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Abstract  20 

Sediment transport is a key driver of reef zonation and biodiversity, where an understanding of 21 

sediment dynamics gives insights into past reef processes and allows the prediction of geomorphic 22 

responses to changing environmental conditions. However, modal conditions within the back-reef 23 

seldom promote sediment transport, hence direct observation is inherently difficult. Large benthic 24 

foraminifera (LBF) have previously been employed as ‘tracers’ to infer sediment transport 25 

pathways on coral reefs, as their habitat is largely restricted to the algal flat and post-mortem, their 26 

calcium carbonate test is susceptible to sediment transport forces into the back-reef. Foraminiferal 27 

test abundance and post-depositional test alteration have been used as proxies for sediment 28 

transport, although the resolution of these measures becomes limited by low test abundance and the 29 

lack of variation within test alteration. Here we propose the novel use of elemental ratios as a proxy 30 

for sediment transport. Two species, Baculogypsina sphaerulata and Calcarina capricornia, were 31 

analysed using a taphonomic index within One Tree and Lady Musgrave reefs, Great Barrier Reef 32 

(Australia). Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to 33 

determine Mg/Ca and Sr/Ca and these ratios were compared with taphonomic data. Decreases in 34 

test Mg/Ca accompany increases in Sr/Ca in specimens from algal-flat to lagoonal samples in both 35 

species, mirroring trends indicated by taphonomic values, therefore indicating a relationship with 36 

test alteration. To delineate mechanisms driving changes in elemental ratios, back-scattered electron 37 

(BSE) images, elemental mapping and in situ quantitative spot analyses by electron microprobe 38 

microanalysis (EPMA) using wavelength dispersive X-ray spectrometers (WDS) were performed 39 

on un-altered algal flat and heavily abraded tests for both species. EPMA analyses reveal 40 

heterogeneity in Mg/Ca between spines and the test wall, implying the loss of appendages results in 41 

a decrease in Mg/Ca. BSE imaging and WDS elemental mapping provided evidence for 42 

cementation, facilitated by microbial-boring as the primary cause of increasing Sr/Ca. These novel 43 

proxies hold advantages over taphonomic measures and further provide a rapid method to infer 44 

sediment transport pathways within back-reef environments.  45 
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46 

1. Introduction 47 

Definitions of coral reef stability vary in accordance to different timescales. Whilst reefs are 48 

considered vulnerable at short-term ecological timescales, the overall evolution and preservation of 49 

reefs as calcium carbonate structures highlights their durability over geological timescales (Perry et 50 

al., 2008). An approach to bridge this discrepancy is an understanding of geomorphological 51 

processes, specifically sediment transport. Coral reefs are composed primarily of unconsolidated 52 

sediment and as such, sediment transport is a key driver of reef zonation and the formation of 53 

geomorphic features, including islands and back-reef sand aprons (Hopley et al., 2007). Through 54 

affecting the substrate for coral recruitment and habitat for benthic calcifiers, sediment transport 55 

impacts biodiversity whilst also developing landforms that are preserved over millennia (Perry et 56 

al., 2008). An understanding of sediment dynamics gives insights into past reef processes and 57 

allows the prediction of future geomorphic responses to changing boundary conditions.  58 

59 

A current paradigm in the morphological evolution of coral reefs is the concept of reef ‘maturity’, 60 

where the extent of back-reef progradation is correlated to the ‘stage’ of its development and 61 

indication of future morphological states (Hopley et al., 2007). The production and deposition of 62 

calcareous sediments leads to the progradation of back-reef sand aprons, which are a ubiquitous 63 

feature to carbonate platforms in both modern and ancient reefs (Rankey and Garza-Pérez, 2012). 64 

Sediments produced in situ by benthic calcifiers on the algal flat are entrained through tidal and 65 

wave forcing into the back-reef ('lagoonward', Harris et al., 2011, 2015). The resulting lagoonal 66 

infill is considered to be one of the major constructional processes once reefs have reached sea level 67 

(Marshall and Davies, 1982). A substantial component of back-reef skeletal debris is the tests 68 

(‘shells’) of symbiont-bearing large benthic foraminifera (LBF), generated from populations that 69 

inhabit algal flats at high abundance (Fujita et al., 2009, Doo et al., 2012, 2016). The LBF test is 70 

extremely robust whilst the host is living, withstanding considerable wave energy (Briguglio and 71 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4

Hohenegger, 2011) and chemical dissolution (Engel et al., 2015). However, these properties are 72 

quickly lost post-mortem, due to loss of attachments used to anchor the test to the substrate, leading 73 

to wave-induced transport into the back-reef (Briguglio and Hohenegger, 2011). 74 

75 

Direct field observation of sediment transport within the back-reef environment is inherently 76 

difficult. Previous studies have employed streamer traps (Dolan and Charles, 2003) and optical 77 

backscatter sensors (Storlazzi et al., 2004, Vila-Concejo et al., 2015) with limited success. Vila-78 

Concejo et al. (2014) have shown minimal sediment transport lagoonward within modal conditions 79 

and thus transport of surficial sediments into the back-reef may be largely restricted to high-energy 80 

events (Li et al., 1998, Vila�Concejo and Kench, 2017). In addition, Harris et al. (2015) found that 81 

the majority of back reef sedimentary infilling occurred during elevated sea levels between 6,000 82 

and 2,000 cal. BP, implying that back-reef sand aprons may be relict features of higher sea levels. 83 

Thus, an opportune ‘tracer’ is the sand-sized tests of LBF, which have a defined source area (algal 84 

flat) and are susceptible to sediment transport processes. On atolls and carbonate platforms, 85 

hydrodynamic forcing decreases across the reef flat and sand apron due to depth-limited wave-86 

breaking and bottom friction (Kench and Brander, 2006, Vila-Concejo et al., 2013, Harris et al., 87 

2015), creating gradients of decreasing LBF test abundance lagoonwards (Chun et al., 1997).  88 

89 

Granular interactions with the reef flat and sand apron during transport modify LBF tests 90 

(‘taphonomic alteration’), leading to fracturing, the loss of spines and abraded test wall (Kotler et 91 

al., 1992, Ford and Kench, 2012). The resilience of tests to alteration is species-specific, where 92 

those more resilient to chemical and physical wear will disperse further and in greater quantities 93 

(Maiklem, 1968, Ford and Kench, 2012). Previous studies have incorporated taphonomic alteration 94 

as a qualitative proxy to infer sediment transport pathways within both siliciclastic (Alejo et al., 95 

1999) and carbonate settings  (Dawson et al., 2014, Pilarczyk et al., 2014, Fellowes et al., 2016). 96 

However, there are limitations to the use of LBF as transport proxies, as inter-reef variation in LBF 97 
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assemblage and abundance translates to significant differences in their prevalence and taphonomic 98 

state within carbonate deposits. A low abundance of tests lowers the resolution and counteracts the 99 

determination of sediment pathways (Fellowes et al., 2016). 100 

101 

Foraminiferal tests have long been used in the reconstruction of paleo-ocean chemistry, as the 102 

elemental composition of tests reflects their environment of formation (Erez, 2003). There has been 103 

a particular focus on the divalent cations (Mg2+ and Sr2+), which substitute for Ca2+ during 104 

biomineralization of calcium carbonate (Zhang and Dawe, 2000). Few studies have explored the 105 

minor and trace element content of shallow-water LBF and all have done so to determine their 106 

worth in paleo-reconstruction (Raja et al., 2005, 2007). However, Raja et al. (2005) demonstrate 107 

significant seasonal, inter and intra-reef variability of elemental ratios within LBF tests, at ranges 108 

which leave them unsuitable as a constrained paleo-proxy. Here we propose elemental ratios of 109 

Mg/Ca and Sr/Ca within LBF tests as a geochemical proxy for the average magnitude and direction 110 

of sediment transport into the back-reef environment. Two related species widespread across the 111 

Indo-Pacific, Baculogypsina sphaerulata and Calcarina capricornia, were analysed for Mg/Ca and 112 

Sr/Ca within the sand aprons of One Tree and Lady Musgrave reefs, Great Barrier Reef (GBR). A 113 

qualitative analysis of taphonomic abrasion was conducted (comprehensively presented in Fellowes 114 

et al., 2016) and compared with elemental ratios (Mg/Ca and Sr/Ca) determined using Inductively 115 

Coupled Plasma – Atomic Emission Spectrometer (ICP-AES). To validate the mechanisms that 116 

may drive changes in elemental ratios, the spatial distribution of elemental ratios across the test was 117 

mapped using an electron microprobe equipped with wavelength-dispersive spectrometers (WDS), 118 

whilst back-scattered electron (BSE) images were used to identify mineral textures.  It was 119 

hypothesised that the Mg/Ca concentrations within the spines would be different to the 120 

concentrations within the test walls; hence, loss of spines due to transport would cause changes in 121 

the Mg/Ca elemental ratios. Simultaneously, the differences in Sr/Ca would be driven by microbial 122 

action, which has been well documented for deep sea cores (Erez, 2003). The objectives of this 123 
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study are: (1) qualitatively analyse taphonomic abrasion in surficial samples; (2) delineate trends in 124 

Mg/Ca and Sr/Ca across several sand aprons on two reefs; (3) determine the relationship between 125 

taphonomy and elemental composition; and, (4) use quantitative analysis by electron microprobe 126 

(EPMA) and BSE imaging to identify mechanisms underlying the observed trends. We present a 127 

novel geochemical proxy for the magnitude and direction of sediment transport within carbonate 128 

systems, supported by evidence from taphonomic test alteration across a back-reef sand apron. 129 

130 

2. Materials and Methods 131 

Figure 1. Study site showing (a) Queensland (QLD), Australia and (b) the Capricorn Bunker Group, 132 

southern Great Barrier Reef off Queensland, Australia. (c) One Tree Reef (OTR, 23°30’S 133 

152°06’E), with the northern (NSA), eastern (ESA), and southern sand apron (SSA). (d) Lady 134 

Musgrave Reef (LMR, 23°54’S; 152°24’E) and its single sand apron. 135 

136 
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Study sites 2.1.137 

One Tree and Lady Musgrave Reefs are mid-shelf, platform reefs located within the Capricorn 138 

Bunker Group in the southern Great Barrier Reef, Australia (Figure 1). The modern reefs overly a 139 

karst-modified Pleistocene reef substrate, surrounded by waters approximately 60 m in depth (Orme 140 

et al., 1974, Marshall and Davies, 1982). Wind and wave climate is dominated by east-south-141 

easterly swells throughout the year, with modal offshore significant wave heights of 1.15 m 142 

(Hopley, 1982). The region is mesotidal and semidiurnal, with a spring tidal range greater than 3 m. 143 

Both reefs present clear physiographic zonation, with an algal flat (turfing algae present), reef flat 144 

(rubble dominated, no algae), back-reef sand apron, lagoon and scattered patch reefs (Orme et al., 145 

1974, Marshall and Davies, 1982).  146 

147 

One Tree Reef (OTR, Figure 1c) is  a lagoonal platform reef (Maxwell, 1968). Under the reef 148 

classification by Hopley (1982), the reef is considered ‘mature’, due to the partial infilling of its 149 

lagoons. The height and continuity of the reef flat truncates the tidal cycle, where water level falls 150 

below the reef rim at 1.4 m above the lowest astronomical tide, detaching the lagoon from the 151 

marine environment for several hours (Ludington, 1979). The southern and eastern margins are 152 

exposed to dominant wave energy (windward), whilst the northern margin is protected under modal 153 

conditions (leeward). One Tree Reef contains three sand aprons: the southern sand apron (SSA), the 154 

eastern sand apron (ESA) and the northern sand apron (NSA). All three sand aprons are backed by 155 

algal flats that provide habitat for LBFs, which generate approximately 2800 metric tonnes of 156 

sediment yearly (Doo et al., 2012, 2016). The SSA and the NSA also present extensive windrows 157 

while the ESA has a well-developed rubble-dominated flat (Figure 1c). 158 

159 

160 

161 
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Table 1. Sample collection dates and sand apron descriptions. *B. sphaerulata and Calcarina spp. 162 

**B. sphaerulata and C. capricornia 163 
164 

Reef Sand 
Apron 

Total 
Size 
(km2) 

Algal 
flat 
area 
(km2) 

Depth (m, 
below 
MSL) 

Type Collection 
Date 

Samples 
analysed for 
taphonomy* 

Samples 
analysed 
with ICP-
AES** 

OTR 

SSA 8.22  0.42 0.8 - 1.3 Surficial May, 2010 25 12 

Living Apr, 2015 - 3 

ESA 0.53 0.56 0.8 – 2.4 Surficial Nov, 2014 34 3 

Living Apr, 2015 - 2 

NSA 0.38 0.04 0.8 – 1.4 Surficial Apr, 2015 24 3 

Living Apr, 2015 - 2 

LMR - 2.54 1.22 0.6 – 3.6 Surficial May, 2014 18 5 
165 

166 

Lady Musgrave Reef (LMR, Figure 1d) is a closed ring type with a single windward edge that has 167 

encircled to enclose and form a lagoon (Maxwell, 1968). Thus, the orientation of the platform and 168 

reef flats reflect the prevailing wind and swell direction. The reef contains an extensive, crescent 169 

shaped reef flat, which transitions directly into the sand apron (Table 1). The northern margin has a 170 

dredged channel (40 m wide, 9 m water depth), created in the early twentieth century (Steers, 171 

1937). The reef platform (11 km2) is composed of a lagoon (3 km2) and substantial reef flats 172 

(Hamylton et al., 2016).  173 

  174 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9

Field methods and sampling strategy 2.2.175 

Sand apron samples in OTR were collected in approximately 50 m intervals from the algal flat to 176 

the lagoonward edge of the sand apron across three sand aprons (NSA, ESA, SSA), with 13 177 

transects examined within this study (N = 83, Figure 2a, Table 1). Further, ‘living’ samples were 178 

collected from turfing algae of the reef flat and immediately desiccated in sunlight. Samples from 179 

LMR (N = 18) were collected from a point grid with 500 m spacing, in addition to several samples 180 

between points (Figure 2a, d, Table 1). No ‘living’ samples from the algal flat were obtained for 181 

LMR. For all surficial sediments, approximately 300 g of the upper 2.5 cm of sediment were 182 

collected and transported back to the University of Sydney and dried at 60°C for 48 hours. Samples 183 

were dry sieved for 0.5 - 2 mm, coinciding with the size range of LBF study species.  184 

Taphonomic analysis 2.3.185 

This study employed a categorical taphonomic index of test alteration ( , adapted from methods 186 

described in Fellowes et al. (2016). Family Calcarinidae (B. sphaerulata, C. capricornia1 and C.187 

mayorii) are the most abundant species in the Capricorn Bunker Group (Mamo, 2016) and account 188 

for up to 90% of LBFs within the sample. The loss of appendages and alteration of the test surface 189 

was analysed by allocating four categories of test condition (Tf = 1 – 4, 25 percentiles), with the 190 

assignment of taphonomic values provided in Table A1. Since morphological differences between 191 

two closely related Calcarina species (Calcarina capricornia and mayorii) are virtually 192 

indistinguishable with heavily abraded tests, they were recorded by genus. The index was applied to 193 

random samples of B. sphaerulata and Calcarina spp. for a total of 100 tests, with three replicates 194 

per sample. Several samples from the NSA and LMR contained less than 100 tests and the 195 

maximum possible number was observed, with those lower than 30 tests excluded from analyses. A 196 

                                                 

1 Note that C. capricornia is a newly described species from the Capricorn Bunker Group, GBR bearing similarities 
and previously referred to as Calcarina hispida or Calcarina splerengii (Mamo, 2016). 
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weighted average (Eq. 1), biased towards more abraded tests, was used to determine the average 197 

taphonomy across the sand apron: 198 

Equation 1 199 

where, n1 to n4 are the sum of individuals belonging to each ‘division’ of abrasion (1 to 4) and N is 200 

the total sample number. ‘Living’ specimens collected on the reef flat were pristine and assigned a 201 

value of Tf = 1.  202 

Geochemical analyses 2.4.203 

‘Living’ LBF Sample preparation 2.4.1.204 

To ensure the sampling of ‘living’ foraminifera for geochemical analysis, individuals were hand-205 

picked for observable algal symbionts and pristine tests. The tests of living LBF (as opposed to sand 206 

apron samples) are overlayed by an organic matrix, which is enriched in Mg2+, removed using 207 

methods modified from Raja et al. (2007). ‘Living’ LBF samples were initially rinsed in milli-Q 208 

water three times and then treated in 1 ml buffered oxidizing agent (10% H2O2 and 0.1 M NaOH) 209 

within a water bath (60�C) for 15 minutes. Subsequently, the tests were rinsed, then ultra-sonicated 210 

in milli-Q water for 10 minutes. Great care was taken to ensure the spines and outer test wall 211 

remained intact.  212 

Pooled test elemental ratios using ICP - AES 2.4.2.213 

A pool of 10 foraminifera, from either B. sphaerulata or C. capricornia were randomly picked from 214 

each sample and crushed between two glass plates to homogenise the material. Approximately 1 mg 215 

(± 0.2 mg) of the sample was digested in 10 ml of 2% NHO3 for an hour before analysis. The 216 

analysis was performed on a Varian Vista axially viewed plasma (AX) charged coupled device 217 

(CCD) ICP–AES at the Australian National University, Canberra. Experimental runs were 218 

performed on July 2015 and June 2016, with analytical conditions of 1.3kV power with Plasma Ar 219 

flow of 15 L/min. Stabilization delay and uptake delay were 20 and 30 s respectively. Emission 220 
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lines of Ca (  = 315.887 nm, 317.933 nm), Mg (  = 285.213 nm) and Sr (  = 407.771 nm, 421.552 221 

nm) were used. Sample size for each analysis was 200 – 500 L with an analysis time of 4 min per 222 

sample. There were 10 replicates per sample, with a delay time of 5 s. The relative element 223 

sensitivity for each element was calibrated with an in-house reference material (‘Coral Std.’,). Drift 224 

correction for each emission spectra was achieved through bracketing each measurement with Coral 225 

Std. and applying Eqn. A2. Mg/Ca and Sr/Ca quotient error was calculated according to Topping 226 

(1972). Minor element analyses within B. sphaerulata and C. capricornia tests for surficial samples 227 

are presented in Tables B1, B2. 228 

Inter-test variability using EPMA, EDS and SEM 2.4.3.229 

Tests from B. sphaerulata and C. capricornia were analysed for Mg, Sr and Ca on samples sourced 230 

from the algal flat and lagoonward edge of the SSA. Before analysis, test sections were embedded 231 

in epoxy resin on glass slides. Once the resin filled all chamber cavities, the specimens were 232 

polished using carborundum (silicon carbide) and aluminium oxide powder so that the internal, 233 

transverse chamber walls were exposed. Specimens were then carbon coated (50 nm) under vacuum 234 

evaporator. Compositional analyses (WDS for Mg, Ca and Sr), BSE imaging and WDS X-ray 235 

intensity maps of micro-bores were carried out using a JEOL JXA 8530F field emission electron 236 

microprobe in the Central Analytical Research Facility (CARF) at Queensland University of 237 

Technology, Brisbane (Australia) using Probe for EPMA software and ZAF matrix correction 238 

method (Armstrong/Love Scott).  Analytical conditions were 10 kV accelerating voltage, 10 nA 239 

beam current, and a 10 μm defocused beam. Astimex mineral standards included dolomite (Mg 240 

Kα), calcite (Ca Kα) and celestite (Sr Kα). A coating thickness correction for 500 Å of carbon (  = 241 

2.1) was specified for the unknowns in data reduction. Oxygen was calculated by cation 242 

stoichiometry and included in the matrix correction. Carbon was calculated 0.333 atoms relative to 243 

1.0 atom of oxygen. Analytical totals using the carbon coat thickness correction average 99.5 wt.% 244 

± 0.3 (1 s.d.; n = 49), and stoichiometric proportions calculated on the basis of three atoms of O per 245 
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formula unit yield an average atom sum of 4.996 ± 0.004. Average analytical sensitivities at the 246 

99% confidence level for Sr, Ca and Mg were 470, 410 and 150 ppm respectively. Mapping 247 

conditions were 7 kV accelerating voltage, a beam current of 30 nA, a fully focused and fixed beam 248 

(stage mode) with a step size of 0.5 microns and a dwell time of 100 ms. 249 

Statistical analysis and data visualisation 2.4.4.250 

To determine relationships between Mg/Ca, Sr/Ca and the taphonomic index (Tf), linear regressions 251 

were employed. NSA, ESA and LMR were excluded from analysis due to low sample size and were 252 

only tested for Coefficient of determination (R2). Mg/Ca and Sr/Ca were non-normally distributed 253 

(p < 0.05, Shapiro-Wilk test). However, linear regressions were still employed, as they remain 254 

robust against deviations from normality with an appropriate sample size (Underwood, 1997). 255 

Differences in Mg content in spines and test from EPMA data were determined using t-tests. 256 

Analyses were conducted using SPSS statistical package. ‘Kernel Interpolation with barriers’ within 257 

ArcMap v10.3 was used to interpolate and visualise taphonomy and elemental ratios across the sand 258 

aprons.  259 

3. Results 260 

Taphonomic analyses 3.1.261 

Increasingly altered tests and thus increased average taphonomic values (Tf) were observed 262 

lagoonwards in all transects for both LBF groups analysed within the sand aprons of OTR and LMR 263 

(Figure 2), with the single exception of the genus Calcarina within the ESA (Figure 2c) at OTR. 264 

Lowest Tf (least altered) for each sand apron were found in samples closest to the algal flat and 265 

increased in value lagoonward, where highest values were observed at the lagoonward edge of each 266 

sand apron (Figure 2). The SSA exhibits a prominent NW gradient from algal flat to the lagoonward 267 

edge of the sand apron (Figure 2b, c). Similarly, the NSA and LMR exhibited lagoonward trends of 268 
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increasing Tf to the SW and NW respectively. The ESA exhibited a westerly gradient for B. 269 

sphaerulata, whilst lacking any clear trend for Calcarina spp. (Figure 2b).270 

271 

Variation in Tf values lagoonward differed markedly between sand aprons and LBF studied, where 272 

the windward margins of OTR (SSA, ESA) generally presented larger ranges in Tf values relative to 273 

the leeward margin (NSA) and LMR. Lightly abraded tests (Tf = 2) for both species were still 274 

observed within samples approximately 60 and 100 m into the sand apron for ESA and SSA 275 

respectively, whilst the NSA and LMR solely contained moderately to heavily altered tests (Tf  3) 276 

in all samples. The SSA contained the widest range, followed by the ESA, NSA, and LMR 277 

respectively (Table 2). Thus, taphonomic gradients extend the entirety of the sand apron for both 278 

the SSA and ESA, whilst they were restricted to less than 120 m from the reef flat within LMR and 279 

NSA (Figure 2b, c). Lastly, B. sphaerulata and Calcarina spp. presented differences in the range of 280 

Tf values within each sand apron, affecting the resolution of gradients lagoonward. Within OTR, B. 281 

sphaerulata was generally less altered that Calcarina spp. (Table 2). Some transects, particularly 282 

the ESA and NSA solely contained heavily abraded Calcarina spp. tests, where the lack in variation 283 

leads to a lack in a clear Tf gradient lagoonward.  284 

  285 
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Figure 2. Interpolation of average taphonomic values (Tf) with sample sites outlined for One Tree 286 

Reef (a) and Lady Musgrave Reef (d). Interpolations for Baculogypsina sphaerulata (b, e) and 287 

Calcarina spp. (c, f) are shown for One Tree Reef and Lady Musgrave Reef. *Note that for Tf, the 288 

genus Calcarina was composed of C. capricornia and C. mayorii.  289 

290 

291 
292 

293 

294 

295 

296 

297 

298 
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Geochemical analyses 3.2.299 

Figure 3. Interpolation of Mg/Ca and Sr/Ca content within the tests of Baculogypsina sphaerulata 300 

and Calcarina capricornia, detected using ICP-AES analyses. Sample sites are outlined for One 301 

Tree Reef (a) and Lady Musgrave Reef (b). Mg/Ca interpolations (c – f) are presented for sand 302 

aprons on One Tree Reef (c, e) and Lady Musgrave Reef (d, f) for both species. Sr/Ca 303 

interpolations are also shown for One Tree Reef (g, i) and Lady Musgrave Reef (h, j) for both 304 

species. Errors (RSD%) for each sample fall within the interval of the scale. Note that C. 305 

capricornia was composed of C. mayorii during taphonomic analysis. 306 

307 
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308 
Table 2. Range of average taphonomy (Tf), Mg/Ca and Sr/Ca across all sand aprons and for both 309 
study species.  310 

311 
312 
313 

Trends in Mg/Ca 3.2.1.314 

Mg/Ca decreased lagoonward for all but one of the samples and was consistent between species. 315 

Highest ratios of Mg/Ca were found for live collected samples in the algal flat and lowest values on 316 

the lagoonward edge of sand aprons for tests of both species. The Mg/Ca of live collected (algal 317 

flat) samples for both species studied exhibited near identical ranges, although showed variability 318 

between the three algal flats of OTR. The southern algal flat exhibited greatest variability within 319 

‘living’ tests at 156.47 ± 8.36 (s.d.) mmol/mol and 160.22 ± 8.92 (s.d.) mmol/mol for B. 320 

sphaerulata and C. capricornia respectively. In contrast, NSA and ESA algal flat samples deviated 321 

by 2.3 (s.d.) mmol/mol at most for both species (Table 2).  322 

323 

Within the sand apron, the Mg/Ca of the deposited tests decreased lagoonwards, in a NW direction 324 

for the SSA, whilst the ESA and NSA showed decreasing W and SW trends respectively (Figure 3c, 325 

e and f). Samples from LMR extended from within the reef flat (c.f. algal flat), to the edge of the 326 

sand apron and presented similar trends for C. capricornia, yet counter trends for B. sphaerulata 327 

  Avg. Taphonomy  
(Tf) 

Mg/Ca  
(mmol/mol) 

Sr/Ca  
(mmol/mol) 

Min Max Min Max Min Max 
Baculogypsina sphaerulata 
SSA Living - - 148.87 164.37 2.60 2.69 

Surficial 3.09 3.94 134.97 164.37 2.60 3.70 
ESA Living - - 156.30 159.60 2.61 2.67 

Surficial 3.04 4.00 147.35 159.60 2.61 3.14 
NSA Living - - 155.61 156.73 2.54 2.58 

Surficial 3.51 4.00 148.70 156.73 2.54 2.74 
LMR Surficial 2.77 4.00 149.38 154.74 2.58 2.83 
Calcarina capricornia 
SSA Living - - 150.47 168.88 2.52 2.59 

Surficial 2.65 3.99 116.60 168.88 2.52 4.70 
ESA Living - - 163.28 165.33 2.53 2.53 

Surficial 3.59 4.00 140.88 165.34 2.53 3.29 
NSA Living - - 155.78 157.85 2.50 2.52 

Surficial 3.36 4.00 147.01 157.85 2.50 2.66 
LMR Surficial 3.16 3.98 149.96 156.68 2.55 2.95 
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relative to those observed within OTR. Whilst C. capricornia decreased lagoonwards, B. 328 

sphaerulata saw a marginal increase, which counters all other transects within this study (Figure 329 

3d). In terms of the range of values, the SSA exhibited the greatest variation across surficial 330 

sediments for both species, whilst the other three sand aprons analysed (ESA, NSA and LMR) were 331 

comparable in range for B. sphaerulata (Figure 3 c - f). However, inter-species variation was 332 

observed across all samples, where C. capricornia exhibits a larger decrease in Mg/Ca, relative to 333 

B. sphaerulata. The windward margins of OTR show larger decreases than both NSA and LMR 334 

(Table 2). Lastly, C. capricornia within the sand aprons contained a broad range of Mg/Ca values 335 

observed (116 - 168 mmol/mol), whilst for B. sphaerulata the range was lower (135 – 164 336 

mmol/mol).  337 

Trends in Sr/Ca 3.2.2.338 

Increasing Sr/Ca in LBF tests is observed lagoonward, counter to each Mg/Ca counterpart 339 

(Figure 3g - i). The lowest Sr/Ca values are found for ‘live collected’ specimens from the algal flat, 340 

whilst highest values are observed for post-mortem tests on the lagoonward edge of the sand apron. 341 

However, the Sr/Ca ratios is two orders of magnitude lower than Mg/Ca, ranging from 2.50 – 4.70 342 

mmol/mol and 2.55 – 3.95 mmol/mol for OTR and LMR respectively. Algal flat samples are less 343 

variable in Sr/Ca than Mg/Ca for both species, with Sr/Ca averaging 2.61 ± 0.05 (s.d.) and 2.53 ± 344 

0.03 (s.d.) mmol/mol for C. capricornia and B. sphaerulata respectively across all sand aprons of 345 

OTR. Lagoonward trends of Sr/Ca align with Mg/Ca and taphonomy, with increasing values for the 346 

SSA in a NW direction, whilst the ESA and NSA show increasing W and SW trends respectively 347 

(Figure 3g, i). Whilst the elemental ratio gradients for both species are consistent within OTR, 348 

within LMR B. sphaerulata displays counter trends to C. capricornia. For the latter, Sr/Ca increases 349 

lagoonwards (2.55 to 2.95 mmol/mol), whilst B. sphaerulata tests decrease in Sr/Ca? marginally 350 

across the sand apron (2.83 to 2.56 mmol/mol). 351 

352 
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The magnitude of change in Sr/Ca from reef and algal flat samples to those collected in the sand 353 

apron varies across sand aprons. A doubling in Sr/Ca is observed across the SSA for C. capricornia, 354 

with the highest value recorded at 4.70 mmol/mol, coinciding with the furthest sample from the 355 

algal flat. Whilst there is a marginal increase in Sr/Ca for the NSA and LMR, values are no greater 356 

than 3 mmol/mol for both species. Species differences are pronounced, as C. capricornia presents a 357 

wider Sr/Ca range (2.50 – 4.70 mmol/mol) than B. sphaerulata (2.54 – 3.70 mmol/mol) from algal 358 

flat to sand apron.  359 

Relationships between Mg/Ca, Sr/Ca and Taphonomy 3.3.360 

Significant correlations exist between the index of taphonomic alteration (Tf) and Mg/Ca and Sr/Ca 361 

for both species, although the relationship is non-linear in most sand aprons. There are significant, 362 

strong correlations between Tf and Mg/Ca for both species, whilst only C. capricornia displays 363 

weak yet significant relationships between Tf and Sr/Ca (Figure B1). Samples from LMR are only 364 

weakly correlated for both ratios, with the exception of Sr/Ca in C. capricornia (R2 = 0.703).365 

EPMA, WDS and SEM: Spatial distribution of Mg and Sr content 3.4.366 

SEM images of B. sphaerulata and C. capricornia show comparable test size and number of spines. 367 

EPMA analyses indicate elevated levels of Mg within spines of both species (Figure 4, Table 3), 368 

with significant differences for both C. capricornia (t (9) = 6.83, p < 0.001) and B. sphaerulata (t 369 

(16.5) = 4.44, p < 0.001). Epoxy-mounted transverse sections reveal naturally occurring pores (1- 2 370 

μm) and larger internal chambers (25 - 40 μm), distributed systematically within both species 371 

(Figure 5a, c). Algal flat B. sphaerulata and C. capricornia tests exhibit no external and internal 372 

alteration (Figure 4) whilst ‘altered’ samples from the lagoonward edge of the sand apron contain 373 

extensive loss of spines and outer test wall (Figure 5, 6) and the presence of extensive microbial 374 

boring (Figure 6). Microbial bores (8 - 20 μm) are intermediate in size between the two naturally 375 

occurring pores and are most abundant at the test wall, decreasing in number towards the test centre 376 

(Figure 6b). Several bores display varied states of cement-infilling for both species, where SEM 377 
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images reveal the presence of acicular needles (1-2 μm in length, Figure 5d). WDS elemental maps 378 

further demonstrate elevated Sr and Ca, with reduced Mg within these cements (Figure 6).  379 

Table 3. Electron microprobe spot analyses of tests and spines in Baculogypsina sphaerulata and 380 

Calcarina capricornia from the One Tree Reef. Tests were sourced from the algal flat, with 381 

unaltered appendages although treated. * number of spots analysed, 1 Oxygen calculated on the 382 

basis of cation stoichiometry, 2 Carbon calculated on the bases of 0.333 atoms C to 1 atom oxygen. 383 

384 

  385 

   Element wt. % (± 1 s.d.)  
Sample Species n* Sr Mg Ca O1 C2 TOTAL 
         
Tests     
3b  B. sphaerulata 3 0.21 (0.05) 3.05 (0.04) 35.1 (0.2) 48.7 12.3 99.3 (0.2) 
3e  C. capricornia 3 0.20 (0.04) 3.00 (0.14) 35.1 (0.3) 48.7 12.3 99.2 (0.2) 
3g  B. sphaerulata 3 0.21 (0.03) 3.08 (0.14) 34.9 (0.1) 48.7 12.3 99.2 (0.1) 
3h  B. sphaerulata 3 0.21 (0.02) 3.07 (0.02) 35.2 (0.2) 48.7 12.2 99.4 (0.2) 
3j  C. capricornia 5 0.23 (0.03) 3.02 (0.07) 35.1 (0.3) 48.7 12.3 99.3 (0.2) 

Spines     
3b  B. sphaerulata 9 0.17 (0.04) 3.08 (0.06) 35.5 (0.4) 48.8 12.2 99.7 (0.4) 
3e  C. capricornia 5 0.20 (0.04) 3.22 (0.06) 35.4 (0.2) 48.8 12.2 99.9 (0.2) 
3g  B. sphaerulata 5 0.17 (0.02) 3.23 (0.04) 35.0 (0.4) 48.8 12.3 99.5 (0.4) 
3h  B. sphaerulata 4 0.19 (0.04) 3.16 (0.10) 34.9 (0.1) 48.7 12.3 99.3 (0.1) 
3j  C. capricornia 4 0.18 (0.03) 3.21 (0.04) 35.0 (0.2) 48.8 12.3 99.5 (0.1) 
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Figure 4. Mg vs. Ca (wt. %) in foraminiferal tests (blue) and spines (red) from the algal flat 386 

(pristine), as measured by electron microprobe (samples detailed in Table 6). Error bars are ±1 s.d. 387 

388 

  389 
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390 

Figure 5. Back-scattered electron (BSE) image of the transverse sections of Calcarina capricornia 391 

and Baculogypsina sphaerulata tests. Comparisons of unaltered algal flat samples for C. 392 

capricornia (a) and B. sphaerulata (c), with an altered sand apron sample (b), showing internal 393 

microbial boring (1) and loss of spines and outer test wall (2). Acicular, needle cements in C. 394 

capricornia (d), showing partially infilled (3) and completely infilled bores (4). Red markers in (a) 395 

and (c) indicate spot locations for EPMA analysis within the spines and test. 396 

397 

398 
Figure 6. Back-scattered electron (BSE) images (a, b) and corresponding Wavelength-dispersive X-399 

ray spectroscopy (WDS) elemental maps of Ca (c, d), Sr (e, f) and Mg (g, h) of infilled microbial 400 

bores in Baculogypsina sphaerulata (a, c, e, g) and Calcarina capricornia (b, d, f, h). BSE images 401 

(a) show partially and completely infilled bores (arrows). Elemental maps of the same areas show 402 

elevated Ca and Sr and lower Mg within the infilled bores relative to tests. Colour scale bars at right 403 

indicate relative intensities. Scale bars are 100 μm. 404 
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4. Discussion 406 

Inferring Transport Pathways 4.1.407 

Taphonomic Analyses 4.1.1.408 

Within One Tree and Lady Musgrave reefs, the tests of B. sphaerulata and Calcarina spp. show 409 

increasing alteration in test condition lagoonwards across each sand apron. These trends vary in 410 

direction, length and magnitude of change, which reflect the variability of the prevailing wave 411 

climate on each sand apron. For example, the windward SSA is the most extensively prograded 412 

sand apron (Vila-Concejo et al., 2013), producing a clear NW taphonomic gradient from algal flat 413 

(Tf = 2.8 – 3.1) to sand apron (Tf = 4) for both species. As a windward margin, the SSA receives the 414 

most wave forcing throughout the year, whilst the NW gradient aligns with previously described 415 

wave refraction across the reef flat and into the sand apron (Harris et al., 2015).  Similarly, the 416 

southern area of the ESA exhibits a westerly gradient lagoonward, driven by the easterly swell 417 

component within the region. These findings are consistent with other studies on One Tree Reef , 418 

elsewhere on the GBR (Pilarczyk et al., 2014, Dawson et al., 2014), Caribbean (Li et al., 1998) and 419 

Okinawa (Fujita et al., 2009), reaffirming the suitability of taphonomic gradients to infer potential 420 

sediment transport pathways within carbonate environments.  421 

422 

  423 
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Figure 7. Conceptual model of the taphonomic alteration of a LBF test from algal flat (source) to 424 

back-reef sand apron (sink). Wave forcing transports LBF tests into the back-reef, exposing the test 425 

to mechanical abrasion and microbial boring, which may cause a decrease in Mg/Ca and Sr/Ca test 426 

content. An existing proxy to infer transport pathways is a qualitative index of taphonomic abrasion 427 

(Tf = 1 – 4). However, we propose that the changes in Mg/Ca and Sr/Ca ratios may be an 428 

advantageous proxy to infer sediment transport within the back-reef environment. Taphonomic 429 

values described in Table A1, with Baculogypsina sphaerulata images adapted from Fellowes et al.430 

(2016).  431 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 
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442 

However, the use of Tf in discerning pathways across the entire sand apron is limited by test 443 

contribution from the algal flat and a lack of variation in Tf values. For example, the entire extent of 444 

the NSA and LMR contained highly abraded tests (Tf  3), limiting the inference of pathways to 445 

100 m from the reef flat (Figure 2b, c). Further, the ESA, Calcarina spp. displays marginally 446 

decreasing Tf lagoonwards (Tf = 3.9 to 3.7, i.e. increasingly pristine tests), which is counter to their 447 

source area and direction of wave forcing. Both these trends can be explained by the low 448 

contribution of LBF into the sand apron, where Fellowes et al. (2016) indicates reduced Calcarina 449 

spp. within the ESA and NSA, which Doo et al. (2016) report as reduced populations within the 450 

corresponding algal flats. Therefore, a low abundance of LBF, combined with a narrow range of 451 

taphonomic values (i.e. all heavily abraded) prevents the inference of transport pathways, which we 452 

suggest may be addressed through geochemical means.453 

ICP-AES: Mg/Ca and Sr/Ca as indicators of sediment transport  4.1.2.454 

Whilst observing increasing taphonomic alteration across the back-reef sand apron, this study 455 

simultaneously demonstrates decreasing Mg/Ca and increasing Sr/Ca across almost all sand aprons. 456 

Pristine, unaltered tests on the algal flat contain the highest and lowest values of Mg/Ca and Sr/Ca 457 

respectively, whilst highly altered tests at the lagoonward edge of each sand apron show the inverse 458 

for these ratios (Figure 3). In discerning the direction of potential transport pathways and magnitude 459 

of wave forcing, both Mg/Ca and Sr/Ca effectively match taphonomic gradients lagoonward. 460 

Within OTR, the SSA showed a clear NW gradient, the southern portion of the ESA exhibited a 461 

westerly gradient, whilst the NSA showed a southerly gradient for both Mg/Ca and Sr/Ca. All three 462 

gradients coincide with known prevailing wave climate and wave refraction (Harris et al., 2014). 463 

These trends extend further to neighbouring LMR, where C. capricornia also demonstrates a clear 464 

NW gradient lagoonward.  465 

As with taphonomy, the magnitude of change for both elemental ratios varies across each sand 466 

apron, which suggests these ratios are indicative of wave forcing intensity. Again, the SSA presents 467 
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the largest decrease and increase of Mg/Ca and Sr/Ca respectively, from algal flat to sand apron 468 

(Table 2), with both ratios significantly correlating with taphonomy lagoonwards (Table B3, Figure 469 

B1). The observed doubling of Sr/Ca across the sand apron and large loss of Mg/Ca may be driven 470 

in part by the length of the sand apron and thus transport distance. In contrast, the NSA contains a 471 

far narrower range of values (Figure 2b, c), which may result from low wave-energy modal 472 

conditions. Similarly, LMR has the narrowest range of values, with minimal change in the 473 

lagoonward gradient of C. capricornia and insignificant relationships between both ratios and 474 

taphonomy (Figure 3, Table B3). Thus, a narrower range in values and weaker correlation with 475 

taphonomy may be indicative of lower wave forcing intensity and transport distance, with similar 476 

trends in the two reefs. 477 

478 

There are several key differences between elemental ratios and Tf, where the former allow the 479 

observation of gradients despite low LBF contribution. As explored earlier, Calcarina spp. within 480 

the ESA demonstrates a counter-trend to B. sphaerulata with more pristine tests lagoonwards, 481 

driven by low test abundance (Fellowes et al., 2016). Nevertheless, analysis of Mg/Ca and Sr/Ca 482 

within C. capricornia shows clear westerly gradients lagoonwards (Figure 3), mirroring sediment 483 

pathways inferred from the more abundant B. sphaerulata species (Figure 2b). Similarly, the 484 

leeward NSA contained low abundance and a narrow range in Tf values, limiting the inference of 485 

transport pathways. However, in using both elemental ratios in both reefs, potential pathways are 486 

identified across the entirety of the sand apron. The greatly reduced need for test material (ten tests 487 

per sample vs. > 30 for taphonomy) overcomes limitations in low LBF contribution within the sand 488 

apron.  489 

490 

Since Tf is a discrete, categorical measure, the index lacks the ability to fully capture the spectrum 491 

of heavily abraded tests, leading to a lack of variation across the entirety of the sand apron and thus 492 

restricts the inference of transport pathways. In contrast, Mg/Ca and Sr/Ca capture the full extent of 493 
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test alteration across the sand apron. For example, the greatest amount of change was observed 494 

within the SSA, with a decrease of up to 50 mmol/mol in Mg/Ca and doubling of values for Sr/Ca 495 

(Table 2). In comparison, the ESA and NSA contains successively lower ranges in Mg/Ca, 496 

coinciding with intermediate and low wave forcing (Table 2). Thus, elemental analyses are 497 

independent of abundance and allow for the full extent of analysis of test alteration.   498 

499 

In analysing LMR, two contrasting transects were found; C. capricornia mirrored trends within 500 

OTR whilst B. sphaerulata displayed opposite trends: namely increasing Mg/Ca and decreasing 501 

Sr/Ca from the same samples across the sand apron (Figure 3). The magnitude of change for both 502 

ratios was relatively small (Table 2), although B. sphaerulata showed a particularly weak 503 

relationship between Mg/Ca (R2 = 0.045) and Sr/Ca (R2 = 0.284) with taphonomy. Possible 504 

explanations are differences in B. sphaerulata source areas or the influence of a large man-made 505 

channel on the leeward margin of LMR. A recent digital elevation model (DEM) by Hamylton et al. 506 

(2016) reveals that the LMR samples reside at a lower depth of 0.3 – 0.6 m BSL, relative to the 507 

surround area, leading to reduced wave exposure. Doo et al. (2016) suggest that B. sphaerulata are 508 

abundant in algal flats of higher wave energy, relative to C. capricornia, which may lead to the 509 

source areas of B. sphaerulata adjacent to the sampled transect. Another possible influence is the 510 

presence of the large man-made channel along the leeward margin of LMR. The U-shaped channel 511 

(12 x 34 m, depth x width) imposes strong influences on lagoonal currents during ebbing and 512 

flooding tides.  From the DEM of Hamylton et al. (2016), the conservative average ebbing/flooding 513 

current velocity over the channel would be 1.6 m/s (using a lagoonal volume of 3x106 m2 and 514 

spring tidal range of 3 m). Thus, there is a potential for considerably larger maximum velocities 515 

over the tidal cycle, leading to the ‘reverse’ trends observed. The considerable influence they exert 516 

over lagoonal transport is observed with sediment sorting, that was indicative of alongshore, rather 517 

than across-shore transport where the transects were sampled (Hamylton et al., 2016). Thus, these 518 
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current pattern encourage cross-shore rather than onshore transport for B. sphaerulata whilst, C. 519 

transport remains lagoonwards due to ample supply from the algal flat.  520 

521 

Mechanisms for elemental ratio variation  4.2.522 

EPMA: Mg/Ca trends through transport and dissolution 4.2.1.523 

Alteration of the test surface and loss of spines on all sand apron tests are indicative of transport 524 

across the rough reef flat, due to mechanical abrasion. Experiments using shaker tables with LBF 525 

tests (Peebles and Lewis, 1991) and carbonate sand (Kotler et al., 1992, Ford and Kench, 2012) as 526 

the substrate mix links mechanical abrasion to the extensive loss in appendages, test weight and 527 

smoothing of the test surface. Thus the loss of spines through physical transport may be the primary 528 

driver for decreasing Mg/Ca in the tests across the sand apron. However, Kotler et al. (1992) 529 

suggests that mechanical abrasion alone cannot account for significant taphonomic alteration. Since 530 

transport distance from algal flat to sand apron is relatively short, chemical dissolution will also 531 

drive losses in Mg content. 532 

533 

Using EPMA, in situ measurements of Mg content between LBF tests and spines indicates an 534 

increase of 2.9% and 6.8% for B. sphaerulata and C. capricornia respectively (Figure 5 & 6, Table 535 

3). Whilst alive, LBF test show considerable buffering capacity against test dissolution (Engel et al., 536 

2015). However, the LBF species investigated contain calcite with high levels of Mg (Mg-calcite), 537 

which is the most unstable carbonate phase and most susceptible to dissolution (Zhang and Dawe, 538 

2000). Tynan and Opdyke (2011) established that Mg-calcite dissolution initiated at pH values 539 

lower than 8.2 pH, with Morse et al. (2006) hypothesising sequential dissolution, initiating with the 540 

highest Mg content until the least soluble phases remain. As Mg-calcite, the tests of B. sphaerulata541 

and C. capricornia are an extremely vulnerable constituent of back-reef sediments and thus 542 

potentially selectively dissolved with the diurnal fluctuation of lagoonal seawater pH (Price et al., 543 
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2012). Further, Mg concentrations on specific microstructures may lead to the selective dissolution 544 

of appendages, weakening test integrity which may further enhancing susceptibility to physical 545 

abrasion (Kotler et al., 1992), resulting in the rough surface textures and pitted test walls observed 546 

within this study. 547 

Sr/Ca – Microbial diagenesis 4.2.2.548 

Extensive microboring is present within sand apron LBF samples, with several bores indicating 549 

different states of cement infilling (Figure 5, 6). The acicular, needle-like cements and elevated Sr 550 

within all infillings suggest the cements are aragonitic, which mineralises with Sr content similar to 551 

ambient sea water and thus far greater Sr content than Mg-calcite (Perry, 2000). Within carbonate 552 

platforms, physical breakdown predominates along the high-energy windward reef flat, whilst 553 

biological breakdown through micro-boring dominates lagoonal settings (Perry, 2000). Post-554 

mortem, LBFs are rapidly subjected to microbial decay, as the organic materials lining the internal 555 

chambers and outer membrane are decomposed by algal, sponge and bacterial species (Reid and 556 

MacIntyre, 1998). Colonization of such bore holes in carbonate environments creates a network of 557 

small cavities which may allow for the development of cements (Nothdurft et al., 2007, Nothdurft 558 

and Webb, 2009, McCutcheon et al., 2016). Previous analyses of micro-bored Archaias angulatus559 

(Family Sortidae) from the Bahamas bank showed significant post-depositional increases of up to 560 

42% in aragonite content and a subsequent tenfold increase in Sr content from living to deposited 561 

foraminifera (Reid and MacIntyre, 1998). Thus, through endolithic boring and subsequent aragonite 562 

cementation, LBF grains may significantly increase in Sr content across a sand apron.563 

Species-specific Differences 4.2.3.564 

Whilst both study species presented near identical trends in elemental composition lagoonwards, the 565 

magnitude of change was greater in C. capricornia. Both species are closely related (Family 566 

Calcarinidae), with identical mineralogy (Mg-calcite) and near identical values for both Mg/Ca and 567 

Sr/Ca within ‘living’ samples on the algal flat. However, C. capricornia contains more 568 
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microstructures on the test surface (Figure 4a, 5b), which increases the surface available for 569 

chemical reactivity. Further, C. capricornia contains a layer of canals which connect the inner 570 

chambers with the ambient seawater, which is absent in B. sphaerulata (Röttger and Krüger, 1990). 571 

Lastly, B. sphaerulata possesses smaller internal chamber space relative to C. capricornia (Figure 572 

4), which limits the surface area available for reaction and cementation. These characteristics may 573 

explain the larger variability in elemental ratios observed in C. capricornia. Other inter-species 574 

considerations include organic coatings and shapes of individual crystallites within pore spaces, 575 

which have significant effects on dissolution resilience (Henrich and Wefer, 1986). 576 

Future directions 4.3.577 

The elemental ratios as a proxy for sediment transport have the potential to be used across different 578 

reef regions, with several applications. As seen in this study, the ratios provide evidence for the 579 

direction of wave forcing, intensity and influences on transport patterns from source to sink. An 580 

extension of these proxies is the analysis of LBF tests down-core, which together with taphonomic 581 

analysis may reveal the depositional dynamics and allow novel measures of sedimentation rates and 582 

sub-surface grain alteration. These results also indicate the effects of early diagenesis in LBF tests, 583 

which may be used to understand sub-surface diagenesis, with implications on the use of LBFs for 584 

dating. An understanding of LBF dynamics and their contribution to the sediment dynamics 585 

provides insights towards the geomorphological evolution of the reef, in addition to sediment 586 

dynamic responses to altered environmental conditions. However, the inherent variability within 587 

LBF must be taken into account before comparing different reefs.  Raja et al. (2007) reports Mg/Ca 588 

values for B. sphaerulata at over 250 mmol/mol and demonstrates seasonal variation ranging up to 589 

40 mmol/mol, from the same site. These values are far greater than those found within this study 590 

and may be driven by phylogeny and local conditions. Thus, future applications must first establish 591 

a baseline for each species with a thorough analysis of the elemental composition of living LBF 592 

specimens at each study site.  593 

594 
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5. Conclusion 595 

This study shows that Mg/Ca and Sr/Ca within LBF tests are valid proxies for inferring both the 596 

direction and local dynamics of sediment transport and holds several advantages over previously 597 

employed measures, such as a taphonomic index. Decreasing Mg/Ca and increasing Sr/Ca was 598 

observed lagoonwards, across two neighbouring, yet distinct reefs within the Capricorn Bunker 599 

Group, Great Barrier Reef. Furthermore, both ratios possess a significant relationship with 600 

taphonomy, suggesting they may complement or even replace taphonomy as a proxy. EPMA 601 

analyses indicate elevated Mg content in spines relative to tests, which contribute to physical and 602 

chemical alteration through preferential dissolution. Further, WDS mapping and SEM imaging 603 

reveal increased Sr content in aragonite cement infilling of microbial bores. Comparison of the use 604 

of elemental ratios versus taphonomy illustrates that the former method requires minimal test 605 

material and provides a continuous measure, capturing a greater extent of test alteration, and reveals606 

pathways that are otherwise undetected by the taphonomic index. These proxies may be applied to 607 

different reef regions and the extension of their use downcore may provide novel insights to 608 

sediment dynamics on coral reefs, contributing to a greater understanding of their morphological 609 

evolution.  610 
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• Unaltered test surface, observable symbionts 
• All radial spines are present and unaltered 

• Minimal alteration to test surface 
• Alteration and loss of radial spines (< 50%) 
• Absent or minimal pitting to test surface 

• Moderate alteration to test surface 
• Evidence of pitting and fractures on outer test wall 
• Majority of radial spines (> 50%) lost 
• Any remaining spines are severely altered 

• Significant alteration to test surface 
• No radial spines remain 
• Partial or complete removal of outer test wall 
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ACCEPTED MANUSCRIPTTable B.1. Mg/Ca and Sr/Ca of a pool (n = 10) of Baculogypsina sphaerulata and Calcarina hispida tests from 
One Tree Reef, determined by ICP - AES 

Sample name Sr/Ca (mmol/mol) RSD% (mmol/mol) Mg/Ca (mmol/mol) RSD% (mmol/mol) 
Southern Sand Apron, OTR 
Baculogypsina sphaerulata
SL1 2.6010 0.0914 164.3658 0.0265 
SL5 2.6211 0.0010 148.8704 0.0838 
SL9 2.6941 0.0140 149.6413 0.0782 
2.2 2.5984 0.0443 151.3927 0.0020 
2.4 2.6293 0.0070 153.1873 0.0108 
2.5 2.6093 0.0612 150.8415 0.0294 
4.3 2.8953 0.0558 142.7022 0.1397 
4.5 2.6075 0.0210 149.5895 0.0188 
4.7 2.6233 0.0006 153.3559 0.0300 
8.2 3.0459 0.0190 143.9235 0.0110 
8.4 2.6455 0.0578 147.2675 0.0246 
8.6 2.6859 0.0322 144.5072 0.0446 
10.1 3.6993 0.0715 134.9697 0.0030 
10.4 3.0126 0.0763 141.7078 0.1564 
10.8 2.6177 0.0820 148.6333 0.0783 
Calcarina hispida
SL1 2.5229 0.0713 168.8813 0.0814 
SL5 2.5537 0.1309 150.4702 0.1220 
SL9 2.5874 0.1338 154.9321 0.1830 
2.2 2.8262 0.0366 152.5772 0.0174 
2.4 2.5419 0.0319 151.9246 0.0397 
2.5 2.5269 0.0890 150.7521 0.0314 
4.3 3.0227 0.0258 146.9796 0.0530 
4.5 2.5741 0.0078 151.7139 0.0127 
4.7 2.5195 0.0351 155.9843 0.0114 
8.2 3.0346 0.0345 140.9594 0.0071 
8.4 2.5912 0.0146 153.1901 0.0147 
8.6 2.5728 0.0503 150.2368 0.0423 
10.1 4.7015 0.0843 116.6037 0.1207 
10.4 3.1049 0.0843 144.6149 0.2078 
10.8 2.6168 0.0208 149.9112 0.0306 

Eastern Sand Apron, OTR
Baculogypsina sphaerulata
EL1 2.6700 0.0373 156.2991 0.0070 
EL2 2.6105 0.0086 159.5985 0.0058 
4.2 2.6342 0.0677 147.4799 0.0016 
4.5 2.6837 0.0161 149.5707 0.0192 
4.7 3.1355 0.0599 147.3476 0.0719 
Calcarina hispida
L1 2.5328 0.0057 163.2807 0.0407 
L2 2.5336 0.0336 165.3357 0.0124 
4.2 2.6930 0.0309 152.4469 0.0042 
4.5 2.7706 0.1436 146.7125 0.0918 
4.7 3.2909 0.0081 140.8813 0.0331 

Northern Sand Apron, OTR
Baculogypsina sphaerulata
NL1 2.5759 0.0612 155.6056 0.0008 
NL2 2.5385 0.0551 156.7333 0.0181 
3.1 2.6366 0.0834 148.6961 0.2094 
3.2 2.6667 0.1269 149.2337 0.2159 
3.3 2.7444 0.1593 152.6881 0.0482 
Calcarina hispida
NL1 2.5020 0.1032 155.7804 0.2293 
NL2 2.5190 0.1435 157.8455 0.2415 
3.1 2.6443 0.0325 147.0146 0.0119 
3.2 2.6635 0.1112 153.4785 0.1330 
3.3 2.6513 0.0294 149.5407 0.1742 
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Lady Musgrave Reef, determined by ICP - AES

Table B3. Results of linear regressions between average taphonomy (Tf) against Mg/Ca and Sr/Ca for surficial 
samples. ESA, NSA and LMG were only analysed for Coefficient of determination (R2) due to low sample size. 
*Number of pooled samples analysed. 

Sample name Sr/Ca (mmol/mol) RSD% (mmol/mol) Mg/Ca (mmol/mol) RSD% (mmol/mol) 
Lady Musgrave Reef 
Baculogypsina sphaerulata
L7B 2.6310 0.1130 154.7443 0.0105 
L13B 2.6210 0.1067 150.5050 0.0158 
L1B 2.5619 0.1496 151.9261 0.1169 
L2B 2.8295 0.0165 149.6184 0.0657 
L3B 2.6999 0.0728 149.3783 0.0489 
Calcarina hispida
L7C 2.7931 0.0252 151.5521 0.1644 
L13C 2.5669 0.0882 151.3707 0.0280 
L1C 2.9513 0.0132 149.9595 0.0542 
L2C 2.6028 0.0695 152.8293 0.0564 
L3C 2.5523 0.0579 156.8613 0.1126 

 Mg/Ca Sr/Ca
n* p value R2 p value R2

B. sphaerulata    
All 31 < 0.0001 0.386 0.065* 0.104 
OTR 26 < 0.0001 0.443 0.052* 0.115 
SSA 16  0.006 0.383 0.138* 0.890 
ESA 5 - 0.885 - 0.229 
NSA 5 - 0.748 - 0.645 
LMG 5 - 0.045 - 0.284 
C. capricornia      
All 31 0.001 0.365 0.019 0.107 
OTR 26 0.001 0.389 0.023 0.158 
SSA 16 0.016 0.304 0.140 0.149 
ESA 5 - 0.765 - 0.431 
NSA 5 - 0.667 - 0.979 
LMG 5 - 0.179 - 0.703 
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regression and coefficient of determination values presented in Table B3. Relationships are shown for the SSA 
(A, B), ESA (C, D), NSA (E, F) and LMG (G, H) for Mg/Ca and Sr/Ca respectively.  
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