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Abstract 

The effect of F and Cl on trace element recycling during subduction-related sediment 

melting has been investigated by performing piston-cylinder experiments with a hydrous 

experimental pelite starting material (EPSM) with variable Cl (~0, 500, 1000, 2000, or 3000 

ppm) and F (~0, 700, or 1500 ppm) concentrations, at 2.5 GPa, 800°C. The variations of trace 

element concentrations in melt are systematically correlated with the variation of F (0.07-0.39 

wt%) and Cl (0.07-0.39 wt%) contents. Trace elements Zn, V and Pb, and major elements Fe, 

Mg and Ca, show positive correlations with each other, and also with the Cl content in melt. 

The concentrations of light and medium rare earth elements (LMREE) increase with the Cl 

content in melt, whereas both F and Cl cause a decrease in the concentrations of high field 

strength elements (HFSE, such as Nb, Ta, Zr and Hf). Trace element (REE, Y, Sr, Th, U) 

concentrations in apatite are found to increase with the mole fraction of chlorapatite (ClAp). 

The preference for ClAp is stronger for cations with higher charge (e.g., Th
4+

, U
4+

 > REE
3+

) 

and larger ionic radii (e.g., LREE > HREE).  

Trace element partition coefficients between apatite and melt show up to 4 times variation 

between experiments, e.g., DLa
Ap-melt

 = 77-281; DSm
Ap-melt

 = 176-519; DSr
Ap-melt

 = 4-12 and 

DTh,U
Ap-melt

 = 4-19. The REE partition coefficients between apatite and melt (DREE
Ap-melt

) 

display a concave pattern with the peak at Sm/Nd and a negative Eu anomaly, and are 
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significantly higher than previously reported values for partitioning experiments conducted at 

lower pressures and higher temperatures. The high values of DLREE
Ap-melt

 demonstrate the 

importance of apatite in terms of LREE partitioning during sediment melting, while 

allanite/monazite still dominates the partitioning of Th. In the absence of allanite/monazite, 

apatite-buffered melt is characterized by a significant enrichment of Th relative to La. 

Because of the contrasting behavior of LREE and HFSE in melt with the addition of Cl and F, 

the fractionation of these elements in slab-derived sediment melts will be enhanced by the 

presence of halogens.  

 

Keywords: Apatite; Chlorine; Fluorine; Melt; Partitioning; Trace element recycling 

 

1 Introduction 

Arc basalts display distinctive trace element signatures that include marked enrichment of 

Pb, large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high 

field strength elements (HFSE) and heavy rare earth elements (HREE). Many of these 

elements are not significantly fractionated from each other during mantle melting and 

subsequent differentiation. Therefore, their variable enrichment in arcs has been taken to 

reflect the addition of a subduction component (Hawkesworth et al., 1993; Stolper and 

Newman, 1994). The 
10

Be/Be ratio, Nd, Sr, Pb isotopic compositions of arc magmas 

(Hawkesworth et al., 1993) and correlations between the chemical characteristics of 

subducted sediment and arc volcanics (Plank and Langmuir, 1993), all provide definitive 

evidence of a sediment contribution to arc volcanism. There is increasing evidence that the 

aqueous fluids formed by dehydration of subducted slab are dilute in both major and trace 

elements (Green and Adam, 2003; Kessel et al., 2005; Manning, 2004; Spandler et al., 2007), 

therefore sediment melt may act as the primary agent for transporting incompatible elements 

from the slab to the mantle wedge (Hermann and Rubatto, 2009; Hermann and Spandler, 

2008; Klimm et al., 2008; Plank et al., 2009).  
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A considerable number of experimental studies have investigated sediment melting at 

subduction zone conditions (Auzanneau et al., 2006; Hermann and Rubatto, 2009; Hermann 

and Spandler, 2008; Li and Hermann, 2015; Mann and Schmidt, 2015; Nichols et al., 1994; 

Schmidt, 2015; Schmidt et al., 2004; Skora and Blundy, 2010; Skora et al., 2015; Spandler et 

al., 2010; Thomsen and Schmidt, 2008; Tsuno and Dasgupta, 2012, 2011). However, only a 

few previous studies (Li and Hermann, 2017, 2015; Nichols et al., 1994) involved sediment 

compositions containing F and Cl. The addition of F and Cl has been shown to enhance trace 

element partitioning into aqueous fluids (Antignano and Manning, 2008; Bali et al., 2012, 

2011; Bernini et al., 2013; Brenan et al., 1995; Keppler, 1996; Rapp et al., 2010; Schmidt et 

al., 2007; Tanis et al., 2016; Tropper et al., 2011, 2013; Tsay et al., 2017, 2014). However, to 

date, there have been no experimental investigations into the F and Cl effect on trace element 

uptake in sediment melt.  

To address this question, we have examined the trace element compositions of melt 

produced by F, Cl-doped sediment melting at fixed PT conditions of 2.5 GPa, 800°C. We also 

report the F and Cl effect on both trace element compositions of apatite and the resultant 

partition coefficients between apatite and melt. Implications in regard to the role of apatite 

during trace element recycling within subduction zones are also discussed. Apatite has been 

recognized as the major host for Phosphorous; however, discussions regarding LREE and Th 

recycling have focused primarily on the role of monazite (Hermann and Rubatto, 2009; Plank, 

2005; Skora and Blundy, 2012; Stepanov et al., 2012) and allanite (Hermann and Rubatto, 

2009; Hermann, 2002; Klimm et al., 2008). Apatite can also contain a significant amount of 

LREE, moreover, it is a ubiquitous accessory mineral in subducted lithologies (e.g., Spandler 

et al., 2003), and stable over a wide range of PT conditions (up to 7.5 GPa in subduction 

zones, Konzett and Frost, 2009). Therefore, knowledge of LREE partitioning between apatite 

and fluid/melt in subduction zone settings provides additional constraints on LREE recycling. 

 

2 Methods 
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The set of experiments selected for this study has been previously reported in Li and 

Hermann (2017, 2015), in regards to F and Cl partitioning between apatite and melt. F, Cl and 

major element compositions for melt and apatite are listed in Appendix Tables A.1 and A.2 

for easy reference. For details of major element analytical methods, please refer to the two 

publications mentioned above, whereas the experimental, analytical and theoretical methods 

outlined below focus primarily on the study of trace elements in melt and apatite. 

 

2.1 Starting material 

A synthetic experimental pelite starting material (EPSM, Table 1), which has a 

composition similar to both the average composition of “Global Subducting Sediment” 

(GLOSS, Plank and Langmuir, 1998) and upper continental crust (Rudnick and Gao, 2003), 

was used to produce sediment melts at 2.5 GPa, 800°C. The staring compositions (EPSM-1-

10, Table 2) have the same major element and H2O contents, but variable Cl (~0, 500, 1000, 

2000, or 3000 ppm) and F (~0, 700, or 1500 ppm) concentrations. The lower end of the bulk 

Cl range (~1.6% NaCleq for EPSM-4, 6) is comparable to the salinity of fluid produced by 

high-pressure antigorite breakdown (0.4-2 wt% NaCleq, Scambelluri et al., 2004), while 

lower bulk F contents (~700 ppm) are similar to those of the upper continental crust (e.g., 557 

ppm, Rudnick and Gao, 2003). The high end for bulk Cl (~6.4% NaCleq for EPSM-8) is well 

within the range reported for arc magmas, e.g., 1-10% NaCleq (Wallace, 2005). 

The “sol-gel” method was used to produce a trace element-doped SiO2 gel by mixing trace 

elements in the form of nitrate solutions into tetraethyl orthosilicate [Si(C2H5O)4]. The SiO2 

gel was then combined with reagent grade oxides, carbonates and phosphates, and the mixture 

was devolatilized at 1000°C. F, Cl and H2O-bearing intermediate starting compositions were 

prepared by adding synthetic fayalite, Al(OH)3, NaCl and CaF2 to the sintered mixture as the 

source of Fe, H2O, Cl and F, respectively. EPSM-1-10 with variable F and Cl contents, were 

produced by blending F, Cl and H2O-bearing intermediate starting compositions at various 

ratios. The actual trace element concentrations in EPSM were determined by analyzing a 
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sintered mixture prepared for one of the intermediate starting compositions. This sintered 

mixture does not contain Al, Fe or volatiles and has a SiO2 content of 81.4 wt%. It was fused 

at 1500°C in a box furnace for a few minutes and quenched to glass, then analyzed for trace 

element contents by LA-ICPMS. As trace elements were added to the silica gel, the ratio of 

trace element concentration to SiO2 content is constant among all starting compositions. The 

trace element compositions of EPSM were subsequently calculated based on the SiO2 content 

of 64 wt% (Table 1). The resultant bulk Pb content (18±9.7 ppm) is significantly lower than 

expected, which may be due to Pb loss during the fusion process. The actual bulk Pb content 

is estimated to be 50±10 ppm based on the Pb concentrations in melt and the assumption that 

Pb and Sr have similar incompatibility. 

 

2.2 Experimental techniques 

All experiments were performed using a piston-cylinder apparatus employing a 1.27 cm 

bore pressure vessel. The experimental assembly was comprised of a 2.3 mm diameter gold 

capsule held within an MgO sleeve, followed by a graphite heater, salt sleeve and an outer 

Teflon film. Such an experimental assembly has an intrinsic oxygen fugacity close to the Ni-

NiO buffer. Previous experiments using the same assembly at similar PT conditions 

(Hermann and Spandler, 2008; Rubatto and Hermann, 2007) have demonstrated that less than 

5% of total Fe in garnet is Fe
3+

 (based on stoichiometry analysis), i.e., >90% of the bulk Fe 

remains as Fe
2+

. As such, we anticipate that the dominant oxidation states for Ce and U are 

Ce
3+

 and U
4+

, respectively, and Eu occurs as both Eu
2+

 and Eu
3+

. Calculations using the model 

of Kress and Carmichael (1991) result in an estimate of Fe
3+

/Fe
2+

 ≈0.2 for melt compositions 

in this study. Temperatures were monitored using type-B thermocouples (Pt94Rh6/Pt70Rh30) 

providing an accuracy of ±10°C. Pressures were converted directly from load and are accurate 

to 0.1 GPa. Rapid quenching was performed by cutting power to the experiments. At PT 

conditions of 2.5 GPa and 800°C, melting of a hydrous EPSM composition with ~7 wt% H2O 

produces a high melt fraction of ~50%, with melt quenching into bubble-free glasses (Fig. 1).  
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2.3 Analytical techniques 

The trace element composition of melt was determined by LA-ICPMS analysis at the 

Australian National University, with a pulsed 193 nm ArF Excimer laser (50 mJ output 

energy at a repetition rate of 5 Hz) (Eggins et al., 1998) coupled to an Agilent 7500 

quadrupole ICP-MS. For each time-resolved analysis, we acquired 20s of background (laser 

off) and 40s of sample signal (laser on). To correct for instrumental drift, standards were 

analyzed before and after every 10-12 data points. A synthetic glass (NIST 610) was used for 

external calibration with reference values taken from Pearce et al. (1997). A BCR-2G glass 

was used as the secondary standard, with the measured compositions given in Table 2 along 

with reference values from Jochum and Nohl (2008). The SiO2 content of melt determined 

with SEM EDS analysis was used as an internal standard to correct for the difference in 

ablation efficiency between the external standard and the sample. 

An average of 10-12 data points were collected for each sample, and were closely 

monitored for contamination from mineral phases, in particular, accessory rutile and apatite 

with grain sizes of 1-5 µm (Fig. 1). Trace element analyses for melt reported in Table 2 are 

the averages of data points showing no signs of contamination. Since direct LA-ICPMS 

analysis of apatite is impractical due to its small grain size, the trace element compositions in 

apatite were derived from mixed analyses of melt and apatite. The concentrations of REE, Y, 

Th, U and Sr from analyses with various melt and apatite mixing ratios were plotted against 

the P concentration. Linear correlations were established with the slope representing the ratio 

between the given trace element and P content in apatite. Trace element concentrations in 

apatite were then calculated based on these ratios and the P content in apatite (17.5 wt%). 

Examples of this regression method are given in Fig. 2. This method has been previously 

developed, tested and successfully applied to derive trace element compositions for zircon 

(Rubatto and Hermann, 2007) and monazite (Stepanov et al., 2012) and is applicable to 

elements that are moderately to highly compatible in apatite. For REE, Y, Th and U, only 
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regressed values with R
2
 higher than 0.70 are reported; while the cut-off for Sr was set at 

R
2
>0.60. 

 

2.4 Theoretical analysis 

The aim of this study is to isolate the F and Cl effect on trace element concentrations in 

melt, from other controlling factors, e.g., the degree of melting, mineral fraction and 

variations in mineral composition. To illustrate, a mass balance equation based on the 

partition coefficient of trace element i, Di
min-melt

 can be written as: 

min-melt melt melt bulk

min melti i i iD C X C X C                                                 (1) 

where Ci
melt

 is the concentration of trace element i in melt, Ci
bulk

 is the bulk content of i, 

Xmin and Xmelt are the mass fractions of mineral and melt, respectively. Expressions for Ci
melt

 

and normalized concentration (Ci
melt

/ Ci
bulk

) can be derived from equation (1): 

bulk
melt

min-melt

min melt

i
i

i

C
C

D X X


 
                                                       (2) 

melt

bulk min-melt

min melt

1i

i i

C

C D X X


 
                                                       (3) 

The F and Cl effects on trace element i in mineral and melt, are reflected in the variation 

of activity coefficients for the corresponding i component in the mineral and melt phase, 

which then results in the variation of Di
min-melt

. For highly incompatible elements (e.g., Sr and 

Cs), the values of Di
min-melt

 are small in comparison to the value of Xmelt, therefore Xmelt is the 

dominant controlling factor. For highly compatible elements, i.e., Di
min-melt

>> Xmelt, Xmelt has 

less importance; concentrations of these elements in melt are determined by the variation of 

Di
min-melt

. For anhydrous mineral phases, e.g., rutile (the major host for Nb, Ta), zircon (the 

major host for Zr, Hf) and garnet (the major host for HREE), there is unlikely to be any direct 

F and Cl effect. Therefore the variations of HREE and HFSE concentrations in melt reflect 
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the F and Cl effect on melt composition. As F and Cl represent major constituents in apatite, 

and we have observed an increase of LREE concentrations in apatite with the mole fraction of 

ClAp (see section 3.3 for details), the F and Cl effect on LREE in apatite must be taken into 

account when interpreting the variation of LREE contents in melt. 

 

3 Results 

3.1 Phase relations 

All experimental runs produced a major mineral assemblage composed of garnet, phengite, 

quartz, and minor kyanite (Fig. 1a). Additionally, minor amounts of biotite were observed in 

some F-bearing experiments. Accessory phases, apatite, rutile and zircon were found in all 

experimental charges (Fig. 1). The presence of allanite was not apparent during the initial 

BSE imaging study, however trace amounts of allanite were detected as inclusions during 

LA-ICPMS analysis of quenched melt in the majority of the experiments. Note that the search 

for allanite using this method was not exhaustive. Normalized anhydrous melt compositions 

are granitic with near to constant SiO2 contents (73.8 to 75 wt%), Si/Al (4.2-4.5) and 

Na+K/Al (0.70-0.84) molar ratios (Table A.1). The H2O content in melt is buffered by the 

residual mineral assemblage, and remains constant at fixed PT conditions, with an estimated 

value of 11-12 wt% based on mass balance calculations. Melt and mineral phase abundances 

(estimated from mass balance) are listed in Appendix Table A.3 for easy reference. 

This set of experiments was designed to vary only bulk F and Cl contents, which results in 

the variation of F and Cl contents in melt and hydrous mineral phases. However, due to 

experimental variability, there was also a slight variation in melt fraction (48-62%), and a 

significant variation in the mass fraction of mica (5-15%). Cl and F contents in apatite vary in 

the ranges 0.33-2.67 wt% and 1.57-2.49 wt%, respectively; corresponding to molar fractions 

of ClAp and FAp in the ranges 0.048-0.401 and 0.42-0.67, respectively. By comparison, Cl 

and F contents in phengite (0.016-0.101 wt% Cl and 0.04-0.22 wt% F) and Biotite (0.10-0.23 
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wt% Cl and 0.30-0.60 wt% F) are significantly lower; thus the F and Cl effect on trace 

element concentrations in phengite and biotite was not investigated. 

 

3.2 Variation of trace element compositions in melt 

Melt trace element compositions are listed in Table 2, with normalized values (to the 

starting composition) plotted according to their incompatibility (Sun and McDonough, 1989) 

in Fig. 3. The melt composition of experiment C1846 from Hermann and Rubatto (2009), 

conducted at 2.5 GPa, 800°C with a Cl, F-free EPSM, is also plotted for comparison. All of 

the melt compositions show a consistent trace element pattern with enrichment of LILE, Pb, 

Th, U and LREE, positive Zr and Hf anomalies, and depleted HREE concentrations (Fig. 3). 

The most incompatible element observed in melt is Cs, with a normalized concentration 

CsN=2 (CsN=Csmelt/CsEPSM).  

In general, trace element concentrations in melt show up to 2 times variation between 

experiments (Table 2, Fig. 4-6). In order to separate the F effect from the effect of Cl, trace 

element concentrations are plotted against the Cl content in melt in three data groups based on 

the bulk Cl and F contents: “Cl”, “Cl+700ppmF” and “Cl+1500ppmF” (Fig. 4). As F in melt 

is proportional to the bulk F content, the melt compositions within each group have 

approximately the same F contents (Li and Hermann, 2017). The F effect can then be derived 

by comparing data points from the three different groups. As shown in Fig. 4, there is no 

discernible F effect on all but HFSE (Nb plotted as an example). Based on the different trends 

of variation with melt Cl/F content, or melt/mica mass fraction, eight groups of elements can 

be distinguished, with Cs, Ba, Fe, Ce, Dy, Ti, P and Nb plotted as examples. The 

concentrations of Li, Be, Sr and Cs are negatively correlated with the melt fraction (Fig. 4a). 

The concentrations of Rb and Ba show negative correlations with the mass fraction of mica 

(phengite+biotite) (Fig. 4b, A.1; Appendix A). The concentrations of Zn, V and Pb in melt are 

positively correlated with major elements Fe, Ca and Mg (Fig. A.2). An increase in 

concentration is observed for Zn, V, Pb, Fe, Ca and Mg with the increase of Cl content in 
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melt (Fig. 4c). The concentrations of light and medium rare earth elements (LMREE) also 

increase with the Cl content in melt (Fig. 4d, 5b). The concentrations of HREE and Y appear 

to first increase then decrease with increasing Cl content in melt (Fig. 4e, 5c). Sc and Mn 

show similar trends of variation as those observed for HREE (Fig. 5c). While the Ti content 

in melt stays constant, an increase in concentration is observed for P with increasing Cl 

content (Fig. 4f, g). Both Cl and F cause a decrease in the HFSE (Nb, Ta, Zr, Hf) 

concentrations in melt (Fig. 4h). Therefore, with the addition of F+Cl, the concentrations of 

HFSE show similar decreasing trends, with up to 2 times variation for Nb and Ta, and up to 

20% variation for Zr and Hf (Fig. 6). 

The melt composition of exp. C1846 has a LREE pattern (normalized to the starting 

compositions, Fig. 5a) which is mostly flat, followed by a decrease for medium rare earth 

elements (MREE), while the melt compositions of our experiments all have a steeper 

decreasing trend from La to Gd with a positive Eu anomaly. Such a difference suggests that, 

for our experiments, the melt concentrations of LMREE are controlled by the partitioning 

between apatite and melt, rather than the partitioning between allanite and melt, as is the case 

for exp. C1846. The steeper decreasing trend from LREE towards MREE can be explained by 

the affinity apatite has for MREE relative to LREE. This is commonly seen as a concave 

pattern in plots of apatite trace element compositions (e,g., Spandler et al., 2003) or apatite-

melt partition coefficients (e.g., Watson and Green, 1981; Prowatke and Klemme, 2006). The 

effect of apatite composition on LMREE concentrations in melt can be demonstrated by the 

anomalous data point from exp. C3922 in Fig. 4d. Apatite from exp. C3922 has the highest 

mole fraction of ClAp and the highest Ce content (Table 3), which results in an abnormally 

low Ce concentration in melt. This can be understood from a simple mass balance point of 

view, or with the help of equation (2), i.e., higher Ce content in apatite means higher DCe
Ap-melt

 

and therefore lower Ce concentration in melt. As Cl has a positive effect on Ce content in 

apatite (see section 3.3 for details), which translates to a negative effect on Ce content in melt, 

the positive correlation between Ce and Cl in melt shown in Fig. 4d must be intrinsic. 
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With the exceptions of exp. C3922 and C3955, melt compositions have uniform ThN/UN 

and ThN/LaN ratios, with average values of 0.6±0.1 and 1.6±0.2, respectively (Table 2). These 

are also similar to values for the allanite-buffered melt of exp. C1846 (Fig. 7a, b). As apatite 

contains more U than Th, and more La than Th (see section 3.3 for details), it is apparent that 

allanite is the dominant control for Th and U partitioning in all but two experiments (exp. 

C3922 and C3955). The higher ThN/UN and ThN/LaN ratios for the melt of exp. C3955 suggest 

that apatite also plays an important role in the Th and U partitioning of exp. C3955, while the 

contribution of apatite is even greater, possibly dominant, for the Th and U partitioning of exp. 

C3922. In contrast, the SmN/LaN for all experiments is distinctively lower than that for the 

melt of exp. C1846 (Fig. 7c), demonstrating the apatite control on LMREE partitioning. The 

role of apatite in terms of Th, U and LMREE partitioning will be discussed further in section 

4.5. 

The contrasting behaviors of LMREE, HREE and HFSE in response to varying Cl content 

in melt can be further demonstrated with elemental ratios, such as CeN/NbN, CeN/YN and 

ZrN/NbN. The CeN/NbN ratio for melt displays a positive correlation with the Cl content in 

melt, with a 3 times increase over the investigated Cl range (Fig. 7d). The CeN/YN ratio also 

increases with the Cl content in melt as shown in Fig. 7e; with the three anomalous data 

points below the trend inherited from the LREE and HREE variations (Fig. 4d, e). The 

ZrN/NbN ratio displays an increasing trend with the Cl content in melt, with values falling in 

the range 1.6 to 2.5 (Fig. 7f). 

 

3.3 Variation of trace element compositions in apatite 

The regression method used to derive trace element compositions for apatite proved 

effective, with the best correlations for LREE (R
2
>0.98), less so for HREE (R

2
=0.78-0.98), 

while for some experiments, Th and U were not constrained. Such a difference is mainly due 

to the fact that LREE are present in apatite at several thousand ppm, whereas the 

concentrations of HREE range from 100 to 300 ppm (Table 3), and Th and U in apatite were 
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only constrained with confidence for concentrations ~5 times higher than their contents in 

melt (12-40 ppm). Calculated with a mass fraction of 2%, apatite contains ~19% of the bulk 

Sr, > 80% of the bulk La, Ce, Pr and Nd, ~60% of the bulk Sm, ~40% of the bulk Eu and Gd, 

~25% of the bulk Dy, <10% of the bulk Y, Er, Yb and Lu, ~13% of the bulk Th, and ~23% of 

the bulk U.  

It appears that trace element concentrations in apatite are positively correlated with the 

mole fraction of chlorapatite (XCl
Ap

) (Fig. 8). Such a variation is most prominent for Th and U 

(Fig. 8a), with a 4-5 times increase from XCl
Ap

 = 0 (exp. C3927) to XCl
Ap

 = 0.4 (exp. C3922). 

The positive correlation with XCl
Ap

 is also apparent for Sr and LREE, but less so for HREE 

(Fig. 8b, c). When we calculate the relative increase of trace element concentrations in apatite 

from XCl
Ap

 = 0 (exp. C3927) to XCl
Ap

 = 0.4 (exp. C3922), a systematic pattern emerges (Fig. 

8d). The degree of increase with XCl
Ap

 is stronger for LREE than HREE, appearing to be 

positively correlated with ionic radii. Similar trends may also exist for 4+ and 2+ cations, 

respectively. It is also apparent that the relative increase in concentration with XCl
Ap

 is higher 

for cations with higher charge, e.g., Th
4+

, U
4+ 

> REE
3+

. In contrast to the uniformity observed 

in the ratios of ThN/UN, ThN/LaN and SmN/LaN for melt, these ratios for apatite show 

pronounced variations (Fig. 9), which reflect the relative sensitivity of these elements to the 

increase of XCl
Ap

, i.e., Th>U, Th>La and Sm<La. 

 

3.4 Trace element partitioning between apatite and melt 

The LMREE partition coefficients between apatite and melt (DLMREE
Ap-melt

) show a 

concave pattern with the highest value for Sm/Nd and a negative Eu anomaly (Fig. 10). For 

experiments C3269, C3922 and D1218, the HREE partition coefficients (DHREE
Ap-melt

) are well 

constrained and extend the concave pattern shown by LMREE partition coefficients. For all 

other experiments DHREE
Ap-melt

 values have higher uncertainties, which may have contributed 

to the dubious nature of their flat trend (Fig. 10). Partition coefficients for LMREE show up 

to 4 times variation between experiments, e.g., DLa
Ap-melt

 = 77-281 and DSm
Ap-melt

 = 176-519 
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(Table 4). Partition coefficients for Sr vary from 4 to 12. The values for Th and U partition 

coefficients are slightly higher, falling in the range 4-19 (Table 4). The variations of trace 

element partition coefficients between apatite and melt reflect both the variation of melt 

composition with Cl (Fig. 11a) and the variation of apatite composition with XCl
Ap

 (Fig. 11b, 

c). 

Partition coefficients for REE (excluding Eu) and Y were fitted to the lattice strain model 

of Blundy and Wood (1994): 

   
0 2 3

0 0

0

1
4

2 3
exp

A i i

i

r
N E r r r r

D D
RT


  
     

  
 
  

                             (4) 

where NA is the Avogadro constant, R is the gas constant, T is in Kelvins, E is the Young’s 

modulus of the site, r0 is the optimum radius of the lattice site, ri is the radius of the substitute 

cation, and D0 describes the strain-free cation substitution (ri = r0). REE can substitute into 

both Ca1 (Ca1O9 polyhedra) and Ca2 (Ca2O6X, X=F, Cl, OH) sites in apatite. The review by 

Pan and Fleet (2002) summarized that LREE prefer the Ca2 site of FAp and OHAp with the 

site occupancy ratio (REE-Ca2/REE-Ca1) decreasing monotonically through the 4f series. 

Fleet et al. (2000) reported that REE in ClAp preferentially occupy the Ca1 site with the 

exception of Nd, which has a marginal preference for the Ca2 site. Considering the 

foreseeable complexity of REE site occupancy in F-Cl-OH ternary apatite solutions, fitting 

with the lattice strain model was performed with both VII and IX coordinated ionic radii for 

REE respectively. For each experiment, separate regressions were performed with partition 

coefficients for 
1
LREE (La-Sm/Gd), HREE (Sm/Gd-Lu) and all REE, respectively. The fitting 

with HREE data was not as successful as that for LREE, with parameters returned for only 

exp. D1218. This is not surprising considering the large relative errors for HREE partition 

                                                           
1
 In regards to fitting of the lattice strain model, “LREE” and “HREE” refer to the data used for 

regression; where “LREE” represents LREE±MREE (Sm, Gd). 
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coefficients, and thus those involving particularly large uncertainties were omitted in the 

fitting of all REE data, in order to obtain meaningful parameters. 

Fitting with IX coordinated ionic radii gave slightly lower values for Young’s modulus (E) 

compared to fitting with VII coordinated ionic radii, but in general, the results were very 

similar. The obtained E values from fitting LREE data fall within the range 134-256 GPa, 

while fitting all REE returned E values in the range 140-411 GPa (Table 5). As shown by the 

fitting of partition coefficients for exp. D1218 (Fig. 12a, b), the regressed E value from fitting 

LREE is lower than that from fitting HREE data. The E value from fitting all REE is likely to 

be the weighted mean of the values from fitting LREE and HREE data (Fig. 12c).  A gentle 

increase with XCl
Ap

 can be seen for E values derived from fitting LREE data. Judging from the 

relationship between E values from fitting all REE and XCl
Ap

, a similar trend may well exist 

for E values from fitting HREE (Fig. 12c). One of the presumptions of the lattice strain model 

is that the elements in question have identical activity coefficients in melt (Wood and Blundy, 

2014). This may hold true for LREE and HREE respectively, but activity coefficients may 

vary between the two groups. For example, LREE and HREE show different behavior with 

the Cl content in melt. Nevertheless, fitting with all REE data proved to be informative, as it 

provided a good indication of the range of E values from fitting HREE. Considering the 

limited success in fitting HREE, the parameters from fitting all REE will be particularly 

useful when predicting HREE partition coefficients based on the lattice strain model. 

 

4 Discussion 

4.1 Comparison with reported solubility data 

The concentrations of P, Ti and Zr in melt are buffered by the accessory phases apatite, 

rutile and zircon, respectively, i.e., the concentrations of these elements represent the 

solubility of the corresponding accessory phase. The range of P concentrations in melt (718-

1064 ppm) is comparable to the apatite solubility (0.04-0.28 wt%) for felsic magma at 0.1 

GPa, 750-900°C reported by Watson and Capobianco (1981). Ti contents in melt (732-866 
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ppm) are comparable to previously reported values for rutile-buffered melt at 2.5 GPa, 800°C, 

e.g., 948±18 ppm for exp. C1846 from Hermann and Rubatto (2009); and 882±270 ppm for 

exp. 16 from Klimm et al. (2008). The rutile solubility equation from Hayden and Watson 

(2007) also predicts ~1000 ppm Ti for felsic melt in equilibrium with rutile at 800°C. Zr 

contents in melt (71-89 ppm) are comparable to the reported values for exp. C1846 of 

Hermann and Rubatto (2009) (75±2.1 ppm) and exp. 16 of Klimm et al. (2008) (76±7 ppm). 

Zr contents in melt are also similar to reported values for zircon-buffered granitic melts in 

studies conducted under differing pressure conditions, for example, 82±2 and 92±1 ppm for 

the two experiments at 2 GPa, 800°C (exp. 1743 and exp. 1587A) from Rubatto and Hermann 

(2007); and 81±6 ppm for exp. LCA2B of 3 GPa, 800°C from Carter et al. (2015). 

Keppler (1993) reported an increase in Ti, Zr, Nb and Ta solubility in haplogranitic melt 

with the addition of F at 0.2 GPa and 800°C. For example, the TiO2 content in melt increased 

from 0.26 wt% at zero F to 0.47 wt% at 6 wt% F. The positive effect of F on HFSE solubility 

can be explained by an increase in depolymerization of melt structure over the F 

compositional range 0-6 wt%. However, for the low F concentrations investigated in this 

study, such an effect on HFSE is difficult to detect. Keppler (1993) also observed ~2 times 

variation for REE phosphate solubility over the 0-6 wt% F range, however with limited data 

points available, no clear positive or negative effect was determined. It is interesting to note 

that Keppler (1993) also observed an initial increase followed by a decrease in Yb 

concentration with increasing F content in melt.  

 

4.2 Understanding the F and Cl effect on trace element concentrations in melt 

The effect of F and Cl on trace element concentrations in melt arises from the 

depolymerization induced by F and Cl on melt structure and the complexing of F and Cl with 

trace elements. NMR spectroscopic studies have indicated that F forms complexes with Al, 

Na, and Si in aluminosilicate glasses (Kohn et al., 1991; Mysen et al., 2004; Schaller et al., 

1992; Zeng and Stebbins, 2000). Cl coordination with network-modifying cations has been 
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suggested by studies using NMR (Sandland et al., 2004), IR (Chevychelov et al., 2003) and 

XANES (Evans et al., 2008). However, limited information is available regarding the 

complexation of F and Cl with trace elements in silicate melt. Pioneering XAS studies of REE 

and HFSE in silicate melt and glass at ambient conditions indicate that Zr (Farges et al., 1991), 

Th (Farges, 1991) and U (Farges et al., 1992) do not form complexes with F or Cl, but 

coordinate with oxygens from SiO2 tetrahedra. Ponader and Brown (1989a) found no 

evidence for REE-Cl complexes, whereas, F complexing with La, Gd and Yb was indicated. 

These studies also reported variations in coordination from 6-8 fold for Gd, La (Ponader and 

Brown, 1989b), Zr (Farges et al., 1991), Th (Farges, 1991) and U (Farges et al., 1992); 5-6 

fold for Yb (Ponader and Brown, 1989b); and 4-6 fold for Ti (Farges and Brown, 1997), in 

response to changes in the degree of melt polymerization within the compositional range of  

basaltic (NBO/T≈1) to rhyolitic (NBO/T≈0) melts. The F and Cl melt contents in this study 

(650-3000 ppm) are unlikely to induce the variation of melt polymerization required to 

change the coordination of trace elements in melt. Moreover, recent high pressure and 

temperature XAS studies reported uniform 6-fold coordination for Zr (Louvel et al., 2013), 

Nb (Mayanovic et al., 2007; Piilonen et al., 2006) and Ta (Mayanovic et al., 2013) in hydrous 

silicate melts, apparently independent of melt composition.  

The positive correlations between the concentrations of trace elements Zn, V, Pb and 

major network-modifiers Fe, Ca and Mg in melt, suggest that the increase in concentration for 

Zn, V and Pb with the Cl content may be explained by their complexation with Cl. Note that 

there may be a small percentage of Fe present as Fe
3+

 (see section 2.2), however, as proposed 

by Mysen and Virgo (1985), Fe
3+

 may undergo a coordination transformation from tetrahedral 

to octahedral and become a network modifier at high pressure. Therefore we are not 

distinguishing Fe
2+

 and Fe
3+

 in our current discussion. Increasing network-modifier contents 

in melt will result in an increase of non-bridging oxygens (NBO), which will further facilitate 

the accommodation of network-modifying cations. The positive Cl effect on REE contents 

may be an indirect result of the complexation of Cl with network-modifiers (e.g., Fe, Mg, Ca, 
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Zn, V and Pb). As most geochemically significant trace elements are network-modifiers, the 

depolymerization effect of F and Cl on melt structure would cause an increase of trace 

element concentrations in general. However, HFSE show a decrease in concentration with the 

F+Cl content in melt. We therefore further explore the relationships between trace element 

concentrations in melt and melt structure through Q
n
 speciation theory.  

Melt structure can be described by the speciation of silicate or aluminosilicate tetrahedra, 

i.e., Q
n
 species, where n is the number of bridging oxygens in the tetrahedra.  Five Q

n
 species, 

Q
4
, Q

3
, Q

2
, Q

1
, Q

0
, may be present in melt (Stebbins, 1987). Their relative proportions are 

functions of the degree of melt polymerization, field strength of network-modifying cations, 

Al/Al+Si (see the review by Mysen, 2004) and volatile (H2O, F and Cl, etc.) contents (Dalou 

and Mysen, 2015; Mysen, 2007). For the hydrous granitic melt compositions in this study, the 

dominant Q
n
 species are Q

4
 and Q

3
 with a small fraction of Q

2
 as a result of the high H2O 

content (~11 wt%). The Raman spectroscopic study of hydrous aluminosilicate melts at 1.5 

GPa, 1400°C by Dalou and Mysen (2015) indicated an increase of Q
3
 and Q

1
 species, and a 

decrease of Q
2
 and Q

4
 species with the addition of F and Cl in melt. It is known that non-

bridging oxygens of different Q
n
 species in melt are energetically non-equivalent, and cations 

will likely form bonds with their preferred Q
n
 species (Mysen, 2004). It is therefore likely that, 

with the addition of F and Cl in melt, trace elements with raised concentrations (LMREE, Th, 

U) form bonds with Q
3
, whereas, HFSE (Nb, Ta, Zr, Hf) with lowered concentrations 

coordinate with Q
2
. This is consistent with the current understanding that cations with higher 

field strength, form bonds with more depolymerized Q
n
 species (Stebbins, 2016). The 

behavior of HREE may be intermediate between LMREE and HFSE, due to their 

intermediate cation field strengths. Therefore, the initial increase followed by a decrease in 

HREE concentrations may be a result of HREE coordinating with both Q
2
 and Q

3 
species. A 

study of P-bearing silicate glass by multinuclear NMR and ab initio chemical shielding 

calculations (Cody et al., 2001) indicated complex P speciation in silicate glasses, including 

isolated PO4 and P2O7 complexes, and QP
n
 (n=1-4) species. The solution mechanisms 
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proposed for P involve the interaction of P2O5 with QSi
3
 species and the formation of QSi

4
 

species (Mysen and Cody, 2001). Therefore, enhanced P solubility in melt may be explained 

by an increasing proportion of QSi
3
 and a decreasing proportion of QSi

4
 with the increase of Cl 

content in melt. It is noteworthy that only a negative correlation between HFSE and F 

contents in melt was observed, while no discernible F effect was shown for other trace 

elements. This may indicate that Cl has a more pronounced effect on trace element uptake in 

melt at a similar magnitude of concentration.   

 

4.3 Comparison with Ap-melt partitioning data from previous studies 

Trace element partition coefficients between apatite and melt obtained in this study have 

higher values than those reported in previous experimental studies (Fig. 10). Detailed 

comparisons are listed below using Sm as an example. Watson and Green (1981) determined 

REE partition coefficients (La, Sm, Dy, Lu) between FAp/OHAp and melts ranging from 

basanite to granite at PT conditions of 0.75-2 GPa, 950-1120°C. The resultant DSm
Ap-melt

 

values range from 4.5 to 38, increasing with the SiO2 content in melt and decreasing with 

temperature, with the highest value 38 corresponding to Sm partitioning between F-OH 

apatite and a hydrous granitic melt at 0.75 GPa, 950°C. Prowatke and Klemme (2006) 

reported trace element partition coefficients between FAp/OHAp and H2O/F-bearing silicate 

melts at 1 GPa, 1250°C, with DSm
Ap-melt

 varying in the range 3.7-28 in response to changes in 

the degree of melt polymerization. Fleet and Pan (1997) determined DSm
Ap-melt

 between FAp 

and H2O-bearing phosphate-fluoride melts at 0.10-0.15 GPa, 700 and 800°C, with values in 

the range 3.5-8.8. REE partition coefficients between ClAp and phosphate-chloride melt are 

much lower, with reported values of 0.12 for DSm
Ap-melt

 at 0.1 GPa, 735°C by Fleet et al. 

(2000). REE partition coefficients for carbonatite melt are of the same magnitude as those for 

phosphate-chloride melt, with reported DSm
Ap-melt 

values of 0.43-0.55 at 1 GPa, 1250°C 

(Klemme and Dalpé, 2003). It is apparent that melt composition and PT conditions are the 

primary controls on D values.
 
In comparison to the partition coefficients reported previously, 
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the higher values obtained in this study (DSm
Ap-melt

=176-519) seem reasonable considering the 

low temperature (800°C) and high pressure (2.5 GPa) experimental conditions, and the 

granitic melt composition. 

It is important to isolate both the crystal-chemical control and the melt compositional 

effect when comparing the partition coefficients for ClAp, FAp and OHAp. Despite the 

prediction of LREE enrichment in ClAp by Fleet and Pan (1997), the LREE partition 

coefficients between ClAp and phosphate-chloride melt are much lower than the partition 

coefficients between FAp and phosphate-fluoride melt (Fig. 10), suggesting greater melt 

compositional control. Klemme and Dalpé (2003) did report REE partition coefficients 

between ClAp and carbonatite melt as being slightly larger than those for FAp and OHAp. 

The REE partition coefficients for F-bearing experiments reported in Prowatke and Klemme 

(2006) are 2-3 times higher than those for H2O-bearing experiments (compare exp. 43 vs 72; 

exp. 54 vs 78, respectively). However, the difference in partition coefficients for Sr is <1.5×, 

and negligible for Th and U. As shown by the correlations between apatite trace element 

concentrations and the mole fraction of ClAp, trace element uptake in apatite strongly 

depends on cation size and charge (Fig. 8). Based on the observation that the increase of REE 

partition coefficients for F-bearing experiments compared to H2O-bearing experiments is 

nearly uniform, and the consideration that FAp and OHAp have similar molar volumes, we 

suspect that apatite composition may not be a significant contributing factor to the difference 

in partition coefficients. Higher REE partition coefficients for the F-bearing experiments of 

Prowatke and Klemme (2006) may be explained solely by the lesser degree of 

depolymerization for melt compositions with 2-3 wt% F in comparison to melt compositions 

with 5 wt% H2O. 

To our knowledge, this study is the first to provide strong experimental evidence 

supporting the prediction of Fleet and Pan (1997) that ClAp favors the accommodation of 

LREE. The rarity of such observations in experimental literature can be attributed to the 

following factors. Firstly, there have been limited experimental studies on trace element 
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partitioning involving ClAp or Cl-bearing apatite. Secondly, as we have shown in this study, 

Cl has a positive effect on LREE contents in both melt and apatite. Such effects may cancel 

out and become difficult to detect in reported partition coefficients between apatite and melt. 

Thirdly, the melt compositional effect may dominate when the melt compositions are 

drastically different, e.g., phosphate-fluoride melt vs. phosphate-chloride melt. For the 

experiments of this study, REE partition coefficients between apatite and melt have such high 

values that their variations are easy to detect. Moreover, we were able to isolate both the 

crystal-chemical control and the melt compositional effect on the partition coefficients. As 

demonstrated by the ThN/UN, ThN/LaN and SmN/LaN ratios for melt in Fig. 7 and for apatite in 

Fig. 9, LMREE, Th and U display nearly uniform variations with the Cl content in melt; while 

the effect of XCl
Ap

 on trace element concentrations in apatite depends on cation size and 

charge. 

 

4.4 Fitting DREE
Ap-melt

 with the lattice strain model 

The parabola of DREE
Ap-melt 

vs. ionic radii was successfully fitted with the lattice strain 

model of Blundy and Wood (1994). This signifies that size and elasticity of the apatite 

structure has a fundamental control on the REE uptake in apatite. Regardless of the 

complexity of REE site occupancy in apatite, Nd/Sm represents the strain free substitution for 

Ca. The increasing LREE contents in apatite with XCl
Ap

 can be explained by an increase in 

size for Ca2 polyhedra with the substitution of Cl for F/OH, which facilities the 

accommodation of large LREE cations. Such enrichment of LREE in ClAp was predicted by 

Fleet and Pan (1997), based on ideal bond distance calculations. Both the bulk modulus and 

Young’s modulus are positively correlated with cation charge (Wood and Blundy, 2014); 

which may be understood as cations with higher charges are stiffer and more constrained by 

the size of the lattice site. This may explain our observation that the relative increase in 

concentration with XCl
Ap

 is higher for 4+ cations (Th, U) than for REE
3+

.   
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The REE partition coefficients between apatite and melt reported in previous experimental 

studies all show a concave pattern (Fig. 10). They were also fitted to the lattice strain model 

of Blundy and Wood (1994), following the same procedures used in this study, with the 

fitting parameters listed in Table 6. Regressed E values lie in the range 100-300 GPa, similar 

to the range of values obtained in this study. These E values are comparable to the bulk 

modulus for apatite, which has been determined to be between 90-100 GPa (Brunet et al., 

1999; Comodi et al., 2001; Matsukage et al., 2004). In particular, Comodi et al. (2001) 

reported bulk modulus values of 270±10, 100±4, and 86±3 GPa for P, Ca1 and Ca2, 

respectively. It seems that the bulk modulus of apatite is similar to that of Ca polyhedra, with 

the bulk modulus for Ca1 higher than that for Ca2. This explains our observation that the E 

values derived from fitting HREE data are higher than the E values from fitting LREE, 

considering the relative preference for HREE to substitute for Ca1 and for LREE to substitute 

for Ca2. 

Fitting with IX coordinated ionic radii gave slightly smaller E values than fitting with VII 

coordinated ionic radii, but in general the results were very similar (Table 6). The E values 

derived for experiments from Klemme and Dalpé (2003) are smaller and better constrained 

than their reported values, which were derived using VI coordinated ionic radii. Few E values 

were derived from fitting LREE or HREE data. Only exp. BS19 of Klemme and Dalpé (2003) 

and the experiment of Fleet et al. (2000) were performed with ClAp, with all other 

experiments conducted with F-OH apatite. Due to this lack of data, we were unable to derive 

a clear relationship between E values and the mole fraction of ClAp, or observe differences 

between E values derived from fitting LREE and HREE data respectively.  

 

4.5 The role of apatite in trace element recycling in subduction zones 

In this study, apatite-melt partitioning provides the dominant control on the LMREE 

concentrations in melt. The positive Eu anomaly seen in the REE diagram for melt (Fig. 5a) 

can be explained by the lower apatite-melt partition coefficient for Eu compared to Sm and 
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Gd (Fig. 10), which is likely due to Eu occurring in both 2+ and 3+ valence states. Moreover, 

when apatite is the dominant host of the LMREE budget, the coexisting melt has a different 

LMREE pattern than that of a melt buffered by allanite/monazite (Fig. 5a), e.g., lower 

SmN/LaN (Fig. 7c).  

Apatite contains >80% of the bulk LREE, but only ~13% of the bulk Th. The low ThN/LaN 

ratios in apatite (0.07-0.18, Table 3) indicate its ability to significantly fractionate Th from La 

in melt. Moreover, apatite has a preference for U over Th, with ThN/UN values of 0.5-0.7 

(Table 3); therefore an apatite-buffered melt will have Th enrichment relative to U. This is in 

clear contrast to the role of residual allanite and monazite, which were reported to incorporate 

Th in preference to U. 

The melt compositions of exp. C3922 and C3955 have higher ThN/UN and ThN/LaN ratios 

in comparison to the uniform ThN/UN (0.6±0.1) and ThN/LaN (1.6±0.2) ratios for all other 

experiments (Table 2, Fig 7a, b). Such a difference suggests that apatite also plays an 

important role in the Th and U partitioning of exp. C3922 and C3955. Such an interpretation 

is further supported by the La, Ce and Th mass balance (Table 3), where apatite contents were 

calculated, assuming melt and apatite take up the entire La, Ce and Th budget. The calculated 

La and Ce concentrations in apatite for exp. C3922 and C3955 are the closest to the regressed 

values, indicating that these elements are primarily hosted by melt and apatite. For all other 

experiments, calculated concentrations in apatite (Th in particular) are far higher than the 

regressed values from LA-ICPMS analysis. The differences in these values represent the 

portion of La, Ce and Th accommodated by allanite. It is apparent that even when apatite 

accommodates >80% of the LREE budget, allanite is still the main host for Th. Allanite-melt 

partition coefficients for Ce at 2.5 GPa, 800°C are determined to be ~2000 by Klimm et al. 

(2008), adopting this value will result in an estimate of 4-8 wt% Ce in allanite. Based on Ce 

mass balance, the mass fraction for allanite is estimated to vary in the range ~0.01% (e.g., exp. 

C3955) to ~0.1% (e.g., exp. D1222). For such small amounts of allanite, it is not surprising 

that they are difficult to detect. The low allanite fraction in exp. C3955 and C3922, i.e., 
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greater contributions from apatite in terms of Th and U partitioning, provides an explanation 

for their higher ThN/UN and ThN/LaN ratios in melt.  

It has been shown that there is no significant fractionation between Th and La during 

sediment melting in most subduction zones, indicating the dominance of monazite in terms of 

LREE and Th partitioning (Plank, 2005). However, apatite-allanite partitioning may play an 

important role during partial melting of high-Ca sediment (Plank, 2005) and oceanic crust 

(Carter et al., 2015; Klimm et al., 2008). The ratio between the Th/La of Tonga arc basalt and 

the Th/La of sediment (Plank, 2005), is identical to the ThN/LaN value (1.6±0.2) for allanite or 

apatite+allanite buffered melt compositions. To explain the higher ratio of 2.4 between 

Guatemala arc basalt and sediment (Plank, 2005), requires a greater contribution from apatite 

partitioning, as in the case of exp. C3955 with ThN/LaN=2.7. Apatite may also facilitate 

further fractionation between Th and La during arc crust differentiation, resulting in an 

elevated Th/La ratio for the bulk continental crust (Plank, 2005). 

Our study has shown that the capacity of apatite to host trace elements increases with an 

increasing mole fraction of ClAp (Fig. 8). Reports on the Cl contents in subduction-related 

apatite are scarce. Our previous study reported Cl contents of ~100 ppm for apatites from 

eclogite facies matasediments (Li and Hermann, 2015). Apatite compositions with significant 

Cl contents were obtained from UHP metamorphic rocks of the Kokchetav (up to 0.6 wt%) 

and Dora Maira massifs (up to 2.5 wt%) (Li, 2012). To assess the significance of Cl-bearing 

apatite on trace element recycling requires an inventory of halogen contents in subduction-

related apatites and further experimental studies. Current understanding of the capacity of 

saline aqueous fluids to transport LILE, LREE and U are based on partitioning experiments 

between clinopyroxene and aqueous fluids (Brenan et al., 1995; Keppler, 1996), and 

solubility studies of monazite (Tropper et al., 2011) and REE2Si2O7 (Tsay et al., 2014). Unlike 

apatite, these minerals do not change their capacity for trace element incorporation with 

addition of Cl. As apatite is a common accessory phase in all rock types present in subducted 

crust, it would be wise to include apatite in future aqueous fluid partitioning experiments. 
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4.6 The role of F and Cl in trace element recycling in subduction zones 

While residual mineral phases provide the dominant control on trace element 

characteristics in sediment melt (Hermann and Rubatto, 2009; Hermann, 2002; Klimm et al., 

2008; Skora and Blundy, 2010), we have shown in this study that F and Cl can also contribute 

to fractionation between LREE and HREE, fractionation between LREE and HFSE, and 

fractionation between Zr and Nb (Fig. 7). Rutile is the main host for Nb and Ta whereas 

zircon is the main host for Zr and Hf. As the Ti and Zr contents in EPSM are similar to the 

average values for GLOSS, the NbN, TaN, ZrN and HfN values are applicable to the GLOSS 

composition. The P2O5 content in EPSM is around 5 times that of GLOSS (Table 1), i.e., the 

mass fraction of apatite for a GLOSS composition will be only 1/5 of the value for EPSM. 

Such a significant decrease in the amount of residual apatite will result in a 2-4 times increase 

for the normalized LREE values. For example, the CeN/NbN ratios in melt have a range of 

values 1.7-3.7 after correction for apatite mass fraction, with higher values corresponding to 

the higher F+Cl content in melt. We recalculated the normalized Th, La, Ce, Pr, Nd and Sm 

concentrations in melt for exp. C3922 with a corrected apatite mass fraction for the GLOSS 

composition, using equation (3) and apatite-melt partition coefficients determined for exp. 

C3922. As shown by the comparison in Fig. 3, the ZrN and HfN positive anomaly, relative to 

SmN and NdN, becomes far less prominent. As the REE contents in experimental starting 

compositions are always higher than those of GLOSS, similar corrections to the normalized 

LREE contents in melt apply to other experimental studies involving allanite and monazite as 

the main mineral hosts for LREE. As the Cl content in melt increases, ZrN/NbN for melt varies 

in the range 1.6-2.5, higher than the ZrN/NbN value of 0.8 for the F, Cl-free exp. C1846 (Fig. 

7f). With a Zr/Nb ratio of 14.5 in GLOSS, sediment melt produced by ~50% melting of 

GLOSS at 2.5 GPa, 800°C will have a Zr/Nb ratio in the range of 23 to 36, which is 

comparable to the reported values for both MORB and arc magmas (e.g., Elliott et al., 1997). 

When modelling the partial melting of subarc mantle with the addition of a subduction 
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component, HFSE (Nb, Ta, Zr, Hf) in arc magmas have been assumed to be entirely derived 

from the mantle wedge (e.g. Portnyagin et al., 2007). However, if the subduction component 

(e.g., sediment melt) contributed to the mass balance of Zr/Nb in arc magmas, it is plausible 

to suggest Cl could be responsible for the fractionation of Zr and Nb. 

It is interesting to note that the Cl effect on element fractionation in sediment melt is 

similar to the reported enhancement of element fractionation with the addition of Cl in 

aqueous fluids (Brenan et al., 1995; Keppler, 1996; Tsay et al., 2014), which has been used as 

supporting evidence for Cl-bearing aqueous fluids as the medium for trace element recycling. 

The most recent argument put forward by Keppler (2017) is based on the positive correlations 

between element/H2O and Cl/H2O ratios for melt inclusions from Mexico and Kamchatka arc 

basalts. We have shown in this study that such an observation could arise from the positive 

correlations between trace element contents and the Cl in melt. The arguments supporting 

aqueous fluids as the dominant medium for transporting incompatible elements rely heavily 

on the enhancement of LREE solubility in saline aqueous fluids. Tropper et al. (2011) 

reported that CePO4 monazite dissolution into an H2O-NaCl fluid with XNaCl~0.1 (~26 wt% 

NaCleq) at 1 GPa, 800°C, can produce a Ce concentration of 140 ppm and H2O/Ce of 7000, 

identical to the ratio for slab melt at 800°C (Plank et al., 2009). This indicates that for 

aqueous fluid to achieve melt-like solubility and H2O/LREE ratios, it requires very high levels 

of salinity (e.g., ~26 wt% NaCleq, Tropper et al., 2011). Aqueous fluids formed during 

subducted slab dehydration have been shown to have low salinity, in many cases, below the 

salinity of seawater (~3.2% NaCleq) (Li and Hermann, 2015). For example, Tsay et al. (2017) 

reported the La contents in H2O and 1m NaCl fluid (~5.5 wt% NaCleq) at 2.5 GPa, 700°C, in 

equilibrium with allanite-bearing eclogite mineral assemblages, to be 1.53±0.7 ppm and 

0.84±0.44 ppm, respectively. The resulting H2O/LREE ratios are far too high to be consistent 

with the H2O/LREE ratios of arc lavas.  

Our experiments help to evaluate the extent to which the addition of Cl in hydrous granitic 

melts affects the usage of the H2O/Ce ratio as a slab geothermometer. The Ce content in melt 
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increased by a factor of <2 over the H2O/Cl range 25-100 (1.6-6.4 wt% NaCleq) investigated 

in this study, which is typical for arc magmas. As for the proposed slab geothermometer, the 

H2O/Ce ratio varies from 10
6
 to 10

2
 over the temperature range 600°C-1100°C (Plank et al., 

2009). Therefore, variations in the H2O/Ce ratio in response to changes in the nature of the 

fluid phase (aqueous fluid, intermediate supercritical fluid, hydrous melt) and temperature, 

are greater than the effect of Cl addition in melt. 

 

5 Conclusions 

By comparing trace element compositions of melt  from a set of experiments using an 

EPSM starting composition with variable bulk F and Cl contents, we were able to observe the 

effect of F and Cl on trace element uptake in sediment melt, notably an enrichment of LREE 

relative to HFSE. Such an effect is similar to the fractionation observed for saline aqueous 

fluids. We also observed positive correlations between trace element concentrations (LMREE, 

Sr, Th, U) in apatite and the mole fraction of ClAp, therefore providing the first experimental 

evidence to support the prediction that ClAp favors the accommodation of LREE. Because 

LMREE, Th and U display uniform variations with the Cl content in melt, while the effect of 

XCl
Ap

 on trace element concentrations in apatite depends on cation size and charge, we were 

able to isolate both the melt compositional effect and the crystal-chemical control on trace 

element partitioning. Considering such high values of DLREE
Ap-melt

 (e.g., DLa
Ap-melt

 = 77-281, 

DSm
Ap-melt

 = 176-519), the inclusion of apatite in models used to evaluate subduction recycling 

of incompatible trace elements is recommended. 
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Figure Captions 

Fig 1 Representative BSE images showing the mineral assemblage and quench textures of 2.5 

GPa, 800°C experiments. (a) Major minerals garnet, phengite, quartz, kyanite and accessory 

minerals apatite, rutile, zircon, coexist with quenched melt from exp. C3269. (b) Accessory 

phases apatite, rutile and zircon with small grain sizes of 1-5 µm, randomly distributed in 

bubble-free quenched melt from exp. C4049.  

Fig 2 Mixed analyses of melt and apatite by LA-ICPMS were used to derive the REE, Y, Sr, 

Th and U contents in apatite. Data shown are from exp. C3922. Linear correlations were 

established between the concentrations of trace elements and P, with the slope representing 

the ratio of a given trace element/P in apatite. 

Fig 3 Trace element compositions of melt normalized to the starting composition. The melt Cl 

and F contents (in ppm) are given in brackets following the sample number. C1846 is a F, Cl-

free EPSM experiment from Hermann and Rubatto (2009). Recalculated Th, La, Ce, Pr, Nd 

and Sm normalized melt concentrations for exp. C3922 (C3922* W/C) after adjusting the 

apatite mass fraction for a GLOSS composition, are also plotted. Such a calculation was 

performed using equation (3) and apatite-melt partition coefficients obtained for exp. C3922, 

based on the assumption that melt and apatite take up the entire budget of the trace element in 

question. 

Fig 4 Trace element concentrations in melt are plotted against melt fraction (a), mica mass 

fraction (b) and melt Cl content (c-h) in three data groups based on the bulk Cl and F contents: 

“Cl”, “Cl+700ppmF” and “Cl+1500ppmF”. The anomalous data point from exp. C3922 in (d) 

can be explained by the high Ce content in apatite, see section 3.2 for details. The anomalous 

data points from exp. D1222 in (d), and from exp. C3269 and D1218 in (e) possibly result 

from anomalies in their bulk compositions. 
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Fig 5 (a) In comparison to the allanite-buffered melt composition of exp. 1846 from Hermann 

and Rubatto (2009), REE diagrams for melt compositions in this study display a steep 

decrease from LREE towards MREE, with a positive Eu anomaly, demonstrating the apatite 

control on LMREE partitioning. The melt Cl and F contents (in ppm) are given in brackets 

following the sample number. (b) LMREE contents in melt show an increase with the Cl 

content in melt, while the concentrations of HREE, Y and Sc show an initial increase 

followed by a decrease (c). 

Fig 6 Concentrations of HFSE (Nb, Ta, Zr and Hf) decrease with the F+Cl content in melt.  

Fig 7 All but experiments C3922 and C3955 have uniform ThN/UN (a) and ThN/LaN (b) melt 

ratios, which are similar to those observed in the allanite-buffered melt of exp. C1846 from 

Hermann and Rubatto (2009). The higher ThN/UN and ThN/LaN ratios for exp. C3922 and 

C3955, reflect greater apatite contribution to Th and U partitioning, in contrast to the 

dominant allanite control for all other experiments. The near constant SmN/LaN ratios (c) for 

apatite-buffered melts of this study are lower than the allanite-buffered melt of exp. C1846. 

CeN/NbN (d), CeN/YN (e) and ZrN/NbN (f) ratios for melt display increasing trends with Cl in 

melt, demonstrating the Cl effect on the fractionation between LMREE (Ce),  HREE (Y) and 

HFSE (Zr, Nb). The anomalous data points in (d) and (e) correspond to the anomalous data 

points in Fig. 4d and 4e. The calculated CeN/YN ratio for exp. C1846 is unusually high, as the 

reported bulk Y content for exp. 1846 is about two times that of the bulk Y for experiments in 

this study, despite the similar absolute Y concentrations in melt. 

Fig 8 Sr (a), Th, U (b) and LMREE (c) contents in apatite show an increase with the mole 

fraction of ClAp (XCl
Ap

). The relative increase between exp. C3927 with 0 XCl
Ap

 and exp. 

C3922 with 0.4 XCl
Ap

 is positively correlated with cation radius and charge (c). Note that the 

Th and U contents in apatite from exp. C4059 (XCl
Ap

 =0.075) were used in the calculation for 

Th and U, as the contents in exp. C3927 were not constrained. 
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Fig 9 ThN/UN (a) and ThN/LaN (b) ratios for apatite show positive correlations with the mole 

fraction of ClAp (XCl
Ap

); while the SmN/LaN (c) ratio shows a negative correlation with XCl
Ap

. 

These correlations demonstrate the relative sensitivity of these elements to the increase of 

XCl
Ap

, i.e., Th>U, Th>La and Sm<La. 

Fig 10 LMREE partition coefficients between apatite and melt show a concave pattern. HREE 

partition coefficients for exp. C3269, D1218 and C3922 are well constrained, and form the 

right limb of the concave pattern. Selected trace element partition coefficients between apatite 

and melt reported in previous experimental studies of Prowatke and Klemme (2006), Watson 

and Green (1981), Klemme and Dalpé (2003), Fleet and Pan (1997) and Fleet et al. (2000) are 

also plotted for comparison, see section 4.3 for details. 

Fig. 11 Variations of trace element partition coefficients between apatite and melt are shown 

in plots vs Cl content in melt or mole fraction of ClAp (XCl
Ap

), with La, Sm (a), Sr (b) and Th, 

U (c) given as examples; supporting the trends observed for trace element concentrations in 

apatite vs. XCl
Ap

, and the trace element concentrations in melt vs. Cl in melt.  

Fig 12 REE (excluding Eu) and Y partition coefficients between apatite and melt were fitted 

to the lattice strain model of Blundy and Wood (1994). Regressions results for exp. D1218 are 

shown as an example, (a) fitting LREE and REE data respectively, with VII coordinated ionic 

radii, (b) fitting LREE and HREE data respectively, with IX coordinated ionic radii. The 

fitted values for Young’s modulus (E) show a subtle increase with the mole fraction of ClAp 

(c). As shown by the regression results for exp. D 1218, the E value from fitting all REE can 

be considered as the weighted mean of the values from fitting LREE and HREE data. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Table 1 Major and trace element compositions of EPSM and their comparison to GLOSS 

(Plank and Langmuir, 1998) and upper continental crust (Rudnick and Gao, 2003). 

  EPSM   GLOSS   UCC 

wt%     (P&L98)   (R&G03) 

SiO2 63.56 

 

58.57 
 

66.62 

TiO2 0.62 

 

0.62 
 

0.64 

Al2O3 13.57 

 

11.91 
 

15.4 

FeO 4.31 

 

5.21 
 

5.04 

MnO 0.10 

 

0.32 
 

0.1 

MgO 2.32 

 

2.48 
 

2.48 

CaO 2.26 

 

5.95 
 

3.59 

Na2O 2.42 

 

2.43 
 

3.27 

K2O 2.71 

 

2.04 
 

2.8 

P2O5 0.92 

 

0.19 
 

0.15 

H2O 7.20 

 

7.29 

  F (ppm) 

    

557 

Tot. 100   97.01   100.09 

ppm 

 

σ 

 

σ 

 Li 37 1.0 

  

21 

Be 6 0.2 

  

2.1 

B 166 3.3 

  

17 

Sc 39 2.1 13.1 1.03 14 

Ti 3833 135 

   V 95 4.5 110 10.7 97 

Mn 1228 38.6 

   Zn 76 13 86.4 8.88 67 

Rb 64 0.9 57.2 6.66 84 

Sr 471 33 327 53.8 320 

Y 32 1.8 29.8 9.92 21 

Zr 117 8 130 8.5 193 

Nb 72 4.2 8.94 0.94 12 

Cs 56 1.0 3.48 0.5 4.9 

Ba 867 66 776 137.1 624 

La 63 3.4 28.8 6.8 31 

Ce 98 5.9 57.3 10.3 63 

Pr 57 3.7 

  

7.1 

Nd 63 3.9 27 8.3 27 

Sm 61 3.7 5.78 1.83 4.7 

Eu 58 3.6 1.31 0.44 1 

Gd 59 3.5 5.26 2.04 4 

Dy 63 3.7 4.99 1.86 3.9 

Er 31 1.8 2.92 1.06 2.3 

Yb 32 1.8 2.76 0.88 2 
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Lu 31 1.9 0.413 0.133 0.31 

Hf 34 2.8 4.06 0.3 5.3 

Ta 27 1.9 0.63 0.06 0.9 

Pb 50 10 19.9 5.4 17 

Th 31 2.3 6.91 0.8 10.5 

U 35 2.0 1.68 0.18 2.7 
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Table 2 Trace element compositions of melt from LA-ICPMS analyses. 

Sample C3269   C3922   
D122

2 
  

C392
7 

  
C395

5 
  

D121
8 

  C4049   C4058   C4059   
BCR-
2G 

  
f
Ref 

Start. Comp. 
EPSM

-1  
EPSM

-2  
EPSM

-6  
EPSM

-3  
EPSM

-4  
EPSM

-5  
EPSM

-8  
EPSM-

10  
EPSM-

9     

bulk H2O (wt%) 6.64 
 

6.68 
 

7.02 
 

6.74 
 

6.46 
 

6.29 
 

7.16 
 

7.17 
 

7.16 
    

bulk Cl (ppm) 800 
 

2100 
 

700 
 

0 
 

650 
 

1900 
 

3000 
 

1100 
 

2200 
    

bulk F (ppm) 0 
 

0 
 

0 
 

700 
 

900 
 

700 
 

700 
 

1500 
 

1500 
    

a
Major/minor  

minerals 
Grt, Phen, Q, 

Ky 
Grt, Phen, Q, 

Ky 
Grt, Phen, Q Grt, Phen, Q 

Grt, Phen, 
Q, Bi 

Grt, Phen, Q 
Grt, Phen, Q, 

Ky 
Grt, Phen, Q, 

Bi, Ky 
Grt, Phen, Q, 

Bi, Ky    
a
Accessory. 

Minerals 
 Ap, Rut, Zir, 

All? 
Ap, Rut, Zir, 

All? 
Ap, Rut, Zir, 

All 
Ap, Rut, Zir, 

All 
Ap, Rut, Zir, 

All 
Ap, Rut, Zir, 

All 
Ap, Rut, Zir, 

All? 
Ap, Rut, Zir, All Ap, Rut, Zir, All 

   
b
Melt fraction (%) 57 

 
57 

 
53 

 
52 

 
48 

 
55 

 
62 

 
54 

 
57 

    
c
Cl in melt (wt%) 0.09 

0.0
1 

0.26 
0.0
1 

0.07 
0.0
1   

0.11 
0.0
2 

0.22 
0.0
2 

0.39 
0.0
4 

0.15 
0.0
3 

0.28 0.02 
   

c
F in melt (wt%) 

      
0.04 

0.0
1 

0.06 
0.0
1 

0.034 
0.0
04 

0.02 
0.0
1 

0.15 
0.0
1 

0.15 0.01 
   

ppm 
 

σ(7
)  

σ(3
)  

σ(5
)  

σ(4
)  

σ(3
)  

σ(6) 
 

σ(9
)  

σ(6) 
 

σ(9) 
 

σ(1
4)  

Li 48 0.9 53 1.1 52 1.8 53 1.8 56 0.5 45 0.4 44 0.9 53 1.4 50 1.2 9 0.5 
 

Be 9 0.1 10 0.4 9 0.3 10 0.4 10 0.1 8 0.2 7 0.3 9 0.3 8 0.1 0.2 
0.0
1  

B 130 6.2 115 7.5 97 7.4 106 9.4 105 
11.
8 

89 7.6 101 6.4 121 7.8 109 4.3 
   

P 832 27 983 44 1014 62 753 48 718 62 1058 32 1064 36 889 56 949 16 1237 
43.
1 

161
5 

Sc 4 0.6 3 0.3 2 0.1 2 0.3 2 0.2 4 0.6 1 0.1 1 0.1 1 0.1 28 0.6 33 

Ti 843 9 770 9 769 15 839 57 744 37 866 48 827 19 744 22 732 20 11599 284 
136
05 

V 8 0.5 8 0.3 9 0.6 7 0.3 6 1 8 0.8 10 1.1 7 1.3 11 1.3 396 
12.
5 

425 

Mn 66 1.7 44 0.2 29 1.8 19 1.4 22 0.8 72 1.8 22 1 18 0.4 16 0.4 1458 
38.
5 

155
0 

Fe 2876 111 3269 52 2788 
36
0 

2666 
19
9 

2730 
16
2 

3771 71 4270 
18
9 

3360 132 4110 140 92932 
352
7 

972
22 

Zn 68 3 84 8 68 5 71 8 66 2 88 5 89 5 81 6 103 2 183 10 125 

Rb 78 2.6 81 4.6 77 1.9 76 3.2 73 1.7 88 2.5 82 1.5 71 1 73 1.8 46 1.4 47 
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Sr 643 15 585 21 595 18 599 26 618 10 531 19 502 16 595 12 550 10 296 9 342 

Y 3.7 0.6 1.9 0.2 1.3 0.3 1.4 0.4 1.4 0.3 3.4 0.2 1.4 0.2 1.6 0.2 1.3 0.1 28 1 35 

Zr 89 3 87 4 81 4 89 4 80 3 89 3 83 2 77 4 71 2 153 6 184 

Nb 33 1.4 28 1.1 23 1.2 30 5.3 28 3.5 25 1.1 20 1.2 24 1.1 17 2.3 9.2 0.2 12.5 

Cs 91 2.1 105 2.8 103 3.6 107 5.8 116 2 88 3.5 84 1.4 99 1.1 94 1.6 1 0.1 1.16 

Ba 928 16 871 61 841 39 804 31 750 1 1024 47 944 27 776 20 799 17 568 28 683 

La 24 0.8 15 1.1 15 0.4 20 1.1 20 1.4 25 0.9 29 1.3 26 0.9 25 0.7 21 0.5 24.7 

Ce 31 1.6 18 1.9 19 0.7 24 1.3 25 0.8 33 1.2 37 1.3 32 1.8 33 0.9 45 2.1 53.3 

Pr 15 0.3 8 1.0 9 0.6 10 0.7 11 0.3 16 0.6 18 0.7 14 0.3 16 0.3 5.6 0.3 6.7 

Nd 12 1.5 7 0.3 8 1.1 8 0.8 9 1.2 14 1.5 15 0.8 12 0.5 13 0.6 25 1.3 28.9 

Sm 10 0.6 5 0.6 6 0.7 6 1.1 6 0.7 9 1.4 10 0.7 8 0.5 9 0.5 5.8 0.5 6.59 

Eu 13 0.7 8 0.7 7 0.6 8 0.3 8 0.2 15 0.4 16 0.8 12 1.0 11 0.4 1.6 0.1 1.97 

Gd 7.1 0.6 3.7 1.0 3.1 0.4 3.5 0.8 3.5 1.1 6.8 0.7 6 0.6 4.9 0.4 5.4 0.4 5.2 0.3 6.71 

Dy 7.5 0.7 3.8 0.1 2.9 0.4 2.5 0.5 3.1 
0.0
2 

6.8 0.7 3.5 0.2 3.9 0.3 3.4 0.2 5.5 0.3 6.44 

Er 3.6 0.3 1.8 0.2 1.0 0.3 1.0 0.1 0.9 0.1 3.1 0.3 1.1 0.2 1.1 0.1 0.9 0.1 2.9 0.2 3.7 

Yb 3.9 0.6 1.3 0.2 1.0 
 

0.7 
 

1.2 
0.0
1 

3.2 0.5 0.7 0.1 0.8 0.2 0.7 0.1 2.8 0.3 3.39 

Lu 3.3 0.2 1.0 0.1 0.7 0.2 0.5 0.1 0.8 0.3 3.0 0.2 0.4 0.1 0.7 0.4 0.4 0.02 0.4 0.1 
0.50

3 

Hf 30 1.3 31 1.9 29 1.9 31 2.3 27 4.4 29 3.0 26 1.9 26 1.3 24 0.5 4.1 0.3 4.84 

Ta 13 1.3 12 0.3 12 1.0 14 3.3 11 0.5 11 0.7 9 0.4 11 2.0 7 1.3 0.5 0.1 0.78 

d
Pb 11 1.4 51 2.4 47 0.8 46 0.8 39 2 60 1.2 73 2.5 71 1.4 128 2.7 10 0.7 11 

Th 17 0.9 36 2.2 12 1.0 18 0.2 27 0.9 20 1.4 23 1.6 23 1.4 20 0.4 5.3 0.2 5.9 

U 28 0.9 32 1.6 26 1.8 34 2.1 37 0.7 36 1.0 36 2.3 40 1.3 36 1.2 1.6 0.1 1.69 

e
ThN/UN 0.69 

0.0
8 

1.26 
0.1
6 

0.52 
0.0
7 

0.56 
0.0
6 

0.81 
0.0
8 

0.60 
0.0
7 

0.71 
0.1
0 

0.63 
0.0
7 

0.62 0.06 
   

e
ThN/LaN 1.4 0.2 4.9 0.7 1.7 0.2 1.8 0.2 2.7 0.3 1.6 0.2 1.6 0.2 1.8 0.2 1.6 0.2 

   
e
SmN/LaN 0.41 

0.0
4 

0.33 
0.0
6 

0.39 
0.0
6 

0.29 
0.0
6 

0.32 
0.0
5 

0.37 
0.0
7 

0.36 
0.0
4 

0.32 
0.0
3 

0.36 0.04 
   

e
CeN/NbN 0.67 

0.0
7 

0.46 
0.0
7 

0.60 
0.0
6 

0.58 
0.1
2 

0.67 
0.1
0 

0.97 
0.1
0 

1.33 
0.1
5 

0.96 
0.1
1 

1.40 0.22 
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e
CeN/MnN 5.8 0.5 5.0 0.6 8.2 0.8 15.6 1.8 14.7 1.2 5.7 0.5 21.7 1.9 22.2 2.0 25.7 2.0 

   
e
ZrN/NbN 1.6 0.2 1.9 0.2 2.1 0.3 1.8 0.4 1.8 0.3 2.2 0.2 2.5 0.3 1.9 0.2 2.5 0.4       

a
The mineral assemblages observed in experimental charges. Allanite was detected as inclusions during LA-ICPMS analysis of quenched melt, the search was not exhaustive. 

Mineral abbreviations: All, allanite; Ap, apatite; Bi, biotite; Grt, garnet; Ky, kyanite; Phen, phengite; Q, quartz; Rut, rutile; Zir, zircon. 
b
Melt faction estimated from mass balance. 

c
Cl content in melt was from SEM EDS analysis when >0.1 wt%, and from EMP WDS analysis when <0.1 wt%. F content in melt was from EMP WDS analysis. 

d
The bulk Pb content for exp. C3269 is determined to be 18±9.7 ppm, lower than the estimated value (50±10 ppm) for other experiments. 

e
Normalization to the starting composition, e.g., ThN/UN= (Thmelt/ThEPSM)/(Umelt/UEPSM). 

f
The reference composition for BCR-2G from Jochum and Nohl (2008). 
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Table 3 Trace element compositions of apatite obtained from regression of LA-ICPMS data. 

Sample C3269   C3922   D1222   C3927   C3955   D1218   C4049   C4058   C4059   

Start. Comp. 
EPSM-

1  
EPSM-

2  
EPSM-

6  
EPSM-

3  
EPSM-

4  
EPSM-

5  
EPSM-

8  
EPSM-

10  
EPSM-

9  

a
XCl

Ap
 0.173 

0.00
9 

0.401 
0.00

9 
0.133 

0.00
5   

0.048 
0.00

4 
0.128 

0.00
3 

0.19 
0.00

6 
0.049 

0.00
3 

0.074 
0.00

2 
a
XF

Ap
 

      
0.57 0.04 0.57 0.02 0.47 0.03 0.42 0.04 0.67 0.04 0.64 0.04 

ppm 
 

σ(10
)  

σ(10
)  

σ(8) 
 

σ(13
)  

σ(10
)  

σ(7) 
 

σ(9) 
 

σ(18
)  

σ(4) 

Sr 5072 519 7071 923 5436 1209 4554 1053 4252 1068 4449 848 3151 317 3796 348 
  

Y 202 30 392 14 376 51 338 35 374 25 224 19 234 13 289 18 320 51 

La 3066 28 4196 158 2040 49 1895 63 2510 129 1978 57 2378 93 1988 62 2335 250 

Ce 5278 83 6304 255 3759 57 3613 127 4205 206 3651 115 4250 108 3619 123 4097 65 

Pr 3141 50 3583 153 2240 55 2149 80 2497 121 2215 86 2647 98 2275 64 2560 95 

Nd 3111 84 3624 143 2428 95 2185 94 2396 97 2256 107 2906 86 2401 93 2586 362 

Sm 1805 37 2476 80 1673 153 1569 96 1730 43 1605 70 2058 75 1870 63 2046 227 

Eu 1206 14 1703 57 1273 61 1252 59 1253 27 1211 49 1311 36 1297 54 1335 179 

Gd 1040 43 1707 60 1354 103 1244 88 1361 37 1059 42 1289 37 1222 47 1327 226 

Dy 589 66 1091 38 939 68 845 73 944 58 730 36 705 30 742 41 780 166 

Er 151 27 307 18 286 37 287 32 308 37 183 30 206 14 239 17 260 54 

Yb 111 31 166 10 226 53 221 25 251 38 93 14 129 11 161 14 169 50 

Lu 91 27 126 8 170 31 184 27 209 34 79 17 103 10 131 13 157 41 

Th 227 23 371 78 
      

118 19 
    

82 25 

U 535 52 587 59             276 50         187 86 

b
ThN/UN 0.5 0.1 0.7 0.2 

      
0.5 0.1 

    
0.5 0.3 

b
ThN/LaN 0.15 0.02 0.18 0.04 

      
0.12 0.02 

    
0.07 0.02 

b
SmN/LaN 0.60 0.05 0.61 0.06 0.84 0.10 0.85 0.09 0.71 0.07 0.83 0.08 0.89 0.09 0.96 0.09 0.90 0.16 

Mass balance 
(ppm)                   
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c
La 4076 

 
3619 

 
3918 

 
2916 

 
2804 

 
3062 

 
3214 

 
2876 

 
3033 

 
c
Ce 6751 

 
5896 

 
6301 

 
4787 

 
4536 

 
5023 

 
5371 

 
4784 

 
4974 

 
c
Th 1769   692   1759   1227   960   1270   1226   1111   1230   

a
Mole fractions of ClAp and FAp end-members in apatite, obtained from structural formula calculations on the basis of 12.5 O

2-
. 

b
Normalization to the starting composition, e.g., ThN/UN= (ThAp/ThEPSM)/(UAp/UEPSM). 

c
La, Ce and Th contents in apatite calculated from mass balance, with the assumption that La, Ce and Th are only hosted by apatite and melt. A large 

difference between regressed and measured values, especially for Th, indicates the presence of minor allanite in the runs.  

ACCEPTED MANUSCRIPT



ACCEPTED M
ANUSCRIPT

 

60 

 

Table 4 Trace element partition coefficients between apatite and melt. 

Sample C3269   C3922   D1222   C3927   C3955   D1218   C4049   C4058   C4059   

Start. Comp. EPSM-1 
 

EPSM-2 
 

EPSM-6 
 

EPSM-3 
 

EPSM-4 
 

EPSM-5 
 

EPSM-8 
 

EPSM-10 
 

EPSM-9 
 

  
σ 

 
σ 

 
σ 

 
σ 

 
σ 

 
σ 

 
σ 

 
σ 

 
σ 

La 126 4 281 23 136 5 95 6 126 11 79 4 83 5 77 4 93 10 

Ce 173 9 360 42 195 8 153 10 165 10 111 5 113 5 114 7 124 4 

Pr 210 6 424 51 247 18 209 16 231 13 141 8 146 8 158 6 164 7 

Nd 263 35 520 28 312 44 258 28 278 41 159 18 193 11 201 12 196 29 

Sm 186 12 519 69 290 45 283 60 279 34 176 28 202 16 235 16 232 29 

Eu 92 5 206 18 176 16 165 10 154 6 79 4 82 5 105 9 126 18 

Gd 146 14 467 133 430 69 357 85 387 123 155 17 216 21 248 20 244 46 

Dy 79 11 287 14 323 55 333 69 304 19 107 12 202 14 190 17 232 51 

Y 55 12 211 29 287 72 242 67 272 68 66 7 171 24 182 26 238 40 

Er 42 9 167 21 284 83 302 56 330 49 59 11 196 31 212 21 296 66 

Yb 29 9 123 16 218 51 311 35 217 33 29 6 190 33 203 50 259 90 

Lu 28 8 122 12 255 82 378 110 278 120 27 6 242 46 179 103 401 108 

Sr 7.9 0.8 12.1 1.6 9.1 2.1 7.6 1.8 6.9 1.7 8.4 1.6 6.3 0.7 6.4 0.6 
  

Th 13 1 10 2 
      

6 1 
    

4 1 

U 19 2 18 2             8 1         5 2 
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Table 5 Fitted parameters for REE partition coefficients between apatite and melt based on 

the lattice strain model. 

Sample Data of regression D0 σ E(GPa) σ r0(Å) σ R
2
 

 

a
REE VII 

       

C3269-A La-Er VII 226 12 411 64 1.184 0.004 0.972 

C3922-A La-Yb VII 516 19 315 33 1.171 0.003 0.980 

D1222-A La-Er VII 365 24 214 58 1.140 0.006 0.907 

C3927-A La-Y VII 335 18 273 63 1.139 0.006 0.959 

C3955-A La-Y VII 338 21 231 66 1.140 0.007 0.934 

D1218-A La-Yb VII 172 6 354 33 1.167 0.002 0.984 

 

LREE VII 

       C3922-B La-Gd VII 511 22 233 77 1.16 0.01 0.955 

C3927-B La-Gd VII 374 76 155 102 1.11 0.05 0.983 

D1218-B La-Sm VII 181 17 191 93 1.15 0.02 0.987 

C4049-B La-Gd VII 215 14 215 99 1.14 0.02 0.974 

C4058-B La-Gd VII 249 13 256 85 1.14 0.01 0.988 

C4059-B La-Gd VII 249 18 173 68 1.13 0.02 0.988 

 

REE/HREE IX 

       C3269-C La-Yb IX 238 9 364 36 1.299 0.002 0.987 

C3922-C La-Dy IX 534 20 259 34 1.285 0.003 0.973 

D1222-C La-Yb IX 309 11 345 76 1.289 0.005 0.988 

C3955-C La-Yb IX 338 20 158 38 1.249 0.006 0.913 

D1218-C Sm-Lu IX 178 11 420 117 1.27 0.01 0.990 

C4049-C La-Y IX 217 7 187 27 1.259 0.004 0.981 

C4058-C La-Y IX 245 5 252 19 1.263 0.002 0.994 

C4059-C La-Y IX 247 3 140 12 1.245 0.003 0.997 

 

LREE IX 

       C3922-D La-Sm IX 528 18 203 63 1.28 0.01 0.987 

D1222-D La-Sm IX 363 22 178 38 1.256 0.005 0.909 

C3927-D La-Gd IX 352 41 134 73 1.23 0.03 0.982 

D1218-D La-Sm IX 176 1 215 14 1.275 0.002 1.000 

C4059-D La-Gd IX 243 3 160 16 1.251 0.004 0.999 

a
Separate regressions were performed for LREE, HREE and all REE data, with VII or IX 

coordinated REE ionic radii. 
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Table 6 Results of fitting REE partition coefficients between apatite and melt to the lattice 

strain model for previous studies: Prowatke and Klemme (2006), Watson and Green (1981), 

Klemme and Dalpé (2003), Fleet and Pan (1997) and Fleet et al. (2000). 

Sample Data of regression D0 σ E(GPa) σ r0(Å) σ R
2
 

P&K06 

 
       

78 
a
Sm-Lu VII 13.4 2.2 289 90 1.193 0.020 0.999 

77 La-Lu IX 26.0 2.1 274 61 1.292 0.005 0.961 

48B La-Lu VII 4.8 0.3 254 45 1.164 0.005 0.963 

59B La-Lu VII 7.8 0.5 292 54 1.165 0.004 0.964 

43 La-Lu IX 17.0 1.3 222 55 1.301 0.006 0.964 

W&G81 

        804ta REE VII 5.44 0.38 241 40 1.162 0.005 0.990 

808a REE VII 18.93 0.86 245 28 1.149 0.004 0.995 

811b REE VII 4.88 0.35 193 38 1.159 0.006 0.986 

812g REE VII 40.49 0.07 234 1 1.1387 0.0002 1.000 

814b REE VII 9.82 0.18 230 10 1.160 0.001 0.999 

815b REE VII 4.74 0.46 173 48 1.161 0.009 0.971 

815a REE VII 9.85 0.04 214 2 1.1542 0.0003 1.000 

818b1 REE VII 5.46 0.03 206 3 1.1689 0.0005 1.000 

818b2 REE VII 5.29 0.06 198 6 1.166 0.001 1.000 

822ta REE VII 5.64 0.04 219 4 1.155 0.001 1.000 

823g REE VII 18.83 0.40 221 12 1.152 0.002 0.999 

         808a REE IX 18.89 0.76 215 22 1.263 0.003 0.996 

811ta REE IX 5.32 0.34 172 30 1.269 0.006 0.988 

812g REE IX 40.27 0.34 204 5 1.252 0.001 1.000 

812ta REE IX 7.58 0.49 203 32 1.274 0.005 0.990 

814b REE IX 9.84 0.15 202 7 1.275 0.001 0.999 

814hh REE IX 9.85 0.09 185 4 1.273 0.001 1.000 

814nh REE IX 10.74 0.48 195 22 1.270 0.004 0.995 

815b REE IX 4.75 0.48 153 44 1.275 0.009 0.969 

818b2 REE IX 5.31 0.05 174 4 1.280 0.001 1.000 

818B3 REE IX 4.65 0.29 170 28 1.274 0.005 0.989 

822ta REE IX 5.64 0.06 192 5 1.269 0.001 1.000 

K&D03 

 
       

BS19 REE VII 0.56 0.02 140 17 1.147 0.004 0.982 

BS19 REE IX 0.57 0.01 121 10 1.264 0.003 0.990 

BS23 REE IX 0.48 0.03 111 27 1.247 0.008 0.944 

BS25 REE IX 0.47 0.05 164 54 1.261 0.011 0.887 

F&P97 

        series D REE IX 9.21 0.41 270 36 1.300 0.003 0.982 

series D LREE VII 6.74 0.34 267 80 1.191 0.005 0.894 

series E LREE VII 7.67 0.03 131 5 1.196 0.001 0.999 
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binary LREE IX 3.78 0.08 115 35 1.302 0.005 0.847 

Fleet et al. 2000 

       ClAp REE IX 0.13 0.01 159 39 1.279 0.006 0.978 

a
Separate regressions were performed for LREE, HREE and all REE data, with VII or IX 

coordinated REE ionic radii. 
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Highlights 

 Addition of F and Cl in subducted sediment melt results in an increase of LMREE and 
a decrease of HFSE contents. 

 Uptake of LREE, Th, U and Sr in apatite is enhanced by the Cl-Apatite component. 

 Apatite-melt partition coefficients for LREE have high values (in the hundreds) for 
subduction zone PT conditions. 

 Apatite preferentially incorporates Sm over La, La over U, and U over Th. 
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