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Abstract 

Based on AMS analysis, it is shown that no Pu signals from the Fukushima accident could be 

discerned in marine sediments collected 1.5  - 57 km away from the Fukushima Da-ichi power plant 

(FDNPP), which were clearly influenced by accident-derived radiocesium. The 240Pu/239Pu atom ratios 

(0.21 - 0.28) were significantly higher than terrestrial global fallout (0.182±0.005), but still in 

agreement with pre-FDNPP accident baseline data for Pu in near coastal seawaters influenced by 

global fallout and long-range transport of Pu from the Pacific Proving Grounds. 

Key words: Nuclear accident, source identification, accelerator mass spectrometry, Fukushima, Pacific 

Proving Grounds 

1 Introduction 

Radionuclides released from the damaged Fukushima Dai-ichi Nuclear Power Plant (FDNPP) reactors 

and spent fuel repositories have caused widespread radioactive contamination in the environment. 

Volatile radionuclides have been detected at large distances from the accident site (e.g. Masson et al. 
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(2011)), while more severe radioactive contamination has been limited to a local scale (e.g. 

Steinhauser et al. (2014)). Plutonium with high 240Pu/239Pu atom ratios (0.303-0.330) has been found in 

debris collected in the terrestrial environment within 30 km of the FDNPP showing clear deviation 

from global fallout levels, indicating that Pu has been released during the accident (Zheng et al., 

2012). 

In contrast to the Japanese terrestrial environment, where pre Fukushima 240Pu/239Pu ratios were found 

to be in accordance with global fallout, nuclear weapon detonations at the Pacific Proving Grounds 

(PPG) have been linked to elevated Pu ratios in samples from off the Japanese coast as well as in most 

of the North Pacific region. The 240Pu/239Pu atom ratios in samples of riverine and marine sediments as 

well as seawater collected before the FDNPP accident were found to range within 0.17 and 0.32 

(Oikawa et al., 2015; Tims et al., 2010; Zheng and Yamada, 2004). Seawater and sediment samples 

from this area will be influenced by global fallout and long-range transported debris from tests at the 

PPG and particularly those that took place at the Bikini and Eniwetok atolls during 1946 - 1958. A 

total of 66 nuclear weapon tests were conducted at the PPG, and in the early 1950s some very high 

yield detonations were conducted (Björklund and Goliath, 2009; Tims et al., 2010). Enhanced levels of 

the higher mass Pu isotopes were produced in the early detonations by multiple neutron captures in 

238U present in natural U-tamper materials (Diamond et al., 1960). Both contemporary analyses of 

fallout from these detonations, as well as analysis of Pu in dated coral bands from Guam, down-

current of PPG have revealed 240Pu/239Pu atom ratios (0.05-0.46, weighted average 0.30±0.08) ranging 

widely (Lindahl et al., 2011). In addition to direct deposition as weapons fallout, remobilisation from 

contaminated sediments can act as an additional source of Pu to the North Pacific. This debris is 

transported westwards by the North Pacific Gyre, eventually leading into the Kuroshio Current passing 

Japan. Other potential sources of radioactive contamination in this area are global fallout, local and 

regional fallout from Former Soviet Union (FSU) and Chinese detonations and operational and 

accidental release from nuclear power plants and reprocessing activities in the region. 

In the present study, activity concentrations and atom ratios of 239Pu and 240Pu have been determined in 

four seawater samples collected in May and September 2013 at distances between 5.7 and 110 km 
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from the damaged reactor, and in four marine sediment cores collected at distances 1.5 to 57 km away 

from the FDNPP. To the best of our knowledge, no Pu isotopic data from samples collected closer 

than 5 km to the FDNPP have so far been published. 

Following the accidents, volatile (131I) and less volatile (90Sr) radionuclides released from the reactors 

and spent fuel repositories, deposited in terrestrial and aquatic ecosystems. In addition, run-off with 

rivers and from the site transported contaminants to the shore. The 240Pu/239Pu atom ratios observed 

terrestrially by for instance Yamamoto et al. (2014) and in river catchments by Evrard et al. (2014), 

indicates an influence from the FDNPP to the marine environment. Thus, the research question 

focuses on how far into the sea Pu atom signals different from that of pre-FDNPP accident can be 

observed. 

2 Materials and methods 

2.1 Sampling 

Four seawater samples (May 2013) and four sediment cores (May and September 2013) were collected 

at varying distances from the Fukushima nuclear power plant during the May 2013 R/V Umitaka Maru 

and September 2013 Dai-san Kaiyo Maru cruises (Fig. 1, Supplementary Material 1 and 2). 

2.2 Seawater 

Approximately 25 l seawater samples were acidified by adding 1 ml concentrated HCl per litre of 

seawater. 35 pg of a 242Pu tracer (National physical laboratory, Teddington Middlesex UK, TW11 

0LW, Reference E05080352) was added as a yield monitor to each sample, before 8 g of FeSO4 and 

100 g Na2S2O4 were added per 100 l of sample in order to change the speciation of Pu to Pu (IV). 

Thereafter the pH was raised to ~9 by careful addition of NaOH, initiating precipitation of Fe(OH)2 

and co-precipitation of the actinides. The final precipitate was transferred to PTFE ultraclave tubes and 

digested in concentrated HNO3 in an ultraclave unit (Ultraclave 3, Milestone Ltd). The sample 

solutions were then diluted to 8M HNO3 and subjected to extraction chromatography according to the 

procedure described by Wilcken (2006). U and Pu fractions were evaporated to dryness and the Pu 
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fraction taken up in 8 M HNO3 and subjected to anion chromatography. Eluates of U and Pu from 

chromatography were evaporated and then taken up in concentrated HNO3 and 2 mg Fe added as 

FeSO4 and transferred to glass vials prior to evaporation to dryness. 

2.3 Sediments 

6-8 g of dried sediments were weighed directly into PTFE ultraclave tubes. 35 pg of a 242Pu tracer 

(National physical laboratory, Teddington Middlesex UK, TW11 0LW, Reference E05080352) was 

added as a yield monitor to each sample before ~20 ml of HNO3 (conc) was added, and the samples 

were left overnight for the acid to completely saturate the matrix. Pu and U were then leached from the 

samples under high temperature and pressure in an ultraclave unit (Ultraclave 3, Milestone Ltd). After 

cooling, the sample digests were filtered through glass fibre filters (Whatman GF/C) and the residue 

discarded. The filtrates were evaporated to dryness, taken up in 3M HNO3 and subjected to ion 

exchange chromatography as described in Wilcken (2006). 

2.4 Target preparation  

Prior to target preparation the samples were then baked at 500 °C for 8 hours in a muffle furnace. 

The samples were then scraped off from the internal surfaces of the glass vials, and mixed thoroughly 

with approximately the same mass of aluminium powder serving as a binder / conductor. The samples 

were then pressed into Al AMS sample holders. 

2.5 Determination of 
239

Pu and 
240

Pu 

Atom ratios of plutonium were determined by accelerator mass spectrometry (AMS) at the Australian 

National University (ANU) as described in (Fifield, 2008). Briefly, negative Pu molecular ions (PuO-) 

are generated in the ion source; these are then pre-accelerated, mass-analyzed and transported towards 

the positive terminal of the tandem accelerator. The PuO- molecules are then dissociated in a low 

pressure gas stripper, and electrons are removed from the Pu to form positive Pu ions which are further 

accelerated away from the positive terminal of the tandem accelerator. Pu5+ ions are selected by an 

analysing magnet and passed through a velocity filter (Wien filter) before reaching the gas-ionization 

detector. The detector identifies and counts the Pu ions. Switching between isotopes is effected by 
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changing the pre-injection mass-analysing magnet, the terminal voltage of the accelerator, and the 

Wien filter.  

AMS has a high level of suppression against U interference. Any uranium-containing molecular ions 

(e.g. 238U16OH- or 238U17O-) that are injected into the accelerator along with PuO- are dissociated in the 

gas stripper in the high voltage terminal. The mass difference between the uranium and plutonium 

atomic ions then ensures that the uranium ions are rejected by the post-acceleration analyzing magnet. 

239Pu, 240Pu and 242Pu (yield monitor) were counted sequentially with counting times of 2, 3 and 1 

minutes respectively. The counting sequence (242Pu, 240Pu, 239Pu) was repeated twice with a third 242Pu 

count at the end; 239Pu and 240Pu count rates were drift corrected based on the variations in 242Pu count 

rates over the two sequences. 239Pu and 240Pu concentrations were then calculated from the 239Pu/242Pu 

and 240Pu/239Pu atom ratios obtained. A certified artificial reference material containing 239,240,242Pu 

with accurately-known ratios close to unity (UKAEA certified reference material No: UK Pu5/92138) 

was analysed on several occasions for instrumental calibration and method validation purposes. A 

sample of IAEA 135 material, which is a marine sediment from the Irish Sea, was also processed and 

measured for validation of the complete method. The measured 239+240Pu activity was 242±1.6 mBq/g, 

which is somewhat higher than the recommended value of 213 mBq, but well within the range of 

values measured for this material in an international intercomparison. We also routinely measure this 

material by ICP-MS, and again find an activity of ~240 mBq/g. 

The reproducibility for the 239Pu/242Pu and 240Pu/242Pu atom ratios was 4.6% (relative standard 

deviation, based on 10 repeated measurements of UKAEA Pu5/92138 with at least 10,000 counts for 

each isotope per measurement). Analytical blanks spiked with 35 pg 242Pu gave at most 1 count of 

239Pu and 240Pu per 2 or 3 minutes counting interval respectively corresponding to a detection limit 

below 1 fg Pu. 

3 Results and discussion 

The 239Pu concentrations in seawater are plotted in Fig.2, and the 239+240Pu  and 240Pu/239Pu atom ratio 

data are presented in Supplementary Material 2. For several of these samples, the number of 240Pu 
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counts was very low, resulting in large uncertainties on the 240Pu/239Pu ratio. The low counts were a 

consequence of both low ion source output in the early part of the run when the seawater samples were 

measured, and lower average chemical yield of the seawater samples relative to the sediment samples 

as evidenced by lower counting rates of the 242Pu spike. This affected all four of the A samples, F-

23,24, and NP2-23,24, and the 239+240Pu activities of these samples were determined from the 239Pu 

activities and an assumed 240Pu/239Pu ratio of 0.24. For the remaining samples, the measured 

240Pu/239Pu values were used. For bottom water samples at water depths between 400 and 1100m, 

Oikawa et al. consistently find 239+240Pu concentrations of 10-30 mBq/m3, and the result we obtain here 

for the bottom water at site F (F-17,18) of 25.5±1.8 mBq-m3 is comfortably within this range. This 

lends support to our result. The large difference between our result and that obtained by Bu et al (J. 

Chromatography A, 1337 (2014)) of 1.44±0.19 mBq/m3 is, however, more difficult to understand. As 

far as we can judge these are the exact same sampling points, and the 1251 m sampling should be the 

same as the Bu bottom -10 sampling. If, in addition the sampling was done at the same time, or within 

the same time frame, which is suspected, then there is a discrepancy for which we have no 

explanation. Nakanishi et al. report depth profiles of 239+240Pu concentrations at a range of sites, and 

find values that range between 10 and 70 mBq/m3 at depths down to at least 1000m, which again are 

consistent with the values found at site F in the present work. Our surface sample (F-23,24) at this site 

has a much lower concentration (1.5±0.8 mBq/m3) than the deeper samples, which again is consistent 

with the findings of Oikawa et al., who report lower values for surface waters that range between 2 

and 7 mBq/m3.  

Bu et al. (2015) report a value of 4.73±0.45 mBq/m
3
 for water from site NP2. The values found here at 

the same site of 5.5±1.1 and 4.0±0.9 mBq/m3 are consistent with this. 

Results from the determination of Pu in sediment samples are given in Figs 3 and 4. The atom 

concentrations of 240Pu and 239Pu have been converted to inventories (Bq · m-2) and summed to 

facilitate comparison with previous work. Sediment layer inventories of 239+240Pu ranged within 2.9 

and 14.0 Bq·m-2 (Fig. Figure 3  and Supplementary Material 1), and were comparable to levels 

observed in the same area prior to the FDNPP accident, e.g. (Wang and Yamada, 2005). Sediment 

cores collected south of the plant (12, 13 and 14) showed a high degree of variation in concentration 
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with depth, and in general, concentrations were increasing with depth. This is in agreement with 

sediment cores from the Sagami trough (Zheng and Yamada, 2004), and Yangtze river estuary (Tims 

et al., 2010). This tendency is also described in Lindahl et al. (2011) and Lindahl et al. (2012) who 

upon analysing dated coral layers found that Pu atom ratios and concentrations had peaked in 1952 

and 1954, respectively at Ishigaki Island and 1953 and 1954, respectively at Guam. The cores analysed 

in the current work are relatively shallow (<20 cm) and it is possible that we have not been able to 

measure the peak concentration or atom ratio.  

The sediment core sampled closest to the FDNPP (core 20), collected within 1.5 km of the damaged 

reactor at 14 m water depth, showed remarkably low variations in 239+240Pu concentrations (3.37 - 

4.12 Bq · m2). While having the highest surface contamination of 134Cs and 137Cs, this core also has the 

lowest variation in Cs concentrations through the core, when disregarding the upper 0-1 cm (Black and 

Buesseler, 2014). It can be assumed that the upper 0-1 cm contains sediment deposited during the first 

year following the accident, and is therefore likely to contain radionuclides deposited on land in the 

days and weeks following the accident or contain radionuclides released from the site directly to the 

sea. The homogeneity of the remaining core could be due to a disturbance in the sediment layer at this 

site caused by the passage and backwash of the tsunami waves. Investigation of the effects of the 2011 

tsunami on the nearby Sendai bay indicated that erosion and re-deposition could affect seafloor 

topography at relatively large distances from the shoreline (Yoshikawa et al., 2015). 

Sources of Pu 

The 240Pu/239Pu atom ratio in the sediments (Figure ) ranged from 0.21 to 0.28 and were within the 

range of baseline data for Pu in this region prior to the FDNPP accident, e.g. Zheng and Yamada 

(2004), Oikawa et al. (2015) and Tims et al. (2010). They also compare well with 240Pu/239Pu atom 

ratios (0.233 – 0.258) in sediments collected before and after the accident within the 30 km zone 

around the FDNPP site (Bu et al., 2014; Bu et al., 2015). 

Prior to the FDNPP incident plutonium would have would have reached the marine environment of 

Japan through two routes. Firstly, atmospheric fallout from nuclear weapons detonation in the period 

1945-1980 well characterized with 240Pu/239Pu atom ratios close to the 0.18±0.014 for the northern 
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hemisphere established by Kelley et al. (1999). Secondly, another important source is debris from the 

PPG where US high yield detonations were carried out in the period 1951-1962. 240Pu/239Pu atom 

ratios at the PPG are significantly higher than global fallout, and ratios as high as 0.46 have been 

reported following the tests at this site (Lindahl et al., 2011). Debris from the PPG sites is 

continuously remobilized and transported westwards with sea currents, and 240Pu/239Pu atom ratios 

have been found to be higher than global fallout in areas distant from the test sites (e.g. Lindahl et al. 

(2012). As a result of this influence, Pu atom ratios off the coast of Japan are relatively higher, and 

show greater variation reflecting the more complicated two source input, e.g. Zheng and Yamada 

(2004). 

The 239+240Pu/137Cs activity ratio is a complicated measure in a situation where a historical source 

(global fallout and regional PPG-fallout) acts in combination with a more recent source (the FDNPP-

accident). Whereas atmospheric nuclear detonations are unconfined high-temperature events leaving a 

well-mixed debris cloud, severe reactor accidents like the Chernobyl accident and the FDNPP accident 

give rise to a more heterogeneous release, where volatile radionuclides may have a different release 

and deposition regime than refractory elements. This was observed after the Chernobyl NPP accident 

in 1986, where fission products, in particular 137Cs were widely distributed, while refractory elements 

like Pu isotopes had the strongest impact close to the accident site and were only sporadically 

observed elsewhere, e.g.  Lindahl et al. (2004), Salminen-Paatero et al. (2012). In addition, the 

behaviour of the different radionuclides post deposition further complicates the situation. 

Nevertheless, we present the 239+240Pu/137Cs activity ratios based on the current work in combination 

with the results obtained by Black and Buesseler (2014).  

The 239+240Pu/137Cs activity ratios were found to range within 0.00025 and 0.14 (Figure ). The lowest 

ratio was found in the surface layer of core 20, which was sampled 1.5 km away from the FDNPP. 

Similarly, in surface sediments (north coastal and south coastal cores) down to 6 cm (Figure ), ratios 

were found to be substantially lower than in pre Fukushima cores collected off the Japanese coast 

(Sagami Nada and Sagami trough) (Zheng and Yamada, 2004). In addition, all sample segments 

except the deepest segments of core 12 and 13 display 239+240Pu/137Cs ratios significantly lower (>2σ) 
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than the predicted (137Cs-activity concentrations decay corrected to 2012 assuming peak deposition in 

1962) global fallout ratio of 0.036 (Tims et al., 2010; UNSCEAR, 2000). 

The 239+240Pu/137Cs activity ratios were found to be affected most strongly by the concentration of Cs 

isotopes, (Supplemental Material 3), indicating a high deposition of radiocesium following the 

Fukushima accident that overwhelmed the historical deposition from nuclear weapons testing. 

4 Conclusions 

The activity concentrations of 239Pu in seawater collected in May 2013 (distance 5.7 – 110 km from 

the FDNPP) were comparable to data obtained prior to the FDNPP accident. 

The present 240Pu/239Pu ratios determined in sediments collected in May and September 2013 varied 

between 0.21 and 0.28, suggesting that the majority of plutonium in the investigated area originates 

from global fallout (240Pu/239Pu atom ratio of 0.182±0.005) and the Pacific Proving Grounds derived 

Pu (240Pu/239Pu atom ratios up to 0.46). Although 134Cs and 134Cs/137Cs activity ratios reflecting 

releases from spent fuel have been observed in the present sediment cores, no plutonium FDNPP 

accident signal could be observed in these sediments collected about 1.5 km from the site. These 

findings are, however, in agreement with the assumption that the amounts and mobility of Pu released 

from the damaged fuel should be rather limited.  
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Figure captions: 

Figure 1. Seawater (NP2, A, N3, F) and sediment (20, 13, 14, 12) sampling stations (red markers) in 

the present work at distances of 1.5 - 110 km away from FDNPP (indicated with yellow marker). 

Figure 2. 239Pu activity concentrations (mBq · m-3) in seawater samples collected off the coast of 

Japan. Sampling stations were 56 km (station A), 110 km (station F), 100 km (station N3) and 5.7 km 

(station NP2) away from the FDNPP, respectively. 

Figure 3. Inventories of 239+240Pu (Bq · m-2) in the sediment cores. 

Figure 4. 240Pu/239Pu atom ratios in sediment cores from the investigated area outside FDNPP. Error 

bars are 2σ instrumental uncertainties. The shaded area indicate pre-Fukushima accident variation in 

sediment cores from the Sagami Bay as reported by Zheng and Yamada (2004). 

Figure 5. 239+240Pu/137Cs activity ratios in sediment cores from the investigated area outside FDNPP. 

Activity concentrations (reference date April 6th, 2011) of 137Cs are from Black and Buesseler (2014). 

Crosses: core 12, solid squares: core 13, open squares: core 14, solid triangles: core 20. Uncertainty 

bars are within the symbols. The shaded areas indicate pre-Fukushima range in sediment cores from 

the Yangtze river estuary (light grey area in Tims et al. (2010)), and Sagami Bay (dark grey area in 

Zheng and Yamada (2004)). 
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Figure 2. Seawater (NP2, A, N3, F) and sediment (20, 13, 14, 12) sampling stations (red markers) in 

the present work at distances of 1.5 - 110 km away from FDNPP (indicated with yellow marker). 
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Figure 2. 239Pu activity concentrations (mBq · m-3) in seawater samples collected off the coast of 

Japan. Sampling stations were 56 km (station A), 110 km (station F), 100 km (station N3) and 5.7 km 

(station NP2) away from the FDNPP, respectively. 
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Figure 3. Inventories of 239+240Pu (Bq · m-2) in the sediment cores. 
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Figure 4. 240Pu/239Pu atom ratios in sediment cores from the investigated area outside FDNPP. Error 

bars are 2σ instrumental uncertainties. The shaded area indicate pre-Fukushima variation in sediment 

cores from the Sagami Bay as reported by Zheng and Yamada (2004). 
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Figure 5. 239+240Pu/137Cs activity ratios in sediment cores from the investigated area outside FDNPP. 

Activity concentrations of 137Cs are from Black and Buesseler (2014). Crosses: core 12, solid squares: 

core 13, open squares: core 14, solid triangles: core 20. Uncertainty bars are within the symbols. The 

shaded areas indicate pre-Fukushima range in sediment cores from the Yangtze river estuary (light 

grey area in Tims et al. (2010)), and Sagami Bay (dark grey area in Zheng and Yamada (2004)). 
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Highlights 

 AMS of Pu concentrations and atom ratios in marine samples near Fukushima NPP 

 No Pu from Fukushima accident discerned in sediments near (1.5 km) the plant 

 Main source of Pu in sediments from global fallout and Pacific Proving Grounds 

 Low 239+240Pu/137Cs activity ratios in sediments show Fukushima accident influence 

 

 




