TABLE OF CONTENTS

STATEMENT Page
ACKNOWLEDGMENTS(i)
(ii)
SUMMARY(iii)
Preliminaries 1
Chapter 1. INVARIANT SUBSPACE THEOREM 8
$\S 1.1 \quad L^{2}$-invariant Subspace Theorem 8
§1.2 Some results concerning outer functions 18
§1.3 Factorisation Theorems 20
§1.4 L^{P}-invariant subspace Theorem 24
§1.5 L^{2}-invariant Subspace Theorem implies $\mathrm{A}+\overline{\mathrm{A}}$weak-* dense in L^{∞}.31
Chapter 2. H^{∞}-AS A LOGMODULAR ALGEBRA; SZEGÖ'S THEOREM. 34
§2.1 H^{∞} as a Logmodular Algebra 34
§2.2 More about Outer Functions 41
§2.3 Szego's Theorem 42
§2.4 Kolmogorov-Krein Theorem 47
§2.5 Example to illustrate the necessity of the hypothesis in Theorem 2.4 .2 that $M_{\phi}=\{m\}$,
$\phi \in M$. 50
Cahpter 3. GENERALISATIONS OF THE F. and M. RIESZ THEOREM. 53
§3.1 Introduction 53
§3.2 A generalised F. and M Riesz Theorem for Logmodular A1gebras. 54
§3.3 Another Generalised F. and M Riesz Theorem 59
§3.4 An Abstract F. and M. Riesz Theorem 68

Chapter 4. EXTENSION OF LINEAR FUNCTIONALS

§4.1 Unique norm-preserving extension of a weak-* continuous linear functional on a logmodular algebra A to a weak-* continuous linear functional on $C(X)$. 72
§4.2 Unique norm-preserving extension of a weak-* continuous linear functional on a weak-* Dirichlet algebra A to a weak-* continuous linear functional on L^{∞}. 75
§4.3 Discussion of the hypothesis in $\$ \S 4.1,4.2$ that
Φ be weak-* continuous 77
§4.4 Extension of multiplicative weak-* continuous
linear functionals on a weak-* Dirichlet algebra 80
Chapter 5. SEQUENTIAL F. and M。RIESZ THEOREM 89
§5.1 A sequential F. and M. Riesz Theorem 89
§5.2 A relation between generalised and sequential
F. and M. Riesz Theorems. 95
§5.3 Description of more functions in H^{∞} for which the limit relation in Theorem 5.1.1 holds 100
REFERENCES 106

STATEMENT

Except where otherwise indicated, this thesis is my own work.

ImButler

LYNETTE M. BUTLER.

I should like to express my gratitude to my supervisor, Dr Robert Edwards, who proved a constant source of guidance and inspiration.

I should like to thank also, Professor Hanna Neumann, without whose initial encouragement this thesis might never have been started.

SUMMARY

In this thesis we consider certain subalgebras of L^{∞}, called weak-* Dirichlet algebras, which were first introduced by Sunivasan T.P and Wang J. (Srinivasan and Wang [1]). We consider the generalisation to these algebras of a portion of the theory of analytic functions in the unit disc.

In our development we follow the approach of Srinivasan and Wang, where the invariant subspace theorem, and not Szegö's Theorem, plays the central role. This theorem, for invariant subspaces of $L^{P}, 1 \leq p \leq \infty$, is established in Chapter 1 . We develop several important factorisation theorems in the process.

In Chapter 2 we show that H^{∞} is isomorphic to a logmodular algebra on the maximal ideal space of L^{∞}, and use this fact to prove the truth of Szegö's Theorem. However, the Kolmogorov-Krein theorem, which is a generalised version of Szegö's Theorem, is not true for a general weak-*Dirichlet algebra. In this chapter, also, we consider for which weak-*Dirichlet algebras the Kolmogorov-Krein Theorem does in fact hold.

In Chapter 3 we consider several generalisations of the classical F. and M. Riesz Theorem and the weak-* Dirichlet algebras for which these generalisations hold. We continue this theme in Chapter 5 where we develop a sequential F. and M. Riesz theorem and show the
connection between this and one generalised form of the F. and M. Riesz Theorem.

In Chapter 4 we use some of the results of Chapter 3 to show that there exists a unique extension of a weak-* continuous linear functional defined on a weak-*Lirichlet algebra to a weak-* continuous linear functional on L^{∞}. We generalise en-route a result of Gleason and Whitney. We conclude this chapter by considering the extension of certain positive linear functionals defined on a weak-*Dirichlet algebra.

Preliminaries

We shall begin with some necessary definitions.

Definition 0.1. A sup-norm algebra A on a compact Hausdorff space X is a complex linear subalgebra of $C(X)$, the algebra (under pointwise operations) of continuous, complex-valued functions on X, such that
(i) A is closed under the norm $||f||_{A}=\sup _{x \in X}|f(x)|$:
(ii) $\quad 1 \in A$; and
(iii) A separates the points of X; that is, if x, y are distinct points of $X, \exists f \in A$ such that $f(x) \neq f(y)$.

We shall write V_{A} for the set of invertible elements in A; that is $V_{A}=\{f \in A: f$ and $1 / £ \in A\}$;

$$
\operatorname{ReA}=\{\operatorname{Ref}: f \in A\}:\left|V_{A}\right|=\left\{|f|: f \in V_{A}\right\}:
$$

$$
\log \left|V_{A}\right|=\left\{\log |f| ; \quad f \in V_{A}\right\} ; \quad \bar{A}=\{\bar{f} ; \quad f \in A\} \text {, where } \bar{f}
$$

denotes the complex conjugate of f. M_{A} (without subscript is no ambiguity ensures) denotes the maximal ideal space of A.

Unless specifically stated otherwise, by a measure on X we shall understand a finite, complex Baire measure on X.

We ahall make use of the Reesz represcntation theorem in the form:

Every bounded (that is, continuous) linear functional Φ on
$C_{R}(X)$, the real-valued functions in $C(X)$, is induced by a real measure μ on X, that is,

$$
\Phi(\mathrm{f})=\int \mathrm{fd}_{\mu}, \forall \mathrm{f} \varepsilon \mathrm{C}_{\mathrm{R}}(\mathrm{X}) .
$$

Similarly, every bounded linear functional on $C(X)$ is induced by a (complex) measure on X.

We shall also make frequent use of (Edwards [1], Chs 2,8) the Hahn-Banach Theorem and duality theory.

Definition 0.2. Let A be a sup-norm algebra on X. Let $\Phi \in M$, the maximal ideal space of A . A representing measure m , for Φ is a positive measure on X such that

$$
\Phi(f)=\int £ d m, \forall f \in A_{0}
$$

Definition 0.3. Let A be a sup-norm algebra on A. Let $\Phi \varepsilon$ M. An Arens-Singer measure, m, for Φ is a positive measure on X such that

$$
\log |\Phi(f)|=\int \log |f| \mathrm{dm}, \forall f \varepsilon V_{A} .
$$

Since $\Phi(\underline{1})=1$, both types of measures defined above satisfy $\int \mathrm{dm}=1$, and are, consequently, probability measures on X (positive measures of mass 1.).
Definition 0.4. A Dirichlet algebra A on a compact Hausdorff spaceX is a sup-norm algebra on X such that the space ReA isuniformly dense in $C_{R}(X)$.HoIfman (Hoffman [2]) extended the theory for Dirichlet algebrasto a class of algebras he called logmodular algebras.
Definition 0.5. Let A be a sup norm algebra on X. A is a logmodular algebra on X if the set of functions $\log \left|V_{A}\right|$ is uniformly dense in $C_{R}(X)$.
This leads to
Theorem 0.1. If A is a Dirichlet algebra on a compact Hausdorffspace X, then A is a logmodular algebra on X.
Proof. Since, $\forall £ \in A$, Ref $=\log |\operatorname{expof}|$, we have $\operatorname{Re} A \subset \log \left|V_{A}\right|$. But A is aDirichlet algebra. Thus ReA is uniformly dense in $C_{R}(X)$ and so $\log \left|V_{A}\right| \supset$ ReA is uniformly dense in $C_{R}(X)$ and A is a logmodular algebra.

Theorem 0.2. Let A be a logmodular algebra on X. Then, to every $\Phi \in M$, the maximal ideal space of A, corresponds a unique representing measure for Φ, and this measure is a Arens-Singer measure.

Proof. This follows directly from Hoffman [2], Theorems 2.1, 4.1, 4.2.

Srinivasan and Wang (Srinivasanand Wang [1]) extended most of the main theorems of logmodular algebra theory (the exceptions being the F. and M. Riesz theorem and the Kolmogorov-Krein Theorem) to a class of algebras they called veak-* Dirich1et.

Definition 0.6. Let (m, X) be a probability measure space.
Let A be a subalgebra of $L^{\infty}(m)$ under pointwise operations, such that $1 \in A$. Then A is aweak -* Duichlet algebra if and only if the following conditions are satisfied:
(i) m is multiplicative on A ; that is

$$
\int \mathrm{fgdm}=\int \mathrm{fdm} \cdot \int \mathrm{gdm}, \forall \mathrm{f}, \mathrm{~g} \in \mathrm{~A}_{\xi}
$$

(ii) $A+\bar{A}$ is a dense subset of $L^{\infty}(m)$ in the $\sigma\left(L^{1}, L^{\infty}\right)$ topology.

To show that all logmodular algebras are also weak-*
Didichlet algebras we need the following three lemmas.

Lemma 0.1. Let m be a probability measure on a compact Hausdorff space X, and $g \in I_{R}^{1}(m)$, the set of real-valued functions in $L^{1}(\mathrm{~m})$. Then

$$
\int(\operatorname{expog}) \mathrm{dm} \geq \exp \left[\int g d n\right]
$$

Proof. Since every $g \in \mathbb{L}_{\mathbb{R}}^{1}(\mathrm{~m})$ can be written in the form $g=f+c$ where $f \varepsilon L_{R}^{1}(m)$ such that $\int f d m=0$, and c is a constant function, it suffices to prove this lemma for $g \in L_{p}^{1}(\mathbb{1})$ such that $\int \mathrm{gdm}=0$. Since also, expos $\geq 1+\mathrm{g}$, we have

$$
\int(\text { expog }) d m \geq \int(1+g) d m=1+\int g d m=1=\exp \left[\int g d m\right] .
$$

Lemma 0.2. Let m be a probability measure on a compact Hausdorff space X. Let A be a logmodular algebra on X. Let $g \varepsilon L^{1}(m)$ such that $\int \mathrm{fgdm}=0, \forall \mathrm{f} \varepsilon \mathrm{A}$. Then

$$
\int \log |\underline{1}-g| d m \geq 0
$$

Proof. Let $f \in V_{A}$. Then $\int f d m=\int(\underline{1}-g) f d m$, and so

$$
\left|\int \mathrm{fdm}\right| \leq \int|\mathrm{f}||\underline{\underline{1}}-\mathrm{g}| \mathrm{dm} ;
$$

and

$$
\log \left|\int \mathrm{fdm}\right| \leq \log \int|f||1-g| d m .
$$

Since m is an Arens-Singer measure (Theorem 0.2), and $f \in V_{A}$

$$
\int \log |f| d m=\log \left|\int f d m\right| \leq \log \int|f||\underline{1}-g| d m, \forall f \in V_{A}
$$

or

$$
\exp \left[\int \log |f| d m\right] \leq \int|f||\underline{1}-g| d m, \forall f \varepsilon V_{\Lambda}
$$

Since A is a logmodular algebra, $\log \left|V_{A}\right|$ is uniformly dense in $\mathrm{C}_{\mathrm{R}}(\mathrm{X})$, and so

$$
1 \leq \int(\text { expou })|\underline{1}-g| d m, \forall u \in C_{R}(X) \text { such that } \int u d m=0 \text {. }
$$

Thus,

$$
1 \leq \inf _{u} \int(\operatorname{expou})|\underline{1}-g| \mathrm{dm}=\exp \left[\int \log |\underline{1}-\mathrm{g}| \mathrm{dm}\right] \text {, by }
$$

Lemma 0.1, and the 1 emma follows.

Lemma 0.3. Let m be a probability measure on a compact Hausdorff space X. Let $g \in L_{R}^{1}(m)$ such that

$$
\int \log |\underline{1}-\operatorname{tg}| \mathrm{dm} \geq 0
$$

for every real number t in some interval $|t|<\delta$. Then $g=a \cdot e(m)$.

Proof. This is the result of Hoffman [2], Lemma 6.6.
Thus we have,

Theorem 0.3. Let m be a probability measure on a compact Hausdorff space X. Let A be a logmodular algebra on X. Then A is a weak-*Dirichlet algebra.

Proof. It suffices to prove that, if $g \in L_{R}^{1}(m)$ such that

$$
\int \mathrm{fgdm}=0, \forall f \in \mathrm{~A},
$$

then $g=0$ abe. (m). Any such g satisfies Lemma 0.2 and so

$$
\int \log |1-g| d m \geq 0
$$

and so, by Lemma $0.3, g=0$ a.e. (m). For $1 \leq p<\infty$, we define the space $H^{P}(m)$ by

$$
H^{?}(m)=[A] p^{,}
$$

the closure of A in the L^{P}-norm; and we define

$$
H^{\infty}(m)=H^{2}(m) \cap L^{\infty}(m)
$$

We shall show (Theorem 2.1.1) that $H^{\infty}=[A]{ }_{*}$, the weak-* closure of A in $L^{\infty}(m)$.

Let $A_{0}=\left\{f \in A: \int f d m=0\right\}$: and define
${ }_{T}^{T} P(m), \quad 1 \leq p \leq \infty \quad$ by

$$
\mathrm{H}_{\mathrm{O}}^{\mathrm{p}}(\mathrm{~m})=\left\{\mathrm{f} \varepsilon \mathrm{H}^{\mathrm{p}}: \int \mathrm{fdm}=0\right\}
$$

It is clear that for $1 \leq p<\infty$,

$$
H_{0}^{p}=\left[A_{0}\right]_{p}
$$

CHAPTER 1.

INVARIANT SUBSPACE THEOREM

§1.1 L^{2}-invariant subspace Theorem.

For weak-* Pirichlet algebras the invariant subspace theorem is the basic one. For A a veak-* Dirichlet algebra on a
compact Hausdorff space X, and m a probability measure
multiplicative on A, we define a closed subspace M of $L^{2}(m)$
to be simply invariant if $\left[\mathrm{MA}_{0}\right]_{2}<\mathrm{M}_{9}$ " $<$ " denoting strict inclusion and $A_{0}=\left\{f \in A: \int f d m=0\right\}$.

For such subspaces we have

Theorem 1.1.1. Every simply invariant subspace M of $L^{2}(m)$ is of the form $M=\mathrm{qH}^{2}(\mathrm{~m})$, for some measurable q such that $|\mathrm{q}|=1$; and q is unique (modulo functions which are zero a.e) up to multiplication by a constant function with absolute value 1.

To prove this theorem we need the following four lemmas.

Lemma 1.1.1. Let $w \in L^{1}(m)$ be a real-valued function. If $\int \mathrm{fwdm}=\int \mathrm{fdm}, \forall \mathrm{f} \in A_{,}$then $\mathrm{w}=\underline{1}$ a.e. (m).

Proof. Our assumption means that

$$
\int f(\underline{I}-W) d m=0 \forall f \varepsilon A
$$

But $w=\bar{w}$, so we have

$$
\int \mathrm{f}(\underline{1-w}) \mathrm{dm}=0, \forall \underline{f} \in A .
$$

Hence $1-w=\underline{0}$ abe. (m) by the weak-* density of $A+\bar{A}$.

Remark 1.1.1. Since A contains all constant functions, the weak-: density of $A+\bar{A}$ is equivalent to that of $A+\bar{A}_{0}$. We now prove

Lemma 1.1.2. $A+\bar{A}_{0}$ is norm dense in $L^{2}(m)$.

Proof. Take $f \in L^{2}(\mathrm{~m})$ such that $\int \mathrm{fgdm}=0, \forall g \varepsilon A+\bar{A}_{0}$. Since $L^{2}(\mathrm{~m})<\mathrm{L}^{1}(\mathrm{~m})$, Remark 1.1 .1 shows that $\mathrm{f}=0 \mathrm{a} . \mathrm{e}$. (m). An appeal to the Hahn-Banach theorem gives result.

Lemma 1.1.3. Let A be a weak..* Dirichlet algebra on a compact Hausdorff space X. Let m be a probability measure on X, multiplicative on A. Then
(a) $\quad \forall \mathrm{f}, \mathrm{g} \in \mathrm{H}^{2}(\mathrm{~m}), \mathrm{fg} \varepsilon \mathrm{I}^{1}(\mathrm{~m}) \quad \& \int \mathrm{fgdm}=\int \mathrm{fdm} \cdot \int \mathrm{gdm}$;
(b) $\quad \forall f H^{1}(\mathrm{~m}), g \in I^{1}(\mathrm{~m}) L^{\infty}, f g \varepsilon I^{1}(\mathrm{~m})$ and $\int \mathrm{fgdm}=\int \mathrm{fdm} \cdot \int \mathrm{gdm}$.

Proof. (a) Consider $f, g \in H^{2}(\mathrm{~m})=\left[A_{2}\right]_{2}$. Then \exists sequences $\left\{f_{n}\right\},\left\{g_{n}\right\} \subset A$ which converge in the $L^{2}-$ norm to $f_{,} g$ respectively. Now, $f g \varepsilon L^{1}(m)$ and

$$
\begin{aligned}
\left\|f g-f_{n} g_{n}\right\| \|_{1} & \leq\left\|f g-f_{n} g\right\|_{1}+\left\|f_{n} g+f_{n} g_{n}\right\|_{1} \\
& \leq\left\|f-f_{n}\right\|_{2}\|g\|_{2}+\left\|f_{n}\right\|\left\|_{2}\right\| g-g_{n}\| \|_{2}
\end{aligned}
$$

and so $\left\{f_{n} g_{n}\right\}<A$ converges to $f g$ in the L^{\prime}-norm, and so $\mathrm{fg} \in H^{1}(\mathrm{~m})$.

Since $\left|\int f_{n} d m-\int f d m\right| \leq\left|\left|f_{n}-f\right|\right|_{1} \leq\left|\left|f_{n}-f\right|\right|_{2^{2}}$

$$
\lim _{n \rightarrow \infty} \int f_{n} d m=\int f d m .
$$

Similarly, $\quad \lim _{\mathrm{n} \rightarrow \infty} \int \mathrm{g}_{\mathrm{n}} \mathrm{dm}=\int \mathrm{gdm} ;$
and

$$
\lim _{n \rightarrow \infty} \int f_{n} g_{n} d m=\int f g d m
$$

Also, since m is multiplicative on A,

$$
\int f_{n} g_{n} d m=\int f_{n} d m \cdot \int g_{n} d m .
$$

Thus we have

$$
\begin{aligned}
& \int \mathrm{fgdm}=\lim _{\mathrm{n} \rightarrow \infty}\left(\int_{\mathrm{f}}^{\mathrm{f}} \mathrm{~g}_{\mathrm{n}} \mathrm{dm}\right) \\
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\int \mathrm{f}_{\mathrm{n}} \mathrm{dm} \cdot \int \mathrm{~g}_{\mathrm{n}} \mathrm{dm}\right) \\
& =\left(\lim _{\mathrm{n} \rightarrow \infty} \int f_{\mathrm{n}} \mathrm{dm}\right) \cdot\left(\underset{\mathrm{n} \rightarrow \infty}{\left(\lim _{n} \int g_{\mathrm{n}} d m\right)}\right. \\
& =\int £ d m \cdot \int g d m .
\end{aligned}
$$

(b) Let $f \in H^{1}(m), g \in H^{1}(m) L^{\infty}$. Since $f, g \varepsilon H^{1}(m) \exists$ sequences $\left\{f_{n}\right\},\left\{g_{k}\right\} \in A$ which converge in the L^{\perp}-norm to f, g respectively. Consider $\left\{f_{n} g_{k}\right\}_{k=1}^{\infty} \in A$. Now,

$$
\left|\left|f_{n} g_{k}-f_{n} g\left\|_{1}<\left|\left|f_{n}\right|\right|_{\infty}| | g_{k}-g \mid\right\|_{1}\right.\right.
$$

and so $\left\{f_{n} g_{k}\right\}_{k=1}^{\infty} \in \Lambda$ converges in the L^{i}-norm to $f_{n} g$. Thus $f_{n} g \in H^{(\pi)}(\mathrm{m})$, Also,

$$
\left\|f_{n} g-f g\right\|_{1} \leq\left\|f_{n}-f \mid\right\|_{1}\|g\|_{\infty}
$$

and so $\left\{f_{n} g\right\}_{n=1}^{\infty} \subset H^{1}(m)$ converges in the L^{1}-norm to $f g$. But $1_{(m)}$ is closed under the L^{1}-norm, and so $\mathrm{fg} \varepsilon \mathrm{H}^{1}(\mathrm{~m})$. Mow, since

$$
\begin{aligned}
& \left|\int g_{k} d m-\int g d m\right| \leq\left|\left|g_{k}-g\right|\right|_{I^{\prime}} \\
& \lim _{k \rightarrow \infty} \int g_{k} d m=\int g d m .
\end{aligned}
$$

Similarly, $\lim _{n \rightarrow \infty} f_{n} d m=\int f d m$,
and $\quad \lim \lim _{n \rightarrow \infty} \int_{n \rightarrow \infty} g_{k} d m=\int f g d m$.

$$
n \rightarrow \infty \quad k \rightarrow \infty
$$

Also, since m is multiplicative on A,

$$
\int \mathrm{f}_{\mathrm{n}} \mathrm{~g}_{\mathrm{k}} \mathrm{dm}=\int \mathrm{f}_{\mathrm{n}} \mathrm{dm} \cdot \int \mathrm{~g}_{\mathrm{k}} \mathrm{dm}
$$

Thus we have

$$
\begin{aligned}
f g d m & =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \int f_{n} g_{k} d m \\
& =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty}\left(\int f_{n} d m \cdot \int g_{k} d m\right) \\
& =\lim _{n \rightarrow \infty} \int f_{n} d m \cdot \lim _{k \rightarrow \infty} \int g_{k} d m \\
& =\int f d m \cdot \int g d m
\end{aligned}
$$

Lemma 1.1.4. Let f be a real-valued funcjtion in $H^{p}(m), 1 \leq p<\infty$. Then f is equal a.e. (m) to a constant function.

Proof. Let $c=\int f d m$. Thus $\int(f-c) d m=0$. Now m is multiplicative on A, and hence, by Lemma 1.1.3 (b)

$$
\int(f-c) g d m=0, \quad \forall g \in A .
$$

Since f is real-valued, this implies that

$$
\int(\mathrm{f}-\mathrm{c}) \mathrm{gdm}=0, \quad \forall \overline{\mathrm{~g}} \in \overline{\mathrm{~A}} .
$$

Thus $\int(f-\underline{c}) h d m=0, \quad \forall h \varepsilon A+\bar{A}$, and so $\mathrm{f}-\underline{\mathrm{c}}=\underline{0}$, a.e. (m) by the weak-* density of $\mathrm{A}+\overline{\mathrm{A}}$.

We now prove Theorem 1.1.1, henceforth omitting (m) in such terms as $\mathrm{L}^{2}(\mathrm{~m})$, when no ambiguity arises.

Proof of Theorem 1.1.1. Since $\left[\mathrm{MA}_{0}\right]_{2}<M, \exists q \neq \underline{0}, \quad q \in M \theta\left[\mathrm{MA}_{0}\right]_{2}$. Without loss of generality, we may normalise q so that $\int|q|^{2} d m=1$. Let $f \in A$. Then $f-\int f d m \in A_{0}$ and
$\int f|q|^{2} d m=(f q, q)=\left(\left[f-\int f d m\right] q, q\right)+\left(\left[\int f d m\right] q, q\right)=\int f d m$
where the inner product is taken in L^{2} as a Hilbert space. Hence, by Lemma 1.1.1, $|q|=1$. Now $q A \subset M A \subset M A A_{0}+M \subset M+M=M$, and, since M is closed, $q H^{2}=q[A]_{2}=[q A]_{2} \subset M$. Suppose $\mathrm{qH}^{2}<M$ and let $g \varepsilon M \theta \mathrm{qH}^{2}$. Then

$$
\int \overline{\mathrm{g} q} \mathrm{fdm}=0, \quad \forall \mathrm{f} \in \mathrm{~A} .
$$

Also, since $g A_{0} \subset\left[M A_{0}\right]_{2}$, we have $q \perp g A_{0}$. That is

$$
\int \overline{\mathrm{qgfdm}}=0, \quad \forall \quad \mathrm{f} \in \mathrm{~A}_{0} .
$$

So $g \bar{q} A+\bar{A}_{0}$ in L^{2}. Hence, by Lemma 1.1.2, $g \bar{q}=\underline{0}$ ae. But $|q|=1$, so $g=\underline{0}$ a.e. Hence, since $\underline{q} H^{2}$ is closed $\mathrm{M}=\mathrm{qH}^{2}$.

That q is essentially unique follows immediately. For if $q H^{2}=q^{p} H^{2} \quad\left(|q|=\left|q^{\prime}\right|=1\right)$, then both $\bar{q} q^{\prime}$ and $\bar{q}^{\prime} q \in H^{2}$ and so, by applying Lemma 1.1 .4 separately to $\operatorname{Re}\left(\bar{q} q^{\prime}\right)$ and $\operatorname{Im}\left(\bar{q} q^{\circ}\right)$ we get $\overline{\mathrm{q}} \mathrm{q}^{\prime}=\underline{c}$ a.e. where \underline{c} is a constant function and $|\underline{c}|=1$.

Remark 1.1.2. Since all logmodular algebras are also weak-* Dirichlet (Theorem 0.3), Theoremlll implies Theorem 1.1.2, the invariant subspace theorem for A a logmodular algebra.

Theorem 1.1.2. Let A be a logmodular algebra on a compact Hausdorff space X. Let m be a probability measure on X, multiplicative on A. Suppose that M is a closed subspace of H^{2} such that $M A \subset M$, and that \equiv at least one $g \in M$ such that $\int g d m \neq 0$. Then \exists a function $q \in H^{2}$ such that
(i) $|q|=1$
and (ii) $M=q H^{2}$ 。
The function q is unique (modulo functions which are zero a.e.) up to multiplication by a constant function with absolute value 1.

For A a logmodular algebra and M a closed subspace of H^{2}, we shall show the equivalence of the hypotheses of Theorem 1.1 Theorem 1.1.2. That is, we shall show
(i) If M is a closed subspace of H^{2} and $\left[\mathrm{MA}_{0}\right]_{2}<M$, then $\exists g \in M$ such that $\int g d m \neq 0$, and $M A \subset M$;
and (ii) If M is a closed subspace of H^{2} and $M A<M$, and $\exists \mathrm{g} \in \mathrm{M}$ such that $\int \mathrm{gdm} \neq 0$, then $\left[\mathrm{MA}_{0}\right]_{2}<\mathrm{M}$.

In (i), since each function in A can be written as the sum of a function in A_{0} and a constant function, it is easily seen that

MA - M. Lemma 1.1.3 ensures that m is multiplicative on H^{2}, and hence, on $[\mathrm{MA}]_{2}$, and so the strict inclusion of $\left[\mathrm{MA}_{0}\right]_{2}$ in M ensures that $\exists \mathrm{g} \varepsilon \mathbb{M}$ such that $\int \mathrm{gdm} \neq 0$ 。

In (ii) we have $M A_{0} \subset M A \subset M$. Since M is closed, this means that $\left[\mathrm{MA}_{0}\right]_{2} \subset \mathrm{M}$. However, as in (i), we have $\int \mathrm{fdm}=0 \forall \mathrm{f} \in\left[\mathrm{MA}_{0}\right]_{2}$. But by hypothesis $\mathcal{Z} \varepsilon M$ such that $\int \mathrm{gdm} \neq 0$. Thus $g \in M \backslash\left[M A_{0}\right]_{2}$ and so $\left[\mathrm{MA}_{0}\right]_{2}<\mathrm{M}$.

Remark 1.1.3. In Theorem 1.1.2, the hypothesis that $\exists \mathrm{g} \in \mathrm{M}$ such that $\int \mathrm{gdm} \neq 0$, is an essential one.

We shall give an example to illustrate this point. (Hoffman [1], p.102).

Let X be the torus Choose and fix an irrational number α, and let A be the algebra of all continuous functions f on X such that

$$
a_{k n}=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} £(\theta, \psi) e^{-i k \theta} e^{-i n \psi} d \theta d \psi
$$

is zero for all pairs of integers (k, n), save perhaps those belonging to the half plane where $k+n \neq 0$. Now A is a Dirichlet algebra, and hence both a logmodular algebra and a weak-star-Duichlet algebra (Theorem 0.1.1 and Theorem 0.1.3).

$$
\text { If } d m=\frac{1}{4 \pi^{2}} d \theta d \psi,
$$

$H^{2}(m)$ is the space of square summable functions on the torus with Fourier series

$$
f=\sum_{k+n \alpha \geq 0} a_{k n} e_{k n}
$$

where $e_{k n}:\left(e^{i \theta}, e^{i \dot{\psi}}\right) \mapsto e^{i k \theta} e^{i n \dot{\psi}}$.
If we take M to be the subspace of functions for which $a_{00}=0$,
then $M A=M$ but M is not of the form $M=q H^{2}(m)$ for a measurable q such that $|q|=1$. To see this suppose that $M=\mathrm{qH}^{2}$. Since $|\mathrm{q}|=1, \quad \mathrm{q} \overline{\mathrm{q}}=\underline{1}$ and so $\mathrm{H}^{2}=\mathrm{q}^{-1} \mathrm{M}=\overline{\mathrm{q} M}$. Also, since $\underline{1} \varepsilon H^{2}, q \in M$. Thus, $\int q d m=0$ and $\hat{q}(k, n)=0$, if $k+n \alpha \leq 0$, where $g(k, n)$ is the coefficient of $e_{k n}$ in the Fourier series for q. Thus,

$$
\mathrm{q}=\sum_{\substack{k+n \alpha>0 \\(k, n) \neq(0,0)}} \hat{q}(k, n) e_{k n},
$$

and so

$$
\bar{q}=\sum_{\substack{k+n \alpha<0 \\(k, n) \neq(0,0)}} a_{k n} e_{k n} .
$$

Let $f \in M$. Then

$$
f=\sum_{\substack{k+n^{\alpha}>0 \\(k, n) \neq(0,0)}} \hat{f}(k, n) e_{k n} .
$$

Hence,

$$
\begin{aligned}
\int \bar{q} f d m= & \sum_{p+q \alpha \leq 0} a_{p q} \hat{f}(k, n) \int e_{k+p, n+q} \\
& (p, q) \neq(0,0) \\
& k+n \alpha \geq 0 \\
& (k, n) \neq(0,0)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{p+q \alpha \leq 0} a_{p q} \hat{f}(-p,-q) \\
& (p, q) \neq(0,0)
\end{aligned}
$$

$$
=\sum_{p+q \alpha=0} \quad a_{p q} \hat{f}(-p,-q),
$$

$$
(p, q) \neq(0,0)
$$

which is an empty sum since α is an irrational number. Hence

$$
\sqrt{\mathrm{q}} \mathrm{fdm}=0, \quad \forall \mathrm{f} \varepsilon \mathrm{M}_{,}
$$

which contradicts $H^{2}=\bar{q} M$ since $\underline{1} \varepsilon H^{2}$.

Remark 1.1.4. When A is the algebra of all continuous complexvalued functions on the unit circle which have analytic extensions to the interior of the unit disc, and m is the normalised Lebesgue measure, the situation reduced to the case of the shift operator "multiplication by j^{\prime}.

From this point on, we shall use A to refer to a weak-* Dirichletalgebra on a compact Hausdorff space X. We shall refer to Theorem 1.1.1 as the " L^{2}-invariant subspace theorem" and we shall generalise this theorem to $L^{p}, 1 \leq p \leq \infty$.

§1.2. Some results concerning outer functions.
Before doing this, however, we need some preliminary results. First we need the concept of an outer function.

Definition 1.2.1. A function $h \in H^{1}=[A]_{1}$ is said to be outer if $[\mathrm{hA}]_{1}=H^{1}$.

We note the following about outer functions.

Note 1.2.1. If h is outer, then $h \neq 0$ a.e. and $\int h d m \neq 0$. In particular, $h \notin\left[\mathrm{hA}_{0}\right]_{1}$.

Proof. That $h \neq 0$ a.e. follows directly from Definition 1.2.1. If $\int \mathrm{hdm}=0$, Lemma 1.1 .3 (b) ensures that $[\mathrm{hA}]_{1}<\mathrm{H}^{1}$ which contradicts Definition 1.2.1.

Note 1.2.2. If h, h^{\prime} are outer and $|h|=\left|h^{\prime}\right|$, then $h=c h^{\prime}$ where \underline{c} is a constant function such that $|\underline{c}|=1$.

Proof. We first observe that, since $|h|=\left|h^{\prime}\right|, h=q h^{\prime}$ for some measurable q such that $|q|=1$. Now, $H^{1}=[h A]_{1}=$ $\left[\mathrm{qh}^{\mathrm{C}} \mathrm{A}\right]_{1}=\mathrm{q}\left[\mathrm{h}^{8} \mathrm{~A}\right]_{1}=\mathrm{qH} \mathrm{H}^{1}$, so both q and $\overline{\mathrm{q}} \varepsilon \mathrm{H}^{\prime}$. Hence, by applying Lemma 1.1 .4 separately to Req, Imp we have $q=\underline{c}$ ace. and so $h=c h^{\prime}$.

Note 1.2.3. Let $h \in H^{2}$. Then h is outer if and only if $[\mathrm{hA}]_{2}=\mathrm{H}^{2}$.

Proof. (i) Let $[\mathrm{hA}]_{2}=\mathrm{H}^{2}$. Then, $[\mathrm{hA}]_{1}=\left[[\mathrm{hA}]_{2}\right]_{1}=\left[\mathrm{H}^{2}\right]_{1}=\mathrm{H}^{1}$, and so h is outer.
(ii) Let h be outer. Since $\left[[h A]_{2} \Lambda_{0}\right]_{2}=\left[h A_{0}\right]_{2}<[h A]_{2}$ by Lemma 1.1.3 (b), Theorem 1.1 .1 applied to $M=[h A]_{2}$ gives $[\mathrm{hA}]_{2}=\mathrm{qH}^{2}$ for some measurable q such that $|\mathrm{q}|=1$. Now, since h is outer,

$$
\mathrm{H}^{1}=[\mathrm{hA}]_{1}=\left[[\mathrm{hA}]_{2}\right]_{1}=\left[\mathrm{qH}^{2}\right]_{1}=\mathrm{q}\left[\mathrm{H}^{2}\right]_{1}=\mathrm{qH}^{1} .
$$

Hence $\mathrm{q}=\underline{1}$ and $[\mathrm{hA}]_{2}=\mathrm{H}^{2}$.
From now on, we shall use q (with or without subscripts or superscripts) to refer to a measurable function everywhere of absolute value 1 .

§1.3. Factorisation Theorems.

Theorem 1.3.1. If $f \varepsilon L^{2}$ and $f \notin\left[f A_{0}\right]_{2}$, then $f=q h$, where $h \in H^{2}$ is outer, and $q \varepsilon[f A]_{2}$.

Proof. Our assumption implies that $[f A]_{2}$ is a simply invariant outspace of L^{2}. Hence, by Theorem 1.1.1, $[\mathrm{fA}]_{2}=\mathrm{qH}$. Thus, $f=q h$, some $h \in H^{2}$. Now,

$$
\mathrm{q}[\mathrm{hA}]_{2}=[\mathrm{qhA}]_{2}=[\mathrm{fA}]_{2}=\mathrm{qH}^{2} ;
$$

thus we have $[h A]_{2}=H^{2}$ and hence h is outer (by note 1.2.3). Also, since $\underline{1} \varepsilon H^{2}, \quad q \varepsilon q H^{2}=[f A]{ }_{2}$.

Theorem 1.3.1 is actually a generalisation of a factorisation theorem due to Bernling and Nevanlinna (Benrling [1]), which applies to functions f in the Hardy space H^{2} for which \int fdr $\neq 0$. We now prove

Corollary 1.3.1. If $f \in L^{1}$ and $|f|^{1 / 2} \notin\left[|f|^{1 / 2} A_{0}\right]_{2}$, then $\mathrm{f}=\mathrm{qh}^{2}$, where $\mathrm{h} \in \mathrm{H}^{2}$ is outer.

Proof. By theorem 1.3.1, $|f|^{1 / 2}=q_{1} h$, where $h \in H^{2}$ is outer. Thus we have, for

$$
\operatorname{sgnf}=\left(\begin{array}{lll}
\frac{f}{\lceil f} & \text { if } & f \neq \underline{0} \\
\underline{0} & \text { if } & f=\underline{0}
\end{array}\right.
$$

$f=(\operatorname{sgnf})|f|^{1 / 2}|f|^{1 / 2}=(\operatorname{sgnf}) \mathrm{q}_{1}^{2} \mathrm{~h}^{2}=q h^{2}$, where $\mathrm{q}=(\operatorname{sgnf}) \mathrm{q}_{1}^{2}$.

Corollary 1.3.2. If $f \varepsilon I^{1}$, then $|f|^{1 / 2} \in\left[|f|^{1 / 2} A_{0}\right]_{2}$ if and only if $f t\left[\mathrm{fA}_{0}\right]_{1}$.

Proof. Suppose first that $|f|^{1 / 2} \varepsilon\left[|f|^{1 / 2} A_{0}\right]_{2}$. Let $f_{1}=(\operatorname{sgn} f)|f|^{1 / 2}$. Then

$$
\mathrm{f}=\mathrm{f}_{1}|\mathrm{f}|^{1 / 2} \varepsilon \mathrm{f}_{1}\left[|\mathrm{f}|^{1 / 2} \mathrm{~L}_{0}\right]_{2} \subset\left[\mathrm{f}_{1}|\mathrm{f}|^{1 / 2} \mathrm{~A}_{0}\right]_{1}=\left[\mathrm{fA}_{0}\right]_{1}
$$

Thus, if $£ \notin\left[\mathrm{fA}_{0}\right]_{1}$, then $|f|^{1 / 2} \notin\left[|f|^{1 / 2} A_{0}\right]_{2}$. Now suppose $|f|^{1 / 2} \notin\left[|f|^{1 / 2} A_{0}\right]_{2}$. Then, by Corollary $1.3 .1 \quad f=q h^{2} \quad$ by, where $h \in H^{2}$ is outer. We need to show that $h^{2} \varepsilon H^{2} \cdot H^{2} \subset H^{1}$ (Lemma 1.1.3 (a)) is outer. Now, since h is outer,

$$
h A \subset h H^{2}=h[h A]_{2} \subset\left[h^{2} A\right]_{1}
$$

Hence $H^{1}=\left[[\mathrm{hA}]_{2}\right]_{1} \subset\left[\mathrm{~h}^{2} \mathrm{~A}\right]_{1}$ 。 But, by Lemma 1.1 .3 (a) $h^{2} \in H^{\prime}$, so $\left[h^{2} A\right] \quad H^{3}$, and so we have $\left[h^{2} A\right] I=H^{+}$and $h^{2} \varepsilon H^{\prime}$ is outer. Now $\left[\mathrm{fA}_{0}\right]_{1}=\left[\mathrm{qh}^{2} \mathrm{~A}_{0}\right]_{1}=\mathrm{qH}_{0}^{1}$, but $f=q h^{2} \notin\left[f A_{0}\right]_{1}$, by Note 1.2.1, and hence result.

Corollary 1.3.3. If $f \in L^{1}$ and $f \notin\left[f A_{0}\right]_{1}$, then $f=F h$, where $h \in H^{2}$ is outer, $|h|^{2}=|f|$ and $F \in[f A] \cap L^{2}$.

Proof. By Corollary 1.3.1 and Corollary 1.3.2, we have $f=q^{2}$, where $h \in H^{2}$ is outer. Let $F=q h$. Then $F \in L^{2}$. Thus $\mathrm{f}=\mathrm{Fh}$ with $\mathrm{h} \varepsilon \mathrm{H}^{2}$ outer, and, since $|\mathrm{q}|=1, \quad|\mathrm{~h}|^{2}=|\mathrm{f}|$. Further, $\quad \mathrm{F} \in \mathrm{FH}^{2}=\mathrm{F}[\mathrm{hA}]_{2}=[\mathrm{FhA}]_{1}=[\mathrm{fA}]_{1}$.

Remark 1.3.1. Since m is multiplicative on A, we have A and \bar{A}_{0} as orthogonal subsets of L^{2}. It follows from Lemma 1.1.2 that $L^{2}=H^{2} \pm \bar{H}_{0}^{2} ;$ or, equivalently,

$$
\begin{equation*}
\mathrm{H}^{2}=\left\{\mathrm{f} \varepsilon \mathrm{~L}^{2}: \int \mathrm{fgdm}=0 \quad \forall \mathrm{~g} \in \mathrm{~A}_{0}\right\} . \tag{i}
\end{equation*}
$$

Since $f \varepsilon H^{1}$ implies $\int f g d m=0 \quad \forall g \varepsilon A_{0}$ (by Lemma 1.1.3 (b)), we see that $H^{2} \supset H^{1} n L^{2}$. Trivially, $H^{2} \quad H^{4} \quad L^{2}$. and so we have

$$
\begin{equation*}
\mathrm{H}^{2}=\mathrm{H}^{1} \quad \mathrm{~L}^{2} \tag{ii}
\end{equation*}
$$

Since, by definition, $H^{\infty}=H^{2} \cap L^{\infty}$ we have also

$$
\begin{equation*}
H^{\infty}=\left\{f \varepsilon L^{\infty}: \int \mathrm{fgdm}=0 \quad \forall \mathrm{~g} \in \mathrm{~A}_{0}\right\} . \tag{iii}
\end{equation*}
$$

and

$$
\begin{align*}
& \quad H^{\infty}=H \cap L^{\infty} . \tag{iv}\\
& \text { We now prove }
\end{align*}
$$

Corollary 1.3.4. $\quad H^{1}=\left\{f \in L^{1}: \int f g d m=0 \quad \forall g \in A_{0}\right\}$.

Proof. Clearly, if $f \in H^{-1}$ then Lemma 1.1.3 (b) ensures that \int fgdin $=0 \quad \forall g \in \Lambda_{0} . \quad$ Conversely, consider $f \in L^{1}$ such that $\int \mathrm{fgdm}=0$, $\quad \mathrm{V} \quad \mathrm{g} \in \mathrm{A}_{0}{ }^{\circ} \quad$ By replacing f by $\mathrm{f}+\mathrm{c}$ for some constant function \underline{c} if necessary, we may assume that $\int f d m \neq 0$. Then $\mathrm{f} \notin\left[\mathrm{fA}_{0}\right]_{1}$ and so, by Corollary 1.3.3, $\mathrm{f}=\mathrm{Fh}$ where $\mathrm{F} \in[\mathrm{fA}]_{1} \mathrm{~L}^{2}$, and $h \in H^{2}$ is outer. Since $F \varepsilon[f A] 1^{\text {, }}$ it follows that $\int F g d n=0, \quad \forall g \in \Lambda_{0}$. Since also $F \in L^{2}, \quad E \in H^{2} \quad$ (by (i), Remark 1.3.1). Thus, $f=F h \in H^{2} \cdot H^{2}=H^{1}$, by Lemma 1.1.3 (a), and the proof is complete.

Corollary 1.3.5. If $f \in L^{1}$ and $f \in\left[f A_{0}\right]_{1}$, then $f=q h_{1}$, where $h_{1} \varepsilon H$ is outer, and $q \in[f A]_{1}$. The converse is also true.

Proof. Suppose $f \in\left[\mathrm{fA}_{0}\right]_{1}$. Then, by Corollary 1.3.2, $|f|^{1 / 2} \notin\left[|f|^{1 / 2} A_{0}\right]_{2}$ and so, by Corollary 1.3.1, $f=q h^{2}$, when $h \in H^{2}$ is outer. As in the proof of Corollary 1.3.2, if $h \in H^{2}$ is outer, then $h^{2} \varepsilon H^{1}$ is also outer. Let $h_{1}=h^{2}$. Then $\mathrm{f}=\mathrm{ch}_{1}$. Also,

$$
\mathrm{q} \in \mathrm{qH}^{1}=\mathrm{q}[\mathrm{~h}, \mathrm{~A}]_{1}=[\mathrm{qh}, \mathrm{~A}]_{1}=[\mathrm{fA}]_{1}
$$

and hence f is of the stated form.

The converse follows from the fact that, since h_{1} is outer, $h_{1} \notin\left[h_{1} A_{0}\right]_{1} \quad$ (Note 1.2.1), and so, $f=\mathrm{qh}_{1} \notin \mathrm{q}\left[\mathrm{h}_{1} A_{0}\right]_{1}=$ $\left[\mathrm{qh}_{1} \mathrm{~A}_{0}\right]_{1}=\left[\mathrm{fA}_{0}\right]_{1}$.

§1.4. L^{P}-invariant subspace Theorem.

Consider p such that $1 \leq p<2$. Define the number r by $\frac{1}{r}+\frac{1}{2}=1 / p$. Then $p / r+p / 2=1$, and so r / p and $2 / p$ are conjugate indices. We now prove the following two lemmas.

Lemma 1.4.1. If $f_{n}, f \in L^{2}$, and $g \in L^{r}$, then $f_{n} g, f g \varepsilon L^{p}$. If, further, $\left\{f_{n}\right\} \subset L^{2}$ converges to f in L^{2}, then $\left\{f_{n} g\right\} \leq L^{p}$ converges to $f g$ in L^{p}.

Proof. Since $f \in L^{2}$ and $g \in L^{r}$ we have $f^{p} \varepsilon L^{2 / p}$ and $g^{p} \varepsilon L^{r / P}$. Thus, by the Hölder inequality, $f^{p} g^{p}=(f g)^{p} \varepsilon L^{1}$, and hence $f g \varepsilon L^{p}$. Similarly, $f_{n} g \varepsilon L^{p}$. Again by the Holder inequality, we have

$$
\left\|\left(f_{n}-f\right) g\right\|_{p}^{p} \leq\left\|f_{n}-f\right\|_{2}^{p}\|g\|_{r}^{p},
$$

and hence

$$
\left\|f_{n} g-f g\right\|_{p}=\left\|\left(f_{n}-f\right) g\right\|_{p} \leq\left\|f_{n}-f\right\|_{2}\|g\|_{r}
$$

and so, since $\left\{f_{n}\right\} \subset L^{2}$ converges to f in L^{2}, we have $\left\{f_{n} g\right\} \subset L^{p}$ convergent to $f g$ in L^{p}.

Lemma 1.4.2. Let $1 \leq p<2$. Define r as before. If $f \in L^{P}$ and $\mathrm{f} \notin\left[f \mathrm{fA}_{0}\right]_{\mathrm{p}}$, then $\mathrm{f}=\mathrm{Fh}$, where $\mathrm{h} \in \mathrm{H}^{2}$ is outer, and $F \in[f A]_{p} \cap L^{r}$.

Proof. Let $f_{1}=(\operatorname{sgnf})|f|^{p / r}$ and $f_{2}=|f|^{p / 2}$. Then $f_{1} \varepsilon L^{r}$, $f_{2} \varepsilon L$ and $f=f_{1} f_{2}$. Also, $f_{2} \varepsilon\left[f_{2} A_{0}\right]_{2}$, since, if $f_{2} \varepsilon\left[f_{2} \Lambda_{0}\right]_{2}$, then $f=f_{1} f_{2} \varepsilon f_{1}\left[f_{2} A_{0}\right]_{2} \subset\left[f_{1} f_{2} \Lambda_{0}\right]_{p}=\left[f \Lambda_{0}\right]_{p}$, by Lemma 1.4.1, which is contrary to hypothesis. Hence, by Theorem 1.3.1, we have $f_{2}=q h$, where $q \in\left[f_{2} A_{0}\right]$, and $h \in H^{2}$ is outer. Let $F=f_{1} q$. Then, since $f_{1} \in L^{r}$ and $|q|=1$, $\mathrm{F} \in \mathrm{L}^{\mathrm{r}}$. Also, $\mathrm{F} \in \mathrm{f}_{1} \mathrm{qH}^{2}=\mathrm{f}_{1} \mathrm{q}[\mathrm{hA}]_{2} \subset\left[\mathrm{f}_{1} \mathrm{qhA}\right]_{\mathrm{p}}=[\mathrm{fA}]_{\mathrm{p}}$, by Lemma 1.9.1. Clearly $f=F h$ and hence result.

Corollary 1.4.1. If $1 \leq \mathrm{P} \leq \infty$, then $H^{p}=H^{1} \cap L^{p}$.

Proof. We have already shown in Remark 1.3.1 that the statement is true for $p=2, \infty$. It is trivial for $p=1$. We shall prove it to be true for $1<p<2$ by use of Lemma 1.4.2; and for $p>2$ by a duality argument.

Let $1<\mathrm{p}<2$. It is clear that $H^{p} \subset H^{1} \cap L^{p}$. To show the reverse inclusion, consider any $f \varepsilon H^{1} \cap L^{p}$. We may suppose, by considering $f+\underline{c}$ where \underline{c} is a constant function, if
necessary, that $\int f d m \neq 0$. Then $f \notin\left[f A_{0}\right]_{p}$ and so, by Lemma 1.4.2, $f=F h$ when $h \in H^{2}$ is outer and $F \in[f A] p L^{r}, r$ defined as before. Since $1<p<2, r>2$, and so $E \in L^{2}$. Also, $F \in[f A]_{p} \subset H^{1}$ since $f \in H^{1}$. Thus, $F \in H^{1} \cap L^{2}=H^{2} \quad$ (i) Remark 1.3.1). In particular, since $1<p<2, F \varepsilon H^{p}$, and so $f=F h \in \mathrm{FH}^{2}=\mathrm{F}[\mathrm{A}]_{2}$. But, since $\mathrm{F} \in \mathrm{L}^{r}, \quad \mathrm{r}>2$, $\mathrm{F}[\mathrm{A}]_{2} \subset[\mathrm{FA}]_{\mathrm{p}} \subset \mathrm{H}^{\mathrm{p}}$ and so $\mathrm{f} \in \mathrm{H}^{\mathrm{P}}$. Therefore $\mathrm{H}^{\mathrm{P}}=\mathrm{H}^{1} \cap \mathrm{~L}^{\mathrm{p}}$ for every p satisfying $1<p<2$. Now let $2<p<\alpha_{8}$ Again it is clear that $H^{P} \subset H^{1} \cap L^{p}$. We wish to show equality here. It suffices to show that, if $g \in L^{p^{p}} \quad$ (where $\frac{1}{p}+\frac{1}{p}=1$) is such that $g \perp H^{p}$, then $g \perp H^{1} \cap L^{p}$. We have, by hypothesis, $\sqrt{\mathrm{g} f d m}=0, \forall \mathrm{f} \in \mathrm{H}^{\mathrm{P}}$, and so, by Corollary 1.3.4, $\overline{\mathrm{g}} \in \mathrm{H}^{1}$. Since also $\underline{1} \varepsilon \mathrm{H}^{\mathrm{p}}, \overline{\mathrm{g}} \in \mathrm{H}_{0^{\circ}}^{1}$ Thus, since $1<\mathrm{p}^{\prime}<2$, what we have already proved shows that

$$
\bar{g} \in H_{0}^{1} \cap L^{p^{\prime}} \in H^{1} \cap L^{p^{\prime}}=H^{p^{\prime}}
$$

Hence \exists sequence $\left\{g_{n}\right\} \subset A_{0}$ which converges to \bar{g} in L^{P}, so that

$$
\lim _{n \rightarrow \infty} \int f g_{n} d m=\int f \bar{g} d m, \quad \forall f \in H^{I} \cap I^{p}
$$

Thus, making use of Lemma 1.1 .3 (b), $g \perp 1^{1} \cap L^{p}$ and our proof is completed.

Corollary 1.4.2. If $1 \leq P \leq \infty$, then

$$
H^{P}=\left\{f \in L^{P}: \int f g d m=0 \quad \forall g \in A_{0}\right\}
$$

Proof. This fact follows directly from Corollary 1.4.1 and Corollary 1.3.4 and is a generalisttion of Corollary 1.3.4. We nov wish to prove the invariant subspace theorem for general p, $I \leq \mathrm{P} \leq \infty$. Here, \exists subspace M of $\mathrm{L}^{\mathrm{P}}(1 \leq \mathrm{p}<\infty)$ is said to be simply invariant if M is norm $c l o s e d$ and $\left[M A_{0}\right]_{p}<M$. (This agrees with our earlier definition for $p=2$) A subspace M of L^{∞} is simply invariant if M is weak-* $\cdot \cdots$ closed and $\left[\mathrm{MA}_{0}\right]_{*}<\mathrm{M}$. We now have

Theorem 1.4.1. (I^{P}-invariant subspace Theorem) Every simply invariant subspace M of $L^{P}, \quad 1 \leq p \leq \infty$, is of the form $M=q H^{P}$ for some measurable q such that $|q|=1$ (and trivially convesely).

Proof. For $p=2$, Theorem 1.4.1 reduces to Theorem 1.1.1.
For $1 \leq p<2$ we shall use Lemma 1.4.2. For $p>2$ we shall use a duality argument.

Let $1 \leq p<2$. Put $N=M \cap L^{2}$ 。Clearly N is a closed subspace of L^{2}. We first show that N is non-zero. Since $\left[M A_{0}\right]_{p}<M, \exists f \in M \backslash\left[M A_{0}\right]_{p}$. Thus $f \notin\left[f A_{0}\right]_{p}$ and so, by

Lemma 1.4.2, we can write $f=F h$ where $h \varepsilon H^{2}$ is outer, and $F \in[f A]_{p} \cap L^{r}, r$ defined as before. Now,

$$
{ }^{[f \Lambda]_{p} \cap L^{r} \subset[M A]_{p} \cap L^{2} \subset M \cap L^{2}=N}
$$

so $F \in N$ and N is nor zero, Also, $F \in\left[\mathrm{NA}_{0}\right]$, since if $\mathrm{F} \in\left[\mathrm{NA}_{0}\right]{ }_{2}$,

$$
\mathrm{f}=\mathrm{Fh} \varepsilon \mathrm{FH}^{2}=\mathrm{F}[\mathrm{~A}]_{2} \subset[\mathrm{FA}]_{\mathrm{p}} \subset\left[\left[\mathrm{NA}_{0}\right]_{2}^{\mathrm{A}]_{\mathrm{p}}} \subset\left[\mathrm{NA}_{0}\right]_{\mathrm{p}} \subset\left[\mathrm{MA}_{0}\right]_{\mathrm{p}}\right.
$$

contrary to our assumption on f. Combined with the fact that $\left[\mathrm{NA}_{0}\right]_{2} \subset\left[\mathrm{MA}_{0}\right]_{2} \subset \mathrm{M} \cap \mathrm{L}^{2}=\mathrm{N}$, this shows that $\left[\mathrm{NA}_{0}\right]_{2}<\mathrm{N}$ is simply invariant. Hence, by Theorem 1.1.1, $N=\mathrm{qH}^{2}$ for some measurable q such $|\mathrm{q}|=1$. We shall now show that $\mathrm{M}=\mathrm{qH}$ with the same q . We have, already, $\mathrm{q} A \subset \mathrm{qH} \mathrm{H}^{2}=\mathrm{N} \subset \mathrm{M}$, so $\mathrm{qH}^{\mathrm{P}}=\mathrm{q}[\mathrm{A}]_{\mathrm{p}}=[\mathrm{qA}]_{\mathrm{p}} \subset[\mathrm{M}]_{\mathrm{p}}=\mathrm{M}$. If we take $\left.\mathrm{f} \in \mathrm{M} \backslash[\mathrm{MA}]_{\mathrm{p}}\right]_{\mathrm{p}}$ as before, we know that f can be written as $f=F h$ where $h \in H^{2}$, and, as shown earlier, $\mathrm{F} \in \mathrm{N}=\mathrm{qH}^{2}$. Thus, $\overline{\mathrm{T} F} \in \mathrm{H}^{2}$ and $\overline{\mathrm{q}} \mathrm{f}=\overline{\mathrm{q} F h} \varepsilon \mathrm{H}^{2} \cdot \mathrm{H}^{2} \varepsilon \mathrm{H}^{1}$, by Lemma 1.1.3 (a). Hence $\overline{\mathrm{q}} f \in \mathrm{H}^{1} \cap \mathrm{~L}^{\mathrm{p}}=\mathrm{H}^{\mathrm{p}}$, by Corollary 1.4.1, and so $f \varepsilon q^{p}$. This gives us the inclusion $M \backslash\left[\mathrm{HH}_{0}\right]_{\mathrm{p}} \subset \mathrm{qH}$. Now, if $\mathrm{g} \in\left[\mathrm{MO}_{0}\right]_{p}$ and $\mathrm{f} \in \mathbb{M} \backslash\left[\mathrm{Mi}_{0}\right]_{\mathrm{p}}$, then $f+g \in M \backslash\left[T u_{0}\right]_{p}$. From the preceeding discussion we thon hove $f, f+g \varepsilon q^{H}$. Hence $g \varepsilon q^{p}$. $\operatorname{dis} \cap$. Thus $M=q H^{p}$ and the thencen is proved for $1 \leq p<2$.

Now let $2<p \leq \infty$. Let p^{\prime} be the conjugate index of p. Thus $\frac{1}{p}+\frac{1}{p}=1$ and so $1 \leq p^{9}<2$.

Let $M_{0}=\left[M A_{0}\right]_{p}$ or $\left[M A_{0}\right]_{*}$ according as $2<p<\infty$ or $p=\infty$, and 1 et

$$
\mathbb{N}=\left\{f \in L^{P^{i}}: \int f g d m=0, \quad \forall^{\prime} g \in M_{O}\right\}
$$

Clearly N is a closed subspace of $L^{P^{2}}$ and $N A \in N$. We shall show that $\left[N A_{0}\right]_{p}<N$. Since $M_{0}<M \exists$ a non-zero continuous (weak-* continuous if $p=\infty$) linear functional Φ on M which annihilates $M_{0} \quad \Phi$ is realised by a function $f \in L^{p}$ and, by the choice of $\Phi, f \in N$. Since Φ is non-zero on M, $\exists g \in M$ such that \int fgdm $\neq 0$. This fact, combined with the definition of N implies that $f \notin\left[N_{A}\right]_{p}{ }^{\prime}$. Hence N is simply invariant. Since $1 \leq p^{\prime}<2$, the first part of this proof applies and we can write $N=q H^{p^{\prime}}$ for some measurable q such that $|q|=1$.

By duality theory,

$$
M_{0}=\left\{g \varepsilon L^{p}: \int f g=0, \forall f \varepsilon N\right\}
$$

This fact, combined with Corollary 1.4.2. leads to $M_{0}=\mathrm{qH}_{0}^{\mathrm{P}}$. We shall show that $M=q H^{P}$. If $f \in \overline{q M}$ and $g \in A_{0}$, then

$$
\mathrm{fg} \varepsilon \overline{\mathrm{qMA}}_{0} \subset \overline{\mathrm{qM}}_{0}=\mathrm{H}_{0}^{\mathrm{p}}
$$

and so, $\int \mathrm{fgdm}=0$, and hence, by Corollary 1.4.2 f $\varepsilon \mathrm{H}^{P}$. This shows that $\overline{\mathrm{q}} \subset_{H^{P}}$, or $\mathrm{M} \subset \mathrm{qH}^{P}$.

Now, since each $f \in H^{p}$ can be written in the form $f=g+\underline{c}$ where $g \in H_{0}^{P}$ and \subseteq is a constant function, H_{0}^{P} is a subspace of H^{P} of codimension 1 , so that $\mathrm{M}_{0}=\mathrm{qH}_{0}^{\mathrm{P}}$ is a subspace of gqH . of codimension 1. Hence, either $M=\mathrm{qH}^{P}$ or $M=M_{0}$. The latter is impossible since M is simply invariant, and $30 \quad M=q H^{P}$ and our proof is completed.

We shall now add to our discussion of outer functions. We prove

Corollary 1.4.3. $\mathrm{h} \in \mathrm{H}^{\mathrm{P}}, \quad 1 \leq \mathrm{p}<\infty$ is outer if and only if $[h A]_{p}=H^{p}$.

Proof. (i) Let $[\mathrm{hA}]_{p}=H^{P}$. Then

$$
[\mathrm{hA}]_{1}=\left[[\mathrm{hA}]_{\mathrm{p}}\right]_{1}=\left[\mathrm{H}^{\mathrm{p}}\right]_{1}=\mathrm{H}^{1},
$$

and so h is outer.
(ii) Let h be outer. Thus $[h A]_{1}=H^{1}$. Since $h \not \&\left[h A_{0}\right]_{p},[h A]{ }_{p}$ is an invariant subspace of L^{p}, and so, by Theorem 1.4.1, $[\mathrm{hA}]_{\mathrm{p}}=\mathrm{qH} \mathrm{H}^{\mathrm{P}}$, for some measurable q such that $|q|=1$. But $H^{1}=[h A]_{1}=\left[[h A]_{\mathrm{p}}\right]_{1}=\left[\mathrm{qH}^{\mathrm{p}}\right]_{1}=\mathrm{q}\left[\mathrm{H}^{\mathrm{p}}\right]_{1}=\mathrm{qH}$.

Hence q and $\overline{\mathrm{q}}=\mathrm{q}^{-1}$ belong to H^{1} and Lemma 1.1 .4 implies that $\mathrm{q}=$ constant function $=\underline{1}$. Thus $[\mathrm{hA}]_{\mathrm{p}}=\mathrm{qH}^{\mathrm{p}}=\mathrm{H}^{\mathrm{p}}$.

Corollary 1.4.4. If $f \varepsilon L^{P}, 1 \leq p<\infty$ and $f \notin\left[f A_{0}\right]_{p}$, then $\mathrm{f}=\mathrm{qh}$ where $\mathrm{h} \in \mathrm{H}^{\mathrm{P}}$ is outer and $\mathrm{q} \in[f \Lambda]_{\mathrm{p}}$.

Proof. Our assumption implies that $[\mathrm{fA}]_{2}$ is a simply invariant subspace of L^{P}. Hence, by Theorem 1.4.1, $[\mathrm{fA}]_{\mathrm{p}}=\mathrm{qH}^{\mathrm{P}}$, and so $f=g h$ for some $h \in H^{p}$. Now

$$
q[h A]_{p}=[q h A]_{p}=[f A]_{p}=q H^{p}
$$

and so we have $[h A]_{\mathrm{p}}=\mathrm{H}^{\mathrm{p}}$, and hence, by Corollary $1.4 .3, \mathrm{~h}$ is outer.

$$
\text { Since } \quad \underline{1} \varepsilon H^{P}, \quad q \in \mathrm{qH}^{\mathrm{P}}=[f A]_{\mathrm{P}}
$$

§1.5. L^{2}-invariant subspace Theorem implies $A+\bar{A}$ weak $\%$ dense in L^{∞}
We show first that the L^{2}-invariant subspace Theorem (Theorem 1.1.1) implies that $A+\bar{A}_{0}$ is norm dense in L^{2}; and then that $A+\vec{A}_{0}$ norm dense in L^{2} implies $A+\bar{A}$ is weak $-*$ dense in L^{∞} 。

Assume Theorem 1.1.1 holds. We prove the following with this assumption.

Theorem 1.5.1. $\quad L^{2}=H^{2} \oplus \overline{\mathrm{H}}_{0}^{2}$.

Proof. Let $M=L^{2} \theta \bar{H}_{0}^{2}$. Then $\left[\mathrm{MA}_{0}\right]_{2}<M$ and so, by
Theorem 1.1.1, $\mathrm{M}=\mathrm{qH}^{2}$, some measurable q such that $|\mathrm{q}|=1$.
Since $1 \underline{M}, \bar{q} \in H^{2}$. Let $\bar{c}=\int \bar{q} d m$. Then $\bar{q}-\bar{c} \varepsilon H_{0}^{2}$ and so
$q-\underline{c} \varepsilon \bar{H}_{0}^{2}$. But $q, \underline{c} \in M$, so $q-\underline{c} \varepsilon M$, and thus $q-\underline{c} \varepsilon \bar{H}_{0}^{2}$.
It follows then that $\mathrm{q}-\underline{\mathrm{c}}=\underline{0}$ and $\mathrm{M}=\mathrm{cH}^{2}=\mathrm{H}^{2}$ 。

Corollary 1.5.1. That $A+\bar{A}_{0}$ is norm dense in I^{2} follows directly from Theorem 1.5.1.

We need also
Corollary 1.5.2. $\quad H^{1} \cap L^{2}=H^{2}$.

Proof. Clearly $H^{2} \subset H^{1} \cap L^{2}$. Now consider $f \in H^{1} \cap L^{2}$. Since $f \in \mathbb{H}^{1}, f \perp \bar{A}_{0}$ and so $f \perp \bar{H}_{0}^{2}$. Thus, by Theorem 1.5.1, f $\varepsilon \mathrm{H}^{2}$ and so $\mathrm{H}^{1} \sim \mathrm{~L}^{2} \subset \mathrm{H}^{2}$ 。

Corollary 1.5.3. $\quad H^{1}=\left\{f \quad L^{1}: \int f g d m=0, \forall g \in A_{0}\right\}$.

Proof. Clearly, if $f \in H^{1}$, then $\int f g d m=0, \forall g \in A_{0}$. Now consider $f \in L^{\prime}$ such that $\int f g d m=0, \forall g \in A_{0}$. By replacing f by $£+\underline{c}$ for some constant function c, if necessary, we may
assume that $\int \mathrm{fdm} \neq 0$. Then $\mathrm{f} \varepsilon\left[\mathrm{fA}_{0}\right]_{1}$ and so, by Corollary 1.3.3, $f=F h$ where $F \in[f A] 1^{\cap} L^{2}$ and $h \in H^{2}$ is outer. Since $\mathrm{F} \in[\mathrm{fA}]{ }_{1}$, it follows that $\int \mathrm{Fgdm}=0, \forall \mathrm{~g} \in \mathrm{~A}_{0}$. Since also $\mathrm{F} \varepsilon \mathrm{L}^{2}$, we have, by Theorem $1.5 .1 \mathrm{~F} \in \mathrm{H}^{2}$. Thus $\mathrm{f}=\mathrm{Fh} \varepsilon \mathrm{H}^{2} \cdot \mathrm{H}^{2} \subset \mathrm{H}^{1}$ by Lemma 1.1.3 (a).

We are now in a position to show that the truth of Theorem 1.1.1 implies that $A+\bar{A}$ is weak-* dense in L^{∞}. In doing this we shall use the Jensen inequality (Corollary 2.1.3), our proof of which will depend only on Theorem 1.1.1, and Corollary 1.5.3 which we have just shown to follow from Theorem 1.1.1.

Theorem 1.5.2. $A+\bar{A}$ is weak-* dense in $L^{\infty}(m)$.

Proof. We need only show that any $g \in L_{\mathcal{L}}^{1}(m)$, such that $\int \mathrm{fgdm}=0$ for every $f \in A$, Suppose $g \neq 0$ a.e. (m). By Corollary 1.5.3, $g \in H^{1} ;$ and, since $1 \in A, \int g d m=0$ and so $\mathrm{g} \in H_{0}^{1}$. Thus $\underline{I}-t \varepsilon \in H^{1}, \forall$ real t, and so, by Corollary 2.1.3 (Jensen inequality), we have

$$
\int \log |1-\mathrm{tg}| \mathrm{dm} \geq \log \left|\int(1-\mathrm{tg}) \mathrm{dm}\right|=0 .
$$

Thus, by Lemma $0.3 \mathrm{~g}=\underline{0}$ a.e. (m).
From this we can see that the conditions necessary for A to be weak -* Dirichlet are the best possible such that the invariant subspace theorem is true for this class of algebras.

CHAPTER 2.

H^{∞} AS A LOGMODULAR ALGEBRA; SZEGO'S THEOREM.

§2.1 H^{∞} as a logmodular algebra.

We now look more closely at H^{∞}. We shall show that H^{∞} is (isomorphic to) a logmodular algebra on the maximal ideal space, 11, of L^{∞}, and then apply to H^{∞} some known results about logmodular algebras. We first prove

Theorem 2.1.1. Let A be a weak-* Dirichlet algebra. Then $H^{\infty}=[\mathrm{A}]_{\star}$.

Proof. We first show that $H^{\infty} \supset[A] *^{*} \quad$ Consider any sequence $\left\{f_{n}\right\} \subset H^{\infty}$, which is weak-* convergent to $f \in L^{\infty}$. Then $\lim _{n \rightarrow \infty} \int g f_{n} d m=\int g f d m, \quad \forall g \varepsilon L^{1}$. In particular, $\quad \lim _{n \rightarrow \infty} \int g f_{n} d m=$ $\int g f c^{\prime} m, \quad \forall \quad g \in A_{0} \quad$ But, by Corollary 1.4.2, $\int \mathrm{gf}_{\mathrm{n}}=0 \quad \forall \quad \mathrm{~g} \in \mathrm{~A}_{0}$, for each f_{n}. Hence $\int g f d m=0, \quad \forall^{\prime} g \varepsilon A_{0}$, and, again by Corollary 1.4.2, f $\varepsilon \mathrm{H}^{\infty}$.

To establish $H^{\infty} \subset[A]_{*}$ we shall show that every linear functional Φ on L^{∞} given by an L^{1} function f, which vanishes on A also vanishes on H^{∞}. Thus $\Phi(g)=\int g f d m=0, \forall g \in A$,
and so, by the use of Corollary 1.3.4, $\mathrm{f} \in \mathrm{H}^{1}$. Since also $\underline{1} \varepsilon A, \quad f \varepsilon H_{0^{\prime}}{ }^{\circ}$ Hence,

$$
\forall \mathrm{g} \in \mathrm{H}^{\infty}, \quad \int \mathrm{fgdm}=\int \mathrm{fdm} \cdot \int \mathrm{gdm}=0
$$

and the theorem is proved.

Corollary 2.1.1. For every p satisfying $1 \leq p \leq \infty$,

$$
H^{\infty} \subset H^{p} \text { and }\left[H^{\infty}\right]_{p}=H^{p} .
$$

Proof. Since every norm closed subspace of $L^{p}, 1 \leq p<\infty$ is also weakly closed, $H^{\infty} \subset H^{p}, 1 \leq p \leq \infty$. Thus we have, since H^{p} is closed, $\left[H^{\infty}\right]_{p} \subset H^{p}$. Now $H^{\infty} \leftrightharpoons A$, so $\left[H^{\infty}\right]_{p} \supset[A]_{p}=H^{p}$, $1 \leq p<\infty$. Thus $\left[H^{\infty}\right]_{p}=H^{p}$ whenever $1 \leq p<\infty$. If $p=\infty$, H^{∞} is weak-* closed (Theorem 2.1.1) and therefore norm closed and so $\left[H^{\infty}\right]_{\infty}=H$.

Now let $V=\left\{f: \frac{1}{f}\right.$ and $\left.f \in H^{\infty}\right\}$. Clearly, if $f \in V$, then $f^{ \pm n} \in V, \forall \mathrm{n}$. Let

$$
\log |V|=\{\operatorname{Iog}|f|: f \varepsilon V\} .
$$

Also, let L_{R}^{∞} denote the set of all real-valued functions in L^{∞}. Then we have

Lemma 2.1.1. $\log |V|=L_{R}^{\infty}$.

Proof. Clear Il $\log |V| \subset L_{R}^{\infty}$. Now consider $u \in L_{R}^{\infty}$. Then, since $1 \notin H_{0}^{2}, e^{u} \notin\left[e^{u} A_{0}\right]_{2}=e^{u_{H}} H_{0}^{2}$. Hence, by Theorem 1.3.1, $e^{u}=q h$, where $h \varepsilon H^{2}$ and $q \varepsilon\left[e^{u} A\right]_{2}=e^{u} H^{2}$. Thus $q=e^{u} h^{\prime}$, and, since $|q|=1, h, h^{\prime} \varepsilon L^{\infty}$ and so $h, h^{\gamma} \varepsilon H^{2} \cap L^{\infty}=H^{\infty}$. But, now, $e^{u}=q h=e^{u} h^{\gamma} h$ so that $h^{{ }^{\gamma} h}=1$. Thus $h \in V$ and $u=\log |h| \varepsilon \log |v|$.

Remark 2.1.1. Under pointwise operations and the essential supremum norm, $L^{\infty}(\mathrm{m})$ is a Banach Algebra. Let M be its maximal ideal space. We know (Hoffman [1], p.169ff) that M is a compact Hausdorff space and that the Gelfand mapping $f \mapsto \hat{f}$ is an isometric isomorphism from $L^{\infty}(m)$ onto $C(i f)$. the space of all continuous functions on A, and this mapping preserves complex conjugation.

Since this isomorphism is onto, every function in $C(M)$ is of the form \hat{f} for some $f \in L^{\infty}(m)$. If we let $\Phi(\hat{f})=\int \mathrm{fdm}$, we get a bounded linear functional on C(1). Then \exists a Radon measure m on M such that

$$
\Phi(\hat{f})=\int \hat{f} d \hat{m}=\int f d m, \quad \forall f \in L^{\infty}(m)
$$

We now look at the relationship between $L^{P}(m)$ and $L^{p}(\hat{m})$, $1 \leq p<\infty$. First note that the Gelfand mapping preserves positive powers of non-negative elements, and, since it preserves complex conjugation, (Hoffman [1], p.170), it also preserves absolute values.

Consider $f \in L^{p}(m)$. Since $L^{\infty}(m)$ is dense in $L^{p}(m), \exists$ $\left\{g_{n}\right\} \subset L^{\infty}(m)$ convergent to f in the $L^{p}(m)-$ norm. Hence, we have that $\left\{g_{n}\right\}$ is a Cauchy sequence; that is

$$
\lim _{\mathrm{n}, \mathrm{k} \rightarrow \infty} \int\left|\mathrm{~g}_{\mathrm{n}}-\mathrm{g}_{\mathrm{k}}\right|^{\mathrm{p}} \mathrm{dm}=0
$$

Thus

$$
\lim _{\mathrm{n}, \mathrm{k} \rightarrow \infty} \int\left|\hat{\mathrm{~g}}_{\mathrm{n}}-\hat{\mathrm{g}}_{\mathrm{k}}\right|^{\mathrm{p}} \mathrm{dm}=0
$$

and so $\left\{\hat{\mathrm{g}}_{\mathrm{n}}\right\} \subset \mathrm{L}^{\mathrm{p}}(\hat{\mathrm{m}})$ is a Cauchy sequence. Let $\hat{\mathrm{f}}$ denote the limit of $\left\{\hat{g}_{n}\right\}$ in $L^{p}(\hat{m})$. Consider any other sequence $\left\{h_{n}\right\} \subset L^{\infty}(m)$ which converges to f in the $L^{p}(m)$-norm. Then we can show that

$$
\lim _{n \rightarrow \infty} \int\left|g_{n}-h_{n}\right|^{P} d m=0
$$

and hence

$$
\lim _{n \rightarrow \infty} \int\left|\hat{g}_{n}-\hat{h}_{n}\right|^{p} \hat{d m}_{n}=0
$$

Thus \hat{f} is uniquely determined by f (modulo functions equal to zero a.e. (m).).

Conversely, consider $g \in L^{p}(\hat{m})$. Then $\exists\left\{\hat{g}_{n}\right\} \subset C(\mathbb{N})$ such
that $\left\{\hat{g}_{n}\right\}$ converges to g in the $L^{p}(\hat{m})$-norm. Hence

$$
\lim _{n, k \rightarrow \infty} \int\left|\hat{g}_{n}-\hat{g}_{k}\right|^{p} d \hat{m}=0
$$

and so $\left\{g_{n}\right\} \subset L^{\infty}(m)$ is a Cauchy sequence in $L^{p}(m)$. Suppose $\left\{g_{n}\right\}$ converges in the L^{p}-norm to $f \in L^{P}(m)$. Then, by our previous argument, $\left\{\hat{g}_{\mathrm{n}}\right\}$ converges to $\hat{\mathrm{f}} \varepsilon \mathrm{L}^{\mathrm{p}}(\hat{m})$ in the $\mathrm{L}^{\mathrm{p}}(\hat{\mathrm{m}})-$ norm, and so $g=\hat{\mathrm{f}}$.

Thus, the mapping $f \rightarrow \hat{f}$ sets up an isometry between $L^{p}(m)$ and $L^{p}(\hat{m})$ and this isometry is an extension of the mapping $f \mapsto \hat{f}$ from $L^{\infty}(\mathrm{n})$ onto C (in).

Now suppose $\hat{f} \varepsilon L^{\infty}(\hat{m})$ is the image of $f \varepsilon L^{p}(m)$. Consider $g \in L^{1}(m)$. since $L^{\infty}(m)$ is dense in $L^{1}(m)$, $\exists \quad\left\{g_{n}\right\} \in L^{\infty}(m)$ which converges to g in the $L^{1}(m)$-norm. Noting that $\hat{g} f=\hat{g} \hat{f}$, we have

$$
\int\left|g_{\mathrm{n}} \mathrm{f}-\mathrm{g}_{\mathrm{k}} \mathrm{f}\right| \mathrm{dm}=\int\left|\hat{g}_{\mathrm{n}} \hat{\mathrm{f}}-\hat{\mathrm{g}}_{\mathrm{k}} \hat{\mathrm{f}}\right| \mathrm{dm} \leq||\mathrm{f}||_{\infty} \int\left|\mathrm{g}_{\mathrm{n}}-\mathrm{g}_{\mathrm{k}}\right| \mathrm{dm}
$$

and so $\left\{g_{\mathrm{n}} \mathrm{f}\right\}$ converges to gf in the $\mathrm{L}^{7}(\mathrm{~m})$-norm. but

$$
\left|\int g_{n} f d m\right| \leq \int\left|g_{n} f\right| d m=\left|\left|g_{n} f\right|\right|_{1} \leq||f||_{\infty}| | g_{n} \mid \|_{1^{\circ}}
$$

Hence $\left|\int g f d m\right| \leq\left.||\hat{f}||_{\infty}| | g\right|_{1}$, so that $f \in L^{\infty}(m)$ and hence $\hat{f} \varepsilon C(I)$. This shows that every function in $L^{\infty}(\hat{m})$ is equal a.e. (m) to a continuous function.

Let $\hat{H}^{\infty}=\left\{\hat{f}: f \in H^{\infty}\right\}, \hat{H}^{\infty}$ is a subalgebra of $C(i l)$ closed under the supremum norm, since H^{∞} is a weak-* closed, and hence norm closed, subalgebra of $L^{\infty}(m)$.

We have already noted that the mapping $f \mapsto \hat{f}$ preserves absolute values and positive powers of non-negative elements. By the Stone-Weierstrass Theorem, for every $f \varepsilon V, \log |f|$ is the uniform limit of polynomials of the form

$$
\sum_{k=0}^{n} a_{k}|f|^{k}
$$

But from above

$$
\left(\sum_{k=0}^{n} a_{k}|f|^{k}\right) \hat{}=\sum_{k=0}^{n} \alpha_{k}|\hat{f}|^{k},
$$

and we may conclude that $(\log |f|)^{\wedge}=\log |\hat{f}|$.

Thus, we may restate Lemma 2.1.1 as

$$
\log |V|=C_{R}(X) ;
$$

where $\hat{\mathrm{V}}=\left\{\right.$ set $\hat{\mathrm{f}}: \hat{\mathrm{f}}$ and $\left.1 / \hat{\mathrm{f}} \in \hat{H}^{\infty}\right\}$. Since $C_{\hat{R}}(\mathbb{M})$ is a separating algebra of $C(1)$ so is $\log |\hat{V}|$, and hence also is \hat{H}^{∞}. Immediately we have

Theorem 2.1.2. \hat{H}^{∞} is a logmodular algebra on M, the maximal ideal space of L^{∞}.

Because H^{∞} is isomorphic to \hat{H}^{∞} we can omit the "॥" and consider H^{∞} as a logmodular algebra on the maximal ideal space L^{∞}.

Appeal to Theorem 7.1 in Hoffman [2] now yields

Corollary 2.1.2. The maximal ideal space M of L^{∞} can be embedded in that of H^{∞} as its Shilov boundary.

We also have, by Theorem 0.2 , that there exists an unique Arens-Singer measure \hat{m} such that $\int \hat{f} \hat{d m}$ represents a complex homomorphism on \hat{H}^{∞}. We can thus prove

Corollary 2.1.3. (Jensen inequality).

$$
\log \left|\int \mathrm{fdm}\right| \leq \int \log |\mathrm{f}| \mathrm{dm}, \quad \forall \quad \mathrm{f} \in \mathrm{H}^{\infty}
$$

Proof. Let $\hat{f} \varepsilon \hat{H}^{\infty}$ and $\varepsilon>0$. Then $\log \left(|\hat{f}|+\varepsilon_{\underline{E}} \quad C_{R}\left({ }^{(1}\right)\right.$. Hence, $\exists u \in \log |\hat{V}|$ such that

$$
\begin{equation*}
w-\underline{\varepsilon}<\log (|\hat{f}|+\underline{\varepsilon})<u+\underline{\varepsilon} \tag{1}
\end{equation*}
$$

If $u=\log |\hat{g}|, \hat{g} \varepsilon \hat{V}^{\prime}$ let $\hat{h}=\hat{f g}^{-1}$. Then $\hat{h} \in \hat{H}^{\infty}$, and, by the right hand side of (1), $\log |\hat{h}|<\varepsilon$, that is, $|\hat{h}|<\exp \circ \underline{\varepsilon}$ on M and so

$$
\left|\int \hat{h} d \hat{m}\right| \leq \int|\hat{h}| d \hat{m} \quad<\int(\exp \circ \underline{\varepsilon}) d \hat{m}=e^{\varepsilon}
$$

Thus, $\quad\left|\int \hat{£} d \hat{m}\right|\left|\int \hat{g} d \hat{m}\right|^{-1}<e^{\varepsilon}$, and so

$$
\log \left|\int \hat{\mathrm{f}} \mathrm{dm}\right|-\log \left|\int \hat{g} d \hat{m}\right|<\varepsilon_{m}
$$

Now, since m is an Arens--Singer measure and $g \varepsilon V$, we have $\log \left|\int \hat{g} d \hat{m}\right|=\int \log |\hat{g}| d \hat{m}=\int u d \hat{m}$.

By the left hand side of (1)

$$
\int u d \hat{m}<\underline{\varepsilon}+\int \log (|\hat{f}|+\underline{\varepsilon}) d \hat{m} .
$$

Thus, we have

$$
\log \left|\int \hat{\mathrm{f}} \hat{\mathrm{dm}}\right|<2 \varepsilon+\int \log (|\hat{\mathrm{f}}|+\underline{\varepsilon}) \mathrm{dm} .
$$

Let \& tend monotonically to zero to obtain

$$
\log \left|\int \hat{\mathrm{f}} \mathrm{dm}\right| \leq \int \log |\hat{\mathrm{f}}| \mathrm{dm}, \quad \forall \hat{\mathrm{f}} \varepsilon H^{\infty}
$$

and so

$$
\log \left|\int \mathrm{fdm}\right| \leq \int \log |\mathrm{f}| \mathrm{dm}, \quad \forall \mathrm{f} \in H^{\infty} .
$$

In particular, we have

$$
\log |\mathrm{fdm}| \leq \int \log |\mathrm{f}| \mathrm{dm}, \quad \forall \mathrm{f} \varepsilon A .
$$

Since m is an Arens-Singer measure we get equality for $f \varepsilon V$.

§2.2 More about Outer Functions.

Before using Cor 2.1.3 to help prove Szegö's theorem, we need some more facts about outer functions. We prove therefore,

Lemma 2.2.1. Let $1 \leq p<\infty$. If $h \neq 0$ a.e. (m) and $\int h d m=\lambda \neq 0$, then $h \in H^{p}$ is outer if and only if $\underline{1}-\underline{\lambda} / \mathrm{h} \in\left[\mathrm{A}_{0}\right]_{L^{P}}\left(|\mathrm{~h}|{ }^{\left.\mathrm{P}_{\mathrm{m}}\right)}\right.$

Proof. Suppose $\underline{1}-\underline{\lambda} / \mathrm{h} \in\left[\mathrm{A}_{0}\right]_{L^{\mathrm{P}}\left(|\mathrm{h}| \mathrm{p}_{\mathrm{m})}\right.}$. Then $\exists\left\{\mathrm{f}_{\mathrm{n}}\right\} \in \mathrm{A}_{0}$ such that

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}-(\underline{1}-\underline{\lambda} / h)\right|^{p}|h|^{p} d m=\lim _{n \rightarrow \infty} f\left|\left(f_{n}-1\right) h+\underline{\lambda}\right|^{p} d m=0 .
$$

Thus $-\lambda \in[h A]_{p}$ and, since $\lambda \neq 0, \quad \underline{1} \in[h \mathrm{~A}]_{p}$. Hence $[\mathrm{hA}]_{\mathrm{p}}=\mathrm{H}^{\mathrm{P}}$ and so, by Corollary 1.4.3s h is outer. Since every implication in the proof is reversible the converse is also true.
§2.3 Szegö's Theorem.
Theorem 2.3.1. (Szegö). Let $1 \leq p<\infty$ and $w \in L^{1}(m), w \geq 0$. Then

$$
\inf _{f \& A_{0}} \int|1-f|^{p} w d m=\exp \left[\int \log w d m\right]
$$

where $\int \log \mathrm{w} d \mathrm{~m}$ is defined to be $-\infty$ if $\log \mathrm{w} \notin \mathrm{L}^{1}(\mathrm{~m})$.

Proof. Consider $f \in A_{0}$. Let $\varepsilon_{a}>0$ and apply Lemma 0.1 to $\log \left(|\underline{1-f}|_{W}^{p}+\underline{G}\right) \varepsilon L_{R}^{1}(m)$ to get

$$
\int\left(|\underline{1-f}|^{p}{ }_{W}+\varepsilon\right) d m \geq \exp \left[\int \log \left(|\underline{1-f}|^{p} w+\varepsilon\right) d m .\right.
$$

That is

$$
\int|\underline{1}-f|^{P_{V d m}}+\varepsilon \geq \exp \left[\int \log \left(|\underline{1}-f|^{P_{W}}+\underline{\varepsilon}\right) d m\right]
$$

Let ε tend monotonically to zero to obtain

$$
\int|\underline{1}-f|^{P_{v} d m} \geq \exp \left[\int \log |\underline{1}-f|^{P} d m+\int \log w d m\right]
$$

By Jensen's inequality (Corollary 2.1.3),

$$
\int \log |\underline{1}-f|^{P} d m \geq p \log \left|\int(\underline{1}-f) d m\right|=0 \text {, since } f \in A_{0^{\circ}}
$$

Hence,

$$
\int|\underline{1}-f|_{w}^{p} d m \geq \exp \left[\int \log w d m\right], \quad \forall \quad f \in A_{0},
$$

and so

$$
\inf _{f \varepsilon_{A_{0}}} \int|\underline{1}-f|^{p}{ }_{w d m} \geq \exp \left[\int \log w d m\right]
$$

which is one half of Szegö's Theorem.
To prove the reverse inequality we can assume that the infimum on the left hand side is positive. Then $\mathrm{w}^{1 / \mathrm{p}} \notin\left[\mathrm{w}^{1 / \mathrm{p}} \mathrm{A}_{0}\right]_{\mathrm{p}}$, so that, by Corollary $1.4 .4, \mathrm{w}^{1 / \mathrm{p}}=\mathrm{qh}$ where $h \in H^{p}$ is outer, and $W=|w|=|h| p$. Since $h \in H^{p}$ is outer, we have, by Lemma 2.2.1, that

$$
\underline{1}-\underline{\lambda} / h \in\left[A_{0}\right]_{L}{ }^{p}\left(|h|^{p_{m}}\right)
$$

Now,

$$
\inf _{\mathrm{f}_{\varepsilon A_{0}}} \int|\underline{1}-\mathrm{f}|^{\mathrm{P}} \mathrm{wdm}=\inf _{\mathrm{f}_{\varepsilon} A_{0}} \int|\underline{1}-\underline{f}|^{\mathrm{p}}|\mathrm{~h}|^{\mathrm{p}} \mathrm{dm}
$$

which is the distance of $\underline{1}$ from A_{0} in $L^{P}\left(|h|^{P_{m}}\right)$.
Hence,

$$
\begin{aligned}
\inf _{f_{\varepsilon} A_{0}} \int|\underline{1}-f|^{\mathrm{P}} \mathrm{wdm} & \leq \int|\underline{1}-(\underline{1}-\underline{\lambda} / \mathrm{h})|^{\mathrm{P}}|\mathrm{~h}|^{\mathrm{p}} \mathrm{dm} \\
& \leq|\lambda|^{\mathrm{p}}=\left|\int \mathrm{hdm}\right|^{\mathrm{P}}=\exp \left(\log \left|\int h d m\right|^{\mathrm{p}}\right) \\
& \leq \exp \left(\int \log |\mathrm{h}|^{\mathrm{P}} \mathrm{dm}\right) \text { by the Jensen inequality } \\
& =\exp \left(\int \log \mathrm{wdm}\right) .
\end{aligned}
$$

That is,

$$
\inf _{f \in A_{0}} \int|\underline{1}-f|^{p}{ }_{w d m} \leq \exp \left(\int \operatorname{logwdm}\right) .
$$

Hence result.

Corollary 2.3.1. If $f \in L^{1}$, then $f \notin\left[f A_{0}\right]_{1}$ if and only if $\int \log |f| d m>-\infty$.

Proof. By Corollary 1.3.2, $f \notin\left[\mathrm{fA}_{0}\right]_{1}$ if and only if $|f|^{1 / 2} \notin\left[|f|^{1 / 2} \Lambda_{0}\right]_{2}$. That is, if and only if

$$
\inf _{g \in A_{0}} \quad \int|f|^{1 / 2}-\left.|f|^{1 / 2} g\right|^{2} d m=\inf _{g \in A_{0}} \int|f||\underline{1}-g|^{2} d m>0
$$

But, by Szego's theorem (Theorem 2.3.1) for $p=2$,

$$
\inf _{g_{\varepsilon} A_{0}} \int|f||\underline{1}-g|^{2} d m=\exp \left(\int \log |f| d m\right)
$$

Hence, left hand side positive implies $\int \log |f| d m>-\infty$, and hence result.

Corollary 2.3.2. If $f \in L^{p}$ and $\int \log |f| d m>-\infty$, then $f=q h$, where $h \in H^{p}$ is outer; and conversely.

Proof. Let $f \in L^{p}$ and $\int \log |f| d m>-\infty$. Then, by Corollary 2.3.1, $f \notin\left[\mathrm{fA}_{0}\right]_{1}$, and so, by Corollary 1.3.5, $\mathrm{f}=\mathrm{qh}$, where $h \in H^{\prime}$ is outer. Since $|f|=|h|$ and $f \varepsilon L^{p}$, then $h \in L^{p}$. Thus $h \in H^{1} \cap L^{p}=H^{p}$ by Corollary 1.4.1. Since each step in hthe proof is reversible the converse is true.

We are now in a position to prove a further Corollary of Theorem 1.4.1:

Corollary 2.3.3. Let $1 \leq p<\infty$. If $f \varepsilon L^{1}$, the following three conditions arc equivalent:
(i)

$$
|\mathrm{f}|^{1 / \mathrm{p}} \in\left[|f|^{\left.1 / \mathrm{p}_{A_{0}}\right]_{p}}\right.
$$

(ii) $f \notin\left[f A_{0}\right]_{1}$

$$
\text { (iii) } \quad \int \log |f| d m>-\infty \text {. }
$$

Proof. (ii) => (i).
Assume $|f|^{1 / p} \in\left[|f|^{1 / p_{A}}\right]_{p}$. Let $f_{1}=(\operatorname{sgnf})|f|^{1 / p^{p}}$, where $1 / p+1 / p^{\prime}=1$. Then

$$
f=f_{1}|f|^{1 / p} \varepsilon f_{1}\left[| f | ^ { 1 / p _ { A _ { 0 } }] _ { p } } \subset \left[f_{1}|f|^{\left.1 / p_{A_{0}}\right]_{1}}\right.\right.
$$

and so

$$
\mathrm{f} \in\left[\mathrm{fA}_{0}\right]_{1} .
$$

(ii) \Longleftrightarrow (iii)

This is simply Corollary 2.3.1.
(i) \Rightarrow (iii)

Assume $|f|^{1 / p} \notin\left[|f|^{1 / p_{A}}\right]_{p}$. Now $f \in L^{1}$ as $|f|^{1 / p} \in L^{p}$. Hence, by Corollary 1.4.4, $|\mathrm{f}|^{1 / \mathrm{p}}=\mathrm{qh}$ where $\mathrm{h} \varepsilon \mathrm{H}^{\mathrm{P}}$ is outer, and so, by Corollary 2.3.2, $\quad \log \int|f|^{1 / p} d m=\frac{1}{p} \int \log |f| d m>-\infty$, and so $\int \log |f| d m>-\infty$.

§2.4 Kolmogorov-Krein Theorem.

For those weak-*Dirichlet algebras which are also logmodular, an extension of Szego's Theorem (Theorem 2.3.1) holds. This extension is known as the Kolmogorov-Krein Theorem. In fact, Lumer (Lumer [1]) showed that this theorem holds for all sup-norm subalgebras of $C(X)$ such that $M=\{\mathrm{m}\}, \forall \quad \varepsilon \mathbb{N}$, where $\mathbb{M}{ }_{\phi}$ is the set of representing measures for ϕ, and M is the maximal ideal space of A. We shall combine Theorem 2.3.1 (Szego) with an adaptation of a result of Hoffman (Hoffman [2] Theorem 4.3) to show that the Kolmogorov-Krein Theorem holds for those weak star Dirichlet algebras which have the property that $M_{\phi}=\{\mathrm{m}\}, \forall \phi \varepsilon$ in. We shall then show in $\S 2.5$ that this property is necessary for the truth of the Kolmogorov-Krein Theorem. We now prove

Theorem 2.4.1. Let A be a weak-* Dirichlet algebra on a compact Hausdorff space X, such that $M_{\phi}=\{m\}, \forall \phi \in M$, where m is a probability measure on X, multiplicative on A. Let μ be a positive measure on X, not necessarily multiplicative on A. If $\mu=\mu_{a}+\mu_{s}$ is the Lebesgue decomposition of μ with respect to m, then

$$
\inf _{f \in A_{0}} \int|\underline{1}-f|^{2} \mathrm{~d} \mu=\inf _{f \varepsilon A_{0}} \int|\underline{1}-f|^{2} \mathrm{~d} \mu \mathrm{a}
$$

Proof. Let F be the orthogonal projection of $\underline{1}$ into $\left.{ }^{\left[A_{0}\right.}\right]_{L^{2}(\mu)}$. Then

$$
\int|\underline{1-F}|^{2} d \mu=\inf _{f_{\varepsilon A_{0}}} \int|\underline{1}-f|^{2} \mathrm{~d} \mu
$$

If $f \in A_{0} \quad(\underline{1-F}) \perp f$ in $L^{2}(\mu)$. Choose a sequence $\left\{f_{n}\right\} \subset A_{0}$ which converges to E in $L^{2}(\mu)$. If $f \in A_{0}$, then $\left(1-f_{n}\right) f \in A_{0}$, since A_{0} is an ideal in A. Since f is bounded $\left\{\left(\underline{1-f_{n}}\right) f\right\}$ converges to $(\underline{1-F}) f$ in $L^{2}(\mu)$, and so $(\underline{1}-F) f \in\left[A_{0}\right]_{L^{2}}(\mu)$. Hence $(\underline{1}-F) \perp(\underline{1}-F) f$. That is,

$$
\begin{equation*}
\int \mathrm{f}(\underline{1}-\mathrm{F})(\underline{1}-\overline{\mathrm{F}}) \mathrm{d} \mu=\int \mathrm{f}|\underline{1}-\mathrm{F}|^{2} \mathrm{~d} \mu=0, \forall \mathrm{f} \varepsilon \mathrm{~A}_{0} \tag{i}
\end{equation*}
$$

Let $K=\int|\underline{1}-F|^{2} d \mu . \quad K=0$ if and only if $\underline{I} \varepsilon\left[A_{0}\right]_{L^{2}(\mu)}$. If $K>0$, the measure $\mu_{1}=K^{-1}|\underline{1}-\mathrm{F}|^{2} \mu$ satisfies

$$
\int \mathrm{fd} \mu_{1}=\int \mathrm{fdm}, \quad \forall \mathrm{f} \in A .
$$

In fact, this statement is true by (i) for $f \in \Lambda_{0}$; it is seen to be true for $f \in A$ by noting that any $f \in A$ can be written in the form $f=g+\underline{c}$, where $g \in A_{0}$ and \underline{c} is a constant function. Hence, by our assumption that $M_{\phi}=\{m\}, \nabla^{\prime} \quad \phi \quad \mathrm{M}_{\mathrm{\prime}}$, we have $\mu_{1}=m$. Thus, for $K \geq 0$,

$$
\begin{equation*}
|\underline{1}-F|^{2} \mu=K m \tag{ii}
\end{equation*}
$$

Since $\mu_{a}=\mu_{a}+\mu_{s}$ is the Lebesgue decomposition of $\mu_{\text {with }}$ respect to m, we may rewrite (ii) as

$$
|1-F|^{2} \mu_{s}=K m-|1-F|^{2} \mu_{a} .
$$

Since the measure on the right hand side is absolutely continuous with respect to m, it follows that $|\underline{1}-F|^{2} \mu_{s}=0$; and so $F=1$ ane. (μ_{s}). Thus,

$$
\begin{equation*}
f \in A_{0}, \int(\underline{1-\bar{F}}) f d_{\mu_{a}}=\int(\underline{1}-\overline{\mathrm{F}}) f \mathrm{~d}_{\mu}=0 \tag{iii}
\end{equation*}
$$

where the last equality follows from the fact that F is the orthogonal projection of 1 into $\left[A_{0}\right]_{L^{2}(\mu)}$.

Now, for $\left\{\mathrm{f}_{\mathrm{n}}\right\} \subset A_{0}$ convergent to F in $\mathrm{L}^{2}(\mu)$ as before, we have

$$
\int\left|\mathrm{F}-\mathrm{f}_{\mathrm{n}}\right|^{2} \mathrm{~d} \mu_{a} \leq \int\left|\mathrm{F}-\mathrm{f}_{\mathrm{n}}\right|^{2} \mathrm{~d} \mu
$$

and so

$$
F \in\left[A_{0}\right]_{L^{2}\left(\mu_{a}\right)}
$$

This fact, combined with (iii), gives us that F is the orthogonal projectionoof $\frac{1}{-}$ into $\left[A_{0}\right]_{L^{2}}\left(\mu_{a}\right)^{\text {, }}$ and so

$$
\inf _{f \in A_{0}} \int|\underline{1}-\mathrm{f}|^{2} \mathrm{~d} \mu=\int|\underline{1}-\mathrm{F}|^{2} \mathrm{~d} \mu=\int|\underline{1}-\mathrm{F}|^{2} \mathrm{~d} \mu \mathrm{a}=\inf _{\mathrm{f} \varepsilon A_{0}} \int|\underline{1}-\mathrm{f}|^{2} \mathrm{~d} \mu \mathrm{a} .
$$

From Theorem 2.3.1 and 2.4.1 we have at once

Theorem 2.4.2 (Kolmogorov-Krein).
Let A be a weak-* Dirichlet algebra on a compact
Hausdorff space X, such that $M_{\phi}=\{m\}, \forall \phi \varepsilon M$, where m is a probability measure on X, multiplicative on A.

Let μ be a positive measure on X and let $\mu=w m+\mu_{s}$ where $w \in L^{1}(\mathbb{m})$, be the Lebesgue decomposition of μ with respect to m. Then

$$
\inf _{f \varepsilon A_{0}} \int|\underline{1}-f|^{2} d \mu=\exp \int \operatorname{logwdm},
$$

where, as before, if $\operatorname{logw} \not \mathrm{L}^{1}(\mathrm{~m}), \int \log w d m=-\infty$.

§2.5 Examples to illustrate the necessity of the hypothesis in

Theorem 2.4.2 that $M_{\phi}=\{\mathrm{m}\}, \forall \gamma \quad \varepsilon M$.
We now give an example(Srinivasan and Wang [1]) to show the necessity of the condition in Theorem 2.4.2, that $M_{\phi}=\{\mathrm{m}\}, \forall \quad \phi \quad \mathrm{N}$.

Let X be the unit circle and m the Haar measure on X. Let A be the algebra of those $f \in C(X)$ which have an analytic extension f to the interior of the unit disc such that $f(0)=f(1)$. Then A is a uniformly closed separating subalgebra of $C(X)$, with X as the Shilov boundary of A and the support of m. We shall show that A is weak-* Dirichlet. Clearly $\underline{1} \varepsilon 4$. Note that A may be considered as the set of functions f of the form
$f=j(j-\underline{1}) g+\underline{c}$, where \underline{c} is a constant function, and g is analytic in the interior of the unit disc, continuous on the closed unit disc, except possibly at 1 , and $g=0\left(\frac{\underline{1}}{(j-\underline{1})}\right)$ near 1. In particular, the functions $j-j^{2}$, $j^{2}-j^{3}, \ldots \varepsilon A$, and so $j^{k}-j^{n} \varepsilon A, \forall k \geq 0, n \geq 0$. By the Riemann-Lebesgue Lemma, $\left\{j^{\mathrm{n}}\right\}$ converges to $\underline{0}$ in the $\sigma\left(L^{1}, L^{\infty}\right)$ topology. Hence, for fixed $k \geq 0$, $\left\{j^{k}-j^{n}\right\}_{n=0}^{\infty}$ converges to j^{k} in the $\sigma\left(I^{1}, L^{\infty}\right)$ topology and so $j^{k} \varepsilon[A]_{*}, k \geq 0$. Hence, by the complex version of the StoneWeieistrass Theorem

$$
C(X) \subset[A+\bar{A}]_{\#} .
$$

But $[\mathrm{C}(\mathrm{X})]_{*}=\mathrm{L}^{\infty}(\mathrm{m}) \quad$ (Edwards [1] Ex.8.5) and so $[A+\bar{A}]_{*}=L^{\infty}(\mathrm{m})$ and A is weak -* Dirichlet

Now let μ be the unit point mass at 1 . wlie have

$$
\int \mathrm{fd} \mu=\mathrm{f}(1)=\tilde{\mathrm{f}}(0)=\int \mathrm{fdm}
$$

so A does not have the property that $M_{\phi}=\{\mathrm{m}\}, \forall \phi \in M$. In this case,

$$
\inf \int|1-f|^{2} d \mu=1
$$

However, μ is completely singular with respect to m,
so, in the notation of Theorem 2.4.2, $w=\underline{0}$, and so

$$
\exp \int \log w d m=0
$$

and the conclusion of Theorem 2.4 .2 fails to hold.

CHAPTER 3 3.

```
GEIETALISATIONS OF THE E. AND M。RIESZ THEOREM
```


§3.1 Introduction.

One very important theorem in the theory of analytic functions in the unit disc, the F_{0} and M Riesz Theorem, [rhich provides a characterisation for the functions in the Hardy class Hofman [1] pp. 50,51)], is not true for weak-* Dirichlet algebras. We shall show that it is not true even for Dirichlet algebras. However, for some subalgebras of $C(X)$, the set of continuous functions on a compact Hausdorff space X, we can prove a generalised F. and M. Riesz Theorem (Theorem 3.3.1) which implies the classical result.

For those weak-* Dirichlet algebras which are also logmodular algebras, we have a generalised F. and M.Riesz Theorem (Theorem 3.2.1) which was proved by Hoffman (Hoffman [2]). From this point on we write A^{\perp} for the set of measures μ on X such that $\int \mathrm{fd} \mu=0, \forall \mathrm{f} \in \mathrm{A} ;$ as before, m is a probability measure on X, multiplicative on A, and A_{0} is the set of $f \in A$ such that $\int f d m=0$; and so A_{0}^{\perp} is the set of measures μ on X such that $\int \mathrm{fd} \mu=0, \forall \mathrm{f} \in \mathrm{A}_{0}$.
§3.2 A generalised F. and M. Riesz Theorem for lognodular algebras.
Theorem 3.2.1. Let A be a logmodular algebra on a compact
Hausdorff space X. Let μ be a complex measure on X such that
$\mu \varepsilon A_{0}$ Let $\mu=\mu_{a}+\mu_{s}$ be the Lebesgue decomposition of μ with respect to m, where m is as above. Then $\mu_{a} \mu_{s} \in \frac{1}{A_{0}}$, and $\int d \mu_{s}=0$. Further, $\mu_{a}=h m_{\text {, where }} h \in H^{1}(m)$.

Proof. Let $\mu_{a}=h m$ and let ρ be the positive measure on X defined by $\rho=(\underline{1}+|\mathrm{h}|) \mathrm{m}+\left|\mu_{\mathrm{S}}\right|$, where $\left|\mu_{\mathrm{S}}\right|$ denotes the total variation of μ_{S}. If $f \varepsilon A_{0}$, then

$$
\begin{equation*}
\int|\underline{1}-f|^{2} d \rho \geq \int|\underline{1}-f|^{2} d m \geq 1 \tag{i}
\end{equation*}
$$

Let G be the orthogonal projection of $\underline{1}$ into $\left[A_{0}\right]_{L^{2}(\rho)}$. Now, by (i),

$$
\int|\underline{1}-G|^{2} \mathrm{~d} p=\inf _{f \varepsilon A_{0}} \int|\underline{1}-\mathrm{f}|^{2} \mathrm{~d} p \geq 1
$$

and so $\underline{1} \notin\left[A_{0}\right]_{L^{2}}(\rho)^{\circ}$
Choose a sequence $\left\{g_{n}\right\} \in A_{0}$ which converges to G in
$L^{2}(\rho)$. Let $f \in A_{0}$. Since A_{0} is an ideal in $A_{\text {, }}$ $\left(\underline{1}-g_{n}\right) f \in A_{0}$; and, since f is bounded, $\left\{\left(\underline{1}-g_{n}\right) f\right\}$ converges to $(\underline{1}-G) f$ in the $L^{2}(\rho)$-norm, and so $(1-G) f \in\left[A_{0}\right] L^{2}(\rho)^{\text {. }}$ Thus (1-G) is orthogonal to (1-G)f in $L^{2}(\rho)$; that is,

$$
\begin{equation*}
\int \mathrm{f}|\underline{1}-\mathrm{G}|^{2} \mathrm{~d}_{\rho}=0, \forall £ \in \mathrm{~A}_{0} \tag{ii}
\end{equation*}
$$

Let $K=\int|\underline{1}-G|^{2} d_{\rho} \geq 1$. Let $\rho_{1}=K^{-1}|\underline{1}-G|^{2} \rho$. Then we have

$$
\int \mathrm{fd}_{\rho_{1}}=\int \mathrm{fdm}, \forall \mathrm{f} \varepsilon \mathrm{~A}_{0}
$$

In fact, this statement is true by (ii) for $f \in A_{0}$; it is seen to be true for $f \in A$ by noting than any $f \in A$ can be written in the form $f=g+\underline{c}$ where $g \in A_{0}$ and \underline{c} is a constant function.

Since A is a logmodular algebra, Theorem 0.2 gives us that $\rho_{1}=m$. Thus $|\underline{1}-G|^{2} \rho=K_{m}$, and so $(\underline{1-G})=\underline{0}$ a. e. $\left(\rho_{s}\right)$; and, since $\rho_{a}=(\underline{1}+|h|) m$, we have

$$
\begin{equation*}
|\underline{1}-G|^{2}(\underline{1}+|\mathrm{h}|) \mathrm{m}=\mathrm{Km} \tag{iii}
\end{equation*}
$$

that is,

$$
\begin{aligned}
& |\underline{1}-G|^{-2} \mathrm{Km}=(\underline{1}+|h|) \mathrm{m} \text {, and so } \\
& (\underline{1}-G)^{-2} \varepsilon L^{1}(\mathrm{~m}) \text { and hence }(\underline{1}-G)^{-1} \varepsilon L^{2}(m) .
\end{aligned}
$$

We now wish to show that $(\underline{1 G})^{-1}$ is in $H^{2}(m)$.
Let $f \in A_{0}$. Then

$$
\begin{aligned}
\int f(\underline{1}-G)^{-1} d m & =\int f(\underline{1}-G)^{-1} d \rho \\
& =\frac{1}{K} \int f(\underline{1}-G)^{-1}|\underline{1}-G|^{2} d \rho \\
& =\frac{1}{K} \int f(\underline{1}-\bar{G}) d \rho \\
& =0 \text { since }(\underline{1}-G) \perp A_{0} \text { in } L^{2}(\rho) .
\end{aligned}
$$

Thus we have

$$
\int \mathrm{f}(\underline{1-G})^{-1} \mathrm{dm}=0, \quad \forall \quad \mathrm{f} \in \mathrm{~A}_{0},
$$

and so, by Remark 1.3.1, $(1-G)^{-1} \varepsilon H^{2}(\mathrm{~m})$ 。
From (iii) above we have

$$
|\underline{1}-G|^{2}(\underline{1}+|h|)=\text { K a.e. (m) }
$$

which, with $(\underline{1}-G)^{-1} \varepsilon L^{2}(m)$, implies that $(\underline{1}-G)^{-1}(\underline{1}+|h|)$, and hence $(1-G)^{-1} h$ also, is in $L^{2}(m)$.

We now wish to show that $\int(\underline{1}-G) f d \mu=0 \quad \forall f \varepsilon A_{0}$. Take $\left\{g_{n}\right\} \subset A_{0}$ convergent to G in $L^{2}(\rho)$ as before. Then $\left(\underline{1}-g_{n}\right) f \varepsilon A_{0}$. So, since $\mu \ll \rho$ and $d \mu / d \rho$ is bounded, while $\mu \varepsilon \Lambda_{0}^{\perp}$, we have

$$
\int f(\underline{1}-G) d \mu=\lim _{n \rightarrow \infty} \int f\left(\underline{1}-g_{n}\right) d \mu=0 .
$$

Also, since $(\underline{1}-G)=\underline{0}$ a.e. $\left(\rho_{s}\right)$, we have
$(\underline{1}-\mathrm{G})=\underline{0}$ a.e. $\left(\mu_{\mathrm{s}}\right)$ and so $(\underline{1}-G)_{\mu}=(\underline{1}-\mathrm{G}) \mathrm{hm}$.
Thus,

$$
0=\int f(\underline{1}-G) d \mu=\int f(\underline{1}-G) h d m, \quad \forall f \in A_{0} .
$$

Since $(\underline{1}-G)^{-1} \in H^{2}(m)$ 크 $\left\{f_{n}\right\} \in A$ which converges to $(\underline{1}-G)^{-1}$ in $L^{2}(m)$. Since m is multiplicative on A

$$
\begin{equation*}
\int \mathrm{f}_{\mathrm{n}} \mathrm{f}(1-\mathrm{G}) \mathrm{hdm}=0, \text { for each } \mathrm{n} \text {. } \tag{iv}
\end{equation*}
$$

Since also (1-G)h $\varepsilon L^{2}(m)$, we may pass to the limit in (iv) to obtain

$$
\int f h d m=0, \quad \forall \pm \in A_{0}
$$

By Corollary 1.3.4, $\mathrm{h} \in \mathrm{H}^{1}(\mathrm{~m})$. Also, we have then that $\mu_{a} \varepsilon A_{0}^{\perp}$, and this combined with $\mu \varepsilon \AA^{\perp} \supset \stackrel{\perp}{A_{0}^{,}}$gives us $\mu_{s} \varepsilon \stackrel{\perp}{A_{0}}$.

Since $\underline{1} \in\left[A_{0}\right]_{L^{2}}\left(\left|\mu_{S}\right|\right)$ (Hoffman [2], Theorem 4.3), we can choose $\left\{\mathrm{f}_{\mathrm{n}}\right\} \subset \mathrm{A}_{0}$ which converges to $\underline{1}$ in $L^{2}\left(\left|\mu_{\mathrm{s}}\right|\right)$. Then

$$
\int d \mu_{s}=\lim _{\mathrm{n} \rightarrow \infty} \int \mathrm{f}_{\mathrm{n}} \mathrm{~d} \mu_{\mathrm{s}}=0
$$

since $\mu_{S} \in A_{0^{\circ}}^{\perp}$

Remark 3.2.1. To express 3.2.1 in the same form as later generalisations of the F. and M. Riesz Theorem, we note that $\int d \mu_{S}=0$,
together with the fact that each $f \in A$ can be written in the form $f=g+c$, where $g \varepsilon A_{0}$ and \underline{c} is a constant function, shows that $\mu_{s} \varepsilon A_{0}^{\perp} \Rightarrow \mu_{s} \varepsilon A^{\perp}$. Thus, if we assumed originally that $\mu \in A^{\perp}$, then we could conclude $\mu_{S} \varepsilon A^{\perp}$, and therefore that $\mu_{a} \varepsilon A^{\perp}$. Thus we may rewrite Theorem 3.2.1 in the form

Theorem 3.2.2. Let A be a logmodular algebra on a compact Hausdorff space X and μ a complex measure on X such that $\mu \varepsilon A^{\perp}$ 。 Let $\mu=\mu_{a}+\mu_{s}$ be the Lebesgue decomposition of μ with respect to m, where m is as described in $\S 3.1$. Then $\mu_{a} \mu_{s} \in A^{\frac{1}{2}}$. We shall now show that Theorem 3.1.1 implies the classical F. and M. Riesz Theorem:

Theorem 3.2.3 (F. and M. Riesz). Let μ be a measure on the unit circle such that $\int e_{n} d \mu=0, n=1,2,3, \ldots$ where $e_{n}: e^{i \theta} \mapsto e^{i n \theta}$. Then μ is absolutely continuous with respect to the Lebesgue measure on the unit circle.

Proof. We have assumed that $\mu \in A_{0}^{\perp}$, where A is the standard algebra on the unit circle. If $\mu=\mu_{a}+\mu_{S}$ is the Lebesgue decomposition of μ, then by Theorem 3.2.1, $\mu_{Q^{2} \mu} \in A_{0}^{\perp}$. Since $\underline{1} \varepsilon\left[A_{0}\right]_{L^{2}}\left(\left|\mu_{S}\right|\right)$, (Hoffman [2], Thm. 4.3) $\quad\left\{f_{n}\right\} \subset A_{0}$ which

converges to $\underline{1}$ in $L^{2}\left(\left|\mu_{s}\right|\right)$. Since $\mu_{s} \varepsilon A_{O^{2}}^{\perp}$ we have $\int d \mu_{S}=\lim _{n \rightarrow \infty} \int f_{n} d \mu_{S}=0$. Thus μ_{s} is orthogonal to $\underline{1}$. The singular measure $e_{-1}^{\mu} s_{s} \Lambda_{0}^{\perp}$ is similarly orthogonal to 1 . Repreating this process we conculde that

$$
\int e_{\mathrm{n}} \mathrm{~d} \mu_{\mathrm{s}}=0, \quad \mathrm{n}=0, \pm 1, \pm 2, \ldots
$$

and so μ_{s} must be the zero measure; that is $\mu=\mu_{a}$.
For even a Dirichlet algebra, however, Theorem 3.2.3 (F. and M. Riesz) does not generalise directly, as one can have non-zero measures orthogonal to A_{0} which are mutually singular with respect to m (Hoffman [1] p59. Ex 11).
§3.3 Another generalised F. and M. Riesz Theorem.
For a general sup-norm algebra A we have a generalisation of the $F_{\text {o }}$ and M. Riesz Theorem which is due to Ahern (Ahern [1]).

Theorem 3.3.1. (Ahern). Let A be a sup-norm algebra on a compact Hausdorff space X. Let M_{ϕ} be, as before, the set of representing measures for $\phi \in M$, the maximal ideal space of A, (each $m \in M_{\phi}$ is a probability measure on X, multiplicative on A). For every complex measure μ on X such that $\mu \in A^{\perp}$, we have $\mu_{a}{ }^{,} \mu_{S} \varepsilon A^{\perp}$ (where $\mu=\mu_{a}+\mu_{S}$ is the Lebesgue decomposition of μ with respect to m) if and only if $\rho \ll m, \forall \rho \in M_{\phi}$.

We prove first the following four lemmas.

Lemma 3.3.1. Let $\left\{\mathrm{v}_{\mathrm{n}}\right\}$ be a sequence of positive measures on X having m as a weak-* cluster point. Suppose $F \subset X$ is compact, and that $v_{n}(F) \geq \varepsilon_{0}>0, \forall \mathrm{n}$. Then $\mathrm{n}(\mathrm{F}) \geq \varepsilon_{0}$.

Proof. Since m is regular \exists a decreasing sequence of open sets $\left\{0_{n}\right\}$ such that $O_{n}>F$ and $\lim _{n \rightarrow \infty} m\left(O_{n} \backslash F\right)=0$. By Urysohn's Lemma $\exists\left\{u_{n}\right\} \subset C_{R}(X)$ such that $u_{n}=\underline{1}$ on $F, u_{n}=\underline{0}$ on $X \geqslant O_{n}$, and $\underline{0} \leq u_{n} \leq \underline{1}$. From the construction $\left\{u_{n}\right\}$ converges $a . e .(m)$ to X_{F}, the characteristic function of F. Now,

$$
m(F)=\int\left(x_{F}-u_{k}\right) d m+\int u_{k} d v_{n}+\int u_{k}\left(d m-d v_{n}\right)
$$

and $\int\left(X_{F}-u_{k}\right) d m$ can be made small by choosing k large, and once k is fixed $\int u_{k}\left(d m-d v_{n}\right)$ can be made small by proper choice of n. Thus,

$$
\mathrm{m}(\mathrm{~F}) \geq \int \mathrm{u}_{\mathrm{k}} \mathrm{dv}_{\mathrm{n}} \geq \mathrm{v}_{\mathrm{n}}(\mathrm{~F}) \geq \varepsilon_{0}
$$

where k, n are as indicated.

Lemma 3.3.2. Let $u \in C_{R}(X)$. Write $\lambda(u)$ for $\int u d \lambda$. Then, for $\phi \varepsilon \mathrm{M}$,

$$
\sup \{\operatorname{Re\phi }(f): f \varepsilon A, \operatorname{Ref} \leq u\}=\inf \left\{\lambda(u): \lambda \varepsilon M_{\phi}\right\}
$$

Proof. Since $\lambda(\operatorname{Ref})=\operatorname{Re} \lambda(f)=\operatorname{Re\phi }(f), \forall \lambda \varepsilon M_{\phi}, \quad \forall f \in A_{0}$ we have

$$
\begin{equation*}
\sup \{\operatorname{Re\phi }(f): \operatorname{Ref} \leq u, f \varepsilon A\} \leq \inf \left\{\lambda(u): \lambda \varepsilon M_{\phi}\right\} \tag{i}
\end{equation*}
$$

By the same equality, F : Ref $\mapsto \operatorname{Re\phi }(f)$ is a well-defined nonnegative linear functional on the subspace ReA of $C_{R}(X)$. We shall show that, for each $u \in C_{R}(X) \exists$ a non-negative linear functional on the subspace of $C_{R}(X)$ spanned by $\operatorname{ReA} u\{u\}$ (call it E) such that

$$
\mathrm{F}_{\mathrm{e}}(\operatorname{Ref})=\mathrm{F}(\operatorname{Ref}), \quad \forall \mathrm{f} \varepsilon \mathrm{~A}
$$

and

$$
\mathrm{F}_{\mathrm{e}}(\mathrm{u})=\sup \{\operatorname{Re} \phi(\mathrm{f}): \operatorname{Ref} \leq \mathrm{n}, \mathrm{f} \varepsilon \mathrm{~A}\} .
$$

If $u \varepsilon$ ReA, our assertion is trivial:

$$
\sup \{\operatorname{Re\phi }(f): \operatorname{Ref} \leq u, f \in A\}=F(u) .
$$

If $u \notin \operatorname{ReA}$, each $v \varepsilon E$ can be written uniquely as Ref $+\alpha u, f \varepsilon A$ and α a real number. Define

$$
\begin{aligned}
F_{e}(v)=F_{e}(\operatorname{Reftau}) & =F(\operatorname{Ref})+\alpha \sup \{F(\operatorname{Ref}): f \varepsilon A, \operatorname{Ref} \leq u\} \\
& =\operatorname{Re\phi }(f)+\alpha \sup \{\operatorname{Re\phi }(f): f \varepsilon A, \operatorname{Ref} \leq u\}
\end{aligned}
$$

F_{e} is clearly linear with its restriction to ReA equal to F.

We now show that F_{e} is non-negative on E.

$$
\text { Let } \operatorname{Ref}+\alpha u \geq 0 \text { 。 }
$$

Case 1. $\alpha=0$. Trivial.

Case 2. $\alpha>0$. Then $\frac{-\operatorname{Ref}}{\alpha} \leq u$, and

$$
\sup \left\{\operatorname{Re} \phi(g): g \in A_{2} \operatorname{Reg} \leq u\right\} \geq F\left(-\frac{\operatorname{Ref}}{\alpha}\right)=-\frac{1}{\alpha} \operatorname{Re} \phi(f) ;
$$

which implies that $F_{e}(\operatorname{Ref}+\alpha u) \geq 0$.

Case 3. $\alpha<0$. Then $-\frac{R e f}{\alpha} \geq u$. Hence, for each $g \varepsilon A$ with $\operatorname{Reg} \leq u$, we have $\operatorname{Reg} \leq-\operatorname{Ref} / \alpha$, and

$$
\operatorname{Re\phi }(g) \leq-\frac{1}{\alpha} \operatorname{Re\phi }(f) .
$$

Hence,

$$
\sup \{\operatorname{Re\phi }(\mathrm{g}): \mathrm{g} \in \Lambda, \operatorname{Reg} \leq \mathrm{u}\} \leq-\frac{1}{\alpha} \operatorname{Re\phi }(\mathrm{f}),
$$

and so

$$
\operatorname{Re\phi }(f)+\alpha \sup \{\operatorname{Re} \phi(g): g \varepsilon A, \operatorname{Reg} \leq u\} \geq \operatorname{Re} \phi(f)-\operatorname{Re} \phi(f)=0 .
$$

Thus F_{e} is a non-negative extension of F , such that, since $\underline{1} \varepsilon A_{s} \quad F_{e}(\underline{1})=1$. It follows that

$$
F_{e}(v) \leq F_{e}(\text { supv })=\operatorname{supv}, \quad \forall v \in E
$$

By the Hahn-Banach Theorem, there exists an extension of F_{e} to a linear functional $F_{\text {ee }}$ on $C_{R}(X)$ such that

$$
\mathrm{F}_{\mathrm{ee}}(\mathrm{w}) \leq \operatorname{supw}^{2} \quad \forall \text { w } \in C_{R}(X)
$$

Thus we have

$$
\begin{aligned}
&-F_{e e}(w)=F_{e e^{(-w)} \leq \sup (-w)=- \text { infw. }} \\
& \therefore \quad F_{e e}(w) \geq \text { infw }
\end{aligned}
$$

and so $F_{\text {ee }}$ is non-negative.
Since also $F_{e e}(\underline{1})=F_{e}(\underline{1})=1, F_{e e}$ is given by a probability measure λ such that

$$
\lambda(\operatorname{Ref})=F_{e e}(\operatorname{Ref})=F(\operatorname{Ref})=\operatorname{Re\phi }(f), \forall f \in A
$$

Then also

$$
\begin{aligned}
\lambda(\operatorname{Imf}) & =-\lambda(\operatorname{Re} i f)=-\operatorname{Re} \phi(i f) \\
& =-\operatorname{Re} i \phi(f)=\operatorname{Im} \phi(f), \quad \forall f \varepsilon A . \\
\therefore \quad \lambda(f) & =\lambda(\operatorname{Ref})+i \lambda(\operatorname{Imf}) \\
& =\operatorname{Re\phi }(f)+i \operatorname{Im} \phi(f) \\
& =\phi(f), \quad \forall f \in A_{0}
\end{aligned}
$$

and so $\lambda \varepsilon M_{\phi}$.

This, together with (i), gives the desired result.
The following lemma is an extension of a result of Fiorelli. (Fiore11i [1], Theorem 1),

Lemma 3.3.3. Let $F \subset X$ be a compact G_{δ} such that $\lambda(F)=0$, $\forall \lambda \in M_{\phi}$. (We say F is " ϕ-null"). Then, for $\{\mathrm{n}\}$ an increasing sequence of positive integers, $\exists\left\{f_{n}\right\} \subset b a l l ~ A, ~ t h e$ closed unit ball in A, such that
(1) $\quad \phi\left(f_{n}\right) \geq e^{-2 / n}$

$$
\begin{equation*}
\left|\mathrm{f}_{\mathrm{n}}\right| \leq \exp o(-\underline{\mathrm{n}}) \text { on } \mathrm{F} . \tag{2}
\end{equation*}
$$

Proof. Since F is a compact $G_{\delta} \exists$ a sequence of open sets $\left\{0_{\mathrm{n}}\right\}$ such that $0_{\mathrm{n}+1} \subset 0_{\mathrm{n}}$ and $\cap_{\mathrm{n}}{O_{\mathrm{n}}}=\mathrm{F}$, where $\overline{0}_{\mathrm{n}+1}$ denotes the closure in X of $0_{\mathrm{n}+1}$. Let $\varepsilon>0$ be given. Then there exists an integer \mathbb{N} such that $\left.\forall \mathrm{n} \geq \mathrm{N}, \forall \rho \varepsilon M_{\phi}, \quad \rho()_{\mathrm{n}}\right)<\varepsilon$. (If this were not so, there would exist $\varepsilon_{0}>0$ and sequences $\left\{\rho_{k}\right\},\left\{0_{n_{k}}\right\}$ with $\rho_{k} \varepsilon M_{\phi}$ and $\rho_{k}\left(0_{n_{k}}\right) \geq \varepsilon_{0}$. Let $U_{k}=0_{n_{k}}$; then $\rho_{k}\left(U_{k}\right) \geq \varepsilon_{0}>0$, and $\overline{U_{k+1}} \subset U_{k}$. Let ρ be a weak-* cluster point of $\left\{\rho_{k}\right\}$. Then $\rho \in M_{\phi}$ and so $\rho(F)=0$ 。 Fix k; then $\rho\left(\mathrm{U}_{\mathrm{k}}\right) \geq \rho\left(\overline{\mathrm{U}_{\mathrm{k}+1}}\right)$. Now $\rho\left(U_{k}\right) \geq \rho_{n}\left(\overline{U_{k+1}}\right) \geq \rho_{\mathrm{n}}\left(\mathrm{U}_{\mathrm{k}+1}\right) \geq \rho_{\mathrm{n}}\left(\mathrm{U}_{\mathrm{n}}\right), \quad \forall \mathrm{n} \geq \mathrm{k}+1$, and so, by Lemma 3.3.1, $\rho\left(\mathrm{U}_{\mathrm{k}}\right) \geq \varepsilon_{0}>0, \quad \forall \mathrm{k}$.

But this contradicts the fact that $\rho(F)=0$.) Hence, by passage to a suitable subsequence, we may assume that $\rho\left(O_{n}\right)<\frac{1}{n^{2}}, \forall \rho \in M_{\phi}$. Now, for each $n, \exists u_{n} \in C(X)$ such that $u_{n}=-\underline{n}$ on $F, u_{n}=\underline{0}$ on $X \backslash 0_{n}$ and $-\underline{n} \leq u_{n} \leq \underline{0}$ elsewhere. From Lemma 3.3.2 and the weak-* compactness of M_{ϕ}, there exists $\rho_{n} \varepsilon M_{\phi}$ such that

$$
\sup \left\{\operatorname{Re} \phi(f): \operatorname{Ref} \leq u_{n}, f \varepsilon A\right\}=\int u_{n} d_{\rho_{n}}
$$

Hence, for each n, $\exists g_{n} \varepsilon A$ such that $\operatorname{Reg}_{n} \leq u_{n}$, and

$$
\int \operatorname{Reg}_{n} d m \geq \int u_{n} d \rho_{n}-\frac{1}{n} \geq-n \rho_{n}\left(0_{n}\right)-\frac{1}{n} \geq-2 / n
$$

We may also assume that \int Ing $_{\mathrm{n}} \mathrm{dm}=0$. Now define $\mathrm{f}_{\mathrm{n}}=\exp \circ \mathrm{g}_{\mathrm{n}}$ 。 $f_{n} \in A$ since $1 \in A$. Also,

$$
\left|f_{n}\right|=\exp \circ \operatorname{Reg}_{n} \leq \exp \circ u_{n} \leq I
$$

and by multiplicativity of m,

$$
\begin{aligned}
f_{n} d m & =\exp \left[\int g_{n} d m\right] \\
\text { and }\left|f_{n}\right| & =\exp \left[\int \operatorname{Reg} g_{n} d m\right] \geq e^{-2 / n} ; \operatorname{Reg}_{n} \leq \exp \circ(-\underline{n}) \text { on } F
\end{aligned}
$$

Lemma 3.3.4. Suppose there exists $m \in M_{\phi}$ such that $\rho \ll m$, $\forall \rho \in M_{\phi}{ }^{3}$ and suppose $F \subset X$ is compact and $m(F)=0$. Then $\exists\left\{f_{n}\right\} \in$ ball A satisfying (1) and (2) of Lemma 3.3.3.

Proof. ヨ a sequence of open set $\left\{0_{n}\right\}$ such that $F \subset \partial_{n+1} \subset ण_{n}$ and $\operatorname{limm}\left(O_{n}\right)=0$. For each n, \exists a set F_{n}, which is a compact $n \rightarrow \infty$ G_{δ}, such that $F \in F_{n} \subset O_{n}$. Let $S=\cap F_{n}$. Then $F \subset S$, S is a compact G, and $m(S)=0$. Since $\rho \ll m, \forall \rho \varepsilon M_{\phi}$, we have $\rho(S)=0, \forall \rho \in M_{\phi}$. We then apply Lemma 3.3.3 to the set S to obtain the desired result.

We can now prove Theorem 3.3.1.

Proof of Theorem 3.3.1.

Suppose first that there exists $m \in M_{\phi}$ such that $\rho \ll m$, $\forall \rho \in M_{\phi}$. Let S be a Barie set which carries μ_{S} (that is $\mu_{s}(T)=0$ for every Baire subset T of $X \backslash S$) such that $m(S)=0$. Then \exists an increasing sequences $\left\{F_{\mathrm{n}}\right\} \subset \mathrm{S}$ of compact sets such that $\lim \left|\mu_{\mathrm{S}}\right|\left(\mathrm{F}_{\mathrm{n}}\right)=\left|\mu_{\mathrm{S}}\right|(\mathrm{S})$, when $\left|\mu_{\mathrm{S}}\right|$ denotes the total variation of n) μ_{s}. For each F_{n} we have, by Lemma 3.3.4, a sequence $\left\{\mathrm{f}_{\mathrm{n}, \mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty} \subset$ ball A such that
(1) $\quad \int \mathrm{f}_{\mathrm{n}, \mathrm{k}} \mathrm{dm} \geq \mathrm{e}^{-2 / k} ;$ and
(2) $\left|f_{n, k}\right| \leq e^{-k}$ on F_{n}.

Define $h_{n}=f_{n, n^{\circ}}$. Then we have $h_{n} \varepsilon$ ball Δ and
(1') $\quad \int h_{n} d m=\int f_{n, n} d m \geq e^{-2 / n} ;$
and $\left(2^{\prime}\right) \quad\left|h_{n}\right|=\left|f_{n, n}\right| \leq e^{-n} \quad$ on F_{n}.

From (1') we see that $\lim _{n \rightarrow \infty} h_{n}=1$ in $L^{1}(m)$ and so we have a subsequence $\left\{h_{n_{1}}\right\}$ which converges to 1 a.e. (m).

From $\left(2^{\prime}\right) \quad\left\{h_{n_{k}}\right\}$ converges to $\underline{0}$ ave. $\left(\left|\mu_{s}\right|\right)$. Hence $\left\{g_{k}\right\}=\left\{h_{n_{k}}\right\}$ converges a.e. $(|\mu|)$ to $X_{X} \backslash S^{\circ}$

If $f \in A$, then for each $k, g_{k} f \in A$ and we have $0=\int g_{k} f d \mu \rightarrow \int_{X} \backslash S^{f d \mu}=\int f d \mu_{a}$. That is, $\mu_{a} \varepsilon A^{\perp} ;$ and so since $\mu \in A^{\perp}$, we have $\mu_{S} \in A^{\perp}$.

To prove the "only if" part of Theorem 3.3.1, we assume $\exists v \in M_{\phi}$ which is not absolutely continuous with respect to m, and consider $\mu=v-m$. Since $v, m \varepsilon M_{\phi^{\prime}}$

$$
\int \mathrm{fdv}=\int \mathrm{fdm}, \quad \forall \mathrm{f} \in \mathrm{~A}_{2}
$$

and so $\mu \in A^{\perp}$ 。

$$
\begin{aligned}
& \text { Now } \mu_{a}=v_{a}-m, \text { and } \mu_{a} \varepsilon A^{\perp} \text { if and only if } \\
& \int f d v{ }_{a}=\int f d m, \forall f \varepsilon A \text {. }
\end{aligned}
$$

But $\int f d v_{a}=\int f d m, \forall f \in A$ implies, since $1 \varepsilon A_{0}$ that $\int d v_{a}=1=\int d v$. Thus $v(X)=v_{a}(X)$, and hence $v_{s}=0$. This contradicts our assumption, so $\mu_{a}^{\neq} A^{\perp}$ and our proof is completed.

Remark 3.3.1. Theorem 3.2.1, where $M_{\phi}=\{\mathrm{m}\}$, is a special case of Theorem 3.3.1.

§3.4 An abstract F_{0} and M. Riesz Theorem.

Thern's result is a particular case of a general result whose only special hypothesis is that A is a subalgebra of $C(X)$ which contains the constant functions on X. The extension arises from the idea of forming the Lebesgue decomposition of μ relative to the set M_{ϕ}, in the sense of the following definition (Gliclsberg [1]).

Definition 3.4.1. The (complex) measure μ is singular with respect to a set M of probability measures (" μ is M-singular") if μ is carried by some Barie set F (that is $\mu(S)=0$ for every Baire subset S of $X \backslash F$) of measure zero for all $m \varepsilon M$; such an F is called an M-null set. If μ vanishes on all M-null sets $F\left(\mu_{F}=0\right)$, then μ is M-absolutely continuous ($\mu \ll M$).

When $M=M_{\phi}$, we frequently write " ϕ-singular" for "M ${ }_{\phi}$-singular"。

Unlike our previous theory, where our choice of Baire measures rather than regular Borel measures was purely arbitrary, we consider Baire measures here to ensure the truth of the Choquet-Bishopde Leeuw Theorem (Phelps [1], p24) which is necessary for the development of this theory. The full development will not be given here but may be found in Glicksberg [1] and Garnett and Glicksberg [I]. We note also that we always have a (unique) Lebesgue decomposition
of any μ relative to M :

$$
\mu=\mu_{F}+\mu_{F^{\prime}}
$$

where μ_{F} is M-singular and $\mu_{E^{\prime}} \ll$ M.
To do this choose an M-null set F which maximises $\left\|\mu_{F}\right\|$, so that if E (and so $E \cup F$) is M-null then $\left\|\mu_{E \cup F}\right\|=\left\|\mu_{F}\right\|+\left\|\left(\mu_{F^{\gamma}}\right)_{E}\right\| \leq\left\|\mu_{F}\right\|$, and so $\left(\mu_{F^{\gamma}}\right)_{E}=0$. We now prove the abstract F and M Riesz Theorem due to Glicksberg (Glicksberg [1]). The proof of this theorem follows that of Theorem 3.3.1 and both are closer in form to the original proof of F. and M. Riesz than the proof of Theorem 3.2.1.

Theorem 3.4.1. If $\mu \varepsilon \Lambda^{\perp}$ and $\phi \varepsilon M$, the maximal ideal space of A, and if $\mu=\mu_{F}+\mu_{F}$ is the Lebesgue decomposition of μ relative to M_{ϕ}, then $\mu_{F}{ }^{\text {, }}{ }_{F}{ }^{\gamma} \in A^{\perp}$.

We first prove an analogue of Lemma 3.3.3:

Lemma 3.4.1. If $F=U K_{n}$ is a $\phi^{\text {-null }}$ union of compact Bare sets K_{n}, then \exists sequence $\left\{f_{\mathrm{n}}\right\} \subset$ ball A. which converges to \underline{O} on F and to $\underline{1}$ a.e. $(\lambda), \forall \lambda \varepsilon M_{\phi}$.

Proof. For n fixed we have monotonic increasing sequence $\left\{u_{k}\right\} \subset C_{R}(X)$, which, since every compact Baire set is a G_{δ},
(Berberian [1], p180 Ex.6.), converges pointwise to $-n \chi_{k_{n}}$. Thus, by monotone convergence $\lambda\left(u_{k}\right) \uparrow 0, \forall \lambda \varepsilon M_{\phi}$. Since M_{ϕ} is weak-* compact and $\lambda \mapsto \lambda\left(u_{k}\right)$ is weak* continuous, Bini ${ }^{*} s$ Theorem asserts that the convergence is uniform on M_{ϕ}. Thus,

$$
\lambda\left(u_{k}\right)>-\frac{1}{2} n^{-4}, \forall \lambda \in \mathbb{M}_{\phi}, \text { for some } k
$$

By Lemma 3.3.2 we have $g_{n} \in A$ such that $\operatorname{Reg}_{n} \leq-n \chi_{k_{n}}$ and so

$$
\operatorname{Re\phi }\left(g_{n}\right)>\frac{1}{2} n^{-4}-\frac{1}{2} n^{-4}=-n^{-4}
$$

Put $f_{n}=\left(\exp \circ g_{n}\right) \operatorname{sgn}\left(e^{\phi\left(g_{n}\right)}\right)$. Since $1 \in A_{n} f_{n} \in A$. Since $\operatorname{Reg}_{\mathrm{n}} \leq 0$,

$$
\left|f_{n}\right|=\exp \circ \operatorname{Reg}_{n} \leq 1
$$

Also, $|f| \leq \exp 0-\underline{n}$ on K_{n}, and so $\left\{\tilde{f}_{n}\right\} \in b a l l A$ and converges
to $\underline{0}$ on E. Moreover, $\left\{x \in X: \overline{\lim }\left|f_{n}(x)-1\right|>0\right\}$ is M_{ϕ}-null, so that $\left\{f_{n}\right\}$ converges to $I \quad$ a.c。 $\left(\left|\mu_{F^{i}}\right|\right)$, since $\mu_{F^{\prime}} \ll M_{\phi^{\prime}}$, and $\left\{f_{n}\right\}$ converges to $X_{F^{2}} \quad a_{0} e_{0}(\mu)$. If $f \varepsilon A$, then, for each $n, f_{n} f \in A$ and, since $\mu \in \Lambda^{\perp}$,

$$
0=\int \mathrm{f}_{\mathrm{n}} \mathrm{fd} \mu \rightarrow \int_{\mathrm{F}^{\imath}} \mathrm{fd} \mu=\int \mathrm{fd} \mu \mathrm{~F}^{?}
$$

That is, μ_{F} ? $\varepsilon \Lambda^{\perp}$ and hence also $\mu_{F} \varepsilon A^{\perp}$.

It is clear from the preceding proof that the only special property of A we require is that $\underline{I} \in A$ so that we may exponentiate. Thus, we may state Theorem 3.4.1 in a more general form:

Corollary 3.4.1. If B is any subalgebra of A such that $1 \in B$, and $\mu=\mu_{F}+\mu_{F^{\prime}}$ is the Lebesgue decomposition of μ relative to $M_{\psi}(B)$, where $\psi \in M_{B}$, then $\mu \in A^{\perp}$ implies that $\mu_{F}, \mu_{F^{\gamma}} \in A^{\perp}$.

We note that if B is such a subalgebra of A, then $M=$ $M_{\phi}=M_{\phi}(A) \subset M_{\phi}(B)$; so that, while $M_{\phi}(B)$-null sets are also M_{ϕ}-null, the converse is false. Thus $\mu \ll M_{\phi}$ is also $M_{\phi}(B)$-absolutely continuous, but an $M_{\phi}-s i n g u l a r$ measure μ may have a non-trivial decomposition relative to $M_{\psi}(B)$.

CHAPTER 4.

EXTEISION OF LINEAR FUNCTIONALS

§4.1 Unique norm-preserving extension of a weak_* continuous linear functional on a logmodular algebra A to a weak-* continuous linear functional on $C(X)$.

We shall now make use of the abstract F. and M. Riesz Theorem in its form for logmodular algebras (Theorem 3.2.2) to prove the following result.

Theorem 4.1.1. Let A be a logmodular algebra on a compact Hausdorff space X. Let $g \in L^{1}(m)$, where m is a probability measure on X_{0} multiplicative on A. Let Φ be a linear functional on A defined by

$$
\Phi(f)=\int \mathrm{fgdm}, \quad \forall \mathrm{f} \in \mathrm{~A} .
$$

Then Φ has a unique norm-preserving extension to a linear functional on $C(X)$, and this extension is weak-* continuous, considering $C(X)$ with respect to the topology induced on it by $\sigma\left(L^{\infty}(m), L^{1}(m)\right)$.

Proof. (i) The existence of at least one norm-preserving extension of Φ is guaranteed by the Hahn-Banach Theorem. Let
ψ be any such extension of Φ to a linear functional on $C(X)$. Then ψ may be expressed in the form

$$
\psi(\mathrm{f})=\int \mathrm{fd} \mu, \forall \mathrm{f} \in \mathrm{C}(\mathrm{X}),
$$

where μ is a (complex) measure on X, and the total variation of μ equals $\|\psi\|$. Let $\mu=\mu_{a}+\mu_{s}$ be the Lebesgue decomposition of μ with respect to m. Then
$\mu=\mu_{a}+\mu_{s}=h m+\mu_{s}$, where $h \in L^{1}(m)$. Since ψ is an extension of Φ, we have $\psi(f)=\Phi(f), \forall f \in A$. Thus, we have $\int f \mathrm{fd}_{\mu}=\int \mathrm{fgdm}, \forall f \in A$, and hence the measure $\mu-\mathrm{gm} \varepsilon A^{\perp}$. By Theorem 3.2.2 $\mu_{a}-\mathrm{gm}$ and μ_{s} are both $\varepsilon \Lambda^{\perp}$. Thus,

$$
\int f(1-g) d m=0, \quad \forall f \varepsilon A,
$$

and so, by Corollary 1.3.4, $h-g \varepsilon H^{1}(m)$. But $\underline{1} \varepsilon A$, so $\int(h-g) d m=0$ and so $h-g \varepsilon H_{0}^{1}(m)$. Also,

$$
\int \mathrm{fgdm}=\int \mathrm{fd} \mu=\int \mathrm{fd} \mu_{a}=\int \mathrm{fhdm}, \forall \mathrm{f} \varepsilon \mathrm{~A}_{0}
$$

We now have
and so $\|\psi\| \leq\|h\|_{1}$. But

$$
\|\psi\|=\|\mu\|=\|\mathrm{h}\|_{1}+\left\|\mu_{\mathrm{s}}\right\|
$$

and so we conclude that $\mu_{s}=0$, and so $\|h\|_{1}=\|\psi\|$ and ψ is weak-* continuous.
(ii) Uniqueness. Let ψ and ψ_{1} be norm-preserving extensions of Φ. By the above $\psi(f)=\int$ fhdm, $\forall £ \in C(X)$, and $\psi_{1}(f)=\int f\left(h+h_{1}\right) d m, \quad \forall f \in C(X)$, where $\left\|h+h_{1} \mid\right\|_{1}=\|h\|_{1}$. Also from above, $h-g \in \mathbb{E}_{0}^{1}(m)$ and $\left(h+h_{1}\right)-g \varepsilon H_{0}^{1}(m)$. Thus $h \in H_{0}^{1}(m)$, Now

$$
\|h\|_{1}=\|\psi\|=\|\Phi\|=\sup _{\substack{f \in A \\| | f| | \leq 1}} \mid \int \mathrm{fhdm} \|_{\rho}
$$

and, since the unit ball in L^{∞} is weak-* compact, and the unit ball in A is contained in the unit ball of $H^{\infty}(\mathrm{m}), \exists \mathrm{f}_{1} \in H^{\infty}(\mathrm{m})=[\mathrm{A}]_{*}$ (by Theorem 2.1.1), such that $\left\|f_{1}\right\|_{\infty}=1$ and

$$
\|\mathrm{h}\|_{1}=\sup _{\substack{\mathrm{f}_{\in A} \\ \\| | £| | \leq 1}} \mid \int \text { fhdm } \mid=\int \mathrm{f}_{1} \text { ham } .
$$

Since $\quad\left|f_{1}\right| \leq 1, f_{1} h=|h|$. However, $\int f_{1}\left(h+h_{1}\right) d m=\int f_{1} h d m=\|h\|_{1}=\left\|h+h_{1}\right\|_{1}$, where we have used the fact that $\quad h_{1} \in H_{0}^{1}(m)$ and $f_{1} \in H^{\infty}(m)$ to give $\int f_{1} h_{1} d m=0$. Thus $f_{1}\left(h+h_{1}\right)=\left|h+h_{1}\right|$. Since $f_{1} h$ and $f_{1}\left(h+h_{1}\right)$ are nonnegative, $f_{1} h_{1}$ is real-valued. But $f_{1} \in H^{\infty}(m)$ and $h_{1} \in H^{1}(m)$.

So $f_{1} h_{1} \in H^{I}(m)$ and, by Lemma 1.1 .4 , is a constant function. But $\int f_{1} h_{1} d m=0$, so $f_{1} h_{1}=\underline{0}$ a.e. (m). Now, from $f_{1} h=|h|$, $\mathrm{f}_{1} \mathrm{~h}_{1}=\underline{0}$ a.e. $(\mathrm{m}), \quad|\mathrm{h}|=\left|\mathrm{h}+\mathrm{h}_{1}\right|$, we see, by considering separately the points where $\mathrm{f}_{1} \neq 0$ and those where $\mathrm{f}_{1}=0$, that $h_{1}=\underline{0} a \circ e_{0}(m)$. This prove uniqueness.
§4.2 Unique norm-preserving extension of a weak-* continuous linear functional on a weak-* Dirichlet algebra A to a weak * continuous linear functional on L^{∞}.

We have already shown (Theorem 2.1.1) that, for A any weak \therefore Dirichlet algebra, $H^{\infty}(\mathrm{m})=L^{\infty}(\mathrm{m}) \cap[\mathrm{A}]$ is isomorphic to a logmodular algebra on i, the maximal ideal space of $L^{\infty}(\mathrm{m})$. We have seen also (Hoffman [1], p.109) that $L^{\infty}(m)$ is isomorphic to C(!). Thus, we have, directly from Theorem 4.1.1, a generalisation of a result of Gleason and Whitney for H^{∞} defined relative to the standard algebra on the unit circle. (Gleason and Whiteny [1]). That is, we have

Theorem 4.2.1. Let A be any weak-* Dirichlet algebra on a compact Hausdorff space X. Let $g \varepsilon L^{1}(m)$ where m is a probability measure, multiplicative on A. Let Φ be the linear functional on $H^{\infty}(\mathrm{m})$ defined by

$$
\Phi(f)=\int f g d m, \forall f \in H^{\infty}(m)
$$

Then Φ has a unique norm-preserving extension to $L^{\infty}(m)$, and this extension is weak-* continuous.

We can actually say more than this. Suppose we have a linear functional Φ defined on a weak-* Dirichlet algebra A by

$$
\Phi(f)=\int f g d m, \forall f \in A,
$$

where $g \varepsilon L^{1}(m), m$ as in Theorem 4.2. Since we have shown (Theorem 2.1) that $H^{\infty}(\mathrm{m})=[A]_{*}$ we see that Φ can be extended to a unique linear functional Φ_{e} on $H^{\infty}(\mathrm{m})$ such that

$$
\Phi_{e}(f)=\int f g d m, \forall f \in H^{\infty}(m)
$$

Because of its forn we can refer to Φ_{e} by Φ also and combine this result with that of Theorem 4.2.1 to get

Theorem 4.2.2. Let A be a weak: Dirichlet algebra on a compact Hausdorff space X. Let $g \in I^{1}(m)$, where m is a probability measure, multiplicative on A. Let Φ be the linear functional on Λ defined by

$$
\Phi(f)=\int f \mathrm{gdm}, \forall \mathrm{f} \varepsilon \mathrm{~A} .
$$

Then Φ has a unique norm-preserving extension to $L^{\infty}(\mathrm{m})$, and this extension is weak -* continuous.

§4.3 Discussion of the hypothesis in $\S \S 4.1,4.2$ that Φ be

weak-* continuous.
If, instead of assuming that Φ be defined by integration against a function $g \varepsilon L^{1}(m)$ se simply assume that Φ is a bounded linear functional, then it is possible to form more than one norm-preserving extension of Φ. Examples of nonunique norm-preserving extensions of a bounded linear functional defined on H^{∞} [where H^{∞} is that subspace of L^{∞}, the bounded measurable complex-valued functions on the unit circle, which consists of those functions which are boundary value funcjtions (existing a.e. by Fatou's Lemma) of bounded analytic functions in the interior of the unit disc] are given by Gleason and Whitney (Gleason and Whitney [I]).

Example 4.3.1. Suppose ψ is a non-zero bounded linear functional on L^{∞} which vanishes on H^{∞} and takes real values on I_{R}^{∞}. By the Hahn decomposition theorem ψ may be represented by the difference $\psi=\psi^{+}-\psi^{-}$of two non-negative linear functionals; here ψ^{+}is defined on non-negative f by

$$
\psi^{+}(\mathrm{f})=\sup \{\psi(\mathrm{g}): 0 \leq \mathrm{g} \leq \mathrm{f}\},
$$

and is extended over the rest of L^{∞} by linearity.

Since ψ^{+}and ψ^{-}are real and non-negative,
$\left\|\psi^{+}\right\|=\psi^{+}(\underline{1})$, and $\left\|\psi^{-}\right\|=\psi^{-}(\underline{1})$. Also, since
$\psi^{+}=\psi^{-}$on H^{∞}, and $\underline{1} \varepsilon I^{\infty}$, we have

$$
\left\|\psi^{+}\right\|=\psi^{+}(\underline{1})=\psi^{-}(\underline{1})=\left\|\psi^{-}\right\|
$$

Thus ψ^{+}and ψ^{-}are distinct norm-preserving extensions over L^{∞} of the Iinear functional Φ defined on H^{∞} by

$$
\Phi(f)=\psi^{+}(f)=\psi^{-}(f), \quad \forall f \in H^{\infty} .
$$

We must now construct a ψ with the required properties.

$$
\text { Let } v \text { be a proper arc of the unit circle, and let } v^{\prime}
$$

be its complement. Let f_{0} be defined as equal to $\underline{1}$ on v and equal to -1 or v^{3}. Then

$$
\inf _{\mathrm{fif}^{\infty}}| | f-\left.f_{0}\right|_{\infty} \geq 1
$$

Suppose this were not so; then $f_{1} \in H_{R}^{\infty}, \varepsilon>0$, such that $\left|\mid f_{1}-f_{0} \|_{\infty}=1-\varepsilon\right.$. Thus $f_{1} \geq \& \quad$ a.e. on v, and $\mathrm{f}_{1} \leq-\underline{\varepsilon}$ a.e. on ν^{7}.

Now, let $\tilde{\mathrm{F}}_{1}=\mathrm{H} * \mathrm{f}_{1}$, where " $\%$ " denotes convolution; and, as in Edwards [2], p. 86 ,

$$
H=\sum_{n \in Z}-i \cdot \operatorname{sgn} n \cdot e^{i n x}
$$

Note that, if a, b are the end-points of v,

$$
D f_{1}=\varepsilon_{a}-\varepsilon_{b}
$$

where ${ }^{D} f_{1}$ is the distributional derivative of f_{1}, and ${ }^{\varepsilon_{x}}$ is the Dirac measure at x . Therefore,

$$
\begin{aligned}
D f_{1} & =D\left(H * f_{1}\right)=H * D f_{1} \\
& =\left(\varepsilon_{a}-\varepsilon_{b}\right) * H \\
& =2\left(\varepsilon_{a}-\varepsilon_{b}\right) * D\left(\log \left|\sin \frac{1}{2} x\right|\right), \quad(\text { Edwards, }[2], p .88,(12.8 .6))
\end{aligned}
$$

and so

$$
\tilde{f}_{1}(x)=2 \log \left|\sin \frac{1}{2}(x-a)\right|-2 \log \left|\sin \frac{1}{2}(x-b)\right|+\text { constant } \quad \text { a.e. }
$$

Thus \tilde{f}_{1} is essentially unbounded in every neighbourhood of each of the points a, b. But, since $f_{1} \in H_{R}^{\infty}$, and therefore $\mathrm{f}_{1}=-$ if ${ }_{1}$, we have a contradiction, and hence

$$
\inf _{f \varepsilon H^{\infty}}| | f-f_{0}| |_{\infty} \geq 1
$$

Thus, by the Hahn-Banach extension theorem (Edwards [1], §2.2.5) \# a bounded real-linear functional on L_{R}^{∞} which vanishes on H_{R}^{∞} but not at f_{0}. We can then extend this functional into a complexlinear functional over L^{∞} to get the required linear functional ψ. on a weak-* Dirichlet algebra.

We shall now consider further the extension of weak-* continuous linear functionals defined on a weak-* Dirichlet algebra A. In particular, we shall consider those functionals which are also multiplicative on A. We prove the following theorem, which is due to Hoffmen and Rossi (Hoffman and Rossi [1]):

Theorem 4.4.1. Let A be a weak-* Dirichlet algebra. Let m be a probability measure multiplicative on A. Let Φ be a linear functional defined on A such that
(i) Φ is multiplicative on A ,
and (ii) $\exists \mathrm{g} \varepsilon \mathrm{L}^{1}(\mathrm{~m})$ such that $\varnothing(\mathrm{f})=\int \mathrm{fgdm}, \forall \mathrm{f} \varepsilon \mathrm{A}$ 。 Then Φ can be extended to a positive weak-* continuous linear functional on $L^{\infty}(\mathrm{m})$, that is, \exists a non-negative $\mathrm{k} \varepsilon \mathrm{L}^{1}(\mathrm{~m})$ such that

$$
\Phi(\mathrm{f})=\int \mathrm{fkdm}, \forall f \in \mathrm{~A} .
$$

Proof. Since, by Theorem 2.1.1, $H^{\infty}(\mathrm{m})=[\mathrm{A}]_{\text {, }}$, we see as before that Φ hasa unique extension, denoted by also, to a linear functional on H^{∞}, namely

$$
\Phi(f)=\int f g d m, \forall f \in H^{\infty}
$$

We shall show that Φ is multiplicative on $H^{\infty}=\left[A\left[\%^{\circ}\right.\right.$ Consider $f, h \in H^{\infty}$. Then $\exists\left\{f_{\mu}\right\}_{s}\left\{h_{V}\right\} \quad A$ which converge in the $\sigma\left(L^{1}, L^{\infty}\right)$ topology to f, h respectively. In particular,

$$
\lim _{\nu} \Phi\left(f_{\mu} h_{\nu}\right)=\lim _{\nu} \int_{\mu} \mathrm{f}_{\nu} g \mathrm{gdm}=\int \mathrm{f}_{\mu} \mathrm{hgdm}=\Phi\left(\mathrm{f}_{\mu} \mathrm{h}\right)
$$

and

$$
\lim _{\mu} \Phi\left(f_{\mu} h\right)=\lim _{\mu} \int f_{\mu} h g d m=\int f h g d m=\Phi(f h) .
$$

Hence,

$$
\lim _{\mu} \lim _{\nu} \Phi\left(f_{\mu} h_{\nu}\right)=\Phi(f h)
$$

But $f_{\mu} h_{\nu} \in A$. Thus by (i),

$$
\Phi\left(f_{\mu} h_{v}\right)=\Phi\left(f_{\mu}\right) \Phi\left(h_{v}\right),
$$

and hence

$$
\Phi(f h)=\lim _{\mu} \lim _{\nu} \Phi\left(f_{\mu} h_{\nu}\right)=\lim _{\mu} \Phi\left(f_{\mu}\right) \lim _{\nu} \Phi\left(h_{\nu}\right)=\Phi(f) \Phi(h)
$$

which shows that Φ is multiplicative on H^{∞}.
Define \sum to be the set of all $u \in \mathbb{L}_{R}^{\infty}(m)$ such that for every positive real number t, $\exists h_{t} \varepsilon H^{\infty}$ such that

$$
\text { (a) } \quad t u \geq \log \left|h_{t}\right| \text {, }
$$

and (b)

$$
\Phi\left(h_{t}\right)=1
$$

Before proceeding further we need to prove the following two lemmas. The first of these is an extension of the Krein-Simulian Theorem. (Horvath [1], Ch. 3 §10. Theorem 2.)

Lemma 4.4.1. Let K be a convex subset of $L^{\infty}(m)$. The following two conditions are equivalent.
(i) K is weak -* closed;
and (ii) If $\left\{f_{n}\right\} \in K$ converges boundedly and pointwise a.e. to a function f, then $f \varepsilon K$.

Proof. (i) \Rightarrow (ii). Assume $K=[K]$, and that $\left\{f_{n}\right\} \subset K$ converges boundedly and pointwise ae. to f. The latter condition implies that $\left\{\mathrm{f}_{\mathrm{n}}\right\} \subset \mathrm{K}$ also converges weakly to f . So $f \varepsilon[K]_{*}$ and, since $[K]_{*}=K$, $f \varepsilon K$.
(ii) => (i). This follows directly from Edwards [1], 8.10.5 and Ex .8 .6.

Lemma 4.4.2. Let \sum be as defined previously; namely the set of $n \in L_{R}^{\infty}(m)$ such that, for every positive real number t, $\exists h_{t} \in H^{\infty}$ such that
(a) $\quad t u \geq \log \left|h_{t}\right|$;
and (b) $\Phi\left(h_{t}\right)=1$.
Then \sum is a convex cone which is weak-* closed in $L_{R}^{\infty}(m)$.

Proof. We first show that \sum is a convex cone.
(i)

$$
u_{1}, u_{2} \varepsilon \sum \Rightarrow u_{1}+u_{2} \varepsilon \sum .
$$

Let $u_{1}, u_{2} \in[$. Then, for every positive real number t, $\nexists h_{1, t}$ and $h_{2, t}$, both εH^{∞}, such that $t u_{1} \geq \log \left|h_{1, t}\right|$, $t u_{2} \geq \log \left|h_{2, t}\right|$ and $\Phi\left(h_{1, t}\right)=\Phi\left(h_{2, t}\right)=1$. Consider ${ }^{h} 1_{1, t} h_{2, t} \in H^{\infty}$. Now, for every positive real number t,

$$
t\left(u_{1}+u_{2}\right) \geq \log \left|h_{1, t}\right|+\log \left|h_{2, t}\right|=\log \left|h_{1, t} h_{2, t}\right|
$$

and

$$
\Phi\left(h_{1, t} h_{2, t}\right)=\Phi\left(h_{1, t}\right) \Phi\left(h_{2, t}\right)=1.1=1
$$

Hence $u_{1}+u_{2} \varepsilon \sum$.
(ii) $u \in \sum, \quad \alpha \geq 0 \Rightarrow \alpha u \varepsilon \sum$.

Let $u \in \sum, \alpha \geq 0$, Then, for every positive real number t, $\exists h_{t} \varepsilon H^{\infty}$ such that $t u \geq \log \left|h_{t}\right|$ and $\Phi\left(h_{t}\right)=1$. Consider $h_{t}^{\alpha} \varepsilon H^{\infty}$. Now

$$
t(\alpha u)=\alpha(t u) \geq \alpha \log \left|h_{t}\right|=\log \left|h_{t}\right|^{\alpha}=\log \left|h_{t}^{\alpha}\right|
$$

and

$$
\Phi\left(h_{t}^{\alpha}\right)=\left[\Phi\left(h_{t}\right)\right]^{\alpha}=1
$$

Hence $\alpha u \in \sum$.
We now show that \sum is weak -* closed in $I_{R}^{\infty}(m)$. Using Lemma 4.4 .1 we need to show that, if we consider $\left\{u_{n}\right\} \subset \sum$ such that $\left|u_{n}\right| \leq \underline{M}_{,}$where \underline{M} is a constant function, and $\left\{u_{n}\right\}$ converges to u pointwise a.e., then $u \varepsilon \sum$.

By the definition of $\left[\right.$, for each $n \exists h_{n} \in H^{\infty}$ such that $u_{n} \geq \log \left|h_{n}\right|$ and $\Phi\left(h_{n}\right)=1$. In particular, $\left\{\left|h_{n}\right|\right\}$ is bounded by e^{M}. Let h be a weak-* cluster point of $\left\{h_{n}\right\}$ in $L^{\infty}(m)$. Since H^{∞} is weak-* closed $h \in H^{\infty} ;$ and, since Φ is weak-* continuous and $\Phi\left(h_{n}\right)=1, \Phi(h)=1$. Since h is a weak-* cluster point of $\left\{h_{n}\right\} \in H^{\infty}$, then $\left.\forall f \in L^{1}(m) \nexists h_{n_{k}}\right\} \subset\left\{h_{n}\right\}$ such that

$$
\lim _{n_{k} \rightarrow \infty} \int h_{n_{k}} g d m=\int h g d m .
$$

Thus

$$
\lim _{\mathrm{n}_{\mathrm{k}} \rightarrow \infty}\left|\int \mathrm{~h}_{\mathrm{n}_{\mathrm{k}}} g \mathrm{dm}\right|=\left|\int \mathrm{hgdm}\right|
$$

and so

$$
\begin{equation*}
\lim \sup _{n_{k}}\left|\int h_{n_{k}} g d m\right| \geq\left|\int h g d m\right| \tag{1}
\end{equation*}
$$

Since $\left|h_{n_{k}}\right|$ is bounded, for $g \varepsilon L^{1}(m)$ such that $\left|h_{n_{k}} g\right|$ is bounded, we can apply Fatou's Lemma; thus, for such $\left|h_{n_{k}} g\right|$,

$$
\begin{align*}
\int \lim \sup _{n_{k}}\left|h_{n_{k}} g\right| & \geq \lim \sup _{n_{k}} \int\left|h_{n_{k}} g\right| \\
& \geq \lim \sup _{n_{k}}\left|\int h_{n_{k}} g\right| \tag{2}
\end{align*}
$$

Combine (1) and (2) to get

$$
\int \lim \sup _{\mathrm{n}_{k}}\left|\mathrm{~h}_{\mathrm{n}_{k}} g\right| \mathrm{dm} \geq\left|\int \mathrm{hgdm}\right|
$$

Thus, if we have a set $S \subset X$ such that $m(s)>0$, we can choose $g=\operatorname{sgn} h \cdot x_{s} / m(S)$ to get

$$
\begin{equation*}
\frac{1}{m(S)} \int_{S} \lim _{n} \sup _{\mathrm{n}}\left|\mathrm{~h}_{\mathrm{n}}\right| \mathrm{dm} \geq \frac{1}{\mathrm{~m}(\mathrm{~S})} \int_{\mathrm{S}}|\mathrm{~h}| \mathrm{dm} \tag{3}
\end{equation*}
$$

We need to show that (3) implies that

$$
\begin{equation*}
\lim \sup _{\mathrm{n}}\left|h_{\mathrm{n}}\right| \geq|h| \text { are. } \tag{4}
\end{equation*}
$$

Suppose (3) holds fut (4) does not hold. Then \exists set $E \subset X$ such that $m(E)>0$ and

$$
\lim \sup _{\mathrm{n}}\left|h_{\mathrm{n}}\right|<|\mathrm{h}| \text { on } \mathrm{E} \text {. }
$$

Let E_{k} be the subset of X on which

$$
\lim \sup _{n}\left|h_{n}\right|<|h|-\frac{1}{\underline{k}} .
$$

Then $E_{K} \in E_{K+1}$ and $\underset{K}{\bigcup} E_{K}=E$. Since $m(E)>0$, $\exists k_{1}$ say, such that $m\left(E_{k_{1}}\right)>0$. Choose $\delta=\frac{1}{k_{1}}$ and let $S=E_{k_{1}}$. Then

$$
\lim \sup _{\mathrm{n} \rightarrow \infty}\left|\mathrm{~h}_{\mathrm{n}}\right|<|\mathrm{h}|-\underline{\delta} \text { on } \mathrm{S} \text {, }
$$

and so

$$
\int_{S} 1 i m \sup _{n}\left|h_{\mathrm{I}}\right| \mathrm{dm}<\int_{S}(|h|-\underline{\delta}) d m=\int_{S}|h| d m-\underline{\delta}(\mathrm{S}) .
$$

Thus,

$$
\frac{1}{m(S)} \int_{S} \lim \sup _{n}\left|h_{n}\right| d m<\frac{1}{m(S)} \int_{S}|h| d m-\underline{\delta}
$$

This contradicts (3). Hence (4) holds: and so

$$
|h| \leq \lim \sup _{\mathrm{n}}\left(\exp \circ u_{\mathrm{n}}\right)=\exp \circ u
$$

That is, $u \geq \log |h|$. The same argument can be applied to $t u, \forall t \geq 0$. Thus $u \in \sum$.

We now continue with the proof of theorem 4.4.1.

Proof (of Theorem 4.4.1) continued.
\sum is proper since $-\underline{1} \& \sum$. (To show that $-\underline{1} \& \sum$, suppose $-1-\sum$. Then, for every positive real number t, $\exists h_{t} \in H^{\infty}$ such that $-\underline{t} \geq \log \left|h_{t}\right|$ and $\Phi\left(h_{t}\right)=1$. However, since H^{∞} is a Banach algebra and Φ is a multiplicative linear functional on $\mathrm{H}^{\infty}, \quad\|\Phi\|=1$ 。

Since $-t \geq \log \left|h_{t}\right|,\left.\quad| | h_{t}\right|_{\infty}<1$. But

$$
1=\left|\Phi\left(h_{t}\right)\right| \leq\|\Phi \mid\| h_{t}\left\|_{\infty}=\right\| h_{t} \|_{\infty}
$$

which is a contradiction; and so $-\underline{1} \notin \sum$.)

Since \sum is proper, and, by Lemma 4.4.2, weak-* closed, a corollary of the Hahn-Banach Theorem (Edwards [1], 2.2.3) ensures the existence of a non-zero weak-* continuous linear functional on L_{R}^{∞} which is greater than α on $[$, for some real number α. This linear functional must be non-negative on \sum, since, as \sum is a cone, if it took a negative value at some point of \sum then it would take arbitrary large negative values, thus contradicting the fact that it is bounded below by α. This functional may then be extended to ψ_{1}, a non-zero, weak-* continuous linear functional on L^{∞} which is non-negative on \sum. Thus, $\exists \mathrm{k}_{1} \in \mathrm{~L}^{1}(\mathrm{~m})$ such that

$$
\psi_{I}(f)=\int f k_{1} d m, \quad \forall f \in L^{\infty} .
$$

Let $k=\left[\int\left|k_{1}\right| d m\right]^{-1} k_{1} \in L^{1}(m)$, so that

$$
\int|1| d m=1
$$

and form

$$
\psi(f)=\int \mathrm{flctm}, \quad \forall f \varepsilon \mathrm{~L}^{\infty}
$$

Then ψ is a non-zero weak-* continuous linear functional on L^{∞}
which is non-negative on \sum, and

$$
\|\psi\|=\|k\|_{1}=1
$$

By taking $h_{t}=\underline{I}$, we see that \sum contains every positive function in L^{∞}. Thus ψ is a positive functional and k is a non-negative function. Suppose now $f \in A$ such that $f \in{ }^{7}$ erø. By taking $h_{t}=\exp o(t f)$, we see that Ref $\varepsilon \sum$. But, if $\mathrm{f} \varepsilon \operatorname{rer\Phi },-\mathrm{f} \varepsilon \operatorname{ker} \Phi$ and so $\operatorname{Re}(\cdots \mathrm{f})=-\operatorname{Ref} \varepsilon \sum$. Now ψ is non-negative on \sum, so $\psi($ Ref $)=0$. By considering (-if) εk er Φ we get $\psi(\operatorname{Imf})=0$. Thus $\psi(f)=0, \nvdash f \in k e r \Phi$. Hence,

$$
\psi(f)=\Phi(f), \quad \forall f \in A .
$$

We have shown this for $f \in A$ such that $\Phi(f)=0$. Consider $\mathrm{f} \in \mathrm{A}$ such that $\Phi(f)=c \neq 0$. Then

$$
\Phi(f)-c=\Phi(f-\underline{c})=0
$$

Thus $\psi(f-\underline{c})=\psi(f)-c=0$, and so $\psi(f)=c$. Since also $||\psi||=||\Phi||=1, \quad \psi$ is a norm-preserving extension of Φ which is positive and weak-** continuous and takes the form

$$
\psi(f)=\int f k d m, \quad \forall f \in L^{\infty}
$$

Thus, we may write

$$
\Phi(f)=\int \mathrm{fkdm}, \quad \forall f \in A
$$

where k is a non-negative function.

CHAPTER 5

SEQUENTIAL F. AND M. RIESZ THEOREM

§5.1 A sequential F. and M. Riesz Theorem.

Let A be the sup-norm Banach algebra of complex-valued functions on the unit circle whose Fourier coefficients, C_{n} say, are zero for $n<0$. Then H^{∞} is the set of bounded complex-valued functions on the unit circle whose Fourier coefficients C_{n}, say are zero for $\mathrm{n}<0$. Let λ denote the Lebesgue measure on the unit circle.

Theorem 5.1.1. (Kahane [1]). Let $\left\{g_{n}\right\} \subset L^{1}(\lambda)$ be such that

$$
\ell(f)=\lim _{n \rightarrow \infty} \int f_{n} d \lambda
$$

exists for every $f \in H^{\infty}$. Then $\exists g \in L^{1}(\lambda)$ such that

$$
\ell(f)=\int \mathrm{fgd} \lambda, \quad \forall \mathrm{f} \in \mathrm{~A} ;
$$

and every (complex) Baire measure μ which is a cluster point, in the $\sigma\left(A, A^{*}\right)$ topology, where $A *$ is the dual of A, of $\left\{g_{\mathrm{n}} \lambda\right\}$, is such that $\mu \ll \lambda$.

Proof. We first show that a finite complex-valued Baire measure on the unit circle such that

$$
\ell(\mathrm{f})=\int \mathrm{f} \mathrm{~d} \mu, \quad \forall \mathrm{f} \in \mathrm{~A} .
$$

Define $\Phi_{\mathrm{n}}(\mathrm{f})=\int \mathrm{fg}_{\mathrm{n}} \mathrm{d} \lambda, \forall \mathrm{f} \varepsilon \mathrm{A}$. For each $\mathrm{f} \varepsilon \mathrm{A}, \quad\left\{\Phi_{\mathrm{n}}(\mathrm{f})\right\}$ is bounded. Hence, by the principle of uniform boundedness, $\left\{\left\|\Phi_{n}\right\|\right\}$ is bounded. Denote by Φ_{n} also the norm-preserving extension of Φ_{n} to the continuous complex-valued functions on the unit circle. By the Riesz representation Theorem \exists a finite Barie measure μ_{n} such that, for each n,

$$
\Phi_{\mathrm{n}}(\mathrm{f})=\int \mathrm{fd} \mu_{\mathrm{n}}, \quad \forall \mathrm{f} \varepsilon \mathrm{~A} ;
$$

and the total variation of μ_{n} is equal to $\left\|\Phi_{\mathrm{n}}\right\|$. Thus, by the weak-* compactness of measures, \exists a finite Barie measure μ such that

$$
\ell(f)=\lim _{\mathrm{n} \rightarrow \infty} \int \mathrm{fd}_{\mu_{\mathrm{n}}}=\mathrm{fd}_{\mu}, \quad \forall \mathrm{f} \in \mathrm{~A} .
$$

We now show that $\mu \ll \lambda$. Suppose it is not the case that
$\mu \ll \lambda$. Let E be a closed set on the unit circle such that
$\lambda(E)=0$ and $\mu(E) \neq 0$. Such an E exists since μ is regular.
Let $h \in A$ be such that $h=\underline{1}$ or E and $|h|<1$ outside E.
(The existence of such an $h \in A$ is established in Hoffman [1], p.81.)
We now have the following properties.
(1)

$$
\lim _{\mathrm{m} \rightarrow \infty} \int \mathrm{~h}^{\mathrm{m}} \mathrm{~d} \mu=\mu(\mathrm{E})
$$

(2)

$$
\lim _{\mathrm{m} \rightarrow \infty} \int \mathrm{~h}^{\mathrm{m}} \mathrm{~g}_{\mathrm{n}} \mathrm{~d} \lambda=0, \quad \forall \mathrm{n}
$$

(3)

$$
\lim _{n \rightarrow \infty} \int h^{m} g_{n} d \lambda=\int h^{m} d \mu, \quad \forall m
$$

If $\left\{\mathrm{m}_{j}\right\}$ is rapidly increasing (meaning that m_{j+1} is sufficiently large when m_{j} is given), we have

$$
\begin{equation*}
f=\sum_{j=1}^{\infty}(-1)^{j^{m}}{ }^{m}{ }^{j} \varepsilon H^{\infty} \tag{i}
\end{equation*}
$$

since, given m_{j}, we may define E_{j} as the set where $\left|h^{m}{ }^{m}-\underline{1}\right|<2^{-j}$, and, when m_{j+1} is large enough, we have $\left|h^{m}{ }^{m+1}\right|<2^{-j}$ on $E!$, the complement of E_{j}. But $2^{-j}<1-2^{-(j+1)}$, and so $E_{j}^{\prime} \cap E_{j+1}=\emptyset$. Thus, since also $E<E_{j}, \forall j$, every $x \in E$ belongs to E_{k}^{\prime} for some k, chosen sufficiently large. By the method given in detail in the proof of Theorem 5.2.1, it now follows
 uniformly bounded sequence of functions in A and so $f \varepsilon H^{\infty}$.

Write (α) for the above condition on the $\left\{m_{j}\right\}$. We introduce here the formula,

$$
\begin{aligned}
\int f g_{n_{j}} d \lambda & =\sum_{k=1}^{j-1}(-1)^{k} \int h^{m_{k}} g_{n_{j}} d \lambda+(-1)^{j} \int h^{m} g_{g_{j}} d \lambda+\sum_{k=j+1}^{\infty} \int h^{m} g_{n_{j}} d \lambda \\
& =A_{j}+B_{j}+C_{j}
\end{aligned}
$$

where we shall define by induction the sequences
$\left\{\mathrm{m}_{\mathrm{j}}\right\}$ (satisfying (α)) and $\left\{\mathrm{n}_{\mathrm{j}}\right\}$ such that the following two conditions are satisfied:
(B) $\left.\sum_{k \neq j+1}^{\infty}\left|\int h^{m_{k}} g_{n_{j}} d \lambda\right|<\left.\frac{1}{12}\right|_{\mu}(E) \right\rvert\,$

$$
\left.(\gamma) \quad\left|j^{m} h^{\mathrm{j}} \mathrm{~d}_{\mu}\right|>\left.\frac{11}{12}\right|_{\mu}(E) \right\rvert\,
$$

Choose n_{1} any positive integer. Let, m_{1} be the least positive integer such that

$$
\left|\int h^{m} d_{\mu}\right|>\frac{11}{12}|\mu(E)|, \quad \forall m \geq m_{1}
$$

The existence of m_{1} is guaranteed by (1).
Now suppose we have defined $n_{1}, m_{1}, \ldots, n_{j-1}, m_{j-1}$. Let $\left.{ }^{\rho}\right)_{j}$ be the least positive integer such that

$$
\left|h^{m}{ }^{\mathrm{m}-1}-1\right|<2^{-(j-1)} \text { on } E_{j-1} \Rightarrow\left|h^{m_{j}}\right|<2^{-(j-1)} \text { on } E_{j-1}^{\prime} .
$$

Let n_{j}^{*} be the least positive integer such that $n \geq n_{j}^{*}$ implies

$$
\left|\sum_{k=1}^{j-1}(-1)^{k} \int h^{m} g_{g_{n} d \lambda}-\sum_{k=1}^{j-1}(-1)^{k} / h^{m_{k}} d \mu\right|<\frac{1}{12}|\mu(E)|
$$

The existence of $n \underset{j}{*}$ is guaranteed by (3). Let $M(n, k)$ be the least positive integer such that

$$
\left.m \geq M(n, k) \Rightarrow\left|\int h^{m} g_{n} d \lambda\right|<\left.2^{-k} \cdot \frac{1}{12}\right|_{\mu}(E) \right\rvert\,
$$

The existence of $M(n, k)$ is guaranteed by (2). Put
$m_{j}^{*}=\max _{j-1}\left(m_{1}, M\left(n_{1}, j\right), \ldots, M\left(n_{j-1}, j\right), \rho_{j}\right)$. We define
$A_{j}^{\infty}=\sum_{k=1}^{j-1}(-1)^{k} \int h^{m^{k}} d \mu$, and consider the following two cases:
(a) $\quad\left|A_{j-1}+B_{j-1}-A_{j}^{\infty}\right| \leq 5 / 12|\mu(E)|$
(b)

$$
\left|A_{j-1}+B_{j-1}-A_{j}^{\infty}\right|>5 / 12|\mu(E)|
$$

In case (a), define $m_{j}^{*}=m_{j}$, noting that (γ) is true, and
choose $n_{j} \geq n_{j}^{*}$ so that $\left|B_{j}\right| \geq \frac{11}{12}|\mu(E)|$.
This is possible by (3) and (γ) ; by (3), with $m_{j}=m_{j}^{*}$, for any $\varepsilon>0, \exists n_{j} \geq n_{j}$ such that

$$
\left|\int h^{m^{*}} d \mu-\int h^{m_{j}^{*}} g_{n_{j}} d \lambda\right|<\varepsilon .
$$

Thus, $\quad\left|\int_{\mathrm{h}}{ }^{\mathrm{m}} \mathrm{j}_{\mathrm{d} \mu}\right|-\left|\mathrm{B}_{\mathrm{j}}\right|<\varepsilon$, and, choosing

$$
\varepsilon=\left|\int^{\mathrm{m}}{ }^{j^{\mathrm{m}}} \mathrm{~d} \mathrm{\mu}\right|-\frac{11}{12}|\mu(E)|
$$

(which is >0 by (γ)), we get $\left|B_{j}\right| \quad \frac{11}{12}|\mu(E)|$.
In case (b), define $n_{j}=n_{j}^{*}$ and choose $m_{j} \geq m_{j}^{*}$ so that $\left|B_{j}\right|<\frac{1}{12}|\mu(E)|$. This is possible because of (2).

Note, that for $n_{j} \geq n_{j}^{*}$,

$$
\left|A_{j}-A_{j}^{\infty}\right|<\frac{1}{12}|\mu(E)|
$$

We have, also, given n_{j},

$$
\left|\int h^{m} g_{n_{j}} d \lambda\right|<\frac{1}{2^{k}} \cdot \frac{1}{12}|\mu(E)|, \quad \forall m \geq M(j, 1),
$$

Now $m_{k} \geq M(j, k) \forall k \geq j+1$, so if $m_{k} \geq m_{k}^{*}$,

$$
\sum_{k=j+1}^{\infty}\left|\int h^{m_{k}} g_{n_{j}} d \lambda\right|<\frac{1}{12}|\mu(E)| \cdot \sum_{k=j+1}^{\infty} \frac{1}{2^{k}}<\frac{1}{12}|\mu(E)|
$$

and the sequences $\left\{n_{j}\right\},\left\{m_{j}\right\}$ in both cases (a) and (b) satisfy (β).
In case (a), we have

$$
\begin{aligned}
\left|A_{j-1}+B_{j-1}-A_{j} \quad B_{j}\right| & =\mid\left(A_{j 1}+B_{j-1}-A_{j}^{\infty}\left|+\left(A_{j}^{\infty}-A_{j}\right)-B_{j}\right|\right. \\
& \geq\left|B_{j}\right|-\left|A_{j 1}+B_{j-1}-A_{j}^{\infty}\right|-\left|A_{j}^{\infty}-A_{j}\right| \\
& \geq \max \left(\left|B_{j}\right|-\left|A_{j-1}+B_{j-1}-A_{j}^{\infty}\right|-\left|A_{j}^{\infty}-A_{j}\right|\right) \\
& \geq \frac{11}{12}|\mu(E)|-5 / 12|\mu(E)|-\frac{1}{12}|\mu(E)|=5 / 12|\mu(E)|>\frac{3}{12}|\mu(E)|
\end{aligned}
$$

In case (b) we have

$$
\begin{aligned}
\left|A_{j-1}+B_{j-1}-A_{j}-B_{j}\right| & >\left|A_{j-1}+B_{j-1}-A_{j}^{\infty}\right|-\left|A_{j}^{\infty}-A_{j}\right|-\left|B_{j}\right| \\
& \left.>\left\lvert\, 5 / 12-\frac{1}{12}-\frac{1}{12}\right.\right)|\mu(E)|=3 /\left.12\right|^{\mu}(E) \mid
\end{aligned}
$$

Thus, in each case we have

$$
\left|A_{j-1}+B_{j-1}-A_{j}-B_{j}\right|>3 / 12|\mu(E)|
$$

Taking (β) into account we have $\left|C_{j-1}\right|$ and $\left|C_{j}\right|$ both majorised by $\frac{1}{12}|\mu(E)|$.

Therefore,

$$
\begin{aligned}
\left|\int \mathrm{fg}_{\mathrm{n}_{\mathrm{j}-1}} \mathrm{~d} \lambda-\int \mathrm{f} g_{\mathrm{n}_{j}} \mathrm{~d} \lambda\right| & >\left|A_{j-1}+\mathrm{B}_{\mathrm{j}-1}-\mathrm{A}_{\mathrm{j}}-\mathrm{B}_{\mathrm{j}}\right|-\left|\mathrm{C}_{\mathrm{j}-1}\right|-\left|\mathrm{C}_{\mathrm{j}}\right| \\
& >\left(\frac{3}{12}-\frac{1}{12}-\frac{1}{12}\right)|\mu(E)|=\frac{1}{12}|\mu(E)|
\end{aligned}
$$

and so $\left\{\int \mathrm{fg}_{\mathrm{n}} \mathrm{d} \lambda\right\}$ is not convergent, contrary to our initial assumption. This contradiction gives $\mu \ll \lambda$. That is,

$$
\ell(\mathrm{f})=\int \mathrm{fd} \mu=\int \mathrm{fgd} \lambda, \quad \forall \mathrm{f} \varepsilon \mathrm{~A}, \text { some } \mathrm{g} \in \mathrm{~L}^{1}(\lambda) .
$$

Remark 5.1.1. Theorem 5.1.1 implies the classical F. and M_{0} Riesz Theorem. To see this, suppose μ is a measure on the unit circle such that $\int e_{n} d_{\mu}=0, \quad n \geq 1$. If $\left\{\sigma_{n}\right\} \subset L^{\lambda}(\lambda)$ is the sequence of Cesarò means of the Fourier series of μ, then μ is the unique weak-* cluster point of $\left\{\sigma_{n} \lambda\right\}$ and

$$
\lim _{\mathrm{n} \rightarrow \infty} \int \mathrm{f}_{\sigma_{\mathrm{n}}} \mathrm{~d} \lambda=\int \mathrm{f} d \mu, \quad \forall \mathrm{f} \in \mathrm{H}^{\infty}
$$

and so, by Theorem 5.1.1, $\mu \ll \lambda$.
The proof of Theorem 5.1.1 relies on the existence of $h \in A$ such that $h(E)=\underline{1}$ and $|h|<1$ elsewhere, where $\lambda(E)=0$. The existence of such an h is guaranteed by the classical F. and M. Riesz Theorem. Thus, Theorem 5.1.1 is equivalent to the classical F. and M. Riesz Theorem, and we shall refer to Theorem 5.1.1 as a sequential F. and M. Riesz Theorem.
\qquad
§5.2. A relation between generalised and sequential F. and M. Riesz Theorems.

Elizabeth Heard (Heard [1]) considered the case where A is a subspace of $C(X)$, for X a compact Hausdorff space. She said that A and m, where $m \in M(X)$, the set of finite complexvalued Baire measures which form the dual of $C(X)$, satisfy a generalised F. and M. Riesz Theorem whenever $\mu \varepsilon A \Rightarrow \mu \ll m$, for μ any finite complex-valued Baire measure on X.

From our previous generalisations of the F. and M. Riesz Theorem, which are not nearly so strong, it would appear that, for A and m to satisfy such a theorem heavy restrictions would need to be placed on A. Bishop [1] claims there are at least three examples in the literature, one of which is given in Bishop [2]. Heard showed that, whenever A, m satisfy such a theorem, they also satisfy a sequential F. and M. Riesz Theorem.

Theorem 5.2.1. (Heard [1]). Let A be a closed subspace of $C(X)$. Let $m \in M(\lambda)$, where $M(X)$ is asddefined above. Let μ be any finite complex-valued Baire measure on X. Then (I) =>
(I) $\mu \varepsilon A^{\perp} \Rightarrow \mu \ll m$.
(II) If $\left\{\mathrm{g}_{\mathrm{n}}\right\} \subset \mathrm{L}^{1}(\mathrm{~m})$ and

$$
\ell(f)=\lim _{n \rightarrow \infty} \int \mathrm{fg}_{n} d m
$$

exists for every $\mathrm{f} \in[\mathrm{A}]_{*}$, then any representative μ of a coset $\mu+A^{\downarrow}$ which is a cluster point in the $\sigma\left(A, A^{*}\right)$ topology of the set of coset $\left\{\mu_{n}+A^{\perp}: \mu_{n}=g_{n} m\right\} \subset M(X) / A \quad$ is absolutely continuous with respect to $m \quad(\mu \ll m)$; and $\exists g \varepsilon L^{\mathcal{L}}(m)$ such that

$$
\ell(\mathrm{f})=\int \mathrm{fgdm}, \quad \forall \mathrm{f} \varepsilon \mathrm{~A} .
$$

Proof. Suppose $\left\{g_{n}\right\} \subset L^{1}(m)$ such that

$$
\ell(f)=\lim _{n \rightarrow \infty} \int f g_{n} d m
$$

exists for every $f \in[A]_{*}$. Let μ_{n} be defined by $\mu_{n}=g_{n}$. By a similar method to that used in Theorem 5.1 .1 we can find a coset $\mu+A^{\perp}$ which is a cluster point in the $\sigma\left(A, A^{*}\right)$ topology of $\left\{\mu_{n}+A^{\perp}\right\}$. Let μ be a representative of the coset $\mu+A^{\perp}$. Then

$$
\lim _{\mathrm{n} \rightarrow \infty} \int \mathrm{fd} \mu_{\mathrm{n}}=\int \mathrm{fd} \mu=\ell(\mathrm{f}), \quad \forall \mathrm{f} \varepsilon \mathrm{~A} .
$$

We shall now show that $\mu \ll m$. Suppose this is not the case. Then, since μ is regular, \exists a closed set $E \subset X$ such that $m(E)=0$ but $\mu(E) \neq 0$. We require $\left\{f_{n}\right\} \subset A$ with the following properties.
(i) $\left|\left|f_{n}\right|\right|<1+2^{-n}$
(ii) $\mathrm{f}_{\mathrm{n}}=1$ on E
(iii) $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{f}_{\mathrm{n}}=0$ a.e. (m)
(iv) $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{f}_{\mathrm{n}}=x_{\mathrm{E}}$ a.e. $(|\mu|)$.
(v) $\quad f=\sum_{j=1}^{\infty}(-1)^{j} f_{n(j)} \varepsilon[A]_{*}$ for every strictly increasing sequence of positive integers $\{n(j)\}$.

The construction of $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is by induction. Let $\left\{\mathrm{U}_{\mathrm{n}}\right\}$ be a sequence of open subsets of X such that $E \subset U_{n+1} \subset U_{n}$. Since $m(E)=0$ we can suppose $m\left(U_{n}\right)<2^{-n}$ and $|\mu|\left(U_{n} \backslash E\right)<2^{-n}$ for all positive integers n.

Let $E_{1}=U_{1}$. By Urysohn's Lemma $\exists h_{1} \varepsilon C_{R}(X)$ such that $h_{1}(E)=\{1\}, \quad h_{1}\left(X \backslash E_{1}\right)=\{0\}$, and $\underline{0} \leq h_{1} \leq \underline{1}$. The assumption that (I) is true and the general Rudin-Carleson Theorem (Bishop [1]) allow us to choose $\mathrm{f}_{1} \varepsilon \mathrm{~A}$ such that

$$
f_{1}(E)=\{1\} \text { and }\left|f_{1}\right|<h_{1}+2^{-1}
$$

Now suppose f_{1}, \ldots, f_{n} and the sets E_{1}, \ldots, E_{n} which are open neighbourhoods of E, are chosen. Let V_{n+1} be the subset of X on which $\left|f_{n}-1\right|<2^{-n}$. Put $E_{n+1}=E_{n} \cap V_{n+1} \cap U_{n+1}$. Again by Urysohn's Lemma, $\exists h_{n+1} \varepsilon C_{R}(X)$ such that $h_{n+1}(E)=\{1\}$, $h_{n+1}\left(X \backslash E_{n+1}\right)=\{0\}$, and $\underline{0} \leq h_{n+1} \leq \underline{1}$. We can then choose $f_{n+1} \varepsilon A$ such that

$$
f_{n+1}(E)=\{1\} \text { and }\left|f_{n+1}\right|<h_{n+1}+2^{-(n+1)} .
$$

We now wish to show that the $\left\{f_{n}\right\}$ so defined satisfies (i) - (iv).
Properties (i) and (ii) are clearly satisfied. Now
$\lim _{n \rightarrow \infty} f_{n}=\underline{0}$ except on the set $F=\bigcap_{j=1}^{\infty} E_{j}$. But $m(F) \leq m\left(E_{n}\right) \leq m\left(U_{n}\right)<2^{-n}, \forall n$, so $m(F)=0$, and $\lim _{n \rightarrow \infty} f_{n}=\underline{0}$ a.e. (m), which is property (iii). Also, $\lim _{n \rightarrow \infty} f_{m}=X_{E}$ except on the set $F \backslash E$. But

$$
\begin{aligned}
& \quad|\mu|(F \backslash E) \leq|\mu|\left(E_{n} \backslash E\right) \leq|\mu|\left(U_{n} \backslash E\right)<2^{-n}, \forall n \text {, } \\
& \text { so }|\mu|(F \backslash E)=0 \text {, and } \lim _{n \rightarrow \infty} f_{n}=X_{E} \text { a.e. }|\mu| \text {, which is property } \\
& \text { (iv). }
\end{aligned}
$$

We now show that (v) is also satisfied. Let $\{n(j)\}$ be any strictly increasing sequence of positive integers. Let $E_{n(0)}=X$. Then $F=\bigcap_{j=1}^{\infty} E_{j}=\bigcap_{j=1}^{\infty} E_{n(j)} ;$ and $X \backslash F=\bigcup_{j=1}^{\infty}\left(E_{n(j-1)} \backslash E_{n(j)}\right)$, where the sets in this union are disjoint.

$$
\text { Consider } x \& X \backslash F \text {. Then, for some } k, \quad x \in E_{n(k)} \backslash E_{n(k+1)} \text {; }
$$

and hence $x \in \bigcap_{j=1}^{k} E_{n(j)}$ and $x \in X \backslash \bigcap_{j=k+1}^{\infty} E_{n(j)}$. Thus we have

$$
\begin{aligned}
\left|\sum_{j=1}^{k-1}(-1)^{j} f_{n(j)}(x)\right| & \leq \sum_{j=1}^{k-1}\left|\left(f_{n(j)}(x)-1\right)(-1)^{j}\right|+\left|\sum_{j=1}^{k-1}(-1)^{j-1}\right| \\
\text { (a) } & \leq \sum_{j=1}^{k-1} 2^{-n(j)}+1
\end{aligned}
$$

(b) $\left|\sum_{j=k+1}^{\infty}(-1)^{j} f_{n(j)}(x)\right| \leq \sum_{j=k+1}^{\infty}\left(h_{n(j)}(x)+2^{-n(j)}\right) \leq 2^{-n(k)}$;
(c) $\left|\left|f_{n(k)}\right|\right| \leq 1+2^{-n(k)}$

Thus the series $\sum_{j=1}^{\infty}(-1)^{j} f_{n(j)}$ converges and (a), (b), (c) show that the sequences of partial sums,

$$
\left\{s_{n}(x): s_{n}(x)=\sum_{j=1}^{n}(-1)^{j_{f}}{ }_{n(j)}(x)\right\}
$$

converges to $\mathrm{f}(\mathrm{x})$ and $\left|\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right|<4, \quad \forall$ positive integers n . Thus f is defined at every $x \in X \backslash F$. Let $y \in F$. Then $y \in \cap E_{j}(j+1)$
and
$s_{n}(y)=\sum_{j=1}^{n}(-1)^{j} f_{n(j)}(y)=\sum_{j=2}^{n}(-1)^{j}\left(f_{n(j)}(y)-1\right)+\sum_{j=1}^{n}(-1)^{j-1}$
so that

$$
\begin{aligned}
\left|s_{n}(y)\right| & \leq \sum_{j=1}^{n}\left|f_{n(j)}(y)-1\right|+\left|\sum_{j=1}^{n}(-1)^{j-1}\right| \\
& \leq \sum_{j=1}^{n} 2^{-n(j)}+1<4 .
\end{aligned}
$$

Therefore $f=\sum_{j=1}(-1)^{j} f_{n(j)}$ is the pointwise limit a.e. (m) of a uniformly bounded sequence of functions in A. Thus $f \in[A]_{*}$ and (v) is established.

We complete the proof in the same manner as that of Theorem 5.1.1, showing that what we have just deduced leads to a contradiction of our original assumption regarding the convergence of $\left\{\int_{\mathrm{f}}^{\mathrm{g}} \mathrm{n} \mathrm{dm}\right\}, \forall \mathrm{f} \in[\mathrm{A}]_{*}$. Thus $\mu \ll \mathrm{m}$ and $\exists \mathrm{g} \in \mathrm{L}^{]}(\mathrm{m})$ such that

$$
\ell(f)=\int f g d m, \forall f \varepsilon A .
$$

§5.3 Description of more functions in $\stackrel{H}{H}^{\infty}$ for which the limit relation in Theorem 5.1.1 holds.

It is not known whether the limit relation in Theorem 5.1.1, namely

$$
\ell(f)=\int \operatorname{fgd} \lambda
$$

holds \forall f εH^{∞}. Kahane himself (Kahane [1]) showed that it does hold for certain functions in $H^{\infty} \backslash \mathrm{A}$.

Let L be the set of linear functionals ℓ on H^{∞} such that, for some (possibly ℓ-dependent) sequence $\left\{g_{n}\right\} \subset L^{1}(\lambda)$,

$$
\ell(f)=\lim _{n \rightarrow \infty} \int f_{n} d \lambda, \quad \forall f \in H^{\infty} .
$$

Theorem 5.1.1 asserts that, to each $\ell \in \mathbb{L}$ corresponds at least $g \in L^{\mathcal{I}}(\lambda)$ such that

$$
\begin{equation*}
\ell(f)=\int \mathrm{fgd} \lambda, \quad \forall \mathrm{f} \varepsilon \mathrm{~A} \tag{i}
\end{equation*}
$$

Denote by $G(\ell)$ the set of $g \varepsilon L^{1}(Q)$ such that (i) is true. Define $D_{\ell}=\left\{f \in H^{\infty}: \ell(f)=\int f g d \lambda, g \in G(\ell)\right\}$, and let $D=\bigcap\left\{D_{\ell}: \ell \in L\right\}$. Then we have

Theorem 5.3.1. (a) D_{ℓ} is a closed subspace of H^{∞}; and, given any $f \in H^{\infty}$ almost all translates of f belong to D_{ℓ}.
(b) $\quad \mathrm{D}$ is a closed subalgebra of H^{∞}, invariant under translation; it contains all f εH^{∞} such that fh εD, for some outer function h.

In particular, D contains all the $f \varepsilon H^{\infty}$ which are continuous on the unit circle except on a closed set of measure zero.

Proof. Define $\Phi_{\mathrm{n}}(\mathrm{f})=\int \mathrm{fg}_{\mathrm{n}} \mathrm{d} \lambda, \forall \mathrm{f} \in \mathrm{A}$, where $\left\{\mathrm{g}_{\mathrm{n}}\right\} \subset \mathrm{L}^{\frac{1}{1}}(\lambda)$. Since the trigonometric polynomials form a dense subset of $L^{1}(\lambda)$, we may suppose that each g_{n} is a trigonometric polynomial. For each $f \in A, \quad\left\{\Phi_{\mathrm{n}}(\mathrm{f})\right\}$ is bounded, and hence, by the principle of
uniform boundedness, $\left\{\left\|\Phi_{\mathrm{n}}\right\|\right\}$ is bounded. Denote by $\| \Phi_{\mathrm{n}}| |$ also the norm-preserving extension of Φ_{n} to the continuous complex-valued functions on the unit circle. By the Riesz Representation Theorem \exists a finite Baire measure μ_{n}, such that, for each n,

$$
\Phi_{\mathrm{n}}(\mathrm{f})=\int \mathrm{f} d \mu_{\mathrm{n}}, \quad \forall \mathrm{f} \varepsilon \mathrm{~A}
$$

and the total variation of μ_{n} is equal to $\left\|\Phi_{n}\right\|$. Thus we have

$$
\int f\left(g_{\mathrm{n}} \mathrm{~d} \lambda-\mathrm{d} \mu_{\mathrm{n}}\right)=0, \quad \forall \quad \mathrm{f} \in A .
$$

In particular,

$$
\int f\left(g_{n} d \lambda-d \mu_{n}\right)=0, \quad \forall f \in A_{0}
$$

where $A_{0}=\left\{f \in A: \int f d \lambda=0\right\}$. Hence, by the F. and M. Riesz Theorem.

$$
g_{n} \lambda-\mu_{n} \ll \lambda,
$$

and so $\mu_{n} \ll \lambda$. Therefore, we may suppose $\left\{\left|\left|g_{n}\right|\right|_{1}\right\}$ is bounded.
In order to prove (a) we may suppose $g=0 . \quad$ Clearly D_{ℓ} is a closed subspace of H^{∞}. Given $f_{\varepsilon} H^{\infty}$, write $f_{S}: t \mapsto f(t-s)$ for the translate of f. Since f is bounded, $f * \psi \varepsilon$ A for every $\psi \in L^{1}(\lambda)$, where $" * "$ is the operation of convolution. Hence, by Theorem 5.1.1,

$$
\lim _{n \rightarrow \infty} \int g_{n}(t)\left\{\int f(t-s) \psi(s) d \lambda(s)\right\} d \lambda(t)=0, \quad \forall \psi \varepsilon L^{1}(\lambda)
$$

That is, by the Fubini-Tonelli Theorem,
$\lim _{\mathrm{n} \rightarrow \infty} \int \psi(\mathrm{s})\left\{\int \mathrm{f}(\mathrm{t}-\mathrm{s}) \mathrm{g}_{\mathrm{n}}(\mathrm{t}) \mathrm{d} \lambda(\mathrm{t})\right\} \mathrm{d} \lambda(\mathrm{s})=0, \quad \forall \psi \in \mathrm{~L}^{1}(\lambda)$
By hypothesis,

$$
\lim _{n \rightarrow \infty} \int g_{n}(t) f(t-s) d \lambda(t)=\ell\left(f_{s}\right) ;
$$

and, since $\left\{\left|\mid g_{n} \|_{1}\right\}\right.$ is bounded, $\left\{\int g_{n}(t) f(t-s) d_{\lambda}(t)\right\}$ is uniformly bounded with respect to n and s . Hence, (1) can be rewritten

$$
\int \psi(s) \ell\left(f_{s}\right) \mathrm{d} \lambda(s)=0, \quad \forall \psi \in L^{1}(\lambda)
$$

Therefore, $\ell\left(f_{s}\right)=0$ for almost every s and (a) is established. To prove (b) write
$\lim _{\mathrm{n} \rightarrow \infty} \int \mathrm{fhg}_{\mathrm{n}} \mathrm{d} \lambda=\ell_{\mathrm{f}}(\mathrm{h})=\ell_{\mathrm{h}}(\mathrm{f})=\ell(\mathrm{fh}), \quad \forall \mathrm{f}, \mathrm{h} \in \mathrm{H}^{\infty}$.

Then
$\ell_{f}(h)=\int h_{f} d \lambda, \quad \forall h \in D$, where $g_{f} \in G\left(\ell_{f}\right)$.
Clearly Theorem 5.1.1 implies that $A \in D$. Suppose f $\in A$.
Then

$$
\mathrm{fh} \in \mathrm{~A} \subset \mathrm{D}, \quad \forall \mathrm{~h} \in \mathrm{~A} \subset \mathrm{D}
$$

Since fh εD and $h \varepsilon D$, we have

$$
\begin{equation*}
\int \text { fhgd } \lambda=\ell(f h)=\ell_{f}(h)=\int \operatorname{hg}_{f} d \lambda, \quad \forall h \in A . \tag{i}
\end{equation*}
$$

Thus,

$$
\int \mathrm{h}\left(\mathrm{fg}-\mathrm{g}_{\mathrm{f}}\right) \mathrm{d} \lambda=0, \quad \forall \mathrm{~h} \in \mathrm{~A} ;
$$

and so, by Corollary 1.3.4, $f g-g_{f} \varepsilon H^{1}(\lambda)$. But $\underline{1} \varepsilon A$, so

$$
\int\left(f g-g_{f}\right) \mathrm{d} \lambda=0
$$

and we have $f g-g_{f} \varepsilon H_{0}^{1}(\lambda)$. Therefore,

$$
f g=g_{f}\left(\bmod H_{O}^{J}\right) .
$$

Now suppose $h \in D$. Taking $f \in A$, and using $f g=g_{f}\left(\bmod H_{0}^{+}\right)$ we have

$$
\begin{equation*}
\ell(f h)=\ell_{f}(h)=\int h g_{f} d \lambda=\int f h g d \lambda, \text { for every } \ell \varepsilon L \tag{iii}
\end{equation*}
$$

Therefore, $f h \in D_{Q}$, for every $\ell \in L$, and so th εD. Since th εD and $h \in D$, we have

$$
\int \mathrm{f}\left(\mathrm{hg}-\mathrm{g}_{\mathrm{h}}\right) \mathrm{d} \lambda=0, \quad \forall \mathrm{f} \in \mathrm{~A} .
$$

Hence, $\quad h g=g_{h}\left(\bmod H_{\dot{O}}^{1}\right)$.
If $f \in D$ and $h \in D, f g=g_{f}\left(\bmod H_{O}^{1}\right)$ and so we still have (iii) and, as a consequence, th εD. Therefore, D is a subalgebra of H^{∞}. It is closed because each D_{ℓ} is closed, and it is clearly invariant under translation.

Now, suppose $£ \in H^{\infty}, h \in D$, where h is an outer function, and th εD. We have as before

$$
\begin{equation*}
\int f h g d \lambda=\ell(f h)=\ell_{f}(h)=\int h_{f} d \lambda, \quad \forall h \in D . \tag{i}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int h\left(f g-g_{f}\right) d \lambda=0, \quad \forall h \in D \supset A \tag{ii}
\end{equation*}
$$

and so $\mathrm{fg}-\mathrm{g}_{\mathrm{f}} \varepsilon \mathrm{H}_{0}^{1}(\lambda)$.

Consequently,

$$
\ell(f)=\ell_{f}(\underline{1})=\int g_{f} d \lambda=\int f g d \lambda, \quad \text { for every } \quad \ell \varepsilon t .
$$

That is, $f \in D_{\ell}$ for every $\ell \in t$, and so $f \in D$.
Finally, if E is a closed subset of the unit circle such
that $\lambda(E)=0$, then \exists a continuous outer function h such
that $h(E)=\{0\} \quad(H o f f m a n[1], p .80$.
Hence, if f is continuous except on $E, f h \varepsilon A$ and $f \in D$.
An alternative proof of the last part of Theorem 5.3.1 was suggested by J. Wells and is given in Heard [1].

REFERENCES

AHERN P.R.
[1] On the generalised F. and M. Riesz Theorem. Pacific J.Maths. 15(1965), 373-376.

BERBERIAN S.K.
[1] Measure and Integration. The Macmillan Co, N.Y. 1965. BISHOP E.
[1] A general Rudin-Carleson Theorem. Proc. Amer. Maths. Soc. 13(1962), 140-143.
[2] The structure of certain measures. Duke Math. J. 25(1958), 283-289.

BEURLING A.
[1] On two problems concerning linear transformations in Hilbert spaces. Acta. Math. 81(1949), 239-255.

EDWARDS R.E.
[1] Functional Analysis: Theory and Applications.
Holt, Rinehart and Winston Inc. N.Y. 1965.
[2] Fourier Series: A Modern Introduction. Holt, Rinehart and Winston Inc. N.Y. 1967.

FIORELLI F.

[1] Analytic Measures. Pacific J. Math. 13(1963), 571-578.

GARNETT J. and GLICKSBERG I.

[1] Algebras with the same multiplicative measures. J. Funct. Analysis 1(1967), 331-341.

GLICKSBERG I.

[1] The abstract F. and M. Riesz Theorem. J. Funct. Analysis 1 (1967), 109-122.

GLEASON A. and WHITNEY H.
[1] The extension of linear functionals defined on H^{∞}. Pacific J. Math. 12(1962), 163-183.

EARD E.
[1] A sequential F. and M. Riesz Theorem. Proc. Amer. Math. Soc. 18(1967), 832-835.

HOFFMAN K.
[1] Banach Spaces of Analytic Functions. Prentice-Hall Inc. Englewood Cliffs N.J. 1962.
[2] Analytic functions and logmodular Banach algebras. Acta. Math. 108(1962), 271-317.

HOFFMAN K. and ROSSI H.
[1] Extensions of positive weak-* continuous functionals.
Duke Math. J. 34 (1967), 453-466.
KAHANE J.
[1] Another theorem on bounded analytic functions. Proc. Amer. Math. Soc. 18(1967), 827-831.

LUMER C

[1] Analytic functions and Dirichlet problem. Bull. Amer. Math. Soc. 70(1964), 98-104.

PHELPS R
[1] Lectures on Choquet's Theorem. Van Nostrand, Princeton N. J. 1966.

SRINIVASAN T.P. and WANG J.
[1] Weak-* Dirich1et algebras. International Symposium
on Function Algebras: New Orleasn 1965. ed. F.T. Birter. Published
by Scott, Foresman. Chicago 1966, 216-249.

