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Abstract

Most methods for analyzing functional time series rely on the estimation of lagged autocovariance operators or
surfaces. As in univariate time series analysis, testing whether or not such operators are zero is an important diagnostic
step that is well understood when the data, or model residuals, form a strong white noise. When functional data
are constructed from dense records of, for example, asset prices or returns, a weak white noise model allowing for
conditional heteroscedasticity is often more realistic. Applying inferential procedures for the autocovariance based on a
strong white noise to such data often leads to the erroneous conclusion that the data exhibit significant autocorrelation.
We develop methods for performing inference for the lagged autocovariance operators of stationary functional time
series that are valid under general conditional heteroscedasticity conditions. These include a portmanteau test to
assess the cumulative significance of empirical autocovariance operators up to a user selected maximum lag, as well
as methods for obtaining confidence bands for a functional version of the autocorrelation that are useful in model
selection/validation. We analyze the efficacy of these methods through a simulation study, and apply them to functional
time series derived from asset price data of several representative assets. In this application, we found that strong
white noise tests often suggest that such series exhibit significant autocorrelation, whereas our tests, which account for
functional conditional heteroscedasticity, show that these data are in fact uncorrelated in a function space.

Keywords: Autocovariance, Conditional heteroskedasticity, Functional data.

1. Introduction

Conditional heteroscedasticity is a frequently encountered feature of financial and economic time series that, since
the seminal work of [6] and [10], is often modeled within the framework of generalized autoregressive conditionally
heteroscedastic (GARCH) models. GARCH models have since been extended in many ways to multivariate observations
in order to jointly model volatility across several return series, see [3, 12, 14], to name just a few references to univariate
and multivariate GARCH models.

When evaluating such models for a given univariate or multivariate time series, one often begins by computing
and plotting sample autocorrelations and/or autocovariances of the series with corresponding confidence intervals.
The most common practice is to examine residual autocorrelations with the confidence bands computed under the
assumption of a strong white noise. Such plots are useful in identifying models for the conditional mean, such as
ARMA models, as well as for assessing whether a residual sequence is plausibly a white noise. It is well known
that the standard error of sample autocorrelation estimates is strongly affected by conditional heteroscedasticity. In
general, one should expect to see larger (in magnitude) autocorrelation estimates when considering a GARCH process,
or a weak white noise exhibiting conditional heteroscedasticity, as compared to a strong white noise. If this effect is
not properly accounted for, it may lead to an erroneous conclusion that a sequence exhibits autocorrelation. Several
authors have developed diagnostic tests and model identification procedures for univariate and multivariate time series
exhibiting conditional heteroscedasticity, including portmanteau tests, to measure the cumulative significance of the first
K empirical autocovariances/autocorrelations; see, e.g., [9, 11, 28, 32, 36]. Many of these diagnostics are summarized
in the monograph of Li [26].
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The work referred to above presents methods applicable to multivariate time series of a relatively small dimension.
Even for series of dimension 5–10, additional restrictions on the GARCH structure must be imposed to reduce the
number of parameters to be estimated. In many financial and other applications, the data are very high dimensional
multivariate observations (dozens or hundreds of coordinates), with a strong dependence between consecutive coordi-
nates. The currently available multivariate goodness-of-fit techniques are not suitable for such data. We illustrate with
data that motivate this work and will be further studied below. On consecutive days i ∈ {1, . . . ,T }, observations of the
S&P 500 index are available at intraday times u, measured at a 1-minute (or finer) resolution. These data may then be
represented by a sequence of discretely observed curves or functions {Pi(u) : 1 ≤ i ≤ T, u ∈ [0, S ]}, with S denoting
the length of the trading day. Transformations of these functions that are of interest include the horizon h log returns,
Ri(u) = ln Pi(u) − ln Pi(u − h), where h is some given length of time, e.g., five minutes. For a fixed h, on any given
trading day i we thus observe a high-dimensional multivariate vector, which can be viewed as a noisy function. We
thus observe one function per day, i.e., a functional time series.

The scope of methodology for analyzing functional time series such as these has grown substantially in the last
decade; we refer to [7], Chapters 13–16 of [17] and Chapter 8 of [24] for summaries of advances in the field. To date,
most methods in this direction are still based on non-parametric and non-likelihood approaches that rely fundamentally
on the estimation of autocovariance operators, see, e.g., [20, 21, 30, 41]. Several authors have considered portmanteau
tests for these operators; see [13, 23, 40]. In the presence of functional conditional heteroscedasticity, diagnostic tests
for measuring the significance of autocovariance functions and general checks for model adequacy are needed. Specific
functional conditionally heteroskedastic models have been proposed by [2] and [15]. Our methodology is more broadly
applicable. It assumes a flexible nonparametric quantification of conditional heteroskedasticity.

In this paper, we develop diagnostic tests and visualization tools based on the empirical autocovariance functions of
stationary functional time series exhibiting conditional heteroscedasticity. In particular, we derive a portmanteau test to
measure the cumulative significance of the norms of the first K empirical autocovariance functions under a general
conditional heteroscedasticity assumption. This test may be used to evaluate the adequacy of functional GARCH-type
models for observed or residual curves. Building upon this theory, we further develop methods to construct confidence
bands for empirical functional autocorrelation estimates that are useful for identifying correlation at specific lags and
informing further modeling. As a demonstration, we apply the proposed methods to functional time series derived from
the intraday returns on several densely observed asset prices. Our analysis suggests that the level of autocorrelation
observed in these series is typically more than would be expected from a strong white noise model, but is in fact in
accordance with functional conditional heteroscedasticity.

The paper is organized as follows. Its main methodological contributions are presented in Section 2. After
formulating a suitable mathematical framework, we state the assumptions, including a general definition of functional
conditional heteroscedasticity. We then define two test statistics, one to measure the autocovariance at a specified lag
and another, a portmanteau statistic, to measure the cumulative significance of the first K autocovariance functions. We
establish their asymptotic properties and explain how to perform the tests in practice. We also introduce confidence
bands for quantities akin to autocorrelations of scalar time series. The results of a simulation study of the proposed
methods are presented in Section 3, which also contains their application to intraday returns on several types of assets.
Proofs of the asymptotic results and some technical calculations are presented in Appendix A.

2. Problem statement and testing procedures

2.1. Mathematical framework and notation
We consider a discretely observed functional time series {Xi(u) : 1 ≤ i ≤ T, u ∈ (0, 1]}, of length T . It is convenient

to think of i as denoting the day. The “intraday” parameter u is rescaled to be in the interval (0, 1], without loss of
generality. We write f for a function f (u), u ∈ (0, 1] and further use

∫
to denote

∫ 1
0 when it does not cause confusion,

and use (Xi) to denote the sequence (Xi)i∈Z. Before proceeding, we describe a convenient mathematical framework for
the data: we treat each Xi as an element of the Hilbert space of real-valued square integrable functions defined on the
interval (0, 1] equipped with a nonnegative measure µ on its Borel subsets. We define the inner product between two
functions f and g by

〈 f , g〉 =

∫
f (u)g(u)µ(du). (1)
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We then define L2(µ) to be the Hilbert space of functions f for which ‖ f ‖ = 〈 f , f 〉1/2 < ∞, and we assume that each Xi

is an element of L2(µ).
There are several advantages to considering this general framework. For instance, if the data consist of price curves

Pi(u) observed at J intraday timesUJ = {u j = j/J, j = 1, . . . , J} ⊂ (0, 1], it is then convenient to work in the Hilbert
space L2(µJ), where µJ is the counting measure onUJ divided by J. The inner product in L2(µJ) is then given by

〈 f , g〉 =

∫
f (u)g(u)µJ(du) =

1
J

J∑

j=1

f ( j/J) g ( j/J) .

On a typical trading day, if 1-minute resolution price data are available, then J = 390. For data observed at different
frequencies, like tick data, it might make more sense to take µ to be standard Lebesgue measure, and estimate the
inner-products (1) with Riemann sums as the data allows. We use the same notation as above to denote the standard
inner product and norm on L2(µ⊗d), with the dimension d being clear based on the input function, and employ tensor
notation; see, e.g., Section 10.5 of [24]. To illustrate, in our context, the condition E〈Xi ⊗ X j ⊗ Xk ⊗ X`,w〉 = 0, which
appears below, can be written explicitly as

E
∫∫∫∫

Xi(t)X j(s)Xk(u)X`(v)w(t, s, u, v)µ(dt)µ(ds)µ(du)µ(dv) = 0.

2.2. Problem formulation and assumptions

When modeling functional time series, one frequently wishes to determine whether or not a given series {Xi}, which
might consist of the original observations or of the residuals of a model fit, is plausibly a weak white noise, i.e., if for
h > 0, γh(t, s) = 0, where

γh(t, s) = E
[{X0(t) − µX(t)} {Xh(s) − µX(s)}] , µX(t) = EX0(t). (2)

This would be the case if (Xi) were in fact a strong white noise, i.e., a sequence of independent and identically
distributed random functions, but it would also hold if (Xi) followed a functional GARCH-type model. To illustrate,
consider the functional GARCH(1,1) model

Xi = σiεi, σ2
i = δ + α(X2

i−1) + β(σ2
i−1), (3)

where (εi) is a strong white noise sequence and α and β are linear operators mapping L2(µ) to L2(µ). This is precisely
the model put forward by [2]. It is a weak functional white noise, but not a strong white noise. As for the strong white
noise, its lag h autocovariance functions are zero for all h > 0. However, the variability of the estimates of the functions
γh(·, ·) is different in case of the strong white noise and GARCH-type functional time series. This has to be taken into
account in inferential goodness-of-fit procedures. Developing suitable tests and confidence intervals is the objective of
this paper.

In the first direction, we aim to develop methods to assess the validity of the hypotheses

H0,h : γh(t, s) = 0 and H ′0,K : ∀ j∈{1,...,K} γ j(t, s) = 0

that are consistent under functional conditional heteroscedasticity, which will be defined in the following. The null
hypothesisH0,h is to be tested for a fixed h > 0. We will then also introduce an approach akin to confidence bands for
sample autocorrelations of scalar time series.

The key assumptions involve a quantification of the decay of temporal dependence, which may be present even if
autocorrelations vanish, with lag separation, and vanishing second and fourth order moments, as implied by a GARCH
structure. To specify the dependence structure, we formulate the following definition:

Definition 1. A sequence (Xi) is said to be Lp-m-approximable if each Xi admits the Bernoulli shift representation

Xi = g (εi, εi−1, . . .) , (4)
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where the (εi) are iid elements taking values in a measurable space S , and g is a measurable function g : S∞ → L2(µ).
Moreover, if (ε′i) is an independent copy of the sequence (εi) defined on the same probability space, then

∞∑

m=0

(E‖Xi − X(m)
i ‖p)1/p < ∞, (5)

where

X(m)
i = g(εi, εi−1, . . . , εi−m+1, ε

′
i−m, ε

′
i−m−1, . . .). (6)

The gist of Definition 1 is that the dependence of g in (4) on the innovations far in the past decays so fast that these
innovations can be replaced by their independent copies. Such a replacement is asymptotically negligible in the sense
quantified by (5), which also implies that E‖Xi‖p < ∞. Representation (4) implies that the sequence (Xi) is stationary
and ergodic. Assumptions similar to Definition 1 have been used extensively in recent theoretical work, as all stationary
time series models in practical use can be represented as Bernoulli shifts, see [1, 4, 16, 22, 34, 38, 40], among other
contributions. Unlike a linear moving average, representation (4) admits heteroskedastic time series.

With this background, we state our first assumption.

Assumption 1. The time series (Xi) is L4-m-approximable.

The next assumption requires that the sequence (Xi) possesses the first, second, and fourth order moment character-
istics of a functional GARCH-type sequence.

Assumption 2. The sequence (Xi) satisfies

(i) if u ∈ L2(µ), E 〈Xi, u〉 = 0 for all i;

(ii) if v ∈ L2(µ ⊗ µ), and i , j, E〈Xi ⊗ X j, v〉 = 0;

(iii) if w ∈ L2(µ⊗4), and if the indices i, j, k, ` ∈ Z have a unique maximum, then E〈Xi ⊗ X j ⊗ Xk ⊗ X`,w〉 = 0.

Assumptions 1 and 2 hold under general conditions for sequences satisfying functional GARCH equations, for
instance for the functional GARCH(1,1) in (3). Although only standard Lebesgue measure is considered in [2],
extensions of their conditions to an arbitrary measure µ are trivial, as they are formulated in terms of Hilbert space
norms. Sufficient conditions for Assumption 1 to hold under the model (3) are established in Theorem 2.1 and Corollary
2.1 in [2], which state that if α and β in (3) are integral operators with kernels a(t, s) and b(t, s), respectively, then there
exists a nonanticipative solution (Xi) to the equations in (3) if

E

ln

{∫∫

r2
0(t, s)µ(dt)µ(ds)

}1/2
 < 0,

and

E


{∫∫

r2
0(t, s)µ(dt)µ(ds)

}ν/2 < 1,

for some ν ≥ 4, where r0(t, s) = a(t, s)ε2
0(s) + b(t, s). Moreover, this solution satisfies Assumptions 1 and 2.

2.3. Test statistics and their limit distributions

The autocovariance function γh is estimated by

γ̂h(t, s) =
1
T

T−h∑

j=1

{X j(t) − X̄(t)}{X j+h(s) − X̄(s)}, X̄(t) =
1
T

T∑

j=1

X j(t),
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and through these estimates we define test statistics forH0,h andH ′0,K by

QT,h = T‖γ̂h‖2 and VT,K = T
K∑

h=1

‖γ̂h‖2,

respectively. In this section we state large-sample properties of QT,h and VT,K . Even though our work is motivated by
the functional GARCH models of [2] and [15], the asymptotic distribution of QT,h and VT,K may be established for a
larger class of nonlinear functional time series satisfying Assumptions 1 and 2.

Under Assumption 1, the autocovariance γh is an element of L2(µ ⊗ µ), since
∫∫

γ2
h(t, s)µ(dt)µ(ds) ≤

∫
E{X2

1(t)µ(dt)}
∫

E{X2
1+h(s)µ(ds)} = {E ‖X1‖2}2.

A slightly longer, but similar, argument shows that

E
∫∫

γ̂2
h(t, s)µ(dt)µ(ds) < ∞.

Beginning with the test ofH0,h, we assume in the following theorem that the lag h ≥ 1 is fixed.

Theorem 1. Suppose the functional time series (Xi) satisfies Assumptions 1 and 2. Then, there are mean zero Gaussian
processes Γh,T , T ≥ 1, in L2(µ ⊗ µ), defined on the same, perhaps enlarged, probability space as (Xi), such that

∫∫
{
√

T γ̂h(t, s) − Γh,T (t, s)}2µ(ds)µ(dt) = oP(1).

Their covariances do not depend on T , and for t, s, t′, s′ in the support of µ, are given by

ch,h(t, s, t′, s′) = E
{
Γh,T (t, s)Γh,T (t′, s′)

}
= E

{
X0(t)X0(t′)Xh(s)Xh(s′)

}
. (7)

Corollary 1. Under the assumptions of Theorem 1, QT,h  ‖Γh,0‖2.

(Throughout the paper, denotes convergence in distribution.) Theorem 1 is proven in Appendix A. Corollary 1 is
a simple consequence, but, for completeness, is also proven in Appendix A. It shows that an asymptotic size α test of
H0,h is to reject when QT,h > Ξh,1−α, where Ξh,1−α is the 1 − α quantile of the distribution of ‖Γh,0‖2. In Section 2.4, we
explain how to obtain a feasible approximation to this distribution.

We now turn to the test ofH ′0,K and the asymptotic properties of VT,K .

Theorem 2. Suppose the functional time series (Xi) satisfies Assumptions 1 and 2, and K is a positive integer. Then,
there exist positive real constants (ξ`,K)∞`=1, depending on the functions defined, for each i, j ∈ {1, . . . ,K}, by

E{X−i(t)X0(s)X− j(u)X0(v)}, (8)

and satisfying
∑∞

i=1 ξi,K < ∞, such that

VT,K  VK
D
=

∞∑

`=1

ξ`,KN2
` , (9)

where (N`)∞`=1 are independent and identically distributed standard normal random variables.

The coefficients ξ`,K are defined by (A.6) below and, in short, are the eigenvalues of a quite complicated covariance
operator derived from the functions in (8). The direct estimation of these coefficients becomes infeasible even for small
values of K, and so in order to testH ′0,K in practice, we propose to approximate the distribution of VK on the right hand
side of (9) using a Welch–Satterthwaite type χ2 approximation, as explained in Section 2.4.
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For a series (Xi) that has nonzero autocorrelation at lag h, it follows fairly directly from the theory developed to

prove Theorems 1 and 2 that QT,h
P→ ∞ and that VT,K

P→ ∞ for all h ∈ {1, . . . ,K}. We quantify nonzero autocorrelation
at lag h by the following assumption:

Assumption 3. There exists a function ah ∈ L2(µ ⊗ µ) such that E〈X0 ⊗ Xh, ah〉 , 0.

Theorem 3. If the functional time series satisfies Assumptions 1, 2(i), and 3(h), then QT,h
P→ ∞, as T → ∞. As long

as h ∈ {1, . . . ,K}, one also has VT,K
P→ ∞, as T → ∞.

Local alternatives can be defined by introducing functional triangular arrays such that E{X0,T (t)Xh,T (s)} =

T−1/2ah(t, s) µ ⊗ µ almost everywhere. The remaining assumptions must be suitably modified for such arrays, and it
can then be shown that the tests are consistent under such local alternatives. To save space, details are not presented.

2.4. Feasible approximations to the limit distributions

In order to make the results of Section 2.3 applicable to price data, we now detail how the tests are carried out when
the price curves are observed on the regularly spaced gridUJ with the norm computed using the normalized counting
measure µJ . In this case, QT,h reduces to

Q(J)
T,h =

T
J2

J∑

j=1

J∑

k=1

γ̂2
h(u j, uk).

Similarly,

‖Γh,0‖2 =

∫∫
Γ2

h,0(u, s)µJ(du)µJ(ds) =
1
J2

J∑

j=1

J∑

k=1

Γ2
h,0(u j, uk),

and the covariance of the process {Γh,0(u j, uk), u j, uk ∈ UJ} is given by

ch,h(u j, uk, u j′ , uk′ ) = E{Γh,0(u j, uk)Γh,0(u j′ , uk′ )} = E{X0(u j)X0(u j′ )Xh(uk)Xh(uk′ )}.

If λh,`, ` ≥ 1, are the eigenvalues of this 4D tensor of dimension J4 defined by

1
J2

J∑

j′,k′=1

ch,h(u j, uk, u j′ , uk′ )ϕ`,h(u j′ , uk′ ) = λ`,hϕ`,h(u j, uk), (10)

then it follows from the Karhunen–Loève Theorem (see p. 25 of [7]) that

1
J2

J∑

j=1

J∑

k=1

Γ2
h,0(u j, uk) D

=

∞∑

`=1

λh,`N2
` ,

where (N`)∞`=1 are independent and identically distributed standard normal random variables. This leads to the
conclusion that, as T → ∞,

Q(J)
T,h  

∞∑

`=1

λh,`N2
` ,

where the λh,` are the eigenvalues defined in (10).
In practice, the eigenvalues λ`,h are estimated by λ̂`,h satisfying

1
J2

J∑

j′,k′=1

ĉh,h(u j, uk, u j′ , uk′ )ϕ̂`,h(u j′ , uk′ ) = λ̂`,hϕ̂`,h(u j, uk), (11)
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where

ĉi, j(t, s, u, v) =
1
T

T∑

k=1+max{i, j}
Xc

k−i(t)X
c
k(s)Xc

k− j(u)Xc
k(v), Xc

i (t) = Xi(t) − X̄(t). (12)

With functional data observed on UJ , the tensor ĉh,h(u j, uk, u j′ , uk′) can readily be constructed from the data, and
eigenvalues λ̂`,h may be computed using the function svd.tensor in the R package tensorA [37]. One may then
estimate Ξh,1−α with Ξ̂h,1−α, the 1 − α quantile of

J2∑

`=1

λ̂h,`N2
` , (13)

which can be calculated using either Monte Carlo simulation, or directly using the function imhoff in R. We then
rejectH0,h if QT,h > Ξ̂h,1−α. The finite-sample properties of this test are studied in Section 3.

We now turn to the approximation to the limit VK in Theorem 2. As noted in Section 2.3, we use the Welch–
Satterthwaite approximation, see [25] and [39]. The idea is to approximate the limiting distribution VK by a random
variable RK ∼ βχ2

ν , where χ2
ν denotes a χ2 random variable with ν degrees of freedom, and β and ν are estimated so that

the distribution of RK has the same first two moments as the distribution of VK . With µV,K = E(VK) and σ2
V,K = var(VK),

we then take

β =
σ2

V,K

2µV,K
and ν =

2µ2
V,K

σ2
V,K

. (14)

We verify in Appendix A that

µV,K =

K∑

i=1

∫∫
E

{
X2

0(t)X2
i (s)µ(dt)µ(ds)

}
and σ2

V,K =
∑

1≤i, j≤K

ηi, j, (15)

where
ηi, j = 2

∫∫∫∫
[E{X−i(t)X0(s)X− j(u)X0(v)}]2µ(dt)µ(ds)µ(du)µ(dv).

These parameters can be consistently estimated with simple plug-in estimators: we estimate µV,K and σ2
V,K with

µ̂V,K =

K∑

i=1

∫∫
ĉi,i(t, s, t, s)µ(dt)µ(ds) and σ̂2

V,K =
∑

1≤i, j≤K

η̂i, j,

where
η̂i, j = 2

∫∫∫∫
ĉ2

i, j(t, s, u, v)µ(dt)µ(ds)µ(du)µ(dv),

and where ĉi, j is defined in (12). Estimates β̂ and ν̂ are then defined with these estimates as in (14). An approximate
size α test of H ′0,K is to reject when VT,K > β̂χ2

ν̂,1−α, where χ2
ν,1−α is the 1 − α quantile of the χ2 distribution with ν

degrees of freedom.
The evaluation of the estimates η̂i, j in order to carry out the two-moment χ2 approximation for the distribution of

VT,K requires the calculation of a four-variate integral on the 4-dimensional unit hypercube of ĉ2
i, j. When the functions

are observed onUJ , this integral can in principle be approximated by the simple Riemann sum

η̂i, j =
2
J4

J∑

i, j,k,r=1

ĉ2
i, j(ui, u j, uk, ur). (16)

This calculation can become computationally intensive if J is large. To increase the speed of this calculation at the cost
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of a small loss in accuracy, we propose two Monte Carlo integration techniques to evaluate η̂i, j. The first is based on
applying a trapezoidal rule to a sparse, randomly selected, regular grid, which we abbreviate by “rTrap” below. For
each i ∈ {1, . . . ,R}, let vi denote an ordered (increasing) random sample without replacement fromU j. We may then
estimate ηi, j with

η̂i, j = 2
R∑

p,q,k,r=1

[
1
2

{
ĉ2

i, j(vp, vq, vk, vr) + ĉ2
i, j(vp−1, vq−1, vk−1, vr−1)

}]


∏

`∈{p,q,k,r}
(v` − v`−1)


,

where v0 = 0. This method employs a sparser grid of points as compared to (16), which makes it simpler to compute,
as well as a trapezoidal rule that averages the value of the function ĉ2

i, j over the two most extremal points of the
grid. The second method, which we abbreviate “MCint”, is based on standard Monte Carlo integration. In this
case, let (vk,1, . . . , vk,4) with k ∈ {1, . . . ,M} denote points selected uniformly at random and with replacement from
UJ ⊗UJ ⊗UJ ⊗UJ . We may then estimate ηi, j with

η̂i, j =
2
M

M∑

k=1

ĉ2
i, j(vk,1, vk,2, vk,3, vk,4).

Both methods cut down substantially on the computational time required to provide an estimate of ηi, j, mainly because
they each do not require the calculation of the entire function ĉi, j. The relative advantages of one method over the other,
even asymptotically, are unclear since they would depend on the properties of the unknown function ci, j. We compared
both methods below, and found that they produced very similar results for the data generating processes we considered.

Choice of R and M: In practice one should choose R and M to be as large as time and computational resources allow.
In our experience taking R = 25 and M = 2000 produces reliable results, and with these settings it takes typically less
than one minute to calculate all integrals needed to perform the test based on VT,10 for T ≤ 500 on a modern laptop
computer.

2.5. Confidence bands for functional autocorrelation measures

Following [18], we define the functional autocorrelation coefficient at lag h to be

ρh =
‖γh‖∫

γ0(t, t)µ(dt)
, ‖γh‖2 =

∫∫
γ2

h(t, s)µ(dt)µ(ds),

where γh(t, s) is defined by (2). One can readily verify using the Cauchy–Schwarz inequality that ρh ∈ [0, 1]. We
estimate ρh with

ρ̂h =
‖γ̂h‖∫

γ̂0(t, t)µ(dt)
=

√
QT,h√

T
∫
γ̂0(t, t)µ(dt)

. (17)

It follows then, with Ξ̂h,1−α again denoting the estimated asymptotic 1 − α quantile of QT,h, that

B̂h(1 − α) =

√
Ξ̂h,1−α

√
T

∫
γ̂0(t, t)µ(dt)

is an asymptotic upper 1 − α confidence bound for ρh. We can similarly compute such a bound under the assumption
that the sequence (Xi) forms a strong white noise. In this case the limiting covariance defined in (7) does not depend on
the lag h, and is of the form

c?0 (t, s, u, v) = E [{X0(t)X0(u)}E {X0(s)X0(v)}] .
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With discrete data onUJ , the eigenvalues of the covariance operator with kernel c? can be estimated from the tensor

c?0 (t j, tk, t j′ , tk′ ) =


1
T

T∑

i=1

Xc
i (t j)Xc

i (t j′ )




1
T

T∑

i=1

Xc
i (tk)Xc

i (tk′ )

 .

from which a quantile Ξ̂iid,1−α can be calculated as described in (13) and the sentences that follow. This gives a 1 − α
confidence bound for ρh under the strong white noise assumption of

B̂iid(1 − α) =

√
Ξ̂iid,1−α

√
T

∫
γ̂0(t, t)µ(dt)

.

Plots of ρ̂h, B̂h(1 − α), and B̂iid(1 − α) are useful in model identification under potential conditional heteroscedasticity.
Examples and applications are considered in Section 3.

3. Finite-sample performance and application to price data

We first show that the tests proposed above perform well in finite samples by reporting rejection rates for simulated
data. We also demonstrate the usefulness of the confidence bands for the functional autocorrelation defined in
Section 2.5. We then apply the above methods to intraday returns on assets in several different classes. In particular,
our tests supply evidence that the functional GARCH model (3) is compatible with the autocorrelation observed in
these assets.

3.1. Simulation study

In order to evaluate finite-sample properties of the proposed tests, we used the following data generating processes
(DGP’s):

a) IID: Xi(u) = Wi(u), where {Wi(u), u ∈ [0, 1]}∞i=1 is a sequence of independent and identically distributed Brownian
motions.

b) fGARCH(1,1): Xi(u) follows (3), where α and β are integral operators defined, for x ∈ L2(µ) and t ∈ [0, 1], by

(αx)(t) =

∫
α(t, s)x(s)µ(ds), (βx)(t) =

∫
β(t, s)x(s)µ(ds),

where α(t, s) = β(t, s) = 12t(1 − t)s(1 − s). We set δ = 0.01 (a constant function), and

εi(u) =

√
ln(2)

2200u Bi

(
2400u

ln 2

)
, u ∈ [0, 1],

where {Bi(u), u ∈ [0, 1]}i∈Z are independent and identically distributed Brownian bridges.

c) FAR(1, S )-IID: Xi(u) =
∫
ψc(u, s)Xi−1(s)µ(ds) + εi(u), u ∈ [0, 1], where εi follows the DGP IID, and ψc(t, s) =

c exp{−(t2 + s2)/2}. The constant c is then chosen so that ‖ψc‖ = S ∈ (0, 1).

d) FAR(1, S )-fGARCH(1,1): Same as above, but with εi following fGARCH(1,1).

If S > 0, the two FAR processes represent data for which the null hypotheses are violated. The specifications for
the fGARCH(1,1) process are the same as those studied in [2], and satisfy Assumptions 1 and 2. For the fGARCH(1,1)
and both FAR(1, S ) processes, we used a burn-in sample of length 50 before producing a sample of length T . In all
DGPs, each functional observation was simulated on an equally spaced grid of J = 50 points on the unit interval. We
did not notice any significant difference in the results when we studied observations following these specifications
generated on a more refined subset of the unit interval. The measure µ is taken to be µJ .
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We begin by reporting simulation results aimed at assessing the empirical size of the tests ofH0,h andH ′0,K described
in Section 2. We did not notice any pronounced difference in terms of size when testingH0,h for h ∈ {1, . . . , 5}, so we
report the results for h = 1 only. We further note that in this case the hypothesesH0,1 andH ′0,1 are equivalent, as are
the test statistics QT,1 and VT,1. However, the tests differ because the rejection regions are computed in a different way.
We use a direct estimation of eigenvalues to compute the critical values for QT,1 as compared to a two moment χ2

approximation for VT,1, and so comparing the tests in this case gives a comparison of these methods. The eigenvalue
problem related to the asymptotic quantiles for the test statistic QT,1 was solved using (11), and the quantiles of
VT,K were calculated using Monte Carlo integration method “rTrap” to evaluate η̂i, j with R = 25 points as described
in Section 2.4. We did not notice a significant difference when taking R larger in these examples. The empirical
size with nominal levels of 10%, 5%, and 1% calculated from 1000 independent trials are reported in Table 1 for
T ∈ {65, 125, 250, 500}, corresponding, roughly, to the number of trading days in a quarter, six months, a year, and two
years.

The results can be summarized as follows:

a) The test of H0,1 based on QT,1 has quite good size even when the data exhibit conditional heteroscedasticity.
This statement remains true when considering lags 2, 3 and 4, which we studied in unreported simulations.

b) When comparing these results to those for the same hypothesis test based on VT,1, we see that the direct
estimation of the eigenvalues is somewhat less conservative than the two-moment χ2 approximation, and that
this improvement is more marked in the presence of conditional heteroscedasticity.

c) The tests for H ′0,K based on VT,K tended to be somewhat conservative, although the empirical size clearly
approaches the nominal levels as T grows. This effect is more pronounced in the presence of conditional
heteroscedasticity and large K.

To study the empirical power of the tests based on statistics QT,h and VT,K , we applied each of them to data generated
according to FAR(1, S )-IID and FAR(1, S )-GARCH. The empirical rejection rates for increasing values of T are
reported in Figure 1 as power curves, where the y-axis denotes the empirical rejection rate out of 1000 independent trials
with the level of each test set to α = 0.05, and the x-axis denotes the size of the norms of the functional autoregression
function, which we took to be S = 0, 0.15, 0.30, 0.45, 0.60 and 0.75. The empirical rejection rates were on the whole
slightly higher when using QT,1 with the limiting quantiles estimated directly from the empirical eigenvalues in (11)
compared to the χ2 approximation approach, and so we just report the results of the χ2 approximation below, i.e., we
only testedH ′0,1 using VT,1.

For small samples sizes (T = 65), it takes a fairly strong signal in terms of the strength of the autocorrelation in the
sequence measured by the size of the autoregressive operator (S ≥ 0.5) in order for the test to reliably reject the zero
autocovariance hypothesis. However for large sample sizes, T ≥ 250, even fairly light autocorrelation (S ≈ 0.15) is
reliably detected. Under this functional autoregressive alternative in which the autocovariance decays geometrically
with the lag, the power is a decreasing function of the number of lags used in the test statistic VT,K , as expected.

As a demonstration of the confidence bounds for ρh, B̂h(1− α) and B̂iid(1− α), developed in Section 2.5, we present
in Figure 2 plots of ρ̂h versus B̂h(0.95) and B̂iid(0.95) computed from a simulated sample of length T = 250 following
an fGARCH(1,1) process and a FAR(1, 0.75)-GARCH(1, 1) process. It can bee seen that for the functional GARCH
process, the autocorrelation estimate ρ̂h often exceeds the bound for a strong white noise sequence, but stays below the
confidence bounds computed assuming functional conditional heteroscedasticity. This means that using the bound
derived under the assumption of a strong white noise would incorrectly indicate serial autocorrelation, while using the
lag dependent bounds we derived would lead to the correct conclusion that there is no serial autocorrelation. Under
functional autoregression, ρ̂h often goes well above both bounds, indicating that serial autocorrelation exists. In this
case, both bounds lead to a correct conclusion.

3.2. Application to representative assets

We now consider an application of our methodology to intraday price data from a selection of assets representing
various asset classes. Our objective in this section is to determine whether the autocovariance observed in intraday
return functions constructed from these asset prices is consistent with a weak white noise. The assets that we considered
are listed in Table 2. The data for the S&P 500 index, Apple, Wells Fargo, and Exxon Mobile were obtained from
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Test, Statistic: H0,1, QT,1

DGP: IID fGARCH(1,1)

Nominal Level: 10% 5% 1% 10% 5% 1%

T 65 0.100 0.050 0.006 0.095 0.035 0.004
125 0.092 0.045 0.009 0.093 0.048 0.005
250 0.113 0.048 0.007 0.109 0.052 0.007
500 0.118 0.056 0.01 0.089 0.040 0.006

Test, Statistic: H ′0,1, VT,1

IID fGARCH(1,1)

10% 5% 1% 10% 5% 1%

T 65 0.088 0.040 0.013 0.081 0.037 0.008
125 0.096 0.066 0.017 0.097 0.040 0.014
250 0.086 0.049 0.021 0.085 0.042 0.007
500 0.102 0.050 0.018 0.090 0.044 0.008

Test, Statistic: H ′0,5, VT,5

IID fGARCH(1,1)

10% 5% 1% 10% 5% 1%

T 65 0.090 0.44 0.010 0.067 0.035 0.008
125 0.083 0.043 0.010 0.086 0.041 0.008
250 0.078 0.038 0.008 0.077 0.049 0.014
500 0.100 0.051 0.008 0.089 0.043 0.013

Test, Statistic: H ′0,10, VT,10

IID fGARCH(1,1)

10% 5% 1% 10% 5% 1%

T 65 0.074 0.035 0.005 0.078 0.035 0.009
125 0.075 0.036 0.009 0.075 0.039 0.016
250 0.099 0.056 0.015 0.094 0.043 0.012
500 0.094 0.044 0.012 0.102 0.051 0.009

Test, Statistic: H ′0,20, VT,20

IID fGARCH(1,1)

10% 5% 1% 10% 5% 1%

T 65 0.103 0.066 0.022 0.091 0.051 0.019
125 0.101 0.060 0.019 0.086 0.053 0.013
250 0.084 0.050 0.014 0.092 0.049 0.013
500 0.090 0.042 0.008 0.088 0.058 0.019

Table 1: Empirical sizes based on 1000 independent simulations with nominal levels of 10%, 5%, and 1% for tests ofH0,1 andH ′0,K based on QT,1
and VT,K with both IID and fGARCH(1,1) data.
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Figure 1: Empirical rejection rates with the nominal significance level at α = 0.05, as a function of the norm, S , of the functional autoregressive
kernel; left panel: test ofH ′0,1, right panel: test ofH ′0,10. The DGP is FAR(1, S )-GARCH. The empirical rejection rates were somewhat higher for
data following FAR(1, S )-IID.
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Figure 2: Plots of ρ̂h with bounds B̂h(0.95) and B̂iid(0.95) defined in Section 2.5 computed from a simulated sample of length T = 250 following a
fGARCH(1,1) process (left panel) and a FAR(1, 0.75)-GARCH(1, 1) process (right panel).

12



nasdaq.com, and the commodity and currency exchange data were obtained from the Chicago Mercantile Exchange.
We considered 5-minute resolution data, J = 78, the time period from 2/January/2014 to 31/December/2014, which
contains T = 249 trading days after removing a half trading day on December 24. For each asset, price data, Pi(u),
are available on each trading day during this time period in a 1-minute resolution, which we used to construct two
sequences of functions: the 5-minute log-returns,

Ri(u) = ln Pi(u) − ln Pi(u − 5),

and the cumulative intra day returns (CIDR’s)

Ci(u) = ln Pi(u) − ln Pi(0).

Class Symbol Description

Index S&P 500 Standard & Poor 500 Index
Currency Exchange EC Euro to Dollar
Commodity Futures CL Crude Oil (WTI Sweet Light) Futures
Technology AAPL Apple Inc
Financials WFC Wells Fargo & Company
Energy XOM Exxon Mobile Corporation

Table 2: Assets used in this study

While CIDR curves have not been postulated to follow a functional GARCH model, they could potentially form a
functional white noise with a different dependence structure agreeing with Assumptions 1 and 2. CIDR curves are
important to investors, as they show how a unit investment evolves throughout a trading day, see, e.g., [27]. Plots of the
first five 5-minute log return curves and cumulative intraday return curves computed from S&P 500 index are given in
Figure 3. For each asset, we plotted ρ̂h and B̂h(0.95), 1 ≤ h ≤ 20, as well as B̂iid(0.95) calculated from the 5-minute
returns and CIDR curves. These plots for 5-minute log returns curves of the Apple stock price and the S&P 500 index
are displayed in Figure 4.
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Figure 3: Plots of the first five 5-minute log return curves (left panel) and cumulative intraday return curves (right panel) constructed from the S&P
500 index .

One often notices in these plots that ρ̂h regularly goes outside the 95% confidence interval for ρh assuming the
sequence follows a strong white noise, but typically lies within the confidence intervals of the same level calculated
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Figure 4: Functional sample autocorrelations ρ̂h defined by (17) for the 5-minute log-return curves based on the S&P 500 index and Apple stock
prices. Approximately 95% of the autocorrelations of a strong white noise should lie below the horizontal solid line. Approximately 95% of the
autocorrelations a functional GARCH white noise should lie below the dashed curve.

under the assumption of conditional heteroscedasticity. We noticed this same pattern across all types of assets. This is
in accordance with the adequacy of the functional GARCH model for the data.

Further evidence in support of the adequacy of a functional GARCH type model for these curves was supplied by
testing for the cumulative significance of the first 10 functional autocovariances, a testH ′0,10. We applied a test of this
hypothesis based on V249,10 to each series, and the results, in the form of p-values, are reported in Table 3. In each case,
we could not rejectH ′0,10 with any significance. By comparison, when we applied the portmanteau test of [13] with
maximum lag 10, which tests the null hypothesis that the series follows a strong white noise (abbreviated SWN Test
below), the null was strongly rejected in 6 out of 12 total tests: in 4 out of 6 assets for the 5-minute return curves, and 2
out of 6 assets for the CIDR curves. The SWN p-values are also given in Table 3.

p-values for portmanteau tests

CIDR 5-minute returns

Symbol H ′0,10 SWN Test H ′0,10 SWN Test

S&P 500 0.9721 0.4061 0.5170 0.0000
EC 0.5820 0.0798 0.4934 0.0001
CL 0.0788 0.0000 0.4462 0.0000
AAPL 0.5045 0.0315 0.4737 0.0989
WFC 0.1713 0.0604 0.4483 0.2193
XOM 0.3759 0.6513 0.5035 0.0332

Table 3: p-values for portmanteau tests measuring the cumulative significance of the first 10 empirical autocovariance functions computed from the
CIDR and 5-minute return curves under conditional heteroscedasticity as well as under a strong white noise assumption as in [13].

Our data analysis shows that both types of return curves generally follow a weak white noise, but not a sequence of
iid curves. Insights of this type have been a cornerstone of modeling of scalar returns, but to the best of our knowledge,
have not been rigourously established in the context of daily return curves. We hope that our work will spur further
research into the dependence structure and prediction of functional objects derived from price data, in particular towards
modeling functional conditional heteroscedasticity.
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Appendix A. Proofs of the asymptotic results of Section 2

Appendix A.1. Proof of Theorem 1 and Corollary 1

The first lemma shows that the estimation of the mean function has an asymptotically negligible effect. Recall
that we assume that E(Xi) = 0 in the weak sense in Assumption 2. A key element of the proof is the bound
E‖∑T

i=1 Xi‖4 = O(T 2) under Assumptions 1 and 2 obtained by [4] and [35].

Lemma 1. Suppose Assumptions 1 and 2 hold, and let

γ̃h(t, s) =
1
T

T−h∑

i=1

Xi(t)Xi+h(s). (A.1)

Then {∫∫
(γ̂h(t, s) − γ̃(t, s))2µ(dt)µ(ds)

}1/2

= OP (1/T ) .

Proof. According to the definitions of γ̂h and γ̃h,

γ̂h(t, s) = γ̃h(t, s) − X̄(s)
1
T

T−h∑

i=1

Xi(t) − X̄(t)
1
T

T−h∑

i=1

Xi(s) + X̄(t)X̄(s).

It follows then from the triangle inequality in L2(µ ⊗ µ) that

{∫∫
(γ̂h(t, s) − γ̃(t, s))2µ(dt)µ(ds)

}1/2

≤ G1 + G2 + G3,

where

G1 =


∫∫ X̄(s)

1
T

T−h∑

i=1

Xi(t)



2

µ(dt)µ(ds)



1/2

, G2 =


∫∫ X̄(t)

1
T

T−h∑

i=1

Xi(s)



2

µ(dt)µ(ds)



1/2

,

and

G3 =

[∫∫ {
X̄(t)X̄(s)

}2
µ(dt)µ(ds)

]1/2

.

It follows from the Cauchy–Schwarz inequality that

E(G2
1) = E

∫
X̄2(s)µ(ds)

∫ { 1
T

T−h∑

i=1

Xi(t)
}2
µ(dt) ≤ (E‖X̄‖4)1/2

(
E
∥∥∥∥

1
T

T−h∑

i=1

Xi

∥∥∥∥
4)1/2

.

Assumptions 1 and 2(i) imply that (Xi) is a mean zero and L4-m-approximable series, and hence by Proposition 4
of [4], which can be adapted to the separable Hilbert space setting, see Proposition 2.61 of [35], we have that

E
∥∥∥∥

T∑

i=1

Xi

∥∥∥∥
4

= O(T 2).

We therefore conclude that E‖X̄‖4 = O(1/T 2). It follows similarly that

E
∥∥∥∥

1
T

T−h∑

i=1

Xi

∥∥∥∥
4

= O
(
1/T 2

)
,
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and so E(G2
1) = O(1/T 2). This along with Chebyshev’s inequality implies that G1 = OP (1/T ) . Similar arguments

show that Gi = OP(1/T ) for i ∈ {2, 3}, which implies the result.

Our objective is to establish limit distribution of the sample autocovariance function for a fixed lag h. The first step
is to show that the products Xi−h(t)Xi(s) form an L2-m-approximable sequence. Under Assumption 1, γ̃h(t, s) has the
same distribution as

γ̄h(t, s) =
1
T

T−h∑

j=1

Zi,h(t, s), (A.2)

where Zi,h(t, s) = Xi−h(t)Xi(s). This time shift is introduced to obtain a more convenient Bernoulli shift representation.
The sequence (Zi,h) is evidently strictly stationary, and has mean zero under Assumption 2(ii). It follows from the
Cauchy–Schwarz inequality for the expectation and Assumption 1 that

E
{∫∫

Z2
i,h(t, s)µ(dt)µ(ds)

}1/2

< ∞,

and so Zi,h is a.s. an element of L2(µ ⊗ µ). Moreover, according to Assumption 1,

Zi,h = fh(εi, εi−1, . . .),

where fh : S∞ → L2(µ ⊗ µ). Let Z(m)
i,h be defined as in (6). We note that for m > h, Z(m)

i,h = X(m−h)
i−h ⊗ X(m)

i .

Lemma 2. Under Assumption 1, the sequence (Zi,h) is L2-m-approximable, i.e.,

∞∑

m=1

[
E

∫∫
{Zi,h(t, s) − Z(m)

i,h (t, s)}2µ(dt)µ(ds)
]1/2

< ∞.

Proof. By adding and subtracting the same term under the square in the integrand, we get that

E
∫∫
{Zi,h(t, s) − Z(m)

i,h (t, s)}2µ(dt)µ(ds)

= E
∫∫
{Xi−h(t)Xi(s) − Xi−h(t)X(m)

i (s) + Xi−h(t)X(m)
i (s) − X(m−h)

i−h (t)X(m)
i (s)}2µ(dt)µ(ds)

and hence using the triangle inequalities in L2(µ ⊗ µ) and for {E(·)2}1/2 it follows that

[
E

∫∫
{Zi,h(t, s) − Z(m)

i,h (t, s)}2µ(dt)µ(ds)
]1/2

≤
{

E
([∫∫

{Xi−h(t)Xi(s) − Xi−h(t)X(m)
i (s)}2µ(dt)µ(ds)

]1/2

+

[∫∫
{Xi−h(t)X(m)

i (s) − X(m−h)
i−h (t)X(m)

i (s)}2µ(dt)µ(ds)
]1/2)2}1/2

≤
[
E

∫∫
{Xi−h(t)Xi(s) − Xi−h(t)X(m)

i (s)}2µ(dt)µ(ds)
]1/2

+

[
E

∫∫
{Xi−h(t)X(m)

i (s) − X(m−h)
i−h (t)X(m)

i (s)}2µ(dt)µ(ds)
]1/2

. (A.3)

We obtain by some simple algebra and the Cauchy–Schwarz inequality that the second term in the last line of (A.3)
satisfies

[
E

∫∫
{Xi−h(t)X(m)

i (s) − X(m−h)
i−h (t)X(m)

i (s)}2µ(dt)µ(ds)
]1/2

= (E‖X(m)
i ‖2‖Xi−h − X(m−h)

i−h ‖2)1/2
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≤ (E‖Xi‖4)1/4(E‖Xi−h − X(m−h)
i−h ‖4)1/4. (A.4)

We recall that by Assumption 1, E(‖Xi‖4) < ∞. Similar arguments show that the first term on the last line of (A.3)
satisfies [

E
∫∫
{Xi−h(t)Xi(s) − Xi−h(t)X(m)

i (s)}2µ(dt)µ(ds)
]1/2

≤ (E‖Xi−h‖4)1/4(E‖Xi − X(m)
i ‖4)1/4,

from which we obtain, when combined with (A.4), that

∞∑

m=h

[
E

∫∫
{Zi,h(t, s) − Z(m)

i,h (t, s)}2µ(dt)µ(ds)
]1/2

≤ (E‖Xi−h‖4)1/4
[ ∞∑

m=h

(E‖Xi−h − X(m−h)
i−h ‖4)1/4 +

∞∑

m=h

(E‖Xi − X(m)
i ‖4)1/4

]
< ∞.

This completes the proof.

Lemma 3. Suppose Assumptions 1 and 2 hold. Then one may define a sequence of Gaussian processes Γh,T , T ≥ 1, in
L2(µ ⊗ µ) on the same, perhaps enlarged, probability space as (Xi) such that

∫∫
{
√

T γ̄h(t, s) − Γh,T (t, s)}2µ(ds)µ(dt) = oP(1),

where for t, s, t′, s′ in the support of µ, EΓh,T (t, s) = 0, and

ch(t, s, t′, s′) = E
{
Γh,T (t, s)Γh,T (t′, s′)

}
= E

{
X0(t)X0(t′)Xh(s)Xh(s′)

}
.

Proof. It follows from similar arguments as those used to establish Lemma 1 that if

γ?h (t, s) =
1
T

T∑

j=1

Zi,h(t, s),

then [∫∫
{
√

T γ̄h(t, s) −
√

Tγ?h (t, s)}2µ(dt)µ(ds)
]1/2

= OP(h/
√

T ) = oP(1).

It follows from Lemma 2 that the sequence (Zi,h) is L2-m-approximable, and hence we obtain from Theorem 1.2 of [19]
that a sequence of Gaussian processes Γh,T (t, s) as defined in the statement of the lemma exists and satisfies

∫∫
{
√

Tγ?h (t, s) − Γh,T (t, s)}2µ(ds)µ(dt) = oP(1),

with

EΓh,T (t, s)Γh,T (t′, s′) = EZ0,h(t, s)Z0,h(t′, s′) +

∞∑

j=1

EZ0,h(t, s)Z j,h(t′, s′) +

∞∑

j=1

EZ0,h(t′, s′)Z j,h(t, s).

According to Assumption 2(iii), EZ0,h(t′, s′)Z j,h(t, s) = 0 and EZ0,h(t, s)Z j,h(t′, s′) = 0 for all j ≥ 1, which implies that

EΓh,T (t, s)Γh,T (t′, s′) = EZ0,h(t, s)Z0,h(t′, s′) = ch(t, s, t′, s′).

This completes the argument.

Proof of Theorem 1. Theorem 1 follows directly from Lemmas 1 and 3.
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Proof of Corollary 1. According the triangle inequality in L2(µ ⊗ µ) and Theorem 1,

∣∣∣∣∣∣

{∫∫
T γ̂2

h(t, s)µ(dt)µ(ds)
}1/2

−
{∫∫

Γ2
h,T (t, s)µ(dt)µ(ds)

}1/2∣∣∣∣∣∣

≤
[∫∫

{
√

T γ̂h(t, s) − Γh,T (t, s)}2µ(dt)µ(ds)
]1/2

= oP(1).

This implies ∫∫
T γ̂2

h(t, s)µ(dt)µ(ds) =

∫∫
Γ2

h,T (t, s)µ(dt)µ(ds) + oP(1).

Finally, since the elements of the approximating Gaussian sequence each have the same distribution, we have that
∫∫

Γ2
h,T (t, s)µ(dt)µ(ds) D

=

∫∫
Γ2

h,0(t, s)µ(dt)µ(ds)

for every integer T ≥ 0. This completes the proof.

Appendix A.2. Proof of Theorem 2 and (15)
To begin, let K be a positive integer as in the definition ofH ′0,K , and define

ṼT,K = T
K∑

h=1

‖γ̃h‖2

where γ̃h is defined in (A.1).

Lemma 4. Under Assumptions 1 and 2, |VT,K − ṼT,K | = oP(1).

Proof. The proof follows along similar lines as Lemma 1, and so the details are omitted.

Analogous to the proof of Theorem 1, we also define

V̄T,K = T
K∑

h=1

‖γ̄h‖2,

where γ̄ is defined in (A.2). Under Assumption 1, ṼT,K and V̄T,K have the same distribution.
Let K be a positive integer as in the definition of H ′0,K . In order to prove Theorem 2, we must introduce some

notation related to two Hilbert spaces of square integrable, finite-dimensional, functions. Consider the spaceH1 of
functions f : [0, 1]2 → RK , mapping the unit square to the space of K-dimensional column vectors with real entries,
satisfying ∫∫

{ f (t, s)}> f (t, s)µ(dt)µ(ds) < ∞.

This space is a separable Hilbert space when equipped with the inner product

〈 f , g〉H ,1 =

∫∫
{ f (t, s)}> g(t, s)µ(dt)µ(ds).

Let ‖ · ‖H ,1 denote the norm induced by this innerproduct. Let 〈·, ·〉F denote the matrix Frobenius inner product,
and let ‖ · ‖F denote the corresponding norm; see Chapter 5 of [29]. Further let H2 denote the space of functions
f : [0, 1]4 → RK×K , equipped with the inner product

〈 f , g〉H ,2 =

∫∫∫∫
〈 f (t, s, u, v), g(t, s, u, v)〉Fµ(dt)µ(ds)µ(du)µ(dv).

for which 〈 f , f 〉H ,2 < ∞. H2 is also a separable Hilbert space when equipped with this inner product.
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Now, proceeding with this notation towards establishing Theorem 2, let ψK : [0, 1]4 → RK×K be defined by

ψK(t, s, u, v) = {E{X−i(t)X0(s)X− j(u)X0(v)}, 1 ≤ i, j ≤ K}.

The kernel ψK defines a linear operator ΨK : H1 → H1 by

ΨK( f )(t, s) =

∫∫
ψK(t, s, u, v) f (u, v)µ(du)µ(dv), (A.5)

where the integration is carried out coordinate-wise. The operator ΨK has the following three properties:

1. ΨK is Hilbert–Schmidt, and therefore is compact. This follows if we show that the kernel ψK is an element ofH2,
see Chapter 6 of [31]. We have by Assumption 1 and two applications of the Cauchy–Schwarz inequality that

〈ψK , ψK〉H ,2 =

∫∫∫∫
‖ψK(t, s, u, v)‖2Fµ(dt)µ(ds)µ(du)µ(dv)

=

∫∫∫∫ K∑

i, j=1

[E{X−i(t)X0(s)X− j(u)X0(v)}]2µ(dt)µ(ds)µ(du)µ(dv)

≤
K∑

i, j=1

E
{∫

X2
−i(t)dt

∫
X2

0(s)ds
}

E
{∫

X2
− j(u)du

∫
X2

0(v)dv
}

=

K∑

i, j=1

E(‖X−i‖2‖X0‖2)E(‖X− j‖2‖X0‖2)

≤
K∑

i, j=1

(E(‖X0‖4)2) = K2{E(‖X0‖4)2} < ∞.

2. ΨK is symmetric. We have, by the definition of ψK , that ψ>K(t, s, u, v) = ψK(u, v, t, s), and therefore for all
f , g ∈ H1,

〈ΨK( f ), g〉 =

∫∫∫∫
f>(u, v)ψ>K(t, s, u, v)g(t, s)µ(dt)µ(ds)µ(du)µ(dv)

=

∫∫∫∫
f>(u, v)ψK(u, v, t, s)g(t, s)µ(dt)µ(ds)µ(du)µ(dv) = 〈 f ,ΨK(g)〉.

3. ΨK is positive definite. To see this, let ζK(t, s) = (X0(t)X1(s), . . . , X0(t)XK(s))>. Then it follows by Fubini’s
theorem that for any f ∈ H1,

〈 f ,ΨK( f )〉 = E
{∫∫

f>(t, s)ζK(t, s)µ(dt)µ(ds)
}2

≥ 0.

Due to these three properties, we have by the spectral theorem for positive definite, self-adjoint, compact operators,
see Chapter 6.2 of [31], that ΨK defines a nonnegative and decreasing sequence of eigenvalues, ξ1,K ≥ ξ2,K ≥ · · · and
corresponding orthonormal basis of eigenfunctions ϕi,K(t, s), 1 ≤ i < ∞, satisfying

ΨK(ϕi)(t, s) = ξi,Kϕi,K(t, s), with
∞∑

i=1

ξi,K < ∞. (A.6)

Let

Γ̂T,K(t, s) =


1√
T

T∑

i=1

Xi−1(t)Xi(s), . . . ,
1√
T

T∑

i=1

Xi−K(t)Xi(s)



>
.

19



Lemma 5. Under the conditions of Theorem 2, Γ̂T,K(t, s)
D(H1)−→ ΓK(t, s), where ΓK(t, s) is a Gaussian process in H1

with mean zero and covariance operator ΨK defined in (A.5).

Proof. Let v(t, s) = (v1(t, s), . . . , vK(t, s))> ∈ H1. Then

〈Γ̂T,K , v〉H ,1 =

∫∫
Γ>K,T (t, s)v(t, s)µ(dt)µ(ds) =

1√
T

T∑

i=1

K∑

j=1

∫∫
Xi− j(t)Xi(s)v j(t, s)µ(dt)µ(ds) =

1√
T

T∑

i=1

θi,K(v).

Along similar lines as the proof of Lemma 2, one can show that the stationary real-valued sequence
{
θi,K(v)

}
i∈Z is

L2-m-approximable. Moreover, Fubini’s theorem and Assumption 2 imply that E{θi,K(v)} = 0. Also, for integers ` , 0
we have according to Fubini’s theorem and Assumption 2(iii) that

E{θ0,K(v)θ`,K(v)} =

K∑

i=1

K∑

j=1

∫∫∫∫
E{X− j(t)X0(s)X`− j(u)X`(r)}vi(t, s)v j(u, r)µ(dt)µ(ds)µ(du)µ(dr) = 0,

and for ` = 0,

E{θ0,K(v)θ0,K(v)} =

K∑

i=1

K∑

j=1

∫∫∫∫
E{X− j(t)X0(s)X− j(u)X0(r)}vi(t, s)v j(u, r)µ(dt)µ(ds)µ(du)µ(dr) = 〈ΨK(v), v〉H ,1,

from which it follows that ∞∑

i=−∞
E{θ0,K(v)θi,K(v)} = 〈ΨK(v), v〉H ,1.

Therefore, by Theorem 3 of [38],

〈Γ̂T,K , v〉H ,1  N(0, 〈ΨK(v), v〉H ,1) D
= 〈ΓK , v〉H ,1,

whereN(m, σ2) denotes a normal random variable with mean m and variance σ2. This shows that the finite-dimensional
distributions of Γ̂T,K converge to those of ΓK . We now aim to show that the sequence Γ̂T,K is tight in H1. We begin
by showing that the sequence Xi,K(t, s) = (Xi−1(t)Xi(s), . . . , Xi−K(t)Xi(s))> is L2-m-approximable inH1. Evidently, by
Assumption 1, Xi,K is of the form Xi,K = fK(εi, εi−1, . . .), where f : S∞ → H1. Let X(m)

i,K be defined as in (6) so that
when m > K, X(m)

i,K (t, s) = (X(m−1)
i−1 (t)X(m)

i (s), . . . , X(m−K)
i−K (t)X(m)

i (s))>. We then have that for m > K by (A.3) and (A.4),
that

(E‖Xi,K − X(m)
i,K ‖2H ,1)1/2 =

[ K∑

j=1

E
∫∫
{Xi− j(t)Xi(s) − X(m− j)

i− j (t)X(m)
i (s)}2µ(dt)µ(ds)

]1/2

≤
K∑

j=1

[E
∫∫
{Xi− j(t)Xi(s) − X(m− j)

i− j (t)X(m)
i (s)}2µ(dt)µ(ds)]1/2

≤
K∑

j=1

(E‖X0‖4)1/4{(E‖X0 − X(m− j)
0 ‖4)1/4 + (E‖X0 − X(m− j)

0 ‖4)1/4}.

Therefore by Assumption 1 and since K is fixed,

∞∑

m=K+1

(E‖Xi,K − X(m)
i,K ‖2H ,1)1/2 ≤

K∑

j=1

(E‖X0‖4)1/4
∞∑

m=K+1

{(E‖X0 − X(m− j)
0 ‖4)1/4 + (E‖X0 − X(m− j)

0 ‖4)1/4} < ∞,

showing that Xi,K(t, s) is L2-m-approximable inH1. Since Γ̂T,K =
∑T

i=1 Xi,K/
√

T , it follows from Lemmas 5, 6, and 7
in [8] that the sequence Γ̂T,K is tight inH1. The result now follows from Theorem 2.2 of [7].
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Proof of Theorem 2. This is now a simple consequence of Lemma 5. It follows from the latter, the continuous mapping
theorem, and the Karhunen–Loève theorem that

V̄T,K = ‖Γ̂T,K‖2H ,1  ‖ΓK‖2H ,1
D
=

∞∑

`=1

ξ`,KN2
` ,

where (ξ`,K)∞`=1 are the eigenvalues of ΨK . Now the result for VT,K follows from Lemma 4.

Justification of (15). According to Proposition 5.10.16 of [5] (see Theorems 1.5 and 1.6 in [33] in the finite-dimensional
case),

E(‖ΓK‖2H ,1) = tr(ΨK) =

∫∫
EX2

0(t)X2
i (s)µ(dt)µ(ds),

and
var(‖ΓK‖2H ,1) = 2 tr(Ψ2

K) = 2
∑

1≤i, j≤K

∫∫∫∫
[E{X−i(t)X0(s)X− j(u)X0(v)}]2µ(dt)µ(ds)µ(du)µ(dv).

Appendix A.3. Proof of Theorem 3

Proof of Theorem 3. Since VT,K ≥ QT,h for all h ∈ {1, . . . ,K}, it is enough to just prove the first part of the theorem.
By repeating the arguments in Lemma 1, it follows that it is enough to show that under the conditions of the theorem,

T‖γ̃h‖2 P→ ∞, as T → ∞. By Assumption 3, it follows that there exists a nonzero function ah ∈ L2(µ ⊗ µ) such that
E{X0(t)Xh(s)} = ah(t, s) µ ⊗ µ almost everywhere. From this we obtain that

T‖γ̃h‖2 =
1
T

∫∫ [T−h∑

j=1

{X j(t)X j+h(s) − ah(t, s) + ah(t, s)}
]2

dtds (A.7)

=

∫∫ [
1√
T

T−h∑

j=1

{X j(t)X j+h(s) − ah(t, s)}
]2

dtds

+ 2
∫∫ [

T − h
T

ah(t, s)
T−h∑

j=1

{X j(t)X j+h(s) − ah(t, s)}
]
dtds +

(T − h)2

T
‖ah‖2.

It follows again from similar arguments as those used to establish Lemma 2 that the stationary sequence X j(t)X j+h(s) −
ah(t, s) ∈ L2(µ ⊗ µ), j ∈ Z is mean zero and L2-m-approximable, from which we obtain that

∫∫ [
1√
T

T−h∑

j=1

{X j(t)X j+h(s) − ah(t, s)}
]2

dtds = OP(1),

and ∫∫ [
T − h

T
ah(t, s)

T−h∑

j=1

{X j(t)X j+h(s) − ah(t, s)}
]
dtds = OP(

√
T ).

The result then follows in light of (A.7) since (T − h)2/T‖ah‖2 diverges to infinity at rate T .
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[17] L. Horváth, P. Kokoszka, Inference for Functional Data with Applications, Springer, 2012.
[18] L. Horváth, G. Rice, S. Whipple, Adaptive bandwidth selection in the estimation of the long run covariance of functional time series, Comput.

Statist. Data Anal. 100 (2016) 676–693.
[19] M. Jirak, On weak invariance principles for sums of dependent random functionals, Statist. Probab. Lett. 83 (2013) 2291–2296.
[20] V. Kargin, A. Onatski, Curve forecasting by functional autoregression, J. Multivariate Anal. 99 (2008) 2508–2526.
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