-c)p

3l

max((ci—c)n,wt(wi)—Cp)

{ v

max(O,wt(wi)—cp)

S a0 witilw)-cn)  (frowm (2))

= 5l

e Pollows that w. € [M
i (c

),dG] Por cdch o & 13 an ki Gt
consequently that w € [M(C),dG]. That is, w is well-

Yehaved., //

3 . T . \n .‘.’jn
It is perhaps worth remarking that neither conditaic

(2) nor (3) of 2.4.18 is sutomatically satisfied.
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In order to meske use of 2.4.18 we obviously need some
well-behaved elements to start with. The following lemma

provides some:

2.4.19 Lemma: Every element w € G' whose expression
in normal form is of the kind w = b° (b € Bo) is well-
behaved. V¥

In addition to the description of the elements b(l)
el B0l 5 through 2.4.8, the proof of 2.4.19: uses

Lemmas 2.4.21 through 2.4.24 below. These four lemmas have

in common the following hypothesis:

gelL 20 Hypothesis: Let (g; ,g; ,8) be 2 pseudo-

1L 2

commutator in G with supps = {g; ,...,8; }ole Bl wiere
1L S =

B s ioaeh e [1y...,8) write G(gi ) = 9P + T3,

J
¥here O < rj £ oo

2.k.21 Lemms: Let (g; ,g; ,6) be as in 2.4.20. Then
i i
e beoth k = 1 and k = 2

] J
comp((gg,gl,ﬁ el s G .




71

Proeet: Breomithesdefin i tien of 6(lk) we have

R [6(1k)(gi)/p] = Z Lole. l/pl + [{6(a, }-1) /ypl
i=3 i=1 Tk
i#ik
S
= jil[\qu+rj)/p] + [(qkp+rk—l)/p]
Ity
[ =
jilq] if ry # 0
Erivil
S
Dl o T
Lj:l dJ 5

and the lemma follows. i

20l 2> Temmn: 'In addition to 2.4.20 Tet (gi -5 R
i; 2
Then for bothok = 1, & =2 and k = 2, & = 1
. 2
( LIt 6(g1 ) =D
%
: 2
(ik) 1+ E‘qj i G(gi ) < p° and rp Lo
comp([g_. 5 B ’6] ) = < Head et Q2
- e
R s B é(gi ) < pTand Ty &0
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Proof: The lemma is 2 straightforward deduction from
R Lela ) amd (i1}, 2.4.8 @nd 2.4k.21, The details are

therefore omitted. [/

2. k.23 Lepma: Thn addition to 2.4.20 let

o R G S B
1 2l

i 2
( 12
Lo Ll i Sk B D e
mlc([gl s 8 a(S]) = <
1L 2

S
% q. otherwise
=

Eroob:: Woe 2. h.60di1 ), 28,22 and the  Cact ciias G(gi )
il
and §(g. ) cannot both be p%. [/
i
2

5 L2l Temma: Let (g, .8, 58) be as in 2.H.900 <led
R et it i
1 2
intesers ¢! and d' be defined as follows:

il

}—l

+

™M W
2

)

]

o

ol G r + 0 and r, + g then set e

S
LR i o e S

".=]_'J
s
0 S gland =™ 0 then set ¢! = & g, and
LB EET ry % 5 Ty 5
ar .= A Zr.)—9+p
j=1 4



15w

S
fai11) If rl =00 and T, e et el = 0 g anE
=
S
@t =l S S ey
j=1 4
' S
T e r; = 0 and r, = 0 then set elt== el ey iand
j=1 "
s
dgro= 2.9,
j=1J

1 . . e
Then [gll,glo,é] E [M(c')’d Gl

Evoass Writine w Tor fig. .e. ,0] we have

il Z

5 983 i ez s siimalg DAT e H
il 2 i s

Using 2.3.1(i) we can rewrite w in the following forms:

Bowr case-la): —

- [[gll,glz,qlgﬁl,...,qsgﬁq},<rl-1>gll,<r?-1>gi?,
rSgi3,...,rngs].
For case (ii):=
W= [lay -85 »a.80 »(ap-10el agel seeesogey 1a(r-1e;
10 2 il 2 B S 1



Th.

For case (iid)s=

il e o sl g et S a e 1 lp-1s )
] 2 e pe= S 1
(rg-l)gi ,r3gi ,...,rsgi ]
2 3 S
Por case {iv):=
L b b - P / D P p
Wl [[g' Qg.; ’(q _—L)g‘ ,kq _l)f’:- q_ g- ° e e o] g. }
1,771, 2L 1 2 12’ 8 13’ 2 Ty 2

r3gi3,...,rsgic].

From these expressions the lemma follows immedietely. [/

o

BEvoof of 2.0,19: Choose b £ ﬁd and an integer

e ¥ 0(mod p) arbitrarily, and set w = B e usual,

gethve =lmiclw) &nd d = max{0,wt{w)=cp). "Now it Ffollows EFrom

o
<

wti{b) and

thiesrelevant definiticns that witlb )
(1) e

comp{ (b°) ) = comp((b(i)) N comp(b(i))

- +
Fors Al R
Thus c¢ and d are independent of e, so that we may assume

Mitliontedlo=ss of generality that ¢ = 1, for if b E [M(C),dG]

tlien eertainly n e [M( ),dG]. Consequently we have

~

[ e L8] Fdrisome (r;i ) 85 ,0) E B, and &8 in
FE i By
2.4.20 we write suppé§ = {gi seees s }, 8 > 2, snd
1 s
6(gi )= B o T B & rs < Dy 345 Ty aesyBe  Bote thal am
j (3, € e

terms of this notation we have



3

S S
wt(w) = p L q; + ) ris For
j=1 J=1
wilw) = wtlb) = wt(bo™1) = wtlle. ,g. ,8))
e
© S S
=0 G(gi) o = g e
i=1 nele o j=1 J

The proof of the lemma requires the consideration of

three cagses, delimited aeccording to the values of r, and r,t

Case 1: Assume that r, + 0 % r,. From 2.h,.28
s
BTGk 1. and hence from 2.k4.24 w € [M(C),d'G] wvhere
j=1
s
gt ey - 0. &t ,remains to.showsthat . d' 2 de Bat
: e
s
g8 =t =~ P L g, =2
j=1"
= wtlw) —.ple=1) = 2
=(wt(w)=pe) + (p-2)
= wt(w) - pe,

amd since clearly d' > O we have

1]
(o)

a' mex(0,wt(w)-pc)

| v



€ase 2: Assume that either ry + 0

S
LS ren 2P e = 5 g, an
A
Jj=1
Wi [M(C),d'G] where
s
diEes - 5 )
j=1 ¢
=tarklar ) =
= (wt(w)-p
2 WE =

BN aeoind! >0, s0 that d' >

Case 3: The only remainin

=) e B =2 o = 0

midia e

i
el ol oive W o [M(C),d'G] whe

1 2 2

1

1l

165

LS s SR ol aihle T
2

1 0 + r,.

d hence from 2.4.2L

— 2 '3 'p
S
P-Jogs = 24P
=1
c) + (p-2)
e

d. and thus w e [M(c),dG].

g possibility for the values

For -this case 2.4.23 and

s

Eeleti=as) i alan d
jeles
5
Whw =t L
g=i

wt{w) - cp
d {since wtiw) - ep = 4* > 0}

hus', once again, w € [M(C),dG], and the lemma is proved.

o rdersbovmake full use

initial set of well-behaved el

"

of 2.4.18 we need a larger

ements than is provided by

/1
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2.4.19. We need, in fact, the set of "elementary" elements

of G'; where an "elementary" element is defined as follows:

2.b,25 Definition: alet W be a non-trivial element of
] “t
G' expressed in normal form by w = bl ...bt » - Then-w 'as

called elementary, with degree function 6 if, and only if,

the basic pseudo-commutators bl¢~l,...,bt¢_l all have (the

same) degree function §.

Phe ziext step in the argument, therefore, is to preve

the following:

2.4.26 Lemma: Every non-trivial elementary element

st @Y dg el el e -

Proof: Let w be an arbitrary non-trivial element of

e e
: 1 t .

G' expressed in normal form by w = bl ...bt say, where
b'(;)—l T (g’ ,g' ,(S)’ ,j = l,tco,t and Suppa = {gi ,uoo,gi },
J 1j =9 0 S

58 s usual . write G(gi.) Sl b for each
3 > €%
J € {O,...,s}. In addidtion, st W, = b.J, J. =2 Ly nagt

J J

(5]

since, where possible, we shall be using I TR
Observe that if t = 1 then w is well-behaved by 2.4.19,
=o we shall assume that t > 1. The assumption inplies that

5(gi pz for all j € {C,...,S} (as ctherwise there 1is
J
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only one basic pseudo-commutator with degree function §)

and consequently

0 - b g (gq,g ,6(1)) is bapie for every i e E..

i3

Another fact that we need is the following:
s
pRbl ol v T wtlw) = wt(wl) = o= il = pe D gt

Phe wreont of 2.4.28 g quite straightforward end is

therefore omitted.

From 2.4.28 we have in particular that
wt(w) = min(wt(wj)lj &l osnsstlls Since fromPuk i ks
wj i- wcll-behaved it now follows fromw 2,4.18 that if
miclw) = min(mic(wj)lj E'dl,...,t)) then w is well-belawces

Consequently we now make the added assumption that
Soh ool O nic(w) # min(mic(wj)lj el o B

In order to show that w is well-behaved despite this
assumption (as the lemma claims) it is necessary to first
enumerate the situations for which the assumption is valid.

Now from 2.4.6 we have
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t
i : = e
(ig) (i) :
o e B N E
: 3 e.
w(lJ) = [ggagl’é(lJ)] J for each j ¢ L X aiaait
W i) Sl e all il e I+\{i0""’it}

SHd =@ it follows from 2.4.27 that
<50 Wikl FIEN fiaelw) =

=) 5
rmin(comp((gg,gl,a(*J’))]j € 104snentt) if Z e. £ Glmads

(4]

5 T
min(comp((gy,8,,8 737 ))[5 ¢ {1,...,8)) if I e, = O(mod p)

@ L oiher hand Tor J e l1,...,t) 2.5.6 gives

i g5

Rk iz) e
HE Gy

i A e .
w(l) =0 B il W e d Wiyl
J 0773

giid hence, using 2.4.7 we have
3 (ig) / 13
mic(wj) = m1n(comp((g2,21,6 0 )),comp((g,58756 34

Thus

o min(mic(wj)lj SI2 E R 3 3 B

$ict .
min(comp((g,587,8 ° 1115 & 10, as e W HES
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If 2.4,30 and 2.4.31 are now compared then Lemma

g P ehows that 2.1.29 is satisfied if, and ‘only if,

G
(1) % e. = Olmod p)
j=1"
(5] o 0 Por gaen - J e {lyessat}
2')"'..42... J
a4 ) o e
s
(iv) maedy) . = 1 . F Yig
Gegi

Thus to complete the proof of the lemma we must show

that under conditions 2.4.32 w € [M(c),dG], where

s
=& & L g and d = max(0,wt(w)-cp). To do this first
j=0
note that
17 ej
=l g, sees e8]
j:l J )
: o] (3))
= .H ([gi"gll’é][gil’gl 96]) (by l°6'L(5) and i
gL J
7
% eJ 7 ej
0 | e S e, o §1j=1
j=2 le, ll’ 1]9 lo’
i ej
S ile ey 30
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Now Trom 2.4.32(ii) and 2.4.2h it follows that for

: s
e e e e i T R e O B LA NG] Srhere el = 0l ST g
15 13 e %) J=0 J
s
gmEe d =y e S o Hence woe [ M ,d'G] and itlondy
520 (c)
remeins to show that d4' > d.  But
s S
i ri) - 2 =ntw) = p Big. =2 by 2.5.080
2=00 o

o wt(w) - pec.

and since T4 2l rs > 1 we elso have d'' > 0. Thus

n

d' > max(0,wt(w)-pec) d and the proof is complete. [/

Of course, not every non-trivial element of G' is
elementary, and we now consider the question of expressing
an arbitrary element in terms of elementary ones.

Let w be a non-trivial element of G' expressed in

e e
1 t :
noerna il torm bW = bl ede D s By rearranging the order of

b:'s if necessary, this expression can be written in the

fR@sm

ST SR Lli) Fra Eoy,

(o = €at{n)
bll"'blt(l) b21"'b2t(2)’

o-bslao'bst(s)

=
1

Wl..lws Say
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Whcre G ibriaii="1 4., 8, Wj = 31 j

% is elementary
with degree function dj say, and 61,...,6

are palirwise

gistinct. Thus the equation w = Wye..W . expresses w as the

S

produet of its elementarygparts. Note that by definition

min(wt(b-k¢—l)|j S AR A RN

wt(w) :

min(min(wt(bjk¢—l)|k exli i slg i g e e

so that we have
wbhw)is min(wt(wj)]j B el s vae B

Moreover, as we'shall now prove, We also have

mic(w) = min(mic(s ]J gl ey
Tiet 1 e®Tili Then W(i) = wii)...wéi), and in ‘turn
G B e R e s e
WJ. = (le ) .o.(Djt(j) ) = (bjl ) -.o(th(j))

Sor ozl e o=l i lleow Trem 2 kb Bnd. 2. 8.8 70t Follonls

Tl ttmor eny B e (0o o0 B 0 either bgi) —lSi e
ity !
La (1) S :
Jk = [gz,gl, il where (gg,gl,dj ) is bezie.
Consequently, if wgl) 18 non—trivial then 1t 1s exprezsecd
J(:) o el il
i ] for some

in normal form by v [gg,gl,ﬁj

: L) &8 e
integer e(i,j) ¥ 0(mod z). Since 6i + 6j" if 3 £ j

e 8
ik maw (foliows that by defining J. s {l,...,u;| : # 1
(i)

welean exXpressi w In-normal form by
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(2 () (i)]e(i,j)

W = H Wj = .H [gz”gl’dj
JEJi J€Ji
(For the degenerate case of J; = @ we have, of course,
(o
s =:1).' Hence
(i) : ()
comp (w = mln(comp((gQ,gl,éj )i € J;)

! 5.
mln(comp(wj )5 € J;)

min(comp(wgi))lj elaes aialy

]
=

(since comp(1)

Using this, we econeclnde finally that

mic(w) = min(comp(w(i))li = I+)

= min(min(comp(w§i))|j € {l,...,s})li € I+)

(1

g L +
= mln(mln(comp(WJ ¥l Een il e o il ik
= min(mic(Wj)Ij Sl te S
which dis precisely the claim we set out to prove,

To summarise, we have shown by the above remarks that:

5 .33 Lemma: If a non-trivial element of w € G' is
expressed as the product of its elementary parts by

W = Wj...Wo then



ni min(wt(wj)lj SR R T

endine (w) = minlniclw )l g e {1,.s.,8) /]

The above lemna provides the necessary connecting link
between Lemmas 2.4.18 and 2.4.,26, for taken together the
three lemrmas imply that every non-trivial element of G' is

meld-behaved. In other words, we have proved Lempma 2.2.10.

20 Has Preeoe® o 2.2 000

Many of the methods employed in this section have their
origin in the Ph.DP. thesis of R.A. Bryece [2]. . In order to
indicate the exact extent of this "borrowing" I have included
at each relevant point in the section the item number of the
analagous definition or lemma in [2]. It will be observed,
however, that Bryce's results (in contrast to his methods)
cannot be employed here, since they relate to bigroups rather
than groups. Consequently, all the following lennas require,
and sre given, proof, so that in this sense the entire
seption 1n independent of el

We begin by proving two results, Lenmas 5,50 and Bi5.0,
which lead to a more convenient fornulation of 2.2.11. The

first of these results requires the following definitions:
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-t P inition: Liet w be 2 non~trivial element of

(& e

G' expressed in normal form by w = bl%..btt, and for each

0 & OO U s e bi¢_l have degree function Si' Then the

set of entries of w, denoted by E(w) is defined by

T

Blw) = L)supp5i. in addition, define E(1) 4o be @, =nd
i=1 n

for any w, ,...,w € G' denote \j.E(wi) by E(wl,...,wm).

i=1

2,52 Daviluieneny  LEE 9 0E & Siemomien el @ lememn o

e e
G' expressed in normal form by w = bl%..btt. Then w 1is

¢alled homegencous if, and only  if,

E(bl) = E(bg) =dias S ElE

Clearly, any non-trivial element w € G' is the produet

of its horogeneous parts; i.e. w = Wqeeelg where Wi, ...,W
are non-trivial homogeneous elenments of G' with E(w,) ¥ E(wj)

if i ¥ j. In connection with this we have

no

s5 .3 Lhemmas If w is a non-trivial element of G

then (w) e (w? for every homogeneous part w' of w.

Proof: The lemma is & special case of HN33.45. //



86

How if w 1s a non~trivial special element of G' it is
clear that the homogeneous parts of w are themselves special
and that at least one of them has the same p-conplexity as

Wws Thus from 2.5.3 we have immediately:

2.5.4 Lemma: Let w be a2 non-trivial special element
gEcs S i tht eomplw]) = ¢. Then there exists & hon-triviel

homogeneous special element of w' € G', also having p-

eomplexity e, such.that Cu? = Cn i

e sic condre sl coneerns the ‘subgreoups U(c,e) and
¥le o) defined by 2.h.1, and is a conseguence of 2.4,2 and

the following lemma:

B0t I g guditileElens Be Slior wiaei
[v?,...,vi,wl,...,we+l] € V(c,e)

+
. » (=4
where the integers ¢ and e, ¢ € I , e € I, have been chosen
: g 3 -
arbitrarily, as have the elements vl,...,vc,wl,...,we+l G

. . . il . . . . : p
Now from the definition of V(c,e) it is immediate that
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[we+l,v§,vg,...,vg,wl,...,we] e V(ic,e)

and [we+l,vg,v§,...,vg,wl,...,we] e Vie,e)
Hence
P g
[We+1’v2’vg""’vg’w1"’"We]
ooy D o
'[We+1’vi’vé’°'"Vc’wl"'°’we] E Yle,els
Bub by 1.6.35(3 ) and (5)
-1
B e e
L9 ooy 1o vy o] L2 v 7 ]

and the resuls feollews. [/
2 5.6 Iemps: For 21l c.e E I+, Ve ,e=1}) = [M(C>,eG].

Brigefs f Privviall vy, | ¥l ciye= =2l lel o), i 50’ Prow 215,5

aitvd 240 .2 we have Wlele~1) 2.0l e, ey Ve e) = [M(C),CG]. L/

From 2.5u0 snd 2.5.6 1t follows theate Lerps Pul.11 is

equivalent to the following:

2.5,7. Lenma: Let w be a non-trivial honogeneous

special element of G', with conp(w) = c¢. Then there exists

e € T such that {w Silecal 0t
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The proof of 2.5.7 is preceded by a sequence of
preliminary lemmas, and it is the proofs of these that
Bryce's methods are employed. I should perhaps remaxrk that
Ly  eripgineal precf of 2.5.T7, obtained before Bryce's work
was available, was very much more complicated, so much so

in fact, that I am not entirely convinced that it was wvalid.,

i -t
2ol hemnaas Fer all Ugv B Biiw £ GV sna Teiiiy

(uv)t] = [w,utv"].
al nod
Epouf: SPeow seme e g B (uy) = 1w v e, so
i i i
B P ) o il i el = [ ju v il elis B gl

puEe Y Bomwas lewfs hoois dn 12))

Trapte 2a@(G ), and «i'f ifor Pixed.clements WisesosW, € G?
I

G e e nlw e lie i, then Tor a1l

1=1
n m-1
aaress T 8 G [Wm’vm’vm—l""’vl] € W.
Proof: The proof 18 by induction on m, For m =51

a

: i e : s
there is nothing to prove, so assume the assertlon 1s true

+ . ]
(oI e e e e o S and now consider the case m = k.



Suppecse, then, that for some WisesesW, € G'

k .
2850 L) B S Il [wi,vl] Bl Bow all ¥ £ -G,
i=1
L i
it fallogws immediately that for any. ¥ gl o v vl

k
for all v € .G ‘and "hence, by 2,.,5,8, that

[W.,v;][wi,vl][wi,v;,vl] E M fawiall v E G

1 il

o=

Weiiner 20 1@ apadn, we conclude that

k : .
I [w.,v%,vl] € G for all ¥ & G.
e

Sinee W is mormal im G, 2.5.10 also implies that

k :
i
I [wi,vk,v] sl arer a1l w ei@ (by L.6.1(2) e Ths
i=1
= o o o
2 S A II [Wi’vk’v] [vs VsV 1% W for all ¥ E &3
i=1 : &
1+ : .
Setting W{ = [wi+l’V; l] Tap e e sgk=1, apd 98ing
—al - e
5 y sl il : e
identity [w{,v] [wi,v ] = [wi,v ] , we cah revwrite
Bo5cl 1 in the farn &
iy &

1 [Wi,vl] e iTor all ¥ & G

89.

the
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Bince W 'is nermal it follows that

I [Wi,vl] el foria L. i giG,

By the inductive hypothesis this implies that

k-1 k=2
' L] 3 € . o o E: .
[Wk—l’vk-l’vk—Q"' ,Vl] W .for all U 2V G
But Wi—l = [Wk,vi] and Vv, Was chosen arbitrarily, so the
imduetion is eomplete. [/
e R i taont et 206 din [2])s
For eaech W € id(G') and gq,e € I the subset W HE et

defined by

B r
W =iy e G'l[u,vi,...,vq,wl,...,we] E Wl For all

g,¢€

VisseesV sWyseeesW, el

q

2.5 .15 ilenmas Bf Wie id@') and gs,a'se,e’ £ I ifhen

Proof: Since (i) is immediate from the definition we
i i ! i bgroup by 1.6.1(2)
need only prove (ii). Now Jq,e is a subg p by

. : ; hat ¥ ] ly imvariant.
so it only remains to show that Jq,e ko i LA e T o
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L@ 1l & Wq w8nd let € be an endomorphism of G, u and
e

Hhche=en arbitrarily. lNow choose a set
{al,...,aq,bl,...,be} c-ghB{ul . Then for any

vl,...,vq,wl,,..,we € G there exists an endomorphism 6% of

G =ueh that uf*i= 148, aie* = g A=l eaiesd, and bie* = W.,

’ccosb ] £ TV"T’ O.,I’ld W iS

e : D >
Ba= il L dLe s Since [u,ai,...,&P,b .

Qi il
fully invariant, application of the endomorphism 6% shows

P P 1 -
Bhat [u@,vi,...,v;,wl,...,ij € W. Hence ub € W_ _ and the

2 >

lemma 15 proved.. [/

; - = =
L Sy L W By Woe 1dlGY ) el teiaad

for alllv 0 [w,vl] € W then

e Jw,v]l € W for all v .G

I
]

(1) @ e d{iyps)

p =% [w,v’] € ¥W for all v € G.

(i) msosdldcp® )

Proof: (i) There exist integers a and b such that

ai + bp® = 1 and since G has exponent p® it follows that
ai+bp’ S 8,1
il = v O e el e S PR P i e
(i3} Iu'this ease we have a'i + b'p  ='p fox

some integers a',b' and the conclusion follows similarly.
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e s (e B 5031 in [2]).

m
Let igl[wi,ia] B here Ok mo= gp o+ v, 00< g r < p
Byoseea¥. E0Y, g € g\E(Wl,...,wm), and W € 1d(G'). Then

R e .
m q,m-q

Eroofas ! Using demma 1.7.1 'we have

el idal = 1 lsrtige ], where wiiz ' Tlw PR
i : i i g
1=1 1=1 J=1
Hote that Wé S Bow for @any v € G there exists an
endemorphism © of G such that wi@ = w{, 1= s sngh sipd

86 = v, sier it foldlows: that

m o
delgr P e a0 v

m m=-1
s by 2.5,9, lut,v

T S W amel . Silmee ) =
m? m? m-1° ’V] e m

m’

the conclusion follows by employing 2.5.14. [/

c sl eame s lend, s apein, 5.3:1 in 121k

' : - ? 7
Let w = [wi,la], where ﬂl""’wpz-l eI and

1=1 5
a € §\E(Wl,-..,wp2_l). Thien forfeach 1 € 11, i0vgn =03

flevsicgists . e. £ I such that w. € (w) , where q. = [ /0l
i i q:s€.



By

Preoof: | Ef in the previous lemma we put
Er=n el ol )p tp=1) "and W= ‘{wi, the €ase’l =ip° =1

follows immediately (with e_2

1/

L= (p=2)p)-

Bre Darbtieular this means that

i 2 _ 7 = i - f:oD — a Y
[.Jpz_l,(p .L)??] [sz_l,(p l)u ,(p l)ca] (S <W/O,(P—l)2

Bait trivialiy we (w)o ( and therefore

" p-—l)z’

If we now employ 2.5.15 agein, but this time with

=N A=t and Wi (w)o (

oy (the latter is permissible
3 .1.') e

by 2.5.13(ii)), we obtain the assertion of the lemma for
the case 1 = p° = 2,

With another p2 - 3 applications of this procedure,
the lemma is proved. //

D e eshnattr (e.f. 5 8RR AN Fa v

\

3 s .
Let B8 E I+ and ety = {l,...,pz—l} , so that each d € D 1s

an s-tuplet 4 = (dl,..,,d i T 12 gyt < it = Ao
E = S
RN e s s e
er RS all
ek w = R [wd,dlal,...,dscs] where wy € G' for 1
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d e D and {al,...,as} < g\E(w_ |4 € D). Then for each d EsD

d
bepe "gpisfc e 8 I 'such that w. ¢ & , Where
5 e ! e
g [di/p].
= 1=1
Progof: . The proof de by induction o s. . Per s =wi-the

Tewma ‘reduces to 2.5.16, and the Gnductive step iss as

o ltillews

Por each 4, € {1,...,p -1} set D, = {(a],...,d!) e plas = a }
and let
2 e e = [wd,dlal,..,,ds_las_l]
S d e
= =4
=
=t pz—l
We then have w = [w,; 4.4 1o anad thos, by 25516 ow
d =1 s i
S

gaeh 4. E {l,...,pz-l} there exists €3 E L such thdh
. S

= oo & o U o {w) wvhere Bl [ds/p]

Further, from 2.5.18 and the inductive hypothesis we

have that 1f 4 € Bd then there exists eé £ 1T sueh that

S
s=-1
; y 1 = x lastpls
L <w ¢ sawilere g i T
4 a. 79324 gt aps gy



mhis i woin et 2 5.0, we have for any 4 = (dl,...,ds) gD
e e () e
4 dg 4g>¢q qdc,eds 93¢ A3:%4
ylhiere eq = e, + ej- This completes the proof. [/
— S —

PReioi o 2aos 3 Let w be a non-trivial homogeneous

special element of G' with comp(w) = c and
E(w) = {gl,gz,al,...,as} and let w be expressed in normal
15(0) sl 19
T el
W=l it 6] =
i= Dc!ﬁ"»l, i_]

Seltings ai(aj) = dij Popr gl 4 e lsh e s tidy g Bl AL

we can rewrite this expression in the form

e

=
|
—

l >
l[[gQ’gl] »d; 18500004 2 ]

i

amd Ehus, inthe notabien wf 2.51 71

where for d = (dl,...,ds) w, is defined by

(8,58 ] e il a. for 2 ek N (S

k. otherwise
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The assumption that comp(w) = ¢ implies that for some
S
g e b o = [di*j/p], and hence that there
Jj=1 ele
: - ! ] 1 e Sebyis
Fisiiead e 0D such o that Wg* [gg,gl] and, again in the
nevation of 2.5.17; 9oy —@C — L.  Phus we conclude from

2.5.17 that there exists e £ I (namely e = ed*) such that

[ gﬁ 9 59 ] E /w ) ° I W S 1 l & [‘, g o l & w
d il b /C-l,e i 2 Al ( >\,"'l,\,‘)
kel (GO SHE @b Ehal t y G t ~ '/ Y 3 ! E A
q_ AL l'la [U._! ,u? W _L fOI‘ cl,lJ. u] ,u2 \T e

m P 3 = =
B b S e e E ] ul’uQ’V2’°°°’Vc’N1"'°’W € %G

and nhasisays sprecisely that V(iec,e) < b i

2.6 The Proof of 2,2.2k

The following simple observation will be required:

2.6, Lemma: liefciiRMbie Saitre dulecld  Frele NorolpiNolE i ranik

Vb and let r be a member of some free generating set for R.
A S . LSk S iesly)
WaEim tene @iy s EEmene @y s SR e In ol g et el e
I A + } =
oo s Let r = tr, il E Rl e et fre e oone et Nsieh
. . =, o) i
o BNt homcn insuch . way that . = r. HNow 1if ¥ &£ R' for

+ ; \
seme e el L hthen, idenoting gp(rl) by R we have

r® ¢ A(R) ~ R,. But by HN13.42 A(R) A Ry = A(R;), and

: 3 : i :
since Rl oo E I ble veconcluslion Tolllows . 1



9T

Phe proet of 2.2.24 depends on the charascterisation
2
of € e given by Lemma 2.6.2 below. The idea for the

proof of this lemma was suggested to me by L.G. Kovacs.

7 2 2 2
2.6.2 « Lomas i 1= (P TP 25
i =] Ny C \(;2 gl (ulgg) ol
—p2 —p? y2 3
Proofs Set V = <g2P glp (glfm)P Y. Since
2 2

{ P b D o : s | . e
(glgg) =2 @ eion semeiiei Gl E s clear that

"
5%

2
Vil GI Yy Gl Hence, "1f we write {dl = G/V and gt = sz(H)s

then we shall have completed the proof when we have shown

D2
that - my BN = A,
2 g 2
SlomllciTR e P 3 say w = af ag ...ag PeE Bone

Bysesss2g € 0. Now from the definition of H it follaws

2 Dy 2
o e T T e e LS e e e
: p2 7p?2 : 5
eguality helds becasuse X 4y as aidaw 10 G).
e- e 5
L8 e T Tup () :
Thme witi cing 0. = Loy "°hig<j) for cach 3 6 | lumeansc b

Whepe dovr Al L gyl e = dail

i o = & 1 @§d hi' is a member of some

(fixed) free generating set h, we have

= e . & = Dz
M 15&(1))p i A st(s) "
W = oh oooLll(l) eais iy S0 O SQ(S)
2 2
e O e
- i sk}
= h it dot N
i si(s)
i QBT ey
b G
ak i
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where hi ,...,hi are pair-wise distinct members of h and
i; k it
Opseee,0, are integers.

Howtascume: additionally that'w & H". " Then if for

e a0 Ukl thie endomorphisms g s H:> H are defined by
h; 0, = h; »B;0. =1 for i + i,, it follows that
J ]
U..PZ
h.? = wo. € H' for each g Ll oosaade b i lense o Fradns Sbeity
o j
J o
alpz uopz akpz
hi b e e hi = 1, and thus w = 1. This completes
il e k
the proof .
Prool ob 2i2.2l:  In view of 2:6.2 It is sufficicuil ie
-p? -p® 1o
P : 1 i hs
show that g,° g (gng) € M(p), or equivalently that
L Tl g 2 :
(glgg)* =8 & (mod M(p)). Ig ©ho) wladlE,,  EahieEy YRl

-+

T P
)P = glgba, where 4 € G', and note that B el pd E

(

185

Now M/M(p) id & p-group of class less than p and as such is

regular . Thus

2

e i, o IR Dl = TR SOl )
(glgg) ((glgz) ) (glb2 ) (gl) (ge) ey
and the result follows since @P = 1. (G' has exponent p). [/

Ol oo lof 122013

Many of the ideas for this section were suggested to



gos

me by, LeG i Novacs .

+
Let c,e € I ', ¢ > 2, ¢ and e otherwise arbitrary but
fixed throughout. A wreath product of finite p-groups,

denoted by G¥, is defined by G¥ = Rwr(SXT), where

Be=rppiin|ehicia)

2
3l = : = s Rise :
= SotiLaxs L o diss = gp(oilsi S Ve R e
= m : F Brrs :
T = Tox..axT 3 Tj = gp(tjltj fm R
gndiel leonroe 'S = [l liaf e = 2. -The base sroup e (C* il

be depolted by Ky and is to be eonsidered as comnsisting of
gl Sunetdions . from S5 X T inte B, with multiplication
defined component-wise. Additionally, for each

e e et 2l el e [0 e, notationiwill*he, abuoed 6y
the extent of considering 3. and Tj (and so alseo 5 and 'E)
as subgroups of G* via the standard embedding.

If we now define M¥ = AP(G*), then it is eclear that

since G* ¢

=

pgng it 1= suffieient for the proof of 2.2+13

to show:
o RS e S B SRR YAt R

e prowe 2.7.1 two facts asbout G* will be required.
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Thiesc amelic 02 and 2.7.3 below, both of which follow from

resultswef H.' Licheek [6].

2o o2 Eummes M*(( )

e—2 gl

~ s aP 3 .
Breoef: Lleariy M® < K.5° = M* say, Now from the prop:

m m
& i = ~ G I
of "HN22.1h 1t follows that M* = R wr bp where R~ denotes the

direect produet o:f | T| copies of B. Thus, from l6] Thecoren
Sleds M* has nilpetency clacss [e-2)lp—1L) + 1 aud the

gonelusien follows. . //

2o e @i Let k. © K be defined by kll) ‘= and

elw) =1d forall v € (Sxtiati}.  Then

Preeleit: 14 fellows from part (a) of The proof of Thehren

and henee, a fortiori, that

[k,(p—l)psl,.,.,(p—l)ps‘_z,tg,...,t g T

E c e
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By usdin= 2Eeliisil Ehis is equivaléent to

PR pt =t o (p=1)sP e il
S Pyeeeslp D s ,e] £

Bidsthcl comclusion fellows since by [6]1 Corollary 5.7 an
alteration of the order of entries occurring after k leaves

the commutator-element unchanged. [/

Pizgor @1 2Tl Wawh Rk cdeftinsd a8 i@ 20703 Lew

= P 1Y -
a0 = [k,tg,sl,...,sc_g,tl,...,te]. Since clearly
w € [M*(C l),eG*], 2.1l will be proved.when it is sheun

Lha W M¥ « + If we.suppose to the eontrary that
(c) PX

Wy £ M, then. it. follows Ehat

\C)’

\ ie
[w,(p—E}sE,...,(p-2)se_2] € M¥

E]

(c+(c-2)(p-2))

L
ceeant € M (pad )i

But from 2.7.2 asnd 2.7.3 this is impossible. [/

2.8 Two Consequences of the Mein Theorem

A 2) proved in

Neither of the two theorems about lat(ép .
= s

this section are original, but are included here as by-
products of Theorem 2.1.2.

B e sy
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2.di g iiheorem: lat(é A ) Bas mianimum eondition.

Lol reddy remarked, thig - -is s speeial case of D.E.
Cehen's wesult [ 3] that lat(éé) hes minimum condition.
Hewome . the pyost of 2.0:1 given below 'is quite independent
By Coben and 1s \of interest for two reasons:

(1) It mekes no use of any kind of representation
theory (in contrast to Cohen's proof).

{2) It is & meadure of the strength of Theorem 2.1.2.

The prooft ef 2.8.1 uses the Ffollowing considexeaticn:

A lattice A is called jolin-econtinuous if for every

x € A and every chain {y_|y € Eleiclis atuedday wk Smale ety yv)
i vYeT Y yel
It is readily checked that lat(¥) is join=-continuous for

every wvaricty V5o that jthe following unpublished theorem

2
b 1S
ot e G Keowva eshiafarcillicanit:

5.8.2 Theorem: Let A be a complete modular and join-

ceniciinueus ot titce s Then A has minimum condition if

{3 every element of A is the join of finitely many

join-irreducible elements

gnd i lads) the set of join-irreducible elements of A has
minimum condition (with respect to the partial

order it inherits from A). //
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glicestrue s Lher e dand T mairh ok

Phc conyerse of 2.8.:2 is
as 15 well=known,; the first part

that ds trivial and,
foliews" by wery elementary conciderations.

T will beisbewn that 2.8.2041) =aad

)

=

15

lat(A
=P
nimal counter-example.

Prool of 2.8.1:
mi

are satisfied when A

et ¥ e Tat{d &
= =p=p

(ii)
S b e
¥ is pilpotent, which is impessibile

i)
[ 7] lat(g) has minimum condition

AWaihal, ey 2 L2
since by Lyndon | T
for every nilpotemt wariety L.
a properly descending infinite
"1_/_2:‘}.-0

—

25 ST e

Suppoese there
chain of join-irreducille subvarieties vy

(ii)
classification of non-nilpotent join=-
S}

¥From the

irrediicible subvarieties given by 2.1.2 it is
immediate that every properly descending chain

non-nilpotent join-irreducibiles breaks oficsas
But this 1is

+
¥ iz milpeoteant for some 'k € 1
impossible since lat(yk) has minimum condition

=i
(again by Lyndon). [/
et

o
(&1

The other consequence of 2.1.2 to be noted here is the
result of

pecial case of

a

following, which is
and M.F. Newman (unpublished).

that
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ool oo ren: L subvariety of APA , 1s non-nilpotent
— =p=p
gt enidiiend v i, 1k contains A A . FY

2.8 b Corollary:

Every proper subvariety of A

=p
Rildipotente [/

A ds
=

From 2.1 .2 6he variety ;l is non-nilpotent and contained
in all non-nilpotent subvarieties of A

& 5 Thus fgr the
P=D
proof of 2.8.3 we need only

show:
2605 @ Lemma: I = épgp.
Bropre wBy. defipition d..= A6 . ol BupieniBe of fiE ol et
=8l ::'p =p=p =D
immediate that Zl'i A A o Per tae

revierse
3.6.3 to show that A(A J.& (&
P D 1

inclusion use

PR e O PR

2.9 fn, Aiternative Description” of the Varieties la
ouE il Definidiany Fop eaeh: OE It define a variety

1. as. follows:

=0,

T A =p o, 8 {l,.o.,p"l}

el
I

|

o]

o R
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25042  Wagenecing it @Il e s I+
T A
& So=p  Tp=p
One lemma is required:
2RO .y Lemma: For cach c 't {2,...,p}
o) 'O2
M SIS = G o
(c) Gelv
Proefs Sines M > 6P it is immediate that
2
M(C).MP > M( ).Gp . For the reverse inclusion it is elearly
A c
2
sufficient to show that MP < M ).GP . Now an arbitrary
55, i

element of M ean be written in the form w?wg...wpc with
S

W gma-puw- E G and o € G, Hence an arbitpary element w E MP
5 2 S

can be written
— ‘}Tp - > ATp p p SELEY p & p eo s \W o .WP p
W (w o oV cl) (W2l Yoo (9) ) ( ts(t)ct)

where the intended meaning of the notation is clear. As 1in

the proof of 2.2.2h4 (section 2.6) we now use the facts that

M/M( ) is regular and G' has exponent p to deduce that
P
pz o )
= ol mod M .
i 0 (p)
2 2
D Gp

But this shows that w € M( ).G* and hence that M‘p i M(P)
D

as required. //
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Beocuii Y. 0.2 " ihe case 0> 'p is lmmediate, for then

e ) = (1 \ A Lyl
=Q=p < =p=92 (za N :p:p)zp A =p=p2
S SR A by HN21.23
EQED =p=pP=Dp A =Dép2 ( S J)
= .LJ Iy ; A i/“L
e
=0 =

Neow lek a'e 11, s..ap=-11. Then it Ffollows from 2,9, #lat

L \ BEV < | = (N AR , B A A
(Euép A8 épépz) 7 (=p§p N épépz) (=aép A =p=p2) i (=p2 N\ =p=
and hience that
A = B =00 T
ga @ Ep:p SGIA =p2 =00
Thus
T8 AR e e B K om oy e R
=0=p A =p=p =l ‘ =p a =p=p =p Z =p=p
T S R R SR
:@:p =p=p =p=pP=p =p=p
= C L R
ga N ;pzp £a //

On page 108 the description of lat(4 én) obtained by

p
M ,F.Newman (oral communication) is reproduced, and from this

o . ey - : -
it disdimmediate that 1 1s join=irredmcible for every o € T
o

feti=s this Tactithat makes Theorem 2.9.2 interesting, for one
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wonders whether a similar situation occurs in general for
varieties épéps’ Bl cnspe et bhat this ds true, and

express the conjecture formally by means of the following

definition:

20l De Finitlons v Por all Ble T dctebthe mapping

. o (= . A
AB : l@t\épéps) > et

Uhg = UL A AL g,y Tor all U e lat(épéps).

] L belldefined b

Iy
o)

[[=
o]

™

2,9.5 Conjecture: For all B € I, every non-nilpotent

join irreducible subvariety of Arép3+l is the image under
=J =K

AB of some join-irreducible (but possibly nilpotent)

Shiib v aralerE v e et LS I ol
J :pépB

FErom 2 =B, h it is ipmediate thet the conjecture wo
true for B = 0, and from 2.1.2, 2.9.2 and the remarks
preceeding 2.9.4 it follows that the conjecture is also true
for B = 1. Further supporting evidence is provided by R.A.
Bryece's study‘id [2] of "bivariéties" A g o épB’ but it must
be admitted that this evidence is very indirect,

Binally, note that not every join-irreducible
subvariety of épéps leads via Ag to a join-irrednecible of
ge For example, the subvariety épz of Qpép is join-

reducible, but, as is easily checked, A sA. = A A B g
s SR =P
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G2
| A
i |
|
To g0, = UL
; ecil
fAp+l 1t
i Netiest:
Nkr ‘
G T (1) Tt is to be understosd
m# ! A
=)\DP g that all marked varieties are
i
—ape intersected with épép
|
i a5 4
(i1) Foriegch h e Bhsthe variety
i
: ﬂﬁp is defined by the law:
p+1 | Ap
X iig[xi’xl"‘°’Xi-l’xi+l"'"le]
N *
- I \\

7 —
L

=
lio)
t
‘_J
/ /

/i
7

L}

o)

P
|
¥ r
=c s
l}
N l \
29 L o A
\\‘\ " - EP =
o ey
=
§

SUBVARIETY LATTICE OF 4 4

=p_l
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CHAPTER 3

REMARKS ON NON-DISTRIBUTIVITY

————

This last chapter consists essentially of negative
results, and for that reason, has been kept brief.

Seetion 3.1 15 taken up With a demonstration of non-
distributivity in lat(éBég) and in 3.2 the same example 18
"ysed towftulfil «a promise made ;in Remark 251 .3 of Chapterw oy

Einally in 3.3 a few further remearks of ‘a mere generagl

nature are made.

3.1 An Example of Non-Distributivity in 1at(é3é9)

In this and in the next section we shall use without

further comment much of the notation and terminology of

i
w

Chapter 2, with the proyiso thalgp throughout. Thius in

} +
\ A s {gill € T} a free

3=9

generating set of G; g, = {gl’g2}3 and G, = gp

partieular, we write G = Fw(

n=

ilog
I

2). In

J

1

addition, for any relatively free group H denote by lat(H)
the lattice of verbal subgroups of H. The first objective

is to prowe the existence of a lattice epimorphism from

TetlC) te lat(Gg):
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Let El 2 G o G2 be the natural projection endomorphism.
If W € 1at(G) then W = V(G) for some closed set of words V,

and henee by HE12,31.

Cipf LI WE R =Ny c)s V(GEl) = (G ) e dgt{c )

3L it 2 2

Tatle) > latlic ]

Thus El induces an ontc mapping El : 7

defined by

cPiE g WEAS=SPE R Poyial iy sesiagt LG P

From HN13.42 V(G?) =2 Y(g) .~ G for any closed set of words

Z
¥ 2o wlhets wren Slolhadl aracl Sedlo® e aeniE

Sl e, wEl ='W .G, for gll W £ 1atlg).

Beom  3s b.2 it i elear that 51 is a join-homomorphism while

from S.l.3 3t is equally clear that El is a meet-
homomorphism, so that El is, in fact, a lattice epimorphism.
e e = e = %*
Now set G* = G,/(Gy)(;,) and let £, 1.6, TiGF Beythe
natural epimorphism. If 52 :lat(Gg) + 1at(C*) is now

defined by analogy with 3.1.2 then by HN13.32 Z, is also a

lettice epimorphism. Thus £ = 5152 : lat{eg) T+ 1st{C®) 15 &

lattice epimorphism and it follows that the non-distributivity

o 1let(). snd hence of lat(§349), will be established by

demonstrating non-distributivity in lat(G¥*),
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The example we 8hall provide cccurs among the subgroups
of G?ll) whiehy' 'of course,  is the least non=trivial term of
the lower central series of G¥. We need the following

description of G?ll):

lhieits = e g = g% + ¥ = ¥ %) 3
e glg2 él nd g2€2 gg, 6 e i {gl,gg} s )

Freel genervating setb for G*. If now for eaech 1 e {2, ua 9

we set w = [e* . ig% (10-i)g*] then, we elaim, GF is an
L i [829 gl’ ge 9 9 (ll)

elementary 3=-group with basis {Wg""’wg}' The first part
is ammediate, for G' is free abelian of exponent 3.' For

the second part note that

AE ) E

- e s (G11y 5/ %n

G?ll)
and that it follows from .lLemma 2.2.12 that G(ll) a2 Gg
has a basis consisting of the values of all basic pseudo-
commutators in G with set of entries {gl,gg} and weight not
de=s Ehmn il OF fthese 52 kills all those, and .only those,
of weight not less than 12 (again by 2.2.12) snd winat
remains 1is precisely the set T5 e eig o PRSP o i

2 9 e 9

generate G¥ and it is easy to see that any dependence

(it)

among them would involve dependence among the basis for

G e B
L) g

80 .~y took dsto obtain 2 usable criteriocn by
which to determine whether any given subgroup of G?ll) is

fully inveriant in G*:



2

Let g,Bsy Be" the automorphisms of G* given by

¥y = g¥g¥ a¥g = g¥ ¥, = o¥-—-1
i il o Sl
g¥o = gt X Ky izl o
> 2 g8 = &7 e

Let M* = A?(Gﬁ and for any erndomorphism n of G* dencte by
n/¥* the endomorphism of G¥/M*¥ induced by n. We claim that
{o/M¥,B8/M* vy /M¥*¥} forms a generating set for the automorphism
ercoup lof EESME, To iseer this. nobe that B%/ME 15 9usE a
two-dimensional vector space over GF(3) so that with a
suitable interpretation we can write

e = [1 1] e < (22 e -

=t Cy
e

and it is readily checked that these three matrices generate
gL(2,3) = tutlG*/M¥), To make mce of this infeormation we
need the following two results which can be proved easily

fronm the faets that Gflg) = - and G?ll) has exponent 3.

(| 1F n,sN, are endomorphisms of G¥ such that
M./ = n /M* then'T] =n
2 TLGE 2167
5 1(11) JiEn

f[ii)  If n is an endomorphism of G* such that

ker(n/M*) § {1} then ker(an* ) = G?ll)'
(11)

Now suppose that S is a subgroup of G?ll) that admits

the automorphisms a,B8,Y, and let n be an arbitrary
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endomorphism of G*¥. Either ker(an* = G?ll) in which
(11)

case G?ll) certainly admits n, or, by (ii), n/M* ¢ Aut(G¥*/M*).
In the latter case we have n/M* = y/M* for scme v ¢ ep(a,B,y)
and sinee & admits v it follows from (i) that & admits Ne

We have thus shown that a subgro S o L fulds

1%
Wi )
LHVariapt i G* 40 (and trivially enly 1F) i E aldmits Crr o,

The action of these automorphisms on Wg,...,wg 1s easily
ealculated snd has been tabulated on page 11L. From these
tables it is a purely routine matter to verify that the

subgroups

Dl = gp(wg,wBW W s W) W 8,W )
D2 = gplw wh,w w W whw6w8,w7w9)
U = gp(wlL,WY)

each ‘adpi® &,B,Yy @nd hence are fully invariant in G*_bul that

S bl {1k = (U » Dl).(U ~ Dg) U »a DD

which gives the required non-distributivity. A diagram of the

full sublattice of lat(G¥) contained in G?ll) is given by

i 1 SR



THE ACTION OF THE AUTOMORPHISMS B Iy
W'i W.Q W B wi‘Y
-1
w W
2 2 R
-1 =5 L
W T
3 Lo Vg I
-1
¥y, L P Wt
i -1 -1
W i v, V), W5 Ve Yﬁ__w
-1 -1 ~1
Ve W2 w3wh w5 w6 w5 Ve
e + W-]. i w-l W-1
L i P I
W T AT ey . W
8 2 L "5 e 3 8
-1 -1 -1 -1 -1 -1
w9 v, W3Wh ws Ve W7w8 w9 L | w944
+ N.B. For display purposes only the elements in

these products

are not all juxtaposed.

S
{

i
1}

FIG. 3. A SUBLATTICE OF lat(G¥*)

13k
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3.2 A Nen—Unigeness Result

Continuing with the example in the last section we show

next that U = M* . Shince M¥* = i) we  will d
(4) (4) (1) 2’850 2
this by showing that the image under £2 Bl M(h) P Gl

generated by w, and w_.

L
Note from 2.3.1(1) and.2.bi.2 {with e = 0 in the latter)

that M s e o Phus by 22,02 SE g £ e b
Gl sl . S
expressed in normal form by w = bj...by then

-1
RGO s ek () > 11 For each i€ {1 de. 58 Eomcncn i
Wwe are enly interested in the image of W under 52 we may

desulme that wt(b-) = 11 for each 1. Using the.notatien af

ot 16, we pew claim further that mic(bi) >l seor caeli i

The justification for this is as follows: Because w ey

= et 3
the elements by ,...,by are the elementary parts of w and

thus by 2.4.33 mic(w) = min(mic(bi)|i el 2 gt ) i
o
l - -

clearly mie(b; ) = miec(bj). From this the. clain followe,

for since w € M(h) #e have by 2.2.17 thet mie(w) > ke o
complete the argument note that the only elements

b E Bo ~ G, which have weight 11 are the elements

[gn’jgl,(lo ot J)go] = w3 say, where J = 2 ey Dy BN of these

it csn be checked by using the methods of 2.4 thak

mie(iw,) = mic(w ) = 4, and that mic(w;) = 3 for b 3§ # 7.

7

Since ;jﬁ = w:., we are home.

2 d?
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by

B alg

e 2
(

Now define

D
i

=
2

eleawiv,

= I\JI *

(L)

aEiiNa i alce

=
o
)
Qu
{{ Nl

defined by

(

DD & lat(c) b
i .

Uit el lows Erom

homomorphism) that

N

el

As we also have

(ana the fact Ethat

are nilpotent. If now Ei,g' and V are

L! = A
= =5 (
AR
v = (I V2
= =3

i | = I i
i) L 13 i1
i el
s )y 1w (D

= -

E
e L

3 =

1) )

1986,
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This is just the situation we need to answer the question

posed 1m 2.1,.3;, Tor if there existed & unique minimal

(nilpotent) variety L satisfying ¥ = £3 v L then from (i) and
(ii) we would have gi ELT gé = L and hence ;i A gé = L. 'Butb
that is impossible, for we would then have

ey Rt ' ' = |

= =3 =1L - =3 M (-]-:_-J]_ = ég) = £3 = ; =J

whieh contradicts (iii).

B urcher Remarlks

ifiis clear that the exeample we Rave Scen of Nobe
distributivity in 1lat(G¥*¥) not only demonstrates that lat(é3§9)
1c nen-distributive: it in faect demonstrates that

Hle= o O P ) is non-distributive. Ever this can be

838 " I13
sharpened, for by a similar example it can be shown that
lat(43A9 A 39) is non-distributive. (The "larger" example

iras chosen Ffor inclusion hewe because it yields, in additionm,

the wesmilt of 3.2)s
I have also shown, by an example similar to the second

example mentioned above, that lat(ésges A ggs) is non-

distributive, and I am convinced that this example can be

generalised to cover lat(gpépz A gpz) for all odd primes p.

However, a general example such as this involves some rather
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complicated identities in GF(p) which at present I am unable

to handle.

Wies me pard Lo lat(h it appears that lat(F ( ))

A A
=2=l 2 2 ;2

ic'distributive; whether or not lat(rw (AQAE)) is non-
=

distributive for some r € IT, I do not know.

=

Lastly, by way of contrast, it is worth remarking that

M.F. Newman (unpublished) has shown that lat(épzép) is

distributive for gll primes pe
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