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SUMMARY

In this thesis we consider certain subalgebras of Lm,
called weak-* Dirichlet algebras, which were first introduced by
Sunivasan T.P and Wang J.(Srinivasan and Wang [1]). We consider
the generalisation to these algebras of a portion of the theory of
analytic functions in the unit disc.

In our development we follow the approach of Srinivasan and
Wang, where the invariant subspace theorem, and not Szegd's

Theorem, plays the central role. This theorem, for invariant

P i foa s : .
subspaces of Lf, 1 < < o, 1is established in Chapter 1. We

develop several important factorisation theorems in the process.

In Chapter 2 we show that H is isomorphic to a logmodular
algebra on the maximal ideal space of v ] 3 his fact to prove
the truth of Szegd's Theorem. However, ¢ Kolmogorov-Krein theorem,
which is a generalised version of Szegd's Theorem, is not true for
a general weak-*Dirichlet algebra. In this chapter, also, we
consider for which weak-*Dirichlet algebras the Kolmogorov-Krein
Theorem does in fact hold.

In Chapter 3 we consider several generalisations of the classical
F. and M. Riesz Theorem and the weak-* Dirichlet algebras for which

these generalisations hold. We continuc this theme in Chapter 5

where we develop a sequential F. and M. Riesz theorem and show the




(iv)

connection between this and one generalised form of the F. and M.
Riesz Theorem.
In Chapter 4 we use some of the results of Chapter 3 to show

o

that there exists a unique extension of a weak-* continuous linear
functional defined on a weak-*Lirichlet algebra to a weak-*

oo
continuous linear functionzl on L . We generalise en-route a result

of Gleason and Whitney. We conclude this chapter by considering

the extension of certain positive linear functionals defined on a

weak-*Dirichlet algebra.




Preliminaries

We shall begin with some necessary definitionms.

-

Definition O0.1. A sup-norm algebra A on a compact Hausdorff

space X 1is a complex linear subalgebra of C(X), the algebra
(under pointwise operations) of continuous, complex-valued functions

on X, such that

(1) A is closed under the norm ||f||, = sup|f(x)|;

xeX
(ii)
(iii) A separates the points of X; that is, if x,y are distinct
points of X, 3 f ¢ A such that f£(x) # f(y).

We shall write VA for the set of invertible elements in A

that is : A f and 1/€ & A}:

log|V,| = {log[”!f feV]} \ {f
P8

denotes the complex conjugate of f. M, (without subscript is
i

A

no ambiguity ensures) denotes the maximal ideal space of A.
Unless specifically stated otherwise, by a measure on X we
shall understand a finite, complex Baire measure on X.
We shall make use of the Reesz represcntation theorem in the
form:

Every bounded (that is, continuous) linear functional ¢ on




CP(X), the real-valued functions in C(X), is induced by a real

measure  on X, that is,

o(f) = [fdy, V £ e Co(X).

Similarly, every bounded linear functional on C(X) is
induced by a (complex) measure on X,
We shall also make frequent use of (Edwards [1], Chs 2,8) the

Hahn-Banach Theorem and duality theory.

Definition 0.2. Let A be a sup-norm algebra on X. Let ¢ e M,

the maximal ideal space of A. A representing measure m, for

is a positive measure on X such that

p(f) = [fdm, /£ € A.

Definition 0.3. Let A be a sup-norm algebra on A. Let
d € M. An Arens-Singer measure, m, for ¢ is 2 positive measure

on X such that

log|o(£f)| = [log|f|dm, V £ € V,.

5

Since ¢(1) =1

, both types of measures defined above satisfy

fdm = 1, and are, consequently, probability measures on X

(positive measures of mass 1).




Definition 0.4. A Dirichlet algekbra A on a compact Hausdorff space

X 1is a sup-norm algebra on X such that the space ReA is

uniformly dense in CQ(X)q

1

Hoffman (Hoffman [2]) extended the theory for Dirichlet algebras

to a class of algcbras he called logmodular algebras.

Definition C.5. Let A be 2 sup--norm algebra on X. A 1is a

logmodular algeb

on X if the set of functions log|V | is

uniformly dense in C_(X).
A
This leads to
Theorem 0.1. If A 1is aDirichlet algebra on 2 compact Hausdorff

space X, then A is a logmodular algebra on X.

09
m
]

el
e}

Proof. Since, Vv £ € A, Ref = lo

~aey IF _ ~ - Y
f|, we have ReA ¢ log}]ﬁ,
But A is aDiriclhlet algebra. Thus ReA is uniformly dense in

/

C.(X) and so log|V.| DReA is uniformly dense in C_(X) and A
R > | ) !

is a logmodular algebra.

Theorem C. 2. Let A be a logmodular algebra oa X. Then, to
every ¢ e /M, the maximal ideal space of A cocrresponds a

unique representing mecasure for ¢, and this measure is a

Arens-Singer measure.




Proof. This follows directly from Hoffman [2], Theorems 2.1,

Srinivasan and Wang (Srinivasanand Wang [1]) extended most of
the main theorems of logmodular algebra theory (the exceptions being
the F. and M. Riesz theorem and the Kolmogorov-Krein Theorem)

to a class of algebras they called weak-* Dirichlet.

Definition 0.6. Let (m,X) be a probability measure space.

S . .
Let A be a subalgebra of L (m) under pointwise operations,
such that 1 ¢ A. Then A 1is aweak -* Duichlet algebra if and only

if the following conditions are satisfied:

(i) m is multiplicative on A; that is
ffgdm = ffdm . fgdm;'ﬁ/fyg e A;

(ii) A+ A is a dense subset of L (m) in the g(Ll.Lm)
topology.
To show that all logmodular algebras are also weak-%

Didchlet algebras we nced the following three lemmas.

Lemma 0.1. Let m be a probability measure cn a compact Hausdorff
space X, and g € Lé(m), the set of real-valued functicns in

Ll(m). Then

f(cxpog)dm z_cxp[fgdm]u




1
M
Proof. Since every g ¢ L?(m) can be written in the form

]

g =f+c where f ¢ Lé(m) such that [fdm =0, and c 1is a
: : ‘ : : 1
constant function, it suffices to prove this lemma for g ¢ Lo(m)

such that fgdm = 0. Since also, expog > l+g, we have

f(expog)dm 3_j(l}g)dm =1+ fgdm =1-= exp[fgdm]=

Lemma 0.2. Let m be a probability measure on a compact Hausdorff
space X. Let A be a logmodular algebra on X. Let g e L (m)

such that ffgdm =0, Vv £ € A. Then

flogl}_ﬂ ;i@m >0

Proof. et £ e V. . Then ffdm = f(i;g)fdm, and so

|[£am] < [I£]]L - g|dn;
and

log|[fdm| < logf|f||1 - g|dm.

Since m 1is an Arcns-Singer measure (Theorem 0.2), and feV,,

flog’f|dm = 103}ffdmi < logf| f|

or

f

dm] < [|£||1 - g|dm, V£ e V,

Ly

cxp[flog




Since A 1is a logmodular algebra, log|V,| is uniformly dense
YA

in CI{X)' and so

-
A

__f(expou)]l_— g |dm, v u e C (X) such that [udm = O.
Thus, L. ff(agohu)]l_— gldm = uxp[flog‘é_— g!dm]‘ by

Lemma 0.1, and the lemma follows.

Lemma 0. 3. Let m be a probability measure on 2 compact Hausdorff
. !
space X. Let g ¢ LR(m) such that

jlogllfty]dm > 0,

for every real number t in some interval ]t| < 6. Then

Proof. This is the result of Hoffwman [2], Lemma 6.6.

Thus we have,

Theorem 0.3. Let m be a probability measure on a compact Hausdorff
space X. Let A be a2 logmodular algebra on X. Then A is a2

weak-*Dirichlet algebra.

(m) such that

gQ
m
F=

=

Proof. It suffices to prove that, if




/fgdm = F}; V’ f £ A:

then g =0 a.e. (m).

Any such g satisfies Lemma 0.2 and so
flog|l - gldm > ©

and so, by Lemma 0.3, g = 0 a.é. (m).For 1 < p < », we define the

space Hp(m) by

the closure of A in the Lp~norm; and we define
o0 2 o]
H (m) = H (m) N L (m)

We shall show (Theorem 2.1.1) that H = [A]*, the weak-* closure
of A dn Lm(m),
Let A = {f e A : ffdm = 0} and define
“g(m)t L <p2= by
Hg(m) = (feuP - ffdm = 0}.

It is clear that for 1 < p < =,

P _ 1,
Hy “o]p'




INVARIANT SUBSPACE THEOREM

7500 ;
gl.1 L -invariant subspace Theorem.

For weak-* Nirichlet algebras the invariant subspace theorem
is the basic one., For A a weak-* Dirichlet algebra on a
compact Hausdorff space X, and m a probability measure
multiplicative on A, we define a closed subspace M of L2(m)
i 1

to be simply invariant if [MAU]D < M, "<' denoting strict
L

inclusion and A, = {f ¢ A : ffdm = 0}.
\V)

For such subspaces we have

Theorem 1.1.1. Every simply invariant subspace M of LZ2(m)

is of the form M = qHz(m); for some measurable q such that ]ql
and q 1is unique (modulc functions which are zero a.e) up to
multiplication by a constant function with absolute value 1.

To prove this theorem we need the fellowing four lemmas.

]
Lemma 1.1.1. Let we L7 (m) be a real-valued function. If
[fwdm = [fdm, ¥ f e A, then w=1 a.e. (m).

Proof. Our assumption means that




ff(ijw)dm =

But w = w, SO we

“ff(};wv)dm

Hence 1 ~w =0 a. T by the weak -*

Remark 1.1.1. Sinc . contains all constant functions, the

weak-:: density of A A is equivalent to that of A + :O’

We now prove

Lemma 1.1.2. .+ A, is morm dense

Proof. Take f € L2(m) such that ffgdn =

L2 (m) “'Ll(m), Remark 1.1.1 shows that

An appeal to the Hahn-Banach theorem

0

Lemma 1.1.3. B weak-* Dirichlet algebra on a compact

Hausdorff space X. m be a probability measure on bid

multiplicative on A, Then

(a) NA e Hz(m), fgcll(m) & ffgdm = ffdm : ngm’

/

\/ l ]— 00 o 5
(b) VEH M@, gel ()L fgyzj (m) and

[fgdm = jfdm




10,

Proof. (a) Consider f,g ¢ H2(n) = [A]Z.Tiin —| sequences
{fn}g(gﬁ} —- A which converge in the LZ-norm to f,g respectively,

iy 5 1
Now, fg ¢ L' (m) and

|| - | -f o o |
!ng fpgn‘l_||fg\ '1&!|1+ I'ch-*-fngnlll
e 1 Bl e
< [1E-£]1,01ell, + 11£]1,] e8],
and so {f gn} = converges to fg in th L'-norm, and so
fg ¢ H(n)
i ST | —£l ; —]
Since |[f dm - [fdm]| < |1£,-El 15 = [1£,-E1]
limj’ dm = ffdm.
>0
Similarly, limfgndm - fgdm:
no
and
limffngwdﬁ = ffgdm,
>
Also, since m is multiplicative on A,

[£ gndm = jfndm - jgndm.

Thus we have

r .
gdam Lin f g I
J fgdm 1n(f ngndn)

o

= lim(ffndm . fgﬂdm)
>

(l.imf fndm) 5 (limfgndm)
> o

= j fdm . fgdnu




Since f,o ¢

(b)
{fn}g{gl} — A which converge in the Lt-norm to f,g

Consider

g’(-g”l

e e —— 4
A canverges in the L'-norm to

- ] i 1 P
and so {f g .} L
n°k” k=1

fng € H&(J)A Also,

e - €1,

1!an gk ‘l = n

o0
and so {f g} &%, Hl(m) converges in the
n° n=1

o 1 «‘
the L -norm, and

l(t'\) is closed under

| [g dm-[gdm| < ||g, 8|,

limfgkdm = fgdmw

>0
Similarly. limffn‘m = ffdm,
< e
and lim limffngrdm = ffgdmu
e k> 25

Also, since m 1is multiplicative on

ffngkdm = ffndm - f”kdm~

Thus we have

-
1 (m) J sequences

respectively

f g.
£ 8

But

‘ow,

.

since




lim 1imffngpdm

n>o [k

ii:(ffndm . fgkdm)

limfgkdm

limff dm .
n
ea K00

n—-

ffdm . f0dm .

o

a real-valued funcjtion in Hp(m), 1< p < e,

f is equal (m) to a constant

Proof. Let ¢ = ffdm. Thus f(f-g)dm = 0. Now

multiplicative on A, and hence, by Lemma 1.1.3 (b)

[(f-0)gdm = 0, / g e A.
Since f is real-valued, this implies that
[(f-c)gdm = 0, V

Thus [ (f-c)hdm

and so f - ¢ =

We now prove Theorem 1.1.1, henceforth omitting

as Lz(m), when no ambiguity arises.

by the weak-* density of

function.

m is

A+ A.

in such terms

(m)




Proof of Theorem 1.1.1. Since [TL‘;O]2 <M, § q#0, qe¢MB®6 [%Ag]z.

Without less of generality, we may normalise q so that [|q|2dm = 1.

Then £ - [fdm ¢ AO’ and
ff[q[de = (fq,q) = ([f-[fdm]lq.,q) + ([[fdm]q,q) = ffdm

wherc the inner product is taken in L2 as a Hilbert space. Hence,

by Lemma 1.1.1, lq[ = 1. Now qA < MA Cl‘-iAO +McM+M=H

J

and, since M is closed, qH? = q[A]2 = [qA], <M.  Suppose
‘o

qH}f <M and let ¢ ¢ M O q}{'?. Then

fgafdn = 0,

Also, since gAOQZ'FLAT

ol Wwe have ¢ Lghy- That is

faéfdm =0, ¥V f£eA.

L2, Hence, by Lemma 1.1.2, gq =0 a.e.

Hence, since aH- 1is closed

That q is essentially unique follows immediately. For if
qH? = q'H? (|q] = |q'| = 1), then both qq' and E}q e H2 and
so, by applying Lemma 1.1.4 separately to ra(qq') and Im(qq")

we get qq' = c a.e. where c¢ is a constant function and !EJ = 1.




14.

Remark 1.1.2. Since all logmodular algebras are also weak-*

Dirichlet (Theorem 0.3), Theoremlll implies Fheorem 1.1.2, the

invariant subspace theorem for A a logmodular algebra.

Theorem 1.1.2. Let A be a logmodular algebra on a compact

Hausdorff space X. Let m be a probability measure on X,
multiplicative on A. Suppose that M 1is a closed subspace of
H2 such that MA<- M, and that = at least ome g e M such

that fgdm # 0. Then = a function q e H2 such that

(1) lq] =1
and (ii) M = qHZ2.

The function q is unique (modulo functions which are zero
a.e.) up to multiplication by a constant function with absolute
value 1.

For A a logmodular algebra and M a closed subspace of HZ,

we shall show the equivalence of the hypotheses of Theorem 1.1

Theorem 1.1.2. That is, we shall show

(i) If M is a closed subspace of HZ2 and fMAO]Z < M,
then I g € M such that fgdm # 0, and MA < M;
and (ii) If M is a closed subspace of H? and MA< M, and
Jg € M such that fgdm # 0, then [MAO]Z < M.

In (i), since each function in A can be written as the sum

of a function in AO and a constant function, it is easily scen that




MA 7 M. Lemma 1.1.3 ensures that m is multiplicative on H2,
and hence, on [MA],, and so the strict inclusion of ['vIAO]2 in
ensures that 3 g e M such that [gdm # 0.

1
I

In (ii) we have MAOCT MA < M. Since M 1is closed, this means
that [MAD]2<; M. However, as in (i), we have ffdm =0V fe [HAO]Z,
But by hypothesis < g € M such that [gdm # O.
Thus g e M \ [{10]2 and so {MAO 5 < 1.
Remark 1.1.3. In Theorem 1.1.2, the hypothesis that I g e M
such that fgdm # 0, 1is an essential one.
We shall give an example to illustrate this point, (Hoffman
[l e L02).
Let X be the torus Choose and fix an irrational number «,

and let A be the algebra of all continucus functions f on X

such that

..’1 L
sl

)
<

1 . -ike -iny
a [T (™ £00,9)e 0™ g0qy
S

Lt
is zero for all pairs of integers (k,n), save perhaps those belonging
to the half plane where k + ng > O. Now A 1is a Yirichlet

algebra, and hence both a logmodular algebra and a weak-star-Duichlet
algebra (Theorem 0.1.1 and Theorem 0.1.3).

If dm = L dedy
42




1€

H2(m) is the space of square summable functions on the torus with

Fourier series

0,

f = ) %K
k+ngﬁ? A
where ( le,glv) clnglnw,
kn
If we take M to be the subspace of functions for which 250 =
then MA< M but M is not of the form M = qH2?(m) for a
measurable q such that |q| = 1. To sce this suppose that
M = qi2. Since |q] =1, qg=1 and so H2 = q-lM = gqM.
Also, since 1 ¢ HZ q e M. Thus, fqdm =0 and q(k,n) = 0, if
k + na < 0, where g(k,n) is the coefficient of 8 in the Fourier
series for q. Thus,
q = Z q(’&,n)ckn
ktne> 0
(k,n)#(0,0)
and so
B ol S
tn |
Efhc <h kn kn

(k,n)#(0,0)
Let f £ M. Then
£f= ) f(k,n)e, .

k+n@>0
(k,n)#(0,0)




fafdm = y a f(k,n) e
p+q%§Q P4 /
(p5q)#(0,0)

ktnag>0

(k,n)#(0,0)

kk+p,nt+q

_<_ 2 a f(—p9~Q)
p+qo<0 Pq

(p,q)#(0,0)

a f(-p,-
pq(p,q)s

p+aa=0
(p,q)#(0,0)

which is an empty sum since o 1is an irrational number.
=2 e
Jqfdm = O, o Ee M

which contradicts H2 = qM since 1 e H2.

Remark 1.1.4. When A is the algebra of all continuous complex-
valued functions on the unit circle which have analytic extensions
to the interior of the unit disc, and m is the normalised Lebesgue
measure, the situation reduced to the case of the shift operator

“multiplication by j"




18.

From this point on, we shall use A to refer to a weak—*
Dirichletalgebra on a compact Hausdorff space X. We shall refer
to Theorem 1.1.1 as the "L4-invariant subspace theorem" and we

ghall generalise this theorem to LP, 1 < pig o,

8ilve2 Some results concerning outer functions.

Before doing this, however, we need some preliminary

results. Tirst we need the concept of an outer function.
Definition 'L.2.1. A function h ¢ Hl = (A]l is said to be outer
if [hA], = H'.

We note the following about outer functions.

Note 1.2.1. If h is outer, then h # 0 a.e. and [hdm # 0.

In particular, h ¢ [hgo]la

Proof. That h # 0 a.e. follows directly from Definition 1.2.1.
THE fhdm = 0, Lemma 1.1.3 (b) ensures that [hﬂ]l < Hl which

contradicts Definition 1.2.1.

Note 1.2.2. If h, h' are outer and |h| = |h'|, then h = ch'

where c¢ 1is a constant function such that IEI = 1,




Proof. We first observe that, since
some measurable gq such that |q

o : 1
[gh A]l = q[h'A 5 qi~, so both

applying Lemma 1.1.4 separately tc

Note 1.2.3. Let HZ, b4 r if and only if
[hA] 5 = HZ.

Proof. (i) > - Then, [hA]l =

and so h

¥

atatd) Let h be outer. Since [[hﬁerU

by Letrma 1.1.3 (b), Theorem 1.1.1 applied to M

[hA]2 = qH2 for some measurable q such that lq] = 1.

since h 1is outer;

(hal, = [(nal,)) = [ai]; = qlH2]) = i

=1 and [hA], = H%.
From now on, we shall use q (with or without subscripts or

superscripts) to refer to a measurable function everywhere of

absolute value 1.




gl 30 Factorisation Theorems.

Theorem 1.3.1. If £ e L2 and f #£ [fAO]7’ then f = gh, where

h ¢ H2 is outer, and q € [fA]Z.

Proof. Our assumption implies that [fA]2 is a2 simply invariant
outspace of L2, Hence, by Theorem 1.1.1, [fA]2 = qHZ. Thus,

f = qh, some h € HZ. Now,
qlhal, = [qhal,

thus we have [11:1.]2 = H2 and hence h is outer (by note Y23 i
Aliso; ‘simnece { € H2, q € qH? = [fA]Z.

Theorem 1.3.1 is actually a generalisation of a factorisation
theorem due to Bernling and Nevanlinna (Benrling [1]), which

applies to functions f in the Hardy space H2 for which ffdm # 0.

We now prove

] 1
Gopollary 1.3.1% If & & Lt and |fi"/Z ¢ [|f] /ZAO]Zy then

f = qh?, where h e H? is outer.

- 1/2 L
Proof. By theorem 1.3.1, [f] / = q1h, where h ¢ H¢ is outer.

Thus we have, for

sgnf = FET if

g A




2L,

Bl 1f2
|£]

1 " o ‘
= (sgnf) | f] / = (sgnf)qih‘ = gh?4 where q = (sgnf)qi.

Gorellary 1:3.2. If £oe 713 then !fll‘/2 ¢ [if\l/éAO]Z if
and only 1f £ ¢ [fA_ ]l..
0=1
Proof. Suppose first that |f]l/” [‘f[l/ Yoiw  vERE
L
= (sgnf)lfll/é. Then
F /2 1/2, 1/~ R
f = fllfl £ [ £]™ "ap) ,Z 1 l|f| = [£A,];-
)

Thus, if £ # [fAO]“ then if[l/z ¢ [ifil/bﬁoi)g Now suppose

12
| £ ] - ¢L|f |l/L O]Z° Then, by Corollary 1.3.1 f = qh? by,

where h e H2 1is outer. We need to show that h? ¢ H2 B> H!

(Lemma 1.1.3 (a)) is outer. Now, since h is outer,

hA < hH2 = h[hA], <[h?A]

1

Hence H D [[hA]Z]lCL,[bZA]la But, by Lemma 1.1.3 (a)

h? ¢ H', so [hZAJl H', and so we have [hiA]l = H* and
3.
2 v i uter Now - h2A ] = qF
h? ¢ H' is outer. low [fAO] [qt 011 qloy but
f = qh? ¢ [fAO]I’ by Note 1.2.1, and hence result.

Corollary 1.3.3. If fe Ll and £ ¢ [fAj];, then £ = Fh,

where h & H2 is outer, ‘h[z = If[ and F ¢ [fA]l4\ L2,




22,

Proof. By Corollary 1.3.1 and Corollary 1.3.2, we have f = qh?,

where h & H? 1is outer. Let F = qh. Then F e L2. Thus
f=TFh with h e H2 outer, and, since |q| =1, |h]|2 = |£].

Further, F e FHZ = F[hA], [Fm]l = [fi\]l.

2

Remark 1.3.1. Since m is multiplicative on A, we have A and
&, as orthogonal subsets of L2, It follows from Lemma 1.1.2 that

L2 = B2 & H2; or, equivalently,

2 = {f ¢ L? : ffgdm =0 VW gedl. (i)

Since £ ¢ gl implies ffgdm =0 Y o e A (by Lemma 1.1.3 (b)), we

0

see that Hz,“«H]V) L2, Trivially, g2 Hl L2 and so we have

H2 = ' L2 (ii)

= " _ @ =

Since, by definition, H = H® » L we have also

B ={fel” : [fgin=0 ¥V geAj. (iii)
and

B =" 6L . (iv)

We now prove

Corollary 1.3.4. H = {f e Ll ffgdm =0 Y geAl.




fpgdg =80 k/ grie AG Since also F

0
Remark 1.3.1). Thug, £ = TFh e B

N

.H2

and the proof is complete.

Proof Clearly, ‘if £ ¢ Hl then Lemma 1.1.3 (b) ensures that
ffgdn =80 s ANe o AO. Conversely, consider £ ¢ Ll such that

ffgdm =0, v ge An‘ By zeplacing f by f + ¢ for some constant
function c¢ if necessary, we may assume that ffdm # 0. Then

f ¢ [EAO]l and so, by Corollary 1.3.3, f = Fh where F ¢ [fA]l L2,
and h ¢ H2 1is outer. Since T ¢ [fA] it follows that

l'1

e L2, T g HZ (by (1),

“

-~ ", by Lemmz 1.1.3 (a),

Corollary 1.3.5. 1If fe L' and £ ¢ [fAj),. then £ =qh,,
where h, ¢ H is outer, and q ¢ [fA]l. The converse is also
true.
Preof. Suppose f ¢ [on]l. Then, by Corollary 1.3.2,

) 2
ff[l/z ¢ [if]l/hz\.]_1 and so, by Corollary 1.3.1, £ = qh?,

is outer. As in the proof of Corollary 1.3.2, if

]
h e H# 1s outer, then h4e H is also outer. Let h-. = h2.

1 N Faioia
qe qit = q[h,u]l = [qh,A]l

and hence f is of the stated form.

1

[‘c..‘\]l




The converse follows from the fact that, since hl is outer,

\ N = =
hl ¢ [h A (Note 1.2.1), and so, f th ¢ q[hlAO]l

14011
[ah,a ), = [£40),.

Lp—invarinnt subspace Theorem.

Consider p such that 1 <p < 2. Define the number

1
r

+-% = 1/p. Then p/t + p/2 =1, and sa ¥fp and 2/p

conjugate indices. We now prove the following two lemmas.

Lemma 1.4.1. , then fng, fg ¢ P,
If, further, {fn}c: L2 converges to f in L2, then
{fng}QIZLp converges to fg in i,

2
£ ¢ L /p

Proof. Since f e L2 and g ¢ L® we have and

gp € Lr/p. Thus, by the H5lder inequality, fpgp = (fg)p € Ll,
and hence fg ¢ Lr Similarly, fng e LP. Again by the Holder
inequality, we have

|1 -0l < [1£ -] ke

and hence

e g-tsll = 11¢e-Dell < [1£,-£11,]lell,

o

and so, since {fn}<:,L2 converges to f in L4, we have

{fng}Cf-Lp convergent to fg in F,




Lemma 1.4.2. Let 1 <p < 2. before. Te g ¢ LF

and f ¢ [f;’\o]p9 then f = Fh, { is outer, and

F e [£A] n~ LY.
D

Let £, = L
i O £ _A
,le‘ Also, £ [LZ&O]Z,

]2, then f = flf2 € fl[szo]Zf‘, [flf2f~,0]p = [f[\o]p,

since, if

fZ € [fzgo

by Lemma 1.4.1, which is contrary to hypothesis. Hence, by

and h e H?

Theorem 1.3.1l, we have = gh, where q e [f ]

262
is outer. Let = f_q. Then, since f] e L' and Iql = %,

;s

A - H2 = A A = X
EAchL=¢ Also, F € fqu flq[hz]zc:,[flthlp [fA]p, by

Lemma 1.9.1. Clcarly f = Fh and hence result.

Corollary 1.4.1. l<p <=, then wP = Q’r\ LP,

Proof. We have already shown in Remark 1.3.1 that the statement

is true for p = 2,=. Tt ds trivial' fexr' p'= L We shall prove
it to be true for 1 < p < 2 by use of Lemma 1.%4.2;  and for p > 2
by a duality argument.

a1, 1o

Let I <p < 2. It is clear that WP = u
show the reverse inclusion, consider any f € EH n LP, We may

suppose, by considering f + ¢ wvhere c¢ 1is a constant function, if




necessary, that ffdm # 0. Then £ & [fA.] and so, by Lemma 1.4.2,

0'p

f=Th when h e H2 is outer and F ¢ [fA] n Lrs r defined
P

as before. Since D < r > 2, and so F ¢ L2. Also,

F ¢ [fA]p;' Hl ince - . Thus, F gtllﬂ L2 = HZ ((i)

-

Remark 1.3.1). In particular, since 1 <p < 2, F ¢ Hpg and so

f = Fh ¢ FH? = F[A],. But, since F ¢ : S

b

1
F[A]ZC_‘[FA]pC;i- and s ¢ H’. Therefore HP =H n LP

for every p tisfyi 3 No e 2 <p<x

Again it is clear that

here. It suffices to show that, if g ¢ LP

: . | P 1 . +P ;

is such that g L H, then gl H n L. Wz have, by hypothesis,
1

fgfdm s Y e so, by Corollary 1.3.4, g e H Since

\J >

also 1 ¢ it Thus, since 1 < p' < 2, what we have

already

Hence ' ; AO which converges to g i 1P

so that

r

limjfgnam = fféﬁm, ¥ £ g &"W P,

n>«
A 1 P
Thus, making use of Lemma 1.1.3 (b), g 4 H n L and our proof

is completed.




Corollary 1.4.2. If 1 <p < =, then

WP = (£ cLP : [fgdn =0 V¥ g e Ayl

Proof. This fact follows directly from Corollary 1.4.1 and
Corollary 1.3.4 and is a generalisstion of Corollary 1.3.4.

We now wish to prove the invariant subspace theorem for general p,
o< p; < ot Here, 2 subspace M of P < p < ») 1is said to

8 <o (This

be simply invariant if M is norm closed and [HAO -

agrees with our earlier definition for p = 2.) A subspace M

o5}

of L is simply invariant if M is weak-*r closed and

[MA

O]*< M. We now have

Theorem 1l.4.1. (Lp—invariant subspace Theorem). Every simply

D
invariant subspace M of Lpf l1<p<e, is of the form M = qHL

for some measurable gq such that |q| =1 (and trivially convesely).

Theorem 1l.4.1 reduces to Thcorem 1.1.1.
we shall use Lemma 1.4.2. For p > 2 we shall
use a duality argument.
Let 1<p<2. Put N=MnaL2,  Clearly N is a closed
subspace of L2, We first show that N is non-zero. Since

[NAO] < M, = fiE M‘\[Mho]p. Thus £ ¢ [EA and so, by
P

il

]
0"p




Lemma 1.4.2, we can write f = Fh where h ¢ H2 is outer, and

F ¢ [fA]D‘: Lrs r defined as before. Now,

[fA] n Lfc MA] n
p p

N is non -zero. Also, F ¢ o)y since 1if
0

A N, A g1 A \ Al - 1 A
Fh ¢ FH ‘F[n]2 [Fn]pC [[Nun]znjpc_[NAo]pC [,\mO]p

contrary to our assumption on f. Combined with the fact that

[NAO]2 ”'[MAO]lC;Iﬁ N12 = N, this shows that [NAO]2 < N is

simply invariant. Hence, by Theorem 1.1.1, N = qH2 for some
measurable gq such |q] = 1. We shall now show

with the same q. We have, already, qA< qli2

qiP = alal, = [qA]p c:[u]p =M. If we take f ¢l

as before, we know that f can be written as f = Fh where h ¢ H2 ,
and, as shown earlier, F ¢ N = qH2. Thus, af e H2 and

af = qFh ¢ H2.H2 ¢ Hl, by Lemma 1.1.3 (a). Hence qf ¢ Hlxw P = uP,

by Corollary 1.4.1, and so f ¢ qu.

3

This gives us the inclusion

M\ [yl < Q. Now, 1f g e [MAJ]  and £ e MN[HA(],

then £+ g e M \[Tgo]q. From the nrccceding discussion we thon

hove f, f+ge qi®. Hencc g e qiP also. Thus M = qHP

and the¢ theorem is proved for 1 < p < 2,




P-

N ={feLP : .V g eM]}.

Clearly N is a closed subspace of LP and NA < N. We shall

Jesh <N Since M_ <M 3

show that D%Op 0 M 3

7 non-—-zero continuous

(weak-"" continuous if p = ») linear functional & on M which

e L 2 ) . D'
annihilates M.. ® is realised .by a function f ¢ L°
0 4

and, by the checice of ¢, f ¢ N. Since ¢ is non-zerc on M,

3 g € M such that ffgdm # 0. This fact, combined with the

definition of N implies that £ ¢ [NA ! Hence N is

simply invariant. Sinee 1 < p"

first part of this
proof applies and we can write N for some measurable q

such that q|l = 1.

By duality theory,

This fact, combined with Corollary 1l.4. leads to

We shall show that M = qu. If fegMd and g € AO,

fg ¢ EM'\OQ;_EMO =




and so, ffgdm = 0, and hence, by Corcllary 1.4.2 f ¢ uP,
shows that EN_C;HP, or ‘M qu.

Now, since each f ¢ H? can be written in the form f = g tc
where g ¢ Hg and c¢ is a constant function, Hg is a subspace of

HP  of codimension 1, so that MO = qﬁg is a subspace of qup of

codimension 1. Hence; either M = qu or M = MO. The latter
is impossible since M 1is simply invariant, and s0 M = qu and
cur proof is completed.

We shall now add to our discussion of outer functions.

prove

Corollary 1.4.3. heBHP, 1 <p <o is outer if and only if

[ha] = HP.
P

Proof. (i) Let [hA]p

[hA], = [[haA] ]

1, pL

r

o 7
= [#P], = H

and so h 1is outer.

1
(eisic) Let h be outer. Thus [hA]] = H .

Since h ¢ [hﬁo] s ha is an invariant subspace of Lp, and
) P
qp

so, by Theorem 1l.4.1, [h,‘x]p = qH", for some measurable q such

1 V7ﬁ
that |q| = 1. But H = [hA]l = [[hA] : i = q[Hp]l =
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— i R, 1 . ;
Hence q and q = ¢q belong to H and Lemma 1.1.4 implies

that q = constant function = 1, Thus [hA] = qu = uP.

= p
Corollary 1.4.4. If felP, 1 <p<ow and f¢ [£A,] , then

I P
f = qh where h #’ is outer and q e [EA] .
Proof. Our assumption implies that [fA], is a simply invariant
subspacc of i Hence, by Theorem 1.4.1, [fA] = qu,

o |

and so f = gh for some h ¢ HP. Now

q[ht = [qghA] = [fA = quP
Al = [ahal ) = [£4] = q

and so we have [hAIp = Hp, and hence, by Corollary 1.4.3, h is

outer,
o D
Since 1 ¢ H’, q e qHP = [fA] .
P
S 2-invariant subspace Theorem implies A + A weak* dense in L

We show first that the LZ-invariant subspace Theorem

(Theorem 1.1.1) implies that A + Aq is norm dense in L2:

. 7 . . i . =
and then that A + AO norm dense in L4 dimplies A + A 1is weak

(o]
- dense in L

Assume Theorem 1.1.1 holds. We prove the following with this

assumption.




Theorem 1.5.1. L2 = H2 P

0

7 A ]

Proof. et M 2 H Then [ <M and so, by

MA

2
Theorem 1.1.1, M = qH2, some measurable q such that
Since 1 eM, qeH2. Let c= [qdm. Then q~-C ¢

q-Cce¢ ﬁ%. AR BY . T, ¢ ¢ M, and thus q -

It follows then that q - c¢c =0

Corollary 1.5.1. That A + AO is norm dense in follows directly

from Theorem 1.5.1
We need also

Corollary 1.5.2.

" 1.
Clearly H2< H n L2, Now consider f ¢ H n LZ2.

An and so H2, Thus, by Theorem 1.5.1,

U

and so H & L& H=,

1 1 :
Corollary 1.5.3. 1 : [fgdm =

1 - \ ;
Proof. Cleaxrly, i1f & e H , =Ehen ffgdm 0, ¥ g & Aye New

T i

consider f ¢ L such that [fgdm =0, ¥V g e A By replacing

0"

f by f + c for some constant function ¢, if necessary, we may




assume that [fdm # 0. Then f ¢ [fA ]

ol1 and so, by Corollary

1<3:8, £ = Fh where F e [fA]lf? L2 and H2 is outer. Since

F ¢ [£A] it follows that ngdm =10, e Age Since also

1’
F ¢ L2, we have, by Theorem 1.5.1 F ¢ HZ.
by Lemma 1.1.3 (a).

We are now in a position to show that the truth of Theorem
1.1.1 implies that A + A is weak-* dense in L . In doing this
we shall use the Jensen inequality (Corollary 2.1.3), our proof

of which will depend only on Theorem 1.1.1, and Corollary 1.5.3 which

we have just shown to follow from Theorem 1.1.1.

= = A 1o}
Theorem 1.5.2. A+ A 1is wealk-* dense in L (m).

Proof. We need only show that any g ¢ il

&

ffgdm = 0 for every f ¢ A, Suppose g # 0 a.e. (m).

(m), such that

By Corollary 1.5.3, g ¢ Q‘; and, since 1 e A, fgdm = 0 and so

g € U%. Thus 1 - tg e }}, VWV real t, and so, by

Corollary 2.1.3 (Jensen inequality). we have
[log|1-tg|dm > log|[(1-tg)dm| = O.

Thus, by Lemma 0.3 ¢ 0 a.e. ().
From this we can see that the conditions nccessary for A to
be weak % Dirichlet are the best possible such that the invariant

subspace theorem is true for this class of algebras.
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CHAPTER 2.

H AS A LOGMODULAR ALGEBRA; SZEGO'S THEOREM.

o0

8251 H as a logmodular algebra.

We now look more closely at H . We shall show that H
is (isomorphic to) a logmodular algebra on the maximal ideal space,
iy of Lw, and then apply to H  some known results about

logmodular algebras. e first prove

Theorem 2.1.1. Let A be a weak-* Dirichlet algebra. Then

Proof. We first show that ﬁwiD [Al,. Consider any sequence
{fn}ci Hm, which is weak-* convergent to f ¢ ghe . Then

1im fgf dm = fgfdm, V ge Ll. In particular, lim fgfndm =
> = o
[gfem, ¥V g ¢ 4  But,by Corollary 1.4.2, fgfn w0 ¥ ge Ays

for each fn' Hence fgfdm =0, Vgce A09 and, again by Corollary

L2, feH.

To establish e [A]l, we shall show that every linear

[+

. 1
functional & on L given by an L function £, which

vanishes on A also vanishes on H . Thus @ (g) = fgfdm = 0, \v4 g €

A,




so, by the use of Corollary 1.3.4, 2513 Since also
e
£ e M Hence,

> !Lon

V 8 € Hx5 ffgdm = [fdm

the theorem is proved.

Corollary 2.1.1. For every p satisfying 1 < p < =,

H c HP and [H""]p = ®P.

: ; -P .
Proof. Since every norm closed subspace of L°, 1 < p < = is

5

oo
also weakly closed, H Q:.Hp5 1 < p X ooy Thus we have, since

uP

b

HP 4s closed, [H ] < HF. H—= A, so [H] >I[Al =
p p p

-
Thus [H ]p =1 whenever 1 < p < =, If p ==,

H is weak-* closed (Theorem 2.1.1) and therefore norm closed

Clearly, 4if £ & V,

e V}.

Also, let ~ denote the set of all real-valued functions in

n

(es]

Tt s Then we have




Lemma 2.1.1. log|V| = Lf.

Proof. Clearly loglvicj L?. Now consider u ¢ Lgs Then,

since 1 ¢ H2, e" ¢ [e"A ]. = e"H2. Hence, by Theorem 1.3.1,
o= 0 02 0 %
e = qh, where he H2 and q ¢ [e®A]l, = ¢'H2. Thus q = e h'
Z
and, since |q| ,h' ¢ L” and so h,h' ¢ H2p L” = H .
4 u, g m
But, now, e gh = e h'h so that h'h = 1. Thus. h g V

u = log|h| e log Vi.

Remark 2.1.1. Under pointwise operations and the essential supremum
norm, Lw(m) is a Banach Algebra. Let ) be its maximal ideal
space. We know (Hoffman [1], p.169ff) that || is a compact
Hausdorff space and that the Gelfand mapping £ % is an
isometric isomorphism from Lm(m) onto C@Gi). the space of all
continuous functions on !, and this mapping preserves complex
conjugation.

Since this isomorphism is onto, every function in C¢{) 1is
of the form % for some f ¢ Lm(m), If we let @(%) = ffdm,
we get a bounded linear functional on C(f). Then 3 a Radon measure

m on M such that

0(f) = [fam = [fan, ¥ £ L"(m).




We now look at the relationship between Lp(m) and Lp(m),
1l <p <o, First note that the Ge]l fand mapping preserves
positive powers of non-negative elements, and, since it preserves
complex conjugation, (Hoffman [1], p.170) it also preserves
absolute values.

Consider f ¢ LP(m). Since L (m) is dense in LP(m), 3

N o . ; D -

{gan: L (m) convergent toc f in the L (m)- norm. Hence,

we have that {gn} is a Cauchy sequence; that is

lim figu~gk}pdm = 0.
n, k>

. (1 :
lim J;g,
n ) k—.cw

and so {g } << 1P(@m) 4is a Cauchy sequence. Let f denote the limit

T

of 1gn} in Lp(m). Consider any other scquence {hn}<: L” (m)

which converges to f in the Lp(m)~norm_ Then we can show that

lim

and hence

Thus f 1is uniquely determined by f (modulo functions equal
to zero a.e. (m).).

9

' o ‘ i :
Conversely, consider g e L (m). Then o {g




that (gn} converges to g in the Lp(m)~norm. Hence

lim  [|g_-g, |Pdm = 0,

< k21 Sl

n, k»>w
and so {gn}C: Lw(m) is a Cauchy sequence in LP (m). Suppose
{gn} converges in the LP-porm to f ¢ LP (). Then, by our
previous argument, {gp} converges to f ¢ LP(m) in the Lp(m)—norm,
and so g = f.

Thus, the mapping f + f sets up an isometry between Lp(m)
and Lp(m) and this isometry is an extension of the mapping
f = f from L (m) onto C(').
Now suppose f ¢ Lm(m) is the image of f ¢ L’ (). Consider
5 prAls s Q5 s - : 1 o

g € L (m). since L (m) is demnse in L (m), J {gn}g: L (m)

N 5
which converges to g in the L (m)-norm. Noting that gf = gf,

we have
[lg f-g, fldn = [|g £ - g fldm < [|£]]_ [|g_-g,|dm

and so {gnf} converges to gf in the L'(m)-norm. but

|fg fan| < [lg_£lan = ||g_£|; < [1£]]_]le_ll,-

Hence |[gfdm| i»li%l,wl[glll, so that f ¢ L (m) and hence

£ e CGI5 This shows that every function in Lm(m) is equal

a.e. (m) to a continuous function.




o0

H is a subalgebra of C(/) closed
under the supremum norm, since H® is a weak-* closed, and
hence norm closed, subalgebra of L"(m).
We have alrcady noted that the mapping £ f preserves absolute
values and positive powers of non-negative elements. By the

Stowe-ileierstrass Theorem, for every f ¢ V, log fl is the uniform

limit of polynomials of the form

k=0

But from above

= n
[l = ok
Ei5) I = E qk1fl .

‘Tct
k=0 k=0

and we may conclude that (log|f|) = log|f].

Thus, we may restate Lemma 2.1.1 a

log|V| = CRMQ)Z

where V ={set £ ¢ £ and 1/f g H }. Since CRCZ) is a

(5o

separating algebra of C(¢!/) so is log|V|, and hence also is H .

Immediately we have

Theorem 2.1.2. i is a logmodular algebra on [, the maximal

ideal space of

00

Because H is isomorphic to E we can omit the

00

and consider H a logmodular algebra on the maximal ideal space




Appeal to Theorem 7.1 in Hoffman [2] now yields

Corollary 2.1.2. The maximal ideal space M of

embedded in that of H as its Shilov boundary.
Je also have, by Theorem 0.2, that there exists an unique

Arens-Singer measure m such that [fdm represents a complex

homomorphism on H . We can thus prove

Coroldary 2.L.3s (Jensen inequality).

log ffdm? i_flogif!dm 4

Proof. Let f e H and § > 0. Then log(|f| + &)

Hence, o u ¢ log|V| such that

i - &

5 A Al i =
If u = loglg|ls & & Vs let h=1fg ". Then h

by the right hand side of (1) log]h? TG Ehat Ry
lh‘ <expo§ on M and so

g

o] ﬁdm! < [|h]dm <f(exp o §)dm = e

Thus, |f%dﬁ|][éd&lwl : egs and so

log ffdﬁ{ - log.fgdm\




m 1is an Arens~Singer measure and g ¢ V, we have

log|féd6] = floa g Sl = fu dm.,

log !)‘ffdm! < 26 + [log(|f| + &)dm.

|

& tend monoto ly to zerc to obtain

iog*f%dm{ o -'Dlﬁdm_) 4

i

Since m is an Arens-Singer measure woe get equality for

8122 More about Outer Functions.

Before using Cor 2.1.3 to help prove Szegd's theorem, we

need some more facts about outer functions. We prove therefore,




Lemma 2.2.1. Let < pr< o, h # 0 .e. (m) and

fhdm =)\ #0, then h e H? is outer if and only if

=i hve [AO]

LP (|r|Pm)

Proof. Suppose 1 - A/h € [AOJ -
LP (|n|Pm)

such that
e PP

lmf[£_ - (L - A/b) |h|Pdm =

n*.’k\l 4
- i L
Thus \ e[ DA and, since )\ #
[hA]D Hraet so, by Corollary 1.4.3; h is oute
implication in the proof is reversible the convers

it

Szegb's Theorem.

Theorem 2.3.1. (Szegd).

Then

inf fllfflpwdm = exp[flog w dm],

fEAO

. 2 : 5 S 1
where [log w dm is defined to be -» if log w ¢ L (m).

Proof. Consider f e A,. Let & > 0 and apply Lemma 0.1 to

log(!l;flpw + &) e lé(m) to get

[(|1-£|Pw + &)dm > exp[[log(|1-£|Pw




That is

fLL - flpwdm + & > exp[flog(f}_— f[pw + §)dm].

Let & tend monotonically to zero to obtain
f}l_- flpwdm
By Jensen's inequality (Corollary 2.1.3),

flngll_— £|Pdm > P logif(}4w f)dm| =

exo[flogwdm] v

9

and so

inf f‘}_— f!pwdm :_uxp[flogwdmj
fe A: )

which is one half of Szegd's Theoren.

To prove the reverse inequality we can assume that the

infimum on the left hand side is positive. Then

/ 1 <
/P ¢ [}/Pa 1, so that, by Corollary 1.4.4, w'/P = qh where
U p

P . = |xg] = (B2 St = P te
h & H is outer, and w = |w| = |h| . Since h e H is outer,

we have, by Lemma 2.2.1, that

5]
> Lp(lh’pm)




inf [|Li= f’pwdm =

fgio

which is the distance of

Hence,

inf [|1 - £|Pwdn
FeA

9

That is,

Nl Y

inf [|1 - £|P|h|Pdm

feA
U

in 1P (|n|Pm).

‘C

,

2/0)|P|h|Pdm

A|P = | [hdm|P =

[hdm | P

exp(log

r N | [‘ . :
exp(/log|h|“dm) by the Jensen inequality

exp (/ logwdm).

< cxp(fiogmdm)a

Hence result.

Corollary 2.3.1. If

floglf‘dm >

-0
°

Eraof.

1/2

By Corollary !

12

[81 =% el ™ Tagls

That 15,

f ¢ [fA.]

0 if and only if

then
il

a by &

f ¢

[£A,]

£A_ and only if

1

if and only if




inf f}ff'l_~ g| dm = exp([log| f|dm)
g¢ A 0

Hence, left hand side positive implies {log}f;dm > —o, and

hence result.

Corollary 2.3.2. If £ ¢ LP and [log| £|dm >

where h ¢ HP is outer and conversely.

~

Proof, Let f e LP and [log|f|dm > -=. Then, by Corollary

2u el i BN and so, by Corollary 1.3.5, £ = gh,

P

where h ¢ H' is outer. Since = |h|] and £ ¢ L then

1
Thus  hi e H a0 LP = Hp by Corollary 1.4.1. Since

each step in hthe proof is reversible the converse is true.
We are now in 2 position to prove a further Corollary of
Theorem 1l.4.1:

1

Corollary 2.3.3. Let < < o : = L , the following

three conditions arc cequivalent:




(ii)

(iii) [log|f|dm > -=

Proof. (ii) = (i).

/[ &
1,/}3; [|F:l/p 1 Let

TR |
Assume | f | A\‘)Jp.

wvhere 1/p + 1/p' = 1. Then

el

11 1/p
% Himd/s

£l A
1 O'p

(ii) <= (iii)

This is simply Corollary 2.3

(1) = (iii)

Assum

= qh where h ¢ HP  is outer, and so,

Hence, by Corollary 1.4.
.

by Corollary 2.3.2 Log | = ﬁflotif fldm > -

[log| f|dm > -=.




§2.4 Kolmogorov~Krein Theorem.

E'\ N
v

For those weak-*Dirichlet algebras which are also logmodular, an

extension of Szegd's Theorem (Theorem 2.3.1) holds. This extension
is known as the Kolmogorov-Krein Theorem. In fact, Lumer (Lumer [1])
showed that this theorem holds for all sup-norm subalgebras of C(X)
such that M = {m},V ¢ e i/, where M, is the set of representing

b
measures for ¢, and M dis the maximal ideal space of A. Je shall
combine Theorem 2.32.1 (Szegd) with an adaptation of a result of Hoffman
(Hoffman [2] Thecorem 4.3) to show that the Xolmogorov-Krein Theorem holds
for those weak star Dirichlet algebras which have the property th-t
We shall then show in §2.5 that this property

necessary for the truth of the Kolmogorov-Krein Theorem. We

now prove

Theorem silw

compact Hausdorff space X, such that
probability measure on X, multiplicative on A.
positive measure on X not necessarily multiplicative on

Lebesgue decomposition of u with

- 2
fli - £]%du

fe I.LO
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Proof. Let F be the orthogenal projection of 1 dinto

[AO]Lz(u)' Then

[11-F|2du = inf [|1 - £|2dy.

fﬁlo
IS N AO, (I-F) L £ in L2(y). Choose a sequence {fn}(: AD
which converges to T in LZ(u). If f ¢ Ay» then
{£~fn)f € Aog since AO is an ideal in A. Since f is bounded
{({*fn)f} converges to (1-F)f in L2(y), and so
(1-F)f [AC]LZ(Q)" Hence (1-F) 1L (1-F)f. That ds.
[£Q-F) (1-F)dp = [£|1-F{2dy =0, YV f ¢ A, (1)

. Fl 2 sy e v E X
Let K = f]l;F| dy . K=0 if and only if 1 [“O]Lz(p)'

If K> 0, the measure u, =K 1;Ff2u satisfies

ffdul = ffdtm VY f e A.

In fact, this statement is true by (1) for f ¢ Ao; it is seen

to be true for f € A by noting that any f € A can be written

in the form £ =g + &, where g E Ay and ¢ 1is a constant

function. Hence, by our assumption that M = {m}, & EM s
¢

we have Wy = m. Thus; for K > 0

|1-F|%u = Km (i)




Sinee W = w. + @
a s

respect to m, we may rewrite (ii)

~

17|27y, = Kn = |LF|2,.

]

Since the measure on the

with respect to m, it follows that

Thus,

is the Lebesguc decomposition of

u  with

as

right hand side is absolutely continuous

LL_FlluS = 0; and so

b

[Q-Fyfdy_ = [(Q-F)fdy

where the last cquality follows from

orthogonal projection of 1 into

Now, for {fP}C: A convergent

)

we have

This fact, combined with (iii),

projectionoof 1 into [AO]L?(Uq).

inf [|1-f£|2du = [|1-F|2du
ffA”

From Theorem 2.3.1 and 2.4.1 we

gives us that F the orthogonal

and so

inf f.ljfizduq.

fE..xO

have at once




Theorem 2.4.2 (Kolmogorov-Krein).

Let A be a weak-* Dirichlet algebra on a compact

Hausdorff space ¥, such that M {m}, V ¢ ¢ il, where
m 1is a probability measure on X, multiplicative on
Let > a positive measure on X and let

‘ 1ERE 3 : . A
where w e L (m), be the Lecbesgue decomposition of

respect to Then
= ﬂxpflogwdm,

where, , if logw ¢ Ll(m), flogwdm =

§2.5 Examples to illustrate the necessity of the hypothesis in

Theorem 2.4.2 that M = {m}, 4

D

We now give an example(Srinivasan and Wang [1])

necessity of the condition in Theorem 2.4.2, that M
¢

X be the unit circle and m the Haar measure

Let A be the algebra of those f ¢ C(X) which have an analytic

extension f to the interior of the unit disc such that £(0) = £(1).

Then A is a uniformly closed separating subalgebra of C(X), with
X as the Shilov boundary of A and the support of m.
show that A is weak-* Dirichlet. € A Note that

A may be considered as the set of functions £ of the form




f =3(-1)g + c, where c¢ is a constant function, and g is
analytic in the interior of the unit disc, continuous on the
closed unit disc, except possibly at 1, and

In particuiar, the functions

K, and me e e & Wi > 0,

s o 1y 7 x
the Riemann-Lebesgue Lemma, {j } converges to O din the

U(Ll)Lw) topology. Hence, for fixed k > O,

N

k_,mye L jC} I. } topology and so

{3 -3 b= converges to ] in the

0. Hence, by the complex version of the Stone-

Weieistrass Theorcm

C(X) € [A+A],.

But [C(X)]* g ) (Edwards [1] Ex.!

and so [A+A], L (m and A 1is weak -%

Now let » the unit point mass at

[fdu = £(1) = £(0) = [fdm

so A does not have the property that

In this case,

inf [|1-f|2du = 1.

. :X(\'

However, | is completely singular with respect to m,




in the notation of Theorem

expflogwdm =0

and the conclusion of Theorem 2.4.2 fails to hold.




CHAPTER 3.

GE!'ETALISATIONS OF THE FE AND M. RIESZ THEOREM

§3.1 Introduction.

One very important theorem in the theory of analytic functions
the unit disc, the E and M Riesz Theorem, [which provides a
characterisation for the functions in the Hardy class b} (Hof fman
[1] pp.50,51)], is not true for weak-#* Dirichlet algebras.
We shall show that it is not true even for Dirichlet algebras.
However, for some subalgebras of C(X), the set of continuous

7

functions on a compact Hausdorff space X, we can prove a
generalised F. and M. Riesz Theorem (Theorem 3.3.1) which implies
the classical result.

For those weak-* Dirichlet algebras which are also

logmodular algebras,we have a generalised F. and M.Riesz Theorem

(Theorem 3.2.1) which was proved by Hoffman (Hoffman [2]). From

S 12
this point on we write A~ for the set of mecasures p on X such

that ffdu =0, fe A; as before, m is a probability measure
on , multiplicative on A, and o dsitherset of

that ffwn = 0; and so A ic > f measures

such that f[fdu = 0,V f




§3.2 A generalised F. and M. Riesz Theorem for logmodular algebras.

Theorem 3.2.1. Le 4 be a logmodular algebra on a compact

Hausdorff e 3 >t p be a complex measure on X such that
decomposition of
with respect to my; where m is as above. Then

and fduQ =0, Further, st hm, where

=

= hm and let p be the positive measure on X

defined by p = Q£+'hf)m + !psi’ where ]uS’ denotes the total

variation of yu . 1052 Wiy 24 AO' then
s

[l11-£]2do > [|1-£|2dm > 1.

]

Let G be the orthogonal prejection of 1 into [AO

L2(p)"

Now, by (i)s
[11-6|%d0 = 1
and so 1 ¢ [AU]

Lz(c).

Choose a sequence {gn}CL_AA which converges to G
0

et e A.. Since
v

(1-g )f € AO" and, since f is bounded,
== n )

to (@~G)f dn the 12 (o )-norm, and so (1-G)f ¢ [AO]LE(D)c

Thus (1-G) is orthogonal to (1-G)f in 12 () that is




(i)

Then we

[£do
[£do,

In fact, this statement is true by (ii) 0 A : it is seen
to be true for f ¢ A by noting than any f ¢ A can be written
in the form f£ g + ¢ where g ¢ AO and c¢ 1is a constant

function.

1

Since A 1is a logmodular algebra, Theorem 0.2 gives us that

|1-G|2p = Km, and so (1-G) =0 a e

and, since (B (A+|h|)m, we have
|1-G|2 (1+|h|)m = Km

that is,

iifG[MZKm = (lffh’)mu and so

= T —7 .
(1-G) & € Ll(m) and hence (1-G) e LZ2(m).

L . .
We now wish to show that (1G) is in Hz(m),

Let : £ Then




=1
ff(}ju) dpl

1 =i 5
2/ £(1-6) 7| 1-6|2do

o £1-G)dp

Thus we have
o=l
ff(}:{)) dn = 0,

and so, by Remark 1.3.1, (le}”

From (iii) above we have

|1~G|2(1+|h|) = K a.e. (m)

1

which, with (;fG)_ e L2(m), dimplies that (LAG)—l(lf!h!)

and hence (%—G)_’b also, is in LZ(m).
We now wish to show that f(};ﬂ)fdp =0V fe AO,

}K:ZAO convergent to G in L2(p) as before. Then
n

I

So, since u << p and du/dp 1is bounded, while

we have

[£(1-G)dy = lim [£(1-g )du = O.

>0

Also, since (1-G) =20 ﬂ.;.(pq). we have




(1-6) = 0 a,e.(ug) and so (1-G)p = (1-G)hm.

Thus,

0= [£(1-6)dy = [£(1-G)hdm, ¥/ f e Ay

b« A which converces to

: 1 i
Since (1-G) e Ho(m) J !fn"“‘f

""l 5 ) vl o s » .
(lfG) in L<(m). Since m is multiplicative on A

n

[£ £(1-G)hdm = 0, for each

the limit in

Since also (1-G)h ¢ L2(m), we may pass to

to obtain

£

[fhdm = 0, }/

Also, we have then that

1
By Corollary 1.3.4, he H (m).
= : ji\o‘, 3

11

4 dt 2
A combined with : gives us
O? <
Since 1 ¢ [A )
= —~ [‘O]L“('U [)
I Sl
which converges to 1 in Lz(yuq[);

and this
Theorem 4.3), we

(Hoffman [2]

can choose {f }C_A
n 0

= 0

}’ h = i e
’d”s lim andpS
1~

ok
s = r\ou

3.2.1 in the same form as later general-

Remark 3.2.1. To express
isations of the F. and M. Riesz Theorem, we note that fdus = 0,




together with the fact that each f ¢ A can be written in the form

f=g+ ‘cy; where, g € Ag and ¢ 1is a constant function, shows that

£

€ AO =/ Thus, if we assumed originally that

then we could conclude M and therefore that u
S a

we may rewrite Theorem 3.2.1 in the form

Theorem 3.2.2. Let A be a logmodular algecbra on a compact

Hausdorff space X and u a complex measure on X such that yu ¢

+ug be the Lebesgue decomposition of u with respect

where m dis as described in §3.1. Then Mol
< S

We shall now show that Theorem 3.1.1 implies the classical

F. and M. Riesz Theorem:

Theorem 3.2.3 (F. and M. Riesz). ! € a measure on

unit circle such that f;rdu =0, n : where e
Then W 1is absolutely continuous with respect to the Lebesgue

measure on the unit circle.

L ¥
Proof. We have assumed that u € AO. where A is the standard

algebra on the unit circle. E 1 is tl ebesgue
decomposition of U, then by Theorem 3.2.1, 3 ‘ Since

Le [

L A0]L2(|US'), (Hoffman [2], Thm. 4.3) b A which

A

A




5 1
converges to 1 in LL(IUSI)' Since u_ e A), we have
2 = ;

fdus = lim ffndus = 0. Thus Mo is orthogonal to 1. The singular
>

pE

measure e e A
~1Fg 0

is similarly orthogonal to 1. Repreating this

process we conculdc that

2

fJe di =0, n=0,t1,+2,...
n S

and so uq must be the zero measure; that is uy =y .
S a
For even a Dirichlet algebra, however, Theorem 3.2.3 (F, and
M. Riesz) does not generalise directly, as one can have non-zero

measures orthogonal to XO which are mutually singular with

respect to m (Hoffman [1] p59. Ex 11).

§3.3 Another generalised F. and M. Riesz Theorem.

For a general sup-norm algebra A we have a generalisation of

the F, and M. Riesz Theorem which is due to Ahern (Ahern [1]).

Theorem 3.3.1. (Ahern), Let A be a sup-norm algebra on a compact

Hausdorff space X Let H$ be, as before, the set of representing

measures for ¢ € M, the maximal ideal space of A, (each m ¢ Mh
Y

is a probability measure on X, multiplicative on A). For
every complex measure ¥ on X such that u € A , we have

(where L - M is the Lebesguc decomposition of u

with respect to m) if and only if p << m, Y o E M¢°
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We prove first the following four lemmas.

Lemma 3.3.1. Let {vn} be a sequence of positive measures on X
having m as a weak-* cluster point. Suppose F<« X 1is compact,

and that Vn(F) 3_50 > 0, V n. Then n(F) > 50.

Proof. Since m 1is regular =} a decreasing sequence of open sets

{0} such that 0 = F and lim m(0 \F) = 0. By Urysohn's Lemma
n n

n

oz
J{u }=C (X) such that w = 1 on F, u =0 on X\0_, and
— n R n = n — n
Q.i,un < 1. From the construction {un} converges a.e.(m) to xp» the
characteristic function of F. Now,

m(F) = f(XF~uk)am + fukdvn + fuk(dmudvn)

and f(XF-uk)dm can be made small by choosing k large, and
once k 1is fixed fub(dm—dvn) can be made small by proper choice

of n. Thus,

dav ) 5
m(F) > fudv_> v (F) > &,

where |,n arc as indicated.

Lemma 3.3.2. Let ue C_(X). Write A(u) for fudx, Then,

sup{Red (f) :f € A,Ref < u} = inf{A(u) : A e M }.
[}
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Proof. Since A(Ref) = ReA(f) =Rep(f), V X eM , ¥V fe A

we have

sup{Red (f) : Ref < u,f ¢ A} < inf{A(u) : X e M } (1)
By the same equality, F : Ref — Red(f) is a well-defined non-
negative linear functional on the subspace ReA of C,(X). We

shall show that, for cach u € CD(X)_E] a non-negative linear
functional on the subspace of Cp(X) spanned by ReA u {u} (call

1" 'E)  “such “that

F_(Ref) = F(Ref), ¥ f

m

and
F (u) = sup{Re¢ (f) : Ref < n,f ¢ Al
If u € ReA, our assertion is trivial:
sup{Re¢ (£) Ref < u,f e A} = F(u).

If u ¢ ReA, each v € E can be written uniquely as Ref + gu,f e &

and o a real number. Define

F (v) = F (Ref+au) F(Ref) + osup{F(Ref) : £ ¢ A,Ref < u}l
e e -

Red(f) + asup{Redp (f) : £ € A,Ref u}

I/‘\

=

FL is clearly linear with its restriction to ReA equal to




We now show that FC is non-negative on E.

Let Ref + ou > 0.

Case 1. a = 0. Trivial.
= -Ref
Case 2. o > 0. Then —— < u, and
g,
A 1 L.klf\ 1l X
sup{Re¢(g) : g € A,Reg < u} > F(- =—) = - = Re¢p(£f)
F == = o o
which implies that F (Ref + au) > O.
5 e
! Ref - )
Case 3. g <. Then - > s Hence, for each g ¢ A
b ) B =

Reg < u, we have Reg < - Ref/a, and
1 .
Red (g) < — —Redp (f).
=t
Hence,
sup{Re¢(g) : g € A,Reg < u} < - E-R:¢(f),

and so

with

Red (f) + asup{Red(g) : g € A,Reg < u} > Re$ (f)-Re¢ (f) = 0.

Thus Fg is a non-negative extensiocn of F, such that,

since 1 e A, F (1) = 1. It follows that

i (]
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F_(v) < F_(supv) = supv, YV v e E.

By the Hahn-Banach Theorem, there exists an extension of F to a

linecar functional F on CR(X) such that

Y=

Fcc(w) < supw, &/ W € CR(X)'
Thus we have

=F_ &) =E__(=w) < sup(-w) = -infw.

(]

F__(w) > infw
cc —

and so F g is non-negative.
e

Sincé algo B (1) =¥ (L) =1 F _ is given by a probability

ee — (] [S1=

measure A such that

I
]

A(Ref) = F__ (Ref) = F(Ref) = Re¢(f), V/ f € A.

Then also

A (Imf) = =X (Reif) = -Red (if)
=-Re i¢(f) =Im¢(f), ¥V £ e A.
i A(f) = A(Ref) + i (Imf)

Rep (£) + i Im ¢ (£)

& (E), \/’ (R (S NS

il

and so A € M, .
¢




This., together with

(1), gives the desired result.

64 .

The following lemma is an extension of a result of Fiorelli.

Fiorelli [1], Theorem 1),
Lemma 3.3.3. Let F< X be a compact G, such that A(F) =0,
V A ¢ M . (We say F is "¢-null"). Then, for {n} an
\.
increasing sequence of positive integers, = {fr}éiiball A, the
closed unit ball in A, such that
) -2/n
(1) 6(£) > e
o
(2) ifn| < exp o(-n) omn F.
Proof. Since F 1is a compact G% = a scquence of open sets
} at 0 g an 7 =F, where 9 denote
{0[{ such tha 0 g O and (} 8 F, wher el es
the closure in X of On+l' Let > 0 be given. Then there
exists an integer N such that V n>nN V o ¢ e r(”q) < &.
o (] I
(If this were not so, there would exist 5” > 0 and sequences
i } o owi e M and p, (¢ > & . Le =0 3
{ok},{On } with Py € M N pk()n 0 et Uk /8
Ic k k
then Ok(UP) A 50 > 0, and ”P+l<::uk’ Let p be a weak-*
i\ A
cluster point of {p,} Then p e M, and so p (F) = 0.
4. ‘\" ~3 1 b} > E[ \. N
Figs kit hen D(Lk” > p( K+l Now
) (1 > o) >l > pl ((U) > k+ 1, and so, by
ﬁ(Jk) i pn('k+1) *‘ﬁﬂ(Lk‘i'l) 2 Ln( A V n -2 ’ L y DY
Lemma 3.3.1, p(U) > &,> 0, Y k.

0




)
w

But this contradicts the fact that p(F) = 0.) Hence, by passage to
- 1
a suitable subsequence, we may assume that o(v’,x_l) =TS e M. .
) n
Now, for each n, 3 u € C(X) such that u_ =-n on F, R 0
i1 TP L i
on X\0 " and -n < u < 0 elsewhere. From Lemma 3.3.2 and the
weak =% compactness of M,, there exists P, E M such that
L (0] T 0]
sup{Re¢ (f) Ref fvun?f e A} = [ u _dp
Hence, for each n, -] g_e€ A such that Reg < u_, and
— n n— I
i ( 1 5
j'RLg dm > fudp -=>-np (Q) -=> - 2/n.
B o Ra= ne T

We may also assume that Jflmgndm = 0, Now define fn = exp o g -
fn e A sipece 1 e A, Also.
f = exp o Reg_ < exp o u_ < 1;
|n‘ SRy S R
and by multiplicativity of m,
-2/n
= ex g_dm = ex Reg dm] > e
f dm = exp[[g_dn] exp[[Reg_dn] >
and ifnl = exp o Reg_ < exp o (-n) on F
Lemma 3.3.4. Suppose there exists m e M such that p << m,
b 5
v p € ?1H and suppose FC. X 1is compact and m(F) = 0. Then
N
= (f }Cball A satisfying (1) and (2) of Lemma 3.3.3.
- n




(o))
(@)

=1 - 5 4 .
Proof, a sequence of open se ) F ) 0
Proof, =i seq e o pe et { o such that FC Ln+lC 9,
and 1lim m(0 ) = 0. For each n, &} a set F , which is a compact
1 S 11 e n
Gy such that Fc F_ On' Tet S =[] Fn. Then Fc S, S is
0 1
n
a compact G , and m(S) = 0. Sincel o << M, ¥ p e M., we
have p(S) =0, \/ p e M . We then apply Lemma 3.3.3 to the
é
set S to obtain the desired result.
We can now provc Theorem 3.3.1.
Proof of Theorem 3.3.1.
Suppose first that there exists m € M, such that p << m,

)

Y

\/ p € M(‘, Let S be a Barie set which carries Mg (that is uS(T) = 0
+)
for every Baire subset T of X\S) such that m(S) = 0. Then

= an increasing sequences {F_l}(_‘: S of compact sets such that
1

1im I*ls' (Fn) = l;;sl (S), when IU,\I denotes the total variation of
o =
IS For each 71 we have, by Lemma 3.3.4, a sequence
s r
{F he . Z=Dball A such that
n. k k=1
-2/k
1 T dm > e ' and
AL ')’ n,k =
B!
(2) |flli<_\\onF.
[ Define h = £ 5 Then we have h ¢ ball A and
| n n,n n
X -2/n
(G I fh dm = [f dm > ¢ /
n ey
1 and 2 h = |f < e on B .
‘ dres (@) ‘ r' | ,]in 5 € A
4
|
I
|
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From (1') we sce that limh_ =1 in Ll(m) and so we have
N> n
a subsequence [hﬂ } which converges to 1 a.,e. (m).

AL —_—

Frem (27) {hn } converges to 0 a.e, (]uq!).

k

Hence { = } converges a.e. (| o g -
lence ‘Lg]’} {hn] I onvers e (}Ul) to ,‘("(\ g

If & ¢ A, then for each Ik, gpf e A and we have
0 = fg fdy - f fdy = ffdp . That ds, . € ff: and so since

k JENS a ST 5 &

1 e b
u e A, we have bs e A .

To prove the "only if" part of Theorem 3.3.1, we assume

Jv € M, which is not absolutely continuous with respect to mn,
= o) -’

D

and consider u = v - m. Since wv,m ¢ M,

[fdv = [fdm, ¥V £ e A,

and 80 | € A .

Now u_ = Vv_ - m, and p_ € A if and only if

m
174

[fdv_ = [fdn, V f£

But ffdvq - ffdm, VV £ e A implies, since 1 e A, that

fdv =] = fdv. Thus v(X) = v_(X), and hence v_ = 0. This
a a s

4

contradicts our assumnption, so U _ Fy s and our proof is
completed.
Remark 3.3.1. Theorem 3.2.1, where M, = {m}, is a special case

of Theorem 3.3.1.
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An abstract F. and M. Riesz Theorem.

hern’s result is a particular case of a general result whose
only special hypothesis is that A dis a subalgebra of C(X) which
contains the constant functions on X. The extension arises from
the idea of forming the Lebesgue decomposition of u relative to
in the sense of the following definition (Gliclisberg [1])

the set M

Definition 3.4.1. The (complex) measure p is singular with respect

to a set M of probability measures ("p 1is M-singular™)
if u is carried by some Barie set F (that is u(S) = 0 for
every Bairec subset S of X\F) of measure zero for all m e M;
such an F is called an M-null set. If u vanishes on all M-null
sets F(uF = 0), then u is M-absolutely continuous (u << M).

When M =M , we frequently write "¢-singular" for
”Hm“singuler”o

Unlike our previous theory, where our choice of Baire measures
rather than regular Borel measures was purely arbitrary, we consider
Baire measures here to ensure the truth of the Choquet-Bishop-
de Leeuw Theorem (Phelps [1], p24) which is necessary for the
development of this theory. The full development will not be given
here but may’bu found in Glicksherg [1] and Garnett and Sliclsberg R

We note also that we always have a (unique) Lebesgue decomposition




of any u relative to M:
M - + |
H UF LFV
where W is M-singular and ug, << M.
To do this choose an M-null set F which maximises
HpFII2 so that if E (and sc Eu F) is M-null then
1 | = 1 i | l 1 o 1 =
’ P!EU F!l HL‘P“ o ”(UF-')El! ||}FH ,and 80 (“F"')E 0.
We now prove the abstract F and M Riesz Theorem due to
Glicksberg (Glicksberg [1]). The proof of this theorem follows

that of Theorem 3.3.1

and both are closer in

~h

orm to the original

proof of F. and M. Riesz than the proof of Theorem SRk be
Theorem 3.4.1. If pne A and ¢ eM the maximal ideal space
of v A, ‘anddf g = g + Y is the Lebesguc decomposition of
. 3 1 4
relative to M, , then MpoHpe € 4 .
We first prove an analogue of Lemma 3 il
Lemma 3.4.1. if F=U Kn is a ¢-null union of compact Baire sets
n
L then 5§ sequence {fn}cj ball A which converges to 0O
{
of B and to 1l a.es )W A e M s
Proof. For n fixed we havea monotonic incrcasing sequence
{uk}CZ CR(X), which, since every compact Baire set is a G,
=0 )




(Berberian [1], pl8C Ex.6.), converges pointwise to ~0¥ - Thus,
n
by monctone convergence A(u, ) 4 O, Yheie E"\ﬁ. Since M is weak-#*
K [0) 0]
compact and )\ = ,‘a(ul.) is weak* continuous, Dini’s Theorem asserts
the convergence is uniform on M . Thus
(0]

%(ul,) > —%ﬂ Y x ¢ M, , for some k.

By Lemma 3.3.2 we have g_€ A such that Reg

24 = 4 an (0]
o g, < "X and s

n
1 =4 1 -4 -4
Rep(g ) > —=n -~ =n = -n )
n 2 2
v(g )
Put £ = (exp o vr)sgn_(; = Since 1 ¢ ’fn e A. Since
: =

n =
Also, [[E < exp o -n on ‘in, and so { fp?cbr_]l A and converges
to 0 on F. Moreover, {x e X ﬁ; fn(x) - 1} > 0} is
M,-null, so that {'fn} converges to 1 a,e. ( MF,'), since
TS < f\1¢, and {fn} converges to X . & e ). £ e A
then, for each n, fF £ e A and, since wu ¢ *».L

0= [f fdu > [ fdi = [£du, .

i : L
That sy iy EA and hence also ;.»F B s
T

that
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It is clear from the preceding proof that the only special
property of A we require is that 1 € A so that we may exponentiate.

hus, we may state Theorem 3.4.1 in a more general form:

Corecllary 3.4.1 If B 1is any subalgebra of A such that 1 e B,
and u = Hp + M is the Lebesgue decomposition of u relative
M { S L ot
to Hw(B); where U ¢ HBi then u € A implics that pF,;Ff e A &
We note that if is such a subalgebra of A, then M =
b M (A)=M, (B); so that, while M, (B)-null sets are also M -null,
¢ 9 ¢ ¢ o
the converse is false. Thus u << M, is also M (B)-absolutely

continuous, but an M -singular measure u may have a non—-trivial

decomposition relative to M (B).




~
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CHAPTER 4.

EXTEILISION OF LINEAR FUHCTIONALS

§4.1 Unique norm-preserving extension of a weak-* continuous linear
functional on a logmodular algebra A to a weak-* continuous linear
functional on C(X).

We shall now make use of the abstract F, and M, Riesz Theorem

in its form for logmodular algebras (Theorem 3.2,2) to prove the

following result.

Theorem 4.1.1. Let A be a logmodular algebra on a compact

L ] 1 : : o1l
Hausdorff space X. Let ge L' (m), where m is a probability
measure on X, multiplicative on A. Let & be a linear
functional on & defined by

¢(f) = [fgdm, V¥V f e A.
Then ¢ has a unique norm-preserving extension to a linear functional
on C(X), and this extension is weak-* continuous, considering
7 i : s : 0 i1
C(X) with respect to the topology induced on it by o (L (m),L (m)).

Proof. (i) The existence of at least one norm-preserving

extension of ¢ is guaranteed by the Hahn-Banach Theorem. Let




Fisic

p be any such extension of ¢ to a linear functional on C(X).

Then ¢ may be expressed in the form

p(£) = [fdu, V £ ¢ C(X),

where pu is a (complex) measure on X, and the total variation

of u equals ||y]

. Let y=qp_ + Mg be the Lebesgue

a

decomposition of y with respect to m. Then

1]

18 r
u=u +u =hln+yu, where he L (m). Since
a S S

™

. ~ / A
extension of &, we have y(f) =¢(f), V¥ £ e A. Thus, we
have ffdp = ffgdm7 V f e A, and hence the measure y - gm ¢ A .

By Theorem 3.2.2 yu_ - gm and u, are both ¢ A . Thus,

[fh-g)dm = 0, ¥ £ ¢ A,

and so, by Corollary 1.3.4, h - g ¢ H (m). But 1l e A, so

f(h—g)dm =0 and so h - g e H%(m). Also,

)

[fgdm = [fdu = [fdy = [fhdnm, YV £ e A

J

We now have

sup |[than| = sup |[fgdn| = []o|| = |[v]]
feA fe/
|1 £]]<2 || £]]<2

and so ||v]| < [\h’|Lu But




el = Thel | = T[]y + [Tugl|

and so we conclude that iy % 0, and so ]ih[\l = ||y||] and
y 1is weak-* continuous.

(1:4) Uniqueness. Let ¢ and ¥y be norm-preserving
extensions of o. By the above y(f) = ffhdm, k/ f ¢ C(X), and
¥, (£) = [f(h+h)dm, /' £ e C(X), where |[|h+ hill; = |In]];-
Also from above, h — g ¢ ﬁb(m) and (h+hl) - g ¢ H%(m),

Thus h € db(m}, Now
[Iall, = 1lul] = |lel| = sup |f fhdn],
. feh
|1 £]]<1
and, since the unit ball in L” is weak-% compact, and the

unit ball in A 1is contained in the unit ball of

Hm, 3 f ¢ H (m) = [A]l, (by Theorem 2.1.1), such that

sup |ffhdmi = ff1hdm.
£of 1

€] <2

= e flh = ihiﬂ However,

{5 |
ffl(h+hl)dm = j’flhdm = ||nl]; = [Ih+n

Since | £

II Thoe 3 -] (o] - o
L'!’ where we have used the fact

Hm(m) to give fflh dm = 0.

ik
1 - e I an
that h, ¢ ie(m) nd £ 1

1

r 1 = 1 Q9 o) 1 and -+ AYe non-
Thus fl(h+nl) }h+§l|, Since flj and fl(h+”l) re non

l S

negative, flhl is real-valued. e H (m) and hl € Hl(m)~




So flhl e H"(m) and, by Lemma 1.1.4, is a constant function.
But f.h.dn = 0, so f.h, =0 a.e. - Now, =

f 1y . ;=0 a (m) Jow, from flh |h|,
flhl =0 a.e. (m), |h| = |h+ hl!’ we see, by considering
separately the points where fl # 0 and those where fl =0,
that hl =0 a.e. (m). This prove unigueness.
§4.2 Unique norm-preserving extension of a weak-* continuous
linear functional on 2 w2ak-* Dirichlet algebra A to a weak *

o

continuous linear functional on i

We have already shown (Theorem 2.1.1) that, for A any weak

00

Dirichlet algebra,H (m)= Lm(m)pﬁ [.&]l is isomorphic to a
logmodular algebra on i, the maximal ideal space of Lm(m). We
have seen also (Hoffman [1], p.1l69) that Lx(r) is isomorphic
to. CiDs Thus, we have, directly from Theorem 4.1.1, a
generalisation of a result of Gleason and Whitney for H  defined

relative to the standard algebra on the unit circle. (Gleason and

Whiteny [1]). That is, we have

Theorem 4.2.1. Let A be any weak-* Dirichlet algebra on a

¢ 1 :
compact Hausdorff space X. Let ge L (m) where m is a
probability measure,multiplicative on A. Let ® be the linear

functional on H (m) defined by

d(f) = ffgdm; Y/ f¢ ﬁﬂ(m),




Then ¢ has a unique norm-preserving extension to

and this extension is wealk—* continuous.

L™ (m),

We can actually say more than this. Suppose we have

functional & defined on a weak-® Dirichlet algebra

6(f) = [fgdm, V' £ ¢ A,

a

1i

by

i - -
where g € L' (m), m as in Theorem 4.2. Since we have shown

n

(Theorem 2.1) that Hm(m) = {A]* we see that & can be extended

a unique linear functional

, Y £

Because of its form we can refer > by

this result with that of Theorem 4.2.1 to get

Theorem 4.2.2. C be cak-"" Dirichlet algebra on a

compact Hausdorff space ¢ : }'( ), where m
probability measure,

9

functional on defined by

2(f) = [fgdm, V/ £ e A.

is

&
Then ¢ has a unique norm-preserving extension to L (m),

this extension is weak =% continuous.

"

a

a

nd

also and combine

ar

to

multiplicative on A. Let ¢ be the linear
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§4.3 Discussion of the hypothesis in §§4.1, 4.2 that ¢ be
weak™%* continuous.
If, instead of assuming that ¢& be defined by integration

:
against a function e L-(m), we

bounded linear functional, then it
than one norm-preserving extension
unique norm-preserving cextensions

o .
[where H is

bounded measurable complex-valued

which consists of those functions

(existing a.e, atou's Lemma

in the interior of the unit disc]
(Gleason and Whitney [1]).

Example 4.3.1. Suppose

0

on L which vanishes on

|

the Hahn decomposition theorem Y

|
U]

difference = ¢' of two no

here is defined on non-negati

|
V]

vF(£) = suply (z)

and is extended over the rest of

e that is a

simply assum

is possible to form more

=
1

of of non-

of a bounded linear functional

@

that subspace of L ,

functions on the unit circle,

which are boundary value funcjtions

) of bounded analytic functions

are given by Gleason and Whitney
g Y,

non-zero bounded linear functional

Loc
R

takes real values om By

may be reprecsented by the

n-negative linear functionals;

ve f by
< £l
L” by linearity.




Also, since

and are distinct norm-preserving extensions

of the linear functional ¢ defined on H by
+ - oc
G(E) =qp (E) =y (), ¥ £ H'.

We must now construct a y with the required properties.
Let v be a proper arc of the unit circle, and let

be its complement. Let f0 be defined as equal to

1

v ‘and equal ter ~1 o v’ Then

e ™
LER

00

Suppose this were not so; then f. e P%_

that i]fl—f0|]w =1-§. Thus f1 > &

f. < -& a.e.
Now, let f. = H * . where % denotes convolution
‘ p

as in Edwards [2], p.86,

v " inx
H = > ~-i.sgn n.e .
neZ




Note that, if a, b are the end-points of

is the distributional derivative of

Therefore,

D(H*fl) H * Dfl

Il

(6_~6) * T

2(5a~5b) * D(log 1sin%xl)7 (Edwards, [2], p-88

9

and so

S
in=(x-a)| - 2103%51n5(x-b)l + constant a

e

Thus is essentially unbounded in every neighbourhood

of each of the points a,b. But, since fl € }Q, and therefore
| .

£ —ifl, we have a contradiction, and hence

inf |[£-£ ]

o 2 1.
feH® 5

Thus, by the Hahn-Banach extension theorem (Edwards [1], §2.2.5)

=] a bounded real-lincar functiomal on L _

»

o
which vanishecs on 01

R

but not at £

0° We can then extend this functional into a complex-
(oo
linear functional over L to get the required linear functional Y.

.
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§4.4 Extension of multiplicative weak—* continuous linear functionals

on a weak-* “irichlet aleebra.

We shall now consider further the extension of weak-*
continuous linear functionals defined on a weak-* Dirichlet algebra

A. In particular, we shall consider thosc functionals which

are also multiplicative on A. We prove the following theorem, which

is due to Hoffman and Rossi (Hoffman and Rossi [1]):

Theorem 4.4.1. Let A be a weak-* Dirichlet algebra. Let
m be a probability measure multiplicative on A. Let ¢ be a
linear functional defined on A such that

(i) ® is multiplicative on A,

and - ((id) 4 g€ Ll(m) such that o(f) = ffgdm, \/ Fre A

Then & can be extended to a positive weak-* continuous linear
oo}

functional on L (m), that is, — a non-negative &k ¢ Ll(m)

such that

o(f) = ffkdm) \/ T evan

= o0 A s
Proof. Since, by Theorem 2.1.1, H ) = [A],, we see as before
that ¢ hasa unique extension,denoted by ¢ also,to a linear

O
functional on H , namely




o(f) = [fgdm, V f ¢ H”.

We shall show that ¢ is multiplicative on H = [A[,.
”»
. 2 -
Consider f,h ¢ H . Then = {f }.{h } A which converge
M Vv 4
¢ L a ; :
in the (L ,L ) topology to f,h respectively. In particular,

lim ¢(f h ) = lim [f h gdm = [f hgdm = ¢(f h)
G u v 2 Y u M
and
lim ¢(f h) = lim [f hgdm = [fhgdm = ¢(fh).
u u
H M
Hence,

lim 1lim 6(f h ) = o (fh).
L v
S

But fuh e A. Thus by ()

o(f h ) =o(f )o(h ),
TRV H ™

and hence

¢ (fh) = lim lim ¢(fuhv) = 1lim ¢ (f )1lim ¢(h ) = ¢(£f)o (h)
y Y " e V

o

which shows that ¢ dis multiplicative on H .

Define Z to be the set of all u ¢ hp(m) such that for every
R

positive real number ¢t, ;j ht e H® such that
(a) tu > log hc!'
and (b) @(ht) = 1

Before proceceding further we need to prove the following two

lemmas. The first of these is an extension of the Krein-Simulian

Theorem. (Horvath [1], Ch.3 §10. Theorem 2.)




Lemma 4.4.1. Let K be a convex subset of Lm(m). The following
two conditions are equivalent.

(1) K is weak-%* closed;
and = (1d%) T {fn}C: K converges boundedly and pointwise a.e.
then f ¢ K.

to a function £

5

Proof. () => (id). Assume K = [K]* and that {fn}<: K
converges boundedly and pointwise a.e. to f£. The latter

condition implies that J'fn}<: K also converges weakly to f.
S6 £ & [K]* and, since [K], =K, f € K.
) => Gi). This follows directly from LEdwards [1], 8.10.5

and Ex. 8.6.

Lemma 4.4.2. Let E be as defined previously; mnamely the set
o0
of= e L,;m) such that, for every positive real number t,

3 h_ e H  such that

t
(a) tul > loglhtl;
and (b) o (11t) == s
o
Then Z is a convex cone which is weak-* closed in Lp(m)a
Eroof. We first show that Z is a convex cone.

(1) ug,u, € Z => uy + u, € Z.




Let u;,u, ¢ 1

—_—

:jhl,t

tuz

and
log |

.>__ Ob h29t|

Consider

number t,

\ | |
t(ul+u2) > log|h, |

Hence

e T

We now show
Lemma 4
that [u | < M,

e

converges to u

= Qo (L\') 3< \‘xlOg

.4.1 we nced to show that, if we consider

Then, for every positive real number ¢,

2,t° both ¢ H, such that tul

> log|h

l',tl

- S
1,t!

o

=g E D

for every positive real number ¢t,

log hrl and i(ht) = 1. Consider

log ! ht l % =

= p o) (4
ht‘ = laglht 3

® s g -
[d (l.t)] 1.

o » oo} .
that ) is wealk =% closed in %}(m). Using

fu }& ) suech
n -

where M is a constant function, and

{u_}
13

pointwise a.e., then u e ).




e

By the definition of Zs for each an = hn e H such that

u > log|hn| and Q(hn) = 1. In particular, {{hn|} is bounded

by eﬂ. Let h be a weak-* cluster point of {hn} in Lm(m)=

o

(o v]
Since H is weak-* closed hi e H and, since ¢ is weak-*

2

o

continuous and ?(hn) = 1. o(h) ="1. i is a2 weak-*
cluster point of {hn}CZ“Hm, then V

such that

lim fhn g dm = fhgdmo
nv+m k

<

Qe T (S O S (R 2
1im !fn g dm| = |/hgdm|,
n"‘,‘m

k

and so

lim supffbn g dm| 1_|fhgdm§
k
n, :
Since !hn | is bounded, for g ¢ ﬁl(m) such that |h
k

bounded,we can apply Fatou's Lemma; thus, for such |h

f1im sup!hn g| > lim supf|h_rl gl
n k I k

k




Combine (1) and (2) to get
[1im sup|hn g|dm > |[hgdm|.
. d
Thus, if we have a set S< X such that m(8) > 0, we can choose
g =sgn h .y /m(S) to get
8
1l ot | il 7
28 s Lim ;up hn!dm 2 208 IS | h|dm (3)
We need to show that (3) implies that
1im Surﬂ’nwl > fllf a.e (4)
Il LL
Suppose (3) holds fut (4) does not hold. Then 3 set Ec X such
that m(E) > 0 and
lim SUp|hn! < |h| on E.
n
Let Ek be the subset of X on which
1
1im sup!lhl’ R [ e
n =
Then EKCZ EK+1 and Qé EK = E. Since m(E) > 0, H Kl say such
that m(E, ) > O. Choose § = i and let S = Ey Then
1 Al 1
lim suplhn] < |n] =8 “on 8,

>0

and so




fs 1im :up{hn!dm < IS (‘h§~§)dm = fg]h}dm - sm(8).

Thus,

1
T X i, -
IS 1im iup]hn!dm <708 IS |hldm - g

m(S)

This contradicts (3). Hence (4) holds: and so

|h| < 1im sup(exp o un) = exXp O u
n

0.

That is, u > log|h|. The same argument can bc applied to tu, ¢ t >
Thus ue ).

We now continue with the proof of thecrem 4.4.1.

Proof (of Theorem 4.4.1) continued.

E is proper since -1 ¢ z. (To show that =1 ¢V,

suppose -1 ¢ ). Then, for ever ositive real number ¢t
p = Y P 5
;}ht ¢ H such that =E = log|ht| and @(bt) 0 = However, since

00
H is a Banach algebra and ¢ is a multiplicative linear functional

on i, |[o]] =1
Since -t > log’htl, ][htllm < il But
1= le)| < [[e][lIb.], = [Ini,

which is a contradiction; and so -1 ¢ y‘)
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Since z is proper, and, by Lemma 4.4.2, weak-* closed,
a corollary of the Hahn-Banach Theorem (Edwards [1], 2.2.3) ensures
the existence of a non-zero weak-* continuous linear functional
on L: which is greater than o on E, for some real number g.
This linear functional must be non-negative on Z, since, as
z is a cone, if it took a negative value at some point of
Z then it would itake arbitrary large negative values, thus
contradicting the fact that it is bounded below by o. This

functional may then be extended to non-zero, weak-* continuous

:j;l, a
o
linear functional on L vhich is non-negative on Z. Thus,

—‘kl € Ll(m) such that

pl(f) = ffkldm; L

Let k = [f!klidm]-lk] € Ll(m); so that

I :
1- m =
f;,”d“ il
and form
= _
WCE) = [£ledm, g £ e L .
U . . S
Then Yy 1is a nen-zero weak-* continuous linear functional on L

which is non-negative on Z, and

Hwll = []w]], = 1.




By taking =
vy king ht

by we

o0
function in L . Thus

see that E

88.

contains every positive

Y 1is a positive functional and Lk is

a non-negative function. Suppose now f ¢ A such that f ¢ “erd.
By taking ht = exp o (tf), we see that Ref ¢ ). But, if
f € “exd, -f ¢ ker® and so Re(~f) = -Ref ¢ ). Now 1 is
non-negative on z) so VY(Ref) = 0. By considering (-if) € kerd
we get {(Imf) = 0, Thus y(f) = 0, x/ f e kerd. Hence,
() = o(f), ¥ £ e A.
We have shown this for £ € A such that a(f) = Consider
f € A such that ao(f) =i # 0. Then
O(E) = c = 9(E-c) = (
Thus yY(f-c) = Y(f) - c = 0, and so yY(f) = c. Since also
Hlvll = ||e]|=1, ¢ is a norm-preserving extension of & which

is positive and weak-* continuous and takes the form

Y (£) = [fkdm,

1

Thus, we may write

«’\(f) = j‘fk\_ﬁw’

where k

V 5Bl i

\4

is a non-negative function.




SEQUENTIAL F. AND M RIESZ THEOREM

i A sequential F. and M. Riesz Theorem.

Let A be the sup-norm Banach algebra of complex-valued functions
on the unit circle whose Fourier coefficients, C say, are zero
n
0 ’ L ‘
for m <10, Then H is the set of bounded complex-valued functions
on the unit circle whose Fourier coefficients C , say are zero for
n

e B Let )\ denote the Lebesgue measure on the unit circle.

1
Theorem 5.1.1. (Kahane [1]). Let {gn}C:,L () be such that

2(f) = lim ffgndx

n >

o 1
exists for every f eH . Then = g €L (A) such that
R(f) = [fgdr, V £ € A;

and every (complex) Baire measure y which is a cluster point,
in the o(A,A*) topology, where A%* is the dual of A, of

{g A}, 18 such that u << A
n

We first show that a finite complex-valued Baire measure

unit circle such that

8(f) = [fdu, V £ e A,
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Define ¢n(f) = ffgndx, V/ £ ¢ A. For each f ¢ A, {on(f)}

is bounded. Hence, by the principle of uniform boundedness,
{|}¢n||} is bounded. Denote by @n also the norm-preserving
extension of @n to the continuous complex-valued functions on the
unit circle. By the Riesz representation Theorem = a finite

Barie measure | such that, for each n,
n

o (£) = [fdy , V £ ¢ A;

and the total variation of T is equal to ll@n"' Thus, by the

weak-* compactness of measures, — a finite Barie measure . such

that
() = lim [fdy = f£dy, Y £ e A.
n->-c
We now show that pu << ). Suppose it is not the case that
WSS Let E be a closed set on the unit circle such that
A(E) =0 and pu(E) # 0. Such an E exists since y 1is regular.

Let he A be such that h=1 or E and |h| < 1 outside E.
(The existence of such an h ¢ A is established in Hoffman [1], p.81.)

We now have the following properties.

(1) lim fhmdu = u(E)
mre
(2) lim fhmgndk = 0, b/ru
e
m m
(3) lim [h'g & = [h'di, V .

nm-e




Lt {mj} is rapidly increasing (meaning that m is sufficiently

j+l

large when m., 1s given), we have
J

00

e
(-1)In J ¢ H

since, given m,, we may define E, as the set where
J )

m . .
[h J-L| <2 J, and, when m is large enough, we have

filasd!
mj+l|

_ oG

[h <2 on E!', the complement of Ej. But 277 < 1

and so E3 N Ej+l = Q. Thus, since also }EC:Ej, \/ j, every x LE

belongs to Eé for some k, chosen sufficiently large. By the

method given in detail in the proof of Theorem 5.2.1, it now follows

oo o M.

that £= J (-1)Ih ) is the pointwise limit a.e.
Ik

uniformly bounded sequence of functions in A and so

Write (@) for the above condition on the {m. }. We introduce
J
here the formula,
j'l m o0

k mk " . m,
[eg_dr= ] (1)°fn"g ax+ (-'fnlg dx+ ] % a
j k=1 i j k=j+1 ky

AR R C
] ] ]

where we shall define by induction the sequences
{mj} (satisfying (o)) and {nj} such that the following two conditions
are satisfied:

m

iy il
® § I dl < F®]
ke j+1 ]

i R |




Choose n, any positive integer. Let m1 be the least positive

integer such that
TS 1! /
}fh dy| > IE{u(E)\, Y m> m, .

The existence of m is guaranteed by (1).

Now suppose we have defined L PR Let (7).
J

G b

be the least positive integer such that

"l’ < 2-(J_1) on E, | < ZU(J-I) on E;vl.

Let n* be the least positive integer such that n > nj‘ implies
j Z
il R il N T 1

| LD h g an - T DN K < @]

k=1 k=1 i

The existence of n* is guaranteed by (3). Let M(n,k) be the
J

least positive integer such that

k

X m k1 !
m > M(n,k) => !fh gndAj = .lzlu(E);.

The existence of M(n,k) 1is guaranteed by (2). Put
m max(ml,M(nl,j),...,M(nj_l,j),Cvj). We define

digte = N
A, ) (-1)"/h "du, and consider the following two cases:
k=1

- A?I < 5/12|u(E) |

- A7 > 5/12|u(E) .
J

In case (a), define m* = mj, noting that (y) 1is true,
J
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S X = 11
choose ny 2 nj so that ;Bj] > IE(u(E)j.

o

This is possible by (3) and (y); by (3), with m, = m¥,
]

[

for any & > 0, 3 nh. > n? such that
j =

L

g,

m:‘j ®
[fo = du - o d g an} «'s.
"

m,
Thus, |/h Jap| - tle < &, and, choosing

m
6= |fodau| - Sl

; - s < 13 ;
(which is > 0 by (y)), we get |B. | 1—,| (E) |
In case (b), define nj = n* and choose m. > m* so
) JEE

1 ‘
that IBj] < I;(u(E);. This is possible because of (2).

Note, that for n,6 > n?,
i =

A, -A
s

1 ‘
— |1 |
< 17ME)].

We have, also, given n_,

el _
'fhmgn_dll < _k‘ﬁh“ E)|, V m> MG,

—
N

Now m > M(j,k) Wk> j+l, so if m > mk

oo ml 1 o) l 1

: " ‘

) |[n g, | < F@E]. T < ZhE]
k= j+1 j k=j+1 2

and the sequences {nj},{mj} in both cases (a) and (b) satisfy (g).

In case (a), we have
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|A + B Solbg e BN S Gl iR R AR B
el J=1L 3 j | Jee 1= e, ) j
> Vg | = A o R T e e
&L il j-1 j! | j ¢k
0 ol PR SRS RS (O | W
= j gl 3-1 j B j
il h ‘ Al ‘ % s
e jL(E\‘-J/IZ‘p(E);--l—ZJ w(E) |=5/12 | u(E) |>—=
In case (b) we have
A + B A =B A + B AQ; A, = A - |B
| et i i j j izl i i i i j ]
Al e :
> |5/1& - = = =) l(E) | = 3/12|V(E)].
.2 12 ‘
Thus, in each case we have
1NN L T N R A
j-1 j-1 j j
Taking (B) 1into account we have ECj 1} and (C.| both
¥ i
majorised by %Efp(E)ﬁ.
Therefore,
‘ A-[£ Rl + -A_-B |-|c, .|-]|
|ffgn. d\ ffgn'd i 1Aj-1 Bj—l Aj jl ] jnl' ‘cji
=1 j
3 1 1 1 ‘
— . = - =) | = —|u |
*G7 " 12 T 12 IME)| = M E) |

and so {ffg d\} 1is not convergent, contrary to our initial
n

assumption, This contradiction gives << ). That 1is,

/ 1
(f) = [fdu= [fgd\, ¥ fe A, some ge L (A)

)

[
12

u(E) | .
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Remark 5.1.1 Theorem 5.1.1 implies the classical F. and M, Riesz
Theorem. To see this, suppose p is a measure on the unit circle

L 1
such that fendu = 0, ni> RE {on}(:;L"(A) is the sequence

of Cesard means of the Fourier series of yu, then p is the unique
weak-* cluster point of {cnx} and

lim [fo dX = [fau, V¥ fe W

s 1
and so, by Theorem 5.1.1, u << A,

The proof of Thecorem 5.1.1 relies on the existence of h ¢ A

such that h(E) = 1 and |h| < 1 elsewhere, where A(E) = 0.
The existence of such an h 1is guaranteed by the classical F. and
M. Riesz Theorem. Thus, Theorem 5.1.1 is equivalent to the
classical F. and M. Riesz Theorem, and we shall refer to Theorem

5.1.1 as a sequential F. and M. Riesz Theorem.

8

5.2 A relation between generalised and sequential F. and M. Riesz

Theorems.

Elizabeth Heard (Heard [l]) considered the case where A 1is a
subspace of C(X), for X a compact Hausdorff space. She said
that A and m, where me M(X), the set of finite complex-
valued Baire measures which form the dual of C(X), satisfy a

generalised F. and M. Riesz Theorem whenever y g A => y << m,

for yu any finite complex-valued Baire measure on X.




g6

From our previous generalisations of the F. and M. Riesz
Theorem,which are not nearly so strong,it would appear that, for
A and m to satisfy such a theorem heavy restrictions would need
to be placed on A. Bishop [1] claims there are at least three
examples in the literature, one of which is given in Bishop [2].
Heard showed that, whenever A,m satisfy such a theorem, they also

satisfy a sequential F. and M. Riesz Theorem.

Theorem 5.2.1. (Heard [1]). Let A be a closed subspace of

CX). Let m ¢ M()), where M(X) is asddefined above. Let y
be any finite complex-valued Baire measure on X. Then (I) => (II)
1
(I) ye A => u << m,
1
(LI) BE {gn}CL (m) and
2(f) = lim [fg dm
N> 4
exists for every £ e [A],, then any representative of a coset
ik %
u + A which is a cluster point in the o(A,A ) topology of the
- E :
set of cosets {p1 + A o= gnm]-CZM(X)/A is absolutely
I
1
continuous with respect to m (y <<m); and JF g ¢ L (m)

such that

LE) = ffgdm, ¥ £ eA.
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Proof. Suppose {gn}C:lLl(m) such that

2(f) = lim [fg_dm

n->

exists for every £ e [A],. Let W be defined by uo=gm.
Ii n

By a similar method to that used in Theorem 5.1.1 we can find a coset

{1 *
W+ A which is a cluster point in the O(A,A ) topology of

1

e
{n. A b Let U be a representative of the coset U + A . Then
n

lim [fdu = ffdu = &(f), V £ €A.
n

o
We shall now show that U <<m, Suppose this is not the case.
Then, since M 1is regular, = a closed set E< X such that

m(E) = O but u(E) # 0. We require {fn}c:;A with the following
properties.
(B e || sT 2
(1% fn =1 on E

(i) Sdme £ =00 ale. (m)

N->»c0
(iv) 1lim f =y a-e. Clild
N -—»c0
(v) f = z (»1)Jf (i) e [A], for every strictly increasing
§ nij ¢
i=1
sequence of positive integers {n(j)}.
The construction of {fn} is by induction. Let {Un} be

a sequence of open subsets of X such that E C;Un+1<:;Un<

-n : -n
Since m(E) = 0 we can suppose m(Un) <2 and |u|(Un\\E) A

for all positive integers n.
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Let E1 - Ul. By Urysohn's Lemma = h, ¢ CR(X) such that

1
hl(E) = {1}, hy(X\E,) = {0}, and 0<h <1. The assumption

il

that (I) 4is true and the general Rudin-Carleson Theorem (Bishop

[1]) allow us to choose fl € A such that

£ M) =T and | e gL

1 1
Now suppose fl;-.-,fr1 and the sets El}...,E which are open
T n
neighbourhoods of E, are chosen. Let V 1 be the subset of X
n+l
\ =1

hich [£ =1]| < 2 = U . Agai

on which Lfn 1| : Put En+1 En(\ Vn+1rﬁ M Again by

Urysohn' >mma , 3 such tha =
Urysohn's Lemma, 3 hn+1 5 CR(X) uch that hn+1(E) {1},

hn+1(X\\En+1) = {0}, and O < hn+l < 1. We can then choose
f = A
0t € such that
A -(n+l)
i Y = C | +
[n+1(F) {1} and ‘fn+l] <h , *+2 -
We now wish to show that the {fn} so defined satisfies (i) - (iv).
Properties (i) and (ii) are clearly satisfied. Now
lim £ = 0 except on the set F = B But
nseo O g i=1 J
m(F) < m(El) < m(Un) <2 Y n, so m(F) = 0, and 1lim fn =0
i Y
n--o
a.e. (m), which is property (iii). Also, 1lim f = Xg except on
n—>«

the set F\E. But
[u[(FN\E) < [u[(E \E) < [u|(UN\E) <27, Y n,

, which is property

so |u[(F\E) = 0, and lim fn =Xg a.c. |u

n->®

(iv).
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We now show that (v) 1is also satisfied. Let {n(j)} be

any strictly increasing sequence of positive integers. Let
=X. Then F=N E,.=/() E
j:l J J=]

.5 and
n(j)’
X\F = U (En(j-l;\ En(j))’ where the sets in this union are disjoint.
i=1

Consider x ¢ X\ F. Then, for some k, x g En(k;\ En(k+l);

k ©
and hence x ¢ jgl En(j) and x ¢ X\\j£2+l En(j)' Thus we have
k-1 : k-1 j k-1 fa
! (0 B Gl R | L CE . CR)=1)E-RY"| + | (-7 7|
jzl n(j) jzl n(j) jzl
k-1 )
(a) = X Z-n(J) + 1;
j=1
< j v -n(j) -n (k)
(b) CAFTE ol () 3T g 2 ;
lj=1l<+1 n(3) j=§+l n(i)

: -n (k)
(e) ||£n(k)l| e ,

o

Thus the series y (--l)Jfn
=

converges and (a), (b), (c)

(1

show that the sequences of partial sums,

(-l)jfn (x)}

{s Ge) e sE (X)) =
n n

ie~—m B

j

converges to f(x) and |sn(x)} < 4, Y/ positive integers n.

Thus f is defined at every x ¢ X\F. Let y e F. Then y CK}En(j+1)
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and

oy oy Leiysd . j . jo1
s \¥) = LY K)o (-1)- (£ (y) - 1) + :1)3°
n _]Zl n(j) JZ=2 ( D ¥ ) JZ=1 (=1)
so that

n n .1
[s Gkl e § JenG) <y & [ F 157

n .
L PTG F
i=1
Therefore f = ) (—l)an(,) is the pointwise limit a.e. (m) of
j=1 y
a uniformly bounded sequence of functions in A. Thus f ¢ [A]

*

and (v) 1is established.
We complete the proof in the same manner as that of Theorem 5.1.1,
showing that what we have just deduced leads to a contradiction
of our original assumption regarding the convergence of
{ffgndm b YV fe (Al . Thus yp << m and 3J g ¢ L]-(m) such

that

R(f) = [fgdm, V fe A.

85,3 Description of more functions in H  for which the limit

relation in Theorem 5.1.1 holds

It is not known whether the limit relation in Theorem 5.1.1,

namely

e (f) = [fgda,
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o

holds §/ fe H . Kahane himself (Kahane [1]) showed that it
does hold for certain functions in Hw\A&
Let L be the set of linear functionals ¢ on H~ such that,

for some (possibly 2 -dependent) sequence {gn}c:;Ll(x),

o0

R(£) = lim [fg dA, VW fe H .
n—>co

Theorem 5.1.1 asserts that, to each § ¢ [ corresponds at least

g € Ll(K) such that

R(f) = [fgdr, VW fe A (1)

Denote by G(2) the set of g« Ll(A) such that (3) 1is
true. Define DQ ={fe H :2(f) = ffgdx, ge G(g)}, and

Let DI = m{DQ « 2 e L} Then we have

Theorem 5.3.1. (a) DQ is a closed subspace of H”; and, given

any f ¢ H® almost all translates of £ belong to DQ.

(b) D is a closed subalgebra of H®, invariant under translation;
it contains all f ¢ H® such that fh € D, for some outer function h.

In particular, D contains all the f£ ¢ H  which are continuous

on the unit circle except on a closed set of measure zero.

Proof. Define ¢ (f) = [fg di, V £e A, where {gn}CZ_Ll(A).

Since the trigonometric polynomials form a dense subset of Ll(x)}

we may suppose that each g is a trigonometric polynomial. For
n

each f €A, {& (f)} is bounded, and hence, by the principle of
n
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uniform boundedness, {||® |{} 1is bounded. Denote by ||& || also
n n
the norm-preserving extension of ¢ to the continuous complex-valued
n
functions on the unit circle. By the Riesz Representation Theorem

3 a finite Baire measure u , such that, for each n,
= 3
d (£) = [tau , V £ ¢ A,
n n

and the total variation of u_ is equal to ||¢ ||. Thus we have
n i |

{€(g dx - du ) =0, V £ ¢ A.
n n L

In particular,

0, V¥V feaA,

jf(gndx - du) 5

where AO = {f e A: ffdk = 0}. Hence, by the F. and M. Riesz

Theorem.

gnA il e A
and so y_ << A. Therefore, we may suppose {l!gn:]l} is bounded.

n

In order to prove (a) we may suppose g = 0. Clearly DR is

a closed subspace of H . Given f ¢ H®, write fg : t » f(t-s)
for the translate of f. Since f 1is bounded, f*y ¢ A for
every VY € Ll(A), where "*"' 1is the operation of convolution.

Hence, by Theorem 5.1.1,

Lim [g_(O{[£(t-$)y ()N ()} A(e) = 0, ¥ 4 e o)

nre
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That is, by the Fubini-Tonelli Theorem,
Lim [y(s){[E(t-s)g_(£)dr(E)}dr(s) = 0, ¥/ 4 ¢ L1(1) (1)
n>e
By hypothesis,
lim [g (£)£(t-s)dr(t) = L(£)s
N

and, since {||g_|

s 11} is bounded, {fgn(t)f(t~s)dx(t)} is uniformly

bounded with respect to n and s. Hence, (1) can be rewritten
JuE)a(s) =0, ¥V ye 0.

Therefore, #(f ) = O for almost every s and (a) is established.

To prove (b) write

lim [fhg dx = 2 (h) = ¢ (£) = 2(fh), V¥ £,h cH .
n f h

n->c

Then Qf(h) = fhgfdk, Y h €D, where 8¢ € G(Qf).

Clearly Theorem 5.1,1 implies that A <D, Suppose f € A,

Then
fhierA D5 W Vhe e A= D,
Since fh e D and h €D, we have
[fhgd X = o(fh) = 2 (h) = fhgfd g R AL (1).

Thus,




104.

[n(fg-g)d A= 0, ¥ he A;

and so, by Corollary 1.3,4, f£fg - Bg € H0%) . But 1 € A, so

[(fg-g )dr = 0
f
- 1 !
and we have fg - B¢ € HO(X) Therefore,

fg = B (mod Hé).

Now suppose h e D. Taking f € A, and using fg 8¢ (mod Hé)

we have
L(fh) = 2 (h) = fhgfdA = [fhgd\, for every & ¢ L . (iii).
Theretore, €h & D5, 'for every L & L, 'and so fh & D. Since

fh € D and h € D, we have
[£(bg-g )ar = 0, V¥ £ € a.

1
Hence, hg = g (mod HO),

h
1
LE f e'D and h & D, fg= B¢ (mod HO) and so we still have
(iii) and, as a consequence, fh € D. Therefore, D 1is a subalgebra
o “H . It is closed because each D is closed, and it is clearly

)

invariant under translation.
Now, suppose £ € H, h e D, where h is an outer function,

and fh € D. We have as before
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[fhgd\ = L(fh) = L (h) = j'hgfdx, Y hep . (v
Thus
fh(fg-gf)d) T O BT T (ii)’

1
and so fg - gf £ HO(X).

Consequently,

L(f) = Qf(l) = fgde = [fgd\, for every 2 € L.

That is, f € D, for every % ek, and so £ €& D.

Finally, if E 1is a closed subset of the unit circle such

that A(E) = 0, then = a continuous outer function h such
that h(E) = {0} (Hoffman [1], p.80.)
Hence, if f is continuous except on E, fh € A and f € D.

An alternative proof of the last part of Theorem 5.3.1 was

suggested by J. Wells and is given in Heard [1].
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