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iv„ 

Introduction 

The substantive part of this thesis can be conveniently divided into 

two sections, the first consisting of Chapter 2 and the Appendix, the 

second consisting of Chapters 3, 4, 5 and 6o 

In a paper [6] presented at the International Conference on the 

Theory of Groups held at the Australian National University in 1965 

Professor Graham Higman developed a valuable tool for investigating the 

lattice of varieties between N A B and N ^ A B where p is a-/ =c =p =c-l p̂-vl // 

a prime, greater than Co AoG„R<, Stewart provided an expanded explanation 

of this technique, first in his MoSc» thesis and subsequently, and more 

fully, in his Ph,D„ thesis [12]„ In [12] Stewart applied the technique 

to find the lattice of subvarieties of the variety of centre-extended-

by-metabelian groups, nilpotent of class c with prime exponent p > Co 

Meanwhile LoG. KovScs and MoF, Newman found that the technn'̂ î e 

could be used for torsion-free nilpotent varieties, a torsion free variety 

being one whose free group of countable rank is torsion free. Chapter 2 

of this thesis puts some of their results on record. My approach to 

the problem differs from that used by Kovics and Newman. The relationship 

between the two approaches is explained in the appendix which also outlines 

a third approach which I think would be best. 

Chapters 3, 4 and 5 are aimed at finding out as much as possible about 

the laws of the free group of rank n in N^, denoted F^^-c^" 



The results of Chapter 2 are useful in this context, as Higman 

observed in [6]o 

Until recently not a great deal was known about the laws of 

F^(N^) when n < Co ToC„ Chau, in his Ph„Do thesis [3] found bases 

for the laws of these groups when n < c < 6„ Independent proofs have 

been provided by Levin [8] and by Kovacs, Newman and Pentony [7] that 

generates Fj^(N^) but that 

showed in addition that, for n < c - 1, Fĵ (N̂ ) generates a proper 
subvariety of the variety generated by 

Perhaps the most interesting of Chau's results was that 

obeys a law of weight 5, that is a law which does not apply to 

In fact he showed that the law in question is the law which distinguishes 

^3(^5) from which means that 

VarCF^CNg)) A N^ = Var(F3(N5)) 

This means that the laws of F^(N^) cannot be obtained by Higman's 

method alone, since it would only find the laws of weight c, that is 

the laws of VarF (N ) V N ^, On the other hand it leads to the n =c =c-l 
conjecture that, whenever 2 ̂  n < c 

Var(F^(N^)) A = V a r ( F ^ ^ ^ ) (1) N ^c-i 

which, if true would, together with Higman's results tell us a great deal 

about the laws of F^(N^) 



vi< 

In Chapter 3 I obtain a set of laws of F (N ) whose weight is less n =c 

than Co These laws are subsequently used to prove that (1) is true 

whenever n is greater than both ^(c-2) and 8 but is not true in 

generalo 

Chapter 4 develops a clumsy but easily used tool for commutator 

calculations, namely a basis for ^ji^Sc^ many of whose elements are 

left normed commutators» With the use of this basis I provide a 

counterexample for (l)o 

Chapter 5 uses the basis developed in Chapter 4 together with the 

laws found in Chapter 3 to show that (1) is true whenever n is greater 

than both •|-(c-2) and 8„ 

In Chapter 6 I state two conjectures which indicate the way in 

which I think the results obtained in Chapters 3, 4 and 5 should fit 

together„ 

I have preceeded each chapter with an introductory section, numbered 

noO where n is the number of the chapter, which gives a general idea 

of the main results of the chapter and how they are obtained. Towards 

this end they contain heuristic arguments which are certainly not intended 

as proofs0 On some occasions, where it seemed useful, I have included 

similar arguments in the body of the chapter. 
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Notation Used in this Thesis 

The following list is, obviously, Incomplete and there are 

probably some unfortunate omissionso I have attempted to include all 

symbols which might cause confusion^ 

Throughout this list the following conventions apply« 

n, m and c are integers, usually positive 

q is a rational niomber 

T and V are sets 

R is a ring 

N and M are R-modules 

V is a variety 

D is a diagram 

a is a permutation 

General Notation 

Z = the ring of integers 

z"*" = the positive integers 

Z^ = the first n positive integers 

Q = the field of rational numbers 

cj) = the empty set 
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T- V = {T: T e T and T V} 

T| = the cardinality of T, where T is a set 

f ^ = the restriction of f to the subset T of its domain 

q| = the absolute value of q, where q e Q 

n|m ; n divides m where n,m e Z 

[q] = the integral part of q where q e Q 

S^ = the symmetric group on n symbols 

Module Notation 

GL(n,K) = the group of invertible n ^ n matrices with entries in 

the field K 

Hom (M,N) = the additive group of R-homomorphisms from the R-module 

M to the R-module N 

End„(M) = Hom„(M,M) K K 
M + N = the external direct sum of M and N 

M fB N = the internal direct sum of M and N 

M % N = the tensor product of the right R-module M with the 

left R-module N 
fcl U = the c-fold tensor power of the bimodule U 
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1. Notation and Some Definitions 

1.0. Unless otherwise stated the notation In this thesis Is that 

used by Curtis and Reiner [4]. 

A notable exception Is that I will normally write mappings, 

Including permutations, on the right of their arguments whereas Curtis 

and Reiner write them on the left. Consequently I tend to be dealing 

with l,i^"modules and Ideals whereas [A] deals mainly with right modules 

and Ideals. 

The term algebra will denote a set with some algebraic structure on 

it, not necessarily a ring of vectors as in [4]. The terms group 

algebra and lie algebra have their usual meaning. 

I will use Z to denote the set of integers, z"̂  to denote the 

set of positive integers and Z^ to denote the set of integers lying 

between 1 and n inclusive. 

Unless otherwise stated the varietal notation is that of 

Hanna Neumann's book [11], one exception being that I have used double 

underlining in place of German script,thus N^ is the variety of groups 

nilpotent of class at most c. 

If G is a group is the c-th term in the lower central 

series of G. 

I will use Maclane and Birkhoff's [9] notation for describing 

mappings, that is: 

ij; : A ->• B means A is the domain and B the range of ip̂  

: a H- b means at|/ = b. 



2. 

In order to facilitate commutator calculations I haVe'adapted 

and adopted the notation used by Martin Ward in his Ph<,Do thesis and 

subsequently published, I have attempted to include enough i 

definitions and lemmas to make my treatment of this notation independent 

of the original. The rest of this chapter is included for this purpose. 

1.1. The Algebra of Expressions. 

X is some set with a biiection x : Z X. A is the free algebra 

freely generated on X by the operations of multiplication, commutation 

(both binary), inversion (unary) and identity (nullary), the only law 

being that multiplication is associative. 

I will denote multiplication by juxtaposition of the operands; 

commutation by [a,b], where a is the first operand and b the second; 

inversion by where a is the operand; and identity by 1, 

A is the algebra of expressions and its elements are expressions. 

If i is an integer x^ is the image of i under 

An elementary property of an algebra such as ^ is that there exists 

a unique function, from ^ to the positive integers (which I will call 

the height function and denote by ht) which has the following properties 

(i) ht(p = ht(x^) = 1, Vi e Z, 

(ii) ht(a"^) = ht(a) + 1 , Va e A, 

(iii) ht(ab) = ht([a,b]) = ht(a) + ht(b) -!- 1, V a,b e A 



n 
The notation II a. is defined recursively in the usual way, that is; 

i=l 

1 

x=l 

n n-1 
n a. = ( n a,)a , Vn > 1. 
i=l ^ i=l ^ ^ 

Exponentiation in A is defined in the following rather 

artificial way: 

a^ = 1, a^ = a, a ^ is the inverse of a, 

n n-1 a = a a 

-n -n+1 -1 a = a a 

Vn > 1 

It follows that a'̂ a™ = a"'"'̂  if nm > Oo 

The purpose of A is to provide an algebra in which commutator 

calculations can be broken down into small steps without the expression 

"collapsing". This is why it is equipped with only one law. As a 

result of this some care needs to be exercised when working in ^ since, 

for example, 

aa'^ 4 Sil4 a, [a,b] 4 a ' V ^ a b o 



lo2. The Free Groups; X is a set disjoint from X but also having 

a bisection, this time x : Z ^ X, 

F is the free group freely generated by X and, for each 

variety V, F(V) is the V-free group freely generated by X., 

For each integer i I will write x^ for the image of i 

under x. 

It is worth noting that in order to evaluate the product of two 

elements of X it is necessary to know in which group one is workingo 

This should always be clear from the context„ 

lo3o The Homomorphisms If commutation is defined on the groups 

F(V) and F in the usual way, that is 

[a,b] = a ^b ^ab 

then they become algebras of the same type as ^o Since the only 

law in A is also a law in any group it follows that the mapping 

- Vi . z. 

can be extended into a homomorphism from to F which I will denote 

by and, if V is a variety, to a homomorphism from ^ to F(V) which 

I will denote by I will denote ^̂ ^ by ^^o 

The congruence relations and are defined on A as 

follows: 
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a b if a^ = b^ 

and a ^ ^ h if a^^ = b^^^. 

I will denote by , N c 

1.4. Definition; Z^ = {i : i e Z, 1 _< i _< n}. 

X = {x, : i e Z }, X„ = {x. : i e Z^}. '\/n n n i n 

A^ is the subalgebra of A generated by X^, 

F and F (V) are the subgroups of F and F(V), respectively, 
n n = = 

generated by X^. 

1.5. Definition; The functions weight (denoted wt), and weight in 

X (denoted wt^) from A' to Z"*" U {-»} are defined recursively on 
<v i 1 

height as follows; 

w t ( p = " ; wt.(l) = ~ , 

wt(x^) = 1, Vj e Z ; wt.(x.) = 1, 

wt^(x.) = 0, Vj e Z \ { i } , 

wt(a~^) = wt(a), Va £ A ; wt^(a"^) = wt^(a), Va e A, 

wt(ab) = min{wt(a) ,wt(b)},Va,b e A; wt^(ab) = min{wt^(a) ,wt^(b) },Va,b e 

wt([a,b])=wt(a)+wt(b),Va,b e A ; wt^([a,b]) = wt^(a)-H7t^(b) ,Va,b e A, 
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(Addition and the partial ordering £ are extended to z"*" U {<»} in the 

usual way. "mln" in front of a set means the smallest element of the set.) 

For each a e A the repetition pattern of a, denoted rep(a), 

is the function from Z to z"*" U {«>} given by 

irep(a) = wt^(a). 

Note; The following results can be obtained by an obvious induction on 

height: 

(i) If a is an expression and i an integer then 

wt^(a) = °° if and only if wt (a) = °° . 

(ii) If a is an expression then 

I wt(a)^wt(a). 
IEZ 

It follows from these two observations that repetition patterns are 

either infinite everywhere or finite everywhere and that in the latter 

case only a finite number of values of rep(a) are non zero. 

1.6. Definition; An expression a is a commutator if 

(i) a £ X 

or (ii) a = [a^ja^] where a^ and a^ are commutators. 

An expression a is a product of commutators of length I if it is 

of the form: 
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S. 
a = n a.^ 

i=l ^ 

where each a^ is a commutator and each S^ e {-1,0,1}, 

(The possibility of S^ being 0 means that 1 can appear in a.) 

An expression a is a homogeneous product of commutators if it is 

of the form: 

£ g. 
a = n a , 

i=l ^ 

where each a^ is a commutator, each e {1,-1} and 

rep(a) = rep(a^) Vi e Z^. 

The set of left normed commutators is defined recursively on height 

as follows: 

(i) x^ is a left normed commutator Vi e Z. 

(ii) If a is a left normed commutator so is [a,x^], Vi e Z. 
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2. The Higman Theory. 

2.O0 In a paper presented to the 1965 International Conference on the 

Theory of Groups, [6], Graham Higman established a relationship 

between the lattice of varieties of groups of prime exponent p lying 

between N^ and and the lattice of right ideals of KS^ where K 

is the field with p elements. 

L.G. KovScs and M. F. Newman have extended this approach to deal 

with the torsion free varieties between N and N ,. In this =c =c-l 

chapter I will do likewise but will approach the problem from a different 

angle. 

I originally intended to include at this point a discussion of 

the relationship between my approach and those of Higman and of Kovacs and" 

Ne\mian. I found, however, that, in order to do this in a manner that 

I would consider adequate, it would be necessary for me to introduce a 

number of concepts and results which are not necessary for my own 

treatment and would therefore be dropped almost as soon as they were 

introduced. I have therefore relegated the discussion to an appendix 

and deal here only with the contents of this chapter. 

The lattice of varieties between N and N , is, of course, dual =c =c-l ' ' 
isomorphic to the lattice of those verbal subgroups of F^(N^) which 

are contained in the bottom term of its lower central series, that is 

in Y Under this isomorphism the torsion free varieties C C c 

correspond to those subgroups which give rise to torsion free factor 
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groups of F (N )o I will refer to such subgroups as being "isolated", c ~ c 
The main aim of this chapter is to determine those minimal isolated 

fully invariant subgroups of which lie in )), 

Suppose U is a free Z-module of rank c and basis u^ju^,. o ,û o 

Then the set of endomorphisms of can be mapped to the endomorphism 

ring of U under the mapping 

"i 6. 
(6 : X n X ((p : u. I S. ,u ) . 

j = l ^i.j ^ j=l ^i.j 

m m. 

Thus we can regard U and, more importantly, its c-fold 
[c] tensor power, U , as End(F^(N^))-modules and it is fairly clear that 

[c] the End(F (N ))-submodules of U are identical with its c =c 
End (U)-submodules» Z 

[c] 

Now there is a natural homomorphism from U to 

given by 

u <5?i u^ ($?i u^ f> [x^ x^ ] 
1 2 c 1 2 c 

and, in fact this is an End(F (N ))-homomorphism. It follows that ' c =c 
[c] if we can express U as a direct sum of minimal, isolated 

End„(U)-submodules we can express y (F (N )) as a direct sum of fTrv-cÛ t/ Z c c — c f 
minimal Isolated verbal subgroups of F (N ). 

c " c 
In Section 2.1 I show that the lattice of isolated End2(U)-submodules 
Fcl of U is isomorphic to the lattice of End(n U)-submodules of Lt 
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[c] 
(0 '̂ î U) . But this is just the lattice of representations of GL(c,0) 

in the c-fold tensor power. At the end of Section 2,1 I quote a number of 

results from Curtis and Reiner [4] which establish the relationship 

between this lattice and the lattice of right ideals of QS^„ 
In Section 2.2 I simply quote, from Bonner [1], a special -T-/ 

decomposition of OS^. 

Section 2.3 then deals with the relation between and 

in rather more detail than I have done above. 

For reasons which will become apparent in Section 2.3 I will deal 

with and Z-modules of rank n for an arbitrary 

positive integer n. 

2.1. The Isolated Submodules of u''*̂^ . 

2.1.0. (i) Notation and convention; In this section I will be using 

the notation and definitions of Curtis and Reiner [4] extensively. 

Modules over commutative rings such as 0 and Z are of 

necessity bimodules and I will treat them as such, usually without 

explanation. For example if L is a Z-module 0 L can be and 
Lt 

will be regarded as both a left and a right Q-module. 

Curtis and Reiner use the notation L <S> M for the tensor R 
product of L by M over R but denote the elements of this product 

by m, dropping the subscript R. I will follow this convention in 

the belief that it is always possible to see, from the context, which 
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ring the product is taken over. There are, however, some occasions 

on which it is necessary to exercise a little care in interpreting 

this notation. 

I will denote the ring of R-endomorphisms of a right R-module L 

by End^(L). 
f^T-mt/ bj tie. 

If G is a group End(G) is the algebra ef endomorphisms of G 

under the operations of pointwise multiplication and composition. 

If G is abelian End(G) is, of course, a ring. In order to have 

a name for animals such as End(G) I will use the term ringoid to 

describe algebras with two binary operations. 

(ii) Definition; A submodule L of an R-module U is isolated 

if the quotient module U/L considered as an abelian group is torsion 

free. 

2.1.1. Lemma; (i) If L and M are torsion free Z-modules with 

submodules L^ and M^ respectively then L^ M^ can be imbedded 

in the natural way in L ̂ ^ M. 

(ii) If R is a commutative ring with identity and L is an 

R-module then 

L = R«>„L = L«i_R K K 

under the mappings x V x e L , 
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(iii) If L is a torsion free Z-module then there is an 

imbedding of L in Q L given by 
Id 

X h- 1 X, Vx e L. 

(iv) If L is a R-module and x e Q ^ then there exist 

an element, y of L and an element, q of Q such that 

X = q y. 

Proof: The first two results are well knoxm and I simply give references 

for their proof. 

(i) This result is due to Dieudonn^. A proof can be found 

in Fuchs, [5], Theorem 64.4, page 254. 

(ii) The first part of this isomorphism is proved in Curtis 

and Reiner, [4], Theorem (12.14), page 67 and, with the obvious 

modifications^ this proof can be converted to a proof that 

L ^ L ^^ R. 

(iii) Suppose \jj is the isomorphism from L to Z ^ given by 

X H- 1 X 

and cp is the natural mapping from Z L to 0 

the required injection. 



13. 

(iv) Suppose X e Q L. 

Let 
n 

^ = I ^ 
i=l 

and choose m e Z such that mq^ e Z for all i e Z^. 

Then 
n /HI X = U ^ q. ̂  y.) 

I (-^mq.y.) 
i=l 

1 ^ = - ^ J Cmq.y.) 
1=1 

which completes the proof. 

Note. The above results will be used repeatedly and, in general, 

without specific reference. In particular, if L and M are torsion free 

Z-modules with submodules L^ and M^ respectively then ^ M^ 

will be regarded as a subset of L M. 

2.1.2: Suppose U is a free Z-module of rank n. Then End^CU) is 

isomorphic to the ring of n x n matrices with entries from Z. The 

additive groups of these two rings are clearly Z-modules and can therefore 

be tensored with Q over Z. It is fairly obvious that these tensor 

products will be isomorphic to the additive group of n x n matrices 

with entries in Q and that, by defining multiplication on the tensor 
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product in the obvious way, this can be extended to a ring isomorphism, in 

short that 

Q End^CU) = End^(Q » 

This result is formally proved below. 

Lemma: If U is a free, finite dimensional Z-module and an operation 

of multiplication is defined on Q End^CU) by 

then Q End (U) becomes a ring and as such is isomorphic to z z 
End^CQ % U) under the mapping a where Q Z 

(p ijj)a : (q ̂  x) pq I?! 

(where p,q e Q, x e U and ip e End^CU)). 

Proof; The lemma will be proved in three parts 

(i) a maps elements of Q End^CU) to 0-endomorphisms of 

(ii) a preserves addition and multiplication, 

(iii) 0 is a bijection. 

Once these have been established it will follow that the 

ringoid Q En̂ ẑ*̂ ^̂  isomorphic to End^(Q U) and is hence a 

ring. 
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(i) Suppose that a,B e Q ^^^^ x e 0 (g)̂  End^CU) and that 

q e Qo It is obvious that 

(qa)(xa) = q(a(xa)). 

Let a = — a , g = —(S> b and x = p ® iIj, where p e Q; 

n ,n ,m ,m e Z; a,b e U and ]p e End (U). J- ^ X 2 o 

Then 

(a+B)x0 = (- ^ a + - — ® b) (p ® ilj)a , nî iû  1 2 

•E-® (n̂ m-,ai|j + n m bi|j), m-, i z Z ± m̂ uî  

— = — ® aiJ; + ® bib-

a(xa) + 6(xa), 

which completes this part of the proofo 

(ii) It follows immediately from the definitions of a and 

multiplication in 0 -^^^nd^CU) that a preserves multiplicationo 

The proof that o also preserves addition is a straightforward adaptation 

of the proof of (i) above. 

(iii) Suppose u^.u^.^.-.u^ is a Z-basis for U» Then 

1 (gi u^, 1 u^.o o o ,1 u^ is a Q-basis for 0 ̂ ^ (Clearly pr^y J^j 

^ a Q-generating set for Q U and any non trivial Q-linear expression 
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in 1 (2» Uj^j.o.jl u^, is a scalar multiple of a Z-linear expression 

and, by Lemma 2.1,lo(iii) we know that 1 ® Uj^,ooo,l® u^ are 

Z-linearly independent.) 

Suppose ij; £ End (Q U). For each (i,j) in Z^ define 
^ CJ n 

iĵ î j e Q by 

n 
(1 ® = y ijj, . (8» u. 

1 jil I.J 3 
. Vi . z^. 

Choose m e Z such that mij;, . e Z, V(i,j) e Z^. 
1»J 

Then 

1 " 
(1 ® u.)i|; = -(g) y mi];. ,u., Vi e Z 1 m ^^^ J n 

1 ' 
= - ® u.iJj , Vi e Z m i n 

where ijj' is the Z-endomorphism of U given by 

n 
ih' : u . h- y mil;. ,u. V i e Z . 

Hence for each \p in End (Q % U) there exist an integer, m, 

and an element ip' of End^CU) such that 

ilj = (— <55 ^ m 

Thus a maps Q ^nd^CU) onto End^(Q U). Suppose now that 

x^ and X2 e Q and 

Xĵ a = x^Oo 
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n n ^ 
L e t x^ = — ( ? ) ih. x ^ = — ^ ib^o 

1 m^ 2 m^ 2 

T h e n (1 u)X ^ a = ( ! ' ? ) u)x^a , V u e U, 

t h u s 

'Si u\h- = —(gi u\b-, \fu e U , 
m^ 11I2 2 ' 

1 <g) n^m^CuiJ j^) = 1 0 n ^ m ^ C u i j j ^ ) , V u e U , 

n n 

™2 

a n d 

w h i c h m e a n s t h a t i s o n e t o o n e „ 

2 o l o 3 o ( i ) D e f i n i t i o n . I f R i s a c o m m u t a t i v e r i n g , c a 

p o s i t i v e I n t e g e r a n d U a n R - m o d u l e t h e n t h e c - f o l d t e n s o r p r o d u c t 

f c l 
o f U o v e r R , (U ) i s d e f i n e d I n d u c t i v e l y a s f o l l o w s : 

u t i l . u 

- ® n I f c > 1 . 
R 

I w i l l d e n o t e t h e e l e m e n t s o f b y 
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n 
o <5?> u .) c.i 

II 

^ i ® "2 i i=l 

[ c ] (ii) Note; The notation U is ambiguous in that it gives 

no indication of the ring Ro For example any 0-module is also a 
f c l 

Z-module so if U is such a module U might be a tensor power over 

Q or Zo 

However, for the purposes of this exercise the problem can be 

overcome by adopting the following convention: [c] Whenever U is a free Z-module of finite rank U is the c-fold 
fcl 

tensor power of U over Z and (Q ^^ c-fold tensor 

power of 0 U over Qo 

(iii) Lemma; If R is a commutative ring, c a positive 

integer and U an R-module then the c-fold tensor power of U over 

R is a right End^(U)-module under the action R n ^ 
( y u, . C?) u^ . ® . „ o ^ u Oli' = I (u, A u Ip <9 oocfiU ^^^ 1 , 1 1 , 1 c , x 

for- tAc-k. I/' & 

Proof; This result is a simple, inductive extension of Curtis and 

Reiner [4], Theorem (12.10) page 63, using the endomorphism 

ij; I?) ijj (5?i . o . iSi (c times) 0 

2.1.4o Lemma; If U and V are torsion free Z-modules then there is 

a Q - i s o m o r p h i s m from (Q U) ̂ ^ V to (Q U) ̂ ^ (0 ̂ ^ ^^ ^y; 
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n n 
I ((q. ^ u.) «?> V.) h> I ((q. «?» u.) <5?) (1 55 V.)) 

i=l ^ ^ ^ i=l ^ ^ ^ 

Proof; By 2„lolo (ii) 

(Q U) = ((Q ^Q Q) 

under the mapping 

and, by the associativity of the tensor product, 

(((Q ^^ U) Q) V) = ((Q U) (0 ^^ V)) 

under the mapping 

(((q u) (5?) q) « v) ((q <8) u) <?> (q ^ v)) 

and the lemma is proved. 

2.1,5. Lemma; If U is a free Z-module then 

under the isomorphism generated by 

(q ^ (u^ u^ ® o o , u^)) (q ® u^) (5?) (1 (?> u^) . .. (1 u^) 
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Proof; By induction on Co 

If c = 1 the result is trivial. 

Suppose d > 1 and the statement is true for all c < d. 

Then 

= Q ^ ^ C u f ^ - l ] ^ ^ U) 

= (Q S?)̂  (S>2 U (Associativity of the tensor 

product.) 

= (Q U ^ ^ ' ^ b ^ ^ (Q U) 

= (Q U)'-^"^^ (Q % U) (by the inductive 

hypothesis) 

The form of the isomorphism can be readily checked by composing these 

three isomorphisms. 

2o1o 6o Lemma; If U is a finite dimensional Z-module then there is a 

lattice isomorphism, from the lattice of Q ^ ^ End^(U)-submodules of 

Q 5?) (u'-'^b to the lattice of isolated End (U)-submodules of u'-'̂ ô 
Z ^ 

The isomorphism is given by: 

M K {y : y e U^^^ and 3q e Q \ { 0 } such that q <5?) y e M } 
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Proo f : Let y be the above mappingo I t i s s u f f i c i e n t to 

prove that, ^or ivtiiwĵ Wg- M w. ; 

( i ) My i s (a) i so la ted and (b) a submoduleo 

( i i ) y i s (a) onto and (b) 1 -

( i i i ) y and y ^ preserve set inc lus ion . 

The l a s t of these i s t r i v i a l , 
[ c ] 

( i ) Suppose M i s a submodule of Q U 

and X e My 

then 3y e M and q E Q \ { 0 } such that 

y = q '5?> Xo [ c ] 

(a) Now suppose ^ - ' e Z \ { 0 } , x^ e U and x = nx^c -ri 

Then M3q(5? )x = q ^ nx̂ ^ = nq x^ 

and i t f o l l ows that x^ e My. Hence My i s i s o la ted . 

(b) Suppose ijj e End^CU). 

Then q x e M so that 

(q x) (1 f?) e M, 

q (5?) xij; E M, 

and xip £ My. 

Thus My i s a submodule. 

( i i ) (a) Suppose L i s an i so la ted End^CU)-submodule of U 
[c ] 

Then Q i s c l ear ly a Q ^^ End^CU)-submodule of Q ^^ ^ 

Now suppose X £ (Q 1?»„L)y. 

[ c ] 



22. 

Then there exist n^.m^jii^.m^ E Z and y E L such that 

• X = (5?) Y 

so that 1 = 1 ® m^n^y, 

n^m^x E L, 

and 

X e Lo 

Thus y is onto. 
Tel 

(b) Suppose M and L are Q ̂ ^ End^(U)-submodules of 0 , 

and 

My = Ly, 

Suppose X e M. Then 3q E Q\{0}, y E My = Ly such that 

X = q '?) y 

and there exists p e Q\{0} such that p <5?i y E L 

so that (p y) j) e L, where j is the identity map on U, 

q ^ y e L, and x E L. So M c Lo Similarly L c M and it follows 

that y is 1 - lo 
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2ol<. 7o Lemma 2„1„6 gives a lattice isomorphism between the lattice 

bmo< 
[c] 

Fcl of isolated End (U)-submodules of U*" •• and the lattice of End^(Q ^ Q Z 
submodules of (Q ̂ ^ ^^ 

I will later show that this second lattice is identical to the 
fc] 

lattice of GL(n,Q)-submodules of U „ To do this I will need some 

results from Curtis and Reiner [4], 

(i) (§67, page 449 of [4]). If V is a finite dimensional 
Q-space, c a positive integer and S^ the symmetric group on Z^ 

fc] then V is a right S^-module under the operationc 

(v, V , <5?) ,, o <5?) V )a = (v V (?i o o o V _,) Va e S . X ^ C 1 "̂ X X c 

la 2a CO 

This action can be extended to QS^ in the obvious wayo 

Note; (a) This operation involves interchanging the places of the v's 

and does not correspond to an endomorphism of V, in fact it commutes 

with all of these. 

(b) Curtis and Reiner write permutations on the left and multiply them 

accordinglyo Since I adopt the opposite convention the above results 
have been paraphrased. 

(ii) (Theorem 67.8 page 452 of [4].) Let V be a finite dimensional 

vector space over Q and let G be its group of Q-automorphisms. 

Then is a completely reducible G-module and its irreducible 

submodules are obtained as follows. Let e be a primitive idempotent 
Fcl in the group algebra QS . Then V*" ""e is either zero or an irreducible 
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[ c ] [c ] G-submodule of V » A l l i r reduc ib le G-submodules of V are obtained 
[c ] [ c ] 

in this way. Moreover, two i rreducib le G-modules V e and V e ' are 

isomorphic i f and only i f QS^ and QS^e' are isomorphic l e f t QS^-modules, 

Note; I f c i s greater than or equal to the dimension of V then the 
Fcl 

l a t t i c e of G-submodules of V i s in fact isomorphic to the l a t t i c e 

of l e f t ideals of 
[ c ] 

2 ,1 .8 Theorem; Let V be a f ree Z - module of f i n i t e rank. Then U 

is a d i rec t sum of minimal i so lated End^(U)-modules and i t s minimal iso lated 

submodules can be found as fo l lows . Let e be a primitive idempotent 

in QS^ and suppose that n i s a non zero integer such that ne eZS^. 
Then /U^^^ne i s either zero or a minimal iso lated submodule of -̂rU Ĵ̂  

A i- \ 

All such submodules are obtained in this waŷ * moreover two modules 

U '̂̂ ^ne and U^'^^n'e' isomorphic i f and only i f QS^e and QS^e' a ^ j e ^ 

are isomorphic l e f t QS^-modules. 

Proof : Let G be the group of Q-automorphisms of (Q ^^ U). Then 
f c ] 

the Irreducible G-submodules of (Q ^^ ^^ 

(Q where e i s a primitive idempotent of QS^. Since 
Lt 

the act ion of QS on comnno+e^ +he OX^+ic. o f Q 
. Lcl 

on i t f^llou,^ iUaJb i<3i is cm 

E n d ( O U ) - s u b m o d u l e . S i n c e a n j Q 
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End^CQ ^ ^ U)-submodule of (Q U)^'^^ is clearly a G-submodule it 

[cl 
follows that (Q <8»„ U) e is an irreducible End-(Q U)-submodule 

^ Q Z 

Of ( Q ^ ^ U ) ^ ' ' ^ 

This required result then follows from Lemma 2<,1.6 and the fact 

that if L^ and L2 are torsion free Z-modules, L^ is isomorphic 

to L^ if and only if Q isomorphic to Q L^ (from 

2ol,l (iii) and (iv)). 

2,2 A Decomposition of QS^, 

The results in this section are well known. In particular they 

are proved in B o e m e r [1] and Curtis and Reiner [4] and I will give 

appropriate references in lieu of proof. 

The definitions, and in particular the definition of a diagram, 

used in this section are derived from AoGoR. Stewart's Ph„D„ Thesis, [12] 

2.2ol (i) Definition, A diagram D of length n is an injection of 

Z into Z^ with the property that if (i,j) e Z D, 1 ^ i _< i 
n n n X 

and then ^ 

There is a useful convention for drawing diagrams which is 

most conveniently explained by an example. Suppose D is the diagram 

of length 6 given by: 

ID = (1,2), 2D = (3,1), 3D = (1,3), 

AD = (2,1), 5D = (1,1), 6D = (2,2) 



then D is drawn 
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(ii) Definition; If n e Z then a partition^ of n into m parts 

is a monotonic decreasing function X from Z to Z such that 
m n 

m 
I iX = n, 

i=l 

For notational convenience I will write A^ for iX, 

(iii) Definition; If D is a diagram of length n and X is a 

partition n into m parts such that 

X . = max{j ; (i,j) e Z^D}, Vi e Z^ , 

then D and X are said to be associated. 

Note; Clearly m above must be max{i ; (i,l) e Z^D}„ Intuitively 

the partition corresponds to the shape of the diagram, or the array of 

empty squares. Since there are n squares to be filled it is obvious 

that each partition is associated with n! diagrams while each 

diagram is associated with one partition. 
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(iv) Definition; If D is a diagram of length n then the 

group of column permutations of D, denoted C(D) is the subgroup 

of S^ given by 

C(D) = {a: (ID = (j,k) => iOD = a,k) for some £ E Z )} n 

and the group of row permutations. denoted R(D), is the subgroup of 

S^ given by 

R(D) = {p : (iD = (j,k) => ipD = (j,£) for some 1 z Z )} n 

Intuitively CCD) permutes the entries of D within each column 

and R(D) permutes them within each row. 

(v) Definition; If D is a diagram of length n then ^(D) 

is the element of ZS^ given by 

g(D) = I Sia)ap where S { a ) 
aeC(D) 
peR(D) 

+1 if a is even 
if a is odd. 

(vi) Definition; A standard diagram is a diagram, D, such that 

if i^D = (jj^.k^), i^D = (j2,k2), Jĵ  1 j2 and k^ £ k^, 

then i^ ^ i2. 

I will denote the set of standard diagrams associated with a 

partition X, by A^ 
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(vii) I will use the usual notation for writing permutations 

in cyclic form, that is, (x, ) will denote the permutation 

n 1 

2.2.2 Theorem; Ci) (Theorem 28.15, p.197 of [4].) Let D be a 

diagram of length c. Then SCD) is a scalar multiple of a primitive 

idempotent of QS and gCD)QS is a minimal right ideal of QS . c c c 

Let D and D' be two diagrams of length c associated with the 

partitions X^ and say. Then 

g(D)QS = gCD')QS if and only if A, = A,. 
C C X fc. 

In fact if L is a minimal right ideal of QS^ then there exists 

a unique partition A of c such that L = gCD)QS^ for any diagram 

D associated with A. Thus each isomorphism class of minimal right ideals 

is associated with a partition of c and vice versa. If A is a 

partition of c I will use QS^ to denote the minimal two sided 

ideal of OS generated by those minimal lisft ideals associated with A. ' c ' ' 

(ii) (Theorem 4.5 p.114 of [1].) 

QS^ = I g(D)QS 
DeA^ 

and the sim is direct. 



29. 

2.2.3 Corollary; Let D be a diagram of length c. Then 

QS^g(D) is a minimal left ideal of QS^. If D and D' are two 

diagrams of length c then QS^5CD) is isomorphic to QS^g(D') if 

and only if D and D' are associated with the same partition. 

Furthermore if X is a partition of c then, using the notation 

of 2.2.2, 

QS^ = I QS gCD) 
DeA. ^ 

A 

and the sum is direct. 

Proof; From 2.2.2(ii), and the fact that a semi-simple ring is the 

direct sum of its simple components, we know that 

QS = I I SCD)QS 

where X ranges over all partitions of c, and that the sum is direct. 

It follows that if D and D' are two different standard diagrams then 

KD)g(D') = 0, 

and that 

I I ^CD) e Q 
X DeA, 

This means that QS = ^ J QS g(D) 
X DeA, 

A 

and the sum is direct. 
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But OS^ is the direct sum of its simple components and it is 

obvious that S (D) e QS^ if and only if D is associated with A. 

Hence 

QS^ = I QSg(D) 
DeA, 

A 

and the sum is direct. The remainder of the corollary follows 

immediately. 

1.1.k Corollary; Let V be a Q-space of dimension n, let X be 

a partition of c into m parts^ let D be a diagram associated with Oy^i^ 
Fcl Then V gCD) is trivial if and only if m > n. It follows 

Fcl that if n > c then V*" is a faithful OS-module. — • c 

Proof; Let ^^ ^ basis for V. 

(i) Suppose m > n. Let y^jp^j • • • jV̂ JJ be the entries in 

the first column of D. That is set 

= for each i e Z^. ^ y 

ccl 
Now suppose a is a basis element of V, that is 

a = v "^v "^.o.^v, where A. e Z Vi e Z . X, A i n c 1 2 c 

Since m > n there must exist j ,k e Z^ such that j k and 

A = A . 
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Thus (y^ y^) e C (D) and y^) = a. 

Let T be a right transversal of 

, (y^ yj)> in CCD), then 

aSiD) = aCl-(y M.)) I Sixhf^ 
^ xeT 

peR 

= 0 . 

[c] 

Since a was an arbitary basis element of V it follows that 

V^'^hiD) = 0. 
(ii) Suppose m ^ n. Suppose iD = for each i in 

Z and set c 

a = v <5?>v ..."^v , 
yi ^c 

that is the index of the ith factor of a is the row of D in which 

the entry i occurs. ' 

Now suppose 0- £ C(D) and p e RCD) are such that 

ao-p = a (1) 

Then y = ^ ^ ^ ^c* 
ip a 

But, clearly, V^p = VIjl ''' ^ ^ ^c ^ ^ R(D), 
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so y^ = y = _! _1 = ^ 1 V i £ Z 
ipp a la 

But iD = V i e Z^, which means = (l^-( » since a e C(D) 

= (U^.v^). 

Hence a = 1 in any solution of (1), and it is clear that (1) 

is true if a = 1 and p e R(D). 

Thus agCD) = |R(D)|a+ T aap, 
aeCtD)\{l} 
peRCD) 

and each of the terms in the second part of the right hand side is a 
[c] 

basis element of V different from a. 

It follows that 

V^^'^gCD) 5 aSCD) 0 

and the corollary is proved. 

2.3 The Isolated Fully Invariant subgroups of F^(N^) in Y^,(F^^CN^)) • 

2.3.1 Lemma; If U â id V are free Z-modules, freely generated by 

{u^ : i e Z^} and {v^ : i E Z^} respectively then U V is a free 

Z-module, freely generated by {u^ ® v^ : i E Z^, j e Z^}. 

Proof: Every free Z-module of rank n is a free abelian group of rank 

n. It follows that U is isomorphic to a direct sum of n copies 

of Z. Similarly V is isomorphic to a direct sum of m copies of Z. 
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Curtis and Reiner ([4], Theorem (12.12), n.64) show that 

(M/B H ) N = M , ^ „ N + M^ N 
1 ^ R 1 R 2 R 

for any ring R and the proof given is readily converted to show that 

M CN, ® N,) = M ^^ N, + M N , . 
K X / K 1 R Z 

An obvious induction then shows that U ^ ^ ^ isomorphic to 

the direct sum of nm copies of Z Z which is simply Z. Thus 

U ® V has rank nm and since {u ® v : i e Z , j e Z } is 
Zi 1 J n m 

clearly a generating set of U V it must be a free generating set. 

2.3.2 Corollary; If U is a free Z-module, freely generated by 

Fcl 
{u^ : i e Z } then U is a free Z-module freely generated by 

i n 

{u ^ u ^ ... ^ u^ : A. e z V i e Z }. 

2.3.3 Lemma; Let U be a free Z-module, freely generated by 

[c] 

{u^ ; i e Z^}, let K be the Z-homomorphism: U ^ "''c^^n^^c^^ 

given by 

u 1?) u, 1?>... I?! u, H- [x^ X ] 

^2 ^c ^2 c 

[c] 
and let L be an End2CU)-submodule of U 

Then LK is a fully invariant subgroup of ) in (N )). ri ®c c n —c 

All such subgroups are obtained in this way. Any isolated fully 
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invariant subgroup of F (N ) in y (F (N )) can be written as LK 
n =c 'c n =c 

[cl 
where L is an isolated swib End^CU)-module of U . 

Proof: We first note that the definition of K is possible by virtue 

of Moreover, since any element of can be written 3- BZ^ 

as a product of left normed commutators, K is an epimorphism. 

Define a mapping E from End(F^(N^)) to End^CU) as follows: 

Let il; be an endomorphism of F (N ). For each i e Z choose 
n =c n 

such that 

x^ = n X 'J 

and set 
"i 

j=l -Ljj 

(This is possible and is sufficient to define i)jE because U is 

freely generated by the u^.) 

Now suppose \p e EndCF^(N^)). Choose n^.^j^ y^^ j above for 

each i e Z. 3 e Z Then ((u u ... ® u )iJ;E)K 
n ' n^ ^c 

= (( y g .u^ )«>( y S .u I g, ,u. ))K 

I I I . i • • • ̂ u i ))K 

c 
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n n n S S . . . . S . 

= n n . . . n [x ,x ] 

n S . n ^ A ^ ^ i 

[ n^ X , n^ X n'^ X ] 

[x ij;] 
^c 

(u U ® . . . <s> U )Kip. 
^c 

Hence (ii;E)K = Kip f o r a l l ip e End(F^(N^)) . 

Now d e f i n e a mapping D from End_(U) t o End(F (N ) ) as f o l l o w s : ^ n —c 

Suppose e End^CU) then t h e r e e x i s t a^ ^ e Z f o r a l l i , j e Z^ 

such t h a t 

n 

" i ^ = J , 

and we d e f i n e ipD by 

n a 
' = n X ' J . 

i 1=1 3 

A s i m i l a r proof t o t h a t g iven above shows t h a t 



36. 

ajpK = aK(iJ)D), Va e and V^ eEnd_(U). z 

Let L be an End^ClD-submodule of u'-'̂ ^ and let \jj be an endomorohism of 

F(N^). 

Then LKiJj = LCi);E)K 

c LK. 

Thus LK is fully invariant in F^CN^,) and it is clearly a subgroup 

of 

Suppose M is a fully invariant subgroup of contained in 

Y^CF^(N^)) and that Is a Z-endomorphism of U. 

Then = 

^ MK"^. 

Suppose a and b e MK Then there exist a and g e M such 

that aK = a and bK = B. Since M is a subgroup e M and 

it follows that a - B e MK"^, Thus is a submodule of 

Since M = MK ^K it follows that every fully invariant subgroup of 

F (N ) contained in y„CF (N )) can be written as LK where L is 
n =c c n c 

some End2(U)-submodule of Yc^^n^Sc^^-

Finally suppose that M is an isolated fully invariant subgroup of 

F (N ) in y^CF (N )). Suppose there exist a e and n e Z \ { 0 } 
n =c c n c 

such that 

na e MK"^. 
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Let aK = a E Y F (N ). c n =c 

7Z-

Then (na)K = pct e M. / 

It follows that a e M and hence that a e 
So MK"^ is isolated. 

2.3.4 Definition: (i) r (A ) is the subalgebra of A generated c wn '\>n 

by the left nomed commutators of weight c, their inverses and the 

operations of multiplication and identity. 

(ii) An operation: r (A ) x ZS r (A ) is defined as c c c ivn 
follows: 

Choose some ordering of S^, in fact set S^ = {CT̂  : i e Z^j}. 

Each element of ZS can then be written uniquely in the form c 
c! 
I i=l 
y a J, a J where the a, e Z. i i 1 

Define la = 1 , Va e ZS^, 

c! c! ot. 

1 2 c i=l i=l , -1 -1 „ -i 

and 

a~^a = aC-a), V a e A, a £ ZS^ ̂  

(ab)a = aa(ba), Va,b e A, a e ZS^. 
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Note; This operation is not independent of the order chosen for S^ 

and is not a module action. However 

2.3.5 Theorem: y (F (N )) can be written as a direct product of 
' c n =c 

minimal isolated fully invariant subgroups of F (N ). 
n =c 

If e is a primitive idempotent of QS^ and m a nonzero integer 

such that me e ZS^ then the isolated subgroup of F^(N^) generated by 

r^(A^) is either zero or a minimal isolated fully invariant 

subgroup of F^(N^) contained in All such subgroups are 

obtained in this way. 

Proof; Let U be a free Z-module freely generated by 

[c] 

and let P be the mapping from to U given by 

[x ,x ,...,x ]P = u ^ u ^ ••• ^ "x ' 

a"^P = -aP, 

and abP = aP + bP. 

Clearly aaP = aPa, a e ZS^, and if K is defined as in Lemma 2.3.3, 

PK = p 
^^ r (A ) 

c 'vn 

Moreover P is a surjection. 

It follows, from Lemma 2.1.8, that if e is a primitive idempotent 
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of OS^ then the isolated Z-submodule of U^^^ generated by 

(ine)P is either zero or a minimal isolated End2(U)-submodule 

of 

Denote this submodule by L. LK is clearly a fully invariant subgroup 

of ^n^Sc^ contained in The isolated subgroup 

generated by LK is simply 

M {a : a e Y F (N ) and 3 
' c n =c 

k e Z S { 0 } such that a^ z LK}. 

It is easily seen that M is fully invariant in F (N ). 
n =c 

Suppose M is not a minimal isolated fully invariant subgroup 

of F (N ) . Suppose, in fact, that M' is a non trivial subgrout) of F (N ) 
n -c s, n 

such that M' c M . 

Clearly M' fl LK cannot be trivial since some power of every 

element of M must lie in LK. Hence M'K ^ fl L cannot be trivial. 

-1 Tel 
But L and M'K are both isolated End2(U)-submodules of U^ ^ and 

it follows that L fl must be another. But L is minimal so we 

have a contradiction. Hence M must be either zero or a minimal 

isolated fully invariant subgroup of F^(N^). 

But 

and it follows that the isolated subgroup generated by is 
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either zero or a minimal isolated fully invariant subgroup of Fj^(N^). 

For each diagram D of length c let MCD) be the isolated 

subgroup of Fjj(N^) generated by r^A^S(D)^^. Then each M(D) is 

either a minimal isolated fully invariant subgroup or zero. Further-

more Y CF (N )) is spanned by 

' c n =c 

{M(D) : D is a standard diagram of length c}, 

and it follows that a subset of standard diagrams must provide a 

direct product decomposition of y (F (N )). 
c n =c 

2.3.6 Theorem; If c is an integer greater than 2 then the 

maximal torsion free varieties between N and N , are as follows. 
=c =c-l 

Let e be a primitive idempotent of QS^ and m a non-zero 

integer such that me e ^ isolated subgroup of 

Y (F (N )) generated by V (A )(me)p . Then Var(F (N )/U) C c =c C '\jC c =c 

is a maximal torsion free variety between N and N .. Its laws are =c =c-l 

generated by [x^jx^,.« . and r^(A^) (me)^^. All such varieties 

are obtained in this way. 

Proof: This theorem follows immediately from 2.3.5 and the fact that a 

variety that is nilpotent of class c ^ 2 is generated by its c-generator 

groups, and by its free group of rank c (Neumann [11], 35.12 page 100). 
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2.3.7; The remainder of this thesis deals mainly with varieties of the 

form Var(F (N )) where n < c. These do not always lie between n =c 

N^ and N^ However (Var(F^(N^))) v N^ ^ certainly does and is 

therefore susceptible the machinery we have developed above. The '-y 

problem is to find which of the minimal isolated fully invariant 

subgroups of F (N ) in y (F (N )) intersect F (N ) trivially, c =0 ' c c =c n =c 

An equivalent problem is to find which of the idempotents, e, of QS^ 

satisfy the conditions 

and 

where m is, as usual, a non-zero integer such that me e ZS^. 

If e is such an idempotent it is obvious that is 

not in the kernel of the natural homomorphism from F to F (N ) but c c =c 

is in the kernel of every homomorphism from F^ to ' other 

words that it is a closed set of laws distinguishing Var(F^(N^)) 

from N o =c 

2.3.8 Lemma; Let e be a scalar multiple^&f associated with a part-

ition of c into m parts and suppose k is a non-zero integer such 

that ke e ZS^ and that n e Z^. Then r^(A^) is trivial if 

and only if either is trivial or m < n. 
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Proof: Let U be a free Z-module with basis u-,u,,...,u . Let U 
1' 2' ' c n 

be the submodule of U generated by u ^ . u ^ , . . . L e t P and K 

[c] [c] 
be the natural homomorphisms from r (A ) to U and from U to 

c 

respectively. (P is defined in 2.3.5, page 38, K is 

defined in 2,3,3.) 

Then = r^CA^)Cke)PK 

= r^CA^)P(ke)K 

n 

[c] 
Suppose ^c^^n^ ^^ trivial. Then U^ ke must be in the 

[c] 
kernel of K. Since K maps U to a torsion free Z-module its 

kernel must be isolated, and, since K is an End2(U)-homomorphism its 

[cl 
kernel must be an End^CU)-submodule of U . But the isolated End^CU)-

[c] 
submodule generated by U ke is minimal and it follows that either 

1 or U^^^Cke) fl Ker(K) is trivial. But (ke) must 
n 

be in this intersection so either 

or 

^ c ^ V ^ ^ ^ h c = = 1 

(0 U ) ̂ ^^e = U^'^^(ke) = 0. 
Z n n 

By Lemma 2.2.4 the second possibility y ^ l d s n > m and we have proved ^^^ 

the necessity of the conditions stated. Their sufficiency is obvious. 
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2.3.9 Theorem; Let n and c be positive integers, n _< c. Then 

the laws of (VarF (N )) ^ N , are generated by 
n =c =c-l ° ^ 

and 
c 
'J IJ r (A )S(D)p 

i=n+l D eA. """ ^ 

where A^ is the set of standard diagrams associated with partitions 

of c into i parts. 

Proof; Denote (VarF CN )) v N , by V. We know that N c v c n 
n =c =c-l = =c-l — = — =c 

and that V is torsion free. It follows from Theorem 2.3.6 that the 

laws of V are generated by [x^.x^,.. . and the isolated 

subgroup of F^ generated by 

U r (A )ep , 
c X c % » 

eel 

where I is a set of elements of ZS^ which are scalar multiples of 

primitive idempotents of QS^. 

Let e be the natural homomorphism from F to F (N ) ' so c c =c 
that ^ , clearly any homomorphism from F to F (N ) can be 

.c n =c 

factored through 6. It follows that, if e e l , is a 

set of laws in Fjj(N^) if and only if lies in the kernel 

of all homomorphisms from F (N ) to F (N ). Buf r„(A )ep is 
c =c n =c ^c 

invariant under all endomorphisms of F (N ) so this last condition is 
c =c 
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equivalent to the condition that r (A )ep fl F (N ) = 
c ^c Kc n =c 

Now r (A )ep n F (N ) = r (A )ep so, using Lemma 2,3.8 we find c\.c 'tc n =c c A/n 

that, if e e l , is a set of laws in Fj^(N^) if and only if 

either e is a scalar multiple of a primitive idempotent of OS^ 

associated with a partition of c into more than n parts or 

r (A )ep is a set of laws of F (N ), c '\,C 1 c =c 

The laws of F^(N^) are generated by ,« .. so we 

need only consider the first alternative. 

Since V is torsion free the isolated closure of a set of laws of 

V is a set of laws of V and the required result follows from Lemma 2,2.3. 

2o4 The Torsion Free Varieties between N, and N-. =4 =3 

The theory developed in this Chapter can be applied to find the 

torsion free varieties between N^ and N^. This requires a 

considerable amount of tedious calculation which is omitted here. The 

partitions of 4 are X^ = (1,1,1,1), X^ = (2,1^1), X^ = (2,2) 

X^ = (3,1) X^ = (4). It is fairly obvious is trivial when-

ever D is a standard diagram associated with A^ or X^, In fact 

it is also trivial if D is associated with X^, The laws generated 

by idempotents associated with A2 are, by virtue of Theorem 2,3,9, the 

laws which distinguish F2(N^) v N^ from N^. VarF2(N^) is in fact 

the variety of metabelian groups of class 4 and its laws are generated by 
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The first of these laws is a consequence of the second and 

where 

D, 

It follows that there are no torsion free varieties between the variety 

of metabelian groups of class 4 and N^, It also follows that if D 

is any other primitive idempotent of QS^ associated with X t h e n 

the isolated closure of r^(A^)SCD)^^ must be either 1 or the isolated 

closure of 

This leaves only to be considered. Put 

D- T T T 

Then the isolated closure of r^(A^) ̂ (D̂ );̂ ^ is a fully invariant 

subgroup of rank 45. It is equal to the fully invariant subgroup 

generated by [x^jx^jx^.x^]. All the other standard diagrams associated 

with D^ give rise to trivial subgroups. 

Thus there are precisely two torsion free varieties between N^ 

and N^, the variety of metabelian groups of class 4 and the variety 
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whose laws are generated by 

and 

[x^ >^2 jX^ j X ^ ] , 
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3o Some Laws of Low Weight in 

3.0. Introduction; In this chapter I deal with some of the laws of 

weight w of F (N ) where w < c. It relies heavily on the notation n =c — 

developed in Chapter 1. 

In Chapter 2 I showed that if D is a diagram corresponding to a 

partition of c into more than n parts then is a set 

of laws of ^ slightly different approach to this result gives 

some insight into the way in which it can be extended. 

Suppose then that D is a diagram of length c associated with a 

partition of c into m parts. Let I be the set of entries in the 

first column of D and let G be the symmetric group on I regarded as 

a subgroup of S . Clearly G is a subgroup of C(D), in fact a direct c 

factor. 

First we note that will be a set of laws in Fn^Sc^ 

if and only if [x^jx^,.,. (D)^ is a law in this second 

condition is equivalent to the condition that 

for any homomorphism 9 : A^ A^. In fact it is possible to restrict 

6 by requiring the image of each of the generators x^ : : i e Z to be c 
a product of generators and their inverses. The function ht (height) can 

be defined on such homomorphisms by setting 

c 
ht(0) = [ ht(x.e). 

i=l 
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If ht(6) = c it is obvious that 0 must map generators to 

generators and it is obvious that, if m > n , I must contain two 

different integers i and j such that x.0 = x.©. Since the permutation 

(i j) is odd and in G £ C(D) it follows that 

aeC(D) 

If, on the other hand, ht(0) > C there must exist an i e Z^ 

such that x.0 = ab for some a , b E A or x . 0 = x . ^ for some j e Z „ ô n a.1 O/j c 

I will here deal only with the first possibility, the second is similar,, 

Define two homomorphisi^, ' ^c ^n ^^ ^ 

= a, = b . 

Clearly ht (e^) and htC02) are both less than ht(0) and 

, 

aeCCD; 

aeCCD) aECCD; 

Thus we have a basis on which we could build an inductive proof that 

c 

n Ctx. ,x,, o.. ,x ]a ^©'bl 

a.C(D) 

for any homomorphism 0 from A^ to A ^ and it is not difficult to 

get from here to the result we set out to prove. 
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Now suppose that c and w are two positive integers such that 

c ^ w > c/2 and suppose that n e Let I be a subset of Z^ 

with more than n elements. Finally let G be the group of permutations 

of I, regarded as a subgroup of S . w 
As before it is obvious that, if 6 is a homomorphism: A -> A of ' -v-w -^n 

height w then 

'vl O/Z 'bw c^ oeG 

(Note that the assumption w > c/2 ensures that expressions of weight w 

commute modulo c 

However when we come to consider homomorphisms of height greater than 

W the situation becomes more complicated. Suppose 6 is such a 

homomorphism and that x.e = ab for some i e Z . Suppose I' = I\{i}, "X/l w 

G' is the group of pp^utations of I' and that T is a transversal of G' 

in G . Then 

[X, e,x^e,... , X . , a b , • • • ] 
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where a is an expression of weight greater than w + 1« Thus, if 

we define and as before we have 

aeG 
S(a), 

^ n n C[x _ X _ 
"" xeT aeG' ^Ix 2t (ix-Dx (ix+l)x 

jooojX t]0O) 
A! —X wx 

aeG aeG 

n C n ([x ,x , , 0 . o ,X ,a, 
xeT aeG' "̂ Ix"̂  "'(ix-Dx""^ 

(ix+l)x wx 

n n a . 
xeT aeG I Ta 

Where the a are expressions of weight greater than w + 1„ xa 
The first two products can be dealt with by an induction on the height 

of 6. The next term can be rewritten modulo ^ as 

xeT aeG' 

where 0 : x, 
X if 1 ̂  j < i 

a 

b 

if j = i 

if j = i + 1 

X ^ eif i + 2 _ < j _ < w + l . 
+1 
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The inside product is then similar to the expression we started 

with except that it has weight w + 1 and G' is the group of permutations 

of I' which has, at least, ll| - 1 elements. It thus seems reasonable 

to hope that if we start by requiring that | l | > c - w + l we can 

develop an inductive proof on c - w which, combined with an induction 

on the height of would show that 

cteG 

and in fact the main Lemma in this chapter does roughly that. In 

fact it shows that^if I . , 1 ^ , 0 „ o , I are disjoint subsets of Z , ? 1 2' ' p -J w' 
each with more than n elements, and 

\ ( | l . | - n ) ^ c - w + l , 
i=l ^ 

and G is the subgroup of S generated by the groups of permutations w 

of the I^'s ^then 

aeG 

for any homomorphism, 9, from A^ to A^. 

This means that if D is a diagram of length w associated 

with a partition A of w into m parts, where m > n, such that 

m I A ^ c - w + 1 i=n+l 
then r (A )SCD)p is a set of laws in F (N )„ w '̂'W ^ n =c 
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It follows from this and Theorem 2„3„9 that 

(VarF (N ) A N )V N ̂  c VarCF ^ (N )) v N ^ n =c w =w-l — ^ n+c~w =w =w-l 

3olo Definition; If r^ and r^ are two functions: Z Z {«>} 

then r^ £ r^ if ir̂  ̂  ir^V i £ Z„ 

3o2» Lemma; If a and b are products of commutators with repetition 

patterns r^ and r^ respectively then there exist expressions a and 

B such that: 

Ci) [a,b] ^̂  ag 

(ii) a is a product of commutators, rep (a) = r̂ ^ + r^, wtCa) = wt(a) 

+ wt(b) 

and (iii) repg ^ r^ + r^, wtCB) > wtCa) + wt(b)„ 

Proof: This lemma can be proved by a straight forward but tedious 

induction on the length of a and b using the following; well known 

results: 

[a^a^.b] [a^,b] [a^,b.a^] [a^,b], 

[a.b^b^] [a.b^lEa.b^JLa.b^.b^], 

and [a,b~^] [a,b^]~^[b ,a,b~^]» 
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3.3o Lemma; If a is a product of commutators with repetition pattern 

r then there is an expression a such that: 

Ci) a a 

and (ii) a is a product of commutators such that 

rep(a) = r, wtCa) = wt(a)o 

Proof; By induction on the length of a using the fact that 
/ -1 -1 

3o4o Lemma; If a e A there exist expressions a and g such 

that 

(i) a % aB, 

(ii) a is a product of commutators such that 

rep(a) = rep(a), wt(a) = wtCa) 

and Ciii) rep(3) ^ rep(a), wtCg) > wt(a)„ 

Proof; By induction on the height of a, using 3,2 and 3„3o 

3,5. Corollary; For any expression a and integer c there is an 

expression . a such that; 

(i) a ^ a 

(ii) a is a product of commutators 

and (iii) rep(a) = rep(a) and wt(a) =wt(a)o 
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Proof; By induction on c - wt(a) using 3„4o 

3o6o Definition; (i) If K is a subset of Z, S(K) is the group 

of permutations of K, considered as operating on the righto S(K) 

will be regarded as a subgroup of S(Z), 

(ii) For each a e SCZ), a* is the automorphism of ^ defined 

by 

x.cr* = X. 

(iii) If a e S(Z) then SCa) = 1 if a is even 

-1 if cr is odd„ 

3o7o Lemma; If a is a commutator in A^, i e Z^, wt^(a) = 1 

and (p is the endomorphism of A defined by 

X. H-
x.x . if j = i, 'X/i'vn+l ' 
x, otherwise. 

then 

where 

a aoa(i n+l)*«b 

(i) bsA^^,, 

(ii) wt^(b) ̂  wt^(a), V j e Z^, 

and (iii) wt̂ _|_̂ (b) ̂  wt^(a), 
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Proof; By induction on weight» 

If wtCa) = 1 the result is trivial„ 

Suppose that w is an integer greater than 1 and the lemma is 

true for all commutators of weight less than Wo Let a be a commutator 

of weight w with weight 1 in x^. 

Then a = [a^,a2] and 

either (i) wt^(a^) = 1 and wt^Ca^) = 

or Cii) wt^(a^) = 0 and wt^Ca^) = 

Suppose (i) is true. 

Then a(p = [â '>,a2] 

and, by the inductive hypothesis, there exists b^ such that; 

and 

Hence 

w ^ l C b ) > wt.Ca^), 

â cp â .̂â Ci n+l)*.b^ . 

acp ̂  n+l)*)b^,a2] 

[a^.a^Ci n+D^.a^] [a^.a^Ci n + D ^ . a ^ [ b ^ . a ^ ] 

'V [a^.a^] [a^,a2,a^Ci n+l)*][aj^(i n+D^.a^] 

[a^oa^Ci n+l)*,a2,b^][b^.a^] 

^^a.a(i n+l)*[a^,a2,a^(i n+1)*] 

[a^.a^.a^Ci n+l)*,a(i n + 1 ) * ] n + l ) * , a 2 , b ^ ] 

[b^.a^] 
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a<.a(i n+l)*.b Csay) 

where b clearly satisfies the conditions above„ The proof for case 

(ii) is similar„ 

Thus the lemma is true for all commutators of finite weight„ 

Since the lemma requires that wt (a) = 1 it follows that commutators 

of weight do not occur. 

3080 Corollary; If a is a homogeneous product of commutators in 

A , i £ Z , wt.(a) = 1 and cp is the endomorphism of A generated n 1 ^ 
by 

X. H- if j = i 

X, otherwise, 

then 

acp aoa(i n+l)*,b, 

where 

(i) b E A^^^, 

(ii) wtjCb) ^wtj(a), Vj e Z^, 

and (iii) ^ wt^(a). 

3„9„ Lemma: If a is a homogeneous product of commutators in A^, 

i e Z , wt^Ca) = 1 and (p is the endomorphism of A generated by 



then 

where 

X, -1 

X, 

-1, aq) ̂  a b, 
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if j = i 

otherwise, 

(i) b . A^, 

Cii) wt^(b) ̂  wt^ Ca) for all j e 

and (iii) wt^(b) ̂ wt^Ca) + 1 , 

Proof; This Lemma can be proved in much the same way as Lemma 3o7 and 

Corollary 3o8„ using the fact that, if a and g are expressions^ 

and 
- 1 

3.10, Lemma; Let c, n and m be positive integers, a an element of 

A and I-,I,,ooo,I be distinct disjoint subsets of Z . Let 0 a;m 1 2 p ^ 

be a homomorphism from A^ to A^ which maps generators to products 

of generators and their inverses. That is, for each i £ Z^, 

\ S. . 

J=1 1,3 
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where the h.'s and A. .'s are positive integers and the , 1 i.J 
are integers„ 

Put 
G = n SCI,), 

i=l 
m 

Then, if (i) I wt.(a) = w ^ k ] + 1, 
i=l 

(ii) I. > n for all i e Z , 1 P 

and 

we have 

Ciii) y (|l I - n) ^ c - w + 1, 
i=l ^ 

(iv) wt.Ca) = 1 for all ± e Q I., 
j=l 

CTEG 

Proof: The proof uses a double induction, firstly on c - Wc 
m 

If c - w < 0 the result is trivial since wtCa) ̂  ^ wt.(a) = w ^ c 
i=l 

in this case. 

Suppose then that W is an integer such that [-] + 1 ^ W < c, 

that a is an expression in A^ and that conditions (i) to (iv) 

remain true if we substitute W for w and a for â  Suppose 

further that the lemma is true whenever w > W„ (I will refer to this 

assumption as the first inductive hypothesis») 

From Lemma 3,4 we know that 
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J 

a n a . 

^ i = l ^ 

w h e r e e a c h a ^ i s a c o m m u t a t o r , W _ < w t ( a ^ ) ^ c , r e p ( a ^ ) ^ r e p ( a ) 

Q 
a n d e a c h e . e Z o H e n c e t h e a . h a v e w e i g h t a t l e a s t [ j ] + 1 s o 

w t [ a ^ , a j ] > c a n d a ^ a ^ ^ a ^ a ^ . 

I t f o l l o w s t h a t 

a ^ U a . 

^ f s r ^ 

w h e r e a ^ i s 1 o r a h o m o g e n e o u s p r o d u c t o f c o m m u t a t o r s w i t h r e p e t i t i o n 

p a t t e r n f a n d 

r = { f : f i s a m a p p i n g f r o m Z t o z " * " I J { 0 } s u c h t h a t 

i f ^ w t . C a ) \ / a E Z ; I ± l < c a n d i f = 0 

^ i e Z 

i e Z \ Z ^ } o 
m 

N o w s u p p o s e f £ r \ { r e p C a ) } , 

P u t 

J = { j 5 j e a n d j f > w t ^ ( a ) } , 

l \ = I . \ J f o r e a c h i e Z , 

P 

p = { i : | l ! _ | > n } 

a n d 

G ' = n s ( i p „ 

i e P 



60e 

Let T be a left transversal of G' in G, Suppose T E TO 

Then 
m 
I wt,(ax*) = W , say, 

i=l ^ ^ 
m 

= I wt _i(a ) 
1 = 1 I T 

m 
= I wt (a ) 

i=l ^ 

> W + J > W 

But 

I (It: 
ieP 

- n ) I ( H i 
leP 

- n) 

^ f (|l I - ll. n jj - n), 
i=l 

(since for i e ^^XP, n J I £ n ) 

i=l 
(|l.I - n) - J 

> c - ( W + J ) + l 

> c - W + 1, 

Hence, by the first inductive hypothesis, 
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Cn n (C n 
aeG teT a e C 

1 , C 

It follows that 

Cn n (a^a*)^'^^^, 
aeG aeG 

where r = rep(a), 

If a = 1 the result is trivial so we can assume that a is a r r 
homogeneous product of commutators with repetition pattern r. 

This brings us to the second induction which is over 

P 

I (htCx.0) - 1) = h, 
i=l jel. ^^ 

say-o Suppose h = 0 then either 

(i) x,e = 1 for some j e ^i' ^ X—X 
or 

P 
(ii) for each j e (j I^ there exists ^ e Z^ such that 

X, e = X . 

If (i) is true it is easily seen,from the fact that aa* is 

a homogeneous product of commutators of weight 1 in x^, that 

1 0 e G and the induction on c - w is complete in 

this caseo 
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If (ii) is true then, since |l j > n, and a e e A there X 'X' n. 

must exist two distinct integers q,k e such that 

X e = X, e , which means (q k)*6 = 6 » But (q k) e G„ Let T 

be a left transversal of <l,(q k)> in G„ Then 

C n Ca ^ n (a T*e(a T*(q 
asG ^ ^ teT ^ ^ 

'V lo C 'Xj 

Thus if h = 0 the induction on c - w can be completed and the 

lemma is true. 

Suppose now that H is a positive integer and that we have completed 

the induction on c - w for all 0 such that 

0 < y y Cht(x.e) - 1) < H, 
- 1=1 i d i 

that is that the lemma is true for all such Bo (I will refer to this 

assumption as the second inductive hypothesis„) 

Let be a homomorphism from A^ to A^ which maps generators to 

products of generators and their inverses and suppose 

f I ChtCx - 1) = H . 
i=l jel. ^ 

I will complete the induction on c - w for ip and it will follow 

that this induction can always be completed. 

There must exist integers i and j such that i e Z^, j e 

and, 
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either (i) x.ii; = uv for some u,v e A 
- 1 

- ^^ — " - -n^ or (ii) x.ijj = X, for some k e Z , 

suppose x̂ijj = uvo 

Define s . x. - ^ -

and 

^ s X. u, V, x^ x^^, Vk e Ij}. 

Clearly ip = ( P i p ^ o 

Let 

G' = S(I.\{j}) n S(I )o 
^ qeZp\{i} ^ 

(p obviously commutes with a* whenever a e G' „ 

Let T be a left transversal of G' in Go 

By Corollary 3c, 8 we know that for each t s T there must exist an 

expression b^ e such that 

and 

Thus 

wt Cb ) > wt , (a ) = 1< m+1 T — j-c" 
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n ( a H ( C n ( a ) 

oeG ^ t e T a£G' 

Now 

and 

( n n ( a n n ( a T * ( j m + l ) * o * 

^ T E T oeG' ^ T E T OEG' ^ 

C n n C b 

T E T CTEG' ^ ^ 

( n n C a i n + l ) * i p ) 

asG ^ OEG 

c n n C b 

T E T OEG' ^ 

y y C h t ( x . 4 ; , ) - 1 ) = H - h t c ^ ) + h t ( a ) 
L, Oil i . / ' 

k s Z q E l . 
P k 

< H 

I I ^ l ^ t C x . C j - 1 ) 
kEZ q E l ^ 

= H - h t C a b ) + h t ( b ) ^ v / TT/ 

< H 

H e n c e , b y t h e s e c o n d i n d u c t i v e h y p o t h e s i s 
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C n 
aeG ^ 

^ n Cn (b 
T E T aeG' ^ ^ 

For each k e Z let I' = I \ {j}. 
P 

Let P = {k : k e Z and I,' > n}„ 
P k 

Clearly P is either Z^ or {i}, depending on the number of elements 

in I. , 

Now 

keP 
- n) = ^ (|I I - n) - 1 

keZ 
P 

> c - (W+l) + 1. 

It follows from the first inductive hypothesis that, if wt^(b^) = 1 

for all 

then 

q e f ' J I , ) \ { j } 

k = l 

n Cb lo 

I f w t Cb ) > 1 f o r s o m e q e C 1 . ) \ { j } t h e s a m e r e s u l t f o l l o w s 
q ^ . k=l 

from a proof almost identical to that used to eliminate the expressions 

a^ : f ̂  ^ (see page 59), and the induction is complete for case (i) 

(see page 63) <, 
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Now suppose case (ii) applies, that Is that 

x.ip = X, ̂  for some k In Z „ 

Define <p e Hom(^^.A^) : x. x'^x^ x^, Vq s 

and 

Define G' and T as on page 63 « Clearly ip and 

n (a n n (a 
aeG "" TET creG' "" 

^ n (a n n bo^^^^^ij^^, 

aeG ^ TET aeG' ' ^ 

where, by Lemma 3., 9, the b are expressions such that 
wt (b ) > wt (a ) , Vq e Z and wt. (b ) > wt ^ (a ) + 1<, As In case q t — q r m J T — jx~ ^ 
(1) we can eliminate the first product by the second Inductive 

hypothesis and the second product by the first Inductive hypothesise. 

3olio Theorem; Let c, n, w be positive Integers such that w ^ c, 

let X be a partition of c Into k parts such that 

k 
I A, ̂ c - w + 1 

l=n+l ^ 
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and let e be a scalar multiple of a primitive idempotent of 

QS^ such that e is associated with X and 

e e ZS 0 c 

Then r (A )en is a set of laws in F (N ) w V/w ^ n =c 

Proof; Suppose ij; is a homomorphism from F^ to 

Let 
"i S i i 

x.4̂  = n X 

and define the homomorphism 6 : A^ ^ A^ by 
n. . 1 a. . 

x.e = n X . 

Clearly f̂ijj = so 

r (A )eD\jj = r (A )e0n o W ^ w w '̂'W "̂ c 

Now suppose D is a diagram associated with A. D has 

columns of length greater than n. 

Set equal to the set of entries in the ith column of D 

for 1 i. i 1 ^n+1 precisely = {h : hD = (j,i)} 
Vi e Z o Clearly I, fl I. is empty if i ^ j and 

P ^ J 
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i=l 

- n) = |{h : hD = (j,i) for some j > n} 

j=n+l 
{h s hD = Cj,i)} 

j=n+l 
max{i :3 h e Z such that hD = (j,i)} 

w 

Now 

so 

and 

I A . > _ c - w + l o 
j=n+l J 

i=l 

C l ^ - n ) _ < w - n < w 

c - w + 1 < w , 

c+1 
W > — 

w > [y] + 1. 

Suppose a is a commutator in A^ of weight w . Let 

then a = for some endomorphisms C of A^, and wt^(a) = 1 
P 

for all j e Z o Put G = n sC l . ) and let T be a left transversal 

of G in C(D)„ 

Then 
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since 

= n (a(SCa)crp))^dg 
aeC(D) 
peRCD) 

aECCD) Ip a 2p a cp a 
peR(D) 

= n 
aeCCD) 
peRCD) 

= n C( n 
(xeG xeT ^ 

PERCD) 

= 1, 

TET 
peRCD) 

is clearly a homogeneous product of commutators, with the same weight and 

repetition pattern as a, C9 is a homomorphism from A to A 

and all other conditions of Lemma 3„10 are satisfied. 

It follows immediately that if a' is any element of T (A ) then C /V C 

= 1 and so 

for all ^ e ), 

that is the elements of r (A_)ep are laws in F (N ). '' w '\iw '\i n =c 
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3,12o Theorem; Let c, n, w be positive integers such that w ^ c„ 

Then 

CVarCF (N )) ^ N ) V N ^ y^rCF (N )) ^ N , o 
n =c =w =w-l — n+c-w =w =w-l 

Proof; From Theorem 2o3o9 we know that the only laws that distinguish 

the variety on the right hand side from N^ are associated with 

partitions of w into more than n + c - w parts. Suppose X is 

such a partition. Clearly 

n+c-w+1 

I X _ > c - w + l 
i=n+l 

and the required result follows from Theorem 3„llo 
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4o Basic Left Normed Commutators, 

4 o 0 o In Chapter 3 I proved that certain laws hold in 

the next chapter I will show that, with certain conditions on n and 

c, these laws generate all the laws of 

To do this I will need to be able to identify elements of ^^ 

which are not in the kernel of ^^o Normally this is done with basic 

commutators» 

The trouble with basic commutators is that they behave badly under 

homomorphisms from A^ to A^.^o That is, if ip is such a homomorphism 

and a is a basic commutator in A then aip is unlikely to be one and 

the process of "collecting" it into a basic form is complicated and 

difficult to conceptualizeo 

It is known that if a is an element of A then there is 

product of left normed commutators, a' say, such that: 

a a' 

It can in fact be shown that, if a has weight c, a' can be a 

homogeneous product of commutators each with the same repetition pattern 

as So 
Now suppose a is a left normed commutator of weight c, 

a = [X ,x ] say, 
1 2 c 

and suppose 

1 < i < Co 

a 
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T h e n 

1 1 2 1 - 1 1+1 c 

c 
- 1 

o 
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where S +1 if i is odd 

-1 if i is eveno 

Thus if a is a left normed commutator of weight c, and wt^(a) = 1, 

it is possible to find a homogeneous product of commutators, a", with 

the same repetition pattern as a, each commutator having first entry 

X,J such that: 

a a' o c 

Now the number of commutators with this property, (ioe„ first 

entry , repetition pattern rep(a)) is given by 

, C c - D ! ^ 
nCkrep(a))! 
keZ 

But a straightforward application of Witt's formula shows that this is 

simply the number of basic commutators with repetition pattern a.o 

(See for example Magnus, Karrassand Solitar [10], Theorem Soil, page 330„) 

It follows that if B is a set of basic commutators of weight c in 

A and B' is the set obtained from B by removing the basic commutators 

with repetition pattern rep(a) and inserting, in their place, the 

left normed commutators with that repetition pattern and first entry j 

then B'^^ generates Ŷ '̂n'̂ Sĉ  and/(B'f^^)/ is the rank of 

Y F (N ) regarded as a free Z-module„ Hence B'p is a basis for ' c n =c 
Y F (N 'c n =c 
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This displacement of basic commutators by left normed commutators 

only works for those repetition patterns which take the value 1 at some 

point„ 

The rest of this chapter is devoted largely to providing a formal 

proof of the above remarks. This formal proof has the added bonus that 

it provides an explicit formula for the process of moving a generator 

to the front of a left normed commutator. To do this it is necessary 

to define some rather artificial looking functionso 

4„lo Definition: If T is a finite subset of z"̂ , the permutation 

[T] : Z^ ̂  is defined as follows: 

[T] is the monotonic decreasing bisection: T Z 

[T] is the monotonic increasing bijection: Z ' ' ' \ T ^ Z"'"N Z 
Z'^ST 

Lemma; If T is a subset of Z^, then 

i[T] = i for all i > n 

and i[T] e Z for all i e Z n n 

Proof: Since [T] 
Z"''\T 

is a monotonic decreasing bijection, the 

n - T smallest elements of Z"'"xT must be mapped to the n- T 

smallest elements of z''"\ [Z But these constitute the sets 

Z \ T and Z \ Z respectively, n n i 
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Hence [T] maps z \ Z onto itself and, bein? a 

monotonic increasing bi.iection on this set, must be the identity 

mapping< 

It follows that [T] maps Z^ onto itself which comoletes the 

proof, 

4_„3 _ Lemma; If T c Z^ then 

i[T U {n+1}] = 

i[T] + 1 

1 

i[T] 

if 1 1 i 1 n, 

if i = n + 1, 

if i > n + 1. 

Proof; Put T^ = T U {n+l}o Clearly n + 1 is the largest element of 

It follows from A d that (n+1) [T^] = 1 and 

from 4„2 that i[T^] = i = itTj for all i > n + 1„ 

Now [T] ^ is the monottmic decreasing bisection: T -> Z _ and 

[T^] ^ is the monotonic decreasing bijection; T ^ Z T +1 

T 
\ {1}. 

Hence i[T^] = i[T] + 1 for all i e T, From 4,1 and 4,2 it follows 

that: 

and 

[T]l „ is the monotonic increasing bijection: T ^ Z 
' n 

[T ] j T monotonic increasing bijection: T ^ x + 1 1 Z \ T ' n 

Hence i[T^] = i[T] + 1 if i e Z^ \ T, 
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4,4 

i[T U {n+1}] - 1 

then, 

n + 1 if i = 1, 

if 2 ^ i ^ n + 1, 

if i > n + lo 

4,,5 The following commutator identities are collected here for 

convenience. 

Lemma; (i) If a,b,d e A and wt(a) + wt(b) + wt(d) = c then 

[a,b,d][d,a,b][b,d,a]'^ 1. 

(ii) If a,b,d e A and wt(a) + wtCb) + wt(d) = c 

then 

then 

[a,[b,d]]^[a,^,d][a,d,b]"^o 

(iii) If a e A and a ^ b 

[a,d] ^ ^ [b,d] for all d e A. 

Proof: (i) is simply the Jacobi-Witt identity, 

(ii) [a,[b,d]] [b,d,a]"^ 

^ [a,b,d][d,a,b] by (i) 

^ [a,b,d][a,d,b]"^. 



77, 

(ill) If a b then there is an expression e of weight c + 1 

such that: 

a be. 

Hence [a,d] [be,d] 

[b,d][b,e,d][e,d]o 

since wt[b,e,d] > wt[e,d] ̂  c + 2. 

4o6 Lemma; If n is a positive integer and a.b^.b^, <>«o jb^ are 
n 

elements of A and w = wt(a) + ^ wt(b.) then 
i=l ^ 

[a,[b, ,b-,ooo,b^]] n [a,b ^ ,b ,h 
' 1 2 n w \{1} 2[T] ^ n[T] 

— n 

(Note: For this product to make sense it is strictly necessary to have 

an order defined on the set of finite subsets of In fact the order 

chosen makes no difference to the result since we are effectively working 

in Y F(N ) which is abelian. However in order to avoid confusion 'n+1 =n+l 
choose some ordering on the set of finite subsets of Z o Then, if R 
is a subset of Z"̂ , n a will denote the product of the a^ taken 

ICR 
in that order.) 

Proof: By induction on n. If n = 1 then the right hand side of the 

statement becomes: 
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T T [ a , b 
C - 1 ) = [ a , b = [ a , b ] 

T ^ 1 [ T ] 

w h i c h i s t h e r e q u i r e d r e s u l t o 

S u p p o s e now t h a t m > 1 a n d tha t^ I^emma i s t r u e f o r a l l n s u c h ^ f 

t h a t 1 < n < m. T h e n 

w 

w 

b y 4 „ 5 ( i i ) 

( - 1 ) 
[ ( n [ a , b 1 , b , , o o n , b 

T c Z { 1 } i m ' 2 [ T ] ' 
— m - 1 

( m - l ) [ T ] ° 
] 

T c Z A { 1 } __ j h - x 

[ [ a , b „ ] , b 
m 1 [ T ] " ^ 2 [ T ] 

- 1 ' ( m - l ) [ T ] 

( - 1 ) 
T | + l 

w n [ a , b , , b 
T C Z A { 1 } 1 [ T ] 2 [ T ] 

— m - i 

b y t h e i n d u c t i v e h y p o t h e s i s , 

( m - l ) [ T ] m [ T ] 

n [ a , b , b , 
T C Z \ { 1 } l [ T U { i n } ] 2 [ T U { m } ] 

— m - i 

, o o o , b 
- 1 

, b 
( m - l ) [ T U { m } ] " ' - m [ T U i m } ] 

w 

b y 

T C Z A d ) 1 [ T ] 2 [ T ] 
— JlK-^ 

- 1 ' - 1 
, b 

^ i i - l ) [ T ] " m [ T ] 
, - 1 -

w h i c h c o m p l e t e s t h e p r o o f o 

4 , 7 C o r o l l a r y ; I f a i s a h o m o g e n e o u s p r o d u c t o f c o m m u t a t o r s o f w e i g h t 

c t h e n t h e r e i s a h o m o g e n e o u s p r o d u c t o f l e f t n o r m e d c o m m u t a t o r s , b s a y , 
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with the same repetition pattern as a and such that: 

a b o c 

Proof: By induction on Co If c 2 the result is trivialo 

Suppose w > 2 and that the Corollary is true for all c< w„ 

Let a be a homogeneous product of commutators of weight w„ 

n S 
Suppose a = n a. where each a. is a commutator,, Then 

i=l ^ "" 
a = [a .,a ,] n n,l' n,2 

m, . m^ S. 

^ i=i i=i 

where b is a left normed commutator with the same repetition pattern 

as 

(this follows from the inductive hy^^thesis), 

Hence 

a^ n n ([b. .,b ]) . 
^ i=l k=l 

Now b , is a left normed commutator so that 4,6 can be 2,k 
applied to find a product of left normed commutators, ^^^^^^ such that: 

rep(a^) 

= rep(a) 
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and 

tir 

It follows that a^ can be written as a product of left normed 

commutators and the required result follows easily by induction on n. 

4.8 Corollary; Let a = [x^ , „ , o ] and suppose that = i: "Ehen 
1 2 c 

''VA 
, o . « ] 

- 1 
( T +1) 

4o9 Definition; (i) The mapping L^ from {6 ; Z^ ^̂  Z} to the set 

of left normed commutators of weight n is defined for each positive 

integer n as follows ; 

If n = 1, 61^ = x^go 

If ^ > [®|z / n - l ' ^ n e ^ ' 
n-1 

If CP is a function from M to Z where Z c M I will write 
^ n — 

(dL for (D 
n 

n 

Clearly every left normed commutator of weight n can be written as 

dL for some 6 : Z ^ Z and 6^1 = 6,1 if and only if 
n n ± n ^ n 

n 
'2 Z " 

' n 

(ii) If a is a left normed commutator of weight n and 

a = el then, for each i e Z^, the ith entry of a is defined as ^^^ 
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(iii) The set of (*)-basiccommutators is defined as follows» 

If r is a finite repetition pattern, that is a function: Z z"*" 

with only a finite number of non-zero points, the (*)-basic commutators 

with repetition pattern r are: 

(i) the basic commutators with repetition pattern r if 

ir ^ 1 for all i e Z 

(ii) the left normed commutators with repetition pattern r 

and first entry x^ if j = min{i : ir = D o 

4,10 Theorem; If B is the set of (*)-basic commutators of weight c 

then B^^ is a basis for the Z-module Yj^^nCHj,)-

Proof: (N ) is a free Z-module with rank equal to the number of 

basic commutators of weight c. It is generated by the images under 

^^ of the basic commutators of weight Co It follows from 4„8 that 

it is generated by B^^. 

Witt's formula for the number of basic commutators with weight c and 

repetition pattern r is: 

gj y(d) 

^ ieD n (—)! 
ieZ 

i I 

where 

D = {d : d divides ir, V i e Z} 

and y is the Moebius function. 
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(See, for example (Magnus, Karrasi, Solitar [10], Theorem 5„11, page 330), 

Clearly if ir = 1 for some i, D = {1} and Witt's formula reduces to 

(n-1)! 
n , (jr)! 

But this is just the number of left normed commutators with first entry 

X. and repetition pattern r„ (The number of ways of arranging copies 

of the generators other than in order with the requisite repetition 

pattern.) 

It follows that the number of elements in B^^ is equal to the rank 

of Y F (N ) and that Bp is a basis. 'c n =c tc 

4oll Definition; (i) A (*)-basic commutator is type (1) if it is 

basic, type (2) if it is not„ 

(ii) The (*)-basic commutators are ordered as follows: 

The type (1) commutators have their usual ordering» 

The type (2) commutators of a given weight and first entry have 

an arbitrary ordering. 

The type (2) commutators of weight w are greater than the type (1) 

commutators of weight w and less than the type (1) commutators of 

weight w + 1„ 

If a^ and a2 are type (2) commutators of the same weight, w 

say, and if 
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a = e,L , a , = e-,L and 19 < I l w 2 2 w 1 
then 

a^ < a^ « 

' ( i i i ) An expression in A^ is a ( c , n , * ) -bas ic expression i f i t 

i s of the form: 

m 6. 
n bi^ 

i= l 

where m i s the number of (* ) -bas ic commutators of weight at most c 

in A , b : i H- b, is the monotonia increasing b i j e c t i on from z"*" 1 
to the set of ( * ) -bas ic commutators in ^^ and the are integers 

(possibly zero, in which case b^ ~ ^^° 

4ol2 Theorem; For each element, a, of A^ and for each integer c , 

there is a unique ( c ,n , * ) -bas ic expression b such that ^ 

Proof; By induction on Co 

If c = 1 then the set of (* ) -bas ic commutators of weight at most 

c is just X^ and A^^^ is the free abelian group freely generated by 

X and the result follows» Suppose w > 1 and the Theorem is true for 
n 

a l l c < w„ Let b^ be the unique (w- l ,n ,* ) -bas i c expression for which 

a ^ h. o w-1 1 
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Then 

w 11' 

where a^ is an expression of weight at least w, since it is 

in the kernel of p -o-w-l 
It follows from 4„10 that 

where m is the number of (*)-basic commutators of weight w in 

A , 6 : i K B. is the monotonic bijection from Z to the set of these ^n 1 
commutators and the are integers. 

It follows that 

m 6. 
a b̂  n 
^ 1 i=l ^ 

which is (w,n,*)-basic„ 

Now suppose 

m 6. m S^ 
b, n b n B. 
^ i=l " ^ ^ i=l ^ 

Then 

so 

m 6, m S. 
b, n B.^ b- n B. 
^ i=l ^ ^ i=l ^ 

b. b- and b = b 1 w-1 2 1 2 

by the inductive hypothesis 
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Thus 

m 6 . m 

1=1 1=1 

and, by 4.10, it follows that 

6. = g. for all i e Z 
1 1 m 

which proves the expression is unique. 

now 4ol3 M ApplicatioHo The result I will prove in this section is 

well known, independent proofs having been published by Levin [8] and by 

KovScs, Newman and Pentony [7]„ This, third, proof is included here 

to illustrate the use of *~basic commutatorso 

Let c be an integer greater than two and let G be the group of 

permutations of Z ^ { 1 } 

Let 

C ( \ 

oeG 

It is obvious from the antisymmetric nature of a that a^ is a law 

in F (N )„ Since the factors of a are all different (*)-basic 
c-2 =c 

commutators it is equally obvious that a^^ is non-trivial» Thus 

a^ is a law distinguishing Var(F^_2(N^)) from N^o 

4„14„ The following lemma will be useful for strengthening the result of 

Chapter 3. 



Lemmas 

86. 

Let c be an integer, greater than 4, let X be a partition 

of c with Xĵ  = 3 and X2 = and let D be a diagram associated 

with X such that ID = (1,3), 2D = (2,1), 3D = (1,1) and 4D = (1,2) 

then r (A )g(D)p is nontrivial, 
c 'vc K.c 

Proof; First note that the top part of D can be drawn as follows 

k 1 

lo I will show that a5(D)D f 1, 
'vl 'vc '̂ c 

Put m = (c-1)! and let b^,b2. 000b be the *-basic commutators 
m 

with the same repetition pattern as a„ For convenience let a = b^^. 

For each permutation i of Z^ define the integers 

1,t' 2,1 
,6 m , T 

by 

m 
ai* = n b. 

i=l ^ 

I vfill show that 

i,T 

I I S<ia)S 
aeC(D) peR(D) 

l,pa = 6, 

which means that 

n (ap^a*)!^""^ ^ 1 
aeC(D) 
peR(D) 
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which in turn means 

n (aap)^^^Vc ^ 1 • 
O E C ( D ) 

P E R ( D ) 

Note that if p e R(D), a e C(D) and m e Z^ are such that 

mpa = 1 then mp = 1, which means m e {1,3,4}« 

Thus, for all o e C(D) and all p e R(D), the collecting process 

given in Corollary 4<,8 for moving x^ to the front of ap*,^ will 

only affect, at most, the first four positions. This means that 

only if ipa = i for all i greater than 4o Since 

a e C(D), i and ip must be in the same column, but p e R(D) so i 

and ip are in the same rowo Since D is one to one it follows that 

ip = i and hence that ia = io 

We have proved that, if a E C(D), p E R ( D) and 6 4 0 then X, po 
ip = io = io This in turn means that 

I I = I I 
O E C C D ) peRCD) A E C ( D ^ ) p£R(D^) 

where 

The sum on the right hand side can be readily calculated and is, in fact. 

6, as promised. 
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4ol5 Theorem; Let c,w and n be positive integers such that c > w , 

2w = 2n + c + 2 and w ^ 7o 

Then 

where the inclusion is proper. 

In fact if m is an integer, greater than or equal to then there 

is a law of weight w in F^^CN^) which is not a law in F^j^CN^)" 

Proof: I will first prove the second statement and then show it implies the 

firsts 

w-1 

Let m be the smallest integer which is not less than „ 

Define a partition A of w as follows; 

= 3, ^^ = ^ ^^^ all i such that 1 < i < m 

A = 
m 

2 if w is odd, 

1 if w is even. 

It is easily checked that A is in fact a partition of w into 

m partso 

Let D be a diagram associated with A such that ID = (1,3), 

2D = (2,1), 3D = (1,1) and 4D = (1,2)„ 

Let 
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By Lemma 4„14 a is not a set of laws in N ^ and h e n c e , by 

L e m m a 2o3o8 is n o t a set of laws in F (N ). 
m =w 

On the other hand 

m 

y A . = 2(m-l-n) + X = k , s a y , 

i=n+l 

If w is o d d , k = 2(m-n) = w - 1 - 2 n = c - w + 1 , 

a n d , if w is e v e n , k = 2 ( ^ - n - l ) + l = c - w + l s o , by Theorem 

3„11 a is a set of laws in F (N ) and the second part of the statement 
n = c 

is p r o v e d , 
a , 

w—1 

By v i r t u e of it now suffices to prove that n + c - w ^ - j - , 

By hypothesis w = 2 n + c - w + 2 ^ 2 n + 3 so 

w - 3 
n _< - J - o 

3 X 
But n + c - w = w - n - 2 ^ w j 2 = — ^ and the proof is complete, 

4,16 Corollary: Let c b e a positive i n t e g e r , greater than 7, and 

let w and n be defined as follows 

w = c - 1 and n = -j - 2 if c is e v e n , 

c-1 

w = c - 2 and n = - j - - 3 if c is odd. 

Then (Var(F^(N^)) A N^) V is a proper subvariety of 
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Note; This Corollary disproves the conjecture 
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5o The Laws of F (N ) for Large n.  — _ n =c —^^— — 

5o0o In this chapter I will show that, provided n is sufficiently 

large the laws of F^^^c^ obtained in chapter 3 are the only laws of 

n =c 
I will need results from all the previous chapters to do thiso 

5o1 Lemma; a is an expression of weight w and i is an integer 

such that wt. (fCl ̂  1 and if ip is the endomorphism of ^ given by 

if J i. 

Jx^.xj^] if j = i. 

then wtCct̂ ;) ̂ wt(a) + wt^(a)o 

Proof; The proof is by induction on height. If ht(a) = 1 the result 

is trivialo 

Suppose that a is an expression with height greater than one and that 

the Lemma is true for all a such that ht(a) <ht(a) and that wt^(a) = 1, 

There are three possibilities« 

(i) a = where wt(a) = wt(a^), wt^(a) = wt^(a^), 

(ii) a = a^a^ where wt(a) = min{wt(a^),wt(a2)}, 

wt^(a) = min{wt^(a^) ,wt̂ . (a^)}, 

(iii) a = where wt(a) = wt(a^) + wtCa^), 

wt^(a) = wt^(a^) +wt^(a2)o 
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Suppose, f o r example that ( i i ) holds» Then 

wt(ai|j) = min{wt(a^4;) jWtCa îJ )̂} 

^ min{(wt(a^) + wt^(a^) ) , (wt (a^) + w t ^ ( a 2 ) ) } 

inin{wt (a^ )̂ ,wt (a^)} + min{wt^ (a^) ,wt^ (a^)} 

= wt(a) + wt^(a) as required. 

The other two cases are even more straightforward, 

5o2 Lemma; I f a i s a n o n - t r i v i a l bas i c product of commutators in 

A^, each f a c t o r having weight at most c and i f a^^ i s in the kernel 

of every homomorphism from ^n l^^c^ then 

wt^(a) ^ 1, f o r a l l i e Z^o 

Proofs Suppose there ex i s t s ± e Z^ such that wt^(a) = 0, Let 

\p be the homomorphism from A^ to given by: 

X, ^ 

i f 1 1 j < i , 

1 i f j = i . 

^ j . l i f n > j > i . 

Clear ly , i f a i s a commutator, 

ailj 1 i f wt, (a) > 1 
^ c 1 — 

and aip = a i f wt^(a) = 0« 
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(This can be formal ly proved by i n d u c t i o n on w t ( a ) , using the f a c t t h a t 

[ a - , , 1 ] [ I j a ^ ] 1 f o r any a , e A„) 

Thus, i f , 

n S, 

then 

where 

a = n b. 
k = l ^ 

n 
a\\j "u n b, = a^ ( s a y ) , c k i 

0 i f w t . ( b ^ ) ^ 1 , 

\ i f w t . ( b ^ ) = 0 

C l e a r l y a^ i s a b a s i c e x p r e s s i o n i n s i n c e 

0 ' w t ^ ( a ) = min{wt^(bj^) : B^ ^ 0} ^ 

i t fol lows t h a t a t l e a s t one of the i s n o n - z e r o , so a^ i s 

not i n the kernel of ^^o 

Let lb' be the homomorphism F (N ) -> F , (N ) induced by ipc T1 "" C il"* X 

By hypothesis a^^ e Ker(ij; ') but 

a c o n t r a d i c t i o n which concludes the proof . 
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5o 3 Lemna; If a is a left normed commutator of weight w 

and i is an integer such that 

a = QL^, wt^(a) = 1, and 16 ^̂  i, 

and if \p is the endomorphism of A generated by 

/v/h 

^h 
if h ^ i 

if h = i 

where j, k are some elements of Z, then 

and 

- 1 

where G, : h^> 

he if 1 ^ 

j if h = 

k if h = 

(h-i)e if i6"' 

-1 

= (ie^^ ie^^ + 1)6, 

Y / 

that is 62 is defined in the same way as 6 except that the 

positions of j and k are reversed. 

Proof; By induction on w - i 6 ^ o If w = then 
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Suppose now that c is an integer, greater than zero, and that 

the Lemma is true whenever 0 < w - i 9 ^ < C o Suppose that a 

is a left normed commutator, a = î L , wt,(a) = 1 and that w 1 
W - Co 

Define ^ ̂ t same way as and 620 

Then we have 

r̂ ^ [f^L ]. by the inductive hypothesis^ w+1 '1 w ^ 2 w ' ^ ^^ 

w+1 w 

Q 

5o4 Lemma; Let n,c be positive integers with > "J n > 9 and 

let a be a (c,n,*)-basic expression such that 

an iJj = 1 for all : F (N ) ̂  F ^ (N ) „ î c n =c n—i =c 
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Then 

wt(a) > Cc 

Proof; By Lemma 5 o X w e know that 

wt.(a) > 1 for all i e Z 1 — n 

and it follows that 

wt(a) > -J o 

m 
'Let a = n b. where bi,ooo,b are (*)-basic commutators and . T 1 1 m 1=1 
suppose wt(a) = w < Co Let A = min{^ : 0} then clearly 

wt (b,) = w < c and wt.(b,) > 1 for all i e Z . For each A 1 A — n 
k e Z"*" put = {i : wt^(b^) = k}. Then 

w = wt(b ) A 

= I wt.Cb ) 
i=l ^ ^ 
w 

= I 
k=l 

+ 2(n - I,I) 

= 2n - I, 

> c -

Cw+1) - r, 
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Hence > 2. 

Suppose 5 = then, by definition b^ is a left 

normed commutator with first entry x^, 

Let b. 

Now b can be regarded as a string of symbols each chosen 
A 

from X^, the first being x^ with x^ being repeated 

wt.(b ) timeso It will be necessary to consider the relative 
1 A . 

positions of these sjnnbols and towards this end I introduce the 

following terminologyo 

Two integers, i and j are adjacent in b^ if there are 

integers, V.,1 £ W such that = 1 and ke^ = i and 

Intuitively i and j are adjacent in b if one of the 

sequences ooo,x^, x^ ,»„» and o = <, ,»« . occur in b^o 

I will prove that there are integers r,s,t in Z^ such 

that e Ij are all distinct and no two of r,s and t 

are adjacent„ 

This part of the proof is messy being based on consideration of 

each of the following four possible cases; 

(i) 

(ii) 

(iii) 

adjacent, 

(iv) 

= 2 

1^1 = 3 and the two elements of are adjacent. 

1^1 = 3 and the two elements of are not 
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Suppose 11̂ 1 = 2, set r equal to the element 

Then since wt (a) = 1 there can be only two elements of Z which r n 
are adjacent to r. Let the set of these elements be R„ Let s be 

any element in Z^\({C,r} U R). 
w 

Now 2n-l > c - l > w > 2 + 2 l - + 3( J ll.j) - - 2 

= 2 + 2 1 , + 3(n - 2 - l O 

= 3n - |lJ - 4, 

so n - 3, but clearly _< n - 2, so = n - 2, 

It follows that wtg(a) = 2 and that there are at most four integers 

adjacent to s in a„ Denote the set of these integers by S„ It 

follows that 

{C,r,s} ly R Cy S| < 9 < n. 

so that there exists t e ({5,r,s} U R U S) and the result 

is proved in this case„ 

Now suppose case (ii) applies„ Take one of the elements of 

5 as ro Let the set of integers adjacent to r in b^ be 

Ro Clearly |r| = 2„ 

This time we have 

so 

2n - 1 > 3 + 2 1^1 + 3(n - 3 - ll^j) 

I, > n - 5o 
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Now at most one element of {C,r} U R is in 12 so we can 

choose s from I^XClC.r} \J I^, Denote the set of integers adjacent 

to s in b by S o Then |S| < 4 so that 

{5,r,s} (; R L/ S| < 9 < n 

and we can find a t which satisfies the required conditions. 

If either case (iii) or case (iv) applies there are at 

least two non-adjacent elements in Call one T A.TID -CKV O-CUI-

So If R and S are defined as before^ 

{C,r,s} ( y R ( y s | ^ 7 < n 

and we can find a t to satisfy the required conditionso 

Returning now to the main proof let r,s,t e three 

distinct integers no two of which are adjacent in b :<, Let ( W ^ W ^ r ^ i 
\ 

A* ^ be the subalgebra of A generated by Let 4> be 

the homomorphism from A^ to given by 

X. if i ^ r 

X, 
'VI 

[x if i = r. 

Let F* be the subgroup of F^jC^^) generated by \ \ ^^^^^ > 

and let ip' be the homomorphism from ^n l^Sc^ induced 

by \p and let ^ be the isomorphism from to 
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g e n e r a t e d b y 

X . 
1 

X . if i < r 
1 

if i > r 

T h e n , b y h y p o t h e s i s , a^^ is i n the k e r n e l of (jj*^, w h i c h m e a n s that 

1 = a ^ ^ V f = 

But is an i s o m o r p h i s m , so 

a n d h e n c e aib r ^ 1 „ 
w + 1 

N o w , by L e m m a 5olc 

wtCb.iJ;) > w t ( b . ) + w t (b.) V i e z 
1 X r 1 m 

^ w t ( b ^ ) + 1 

so h . i p ^ 1 unles-c w t ( b , ) < w and w t (b ) 
w + 1 - 1 — r i 

It f o l l o w s t h a t 

If + 1 - w t ( b ^ ) 

^ aij; = n Cb/),J; 
m 5. 
n Cb.^ 

i = i ^ 

m s. 
= n Cb 

i = i ^ 

m 5 

i=X 
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where m' = max{i : wt(b^) = w} and S^ = 0 i f wt^(b^) ^ 1, 

Now, for ^ £ i ^ J i s a l e f t normed commutator of weight w, 

b . = Q . L s a V c 1 1 w ^ 

By Lemma 5o3c 

h . i p (e. .i. ^tXO. a ^T) w+1 1 ,1 w+1 1,2 w+1 
- 1 

where 

and 

: Si 

: I ^ 

2,6. i f 1 < £ < re. 
1 — 1 

- 1 

- 1 i f £ = re 1 
i f £ = reT^ + 1 1 

(£-l)e^ i f re-'+ 2 £ _< w + 1 

1 £6. i f 1 1 _< £ < 

t i f £ = reT^ 1 
s i f £ = rsT^ 1 
(£- i )e. i f 

Let 3. . be the (w + 1, n, *)-basic expressions which are given by 
J 

i , j w+1 w+1 
and let 

m" 6. 
. = 1 1 1,J 'V 1 n a. k=l 

where „ are the (*)-basic commutators of weight w + 1 in Â c 
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(The p r o d u c t o f I ' s a t t h e f r o n t c o r r e s p o n d s t o t h e commutators o f 

w e i g h t l e s s than w + 1 w h i c h w i l l have z e r o e x p o n e n t s , ) 

Suppose e^ i^w+1 ~ ^y° ^^ w i l l now f i n d t h o s e o r d e r e d p a i r s 

( i , j ) e Z , X Z- w h i c h s a t i s f y t h e c o n d i t i o n S . S . . ^ Oo 
n 2 1 

The p r o c e s s o f c o l l e c t i n g l e f t nom.ed commutators d e s c r i b e d i n 4„8„ 

c l e a r l y p r e s e r v e s t h e r e p e t i t i o n p a t t e r n „ I t f o l l o w s t h a t i f . ^ 0, 
1} J 

t h e n r e p O . ^ . L ^ ^ ^ ) = rep (e^ ^ . Hence 1 = wt^ (6 . ^ .L^^^) = w t ^ ( e . L ^ ) 

= wt ( b . ) by t h e d e f i n i t i o n o f 9 . . and i t f o l l o w s t h a t b . must have 

w e i g h t 1 i n ^^o 

I f wt ( b . ) = 1 f o r some Z < ^ t h e n i ^ X by t h e d e f i n i t i o n of 

t h e o r d e r i n g o f ( * ) - b a s i c commutators . Hence 5 = min{jj, : wt ( b , ) = 1} 
36 1 

and so £ = 1 6 . = 1 6 . .= I t f o l l o w s t h a t 6. .L , , i s ( * ) - b a s i c and 
1 x , j i , j w+i 

hence t h a t 6. . = 6, i» 
1 >J A , J-

As we o b s e r v e d b e f o r e , t h e f a c t t h a t i s nonzero i m p l i e s 

t h a t wt^(b^) = 1 . 

Suppose t h a t j = 1 and t h a t re~^ < re7^„ Then r6T^ + 1 > re~^ + 2, 
A 1 1 A 

so ( r e T ^ ) e , = Cr6T^ + 1 ) 6 . = (r6T^ + 1 ) 8 . , = t and, s i n c e r and 

t a r e n o t a d j a c e n t i n b , i t f o l l o w s t h a t r 6 . ^ - 1 > r6 so t h a t 
A X A 

= s , 

Hence s and t a r e a d j a c e n t i n b , a c o n t r a d i c t i o n , 
A 

S i m i l a r l y , i f we assume r e ^ < r 6 , ^ and j = 2 , we o b t a i n A i 

( r e ^ ) 6 ^ = S and ( r e ^ - 1 ) 9 ^ = t . 
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and if we assume > re.^, we obtain 
A 1 

(re-^e^) = 
s if j = 1, 

t if j = 2, 

and 

(re-^ + = 
t if j = 1 

s if j = 2, 

all of which are contradictions„ 

Finally if we suppose that r0 - 1 re, we find that j = 2 and 

Hence 

, that is, i = Ao 

m' 2 
0 = 1 1 V i i , i=l j=l ^ 

= s. 

But we chose A so that ^ 0 and we have a contradiction which 

proves that wt(a) = c. 

5o5 Theorem; Let n and c be positive integers such that 
c n > — - 1 and n > 8, Then 

F (N ) e Var(F (N )) n+1 =c-i n =c 
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Proof: Let K be the set of elements of F ,^(N ) which are in the kernel n+1 =c 
of every homomorphism from ^n+l^Sc^ 

Suppose 41 is a homomorphism from ^n^^c^" ^ 

induces a homomorphism from ^n+i^Sc^^^ n̂'̂ Sĉ " intersection 

of the kernels of all homomorphisi^'from ^n^Sc^ 

induced in this way is clearly trivialo It follows that 

F (N )/K e Var F(N )„ n+1 =c n =c 
But, by Lemma 5A, ^ E follows that the natural 

epimorphism from induces an epimorphism from 

Q 

5o6 Corollary; If n and c are positive integers such that n > -y - 1 

and n > 8 and w is a positive integer less than c then 

F ^ (N ) e Var(F^(N )) n+c-w =w n =c 

5o7 Theorem; For each pair of positive integers i and j such that 

i > j define 

= U U U r^CA.)g(D);^, 
i ^ A rv^A 

where A is the set of partitions of w into more than m parts and 
w,m 

A is the set of standard diagrams associated with Xo 
X 
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Let n and c be D o s i t i v e i n t e g e r s such t h a t n > - j - 1 and 

n > 80 Then t h e s e t of laws of F^(N^) i s t h e f u l l y i n v a r i a n t i s o l a t e d 

subgroup of F g e n e r a t e d by [x, ,» „ „ ,x and U 
-L ^ c+1 n , c 

P r o o f ; Let G be t h e f u l l y i n v a r i a n t subgroup of F g e n e r a t e d by 

[x^ .x^ ,» , o and U^ We know, from Theorem 3 . 1 1 t h a t every element 

of G i s a law of F^CN^) so i t i s on ly n e c e s s a r y t o show t h a t every 

law of F (N ) i s i n G= n =c 

Def ine t h e we igh t f u n c t i o n , w t , on F by 

w t ( a ) 

00 i f a i s a law i n N f o r a l l w e Z, =w ' 

max{w : a i s a law i n N . } o t h e r w i s e . =w-l 

I t i s obvious t h a t every law of ^^^Sc^ t h a t has weight a t l e a s t 

c + 1 i s i n Go 

Suppose t h a t 1 < w < c + 1 and t h a t every law of t h a t has 

weigh t a t l e a s t w + 1 i s i n Go Suppose t h a t u i s a law of F (N ) n =c 

and t h a t w t (u ) = w, 
Th.-ecre-yn, 

By C o r o l l a r y 5o6, u i s a law i n ^n+c-w^S^^ ^^ 2o3„9 t h e r e 

e x i s t s a e lement v of F, which i s a consequence of [x ,x , ,o< ,„ ,x i z w+i 

and so has we igh t a t l e a s t w + 1 , and an e lement u^ of G such t h a t 

u = U^Vo 

S ince u and u, a r e laws i n F (N ) i t f o l l o w s t h a t v i s and hence 1 n =c 
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by the inductive hypothesis that v e G which means u e G< 

5o8 Corollary; Let c, w and n be positive integers such that 
£ 
2 
Q n > - ^ - l , n > 8 and c > w 

Then (Var(F (N ))A N ) = Var(F ^ (N )) n =c =w n+c-w =w 
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6. Two Conjectures Regarding the Laws of ° 

6.0 The following conjectures arise out of the results of Chapters 

3, 4 and 5. They provide, I think, a convenient way of summarising the 

results of those chapters. 

6.1 Conjecture; If c and n are positive integers such that 

c > n ̂  2 then 

(VarF^(N^)) A N^^^ = ^^^^ ^ (6.1.1) 

if and only if either (i) n > -jCc-S) 

or (ii) c = 7 and n = 2, 

Evidence; Corollary 5.8 shows that (6.1.1) holds if n > 8 and 

n > •j(c-2). . Corollary 4.16 shows that if c is even and 

n = •i-(c-4) then (6.1.1) is not true. Arguments similar to that 2 
in Section 4,14 but using different partitions should be capable of 

eliminating smaller values of n. This would mean that, in the case 

where c is even there is only one outstanding possibility, 7t = •~(c-2). 
tJCkp 

This is surprisingly small considering that the main lemma of Chapter 5 

has a little less finesse than the average stampeding elephant. 

If c is odd then the gap is rather larger. 

The main reason for the conjecture is a belief that the laws obtained 

in Theorem 3.11 generate all the laws of F^(N^) for the relevant 

values of n. 
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Suppose then that c > w > n > -jCc-S), and that A is a partition 

of n into k parts where k > n and that 

k 
^ A . ^ c - w + 1 ( 6 o l o 2 ) 

i=n+l ^ 

Then suppose further that ^ 2, that is ^^ ^ 2 for i ^ n + 

Then 
k n 
1 X . = w - ^ A . _ < w - 2 n < w - c + 3 _ < l , 

i=n+l ^ i=l ^ 

which is a contradiction since we assumed A > 2„ Thus the n+i — 

only partitions of w satisfying (6„1.2) are those whose n + 1th 

part is one. Suppose A is such a partition then 

k k 
I = I - (c-l)-w + 1. 

i=n+2 ^ i=n+l ^ 

Thus the laws corresponding to A will be laws in ^n+l^^c-l^" 

It follows that, if we assume that all the laws of F^CN^) are 

generated by those given in Theorem 3oll then 

V̂ ^̂ n̂+l̂Sc-l̂ ^̂ ^̂ '̂ ^̂ n̂ Sc))̂  Sc-1 

when n > y(c-3). Under the same assumption the reverse inclusion is 

easily obtained, and the sufficiency of condition (i) is plausible. 

Now suppose that n $ icc-S). Define a function A from Z^^^ 

to Z by 
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IX = (c-1) - 2n 

iA = 2 for all 1 such that 2 £ i < n + 1„ 

Clearly U is greater than 2 and A is a partition of c - 1 into 

n + 1 parts„ By Theorem 3,11 the laws associated with A are laws in 

By Theorem 2,3„9 they are laws in F^+l^Sc-l^ ^^ ^^^^ 

laws in In section A A,2 of the appendix I indicate why I believe 

this second possiblity only eventuates when c = 7 and n = 2„ This 

is the justification for my belief that one of conditions (i) and (ii) 

must hold whenever ('6,10 does« 

6.2 Conjecture; The laws given in Theorem S d l do not, in general, 

generate all the laws of F„(N )„ n =c 

Evidenced My main reason for believing this is a feeling that the proof of 

Lemma 3olO can be made even more horrible. Briefly this lemma uses 

the fact that there are only n expressions of height one in 

A which means that any homomorphism: A ^ A must either map two 'un '̂ n 

generators to the same expression or map a generator to an expression 

of height greater than one. There are approximately n^ expressions of 

weight 2 in A^ and it is possible that, when n^ < w, this could 

become important. 
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Appendix 

Categories MultipliCitieg_ artd Things, 

A.O. C^ajter 2 stems largely from a paper by Higman [6]„ The major 

changes are that where Higman deals with varieties of groups of prime 

exponent I have dealt with torsion free varieties and that while Higman 

uses categoric concepts I have avoided them. 

The categoric approach has the advantage that it avoids the computat-

ional detail of Section 2.3 and gives a much more understandable picture 

of what is happening. At the same time the categoric approach needs a 

fair amount of preliminary work to translate the varietal problem to a 

categoric oneo This appendix is included by reason of the first 

of these two considerations and is an appendix by reason of the secondo 

To some extent this appendix duplicates work contained in Stewart's 

Ph.D. Thesis [12]„ However Stewart's treatment of some aspects of the 

relationship between functors and varieties is rather terse and I have 

found it useful for my own understanding to expand his account considerably= 

Higman confines his remarks to nilpotent varieties. In Section A.2 

I show that the relationship between functors and varieties is more general. 

I doubt that this generalisation is useful but think it is interesting., 

In Section A.3. I give an indication of the way in which A,2 can be 

applied to nilpotent varieties and, in particular, to its application to 

nilpotent varieties of prime exponent. The details of this application 
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are well covered by Stewart and I have given only a brief discussion which 

attempts mainly to show the relationship between Higman's paper, Stewart5 

thesis and my thesis» 

In Section Ao4 I discuss three ways of applying Higman's technique 

to torsion free nilpotent varieties, my own, Kovacs and Newman's and 

the way I think it should be doneo I also indicate the reason behind 

one of the conjectures of Chapter 6. 
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Aol.lo (i) Definltloiio A concrete category K is a class of elements 

P called the objects of K, together with two functions a and Hoiâ o 

This first function a assigns to each object of K a set called the 

underlying set of that objects The second function Hom^ assigns to 

each pair of objects, (A,B) say, a subset Hoinj,(A,B) o f the functions 

from Aa to Bet, in a way that satisfies the following conditions. 

(a) If A is any object of K the identity function on Aa 

denoted 1^, is in Homj,CA,A) „ 

(b) If A,B and C are any three objects of K and 

0 e Hom^(A,B) and cp e Homj,(B,C) then Bcp E Homj,(A,C)„ 

The elements of Hom^(A,B) are called the K-morphisms (or simply 

the morphisms) from A to B„ 

(ii) Convention; Since the only categories I use are concrete I 

will henceforth use the term category to mean concrete category„ I will 

normally identify objects with their underlying sets, dispensing with the 

mapping a. 

If K is a category I will write A e K to mean A is an object of 

Ko 
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A subset B of an object A of a category K is a subobjact 

(in K) of A if B is an object of K and the inclusion mapping of 

B in A is in Homj,(B,A)„ 
= 

A O 1 O 2 Examples. The following examples of categories are included here 

partly to elucidate the definition but mainly because they will be used 

later in this appendix« 

(i) Every variety of groups can be regarded as a category whose 

morphisms are the group homomorphismso 

(ii) For each variety V the class of V-free groups of finite 

rank together with their group homomorphisms form a category which I 
will denote by Ig^P" 

(iii) For each commutative ring R the class of R-modules together 

with their R-homomorphisms form a category which I will denote by Ro 

(iv) For each commutative ring R the class of free R-modules 

of finite rank together with their R-homomorphisms form a category which 

I will denote by RQO 

A,1.3 Definitiono A functor, f say, from a category U to a category 

V is a mapping which assigns to each object A of U an object f(A) 

of V and to each morphism ijj in Hom^CA,B) a morphism f(ip) in 

Ho m^(f(A),f(B)), in such a way that 
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(i) fCl^) = for all A e y and 

(ii) whenever 0 e Hom^(A,B) and (p e Homy(B,C) then 

fCecp) = f(0)f((p)„ 

Aolo4 Examples, The following functors will be useful later. 

(i) For each category K there is an identity functor 

which fixes the objects and morphisms of I will denote this 

functor by e o 
K 

(ii) There is a functor from N^ to Z which maps each group in 

N to the cth term of its lower central series and each morphism 

e e Hom^ (A,B) to 6 
=c y.CA) 

(iii) The functor ab, from 0, the category of all groups, to 

Z, which maps each group to its commutator factor group and each 

group homomorphism to the homomorphism it induces between the 

appropriate factor groups, 

(iv) For each commutative ring R there is a functor [c] from 

R to R which maps each R-module to its c-fold tensor power over R 

and maps each R-morphism to the R-morphism it induces in the appropriate 

tensor power. Since the ring R will usually be obvious from the 

context I will drop the subscript on [c]„ 

(v) For each integral domain R and each positive integer c there 

is a functor L^ from R^ to RQ which maps each free R-module U to 
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the cth component of the free Lie Algebra freely generated by U„ 

. ^i) y and V be categories and a and 

3 functors from U to Vo A natural transformation from a to 3 is 

a mapping, \p say, which assigns to each object A of U a morphism 

\p (A) E Hom^ (a (A) , 3 (A)) in such a way that the following diagram commutes 

for every pair of objects A and B in U and every 9 e Homy(A,B)o 

ip(B) 
ct(B) ^ 3(B) 

a (A) 

(ii) Let U, V, a, 3, ^ satisfy the conditions of (i). Then 

ijj is called a natural equivalence, and a and 3 are said to be 

equivalent, if 41(A) is an isomorphism for all objects A of U, that is 

if ip(A) has an inverse in Horn ̂ '3 (A), a (A)) for all A e Uo 

(iii) If ip, a, 3, U and V satisfy the conditions of (i) 

and, for each A e U, ctCA) is a subobject of 3(A) and ip(A) is the 

inclusion map of a(A) in 3(A) then a is said to be a subfunctor of 3c 

The subfunctors of a given functor are considered to be partially ordered 

by inclusion. 

(iv) If ijj, a, 3, U and V satisfy the conditions of (i) and 

ip(A) is a epimorphism for all A e V then 3 is a quotient functor of a„ 
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Aol,6 Examples, (1) Let G be a free-nilpotent-of-class - c 

group, freely generated by g ^ . g ^ , = » o D e f i n e a homomorphism 

ii;(G) from L^(ab„(G)) to by 

^CG) t [ĝ  072(G),g;̂  .72(G), .y^CG)] [ĝ  
1 2 c 1 2 c 

Magnus Karrassand Solitar [10] Theorem 5,12, page 337 show that this 

homomorphism is in fact an isomorphism. It is not difficult to see that 

it is independent of the choice of generating set for G and that, if 

we let G range over i]; is a natural equivalence from L ab„ to —u —c c 
Y^ where both functors are here regarded as functors from N^ to Z, 

(ii) The functor y regarded as a functor from N to N c =c =c 
is a subfunctor of e„ o N =c 

(iii) The functor L^ from Z to Z is a quotient functor of the 

functor [c] from Z to Z„ 

A01o 7 Definition„ A functor a from U to V is an epifunctor if for 

each object A of V there is an object B of U such that a(B) is 

isomorphic to A in V and for every pair of objects B and C of 

U and every morphism 6 in Hom^(a(B),a(C)) there is a morphism ^ in 

Homy(B,C) such that a((p) = 6. 
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Ao1„8 Examp1eo The functor ab„ regarded as a functor from FQ(N^) to 

ZQ is an epifunctoro 

Aolo9 Lemma, Let U, Y and W be categories and suppose that a 

is an epifunctor from U to V and that 3 is a functor from V 

to Wo Suppose further that the subfunctors of 3 form a lattice under 

the obvious partial ordering. Suppose W has the property that whenever 

A,B e W, 9 is a W isomorphism from A to B and C is a subobject 

of A then C6 is a subobject of Bo 

Then the subfunctors of 3a form a lattice which is isomorphic 

to the lattice of subfunctors of 3. 

Proofo There is clearly an inclusion preserving mapping from the lattice 

of subfunctors of 3 to the set of subfunctors of 3a given by t i-> ta, 

I will show that this mapping has an ia/erse which is also inclusion 

preserving and the required result will folloWo 

In order to obtain the inverse mapping without invoking the 

axiom of choice a certain amount of mano^ilVring is necessaryo 

For each quadruplet (B,A,e,t) such that B e V, A e U, 6 is 

an isomorphism in Hom^Ca(A),B) and t is a subfunctor of 3a define 

f(B,A,e,t) = t(A) (3(9)) C. 3(B) o 

Suppose now that B e V and A^, A^ are objects of U with 



A „ 9 . 

i s o m o r p h i s m s a n d i n H o m ^ ( a ( A ^ ) , B ) a n d H o m ^ ( a ( A ^ ) , B ) 
s — 

r e s p e c t i v e l y . L e t t b e a s u b f u n c t o r o f Ba a n d l e t (p b e a m o r p h i s m 

i n H o m ^ C A ^ . A ^ ) s u c h t h a t acp = L e t i a n d j b e t h e i n c l u s i o n 

maps o f t ( A ^ ) a n d t C A ^ ) i n B a ( A ^ ) a n d 6 a ( A ^ ) r e s p e c t i v e l y o 

T h e n f ( B , A ^ , e ^ , t ) = t ( A ^ ) g ( e ^ ) 

= t ( A ^ ) i ( B a C c p ) ) e ( 6 2 ) 

= t ( A ^ ) t ( c p ) j B ( e 2 ) 

= f C B . A ^ . e ^ . t ) . 

T h e r e v e r s e i n c l u s i o n c a n b e p r o v e d s i m i l a r l y . 

T h u s , f o r a n y o b j e c t B o f V a n d a n y s u b f u n c t o r t o f 6a t h e r e 

i s o n l y o n e s e t i n t h e c l a s s o f a l l v a l u e s o f f ( B , A , e , t ) o b t a i n e d b y 

a l l o w i n g A a n d 9 t o v a r y o v e r a l l p e r m i s s i b l e o b j e c t s and i s o m o r p h i s m s „ 

D e n o t e i t b y f ( B , t ) „ 

T h e r e s t r i c t i o n we p l a c e d 

on W c n s u r G s t l i s t f ( B j t ) i s 3. s u b o b j s c t z 

o f 6CB)o Now s u p p o s e B^ a n d B^ e V a n d \p e H o m ^ ( B ^ , B 2 ) o 

L e t A^ a n d A^ e U a n d l e t a n d b e V - i s o m o r p h i s m s f r o m 

aCA^^) t o B^ a n d f r o m a C A ^ ) t o B^ r e s p e c t i v e l y . L e t P̂ b e a 

U - r a o r p h i s m f r o m Aj^ t o A2 s u c h t h a t a ( 9 ) = L e t t b e a 

s u b f u n c t o r o t ^ " c . 
T h e n f ( B ^ , t ) 6(1]^) = t ( A ^ ) 

= t ( A ^ ) 6 a C ' P ) 3 ( e 2 ) 

C f C B ^ . t ) , 



AolO, 

It follows that for any subfunctor t of 3ot we can define a subfunctot 

t* of 3 by 

t*(B) = fCB,t), for all B e V„ 

Clearly 

t*a = t for any subfunctor t of 6a 

and 

(ta)* = t for any subfunctor t of 3 

and the proof is complete» 
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Ao Varieties and Functors o 

In this section I will be dealing with the relationship between 

lattices of subfunctors and lattices of varietieso This section is 

derived from Higman's paper [ 6] but is a little more generalo 

I will need a little of the notation developed in Chapter 1, 

particularly the free groups F(V) and F (V) which remain distinct = n = 
representatives of their isomorphism classeso I will, of course, also 

need the notation developed in the first part of this appendixo 

A o 2 o 10 _ _D£f inĵ t ion „ (i) For each variety of groups, V the 

functor e^/V) is the restriction of the functor e^ to the category 

FQ(V)O It is regarded as a functor from FQ(V) to Vo 

(ii) For each verbal subgroup, w, of F(V) w^ is the subfunctor 

of SQCV) given by 

WQ(G) = {ae : a e FCV), 0 eHom(F(V),G)} 

(Hanna Neumann [11], 12„31, page 5 , shows that this is a functor when 

V is the variety of all groups„ The adaptation to relatively free 

groups is trivial, as is the fact that WQ SO defined is a subfunctor of 

(iii) For each subfunctor, t, of t* is the subgroup of 

F(V) given by 
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t* = U ̂  tCF C v ) ) o n = neZ 

t* is clearly fully invariant in F(V) and hence verbal. 

Ao 2o 2 Leimnao If t is a subfunctor of (V) and w is a verbal 

subgroup of F(V) then 

and 

(i) t(F^CV)) = t*n F^(p, 

(ii) WQCF^C^) = w D 

Proof0 Both parts can be proved along the same lines as 12„62 on page 7 

of Hanna Neumann's book [11]o I will prove only (i) which has slightly 

less similarity to that resulto 

For each pair of integers n > m ̂  1 define tt̂  ̂  to be the projection 

homomorphism from ' ^^^^ ' 

TT : X. H-n,m 1 
X, if i e Z 

1 m 

1 otherwise^ 

Then tt acts as the identity mapping on F(V) and it follows n,m 
that t(n ) acts as the identity mapping on (t(F (V)))f] F (V)o n,m " - ™ 

Thus (t(F CV))) n F^(V) C t(F (V))„ n = m — — m — 

The reverse inclusion can be obtained immediately by considering 

the action of t on the inclusion homomorphism from F^(V) to F^(V) 
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Thus = F^Cp (1 tF^CV) for all n > m ^ 

It follows that 

oo 
t(F^Cp) = n^m ^^m^P^ t(F^Cp)) = F^Cpn ((J 

neZ 

= t* m = 

A<,2<,3 Lemma„ The mappings 

(i) t H- t* for each subfunctor t of e^CV), 

and (il) w »-> WQ for each verbal subgroup w of F(V), 

are lattice isomorphisms between the lattice of subfunctors of EQCV) 

and the lattice of verbal subgroups of F(V)<, In fact (i) is the 

inverse of (ii)» 

Proofo Suppose w is a verbal subgroup of F(V)o 

Then (WQ)* = U + WQ(F^CV)) = (J + (F (V) F) w) = w„ 
neZ neZ 

Suppose now that t is a subfunctor of E^CV) and that G e |Q(Y). 

Then G is a V-free group of finite rank„ This means that there 

exists a positive integer n such that there is an isomorphism, 6 say, 

in Hom(F^(V),G)„ Thus Ct*)QCG) = (t*)QCF^(V))Ct*)Q(e) 

(t* fj F^(V))B 

t(F^(V)) t c e ) 

fi^n F CV) n = 

= t(G) 



Thus each mapping is the inverse of the other and, since both are 

clearly inclusion preserving, they must be lattice isomorphisms„ 

o_4 Theoremo Let V be a variety of groups o The lattice of 

subfunctors of is dual isomorphic to the lattice of subvarieties of 

V under the dual isomorphism 

t Var(F(V)/t*) 

Proofo This theorem follows trivially from the preceding lemma and the 

dual isomorphism between subvarieties of V and verbal subgroups of 

Note; (i) This theorem enables us to find the subvarieties of V 

without having to work with groups of infinite ranko That is to say it 

puts into a categoric form the relationship that must exist in a sequence 

of verbal subgroups 

If it is to be the sequence of the n-variable laws of a subvariety of V. 

(ii) It is worth noting that this isomorphism does not hold for 

the lattice of subfunctors of e(V)o In fact e(V) can have two 

different functors whose restrictions to FQ(V) are equalo For instance 

suppose V is torsion free and let t̂^ and t2 be the functors defined 
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by 

t^ : G t̂  {ab : a e » b e G and b'̂  = 1 for some n e Z\tOJ} 

t^ I G H- {a : a e 
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Ao3 The Varieties Between N^ and N^ ̂ o 

From Theorem Ao2„4 we know that the lattice of varieties between 

N and N ^ is dual isomorphic to the lattice of those subfunctors of = c =c-l 
^O^^O subfunctors of y here regarded as a functor from 

F„(N ) to N o Since v in fact maps F„(N ) to Z^ it can be 0 =c 'c ^ 0 =c =0 
regarded as a functor from ^g^Sc^ = regarded, its sub functor 

structure remains the same. 

We will consider the following diagramo 

I have already observed that there is a natural equivalence from 

L abc to Y (A I06.I Po A„7)o c c 
It follows that the lattices of subfunctors of these two functors are 

isomorphico Furthermore, since ab„ is an epifunctor both lattices 

must be isomorphic to the lattice of subfunctors of Finally there is 

a natural transformation \p from [c] to L^ which is obtained as follows, 

Let U be a free Z-module of rank n, with basis u ^ j U ^ , « o o T h e n 

i(;(U) is defined by 
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i/;(U) J (u "a ^ "̂a ] for any 
c 1 2 c 

A e Z n 

It follows that there is an Inclusion preserving mapping from the 

lattice of subfunctors of [c] to the lattice of subfunctors of L c 
and thence to the lattice of subfunctors of y O c 

We have thus established a relationship between the subfunctors of 

[c] regarded as a functor from Z^ to Z^ and the varieties between N^ 

and N .o =c-l 
All this remains true if we replace N by N A b , N , by =c =c =m' =c-l ^ 

N , A B and Z by R where B is the variety of groups of =c-l =m m =m - a f 
exponent m and R^ is the ring Z/(mZ)o In fact Stewart [12 ] 

has pointed out that if V is any variety of groups, whose laws are V, 

we can modify the diagram on page A16 to obtain the following diagram 

R <7r =m,0 

R n R n =m,U =m,0 

loCN^.Bj ^ =(J =c =m = 

where R is the category of free R-modules of finite rank where v =m,0 =m 
is the functor G G/V(G), is the functor which maps each group in 

F (N A B A V) to the cth term of its lower central series, the morphisms =0 =c =ni = 
being mapped in the obvious way in each case„ 
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There is a natural transformation cp from v to y'v , obtained ' c c 

by setting (p(G) equal to the restriction to Y^CG) of the natural 

eplmorphlsm from G to G/VCG)O It follows that there Is an Inclusion 

preserving mapping from the lattice of subfunctors of y to the lattice c 
of subfunctors of Since v is an eplfunctor the latter lattice 

is isomorphic to the lattice of subfunctors of 7' and we have found a c 
relationship between the subfunctors of [c] and the varieties between 

N A B A V and N , A B A Vo =c =m = =c-l =m = 

If m is a prime then R^ is a field and R^ ^ is the category 

of finite dimensional R^-spaceso If m > c then [c] is completely 

reducible and its Irreducible subfunctors can be obtained from the 

primitive idempotents of 

Stewart used this result to find the lattice of subvarieties of the 

variety of centre-extended-by-metabelian groups, of exponent p (a prime) 

and nilpotency class c < po 
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Ao4o Three •/^proaches to the Torsion Free Case,, 

Ao4olo The functor [c], regarded as a functor from Z to Z is not 

completely reducible and, in fact has no minimal subfunctorso Similarly 

there are no minimal verbal subgroups of in and 

no maximal varieties between N and N „ ac =c-l 
However if we restrict ourselves to torsion free varieties between 

N and N which means isolated subfunctors of [c], we can find =c =c~l 
a direct decompositiono 

I have not been able to make the concept of isolation fit properly 

into a categorical context„ I have therefore, in Chapter 2, taken advantage 

of the fact that a variety that is nilpotent of class at most c , where 

c is greater than 2, is generated by its free groups of rank Co 

This means that instead of having to consider the behaviour of 

y on ) it is sufficient to consider it on {F (N ) : n e Z }„ ' c =U =c '' 

Having made this step the categoric notation is u^cessary and can be Tt^ 

replaced by module notation„ 
My approach in Chapter 2 was to show that if U is a free Z-module 

[c] 
of rank n, the lattice of isolated End2(U)-submodules of U was 

lattice isomorphic to the lattice of End^(Q ^^ U)-submodules of 

(Q -S* U)'-̂ ^ and to find the fully invariant subgroups of F^(N^) in 
Y (F (N )) from there. In the process I effectively short circuited the 
'c n =c 
functor L_, which was probably not a good idea. 
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Ao4o2o KovScs and Newman approached the problem from the other end. 

They formed the divisible completion of ^^^-c^' ^̂  g^o^P which is closed 

under root extraction in which F (N ) can be imbedded) and showed that n =c 
there is a lattice isomorphism between the lattice of fully invariant 

subgroups of this group and the lattice of isolated subgroups of 

This construction is more complicated than simply tensoring a Z~module 

with Q but has the following advantage^ 

Let the divisible completion of F (N ) be Go Then v (G) is n =c c 
a Q-space and as such is isomorphic to the component of degree c in 

the free Lie algebra of rank n over Q„ Specifically let U be a 

Q-space of dimension n„ Then y^^^) = ^^ regard 

and LQCU) as GL(n,Q)~modules in the obvious way, then the isomorphism is 

a GL(n,Q)-isomorphismo Now the GL(n,Q)-submodules of are 

the fully invariant subgroups of G which are contained in YC(G)O 

The minimal GLCn,Q)-submodules of can thus be associated 
[c] 

with minimal irreducible GL(n,Q)~submodules of U and hence with 

primitive idempotents of QS^ which in turn can be associated with 

partitions of n„ Turning the process around we can associate with each 

partition of QS^ a set, possibly empty, of isomorphic irreducible 

GL(n,Q)-submodules of Y(,(G)O In Chapter 6 I showed that it would be 

interesting to know which partitions gave rise to non empty sets of irreducible 

submodules when n = c. 
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Brantj/t [2] has shown that in this case the character of the representation 

of GL(c,Q) afforded by L (U) is given by 

,d 
d 

where y is the Moebius j-unction and s^ is the trace of M 

From this it is possible to obtain the multiplicities of the irreducible 

representations corresponding to the partitions of Co Thrall [13] and 

Brandt [2] have published these multiplicities for c _< lOo (Thrall's 

table for c = 10 is incorrect, the corrected table is published in 

[2]°) As we have seen we are interested in partitions which have non 

zero multiplicity. 

The partitions of c into one and c parts both have zero 

multiplicity whenever c > 2o When 7 ̂  c _< 10 these partitions are 

the only ones with zero multiplicityo The partition of 6 into 3 equal 

parts and the partition of 4 into two equal parts both have zero 

multiplicityo However the partition of 8 into four equal parts and that 

of 10 into 5 equal parts have multiplicities 1 and 2 respectivelyo It 

thus seems reasonable to expect that, when c ̂  7, all partitions other 

than the two extremes give rise to non trivial isolated fully invariant 

subgroups of Yc^^c^-c^^' basis for Conjecture 60I on page 107, 
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A.4o 3o The third possible approach to the problem of finding 

isolated Z-modules is to let U be a free Z-module of rank n and 

form Q ® L (U)o It should then be possible to show, using the approach 

of Section 2„l^that this is isomorphic as an End^(Q ^^ U)-module to 

L^(Q U), and that the End^CO U)-submodule structure of 

Q is the same as the isolated End^(U)-submodule structure of 

LJU). 

If this can be done we would have an aproach that retained the simplicity ^^ 

of Chapter 2 without blocking the use of Brandt's formulao 


