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Highlights 

 A Bayesian spatio-temporal framework proposed to identify outbreaks and examine risk factors from 

routine surveillance data detected previously unidentified disease clusters and risk factors associated 

with reported cryptosporidiosis and giardiasis 
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Abstract 

Spatio-temporal disease patterns can provide clues to etiological pathways, but can be complex to model. Using 

a flexible Bayesian hierarchical framework, we identify previously undetected space-time clusters and 

environmental and socio-demographic risk factors for reported giardiasis and cryptosporidiosis at the New 

Zealand small area level. For giardiasis, there was no seasonal pattern in outbreak probability and an inverse 

association with density of dairy cattle ( ̂ = -0.09, Incidence Risk Ratio (IRR) 0.90 (95% CI 0.84, 0.97) per 1 

log increase in cattle/km
2
). In dairy farming areas, cryptosporidiosis outbreaks were observed in spring. 

Reported cryptosporidiosis was positively associated with dairy cattle density:  ̂ = 0.12, IRR 1.13 (95% CI 

1.05, 1.21) per 1 log increase in cattle/km
2
 and inversely associated with weekly average temperature:  ̂ =-

0.07, IRR 0.92 (95% CI 0.87, 0.98) per 4°C increase. This framework can be generalized to determine the 

potential drivers of sporadic cases and latent outbreaks of infectious diseases of public health importance.  
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Introduction 

Global environmental changes, especially climate change and human exploitation of productive ecosystems (1-

3) have important implications for infectious disease risk (4, 5). For human pathogens with environmental 

reservoirs, such as livestock, understanding geographical and seasonal variability in risk factors can help to 

identify high risk locations and time-periods and predict disease incidence under scenarios of global 

environmental and social change (6, 7). New modelling tools can help to understand how these environmental 

and socio-demographic factors interact to drive disease patterns and translate this understanding to improve 

decision-making (8). 

Cryptosporidiosis and giardiasis are infectious gastrointestinal diseases caused by the parasites 

Cryptosporidium and Giardia (9). Cryptosporidiosis and giardiasis are recognized by the World Health 

Organization as infections of global importance (10), with high disease rates among children, the elderly, socio-

economically disadvantaged and immune-suppressed people (11). The parasites are primarily spread through 

contaminated drinking or recreational water; however, infection in humans may arise through contaminated 

food, contact with animals, especially livestock or infected individuals (9, 10). In New Zealand, previous 

research on human cryptosporidiosis and giardiasis has suggested that local weather variability, socio-economic 

status and degree of urbanization are important determinants of spatial disease patterns (12, 13), while seasonal 

animal pathogen load and host behaviour influence temporal disease patterns (14-16).  

As rates of reported cryptosporidiosis and giardiasis in New Zealand continue to be higher than comparable 

rates in the United States (17) and Australia (18), identifying the environmental and socio-demographic 

exposures can help develop disease control priorities in high risk areas. 

We used a Bayesian hierarchical modelling framework to identify space-time clusters of cryptosporidiosis and 

giardiasis in New Zealand and calculated an outbreak probability for each identified cluster. We then used a 

Bayesian spatio-temporal process model to identify the small area level environmental, socio-economic and 

demographic factors associated with the risk of reported disease. 
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Methods 

Notification data 

All notified cases of cryptosporidiosis and giardiasis during 1997-2008 in New Zealand were obtained from the 

National Notifiable Disease Surveillance system. The reason for choosing this time period was that this was a 

period of rapid change in livestock farming across New Zealand, with an increase in dairy cattle numbers, 

decrease in number of farms and increase in stock density (Figure S1 Supplementary Material). Further, no 

major changes were made to the surveillance of these notifiable diseases from 1997–2007; direct laboratory 

notification began in 2008. For notifications, cases were defined as a clinical illness with appropriate laboratory 

confirmation. Based on home address, each notified illness was assigned a 2006 Census Area Unit (CAU) code. 

CAUs have a population of approximately 3000-5000 people (Figure 1).  

Nearly all cryptosporidiosis cases (9848 out of 9900, 99.5%) and giardiasis cases (19470 out of 19553, 99.6%) 

were geocoded to a CAU. 

Analysis of risk factors 

For this analysis, notification data were restricted to the period 2000-2007 to match data on livestock densities 

and ensure that direct laboratory notification introduced in 2008 did not influence patterns. We extracted 

laboratory confirmed cases of cryptosporidiosis (N=8688) and giardiasis (N=16930) along with the following 

case information: report date, age, prioritised ethnicity, and CAU code of residence. To avoid a “weekday 

effect” on notifications, cases were aggregated weekly where each week started on a Wednesday and ended on 

a Tuesday for every week in the eight year period.  

Population at risk 

We obtained population estimates for census years 1996, 2001 and 2006 (19). These data were linearly 

interpolated to produce population estimates across the study period. For the year 2007, the population 

estimates were extrapolated from the trend. The total population as well as the population by age group was 

provided where population estimates at 30 June 2000 were based on 2001 CAU boundaries, while population 

estimates from 2001 onwards were based on 2006 CAU boundaries. Using a geographic concordance file, the 

2001 CAU boundaries were matched to the corresponding 2006 CAUs. Population was used as an offset to 

ensure that the case numbers were adjusted for the population at risk and population density was used as  a 
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covariate in the analysis to assess non-linear effects of density. Population density was calculated by dividing 

the total population number in each CAU by the area in each CAU in ArcGIS v10.1(20).  

Urban/Rural residence 

For each CAU, Statistics New Zealand categories (21) „main urban areas‟, „satellite urban areas‟ and 

„independent urban areas‟ were classified as urban (reference category) whereas the categories „rural areas with 

high urban influence‟, „rural areas with moderate urban influence‟, „rural areas with low urban influence‟ and 

„highly rural/remote areas‟ were classified as rural. 

New Zealand Deprivation Index 

We estimated deprivation by CAU for study years by linear interpolation of the New Zealand Index of 

Deprivation (NZDep) for 2001 and 2006 (22). Deprivation levels were grouped into terciles, with levels 1-3 

representing affluent CAUs (Level 1) (reference category), 4-7 representing medium (Level 2) and 8-10 

representing the least affluent CAUs (Level 3). These were fitted as a categorical variable. 

Age and Ethnicity estimates 

Ethnicity estimates for the years 2001 and 2006 by CAU were provided by Statistics New Zealand and were 

based on 2006 CAU boundaries. For each major ethnic group, the percentage of the population number in each 

ethnic group to the total CAU population number of all ethnic groups in the CAU was calculated. The estimates 

for every year were calculated by linear interpolation of census years. For the year 2007, the population 

estimates were extrapolated from the trend. Ethnicity was based on Level 1 prioritised ethnicity which divides 

the population into European, Māori, Pacific Peoples, Asian, Middle Eastern/Latin American/African 

(MELAA) and Other. We estimated the proportion of the CAU population in each of three age categories (0-4; 

5-64 and ≥65 years) based on interpolation of census data, as in a previous study (23). 

Drinking water quality 

Annual drinking water quality grading was supplied by the Institute of Environmental Science and Research 

(ESR) Water Programme for the years 2000-2007. ESR used both the distribution zone code and protozoa 

compliance to construct a scoring system for drinking water quality. A distribution zone is defined as “all or 

part of a reticulated supply for which the water is expected to be of consistent quality throughout” (24).  

Protozoa compliance refers to compliance at the treatment plant and is based on “monitoring the effectiveness 
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of the treatment processes used to remove or disinfect Cryptosporidium” (24). Following Brock (2011), a grid 

score of 0 denoted good drinking water quality (complied); a grid score of 1 denoted intermediate drinking 

water quality (inadequately monitored); a grid score of 2 represented poor drinking water quality (non-

compliant and either not monitored or contained E.coli); and a grid score of 3 indicated the drinking water 

quality was unknown. The method of assigning drinking water quality to CAUs is detailed in in the 

Supplementary Material (Methods Section 1) 

Livestock density 

Numbers of dairy cattle, beef cattle, sheep, pigs, poultry and deer for each farm in New Zealand were obtained 

from the Agribase
TM 

database for each alternate year from 2000-2008. Livestock densities were calculated by 

dividing the number of animals in each CAU by the total land area in each CAU. Data for the missing years 

were interpolated. We included the logarithm of livestock density in the model as these data are skewed to the 

right (Figure S2). The method of assigning livestock numbers from each farm to a CAU is detailed in the 

Supplementary Material (Methods Section 2). 

Climate data 

Weekly time series of average temperature and rainfall for CAUs based on interpolated observations from land 

stations were provided by The National Institute of Water and Atmospheric Research (NIWA).These data were 

standardised to have mean 0 and standard deviation 1. 

Data analysis 

Spatial and temporal patterns in disease risk 

To assess spatial and temporal patterns in disease risk, we used the Bayesian hierarchical model described by 

Spencer et al 2011 (25).  

Bayesian model definition  

The number of cases in CAU i in week t is denoted by     and assume that     ~ Poisson (      ) where the 

offset nit is the population in CAU i in week t and    is the risk associated with CAU i in week t. The log of the 

risk was decomposed into four components: an intercept α, a purely temporal component   ; a purely spatial 

component   ; and the spatio-temporal component    .  
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Equation 1 

 

 log it t i itR U W      

 

The temporal and spatial terms R and U are modelled via structural priors as random effects. We assume the 

risk in time t + 1 is a linear extrapolation of risk at times t and t-1 

 2

1 1~ 2 2 ,t t t RR Normal R R    

Where sigma is the variance component of the normal distribution. 

Risk in spatial unit j is modelled as the average of risk in neighbouring area units 

2

~ ,
j U

i

j i i

U
U Normal

n n

 
 
 
  

Where j is taken over the ni area units neighbouring area unit i.  

Note that R, U and W are treated as random effects, and thus account for overdispersion (Equation 1).  In 

particular, the spatio-temporal component      term accounts for increased (or decreased) risk in a census area 

unit during each week (26) and is designed to capture short term localised periods of increased risk that are 

typical of outbreaks (described in the next section). 

Outbreak analysis  

For the analysis of outbreaks and risk factors, the small island CAUs, those classified as harbours, inlets and 

oceanic regions and unpopulated CAUs were excluded. CAUs that had missing data for exposures of interest 

(such as urban/rural status, Deprivation Index) were also excluded. This resulted in a total of 1778/1927 (92 %) 

of CAUs (mainland populations with all the covariates of interest) being included in the final analysis.  

The model developed using Equation 2 was applied to each disease dataset to detect outbreaks clustered in time 

and space. In order to do this, Territorial Authorities (TAs, n=72) were used to group CAUs (n=1778) into 

regions (Figure 1). This reduced the number of parameters that needed to be estimated in the models and 

improved our ability to identify “outbreaks”, as they were based on several observations rather than a single 

datum. Given equation 1, we set 
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Equation 2 

 

   , ,i t r i r i t
W X  

 

Where     is the index of the region containing CAU i,      is the outbreak indicator and    reflects the size of 

the increase in risk for outbreaks in region r.  The posterior proportion where      = 1 thus gives the probability 

of an anomalous event. For detailed assessment of spatial and temporal patterns, one predominantly urban TA 

(Auckland) and one predominantly rural TA (Clutha) were chosen (Figure 1). Full details of this model, 

including priors and Monte Carlo Markov Chain fitting scheme have been published (25).  

Analysis of risk factors 

The historical relationship between climatic, land use and social factors with cryptosporidiosis and giardiasis 

incidence was analysed using an extension of the outbreak model (Equation 3). Seasonality was assumed to be 

absorbed by the flexible temporal component,    and the spatio-temporal term     being given by Equation 3.  

1 1 2 2it it it k kitW Z Z Z      

Where Z1it, ...,Zkit are explanatory covariates, such as weather, demographic and environmental variables, and 

  ,…,   are coefficients to be estimated. Uninformative normal priors were specified for   . 

To attain convergence, 4 separate chains of 100,000 iterations sampling every 50
th

 iteration after an initial burn-

in of 5000 iterations were run for each model.  Having adjusted for the effect of other covariates, the change in 

incidence risk (IR) of each disease was calculated using Equation 4. 

Equation 4 

ˆ
k

it e
   

where      represents the change in rate of a notified case of protozoan disease in grid i during week t; and   ̂  

represents the posterior mean coefficient of each covariate     .  Model coefficients are related to incidence risk 

as follows: a change in temperature or rainfall equivalent to one standard deviation; for density variables, unit 

change on a log scale; for proportions (age, ethnicity), a change of one percent; for categorical variables 

(rurality, drinking water, deprivation) change compared to the baseline. 
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Results 

Spatial and temporal patterns in disease risk  

Figure 2 shows the relative risks estimated by the spatial component of the model for cryptosporidiosis and 

giardiasis across the whole country. The relative risk is interpreted as the risk of disease in each CAU as 

compared to the average risk across all units. Therefore, a value greater than 1.0 implies a higher than average 

risk, whereas a value less than 1.0 implies a lower than average risk. 

Figure 3 shows the relative risks estimated by the spatial component of the model for cryptosporidiosis and 

giardiasis in the urban Auckland region. The relative risk of giardiasis was spatially heterogeneous, with many 

of the high risk areas appearing along the coast (Figure 3A). In contrast, the relative risk of cryptosporidiosis 

notification in urban areas of Auckland was more uniform and was less than the average risk expected across all 

CAUs (Figure 3B).  

Figures 3C and 3D show the relative risks estimated by the spatial component of the model for giardiasis and 

cryptosporidiosis in the rural Clutha region. In the rural Clutha District, the relative risk for giardiasis 

notifications was below the average estimated for all CAUs across the entire area (Figure 3C). Conversely, for 

cryptosporidiosis, the risk of notification was highest in the Clutha region as compared to the average expected 

risk (Figure 3D).  

Figure S3 shows the temporal trend of giardiasis and cryptosporidiosis notifications across the study period. For 

giardiasis, a decreasing trend until early 2000 was followed by a fairly consistent number of reported cases with 

seasonal fluctuations, but no distinct peaks. The trend for the average number of cryptosporidiosis cases 

remained fairly similar across the entire time period with clear dominant peaks in spring with two apparent 

autumn peaks in early years.  

The posterior outbreak probabilities for the Auckland and Clutha Districts for cryptosporidiosis and giardiasis 

are shown in Figure 4. For giardiasis, in Auckland, there were no clear patterns in the outbreak probabilities 

estimated (Figure 4A). In the Clutha District for giardiasis there was no evident pattern in the estimated 

posterior outbreak probability (Figure 4C). For cryptosporidiosis, in Auckland, there were a number of distinct 

periods of increased outbreak probability, for example during the first half of 2001 and the first half of 2007 

(Figure 4B). For cryptosporidiosis in the Clutha District, distinct spring peaks in the outbreak probability were 
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observed in most years, particularly during the spring of 2000, 2001, 2002 and a smaller summer peak in 2000  

was seen (Figure 4D).  

Risk factors 

Giardiasis 

Having adjusted for the effect of other covariates, the variables associated with an increased risk of giardiasis 

were the percentage of the population being less than four years old ( ̂ = 0.04, IRR 1.04 (95% CI 1.02, 1.06)) 

(Table 1). Factors inversely associated with the risk of giardiasis included the percentage identifying with 

Asian, Māori or Pacific Island ethnic groups, the percentage over 65 years old, log population density 

(people/km
2
) ( ̂ =-0.17, IRR 0.84 (95% CI 0.76, 0.92)) and log dairy cattle density (cows/km

2
) ( ̂ = -0.10, IRR 

0.91 (95% CI 0.85, 0.98)) (Table 1). 

Cryptosporidiosis 

Having adjusted for the effect of other covariates the variables positively associated with cryptosporidiosis risk 

were the percentage of the population less than four years old ( ̂ = 0.04, IRR 1.04 (95% CI 1.02, 1.06)) and log 

dairy cattle density (cows/km
2
) ( ̂ = 0.12, IRR 1.13 (95% CI 1.05, 1.21)) (Table 2). Factors inversely 

associated with the risk of cryptosporidiosis were the percentage identifying with Asian, Māori or Pacific Island 

ethnic groups, the percentage over 65 years old, and log population density (people/km
2
) ( ̂ =-0.30, IRR 0.74 

(95% CI 0.69, 0.80)) (Table 2).Figure S4 shows the increase in the estimated IRR of cryptosporidiosis relative 

to a baseline of 1 cow/ km
2
. 

Discussion 

We identified previously undetected clusters and estimated the independent effects of key physical and climate 

variables, environmental exposures, and demographic and socio-economic factors on the risk of infectious 

diseases monitored through routine surveillance. Neighbourhood environmental and social factors are 

associated with the risk of reported giardiasis and cryptosporidiosis in New Zealand, with distinct spatial and 

temporal patterns in plausible outbreaks. For both diseases, the risk of reported illness was negatively 

associated with the percentage of Asian, Māori, and Pacific Island ethnic groups, those over 65 years and 

population density and positively associated with the percentage of children up to 4 years old. Giardiasis was 
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negatively associated with dairy cattle density. Cryptosporidiosis was positively associated with dairy cattle 

density and inversely associated with weekly temperature.  

Spatial patterns in reported giardiasis suggest higher risk in urban areas, with little seasonality in probable 

outbreaks. Giardiasis tends to be the least seasonal of the important enteric zoonotic infections globally (27). In 

New Zealand, meteorological conditions such as temperature and rainfall are not significantly associated with 

this enteric infection (28). Results of a case-control study in Auckland suggest that changing nappies (diapers) 

is a significant risk factor (29).  Descriptive studies showing increased risk in the age group 30-39 years (13) 

and in females (30), may also be related to a closer association with toddlers. Attendance at day care centres has 

been frequently cited as a common risk factor for giardiasis in children (31) and may be related to the higher 

risk that we found in urban areas. Our findings of a significantly higher risk of reported giardiasis in children up 

to 4 years old further support this hypothesis.  

Spatial patterns in reported cryptosporidiosis suggest that for this disease, environmental sources of infection 

dominate. The uniformly high risk patterns in the Clutha District, an area with high dairy cattle densities, and 

the clear recurrent spring peaks in plausible outbreaks that is absent in urban regions imply a common 

environmental exposure that is likely to be related to agricultural activities such as contact with newborn 

livestock. This conclusion is further supported by a significant, positive association of disease risk with dairy 

cattle density. Cryptosporidiosis outbreaks have been reported following farm visits (32) and among veterinary 

students in New Zealand (33). Genotyping of human and animal isolates in New Zealand, the United Kingdom 

and Australia suggest that sporadic cryptosporidiosis in rural areas is primarily driven by zoonotic transmission 

(14, 34, 35). Seasonal patterns may also be due to the effect of ambient environmental conditions on pathogen 

survival (36) and transport (37) or the role of environmentally sensitive vectors such as flies (38), or rural 

practitioners requesting more intensive testing for Cryptosporidium  spp.. In areas where dairy farming is 

predominant, the higher risk of reported cryptosporidiosis and seasonal patterns of outbreaks suggests an 

important role for environmental transmission.  

Ethnic and socio-economic disparities tend to reduce health care access and utilisation by vulnerable 

populations, particularly at the primary care and laboratory diagnosis level. This effect limits the extent to 

which notification data may be used to infer causal relationships between disease risk and ethnic and socio-
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economic factors. Such biases may result in under representation of vulnerable groups when using data from 

passive surveillance systems (39). For both diseases, the percentage of Asian, Māori, and Pacific Island ethnic 

groups in an area were inversely associated with disease risk. This inverse association is in keeping with results 

from previous studies in New Zealand (12, 13) and is probably indicative of a significant bias in case 

ascertainment rather than an effect of ethnicity. For enteric salmonellosis, opposite trends in hospitalisations for 

these ethnic groups are seen, suggesting more severe outcomes for these populations (40). The finding from this 

study that the more socio-economically deprived areas were inversely associated with cryptosporidiosis and 

giardiasis risk (Table 1 and Table 2) is likely to be an artefact of passive surveillance data. Although high rates 

of reported cryptosporidiosis and giardiasis may partly be explained by healthcare seeking behaviour, the 

highest rates of hospitalisations are also seen in these age groups, suggesting they are more vulnerable to 

symptomatic disease.  

In conclusion, using contemporary modelling methods, our study builds on previous evidence by using 

routinely collected surveillance data to identify localised, short-term periods of increased risk and 

environmental, socio-economic and demographic risk factors for infectious disease. In New Zealand, the spatial 

and temporal variations in the risk of parasitic diseases appear to be quite distinct. Using an innovative 

Bayesian approach to detect spatially-localised periods of increased disease incidence, and identify associated 

environmental and socio-demographic exposures, can provide important evidence to guide the development of 

targeted disease control measures in areas where the environmental health risks are high.  
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Table 1. Retrospective multivariate modelling for giardiasis for each independent variable ( iZ ), its associated posterior 

coefficient estimate ( ˆ
k ), the expected change in the rate of notified case (

ˆ
ke


) with the corresponding 95% credible 

interval. The reference categories are the percentage of the population aged between 4 and 65 years of age, the 

percentage of the population with European ethnicity (including New Zealand European), the most affluent CAUs, good 

drinking water quality and rural CAUs 

Explanatory Variable (Zi) Model coefficient ( ˆ
k ) Incidence Risk Ratio (

ˆ
ke


) (95% CI) 

   

Average Rainfall (mm) 0.035 1.04 (0.98, 1.09) 

Average Temperature (°C) -0.023 0.98 (0.93, 1.03) 

Percent aged 4-65 Years Reference 1.00 

Percent aged < 4 Years 0.041 1.04 (1.02, 1.06) 

Percent aged ≥ 65 Years -0.0083 0.99 (0.98, 1.00) 

Dairy Cattle Density (cows/ km2)‡ -0.096 0.91 (0.85, 0.98) 

Deer Density‡ -0.019 0.98 (0.89, 1.08) 

Poultry Density‡ -0.048 0.95 (0.91, 1.00) 

Pig Density‡ 0.034 1.04 (0.93, 1.15) 

Beef Cattle Density‡ 0.011 1.01 (0.94, 1.09) 

Percent European Reference 1.00 
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Percent Māori  -0.013 0.99 (0.98, 0.99) 

Percent Pacific Islander -0.025 0.98 (0.97, 0.98) 

Percent Asian -0.021 0.98 (0.97, 0.99) 

Percent Middle Eastern/Latin 
American/African 

0.012 1.01 (0.99, 1.04) 

Good Drinking Water Quality Reference 1.00 

Intermediate Drinking Water Quality -0.029 0.97 (0.91, 1.04) 

Poor Drinking Water Quality -0.08 0.92 (0.85, 1.00) 

Unknown Drinking Water Quality -0.019 0.98 (0.88, 1.09) 

Rural residence Reference 1.00 

Urban residence -0.077 0.93 (0.78, 1.09) 

Population Density‡  -0.17 0.84 (0.77, 0.92) 

Area Socio-Economic Deprivation 
(Least deprived) 

Reference 1.00 

Area Socio-Economic Deprivation 
(Intermediate) 

-0.063 0.94 (0.87, 1.01) 

Area Socio-Economic Deprivation 
(Most deprived) 

-0.00067 1.00 (0.88, 1.14) 

‡ Density is defined as the number of animals or people per square kilometre. For density variables the IRR represents 

the effect of a one log10 change 

 

Table 2. Retrospective multivariate modelling for cryptosporidiosis for each independent variable ( iZ ), its 

associated posterior coefficient estimate ( ̂ ), the expected change in the rate of notified case (  ̂ ) with the 

corresponding 95% credible interval. The reference categories are the percentage of the population aged 

between 4 and 65 years of age, the percentage of the population with European ethnicity (including New 

Zealand European), the most affluent CAUs, good drinking water quality and rural CAUs 

Explanatory Variable (Zi) Model coefficient () Incidence Risk Ratio ( ˆ
k ) (95% CI) 

Average Rainfall (per increase in 1 
mm) 

0.035 1.04 (0.97, 1.11) 

Average Temperature (per increase 
in 4°C) 

-0.076 0.93 (0.87, 0.98) 

Percent aged 4-65 Years Reference 1.00 
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Percent aged < 4 Years 0.036 1.04 (1.02, 1.06) 

Percent aged ≥ 65 Years -0.012 0.99 (0.98, 1.00) 

Dairy Cattle Density‡ (cows/km2) 0.12 1.13 (1.05, 1.22) 

Deer Density‡ -0.071 0.93 (0.85, 1.03) 

Poultry Density‡ 0.023 1.02 (0.98, 1.07) 

Pig Density‡ -0.047 0.95 (0.85, 1.06) 

Beef Cattle Density‡ -0.021 0.98 (0.90, 1.07) 

Percent European Reference 1.00 

Percent Māori  -0.01 0.99 (0.98, 1.00) 

Percent Pacific Islander -0.019 0.98 (0.97, 0.99) 

Percent Asian -0.021 0.98 (0.97, 0.99) 

Percent Middle Eastern/Latin 
American/African 

-0.0046 1.00 (0.97, 1.02) 

Good Drinking Water Quality Reference 1.00 

Intermediate Drinking Water Quality -0.023 0.98 (0.90, 1.06) 

Poor Drinking Water Quality -0.032 0.97 (0.88, 1.07) 

Unknown Drinking Water Quality -0.13 0.88 (0.77, 1.00) 

Rural residence Reference 1.00 

Urban residence -0.15 0.86 (0.74, 1.00) 

Population Density‡ -0.30 0.74 (0.69, 0.80) 

Area Socio-Economic Deprivation 
(Least deprived) 

Reference 1.00 

Socio-Economic Deprivation 
(Intermediate) 

-0.039 0.96 (0.88, 1.05) 

Socio-Economic Deprivation (Most 
Deprived) 

-0.065 0.94 (0.80, 1.10) 

‡Density is defined as the number of animals or people per square kilometre. For density variables the IRR represents 

the effect of a one log10 change 
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Fig. 1. Distribution of 2006 Census Area Units (CAU) grouped into Territorial Authorities (TA) (identified 

using different shades of grey) used for outbreak detection regions. Inset maps show Regions selected for 

detailed descriptive analysis of patterns: Auckland City (urban) and Clutha District (rural). 
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Fig. 2. Spatial Distribution of relative risk for (A) giardiasis (B) cryptosporidiosis across the whole country. 

The relative risk is interpreted as the risk of disease in each CAU as compared to the average risk across all 

CAUs. A value greater than 1.0 implies a higher than average risk, whereas a value less than 1.0 implies a 

lower than average risk. 
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Fig. 3. Spatial distribution of (A) relative risk for giardiasis in Auckland City (B) relative risk for 

cryptosporidiosis in Auckland City (C) relative risk for giardiasis in Clutha District (D) relative risk for 

cryptosporidiosis in Clutha District. 
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Fig. 4. The posterior probability of a (A) localised giardiasis outbreak in Auckland City (B) localised 

cryptosporidiosis outbreak in Auckland City (C) localised giardiasis outbreak in Clutha District (D) localised 

cryptosporidiosis outbreak in Clutha District. The y axis represents the probability (black) and the number of 

cases (green) and the x axis is month. 

 


