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ABSTRACT 
 

The eruptions that began at Rabaul Caldera on 19 September 1994 had two focal points, the 

vents Tavurvur and Vulcan, located 6 km apart on opposing sides of the caldera.  Vulcan 

eruptives define a tight cluster of dacite compositions, whereas Tavurvur eruptives span an 

array from equivalent dacite compositions to mafic andesites.  The eruption of geochemically 

and mineralogically identical dacites from both vents indicates sourcing from the same magma 

reservoir.  This, together with previously reported H2O-CO2 volatile contents of dacite melt 

inclusions, a caldera-wide seismic low-velocity zone, and a seismically active caldera ring fault 

structure are consistent with the presence at 3-6 km depth of an extensive, tabular dacitic 

magma body having volume of about 15-150 km3.  The Tavurvur andesites form a linear 

compositional array and have strongly bimodal phenocryst assemblages that reflect dacite 

hybridisation with a mafic basalt.  The moderately large volume SO2 flux documented in the 

Tavurvur volcanic plume (and negligible SO2 flux in the Vulcan plume) combined with high 

dissolved S contents of basaltic melt inclusions trapped in olivine of Tavurvur eruptives, 

indicate that the amount of degassed basaltic magma was ~0.1 km3 and suggest that the 

injection of this magma was confined to the Tavurvur-side (eastern to northeastern sector) of 

the caldera.  Circumstantial evidence suggests that the eruption was triggered and evolved in 

response to a series of basaltic magma injections that may have commenced in 1971 and 

continued up until at least the start of the 1994 eruptions.  The presence of zoned plagioclase 

phenocrysts reflecting older basalt-dacite interaction events (i.e. anorthite cores overgrown with 

thick andesine rims), evaluation of limited available data for the products of previous eruptions 

in 1878 and 1937-1943, and the episodic occurrence of major intra-caldera seismo-

deformational events indicates that the shallow magma system at Rabaul Caldera is subjected to 

repeated mafic magma injections at intervals of several years to several decades. 
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INTRODUCTION 

Background – geological context 

  This activity has contributed to the formation of the 15 × 10 km mostly sea-

filled, nested caldera complex at Rabaul and to the creation of an extensive pyroclastic apron to 

the south and west (Nairn et al., 1995).  The most recent caldera-forming eruption took place at 

1400 BP and produced the >11 km3 Rabaul Pyroclastics Formation (Walker et al., 1981; Nairn 

et al., 1995).  Two other active volcanic systems are close neighbours of the RCC: the 

southeast-trending alignment of dominantly mafic stratovolcanoes, the Watom-Turagunan Zone 

(WTZ, Johnson et al. 2010), and the submarine caldera volcano Tavui (McKee, 2015), as 

shown in Figure 1.  Detailed studies of the Rabaul area include those of geology and eruption 

history (Heming, 1974; Nairn et al., 1995; McKee et al., 2015, 2016; McKee and Duncan, 

2016) and those of petrology and geochemistry (Heming and Carmichael, 1973; Heming, 1974, 

1977; Wood et al., 1995).  The work of Johnson et al. (2010) provides a synopsis and 

evaluation of the volcanic systems of the northeastern Gazelle Peninsula, and a general model 

for the active volcanism of the Rabaul area. 
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The build-up to the 1994 outbreak of eruptive activity may have commenced in 1971 when 

seismicity and ground deformation within Rabaul Caldera began to intensify for the first time 

following the 1937-43 eruptions (Cooke, 1977; McKee et al., 1984, 1985; Mori and McKee, 

1987; Mori et al., 1989; Itikarai, 2008).  Locations of high frequency caldera earthquakes 

recorded since 1971 define an elliptical cylinder of seismicity that probably represents a ring 

fault associated with the current active caldera (Mori and McKee, 1987; Jones and Stewart, 

1997; Itikarai, 2008; Fig. 1).  Vulcan and Tavurvur lie about 1.5 and 1 km respectively outside 

of the surficial part of the zone of caldera seismicity.  During the period 1983-1985 a phase of 

intense seismic activity and accelerated ground deformation occurred within the active caldera 

structure and an eruption was thought to be imminent.  Two small magma bodies were initially 

inferred at 1-3 km depth from ground deformation data (McKee et al., 1984), but gravity and 

ground deformation data were subsequently interpreted to reflect a single magma body located 

at a depth of about 2 km under the central-southern part of the caldera (McKee et al., 1989).  

The volume of injected new magma thought to have been responsible for the seismicity and 

ground deformation during the period 1971-1985 was calculated to be of the order of 0.04 to 

0.05 km3 (McKee et al., 1984, 1989).  Mori et al. (1989) suggested that both Vulcan and 

Tavurvur are fed from the sub-caldera magma body along radial and cone-sheet fractures, but 

Saunders (2001, 2006) and Itikarai (2008) favoured interpretations that involved magma 

movement within the ring fault and other fault structures prior to its emergence at the surface 

vents.  Mori and McKee (1987) and Mori et al. (1989) noted the sharp cut-off of seismicity 

within the caldera at a depth of 4 km and interpreted this as the top of a larger magma body.  

Interpretation of data from a seismic tomography experiment conducted in 1997 (Rabaul 
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Earthquake Location and Caldera Structure – RELACS) has since defined a main region of 

anomalously low seismic velocity (interpreted as a magma body) between 3 and 6 km depth 

that is centrally located within the caldera and has lateral dimensions of 6 to 8 km (Finlayson et 

al., 2003; Bai and Greenhalgh, 2005; Itikarai, 2008).  Other seismic low velocity anomalies 

were identified: one beneath the RCC in the depth range 9-18 km and another immediately 

north-northeast of the RCC at a depth of about 3 km within the WTZ (Bai and Greehalgh, 2005; 

Itikarai, 2008).  

Caldera seismicity began to re-intensify in 1992 following an unusual swarm of earthquakes 

that took place about 2 km outside the northern part of the caldera seismic zone (Itikarai, 2008).  

The final phase of precursory activity commenced with two ~M5 earthquakes, one near 

Tavurvur and the other near Vulcan, at about 3 am on 18 September 1994 (GVN, 1994; McKee 

et al., 2017).  The following 27 hours included a period of sustained strong caldera seismicity 

and massive ground deformation.  Following the start of eruptive activity at about 6 am on 19 

September 1994 seismicity on the ring fault decreased markedly to a very low level (Itikarai, 

2008).   

The eruptions that started in 1994 

The eruptions that started at Rabaul in 1994 continued for many years but for convenience will 

be referred to as the “1994” eruptions.  The eruptions can be divided into two phases: Phase 1 - 

September 1994 to April 1995; Phase 2 - late November 1995 onward.  Detailed accounts and 

analysis of Phase 1 and parts of Phase 2 have been documented in GVN (1994), Blong and 

McKee (1995), Bouvet de Maisonneuve et al. (2015), McKee et al. (2016, 2017), and McKee 

(unpublished data).  Eruptions at both sites produced identical dacites but the compositions of 

Tavurvur eruptives extended to mafic andesites. 

Phase 1  
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At the beginning of Phase 1, which commenced on 19 September 1994, both Vulcan and 

Tavurvur were active.  Vulcan’s eruption was initially very powerful, involving periods of 

plinian activity that created a tall emission column, 18-30 km high, that led to the generation of 

numerous intra-caldera pyroclastic flows and locally very heavy falls of ash.  A new cone 

complex was constructed on the northern side of the Vulcan headland.  The total volume of 

ejecta was estimated to be about 260 × 106 m3.  Vulcan’s eruption was short-lived, ending on 2 

October 1994. 

The eruption at Tavurvur was less powerful.  At the peak of activity, during the first few days 

of the eruption, the emission column rose to about 6 km altitude and heavy falls of ash from 

Tavurvur emissions resulted in the collapse of many buildings in Rabaul Town.  A small lava 

flow was emplaced on the western flank of Tavurvur in October 1994.  Quasi continuous to 

intermittent (vulcanian) activity persisted at Tavurvur until April 1995.  The total volume of 

ejecta was estimated to be about 40 × 106 m3. 

Phase 2 

There has been no activity at Vulcan during Phase 2.  Tavurvur’s re-activation in November 

1995 was the beginning of an extended period of activity, the latest episode of which was in 

August 2014.  In general, Phase 2 has been characterized by intermittent mild (vulcanian) 

explosions.  However, eight brief pulses of strombolian activity that produced spectacular fire 

fountains took place between May 1996 and August 1997.  Substantial lava flows having a 

combined volume of about 14 × 106 m3 were emplaced on Tavurvur’s southern flank during 

four of the strombolian eruptions. 

The strongest activity known from Tavurvur occurred in a burst of extremely powerful sub-

plinian activity on 7 October 2006.  The eruption column was maintained at about 18 km 

altitude for several hours and there were heavy falls of pumice lapilli and ash in a broad area 

around the vent.  Partial collapse of the northwestern flank of Tavurvur resulted in the 
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formation of a debris flow.  Lava effusion followed the structural failure and produced a broad-

fronted lava flow, about 10 × 106 m3 in volume, which covered Tavurvur’s northern and 

western flanks. 

The lastest episode of Phase 2 activity was a period of very powerful strombolian activity from 

Tavurvur that took place on 29 August 2014.  A spectacular fire fountain was maintained for 

several hours and the eruption column reached an altitude of about 18 km. 

This study 

Analysis of the products of Phase 1 and those of Phase 2 until August 2001 is reported here.  

Existing brief accounts of the geochemistry and petrology of the initial phase of the eruption 

have highlighted the presence of hybrid andesitic magmas among volcanic products (Johnson et 

al., 1995; Roggensack et al., 1996).  We have undertaken a detailed petrological and 

geochemical examination of the products of the 1994 eruption with the goal of establishing the 

nature of magmatic processes occurring at depth, both leading to and during the eruption.  We 

also conducted a limited study of the petrology and geochemistry of the products of some 

earlier eruptions at Rabaul.  

Sampling of 1994-2001 eruptives focussed on representative juvenile lava blocks/bombs and 

pumice clasts, lava flow fragments, and relatively coarse pumice lapilli (from the flanks and 

base of Vulcan and Tavurvur) so as to avoid compositional bias associated with winnowing of 

finer-grained fall deposits.  Samples were collected from a month after the initial Phase 1 

outbreak on 19 September 1994, and immediately following each significant eruptive episode 

during Phase 2 until August 2001.  Three fine-grained ash samples were also collected, 

following explosive activity in May, July, and August 1999 as no lava/pumice blocks or coarse 

pumice lapilli were erupted during these events.  Collectively these materials provide the basis 

for a detailed analysis of the temporal petrologic and geochemical evolution of the products of 

Phases 1 and 2 of the 1994 eruptions. 
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The principal author of this paper, Herman Patia, died in 2012.  Herman spent his entire 

working life at Rabaul Volcanological Observatory (RVO) following his graduation from 

University of Papua New Guinea (UPNG) in 1985, and had become an identity in the 

international volcanological community.  Herman contributed strongly to the programs of 

RVO, parts of which were pursued by Herman as research projects, resulting in awards of BSc 

(Honours) in 1989 for his work on Billy Mitchell Volcano, Bougainville, and M. Phil. in 2004 

for his work on the products of the 1994-2001 eruptive period at Rabaul.  Herman’s M. Phil 

study forms the basis of this paper.  At the time of his death, the manuscript of this paper was 

well advanced.  We, the co-authors, believe that by bringing this work to publication, Herman’s 

legacy will be enriched. 
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PETROGRAPHY AND MINERALOGY 

Methods 

Crystals, melt inclusions and matrix glasses were analysed in representative samples by energy 

dispersive techniques using Camebax and Jeol electron microprobes operating at 15kV 

accelerating voltage and 1-5nA beam current.  Crystal compositions have been systematically 

characterised, including the analysis of core and rim compositions, in 30 thin sections.  The 

compositions of the principal phases (plagioclase, pyroxene, and olivine) in the Vulcan and 

Tavurvur Phase 1 and 2 samples are summarised in Figures 3 and 4. 

Petrography 

Pumice blocks and ash erupted from Vulcan in Phase 1 are typically pale grey to grey or tan-

grey in colour.  Crystal assemblages in these materials are dominated by small to moderately 

large (up to ~5 mm) euhedral plagioclase (~10 vol.% vesicle free), with minor amounts of 

clinopyroxene (1-2 vol.%), orthopyroxene (1-2 vol.%), magnetite (0.5 vol.%), and a trace of 

olivine.  Clinopyroxene and orthopyroxene are characteristically small (≤1mm) and relatively 

equant in shape, and occur commonly in glomerophyric clusters with magnetite and plagioclase 

(Fig. 2A).  All crystals are euhedral and have no obvious dissolution features. Accessory apatite 

needles and sulphide blebs are included in plagioclase and in magnetite respectively.  Glassy 

and devitrified melt inclusions are common in plagioclase and other crystalline phases.  The 

groundmass is typically microcrystalline, but light brown glass patches occur among crystal 

clusters.  The microcrystalline groundmass could imply shallow decompression crystallization 

prior to eruption.  Alternatively this may be a product of undercooling due to mixing across a 

curved cotectic (as per  Gerlach and Grove, 1982). 

Blocks and lavas erupted from Tavurvur in both Phase 1 and Phase 2 are characteristically dark 

grey but range from light grey to jet-black in colour.  They occasionally display cm-scale 

colour variation banding that is observed in thin section to correspond to regions of different 
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groundmass crystallinity.  Many samples contain abundant, sometimes large (> 5 mm), crystals 

of plagioclase (up to 25-28 vol.% vesicle free) and variable amounts (<0.5-5 vol.%) of 

relatively coarse-grained olivine (1-3 mm, Fig 2B) and clinopyroxene (1-5 vol.%).  A 

population of smaller sized crystals of clinopyroxene and orthopyroxene (1-3 vol. %), 

magnetite (0.5-3 vol. %), accessory apatite and occasional sulphides (<0.5 vol. %), similar to 

that observed in Vulcan dacites are also present.  Glomerocrysts and clots of medium to coarse-

grained plagioclase, clinopyroxene and olivine are a feature of samples that are richer in olivine 

and clinopyroxene. Clinopyroxene and olivine are characterised by weak to absent optical 

zoning.  Plagioclase is invariably euhedral, complexly zoned and typically contains abundant 

glass inclusions within cores.  The latter are occasionally overgrown by largely melt inclusion-

free and oscillatory-zoned rims (Fig. 2D).  Accessory apatite needles and rods are common, 

particularly as inclusions in sodic plagioclase (Fig. 2C and D).  The groundmass is invariably 

microcrystalline, except for the occurrence of light to dark brown matrix glass patches within 

crystal aggregates. 

Mineral compositions   

Plagioclase crystals in Vulcan samples are dominated by labradorite compositions (An65-45) but 

extend to very anorthite-rich compositions (An95; Fig. 3).  Ferromagnesian phases are 

characterised by relatively Fe-rich clinopyroxene (Mg76-72), orthopyroxene (En75-69), 

homogenous olivine (Fo79-78) and titanomagnetite with 8-12 wt% TiO2.  In contrast, Tavurvur 

Phase 1 and 2 samples typically have strongly bimodal crystal contents.  One mode comprises 

crystal compositions that generally overlap with those present in Vulcan dacites including a 

similar range and distribution of plagioclase compositions, relatively Fe-rich augitic 

clinopyroxene (Mg77-72), orthopyroxene (En74-68) and zoned olivine (Fo79-69).  The other mode is 

characterised by magnesian clinopyroxene (Mg86-82), olivine (Fo86-80) and calcic plagioclase 

(An97-85); this assemblage is prevalent in the most mafic samples (Fig. 5a-c).  Coexisting Fe-
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rich clinopyroxene and orthopyroxene occur in Vulcan samples and in Tavurvur Phase 1 and 2 

samples.  Compositions cluster on and between the 950-1050°C isotherms of the graphical 

geothermometer of Lindsley (1983; Fig. 4). 

Paired analyses of plagioclase cores and rims reveal a complex crystalline assemblage 

dominated by a population of relatively unzoned labradorite (An50-60) and another group of 

unzoned calcic plagioclase (An85-95), a few reversely zoned crystals and a large population of 

normally zoned crystals which have core compositions ranging from labradorite to anorthite 

(An50-90) with labradorite (An50-60) rims (Figs. 5 and 6).  Compositional profiling from core to 

rim and element mapping by electron microprobe reveals the latter normally-zoned crystals 

typically have sharp boundaries between their calcic cores and sodic overgrowths, consistent 

with petrographic observations.  
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WHOLE-ROCK GEOCHEMISTRY 

Methods 

One hundred and twenty four samples from the 1994 to 2001 eruptive period were analysed for 

whole-rock major and trace elements by X-ray fluorescence at the Australian National 

University and Geoscience Australia following the methods of Norrish and Hutton (1969) and  

Norrish and Chappell (1977).  A subset of samples was analysed for rare earth elements (REE), 

other trace and minor elements by solution nebulisation inductively coupled plasma source 

mass spectrometry (ICPMS) and by laser ablation (LA) ICPMS at the Australian National 

University using the methods of Eggins et al. (1997) and Eggins (2003).  Preparation of 

samples for analysis involved removal of surface coatings prior to jaw crushing and pulverising 

to a fine powder in a tungsten carbide ring mill.  The sample powders were fused (1:10 ratio) 

with a 12:22 lithium-tetraborate/metaborate mixture (Sigma Chemicals 12:22 flux) and 

quenched as glass discs for major element analysis using Phillips PW1400 and PW1400a 

spectrometers.  Powder pellets were pressed in Al cups for trace element analysis using 

wavelength dispersive (Phillips PW1440) and energy dispersive (Spectro-Lab XRF) 

spectrometers.  Representative analyses that encompass the compositional range of Vulcan and 

Tavurvur Phase1 and Phase 2 eruptives are listed in Table 2.  

Chemical compositions 

The analysed samples form a continuous linear array from 58 wt% to 63 wt% SiO2 straddling 

the boundaries between high-silica andesite and low-silica dacite, and medium-K to high-K 

compositions (Fig. 7; after Gill, 1981).  The 1994-2001 eruptives are generally concordant with 

the compositions of historical and prehistorical Rabaul eruptives (Wood et al., 1995), which 

form an array from high-alumina basalt to rhyodacite compositions (Fig. 7).  

The major and minor oxide compositions of the 1994-2001 eruptives and previously analysed 

Rabaul samples have been plotted against MgO in Figure 8.  A striking feature of the 1994-
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2001 data is the tight linear trends on all of these plots.  The low-MgO end of the 1994-2001 

data set is defined by the Vulcan 1994 dacite compositions and a cluster of virtually identical 

Tavurvur Phase 2 dacites having 1.8-2.1 wt% MgO; these correspond fairly closely with dacite 

compositions erupted in 1937 and 1878.  The trend toward more MgO-rich compositions is 

defined only by Tavurvur samples, particularly those from Phase 2, which extend to magnesian 

andesites having up to 4.5wt% MgO.   

The compositional trends for major elements formed by the 1994-2001 eruptives diverge from 

and are distinct from the compositional arrays of most previous Rabaul eruptives (Fig. 8).  Few 

andesite compositions matching those erupted in 1994-2001 have been reported previously 

from Rabaul.  Studies by Wood et al. (1995) and by Heming (1977) have argued that the 

compositions of historical and prehistorical eruptives are consistent with magma evolution by 

fractional crystallisation.  Both petrographic observations and compositional variation trends 

for historical and prehistorical eruptives are consistent with initial olivine, clinopyroxene, and 

plagioclase fractionation, joined later by Ti-magnetite saturation (evidenced by inflection at ~3 

wt% MgO as shown in Fig. 8e; see also Heming, 1977).  The hump of high Al2O3 compositions 

in prehistorical eruptives, >19-20 wt% (Fig. 8b), we attribute to plagioclase accumulation.  The 

onset of orthopyroxene crystallisation is not associated with any compositional inflection but is 

consistent with the overall melt evolution trajectories required by least squares modelling to 

account for the evolution of observed dacites from andesitic parent compositions (Wood et al., 

1995; Heming, 1977).  Apatite fractionation occurs only in dacite compositions as indicated by 

the distinct inflection in P2O5 at ~1.8 wt% MgO (Fig. 8h). 

Selected trace element abundances are plotted versus MgO wt% in Figure 9.  As with the major 

and minor oxides, trace element abundances for the 1994-2001 samples form tight linear 

correlations that diverge from prehistorical compositions having higher MgO contents.  The 

highly compatible elements Ni and Cr form steeply increasing, near-linear positive correlations 

with increasing MgO; moderately and variably compatible elements (V, Cu, and Sr) form less 
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steeply increasing trends;  and the highly incompatible elements (Rb, Zr and Ba) form steeply 

decreasing, near-linear correlations with increasing MgO.  These systematics are consistent 

with the behaviour of petrogenetically-linked major oxides.  For example, the almost flat trends 

observed in 1994-2001 eruptives for Sr and Al2O3, both of which are compatible in plagioclase, 

contrast with the increasing trends of Sr and Al2O3 observed in prehistorical eruptives with 

<5wt% MgO.  Likewise, the incompatible trace elements and major oxides (Na2O, K2O and 

P2O5) all decrease less steeply with increasing MgO in 1994-2001 eruptives compared to the 

groupings of older eruptives. 

Temporal variations in magma composition 

A plot of MgO wt% as a function of time through the 1994-2001 period of activity (Fig. 10) 

illustrates an increased spread of magma compositions from the beginning of Phase 1 (Sept. 

1994) until well into Phase 2 (early 1998).  The most MgO-rich compositions were erupted 

during the eight periods of strombolian activity (May 1996 to August 1997), subsequent to 

which relatively low MgO (2-2.5 wt%) compositions only were erupted.  It is notable that 

dacites with low MgO (1.8-2.1 wt%) were interspersed with more-magnesian andesite 

compositions throughout the course of the eruption, and often in the same eruptive event.  The 

minimum MgO content of the dacites appears to increase steadily from about 1.8 to 2.0 wt% 

MgO through the eruption (Fig. 10).   

Products of the 1878 and 1937-43 eruptions 

Thirty eight samples from the products of recent historical eruptions were collected as part of 

this study and related previous work (Patia, 2003): seventeen samples from 1878 eruptives and 

twenty one samples from 1937-43 eruptives.  Mineralogical examination and electronprobe 

analyses of mineral chemistry of the 1937-43 samples reveal bimodal phenocryst assemblages 

similar to those of the 1994 eruptives.  The Tavurvur 1937-43 eruptives have bimodal 

populations of relatively unzoned plagioclase phenocrysts with broadly anorthite (An85-95) and 
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andesine to labradorite (An45-65) compositions.  Equivalent Vulcan eruptives show dominant 

andesine to labradorite (An 45-65) compositions and some highly anorthite-rich phenocrysts 

associated with mafic micropillows containing highly magnesian olivine (Fo90-91).  The 1878 

eruptives of both Tavurvur and Vulcan show a less extreme range of plagioclase  compositions 

dominated by a population of unzoned labradorite (An50-60) and lesser bytownite (An70-80), and 

other normally zoned phenocrysts that span the same compositional range (Patia 2003). 

Representative geochemical analyses of a sub-set of these samples were presented by Patia 

(2003).  In general, these analyses are similar to those of products from the 1994-2001 period of 

activity, however some highly magnesian analyses (5.4-8.2 wt% MgO) were obtained for some 

relatively rare products of both the 1878 and 1937 Vulcan eruptions (see Figures 8 & 9).  The 

MgO contents of the bulk of the 1878 and 1937-43 eruptives show less variation than the 

products of the 1994 eruption: the MgO range for most 1878 eruptives is 1.6 to 2.3 wt%, while 

the principal 1937-43 products have a slightly broader range, 1.4 to 2.6 wt% MgO (Fig.10). 
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DISCUSSION 

Magma interaction and mixing as shown by eruptive products of the period 1994-2001  

The strongly bimodal phenocryst populations and tight rectilinear compositional variation 

trends formed by the 1994-2001 eruption products are prima facie evidence for mixing of two 

distinct magmas.  The two magmas involved are both crystal-bearing and include a dacite with 

~1.8 wt% MgO and 64 wt% SiO2, and a less well constrained, more-mafic magma that has >4.5 

wt% MgO.  It is particularly significant that evidence for eruption of the same dacitic magma, 

with its characteristic bulk composition and crystalline phase assemblage (plagioclase An65-45, 

augite clinopyroxene Mg77-72, orthopyroxene Mg75-68, titanomagnetite, apatite and sulphide), is 

present at both Vulcan and Tavurvur, on opposite sides of the caldera.  While we can also 

identify a mafic phenocryst assemblage within the andesite-dacite samples that cannot have 

been in equilibrium with dacitic melts, a mafic magma containing only this phenocryst 

assemblage has not been sampled.  

Figures 8 and 9 show that the relatively MgO-rich andesites erupted from Tavurvur have no 

correlatives with previously erupted and analysed Rabaul rocks.  However, the 1994-2001 

andesite compositions are not necessarily exotic in the Rabaul context, as extrapolation of the 

linear trends formed by this sample set project to plausible high-MgO basalt parental magma 

compositions having 8-10 wt% MgO (see Fig. 8).  It is possible that the mafic end-member of 

the 1994-2001 eruptive sequence is a MgO-rich basalt, which has been mixed with dacite in 

proportions as high has 55:45 (if 8 wt% MgO) or 30:70 (if 10 wt% MgO) to form the most 

magnesian andesite compositions erupted in Phase 2.  If so, it follows that the mafic magma 

was relatively crystal-rich, given the significant modal abundances of calcic plagioclase (8%), 

magnesian olivine (5%) and magnesian clinopyroxene (3%) observed in the most magnesian 

Tavurvur andesites (Patia, unpublished data).  This is consistent with the composition of 

olivine-hosted basaltic melt inclusions in 1994 Tavurvur andesites, which have high-Al basalt 
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compositions clustering between 4 and 4.5 wt% MgO, and as high as 4.9 wt% MgO 

(Roggensack et al., 1996, Fig. 10).  We suggest on this basis, together with the lack of zoning in 

magnesian clinopyroxene phenocrysts which might otherwise be expected to record cores 

grown from more magnesian melt compositions, that the highly magnesian (likely 8-10 wt% 

MgO) nature of the mafic magma is due to the accumulation of significant quantities of 

magnesian olivine and clinopyroxene phenocrysts.  

Depth and extent of magma bodies 

The sub-caldera dacitic magma body at Rabaul interpreted from the results of seismic 

tomographic imaging has lateral dimensions of about ~6-8 km and thickness of ~3 km 

(Finlayson et al., 2003; Bai and Greenhalgh, 2005; Itikarai, 2008).  This thickness may be 

regarded as an upper bound due to tomographic smearing effects, with the true thickness being 

possibly of the order of 0.5 km or less.  Thus, the volume of the interpreted magma body is 

estimated to lie in the range ~15-150 km3, although a portion of this volume may be only 

partially molten. 

The shallow depth of the magma body inferred from tomography is consistent with the 

relatively low H2O contents (2.0-2.3 wt%) of plagioclase-hosted, dacitic melt inclusions 

reported from the Phase 1 part of the eruption (Roggensack et al., 1996).  Similar low H2O 

contents were determined for plagioclase-hosted dacitic melt inclusions in the products of the 

2006 eruption (Bouvet de Maisonneuve et al., 2015).  This amount of H2O corresponds to the 

water solubility limit in siliceous melts at ~50 Mpa and to the estimated lithostatic load at a 

depth of ~3 km (Roggensack et al., 1996).  The dacite magma was almost certainly volatile-

saturated prior to eruption, as evidenced by the relatively uniform H2O content of the dacitic 

melt inclusions.   

The basaltic recharge magma may have been somewhat deeper than the dacitic magma body 

when olivine crystallization commenced.  Roggensack et al. (1996) reported 2.8-3.8 wt% H2O 
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and variable CO2 contents (<50-960 ppm) in basaltic, olivine-hosted melt inclusions from the 

Phase 1 Tavurvur andesites.  The H2O and CO2 contents of these melt inclusions correspond to 

solubility limits in basaltic magmas spanning a pressure range from <150 to 250 MPa, and 

indicate olivine crystallisation occurred at depths greater than ~5-9 km.  This is significantly 

deeper than crystallisation of the dacite magma (i.e. ~3 km), and indicates entry of mafic 

magma into the shallow dacitic magma reservoir from below, as concluded by Roggensack et 

al. (1996).  Given that Rabaul dacite may evolve from basalt and basaltic andesite parental 

melts by between 60 and 75% fractional crystallisation (Wood et al., 1995), then potentially 

≥70% of the dissolved magmatic H2O is lost during differentiation (basalt to dacite) through 

exsolution of a H2O-rich magmatic volatile phase. 

The synchronous eruption of compositionally and mineralogically identical dacite magmas at 

Vulcan and Tavurvur during the 1994 eruption implies that these vents, on opposing sides of 

the caldera, tap a common magma reservoir.  This conclusion is reinforced by the synchronous 

eruption from both Vulcan and Tavurvur of similar dacite compositions in 1878 and again in 

1937-43.  This indicates the persistence of a common dacitic magma body for at least 120 years 

(and probably much longer).  Subtle differences exist between the common end-member dacitic 

magma compositions erupted in 1878, 1937-43, and 1994-2001.  The end-member dacite 

erupted in 1878 has 1.71 ± 0.05 wt% MgO, which decreases to 1.63 ± 0.06 wt% in 1937, and 

then increases again to 1.86 ± 0.06 wt% in 1994-2001.  These changes indicate that the dacitic 

magma body undergoes compositional evolution between eruptions that involve both fractional 

crystallisation and addition of more-mafic magmas.  Least squares modelling using observed 

phenocryst assemblages and phase compositions reveals that the decrease from 1.71 wt% MgO 

in 1878 to ~1.63 wt% MgO in 1937 requires between 4 and 5 mass % fractional crystallisation 

of the 1878 dacite magma over a period of 59 years (see Table 3).  Given the estimated volume 

range for the magma reservoir, ~15-150 km3, we suggest an estimated corresponding volume of 

magma that crystallised over the period 1878-1937 to lie in the range 0.6 to 7.5 km3.  This 
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estimate does not acknowledge that a portion of the low-velocity region is probably only 

partially molten.  

Volume of injected mafic magma 

The volume of injected mafic magma may be estimated by consideration of the SO2 yield.  

TOMS (Total Ozone Mapping Spectrometer) and airborne COSPEC (correlation spectrometer) 

measurements (GVN, 1994; Roggensack et al., 1996) recorded moderate SO2 contents in 

Tavurvur’s September 1994 eruption plume but no detectable SO2 in Vulcan’s plinian eruption 

column, indicating degassing of a S-rich melt, and hence basalt injection, beneath and through 

Tavurvur but not Vulcan (Roggensack et al., 1996).  Analyses of olivine-hosted melt inclusions 

from the Phase 1 and early Phase 2 products of Tavurvur indicate that the most primitive 

basaltic andesite and basaltic compositions (with > 4 wt% MgO) have S contents in the range 

1800 ± 120 ppm whereas dacite composition matrix glass and melt inclusions contain <120 to 

400 ppm S (Roggensack et al., 1996).  The total SO2 yield during the first 18 days of 

Tavurvur’s eruption in 1994 was about 500 ktons, released at rates that declined from 30-80 

ktons/day in the first few days to 26 ± 5 ktons/day on day 10, and to 4 ± 1 ktons/day by day 18 

(see Fig. 1 in Roggensack et al., 1996).  Assuming that the total SO2 yield was derived from 

degassing of a new basaltic magma injection upon ascent, we estimate the mass of fresh 

injected basalt to be 1.4 x 108 tons (equivalent to ~0.06 km3).  Note that the mass calculation 

and volume estimate from gravity measurements during the period 1973-1985 were 1 x 108 tons 

and 0.04 km3 (McKee et al., 1989).  Given the S content of the erupted matrix glass remained 

significant (i.e. at ~100-200 ppm; Roggensack et al., 1996), and the bulk S content of the mafic 

magma was probably less than 1800 ppm due to dilution by abundant phenocrysts, a larger 

volume approaching ~0.1 km3 may be a more reasonable estimate. This would represent only 

0.07-0.7% of the estimated volume of the magma chamber, 15-150 km3.  It is however 

significantly larger than the volume of mafic magma entrained in the Tavurvur andesite-dacite 
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eruptives (<0.02 km3 based on mass balance if the mafic magma end-member is assumed to 

have >5.5 wt% MgO). 

Mafic magma injection - cause of eruption?  

It is plausible that a series of injections of basaltic magma into the dacite magma reservoir 

resulted in sufficient temperature increase and overpressure to cause instability of the shallow 

dacite-filled reservoir.  No seismic or other activity can be linked unambiguously to the ascent 

of magma from depth in the period immediately prior to commencement of the 1994 eruptions. 

The  two ~M5 earthquakes recorded 27 hours prior to the eruption (GVN, 1994; McKee et al., 

2017) occurred at shallow depth (1-2 km) near Tavurvur and Vulcan and probably reflect 

rupture that initiated magma ascent from the caldera-extensive reservoir possibly triggered by 

mafic magma recharge.  Simple models for magma chambers located beneath shallow volcanic 

piles indicate that the overpressure needed to induce wall-rock rupture is of the order of 1-10 

Mpa (Blake, 1981; Tait et al., 1989).  The overpressure produced by injection of new magma 

into an existing chamber is a function of the relative volumes and the compressibility of the 

new and resident magmas, and of the elasticity of the wall-rock (Blake, 1981).  An 

injected/resident magma volume ratio exceeding 0.001 will cause failure of a reservoir filled 

with incompressible magma, but this can increase to ~0.01 if the resident magma contains a 

compressible magmatic volatile phase.  Where pre-existing magma or fluid-filled fractures 

emanate from a magma chamber relatively small overpressures and significantly reduced 

injected/resident magma volume ratios may lead to dyke growth from magma reservoirs 

(McLeod and Tait, 1999).  In this case magma viscosity exerts fundamental control upon the 

rate at which these dykes propagate. 

Given the volume of injected mafic magma was of the order of ~0.1 km3 (based on the SO2 

yield in Phase 1, see above) and assuming that the Rabaul dacitic magma was volatile-saturated 

(Roggensack, et al., 1996) and pre-existing magma-filled fractures were absent, the likelihood 
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of magma reservoir failure and subsequent eruption in 1994 would have been greater if the 

magma reservoir volume was nearer to the lower end of the estimated range, i.e. ~15 km3.  This 

assumes that the entire mafic magma injection was needed to exceed the failure threshold and is 

notable as the interpreted injection of a similar volume of new magma during the 1983-1985 

seismic crisis (McKee et al., 1989) did not result in eruption.  Thus, it seems plausible that 

repeated basaltic magma injections took place during the 23 years period of volcanic unrest 

(Johnson et al., 2010) and had a cumulative effect of pushing the system beyond the failure 

threshold in 1994. 

The 1994-2001 period of eruptive activity and the previous  eruption (1937-43) are notable for 

the synchronous eruption of Vulcan and Tavurvur, and for volcanic activity occurring at 

Tavurvur over a period of years following the initial eruption.  Unlike previous eruptions, 

considerably more mafic material is present in the 1994 eruption products, particularly during 

the early parts of Phase 2.  The basaltic magma component documented in both Phase 1 and 

Phase 2 is mineralogically and compositionally identical, suggesting that the initial and 

subsequent phases of volcanic activity over the period 1994-2001 are an outcome of repeated 

injections of the same or similar basaltic magma.  These injections may have started in 1971.  

We further speculate that the basalt formed a dense basal layer that was restricted to the 

eastern-northeastern side of the existing broad shallow dacite-filled magma reservoir.  

Relatively rapid heat exchange between the magmas would induce crystallisation and 

accompanying volatile exsolution from the basaltic magma over a period of months or years 

prior to reaching thermal equilibrium with the overlying dacite magma, before overturn of the 

mafic and silicic layers dispersed and mixed the injected basalt into the dacite (as per Snyder, 

2000).  During this period of slow cooling, hybridisation of the basaltic and dacitic magmas 

may have occurred at their interface due to convective entrainment of the basalt within the 
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thermal boundary layer of the dacite.  In addition, volatile exsolution from the mafic magma 

may have resulted in formation and ascent of buoyant (bubble-rich) plumes into the overlying 

dacite.  Such processes might account for the trend of increasingly mafic erupted dacite 

compositions, from ~1.86 to >2.0 wt% MgO, over the course of the 1994-2001 eruptive period.  

The eruption of variably more mafic andesites in both Phase 1 and Phase 2 requires only 

partially complete hybridisation processes.  More detailed petrologic examination of the Phase 

1 and 2 products, particularly the evolution of matrix glass compositions, may illuminate these 

and other aspects of the basalt/dacite magma hybridisation processes that took place. 

Comparison with previous eruptions 

The MgO-rich andesites and extended magma mixing trends that characterise the 1994-2001 

eruptive period have not been documented previously at Rabaul (c.f. Wood et al., 1995).  This 

could indicate that the 1994-2001 activity is an atypical event or, alternatively, that evidence for 

magma mixing/mingling and hybridisation may have been overlooked in the products of earlier 

eruptions.  Discriminating between these possibilities is critical to understanding how the 

Rabaul magma system works, particularly if mafic magma injections have played a key role in 

past eruptions in a manner similar to that implicated for the 1994 eruptions.  Drawing on more 

recent data acquired for historical eruptions (Patia, 2003) we conclude that substantial evidence 

exists for mafic magma injections and interaction between mafic and felsic magmas in previous 

eruptions.  This includes significant variations in the MgO contents of erupted magmas (Fig. 

10), the occurrence of bimodal phenocryst assemblages and zoned plagioclase phenocrysts, and 

textural evidence of magma mixing/mingling in the products of the 1878 and 1937-43 

eruptions.  The more mafic dacite compositions (~1.86 - >2.0 wt% MgO) erupted in 1994-2001 

compared with those of 1937-43 (~1.63 wt% MgO) are consistent with the addition of mafic 

magma to the dacite magma reservoir subsequent to the 1937-43 eruption, and may be linked to 

the onset of volcanic unrest in 1971, the 1983-85 seismo-deformational crisis (Mori et al., 

1989), the resurgence of seismicity in 1992,  the beginning of the 1994 eruptions and during the 
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1994-onwards eruptive period.  We also note the common occurrence in the 1994-2001 Vulcan 

and Tavurvur dacites of plagioclase phenocrysts with variably thick sodic overgrowths, which 

have grown in equilibrium with dacitic magma, over ‘older’ cores crystallised in equilibrium 

with basaltic magma.  These observations lead us to conclude that mafic magma injections have 

occurred repeatedly into a ‘long-lived’ shallow dacitic magma reservoir and that these 

injections may also be responsible for triggering eruptions at Rabaul.  Detailed studies of the 

products of historical and prehistorical eruptions using newly developed chronometers that are 

able to constrain the timescales of magma mixing prior to eruption (e.g. Costa et al., 2008) are 

needed to further test this important hypothesis. 

The contrast between the compositional patterns displayed by the whole-rock elemental data for 

the 1994 eruption products and data from many previous eruptions, particularly prehistorical 

events, as shown in Figures 8 and 9, is intriguing.  This may suggest that different processes 

from those associated with the 1994 eruptives acted throughout much of the history of the RCC 

and WTZ systems.  Limited data for the 1878 and 1937-43 eruptives, particularly the high-

MgO analyses which appear to lie on an extension of the compositional trend for 1994 

eruptives (Figs. 8 & 9), suggest similarity of the magmatic processes that operated through the 

recent historical period. 

Accumulation of phenocrysts may be a common process at both the RCC and WTZ systems.  

We have suggested that the accumulation of plagioclase explains the finding of high Al2O3 at 

high MgO in prehistorical eruptives.  This process would also be consistent with evidence of 

high CaO and high Sr at high MgO, although accumulation of pyroxenes would also contribute 

to the high values of CaO.  Accumulation of olivine and pyroxenes would be consistent with 

high Fe2O3 at high MgO.  Phenocryst accumulation also took place prior to the 1994 (and other 

historical) eruptions as magmatic end-members in each case were crystal-enriched and there is 

evidence of different generations of crystallization and reaction to changing magmatic 

compositions.  However, the different evolutionary trajectories of the whole-rock elemental 
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data for the 1994 and other historical eruption products compared with data from previous 

eruptions may indicate differences in phenocryst accumulation processes over time or the 

operation of other (currently unknown) processes in either the historical or prehistorical period.      

Comparison with other studies of magma mixing/mingling as an eruption trigger 

In the words of A.T. Anderson (1976) “magma mixing is a widespread, if not universal igneous 

phenomenon”, and is regarded as a common mechanism for triggering explosive eruptions of 

felsic magmas (Sparks et al., 1977).  Extensive and efficient mixing produces hybridized 

magmas that have disequilibrium mineral assemblages and characteristic mineral textures and 

crystal zoning (eg. Streck, 2008), whereas less-efficient mixing (mingling) results in 

disintegration of one interacting magma and the incorporation of fragments (inclusions) of that 

magma in the other interacting magma.  A number of models have been proposed to address the 

range of outcomes produced by variations in the extent of mixing and mingling, e.g. the “foam-

instability” models of Eichelberger (1980) and Thomas and Tait (1997), and the “pillows” 

model of Huppert et al. (1982).  The array of hybridized andesites produced at Rabaul in the 

period 1994-2001 represents relatively efficient mixing of dacite and basaltic magmas.  

Similarly efficient mixing, involving basalt and andesite, took place at Karymsky in 1996 

(Izbekov et al., 2002, 2004).  At the other end of the mixing scale, the products of Soufriere 

Hills in 1995-1999 (Murphy et al., 1998, 2000), showing ubiquitous coherent inclusions of 

mafic material within andesite, represent magma mingling.  Strong textural evidence of 

mingling of andesite and rhyolite is shown by the 2000 BP products of El Misti (Tepley et al., 

2013).  Intermediate and variable degrees of mixing and mingling are represented by the 

products of Pinatubo 1991 (Pallister et al., 1996) and Lassen Peak 1915 (Clynne, 1999).  Four 

different magmatic components are present in the products of Pinatubo 1991: phenocryst-rich 

and phenocryst-poor dacite, olivine-clinopyroxene-hornblende basalt, and hybrid andesite.  The 

basalt occurred as undercooled and quenched inclusions in the hybrid andesite.  Similarly, four 

different rock types were produced at Lassen Peak in 1915.  Complex mixing involved variable 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

degrees of disaggregation of inclusions of undercooled andesite within hybrid dacite.  The 

glomerocrysts and clots of plagioclase, clinopyroxene and olivine in magnesium-rich samples 

of the early products of Tavurvur in 1994 (Johnson, et al., 1995) signify less efficient mixing, 

possibly representing an earlier recharge event. 

The mafic component of mixed-magma eruptions is commonly not erupted as a discrete entity 

(Sparks et al., 1977).  This was the case for Rabaul’s 1994 eruptions where the basalt end-

member was never sampled despite the flux of basalt at Rabaul being greater in 1994 than in 

the previous eruptions (1937-43 and 1878).  This variation has similarities to the increased flux 

of basalt at Mount St Helens over the last 4 ky (Gardner et al., 1995).  As noted by Cashman et 

al. (2017) mixing of successive recharge batches of mafic magma with felsic magma may be 

quite efficient, resulting in the ubiquity of antecrysts and glomerocrysts, although mafic 

enclaves (micropillows) are occasionally preserved, as in the 1937 Vulcan eruptives (Patia, 

2003). 

Non-eruptive recharge events may be common.  At Rabaul there are seismic indications of 

recharge starting in 1971, a strong pulse in 1983-1984, another pulse in 1992, and a possible 

recharge event immediately prior to the outbreak of the eruptions.  A similar scenario has 

emerged at Soufriere Hills where multiple recharge events are indicated by a series of seismic 

swarms at intervals of about 30 years prior to the 1995-1999 eruption (Murphy et al., 1998, 

2000).  While seismicity may be equivocal as evidence for recharge, mineralogical evidence is 

more compelling.  In the case of El Misti 2000 BP multiple recharge events are indicated by 

two populations of andesite-sourced amphibole within rhyolite – with and without reaction rims 

(Tepley et al., 2013).  The amphibole phenocrysts that have reaction rims represent earlier non-

eruptive recharge events that were not linked directly to the eruption-triggering process at 2000 

BP.  The “Minoan” caldera-forming eruption of Santorini in the late 1600s BC also was 

preceded by several non-eruptive mixing events during a period of perhaps 100 years (Druitt et 

al., 2012). 
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Where magma recharge leads directly to eruption the time interval for this process may be of 

short duration, perhaps hours in some cases, and commonly only days.  An immediate response 

to a regional basaltic dyke injection is indicated by the simultaneous eruptions in 1996 of basalt 

at Academy Nauk caldera and basalt-triggered andesite at the neighbouring Karymsky (Izbekov 

et al., 2002, 2004).  At Rabaul in 1994 the final recharge event may have been linked with the 

two M5 caldera earthquakes only 27 hours prior to eruption outbreak.  Similar time periods 

between eruption-triggering recharge and actual eruption are indicated for Arenal (Coombs and 

Gardner, 2004) and Mount Hood (Kent et al., 2010).  A time period of about one month 

separated the onset of mixing of andesite and dacite and the eruption outbreak at Southwest 

Trident in 1953 (Coombs et al., 2000).  For the 1991 Pinatubo eruptions, basalt began to leak 

into a crystal-rich dacite reservoir about two months prior to the series of magmatic eruptions 

(Pallister et al. 1996).  However, a larger or more violent episode of mixing, associated with 

intensified deep long-period earthquakes that started about one week prior to the onset of the 

magmatic eruptions (White, 1996), may have initiated the processes that led to the climactic 

eruption (Pallister et al., 1996).    

A model for the Rabaul-region magma systems 

A general model for the volcanism at Rabaul must accommodate the multiplicity of local 

magma systems, the possibilities of interaction between these systems and the evidence of 

basaltic recharge at the RCC.  The Rabaul region hosts three magma systems, individually 

associated with Rabaul Volcano, the WTZ and Tavui Volcano.  Petrological relationships link 

the eruptive outputs from the Rabaul system and those from the WTZ (Wood et al., 1995), but 

contrasts between the geochemical and mineralogical characteristics of the higher-K Rabaul-

WTZ “main series”, which is quartz-free and lacks hydrous minerals (Wood et al., 1995), and 

the lower-K Tavui rock series, that contains quartz and hornblende (Wallace and Tufar, 1998), 

indicates independence of the Tavui system.  The mafic end-members of each of the Rabaul 

and Tavui rock series are similar to the principal products of the WTZ, while the felsic end-
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member of the Rabaul system is rhyodacite and Tavui’s felsic end-member is rhyolite (Wood et 

al., 1995; McKee, 2015). 

The model presented here for the Rabaul-area magma systems builds on an earlier model 

(Johnson et al., 2010) and invokes the concept of complex, vertically-extensive and unstable 

magma storage regions from mantle to crust in a transcrustal magma system (TCMS, as 

proposed by Cashman et al., 2017).  Mantle-derived basalt is the starting material for all three 

magma systems of the Rabaul area (Fig. 11).  Storage (underplating) and fractionation may 

occur at the base of the crust where lateral movement of magma may be possible and some 

crustal melting may take place.  For the caldera systems, mid-crustal storage and fractionation 

is envisaged to provide more-evolved magmas to upper crustal magma bodies.  The Rabaul 

sub-caldera dacite body is shallow and permanent due to a high rate of recharge (c.f. Sparks et 

al., 1977).  The high recharge rate and relative frequency of eruptions limit the felsic end-

member composition to rhyodacite (Wood et al., 1995; McKee, 2015; McKee and Duncan, 

2016).  A sub-caldera magma body at Tavui may be somewhat deeper than the corresponding 

entity at Rabaul as suggested by the appearance of amphibole in felsic eruptives from Tavui 

(Wallace and Tufar, 1998), and may be ephemeral.  The failure of geophysical imaging 

techniques to confidently detect a shallow crustal magma body beneath Tavui (e.g. Finlayson et 

al., 2003) may be consistent with the difficulty of maintenance of such magma bodies in some 

cases (Cashman et al., 2017).  A suspected low rate of magma recharge and an apparently low 

frequency of eruptions would provide conditions conducive for Tavui magmas to reach their 

full felsic potential, i.e. rhyolite.  Upper crustal storage and fractionation takes place within the 

WTZ system (Johnson et al., 2010).  Eruptions from the Rabaul system may be the culmination 

of repeated mafic (or less felsic) injections from below, and possibly laterally also, from the 

WTZ (Johnson et al. 2010).  There is no evidence for pre-eruptive contact between mafic 

magma from the WTZ and felsic magma from Tavui, however the sequential eruptions at 6.9 

ka BP of basaltic Raluan Scoria from a WTZ vent (Nairn et al., 1995) and rhyolitic Raluan 
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Ignimbrite, arguably from Tavui (Wallace et al., 2002; McKee, 2015), suggests some form of 

interaction between these systems in this instance.  More-detailed work on the products of all 

three magma systems of the Rabaul area will test and refine this general model of local igneous 

processes. 
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CONCLUSIONS 

1. Whole-rock geochemical data and phenocryst mineral chemistry indicate the eruption 

of identical dacitic magmas from the vents Vulcan and Tavurvur, on opposite sides of Rabaul 

Caldera, and provide evidence for tapping of the same caldera-extensive dacitic magma 

reservoir by both vents.  

2. Hybridised andesitic magmas having strongly bimodal phenocryst assemblages and 

forming a linear compositional array that extends from end-member dacite toward a mafic 

basalt composition were erupted from Tavurvur during both phases of the 1994-2001 eruptive 

period and are interspersed with dacites.  The linear compositional array formed by the 

Tavurvur eruption products is oblique to magmatic differentiation trends observed in the 

products of earlier Rabaul eruptions and indicates mixing of dacites with a highly magnesian 

basalt, possibly having 8-10 wt% MgO. 

3. The moderately large volume SO2 flux observed in the Tavurvur emission plume (and 

the absence of SO2 in the Vulcan plume) combined with high dissolved S contents (~1800 

ppm) in basaltic melt inclusions trapped in olivine of Tavurvur eruptives indicates that the 

injected basaltic magma was confined to the eastern to northeastern sector (Tavurvur-side) of 

the sub-caldera dacite reservoir.  

4. H2O and CO2 volatile contents of dacitic melt inclusions and the caldera-extensive 

seismic low-velocity zone defined by the 1997 RELACS seismic tomography experiment are 

consistent with the presence of an extensive dacitic magma reservoir at a depth of ~3-6 km. The 

much higher H2O and CO2 contents of basaltic melt inclusions reflect the crystallisation of the 

basalt at depths of ~5 to 9 km prior to interaction with the dacite. 

5. Mass balance calculations based on the S contents of basaltic melt inclusions (i.e. 1800 

ppm) and the moderately large SO2 yield from Tavurvur during Phase 1 (i.e. 500 ktons, based 

on TOMS and COSPEC data from Roggensack et al. 1996) provide the basis for an estimate of 
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~0.1 km3 for the volume of injected and degassed basaltic magma.  This is about 2-3 orders of 

magnitude smaller than a suggested volume of 15-150 km3 for the shallow dacite-filled magma 

reservoir, but sufficient to cause rupture of the reservoir. 

6. The 1994 eruptions were likely triggered by and evolved in response to multiple 

magma injection events that took place over a period of at least 23 years prior to the onset of 

the eruption.  Differences between the dacite magma compositions erupted in 1878, 1937-1943 

and 1994-2001, the presence of zoned plagioclase phenocrysts reflecting older basalt-dacite 

magma interaction events (i.e. anorthite cores overgrown with thick andesine rims) and the 

occurrence of major intra-caldera seismo-deformational events indicate that the shallow magma 

system at the Rabaul Caldera Complex is subjected to repeated mafic magma injections at 

intervals of several years to several decades. 
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FIGURES 

 

1. Rabaul Caldera Complex showing Vulcan and Tavurvur, the active vents during the 

1994 eruptions, and other intra-caldera vents (solid triangles), the nested caldera structure (bold 

curved lines), the zone of caldera seismicity (stippled), the NW to SE alignment (the W-T 

Zone) of stratovolcanoes Watom, Tovanumbatir, Kabiu, Palangiangia, and Turagunan (open 

triangles), and Tavui Caldera to the north.  Rabaul Town occupies the N part of the caldera 

complex. 

2. Transmitted light photomicrographs (XPL) illustrating characteristic morphologies and 

associations of phenocrysts in Vulcan and Tavurvur dacites and andesites erupted during the 

1994-2001 period.  Plate A shows a phenocryst aggregate comprising euhedral plagioclase 

(andesine) with abundant melt inclusions (denoted MI), clinopyroxene (cpx), orthopyroxene 

(opx) and titano-magnetite (Ti-mag), interstitial glass and surrounding microcrystalline 

groundmass (gmass) with vesicles (field of view = 3x2 mm).    Plate B shows a large euhedral 

olivine phenocryst (Fo84), and several plagioclase and clinopyroxene microphenocrysts from a 

Tavurvur andesite (field of view = 3x2 mm).  Plate C shows a small euhedral plagioclase 

phenocryst of labradorite composition enclosing several apatite rods (field of view = 1.5x1 

mm).  Plate D shows part of a large plagioclase phenocryst comprising a mottled anorthitic 

(An93) core containing many large melt inclusions, that is overgrown by a thin, melt inclusion-

free labradorite rim that also bears several apatite needles (field of view = 1.5x1 mm).  

3. Plagioclase sub-ternary plots showing the large range of plagioclase phenocryst 

compositions analysed from the 1994-2001 eruptives. Note the virtually identical and very 

large range of compositions (andesine through to anorthite) occurring in both Vulcan and 

Tavurvur eruptives, and in both the Phase 1 and Phase 2 products of Tavurvur. 

4. Pyroxene and olivine phenocryst compositions from 1994-2001 eruptives plotted on 

the magnesian side (Mg/(Mg+Fe) >0.50) of the pyroxene quadrilateral.  Note the more limited 
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range and more Fe-rich compositions of clinopyroxene in the Vulcan eruptives, and also the 

similar fields of clinopyroxene compositions that range to considerably more Mg-rich 

clinopyroxene compositions in both the Phase 1 and Phase 2 products of Tavurvur.  Note also 

the range of orthopyroxene compositions, and the olivine compositions plotted along the 

baseline.  Tie-lines link coexisting clinopyroxene-orthopyroxene pairs, and isotherms are taken 

from the graphical pyroxene thermometer of Lindsley (1983). 

5. Histograms showing the range and frequency distribution of plagioclase and 

clinopyroxene phenocryst compositions in the 1994-2001 eruptives.  Note the strongly bimodal 

distribution of clinopyroxene compositions.  Also note the dominance of the andesine-

labradorite plagioclase phenocrysts, and the development of secondary modes at more calcic 

compositions, particularly in the highly calcic range An86-96.  

6. Core and rim compositions analysed in plagioclase phenocrysts from 1994-2001 

eruptives of Vulcan and Tavurvur. Note the clustering of phenocrysts near the 1:1 line (i.e. 

similar core and rim compositions) with compositions in the ranges An50-60 and An86-96, and the 

large number of phenocrysts that have An50-60 compsitions but also have anorthite-rich cores 

(‘old’ cores).  Further note that no Vulcan phenocrysts are represented in the cluster with An86-

96 cores and rims. 

7. Comparison of K2O versus SiO2 whole rock compositions of 1994-2001 eruptives to a 

compilation of compositions from previous Rabaul eruptions (data compiled from Heming 

1974; Wood et al., 1995; this study; and our unpublished data).  Shown for reference are basalt-

basaltic andesite-andesite-dacite-rhyodacite-rhyolite and the low-, medium- and high-K 

discriminant fields (after Gill, 1981).  Note the tight linear trend of the 1994-2001 

compositions, which range from andesite through to dacite.  A group of Raluan Ignimbrite 

rhyolite analyses is geochemically distinct from all other analyses.  The Raluan compositions 

have been shown to be inconsistent with derivation by crystal fractionation of observed 
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crystalline phases from Rabaul rhyodacites and dacites (Wood et al., 1995).  The Raluan 

Ignimbrite may have originated from the neighbouring Tavui system (Wallace et al., 2002; 

McKee, 2015). 

8. Major element vs MgO variation diagrams comparing the whole-rock compositions 

(calculated on a volatile-free basis) for 1994-2001 eruptives of Vulcan and Tavurvur with the 

compositions of previous eruptives.  Earlier eruptives are divided into pre-1400 BP and post-

1400 BP groups, with additional distinction made of the 1878 and 1937-43 eruptives from 

Vulcan and Tavurvur, and analyses from the Raluan Ignimbrite and 1400 BP Rabaul 

Pyroclastics.  The large arrows show the linear mixing trends formed by 1994-2001 eruptives, 

which begin at dacite compositions and extend through andesites toward a mafic basalt 

composition.  Note the oblique nature of these trends relative to other Rabaul magma 

compositions. 

9. Trace element vs MgO variation diagrams comparing the whole-rock compositions of 

1994-2001 eruptives of Vulcan and Tavurvur with the compositions of previous eruptives.  

Earlier eruptives are divided into pre-1400 BP and post-1400 BP groups, with additional 

distinction made of the 1878 and 1937-43 eruptives from Vulcan and Tavurvur, and the 6900 

BP Raluan Ignimbrite and the 1400 BP Rabaul Pyroclastics.  The large arrows show the linear 

mixing trends formed by 1994-2001 eruptives, which begin at dacite compositions and extend 

through andesites toward a mafic basalt composition.  Again note the oblique nature of these 

trends relative to other Rabaul magma compositions. 

10. Temporal evolution of the MgO whole-rock compositions of erupted products through 

the course of the 1994-2001 eruptive period.  Vertical lines show the timing of strombolian 

eruptions during Tavurvur’s Phase 2 activity, and arrows show trends in the maximum MgO 

compositions of andesites and in the minimum MgO compositions of dacites.  Compositions of 

1878 and the 1937-43 eruptives are shown for reference.  
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11.  Schematic representation of a general model for the Rabaul-region magma systems.  

View is a projection onto a plane orthogonal to the WTZ magma system which occupies a NW-

trending tabular zone, shown here bounded by vertical dashed straight lines, separating the 

Rabaul and Tavui systems.  Mantle-derived basaltic magmas ascend to, accumulate and 

underplate at the crust/mantle boundary.  Subsequently magma ascends from the crust/mantle 

boundary to mid-crustal reservoirs beneath the caldera systems and differentiates to more-

evolved compositions.  Evolved magmas ascend from mid-crustal reservoirs and feed the sub-

caldera magma reservoirs of the Rabaul and Tavui systems.  The sub-caldera magma reservoirs 

for the Rabaul and Tavui systems are shown at different depths, and that for Tavui is shown 

with a dashed-line boundary reflecting the results of geophysical imaging and the possibility 

that the Tavui sub-caldera magma reservoir is ephemeral.  The active caldera ring fault at 

Rabaul is shown by the outward-dipping dashed lines.  Basaltic magmas from the WTZ 

intersect the NE edge of the Rabaul sub-caldera magma system, mix with felsic magma and 

may trigger eruptions at Rabaul.  Less-felsic magmas rising from mid-crustal reservoirs also 

may destabilize the sub-caldera systems resulting in eruptions.   
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TABLES 

 

1. Rabaul Volcano eruption history, 1400 BP to present – adapted from McKee et al. 

(2016) and Nairn et al. (1995). 

2. Whole-rock major and trace element data for representative samples of Tavurvur and 

Vulcan products, 1994-2001.  

3. Least squares mixing model results. 
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Table 2. Whole-rock major and trace element geochemical data 

Sample# TAVQ-817  TAVT820 
TAVW-
823  VULA-801   

VULM-
813  VULP-816  VULN-814 VULG-807 

Date 
  19-Sep-
94  19-Sep-94 19-Sep-94 19-Sep-94  19-Sep-94 19-Sep-94 19-Sep-94 19-Sep-94 

SiO2  59.46  61.57 62.58 63.21  63.37 61.66 63.48 63.40 

TiO2 0.880  0.890 0.904 0.912  0.912 0.895 0.912 0.904 

Al2O3  15.88  15.91 15.81 15.79  15.82 15.64 15.81 15.79 

Fe2O3  7.02  6.67 6.47 6.40  6.46 6.24 6.35 6.19 

MnO  0.155  0.164 0.160 0.160  0.160 0.160 0.160 0.160 

MgO  2.81  2.48 2.18 1.92  1.97 1.84 1.86 1.80 

CaO  6.13  5.52 5.06 4.68  4.76 4.55 4.69 4.44 

Na2O  4.06  4.32 4.43 4.68  4.64 4.66 4.58 4.61 

K2O  2.10  2.36 2.48 2.55  2.53 2.57 2.58 2.63 

P2O5  0.290  0.330 0.329 0.363  0.363 0.352 0.363 0.352 

S wt 0.240  0.012 <0.005 <0.005  0.020 <0.005 <0.005 0.030 

Total  99.03  100.23 100.39 100.66  101.00 98.57 100.79 100.31 

Ppm SN-ICPMS 

LA-

ICPMS SN-ICPMS SN-ICPMS SN-ICPMS 

LA-

ICPMS SN-ICPMS SN-ICPMS SN-ICPMS SN-ICPMS 

Sc XRF 23.8  20.9 19.3 18.9  19.1 18.5 18.5 18.4 

 V XRF 146  104 103 102  99 89 89 92 

Cr XRF 20  12 9 3  3 2 3 2 

Ni XRF 10  6 4 <1  <1 <1 <1 <1 

Cu XRF 48  29 26 22  23 22 23 20 

Zn XRF 96  90 92 95  93 95 92 94 

Ga XRF 16.5  17.0 17.0 16.5  17.0 17.0 17.5 17.0 

Rb 28.8 27.7 30.1 31.6 34.5 32.8 32.3 33.1 35.8 36.1 

Rb XRF 27.5  31.5 32.5 33.5  34.0 34.0 34.5 35.0 

Sr 390 395 365 359 348 364 366 349 347 357 

Sr XRF 395  376 367 364  366 362 371 356 

Y 34.0 34.0 36.2 36.9 39.5 38.2 38.4 39.7 40.1 40.5 

Y XRF 30.0  33.0 34.0 35.0  34.0 35.0 35.0 36.0 

Zr 120.2 124.3 135.0 142.3 148.2 143.9 145.3 151.1 152.2 151.4 

Zr XRF 117.0  131.0 136.0 141.0  141.0 144.0 144.0 146.0 

Nb 2.58 2.57 2.87 3.01 3.18 3.07 3.11 3.20 3.24 3.24 

Nb XRF 2.0  2.0 2.0 2.0  2.0 2.0 2.0 2.0 

Cs 0.828  0.877 0.922 0.986  0.951 0.997 0.957 0.982 

Ba 348 345 388 407 419 406 410 425 404 434 

Ba XRF 340  375 395 410  415 400 400 420 

La 11.68 11.98 12.40 12.89 13.74 13.93 13.14 13.78 14.28 14.43 

Ce 26.20 26.49 28.75 30.12 31.57 30.87 30.70 31.52 32.17 32.19 

Ce XRF 30  32 34 32  36 34 32 36 

Pr 3.94 3.86 4.23 4.40 4.62 4.54 4.54 4.72 4.74 4.75 

Nd 18.04 18.02 19.41 20.43 21.38 21.02 20.80 21.55 21.84 21.68 

Sm 4.68 4.93 5.02 5.20 5.44 5.61 5.34 5.48 5.67 5.68 

Eu 1.367 1.388 1.444 1.480 1.524 1.554 1.526 1.531 1.583 1.574 

Gd 5.10 5.46 5.42 5.67 5.91 6.08 5.82 6.01 6.07 6.02 

Tb 0.832  0.891 0.918 0.956  0.951 0.975 0.986 0.975 

Dy 5.14 5.65 5.51 5.73 5.97 6.25 5.84 5.99 6.06 6.01 

Ho 1.123  1.217 1.249 1.311  1.279 1.317 1.323 1.336 

Er 3.32 3.52 3.60 3.74 3.83 4.00 3.80 3.94 3.93 3.95 

Yb 3.28 3.60 3.55 3.69 3.88 4.04 3.80 3.90 3.90 3.90 

Lu 0.507 0.578 0.552 0.569 0.597 0.642 0.593 0.608 0.599 0.607 

Hf 3.08 3.42 3.44 3.65 3.80 3.93 3.69 3.85 3.83 3.85 

Ta 0.156 0.261 0.176 0.184 0.190 0.609 0.188 0.192 0.194 0.190 

Pb 6.59 7.12 6.62 6.87 7.55 7.65 7.46 7.66 7.73 7.80 

Pb XRF 6.0  6.0 6.0 7.0  7.0 8.0 7.0 8.0 

Th 1.657 1.662 1.743 1.890 1.986 1.892 1.912 1.993 2.028 2.033 

U 0.869 0.925 0.974 1.024 1.055 1.074 1.029 1.056 1.085 1.078 
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Sample 

# 

VULH-

808B VULK811 RP98020 RP96-030 RP96-049 RP96080 RP96100 RP97001 

Date 19-Feb-98 19-Sep-94 30-Sep-94 1-Apr-95 21-Mar-96 11-May-96 4-Oct-96 4-Oct-96 9-Jan-97 

SiO2 63.19 62.77 62.22 61.43 63.00 60.44 61.51 59.90 60.17 

TiO2 0.910 0.907 0.910 0.880 0.910 0.890 0.907 0.880 0.873 

Al2O3 15.75 15.88 15.80 15.72 15.74 15.65 15.43 15.58 15.53 

Fe2O3 6.20 6.34 6.53 6.64 6.30 7.02 6.37 7.29 7.17 

MnO 0.162 0.161 0.165 0.162 0.164 0.169 0.162 0.166 0.166 

MgO 1.79 1.89 2.26 2.81 1.83 3.25 1.90 3.70 3.55 

CaO 4.45 4.64 5.25 5.37 4.66 6.21 4.72 6.45 6.27 

Na2O 4.60 4.61 4.44 4.20 4.65 4.07 4.72 3.99 4.11 

K2O 2.62 2.54 2.48 2.32 2.60 2.24 2.54 2.11 2.16 

P2O5 0.360 0.360 0.330 0.320 0.350 0.310 0.358 0.290 0.312 

S 0.044 0.021 0.006 0.040 0.007 0.004 0.015 0.019 0.014 

Total 100.08 100.11 100.39 99.89 100.21 100.25 98.62 100.39 100.33 

ppm SN-ICPMS SN-ICPMS LA-ICPMS  LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS 

Sc XRF 18.6 18.3 20.0 22.0 20.0 26.0 18.0 26.0 24.0 

 V XRF 91 100 106 114 98 138 89 139 127 

Cr XRF 2 3 11 12 2 34 2 41 42 

Ni XRF <1 <1 4 2 <1 14 <1 19 19 

Cu XRF 23 23 25 21 20 35 20 37 34 

Zn XRF 96 97 86 86 90 90 85 94 85 

Ga XRF 17.0 17.0 16.0 17.0 16.0 16.0 16.0 16.0 15.5 

Rb 35.4 35.4 30.6  32.1 27.1 32.3 27.5 28.7 

Rb XRF 35.0 34.0 31.0 32.7 33.0 29.0 32.0 26.5 27.0 

Sr 359 360 349  347 349 356 370 375 

Sr XRF 358 369 349 366 347 349 356 357 355 

Y 39.9 38.6 36.5  38.0 32.9 38.1 33.8 35.7 

Y XRF 35.0 35.0 31.0 34.5 33.0 29.0 33.0 28.0 29.0 

Zr 150.1 146.6 139.8  144.2 122.0 144.4 124.2 131.5 

Zr XRF 144.0 140.0 129.0 131.8 137.0 115.0 140.0 115.0 118.0 

Nb 3.23 3.13 2.80  3.02 2.54 3.07 2.47 2.77 

Nb XRF 2.0 2.0 2.0 3.1 2.0 2.0 3.0 2.0 2.0 

Cs 0.963 0.945        

Ba 438 418 385  403 344 397 344 361 

Ba XRF 415 400 380 376 410 355 390 345 345 

La 14.00 13.91 13.35  14.00 11.97 13.78 11.83 12.52 

Ce 31.91 31.67 29.52  30.87 26.08 30.36 26.08 27.82 

Ce XRF 34 32 30 28 34 28 32 28 28 

Pr 4.71 4.65 4.31  4.57 3.95 4.48 3.85 4.12 

Nd 21.50 20.97 20.29  21.01 18.14 20.89 18.41 19.00 

Sm 5.54 5.38 5.35  5.61 4.87 5.57 4.96 5.01 

Eu 1.553 1.539 1.529  1.569 1.406 1.595 1.455 1.494 

Gd 6.03 5.84 5.93  6.09 5.36 5.99 5.33 5.71 

Tb 0.969 0.951        

Dy 6.01 5.85 6.07  6.28 5.48 6.22 5.50 5.83 

Ho 1.320 1.298        

Er 3.91 3.82 3.92  3.98 3.53 3.94 3.58 3.73 

Yb 3.86 3.80 3.94  4.05 3.61 4.00 3.47 3.86 

Lu 0.597 0.589 0.637  0.653 0.564 0.638 0.578 0.594 

Hf 3.78 3.67 3.91  4.03 3.37 3.91 3.49 3.73 

Ta 0.191 0.188 0.191  0.194 0.168 0.250 0.205 0.213 

Pb 7.94 7.64 7.18  7.91 7.01 7.02 8.69 7.62 

Pb XRF 8.0 7.0 7.0 8.5 7.0 6.0 6.0 7.0 6.0 

Th 2.009 1.942 1.844  1.942 1.617 1.919 1.676 1.745 

U 1.072 1.062 1.049  1.063 0.917 1.086 0.919 0.992 
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Sample

# RP97030 RP97212 RP97222 RP97215M3 RP98048 RP98051 rp99007 rp99011 RP0015p17 

Date 7-Feb-97 5-Apr-97 10-Apr-97 13-Apr-97 20-Aug-98 20-Aug-98 21-Apr-99 15-Jul-99 11-Nov-00 

SiO2 63.17 58.03 63.14 58.29 61.47 62.19 62.46 59.90 62.85 

TiO2 0.910 0.825 0.914 0.857 0.906 0.907 0.921 0.877 0.928 

Al2O3 15.80 15.84 15.80 15.74 15.86 15.76 15.74 15.72 15.79 

Fe2O3 6.43 7.49 6.41 7.71 6.79 6.48 6.47 6.82 6.56 

MnO 0.166 0.167 0.165 0.171 0.165 0.163 0.164 0.158 0.168 

MgO 1.92 4.48 1.90 4.34 2.61 2.13 1.99 2.50 1.95 

CaO 4.72 7.59 4.73 7.53 5.48 4.94 4.83 5.80 4.76 

Na2O 4.56 3.63 4.59 3.62 4.35 4.52 4.54 4.14 4.64 

K2O 2.54 1.85 2.53 1.90 2.35 2.47 2.54 2.19 2.54 

P2O5 0.357 0.274 0.358 0.269 0.334 0.347 0.357 0.321 0.356 

S 0.024 0.013 0.015 0.005 0.010 0.015 0.009 0.498 0.006 

Total 100.59 100.17 100.56 100.43 100.33 99.91 100.01 98.92 100.54 

ppm LA-ICPMS  LA-ICPMS LA-ICPMS   LA-ICPMS  LA-ICPMS 

Sc XRF 19.0 27.0 19.0  22 20 20 26 19.3 

 V XRF 93 144 93 193 112 100 96 132 133 

Cr XRF 4 65 4 54 18 8 4 16 6 

Ni XRF <1 29 <1 23 8 2 <2 8  

Cu XRF 22 40 21 54 28 24 24 40  

Zn XRF 88 82 87 90 81 82 84 96  

Ga XRF 16.5 15.5 16.0 16.8 17.1 16.9 16.6 16.5 17.4 

Rb 33.6 27.9 33.6 25.4   31.9  32.4 

Rb XRF 32.5 23.0 32.5 27.7 33.0 34.9 36.2 32.0 32.4 

Sr 360 395 362 397   357  326 

Sr XRF 352 363 352 397 372 366 355 364  

Y 39.4 30.7 39.4 32.0   37.8  37.1 

Y XRF 33.0 26.0 33.0 30.6 35.4 36.1 37.5 34.1  

Zr 152.4 105.4 151.4 111.5   145.4  145.7 

Zr XRF 140.0 103.0 140.0 104.0 129.7 136.6 139.2 120.7  

Nb 3.17 2.65 3.23 2.30   3.01  3.05 

Nb 

XRF 3.0 2.0 3.0 2.8 2.6 2.4 2.6 1.9  

Cs       0.795  0.824 

Ba 409 309 411 319   387  390 

Ba XRF 410 300 405 309 360 364 405 340  

La 14.41  14.33 10.95   13.62  13.68 

Ce 31.72  31.72 24.30   30.00  30.18 

Ce XRF 32 26 36 19 26 27 35 30  

Pr 4.70  4.63 3.59   4.37  4.44 

Nd 21.82  21.79 16.67   18.51  18.77 

Sm 5.76  5.80 4.64   5.38  5.46 

Eu 1.674  1.656 1.357   1.495  1.473 

Gd 6.29  6.29 5.04   5.93  5.92 

Tb          

Dy 6.37  6.52 5.19   6.38  6.45 

Ho          

Er 4.19  4.23 3.41   3.85  3.88 

Yb 4.21  4.18 3.36   3.94  4.05 

Lu 0.668  0.682 0.523   0.645  0.663 

Hf 4.25 4.05 4.23 3.07   4.40  4.26 

Ta 0.225  0.246 0.204   0.235  0.217 

Pb 8.09  7.60 6.48   9.51  10.48 

Pb XRF 7.0 5.0 8.0 7.5 7.0 7.5 9.0 10.0  

Th 2.060  2.025 1.503   1.868  2.024 

U 1.141  1.127 0.823   1.036  1.149 
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Table 3.  Least squares mixing model results 

Phenocrysts  SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Cr2O3 

Ol Fo84 39.74 0.00 0.00 15.21 0.251 44.56 0.244 0.00 0.00 0.00 0.000 

Cpx Mg84 50.81 0.417 4.40 4.76 0.000 15.45 23.54 0.327 0.00 0.00 0.296 

Plag An93.5 44.11 0.00 34.75 0.611 0.059 0.148 19.56 0.765 0.00 0.00 0.000 

Opx Mg#75 53.64 0.230 0.666 17.55 0.709 25.38 1.568 0.262 0.00 0.00 0.000 

Cpx Mg#75 51.30 0.548 2.051 9.27 0.264 15.35 20.72 0.509 0.00 0.00 0.000 

Plag An60 52.92 0.00 28.93 0.732 0.00 0.114 12.55 4.53 0.235 0.00 0.000 

Ol Fo70 37.82 0.00 0.00 26.55 0.574 34.86 0.192 0.00 0.00 0.00 0.000 

Plag An70 50.47 0.00 30.90 0.797 0.00 0.117 14.23 3.39 0.095 0.00 0.000 

Magnetite 0.00 12.31 3.13 80.34 0.587 3.434 0.00 0.00 0.00 0.00 0.199 

Apatite 56.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 44.00 0.000 

Whole-rock 

compositions   SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Cr2O3 

Vulcan'94* 62.92 0.904 15.73 6.28 0.159 1.860 4.59 4.61 2.56 0.356 0.00 

Vulcan'37* 63.59 0.895 15.55 5.88 0.159 1.627 4.32 4.61 2.72 0.360 0.00 

Vulcan'78* 62.72 0.904 15.70 6.10 0.155 1.709 4.70 4.44 2.61 0.371 0.00 

Tav817 60.05 0.890 16.04 7.09 0.160 2.84 6.19 4.10 2.12 0.290 0.00 

Tav98-012 57.76 0.850 15.68 7.88 0.170 4.46 7.39 3.67 1.86 0.270 0.01 

Tavurvur Phase2* 62.44 0.915 15.78 6.45 0.164 1.987 4.82 4.57 2.51 0.355 0.00 

Vul’37 2014 49.88 0.800 15.31 10.45 0.180 7.93 12.42 2.18 0.63 0.160 0.03 

Palangiangia#5 48.44 0.800 18.12 10.85 0.180 6.31 12.89 1.82 0.46 0.120 0.01 

PraedPoint#13d 48.38 0.810 19.19 10.51 0.180 5.41 12.82 2.17 0.42 0.110 0.00 

1400BP* 65.88 0.838 15.22 5.13 0.155 1.347 3.44 4.85 2.97 0.275 0.00 

Results  

Whole-rock  
Vulcan 
1937   Plag An60 

Cpx 

Mg#75 

Opx 

Mg#75 Magnetite Apatite TOTAL RSSQ 

Vulcan 1878*  = 95.35   2.87 1.09 -0.07 0.48 0.08 99.8 0.009 

  
Vulcan 
1937   Plag An70 

Cpx 

Mg#75 

Opx 

Mg#75 Magnetite Apatite   

Vulcan 1878*  = 95.82   2.48 1.02 -0.06 0.45 0.07 99.8 0.005 

Vulcan 1994*  = 95.91   2.56 0.31 0.88 0.54 0.01 100.2 0.012 

  #Vul822 Vul'37 2014 Ol Fo84        

#Tav98-012  = 62.7 36.4 0.93      99.9 0.032 

#Tav817  = 79.9 20.5 -0.59      99.8 0.060 

  #Vul822  Ol Fo84  

Plag 

An93.5 

Cpx 

Mg#84 Magnetite    

Palangiangia #5  = 34.1  5.1  33.2 20.4 8.4  101.1 0.572 

Praed Point 

#13d  = 35.1  4.0  36.2 17.3 8.2  100.9 0.635 

  1400BP*   Plag An60 

Cpx 

Mg#75 

Opx 

Mg#75 Magnetite Apatite   

Vulcan'94*  = 85.19   9.19 2.34 1.10 1.77 0.27 99.9 0.005 

  Vul’37 2014 
Vulcan 
1994*         

Tavurvur 

Phase2* = 3.1 96.8       99.9 0.014 

Mixing calculations performed using MINSQ (Herrmann and Berry, 2002) 

* average dacite compositions calculated for Vulcan 1878, 1937 and 1994 eruptions, and Tavurvur 1994-2001 

Phase 2 eruption subsequent to July 1998.  
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HIGHLIGHTS - PATIA ET AL. 

 

1. Whole-rock geochemical data and phenocryst mineral chemistry indicate the eruption of 

identical dacitic magmas in 1994 from the vents Vulcan and Tavurvur, on opposite sides 

of Rabaul Caldera, and provide evidence for a caldera-extensive dacitic magma 

reservoir. 

2. Vulcan eruptives define a tight cluster of dacite compositions, whereas Tavurvur 

eruptives span an array from equivalent dacite compositions to mafic andesites. 

3. The Tavurvur andesites form a linear compositional array and have strongly bimodal 

phenocryst assemblages that reflect dacite hybridisation with a mafic basalt.   

4. The moderately large volume SO2 flux documented in the Tavurvur volcanic plume 

(and negligible SO2 flux in the Vulcan plume) combined with high dissolved S contents 

of basaltic melt inclusions trapped in olivine of Tavurvur eruptives, indicate that the 

amount of degassed basaltic magma was ~0.1 km3 and suggest that the injection of this 

magma was confined to the Tavurvur-side (eastern to northeastern sector) of the 

caldera.   

5. Circumstantial evidence suggests that the eruption was triggered and evolved in 

response to a series of basaltic magma injections that may have commenced in 1971 and 

continued up until at least the start of the 1994 eurptons.   

6. The presence of zoned plagioclase phenocrysts reflecting older basalt-dacite interaction 

events, evaluation of limited available data for the products of previous eruptions in 

1878 and 1937-1943, and the episodic occurrence of major intra-caldera seismo-

deformational events indicate that the shallow magma system at Rabaul Caldera is 

subjected to repeated mafic magma injections at intervals of several years to several 

decades. 
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