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Abstract 

The massive computational power provided by parallel computers can be used with 
great benefit to many application areas; however, the lack of adequate programming 
tools for the development of parallel software prevents the efficient utilisation of parallel 
computers. Also, the performance failures of parallel implementation arise due to 
great freedom available in exploiting parallelism and due to the subjective view of the 
programmer. 

This thesis proposes a new model of parallel computation, ABCOM (ABstract 
COmputational tuple space Model). Unlike most existing models or programming 
languages which support expressing parallelism in a program in terms of the subjective 
knowledge of a programmer, ABCOM is developed with a primary goal of revealing 
parallelism of a given problem in a programmer-view independent manner. 

We introduce our model by describing its notation and properties, and comparing it 
with other practical or theoretical models. The characteristic features of ABCOM are 
demonstrated through applications to parallelism inference, optimisation, abstraction, 
profiling, speculation and scalability analysis. Based on ABCOM, the spatial structure 
and temporal logic of solving a problem can be fully exhibited in an abstract compu­
tational space; an initially expressed solution of a problem can be optimised until all 
computations involved are exploited in a dataflow computation fashion. The motiva­
tion of our research is to improve parallel programming methodologies by providing a 
new model that enhances the existing techniques and tools. An important aspect of 
this research is to separate the parallelism investigation task as a relatively independent 
one from that of mapping of the problem into a particular physical architecture. This 
investigation is carried out to establish a general knowledge of parallel properties of 
a real world problem. Such a knowledge serves as a common basis for various tasks 
involved in parallel programming. 

The main contributions of this thesis are: i) introduction of new concepts for par­
allel computing - such as: subjective parallelism, objective parallelism and scalability 
of application domain parallelism; ii) development of ABCOM as a parallelism revela­
tion model; iii) new approaches to detecting exact data dependence and parallelising 
program solutions; and iv) construction of a foundation for an integrated parallel pro­
gramming platform. 

Also this research throws new light on the current state of art in parallel computing 
and enables one to reevaluate our current views on parallel computing - in particular, 
some fundamental issues in programming philosophy and methodologies. 
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Chapter 1 

Introduction 

...... for art and science are a single gift, called science inasmuch as art refash­

ions the mind, and called art inasmuch as by science the world is refashioned. 

Santayana, Dialogues in Limbo 

1.1 Motivation 

Massively parallel computers are attractive tools for solving many computationally 

intensive problems. While parallel programming practice is still considered as an art 

that demonstrates personal experience, skills and knowledge, the main challenge lies in 

writing programs that fully exploit the power of parallelism for a given problem and 

architecture. Current parallel programming methodologies are empirical or ad hoc since 

a number of different solutions to a given problem can be arrived at by different people 

even if they are allowed to use the same computer architecture. The performance of a 

solution can be quite different for each possible solution due to the differing experiences 

in programming and understanding of the problem acquired by each programmer. In 

most cases, the first workable program solution is likely to be adopted. If the chosen 

solution does not turn out to be efficient one, then it will be an expensive choice in 

the long run. As a consequence, a natural question asked by programmers is: why a 

developed solution is better than others that have not been tried yet and/or why a 
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2 Chapter 1. Introduction 

particular architecture is more suitable for a given problem than other architectures. If 

this question is not addressed properly, parallel computing will not achieve its potential. 

The diversity of research in this discipline which can be broadly termed ' parallel 

computing' is large and ever growing. This discipline ranges from the highly abstract 

and theoretical formalisms to very specific and practical implementations. However, 

sophisticated programming methodologies for parallel computing are yet to be devel­

oped [Pan91], [KN93]. It is also hard to find research and techniques that provide 

general and useful guidelines as to what extent the parallelism of a problem should be 

exploited, though there are many research papers outlining techniques that describe 

how parallelism can be achieved. 

We should nevertheless realise that it is the domain knowledge of parallelism that 

is vital in answering the question such as 'to what extent' parallelism is realisable. In 

order to reduce the risk of performance failures of parallel programming, therefore, the 

scope of research and development in parallel computing should be enlarged. Parallel 

programming methodologies should pay more attention to the foundations. One of the 

important issues to be considered is how a developer can be assisted in building up a 

sound domain knowledge of parallelism, or how users can share the same background 

of domain knowledge. This background should provide a general view on the problem, 

and should be relatively free of subjective factors. 

Parallelism in solving a problem results from two different, yet interrelated aspects 

that are objective and subjective respectively. Objective aspects restrict certain compu­

tation tasks to execute sequentially (for instance, operations in a dataflow relationship), 

while some other tasks can be parallelised if certain execution conditions are met. The 

awareness of subjective aspects arises when a number of different program solutions 

with different parallel properties are developed. In such a case individual parallel prop­

erties may be or may not be selected to be used in a solution. The selection of parallel 

properties in a physical implementation results from a subjective decision of the pro­

grammer and is constrained by the tools and architectures used. Therefore, expressing 

parallelism in programming is based on subjectivity. The subjective aspects of par­

allelism play an important role in achieving good performance in parallel computing. 

The study and techniques to deal with objective aspects of parallelism have not yet 

J 
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been paid much attention in the literature except the concept of dataflow computing, 

perhaps due to the fact that we have yet not realised their importance because of our 

cognitive limitations. The aim of this thesis is to examine the role of the objectivity in 

parallel computing. 

1.2 Why a Model for Parallelism Revelation 

A model called a parallelism revelation model is developed with the primary goal of 

revealing parallelism. Unlike the conventional computation models that are developed 

for designing architectures and languages, or as a tool to express parallel properties of 

solving a problem that are known to a developer, a parallelism revelation model plays 

quite a different role in parallel computing. From a methodology point of view, first, 

this model assists a programmer to build up a sound domain knowledge of parallel 

properties before a real implementation commences. Secondly, the method of revealing 

parallelism differs from that for expressing parallelism in the following respects: 

1. The parallelism expressed in a language is somehow constrained by a number of 

subjective factors - such as subjective views of programmers and constraints of 

the language and the architecture, if architecture dependent. The expressed par­

allelism therefore contains the features of subjectivity. The parallelism revealed 

by a parallelism revelation model should be much less constrained so that the 

objectivity of parallelism can be studied. 

2. The result of expressing parallelism leads directly to a specific implementation 

with certain properties of parallelism subjectively selected by the programmer. 

The parallelism revelation results in a knowledge about parallel properties of 

solving a problem. This knowledge can serve as a common basis for parallelism 

analysis, solution derivation and further mapping the problem onto a specific 

architecture. 

Conventional programming practice starts with expressing a solution in a particular 

language in the light of a subjective understanding. In a parallelism revelation model, 

one starts with building up a background of parallel properties of solving a problem. 

l 
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4 Chapter 1. Introduction 

Consequently, a parallelism revelation model can complement many existing techniques 

and tools of parallel computing. 

This thesis is devoted to the development of such a parallelism revelation model and 

a programming platform that relates this model to other research aspects and issues 

in parallel computing. The model developed is called an abstract computational tuple 

space model (ABCOM) (CK95c], (CK95a]. It is an intermediate representation into 

which a program solution expressed in a conventional programming language can be 

converted. The initial version of the solution converted from a source code preserves 

all execution features of computation designed in the code. As a parallelism revelation 

model, ABCOM supports parallelism analysis and inference by providing for a set of 

relation-based rules (CK95b]. Moreover, all the ·dependencies can be exactly detected 

(CKY95], and the memory-based dependencies are removable from the solution. Thus, 

an initial version of a solution can be optimised until we get a new solution having 

the maximum parallelism. The optimisation can then be carried' out in a machine 

independent fashion. 

In such an optimised solution that is executable in an ideal machine, all the dataflow 

computation features contained in solving the problem are exploited by removing all 

the constraints introduced in the source code. For any two solutions to the same 

problem, the difference in performance between their optimised solutions is equal to 

the difference between the two longest paths of dataflow computation in these two 

solutions respectively. It is also demonstrated that this optimisation which reveals par­

allelism is a relatively independent task from physically mapping a real world problem 

to a particular architecture. Based on the optimised solution, the objective features 

of parallel properties of the problem can be inferred, analysed, abstracted and pro­

filed. ABCOM can serve as a platform to support parallelism speculation, scalable 

performance analysis, solution derivation and performance prediction when a target 

architecture is selected for implementation. 

To study parallelism as a function of the size of the problem, we introduce the 

concept of scalability of application domain parallelism. This concept is important 

in programming as well as selecting a suitable architecture for a given problem. By 

examining the applications of ABCOM, we show that a parallelism revelation model 

---·- ----



I 

I 

I 

I 

1.3. Structure of the thesis 
5 

can be used in an integrated parallel programming environment in which a number of 

techniques and tools of parallel computing can be cooperatively applied and developed. 

The main contributions of this work are: i)proposing and developing a parallelism 

revelation model that enhances the existing techniques and tools; ii) introducing the 

concepts of subjective parallelism and objective parallelism that can tell us as 'to what 

extent' parallelism can be exploited; iii) developing techniques to reach an optimised 

solution with objective parallelism for a given problem; iv) introducing the concept 

of scalability of application domain parallelism based on which scalable performance 

analysis can be carried out to support program design and architecture selection, in 

particular when the problem size is variable; and v) presenting a foundation of a parallel 

programming platform that can be used cooperatively by many techniques and tools 

used in parallel computing. 

1.3 Structure of the thesis 

The work reported in this thesis focuses on investigating the nature of parallelism 

inherent in a problem and developing techniques that support this study. Unlike other 

studies, our study of parallelism is considered as a relatively independent task from 

any physical realisation. 

In the following chapter we provide a background of the state of art of parallel 

programming, identify problems that have not been addressed properly and discuss 

the relations between existing research (including techniques and tools) and issues 

concerned in this thesis. By examining the main problems, we conclude that some 

new techniques or tools should be developed to enhance the existing techniques. The 

features of and requirement for the new techniques are highlighted. 

To address the issues raised, an abstract computational tuple space model (ABCOM) 

is introduced as a parallelism revelation model in Chapter 3. ABCOM's notation 

and properties are provided as a theoretical foundation of the model. A comparison 

between ABCOM and conventional languages and computation models is presented to 

characterise the potential application of ABCOM. 

Chapter 4 examines the expressive power of ABCOM and the main transformation 
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techniques to generate ABCOM code from a FORTRAN-like sequential source code. 

Since ABCOM is an intermediate representation, it is not suitable to directly express 

a solution in it by hand in the sense of programming. 

The features of ABCOM are further explored in Chapter 5 to show the advan­

tages of such a model in supporting computation and parallelism inference required by 

performing more complex tasks in parallel computing. A relation-based programming 

database is suggested for practical implementation of the inference techniques. 

In Chapter 6 an approach to ABCOM based solution parallelisation is presented. 

Using this approach a given solution that usually is a control flow program is opti­

mised into data flow computation where the resultant parallelism is objective. 

To pursue our goals of developing such a model, in Chapter 7, we discuss ABCOM 

as a parallel computing platform to support parallelism profiling, speculation and scal­

able performance analysis. The connection between ABCOM and other techniques of 

parallel computing are also examined. 

Finally, Chapter 8 contains a summary of the contributions and limitations of the 

present thesis. Also we draw some conclusions, and point out avenues for future re­

search. 
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Chapter 2 

Background, Motivation and Objectives 

In the first section of this chapter we briefly examine the state of the art of parallel 

programming methodologies (PPM); in particular, the main concepts and techniques 

used for exploiting parallelism. These techniques are not necessarily the most popular 

or practically successful ones, but are relevant to this dissertation due to the significance 

of the issues they address. The major problem considered in this thesis is presented 

in Section 2.2 with a review of current related research to the problem in Section 2.3. 

The thesis objectives are stated in Section 2.4. 

2.1 The Development of PPM 

The state of the art of parallel programming methodologies is influenced by three 

main factors: 

(i) Sequential programming concepts: The main framework of PPM is based on 

conventional sequential programming, which includes a variety of aspects such as lan­

guages, computation models, compilers, debugging and portability of programs. There­

fore, parallel programming inherits most of the problems encountered in sequential 

programming. 

(ii) Different architectures: Different architectures require PPM to deal with differ­

ent models of computation and communication for achieving high performance. Due to 

the development of diverse parallel system architectures, a number of special areas of 

research have emerged and became part of the PPM. Examples of these are message­

passing, synchronising, load-balancing and performance prediction. Without providing 

7 
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8 Chapter 2. Background, Motivation and Objectives 

adequate system support for these aspects, a new architecture cannot be successful 

commercially. In order to utilise this system support, there is an increasing demand for 

programmers with adequate skills and knowledge. Also the expertise in programming 

a particular architecture becomes necessary for successful parallel implementation. 

(iii) Programming paradigms: Finally, to cop~ with the difficulty and complexity of 

parallel programming, certain programming paradigms have been developed - such as 

coordination languages and skeleton programming. These paradigms strongly influence 

parallel programming styles. 

Parallel computing can be achieved by using an explicit or an implicit approach, 

as shown in Fig. 2.1. 

In the explicit approach a mapping procedure from a real world problem to a tar­

get parallel computer system is carried out. The parallelism properties for solving a 

problem are recognised, exploited and represented in a programming language by pro­

grammers; then a compiler transforms the given program with associated parallelism 

into an executable code on a specific architecture. The present generation of languages 

requires programmers to be aware of, and explicitly handle either the parallelism, com­

munication , or both. The awareness of parallelism requires not only the characteristics 

of the architecture, but also the features of problem domain. 

In the implicit approach a parallelising compiler first detects parallelism in a se­

quential or functional program, and then converts the program into executable code 

for a specific architecture. 

The key issue in both approaches is how to fully exploit parallelism for a given 

problem based on a specific architecture. To achieve this goal, a number of concepts 

and techniques have been developed. There are a number of important research papers 

on exploiting parallelism, bringing significant progress for PPM. We briefly review the 

relevant research aspects in the following subsections. 

2.1.1 Parallel computation models 

The von Neumann model is universal and serves as a bridge between programs and 

machines for sequential computation. In parallel computation, however, the existing 

parallel programming languages are tied to some particular parallel computation model, 
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10 Chapter 2. Background, Motivation and Objectives 

either theoretical or physical. In the last three decades, to improve the expressive power 

of parallelism, great efforts have been made to develop new models and languages. 

The requirements for exploiting parallelism, studying the complexity of algorithms 

and achieving portability of programming, have resulted in a significant advance in 

this area due to the introduction of machine-independent parallel computing (Lew94], 

(Ski90], (FS92], [Val90a]. 

• PRAM 

The PRAM (Parallel Random Access Machine) is an ideal model, that is widely 

used. It is discussed in detail in [GR88], (KR90] and [Val90b]. A PRAM model 

consists of a set of processors connected to a shared memory by a switch. In unit 

time, each processor can access its local memory or registers, access the shared 

memory, and perform a standard operation. Several variants of PRAM have been 

introduced in the literature to allow varying degree of simultaneous reference to 

the same memory location (EREW, CREW and CRCW). One of their common 

features is that communication time is not accounted for when studying a given 

parallel algorithm. In fact they require frequent communication (by using shared 

memory, possibly on every step). 

The PRAM programmer's task is to produce a program for each processor, or 

more likely design a single program to be executed by every processor in what 

often amounts to a SPMD style of programming. PRAMs are useful for studying 

parallel algorithms and evaluating their behaviour and properties. If an algorithm 

does not perform well on a PRAM it will be impossible to try to implement it 

on a realistic, but weaker, parallel architecture. The suitability of PRAM as a 

universal model was been examined by Skillicorn (Ski91). He has concluded that 

the PRAM model is universal over the classes of tightly coupled and hypercuboid 

multiprocessors, but not universal over the constant-valence topology multipro­

cessors and SIMD computers. The problem with efficient implementation of the 

PRAM model on these systems is that the amount of communication generated 

at each step can easily overrun the bandwidth provided by the topology. 
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• Dataflow model 

The dataflow model of computing gets around the problems encountered in in­

troducing parallelism in the traditional control flow model, by using a different 

viewpoint of the process of computation. Computation is represented by a di­

rected dataflow graph [DK82] [Sha85] with the nodes as operations and the arcs 

as paths carrying data tokens. In a dataflow program the ordering of operations 

is not specified by the programmer, but is constrained by the data interdepen­

dencies. 

When data is present on each input of an operation node, the node fires, i.e. it 

computes the operation using the data on its input arcs as arguments and passes 

the result out through its output arc. Since several nodes may fire simultaneously, 

the dataflow model gives rich opportunities for parallel evaluation. An important 

property of this model (which allows parallelism to be safely exploited) is the 

single-assignment property that an operation has no effect other than comput­

ing the output from its input arguments, i.e. side effects cannot occur. On the 

other hand, this single-assignment property makes dataflow languages unpopular 

with programmers used to conventional languages such as C, Fortran, etc. The 

dataflow model is widely used in three main areas of parallel computing: func­

tional languages, compilers and architectures. For example, VAL [McG82] and 

Id [Eka91] are two functional languages associated with certain dataflow archi­

tectures. The implicit parallelism in the program written in these two languages 

is exploited by dataflow models. IFl which is the intermediate code used by the 

compiler of Sisal [SW85], [Ske91] [CBF91] is a dataflow graph language. In fact, 

the dataflow technique is popular and is used by various compilers for optimisa­

tion. 

• Bird-Meertens Formalism 

The Bird-Meertens Formalism (BMF) is an approach to software development and 

computation based on categorical data types and associated operations. This the­

ory is initially based on the theory of lists [Bir87] and developed in [Spi89], [Ski93] 

and other papers. The theory of lists adds a number of the second-order functions 
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to the ba.se algebra, which includes map (x ), reduce(), directed reduce (ft), prefix 

(), filter ( <l) and so f0rth. BMF encourages software development by equational 

transformation which can be applied for optimisation, or regarded a.s rewrite rules 

[Mal90]. BMF does not directly express low-level parallelism physically; it is the 

compiler's ta.sk to implement the operations in parallel. Communication in this 

model is restricted to a set of functions, each of which encapsulates a particular 

communication pattern requiring only a constant size of neighbourhood locality 

[Ski91]. Both parallelism and communication are thus hidden from the direct con­

cern of the programmer. A strategy for building cost calculi for skeleton-ba.sed 

programming languages ba.sed on the Bird-Meertens formalism is presented in 

[SC94] so that trade-offs in software design can be explored before implementa­

tion. A major drawback of BMF is that it is applicable to only data-parallel 

algorithms. 

2.1.2 Parallelising compilers 

In the implicit approach, also called the conversional approach, a parallelising com­

piler first detects parallelism in a sequential or functional program, and then converts 

the program into executable code for a specific parallel architecture. Recent research 

ha.s underlined the importance of exploiting both control and data parallelism in a 

single compiler framework that can map a single source program in many different 

ways onto a given parallel machine. One of the most difficult problems for parallelis­

ing compiler techniques is how to find parallelisable execution code ba.sed on efficient 

and exact data dependence analysis[Pug92],[Lam74], [Ban90],[Lil94], (Mea91]. Despite 

some progress in the la.st two decades, a really sophisticated parallelising compiler is 

unlikely to be developed in the near future. One of the main rea.sons for this is the lack 

of sophisticated techniques and tools to fully exploit parallelism. Hence, at present, 

program parallelisation is only ba.sed on an incomplete knowledge background of par­

allel properties of application domains. An important question is whether the research 

frontiers in parallelising compilers are currently pushing the limits of traditional data 

dependence analysis. There are several complex tradeoff factors between control and 

data parallelism, depending on the nature of the program to be executed and the 

I 

I 

l 
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performance parameters of the target parallel machine. This makes it difficult for a 

compiler to select a good mapping for a control and data parallel program, because 

any such rational selection has to be based on the performance evaluation of different 

solutions. Further discussion on the state of art of data dependence testing is given in 

Chapter 6. 

A survey on compiler transformations for high-performance computing by Bacon, 

Graham, et al [BGet al94] shows that the current parallelising compilers lack an organ­

ising principle that allows them to choose how and when the transformations should 

be applied. In particular, due to the absence of a strategy for unifying transforma­

tions on parallel architecture, most high-performance applications currently rely on 

the programmer's skills rather than the compiler to manage parallelism. Since efforts 

to automatically parallelise sequential languages have not been very successful ( as peo­

ple have expected), the focus of research has shifted to compiling other non-traditional 

languages, such as functional or parallel programming languages, where the program­

mer needs to express directly or indirectly the parallelism needed [MPC90]. 

2.1.3 Functional programming 

Functional programming has attracted research attention for more than thirty years. 

Its clean semantics make it an attractive vehicle for investigating various programming 

language concepts. Church's lambda-calculus [Chu46], [Bar81] is the formal basis of all 

functional programming languages. 

An expression in the pure lambda-calculus is composed solely from three syntactic 

objects: function abstractions, function applications and identifiers. An application 

is reduced by replacing occurrences of the function's formal parameter with copies of 

its argument (,B-reduction). In applicative order reduction, the argument in a function 

application is reduced prior to doing the ,B-reduction. In normal order reduction the 

,B-reduction is performed directly with the unevaluated argument. Regardless of which 

reduction order is used for evaluating lambda-expression, the result remains identical. 

This important property of the lambda-calculus implies that a lambda-expression can 

be evaluated using any order of reductions. In principle, performing reduction in par­

allel is allowed. One of the main features of parallel functional programming is that 
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the programmer is able to view a program as a collection of high level units ignoring 

computational details. The lambda-calculus has a natural parallel semantics or mean­

ing, since no particular execution order is enforced. Thus, functional programs contain 

implicit parallelism at all levels. 

It is claimed in [Szy91) that functional programming is a convenient basis for the 

development of the parallel programming languages and the compilers in designing 

parallel programs. In practice, functional languages are used for parallel processing in 

two different approaches. 

• The purely implicit approach, where an ordinary functional language with 

no parallel additions whatsoever is implemented on a parallel architecture. To 

exploit parallelism in such a program, a compiler needs to abstract useful paral­

lelism and organise all computation units effectively on a target architecture. The 

typical techniques used for these compilers are the dataflow model and parallel 

graph reduction. The main problem with this approach is that compilers seem to 

have difficulties in deciding when a parallel evaluation is worthwhile, and when 

a standard sequential evaluation is preferable. To efficiently exploit parallelism, 

the dataflow model has been extended to support threads of appropriate grain 

size, allowing hybrid dataflow and control flow evaluation [GGB93). While sim­

ple and sound, there are doubts as to whether the extended multithreading of 

a dataflow system is as attractive as originally thought. Culler et al point out 

two fundamental limitations [CSE93): latency tolerance is limited in practice and 

local scheduling polices are inadequate. Many parallel graph reduction based sys­

tems can be considered to be not quite purely implicit since they rely on various 

degree of programmer annotations to identify the useful parallelism. 

• The purely explicit approach, where a functional language is given extra syn­

tactical constructs through which the programmer can instruct the compiler that 

parallel evaluation should take place. Here the burden of explicit parallel pro­

gramming is put back onto the programmer, whose skills and knowledge is in­

strumental to the performance of implementation. As a result, the programmer 

is required to indicate opportunities for fruitful parallel evaluation with various 
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annotations and also to specify how it is to be performed on certain architectures 

if necessary. 

Although (unctional languages provide abstractions, determinacy, succinctness and ease 

of expression, they are not commercially popular since their efficiency does not match 

the imperative languages. Moreover, there is a trade off between expressiveness and 

parallelism because if all the parallelism is exposed in the program, the program tends 

to become cumbersome and less succinct, particularly for large applications. Some 

compromise between expressiveness and parallelism is necessary for efficiency. In sum­

mary, it is certain that the fruits of functional languages, however attractive they may 

appear, cannot be reaped until definitive efficiency comparisons with the conventional 

computing are shown. 

2.1.4 Programming paradigms 

Regardless of the target parallel architecture, parallel programs must harmoniously 

coordinate two or more program segments to assure correctness, as well as high speed. 

This is the challenge of parallel programming. Exactly how parallelism is achieved is 

largely determined by the particular paradigm used by the programmer and program­

ming language used. With the development of PPM, in order to reduce the difficulty 

of complexity management in parallel programming, including expressing parallelism, 

partitioning, message passing and synchronising, a number of special programming 

paradigms have been developed, which have different programming styles with differ­

ent programming philosophies. 

1. UNITY 

UNITY is introduced as a foundation of parallel programming design [CM88]. A 

UNITY program describes what should be done in the sense that it specifies the 

initial state and the state transformation (i.e., the assignments). A UNITY program 

does not specify precisely when an assignment should be executed - the only restric­

tion is a rather weak fairness constraint: Every assignment is executed infinitely often. 

Neither does a UNITY program specify where (i.e., on which processor in a multipro­

cessor system) an assignment is to be executed, nor to which process an assignment 

belongs. A UNITY program does not specify how assignments are to be executed or 
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how an implementation may halt a program execution. UNITY separates concerns 

between what on the one hand, and when, where, and how on the other. The what is 

specified in a program, whereas the when, where, and how are specified in a mapping. 

By separating concerns in this way, a simple programming notation is obtained that is 

applicable for a wide variety of architectures. Of course, this simplicity is achieved at 

the expense of making mappings immensely more important and more complex than 

they are in traditional programs. In this approach no explicit control of scheduling 

or communications is required. UNITY is viewed as a language for reasoning about 

computation rather than executing computation. The departure point of UNITY from 

the conventional view of programming is to attempt to decouple a program from its im­

plementation. This decoupling leads that the correctness of a program is independent 

of the target architecture and the manner in which the program is executed, hence, 

a mapping becomes a description of how programs are to be executed on the target 

machine. The philosophy of UNITY shows the impetus of developing a different the­

oretical foundation for parallel programming from the conventional utilisation of von 

Neumann architectures. 

2. Linda 

Linda [CG89],[CG90] (a coordination language) is based on a shared, associative object 

memory-a tuple space. This tuple space contains an unordered collection of 'tuples', 

where each tuple contains an ordered collection of data fields. A tuple in the space is 

either active or passive. An active tuple is a process, destined to turn into an ordinary 

passive tuple upon completion. Tuples are removed using an associative matching 

protocol resembling the select operation in a relational database. 

Linda provides a radically uncoupled model of parallel computing. As a language, it 

places simplicity uppermost so that uncoupling has a space-wise and time-wise aspect, 

that is, processes may communicate in Linda although they are mutually anonymous 

and their lifetimes are disjoint. Linda requires the explicit expression of parallelism 

and communication (by accessing tuple space) but abstracts from synchronisation. 

3. Skeleton-Based Programming 

It is observed that parallel programs written in explicitly parallel languages consist 

of two different kinds of codes, task specific code implementing the individual steps 



2.2. Problems 17 

of the algorithm, and code for structuring the program into patterns of computation 

and communicati_on associated with specific architectures for parall_el execution. It is 

typically only in the latter kind of code that there is a need to deal with low-level 

machine dependent design problems. Moreover, the typical parallel infrastructures of 

programs have been classified into a few well-known parallel paradigms (patterns), each 

determining the operation and coworking of groups of processors. 

In [Col89],[Det a/93] the use of'patterns is suggested as is a fundamental concept in 

parallel programming. From the programmer's perspective the skeleton is a high level 

semantic description of an algorithmic operation with gaps left for problem specific 

procedures and declarations. To use such a skeleton, the programmer must fill these 

gaps with parameters. The implementation of a skeleton is, however, completely hidden 

· from the programmer. By using skeletons there will be parallelism implicit in the 

program which can be potentially be exploited on a parallel architecture by a compiler. 

Consequently, the portability of the program is enhanced in this paradigm. 

In summary, during the last three decades, parallel programming techniques have 

been developed with · great effort, providing various advanced vehicles to let program­

mers make use of their personal knowledge and skills because parallelising compilers 

have not been so successful as expected. Due to the different strengths and weaknesses 

of these techniques and approaches, we cannot predict which one of these will dominate. 

The attention of our research is limited to examining the current state of the art in 

the literature, identifying some inadequate components in PPM and possibly providing 

improved techniques for PPM. 

2.2 Problems 

Parallel computers are used almost exclusively for very specific areas of compu­

tating. It is widely believed that the principal reason why parallel computing has 

not had a major commercial breakthrough is due to the lack of adequate software de­

velopment methodologies and tools [Col92], [Pan91], [KN93]. To expand the use of 

parallel computers, a fundamental requirement is that these computers are easy to use 

like uniprocessor computers. In fact, it is not difficult to write a program with cer-
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tain parallel properties, but it is difficult to develop a parallel program with a good 

performance. 

Nobody wants parallelism. What we want is performance. It is the fact that 

going to parallelism is the only way to continue to enhance performance that 

makes parallelism a necessity [Pan91]. 

Ken Neves of Boeing Computer Services 

Because the von Neumann architecture is universal for sequential computation, 

an implementation of an algorithm on one manufacturer 's uniprocessor will differ in 

speed by no more than a constant factor from that on another 's [Ski90] . In parallel 

programming, however, the situation is quite different. Whether an implementation of 

parallel computing is successful should be decided by both correctness of computation 

and the performance achieved. An implementation with certain parallel features does 

not mean a success if some more significant parallelism is missed out. In other words, it 

is possible that there could be another solution making use of that parallelism to achieve 

a better performance. In such a situation, we believe that current parallel programming 

methodologies are empirical or ad hoc since a number of different solutions to a given 

problem, with widely different performances, can be arrived at by different people, even 

if based on the same architecture. 

In most cases, the first workable solution is likely to be adopted. If the chosen 

solution is poor, this will not be a cost-effective choice in the long run. Hence, pro­

gramming methodologies should provide a guideline to convince programmers why a 

chosen solution is better than others, or why an architecture used is better suited for 

a problem than others. Unfortunately, most current research papers and techniques in 

the literature do not deal with such practical guidelines. The problem discussed here, 

actually, is how to reduce the risk of performance failures using proper methodologies. 

In the explicit approach most languages and models are used to express parallelism 

in a problem. Thus, the parallelism must be known to the programmer before it is 

expressed. In such a case, it is found that a successful implementation of parallel 

computing is determined by two main characteristics of the programmer, namely, pro­

gramming skills and knowledge of parallel properties in the problem. If a programmer 
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Figure 2.2: Different programming solutions lead to different performance. 

lacks excellent programming skills or understanding of the parallelism in the problem, 

the risk of performance failures always exists. This situation is illustrated in Fig. 2.2. 

Different programmers produce diverse solutions in which personal experience is heav­

ily involved. If no special optimisation is applied in transformation by the compiler, 

the difference in performance of the two solutions proposed by programmers is unlikely 

to be improved in the compiled codes. 

The main reasons for this situation can be summarised by the following four points: 

• Programming languages permit to express an algorithm to solve a problem; par­

allel programming languages are no exception. The parallelism specified in a 

parallel program is known to programmers and is constrained by using certain 

languages. The same is true of most parallel computation models and functional 

parallel languages, no matter whether they are machine-dependent or machine­

independent. In the diagram shown in Fig. 2.2, the constraints from the tech­

niques used in programming and personal experience of programmer are intro­

duced at the programming stage and finally contribute to the performance. 
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• It is observed that none of those languages and models has been developed with 

the primary goal of revealing parallelism in a problem. No standardised scale 

exists to measure parallelism in a given problem. The parallelism in a problem 

is visible only in implementation as expressed by a programmer. As a result, 

progress towards full exploitation of the problem's parallelism cannot readily be 

evaluated. The performance of the solution can only be examined after the imple­

mentation. Moreover, if there are different available architectures, the selection 

of an architecture is usually made before programming based on personal expe­

rience, knowledge and intuition rather than a formal investigation of the parallel 

characteristics of the problem. 

• Current programming paradigms do not guide us to find alternative solutions 

except by writing a new program. The performance of any proposed solution can 

only be examined after implementation. 

• Using existing concepts and terminology, we are not able to explain some of our 

concerns. The· concepts, explicit parallelism and implicit parallelism, are suitable 

to indicate the state of individual parallel properties in a program rather than 

the general feature of the parallelism because 

Explicit parallelism does not explain the differences between parallel features 

in two solutions; 

Implicit parallelism cannot determine to what extent a given solution can 

be optimised. 

As a result, it is difficult to introduce proper measures to check if a parallelising 

compiler can successfully exploit parallelism for a given source code. 

Machine-independent parallel programming is important to make the program­

ming task easy and address the portability issues. It does not help to eliminate 

the subjective aspects that affect the performance. 

In order to obtain suitable methodologies for parallel computing, attention has 

been paid to topics, such as parallelism profiling, program derivation and performance 
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prediction. It is not clear whether these topics could be naturally and successfully 

combined with languages, computational models and parallelising techniques since they 

use quite different tools in representation. The requirement to develop an integrated 

environment for conducting a number of different tasks in parallel programming is 

inevitable from a systematic and engineering point of view. There is no consensus yet 

on structure of the software platform for such an environment. 

In terms of the motivation for developing parallelising compilers, an ideal compiler 

is supposed to exploit the maximum parallelism for a given source code. In other words, 

for different program solutions of the same problem, having almost same amount of 

inherent parallelism, the difference in performance of their transformed codes should 

be within acceptable limits. If we can conceptually divide the task of exploiting par­

allelism into two subtasks, namely, finding parallelism and mapping it onto a specific 

architecture, then whether a compiler could find out a certain amount of parallelism for 

both solutions becomes a key issue. The survey by Bacon et al [BGet al94], shows that 

the research progress in this field has not indicated the availability of such a smarter 

parallelising compiler in the near future. 

2.3 Related research 

The problem we have raised is related to a number of fundamental issues in parallel 

programming, like languages, computational models, parallelisation and so on. Some 

issues have been recognised and studied by several researchers around the world. 

1. Pomsets approach 

To model concurrency with partial orders, Vaughan Pratt (Pra86] introduces a single 

hybrid approach having a rich language that mixes algebra and logic and having a 

natural class of models of concurrent processes. The language is extracted from three 

existing approaches, that is, formal languages, partial orders and temporal logic. The 

heart of this approach is a notation of partial string derived from the view of a string 

as a linearly ordered multiset by relaxing the linearity constraint, thereby permitting 

partially ordered multisets or pomsets. 

As a formal representation of processes, a pomset is the isomorphism class of an lpo 
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(labelled partial order) , denoted [V, I:~'µ] by Gischer [Gis84]. Unlike the 'operationaf 

approach using reductions between expressions advocated by Milner [Mil83], Pratt's 

approach is denotational or extensional in the sense that it uses a concrete mathematical 

model of a computational behaviour, along with operations on behaviours that yield a 

particular algebra of behaviours. 

The above approach has the advantages of being straightforward, involving fewer 

artificial constructs than many computing models of concurrency, and is applicable 

to a wider range of types of systems [Pra86]. As a theoretical demonstration, this 

approach shows how to use abstract concepts of partial ordering and multisets to exploit 

parallelism. 

In the recent work of Pratt all relational structures between time and information 

are mathematically realized in the phase spaces of the Chu space [Pra94]. It is ob­

served, theoretically, that the passage from sequential non-branching computation to 

concurrent and branching computation can be understood as the relaxing of the linear 

structure to looser (weaker) spaces from both temporal and spatial points of view. 

2. Complex systems 

In the last ten years Fox's groups at the Caltech Concurrent Computation Program 

(C3P) , and more recently the Northeast Parallel Architectures Centre (NPAC) at Syra­

cuse University have made great efforts in improving the understanding, concepts and 

techniques of parallel computing [Fox90], [Fox92]. They consider parallel computing 

as the mapping of one complex system - typically a model of the world - into an­

other complex system - the parallel computer. Thus, the use of parallel computers 

can help improve our understanding of complex systems, and the converse is also true 

- we can apply techniques used for the study of complex systems to improve our 

understanding of parallel computing. 

Fox's mapping theory of parallel computing is based on the space-time picture of 

parallel computing, that is, spatial properties and temporal properties. The spatial 

properties of the problem are determined by the concepts like system size, geometry 

and information dimension, and mapping decisions like problem decomposition and 

allocation. The temporal properties include static and dynamic scheduling, synchro-
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nising and other dynamic factors. In terms of these properties a qualitative theory of 

the architectures of problems is developed, which is analogous to Flynn's well-known 

classification of parallel architectures. Fox discusses how the spatial ( data) parallelism 

of the problem becomes the temporal structure in software. He concludes that the fail­

ure of most parallelising compilers is caused by missing the point that the parallelism 

comes from spatial and not control (time) structure [Fox92]. 

Most languages do not express and preserve space time structure. Consequently, 

the efforts being made in NPAC are to develop languages that can express better the 

problem structures. High Performance Fortran (HPF) is one of the languages devel­

oped for this improvement. With HPF certain structure features of the problem can be 

expressed by data distribution directives (TEMPLATE, ALIGN, PROCESSORS, DIS­

TRIBUTE, DYNAMIC and REDISTRIBUTE), parallel statements (INDEPENDENT 

and FORALL) and intrinsic functions and the standard library [Kea94]. 

3. GAMMA programming model 

The GAMMA formalism [BM90] [BM93] in which programs are described as multiset 

transformation was introduced to support a systematic program derivation method in 

parallel computing. The main feature of GAMMA model is the function: 

f((R1, A1), ···,(Rm, Am))(M) = oneof(f 11 ((R1, A1), ···,(Rm, Am))(M) 

where 

fll((R1, A1), • • · 1 (Rm, Am))(M) = 
if'v'i E [l,m],'v'x1,"·,Xn E M,-,Ri(x1, .. ·,xn) 

then {M} 

else {M' I 3x1, · · ·, Xn E M, 3i E [1, m] such that 

Ri(X1, · .. , Xm) and 

M' E fll((R1, A1), ·",(Rm, Am)) 

((M - {x1, .. ·, Xn}) + Ai(x1, .. ·, Xn))} 

The function R is the reaction condition (or condition text); it is a boolean function 

indicating when some of the elements of the multiset M can react. The function 
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A (action text) describes the result of this reaction. Hence, if one or several reaction 

conditions hold for several non-disjoint subset at the same time, the choice made among 

them is nondeterministic. This aspect of GAMMA provides for competitive parallelism 

[CG89], [MK95). However, if the reaction condition holds for several disjoint subsets 

at the same time, the reactions can take place independently and simultaneously; this 

aspect provides for cooperative parallelism. 

The motivation of GAMMA is to express logical parallelism of a problem before 

an implementation in which physical parallelism is achieved. The confusion between 

logical parallelism and physical parallelism is part of the heritage of several decades of 

imperative programming. It is suggested that in parallel programming we should be 

able to build in the first place an abstract version of the program that should be free 

of artificial sequentiality[BM93). 

4. Other earlier studies 

Also there are a number of previous studies on instruction-level parallelism, involv­

ing a wide variety of machine models and applications, to measure the limits of par­

allelism which may be exploited in a program (KMC72), [NF84), [Kum88), [Wal91), 

[LW92),[TGH92b), [AS93). Lam and Wilson studied the limits of control flow on par­

allelism. They demonstrate that substantially higher parallelism can be achieved by 

relaxing the constrains imposed by control flow using control-dependence analysis and 

speculative execution [LW92). Theoblad, et al developed an experimental testbed to 

examine the limits of parallelism in a program and its smoothability on a given model. 

The result of their experiments shows that some applications intuitively seem to have 

much more potential parallelism than found by current techniques. Thus it is suggested 

that, in many cases, large-scale parallelism will not be achieved merely by transliterat­

ing existing imperative-language programs (TGH92a), [TGH92b). One of the common 

features of these studies is to measure or examine performance and potential paral­

lelism in programs as they are executed. The concept of upper bounds for potential 

parallelism is associated with the limitations of models and architectures. 

Kumar has developed a software tool (COMET) that measures parallelism quanti­

tatively when a FORTRAN code is executed on an ideal parallel machine, and found 

the potential for higher levels of parallelism in scientific numerical programs [Kum88). 
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The measurements obtained from COMET would aid the evaluation of various par­

allel processing systems by providing the right set of assumptions for the extent of 

parallelism presented in applications. Also Kumar found that the characterisation of 

parallelism is more difficult and is handled at a cursory level. 

Tetra [AS93]is a multi-platform instruction trace analyser developed by Todd Austin. 

As a tool for evaluating serial program performance under the resource and control 

constraints of fine-grain parallel processors, Tetra's primary goal is to quickly generate 

performance metrics for yet-to-be designed architectures. The core of this tool is dy­

namic dependence analysis through the unconstrained dynamic dependence graph ( we 

use uDDG to distinguish another widely used concept DDG for data dependence graph). 

The uDDG is also called dynamic dataflow graph because construction of such a graph 

is based on the data dependencies realized in the analysed program's execution. This 

approach has significant difference from other studies which are mainly based on the 

context of programs. According to architecture features specified, Tetra produces an 

execution graph that is finally analysed to evaluate the serial program's performance 

under the specified architecture model. 

2.4 Thesis Objectives 

2-.4.1 The Proposed improvement in PPM 

The central problem raised in the last section is about the deficiency that exists in 

the current representation techniques used for parallel computing. A possible solution 

to the problem is to develop techniques to exploit parallelism before or when a program 

is developed. These techniques can be either improvement to the existing representation 

tools or development of a new representation that will have a special facility to reveal 

parallelism and can be easily integrated with other parallel programming tools. 

A language or a computational model in programming is typically used as a tool to 

express a real world problem in a particular form for computation. The parallel proir 

erties of solving a problem are exploited and expressed in a specification or a program. 

While two specified solutions of the problem may be quite different in performance. 

If there is no smart compiler that could optimise two solution of the same problem 
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so that the performance difference between them could be reduced to an acceptable 

range, then the issue raised would remain unsolvable with current techniques. Both 

imperative languages and functional languages have already been designed for their 

special features. The experience with language development has shown that it is very 

difficult to make a language meet many different requirements of parallel computing, 

since they may be contradictory. 

Previous studies on machine-independent parallel computing, logical parallelism 

[BM93] and the limits of parallelism in a program [TGH92a], show that parallelism can 

be investigated in different ways. The task of finding parallelism is typically carried 

out by a compiler or a program. The methods used to exploit parallelism is always 

described in a traditional way that one can use the methods to express parallelism. 

While,. it has never been explained whether or how the methods can ensure that for 

a given problem parallelism is expressed correctly from a good performance point of 

view. The problem here is that the success of using these methods is determined by the 

person who uses them. In other words, the method itself cannot guarantee a success 

when it is applied. 

In order to improve this deficiency, we propose to develop some new techniques to 

study parallelism in solving a problem as a relatively independent task from mapping 

a real world problem onto a specific architecture. Such a technique should have a 

special power to reveal parallelism in a non-traditional manner. We believe that a 

programmer-view independent manner to express parallelism should be advocated such 

that at the programming stage parallelism of a given problem can be revealed without 

any constraints. This goal is not achievable by using conventional languages, thus, it is 

necessary to define what this new technique is. Moreover, the relation between the new 

technique and those existing concepts or tools should be set up properly. The effort we 

are making is to enhance relevant techniques in PPM rather than developing a stand 

alone one that would be better than others. 

2.4.2 Parallelism revelation models 

As discussed earlier, in conventional parallel programming approaches [CM88], 

[CG89], [BM93], [Sab88], [Ski91], [CG90], the parallelism achieved by a particular 
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program is based on: (i) the models, architectures and techniques used as guidelines; 

and (ii) the subjective view of programmers who produce different solutions using dif­

ferent parallelism features. Therefore, we call this kind of parallelism programming 

solution-based parallelism or subjective parallelism. The word subjective itself 

dose not mean anything on whether the performance of a solution is good or not, since 

it only indicates that the solution is designed subject to certain constraints. Different 

constraints introduced in program .design lead to different performances. 

To improve PPM, we believe exploiting parallelism needs some kind of support 

that is based on a special model, called a parallelism revelation model. The most 

important feature of this model is the capability to reveal parallelism in a programmer­

view independent manner. In addition to the key properties possessed by a parallel 

computation model suggested in [Ski90], the special criteria for this kind of model are 

as follows: 

• It should be developed with a primary goal to reveal parallelism of a problem. 

• Its representation should be grain-dependent since parallelism analysis is based 

on fine-grain representation where most data parallelism can be found, we should 

then move on to a medium-grain or coarse-grain level for control parallelism. 

• It should support parallelism inference. 

• It should support optimisation of a solution. 

• It should provide mechanisms to reconstruct solutions. 

• It should have potential applications as a kernel or foundation for parallel pro­

gramming so that certain related techniques and tools can be integrated. 

2.5 Summary 

In summary, we quote from Chandy and Misra [CM88]: 

The basic problem in programming is managing complexity. We cannot 

address that problem as long as we lump together concerns about the core 
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problem to be solved, the language in which the program is to be written, 

and the hardware on which the program is executed. Program development 

should begin by focusing attention on the problem to be solved and postponing 

considerations of architecture and language constructs. 

To achieve this goal, in this dissertation, the discussion and study of parallelism of a 

given problem (see Chapter 3 to 6) are separated from architectures and implementation 

(a brief discussion of mappings is included in Chapter 7). The parallelism revelation 

model is proposed as a new tool to exploit inherent parallelism that is independent of 

the programmer's view. 



Chapter 3 

ABCOM- A Parallelism Revelation Model 

Presented in this chapter are a parallelism revelation model, called ABCOM, and its 

properties. 

3.1 A Puzzle - Parallelism in a Problem 

Parallelism is realisable in various forms - lookahead, pipelining, vectorisation, 

concurrency, simulta"neity, data parallelism, partitioning, interleaving, overlapping, mul­

tiplicity, replication, time sharing, space sharing, multitasking, multiprogramming, 

multithreading, and distributed computing at different processing levels. No matter 

how they differ in their properties, a common feature of all is to solve a real world 

problem on a particular architecture with an appropriate parallelism. 

Parallelism is a qualitative concept when we say a problem is solved in parallel. 

However, parallelism has also a quantitative aspect when the problem is expressed 

in a particular program with parallel properties, which determine the performance of 

the program. Parallelism is inherent in a definition of the problem, remains dormant 

until it can be expressed in a notational form (such as a program or specifications). A 

definition of a real world problem contains a data domain and operations associated 

with the data. Parallelism characteristics for solving the problem are available based 

on a combination of these two concepts and time. The objectivity of parallelism means 

the parallelism in a given problem is inherent. But it can be partially and subjectively 

expressed in a specific representation tool (for instance, a language). Hence the amount 

of the parallelism expressed can be quite different from one solution to another due to 

29 



30 Chapter 3. ABCOM- A Parallelism Revelation Model 

real A(n x n), B(n x n) and C(n x n) 
real temp( n) 
for i =1 to n do 

end 

for j ==1 to n do 

end 

temp(l: n) = A(i, 1: n) x B(l: n,j) 
c(i,j) = Sum(temp(l: n)) 

Figure 3.1: An parallel algorithm for matrix multiplication 

subjective factors and technical constraints involved. Thus, to answer to what extent 

the parallelism of a problem can be exploited we have to know whether those factors 

and constraints could be avoided or eliminated from programmer's expression as far as 

possible. 

To understand the subjective parallelism, let us start with the example of a matrix 

multiplication C =Ax B, where 

Cik = I:j aijbjk• 

Here the data domain is composed of the elements of three matrices. Using a SIMD ar­

chitecture, one can solve this problem using different parallel algorithms. One possible 

solution is shown in Fig. 3.1 where data parallelism is achieved in a vector-wise manner. 

Another solution [Can69], [Cor90] is illustrated in Fig. 3.2. It can be speeded up by us­

ing a systolic array for more data parallelism. In addition, we can decompose[FJea88] 

the whole matrix into a number of su~matrices for parallel computing. The (su~ 

jective) parallelism exploited in each of these algorithms is different, and results the 

difference in performance due to the subject ive selection of parallel properties of the 

problem. 

A computation task can be illustrated using computation graphs, where consider­

ations on how to handle data manipulation in a program and storage on a particular 

architecture are ignored. The matrix multiplication of A(3 x 4) x B(4 x 4) is shown in 

such a graph in Fig. 3.3 to compute an element Cij of C =Ax B. 
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real A(n x n), B(n x n) C(n x n) 
real al(n x n), bl(n x n) 
integer skew(n) 
/*Set up skewing vector: [O, 1, 2, · · ·, n - 1] *I 
for i = 1 to n do 

skew(i) = i - 1 
end 
I* Perform the initial skewing *I 
al= cshift(A, 2, skew) /*skewing along dimension 2 *I 
bl= cshift(B, 1, skew) /*skewing along dimension 1 *I 
I* Loop to accumulate the dot product at each iteration *I 
C(n x n) = 0 
for i = 1 to n do 
C(n x n) = C(n x n) + al(n x n) * bl(n x n) 
al= cshift(al, 2, 1) /*skewing for next iteration*/ 
bl= cshift(bl, 1, 1) /*skewing for next iteration*/ 

end 

Figure 3.2: Cannon's systolic algorithm for matrix multiplication 

Figure 3.3: Computation graph for Cij 
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There are totally 3 x 4 computation graphs like this for this example. They are 

computationally independent, yet share certain input data. Using this representation, 

in a general case, if C(m x p) = A(m x n) x B(n x p), it is seen that all m * n * p 

multiplications required could be performed in parallel and all (m*(n-l)*P) additions 

can be done in log2 n steps (by using a CREW PRAM based model with m * n * p 

processors). Note computation here is executed in a dataflow style with maximal 

parallelism. The above example reveals the following: 

1. Each element aij of A or bjk of B is used p or m times in multiplication. These 

multiplications are independent and can be carried out in parallel if there is 

no data-access conflict. The computational graph in Fig. 3.3 provides not only a 

machine-independent but also program-solution independent approach to express 

a computational schema. 

2. The parallelism in a problem is objectively determined by the spatial structure 

( data domain) and associated temporal logic of computation. Using parallel com­

putation models and architectures with different topological structures, we can 

develop a number of different solutions for the same problem. The subjective par­

allelism achieved in a program is extracted from and is also constrained within the 

objective parallelism. Current parallel programming always expresses a subjec­

tive solution with the parallelism realised by a programmer based on a particular 

parallel computation model. 

In our discussion, a given problem is defined as a set of given data objects (input 

data and output data) plus a set of defined operations that are performed on the input 

data to produce an output. If operations are redefined mathematically or conceptually, 

the problem may change to a new one. The parallelism revelation discussed in this 

dissertation, therefore, is not about how to redefine operations for more parallelism. 

Our aim to reveal parallelism inherent in the initial representation of a problem. The 

difference between the objective parallelism of a problem and subjective parallelism 

realised in a program provides a measure for the performance of a program. 

Also in this thesis, by the term 'solution' we mean any form of representation to 

express an algorithm to solve a problem. A program is a special solution, while, a 
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solution need not be a program. 

3.2 Definitions and Properties 

The abstract computational tuple-space model (ABCOM) is defined as a 

finite symbolic data space in which computational information is represented into a set 

of computation units, called eleme~ts of the space. ABCOM is formally defined thus: 

Definition 3.1 The abstract computational tuple-space U consists of a set of quadru­

ples, called computation units ( or elements) of the tuple space, that is, U = { u0 , u1 , 

u2, ···,Un} with uo I- (0, {0}, {0}, 0) and Ui I- (oPu;, inu;, outu;, exu;) for i = 1, 2, · · · , n, 

where 

• OPu; is a defined operation; 

• inu; is a set of input data objects; 

• outu; is a set of output data objects; 

• exu; is a logical execution time. 

Here 'I-' means 'perform'; for sake of simplicity, we usually use ' :' instead of 'I-' in 

discussion. A defined operation can be either primitive (mathematical and relational 

operations) or user-defined. The element u0 is primitive and intrinsically contained 

by U, where 0 is an identity operation. Each element of ABCOM is defined as a 

computation task or a unit. Without considering the relationship between an element 

and any other element, Ui E U can be explained thus: there is an operation OPu; that 

uses inu; as input to produce output in outu;, denoted by 

For a given data object x if there is x E inu;, it means Ui has a 'read' access to x; while 

if x E outu;, then a 'write' access to x. The order of data objects in inu; and outu; is 

determined by the relations associated with OPu;. 
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The execution order of elements in ABCOM is controlled by a logical clock for 

counting logical steps of the computation; each element takes a unit of logical time for 

execution. It means that exu; = 1, 2, · · ·, n if we define the start time of the clock is 

equal to exu.
0

• When exu; is equal to current value of the clock, OPu; is executed, we 

say Ui is performed. If there is a partial order exu; < exu1 < exuk with exu; = 2, 

exu
1 

= 3 and exuk = 7, for example, we say Ui, Uj and Uk are performed at timesteps 2, 

3 and 7 respectively. If exu; = exu1 , it means that Ui and Uj are performed in parallel. 

If there are two or more elements in U, the relationship between element Ui and 

other elements is decided thus: If there is a data object x E inu; or x E outu;, and also 

appears in another element Uj, then these two elements are computationally related. In 

this case, there may be an intentionally specified partial order between them to perform 

a computation task that sequentially combines Ui with Uj. That is, Ui is designed to 

be executed at a particular time ( exuJ: 

An example is given as follows: 

Example 1 

S1: A= B + C 

S2: E = 2 x F 

S3: Q = A - E 

U1 : (+, {B, C}, {A}, 1) 

u2: (x,{2,F},{E},2) 

U3: (-,{A,E},{Q},3) 

where the program is expressed in U = { u1, u2, u3}, and statements S1 , S2 and S3 are 

transformed to elements u1, u2 and u3 respectively. 

Definition 3.2 For :Jui E U and x E inu;, x is said to be specified for Ui at a timestep 

t if and only if: 

( 1) x is a constant; or, 

{2} (:luj EU, exu1 < t < exu; I\ x E outu1) I\ (,lluk EU, t < exuk < exu; I\ x E outuk). 

Definition 3.3 For :Jui E U, if\::/x E inu, are specified, then Ui is said to be ready for 

execution, otherwise, Ui is not ready. 
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In Example 1, if we assume variables B, C, and F are assigned certain values before 

S1, then Band C in u1, and Fin u2 are specified at the begining, accordingly, u1 and 

u2 are ready for execution. After performing u1 and u2, A and E become specified and 

then u3 becomes ready for execution. 

Definition 3.4 For { Ui, Uj} E U, a partial order exu, < exu; is a successive partial 

order if and only if exu; = exu, + .1. 

According to Definition 3.1, opu, is a primitive operation or composed operation 

abstracted from a number of the operations. Therefore, the representation in U is said 

to be grain-dependent. 

Definition 3.5 Let ki denote the number of data objects in outu., and Ui E U. lfVui 

for i = 1, 2, · · · n, ki = 1 and OPu, is a primitive operation, then U is said to have a 

fine-grain representation , denoted by U I. 

In this thesis our discussion is mainly focussed on the properties of U I and its 

applications to parallel programming. Therefore, we simply just refer to U I as U in 

discussion without indication. 

Definition 3.6 For 3ui E U, there is an elementary data-operation-associated 

graph (EDOAG) of data x E outu., denoted by EDOAGu, which is a directed acyclic 

graph where the vertex x E outu, is called a successor of the data objects listed in inu, 

and there is an edge from each of them to x. 

Definition 3.7 For {ui, Uj} E U, if exu, < exu; and outu, n inu; 2 {x}, and there 

is no Uk E U in which outu1c 2 { x} and exu, < exu1c < exu; , then E DO AGu, and 

EDOAGu; are merged or involved in a dataflow relation from Ui to Uj, 

Definition 3.8 For 3ui EU, a data-operation-associated graph (DOAG) of data 

x E outu, is a composition of a number of EDOAGs for Uj, Uk,···, u1 , which has the 

following properties: 

1. DOAGu, has a vertex x E outu, with outdegree zero; 
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A E 

/~ /~ 
B C F 2 

/Q~ 
A E 

/~ /~ 
B C F 2 

Figure 3.4: C DO AGs of Example 1 

2. EDOAGu;, EDOAGu1c, · · ·, EDOAGu1 are involved in data.flow relations in a 

pair-wise manner. 

Definition 3.9 For :lui E U, if there is a DOAGu;(x) and all vertices with indegree 

zero in DOAGu;(x) are specified, then DOAGu;(x) is completely specified, denoted 

as CDOAGu;(x)· 

In terms of Definition 3.9, it is seen that there are three CDOAGs in Example 1, 

which are illustrated in Fig 3.4, if EDOAGu1 and EDOAGu2 are viewed as two special 

CDOAGs that contain no other EDOAG except themselves. Thus, one important 

property of CDOAG can be expressed in Lemma 3.1. 

Lemma 3.1 If EDOAGu;(Y) is a subgraph in CDOAGu;(x), then CDOAGu;(y) is also 

a .'mbgraph of CDOAGu;(x)· 

It is observed that in any CDOAGu; there are a number of paths which emanate 

from those vertices with indegree zero towards the root x E outu;. The number of 

edges contained in the longest path in CDOAGu; is called the depth of CDOAGu;· 

Let UcDOAGu - denote a sub-tuple-space which contains all elements of CDOAGu -, . . 
hu; denote the depth of CDOAGu;, and ecDOAGu - be the length of critical path 

• 
of computation logic for CDOAGu;, then one of the properties regarding to hu; and 

ecDOAGu - can be described as follows: 
• 
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Lemma 3.2 If there is UcDOAGu, = { Ui, ·· .. ··,Uk}, then 

hu, ~ ~CDOAGu, = Max{ exu,, · · · · · ·, exu,.} = exu,. 

The C DO AG is a time-dependent concept; at each new logical step certain data 

objects that are not specified earli~r become specified. Hence, the size and depth of a 

CDOAG are reduced gradually during the execution of computation. This feature of 

CDOAG can be flexibly used to consider a DOAGu, as a CDOAG by assuming that 

certain vertices of DOAGu, are specified. 

The relationships between any two C DO AGs are classified under the following four 

categories: 

• Contained (CDOAGu,(x) C CDOAGui(Y)) 

If CDOAGu,(x) is a subgraph of CDOAGui(y), then CDOAGu,(x) is properly 

contained by CDOAGuj(Y)i 

• Overlapping (CDOAGu,(x) t><1 CDOAGuj(Y)) 

If there is CDOAGu,.(z) which is contained by both CDOAGu,(x) and CDOAGu,(y), 

but CDOAGu,(x) and CDOAGu,(y) are not contained each other, then CDOAGui(x) 

and CDOAGuj(Y) are overlapping; 

• Completely independent (CDOAGu,(x) II CDOAGui(Y)) 

Let Eu, indicate a set of all named vertices of CDOAGu,· If CDOAGu,(x) and 

CDOAGui(Y) are neither contained by each other nor overlapping and Eu,nEui = 
{0}, then CDOAGu,(x) and CDOAGuj(Y) are said to be completely independent; 

• Conditionally independent (CDOAGu,(x) lie CDOAGui(Y)) 

Let Einu - indicate a set of all named vertices with indegree zero of CDOAGu,· If 
• 

CDOAGu,(x) and CDOAGuj(Y) are neither contained by each other nor overlap-

ping, but Eu, nEuj -(Einu, nEinu) =J {0}, then CDOAGu,(x) and CDOAGuj(Y) 

are said to be conditionally independent due to collision of naming variables. 

(In other words, there are data objects that are shared by CDOAGu,(x) and 

CDOAGuj(Y) to hold computation result.) 
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Figure 3.5: Examples of relations between CDOAGs 

In Fig. 3.5, for instance, CDOAGu18 is contained by CDOAGu20 ; CDOAGu4 and 

CDOAGu
5 

are overlapping; CDOAGu4 and CDOAGu10 are conditionally independent 

because of variable reuse; and CDOAGu10 and CDOAGu20 are completely independent. 

Lemma 3.3 IfCDOAGu,(x) and CDOAGu;(Y) are conditionally independent, a shared 

object z ( z E Eu, and z E Eu;) can be removed by substitution of a new object for z in 

one of them without affecting the correctness of computation. 

From a semantic point of view, a CDOAG contains information of a complete 

computation task that is performed. All vertices with indegree zero of a CDOAG are 

given as input data; the vertex with outdegree zero is the output. The spatial properties 

of the computation are defined by the set of objects used. The computational logic is 

explicitly determined by the partial orders of the elements in the CDOAG. There are 

certain dataflows among the elements, which start from the elements that are ready 
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initially and end by producing the output of the CDOAG. 

Note that due to the explicit specification of the execution order of elements in U, 

there is a partial order(<) between any two elements Ui and Uj. The partial order here 

that is expressed is of two types: 

(i) Essential: A partial order is essential for a completion of a certain computation 

task, thus, we say this partial order is necessary; 

(ii) Non-essential: A partial order introduced may be non-essential for the correct 

completion of the task, hence, this partial order is unnecessary for correct computa­

tion. 

For example, there are three partial order relationships among the elements in 

Example 1, that is, exv.
1 

< exv.2 , exu1 < exv.3 and exv.2 < exu3 • In order to keep 

the correct result of computation, partial orders exv.1 < exv.3 and exv.2 < exv.3 are 

necessary, but exv.
1 

< exv.
2 

is not necessary because if we let exv.1 = 2 and exv.2 = 1, 

the result is same. It means the partial order between two elements that are contained 

in two completely independent CDOAGs is unnecessary. 

In Definition 3.7; the formula exv., < exv.1 for elements Ui and Uj which are involved 

in dataflow relation determines relation of execution orders between the elements, which 

can be expressed as Lemma 3.4. 

Lemma 3.4 If there is an element Ui E U and two subsets of elements { Uk, u1, ···,up} 

and { Uj, uh,···, uq} which are directly merged with Ui, and inv., = outv.1c U outv.1 U 

· · ·, Uoutv.p and outv., ~ inv., U inv.h U · · · U inv.q , then 

(3.1) 

and 

(3.2) 

Here Llowerexu · and Lupperexu · are the lower bound and upper bound which 
• • 

indicate respectively the earliest and the latest execution time of exv.,. Let ~exu, 
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denote the difference between the lower bound and the upper bound, given by 

~eXu · 
' 

[t_upperexu -, tJowerexu -1 
' ' 

{3.3) 

- [Min{exui,exu,., ·· ·,exuq}-1, Max{exu1c,eXui,···,exup+l}]. {3.4) 

The period of time covered by ~exu - is called legal execution zone of Ui, It means 
' 

that without losing correctness of computation Ui can be designed to be performed at 

any one of logical timesteps within ~exu-. How the execution time of Ui can be legally 
' 

changed within ~exu - will be discussed in Chapter 5. 
' 

Based on the concept of partial ordering, some important properties of computation 

can be observed: 

• In performing a certain computation task, a set of computation elements of U 

can be put into a partial order for proper execution. A partial order between any 

two elements is necessary, if and only if they are related to a data flow. 

• A particular execution order for a computation task is designed in a particular 

solution. By changing certain execution order, one can change one solution into 

another without losing correctness. Given necessary partial orders exu, < exui 

and exu, < exu1c, and an unnecessary partial order exui < exu1c ( or exu,. < exui), 

under certain conditions, we can change the unnecessary partial order to exu1c < 

exui ( or exui < exu1c), or let them be executed in parallel ( exui = exu1c). 

• The range for changing an unnecessary partial order is determined by its corre­

sponding legal execution zone ~exu - . If the execution order exu, of is equal to 
' 

the lower bound of ~exu · , Ui is said to be successively executed. 
' 

3.3 Program Solutions in ABCOM 

By Definition 3.1, ABCOM is a representation in which computation is expressed 

as quadruples. To enable a set of elements to perform a particular computation task, 

these elements must be designed into a program solution. 
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Definition 3.10 LetP= {uo,u1,···,un} beasubsetofU, andEP (execution pointer) 

be the current value of a logical clock with EP = 0 initially. P is said to be a solution 

if and only if when EP starts to count, P always meets the following conditions: 

1. 3ui, exu, = 1 and Ui is ready for i = 1, 2, · · ·, n; 

2. There is a successive partial order exu, ::; exu1 ::; • • ·::; exu,. for 1 ::; l, k ::; n; 

3. 'vui E P, Ui must be ready when exu, = EP and 'vuj E P with exu1 < EP should 

have been performed. 

When exu, = EP, according to Definition 3.10, Ui E P is executed. Thus, EP is 

particularly set to require that a solution should be successively executed as required 

by the condition 2 from the logical point of view. The condition 2 also implies that it 

is possible to let more than one elements be executed in parallel. 

Definition 3.11 Let Ui E P, Ui is currently executable if and only if Ui is ready 

and exu, = _EP. 

In ABCOM, the solution to a given problem is classified under three categories 

( according to their execution features): 

• Category 1 (Sequential solution) 

Let P be a solution; if there is no equation in the successive partial order of P, 

then P is a sequential solution. 

• Category 2 (Parallel solution with latencies) 

Let P be a solution; if there are equations in the the successive partial order of 

P; but at a given logical step (t) there is Ui E P which is ready for execution 

but not currently executable (exu, > t), then P is said to be a parallel solution 

with latencies. The parallelism achieved by such a solution is subjective since 

the parallelism obtained here is determined by the constraints introduced by the 

special design of the solution. 

• Category 3 (Parallel solution without latencies) 

Let P be a solution; if there are equations in the successive partial order of P, 



42 Chapter 3. ABCOM- A Parallelism Revelation Model 

and at any given step (t) all those elements must be currently executable if they 

are ready for execution, then Pis said to be a parallel solution without latencies. 

The parallelism reached here is objective because all computation are performed 

in a dataflow fashion. 

Programming experience shows that there are varieties of solutions in both Category 

1 and 2 for a given problem. Any solution in Category 1 is executable on a sequential 

architecture. While a parallel solution in Category 2 can only be performed on a certain 

architecture that has enough processors to support all data accesses required. However, 

people have relatively little experience in the solution in the third category since it is 

difficult and not practical to manually design a program in that manner. Physical 

implementation of parallel programs is likely in Category 2 rather than in Category 

3. A parallel program solution belongs to Category 3 if and only if all computation 

elements are executed as data-driven dataflow computation [Sha85]. 

If a given problem has deterministic computation in both data and operations, then 

there is a unique solution in Category 3. One may question whether two solutions not 

in Category 3 to the same problem can eventually be optimised to reach a same solution 

that is of the Category 3. The answer is yes if they have the same data domains and 

operations. A practical way to check the effectiveness of this optimisation is to compare 

the difference in performance of two optimised solutions to the same problem. This 

will be addressed in Chapter 5. 

Lemma 3.5 A program solution P contains at least one CDOAGu;(x) for Ui E P. 

If a solution P = { u0 , u1, u2, ······,Un} consists of a number of CDOAGs, i.e. {CDOAGu;, 

· , ·, CDOAGu,.}, a critical path of computation logic for the solution, denoted as fp, 

can be expressed as: 

(3.5) 

Lemma 3.6 If a program solution with {CDOAGu;, · · ·,CDOAGu,.} is of the third 

category, then: 

(3.6) 
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for l = i, · · · · · · k and 

c.,., = Max{h.. · · · · · · h } ',,r ~i) ) UJo (3.7) 

3.4 Features of ABCOM 

3.4.1 The ABCOM (virtual) machine 

Based on discussion of different categories of solutions, we define an ABCOM virtual 

machine where the three categories of solutions are executable. The special requirement 

for this machine is to have an ability to accommodate any possible parallelism in com­

putation. This was also considered by D. A. Padua's [PP90] on machine-independent 

evaluation of parallelising compilers. In the work reported in this thesis, we assume 

that in an ideal machine: 

• there are unlimited number of processors which can exploit an unbounded amount 

of parallelism; 

• there is a logical clock; 

• the memory is based on a shared CREW PRAM model such that storage man­

agement and allocation of data among processors can be ignored; 

• each defined operation consumes one unit of time, no matter what grain sizes 

they have; 

• all other activities - including forking and synchronisation overhead, memory 

reads and 1/0 - are free. 

Using such a machine, a machine-independent representation is ensured. The assump­

tion of a CREW PRAM memory makes the representation free of memory constraints 

in a physical architecture. 

The communication cost is introduced in a particular implementation based on 

a selected architecture. The communication issues are not discussed here because 

ABCOM is an ideal abstract machine for parallel execution of a solution with no 

special requirements on communication. 
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The execution of a given solution P in the ABCOM machine can be explained as 

the following procedure: 

1. Initialise EP=O; 

2. Let EP=EP+1; 

3. If ,Bui E PI\ exu; = EP then terminate; 

4. Perform all Ui with exu; = EP; 

5. Back to 2. 

3.4.2 ABCOM and other models - a comparison 

The definitions and general properties of ABCOM can show certain features that 

are not usually presented in a conventional language (or computational model). 

• Usage 

ABCOM has a special representation structure ( tuple) with three fundamental 

concepts, operation, data and execution time, and characterise computation in 

both spatial structure (data domain) and temporal properties. Based on this 

abstract space, we require: 1) the complex tasks of exploiting parallelism can be 

carried out independently in systematic methods; 2) relevant techniques involved 

at different stages of programming can be integrated into a practical framework. 

Parallel computation inference is expected to be introduced on this framework. 

In short, ABCOM is an intermediate representation to investigate and reveal 

parallelism. 

• Combination of three concepts 

The key feature of ABCOM is the combination of tuple space, CDOAG and 

partial ordering. Each of these play different roles in achieving the goals. Tuple 

space and partial ordering have been used separately by many researchers. Linda 

[CG89] programming uses tuple space as a virtual, associative and logically-shared 

memory. ABCOM uses it as an abstract computation space in which each element 

is viewed as a discrete computation unit performed at a given logical time point . 
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Under certain conditions that will be discussed in Chapter 6, a given computation 

unit can become schedulable such that optimisation can be carried out. The 

computation unit is grain-dependent. As far as an operation is defined, the unit 

can be of any size in a range from fine-grain to coarse-grain. 

Partial order approach was used in Greif's thesis [Gre75] as an early appear­

ance. The partial ordering and logical clocks are combined in the classical work 

of Leslie Lamport on a distributed system [Lam78], where the potential of the 

partial ordering to help one to understand the basic problems of multiprocess­

ing independently of the mechanisms used to solve them has been demonstrated. 

Petri advocated this view of computation. Winskel's theory of event structures 

[Win80], [Win84) concerns partial orders on events in Petri net models. Pinter 

and Wolper consider partial orders as a model of temporal logic [PW84]. Pratt 

introduces pomsets [Pra86] [Pra94] by using partial orders in combination with 

formal languages and temporal logic. ABCOM uses the partial ordering to link 

related elements and ensure that computation can be performed correctly. The 

partial ordering expressed in a program is divided into two classes, that is, nec­

essary partial order and unnecessary partial order. ABCOM uses this notion to 

find out where parallelism is inherent in a program solution. 

The difference between C DO AG and other graphic representation techniques can 

be observed in many respects. We compare CDOAG with the following three 

types of graphs: 

1. The data dependency graph (DDG) is widely used in parallelising compiler 

studies [WB87] [MPC90]. The DDG represents graphically the data depen­

dency at a statement level or statement instance level. Most studies in the 

literature are based on DDG at the statement level. 

2. The directed acyclic graph (DAG) used in [ASU86], [Ell86], [KR90] is also 

a statement-based graph. In the papers by [CBF91], [AE88], [Ske91], a 

dataflow model is used to represent a loop, instead of a DAG. In a dataflow 

model, the nodes are operations; and different outputs will be produced when 

different data elements enter the input ports although the same operations 
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Parallelisation; 
Acyclic structure; 
Run-time infonnation; 
Dataflow information 
Control parallelism 

Parallelisation; 
Computation abstraction; n Data parallelism; 
Granularity; Control parallelism; 
Parallelisation; Run-time information; 
Scheduling. Scheduling. 
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Tuple Space CDOAG Partial Ordering 

I 
ABCOM 

Figure 3.6: ABCOM platform for parallel processing 

are performed. Thus, the dataflow model corresponds to a function- or a 

process-oriented graph. 

3. The unconstrained dynamic dependence graph ( uDDG) used in Tetra (AS93) 

is similar to CDOAG. The uDDG abstracts computation patterns from the 

execution of the program rather than from the context of the program. 

A comparison of CDOAG with these techniques is given in Table 3.1 in terms of 

the graph attributes used to express the computation features. CDOAGs provide 

effective means to separate a complete procedure of data generation from irrel­

evant constraints in a program. The benefits of using CDOAGs are illustrated 

in the examination of applications of ABCOM. The combination of the three 

concepts mentioned, namely, tuple-space, partial ordering and CDOAG, makes 

ABCOM satisfy the criteria proposed for a new model (in Chapter 1). 

J 
I 
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Graph Attribute CDOAG DDG DAG(DFD) uDDG 
possessed 

Representation operation statement statement operation 
level 

Node data statement statement operation 
(operation) 

Cyclic structure no yes no no 

Spatial structure yes no no 
exploitation 

Visualisation of yes no no yes 
data generation 

Size of optimisation large small small 
space provided O(D)* O(T)* O(T)* 

Exploitation complete partial partial 
of dataflow 

computation 

Instruction-level yes no no no 

information 

*Note: 1) D is the size of data domain. 
2) T is the size of the text of a loop body. 

Table 3.1: Comparison of CDOAG with other graph representations used 
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• Computation inference support 

Using ABCOM to express solutions, computation inference of parallelism can be 

carried out based on the concepts, like time, data and operations. Meanwhile, 

the data-access patterns of a solution can be determined by using input-output 

relationship among elements such that localising data can be used to detecting 

data dependences. The parallelism of computing through iterative structures, 

like loops, can be detected after transforming the cyclic structures into the acyclic 

structures in ABCOM. Computation inference based on ABCOM is presented in 

detail in Chapter 5. 

The combination of the three concepts forms a unified platform of knowledge represen­

tation . A wide range of research interests and development issues in parallel computing 

can be supported by using different parts of the platform, as shown in Fig. 3.6. 

3.5 Summary 

Three concepts,· tuple space, C DO AGs and partial ordering, are used in ABCOM 

for exploiting different computation features. The spatial structures and temporal 

properties of a problem which are related to many different issues in parallel computing, 

thus, can all be studied using a common basis. With the definitions and properties 

presented in this chapter, we will show in later chapters which and where parallelism 

is inherent and to what extent the parallelism can be achieved in a given solution. 

Also, the applications of ABCOM platform will be described in association with other 

programming tasks. 



Chapter 4 

. Expressive Power and Transformation 

In this chapter, we describe the expressive power of ABCOM and how to transform 

a source code into ABCOM. To demonstrate the expressive power of ABCOM, we 

compare it with a Fortran-like language with assignments, branch statements and loops. 

The transformation is also considered from a sequential structured code of such a 

language to a fine-grain form in ABCOM. 

4.1 Expressive Power 

ABCOM differs from conventional languages in the following respects. (i) It has 

a operational structure (element of the tuple-space) to express any computation. The 

granularity of representation in ABCOM can express computation at different abstract 

levels. Various data structures can be used in ABCOM. In a fine-grain representation 

data objects are mainly the variables and elements of arrays. For a medium or coarse 

grain representation data objects can be any general data structure e.g., lists and arrays. 

(ii) The representation form of ABCOM is not suitable for one to apply it manually, 

but it supports computation analysis, once a solution is converted into ABCOM. 

Because of the above characteristics ABCOM is more like an intermediate language 

of a compiler (in both representation and translation). We do not claim that ABCOM is 

better than any programming language to express parallelism. What we are interested 

in is to describe its features to improve parallel programming. 

49 
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AECOM::= {uo,u1,···,ui,···,un} 
Ui ::= '('opu,, inu,, OUtu,, exu,')' 
opu, ::= math_oplrel...oplu_opl 0 lcon_opl 
inu, ::= ' {'parameter Jist'}' 
outu, ::= '{'parameterJist}l{idlid'}' 
exu, ::= integerlexp 
math_op ::= +I - I x 1/1 · · · · · · 
rel_op ::=> I < I = I ~ I ~ I ::/= 1-,1 · · · · · · 
u_op ::=< user ..symbol> 
con_op ::= if - intenlwhile 
parameter Jist ::= parameterlparameter Jist, parameter 
exp ::=parameter+ explparameter + integer 
parameter ::= idlinteger 
i ::= integer 

Figure 4.1: The Syntax of ABCOM 

4.1.1 Syntax of ABCOM 

The syntax of ABCOM is shown in Fig. 4.1. Here, user _op is an operation de­

fined by users, which can be a new primitive operation or a compound operation that 

consists of a number of relevant defined operations. Semantics of user _op symbols 

is defined in a user _op-table. If user _op is a compound operation, then the inten­

sional semantics of the operation are explained by a subset of the tuple space, which 

is pointed by the indicator in user _op-table. The semantics of computation is given 

by intensional computation logic. Abstracting the operations of a subset of elements 

into a compound operation enables us to construct a medium-grain or coarse-grain 

representation. Accordingly, the data objects in in or out can be the names of data 

structures. 

Our discussion here is focused on the fine-grain tuple space. A compound element 

is also considered to contain only one data object in out. This will make our discussion 

and techniques suitable as well to these kinds of compound elements. Occasionally, 

this restriction is removed when a general representation of an element with more than 

one data objects in out is needed. 

If a set of related elements that compute certain data objects is defined as a com­

pound element, then the input data for the resulting macro operation of the compound 

I 

I 

I 
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element includes all those vertices (data objects) whose indegrees are zero in the spe­

cially defined CDOAGs; the output data is defined as a set of all vertices (data objects) 

with connections to other vertices which are not contained in these C DO AGs; and the 

execution order is assigned by the timestep at which all input data should have become 

specified. 

The semantic abstraction of a compound element user _OPu; can be explained as a 

special user _op: 

user _OPu; : inu; i-----+ outu;. 

If all primitive operations are binary in a compound element , a CDOAGu; can be 

abstracted as a user _op denoted by ®i in terms of the following grammar: 

® :=L 

L := 0l0Ll(L, L)I€ 

e := +I - Ix ll{primitiveoperator }. 

Example 2 

We have a subset U1 = { u1, u2, u3, u4, us, u6, u1, us , ug} for computing 

where 

X = ((A- B)/((C + D) +(Ex F))) x ((G- H) + (I/J)) 

u1 : (-, {A, B}, { v1}, 1) u2 : ( +, {C, D}, { v2}, 2) 

u3 : (x,{E,F},{v3},3) u4: (+, {v2,v3}, {v4},4) 

u5 : (-,{G,H},{vs},5)u6: (/,{I,J},{v6},6) 

U7: (/, { V1, V4}, { V7 } , 7) Us : (+, { V5, v6}, { vs} , 8) 

Ug : ( X ' { V7, Vs}, { X}' 9) 

The corresponding CDOAGu
9 

is shown in Fig. 4.2. The compound operation of 

CDOAGu
9 

can be expressed by 

®1 := x (/(-,+(+, x )),+(- , /)), 

and accordingly, 

uc: (®1,{A,B,C,D, E,F,G,H,I, J},{X},1). 
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/x~. 
/~ /~~ 

/\ ~ /'\ !\ 
A B /\ H I J 

/\ ;\ 
C D E F 

Figure 4.2: A composed element 

Here we let ex©1 = 1 since all input are specified if this is a independent CDOAG. 

Note this form does not tell the intensional computation logic of ®1· 

For a given subset of elements, the abstraction form of the compound operation may 

not be unique due to the properties of operations in the elements. The normalisation 

of the representation of compound operations is discussed in Chapter 7. For technical 

convenience we assume an identity element with a special operation symbol '0'. Both 

in and out of an identity element are presented by an empty set {0}. In Definition 3.1, 

u0 is such an element. An identity element does no computation but takes a unit of 

logical time, and is independent from other elements. 

Based on the grammar and the definitions in Chapter 3, a computation unit is said 

to be valid in ABCOM if it does not belong to the following two cases. 

• Case 1 where OPu; : mu; -, outu; cannot be carried out due to inconsistency 

among given OPu;, inu, and outu,· For example, element (+,{a,b,c},{d},e1) is 

invalid because '+' is a binary operation, but there are more than two variables 

in inu, · 

• Case 2 where for Ui, Uj E U there are x ~ { outu, n outu;} and exu; = exu;. Here 

variable x is uncertain since concurrent writing occurs, which is not allowed in 

terms of the assumption of CREW PRAM memory used in ABCOM. 
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4.1.2 Examples 

To illustrate the expressive power of ABCOM, we convert some statements of a 

Fortran-like language (such as assignments , conditional statements and loops) into the 

form of ABCOM with the assumption of EP = 1. 

• Assignments 

The conversion of a simple assignment is illustrated in Example 2 where v1 , v2 , • • • • · ·, v8 

are temporary working variables to store intermediate results of computation. 

As a special case, an assignment x := y is converted to u: (=,{x},{y},k). It 

would be noted that, unlike the N-ADDRESS CODE(NADDR)[NF84] and the 

intermediate codes used by a compiler [ASU86] in which execution semantics of 

computation is implied, ABCOM requires explicit execution specification for each 

element. 

• Conditional statements 

A simple conditional statement is expressed using three related elements. 

Example 3 The statement: 

if a < b then x = y + z else x = y - z, 

is realised by: 

u1: (<b,{a,b,2},{e1 I e2},l), 

u2: (+,{y,z},{x},e1), 

u3 : (-,{y,z},{x},e2). 

Here u1 with a special boolean operation <b can be explained thus: if a < b 

then e1 = 2, else e2 = 2. It means that the result of performing u1 is to assign 

the current execution control to either el or e2 so that one of u2 or u3 can be 

executed after u1, while e1 = e2 = 0 before u1 and after performing u2 or u3. 

This is a simple case of condition statements. 

Example 4. A statement 

if a < b then x = y + z, 

is realised by 
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u1: (<,{a,b,2},{e1 I e2},l), 

u2: (+,{y,z},{x},e1), 

U3: (0,{0},{0},e2). 

A conditional branching statement is sometime followed by two groups of suc­

cessive computations; then one is chosen by test condition. How to express this 

kind of computation is discussed in the next section. 

• Loops 

A loop consists of a set of well-organised statements to carry out iteration. A 

task performed in a loop is expressed in ABCOM by interpreting each statement 

during execution using the methods described above, and generating a total order 

of execution for all elements involved in the loop. That is, a loop is transformed 

into linear structure by trace generation. This is one of main differences between 

ABCOM and other intermediate codes. Both Do--Loop and While--Do can be 

translated into ABCOM. This will be discussed in the next section. 

4.2 Solution Transformation 

Transforming a solution from a FORTRAN-like language into ABCOM is similar 

to compilation, and techniques described in [ASU86], (Ell86] are needed. The transfor­

mation described here is different from a traditional compiler. 

• The first difference is the target code of transformation. A compiler produces a 

machine-executable code for a target architecture when a source code is trans­

formed. ABCOM is machine-independent but virtually executable in an abstract 

computation space (an ideal machine). Therefore, the transformation process 

related to the run-time environment is greatly simplified. 

• The transformation performed here is more like interpretation of program exe­

cu tion by using a discrete form of tuples. It can be thought as an application 

of trace-driven techniques. Hence, the sequence of computations in a program is 

preserved in the transformed code. In this sense, the ABCOM compiler performs 

a combination of parsing, translation and trace generation. 
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Lexical analyzer 

Syntax analyzer 

Semantic analyzer 

Preprocessor 

Trace controller 

Syntax-directed translator 

ABCOM code generator 
(Logical clock) 

Figure 4.3: Overview of the ABCOM compiler 

55 

ABCOM transformation can be divided into several phases as shown in Fig. 4.3. 

All parsing techniques, like lexical analysis and syntax analysis can use the front end 

of the standard Fortran-compiler. 

Unlike a traditional compi er, an ABCOM compiler has three special components. 

(1) A preprocessor to perform preparation for transformation, including branching­

merging point analysis (described in Section 4.2.3); and substitution of function-based 

reference of the element of an array (discussed in the Section 4.2.1). 

(2) A logical clock to provide execution specification when each element is generated. 

(3)A trace controller to keep the current values of all execution-related variables ( e.g. 

loop-control variables) using a trace-control table (TCT). The trace controller points 

out where program execution heads for in a source code during the trace generation. 

In the last two phases the transformation process uses modified techniques intro­

d uced in the translation of the intermediate code ( Quadruples) in [ASU86). One of the 

special features of our translation is to assign explicit execution specifications to each 

element generated. As an example demonstrating traditional intermediate code gener-
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C C 

Figure 4.4: Syntax tree 

op arg l arg 2 result 
(0) uminus C t1 
(1) X b t1 t2 
(2) uminus C t3 
(3) X b t3 t4 
(4) + t2 t4 ts 
(6) ts a 

Table 4.1: Example of Quadruples 

ation, a syntax tree for the assignment statement a= bx -c+ bx -c and its quadruple 

representation of three-address statements are illustrated in Fig. 4.4 and Table 4.1. 

4.2.1 Principles of translation 

Our discussion will focus on ABCOM code generation. ABCOM code requires the 

logical execution order for elements that is critical for transformation. Our approach 

is discussed first using the assignment statements in Fig. 4.5. 

S ~id :=E 
E ~ E1 +E2 
E ~ E1E2 
E ~ Ei/E2 
E~-E1 
E ~ (Ei) 
E~id 

Figure 4.5: The grammar for assignments 

I 

I 

I 

i 
I 

i 
I 
I 

I 

I 

I 

I 
I 

I 

I 

I 

I 

I 
I 

I 

I 
I 
I 

' I 
I 
I 

' 



4.2. Solution Transformation 57 

In order to generate an ABCOM code, we use following notations. 

• S. code, the synthesised attribute representing the ABCOM code for the assign­

ment S. 

• E. code, the attribute of E to denote the set of the elements evaluating E. 

• E. place, the function that returns the variable name of E to hold the value as 

E is a variable. 

• newtemp, the function which returns a sequence of distinct names v1 , v2 , v3 , ···in 

response to successive calls. 

• gen[Ui: (opu,, {inu.J, {outu.J, exu,)], the function to generate code (elements) of 

ABCOM by using the information provided in TCT. 

• T(EP), the function to provide current execution order according to the logical 

clock (EP). Each call of the function leads EP = EP + 1. 

When ABCOM code is generated, temporary variables are created for holding in­

termediate results. The syntax-directed rules in Fig. 4.6 generate ABCOM code for 

assignment statements. For the moment, we create a new name every time a temporary 

is needed. The techniques for reusing temporaries in ABCOM transformation are the 

same as those described in [ASU86]. 

The function E. place can return three different kinds of variable names in terms 

of different methods used for reference. 

(1) If the variable is a singleton data object, the name of the object is returned. 

(2) If the variable is the element of an array and referenced with an index controlled 

by the iteration control variable with no function, a particular element with a fixed 

index determined by current value of the iteration control variable is returned. An 

example is presented in Section 4.2.4. 

(3) If an assignment contains a variable that is an element of an array of which 

the index is referenced with a function. For this kind of statement, a substitution is 

introduced by the preprocessor of the compiler if the variable is involved in an operation 

with other data variables. The basic idea is to replace these elements of an array with 
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Production Semantic Rules 

S --+ id := E S.code := E.code II gen[ui: (=, {E.place}, {id}, T(EP)] 
E--+ E1 + E2 E.place := newtemp 

E.code := E1.code II E2.code 11 

gen[ Ui: (+, {E1 .place, E2.place}, {E.place}, T(EP)] 
E--+ E1 x E2 E.place := newtemp 

E.code := E1 .code II E2.code 11 

gen[ Ui: (x, {E1.place, E2.place}, {E.place}, T(EP)] 
E--+ E1 / E2 E.place := newtemp 

E.code := E1.code II E2.code II 
gen[ Ui : (/, {E1.place, E2.place}, {E.place}, T(EP)] 

E --+ -E1 E.place := newtemp 
E.code := E1 .code II 

gen[ ui: ('uminus', {E1.place, E2.place}, {E.place}, T(EP)] 
E--+ (E1) E.place := E1.place 

E.code := E1 .code 
E--+ id E.place := id.place 

E.code :=" 

Figure 4.6: Syntax-directed semantic rules to produce ABCOM code for assignments 
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S -r if E then S1 

S -r if E then S1 else S2 

Figure 4.7: The grammar for conditional statements 

a generic element with a subscript x. Thus, for a functionally indexed variable the 

function E.place returns the name of an array with with a subscript x. 

To translate a conditional statement with the grammar given in Fig. 4.7, we need 

to introduce more notation and functions. We assume that, for each branching point, 

its corresponding merging point is found before translation. The technique to find a 

merging point is described in next subsection. 

• newlabel: the function to produce a sequence of labels, e1, e2 , · · ·,, as unknown 

execution orders ( called conditional execution label variables or GEL-variables) 

for elements generated from transforming conditional statements. The CEL­

variables are assigned certain values when the condition in the corresponding 

branching statement is tested during, execution. 

• relop: a generic relational operation which is replaced by the relational operation 

in a condition statement as it is translated. The boolean expression E in the 

grammar has the form of id1 relop id2. 

• ins: a set of input data which are used for performing a branch flow of a condi­

tional statement. 

• outs: a set of output data produced by a branch flow of a conditional statement. 

• if-inten(ei. place): a special compound operation performing the operations 

of statements between the branching point and its associated merging point. 

ei. place points to where the intensional computation is performed. 

• Branch ( {branch flow list}, { CEL-variable list}): the function to trans­

late branch flows of a conditional statement with the return of ins and outs of 
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Production: S ~ if E then Sl 
Semantic Rules: 

S.code := e1. place: =new label II e2. place: =new lab el II 
gen[ui :(relop, {id1, id2, EP+l}, {e1.placele2.place}, T'(EP) )] II 

Branch({Sl}, {el, e2} II 
gen[ui :(if-inten(e1.place), {insJ, { outs1 }, e1.place)] II 
gen[ui:(0 , {0}, { 0}, e2.place)] 

Production: S ~ if Ethen Sl else S2 
Semantic Rules: 

S.code := e1. place: =newlabelll e2. place: =new label 11 

gen[ui:(relop, {id1, id2, EP+l}, {e1.placele2.place}, T'(EP) )] 11 

Branch({Sl,S2}, {el, e2}) 11 

gen[ui:(if-inten(e1.place), {insJ, { outs1 }, e1.place)] II 
gen[ui:(if-inten(e2.place), {ins2 }, { outs2 }, e2.place)] 

Figure 4.8: The syntax-directed semantic rules to translate conditional statements 

each branch flow between a pair of branching and merging points. The imple­

mentation of this function is described in the Section 4.2.3. 

• T' (EP): the same function as T(EP) except here EP = EP+ 2 after each call. 

As a conditional statement with two branch flows is translated, three relevant el­

ements are generated. One of them is to test the conditions, the other two are called 

the head of branch flows. The corresponding syntax-directed rules are illustrated in 

Fig. 4.8. 

4.2.2 Trace-driven code generation 

Trace-driven techniques are widely used in performance analysis [Lar90), [Wet al94], 

timing simulation, interactive debugging [MC91) [MPK91), and programming visuali­

sation [Hea91) [KN91). In these applications, trace generation facility fulfils trace event 

generation with no modification on computation of a source code. Trace generation 

treats a computation unit as a trace event, and records the elements of ABCOM. The 

timing record is created as logical timesteps of execution order that is controlled by 

logical clock (EP) (to indicate the logical step at which the event happens). 
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The trace generation converts a given source code into a stream of elements that 

correspond to the execution of a program. Transforming a source code corresponds to 

interpreting the computation performed at each logical step. 

The transformation of expression-based assignment statements was described in 

the last subsection. When a complete source code is transformed, we combine this 

approach with trace generation and the parsing techniques [ASU86], such as shift­

reduce parsing and operator-precedence parsing. In the transformed code of ABCOM, 

hence, the original execution order of operations is retained and specified explicitly. 

Such a procedure of the trace-driven transformation can be explained in the algorithm 

illustrated in Fig. 4.9. The operation-precedence relations shown in Table 4.10 are 

described in [ASU86]. 

4.2.3 Branching statements transformation 

In programming languages, a branching statement contains an expression to com­

pute a predicate that alters the flow of control. As a result, a branching statement 

determines whether an operation will be executed or not depending upon the test re­

sult. The basic idea of representing such a structure in ABCOM is given in the Section 

4.1.2. We also combine this idea with trace generation techniques to transform condi­

tional statements in a source code. Consider a general example in a basic block shown 

in Fig. 4.11. HerE The statement S1 is a branching statement (called branching point) 

and the statement Sn is called a merging point of the branching statement. 

It is assumed that the branching and merging points appear in a pair-wise manner 

in a structured source code. To transform such a structure, the preprocessor has to 

do control flow analysis before transformation. We need to know which statement is 

the merging point of the corresponding branching point previously executed. After a 

branching point, the statements in each branch flow will all depend on the condition of 

this branch statement. If a merging point is encountered (that is, every flow branching 

from the same branching statement finally comes into this statement), then the state­

ments following it will no longer depend on the same condition as the flow's. Instead, 

these statements will now depend on the condition on which the branching statement 

depends. 
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Input: An input string w of an assignment, logical clock EP and 
a table of operation precedence relations shown as Fig. 4.10. 

Output : if w is well formed, a sequence of ABCOM code; otherwise, 
an error indication. 

Initial: A stack contains$ and an input buffer containing the string w$. 
Algorithm! 

(1) set ip to point to the first symbol of w$; 
(2) repeat forever 
(3) if$ is on the top of the stack and ip point to$ then 
(4) 

(5) 

(6) 
(7) 
(8) 

(9) 
(10) 
(11) 
(12) 

(13) 

(14) 

return 
else begin 

end 

let a be the topmost terminal symbol on the stack 
and let b be the symbol pointed to by ip; 

if a < ·b or a · =b then begin 
push b onto the stack; 
advance ip to the next input symbol; 

end; 
else if a· > b then /• translation and code generation•/ 

repeat 
pop the stack 
and apply the syntax-directed traslation rules 

to generate ABCOM code with the current EP, 
and let the symbol in out of the new element be 

in the position in the string pointed to by ip; 
until the top stack terminal is related by 

< · to the terminal most recently popped 
else error() 

Figure 4.9: Algorithm for assignment transformation 
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+ - X I = id ( ) $ 

+ ·> ·> <· <· ·> <· <· ·> ·> 
- ·> ·> <· <· ·> <· <· ·> ·> 
X ·> ·> ·> ·> ·> <· <· ·> 
I ·> ·> ·> ·> ·> <· <· ·> ·> 
- <· <· <· <· <· <· -
id ·> ·> ·> ·> ·> ·> ·> 
( <· <· <· <· <· <· <· = 
) ·> ·> '.> ·> ·> ·> 
$ <· <· <· <· <· <· <· 

Figure 4.10: The table of operation precedence relations 

~S1-------
S2 S3 
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Sn 

Figure 4.11: A general case of the branching and merging points 

S2 

t 
S4 

t 
S7 

Figure 4.12: A program flow chart including conditional statements 
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In the control flow analysis [Che85], to identify such a point in a source code, we 

record how many flows from a branching point are flowing through a statement, and 

how many flows are required to make this statement a merging point for the branching 

point. The relation between a branching point Sk and its merging point S1 is denoted 

as Sk Y S1. The idea can be implemented by using a merging-point processing 

table shown in Table 4.2. Using this table, we show how those merging points in 

Fig. 4.12 are found. All statements encountered are listed in the order of execution in 

the second column. For each of these statements the corresponding logically successive 

statements are recorded in the third column. A merging point can be found by using 

backward reasoning when there are two or more successive statements that follow the 

same statement. In this example we first found S18 is a merging point of S6 by taking 

S15 and S16 for backward reasoning, recording it in the fourth column. Similiarly, three 

other pairs of branching-merging points can be reported, that is, Ss Y S 11, S3 Y S 11 

and S1 Y S12· 

The head of a branching flow is generated wit~ a special operation if-inten(ei). 

Here ei is associated with a set of elements that correspond to the branching flow. These 

elements are assigned the expressions with symbols of± as the reltative execution orders 

The function Branch( {branch flow list}. { CEL-variable list}) carries out 

the transformation of branch flows of a conditional statement. It processes each branch 

flow as a 'complete' computation task. The statements in such a flow can be converted 

in the method described earlier, except being assigned relative execution orders ex­

pressed in expressions. Using this approach, we convert the example in Fig. 4.13 and 

illustrate the result in Fig. 4.14, where a special symble ± means this value is relative 

to e1 (or e2), 

The nondeterministic execution of a branch flow makes it impossible to achieve 

data parallelism with other parts of the solution. Therefore, a branching flow could be 

treated as 'complete' computation task, and its computation features can be investi­

gated independently. 
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Statement followed by Corresponding 
label branching points 

S1 
S2 S1 
S3 S1 
S4 S2 
Ss S3 
S6 S3 
S1 S4 
Ss Ss 
Sg Ss 
S10 S6 
Su S6 
S12 S1, S11 S1 

S13 Ss 
S14 Sg 
Sis S10 
Sl6 Su 
S11 S13, S14, Sis Ss, S3 

-+ Sis Sis, Sl6 S6 

: 

Table 4.2: A merging-point processing table 

if x < y then goto S2 
S1: A= XX y 

B=D-W 

goto S3 
S2 A= (x-lOO)x y 

, 

Figure 4.13: A general example of the conditional statements 
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up+l: (i, {x, y, k+l}, {e1, e2}, k) 
up+2: (inten-if, {x, y, · · · }, {A, · · · }, e1) 
up+3: (inten-if, {x, y, ,100, · · ·}, {A, · · ·}, e2) 

S3 => uµH: (+, {A, B}, {C}, k+2) 

ui: (.x , {x, y}, {A}, e1±1) 
Ui +l; (· · ·, • · · e1±2) 

Uj : (-, {x, 100}, {vi}, e2 ± 1) 
Uj+i: (x, {vi, y}, {A}, e2 ± 2) 

Figure 4.14: An ABCOM code of a conditional statement with two branch flows 
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4.2.4 Loop transformation 

In each iteration the statements of a loop body are executed as a basic block with 

certain current iteration variables. To transform a loop, we carry out trace generation 

along with the execution of the loop. As a result, its cyclic structures are transformed 

into linear structure. 

In (Ell86] Ellis described how the Bulldog compiler unrolls the bodies of inner loops 

immediately after parsing the source code into intermediate code. The loop unwind­

ing transformation using the combining DAG technique was introduced by Kramer 

(KGS94]. Unlike these approaches, our trace generation produces a linear structure for 

a whole iteration space. For a nested loop an inner loop structure is unrolled completely 

in each iteration of its outer loop. The semantics (data flow information) of a source 

code are preserved by the generation (that is, what is created in the tuple space is what 

is performed in the program). Such a transformation is performed by the algorithm in 

Fig. 4.15. 

Example 5. For the following nested loops 

for i = 1 to n do 

for j = 1 to n do 

a(i,j) = (a(i,j - 1) + a(i - l,j))/2 

enddo 

enddo 

the first 21 generated elements of ABCOM are presented in Fig. 4.17 where n = 10. 

Example 6. There is a nested loop 

for i = 1 to N do 

s=O 

for j = 1 to i - 1 do 

s = s + aij X bj 

bi= bi - s 

enddo 

enddo 
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Input: a Do---loop statement, current EP and a loop-control stack LPG. 
Output: ABCOM code. 
Algorithm 2 
1. Push current loop-control information onto the LC P; 
2. If the current loop has been completed, then pop LCP and exit; 
3. If the current statement is a Do---loop, 

then recursively call Algorithm 2; 
4. Translate the current statement (an assignment 

or a conditional statement) into ABCOM with current EP; 
5. If there is next statement, then let it be 

the current statement and back to 3; 
6. Update the loop-control variable, make the first statement 

in the current loop be the current statement, back to 2. 

Figure 4.15: Algorithm for Do--loop 

for n = 10 its ABCOM code is shown in Fig. 4.16. 

Example 7. Consider a sequential code for Gaussian Elimination (without pivot­

ing). 

for k = 1 to n 

for i = = k + 1 to n 

a(i, k) = a(i, k) / a(k, k) 

for j = k + 1 to n 

a(i,j) = a(i,j) - a(k,j) x a(i, k) 

enddo 

enddo 

enddo 

Let n = 6, a transformed code of this solution is shown in Appendix A.l. 

Algorithm 2 in Fig. 4.15 demonstrates the principle of how the source code is 

directly transformed to ABCOM. The transformation rules described in 4.2.1 and 4.2.3 

are used for generating each element of ABCOM from the source code. In fact, for a 

good performance, there is an alternative resolution for the transformation in which the 

source code is first transformed into an intermediate code (for instance, Quadruples); 
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u1: (+,{a10,ao1},{v1},l) 

u2: (,{v1,2},{a11},2) 

U3: (+, {a11, ao2}, {v2}, 3) 

u4: (,{v2,2},{a12},4) 

u21 : ( +, { a20, a11}, { vu}, 21) 

U22 : (, { V11, 2}, { a21}, 22) 

U3: (+, {a21, a12}, {v12}, 23) 

u24: (, {v12, 2}, {a22}, 24) 

us : ( +, { a12, ao3}, { v3}, 5) 

u6: (,{v3,2},{a13},6) 

u2s : ( +, { a22, a13}, { V13}, 25) 

u26: (,{v13,2},{a23},26) 

u1: (+,{a13,ao4},{v4},7) u21: (+,{a23,a14},{v14},27) 
us: (,{v4,2},{a14},8) u2s: (,{v14,2},{a24},28) 
ug: (+,{a14,aos},{vs},9) u29: (+,{a24,a1s},{v1s},29) 
u10: (,{vs,2},{ais},10) u30: (,{v1s,2},{a2s},30) 
uu: (+,{a1s,ao6},{v6},ll) U31: (+,{a2s,a16},{v16},31) 
u12: (,{v6,2},{a16},12) U32: (,{v16,2},{a26},32) 

Figure 4.16: The transformed code of Example 5 

U1: (=,{0},{s},1) 
u2: (x,{a21,b1},{v1},2) 
u3: (+,{s,vi},{s},3) 
U4 : (-, {b2, S }, {b2}, 4) 
Us: (=,{0},{s},5) 
u6: (x,{a31,b1,{v2},6) 
U7: (+, {s, v2}, {s}, 7) 
Ug : (-, {b3, S }, {b3}, 8) 
u9 : (x, {a32, b2}, {v3}, 9) 
u10 : (+, {s, v3}, {s}, 10) 

uu : (-, {b3, s }, {b3}, 11) 

U12: (=,{0},{s},12) 
u13: ((x,{a41,b1},{v4},13) 
u14: (+,{s,v4},{s},14) 
U1s : (-, {b4, S }, {b4}, 15) 
u16 : ( x, { a42, b2}, { vs}, 16) 
u11: (+, {s, vs}, {s}, 17) 
U18 : (-, {b4, S }, {b4}, 18) 
U19 : ( X, { a43, b3}, { V6}, 19) 
U2Q : ( +, { S, V6}, { S}, 20) 
u21 : (-, {b4, s }, {b4}, 21) 

Figure 4.17: The transformed code of Example 6 
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the trace generation is then carried out such that the transformation from source code 

to the intermediate code does not need to be repeated for each element of ABCOM. 

4.2.5 While--Do transformation 

The While--Do loop statement has an indefinite number of iterations. It is observed 

t hat the While--Do structure can be divided into two groups based on the control 

mechanism of iteration and the features of processing data within the loop. 

In the first group, the same operations are executed based on the same set of data 

objects in all iterations in which the objects may until a particular condition is satisfied 

by the computation result of the last iteration. We call this loop value-control or fixed­

data-domain iteration. 

The second group is called size-control or variable-data-(sub)domain (for each iter­

ation) loop since, for a given data domain for each call of the loop, the operations in 

the loop body are executed to process different subsets of the domain in each iteration. 

Precisely, the distinction between these two groups is whether the same data objects 

are repeatedly processed in each iteration of loop execution. Different methods will be 

used to transform them respectively. 

In the case of a value-control While--Do loop, the iteration stops if the condition 

is satisfied. Our method to transform such a structure is to treat it as the combination 

of a loop and a special condition statement. The (head) statement of While--Do is 

transformed in a similar approach to converting a branching statement, which generates 

three relevant elements. To transform the "satisfied branch flow", that is the body of 

the loop, we introduce another special three elements at the end of the execution of the 

''flow" . The execution condition is thus checked at the end of each iteration, to decide 

whether another iteration is needed. As an example, Fig. 4.18 is transformed into a 

code in Fig. 4.19. 

The size-control iteration performs iterations with a special value given to define 

the size the iteration space at each call. The termination condition here is not de­

termined by the computation result of each iteration. To transform such a structure, 

theoretically, we need to generate an ABCOM code for the whole iteration space. This 

structure is therefore similar to a Do--loop statement except that its loop bound is 
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While 8 < 0.005 do 
Z = (y- x) X D 

8 = Z/1000 
enddo 

Figure 4.18: A accuracy-control iteration of While-----Do 

u1: (<b, {8, 0.0005, k+l}, {e1 I e2}, k) 
U1+1: (While, {f2}, {f2}, ei) 
u1+2: (While, {n}, {n}, e2) 

Ui: (-, {y, x}, {Z}, e1 ± 1) 
Ui+i: (x, { v1, D}, {Z}, e1 ± 2) 

Ui+q: (/, {Z, 1000}, {8}, e1 ± m) 
Uj: ( <b, {8, 0.0005, e1 ± (m + 2)}, {e1 I e2}, e1 ± (m + 1)) 
Uj+l: (0 , {0}, {0}, e1) 
Uj+2: (0 , {0}, {0}, e2) 

Figure 4.19: The transformed result of While--do 
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defined just before the statemerJ.t is called rather than defined in programming. Hence, 

we can transform this statement by using Do--loop transformation techniques if a 

suitable size-control value that reflects the general characteristics of computation can 

be provided. Or, at least, a lower bound and a upper bound of the size could be used 

to help reveal general features about inherent parallel properties in the loop. 

The size of a tuple space transformed from a source code containing loops is mainly 

determined by the iteration space. The size of a tuple space may become unmanage­

able when a computationally expensive program (with a large number of iterations) is 

transformed. To handle such a huge amount of data is not economical and sometimes 

impossible. But the relation between a tuple-space size and parallelism exploitation 

discussed in Chapter 7 shows that there are certain strategies and methods to help us 

to use a reasonable size of a given problem to investigate of parallelism characteristics 

of a general situation. The main idea of these strategies is based on: 

1. Superblock-based parallelism revelation 

The most computationally expensive part in a program are various loops, called 

superblocks. The superblock-based strategy is used to cope with individual loops 

as a number of subproblems. These subproblems can be investigated indepen­

dently in some degree. The general features of the problem can then be obtained 

by synthesizing the results of investigation on these superblocks. 

2. Computation pattern abstraction 

A real world problem can usually be abstracted into certain computation patterns 

in the form of iteration in programming. The same problem may be abstracted 

into different patterns with different computation features. After transforming a 

source code into ABCOM and analysing it, thus, we expect to re-abstract it into 

new patterns with better performance. 

3. Size-based parallelism speculation 

Parallelism analysis is started with a reasonable size of a problem. Initially AB­

COM uses a suitable size of tuple-space to reveal and speculate parallelism (de­

scribed in Chapter 7). 
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4.3 Summary 

In ABCOM an executable source code is transformed into another representation 

that is executable on an ideal machine rather than any physical architecture. In this 

representation, computation tasks designed in the source code are consistently rewritten 

by using the tuples of ABCOM. The execution semantics implied in the original code 

become explicit specification in the transformation under the assumption that each 

element of ABCOM takes a unit of logical time. In other words, the notation of a 

source code with implicit execution specification is represented in a set of units where 

the execution order is linear. This change of representation is the first step in our effort 

towards the goal of revealing parallelism of a problem. 

As assumed in the beginning of this chapter, for the purpose of demonstration, we 

use a sequential source code. After describing the charateristics of the transformation, 

however, we see this assumption is not restrictive to generate ABCOM code from 

other forms of solution representation. We believe that any form of representation, 

with certain execution features specified implicitly or explicitly, can be considered for 

this transformation by adequately modifying trace-generation strategies and developing 

relevant syntax-directed translation rules. The choice of using a sequential source code 

for transformation does have the following advantages: 1) clear execution semantics 

that provides convinience for the trace generation; 2) free of communications that are 

usually required when mapping a problem into a specific architecture.; and 3)easy 

understanding of transformation techniques since they have certain similarity with 

conventional compilers. 
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Chapter 5 

Parallel Computational Inference 

The question as to whether parallel programming can be carried out systematically can 

be rephrased into two associated questions: whether parallelism revelation and whether 

static scheduling can be achieved using systematic methods. Answers to these two re­

lated questions require not only a well-organised domain representation as a basis, but 

also a set of inference rules to analyse, abstract, reason and modify the solution. In 

this chapter, we first discuss the requirements for a representation form to be used for 

computation inference; then show that ABCOM serves as such a representation. Based 

on it we introduce a set of inference techniques to conduct parallelism analysis. This 

representation is further designed into the conceptual schema of a special program­

ming database that it is used as an operational platform of representation of parallel 

programming. This permits the inference using relational algebra-like rules. 

5.1 Domain Representation Issues 

Programming languages and computation models have been developed for speci­

fying application domain knowledge using formal rules. A good language is certainly 

important for parallel computation. The traditional programming philosophy is not 

suitable for parallel programming due to the issues raised in Chapter 2, since most lan­

guages passively implement subjective understanding of a problem from a programmer, 

with no function of revealing parallelism. Therefore, it is necessary to identify a set of 

the criteria required for a representation to support parallelism revelation. 
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5.1.1 Requirements for conducting parallelism analysis 

A given problem solution is completely specified using specification languages, func­

tional languages, high-level programming languages, an intermediate language or a 

target code. One of the critical issues involved in the investigation of parallelism in a 

problem is what kind of domain representation is needed for computation inference and 

analysis. The requirements for a domain representation to be a basis for parallelism 

analysis are as below: 

• Expressiveness 

The expressiveness of the domain representation should contain computational 

features of both data and control flows. The computation of a problem can be 

expressed in either machine dependent or independent manner. Of course, a 

machine-independent representation will simplify the problem statement without 

involving the details of implementation on a particular architecture. 

• Granularity 

The granularity of representation plays an important role in parallelism, e.g. to 

investigate data parallelism a fine-grained representation is necessary; but control 

parallelism requires investigation on a medium-grained or coarse-grained level. 

• Visibility 

The parallelism can be revealed if the independence among computations is made 

visible in the representation. The independence among computations can be in 

different forms and at different levels. 

• Consistency 

If the representation is more complex in its structures, the investigation of paral­

lelism will be more difficult. As a result, a simple and consistent representation 

is desirable. Also the consistency of representations for dataflow, control flow 

and independence will be advantageous for abstraction and optimisation if it is 

available at different granular levels. 

• Temporal aspects 

The temporal aspect of computation is critical to parallel programs, and can 
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be specified completely or incompletely in an implicit or explicit manner in the 

representation forms. To fully investigate parallelism of a given problem (espe­

cially for inference) a complete and explicit specification of the temporality of 

computation will be needed. 

• Reconstructivity 

Parallelising compilers optimise a source code and transform it into a target code. 

In this method, usually, t~o different solutions with different performances are 

compiled when two source codes to the same problem are given. Note that perfor­

mance properties from a source code cannot be eliminated by optimising compu­

tation. The reconstructivity of solution representation differs from compilibility 

of languages. Reconstructing a solution means the reabstraction of computation 

from programming point of view. A reconstructed solution can be expressed in 

a different representation form or in the original form. The reconstruction is 

implemented using certain reconstruction rules after the original is optimised. 

• Operability 

Exploiting parallelism involves many different tasks - such as analysis, detec­

tion, optimisation, profiling, scheduling, and performance prediction. Hence, all 

the properties of representation mentioned above must be in a well-organised 

form and easy to process, abstract, reason, group, optimise and reconstruct. 

The suitability of a programming language for parallelism investigation is examined 

in terms of the above properties. The basic expression unit of computation expressed in 

languages is the statement which have various forms in terms of syntax. The indepen­

dence of computation can only be studied between statements. As a result, parallelism 

exploitation is considered at a statement level (JP93), [Bet al94b), [Bet al94a). Though 

rich semantics of statements of a language brings people a lot of convenience to ex­

press computation (including parallelism), the consistency, granularity and operability 

of representation are limited. The temporal aspect of computation is usually specified 

completely in an implicit manner. Moreover, programming a solution needs to fit a real 

world into a specific architecture when a machine-dependent programming language is 

used. These issues complicate the expression of a problem. Computation inference 
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and analysis are therefore difficult to achieve in a programming language. Functional 

languages and specification languages have similar situations to some degree. In this 

respect, we cannot resist the temptation to quote from E.W. Dijkstra 20 years ago 

(Dij72): 

Another lesson we should have learned from recent past is that the develop­

ment of 'richer' or 'more powerful' programming languages was a mistake 

in the sense that these baroque monstrosities, these conglomerations of id­

iosyncrasies, are really unmanageable, both mechanically and mentally. 

Based on the definitions and properties described in Chapter 2, it is observed that 

ABCOM is designed particularly with intention to meet the requirements. ABCOM 

ensures independence and consistency in representation by unifying the computation 

unit into quadruples, i.e., elements of the tuple space. Abstracting a number of relevant 

elements of a CDOAG into a compound element changes the representation from the 

fine-grained to medium- or coarse-grained. The granularity of representation can be 

decided in terms of the size of the grain in ABCOM. The temporality of computation in 

ABCOM is completely and explicitly specified. To carry out inference, an organisation 

structure is needed to support manipulations, abstraction and modification on elements 

in ABCOM. In practice, a special programming database is a good environment to 

intensively support these tasks that cover different phases of parallel programming. 

5.1.2 ABCOM tuplebase 

Unlike an intermediate language of a compiler, ABCOM is represented as an infor­

mation base where elements of a solution are expressed as record units of the tuplebase 

(called ABCOM tuplebase). Hence, the ABCOM tuplebase can be processed using 

relational database techniques. 

The main schema contains five basic fields: four of these correspond to components 

of the element and the fifth denotes the identifier (ID) of an element in the tuplebase. 

Using such a schema, we can present the example in Fig. 4.15 into a tuplebase in 

Fig. 5.1. 
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A tuplebase for a given problem is created when a source code is transformed. Such 

a tuplebase consists of a number of database files created during transformation. These 

files are divided into two sub-tuplebases, that is, Superblock_base and Branching_base. 

A Superblock_base contains all elements generated when transforming a superblock 

excluding these elements which are logically contained in condition branching flows. 

Those converted elements arising from the statements between a branching statement 

and the associated merging statement are stored in a Branching_base. Thus the study of 

relations among data, operations and time can be carried out using relational algebra. 

To collect information and process data for computation inference in ABCOM, two 

important SQL-like functions are used. 

1. select < attributs >from< filename> where< condition> 

This function identifies the elements which meet certain conditions. Usually, a 

group of elements can be selected as they have the same logical execution time, 

or the same data object as one of their input or output, and so on. 

2. modify< filename> with< assignment> where< condition> 

Here < assignment > can be either an expression on EX or a substitution of a 

data object in IN or OUT. In general, any modification in a file is permitted 

if ( and only if) it can be guaranteed that will not affect the correctness of the 

solution. 

The relational algebraic primitive functions on the tuplebase can be combined with 

the definitions and properties of ABCOM, for computation inference, parallelising solu­

tions, collecting profile information on parallelism, and predicting performance. Using 

relational techniques, thus, a parallel programming platform can be developed. 

Generating C DO AGs 

As previously mentioned, CDOAG plays an important role in ABCOM. Each element 

in ABCOM corresponds to an associated CDOAG that may contained in another 

C DO AG belonging to other elements. Thus, which C DO AGs are to be generated and 

whether CDOAGs can be processed easily are critical to use ABCOM. We introduce 

two methods to construct CDOAGs from a given tuple space. 
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ID OP IN OUT EX 
Ut 0 s 1 
U2 X a21,b1 Vt 2 
U3 + s, Vt s 3 
U4 b2,s b2 4 
Us 0 s 5 
U6 X a31,b1 V2 6 
U7 + s, V2 s 7 
Ug b3, S b3 8 
U9 X a32, b2 V3 9 

UlQ + s,v3 s 10 
U11 b3,S b3 11 
U12 0 s 12 
U13 X a41,b1 V4 13 
U14 + S, V4 s 14 
Uts b4,s b4 15 
UJ6 X a42,b2 Vs 16 
U17 + S1 Vs s 17 
U1g b4, S b4 18 
U19 X a43, b3 V6 19 
U20 + s, V6 s 20 
U21 b4, S b4 21 

Figure 5.1: The conceptual schema in ABCOM tuplebase 
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• Method 1: Top-down strategy: Given a particular Ui, CDOAGu, is generated by 

identifying the producers (elements) of its input and recursively finding producers 

of the input of those elements until it is found that all input data of new producers 

are specified. To generate CDOAGs from a tuple space, only those elements that 

produce the output of the superblock are considered. The generation procedure 

is made efficient by starting from the elements having earlier execution orders . 

• Method 2: Bottom-up strategy: Along with the original partial order generated in 

the trace generation of transformation, each element Ui determines an associated 

CDOAGu, by combining existing CDOAGs as its subgraphs. A special case is 

that if the input of Ui is specified, then EDOAGu, itself is a specific CDOAG. 

Here generation of CDOAGs is controlled by defining a number of output data we 

are interested in. Once all C DO AGs corresponding to the data are constructed, 

the generation stops. 

The gen_CDOAG < x > is a function based on Method 1. The implementation of 

function gen_C DO AG < x > using relational select queries is illustrated in Fig. 5.2. 

All elements found in a generated CDOAGu, are stored in a CDOAG_base that has one 

more field than the schema of the main tuplebase, called CDOAG_id to keep the identifier 

of Ui. 

Remark 

To generate a CDOAG we combine the individual dataflow relations between elements. 

Once a CDOAG associated with a particular data object is generated, the dataflow 

computation feature relevant to computing this data is abstracted. Although there is 

an associated CDOAG for each element in P, it is not necessary to generate all of them 

since some of them are contained in others. 

5.2 Relation-Based Computing Inference and Analysis 

The efficiency of parallel computing depends on how to achieve the reduction in 

complexity of relations among time, data and operations so that high-performance can 

be obtained on a parallel architecture. In the explicit programming approach, inference 

of parallel computation for a given problem is done by a programmer. The results of 
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Input: an element Ui and a tuplebase U. 
Output: all elements included in CDOAGu, are found and stored in CDOAG...base 

Temporal variables: id1, op1, in1, out1, ex1 and cdoag1. 

Algorithm 3: 
1. if CDOAG_base does not exist then 
2. create CDOAG...base; 
3. put Ui into CDOAG_base (with its CDOAG-.id= null); 
4. let Y.cdoag1='ui' 
5. while 3uj E CDOAG_baset\ its CDOAG_id is null then do 
6. for Vx E inui do 
7. select into Y.id1, Y.op1, Y.in1, Y.out1, Y.ex1 

fromU 
where EX= 

8. select Max(EX) from U 
where OUT like x and EX < exui; 

9. if Y.id1=null then back to 6; 

/ a vertices with indegree zero is reached./ 
10. select · CDOAG_id into Y.id2 

from CDOAG_base 

where ID= Y.id1 
11. if Y.id2# null then do 
12. strcat Y.id3= (Y.id1, Y.id2) 

13. update CDOAG...base 

set CDOAG_id = %id3 

where ID= Y.id1 
14. back to 6 
15. insert Y.id1, Y.op1, Y.in1, Y.out1, Y.ex1, 

16. into CDOAG...base (ID,OP,IN,OUT,EX); 
17. endfor 
18. update CDOAG..base 

19. set CDOAG_id ='ui' 
20. where ID= 'ui' 
21. endwhiledo 

Figure 5.2: Algorithm 3 for CDOAG generation 
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this inference are directly expressed in a program. In the implicit approach, inferences 

performed by a parallelising compiler, i.e. data dependence testing and parallelising 

programs, are limited to studying the relationship between statements. In this section 

we will show how the computation inference based on different aspects is achieved in 

ABCOM. 

5.2.1 Time-based inference 

Parallelism exploitation is based on the logical properties among computations (or 

the logical relation of computation execution). In programming, a programmer de­

signs and implements an underlying computation in terms of certain programming 

logic. No substantial guideline can be derived from time-based computation inference 

to support parallelism analysis. Three typical relations between statements in a pro­

gram are sequencing, multi-tasking and synchronisation. These three relations reflect 

the properties of control-flow. Data parallelism is expressed by a special statement 

with programmer's personal knowledge. Unfortunately, there are no effective tools for 

computation inference that systematically reveal computational characteristics of the 

problem. Although the statement-based DDG is used in data dependence testing, it 

does not characterise time-based computation logic. 

The properties of ABCOM, such as temporality and consistency, enable time-based 

inference to be carried out. 

(1) Computation latency analysis 

Each element Ui in a solution P has a legal-execution zone where parallelism and 

speedup can be obtained. The computation latencies are caused by subjective pro­

gramming decisions. For a given element Ui its tJoweru; can be obtained using the 

algorithm in Fig. 5.3. Similarly, Lupperu; and the legal-execution zone ~u; can be 

obtained. 

Using the property expressed in Lemma 3.2, we find that computing a CDOAG can 

be speeded up by reordering certain execution orders of some elements and removing 

unnecessary partial orders. This can lead an optimised solution. We will discuss this 

optimisation using ABCOM in Chapter 6. 

(2) Dataflow relation testing 
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Input: a given element Ui and tuplebase U. 
Output: tJoweru, 
Algorithm 4 

(1) Llower = 0 
(2) 
(3) 

(4) 

(5) 
(6) 

for Vx E inu, do 
select EX into %t1 from U 

where EX= 
select Max(EX) from U 

where OUT like x and EX < exu,; 
if Llower > %t1 then tJower = %t1 

enddo 

Figure 5.3: Algorithm 4 to obtain tJoweru, 

In a dataflow computation the ordering of operations is determined by data interde­

pendencies and availability of resources [Sha85]. The data flow relation, that exists 

between certain elements in ABCOM, is defined below. 

Definition 5.1 Let {ui, Uj} C P; if data x is produced by Ui and later used as input 

data of Uj before it is modified, then there is a direct data-flow between Ui and Uj. We 

denote this by Ui ~ Uj. 

Note that if there are Ui ~ Uj and Ui ~ Uk, then it means that there two data flows 

from the same element to different elements, denoted as 

The data flow relation can be identified by using the following rule: 

Rulel. if (3x, {x} = outu, n inu;) I\ 

(,lluk E CDOAGu,) I\ (x E outuk) I\ 

then 

The dataflow inference detects data dependence. Two kinds of dataflow relations are 

--------~ ·- -- -
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Input: a given element Ui and tuplebase U. 
Output: elements which have input-dataflow relations 

associated with Ui. 

Algorithm 5 
(1) for each data object x E inu, do 
(2) select id from U 

where EX= 
(3) select Max(EX) from U 

where OUT like x and EX< exu,; 
(4) enddo 

Input: a given element Ui and tuplebase U. 
Output: elements which have input-dataflow relations 
Algorithm 6 

(1) for each data object x E outu, do 
(2) select id from U 

where EX= 
(3) select Mim(EX) from U 

where IN like x and EX> exu,; 

(4) enddo 

Figure 5.4: Algorithm 5 and 6 for detecting data flow relations. 
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associated with a given element Ui in light of inu, and outu, respectively, which are 

called input-dataflow relation and output-dataflow relation. The algorithms for these 

are presented in Fig. 5.4 based on ABCOM tuplebase. 

(3) Data-parallelism checking 

In ABCOM, checking data parallelism is achievable in a step-wise manner if there are 

elements that meet the condition for data parallelism. However, data parallelism is not 

directly testable in an initial version of a solution converted from a sequential code. 

Thus, we do not discuss data parallelism inference and abstraction in ABCOM until 

we are able to parallelise a given solution. 

(4) Static computation scheduling 

Static computation scheduling is one of important issues in mapping an algorithm to 

a particular architecture [AS93], [Lil93], [Fea94], [NN94]. Static scheduling can be 

divided into two subtasks: identifying candidates and making selection . The degree 
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of parallelism achieved in a program is determined by the amount of parallelism found 

during static computation scheduling. 

The static computation scheduling is grain-dependent and architecture-dependent. 

Using ABCOM, at a given timestep, static computation scheduling can use the following 

rule to identify those elements in the tuplebase which are ready for execution: 

Lemma 5.1 If 3ui and \/xk E inu; have been specified at a given timestep ti ~ exu; , 

and jui in which Xk E outu; and ti ~ exu; ~ exu;, then element Ui is a candidate that 

is ready for scheduling. 

The above rule is general but only can address one of the two subtasks, and cannot 

be used efficiently in practice. To improve the efficiency, the rule can be implemented 

in different ways, in particular after a solution is optimised (see Section 7.6.2). 

The static computation scheduling is grain-dependent and architecture-dependent. 

The scheduling at a fine-grain level looks into data parallelism, and at a coarse-grain 

level control parallelism is mainly considered. Using granularity and execution specifi­

cation of ABCOM, we expect that the techniques of static scheduling can be benefited 

from time-based and dataflow related computation inference. 

5.2.2 Data-based inference 

Parallel programming experience shows that the decision made on data manip­

ulation in programming can affect the performance. Different architectures ( espe­

cially memory and interconnection structure used) require different data manipula­

tion schemes. The ABCOM representation provides the following features to support 

data-based inference. 

• Data-access-pattern inference 

The data-access-pattern records how a data object is read or written for oper­

ations. The data-access-pattern is time-dependent because variables are usually 

reused. An access pattern of data x contains only one write access and all read 

accesses which are performed after this write and before next write. Because of 

the assumption of a CREW PRAM memory in ABCOM in Section 3.4.1, there 
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Figure 5.5: A data access pattern abstracted from Table 5.1 

are two basic types of data access patterns. In the first type, the data a is only 

read by operation Uj after written by Ui and before the next 'write'. In the second 

type, the data b is read by a number of operations after written. It is often seen 

that there are a number of data-access patterns based on the same data object in 

a solution due to the reuse of variables. In ABCOM, a data-access pattern can be 

abstracted by checking all elements that perform 'read' accesses to a particular 

data between two 'write' accesses. 

This method provides information of life cycles of data-access patterns, if all 

the patterns to the same data are abstracted along with logical execution of 

computation. If there is no read access between two write access to the same data, 

then the first write access is useless. Hence, programming errors can be detected. 

The life-cycle information of data-access patterns is very useful for variable reuse 

in programming. A data-access pattern illustrates the dataflow relations between 

the element of write access and the elements with read accesses. This detects 

data dependence among elements. 

Using data-access-pattern inference, we abstract an access pattern of data object 

b
2 

from the tuplebase in Table. 5.1. This pattern is represented in Fig. 5.5. 

• Data-dependence testing 

Except detecting dataflow relation, other kinds of data dependence are to be 

tested for computation analysis. Let P be a solution converted from a sequential 

program. If any two elements Ui, Uj E Pare said to be data dependent on data 

object x, then there are following cases[Wol89] where exu; < exu; : 
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1. if outu., n inu.1 = { x} and f-luk in which x ~ outu.1 and exu., < exu.k < exu.
1

, 

then Uj is data flow-dependent on Ui; 

2. if inu., n outu.1 = { x }, the Uj is data anti-dependent on ui; 

3. if outu., n outu.1 = { x }, then Uj is data output-dependent on Ui. 

Both data anti-dependence and data output-dependence are called memory-based 

dependence. We denote the memory based dependence between Ui and Uj by 

Using the concept of CDOAG, such a data dependence can be tested using Rule 

2 and 3 respectively. 

Case 1. 

Case 2. 

Rule 2. if (CDOAGu., lie CDOAGu.1 V 

CDOAGu., 1X1 CDOAGu.1 ) I\ 

((inu., n outu.1 = {x}) V 

then 

Rule 3. if 

then 

( ( outu., n inu.1 = { x}) V 

(outu., n outu.1 = {x})) 
X 

Ui f----+ U j . 

(CDOAGu., C CDOAGu.1 V 

CDOAGu.1 c CDOAGu.,) I\ 

( ( inu., n outu.1 = { x}) V 

((outu., n inu.1 = {x}) v 

( outu., n outu.1 = { x})) /\ 

,((ui -t Uj) V (uj -t (ui)) 

X 
Ui f----+ U j . 
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The Rule 2 tests for a memory-based dependence between two elements whose 

CDOAGu; and CDOAGu1 are conditionally independent or overlapping. The 

dependence (tested by using the Rule 3) exists between two elements of which 

CDOAGu; and CDOAGu1 have a contained relation but not a dataflow relation . 

The reason we distinguish these two kinds of memory-based dependence is that 

in the second case there is actually an indirect data-flow relation between the 

elements. These two situations are treated in different ways when a solution is 

parallelised. The implementations of Rule 1, 2 and 3 are not complicated since 

the relations between CDOAGs can be identified. CDOAG-based computation 

inference described in Section 5.2.4 will address how to check relations between 

twoCDOAGs. 

5.2.3 Operation-based inference 

Operation-based inference is also useful to parallel computing. It has been shown 

in the last two subsections that computation inference based on either time or data 

could only reveal various logical and dependent relations between elements. We use 

operation-based inference in a similar way to assist computational analysis. 

Data structures are mainly determined by a specific solution to a problem. To 

properly redefine or reconstruct data structures for solution optimisation and recon­

struction, operation-based inference is required, including computation pattern tests 

and some special optimisation against a CDOAG. We discuss these techniques in 

Section 7 .3. 

The computation inference based on time, data and operations are fundamental and 

easy to understand in ABCOM. Various applications of this inference can be developed 

according to different interests. Some main applications of the inference are presented 

in Chapter 6 and 7. 

5.2.4 C DOAG relations inference 

Based on dataflow relation inference, we can compose individual dataflow relations 

into a computation dataflow associated with related elements. The discussion presented 

in Chapter 2 and Section 5.1.2 shows that a CDOAG contains all information required 
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Initial: given CDOAGu, and CDOAGu1 in CDOAG_base. 

Output: reporting a contained relation between CDOAGu, and CDOAGur 
Algorithm 7: 
1. Y,id1=' ui' • Y,id2='u/; 

2. select CDOAG...id into Y,cdoag...id 

from CDOAG_base where ID =Y.id1; 

3. if Y,cdoag...id=Y.id2 then 
4. writeln('CDOAGu, c CDOAGu1 '), exit; 
5. select CDOAG...id into Y,cdoag...id 

from CDOAG_base where ID =Y.id2; 

6. if Y.cdoag...id=Y.id1 then 
7. writeln('CDOAGui c CDOAGu, '), exit; 
8. exit 

Figure 5.6: Algorithm 7 for testing a contained relation between C DO AGs 

to complete a computation procedure and carry out computation inference. The four 

categories of the relations between two C DO AGs are determined by the relevant com­

putation features of them. According to the definitions of these categories, the relation 

between CDOAGu, and CDOAGui is tested using the algorithms in Figs. 5.6, 5.7 and 

5.8. 

5.2.5 Nondeterministic computation analysis 

Determinacy is important to exploit parallelism. As shown, in a CDOAG, deter­

ministic computations are easily abstracted and represented using dataflow relation 

between elements. Inference to determinist ic computations is thus developed with no 

difficulty. However, situation is different for nondeterministic computations. 

A simple nondeterministic computation is expressed by a conditional statement in 

a source code. If a loop contains conditional statements, then computation inference 

becomes complicated. Consider the sequential code of sorting. 

Example 8. A sequential sorting program is expressed as: 
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Initial: given CDOAGu, and CDOAGui in CDOAG_base. 
Output: checking whether CDOAGu, and CDOAGui are overlapping. 
Algorithm 8: 
1. 
2. 
3. 

4. 
5. 
6. 
7. 

8. 

%id1= 1 Ui' , %id2= 1 Uj' j 

declare CDOAG_overlapping cursor for 
select ID from CDOAG...base 

where CDOAG_id like %id1 and CDOAG_id like %id2; 

open CDOAG_overlapping ; 

fetch CDOAG_overlapping into %id3; 

if %id3=f 'null' then 
writeln('CDOAGui 1><1 CDOAGu;'), 

close cursor CDOAG_overlapping and exit 
close cursor CDOAG_overlapping and exit; 

Figure 5.7: Algorithm 8 for testing CDOAGu, l><I CDOAGur 

for i = 1 to n - 1 do 

for j = 1 to n - 1 do 

if a(j) > a(j + 1) then do 

t = a(j); a(j) = a(j + 1); a(j + 1) = t. 

91 

Here we use n - 1 instead of n - i as the bound of the internal loop so that a complete 

computation space can be observed. We transform the above code into ABCOM when 

n = 6. In Fig. 5.9 the some elements generated from Example 8 are given. These 

elements are not directly performing exchange for the three assignment statements 

(called threesort) after each if, but they illustrate certain computation features of the 

loops. 

Each element of subset { u1 , u4 , u7 , u10 , • · ·, u73} performs a condition test to decide 

whether an associated element that carried out exchange of threesort should be exe­

cuted with the a special compound operation (if-inten(ei)). We illustrate the possible 

relations that exist among the elements with operation of if-inten( ei) in Fig. 5.10. 

The edge labelled by a cycle in Fig. 5.10 indicates a possible computation relation 
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Initial: given CDOAGu; and CDOAGu; in CDOAG_base and they have a neither 
contained nor overlapping relation. 

Output: reporting a conditionally independent relation or a completely 
independent relation between CDOAGu; and CDOAGu;­

Algorithm 9: 
1. Y,id1=' U/ , Y,id2=' Uj'; 
2. declare CDOAG_cond cursor for 
3. select IN from CDOAG_base 

where CDOAG__id = Y,id1; 
open CDOAG_cond; 
While CDOAG_cond is not empty do 
begin 

4. fetch CDOAG_cond into Y,input; 
5. for each data object x in Y,input do 
6. declare shared_var cursor for 
7. select IN from CDOAG...base 

where CDOAG_id = Y,id2 AND (IN like x OR OUT like x; 
open CDOAG_base; 

8. fetch shared_var into Y,sharedobject 
9. if Y.sharedobject #= 'null' then 
10. writeln('CDOAGu; lie CDOAGu/), exit; 
11. repeat 5. 

end 
12. declare CDOAG_cond cursor for 
13. select OUT from CDOAG...base 

where CDOAG__id = Y,id1; 
open CDOAG_cond; 
While CDOAG_cond is not empty do 
begin 

14. fetch CDOAG_cond into Y,output; 
15. for each data object x in %output do 
16. declare shared_var cursor for 
17. select IN from CDOAG...base 

where CDOAG_id = Y,id2 AND (IN like x OR OUT like x); 
open CDOAG_base; 

18. fetch shared_var into Y,sharedobject 
19. if Y,sharedobj ect #= 'null' then 
20. writeln('CDOAGu; lie CDOAGu; '), exit; 
21. repeat 15 

end 
22. writeln('CDOAGu, II CDOAGu/); 
22. exit; 

Figure 5.8: Algorithm 9 for testing CDOAGu; lie CDOAGu;· 
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u1 : ( <b, { a1, a2, 2}, { e1le2, 1) u16 : ( <b, { a1, a2, 12}, { e11le12, 11) 
u2: (if - inten(e1), {a1, a2}, {a1, a2}, e1) u11: (if - inten(en), {a1, a2}, {a1, a2}, en) 
u3 : (0, {0}, {0}, e2) u1s: (0, {0}, {0}, e12) 
U4: ( <b, {a2, a3, 4}, {e3le4, 3) u19: ( <b, {a2, a3, 14}, {ede14, 13) 
us: (if - inten(e3), {a2, a3}, {a2, a3}, e3) u20: (if - inten(e13), {a2, a3} , {a2, a3}, e13) 
U6: (0, {0}, {0}, €4) U21 : (0, {0}, {0}, €14) 
u7: (<b,{a3,a4,6},{esle6,5) u22: (<b,{a3,a4,-l6},{e1sle16,l5) 
us: (if - inten(es), {a3, a4}, {a3, a4}, es) u23: (if - inten(e1s), {a3, a4}, {a3, a4}, e1s) 
ug: (0, {0}, {0}, e6) u24: (0, {0}, {0}, e16) 
u10: (<b,{a4,as,8},{e1les,7) u25: (<b,{a4,a5,l8},{e11le1s,l7) 
un : ( if - inten(e1 ), { a4, as}, { a4, as}, e1) u26 : (if - inten(e11 ), { a4, as}, { a4, as}, e11) 
u12 : (0, {0}, {0}, es) u21: (0, {0}, {0}, e1s) 
u13 : ( <b, { as, a6, 10}, { egle10, 9) u2s : ( <b, { as, a6, 20}, { e19le20, 19) 
u14 : ( if - inten( eg), { as, a6}, { as, a6}, eg) u29 : ( if - inten( e19), { as, a6}, { as, a6}, e19) 
u1s : (0, {0}, {0}, e10) u30: (0, {0}, {0}, e20) 

Figure 5.9: Pa.rt of the ABCOM code of Example 8. 

between two elements subject to the result of an associated condition test. Because 

there is an uncertainty of the relation, computation inference and abstraction of these 

elements require more investigation on what the real computational relation exists 

among these elements. 

Though it is certain that there is some parallelism in data. movement of Fig. 5.10, 

the inference techniques described in the previous subsections a.re not applicable due 

to the absence of explicit and deterministic specification of time. In order to exploit 

parallelism of nondeterministic computation, thus, one should be able to address the 

following questions: 

• Whether an element is computationally independent from others? 

• What is affected if the execution order is changed? 

• Which elements can be pa.ra.llelised according to the answers of the above ques­

tions and basic requirements of parallelism? 

• How can all those possible data.flow relations be correctly performed in parallel? 
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(3i 'cli) 

~I\ 

Figure 5.10: Uncertain relations among some elements of Example 8 
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5.2.6 Element-state based inference 

Another important feature of computation execution in ABCOM is the evolution of 

element status along with logical execution of computation. Each element of ABCOM 

can only be found in one of the following groups: 

1. Waiting_group (Wg) 

If Ui E P /\.exu, > EP, and the input data objects of inu, have not been completely 

specified, then Ui is in Wg; 

2. Ready_ group (Rg) 

If Ui E PI\. exu, > EP, and the input data objects of Ui have been specified, then 

Ui is in Rg; 

3. Execution_group (Eg) 

If Ui E P /\ exu, = EP, and all input data objects have been specified, then Ui is 

in Eg; 

4. ConditionaLexecution_group (Cg) 

If Ui E P and exu, is an expression with the operation '±', then Ui is in Cg; 

5. PosLexecution_group (Pg) 

If Ui E PI\. exu, < EP, then Ui is in Pg. 

During the execution of computation, an element may migrate from one group to 

another as certain execution conditions are met. The migration procedure of elements 

is outlined in Fig.,5.11. 

The element migration between different groups is driven by certain conditions. 

The migration of Ui is denoted as: 

(Departuregroup) ~ (Destinationgroup). 

In terms of Definition 3.10, the initial distribution of elements among these groups is 

determined by the decision of programming. When EP = O, initially, all elements are 

distributed in Wg, Rg and Cg except u0 E Eg. The driven conditions can be explained 

in three categories: 
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,.----~ 

Figure 5.11: The procedure of element migration 

1) EP driven 

At each logical step some elements become currently executable and some become 

performed. We refer these changes of element states as the migration driven by EP. 

This migration happens between Rg and Eg, or Eg and Pg when EP = EP+ 1, which 

are stated as: 

• Rule 4. 
('tui E Rg) I\ (exu; = EP) 

u · , 
Rg~Eg 

• Rule 5. 

'tui E Eg. 

E u; P., 
g......,. g 

2) Dataflow driven 

The element migration between W g and Rg is driven by the dataflow. 

• Rule 6. 

(Eg ~ Pg) I\ (3uj E Wg) I\ (ui-=-+ Uj) I\ ('tx1 E inu;,3uk,Uk ~ Uj I\ exu,. < exu;) 
u · 

Wg~Rg 

Remark 

It is possible that some elements are driven by both dataflow and EP at a particular 
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timestep so that they can migrate from Wg directly to Eg in one logical step. In this 

case, these elements are executed in a dataflow computation fashion. 

3) Conditional-control driven 

It cannot be determined whether the elements in Cg are executed until the required 

conditions are tested during the execution. These elements would migrate to Rg and Eg 

only when the conditions are satisfied. To be consistent with the Definition 3.1, only the 

head element (a compound element of the elements converted from the branching flow) 

would migrate to other groups when the branching flow is determined to be executed. 

In this special unit of time when the head element is in Eg, all the elements (being 

in Cg) associated with the head element would complete their migrations in a 'hidden' 

mode using its own relatively logical clock (intensional logic). The element migration 

in a 'hidden' mode is shown by dot lines in Fig. 5.11. 

The main restriction for the application of relation-based computation inference is 

that in order to perform inference, there must be certain kinds of relations that ex­

ist among elements with respect to data, operation or logical execution time. Using 

element-state based inference, we can carry out inference at a higher level for compu­

tation scheduling, balancing, simulation and performance prediction. 

5.3 Summary 

By developing an ABCOM programming database, we have shown how parallel 

computation analysis and inference can be performed using relational algebra, and 

rules. The inference features demonstrated in this chapter are based on three key 

factors of parallel computing, namely, time, data and operations. 
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Chapter 6 

Solution Parallelisation in ABCOM 

A parallelising compiler detects potential parallelism in a source code, and imple­

ments it by a transformation. The result of the transformation is an optimised parallel 

program that can be executed in a specific architecture. The amount of parallelism 

achieved in the optimised program is dependent upon the amount of parallelism can 

be exploited by the compiler and how that can be realised in the architecture. We 

call such a procedure as "program parallelisation". After a source code is transformed 

into ABCOM, the program takes a new form preserving the original execution seman­

tics. How we can optimise this solution i.n ABCOM and to what extent the parallelism 

can be exploited are described in this chapter. To distinguish this optimisation from 

program parallelisation, we call it "solution parallelisation" since this optimised solu­

tion is executable on ABCOM machine and but may not be physically implementable. 

The purpose of optimisation is to reveal parallelism in a programmer-view independent 

manner. 

6.1 Overview of Optimising Compilers 

In the last decade optimising com pilers .have become an essential component of high­

performance computer systems. The survey by Bacon et al [BGet al94) provides the 

state of the art in this area. Developing a framework that unifies the transformations is 

important in this area of research. We briefly review studies relevant to parallelisation. 
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6.1.1 Existing studies 

1. Data Dependence Analysis 

Dependence analysis and tests have been conducted in (Lam74], (WB87), (Ban88), 

(Pug92], (PP92], (JP93), (Lil94). The definitions of data dependence relations given 

by Wolfe and Banerjee in (WB87) are stated below: 

Given two statement Sv and Sw, the following data dependence relations 

may hold true or the statements may be data independent. 

1. If some item X E OUT(Sv) and X E IN(Sw) and Sw is to use the 

value of X computed in Sv, then we say that Sw is data flow-dependent 

on Sv. 

2. If some item X E J N(Sv) and X E OUT(Sw), but Sv is to use the 

value of X before it is changed by Sw, then we say that Sw is data 

anti-dependent on Sv. 

3. IF X E OUT(Sv) and X E OUT(Sw) and the value computed by 

Sw is to be stored after the value computed by Sv, we say Sw is data 

output-dependent on Sv. 

Here the data dependence is defined between statements ( and differs from the depen­

dence we have defined in Chapter 5). In traditional data dependence test a Data 

Dependence Graph(DDG) is used. This is a statement-based dependence graph. A 

statement Sv in a loop is designed for performing a number of instances in the itera­

tion space of the loop. The dependence between instances of different statements in 

different iterations, the dependence distance vector and dependence direction vector are 

introduced [Wol89). The dependence behaviour of a loop is described by the set of 

dependence vectors for each pair of possibly conflicting references. Determining data 

dependences is equivalent to testing whether there exists an integer solution to a set 

of linear equalities and inequalities It is an NP-complete problem [Pug92). If the de­

pendence information is inexact, the compiler must act conservatively, rejecting some 

transformations because they violate a constraint that may or may not be real (Pug92), 

[PW94), that is, some false dependences may be reported. 
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In addition, there are a number of exact tests that exploit some subscript charac­

teristics to determine whether a particular type of dependence exists [Ban88], [Gea91], 

[Lea90], [Mea91], [Pug92], [Wol89], [WT92], [JP93]. 

2. Transformations 

(1) Data-flow-based loop optimisation 

A number of loop optimisations based on data-flow analysis are summarised in the 

'Red Dragon' book by Aho ~t al ·[ASU86). These include loop-based strength reduction, 

induction variable elimination, loop-invariant code motion and loop unswitching, which 

are used to optimise the computation cost of loops. 

( 2) Loop reordering 

Loop reordering changes the relative order of execution of the iterations of a loop nest 

or nests. Such a transformation exposes parallelism and improves memory locality. 

Whether a loop can be parallelised is determined by the test result of data dependence. 

The loop reordering can been done using different methods, such as loop interchange, 

loop skewing, loop reversal, strip mining, cycle shrinking, loop tiling, loop distribution 

and loop fusion. 

(3) Loop restructuring 

Loop restructuring changes the structure of the loop, but leaves the computations per­

formed by an iteration of the loop body with their relative order unchanged. The main 

approaches to loop restructuring are loop unrolling, software pipelining, loop coalescing, 

loop collapsing, loop peeling, loop normalisation and loop spreading. 

Since these transformations are based on the relations between statements, the space 

for optimisation is limited by the context of program. The computation space (spatial 

structure) of a problem is not exhibited. That is the reason why various attempts have 

been made to explore certain individual parallel properties which can be detected by 

some tests. 

6.1.2 Problems 

The success of the applications of various transformations relies on the data de­

pendence testing. To compute dependence information among the iterations of a loop, 
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we need to understand the use of arrays referenced in the loop. The complete in­

formation on a data dependence relation includes three aspects: (i) data that is the 

carrier of the dependence; (ii) operation which determines the nature of the depen­

dence in the combination with the another aspect, and (iii) time. Dependence vectors 

describe dependence among iterations (conveying only information about the time), 

but not the precise information on data objects and operations. In other words, the 

data dependence exists among the operations on data objects, but people use only the 

dependences among iterations (or statements) as the abstract description (distance or 

direction vectors) for data dependence tests. In this case, testing dataflow relation or 

data dependence relation becomes complicated since each statement corresponds to a 

number of instances in different iterations. 

The concept of data flow is directly or indirectly used by all those transformations. 

For individual transformation, however, only a certain part (sometime only a small 

part) of dataflow features inherent in computation is exploited. All dataflow features 

of a program could not be exploited completely in a certain transformation. 

An important feature of using a loop is to let a certain computation pattern (body 

of a loop) to be repeated properly over a data domain of any size, as long as the loop 

control variable is defined. It is often seen that a loop body, which is "smalf' in the size 

of text, processes a data domain which is much much "large~' than the loop in size. Any 

optimisation is always developed against a particular object, called optimisation space. 

In conventional compilers, the optimisation space used is the context of a program, 

i.e, statements of loop rather than a space associated with the data domain. Selecting 

such an optimisation space has created certain difficulties in exploiting parallelism. Fox 

points out [Fox92] that: 

The spatial (data) parallelism of the problem becomes purely temporal in 

the software, which implements this as a Do loop. Somewhat perversely, 

a parallelising compiler tries to convert the temporal structure of a Do 

loop back into spatial structure to achieve data parallelism on a spatial 

array of computers. Often parallelising compilers produce poor results as 

the original map of the problem into sequential Fortran 77 has 'thrown 

away' information necessary to reverse this map and recover unambiguously 
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the spatial structure. The first ( and some ongoing) efforts in parallelising 

compilers tried to directly 'parallelise the Do-loops'. This seems doomed 

to failure in general as it does not recognise that in nearly all cases the 

parallelism comes from spatial and not in control (time) structure. 
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Consequently, the challenge is how to find a suitable method to recover the in­

formation on the spatial structure from a sequential program, or how to recover the 

information necessary to do a reverse mapping from the temporal to the spatial aspect 

unambiguously. 

Before ABCOM-based solution parallelisation is discussed, we recall the definition 

of transformation given in [BGet a/94): 

A Transformation is legal if, for all semantically correct program executions, 

the original and the transformed programs produce exactly the same output 

for identical executions. 

The transformation techniques of ABCOM described in Chapter 4 preserve the original 

execution semantics of a source code using a trace-generation strategy. The total order 

is generated by sequential execution. CDOAG provides the complete information to 

compute a particular data object from both topological and temporal points of view. 

Abstracting all CDOAGs associated with the output of a problem (loops), we can 

clearly obtain the spatial structure of the problem. And partial ordering in CDOAG 

tells us which computation element is executed at each logical step in this particular 

code. 

Therefore, the problem Fox pointed out can be solved using ABCOM transformation 

and associated techniques. That is, the information on the spatial structure that was 

thrown away in the sequential code, can be recovered in an abstract computation tuple 

space. How we can effectively use this information to parallelise a solution is discussed 

below. 
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6.2 ABCOM-Based Data Dependence Tests 

6.2.1 Dependence representation 

Data dependence relations exist between elements ( that contain information of oper­

ation, data and time) of the tuple space. Let us recall the definition of data dependence 

given in Chapter 4. 

If Pis a solution and any two elements Ui, Uj E Pare said to be dependent on data 

object x, then there are following cases that correspond to the definitions in [WB87], 

where if exu; < exui and ~Uk in which xf/ outui and exuk :::; exui: 

1. outu; n inui = { x} ~ data flow-dependence, denoted by Ui -=-t Uj; 

2. i nu; n outui = { x} ~ data anti-dependence, denoted by Ui 8 Uj; 

3. outu; n outui = { x} ~ data output-dependence, denoted by Ui 8 Uj. 

Data dependence relations can be detected using the inference rules presented in 

Chapter 5. As each data object is read and written in a certain access pattern, there 

are m dataflow dependence relations from an element to m different elements, called 

1-to-m dataflow dependence. 

The dependence relations discussed above are based on those variables that are 

either singletons or elements with fixed indexes of arrays. If dependent relation is 

related to a variable that has a functional index, then that relation is relevant to certain 

elements which are covered by the index function. It is a dynamic relation and cannot 

be tested exactly before execution. Therefore, it is necessary to relate all elements 

covered by the function, or the whole array. To detect these dependence relations, we 

modify the rules 1, 2 and 3 described in Chapter 4 as follows: 

Rule 4. if (3uj, ax E outu;) I\ 

('v, a* E outu; ) I\ 

((,lluk E CDOAGui) I\ (a* E outuk) I\ 

( exu; < exuk < exuJ) 

then a* Ui ~ Uj; 
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6.2. ABCOM-Ba.sed Data Dependence Tests 

Rule 5. if (((3 ) ( Uj, ax E outu; I\ Vui, a* E inu,)) V 

then 

( (3ui, ax E outu.) I\ (Vuj, a* E outu;))) /\ 

((CDOAGu; lie CDOAGu,) V 

(CDOAGu; !XI CDOAGu.)) 

Rule 6. if (((3uj, ax E inu;) I\ (Vui, a* E outu.)) V 

then 

( (3ui, ax E outu.) I\ (Vuj, a* E outu;))) /\ 

((CDOAGu; C CDOAGu.) V 

(CDOAGu, C CDOAGu;)) I\ 

105 

Here ax is a element referenced by a function; a* stands for any element of the array 

related to ax. According to the nature of the index function, it is possible to divide 

an array into two parts. One of them is related to the function, the other is not. For 

instance, if there is a functionally indexed variable a(Q(i)) with Q(x, i) = 2 x x x i, 

assuming x be an integer variable, then all elements with the indexes of even values 

are functionally related, while, those that have indexes of odd values are not. 

6.2.2 Features of ABCOM-based detection 

ABCOM-based detection of data dependence provides exact results in terms of the 

discussion in Section 5.2. The reason for the simplicity in testing is due using the 

spatial structure of a problem. This can be stated as follows: 

1. From iteration abstraction to trace generation 

The computation space of a loop (not value-control While--Do) is divided into a number 
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of subspaces that are processed in different iterations. The mathematical abstraction 

used by many tests can only indicate reference relations of data variables among itera­

tions. The temporal or topological characteristics of the computation on the data do­

main cannot be properly described since the information on data dependence relations 

between statements or between iterations turns out to be vague and often incomplete. 

Using trace generation, the ABCOM transformation converts a loop into a tuple 

space in which the computation is organised in a partial order. Moreover, the data 

dependence relations are detected between elements of ABCOM. In other words, a 

"smaller space" with cyclic structure (loop) is replaced by "larger space" that can be 

abstracted with acyclic structures (CDOAG). The result of this replacement is to olr 

tain a clear description on data dependence relation and a much larger space to exploit 

parallel properties of computation. 

2. C DO AG privatisation 

The reuse of variables (in programming) reduces resource cost of computation. The 

data dependence relations caused by reusing variables, called memory-based depen­

dence, can be removed if they can be tested. According to the rules of data depen­

dency testing, the concept of CDOAG is critical for testing memory-based dependence 

effectively. In fact, if there are two elements Ui and Uj in which there is a shared 

data object as input or output, and CDOAGu; and CDOAGu; are not in the relation 

of the contained, then there is a memory-based dependence relation that needs to be 

eliminated for optimisation. This can be stated by the following theorem. 

Lemma 6.1 The data dependences that can be eliminated between two elements for 

optimisation are only those for which the corresponding CDOAGs of the elements are 

not contained within each other. 

Proof 

As described in Chapter 3, there are four categories of relations between any two 

CDOAGs. If two CDOAGs are completely independent, there is no data dependence 

between them. To test for a memory-based dependence between two elements, one 

needs to consider the other three categories. In fact, we can exclude the two situations: 

.-... 
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(i) there is a direct data-flow relation; or (ii) there is an indirect data-flow relation that 

is a memory-based dependence, but is not concerned for elimination since the partial 

order between the elements is necessary. These two situations can be tested by checking 

whether the two corresponding CDOAGs of them have a contained relation by using 

the Rule 3 in Chapter 5. In other words, if two CDOAGu; and CDOAGui are in the 

contained relation, then there must be a direct or indirect dataflow relation between 

Ui and Uj, namely, the partial ·ordering of execution is necessary. Consequently, the 

data dependence caused by a shared data object needs to be removed for optimisa­

tion if and only if these two C DO AGs are overlapping or conditionally independent. 

D 

3. Dependence test by using data-access patterns 

As shown in Chapter 5, in ABCOM, the history of reuse of variables is easy to be 

abstracted by data-based inference. The memory-based dependence between two access 

patterns to the same data object can be of four types: 

1. writel - -write2; 

2. writel - -read2; 

3. readl - -write2 and 

4. readl - -read2. 

Th~s is illustrated in Fig. 6.1 where 1) and 6) are of dataflow relation; 2), 3) and 4) are 

considered as being of memory-based dependence; and but 5) means that two groups 

{ u2, u3, u4 } and { u6, u1} are exclusive each other, denoted by~ and there must be 

a write access to the data between { u2, u3, u4} and { u5, u1 }. 

6.3 Parallelisation in ABCOM 

As described in Section 3.2, the execution order of an element Ui can be legally 

modified within a certain range. By carrying out such modification for certain elements 

of a solution, the performance of the solution can be improved. The elements can be 

executed in parallel as long as their execution conditions are met. 
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U5 

writel - -readl: u1 ~ { u2, U3, u4} 

writel - -write2: u1 A u5 
X 

writel - -read2: u1 f--t u5 
readl - -write2: { u2, u3, u4} A u5 
readl - -read2: { u2, u3, u4} ~ { u6, u1} 
write2 - -read2: U5 ~ { u6, u1} 

U7 

Figure 6.1: Two access patterns based on the same data object 

6.3.1 CDOAG optimisation 

The partial order among elements may or may not be necessary. For a given source 

code the trace generation produces an ABCOM code without changing any execution 

order of computation. Under the driven condition of dataflow, a certain number of 

elements become ready for execution at a given timestep. In light of the driven condition 

of EP, while, only some of these elements, whose execution orders are equal to the 

current value of EP, become currently executable. This shows where possible speedup 

can be made. Let us start with the situation within a C DOAGu,. Assume that outu0 be 

viewed as the input data for all vertices with indegree zero of CDOAGu,· If CDOAGu, 

is composed of exu,, exu;, · · ·, exuq and completely independent from other C DOAGs, 

then we define Tu, = Min{ exu,, exu;, · · ·, exuq} as the lower bound of execution of 

C DO AGu,. According to the expression 3.2 in Lemma 3.4 we can write 
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That is, the lower bound of executing CDOAGu, can be at any timestep within the 

legal-execution zone of [1, TuJ In order to parallelise execution of the elements in 

CDOAGu,, one can change certain execution orders of elements within their legal­

execution zones so that all elements can be performed as early as possible. This pro­

cedure can start from those elements that are ready at beginning (when EP = 0), and 

can be continued along with the directions of data flows until ui is processed. 

Theorem 6.1 If there is a CDOAGu, E Pin which all sub-CDOAGs have no memory­

based dependence, and for \:/uq E P , CDOAGuq i;t CDOAGu, and CDOAGuq II 
CDOAGu., then CDOAGu, can be optimised until \:/uk E CDOAGu, can be executed 

at their lower bounds, and Tu, = 1. 

Proof (A sketch) 

• C DO AGu, can be optimised without losing correctness since it is a completely 

independent computation task according to the conditions that for \:/uq E P , 

CDOAGuq i;t CDOAGu, and CDOAGuq II CDOAGu,· 

• Lemma 3.3 indicates that there is a safety-execution zone for exu; of Uj E 

CDOAGu,· In order to optimise computations, an element could be executed 

at its lower bound if there is no memory-based dependence with other elements, 

that is, exu; = Max{ exuk, exup · · ·, exup} + 1 where inu; is provided by the out­

put of Ukul, ···,Up, Let this optimisation procedure start from the elements in 

which all input data objects are those vertices with indegree zero, and be repeated 

to all their successive elements until Ui is processed. 

• If all input of Uj, · · ·, Uq E C DO AGu, are those vertices with indegree zero, 

namely, they have been specified when EP = O, then exu;, · · ·, exuq can be re­

duced to 1 by the optimisation described above since it is defined that outu0 is 

considered as the precedence of them. As a consequence, Tu, = 1 can be reached in 

terms of the definition of Tu,. 

Using the approach described by Theorem 6.2, a given CDOAGu, can be optimised 

until a special solution to CDOAGu, is reached. In this solution the parallelism is 
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Input: Given a set Bl of all elements of CDOAGui 
in a tuplebase, a temporal set B3 of elements 
which contains u0 initially. 

Output: An optimised solution to CDOAGui stored in B2. 
Algorithm 10: 
1. Select an element Uj which has the smallest value of EX in Bl; 
2. For Vx E inu; do 

end 

Select u1 in which exv.1 has the maximum value of 
EX among those elements producing x in B2; 

Put u1 into B3 
/ if selection fails, then x is a vertex with 
indegree zero./ 

3. Let L1ower = 1 + M ax{Vexuk, Uk E B3}; 
4. Remove all elements from B3 except u0 ; 

5. Modify exu; by using L1oweri 

6. move Uj from Bl to B2; 
7. If Uj is not Ui then back to 1; 
8. Exit. 

Figure 6.2: Algorithm optimising a CDOAG. 

objective, and all elements of CDOAGui are performed in a dataflow computation 

fashion. The procedure of this optimisation is done by Algorithm 10 in Fig. 6.2. 

A critical path of a solution represents the sequence activities in a program that 

takes the longest time to execute. Using this concept, we can check our speedup of 

the parallelisation for a given C DO AGui. Assume there be n elements contained by 

CDOAGui· It takes n logical steps to sequentially compute CDOAGui· The depth of 

CDOAGui, hui defined in Chapter 3, is in the relation of hui < exui = n initially. If 

CDOAGui is optimised by using the approach stated above, then we will get a new 

critical path ex~i and a speedup of computation which can be described as the following 

theorem. 

Theorem 6.2 If there are n elements in C DO AGui that is optimised by using the 

approach of Theorem 6.2, then ex~i = hui holds, and the speedup is 

exui n 
ScDOAG = -- = -. 

ex~i hui 
(6.1) 
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The parallelisation techniques for a C DO AG described so far are generally suitable 

for all computation latencies arising due to subjectivity in design. The aim of this 

parallelisation is to reveal all possible parallelism inherent in a completely independent 

CDOAG. This parallelism is the upper bound for speedup by eliminating artificial 

computation latencies within a CDOAG since here all computations are driven by 

dataflow after optimisation. It is also noted that this optimisation .approach is limited 

to the depth of C DO AG since · the optimisation changes nothing in the structure of 

a CDOAG except modification of execution orders of certain elements. For some 

special cases in which there is no computation latency caused by the memory-based 

data dependence, however, one may still be able to optimise a CDOAG by using other 

approaches. A typical example is a sequential Sum computation. We will discuss 

certain optimising techniques for such cases in the next chapter. 

6.3.2 Solution parallelisation 

The parallelisation achieved by the above approach is suitable to a C DO AG that is 

completely independent from other CDOAGs and does not have any two sub-CDOAGs 

having a memory-based dependence relation. In practice, it is often seen that there is 

memory-based dependence between two CDOAGs or two sub-CDOAGs in a CDOAG. 

To optimise these CDOAGs, eliminating the memory-based dependence is necessary. 

As one of the main techniques of optimising compilers, variable renaming [Ell86], 

[PKL80] is widely used to remove the memory-based dependence. In order to achieve 

as much parallelism as possible, new names are introduced for disjoint uses of the same 

variable. The approach of variable renaming in ABCOM can be based on CDOAGs 

and the history of data-access patterns. 

For example, three CDOAGs shown in Fig. 6.3, which contain the first twenty­

one elements of Exam pie 4 in Fig. 4.17, are not completely independent because the 

left one is contained in the other two through b2 indicated as the dot lines, and the 

middle one is similarly contained in the right one through b3. But three su b-C DO AGs 

marked by boxes are conditionally independent due to a shared data object s. If all s 

occurring in the middle and right CDOAGs can be replaced by new data objects s1 
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Figure 6.3: The CDOAGs of Example 6. 

and s2 respectively, we can find following facts: 

1. CDOAGu4 II CDOAGu8 II CDOAGu15 II···; 

2. CDOAGu11 II CDOAGu1s II···; 

3. CDOAGu21 II .. ·; 

Using data-access patterns, variable renaming can be easily carried out since each 

pattern contains all elements that are needed to be renamed if the data accessed by 

this pattern is selected for renaming. The relation that exists between two patterns of 

the same data object corresponds to three different cases: 

In the first case, there is a dataflow relation between two patterns. For instance, 

two patterns in Fig. 6.4 are related since there is u4 in which {a} C inu4 n outu4 • In 

the converted code there must be exu2 < exu4 and exu3 < exu4 due to the anti-output 

dependence. To eliminate the dependences between u2 and u4, or u3 and u4 of data a, 

a new variable could be introduced to replace a in inu5, inu6 , inu7 and outu4 • This kind 

of renaming is not necessary if the first pattern is not of 1-to-m form of dependence 

• 
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Figure 6.4: Two access patterns of data object a. 

since it is caused by an expression of the form a = a + Xi. 

In the second case there is an indirect dataflow relation between two patterns. It 

means that the CDOAG of the element having a 'write' access in the pattern 2 contains 

at least one of the elements having a 'read' access in the pattern 1. Thus, certain 

execution orders appearing in the indirect dataflow relations among the elements of 

the two patterns are necessary. Renaming variables in this case will not lead to give 

more parallelism to improve performance. 

In the third case, two CDOAGs of the elements having 'write' accesses in two 

patterns are conditionally independent. To parallelise such two C DO AGs, the two 

patterns should not share a variable. Renaming will help to remove the dependence 

caused by the shared variable. 

If we parallelise all independent computation tasks (superblocks or nested loops) 

in a given solution by modifying unnecessary partial orders, a special solution free of 

artificial sequentiality is got. The parallelism in this solution is not constrained by any 

computation model, architecture or subjective view of programming. Consequently, 

this parallelism is objective. Applying Theorem 6.1 to all CDOAGs of a solution is 

equal to carrying out a procedure in which a given solution in Category 1 or Category 

2 described in section 2.2 is optimised until an equivalent and optimised solution that 

belongs to Category 3 is arrived at. The properties of the objective parallelism and the 

subjective parallelism can be stated thus: 

• An important feature of subjective parallelism is that it arises in a physical im-

I 

I 
I 

I 

I 

I 

i 

I 

I 



114 Chapter 6. Solution Parallelisation in ABCOM 

plementation. Hence the performance of one subjective solution can be quite 

different from another subjective solution for the same problem. The objective 

parallelism reflects parallel execution of all independent computation tasks in­

dependent of architectures, languages and other subjective views. For a given 

problem, both the subjective and objective parallelism of a problem can be rep­

resented in ABCOM. 

• The degree of the objective parallelism turns out to be better than that of the 

subjective parallelism. The performance of an objective solution is better than 

the performance of a subjective solution. The difference between the objective 

parallelism and the subjective parallelism of an implementation can be used to 

examine whether more parallelism should be considered. This helps us to evaluate 

whether the implementation is developed successfully. 

One may ask whether a unique solution with objective parallelism can be got if two 

different subjective solutions are optimised. The answer is yes if two solutions have 

exactly the same data domain and the same set of operations. In fact, this requirement 

is not necessary from the point of view of checking the effectiveness of this optimisation. 

Let us consider a general situation. 

Let P 1 ===>v Pf denote that an optimised solution Pf is obtained by parallelising 

P1. For a solution P if there are CDOAGu;, CDOAGui' · · ·, CDOAGu,. that are com­

pletely independent, and hu;, hu,, · · ·hu,. are the depths of CDOAGu;, CDOAGu,, · · ·, 

CDOAGu,., then we define the critical path of a solution Pin ABCOM as the maxi­

mum value of ex among the all elements contained in P, denoted as Hp= Max{exu; I 
'vui E P}. Theorem 6.2 can directly lead to the following three corollaries. 

Corollary 6.1 If P1 ===>p Pf, then for 'vui E P1 there is exu; = hu; for CDOAGu;· 

Corollary 6.2 If P1 ===>p Pf, then Hpo = Max{hu; I 'vui E P 0
}. 

Corollary 6.3 If there are totally N elements in P 1 and P 1 ===>v Pf, then a speedup 

is achieved as 

(6.2) 
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With these three corollaries, it is not difficult to prove an interesting fact stated in 

Theorem 6.3 that shows the effectiveness of our approach in parallelising solutions. 

Theorem 6.3 IJVCDOAGu, E P1 andVCDOAGu; E P2 are all completely indepen­

dent, and P1 ===>p Pf and P2 ===>p P~, then the difference in performance between Pf 

and P~ is 

~Pf-P2 =I Max{hu, I VCDOAGu, E Pf} - Max{hu; I VCDOAGu; E P:z} I 

Theorem 6.3 shows that the difference in the critical paths between two optimised 

solutions to the same problem is equal to the difference in the depths between two 

CDOAGs that are the deepest in the two optimised solutions respectively. 

Remark 

1) In Theorem 6.3 the concept of ~Pf-Pf is only suitable to demonstrate that in a general 

case any program or representation of solution can be parallelised. 2) Only the logical 

steps of computation involved in critical paths are considered and the optimisation is 

based on the ABCOM machine. This does not tell the real difference of computation 

costs of two solutions. 3) It should also be noted that these two solutions are represented 

at the same granularity level. 

To ascertain the real cost benefit in physical implementation of two given solutions, 

further comparisons between the two solutions in the number and sizes of CDOAGs 

required to compute the same output should be conducted. In this thesis, no further 

discussion on this comparison is provided. 

An important application of Theorem 6.3 is to compare parallel properties of two 

algorithms that express the same problem in different mathematical or conceptual 

methods. This is achieved using their sequential representation instead of their subjec­

tive parallel implementation where parallelism has not be exploited. 

Fig. 6.5 and Fig. 6.6 show the optimised solutions of Examples 5 and 6. The 

transformed solution of Gaussian Elimination in Appendix A.1 can also be optimised 
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u1 : ( +, { a10, ao1}, { v1}, 1) 
u2: (/ , {v1,2},{a11},2) 

u3 : ( +, { a11, ao2}, { v2}, 3) 

U4 ; (/ 1 { V2, 2}, { a12}, 4) 

us: (+,{a12,ao3},{v3} , 5) 

u6: (/,{v31 2},{a13},6) 

u1: (+, {a13,ao4}, {v4}, 7) 

us: (/ , {v41 2},{a14},8) 

Chapter 6. Solution Parallelisation in ABCOM 

u21: (+,{a20,a11},{v11},3) 

u22: (/,{v11,2},{a21},4) 

u23: (+,{a21,a12},{v12},5) 

U24 ; (/, { V12, 2}, { a22}, 6) 

u2s: (+, {a22,a13},{v13},7) 

u26: (/,{v13,2},{a23},8) 

u9: (+, {a14,aos},{vs},9) u21: (+,{a23,a14},{v14},9) 
Uto : (/, { V5, 2}, { a15}, 10) U2g : (/ I { V14, 2}, { a24}, 10) 
u11 : ( +, { a1s, ao6}, { v6}, 11) u29 : ( +, { a24, a1s}, { V1s}, 11) 
u12: (/,{v6,2},{a16},12) u30: (/,{v1s,2},{a2s},12) 

u31 : ( +, { a2s, a16}, { v16}, 13) 

U32 : (/, { V16 1 2}, { ll26}, 14) 

Figure 6.5: The optimised solution of Example 5 

as demonstrated in Appendix A.2. It is easy to prove that the optimised solution of 

Gaussian Elimination has a complexity of 0(3(n - 1)) in ABCOM model. 

So far the solution parallelisation discussed in this chapter is demonstrated by op­

timising individual loops (superblocks) contained in a solution. Note in our discussion, 

for sake of simplicity, we assume the input of a superblock is specified when it is opti­

mised . Hence, we have Tu.; = 1. If the input of a superblock is not specified, we can 

optimise it with an assumed value of Tu.;. Afterwards, a global optimisation to combine 

the optimised superblocks is needed. We can also exploit parallelism between loops (or 
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u1 : (=, {O}, {s}, 1) 
u2: (x,{a21,b1},{v1},l) 
u3: (+,{s,vi},{s},2) 
U4 : (-, {b2, S }, {b2}, 3) 

u12: (=,{O},{s2},l) 

u13: (x,{a41,b1},{v4},l) 

U14: (+,{s2,v4},{s2},2) 

U15 : (-, {b4, S2}, {b4}, 3) 

U15 : ( X, { a42, b2}, { Vs}, 4) 
u11: (+,{s2,vs},{s2},5) 
u1s : (-, {b4, s2}, {b4}, 6) 
U19 : ( X, { ll43, b3}, { V6}, 7) 
u20: (+,{s2,v6},{s2},8) 
U21 : (-, {b4, S2}, {b4}, 9) 

us: (=,{O},{s1},l) 
u6: (x,{a31,b1},{v2},l) 
u1 : ( +, { s1, v2}, { s1}, 2) 
Ug : (-, {b3, S1}, {b3}, 3) 
U9 : ( X , { ll32, b2}, { V3} , 4) 
u10: (+, {s1, v3}, {s1}, 5) 
un: (-,{b3,s1},{b3},6) 

u22 : (=, {O}, {s3}, 1) 

Figure 6.6: The optimised solution of Example 6 
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superblocks). 

If there is no direct or indirect dataflow relation between two loops, these two su­

perblocks can be executed in parallel. However, if there exist dataflow relations between 

the two loops, then the respective CDOAGs of the two superblocks can be merged. 

When the C DO AGs are merged the value of Tu, which we assumed is modified to 

reflect the successive execution orders. Such a modification achieves dataflow compu­

tation globally. This can be done using a similar approach used by the Stanford SUIF 

compiler [Hea93],[HMA95] for interprocedural parallelisation analysis. 

6.3.3 Observation of nondeterministic computation 

The difficulties in computation inference caused by conditional statements in a loop 

make finding the objective parallelism impossible since there are the following reasons: 

• There is a nondeterministic computational logic for the problem. 

• Because of the above reason, the set of operations being performed is unfixed. 

Thus, the data manipulation which would be actually performed by the operations 

is unknown though there is a defined data domain. 

However, the computational tuple-space obtained from trace-generation-based trans­

formation provides other opportunities for one to study parallel properties that are ex­

hibited in such a space. The basic idea is to use the concept of speculative parallelism, 

often associated with logic programming but also significant in (for example) parallel 

algorithms for heuristic search (e.g. parallel alpha-beta search on game tree [MC82]). 

In Example 8 (Sorting), the elements ( { u1, u4 , u7 , • • • • • ·}) that perform condition 

tests are definitely executed. But the elements ( { u2 , us, us,····· ·}) presented in Fig. 5.9 

are conditionally performed; the same operation may be repeated by different elements 

(e.g., the exchange of threesort between a3 and a4 might be computed by us, u23 , • • ·). 

Thus, the parallelism in this problem can only be found among the elements in the 

same row in Fig. 5.9. We also eliminate the possibility to perform the elements that 

require the same data object as input (for instance, a2 is used as input of both u2 and 

us) in parallel. In this problem, thus, we can only parallelise the elements that are in 
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the same row and have no overlapping input. This result is consistent with the logical 

parallelism of Sorting presented in [BM93]. 

6.4 Summary 

An initial solution in ABCOM transformed from a source code performs computa­

tion in exactly same manner as ~ programmer has designed (in both execution sequence 

and data manipulation). All subjective control features of design are preserved in this 

solution. Using data dependence testing and parallelisation techniques described in 

this chapter, the initial solution can be optimised to obtain a solution with objec­

tive parallelism. This optimisation makes all computations be executed in a dataflow 

computation fashion. 

Comparing with the techniques and results of traditional data dependence tests, 

ABCOM data dependence detection is simpler, and yields a better result. The rea­

son for this is ABCOM provides effective support for exploiting dataflow computation 

features in solutions. 
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Chapter 7 

Parallel Computing Platform 

One important consideration in developing ABCOM is to combine it with existing tech­

niques and tools rather than to let it as a stand-alone tool working in an independent 

manner. This chapter discusses the use of ABCOM as a parallel computing platform 

to support parallelism analysis, speculation, profiling, scalable performance analysis, 

and program solution reconstruction. For this purpose we first introduce the main 

features of_Bird-Meertens Formalism (BMF) since it will be used for abstracting par­

allelism and evaluating performance based on ABCOM. Then, we describe the relation 

between ABCOM and some main techniques required by parallel programming. 

7.1 The Notation of Bird-Meertens Formalism 

To support explicit approach of parallel programming, an optimised solution needs 

to be rewritten into a new program having particular parallel properties derived from 

objective parallelism. The expression of the new solution can be machine dependent or 

independent. Since the optimised solution is based on ABCOM, a machine-independent 

expression of the new program can be achieved using a suitable language. As described 

in Chapter 2, BMF supports a machine-independent approach to expressing paral­

lelism. The advantages of using BMF is discussed in [Ski90]. To illustrate the power 

of its expression, we describe some operations of BMF on lists [Bir89], [Ski93],[Jay95]. 

1. Elementary operations 
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• Length 

The length of a finite list is the number of elements it contains. Denote this by 
I 

the operator #. Thus, 

• Concatenation 

Two lists can be concatenated together to form one longer list. Denote this by 

the operator -It-. Thus, 

• Map 

The operator * applies a function to each element of a list. We have 

• Filter 

The operator <l takes a predicate p and a list x and returns the list of elements 

which satisfy p. For example, 

even <l (1, 2, 3, · · ·, 10] = (2, 4, 6, 8, 10]. 

• Prefix 

The operator EB, given a list of values, returns a list of prefixes of these values by 

applying an associative operator EB: 

• Inits 

The operator inits generates all of the initial segments of its argument list: 

• 
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• Zip 

The operation YE!) combines two lists of the same length by applying EB to the 

pair with one element from the first list argument and the other from the second: 

2. Reduction 

The operations introduced above transform lists into other lists. The reduction operator 

to be described is more general. It can convert a list into other kinds of values. The 

reduction operator, written '/', takes an operator EB on the left and a list x on the 

right. Its effect is to insert 6, between adjacent elements of x. Thus, 

Here the operator EB must be associative. Some simple cases of reduction are given in 

the following definitions: 

sum: +/ 
product: x/ 

flatten: -tt- / 
min: .J,/ 
max: t/ 

BMF theories have been built for bag, cons lists [Bir87] and other data types (like 

cat lists, trees and arrays). 

The BMF's features of parallelism abstraction can be used to develop ABCOM­

based techniques for parallelism profiling and speculation. This provides a bridge be­

tween ABCOM and other related techniques. 
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7 .2 Parallelism Profiling 

In parallel computing, the parallelism is exploited at the programming stage and 

performance is measured after implementation. Measuring the performance is usually 

carried out by monitoring the execution of a particular program on a selected architec­

ture. This measurement can help to tune the performance of implementation and use 

the system resources more efficiently. Unfortunately, traditional parallel programming 

does not provide practical means of parallelism analysis and reasoning. The techniques 

of relation-based parallelism inference described in Chapter 5 show how ABCOM can 

provide practical methods for parallelism profiling based on concepts of time, data, 

operations and CDOAGs. When an optimised solution with an objective parallelism 

is got in ABCOM, we can collect the parallelism profiling information for use in imple­

mentation. 

7.2.1 Data parallelism profiling 

Using time-based parallelism inference, a step-wise abstraction method can be intro­

duced to abstract data parallelism from an optimised solution. In Fig. 6.6, for instance, 

there are two different kinds of operations that can be performed at step 1. The ele­

ments that perform theses operations are {u1,us,u12,···} for '=' and {u2,u6,u13,···} 

for 'x ' . Similarly, we can find data parallelism at step 2, 3 and so forth. Let 'F' and 

'===> ' stand for 'perform' and 'produce output to' respectively. To exhibit data paral­

lelism in this example, we use BMF as below (where the function Ji is an assignment): 

step 1. { Ut, U5, U12, '· ·} F 
Ji * [O, 0, · · ·, O] ===> [s, s1, S2, • · ·, Sn-d 

{ u2 , u6, u13, .. ·} F 
[a21, a31, · · ·, an-1,1]Yx [b1, b1 , · · ·, b1] ===> [v1, V2, V4, • • ·] 

step 2. 

step 3. 

step 4. { Ug , U16, • • ·} F 

I 
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step 5. 

We can also abstract data parallelism from the optimised solution of Gaussian 

Elimination. That is 

step 1. 

step 2. 

step 3. 

step 4. 

I= 
[a21, a31, a41, as1, a61]Y;[a1, au, au, au, au]==> [a21, a31, a41, as1, a61]; 

{ u2, u4, u6, us, u10} I= 
[a12, a13, a14, a1s, a16]Y x [a21,21, a21, a21, a21] ==> [v1, V2, v3, V4, vs] 

{ U13, U15, U17, U19, U21 F 
[a12, a13, a14, a1s, a16)Y x [a31,31, a31, a31, a31) ==> [v6, v1, Vs, vg, v10] 

{ U24, u26, U2s, U30, U32} F 
[a12, a13, a14, a1s, a16]Y x [a41,41 , a41, a41, a41] ==> [vu, V12, V13, V14, vis] 

{ U3, us, U7, Ug, uu} F 
[a22, a23, a24, a2s, a26)Y _[v1, V2, V3, V4, vs]==> [a22, a23, a24, a2s, a26] 

{ U14, ul6, U1s, u20, u22} I= 
[a32, a33, a34, a3s, a36)Y _[v6, v1, Vs, Vg, v10] ==> [a32, a33, a34, a3s, a36] 

{ Us6, U6S, U74, Ug3} F 
[a32, a42, as2, a62]Y;[a22, a22, a22, a22] ==> [a32, a42, as2, a62] 

7.2.2 Control parallelism profiling 

So far we discussed only instruction-level parallelism or data parallelism at a fine­

grain level. Nevertheless, control parallelism has to be dealt with at a coarse-grain 

level. To profile control parallelism in ABCOM, we consider the following aspects. 
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1. The control parallelism exists between any two independent superblocks of a 

solution or between any two independent CDOAGs in a superblock. This is 

inherent control parallelism. The CDOAG-based parallelisation method can also 

be used to parallelise two superblocks that have memory-based data dependence. 

2. If there is a superblock of which all CDOAGs merge into one CDOAG, and it 

is big enough to be divided into smaller pieces (groups of sub-CDOAGs), then 

control parallelism arises. The division ( or partition) is subjective and can be 

done in different ways. This becomes an implementation issue. 

3. Theoretically, all computation relations between superblocks (designed in an al­

gorithm) are due to dataflow relations (though they can be implemented using 

different methods). The division (or partition)of a problem in an implementa­

tion makes control parallelism possible. The communication is required when the 

decision of the partition is made in the association with a particular architecture. 

7 .3 Computation Pattern Testing 

When a solution is transformed into ABCOM, the spatial structure of a problem can 

be recovered by converting a cyclic structure (a loop) into a number of acyclic structures 

( C DO AGs )to reveal parallelism inherent in the problem. This kind of parallelism 

revelation can help a programmer or a compiler to reach a suitable solution based on a 

specific architecture. To achieve this goal, solution reconstruction needs to be carried 

out to map the optimised solution into a specific architecture. An important technique 

for reconstruction and derivation is by using the computation patterns. 

Because optimised solutions are expressed at a fine-grained level, to program these 

computation elements based on a target architecture, we need to express them at a 

medium or coarse-grained level. In many instances certain operations occur repeatedly 

in a regular form with different input and output data, and may be executed in a partial 

order or in parallel. Such a regular computation form is called a computation pattern. 

A computation pattern (simply called pattern) has a set of related operations or­

ganised in a certain partial order for execution using a number of data objects as input, 
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output and working variables. The size of a pattern can be prefixed or left open. 

In ABCOM a computation pattern is associated with a number of subsets of ele­

ments. These subsets have the same number of elements. Their computation features 

are graphically represented by DOAGs or CDOAGs. It is possible that two sets of ele­

ments (which perform the same operations or the same pattern) have different shaped 

C DO AG representation, especially when they contain commutative operations. For 

instance, consider the following set of elements: 

u1: (+,{a1,b1},{vi},l) U7 : ( X, {b1 , d1}, { V7 }, 7) 

u2: (x, {c1, d1}, {v2}, 2) us: (+,{v6,v1},{vs},8) 

U3 : (-, { Vt, V2}, { V3}, 3) u9: (x,{v8 ,2},{v9},9) 

u4: (x ,{Ii,J1},{v4},4) u10: (x ,{vs,v9},{v10},l0) 

us: (/ , {v3,v4}, {vs},5) U11: (+, {v10, 100}, {Y1}, 11) 

u1: (-,{a1,l1} , {v6} , 6) 

These elements can be graphically represented in different shapes of CDOAG. Two 

different C DO AGs containing these elements are shown in Fig. 7 .1. 

To detect whether the two subsets of elements carry out the identical computation, 

we need to check not only operations involved but also the computational logic of the 

operations in terms of the definition of computation patterns. 

7.3.1 Normalising C DOAGs 

To abstract a number of operations into a macro computation pattern, we define 

the pattern as a special operation ®· A macro operation can be abstracted by the 

grammar given in Section 4.1.1. 

Using the pattern grammar, the operations of CDOAGu11 1 in a) of Fig. 7.1 can 

be abstracted into a macro operation ®1, here 

®1 := +(x(/(-(+, x ), x), x(+(-, x ), 0 ), 0 ). 
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I 

b) CDOAGu11 2. 

Figure 7.1: Two different CDOAGs of the same set of elements. 
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I Precedence 1 2 3 4 5 n 
Operation 0 X I + 

Table 7.1: Operator precedence for pattern normal forms 

Similarly, for the CDOAGu.11 2 we get 

®2 := +(0, x (x (+(-, x), 0), /(-(+, x), x))). 

To check whether two CDOAG representations (or sets of elements) correspond to an 

identical computation pattern, the concept of normal form of a CDOAG is useful. For 

this purpose we define a precedence among the all operators as shown in Table 7.1. We 

assume that the operator '0' has the highest precedence p0 = 1. 

Operator precedence guides the construction of C DO AGs so that those C DO AGs 

having the same pattern can be constructed consistently. The basic idea here is that if 

CDOAGu; has a commutative operation OPu; and has two subgraphs CDOAGui and 

CDOAGuk for inu; · C (outui U outuk) and Popui < Popuk, then let CDOAGui be the 

left subgraph and CDOAGuk the right one; if Popui = Popuk, then check the operations 

of the elements at the next lower level in the subgraphs until difference is found. If no 

difference is found, it means the operations contained in this CDOAG are commutative, 

and can be optimised into a unique representation. 

Definition 7.1 For a given CDOAGu; if its all sub-CDOAGs are represented in terms 

of the precedence of operators at each level of the graph, then CDOAGu; is represented 

in a normal form. 

This definition can be used to construct C DO AGs ( or abstract pattern operations) 

in the normal form or to normalise a CDOAG. Using this method, ®1 and ®2 are 

normalised as below: 

® u; := +(0 , x (x (0,+(x, -)),/(-(+, x ), x)) 

and its corresponding CDOAG is shown in Fig. 7.2. 
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Figure 7.2: The normal form of CDOAGu11 l and CDOAGu11 2. 

Lemma 7.1 If there are two subsets of elements and their CDOAGs have identical 

normal forms, then they have the same computation pattern and the two CDOAGs are 

isomorphic. 

7.3.2 C DOAG structure optimisation 

The optimisation approach described in the last chapter reveals parallelism without 

changing the structure of the CDOAG. The depth of a CDOAG limits optimisation. 

However, further optimisation is possible due to the specific nature of operations in the 

CDOAG. For example, a sequential 'Sum' computation 

for i = 1 ton 

Sum= Sum+ a(i) 

can be represented as a CDOAG. If there are n data elements, the depth hcvoAGus 

is n - l. 

It is known that the parallel computation time of Sum with n data elements is 

0 (lg n). As a result, an optimisation should be applied to such a C DO AG. As an 

extension of the definition of the normal form, we introduce a special case where if a 

C DO AGu, contains n - l operations that are same, associative and commutative, then 

• 
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the normal form of CDOAGu, is represented when its depth equals to lgn. 

7.3.3 Patterns represented in a loop 

The discussion above on computation patterns is mainly based on the abstraction 

of CDOAGs. There are many different ways to abstract or represent a computation 

pattern in a program. A loop in a source code can be directly abstracted into certain 

forms of patterns. They are illustrated using dataflow computation models [CBF91), 

[Ske91]. 

As pointed out earlier, each statement in a loop corresponds to a number ofinstances 

in different iterations; and the body of the loop (which can be seen as a computation 

pattern) is repeated until the the whole computation space is performed. Using those 

dataflow models, the parallelism exploited is only what exists between different state­

ments within the pattern. This limits the amount of parallelism. However, parallelism 

crossing different iterations can be revealed by using our approach and expressed in 

BMF (as described in the last section). 

The information collected from parallelism profiling shows that, based on an opti­

mised solution, new computation patterns can be abstracted for solution reconstruct1on. 

For example, profiling information of the example in Fig. 6.6 can be expressed in the 

following form: 

For i = 1 to n do 

[a(i+l)i, a(i+2)i, · · ·, ani]Y x [bi, bi,···, bi]~ [vi, Vi+i, · · ·, Vn-1] 

[si, Si+i, · · ·, Sn-1]Y +[vi, Vi+i, · · ·, Vn-1] ~ [si, Si+i, · · ·, Sn-1] 

[bi+i, bi+2, · · ·, bn]Y _[si, Si+i, · · ·, Sn-d ~ [bi+i, bi+2, · · ·, bn] 

7 .4 Size-Based Parallelism Speculation 

We mentioned in Chapter 3 that for a loop with a large number of iterations, 

ABCOM code will not be generated for the whole iteration space by trace generation. 

To prove that it is possible to use a suitable and smaller sized iteration space instead 

I 

I 

I 

I 

I 

I 

I 

' 

I 

I 

' 

I 

I 
I 

I 

I 

I 

I 

! 

I 

-



132 Chapter 7. Parallel Computing Platform 

the real one for parallelism analysis, we must ensure that the parallelism revealed from 

s smaller size can be used to speculate the parallelism for a larger size problem. 

A program processes certain data structures (such as arrays, tables and lists). As 

discussed in Chapter 3, the set of operations contained in a loop is iteratively executed 

under certain control mechanisms in the loop. The loop is classified into two types 

depending upon the relation between the data domain and the iteration: 

(i) In the first type, each iteration processes exactly the same data sets of both input 

and output; i.e, value-control iteration. An important feature of this loop is that the 

iteration-control variable is not referred to as the index of any data object processed 

in the loop. In other words, the number of iterations is not associated with the size of 

data domain. 

(ii) In the second type, i.e, size-control iteration, each iteration of loop deals with 

different subsets of the data domain. The iteration-control variable is related to an 

index of data being processed in the current iteration. This means the size of iteration 

space depends on the size of data. 

The parallelism revealed in the first type corresponds to pipeline computations since 

each iteration requires the result of the previous one. In the second type, parallelism is 

directly proportional to the size of computation space where the size of data is related 

to the number of iterations. Consider a loop as a given problem; a general method 

to speculate computation features of parallelism (when the loop bound increases) is 

introduced in this section. 

To study the relation between parallelism and size of computation space, consider 

a single loop A described by 

X: 

x: 

Q: 

y(x): 

Ps; (x): 

the total number of the iterations; 

xth iteration; 

the number of operations performed in each iteration of a loop; 

the critical path of the xth iteration; 

the total number of operations performed at the timestep i = 1, · · ·, y( x) 

when performing the xth iteration. 

After optimising A using the approach described in Chapter 5, we have 
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step 1: Q = Er Ps; ( 1); 

step 2: 2Q = Ef2 Ps; (2); 

Thus, for x = k - l and x = k we obtain 

y(k-1) 

( k - l )Q = L Ps; ( k - l) 
1 

and 

y(k) 

kQ - L Ps; (k). 
1 

133 

When the number of the iteration increases by one, the increment of computation 

( denoted as l:l.Q) is equal to Q; that is 

l:l.Q = Q 
y(k-1) y(k) 

L (Ps;(k) - Pa;(k- 1)) + L Psj(k) 
1 y(k-1)+1 

f::l.Qp+f::l.Qs 

where l:l.Qp = Et(k-l) (Pa; (k)-Ps; (k-1)) and l:l.Qs = E~~!~l)+l Psi (k). It shows that 

l:l.Q is divided into two parts, namely, sequential increment l:l.Q s and parallel increment 

l:l.Qp. To perform l:l.Qp with unlimited processors, due to parallelism, there is no need 

of additional computation time. But the sequential increment l:l.Qs does not require 

more processors but requires additional time: 

l:l.y(i) = y(i) - y(i - 1). 

For a single loop l:l.Q is fixed for x = l, 2, · · ·, X; the ratios of l:l.Qp/ l:l.Q and 

l:l.Q 
8

/ l:l.Q are determined by the dataflow relations that exist cross iterations. If there 

is no dataflow relation (that is l:l.y(i) = 0), then l:l.Qs = 0. All iterations can be 
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parallelised. Note that in AQ s it is possible that there may be certain parallelism. 

Consider a general situation of a nested loop having the following form: 

·for l = 1 to X 1 do 

end 

X1,X2: 

y(x1, x2): 
and 

For h = 1 to X2 do 

the body of the loop 

end 

the bounds of the inner and outer loops; 

the critical path when l = xi and h = x2; 

the number of operations performed when l = xi and 

h = X2, 

When the iterative control variable of the internal loop increases, the computation 

increment is the same as in a single loop. Using a similar approach, we can express the 

change caused by the iterative control variable of the outer loop by 

AQ X2 x Q 
y(k-l,X2) y(k,X2) 

L (Ps,(k,X2) - Ps,(k- l,X2)) + L Ps;(k,X2) 
1 y(k-l,X2)+1 

Unlike a single loop, a nested loop has a AQ that can be either fixed or left open when 

the iteration number of the outer loop increases. This depends on whether the defined 

range of h is related to l. If the range of h is defined as a function of l, then AQ is 

left open; otherwise it is prefixed. Fig. 7.3 shows three cases when X 2 = M (AQ is 

prefixed ); X 2 =land for h = l to M (AQ is left open). In Fig. 6.3, for example, there 

are three C DO AGs that correspond to three iterations. It is seen that there AQ is left 

open due to AQp is changed in each iteration though AQs is fixed. 
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XiQ -~------------------------- -· Xi=M 

I 

1_, 

I 

'-, 
I 

I 

I t ___ .. ,, ,, 
Xz=l 

h=l to M 

Q L - - - - - - - - - - - - - - - - - - - - - - - - - - · Xz = I (single loop) 

l 2 3 4 1 

Figure 7.3: The iteration increment in a nested loop 

The expression of tl.Q described above can be further generalised: 

tl.Q X2X3·· · XmQ 
y(k-l,X2,· ·Xm) 

L (Pa,(k, X2," ·, Xm) - Pa,(k - 1," ·Xm)) 
1 

y(k,X2, .. ·Xm) 

+ L Pa1(k-1," ·Xm) 
y(k-l,X2, .. Xm)+l 
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Thus, no matter what kind of loop, the cost of increment in computation can be 

divided into two parts (tl.Q 8 and tl.Qp) when the iteration space increases. The purpose 

in distinguishing these two parts of computation is twofold. First, we need to speculate 

parallelism (parallel part) when the size of computation space increases. Secondly, if the 

increment of computation in the sequential part is consistently proportional to the size 

of the computation space, then abstracting the computation pattern that is repeated 

sequentially can help reconstruct a new solution (as discussed in Section 7.3.3). 

In the parallel part, parallelism speculation is carried out based on the BMF repre­

sentation of the optimised solution. For each vector-wise operation, the sizes of vectors 
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involved in the operation can be determined accordingly in terms of the bounds of the 

loop control variables. The general expression of the subscripts of data elements in the 

vectors is derivable by reasoning on those existing elements. 

For example, the parallelism for Example 4 shown at each logical step can be 

speculated as below: 

[ a(i+I)i, a(i+2)i, · · ·, ani]Y x [bi, bi, · · ·, bi] =;} [ Vi, Vi+I, · · ·, Vn-I] 

[si, Si+I, · · ·, Sn_i)Y +[vi, Vi+I, · · ·, Vn-I] =;} [si, Si+I, ···,Sn-I] 

[bi+I, bi+2, · · · , bn] y _ [Si, Si+I, • · · , Sn-I] =;} [bi+I I bi+2, · · · , bn] 

In Example 5 (Gaussian Elimination) we can also speculate upon parallelism and 

construct a solution as follows {here we change working variables from a vector into a 

array): 

For i = 1 to n - I do {in sequential) 

[ai+I,i, ai + 2, i, · · ·ani]Y;[aii, aii, · · ·aii] =;} [ai+I,i, ai + 2, i, · · ·ani] 

For j = i to n - I do in parallel 

[ai,i+I, ai,j+2, · · ·, ain]Y x [aj+I,i, ai+I,i, · · ·, ai+I,i] =;} 

[ Vj+I,i+I, Vj+I,i+2, • · •, Vj+I,n] 

For k = i to n - I do in parallel 

[ak+I,i+Iak+I,i+2, · · ·, ak+I,n]Y _ [vk+I,i+I, Vk+I,i+2, · · ·, Vk+I,n] =;} 

[ak+I,i+I, ak+I,i+2, · · ·, ak+I,n] 

Using computation pattern tests and parallelism speculation, we can express a solu­

tion without any restriction on the initial size of the problem used {for trace generation). 

This shows that a manageable size of tuple space generated from a source code can be 

used to reveal parallelism in a real problem. 
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7 .5 Scalable Performance Analysis 

7.5.1 Scalable parallel computing 

The studies of performance measures, speedup laws and scalability principles of 

parallel computing are usually carried out for particular architectures [NA91], [Hwa93], 

[Lew94], [CG95]. The simplest definition of scalability is that the performance of a 

computer system increases linearly with respect to the number of processors used for 

a given application [Hwa93]. ABCOM can be used for scalability analysis of solving a 

problem in a architecture-independent manner when the workload is unfixed. This can 

predict the scalable performance and guide algorithm design and architecture selection. 

As discussed in [Hwa93], if the workload or problem size is kept unchanged (as shown 

by curve W1 in Fig. 7.4(a)), then the efficiency E decreases rapidly (curve Ei) as the 

machine size n increases. The reason is that the overhead caused by communication 

between processors increases faster than the benefit by increasing the machine size. To 

maintain the efficiency at a desired level, scalability requires that both the machine 

size and the problem size increase proportionally. Such a system is known as a scalable 

computer for solving scaled problems. As shown in Fig. 7.4 (a), the ideal situation is 

to keep both the machine size and the problem size increasing linearly ( curve W3 in 

Fig. 7.4(a)). If the linear curve is not achievable, people will try to obtain a sublinear 

scalability as close to linearity as possible (as illustrated by curve W2 in Fig. 7.4(a)). 

Scalability analysis is complicated since it is related to the features of speedup 

achieved by the program[Hwa93]. Speedup is defined as the ratio of execution time of 

the parallel program running on one processor to execution time of the same program 

on N processors: 

T1 
Speedup= -

TN 
(7.1) 

where T1 is the execution time of the program running on 1 processor and TN is the 

execution time of the same program running on N processors. In Amdahl's law (1967) 

it is assumed the time to run a parallel program on N processors depends on the 

fraction of program, a, that is inherently serial, and the remaining fraction (1 - a) 

----
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that is inherently parallel. That is, TN= aT1 + (T1(l - a))/N. Substituting into the 

formula for speedup, we get 
N 

SA= . 
aN + (1- a) 

According to Amdahl 's law, it is found that S ~ 1/a as N ~ oo. In other words, 

under the above assumption, the best speedup one can expect is upper-bounded by 1/a 

regardless of how many processors are employed. The interpretation of Amdahl's law 

is that, given a prefixed workload, the speedup will not improve much if the number of 

processors is increased. 

Using the expression 7 .1 , we discuss the situation where the workload is left open. 

If let N ~ oo, it means there is an unlimited number of processors. It would be too 

pessimistic to use Amdahl's law in many cases if we assume a a constant when workload 

increases. The reason is because a is likely to be a function of the workload (size of 

the problem). In the last section we have shown that the parallelism of a program is 

determined by the size of computation space, or, the size of data domain (especially 

for data parallelism). 

In 1988 John Gustafson and Ed Barsis proposed a fixed-time concept which led to a 

scaled speedup model. In the Gustafson-Barsis equation assume the time to compute 

data-parallel problem using N processors is normalised to unity, e.g. TN = 1, then 

accordingly T1 =a+ (1- a )N. Substituting into the expression 7.1, we get 

SaB = Ti =a+ (1 - a)N. 

Our discussion on parallelism speculation shows that the increment of computation 

cost consists of two parts. Performing !:l.Q s requires additional time. Therefore, the 

assumption of Gustafson-Barsis is only one of the possible situations in which there is 

no increment in the sequential part, e.g. !:l.Q:, = 0 or !:l.y = 0 for any increment of the 

workload. This assumption is too optimistic. 

Under the assumptions of Amdahl's law and the Gustafson-Barsis equation, if we 

let N ~ oo, then both SA and SaB should reflect the relationship of a scaled workload 

and the speedup of the program. It has often been observed that the problem size 

is the most significant factor of data-parallelism. Consequently, a becomes a critical 
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factor in explaining the relationship. In practice, for a subjective program there are 

various constraints introduced in design, related to scalable performance. Therefore, 

it is difficult to define clearly the function a against the workload. This is the major 

restriction in using speedup performance laws to predict the scalable performance when 

the workload increases. 

7.5.2 Scalability of application domain parallelism 

In terms of the discussion above, we believe it is necessary to further investigate the 

nature of scalability in parallel computing, especially the parallel properties of a scaled 

problem (or application domain parallelism (ADP)). If we see a loop as a problem, it 

is observed that there are two different situations for the increment of workload: 1) 

workload (problem size) increase when data size increases; 2) workload increases when 

total computation cost increases, while data size remains unchanged (for example, a 

value-control While--Do loop). 

Usually, in scalability analysis, the relationship between a and the size of a problem 

is simplified by assuming that the parallelism achieved in a program is proportional to 

the size of problem. This assumption is not suitable in the following cases: 

(i) The objective parallelism is not scalable when the problem size increases. 

(ii) The objective parallelism increases much faster than the subjective parallelism 

achieved in an implementation when the problem size increases. 

In (i) it is impossible to obtain scalable performance. In (ii), however, the subjective 

parallelism could be improved for better performance. Hence, one should study the 

nature of the fraction of parallel parts of the problem in scalability analysis rather 

than merely using the concept of the workload. That is, the scalability of a computer 

system (program and architecture) should be studied for an open-workload problem 

after we know whether the application domain parallelism is scalable. For this purpose, 

we introduce a concept, called scalability of application domain parallelism (SADP). 

Definition 7 .2 The scalability of application domain parallelism is determined 

by gradient of the ratio of the workload that can be computed in parallel to the total 

workload. 
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In general, we have 

here QT is the total workload, and Qp is the workload that can be computed in parallel. 

Since w is a function of QT and Qp which are functions of problem size (the bound 

of loop iteration variable i), the gradient of w against i can be obtained by using the 

derivative of w, denoted as 

T = W 1
• 

To study SADP, we check three typical cases of T. In the first case, if r = O since 

· w = wo (wo is a constant), then SADP is linear. In the second case, assume r > O 

when QT increases, then w is monotonically increasing (w-+ 1) as QT-+ oo. It means 

the application domain parallelism has a superlinear scalability when the problem size 

increases. In the third case, if T < 0 when QT increases, then w is monotonically 

decreasing (w-+ 0) as QT -+ oo. It shows that there is a sublinear scalability of ADP 

(SADP is poor). In other words, it is impossible to get good scalable performance for 

a problem if the workload increases. 

Using the concept of SADP, we revise the scalability metrics described in [Hwa93] 

to suit the open workload. As shown in Fig. 7.5, the scalability analysis of architectures 

and algorithms should be based on SADP of a. problem rather than the problem size. 

Precisely, SADP of a problem should be examined when we study the scalability of a 

particular implementation if the problem size is left open. This examination benefits 

both parallel algorithm design and architecture selection. If function w for a given 

problem could be exactly defined, then we could check whether the problem is suitable 

for scalable parallel computation. That is, we say a given problem is suitable for 

scalable parallel computing if T = O; it is well suited if T > O; or it is not suitable if 

T < 0. In practice, however, it is difficult to obtain the function w for a given problem. 

According to the definition of w, there is a particular wp when a problem is expressed 

in a parallel program. The difference between wand Wp is determined by the subjective 

factors of the program. Without removing these factors, wp can only used to study the 

scalability of the program. Back to our approach, we introduce certain methods to 

study SADP of a problem by using an optimised solution with objective parallelism. 
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Figure 7.5: The revised scalability metrics. 

In such a solution where subjective factors are free, therefore, we are able to study 

w of the problem. Our discussion is still based on a superblock (loop). We use the 

loop bound as the parameter of the workload, which covers both situations of workload 

increasing. Using the discussion of parallelism speculation, first, we introduce a method 

to analyse SADP when the size of a problem is changed. 

In terms of the definition of w, we need to distinguish the sequential part and 

the parallel part of computation for a given computation workload. In ABCOM, an 

optimised solution with a total cost QT takes Hpo logical steps. The computations 

involved at these steps of the critical path are inherently sequential. All other com­

putations can be executed in parallel with no additional time required. It means the 

parallel computing workload is 

Qp = QT-Hpo. 

Therefore, function w can be expressed as 

w 
Hpo 

l- QT. 

(7.2) 

(7.3) 
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To check SADP when the problem size (loop control variable i) changes, we see w 

as a continuous function so that the derivate of the function to i can be expressed as 

w' 
-QT¥+Hpo~ 

Q} 

Since r = w', we can rewrite the expression 7.4 as 

T 

1- QT X dt( poJ Hpo d QT 
Q2 

T 

H 
d(Hpo) 

po X di 

(7.4) 

(7.5) 

In a discrete form, function w' (or r) becomes computable if we replace d(~~T) and 

d(~r) by ~Q(i) and ~y(i) respectively. 

Theorem 7.1 For a given solution with i as the bound of loop, if ~Qy~i)) < S 1 ( .) 
u i - AECOM t 

holds for i = 1, 2, · · ·, n, then the solution has a superlinear scalability of application 

domain parallelism . . 

Proof: We approximate d(~T) and d(~ro) respectively by ~Q(i) and ~y(i) in a 

discrete form for i = 1, 2, · · ·, n, then the formula 7.5 becomes 

T 

1 - ~yti) QT(p) ~Qi X Hpo i 
(7.6) 

When the problem size is i, the speedup of the optimised solution is stated as 

. QT(i) 
SAECOM(i) = Hpo(i) · (7.7) 

Consequently, if ~Qy~i·) < S 1 ( .) holds for i = 1, 2, · · ·, n, then 
u i AECOM t 

~y(i) QT(i) 
l - ~Q(i) X Hpo(i) > O, 

namely, r > 0 holds. That is, the solution has a superlinear scalability of application 

domain parallelism. D 
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Theorem 7.2 For a given solution with i as the bound of loop, if fQYti·) = S 1 C) 
u 2 AECOM i 

holds for i = 1, 2, · · · , n, then the solution has a linear scalability of application domain 

parallelism. 

Theorem 7.3 For a given solution with i as the bound of loop if Ayti·) > textstylel. 
J AQ i SAECOM(i) 

holds for i = 1, 2, · · · , n , then the solution has a sublinear scalability of application 

domain parallelism. 

Theorem 7.2 and Theorem 7.3 can be proved similarly. 

In fact, there exists another approach to analyse scalability of application domain 

parallelism by directly using the concept of speedup. As discussed before, we can see 

speedup as a function of problem size, as expressed in the expression 7.7. Thus, the 

derivate of the function is 

(7.8) 

Here we can substitute d~t° and d2T by using Ay(i) and AQ(i) in a discrete form 

such that SAECOM become completely computable at points (i = 1, 2, 3, · · ·, n). This 

concept can be explained as the gradient of speedup. If assume the gradient of speedup 

equal to zero, then SADP is linear when the size of problem changes. This is a special 

case. In fact, an increased speedup is possible for many problems when their sizes 

increase. Thus, better speedup should be considered for both program design and 

architecture selection. 

Theorem 7.4 For a given solution with i as the bound of loop, if fQY~i·) < S 1 C) 
u i AECOM 2 

holds for i = 1, 2, · · · , n, the solution has an increasable speedup when the value of i 

increases. 

Proof: We substitute d~t° and 1!jf by using Ay(i) and AQ(i) in the formula 6.1. 

Then, we get 

S' _ HpoAQ(i) ~ QrAy(i) 
AECOM- H2 , 

po (7.9) 



7.5. Scalable Performance Analysis 
145 

Example Hpo(i) QT(i) ~y(i) ~Q(i) SADP 
5 4i- 2 2i2 2 4i- 2 r(i) > 0 
6 3(i - 1) (3(i - l)i)/2 3 3(i - 1) r(i) > 0 
7 3( i - 1) i ( i - 1) ( 4i + 1) / 6 3 (i - 1){2i - 1) r(i) > 0 

Table 7.2: SADP analysis of Example 5, 6 and 7. 

or 

. ~y(i) 
I - l - SABCOM(i) X ~Q(i 

SABCOM - Hpo(i)~Q(i) (7.10) 

where 

. QT(i) 
SABCOM(i) = Hpo(i). 

Consequently, if ~Qyti·~ ~ S 
1 ( ") holds for i = 1, 2, · · ·, n, then SA.BOOM > 0 

u i AECOM i 

holds at all these points such that the solution has an increasable speedup. D 

To check SADP of Example 5, 6 and 7 for i = 3, 4, · · ·, n, we use their optimised 

solution illustrated in Fig. 6.5, Fig. 6.6 and Appendix A.2 , and can get the general 

expressions of Hpo(i), QT(i) , ~y(i) and ~Q(i), and the nature of r for these examples 

as shown in Table 7.2. 

We have described certain methods to analyse scalability of application domain 

parallelism of solving a given problem when represented in the form of ABCOM. It is 

difficult to achieve good performance in parallel programming; but it is more difficult 

to develop a scalable program when the workload increases. Analysing SADP for a real 

world problem brings a useful knowledge of parallel properties that can be used for a 

scalable computer system. 

The above discussion provides methods to study how the performance or speedup 

of solving a problem will change as the size of the problem changes. Although SADP 

based on an optimised solution of ABCOM may not be physically realisable since 

various constraints are introduced by selected architecture and implementation, it can 

be useful. 
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7.6 Other Applications 

The ABCOM-ba.sed parallel computing platform is aimed to provide a foundation 

for integrating techniques and tools in parallel computing. In this section we briefly 

describe certain issues regarding to integrating ABCOM platform with a cost system 

of parallel programming and solution derivation. 

7 .6.1 Integrating with a cost system 

In order to make a correct decision in program design or apply proper transforma­

tion rules in a solution derivation against a particular architecture, the calculational 

approach is highly desirable and becoming deservedly popular for parallel software de­

velopment and program transformation (Bir89]. This approach requires more concrete 

methods to estimate the cost of computation. One of the important features of the 

approach is the provision of cost information at intermediate stages in a derivation. 

Skillicorn et al provide a comparison on existing parallel cost systems and developed a 

cost calculus for parallel functional programming (SC94]. 

It is hard to build a useful cost system for parallel computation because there 

are many more degrees of freedom. In general, a cost system must be provided with 

sufficient information regarding to the following important factors: 

• Details of the structure of the program; 

• The size of the problem; 

• The extent to which the work to be done depends on values of the input, rather 

than their number and sizes; 

• The way in which the program is decomposed into threads that can execute on 

different ( virtual) processors; 

• The way in which communication between threads and the synchronisation rules 

associated with it are arranged; 

• The way in which the threads are mapped to physical processors; 

• The mapping of communication actions to the target processor's interconnection; 
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• The extent to which the computation exhibits dynamic behaviour. 

Since it is difficult to deal with all these factors together, at present, the only known 

way to build cost systems is to dynamically compromise certain factors [SC94). 

The central problem in building a cost system is to provide the right level of alr 

straction. This abstraction should hide much of the underlying complexity, but be 

able to reveal enough for decisions about one choice of an algorithm over another. In 

Section 7.2, we demonstrated that the profiling information abstracted from a solution 

expressed in ABCOM can be represented by using the Bird-Meertens formalism. This 

enables us to integrate ABCOM platform with the cost system developed by Skillicorn 

so that those methods and results provided in [SC94) can be properly used for solution 

derivation or to support mapping an optimised solution into a specific architecture. 

The reasons that we can integrate ABCOM with such a cost system is 

• A machine-independent representation, in particular a solution with objective 

parallelism, can be obtained using ABCOM. Moreover, profiling information of an 

optimised solution can be abstracted by the Bird-Meertens formalism which is a 

bridge between the ABCOM platform and the cost system. Thus, all information 

about data structure and data manipulation are available for the cost system. 

• ABCOM-based computation inference can be used by the cost system. 

• The compositional property of the representation is required by the cost system. 

This requirement can be well satisfied by using the superblock-based strategy 

used in our approach. 

• The Skillicorn 's cost system is developed to assist program transformation or 

derivation. Thus, an optimised solution expressed in ABCOM can naturally be 

used as a source code so that the transformation or derivation can be carried 

out based on a background with sufficient information on application domain 

parallelism. 

The task of integration of ABCOM with a cost system can be mainly divided into 

two parts. The first is to develop computation pattern testing rules or interaction 

mechanism for a programmer to help in identifying some special patterns such that the 



p 

148 Chapter 7. Parallel Computing Platform 

profiling information can be properly abstracted as much as possible into the expression 

of Bird-Meertens Formalism. The second is to create a cost reference table for those 

recognised patterns based on different architectures that are considered to be supported 

by the programming platform. 

7.6.2 Solution Derivation Support 

Transformational programming and parallel computation are two emerging fields 

that may ultimately depend on each other for success. Because ad hoc programming for 

parallel machines is so hard, and because progress in software construction has lagged 

behind architectural advances for such machines, there is much greater need to develop 

parallel programming and transformational methodologies. The challenge of parallel 

solution derivation and program transformation is that it represents perspectives from 

two different communities - transformational programming and parallel computing 

- to discuss programming, transformational, and compiler methodologies for parallel 

architectures, and paradigms, techniques, and tools for parallel machine models. 

A number of interesting studies on parallel program transformation are reported 

in [Pep93], [PPP93], [GY93] , [Smi93], [Par93], [RR93], [Lan93]. We discuss here the 

feasibility of integrating derivation techniques of parallel programs with ABCOM. 

According to the discussion in [Smi93], programs can be treated as a highly opti­

mised composition of information about the problem being solved, algorithm paradigms, 

data structures, target architectures and so on. An attempt to provide automated sup­

port for program design must be based on: 

• a formal model of the composition process; 

• representation of problem domain knowledge; 

• representation of programming knowledge. 

The research on parallel algorithm derivation and program transformation is based 

on the idea to produce formally verified software. Therefore, derivation is usually 

based on a selected formal specification of a problem. The main difficulty in derivation 

lies in building up the problem domain theory within which the algorithm is inferred. 
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And it is also known that methods and tools for achieving this goal still are research 

topics. The techniques suggested in the literature are split into: either i) verification­

oriented techniques to provide a proof that a program conforms to a specification; 

or ii)transformation-oriented techniques to generate an executable program from a 

specification by applying a series of transformations. Comparing with a specification 

language, there are certain advantages if an ABCOM-based solution is used as the 

source code for transformation. 

• Unlike a solution expressed in a specification language, ABCOM-based solutions 

are executable in a general sense of computing. It will reduce the difficulty of 

transformation in dealing with execution semantics for construction of an exe­

cutable program associated with a particular architecture. 

• ABCOM-based solutions can be presented with objective parallelism. This pro­

vides certain assurances for achieving a good performance for a derived solution. 

This is important for success of transformational programming. 

• ABCOM is grain-dependent. Thus, transformation strategies can be developed at 

different levels of representation from program structure and optimisation points 

of view. 

• Computation inference based on ABCOM can be used to develop transformation 

rules. Building up connections between ABCOM and other techniques will ben­

efit development of transformation rules and construction of a transformational 

programming framework. This framework can provide some interactive program­

ming features to deal with decision making in transformation since a cost system 

can be combined through ABCOM. 

Transformational programming can make use of ABCOM's power in revealing par­

allelism such that decisions in selecting parallel properties of solving a problem are 

based on well exploited information. From a theoretical point of view finding the op­

timum solution is NP-hard. In practice, however, parallel programs are written in 

certain styles for different types of architectures. The style of programming is mainly 

determined by a number of decisions made in the following respects: 

-
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• Data or control parallelism; 

• Partitioning; 

• Scheduling and co-ordination; 

• Communications; 

• Skeletons. 

Lemma 5.1 is a general rule to identify which elements in ABCOM are currently 

ready for execution at each timestep. This rule can be implemented in an efficient way 

to support static scheduling. That is, to identify the ready elements, we need only 

tracing of the movement of the 'bottoms' of all independent CDOAGs in an optimised 

solution. At each logical step during the execution of the solution, only those elements 

that are in the 'bottoms' of the CDOAGs are ready for execution. 

The solution derivation from ABCOM codes should be studied from all these re­

spects. As a long term project, we need support from people working in different 

areas to bring those related research and development results together to form a multi­

functions and integrated programming environment. 

7.6.3 ABCOM-based programming paradigm 

The features of ABCOM-based parallel processing and the discussion in the connec­

tions between ABCOM and other techniques demonstrate certain new approaches to 

improving parallel programming methodologies. The main improvement is to provide 

adequate support in revealing parallelism when a program is developed. Also existing 

techniques can use or be further developed in association with such support within a 

programming framework. Hence, programming can be carried out with less chance of 

performance failures. This improvement, as illustrated in Fig. 7.6, can be explained as 

follows: 

• A sequential program or other executable and machine-independent specifications 

(for example GAMMA-based program) can be transformed into ABCOM repre­

sentation as an initial version of a solution. This solution can be optimised until 

objective parallelism is revealed. 
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Figure 7.6: ABCOM-based parallel programming paradigm 
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152 Chapter 7. Parallel Computing Platform 

• The objective parallelism exploitation ensures a sound information background 

of parallel properties of solving a problem to be available and well represented 

before a program solution associated with a specific architecture is reached. 

• Though mapping an optimised solution with objective parallelism into a selected 

architecture is a NP-hard problem, based on ABCOM platform, techniques that 

are useful for achieving high performance, such as parallelism inference, compu­

tation pattern abstraction, parallelism profiling, cost and performance prediction 

and static computation scheduling, can be cooperatively applied within an inte­

grated environment. 

• A trial-error procedure of solution construction can be carried out under certain 

interaction with programmers. This will be important for both productivity and 

success. 

7.7 Summary 

The development of ABCOM is motivated by the issues raised in Chapter 2. Our 

effort is aimed at providing support to existing techniques in parallel computing rather 

than developing a stand alone tool. As a long term project, in order to use ABCOM, 

support from people working on those different areas is extremely important. Due to the 

limitations of many factors, at present, the tasks involved in building such a platform 

have not been deeply explored. Developing a theoretical foundation and demonstrating 

the significance are our first goal. 

l 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

: 



' 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I : 

Chapter 8 

Conclusions 

Programming is an art, especially parallel programming, and will undoubtedly continue 

. to be so in the future. Nevertheless, the effort devoted to innovative approaches to 

programming philosophy and methodologies never ceases. In the last two decades, the 

parallel computing research community has developed various advanced techniques and 

tools to improve programming practice. Yet the development of parallel programming 

environments has lagged far behind the hardware and is still a great challenge. We 

have taken a different view to the study of parallel programming methodologies, and 

have raised certain difficult but fundamel_ltal issues. 

8.1 Thesis Summary 

Most techniques and tools in parallel computing are developed with the primary 

goal of expressing parallel properties to achieve high performance in a parallel archi­

tecture; but, 'finding parallelism' is as important as proving correctness in parallel 

computing. 'Finding parallelism' is not properly supported by current methodologies, 

and still relies on individual experience and knowledge. We have introduced a model of 

parallelism revelation called ABCOM (ABstract COmputational tuple-space Model), 

and examine its properties and its power to support parallelism analysis, inference, 

profiling, speculation and abstraction, solution reconstruction and performance predic­

tion. 

The main contributions claimed for this thesis are summarised as below: 
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• This work broadens the research area of parallel computing from both the theo­

retical and practical points of view, by introducing concepts such as parallelism 

revelation models, subjective parallelism, objective parallelism, and the scalabil­

ity of application domain parallelism. We advocate that the objective aspects of 

parallelism of a real world problem should be studied before an implementation 

is attempted . The main benefit of this study is to obtain a sound knowledge of 

the parallel properties of the problem. Such a knowledge can help making par­

allel programming decisions and reduce the possibility of performance failures in 

parallel implementation. 

• A parallelism revelation model, called 'ABCOM' is introduced in this thesis. 

The notation and properties of ABCOM exhibit its capability as a foundation to 

reveal parallelism features and to support parallelism inference. The parallelism 

inference feature can be implemented using relational algebraic techniques on a 

programming database. 

• ABCOM is intended to be at a level below the language level and is compati­

ble with a variety of language styles. Thus, it will have applications in various 

research areas in parallel computing. 

• Based on ABCOM, we have presented new approaches to detect exact data de­

pendence and parallelise program solutions. Trace-generation based transforma­

tion strategies of ABCOM contribute to generation of an abstract computational 

tuple-space for a given source code. From such a tuple-space the topological 

(spatial), structural and temporal properties required in solving a problem can 

be fully recovered; an optimisation towards achieving the objective parallelism 

can be carried out. This optimisation is not only machine independent but also 

programmer-view independent. All the computations represented in an optimised 

solution with the objective parallelism are driven by data flows. Consequently, the 

difference in performance between any two optimised solutions to the same prob­

lem is given by the difference in the respective depths of the deepest C DO AGs 

of the solutions. In other words, the difference in performance between any two 

optimised solutions equals the logical time difference to compute the longest data 
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flows for individual data in these two solutions. 

• The ABCOM-based approach can provide special tools for reviewing existing 

parallel programs to detect deficiencies with the aim of improving a given solution. 

Also it is possible to compare inherent parallelism in two different algorithms for 

the same problem before their physical and subjective parallel implementations. 

• The tools and techniques developed in association with ABCOM, including par­

allelism inference, abstraction, speculation and so on, will be of significant assis­

tance in making programming decisions and selecting a suitable architecture for 

a particular application. 

• Being machine-independent, ABCOM can serve as an standard parallel abstract 

model that can separate hardware features of architecture from software concerns, 

hence it can promote software portability and scalability. 

• The outcome of this research is the design of a parallel computing platform that 

can be eventually developed as a unified framework for parallel programming 

methodologies and for integrated development environments. 

8.2 Limitations 

Fully implementing the ABCOM-based parallel computing platform is a very large 

and complex task. Therefore we introduced several restrictions to comply with the 

resources at our disposal. In particular, we have given priority to: i) introducing 

ABCOM as a parallelism revelation model with the emphasis on its significant fea­

tures for improving parallel programming; ii) illustrating its applications in association 

with different research interests and techniques in parallel computing. In this context 

the ABCOM-based parallel computing platform is primarily a research prototype of 

a programming supporting environment that contains transformation , inference, opti­

misation, profiling and performance prediction techniques. The results obtained using 

these techniques support our claim that ABCOM is useful as a parallelism revelation 

model and is very helpful in enhancing existing research and techniques. 

-
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At present, there are a number of deficiencies in ABCOM and one can ask many 

questions regarding its applications to various real world problems. This section points 

out some of the limitations of this work. 

• Though the transformation methods of conditional statements have been de­

scribed in Chapter 4, we have not shown the application of ABCOM for a problem 

containing uncertain control structures arising from conditional statements in its 

program solution. It is true that the involvement of these structures complicates 

computation analysis in ABCOM. Nondeterministic execution features of com­

putation usually results, if there are conditional statements contained in a loop. 

As pointed out in Chapter 5, relation-based computation inference techniques are 

not applicable to nondeterministic computation. The ABCOM-based parallelism 

revelation approach may not successfully exploit objective parallelism for such 

problems. From the discussion concerning Example 8 in this thesis, however, it 

can be observed that parallelism visibility would be achievable in a certain sense, 

if some supporting techniques are developed. We suggest the use of heuristics 

and interaction with the programmer to guide nondeterministic computational 

analysis, inference and abstraction. However, we have not yet identified suitable 

heuristics. 

• In this thesis, we discussed the properties and applications of ABCOM mainly 

based on a fine-grained representation. This has more or less limited our inves­

tigation. It is still too early to claim that a sophisticated and complete parallel 

programming environment has been developed; in particular, we have not yet 

provided adequate methods of using ABCOM to the more challenging task of 

mapping real world problems onto specific architectures. To broaden the applica­

tions of ABCOM, we need first to extend the investigation from the fine-grained 

representation to a higher-level representations - e.g., a medium-grained or 

coarse-grained level. We should pursue further: 

- Element-grouping strategies; 

- Higher-level inference and analysis techniques; 
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- Higher-level optimisation methods. 

Research into these respects must be carried out in association with many tra­

ditional programming issues, such as programming style, program structure and 

partitioning strategies, and also certain architecture-related programming issues, 

including data-access mode, interconnection among processors and communica­

tion methods. 

• Through the use of a fine-grained representation, the methods of abstracting 

parallelism described in the previous chapters are mainly based on a step-wise 

strategy for data parallelism. As mentioned before, the main requirements for 

relation-based computation inference is the existence of certain kinds of relation­

ships among elements with respect to the concepts of data, operation or time. 

Consequently, these techniques should be developed in a more flexible way so that 

static scheduling, computation pattern and type (or shape discussed in [Jay95]) 

abstraction and solution derivation can use ABCOM. 

• To illustrate principles of our approaches, superblock-based strategies are used in 

the discussion of this thesis. The synthesis of the results obtained from a number 

of superblocks in inference, analysis, abstraction, profiling and speculation is 

necessary and important for successful applications of ABCOM. Although it is 

not difficult to develop suitable techniques to synt hesise information for problems 

with simple algorithmic structure, we have not explained how to build up a 

framework to conduct synthesis of various information, especially for large and 

comprehensive applications. 

8.3 Future Work 

The work reported in this thesis is basically an introduction to a long term research 

project for parallelism revelation. We believe the most fruitful approach to exploiting 

parallelism is to start with a few principles and to make use of them as far as possible. 

There are many appealing avenues to pursue for future work. We have already pointed 

out a number of limitations and their possible improvements in the previous section . 
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The work in progress includes developing computational inference and abstraction 

techniques based on ABCOM, especially with respect to nondeterministic computation 

and higher-level representation, and implementing a research prototype of a parallel 

computing platform in a UNIX-based environment with support of ORACLE as a 

programming database. 

Also we need to relate ABCOM with other relevant techniques or tools. We realise 

that the development of ABCOM-based techniques for a higher-level representation is 

vital for the successful applications of our approach. 

Beside the work mentioned above, we would also like to highlight two open problems: 

• Mapping -- an NP-complete problem 

Though a real world problem can be optimised to reach an objective parallelism, 

finding an optimal solution to execute in a particular architecture is still an 

NP-complete problem. The ABCOM-based approach can provide assistance in 

building up application domain knowledge of parallel properties, but cannot op­

timally map this knowledge into a selected architecture. Instead of pursuing an 

optimal solution, in practice, people usually think a solution with a satisfactory 

performance as a goal of implementation. As stated in Chapter 1, ABCOM is 

intended to enhance the existing techniques and tools in current practice rather 

than replacing them. Therefore, whether ABCOM can really help to improve 

parallel programming methodologies is mainly determined by whether it can be 

successfully applied in the mapping procedure performed by either a programmer 

or a compiler. 

• Challenge to the future generation of compilers 

As one of the important tasks of parallelising compilers, parallelism exploitation 

can be carried out now in a non-traditional way. Can this approach help to 

design a parallelising compiler? The answer to this question is not known at 

this stage. But at least we have shown that it is possible to reveal objective 

parallelism for a given deterministic computation problem, as long as it is spec­

ified in a conventional way. Comparing the information of parallelism obtained 

and tasks performed by a parallelising compiler, we see that ABCOM-based ap-
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proaches provide a better knowledge of parallelism inherent in the problem, but 

require different mapping strategies to derive or reconstruct a solution based on 

a particular architecture. 

By developing ABCOM, we believe the application of our parallelism revelation 

model will ease the tasks of domain experts and programmers in parallel comput­

ing, but apply more pressure to architecture suppliers and compiler designers since 

it will be a significant advantage if they can demonstrate that their products are 

more efficient and better in performance when a domain knowledge of parallelism 

is available. As this domain knowledge of parallelism is machine-independent, the 

portability issue of parallel computing can be resolved if ABCOM representation 

can be processed by different compilers. 

At the NATO sponsored Advanced Research Workshop on 'Software for Parallel 

Computation' in 1992, Kowalik and Neves pointed out that if parallel computing is to 

be successful, it will require an unprecedented cooperation among application develop­

ers, compiler writers, systems software professionals, and hardware architects [KN93]. 

However, it is observed that such a cooperation has embarrassed the designers of pro­

gramming languages due to various different and even conflicting requirements from 

these people. Also it is realised that the field of parallel computation is going through 

a period of unrest: a growing rift between theory and practice suggests that more real­

istic models of computation are needed [FS92]. We are hopeful that the introduction of 

a parallelism revelation model will provide a possible avenue for further developments. 

The extent of success of the ABCOM model can be judged only when this model is 

applied in different areas of parallel computing. 
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Appendix A 

A.1 ABCOM code of Example 7. 

Consider a sequential code for Gaussian Elimination (without pivoting). 

Fork = l ton 

For i = k + l ton 

a(i, k) = a(i, k) / a(k, k) 

For j = k + l to n 

a(i,j) = a(i,j) - a(k,j) x a(i,k) 

Let n = 6, a transformed code of this solution is shown as follows: 

u1 : (/, {a21, au}, {a2i}, 1) 

u2: (x,{a12,a2i},{v1},2) 

u4 : (x,{a13,a2i},{v2} , 4) 

u5: (x,{a14,a21},{v3},6) 

us : (x,{a15,a21},{v4},8) 

u10: (x,{a15,a21},{vs},l0) 

u12: (/, {a31, au}, {a3i}, 12) 

u13: (x,{a12,a3i},{v5},13) 

u15 : (x,{a13,a31},{v1},15) 

u17 : (x,{a14,a3i},{vs},17) 

u19: (x,{a15,a3i},{v9},19) 

u21: (x,{a15,a31},{v10},21) 

u23: (/, {a41 , au}, {a4i}, 23) 

u24: (x,{a12,a4i},{vu},24) 

u3 : (-, { a22, v1}, { a22}, 3) 

us : (-,{a23,v2},{a23},5) 

u1 : (-, { a24, v3}, { a24}, 7) 

u9: (-,{a2s,v4},{a2s},9) 

uu : (-, { a25, vs}, { a25}, 11) 

u14: (-,{a32,vi},{a32},14) 

U16 : (-,{a33,v1},{a33},l6) 

u1s: (-,{a34,vs},{a34},l8) 

u20: (-,{a35,v9},{a3s},20) 

u22: (-,{a35,v10},{a35},22) 
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u2s: (x,{a13,a4i},{v12},26) 

u2s: (x,{a14,a41},{v13},28) 

u30 : (x,{a1s,a4i},{v14},30) 

u32 : (x,{a1s,a41},{v1s},32) 

u34: (/ , {as1, au} , {asi}, 34) 

U35 : (x,{a12,as1},{v15},35) 

U37: (x , {a13,as1},{v11},37) 

U39: (x,{a14,asi},{v1s},39) 

u41 : (x,{a1s , as1},{v19},41) 

U43: (x,{a1s,as1},{v20},43) 

u45: (/,{as1,a11},{as1},45) 

U4s : (x,{a12,as1},{v2i},46) 

u4s: (x,{a13,as1},{v22},48) 

uso: (x,{a14,as1},{v23},50) 

Us2: (x,{a1s,as1},{v24},52) 

U54: (x,{a1s,as1},{v2s},54) 

uss: (/, {a32, a22} , {a32}, 56) 

us1 : (x,{a23 , a32},{v2s},57) 

U59: (x,{a24,a32},{v21},59) 

us1 : (x , {a2s, a32}, {v2s}, 61) 

us3: (x , {a2s,a32},{v29},63) 

uss : (/,{a42 , a22},{a42},65) 

uss: (x, {a23, a42}, {v30}, 66) 

uss: (x,{a24,a42},{v3i},68) 

u10 : ( x, { a2s, a42}, { V32}, 70) 

u12 : (x,{a2s,a42},{v33},72) 

U74 : (/, {as2, a22}, {as2}, 74) 

u1s : ( x, { a23, as2}, { V34}, 75) 

u11 : ( x, { a24, as2}, { V3s}, 77) 

U79: (x, {a2s,as2}, {v3s}, 79) 

us1: (x,{a2s,as2},{v31},8l) 

us3: (/, {as2, a22} , {as2} , 83) 

Ug4: (x,{a23,as2},{v3s},84) 

uss : (x,{a24,as2},{v39},86) 

uss: (x , {a2s,as2} , {v40},88) 

u21 : (-,{a43,V12},{a43},27) 

u29: (-,{a44,V13},{a44},29) 

u31: (- , {a45,V14},{a4s},31) 

u33: (-,{a4s,v1s},{a4s},33) 

u3s : (-, { as2, v15}, { as2}, 36) 

u3s: (-,{as3,v11},{as3},38) 

u40: (-,{as4,V1s},{as4},40) 

u42: (- , {ass,V19},{ass},42) 

U44: (-,{ass,v20},{ass},44) 

u47 : (-, { as2, v2i}, { as2}, 47) 

U49: (-,{as3,v22},{as3},49) 

us1: (-,{as4,V23},{as4},51) 

U53 : (-, {ass, V24}, {ass}, 53) 

uss : (-, { ass, v2s}, { ass}, 55) 

uss : (-,{a33,V2s},{a33},58) 

uso: (-,{a34,v21},{a34},60) 

us2 : (-, { a3s, v2s}, { a3s}, 62) 

us4 : (-, { a3s, v29}, { a3s}, 64) 

Us1: (-,{a43,V30},{a43},67) 

us9 : (-, { a44, v3i}, { a44}, 69) 

u11 : (-,{a45,V32},{a4s},71) 

U73 : (-, { a4s, V33}, { a4s}, 73) 

u1s : (-,{as3,V34},{as3},76) 

u1s : (-,{as4,V3s},{as4},78) 

uso : (-, { ass, V3s}, { ass}, 80) 

us2: (-,{ass,v31},{ass},82) 

uss: (-,{as3,V3s},{as3},85) 

us1 : (-, { as4, V39}, { as4}, 87) 

ug9 : (-,{ass,v40},{ass},89) 

Appendix A. 
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A.I. ABCOM code of Example 7. 

Ugo: (x, {a26, a62}, {v4i}, 90) 

U92: (/, {a43, a33}, {a43}, 92) 

u93: (x,{a34,a43},{v42},93) 

Ugs: (x,{a3s,a43},{v43},95) 

U97: (x,{a36,a43},{v44},97) 

u99 : (/, { as3, a33}, { as3}, 99) 

u100: (x,{a34,as3},{v41},lOO) 

u1 02: (x, {a3s, as3}, {v4s}, 102) 

u104: (x,{a36,as3},{v49},104) 

u106: (/, {a63, a33}, {a63}, 106) 

u101: (x, {a34, a63}, {vso}, 107) 

u109: (x,{a3s,a63},{vs1},109) 

U111: (x, {a36,a63}, {vs2}, 111) 

u113: (/, {as4, a44}, {as4}, 113) 

U114 : ( X, { a4s, as4}, { Vs3}, 114) 

u116: (x,{a46,as4},{vs4},l16) 

uus: (/, {a64, a44}, {a64}, 118) 

u119: (x,{a4s,a64},{vss},119) 

u121: (x,{a46,a64},{vs6},121) 

u123: (/, {a6s, ass}, {a6s}, 123) 

u124: (x,{as6,a6s},{vs1},124) 

J 
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u91: (-, {a66, v4i}, {a66}, 91) 

U94 : (-, { a44, V42}, { a44}, 94) 

1'96: (-,{a4s,V43},{a4s},96) 

Ugs: (-,{a46,V44},{a46},98) 

u101: (-,fas4,v41},{as4},101) 

u103: (-,{ass,v4s},{ass},103) 

u10s : (-, { as6, V49}, { as6}, 105) 

u10s : (-, { a64, vso}, { a64}, 108) 

u110 : (-,{a6s,vsi},{a6s},110) 

U112 : (-,{a66,vs2},{a66},112) 

uus: (-,{ass,Vs3},{ass},115) 

u111 : (-, { as6, Vs4}, { as6}, 117) 

u120: (-,{a6s,Vss},{a6s},120) 

u122: (-,{a66,Vs6},{a66},122) 

u12s : (-, { a66, vs1 }, { a66}, 125) 

--
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i 

A.2 Optimised solution of Example 7. ' 

' 

u1 : (/ , {a21 , au},{a2i},l) 

u2 : (x,{a12 , a21},{v1},2) u3: (-,{a22,vi},{a22},3) 

u4: (x,{a13,a2i},{v2},2) us: (-,{a23,v2},{a23},3) 

us : (x,{a14,a2i},{v3},2) u1: (-,{a24,v3},{a24},3) 

us : (x,{a1s,a2i} , {v4},2) U9: (-,{a2s,v4},{a2s},3) 

u10 : (x,{a1s,a2i} , {vs},2) uu : (-,{a2s,vs},{a2s},3) l 

u12 : (/, {a31, au}, {a3i}, 1) 

u13 : (x,{a12,a3i},{vs},2) u14 : (-,{a32,vi},{a32},3) I 

u15 : (x , {a13,a31},{v1},2) U15 : (-,{a33,v7},{a33},3) 
I 

: 

u11 : (x,{a14,a3i},{vs},2) u1s : (- , { a34, vs}, { a34}, 3) 
; 

: 

u19: (x,{a1s,a3i},{v9} , 2) u20: (-,{a3s,v9},{a3s},3) ' 

u21: (x,{a15,a3i},{v10},2) u22: (-,{a35,v10},{a3s},3) I 

u23: (/, {a41, au}, {a4i}, 1) 
! 

u24: (x,{a12 , a4i},{v11},2) u2s : (-, { a42, vu}, { a42}, 3) 
!i 

u2s : (x,{a13,a4i},{v12},2) u21 : (-, { a43, V12}, { a43}, 3) 

u2s : (x,{a14,a4i},{v13},2) u29 : (-, { a44, v13}, { a44}, 3) ' 
' 

u30: (x, {a1s , a4i},{v14},2) u31: (-,{a4s,v14},{a4s},3) 

u32 : (x, {a15, a41}, {vis}, 2) U33: (-,{a4s,v1s},{a4s},3) !i 

U34: (/ , {as1,a11},{asi},l) 
,, 

U3s : (x , {a12,asi},{v15},2) u3s: (-,{as2,v1s},{as2},3) 
i 

U37: (x, {a13, asi}, {v11}, 2) u38 : (-,{as3,v11},{as3},3) 

U39 : (x,{a14,as1},{v1s},2) u40: (- , {as4,v1s},{as4},3) i 

u41 : (x,{a1s,asi} , {v19},2) u42: (-,{ass,v19},{ass},3) i 

U43 : ( X, { a15, asi}, { V20}, 2) u« : (-, { ass, v20}, { ass}, 3) 

U4s: (/,{as1,a11},{asi} , l) 

I 
u4s: (x,{a12,asi},{v21},2) U47 : (-, { as2, v2i}, { as2}, 3) 

U4g : ( X, { a13, as1}, { V22}, 2) u49 : (-, { a53, v22}, { as3}, 3) 

uso : (x , {a14,asi},{v23},2) us1: (-,{as4,V23},{as4},3) ! 

us2 : (x,{a1s,as1},{v24},2) us3 : (-, { ass, v24}, { ass}, 3) ' 
: 

us4: (x,{a15 , asi},{v2s},2) uss : (-,{ass,v2s} , {ass},3) l i 

.: 
Uss : (/,{a32, a22},{a32},4) 

us1 : ( x, { a23, a32}, { v2s}, 5) uss : (-,{a33,v2s},{a33},6) 
I 

,, 

U59: (x,{a24,a32},{v21},5) UGO: (-,{a34,V21},{a34},6) 
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[ I 

[ : 

I' us1: (x, {a2s,a32} , {v2s} , 5) us2 : (-,{a3s , v2s},{a3s},6) 
,, 

us3 : ( x, { a2s , a32} , { v29}, 5) us4: {- , {a3s,v29},{a3s} , 6) 
' ;! uss : (/ , {a42, a22} , {a42},4) 

: 

uss : {x ,{a23, a42} , {v30},5) ,, us1 : {- , {a43, V30},{a43} , 6) 

uss : ( x, { a24 , a42} , { v3i} , 5) us9 : {-, { a44 , V31} , { a44}, 6) 

u 10: {x, {a2s , a42} , {v32},5) u71 : {- , {a4s, v32} , {a4s},6) 
i 

I j 
u12: (x , {a2s,a42},{v33} , 5) u73 : (- , {a4s , V33},{a4s} , 6) 

r U74 : (/ , {as2,a22},{as2} , 4) 
I 

u1s : (x,{a23 , as2},{v34},5) u1s : (- , {as3,V34},{as3} , 6) I I i 

' U77 : ( X, { a24, as2} , { V3s} , 5) u1s : (- , {as4, V3s} , {as4}, 6) 

1: U79 : (x,{a2s,as2} , {v3s},5) uso: {- , {ass, v3s},{ass},6) 

I' us1: (x, {a2s, as2}, {v31}, 5) us2 : {-, { ass , V37 }, { ass} , 6) 

us3 : (/, { as2, a22}, { as2}, 4) 

us4 : {x, {a23, as2} , {v3s} , 5) uss : {- , {as3, v3s},{as3} , 6) 

uss : (x, {a24,as2},{v39},5) us1 : (- , {as4,V39},{as4},6) 
i uss: {x , {a2s, as2} , {v40}, 5) us9 : {-, { ass, V40}, { ass} , 6) : 

i U90 : {x , {a2s,as2} , {v4i},5) u91 : {-, {ass,v4i} , {ass},6) 

u92 : (/, {a43, a33} , {a43} , 7) 

i U93: (x, {a34, a43},{v42} , 8) U94 : {-, { a44, V42} , { a44} , 9) 

u9s : (x, {a3s,a43},{v43},8) u9s : {-,{a4s , V43} , {a4s},9) 

i u97 : ( x , { a3s, a43} , { V44}, 8) u9s : (- , { a4s , V44} , { a4s} , 9) 

U99 : (/ , {as3, a33} , {as3} , 7) 

u100 : (x ,{a34,as3} , {v41},8) u101: (- , {as4,V41}, {as4} ,9) 

u102 : (x,{a3s , as3},{v4s} , 8) u103 : (- , { ass, V4s}, { ass}, 9) 

u104 : ( x , { a3s, as3}, { V49}, 8) u10s: (- , {ass,V49} , {ass},9) 

u10s : {/, {as3, a33} , {as3}, 7) 

u101: (x,{a34,as3},{vso},8) u10s : (-, { as4, vso} , { as4}, 9) 

u109 : (x,{a3s,as3},{vs1},8) uuo: {-,{ass,vs1}, {ass} , 9) 

u111 : (x, {a3s , as3},{vs2} , 8) u112 : (-,{ass,vs2},{ass} , 9) 

u113: (/ , {as4, a44} , {as4} , 10) 

u114: (x,{a4s,as4} , {vs3} , ll) uus : (-,{ass,vs3},{ass},12) 

! uus: (x, {a4s,as4} , {vs4},ll) u111: (- , {ass, Vs4}, {ass}, 12) 
: uus : {/ , {as4, a44}, {as4} , 10) i 

: : u119 : ( x , { a4s , as4}, { Vss}, 11) u120 : (- , { ass, vss}, { ass}, 12) 
I I 

I I 
u121 : ( x , { a4s , as4} , { vss}, 11) u122 : (- , {ass, vss} , {ass},12) 

' 
1: 

I 

Ii 
I II 
I [ I 

I [ 'I 

[ i 
I 

I , 

I I: 
.... -
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u1 23 : (/ , {a6s , ass} , {a6s} , 13) 

u1 24 : (x ,{as6 , a6s} , {vs1} , 14) u12s : (- , {a66,vs1} , {a66},15) 

Appendix A. 
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