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CHAPTER 1

INTRODUCTION AND SUMMARY.

Variational methods, which permit very simple calculation of
eigenvalues and eigenfunctions, have previously been used to obtain
the fundamental mode for both radial [1] and non-radial [2]
oscillations of certain stellar models. In this thesis variational.
methods are used also to determine higher modes. In the radial
case they are very successful. Numerical results agree very well
with those obtained by the much slower method of numerical
integration of the equations.

In the non-radial case, the calculations in this thesis show
a very interesting result, Previous work [3] has shown that there
are two families of modes in this case: the p-modes (with

eigenvalues tending to + » as the number of zeros in the

eigenfunction increases) and the g-modes (eigenvalues —> + 0).

Calculations using variational methods give good results for the
fundamental mode and the p-modes but fail even to detect the g-modes.
Half the eigenvalues of the characteristic equation yielded by
the Ritz method correspond to f- or p-modes. The other half
seem to be completely spurious,

This thesis develops new techniques for the numerical
calculations and discusses their uses. Theoretical properties

of the differential equations and of the methods of solution used




are discussed in the light of the numerical results and in
particular the failure of the methods to detect the g-modes. The
effects of assumptions and simplifications made in deriving the

differential equations are considered briefly.

Chapters 2 and 3 develop the mathematical techniques used for the

calculations, Chapter 2 begins with a review of the Ritz method
(which reduces the solution of variational problems to the solution
of matrix equations) and then suggests a technique which leads to
very simple characteristic matrix equations. This enables a
large number of parameters to be used, as is necessary for
accuracy with the higher wmodes. The method is examined in detail.
It is seen to satisfy the requirements of the Ritz method and the
precise form of the matrix equations is obtained.

Chapter 3 develops efficient methods for solving numerically
the matrix equations obtained in Chapter 2 and shows that these
methods may also be used in more general cases. Accuracy is
discussed, Some of the results of Chapter 3 have been discovered
independently by Wilkinson [4] but were not published until after
tlie present work had been doné;

Chapter 4 describes the stellar model used in the calculations.
It is free from some of the approximations made in the models to
which variational methods have previously been applied. ([1] and
[2])

Chapter 5, after a review of existing theory of non-radial

oscillations, investigates the properties of the differential




equations and their variational formulation, and discusses the

failure of variational methods to detect the g-modes,

Chapter 6 considers the simpler case of purely radial
oscillations. Much of the discussion is relevant to more general
oscillations,

Chapter 7 describes the numerical calculations and results in
detail and compares these with the results of other workers., The
effect of the choice of coordinate functions in the Ritz method is
apparent here,

A number of unsolved questions are suggested by the discussion.

The most important numerical results are summarised in tables

and some of the terms used are defined in the appendix.




CRERAPTER 2

DIRECT VARIATIONAL TECHNIQUES USED IN THIS STUDY

$1. Preliminary Review of Theory.

A problem which often arises in Mathematical Physics is that of
finding a function which will make the value of some integral
an extremum, Some principles are stated directly in this form
(e.g. the Principle of Least Action). Also the problem of solving
a certain differential equation with given boundary conditions is
sometimes equivalent to the problem of finding that function from
a given set of "allowable" functions (satisfying the same boundary
conditions) which extremises some integral.

Problems of this sort can be discussed naturally in the
context of Hilbert spaces, Briefly a Hilbert spnace is a vector
space with an inner product and which is complete with respect to the
norm induced by the inner product,

If A is some symmetric operator in Hilbert space, finding an

element u of the space to satisfy equations of the form Au = f

or Au =1 , where f is a given element of the space and

X is an unspecified scalar, is often equivalent to extremising
realvalued functionals of the form (Au,u) - (u,f) - (f,u) or
(Au,u) - Mu,u) respectively.

Important examples of Hilbert spaces are
(a) The set of all real scalar-valued functions defined almost

eéverywhere on some interval (a,b) (not necessarily finite) of the




real line and quadratically summable (in the Lebesgue sense)

on this interval.

(b) The set of all real n-vector valued functions (ul,...,un)
defined almost everywhere on some interval (a,b) of the real
line and quadratically summable on this interval.

(c) The set of all (possibly complex) n-vector valued functions
defined almost everywhere on some subset ©° of a Fuclidean
m-space and quadratically summable on 0 .

The inner product of two elements u,v of the spaces mentioned

would be

(a) (u,v)

where {ui},(vi} are the components of the vectors u,v in some
5 ~

orthogonal coordinate system,
Here we shall be concerned mainly with the spaces (a) and ()

above and subspaces of these but most of the results stated hold

also for other Hilbert Spaces, sometimes with appropriate modifications,
A very good account of the Calculus of Variations, the study of

how to find the element of some Hilbert space which extremises some

real-valued functional, is given by Mikhlin [5] who also gives a




good bibliography of some of the extensive work recently done
on the subject by Soviet writers, A more elementary treatment,
giving references to the better known English works is given by
Sagan [6]. Here the relevant terms will wmainly be ﬁsed in the
sense defined in [5], Some of the principal terms are defined in
the appendix, In particular a symmetric operator A will be
called positive-bounded-below (abbreviated to p.b.b,) if there
exists a real number Y # 0 such that (Au,u)_z Ya(u,u) for all
u in DA where the notation DA is used for the domain of the
operator A . Note that a positive operator is always bounded
below but not necessarily p.b.b.

If A and B are two p.b.b. operators in some Hilbert space
H, so that Dy Dg< H and if there is a w0 in DA such

that a(ul) =d = inf a(u) where the functional af(u) is
ueh
A

defined by

éAu,u;
a(u) = Bu,u

then d is the lowest eigenvalue of

and u, is the corresponding eigenfunction ef (2.1). If
further >”1"")“n are (in increasing order) the first n

eigenvalues of (2.1) and 4, ,...,u, the corresponding eigenfunctions




and if there is a un+1 in QA which minimises a(u) under the

supplementary conditions
(Bu,u;) = o0,

then u is the eigenfunction of (2.1) corresponding to the

n+1

elgenvalue A ., = a(un+1) ; This eigenvalue is the next after

A

n

Historically interest lay mainly in finding a differential
equation that must be satisfied in order to extremise some functional.
Equation (2.1) is a necessary condition that a(u) be extremised
and is often called the Euler-Lagrange equation associated with

problem of extremising a(u) . This approach is given in

e.g.[6] or Courant and Hilbert [7].

0f the many practical methods for determining which element of a
Hilbert space minimises a given functional, one of the most important
1s the Ritz method. A full description of this method, and a
proof that under fairly general conditions the method will determine
the eigenvalues of (2.1) is given in [5]. Briefly the method is
as follows. Take a sequence $i} of'linearly independent elements
(called the coordinate elements) from Dy (it is assumed
DA CJDB) which is complete in D in the energy of A . The

A

ldea is to define a sequence {un} where u is that member of
n

the set of linear combinations of the first n terms of [ﬁi}

which minimises a(u) . The space of all linear combinations




of the Q& , the new space of allowable functions, is a subspace

of the original space of allowable functions. Now

where

This has a non-zero solution if and only if

det(M(n)) = o0

where the matrix M(n) = (m(n)ij) is given by

"’(“)ij = (Aq~i,<;j) -\ (B»i,gj)

The kth eigenvalue Ak(n) of (2.5) will be an upperbound
the Lkth eigenvalue Ay of (1) , and for a given k |
B By (m) =

In general the rate of convergence 1is very good for the lower
modes, especially if the coordinate functions are chosen carefully.
For higher modes a space of allowable functions of much higher
dimension n (determined by a number n of arbitrary parameters
@i) must be considered. A rough idea of the accuracy of the
solution obtained for a given n may be gained by observing the
effect of increasing n . More precise methods are considered

in [5] and in Gould [8]




o

v, Choice of Coordinate Elements.

Let U be the set of all real, scalar valued differentiable

functions defined on [0,1] , whose derivatives are uniformly

continuous except (possibly) at a finite number of points.

Suppose it is required to minimise the functional X (u) given by
AMu)c(u) = 1I(u) (2.6)

"1
I(u) = U/ f,u® + fouu' + £,(u')2 (2.6a)
0

1
C(u) u/ fou® + fouu' + f5(u')2 (2.6b)
(0]

where the fi are given piecewise continuous functions defined on

(O,l) and u is an arbitrary function from the set U

satisfying prescribed boundary conditions at 0 and 1

(More general fi and a more general set of allowable functions
could be considered. Also there is no need to restrict the
interval of integration to (O,l) as is done here for convenience. )

The Hilbert space U is a subspace of a space of the type (a)
of §1. The functionals I(u),c(u) way be regarded as inner products
(1 u,u),(c u,u) where I : & ae the (linear differential)

operators associated with £ and U, With suitable boundary

conditions, I and ¢ will be symmetric if f2 e, 8 The

e

Problem could be solved by the Ritz method using a sequence
of coordinate functions such as polynomials satisfying the

boundary conditions,
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Alternatively u may be restricted to belong to the set of
continuous functions, satisfying the boundary conditions, whose

derivatives in each of the intervals (a_,a_+ ) are constant where
i’ i+

(2.7)

This method has many advantages and although similar methods are
mentioned in the standard works (e.g. [7] p 177) I have not found
in the literature either a theoretical account of this method
showing that the standard results of the Ritz method apply, or
any mention of the properties of the resulting characteristic
equations,

The method is essentially a case of the Ritgz method.. Let

P ={a.)

# i/ be any partition of [0,1] satisfying (2.7) . Define

the first n + 1 coordinate functions as follows,

0

J(
|

B By
8= 84
1

Define the remaining P; as follows, Let Ph4, be a refinement

of P, which contains exactly one extra number By o




Suppose aj = B i = aj+1 . Define
0,a.l
o [0 i
on [aj,any,]

on [an+1,1]

(The points Q47 » 8y could be renamed so that with the

new notation, aj <8j4 < ¢es <8p < apsy o) The remaining

are defined similarly, Thus defined, the ©; are linearly
independent. (Take any linear combination and equate to zero
at the points a. . This shows the coefficients to be zero,)
Although not orthogonal they can be orthogonalised,

For a given Pn » the set of all functions of the form

.n 3
Ld o ( -l.
1=0 4§

[0,1] whose derivatives are constant in each of the intervals

@i is precisely the set of all continuous functions on

(ai’ai+1)

Let “Pn” = maxi!ai*l - ai] : Then if anﬂ—+>O as n —> ¢

the sequence {wi} is complete in U in the energy of ¥

The ©?; can be modified so that they satisfy any given boundary

conditions, and the set of all linear combinations Aiti ?; Trepresents
the set of all continuous functions, satisfying the given boundary

conditions, whose derivatives are constant in the prescribed

intervals, e.g. If it is required that u(0) = u(1) =0 y




can be defined by

In this case only n - 1 coordinate functions are required
However it is often possible to use a change of variable so
the boundary conditions are satisfied automatically. This

done in the calculations described in Chapter7 ,

Provided “Pn”___> 0 as n—> = | the sequence hpi} defined

by (2.8) satisfies all the conditions required for the Ritz method.

Its use in that method will determine the eigenvalues and

eigenfunctions of (2.6) provided that I‘ and C are such that

the Ritz method is applicable.

B st > b, T is positive, If f_ =0,

1 2
*
=0 and £ > &> 0 where & is constant, I is p.b.b.

1
With appropriate boundary conditions T may be p.b.b. under more
general conditions. Conditions for C* are similar,. If
both I' and ¢ are P.b.b. operators the Ritz method will be
applicable. This is a sufficient condition but not a necessary

One.

The theorems of [5 ] may be applied directly if the sequence
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P.} and hence {q&} are regarded as fixed. If arbitrary Pi
i

are considered, so that any continuous function with pliecewise
constant derivative defined on (0,1) may be written in the
form 2 ®; ®; » then the theorems must be modified to consider
limits of nets instead of limits of sequences, (The set of all
partitions is partially ordered.)

For a given Pp , the space of all L,Q& q& (i.e. all

linear combinations of @0,...,@n) is isoworphic with the (n + 1)

dimensional space defined by all (do,...,dp) where d. 1is the

value of u at a, . In the interval (ai,ai+l) ’

Define functions In
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where the expression for I(un) is obtained by substituting

(2.10) in (Q.Ja), and

Cn(do,dl,...,dn) = C(un) ete .

The Ritz method can now be carried out by solving the

(o +1) equations

o)
Bﬁj(ln . xcn)(do,...,dn) = 0,

where ) is an eigenvalue. The eigenvalues A of (2.12),
which give upper bounds to the eigenvalues x(u) of (2.3),

are the roots of

det(P - ) = o

where = B = s % ) t e
® 4 (le) R (qlJ) and le ' qlJ are the coefficients

. a (\J
f d. o i
0 CE i In(do,...,dn) and e Cn(do,...,dn)

respectively.

Now In and C., are quadratic expressions in the di in

which the coefficient of didj is zero whenever Ii - j’ 2 1

Thus the matrices P and 0 are triple diagonal, i.e.

Uij = qij = 0 whenever |i - jl - 3 B Also if »p

1S any quadratic expression in the x.

i » the coefficient of xj

~

TR
PRy 8nd the coefficient of x. in 2P are both equal to
X4 1 QBXJ
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Pij *Pji - Thus since I, and C, are quadratic expressions

in the di ;, the matrices P and ¢ are symmetric.

A matrix Q = (qij) is said to be positive definite if its

principal minors are all positive. A sufficient condition for

f to be positive definite is that the quadratic form 5 & Q3 jX5X;

1s positive definite. (If 0 1is symmetric this is also a necessary
condition.) Now if C(u) >0 for all non-zero u in DC
(and this is usually the case as C usually represents some form

of kinetic energy), then clearly for u, #0 , C(un) > 0 where

u, 1is restricted to a subset of DC . As C(u) =00 Fey Akl

non-zero u in D, if 4f,f; >f% and f, >0, almost everywhere
on (0,1) , this is a sufficient condition (but not a
necessary one) for Q0 +to be positive definite.

Thus in most cases, with the choice of coordinate functions

given by (2.8), application of the Ritz method to (2.5) leads

to a matrix equation of the form

where both P and 0 are symmetric and triple diagonal, and ©
1s positive definite. A very simple method for solving such

a system is described in Chapter 3 §1. Most other choices of
coordinate functions lead to matrix equations which are much
more difficult to solve. Also the method described gives

immediately a picture of the eigenfunctions, showing clearly




the position of their zeros and their general shape, without
further calculation,

If P, 1s given by a; = l/n y 1=20,...,n, substitution

of (2.11) in (2.12) shows that the coefficients pii are

given by
n([L-nxdafl(x) - n(l—nx)fz(x) + nsz(x)]dx

Pn+1 rn+1 [(nx+1—n)2f1(x) + (nx+1—n)nf2(x) + nsz(x)]dx

Pi+1 i+ | in1 Uﬁx+1—i)3f1(x) - (nx+1—i)nf2(x) + nafs(x)de

n
1+
[\ [(i—nx+l)3f,(x) + (nx—l-i)nfl(x) + nzf?(x)]dX.

U W S |

L [(i—nx,\’(nxﬂ—i)fl (X) + (i—é—nx)nfz(}{)

n

- oPf (x;]dx

Expressions (2.14b) for qij can be obtained by replacing

fl wile S (2.14a) by ATRTEE (T f, respectively,

(e




§8. More General Hilbert Spaces.

In the case of a Hilbert space of type (b) from §1, where
u is a real vector-valued function, again defined on (O,l) 3 he
analogue of the functional given by (2.6), the integral of a
homogeneous quadratic expression in the components of u and
their derivatives, is more complicated. Let u have

components (v T N S The relevant forms are
1, ’ m

1 1 ]
I(u) > . i + fijzvivj + fij3vivj)

: 1 !
v + fijdvi Vj)

C(u) ) (f..v.v. + f

1
1js7i"]

For k#2 or 5 we can, without loss of generality, conside~

fijk = fjik \ The fijk are otherwise arbitrary, given, piecewise

continuous functions defined on (0,1) and u may be restricted

to the space Um of m-vector valued functions whose components

belong to U . Then U, 1is a subspace of a Hilhert space of
the type (b) of §1. With suitable boundary conditions, I*. and C ;
will generally be symmetric if for all i and J
respectively are zero. A more complicated case arises in
Chapter 5 where u is a 2 dimensional vector but the inner
product is defined in terms of a 3 dimensional vector.
The method of 2 may be modified for the case when I and C

have the form of (2.15). Corresponding to a partition Pp

of (0,1) , take as coordinate funetions the m(n + 1) functions




o 2t

1]
valued function whose Jth component is ¢; defined by (2.9&),

1 et RN l,...,m where q}j is the m-vector

and whose other components are Zero. The set of all linear
combinations 3 X(%j(%j of the qij 1s precisely the set of

all continuous m-ve;tor valued functions whose derivatives

are constant in each of the intervals (ai,ai+ X Again the
coordinate functions could be modified to suit boundary conditions.
If it is required e.g. that q!O) = 5(1) = 0 then @ij can

be defined as the wm-vector valued function whose Jth component

1s @, as defined in (Q.J), and whose other components are zero.
i ,

In this case there would be m(n - 1) coordinate functions.

Again if ”Pn” —>0 as n —>® the ¢

Pij are complete in Un

) ¥
1n the energy of I . Thus the Qij satisfy all the conditions

required for the Ritz method.

n -m
The space of all uy = 2, Zii: G, .P.. where the ..  are

real is isomorphic with the space of real (n +1) X matrices

D = (dij) where dij is the value of the Jth component of

84 at ai—1' Define Inm { Cnm by Inm(D) = I(gn) (2.18a)

Cou(®) = c(u,) (2.16b)
where I(u ) | C(u_) may be expanded by substitutine expressions

~n A g
analogous to (2.10) in (2.15). The Nitz method may be applied

by solving the m(n + 1) equations.




o
od.

,(Inm —)Lcnm)(D) o
ij

This may be written in matrix form as

and the eigenvalues ) are the zeros of det(P - XQ) : Again

and Q are symmetric (since Inm and Cnm are quadratic forms)
and Q is positive definite if (but not only if) C 1is nositive.

This time P and @ are not triple diagonal but of the form

e —

/

/ \
H P]_l P]_Q 4 & le\

\
| ’
l
|

L
mm

where each of the . 18 an (n + 1) x:(n + 1) tripnle diagonal
1]

matrix, The method of Chapter 3 §1 cannot be used in this

case, but a method is suggested in Chapter 2 $3 which for large
n is considerably better than standard methods.
When P is given by a, g, n L (2.00), (2.15)

and (2.16) show that equations (2.17) are of the form

d F;.'l ! 1.1k A e T W e )
( s fiik) + 4o (P (1,5,6) +F (i,5,k41)) + d e (321, k41))

R R D (1 5,k) + F (4,4.ke1))
—JJ":]. jk—l 4 JK 5 { o J

i djk*qF4(j,i,k+1))




m e .
Y 9 B (i dil) «d 7 (1,1,1)) = 25 (a 7 (i,5,1)

/4O J=].

+ d;,F, (j,1,1)) i of . (2.20b)

Tm
dJD 1F1(1yj,n) + d‘jan(i;.j,n)) - X/}_M,J-._._.]_ (djn_1F4(1:J)n)

Jn ¥ AL, 3.n)) i N5 : (2.20c¢)
where

Xk
Fl(i,j,k) & b/’f [£ 1J1(x)(nx+1-x)(k—nx)+n(k-l—nx}

n

f1J.(Y)+fJ12(X)
2

(x) - naf (x)]dx fd =t .m% k=l ],
Jl

k
g £i0(x)+f.. (x)
o n ¥ 1j2 Jjiz
Fz(l,g,k) =b/A-1 [fijl(x)(nx+1—k)& + n(nx+1-k) P

n

+ n“f (x)

k

< (x)+f 555 (x)
‘8 4 X 1J~ Jie
Fo(1,31) = [ B ((cnx)®t () +dnscic) -

Note that (2.14a) is a special case of this. Expressions for

s » 5 may be obtained from R )8 respectively by

replacing fijl Ml e e f.; f.:f fijs , fiis ;




fijé respectively in (2.21).

This type of choice of coordinate functions may be modified for
some other integrands. If the functions are defined on an
m-vector domain (as with Hilbert space type (¢) of §1), ®; may

be chosen which have constant derivatives on m-dimensional simpl exes

instead of on intervals, If the integrands contain mth order

derivatives, qa may be chosen in which the mth order derivative

is piecewise constant. In all cases the resulting matrices
will, for large n , consist mainly of zeros and this fact may

be used to facilitate the solution.




CHAPTER 3

SOLUTION' OF MATRIX EQUATIONS

$1. A Modification of Givens' Method.

In Chapter 2 §2 it was required to solve the eigenvalue

problem

Px = AQx

where P and € are symmetric triple diagonal matrices and
Q@ 1is positive definite.

Givens [ 9] has developed a very efficient method for
calculating eigenvalues of a symunetric triple diagonal matrix, and
shown that any symmetric matrix can be converted to triple diagonal
form by a finite series of orthogonal rotations. Since 0 is

symmetric positive definite there is a symmetric matrix C such

that C® =0 and (3.1) could be solved by applying standard

techniques to C™'PC~! . However C-'PC~! will not in general
have the simple form of P and 0 , and in this case standard
methods will be very inefficient. They will require more time

and more computer storage than necessary and by increasing

greatly the number of operations will tend to increase rounding
errors., It turns out that Givens' method for solving (8.1) in the
case Q * I , where I is the unit matrix, can readily be

generalised to give a direct method for solving (3.1) with more




general Q . Even the condition that P wust be symmetric

can be relaxed slightly.

P = (p..) and Q = (q._) be real n X n matrices defined
1] 1]

I PRGNS \ SRS |

g

|
|

For any real number )\ define a sequence [pi(X)} as follows

(\)

D
~£0

DI(X) a, — Ady

p.\A) =la., - \d - - '

L ) (s e, e,
e R

It can be shown by induction that the pi(X) R HE A

are the principal minors of P - A0 and that b (A) = det(P - A1)

g
Define condition (1) to be the condition that for all i and
all real ) , (bi - Xei)(ci - Xfi) > 0 whenever pi(K) = 0
In the classical case where 0 =1 and P is symmetric, this

1s clearly satisfied if the bi are all non-zero. The case

ey e Ik sk
whiere some . = 0 presents no difficulty for (3.1) may then




) = X(Xl) , Where P,

P10y xy
be written in the form (0 )( e

P2/ ‘xo

satisfies condition (l) and if Pz does not satisfy condition
(1) it may be split further and the argument continued. The
eigenvalues of P will be those of P1 together with those

Bt P . This argument does not extend for more general € , but

if for some i and ho ; (b. - Xoei) = (c- - kofi) = Di(ho) cadl ¢ IS

i i
then ) is an eigenvalue of (3.1)
0
Define S(A) =the number of sign changes in the seqguence
0,...,n where a zero element is taken to have

the same sign as the preceding element.

Theorem 1.

Let P, 0 be two trinle diagonal matrices satisfying condition
(1) and let © be pnositive definite. hen for each real number
ko : S(XO) is the number of eigenvalues of (2.1) less than ko

Proof.

(i) For all i and real numbers KO VAT Y n,(ko) = 0 then
1

P,_ (L) #0. For ir p;(x ) =p, (1) then, by (3.3)

and condition (1) { pi z(x ) would also be zero and so by induction
- 0
would po(xo) which is not so. Also 1f 1i'<n , (3.3

and condition (1) show that

pi+1(x0)pi-1{ko) < 0 whenever

(ii) Whenever S(k) changes, at least one of the pi(X)

must change sign, and hence pass through a zero value n.(}«)
Pt
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say, as the p;, are continuous functions (polynomials in fact.)

Thus by (i), 4 P B < RS (h )p, (k 10 . Veny
1+ 1 1=1 1

P (kl) 53 | PN pi_l(Kl) R | S By continuity there is a number

1+
0 >0 such that in (Xl - 6,k1 + 6) TN IR 0> Pedi Then
the change of sign in Py will cause no change in S{)) . Thus
S(L) can change only when pn(k> =0, 1i.e., at an eigenvalue of

£9:1).

(iii) At each eigenvalue S can change by at most 1 , For

by (i) when p (x ) =0 A
n o n

() F 04, imay . p (Li)i>0
yd: TR D=1 O

Then by continuity there is a & > 0 such that p >0 dn

\ko - b,xo +3) » so that the change in sign of p, causes S
to change by exactly one.

(iv) Now S changes at least n times. For as pi(K)

is a polynomial of degree i in )\ in which the coefficient

of (—x)i is the ith principal minor of € , and as all the
principal minors of © are positive (since 0 1s vositive
definite ) then pi(-m) >0 and pi(+m) has sign (—)i S0

that S(-x) = 0 and S(+w) =n . Thus by (iii). 8 changes

at least n times.

(v) As P, 1S a polynomial of degree n it has at most n
distinet roots. Thus by (iii) and (iv) P, has exactly n

real distinct roots (so that the eigenvalues of (3.1) are real
and distinct) and S increases by one at each root. The result

follows. 0.E.D.

Applying Theorem 1 to the principal minors, it follows that each




Py has 1 distinct real roots and that the number of sign

changes in the sequence v () ) R 4 ),...,p,(k ) is the

o O S i o
nunber of roots of the equation det(Pi - XQi) = 0 less than ko :
where Pi ; Qi are the ith ovrincipal submatrices of P and
0 respectively. It follows that the zeros of P, separate
those of p. ' This may also be proved directly by induction.

i+1
Practical Procedure,.

The method used for finding eigenvalues is as follows. Suppose
upper and lower bounds for an eigenvalue are known. Bisect the
interval thus defined. The value of S at the midpoint of the
interval shows in which half of the interval the required eigenvalue
lies. The bisection mav be continued until the eigenvalue is
known to the required degree of accuracy. The ultimate limit to
accuracy depends on rounding errors (see §?). It remains to find
a method for determining upper and lower bounds for eigenvalues.

Now det(P - Z0) is a polynomial of degree n in which the
coefficient of (—x)n is det 0 and the constant term is det P .
Thus, since 0 is non-singular, the product of the eigenvalues
of (3.1) is g:z : y and the geometric mean of their magnitudes
is EEE}é}é : UThus in the case described in Chapter 7 when

P and 0 are both positive definite it is easy to calculate

the eigenvalues systematically., Let ), A +eo <\, be the

eigenvalues of (3.1). Then 0< M S

Calculate ),

(det P)
det 07

by the me¢thod of bisections and then use




{det P
Kldet 0

After m eigenvalues have been calculated use

(' det P )-ﬂ:~
det QIT A

1=1 1}

This method was used for the calculations described in Chapter 7.
The method may still be used when P is not positive definite

although in this case the bounds are wealer. For )\m+1 the

bounds are

det P

m
det O B where
] ¢

=} 1

'<|>»nl :

These bounds are rather wide and sone devices may be used
to speed convergence. Two were used in the present calculations.
If say the mth eigenvalue was being sought and it was found that

there were (m + r) eigenvalues less than some number o ;

then @ was stored in computer memory and used as an upper bound

in determining also the eigenvalues from )\ to ) ;
m+1 m+r
Also if it was found that there were (m + r) elgenvalues below «
a -
and (m - l) below 8 , them £ + i was used as the next
trial value instead of X 1B .
2

It can readily be shown that the magnitudes of the eigenvalues

of a matrix P = SNy are bounded by




sup,, |Kr| < il

where the norm HPH is defined by

A

Pl = maxi/ZJJ lPij‘

This bound is generally used in the standard case 0 =1

but cannot readily be generalised for (3.1) with QT Indeed
eigenvalues of (3.1) can be made arbitrarily large when 0 is

in the neighbourhood of a singular watrix, and im such a

neighbourhood |, arbitrarily smwall alterations in the q may

1)
malce arbitrarily large alterations in some eigenvalues of (3.1).

But an upper bound for lx] can be found for the case considered.

Let XOn : kﬂl respectively be the numerically greatest and

numerically smallest eigenvalues of @ with similar notation for

P . As an upper bound for prni is given by (3.4), and the

-
b4

product of the eigenvalues is det Q , a positive lower bound for

ldet Ql

o™

b !

IXQI' is

Theorem 2.

If P and Q are real symmetric matrices (not necessarily

triple diagonal) and Q is positive definite, the magnitude of
ik

the eigenvalues of (3.1) cannot exceed ¥ /kn]'




Proof.
Denote the magnitude of the numerically pgreatest eigenvalue

of (3.1) by A . Then denoting the transpose of x by x;
n

¥ ' Px

N2 PN
A = sup

n x#0 T

mf x Qx

N ' ™

This is analagous to the well-known result

~

G s

X

—
=

v
X Px
i

e |

~o

and may be proved in a similar way. For since (0 is symmetric
there is an orthogonal matrix R, such that R; O R, 1is pure
diagonal, and since { is positive definite there is a real
non-singular diagonal matrix H suck that E R: QR H =X .
Since H' 2 P Ry I is clearly symmetric there is an orthogonal

matrix R such that D =R} H" R’ PR, HR, is diagonal.

Then R H' ' R) @ R,'HRg = I . ' Then

det(D - \I) = det R] det(s"R] PR, H- B RJ q n, H)det Ry
det H' det(n] P 2, - R QR )det H

det H" det P.Y det(P - »Q)det P, det H

= det H' det(P - AQ) det H which, since H is non-singular,

vanishes if and only if det(P - N) =0 so that the eigenvalues of




D are the eigenvalues of (3.1). Then if x =P, H L,

R is non—singular)

P

Equality holds

attain maximum value for the same x L

R L
e.g. If P = ( ) then Q = ( ) gives inequality and
0 3 o 2

S : - : X :
= (0 1) gives equality. This bound also follows 1mmediately

from the properties of the Hilbert norm (1] 0. 4)

The Meaning of 'Condition (1)"

Consider the cases in which condition (1) is satisfied.
In Chapter 1 we obtained a system in which P and 0 were both
symmetric. In this case condition (1) is satisfied provided
only that for all i and all real X\ ] pi(X) and (bi - kei)

never vanish simultaneously. Call this weaker requirement condition (2).




It turns out that this condition is very seldom violated
but it is a little difficult to prove that it is satisfied in
a particular case as it is the exact values of pi(x) and
bi - kei which are significant and not the computed ones.
In the case By = 0, condition (2) is satisfied unless
bi = 0 and D, has at least one real root. Error bounds for
pi(bi/ei) were calculated in the case e; # 0 but were not very
helpful. If Ipij‘ and ,qijl are bounded above by m it
was found that the error could grow as
/m(l +ibi/eit)(l +-J3)x%

}

i £ where ¢

2 :
/

r

is a small constant depending on the computer used. With

an IBM 1620 (which was used for the present calculations) g ~10-8 .

The position is much better than these wide bounds might suggest .

: b, ‘'a,
If i =1, the condition is oy f'ﬁ; which is easily

ghocked. And if ‘I =1 ' the Zeros of P, will generally
be irrational whereas i/ei must be rational. Even if .
had a rational zero the probability that condition (2) might

not hold for i >1 would be extremely small as the elements of
the matrices will usually contain about 8 significant decimals

1/ei and the zeros of P, are likely to contain even

so that

more.

Note also that condition (2) though sufficient is by no means

necessary for the method to give good results. If condition (2)




does not hold it is possible for consecutive p. to vanish

i
simul taneously, but (3.8) shows that if Di—l(a) = pi(a)

then pj(a) O s o ) ovian . 50 that o wust be an
eigenvaiue of (3.1). Define condition (3) to be the condition
that bifi‘= c,e, and bici SRyl 1, This is clearly
satisfied when P and ©” are symmetric provided the bi are
non-zero, When this condition holds, (3.3) shows that if

pi(a) =0 and i <n then pi_l(a)pi+1(a)_f 0ot Hence, as
before , S can change only at an eigenvalue of (1.9, Further
if all P, which vanish at «a change sign at o then S can
change by only one at « . 1f some P vanishes but does not
change sign at « +then pi(a) = 0 and it can be shcwn using
condition (3) and considering the derivatives of (8.3) that if

S changes by m at o, then (3.3) has an eigenvalue of
multiplicity at least m at (. Argument similar to that

of Theorem 1 shows that except at eigenvalues of (2.23) s 1 8 has
the value predicted by Theorem 1. At eigenvalues of (3.3)

this is not so, as is shown by considering s(1) for
)
2 ’

This difficulty cannot be overcome by changing the convention
of the sign of 0 as shown by other simple examples. In practice
the P4 will contain rounding errors and the signs of those which

should be zero will be randomly distributed. The effect may be




felt even for trial values differing very slightly from
true eigenvalues, Thus if condition (3) holds but conditionr
(2) does not, the method should still give good results but the
accuracy may be slightly less than if condition (2) held, and
difficulties in programming may arise as the value of S for A
near an eigenvalue may be misleading.

Another important case in which condition (1) is satisfied
is the case in whick @ is purely diagonal and for all i |,
B.c. >0, This case could easily be modified so that Q=1I,

1A |

but is not covered by Givens' result as P is not required to be

symmetric, This case, which does not even need condition (2),

can arise when derivatives are replaced by finite differences in
eigenvalue problems. An example from the theory of stellar
oscillations arises in [10] (see Chapter 6). In that example

P is not symmetric but condition (1) is satisfied,




§2., The Role of Rounding Errors.

— S ———— L

Numoers stored in a couputer must be limited to a certain
number of digits, When the number resulting from an arithmetic
operation contains more than the.allowable number of digits, the
last significant digits are lost. The eifect of those rounding
errors is one of the most important considerations when assessing
the merit of a numerical method.

As well as a detailed discussion of the mathematical principles
involved and technical suggestions for prograuming, Givens in [ 9]
gives a careful analysis of the effect of rounding errors in
calculating the eigenvalues of a triple diagonal matrix by his
method , Wilkinson [12] in an article on the principles governing
rounding errors in floating point calculations gives, as one
of his illustrations, a simpler treatment of the problem and
chows that provided all the elements of the matrix lie in the
interval [- i,i} then calculation of the eigenvalues of a
symmetric triple diagonal matrix by Givens' wethod on 2
computer retaining < vinary places gives an error of less than
12 x o-t-2 This remarkable result is independent of the
dimension of the motrix.

Wilkinson shows that when Q =1 in (3.1) the computed

values of pi(k) definad by (3.3) are the exact values for a

syumetric triple diagonal! matrix P and obtains (very small)

upper bounds for [P - P,| (where the norm is defined by (3.5)).

An exactly similar argument shows at this is also true when
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Q#I . i.e. The computed values of the sequence defined by
(3.3) where P and ( are any triple diagonal matrices is the
exact sequence for some triple diagonal matrices P, , Q (which
will be symmetric if P and Q are symmetric) and similar small
bounds may be found for |[[P - P,|| and |[Q - Q, 1l -

Wilkinson concludes his proof by using a result of Lidslkii [13]
also used in [9] where Lidskii's main theorem is quoted in full,
It follows from this theorem that when the eigenvalues of two
symmetric matrices P and P1 are arranged in order of magnitude,
the corresponding eigenvalues of P and P, differ by less than
the numerically greatest eigenvalue of P - P1 , which cannot
exceed HP - P1” .

Unfortunately the position when 0 # I 1is more complicated.

If Q is sufficiently ill-conditioned, arbitrarily small changes
in the elements of 0 may make arbitrarily large changes in
some eigenvalues of (3.1). If however " 1is not ill-conditioned,

and

lg, - @I << |det q|

then @, will be nositive definite. Then if § is symmetric

there will exist symmetric matrices and C, such that

(%= Q and Cf =Q . Bounds can be obtained for |p, - P

and ||Q, - Qff . If bounds could be deduced for
el R e S el - C™'ll, Lidskii's Theorem would give error

bounds for the process. These should be small if (3.7) is




satisfied. If Q@ 1is ill-conditioned most techniques will

prove unsatisfactory.

Note that Wilkinson's bound is a bound for ahsolute error.
In general no bound can be found for the relative error in any
calculation involving more than one consecutive addition. The
computed value of a + b + ¢ may be zero when the true value

is not (or vice Versa) if ¢ and a +b are of opposite sign

and both much smaller numerically than |a | .3




§8. A lMethod for Triangulation of Certain Matrices.

In Chapter 2 $2 it was required to solve an equation of the

type (3.1) where in this case P and @ were given by

where the Pij g Qij were triple diagonal matrices. This section

describes a method for solving equations of this type when m = 2
(as is the case with the calculations described in Chapter 7 where
this method was used) which is readily generalised for other m .

Theoretically the equation could have been solved by applying
Givens' method to C~ P C~! where C® =0 , but to do thi® with
matrices of the size used in Chapter 7 would have required more
storage than is available on an IBM 1320 . Also the number of
calculations would have been excessively large which would be
wasteful of time and tend to increase rounding errors, Furthermore
the method described, unli'e Givens' method, does not require
P and 2 +to be symmetric.

First det(P - KQ) was computed for increasing )\ until a
change of sign was obtained. Interpolation was then used to
obtain the eigenvalue )\ , and the corresponding eigenvector
was calculated by the method of §4 of this Chanter. Calculation

of the eigenvector and evaluation of the determinant involved
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triangulation, which for a matrix of the form (3.8) can be done

as follows.,

Let R = (E; F:) where

in—lqin—l

Y. !
in-> Pin

First eliminate r and r_

Gia g, Slmultaneously by subtracting from the

second row an appropriate linear combination of the first and

(n + 1)th rows of H This can always be done provided

P11Ps; = DPz;P3, f 0

The appropriate combination of the first and (b + 1 )th rows is

then given by Cramer's rule. The restriction (3.9) is analogous

to the condition P,, # 0 required to eliminate r , Separately

by subtracting a suitable multiple of the first row from the second.

In the standard case this restriction is overcome simply by an
interchange of rows. Here the problem is more difficuli.

Fortunately in practice (2.9) is seldom violated. (In the calculations
required for this thesis a condition of this )ind was required well

over 100,000 times and was always satisfied. This is not surprising

ey P, o and P, P3, contained 8 significant figures and
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were not necessarily of the same order of magnitude.) In the

programme used in this case, where R = P - 2Q and the relevant

elements of Q (i.e. those corresponding to r ’pi"qij) are all

1) 19

non-zero, the following device was used, If (3.9) (or correspondin:
conditions required later) were not satisfied, the trial ). was

to be changed slightly and a message printed on the typewriter of

the couputer, If necessary this procedure could be repeated,

The slight change in A would not have mattered as the method
described in ¥ calculates very accurate eigenvectors from quite
crude eigenvalues, and the final calculation of accurate eigenvalues

was made from these vectors,
Having eliminated r,, and rz; , eliminate rj, and PR

simultaneously again using a cowbination of the first and (n + 1)th

rows, Then eliminate r and r

12 oo using the second and

(n + Q)th rows, Then eliminate r,, and T and so on, until

have been eliminated, Next eliminate and

ij %5 ,n-2

L PN simultaneously by subtracting a linear combination of the
e

nth and 2nth rows from the (0~ 1)h . Then eliminate : TR
?

and Uy ? then 4, , o and 2SR and so on until all the qij

have been eliminated (in decreasing order of j). Then eliminate

the in the usual manner, The calculations become increasingly

p3J'
simple as the number of zeros increases, The final wmatrix is of

i are pure diagonal and this simple

the form (8’ ga) where the D.

3
form facilitates the calculation of eigenvectors.

With the method of calculating det(P —I\Q) for arbitrary increases
in X there is a risk that some pair of consecutive eigenvalues may

be missed, The following devices were used to prevent this,




(a) The step length ). - A, was increased with )\ as
1+ 1 i
lower eigenvalues were more closely grouped. The choice of step

length could be changed by use of a sense switch and further change

was possible by changing a single instruction in the programme,

(b) By means of a sense switch a negative step length could also

be used if it was felt an eigenvalue had been missed,

(c) By means of a sense switch any new trial value of A could be
read in and steps started again from that point. ~ As the number of
eigenvalues and their product are known, it is easy to check where

an isolated pair of eigenvalues may have been omitted.




§4. Calculation of Eigenvectors.

The calculation of the eigenvectors of (8.1) when A is )-nown
approximately (even to 8 decimal places the maximum possible accuracy
with single precision arithmetic on an IBM 1620) can give trouble
with large watrices, unless some care is talcen. Wilkinson [14]
considered the case ) =1 and P symmetric triple diagonal and
showed that the obvious method of solving (n - 1) of the equations
L.P..X. =\ I, q..x, £ and hoping that the other one is satisfied

L AR T g J: &g

(as it would if the exact )\ were used and there were no rounding
errors) could lead to hopelessly inaccurate results even for quite
simple-looking matrices. He showed that even in the absence of
rounding errors, very accurate approximate eigenvalues could give
hopeless results by this method, and stated that in his experience

such inaccuracy occurred with most large matrices. He suggested an

alternative method which is easily modified for more general P and O

The only condition is that the elgenvectors s of €3.1)

must span the space of n-vectors, where P and Q are n X n
matrices. Then, since (3.1) has at wost n eigenvectors, they
form a basis for this space and any n-vector X, can be expressed

uniquely in the form

where the ai are scalars.

This condition is not very restrictive, The condition that P
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and Q be symmetric (not necessarily triple diagonal) and Q positive

definite, as bappens in the case considered, is sufficient. For

as (@ is symmetric and positive definite there is a non-singular

-

symmetric matrix C such that C* = Q Then Pv, =)0 vi can be

written as C-! P c-—l(cxi) = xi(CV,) AR e il o R PO
&

symmetric matrix with eigenvectors Cv, , the Cvi span the space
s ;

of n-vectors. Then for any n-vector X , Cx may be written in

.n
the form Cx = Li . Bi(Cv.) and hence, as C is non-singular,
N b ‘—'l
n

™

any n-vector x can be written in the form x = 7 D Thus

i=1 3i 1
the V., span the space of n-vectors. Q.E.D.

Another sufficient condition for the Yi to span the space is
that the eigenvalues of (2.1) be distinct. Consideration of the
polynomial det(P - XQ) shows that as (2.1) has = distinct
eigenvalues, 0 is non-singular. Hence Q= P has n distinct
eigenvalues and hence its eigenvectors span the space of n-vectors
([15] p. 95) . But thé eigenvectors of O*! P are precisely those
of (3.1) . Q.E.D.

Theorem 3.

Let P and Q be any n X n matrices such that the eigenvectors
of (2.1) span the space of n-vectors. Then for any n-vector X

the sequence {§r} defined by

converges to the eigenvector m (which is arbitrary to within a




scalar multiple) corresponding to whichever eigenvalue (A say)
m

1s closest to XO , provided only that o defined by (3.10)

m

1S non-zero.
Proof.

Since the eigenvectors V. A0/ 0 span the space of n-vectors
(2.10)
Now for all i , (P - XbQ)gi o A QY and hence
g wik Fig = 0P - 2 0)" gy,

Malze the inductive hypothesis that

n A
24, ; (11
X = / V.

i faj=] (A = 2 )F 1
0 1

(P - 20)-tex_

o n Oﬂi
2L|i=1 A2 )T
o i

(P = XOQ)‘lQYi by (3.18)

e v, by (3.12)
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Now (3.13) holds for r =0 , by (3.10), and hence by induction

for all positive integers r . But by hypothesis @, #0 , and

IR I e A1) i Aw,  Thus for all
o m 0 3

positive € , there exists an integer R such that for all i # o

o g a
and r >Q . ‘ 1 <eg - l * Thus as r —> o |

flii=o o )% (hias ¥
. Tl 0 m
—_— 78 y
r m
Note.
(1)  Provided IXO - Kml < IXO - Xi for all i # m , convergence
will be rapid. For example see Table 5 . Similar convergence was
obtained in general,
(2) Even if (as is extremely unlikely) & =0 this does not
matter a great deal in practice, as rounding errors will soon
introduce a component of x along v . The only disadvantage
in this case is that a few more iterations will be required than with

a more fortunate choice of X -

Practical Procedure.

Start with any ng (note that X, need not be calculated) and

solve (3.11) by triangulation where X\ is ar approximate eigenvalue,
0

For the calculation of each X the triangulated form of P - XOQ

will be the same, so that for subsequent ¥~ all that is required

-

are the row operations on x (the same each time) and matrix
“r—1
multiplication ., S Since repeated iterations are easy, careful

choice of X, 1s of secondary importance, In our calculations

Qx, was always taken as the vector whose elements are all equal,




Before calculating gr+/ it 1s advisable to normalise Eo . s
This enables convergence to show more clearly and avoids the
production of very large numbers.

Although this method eliminates errors due to inaccurate

A, there remains the problem of rounding errors in solving
0 :

The computed values of x may converge (as the
o

~

equation for x i is little different from that for xr) and yet
be in error, As a check on the accuracy of the method the
ratios r. = (2. p..x.)/(8. q..x.) were calculated in the
o J le J / J q1J J
calculations described in Chapter 7 §2, Eigenvalues calculated

from these ratios are shown in Tables 7 and 8 . Irn almost

all cases the ri were so close that A\ lay outside the
0

interval (infj r.,sup, ri) . Hence the method is good for

improving crude estimates of eigenvalues, The calculations used
8 digit floating point arithmetic. An approximate solution
to a matrix equation need not always be a good approximation to a
true solution (and may exist when a true solution does not exist.)
But in general good agreement of the r. suggests that the
vectors are fairly accurate, Indeed small errors in the vectors

can cause large errors in the r. as the proportionate error

b
in the sum of two slightly inaccurate numbers of nearly
equal magnitude can be large.

A further useful refinement was suggested by Wilkinson to

reduce the effect of rounding errors when 0 =1, This may

also be used for more general 0 . After sufficient convergence




bas been obtained define 5 by

5 A - A
ez, , - (P - 2 0)x)

. ey . v . .
where the asterisk ™ indicates the computed value of a quantity

In general the vector 8 , which is due to rounding errors in

-~

*

. ) * 5
computing x from x will be very small, Solve
il § “N=—1

<k 0)y = b

-

3 . . *
Then x" + v will be a more accurate eigenvector than x
J i

’

Since in general y will be very small compared with i

~

n b

rounding errors in solving (8.15) are not important. This

refinement was not used in the present calculations,




§5. The Work of "Mlkinson.

After the writing of this thesis was nearly complete I

learned that the main results of Theorems 1 and 3 of this

Chapter had already been discovered by Willinson ([4]p. 34¢)

although I had used the techniques described in December 1964,

before his book was published. Wilkinson's discussion does not

contain all the detail mentioned here and he makes no mention

of condition (2). He mentions the main case where condition (1)

holds for non-symmetric P on p.236. It is possible that Theorem

2 is also lnown but I have not seen a proof of it anywhere.
Although Wilkinson does not claim his treatise is comprehensive

it gives an excellent account of the main results in the field

with considerable emphasis on error analysis and other practical

criteria, It also contains a good bibliography.




CHAPTER 4

THE STELLAR MODEL.

The techniques described in the preceding chapters will now
be applied to the study of oscillations of stars;

The calculations used a stellar model, constructed by
Van der Borght [16], of a massive star of uniform composition, but
the same techniques could be used for any model,

A very good account of the theory of stellar structure is
given by Schwarzschild [17], This describes both observational
and theoretical knowledge, gives some numerical examples, and
has a good bibliog;aphy. A more mathematical account is giveg by
Chandrasekhar [18], This also has good bibliographical notes,
The system of differential equations used in [16] is derived from
the principles outlined in these books,

In addition to the gas pressure given by

- DR T/U-

PG ’
where p = density, T = temperature, | = molecular weight and
® is the gas constant, it is necessary to consider pressure due
to radiation, (An atom loses momentum when it emits a photon)
Although negligible for small stars, radiation pressure is quite

important for massive stars and is given by




where a is the Stefan-Boltzman constant, (See [17] p. 39.)

Total pressure is given by

P = pg 3 (4.3)

Chandrasekhar ([18] p. 55) shows that the well-known adiabatic
relation between pressure and density may be generalised to the

case p # 0 where it becomes

1d
FE - R

where t is time and

I 8 + _(4-38)2(y-1)
B+12(v-1)(1-8)

B = 26
P

and Yy is the ratio of specific heats which in this model has
the value % » Aas gases will be monatomic at the temperatures
considered. When B =1 , (4.4) assumes the familiar form,
Chandrasekhar gives similar generalisations for adiabatic

relations between temperature and pressure or density,
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The mcdel considered consists of two layers: a core in which
energy is transported entirely by convection and an envelope in
which the energy is transported entirely by radiation, The
core is assumed to contain all the nuclear energy generation,
so that the luminosity equation can be solved independently of
the other three equations of the system, The model is spherically
symmetric and the condition for radiative equilibrium, which holds

throughout the envelope, is

aap . 1 dp

e p dr T';p dr

ard r is the distance from the centre, The traditional
Justification of (4.7) due to K. Schwarzschild is given in [17]p.44,
Throughout the core A = . .

At the temperatures pPrevailing in massive stars, the
contributions to opacity of bound-free and free-free transitions

are small compared with the contribution of electron scattering,

Neglecting these fi=st two small effects, opacity is given by

0:19(1 + X) (see [17]p. 71) vhere X is the proportion by mass

of hydrogen (constant in this case). Opacity is therefore
taken as constant in this model, Explicit veference to M
may then be eliminated from the equations [19] and one set of

solutions covers a whole family of models, Neverthel eas
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Boury [20] has warned that the effects of small changes in opacity
may not be negligible.

In [16] the following variables are used

p = B*us p/M2 t = BuT/M

m(x) T m(r)/Mo X' = /B

where m(r) is the mass contained within a radius 1 Mo is the
mass of the sun and B +the (unknown) radius of the star, This
choice of variables ensures that v and R do not enter into

the differential equations. (But M, 1is merely a convenient
scaling factor to prevent overflow in the floating decimals,)

In a massive star composed of pure hydrogen, e %
effectively, as at the temperatures prevailing, except at the
surface, the gas is completely ionised, In this model _ is
assumed constant. The mass of the star is not specified in this
model but m(1) is taken as 10 , 8o that if the star is pure
hydrogen, the mass is 40 times that of the sun.

From (4.1), (4.2), (4.3), (4.6) and (4.9)

a M%

ey

—
=




52

Van der Borght used the basic equations in the following form.

Throughout the star

from continuity and

Sp Gm
gt x*
from the bydrostatic equation, In the core there are the

further equations

g v 5(4-35)p0n

dx (32-332-243)Rx2

from the energy transport equation and

gt 36mB3(1-3)
dx Rt x2(32-243-332)

where G is the gravitational constant. Only three of the
last four equations are independent and (4.15a) was not used in
the calculations, In the envelope the equations corresponding

to (4.14a) and (4.15a) are

_q_g 6m(1) (1-3)p

dx 4R (1-3)x?

£8 = 26 ((1 -5 )a(1) - (1 -5 )a(x))
dx R tx=




where BR is the value of B at the surface, Again only

three equations are independent and (4.13) was not used in the
envelope, Since it varies more slowly in the envelope than p |
2 proved more satisfactory to use as independent variable in the
envelope whére (4,12a) was used in the equivalent form

G aM2 £38
3R (1-p)

da
dx

The above equations were solved with the boundary conditions

m(0) =

m = m(l) and B = ?H _t x ' '» 7

where ﬁ(l) is a prescribed constant and BR an eigenvalue,
Since P is bounded and continuous, (4.11), (4.12a) and (4.16&)

show that m/x® 1is bounded.
The boundary between the core and the envelope was given by the

smallest radius for which (4.14b) gave a lower value for

| £2| than (4.14a). (See [18] P. 224.) 1In this model

—

X = 01391641 at the boundary. Continuity of m , 3 , % (and
hence by (4.10) of p) across the boundary sufficed to determine

the eigenvalue Bq : In this model Bp = 0:903555 and at the

centre B = 0° 794155,

—

Van der Borght determined the values of m ,-b sy t and B +to
0

5 significant figures at points distance x = 0 1 apart, from




Xx=0 to x =099 and also at x = 0999 , He used series
expansion at the boundaries and a Runge-Kutta integration. As
the detailed results are unpublished, a complete listing of
B B e B oy the model used is given in Table 1, Tt
is these results that were used in the calculations described in
the following chapters,

Most previous work on stellar oscillations and, as far as I
know, all numerical work using variational methods has been
concerned with polytropic models, A good account of such
models is given in [1§] (pp84-182). An important case of a
polytropic model is Eddington's "standard model" ( [18] p, 228).

These models are quite good approximations but do not give a good

picture of the relative importance of convective and radiative

energy transport in different regions of the star, The model used

here is probably more accurate in this respect.




CHAPTER 'S

NON-RADIAL OSCILIATIONS OF STARS

§1. Introductory Remarks and Derivation of the Equations.

The theory of small oscillations occupies a central role in the

theory of stellar stability 2100 If an oscillation of the form

)eict

f({ 1s assumed, linearised theory gives an equation of the
form 02X =Y . Clearly if 02 can be negative the configuration
is unstable and most worlkers have not enquired much further. Most
worlz has been done on the fundamental mode. However, as well as
contributing to a more complete picture of observed variations of
certain stars, higher modes prove useful for investigation of
non-linear [ 22] and non-adiabatic effects which become important if
instability exists. There has also been very little investigation
of non-exponential growth of disturbances.

This thesis investigates the feasibility of using variational
methods, whose application so far has been mainly confined to
the fundamental mode, to determine higher modes, especially when
quick estimates are required.

A very good account of the theory of stellar oscillations is
given by Ledoux and Walraven L2 L0 A This slso has a good
bibliography, only papers directly relevant to the present work will
be cited here. A more recent account of the theory of stellar

stability and the role of small oscillations in this theory is




giver by Ledoux in [24] (pp499-574). This again has a good
bibliography. Other chapters of [24] give good accounts of
other important topics in the theory of stellar structure.

Here we shall be concermed with the linearised theory of
non-radial adiabatic oscillations of a non-viscous, non-rotating
(in fact non—accelerating) gaseous sphere on which the only external
force is its own gravity, and where magnetic fields and relativistic
effects are ignored. These conditions simplify the equations
considerably and have been assumed by most workers, although some
work has been done to estimate the errors introduced by the
simplifications. Some of this is reviewed in [23].

As the differential equations of motion are partial, the
usual method of separation of variables is used in [23].
po o B éo denote the equilibrium values of density p ,
bressure p and gravitational potential 4 , and B 'p |, 'p 5‘4
the Eulerian variation of these quantities resulting from a
Lagrangian displacement 5:y vmel that ' p =0 +8' etc. Although
we do not here assume that oscillations are radial, we shall,
following [ 23], consider only a rather limited class of non-radial

oscillations, namely those described by

10t

~v

6'r(£,t) E?(r)Yz(G,@)e

1 11 10t
30 (x,t) = vo(r)Y,(0,9)e

8 'p(r,t) 6p(r)Y}f(9 @) elot

5 '¢(r,t) 6$(r)¥2(e,m)oi3t
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where r , & , ¢ are spherical polar coordinates of position,

1s time and Xz(e,@) = PE(COS Q)Oim$ satisfies

azYm £ ay®w | ;
: L —— 9 (sing—=% ) + 2(¢ + DY = o
¢ \ g

Sin®g Sing Jd6 oL

The PE are associated Legendre functions,

As stated in [23] (p. 509) , 4L =0 gives purely radial
oscillations which are dealt with in Chapter 6, and 4 = 1
corresponds to a shifting of the centre of gravity. Cases %_2‘2
are thus more interesting.

For adiabatic oscillations (4.4) holds, and when linearised this

gives, since p , p are functions of r only,
0 0

dp r'p

dp
C I S S TR )
dr

dr P
0

Also Poisson's equation for gravitational potential holds for
both the equilibrium and the perturbed states. Subtraction and

linearisation then gives

V26'¢ = 4nG6'p

and hence by (5.1) y

2
2——6¢ +
dr®

E-&é -£i£1125¢ = 4nGSp

2
r dr re

The equation of continuity, which depends only on the conservation
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of mass and is independent of the other assunptions listed above,

becomes when linearised

6'p + V-(poé‘r) ol v (5.6)

There remains the Fuler momentum equation which, when linearised

becomes,by (5.1)

ot 1
o*s'r = V@lé—""&z\?po+'—V6'p
e

~o
0 pO

Using (5.3) and (5.6) kBT can, as shown in [23] , be written

where A is a vector with radial component only and [A| =A
~
) o < = 1 . .
defined by (n.S). Since O'r is the sum of a conservative
~v
function and a purely radial vector function, its transverse

component can be represented by a single scalar function, and (5.8)

& op : :
suggests that &4 5~ Would be a suitable choice of second
0

dependent variable. The independent variables chosen in [ 23

L

which represents the radial component and

8P
P

» —
=




where 6rr . 6€; and 6q$ are the components of Qr 1in the
directions of r , 9 and ¢ respectively increasing.

Assuming ®p and the first two derivatives of 64 are bounded
at r =0 | (5.5) shows that65¢ AT i O T Assuming §; is
bounded at r = 0 , then since A = 0 throughout the core, it
follows from the transverse components of (5.8) that y =0 also
at r =0 . From the continuity of d it 1s shown in [23] that

d 1 2 Ehle 1
E?§$ + é%}6¢ =0 at r=R. Also as the Lagrangian variation in

pressure is zero at the surface,

3P,
6[) = —61‘5';— at

In our model this becomes Op =0 at r =R
Using the fact that 5r , 8p , &p , 3¢ , p, and p  are
functions of r alone and writing
1 dpo

Gm ’
g = —r—z(:——p_.(;a"—' wnen DOfO)

Ledoux and Walraven obtain from the preceding equations the

following fourth order system of linear differential equationss

2
)y + 2] o4
O,ﬂ




to be solved with the boundary conditions

Since ra%f =0 at r=0, it follows from (5.13b) and (5.14a)
that provided ¢® #0, Yy =0 at r =0 . This corresponds to
the physical fact that Brr must be bounded at r = 0 .

If 8¢ is neglected, (5.13) simplifies considerably. Although
this simplification may seem a little drastic it has been made by
most workers, Cowling [ 3] justified the simplification on the
grounds that since the mass is usually strongly concentrated near
the centre of the star, variations in density do not produce great
variations in d in the outer regions, although these regions
have considerable effect on the period. He suggested that
(5-13,14) first be solved with 8} =0 and that the true solution
be obtained by imposing small perturbations on this initial solution.

etc., represent the true solutions of (5.13,14)

corresponding to the nth mode and ?n : 5T etc. the solutions
- n

obtained by putting 6¢ = 0 he showed that to the first order

(02 - =2)u/\ o) lgi ,2 dVv
n o8 A Tt

or using the notation introduced in §3




to the first order.

Van der Borght and Wan [25] have applied this correction to

solutions of (5.13,14) obtained for this model with 54 =0 for

the 9 lowest modes with 4= 2 . In all cases the result differed
by less than 4% from the exact solution of (5.13,14). Each
time the estimated correction was too small and in fact if (5.15b)
indicated a ratio x of error to true value then the empirical
correction x + 3x= gave a final error of less than 0.2% .
This suggests a satisfactory higher order correction may exist,

Cowling noted that the error would decrease as the mode
increased as the right hand side of (5.153) will be smaller when
SE; contains more zeros. In [23] it is noted that as
Wop ~ L(4+1)80 and V254 ~ Bp , the error will decrease as 4
increases. These two effects were noted by Sauvenier-Goffin (26 ]
who obtained numerical solutions for the (unstable) compressible
homogeneous model . She observed that the former effect was
greater than the latter. Cowling's reasoning suggests also that
error should decrease as central condensation increases,

In the case where 8¢ = 0, (5.13,14) are simplified in [23]

by putting




1 /p
3 A — \1{‘:’) X (i_s.l.‘")&)
0
- -1
I/Fl 5 /Fl 16 )
= r = 14 b Eg ety
w )DOPO p PO \
Equation (5.13) then becomes
2 8/11
dv 2 4#+1) Fo* -\ P, ik
et ; o ) W (5.17a)
dr g® I'p P
1°0 0
e (o%aag) Bs o (5.17b)
L - :
dr r Q/P
D 1
*o
The boundary conditions become
v = ( (and w = 0) at ) et SR 4 (S.IPa)
2‘3/1_\
R= P, : ;
e o s (o, 0) as r —>R (5.18p)
W {§ po

Equations (5.17) are equivalent to either of the second order

equations

L Po L e Y e (5.19a)
dr * 2/ (X,(fwl) oﬂr‘a) dr r? 2"/? ,
Po s P, P
z : z
? /I}rz re pd/rl ,
2 | |
P e o on Gasske ¢ |
po(o‘"-i-Ag) dr g* Plpo po




§2. Properties of the Equations.

It is clear from (5.19) that the eigenvalue ¢2 occurs in a
non-linear fashion, Cowling [ 3] solved numerically a system of
equations essentially equivalent to (5.17,18), but using different
variables, for a polytropic model. He obtained two distinct
families of eigenvalues. The oscillations associated with the first
family, which he called P— Or pressure modes, were mainly radial,
In this case 0¢® tended monotonically to + o as the number of
Zeros in gr increased. With the second family, which he called
g—- or gravity modes, and which represented mainly transverse
oscillations, o® +tended monotonically to + 0 as the number of
Zeros in QF increased. Between these two fanilies was a single
eigenvalue whose corresponding ®r had no zeros, This he termed
the f- or fundamental mode. Numerical solutions of (5.17,18)
and also of (5.13,14) with 8¢ # 0 by subsequent workers using
various models have also given these two families of eigenvalues,

A review of some of this is given by Smeyers [27] who gives further
numerical results,

There does not appear to be much theoretical work on equations
of this type. Langer [28] has studied second order eigenvalue

problems of the type

X—an

v'(x) - (Zm_l - Q(x) +o (x))v(x) =

where the an are constants and the elements of the matrices
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functions of x only, with boundary conditions of the

w (A)yv(o) + W (M )x(1)

where the elements of the matrices Y, are ratienal functions in
i

A with poles, if any, only at the a, He derived fronm

4

(5.20) m "associated" equations )y usine transformations of

the type

3r

X-an

1

-— showed under
Pn

and then omitting terms of order

certain conditions (the @ (x) must be sufficiently differentiable,
n

the eigenvalues of each Qr(x) , which are themselves functions

of x .. mast bé distinct, nonvanishing and of constant argument)

that when the associated equations all had families of eigenvalues
tending to o , then (5.20) had an infinite set of eigenvalues

with cluster points at and only at the poles a_ of the coefficient

matrix, A transformation of the type (5.??) with n transiorms

(5.20) with a8, = (0 into an equation similar to (5.17)

(5.17) the Qp do not have the required nroperties.

:
When higher order terms in o® or in ;E are omitted from
o)

(S.IDa) we obtain

-

-
d ( Po iy
dr

L(2+1) o




/ith the given boundary conditions equations (5,23&), (5.28b)
each form a singular Sturc-Liouville system, A Sturm-Liouville
system on a finite interval is an equation of the form

(flx')' + (fa + M Jx = 0 to be solved with certain linear
3

. . . 1 1
homogeneous boundary conditions in x and ¥' at a and b where

f; y fz and f are real and continuous and fl VR
\ 3

on (a,b) ’ If these conditions hold on [a,b] the system is termed

regular. A regular system has an infinite sequence Xo = Xl i

. g 1
of eigenvalues, all real and distinct, S —
1 =O >\,1

is convergent and

the eigenfunction associated with )\ has exactly n zeros in (a,b).
n

%)

There is an extensive literature on such systems, (See e.g. Ince [2V
Tricomi [30] or [7].)

Cowling [ 3] , without proof, gave the Sturm-Liouville form of
(5.28) as the explanation of the two families of eigenvalues.
Since the derivation of (5.23) from (5.19a) is similar to the
derivation of Langer's "associated" equations from (5.20), this seems
very plausible, And the properties of both sets of elgenfunctions
of (5.17,18), which have been obtained numerically, are similar to
those of Sturm-Liouville systems,

The position is complicated in this case by the singularities
in (5.23) and in (5.17). The coefficients in (5.23) become
zero or unbounded at the boundaries. The question of singularities

in Sturm-Liouville systems arises again in simpler context in
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Chapter 6. Much of the more detailed discussion given there is
also relevant to (5.23). Unfortunately most papers do not state
clearly what numerical methods were used and in particular how
the singularities at the boundaries were treated, Van der Borght
and Wan [ 25] used truncated series expansions at the boundaries
and Runge-Kutta integration.

Another complication when our model is used is that throughout
the core, which contains more than half the mass of the star,

A =0, so that one term in each of the equations is zero throughout

this region. For this reason, an equation comparable to (5.23a)

cannot be derived from (5.19b). An equation with parameter o

as with (5.23b) can be obtained by neglecting Ag in comparison,
but the approximation Ag + ¢® ~ Ag for small o2 | required to
obtain the second system, is clearly not satisfactory, Also
this would give the identically zero quantity Ag in the denominator,
In Cowling's model, A is uniformly bounded above by a negative
quantity throughout the model so that the assumption g% < < lAg’
Seems more reasonable.

When A =0, (5.19b) gives

re g:) = (&(&+1) _

2 2
o r
- (5.24)

With appropriate boundary conditions this would form a Sturm-Liouville
system with a single family of eigenvalues tending to + o | This

does not happen with our model as A < 0 inp the envelope and we




do not have boundary conditions of the required type at the
boundaries of the core. However with the convective model the
system is of the Sturm-Liouville type so that in the case
8¢ = 0 there are no g-modes for that model.

Van der Borght and Wan [25] have solved the equations for

the model used here, both with and without the simplification

5 = 0 » and have found both p- and g~ modes in both cases.

Their results are discussed in Chapter?7 .




§8. Variational Formulation.

A variational formulation of the equations governing non-radial

oscillations of the stars has been given by Chandrasekhar [ 31],

Instead of using y as dependent variable, he used X' =.23’ given by

dr

¢ X'(r) an(Q,(D)
LA+1)r O 6

6, (5.252)

From (5.1) and (5.8) it follows that

xl(r) an(Q ;:p)
L @ +1)rsin® d

XI i %(%-4-;_) (y 3 64)
a

Chandrasekhar used the same basic assumptions and equations

in [23]. By showing that
™8 +p (W' =x')+ply = o0
0 0

and using the fact that 5'¢ satisfies Poisson's equation and
hence must be given by Poisson's integral formula, and using the
expansion of |r - r!|=1 jp spherical bharmonics, he showed

that a solution of the system must extremise 0% given by

02(I§;,§;) = (BBr,%r) + (C




Vi Vg X;Xé
+ ) dr
re £ (L+1)
R dp0 Vi ' .)(dpo Vg
2) =f0 (P1PO(TFP +W1 _Xl —H;I"p

250 1

p dr
+ A..__q o)r—

(c le,an) e b[Emlﬁctadv &= J[; 6p86¢1dv

. | Ll
4ﬁ/&r%gf (og3,)"(a) = o xS ([ (og,)(s)
0 r . S r

higuo ey da . (5.29¢)
oS JL+l

and y. , X£ , 8o, ,84. correspond to an eigenfunction or,
i i i

Hence if o&r | or are eigenfunctions corresponding to distinct
3

1

eigenvalues

(I or_ ,dr )

yintg

dp
This formulation requires P, and -5—2 to vanish at r
r

dp

uses poy 5 —-5;2 '%ﬁ instead of y = qs boundary condition,

Chandrasekhar wrote the expression (B ; r) differently but the

~

above form is used as 1t makes clearer the positive nature of B,
dp
(In our model A< 0 and 5;235 0 throughout.)

Putting 6¢= 0 gives rise to the variational problem of

extremising ¢2 given instead by




o®(I gr,ar) = (B ar,ar)

The Euler-Lagrange equations obtained from (6.31) by

. . . : . 1
considering variations in X' and Yy are

dp

(dro v o+ Flpo(w' e (5.32a)

A

noFl , ')
= (v' - x
P, T

T TR TR )
1%

(5.239h)

dp
1 D
3(“53 v+ T,p,(¥' - x')) from (5.32a) in

Substituting for
PoT

(5.32b) and equating the expression so obtained for .gﬁ with that
Ly

1
o : : dX . 3 :
from (5.32a) glves an expression for TR linear combination
T

of y and %' . The equations may be written in standard matrix form

/ 1 dp, Ozzp0 i s
| = s . v
| Tip, dr I p L(2+1) 1!
|
|
|

o

|
|

|
|

: dp
L(L+1 : \
( ) (1_ A 0} x \X’/
REF

(5.23)
\\

re O 08 dr /
)

Denote the equations represented by the first and second elements

of these vectors by (5.383) and (5.88b) respectively. In this

second order system, 02 occurs in a non-linear manner. Equation

(5.26) shows (5.33) to be equivalent to (5.17), Thus the apparently

linear occurrence of g2 ip £3.81) is deceptive.
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The corresponding equations for (5.28) are more complicated,
Using (5.1), (5.3), (5.6), (5.8), (5.25) and (5.27) it can be shown

that
2 d
g A 1 Po , : 7
a0 e GV e (v - X)) (5.342)

and
d Ap T

o= d 1 po ' 1 p01 ‘ 1
— Y T e (D - AT i e i =
Z s 2 (54 Tl Tp (v’ - x'))) T O
(5.

0 0

These must be considered with Poisson's equation

dp '
d =) d 0 ] ! o
ki (r d—rﬁcb) - 4L + 1)54) +41TG(-5-I-‘— vV o+ po(\ll -X')) = o

Simplifying as hefore we may write these equations as

X = Mx

~o

x" = (W:X',Gé,re%&b) and

\\ —4nGp0A

;3
\

i -

This is equivalent to (5.13).
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Chandrasekhar and Lebovitz [2] have used (5.28) to obtain
the fundamental mode in the case 4 = 2 and also in the radial
case (1 = 0) for certain polytropic models, Neverthless, as
far as I know, the calculations in this thesis represent the first
use of variational methods to obtain higher modes and their first
use with a model of the type considered here, It is also the
first use in this field of the techniques described in Chapter 2
which make possible accurate calculation of higher modes with
quite limited computing facilities.

In[2], I' 1is regarded as constant. This is a good

approximation when 3 is near 1 or 0 (so that Fz 18

near y or % e, But, except when B is exactly 1 or 0,

I'y 1is constant only in the standard model (a polytrope with
index 3).

Guided by the fact that for the homogeneous model [26] the

. ) P :
eigenfunctions are of the form x£ g bR x#t
1:

gondltion L03] that divor = 0(r%) as r—> 0

and the

Chandrasckhar

)

and Lebovitz chose as trial functions

arttl 4 ppits % At3 (5.:

. ar® 4 or

\!r =

(Note that they chose a form for X whereas in the calculations

’

in this thesis a form was chosen instead for X' as X never

occurs explicitly in the equations, ) In the radial case they chose
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This had been anticipated in % They give the form of the
characteristic equation and list the fundamental eigenvalues
for polytropes with indices 1 TP G T AR 3% with
(constant) Fl = 1eBB . 016 dep5 |, 2 Also for each index
they give the (constant) value of Pl which first produces
accidental degeneracy between the fundamental modes of radial
oscillations and non-radial oscillations with 4 =

They also give an alternative variational formulation of

the problem which does not assume that e vanishes at r =R
0

or that it is continuous, This is

% d
ol /( l“o(w'-x')%-z—*’-fﬂ(—g‘”--x'))dr

%\&+1) r® dr r

+ S?,Elpror’u—?i +X')(_/ Ei)iﬂl((& 4 1)‘(—)' - X'(s))ds )dr
O r

Lebovitz [ 32] has used (5.28) +to give a more rigorous
proof of Schwarzschild's stability criterion (4.7), for displacements
of the type described by (5.1); Under certain conditions he
showed that (B + ) is positive whenever A < 0 throughout the
star and hence, since T is positive, that exponential instability
could not occur for oscillations of this typel He noted that,
without a completeness theorem for allowable displacements,
stability still does not follow, but at least this approach considers
the reaction of the star as a whole;

The variational approach may be modified to consider more general
situations; Clement [ 33] has modified (5.28) to consider the effect

of small rotations. His approach is similar to that of [31].




§4. Failure to Detect g-Modes.

Consider what happens when values of o2 given by (5.28) or
(5.31) are extremised by the Ritz method. Results obtained for
such a calculation with (5.31) are discussed in detail in Chapter 7,
The most notable fact is that while the method gave approximations
to the f-mode and the first 25 p-modes, it gave no indication of
the existence of g-modes. The remaining 26 eigenvalues of
the characteristic equation were spurious,

I have not been able to find references in the literature to
variational formulation of systems of differential equations where

the eigenvalue occurs in a non-linear manner. Many standard

theorems apply only to p.b.b. operators (see Chapter 2 ). In this

case although B (and in fact B + C) are positive, they are not

p.b,h, F v , X' could be given by

0 , throughout the envelope

Y (5.29)
I‘1 ' 1
(WPO I | + %' ¢l o throughout the core

This gives 0% defined by 15,31 ) its winimmm value of zero.
These values of y , X' satisfy (5.332) and ¢ and X' may be
made continuously differentiable while satisfying (5.39). But
. ¥
o

as 1s not defined in this case it does not appear that

(5.33b) can be satisfied. Nevertheless it might be expected that

one of the spurious solutions obtaimed by the Ritz method would




correspond to (5.39),since it gives the true minimum of o2 .
To show this is not the case, the eigenvector corresponding to

the smallest eigenvalue (which is spurious) is listed in Table 8 .

This could perhaps be expected as (5.27) shows that, since A =0

throughout the core, (5.39) implies that 5o = 0 throughout
the star and so represents a highly degenerate "oscillation",

If in a problem Liu = Mgu , the operator L, is p.b.b.,
then provided La is bounded below, say (Llu,u)_2>k(u,u) for all
u, then even if Lh is not p.b,b., the problem is equivalent to
Liu=ALu , where Liu=Lu+ecLu, A=+ and c¢ > |k| ,
so that fa and ﬁ; are both p.b.,b, But in this case even I

is not p.b.b., as ¥ and X' may be zero except in an arbitrarily

smell region near r =R y Wwhere f, e (- ),

However it seems possible that this is not the only reason why the
Ritz method breaks down. The fact that as 02 —> , ¥V and X'

do not tend to the values given by (5.39), which anyway do not satisfy
(5.33b), the fact that (BQ?,Q?) could be regarded as a functional of

the functions (P;W + Pipo(w'- x')) and v , and the fact that the

Eul er-Lagrange equations contain a non-linear parameter are also
probably relevant,

From the requirement that (5.28) and (5.31) must extremise o2
with respect to variations in the relative magnitudes of V and
X', Chandrasekhar [31] deduced that o® must be a root of a
certain quadratic equation, whose coefficients are definite integrals
involving ¢ and X' . The validity of this argument is queried

in [2]. 1In any case, the physical significance of the second
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root of the quadratic is less clear. Chandrasekhar suggested
that the two roots might correspond to a p-mode and a g-mode.
Although the form of the g-modes is different from that of the
p-todes the integrals might be equal, In the case 6¢ =0 ,

Van der Borght and Wan [25 ] substituted eigenfunctions ¥V and X'
into this equation. In the case of both the p-modes and the
g-modes, one of the values so obtained for @ was very nearly
equal to the correct eigenvalue corresponding to the given
eigenfunction, while the other value appeared to be completely
spuriens, (Cf [23] p. 522.)  In the case of the p-modes the

two roots of the determinant differed by only a few percent,
However the fact that this equation is satisfied by g-modes as
well as p-modes, and the fact that the Euler-Lagrange equations
corresponding to (5.28) and (5.31) are essentially the same as
(5.13) and (5.17) respectively, seem to some extent to vindicate
the variational formulation, although the Euler-Lagrange equations
are merely necessary and not sufficient conditions for the
existence of an extremun,

The result [5] for a p.b.b. operator L that the nth

s

eigenvalue of I is the minimum value of (Lu,u)/(u,u) where u

1S a non-zero function such that if TP (u,ui) =0 ,

e Ry venishitas ) , Where the u. are the first n - 1 eigenvalues
1

of L, is important in the formulation of the Ritz method.

(See Chapter 1 §1) |, Clearly this result does not hold in the

present case with two families of eigenvalues, Thus it is not




77

altogether surprising that the Ritz method does not yield both
families of eigenvalues, In fact I do not know of any standard
theory that says it should yield even the p-modes. The
fundamental mode does not give the minimum of o2 , defined by
either (5.31) or (5.28), nor does the nth p-mode yield a
minimum of 02 when ¥ and X' are subject to the appropriate
linear restraints. The position seems even less promising with
the g-modes where o2 decreases as n increases, It would
seem there is scope for investigating the validity of the Ritz
method in such cases not covered by the standard theory.

Since: as shown in Chapter 2, our choice of coordinate functions
satisfies all the requirements for validity of the Ritz method, but,
as shown in this section, the differential equations do not
satisfy the usual requirements for the use of variational techniques,
it would seem reasonable to conjecture that with any choice of
coordinate functions the Ritz method would fail to detect the
g-modes, A transformation of the differential equations might
be more successful, Since B + C seems to have properties
similar to those of B , it seems likely that the Ritz method
would not detect the g-modes when applied to (5.28).

This discussion pPoSes more questions than it answers, In
what circumstances do eigenvalue problems have more than one

cluster point of eigenvalues? In what circumstances may they

be posed as variational problems of the form X(Lau,u) = (Llu,u)?

Which families of eigenvalues, if any, will be obtained by




the Ritz method? Will more subtle direct methods yield

additional eigenvalues? However it is hoped that at least

the preceding discussion will provide some pointers for

further investigation.
More details of calculations are given in Chapter 7 . But
first it would seem useful to discuss the important special case

of purely radial oscillations.
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PURELY RADIAL OSCILLATIONS

§1. The Differential Equations,

The mathematical description of purely radial oscillations
is much simpler than that of non-radial oscillations, and for this

simpler type of oscillation much work has been done on the effect
of relaxing the restrictions imposed in Chapter 5. Many of the
conclusions of this work should apply also to non-radial oscillations.
Much of this worl is reviewed in [23] which also derives (p. 455)
the well-known equation for purely radial oscillations under the
same restrictions as in Chapter 5. This equation is linearised
and describes adiabatic oscillationsof a non-viscous, non-rotating
gaseous sphere on which the only external force is its own gravity,
and magnetic fields and relativistic effects are ignored,
The oscillations considered are described by

BLr(£,t) zg(r)elot

i0t

5'p(r,t) 8o (r)e

10t
5'p(r,t) 5p(r)e

where as before

8'¢(£,t)

B 8% 8

6¢(r)010t

are the Eulerian variations in




density p , vpressure p and gravitational potential ¢
caused by a (radial) Lagrangian displacement q}'. Using

the same four basic equations as in Chapter 5 (energy,

Poisson, continuity and momentum) and linearising gives

where the operator 1L is defined by

d d d

I e S S - T R
dr (r r1podr b dr(( 1 )po)

The simplification 6¢ = 0 wmade in the non-radial case is

made here, Boundary conditions are

vé

b ke g
op = -~ Plpo(Bg + r-a;) = 0 at. r = R

dé
Since P 0 r =R it is sufficient that ¢ and o

be bounded,

In all realistic models, including the one considered here,

i A0 T

1P, @nd p r* are positive for 0< r < R and non-negative
0

throughout the star, Since Yy = 3 in this case, (4.5)

shows that (SFl -4) = (4 - 33X3/(8 el - 7 S From (4.10) and

the method used for determining the boundary between the core and

the envelope it follows that %% nowhere exceeds the value given
dpo

by (4.15a). Hence, since 0<PB <1 and since g 18 negative
R r




for r <R and non-positive throughout the star, it follows

from (4;9) (4.13)and (4.15a) that g;((STI - 4)p ) 18 negative
O a

for r <R and non-positive throughout the star. Hence the
dr dp
operator L is positive. Since also —2 O and p are
0

dr ' @¥
continuous in our model, (6.2,4) differs from the standard
Sturm-Liouville problem only by the existence of singularities

at the boundaries,

These show more clearly when (6.2) is written as

Po Gmy d
—=) =
P, T dr

I -4 Gmp
X 0 )é

re

0

dr
Since -93 TN ey T T are bounded and, in our model ,
5 r dr PI
0

i g (2 g e -1 W »
po (R 1) as r >1

simple poles at r = 0 and rose B These are regular singularities

, the only singularities are

((29] p. 160). Much of the standard theory of Sturm-Liouville

systems applies only when there are no singularities but, as

stated in [23] p. 461 , "if as is the case here the singularities

are regular, and the boundary conditions are automatically

satisfied by tle regular part of the solution, the spectrum in

general remains purely discrete and the eigenvalues and eigenfunctions
have the same properties as in the case of the Sturm-Liouville
problem."  This remark is supported by the numerical solutions.

The singularity at r =R depends on the model used,
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If the boundary condition ¥(1) = 0 from (4.16b) were replaced

[34] by T(1) = T, >0 say, then (4.10), (4.11) show that

the singulgrities At 'r'=R in (6.5) and also in (5.13),

(5.17), (5.19) , (5.23) and (5.24) would be eliminated, Since

in practice the boundary of a star will not be clearly defined

it would seem that only an incomplete physical picture could be
obtained from a perfect mathematical analysis of the effect of the
singularity at r =R and that perhaps the results of the common
method (used in [25]), of using, without rigorous Justification,

a truncated series at this boundary and starting numerical

integration a slight distance in, may be just as reliable.




§2. Variational Formulation.

Equation (6.2) is the Euler-Lagrange equation (necessary condition

for an extremum of o02) of the variational problem

R
fongdr

R
J7 0 r* t23p
0 o
Also for n > 0

R
fo §nL € dr

= npax

(o]
n L P
(3) o B

) ming R
1 n [ p r* £24r
00 n

is subject to the n auxilliary conditions fﬁ P §i§n il 4

+++»B = 1 . Boundary conditions (&,6' bounded, DO(R) = 0)

R R s
f EL gdr = f (b vo( ) - 2384 ((ar - 4)p ))ar
0 0 o ' ar .

dr R e en)

™n [23], (6.6) is also derived directly from Hamilton's principle.
Equation (6.6a) shows that (6.6) is of the form of (2.6) so

that the method of Chapter 2 §$2 may be used and hence higher modes

determined quite efficiently, This also applies to a variational

formulation by Chandrasekhar [35] of the problem of radial oscillations

in the context of general relativity. Tooper [36] has used

Chandrasekhar's foyrmulation [35] to determine the fundamental mode

for certain very massive stars as part of a study of stability.

MRS 0 in (5.28), Chandrasekhar [31] showed the case

£ =0 to reduce to




d
gdr dllf po 2 \dr
Pot f (e, ()" +2 2 @)%

Putting € = V/r® | expanding and integrating by parts using

[P1p0r3 §e]§ = 0 and expanding -g;(r1p0r3) reduce this to

(6.6) which is thus seen to be a special case of (5.28),

As both integrals in (6.6) are positive (as noted in §1),
all values of 0 are real. This rules out exponential instability
for small oscillations of the type considered here but does not
ensure stability,

The operators I and por4 . are not p.b.b (see Chapter 2) as
we could make £ =0 except in arbitrarily small neighbourhoods of
r=0 and r =R . However this will make both integrals small.
The minimum eigenvalue is strictly positive and the Ritz method is
applicable, Considerable discussion on (6.6) is given in [ 23]
including alternative forms and physical interpretation.

The Ritz method has been applied to (6.6) by Ledoux and
Pekeris [ 1] in the case of the "standard model”. The paper
begins with a physical discussion on the.variational principle,
its use to obtain qualitative results (e.g. O, 1increases with
central condensation) and analytical expressions for upper bounds,

Since § is clearly an even function of r , Ledoux and

Pekeris assumed (cf. (5.37)) that

n :
2i
& - ai r
i

1=0
The matrices obtained when
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the usual procedures are carried out with this form of £ have
certain symmetry properties and for large n contain a considerable
number of zeros, but far less than those obtained in Chapter 2 $2.
Furthermore the matrices obtained in this case cannot be dealt
with by special simple methods such as those described in Chapter 3.
Thus, for comparable computer time and storage, n , the number
of parameters , must be kept much lower with this method than with
that of Chapter 2. The method is therefore less well suited to
the determination of higher modes which requires very large n for
accuracy. However even with n = 2 they obtained very good
convergence for the fundamental mode and conjectured that their
result was probably more accurate than some obtained by numerical
integration. Higher n were not considered in [1] and
consequently no accurate estimates were obtained for higher modes.

As far as I know, the calculations in this thesis represent
the first use of variational methods to obtain higher wmodes
of oscillation. They also represent the first use of variational
methods for the present model.

Another treatment of radial oscillations which reduces to the
solution of matrix equations is described by Whitney and Ledoux [10].
Further results are given in [37]. Following Zhevakin [38] they

regarded the mass of the star as concentrated in n spherical

surfaces of radius r. , where Bl RS s . The

matrix equation can be dealt with by the method of Chapter 3 §1

although the matrices are not symmetric. The authors state that
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the problem can be approached in the same manner as an application
of Rayleigh's principle. Zhevakin's method has also been used
[39] for non-radial, non-adiabatic oscillations.

Since the publication of [1] the limitations of direct integration
have been greatly reduced by the improvement of high-speed computing
facilities. For the model used here, and for several others,

Van der Borght [40] has obtained values for the first 13 modes

using a fourth order Runge-Kutta integration with 50 steps, starting
with series expansion at the centre. This method required an
initial guess of ¢ for each integration and although this was
done systematically the method is much slower than the variational
method. Van der Borght [41] later calculated a further 7
eigenvalues and eigenfurctions and recalculated some of the lower

ones, using the same Runge-Kutta method with 500 steps. The

values m , p, t , 3 at the extra points required were obtained by

linear interpolation. The results of these later calculations
sometimes differed from those of [40] in the fourth significant
decimal, This error may be largely due to the linear interpolation
which is unsatisfactory near the surface. The eigenvalues obtained
for this thesis are compared with Van der Borght's in Table 2. The
values for the fundamental agree to 6 significant decimals.

This suggests that the results obtained for that mode by the methods
described in this thesis are correct to at least 6 places. It

is doubtful that the Runge-Kutta method is more accurate than

this as rounding errors limit its accuracy.




CHAPTER 7

THE NUMERICAL CALCUIATIONS

§1. The Radial Case,

Using the notation of the last three chapters, and

defining )\ and the dimensionless w by

8 = Mgm(1)G B
RS ua

G m(1) we
R

we can write (6;6) as

f; (I}§x46g§ )8 - x3~g§((3fl - 4)p)eR)dx
1

fo x* tRdx

((7.2)

A = min§

This is of the form of (2.6). The methods of Chapters 2 and
3 were used to find eigenvalues )\ (and hence w) and

eigenfunctions £, Ag in Chapter 2 §2, the interval (0,1) was
divided into n equal subintervals and a form of £ was

considered which was linear in each subinterval, Since ¢ and

§| (_ dé) gl 4y
il - were assumed finite at r= 0 and at r =R the

boundary conditions (6.4) were satisfied automatically,
Differentiation with respect to the values of £ at the ends

of the subintervals, to extremise )\ , gave, as in Chapter 2,

an equation Px = M)x where P and Q are (n + 1) x (n+1)
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matrices whose elements are given by (2.14) where the fi are
obtained from (7.2). The matrices are triple diagonal,

Three calculations were made using n = 10, 25 and 50 respectively.
For a given n only n + 1 eigenvalues can be found., Eigenvalues
obtained with these three values of n are compared with those
obtained by Van der Borght in Table 2.

The elements of P and s Which are all integrals, were
calculated from the values of m yiP 4 By (B Yisted in Table : 30
using Simpson's rule with three points, The values of -gg ; f%?
were calculated from (4.13) and (4.15). The elements in the

last row and column of P and Q involve an integral over the

interval (1 - é, 1) . Instead of the values of W

B at x =1, their values at x = 0999 were used in the

evaluation of the integrals, The integrands, although some are

not defined at x = 1 » @all have limit zero at that point and

the values at x = 00999 are very small, As Simpson's rule

is only approximate it is not even certain that this approximation

will increase the error. Also the matrices are not ill-conditioned

and a very small change in their elements should make only a

small change in eigenvalues. As Van der Borght also used values

of m ; E', %’, B at x =0:999 instead of at x = 1 , comparisons would

seem more valid when this is done with the variational method also,
In order to avoid overflow in the floating decimals, a hazard

with large matrices, the equation Px =AQx was transformed to

(104P)X== A(10-7Q)x where A = 101\ g0 that the elements were
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of the order of 1 ., Even so, overflow can again become a
problem for larger )\ , but this can be overcome by rescaling.
Thus if values of m s P, t , 3 were known at all points of the
star, very large n could be used as the storage of the computer
will not impose severe limits,

There will be errors in the numerical processes but, as suggested
in Chapter 3, they will be small compared with those arising in
some methods, Consideration of the form of the eigenfunctions
obtained in the calculations described here, and of the rapid decrease
in accuracy as the mode increases, suggests that in this case,
except perhaps with the fundamental, the value of n , and not
rounding errors, was the main factor limiting accuracy.

The eigenfunctions obtained by Van der Borght [41] and other
workers show two important characteristics. (1) The zeros of ¢
are not evenly distributed but become much denser near x =1 ,

(2) The magnitude of € is much greater very near x = 1 than
in the rest of the star. These two effects increase as the mode
increases, There is some difficulty approximating a function

whose derivative changes so rapidly by one of piecewise constant

derivative, With the coordinate functions used here separations

of less than t between zeros cannot be made clearly. Thus it is

not surprising that zeros of the approximate eigenfunctions
obtained by this method are slightly further from x =1 +than
those of the true eigenfunctions. Nevertheless all the approximate

eigenfunctions obtained by variational methods for radial




oscillations had the correct number of Zeros.

As the approximate eigenfunctions have piecewise constant derivative,
the exact positions of their zeros may be determined by linear
interpolation from the eigenvectors of the matrix equation. In order

to move the last zero as close as possible to x =1 +the value of ¢

at x =1 must becoma very small, This makes it difficult for the
approximate eigenfunction to satisfy the second property of the true

eigenfunctions (i,e, € largest at x = 1), The first property, the

position of the zeros, turned out to be much better satisfied than the

second. Even for quite high modes, the nodes and antinodes are very

little displaced from their correct position. But the ratio gR/EO ;
of the value of ¢ at the surface to its value at the centre, although

it increaseg for the first ten modes obtained here, levels off and
ultimately decreases almost exponentially reaching a value 016 for the
23rd mode. A third property of the true eigenfunctions is rather better
satisfied by the approximate functions, but this property does not require
rapid change of derivative. This is that, although §0 is much less

than §R » for higher modes it is still appreciably greater than the

value of ¢ at the intermediate maxima.,

3
In Table 3 the positions of the first two zeros and the value of R/Qo

for the first 20 eigenfunctions obtained by the variational method are

compared with those of Van der Borght , The agreement of the shape of

the eigenfunctions is rather better than indicated by these figures as

the discrepancy in gR/go 1s mainly due to a very sharp increase
in € at the surface in Van der Borght's results. Until

very near the surface the aupitudes agree quite well,
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Also the displacement of the zeros is greater for the second than
for the latest ones. A complete listing of the first 20
eigenvectors of the matrix equation with n = 50 is given in

Table 4 , (These give the values of the approximate eigenfunctions

obtained by variational methods at the 51 points 1/50 PR SR | SR 1

Unfortunately Van der Borght did not list his eigenfunctions in
[40] but eigenfunctions for similar calculations are available in
the literature.Schwarzschild [4°9] lists the first 5 eigenfunctions
he obtained for the standard model and Boury and Hustin-Breton [43]
show graphically the 1st, 5th, 9th and 13th eigenfunctions. The
first 6 eigenfunctions of a model similar to the present one are
shown in [22] where they are used as a basis for a non-linear
theory.

Ledoux has studied the asymptotic behaviour of both eigenvalues

[44] and eigenfunctions [45] considering dominant terms of the
equation near both singularities. Van der Borght [40] modified
Ledoux's result for the eigenvalues and his asymptotic values are
given in Table 2. His asymptotic eigenvalues seem to be slightly
too small, Both Van der Borght and Ledoux fitted the solutions
obtained near the two singularities in a rather arbitrary manner and
it would seem that with greater refinement even better results could
be obtained by asymptotic methods.

Because of the difficulty caused by the uneven clustering of
the nodes of the true eigenfunctions it might seem that when using

coordinate functions with piecewise constant derivative it is

o)




better to choose a partition (see Chapter 2) whose points are
closer together near x = 1 rather than one where they are evenly
spaced, This is probably so but experimants with this modification
were inconclusive,

In this case the main factor limiting n and hence limiting
accuracy was lack of information on the distribution of m !

5','¥ and f, Their values were available only at intervals of

0«01 . As many parts of the integrands which occur in (2.14)

vanish at the end-points of the intervals, it was felt that at
least three points were needed to evaluate the integrals by
Simpson's rule, so that n could not easily be taken as
greater than 50 .

With n =25 |, in order to check the error caused by inaccurate
eyaluation of the integrals, eigenvalues were calculated using

integrals computed using five points for Simpson's rule as

well as those using only three. The difference obtained by this
refinement was generally a fraction of 14 . The first four
eigenvalues were obtained more accurately with the five points
than with three, but this was not the case for the higher
eigenvalues. However the negative result for higher eigenvalues
is probably not significant as with higher eigenvalues there is a
relatively large error due to the restricted.form assumed for ¢
and there may be Some cancellation of errors. With both

methods of evaluating the integrals eigenvalues obtained with

n =25 were all less accurate than the corresponding ones with n = 50,
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Simpson's rule is probably quite accurate for evaluating these
integrals as each term in the integrands of (2.14) is a quadratic

in the distance from the end of the interval of integration

(of length t) multiplied by a function f, which, except near

X =0 and x =1, is fairly constant over that interval,

An attempt was made to increase n by using extra values
of (G ipr T B ohtadned by linear interpolation, but this
was not very successful, Accuracy could be increased by obtaining
more detailed solutions to the equations of Chapter 4, but results
would no longer be comparable with those of Van der Borght,

With n =50, 38 eigenvalues were calculated. The value
obtained for the 38th was g3s8," A1l 98 eigenvalues were
calculated with n = 925 » and all 11 with n =10 . The results
are summarised in Table 2, Eigenvectors were calculated only
in the case n = 50 » using the method of Chapter 3 §4 . The
fourth approximation ‘was taken and the rapidity of convergence
of the method is shown by Table 5.

One of the main advantages of the variational method is its
speed, With n = 50 | using a Fortran programme, an IBM 1620
calculated 38 eigenvalues in less than two hours. For the
fundamental the method is probably as accurate as numerical
integration, and for the lower overtones the accuracy is fair,.

For the high~r modes quite good estimates may be made by
asymptotic methods. If a rapid estimate is required (e.g. as an

initial guess for integration or as a check) variational methods
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can be used for the first few modes and an asymptotic expression
for the others. Also the analysis required for variational

and asymptotic methods may give information ahbout the nature

of the equations not given by routine numerical integration,




§ 2. The Non-radial Case,

Writing X' =r®q and using the same notation as for (7.2)

we may write (5.31) as

1 2 ! e 2 ]
fait 4% ot te'+ 1 (g') + £ P28 gn +2¢

€1 :
fo (7.3)

where

fl(X)
fg(x)

f4(X)

£ (x) 3 to(x) = f2(x)
i : i &(£+1)

This is of the form of (2.15) and the methods of Chapters 2 and 3
were used to find eigenvalues A (and hence ©w ) and eigenfunctions
€ , n. Again the boundary conditions are automatically

satisfied as €& , n and their first derivatives are assumed
bounded. This time only one partition was considered® that

with (n =) 25 equal intervals. Partial differentiation with
respect to the values of £ and N at the points of the partition

leads to a matrix equation of the form




viaere the Di are 26 X 26 triple diagonal matrices. The

elements of the matrices are given by (2.21). The eigenvalues of

(7.5) were evaluated by the method of Chapter 3 §3 and the method

of §4 of that chapter was used to evaluate the eigenvectors,

All 52 eigenvilues and eigenvectors were calculated for the case
corresponding to 4 = 2 ., The matrix elements, which are again
integrals, were calculated by Simpson's rule, using five points,

from the values of w , p 5% s B in Table 1 . Again the values of

m——

m s Pyt » B at x = 0999 were used instead of values at x = 1 ’
which again sheuld have very little effect,. Again the matrices
were scaled to avoid overflow in the floating decimals.

Similarity of several of the fi simplifies calculations.
As the ratio f,,/f8 is constant for a given spherical barmonic,
the ratio of the elements of D, to the corresponding elements of
D, also equals this constant, Thus Dg need not be calculated
separately. The prograsme was written so that, in order to find
eigenvalues ani cigenfunctions corresponding to a differept spherical
barmonic, only a single instruction (of the form L= ...) needed
to be changed. As the wain purpose of this project was to study

methods and not to obtain numerical results, little use was made of this,

but the fundamental was calculated in the case 4 = 3 , as described

later,




Even when 8¢ is neglected the problem of non-radial
oscillations is more difficult than the special case of radial
oscillations and it is perhaps not surprising that variational
methods were also less successful in the former case. Although
variational methods were still much faster than direct integration
they were slower than in the radial case where the eigenvalues can
be found by the very efficient method of Chapter 3 §1 .

Despite the fact that 52 parameters were used in this case
(which made the equations more difficult) it seems to be the fact
that the partition divides the intervalvinto only 25 sections that
is significant for determining accuracy. Accuracy is more comparable
with that of the radial case with n =25 than with n = 50 .

As before, the zeros of the true eigenfunctions are denser
near x =1 , and the magnitudes of the eigenfunctions increase
rapidly near x =1, (See [27].) With the p-modes, the
uneven distribution of zeros is especially important with n
(representing transverse displacement) for, as noted by Cowling
[3], the first zero of N 1is further from x = 0 than the first

zero of £ ., As with the radial case, the zeros of the approximate

eigenfunctions obtained in this study are displaced slightly

towards x = ( (first effect). Again, while the computed values

\ € M
of the ratios R/go ’ R/n » of the values of ¢ , n at
: o

X =1 to their values at x = 0 » 1initially increase with the
mode, they fall off rapidly for the higher modes (second effect).

Perhaps because a smaller n was used, the behaviour of these ratios

is less regular than in the radial case. Again the first




effect is less marked than the second effect. (In the true

eigenfunctions both gng and "3@ increase indefinitely
o

0
with the mode.) The two effects are illustrated in Tables 9 and

10 which compare the results obtained by variational methods with
the results obtained by Van der Borght and Wan [25]. Unfortunately
most of the work of Van der Borght and Wan is unpublished but some
results for the case 8} ¢ 0 are given in [46]. Eigenfunctions
are not described in [46] but Smeyers [27] represents graphically
the lower modes he obtained by numerical integration in the case

8¢ # 0 for a model of Ottelet. The general shape is the same as
in [25],

The wth p-mode should have m zeros in £ and m zeros in e
For m = 1,666525 , € bas m zeros in the approximation obtained
for the wth p-mode. For m< 8 this is also true for Nie
But for m >8 , except for m = 11 which gives a full complement
of zeros, n has only w - 1 zeros in the approximation obtained for

the mth p-mode, This is also the effect of the concentration of

Zeros near x =1 in the true eigenfunctions, The ratio

calculations are as expected, Within the limits of numerical
accuracy the zeros of the mth mode separate those of the (m + 1)th

and the zeros of ¢ separate those of 1 for the same mode. A




complete listing of the f-mode and the first 20 p-modes is given
in Table 7,
The eigenvalues ® obtained by variational means for the

fundamental and lower p-modes agree quite well with those of [25]

(see Table 6) but, as expected, the discrepancy becomes steadily

greater as the mode increases, the increment ug - 03—1 in the
computed values increasing very regularly. Again there would seem
to be scope for investigating the asymptotic behaviour of the higher
mndes,
The main failure of the variational method is the fact, discussed
in Ckapter 5, that while it found the f-mode and the first 25
p-modes it showed no trace of the g-modes. The remaining 26 eigenvalues
and eigenvectors of the characteristic equation (2.20) seem to be
completely spurious, In general it is easy to distinguish the true
eigenvalues froa the spurious ones by the properties of the
corresponding eigenvectors, The one possible exception is the largest
eigenvalue which could conceivably be a very bad approximation to
the 25th p-mode, but in any case this eigenvalue is not very useful.
The spurious eigenvalues seem to be almost randomly distributed.

They include the 17 lowest eigenvalues of the matrix equation. The

sign-changes of the spurious vectors, which should correspond to the

zeros of eigenfunctions, seem also to be almost randomly distributed,
but for each spurious ve:tor (including the last) n has more

sign-chavges than E s This was also true for the few spurious




vectors calculated with 4 = 3 . There is an increase but not a
monotonic increase in the number of sign changes in the spurious

vectors as the eigenvalue increases. Also the ratios

R/go and nR/n seem to decrease as the eigenvalue increases
. :

but this effect is also irregular, Other tendencies can be noted
but none seem very significant. Three of the spurious eigenvectors
are listed in Table 8, They correspond to the lowest eigenvalue, to
W= 0777 and to w = 293 (the next highest eigenvalue after the
fundamental)., The first of these disproves a conjecture made in
Chapter 5,

The first 17 spurious eigenvalues are = 0+187 s 00257 , 0263 ,
O+ 321 , 0-388 , 0460 y 00533 , 02598 , 0691 , 0777 y 00822 .
0969 , 1+15 , 1.37 y 2584 . o097 . De30 . The eigenvalues obtained
by Van der Borght and Wan for the first 5 g-modes are 0e781 i
0501 , 0+371 » 0.295 , 0246 . The first of these is very close
to the spurious value 0- 777 but as shown in Table 8, the vector
corresponding to w = 0777 in no way resembles the first g-mode
which has one zero in both . and q . The remaining 9 spurious
eigenvalues are shown in Table 6 y» which shows how they are
distributed amongst the true eigenvalues, and indicates the number
of sign changes in the corrasponding vectors,

For £ =3, +three spurious eigenvalues (w IO, 32T
8:07) were obtained and also the fundamental mode (hz = 28454),
As theory shows that W increases with £ , the value of W,

for 4 =2 was used as a first trial value for eigenvalues of the
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matrix equation (using the method of Chapter 3 §3.) The other

eigenvalues could easily have been obtained by the same method.

We may add to the questions posed in Chapter 5, two more.
What, if any, is the physical significance of the spurious eigenvalues?
Is there any regular pattern in their distribution among the
eigenvalues of the characteristic equation? In this case
exactly half the eigenvalues of that equation are spurious, However
although the method of Chapter 2 always yields an even number Qf
eigenvalues there are other methods which yield an odd number.
Perbaps it is only a coincidence that exactly half the eigenvalues
are spurious in the present case. But again it is hoped this

work will help as a guide for further investigation,




The terms below are defined in the sense in which they are used

in this thesis,

Bounded below. A symmetric operator A in a Hilbert space is termed

bounded below iff (i.e. if and only if) there exists a real number

k such that for all u in the domain DA ok K, (Au,u) > k(u,u) .

Complete sequence., A sequence {wi} of elements in some Hilbert
space is said to be complete in a subset U of the space 1iff for
all elements u in U and all positive numbers € , there exists
an integer N and a set of N real numbers al,...,GN. such that

(s 20

"0 T W ZN' Q. @,) B, The sequence {9.} is
1=1 1 3 5 & 3 1

1=1
said to be complete in U in the energy of some symmetric operator
A where UC DA 3id for all uw in U and all &> 0 there is an

integer N and a set of N real numbers al""’aN' such that

1=

4 N
S5 D RN L
1=] 2 b 1

g 6 ) '<e .
> R

Complete setg. A normed set S is termed complete iff each Cauchy

sequence of elements in S has a limit in 5.

Functional. A functional is a linear mapping from the elements

of a Hilbert space into the set of scalars of that space.

Positive. A positive operator A in Hilbert space is a symmetric

operator such that for all non-zero u in DA ; (Au,U) > 0.
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Positive-bounded-bel ow, (abbreviated in the text to p.b.b.).

A positive-bounded-below operator in Hilbert space is a symanetric

operator with the property that there exists a real number

Y # 0 such that for all u in D, (Au,u) = ®lu.n)

Positive definite, A positive definite matrix is a matrix whose

principal minors are all positive, A positive definite
quadratic form gflgg is a quadratic form which is strictly
positive for all non-zero vectors x , such that XF.AX, 1s

defined,

Quadratically summable, A set of functions is said to be quadratically

summable iff the product of any two members of the set is integrable.

Symmetric, = self-adjoint)., 4 linear operator A in some

Hilbert space is termed symmetric iff for all u, v in DA

(Au,v) = (u,Av) N




[1]

REFERENCES:
P, Ledoux and C.L. Pekeris. Radial pulsations of stars,
Astrophys. J. 94 (1941), 124-135.

S. Chandrasekhar and N.R, Iebovitz. Non-radial oscillations

of gaseous masses, Astrophys. J. 140 (1964), 1517-1528,

T.G. Cowling. The non-radial oscillations of polytropic stars.

Monthly Notices Roy. Astronom. Soc. 101 (1942), 367-375.
J.H. Wilkinson. The algebraic eigenvalue problem. Oxford (1955).

S.G. Mikhlin. Variational methods in mathematical physics,

Pergamon (1964), Translation from Russian.

H. Sagan. Boundary and eigenvalue problems in mathematical

physics. Wiley (1961).

R. Courant and D. Hilbert, Methods of mathematical physics.

I. Interscience (1953). Translation from German, with revisions,

S.H. Gould. Variational methods for eigenvalue problems.

University of Toronto (1957).

W. Givens. Numerical computation of the characteristic values
of a real symmetric matrix, Oak Ridge National Laboratory

Report No. 1574 (1954).




105

Ch. Whitney and P. Ledoux. Note sur le calcul numérique
des pulsations stellaires. Acad. Roy. Belg. Bull, Cl. Sci.

43 (1957), 622-627.

M. Marcus. Basic theorems in matrix theory. Nat. Bur.

Standards Appl. Math. Ser. 57 (1960).

J.H. Wilkinson. Error analysis of floating-point computation,

Numer. Math. 2 (1960), 319-340,

V.B. Lidskii. On the eigenvalues of the sums and products
of symmetric matrices. (In Russian) Dokl . Akad. Nauk SSSR

75 (1950), 769-772,

J.H. Wilkinson. The calculation of the eigenvectors of

codiagonal matrices, Comput. U (1958), 90-96.
E.D. Nering. Linear algebra and matrix theory. Wiley (1963).

R. Van der Borght. The evolution of massive stars initially

composed of pure hydrogen. Austral. J, Phys._lz (1964), 165-174,

M. Schwarzschild, Structure and evolution of the stars,

Princeton University (1958).

S. Chandrasekhar. An Introduction to the study of stellar
structure. Dover reprint (1957),
R. Van der Borght and S. Meggitt. llassive stars with uniform

composition. Austral. J. Phys. 16 (1963), 415-422.




106

[20] A. Boury. Effects of non-constant scattering opacity on models
for massive stars initially composed of pure hydrogen,

Astrophys. J. 140 (1964), 1322-1325.

P, Ledoux, Stellar stability, Handbuch der Pbysik_gl. Springer

(1958), 605-688.

R. Van der Borght and J.0. Murphy. Anharmonic pulsations of
an early main sequence star. Monthly Notices Roy. Astronom,

Soc. (To appear.)

P, Ledoux and Th, Walraven, Variable stars. Handbuch der

Physik LI. Springer (1958), 353-504.

L.H. Aller and D.B. McLaughlin (volume editors). Stars and

stellar systems VIYI. University of Chicago (1965).

R. Van der Borght and F.S. Wan. Numerical calculations of
modes of non-radial oscillation of massive stars.

(Private communication.)

E. Sauvenier-Goffin. Note sur les pulsations non-radiales
d'une sphere homogene compressible. Bull. Soc. Roy. Sci.

Liege 20 (1951), 20-38,

P. Smeyers. Sur les oscillations non radiales adiabatiques
d'étoiles massives. Acad. Roy. Belg. Bull. Cl. Sci. 49. (1963),

128-141,




107

R.E. Langer. The boundary problem associated with a differential
system rational in the parameter, Trans, Amer. Math. Soc., 32 (1

o —

238-250.

E.L. Ince. Ordinary differential equations. Dover reprint

(1956).

F.G. Tricomi. Differential equations. Blackie (1961),

Translated from Italian,

S. Chandrasekhar. A general variational principle governing
the radial and the non-radial oscillations of gaseous masses,

Astrophys, J. 139 (1964), 664-674.

N.R. Lebovitz. On Schwarzschild's criterion'for the

stability of gaseous masses, Astrophys, J., 1492 (1965),

229-242,

M.J. Clement. The effect of a small rotation on the

convective instability of gaseous masses. Astrophys. J, 142

———

(1965), 243-252.

G.V. Ruben. Boundary conditions at the surface of star

models, Soviet Astronom. AJ_Z (1964), 649-655,

S. Chandrasekhar. The dynamical instability of gaseous masses
approaching the Schwarzschild limit in general relativity,

Astrophys. J. 140 (1964), 417-423.




R.F. Tooper. Stability of massive stars in general

relativity. Astrophys. J. 140 (1964), 811-814.

P. Ledoux, J. Lambert and Ch. Yhitney. Détermination des
premiers modes d'oscillations radiales d'une étoile gazeuse,
“Les Mathématique de L'ingénieur", Congres de Mons et
Bruxelles. Mémoires et Publ. de la Soc. des Arts, des Sciences

et des Lettres du Hainaut (1958), 351-368.

S.A. Zhevakin, Auto-oscillation of ionized hydrogen shells such
as causes variability of the cepheids, (In Russian, ) Dokl,

Akad. Nauk SSSR 62 (1948), 191-194,

V.I. Aleshin. Auto-oscillations of variable stars., Soviet

Astronom. AJ 8 (1964), 154-152.

R. Van der Borght. Overtone pulsations of massive stars.

Acad. Roy. Belg. Bull. Cl. Sci. 50 (1964 ), 959-971,

R. Van der Borght. Numerical calculations of modes of radial

oscillations of massive stars, (Private communication. )

M. Schwarzschild. Overtone pulsations for the standard model .

Astrophys, J. 94 (1941) 245-252,

A. Boury and M. Hustin-Breton. Modes €éléves d'oscillation
radiale du modele standard et stabilite vibrationnelle des

étoiles. Acad. Roy. Belg. Bull. Cl. Sci. 47 (1961), 543-557.




109

P, Ledoux. Sur la forme asymptotique des pulsations radiales
adidhatiques d'une etoile. I. Acad. Roy. Belg. Bull. Cl.

Sci. 48 (1962), 240-254,

P, Ledoux. Sur la formeasymptotique des pulsations radiales

adiabatiques 3'une étoile. II. Comportement asymptotique des

amplitudes. Acad. Roy. Belg. Bull. Cl. Sei. 49 (1963),

286-302,

R. Van der Borght and F.S. Wan. Non-radial adiabatic
oscillations of very massive stars. Acad. Roy. Belg. Bull,

Cl. Sci. (To appear.)




KEY TO THE TABLES.

Table 1,
This gives the values of m - T y B in columms 2 , 3 , 4 |
respectively against x in column 1 for the stellar model used
in the present calculations. (See Chapter 4.) The E-FORMAT
of Fortran is used. A number written as "aEb" in this format

b
is to be read as "a X 10 ",

Table 2,

This gives in columns 2 s 3 and 4 some of the eigenvalues
w found for radial oscillations in the present study using
n =50, 25 and 10 intervals respectively. (See Chapter 7 §1.)
Column 5 gives the values obtained by Van der Borght ([40] and [41])
using direct integration (Runge4Kutta method ), Column 6 shows
the values given by his asymptotic formula, Column 1 gives the

number of the mode, using 1 for the fundamental, 2 for the first

overtone, eotc.

Table 3,

S —————————

This compares the eigenfunctions ¢ for radial oscillations
obtained by variational means in this study with those obtained
by direct integration by Van der Borght . Columns 2 , 4 and 5

describe the eigenfunctions obtained in this study,. Colummn 2

. S
gives the ratio R/g of the value of £t at the outside to its
0

)




value at the centre, Columns 4 and 6 give the values of

x( = r/R) at the first and second zeros respectively of £ .
Columns 3, 5 and 7 respectively give the corresponding information
(gR/go , Pposition of first two zeros) about the eigenfunctions
obtained by Van der Borght, Column 1 gives the number of the mbde,

again using 1 for the fundamental, etc,

Table 4,

e e eaiean &

This lists in columns the values obtained, by the variational
method, for the eigenfunctions €, for radial oscillations, at the
51 positions defined by x = i/50 e R Ly The value of
1 is given in the 6th column and the first 5 columns of each page
list the values of 5 consecutive eigenfunctions, The first 20

eigenfunctions are listed and the number of the mode is given at

the top of each column,

Table 5,

This demonstrates the rate of convergence of the nuner icel
method of calculating eigenvectors derived from Theorem 3 (Chapter i)

Let the norm of X, = (Xi1"'°’xin) be defined by

, n
”§411= (ZS=1 x‘Q{J.)é ; Successive approximations to X given by

(3.11) were normalised in this manner, Columns 2 | 3, 4 ghow

“§i+1 - {i” for 3 =1 923 respectively where ;i is the normalised

1th approximation to X . Column 1 gives the nuwmber of the vector
being aporoximated, where again 1 is used for the fundamental, etec.

As eigenvectors are arbitrary to within a scalar multiple, which




may be negative, the appropriate measure of convergence is

sometimes |[/xj4, + xj|| . As this was not realised when the lower

modes were calculated, the information on convergence was not
obtained for all eigenvectors, but the results should be similar in
all cases, This very good convergence was obtained with eigenvalues

which were calculated to only 3 significant figures, although at

least 7 figures could easily have been obtained, and in fact more

accurate eigenvalues (those in Table 2) were calculated later.

Table 6,
This compares the eigenvalues w for non-radial oscillations
obtained in this study with those obtained by numerical integration

by Van der Borght and Wan (25 ]. Column 1 gives the number of the

mode where O denotes the f-mode, 1 the first p-mode and so on.
(Note that the numbering system used here in the non-radial case is
not quite the same as that used in the radial case,) Column 2
gives the values of the eigenvalues obtained in this study (with the
approximation 5¢ =0) . Column 3 shows those spurious eigenvalues
which are greater than that for the f-mode. The 17 lower spurious
eigenvalues are listed in the text (Chapter 7 f@). Column 4

shows the eigenvalues obtained by Van der Borght and Wan with the
approximation fyb =0 and column 5 those they obtained without this
approximation, Columns 6 and 7 show the number of zeros in ¢

and 7 respectively corresponding to the eigenvalues of columns 2

and 3 as obtained in this study. For true eigenfunctions they should




equal the numbers in column 1,

Table 7,
This lists the values of ¢ and T obtained in this study for

the f-mode and the first 20 p-modes, with 3 modes per page.

Values are given at the 26 points x = 1/25 y A L L O The

last column of each page shows the value of i . Columns 1 and 2
give the values of € and 7 respectively for one mode, columns
3 and 4 for the next and columms 5 and 6 for the next.

The three numbers at the top of each pair of columns represent
values for the eigenvalue calculated from these solutions, using

J 1 3J
The number at the top is calculated from the mean value of r.

r;, = > P x.}/@j 9 5 Xj) as described in Chapter 3 ¢4 .

and is the best estimate obtained for the eigenvalue, Thé two
numbers underneath this are calculated from the lowest and greatest
values of r;, and thus give lower and upper bounds for the
eigenvalues of the matrix equation. The closeness of these numb ers

indicates the accuracy of the numerical process. They do not

Table 8,

————————

This lists 3 of the spurious eigenvectors yielded by the Ritz
method. They are discussed in Chapter 7 2. The format is

exactly the same as for Table 7,




Tables 9 and 10,

These compare the eigenfunctions obtained in this study with
those of Van der Borght and Wan [25]. Their eigenfunctions showed
a slight rise at the origin which was later found to be a spurious
effect due to the numerical approximations used, Consequently
it was decided to compare the values of € and M at x = %g
and x =1 instead of at x =0 and x =1 as in the radial case.

Table S concerns oy Columns 2 | 4 apnqg ¢ concern the results

. ¢
of this study. Column 2 gives the ratio R/1ogI of the value

SF TR ) s times its value at x = - . Column 4
gives the value of x at the first zero of € and column 6 its
value at the second zero, Columns 3 |, 5 apq 7 respectively give
the Corresponding results obtained by Van der Borght and Wan

by direct integration. Column 1 gives the number of the mode

(0 for f-mode etc.) Table 10 gives the same information about n,

using the same format, except that in thig case columns 2 and 3

represent ’Hynl and not T]R/J_On
1
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TABLE 4.
RADIAL EIGENFUNCTIONS (PART 1).

1 2 3 4 5
09766058 ~-,01959079 01091701 ~,00779169 e00631785
09768025 -,01958821 e01091095 -,00778315 e 00630671
09774544 01957949 e01089070 -.,00775465 e 00626960
09784841 —,01956541 01085837 -,00770932 e 00621073
009799018 ~,0195454] e01081l320 -,00764628 «e00612918
e 09817180 ~,01951871 «01075419 ~,00756445 e 00602390
09839432 ~,01948436 «0106801l5 -,00746257 «00589366
e 09865890 -,01944113 e01058960 -,00733911 «e00573709
e09896685 =,01938752 «e010480/75 -,00719229 «00555264
+ 09931969 -o01932167 «01035148 -,00702003 ¢00533855
s 09971913 «,01924137 e01019924 —,00681992 «00509297
«10016716 ~,01914391 «01002108 -,00658925 «00481389
e 10066602 ~,01902607 e 00981351 —-,00632495 e 00449927
e 10121829 —-,01888398 e 0092748 ~,00602364 «e00414713
e10182694 -, 01871300 000949331 ~,00568160 «e00375564
e 10249538 ~,01850758 « 00897055 -,0052948p «e00332326
e10322748 ~—,01826100 e 00859793 —,00485896 «00284900
e 10402771 =,01796522 e008106819 ~,00436961 «e00233264
e 10490133 =,01761047 e00767302 -,00382223 e00177516
¢« 10585452 ~,01718489 00710480 =,00321240 e00117911
e10689470 =-,01667397 e 00644653 ~,00253608 «e00054927
«10803409 ~,01606032 00569169 <,00179004 «00010670
¢ 10928866 ~,01532321 00482468 ~-,00097284 «00077701
« 11067328 - 01443745 «00383105 -,00008607 e 00144444
11229192 =, 013372738 e 00269605 « 00086436 «e00208527

e 11388790 =,01409279 « 00140540 «00186662 «00266831
e11574426 ~,01055445 « 00005367

WoOoO~NOWWMPHWNHO

,11778386
« 12001947
. 12246400
.12513051
. 12803246
.13118358
.13459788
. 13829021
. 14227583
. 14657071
. 15119150

« 15615583

,16148149
.16718780
. 17329490
e 17982393
. 18679693
« 19423662
.20216703
.21061207
021959455
.22913006
.23918058
« 24778159

_000670690
-, 00648882
- 00383045
- 00064771

0 00315616
e 00769498
«01310061
+ 01952693
02715216
e 03618275
e 04685733
«05945178
07428212
o DFAT 1374
sl 23 6562
e13611790
e 16411866
e 19679020
e 23483849
« 27905094
33028601
e 38940975
e 42689032
e21927402

e 00169004
e 00351045
«e00550865
e 00766933
+ 00995912
e 01232046
e 01466262
e 01685087
«e01869158
e 01991403
e 02014721
e 01889075
e 01547887
«e00903519
000136(45
01784815
e 04165039
e07538276
s 12205356
e 18538608
e 26988648
e 38072962
e 22265988
66877911

«00490099
s 0039377 h
e 00493439
e 00283356
e 00656018
e 00701996
«00709880
e 00666465
e 00557307
000367890
e 00085687
e 00496439
«00 77494
s 01327475
01901267
e 02396115
e 02640656
e02359633
«e01129995
«01676288
e 06962008
2 AD8 793243
+ 30371088
e 21996998
e 77651538

«e00315429
«e00349586
«00363855
e00352343
e« 00309186
e00229329
«e00109688
e 00049247
000241371
000452460
e 00657536
« 00818543
«00883360
e 00787828
« 00463721
e00142916
e01036187
e02107520
e03031921
«e03106260
01012076
e 05499416
« 19934581
e 47037266
«e85590997




6
« 00546527
« 00545125
« 00540461
« 00533086
e 00522913
¢ 00509850
e 00493807
00474674
. 00452364
e 00426778
« 00397831
e 00365460
+ 00329637
«e 00290392
« 00247828
« 00202150
«+ 00328764
-e00103000
-.00050787
«00001924
« 00053791
«00103085
« 00147634
« 00184788
e 00211463
e 00224270
s 00419754
« 00194789
00147143
e 00076250
« 00015839
¢« 00123400
«e 00235996
e 00337756
e 00407427
e 00419753
« 00349050
« 00175841
e 00102717
« 00458550
« 00816384
e 01040515
« 00936526
« 00290596
«01013700
e 02737983
« 03801747
e 01473642
e 09741388
e 38953590
e 91408526

RADIAL EIGENFUNCTIONS

4
«00481736
« 00480044
e 00474429
« 00465577
e 00453424
s 00437915
« 00419011
e 00396692
000370960
e 00341849
« 00309440
e 00273876
« 00235382
e 00194290
«s00151069
« 00106347
« 00060950
s« 00015936
e 00047383
e 00067416
s 00102282
s 00129848
e 00147796
s 008253773
400145657
s 00121931
« 00082174
« 00027650
« 00038071
00108570
e 00174295
000222822
e 00LZ39964
oOOélZlOO
e 00129981
« 00006011
s00179774
¢« 00354180
e 00469695
« 00451710
e 00232951
e 00203549
s 00761176
«01163789
e 00943069
e 00393604
JO2TTIH 616
e 04199344
e01750153
e 29003549
e 75520776

)

TABLE 4.

8
« 00415354
e 00413442
e00407111
« 00397166
e 00383584
« 00366371
e 00345577
«e00321291
e 00293660
¢ 00262892

-e00249278

«00193207
«00155189

_000115850

« 00076097

-e00036841

« 00000695
s 00035125
e 00064883
e 000882171
« 00103541
«00109035
« 00103402
¢« 00085900
« 00056771
e 00017648
« 00048065
e 00074962
« 00115688
« 00141489
e 00143445
«00114523
e 00052397
e 00037305
e 00222562
e 00254101
« 00201030
e 00432089
« 00506356
« 00261503
e 00351617
e 01065838
s 01128872
e 00469052
«03543311
e 03024979
18264388
e 98180614

9
e 00336779
e 00334821
«00328350
00218227
« 00304481
e 00287194
«00266513
«e004242653
00215905
600186651
s 00155372
e 00122669
« 00089273
« 00056054
« 00024029
«00005654
e0003173¢4
e 00052882
« 00067775
«00075209
00074245
e 00064415
«e00045987
00020238
« 00010309
e 00041778
« 00069055
e 00086272
« 00087752
e 00069448
e 00030789
e 00023450
«00081921
e00127083
«e00138393
e 00099072
« 00006164
«00118734
s0D0237529
«e00099495
«00178045
« 00449618
e 00435987
00107263
e 00972929
e01026349
e01349159
e 04440414
e 07747098
e 9957362¢

(PART 2).

10
e00268622
e 00266724
«e00260467
«e00250718
«00237559
«00221140
«00201696
«e00179546
¢00155100
«e00128866
«00101461
e000 73612
e 00046160
«00020051
«00003679
«e00023953
e 00039694
«00049913
«00023819
«000°0956
e 00041366
e00025767
«00005730
s000pn1l6225
e 00036684
«00051635
e 00049906
00029196
e 00002677
00039185
e 00069862
«00082207
e 00065692
e 00017546
«00051343
«e00113818
«e0013184p
«000 73838
s000DT277
«e00198142
00229048
« 00043876
«00305619
e 00480437
«00001332
«e01012205
e00714619
«e03191720
«01509827
09992493

VWO ~NOUHWwNE+=O




11
e« 00304591
« 00302059
¢+ 00293731
« 00280809
« 00263470
e 00242006
e 00216846
e 00188549
s 00157810
. 00125463
« 00092480
« 00059963
S OO0 Z29127
¢« 00001263
-+.00022314
-+ 00040354
-.00051772
-e00055790
-.00052103
-.00041051
-.00023793
-.00002434
« 00019946
« 00039457
«e 00051862
L 00093367
« 00041708
« 00017378
-+00015365
-.00048239
-.00070041
-+ 00069625
-.00040680
L oUD12803
e« 00072925
« 00109828
e 00092758
« 00010325
—000107456
-.00183186
-.,00125849
« 00085676
000308769
s WL 25 5%
-+004241872
-o00702619
-000004326
01741996
-00353734
-e09270184
e 99546229

RADIAL EIGENFUNCTIONS

12
-, 00263035
-o,00D57518
-e00539426
- 00511490
-e00474265
-600428621
-, 00375768
-, 00317240
-, 00254882
-,00190831
-, 00147483
-.00067426
s 000133552
« 00032080
« 00066440
e 00087754
e 00094793
e 00087381
« 00066700
« 00035541
-+ 00001590
-.00038624
-o00068433
-000085898
-~ 00079512
- 00053361
-+00009006
« 00043474
« 00088244
« 00107183
e 00086289
e« 00043889
-.00062487
-,001356(06
-, 00149705
-000074988
s0U0T71696
¢ 00209959
e 00221176
e 00033154
- 00266117
-000393800
- 00067331
e 00556831
« 0065681
- 00284259
- 01252365
0014U6UD9
e« 04080759
-e16870708
e 9844229

TABLE 4.

13
01130966
e01117800
e01074772
«01008734
e 00N921505
« 00815807
000695287
e 00564425
e 00448429
e 00293089
e 00164587
« 00049205

-00004704Z
-e00118887
e 00162374
e 00175499
¢« 00158840
e00116096
e« 00054396
s OD0D15842
000081305
e 00148664
e 001448351
e 00122528
e 00002904
-e000<21611
—«00107300
-e00163434
-e00161706
-e¢00089591
«00036740
e 00167633
e 00231998
L 004555
-e 00017666
- 00241796
-e00338306
-e00171151
e 00215634
e 00215481
e 00326266
- (00383768
—.OOB?Bbe
-¢00140701
e 01393904
e 00860178
-e04781166
-e 01060811
e 10148764
- o L4255525
e 96375826

(PART 3),
14
e021£9854
e 02100467
«02004810
e 01859036
e 01668455
01440731
«0 1185799
e 00915467
e 006429572

-o00382281

-e00147534
« 00048120
e 00193559
e 00280987
« 00307265
A e B
«e0019394¢
e 00079995

-e00044577

-.00153993

~200222775

=5 00231219

‘000171839

-e00055121
« 00088081
«00210205
e 00260896
«00204236
e 00044353

-000162059

-¢00314013

—000307155

-+00100803
e 00221098
« 00450273
e 00363132

-,00079217

-e00276390

-e00602947
e00096418
e 00946467
.00758469

-e00845568

-—e01692432
s I3TLITE
e 0319114¢

-e02457588

-e059498513
«e169955¢09

-e30287633
s 332371437

15
«03789149
e 03727580
«e03528080
el 2226503
«e02836838
e02378664
«01876568
«e01358775
«e00855545
o039 T2 L7
+ 000 k1937

- e 00276985
-e00453831
-+00513148
-e 00461926
-e00320709
-¢00123014
e 00087583
e 00263164
«00360000
e 00349145
s 00227234
e 00024246
-e00196874
-e00353411
—000370252
-200216232
e 00064559
00347658
000468860
e00312319¢
-e 00087442
—+00501407
‘000599284
~e00193286
«00501002
e 00862990
e00345240
-000777066
~e01223714
«00038859
e017960p23
e00953765
~ o 02&77205
-—e01929003
e 04824925
001128894
-+12819481

0<3778781
> 23387727
«88895515

OCOoO~JdJouPHWLWNH+—HO




16
e 06473009
« 06350028
e 05953577
«05359697
« 04602463
e 03728267
e 02793493
« 01860429
e 00992564
« 00249198
-.00320380
-+00682893
~-.00826454
-+00764528
-+o00537326
-600409371
e 00137726
e 00417796
«00557231
« 00514359
« 00296571
~-o00031272
-+00354720
- 00540433
-.00488021
-000188017
e 00242737
+ 00582532
« 00602656
« 00218647
-e00387946
-+ 00797918
-.00607498
« 00185543
+/ 00976564
« 00901017
-+00266880
- 01435297
-600937802
«01208096
e 02103315
-+00668896
-+.03368818
« 00648032
e 05520739
-e03776513
- 07659655
e 20696669
- 629606174
«38318041
-e83072600

RADIAL EIGENFUNCTIONS (PART 4),

b i
e 10640441
10405695
s VYO S3267
eU8D37501
e07135907
e 02551046
« 03903410
e 02320429
e 00924309
- 00180981
~-+ 00922479
-+ 01269505
-.01241308
-6 00908959
-+ 00389292
« 00170808
s QUOL9638
e 00833274
eOUT49716
s 00395374
-.00107958
-e 00567124
-, 00778215
- 0061544
- 00116070
e 00489819
e 00853421
00692541
e 00015487
-~ 00172927
-e 01046923
~+00430124
e 00724223
« 01363556
« 00600231
-o01093862
- 01779482
-« 00004981
e 04304434
e 01465142
-6 0453549
~s 0835455
«03505647
e 03953438
-6 07453279
-« 01344650
e 10026477
—e 281061994
e 33064411
- 38991403
e 12301283

TABLE 4,

18
s 6670812
16246440
e 14894693
s 2912740
e 1040642063
«e0/7 759875
« 05037820
002537697
e 00472433
- 00999155
-e 01796018
~601931002
~-e01514819
-e 00744064
e 00149004
e 00844547
s 1193587
«01077400
e 00547942
-e00189519
-e00828118
-e01067706
-e00 756424
~«00007343
e Q0792273
e 01140287
« 00743952
-e00284899
-e01193458
-e01192183
-e¢ 00069448
001322472
$01i53T125
-¢00018341
-e01904812
-e 016243237
04169115
e 04867255
« 00003571
- e (03806470/
-e00955125
e 05457975
e 006424672
- 081729278
e 04939583
«1l0301431
— 040689993
e 33409949
— 340679416
: 200221511
—e050L473178

19
e24441101
623127163
«21469053
e1819937,
e 14234752
09970311
«05835024
e02234967

-¢00502965
-+02180699
-6 027163799
~+02393399
-e01367776
-¢00090233
s01013852
e 01598923
e01497116
e00781821
-000236030
-+01100651
-+01387231
-e00912935
«e00111253
01107581
«01407050
e 00695745
-e006333572
-e0157342¢
-¢01197000
e 00409151
«0183929¢
«01428953
- 00809447
- 02444868
-e00967289
e 02559815
e 02657683
-e01770194
- e 040846173
e 01557736
e 00689071
-e0311593¢
~e 07220506
e 09437198
00284265
-e20491357
e 32118344
-¢34610508
22206301
-e31974868
«22148067

20
«32927927
31829850
«28383458
e23461977
17617490
e11516843
e05850653
«01226450
-¢01929184
-e03444692
-e03437894
~—e02297763
-e00607196
e 00987543
e01939643
e01958702
e01110932
-e¢00187025
-e01309876
-¢01683527
-e01080319
.00192194
e 01363864
«01607307
«e00629302
- 00943997
-+¢01828564
—001070052
«00878412
02139989
«Olp7T787
~s 012533716
-e02550964
—« 00040555
s03093555
s O1T231 1Y
-e03170864%
-e03157672
e03662188
04222007
-2 798385
-—e03767163
« 10845384
-e03817925
-4d3052040
e 27684398
- 33204265
e 31045186
-e26432218
e 24745890
—-¢37889155

OO~ Wy O




TABLE 5

Convergence of Eigen Vectors

24 J L.

B e e e u——"

“ X2 = X3 ” “ X4 = X3 “

10~7
1072

1073

10~2

1073
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NON-RADIAL EIGENFUNCTIONS

2613205

264613137
1

01901287
e 02045251
02179154
e 02308052
002432251
« 02555781
e 02693367
e 02875044
oDB133519
e 03497110
e 03934572
e 04444255
e 05059290
0517176743
e 06612894
s 07608315
e 08784030
« 10185165
e 11853036
e 13840812
e 16207992
e 19023238
e 22364037
e 26313176
¢« 30941567
¢ 35995168

26613229
2

e 05726450
e 06434028
e 06603611
06825404
e 0D00YLHI0
e 06046282
e 0606161
007U0447b
e 07689394
e 03401466
e 081720018
e 090686908
e 09746804
e 022363258
e 10469345
e 10231876
e 11491008
T EWEL T
e 1365380
e 140879506
e 16464963
018621105
s 22213527
024290748
o2 (88065
«34 756160

TABLE 7

36903144

3649030067

3

- 00974218
-OUO900le
- 009860084
-~ e 009933453
- 01005797

e 01030334
o 0A073879
001155492
01201177
01261944
e 01319779
01360444
01361708
01297206
« 02424881
e 00769089

- 00L40<c00

e 00882654
e 02608542
e 04990810
Q08711479
e LU4143431
s 21939388
s 32914163
e 4 7194608<
OO 184504

-

3903178
4

e02925080
e02931794
0049U4767
02851943
002813102
0024842117
02972812
031324865
+ 03392211
«0B32285%9
e03470680
00348§906
«e03615570
«e(03659305
- FET VS
e036906831
e (032591042
«(0331884¢
s 027186875
01858182
00348024
01991794
e 05484389
e 10529604
el 7534383
e 26335833

(PART 1),

56220990

262201789
5

«00570351
e 00582411
e 00592764
e 00602357
«00611310
«00619880
e 00627330
e 00629605
e 00619968
« 00592032
e 00535601
«00436183
e 00275920
«e00032988
00314792
e 00782885
01365353
¢ 04008032
e 02562024
e 02706488
e01826803
e 01168403
e 08097042
«21772381
e 45993286
e 80238380473

56221048
6

«01714016
«01753819
01778498
01792611
«01802778
e01821754
«01852668
«01871348
«01867070
«01870894
e01832143
«01779230
«01690514
«01555556
+OL35I585
«01054657
«00641487
e 00098547
e 00560959
e01269973
01862981
«e02008893
«01118010
e01764446
e07916636
e 17942324

WoOo~NoOUPsHwNhnr~O




NON-RADIAL EIGENFUNCTIONS

66576454

64276305
1

« 00442098
« 00448019
« 00452967
« 00456248
«00455332
« 00446702
e 00427713
e 00396017
« 00345777
e 00270149

-.00161673

e 00012679
« 00181076
e 00415492
« 00669178
e 00891317
e 00988609
« 00818924
e 00209772
e 009604672
02547935
e 03680103
c01891340
. 08210485
¢ 36131475
s 91762606

6,518225
pa

e 01346677
«01350453
001373993
01395304
e 01403933
001390612
e 0136171618
01344581
e012486475
001214798
01103827
21 00965523
e 00790886
e 00571240
00303313
e 00004928
e 00600464
e 00737856
s 00618467
00183035
00673381
e O 1456835
s DL ORE 2
2 D2 88166
e 119067301

TABLE 7

164987316

[ 4981253
3

e 00810236
e 00645227
e 00495467
e 00392351
e 00354966
e 00347131
« 00305631
e 00244597
s 001671926
e 00064577

- 00061861

e U0L080Q60

—_—

e 00480881
e 00bZD116
e 00423306
e00113043
e 00410472
e 01003482
s 022065933
s 80232340
s DLELEFDT
04392106
+ 01348826
e 231730904
e 70O LG A

1698171367
4

02440133
e01l776216
01235184
«e01001896
01289852
e 00993895
01086720
«00910086
e 00650409
00474154
oOOd7éOlL+
e00058985
«e00148399
00313457
e 003817008
«e00318195
«e00084792
«00257174
«00019636
e 00388396
00361659
204182824
2 DOB9IL02
07800779

(PART 2).

96457030
9457109

76456820

5

-e 00367594
-e00357169
-e00347741
-e¢00309944
—e00265576
-e 00204998
- 00032691

e 00075551
e 00187815
«00485520
e 00338833
e 00308785
e« 00159644

-¢00112819
-e 00437337
-e00627841
-¢ 00409063

e 00386805
.Ol_‘)b‘?)jlb

«04i3328642

-e02127693
- 05425136

O

e 11560428
098963556

—-—

6

«e01098698
01072571
«e01076478
«01091338
«01060890
e 00970432
e 00905962
«00789299
« 00661156
e 00504885
«00330738
00151315
00018375
«e00157599
e 00236429
e 004225142
003122288
e 00074934
+ 00239611
«e00241339
«00010379
«N0861L224
« 00284986
e 00296340
R4 3534
04834610

o e e e e e e e
Vo~NOOUVPsuwuNEOOVO~NOOWULMPLNEFEO




TABLE 7

NON—-RADIAL EIGENFUNCTIONS (PART 3),

106964933 ldeb442457 13854610

10964833
1

e 00478269
e 003972672
e 00331001
e 004862672
+ 00250642
+ 00193165
00117954
« 00031328
e 00063132
e 00153444
«e00221950
e 00243882
«e00192826
«00054780
000147444
e 00328459
e 00341604
« 00026381
- 004204690
-e00713186
-¢ 00002602
01481566
e 00872056
-04810083
« 00951054
s 29%FPP2LS61

lO0eY64960
Z

e 01425646
e 1ld 3£837
000950354
00932815
e 00959169
e 00796080
000122344
e 00275747
000430041
e 00261087
«00107177
-e00032377
o ABL2L28S5
- 00169048
~e00484956
- (00048829
e 000946406
e 00158227
e 00088196
-e000931153
-e00203437
-e00010925
«e00318872
~-e¢00055663
~-¢00677559
e 00B&445(0

1e4423917
3

“QOOZ3ZZ59
2 ROLE d 463
e 00274147
00259527
+ BB204355
2+ 00432844
« 00020176
e 0003794/¢
e 00119272
e Q0177601
00192349
e 001447706
e 00030471
o B6&Z2L3320
e 00&320<40
e 00403640
e 00029717
e 003407064
e 00200040
e 00189817
e 00825883
« 00010907
« 02005545

-e 014059820

- 07458433
& 2 IOIEH YD

12,442495
4

-e00690666
e00817959
e 00944567
«00940130
00774196
e00708442
200508245
oOOQlDOOO
00029/503
00108143
000010995
e00102750
00128644
«e000941637
e 00007999

-e 00077668

-e 00103986

-e000341795
«00084689
«00111199

*oOOOjOOZb

-e00165272
«e00076026
00217819

-e00513112
01142896

134854579
5

e 00408929
e 00379994
oD 2284
« 00304660
000218333
e00110851
-e¢00003645
-000111473
-e00191042
-e00218334
-e 00172911
—e 00021964
¢« 00110151
e 00429698
e 00197870
-e 00031107
—.QOﬁlQOQ]
-e¢003070413
e 00196976
e 00654370
-e 00065824
-e01332884
e 00791756
«e03091983
-¢138485(02
e 78929470

134854631
6

D121 2202
«01150095
01168329
01140683
«00941706
00792990
« 00586509
«00381378
e 00180963
e00012475
«001l00724
e 00140136
«00l04016
e 00014662
«000%5512
«00101l008
«00030258
e 00078878
e 00095397
« 00038205
« 00131448
-e¢00056114
-e00158377
00262756
-e00240169
«00022618




TABLE 7

NON-RADIAL EIGENFUNCTIONS

(PART 4),

15413231 17248298

15,413204
1

eOFOI 7817
« 00864176
«00723928
« 00575960
003537537
« 00104057
«00138770
e 00327965
¢« 00411865
« 00350526
« 00140549
.—.OOJ-D.LOL"L*
-o00372713
« 00332154
« 00037724
« 00479283
e 00441530
e 00317976
e 00887689
e 00177988
« 01602¢6171
+ 20921282
e 0283358¢
e 08466807
-e19302345

s 77498031

15,413248
2

020603 GY
¢025338281
«e02366861
e02299636
012812120
001420968
e 00944416
«e 00499593
- 00116295
«001L47196
e 002536872
e 00202190
e 00043985
+ OO L BED 5
e 00165867
«00049515
e 00123450
s 00439231
« 00063804
cO0%{93889
& \7\()’\)7\794‘-&-
e DO LYO LD 4
s BOlcaicdy
00L42268
s 0U00YS T 14

e 00948674

17,248284
3

203889 ) 14
e (02551986
«01l751508
oOleObb‘i
« 00602213
- 0001719544
- 006301501
- 00924849
~+00850133
-.00408148
« 00237833
80733298
s DDEEHHE Y
- 00071718
~e00898255
-00734196
« 01434755
« 00601306
e 04342493
« LB a&H LD
PLE A s Pabata it
e 0902854 /(
o 2848340802
- o 230608 (844
o 7405040Y

17,248308
4

el (0856548
e 01002746
e02365990
e 05602387
«e03977791
e 028175466
01597660
e 00544552
~-e 00208895
~e005463271
-e 00471648
-e00127581
e0022177153
e 00326812
«0008B6127F
QOOZL*OD'QO
e 00233756
e 00146612
e 002825266
-e00L77629
- 006722586
e 00424233
-e00199557
-e001c>5086
.UOQOIOQO
-eQl 7461720

19315678
19,315700

19,315659
5

e 00339848
- 0091554
- 04004610
-e02638815
—e 00647906

e 00941253

01962420

e 02046430

01173119
-¢00461983
-e 01420238
-e0137595/7

e 00078201

001664633

«e01248838
~-e01350925
-e02293534

e 01462482

e (023365703
-e03737967
~-e0£833(085

,;1095142
—e 16348347

049096628
—e42871247

e 8360594240

6

e1l5720048
~-e08902777
~-e20431916
-e09771611
-e09118750
-e04996674
~-.02199802
«00030048
01108722
«01111809
00380914
-.00415906
-, 00650370
-e00165957
e 00459240
« 003928231
~¢00309002
- 00443665
e 00369538
e 00340376
-e 00660203
e 00364533
00112987
-.00461030
007176690
-e02304607
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TABLE 7
NON—=RADIAL EIGENFUNCTIONS (PART 5).

214585465 244058650

264750820

23 588415
1
008622474
e 08922366

e 07835308
203969631

21,2085496
2

e 22004784
029646349
s 28209316
e21669689Y

44058621

3

s 2dddBITLE
2 131695642
« 59813094
e 05454577

4 4,058661

4

e 49365641
043261111
e 41540885
e 26803439

264 150499

b

022208829
e15103676
e 08895032
e01405748

264750845

6

e 63627907
e 45975156
e 40522839
«23800960

-.,00217000
- 03204684
-.04196536
-e029337717

e LG4O66L04(
s 07047655
e 01456300
01411085

~e 0433764 (
-.05350570 05219048
-e0480411l -,00964978
-~e01l46/7710 -403002007

e15329404 -,04139003
~405545210 ,01583522
~e03004661 -,02587634

«01059721 -,02414108

e 10988427

~-.00186479
« 022917379
« 02580812
e 02642687
s02141521

002214357
e 01029712
e00578334
01152374
e 00348482
s 00437535
00615595

002211419 -4,01849898

«e03317499
« 007179235

-e0217125108
-e 02436589

« 04013670
03417910

e 003401722
01382646
e00569723
«e00758625
005231053

«03161995
«01448274

-e 01972874
-e0238761p

«e01323444
e 02873522

-6e014827769

«00242039
e 01214297
e 00737678
e 00673454
e 00365875

[
C Voo ~NOUVPLPWN RO

b
—

e 00527242
e 00476546
« 00223498
« 00609898
e 00431934
e 10426044 00041636
-e10>578609 400231043
«e08629814 ~,00314079
-~ 06336323 ~,00285498
e04763587 ~,00236163
-e04712591 ,00236228
e 11867064 -.,00538125

+0330%98¢7
-+ 02536069
e 04295975
e 02802349
e 02062455
- s BEOSB2E88 «~,0
e18981797
-¢20051930
e 19248770
~e22 17119001
« 61215633

e 00212497
e 00619574
~-e 000600068
- (Q372T 22
+ 002023236
027164173
~¢00020983
e 00484488
-o00671911
e 00860947

- s Db b33

- 04605884
-e (03936192
e 05754556
¢« 0QB8Y4(B2
-ed10211506
o 15FBHZ282
-~ 6239972
e 13874484
—~el11582187
a 82362630

e 006225968
e 00631279
«00300481
e 00839059
~-eQ0283409
e00022463
e 00370328
-e00500845
e 00498673
«OO55 4833
031329232

-e03025713
e 04240883
e 0037445

-6 00704622
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TABLE 7
NON—-RADIAL EIGENFUNCTIONS

(PART 6).

294695026 326932688 36518606

29.,695025
1

« 22339925
e 14828329
« 06925814
-o00722521
~,04938200
-~ 404281411
-+o0055872°2
s 0DBRT2270
e 01966647
"'oOlQ.job?j
- 02177612
« 00516880
002309729
‘000954799
-o02338714
.028\,‘55‘\15
e 00379484
- 04359609
e 06544212
-o064844 15
05133628
-.03554834
+ 02824631
-4 00618522
e 01504861

-¢ 03590309

29 4695049

2

« 2311581
430824036
e« 35268135
0 1825k709
e 06077998
-¢01037914
~-o02601689
~-¢00944194
e 00833909
e 008498061
- 004625850
- o 00607921
e 00186449
e 004537521
~-e00311353
-e001l87643
e 00420314
—~¢00283381
o 000X /()46
e 00142740
- 0015908042
e 0040620234
- 00121404
e 00088827
—-e00082657

e00180837

32 4932679
3

o L3328 L b4
e 136917558
e Q4637290
-e¢023250690
- 04656880
-e02282681
01271684/
e 02163329
-« 00074789
-o01804352
-.00168007
+s0&THTB52
- 00286290
~o018152886
s DL ZH 0
e 00526419
-e02898716
e 04028158
-o 028260292
e 02934746
- 041954040
e 012195670
- 00715818
e 004603 /(53
-e 00414265
e 00947145

22 4932734
4

« 19763815
e 38819699
29806233
«12346911
«02163505
-e02089240
-e01584837
sD0ET 393
+00858%57
«0001lD768
-e00512450
00020452
e0035509°2
-e001L /71658
-e00169142
e 00282441
-e 00169367
e00005777
e00092779
-e00114593
o0 ()()9‘*004
-e00065112
c00041632
-e0004 17851
e 00044557
-e00052127

36,5k8592
5

¢ 30965013
e 11617040
e 02304337
-e03367410
-e 00325523
e 01765327
«D0T22450
-e01184063
e 00041053
e 01143405
« 00201765
-e01300165
e 00843134
« 00606250
-¢01865903
002324455
-+¢02083195
e 01530540
-+ 00981402
e 060273623
-.00318587
e 004 L7589
*.()0109054
« 00094011
-e 00207743

36,518626

6

«36304778
e 29950978
21383104
« 06810045
- +00240987
-+01790530
-e00383310
e 00655641
e 00252445
-e00357362
-.00096210
e 00257950
« 00060990
00144151
00174704
e« 00086166
« 00009615
e 00058765
e 00064823
¢« 00050404
-e 00034850
e 00019465
-,00011253
« 00007040
~e 00005957
e 00012356
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NON—-RADIAL EIGENFUNCTIONS

40525325

TABLE 7

40,083606

(PART 7).

020289862

406525261
1

+ 33683295
e 06999180
e 00224120
~o 01967927
-,01183027
e 00539960
007487717
-o00313317
-o00521845
e 00382553
e 00295646
-6 00557910
e 00194498
« 00387826
- 00776647
« 00850380
-+ 00707150
e 00492865
-¢00302838
e 00169838
- 00089627
« 00046058
e« 00014341
-«00011930

« 00025646

404525368
2

692847940
e 08124747
010491483
s01 (713406
-o00 /18676
-¢00625371
e 00150314
e 004250399
~-o00114535
-¢00106649
«e00106791
e 00006965
~-¢00075206
+ 00065831
~¢00043491
-e0001L0579
e 0002421/
~-e000£35299
«000L6857
-e00Q010371
« 00005794
-+ 00003081
«00001650
-¢0000098C
e« 000008053

-e00001l636

40 4,0835173

3

o D96 565d
s 18233071
-e01l6401L4
- 0B601450
~-o01727801
e 03671384
e 0069491/
s 02508383
e 004000177
e 01804629
-o01678530
01816288
- 02598620
e 04469055
- 01l877618
e 0LZ22893
- 00716410
e 00384313
-e 00193865
e 00094188
-e 00045415
e 0002217174
-e 00013020

NAND D2 DAN
- o G0 a @l

454083637
4

20T 733224
2 7337764
026924924
2053191565
e 02883845
e00702249
01287561
e00033595
«e00608891
e 00262910
Q00176751
000295054
00180609
-e 00029797
~-e00028£58
e00079967
-e00060373
e00044011
e 00022437
e 00013427
-e00006705
e 00003483
e00001656
00000944
eD0000 754
.(}OC) ll)lq

204289719
-

e 29647891
«14179883
-e036235072
-e04836132
«01022349
e01929898
-e01187746
‘.00659119
«e01286381
-e00548922
-6 00544220
e01216727
-e01329801
001093202
-e00753345
e 00457275
-+¢00251879
«e00128633
-000062018
«00048730
-« 00013049
e 00005971
_000002878
e 00001599
-e000O01271
« 00002622

504289943
6

« 19233972
49575721
e13457899
‘000870760
-,01905395
«00511614
e 00455999
-e00384066
« 00002922
«e00188668
-e00161509
e 00061926
«00012083
-+«00040785
« 00040108
-e 00028776
00017379
-e00009367
e 00004662
-e 00002199
«00001008
~e 00000462
«00000222
-e00000122
« 00000096
_000000190
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187229

s BD 2D
1

e 00000400
e 00000367
« 00000332
« 00000297
« 00000263
« 00000229
« 00000194
« 00000161
« 00000128
« 00000095
« 00000064
« 00000036
« 00000010
« 00000014
« 00000040
« 00000067
« 00000083
e« 00000043
« 00000168
e 00000756
« 00001863
+ 00002633
- 00002360
-6 00033191
-o001234831

—-e00274232

«188271
2

e 00001206
e00001057
e 00000890
«e00000713
QUUL/UUbDZ
« 00000354
«00000184
e 00000029
-e 00000104
“"0:,1'(_}'&"‘;)‘»)411
-e000002853
-e00000314
-4 00000313
-e00000306
‘oQQLOUZ9b
-¢00000193
e 00000310
e 00001915
e 000020614
«e 00010968
e 00008258
- 00045656
-~ 00264092
woe 0219802
e 03622624
99931847

TABLE 8.,
SPURIOUS EIGENVECTORS.

o 171121

e 1 16H6/7
8

e 0876949/
« 07328164
e0DB8146Y
e 04453313
e 03046768
¢ Q168231
+ 00393321
- 00768769
-, 017T33538
-e02421114
-~ o D2TT0T45
-e 02794405
-~ 026141 (08
- 02430943
-e02398259
-e02420850
- 02097496
-e01218920
- 00481841
-e 00498753
e 000658406
e 00840005
¢« DDT 23350
e 01009 Y9Y
e 01492 /(14
o W s > U B S

o (11792
4

e 2038006 L
e 20343175
14096125
e07931301
e02151642
«02886198
e 08994982
sD9 12633
e 06896778
e 02042194
e02240894
«02 744548
.G:)290j07
09473220
e21891819
150193163
14247739
007149282
e 20791754
e 09260054
e 420054657
o 02513026
0 D0 LG 16
-~.J.'J/l FEy bo

2931532

26949235
5

e 23833779
«e18116248
e 12532495
e 071303275
«e0£4858295
-e 00165153
-e01234247
- 00572077
e 00434432
e 00344490
e 003‘0505Z
«00037808
«00106010
~e 00093668
e 00067600
-e00021614
e 00022225
e 00006553
e 00015934
e 00016504
o OODZ 1364
e 000425855
e 00051968
e 00039229
e 00048125
« 00028078

£s9318653
6

« 11637384
48235374
025344263
w0 512691
-e08779643
-e11998262
-e03548669
«08050059
«06712081
-e0 7559099
-e04166215
e 11651298
-o11239279
e 07458965
~¢03992840
e 01864232
-e00784830
e00321674
-e00112573
e« 00057135
-+e00003447
e 00024748
+000191861
« 00028982
« 00034618
e 00042918

VWEe~NewPHWNHO




|

6

’
4|

|
!

lgen Functions (;J)
5

of

O
o
0
-~
o
oy}
o
o
£







	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140



