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Abstract

Jamaica’s electricity sector faces supply-side challenges. Demand-side policies

have the potential to improve electricity use efficiency and reduce the likelihood

of electricity disruptions. In this paper, I use the bounds testing approach to

cointegration to obtain long-run price elasticity of demand estimates for the

period 1970–2014. The analysis focuses on aggregate electricity demand and three

categories of consumers: residential, commercial, and industrial. The findings

suggest that residential and industrial consumers are most responsive to price

changes, with long-run price elasticities of demand of –0.82 and –0.25, respectively.

Price-based approaches are likely to be more successful in slowing electricity

demand growth in these sectors.

JEL classifications: C22; Q41; Q43

Keywords: Bounds testing; Elasticity; Electricity demand

1 Introduction

Total electricity consumption in Jamaica has grown steadily at an annual average

rate of 3.4% over the last 45 years, moving from 735.1 GWh in 1970 to 2,997.8

GWh in 2014. Over the same period, residential electricity demand increased its

share of total electricity consumption from 28% to 32%, while the industrial sector

share moved from 16% to 20%. The commercial sector accounts for a significant

portion of electricity demand (45%), but its share has not changed much since the

1970s.

Projections by the regulatory body – Office of Utilities Regulation (OUR) –

suggest that electricity demand growth is expected to exceed supply in the next

few years if there are no major investments in additional capacity. To meet the

forecasted demand, approximately 1,400 MW of new generating capacity will

need to be constructed by 2030, more than doubling existing capacity (Office

of Utilities Regulation, 2010a). According to the Jamaica Public Service (2014),

a 381 MW LNG-fired power plant should have been completed by mid-2016

but the licence was withdrawn by the Ministry of Energy due to breaches in the

power purchase agreement by Energy World International (EWI), the company

tasked with building the new generation facility (Nationwide Newsnet, 2014).

Though competition exists in generation, the Jamaica Public Service (JPS), which

is vertically integrated and has the sole licence to distribute electricity island-wide,

continues to grapple with high electricity losses. System losses – mainly due to

theft – consistently hover above 20% and act as a further constraint on the firm’s

ability to expand capacity due to lost revenue.
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With the sector potentially experiencing supply-side challenges and the quan-

tity of electricity consumed growing, the utility may be forced to use load shedding

to manage the excess demand. This has implications that extend beyond the elec-

tricity sector. In a 2010 survey conducted by the World Bank, Jamaican firms

reported that they lost about 0.2 per cent of annual sales due to electrical power

outages (World Bank, 2016). With an annual growth rate in real GDP of 0.9%

between 1970 and 2014, load shedding is likely to stymie economic activity in the

already fragile economy.

To elaborate on why load shedding could be a problem for Jamaica, Figure

1 displays trends in generation capacity, peak demand, and reserve capacity

from 1986 to 2013. In recent years, capacity has been growing faster than peak

demand, but this is mostly due to plant upgrades. The JPS reports that delays

in the acquisition of new generating capacity has forced the firm to engage in

rehabilitation of its existing generating units to maintain system reliability with

substantially higher maintenance costs incurred in the process (Jamaica Public

Service, 2014).
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Figure 1: Trends in generation capacity and peak demand, 1986–2013. Source: Compiled using
data from Jamaica Public Service (2004, 2014).

However, continuous system upgrades are unsustainable and new generating

capacity is expensive and takes time to build. Until the institutional problems

associated with attracting new investors and the high level of system losses are
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addressed, the short-term response may necessitate electricity price increases to

fund new investment in capacity or limit demand growth so as to prevent outages.

For these reasons, I estimate price elasticities of demand for electricity at the

aggregate and disaggregate level to determine how responsive consumers are to

price changes. The use of prices divert consumption away from low value uses of

electricity such as unnecessary lighting. Consumers will use electricity until their

marginal benefit is equal to the price they have to pay. Using prices to control

demand is economically efficient as both the consumer and the utility benefits.2 It

creates incentives for consumers to engage in energy conservation and efficiency

and increases the options available to the utility provider to maintain security of

the supply network.

Price elasticity of demand estimates are also important in understanding the

social welfare implications associated with different incentive pricing schemes.

The decision by the regulator to apply revenue cap pricing to the electricity sector

in 2016 instead of price cap regulation serves as a notable example in this regard.3

In general, a rigorous understanding of how electricity prices affect electricity

demand is critical and can serve as a useful energy policy guide to government,

regulators, and electricity providers.

Ramcharran (1990) is the only known researcher to have estimated demand

elasticities for end-users in Jamaica. This was done over two decades ago using

annual data covering the period 1970 to 1986. Therefore, I make two main

contributions in this paper. First, I use more recent advances in econometric

modelling along with a longer time span (1970–2014) to improve the reliability of

price elasticity estimates for three categories of end-users: residential, commercial,

and industrial. Second, I contribute to the paucity of research on electricity

demand behaviour that exists for Small Island Developing States (SIDS)4 and

developing countries as a whole.

This paper is organized as follows: The research topic is introduced in Section

1. This is followed by Section 2 in which I provide an overview of the electricity

sector in Jamaica. I then discuss the literature for Jamaica and various developing

and developed countries in Section 3. In Section 4 I elaborate on the employed

model, data sources, and the econometric technique – autoregressive distributive

lag (ARDL) bounds testing approach to cointegration. In Section 5, the results

2As electricity prices in Jamaica are already high by global standards, cash transfer schemes or
concession limits could be used to target vulnerable groups such as low-income households who
are affected by high prices.

3Under a price cap, constraints are placed on a weighted average of prices rather than revenues
as is the case with revenue cap regulation.

4SIDS are a diversified group of countries whose vulnerability arises from their small size and
inability to exploit economies of scale, remoteness leading to high transport costs, narrow export
base, and in most cases, dependence on fossil fuel imports (Briguglio, 1995). The UN Department
of Economic and Social Affairs (2015) classifies them into three distinct geographical regions:
Caribbean, Pacific, and the Atlantic, Indian Ocean, Mediterranean and South China Sea (AIMS).
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and analysis of the bounds testing approach are presented. Finally, I highlight the

conclusions and policy implications emanating from the results in Section 6.

2 Overview of Jamaica’s electricity sector

In 2001 the government of Jamaica sold 80% of its stake in the Jamaica Public

Service (JPS) – the sole electricity supplier in Jamaica – and opened up the gen-

eration segment to full competition in 2004. A number of private entities now

operate alongside the formerly state-owned generator to supply electricity to the

national grid, owned and operated by the monopoly distributor. Up to 80% of

current capacity available is operated by the JPS with the rest provided by four

independent power producers (IPPs): Jamaica Energy Partners (JEP), Jamaica

Private Power Company (JPPC), Jamaica Aluminium Company (JAMALCO), and

Wigton Wind Farm (WWF) (Jamaica Public Service, 2013).

In terms of regulation, oversight of the electricity sector falls under the purview

of the Office of Utilities Regulation (OUR) Act of 1995, which was established in

1997 by an Act of Parliament. In addition to the issuance and review of licenses,

investigation of breaches by the electricity provider, and issuing and reviewing

Requests for Proposals (RFPs) for capacity addition to the electricity grid, a key

responsibility of the OUR is the regulation of tariff applications and annual rate

increases (Office of Utilities Regulation, 2004). Initially, rate-of-return regulation

prevailed so that prices were set to equate revenues with costs. In 2001 price cap

regulation was introduced but in 2014 the JPS requested that the Office of Utilities

Regulation change to a revenue cap scheme (Jamaica Public Service, 2014).

In 2010, 92% of the population had access to electricity and the sector per-

formed well above the world average in terms of service quality and reliability.

World Bank data shows that power cuts average 6.4 outages per month globally

and last about 2.4 hours. However, Jamaica fares much better with only 2.5 out-

ages in 2010 with an average duration of up to 1.3 hours. Jamaica’s quality of

supply also outperforms the Latin America and Caribbean average of 2.8 outages

and 1.4 hours of interrupted service (World Bank, 2016).5

However, service quality is likely to deteriorate if major investments in addi-

tional capacity are not forthcoming within the next few years. Demand projections

by the OUR show that the country’s demand for electricity is likely to double by

2030, outpacing the capacity of the grid (Office of Utilities Regulation, 2010a).

Recognising this, the government through the Ministry of Science, Technology,

Energy and Mining has been pursuing a variety of measures to address Jamaica’s

growing energy needs such as investments in additional capacity, increasing the

5Frequency of power outages is measured by the system average interruption frequency index
(SAIFI) and the system average interruption duration index (SAIDI) measures the duration of
power outages in the largest business city of each country.
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amount of renewables to 20 per cent by 2030, and the introduction of natural gas

into the energy mix (Ministry of Energy and Mining, 2009). In 2010, the OUR

invited bids for the delivery of additional base load generating capacity of 480

megawatts to be commissioned in two tranches, April 2014 and January 2016. The

main purpose was to replace about 292 MW of the country’s existing generating

units which are outdated, inefficient, and some of which have been in operation

since the 1960s (Office of Utilities Regulation, 2010b).

Figure 2 provides a comparison among five Caribbean economies between 1970

and 2014, including Jamaica. It shows that Jamaica’s per capita electricity use has

been rising steadily since the 1980s, albeit slower than other economies. Over the

entire period, electricity use in Jamaica rose by an annual average of 2.8% but

had remained relatively flat in the 1970s and mid-1980s at around 513 kilowatt

hours (kWh) per person. By the 1990s, per capita consumption use was close to

700 kWh before peaking at 1,195 kWh in 2009. Major structural and economic

reforms in the late 1980s and early 1990s including the removal of exchange rate

controls and the abolishment of the Jamaica Commodity Trading Board – the sole

importer of energy and other basic necessities – as well as financial liberalization

may have had a role to play in the steady growth in electricity use until early 2000.

At the sectoral level (Figure 3), the pattern in electricity consumption over the

period was similar to the aggregate level except that electricity use grew the fastest

between 1970 and 2014 for the industrial sector (3.63%) followed by residential

consumers (3.58%) and commercial consumers (3.15%). Some of this growth was

fuelled by changes in population demographics. The proportion of people living

in urban areas grew quickly during the economic crises of the 1970s and 1980s

resulting in the spread and intensity of slums (Harris & Fabricius, 2005).

A cross-country comparison of electricity prices is displayed in Table 1. Due

to its dependence on oil-based fuel imports such as heavy fuel oil (HFO) and

diesel to meet 95% of the country’s electricity needs, Jamaica’s electricity prices

are high by international standards given the lower prices observed in the USA

and UK. The country fares better when compared to the Caribbean average of

US$0.40 per kWh, even though prices are much lower in Trinidad and Tobago –

an oil-producing country – and Belize.

The reform measures introduced in Jamaica in the early 1990s also resulted in

persistent exchange rate depreciation against the US dollar6 and sharp increases in

nominal electricity prices, but this was not enough to slow electricity consumption,

since real prices had not changed much prior to 2001. Figure 4 traces the evolution

in nominal prices for the different sectors in Jamaica along with the GDP deflator.

As expected, nominal electricity prices in all sectors rose faster than the GDP

deflator which indicates that the price of electricity in the various sectors rose

6Between 1991 to 2000, the nominal exchange rate had depreciated by over 8% annually.
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Figure 2: Trends in electricity consumption per capita, select Caribbean countries: 1970–2014.
Source: Compiled using data from US Energy Information Administration (2016), United
Nations Statistics Division (2016b), United Nations Statistics Division (2016a), and various
issues of the Economic and Social Survey of Jamaica (ESSJ). Excluding Jamaica, data was only
available between 1980–2012.
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Figure 3: Trends in sectoral electricity consumption in Jamaica, 1970–2014. Source: Compiled
using data from various issues of ESSJ.
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substantially in real terms, especially since 2001.

A comparison of Figures 3 and 4 suggests that electricity use might have slowed

since 2001 as a result of tariffs becoming more cost-reflective, especially in the

residential consumer segment. This follows the period of privatisation of the

electric company and implementation of market-based regulatory approaches.

Prior to 2001 real prices rose by 2% annually with consumption growth of 5% per

year. However, since 2001 real prices have increased by 5% each year at the same

time that electricity consumption grew by 0.7 per cent annually.

Table 1: Average retail tariffs by country in 2012.

Country US$/kWh

Trinidad and Tobago 0.05
USA 0.07
Belize 0.20
UK 0.22
Barbados 0.34
St. Lucia 0.35
Bahamas 0.37
St. Kitts and Nevis 0.37
Jamaica 0.37

Curacao 0.38
St. Maarten 0.38
St. Vincent and the Grenadines 0.39
Antigua 0.40
Anguilla 0.41
Cayman 0.41
Grenada 0.42
Bahamas 0.45
Dominica 0.45
Bermuda 0.50
Montserrat 0.51

Source: Compiled using data from Bailey et al. (2013) and the US Energy Information Administra-
tion (2016).
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Figure 4: Trends in sectoral electricity prices and GDP deflator in Jamaica: 1970–2014 (log
scale). Source: Compiled using data from United Nations Statistics Division (2016b) and
various issues of ESSJ.
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3 Survey of Literature

Several aggregate demand studies have examined how consumption of electricity

is influenced by price, income, and other determinants of electricity demand. For

instance, De Vita et al. (2006) used quarterly data for Namibia between 1980 and

2002 and found long-run price and income elasticities of –0.3 and 0.6, respectively.

In contrast, Amusa et al. (2009) did not find any significant influence of price

but found that the effect of income on demand was elastic with a 1% increase

in income resulting in aggregate demand rising by 1.7% in South Africa over

the period 1960–2007. The short-run demand elasticities were also shown to be

insignificant.

Many previous studies have adopted a disaggregated approach to estimating

electricity demand with a primary focus on residential consumption. For example,

Holtedahl and Joutz (2004) find a low long-run price elasticity (–0.15) but a

high long-run income elasticity of 1.04 in Taiwan. In the South African case,

Ziramba (2008) estimates long-run price and income elasticities of –0.01 and 0.33,

respectively. A more recent study by Blázquez et al. (2013) find low short-run

price and income elasticities (–0.07 and 0.23) in Spain with respective long-run

elasticities of –0.19 and 0.61. In looking at the commercial sector, Bose and Shukla

(1999) find that electricity consumption is price-inleastic (–0.26) and income-

elastic (1.27) in the short run. For the industrial sector, Kamerschen and Porter

(2004) find long-run price elasticity estimates in the range of –0.34 and –0.55 in

the United States.

Ramcharran (1990) is the only known study to have examined electricity

demand at the disaggregate level for Jamaica. Using a sectoral decomposition of

electricity demand over the period 1970 to 1986, Ramcharran (1990) showed that

for residential consumers, income was the only significant variable with respective

short- and long-run elasticities of 1.21 and 4.17. For small industrial and large

industrial consumers7, income did not have any significant influence in the short

or long run. However, the respective short- and long-run price elasticities were

–0.26 and –0.43 for small industrial consumers and –0.19 and –0.52 for the large

industrial sector.

The types of econometric techniques used to analyse the demand for electricity

vary widely (Khanna & Rao, 2009). Ramcharran (1990) and Holtedahl and Joutz

(2004), for example, apply Ordinary Least Squares (OLS) to estimate short-run

and long-run elasticity coefficients. In testing for long-run cointegrated relation-

ships, Asafu-Adjaye (2000) and Athukorala and Wilson (2010) used Johansen’s

cointegration technique. Glasure and Lee (1998) utilised Engle and Granger’s

cointegration and error-correction models. However, in recent times, the Pesaran

7These sectors correspond to the respective commercial and industrial categories used in this
paper.
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et al. (2001) bounds testing approach to cointegration has become popular among

econometricians because of its small-sample properties and the ability to mix the

integration order of the independent variables. Rather than using single-country

models, panel data methods also feature prominently in other studies such as

Chen et al. (2007).

This paper combines a number of the above approaches to capture the effects

of price and income on electricity demand in Jamaica. Specifically, it utilizes the

bounds testing approach to cointegration to derive long-run price elasticities at

the aggregate and sectoral level.

4 Methods and Data

4.1 Econometric Method and Identification

To estimate price and income elasticities of electricity demand at the aggregate

and disaggregate consumption levels, I begin with a simple logarithmic demand

function relation without lagged effects given by

ecs,t = αs,0 +αs,1D88s,t +αs,2ps,t +αs,3ys,t +αs,4us,t + ǫs,t (1)

where in year t, ecs,t is per capita electricity consumption at the aggregate level

when s = 1 and per capita residential consumption when s = 2, while it represents

total electricity consumption in the commercial and industrial sectors when s = 3

and s = 4, respectively. Electricity prices for the corresponding sectors are repre-

sented by ps,t . The variable ys,t denotes per capita GDP at the aggregate level and

per capita disposable income for residential consumers while total sectoral GDP is

used to measure income for the respective commercial and industrial sectors. The

urban share of the population us,t is the same for all sectors and represents the pro-

portion of people living in major cities in Jamaica. As cities become more densely

populated over time, greater access and the diffusion of electricity-using devices

can lead to sharp increases in electricity use, independent of electricity prices

and income. Due to extensive damage to the electricity infrastructure caused by

Hurricane Gilbert in 1988, I use a pulse dummy variable to account for a possible

break in the electricity consumption series for each sector. This is defined as

D88s,t = 1 for the period 1988 and zero otherwise. The random-error term is

given by ǫs,t. All variables are in logs except the urban share of the population,

which is expressed as a percentage. The use of a per capita specification for the

aggregate level and the residential sector follows from standard practice while

use of non-averaged values for the commercial and industrial sectors provide for

a more rational interpretation of the models.

Excluding price pt , all variables are expected to increase electricity consump-

11
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tion. However, the inclusion of price warrants further discussion as it is well-

established that electricity consumption may be endogenous to price (see dis-

cussion by Anderson (1973), Taylor (1975), and Reiss and White (2005)). This

implies that there may be a causal link going from consumption to price resulting

in the price elasticity of demand being potentially biased upwards and appearing

more elastic than expected. The relative magnitude of the bias is unlikely to

be severe for a number of reasons. Firstly, most of the period under study is

characterised by public ownership and rate-of-return regulation, as the electric

utility was not privatised until 2001. Under this system, prices were set based on

cost and demand projections using data from previous years. Therefore, prices at

a particular point in time were not directly influenced by the contemporaneous

use of electricity. Secondly, the World Bank (1996) reports that tariff increases

were generally delayed or not approved while most of the annual variation in

electricity prices is dictated by a complete pass-through of fuel cost8 that is based

on prices determined in global markets. This means that factors exogenous to

the system had a major role in price determination. A similar line of argument

was provided by Paul et al. (2009) in a study of electricity demand in the United

States and Bernstein and Griffin (2006) who looked at regional differences in price

elasticities of demand for energy.

Even if a reasonable solution to the potential endogeneity problem exists, good

instruments for electricity prices are often difficult to find (Reiss & White, 2005).

Instead, I identify the demand curve under the assumption that price is exogenous

as previously argued and that all demand-related variables that affect electricity

use are included in the model. While the latter assumption is necessary to allow

shifts in the supply curve to trace out movements along the demand curve when

the demand curve is fixed, the omission of some important demand or supply-side

factor that influences price would result in omitted-variable bias (OVB). But in

this case, the direction of the bias is less obvious.

In light of concerns related to biased coefficients in the static formulation,

Autoregressive Distributed Lag (ARDL) models have evolved to correct parameters

for endogeneity and spurious relations among variables that are driven by time

effects (see Pesaran and Shin (1998)). In my final specification, I extend Equation

1 by employing the following ARDL bounds testing model which is estimated

using OLS

∆ecs,t = αs,0 +αs,1D88t +πs,1ecs,t−1 +πs,2ps,t−1 +πs,3ys,t−1 +πs,4us,t−1

+λs,i

q−1∑

i=1

∆ecs,t−i +ϕs,i

q−1∑

i=0

∆ps,t−i +ψs,i

q−1∑

i=0

∆ys,t−i + δs,i

q−1∑

i=0

∆us,t−i + ǫs,t (2)

8This can range between 70–75% of the total bill (Jamaica Public Service, 2014).
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where ecs,t , ps,t , ys,t , us,t , and ǫs,t are as previously defined, and i is the number of

lags up to the optimal lag length q.

Aside from being suitable for small or finite sample sizes, an added benefit

of this approach is the use of a single equation when the focus is only on those

factors that influence electricity demand. This specification is also applicable

when the underlying regressors are purely I(0), I(1), or mutually cointegrated

(Pesaran et al., 2001). In contrast to the traditional cointegration techniques of

Engle and Granger (1987), Johansen (1988), and Johansen (1991), testing of the

variables under consideration for non-stationarity or unit root prior to deter-

mining the existence of level or long-run relationships is usually not required.

According to Pesaran et al. (2001), pre-testing introduces additional uncertainty

when modelling relationships among variables.

The bounds test model is based on the assumption that all regressors are weakly

exogenous, but in the case of the commercial and industrial sectors, income may

also be a source of reverse causality. In other words, electricity consumption in

these sectors may increase income resulting in biased and inconsistent estimates.

However, the size of this effect is likely to be smaller than the income elasticity

of demand. Furthermore, if the model contains all the relevant demand shifters

and cointegration is present, OLS estimates of such cointegrated variables are

superconsistent than in models with stationary series. In such situations, there

should be little concern about simultaneity bias.

The long-run relationship between ect, pt, yt, and ut for each sector s is de-

fined by γ2 = −(π2/π1), γ3 = −(π3/π1), and γ4 = −(π4/π1), respectively while the

difference terms represent the short-run dynamics of the model which are not the

focus of this paper. Instead of using non-linear functions to derive the long-run

parameters, it is often more convenient to use an alternative specification of the

model in Equation 2 so that the long-run parameters and their standard errors

can be directly estimated. Two techniques are suggested by Pesaran and Shin

(1998): the delta method and the instrumental variable (IV) approach of Bewley

(1979). This study uses the Delta method to compute the long-run estimates and

is discussed in more detail in Appendix C.

As Ouattara (2004) points out, even though most time series variables are

either I(0) or I(1), the bounds test may be invalid when I(2) variables exist. To test

for possible existence of I(2) variables, unit root testing is performed using Dickey

and Fuller (1979) and Kwiatkowski et al. (1992) tests and Perron (1989) exogenous

break test in the first stage. Despite its limitations, the augmented Dickey and

Fuller (1979) test is used as a starting point as it is the most widely used approach

in the literature. I use the Kwiatkowski et al. (1992) test to complement the results

of the Dickey and Fuller (1979) test since it tests the null of stationarity and is

more useful when we have trend-stationary processes. Given that I assume a

13
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single breakpoint in the data that is known a priori, Perron (1989) argues that

the standard Dickey and Fuller (1979) test results could be biased towards non-

rejection of the null in the presence of a structural break. In light of this, I follow

De Vita et al. (2006) and apply the Perron (1989) exogenous unit root test as an

additional check instead of the more recent class of endogenously determined or

unknown breakpoint unit root tests (see for example, Lee and Strazicich (2003)

and Narayan and Popp (2010)).

In the second stage, one of three approaches can be used to test the null

hypothesis of no cointegration among the variables. The first two approaches,

according to Pesaran et al. (2001), involves using the F-statistic (FPSS ) or the Wald

statistic (WPSS ) which are calculated from restricting the coefficients of the lagged

level variables in Equation 2 by setting them equal to zero and testing their joint

significance. Pesaran et al. (2001) also suggest a third approach which involves

using the t-statistic (tBDM ) of Banerjee et al. (1998) to test the hypothesis that

there are no long-run relation among the variables. I use the Akaike information

criterion (AIC) and Schwarz Bayesian Criterion (SBC) to select an appropriate lag

length as proposed by Pesaran et al. (2001).

The next step in the process involves comparing the computed FPSS , WPSS , or

tBDM statistics with the relevant critical value bounds taken from Pesaran et al.

(2001) or Narayan (2005) in the case of smaller sample sizes (30–80). Critical

values are established at all three conventional levels of significance for both I(0)

and I(1) variables. The lower bound represents I(0) variables and the upper bound

represents I(1) variables. If the calculated FPSS , WPSS , or tBDM statistic exceeds the

upper bound, the null hypothesis of no cointegration is rejected. If the calculated

value lies below the lower bound, the null hypothesis cannot be rejected. The

tests are, however, inconclusive if the calculated value falls between the lower and

upper bound as this would imply that the order of integration is not known.

The final step requires testing the stability of the ECM regression coefficients.

Pesaran and Timmermann (2002) suggested using the cumulative sum (CUSUM)

and cumulative sum of squares (CUSUMQ) plots of Brown et al. (1975) to test

the structural stability of the model. If the test statistic crosses the probability

bands, then the hypothesis of parameter constancy is rejected. Additionally, a

range of diagnostic tests are performed including Ljung and Box (1978) test for

serial correlation, Jarque and Bera (1987) test for normality, Ramsey and Schmidt

(1976) Reset test for functional form, and Engle (1982) test for heteroscedasticity.

The absence of serial correlation is a crucial requirement for the validity of bounds

testing. Pesaran et al. (2001) suggested that choice of an appropriate lag order is

necessary to produce serially uncorrelated errors. In this case, the absence of serial

correlation justifies the lag order selection for the ECM model. Confirmation of

homoscedastic residuals indicates that errors have constant variance through time,
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a crucial requirement that also supports the validity of the bounds test. Normal

distribution of the errors implies that valid inferences can be drawn from the

results of the model.

4.2 Data

The time series data used in this study are annual and cover the period 1970 to

2014. The JPS currently serves twelve categories of customers, but I focus on

three main customer segments: residential (Rate 10), commercial (Rate 20 and

Rate 40), and industrial (Rate 50). At the aggregate level and for the residential

sector, estimation is done in per capita terms. To proxy income of residences, I

use real disposable income per capita denominated in 2007 local currency prices.

The measure for income in the commercial and industrial sectors is based on the

International Standard Industrial Classification (ISIC) of GDP. For the commercial

sector, I use the wholesale, retail trade, restaurants, and hotels (ISIC G – H) and

transport, storage, and communication (ISIC I) categories to measure the sector’s

annual income while the mining, manufacturing, utilities, and construction (ISIC

C – F) GDP categories serve as a measure of income for the industrial sector. The

nominal disposable income series were sourced from the Edward Seaga Research

Institute (2016). Data on real GDP in local currency prices was provided by the

staff of the Jamaica Productivity Centre (JPC) and the total population series

were obtained from United Nations Statistics Division (2016a). Electricity tariff

(J$/kWh) and consumption (GWh) data were gathered from various issues of

the Economic and Social Survey of Jamaica. The electricity consumption series

excludes electricity generated by captive plants for their own use but includes

excess power sold to the grid. Nominal values are deflated using the implicit price

GDP deflator obtained from United Nations Statistics Division (2016b).

I use the GDP deflator to capture broader changes in the price of all domesti-

cally produced goods and services rather than a subset of goods that are typically

captured by other inflation measures. Choosing an appropriate deflator is im-

portant, especially in developing countries, since energy costs represent a key

input cost component to other sectors of the economy. This means that changes

in energy costs will directly influence the consumer price index. After food, ser-

vices provided by the utility sector represents the second largest component of a

consumer’s typical budget in Jamaica (STATIN, 2016). Therefore any movement

in the price of electricity would have a larger effect on the consumer price index

relative to the GDP deflator. For comparison purposes, I also examine cases where

deflating is carried out using the consumer price index or no deflator is used.9

9Similar price elasticity estimates are derived when the consumer price index is used though
the estimate for the residential sector is closer to unity and insignificant for the commercial sector.
A nominal price measure was also used but the price elasticities were generally insignificant and
had the wrong sign.
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The descriptive statistics associated with the main variables are presented in Table

2 and shows some variability in the data from year to year for the different sectors

especially as it relates to electricity consumption.

Table 2: Descriptive statistics for main variables: 1970–2014.

Variables Mean Maximum Minimum
Standard
Deviation

Aggregate

Electricity consumption (kWh) 787.13 1205.16 393.31 285.22

Real electricity price (J$/kWh) 16.57 28.56 8.06 5.00

Real income (J$,103) 267.59 334.79 213.32 25.80

Residential

Electricity consumption (kWh) 264.55 421.13 108.72 112.80

Real electricity price (J$/kWh) 18.66 33.29 10.23 5.49

Real income (J$,103) 261.11 341.09 175.30 49.71

Commercial

Electricity consumption (GWh) 867.08 1437.28 337.00 392.39

Real electricity price (J$/kWh) 16.63 27.98 7.89 4.99

Real income (J$,109) 194.53 268.27 122.02 48.65

Industrial

Electricity consumption (GWh) 320.04 615.31 119.50 182.59

Real electricity price (J$/kWh) 13.53 23.54 4.99 4.51

Real income (J$,109) 1668.65 2031.84 1259.03 198.36

Urban population share (%) 49.39 54.56 41.32 3.71

Source: Author’s calculations. Real values are based on 2007 prices. For the aggregate level and
residential sector, electricity consumption is measured in per capita terms. I also use real GDP per
capita and real disposable income per capita to proxy income for those respective segments while
total sectoral GDP is used for the commercial and industrial sectors, respectively.

4.2.1 Price measurement debate

In addition to concerns surrounding the endogeneity of price, there is some debate

as to whether consumers respond to average or marginal prices. Traditionally,

electricity prices in Jamaica have been based on a combination of a two-part tariff
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scheme and decreasing block rate design especially in the case of residential and

commercial consumers. The two-part tariff consists of a fixed customer charge

and variable component. The variable component follows the block rate structure

where a higher energy charge per kWh is incurred for the first few units of electric-

ity consumed within a certain range and a lower price for subsequent consumption

blocks. As early as 2001 when the utility was privatised, an increasing block sched-

ule was in place where large residential and commercial consumers pay higher

prices. Also, a cross-subsidy in the form of a concessional rate currently exists

with residential consumers of up to 100 kWh per month paying a much lower

price than those who consume above that limit.10 Following from the argument

of Woodland (1993), the two-part tariff structure used in Jamaica also implies that

the average electricity price is a function of consumption. These issues highlight

distinct differences in the average and marginal price among different users and

across time, and the potential for biased coefficient estimates with block rate

pricing structures.

In theory, consumer decisions are made at the margin and the correct price to

use in the electricity demand equation is marginal price and not average price. Fur-

thermore, consumption decisions are usually influenced by expected prices rather

than the average price which is ex-post observed. However, the computation of

marginal prices is infeasible for a number of reasons. Firstly, estimating a marginal

price for each year requires detailed knowledge of the individual consumer total

electricity bill and units of electricity consumed which is unavailable. Secondly,

consumers face different price schedules throughout the year and not a constant

marginal price. Despite these issues, some studies (for example, Halvorsen (1975))

have estimated marginal prices. However, Reiss and White (2005) point out that

mis-measurement of the marginal price introduces measurement bias, which re-

sults in the price elasticity coefficient being biased towards zero and more inelastic

than it actually is. Furthermore, Halvorsen (1975) shows that price elasticities

of demand are similar in log-linear models when marginal or average price is

used, while Ito (2014) finds that consumers respond to average prices. Despite

the many studies arguing for and against the marginal or average price, I use the

less ideal measure of average price as it is the only price measure available in the

Jamaican context. Therefore, the average unit price of electricity is calculated as

total revenue attributable to each customer class divided by their respective sales

volume.

10The provision of a concessional rate for residential consumers is explicitly outlined in the 2001
and 2016 Jamaica Public Service Electricity Licence.
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5 Empirical Results and Discussion

Table 3 displays the OLS estimates for Equation 1. Panel A shows that naive esti-

mation of the baseline model with only price and income as explanatory variables

produces price coefficients that generally have incorrect signs and low explanatory

power.11 Additionally, the income coefficients are large and highly statistically

significant except at the aggregate level where price was marginally significantly

different from zero. The suspicion is that estimation of Equation 1 results in sub-

stantially biased electricity demand elasticities because important variables such

as urban population share, population, and measures of infrastructure quality are

omitted from the specification.12

Panel B shows that controlling for an omitted variable such as urban population

share produces estimates that differ considerably from the baseline model. The

extended model has an exceptionally good fit, as measured by the adjusted R2,

between 0.93 and 0.99.13 Furthermore, all coefficients have proper signs with the

dummy variable being the only statistically insignificant variable in the case of

the commercial sector. The test for cointegration on the static regression using the

residuals-based approach shows that the spurious regression problem does not

apply and there exists a long-run relationship among the variables for each sector.

The coefficient for urban population share is highly significant in all sectors, but is

unusually large and may be picking up the effects of time-related factors such as

the diffusion of electricity-using devices. The estimates show that a one percentage

point increase in urban population share leads to an approximate 10% increase

in electricity use annually at the aggregate level and for commercial consumers,

and by 11% and 17% for residential and industrial customers respectively, all

else being the same. Assuming, ceteris paribus, the dummy variable shows that

electricity consumption fell in 1988. These results suggest that the absence of the

urban population share from the basic model results in biased coefficients.14

Following the arguments outlined in Section 4, I report the results of the

dynamic log-linear model from Equation 2 in Table 4. This model includes the

urban population share variable and captures lagged effects that were previously

ignored. The urban population share was trend stationary while all other variables

were first-difference stationary (see Appendix B for more details). Each model

passes the tests for serial correlation, heteroscedasticity, and normality at the 5

per cent level of significance using an optimal lag length of one. A lag length

11In Appendix A.1, first-differencing the logarithms of the variables improve the results.
12As re-emphasized by De Vita and Trachanas (2016), this functions as a powerful reminder of

the common problem and substantial adverse effects of the omitted variable bias (OVB) when the
regression equation is mis-specified.

13Similar results are obtained with the dummy variable excluded.
14If a time variable is used instead of urban population share, the price coefficients remain

almost identical.
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Table 3: OLS estimates of the effect of price and income on electricity demand – static model.

Aggregate Residential Commercial Industrial

Dependent variable: Log of electricity consumption

Panel A
Price 0.32 0.30∗∗ 0.49∗∗∗ 0.85∗∗∗

(0.24) (0.13) (0.08) (0.28)
Income 1.47∗ 1.99∗∗∗ 1.78∗∗∗ 2.83∗∗∗

(0.80) (0.20) (0.10) (0.84)
1988 Dummy −0.18 0.06 0.01 −0.56

(0.38) (0.26) (0.17) (0.55)
Intercept −12.60 −20.21∗∗∗ −27.14∗∗∗ −53.75∗∗

(10.46) (2.67) (2.63) (22.17)
Adjusted R2 0.02 0.69 0.20 0.09
Panel B

Price −0.22∗∗∗ −0.42∗∗∗ −0.15∗∗∗ −0.34∗∗∗

(0.04) (0.06) (0.04) (0.10)
Income 0.91∗∗∗ 0.42∗∗∗ 0.63∗∗∗ 0.88∗∗∗

(0.13) (0.11) (0.07) (0.26)
Urbanisation 0.10∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.17∗∗∗

(0.00) (0.01) (0.01) (0.01)
1988 Dummy −0.15∗∗ −0.28∗∗ −0.03 −0.42∗∗

(0.06) (0.09) (0.05) (0.16)
Intercept −9.18∗∗∗ −3.70∗∗∗ −0.11 −10.53

(1.72) (1.30) (1.62) (6.73)
Adjusted R2 0.97 0.96 0.99 0.93
DF statistic −2.12∗∗ −2.90∗∗∗ −2.88∗∗∗ −3.39∗∗∗

Observations 45 45 45 45

Notes: Asterisks ‘***’, ‘**’, and ‘*’ denote significance at the 1%, 5%, and 10% critical levels,
respectively with standard errors given in brackets. Electricity consumption and income are in per
capita terms for the aggregate level and residential consumers. I use Dickey and Fuller (1979) (DF)
regression to test the residuals from the estimated regression under the null of a unit root with a
constant term included. If the null is rejected, cointegration exists among the unit root variables.
The critical value for the test is –1.95.
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of three was used for the residential sector to address serial correlation and

heteroscedasticity problems. The models for the commercial and industrial sector

failed the functional form specification test based on Ramsey and Schmidt (1976)

using the square of the fitted values. Therefore, the equations for these sectors

may be mis-specified on the basis that there may be non-linearities in some of

the independent variables which have not been accounted for. Compared to the

results of Panel B in Table 3, the adjusted R2 for the commercial and industrial

sectors are similar, but slightly larger for the residential and aggregate level.

I then test the ARDL bounds ‘constant only’ model for evidence in support of

cointegration. Conflicting results are observed across all three tests except for the

industrial sector for which a cointegrating relationship is confirmed for at least the

5% level of significance. For the aggregate level and the commercial sector, I find

evidence of cointegration when the FPSS and WPSS statistics are used, but not for

the tBDM statistic. The values of the FPSS and WPSS statistic fall within the critical

bounds at the 10 per cent level for the residential sector so evidence of a long-run

relationship is inconclusive15 (see Appendix B for more details on FPSS , WPSS ,

tBDM , and optimal lag length selection). Given the presence of cointegration, the

long-run coefficients are derived by normalizing on the lag level of ec in Equation

2 and are presented in Table 5.

The long-run results from Table 5 show some similarity to the estimates in

Panel B of Table 3. For instance, the urban population share coefficient is within

the same range (0.07–0.17) and highly significant. At the aggregate level, the

income elasticities of demand are about the same (0.90) while the preferred bounds

testing estimates suggest that the absolute value of the price elasticity is twice as

large though still inelastic. For the most part, the price elasticities are larger except

for the commercial sector where they were similar (–0.15). Electricity consumption

was most inelastic in this sector with a 10% increase in price causing consumption

to fall by 1.5%. In terms of magnitude, these elasticity of demand estimates are

within the bounds of previous studies in other countries. For example, Khanna

and Rao (2009) show that in a survey of approximately 53 studies, the average

value of the price elasticity of demand was between –0.11 and –1.01 in the long

run with an average value of –0.6. In contrast to Ramcharran (1990) who did

not find any significant effect, residential consumers appear to be most sensitive

to price changes (–0.82) in Jamaica. The absolute value of the long-run price

elasticity estimates in Ramcharran (1990) were also larger for the commercial

and industrial sectors suggesting that there is an upward bias in the estimated

coefficients due to the omission of the urban population share variable.

The heterogeneity in the own-price elasticity of demand estimates warrants

further discussion. The price elasticity of demand being larger for the residential

15In the search of a long-run relationship, cointegration is confirmed when higher lag orders of
4 and 5 are used.
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Table 4: OLS estimates of the ARDL model.

Aggregate Residential Commercial Industrial

Dependent variable: Log difference of electricity consumption

Panel A: Coefficients
Intercept −1.94 0.34 −0.89 −7.70*

(1.20) (0.68) (1.38) (4.06)
Electricity consumptiont−1 −0.27*** −0.35** −0.41** −0.39**

(0.09) (0.13) (0.16) (0.08)
Pricet−1 −0.11*** −0.29** −0.06 −0.10

(0.03) (0.10) (0.04) (0.06)
Incomet−1 0.24** 0.09 0.31*** 0.47***

(0.10) (0.07) (0.11) (0.17)
Urbanisationt−1 0.03** 0.03* 0.03 0.07***

(0.01) (0.02) (0.02) (0.02)
1988 Dummy −0.10*** −0.14*** −0.05 −0.17**

(0.03) (0.04) (0.04) (0.07)
∆Pricet −0.19*** −0.19*** −0.17*** −0.08

(0.03) (0.04) (0.04) (0.07)
∆Incomet 0.46*** −0.01 0.35*** 0.13

(0.13) (0.12) (0.10) (0.25)
∆Urbanisationt −0.14 −0.24** −0.22 0.15

(0.10) (0.11) (0.15) (0.27)
∆Electricity consumptiont−1 0.04 0.12 0.03 0.35**

(0.14) (0.12) (0.18) (0.14)
∆Pricet−1 0.01 0.01 0.00 0.06

(0.04) (0.08) (0.05) (0.08)
∆Incomet−1 −0.18 0.01 −0.15 −0.16

(0.16) (0.11) (0.13) (0.28)
∆Urbanisationt−1 0.03 0.01 0.07 −0.07

(0.08) (0.16) (0.13) (0.23)
∆Electricity consumptiont−2 −0.27**

(0.10)
∆Pricet−2 0.01

(0.06)
∆Incomet−2 −0.12

(0.11)
∆Urbanisationt−2 0.13

(0.14)
∆Electricity consumptiont−3 0.09

(0.12)
∆Pricet−3 0.02

(0.04)
∆Incomet−3 0.03

(0.10)
∆Urbanisationt−3 −0.11

(0.13)
Panel B: Diagnostics
R̄2 0.68 0.82 0.57 0.43
N 43 41 43 43
SC: χlbq 0.65[0.42] 0.00[0.99] 0.00[0.97] 0.60[0.44]
FF: χrr 5.12[0.16] 1.94[0.59] 23.18[0.00] 9.48[0.02]
Het:χea 0.03[0.86] 1.40[0.24] 1.16[0.28] 0.11[0.74]
Norm: χjb 2.23[0.17] 1.76[0.25] 1.22[0.41] 1.63[0.29]

Notes: Asterisks ‘***’, ‘**’, and ‘*’ denote significance at the 1%, 5%, and 10% critical levels,
respectively with standard errors in brackets. R̄2 is the adjusted squared Pearson correlation and
N is the number of observations. Standard errors are derived used the Delta method. Values in
brackets for diagnostics represent p-values. Subscripts lbq, rr, ea, and jb are Ljung-Box Q-Test for
serial correlation, Ramsey and Schmidt (1976) Reset test for functional form, Engle (1982) ARCH
test for heteroscedasticity, and Jarque and Bera (1987) test for normality, respectively.
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Table 5: Long-run elasticity of demand estimates – ARDL model.

Variables Aggregate Residential Commercial Industrial

Price −0.40∗∗∗ −0.82∗∗∗ −0.15∗ −0.25∗

(0.10) (0.12) (0.11) (0.15)
Income 0.90∗∗∗ 0.26∗ 0.77∗∗∗ 1.22∗∗∗

(0.26) (0.28) (0.15) (0.16)
Urbanisation 0.08∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.17∗∗∗

(0.02) (0.01) (0.02) (0.02)

Notes: Asterisks ‘***’, ‘**’, and ‘*’ denote significance at the 1%, 5%, and 10% critical levels,
respectively with standard errors given in brackets. Standard errors are derived using the Delta
method.

sector relative to other sectors can be largely explained by the prevalence of

electricity theft via illegal connections to the grid for this consumer segment. The

US Energy Information Administration (2016) showed that total electricity losses

in 2013 were 26% for Jamaica compared to 8% in more developed economies

like the UK. Of this total for Jamaica, 18.04% arises from theft with the rest

attributable to technical constraints in the power network (Jamaica Public Service,

2014). Most of this theft is attributed to vulnerable groups such as low-income

residential households that are confined to inner city communities and rural areas.

Illegal connections within these communities are not easily removed without the

assistance of the police due to the volatile nature of some of these communities

(Jamaica Public Service, 2014). This implies that if electricity costs represent a

large share of the consumer’s budget, an increase in price is likely to incentivise

theft if the benefits of stealing outweigh the costs of being caught. As electricity

demand is based on actual sales of electricity, a larger reduction in electricity

observed for the residential consumer segment in comparison to other sectors may

be reflective of increasing theft when prices are rising rather than increased usage

of substitute sources of energy. Industrial and commercial customers have more

inelastic demands due to greater reliance on the power network which stems from

their heavier demand loads, lower tariffs, and the need to have access to standby

electricity demand service in case on-site generating units fail.

Excluding the industrial sector, electricity consumption appears to be income-

inelastic in Jamaica. These results also differ from Ramcharran (1990) who found

that residential consumption was highly income-elastic (4.17) compared to 0.26

in this study. In fact, residential consumption was the least responsive to income

changes. Also, statistically significant income effects do emerge for the commer-

cial and industrial sectors, but Ramcharran (1990) did not find any significant

influence from these sectoral real income variables.

The results of the CUSUM and CUSUMQ tests are presented in Figures 5 and

6, respectively. The plots indicate that neither test rejects the null hypothesis

that coefficients are stable. This is evidenced by the plot of both curves being
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confined within the 5 per cent critical region. The stability of all models over the

period 1983 to 2014 at the aggregate level and for the commercial and industrial

sectors and 1993 to 2014 for the residential sector is further evidence that the

price elasticities are reliable and can be used to estimate the effects on future

demand growth.
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Figure 5: Plot of cumulative sum (CUSUM) residuals. Dashed lines represent critical bounds at
the 5 per cent level of significance.
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Figure 6: Plot of cumulative sum of squares (CUSUMQ) residuals. Dashed lines represent
critical bounds at the 5 per cent level of significance.
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6 Conclusions and Policy Implications

In this paper I have estimated the impact of the price of electricity, income, and

urban population share on electricity consumption in Jamaica at the aggregate

level and for three sectors: residential, commercial, and industrial. I used time

series data covering the period 1970 to 2014 with the bounds testing approach

to cointegration as my primary regression technique. My main empirical results

suggest that price is a significant determinant of electricity at the aggregate level

with a own-price elasticity of –0.40. The estimated price elasticities are –0.82,

–0.15, and –0.25 in the residential, commercial, and industrial sectors, respectively.

Commercial and industrial consumers are very responsive to changes in income

as the respective income elasticities of 0.77 and 1.22 suggests.

By 2030, electricity consumption in Jamaica is expected to outstrip the available

generating capacity. To meet the projected demand for electricity, the Office of

Utilities Regulation estimates that approximately 1,400 MW of new generating

capacity will need to be constructed, more than doubling existing capacity. Plans

were put in place to have 360 MW added by 2016, but due to issues related to

securing bids and financing, construction is yet to begin. In regards to these

developments, demand management policies will become much more critical.

It is natural to question the logic of slowing down the growth of electricity use.

However, aside from obtaining environmental objectives, which is not such a major

policy focus in Jamaica, probably the strongest argument is related to keeping

demand in balance with existing generating capacity in light of the difficulties

in attracting investments to expand the supply network. From a public policy

perspective, use of the price instrument to ration electricity supply would be the

least distortionary and more cost-effective especially in the case of residential

consumption. Since raising prices will disproportionately affect vulnerable groups

such as low-income households and the elderly, this should be done in a context

that considers equity implications and distributional concerns.

It is not possible to say with certainty that these estimated long-run elastici-

ties are more reliable than those in previous studies such as that conducted by

Ramcharran (1990). This is especially true in the case where the estimates are

derived using the average rather than the marginal price and is likely to have

some element of endogeneity bias. However, the longer time span examined, the

improved approach to testing the long-run relationship among variables, and the

tests for parameter constancy that confirm stability of the coefficients over time

– an a priori assumption in many of the earlier studies – give credibility to these

results. Nevertheless, one should be cautious and take these findings as being

informative rather than definitive, since other factors such as the availability of

alternative energy substitutes and technology could alter consumer responsiveness
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to price changes over time.

One such factor that could cause substantial changes in demand behaviour over

time is the increased penetration of renewable energy technology. As distributed

wind and solar energy becomes more widely used and displaces grid-supplied

electricity, consumers are likely to become more responsive to electricity price

changes in the long run. Additionally, the introduction of smart metering technol-

ogy will provide consumers with more flexibility in managing electricity demand

usage. Furthermore, the 2011 amendments to the All-Island Electricity Licence to

make provisions for the introduction of net metering and power wheeling is likely

to encourage greater investment among consumers and stimulate major changes

in their demand behaviour when those programmes become fully operational.
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Appendices

A Robustness Analysis

As noted in Section 5, I estimate the static model without the urban population

share in log-first-differences as a check against the level estimates. These estimates

are reported in Table A.1. An important first observation is that all coefficient

estimates have the correct signs, though price and income are insignificant for the

industrial sector model.

Table A.1: Log Difference Estimates of the Effect of Price and Income on Electricity Demand –
Static Model

Aggregate Residential Commercial Industrial

Dependent Variable: Log Difference of Electricity Consumption

∆Price −0.12∗∗ −0.15∗∗ −0.16∗∗∗ −0.05
(0.04) (0.06) (0.04) (0.08)

∆Income 0.61∗∗∗ 0.34∗ 0.37∗∗∗ 0.27
(0.14) (0.18) (0.11) (0.25)

1988 Dummy −0.11∗∗ −0.15∗∗ −0.07 −0.19∗∗

(0.04) (0.07) (0.04) (0.09)
Intercept 0.03∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.04∗∗

(0.01) (0.01) (0.01) (0.01)
Adjusted R2 0.43 0.15 0.42 0.05
Observations 44 44 44 44

Notes: Asterisks ’***’, ’**’, and ’*’ denote significance at the 1%, 5%, and 10% critical levels,
respectively with standard errors given in brackets. Electricity consumption and income are in per
capita terms for the aggregate level and residential consumers.

B Unit Root Tests and Lag Length Selection

I test the integrational properties of each transformed variable in the dataset using

the Augmented Dickey and Fuller (1979) test (ADF) and the Kwiatkowski et al.

(1992) test (KPSS), with a null hypothesis of unit root and stationarity, respectively.

The ADF test is based on estimating the following equation:

xt = γ
′
Dt +αxt−1 +

p∑

i=1

βi∆xt−i + εt (B.1)

where Dt is a vector of deterministic terms: constant, trend or a combination of

both. The coefficient vectors are represented by γ , α and β while p is the number

of lagged difference terms of the variable xt . The value of p is set so that the error

term εt is serially uncorrelated.
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The KPSS test on the other hand is used to assess whether the series are unit

root non-stationary. It assumes the following model:

xt = ct + δt +ut (B.2)

ct = ct−1 + ǫt (B.3)

where ut is a stationary process and ǫt is an independent and identically dis-

tributed process, i.i.d ∼ (0,σ2
ǫ ). The initial value c0 is assumed to be fixed and is

regarded as an intercept term. The test isH0 : σ
2
ǫ = 0 (the series is trend stationary),

against H1 : σ
2
ǫ > 0 (not trend stationary) where the time series xt is characterized

by a deterministic trend. If δ = 0, under the null hypothesis, xt is stationary

around a constant c0 rather than around a trend. Thus, the KPSS test serves as a

useful complement to the commonly employed ADF test since it can be used to

verify its results.

To test for unit root when there are structural changes, I run the following

regression suggested by Perron (1989):

xt = α0 +α1xt−1 +α2t +µ2du + εt (B.4)

where α0 is the intercept term, α2 is the trend coefficient, and µ2 is the coefficient

of the level break dummy du such that du = 1 for t > TB and zero otherwise.

The test is H0 : α1 = 1 (unit root with break) against H1 : α1 < 1 (broken trend

stationary). The asymptotic distribution of the t-statistic is dependent on the

location of the break measured by λ = TB/n, where TB is the break date and n is

the total sample size.

As graphical evidence highlights the presence of a trend especially in the

electricity consumption series and income series, I only consider the case where

both the constant and trend terms are included in the ADF test. The results of

the ADF, KPSS, and Perron procedures are presented in Table B.2. The ADF test

could not reject the null hypothesis of unit root for all variables in log levels

at the 5% level of significance except in the case of income for the commercial

sector which seems to be trend stationary. The differenced series showed support

for stationarity for all variables at the 5 per cent level of significance except the

urban population share variable for the commercial sector. In some cases the

KPSS test supports the results of the ADF test, but there are contradictions as

well. For example, the urban population share variable is trend stationary and

first-difference stationary based on the KPSS test but non-stationary when the

ADF test is applied. In instances like these I use the results of the KPSS test since it

is believed to be more robust to structural breaks in the series. Therefore I assume

that urban population share is I(0) since it is also stationary at the 10% level of
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significance when the ADF test is used. The results of the Perron (1989) unit root

test confirm that in the presence of a break, all variables used in this analysis are

I(1) except the urban population share which was found to be stationary in levels.

Table B.2: Results of ADF, KPSS, and Perron Unit Root Tests.

ADF KPSS Perron I(d)

Variable Levels
1st

differ-
ences

Levels
1st

differ-
ences

Levels

Aggregate
Electricity consumption −1.47 −4.67*** 0.25*** 0.15** −2.04 I(1)
Price −2.23 −3.65** 0.27*** 0.17** −2.36 I(1)
Income −3.36* −5.03*** 0.31*** 0.10 −2.03 I(1)
Urbanisation −3.31* −1.55 0.17* 0.14* −5.07*** I(0)
Residential

Electricity consumption −2.18 −4.94*** 0.24*** 0.15** −1.85 I(1)
Price −2.16 −3.87** 0.25*** 0.13* −1.96 I(1)
Income −2.92 −4.37*** 0.32*** 0.09 −2.24 I(1)
Urbanisation −3.31* −1.55 0.17* 0.14* −5.07*** I(0)
Commercial

Electricity consumption −1.21 −5.33*** 0.23*** 0.11 −2.15 I(1)
Price −2.24 −3.71** 0.27*** 0.15** −2.70 I(1)
Income −4.72*** −1.96 0.30*** 0.12* −2.09 I(1)
Urbanisation −3.31* −1.55 0.17* 0.14* −5.07*** I(0)
Industrial

Electricity consumption −2.65 −4.53*** 0.24*** 0.09 −3.09 I(1)
Price −2.53 −3.39* 0.29*** 0.18* −2.70 I(1)
Income −2.50 −4.19*** 0.21** 0.10 −2.70 I(1)
Urbanisation −3.31* −1.55 0.17* 0.14* −5.07*** I(0)

Notes: The critical values for the ADF model in levels and first differences with only a constant and
trend term included at 1%, 5%, and 10% are –4.19, –3.52, and –3.19, respectively. These values
are 0.216, 0.146, and 0.119, respectively, for the KPSS test for both levels and first differences.
Perron (1989) critical values are -4.55, -3.94, and -3.66 from Table IV.B with the location of the
structural break given by λ=0.4. Asterisks ’***’, ’**’, and ’*’ denote rejection of the null at the 1%,
5%, and 10% critical levels, respectively. Maximum lag length for the ADF and KPSS test is based
on Schwert Criterion. The optimal lag length is selected using the SBC criterion for the ADF test
while the KPSS test uses the maximum lag. All variables are in logs except urban population share
which is in percentages.

The confirmation of I(0) or I(1) variables based on the applied unit root testing

procedures allow us to apply the bounds F-test to Equation 2 , but choice of

an appropriate lag length is important since the specification assumes serially

uncorrelated errors. To determine the optimal lag length, Equation 2 is estimated

by OLS for q = 1,2,3. The maximum lag length is restricted to 3 based on the

common rule of thumb 3
√
T , and the small sample size available. As the results of

Table B.3 show, both AIC and SBC confirm a lag order of one as being appropriate

in both models to avoid residual serial correlation and sufficiently capture the

dynamics in the model.
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Table B.3: Lag order selection and cointegration results.

Sector
Lag
lengths AIC SBC SC FPSS WPSS tBDM

Aggregate 1 16.69 39.58 0.65 5.92** 23.69** −3.00
Residential 3 32.58 68.56 0.00 3.77 15.10 −2.69
Commercial 1 17.01 39.91 0.00 4.12* 16.49* −1.96
Industrial 1 17.71 40.61 0.60 5.84** 23.34** −4.88***

Notes: Optimal lag length is chosen from a maximum lag length of 3
√
T and SC is the serial

correlation statistic. FPSS and WPSS are the respective modified F-test and Wald test proposed by
Pesaran et al. (2001) while tBDM is based on the Banerjee et al. (1998) t-test procedure. The pairs
of critical values for FPSS at 1%, 5%, and 10% are 4.98–6.42, 3.54–4.73, and 2.89–3.98 respectively,
with k = 3 independent variables. The critical values for WPSS are 19.92–25.68, 14.16–18.92, and
11.56–15.92 while the values for tBDM are -2.57—3.46, -2.86—3.78, and -3.43—4.37, respectively.
Critical values for FPSS are from Case III of Narayan (2005) while those for WPSS follow from the
calculation outlined in Pesaran et al. (2001). Critical values for tBDM are taken from Table CII (iii)
of Pesaran et al. (2001).

C Deriving long-run parameters usingDeltamethod

The Delta method is more common and simpler than the Bewley (1979) regression

approach. In terms of the Bewley (1979) method, if G is a transformation function

and the random variable X has mean µ, G(X) can be approximated by G(X) =

G(µ) + (X −µ)G
′
(µ) where G

′
is a vector of partial derivatives of G(X). Therefore

the variance of G(X) is given by Var(G(X)) = G
′
(µ)Var(X)[G

′
(µ)]

′
where Cov(X) is

the variance-covariance matrix of X.
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Highlights 

• Long-run price and income elasticities of electricity demand are estimated for                                                                                

residential, commercial, and industrial consumers in Jamaica. 

• Residential and industrial consumers are found to be more responsive to price 

changes. 

• Use of the price instrument would be more successful in slowing demand 

growth in the residential and industrial sectors. 


