
I

PARALLELISM REVELATION MODEL

- APPLICATION TO PARALLEL PROGRAMMING-

Pin Chen

A thesis submitted for the degree of

Doctor of Philosophy

of The Australian National University

@Pin Chen

February 1996

............. ------------.. llll!ll!l!!lll!!!!!!l!!Jl!!!!!!!lll!!!!!!!!!!!III

Statement

I hereby state that this thesis contains only my own original work

except where explicit reference has been made to the work of others,

and has not been submitted for any other degree.

Pin Chen Date

11

:

.---. -------------------11!!!1!1!!!!1!!!!!!11!!!!1!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!1!!!!!!!l!!!'!!!~

Dedicated

to my parents, Gengren Chen and Ling Xie,

and

to my wife, Jian Yang

iii

I

·-

Revised Version

This version of the thesis has been revised carefully and

reprinted after taking into account the criticisms and sug­

gestions made by the panel of examiners.

The author expresses his gratitude to all the examiners for

their valuable time and suggestions provided.

Date of original version:

Date of revised version:

V

I

_______________,..,, ____ ___ """1111111
1
.....

11

vi

1-

Acknowledgments

Particular thanks are due to my supervisor, Prof. E. V. Krishnamurthy, for his con­

tinued support over the previous three years keeping me on track and providing an

additional source of ideas and feedback. His critical questions have been instrumental

in the elaboration of my ideas. I am especially grateful for his most helpful comments

. on my written work. Also, to the rest of my thesis committee, Prof. Richard Brent and

Dr. Xin Yao, for their input towards the progress and direction of my research work.

I am also indebted to Prof. Terry Bossomaier and Drs. Brendan McKay, Iain

Macleod, and Bing Bing Zhou for their continuous and friendly support and encour­

agement which were indispensable to the development of this research.

I would like to thank again Prof. Richard Brent for fighting on my behalf, with

bureaucracies of various sorts; also for supporting my attendance at a number of in­

ternational conferences. So allowing nie to encounter other researcher in the area of

parallel computing and exchange ideas. I also acknowledge the help received from

Michelle Moravec during the write-up of this thesis.

I am grateful to the fellow researchers I have been in contact with in Australia

and abroad, in the exchange of ideas with whom has greatly contributed to my own

understanding of many problems.

Finally, I would like to thank my family and friends, whose confidence in me always

seemed greater than my own; my special thank goes to my wife Jian Yang, for her

perpetual love, constant support and encouragement and being there with me.

This research has been funded by the PhD Scholarship from The Australian Na­

tional University. I gratefully acknowledge the financial support received both from

the University and from the Computer Sciences Laboratory.

Vil

!

viii

I-

Abstract

The massive computational power provided by parallel computers can be used with
great benefit to many application areas; however, the lack of adequate programming
tools for the development of parallel software prevents the efficient utilisation of parallel
computers. Also, the performance failures of parallel implementation arise due to
great freedom available in exploiting parallelism and due to the subjective view of the
programmer.

This thesis proposes a new model of parallel computation, ABCOM (ABstract
COmputational tuple space Model). Unlike most existing models or programming
languages which support expressing parallelism in a program in terms of the subjective
knowledge of a programmer, ABCOM is developed with a primary goal of revealing
parallelism of a given problem in a programmer-view independent manner.

We introduce our model by describing its notation and properties, and comparing it
with other practical or theoretical models. The characteristic features of ABCOM are
demonstrated through applications to parallelism inference, optimisation, abstraction,
profiling, speculation and scalability analysis. Based on ABCOM, the spatial structure
and temporal logic of solving a problem can be fully exhibited in an abstract compu­
tational space; an initially expressed solution of a problem can be optimised until all
computations involved are exploited in a dataflow computation fashion. The motiva­
tion of our research is to improve parallel programming methodologies by providing a
new model that enhances the existing techniques and tools. An important aspect of
this research is to separate the parallelism investigation task as a relatively independent
one from that of mapping of the problem into a particular physical architecture. This
investigation is carried out to establish a general knowledge of parallel properties of
a real world problem. Such a knowledge serves as a common basis for various tasks
involved in parallel programming.

The main contributions of this thesis are: i) introduction of new concepts for par­
allel computing - such as: subjective parallelism, objective parallelism and scalability
of application domain parallelism; ii) development of ABCOM as a parallelism revela­
tion model; iii) new approaches to detecting exact data dependence and parallelising
program solutions; and iv) construction of a foundation for an integrated parallel pro­
gramming platform.

Also this research throws new light on the current state of art in parallel computing
and enables one to reevaluate our current views on parallel computing - in particular,
some fundamental issues in programming philosophy and methodologies.

IX

I

1-

I

I

It

I

X

I

1-
I

Glossary
ABCOM Abstract COmputational tuple space Model 4

ADP Application Domain Parallelism 140

BMF Bird-Meertens Formalism 121

CDOAD Completely specified DOAG 36

DAG Directed Acyclic Graph 45

DDG Data Dependence Graph 25

DOAG Data-Operation-Associated Graph 35

EDOAG Elementary Data-Operation-Associated Graph 35

EP Execution Pointer 41

GAMMA r programming model 23

HPF High Performance FORTRAN 23

PPM Parallel Programming Methodologies 7

PRAM Parallel Random Access Machine 10

SADP Scalability of ADP 140

uDDG unconstrained Dynamic Dependence Graph 25

xi

1-

;,

I

xii

I

I
I-

1-
'

Contents

1 Introduction 1

1.1 Motivation 1

1.2 Why a Model for Parallelism Revelation 3

1.3 Structure of the thesis 5

2 Background, Motivation and Objectives 7

2.1 The Development of PPM 7

2.1.1 Parallel computation models 8

2.1.2 Parallelising com pilers . . 12

2.1.3 Functional programming . 13

2.1.4 Programming paradigms . 15

2.2 Problems 17

2.3 Related research 21

2.4 Thesis Objectives 25

2.4.1 The Proposed improvement in PPM 25

2.4.2 Parallelism revelation models 26

2.5 Summary 27

3 ABCOM- A Parallelism Revelation Model 29

3.1 A Puzzle - Parallelism in a Problem 29

3.2 Definitions and Properties . . . 33

3.3 Program Solutions in ABCOM 40

3.4 Features of ABCOM 43

3.4.1 The ABCOM (virtual) machine . 43

xiii

....

1,

1,

11

!

I i

1,

3.4.2 ABCOM and other models - a comparison

3.5 Summary

4 Expressive Power and Transformation

4.1 Expressive Power

4.1.1 Syntax of ABCOM .

4.1.2 Examples

4.2 Solution Transformation

4.2.1 Principles of translation

4.2.2 Trace-driven code generation

4.2.3 Branching statements transformation .

4.2.4 Loop transformation

4.2.5 While--Do transformation .

4.3 Summary

5 Parallel Computational Inference

5.1 Domain Representation Issues

5.1.1 Requirements for conducting parallelism analysis

5.1.2 ABCOM tuplebase

5.2 Relation-Based Computing Inference and Analysis

5.2.1 Time-based inference .

5.2.2 Data-based inference .

5.2.3 Operation-based inference

5.2.4 C DO AG relations inference

5.2.5 Nondeterministic computation analysis .

5.2.6 Element-state based inference

5.3 Summary

6 Solution Parallelisation in ABCOM

6.1 Overview of Optimising Compilers

6.1.1 Existing studies .

6.1.2 Problems

XlV

44

48

49

49

50

53

54

56

60

61

67

70

73

75

75

76

78

81

83

86

89

89

90

95

97

99

99

100

101

I--

6.2 ABCOM-Based Data Dependence Tests

6.2.1 Dependence representation ...

6.2.2 Features of ABCOM-based detection

6.3 Parallelisation in ABCOM . .

6.3.1 CDOAG optimisation

6.3.2 Solution parallelisation .

6.3.3 Observation of nondeterministic computation

6.4 Summary .

7 Parallel Computing Platform

7.1 The Notation of Bird-Meertens Formalism

7 .2 Parallelism Profiling

7.2.1 Data parallelism profiling

7.2.2 Control parallelism profiling .

7.3 Computation Pattern Testing .

7.3.1 Normalising CDOAGs .

7 .3.2 C DO AG structure optimisation

7.3.3 Patterns represented in a loop

7.4 Size-Based Parallelism Speculqtion

7 .5 Scalable Performance Analysis . .

7.5.1 Scalable parallel computing

7.5.2 Scalability of application domain parallelism

7.6 Other Applications

7.6.1 Integrating with a cost system

7.6.2 Solution Derivation Support ..

7 .6.3 ABCOM-based programming paradigm

7.7 Summary

8 Conclusions

8.1 Thesis Summary

8.2 Limitations

8.3 Future Work

xv

104

104

105

107

108

111

118

119

121

121

124

124

125

126

127

130

131

131

137

137

140

146

146

148

150

152

153

153

155

157

I

...

Ii

.1

::

I

A

A.1 ABCOM code of Example 7

A.2 Optimised solution of Example 7.

Bibliography

XVl

1~1

161

164

167

!

List of Tables

3.1 Comparison of CDOAG with other graph representations used 47

4.1 Example of Quadruples 56

4.2 A merging-point processing table 65

7.1 Operator precedence for pattern normal forms . 129

7.2 SADP analysis of Example 5, 6 and 7. 145

xvii

I

-

I:

Ii

i

'

List of Figures

2.1 The paradigms of Parallel computing

2.2 Different programming solutions lead to different performance.

3.1 An parallel algorithm for matrix multiplication

3.2 Cannon's systolic algorithm for matrix multiplication .

3.3· Computation graph for Cij

3.4 CDOAGs of Example 1

3.5 Examples of relations between CDOAGs.

3.6 ABCOM platform for parallel processing .

4.1 The Syntax of ABCOM

4.2 A composed element ..

4.3 Overview of the ABCOM compiler

9

19

30

31

31

36

38

46

50

52

55

4.4 Syntax tree 56

4.5 The grammar for assignments 56

4.6 Syntax-directed semantic rules to produce ABCOM code for assignments 58

4. 7 The grammar for conditional statements 59

4.8 The syntax-directed semantic rules to translate conditional statements 60

4.9 Algorithm for assignment transformation . .

4.10 The table of operation precedence relations

4.11 A general case of the branching and merging points .

4.12 A program flow chart including conditional statements .

4.13 A general example of the conditional statements

4.14 An ABCOM code of a conditional statement with two branch flows .

4.15 Algorithm for Do--loop

4.16 The transformed code of Example 5

xviii

62

63

63

63

65

66

68

69

1-

~1-

- --

4.17 The transformed code of Example 6

4.18 A accuracy-control iteration of While-----Do .

4.19 The transformed result of While--do

5.1 The conceptual schema in ABCOM tuplebase

5.2 Algorithm 3 for CDOAG generation

5.3 Algorithm 4 to obtain Uoweru;

5.4 Algorithm 5 and 6 for detecting data flow relations.

5.5 A data access pattern abstracted from Table 5.1 ..

5.6 Algorithm 7 for testing a contained relation between CDOAGs

5.7 Algorithm 8 for testing CDOAGu; t:x:l CDOAGur

5.8 Algorithm 9 for testing CDOAGu; lie CDOAGu;- .

5.9 Part of the ABCOM code of Example 8

5.10 Uncertain relations among some elements of Example 8

5.11 The procedure of element migration

6.1 · Two access patterns based on the same data object .

6.2 Algorithm optimising a CDOAG ..

6.3 The CDOAGs of Example 6

6.4 Two access patterns of data object a . .

6.5 The optimised solution of Example 5

6.6 The optimised solution of Example 6

7.1 Two different CDOAGs of the same set of elements.

7 .2 The normal form of C DO AGu.11 1 and C DO AGu.
11

2.

7 .3 The iteration increment in a nested loop

7.4 Scalable computing

7 .5 The revised scalability metrics.

7.6 ABCOM-based parallel programming paradigm

xix

69

71

71

80

82

84

85

87

90

91

92

93

94

96

108

110

112

113

116

117

128

130

135

138

142

151

I
i

I

-

Chapter 1

Introduction

...... for art and science are a single gift, called science inasmuch as art refash­

ions the mind, and called art inasmuch as by science the world is refashioned.

Santayana, Dialogues in Limbo

1.1 Motivation

Massively parallel computers are attractive tools for solving many computationally

intensive problems. While parallel programming practice is still considered as an art

that demonstrates personal experience, skills and knowledge, the main challenge lies in

writing programs that fully exploit the power of parallelism for a given problem and

architecture. Current parallel programming methodologies are empirical or ad hoc since

a number of different solutions to a given problem can be arrived at by different people

even if they are allowed to use the same computer architecture. The performance of a

solution can be quite different for each possible solution due to the differing experiences

in programming and understanding of the problem acquired by each programmer. In

most cases, the first workable program solution is likely to be adopted. If the chosen

solution does not turn out to be efficient one, then it will be an expensive choice in

the long run. As a consequence, a natural question asked by programmers is: why a

developed solution is better than others that have not been tried yet and/or why a

1

l

I
,:

2 Chapter 1. Introduction

particular architecture is more suitable for a given problem than other architectures. If

this question is not addressed properly, parallel computing will not achieve its potential.

The diversity of research in this discipline which can be broadly termed ' parallel

computing' is large and ever growing. This discipline ranges from the highly abstract

and theoretical formalisms to very specific and practical implementations. However,

sophisticated programming methodologies for parallel computing are yet to be devel­

oped [Pan91], [KN93]. It is also hard to find research and techniques that provide

general and useful guidelines as to what extent the parallelism of a problem should be

exploited, though there are many research papers outlining techniques that describe

how parallelism can be achieved.

We should nevertheless realise that it is the domain knowledge of parallelism that

is vital in answering the question such as 'to what extent' parallelism is realisable. In

order to reduce the risk of performance failures of parallel programming, therefore, the

scope of research and development in parallel computing should be enlarged. Parallel

programming methodologies should pay more attention to the foundations. One of the

important issues to be considered is how a developer can be assisted in building up a

sound domain knowledge of parallelism, or how users can share the same background

of domain knowledge. This background should provide a general view on the problem,

and should be relatively free of subjective factors.

Parallelism in solving a problem results from two different, yet interrelated aspects

that are objective and subjective respectively. Objective aspects restrict certain compu­

tation tasks to execute sequentially (for instance, operations in a dataflow relationship),

while some other tasks can be parallelised if certain execution conditions are met. The

awareness of subjective aspects arises when a number of different program solutions

with different parallel properties are developed. In such a case individual parallel prop­

erties may be or may not be selected to be used in a solution. The selection of parallel

properties in a physical implementation results from a subjective decision of the pro­

grammer and is constrained by the tools and architectures used. Therefore, expressing

parallelism in programming is based on subjectivity. The subjective aspects of par­

allelism play an important role in achieving good performance in parallel computing.

The study and techniques to deal with objective aspects of parallelism have not yet

J

--- 1-

1.2. Why a Model for Parallelism Revelation 3

been paid much attention in the literature except the concept of dataflow computing,

perhaps due to the fact that we have yet not realised their importance because of our

cognitive limitations. The aim of this thesis is to examine the role of the objectivity in

parallel computing.

1.2 Why a Model for Parallelism Revelation

A model called a parallelism revelation model is developed with the primary goal of

revealing parallelism. Unlike the conventional computation models that are developed

for designing architectures and languages, or as a tool to express parallel properties of

solving a problem that are known to a developer, a parallelism revelation model plays

quite a different role in parallel computing. From a methodology point of view, first,

this model assists a programmer to build up a sound domain knowledge of parallel

properties before a real implementation commences. Secondly, the method of revealing

parallelism differs from that for expressing parallelism in the following respects:

1. The parallelism expressed in a language is somehow constrained by a number of

subjective factors - such as subjective views of programmers and constraints of

the language and the architecture, if architecture dependent. The expressed par­

allelism therefore contains the features of subjectivity. The parallelism revealed

by a parallelism revelation model should be much less constrained so that the

objectivity of parallelism can be studied.

2. The result of expressing parallelism leads directly to a specific implementation

with certain properties of parallelism subjectively selected by the programmer.

The parallelism revelation results in a knowledge about parallel properties of

solving a problem. This knowledge can serve as a common basis for parallelism

analysis, solution derivation and further mapping the problem onto a specific

architecture.

Conventional programming practice starts with expressing a solution in a particular

language in the light of a subjective understanding. In a parallelism revelation model,

one starts with building up a background of parallel properties of solving a problem.

l

I

4 Chapter 1. Introduction

Consequently, a parallelism revelation model can complement many existing techniques

and tools of parallel computing.

This thesis is devoted to the development of such a parallelism revelation model and

a programming platform that relates this model to other research aspects and issues

in parallel computing. The model developed is called an abstract computational tuple

space model (ABCOM) (CK95c], (CK95a]. It is an intermediate representation into

which a program solution expressed in a conventional programming language can be

converted. The initial version of the solution converted from a source code preserves

all execution features of computation designed in the code. As a parallelism revelation

model, ABCOM supports parallelism analysis and inference by providing for a set of

relation-based rules (CK95b]. Moreover, all the ·dependencies can be exactly detected

(CKY95], and the memory-based dependencies are removable from the solution. Thus,

an initial version of a solution can be optimised until we get a new solution having

the maximum parallelism. The optimisation can then be carried' out in a machine

independent fashion.

In such an optimised solution that is executable in an ideal machine, all the dataflow

computation features contained in solving the problem are exploited by removing all

the constraints introduced in the source code. For any two solutions to the same

problem, the difference in performance between their optimised solutions is equal to

the difference between the two longest paths of dataflow computation in these two

solutions respectively. It is also demonstrated that this optimisation which reveals par­

allelism is a relatively independent task from physically mapping a real world problem

to a particular architecture. Based on the optimised solution, the objective features

of parallel properties of the problem can be inferred, analysed, abstracted and pro­

filed. ABCOM can serve as a platform to support parallelism speculation, scalable

performance analysis, solution derivation and performance prediction when a target

architecture is selected for implementation.

To study parallelism as a function of the size of the problem, we introduce the

concept of scalability of application domain parallelism. This concept is important

in programming as well as selecting a suitable architecture for a given problem. By

examining the applications of ABCOM, we show that a parallelism revelation model

---·- ----

I

I

I

I

1.3. Structure of the thesis
5

can be used in an integrated parallel programming environment in which a number of

techniques and tools of parallel computing can be cooperatively applied and developed.

The main contributions of this work are: i)proposing and developing a parallelism

revelation model that enhances the existing techniques and tools; ii) introducing the

concepts of subjective parallelism and objective parallelism that can tell us as 'to what

extent' parallelism can be exploited; iii) developing techniques to reach an optimised

solution with objective parallelism for a given problem; iv) introducing the concept

of scalability of application domain parallelism based on which scalable performance

analysis can be carried out to support program design and architecture selection, in

particular when the problem size is variable; and v) presenting a foundation of a parallel

programming platform that can be used cooperatively by many techniques and tools

used in parallel computing.

1.3 Structure of the thesis

The work reported in this thesis focuses on investigating the nature of parallelism

inherent in a problem and developing techniques that support this study. Unlike other

studies, our study of parallelism is considered as a relatively independent task from

any physical realisation.

In the following chapter we provide a background of the state of art of parallel

programming, identify problems that have not been addressed properly and discuss

the relations between existing research (including techniques and tools) and issues

concerned in this thesis. By examining the main problems, we conclude that some

new techniques or tools should be developed to enhance the existing techniques. The

features of and requirement for the new techniques are highlighted.

To address the issues raised, an abstract computational tuple space model (ABCOM)

is introduced as a parallelism revelation model in Chapter 3. ABCOM's notation

and properties are provided as a theoretical foundation of the model. A comparison

between ABCOM and conventional languages and computation models is presented to

characterise the potential application of ABCOM.

Chapter 4 examines the expressive power of ABCOM and the main transformation

---,-

I

'

I

I

1,

!

j:

11

11
-- --

6 Chapter 1. Introduction

techniques to generate ABCOM code from a FORTRAN-like sequential source code.

Since ABCOM is an intermediate representation, it is not suitable to directly express

a solution in it by hand in the sense of programming.

The features of ABCOM are further explored in Chapter 5 to show the advan­

tages of such a model in supporting computation and parallelism inference required by

performing more complex tasks in parallel computing. A relation-based programming

database is suggested for practical implementation of the inference techniques.

In Chapter 6 an approach to ABCOM based solution parallelisation is presented.

Using this approach a given solution that usually is a control flow program is opti­

mised into data flow computation where the resultant parallelism is objective.

To pursue our goals of developing such a model, in Chapter 7, we discuss ABCOM

as a parallel computing platform to support parallelism profiling, speculation and scal­

able performance analysis. The connection between ABCOM and other techniques of

parallel computing are also examined.

Finally, Chapter 8 contains a summary of the contributions and limitations of the

present thesis. Also we draw some conclusions, and point out avenues for future re­

search.

,....

:

I

I
I

I

Chapter 2

Background, Motivation and Objectives

In the first section of this chapter we briefly examine the state of the art of parallel

programming methodologies (PPM); in particular, the main concepts and techniques

used for exploiting parallelism. These techniques are not necessarily the most popular

or practically successful ones, but are relevant to this dissertation due to the significance

of the issues they address. The major problem considered in this thesis is presented

in Section 2.2 with a review of current related research to the problem in Section 2.3.

The thesis objectives are stated in Section 2.4.

2.1 The Development of PPM

The state of the art of parallel programming methodologies is influenced by three

main factors:

(i) Sequential programming concepts: The main framework of PPM is based on

conventional sequential programming, which includes a variety of aspects such as lan­

guages, computation models, compilers, debugging and portability of programs. There­

fore, parallel programming inherits most of the problems encountered in sequential

programming.

(ii) Different architectures: Different architectures require PPM to deal with differ­

ent models of computation and communication for achieving high performance. Due to

the development of diverse parallel system architectures, a number of special areas of

research have emerged and became part of the PPM. Examples of these are message­

passing, synchronising, load-balancing and performance prediction. Without providing

7

I

I

8 Chapter 2. Background, Motivation and Objectives

adequate system support for these aspects, a new architecture cannot be successful

commercially. In order to utilise this system support, there is an increasing demand for

programmers with adequate skills and knowledge. Also the expertise in programming

a particular architecture becomes necessary for successful parallel implementation.

(iii) Programming paradigms: Finally, to cop~ with the difficulty and complexity of

parallel programming, certain programming paradigms have been developed - such as

coordination languages and skeleton programming. These paradigms strongly influence

parallel programming styles.

Parallel computing can be achieved by using an explicit or an implicit approach,

as shown in Fig. 2.1.

In the explicit approach a mapping procedure from a real world problem to a tar­

get parallel computer system is carried out. The parallelism properties for solving a

problem are recognised, exploited and represented in a programming language by pro­

grammers; then a compiler transforms the given program with associated parallelism

into an executable code on a specific architecture. The present generation of languages

requires programmers to be aware of, and explicitly handle either the parallelism, com­

munication , or both. The awareness of parallelism requires not only the characteristics

of the architecture, but also the features of problem domain.

In the implicit approach a parallelising compiler first detects parallelism in a se­

quential or functional program, and then converts the program into executable code

for a specific architecture.

The key issue in both approaches is how to fully exploit parallelism for a given

problem based on a specific architecture. To achieve this goal, a number of concepts

and techniques have been developed. There are a number of important research papers

on exploiting parallelism, bringing significant progress for PPM. We briefly review the

relevant research aspects in the following subsections.

2.1.1 Parallel computation models

The von Neumann model is universal and serves as a bridge between programs and

machines for sequential computation. In parallel computation, however, the existing

parallel programming languages are tied to some particular parallel computation model,

\

2.1. The Development of PPM 9

I

Application
Domain

f
Imperative ~ Programming ~ Functional
Languages Languages

Implicit Explicit
Approach Approach

I

t
Sequential
Programs

Parallel
Programs

f ' -,

Parallelizing
Compiler Compiler

\ I
Parallel

Architecture

Figure 2.1: The paradigms of Parallel computing

ii

11

I,

!

II

10 Chapter 2. Background, Motivation and Objectives

either theoretical or physical. In the last three decades, to improve the expressive power

of parallelism, great efforts have been made to develop new models and languages.

The requirements for exploiting parallelism, studying the complexity of algorithms

and achieving portability of programming, have resulted in a significant advance in

this area due to the introduction of machine-independent parallel computing (Lew94],

(Ski90], (FS92], [Val90a].

• PRAM

The PRAM (Parallel Random Access Machine) is an ideal model, that is widely

used. It is discussed in detail in [GR88], (KR90] and [Val90b]. A PRAM model

consists of a set of processors connected to a shared memory by a switch. In unit

time, each processor can access its local memory or registers, access the shared

memory, and perform a standard operation. Several variants of PRAM have been

introduced in the literature to allow varying degree of simultaneous reference to

the same memory location (EREW, CREW and CRCW). One of their common

features is that communication time is not accounted for when studying a given

parallel algorithm. In fact they require frequent communication (by using shared

memory, possibly on every step).

The PRAM programmer's task is to produce a program for each processor, or

more likely design a single program to be executed by every processor in what

often amounts to a SPMD style of programming. PRAMs are useful for studying

parallel algorithms and evaluating their behaviour and properties. If an algorithm

does not perform well on a PRAM it will be impossible to try to implement it

on a realistic, but weaker, parallel architecture. The suitability of PRAM as a

universal model was been examined by Skillicorn (Ski91). He has concluded that

the PRAM model is universal over the classes of tightly coupled and hypercuboid

multiprocessors, but not universal over the constant-valence topology multipro­

cessors and SIMD computers. The problem with efficient implementation of the

PRAM model on these systems is that the amount of communication generated

at each step can easily overrun the bandwidth provided by the topology.

I

I

- .. . -

2.1. The Development of PPM 11

• Dataflow model

The dataflow model of computing gets around the problems encountered in in­

troducing parallelism in the traditional control flow model, by using a different

viewpoint of the process of computation. Computation is represented by a di­

rected dataflow graph [DK82] [Sha85] with the nodes as operations and the arcs

as paths carrying data tokens. In a dataflow program the ordering of operations

is not specified by the programmer, but is constrained by the data interdepen­

dencies.

When data is present on each input of an operation node, the node fires, i.e. it

computes the operation using the data on its input arcs as arguments and passes

the result out through its output arc. Since several nodes may fire simultaneously,

the dataflow model gives rich opportunities for parallel evaluation. An important

property of this model (which allows parallelism to be safely exploited) is the

single-assignment property that an operation has no effect other than comput­

ing the output from its input arguments, i.e. side effects cannot occur. On the

other hand, this single-assignment property makes dataflow languages unpopular

with programmers used to conventional languages such as C, Fortran, etc. The

dataflow model is widely used in three main areas of parallel computing: func­

tional languages, compilers and architectures. For example, VAL [McG82] and

Id [Eka91] are two functional languages associated with certain dataflow archi­

tectures. The implicit parallelism in the program written in these two languages

is exploited by dataflow models. IFl which is the intermediate code used by the

compiler of Sisal [SW85], [Ske91] [CBF91] is a dataflow graph language. In fact,

the dataflow technique is popular and is used by various compilers for optimisa­

tion.

• Bird-Meertens Formalism

The Bird-Meertens Formalism (BMF) is an approach to software development and

computation based on categorical data types and associated operations. This the­

ory is initially based on the theory of lists [Bir87] and developed in [Spi89], [Ski93]

and other papers. The theory of lists adds a number of the second-order functions

!
I

I

I

-

Ii
Ii

'

I

12 Chapter 2. Background, Motivation and Objectives

to the ba.se algebra, which includes map (x), reduce(), directed reduce (ft), prefix

(), filter (<l) and so f0rth. BMF encourages software development by equational

transformation which can be applied for optimisation, or regarded a.s rewrite rules

[Mal90]. BMF does not directly express low-level parallelism physically; it is the

compiler's ta.sk to implement the operations in parallel. Communication in this

model is restricted to a set of functions, each of which encapsulates a particular

communication pattern requiring only a constant size of neighbourhood locality

[Ski91]. Both parallelism and communication are thus hidden from the direct con­

cern of the programmer. A strategy for building cost calculi for skeleton-ba.sed

programming languages ba.sed on the Bird-Meertens formalism is presented in

[SC94] so that trade-offs in software design can be explored before implementa­

tion. A major drawback of BMF is that it is applicable to only data-parallel

algorithms.

2.1.2 Parallelising compilers

In the implicit approach, also called the conversional approach, a parallelising com­

piler first detects parallelism in a sequential or functional program, and then converts

the program into executable code for a specific parallel architecture. Recent research

ha.s underlined the importance of exploiting both control and data parallelism in a

single compiler framework that can map a single source program in many different

ways onto a given parallel machine. One of the most difficult problems for parallelis­

ing compiler techniques is how to find parallelisable execution code ba.sed on efficient

and exact data dependence analysis[Pug92],[Lam74], [Ban90],[Lil94], (Mea91]. Despite

some progress in the la.st two decades, a really sophisticated parallelising compiler is

unlikely to be developed in the near future. One of the main rea.sons for this is the lack

of sophisticated techniques and tools to fully exploit parallelism. Hence, at present,

program parallelisation is only ba.sed on an incomplete knowledge background of par­

allel properties of application domains. An important question is whether the research

frontiers in parallelising compilers are currently pushing the limits of traditional data

dependence analysis. There are several complex tradeoff factors between control and

data parallelism, depending on the nature of the program to be executed and the

I

I

l
I

2.1. The Development of PPM 13

performance parameters of the target parallel machine. This makes it difficult for a

compiler to select a good mapping for a control and data parallel program, because

any such rational selection has to be based on the performance evaluation of different

solutions. Further discussion on the state of art of data dependence testing is given in

Chapter 6.

A survey on compiler transformations for high-performance computing by Bacon,

Graham, et al [BGet al94] shows that the current parallelising compilers lack an organ­

ising principle that allows them to choose how and when the transformations should

be applied. In particular, due to the absence of a strategy for unifying transforma­

tions on parallel architecture, most high-performance applications currently rely on

the programmer's skills rather than the compiler to manage parallelism. Since efforts

to automatically parallelise sequential languages have not been very successful (as peo­

ple have expected), the focus of research has shifted to compiling other non-traditional

languages, such as functional or parallel programming languages, where the program­

mer needs to express directly or indirectly the parallelism needed [MPC90].

2.1.3 Functional programming

Functional programming has attracted research attention for more than thirty years.

Its clean semantics make it an attractive vehicle for investigating various programming

language concepts. Church's lambda-calculus [Chu46], [Bar81] is the formal basis of all

functional programming languages.

An expression in the pure lambda-calculus is composed solely from three syntactic

objects: function abstractions, function applications and identifiers. An application

is reduced by replacing occurrences of the function's formal parameter with copies of

its argument (,B-reduction). In applicative order reduction, the argument in a function

application is reduced prior to doing the ,B-reduction. In normal order reduction the

,B-reduction is performed directly with the unevaluated argument. Regardless of which

reduction order is used for evaluating lambda-expression, the result remains identical.

This important property of the lambda-calculus implies that a lambda-expression can

be evaluated using any order of reductions. In principle, performing reduction in par­

allel is allowed. One of the main features of parallel functional programming is that

14 Chapter 2. Background, Motivation and Objectives

the programmer is able to view a program as a collection of high level units ignoring

computational details. The lambda-calculus has a natural parallel semantics or mean­

ing, since no particular execution order is enforced. Thus, functional programs contain

implicit parallelism at all levels.

It is claimed in [Szy91) that functional programming is a convenient basis for the

development of the parallel programming languages and the compilers in designing

parallel programs. In practice, functional languages are used for parallel processing in

two different approaches.

• The purely implicit approach, where an ordinary functional language with

no parallel additions whatsoever is implemented on a parallel architecture. To

exploit parallelism in such a program, a compiler needs to abstract useful paral­

lelism and organise all computation units effectively on a target architecture. The

typical techniques used for these compilers are the dataflow model and parallel

graph reduction. The main problem with this approach is that compilers seem to

have difficulties in deciding when a parallel evaluation is worthwhile, and when

a standard sequential evaluation is preferable. To efficiently exploit parallelism,

the dataflow model has been extended to support threads of appropriate grain

size, allowing hybrid dataflow and control flow evaluation [GGB93). While sim­

ple and sound, there are doubts as to whether the extended multithreading of

a dataflow system is as attractive as originally thought. Culler et al point out

two fundamental limitations [CSE93): latency tolerance is limited in practice and

local scheduling polices are inadequate. Many parallel graph reduction based sys­

tems can be considered to be not quite purely implicit since they rely on various

degree of programmer annotations to identify the useful parallelism.

• The purely explicit approach, where a functional language is given extra syn­

tactical constructs through which the programmer can instruct the compiler that

parallel evaluation should take place. Here the burden of explicit parallel pro­

gramming is put back onto the programmer, whose skills and knowledge is in­

strumental to the performance of implementation. As a result, the programmer

is required to indicate opportunities for fruitful parallel evaluation with various

2.1. The Development of PPM 15

annotations and also to specify how it is to be performed on certain architectures

if necessary.

Although (unctional languages provide abstractions, determinacy, succinctness and ease

of expression, they are not commercially popular since their efficiency does not match

the imperative languages. Moreover, there is a trade off between expressiveness and

parallelism because if all the parallelism is exposed in the program, the program tends

to become cumbersome and less succinct, particularly for large applications. Some

compromise between expressiveness and parallelism is necessary for efficiency. In sum­

mary, it is certain that the fruits of functional languages, however attractive they may

appear, cannot be reaped until definitive efficiency comparisons with the conventional

computing are shown.

2.1.4 Programming paradigms

Regardless of the target parallel architecture, parallel programs must harmoniously

coordinate two or more program segments to assure correctness, as well as high speed.

This is the challenge of parallel programming. Exactly how parallelism is achieved is

largely determined by the particular paradigm used by the programmer and program­

ming language used. With the development of PPM, in order to reduce the difficulty

of complexity management in parallel programming, including expressing parallelism,

partitioning, message passing and synchronising, a number of special programming

paradigms have been developed, which have different programming styles with differ­

ent programming philosophies.

1. UNITY

UNITY is introduced as a foundation of parallel programming design [CM88]. A

UNITY program describes what should be done in the sense that it specifies the

initial state and the state transformation (i.e., the assignments). A UNITY program

does not specify precisely when an assignment should be executed - the only restric­

tion is a rather weak fairness constraint: Every assignment is executed infinitely often.

Neither does a UNITY program specify where (i.e., on which processor in a multipro­

cessor system) an assignment is to be executed, nor to which process an assignment

belongs. A UNITY program does not specify how assignments are to be executed or

16 Chapter 2. Background, Motivation and Objectives

how an implementation may halt a program execution. UNITY separates concerns

between what on the one hand, and when, where, and how on the other. The what is

specified in a program, whereas the when, where, and how are specified in a mapping.

By separating concerns in this way, a simple programming notation is obtained that is

applicable for a wide variety of architectures. Of course, this simplicity is achieved at

the expense of making mappings immensely more important and more complex than

they are in traditional programs. In this approach no explicit control of scheduling

or communications is required. UNITY is viewed as a language for reasoning about

computation rather than executing computation. The departure point of UNITY from

the conventional view of programming is to attempt to decouple a program from its im­

plementation. This decoupling leads that the correctness of a program is independent

of the target architecture and the manner in which the program is executed, hence,

a mapping becomes a description of how programs are to be executed on the target

machine. The philosophy of UNITY shows the impetus of developing a different the­

oretical foundation for parallel programming from the conventional utilisation of von

Neumann architectures.

2. Linda

Linda [CG89],[CG90] (a coordination language) is based on a shared, associative object

memory-a tuple space. This tuple space contains an unordered collection of 'tuples',

where each tuple contains an ordered collection of data fields. A tuple in the space is

either active or passive. An active tuple is a process, destined to turn into an ordinary

passive tuple upon completion. Tuples are removed using an associative matching

protocol resembling the select operation in a relational database.

Linda provides a radically uncoupled model of parallel computing. As a language, it

places simplicity uppermost so that uncoupling has a space-wise and time-wise aspect,

that is, processes may communicate in Linda although they are mutually anonymous

and their lifetimes are disjoint. Linda requires the explicit expression of parallelism

and communication (by accessing tuple space) but abstracts from synchronisation.

3. Skeleton-Based Programming

It is observed that parallel programs written in explicitly parallel languages consist

of two different kinds of codes, task specific code implementing the individual steps

2.2. Problems 17

of the algorithm, and code for structuring the program into patterns of computation

and communicati_on associated with specific architectures for parall_el execution. It is

typically only in the latter kind of code that there is a need to deal with low-level

machine dependent design problems. Moreover, the typical parallel infrastructures of

programs have been classified into a few well-known parallel paradigms (patterns), each

determining the operation and coworking of groups of processors.

In [Col89],[Det a/93] the use of'patterns is suggested as is a fundamental concept in

parallel programming. From the programmer's perspective the skeleton is a high level

semantic description of an algorithmic operation with gaps left for problem specific

procedures and declarations. To use such a skeleton, the programmer must fill these

gaps with parameters. The implementation of a skeleton is, however, completely hidden

· from the programmer. By using skeletons there will be parallelism implicit in the

program which can be potentially be exploited on a parallel architecture by a compiler.

Consequently, the portability of the program is enhanced in this paradigm.

In summary, during the last three decades, parallel programming techniques have

been developed with · great effort, providing various advanced vehicles to let program­

mers make use of their personal knowledge and skills because parallelising compilers

have not been so successful as expected. Due to the different strengths and weaknesses

of these techniques and approaches, we cannot predict which one of these will dominate.

The attention of our research is limited to examining the current state of the art in

the literature, identifying some inadequate components in PPM and possibly providing

improved techniques for PPM.

2.2 Problems

Parallel computers are used almost exclusively for very specific areas of compu­

tating. It is widely believed that the principal reason why parallel computing has

not had a major commercial breakthrough is due to the lack of adequate software de­

velopment methodologies and tools [Col92], [Pan91], [KN93]. To expand the use of

parallel computers, a fundamental requirement is that these computers are easy to use

like uniprocessor computers. In fact, it is not difficult to write a program with cer-

18 Chapter 2. Background, Motivation and Objectives

tain parallel properties, but it is difficult to develop a parallel program with a good

performance.

Nobody wants parallelism. What we want is performance. It is the fact that

going to parallelism is the only way to continue to enhance performance that

makes parallelism a necessity [Pan91].

Ken Neves of Boeing Computer Services

Because the von Neumann architecture is universal for sequential computation,

an implementation of an algorithm on one manufacturer 's uniprocessor will differ in

speed by no more than a constant factor from that on another 's [Ski90] . In parallel

programming, however, the situation is quite different. Whether an implementation of

parallel computing is successful should be decided by both correctness of computation

and the performance achieved. An implementation with certain parallel features does

not mean a success if some more significant parallelism is missed out. In other words, it

is possible that there could be another solution making use of that parallelism to achieve

a better performance. In such a situation, we believe that current parallel programming

methodologies are empirical or ad hoc since a number of different solutions to a given

problem, with widely different performances, can be arrived at by different people, even

if based on the same architecture.

In most cases, the first workable solution is likely to be adopted. If the chosen

solution is poor, this will not be a cost-effective choice in the long run. Hence, pro­

gramming methodologies should provide a guideline to convince programmers why a

chosen solution is better than others, or why an architecture used is better suited for

a problem than others. Unfortunately, most current research papers and techniques in

the literature do not deal with such practical guidelines. The problem discussed here,

actually, is how to reduce the risk of performance failures using proper methodologies.

In the explicit approach most languages and models are used to express parallelism

in a problem. Thus, the parallelism must be known to the programmer before it is

expressed. In such a case, it is found that a successful implementation of parallel

computing is determined by two main characteristics of the programmer, namely, pro­

gramming skills and knowledge of parallel properties in the problem. If a programmer

2.2. Problems 19

Resulting
Personal factors· ················ ·· ··· ,> Different perf onnance

8 Code 1

Program2 Code2

Compiler

Program n Code n

Figure 2.2: Different programming solutions lead to different performance.

lacks excellent programming skills or understanding of the parallelism in the problem,

the risk of performance failures always exists. This situation is illustrated in Fig. 2.2.

Different programmers produce diverse solutions in which personal experience is heav­

ily involved. If no special optimisation is applied in transformation by the compiler,

the difference in performance of the two solutions proposed by programmers is unlikely

to be improved in the compiled codes.

The main reasons for this situation can be summarised by the following four points:

• Programming languages permit to express an algorithm to solve a problem; par­

allel programming languages are no exception. The parallelism specified in a

parallel program is known to programmers and is constrained by using certain

languages. The same is true of most parallel computation models and functional

parallel languages, no matter whether they are machine-dependent or machine­

independent. In the diagram shown in Fig. 2.2, the constraints from the tech­

niques used in programming and personal experience of programmer are intro­

duced at the programming stage and finally contribute to the performance.

20 Chapter 2. Background, Motivation and Objectives

• It is observed that none of those languages and models has been developed with

the primary goal of revealing parallelism in a problem. No standardised scale

exists to measure parallelism in a given problem. The parallelism in a problem

is visible only in implementation as expressed by a programmer. As a result,

progress towards full exploitation of the problem's parallelism cannot readily be

evaluated. The performance of the solution can only be examined after the imple­

mentation. Moreover, if there are different available architectures, the selection

of an architecture is usually made before programming based on personal expe­

rience, knowledge and intuition rather than a formal investigation of the parallel

characteristics of the problem.

• Current programming paradigms do not guide us to find alternative solutions

except by writing a new program. The performance of any proposed solution can

only be examined after implementation.

• Using existing concepts and terminology, we are not able to explain some of our

concerns. The· concepts, explicit parallelism and implicit parallelism, are suitable

to indicate the state of individual parallel properties in a program rather than

the general feature of the parallelism because

Explicit parallelism does not explain the differences between parallel features

in two solutions;

Implicit parallelism cannot determine to what extent a given solution can

be optimised.

As a result, it is difficult to introduce proper measures to check if a parallelising

compiler can successfully exploit parallelism for a given source code.

Machine-independent parallel programming is important to make the program­

ming task easy and address the portability issues. It does not help to eliminate

the subjective aspects that affect the performance.

In order to obtain suitable methodologies for parallel computing, attention has

been paid to topics, such as parallelism profiling, program derivation and performance

2.3. Related research 21

prediction. It is not clear whether these topics could be naturally and successfully

combined with languages, computational models and parallelising techniques since they

use quite different tools in representation. The requirement to develop an integrated

environment for conducting a number of different tasks in parallel programming is

inevitable from a systematic and engineering point of view. There is no consensus yet

on structure of the software platform for such an environment.

In terms of the motivation for developing parallelising compilers, an ideal compiler

is supposed to exploit the maximum parallelism for a given source code. In other words,

for different program solutions of the same problem, having almost same amount of

inherent parallelism, the difference in performance of their transformed codes should

be within acceptable limits. If we can conceptually divide the task of exploiting par­

allelism into two subtasks, namely, finding parallelism and mapping it onto a specific

architecture, then whether a compiler could find out a certain amount of parallelism for

both solutions becomes a key issue. The survey by Bacon et al [BGet al94], shows that

the research progress in this field has not indicated the availability of such a smarter

parallelising compiler in the near future.

2.3 Related research

The problem we have raised is related to a number of fundamental issues in parallel

programming, like languages, computational models, parallelisation and so on. Some

issues have been recognised and studied by several researchers around the world.

1. Pomsets approach

To model concurrency with partial orders, Vaughan Pratt (Pra86] introduces a single

hybrid approach having a rich language that mixes algebra and logic and having a

natural class of models of concurrent processes. The language is extracted from three

existing approaches, that is, formal languages, partial orders and temporal logic. The

heart of this approach is a notation of partial string derived from the view of a string

as a linearly ordered multiset by relaxing the linearity constraint, thereby permitting

partially ordered multisets or pomsets.

As a formal representation of processes, a pomset is the isomorphism class of an lpo

22 Chapter 2. Background, Motivation and Objectives

(labelled partial order) , denoted [V, I:~'µ] by Gischer [Gis84]. Unlike the 'operationaf

approach using reductions between expressions advocated by Milner [Mil83], Pratt's

approach is denotational or extensional in the sense that it uses a concrete mathematical

model of a computational behaviour, along with operations on behaviours that yield a

particular algebra of behaviours.

The above approach has the advantages of being straightforward, involving fewer

artificial constructs than many computing models of concurrency, and is applicable

to a wider range of types of systems [Pra86]. As a theoretical demonstration, this

approach shows how to use abstract concepts of partial ordering and multisets to exploit

parallelism.

In the recent work of Pratt all relational structures between time and information

are mathematically realized in the phase spaces of the Chu space [Pra94]. It is ob­

served, theoretically, that the passage from sequential non-branching computation to

concurrent and branching computation can be understood as the relaxing of the linear

structure to looser (weaker) spaces from both temporal and spatial points of view.

2. Complex systems

In the last ten years Fox's groups at the Caltech Concurrent Computation Program

(C3P) , and more recently the Northeast Parallel Architectures Centre (NPAC) at Syra­

cuse University have made great efforts in improving the understanding, concepts and

techniques of parallel computing [Fox90], [Fox92]. They consider parallel computing

as the mapping of one complex system - typically a model of the world - into an­

other complex system - the parallel computer. Thus, the use of parallel computers

can help improve our understanding of complex systems, and the converse is also true

- we can apply techniques used for the study of complex systems to improve our

understanding of parallel computing.

Fox's mapping theory of parallel computing is based on the space-time picture of

parallel computing, that is, spatial properties and temporal properties. The spatial

properties of the problem are determined by the concepts like system size, geometry

and information dimension, and mapping decisions like problem decomposition and

allocation. The temporal properties include static and dynamic scheduling, synchro-

2.3. Related research 23

nising and other dynamic factors. In terms of these properties a qualitative theory of

the architectures of problems is developed, which is analogous to Flynn's well-known

classification of parallel architectures. Fox discusses how the spatial (data) parallelism

of the problem becomes the temporal structure in software. He concludes that the fail­

ure of most parallelising compilers is caused by missing the point that the parallelism

comes from spatial and not control (time) structure [Fox92].

Most languages do not express and preserve space time structure. Consequently,

the efforts being made in NPAC are to develop languages that can express better the

problem structures. High Performance Fortran (HPF) is one of the languages devel­

oped for this improvement. With HPF certain structure features of the problem can be

expressed by data distribution directives (TEMPLATE, ALIGN, PROCESSORS, DIS­

TRIBUTE, DYNAMIC and REDISTRIBUTE), parallel statements (INDEPENDENT

and FORALL) and intrinsic functions and the standard library [Kea94].

3. GAMMA programming model

The GAMMA formalism [BM90] [BM93] in which programs are described as multiset

transformation was introduced to support a systematic program derivation method in

parallel computing. The main feature of GAMMA model is the function:

f((R1, A1), ···,(Rm, Am))(M) = oneof(f 11 ((R1, A1), ···,(Rm, Am))(M)

where

fll((R1, A1), • • · 1 (Rm, Am))(M) =
if'v'i E [l,m],'v'x1,"·,Xn E M,-,Ri(x1, .. ·,xn)

then {M}

else {M' I 3x1, · · ·, Xn E M, 3i E [1, m] such that

Ri(X1, · .. , Xm) and

M' E fll((R1, A1), ·",(Rm, Am))

((M - {x1, .. ·, Xn}) + Ai(x1, .. ·, Xn))}

The function R is the reaction condition (or condition text); it is a boolean function

indicating when some of the elements of the multiset M can react. The function

24 Chapter 2. Background, Motivation and Objectives

A (action text) describes the result of this reaction. Hence, if one or several reaction

conditions hold for several non-disjoint subset at the same time, the choice made among

them is nondeterministic. This aspect of GAMMA provides for competitive parallelism

[CG89], [MK95). However, if the reaction condition holds for several disjoint subsets

at the same time, the reactions can take place independently and simultaneously; this

aspect provides for cooperative parallelism.

The motivation of GAMMA is to express logical parallelism of a problem before

an implementation in which physical parallelism is achieved. The confusion between

logical parallelism and physical parallelism is part of the heritage of several decades of

imperative programming. It is suggested that in parallel programming we should be

able to build in the first place an abstract version of the program that should be free

of artificial sequentiality[BM93).

4. Other earlier studies

Also there are a number of previous studies on instruction-level parallelism, involv­

ing a wide variety of machine models and applications, to measure the limits of par­

allelism which may be exploited in a program (KMC72), [NF84), [Kum88), [Wal91),

[LW92),[TGH92b), [AS93). Lam and Wilson studied the limits of control flow on par­

allelism. They demonstrate that substantially higher parallelism can be achieved by

relaxing the constrains imposed by control flow using control-dependence analysis and

speculative execution [LW92). Theoblad, et al developed an experimental testbed to

examine the limits of parallelism in a program and its smoothability on a given model.

The result of their experiments shows that some applications intuitively seem to have

much more potential parallelism than found by current techniques. Thus it is suggested

that, in many cases, large-scale parallelism will not be achieved merely by transliterat­

ing existing imperative-language programs (TGH92a), [TGH92b). One of the common

features of these studies is to measure or examine performance and potential paral­

lelism in programs as they are executed. The concept of upper bounds for potential

parallelism is associated with the limitations of models and architectures.

Kumar has developed a software tool (COMET) that measures parallelism quanti­

tatively when a FORTRAN code is executed on an ideal parallel machine, and found

the potential for higher levels of parallelism in scientific numerical programs [Kum88).

2.4. Thesis Objectives 25

The measurements obtained from COMET would aid the evaluation of various par­

allel processing systems by providing the right set of assumptions for the extent of

parallelism presented in applications. Also Kumar found that the characterisation of

parallelism is more difficult and is handled at a cursory level.

Tetra [AS93]is a multi-platform instruction trace analyser developed by Todd Austin.

As a tool for evaluating serial program performance under the resource and control

constraints of fine-grain parallel processors, Tetra's primary goal is to quickly generate

performance metrics for yet-to-be designed architectures. The core of this tool is dy­

namic dependence analysis through the unconstrained dynamic dependence graph (we

use uDDG to distinguish another widely used concept DDG for data dependence graph).

The uDDG is also called dynamic dataflow graph because construction of such a graph

is based on the data dependencies realized in the analysed program's execution. This

approach has significant difference from other studies which are mainly based on the

context of programs. According to architecture features specified, Tetra produces an

execution graph that is finally analysed to evaluate the serial program's performance

under the specified architecture model.

2.4 Thesis Objectives

2-.4.1 The Proposed improvement in PPM

The central problem raised in the last section is about the deficiency that exists in

the current representation techniques used for parallel computing. A possible solution

to the problem is to develop techniques to exploit parallelism before or when a program

is developed. These techniques can be either improvement to the existing representation

tools or development of a new representation that will have a special facility to reveal

parallelism and can be easily integrated with other parallel programming tools.

A language or a computational model in programming is typically used as a tool to

express a real world problem in a particular form for computation. The parallel proir

erties of solving a problem are exploited and expressed in a specification or a program.

While two specified solutions of the problem may be quite different in performance.

If there is no smart compiler that could optimise two solution of the same problem

26 Chapter 2. Background, Motivation and Objectives

so that the performance difference between them could be reduced to an acceptable

range, then the issue raised would remain unsolvable with current techniques. Both

imperative languages and functional languages have already been designed for their

special features. The experience with language development has shown that it is very

difficult to make a language meet many different requirements of parallel computing,

since they may be contradictory.

Previous studies on machine-independent parallel computing, logical parallelism

[BM93] and the limits of parallelism in a program [TGH92a], show that parallelism can

be investigated in different ways. The task of finding parallelism is typically carried

out by a compiler or a program. The methods used to exploit parallelism is always

described in a traditional way that one can use the methods to express parallelism.

While,. it has never been explained whether or how the methods can ensure that for

a given problem parallelism is expressed correctly from a good performance point of

view. The problem here is that the success of using these methods is determined by the

person who uses them. In other words, the method itself cannot guarantee a success

when it is applied.

In order to improve this deficiency, we propose to develop some new techniques to

study parallelism in solving a problem as a relatively independent task from mapping

a real world problem onto a specific architecture. Such a technique should have a

special power to reveal parallelism in a non-traditional manner. We believe that a

programmer-view independent manner to express parallelism should be advocated such

that at the programming stage parallelism of a given problem can be revealed without

any constraints. This goal is not achievable by using conventional languages, thus, it is

necessary to define what this new technique is. Moreover, the relation between the new

technique and those existing concepts or tools should be set up properly. The effort we

are making is to enhance relevant techniques in PPM rather than developing a stand

alone one that would be better than others.

2.4.2 Parallelism revelation models

As discussed earlier, in conventional parallel programming approaches [CM88],

[CG89], [BM93], [Sab88], [Ski91], [CG90], the parallelism achieved by a particular

2.5. Summary 27

program is based on: (i) the models, architectures and techniques used as guidelines;

and (ii) the subjective view of programmers who produce different solutions using dif­

ferent parallelism features. Therefore, we call this kind of parallelism programming

solution-based parallelism or subjective parallelism. The word subjective itself

dose not mean anything on whether the performance of a solution is good or not, since

it only indicates that the solution is designed subject to certain constraints. Different

constraints introduced in program .design lead to different performances.

To improve PPM, we believe exploiting parallelism needs some kind of support

that is based on a special model, called a parallelism revelation model. The most

important feature of this model is the capability to reveal parallelism in a programmer­

view independent manner. In addition to the key properties possessed by a parallel

computation model suggested in [Ski90], the special criteria for this kind of model are

as follows:

• It should be developed with a primary goal to reveal parallelism of a problem.

• Its representation should be grain-dependent since parallelism analysis is based

on fine-grain representation where most data parallelism can be found, we should

then move on to a medium-grain or coarse-grain level for control parallelism.

• It should support parallelism inference.

• It should support optimisation of a solution.

• It should provide mechanisms to reconstruct solutions.

• It should have potential applications as a kernel or foundation for parallel pro­

gramming so that certain related techniques and tools can be integrated.

2.5 Summary

In summary, we quote from Chandy and Misra [CM88]:

The basic problem in programming is managing complexity. We cannot

address that problem as long as we lump together concerns about the core

28 Chapter 2. Background, Motivation and Objectives

problem to be solved, the language in which the program is to be written,

and the hardware on which the program is executed. Program development

should begin by focusing attention on the problem to be solved and postponing

considerations of architecture and language constructs.

To achieve this goal, in this dissertation, the discussion and study of parallelism of a

given problem (see Chapter 3 to 6) are separated from architectures and implementation

(a brief discussion of mappings is included in Chapter 7). The parallelism revelation

model is proposed as a new tool to exploit inherent parallelism that is independent of

the programmer's view.

Chapter 3

ABCOM- A Parallelism Revelation Model

Presented in this chapter are a parallelism revelation model, called ABCOM, and its

properties.

3.1 A Puzzle - Parallelism in a Problem

Parallelism is realisable in various forms - lookahead, pipelining, vectorisation,

concurrency, simulta"neity, data parallelism, partitioning, interleaving, overlapping, mul­

tiplicity, replication, time sharing, space sharing, multitasking, multiprogramming,

multithreading, and distributed computing at different processing levels. No matter

how they differ in their properties, a common feature of all is to solve a real world

problem on a particular architecture with an appropriate parallelism.

Parallelism is a qualitative concept when we say a problem is solved in parallel.

However, parallelism has also a quantitative aspect when the problem is expressed

in a particular program with parallel properties, which determine the performance of

the program. Parallelism is inherent in a definition of the problem, remains dormant

until it can be expressed in a notational form (such as a program or specifications). A

definition of a real world problem contains a data domain and operations associated

with the data. Parallelism characteristics for solving the problem are available based

on a combination of these two concepts and time. The objectivity of parallelism means

the parallelism in a given problem is inherent. But it can be partially and subjectively

expressed in a specific representation tool (for instance, a language). Hence the amount

of the parallelism expressed can be quite different from one solution to another due to

29

30 Chapter 3. ABCOM- A Parallelism Revelation Model

real A(n x n), B(n x n) and C(n x n)
real temp(n)
for i =1 to n do

end

for j ==1 to n do

end

temp(l: n) = A(i, 1: n) x B(l: n,j)
c(i,j) = Sum(temp(l: n))

Figure 3.1: An parallel algorithm for matrix multiplication

subjective factors and technical constraints involved. Thus, to answer to what extent

the parallelism of a problem can be exploited we have to know whether those factors

and constraints could be avoided or eliminated from programmer's expression as far as

possible.

To understand the subjective parallelism, let us start with the example of a matrix

multiplication C =Ax B, where

Cik = I:j aijbjk•

Here the data domain is composed of the elements of three matrices. Using a SIMD ar­

chitecture, one can solve this problem using different parallel algorithms. One possible

solution is shown in Fig. 3.1 where data parallelism is achieved in a vector-wise manner.

Another solution [Can69], [Cor90] is illustrated in Fig. 3.2. It can be speeded up by us­

ing a systolic array for more data parallelism. In addition, we can decompose[FJea88]

the whole matrix into a number of su~matrices for parallel computing. The (su~

jective) parallelism exploited in each of these algorithms is different, and results the

difference in performance due to the subject ive selection of parallel properties of the

problem.

A computation task can be illustrated using computation graphs, where consider­

ations on how to handle data manipulation in a program and storage on a particular

architecture are ignored. The matrix multiplication of A(3 x 4) x B(4 x 4) is shown in

such a graph in Fig. 3.3 to compute an element Cij of C =Ax B.

3.1. A Puzzle - Parallelism in a Problem

real A(n x n), B(n x n) C(n x n)
real al(n x n), bl(n x n)
integer skew(n)
/*Set up skewing vector: [O, 1, 2, · · ·, n - 1] *I
for i = 1 to n do

skew(i) = i - 1
end
I* Perform the initial skewing *I
al= cshift(A, 2, skew) /*skewing along dimension 2 *I
bl= cshift(B, 1, skew) /*skewing along dimension 1 *I
I* Loop to accumulate the dot product at each iteration *I
C(n x n) = 0
for i = 1 to n do
C(n x n) = C(n x n) + al(n x n) * bl(n x n)
al= cshift(al, 2, 1) /*skewing for next iteration*/
bl= cshift(bl, 1, 1) /*skewing for next iteration*/

end

Figure 3.2: Cannon's systolic algorithm for matrix multiplication

Figure 3.3: Computation graph for Cij

31

32 Chapter 3. ABCOM- A Parallelism Revelation Model

There are totally 3 x 4 computation graphs like this for this example. They are

computationally independent, yet share certain input data. Using this representation,

in a general case, if C(m x p) = A(m x n) x B(n x p), it is seen that all m * n * p

multiplications required could be performed in parallel and all (m*(n-l)*P) additions

can be done in log2 n steps (by using a CREW PRAM based model with m * n * p

processors). Note computation here is executed in a dataflow style with maximal

parallelism. The above example reveals the following:

1. Each element aij of A or bjk of B is used p or m times in multiplication. These

multiplications are independent and can be carried out in parallel if there is

no data-access conflict. The computational graph in Fig. 3.3 provides not only a

machine-independent but also program-solution independent approach to express

a computational schema.

2. The parallelism in a problem is objectively determined by the spatial structure

(data domain) and associated temporal logic of computation. Using parallel com­

putation models and architectures with different topological structures, we can

develop a number of different solutions for the same problem. The subjective par­

allelism achieved in a program is extracted from and is also constrained within the

objective parallelism. Current parallel programming always expresses a subjec­

tive solution with the parallelism realised by a programmer based on a particular

parallel computation model.

In our discussion, a given problem is defined as a set of given data objects (input

data and output data) plus a set of defined operations that are performed on the input

data to produce an output. If operations are redefined mathematically or conceptually,

the problem may change to a new one. The parallelism revelation discussed in this

dissertation, therefore, is not about how to redefine operations for more parallelism.

Our aim to reveal parallelism inherent in the initial representation of a problem. The

difference between the objective parallelism of a problem and subjective parallelism

realised in a program provides a measure for the performance of a program.

Also in this thesis, by the term 'solution' we mean any form of representation to

express an algorithm to solve a problem. A program is a special solution, while, a

3.2. Definitions and Properties 33

solution need not be a program.

3.2 Definitions and Properties

The abstract computational tuple-space model (ABCOM) is defined as a

finite symbolic data space in which computational information is represented into a set

of computation units, called eleme~ts of the space. ABCOM is formally defined thus:

Definition 3.1 The abstract computational tuple-space U consists of a set of quadru­

ples, called computation units (or elements) of the tuple space, that is, U = { u0 , u1 ,

u2, ···,Un} with uo I- (0, {0}, {0}, 0) and Ui I- (oPu;, inu;, outu;, exu;) for i = 1, 2, · · · , n,

where

• OPu; is a defined operation;

• inu; is a set of input data objects;

• outu; is a set of output data objects;

• exu; is a logical execution time.

Here 'I-' means 'perform'; for sake of simplicity, we usually use ' :' instead of 'I-' in

discussion. A defined operation can be either primitive (mathematical and relational

operations) or user-defined. The element u0 is primitive and intrinsically contained

by U, where 0 is an identity operation. Each element of ABCOM is defined as a

computation task or a unit. Without considering the relationship between an element

and any other element, Ui E U can be explained thus: there is an operation OPu; that

uses inu; as input to produce output in outu;, denoted by

For a given data object x if there is x E inu;, it means Ui has a 'read' access to x; while

if x E outu;, then a 'write' access to x. The order of data objects in inu; and outu; is

determined by the relations associated with OPu;.

34 Chapter 3. ABCOM- A Parallelism Revelation Model

The execution order of elements in ABCOM is controlled by a logical clock for

counting logical steps of the computation; each element takes a unit of logical time for

execution. It means that exu; = 1, 2, · · ·, n if we define the start time of the clock is

equal to exu.
0

• When exu; is equal to current value of the clock, OPu; is executed, we

say Ui is performed. If there is a partial order exu; < exu1 < exuk with exu; = 2,

exu
1

= 3 and exuk = 7, for example, we say Ui, Uj and Uk are performed at timesteps 2,

3 and 7 respectively. If exu; = exu1 , it means that Ui and Uj are performed in parallel.

If there are two or more elements in U, the relationship between element Ui and

other elements is decided thus: If there is a data object x E inu; or x E outu;, and also

appears in another element Uj, then these two elements are computationally related. In

this case, there may be an intentionally specified partial order between them to perform

a computation task that sequentially combines Ui with Uj. That is, Ui is designed to

be executed at a particular time (exuJ:

An example is given as follows:

Example 1

S1: A= B + C

S2: E = 2 x F

S3: Q = A - E

U1 : (+, {B, C}, {A}, 1)

u2: (x,{2,F},{E},2)

U3: (-,{A,E},{Q},3)

where the program is expressed in U = { u1, u2, u3}, and statements S1 , S2 and S3 are

transformed to elements u1, u2 and u3 respectively.

Definition 3.2 For :Jui E U and x E inu;, x is said to be specified for Ui at a timestep

t if and only if:

(1) x is a constant; or,

{2} (:luj EU, exu1 < t < exu; I\ x E outu1) I\ (,lluk EU, t < exuk < exu; I\ x E outuk).

Definition 3.3 For :Jui E U, if\::/x E inu, are specified, then Ui is said to be ready for

execution, otherwise, Ui is not ready.

3.2. Definitions a.nd Properties 35

In Example 1, if we assume variables B, C, and F are assigned certain values before

S1, then Band C in u1, and Fin u2 are specified at the begining, accordingly, u1 and

u2 are ready for execution. After performing u1 and u2, A and E become specified and

then u3 becomes ready for execution.

Definition 3.4 For { Ui, Uj} E U, a partial order exu, < exu; is a successive partial

order if and only if exu; = exu, + .1.

According to Definition 3.1, opu, is a primitive operation or composed operation

abstracted from a number of the operations. Therefore, the representation in U is said

to be grain-dependent.

Definition 3.5 Let ki denote the number of data objects in outu., and Ui E U. lfVui

for i = 1, 2, · · · n, ki = 1 and OPu, is a primitive operation, then U is said to have a

fine-grain representation , denoted by U I.

In this thesis our discussion is mainly focussed on the properties of U I and its

applications to parallel programming. Therefore, we simply just refer to U I as U in

discussion without indication.

Definition 3.6 For 3ui E U, there is an elementary data-operation-associated

graph (EDOAG) of data x E outu., denoted by EDOAGu, which is a directed acyclic

graph where the vertex x E outu, is called a successor of the data objects listed in inu,

and there is an edge from each of them to x.

Definition 3.7 For {ui, Uj} E U, if exu, < exu; and outu, n inu; 2 {x}, and there

is no Uk E U in which outu1c 2 { x} and exu, < exu1c < exu; , then E DO AGu, and

EDOAGu; are merged or involved in a dataflow relation from Ui to Uj,

Definition 3.8 For 3ui EU, a data-operation-associated graph (DOAG) of data

x E outu, is a composition of a number of EDOAGs for Uj, Uk,···, u1 , which has the

following properties:

1. DOAGu, has a vertex x E outu, with outdegree zero;

36 Chapter 3. ABCOM- A Parallelism Revelation Model

A E

/~ /~
B C F 2

/Q~
A E

/~ /~
B C F 2

Figure 3.4: C DO AGs of Example 1

2. EDOAGu;, EDOAGu1c, · · ·, EDOAGu1 are involved in data.flow relations in a

pair-wise manner.

Definition 3.9 For :lui E U, if there is a DOAGu;(x) and all vertices with indegree

zero in DOAGu;(x) are specified, then DOAGu;(x) is completely specified, denoted

as CDOAGu;(x)·

In terms of Definition 3.9, it is seen that there are three CDOAGs in Example 1,

which are illustrated in Fig 3.4, if EDOAGu1 and EDOAGu2 are viewed as two special

CDOAGs that contain no other EDOAG except themselves. Thus, one important

property of CDOAG can be expressed in Lemma 3.1.

Lemma 3.1 If EDOAGu;(Y) is a subgraph in CDOAGu;(x), then CDOAGu;(y) is also

a .'mbgraph of CDOAGu;(x)·

It is observed that in any CDOAGu; there are a number of paths which emanate

from those vertices with indegree zero towards the root x E outu;. The number of

edges contained in the longest path in CDOAGu; is called the depth of CDOAGu;·

Let UcDOAGu - denote a sub-tuple-space which contains all elements of CDOAGu -, . .
hu; denote the depth of CDOAGu;, and ecDOAGu - be the length of critical path

•
of computation logic for CDOAGu;, then one of the properties regarding to hu; and

ecDOAGu - can be described as follows:
•

3.2. Definitions and Properties 37

Lemma 3.2 If there is UcDOAGu, = { Ui, ·· .. ··,Uk}, then

hu, ~ ~CDOAGu, = Max{ exu,, · · · · · ·, exu,.} = exu,.

The C DO AG is a time-dependent concept; at each new logical step certain data

objects that are not specified earli~r become specified. Hence, the size and depth of a

CDOAG are reduced gradually during the execution of computation. This feature of

CDOAG can be flexibly used to consider a DOAGu, as a CDOAG by assuming that

certain vertices of DOAGu, are specified.

The relationships between any two C DO AGs are classified under the following four

categories:

• Contained (CDOAGu,(x) C CDOAGui(Y))

If CDOAGu,(x) is a subgraph of CDOAGui(y), then CDOAGu,(x) is properly

contained by CDOAGuj(Y)i

• Overlapping (CDOAGu,(x) t><1 CDOAGuj(Y))

If there is CDOAGu,.(z) which is contained by both CDOAGu,(x) and CDOAGu,(y),

but CDOAGu,(x) and CDOAGu,(y) are not contained each other, then CDOAGui(x)

and CDOAGuj(Y) are overlapping;

• Completely independent (CDOAGu,(x) II CDOAGui(Y))

Let Eu, indicate a set of all named vertices of CDOAGu,· If CDOAGu,(x) and

CDOAGui(Y) are neither contained by each other nor overlapping and Eu,nEui =
{0}, then CDOAGu,(x) and CDOAGuj(Y) are said to be completely independent;

• Conditionally independent (CDOAGu,(x) lie CDOAGui(Y))

Let Einu - indicate a set of all named vertices with indegree zero of CDOAGu,· If
•

CDOAGu,(x) and CDOAGuj(Y) are neither contained by each other nor overlap-

ping, but Eu, nEuj -(Einu, nEinu) =J {0}, then CDOAGu,(x) and CDOAGuj(Y)

are said to be conditionally independent due to collision of naming variables.

(In other words, there are data objects that are shared by CDOAGu,(x) and

CDOAGuj(Y) to hold computation result.)

38 Chapter 3. ABCOM- A Parallelism Revelation Model

Figure 3.5: Examples of relations between CDOAGs

In Fig. 3.5, for instance, CDOAGu18 is contained by CDOAGu20 ; CDOAGu4 and

CDOAGu
5

are overlapping; CDOAGu4 and CDOAGu10 are conditionally independent

because of variable reuse; and CDOAGu10 and CDOAGu20 are completely independent.

Lemma 3.3 IfCDOAGu,(x) and CDOAGu;(Y) are conditionally independent, a shared

object z (z E Eu, and z E Eu;) can be removed by substitution of a new object for z in

one of them without affecting the correctness of computation.

From a semantic point of view, a CDOAG contains information of a complete

computation task that is performed. All vertices with indegree zero of a CDOAG are

given as input data; the vertex with outdegree zero is the output. The spatial properties

of the computation are defined by the set of objects used. The computational logic is

explicitly determined by the partial orders of the elements in the CDOAG. There are

certain dataflows among the elements, which start from the elements that are ready

3.2. Definitions and Properties 39

initially and end by producing the output of the CDOAG.

Note that due to the explicit specification of the execution order of elements in U,

there is a partial order(<) between any two elements Ui and Uj. The partial order here

that is expressed is of two types:

(i) Essential: A partial order is essential for a completion of a certain computation

task, thus, we say this partial order is necessary;

(ii) Non-essential: A partial order introduced may be non-essential for the correct

completion of the task, hence, this partial order is unnecessary for correct computa­

tion.

For example, there are three partial order relationships among the elements in

Example 1, that is, exv.
1

< exv.2 , exu1 < exv.3 and exv.2 < exu3 • In order to keep

the correct result of computation, partial orders exv.1 < exv.3 and exv.2 < exv.3 are

necessary, but exv.
1

< exv.
2

is not necessary because if we let exv.1 = 2 and exv.2 = 1,

the result is same. It means the partial order between two elements that are contained

in two completely independent CDOAGs is unnecessary.

In Definition 3.7; the formula exv., < exv.1 for elements Ui and Uj which are involved

in dataflow relation determines relation of execution orders between the elements, which

can be expressed as Lemma 3.4.

Lemma 3.4 If there is an element Ui E U and two subsets of elements { Uk, u1, ···,up}

and { Uj, uh,···, uq} which are directly merged with Ui, and inv., = outv.1c U outv.1 U

· · ·, Uoutv.p and outv., ~ inv., U inv.h U · · · U inv.q , then

(3.1)

and

(3.2)

Here Llowerexu · and Lupperexu · are the lower bound and upper bound which
• •

indicate respectively the earliest and the latest execution time of exv.,. Let ~exu,

40 Chapter 3. ABCOM- A Parallelism Revelation Model

denote the difference between the lower bound and the upper bound, given by

~eXu ·
'

[t_upperexu -, tJowerexu -1
' '

{3.3)

- [Min{exui,exu,., ·· ·,exuq}-1, Max{exu1c,eXui,···,exup+l}]. {3.4)

The period of time covered by ~exu - is called legal execution zone of Ui, It means
'

that without losing correctness of computation Ui can be designed to be performed at

any one of logical timesteps within ~exu-. How the execution time of Ui can be legally
'

changed within ~exu - will be discussed in Chapter 5.
'

Based on the concept of partial ordering, some important properties of computation

can be observed:

• In performing a certain computation task, a set of computation elements of U

can be put into a partial order for proper execution. A partial order between any

two elements is necessary, if and only if they are related to a data flow.

• A particular execution order for a computation task is designed in a particular

solution. By changing certain execution order, one can change one solution into

another without losing correctness. Given necessary partial orders exu, < exui

and exu, < exu1c, and an unnecessary partial order exui < exu1c (or exu,. < exui),

under certain conditions, we can change the unnecessary partial order to exu1c <

exui (or exui < exu1c), or let them be executed in parallel (exui = exu1c).

• The range for changing an unnecessary partial order is determined by its corre­

sponding legal execution zone ~exu - . If the execution order exu, of is equal to
'

the lower bound of ~exu · , Ui is said to be successively executed.
'

3.3 Program Solutions in ABCOM

By Definition 3.1, ABCOM is a representation in which computation is expressed

as quadruples. To enable a set of elements to perform a particular computation task,

these elements must be designed into a program solution.

3.3. Program Solutions in ABCOM 41

Definition 3.10 LetP= {uo,u1,···,un} beasubsetofU, andEP (execution pointer)

be the current value of a logical clock with EP = 0 initially. P is said to be a solution

if and only if when EP starts to count, P always meets the following conditions:

1. 3ui, exu, = 1 and Ui is ready for i = 1, 2, · · ·, n;

2. There is a successive partial order exu, ::; exu1 ::; • • ·::; exu,. for 1 ::; l, k ::; n;

3. 'vui E P, Ui must be ready when exu, = EP and 'vuj E P with exu1 < EP should

have been performed.

When exu, = EP, according to Definition 3.10, Ui E P is executed. Thus, EP is

particularly set to require that a solution should be successively executed as required

by the condition 2 from the logical point of view. The condition 2 also implies that it

is possible to let more than one elements be executed in parallel.

Definition 3.11 Let Ui E P, Ui is currently executable if and only if Ui is ready

and exu, = _EP.

In ABCOM, the solution to a given problem is classified under three categories

(according to their execution features):

• Category 1 (Sequential solution)

Let P be a solution; if there is no equation in the successive partial order of P,

then P is a sequential solution.

• Category 2 (Parallel solution with latencies)

Let P be a solution; if there are equations in the the successive partial order of

P; but at a given logical step (t) there is Ui E P which is ready for execution

but not currently executable (exu, > t), then P is said to be a parallel solution

with latencies. The parallelism achieved by such a solution is subjective since

the parallelism obtained here is determined by the constraints introduced by the

special design of the solution.

• Category 3 (Parallel solution without latencies)

Let P be a solution; if there are equations in the successive partial order of P,

42 Chapter 3. ABCOM- A Parallelism Revelation Model

and at any given step (t) all those elements must be currently executable if they

are ready for execution, then Pis said to be a parallel solution without latencies.

The parallelism reached here is objective because all computation are performed

in a dataflow fashion.

Programming experience shows that there are varieties of solutions in both Category

1 and 2 for a given problem. Any solution in Category 1 is executable on a sequential

architecture. While a parallel solution in Category 2 can only be performed on a certain

architecture that has enough processors to support all data accesses required. However,

people have relatively little experience in the solution in the third category since it is

difficult and not practical to manually design a program in that manner. Physical

implementation of parallel programs is likely in Category 2 rather than in Category

3. A parallel program solution belongs to Category 3 if and only if all computation

elements are executed as data-driven dataflow computation [Sha85].

If a given problem has deterministic computation in both data and operations, then

there is a unique solution in Category 3. One may question whether two solutions not

in Category 3 to the same problem can eventually be optimised to reach a same solution

that is of the Category 3. The answer is yes if they have the same data domains and

operations. A practical way to check the effectiveness of this optimisation is to compare

the difference in performance of two optimised solutions to the same problem. This

will be addressed in Chapter 5.

Lemma 3.5 A program solution P contains at least one CDOAGu;(x) for Ui E P.

If a solution P = { u0 , u1, u2, ······,Un} consists of a number of CDOAGs, i.e. {CDOAGu;,

· , ·, CDOAGu,.}, a critical path of computation logic for the solution, denoted as fp,

can be expressed as:

(3.5)

Lemma 3.6 If a program solution with {CDOAGu;, · · ·,CDOAGu,.} is of the third

category, then:

(3.6)

3.4. Features of ABCOM 43

for l = i, · · · · · · k and

c.,., = Max{h.. · · · · · · h } ',,r ~i)) UJo (3.7)

3.4 Features of ABCOM

3.4.1 The ABCOM (virtual) machine

Based on discussion of different categories of solutions, we define an ABCOM virtual

machine where the three categories of solutions are executable. The special requirement

for this machine is to have an ability to accommodate any possible parallelism in com­

putation. This was also considered by D. A. Padua's [PP90] on machine-independent

evaluation of parallelising compilers. In the work reported in this thesis, we assume

that in an ideal machine:

• there are unlimited number of processors which can exploit an unbounded amount

of parallelism;

• there is a logical clock;

• the memory is based on a shared CREW PRAM model such that storage man­

agement and allocation of data among processors can be ignored;

• each defined operation consumes one unit of time, no matter what grain sizes

they have;

• all other activities - including forking and synchronisation overhead, memory

reads and 1/0 - are free.

Using such a machine, a machine-independent representation is ensured. The assump­

tion of a CREW PRAM memory makes the representation free of memory constraints

in a physical architecture.

The communication cost is introduced in a particular implementation based on

a selected architecture. The communication issues are not discussed here because

ABCOM is an ideal abstract machine for parallel execution of a solution with no

special requirements on communication.

11

1:

I'

I

'
'

44 Chapter 3. ABCOM- A Parallelism Revelation Model

The execution of a given solution P in the ABCOM machine can be explained as

the following procedure:

1. Initialise EP=O;

2. Let EP=EP+1;

3. If ,Bui E PI\ exu; = EP then terminate;

4. Perform all Ui with exu; = EP;

5. Back to 2.

3.4.2 ABCOM and other models - a comparison

The definitions and general properties of ABCOM can show certain features that

are not usually presented in a conventional language (or computational model).

• Usage

ABCOM has a special representation structure (tuple) with three fundamental

concepts, operation, data and execution time, and characterise computation in

both spatial structure (data domain) and temporal properties. Based on this

abstract space, we require: 1) the complex tasks of exploiting parallelism can be

carried out independently in systematic methods; 2) relevant techniques involved

at different stages of programming can be integrated into a practical framework.

Parallel computation inference is expected to be introduced on this framework.

In short, ABCOM is an intermediate representation to investigate and reveal

parallelism.

• Combination of three concepts

The key feature of ABCOM is the combination of tuple space, CDOAG and

partial ordering. Each of these play different roles in achieving the goals. Tuple

space and partial ordering have been used separately by many researchers. Linda

[CG89] programming uses tuple space as a virtual, associative and logically-shared

memory. ABCOM uses it as an abstract computation space in which each element

is viewed as a discrete computation unit performed at a given logical time point .

3.4. Features of ABCOM 45

Under certain conditions that will be discussed in Chapter 6, a given computation

unit can become schedulable such that optimisation can be carried out. The

computation unit is grain-dependent. As far as an operation is defined, the unit

can be of any size in a range from fine-grain to coarse-grain.

Partial order approach was used in Greif's thesis [Gre75] as an early appear­

ance. The partial ordering and logical clocks are combined in the classical work

of Leslie Lamport on a distributed system [Lam78], where the potential of the

partial ordering to help one to understand the basic problems of multiprocess­

ing independently of the mechanisms used to solve them has been demonstrated.

Petri advocated this view of computation. Winskel's theory of event structures

[Win80], [Win84) concerns partial orders on events in Petri net models. Pinter

and Wolper consider partial orders as a model of temporal logic [PW84]. Pratt

introduces pomsets [Pra86] [Pra94] by using partial orders in combination with

formal languages and temporal logic. ABCOM uses the partial ordering to link

related elements and ensure that computation can be performed correctly. The

partial ordering expressed in a program is divided into two classes, that is, nec­

essary partial order and unnecessary partial order. ABCOM uses this notion to

find out where parallelism is inherent in a program solution.

The difference between C DO AG and other graphic representation techniques can

be observed in many respects. We compare CDOAG with the following three

types of graphs:

1. The data dependency graph (DDG) is widely used in parallelising compiler

studies [WB87] [MPC90]. The DDG represents graphically the data depen­

dency at a statement level or statement instance level. Most studies in the

literature are based on DDG at the statement level.

2. The directed acyclic graph (DAG) used in [ASU86], [Ell86], [KR90] is also

a statement-based graph. In the papers by [CBF91], [AE88], [Ske91], a

dataflow model is used to represent a loop, instead of a DAG. In a dataflow

model, the nodes are operations; and different outputs will be produced when

different data elements enter the input ports although the same operations

.....

46

:,

1:

Ii

.

'

:

l

11

Chapter 3. ABCOM- A Parallelism Revelation Model

Parallelisation;
Acyclic structure;
Run-time infonnation;
Dataflow information
Control parallelism

Parallelisation;
Computation abstraction; n Data parallelism;
Granularity; Control parallelism;
Parallelisation; Run-time information;
Scheduling. Scheduling.

j l j I

I ' I I
, ~

I
Tuple Space CDOAG Partial Ordering

I
ABCOM

Figure 3.6: ABCOM platform for parallel processing

are performed. Thus, the dataflow model corresponds to a function- or a

process-oriented graph.

3. The unconstrained dynamic dependence graph (uDDG) used in Tetra (AS93)

is similar to CDOAG. The uDDG abstracts computation patterns from the

execution of the program rather than from the context of the program.

A comparison of CDOAG with these techniques is given in Table 3.1 in terms of

the graph attributes used to express the computation features. CDOAGs provide

effective means to separate a complete procedure of data generation from irrel­

evant constraints in a program. The benefits of using CDOAGs are illustrated

in the examination of applications of ABCOM. The combination of the three

concepts mentioned, namely, tuple-space, partial ordering and CDOAG, makes

ABCOM satisfy the criteria proposed for a new model (in Chapter 1).

J
I

3.4. Features of ABCOM 47

Graph Attribute CDOAG DDG DAG(DFD) uDDG
possessed

Representation operation statement statement operation
level

Node data statement statement operation
(operation)

Cyclic structure no yes no no

Spatial structure yes no no
exploitation

Visualisation of yes no no yes
data generation

Size of optimisation large small small
space provided O(D)* O(T)* O(T)*

Exploitation complete partial partial
of dataflow

computation

Instruction-level yes no no no

information

*Note: 1) D is the size of data domain.
2) T is the size of the text of a loop body.

Table 3.1: Comparison of CDOAG with other graph representations used

....

11

I•

"
, I

.

48 Chapter 3. ABCOM- A Parallelism Revelation Model

• Computation inference support

Using ABCOM to express solutions, computation inference of parallelism can be

carried out based on the concepts, like time, data and operations. Meanwhile,

the data-access patterns of a solution can be determined by using input-output

relationship among elements such that localising data can be used to detecting

data dependences. The parallelism of computing through iterative structures,

like loops, can be detected after transforming the cyclic structures into the acyclic

structures in ABCOM. Computation inference based on ABCOM is presented in

detail in Chapter 5.

The combination of the three concepts forms a unified platform of knowledge represen­

tation . A wide range of research interests and development issues in parallel computing

can be supported by using different parts of the platform, as shown in Fig. 3.6.

3.5 Summary

Three concepts,· tuple space, C DO AGs and partial ordering, are used in ABCOM

for exploiting different computation features. The spatial structures and temporal

properties of a problem which are related to many different issues in parallel computing,

thus, can all be studied using a common basis. With the definitions and properties

presented in this chapter, we will show in later chapters which and where parallelism

is inherent and to what extent the parallelism can be achieved in a given solution.

Also, the applications of ABCOM platform will be described in association with other

programming tasks.

Chapter 4

. Expressive Power and Transformation

In this chapter, we describe the expressive power of ABCOM and how to transform

a source code into ABCOM. To demonstrate the expressive power of ABCOM, we

compare it with a Fortran-like language with assignments, branch statements and loops.

The transformation is also considered from a sequential structured code of such a

language to a fine-grain form in ABCOM.

4.1 Expressive Power

ABCOM differs from conventional languages in the following respects. (i) It has

a operational structure (element of the tuple-space) to express any computation. The

granularity of representation in ABCOM can express computation at different abstract

levels. Various data structures can be used in ABCOM. In a fine-grain representation

data objects are mainly the variables and elements of arrays. For a medium or coarse

grain representation data objects can be any general data structure e.g., lists and arrays.

(ii) The representation form of ABCOM is not suitable for one to apply it manually,

but it supports computation analysis, once a solution is converted into ABCOM.

Because of the above characteristics ABCOM is more like an intermediate language

of a compiler (in both representation and translation). We do not claim that ABCOM is

better than any programming language to express parallelism. What we are interested

in is to describe its features to improve parallel programming.

49

I:
1,

50 Chapter 4. Expressive Power and Transformation

AECOM::= {uo,u1,···,ui,···,un}
Ui ::= '('opu,, inu,, OUtu,, exu,')'
opu, ::= math_oplrel...oplu_opl 0 lcon_opl
inu, ::= ' {'parameter Jist'}'
outu, ::= '{'parameterJist}l{idlid'}'
exu, ::= integerlexp
math_op ::= +I - I x 1/1 · · · · · ·
rel_op ::=> I < I = I ~ I ~ I ::/= 1-,1 · · · · · ·
u_op ::=< user ..symbol>
con_op ::= if - intenlwhile
parameter Jist ::= parameterlparameter Jist, parameter
exp ::=parameter+ explparameter + integer
parameter ::= idlinteger
i ::= integer

Figure 4.1: The Syntax of ABCOM

4.1.1 Syntax of ABCOM

The syntax of ABCOM is shown in Fig. 4.1. Here, user _op is an operation de­

fined by users, which can be a new primitive operation or a compound operation that

consists of a number of relevant defined operations. Semantics of user _op symbols

is defined in a user _op-table. If user _op is a compound operation, then the inten­

sional semantics of the operation are explained by a subset of the tuple space, which

is pointed by the indicator in user _op-table. The semantics of computation is given

by intensional computation logic. Abstracting the operations of a subset of elements

into a compound operation enables us to construct a medium-grain or coarse-grain

representation. Accordingly, the data objects in in or out can be the names of data

structures.

Our discussion here is focused on the fine-grain tuple space. A compound element

is also considered to contain only one data object in out. This will make our discussion

and techniques suitable as well to these kinds of compound elements. Occasionally,

this restriction is removed when a general representation of an element with more than

one data objects in out is needed.

If a set of related elements that compute certain data objects is defined as a com­

pound element, then the input data for the resulting macro operation of the compound

I

I

I

4.1. Expressive Power 51

element includes all those vertices (data objects) whose indegrees are zero in the spe­

cially defined CDOAGs; the output data is defined as a set of all vertices (data objects)

with connections to other vertices which are not contained in these C DO AGs; and the

execution order is assigned by the timestep at which all input data should have become

specified.

The semantic abstraction of a compound element user _OPu; can be explained as a

special user _op:

user _OPu; : inu; i-----+ outu;.

If all primitive operations are binary in a compound element , a CDOAGu; can be

abstracted as a user _op denoted by ®i in terms of the following grammar:

® :=L

L := 0l0Ll(L, L)I€

e := +I - Ix ll{primitiveoperator }.

Example 2

We have a subset U1 = { u1, u2, u3, u4, us, u6, u1, us , ug} for computing

where

X = ((A- B)/((C + D) +(Ex F))) x ((G- H) + (I/J))

u1 : (-, {A, B}, { v1}, 1) u2 : (+, {C, D}, { v2}, 2)

u3 : (x,{E,F},{v3},3) u4: (+, {v2,v3}, {v4},4)

u5 : (-,{G,H},{vs},5)u6: (/,{I,J},{v6},6)

U7: (/, { V1, V4}, { V7 } , 7) Us : (+, { V5, v6}, { vs} , 8)

Ug : (X ' { V7, Vs}, { X}' 9)

The corresponding CDOAGu
9

is shown in Fig. 4.2. The compound operation of

CDOAGu
9

can be expressed by

®1 := x (/(-,+(+, x)),+(- , /)),

and accordingly,

uc: (®1,{A,B,C,D, E,F,G,H,I, J},{X},1).

11

11

11

1,

'

52 Chapter 4. Expressive Power and Transformation

/x~.
/~ /~~

/\ ~ /'\ !\
A B /\ H I J

/\ ;\
C D E F

Figure 4.2: A composed element

Here we let ex©1 = 1 since all input are specified if this is a independent CDOAG.

Note this form does not tell the intensional computation logic of ®1·

For a given subset of elements, the abstraction form of the compound operation may

not be unique due to the properties of operations in the elements. The normalisation

of the representation of compound operations is discussed in Chapter 7. For technical

convenience we assume an identity element with a special operation symbol '0'. Both

in and out of an identity element are presented by an empty set {0}. In Definition 3.1,

u0 is such an element. An identity element does no computation but takes a unit of

logical time, and is independent from other elements.

Based on the grammar and the definitions in Chapter 3, a computation unit is said

to be valid in ABCOM if it does not belong to the following two cases.

• Case 1 where OPu; : mu; -, outu; cannot be carried out due to inconsistency

among given OPu;, inu, and outu,· For example, element (+,{a,b,c},{d},e1) is

invalid because '+' is a binary operation, but there are more than two variables

in inu, ·

• Case 2 where for Ui, Uj E U there are x ~ { outu, n outu;} and exu; = exu;. Here

variable x is uncertain since concurrent writing occurs, which is not allowed in

terms of the assumption of CREW PRAM memory used in ABCOM.

I

I

I

I

I

'

'
I

I
I

I
I

1

4.1. Expressive Power 53

4.1.2 Examples

To illustrate the expressive power of ABCOM, we convert some statements of a

Fortran-like language (such as assignments , conditional statements and loops) into the

form of ABCOM with the assumption of EP = 1.

• Assignments

The conversion of a simple assignment is illustrated in Example 2 where v1 , v2 , • • • • · ·, v8

are temporary working variables to store intermediate results of computation.

As a special case, an assignment x := y is converted to u: (=,{x},{y},k). It

would be noted that, unlike the N-ADDRESS CODE(NADDR)[NF84] and the

intermediate codes used by a compiler [ASU86] in which execution semantics of

computation is implied, ABCOM requires explicit execution specification for each

element.

• Conditional statements

A simple conditional statement is expressed using three related elements.

Example 3 The statement:

if a < b then x = y + z else x = y - z,

is realised by:

u1: (<b,{a,b,2},{e1 I e2},l),

u2: (+,{y,z},{x},e1),

u3 : (-,{y,z},{x},e2).

Here u1 with a special boolean operation <b can be explained thus: if a < b

then e1 = 2, else e2 = 2. It means that the result of performing u1 is to assign

the current execution control to either el or e2 so that one of u2 or u3 can be

executed after u1, while e1 = e2 = 0 before u1 and after performing u2 or u3.

This is a simple case of condition statements.

Example 4. A statement

if a < b then x = y + z,

is realised by

I

I

1,

54 Chapter 4. Expressive Power and Transformation

u1: (<,{a,b,2},{e1 I e2},l),

u2: (+,{y,z},{x},e1),

U3: (0,{0},{0},e2).

A conditional branching statement is sometime followed by two groups of suc­

cessive computations; then one is chosen by test condition. How to express this

kind of computation is discussed in the next section.

• Loops

A loop consists of a set of well-organised statements to carry out iteration. A

task performed in a loop is expressed in ABCOM by interpreting each statement

during execution using the methods described above, and generating a total order

of execution for all elements involved in the loop. That is, a loop is transformed

into linear structure by trace generation. This is one of main differences between

ABCOM and other intermediate codes. Both Do--Loop and While--Do can be

translated into ABCOM. This will be discussed in the next section.

4.2 Solution Transformation

Transforming a solution from a FORTRAN-like language into ABCOM is similar

to compilation, and techniques described in [ASU86], (Ell86] are needed. The transfor­

mation described here is different from a traditional compiler.

• The first difference is the target code of transformation. A compiler produces a

machine-executable code for a target architecture when a source code is trans­

formed. ABCOM is machine-independent but virtually executable in an abstract

computation space (an ideal machine). Therefore, the transformation process

related to the run-time environment is greatly simplified.

• The transformation performed here is more like interpretation of program exe­

cu tion by using a discrete form of tuples. It can be thought as an application

of trace-driven techniques. Hence, the sequence of computations in a program is

preserved in the transformed code. In this sense, the ABCOM compiler performs

a combination of parsing, translation and trace generation.

I

I

I

I

I

I

I

I

4.2. Solution Transformation

Lexical analyzer

Syntax analyzer

Semantic analyzer

Preprocessor

Trace controller

Syntax-directed translator

ABCOM code generator
(Logical clock)

Figure 4.3: Overview of the ABCOM compiler

55

ABCOM transformation can be divided into several phases as shown in Fig. 4.3.

All parsing techniques, like lexical analysis and syntax analysis can use the front end

of the standard Fortran-compiler.

Unlike a traditional compi er, an ABCOM compiler has three special components.

(1) A preprocessor to perform preparation for transformation, including branching­

merging point analysis (described in Section 4.2.3); and substitution of function-based

reference of the element of an array (discussed in the Section 4.2.1).

(2) A logical clock to provide execution specification when each element is generated.

(3)A trace controller to keep the current values of all execution-related variables (e.g.

loop-control variables) using a trace-control table (TCT). The trace controller points

out where program execution heads for in a source code during the trace generation.

In the last two phases the transformation process uses modified techniques intro­

d uced in the translation of the intermediate code (Quadruples) in [ASU86). One of the

special features of our translation is to assign explicit execution specifications to each

element generated. As an example demonstrating traditional intermediate code gener-

--

I:

I:

56 Chapter 4. Expressive Power and Transformation

C C

Figure 4.4: Syntax tree

op arg l arg 2 result
(0) uminus C t1
(1) X b t1 t2
(2) uminus C t3
(3) X b t3 t4
(4) + t2 t4 ts
(6) ts a

Table 4.1: Example of Quadruples

ation, a syntax tree for the assignment statement a= bx -c+ bx -c and its quadruple

representation of three-address statements are illustrated in Fig. 4.4 and Table 4.1.

4.2.1 Principles of translation

Our discussion will focus on ABCOM code generation. ABCOM code requires the

logical execution order for elements that is critical for transformation. Our approach

is discussed first using the assignment statements in Fig. 4.5.

S ~id :=E
E ~ E1 +E2
E ~ E1E2
E ~ Ei/E2
E~-E1
E ~ (Ei)
E~id

Figure 4.5: The grammar for assignments

I

I

I

i
I

i
I
I

I

I

I

I
I

I

I

I

I

I
I

I

I
I
I

' I
I
I

'

4.2. Solution Transformation 57

In order to generate an ABCOM code, we use following notations.

• S. code, the synthesised attribute representing the ABCOM code for the assign­

ment S.

• E. code, the attribute of E to denote the set of the elements evaluating E.

• E. place, the function that returns the variable name of E to hold the value as

E is a variable.

• newtemp, the function which returns a sequence of distinct names v1 , v2 , v3 , ···in

response to successive calls.

• gen[Ui: (opu,, {inu.J, {outu.J, exu,)], the function to generate code (elements) of

ABCOM by using the information provided in TCT.

• T(EP), the function to provide current execution order according to the logical

clock (EP). Each call of the function leads EP = EP + 1.

When ABCOM code is generated, temporary variables are created for holding in­

termediate results. The syntax-directed rules in Fig. 4.6 generate ABCOM code for

assignment statements. For the moment, we create a new name every time a temporary

is needed. The techniques for reusing temporaries in ABCOM transformation are the

same as those described in [ASU86].

The function E. place can return three different kinds of variable names in terms

of different methods used for reference.

(1) If the variable is a singleton data object, the name of the object is returned.

(2) If the variable is the element of an array and referenced with an index controlled

by the iteration control variable with no function, a particular element with a fixed

index determined by current value of the iteration control variable is returned. An

example is presented in Section 4.2.4.

(3) If an assignment contains a variable that is an element of an array of which

the index is referenced with a function. For this kind of statement, a substitution is

introduced by the preprocessor of the compiler if the variable is involved in an operation

with other data variables. The basic idea is to replace these elements of an array with

58 Chapter 4. Expressive Power and Transformation

Production Semantic Rules

S --+ id := E S.code := E.code II gen[ui: (=, {E.place}, {id}, T(EP)]
E--+ E1 + E2 E.place := newtemp

E.code := E1.code II E2.code 11

gen[Ui: (+, {E1 .place, E2.place}, {E.place}, T(EP)]
E--+ E1 x E2 E.place := newtemp

E.code := E1 .code II E2.code 11

gen[Ui: (x, {E1.place, E2.place}, {E.place}, T(EP)]
E--+ E1 / E2 E.place := newtemp

E.code := E1.code II E2.code II
gen[Ui : (/, {E1.place, E2.place}, {E.place}, T(EP)]

E --+ -E1 E.place := newtemp
E.code := E1 .code II

gen[ui: ('uminus', {E1.place, E2.place}, {E.place}, T(EP)]
E--+ (E1) E.place := E1.place

E.code := E1 .code
E--+ id E.place := id.place

E.code :="

Figure 4.6: Syntax-directed semantic rules to produce ABCOM code for assignments

I

I

I
I

I

i

i
I

I

I

!

I

I

I

I

I

I

:

:,

4.2. Solution Transformation 59

S -r if E then S1

S -r if E then S1 else S2

Figure 4.7: The grammar for conditional statements

a generic element with a subscript x. Thus, for a functionally indexed variable the

function E.place returns the name of an array with with a subscript x.

To translate a conditional statement with the grammar given in Fig. 4.7, we need

to introduce more notation and functions. We assume that, for each branching point,

its corresponding merging point is found before translation. The technique to find a

merging point is described in next subsection.

• newlabel: the function to produce a sequence of labels, e1, e2 , · · ·,, as unknown

execution orders (called conditional execution label variables or GEL-variables)

for elements generated from transforming conditional statements. The CEL­

variables are assigned certain values when the condition in the corresponding

branching statement is tested during, execution.

• relop: a generic relational operation which is replaced by the relational operation

in a condition statement as it is translated. The boolean expression E in the

grammar has the form of id1 relop id2.

• ins: a set of input data which are used for performing a branch flow of a condi­

tional statement.

• outs: a set of output data produced by a branch flow of a conditional statement.

• if-inten(ei. place): a special compound operation performing the operations

of statements between the branching point and its associated merging point.

ei. place points to where the intensional computation is performed.

• Branch ({branch flow list}, { CEL-variable list}): the function to trans­

late branch flows of a conditional statement with the return of ins and outs of

60 Chapter 4. Expressive Power and Transformation

Production: S ~ if E then Sl
Semantic Rules:

S.code := e1. place: =new label II e2. place: =new lab el II
gen[ui :(relop, {id1, id2, EP+l}, {e1.placele2.place}, T'(EP))] II

Branch({Sl}, {el, e2} II
gen[ui :(if-inten(e1.place), {insJ, { outs1 }, e1.place)] II
gen[ui:(0 , {0}, { 0}, e2.place)]

Production: S ~ if Ethen Sl else S2
Semantic Rules:

S.code := e1. place: =newlabelll e2. place: =new label 11

gen[ui:(relop, {id1, id2, EP+l}, {e1.placele2.place}, T'(EP))] 11

Branch({Sl,S2}, {el, e2}) 11

gen[ui:(if-inten(e1.place), {insJ, { outs1 }, e1.place)] II
gen[ui:(if-inten(e2.place), {ins2 }, { outs2 }, e2.place)]

Figure 4.8: The syntax-directed semantic rules to translate conditional statements

each branch flow between a pair of branching and merging points. The imple­

mentation of this function is described in the Section 4.2.3.

• T' (EP): the same function as T(EP) except here EP = EP+ 2 after each call.

As a conditional statement with two branch flows is translated, three relevant el­

ements are generated. One of them is to test the conditions, the other two are called

the head of branch flows. The corresponding syntax-directed rules are illustrated in

Fig. 4.8.

4.2.2 Trace-driven code generation

Trace-driven techniques are widely used in performance analysis [Lar90), [Wet al94],

timing simulation, interactive debugging [MC91) [MPK91), and programming visuali­

sation [Hea91) [KN91). In these applications, trace generation facility fulfils trace event

generation with no modification on computation of a source code. Trace generation

treats a computation unit as a trace event, and records the elements of ABCOM. The

timing record is created as logical timesteps of execution order that is controlled by

logical clock (EP) (to indicate the logical step at which the event happens).

I

I

:i

I

I

!

I

4.2. Solution Transformation 61

The trace generation converts a given source code into a stream of elements that

correspond to the execution of a program. Transforming a source code corresponds to

interpreting the computation performed at each logical step.

The transformation of expression-based assignment statements was described in

the last subsection. When a complete source code is transformed, we combine this

approach with trace generation and the parsing techniques [ASU86], such as shift­

reduce parsing and operator-precedence parsing. In the transformed code of ABCOM,

hence, the original execution order of operations is retained and specified explicitly.

Such a procedure of the trace-driven transformation can be explained in the algorithm

illustrated in Fig. 4.9. The operation-precedence relations shown in Table 4.10 are

described in [ASU86].

4.2.3 Branching statements transformation

In programming languages, a branching statement contains an expression to com­

pute a predicate that alters the flow of control. As a result, a branching statement

determines whether an operation will be executed or not depending upon the test re­

sult. The basic idea of representing such a structure in ABCOM is given in the Section

4.1.2. We also combine this idea with trace generation techniques to transform condi­

tional statements in a source code. Consider a general example in a basic block shown

in Fig. 4.11. HerE The statement S1 is a branching statement (called branching point)

and the statement Sn is called a merging point of the branching statement.

It is assumed that the branching and merging points appear in a pair-wise manner

in a structured source code. To transform such a structure, the preprocessor has to

do control flow analysis before transformation. We need to know which statement is

the merging point of the corresponding branching point previously executed. After a

branching point, the statements in each branch flow will all depend on the condition of

this branch statement. If a merging point is encountered (that is, every flow branching

from the same branching statement finally comes into this statement), then the state­

ments following it will no longer depend on the same condition as the flow's. Instead,

these statements will now depend on the condition on which the branching statement

depends.

62 Chapter 4. Expressive Power and Transformation

Input: An input string w of an assignment, logical clock EP and
a table of operation precedence relations shown as Fig. 4.10.

Output : if w is well formed, a sequence of ABCOM code; otherwise,
an error indication.

Initial: A stack contains$ and an input buffer containing the string w$.
Algorithm!

(1) set ip to point to the first symbol of w$;
(2) repeat forever
(3) if$ is on the top of the stack and ip point to$ then
(4)

(5)

(6)
(7)
(8)

(9)
(10)
(11)
(12)

(13)

(14)

return
else begin

end

let a be the topmost terminal symbol on the stack
and let b be the symbol pointed to by ip;

if a < ·b or a · =b then begin
push b onto the stack;
advance ip to the next input symbol;

end;
else if a· > b then /• translation and code generation•/

repeat
pop the stack
and apply the syntax-directed traslation rules

to generate ABCOM code with the current EP,
and let the symbol in out of the new element be

in the position in the string pointed to by ip;
until the top stack terminal is related by

< · to the terminal most recently popped
else error()

Figure 4.9: Algorithm for assignment transformation

4.2. Solution Transformation 63

+ - X I = id () $

+ ·> ·> <· <· ·> <· <· ·> ·>
- ·> ·> <· <· ·> <· <· ·> ·>
X ·> ·> ·> ·> ·> <· <· ·>
I ·> ·> ·> ·> ·> <· <· ·> ·>
- <· <· <· <· <· <· -
id ·> ·> ·> ·> ·> ·> ·>
(<· <· <· <· <· <· <· =
) ·> ·> '.> ·> ·> ·>
$ <· <· <· <· <· <· <·

Figure 4.10: The table of operation precedence relations

~S1-------
S2 S3

I I
I

I
I
I
I
I

¥ V

S~ ------Sj

Sn

Figure 4.11: A general case of the branching and merging points

S2

t
S4

t
S7

Figure 4.12: A program flow chart including conditional statements

64 Chapter 4. Expressive Power and Transformation

In the control flow analysis [Che85], to identify such a point in a source code, we

record how many flows from a branching point are flowing through a statement, and

how many flows are required to make this statement a merging point for the branching

point. The relation between a branching point Sk and its merging point S1 is denoted

as Sk Y S1. The idea can be implemented by using a merging-point processing

table shown in Table 4.2. Using this table, we show how those merging points in

Fig. 4.12 are found. All statements encountered are listed in the order of execution in

the second column. For each of these statements the corresponding logically successive

statements are recorded in the third column. A merging point can be found by using

backward reasoning when there are two or more successive statements that follow the

same statement. In this example we first found S18 is a merging point of S6 by taking

S15 and S16 for backward reasoning, recording it in the fourth column. Similiarly, three

other pairs of branching-merging points can be reported, that is, Ss Y S 11, S3 Y S 11

and S1 Y S12·

The head of a branching flow is generated wit~ a special operation if-inten(ei).

Here ei is associated with a set of elements that correspond to the branching flow. These

elements are assigned the expressions with symbols of± as the reltative execution orders

The function Branch({branch flow list}. { CEL-variable list}) carries out

the transformation of branch flows of a conditional statement. It processes each branch

flow as a 'complete' computation task. The statements in such a flow can be converted

in the method described earlier, except being assigned relative execution orders ex­

pressed in expressions. Using this approach, we convert the example in Fig. 4.13 and

illustrate the result in Fig. 4.14, where a special symble ± means this value is relative

to e1 (or e2),

The nondeterministic execution of a branch flow makes it impossible to achieve

data parallelism with other parts of the solution. Therefore, a branching flow could be

treated as 'complete' computation task, and its computation features can be investi­

gated independently.

'

I

i
i

: .

I

I

I

I

I

I

I
I

I
I

I
I

I

4.2. Solution Transformation

Statement followed by Corresponding
label branching points

S1
S2 S1
S3 S1
S4 S2
Ss S3
S6 S3
S1 S4
Ss Ss
Sg Ss
S10 S6
Su S6
S12 S1, S11 S1

S13 Ss
S14 Sg
Sis S10
Sl6 Su
S11 S13, S14, Sis Ss, S3

-+ Sis Sis, Sl6 S6

:

Table 4.2: A merging-point processing table

if x < y then goto S2
S1: A= XX y

B=D-W

goto S3
S2 A= (x-lOO)x y

,

Figure 4.13: A general example of the conditional statements

65

I,

66 Chapter 4. Expressive Power and Transformation

up+l: (i, {x, y, k+l}, {e1, e2}, k)
up+2: (inten-if, {x, y, · · · }, {A, · · · }, e1)
up+3: (inten-if, {x, y, ,100, · · ·}, {A, · · ·}, e2)

S3 => uµH: (+, {A, B}, {C}, k+2)

ui: (.x , {x, y}, {A}, e1±1)
Ui +l; (· · ·, • · · e1±2)

Uj : (-, {x, 100}, {vi}, e2 ± 1)
Uj+i: (x, {vi, y}, {A}, e2 ± 2)

Figure 4.14: An ABCOM code of a conditional statement with two branch flows

•

I

I

i
i

•

I
I

I

:

I
I

I

4.2. Solution Transformation 67

4.2.4 Loop transformation

In each iteration the statements of a loop body are executed as a basic block with

certain current iteration variables. To transform a loop, we carry out trace generation

along with the execution of the loop. As a result, its cyclic structures are transformed

into linear structure.

In (Ell86] Ellis described how the Bulldog compiler unrolls the bodies of inner loops

immediately after parsing the source code into intermediate code. The loop unwind­

ing transformation using the combining DAG technique was introduced by Kramer

(KGS94]. Unlike these approaches, our trace generation produces a linear structure for

a whole iteration space. For a nested loop an inner loop structure is unrolled completely

in each iteration of its outer loop. The semantics (data flow information) of a source

code are preserved by the generation (that is, what is created in the tuple space is what

is performed in the program). Such a transformation is performed by the algorithm in

Fig. 4.15.

Example 5. For the following nested loops

for i = 1 to n do

for j = 1 to n do

a(i,j) = (a(i,j - 1) + a(i - l,j))/2

enddo

enddo

the first 21 generated elements of ABCOM are presented in Fig. 4.17 where n = 10.

Example 6. There is a nested loop

for i = 1 to N do

s=O

for j = 1 to i - 1 do

s = s + aij X bj

bi= bi - s

enddo

enddo

68 Chapter 4. Expressive Power and Transformation

Input: a Do---loop statement, current EP and a loop-control stack LPG.
Output: ABCOM code.
Algorithm 2
1. Push current loop-control information onto the LC P;
2. If the current loop has been completed, then pop LCP and exit;
3. If the current statement is a Do---loop,

then recursively call Algorithm 2;
4. Translate the current statement (an assignment

or a conditional statement) into ABCOM with current EP;
5. If there is next statement, then let it be

the current statement and back to 3;
6. Update the loop-control variable, make the first statement

in the current loop be the current statement, back to 2.

Figure 4.15: Algorithm for Do--loop

for n = 10 its ABCOM code is shown in Fig. 4.16.

Example 7. Consider a sequential code for Gaussian Elimination (without pivot­

ing).

for k = 1 to n

for i = = k + 1 to n

a(i, k) = a(i, k) / a(k, k)

for j = k + 1 to n

a(i,j) = a(i,j) - a(k,j) x a(i, k)

enddo

enddo

enddo

Let n = 6, a transformed code of this solution is shown in Appendix A.l.

Algorithm 2 in Fig. 4.15 demonstrates the principle of how the source code is

directly transformed to ABCOM. The transformation rules described in 4.2.1 and 4.2.3

are used for generating each element of ABCOM from the source code. In fact, for a

good performance, there is an alternative resolution for the transformation in which the

source code is first transformed into an intermediate code (for instance, Quadruples);

4.2. Solution Transformation

u1: (+,{a10,ao1},{v1},l)

u2: (,{v1,2},{a11},2)

U3: (+, {a11, ao2}, {v2}, 3)

u4: (,{v2,2},{a12},4)

u21 : (+, { a20, a11}, { vu}, 21)

U22 : (, { V11, 2}, { a21}, 22)

U3: (+, {a21, a12}, {v12}, 23)

u24: (, {v12, 2}, {a22}, 24)

us : (+, { a12, ao3}, { v3}, 5)

u6: (,{v3,2},{a13},6)

u2s : (+, { a22, a13}, { V13}, 25)

u26: (,{v13,2},{a23},26)

u1: (+,{a13,ao4},{v4},7) u21: (+,{a23,a14},{v14},27)
us: (,{v4,2},{a14},8) u2s: (,{v14,2},{a24},28)
ug: (+,{a14,aos},{vs},9) u29: (+,{a24,a1s},{v1s},29)
u10: (,{vs,2},{ais},10) u30: (,{v1s,2},{a2s},30)
uu: (+,{a1s,ao6},{v6},ll) U31: (+,{a2s,a16},{v16},31)
u12: (,{v6,2},{a16},12) U32: (,{v16,2},{a26},32)

Figure 4.16: The transformed code of Example 5

U1: (=,{0},{s},1)
u2: (x,{a21,b1},{v1},2)
u3: (+,{s,vi},{s},3)
U4 : (-, {b2, S }, {b2}, 4)
Us: (=,{0},{s},5)
u6: (x,{a31,b1,{v2},6)
U7: (+, {s, v2}, {s}, 7)
Ug : (-, {b3, S }, {b3}, 8)
u9 : (x, {a32, b2}, {v3}, 9)
u10 : (+, {s, v3}, {s}, 10)

uu : (-, {b3, s }, {b3}, 11)

U12: (=,{0},{s},12)
u13: ((x,{a41,b1},{v4},13)
u14: (+,{s,v4},{s},14)
U1s : (-, {b4, S }, {b4}, 15)
u16 : (x, { a42, b2}, { vs}, 16)
u11: (+, {s, vs}, {s}, 17)
U18 : (-, {b4, S }, {b4}, 18)
U19 : (X, { a43, b3}, { V6}, 19)
U2Q : (+, { S, V6}, { S}, 20)
u21 : (-, {b4, s }, {b4}, 21)

Figure 4.17: The transformed code of Example 6

69

70 Chapter 4. Expressive Power and Transformation

the trace generation is then carried out such that the transformation from source code

to the intermediate code does not need to be repeated for each element of ABCOM.

4.2.5 While--Do transformation

The While--Do loop statement has an indefinite number of iterations. It is observed

t hat the While--Do structure can be divided into two groups based on the control

mechanism of iteration and the features of processing data within the loop.

In the first group, the same operations are executed based on the same set of data

objects in all iterations in which the objects may until a particular condition is satisfied

by the computation result of the last iteration. We call this loop value-control or fixed­

data-domain iteration.

The second group is called size-control or variable-data-(sub)domain (for each iter­

ation) loop since, for a given data domain for each call of the loop, the operations in

the loop body are executed to process different subsets of the domain in each iteration.

Precisely, the distinction between these two groups is whether the same data objects

are repeatedly processed in each iteration of loop execution. Different methods will be

used to transform them respectively.

In the case of a value-control While--Do loop, the iteration stops if the condition

is satisfied. Our method to transform such a structure is to treat it as the combination

of a loop and a special condition statement. The (head) statement of While--Do is

transformed in a similar approach to converting a branching statement, which generates

three relevant elements. To transform the "satisfied branch flow", that is the body of

the loop, we introduce another special three elements at the end of the execution of the

''flow" . The execution condition is thus checked at the end of each iteration, to decide

whether another iteration is needed. As an example, Fig. 4.18 is transformed into a

code in Fig. 4.19.

The size-control iteration performs iterations with a special value given to define

the size the iteration space at each call. The termination condition here is not de­

termined by the computation result of each iteration. To transform such a structure,

theoretically, we need to generate an ABCOM code for the whole iteration space. This

structure is therefore similar to a Do--loop statement except that its loop bound is

I

I

I

.

I

4.2. Solution Transformation

While 8 < 0.005 do
Z = (y- x) X D

8 = Z/1000
enddo

Figure 4.18: A accuracy-control iteration of While-----Do

u1: (<b, {8, 0.0005, k+l}, {e1 I e2}, k)
U1+1: (While, {f2}, {f2}, ei)
u1+2: (While, {n}, {n}, e2)

Ui: (-, {y, x}, {Z}, e1 ± 1)
Ui+i: (x, { v1, D}, {Z}, e1 ± 2)

Ui+q: (/, {Z, 1000}, {8}, e1 ± m)
Uj: (<b, {8, 0.0005, e1 ± (m + 2)}, {e1 I e2}, e1 ± (m + 1))
Uj+l: (0 , {0}, {0}, e1)
Uj+2: (0 , {0}, {0}, e2)

Figure 4.19: The transformed result of While--do

71

72 Chapter 4. Expressive Power and Transformation

defined just before the statemerJ.t is called rather than defined in programming. Hence,

we can transform this statement by using Do--loop transformation techniques if a

suitable size-control value that reflects the general characteristics of computation can

be provided. Or, at least, a lower bound and a upper bound of the size could be used

to help reveal general features about inherent parallel properties in the loop.

The size of a tuple space transformed from a source code containing loops is mainly

determined by the iteration space. The size of a tuple space may become unmanage­

able when a computationally expensive program (with a large number of iterations) is

transformed. To handle such a huge amount of data is not economical and sometimes

impossible. But the relation between a tuple-space size and parallelism exploitation

discussed in Chapter 7 shows that there are certain strategies and methods to help us

to use a reasonable size of a given problem to investigate of parallelism characteristics

of a general situation. The main idea of these strategies is based on:

1. Superblock-based parallelism revelation

The most computationally expensive part in a program are various loops, called

superblocks. The superblock-based strategy is used to cope with individual loops

as a number of subproblems. These subproblems can be investigated indepen­

dently in some degree. The general features of the problem can then be obtained

by synthesizing the results of investigation on these superblocks.

2. Computation pattern abstraction

A real world problem can usually be abstracted into certain computation patterns

in the form of iteration in programming. The same problem may be abstracted

into different patterns with different computation features. After transforming a

source code into ABCOM and analysing it, thus, we expect to re-abstract it into

new patterns with better performance.

3. Size-based parallelism speculation

Parallelism analysis is started with a reasonable size of a problem. Initially AB­

COM uses a suitable size of tuple-space to reveal and speculate parallelism (de­

scribed in Chapter 7).

4.3. Summary 73

4.3 Summary

In ABCOM an executable source code is transformed into another representation

that is executable on an ideal machine rather than any physical architecture. In this

representation, computation tasks designed in the source code are consistently rewritten

by using the tuples of ABCOM. The execution semantics implied in the original code

become explicit specification in the transformation under the assumption that each

element of ABCOM takes a unit of logical time. In other words, the notation of a

source code with implicit execution specification is represented in a set of units where

the execution order is linear. This change of representation is the first step in our effort

towards the goal of revealing parallelism of a problem.

As assumed in the beginning of this chapter, for the purpose of demonstration, we

use a sequential source code. After describing the charateristics of the transformation,

however, we see this assumption is not restrictive to generate ABCOM code from

other forms of solution representation. We believe that any form of representation,

with certain execution features specified implicitly or explicitly, can be considered for

this transformation by adequately modifying trace-generation strategies and developing

relevant syntax-directed translation rules. The choice of using a sequential source code

for transformation does have the following advantages: 1) clear execution semantics

that provides convinience for the trace generation; 2) free of communications that are

usually required when mapping a problem into a specific architecture.; and 3)easy

understanding of transformation techniques since they have certain similarity with

conventional compilers.

.....

;

I

'

!

74

Chapter 5

Parallel Computational Inference

The question as to whether parallel programming can be carried out systematically can

be rephrased into two associated questions: whether parallelism revelation and whether

static scheduling can be achieved using systematic methods. Answers to these two re­

lated questions require not only a well-organised domain representation as a basis, but

also a set of inference rules to analyse, abstract, reason and modify the solution. In

this chapter, we first discuss the requirements for a representation form to be used for

computation inference; then show that ABCOM serves as such a representation. Based

on it we introduce a set of inference techniques to conduct parallelism analysis. This

representation is further designed into the conceptual schema of a special program­

ming database that it is used as an operational platform of representation of parallel

programming. This permits the inference using relational algebra-like rules.

5.1 Domain Representation Issues

Programming languages and computation models have been developed for speci­

fying application domain knowledge using formal rules. A good language is certainly

important for parallel computation. The traditional programming philosophy is not

suitable for parallel programming due to the issues raised in Chapter 2, since most lan­

guages passively implement subjective understanding of a problem from a programmer,

with no function of revealing parallelism. Therefore, it is necessary to identify a set of

the criteria required for a representation to support parallelism revelation.

75

.......
I ,·

76 Chapter 5. Parallel Computational Inference

5.1.1 Requirements for conducting parallelism analysis

A given problem solution is completely specified using specification languages, func­

tional languages, high-level programming languages, an intermediate language or a

target code. One of the critical issues involved in the investigation of parallelism in a

problem is what kind of domain representation is needed for computation inference and

analysis. The requirements for a domain representation to be a basis for parallelism

analysis are as below:

• Expressiveness

The expressiveness of the domain representation should contain computational

features of both data and control flows. The computation of a problem can be

expressed in either machine dependent or independent manner. Of course, a

machine-independent representation will simplify the problem statement without

involving the details of implementation on a particular architecture.

• Granularity

The granularity of representation plays an important role in parallelism, e.g. to

investigate data parallelism a fine-grained representation is necessary; but control

parallelism requires investigation on a medium-grained or coarse-grained level.

• Visibility

The parallelism can be revealed if the independence among computations is made

visible in the representation. The independence among computations can be in

different forms and at different levels.

• Consistency

If the representation is more complex in its structures, the investigation of paral­

lelism will be more difficult. As a result, a simple and consistent representation

is desirable. Also the consistency of representations for dataflow, control flow

and independence will be advantageous for abstraction and optimisation if it is

available at different granular levels.

• Temporal aspects

The temporal aspect of computation is critical to parallel programs, and can

5.1. Domain Representation Issues 77

be specified completely or incompletely in an implicit or explicit manner in the

representation forms. To fully investigate parallelism of a given problem (espe­

cially for inference) a complete and explicit specification of the temporality of

computation will be needed.

• Reconstructivity

Parallelising compilers optimise a source code and transform it into a target code.

In this method, usually, t~o different solutions with different performances are

compiled when two source codes to the same problem are given. Note that perfor­

mance properties from a source code cannot be eliminated by optimising compu­

tation. The reconstructivity of solution representation differs from compilibility

of languages. Reconstructing a solution means the reabstraction of computation

from programming point of view. A reconstructed solution can be expressed in

a different representation form or in the original form. The reconstruction is

implemented using certain reconstruction rules after the original is optimised.

• Operability

Exploiting parallelism involves many different tasks - such as analysis, detec­

tion, optimisation, profiling, scheduling, and performance prediction. Hence, all

the properties of representation mentioned above must be in a well-organised

form and easy to process, abstract, reason, group, optimise and reconstruct.

The suitability of a programming language for parallelism investigation is examined

in terms of the above properties. The basic expression unit of computation expressed in

languages is the statement which have various forms in terms of syntax. The indepen­

dence of computation can only be studied between statements. As a result, parallelism

exploitation is considered at a statement level (JP93), [Bet al94b), [Bet al94a). Though

rich semantics of statements of a language brings people a lot of convenience to ex­

press computation (including parallelism), the consistency, granularity and operability

of representation are limited. The temporal aspect of computation is usually specified

completely in an implicit manner. Moreover, programming a solution needs to fit a real

world into a specific architecture when a machine-dependent programming language is

used. These issues complicate the expression of a problem. Computation inference

--

'

78 Chapter 5. Parallel Computational Inference

and analysis are therefore difficult to achieve in a programming language. Functional

languages and specification languages have similar situations to some degree. In this

respect, we cannot resist the temptation to quote from E.W. Dijkstra 20 years ago

(Dij72):

Another lesson we should have learned from recent past is that the develop­

ment of 'richer' or 'more powerful' programming languages was a mistake

in the sense that these baroque monstrosities, these conglomerations of id­

iosyncrasies, are really unmanageable, both mechanically and mentally.

Based on the definitions and properties described in Chapter 2, it is observed that

ABCOM is designed particularly with intention to meet the requirements. ABCOM

ensures independence and consistency in representation by unifying the computation

unit into quadruples, i.e., elements of the tuple space. Abstracting a number of relevant

elements of a CDOAG into a compound element changes the representation from the

fine-grained to medium- or coarse-grained. The granularity of representation can be

decided in terms of the size of the grain in ABCOM. The temporality of computation in

ABCOM is completely and explicitly specified. To carry out inference, an organisation

structure is needed to support manipulations, abstraction and modification on elements

in ABCOM. In practice, a special programming database is a good environment to

intensively support these tasks that cover different phases of parallel programming.

5.1.2 ABCOM tuplebase

Unlike an intermediate language of a compiler, ABCOM is represented as an infor­

mation base where elements of a solution are expressed as record units of the tuplebase

(called ABCOM tuplebase). Hence, the ABCOM tuplebase can be processed using

relational database techniques.

The main schema contains five basic fields: four of these correspond to components

of the element and the fifth denotes the identifier (ID) of an element in the tuplebase.

Using such a schema, we can present the example in Fig. 4.15 into a tuplebase in

Fig. 5.1.

I

I

5.1. Domain Representation Issues 79

A tuplebase for a given problem is created when a source code is transformed. Such

a tuplebase consists of a number of database files created during transformation. These

files are divided into two sub-tuplebases, that is, Superblock_base and Branching_base.

A Superblock_base contains all elements generated when transforming a superblock

excluding these elements which are logically contained in condition branching flows.

Those converted elements arising from the statements between a branching statement

and the associated merging statement are stored in a Branching_base. Thus the study of

relations among data, operations and time can be carried out using relational algebra.

To collect information and process data for computation inference in ABCOM, two

important SQL-like functions are used.

1. select < attributs >from< filename> where< condition>

This function identifies the elements which meet certain conditions. Usually, a

group of elements can be selected as they have the same logical execution time,

or the same data object as one of their input or output, and so on.

2. modify< filename> with< assignment> where< condition>

Here < assignment > can be either an expression on EX or a substitution of a

data object in IN or OUT. In general, any modification in a file is permitted

if (and only if) it can be guaranteed that will not affect the correctness of the

solution.

The relational algebraic primitive functions on the tuplebase can be combined with

the definitions and properties of ABCOM, for computation inference, parallelising solu­

tions, collecting profile information on parallelism, and predicting performance. Using

relational techniques, thus, a parallel programming platform can be developed.

Generating C DO AGs

As previously mentioned, CDOAG plays an important role in ABCOM. Each element

in ABCOM corresponds to an associated CDOAG that may contained in another

C DO AG belonging to other elements. Thus, which C DO AGs are to be generated and

whether CDOAGs can be processed easily are critical to use ABCOM. We introduce

two methods to construct CDOAGs from a given tuple space.

I

I

I

'

II"""

80 Chapter 5. Parallel Computational Inference

ID OP IN OUT EX
Ut 0 s 1
U2 X a21,b1 Vt 2
U3 + s, Vt s 3
U4 b2,s b2 4
Us 0 s 5
U6 X a31,b1 V2 6
U7 + s, V2 s 7
Ug b3, S b3 8
U9 X a32, b2 V3 9

UlQ + s,v3 s 10
U11 b3,S b3 11
U12 0 s 12
U13 X a41,b1 V4 13
U14 + S, V4 s 14
Uts b4,s b4 15
UJ6 X a42,b2 Vs 16
U17 + S1 Vs s 17
U1g b4, S b4 18
U19 X a43, b3 V6 19
U20 + s, V6 s 20
U21 b4, S b4 21

Figure 5.1: The conceptual schema in ABCOM tuplebase

5.2. Relation-Based Computing Inference and Analysis 81

• Method 1: Top-down strategy: Given a particular Ui, CDOAGu, is generated by

identifying the producers (elements) of its input and recursively finding producers

of the input of those elements until it is found that all input data of new producers

are specified. To generate CDOAGs from a tuple space, only those elements that

produce the output of the superblock are considered. The generation procedure

is made efficient by starting from the elements having earlier execution orders .

• Method 2: Bottom-up strategy: Along with the original partial order generated in

the trace generation of transformation, each element Ui determines an associated

CDOAGu, by combining existing CDOAGs as its subgraphs. A special case is

that if the input of Ui is specified, then EDOAGu, itself is a specific CDOAG.

Here generation of CDOAGs is controlled by defining a number of output data we

are interested in. Once all C DO AGs corresponding to the data are constructed,

the generation stops.

The gen_CDOAG < x > is a function based on Method 1. The implementation of

function gen_C DO AG < x > using relational select queries is illustrated in Fig. 5.2.

All elements found in a generated CDOAGu, are stored in a CDOAG_base that has one

more field than the schema of the main tuplebase, called CDOAG_id to keep the identifier

of Ui.

Remark

To generate a CDOAG we combine the individual dataflow relations between elements.

Once a CDOAG associated with a particular data object is generated, the dataflow

computation feature relevant to computing this data is abstracted. Although there is

an associated CDOAG for each element in P, it is not necessary to generate all of them

since some of them are contained in others.

5.2 Relation-Based Computing Inference and Analysis

The efficiency of parallel computing depends on how to achieve the reduction in

complexity of relations among time, data and operations so that high-performance can

be obtained on a parallel architecture. In the explicit programming approach, inference

of parallel computation for a given problem is done by a programmer. The results of

-
I

I

I

I
I

I

82 Chapter 5. Parallel Computational Inference

Input: an element Ui and a tuplebase U.
Output: all elements included in CDOAGu, are found and stored in CDOAG...base

Temporal variables: id1, op1, in1, out1, ex1 and cdoag1.

Algorithm 3:
1. if CDOAG_base does not exist then
2. create CDOAG...base;
3. put Ui into CDOAG_base (with its CDOAG-.id= null);
4. let Y.cdoag1='ui'
5. while 3uj E CDOAG_baset\ its CDOAG_id is null then do
6. for Vx E inui do
7. select into Y.id1, Y.op1, Y.in1, Y.out1, Y.ex1

fromU
where EX=

8. select Max(EX) from U
where OUT like x and EX < exui;

9. if Y.id1=null then back to 6;

/ a vertices with indegree zero is reached./
10. select · CDOAG_id into Y.id2

from CDOAG_base

where ID= Y.id1
11. if Y.id2# null then do
12. strcat Y.id3= (Y.id1, Y.id2)

13. update CDOAG...base

set CDOAG_id = %id3

where ID= Y.id1
14. back to 6
15. insert Y.id1, Y.op1, Y.in1, Y.out1, Y.ex1,

16. into CDOAG...base (ID,OP,IN,OUT,EX);
17. endfor
18. update CDOAG..base

19. set CDOAG_id ='ui'
20. where ID= 'ui'
21. endwhiledo

Figure 5.2: Algorithm 3 for CDOAG generation

5.2. Relation-Based Computing Inference and Analysis 83

this inference are directly expressed in a program. In the implicit approach, inferences

performed by a parallelising compiler, i.e. data dependence testing and parallelising

programs, are limited to studying the relationship between statements. In this section

we will show how the computation inference based on different aspects is achieved in

ABCOM.

5.2.1 Time-based inference

Parallelism exploitation is based on the logical properties among computations (or

the logical relation of computation execution). In programming, a programmer de­

signs and implements an underlying computation in terms of certain programming

logic. No substantial guideline can be derived from time-based computation inference

to support parallelism analysis. Three typical relations between statements in a pro­

gram are sequencing, multi-tasking and synchronisation. These three relations reflect

the properties of control-flow. Data parallelism is expressed by a special statement

with programmer's personal knowledge. Unfortunately, there are no effective tools for

computation inference that systematically reveal computational characteristics of the

problem. Although the statement-based DDG is used in data dependence testing, it

does not characterise time-based computation logic.

The properties of ABCOM, such as temporality and consistency, enable time-based

inference to be carried out.

(1) Computation latency analysis

Each element Ui in a solution P has a legal-execution zone where parallelism and

speedup can be obtained. The computation latencies are caused by subjective pro­

gramming decisions. For a given element Ui its tJoweru; can be obtained using the

algorithm in Fig. 5.3. Similarly, Lupperu; and the legal-execution zone ~u; can be

obtained.

Using the property expressed in Lemma 3.2, we find that computing a CDOAG can

be speeded up by reordering certain execution orders of some elements and removing

unnecessary partial orders. This can lead an optimised solution. We will discuss this

optimisation using ABCOM in Chapter 6.

(2) Dataflow relation testing

--
I

I

84

-

Chapter 5. Parallel Computational Inference

Input: a given element Ui and tuplebase U.
Output: tJoweru,
Algorithm 4

(1) Llower = 0
(2)
(3)

(4)

(5)
(6)

for Vx E inu, do
select EX into %t1 from U

where EX=
select Max(EX) from U

where OUT like x and EX < exu,;
if Llower > %t1 then tJower = %t1

enddo

Figure 5.3: Algorithm 4 to obtain tJoweru,

In a dataflow computation the ordering of operations is determined by data interde­

pendencies and availability of resources [Sha85]. The data flow relation, that exists

between certain elements in ABCOM, is defined below.

Definition 5.1 Let {ui, Uj} C P; if data x is produced by Ui and later used as input

data of Uj before it is modified, then there is a direct data-flow between Ui and Uj. We

denote this by Ui ~ Uj.

Note that if there are Ui ~ Uj and Ui ~ Uk, then it means that there two data flows

from the same element to different elements, denoted as

The data flow relation can be identified by using the following rule:

Rulel. if (3x, {x} = outu, n inu;) I\

(,lluk E CDOAGu,) I\ (x E outuk) I\

then

The dataflow inference detects data dependence. Two kinds of dataflow relations are

--------~ ·- -- -

5.2. Relation-Based Computing Inference and Analysis

Input: a given element Ui and tuplebase U.
Output: elements which have input-dataflow relations

associated with Ui.

Algorithm 5
(1) for each data object x E inu, do
(2) select id from U

where EX=
(3) select Max(EX) from U

where OUT like x and EX< exu,;
(4) enddo

Input: a given element Ui and tuplebase U.
Output: elements which have input-dataflow relations
Algorithm 6

(1) for each data object x E outu, do
(2) select id from U

where EX=
(3) select Mim(EX) from U

where IN like x and EX> exu,;

(4) enddo

Figure 5.4: Algorithm 5 and 6 for detecting data flow relations.

85

associated with a given element Ui in light of inu, and outu, respectively, which are

called input-dataflow relation and output-dataflow relation. The algorithms for these

are presented in Fig. 5.4 based on ABCOM tuplebase.

(3) Data-parallelism checking

In ABCOM, checking data parallelism is achievable in a step-wise manner if there are

elements that meet the condition for data parallelism. However, data parallelism is not

directly testable in an initial version of a solution converted from a sequential code.

Thus, we do not discuss data parallelism inference and abstraction in ABCOM until

we are able to parallelise a given solution.

(4) Static computation scheduling

Static computation scheduling is one of important issues in mapping an algorithm to

a particular architecture [AS93], [Lil93], [Fea94], [NN94]. Static scheduling can be

divided into two subtasks: identifying candidates and making selection . The degree

-
I

I

I

'

I

I
I

I

'

-­,.

86 Chapter 5. Parallel Computational Inference

of parallelism achieved in a program is determined by the amount of parallelism found

during static computation scheduling.

The static computation scheduling is grain-dependent and architecture-dependent.

Using ABCOM, at a given timestep, static computation scheduling can use the following

rule to identify those elements in the tuplebase which are ready for execution:

Lemma 5.1 If 3ui and \/xk E inu; have been specified at a given timestep ti ~ exu; ,

and jui in which Xk E outu; and ti ~ exu; ~ exu;, then element Ui is a candidate that

is ready for scheduling.

The above rule is general but only can address one of the two subtasks, and cannot

be used efficiently in practice. To improve the efficiency, the rule can be implemented

in different ways, in particular after a solution is optimised (see Section 7.6.2).

The static computation scheduling is grain-dependent and architecture-dependent.

The scheduling at a fine-grain level looks into data parallelism, and at a coarse-grain

level control parallelism is mainly considered. Using granularity and execution specifi­

cation of ABCOM, we expect that the techniques of static scheduling can be benefited

from time-based and dataflow related computation inference.

5.2.2 Data-based inference

Parallel programming experience shows that the decision made on data manip­

ulation in programming can affect the performance. Different architectures (espe­

cially memory and interconnection structure used) require different data manipula­

tion schemes. The ABCOM representation provides the following features to support

data-based inference.

• Data-access-pattern inference

The data-access-pattern records how a data object is read or written for oper­

ations. The data-access-pattern is time-dependent because variables are usually

reused. An access pattern of data x contains only one write access and all read

accesses which are performed after this write and before next write. Because of

the assumption of a CREW PRAM memory in ABCOM in Section 3.4.1, there

•

5.2. Relation-Based Computing Inference and Analysis 87

Figure 5.5: A data access pattern abstracted from Table 5.1

are two basic types of data access patterns. In the first type, the data a is only

read by operation Uj after written by Ui and before the next 'write'. In the second

type, the data b is read by a number of operations after written. It is often seen

that there are a number of data-access patterns based on the same data object in

a solution due to the reuse of variables. In ABCOM, a data-access pattern can be

abstracted by checking all elements that perform 'read' accesses to a particular

data between two 'write' accesses.

This method provides information of life cycles of data-access patterns, if all

the patterns to the same data are abstracted along with logical execution of

computation. If there is no read access between two write access to the same data,

then the first write access is useless. Hence, programming errors can be detected.

The life-cycle information of data-access patterns is very useful for variable reuse

in programming. A data-access pattern illustrates the dataflow relations between

the element of write access and the elements with read accesses. This detects

data dependence among elements.

Using data-access-pattern inference, we abstract an access pattern of data object

b
2

from the tuplebase in Table. 5.1. This pattern is represented in Fig. 5.5.

• Data-dependence testing

Except detecting dataflow relation, other kinds of data dependence are to be

tested for computation analysis. Let P be a solution converted from a sequential

program. If any two elements Ui, Uj E Pare said to be data dependent on data

object x, then there are following cases[Wol89] where exu; < exu; :

·- I

i

I

I

I

I

I
I

I

I

I

I

i

;

-

88 Chapter 5. Parallel Computational Inference

1. if outu., n inu.1 = { x} and f-luk in which x ~ outu.1 and exu., < exu.k < exu.
1

,

then Uj is data flow-dependent on Ui;

2. if inu., n outu.1 = { x }, the Uj is data anti-dependent on ui;

3. if outu., n outu.1 = { x }, then Uj is data output-dependent on Ui.

Both data anti-dependence and data output-dependence are called memory-based

dependence. We denote the memory based dependence between Ui and Uj by

Using the concept of CDOAG, such a data dependence can be tested using Rule

2 and 3 respectively.

Case 1.

Case 2.

Rule 2. if (CDOAGu., lie CDOAGu.1 V

CDOAGu., 1X1 CDOAGu.1) I\

((inu., n outu.1 = {x}) V

then

Rule 3. if

then

((outu., n inu.1 = { x}) V

(outu., n outu.1 = {x}))
X

Ui f----+ U j .

(CDOAGu., C CDOAGu.1 V

CDOAGu.1 c CDOAGu.,) I\

((inu., n outu.1 = { x}) V

((outu., n inu.1 = {x}) v

(outu., n outu.1 = { x})) /\

,((ui -t Uj) V (uj -t (ui))

X
Ui f----+ U j .

5.2. Relation-Ba.sed Computing Inference and Analysis 89

The Rule 2 tests for a memory-based dependence between two elements whose

CDOAGu; and CDOAGu1 are conditionally independent or overlapping. The

dependence (tested by using the Rule 3) exists between two elements of which

CDOAGu; and CDOAGu1 have a contained relation but not a dataflow relation .

The reason we distinguish these two kinds of memory-based dependence is that

in the second case there is actually an indirect data-flow relation between the

elements. These two situations are treated in different ways when a solution is

parallelised. The implementations of Rule 1, 2 and 3 are not complicated since

the relations between CDOAGs can be identified. CDOAG-based computation

inference described in Section 5.2.4 will address how to check relations between

twoCDOAGs.

5.2.3 Operation-based inference

Operation-based inference is also useful to parallel computing. It has been shown

in the last two subsections that computation inference based on either time or data

could only reveal various logical and dependent relations between elements. We use

operation-based inference in a similar way to assist computational analysis.

Data structures are mainly determined by a specific solution to a problem. To

properly redefine or reconstruct data structures for solution optimisation and recon­

struction, operation-based inference is required, including computation pattern tests

and some special optimisation against a CDOAG. We discuss these techniques in

Section 7 .3.

The computation inference based on time, data and operations are fundamental and

easy to understand in ABCOM. Various applications of this inference can be developed

according to different interests. Some main applications of the inference are presented

in Chapter 6 and 7.

5.2.4 C DOAG relations inference

Based on dataflow relation inference, we can compose individual dataflow relations

into a computation dataflow associated with related elements. The discussion presented

in Chapter 2 and Section 5.1.2 shows that a CDOAG contains all information required

-
I

I

I

I

'

I

'

'

I

I

I

I

-

90 Chapter 5. Parallel Computational Inference

Initial: given CDOAGu, and CDOAGu1 in CDOAG_base.

Output: reporting a contained relation between CDOAGu, and CDOAGur
Algorithm 7:
1. Y,id1=' ui' • Y,id2='u/;

2. select CDOAG...id into Y,cdoag...id

from CDOAG_base where ID =Y.id1;

3. if Y,cdoag...id=Y.id2 then
4. writeln('CDOAGu, c CDOAGu1 '), exit;
5. select CDOAG...id into Y,cdoag...id

from CDOAG_base where ID =Y.id2;

6. if Y.cdoag...id=Y.id1 then
7. writeln('CDOAGui c CDOAGu, '), exit;
8. exit

Figure 5.6: Algorithm 7 for testing a contained relation between C DO AGs

to complete a computation procedure and carry out computation inference. The four

categories of the relations between two C DO AGs are determined by the relevant com­

putation features of them. According to the definitions of these categories, the relation

between CDOAGu, and CDOAGui is tested using the algorithms in Figs. 5.6, 5.7 and

5.8.

5.2.5 Nondeterministic computation analysis

Determinacy is important to exploit parallelism. As shown, in a CDOAG, deter­

ministic computations are easily abstracted and represented using dataflow relation

between elements. Inference to determinist ic computations is thus developed with no

difficulty. However, situation is different for nondeterministic computations.

A simple nondeterministic computation is expressed by a conditional statement in

a source code. If a loop contains conditional statements, then computation inference

becomes complicated. Consider the sequential code of sorting.

Example 8. A sequential sorting program is expressed as:

I

I
I

5.2. Relation-Ba.sed Computing Inference and Analysis

Initial: given CDOAGu, and CDOAGui in CDOAG_base.
Output: checking whether CDOAGu, and CDOAGui are overlapping.
Algorithm 8:
1.
2.
3.

4.
5.
6.
7.

8.

%id1= 1 Ui' , %id2= 1 Uj' j

declare CDOAG_overlapping cursor for
select ID from CDOAG...base

where CDOAG_id like %id1 and CDOAG_id like %id2;

open CDOAG_overlapping ;

fetch CDOAG_overlapping into %id3;

if %id3=f 'null' then
writeln('CDOAGui 1><1 CDOAGu;'),

close cursor CDOAG_overlapping and exit
close cursor CDOAG_overlapping and exit;

Figure 5.7: Algorithm 8 for testing CDOAGu, l><I CDOAGur

for i = 1 to n - 1 do

for j = 1 to n - 1 do

if a(j) > a(j + 1) then do

t = a(j); a(j) = a(j + 1); a(j + 1) = t.

91

Here we use n - 1 instead of n - i as the bound of the internal loop so that a complete

computation space can be observed. We transform the above code into ABCOM when

n = 6. In Fig. 5.9 the some elements generated from Example 8 are given. These

elements are not directly performing exchange for the three assignment statements

(called threesort) after each if, but they illustrate certain computation features of the

loops.

Each element of subset { u1 , u4 , u7 , u10 , • · ·, u73} performs a condition test to decide

whether an associated element that carried out exchange of threesort should be exe­

cuted with the a special compound operation (if-inten(ei)). We illustrate the possible

relations that exist among the elements with operation of if-inten(ei) in Fig. 5.10.

The edge labelled by a cycle in Fig. 5.10 indicates a possible computation relation

I,

:

I

;

I

I
I

'

I

I

I

~

II

92 Chapter 5. Parallel Computational Inference

Initial: given CDOAGu; and CDOAGu; in CDOAG_base and they have a neither
contained nor overlapping relation.

Output: reporting a conditionally independent relation or a completely
independent relation between CDOAGu; and CDOAGu;­

Algorithm 9:
1. Y,id1=' U/ , Y,id2=' Uj';
2. declare CDOAG_cond cursor for
3. select IN from CDOAG_base

where CDOAG__id = Y,id1;
open CDOAG_cond;
While CDOAG_cond is not empty do
begin

4. fetch CDOAG_cond into Y,input;
5. for each data object x in Y,input do
6. declare shared_var cursor for
7. select IN from CDOAG...base

where CDOAG_id = Y,id2 AND (IN like x OR OUT like x;
open CDOAG_base;

8. fetch shared_var into Y,sharedobject
9. if Y.sharedobject #= 'null' then
10. writeln('CDOAGu; lie CDOAGu/), exit;
11. repeat 5.

end
12. declare CDOAG_cond cursor for
13. select OUT from CDOAG...base

where CDOAG__id = Y,id1;
open CDOAG_cond;
While CDOAG_cond is not empty do
begin

14. fetch CDOAG_cond into Y,output;
15. for each data object x in %output do
16. declare shared_var cursor for
17. select IN from CDOAG...base

where CDOAG_id = Y,id2 AND (IN like x OR OUT like x);
open CDOAG_base;

18. fetch shared_var into Y,sharedobject
19. if Y,sharedobj ect #= 'null' then
20. writeln('CDOAGu; lie CDOAGu; '), exit;
21. repeat 15

end
22. writeln('CDOAGu, II CDOAGu/);
22. exit;

Figure 5.8: Algorithm 9 for testing CDOAGu; lie CDOAGu;·

5.2. Relation-Ba.sed Computing Inference and Analysis 93

u1 : (<b, { a1, a2, 2}, { e1le2, 1) u16 : (<b, { a1, a2, 12}, { e11le12, 11)
u2: (if - inten(e1), {a1, a2}, {a1, a2}, e1) u11: (if - inten(en), {a1, a2}, {a1, a2}, en)
u3 : (0, {0}, {0}, e2) u1s: (0, {0}, {0}, e12)
U4: (<b, {a2, a3, 4}, {e3le4, 3) u19: (<b, {a2, a3, 14}, {ede14, 13)
us: (if - inten(e3), {a2, a3}, {a2, a3}, e3) u20: (if - inten(e13), {a2, a3} , {a2, a3}, e13)
U6: (0, {0}, {0}, €4) U21 : (0, {0}, {0}, €14)
u7: (<b,{a3,a4,6},{esle6,5) u22: (<b,{a3,a4,-l6},{e1sle16,l5)
us: (if - inten(es), {a3, a4}, {a3, a4}, es) u23: (if - inten(e1s), {a3, a4}, {a3, a4}, e1s)
ug: (0, {0}, {0}, e6) u24: (0, {0}, {0}, e16)
u10: (<b,{a4,as,8},{e1les,7) u25: (<b,{a4,a5,l8},{e11le1s,l7)
un : (if - inten(e1), { a4, as}, { a4, as}, e1) u26 : (if - inten(e11), { a4, as}, { a4, as}, e11)
u12 : (0, {0}, {0}, es) u21: (0, {0}, {0}, e1s)
u13 : (<b, { as, a6, 10}, { egle10, 9) u2s : (<b, { as, a6, 20}, { e19le20, 19)
u14 : (if - inten(eg), { as, a6}, { as, a6}, eg) u29 : (if - inten(e19), { as, a6}, { as, a6}, e19)
u1s : (0, {0}, {0}, e10) u30: (0, {0}, {0}, e20)

Figure 5.9: Pa.rt of the ABCOM code of Example 8.

between two elements subject to the result of an associated condition test. Because

there is an uncertainty of the relation, computation inference and abstraction of these

elements require more investigation on what the real computational relation exists

among these elements.

Though it is certain that there is some parallelism in data. movement of Fig. 5.10,

the inference techniques described in the previous subsections a.re not applicable due

to the absence of explicit and deterministic specification of time. In order to exploit

parallelism of nondeterministic computation, thus, one should be able to address the

following questions:

• Whether an element is computationally independent from others?

• What is affected if the execution order is changed?

• Which elements can be pa.ra.llelised according to the answers of the above ques­

tions and basic requirements of parallelism?

• How can all those possible data.flow relations be correctly performed in parallel?

-
I

I

I

I

I
I

I

'

'

'

l
I

'

'

-

94 Chapter 5. Parallel Computational Inference

(3i 'cli)

~I\

Figure 5.10: Uncertain relations among some elements of Example 8

5.2. Relation-Based Computing Inference and Analysis 95

5.2.6 Element-state based inference

Another important feature of computation execution in ABCOM is the evolution of

element status along with logical execution of computation. Each element of ABCOM

can only be found in one of the following groups:

1. Waiting_group (Wg)

If Ui E P /\.exu, > EP, and the input data objects of inu, have not been completely

specified, then Ui is in Wg;

2. Ready_ group (Rg)

If Ui E PI\. exu, > EP, and the input data objects of Ui have been specified, then

Ui is in Rg;

3. Execution_group (Eg)

If Ui E P /\ exu, = EP, and all input data objects have been specified, then Ui is

in Eg;

4. ConditionaLexecution_group (Cg)

If Ui E P and exu, is an expression with the operation '±', then Ui is in Cg;

5. PosLexecution_group (Pg)

If Ui E PI\. exu, < EP, then Ui is in Pg.

During the execution of computation, an element may migrate from one group to

another as certain execution conditions are met. The migration procedure of elements

is outlined in Fig.,5.11.

The element migration between different groups is driven by certain conditions.

The migration of Ui is denoted as:

(Departuregroup) ~ (Destinationgroup).

In terms of Definition 3.10, the initial distribution of elements among these groups is

determined by the decision of programming. When EP = O, initially, all elements are

distributed in Wg, Rg and Cg except u0 E Eg. The driven conditions can be explained

in three categories:

--1

I

I

I

I

I

I

'

I

I

'

-- -

...

96 Chapter 5. Parallel Computational Inference

,.----~

Figure 5.11: The procedure of element migration

1) EP driven

At each logical step some elements become currently executable and some become

performed. We refer these changes of element states as the migration driven by EP.

This migration happens between Rg and Eg, or Eg and Pg when EP = EP+ 1, which

are stated as:

• Rule 4.
('tui E Rg) I\ (exu; = EP)

u · ,
Rg~Eg

• Rule 5.

'tui E Eg.

E u; P.,
g......,. g

2) Dataflow driven

The element migration between W g and Rg is driven by the dataflow.

• Rule 6.

(Eg ~ Pg) I\ (3uj E Wg) I\ (ui-=-+ Uj) I\ ('tx1 E inu;,3uk,Uk ~ Uj I\ exu,. < exu;)
u ·

Wg~Rg

Remark

It is possible that some elements are driven by both dataflow and EP at a particular

I

I
I

I
I

I

I

I

I

I

I

I

5.3. Summary 97

timestep so that they can migrate from Wg directly to Eg in one logical step. In this

case, these elements are executed in a dataflow computation fashion.

3) Conditional-control driven

It cannot be determined whether the elements in Cg are executed until the required

conditions are tested during the execution. These elements would migrate to Rg and Eg

only when the conditions are satisfied. To be consistent with the Definition 3.1, only the

head element (a compound element of the elements converted from the branching flow)

would migrate to other groups when the branching flow is determined to be executed.

In this special unit of time when the head element is in Eg, all the elements (being

in Cg) associated with the head element would complete their migrations in a 'hidden'

mode using its own relatively logical clock (intensional logic). The element migration

in a 'hidden' mode is shown by dot lines in Fig. 5.11.

The main restriction for the application of relation-based computation inference is

that in order to perform inference, there must be certain kinds of relations that ex­

ist among elements with respect to data, operation or logical execution time. Using

element-state based inference, we can carry out inference at a higher level for compu­

tation scheduling, balancing, simulation and performance prediction.

5.3 Summary

By developing an ABCOM programming database, we have shown how parallel

computation analysis and inference can be performed using relational algebra, and

rules. The inference features demonstrated in this chapter are based on three key

factors of parallel computing, namely, time, data and operations.

'

-·

I

I

I

I

I

I

i

I

I

I

I

~

I

98

'-----.----- - -- --

Chapter 6

Solution Parallelisation in ABCOM

A parallelising compiler detects potential parallelism in a source code, and imple­

ments it by a transformation. The result of the transformation is an optimised parallel

program that can be executed in a specific architecture. The amount of parallelism

achieved in the optimised program is dependent upon the amount of parallelism can

be exploited by the compiler and how that can be realised in the architecture. We

call such a procedure as "program parallelisation". After a source code is transformed

into ABCOM, the program takes a new form preserving the original execution seman­

tics. How we can optimise this solution i.n ABCOM and to what extent the parallelism

can be exploited are described in this chapter. To distinguish this optimisation from

program parallelisation, we call it "solution parallelisation" since this optimised solu­

tion is executable on ABCOM machine and but may not be physically implementable.

The purpose of optimisation is to reveal parallelism in a programmer-view independent

manner.

6.1 Overview of Optimising Compilers

In the last decade optimising com pilers .have become an essential component of high­

performance computer systems. The survey by Bacon et al [BGet al94) provides the

state of the art in this area. Developing a framework that unifies the transformations is

important in this area of research. We briefly review studies relevant to parallelisation.

99

.......

!

I

I

I

I

I

I

I

I

i

I

I

I

I

'

'

I

-

....

'

100 Chapter 6. Solution Parallelisation in ABCOM

6.1.1 Existing studies

1. Data Dependence Analysis

Dependence analysis and tests have been conducted in (Lam74], (WB87), (Ban88),

(Pug92], (PP92], (JP93), (Lil94). The definitions of data dependence relations given

by Wolfe and Banerjee in (WB87) are stated below:

Given two statement Sv and Sw, the following data dependence relations

may hold true or the statements may be data independent.

1. If some item X E OUT(Sv) and X E IN(Sw) and Sw is to use the

value of X computed in Sv, then we say that Sw is data flow-dependent

on Sv.

2. If some item X E J N(Sv) and X E OUT(Sw), but Sv is to use the

value of X before it is changed by Sw, then we say that Sw is data

anti-dependent on Sv.

3. IF X E OUT(Sv) and X E OUT(Sw) and the value computed by

Sw is to be stored after the value computed by Sv, we say Sw is data

output-dependent on Sv.

Here the data dependence is defined between statements (and differs from the depen­

dence we have defined in Chapter 5). In traditional data dependence test a Data

Dependence Graph(DDG) is used. This is a statement-based dependence graph. A

statement Sv in a loop is designed for performing a number of instances in the itera­

tion space of the loop. The dependence between instances of different statements in

different iterations, the dependence distance vector and dependence direction vector are

introduced [Wol89). The dependence behaviour of a loop is described by the set of

dependence vectors for each pair of possibly conflicting references. Determining data

dependences is equivalent to testing whether there exists an integer solution to a set

of linear equalities and inequalities It is an NP-complete problem [Pug92). If the de­

pendence information is inexact, the compiler must act conservatively, rejecting some

transformations because they violate a constraint that may or may not be real (Pug92),

[PW94), that is, some false dependences may be reported.

!

I

I-..

I

I
I

6.1. Overview of Optimising Compilers 101

In addition, there are a number of exact tests that exploit some subscript charac­

teristics to determine whether a particular type of dependence exists [Ban88], [Gea91],

[Lea90], [Mea91], [Pug92], [Wol89], [WT92], [JP93].

2. Transformations

(1) Data-flow-based loop optimisation

A number of loop optimisations based on data-flow analysis are summarised in the

'Red Dragon' book by Aho ~t al ·[ASU86). These include loop-based strength reduction,

induction variable elimination, loop-invariant code motion and loop unswitching, which

are used to optimise the computation cost of loops.

(2) Loop reordering

Loop reordering changes the relative order of execution of the iterations of a loop nest

or nests. Such a transformation exposes parallelism and improves memory locality.

Whether a loop can be parallelised is determined by the test result of data dependence.

The loop reordering can been done using different methods, such as loop interchange,

loop skewing, loop reversal, strip mining, cycle shrinking, loop tiling, loop distribution

and loop fusion.

(3) Loop restructuring

Loop restructuring changes the structure of the loop, but leaves the computations per­

formed by an iteration of the loop body with their relative order unchanged. The main

approaches to loop restructuring are loop unrolling, software pipelining, loop coalescing,

loop collapsing, loop peeling, loop normalisation and loop spreading.

Since these transformations are based on the relations between statements, the space

for optimisation is limited by the context of program. The computation space (spatial

structure) of a problem is not exhibited. That is the reason why various attempts have

been made to explore certain individual parallel properties which can be detected by

some tests.

6.1.2 Problems

The success of the applications of various transformations relies on the data de­

pendence testing. To compute dependence information among the iterations of a loop,

I

I

I

I
I

I

I

1

i

I

I
I

.

.

:

i

102 Chapter 6. Solution Parallelisation in ABCOM

we need to understand the use of arrays referenced in the loop. The complete in­

formation on a data dependence relation includes three aspects: (i) data that is the

carrier of the dependence; (ii) operation which determines the nature of the depen­

dence in the combination with the another aspect, and (iii) time. Dependence vectors

describe dependence among iterations (conveying only information about the time),

but not the precise information on data objects and operations. In other words, the

data dependence exists among the operations on data objects, but people use only the

dependences among iterations (or statements) as the abstract description (distance or

direction vectors) for data dependence tests. In this case, testing dataflow relation or

data dependence relation becomes complicated since each statement corresponds to a

number of instances in different iterations.

The concept of data flow is directly or indirectly used by all those transformations.

For individual transformation, however, only a certain part (sometime only a small

part) of dataflow features inherent in computation is exploited. All dataflow features

of a program could not be exploited completely in a certain transformation.

An important feature of using a loop is to let a certain computation pattern (body

of a loop) to be repeated properly over a data domain of any size, as long as the loop

control variable is defined. It is often seen that a loop body, which is "smalf' in the size

of text, processes a data domain which is much much "large~' than the loop in size. Any

optimisation is always developed against a particular object, called optimisation space.

In conventional compilers, the optimisation space used is the context of a program,

i.e, statements of loop rather than a space associated with the data domain. Selecting

such an optimisation space has created certain difficulties in exploiting parallelism. Fox

points out [Fox92] that:

The spatial (data) parallelism of the problem becomes purely temporal in

the software, which implements this as a Do loop. Somewhat perversely,

a parallelising compiler tries to convert the temporal structure of a Do

loop back into spatial structure to achieve data parallelism on a spatial

array of computers. Often parallelising compilers produce poor results as

the original map of the problem into sequential Fortran 77 has 'thrown

away' information necessary to reverse this map and recover unambiguously

I

I

I

I

I

I

!

I

I

I
~ -

i

!

I

I

I

i

I

'

I

~ ---

6.1. Overview of Optimising Compilers

the spatial structure. The first (and some ongoing) efforts in parallelising

compilers tried to directly 'parallelise the Do-loops'. This seems doomed

to failure in general as it does not recognise that in nearly all cases the

parallelism comes from spatial and not in control (time) structure.

103

Consequently, the challenge is how to find a suitable method to recover the in­

formation on the spatial structure from a sequential program, or how to recover the

information necessary to do a reverse mapping from the temporal to the spatial aspect

unambiguously.

Before ABCOM-based solution parallelisation is discussed, we recall the definition

of transformation given in [BGet a/94):

A Transformation is legal if, for all semantically correct program executions,

the original and the transformed programs produce exactly the same output

for identical executions.

The transformation techniques of ABCOM described in Chapter 4 preserve the original

execution semantics of a source code using a trace-generation strategy. The total order

is generated by sequential execution. CDOAG provides the complete information to

compute a particular data object from both topological and temporal points of view.

Abstracting all CDOAGs associated with the output of a problem (loops), we can

clearly obtain the spatial structure of the problem. And partial ordering in CDOAG

tells us which computation element is executed at each logical step in this particular

code.

Therefore, the problem Fox pointed out can be solved using ABCOM transformation

and associated techniques. That is, the information on the spatial structure that was

thrown away in the sequential code, can be recovered in an abstract computation tuple

space. How we can effectively use this information to parallelise a solution is discussed

below.

......
'

I

i

I

I

I

I

'
'

!

'

I

.... -.-

104 Chapter 6. Solution Parallelisation in ABCOM

6.2 ABCOM-Based Data Dependence Tests

6.2.1 Dependence representation

Data dependence relations exist between elements (that contain information of oper­

ation, data and time) of the tuple space. Let us recall the definition of data dependence

given in Chapter 4.

If Pis a solution and any two elements Ui, Uj E Pare said to be dependent on data

object x, then there are following cases that correspond to the definitions in [WB87],

where if exu; < exui and ~Uk in which xf/ outui and exuk :::; exui:

1. outu; n inui = { x} ~ data flow-dependence, denoted by Ui -=-t Uj;

2. i nu; n outui = { x} ~ data anti-dependence, denoted by Ui 8 Uj;

3. outu; n outui = { x} ~ data output-dependence, denoted by Ui 8 Uj.

Data dependence relations can be detected using the inference rules presented in

Chapter 5. As each data object is read and written in a certain access pattern, there

are m dataflow dependence relations from an element to m different elements, called

1-to-m dataflow dependence.

The dependence relations discussed above are based on those variables that are

either singletons or elements with fixed indexes of arrays. If dependent relation is

related to a variable that has a functional index, then that relation is relevant to certain

elements which are covered by the index function. It is a dynamic relation and cannot

be tested exactly before execution. Therefore, it is necessary to relate all elements

covered by the function, or the whole array. To detect these dependence relations, we

modify the rules 1, 2 and 3 described in Chapter 4 as follows:

Rule 4. if (3uj, ax E outu;) I\

('v, a* E outu;) I\

((,lluk E CDOAGui) I\ (a* E outuk) I\

(exu; < exuk < exuJ)

then a* Ui ~ Uj;

I

I

l
I
I

I
I

I

I

I

I

I

I

I

I

1

I

I
I

I

I

I
I

I

I

I

I J

I

6.2. ABCOM-Ba.sed Data Dependence Tests

Rule 5. if (((3) (Uj, ax E outu; I\ Vui, a* E inu,)) V

then

((3ui, ax E outu.) I\ (Vuj, a* E outu;))) /\

((CDOAGu; lie CDOAGu,) V

(CDOAGu; !XI CDOAGu.))

Rule 6. if (((3uj, ax E inu;) I\ (Vui, a* E outu.)) V

then

((3ui, ax E outu.) I\ (Vuj, a* E outu;))) /\

((CDOAGu; C CDOAGu.) V

(CDOAGu, C CDOAGu;)) I\

105

Here ax is a element referenced by a function; a* stands for any element of the array

related to ax. According to the nature of the index function, it is possible to divide

an array into two parts. One of them is related to the function, the other is not. For

instance, if there is a functionally indexed variable a(Q(i)) with Q(x, i) = 2 x x x i,

assuming x be an integer variable, then all elements with the indexes of even values

are functionally related, while, those that have indexes of odd values are not.

6.2.2 Features of ABCOM-based detection

ABCOM-based detection of data dependence provides exact results in terms of the

discussion in Section 5.2. The reason for the simplicity in testing is due using the

spatial structure of a problem. This can be stated as follows:

1. From iteration abstraction to trace generation

The computation space of a loop (not value-control While--Do) is divided into a number

I

I

I

I

•

'

!

-

...

106 Chapter 6. Solution Parallelisation in ABCOM·

of subspaces that are processed in different iterations. The mathematical abstraction

used by many tests can only indicate reference relations of data variables among itera­

tions. The temporal or topological characteristics of the computation on the data do­

main cannot be properly described since the information on data dependence relations

between statements or between iterations turns out to be vague and often incomplete.

Using trace generation, the ABCOM transformation converts a loop into a tuple

space in which the computation is organised in a partial order. Moreover, the data

dependence relations are detected between elements of ABCOM. In other words, a

"smaller space" with cyclic structure (loop) is replaced by "larger space" that can be

abstracted with acyclic structures (CDOAG). The result of this replacement is to olr

tain a clear description on data dependence relation and a much larger space to exploit

parallel properties of computation.

2. C DO AG privatisation

The reuse of variables (in programming) reduces resource cost of computation. The

data dependence relations caused by reusing variables, called memory-based depen­

dence, can be removed if they can be tested. According to the rules of data depen­

dency testing, the concept of CDOAG is critical for testing memory-based dependence

effectively. In fact, if there are two elements Ui and Uj in which there is a shared

data object as input or output, and CDOAGu; and CDOAGu; are not in the relation

of the contained, then there is a memory-based dependence relation that needs to be

eliminated for optimisation. This can be stated by the following theorem.

Lemma 6.1 The data dependences that can be eliminated between two elements for

optimisation are only those for which the corresponding CDOAGs of the elements are

not contained within each other.

Proof

As described in Chapter 3, there are four categories of relations between any two

CDOAGs. If two CDOAGs are completely independent, there is no data dependence

between them. To test for a memory-based dependence between two elements, one

needs to consider the other three categories. In fact, we can exclude the two situations:

.-...

...

6.3. Parallelisation in ABCOM 107

(i) there is a direct data-flow relation; or (ii) there is an indirect data-flow relation that

is a memory-based dependence, but is not concerned for elimination since the partial

order between the elements is necessary. These two situations can be tested by checking

whether the two corresponding CDOAGs of them have a contained relation by using

the Rule 3 in Chapter 5. In other words, if two CDOAGu; and CDOAGui are in the

contained relation, then there must be a direct or indirect dataflow relation between

Ui and Uj, namely, the partial ·ordering of execution is necessary. Consequently, the

data dependence caused by a shared data object needs to be removed for optimisa­

tion if and only if these two C DO AGs are overlapping or conditionally independent.

D

3. Dependence test by using data-access patterns

As shown in Chapter 5, in ABCOM, the history of reuse of variables is easy to be

abstracted by data-based inference. The memory-based dependence between two access

patterns to the same data object can be of four types:

1. writel - -write2;

2. writel - -read2;

3. readl - -write2 and

4. readl - -read2.

Th~s is illustrated in Fig. 6.1 where 1) and 6) are of dataflow relation; 2), 3) and 4) are

considered as being of memory-based dependence; and but 5) means that two groups

{ u2, u3, u4 } and { u6, u1} are exclusive each other, denoted by~ and there must be

a write access to the data between { u2, u3, u4} and { u5, u1 }.

6.3 Parallelisation in ABCOM

As described in Section 3.2, the execution order of an element Ui can be legally

modified within a certain range. By carrying out such modification for certain elements

of a solution, the performance of the solution can be improved. The elements can be

executed in parallel as long as their execution conditions are met.

108

1)
2)
3)
4)
5)
6)

Chapter 6. Solution Parallelisation in ABCOM

U5

writel - -readl: u1 ~ { u2, U3, u4}

writel - -write2: u1 A u5
X

writel - -read2: u1 f--t u5
readl - -write2: { u2, u3, u4} A u5
readl - -read2: { u2, u3, u4} ~ { u6, u1}
write2 - -read2: U5 ~ { u6, u1}

U7

Figure 6.1: Two access patterns based on the same data object

6.3.1 CDOAG optimisation

The partial order among elements may or may not be necessary. For a given source

code the trace generation produces an ABCOM code without changing any execution

order of computation. Under the driven condition of dataflow, a certain number of

elements become ready for execution at a given timestep. In light of the driven condition

of EP, while, only some of these elements, whose execution orders are equal to the

current value of EP, become currently executable. This shows where possible speedup

can be made. Let us start with the situation within a C DOAGu,. Assume that outu0 be

viewed as the input data for all vertices with indegree zero of CDOAGu,· If CDOAGu,

is composed of exu,, exu;, · · ·, exuq and completely independent from other C DOAGs,

then we define Tu, = Min{ exu,, exu;, · · ·, exuq} as the lower bound of execution of

C DO AGu,. According to the expression 3.2 in Lemma 3.4 we can write

6.3. Parallelisation in ABCOM 109

That is, the lower bound of executing CDOAGu, can be at any timestep within the

legal-execution zone of [1, TuJ In order to parallelise execution of the elements in

CDOAGu,, one can change certain execution orders of elements within their legal­

execution zones so that all elements can be performed as early as possible. This pro­

cedure can start from those elements that are ready at beginning (when EP = 0), and

can be continued along with the directions of data flows until ui is processed.

Theorem 6.1 If there is a CDOAGu, E Pin which all sub-CDOAGs have no memory­

based dependence, and for \:/uq E P , CDOAGuq i;t CDOAGu, and CDOAGuq II
CDOAGu., then CDOAGu, can be optimised until \:/uk E CDOAGu, can be executed

at their lower bounds, and Tu, = 1.

Proof (A sketch)

• C DO AGu, can be optimised without losing correctness since it is a completely

independent computation task according to the conditions that for \:/uq E P ,

CDOAGuq i;t CDOAGu, and CDOAGuq II CDOAGu,·

• Lemma 3.3 indicates that there is a safety-execution zone for exu; of Uj E

CDOAGu,· In order to optimise computations, an element could be executed

at its lower bound if there is no memory-based dependence with other elements,

that is, exu; = Max{ exuk, exup · · ·, exup} + 1 where inu; is provided by the out­

put of Ukul, ···,Up, Let this optimisation procedure start from the elements in

which all input data objects are those vertices with indegree zero, and be repeated

to all their successive elements until Ui is processed.

• If all input of Uj, · · ·, Uq E C DO AGu, are those vertices with indegree zero,

namely, they have been specified when EP = O, then exu;, · · ·, exuq can be re­

duced to 1 by the optimisation described above since it is defined that outu0 is

considered as the precedence of them. As a consequence, Tu, = 1 can be reached in

terms of the definition of Tu,.

Using the approach described by Theorem 6.2, a given CDOAGu, can be optimised

until a special solution to CDOAGu, is reached. In this solution the parallelism is

110 Chapter 6. Solution Parallelisation in ABCOM

Input: Given a set Bl of all elements of CDOAGui
in a tuplebase, a temporal set B3 of elements
which contains u0 initially.

Output: An optimised solution to CDOAGui stored in B2.
Algorithm 10:
1. Select an element Uj which has the smallest value of EX in Bl;
2. For Vx E inu; do

end

Select u1 in which exv.1 has the maximum value of
EX among those elements producing x in B2;

Put u1 into B3
/ if selection fails, then x is a vertex with
indegree zero./

3. Let L1ower = 1 + M ax{Vexuk, Uk E B3};
4. Remove all elements from B3 except u0 ;

5. Modify exu; by using L1oweri

6. move Uj from Bl to B2;
7. If Uj is not Ui then back to 1;
8. Exit.

Figure 6.2: Algorithm optimising a CDOAG.

objective, and all elements of CDOAGui are performed in a dataflow computation

fashion. The procedure of this optimisation is done by Algorithm 10 in Fig. 6.2.

A critical path of a solution represents the sequence activities in a program that

takes the longest time to execute. Using this concept, we can check our speedup of

the parallelisation for a given C DO AGui. Assume there be n elements contained by

CDOAGui· It takes n logical steps to sequentially compute CDOAGui· The depth of

CDOAGui, hui defined in Chapter 3, is in the relation of hui < exui = n initially. If

CDOAGui is optimised by using the approach stated above, then we will get a new

critical path ex~i and a speedup of computation which can be described as the following

theorem.

Theorem 6.2 If there are n elements in C DO AGui that is optimised by using the

approach of Theorem 6.2, then ex~i = hui holds, and the speedup is

exui n
ScDOAG = -- = -.

ex~i hui
(6.1)

•

6.3. Parallelisation in ABCOM 111

The parallelisation techniques for a C DO AG described so far are generally suitable

for all computation latencies arising due to subjectivity in design. The aim of this

parallelisation is to reveal all possible parallelism inherent in a completely independent

CDOAG. This parallelism is the upper bound for speedup by eliminating artificial

computation latencies within a CDOAG since here all computations are driven by

dataflow after optimisation. It is also noted that this optimisation .approach is limited

to the depth of C DO AG since · the optimisation changes nothing in the structure of

a CDOAG except modification of execution orders of certain elements. For some

special cases in which there is no computation latency caused by the memory-based

data dependence, however, one may still be able to optimise a CDOAG by using other

approaches. A typical example is a sequential Sum computation. We will discuss

certain optimising techniques for such cases in the next chapter.

6.3.2 Solution parallelisation

The parallelisation achieved by the above approach is suitable to a C DO AG that is

completely independent from other CDOAGs and does not have any two sub-CDOAGs

having a memory-based dependence relation. In practice, it is often seen that there is

memory-based dependence between two CDOAGs or two sub-CDOAGs in a CDOAG.

To optimise these CDOAGs, eliminating the memory-based dependence is necessary.

As one of the main techniques of optimising compilers, variable renaming [Ell86],

[PKL80] is widely used to remove the memory-based dependence. In order to achieve

as much parallelism as possible, new names are introduced for disjoint uses of the same

variable. The approach of variable renaming in ABCOM can be based on CDOAGs

and the history of data-access patterns.

For example, three CDOAGs shown in Fig. 6.3, which contain the first twenty­

one elements of Exam pie 4 in Fig. 4.17, are not completely independent because the

left one is contained in the other two through b2 indicated as the dot lines, and the

middle one is similarly contained in the right one through b3. But three su b-C DO AGs

marked by boxes are conditionally independent due to a shared data object s. If all s

occurring in the middle and right CDOAGs can be replaced by new data objects s1

I

I

I

I

I
I

I

I

:

_..

I

112 Chapter 6. Solution Parallelisation in ABCOM

lli1 b•

,--------~ :--,,--- -----.1~ \ _______ __ _;:()·
: / , ···< 1YS1 \ 1X1S
i / s\ b2[j) /s \ \ \ /s \ i
I V s .·,, V s I V) : V.. s I v,

l(\L_L:<_L_i !. ~t{\J __ : !. ~
... .·.... .

············ ···· ······· ····· ···· ···'·":::::·

Figure 6.3: The CDOAGs of Example 6.

and s2 respectively, we can find following facts:

1. CDOAGu4 II CDOAGu8 II CDOAGu15 II···;

2. CDOAGu11 II CDOAGu1s II···;

3. CDOAGu21 II .. ·;

Using data-access patterns, variable renaming can be easily carried out since each

pattern contains all elements that are needed to be renamed if the data accessed by

this pattern is selected for renaming. The relation that exists between two patterns of

the same data object corresponds to three different cases:

In the first case, there is a dataflow relation between two patterns. For instance,

two patterns in Fig. 6.4 are related since there is u4 in which {a} C inu4 n outu4 • In

the converted code there must be exu2 < exu4 and exu3 < exu4 due to the anti-output

dependence. To eliminate the dependences between u2 and u4, or u3 and u4 of data a,

a new variable could be introduced to replace a in inu5, inu6 , inu7 and outu4 • This kind

of renaming is not necessary if the first pattern is not of 1-to-m form of dependence

•

I

6.3. Parallelisation in ABCOM 113

Figure 6.4: Two access patterns of data object a.

since it is caused by an expression of the form a = a + Xi.

In the second case there is an indirect dataflow relation between two patterns. It

means that the CDOAG of the element having a 'write' access in the pattern 2 contains

at least one of the elements having a 'read' access in the pattern 1. Thus, certain

execution orders appearing in the indirect dataflow relations among the elements of

the two patterns are necessary. Renaming variables in this case will not lead to give

more parallelism to improve performance.

In the third case, two CDOAGs of the elements having 'write' accesses in two

patterns are conditionally independent. To parallelise such two C DO AGs, the two

patterns should not share a variable. Renaming will help to remove the dependence

caused by the shared variable.

If we parallelise all independent computation tasks (superblocks or nested loops)

in a given solution by modifying unnecessary partial orders, a special solution free of

artificial sequentiality is got. The parallelism in this solution is not constrained by any

computation model, architecture or subjective view of programming. Consequently,

this parallelism is objective. Applying Theorem 6.1 to all CDOAGs of a solution is

equal to carrying out a procedure in which a given solution in Category 1 or Category

2 described in section 2.2 is optimised until an equivalent and optimised solution that

belongs to Category 3 is arrived at. The properties of the objective parallelism and the

subjective parallelism can be stated thus:

• An important feature of subjective parallelism is that it arises in a physical im-

I

I
I

I

I

I

i

I

I

114 Chapter 6. Solution Parallelisation in ABCOM

plementation. Hence the performance of one subjective solution can be quite

different from another subjective solution for the same problem. The objective

parallelism reflects parallel execution of all independent computation tasks in­

dependent of architectures, languages and other subjective views. For a given

problem, both the subjective and objective parallelism of a problem can be rep­

resented in ABCOM.

• The degree of the objective parallelism turns out to be better than that of the

subjective parallelism. The performance of an objective solution is better than

the performance of a subjective solution. The difference between the objective

parallelism and the subjective parallelism of an implementation can be used to

examine whether more parallelism should be considered. This helps us to evaluate

whether the implementation is developed successfully.

One may ask whether a unique solution with objective parallelism can be got if two

different subjective solutions are optimised. The answer is yes if two solutions have

exactly the same data domain and the same set of operations. In fact, this requirement

is not necessary from the point of view of checking the effectiveness of this optimisation.

Let us consider a general situation.

Let P 1 ===>v Pf denote that an optimised solution Pf is obtained by parallelising

P1. For a solution P if there are CDOAGu;, CDOAGui' · · ·, CDOAGu,. that are com­

pletely independent, and hu;, hu,, · · ·hu,. are the depths of CDOAGu;, CDOAGu,, · · ·,

CDOAGu,., then we define the critical path of a solution Pin ABCOM as the maxi­

mum value of ex among the all elements contained in P, denoted as Hp= Max{exu; I
'vui E P}. Theorem 6.2 can directly lead to the following three corollaries.

Corollary 6.1 If P1 ===>p Pf, then for 'vui E P1 there is exu; = hu; for CDOAGu;·

Corollary 6.2 If P1 ===>p Pf, then Hpo = Max{hu; I 'vui E P 0
}.

Corollary 6.3 If there are totally N elements in P 1 and P 1 ===>v Pf, then a speedup

is achieved as

(6.2)

I

L

I

6.3. Parallelisation in ABCOM 115

With these three corollaries, it is not difficult to prove an interesting fact stated in

Theorem 6.3 that shows the effectiveness of our approach in parallelising solutions.

Theorem 6.3 IJVCDOAGu, E P1 andVCDOAGu; E P2 are all completely indepen­

dent, and P1 ===>p Pf and P2 ===>p P~, then the difference in performance between Pf

and P~ is

~Pf-P2 =I Max{hu, I VCDOAGu, E Pf} - Max{hu; I VCDOAGu; E P:z} I

Theorem 6.3 shows that the difference in the critical paths between two optimised

solutions to the same problem is equal to the difference in the depths between two

CDOAGs that are the deepest in the two optimised solutions respectively.

Remark

1) In Theorem 6.3 the concept of ~Pf-Pf is only suitable to demonstrate that in a general

case any program or representation of solution can be parallelised. 2) Only the logical

steps of computation involved in critical paths are considered and the optimisation is

based on the ABCOM machine. This does not tell the real difference of computation

costs of two solutions. 3) It should also be noted that these two solutions are represented

at the same granularity level.

To ascertain the real cost benefit in physical implementation of two given solutions,

further comparisons between the two solutions in the number and sizes of CDOAGs

required to compute the same output should be conducted. In this thesis, no further

discussion on this comparison is provided.

An important application of Theorem 6.3 is to compare parallel properties of two

algorithms that express the same problem in different mathematical or conceptual

methods. This is achieved using their sequential representation instead of their subjec­

tive parallel implementation where parallelism has not be exploited.

Fig. 6.5 and Fig. 6.6 show the optimised solutions of Examples 5 and 6. The

transformed solution of Gaussian Elimination in Appendix A.1 can also be optimised

I

I

I

I

I

I

•

-

116

u1 : (+, { a10, ao1}, { v1}, 1)
u2: (/ , {v1,2},{a11},2)

u3 : (+, { a11, ao2}, { v2}, 3)

U4 ; (/ 1 { V2, 2}, { a12}, 4)

us: (+,{a12,ao3},{v3} , 5)

u6: (/,{v31 2},{a13},6)

u1: (+, {a13,ao4}, {v4}, 7)

us: (/ , {v41 2},{a14},8)

Chapter 6. Solution Parallelisation in ABCOM

u21: (+,{a20,a11},{v11},3)

u22: (/,{v11,2},{a21},4)

u23: (+,{a21,a12},{v12},5)

U24 ; (/, { V12, 2}, { a22}, 6)

u2s: (+, {a22,a13},{v13},7)

u26: (/,{v13,2},{a23},8)

u9: (+, {a14,aos},{vs},9) u21: (+,{a23,a14},{v14},9)
Uto : (/, { V5, 2}, { a15}, 10) U2g : (/ I { V14, 2}, { a24}, 10)
u11 : (+, { a1s, ao6}, { v6}, 11) u29 : (+, { a24, a1s}, { V1s}, 11)
u12: (/,{v6,2},{a16},12) u30: (/,{v1s,2},{a2s},12)

u31 : (+, { a2s, a16}, { v16}, 13)

U32 : (/, { V16 1 2}, { ll26}, 14)

Figure 6.5: The optimised solution of Example 5

as demonstrated in Appendix A.2. It is easy to prove that the optimised solution of

Gaussian Elimination has a complexity of 0(3(n - 1)) in ABCOM model.

So far the solution parallelisation discussed in this chapter is demonstrated by op­

timising individual loops (superblocks) contained in a solution. Note in our discussion,

for sake of simplicity, we assume the input of a superblock is specified when it is opti­

mised . Hence, we have Tu.; = 1. If the input of a superblock is not specified, we can

optimise it with an assumed value of Tu.;. Afterwards, a global optimisation to combine

the optimised superblocks is needed. We can also exploit parallelism between loops (or

I

I

i

I

I

6.3. Parallelisation in ABCOM

u1 : (=, {O}, {s}, 1)
u2: (x,{a21,b1},{v1},l)
u3: (+,{s,vi},{s},2)
U4 : (-, {b2, S }, {b2}, 3)

u12: (=,{O},{s2},l)

u13: (x,{a41,b1},{v4},l)

U14: (+,{s2,v4},{s2},2)

U15 : (-, {b4, S2}, {b4}, 3)

U15 : (X, { a42, b2}, { Vs}, 4)
u11: (+,{s2,vs},{s2},5)
u1s : (-, {b4, s2}, {b4}, 6)
U19 : (X, { ll43, b3}, { V6}, 7)
u20: (+,{s2,v6},{s2},8)
U21 : (-, {b4, S2}, {b4}, 9)

us: (=,{O},{s1},l)
u6: (x,{a31,b1},{v2},l)
u1 : (+, { s1, v2}, { s1}, 2)
Ug : (-, {b3, S1}, {b3}, 3)
U9 : (X , { ll32, b2}, { V3} , 4)
u10: (+, {s1, v3}, {s1}, 5)
un: (-,{b3,s1},{b3},6)

u22 : (=, {O}, {s3}, 1)

Figure 6.6: The optimised solution of Example 6

117

1

:

I

I

I

'

I

I

:

I

'

I

I

I

I

1

....

118 Chapter 6. Solution Parallelisation in ABCOM

superblocks).

If there is no direct or indirect dataflow relation between two loops, these two su­

perblocks can be executed in parallel. However, if there exist dataflow relations between

the two loops, then the respective CDOAGs of the two superblocks can be merged.

When the C DO AGs are merged the value of Tu, which we assumed is modified to

reflect the successive execution orders. Such a modification achieves dataflow compu­

tation globally. This can be done using a similar approach used by the Stanford SUIF

compiler [Hea93],[HMA95] for interprocedural parallelisation analysis.

6.3.3 Observation of nondeterministic computation

The difficulties in computation inference caused by conditional statements in a loop

make finding the objective parallelism impossible since there are the following reasons:

• There is a nondeterministic computational logic for the problem.

• Because of the above reason, the set of operations being performed is unfixed.

Thus, the data manipulation which would be actually performed by the operations

is unknown though there is a defined data domain.

However, the computational tuple-space obtained from trace-generation-based trans­

formation provides other opportunities for one to study parallel properties that are ex­

hibited in such a space. The basic idea is to use the concept of speculative parallelism,

often associated with logic programming but also significant in (for example) parallel

algorithms for heuristic search (e.g. parallel alpha-beta search on game tree [MC82]).

In Example 8 (Sorting), the elements ({ u1, u4 , u7 , • • • • • ·}) that perform condition

tests are definitely executed. But the elements ({ u2 , us, us,····· ·}) presented in Fig. 5.9

are conditionally performed; the same operation may be repeated by different elements

(e.g., the exchange of threesort between a3 and a4 might be computed by us, u23 , • • ·).

Thus, the parallelism in this problem can only be found among the elements in the

same row in Fig. 5.9. We also eliminate the possibility to perform the elements that

require the same data object as input (for instance, a2 is used as input of both u2 and

us) in parallel. In this problem, thus, we can only parallelise the elements that are in

!

6.4. Summary 119

the same row and have no overlapping input. This result is consistent with the logical

parallelism of Sorting presented in [BM93].

6.4 Summary

An initial solution in ABCOM transformed from a source code performs computa­

tion in exactly same manner as ~ programmer has designed (in both execution sequence

and data manipulation). All subjective control features of design are preserved in this

solution. Using data dependence testing and parallelisation techniques described in

this chapter, the initial solution can be optimised to obtain a solution with objec­

tive parallelism. This optimisation makes all computations be executed in a dataflow

computation fashion.

Comparing with the techniques and results of traditional data dependence tests,

ABCOM data dependence detection is simpler, and yields a better result. The rea­

son for this is ABCOM provides effective support for exploiting dataflow computation

features in solutions.

I

!

I
!

!

!

1

I

i

l
1

I

I

I

I

!
I

I

I

-

'

120

I

Chapter 7

Parallel Computing Platform

One important consideration in developing ABCOM is to combine it with existing tech­

niques and tools rather than to let it as a stand-alone tool working in an independent

manner. This chapter discusses the use of ABCOM as a parallel computing platform

to support parallelism analysis, speculation, profiling, scalable performance analysis,

and program solution reconstruction. For this purpose we first introduce the main

features of_Bird-Meertens Formalism (BMF) since it will be used for abstracting par­

allelism and evaluating performance based on ABCOM. Then, we describe the relation

between ABCOM and some main techniques required by parallel programming.

7.1 The Notation of Bird-Meertens Formalism

To support explicit approach of parallel programming, an optimised solution needs

to be rewritten into a new program having particular parallel properties derived from

objective parallelism. The expression of the new solution can be machine dependent or

independent. Since the optimised solution is based on ABCOM, a machine-independent

expression of the new program can be achieved using a suitable language. As described

in Chapter 2, BMF supports a machine-independent approach to expressing paral­

lelism. The advantages of using BMF is discussed in [Ski90]. To illustrate the power

of its expression, we describe some operations of BMF on lists [Bir89], [Ski93],[Jay95].

1. Elementary operations

121

I

I

I

I

I

I

I

I

i
I

I
I

I

I

I
I

I

I

I

'

I

I

I
I

I

I

I
I

I
I

-

- ·-·
11

I

122 Chapter 7. Parallel Computing Platform

• Length

The length of a finite list is the number of elements it contains. Denote this by
I

the operator #. Thus,

• Concatenation

Two lists can be concatenated together to form one longer list. Denote this by

the operator -It-. Thus,

• Map

The operator * applies a function to each element of a list. We have

• Filter

The operator <l takes a predicate p and a list x and returns the list of elements

which satisfy p. For example,

even <l (1, 2, 3, · · ·, 10] = (2, 4, 6, 8, 10].

• Prefix

The operator EB, given a list of values, returns a list of prefixes of these values by

applying an associative operator EB:

• Inits

The operator inits generates all of the initial segments of its argument list:

•

I

I

7.1 . The Notation of Bird-Meertens Formalism 123

• Zip

The operation YE!) combines two lists of the same length by applying EB to the

pair with one element from the first list argument and the other from the second:

2. Reduction

The operations introduced above transform lists into other lists. The reduction operator

to be described is more general. It can convert a list into other kinds of values. The

reduction operator, written '/', takes an operator EB on the left and a list x on the

right. Its effect is to insert 6, between adjacent elements of x. Thus,

Here the operator EB must be associative. Some simple cases of reduction are given in

the following definitions:

sum: +/
product: x/

flatten: -tt- /
min: .J,/
max: t/

BMF theories have been built for bag, cons lists [Bir87] and other data types (like

cat lists, trees and arrays).

The BMF's features of parallelism abstraction can be used to develop ABCOM­

based techniques for parallelism profiling and speculation. This provides a bridge be­

tween ABCOM and other related techniques.

'

I
I

l
I

I

:

I

'

I

I

I

I

I

I
I

1

--

I,

124 Chapter 7. Parallel Computing Platform

7 .2 Parallelism Profiling

In parallel computing, the parallelism is exploited at the programming stage and

performance is measured after implementation. Measuring the performance is usually

carried out by monitoring the execution of a particular program on a selected architec­

ture. This measurement can help to tune the performance of implementation and use

the system resources more efficiently. Unfortunately, traditional parallel programming

does not provide practical means of parallelism analysis and reasoning. The techniques

of relation-based parallelism inference described in Chapter 5 show how ABCOM can

provide practical methods for parallelism profiling based on concepts of time, data,

operations and CDOAGs. When an optimised solution with an objective parallelism

is got in ABCOM, we can collect the parallelism profiling information for use in imple­

mentation.

7.2.1 Data parallelism profiling

Using time-based parallelism inference, a step-wise abstraction method can be intro­

duced to abstract data parallelism from an optimised solution. In Fig. 6.6, for instance,

there are two different kinds of operations that can be performed at step 1. The ele­

ments that perform theses operations are {u1,us,u12,···} for '=' and {u2,u6,u13,···}

for 'x ' . Similarly, we can find data parallelism at step 2, 3 and so forth. Let 'F' and

'===> ' stand for 'perform' and 'produce output to' respectively. To exhibit data paral­

lelism in this example, we use BMF as below (where the function Ji is an assignment):

step 1. { Ut, U5, U12, '· ·} F
Ji * [O, 0, · · ·, O] ===> [s, s1, S2, • · ·, Sn-d

{ u2 , u6, u13, .. ·} F
[a21, a31, · · ·, an-1,1]Yx [b1, b1 , · · ·, b1] ===> [v1, V2, V4, • • ·]

step 2.

step 3.

step 4. { Ug , U16, • • ·} F

I

i

,.. __ -... -------------------------------------
7.2. Parallelism Profiling 125

step 5.

We can also abstract data parallelism from the optimised solution of Gaussian

Elimination. That is

step 1.

step 2.

step 3.

step 4.

I=
[a21, a31, a41, as1, a61]Y;[a1, au, au, au, au]==> [a21, a31, a41, as1, a61];

{ u2, u4, u6, us, u10} I=
[a12, a13, a14, a1s, a16]Y x [a21,21, a21, a21, a21] ==> [v1, V2, v3, V4, vs]

{ U13, U15, U17, U19, U21 F
[a12, a13, a14, a1s, a16)Y x [a31,31, a31, a31, a31) ==> [v6, v1, Vs, vg, v10]

{ U24, u26, U2s, U30, U32} F
[a12, a13, a14, a1s, a16]Y x [a41,41 , a41, a41, a41] ==> [vu, V12, V13, V14, vis]

{ U3, us, U7, Ug, uu} F
[a22, a23, a24, a2s, a26)Y _[v1, V2, V3, V4, vs]==> [a22, a23, a24, a2s, a26]

{ U14, ul6, U1s, u20, u22} I=
[a32, a33, a34, a3s, a36)Y _[v6, v1, Vs, Vg, v10] ==> [a32, a33, a34, a3s, a36]

{ Us6, U6S, U74, Ug3} F
[a32, a42, as2, a62]Y;[a22, a22, a22, a22] ==> [a32, a42, as2, a62]

7.2.2 Control parallelism profiling

So far we discussed only instruction-level parallelism or data parallelism at a fine­

grain level. Nevertheless, control parallelism has to be dealt with at a coarse-grain

level. To profile control parallelism in ABCOM, we consider the following aspects.

I
I

I

I

I

I

I

I

I

I

I

I
I
I

I
I
'

'

I

i

I

I

-

II

126 Chapter 7. Parallel Computing Platform

1. The control parallelism exists between any two independent superblocks of a

solution or between any two independent CDOAGs in a superblock. This is

inherent control parallelism. The CDOAG-based parallelisation method can also

be used to parallelise two superblocks that have memory-based data dependence.

2. If there is a superblock of which all CDOAGs merge into one CDOAG, and it

is big enough to be divided into smaller pieces (groups of sub-CDOAGs), then

control parallelism arises. The division (or partition) is subjective and can be

done in different ways. This becomes an implementation issue.

3. Theoretically, all computation relations between superblocks (designed in an al­

gorithm) are due to dataflow relations (though they can be implemented using

different methods). The division (or partition)of a problem in an implementa­

tion makes control parallelism possible. The communication is required when the

decision of the partition is made in the association with a particular architecture.

7 .3 Computation Pattern Testing

When a solution is transformed into ABCOM, the spatial structure of a problem can

be recovered by converting a cyclic structure (a loop) into a number of acyclic structures

(C DO AGs)to reveal parallelism inherent in the problem. This kind of parallelism

revelation can help a programmer or a compiler to reach a suitable solution based on a

specific architecture. To achieve this goal, solution reconstruction needs to be carried

out to map the optimised solution into a specific architecture. An important technique

for reconstruction and derivation is by using the computation patterns.

Because optimised solutions are expressed at a fine-grained level, to program these

computation elements based on a target architecture, we need to express them at a

medium or coarse-grained level. In many instances certain operations occur repeatedly

in a regular form with different input and output data, and may be executed in a partial

order or in parallel. Such a regular computation form is called a computation pattern.

A computation pattern (simply called pattern) has a set of related operations or­

ganised in a certain partial order for execution using a number of data objects as input,

I

I

I

I

I

I

I

'

I

I

I

'

I

7.3. Computation Pattern Testing 127

output and working variables. The size of a pattern can be prefixed or left open.

In ABCOM a computation pattern is associated with a number of subsets of ele­

ments. These subsets have the same number of elements. Their computation features

are graphically represented by DOAGs or CDOAGs. It is possible that two sets of ele­

ments (which perform the same operations or the same pattern) have different shaped

C DO AG representation, especially when they contain commutative operations. For

instance, consider the following set of elements:

u1: (+,{a1,b1},{vi},l) U7 : (X, {b1 , d1}, { V7 }, 7)

u2: (x, {c1, d1}, {v2}, 2) us: (+,{v6,v1},{vs},8)

U3 : (-, { Vt, V2}, { V3}, 3) u9: (x,{v8 ,2},{v9},9)

u4: (x ,{Ii,J1},{v4},4) u10: (x ,{vs,v9},{v10},l0)

us: (/ , {v3,v4}, {vs},5) U11: (+, {v10, 100}, {Y1}, 11)

u1: (-,{a1,l1} , {v6} , 6)

These elements can be graphically represented in different shapes of CDOAG. Two

different C DO AGs containing these elements are shown in Fig. 7 .1.

To detect whether the two subsets of elements carry out the identical computation,

we need to check not only operations involved but also the computational logic of the

operations in terms of the definition of computation patterns.

7.3.1 Normalising C DOAGs

To abstract a number of operations into a macro computation pattern, we define

the pattern as a special operation ®· A macro operation can be abstracted by the

grammar given in Section 4.1.1.

Using the pattern grammar, the operations of CDOAGu11 1 in a) of Fig. 7.1 can

be abstracted into a macro operation ®1, here

®1 := +(x(/(-(+, x), x), x(+(-, x), 0), 0).

l

I

I

I

I

I
I
I

I
I

I
I
'

I

I

I

'

i ..

Ii

128 Chapter 7. Parallel Computing Platform '

I

b) CDOAGu11 2.

Figure 7.1: Two different CDOAGs of the same set of elements.

I

i

l I

I

i

I

I

7.3. Computation Pattern Testing 129

I Precedence 1 2 3 4 5 n
Operation 0 X I +

Table 7.1: Operator precedence for pattern normal forms

Similarly, for the CDOAGu.11 2 we get

®2 := +(0, x (x (+(-, x), 0), /(-(+, x), x))).

To check whether two CDOAG representations (or sets of elements) correspond to an

identical computation pattern, the concept of normal form of a CDOAG is useful. For

this purpose we define a precedence among the all operators as shown in Table 7.1. We

assume that the operator '0' has the highest precedence p0 = 1.

Operator precedence guides the construction of C DO AGs so that those C DO AGs

having the same pattern can be constructed consistently. The basic idea here is that if

CDOAGu; has a commutative operation OPu; and has two subgraphs CDOAGui and

CDOAGuk for inu; · C (outui U outuk) and Popui < Popuk, then let CDOAGui be the

left subgraph and CDOAGuk the right one; if Popui = Popuk, then check the operations

of the elements at the next lower level in the subgraphs until difference is found. If no

difference is found, it means the operations contained in this CDOAG are commutative,

and can be optimised into a unique representation.

Definition 7.1 For a given CDOAGu; if its all sub-CDOAGs are represented in terms

of the precedence of operators at each level of the graph, then CDOAGu; is represented

in a normal form.

This definition can be used to construct C DO AGs (or abstract pattern operations)

in the normal form or to normalise a CDOAG. Using this method, ®1 and ®2 are

normalised as below:

® u; := +(0 , x (x (0,+(x, -)),/(-(+, x), x))

and its corresponding CDOAG is shown in Fig. 7.2.

•

I

I
I

I

I

I

I

I
I

I

I
I

I

I

I

I

!

130 Chapter 7. Parallel Computing Platform

Figure 7.2: The normal form of CDOAGu11 l and CDOAGu11 2.

Lemma 7.1 If there are two subsets of elements and their CDOAGs have identical

normal forms, then they have the same computation pattern and the two CDOAGs are

isomorphic.

7.3.2 C DOAG structure optimisation

The optimisation approach described in the last chapter reveals parallelism without

changing the structure of the CDOAG. The depth of a CDOAG limits optimisation.

However, further optimisation is possible due to the specific nature of operations in the

CDOAG. For example, a sequential 'Sum' computation

for i = 1 ton

Sum= Sum+ a(i)

can be represented as a CDOAG. If there are n data elements, the depth hcvoAGus

is n - l.

It is known that the parallel computation time of Sum with n data elements is

0 (lg n). As a result, an optimisation should be applied to such a C DO AG. As an

extension of the definition of the normal form, we introduce a special case where if a

C DO AGu, contains n - l operations that are same, associative and commutative, then

•

II

7.4. Size-Ba.sed Parallelism Speculation 131

the normal form of CDOAGu, is represented when its depth equals to lgn.

7.3.3 Patterns represented in a loop

The discussion above on computation patterns is mainly based on the abstraction

of CDOAGs. There are many different ways to abstract or represent a computation

pattern in a program. A loop in a source code can be directly abstracted into certain

forms of patterns. They are illustrated using dataflow computation models [CBF91),

[Ske91].

As pointed out earlier, each statement in a loop corresponds to a number ofinstances

in different iterations; and the body of the loop (which can be seen as a computation

pattern) is repeated until the the whole computation space is performed. Using those

dataflow models, the parallelism exploited is only what exists between different state­

ments within the pattern. This limits the amount of parallelism. However, parallelism

crossing different iterations can be revealed by using our approach and expressed in

BMF (as described in the last section).

The information collected from parallelism profiling shows that, based on an opti­

mised solution, new computation patterns can be abstracted for solution reconstruct1on.

For example, profiling information of the example in Fig. 6.6 can be expressed in the

following form:

For i = 1 to n do

[a(i+l)i, a(i+2)i, · · ·, ani]Y x [bi, bi,···, bi]~ [vi, Vi+i, · · ·, Vn-1]

[si, Si+i, · · ·, Sn-1]Y +[vi, Vi+i, · · ·, Vn-1] ~ [si, Si+i, · · ·, Sn-1]

[bi+i, bi+2, · · ·, bn]Y _[si, Si+i, · · ·, Sn-d ~ [bi+i, bi+2, · · ·, bn]

7 .4 Size-Based Parallelism Speculation

We mentioned in Chapter 3 that for a loop with a large number of iterations,

ABCOM code will not be generated for the whole iteration space by trace generation.

To prove that it is possible to use a suitable and smaller sized iteration space instead

I

I

I

I

I

I

I

'

I

I

'

I

I
I

I

I

I

I

!

I

-

132 Chapter 7. Parallel Computing Platform

the real one for parallelism analysis, we must ensure that the parallelism revealed from

s smaller size can be used to speculate the parallelism for a larger size problem.

A program processes certain data structures (such as arrays, tables and lists). As

discussed in Chapter 3, the set of operations contained in a loop is iteratively executed

under certain control mechanisms in the loop. The loop is classified into two types

depending upon the relation between the data domain and the iteration:

(i) In the first type, each iteration processes exactly the same data sets of both input

and output; i.e, value-control iteration. An important feature of this loop is that the

iteration-control variable is not referred to as the index of any data object processed

in the loop. In other words, the number of iterations is not associated with the size of

data domain.

(ii) In the second type, i.e, size-control iteration, each iteration of loop deals with

different subsets of the data domain. The iteration-control variable is related to an

index of data being processed in the current iteration. This means the size of iteration

space depends on the size of data.

The parallelism revealed in the first type corresponds to pipeline computations since

each iteration requires the result of the previous one. In the second type, parallelism is

directly proportional to the size of computation space where the size of data is related

to the number of iterations. Consider a loop as a given problem; a general method

to speculate computation features of parallelism (when the loop bound increases) is

introduced in this section.

To study the relation between parallelism and size of computation space, consider

a single loop A described by

X:

x:

Q:

y(x):

Ps; (x):

the total number of the iterations;

xth iteration;

the number of operations performed in each iteration of a loop;

the critical path of the xth iteration;

the total number of operations performed at the timestep i = 1, · · ·, y(x)

when performing the xth iteration.

After optimising A using the approach described in Chapter 5, we have

•

7.4. Size-Ba.sed Parallelism Speculation

step 1: Q = Er Ps; (1);

step 2: 2Q = Ef2 Ps; (2);

Thus, for x = k - l and x = k we obtain

y(k-1)

(k - l)Q = L Ps; (k - l)
1

and

y(k)

kQ - L Ps; (k).
1

133

When the number of the iteration increases by one, the increment of computation

(denoted as l:l.Q) is equal to Q; that is

l:l.Q = Q
y(k-1) y(k)

L (Ps;(k) - Pa;(k- 1)) + L Psj(k)
1 y(k-1)+1

f::l.Qp+f::l.Qs

where l:l.Qp = Et(k-l) (Pa; (k)-Ps; (k-1)) and l:l.Qs = E~~!~l)+l Psi (k). It shows that

l:l.Q is divided into two parts, namely, sequential increment l:l.Q s and parallel increment

l:l.Qp. To perform l:l.Qp with unlimited processors, due to parallelism, there is no need

of additional computation time. But the sequential increment l:l.Qs does not require

more processors but requires additional time:

l:l.y(i) = y(i) - y(i - 1).

For a single loop l:l.Q is fixed for x = l, 2, · · ·, X; the ratios of l:l.Qp/ l:l.Q and

l:l.Q
8

/ l:l.Q are determined by the dataflow relations that exist cross iterations. If there

is no dataflow relation (that is l:l.y(i) = 0), then l:l.Qs = 0. All iterations can be

I

I

'
I

I

I

I

I

I

I

i

•

I
i

i
I
I

!

I

I

!

i

:

I

j

--

134 Chapter 7. Parallel Computing Platform

parallelised. Note that in AQ s it is possible that there may be certain parallelism.

Consider a general situation of a nested loop having the following form:

·for l = 1 to X 1 do

end

X1,X2:

y(x1, x2):
and

For h = 1 to X2 do

the body of the loop

end

the bounds of the inner and outer loops;

the critical path when l = xi and h = x2;

the number of operations performed when l = xi and

h = X2,

When the iterative control variable of the internal loop increases, the computation

increment is the same as in a single loop. Using a similar approach, we can express the

change caused by the iterative control variable of the outer loop by

AQ X2 x Q
y(k-l,X2) y(k,X2)

L (Ps,(k,X2) - Ps,(k- l,X2)) + L Ps;(k,X2)
1 y(k-l,X2)+1

Unlike a single loop, a nested loop has a AQ that can be either fixed or left open when

the iteration number of the outer loop increases. This depends on whether the defined

range of h is related to l. If the range of h is defined as a function of l, then AQ is

left open; otherwise it is prefixed. Fig. 7.3 shows three cases when X 2 = M (AQ is

prefixed); X 2 =land for h = l to M (AQ is left open). In Fig. 6.3, for example, there

are three C DO AGs that correspond to three iterations. It is seen that there AQ is left

open due to AQp is changed in each iteration though AQs is fixed.

I

I

I

I

I

I

I

I

I

I

I

I

.

:

• i
:
i
'

I

I
'

7.4. Size-Based Parallelism Speculation

XiQ -~------------------------- -· Xi=M

I

1_,

I

'-,
I

I

I t ___ .. ,, ,,
Xz=l

h=l to M

Q L - · Xz = I (single loop)

l 2 3 4 1

Figure 7.3: The iteration increment in a nested loop

The expression of tl.Q described above can be further generalised:

tl.Q X2X3·· · XmQ
y(k-l,X2,· ·Xm)

L (Pa,(k, X2," ·, Xm) - Pa,(k - 1," ·Xm))
1

y(k,X2, .. ·Xm)

+ L Pa1(k-1," ·Xm)
y(k-l,X2, .. Xm)+l

135

Thus, no matter what kind of loop, the cost of increment in computation can be

divided into two parts (tl.Q 8 and tl.Qp) when the iteration space increases. The purpose

in distinguishing these two parts of computation is twofold. First, we need to speculate

parallelism (parallel part) when the size of computation space increases. Secondly, if the

increment of computation in the sequential part is consistently proportional to the size

of the computation space, then abstracting the computation pattern that is repeated

sequentially can help reconstruct a new solution (as discussed in Section 7.3.3).

In the parallel part, parallelism speculation is carried out based on the BMF repre­

sentation of the optimised solution. For each vector-wise operation, the sizes of vectors

I

I

I

I

I

I

136 Chapter 7. Parallel Computing Platform

involved in the operation can be determined accordingly in terms of the bounds of the

loop control variables. The general expression of the subscripts of data elements in the

vectors is derivable by reasoning on those existing elements.

For example, the parallelism for Example 4 shown at each logical step can be

speculated as below:

[a(i+I)i, a(i+2)i, · · ·, ani]Y x [bi, bi, · · ·, bi] =;} [Vi, Vi+I, · · ·, Vn-I]

[si, Si+I, · · ·, Sn_i)Y +[vi, Vi+I, · · ·, Vn-I] =;} [si, Si+I, ···,Sn-I]

[bi+I, bi+2, · · · , bn] y _ [Si, Si+I, • · · , Sn-I] =;} [bi+I I bi+2, · · · , bn]

In Example 5 (Gaussian Elimination) we can also speculate upon parallelism and

construct a solution as follows {here we change working variables from a vector into a

array):

For i = 1 to n - I do {in sequential)

[ai+I,i, ai + 2, i, · · ·ani]Y;[aii, aii, · · ·aii] =;} [ai+I,i, ai + 2, i, · · ·ani]

For j = i to n - I do in parallel

[ai,i+I, ai,j+2, · · ·, ain]Y x [aj+I,i, ai+I,i, · · ·, ai+I,i] =;}

[Vj+I,i+I, Vj+I,i+2, • · •, Vj+I,n]

For k = i to n - I do in parallel

[ak+I,i+Iak+I,i+2, · · ·, ak+I,n]Y _ [vk+I,i+I, Vk+I,i+2, · · ·, Vk+I,n] =;}

[ak+I,i+I, ak+I,i+2, · · ·, ak+I,n]

Using computation pattern tests and parallelism speculation, we can express a solu­

tion without any restriction on the initial size of the problem used {for trace generation).

This shows that a manageable size of tuple space generated from a source code can be

used to reveal parallelism in a real problem.

I

I

I

I

I

I

I

I

I

I

I

-

I

I

I

I
(

I

7.5. Scalable Performance Analysis 137

7 .5 Scalable Performance Analysis

7.5.1 Scalable parallel computing

The studies of performance measures, speedup laws and scalability principles of

parallel computing are usually carried out for particular architectures [NA91], [Hwa93],

[Lew94], [CG95]. The simplest definition of scalability is that the performance of a

computer system increases linearly with respect to the number of processors used for

a given application [Hwa93]. ABCOM can be used for scalability analysis of solving a

problem in a architecture-independent manner when the workload is unfixed. This can

predict the scalable performance and guide algorithm design and architecture selection.

As discussed in [Hwa93], if the workload or problem size is kept unchanged (as shown

by curve W1 in Fig. 7.4(a)), then the efficiency E decreases rapidly (curve Ei) as the

machine size n increases. The reason is that the overhead caused by communication

between processors increases faster than the benefit by increasing the machine size. To

maintain the efficiency at a desired level, scalability requires that both the machine

size and the problem size increase proportionally. Such a system is known as a scalable

computer for solving scaled problems. As shown in Fig. 7.4 (a), the ideal situation is

to keep both the machine size and the problem size increasing linearly (curve W3 in

Fig. 7.4(a)). If the linear curve is not achievable, people will try to obtain a sublinear

scalability as close to linearity as possible (as illustrated by curve W2 in Fig. 7.4(a)).

Scalability analysis is complicated since it is related to the features of speedup

achieved by the program[Hwa93]. Speedup is defined as the ratio of execution time of

the parallel program running on one processor to execution time of the same program

on N processors:

T1
Speedup= -

TN
(7.1)

where T1 is the execution time of the program running on 1 processor and TN is the

execution time of the same program running on N processors. In Amdahl's law (1967)

it is assumed the time to run a parallel program on N processors depends on the

fraction of program, a, that is inherently serial, and the remaining fraction (1 - a)

138

Workload

1

Efficiency

1

0.5

0
1

Chapter 7. Parallel Computing Platform

W 3 (Linear)

W 2 (Sublinear)

"{ (Constant)

10 100 Machine size

(a) Four workload growth patterns

10 100

(b) Corresponding efficiency curves

Figure 7.4: Scalable computing

Machine size

7.5. Scalable Performance Analysis 139

that is inherently parallel. That is, TN= aT1 + (T1(l - a))/N. Substituting into the

formula for speedup, we get
N

SA= .
aN + (1- a)

According to Amdahl 's law, it is found that S ~ 1/a as N ~ oo. In other words,

under the above assumption, the best speedup one can expect is upper-bounded by 1/a

regardless of how many processors are employed. The interpretation of Amdahl's law

is that, given a prefixed workload, the speedup will not improve much if the number of

processors is increased.

Using the expression 7 .1 , we discuss the situation where the workload is left open.

If let N ~ oo, it means there is an unlimited number of processors. It would be too

pessimistic to use Amdahl's law in many cases if we assume a a constant when workload

increases. The reason is because a is likely to be a function of the workload (size of

the problem). In the last section we have shown that the parallelism of a program is

determined by the size of computation space, or, the size of data domain (especially

for data parallelism).

In 1988 John Gustafson and Ed Barsis proposed a fixed-time concept which led to a

scaled speedup model. In the Gustafson-Barsis equation assume the time to compute

data-parallel problem using N processors is normalised to unity, e.g. TN = 1, then

accordingly T1 =a+ (1- a)N. Substituting into the expression 7.1, we get

SaB = Ti =a+ (1 - a)N.

Our discussion on parallelism speculation shows that the increment of computation

cost consists of two parts. Performing !:l.Q s requires additional time. Therefore, the

assumption of Gustafson-Barsis is only one of the possible situations in which there is

no increment in the sequential part, e.g. !:l.Q:, = 0 or !:l.y = 0 for any increment of the

workload. This assumption is too optimistic.

Under the assumptions of Amdahl's law and the Gustafson-Barsis equation, if we

let N ~ oo, then both SA and SaB should reflect the relationship of a scaled workload

and the speedup of the program. It has often been observed that the problem size

is the most significant factor of data-parallelism. Consequently, a becomes a critical

140 Chapter 7. Parallel Computing Platform

factor in explaining the relationship. In practice, for a subjective program there are

various constraints introduced in design, related to scalable performance. Therefore,

it is difficult to define clearly the function a against the workload. This is the major

restriction in using speedup performance laws to predict the scalable performance when

the workload increases.

7.5.2 Scalability of application domain parallelism

In terms of the discussion above, we believe it is necessary to further investigate the

nature of scalability in parallel computing, especially the parallel properties of a scaled

problem (or application domain parallelism (ADP)). If we see a loop as a problem, it

is observed that there are two different situations for the increment of workload: 1)

workload (problem size) increase when data size increases; 2) workload increases when

total computation cost increases, while data size remains unchanged (for example, a

value-control While--Do loop).

Usually, in scalability analysis, the relationship between a and the size of a problem

is simplified by assuming that the parallelism achieved in a program is proportional to

the size of problem. This assumption is not suitable in the following cases:

(i) The objective parallelism is not scalable when the problem size increases.

(ii) The objective parallelism increases much faster than the subjective parallelism

achieved in an implementation when the problem size increases.

In (i) it is impossible to obtain scalable performance. In (ii), however, the subjective

parallelism could be improved for better performance. Hence, one should study the

nature of the fraction of parallel parts of the problem in scalability analysis rather

than merely using the concept of the workload. That is, the scalability of a computer

system (program and architecture) should be studied for an open-workload problem

after we know whether the application domain parallelism is scalable. For this purpose,

we introduce a concept, called scalability of application domain parallelism (SADP).

Definition 7 .2 The scalability of application domain parallelism is determined

by gradient of the ratio of the workload that can be computed in parallel to the total

workload.

7.5. Scalable Performance Analysis 141

In general, we have

here QT is the total workload, and Qp is the workload that can be computed in parallel.

Since w is a function of QT and Qp which are functions of problem size (the bound

of loop iteration variable i), the gradient of w against i can be obtained by using the

derivative of w, denoted as

T = W 1
•

To study SADP, we check three typical cases of T. In the first case, if r = O since

· w = wo (wo is a constant), then SADP is linear. In the second case, assume r > O

when QT increases, then w is monotonically increasing (w-+ 1) as QT-+ oo. It means

the application domain parallelism has a superlinear scalability when the problem size

increases. In the third case, if T < 0 when QT increases, then w is monotonically

decreasing (w-+ 0) as QT -+ oo. It shows that there is a sublinear scalability of ADP

(SADP is poor). In other words, it is impossible to get good scalable performance for

a problem if the workload increases.

Using the concept of SADP, we revise the scalability metrics described in [Hwa93]

to suit the open workload. As shown in Fig. 7.5, the scalability analysis of architectures

and algorithms should be based on SADP of a. problem rather than the problem size.

Precisely, SADP of a problem should be examined when we study the scalability of a

particular implementation if the problem size is left open. This examination benefits

both parallel algorithm design and architecture selection. If function w for a given

problem could be exactly defined, then we could check whether the problem is suitable

for scalable parallel computation. That is, we say a given problem is suitable for

scalable parallel computing if T = O; it is well suited if T > O; or it is not suitable if

T < 0. In practice, however, it is difficult to obtain the function w for a given problem.

According to the definition of w, there is a particular wp when a problem is expressed

in a parallel program. The difference between wand Wp is determined by the subjective

factors of the program. Without removing these factors, wp can only used to study the

scalability of the program. Back to our approach, we introduce certain methods to

study SADP of a problem by using an optimised solution with objective parallelism.

142 Chapter 7. Parallel Computing Platform

CPU
Time

1/0
Demand

Programming
Cost

Machine
Size

Scalability of a

(architecture, algorithm)
Combination

Scalability of
Domain parallelism

Prolblem
Size

Computer
Cost

Memory
Demand

Communication
Overhead

Figure 7.5: The revised scalability metrics.

In such a solution where subjective factors are free, therefore, we are able to study

w of the problem. Our discussion is still based on a superblock (loop). We use the

loop bound as the parameter of the workload, which covers both situations of workload

increasing. Using the discussion of parallelism speculation, first, we introduce a method

to analyse SADP when the size of a problem is changed.

In terms of the definition of w, we need to distinguish the sequential part and

the parallel part of computation for a given computation workload. In ABCOM, an

optimised solution with a total cost QT takes Hpo logical steps. The computations

involved at these steps of the critical path are inherently sequential. All other com­

putations can be executed in parallel with no additional time required. It means the

parallel computing workload is

Qp = QT-Hpo.

Therefore, function w can be expressed as

w
Hpo

l- QT.

(7.2)

(7.3)

7.5. Scalable Performance Analysis 143

To check SADP when the problem size (loop control variable i) changes, we see w

as a continuous function so that the derivate of the function to i can be expressed as

w'
-QT¥+Hpo~

Q}

Since r = w', we can rewrite the expression 7.4 as

T

1- QT X dt(poJ Hpo d QT
Q2

T

H
d(Hpo)

po X di

(7.4)

(7.5)

In a discrete form, function w' (or r) becomes computable if we replace d(~~T) and

d(~r) by ~Q(i) and ~y(i) respectively.

Theorem 7.1 For a given solution with i as the bound of loop, if ~Qy~i)) < S 1 (.)
u i - AECOM t

holds for i = 1, 2, · · ·, n, then the solution has a superlinear scalability of application

domain parallelism . .

Proof: We approximate d(~T) and d(~ro) respectively by ~Q(i) and ~y(i) in a

discrete form for i = 1, 2, · · ·, n, then the formula 7.5 becomes

T

1 - ~yti) QT(p) ~Qi X Hpo i
(7.6)

When the problem size is i, the speedup of the optimised solution is stated as

. QT(i)
SAECOM(i) = Hpo(i) · (7.7)

Consequently, if ~Qy~i·) < S 1 (.) holds for i = 1, 2, · · ·, n, then
u i AECOM t

~y(i) QT(i)
l - ~Q(i) X Hpo(i) > O,

namely, r > 0 holds. That is, the solution has a superlinear scalability of application

domain parallelism. D

144 Chapter 7. Parallel Computing Platform

Theorem 7.2 For a given solution with i as the bound of loop, if fQYti·) = S 1 C)
u 2 AECOM i

holds for i = 1, 2, · · · , n, then the solution has a linear scalability of application domain

parallelism.

Theorem 7.3 For a given solution with i as the bound of loop if Ayti·) > textstylel.
J AQ i SAECOM(i)

holds for i = 1, 2, · · · , n , then the solution has a sublinear scalability of application

domain parallelism.

Theorem 7.2 and Theorem 7.3 can be proved similarly.

In fact, there exists another approach to analyse scalability of application domain

parallelism by directly using the concept of speedup. As discussed before, we can see

speedup as a function of problem size, as expressed in the expression 7.7. Thus, the

derivate of the function is

(7.8)

Here we can substitute d~t° and d2T by using Ay(i) and AQ(i) in a discrete form

such that SAECOM become completely computable at points (i = 1, 2, 3, · · ·, n). This

concept can be explained as the gradient of speedup. If assume the gradient of speedup

equal to zero, then SADP is linear when the size of problem changes. This is a special

case. In fact, an increased speedup is possible for many problems when their sizes

increase. Thus, better speedup should be considered for both program design and

architecture selection.

Theorem 7.4 For a given solution with i as the bound of loop, if fQY~i·) < S 1 C)
u i AECOM 2

holds for i = 1, 2, · · · , n, the solution has an increasable speedup when the value of i

increases.

Proof: We substitute d~t° and 1!jf by using Ay(i) and AQ(i) in the formula 6.1.

Then, we get

S' _ HpoAQ(i) ~ QrAy(i)
AECOM- H2 ,

po (7.9)

7.5. Scalable Performance Analysis
145

Example Hpo(i) QT(i) ~y(i) ~Q(i) SADP
5 4i- 2 2i2 2 4i- 2 r(i) > 0
6 3(i - 1) (3(i - l)i)/2 3 3(i - 1) r(i) > 0
7 3(i - 1) i (i - 1) (4i + 1) / 6 3 (i - 1){2i - 1) r(i) > 0

Table 7.2: SADP analysis of Example 5, 6 and 7.

or

. ~y(i)
I - l - SABCOM(i) X ~Q(i

SABCOM - Hpo(i)~Q(i) (7.10)

where

. QT(i)
SABCOM(i) = Hpo(i).

Consequently, if ~Qyti·~ ~ S
1 (") holds for i = 1, 2, · · ·, n, then SA.BOOM > 0

u i AECOM i

holds at all these points such that the solution has an increasable speedup. D

To check SADP of Example 5, 6 and 7 for i = 3, 4, · · ·, n, we use their optimised

solution illustrated in Fig. 6.5, Fig. 6.6 and Appendix A.2 , and can get the general

expressions of Hpo(i), QT(i) , ~y(i) and ~Q(i), and the nature of r for these examples

as shown in Table 7.2.

We have described certain methods to analyse scalability of application domain

parallelism of solving a given problem when represented in the form of ABCOM. It is

difficult to achieve good performance in parallel programming; but it is more difficult

to develop a scalable program when the workload increases. Analysing SADP for a real

world problem brings a useful knowledge of parallel properties that can be used for a

scalable computer system.

The above discussion provides methods to study how the performance or speedup

of solving a problem will change as the size of the problem changes. Although SADP

based on an optimised solution of ABCOM may not be physically realisable since

various constraints are introduced by selected architecture and implementation, it can

be useful.

---·-- - - -- -

146 Chapter 7. Parallel Computing Platform

7.6 Other Applications

The ABCOM-ba.sed parallel computing platform is aimed to provide a foundation

for integrating techniques and tools in parallel computing. In this section we briefly

describe certain issues regarding to integrating ABCOM platform with a cost system

of parallel programming and solution derivation.

7 .6.1 Integrating with a cost system

In order to make a correct decision in program design or apply proper transforma­

tion rules in a solution derivation against a particular architecture, the calculational

approach is highly desirable and becoming deservedly popular for parallel software de­

velopment and program transformation (Bir89]. This approach requires more concrete

methods to estimate the cost of computation. One of the important features of the

approach is the provision of cost information at intermediate stages in a derivation.

Skillicorn et al provide a comparison on existing parallel cost systems and developed a

cost calculus for parallel functional programming (SC94].

It is hard to build a useful cost system for parallel computation because there

are many more degrees of freedom. In general, a cost system must be provided with

sufficient information regarding to the following important factors:

• Details of the structure of the program;

• The size of the problem;

• The extent to which the work to be done depends on values of the input, rather

than their number and sizes;

• The way in which the program is decomposed into threads that can execute on

different (virtual) processors;

• The way in which communication between threads and the synchronisation rules

associated with it are arranged;

• The way in which the threads are mapped to physical processors;

• The mapping of communication actions to the target processor's interconnection;

I

I

i

I

I

I

I

I

'

' 1

I

I

I

I

I

i
I

I

I

;

I

!

7.6. Other Applications 147

• The extent to which the computation exhibits dynamic behaviour.

Since it is difficult to deal with all these factors together, at present, the only known

way to build cost systems is to dynamically compromise certain factors [SC94).

The central problem in building a cost system is to provide the right level of alr

straction. This abstraction should hide much of the underlying complexity, but be

able to reveal enough for decisions about one choice of an algorithm over another. In

Section 7.2, we demonstrated that the profiling information abstracted from a solution

expressed in ABCOM can be represented by using the Bird-Meertens formalism. This

enables us to integrate ABCOM platform with the cost system developed by Skillicorn

so that those methods and results provided in [SC94) can be properly used for solution

derivation or to support mapping an optimised solution into a specific architecture.

The reasons that we can integrate ABCOM with such a cost system is

• A machine-independent representation, in particular a solution with objective

parallelism, can be obtained using ABCOM. Moreover, profiling information of an

optimised solution can be abstracted by the Bird-Meertens formalism which is a

bridge between the ABCOM platform and the cost system. Thus, all information

about data structure and data manipulation are available for the cost system.

• ABCOM-based computation inference can be used by the cost system.

• The compositional property of the representation is required by the cost system.

This requirement can be well satisfied by using the superblock-based strategy

used in our approach.

• The Skillicorn 's cost system is developed to assist program transformation or

derivation. Thus, an optimised solution expressed in ABCOM can naturally be

used as a source code so that the transformation or derivation can be carried

out based on a background with sufficient information on application domain

parallelism.

The task of integration of ABCOM with a cost system can be mainly divided into

two parts. The first is to develop computation pattern testing rules or interaction

mechanism for a programmer to help in identifying some special patterns such that the

p

148 Chapter 7. Parallel Computing Platform

profiling information can be properly abstracted as much as possible into the expression

of Bird-Meertens Formalism. The second is to create a cost reference table for those

recognised patterns based on different architectures that are considered to be supported

by the programming platform.

7.6.2 Solution Derivation Support

Transformational programming and parallel computation are two emerging fields

that may ultimately depend on each other for success. Because ad hoc programming for

parallel machines is so hard, and because progress in software construction has lagged

behind architectural advances for such machines, there is much greater need to develop

parallel programming and transformational methodologies. The challenge of parallel

solution derivation and program transformation is that it represents perspectives from

two different communities - transformational programming and parallel computing

- to discuss programming, transformational, and compiler methodologies for parallel

architectures, and paradigms, techniques, and tools for parallel machine models.

A number of interesting studies on parallel program transformation are reported

in [Pep93], [PPP93], [GY93] , [Smi93], [Par93], [RR93], [Lan93]. We discuss here the

feasibility of integrating derivation techniques of parallel programs with ABCOM.

According to the discussion in [Smi93], programs can be treated as a highly opti­

mised composition of information about the problem being solved, algorithm paradigms,

data structures, target architectures and so on. An attempt to provide automated sup­

port for program design must be based on:

• a formal model of the composition process;

• representation of problem domain knowledge;

• representation of programming knowledge.

The research on parallel algorithm derivation and program transformation is based

on the idea to produce formally verified software. Therefore, derivation is usually

based on a selected formal specification of a problem. The main difficulty in derivation

lies in building up the problem domain theory within which the algorithm is inferred.

1

:

J

I

i
I

I
I

I

I

I

I

I

I

I

I

I

7.6. Other Applications 149

And it is also known that methods and tools for achieving this goal still are research

topics. The techniques suggested in the literature are split into: either i) verification­

oriented techniques to provide a proof that a program conforms to a specification;

or ii)transformation-oriented techniques to generate an executable program from a

specification by applying a series of transformations. Comparing with a specification

language, there are certain advantages if an ABCOM-based solution is used as the

source code for transformation.

• Unlike a solution expressed in a specification language, ABCOM-based solutions

are executable in a general sense of computing. It will reduce the difficulty of

transformation in dealing with execution semantics for construction of an exe­

cutable program associated with a particular architecture.

• ABCOM-based solutions can be presented with objective parallelism. This pro­

vides certain assurances for achieving a good performance for a derived solution.

This is important for success of transformational programming.

• ABCOM is grain-dependent. Thus, transformation strategies can be developed at

different levels of representation from program structure and optimisation points

of view.

• Computation inference based on ABCOM can be used to develop transformation

rules. Building up connections between ABCOM and other techniques will ben­

efit development of transformation rules and construction of a transformational

programming framework. This framework can provide some interactive program­

ming features to deal with decision making in transformation since a cost system

can be combined through ABCOM.

Transformational programming can make use of ABCOM's power in revealing par­

allelism such that decisions in selecting parallel properties of solving a problem are

based on well exploited information. From a theoretical point of view finding the op­

timum solution is NP-hard. In practice, however, parallel programs are written in

certain styles for different types of architectures. The style of programming is mainly

determined by a number of decisions made in the following respects:

-

II

150 Chapter 7. Parallel Computing Platform

• Data or control parallelism;

• Partitioning;

• Scheduling and co-ordination;

• Communications;

• Skeletons.

Lemma 5.1 is a general rule to identify which elements in ABCOM are currently

ready for execution at each timestep. This rule can be implemented in an efficient way

to support static scheduling. That is, to identify the ready elements, we need only

tracing of the movement of the 'bottoms' of all independent CDOAGs in an optimised

solution. At each logical step during the execution of the solution, only those elements

that are in the 'bottoms' of the CDOAGs are ready for execution.

The solution derivation from ABCOM codes should be studied from all these re­

spects. As a long term project, we need support from people working in different

areas to bring those related research and development results together to form a multi­

functions and integrated programming environment.

7.6.3 ABCOM-based programming paradigm

The features of ABCOM-based parallel processing and the discussion in the connec­

tions between ABCOM and other techniques demonstrate certain new approaches to

improving parallel programming methodologies. The main improvement is to provide

adequate support in revealing parallelism when a program is developed. Also existing

techniques can use or be further developed in association with such support within a

programming framework. Hence, programming can be carried out with less chance of

performance failures. This improvement, as illustrated in Fig. 7.6, can be explained as

follows:

• A sequential program or other executable and machine-independent specifications

(for example GAMMA-based program) can be transformed into ABCOM repre­

sentation as an initial version of a solution. This solution can be optimised until

objective parallelism is revealed.

I
I

I

I

I
I

I

I

I

•

I

I

l

I
;

I

'

I

I

I

I

7.6. Other Applications

I reru_~
~---~
(GAMMA model 1 ·I sequential programs

,------------- }------------ }-----------

I

ABCOM

initial version of a solution

..;;:
b

solution with objective

parallelism

r
subjective parallel solutions

solution performance
test bed

-
I
I
I
I
I

'

I __ J

b

(final solution

parallel architectures

- parallelization

1. computation
pattern tests;

2. parallelism
analysis;

3. coarse-grain
abstraction

~ solution derivation

1. communication

cost estimation;

2. parallelism
profile analysis;

3. performance
evaluation.

1

Figure 7.6: ABCOM-based parallel programming paradigm

151

~

.

152 Chapter 7. Parallel Computing Platform

• The objective parallelism exploitation ensures a sound information background

of parallel properties of solving a problem to be available and well represented

before a program solution associated with a specific architecture is reached.

• Though mapping an optimised solution with objective parallelism into a selected

architecture is a NP-hard problem, based on ABCOM platform, techniques that

are useful for achieving high performance, such as parallelism inference, compu­

tation pattern abstraction, parallelism profiling, cost and performance prediction

and static computation scheduling, can be cooperatively applied within an inte­

grated environment.

• A trial-error procedure of solution construction can be carried out under certain

interaction with programmers. This will be important for both productivity and

success.

7.7 Summary

The development of ABCOM is motivated by the issues raised in Chapter 2. Our

effort is aimed at providing support to existing techniques in parallel computing rather

than developing a stand alone tool. As a long term project, in order to use ABCOM,

support from people working on those different areas is extremely important. Due to the

limitations of many factors, at present, the tasks involved in building such a platform

have not been deeply explored. Developing a theoretical foundation and demonstrating

the significance are our first goal.

l

I

I

I

I

I

I

I

I

I

I

:

'

I

I

I

I

I

I

I

I

I

I :

Chapter 8

Conclusions

Programming is an art, especially parallel programming, and will undoubtedly continue

. to be so in the future. Nevertheless, the effort devoted to innovative approaches to

programming philosophy and methodologies never ceases. In the last two decades, the

parallel computing research community has developed various advanced techniques and

tools to improve programming practice. Yet the development of parallel programming

environments has lagged far behind the hardware and is still a great challenge. We

have taken a different view to the study of parallel programming methodologies, and

have raised certain difficult but fundamel_ltal issues.

8.1 Thesis Summary

Most techniques and tools in parallel computing are developed with the primary

goal of expressing parallel properties to achieve high performance in a parallel archi­

tecture; but, 'finding parallelism' is as important as proving correctness in parallel

computing. 'Finding parallelism' is not properly supported by current methodologies,

and still relies on individual experience and knowledge. We have introduced a model of

parallelism revelation called ABCOM (ABstract COmputational tuple-space Model),

and examine its properties and its power to support parallelism analysis, inference,

profiling, speculation and abstraction, solution reconstruction and performance predic­

tion.

The main contributions claimed for this thesis are summarised as below:

153

.

154 Chapter 8. Conclusions

• This work broadens the research area of parallel computing from both the theo­

retical and practical points of view, by introducing concepts such as parallelism

revelation models, subjective parallelism, objective parallelism, and the scalabil­

ity of application domain parallelism. We advocate that the objective aspects of

parallelism of a real world problem should be studied before an implementation

is attempted . The main benefit of this study is to obtain a sound knowledge of

the parallel properties of the problem. Such a knowledge can help making par­

allel programming decisions and reduce the possibility of performance failures in

parallel implementation.

• A parallelism revelation model, called 'ABCOM' is introduced in this thesis.

The notation and properties of ABCOM exhibit its capability as a foundation to

reveal parallelism features and to support parallelism inference. The parallelism

inference feature can be implemented using relational algebraic techniques on a

programming database.

• ABCOM is intended to be at a level below the language level and is compati­

ble with a variety of language styles. Thus, it will have applications in various

research areas in parallel computing.

• Based on ABCOM, we have presented new approaches to detect exact data de­

pendence and parallelise program solutions. Trace-generation based transforma­

tion strategies of ABCOM contribute to generation of an abstract computational

tuple-space for a given source code. From such a tuple-space the topological

(spatial), structural and temporal properties required in solving a problem can

be fully recovered; an optimisation towards achieving the objective parallelism

can be carried out. This optimisation is not only machine independent but also

programmer-view independent. All the computations represented in an optimised

solution with the objective parallelism are driven by data flows. Consequently, the

difference in performance between any two optimised solutions to the same prob­

lem is given by the difference in the respective depths of the deepest C DO AGs

of the solutions. In other words, the difference in performance between any two

optimised solutions equals the logical time difference to compute the longest data

I
I

I

I

I

I

I

I

I

I

!

I

I

I
I

I
I

I

I

I

I

I
I

I

I

I

I
I

I

I

I

i
I

I

I

I

8.2. Limitations 155

flows for individual data in these two solutions.

• The ABCOM-based approach can provide special tools for reviewing existing

parallel programs to detect deficiencies with the aim of improving a given solution.

Also it is possible to compare inherent parallelism in two different algorithms for

the same problem before their physical and subjective parallel implementations.

• The tools and techniques developed in association with ABCOM, including par­

allelism inference, abstraction, speculation and so on, will be of significant assis­

tance in making programming decisions and selecting a suitable architecture for

a particular application.

• Being machine-independent, ABCOM can serve as an standard parallel abstract

model that can separate hardware features of architecture from software concerns,

hence it can promote software portability and scalability.

• The outcome of this research is the design of a parallel computing platform that

can be eventually developed as a unified framework for parallel programming

methodologies and for integrated development environments.

8.2 Limitations

Fully implementing the ABCOM-based parallel computing platform is a very large

and complex task. Therefore we introduced several restrictions to comply with the

resources at our disposal. In particular, we have given priority to: i) introducing

ABCOM as a parallelism revelation model with the emphasis on its significant fea­

tures for improving parallel programming; ii) illustrating its applications in association

with different research interests and techniques in parallel computing. In this context

the ABCOM-based parallel computing platform is primarily a research prototype of

a programming supporting environment that contains transformation , inference, opti­

misation, profiling and performance prediction techniques. The results obtained using

these techniques support our claim that ABCOM is useful as a parallelism revelation

model and is very helpful in enhancing existing research and techniques.

-

-

156 Chapter 8. Conclusions

At present, there are a number of deficiencies in ABCOM and one can ask many

questions regarding its applications to various real world problems. This section points

out some of the limitations of this work.

• Though the transformation methods of conditional statements have been de­

scribed in Chapter 4, we have not shown the application of ABCOM for a problem

containing uncertain control structures arising from conditional statements in its

program solution. It is true that the involvement of these structures complicates

computation analysis in ABCOM. Nondeterministic execution features of com­

putation usually results, if there are conditional statements contained in a loop.

As pointed out in Chapter 5, relation-based computation inference techniques are

not applicable to nondeterministic computation. The ABCOM-based parallelism

revelation approach may not successfully exploit objective parallelism for such

problems. From the discussion concerning Example 8 in this thesis, however, it

can be observed that parallelism visibility would be achievable in a certain sense,

if some supporting techniques are developed. We suggest the use of heuristics

and interaction with the programmer to guide nondeterministic computational

analysis, inference and abstraction. However, we have not yet identified suitable

heuristics.

• In this thesis, we discussed the properties and applications of ABCOM mainly

based on a fine-grained representation. This has more or less limited our inves­

tigation. It is still too early to claim that a sophisticated and complete parallel

programming environment has been developed; in particular, we have not yet

provided adequate methods of using ABCOM to the more challenging task of

mapping real world problems onto specific architectures. To broaden the applica­

tions of ABCOM, we need first to extend the investigation from the fine-grained

representation to a higher-level representations - e.g., a medium-grained or

coarse-grained level. We should pursue further:

- Element-grouping strategies;

- Higher-level inference and analysis techniques;

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

:

l
I

I

I

I
I

I

I

I
I

i

I

I

I
I

I

8.3. Future Work 157

- Higher-level optimisation methods.

Research into these respects must be carried out in association with many tra­

ditional programming issues, such as programming style, program structure and

partitioning strategies, and also certain architecture-related programming issues,

including data-access mode, interconnection among processors and communica­

tion methods.

• Through the use of a fine-grained representation, the methods of abstracting

parallelism described in the previous chapters are mainly based on a step-wise

strategy for data parallelism. As mentioned before, the main requirements for

relation-based computation inference is the existence of certain kinds of relation­

ships among elements with respect to the concepts of data, operation or time.

Consequently, these techniques should be developed in a more flexible way so that

static scheduling, computation pattern and type (or shape discussed in [Jay95])

abstraction and solution derivation can use ABCOM.

• To illustrate principles of our approaches, superblock-based strategies are used in

the discussion of this thesis. The synthesis of the results obtained from a number

of superblocks in inference, analysis, abstraction, profiling and speculation is

necessary and important for successful applications of ABCOM. Although it is

not difficult to develop suitable techniques to synt hesise information for problems

with simple algorithmic structure, we have not explained how to build up a

framework to conduct synthesis of various information, especially for large and

comprehensive applications.

8.3 Future Work

The work reported in this thesis is basically an introduction to a long term research

project for parallelism revelation. We believe the most fruitful approach to exploiting

parallelism is to start with a few principles and to make use of them as far as possible.

There are many appealing avenues to pursue for future work. We have already pointed

out a number of limitations and their possible improvements in the previous section .

.

--

158 Chapter 8. Conclusions

The work in progress includes developing computational inference and abstraction

techniques based on ABCOM, especially with respect to nondeterministic computation

and higher-level representation, and implementing a research prototype of a parallel

computing platform in a UNIX-based environment with support of ORACLE as a

programming database.

Also we need to relate ABCOM with other relevant techniques or tools. We realise

that the development of ABCOM-based techniques for a higher-level representation is

vital for the successful applications of our approach.

Beside the work mentioned above, we would also like to highlight two open problems:

• Mapping -- an NP-complete problem

Though a real world problem can be optimised to reach an objective parallelism,

finding an optimal solution to execute in a particular architecture is still an

NP-complete problem. The ABCOM-based approach can provide assistance in

building up application domain knowledge of parallel properties, but cannot op­

timally map this knowledge into a selected architecture. Instead of pursuing an

optimal solution, in practice, people usually think a solution with a satisfactory

performance as a goal of implementation. As stated in Chapter 1, ABCOM is

intended to enhance the existing techniques and tools in current practice rather

than replacing them. Therefore, whether ABCOM can really help to improve

parallel programming methodologies is mainly determined by whether it can be

successfully applied in the mapping procedure performed by either a programmer

or a compiler.

• Challenge to the future generation of compilers

As one of the important tasks of parallelising compilers, parallelism exploitation

can be carried out now in a non-traditional way. Can this approach help to

design a parallelising compiler? The answer to this question is not known at

this stage. But at least we have shown that it is possible to reveal objective

parallelism for a given deterministic computation problem, as long as it is spec­

ified in a conventional way. Comparing the information of parallelism obtained

and tasks performed by a parallelising compiler, we see that ABCOM-based ap-

---- --

I

I

I

I

I

I I
I I

I

,,
' I

I

i

'

'

I

i

:

:

'

I

I
I

:

I

I

I

I

I ::

I

I I
I ,,

'

i
,:

,,

,.

'
i
:

:

'

[

I

:

.

i
I

i
i

I

i
I

: !

',

'

8.3. Future Work 159

proaches provide a better knowledge of parallelism inherent in the problem, but

require different mapping strategies to derive or reconstruct a solution based on

a particular architecture.

By developing ABCOM, we believe the application of our parallelism revelation

model will ease the tasks of domain experts and programmers in parallel comput­

ing, but apply more pressure to architecture suppliers and compiler designers since

it will be a significant advantage if they can demonstrate that their products are

more efficient and better in performance when a domain knowledge of parallelism

is available. As this domain knowledge of parallelism is machine-independent, the

portability issue of parallel computing can be resolved if ABCOM representation

can be processed by different compilers.

At the NATO sponsored Advanced Research Workshop on 'Software for Parallel

Computation' in 1992, Kowalik and Neves pointed out that if parallel computing is to

be successful, it will require an unprecedented cooperation among application develop­

ers, compiler writers, systems software professionals, and hardware architects [KN93].

However, it is observed that such a cooperation has embarrassed the designers of pro­

gramming languages due to various different and even conflicting requirements from

these people. Also it is realised that the field of parallel computation is going through

a period of unrest: a growing rift between theory and practice suggests that more real­

istic models of computation are needed [FS92]. We are hopeful that the introduction of

a parallelism revelation model will provide a possible avenue for further developments.

The extent of success of the ABCOM model can be judged only when this model is

applied in different areas of parallel computing.

i

-

--

160

-- ·-- -

I

,,

I

I

: :

i i

I

I i
l

'

I

I

I

I

I'

'

'

I ,

'

;

' I

I

' I

I
!

:
I

I

I

I

I

I

j

I

I

I Ii

I
11

l 11
I 1,

1,

I

I II
I Ii

I Ii
l 1:

I

I

I
I

I

I

I

I I:
i i

I 1!

I

I

!

I
I

I

J .I

Appendix A

A.1 ABCOM code of Example 7.

Consider a sequential code for Gaussian Elimination (without pivoting).

Fork = l ton

For i = k + l ton

a(i, k) = a(i, k) / a(k, k)

For j = k + l to n

a(i,j) = a(i,j) - a(k,j) x a(i,k)

Let n = 6, a transformed code of this solution is shown as follows:

u1 : (/, {a21, au}, {a2i}, 1)

u2: (x,{a12,a2i},{v1},2)

u4 : (x,{a13,a2i},{v2} , 4)

u5: (x,{a14,a21},{v3},6)

us : (x,{a15,a21},{v4},8)

u10: (x,{a15,a21},{vs},l0)

u12: (/, {a31, au}, {a3i}, 12)

u13: (x,{a12,a3i},{v5},13)

u15 : (x,{a13,a31},{v1},15)

u17 : (x,{a14,a3i},{vs},17)

u19: (x,{a15,a3i},{v9},19)

u21: (x,{a15,a31},{v10},21)

u23: (/, {a41 , au}, {a4i}, 23)

u24: (x,{a12,a4i},{vu},24)

u3 : (-, { a22, v1}, { a22}, 3)

us : (-,{a23,v2},{a23},5)

u1 : (-, { a24, v3}, { a24}, 7)

u9: (-,{a2s,v4},{a2s},9)

uu : (-, { a25, vs}, { a25}, 11)

u14: (-,{a32,vi},{a32},14)

U16 : (-,{a33,v1},{a33},l6)

u1s: (-,{a34,vs},{a34},l8)

u20: (-,{a35,v9},{a3s},20)

u22: (-,{a35,v10},{a35},22)

161

-·-

... -

162

u2s: (x,{a13,a4i},{v12},26)

u2s: (x,{a14,a41},{v13},28)

u30 : (x,{a1s,a4i},{v14},30)

u32 : (x,{a1s,a41},{v1s},32)

u34: (/ , {as1, au} , {asi}, 34)

U35 : (x,{a12,as1},{v15},35)

U37: (x , {a13,as1},{v11},37)

U39: (x,{a14,asi},{v1s},39)

u41 : (x,{a1s , as1},{v19},41)

U43: (x,{a1s,as1},{v20},43)

u45: (/,{as1,a11},{as1},45)

U4s : (x,{a12,as1},{v2i},46)

u4s: (x,{a13,as1},{v22},48)

uso: (x,{a14,as1},{v23},50)

Us2: (x,{a1s,as1},{v24},52)

U54: (x,{a1s,as1},{v2s},54)

uss: (/, {a32, a22} , {a32}, 56)

us1 : (x,{a23 , a32},{v2s},57)

U59: (x,{a24,a32},{v21},59)

us1 : (x , {a2s, a32}, {v2s}, 61)

us3: (x , {a2s,a32},{v29},63)

uss : (/,{a42 , a22},{a42},65)

uss: (x, {a23, a42}, {v30}, 66)

uss: (x,{a24,a42},{v3i},68)

u10 : (x, { a2s, a42}, { V32}, 70)

u12 : (x,{a2s,a42},{v33},72)

U74 : (/, {as2, a22}, {as2}, 74)

u1s : (x, { a23, as2}, { V34}, 75)

u11 : (x, { a24, as2}, { V3s}, 77)

U79: (x, {a2s,as2}, {v3s}, 79)

us1: (x,{a2s,as2},{v31},8l)

us3: (/, {as2, a22} , {as2} , 83)

Ug4: (x,{a23,as2},{v3s},84)

uss : (x,{a24,as2},{v39},86)

uss: (x , {a2s,as2} , {v40},88)

u21 : (-,{a43,V12},{a43},27)

u29: (-,{a44,V13},{a44},29)

u31: (- , {a45,V14},{a4s},31)

u33: (-,{a4s,v1s},{a4s},33)

u3s : (-, { as2, v15}, { as2}, 36)

u3s: (-,{as3,v11},{as3},38)

u40: (-,{as4,V1s},{as4},40)

u42: (- , {ass,V19},{ass},42)

U44: (-,{ass,v20},{ass},44)

u47 : (-, { as2, v2i}, { as2}, 47)

U49: (-,{as3,v22},{as3},49)

us1: (-,{as4,V23},{as4},51)

U53 : (-, {ass, V24}, {ass}, 53)

uss : (-, { ass, v2s}, { ass}, 55)

uss : (-,{a33,V2s},{a33},58)

uso: (-,{a34,v21},{a34},60)

us2 : (-, { a3s, v2s}, { a3s}, 62)

us4 : (-, { a3s, v29}, { a3s}, 64)

Us1: (-,{a43,V30},{a43},67)

us9 : (-, { a44, v3i}, { a44}, 69)

u11 : (-,{a45,V32},{a4s},71)

U73 : (-, { a4s, V33}, { a4s}, 73)

u1s : (-,{as3,V34},{as3},76)

u1s : (-,{as4,V3s},{as4},78)

uso : (-, { ass, V3s}, { ass}, 80)

us2: (-,{ass,v31},{ass},82)

uss: (-,{as3,V3s},{as3},85)

us1 : (-, { as4, V39}, { as4}, 87)

ug9 : (-,{ass,v40},{ass},89)

Appendix A.

I '

I i

I ,
I

I
'
i

I '

I

I
I

I

'

Ii

,,
Ii
1,

I!

I

[i
Ii

11
11

1:

'

;

i
'

:

I

'

,,,

I [,

:

I

I

I

I
I

I

I

I
,,

I Ii

I

I

'

1!

Ii

:

Ii

I!

!
i

'

'

'

i

'

I l

1,

I ..

A.I. ABCOM code of Example 7.

Ugo: (x, {a26, a62}, {v4i}, 90)

U92: (/, {a43, a33}, {a43}, 92)

u93: (x,{a34,a43},{v42},93)

Ugs: (x,{a3s,a43},{v43},95)

U97: (x,{a36,a43},{v44},97)

u99 : (/, { as3, a33}, { as3}, 99)

u100: (x,{a34,as3},{v41},lOO)

u1 02: (x, {a3s, as3}, {v4s}, 102)

u104: (x,{a36,as3},{v49},104)

u106: (/, {a63, a33}, {a63}, 106)

u101: (x, {a34, a63}, {vso}, 107)

u109: (x,{a3s,a63},{vs1},109)

U111: (x, {a36,a63}, {vs2}, 111)

u113: (/, {as4, a44}, {as4}, 113)

U114 : (X, { a4s, as4}, { Vs3}, 114)

u116: (x,{a46,as4},{vs4},l16)

uus: (/, {a64, a44}, {a64}, 118)

u119: (x,{a4s,a64},{vss},119)

u121: (x,{a46,a64},{vs6},121)

u123: (/, {a6s, ass}, {a6s}, 123)

u124: (x,{as6,a6s},{vs1},124)

J

ii

163

u91: (-, {a66, v4i}, {a66}, 91)

U94 : (-, { a44, V42}, { a44}, 94)

1'96: (-,{a4s,V43},{a4s},96)

Ugs: (-,{a46,V44},{a46},98)

u101: (-,fas4,v41},{as4},101)

u103: (-,{ass,v4s},{ass},103)

u10s : (-, { as6, V49}, { as6}, 105)

u10s : (-, { a64, vso}, { a64}, 108)

u110 : (-,{a6s,vsi},{a6s},110)

U112 : (-,{a66,vs2},{a66},112)

uus: (-,{ass,Vs3},{ass},115)

u111 : (-, { as6, Vs4}, { as6}, 117)

u120: (-,{a6s,Vss},{a6s},120)

u122: (-,{a66,Vs6},{a66},122)

u12s : (-, { a66, vs1 }, { a66}, 125)

--

' .

164 Appendix A.

i

A.2 Optimised solution of Example 7. '

'

u1 : (/ , {a21 , au},{a2i},l)

u2 : (x,{a12 , a21},{v1},2) u3: (-,{a22,vi},{a22},3)

u4: (x,{a13,a2i},{v2},2) us: (-,{a23,v2},{a23},3)

us : (x,{a14,a2i},{v3},2) u1: (-,{a24,v3},{a24},3)

us : (x,{a1s,a2i} , {v4},2) U9: (-,{a2s,v4},{a2s},3)

u10 : (x,{a1s,a2i} , {vs},2) uu : (-,{a2s,vs},{a2s},3) l

u12 : (/, {a31, au}, {a3i}, 1)

u13 : (x,{a12,a3i},{vs},2) u14 : (-,{a32,vi},{a32},3) I

u15 : (x , {a13,a31},{v1},2) U15 : (-,{a33,v7},{a33},3)
I

:

u11 : (x,{a14,a3i},{vs},2) u1s : (- , { a34, vs}, { a34}, 3)
;

:

u19: (x,{a1s,a3i},{v9} , 2) u20: (-,{a3s,v9},{a3s},3) '

u21: (x,{a15,a3i},{v10},2) u22: (-,{a35,v10},{a3s},3) I

u23: (/, {a41, au}, {a4i}, 1)
!

u24: (x,{a12 , a4i},{v11},2) u2s : (-, { a42, vu}, { a42}, 3)
!i

u2s : (x,{a13,a4i},{v12},2) u21 : (-, { a43, V12}, { a43}, 3)

u2s : (x,{a14,a4i},{v13},2) u29 : (-, { a44, v13}, { a44}, 3) '
'

u30: (x, {a1s , a4i},{v14},2) u31: (-,{a4s,v14},{a4s},3)

u32 : (x, {a15, a41}, {vis}, 2) U33: (-,{a4s,v1s},{a4s},3) !i

U34: (/ , {as1,a11},{asi},l)
,,

U3s : (x , {a12,asi},{v15},2) u3s: (-,{as2,v1s},{as2},3)
i

U37: (x, {a13, asi}, {v11}, 2) u38 : (-,{as3,v11},{as3},3)

U39 : (x,{a14,as1},{v1s},2) u40: (- , {as4,v1s},{as4},3) i

u41 : (x,{a1s,asi} , {v19},2) u42: (-,{ass,v19},{ass},3) i

U43 : (X, { a15, asi}, { V20}, 2) u« : (-, { ass, v20}, { ass}, 3)

U4s: (/,{as1,a11},{asi} , l)

I
u4s: (x,{a12,asi},{v21},2) U47 : (-, { as2, v2i}, { as2}, 3)

U4g : (X, { a13, as1}, { V22}, 2) u49 : (-, { a53, v22}, { as3}, 3)

uso : (x , {a14,asi},{v23},2) us1: (-,{as4,V23},{as4},3) !

us2 : (x,{a1s,as1},{v24},2) us3 : (-, { ass, v24}, { ass}, 3) '
:

us4: (x,{a15 , asi},{v2s},2) uss : (-,{ass,v2s} , {ass},3) l i

.:
Uss : (/,{a32, a22},{a32},4)

us1 : (x, { a23, a32}, { v2s}, 5) uss : (-,{a33,v2s},{a33},6)
I

,,

U59: (x,{a24,a32},{v21},5) UGO: (-,{a34,V21},{a34},6)

'

r, A.2. Optimised solution of Example 7. 165
[I

[:

I' us1: (x, {a2s,a32} , {v2s} , 5) us2 : (-,{a3s , v2s},{a3s},6)
,,

us3 : (x, { a2s , a32} , { v29}, 5) us4: {- , {a3s,v29},{a3s} , 6)
' ;! uss : (/ , {a42, a22} , {a42},4)

:

uss : {x ,{a23, a42} , {v30},5) ,, us1 : {- , {a43, V30},{a43} , 6)

uss : (x, { a24 , a42} , { v3i} , 5) us9 : {-, { a44 , V31} , { a44}, 6)

u 10: {x, {a2s , a42} , {v32},5) u71 : {- , {a4s, v32} , {a4s},6)
i

I j
u12: (x , {a2s,a42},{v33} , 5) u73 : (- , {a4s , V33},{a4s} , 6)

r U74 : (/ , {as2,a22},{as2} , 4)
I

u1s : (x,{a23 , as2},{v34},5) u1s : (- , {as3,V34},{as3} , 6) I I i

' U77 : (X, { a24, as2} , { V3s} , 5) u1s : (- , {as4, V3s} , {as4}, 6)

1: U79 : (x,{a2s,as2} , {v3s},5) uso: {- , {ass, v3s},{ass},6)

I' us1: (x, {a2s, as2}, {v31}, 5) us2 : {-, { ass , V37 }, { ass} , 6)

us3 : (/, { as2, a22}, { as2}, 4)

us4 : {x, {a23, as2} , {v3s} , 5) uss : {- , {as3, v3s},{as3} , 6)

uss : (x, {a24,as2},{v39},5) us1 : (- , {as4,V39},{as4},6)
i uss: {x , {a2s, as2} , {v40}, 5) us9 : {-, { ass, V40}, { ass} , 6) :

i U90 : {x , {a2s,as2} , {v4i},5) u91 : {-, {ass,v4i} , {ass},6)

u92 : (/, {a43, a33} , {a43} , 7)

i U93: (x, {a34, a43},{v42} , 8) U94 : {-, { a44, V42} , { a44} , 9)

u9s : (x, {a3s,a43},{v43},8) u9s : {-,{a4s , V43} , {a4s},9)

i u97 : (x , { a3s, a43} , { V44}, 8) u9s : (- , { a4s , V44} , { a4s} , 9)

U99 : (/ , {as3, a33} , {as3} , 7)

u100 : (x ,{a34,as3} , {v41},8) u101: (- , {as4,V41}, {as4} ,9)

u102 : (x,{a3s , as3},{v4s} , 8) u103 : (- , { ass, V4s}, { ass}, 9)

u104 : (x , { a3s, as3}, { V49}, 8) u10s: (- , {ass,V49} , {ass},9)

u10s : {/, {as3, a33} , {as3}, 7)

u101: (x,{a34,as3},{vso},8) u10s : (-, { as4, vso} , { as4}, 9)

u109 : (x,{a3s,as3},{vs1},8) uuo: {-,{ass,vs1}, {ass} , 9)

u111 : (x, {a3s , as3},{vs2} , 8) u112 : (-,{ass,vs2},{ass} , 9)

u113: (/ , {as4, a44} , {as4} , 10)

u114: (x,{a4s,as4} , {vs3} , ll) uus : (-,{ass,vs3},{ass},12)

! uus: (x, {a4s,as4} , {vs4},ll) u111: (- , {ass, Vs4}, {ass}, 12)
: uus : {/ , {as4, a44}, {as4} , 10) i

: : u119 : (x , { a4s , as4}, { Vss}, 11) u120 : (- , { ass, vss}, { ass}, 12)
I I

I I
u121 : (x , { a4s , as4} , { vss}, 11) u122 : (- , {ass, vss} , {ass},12)

'
1:

I

Ii
I II
I [I

I ['I

[i
I

I ,

I I:
.... -

.....
11

166

u1 23 : (/ , {a6s , ass} , {a6s} , 13)

u1 24 : (x ,{as6 , a6s} , {vs1} , 14) u12s : (- , {a66,vs1} , {a66},15)

Appendix A.

I '

1:

'

'

•

I,

:

'
'

'

'

'

!

'
I

'
I

I

i

l

r ,,

I:
I
,,
1:
I ,

1,

r,

'

'

I

;

I

,:

':
I

I

:

:

Bibliography

. (AE88)

(AS93)

(ASU86)

(Ban88)

(Ban90)

(Bar81)

D. A. Abramson and G. K. Egan. An overview of RIMT/CSIRO parallel

systems architecture project. The Australian Computer Journal, 20(3),

August 1988.

T. M. Austin and G. S. Sohi. Tetra: Evaluation of serial program perfor­

mance on fine-grain parallel processors. Technical Report TR1162, Uni­

versity of Wisconsin-Madison, July 1993.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley Publishing Company, 1986.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic

Publisher, Boston, 1988.

U. Banerjee. Unimodular transformations ef double loops. In Proc. of 3rd

Workshop on Programming Languages and Compilers for Parallel Com­

puting, pages 192-219, Irvine, CA, August 1990.

H. P. Barendregt. The Lambda Calculus-its syntax and semantics. North­

Holland, 1981.

[Bet al94a] B. Blume and et al. Polaris: The next generation in parallelizing compilers.

Technical Report 1375, University of Illinois at Urbana-Champaign, 1994.

[Bet al94b] W. Blume and et al. Automatic detection of parallelism: A grand challenge

for high-performance computing. Technical Report 1348, University of

Illinois at Urbana-Champaign, 1994.

167

I

- -

168 Bibliography

[BGet al94] D. F. Bacon, S. L. Graham, and et al. Compiler transformations for high

performance computing. ACM Computing Surveys, 26(4):295-420, De­

cember 1994.

[Bir87]

[Bir89]

[BM90]

[BM93]

[Can69]

[CBF91]

[CG89]

[CG90]

[CG95]

R. S. Bird. An introduction of the theory of lists. In M. Broy, edi­

tor, Logic of Programming and Calculi of Discrete Design, pages 3-42.

Springer-Verlag Berlin Heidelberg, 1987.

R. S. Bird. Algebraic identities for program calculation. The Computer

Journal, 32(2):122-126, Feb 1989.

J. P. Banstre and D. L. Metayer. The GAMMA model and its discipline

of programming. Science of Computer Programming, 15:55-77, 1990.

J.P. Banstre and D. L. Metayer. Programming by multiset transformation.

Communications of the ACM, 36(1):98-111, 1993.

L. E. Cannon. A Cellular Computer to Implement the Kalman Filter

Algorithm. Montana State University, 1969. Ph.D thesis.

S. Chatterjee, G. E. Blelloch, and A. L. Fisher. Size and access inference for

data-parallel programs. In Proceedings of ACM SIGPLAN'91 Conference

on Programming Language Design and Implementation, Toronto, Canada,

June 1991.

N. J. Carriero and D. Gelernter. Linda in context. Communications of

ACM, 32(4):444-458, 1989.

N. Carriero and D. Gelernter. How to Write Parallel Programs. MIT Press,

1990.

I. Chabini and B. Gendron. Parallel performance measures revisited.

In High Performance Computing Symposium '95 (HPCS95}, Montreal,

Canada, July 1995.

I

I

1,

:

Ii

,,

,I

Ii
' It

Bibliography 169

[Che85]

[Chu46]

[CK95a]

[CK95b]

[CK95c]

[CKY95]

[CM88]

[Col89]

[Col92]

[Cor90]

D. K. Chen. Maxpar: An execution driven simulator for studying parallel

systems. Technical Report Master Thesis, University of Illinois at Urbana­

Champaign, 1985.

A. Church. The Calculi of >..-conversion. Princeton University Press, 1946.

P. Chen and E. V. Krishnamurthy. ABCOM: A parallelism revelation

model. In Proceedings of the Seventh IASTED International Conference

on Parallel and Distributed Computing and Systems, Washington D. C.

USA, Oct. 1995.

P. Chen and E. V. Krishnamurthy. Relation-based inference of parallelism

in programming. In Proceedings of the Australasian Conference on Parallel

and Real-Time Systems (PART'95), Fremantle, WA, Australia, 28-29 Sept.

1995.

P. Chen and E. V. Krishnamurthy. A tuple-space methodology to reveal

parallelism and achieve high performance in computation. In Proceed­

ings of High Performance Computing Symposium 95 (HPCS'95), Mon­

treal, Canada, 10-12 July 1995.

P. Chen, E. V. Krishnamurthy, and J. Yang. Program parallelization based

on an abst ract computational tuple-space model. Australian Computer

Science Communications, 17(1):66-75, 1995.

K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.

Addison-Wesley Publishing Company, 1988.

M. Cole. Algorithm Skeletons: Structured Management of Parallel Com­

putation. Pitman/MIT, 1989.

M. Cole. Parallel software paradigms. In Lydia Kronsjo and Dean

Shumsheruddin, editors, Advances in Parallel Algorithms. Blackwell Sci­

entific Publications, 1992.

Thinking Machines Corporation. CM Fortran User's Guide. Version 0.7,

1990.

....
1,

1,

170

[CSE93]

Bibliography

D. E. Culler, K. E. Schauser, and T. V. Eicken. Two functional limits

on dataflow multiprocessing. In Proceedings of the IFIP WG 10.3 Work­

ing Conference on Architectures and Compilation Techniques for Fine and

Medium Grain Parallelism. Elsevier Science Publisher, January 1993.

[Det al93] J. Darlington and et al. Parallel programming using skeleton functions. In

PARLE'93, pages 146-160. Springer-Verlag, LNCS 694, 1993.

[Dij72]

[DK82]

[Eka91]

[Ell86]

[Fea94]

[FJea88]

[Fox90]

[Fox92]

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood

Cliffs, N.J., 1972.

A. L. Davis and R. M. Keller. Data flow program graphs. IEEE Computer,

pages 26-41, February 1982.

K. Ekanadham. A perspective on Id. In Boleslaw K. Szymanski, editor,

Parallel Functional Languages and Compilers, pages 197-247. ACM Press,

1991.

J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press,

1986.

P. Feautrier. Fine-grain scheduling under resource constraints. In Lan­

guages and Compilers for Parallel Computing, Proceeding of the 7th Inter­

national Workshop, LNCS-892, Ithaca, NY, USA, Aug. 1994.

G. Fox, M. Johnson, and et al. Matrix algorithms I: Matrix multiplication

(chapter 10). In G. Fox, M. Johnson, and et al, editors, Solving Problems

on Concurrent Processors, pages 167-185. Prentice Hall, 1988.

G. C. Fox. Hardware and software architectures for irregular problem

architectures. In J. Saltz P. Mehrotra and R. Voigt, editors, Unstructured

Scientific Computation on Scalable Microprocessors, pages 125-160. The

MIT Press, 1990.

G. C. Fox. Parallel computers and complex systems. In David. Green and

Teery Bossomaier, editors, Complex Systems: from biology to computation,

pages 272-287. IOS Press, 1992.
I

I

I

,,

I

'

'

'
:

:

I

I

Bibliography 171

[FS92] Y. Feldman and E. Shapiro. Spatial machines: A mode realistic approach

to parallel computation. Communications of_ The ACM, 35(10), Oct. 1992.

[Gea91] G. Goff and et al. Practical dependence testing. SIG PLAN Note, 26(6):15-

29, 1991.

[GGB93] G. Gao, J. L. Gaudiot, and L. Bic. Special issue on dataflow and mul­

tithreaded architectures. Journal of Parallel and Distributed Computing,

18:271-272, 1993.

[Gis84]

[GR88]

[Gre75]

[GY93]

[Hea91]

[Hea93]

J. Gischer. Partial Orders and the Axiomatic Theory of Shuffle, Ph.D.

Thesis. Dept. of Comp. Sci., Stanford University, 1984.

A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge

University Press, 1988.

I. Greif. Semantics of communicating parallel processes, PhD Thesis. Tech­

nical Report Project MAC Report TR-154, MIT, 1975.

A. Gerasoulis and T. Yang. Scheduling program task graphs on mimd

architectures. In John Reif Robert Paige and Ralph Wachter, editors,

Parallel Algorithm Derivation and Program Transformation, pages 153-

186. Kluwer Academic Publishers, 1993.

M. Heath. Visualizing the performance of parallel programs. IEEE Soft­

ware, 8(5):29-39, Sep. 1991.

M. W. Hall and et al. Fiat: A framework for interprocedural analysis and

transformation. In Proceedings of the Sixth Workshop on Languages and

Compilers for Parallel Computing, Aug. 1993.

[HMA95] M. W. Hall, B. R. Murphy., and S. P. Amarasighe. Interprocedural analysis

: for parallelization: Design and experience. In Proceedings of the Se'!1enth
'

I

I

SIAM Conference on Parallel Processing for Scientific Computing, Feb.

1995.

I

-

172

[Hwa93]

[Jay95]

[JP93]

[Kea94]

[KGS94]

Bibliography

K. Hwang. Advanced Computer Architecture, Parallelism Scalability, Pro­

grammability. McGraw-Hill Inc., 1993.

C. B. Jay. Polynomial polimorphism. Australian Computer Science Com­

munications, 17(1):237-2243, 1995.

R. Johnson and K. Pingali. Dependence-based program analysis. In Pro­

ceedings of the ACM SIGPLAN'93 Conference on Programming Language

Design and Implementation, Albuquerque, NM, Jun. 1993.

C. H. Koelbel and et al. The High Performance Fortran Handbook. The

MIT Press, 1994.

R. Kramer, R. Gupta, and M. L. Soffa. The combining DAG: A technique

for parallel data flow analysis. IEEE Trans. on Parallel and Distributed

Systems, 5(8), August 1994.

[KMC72] D. J. Kuck, Y. Muraoka, and S. Chen. On the number of operations simul­

taneously executable in fortran-like programs and their resulting speedup.

IEEE Transactions on Computers, 21(12), Dec. 1972.

[KN91]

[KN93]

[KR90]

[Kum88]

D. Kimelman and T. Ngo. The RP3 program visualization environment.

IBM J. of R. and D., 35(5/6):635-651, 1991.

J.S. Kowalik and K.W. Neves. Software for parallel computing: Key issues

and research directions. In J. S. Kowalik and L. Grandinette, editors,

Software for Parallel Computation, pages 3-33. Springer-Verlag, 1993.

M. R. Karp and V. Ramachandran. Parallel algorithms for shared memory

machines. In J. van Leeuwen, editor, Handbook of Theoretical Computer

Science, pages 870-941. Elsevier Science Publishers, 1990.

M. Kumar. Measuring parallelism in computation-intensive sci­

entificengineering applications. IEEE Transactions on Computers,

37(9) :1088-1098, 1988.

I

Bibliography
173

[Lam74)

[Lam78)

[Lan93)

[Lar90)

[Lea90)

[Lew94)

[Lil93)

[Lil94)

[LW92)

[Mal90)

[MC82)

L. Lamport. The parallel execution of do loops. Communications of The

ACM, 17(2):83-93, Feb 1974.

L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7), July 1978.

M. A. Langston. Time_--space optimal parallel computation. In John Reif

Robert Paige and Ralph Wachter, editors, Parallel Algorithm Derivation

and Programming Transformation, pages 207-223. Kluwer Academic Pub­

lishers, 1993.

J. R. Larus. Abstract execution: A technique for efficiently tracing pro­

grams. Software Practice and Experience, 20(12), December 1990.

Z. Li and et al. Data dependence analysis on multi-dimentional array

references. IEEE, Tran. Parall. Distrib. Syst, 1(1):26-34, 1990.

T. G. Lewis. Foundations of Parallel Programming-- A Machine Inde­

pendent Approach. IEEE Computer Society Press, 1994.

D. J. Lilja. The impact of parallel loop scheduling strategies on prefetch­

ing in a shared-memory multiprocessor. Technical report, University of

Minnesota, 1993.

D. J. Lilja. Exploiting the parallelism available in loops. IEEE Computer,

pages 13-26, Feb 1994.

M.S. Lam and R.P. Wilson. Limits of control flow on parallelism. In

Proceedings of ISCA-19, pages 46-57, Gold Coast, Australia, May 1992.

G. Malcolm. Data structures and program transformation. Science of

Computer Programming, 14:255-279, 1990.

T. Marsland and M. Campbell. Parallel search of strongly ordered game

trees. ACM Computing Surveys, 14(4), Dec. 1982.

i

-

..... ~·

174

[MC91]

[McG82]

[Mea91]

[Mil83]

[MK95]

Bibliography

B. Miller and J Choi. Breakpoints and halting in distributed programs. In

Proceedings of 8th Conference on Distributed Computing Systems, pages

316-323, 1991.

J. R. McGraw. The VAL language: Description and analysis. ACM Trans.

on Programming Languages and Systems, 4(1):44-82, January 1982.

D. E. Maydan and et al. Efficient and exact data dependence analysis.

SIGPLAN Note, 26(6):1-14, 1991.

R. Milner. Calculi for synchrony and asynchrony. Theor. Comput. Sci.,

25, 1983.

V. K. Murthy and E. V. Krishnamurthy. Probabilistic parallel program­

ming based on multiset transformation. Future Generation Computer Sys­

tems, 11, 1995.

[MPC90] S. P. Midkiff, D. Padua, and R. Cytron. Compiling programs with user

parallelism. In Languages and Compilers for Parallel Computing, pages

402-422. The MIT Press, 1990.

[MPK91] W. Hseush M. Pongami and G. Kaiser. Debugging multi-threaded pro­

grams with MPD. IEEE Software, 8(3):37-43, 1991.

[NA91] D. Nussbaum and A. Agarwal. Scalability of parallel machine. Commun.

ACM, 34(3), 1991.

[NF84] A. Nicolau and J . A. Fisher. Measuring the parallelism available for very

long instruction word architectures. IEEE Transactions on Computers,

33:968-976, Nov 1984.

[NN94] S. Novack and A. Nicolau. Mutation scheduling: A unified approach to

compiling for fine-grain parallelism. In Languages and Compilers for Paral­

lel Computing, Proceeding of the 7th International Workshop, LNCS-892,

Ithaca, NY, USA, Aug. 1994.

Bibliography 175

[Pan91]

[Par93]

[Pep93]

[PKL80]

[PP90]

[PP92]

[PPP93]

[Pra86]

[Pra94]

C. M. Pancake. Software support for parallel computing: Where are we

headed? Communications of ACM, 34(11):53-64, Nov 1991.

H. Partsch. Some experiments in transforming towards parallel executabil­

ity. In John Reif Robert Paige and Ralph Wachter, editors, Parallel Algo­

rithm Derivation and Programming Transformation, pages 71-110. Kluwer

Academic Publishers, .1993.

P. Pepper. Deductive derivation of parallel programs. In John Reif

Robert Paige and Ralph Wachter, editors, Parallel Algorithm Derivation

and Program Transformation, pages 1-54. Kluwer Academic Publishers,

1993.

D. A. Padau, D. J. Kuck, and D. H. Lawrie. High speed multiprocessors

and compilation techniques. IEEE Trans. on Computers, 29(9), September

1980.

· P. Peterson and D. Padua. Machin~independent evaluation of parallelizing

compilers. Technical Report 1173-CSRD, University of Illinois at Urbana­

Champaign, 1990.

P. Peterson and D. Padua. Dynamic dependence analysis: A novel method

for data dependence evaluation. In Proceedings of 5th International Work­

shop on Languages and Compilers for Parallel Computing, pages 64-81,

1992.

A. Pettorossi, E. Pietropoli, and M. Proietti. The use of tupling strategy in

the development of parallel programs. In J. Reif R. Paige and R. Wachter,

editors, Parallel Algorithm Derivation and Program Transformation, pages

111-152. Kluwer Academic Publishers, 1993.

V. Pratt. Modelling concurrency with partial orders. International Journal

of Parallel Programming, 15(1):33-71, 1986.

V. Pratt. Time and information in sequential and concurrent computation.

LNCS, 907:1-24, 1994.

'

-

176

[Pug92]

[PW84]

[PW94]

[RR93]

[Sab88]

[SC94]

[Sha85]

[Ske91]

[Ski90]

[Ski91]

[Ski93]

Bibliography

W. Pugh. A practical algorithm for exact array dependence analysis. Com­

munications of the ACM, pages 102-114, August 1992.

S. S. Pinter and P. Wolper. A temporal logic to reason about partially

ordered computations. In Proceedings of 3rd ACM Symp. on Principles of

Distributed Computing, Vancouver, Aug. 1984.

W. Pugh and D. Wonnacott. Static analysis of upper and lower bounds on

dependences and parallelism. Technical Report Technical Report CS-TR-

3250, Department of Computer Science, University of Maryland, March

1994.

S. Rajasekaran and J. H. Reif. Derivation of randomized sorting and selec­

tion algorithms. In John Reif Robert Paige and Ralph Wachter, editors,

Parallel Algorithm Derivation and Programming Transformation, pages

187-205. Kluwer Academic Publishers, 1993.

G. Sabot. The Paralation Model: Architecture-Independent Parallel Pro­

gramming. MIT Press, 1988.

D. B. Skillicorn and W. Cai. A cost calculus for parallel functional pro­

gramming. Technical report, Queen's University, 1994.

J. A. Sharp. Data Flow Computing. Ellis Horwood Limited, 1985.

S. K. Skedzielewski. Sisal. In Boleslaw K. Szymanski, editor, Parallel

Functional Languages and Compilers, pages 105-152. ACM Press, 1991.

D. B. Skillicorn. Architecture-independent parallel computation. The

Computer Journal, 23(12), 1990.

D. B. Skillicorn. Models for practical parallel computation. Parallel Pro­

gramming, 20(3):133-158, 1991.

D. B. Skillicorn. The Bird-Meertens formalism as a parallel model. In J .S.

Kowalik and L. Grandinetti, editors, Software for Parallel Computation

{NATO AS! Series F). Springer-Verlag, 1993.

I

'.

I

:
I

I
I

1,

!

:

I

I;

I

I
I

I,

I

I

'

'

Bibliography 177

(Smi93]

[Spi89]

(SW85]

(Szy91]

D. R. Smith. Derivation of parallel sorting algorithms. In John Reif

Robert Paige and Ralph Wachter, editors, Parallel Algorithm Derivation

and Program Transformation, pages 55-70. Kluwer Academic Publishers,

1993.

J. M. Spivey. A categorical approach to the theory of lists. Lecture Notes

in Computer Science, 375:399-408, 1989.

S. K. Skedzielewski and M. L. Welcome. Data flow grapg optimisation in

IFl. In J. P. Jouannaud, editor, Functional Programming Languages and

Computer Architectures. Springer-Verlag, New York, 1985.

B. K. Szymanski. EPL - parallel programming with recurrent equa­

tions. In Boleslaw K. Szymanski, editor, Parallel Functional Languages

and Compilers, pages 51-102. ACM Press, 1991.

(TGH92a] K.B. Theobald, G.R. Gao, and L. J. Hendren. The effects of resource

limitations on program parallelism. In Proceedings of Workshop on Data­

Flow Computing, Hamilton Island, Australia, May 1992.

(TGH92b] K.B. Theobald, G.R. Gao, and L. J. Hendren. On the limits of program

parallelism and its smoothability. In MICR0-25, pages 10-19, Portland,

Oregon, Dec 1992.

(Val90a]

(Val90b]

(Wal91]

(WB87]

L. G. Valiant. A bridging model for parallel computation. Communications

of the ACM, 33(8):103=111, August 1990.

L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, pages 944-971. Elsevier

Science Publishers, 1990.

D. W. Wall. Limits of instruction-level parallelism. In Proceedings of

ASPLOS-IV, pages 176-188, Santa Clara, California, Apr 1991.

M. Wolfe and U. Banerjee. Data dependence and its application to parallel

processing. Parallel Programming, 16(2):137-178, 1987.

i

I

178 Bibliography

[Wet al94] C. Eric Wu and et al. Trace-based analysis and tuning fro distributed

parallel applications. In Proceedings of the 1994 international Conference

on Parallel and Distributed Systems, pages 716-723, Hsinchu, Taiwan, Dec

1994.

[Win80]

[Win84]

[Wol89]

[WT92]

G. Winskel. Events in computation. Technical Report PhD Thesis, CST-

10-80, University of Edinburgh, 1980.

G. Winskel. A new definition of morphisms on Petri Nets. In CMU/SERC

Workshop on Analysis of Concurrency, Springer-Verlag LNCS 196, Pitts­

burgh, 1984.

M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press,

1989.

M. Wolfe and C. Tseng. The power test for data dependence. IEEE Trans .

Parall. Distrib. Syst., 2(4):591-601, 1992.

i

I ,

'

I

I

I

I

Ii

:

:

'

i

!

I

I

'

I!

!i

i,

!

	00001
	00002-B
	00003-B
	00004-B
	00005-A
	00005-B
	00006-A
	00006-B
	00007-A
	00007-B
	00008-A
	00008-B
	00009-A
	00009-B
	00010-A
	00010-B
	00011-A
	00011-B
	00012-A
	00012-B
	00013-B
	00014-A
	00014-B
	00015-A
	00015-B
	00016-A
	00016-B
	00017-A
	00017-B
	00018-A
	00018-B
	00019-A
	00019-B
	00020-A
	00020-B
	00021-A
	00021-B
	00022-A
	00022-B
	00023-A
	00023-B
	00024-A
	00024-B
	00025-A
	00025-B
	00026-A
	00026-B
	00027-A
	00027-B
	00028-A
	00028-B
	00029-A
	00029-B
	00030-A
	00030-B
	00031-A
	00031-B
	00032-A
	00032-B
	00033-A
	00033-B
	00034-A
	00034-B
	00035-A
	00035-B
	00036-A
	00036-B
	00037-A
	00037-B
	00038-A
	00038-B
	00039-A
	00039-B
	00040-A
	00040-B
	00041-A
	00041-B
	00042-A
	00042-B
	00043-A
	00043-B
	00044-A
	00044-B
	00045-A
	00045-B
	00046-A
	00046-B
	00047-A
	00047-B
	00048-A
	00048-B
	00049-A
	00049-B
	00050-A
	00050-B
	00051-A
	00051-B
	00052-A
	00052-B
	00053-A
	00053-B
	00054-A
	00054-B
	00055-A
	00055-B
	00056-A
	00056-B
	00057-A
	00057-B
	00058-A
	00058-B
	00059-A
	00059-B
	00060-A
	00060-B
	00061-A
	00061-B
	00062-A
	00062-B
	00063-A
	00063-B
	00064-A
	00064-B
	00065-A
	00065-B
	00066-A
	00066-B
	00067-A
	00067-B
	00068-A
	00068-B
	00069-A
	00069-B
	00070-A
	00070-B
	00071-A
	00071-B
	00072-A
	00072-B
	00073-A
	00073-B
	00074-A
	00074-B
	00075-A
	00075-B
	00076-A
	00076-B
	00077-A
	00077-B
	00078-A
	00078-B
	00079-A
	00079-B
	00080-A
	00080-B
	00081-A
	00081-B
	00082-A
	00082-B
	00083-A
	00083-B
	00084-A
	00084-B
	00085-A
	00085-B
	00086-A
	00086-B
	00087-A
	00087-B
	00088-A
	00088-B
	00089-A
	00089-B
	00090-A
	00090-B
	00091-A
	00091-B
	00092-A
	00092-B
	00093-A
	00093-B
	00094-A
	00094-B
	00095-A
	00095-B
	00096-A
	00096-B
	00097-A
	00097-B
	00098-A
	00098-B
	00099-A
	00099-B
	00100-A
	00100-B
	00101-A
	00101-B
	00102-A
	00103

