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Introduction

The substantive part of this thesis can be conveniently divided into
two sections, the first consisting of Chapter 2 and the Appendix, the
second consisting of Chapters 3, 4, 5 and 6.

In a paper [6] presented at the International Conference on the
Theory of Groups held at the Australian National University in 1965
Professor Graham Higman developed a valuable tool for investigating the
lattice of varieties between Ec A Ep and Ec—l A %p‘l' where p is f7/
a prime, greater than c. A.G.R. Stewart provided an expanded explanation
of this technique, first in his M.Sc. thesis and subsequently, and more
fully. in his Ph,D,. theais [12], In [12] Stewart applied the technique
to find the lattice of subvarieties of the variety of centre-extended-
by-metabelian groups, nilpotent of class c¢ with prime exponent p > c,

Meanwhile L.G. Koviacs and M.F. Newman found that the techndiue
could be used for torsion-free nilpotent varieties, a torsion free variety
being one whose free group of countable rank is torsion free, Chapter 2
of this thesis puts some of their resulfs on record., My approach to
the problem differs from that used by Kovdcs and Newman. The relationship
between the two approaches is explained in the appendix which also outlines
a third approach which I think would be best.

Chapters 3, 4 and 5 are aimed at finding out as much as possible about

the laws of the free group of rank n in Ec’ denoted Fn(Ec)°



The results of Chapter 2 are useful in this context, as Higman
observed in [6].
Until recently not a great deal was known about the laws of
Fn(Ec) when' n' < c, T.C. Chau, in his Ph.D, thesis [3] found bases
for the laws of these groups when n < c < 6, Independent proofs have
been provided by Levin [8] and by Kovéics, Newman and Pentony [7] that
Fc—l(Ec) generates Fn(Ec) but that FC_Z(EC) does not. Levin

showed in addition that, for n < c - 1, Fn(EC) generates a proper
subvariety of the variety generated by Fn+1(§c)°

Perhaps the most interesting of Chau's results was that F2(§6)
obeys a law of weight 5, that is a law which does not apply to Eso

In fact he showed that the law in question is the law which distinguishes

FB(ES) from /(gs)/ which means that
Var(Fz(EG)) AN = Var(F3(§5))

This means that the laws of Fn(Ec) cannot be obtained by Higman's
method alone, since it would only find the laws of weight ¢, that is

the laws of Vaan(Ec) Vv EC_ On the other hand it leads to the

lo

conjecture that, whenever 2 < n < ¢
YRECEQ IR - Var(Fn+l(§c)) (1)

whieh, 1£ true would,'together with Higman's results tell us a great deal

about the laws of Fn(Ec)°
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In Chapter 3 I obtain a set of laws of Fn(Ec) whose weight is less
than €. These laws are subsequently used to prove that (1) is true
whenever n 1is greater than both %(C—Z) and 8 but is net true in
general.

Chapter 4 develops a clumsy but easily used tool for commutator
calculations, namely a basis for Fn(gc) many of whose elements are
left normed commutators. With the use of this basis [ provide a
counterexample for (1).

Chapter 5 uses the basis developed in Chapter 4 together with the
laws found in Chapter 3 to show that (1) is true whenever n 1is greater
than both %(C—Z) and 8,

In Chapter 6 I state two conjectures which indicate the way in
which I think the results obtained in Chapters 3, 4 and 5 should fit
together.

I have preceeded each chapter with an introductory section, numbered
n.0 where n is the number of the chapter, which gives a general idea
of the main results of the chapter and how they are obtained. Towards
this end they contain heuristic arguments which are certainly not intended
as proofs. On some occasions, where it seemed useful, I have included

similar arguments in the body of the chapter.
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Notation Used in this Thesis

The following list is, obviously, incomplete and there are
probably some unfortunate omissions., I have attempted to include all
symbols which might cause confusion.,

Throughout this list the following conventions apply.

nm and c are integers, usually positive
q is a rational number

T and V are sets

R is a ring

N and M are R-modules

V is a variety

D is a diagram

0 is a permutation

General Notation

Z = the ring of integers
Z+ = the positive integers
Zn = the first n positive integers
Q = the field of rational numbers

¢ = the empty set
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s T hand it LRV
casdinalityuefei T, riwherew T “ig-a' set
restriction of f to the subset T of its domain

absolute value of q, where q € Q

¢ n divides m where n,m ¢ 2

the

the

the

the

the

integral part of q where q € 0

symmetric group on n symbols

Module Notation

group of invertible n x n matrices with entries in
field K
additive group of R-homomorphisms from the R-module

M to the R-module N

HomR(M,M)

the

the

the

external direct sum of M and N
internal direct sum of M and N

tensor product of the right R-module M with the

left R-module N

the

c-fold tensor power of the bimodule U
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1. Notation and Some Definitions

1.0. Unless otherwise stated the notation in this thesis is that
used by Curtis and Reiner [4].

A notable exception is that I will normally write mappings,
including permutations, on the right of their arguments whereas Curtis
and Reiner write them on the left. Consequently I tend to be dealing
with ﬂé?%’modules and ideals whereas [4] deals mainly with r;égf'modules
and ideals.

The term algebra will denote a set with some aleebraic structure on

it, not necessarily a ring of vectors as in [4]. The terms group

algebra and lie algebra have their usual meaning.

I will use Z to denote the set of integers, Z+ to denote the
set of positive integers and Zn to denote the set of integers lying
between 1 and n inclusive.

Unless otherwise stated the varietal notation is that of
Hanna Neumann's book [11l], one exception being that I have used double
underlining in place of German script; thus Ec is the variety of groups
nilpotent of class at most c.

Ifi G 'is-a group YC(G) is the c-th term in the lower central
series of G.

I will use Maclane and Birkhoff's [9] notation for describing

mappings, that is:

Y : A>B means A is the domain and B the range of V.

Y : a » b means ay = b.



In order to facilitate commutator calculations I have 'adapted
and adopted the notation used by Martin Ward in his PhoDﬂ‘thesis and
subsequently published, [}3ju I have attempted to include enough
definitions and lemmas to make my treatment of this notation independent

of the original. The rest of this chapter is included for this purpose.

1.1 The Algebra of Expressions.

% is some set with a bijection X @ 7 =n A é is the free algebra
freely generated on % by the operations of multiplication, commutation
(both binary), inversion (unary) and identity (nullary), the only law
being that multiplication is associative.

I will denote multiplication by juxtaposition of the operands;
commutation by [a,b], where a is the first operand and b the second;
inversion by a-l where a is the operand; and identity by 1.

é is the algebra of expressions and its elements are expressions.

If i is an integer %, is the image of 1 under X.

i
An elementary property of an algebra such as A 1is that there exists
a unique function, from A to the positive integers (which I will call
the height function and denote by ht) which has the following properties
(i) ht(l) = ht(x,) =1, Vie?Z,
(11) ht(a_l) = hiEda) +'1, Ya € 4,

(144) « hef(ab) = ht(la,b]l) = ht(a) + ht(b) + 1, Hea,b € é



The notation ; a; is defined recursively in the usual way, that is:
: i=1
i Mol
n n-1
1{[_-1 a; =(i£l ai)an, Y ng— ]t

Exponentiation in A is defined in the following rather

artificial way:

ao =i a1 = a, a_1 is the inverse of a,
O
n n-1
ai'= la a
Vn il
-n -n+l -1
a =
It follows that a"a" = an+m 2L B (0

The purpose of A is to provide an algebra in which commutator
calculations can be broken down into small steps without the expression
"collapsing". This is why it is equipped with only one law. As a

result of this some care needs to be exercised when working in A since,

for example,

d o )
aa . - i [ al # a, [a,b]l # a 1b ab.

%



o2, The Free Groups: X is a set disjoint from X but-also having

a'bijection, this €ime & : Z + X.

F 1is the free group freely generated by X and, for each
variety ¥V, F(V) dis the V-free group freely generated by X.

For each integer i I will write X, for the image of i
under x.

It is worth noting that in order to evaluate the product of two

elements of X it is necessary to know in which group one is working.

This should always be clear from the context.

L8 The Homomorphisms R: If commutation is defined on the groups

F(V) and F in the usual way, that is

[a.b] = 2 1% b

then they become algebras of the same type as A. Since the only

law in é is also a law in any group it follows that the mapping

b < Viaile 7,

~d g

can be extended into a homomorphism from A to F which I will denote
by p and, if ¥ is a variety, to a homomorphism from 4 to F(V) which
I will denote by RZ. I will denote %Ec by Re®

The congruence relations <~ and v are defined on A as

n<

follows:



2l Ay s L 3Q=b5{

and | a my o). alie aQY = bazo

I will denote by % .

Gl d e -7, 8 & 4 sk,

s Definition: Zn

{zi gl Zn}, £ = {xi datic Zn}°

A is the subalgebra of A generated by X .
An R An
E and Fn(g) are the subgroups of F and F(V), respectively,

generated by Xn°

1.5, Definition: The fupctions weight (denoted wt), and weight in

Xy (denoted wti) from A to z¥ 1) (=} are defined recursively on

height as follows:

wE(l)'== 3 THE N -y
wt(§j) = E e Z - wti(gi) =1,

_ wti(§j) SRR g 2\ (1),
wt(a—l) = wkl(a), Ya'e é' 3 wti(a-l) = wti(a), VYa e'é,

wt(ab) = min{wt(a),wt(b)},Va,b e A; wti(ab) = min{wti(a),wti(b)},Va,b e A,

wt([a,b])=wt(a)+wt(b),Va,b € A : wti([a,b]) = wti(a)+wti(b),Va,b €A,



®
(Addition and the partial ordering < are extended to i {»} in the
usual way. '"min" in front of a set means the smallest element of the set.)

For each a ¢ é the repetition pattern of a, denoted rep(a),

is the function from Z to Z' ! {»} given by
irep(a) = wti(a).

Note: The following results can be obtained by an obvious induction on

height:
(L) If a 1is an expression and i an integer then
wti(a) = » if and only if wt(a) = « ,
() If a 1is an expression then

z wti(a).i wt(a).
ieZ

It follows from these two observations that repetition patterns are
either infinite everywhere or finite everywhere and that in the latter

case only a finite number of values of rep(a) are non zero.

1.6, Definition: An expression a is a commutator if

1) e %

or (ii) a = [al,az] where a; and ‘az are commutators.

An expression a 1is a product of commutators of length & if it is

of the form:



where each a; 1s a commutator and each 8i e 4=1,0,1}.
(The possibility of Ei being 0 means that 1 can appear in a.)

An expression a 1is a homogeneous product of commutators if it is

of the form:

where each a; is a commutator, each Si g {1,=1} “and
rep(a) = rep(ai) Vi € ZQ.

The set of left normed commutators is defined recursively on height
as follows:

(i) £ is a left normed commutator Vi e Z.

(G If a 1is a left normed commutator so is [a’ﬁi]’ Vi e 'Z.



2. The Higman Theory.

2.0. In a paper presented to the 1965 International Conference on the
Theory of Groups, [6], Graham Higman established a relationship
between the lattice of varieties of groups of prime exponent p 1lying
between Ec and Ec—l and the lattice of right ideals of KSc where K
is the field with p elements.

L.G. Kovacs and M.F. Newman have extended this approach to deal
with the torsion free varieties between Eé and Ec—l' In this
chapter I will do likewise but will approach the problem from a different
angle.

I originally intended to include at this point a discussion of
the relationship between my approach and those of Higman and of Kovics and-
Newman. I found, however, that, in order to do this in a manner that
I would consider adequate, it would be necessary for me to introduce a
number of concepts and results which are not necessary for my own
treatment and would therefore be dropped almost as soon as they were
introduced. I have therefore relegated the discussion to an appendix
and deal here only with the contents of this chapter.

The lattice of varieties between N  and N ., is, of course, dual
isomorphic to the lattice of those verbal subgroups of FC(EC) which
are contained in the bottom term of its lower central series, that is

in YC(FC(EC)). Under this isomorphism the torsion free varieties

correspond to those subgroups which give rise to torsion free factor



groups of Fc(lic)° I will refer to such subgroups as being "isolated".

The main aim of this chapter is to determine those minimal isolated
fully invariant subgroups of F (N ) which lie in y (F_(§ ))
c =c ' =g'’"

Suppose U 1is a free Z-module of rank ¢ and basis UjslUyseoosl e

Then the set of endomorphisms of FC(EC) can be mapped to the endomorphism

ring of U wunder the mapping

m,

Iic—1 =

: ol s i
(8 : N0 S ') (o : T

)i
. 3 j

: U
s £ Xi,
Thus we can regard U and, more importantly, its c-fold

U[C]’

tensor power, as End(Fc(gc))—modules and 1t 1s fairly clear that

the End(FC(EC))-submodules of U[C] are identical with its

Endz(U)-submodules°
[c]

Now there is a natural homomorphism from U ko . ¢ (F (H.))
cf e i=p

given by

and, in fact this is an End(FC(I;IC))-homomorphismo It follows that

c ; B :
if we can express U[ ] as a direct sum of minimal, isolated

EndZ(U)—submodules we can express YC(FC(EC)) as a direct sum of Procducl/
minimal isolated verbal subgroups of FC(EC).
In Section 2.1 I show that the lattice of isolated EndZ(U)-submodules

[c]

of is isomorphic to the lattice of End(0 ®z U) -submodules of
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(O‘®ZU)[C]. But this is just the lattice of representations of GL(c,0)
in the c-fold tensor power. At the end of Section 2.1 I quote a number of
results from Curtis and Reiner [4] which establish the relationship
between this lattice and the lattice of right ideals of Qs .

In Section 2.2 I simply quote, from Bo?ner [1], a special =
decomposition of QSC. k

Section 2.3 then deals with the relation between U[C] and
Yc(Fc(Ec)) in rather more detail than I have done above.

For reasons which will become apparent in Section 2.3 I will deal
with yc(Fn(Ec)) and Z-modules of rank n for an arbitrary
positive integer n.

2l The Isolated Submodules of U[C]

2001000, (GL) Notation and convention: In this section I will be using

the notation and definitions of Curtis and Reiner [4] extensively.
Modules over commutative rings such as O and Z are of
necessity bimodules and I will treat them as such, usually without
explanation. For example if L dis a Z-module 0Q ®Z L can be and
will be regarded as both a left and a right Q-module.
Curtis and Reiner use the notation L 8& M for the tensor
product of L by M over R but denote the elements of this product

by, 2 @ m,  droppine the subscript R.. I will follow this conventien in

the belief that it is always possible to see, from the context, which
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ring the product is taken over. There are, however, some occasions
on which it is necessary to exercise a little care in interpreting
this notation.

I will denote the ring of R-endomorphisms of a right R-module L

by EndR(L)°

Formet P )

If G is a group End(G) i1is the algebra ef eﬁdéﬁorphisms of NG
under the operations of pointwise multiplication and composition.
If G is abelian End(G) is, of course, a ring. In order to have
a name for animals such as End(G) I will use the term ringoid to
describe algebras with two binary operations.

(11) Definition: A submodule L of an R-module U is isolated
if the quotient module U/L considered as an abelian group is torsion

free.

P E T emma s () If L and M are torsion free Z-modules with

submodules Ll and Ml respectively then Ll ®Z Ml can be imbedded
in the natural way in L ®Z M.
(11) If R is a commutative ring with identity and L is an

R-module then

e

B =L % R

% R R

under the mappings x P 1®%x b x®1, Vx el.
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(1) Efa S liiiisial torsion free Z-module then there is an

imbedding of L in Q %z L given by
x PidI® x, ¥x e L.

(iv) EST s W as R=modulietand " x e Q ®Z L then there exist

an element, y of L and an element, q of Q such that

X =q8®y.

Proof: The first two results are well known and I simply give references
for their proof.
(1) This result is due to Dieudonné. A proof can be found
in Buchs, [5], Theorem 64.4, page 254,
(ii) The first part of this isomorphism is proved in Curtis
and Reiner, [4], Theorem (12.14), page 67 and, with the obvious

modifications, this proof can be converted to a proof that
v
IL, = L'%R R.
(GRED Suppose | is the isomorphism from L to 2 QZ L given by

x P 1®X

and ¢ is the natural mapping from 2 8& Ly oW 8& 1Ly Then Yo 1is

the required injection.
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(iv) Suppose x £ Q ®Z L

Let

"
]

n .
izl el

and choose m € Z such that mq, € Zieh for alil e Zn'
Then

n
m
s e 9y
i=1

n 1 ‘
=1 e gy
i=1

=-]-'-®
m

L (ma;y,)
a b

¢

=1

which completes the proof.

Note. The above results will be used repeatedly and, in general,
without specific reference. I particular, if L. and ‘M ate torsion free
Z-modules with submodules Ll and Ml respectively then Ll 2 7 Ml

will be regarded as a subset of L ®z M.

2,1.2: Suppose U is a free Z-module of rank n. Then EndZ(U) is

isomorphic to the ring of n x n matrices with entries From =75 The
additive groups of these two rings are clearly Z-modules and can therefore
be tensored with Q over Z. It is fairly obvious that these tensor
products will be isomorphic to the additive group ofe e NS matrices

with entries in Q and that, by defining multiplication on the tensor
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product in the obvious way, this can be extended to a ring isomorphism, in

short that
(1)
Q ®Z Endz(U) = EndQ(Q QZU)°
This result is formally proved below.

Lemma: If U is a free, finite dimensional Z-module and an operation

of multiplication is defined on Q QZ EndZ(U) by
(q; ® ¥y)(q, ® ¥y) = 49, O Vy¥,

then Q ®z Endz(U) becomes a ring and as such is isomorphic to

EndQ(Q R, U) under the mapping o where
(p ® Yo : (@ ®x) b pqg® xy,

(where p,q e Q, %xe-U and P € Endz(U)).

Proof: The lemma will be proved in three parts

(i) o maps elements of Q ®Z Endz(U) to O-endomorphisms of
Q®, U
(i) o preserves addition and multiplication.

(144) o' is a bijection.
Once these have been established it will follow that the
ringold Q@ ®Z EndZ(U) is isomorphic to EndQ(Q 8& U) and is hence -a

ring.
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(i) Suppose that a,R € Q QZ Ustathats x ci0 ®Z Endz(U) and that

aWe O It is obvious that

(qa) (x0) = qa(xo)).

n, n,
Let o = EF'® aly B=2—@Db and x=p® |y, where p e Q;
1 o
D50,y M, € Zs a,b el and U e EndZ(U),
Then
n.m n.m
(a+R)%0 = ml & R a + mzml ® b)(p® Yo ,
172 1+2

- ® (nymyap + nym by),

ilige)
pn.,m pn.,m
= mlmZ ® ay + mZml ® by,
1L L=

= glxg) * B(xc),

which completes this part of the proof.
kid) It follows immediately from the definitions of o and
multiplication in 0 ®ZEndZ(U) that o preserves multiplication.
The proof that o also preserves addition is a straightforward adaptation
of the proof of (i) above.
(diid Suppose ul;uz,a..,un is a Z-basis for U. Then
1®u, 1® uz,ooo,l Ru  is a Q-basis for 0 ®, U. (Clearlyl;hé§‘ ;Z/

/éréﬁa Q-generating set for Q 8& U and any non trivial Q-linear expression 2



16.

gy L o) ) ) u s is a scalar multiple of a Z-linear expression

1,50.,

and, by Lemma 2.1.1.(i11) we know that 18 u ,...,18® u ~are

e

Z-linearly independent,)

Suppose | € EndQ(Q @Z U). For each " (f£,1) - In Zi define

SASE b
L Q
n
(1e® ui)w = .Z wi,J @, Y e Zn°
j=1
Cheose m e Z such that my . £ Z, Y(i,1) e ZZ.
1,] n
Then
n
1l®u,)y = l-@ z mp, .u -
5 m N 151 42 n
j=1
l 1
—;n_®uiw S e Zn

where ' is the Z-endomorphism of U given by
n
1l .
e iy jzl mwi,juj Vi € Z -

Hence for each ¢y in EndQ(Q %Z U) there exist an integer, m,

and an element (' of EndZ(U) such that
g = %‘Q p'o.

Thus ¢ maps Q ®, Endz(U) onto EndQ(Q ®z U). Suppose now that

X and X,y € Q @% EndZ(U) and

1

= X °
g 20



thus

and

Let

Then

1%.

e | )
X =-—-®w X =——®w 3
i my i 2 m, 2

s 5
;n—l® ul])l @@ uxpz, Viuse U,

1® nlmz(uwl) =1Q nzml(uwz), ViuSe WU

o i R b e £

n n

1 L4e s
ml ? wl m2 ® ¢2,
Xl = X2,

/

which means that g 1is one to one.
4

2.5.9.

Definition. FEENRE{igFalicommuEative ring,’ c" a

positive integer and U an R-module then the c-fold tensor product

gE Tl

I will denote the elements of U

over R, (U[C]) is defined inductively as follows:

gty

qlel . lee1]

[c] g



g,

[c]

(1) Note: The notation U is ambiguous in that it gives

no indication of the ring R. For example any O-module is also a

U[C]

Z-module so if U 1is such a module might be a tensor power over

(0) < (ofi il 7/
However, for the purposes of this exercise the problem can be

overcome by adopting the following convention:

[c]

Whenever U is a free Z-module of finite rank U is the c-fold

tensor power of U over Z and (Q ®Z U)[C] is the c-fold tensor
power of O ®Z Ui over s
(11i) Lemma: If R is a commutative ring, c a positive
integer and U an R-module then the c-fold tensor power of U over
R is a right EndR(U)—module under the action
n n
¢ uli®u21®m®uc,i)w=z

i=l b 9 i
][07" 2ach Y € Elw/(‘{f,\(u'>

l(ul’igb R uz,iw R “ogvuc,iw)

Proof: This result is a simple, inductive extension of Curtis and
Reiner [4], Theorem (12.10) page 63, using the endomorphism

POYS ... @Y (¢ times).

2l Lemma: If U and V are torsion free Z-modules then there is

a Q-isomorphism from (Q @h U) 8& W e () ®Z U) Qb (6] ®z V) given by:
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n n

izl ((qi ® ui) ® vi) b izl ((qi ® ui) ® (18 Vi))

Treoth® By 2.4, 10041 1)
@®, 1) = ((@®, 1) B Q)
under the mapping
q®u b (q®u) ®1
and, by the associativity of the tensor product,

v
(((Q@®, U) ®Q Q ®, V) = ((@8®, U) ®

q Q®, V)

under the mapping

(((@®u) ®q) ®v) b ((q®u) ® (q®v))

and the lemma is proved.

2a1.5. Lemma: If U is a free Z-module then

el

lel mop .
= 08, 0 (

Q ®Z U
under the isomorphism generated by

(q ® (ul R u, RN ™ uc)) » (g ® ul) ® (1 ® u2) R (Y uc)
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Braofe. « By dnductionyon uc.
Efgsce =gl ithe tresultisis trivial.
Suppose d > 1 and the statement is true for all ¢ < d,

Then

[d] fd=i] -

Z

Q ®Z 9] Q ®Z(U U)

d-1
(0 ®z U[ ]) ®Z U (Associativity of the tensor

product.)
- (Q ®Z U[d_l]) QQ (Q QZ U) (Erom* 27 )
= (Q ®, U)[d-l] ®Q (Q B, U) (by the inductive
hypothesis)
s [d]
= AQ ®, 0)

The form of the isomorphism can be readily checked by composing these

three isomorphisms,

256 Lemma: If U is a finite dimensional Z-module then there is a

lattice isomorphism, from the lattice of Q ®Z EndZ(U)-submodules of
Q %&(U[C]) to the lattice of isolated EndZ(U)-submodules of U[C]Q

The isomorphism is given by:

Mabs iy 4 & U[c] and 3q € Q\{0} such that q ®y e M}
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Proof: Let yu be the above mapping. It is sufficient to
prove that, for any submelule M of (6, U:
(GL), My is (a) isolated and (b) a submodule.
(GLL) T iss(a) S ontolerand = (h) Sl =
({48 e and u_l preserve set inclusion.
The last of these is trivial,
(i) Suppose M 1is a submodule of 0 ®, U[C]

and S xie Ml

then 3y e M and q ¢ Q\ {0} such that

y =4d X,
(a) Now suppose x'e Z\ {0}, x; € U[C] and x = nx,.
7 ok
Then M > q®x =g nx, = nq R X,

and it follows that xl

(b) Suppose U € EndZ(U)o

e My Hence My is isolated.

Then q ® x ¢ M so that

(q®x)(1 ]y e M,
qQ®xy e M,

and Xy € My,

Thus My 1is a submodule.
(GLD) (a) Suppose L 1is an isolated EndZ(U)-submodule of
Then Q ) L ig clearly a Q 8% EndZ(U)-submodule of 0 ®Z U[C]D

Now suppose x e (Q X)ZL)uo

[C]c
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Then there exist My ,0,,Mm, € Zgwandglevile. Tisesueh ‘that

n n
1

=t ot 520, v,
i 2

so that 1® nymyx = 1 min,y,

nlmzx e i
and
X epli
Thus ﬁ is onto.
(b) Suppose M and L are Q ®z Endz(U)—submodules of Q ®ZU[C],

and

Suppose x € M, Then 3q € Q\{0}, y € My = Lu such that
Xa=ndqioRy.

and there exists p € Q\ {0} such that p®y e L
so that  (p ® y)(p—lq ® j) ¢ L, where j 1is the identity map on U,
q®y el, and xeL, So McL., Similarly LCM and it follows

that =, .48 1 el
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2.1 .08 Lemma 2.1.6 gives a lattice isomorphism between the lattice
of isolated EndZ(U)-submodules of U[c] and the lattice of EndQ(Q ®ZU)-
submodules of (Q ®Z U)[c]°

I will later show that this second lattice is identical to the
lattice of GL(n,Q)-submodules of U[c]° To do this I will need some
results from Curtis and Reiner [4].

) (8§67, page 449 of [4]). If V is a finite dimensional
Q-space, c¢ a positive integer and SC the symmetric group on ZC

[e]

then V iswa right Sc—module under the operation.

(v, R v

1 ) R s D vc)o = (v R v R . R ) Wer & Sc'

lc-l 20-1 co_l

This action can be extended to QSC in the obvious way,

Note: (a) This operation involves interchanging the places of the v's

and does not correspond to an endomorphism of V, in fact it commutes
with all of these,
(b) Curtis and Reiner write permutations on the left and multiply them
accordingly. Since I adopt the opposite convention the above results
have been paraphrased.

(ii) (Theorem 67.8 page 452 of [4].) Let V be a finite dimensional
vector space over Q and let G be its group of Q-automorphisms.
Then V[c] is a completely reducible G-module and its irreducible
submodules are obtained as follows. Let e be a primitive idempotent
[el,

in the group algebra QS . Then V is either zero or an irreducible
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G-submodule of V[c], All irreducible G-submodules of V[C] are obtained
in this way. Moreover, two irreducible G-modules V[C]e and V[C]e' are

isomorphic if and only if QSC and QSCe' are isomorphic left QSc—moduleso

Note: If ¢ 1is greater than or equal to the dimension of V then the
lattice of G-submodules of V[c] is in fact isomorphic to the lattice

of left ideals of Qsco

2.1.8 Theorem: Let VUV be a free Z- module of finite rank. Then U[C]

is a direct sum of minimal isolated End, (U)-modules and its minimal isolated
submodules can be found as follows. Let e be a primitive idempotent

in QSC and suppose that n 1is a non zero integer such that ne eZSCD

Then KU[c]ne is either zero or a minimal isolated submodule of U[C]c = N’\(C/J
“Apiih ,:)— "
All such submodules are obtained in this way;moreover two modules
[c] kel cn (ol 3 o W e
U a2 “and Sprite )w(lsomorphic if and only if QSce and QSCe are | e/

are isomorphic left QSc-modules.

Proof: Let G be the group of Q-automorphisms of (Q ®Z U). Then

the irreducible G-submodules of (Q ®Z U)[c] are of the form

)[CJ

(Q ®Z U e where e 1is a primitive idempotent of QSco Since

the action of QS on (Q ®, U)[c]e commotes with the acthon 0{3 G

on (@ GZU>EC] it follows that (Q @, U)LC]e Is an

End@ (Gl @Z_ U)- submodu‘e . Since any
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EndQ(Q ®Z U)-submodule of (Q ®z U)[C] is clearly a G-submodule it
follows that (Q ®Z U)[c]e is an irreducible EndQ(Q ®Z U)-submodule
of (@@, vl

Thié required result then follows from Lemma 2.1.6 and the fact kA

that if L1 and L2 are torsion free Z-modules, Ll is isomorphic

EONME SRR andlonilkhy it ) ®z L (from

2
2.1.1 f44d) and . €ix)) .

1 1is isomorphic to Q ®Z L2

2,2 A Decomposition of QSc°

The results in this section are well known, In particular they
are proved in Boerner [1] and Curtis and Reiner [4] and I will give
appropriate references in lieu of proof.

The definitions, and in particular the definition of a diagram,

used in this section are derived from A.G.R. Stewart's Ph.D. Thesis, [12].

2220 (1) Definition. A diagram D of length n is an injection of

Zn into Zi with the property that if (i,j) € ZnD’ 1 :!il‘i - 4
and™ 1 :-jl =] then (11,31) € ZnD°
There is a useful convention for drawing diagrams which is
most conveniently explained by an example. : Suppose D is the diagram

of length 6 given by:

(3.1), 3= (1,3),

1D (1,2), 20

A = (2,13,080 = (1,3), 6D = (2;2)
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then D dis drawn

5 1 3
4 6
2 -
(11D De finition: I SnSenZ S then a partitionteof n Inte "m" parts
is a monotonic decreasing function XA from Zm to Zn éuch that
m
z I =En'
i=1
For notational convenience I will write Ai 1Eofie Al
(111) Definitieons' If* D" is“a®diagram of length n" and. X “is a

partitien ¢f n into m parts such that
xi Slogx{] &2 (1979 'e ZnD}, Yi'e Zm 3

then D and )\ are said to be associated.

Note: Clearly m above must be max{i : (i,1) € ZnD}o Intuitively

the partition corresponds to the shape of the diagram, or the array of

empty squares. Since there are n squares to be filled it is obvious

that each partition is associated with n! diagrams while each

diagram is associated with one partition.
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(iv) Definition: If D 1is a diagram of length n then the

group of column permutations of D, demoted C(D) is the subgroup

of Sn given by
C(D) = {o: (4D = (j,k) => 19D = (2,k) for some 2% ¢ 2)}

and the group of row permutations, denoted R(D), is the subgroup of

Sn given by
R(D) = {p : (dD.= (j,k) => 1pD = (J,2) for some 2 € Zn)}

Intuitiveiy C(D) permutes the entries of D within each column
and R(D) permutes them within each row.
W) Définition: If D is a diagram of length n then &(D)

is the element of - ZSn given by

4+1 if o dis even

&§(D) = % §(c)op where 6&(o) e
oeC(D)
peR(D)
(vi) ~ Definition: A standard diagram is a diagram, D, such that

if 1D = (j;,k;), 1,D = (355ky), 3; <3, and k, < k,,

then il.i 12.

I will denote the set of standard diagrams associated with a

partitien. A. by AA
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(vii) I will use the usual notation for writing permutations
in eyelic form; that'is, (x1 Xy Xg ... xn) will denote the permutation

X, b X RN =7
n—

2l i+l 1
X b X
2:2,2  Theorem: (1) (Theorem 28.15, p.197 of [4].) Let D be a

diagram of length c. Then &(D) .is a scalar multiple of a primitive
idempotent of QSc and 5(D)QSc is a minimal right ideal of QSCo
Let D and D' be two diagrams of length c¢ associated with the

partitions A, and A, say. Then

1

§(D)QS 2 £(0')QS, if and only if A = A

2§ 2!

In fact if L is a minimal right ideal of QSc then there exists

a unique partition A of ¢ such that L = S(D)QSc for any diagram

D associated with ). Thus each isomorphism class of minimal right ideals

is associated with a partition of c¢ and vice versa. If2 )  ds a

partition of - ¢ I will usge Qsi to denote the minimal two sided

ideal of QSC generated by those minimal }fo ideals associated with A. vyﬁy
(14 ) (Theorem 4.5 p.114 of [1].) |

A
s, = } = #(mas,

DeAA

and the sum is direct.
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2.2,3 Corollary: Let D be a diagram of length c. Then

QScé(D) is a minimal left ideal of QSC. 1f: Desand «D'. wdre two

diagrams of length c then Q5 (D) is isomorphic to QSC8(D') 1f

and only if D and D' are associated with the same partition.
Furthermore if A 1is a partition of ¢ then, wusing the notation

of 2,2.2,

AL
Qe = 0} as (D)

D
EAA

and the sum is direct.

Proof: From 2.2.2(ii), and the fact that a semi-simple ring is the
direct sum of its simple components, we know that
s, =) )} &Mas,
A DeA
A
where ) ranges over all partitions of ¢, and that the sum is direct.

It follows thatif D and D' are two different standard diagrams then

§()4(D') = 0,
and that

z z §(D) =49

D
A EAA

This means that QSC = z z QSCS(D)

D
A EAA

and the sum is direct.
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But QSc is the direct sum of its simple components and it is
obvious that £(D) ¢ QSi 1f and only if D 1s assocldted with ).

Hence

A
Qs =, )/} inQsiaiD)

DEAA
and the sum is direct. The remainder of the corollary follows

immediately.

2.2.4 Corollary: Let V be a Q-space of dimension n, let )\ be

a partition of ¢ into m parts,let D be a diagram associated with
A

e M PRl N B et B s only 4f w > n, B fellows

Le]

that 1f n > ¢ then V ool i Euill QSé-module.

Broofith Let VisVyseeesVy be a basis for V.

(i) Suppose m > n. Let sHoysee sl be the entries in

u
1
the first column of D. That is set

-1 :
My =/(1,1)D fEorreachit IN: Zm.

{ B

7

rel H
Now suppose a 1is a basis element of V,” that is

= g Yi Tl
a v lf% v 2/% LAt v>\c where Ai € Zn e 3

Since m > n there must exist j,k € Zm such that j # k and

1)/
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T =
hus (ui uj) &G (D)» and a(yi uj) a.

Let T be a right transversal of

K uj)> in C(D), then

ag (D) = a(l-(u, uj)) } )P

Tel
peR

i

Since a was an arbitary basis element of V it follows that

vielgmy = 0.

(L) Suppose m < n., Suppose iD = (ui,ui) for each 1 dn

v/ and set
c

s T e gV i Demd.. DV,
i w2 He

that is the index of the ith factor of a is the row of D in which

the entry 1 occurs.
Now suppose o € C(D) and p e R(D) are such that
agp = a (1)
Then y 2 iy | =y Vislige Zc.
o

ip

But, clearly, uip = iy Y il Zc since p ¢ R(D),
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SO p, = u =qu =y s
i . -1 - =
ip o 8 L ic il c

But 1D = (ui,ui) Vie Z, which means Eo D

(uioﬁl’vi)’ since o e C(D)

= (“i’vi)°

Hence. ¢ = 1 in any solutionh of (1), and it is clear that: (1)

ia txue 1f o™= 1" and” p & R(D).

Thus a§(D) = |R(D)|a + aop,

O‘EC%D) {1}
peR(D)
and each of the terms in the second part of the right hand side is a

[c]

basis element of V different from a.

It follows that
vielemy 5> asm) # 0

and the corollary is proved.

2.3 The Isolated Fully Invariant subgroups of Fn(Ec) in yc(Fn(Ec)).

2.3.1 Lemma: If U and V are free Z-modules, freely generated by
{ui s foe Zn} and {vi hal e Zm} respectively then U«az V 1is a free

Z-module, freely generated by {ui ® vy "8 e 2., € Zm}.

Proof: Every free Z-module of rank n 1is a free abelian group of rank
0 It follows that U is isomorphic to a direct sum of n copies

of Zs Similarly V is isomorphic to a direct sum of m copies of Z,
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Curtis and Reiner ([4], Theorem (12.12), pn.64) show that

D 3 ) T MR ; ?
(Ml 12) R N Ml R N + MZ R N

for any ring R and the proof given is readily converted to show that

? ® i d
M8 (N PN,) TMB N+ MO N

| i 2 -

An obvious induction then shows that U 8% V 1is isomorphic to

the direct sum of nm copies of Z 8& Z which is simply Z. Thus

U 8% V has rank nm and since {ui ® vj

clearly a generating set of U ® V it must be a free generating set.

sl e Zn, e Zm} is

2.3.2 Corollary: If U 1is a free Z-module, freely generated by
[c]

{ui ok € Zn} then U is a free Z-module freely generated by

5 R ® : Y i
{uk1 qu Be s uxc Ai = Zn e Zc}

2.3.3 Lemma: Let U be a free Z-module, freely generated by

£
{ui & vl e Zn}, let K be the Z-homomorphism: U[ ]

given by

>y (B ()

u ®u Do« Bt P [xx §X ]

,.ﬂ.’x
2 xc 1 AZ xc

and let L be an EndZ(U)—submodule of U[C].
‘Then LK 1is a fully invariant subgroup of Fn(Ec) in YC(FH(EC)).

All such subgroups are obtained in this way. Any isolated fully
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invariant subgroup of Fn(Ec) in Yc(Fn(Ec)) can be written as LK

where L is an isolated §u5‘EndZ(U)-module of U[c].

Proof: We first note that the definition of K 1is possible by virtue
of 2.2:2. Moreover, since any element of Yc(Fn(Ec)) can be written
as a product of left normed commutators, K 1is an epimorphism.

Define a mapping E from End(Fn(Ec)) to Endz(U) as follows:

Let Yy be an endomorphism of Fn(EC). For each 1 ¢ Zn choose

ni’xi,l’xi,2’°’°’Ai,ni’gi,l" °’8i,ni such that

T,

x b= 0 x 2
g=i i,3

and set
;1
u YE = - PREPRL
F e Bl 7y

(This is possible and is sufficient to define YE because U is

freely generated by the ui.)

b £
Now suppose Vy € End(Fn(Ec)). Choose ni’xi,j’gi,j as above for

each 1ie2,7Jc¢ Zni. Then ((u”1® up2® ®uuc)wE)K
i nuZ nuc

= () g 4% () 4 39y LT g

j=1 j= 2’7 Tu,,] =

s ))K
C’:l Uc9j

[}
o~
[
=t

o @ & g g (u @..@u ))K
b= 21 Mysdq Hys] IR g e 1)
. 14 jC br =l 202 £ ey Bavd
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n, n, n Eu 3 Eu 3 ...8u 3
#ED. ... 0°x i L o N gite
jl=1 j2=l JC=1 Ul’Jl ].lzgjz uc,jc
B TReL el
2 27 ’
x .Hi B .nz x O a e
" Ul’j =1 Uz:j j=1 Hosd
TR SRR Y
Hgupoleg Pe
B TR AR s
1-11 le Llc

Hence (YE)K = Ky for all vy ¢ End(Fn(Ec))'

Now define a mapping D from Endz(U) to End(Fn(Ec)) as follows:

Suppose Y € Endz(U) then there exist oy 3 &2 Fortall {is]He Zn
H]

such that

and we define yD by

n i i
x; (YD)V = ST, ».

i=1 3

A similar proof to that given above shows that
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[c]

ayK = akK(yD), Va e U and Yy sEndZ(U).

Let L be an Endz(U)—submodule of U[c] and let ¢y be an endomorphism of
FQ,).
Then LKy = L(YE)K

S LK,

Thus LK 1is fully invariant in Fn(Ec) and it is clearly a subgroup
of yc(Fn(Ec)).

Suppose M 1is a fully invariant subgroup of Fn(Ec) contained in
Yc(Fn(Ec)) and that Yy 1is a Z-endomorphism of U,

Then MK'llp = MK’leK‘l
= MK-lK(wD)K_l
< mx L,

Suppose a and b € MK—l. Then there exist o and B € M such
that: aK = ips) and *bK =87 Since M 1is a subgroup aB_l e M and

it follows that o - B € MK-la Thus MK“l is a submodule of U[c].

1K it follows that every fully invariant subgroup of

Since M = MK
F (N ) contained in vy _(F_(N )) can be written as LK where L is
I =C C m =C
some EndZ(U)-SmeOdule of YC(Fn(EC)).

Finally suppose that M is an isolated fully invariant subgroup of

el ) in yc(Fn(gc)), Suppose there exist a ¢ U[c] and n e Z\ {0}
n =C i
such that

-1
na e MKERT
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Let aK='a & YCFn(EC).

n

Then (na)k =/pd'e M. ¢
It follows:that o & M and hence that a e MK .,

So MK,-l is isolated.

2.3:4% Definition: (1) Pc(éh) is the subalgebra of én generated
by the left normed commutators of weight ¢, their inverses and the
operations of multiplication and identity.

(i1) An operation: Pc(én) x ZSC + Pc(én) is defined as

follows:
Choose some ordering of Sc’ in fact set 5.8 {ci sl Zc!}'
Each element of ZSc can then be written uniquely in the form
E!
a.0, where the a, e Z.
1
131 : i )
Define %a =1, Vae ZSC,
cl c! ay
[?\Ex ,’\JA ’ oo,;\sA ] 2 aioi = ]-[ [¥A ’ﬁx ,...,¥A ] 3
-7 c 1i=1 i=1 -1 -1 -1
loi 20i coy

and

(ab)oa = aon(ba), Va,b ¢ A, a e ZS_.
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Note: This operation is not independent of the order chosen for SC

and is not a module action. However

2.3,5"uTheotens: yc(Fn(Ec)) can be written as a direct product of
minimal isolated fully invariant subgroups of Fn(EC).

If e is a primitive idempotent of QSc and m a nonzero integer
such that me ¢ ZSc then the isolated subgroup of Fn(Ec) generated by
Pc(én)(me)gc is either zero or a minimal isolated fully invariant

subgroup of Fn(EC) contained in yc(Fn(Ec)). All such subgroups are

obtained in this way.

Proof: Let U be a free Z-module freely generated by UjsUysecssl

n
and let P be the mapping from Fc(gn) to U[c] given by
[ x k. Peg Bn @ .,.B0
Al AZ Ac Al AZ Ac
a-lP = =aP,
and abP = aP + bP.

Clearly aoP = aPa, a e 28, and if K is defined as in Lemma 2.3.3,

PK = R

Moreover P 1is a surjection.

1t follows, from Lemma 2.1.8, that if e 1is a primitive idempotent
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of QSc then the isolated Z-submodule of U[c] generated by

Fcﬁén)(me)P is either zero or a minimal isolated EndZ(U)—submodule

of U[c].
Denote this submodule by L. LK is clearly a fully invariant subgroup

of Fn(Ec) and is contained in yan(Ec). The isolated subgroup

generated by LK is simply

M= {a: ac¢ Yan(gc) and 3

ke $Z N0} & suchethat ak € LKl

It is easily seen that M is fully invariant in Fn(gc).

Suppose M 1is not a minimal isolated fully invariant subgroup
of Fn(gc). Suppose, in fact, that M' is a non trivial subgrouo of Fn(E )
i c

such that M'c M,

Clearly M'N LK cannot be trivial since some power of every
element of M must lie in LK. Hence M'K—l NL cannot be trivial.
But L and M'K_1 are both isolated Endz(U)-submodules of U[c] and
it follows that L N M'K—l must be another. But L 1is minimal so we
have a contradiction. Hence M must be either zero or a minimal
isolated fully invariant subgroup of Fn(Ec)'

But

r.(4) (me)p CIK cM

and it follows that the isolated subgroup generated by Pc(ég(me)gc is
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either zero or a minimal isolated fully invariant subgroup of Fn(Ec).

For each diagram D of length c¢ let M(D) be the isolated
subgroup of Fn(Ec) generated by FcénE(D)Qc. Then each M(D) is
either a minimal isolated fully invariant subgroup or zero. Further-

more Yc(Fn(Ec)) is spanned by
{M(D) : D is a standard diagram of length c},

and it follows that a subset of standard diagrams must provide a

direct product decomposition of Yc(Fn(Ec))-

2.3.6 Theorem: If c¢ 1is an integer greater than 2 then the

maximal torsion free varieties between gc and gc are as follows.

i
Let e be a primitive idempotent of QSc and m a non-zero

integer such that me € ZSC. Let U be the isolated subgroup of

Yc(Fc(Ec)) generated by chsc)(me)ec. Then Var(Fc(Ec)/U)

is a maximal torsion free variety between EC and §c-1' Its laws are

generated by [xl,xz,.o.,xc+1] and Pc(éc)(me)ec. All such varieties

are obtained in this way.

Proof: This theorem follows immediately from 2.3.5 and the fact that a

variety that is nilpotent of class c¢ > 2 is generated by its c-generator

groups, and by its free group of rank c¢ (Neumann [11], 35.12 page 100).
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2.3.7: The remainder of this thesis deals mainly with varieties of the
form Var(Fn(Ec)) where n < c. These do not always lie between

Ec and Ec—l' However (Var(Fn(Ec)))»/ Ec—l certainly does and is
therefore suscept?ble the machinery we have developed above. The
problem is to find which of the minimal isolated fully invariant
subgroups of FC(EC) in YC(FC(EC)) intersect Fn(gc) trivially.

An equivalent problem is to find which of the idempotents, e, of QSé

satisfy the conditions

ch%n)(me)Qc =1 y
and

Fcéc(me)gc 7 4

where m 1is, as usual, a non-zero integer such that me € ZSc°

If e is such an idempotent it is obvious that Fc(éc)(me)Q is
not in the kernel of the natural homomorphism -from Fc to FC(EC) but
is in the kernel of every homomorphism from F, to Fn(Ec), in other
words that it is a closed set of laws distinguishing Var(Fn(Ec))

FE oM
=c

Gj a F-ﬂ”"‘h%‘; ‘-"G”LZPL‘Y')‘Z‘ ﬂ}~
2,3.8 Lemma: Let e be a scalar multiple ef QSC, associated with a part-

ition of ¢ into m parts and suppose k 1is a non-zero integer such
that ke € ZSc andithativnte Zc° Then I‘C(én)(ke)gc is trivial if

and only if either I‘c(éc)(ke)gC dgtrivial or m < n.
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Proof: Let U be a free Z-module with basis UpsUyseeesl e Let Un
be the submodule of U generated by UpsUyseco,l . Let P and K
be the natural homomorphisms from Pc(éc) to U[c] and from U[c] to

yc(Fn(Ec)) respectively. (P 18 defined fn 2.3.5, page 38, K is

defined in 2.3.3.)

Then Fc(én)(ke)gc Pc(én)(ke)PK

Fc(én)P(ke)K
= Ur[lc] (ke)K ,

. 3 [c] .
Suppose rc(én)(ke)ﬁc is trivial. Then Un ke must be in the

kernel of K. Since K maps U[c] to a torsion free Z-module its

kernel‘must be isolated, and, since K is an Endz(U)-homomorphism its
kernel must be an Endz(U)—submodule of U[C]. But the isolated EndZ(U)—
submodule generated by U[c]ke is minimal and it follows that either
U[C](ke)K = il @i U[C](ke) IS Ker(K). is txivial. But Uic](ke) must

be in this intersection so either

r_(A) (kedg, = vl keyx

[
=

or

0'

(0] ®Z Un)[C]e = Uic](ke)

By Lemma 2.2.4 the second possibility yeilds n > m and we have proved

the necessity of the conditions stated. Their sufficiency is obvious.
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2.3.9  .Theorem: . Let n and c be positive integers, n < c. Then

the laws of (Vaan(Ec)) X N are generated by

=c-1

[xl,xz,e.o,xc+1]

and
c

') y T (A )5(D)
t=ntl D e, M R

where Ai is the set of standard diagrams associated with partitions
of e intorM S partay

Proof: Denote (Vaan(Ec)) vN_, by V. Weknow that N cyc b

i =c-1

and that V is torsion free. It follows from Theorem 2.3.6 that the
laws of v are.generated by [xl’x2’°°°’xc+1] and the isolated
subgroup of Fc generated by

U

Uity

ecl
where I 1is a set of elements of ZSC which are scalar multiples of
primitive idempotents of QSC.
Let 6 be the natural homomorphism from £, to ¥ (N J); =80

Ch=C

that Re A

e

= Q%é , clearly any homomorphism from Fc to Fn(gc) can be
e

factored through 6. It follows that, 1f e el Pc(éc)eg is a
set of laws in Fn(Ec) if and only if Fé(&c)egc lies in the kernel
of all homomorphisms from FC(EC) to Fn(Ec)° But* Pc(éc)ch is

invariant under all endomorphisms of FC(EC) so this last condition is
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equivalent to the condition that T (A )eQ (g (Fa )= 1%
c e’ e n =c
Now Fc(éc)egc n Fn(EC) = Fc(én)egc so, using Lemma 2,3.8 we find
that; d4f e g I, Fc(éc)eg is a set of laws in F_(N) 4if and only if
either e 1is a scalar multiple of a primitive idempotent of QSc
associated with a partition of ¢ into more than n parts or
Fc(éc)eg is a set of laws of FC(EC)a

The laws of FC(EC) are generated by [xl,xz,o..,x ] so we

c+1

need only consider the first alternative.

Since V 1is torsion free the isolated closure of a set of laws of

<

is a set of laws of V and the required result follows from Lemma 2.2.3.

2.0 The Torsion Free Varieties between 54 and N

3
The theory developed in this Chapter can be applied to find the

torsion free varieties between g& and §3,

considerable amount of tedious calculation which is omitted here. The

This requires a

partitions of 4 are A = 4 I W e Oy B Ay = (2,1’1), Ay = (2,2)
A4 =3 1) AS = (4). It is fairly obvious I‘A(QA)E(D)R4 is trivial when-

1 or Aso In fact

it is also trivial if D 1is associated with A3, The laws generated

are, by virtue of Theorem 2.3.9, the

ever D 1is a standard diagram associated with A

by idempotents associated with A

= nro

from N ds in Fact

3 =4"° 4)

the variety of metabelian groups of class 4 and its laws are generated by

laws which distinguish F2(§4) Vv VarFZ(E

[[xl,xz],[x3,x4]] and [xl,xz,x3,x4,x5]°
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The first of these laws is a consequence of the second and

Fa(é4)8(D1)%, where

7| ,

i

2

4
It follows that there are no torsion free varieties between the variety

of metabelian groups of class 4 and N It also follows that if D

=4°

is any other primitive idempotent of O_S4 associated with A then

2’
the isolated closure of Fé(é4)8(D)Q4 must be either 1 or the isolated

closure of

r, (4,060, -

This leaves only Ay to be considered. Put

D, L3 [4]

Then the isolated closure of I‘4(¢L\\Z4)5(D2)Q4 is a fully invariant
subgroup of rank 45, It is equal to the fully invariant subgroup
generated by [XZ’xl’xl’X2]° All the other standard diagrams associated
with D2 give rise to trivial subgroups. :

Thus there are precisely two torsion free varieties between N

and §3, the variety of metabelian groups of class 4 and the variety



whose laws are generated by

[XZ’xl’xl’XZ]
and

[xl,xz,x3,x4,x5]o

46.
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3. Some Laws of Low Weight in Fn(gc)

3405 Introduction: In this chapter I deal with some of the laws of

weight w of I;(Ec) where t wi<ic, It relies heavily on the notation
developed in Chapter 1.

In Chapter 2 I showed that if D is a diagram corresponding to a
partition of ¢ into more than n parts then Fc(égﬁ(D)g is a set
of laws of Fn(l__\}c)° A slightly different approach to this result gives
some insight into the way in which it can be extended.

Suppose then that D 1is a diagram of length c¢ associated with a
parttitionSofciNinto®™ m parts. Let I be the set of entries in the
first column of D and let G be the symmetric group on I regarded as
a subgroup of SC. Clearly G 1is a subgroup of C(D), in fact a direct
factor.

First we note that Fc(éc)g(D)R will be a set of laws in Fn(gc)
if and only if [¥1’¥2"°"¥c]g(D)Q is a law in Fn(EC) and this second

condition is equivalent to the condition that

[x

ml’%2"°°’§c]g(D)e‘ﬂk 4

for any homomorphism 6 : éc > éno In fact it is possible to restrict
® by requiring the image of each of the generators X ¢ L& Zc to be

a product of generators and their inverses. The function ht (height) can

be defined on such homomorphisms by setting

C
ht(6) = } ht(x,0).
i=1 =
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If ht(p) = ¢ it is obvious that @ must map generators to
generators and it is obvious that, if m > n, I must contain two
different integers i and j such that 519 = ¥j6' Since the permutation

(1 j), isvodd ‘and “dn+ G <:C(D) it follows that

& (o)

il flap 0. ... x.600) e L
5eC(D) Al a2 ve
If, on the other hand, ht(g) > ¢ there must exist an 1 ¢ Z,
such that x.8 = ab for some a,b ¢ A 6F. x5 = x. for some  {ieZ .
1l vl vl ] Cc

I will here deal only with the first possibility, the second is similar.

Define two homomorphls?, 61,92 2 éc = én by

= a, = b,

.

Xjel = xje2 = xje, Y1 & Zé\ ol

e

Clearly ht(el) and ht(ez) are both less than ht(6) and

e D
&(o) (o)
v I ([X 9X 9000 9X ]0) 0 i ([X 93X 9000y ]O) 5
c 5eC(D) G BT Ne il 5eC (D) GV LG N D)

Thus we have a basis on which we could build an inductive proof that

&o
X1sKyseeesX lo eg%

ve

oeC(D)

for any homomorphism 6 from éc to Qn andmiEiisEnotidit Eilculit Sto

get from here to the result we set out to prove.
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Now suppose that ¢ and w are two positive integers such that
c >w > c/2 and suppose that n ¢ ZCo Let I be a subset of ZW
with more than n elements. Finally let G be the group of permutations
of I, regarded as a subgroup of Sw.

As before it is obvious that, if 6 is a homomorphism: A > A of

height w then

(o)
II ([§1’¥2,°°"§w]0) eg%-

oeG

(Note that the assumption w > c/2 ensures that expressions of weight w
commute modulo %0)

However when we come to consider homomorphisms of height greater than
w the situation becomes more complicated. Suppose 6 is such a
homomorphism and that §ie = ab for some 1 ¢ Zwo Suppose 1' = I\ {i},
G' 'is the group of Ejéﬁutations of I' and that T is a transversal of G’
alioe (& - Then

(%)%,

,.o.,ﬁw]e

= [§JG,§26,990,§1 le ab’w1+l ,,.,,%we]

[x B,X

N

o oty 2Kas
Bsesesky 10

g ,a,§i+le,o°°§w6]

X2

[Nl’ ’°°°’§i—l’b’§i+l’°°°’§w]

[ﬁle,ﬁze,,..ﬁi le a8 by X sXi1 ,on,,¥we]x5
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where o 1is an expression of weight greater than w + 1. Thus',; S f

we define 6 and 62 as before we have

1
§(0)
it ([&{1’3‘(2"’“'}%]0) )
oeG
&(o1)
e ([x % e il ab,x i aagX 160)
ks —1s ’ 2919 9 =1 ’ o
B 0dT et i figy (it-D1t 1 (it+1) T - Wt -
& (o) & (o)
oeG oeG
I ( I ([X X ’ ' X 98,
teT oeG' 1t L 4 L (11-1)1—1
&
b’?\‘f —l’°°°”)\{: _1]0 (OT))B)
(it+1l)t WT

Il Il Ol e
L L
Where the o s are expressions of weight greater than w + 1.
The first two products can be dealt with by an induction on the height

of 6. The next term can be rewritten modulo g as

§(0) (1)
“T ( HG,([§1’§2’°°°’§W”£w+1]°) 6.
T3 o€
f
X _le it 1< 4 =1
where eT 5 ﬁj P it

a L B

b R = ]

A A T

il




oie

The inside product is then similar to the expression we started
with except that it has weight w + 1 and G' 1is the group of permutations
of I' which has, at least, |I| - 1 elements. It thus seems reasonable
to hope that if we start by requiring that |I| > e~w.+ 1 we ecan
develop an inductive proof on ¢ - w which, combined with an induction

on the height of 6,,7 would show that

&
W]O (O)B Nc !

and in fact the main Lemma in this chapter does roughly that. In
fact it shows that)if Il,Iz,Mo,Ip are disjoint subsets of ZW,
each with more than n elements, and
E (|I,| -n) >c-w+1,
. 1 P
i=1
and G 1is the subgroup of Sw generated by the groups of permutations

O EEEhe s Ehen)
ol )

& (o)
92%

I ([§1,§2,ono,§w]o)
oeG

for any homomorphism, 6, from /éw to éno
This means that if D 1is a diagram of length w associated
with a partition A of w. into m parts, where m > n, such that
m
z Ai-i c-w+ 1
i=n+l

then Fw(éw)é(D)g is a set of laws in Fn(Ec)°
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It follows from this and Theorem 2.3.9 that

(Vaan(Ec) A NW)V N = Var(Fn (N))V N

il +c-w =w =w-1°

Sl Definditilonis™ I ry and r, are two functions: 2 » Z U {«}

then s T, if dr< i VL =2

e

Buide Lemma: If a and b are products of commutators with repetition

patterns 1, and r, respectively then there exist expressions o and

B such that:

(1) [a,b] ~ aB
(i) o 1is a product of commutators, rep(a) = ry +r,, wt(a) = wt(a)
+ wt(b)

and (iid) repB 21 + r,, wt(B) > wt(a) + wt(b).

Proof: This lemma can be proved by a straight forward but tedious
induction on the length of a and b using the following well known

results:

[a b] [al,b][al,b,a ][az,b],

1
[a’ble] " [a’bZ][a’bl][a’bl’bZ]’

i ]t

[aI ,bl ~ [al,b]-l[b,a,a- iy
and [asbIl] Y [asbl]-l[ansb-l]O
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BB Lemma: If a 1is a product of commutators with repetition pattern

r then there is an expression o such that:
: -1
(1) a U )

and (ii) o 1s a product of commutators such that
rep(e) = r, wt(a) = wt(a).

Proof: By induction on the length of a. wusing the fact that

L
alaz n 8.2 al

3.4, Lemma: If ae A there exist expressions o and B such

that
(i) an oB,

(ii) o 1is a product of commutators such that

rep(a) = rep(a), wt(a) = wt(a)

and (44 rep(g) > rep(a), W) Ewti(E)

Proof: By induction on the height of a, wusing 3.2 and 3.3,

S Corollary: For any expression a and integer c¢ there is an

expression ~a such Chat:
i )
(i) aya
(&) a is a product of commutators

and . (i%d) rep(a) = rep(a) and wt(a) = wt(a).
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Proof iv By induetion aniser- wt(g) using 3.4.

3.8 Deftnition: f(i) LEgoK ¢ 1s8sassubset.of  Zy, S(K) ds.the group

of permutations of K, considered as operating on the right. S(K)
will be regarded as a subgroup of S(Z).

(ii) Forseach. g € S(Z), o* is the automorphism of A defined

(Gistat) ol 2S (Z) then allg) = 1 if o is even

\—l if ¢ is odd.

32 Lemma: If a is a commutator in én’ i € Zn’ wti(a) =1

and ¢ is the endomorphism of A defined by

o U §i§n+l Lo s
nJ
X otherwise,
3]
then
a ~ a.,a(i ntl)*.b
where
& by sailee

(ii) wt, () > wt, (a), v3jezZ,

and (iii) wtn+l(b) z.wti(a),
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Proof: By induction on weight.

If wt(a) = 1 the result is trivial,

Suppose that w 1is an integer greater than 1 and the lemma is
true for all commutators of weight less than‘ We Let a be a commutator
of weight w with weight 1 in X

Then a = [al,az] and

|
(=)
-

edithe s (Gh) Wti(al) 1 and wti(az) =

|
[

or (Glal) wti(al) 0 and Wti(az) =
Suppose . (i) 1s true.
Then ao¢ = [aff,a ]

and, by the inductive hypothesis, there exists b1 such that;

wt, (b) ;wtj(al), ¥ ke Z

RELen (B = Whgtay)y
and

; *
a e al,al(l n+1l) °bl .

Hence
ap v [al(al(i n+1)*)bl,a2]
" [a1°al(i n+l)*,a2][aloal(i n+1)*,a2,bl][bl,a2]
N [al,az][al,az,al(i n+1)*][al(i n+l)*,a2]
[al°al(i n+l)*,a2,bl][bl,a2]
&/fé,a(i n+l)*[a1,a2,al(i n+l)*]

[al,az,al(i ntl)*,a(i n+l)*][aloal(i n+l)*,a2,b ]

4
(b2,
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nv oa.a(i ntl)*.b  (say)

where b clearly satisfies the conditions above. The proof for case
(Glsl)  sle cplmatilens

Thus the lemma is true for all commutators of finite weight.
Since the lemma requires that wﬁjﬂa) =1 it follows that commutators

of weight «~ do not occur.

3.8, Corollary: If a 1is a homogeneous product of commutators in

Mgl Tz , wti(a) =1 and ¢ is the endomorphism of A generated
by
AW, candnfy e, o xR, 411
X otherwise,
il
then
a8 aJall mEE)*. b,
where
(1) b e én+l’

(ii) Wtj(b) 3_wtj(a), Vi € Zn’

and ElEas) wtn+1(b) z_wti(a),

329, Lemma: If a is a homogeneous product of commutators in én’

b sy wti(a) =1 and ¢ is the endomorphism of A generated by
n
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?fj S ) e G o
X, otherwise,
|
then
apn a—lb,
where
e lip) bsén,

(ii) we ib)ge wt ka) for all j§ g Z
J = n

and G wti(b) 3_wti(a) + 1 .

Proof: This Lemma can be proved in much the same way as Lemma 3.7 and

Corollary 3.8. wusing the fact that, if o and B are expressions,

i ]
S Ll I
and

- =1 il 3
[(XQB l] v [a,B] [B’a!B I_j

3,10, Lemma: Let ¢, n and m be positive integers, o an element of

S O ‘ L 5
ém and Il,Iz,Mo,Ip be distinct disjoint subsets of Z et

g m/

be a homomorphism from ém to én which maps generators to products
of generators and their inverses. Ehat ds, for each 1 € Zm,
1,3

T
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where the hi's and Ay j's are positive integers and the &,
i

are integers,

IPut
P
G= 1 S(Ii)a
g
= (&
Thew, 1f ¢ (1) ¥ wt; (@) = w i-[ij el
=il
(i1) Do R Rl el RN N
i P

P
(114) G Rli= ks e - wE L,

and
p
(iv) wti(u) = I'"for all 1 e L} B I
j=
we have

(1 o f e
oeG

Proof: The proof uses a double induction, firstly on c¢c - w.

If ¢ -w < 0 the result is trivial since wt(a) > Z wti(a) =Bw o C
=1l

in this case.

Suppose then that W 1is an integer such that [%] Flic W< e,
that a 1is an expression in Am and that conditions (i) to (iv)
remain true if we substitute W for w and a for oa. Suppose
further that the lemma is true whenever w > W. (I will refer to this
assumption as the first inductive hypothesis.)

From Lemma 3.4 we know that
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where each ay is a commutator, W S.Wt(ai) s e, rep(ai) > rep(a)
and each e, € Z. Hence the a; have weight at least [%] + 1 so

wtla.,a. 1> e and -'a.a, il a.
i qfisjie g 1

It follows that

el

where ag is 1 or a homogeneous product of commutators with repetition

pattern f and

= {f's f 1s avmappingifrom’' & to Al (*{0} . suech that

: i Z,Wti(a) Ya = Z3 Z if < e and 1f =0 v/
iLe

il = Z\Zm}c

Now suppose f e I'\ {rep(a)}.

Put
J = Ad08 ] & Zn gilel  gliE = wtj(a)},
oL :
Ii Ii\ JituEormedch. i e Zp,
= 2 . \J
pr= AL |Ii| =
and

g' = 1 S(I£)°
dieP
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let T be a left transversal of G' in G. Suppose 1 ¢ T,
Then
m
0 Wti(afT*) = W' ,%say,
i=1
m
= z wt (2
= G
m
= ) wt (ay)
= 4% £
2 N+ |J[ > W
But
3 = ¥ - ul
Z (IIi| n) gl (|Ii| |Iin Jl n)
ieP ieP

| v

T 0 6] =,
i=1

(since for i ¢ Zp\‘P’ il = |Ii i i)

g

I

P
D] - -1

c- W+ |J]) +1

|v

e W' + 1,

Hence, by the first inductive hypothesis,
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: & G
(1 ylasatl SRE s Tlan (T | (Car®iot)® 3)0)# ()
]
oeG el oeG
i
(& Gy
It follows that
O (aoF )y o T (2 gm0l
c T
oeG oeG
where r = rep(a).
i0E ol % the result is trivial so we can assume that ar fSS i

homogeneous product of commutators with repetition pattern r.
This brings us to the second induction which is over
P
I 7 melne) - 1) =k,
. . ]
i=1 Jin

L

say. Suppose h = 0. then either

P
(1) 8 = 1 for some j e igl Iy
or
P
(ii) for each 4 £ 1} L there exists k ¢ Z such that
i=1
e

If (i) 1is true it is easily seen,from the fact that aoc* is
a homogeneous product of commutators of weight 1 in ﬁj’ that
((ao*)é(c))e " % for 4il o'c G and the induction on ¢ —~ w 1is complete in

this case,
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If (i1i) is true then, since |Il| >n, and a8 ¢ A there

must exist two distinct integers q,k ¢ I, such that

1
§qe = %6, which means (q k)*s =9 . But (g k) € 6.  Let T
be a left transversal of <l,(q k)> in G. Then

(1 @o®fen 1 (a1 (atr(a ) HE

oeG LEl

(Ve L
€ N

Thus if h = 0 the induction on c¢c - w can be completed and the
lemma is true.
Suppose now that H 1is a positive integer and that we have completed
the induction on c¢ - w for all 6 such that
0< 5 1 (tGxe) - 1) < H,
1i=1 jel,
:
that is that the lemma is true for all such 6. (I will refer to this
assumption as the second inductive hypothesis.)
Let ¢ be a homomorphism from ém to én which maps generators to
products of generators and their inverses and suppose
P
T sdiitlx W) - 1) = H
. % ]
i=1l jel,
-4
I will complete the induction on ¢ - w for ¢ and it will follow
that this induction can always be completed.
There must exist integers i and j such that 1 e Zp, dhie Ii

and,
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elther® (&) x.y = uv for some u,ve A
j n
: -1
r =
o (11} AT for some ke Z,

suppose éjw = UV. ;
Define ¢ ¢ Homgém,§m+l) : %j > ¥j§m+1’§ﬁf%?“m.3 YV ki Zm\\{j;,

and

/
- TR )

wl € Hom(ém+l,§n) : §j P, XL bV, X i ﬁkw’ Yk e Zm\§tj}
Clearly vy = wwlo

Let
G = Bl W qu \{i}S(I &
P
© obviously commutes with o* whenever o e G'.
Let Teo be-a left transversal of. G'. in. G,
By (orollary 3.8 we know that for each T.€ T there must exist an

expression bT Erén+1 such that
*y * #(4 nt+l)*
agtky via T (arr (§ ntl) )bT,

Wtk(bT) Z\Wtk(ar)’ Yk € Zm
and
th+l(b1) 3_wt' _l(ar) = b,

e
Thus
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&(o) &(o1)
I (a &%) i) i (a_t*po¥*) JHE )
e & S 1el ' get! r L
L W (arr*o*)g(OT)wl)( [ =i (a_1t%(j m+l)*o*
€ 1eT oeG! 1eT oceG' r
‘c’(m)wl))
kI el & <b o*)g(‘”)xpl)
i Tel geG’ kS
v (1 @ onf) e @ oG myn)
oeG oeG
(nesl (b o*)g(m)wl),
1eT oeG' o
Now
]  (tG&y) - 1) = H- ht(h) + ht(d) wv/
keZ qel ¥ '
P k
<R
and
P t(x, (G m)*y)) - 1)
ksZp quk

= H - ht(ab) + ht(b) Y '

< H

Hence, by the second inductive hypothesis
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& (o)

(n (aro*) )0

oeG

Glg). «&(1)

a1 [ R (bTo*) wl) 3

7e¥ . -oeG'
For each ke Zp let Ié e
Let. P=1(k : ke Zp and {Iﬂ| 5 Bk
Clearly P 1is either Zp or Zp\ {i}, depending on the number of elements

din | i
Al

Now

(jz!| = n) = (J1,| - n) -1
kZ:P % kgzp b

> a = (L) + 1.

It follows from the first inductive hypothesis that, if Wtq(br) =1
for all

P
qe(V Ik)'\{j}
k=1
then

o

I (bTo*)g(O) v il

oeG'
p
TE 1wt (bDecsiss forlisome:, g e « ') L) \ {j} the same result follows
LB k-1
from a proof almost identical to that used to eliminate the expressions
a f # r (see page 59), and the induction is complete for case (i)
(see page 63).
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Now suppose case (ii) applies, that is that
x.0 = £ 1 for k in Z
= X or some n Z.

Define ¢ ¢ Hom(ém,ém) sk b ux ’§q P X Yq & Zm\~{j},

and

Yy € Hom(%m,én) ik P xk,gq - §qw q e %n\{j}o

i
Define G' and T as on page 63. Clearly =¥ and

i (arg*)g(c)w - Yo 3 (arT*¢O*¢l)5(OT)

ceG HELTeCE

1A (aro*)_g(O)w I O*g(O)w

L)
oeG TeT e ae@) -

where, by Lemma 3.9, the br are expressions such that
wtq&g) Z_wtq(ar), ¥q e Zm and Wtj(br) z_wth_l(ar) + 1, As in case

(i) we can eliminate the first product by the second inductive

hypothesis and the second product by the first inductive hypothesis.

3.11. Theexem: « Let e, n, w be positive integers such that w < c,

let x be a partition of. ¢ dinto k parts such that

z Ai el |
i=n+l
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and let e be a scalar multiple of a primitive idempotent of

QSc such that e is associated with A and
e e ZS;
c
Then Fw(éw)eg is a set of laws in Fn(I__\_IC)a

Proof: Suppose ¢ 1is a homomorphism from FW to Fn(gc)°

Let
nl S
xiw = 1 xul’J
i G

and define the homomorphism 6 : A - A by
nw vn

ny By
BEw A .
=1 1,1

Clearly RV = 6p,s 8O

r (A Degy = T (A esy .

Now suppose D is a diagram associated with A, D has An+l

columns of length greater than n.

Set I equal to the set of entries in the ith column of D

i

far 1<% 5 xn+l = p, say. More precisely I, = {h : hD = (j,1)}

18
Vi ¢ Zpo Clearly I, n Ij is empty if i # j and
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g _
] (1] -m =|{h:hD= (j,i) for some j > n}]

i=1

P !
= b s mD = (F,1)]
j=nt+l

= E max{1i :3 h € Z: such that hD = (§,1)}
j=n+l k4

= NE> e — w1l

j=n+1 o
Now
P
b (|Ii| -n) <wW-n<w
i=1
so
c-w+1lc<w,
¢+l
N
and

W 3![%& + 1,

Suppose o is a commutator in A of weight w. Let
W

then o = af for some endomorphisms & of A, and wtj(a) =1
P

for all j € ng Put G = 1 S(Ii) and let T be a left transversal
i=1

af € 1in «CLD)y

Then
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as(D)ch ag&(D)eRc

= aé (D)EGQC

=l (a(é(a)op))EBp
oeC(D) c
peR(D)

]8(0)56

= H [x ’X ’ooo,x
e e e D R W il

peR(D)

= I (a( )*)5(0)
geG(D) c
peR(D)

o ek T (ap*r*)g(T))c*)g(O)ge

oeG 1eT
peR(D)

=]_’

since

I (ap*r*)8(T)

Tel
peR(D)

is clearly a homogeneous product of commutators with the same weight and
repetition pattern as a, &6 1is a homomorphism from A to A

w n
and all other conditions of Lemma 3.10 are satisfied.

It follows immediately that if o' is any element of PC(AC) then
~n

a'§(D)6R, = 1 and so
r (A depy =1 for all e Hom(F_,F_(N))),

that is the elements of T (A )ep are laws in F ).
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812, Theorem: Let c¢, n, w be positive integers such that w < c,

Then

A Vv @ \
(Far (B, (1) A M) VB, g S Var(, @) VE, .

Proof: From Theorem 2.3.9 we know that the only laws that distinguish
the variety on the right hand side from EW are associated with
partitions of w into more than n + ¢ - w parts. Suppose A 1is
such a partition, Clearly

n+c-w+1l
xi HuCawow + il
i=n+l

and the required result follows from Theorem 3.11.
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an Basic Left Normed Commutators.

4.0, In Chapter 3 I proved that certain laws hold in Fn(EC)o In
the next chapter I will show that, with certain conditions on n and
c, these laws generate all the laws of Fn(Ec)°

To do this I will need to be able to identify elements of én
which are not in the kermel of Re® Normally this is done with basic
commutators.

The trouble with basic commutators is that they behave badly under
homomorphisms from éh to én—l“ That is, if ¢ is such a homomorphism
and a 1is a basic commutator in én then ay is unlikely to be one and
the process of 'collecting" it into a basic form is complicated and
difficult to conceptualize.

It is known that if a is an element of é then there is a

product of left normed commutators, al sayy such that:
av-a',

It can in fact be shown that, if a has weight ¢, a' can be a
homogeneous product of commutators each with the same repetition pattern
as a.

Now suppose a is a left normed commutator of weight «c,

a= [§Al,§A2,oou,§xc] say,

and suppose



Then

ey [[[X 39X, 3000 X ]’X ],X 9000 93X ]
B s T e
N [[¥A ’[Xx S NERERE Y ]]’§A so0osX, ]'_l
g i~ i+1 c
v [([X ’[x ’x e ’x ]’x ]
m v
=1 £t
[éxl’mx _l’[?fx i, oky Y )"‘éxﬂ_ vesnsdy |
o i Jhmpestidonsungenal e (0%, te.mve; i
i P R e c
[x, »%, 1I[& % -0 g, seeesky |
i o o DT B R
¢ [x [x2anx = ] X X
) E] 9):0 Wy 9 ;] 9 9 b
L TR e T 7 R Y

L Sapll i+2

[x, ,x o 3X, soc0 X I,x o X s X 90
e T T
[§X ’EX 'Xx ’[§A SRR °°9§A ]’%X ’*X 3e ]
il i-1 i-2 il 2 i-3 i+l i+2
¢ [X. vo&uri® x X % x ]“l
9 9 ) LIRS | b 9 g 00 oty
i e T Y
[z % b'e X X X ]g
'\J)\ ’f\,>\ ,,«\JA ,"""Q,bx ’,\J>\ "’\;>\ 99 °’f\l>\



73,

where § = -+l dfend oistodd

=l gigdiEe sandsieven,
Thus if a is a left normed commutator of weight ¢, and wtj(a) =1,
it is possible to find a homogeneous product of commutators, a', with

the same repetition pattern as a, each commutator having first entry

%% sunreuthathat:
)

Now the number of commutators with this property, (i.e. first

entry ﬁj’ repetition pattern rep(a)) is given by

(e=1)!
m (krep(a))!
keZ

But a straightforward application of Witt's formula shows that this is

simpiy the number of basic commutators with repetition pattern a.

(See for example Magnus, Karrass; and Solitar [10], Theorem 5.11, page 330.)
It follows that if B is a set of basic commutators of weight ¢ in

én and B' is the set obtained from B by removing the basic commutators

with repetition pattern rep(a) and inserting, in their place, the

left normed commutators with that repetition pattern and first entry j

then B'Rc generates YCFn(EC) and I(B'Qc)/ is the rank of

yan(EC) regarded as a free Z-module., Hence B'p ~is a basis for

Yan(Ec)°
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This displacement of basic commutators by left normed commutators
only works for those repetition patterns which take the value 1 at some
point.

The rest of this chapter is devoted largely to providing a formal
proof of the above remarks. This formal proof has the added bonus that
it provides an explicit formula for the process of moving a generator
to the front of a left normed commutator. To do this it is necessary

to define some rather artificial looking functions.

4.1, Défintedon: If" T' 1s a finite 'subset of Z+, the permutation

2] = Z+ > 77 is defined as follows:

[T]‘T is the monotonic decreasing bijection: T - Z|T|

IL]

+ +
is the monotonic increasing bijection: Z \T > Z N\ Z .
Z'\ 1 7|

4,2, Lemma: If T 1is a subset of Zn’ then

L s vifor dll S >in
and [t RisZ* HorHIP Y € Z .
n n

Proof: Since [T] is a monotonic decreasing bijection, the

—+-
‘Z NT 5
n - |T| smallest elements of Z NT must be mapped to the n- |T|
smallest elements of Z+\ [ZITH, But these constitute the sets

Z i o
Zn\‘T and Zn\‘ ITI respectively
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Hence [T] maps Z+\ Zn onto itself and, being a
monotonic increasing bijection on this set, must be the identity
mapping.

It follows that [T] maps Zn onto itself which completes the

pfoof°

n
(
sul e[ aHik 1£ L < 4 =m,
i[T!Y {n+l}] = |1 : 4 Al O S S O
117] 1f T 1 kel
L
Proof: Put T, =T U {ntl}. Clearly n + 1 is the largest element of

1

T1 and T E-Zn+1° It follows from 4.1 that (n+l)[Tl] = b zml

from 4,2 that i[Tl] =add= 40T for all i >n + 1.

Now [T]‘T is the monotenic decreasing bijection: T - Z|T| and

[Tl]‘T is the monotonic decreasing bijection: T - ZIT‘_*_l\{l}9

Hence i[Tl] =41} + 1 for all: 1 e T. From 4.1 and 4.2 it follows

that:
[T]‘Zn\T is the monotonic increasing bijection: Z \T ~ Zn\‘ZITi

and

[Tl]tzn\ r 1is the monotonic increasing bijection: Zn\‘T > Zn+i\ ZiTI ne

Hence i[Tl] o i e 0 T O R R Zn NS
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4.4 pGorollamy: o 1f 5 T 5 Z, then,

moap dt if =1,
: U =1k : -1 ; : )
i[T Y {n+1}] = (i-D[T] PRl vl = 1L,
Wl e e e
4.5 The following commutator identities are collected here for
convenience,
Lemma: (i) L Sa bjdl 5 é and wt(a) + wt(b) + wt(d) = ¢ then

[a,b,d][d,a,b][b,d,a]% i

() 1 aval,byd we é and wt(a) + wt(b) + wt(d) = ¢

then
-1
[a,[b,d]]v[a,p,d](a,d,b] =
(11i). If @ e A and a2 g b
then
[a,d] é;i [b,d]) cfoniall .dis Qa
Broof: (L) is simply the Jacobi-Witt identity.

Gihe calagib,dll & [hydialds

[a,b,d][d,a,b] Dby (1)

(@)=

[a,b;d][a,d,b]-la

ne
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(L1i)€Se1E  a kg b then there is an expression e of weight c + 1

such that:

an be.

Hence [a,d] ~ [be,d]
~ [b,d][b,e,d][e,d].

Cf_\'_/l [de]’

since « wtlb,e,d] > wt[e,d] > ¢ + 2.

4.6 Lemma: If n is a positive integer and a,bl,bz,oco,bn are
n
elements of A and w = wt(a) + z wt(b,) then
oY at
i=1 ,
|T|
b 11w T [a,b b el e

| e ]
® iy oM 20

[a,[?l,bz,oo

-1
g
(Note: For this product to make sense it is strictly necessary to have
an order defined on the set of finite subsets of Z+u In fact the order
chosen makes no difference to the result since we are effectively working
in Yn+lF(En+l) which is abelian. However in order to avoid confusion
choose some ordering on the set of finite subsets of Z+u Then, 1f R
is a subset of Z+, ! O will denote the product of the O taken

TCR
in that order.)

Proof: By induction on n. If n=1 then the right hand side of the

statement becomes:
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Ir| e
o B 1]('1) Cije Gy 2 [a,b,]

v =il
SRty 1(¢]
which is the required result.
Suppose now that m > 1 and that,Eemma i8 true for al} n such at//<'
N /
ERAtn” 1 = nS Then
[aa[b19°°°’bm_l’bm]]
= [a’[[bl’°°°’bm_l]’bm]]
v -1 5
w [a’[bl’°°°’bm-l]’bm][[a’bm]’[bl’b2’°°°’bm—l]] by’T?OS (11))
-1
Bosibe T T P VLo
ngm_l\~{l} 1[T] 217} (m-1)[T]
A E L
1|
L TR R T SR e
iea B s 2l (m-1) [T]
by the inductive hypothesis,
r‘\h; H [a,b _1,b _l,ooo,b —l’b —l]
Tez SN {11 1T 2t (m-1) [T]~ m[T]
L [a,b .y e b ]
/ -1 < -1 i -1 T
ged-, NG SRR 2[Wim}] (m-1) [TH{m}] = m[TYim}]
by 4.4,
W ,b b b ]

I [a ’ ’ N ’
i S i e @-1) (17" w1

which completes the proof.

4,7 Corollary: If a 1is a homogeneous product of commutators of weight

c then there is a homogeneous product of left normed commutators, b say,
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with the same repetition pattern as a and such that:
an b,
c

Proof: By induction on c. IE ‘e’ = 2 the result is iereabwateill
Suppose w > 2 and that the Corollary is true for all® e\,

Let a be a homogeneous product of commutators of weight w.

n
i .
Suppose a = 1 a; where each a; 1is a commutator. Then

n. [an,l’an,z]

m &
1 LAt
s

i=1

&

2,1

m
2
B ]

i=1

where bj _ is a left normed commutator with the same repetition pattern
9

Ee /Kn,j
(this follows from the inductive hyg\'thesis)o

Hence

m m :
il 2 5l,i+52’k
Pt | 1 ([bl i,b2 k])
Voi=1 k=1 ’ ’
Now b2 K is a left normed commutator so that 4.6 can be
9 2

applied to find a product of left normed commutators, bn e such that:
959! .

)

rep (b rep(bl i) + rep(bz’k)
9

Ty
= rep(?lfn) + rep(?ziﬁ)

= rep(an)

= rep(a)

a /
/
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and

[, $isbe, Inghitodup

It follows that a can be written as a product of left normed

commutators and the required result follows easily by induction on n.

4,8 Corollary: Let a = [%X1’¥A2’° ,ﬁxc] and suppose that An = if Fhen
(zl+1)
a r(\; n [,%l,%x ”}\{/X ’°"‘j?\5)\ 9,}\5)\ "‘°°),}\{J)\ ]-l
Ian_l\\{l} 1[T]-l 2[T]-1 \ (n—l)[T]-l n+l c
4,9, Defimition: (1) The mapping Ln from {6 : £ .7 Z} to the set

of left normed commutators of weight n is defined for each positive

integer n as follows !

B ="l oL
n

He" Z Ln—l’%ne
n-1

Tf wenigr el

D
—
|
—
D

1.

if ¢ '18'a functlion frem M to 'Z where Zﬁ €M I will write

@Ln for o 7 Ln°
n

Clearly every left normed commutator of weight n can be written as

eLn for some 6 : 2 > Z and ean = ean if and only 1f~

e1‘2 g e2‘2 :
n n

(id) If a is a left normed commutator of weight n and

a= eLn theh, for each - 1 e Zn’ the ith entry of a 1is defined as Xig°
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(GlatsL)) The set of (*)-basic commutators is defined as follows.

: S el ; ; ar
If r is a finite repetition pattern, that is a function: Z ~ Z

with only a finite number of non-zero points, the (%*)-basic commutators
with repetition pattern r are:
(1) the basic commutators with repetition pattern r if
i o 1 for all. 1 & &
G0 the left normed commutators with repetition pattern r

and first entry r%j {E- 2= mind sidr =0},

4.10 Theorem: If B 1is the set of (*)-basic commutators of weight

then Bp is a basis for the Z-module yan(Ec)o

Proof: Yan(EC) is a free Z-module with rank equal to the number of
basic commutators of weight c, It is generated by the images under
o of the basic commutators of weight c. It follows from 4.8 that
i i B o
it is generated by Re

Witt's formula for the number of basic commutators with weight c

repetition pattern r 1is:

i ¢l u(d)
€ldeD W (—1—5)!
ieZ

where
D= %d : 4 divides™ ir, V1 e Z}

and u is the Moebius function.

and
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(Gee, for example (Magnus, Karrass, Solitar [10], Theorem 5.11, page 330),

Clearly 1€ ir = 1 for some 1, D= {1} and Witt's formula reduces to

3 (=il
il Gl
4 L ear
jeZ
But this is just the number of left normed commutators with first entry
X, and repetition pattern r. (The number of ways of arranging copies

of the generators other than X1 in order with the requisite repetition

pattern.)

It follows that the number of elements in BQC is equal to the rank

of yan(Ec) and that Bp. 1s a basis.

4,11  Definition: (&) A (*)-basic commutator is type (1) if it is

basic; type (2) 1f 1t 18 wnot;
(Glat), The (*)-basic commutators are ordered as follows:
The type (1) commutators have their usual ordering,
The type (2) commutators of a given weight and first entry have

an arbitrary ordering.

The type (2) commutators of weight w are greater than the type (1)

commutators of weight w and less than the type (1) commutators of

weight w + 1.

ILiE ay and a, are type (2) commutators of the same weight, w

say, and if

Whh o
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o}
'_I
Il
D
—
[}
]

5 ezLW and lel < 162,

“((talat) An expression in én is a(c,n, *)-basic expression if it

is of the form:

where m is the number of (*)-basic commutators of weight at most c
in én’ fojetthale e bi is the monotonic increasing bijection from Z+
to the set of (*)-basic commutators in én and the 61 are integers

o

(possibly zero, in which case bil = %)e

4,12 Theorem: For each element, a, of én and for each dinteger 'c,

there is a unique (c,n,*)-basic expression b such that a g 9

Proof: By induction on c.

If ¢ =1 then the set of (*)-basic commutators of weight at most
chis just %n and Qngc is the free abelian group freely generated by
Xn and the result follows. Suppose w > 1 and the Theorem is true for

all e < w.* qlet bl be the unique (w-1,n,*)-basic expression for which

a b

N o
w-1"1
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Then

an blal,

where a, is an expression of weight at least w, since it is

i

in the kernel of %W_lo
It follows from 4.10 that
§

il
1 (Bigw)

ale &

n=:s

i
where m is the number of (*)-basic commutators of weight w in

én’ B g o = Bi is the monotonic bijection from Zm to the set of these
commutators and the Gi are integers.,

IERnfolillowsh Ehiat

which is (w,n,*)-basic.

Now suppose

Then

SO

~o =
bl =0 b2 and bl b

by the inductive hypothesis.
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Thus

m i m i
(15, TG

andys by 4,10, 1t followsythat

o
Il

i ¢ Fomamldien 42 e Z
il m
which proves the expression is unique.

4,13 An Application, The result T will prove in this section is now

well known, independent proofs having been published by Levin [8] and by
Kovédcs, Newman and Pentony [7]. This, f£hixd, proof is included here
to illustrate the use of *-basic commutators.

Let c¢ be an integer greater than two and let G be the group of
permutations of Z;\{l}

Let

& (o)

a =0 ([§1,§2,090,§C]o*) -

It is obvious from the antisymmetric nature of a that ap 1is a law
in Fc 2(§c)o Since the factors of a are all different (*)-basic
commutators it is equally obvious that ap . is non-trivial. Thus

ap is a law distinguishing Var(Fc—Z(Ec)) from Eca

4 1k, The following lemma will be useful for strengthening the result of

Chapter 3.
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Lemmas Let c¢ be an integer, greater than 4, let ) be a partition
@f e nrith Ay S Nand Ay = 2 and let D be a diagram associated
S ENASE BUCHE R SR =18 2D = (2,1), 3D = (1,1) and 4D = (1,2),

then Pc(éc)g(D)Qc ST @I 1 v 20

Proof: First note that the top part of D can be drawn as follows

] el
3 b 1]
1]
2 9
Let a = [§1,§2,oou,§c]o I will show that a8(D)%C LR

POt

8
I

(c=1)! and let bl’b2’°°°bm be the *-basic commutators

with the same repetition pattern as a. For convenience let a = blu

For each permutation 1 of ZC define the integers

6l,r’62,1’°“’6m,r y
m Gi

dr* = ot Tt
cq

I will show that
) D DU T
0eC(D) peR(D) 2P
which means that
&(o0)
* %
1 (ap*o )gc #1

oeC (D)
o} ER(D)
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which in turn means

il (acp)g(O)QC -1,
oeC(D)
peR(D)
Note -EHatrdfilpl e dRM), v & ¢ C(D)2rand m e z, are such that
mpo = 1 then mp = 1, which means m e {1,3,4}.
Thus, for all o ¢ C(D) and all p e R(D), the collecting process

iven in (orollary 4.8 for moving x to the front of ap*y,* will
g a1

only affect, at most, the first four positions. This means that

61 g # 0 wonlyfifetipgo=eirh forsaldl  i-rgreater than “4.- "“Sinece
Nl

o e C(D), i and ip must be in the same column, but p e R(D) so i

and ip are in the same row. Since D 1is one to one it follows that
fgf=nd sandrhencerthat ¢dig = 13
We have proved that, if o e C(D), p € R(D) and 61 s # 0 then
)

ip = 10 = 1. This in turn means that

$Ga)s; = ] ] 60)s

RO R D) P9 5eC(D)) peR(D)) P

where

SR :

The sum on the right hand side can be readily calculated and is, in fact,

6, as promised,
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4015 WNTheosems, iliets ¢y wandy netbelpesitive integers such that c > w,

2wi=2n + e +e2s0and aw> o 7.

Then

((Vaan(Ec))’A I'—\lw) vEa< Vaan+c-w(Ew)»/ N1

where the inclusion is proper.
In fact if m is an integer, greater than or equal to ﬂgi, then there

is a law of weight w in F_(N ) which is not a law in F_(N ).
n =c m =w

Proof: I will first prove the second statement and then show it implies the
ESESIER
w=1

Let m be the smallest integer which is not less than Rl

Define a partition A of w as follows.
Al = 3, Xi = 2. for ali.gl - suchuthat - 1 < 1 <m

2. if w is edd,

m |1 if w is even.

It is easily checked that A is in fact a partition of w into
m parts,

Let D be a diagram associated with A such that 1D = (1,3),
Phs= (22d96F 8D = @Jl)) wand 4D 5 (42).

Let

o = Rjéw)g(D)go
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By Lemma 4.14 o is not a set of laws in EW and hence, by
Lemma' 2.3.8 is not a set of laws 'in F (N ).
m =w

On the other hand

m
g Ayl 2(m-1-n) + b= k, say.

If w is odd, k=2(m-n) =w-1-2n=c-w+1,
and, if w is even, k = 2@% -n-1)+1=c-w+ 1l so, by Theorem
3.11" g “1s a set of laws in Fn(Ec) and the second part of the statement

is proved,

3.12
By virtue of it now suffices to prove that n + c - w z’wzl
By hypothesis w=2n+c-w+ 2> 2n+ 3 so
oy w-3
s N TR
w-3 w-1 ’
But n+c-w=w-n-2>w- il 2 = = and the proof is complete.

4.16 Corollary: Let c be a positive integer, greater than 7, and

let w and n be defined as follows

o . :
— =20 f e disieven,

w=c -1 and n

2
w=c-2 and n = E%l =3 4f e ds-odd.
Then (Var(Fn(Ec)) A Ew) vV N _, is a proper subvariety of

Var(Fn+c—w(§w)) % Ew—l°
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This Corollary disproves the conjecture

Var(Fn(Ec)) A Ec—l = Var(Fn+l(§C_l))ﬂ

90+
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5. The Laws of Fn(gc) forilarege 'n.

5.0, In this chapter I will show that, provided n is sufficiently
large the laws of Fn(Ec) obtained in chapter 3 are the only laws of
Fn(gc)o

I will need results from all the previous chapters to do this.,

5,1 Lemma: If o 1s an expression of weight w and i 1is an integer
such that wti(%?_i 1 and if ¢ 1is the endomorphism of A given by

x5 LE e

o
{

Sopie] vl 2 Lo

then wt(ay) > wt(a) + wti(a)e

Proof: The proof is by induction on height. If ht(a) = 1 the result
ile) iEreahvalaib,
Suppose that a is an expression with height greater than one and that
the Lemma is true for all o such that ht(a) < ht(a) and that wti(a) = 1
There are three possibilities.

(i) a=a where wt(a) = wt(al), wti(a) = Wti(al)’

]

(s1sL), a=aa, where s wt(a) = mih{wt(al),wt(az)},

wti(a) = mih{wti(al),wti(az)},
(iii) a= [al,az] where wt(a) = wt(al) 4 wt(az),

wti(a) = wti(al) +—wti(a2)o
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Suppose, for example that (ii) holds. Then

wt (ay) min{wt(alw),wt(azw)}

{v

min{(wt(al) + wti(al)),(wt(az) + wti(az))}

|v

min{wt(al),wt(az)} + min{wti(al),wti(az)}

= wt(a) + wti(a) as required.
The other two cases are even more straightforward,
5.2 Lemma: If a 1is a non-trivial basic product of commutators in

én’ each factor having weight at most c¢ and if ap . is in the kernel

of every homomorphism from Fn(Ec) to Fn—l(Ec) then

wt. (a) s/1, 'or all 1 e 2.
il - n

Proof: Suppose there exists i e Zn such that wti(a) =0, Let

Y be the homomorphism from én to én—l given by:

§j TETL < i <ol
ﬁj > % R =
ﬁj—l e, > s A,

Clearly, if o is a commutator,

ay

RS
=

alg7 wti(a)'i il

Il
Q

and ay e Wti(u) = 0,
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(This can be formally proved by induction on wt(a), using the fact that

[al,%] Y [%’QZ] " % for any 0150, € éo)

S
n &
a= 1 bkk
=1
then
n Gk
ay v I b, =a, (say),
@ ety ke 1L
where
(
0 1lst Wti(bk)=i 1,
Gk =
Sk stat wti(bk) =0,

Clearly a; is a basic expression in én-l and, since
0 = wti(a) = mln{wti(bk) : Ek # 0},

it follows that at least one of the 6k is non-zero, soO a; is

not in the kernel of R
g
1 . .
Let y' be the homomorphism Fn(Ec) > Fn_l(gc) induced by V.

By hypothesis ap ¢ Ker(y') but

R i

a contradiction which concludes the proof.
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5.3 Lemma: If a is a left normed commutator of weight w

and i 1is an integer such that
a= eLW, wti(a) =Sl sand | 19 # 1,

and if ¢ 1is the endomorphism of é generated by

$f hog 1
[x.txk] e

where j, k are some elements of Z, then

— L. o o
Py . ) Ny /
) T A

by S UE b il

where 8, ¢ he ] if h = ie"l,
k Gt b g™ j 2
(hetdp 12 HEGT 412 < h,
L £

; ; gl
and 6, = (18l 19l + 1)e,
that is 62 is defined in the same way as 6 except that the
pesitions of j amd 'k are reversed.

5 A | ‘o=
Proof: By inductionon. w - if . If w= 16 l, then
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ap = (ol . Ig,ox 10,

s

1oL 1 o%i0%

s
wtl 1oL, g akeaBy

R

Lor1@olp1

ANg
wtl "1 wtl

Suppose now that c¢ 1is an integer, greater than zero, and that
the Lemma is true whenever 0 < w - ie-l <icy Suppose that o
is a left normed commutator, o = ¢Lw, wti(a) = 1 ‘and that

w - i¢_l = C,

Define @, ?E in the same way as 6, and 6,.

Then we have

wy = [‘PLW_lw,}mcw?],

-1
N " . . .
A [¢ELW(¢%LW) ok ¢]? by the inductive hypothesis,

and-Lemma—45—(idi)-
-1
V;-l\:l [?J‘LW,?\E(w-l-l)p]]. [(PZLW’%(W‘*']-)?Z] p]

|
=l Wl

e
5,4 Lemma: Let n,c be positive - integers with n > 3 and n > 9 and

let a be a (c,n,*)-basic expression such that

ag ¥ = 1.~ for all i 3 Fn(EC) s (Ec)°

n-1
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Then

wt (a) bl -
Proof: By Lemma 5.2 we know that

Wit ()R s aislh S & 7
kil - n

s

and it follows that

(e
wt (a)Fs =t =5
2

me mge
‘Let a= 1 bil where bl,aw,bm are (*)-basic commutators and
i=1
suppose wt(a) = w < c, Let X = min{z : 8C # 0} then clearly
wt(bx) = o2 @ gl Wti(bx) >l fer all i e Zno For each

k. Al put 1., = {1 3 Wti(bA) =k}, Then

k

g
il

wt(bx)

n
izl Wti(bx)

TR
|l
=11t k

{v

|I1| + 2(n - |Ill)

2n - |Ill

c - lI

Vv

1l

(w+l) = |I

v

o

L
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Hence ‘Ill > 28
Suppose ¢ = mip{ii} then, by definition b, is a left
normed commutator with first entry %aa
L =
et b)\ e)\LW i
Now bx can be regarded as a string of symbols each chosen

from §n’ the first being x,  with X being repeated

2
Wti(bx) times. It will be necessary to consider the relative
positions of these symbols and towards this end I introduce the
following terminology.

Two integers, 1 and j are adjacent in bx if there are

integers, k,f2 < w such that |2—k| =1 and kex =1 and

Intuitively i and j are adjacent in bx if one of the

sequences . S walll o gL R e ek L 0T In bxo

2o Xy Xy

I will prove that there are integers r,s,t in Zn such
that r e I, &,r,s,t are all distinect ‘and no two of r,s and ¢t
are adjacent.

This part of the proof is messy being based on consideration of

each of the following four possible cases;

s ) IIl| A,
G |Ill = 3 and the two elements of Il\\{g} are adjacent,
(111)  |I;| = 3 and the two elements of I,\{g} are not

adjacent,

|v
o~

(iv) |I]_|
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Suppose |I 2, set r equal to the element I\ el

1l

Then since wtr(a)

1 there can be only two elements of Zn which
dre adjacent tor. Let the set of these elements be R, Let s
any element in Zn\\({g,r} Ur).

W
Now: i2n=1 > e =SS0 gy > 2 + 2|I2| + 3(1231111)

2 20| B = 2 1)
= 3n - [IZ| - 4,
so |IZ| > n - 3, but clearly |Iz| @m0 =2, so |IZI =n - 2,
It follows that wts(a) = 2 and that there are at most four integers

adjacent to s in a. Denote the set of these integers by S. It

follows that
ey e L B WL S| s 90 = n,

so that there exists t e Z \ ({g,1,s} U R U S) and the result
is proved in this case,

Now suppose case (ii) applies. Take one of the elements of
Il\ sase e, Let the set of integers adjacent to r in bx be

R, Clearly |R| = 2,

This time we have

2n-1>3+ 2|12|.+ Sl = 7

SO |12|,>=n-5°

be
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Now at most one element of {£,r} U R is in I, so we can
choose s from 12\({g,r} v R). Denote the set of integers adjacent

to 8 . in bESUBVNNSCEEEThen |S|‘;4 so that

| e, e s FIDBRICES| < 9 < n

and we can find a t which satisfies the required conditions.

If either case (iii) or case (iv) applies there are at

least two non-adjacent elements in Il\{é}o
If R and S

S are defined as before,

e el AR sl Sl T <y

and we can find a t to satisfy the required conditions.

Returning now to the main proof let r,s,t € Zn\{g}be three

distinct integers no two of which are adjacent in bka Let
N
é;—l be the subalgebra of A generated by }én\ {;Er}o Let ¢ be
. * .
the homomorphism from én to én-l given by
r .f I3 #
Xy i AV 3 U
X [ xd
Al
[ﬁs’ﬁt] LTI =
Let F;_l(__lxjc) be the subgroup of Fn(EC) generated by X\ {xr} ;
and let y' be the homomorphism from Fn(lic) to F:_l(l_\l__c) induced

by ¢ and let ;ﬁ be the isomorphism from F:;_l(lic) to Fn_l(l;lc)

Call one 7T and <he othey

omd sucl 4,1 Té’I,
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generated by

X 3 (R -

3 g el s a2
i-1

Then, by hypothesis, ap . is in the kernel of wwﬂ, which means that

1= agcw'¢ = aw%c¢o

But @ is an isomorphism, so

1= awgc, aEasil

(eli(aV]

and hence ay ;11

Now, by Lemma 5.1.

o
A

wt(boy) > we(b,) +wt (b)) Viez
i,Wt(bi) + 1

so by ~9 1 unless wt(b ) <w and wt (b ) =w+1- wt(bi)o

iEEsfolllows  EhiaE

m gi
1L =
- 6;1 ay izl b,y
m gi
= 1T (b,y)
S
m' 51
o
w+l E (b; ¥)
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{] S & s s .
where m max{i : wt(bi) w} and 51 O£ Wtr(bi) =L,

Nowpsfor e <id i< m'; b, is a left normed commutator of weight w,

By Lemma 5.3.

-1
~
b e e
( =)
QIR < (e <0
il - 4
where ) 5 0 [ s ity S A rGTl
dig, 1 il
t {F g = 19,7 +1
it
(2—1)ei if v&+ 2 < h'<w+ 1
| i g
and
’ -1
(26. LRl S E O
i — i
6 L t 1f g =re.t
o Al i
s if g =re 41
L
L(SL—l)ei if 1o+ 2 = 2wkl
Let B, . be the (w + 1, n, *)-basic expressions which are given by
bl
~S
Al L e
and let
m" " F
B = %f]\: ; o F'l\: n p&'L’J’k
o =)

where 81’°°°’8m" are the (*)-basic commutators of weight w + 1 in A -
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(The product of %'s at the front corresponds to the commutators of
weight less than w + 1 which will have zero exponents.)

Suppose L

ek,l MR o Buo We will now find those ordered pairs

(G Zn, X Z2 which satisfy the condition gidi,j,u # 0,

The process of collecting left norme, commutators described in 4.8.
clearly preserves the repetition pattern. It follows that if Gi i # 0,
3J 9

then rep(ei,jLw+l) = rep(ex’le+l)g Hence 1 = th(ei,jLw+l) = th(eiLw)

= th(bi) by the definition of 6, . and it follows that bi must have

weight 1 in o
g 55
£ th(bi) =1 ufier some L .< E .then 1 <A by the definition of
the ordering of (*)-basic commutators. Hence £ = min{2 : th(bi) = L)
and so g = lei =NilICTR It follows that 6 IL is (*)-basic and

153 it ) warl

hence that ei,j = ex,l°

As we observed before, the fact that Ei is nonzero implies

that wtr(bi) = il

Suppose that j = 1 and that re;l = re;l. Then re;1 ar I 3_r6;l + 2,
=i -1 -1 :
so (re, )eA = (rei k 1)eA,1 = (rei + 1)91,1 = t and, since r aud
t are not adjacent in bk’ it follows that rB;l =i re;l, so that

il

- =1 il
(rei - l)eA = (rei )b

i, 8 (59, B850y 1% 18
Hence s and t are adjacent in bx, a contradiction,

= 29 ]
Similarly, if we assume rexl < rei and j = 2, we obtain

(rei)ex = $ and (rei - 1)ek =t
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and if we assume rex =R rbise S swerobtain
(refle ) =
i

and

-1
(rei e 1)eA

all of which are contradictions.

Finally if we suppose that re;l = 16 : we find that j = 2 and

D=0

% X that igey if= 21

Hence
w2

iZl _‘]Zl 5iai:j s H

o
]

But we chose )\ so that 6A # 0 and we have a contradiction which

[
0

proves that wt(a)

5.5 Theorem: Let n and c be positive integers such that

ne— %— — N T A S Then

Fn+l(5c—l) & Var(Fn(Ec))"



104.

Proof: Let K be the set of elements of Fn+l(§c) which are in the kernel

of every homomorphism from F (Ec) to Fn(ch)o

nt+l
Suppose | is a homomorphism from Fn+l(§c) to Fn(EC)O ]
induces a homomorphism from Fn+l(§c)/K to Fn(I;IC)n The intersection
of the kernels of all homomorphis%ffrom Fn+l(§c)/K to Fn(gc) oy
induced in this way is clearly trivial. It follows that
F, (M) /Ke Var ECN).

But, by Lemma 5.4, K & YC(%+1(EC»Q It follows that the natural

epimorphism from Fn+l(Ec) to Fn+1(§c-l) induces an epimorphism from

Fn+l(§c:)/K 0 Fn+lq\-=1c—l)’ 2 Fn+l(§c—l) e Var(Fn+l(1§c)/K)‘--:-: Var(Fn(Ec))'

5.6 Corollary: I1f n and ¢ amw positive Integers such that- n > %»- i

and n > 8 and w 1is a positive integer less than c then

Fn+c-w(Ew) - Var(Fn(Ec))°

5,7 Theorem: For each pair of positive integers i and j such that

i > j define

I O U 1.4 6Dy,
) wo~i
WE L N e DeA
j w,it]j-w A
where A is the set of partitions of w into more than m parts and
W,m

A is the set of standard diagrams associated with .
A
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Let n and c¢ be nositive integers such that n > %-— I and

il 37 Then the set of laws of Fn(gc) is the fully invariant isolated

subgroup of F generated by [xl,xz,ooo,xc+l] and Un :

?

Proof: Let G be the fully invariant subgroup of F generated by

[xl,xz,n.o,xc+l] and Un,c' We know, from Theorem 3.11 that every element

of G 1is a law of Fn(Ec) so it is only necessary to show that every
ey @i @ (@Y ) alg alsl (@
LN=C

Define the weight function, wt, on ‘F by

ol At s S a Wil awin Ew EerENattIE Sy 7
wt(a) =

max{w : a 1s a law in N } otherwise.
=w-1

It is obvious that every law of Fn(gc) that has weight at least
@ ap Jbakg by (@

Suppose that 1 <w < c + 1 and that every law of Fn(Ec) that has
weight at least w+ 1 is in G. Suppose that u is a law of Fn(gc)

and that wt(u) = w.

Theorem

By Corellary 5.6, u i1s-a law in Fn+c—w(Ew) and, by Lemma 2.3.9 there

exists a element v of F, which is a consequence of [xl,xz,nnn,xw+l]

and so has weight at least w + 1, and an element uy of G such that

Since u and u, are laws in Fn(Ec) it follows that- V is and hence
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by the inductive hypothesis that v € G which means u e G.

5M8" MCorollary:®™let" e} w and” n" :be positive integers such that

(]
i 1% SnWesgENand ey > W,

Then (Var(Fn(Ec))A Ew) = Var(Fn+c-w(Ew))°
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6. Two Conjectures Regarding the Laws of Fn(Ec)°
6.0 The following conjectures arise out of the results of Chapters
3, 4 and 5. They provide, I think, a convenient way of summarising the

results of those chapters.

6.1 Conjecture: If ¢ and n are positive integers such that

e no 2 then
(Vaan(Ec)) AEc—l = Var(Fn+l(§c_l)) (S0

if and only 1f either (1) ne> %{c-3)

or @i e'="7 and., ' n = 2.

Evidence: Corollary 5.8 shows that (6.1.1) holds if n > 8 and
n >-%(c—2). . Corollary 4.16 shows that if c¢ 1is even and
n =-%(c-4) then tH@6 I 1) s net true: Arguments similar to that
in Section 4.14 but using different partitions should be capable of
eliminating smaller values of n. This would mean that, in the case
where c¢ 1is even there is only one outstanding possibility, 7= -]2-'--(c-2)°
Thigwgs surprisingly small considering that the main lemma of (Chapter 5
has a little less finesse than the average stampeding elephant.

If ¢ 1is odd then the gap is rather larger.

The main reason for the conjecture is a belief that the laws obtained

in Theorem 3.11 generate all the laws of Fn(gc) for the relevant

values of n.
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i
Suppose then that c¢c > w > n > §(C-3), and that A 1is a partition

of " n' intel ki Spartstwherer 'k.>an and that

k .
z Ai-i c-w+1 &by )
i=n+l
Then suppose further that xn+l'i 2, that is xi-i 20 Foriid st ned il
Then
k n
: z Ai =w - .z Ai Siema 2w = € ¥ 34281,
i=n+l i=1
which is a contradiction since we assumed An+l-i 2. Thus the

only partitions of w satisfying (6.1.2) are those whose n + 1th

part is ene. Suppose A 1is such a partition then

k k
R S T e GO
i=n+2 i=n+1

Thus the laws corresponding to A will be laws in Fn+1(N X

=c-1

It follows that, if we assume that all the laws of Fn(gc) are

generated by those given in Theorem 3,11 then

Var(Fn+l(1;]c-l))c-E Var(Fn(Ec)) g I;Ic-l

when n >%—(c-3)° Under the same assumption the reverse inclusion is
easily obtained, and the sufficiency of condition (i) is plausible,

Now suppose that n < %-(c—B)o Define a function X from zn+l

CORYZ by,
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1)

(c-1) - 2n

i\ 2R el S s ch that 2 =k el

Clearly 1) is greater than 2 and A 1s a partition of c¢ - 1 1into
n+ 1 parts. By Theorem 3.11 the laws associated with )\ are laws in
Fn(Ec)° By Theorem 2.3.9 they are laws in Fn+l(§c—l) only if they are

laws in EC_ In section A.4.2 of the appendix I indicate why I believe

1&
this second possiblity only eventuates when ¢ =7 and n = 2, This
is the justification for my belief that one of conditions (i) and (@)

must hold whenever(%elon does.

6.2 Conjecture: The laws given in Theorem 3.11 do not, in general,

generate all the laws of Fn(EC)D

Evidence: My main reason for believing this is a feeling that the proof of
Lemma 3.10 can be made even more horrible. Briefly this lemma uses

the fact that there are only n expressions of height one in

én which means that any homomorphism: éw = én must either map two
generators to the same expression or map a generator to an expression

of height greater than one. There are approximately n2 expressions of

weight 2 in ‘én and it is possible that, when n2 < w, this could

become important.
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Appendix

Categories Multiplicities and Things.

A.0. Chapter 2 stems largely from a paper by Higman [6]. The major
changes are that where Higman deals with varieties of groups of prime
exponent I have dealt with torsion free varieties and that while Higman
uses categoric concepts I have avoided them.

The categoric approach has the advantage that it avoids the computat-
ional detail of Section 2.3 and gives a much more understandable picture
of what is happening. At the same time the categoric approach needs a
fair amount of preliminary work to translate the varietal problem to a
categoric one. This appendix is included by reason of the first
of these two considerations and is an appendix by reason of the second.

To some extent this appendix duplicates work contaired in Stewart's
BhiD: Thesis [12]): However Stewart's treatment of some aspects of the
relationship between functors and varieties is rather terse and I have
found it useful for my own understanding to expand his account considerably.

Higman confines his remarks to nilpotent varieties. In Section A,2
I show that the relationship between functors and varieties is more general.
I doubt that this generalisation is useful but think it is interesting.

In Section A.3. I give an indication of the way in which A.2 can be
applied to nilpotent varieties and, in particular, to its applicétion to

nilpotent varieties of prime exponent. The details of this application



are well covered by Stewart and I have given only a brief discussion which
attempts mainly to show the relationship between Higman's paper, Stewart$
thesis and my thesis.

In Section A.4 I discuss three ways of applying Higman's technique
to torsion free nilpotent varieties, my own, Kovacs and Newman's and
the way I think it should be done. I also indicate the reason behind

one of the conjectures of Chapter 6.



A3,

Al L, (i) Sbhefipétion. “fArconcrete category K "ds’'a class of elements

P called the objects of K, together with two functions o and HomK;

This first funetion® o assigns to each object of K a set called the

underlying set of that object. The second function Hom,6 assigns to

=

eachypalredficebjectaye (AJB)  say,” a subset HomK(A,B) o f the functions

from Ao to Ba, in a way that satisfies the following conditionms.,

(a) If A is any object of K the identity function on Aa

denoted lA’ is din HomK(A,A)o

(b) If A,B and C are any three objects of K and

8 ¢ HomK(A,B) and.c'p & HomK(B,C) then 69 € HomK(A,C)C

The elements of HomK(A,B) are called the K-morphisms (or simply

the morphisms) from A to B.

(1)) Convention: Since the only categories I use are concrete 1
will henceforth use the term category to mean concrete category. IL ataial

normally identify objects with their underlying sets, dispensing with the

mapping o.

I1f K is a category I will writess Ade, K to mean ‘A" 15 ‘an object of
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A subset B of an object A of a category. K 1s a subobject
(in K)*"ef A1E "B 18 an object of K and the inclusion mapping of
BAMGEm, A" S IR HomK(B,A)o

A.l.2. . ..Examples. The following examples of categories are included here

partly to elucidate the definition but mainly because they will be used
later in this appendix.

(1) Every variety of groups can be regarded as a category whose
morphisms are the group homomorphisms.

(1) For each variety ¥V the class of V-free groups of finite
rank together with their group homomorphisms form a category which I
will denote by EO(Z)O

((Tirlat), For each commutative ring R the class of R-modules together
with their R-homomorphisms form a category which I will denote by R.

(iv) For each commutative ring R the class of free R-modules
of finite rank together witﬁ their R-homomorphisms form a category which

I will denote by 500

A0 3 " Definition. A functor, f say, from a category U to a category

V 1is a mapping which assigns to each object A of U an object f(A)

of 'Y and to each morphism ¢ in HomU(A,B) a morphism f£(y) in

Homv(f(A),f(B)), in such a way that



(L) f(lA) =1 fior jal I ghiker il #paand

£(A)
(ii) whenever 6 ¢ HomU(A,B) and ¢ € HomU(B,C) then

flop) = fleDIp).

A.1.4 Examples. The following functors will be useful later.

&) For each category K there is an identity functor
which fixes the objects and morphisms of K. I will denote this

functor by egu

(id) There is a functor from Ec to Z which maps each group in

N, to the cth term of its lower central series and each morphism
® € Ho A,B) ke € .
g mEc( ¢ ) YC(A)

(Lid) The functor ab, from 0, the category of all groups, to
Z, which maps each group to its commutator factor group and each
group homomorphism to the homomorphism it induces between the
appropriate factor groups.

(iv) For each commutative ring R there is a functor [c]R from
R toliR which maps each R-module to its c-fold tensor power over R
and maps each R-morphism to the R-morphism it induces in the appropriate
tensor power. Since the ring R will usually be obvious from the
dontext! I-will. dropsthessubseriptron - [c].

(v) For each integral domain R and each positive integer c¢ there

is a functor LC from 50 to 50 which maps each free R-module U to
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the cth component of the free Lie Algebra freely generated by« 4l

&i1:5 ¢.Definitdon. (1) Let U and YV be categories and o and

B functors from U to V. A ‘natural transformation frem o to B is

a mapping, ¢ say, which assigns to each object A of U a morphism
p(A) € Homv(a(A),B(A)) in such a way that the following diagram commutes

for every pair of objects A and B in U and every @ e HomU(A,B)O

¥ (B)
o (B) > 8(B)
] a(8)
a(A) B e e
(i1) Let U, ¥, a, 8, ¥ satisfy the conditions of (i), Then

¢y 1is called a natural equivalence, and o and B8 are said to be

equivalent, if y(A) 1is an isomorphism for all objects A of U; that 1s
if y¢(A) has an inverse in PMHV'?(A),a(A)) Eor ALl tsd e Us

(1) Ef alfy Vo, cbfye U ;nd V satisfy the conditions of (i)
and, for each A ¢ U, o(A) is a subobject of B(A) and y(A) is the
inclusion map of o(A) in B(A) then a is said to be a subfunctor of 8.
The subfunctors of a given functor are considered to be partially ordered

by inclusion.

(iv) e i, By U dnd V satisfy the conditions of (i) and

- y(A) is a epimorphism for all A ¢ v then B is a quotient functor of «a.
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A.1.6 Examples. €1) Let G be a free-nilpotent-of-class- c

group, freely generated by 8198590058 o Define a homomorphism

v(G) from Lc(abo(G)) to YC(G) by

v(G) : [gA oYZ(G),g)\ nYZ(G),mn,gX ¥,6)] b (e, 58y 200058, I
il 2 c iR 2 c

Magnus Karrass and Solitar [10] Theorem 5.12, page 337 show that this
homomorphism is in fact an isomorphism. It is not difficult to see that
it is independent of the choice of generating set for G and that, if

we let G range over EO(EC), Y 1s a natural equivalence from Lcab( to

¥ where both functors are here regarded as functors from N to Z.

=

((aist)) The functor ¥a regarded as a functor from Ec to

is a subfunctor of eN g
=c

(Gialal) The functor Lc from E to Z 1is a quotient functor of the

fumetor sle) from i1ZistoniZ.

A Alisy Defini tloms L 5A functor o from E to

<

18 an epifunctor if for

éachmobjecte (A of oY tothetands an object s B’ of U, 'such that o(B) 1is
Isomotiphiicite SARENPINE and .fof everyipair of oijects B and C of

U and every morphism 6 in Homv(a(B),a(C)) there is a morphism ¢ in

HomU(B,C) such that o(®) = 8,
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A.1.8 Example. dilie funcktor  Bby (reparded as.a functor from F (Ec) to

ZO is an epifunctor.

A.1.9 Lemma, Let U, Y and W be categories and suppese that o

is an epifunctor:from ‘U .to Y and that B8 is a functor from ¥
to W. Suppose further that the subfunctors of B form a lattice under
the obvious partial ordering., Suppose W has the property that whenever
ABe W, 6 is a W isomorphism from A to B and C is a subobject
of A then C6 1is a subobject of B

Then the subfunctors of Bo form a lattice which is isomorphic

to thel lattice of subfunetors of B,

: Proof. There is clearly an inclusion preserving mapping from the lattice
ofsaubfunctoxrs .of: B8 to the set of subfunctors of Ba given by. t + ta,
I will show that this mapping has an inverse which is also inclusion
preserving and the required result will follow.

In order to obtain the inverse mapping without invoking the
axiom of choice a certain amount of manoguvring is necessary.

For each quadruplet (B,A,8,t) such that Be ¥y, A e U, 6 is

an isomorphism in Homv(a(A),B) and t is a subfunctor of Bo define
£(B,A,8,t) = t(A) (B(e) < B(B).

Suppose now that B e V and Al, A2 are objects of, U with
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isomorphisms el and 62 in Homv(a(Al),B) and Homv(a(AZ),B)
respectively, Let t be a subfunctor of Ba and let ¢ be a morphism
in HomU(Al,Az) such that a9 = ele;lo Let. 1 and. § be the inclusion

maps of t(Al) and t(Az) in Bu(Al) and Ba(AZ) respectively.

Then f(B,Al,el,t) t(Al)B(el)

]

£(4;)1(8a(9))8(8,)

]

€At (@)18(8,)
< t(4,)8(8,)
= f(B,Az,ez,t)o

The reverse inclusion can be proved similarly.

Thus, for any object B of V and any subfunctor t of Ba there
is only one set in the class of all values of £(B,A,0,t) obtained by
allowing A and 6 to vary over all permissible objects and isomorphisms.
Denote it by £f(B,t).

The restriction we placed on W ensures that f(B,t) is a subobject

@f B(B) . Now suppose Bl and 32 BE¥ and Ue HomX(Bl’Bz)°
Let Al and A2

a(Al) to Bl and from u(Az) to B, respectively. Let ¢ be a
-1

U-morphism from A; to A, such that a(®) = 6,96, ket t be a

e U and let el and 02 be V-isomorphisms from

subfunctor of Bg=«.

Then f(Bl,t)B(w) = t(A1)8(91¢)

t(a,)8a(9)8(8,)

C f(Bz,t)a
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It follows that for any subfunctor t of Bo we can define a subfunctor

E&iiof B by

EX @B =SE(BE) 0 foriiall ¢ B & V.
Clearly

t* = t for any subfunctor t of Bo
and

(ta)* = t  for any subfunctor t of B8

and the proof is complete.
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a2, Varieties and Functors.

Acl.0. In this section I will be dealing with the relationship between

lattices of subfunctors and lattices of varieties. This section is
derived from Higman's paper [ 6] but is a little more general.

I will need a little of the notation developed in Chapter 1,
particularly the free groups F(V) and Fn(g) which remain distinct
representatives of their isomorphism classes. I will, of course, alse

need the notation developed in the first part of this appendix.

Aol Definition. (i) For each variety of groups, V the
functor eoé{) is the restriction of the functor ey to the category
go(g)o 1t is regarded as a functor from EO(Z) t; V.

(id) For each verbal subgroup, w, of F(V) v is the subfunctor

of eO(Z) given by
WO(G) = {ab : a e F(V), 6 eHom(F(Y);6)}

(Hanna Neumann [ 11], 12,31, page 5, shows that this is a functor when
V is the variety of all groups. The adaptation to relatively free
groups is trivial, as is the fact that Wy SO defined is a subfunctor of

eOsZO)
i) For each subfunctor, t, —of eoﬁﬁ t* 1is the subgroup of

F(V) given by
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tEes i EE @)
T n =
nez

t* “dis elearly fully invariant in F(Y) and hence verbal,

A.2.2  Eemma. IfE. £%.1s ‘a gubfunctor of eo(g) and 'w: 18 a verbal

subgroup of F(V) then

i = *
(1) E(B G =tk ) ¥ (D),
and
(1) Wy (D) =wflE (D,
Proof. Both parts can be proved along the same lines as 12.62 on page /

of Hanna Neumann's book [11]. I will prove only (i) which has slightly
less similarity to that result.
For each pair of intégers n > m > 1 define Telis to be the projection

homomorphism from Fn(Z) to Fm(z)’ that iis
X GRS e 7
2 m
il otherwise,

Then T acts as the identity mapping on Fég) and it follows

that t(m ) acts as the identity mapping on (t(Fn(Z)))f] Fm(Z)o

n,

Thus (£(F_ () N E @ e @).

The reverse inclusion can be obtained immediately by considering

the action of t on the inclusion homomorphism from Fm(g) to Fn(¥)<
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Thus t(Fm(Z)) = Fm(Z)(7 tFn(X) oWl ITERN: W > 1,

It follagws that

tE@) = U @@ eE,@n = @f (U e @)

nelZ
= *
E GOl e
A.2.3 Lemma, The mappings
(i) t » t*¥ for each subfunctor t of eO(Z),
and (ii) Wb, for each verbal subgroup w of (),

are lattice isomorphisms between the lattice of subfunctors of eO(Z)
and the lattice of verbal subgroups of F(y)n b, steees (L) g Ene

finverseron (i)

Proeof . Suppose w 1is a verbal subgroup of F(X)n

Then (w)* = [/, w, & @) = U, ¢ @/ w=w
neZ neZ

Suppose now that t is a subfunctor of eo(z) and Ehat | ‘e JE_ (1)
dhen: G "ds a . V-free group of finjte rank. This means that there

exists a positive integer n such that there is an isomorphism, 6 say,

in Hom(F (¥),G). Thus (£%),(C) = (t%),(F (V) (%) (6)

Il

t* 1 QDE
(ex ] F (@) s

t(F_(¥)) t(e)
t(G).
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Thus each mapping is the inverse of the other and, since both are

clearly inclusion preserving, they must be lattice isomorphisms.

A.2,4 Theorem, Let YV be a variety of groups, The lattice of

subfunctors of eO(Z) is dual isomorphic to the lattice of subvarieties of

V under the dual isomorphism
T Var(F(Z)/t*)
Proof. This theorem follows trivially from the preceding lemma and the

dual isomorphism between subvarieties of V and verbal subgroups of

F(Y).

Netes ' (1) This theorem enables us to find the subvarieties of ¥

without having to work with groups of infinite rank. That is to say it
puts into a categoric form the relationship that must exist in a sequence

of verbal subgroups

W iaFl(Z)’WZ-i FZ(X),QQO,wn'i Fn(Z),ugo

1

ifit is to be the sequence of the n-variable laws of a subvariety of V.

(ii) It is worth noting that this isomorphism does not hold for
the lattice of subfunctors of e(Z)o In fact e(¥Y) can have two
different functors whose restrictions to FO(Z) are equal, For instance

suppose V 1is torsion free and let 131 and tsy be the functors defined



t

eREW Bt liab

: G » {a :

A 15,

2aeY2(G), beG and b" =1 for some n e Z\{0}}

a € Yz(G)}o
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A¢3 The Varieties Between Ec and N

c-1°

From Theorem A.2.4 we know that the lattice of varieties between
Ec and Ec-l is dual isomorphic to the lattice of those subfunctors of
eo@$) which are subfunctors of it here regarded as a functor from
Fo(i,) to Eco Since e in fact maps FO(EC) to 50 it can be
regarded as a functor from FO(EC) to Z and, so regarded, its subfunctor

structure remains the same.

We will consider the following diagram.

Z9 5.0\ Z
< ~ o
L />¢//7 gqg 5
A ab. Y
ST Fo,N
=S

I have already observed that there is a natural equivalence from
Eah . B vy (8161 piheT)s
c e
It follows that the lattices of subfunctors of these two functors are
isomorphic. Furthermore, since ab. is an epifunctor both lattices
must be isomorphic to the lattice of subfunctors of LCo Finally there is
a natural transformation ¢ from [c] to LC which is obtained as follows.

Let U be a free Z-module of rank n, with basis UpsUssooosloo Then

Y(U) is defined by
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AU S 8 GBSl ol e s 8 VU T = | T |
g ho ikt c

A e 7

l’>\2’° @ n

It follows that there is an inclusion preserving mapping from the

lattice of subfunctors of [c] to the lattice of subfunctors of LC

and thence to the lattice of subfunctors of Wt

[c]

and

N
=C-

We have thus established a relationship between the subfunctors of

regarded as a functor from ZO to go and the varieties between Nc

c-1°

¢ . y A
All this remains true if we replace Ec by gc Em’ Ec—l by

1 A Em and #NZE Wby Rm where B  is the variety of groups of

=

exponent m and R.m Is the'ting Z/(mZ). In faet Stewart [12 ]

has pointed out that if V is any variety of groups, whose laws are V,

we can modify the diagram on page Al6 to obtain the following diagram

W S
Emfo EO(ECAEm) on(Egﬂéﬁ‘Z)
where R 0 is the category of free gﬁmwdules of finite rank where v
=m, =

is the functor G + G/V(G), yé is the functor which maps each group in

F.(N A B_. A V) to the cth term of its lower central series, the morphisms
= =C =m =

being mapped in the obvious way in each case.



ALLS.

There is a natural transformation ¢ from i to yév , oObtained
by setting ¢(G) equal to the restriction to YC(G) of the natural
epimorphism from G to G/V(G). It follows that there is an inclusion
preserving mapping from the lattice of subfunctors of i to the lattice
of subfunctors of yévn Since v 1is an epifunctor the latter lattice
is isomorphic to the lattice of subfunctors of yé and we have found a
relationship between the subfunctors of [c] and the varieties between

NI\ B ARy S AU EEA

<

o

If m is a prime then Rm is a field and Em is the category

,0
of finite dimensional R -spaces. If m> ¢ then: [ec] 415 completely
reducible and its irreducible subfunctors can be obtained from the
primitive idempotents of R.mSco

Stewart used this result to find the lattice of subvarieties of the

variety of centre-extended-by-metabelian groups, of exponent p (a prime)

and nilpotency class c¢ < p.
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A4, Three Approaches to the Torsion Free Case.

A.4.1. The functor [c], regarded as a functor from Z to Z is not
completely reducible and, in fact has no minimal subfunctors. Similarly
there are no minimal verbal subgroups of Fn(gc) in Yc(Fn(Ec)) and
no maximal varieties between Ec and gc_lu
However if we restrict ourselves to torsion free varieties between
EC and Ec-l’ which means isolated subfunctors of [c], we can find
a direct decomposition,
I have not been able to make the concept of isolation fit properly
into a categorical context, I have therefore, in Chapter 2, taken advantage
of the fact that a variety that is nilpotent of class at most c¢ , where
c is greater than 2, is generated by its free groups of rank ¢
This means that instead of having to consider the behaviour of
Y, on EO(EC) it is sufficient to consider it on {Fn(Ec) S e Zc}”
Having made this step the categoric notation is u%écessary and can be n /
replaced by module notation,
My approach in Chapter 2 was to show that if U is a free Z-module
of rank n, the lattice of isolated Endz(U)-submodules of U[C] was
lattice isomorphic to the lattice of EndQ(Q ®Z U)-submodules of
(Q ®Z U)[C] and to find the fully invariant subgroups of Fn(gc) in

vy (F_(N )) from there. In the process I effectively short circuited the
R

functor L., which was probably not a good idea.
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Asl .28 Kovacs and Newman approached the problem from the other end.
They formed the divisible completion of Fn(EC), (a group which is closed
under root extraction in which Fn(Ec) can be imbedded) and showed that
there is a lattice isomorphism between the lattice of fully invariant
subgroups of this group and the lattice of isolated subgroups of Fn(Ec)“
This construction is more complicated than simply tensoring a Z-module
with Q but has the following advantage.

Let the divisible completion of Fn(EC) be G. Then YC(G) is
a Q-space and as such is isomorphic to the component of degree c¢ in
the free Lie algebra of rank n over Q. Specifically let U be a
Q-space of dimension n, Then YC(G) = LC(U) andiy i Eiwe regard YC(G)
and LC(U) as GL(n,Q)-modules in the obvious way, then the isomorphism is
a GL(n,Q)-isomorphism., Now the GL(n,Q)-submodules of v,(G) are
the fully invariant subgroups of G which are contained in YC(G)Q

The minimal GL(n,Q)-submodules of YC(G) can thus be associated

el

with minimal irreducible GL(n,Q)-submodules of U and hence with
primitive idempotents of QSc which in turn can be associated with

partdi tiens tofim, Turning the process around we can associate with each
partition of QSc a set, possibly empty, of isomorphic irreducible
GL(n,Q)-submodules of YC(G)O In Chapter 6 I showed that it would be

interesting to know which partitions gave rise to non empty sets of irreducible

submodules when n = c.
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Brandt [2] has shown that in this case the character of the representation

of pELec,Q) affordediby LC(U) is given by

M t+-£ % u(d)sg/d
© .
die

where u 1is the Moebius function and sS4 is the trace of Md“

From this it is possible to obtain the multiplicities of the irreducible
representations corresponding to the partitions of c. Thrall [13] and
Brandt [2] have published these multiplicities for c¢ < 10. (Thrall's
table for c¢ = 10 is incorrect, the corrected table is published in
(85249 As we have seen we are interested in partitions which have non
zero multiplicity.

The partitions of c¢ into one and c¢ parts both have zero
multiplicity whenever c > 2, When 7 < ¢ < 10 these partitiens are
the only ones with zero multiplicity. The partition of 6 into 3 equal
parts and the partition of 4 into two equal parts both have zero
multiplicity. However the partition of 8 into four equal parts and that
of 10 into 5 equal parts have multiplicities 1 and 2 respectively. I
thus seems reasonable to expect that, when ¢ > 7, all partitions other
than the two extremes give rise to non trivial isolated fully invariant

subgroups of yc(Fc(gc)), which is the basis for Conjecture 6.1 on page 107.
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A4 31 The third possible approach to the problem of finding

isolated Z-modules is to let U be a free Z-module of rank n and
EoEMING) ®Z LC(U)U It should then be possible to show, using the approach
of Seectioen 2.1, that' this is isomorphic as an EndO(Q®Z U)-module to

Lc(Q ®Z U), and that the End

(Q B, U)-submodule structure of

Q Z

Q ®Z LC(U) is the same as the isolated EndZ(U)-submodule structure of
LC(U)O
If this can be done we would have an aproach that retained the simplicity ﬁ(
\

of Chapter 2 without blocking the use of Brandt's formula.



