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STATEMENT 

Except where otherwise i ndica t ed, this thc3is is my o'-m ~vorl(. 
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SUMMARY 

In this thesis He consider certain subalgebras of L
oo

, 

called \veak-~~ Dirichlet algebras. which wer e firs t introduced by 

Sunivasan T.P and Hang J.(Srinivasan and {.Jang [1)). We consider 

the generalisation to these al gebras of a portion of the theory of 

analytic funct i ons in the unit disc. 

In our development we follow the approach of Srinivasan and 

H?.ng, \vhere the invariant subspace theor em > and not Szego ' s 

Theorem, plays the central role. This theoren, for invariant 

subspaces of l.::.p.::.oo, is established in Chapter 1. 

develop several important factorisation theorems in the process. 

00 

In Chapter 2 \ -10 show that H is isomorphic to a logmodular 

00 

algebra on the maximal ideal space of L and use this fact to prove 

the truth of Szego' s Theorem. Hm-lever, the Kolmogorov-Krein theorem, 

\"hich is a gen ralis ed version of Szego 1 s Theorem, i s not true for 

a general Iveak-*Dirichlet algebra . In this chapter, also, we 

consider for which weak-*Dirichlet a lgebrns the !'olmogorov-Krein 

Theorem do s in fact hold. 

In Ch3pter 3 we consider s everal generalisa tions of the classical 

F. and M. Ri~sz Theorem and the weak-i, Dirichlet algebras for Hhich 

these generalisations hold. We continue this theme in Chapter 5 

where we develop a sequential F. 3nd M. Ricsz theo rem and s how the 

1 



I 

(iv) 

connec t ion betHeen this and one generalised foun of the F. and M. 

Riesz Theorem . 

In Chapter 4 we use som ' of th r esults of Chap t e r 3 t o shO\v 

that ther e exists a unique ex t ension of a weak-* continuous linear 

functi onC'. l de fined on a ,veo.k-* Llrichlet algebra to "l \ve.:tk- ~' 

00 

continuous linea r functiona l on L . We generalise en-route a result 

of Gl ea30n and Whitney. '-Ie conclude this chapter by considering 

the ext ens i on of certa in pos itive linear functiona ls defined on a 

y]eak->" r iric1ll et algebr :l . 

u 



1. 

Pre liminaries 

He shall begin \'7ith some necess ary de f initions . 

Definition 0.1. A sup-norm a l gebr a A on a compa ct Hausdorff 

space X is a complex linear s uba lgebra of C(X) , the algebra 

(under pointwis e opera tions) of continuous , complex- va lued func t ions 

on X, such tha t 

(i) A is clos ed under t he norm " f IIA = s up I f (x ) I ; 
XE:X 

(ii) 1 E: A; and -

(iii) A s epa r ates t he points of X· , t hat is , if x , y ar e distinct 

points of X, 3 f E: A such tha t f(x) # fe y) . 

He s hall v7ri t e f or t he s e t of invertibl e e l ements in VA A' , 

tha t is VA = {f E: A ; f and l/f E: A}; 

deno t es t he complex conj ugat e of f. HA (Hi t ho ut subscript is 

no amb i gui t y ens ur es ) denot es the maxi mal i deal space of A. 

Unless sp cifically s t a t ed othe nvi s e. by a measure on X \ve 

s hal l understand a fini t e , compl ex llaire meas ure on X. 

lve ahall m~le us e of t he Reesz r epr esont3ti on theorem in the 

form : 

Eve r y boundc·d (th .:1 t is , continuous) linear functional c!> on 



2. 

CR(X), the r eal-value d functions in C(X), i s induced by a r eal 

measure J.l C, il X, that i s . 

Similarly , every bounded linear functiono.l on C(X) i s 

induced by a (complex) meas ure on X. 

We shall a lso make frequent us e of (Edwar ds [1] , Chs 2 , 8) t he 

Hahn-Banach Theorem and duality theory. 

Definition 0 .2. Let A be a s up- norm a l gebra on X. Let ¢ E: 1\1 , 

t he maximal ideal space of A. A r epres enting measure m, for ¢ 

is a positive measure on X s uch tha t 

Jfdm, V f E: A. 

Definition 0.3. Let A be a sup-norm a lg ebra on A. Le t 

<P E: ~i. An Ar ens-Sing e r m~su re, m, for <P i s a posi t ive measure 

on X such t hat 

l og I <P (f) I 

Since <P (l) = 1 , both types of measur es def ined above satisfy 

Jdm = 1 , and a r e, cons equently, probability meas ures on X 

(positiv measures of mass 1). 

• 

I 

, 

! 

I 
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3. 

Definition 0. 4 . A l)iri chl e t a lgebr a A on a compact Hausdorff space 

X is a sup-norm a l gebra on X such tha t the spacG ReA is 

uni f ormly dense in 0
R

(X). 

Hoffman (Ho ffman [2]) extended t he t heor y for Diric~,l et algebr as 

to ~ class of a lg _bros he ca lled logmodula r alg~b ras. 

De finition 0.5. Let A be ;; sap ·-norm a lg ebra on X. fl i s a 

logmodula r a lgebra on X if t he s e t of functions 10g iVAI is 

uniformly dens e i n C
R 

(X). 

This l eads t o 

Theor em 0.1. If A is a Dirichlet a l gebra on :l compact Hausdorff 

space X, then /' . l is a logmodula r a lg ebra on X. 

Proof. Since , V f E A, Re f = l og I expof I, \ -18 have ReA C log I vAl. 

But is a riric1,let 21gebr a. T"t) us R2A i s uniformly d "nse in 

and so l oglvAI ::::>ReA is uniformly d ns e in and A 

is a l ogmodula r a lgeb r a. 

Theorem C.2. Let A be a logmodula r al gebra o~ X. Then , to 

eve ry <I> ct!. the Plaximal idea l space of A, corr~sponds a 

unique r epres enting measure for <1>, and this meas ure is a 

fl r ens-Singer measure . 

I 

i 
I 

, 

, 

, 
, 

i 

I 

i 



Proof . This follmvs directly from Hoffman [ 2], Theo r ems 2.1, 

4.1, 4 . 2. 

Sril1-tvasan and Wang (Srinivasanand var..g [1]) extended most of 

the main theorems of logmodular algebra theo ry (the: exceptions being 

the F. and M. Riesz theorem a nd the Kolmogorov-Kre in Theorem) 

t o a class of .:>. l gebr as th y called u eak-i' Dirichlet. 

Definition 0.6. Let (m .X ) be a probability me;;:,sure spa ce. 

Let A be 3 subalgebra of Loo(m) under pointwise operations , 

such thc.t 1 £ A. Then A is a~'leak -* Duichlet algebra if and only 

if the following conditions ~re satisfied : 

(i) m is multiplicative on A' , that is 

J fgdm Jfdm • Jgdm , V f,g £ A; 

(ii) A + A is a dense subset of LOO(m) 

t opology . 

i n the 
1 00 

a (L , L ) 

To shm., tha t :111 logmodular a lgebras a r e a lso vleal-* 

Di:dchlet a lgebr:ls tole nr;.~d the follmving three lemmas . 

Lemma O.l. Let m be probability measure on n compact Hausdorff 

space X, and g £ ri(m) , the set of r e31-v:llued functions i n 

1 L (m) . Then 

j(expog)dm ~ exp[jgdm] . 

4. 

I 
I 

I 

I 



5. 

Proof. Since ever y 
1 

g £ LR(m) can be written in the form 

g = f + ~ wher e f £ Li(m) such that Jfdm = 0, and c is a 

constant function, it suffices to prove this l emma f or 

such that Jgdm = O. Since a lso , expog ~!+g , we have 

J (expog )dm ~ f (!+g) dm 1 + Jgdm = 1 = exp[Jgdm ] . 

Lemma 0.2 . Let m be a probability measure on n compact Hausdorff 

space X. Le t A be a 10gmodu1ar a lgebra on X. Let 
1 

g £ L (m) 

such that Jfgdm 0, \/ f £ A. Then 

Proof . Then Jfdm J(!-g) fdm, and so 

and 

10gl J fdmi ~ l ogJlfl 11 - gldm. 

Since m is an Ar ens-Singer me.:tsur c (Theo r em 0.2 ) , and f £ VA ' 

Jlogi fl dm 

or 

Ll 

I 
i 
i 

t 

! 

I 

I 
i 

( 

I 
I 
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6. 

Since A is a logmodular algebra~ log IVAI is uniformly dense 

in C iX), and so 

1 < f (expou)ll - gldm, ~ u E C~(X) such that fudm 0, 

Thus, 1 < inff(~xpou)ll - gldm exp [Jlogll - gldm ] , by 
u 

Lemma 0 .1, and the lemma follmvs . 

Lemma 0.3. Let m be a probability measure on a compact Hausdorff 

1 
Let g E L~ (m) such t hat space X. 

for eVf;ry real number t in some interval I t I < 6 . Then 

g = a. dm). 

Proof. This is the? r esult (,f Hoffman [2] , Lemma 6.6. 

Thus ,V'e have , 

Theorem 0.3. Let ill be a probability measur e on a compact Hausdorff 

space X. Let A be ~ logmodular a lgebra on X. Then is a 

weak-''<Diric~let algebr e.. 

Proof. It suffice s to prov t ha t , if g E ~(m) such tha t 
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jfgdm O) 'r:jfe;fI., 

then g = 0 a. e . (m). 

Any such g satisfies Lemma 0.2 and so 

and so, by La~a 0. 3 , g o a . i. (m).For 1 ~ p < 00, we define t he 

space HP (m) by 

1) 

~r· (m) = [A] , 
P 

the closure of A in the LP -norm ; and ,..., 2. define 

00 

H (m) 

He sha ll show (Theorem 2.1.1) that 

of A in L 00 (m ) • 

Le t A = {f e; A : Jfdm o 
~16{m) , 1 .<.. p2. ·00 by 

Jfdm 

O} 

It is clear. tha t for 1 < P < 00, 

[1' .') ] • 
\ P 

00 

H [A] * ' the ~...,eak-'~ closure 

;md de f i n e 

II 

'. 
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CHAPTER 1. 

INVARlfu~T SUBSPACE THEOREM 

1 1 L2. . b Th § • - lnvarlant Sil space eorem . 

Fo r weak-'': ." :lrichlet a lgebra s the invariant subspace theorem 

is the basic one. For A a ueak-:', Dirichlet a lgebra or. a 

compact Hausdorff space X 9 and m a probability measure 

multiplicative on 1'.9 I.]e de fine a closed subspace M of L2 (m) 

to be simply invarian t if [MA
O

]2 < H . "< "' denoting strict 

inclusion and AO = {f sA : ! fdm O} . 

For- such subspa._es I.]e have 

Theo rem 1. 1.1. Every simply invariant subspace M of L2 (m) 

is of the form M = qH2 (m) , for some measurab l e q such that I q I 1 · , 

and q is unique (modul o functions which 2r c zer o a.e) up t o 

multiplica tion by a constant function with absolut e value 1. 

To prove this theorem we need the f ollowing four l emmas . 

Lemma 1. 1. 1. Le t 1,] E: be a r eal-valued function. If 

Jfwdm = !fdm , V f E: A, then w = 1 a . e. (m) . 

Proof. Our assrnnption me ans tha t 



9 , 

o V f e:: A., 

But w = VT, so vie have 

[f (l-VT)dm 0, V f e:: A. 

Rencc 1 - w = 0 ~ . e. Cm) by the VTeak-~ dens i ty of A + A. 

Rcmn r k 1. 1. 1. Since A conta ins a ll const gnt functions , the 

weak- :': density of A + A is equiva l ent t o thRt of A + AO' 

He nov] prove 

Lemma 1. 1. 2 • + AO lS r..onn dens e in L2 Cm) . 

Proof. Take f e:: L2(m) such tha t Jfgdm 0, \i g e:: A + AO ' Since 

L2 Cm) C- L l (m) , Remark 1.1.1 shows that f = 0 o . e. (m) • 

.An appeal to the Hahn-Banach theorem gives r esult . 

Lemma 1. 1. 3. Let A be a ~veok-· ~' Dirichlet a lgebra on a compact 

Hausdorff space X. Let m ba a probnhility mCRsure on X, 

multiplicative o~ A. Then 

Ca ) V f ,g e:: H2 (m) , fg e::l1l
(l!l) & Jfgdm = Jfdm . !gdm ; 

(b) \if 1-1I Cm) , :se:::IIC;n) L
oo

, f ge:: llICm) and Jfgdm = J fdrn . Jgdm. 
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Proof. (a) Cons ide r f , g E d 2(m) = [Al
2

, Then ; sequences 

{fn},{gn} c: P- Hhich converge in the L2-norm t o f , g respectively. 

Nmv. 1 
fg E L (m) and 

and s o {f g } C f!: conv e r ges t o fg i n the L ' -norm. and so n n 

fg E J(m). 

Since IJfndm - Jfdml _~ Ilfn-fII12.llfn-fI1 2 ' 

Similarly, 

a nd 

limJ f ndIn = Jfdm. 
n+oo 

1imJg dm = Jgdm ; 
n 

0+"" 

limJ f g drn = J fgdrn. n n 
Jl+<Xl 

b 1so , since m is mUltiplicative on A, 

J f g nm = I f dn . J g dm. n n n n 

Thus we ho.ve 

J f gdm lim (J f g dm) 
n n 

n+oo 

lim (J f dm • J g dm) 
n n 

0+00 

(limJ f dm) . (limJ g drn) 
n n 

n+oo n+oo 

= f fdm • f gdm . 
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(b) 
11 00 

Let fE: - (m), geE (m) L . Since f. g E: !: l (m) :3 s e quenc e s 

{fn },{gk } cA which conve rg e in t he Ll-norrn to f,g r espectively . 

Conside r {fngk}~=l CA. r-lo'17, 

and s o { fng
k

} ~=l C A conve r ges in the L I -no rm to 

f g £ tf\i\1 ) , Also , 
n 

and so 
1 

L -110 P ll t o 

is clos e d under the 
1 

L - nOI"ll) a nd so 

Simila rly , 

limJ gkdm = J gdm . 
k~ 

lirnJf im = Jfdm. 
n 

n+<x> 

a nd lim limJ fngkdm = J fgdm . 
n+<x> k+oo 

~lso , since m is multiplica tive on A, 

Jf gldm = Jf dm • !gkdrn • n < n 

Thus we have 

f g. 
n 

Thus 

But 

! 
I 

~ 



~! 

fgdm lim lim J f gl dm 
n-+oo k+oo n ( 

lim lim(Jfndm . Jgkdm) 
n-+oo k+oo 

limJ f dm • limJgkdm 
n+- n k-+oo 

Jfdm , J gdm . 

12 . 

Lemma 1.1. 4 . Let f be a r eal-valued funcjtion in HP(m) , 1 ~ P < 00 . 

Then f is equa l a.e . (m) t o a constant f unct ion . 

Proof . Let c = ! fdm . Thus ! (f-~) dm = O. NOH m is 

multiplica tive on A, and hence, by Lemma 1 . 1 . 3 (b) 

0 , 0'( g £ A. 

Since f is r eal-valued , this implies that 

Thus 

J (f-~) gdm 0, V g £ A. 

J \ . 
(f-~)hdm = 0 , II h £ A + A . 

and so f - ~ = Q, a.c . (m) by the weak-* density of A + A. 

as 

We now prove Theorem 1 . 1 . 1 . henceforth omitting 

L
2

(m) , when no ambiguity arises. 

(m) in such terms 
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Proof of Theor em 1 . 1 . 1. Since [MAO] 2 < M , ::I q :f Q. q (; M g P1A
O

] 2 • 

Hithout l oss of gener a lity , ~.;e may normalise q so tha t J I q 12dm = 1. 

Let f E: A. Then f - (fdm E: AO' and 

J f lql 2dm (fq,q) ([ f - (fdo ]q , q) + ([ (fdm]q Jq) Jfdm 

~.;h er l: th inner p r oduct is taken in L2 as a Hilbert s pace. Hence, 

by Lemmo. 1. 1. ~_ , I q I = 1. NOv7 qA C H.A CHAO + M cf{ + M = H, 

and, since M is c.los ed, qH2 q[ A ]2 = [ qA] 2 c N . Suppose 

qH2 < tf and l e t g E: M g qH2 . Then 

0, \j f E: A. 

Tha t is 

So gq A +-fl. 
0 

i n L2. Hence, by L2IUl11a 1.1. 2, gq = 0 a . e. 

But I q l = 1 , so g = 0 8oe. Pence, since c:H2 is clos ed 

M = qH2. 

That q is ess em:i ally unique f ollows immediately. For if 

qH2 = q'H2 (I ql = I q ' I = 1) , then both qq ' _nd q'q E: H2 and 

so , by applying Lemma 1.1 . 4 

we gL~ t qq l = C G..e . whe r e c is 0. cons tant function and I ~I = 1. 
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Remark 1.1. 2. Since a ll l ogmodula r a l geb r as are .:.lso t.eak-,·, 

Dirichlet (Theorem O. 3), Tl1eorem1J.L implies I'heor em 1 . 1 .2. t he 

invari ant s ubspace theorem for A a logmodular a lgebra. 

Theor em 1. 1. 2 . Le t A be a logmodula r algebra on a compact 

Hausdorff space X. Let m be a probability meas ure on X, 

multiplicative on A. Suppos e th~t M is a closed subs pace of 

Il2 such that HAC:: M, 2nd t hat -' a t l east one g £: 11 such 

t hat fgdm 1: O. Then ~ a function q £: H2 such tha t 

(i) Iql = 1 

and (ii) 

The f unction q is unique (modulo func tions ,.hich ar e zero 

a.e.) up to multiplication by a constant function with absolute 

value 1. 

For A a l ogmocular a lgebr a and M a closed subspace of 

we sha l l sho\'1 the equiva lence o f the hypotheses of Theorem 1.1 

Theorem 1. 1. 2. That is, ,.e shall s hm., 

(i) If H is a clos _d s ubsp ace of H2 and [MAO] 2 < .'1, 

then 3 g £: M such that f gdm 1: 0 , and MA C M; 

and (ii) If ~1 i s a clos ed subspa ce of HL and MA c M, and 

~ g £: M such th~t f gdm 1: 0 , then [MAO] 2 < M. 

In (i) , since each function in ~ cp..n be Hritten as the sum 

of a function in. AO nnd a constant function , it is easily s een that 
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MA --:: M. Lemma 1 . 1 .3 ens ures tha t m is mul t iplicative on 

and hence. on [!-L,\] 2 9 a11d so t he strict inclusion of [NAO] 2 in !1 

ensures that :::i g £ .1 such t hat j gdm " O. 

tha t Hm"eve r ? as in 

But by hypothes is ~j g £ }1 

Since M is closed , this means 

(i) , '''c h~ve J fdm 

such that Jgili~" O. 

Remar k 1.1.3 . In Theor em 1 . 1 .2. the hypo t hesis that 3 g £ M 

s uch t hat jgdm" O. is an essentia l one. 

We shall give an exampl e to illustra t e t hi s point . (Hoffman 

[1] , p.102) . 

Let X be the torus Choos e and f i x an irrationa l number a, 

and l e t A be the a l gebr3 of a ll continuous functions f on X 

such that 

io zero for a ll pa irs of integers (le. n) , s ave perhaps thos e be longing 

to the half plane ,,,her e k + m. > O. Now A is a ~irichle t 

a lgebra , d.1,d hence both a l ogmodular a l gebra and a weak-star-Duichlet 

a l gebr n (Theorem 0.1 .1 and Theor em 0 . 1.3) . 

If 
1 

dm = -- d8 d\)! s 

4n 2 
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H2 (m) is the space of square summable functions on the torus \.,ith 

Fourie r series 

where ( i e i lji) ,---" ike inlji e ,e ' /, e e . 

If \.,e take M to be the subspace of funct i ons for which a
OO 

0 , 

then MA .;:' H but M i s not of the form 11 = qH2 (m) f or a 

measurable q such that Iql = 1. To s ee this suppose that 

Since Iql 1, qq =. ~ and so H2 

Also , since 1 E H2, q E M. Thus . fqdm = 0 and q(k, n) = O. if 

k + nCt .:. 0 , where g (k ,n) is the coefficient of 

series for q. Thus , 

and so 

q I q(k,n)ekn , 
k+nCt> 0 
(k ,n)#(O,O) 

q = I 
k+nCt<O 
(k , n)#(O,O) 

Let f ElL Then 

Hence, 

f I f(k,n)ekn · 
k+net> 0 
(k ,n)#(O , O) 

in the Fourier 



jqfdm I 
p+qa.2.0 

(p , q)rf(O , O) 

k+na> 0 

(k, n)#(O, O) 

< I 
p+qa.2.0 

(p , q)rf(O ,O ) 

I 
p+qa=O 

(p,q )rf(O ,C ) 

a f(k ,n) Je
1 pq <+p, n+q 

a f(-p -q) pq , 

a f (-p , -q) 
p q 

which is an empty sum since a is an irrational numbe r . 

JCifdm 0 , ''\/ f £ M, 

vlhich contradict s H2 qM since 1 £ H2. 

17 . 

Hence 

Remark 1.1. 4. When is the a l gebra of all continuous complex-

v alued functions on t~c unit circle which have analytic ex t ensions 

to the interior of the unit disc , and m is the normalised Lebesgue 

measure. the situa tion r educed t o the CRs e of the shift oper a t or 

"multiplication t>y · 11 
J • 
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Prom this point on , we shall us e A t o r efer to a weak-* 

Dirichl etalgebra on a compac t Hausdorff space X. We shall r efer 

t o Theorem 1.1.1 as the " L 2- invarian t subspace theor em" and \"e 

shall genera lis e t his theorem t o LP, 1 < P < 00 

§1. 2. Some results concerning outer functions . 

Before doing this , however , ,ve need Gome prelimi nary 

r esults. Firs t ,,,e need the concept of an out er function. 

Definition 1 .2 .1 . A function h £ HI [A]l is s aid t o be outer 

if 1 [hA]1 = H . 

We not e the following about outer functions . 

Note 1.2.1. If h is outer , then h f 0 a.e . and Jhdm f O. 

Proof. That h f 0 a.e . f ollows directly f r om Definition 1.2.1. 

If Jhdm = 0 , Lemma 1.1.3 (b) ensures tha t [ lu:\]l < HI which 

contrndicts Defin Ltion 1.2 . 1 . 

Note 1. 2.2 . If h , h' ar e outer and Ihl = Ih' I , then h ch' 

where c is a const.:!nt function such that 1.£1 0: 1. 
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Proof. We first observe that , since Ihl = 1 h ' 1 ' h = qh' for 

some measurable q such that Iql 1. Now, Hl = [hAl = 1 

[qh 'A] = q[h 'A] = 1 so both and H' . 
1 1 

qH , q q e: Hence, by 

applying Lemma 1.1.4 s eparately t o Req , Imq we have q = c a.c. 

and s o h = ch'. 

No te 1. 2. 3. Le t h e: H2. Then h is out er if and only if 

[hA] 2 = H2. 

Proof . (i) Le t [hA] 2 H2. Then, [hAll [[hA]2]1 [H2 ] 
1 

and so h is outer. 

(ii) Let h 

by Lemma 1.1 . 3 (b) , 

be outer. Since [[hA] 2AO] 2 = [hAO]2 < [hA]2 

Theo r em 1.1.1 applied t o M = [hA]2 gives 

[hAl 2 = qH2 for some meas urable q such that 1 q 1 = 1. Nmv, 

since h is out er, 

Hence q =! and 

From now on , we shall us e q (with or ~vithout subscr i pts or 

superscripts) t o r e fer to a measurablc function ever~vhere of 

absolute vallie 1. 

1 
= H , 
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§1. 3. FactorisRtion Theorems. 

Theorc!Tl 1. 3.1. '1h , where 

h E H2 is oute r , and q E [fA]2' 

Proof . Our assumption implies tha t [fA]2 is '1 s imply invcriant 

outspace of L2, Hence, by Theorem loLl , [fA]2 = qH2, Thus , 

f = qh , some h E H2. Now , 

thus ,.,e have [hA] 2 = H2 and hence h is oute r (by note 1.2 .3 ) . 

Also, since q E: qH2 = [fA]2' 

Theorem 1.3.1 is actually a generalis~tion of 3 f actorisa tion 

theorem due to Bernl i ng and Nevanlinna (Benrl ing [1]) , which 

8f)pl:Les to funct ions f in the Hardy space H2 for \vhich f fdm i: o. 

~,Je nmv prove 

Corollary 1.3.1, 

f = qh2, Iolhere h E H2 is outer. 

Proof. By t heor em 1. 3.1, Ifll/2 q1h , wher e h E H2 is outer . 

Thus ,.,e have, for 

sgnf f ~ f HT ~ 

o if f=O 
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f 

Corollary 1 . 3.2. 

Proof. S f ' h 11.~ll/2 ~ [ lfll/ 2~O]2' uppos e lrst t at ~ " Let 

f fllfll/2 E: fl [lfll/ 2hO]2C: [fl lfll/2~O ]1 [fAO]l' 

then Ifll/2 i [ lfll/2AO]2' ·ow suppose Thus, if f i [fAO]l ' 

Ifll/2 i [lfll/ 2AO]2 ' Then , by Corollary 1.3 . 1 f = qh 2 by, 

where h E: H2 is outer. We need to show tha t 112 E: H2. H'2. C. HL 

(Lemma 1.1 . 3 (a )) is outer. Now, since h is outer , 

1 
[[hA]2]1 C. [h2A]l ' But, by Lemma 1. 1. 3 (a) Hence H = 

h2 E: HI , so [h2A]l HI and so we have [h2A]1 H+ and , 

h2 t: HI [fAOJ l = [qh2AO]1 
1 

is outer . ·1 01'] = qHO' but 

f = qh2 i [fAOJ
1

, by No te 1.2.1, and hence result. 

.Corollary 1. 3. 3. If f E: L 1 and f i [fAO J1 , then f = Fh, 

where h E: H2 is outer , Ih l 2 = If I 
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Proof. --- By Corollary 1. 3.1 and Corollary 1.3.2, \ve have f = qh2, 

,.Ther8 h E: H2 is outer. Let F = qh. Then F E: L2. Thus 

f = Fh vrith h E: H2 outer, and , since Iql = 1 , Ihl 2 = 1 fl· 

Further , F E: FH2 = F[hA] 2 ~ [FhA] 1 = [fA]l' 

Remark 1. 3.1. Since m is multiplicative on A, we have A and 

as orthogonal subsets of L2. It follmvs fr om Lemma 1.1. 2 tha t 

(i) 

Sine.: f E: H 1 i mplies f fgdm = 0 'r! g E: AO (by Lemma 1.1. 3 (b» , \ ,TC 

see that H2 :.;J H 1 n L2 . Trivially, H2 Hl. L2. and so \ve have 

(ii) 

00 

Since , by definition, H = H2 , L 
00 

\·le have also 

00 

{f 
00 

ffgdm V E: AO} . H = E: L : = 0 g (iii) 

and 
00 00 

H = H ,(\ L . (iv) 

He nm-J prove 

Corollary 1.3.4. H 1 = {f E: L 1 : f fgdm = 0 \j g E: AO}' 
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Proof. Clearly , if f € Hl then Lemma 1.1. 3 (b) ensures tha t 

ffgd!1 0 V g € 11.0 ' Conversel y, consider f € Ll s uch that 

ffgdm 0 , \ g € 11.
0

, By :::e~lacing f by f + c for some constant V 

function c if necessary , we may assmnc th~t ffdm 1 O. Then 

f i [£1'.0]1 and S l) , by Corollary 1 . 3 . 3 , f = Fh \vhere F € [fAll L2 , 

and h € H2 is out er. Since F € [fAll ' it f ollmvs t ha t 

fFgcl:.n == 0 , \( g € 11.
0

, Since also F € L2, 17 € H2 (by (i) , 

Remar k 1. 3.1). Thus , f = Fh € H2. H2-:: Hl , by Lenun~ 1.1. 3 (a ), 

and the proof is comple t e. 

Corollary 1.3 , 5. 

is outer. and q € [fA)l' The conv er se is a lso 

true. 

Preo f . Then , by Cor ol l ary 1.3 .2, 

If1 1/ 2 i [ lfll / 2'0 ] 2 d b C 11 131 H an so , y oro ary .. , f = qh2, 

when h € H2 is out er. As in the proof of Corollary 1 . 3.2, if 

h € H2 is outer , then 
1 

l1 2 € lr is a lso oute r . 

Then f Al s o , 

q[h ,A]l = [qh ,A)l [ fA)l 

and hence f is of the stated form . 
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The converse follo\>1s from the fact that . since hl is outer, 

§l. 4. LP-invcricnt subspace Theorem . 

Consider p such that 1 ~ P < 2. Define the number r by 

1 1 r + "2 = l/p. Then p/r + p/2 = 1 , and so r/p and 2/p are 

conjugate indices. He n01.r prove the fo11m.J'ing tHO lemmas. 

Lemma 1. 4 • l. If f f E: L2, and r then f g, fg E: LP. 
n' g E: L , n 

If, further, {f } c: L2 converges to f in L2 then 
n 

, 

{f g} CLP converges to fg in LP . 
n 

Proof. Since f E: L2 and g E: Lr we have fP E: L2/ p and 

Thus, by the Holder inequality , fPgP = (fg)P E: Ll, 

and hence o fg £ L ' . 

inequality, ~.re have 

and hence 

Similarly, 
p 

f g E: L - . 
n 

Again by the H~lder 

Il f g-fgll = II (f -f)gll < IIf -fIl 2"gl n P n P- n r 

and so , since {f } C. L2 
n 

converges to 

{f g} C LP convergent to fg in LP . 
n 

f we have 
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Lemma 1.4 .2 . Le t 1 .::. p < 2. Define r as befo r e. If f £ LP 

and f i [fAO]p ' then f Fh. where h £ H2 is outer, and 

F £ [ f A] 
p 

," .. Lr. 

Proof. Then fl £ L
r

, 

th(m 

by Lemma 1.4.1 , which is contrary to hypothesis. Hence, by 

Theorem 1. 3.1, 've hav~ f2 qh . where q £ [f 2AO]2 ' and h £ H2 

is outer . Let F == f lq. Then , since fl £ L 
r and Iq l 1 , = 

F £ Lr . Also , F £ f
l

qH2 f l q[hA]2 c:. [f l qhAl p = [fA]p' by 

Lemma 1. 9.1. Clearly f = Fh and hence r esult. 

Corollary 1.4.1. If 1.::. p ~ 00, then HP 

Proof. We have already shown in Remar k 1 .3. 1 that the statement 

is true for p = 2 , 00. It is trivia l f or p = 1 . We shall prove 

it to b e true for 1 < p < 2 by us e of Lemlil ::. 1.4.2 ; and for p> 2 

by a duality ar gument. 

Le t 1 < p < 2. It is clear that HP c:. Hi () LP • To 

shmv the r everse inclusion , consider any f £ !l It L
P

. We may 

suppos e, by cons idering f + c ",here c i s [l constant function , if 

J 
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necessary, t hat Jfdm i O. Then 

f = Fh Hhen h E HZ is outer and 

f i [fAO ]p and so, by Lemma 1.4.2, 

F E [fA] n L
r

, r defined 
p 

as before . Since 1 < P < 2, r > 2, and so F E L2. 

F E [fA] c:. H 1 
P 

since 
1 

f E H . Thus, 

Also, 

Remark 1. 3 .1). In par t icula r , since 1 < P < 2, F c HP, and so 

f = Fh E FHL But, since 
r 

F £ L , r > 2, 

F[A] 2 C [FA]p CHP and so f to: HP. 

fo r eve ry p s atisfying 1 < P < 2. 

Again it is clear that HP c-_ H 1 n LP. 

here. It suffices t o s hm" that, if 

is such thnt g 1. HP , then g .L H I n 

Therefore 

Now let 

We wish 

LP. \~2 

HP Hl" LP 

2 < p <<q 

to shm" equality 

have, by 

1 1 - + - = 1) P p ' 

hypothesis, 

Jgfdrn = 0 , f P and by Corollary 1. 3 . 4, 
- 1 Since 

E H , so, g £ H • 

also 1 E HP, g 
1 

E HO ' Thus, since 1 < p' < 2, 

a lready proved ShOHS that 

Hence 

so tha t 

1 p' 1 pi p' 
H ;"\ L c.-Hn L H. g E 0 

::1 sequence 

limJ f g dm 
n 

n+oo 

{gn} L.. Ao ,,,hich converges to 

,.ha t we have 

g in 
p ' 

L 

Thus , making us e of Lemma 1.1. 3 (b) > 

1 
g 1. H (1 LP nnd our proo f 

is compl ted. 
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Corollary 1. 4.2. If 1 ~ P ~ 00, then 

jfgdm 

Proo f. This fact follmvs directly from Corollary 1. 4.1 and 

Corolla ry 1 . 3.4 and is a generalisation of Corollary 1 . 3 . 4 . 

~oJe nmv \vish to pr ove the invarian t subspace theo r em for general p, 

Here , a subspace M of LP(l < P < 00 ) is said t o 

be simply invariant if M is norm closed and [ lAO ]p < M. (This 

ag rees with our earlier definition for p = 2. ) A subspace M 

of L 00 is simply invariant if M is wea~* ' ," closed and 

\..]e nO'IT have 

Theorem 1. 4 . 1. (LP-invariant subspace TheoIEm) . Every simply 

invariant subspace M of is o f the form M = qHP 

for some measurable q such that Iql = 1 (and trivially conves ely). 

Proo f . For P = 2, Theorem 1.4.1 reduces to Theorem 1 .1 .1 . 

For 1 < P < 2 \\m shall us e Lenuna 1.4. 2. For p > 2 we shall 

us e a duality ar glffil nt. 

L t 1 < p < 2. Put N = M n L2. Clearly is a closed 

subspace of L2. loJe first shmv that N is non-zero. Since 

[HAO]p < H, .3 f E M [MAO ]p' Thus f i [fAO]p and so , by 

I 
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Lemma 1. 4.2, we can write f = Fh \07here h E H2 is outer , and 

F E [fA] n Lr r de fined a s be fore . Now, p , 

[fA] n L r C [MA ] n 1 2 C M () L2 = N 
P P 

so F E N and N is no~ ·zero , 

contrary to our assumption on f. Combined \vit.h the fact that 

[NAO] 2 C [MAO] 2 c. M n 1.2 = N, this shmvs tha t [NAO] 2 < N is 

simply invariant. Hence , by Theorem 1.1 . 1, N qH2 for some 

measurable q such I ql 1. We shall nOv7 shoH that M = qHP 

with the sarn8 q. vIe have, already, qA c:. qH2 N c.. M, so 

qHP = q[A] = [qA] C [MJ = M. 
p P P 

as before , we knmv t ha t f can be written as f Fh where h E H2, 

and, as shmvn ea rlier , F E N = qH2 . 

- - H2 .H2 
1 

qf = qFh E E H , by Lemma 1.1. 3 

by Corollary 1.4 . 1 , .:>.nd so f E qHP. 

~ow. if g E [i L'\.,. ] 
U :' 

thl!n 

lr:vc 

f + g E: M \. [ L\ OJ p ' 

f , f + g E qHP • Henc~ 
p 

g E qL' 

Thus , qF E HZ and 

1 
1P = HP, ( <1 ) • Hencc qf E H n 

This giv0s us t c i nclus i on 

and 

~ls() . Thus N = qHP 

and t h·. thcn r cn is proved f ·- r 1 ::. P < 2. 
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now let 2 < p ~ 00 . Let p' be the conjugate index of p, 

Thus 
1 1 -+
P p' 

Let MO 

p 00, and let 

N 

1 and so 1 ~ p i < 2. 

or 2 < P < 00 or 

Jfgdm 

Clearly N is a closed subspace of 
pi 

L and Nf.c \.Je shall 

shmv tha t Since MO < M 3 a non-zero continuous 

continuous if P = 00 ) linear functional ~ on M Hhich 

annihilates ~ is realised by a function f e: 

and, by the choice of ., f e: N. Since • is non-zerc on M. 

3 g e: M such that Jfgdm # O. This fact , combined with the 

definition of N implies that f i [N.\ Ol p" Hence is 

simply invariant. Since 1 < p' < 2, the fi rst part of this 
, 

qHP for some measurabl proof applies and ,.;re can write N q 

such that Iql = 1. 

By duality theor.y, 

0 , V f e: N}. 

This fact s combined with Corollary 1 .4.2. leads t o MO = qH~. 

We shall show tha t M = qHP. If f e: qM and g e: AO' then 
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and so, f f gdm = O. and hence, by Co r olla ry 1 . 4. 2 f £ HP. This 

shows t hat - P 
qM c:.. H , or M c:.. qHP . 

NoVl, since each f £ HP call be ""rit ten in t he form f = g + .£ 

whe r e and c is a constant function, is a subspace of 

HP of codimension 1 , s o t ha t MO = qHb is a s ubspace of gqHP of 

codimension 1. Hence, either M The l a tter 

is impossible since M i s s i mply invariant , and s o M = qHP ond 

our proof is comp l e t ed. 

We s ha ll no" add t o our discussion of out er f unctions . We 

prove 

Cor olla ry 1 . 4.3. 

[hAl = HP. 

h £ HP • 1 ~ P < 00 i s ou t er if and only if 

P 

Proof . (i) Le t [h1\ ] = HP. 
P 

[hAll = [ [lu\ ] ], 
P -

and s o h is oute r . 

(ii) Le t h be out er . 

Then 

Thus 
1 

[hA ]l = H . 

Since h i [hAO] p' [hA]p is an inv2riant subspace of 

s o, by Theo rem 1 .4 . 1, [N\]p = qHP , f or some measurabl e 

tha t I q I = 1. 

and 

q s uch 
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Hence q and 
-1 

q = q bc.;long to Hl and Le~na 1.1.4 implies 

tha t q = constant function = 1. Thus [hAl 
p 

Corolla ry 1.4.4. 

f = qh where h € HP 

1 ~ p < 00 and f l [fAO]p ' 

is out er and q € [fA] . 
p 

then 

Proof . Our assumption impli es that [fA] 2 is A simply invariant 

subspace of LP. Hence, by Theor em 1. 4.1 , [ ft. ) = qHP 
P , 

and so f = gh f or some h € HP • NmoJ 

q[hA] = [qhA] = [ fA ] = qHP 
p P P 

and so we have [hAl 
p 

HP, and hence, by Corollary 1 .4.3, h is 

outer. 

[fA] . 
p 

§l. 5. L2-invariant subspace Theorem implies A + A \veak"1' 

He show first tha t the L2-invariant subspace Theorem 

(Theor el:l 1.1.1) implies tha t is norm dense in 

dens e in L 

and then that h + AO norm dense in L2 implies A + A is wenk 

00 

_":c d nse in L ,. 

Assume Theorem 1.1.1 holds. He prove the follmving wi th this 

ass umption. 

00 

-



! 

32 . 

Theorem 1. 5.1. 

Proof . Let H = L2 e H~ . Then [HAO] 2 < M and so, by 

Theorem loLl , M qH2, some measurable q such tha t I q I = 1 . 

Since 1 E: M, q E: H2. Let -; = fcidm . Then q - c E: H2 and so - - ° 
q-.£ ti2 E: O. But q ,.£ E: M. so q-.£ E: M, and thus q - c ti2 

E: 0 ' 

It follmvs then that q-.£=Q and 1'1 = cH2 = H2. 

Corollary 1 . 5 , 1 . That A + AO is norm dens e in L2 follows directly 

from Theorem 1 .5 .1 . 

We need also 

Corollary 1 .5.2. 

Proof . Clearly 

1 
Since f E: N • 

1 L2 H n 

H2 c.. H 1 
f\ 

f ...L. AO and 

L2. Now consider f E: HI ('\ L2. 

so f J.. ti~. Thus, by Theorem 1.5 . 1, 

f E: H2 
1 ,.. L2 C. H2. and so H 

1 1 
jfgdm V E: AO}' Coroll.:!ry 1. 5 . 3. H {f L 0, g 

1 
Proof . Cl early , if f E: H t hen jfgdm 0, V g E: AO' New 

consider f E: L' s uch that jfgdrn = 0 , V g c <"0 ' By r eplacing 

f by f + c for some constant function .£ ' if n ccssary , we may 
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assume tha t Jfdm I O. Then f E [fAO]l and so, by Corollary 

1.3.3. f = Fh where F E [fA]ln L2 and h E H2 is outer. Since 

F E [fA] 1 ' it fo11o\o1s that JFgdm = o. 'V g E AD. Since also 

F E L2, we have, by Theorem 1.5 . 1 F E H2. 

by Lemma 1.1.3 (a). 

We are now in .:t position to ShO.l that the truth of Theorem 

1.1.1 implies that A +A is wealc- * dense in 
00 

L . In do ing this 

we shall use the Jens en inequality (Corollary 2. 1 .3), our proof 

of which ,.;ill dep end only on Theorem 1.1.1 , .:md Corollary 1. 5 . 3 which 

we have jus t shm,;'!l t o follow from Theorem 1.1.1. 

Theorem 1. 5.2. A + A is \.;eal<.-'~ 
00 

dens e in L (m). 

Proof. We need only show that any g E L~ (m), such that 

Jfgdm = 0 for every f E A. Suppos P g I 0 a .e . (m) . 

By Corollary 1.5.3, g E HI- ; and, since 1 E A, J gcirn 0 and so 

g E Jo. Thus 1 - t i:; E HI-, V real t, and so, by 

Corollary 2. 1.3 (Jensen inequality) , we have 

Jlog l!-tgl dm ~ 10gIJ(!-tg)dml O. 

Thus, by Lemma 0.3 g = 0 a . e. (m). 

From this we can sec th" t the conditions n ·c _ssary for A t o 

be ,vcalc .-~, J i r ichl et are the best possible such that the invariant 

subspace theorem is true for this class of algebras. 
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CHAPTER 2. 

00 

H AS A LOGHODULAR ALGEBRA ; SZEGO 'S THEOREM. 

00 

§2 . l R as a logmodular algebra. 

He now look more closely at Roo . He shall show that Roo 

is (isomor phic to) a logmodular ~lgebra on t he maximal ideal space, 

t I 00 co 
" , of L , and then apply to H some knm-m results about 

logmodular algebras. {ITe first prove 

Theorem 2.1.1. Let A be a ,.,eak- '" Dirichlet algebra. Then 

00 

H = [AJ ,~ . 

00 

Proof. He first shm., that R::::> [AJ *. Consider any sequence 

00 
{f } c. ROO , 

n 
Hhich is weak- '~ convergent to f £ L . Then 

liTIl f gf dm 
n r:->-oo 

[gUm, \1' 

jgfdm, 

g £ 't, .. 

L .. t' 1 II g £ L In particular , lim f gfndm 
J'l+OO 

But, by Corollary 1.4.2 , J gfn = 0 1/ g £ AO' 

fo r each f . 
n 

Rence j gfdm = 0, \f g £ A
O

' and, again by Corollary 

00 

1.4.2, f E R. 

To establish ROO C [AJ * we shall shm., that every linear 

00 

functional on L given by an function f , 

00 

vanishes on A also vanishes on R . Thus ~ (g) = jgfdm = 0, \I g £ A, 
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and by t he use of Corollary 1.3 . 4 , 1 Since also so , f € H . 

1 € A, f 
1 

€ 1-1
0

, Hence, 

00 

Jfgdm J fdm f gdm V g € H , . 0 

and the theorem i s proved . 

Corollary 2.1.1. For every p satisfying 1 2. P 2 00, 

H
oo 

c.. HP 00 -,p and [Ii ] n • 
P 

Proof. Since every no rm clos ed subspace of LP 
s 1 2. P < 00 is 

Thus we have , since 

1 < 

is closed , [H
oo

] c= HP• 
P 

P < 00 Thus [H
oo

] = HP 
P 

00 

Nmv H:J A , s o 

whenever 1 < P < 00. If P = 00, 

00 

H is \o7eak- ,', closed (Theorem 2 . 1.1) and ther e fore norm closed 

and 

t hen 

00 

so [H ] 00 

Now l e t V 

H 

{f 1 
f 

+n 
C E: V, V n . Let 

10g1 vi {log I f l 

and 
00 

f € H }. Clearly , if f € V , 

f € V}. 

00 

Also , l e t Ln denote the s e t of all r eal-valued functions in , 
00 

L . Then we have 

I 



Lemma 2. 1. 1. 10giVI 

Proof. Clearly 

since 1 i H6' 

u 
= qh, where h £ H2 and e 

and, since I q! 1, h . h' s L 

But, u qh eUh'h now, e 

u = log l hl £ log I Vi· 

00 

so 

Now consider u £ L
oo

• 
R 
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Then . 

Hence, by Theorem 1 .3. 1 , 

q £ [ eU A] 2 = e uH2 • Thus q = e~') 

h,h 1 HZ () 
00 00 

and so s L H 

that h l h = 1. Thus h s V and 

Remark 2.1.1. Under pointwise operations and the essential supremum 

00 

norm , L (m) is a Banach Algebra . Let 1\: be its maximal ideal 

space. He kno~7 (Hoffman [1] ; p . 169ff) that M is a compact 

Hausdorff space and tha t the Gelfand mapping f ~ f is an 

isometric isomorphism from L 00 (m) onto C Gd) . the sp ace of all 

continuous functions on ;':. and this mapping preserves complex 

conjugation. 

Since this isomorphism is onto . every function in C~I) is 

00 

o f the form f for some f £ L (m). If we let CP (f) f fdm . 

we get a bounded linear functional on C~). Then :3 a Radon measure 

Tn on M such that 

CP (f) 
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We now look at the relationship between LP(m) and LP (;), 

1 ~ P < 00. First note that the Gelfand mapping preserves 

positive pm.,ers of non-negative elements , and , since it preserves 

complex conjugation , (Hoffman [1] , p.170), it also preserves 

absolute values. 

Cons ider f E LP(m). 

{g } C L 00 (m) convergent to f in th.2 LP (m)- nom. 
n 

we have that {gn} is a Cauchy sequence; that is 

lim f lgn-gklPdm O. 
n , k-+<» 

Thus 

Hence , 

and so {~} C LP (~) is a Cauchy s equence. Le t f denote the limit 
n 

of {gn} in LP(~). Consider any other sequence 

which converges to f in the LP(m)-norm o Then we can show that 

lim fig -h IPdm 
n n 

o 
n+<" 

and henc-= 

lim f I; --h I Pd~ 
n n 

o. 
n+o.' 

Thus f is uniquely de t ermined by f (modulo functions equal 

to zero a. e . (m).), 

Conversely , consider g E LP(~). Then 3. {g }C C QYt ) such 
n 
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that {gn} converges to g in the LP(~)-norm. Hence 

and so {g} C L 00 (m) is a Cauchy sequence in LP (m). 
n Suppose 

{g} converges in the LP-norm to f £ LP(m). Then , by our n 

previous argument, {gn} converges to f £ LP(~) in the LP(~)-norm. 

and so g = f. 

Thus , the mapping f t-+ f sets up an isome: try bet~leen LP (m) 

and LP(~) and this isometry is an extension of the mapping 

00 

f 1-+ f from L (ru) onto C (i.' ) • 

~ 00 ~ 

Now suppose f £ L (m) is the imag e of f £ LP(m) . 

00 

since L (m) is dense in L l(m) , 3 
! 

L (m)-norm. Hhich converges to in the Noting that g 

we have 

and so {g f} converges to gf in the L ' (m)-norm. but 
n 

Consider 

gf = gf, 

f £ C(.:). 
00 ~ 

This shows that every function in L (m) is equal 

a.e. (m) to a continuous function . 

.I _ 
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" 00 

H is a subalgebra of 
~ oo 

H c (;.1) closed Let 

unde r the supremum norm, since H
oo 

is a weak-* closed, and 

hence norm closed , s ubalgebra of Loo (m). 

We have already noted that the mapping f ~ f preserves absolute 

values and positive pouers of non-negative e l ements. By the 

StoYle-Heierstrass The orem, for every f E: V, log I f I is the uniform 

limit of polynomials of the form 

But from above 

and we may conclude that (logl f l ) log I fl · 

Thus, we may r estate Lemma 2. 1 . 1 as 

10g iVI 

\vhcre V ={set f f and llf E: i't }. Since c~ q,l ) is a 

~oo 

H. separating algebra of C~ I ) so is loglv j, and hence also is 

Immedia t ely vle have 

Theor~ 2.1. 2. 
~ oo 

}j is a logmodular algebra on ,\!, the ma~imal 

00 

id al spac~ of L 
~ 

00 

Becaus e H is isomorphic to 
00 

B we can omi t the n,..1 1 

00 ideal 
00 

and consider H as a logmodular algebra on t he maximal space L 

L 
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App eal to Th~orem 7. 1 in Hoffman [ 2] now yields 

Corollary 2.1.2. The maximal ideal space M of L
oo 

ca~ be 

embedded in that of 
00 

H as its Shilov boundary. 

He also have, by Theorem 0.2, t hat ther0 exis ts an unique 

Arens-Singer measure m such that Jfdm repres ents a complex 

Aoo 

homomorphism on H. He can thus prove 

Corollary 2.1.3. (Jensen inequality). 

10glJfdm i flog I f I dm , V 
00 

< f E. H . -

A 

00 

Proof. Let f E. H and & > O. Then .log ( lfl + i) C C'.' ) . 
R I 

Hence, .::3 u £ 10glVI such that 

~v - & < log (I f I + f) < u + & (1) 

A AA _l ~ oo 

If u = log I g I > g £ V. l.=t h = fg • Then h £ H and, 

by the right hand side of (1) , loglhl < & • that is, 

Ihl < exp o & on N and so 

,... ", ,.. ..... 

I J hdml ~ flhl dm <S( exp 0 f)dm 
& 

e . 
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Nml7, since m is an Arens -S inger measure and g e: V . we have 

A A A A 

loglfgdml floglgl dm fu dm . 

By the left hand side of (1) 

A 

fudm < & L flog(lfl + ! )dm. 

Thus . we have 

Let & tend monotonically to zero to obtain 

and so 

loglffdml .::. jloglfldm , V f e: HOO , 

In particular. we have 

logl fdm l .::. flogl fldID, 'rI f e: A. 

Since m is an Arcns-Singer measure we g t equali ty for f e: V. 

§2 .2 More about Out e r Functions. 

Before us ing Cor 2.1. 3 to hel _, pro ,12 Szego' s theor em . we 

need some more fact s abo ut outer functions . \vc prove then~fore, 

... J 
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Lemma 2.2.1. Let 1 2. p < 00 . If 11 1 0 a.e. (m) and 

Jhdm = A 1 0, then h £ HP i s outer if and only if 

Proof. Suppose T'1cn :3 {f} C A 
n 0 

such that 

limJ lfn - (~ - ~/h) IPlhIPelm lim J I (f n -1:) 1: + ~.I p elm = 0 
fY+<X> n+oo 

Tbus - A £ [111\ ] and , since A 1 o. 
p 

1 £ [ hA] • 
P 

Hence 

[hA] = HP and so, by Co r ollary 1 .4.3, h is outer . 
P 

Since every 

implication in the proof is r eversible the converse i s also true. 

§2.3 Szego 's Theorem . 

Theorem 2.3.1. (Szego). 

Then 

inf f L~-f I Pwelm 
f£AO 

1 
Let l .2. p <oo and vl£L-- (m) , ~V>O. 

exp [j log ~v dm] • 

where flog w elm is defined to be - 00 if 
1 log ~v i L (m) . 

Proof . Consider f £ AO ' Let & > 0 and apply Lemma 0 . 1 to 

10g (l l-fI PH + §) £ L ~(m) to get 

-



u 

That is 

Let & tend monotonically to zero to obtain 

By Jensen's inequality (Corollary 2.1. 3) , 

Hence, 

and so 

i nf J 11:. - f I PHdm ~ exp [flogvldm] , 
fEAO 

which is one half of Szego's Theorem . 

43. 

To prove t he r everse inequality \.,e can assume that t he 

infimum on the left hand side is posi tive. Then 

lip d [ l i p ] 
w 't 'v - AO p ' so that , by Corollary 1. 4.4 , 

lip 
\1 qh Hhere 

h E HP is outer , and w = Iwl = !hI P. Since h E HP is outer, 

,.,2 have, by Lenuna 2.2.1, that 

I 
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inf II ! - f lPHdrn = inf II! - flPlhlPdm 
f EAO fEAO 

I.]hich is the dis t ancc of 1 from AO in LP C I h I Pm) . 

Hence. 

~ exp(IloglhIPdm) by the Jensen inequality 

exp CilogHdm). 

That is . 

inf II! - fIPHdm .~ cxp CIlog,oldm ) . 
f£::AO 

Hence r esult. 

Corollary 2.3.1. If f £:: L1, then f i [fAO ]l if and only if 

I l og I f I drn > _00 

Proof. By Corollary 1. 3. 2, f i [f~O ]l if and only if 

If I 1/ 2 ¢ [I f1 1/2A
O

]2' T1at ·s . if and only if 
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2 f I f II 1:. - g I dm > 0 . 

But, by Szego s t heorem (Th orem 2.3 . 1) for p 2, 

exp(jloglfldm) 

Hence, left hand side positive implies floglfldm> - 00 , and 

hence result. 

Corollary 2.3.2 . If f s LP and floglfldm> -00, then f qh , 

where h s HP is oute r ; and conversely. 

Proof. Let f s LP and flogl fl dm > -00 • Then , by Corollary 

2. 3. 1, f i [fAO J1 , and so , by Corollary 1.3.5, f qh, 

where h s H' is outer. Since I fl = Ihl and f s LP t hen , 

h s LP. Thus h s H In LP = HP by Corollary 1 . 4 . 1. Since 

each step in hthe proof is r eversible the converse is true . 

We are now in a position to prove a f urther Corollary of 

Theorem 1. 4.1 : 

1 
Corollary 2. 3. 3. Let 1 2. P < 00 . If f s L, the follmving 

three conditions are equivalent : 

i 



(i) 

(ii) 

(iii) jloglfldrn> - 00 • 

Proof . (ii) => (i). 

Assume Ifll/ p £ [ lfl l/PAO ]p' 

\·]here l/p + l/p ' = 1 . Then 

and so 

(ii) <==> (iii) 

This is s 5Juply Sor ol l ary 2.3 . 1. 

(i) => (iii) 

46 . 

1/ I 

Let fl = (sgnf) lfl p. 

Assume Ifll/Pi[lfll/PAOlp' NOH f£Ll a s Ifll /P£LP . 

Hence, by Corolla ry 1.4. 4 Ifll/p = qh \"hcre h £ HP is outer. and so , 

by Corollary 2.3.2 , 
l/p 1 

logjlfl- dm = ;jloglfldm > - 00, and so 

jloglfldm> - 00 
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§2.4 Ko lmogorov- Krein Theorem. 

For t~ose \veak-*Di.ric~ ... l e t a lgebras which are also logmodular, an 

extension of Szeg~'s Theorem (Theorem 2.3 . 1) holds. This extension 

is knmm as the Kolmogorov-Krein Theorem. In fact, Lumer (Lumer [1]) 

showed that this theo r em holds for all sup-norm subalgebras of C(X ) 

such that = {m} , '\1 is the set of repres enting 

me asures for </> , and U is the maximal i deal space of A. He shall 

combine Theorem 2.3.1 ( Szeg~) wi th an adap tation of a result of Hoffman 

(Hoffman [2] Theor em 4.3) to ShOH that t he Ko l mogorov-Krein Theo r em holds 

for those \veak st2r Dirichle t a lgebras Hhich h~va the property th·~t 

We shall then show in §2.S that this property 

is ne cessary for the. truth of the Kolmogorov-Krein Theorem. Ha 

no,", prove 

Theor2m 2.4.1. Let A be a weak-* Dirichlet a lg eb r a on a 

compact: Hausdorff spa ce X, such that M</> = {m}, V cp £ ~!. ,vhere 

m is a probability measure on A, multiplicative on A. Let 

~ be a positive measure on X? not necessarily ~ultiplicative on 

A. If is the Lebesgue de composition of ~ Hith 

respect to m, then 



J 

48 . 

Proof . Le t F be the orthogonal proj ect i on of 1 into 

If f s AO' (l-F) J.. f in L2 (11 ) ' Choos e a s cquence {f n}C AO 

which conver ges t o F in L2 (11 ) . If f sAO' then 

(.l- f n H s AO' since 11.0 is an ideal in fl.. Since f is bounded 

Hence (.l-F) -L (.l-F) f. ;"'ha t i s . 

(i) 

Le t K = f 1.l- FI 2dl1. K = 0 

I f K > O. the measure 11 1 = K-
1

I.l-FI211 s a tis fi es 

f fdl11 = f f dm. V f s A. 

In f act . this sta t ement i s true by (1) fo r f s A
O

; it is seen 

to be true for f E: A by noting t ha t any f E: A can be written 

in the fo n n f = g +~, wher e g £ AO and c is a constant 

f unction . Hence , by our a s s umption tha t 

've have 111 = m. Thus, for K ~ O. 

Km (ii) 

.-
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is the Lebesgue decomposition of vJith Since 11 + ]' "a -s 

r espect to m. we may rewrite (ii ) as 

Since t he measure on the right hand side is absolutely continuous 

with respect t o m, it follmvs that i1..-Fi2lJs = 0; and so 

F = 1 a. e . (lJ ) . 
s 

Thus, 

o (iii) 

where t he last equality folloHs from the fact that F is t he 

No\v. for 

we have 

and so 

{f }C AO n 
convergent to as before, 

This fact, combin~d wi th (iii), gives us that F is the orthogonal 

projectionoof 1.. i nto 

inf f i1..- f i 2dlJ 
f F:: 0 

and so 

From Theorem 2.3. 1 and 2 .f,.l vIe have t once 

--
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Theorem 2. Lf.2 (Kolmogorov-Krein) . 

Let A be a v1eak-,', Diri.rl1lct algebra on a compact 

Hausdorff space X. {m}, V 4> (; id. ,.,here 

m is a probability measure on X, mUltiplicative on A. 

Let ].J be a posltive measur e on X and h .t ].J HITl + ].J 
s 

1 w E L (m) , be t he L~besgue decomposition o f ",her e ].J with 

r espe ct to m. Then 

inf ! 11:.-f 12d].J 8xp!10gwdm . 
fEAO 

,.,here . as before . if 10gH i Ll(m), !log,.,dm -00. 

§ 2. 5 Examples to illustrate the necessity of the hypothesis in 

Theorem 2.4. 1 that If = {m} 'if ,f, 
4> ' 'f' 

l.Je nm., give '111 example(Srinivasan and \-lang [1]) to show the 

necessity of the condition in Theorem 2.4 .2, that ~~ 

Let X the unit circle and m the Haar meas ure on X. 

Let A be the algebra of thos e f E C(X) which have an analy tic 

ex tension f to the interior of the unit dis c such that f(O) = f(l). 

Then A is a uniformly closed separating subalgcbra of C(X) , Hith 

X as the Shilov bou~dary of A and th suppo r t of m. He shall 

show that A is ,.,eak-* l)irichlet. Clearly 1 Ell._ Not that 

A may be considered as the set of functions f of the form 

-
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f = j (j-.!)g +..£. \vhere c is a constant function , and g is 

analytic in the interior of the unit disc , continuous on the 

closed unit disc , excep~ possibly at I , and 

g ~ 0 [(j~l)J near 1. In pa rticulor . t e fuoctions j - j 2. 

j 2 _ j 3 , • • • sA, and so j k - j n sA, 'i/ k 2.. 0> n > o. By 

the Riemann-Lebesgue Lemma, {jn} converges t o 0 in the 

1 00 

o (L ,L) topo logy. Hence. for fix ed k 2>_ 0 > 

{ . k . n } 00 

J - J n=O converges to .k 
J to pology and so 

Bence. by the complex version of the Stone-

Heieistrass Theorem 

00 

But [C(X)]* = L (m) (Ed\vards [1] Ex . 8.5 ) 

00 

L (m) a nd is weak _'k r; iri ci~L.;t and so [1\+A] * 
Nmv l e t fJ be the unit point mass a t 1. 

E(l) f(O) ffdm 

so A does not have the property that H¢ 

In this case , 

inf f il-f ! 2 d)J l. 
fsA

O 

{ m}. V <p s J;{ . 

Hmvever . fJ is completely singular with r,"spect to m. 

-
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in the nutation of Theorem 2.4.2 . w O. and so 

exp!logwdm 0 

and the conclusion of Theorem 2. 4.2 fails to hold. 



53 . 

CHAPTER 3 . 

G E; !W-.ALI SAT I ON S OF THE F. AND M. RIESZ THEOREM 

§3. l Introduction. 

One very important t heorem in the theory of analytic functions in 

the unit disc, the E and N Riesz Theorem , [T'Jhi ch provides a 

characterisation for the functions in the Hardy class J (Hoffman 

[1) pp . 50,51)), is not true for Heak- '" Dirichle t algebras. 

He shall shm" t hat it is not true even for Dirichlet algebras. 

However , for some subalgebras of C(X) , t he set of continuous 

functions on a compact Hausdorff space X, ~ve can prove a 

generalised F. and M. Ri esz Theo r em (Theo r em 3.3.1) Hhich implies 

the classical r esult. 

For thos e ~veak-* Dirichlet algebras which are also 

logmodular algebras,we have a generalised F. and M.Riesz Theo rem 

(Theorem 3. 2.1) Hhich \<las proved by Hoffman (Hoffman [2)). From 

t his point on ~vC ,vrite A-L 
for the set of measures )J on X such 

that J fd)l = 0, V f E A; as be for m i s a probability measure 

on X, multiplicative on A, and AO is the set of f E A such 

J fdm 
J-

t he of X that = 0; and so AO is set measu r es )J on 

such that J fd)J = 0, 'tI f E AO' 

-
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§3.2 A generalised F. and M. Ri es z Theorem for logmodular algebras . 

Theorem 3. 2. l. Le t A be a logmodular alg ebra on a compact 

Hausdorff space X. Let Jl be a complex meas ur e on X such that 

Jl E AO' Le t Jl = ~ a + Jl be the Lebesgue decomposition of Jl s 
1-

with r espect to m, Hhere m is as above . Then Jl a ,Jl s 
E AOJ 

and f dJl = O. further. Jl a s = tun , Hhere h E ~{l (m) . 

Proo f . Le t Jl = tun and let p be t he positj.ve measure on X 
a 

varia tion of Jl . 
s 

If f E AO ' then 

Le t G be the orthogona l projection of 1 i nto [AO]L2 (p )' 

Nm-l , by (i) • 

and so .!. r/. [AO]L2 (p ) ' 

inf fl.!.-·fI 2dp > 1 , 
f EAO 

Choose a s equence {gn} c::... AO \lThich conver ges to G in 

(l-g )f E AO; - n 

Since A
J 

is an idea l in A. 

and , sincd f is bounded, { (1 g ) f} 
- n 

converges 

to (.!.-G)f in the L2 (p )-norm . and so (.!.-G) f E [AO]L2 (p) O 

Thus (.!.-G) is orthogonal to (.!.- G)f in L2 (p ) ; that is J 



55. 

(ii) 

Let K Let Then we 

have 

In fact , this statement is true by (ii) for f E AO ~ it is seen 

to be true for f E A by noting than any f E A can be Hritten 

in the form f = g + c where g E AO and c is a constant 

function. 

Since A is a logmodular algebra, Theorem 0.2 gives us that 

Thus Il-G12p = Km, and so <1:.-G) = 0 a e. 

p = (l+1 hi )rn , a 
(p ) . 

s ' 
and, since we h::tve 

(iii) 

that is, 

We now \-1ish to show that (lG) - 1 is in H2 (rn) . 

Th2n 



56. 

I -1 I -1 f(l-G) dm = f(l-G) dp 
- - 1 

11 -1
1 = K f (l-G) l-G 12 dp 

If -= K f (!.-G)dp 

= 0 since (.!.-G)..L AO in L2 (p). 

Thus we have 

I 
-1 

f (.!--G ) dm 

and so , by Remark 1. 3 . 1, (l-G) - 1 e: H2 (m) , 

From (iii ) above He have 

which , "'ith 
-1 ? 

(~-G) e: L-(m) , implies tha t (~_G)-l(~+ l hl) , 

and hence 
- 1 

~-G) h also , is in L2 (m). 

He nml1 wish to ShOH that I (l-G)fdfl = 0 'if f e: AO· 

Take {gn} C AO convergent to G in L2 (p) as befor e. Then 

(~-gn)f e: AO· 

.1. 
fl e: AO' we hav(; 

So, since fl «p and dfl / dp is bounded , ",hile 

If(~-G)dfl = lim If(~-gn)dfl O. 
n+<>o 

Also , since (_l-G) = 0 a . e . (p ) , w have 
- s 



(!.-G) = 0 

Thus, 

a • e . (11 ) 
s 

and so (!.-G)hm. 

Since (!.-G) -1 E H2 (m) .::r {fn}C A ",hich convers es to 

(~G)-l in L2 (m). Since m is multiplicative on A 

I f f(l-G)hdm = 0, for each n. 
n -

57. 

(iv) 

Since also (!-G)h E L2 (m) , \-le may pass to the limit in (iv) 

to obtain 

Ifhdm O. ~I f E A. 

1 
By Corollary 1.3.4 , h E H (m). Also , we have then that 

.1 J. ..L J.. 
11 a E 11.0 ' and this combined with 11 E A J 11.0 ' gives us P s E 1,.0· 

Since 

can choos e 

! E [ AO] L2 (111 I) (Hoffman [ 2] " Theorem 4.3), 
s 

Un} C AD ~.,h ich conver ges to 1 in L2 (111 s j) . 

J.. 
since 11 s E AO· 

we 

Then 

~emark 3 . 2.1. To 0xpress 3.2.1 in the same form as later general-

isations of the F. and M. Riesz Theorem , He note tha t 

-
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together "lith the fact that each f € A can be ~vritten in the form 

f = g +.£. where g € AO and c is a constant function, shmvs that 

..1 J. 
~ s € AO => ~s € A . Thus, if He assumed originally that 

.L 
then we could conclude ~ € A • 

s 
..1 

and therefore that ~ € A . 
a 

Thus 

~ve may rewrite Theorem 3.2 .1 in the form 

Theorem 3. 2.2. Let A be a logmodular algebra on a compact 

Hausdorff space X and ~ a complex measure on 
..L 

X such that ~ € A 

Let p = ~ +~ be t he Lebesgue decomposition of j.l with r espect a s 

to m. 'vhere m is as described in § 3.1. Then j.l a ' ~ s € 
J.. 

A . 
He shall nov; ShOH tha t Theorem 3. 1.1 implies the classical 

F. and M. Riesz Theorem : 

Theorem 3.2.3 (F . and M. Riesz). Let j.l be a measure on the 

unit circle such that Ie dj.l = 0 , 
n 

n = 1 ,2,3) ... w'here e 
n 

i e ine 
e t-+ c 

Then j.l is absolute ly continuous v;ith respe c t to the Lebesgue 

measure on the unit circle . 

Proof . We have assumed that A is the standard 

algebra on the unit circle. If j.l = j.l a + j.l s is the Lebesgue 

.L. 
decomposition of j.l, then by Theorem 3.2.1, j.l~j.ls € AO' 

1 € (Hoffman [2], Thn. 4.3) 

Since 

~vhich 



converg es to 1 in L2 ( I).J I). s 

59 . 

f d).J = lim J f d).J = O. 
s n s 

Thus is orthogonal to 1. The singular ).J s 
n+<x> 1. 

measure e_l).Js E AO is s i mi larly orthogona l to 1. Repreating this 

process we conculdG t hat 

f e d).J n s 0 , n a,±1 .± 2 , . , . 

and so must be t he zero measure ; t ha t i s 

For even a :Girichlct a l gebr a, howeve r , Theo r em 3.2.3 (F. and 

H. Riesz) doe s not gener alise directly, as one can have non- zero 

measures orthogona l to AO ",hich ar e mutuRlly singul ar Hi t h 

respect to m (Hoffman [1] pS9. Ex 11) . 

§ 3. 3 Ano ther generalised F. and M. Riesz Theorem . 

For a general sup-norm a l gebr a A we have a generalisation of 

the F. and M. Riesz Theorem which i s due to Ahern (Ahern [1]) . 

Theorem 3.3.1. (l~bern) . Le t A be a sup- norm a lgebra on a compact 

Hausdorff space X. Le t be, as before , the s e t of repres enting 

measures for <P E /'.I , the maximal ideal spacE: of A, (each m E Mtj> 

is a probability meas ure on X, multiplicative on A). For 

...L 
have every complex measure ).J on X such t hat ).J E A , \ve 

).J a').J s E A J... (wher e ).J ).J +).J is the Lebesgue decomposi tion of ).J 
a " s 

with r espect to m) if a nd only if p « m, r( p E Mtj>' 

........ 
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We prove first the following four lemmas. 

Lemma 3.3.1. Le t {v} be a sequence of positive measures on X 
n 

having m as a weak-* cluster point. Suppose Fe X is compact , 

and that vn (F) ?_ &0 > O. V n . 

Proof . Since m is regular 3 a decreasing sequence of open sets 
---
{O} such that 0 ::2> F and lim mW '\ F) = o. By Urysohn's Lemma 

n n rr+«> n 

3 {u } c: C (X) such that u = 1 on F, u = 0 on X 0 and 
n R n - n - n' 

a. e. (m) {u } 
n 

to converges o < u < 1 . From the construction 
-- n--

characteristic function of F. Now, 

and f(XF-uk)dm can be made small by choosing k large , and 

once k is fixed !uk(dm-dv
n

) can be made small by proper choice 

of n. Thus , 

where k,n are a s indicated. 

Lemma 3.3 .2 . Let u£ C,,(X). Write A(U) f or fudA. Then , 
l' 

for ¢ £ ;,1, 

sup{Re~ (f) :f £ A,Ref ~ u} = inf{A (u) : A £ M~}. 

-

the 

.... 
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Proof . Since A(Ref) = ReA (f) = Re¢ (f) , V' A E M¢. f E fl., 

~ve have 

sup {Rc¢ (f) : Re f ~ u , f € A} < inH A (u) : 

By the same equality , F : Ref 1-+ Re¢ (f) i s a vlcll-defined non-

negative linear functional on t he subspace !\eA 

shall s hm.; that , for each u E C (X) -:J R' -~ a non- negative linear 

functional on t he subspace of ~(X ) spanned by ReA u {u} (call 

it E) such that 

and 

F (Ref ) = F(Ref ) , V f E A 
e 

F (u) = sup{Re¢ (f) : Re f < n ,f E A}. 
e 

If u E ReA, our assertion is trivial : 

sup{Re¢ (f) : Ref ~ u , f E A} = F(u). 

If u 1- ReA, each v EE can be hTritten uniquel y as Ref + a u . f E A 

and a a real numb er. Define 

F (v ) = F (Ref+au) = F( 8£ ) + a sup{F (Ref) : f c A. Ref 2. u} 
e e 

= Re¢ (f) + asup{R2¢ (f ) : f E A,Ref ~ u} 

F is cl .arly l ineo.r with its r estriction t o RcA 
e 

qual to F. 

-

......... 
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l"Te now show that F is non-negative on E. 
e 

Let Ref + au ~ O. 

Case 1. o. 

Case 2. a > O. 

sup {Re<j> (g ) 

,.,hich implies tha t 

Cas e 3. a < O. 

Reg 2 u, we have 

Re<j> (g) < 

Hence, 

Trivial. 

Then -Ref 
Cj, 

< u, and 

Ref, g E: A, Reg < u} > F(- --) 
a 

F (Re f + a u) > O. 
c 

Then Ref 
- -- > u. 

a 

Reg 2 - Ref/a, and 

1 - -Re<j> (f). 
a 

Hence, 

1 Re <j> (f) ; 
a 

for each g 

sup{Rc:<j> (g ) u} 
1 

g E: ! , , Reg < < - - Re<j> (0, - a 

and so 

s 

Re<j> ( f) + asup{Rc<j> (g ) g E: A, Reg < u} ~ Re.:p (0 -Re<j> (0 

Thus F is a non-negative extension of 
e 

F , 

since 1 E: l\ , F (1) = l. It follm.,s that 
e-

such that, 

-
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A ,.,ith 

O. 

.......... 



I: F (v) < F (supv ) e - e 
supv , V v e: E. 

By t he Hahn- Banach Theorem , t her e exi s ts an ex t ens ion of 

l inear functional Fee on CR(X) such t hat 

Thus we have 

-F (v1 ) 
eo. 

F (\-l ) > i nfw ee -

and so F is non-nega tive . 
ee 

- i nfw . 

F 
e 

63. 

to a 

Since also F (1) = F (1) ce .-- 0. -
1 , F i s given by a probability 

ee 

measure A such t hat 

A (Ref) F (Ret) 
ee 

F (Re f) Re<p ( f) , V f e: A. 

Then a lso 

A (Imf) - A (Reif) - Reep (if) 

-Rc i <p (f) 1m <p (f) , V f e: A. 

A (f) A (Ref) + iA (Imf) 

Re</> (f ) + i 1m <p ( 0 

= ct> ( f ) , V f e: fl . 

and so A e: M<p' 

-

...... 
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This I tog e the r wi th (1) , gives the desired result. 

The follmving lemnlo is an ext ension o f a result of Fiorelli. 

~iorelli [1] . Theorem 1) , 

Lemma 3.3 . 3. Let FC X be a compact G 6 such tha t A (F) = 0, 

(He say F is ;'cj>-null" ). 

increasing s e quence of positive integers , 

closed unit ball in &, such that 

(1) 

(2) 

Hf ) > C -2/n 
n -

If I < exp o(-~) on F. n -

Then, for {n} an 

:3 {f k::: ball 
n 

A. 

Proof , Since F is a compact G 6 3 a sequence of open sets 

the 

{O} such tha t 0 +IC t1 and n t) = F , where ~ denotes 
n n n n n+l 

the closure in X of Un+l , Let & > 0 be g ive n. Then there 

exists an integer N such that V n > N 0 (') ) < &, 
n 

(If this ,,,ere not so, there would exist &0 > 0 a nd sequences 

and Let U = 0 ' k n ' 
k 

Let p be a ,,,eak-* 

cluster po int of Then and so p(P) = O. 

Fix k; then P (Uk) ~ P (Uk+1 ), Nmv 

p(U
k

) ~ Pn(Uk+-I ) ~ Pn(Uk+l) ~ Pn (Un ) , "r/ 
Lemma 3.3.1, P (Uk) ~ &0 > 0 , V k. 

II > k + 1, and so, by 

........ 



F' 

65. 

But this contradicts the fact that p (F) = 0.) Hence, by passage to 

a suitable subsequence, we may ass ume t hat 

Now, for each n, =i U £ C(X) 
n 

such that 

on X\ O and -n < u < 0 e1se\.,here. n n--

p(O 

u 
n 

From 

) 1 'II £ 11<1>' n < -2-' P 
n 

= --n on F , u = 0 
n 

Lemma 3.3.2 and the 

compactness of M<I>' there exists such that 

sup {Re<l> ( 0 Ref < u ,f £ A} 
n 

j u dp . 
n !l 

Hence, for each n, ::1 g £ A
n 

such that Reg < u , 
n - n 

1 
- -- > - 2/n . 

n-

He may also as sume that jlmg dm 
n 

o. - ow define 

f £ A since 1 £ A. 
n 

Also , 

If I = exp 0 Reg < exp 0 u < 1 ; n n - n - --

and by mu1tip1icativ~ty of rn, 

f dm 
n 

and If I n 

exp [fg dm] 
n 

exp [j Reg dm] > 
n 

exp 0 Reg < exp 0 (-_n) on F 
n-

- 2/n 
e : 

f 
n 

Lemma 3.3.4. Suppos - ther e exists m £ 111 - I/> such ~hat 

'riP £ M<I> ; and suppose F CX is compact and m (F) 

p 

O. 

« 

3 {f } C ball A satisfying (1) and ( 2) of Lemma 3.3 . 3. 
n 

and 

m, 

TheI? 



66. 

Proof. :3 a s equence of open set {O} 
n 

such that Fe ;) C a n+l n 

and lim m(G ) = O. For each n, 3 a s e t F n' 
Hhich is a compact 

n n-roo 

Go' such that Fe F c O . Le t S =(1 F . Then Fe S. S is 
n n n 

n 
a compact G and m (S ) = O. Since p « m, V p £ M cp ' we 

have p (S) 0 , \I p £ M<jl ' We then apply Lemma 3.3.3 to the 

set S to obtain t he desired result . 

Wc can nOH prove Theo r em 3.3 . 1. 

Proof of Theorem 3.3.1. 

Suppose first tha t there exists m £ ~1 
- <I> 

such tha t p « IiI , 

Le t S be a Barie set Hhich carries ~ (that is ~ (T) 
s s 

for every Bairc subset T of X\S) s uch that m(S) = O. Then 

.3 an increasing s equences {F }C S of compact s e ts s uch that 
n 

I~ s l denot es the total variation of 

~. For each F H C have, by Lemma 3 . 3. Lf , a sequence 
s n 

{fn ~ k } ~=l c:. ball A such that 

(1) f f dm > e- 2/ k . and 
n,k - ) 

( 2 ) 
- 1 

I£n, k l < c on Fn' 

Define h f Tllen ~oJe have h £ ball nnd 
n n , n n 

(1' ) f hdm=ff dm>c 
- 2/n 

n n,n-

and (2' ) Ih I I fn n l 
·-n F = < e on 

n -- 1) • 

o 



67 . 

From (1') He s ee tha t lim h = 1 in Ll(m) 
n 

and so 111e have 
n+oo 

a subs equence {h } which 
nl~ 

converges to 1 
-'- a. e . (m) . 

From (2') {h } 
n

k 
Hence {g,} = {h } 

,<. n
k 

If f € A, then 

converges t o 

converges a.e. 

br each k , 

0 a .e. ( 1).1 s 1 ) . 

( 1).1 J) to xx ,- s· 

gkf € A and we have 

o That is , 
.!-

11 € A a 
and so since 

1-
II E A , ~ve have 

.J,.. 
).I € A • 

s 

To prove t he "only if" part of Theorem 3.3 . 1, we assume 

] V E: M Hhich is no t absolutely continuous ~'ii th r espect to m, 
cj> 

and consider ).I = v - m. Since 

and so 

Nmv 

Jfdv j fdm , V f E: A, 

and ).I E: 
a 

J f dv = jfdm , V f € A. 
a 

v,:n E: Hcj> ' 

if and only if 

But ffdv = ffdm, \I f € A implies . since 1 E: A, tha t 
a 

o. fdv = 1 = fdv . 
a 

v (X) , and hence v 
a s Thus v(X) 

II A.J... 
contradict s our a s su:npt.ion , so ).Ia" u and our proof is 

completed. 

This 

Rema r k 3. 3 . 1. Theor em 3.2.1, where Mcj> 

of Theorem 3. 3. 1. 

{m}, is a specia l cas e 
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§ 3. 4 An abstract F. and 11. Ries z Theorem. 

, : ,_lcrn s result is a part icular case of a general r esult '17hose 

only special hypothesis i s thgt A is a subalgebra of C(X) '''hich 

contains the constant functions on X. The extension arises froU! 

t he idea of formi ng the Leoesgue decomposition of J.! !:"81ative to 

the s e t M<j> ' i n the sense of the following definit ion (r.lic!-.sberg [1]) . 

Definition 3.4.1. The (complex) Densure J.! is s ingular with respect 

t o a set M of probability measures (nJ.! is H-singulartl) 

if J.! is carried by some Barie set F (tha t is J.! (S ) = 0 for 

every Baire suobet S of X \ F) of measure zero for all m s M; 

such em F i s callco an M-·null s et. If J.! vonishes on all M-null 

s e ts 0), t hen J.! is M-absolutely continuous (J.! « M). 

we frequently write tlcp-singul ar tl for 

tl1'1cp -s ingular" • 

Unlike our previous theory , where our choice of Baire measures 

rather than regular Bor81 meas ures was pure ly arbitrary, '17e consider 

Baire measures her e t o ensure the truth of t he Choquet-Bishop-

de Leeuw Theorem (Phe lps [1] , p 24) which is n2cessary for the 

deve]opment of t h is theory. The full development wi ll not be given 

I 
here but may be fo und in G lic:~sl , crg [1] and Garnett and '; lid:sber g [1 ]. 

He note a lso tha t we alw~ys have a (unique) Lebesgue decomposition 



of any ~ relative t o M: 

~ ~F + ~F' 

wher e ~ F is ,1-singular and ~ F Y « M. 

To do this choos e an !-I-null set F '-lhich maximises 

II ~ FII. so that if E (and s e E v F) is ~f-null then 

II~Ev FII = II~FII + II (~FY)EI I < II~FII ,and so (~ F ' )E = o. 

69. 

We now prove the abstract F a.d ~ 1 Riesz Theorem du~ to 

Glicksberg (Glick sberg [1]). The proof of this theorem follows 

that o f Theorem 3.3 . 1 and both are closer in form t o the original 

proof of F . and 11. Riesz tha.n the proof o f Theorem 3 . 2. 1. 

Theorem 3.4.1. If 
J.. 

~ E 1:1. and <P EM, the mrtximal ideal space 

of A. and if ~ ~F + ~ F' is the Lebesgue decomposition of ~ 

relative to M<I> ' then 

We first prov0 nn analogue of Lemma 3 . 3.3 : 

Lemma 3.4.1. If F = U Kn is a <I> -null union o f compact Baire s e ts 

K , 
n 

then :1 

on F and to 

s equence 

1 

n 
{f } C ball 

n 
A which conv~rges to o 

Proof. For n fixed we have Q monotonic incr a sing sequence 

{uk}C ('R(X) , ",hich, since ev ery compact Bair ' S ot is a Gc , 
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(Berberian [1], p1BC Sx.6. ), converges pointwise t o -nxk
. 

n 
Thus , 

by mono tone conver gence Since 

compact and A 1-+ A (uk) is Heak* con tinuous, Dini 1 s Theo rem asserts tha t 

the convergence is uniform on Thus . 

By Lemma 3.3 . 2 He have gn E: ~ such that R2g < -nx and s o n -- k 

Put f 
n 

Reg < 0, n-

1 -4 --rn 
<p (g ) 

n 
( exp 0 g ) sgn(e ). 

n 

-4 
-n 

Sinc~ 1 E: h ,f E: A. 
n 

Also , If I .2. exp o -E. on l~ , 
n 

and so {£ } c::. baH 
n 

A 

t o 0 on P. I1o r eove r , {x (; X : limlf (x ) - 11 > O} 
n 

conv rges to 1 e. (1I1
F

, I), 

n 

Since 

and converges 

is 

since 

and {f} 
n 

converges t o X Fl If f € A, 

then, fo r each 

That is . 

n, f f c A 
n 

and , since 

E: ~~ and hence also 
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It is clear from t he preceding proof tha t the only special 

property of A we r equire is that 1 E A so that ~.e may exponentia t e . 

Thus , we may state Theor em 3. 4.1 in a more general form: 

Corollary 3 . 4.1. If B is any suba l gebra of .'\. such that 1 E B, 

and fl = flF + fl
F

, is th Lebe s gue decomposition of fl r e lative 

HIjJ (B) , H ...L .J.. 

to whe r e IjJ E B' t hen fl E A impUcs that fl F ,fl F , E A 

W no t e tha t if B is such a subalg-' bra of A, then M 

M~ = M~(A)C:: 1~(B); so tha t , ~.hi1e ~1cp (B)-null 

H~ i s a180 

se ts a r e a l so M~-null , 

t he converse is f a lse . Thus ~ « }1~(B)-absolutely 

continuous , but an M;j>-singular measur e fl !2ay have a nan- trivial 

decomposition r e12tivc to 

-

... 



72. 

CHAPTER 4 . 

EXTE~1SIOi-J OF LINEAR FlTl~CTIONA1S 

Unique nonn-prese rving extension of a ~veal<-* continuous linear 

functional on a logmodular algebra A to a ~"eak_1< continuous linear 

functiona l on C(X). 

He shall nOH make use of t he abs tra ct F. and H. Riesz Theorem 

in its fo nn for l ogmodular algebr 3.s (Theorem 3.2.2) to prove the 

follmoJing result. 

Theorem 4. 1. 1. Let A be a logmodular a l gebra on a compact 

Hausdorff space X. Let 1 g E: L (m) , 

measure on X ~ multiplicative on A. 

functional on \ 
l~ defined by 

Hf) J fgdm , 'r:f f E: A. 

~vhere m is a probability 

Let ~ be a linear 

Then <l> has a unique norm-p r eserving extension to a linear functional 

on C(X), and this ex t ension is ~veak-'" continuous, considering 

C(X) with r espe ct to the topology induced on it by co 1 
o (L (m),L (m». 

Proof. (i) The existence of at least one norm-preserving 

ex t ension of ~ is guaranteed by the Hahn-·Ban.:lch Theorem. Let 

..... 
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~ be any such extension of ~ to a linear functi onal on C(X). 

Then ~ may be expressed i n the form 

-.p (f) = Jfdll. V f £ C( ) , 

~vhere 11 i s a (comp l ex ) measure on X, and t he total variation 

o f 11 equals Il ljJ II· Let 11 be the Lebes gue 

decomposition of 11 Hith respect t o m. Then 

1 
~vhere h £ L (m). Since 1jJ is an 

ex t ension of <l>. He have ljJ (0 = ¢ (f) , V f £ A. Thus . vIe 

have J fdll J fgdm , V' f £ fl. 
.l.. 

:lnd hence the measure 11 - grn £ A • 

By Th orem 3.2.2 11 - gm and Ils are bo th 
a 

and so , by Cor oll a ry 1.3 .4, 

J<h-g)dm = 0 and so 

J fgdm J fdll 

~ve nov] have 

sup I Jfhdml 
f£ 

II fll2-l 

sup I Jfgdml 
f£ic 

II fll2-l 

and so II ijJ II 2- II hi 11° But 

Also, 

Thus , 

But 1 £ A. so 

II ~II 

------~~ •• ~ .... ----------------------------------------....................................... ~II 
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and s o ~ve conclude tha t l1s = O. a nd s o IIhl11 

~) is v7eak-:" continuous . 

(ii) Uniquene ss. Le t ~ a nd ~ 1 be norm-preserving 

extensions of CP. By the above ~ (0 = f fhdm, V f £ C (X), and 

~ 1 (f) = ff(h+h1 )dm. \f f £ C(X). ~vhere Ilh + h1111 = I lh 11 1 · 

Also from above. h - ~ £ ti'-O (m) a nd (h+h
1

) - g £ HlO (m) • 

Thus h £ ItO (m ) , Nmv 

sup If f h c1m I , 
fe:A 

I I fl l.:.1 

and , since the uni t ba ll in L
oo 

is weak-~ compact, and the 

unit ball in ~ is contained in the unit ball o f 

HOO (m) , :3 f1 £ l-t (m) = [AJ", (by Theorem 2.1.1 ) , such th2.t 

II f 11 I 00 = 1 and 

sup Iffhdm J 
f £L',. 

II f 11.:.1 

Since I f 11 .:. _!., f1 h = I hi· However , 

f f1 (h+h1 )dm = f f1hc1m II hill i.;here v12 have us e d the fact 

t hat hI E II; (m) a:1d f1 £ H
oo 

(m) 

Thus f1 (h+h1 ) I h+h
11. Since <I.re non-

..... 
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1 

So flhl E H- (m) and , by Lemma 1 . 1 .4, is a constant function. 

sepa r a tely the points ~vhere fl f. 0 and thos e ~vhere fl = 0, 

that hI = Q B.C. (m). This prove uniqueness. 

§4 . 2 Unique norm-pres erving extension of a Y7eak-;~ continuous 

linenr functi on,'l l on ,"- w'2ak-'~ !)irichlet algebra A to a ~veak ,~ 

00 

continuous linear functiona l on L 

We have a lready shmVll (Theor em 2.1.1) tha t , for A any we2k 

00 00 

Dirichl e t algebra,H (m)= L (m) n [AJ
I 

is isomorphic t o a 

logmodula r a lgebra on '/ I, the maximal ideal space of Loo (m). We 

have seen a lso (Hoffman [lJ , p.169) 
00 

that L (m) is isomorphic 

to CGD. Thus > we have . directly from Theo r em 4 .1.1 , a 

gene r alisnt ion of ~ r esult of Gleason and {~1itney fo r 
00 

H defined 

r el a tive to the s t andard a lgebra on the unit circle. (Gleas on and 

Hhit ny [1 J ) • Tha t is, we have 

Theorem 4 . 2. 1. Le t A be any weak-'~ Dirichlet a lgebra on a 

compact Hausdorff spac ~ x. Let g E ~vhere m i s a 

probability measure,multiplica tive on A. Le t ~ be the linear 

functiona l on Hoo(m) defined by 

<b (t) !fgdm , \I f c rt(m) . 
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Then ~ has a unique norm-preserving ex t ension to Loo (m) . 

and this extension is weak-", continuous. 

We can actually say more than this. Suppose He h:1Ve a linear 

functional ~ defined on a weak- ", Dirichlet 

<I>(f) J fgdm , 'II f e: A, 

1 g e: L (m) , ~s in Theorem 4.2. ,..]here Since we have shown m 

co 
H (m) = [A]* we s ec tha t (Theorem 2.1) that can be extended to 

00 

<l> OIl H (m) 
e 

a unique linear functional such that 

<l> (f) 
e 

Because of its f onn we can refer to <l> by <l> olso and combine 
e 

this result \vith that of Theo r em 4.2 . 1 to get 

Theorem 4.2.2. Let A he a weal~": Dirichlet ~lgebra on a 

compact Hausdorff space X. Le t g e: T~l (m), '-There m is a 

probability measur e, multip1icativ on A. Le t ¢ be th linear 

functional on A defined by 

<l> (f) !fgdm. V f e: A. 

Then <l> has a unique norm-preserving extension to LOO(m) , and 

this extension is \vcak-", continuous . 



F 
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§ L: .• 3 Discussion of t he hypothesis i n §§4. l , 4.2 tha t • be 

we~k-* continuous . 

If , instend of as suming t ha t • be def i ned by integration 

against a functi on g € L1(m) , we simply assume that ~ is ~ 

bounded line2r functional , then it is possible t o f orm mo r e 

t han one norm-preserving ex t ension of •. Examples of non-

unique norm-preserving extensions of a bounded linear functional 

defined on R"" is tha t subspace of "" L , the 

bounded measurable compl ex-va lued functi ons on the unit circle, 

which consists of thos e functions ,.,hich ar e boundc>xy value funcj tions 

(existing a . e. by Fatou ' s Lemma) of bound ed analytic functions 

in the interior of the unit disc] a r e given by Gl eas on and ~{nitney 

(Gleason and Whitney [ 1 ]) . 

Example 4 . 3 . 1. Suppose 1jJ is a non-zer o bounded linear functional 

on L"" vlhich vanishes on R"" and t akes r eal values on I ."" • By 
R 

the Hahn de composition theorem 1jJ may be r epres ented by the 

diffe r ence 
+ -

tJ; = 1jJ - 1jJ of two non-negative linp-s r functionals ; 

here 1jJ + is de fined on non-nega tive f by 

sup{ 1jJ (g ) O ~g<f}, 

"" and is ex t ended 0ver the res t of L by linc3rity . 
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Since + and are real and non-neg2tive, 1)1 i)i 

1111/ 11 + 
11 1/1 

-
II -

1/1 0). and 1/1 (~) . Also , since 

+ H
oo 

and 1 ,,00 
1j; ljJ on , E . -1 , ~V'e have 

Thus + 1j; and 1j; are distinct norm-preserving ex tensions over 

L
OO 

of the linear function~l ~ defined on Hoo 
by 

<jl (f) 

He must nmV' construct n 1/1 Hith the required properties. 

Let bL: a proper arc of the unit circle, and l et 9 
\! \! 

be its complement. Le t fO be defined as equal to 1 on 

\! nnd equal to 
, 

on 1 Then --1- \! • 

Suppose this Here no t so; then f 1 E ~ , & > 0 , such 

that II fl-folloo = 1 - & • Thus 

fl < -& a.e. on 1 
\! • -- _0 

NO\" • let f1 -- B * f
l

, ~.;here 

"lS in Edwards ( 2], p . 86, 

H 
inx 

-i. s gn n. e 

f 
1 > & <'_. c . on \! , and 

:1*:, denc t 2S convolution ~ and , 

..... ____ ~_~ a-.... ______________________________________________________ .................. .. 
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Note tha t , if a, b ar e t he end--points of \), 

Dfl & _. 
&b a 

where Dfl is the dis t ributional derivative of f l , and & is x 

t he DirC'.c measure at x. Therefore, 

and so 

fl (x) 

D (Hi<f ) 
1 

(& a-&b) ,~ II 

2 (& il-&b ) ,'< D(log I sin7 I), (Ed,,,ards, [2] , p . 88, (12 .8.6) ; 

2loglsi~(x-a)1 - 2l0glsi~(X-b )1 + constant a.e .. 

Thus fl is essentially unbounded in every neighbourhood 

of each of the points a,b. 
00 

But, since f £ H " and therefore 
1 R ' 

fl -if
l

, we h:we a contradiction, and hence 

Thus , by the Hahn-B.:mach extension theorem (Ed"mrds [1] , §2 .2 .5 ) 

'3 a bounded r~al-lincnr functional on L co I"hicn vanishes on 
It 

00 

II 
R 

but not a t f O' We can t hen extend this functional into a complex-

00 

linear func tional over L to get the requir d linear functional ~. 

= 

..... 
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§4.4 Extension of multiplica tive weak- * continuous linear functiona ls 

on a weak-* ~ir i chlet a l gebra. 

We shall nov! consider f urther the ex t ension of weak-1' 

continuous linear func t ional s defined on !3. weak-·* :0ir5.c!ll e t a lgebra 

A. In particula r . 1ve shall conside r those f U!lct ionals \vhich 

ar e also multiplica tivp. on A. We prove the f ollowing theor em. which 

is due to Hoffm,n and Rossi (Hoffman and Rossi [1]) : 

Theorem 4.4.1. Le t A be a \veak- 1, Dirichlet a lg ebra. Le t 

m be a probability measure multiplica t i ve on A. Let <jJ be a 

linear functiona l de fined on A such t ha t 

(i) <jJ is multiplicative on A, 

and (if) 
1 g E: L (m) s uch tha t <l> (f) = J fg dm. V f E: A. 

Then <jJ can be ex t ended t o a positive weak- * continuous linear 

functi ona l on L'" (m) , that is , ""3 a non-negative k E: Ll (m) 

such tha t 

<jJ (f) J f kdm. V f E: A. 

Proof . Since , by Theor em 2 . 1. 1 , H"' (m) = [Ii ] * , ,·le s ee e.s be f or e 

tha t <jJ has a unique ex t ension,denot ed by ~ a lso, to a linear 

'" functiona l on H , nnmely 
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<l> (f) Ifgdm. V f c H
oo

• 

We shall 8hm., that <I> is multiplicative on Hoo 
= [A [,~ • 

Consider f , h E: H
oo

. Then "3 {f L{ h } A Hhich converge 
l.l \) 

in the o (Ll ,Loo ) t opology to f .h respectively . In particular, 

lim <I> (f h ) lim If h gdm If hgdm <I> (f h) ; 
\) 

l.l \) 
\) 

l.l \) IJ l.l 

and 

lim <I> (f h) lim If hgdm Ifhgdm <I> (fh). 
l.l 

l.l 
l.l 

l.l 

Hence, 

lim lim <I> (f h ) <I> (fh). 
l.l \) 

l.l \) 

But f h E: A. Thus by (i ) , 
l.l \) 

<I> ( f h) <I> (f ) <I> (h ) . 
l.l \) l.l \) 

and hence 

<l> (fh ) lim .lim <I> (f h ) 
l.l \) 

l.l \) 

lim <I> (f )lim <I> (h ) 
IJ l.l\) \) 

<I> (0 <1> (h) 

which shows that is multiplicative on 
00 

H . 

Define L t o be the s e t of all u E: Loo (m) 
R 

s uch tha t for every 

positive r eal number t, 
I 00 

.::J h
t 

E: H such t Il;- t 

and (b) 

Before proce ding further we need to prove the follm.,ing two 

1 nun o.s . The first of these is n ex tension of the Krein-Simu1ian 

Theorem. (Horvath [1] > Ch. 3 §lO. Tl1eorem 2.) 
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Lemma 4.4 .1. Le t K be a convex subse t of Loo(m). The f ollowing 

two conditions a r e equiva l ent . 

(i) K i s weak - * closed; 

and (ii) If {f} ~ K converges bound dly and pointwise a .e . 
n 

t o a function f . t hen f € K. 

Proof. (i) => (ii). Assume K = [K]* and tha t 

converges boundedl y and point wise a.e. t o f . 

{f } c: K 
n 

The latter 

condition implies that Un} C K also converges ,,,eakly t o f. 

So f € [K]* and, since [K] * = K. f € K. 

(ii) => (i) . This follows directly from Edwards [1] ,8.10 . 5 

and Ex. 8. G. 

Lenuna 4.4 . 2. Let I be a s de fined previously ; namely the set 

00 

of n € L R(m) such that, for every positive r eal number t, 

3 h
t 

€ H
oo 

such tha t 

(a ) tu ?_ log I ht I , 
and (b) 

Then L is a convex cone which is \"eal~ :.I: closed in r; (m) . 

Proof. We first ShOH that L is a convex cone. 

(i) 

.... 
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Then . f or every positive r eal number t, 

00 

3 h1 ,t and h2 , t ' 

tU2 ~ 10gjh2,t j and 

both E H , such that tU1 ~ 10gjh
1

, t j , 

~ (h1 t) = ~ (h2 t) = 1 . , , 
Nm", for every positive real 

m.unb e r t, 

10gjhl h2 j ; 
, t , t 

and 

1.1 1. 

Hence 

(ii) u E L a > 0 -=> au E I· 
Let u E I> a > 0 , Then, for every positive r eal number t, 

3 ht 
00 

E H such thc.t tu > logjh j 4? (ht ) and =1. Consider 
t 

ha 00 

E H Now 
t 

t (a u) a(tu ) ~ a 10gjhtj 10g jh
t

ja l og jh~j ; 

and 

4? (h~) [4? (h
t

) ]a 1. 

Hence au E I· 
He now shm.;r that I i s weal -~" clos ed in L

oo 
(m) . Using 

R 

Lemma 4.4.1 we need to shm" that, if ,,,e consider {u }C 
n I such 

that j u j ~t.!. , ,,,here M is a constant func tion , and {u } 
t1. n 

converges t o u p0int\.Jise a. e o 5 then u E: I· 

.... 
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By the definition of I, for each "3 h 
00 

such that n e: R n 

un _~ log 1 hn 1 and <I>(h ) = l. In particular , {Ihnl } is bounded 
n 

by 
11 Let h be a \l7eak-:" cluster point of {h } in Loo(m). e n 

00 00 

Since H is 'l7ei1k- '~ closed h e: H ; 

continuous and ~ (h) = 1 , 9 (h) = 1. 
n 

cluste r point of { h } C Roo , 
n 

then V 

such that 

lim Jh g dm 
n +00 ~ 

k 

Jhgdm. 

Thus 

and so 

lim suplJhn g dml > 1 Jhgdml 
n

k 
k 

and, since ¢ is weak-* 

Since h is a weak-* 

1 g E L (7l) =! {h } C {h } 
- n

k 
n 

(1) 

Since is bounded, for 
1 g e: 1 (m) such tha t is 

bounded , \l7e can apply Fatou' s Lemma; thus, for such 1 hn g 1 ' 

k 

> lim sup 1 J h g 1 n 
n

k 
k 

(2) 

... 



Combine (1) and (2) to get 

flim suplhn gldm ~ Ifhgdml · 
~ k 
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Thus , if we have a set S c:. X such that m (8) > 0, we can choose 

g = sgn h . X fm(S) t o get 
s 

We need to show that (3) implies that 

lim surlhnl :':.. Ihl a.e. 
n 

Suppose (3) holds fu t (4) does not hold. 

that m (E) > 0 and 

Let 

Then 

tha t 

lim suplh I < Ihl on E. 
n 

n 

E be the subset of X on ,,,hich 
k 

lim supl h I < Ihl -n 
n 

1 
k 

EKe EK+l 
and U El( = E. Since 

K 1 
m (E J"l ) > O. Chaos 6 =k and 

1 

lim suplh I < Ihl - 6 on S, 
n 

0+00 

and so 

m (E) 

l et 

(3) 

(4) 

Then ::i set E C X such 

> o. 3 k say , such 
1 

S = E~ • Then 
1 



J lim sup l hrJ dm < f S <i hl --.Q)clm 
S n 

Thus, 

This contradicts (3) . Hence (4) holds ; and so 

< lim sup( exp 0 u ) 
n 

n 
exp 0 u , 

86. 

That i s , u ~ 10g lhl . 

Thus u s I. 
The same a rgument c~n b ~ Rpplie d t o tu, ~ t > O. 

We now continue with the proof of thec r cm 4. 4.1. 

Proof (of Theorem 4.4 .1 ) continued. 

I is proper since -! i I· (To show that -! i I. 
suppose -! s I. Then, fo r every positive real number t , 

and <I> (h ) = 1. 
t 

However . since 

00 

H is 2 Banach algebra and <I> is a multiplica tive linear function 1 

00 

on H, II <I> II = 1. 

Since -.!. ~ logl htl . I lhtll oe < 1. But 

which is a contrad iction ; and so -1:. i I·) 

.... 
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Since I is proper, and , by Lemma 4.4 . 2 ) Healc- 1' closed . 

a corollary of t he Hahn-Banach Theorem (Edwards [1] . 2.2.3 ) ensures 

the exis t ence of a non-zero .Te" k-''< continuous linear functional 

00 

on Lit Hhich is gr c.'l ter than a on I . f or s ome r eal number a. 

This linear functional must be non-negative on I. since. as 

I is a cone , if it t ook a negative value at s ome point of 

I then it would take. 3rbitrary large nega tive v~lues , t hus 

contradict i ng the fac t that it is bounded be l ow by a . This 

func tiona l may then be extended t o ~ l' a non- zero, Heak-* continuous 

linear functiona l on L
oo 

VThich is non-negative on I. Thus. 

1 "3 kl £ L (m) such th,'1. t 

Let le 
'-1 1 

[flkl ldrn] leI £ L (m) , so tha t 

and form 

J f l:im , '\/ f E: L 00 • 

Then 1/1 is a nnn-zer o ~'leak-l" continuous linear functional on L 00 

which is non-negative on I. and 

111/111 1. 



.... 

By t aking h = 1 
t - ' 

00 
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contains every positive 

function in L Thus ~ is a positive functi onal and 1: is 

a non-negative functi on . Suppose now f E A such that f E '~er <l> . 

By taking h
t (tf), we see that Ref E I. But , if 

f E :',er<l>, -f E ker <l> and s o Re (--f) -Ref E I- Nou ~ is 

non-negative on I. so ~ (Ref) = o. By considering (-if) E !-:er<l> 

Ive get ~ (Imf) o. Thus 1~ ( f) = 0 , Y f E lcer t; . Hence, 

~ (f) <I> (f) , V f E A. 

We have shown this for f E A such tha t ~ (f) o. Consider 

f E A such that <1> (£) = c # o. Then 

<I> (f) .- c o. 

Thus ~ (f-~) = ~ (f) - c = 0 , and so ~ (f) = c . Since also 

II ~ II = II <I> II = 1 , t/i is a norm-preserving extension of <I> Hhich 

is positive and weak--~~ continuous and takes the fo rm 

Thus, w~ mny write 

ffl<dm, V f E A, 

~7here Ie is a non-nega tive f unction • 
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CHAPTER 5 

SEQUENTIAL F. AND M RIESZ THEOREM 

§5.l A sequential F . and M. Riesz Theorem . 

Let A be the sup-norm Banach al ge bra of complex -valued functi ons 

on the unit circle whose Fourier coe f f i cient s) C say) are zero 
n 

00 

for n < O. Then H is the set of bounded complex-valued functions 

on the unit circle whose Fourier coefficients C ) say are zero for 
n 

n < O. Let A denot e the Lebesgue measure on the unit circle . 

1 
Theorem 5 . 1 . 1 . (Kahane [1 D_. Let {g }C L ( A) be such that 

n 

,Q, (f) lim Jfg dA 
n -+oo n 

00 

exists for every f £ H . 
1 

Then "3 g £ L ( A) such t hat 

,Q, (f) ffgd A) V f £ A; 

and every (complex) Baire measure ~ which is a cluster point) 

in the (J(A)A'~) topology) where A* is the dual of A, of 

Preof. We first show that a finite complex-valued Baire measure 

on the unit circl e such that 

,Q,(f) Jfdl,l ) V f £ A. 

-
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Define <I> (f) = ffg d" , V f £ A. 
n n 

For each f £ A, {cI> (O} 
n 

is bounded . Hence, .by the principle of uniform boundedne ss, 

{II <I> I I} is bounded. 
n 

Denote by <I> also the norm-preserving 
n 

extension of ~ to the continuous complex-valued functions on the 
n 

unit circle. By the Riesz representation Theorem 3 a finite 

Barie measure ~ such that , for each n , 
n 

<I> (f) 
n 

and the total variation of is equal to Thus , by the 

weak-* compactness of measures, ';;:J a finite Barie measure ~ such 

that 

Q, (f) lim ffd~ 
n 

= V f £ A. 

We now show that ~« ". Suppose it is not the case that 

~ « "- Let E be a closed set on the unit circle such that 

" (E) = 0 and ~ (E) i o . Such an E exists since ~ is regular. 

Let h £ A be such that h = 1 or E and I hi < 1 outside E. 

(The existence of such an h £ A is established in Hoffman [1] , p.81.) 

We now have the f o llowing properties. 

(1) lim f hmd~ = ~ (E) 
m+oo 

(2) lim fhmg d" 0 , V n. 
n 

m+oo 

(3) lim Jhmg d" fhm~ , V m. 
n+oo n 

.... 
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If {m , } 
J 

is rapidly increasing (meaning that is sufficiently 

large when m, 
J 

f 

since , given 
m 

Ih 
j 

-11 < 
-j 

2 , 

is given), we have 

00 m 

I (-l)jh j 00 

(i) , E: H 
j=l 

m, , 
J 

we may define E, as the set where 
J 

and , when mj+l is large enough, we have 
m 

I h j+ll -j 
E ~, the complement of E , . But -j 

1 2-(j+l) < 2 on 2 < -
J 

and so E j n E j+l =;: 0. 

belongs to E' 
k 

f or some 

Thus , 

k, 

J 

since als o EC-E" V 
J 

j , every x t E 

chosen sufficien tly large. By the 

method given in detail in the proof of Theo r em 5 .2 .1 , it now f ollows 
00 , m, 

that f = I ( - l)J h J is the pointwise limit 
j=l 

uniformly bounded sequence of functions in A 

a. e . (A) of a 

and so 
00 

f E: H . 

Write (a ) f or the above condition on the {m,} . We introduce 
J 

here the formula , 

j -1 
k ~ m 00 m 

f fg d A = I (-1) fh g dA + (-l)jfhjg dA + I fh kg dA n, 
k=l 

n, n , 
k= j+l nj J J J 

A, + B, + C, 
J J J 

where we shall define by induction the sequenc es 

, 

{m ,} (satisfying (a » a nd {n ,} such that the following two conditi ons 
J J 

are satisfi ed : 

(y) 
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Choos e any positive integer. Let be the least positive 

integer such that 

The existence of is guaranteed by (1) . 

Now suppose \ole have defined Let rr; . 
J 

be the least positive integer such that 

m '_ l -('-1) fJ1 . - (j-l) 
1 h J -1:. 1 < 2 J on E j -1 => 1 h J i < 2 on E j -1 

Let n * be the least positive integer such t ha t 
j n > n* 

j 
impli es 

j - 1 m 
1 L (-l)kJh kg dA -
k=l n 

The existence of n:, 
J 

is guaranteed by (3) . Le t M(n ) k) be the 

l east positive intege r such that 

m ~ M(n )k ) => 1 Jhmgnd A 1 < 2 - k . ~ 2 1 ~ (E) 1 . 

The existence of M(n ) k) is guaranteed by (2) . Put 

m* = max(ml)M(nl ) j) ) ... )M(n._l ) j)) r?). We define 
j j -1 m J J 

A~ L ( - l) kJh kd~ ) and consider the f oll owing two cases: 
J k=l 

(a) 

In cas e (a) , de fine m*=m.) 
j J 

noting that (y) is true) and 

... 



choose > n* IB ,I 
11 

nj - ' 
so that ~ 121 ~(E) I· J J 

This is possible by (3) and (y) ; by (3) , with m, 
J 

for any & > 0, :3 n > n~ such that 
j J 

m';' m~ 
IIh J d~ - In J g dA I < &. n, 

J 
m, 

Thus, Ifh Jd~ I - IB .1 < &, and, choosing 
J 

& 

(which is > 0 by (y» , we get IE ,I 
J 

11/ ) , 12 ~ (E I . 

In case (b) , define 

1 

n = n* and choos e m > m* so 
j j j j 

that 

Now 

I B j I < l21 ~ (E) I . This is pos sible because of (2), 

Note, that for n, > n~, 
J - J 

00 1 I I A , -A, I < -12 ~ (E) I . 
J J -

We have, also, given n , , 
J 

m 1 1 Ll 
IIh g dA l < k'i2l~ (E)I , \f m~M(j,k) , 

n, 2 
J 

m > M(j k) \7k ~ j+l , k - , so if m > m'., 
k - k 

00 m 1 <Xl 1 1 
I Ifh kgn dA I < i2 1 ~ (E) I· L k < i2 1 ~ (E) I 

k=j+l j k=j+12 

{n,} , {m,} 
J J 

and the sequences in both cases (a) and (b) 

In case (a), we have 

93. 

= m* , , 
J 

satisfy (6) . 

...... 
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IA + B - A 
I j-l j - l j 

I 
= I (A . - A~ I 

00 

B j l + B + (A . - A . ) - B . I J 1 j - l J J J J 

I B. I 
00 00 

> - IA . + B. 1 - A . I - IA . - A. I - J ] 1 J- J J J 

00 00 

.: max( IBJ. 1 - IA . + B. - A. I - IA . - A .I> 
J - l J-l J J J 

11 1 3 
2 12 ! ~ (E ) 1- 511 z l ~ (E) 1-121 ~ (E) 1=5/1 Z I ~(E) 1>121 ~(E) I. 

In case (b) we have 

00 00 

IAj _1 + Bj _1 - Aj - Bj l > IAj _1 + Bj _1 - Aj l - IAj - Aj l - IBj ! 

> 15 / 1 Z - ~ Z - ~ 2 ) I ~ (E) I = 3/1 Z I ~ (E) I· 

Thus , i n each c a se we ha ve 

IA + B . 1 - A . - B .I > 3/1 ZI ~(E) I . 
j ··l J - J J 

Taking ( 0) int o account we have IC I and 
fJ • 1 J -

majori s ed by iz l ~(E) I . 

There fore , 

Iffg d>..- ffg d>" ;>I A . I+B . l -A .-B. I- Ic . l l-l c .1 
n. n . J- J- J J J - J 

J ·-1 J 

IC. I both 
J 

3 1 1 1 
> (- - - - -) II ~ (E) I = - I ~ (E) I 

lZ lZ l Z 1Z 

and so {Jfg d >..} is not c onver gent ) c ont rary to our initial 
n 

j 
assumption. This contradiction give s ~« >... That is , 

.Q,(f) = ffd~ = jfgd>", \I f £ A, 
1 

some g £ L (A) . 
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Remark 5 . 1 . 1 . Theorem 5.1.1 implies the classical F . and ~Riesz 

Theorem. To see this , suppose ~ is a measure on the unit circle 

such that fe d ~ = 0, 
n 

n > 1, If {a} CL \ ;U is the sequence 
n 

of CeGaro means of the Fourier series of ~ , then ~ is the unique 

weak-* cluster point of {a A} 

and 

such 

The 

so) 

The 

that 

lim ffa dA = ffd~) 
n 

by Theorem 5.1.1 ) 

n 

~ « 

proof of Theorem 5.1.1 

h(E) = 1 and Ih I < 

existence of such an h is 

and 

00 

f £ H 

A . 

relies on the exis tence of h £ 

1 e l sewhere , whe r e A (E) = O. 

guaranteed by the classical F. 

M. Riesz Theorem. Thus) Theorem 5. 1 . 1 i s e quiva lent t o the 

A 

and 

classical F . and M. Riesz Theorem, and we shall refer to Theorem 

5 . 1 . 1 as a sequential F. and M. Riesz Theorem. 

§ 5.2. A relat ion between ge nera l ised and sequential F. and M. Riesz 

Theorems. 

Elizabeth Heard (Heard [1]) considered the case where A is a 

subspace of C(X» ) for X a c ompact Hausd orff space. She said 

that A and m) where m £ M(X) , the set of finite complex-

valued Baire measures which form the dua l of C(X») satisfy a 

generalised F. and M. Riesz Theorem whenever ~ £ A => ~ « m) 

for ~ any finite comp l ex-valued Baire measure on X. 
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From our previous generalisations of the F. and M. Riesz 

Theorem ,which are not nearly so strong-,it would appear that, for 

A and m to satisfy such a theorem heavy restrictions would need 

to be placed on A. Bishop [1] claims there are at least three 

examples in the literature, one of which is given in Bishop [2]. 

Heard showed that , whenever A,m satisfy such a theorem, they also 

satisfy a sequential F. and M. Riesz Theorem. 

Theorem 5.2 . 1 . (Heard [ 1 J) . Let A be a cl osed subspace of 

c (X). Le t m £ M(A), wher e M(X) is asdeefined above. Let jl 

be any finite complex-valued Baire measure on X. 

1 

Then (I) => (II) 

(I) jl£ A = > jl « m. 

(II) If 

R,(f) 

1 
{g } c:. L (m) and 

n 

lim ffg dm 
n n -+<x> 

exists for every f £ [A]*, then any representative jl of a coset 

~ * jl + A which is a cluster point in the o(A,A ) topology of the 

set of cosets {jl + A~ : jl 
n n 

g m} CM(X) fA 
n 

continuous with respect to m (jl « m) ; and 

such that 

R,(f) ffgdm, V f £ A. 

is absolutely 

1 3 g £ L (m) 

-
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1 
{g } c: L (m) 

n 
Proof. Suppose such that 

Q, ( f) lim ffg dm 
n 

n~ 

exists for every f E [A J*. Le t ~ be defined by ~ = g m. 
n n n 

By a similar me thod to tha t used in Theorem 5 . 1.1 we can f ind a cose t 

~ + Al which is a clu s t er point i n the topology of 

Le t ~ be 0 representetive of the coset 
.J... 

~ + A . 

lim ffd~ 
n 

We shall now show thot ~« m. Suppose thi s is not the case. 

The n , since )..I is regular, 3 a closed set E c.. X such that 

The n 

m(E) = 0 but )..I (E) :f o. We r e qui re {f } c:. A with the following 
n 

properties. 

( i ) II f n II < 1 + 2-
n 

(ii) f 
n 

= 1 on E 

(iii) l im f o a. e. (m) 
n 

n~ 

(iv) lim f 
n AE a . e . ( I ll I ) . 

n ..... oo 

00 

(v) 
j 

f = L (-1) fn(j) £ [AJ * f or eve r y strictly increas ing 
j=l 

se quenc e of posi tive integers {n(j) }. 

The construction of {f } is by induction. 
n 

Let {U} be 
n 

a sequence of open subset s of X such thClt E c:...Un+l CUn · 

Since m(E) = 0 we con suppose 

for all positive integer s n. 

m( U ) < 2-
0 

n 
1)..11 (U E) < 2-

n 

n 
and 
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Let El = Ul · By Ur ysohn's Lemma :J hl £ CR(X) such that 

hl (E) = {l }, hI (X\E
l

) = {O}, and Q ~ hl ~ l. The assumpti on 

that (I) is true and the general Rudin -Car l eson Theor em (Bishop 

[1]) allow us t o choose fl £ A such that 

fl (E) 

Now suppose 

and < h + 2-1 
1 -

f , . .. ,f and the sets E , . . . ,E which are open 
1 n 1 n 

neighbourhoods of E, are chosen . Le t V
n
+

l 
be the subset of X 

Agai n by 

Ur ysohn' s Lemma, :3 hn+l £ CR(X) such t ha t hn+l (E) = ill, 

hn+l (X\En+l ) = {O}, and Q ~ hn+l ~ l· 

fn+l £ A such that 

We can then choose 

We now wish t o s how t ha t t he {f} so defined sa tisfies (i) - (iv). 
n 

Proper ties (i) and (ii) a r e clearly sa ti s fi ed . Now 

lim f = ° excep t on the set 
n n+oo 

-n \f m(F) < m(E ) .:5. m(U ) < 2 , - n n 

00 

F = n 
j=l 

n, so 

E . • But 
J 

m(F) 0 , and lim f ° n 
n->-<X> 

a.e. (m), which is pr operty (iii). Also, lim fm = XE except on 
n+oo 

the set F\.E . But 

so 0 , and 

(iv). 

lim f 
n n ->-oo 

= X 
E 

a.c. which is property 

-



We now show that (v) i s al so satisfied. Let {n(j)} be 

any strictly increasing sequence of pos i tive i nte gers . Let 

E ( ) = x. n 0 

co 

00 co 

Then F = (l E = n E . and 
j=l j j=l n(j)' 

99 . 

where the se t s in this union a re disj oint. 

Consider x &: X\ F. 
k 

Then, f or some k, x 6 En(k)\ En(k+l); 

and hence x E: .nl E ( . ) 
J= n J 

and x t 

00 

X\ n E .. 
j=k+l n (J) 

(a) 
k - l 

~ L 2-n (j) + 1; 

j=l 

Thus we have 

(b) 00 j ( )1 ~ + 2-n (j» ~ 2-n (k),. 
I L (-1) fn(j) x ~ L (hn( j) (x) 
j=k+l j=k+l 

(c) Ilfn(k) I I ~ 1 + 2-
n

(k) . 

Thus the series converges and (a), (b) , (c) 

show that the sequences of partial sums, 

{s (x) : s (x) 
n n 

converges t o f(x) and Is (x) I < 4, tf pos itive integers n. 
n 

Thus f is defined at every x eX ' F. Le t Y E F. Then 
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and 
n 

L (-l)jf ( . )(y) 
j=l n J 

s (y) 
n 

so that 

Is (y) I 
n 

n 
< L 2 -n (j ) + 1 < 4. 

j=l 

Therefore i s the pointwise limit a.e. (m) of 

a uniforml y bounded sequence of functi ons in A. Thus f e: [A]* 

and (v) is establ i shed . 

We complete the proo f in the same manner as that of The orem 5 . 1 . 1, 

showing that what we have just deduced leads to a contradiction 

of our original assumption regarding the convergence o f 

{jfg dm }, V f € [A]*. 
n 

Thus )l« m and :3 g t L~ (m) such 

that 

Q,(f) /fgdm, Ii f E A. 

§5 . 3 
00 

Descripti on o.f more functions in H for which the limit 

relation in Theorem 5. 1.1 holds . 

It is not known whether the limit relation in Theorem 5 . 1 . 1, 

namely 

ffgd A J 

.... -
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holds Ii f £ H
oo

• Kahane himself (Kahane [1]) showed that it 

does hold f or certain functi ons in 
00 

H ' A. 

Let L be the se t of linear functionals Q, on H
oo 

such that , 

for some (possibly R,- dependent) sequence 

R, (f) lim J £g dA, 'vi f £ H"". 
n 

n+oo 

{g } c:. L 1 (A ) , 
n 

Theorem 5.1.1 asserts that , to each R, £ L corre sponds at least 

g £ LI( A) such that 

x, (f) f fgdA, \I f £ A (i) 

Denote by G (R, ) the set of g £ L1 CA) such that Ci> is 

true. Define DR, = { f £ 
00 

H : R, (f) = f fg d" , g £ G <.~,)} , and 

let D - n {D Q, : R, £ 0. Then we have 

Theorem 5 . 3.1 . (a) DR, is a closed subspace of 
00 

H ; and , given 

any f £ H
oo 

almost all translates of f belong t o DR,' 

(b) D is a closed subalgebra of H"" , invariant under translation ; 

it contain s all f £ Hoo such that fh £ D, for some outer functi on h. 

00 

In particular, D contains all the f £ H which are continuous 

on the unit circle except on a cl osed se t of measure zero. 

Proof. Define <f> (f) = ffg d)., \;I f £ A, ~"here { g }C.L1 <A). , 
n n n 

Since the trigonometric pol ynomials f orm a dense subset of L1 (A ) , 

we may suppose that each g 
n 

is a trigonometric polynomial . For 

each f £ A, {<!l (f)} is bounded, and hence, by the principle of 
n 

... 
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uniform boundedness, {I Icp I I} is bounded. Denote by "cp I I also 
n n 

the norm-preserving extension of cp to the continuous complex-valued 
n 

functions on the unit circle. By the Ries z Representation Theorem 

:3 a finite Baire measure 11 , 
n 

such that, for each n , 

1> (f) = Jfdl1, V f € A, 
n n 

and the total variation of is equal t o 1\4> II· n 
Thus we have 

jf(g dA - dl1 ) 
n n 

0, 'i f E: A. 

In particular , 

Jf(g dA - dl1 ) 
n n 0, V f E: A

O
' 

where AO 
{f E: A JfdA O}. Hence , by the F. and M. Ries z 

Theorem. 

and so 11 «A' 
n 

There fore, we may suppose {I Ign ' Il} is bounded. 

In order to prove (a) we may suppose g = 0 . Clearly D is 
R. 

a closed subspace of H
oo

• Given f E: H
oo write f : t .. )- f(t-s) , 

s 

for the translate of f. Since f is bounded , f*1/J E: A for 

1 every lJ; E: L (A), wher e "*" is the operation of convolution. 

Hence, by Theorem 5.1.1 , 

lim J g (t){ J f (t - s)lJ; (s) dA (s)} dA (t) 
n 

-
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That is, by the Fubini -Tone lli Theor em, 

lim f W(s){jf(t-s)gn(t )d ,, (t) }d,, ( s ) = 0, V 1/1 E: L1 (,,) 
n-HO 

(1) 

By hypothesis, 

lim fg (t)f(t-s)d,,(t) 
n 

n+oo 

R.(f); 
s 

and, s ince { II gn I l l} is bounded, {j gn (t) f(t-s)d" (t) } is uniformly 

bounde d wi th respect to nand s. Hence, (1) can be rewritt en 

Therefore, R.(f ) = ° for almost eve ry sand 
s 

To prove (b) wri t e 

lim ffhgnd " = R.f(h) = Rn(f) 
n+oo 

Clearly Theorem 5.1.1 implies that A ~D. 

Then 

fh £ A c. D, V h E: A CD. 

Since fh £ D and h £ D, tile have 

Thu s, 

(a) is es tablished . 

Suppose f £ A. 

(i) . 

-
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and so, by Corollary 1.3.4 , 1 
fg - gf E H 0,) . But 1 E A, so 

f (fg··g )d A 0 
f 

and w have fg 
1 - gf E HO( A) . Ther efor e, 

fg = g£ (mod HJ) o . 

Now suppose h E D. Taking f E A, and using fg = 8
f 

(mod H~) 

He have 

ffh gdA, f or every i E L • (iii) . 

Ther e for e, fh E D
l

, for every i E L, and so fh E D. Since 

fh E D and h E D, HC have 

h(hg-gh)d A = 0, \r" f E A. 

Henc e, hg gh (mod 
1 

H6) ' 

If f E D and h c D, f g = g 
1 

(mod HO) 
f 

and so we s till have 

(iii) and, as a consequcnce , fh E D. There fore, D is a subalgebra 

00 

of H . It is closed because each Di i s cl osed, and it is clearly 

invariant under translation. 

00 

Now , suppose f E H, h E D, where h is an outer functi on, 

and fh E D. We heve as befor e 
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jfhgdA R,(fh) (i) I • 

Thus 

(ii) I 

and so 

Conse quently , 

R, (f) jfgdA, f or every R, E L. 

~hat is , f E DR, for every R, E L, and s o f E D. 

Finally, if E is a closed subset of the unit circle such 

tha t A (E) 0 , then :3 a continuou s outer func t ion h such 

that h(E) {oJ (Hoffman [1], 1'.80.) 

Hence, if f is continuous exce pt on E, fh E A and fED . 

An al t erna t ive proof of the last part of Theorem 5.3.1 was 

suggested by J. Wells and is given in Heard [1]. 
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