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INTRODUCTION 

This thesis derives from an attempt to apply the techniques of Non

Standard Analysis to problems in the theory of topological vector spaces; 

in particular , to compactness-type problems in these spaces. However, 

because these methods are not always employed the thesis divides into 

two parts : Chapters l to 4 and Chapters 5 and 6. The initial chapters 

are written essentially from the viewpoint of Non-Standard Analysis 

whilst the later work uses only standard techniques. 

As Non-Standard Analysis is still a relatively recent development we 

include an outline of the non-standard theory in Chapter 1. Then in 

Chapter 2 the basic non-standard concepts which we find useful in functional 

analysis are introduced and a number of preliminary theorems are established. 

In Chapter 3 we consider a class of generalizations of weak compactness 

for subsets of locally convex spaces. These generalized concepts are 

useful in allowing us, for example, to overcome the difficulties arising 

from completeness assumptions. Chapter 4 deals with continuous linear 

maps between topological vector spaces. Several theorems of Grothendieck 

[l] and Ringrose [l], [2] are re-proved and generalized. 

The main purpose of Chapter 5 is to show that if X is a smooth Banach 

space with a certain property, its conjugate space X' is isomorphic to 

a rotund space. This result clarifies an observation of Day [l]. 

1. 
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2. 

Finally in Chapter 6 some problems related to almos t reflexivity are 

considered. 

We comment that the main result of Chapter 5 has been published; see 

Tacon [l] . Also the results of Chapter 3 (when restricted to subset s 

of normed linear spaces) have been accepted for publication; see Tacon 

[2] . We abbreviate topological vector space and locally convex topological 

vector space to TVS and LCTVS respectively, and assume that these spaces 

are separated (i.e., Hausdorff). 



CHAPTER 1 

NON-STANDARD ANALYSIS 

1 . 0 Introduction and Background. 

In 1934 Thoralf Skolem [l] published a paper which showed the existence 

of proper extensions of the natural number system which have, in a certain 

sense , "the same properties" as the natural numbers. The purpose of 

Skolem's work was to prove that no axiom system specified in a formal 

language (in particular , the lower predicate calculus) characterizes 

the natural numbers categorically. An interest in the properties of 

these structures which are now known as non- standard models of arithmetic 

came only at a much later time. 

Abraham Robinson extended these ideas to analysis in 1960. This recent 

development led to the establishment of new structures which are also 

proper extensions of the real number system. Robinson was able to 

provide a logical foundation for the nonarchimedean approach to the 

Differential and Integral Calculus which was strongly advocated by 

Leibniz and which enjoyed popularity until the middle of the last century, 

when it was replaced by the s,o method of Weierstrass. Furthermore, 

Robinson showed that his approach was sufficiently general to make it 

applicable to other mathematical objects. The resulting subject was 

3. 
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called by Robinson Non-Standard Analysis. 

1.1 Enlargements. 

In this section we give an informal outline of the framework which is 

required for our subsequent arguments. We refer the reader to Robinson 

[2] for a complete account; Luxemburg [2], Machover and Hirschfeld [l] 

and Fenstad [l] also contain more detailed discussions of the non

standard theory. We need presuppose a certain background from logic. 

The basic concepts in this connection are: structure (or mode~), 

language and the notion of satisfaction (or interpretation). For our 

purposes we need have the ideas of higher-order structures and higher

order languages. However, before we can properly introduce these general 

notions we need another concept due to Robinson. 

The class T of types is defined inductively as follows: (a) 0 is a 

type; (b) if T
1

, T
2

, ... , Tn are types, then (T
1

,T
2

, ... ,Tn) is also 

a type; (c) T is the smallest class satisfying (a) and (b). 

A higher- order structure or simply a structure M is a set {A : TE T} 
T 

of sets indexed in T such that A
0 

is non-empty and such that for 

every T :/- 0 , 

X • • • 

T = (T1 ,T2 , ... ,Tn) , AT 

x A The elements of 
'I 

n 

is a set of subsets of 

M are called the entities of 

and those entities of type 0 are called the individuals. If 



M . Thus R is a set of n-tuples ( a
1 

,a
2

, ... ,an ) 

We say M is a full structure if for each 

the set of all subsets of X • • • X A 
T 

n 

5. 

where a.EA 
l T. 

l 

. 
lS 

The higher-order formal language L is introduced in the following way. 

The atomic symbols of L are: 

(a) The usual connectives, 1 (negation), v (disjunction), 

A (conjunction), ~ (implication), ( equivalence) . 

(b) The variables, an infinite sequence of symbols, usually denoted 

( c) 

(d) 

by x,y,z, .... 

The basic predicates, a sequence <P ( , ••• ,) ' n 
n = 1,2, ... , 

<P subscript n followed by round brackets enclosing n + l 

spaces. 

The type predicates. For every T E T , a symbol T ( ) • 
T 

(e) The quantifiers (V) - universal, and (3) - existe.ntj9 1. 

(f) Brackets for grouping formulae. 

(g) Extralogical constants. This is a set of symbols of which there 

are at least as many as to be put in one-to-one correspondence with the 

entities of a structure. When a basic predicate <P ( , ••• ,) 
n 

lS filled 

with constants we shall read <P (a, a
1 

, .. . , a ) 
n n 

as 

satisfies a" or "a holds for 

The set of well-formed formulae (wff) of L are obtained in the usual 
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manner. A basic predicate or type predicate whose empty spaces have 

been filled with variables and or constants is called an atomic well-

formed formula. If w is a wff then 1(W) is a wff . if wl and 
' ' 

w2 wff then (Wl I\ W2) (Wl W2) w1 ::) w and wl 
-

w2 are V -
' ' ' 2 ' 

-

wff if w 
. 

wff and if w does not already contain are 
' 

is a a 

particular variable X under a quantifier, then (Vx)W and (3x)W 

wff The class of wff 
. the smallest class that satisfies are . is 

these rules. A wff is called a sentence whenever every variable is 

under the scope of a quantifier; otherwise a wff is called a predicate. 

Suppose now that a subset of the set of constants of the language L 

has been put in one-to-one correspondence with the entities of M • A 

sentence of L is defined in M whenever all the constants contained 

in it denote entities of M. A sentence of L defined in M may be 

true or false in M according to the following rules. (a) An atomic 

sentence T (a) defined in M holds in M if and only if the enti t y 
T 

of M denoted by a (under the given correspondence) is of type T. 

(b) An atomic sentence of the form ~ (a,a
1

, ... ,an) defined in M 

holds in M if and only if the corresponding entity a in M contains 

then-tuple (a1 ,a
2

, ... ,an) . This can be the case if and only if the 

type T = (T1 , ... ,Tn) can be assigned to the entity a where the 

entities ( c) If a 

sentence in M is of the form 1(W) , then it holds in M if and only 

if W does not hold in M. The sentence (W
1 

v w
2

) holds in M if 
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and only if at least one of w1 and w2 holds in M . (Wl /\ W2) holds 
' 

in M if and only if both w1 and w2 hold in M . (Wl:) W2) holds 
' 

. M if and only if Cl(Wl) V W
2

) holds in M . w1 = w holds in in ' 2 

M if and only if ( (Wl /\ W2) V Cl( w 
1

) /\ 1(W
2
))) holds in M . 

(d) (Vx)(W(x)) holds in M if and only if W(a) holds in M for 

all entities a of M , and (3x)(W(x)) holds in M if and only if 

W(a) holds in M for at least one entity of M . 

If the entities of a structure M are in one-to-one correspondence with 

a subset of the extralogical constants of L , then M is called an 

L-structure. We denote by K the set of all sentences of L which are 

defined in M and which furthermore hold in M . An L-structure *M 

is called a higher-order non-standard model of an L-structure M 

whenever all the sentences of K hold in *M. A higher-order non

standard model *M may be regarded as an extension of M, for if the 

sentence T (a) belongs to K , it also holds in ;',M . Thus to a 
'T 

there corresponds an entity *a of type T in *M The mapping 

a~ *a of the entities of M into the entities of *M is one-to-one 

and defines an embedding of M into ;',M . In our next chapters we 

frequently identify the entities a of M with the corresponding 

entity *a of *M . 

A non-standard model *M of an L-structure M need not be full even 

if M is full. The entities of *M are internal and the relations of 

the full structure based on *A which are not in *M are said to be 
0 
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external. An entity a of which is ·'·b " for some b belonging 

to M is called a standard entity of *M 

The non-standard models that concern us are called enlargements. Let M 

be an L-structure and let b be a binary relation of M , say of type 

there is a 

The domain of 

y in A 
'[2 

b is the set of those X in for which 

such that <P 
3 

(b ,x ,Y) holds in We say that 

b is concurrent (or finitely satisfiable) if, for every finite set 

{x
1

, ... ,xn} of entities in the domain of b, there is an entity y 

in A such that <I>
3 

(b,xi,y) holds simultaneously in M for 
'[2 

i = 1, ... ,n . 

A higher-order non-standard model *M of an L-structure M is called 

an enlargement of M whenever for every concurrent binary relation b 

of M there exists an entity y in *M such that <I>
3 

(*b,*x,yj _ holds 

in ~·-M , for all x belonging to the domain of b . 

Robinson [2] established the existence of enlargements as a consequence 

of the general compactness principle of model theory (strictly speaking, 

we need assume that L contain enough extralogical constants to allow 

a one-to-one map from *M into its constants). It was also observed by 

Robinson and Luxemburg independently that there exist ultrapowers 

which are enlargements (see Luxemburg [3]). 

We comment that when applying Non-Standard Analysis to mathematical 
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structures; e.g., to a topological vector space E , it is essential to 

consider not only an enlargement *E of E but to enlarge simultaneously 

all other mathematical structures which occur in the argument; e.g., the 

real numbers, R. This can be done by taking for M some structure 

which includes both E and R. We then work in an enlargement *M 

of M which contains simultaneous enlargements *E and *R of E and 

R respectively. 



CHAPTER 2 

PRELIMINARY RESULTS 

2.0 Introduction. 

The main concepts of non-standard analysis which we find useful in 

functional analysis are the related notions of monad and near-standardness. 

In Section 2.1 we introduce and discuss these and related definition s 

and establish a number of characterizations of these properties. 

Next we prove a simple, but nonetheless useful, embedding theorem which 

allows us to obtain a non-standard version of Helly's theorem. This 

theorem is basic to the non-standard portion of our work. 

We utilize Helly's theorem in Section 2.3 to obtain the usual compactness 

theorems from other non-standard results. These theorems, and often 

their proofs, are central to the remainder of this thesis; particularly 

to Chapters 3 and 4. 

In the remainder of the chapter we establish a number of standard 

theorems using the techniques and results we have alreadv developed. 

These methods are intended to be essentially illustrative, although the 

results themselves generally have applications later. 

10. 
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In this chapter, as well as in the next two, we take it for granted that 

our object space is embedded in some full structure M (together with 

the appropriate scalar field whenever necessary). We develop the non

standard theory of the space in an enlargement *M of M. Our 

convention is to denote non-standard entities in *M by underlining, 

as in, for example, x E *X and F C *X . Furthermore, when there is 

no confusion, we omit the asterisk from standard entities in ~':M . 
' 

for 

example, we write lf(x - x)I < s, for f ES' when we should properly 

write .,. I .,. f c .,. ~.. _.. ~ .. x - .':f ,'E ,':s I 

For the time being we allow the scalar field to be either the real 

numbers or complex numbers. We assume for simplicity that our TVSs are 

separated. 

2 .1 The concepts of monad and near-standardness. 

Let T denote a topological space and let x denote any (standard) 

point in T • Suppose that St 
X 

denotes the set of all open neirhbourhoods 

of x . The following two definitions are due to Robinson [2, p. 90 and 

p . 93]. 

2.1.1 DEFINITION. The monad of x , which we denote by µ(x) , is the 

intersection of all standard sets in *T which are open neighbourhoods 

of X; . i.e. , 
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U E r2 } 
X 

2.1.2 DEFINITION . A point x E *T is said to be near-standard if there 

exists a (standard) point x E T such that XE µ(x) ; if T 
. 
lS a 

Hausdorff space we then say x is the standard part of x. 

We denote the standard part of x by 0 x and, if x,y E *C where C 

denotes the complex numbers, we write x ~ y whenever I~ - yJ 

infinitesimal. It is easily seen that if S is a sub-base of 

. 
lS 

neighbourhoods of x, µ(x) = n{*S : SES} . We refer the reader to 

Robinson for a discussion of these concepts. Although Definition 2.1.1 

is generally sufficient for our needs we remark that Luxemburg [3] has 

generalized the concept of monad to arbitrary filters of subsets: · in 

particular, if F is a filter of subsets of T , the intersection monad 

of F is defined by 

1-1 c F) = n { ~·,r F E F} . 

Definition 2.1.2 is the basic non-standard notion for our purposes. It 

is therefore important that we obtain characterizations of near-

standardness for points in the enlargements of 1VSs equipped with the 

common topologies. We do this first for vector spaces forming a duality 

and derive as corollaries the specific cases of interest to us. 

We consider a duality (E,F) between two vector spaces E and F (we 

do not assume the duality to be separated). If S denotes a family of 
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o(F,E)-bounded subsets of F , the (absolute) polars S0 of the sets 

SES generate a linear topology on E , called the S-topology; 
0 

i.e. , 

the topology of uniform convergence on sets belonging to S (see, for 

example, Horvath [l, p . 195]). 

2.1.3 THEOREM. Let (E,F) be a duality and let S be a family of 

a(F,E)-bounded subsets of F . Then the point x E *E is near-standard 

in the S-topology if and only if there is a point x EE such that for 

each S E S 

< x , f > ~ < x, f ) for every f E ~·: S . 

PROOF. We first suppose that x is near-standard in the S-topology. 

This implies there is an x EE such that 

x E x + ~·: (\S0 ) for each S E S and scalar A • 

Therefore, for an arbitrary S ES and scalar A , 

(x - x,f) < J\J whenever f E *S . 

This establishes the necessity of the condition. 

Let us now suppose the condition is true. Then we have that 

X E X + ~·:so for each S E S . 

But the set {x + s0 SES} forms a sub-base of neighbourhoods of x 
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in the S-topology. Therefore by our previous comment x belongs to the 

morai of x in the S-topology. / / 

We now note some consequences. 

2.1.4 COROLLARY. Let X be a normed vector space. Then x E ~·,x . 1.,8 

near-standard if and only if there is an x E X such that II x - xii ~ O • 

PROOF. If II x - xii ~ 0 then f (x - x) ~ 0 whenever II fll is finite. 

The result is implied by Theorem 2.1.3. 

Otherwise, suppose x is the standard part of x . Then f(x - x) ~ 0 

whenever II fll is finite. The result is then a consequence of the· Hahn-

Banach theorem. // 

2.1.5 COROLLARY. Let (E,F) be a duality. A point X E ~·:E 
. 1.,s near-

standard in the o(E,F)-topology if and only if there exists an x EE 

such that 

(x,f) ~ (x,f) for all f E E' . 

PROOF. The weak topology on E is generated by the polars of finite 

sets in F . Theorem 2.1.3 yields the result once it is remembered that 
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2.1.6 COROLLARY. Let (E,F) be a separated duality. A point x E *E 

is near-standard in the T(E ,F)-topology (i.e. 3 Mackey topology) if and 

only if there is an x EE such that3 for each circled3 convex3 

a(F,E)-compact subset S of F, 

< x, f > ~ < x, f) for every f E ~·,s . 

2.1.7 COROLLARY. Let (E,F) be a duality. A point X E ~·,E 
. 1.,,s near-

standard in the S(E,F)-topology (i.e. 3 strong topology) if and only if 

there is an x EE such that for each a(F,E)-bounded subset S of F 

(x,f) ~ (x,f) for every f E ~·,s . 

It is often possible to give more detailed characterizations of near

standardness. The following is a result which is sometimes useful. We 

do not refer to this theorem again however so we only sketch the proof. 

2.1.8 THEOREM. Let {b } be a (Schauder) basis for a Banach space X. 

is near-standard if and only if II xii A point X = 

finite and 

n 
00 

l t.b. 
. 

-;':x 1.,,n 
. 1-l i 
i= 

00 

II l t. b. II rv O for every infinite integer w • 
. +1-l i i=w 

PROOF. As monads are invariant under homeomorphisms we can replace the 

norm II· II by an equivalent norm I • I 

Wilansky [l, p. 207]). 

such that {b} is monotone (see 
n 

00 

We suppose first that x is near-standard; let x = l t.b. be the 
. l i i 
i= 
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00 

standard part of x. Then I ct. - t. )b. I ~ o so that 
i=l l -l l 

00 

I ct. - t. )b. I ~ o 
l -l l 

i=n+l 
for every integer 

00 

n . Now 

00 

I I t .b. I ~ o 
. l l l i=w+ 

each infinite w so that I l t.b. I ~ 0 as required. That !xi is 
. +1-l i i=w 

finite is immediate. 

The condition is also sufficient. As Ix! is finite t. is finite 
-l 

whenever i is finite. We wish to define a point x EX by 

00 

for 

x = l t.b. , letting 
. l l l 

t. - 0 t. 
l l 

for each finite l Let us show that 
i= 

x is well-defined. If E is a (standard) positive number there is a 

00 00 

finite integer k such that I l t.b. I < E since 
. k 1-l l 

I t.b. ~o 
i= + . -l l 

i=w+l 

whenever w is infinite and there is a smallest k satisfying the 

n 
previous inequality. In particular I l t.b. I < E for all finite 

. k 1-l l 

n > k . Thus 

n 

i= t 
n 

I l t.b. I < E for each (finite) n > k. Hence 
. k l l l l= + 

{ l t.b.} is a Cauchy sequence and x is well-defined. Next we show 
i=l l l 

n 
that x is the standard part of x . As I l ( t . - t . ) b . I '"'"' 0 for 

i=l l -l l 

each finite n there is an infinite integer w such that 

w 
I l (t. - t. )b. I~ 0 (see Theorem 3.3.20, Robinson [2,p. 65]). Now 
i=l l -l l 
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00 

Ix - xi = I l ( t. t. )b. I 
i=l 

l -l l 

w 00 00 

< I l ( t. - t. )b . I + I I t.b.l + I l t.b . l - ' i=l l -l l . l l l . - l l 
i=w+ i=w+l 

and the result then follows from the second assumption and Corollary 

2.1.4. // 

The concept of near-standardness may be generalized in the following 

way . 

2 .1 . 9 DEFINITION. Let E be a TVS. A point X E ~·:E . 
is pre -near-

standard if , for each 0-neighbourhood V in E, there is an x EE 

such that x - x E ~·:v . 

An analogous definition has been introduced by Luxemburg [3, p. 76] for 

points in the enlargements of uniformities; see also Machover and 

Hirschfeld [l , p . 54]. 

Definition 2.1.9 allows us to give the following characterization of 

completeness; see Luxemburg [3, p . 78] and Machover and Hirschfeld 

[l, p . 55]. 

2 . 1.10 THEOREM. Let A be a subset of a TVS E . Then A is complete 

if and only if each pre -near-s tandard point in *A is near-standard. 
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PROOF. Suppose that A is complete and that x is pre-near-standard. 

Consider a 0-neighbourhood V in E . Then there exists a circled 

0-neighbourhood U such that U +UC V . If x E ~ + *U then 

xU Ex+ *U . This implies that the sentence 

3x ( (x E A) /\ ( XU E X + U)) 

holds in ~':M . It therefore holds in M and so there is an ~ E A 

such that Hence XE + ~':u so that X E ~ + ~·:v . 

Thus for each 0-neighbourhood V in E there is a point ~EA such 

that x E xv + ~·:v . If the neighbourhoods {v} are ordered by inclusion 

{~} becomes a Cauchy net in A . As A is .complete, {xv} has a 

limit x . It is easily checked that x is the standard part of x. 

We now prove the converse. Suppose that A is not complete. Then 

there exists a Cauchy net {xA : A EA} in A which is not convergent. 

As A is a directed set there is a A E *A such that A>*\ for 

each A EA . But then xA is pre-near-standard and is not near

standard. / / 

There are two more definitions which we find useful. 

2 . 1 . 11 DEFINITION. Let E be a TVS. A point x E *E is bounded if 

there is a bounded subset B of E such that x E *B. 

If X is a normed vector space a point x E ~':x is bounded if and only 
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if llxll is finite; i.e., x is finite in the sense of Robinson [2, 

p. 118]. 

Definition 2.1.12 is due to Luxemburg [3, p. 67]. 

2.1.12 DEFINITION. Let T be a topological space. A point x E ~·:T . 
lS 

compact if there exists a compact set C 
. in T such that x E *C 

2.2 Helly's theorem. 

An important result in the theory of TVSs is that if E is a LCTVS then 

the strong bidual E" is the union of the o.(E'# ,.E'. )-closures in. E'# 

of all bounded subsets of E (see Schaefer [l, p. 143]). We find : it more 

convenient to work from a non-standard variant of Helly's theorem. 

We first establish our general version of Helly's theorem, which is a 

generalization of that given in Wilansky [l, p. 103] for normed spaces. 

2.2.l THEOREM. Let (E,F) be a duality and let ¢Er#. Suppose s 

is an arbitrary finite dimensional subspace of F and let s > O . Then 

if B is a circled, convex, o(E,F)-bounded subset of E and ¢ . 
-is 

bounded on B0 by unity, there is an x E (1 + s)B such that 

¢(f) - (x,f) for every f ES . 



PROOF . As ¢ is linear we have 

I ¢(f)I < sup{! f(x)I x EB} for each f E B0 • 

As B is bounded B0 is absorbing and consequently 

I ¢(f)I < suo{I f(x)I x E B} for every f E F . 

In particular if 

arbitrary scalars 

is a basis for S and 

20. 

are 

x E B} . 

By Helly's condition (Kelley and Namioka [l, p. 151]) this last inequality 

guarantees the existence of the x of the theorem. // 

Before proving our non-standard version of Theorem 2.2.1 we need note an 

embedding theorem; this result should be compared with the star-finiteness 

principle of Luxemburg [3, p , 27] . 

2.2.2 THEOREM . Let E be a vector space. Then there exists a ''finite 

dimensional" subspace E of ~·:E such that E c E ; i.e . ., such that 

U:x : x E E} C E • 

PROOF . If E is finite dimensional there is no difficulty; we mav 

clearly take *E for E . 
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If E is infinite dimensional we construct a concurrent relation R 

the following way: we define the relation R(x , S) to hold between x 

. 
in 

and S in M if S is a finite dimensional subsDace of E and x ES . 

It follows then that there exists a "finite dimensional" subsDace E of 

~·:E such that 

{ .,. "X x E E} C E 

We remark that if E is "finite-dimensional" there exists an (infinite) 

integer w such that the dimension of E . 
lS W, II 

2 . 2 . 3 THEOREM. Let <E,F) be a duality, let ¢Er# and let o be a 

positive infinitesimal. Then if B is a circled, convex, o(E,F)-bounded 

subset of E and ¢ is bounded by unity on B0 , there is an 

x E (1 + o)*B such that 

¢(f) = (x,f) for every f E F . 

PROOF. Let us write Helly's theorem in our hirher order languare. We 

will then reinterpret its statement in the enlargement *M for a 

suitable space S and positive real s . 

We have: 

VS ( S is a finite dimensional subsoace of F ) A Vs (s > 0) 

3x ((x E (1 + s)B) A (Vf ((f E S):::) (¢(f) = (x,f) )))) 
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In ~'cM we take for s , i , and for S , a subspace F of }':r which 

is "finite dimensional" and which contains F in the sense of Theorem 

2 . 2 . 2. Then interpreting the statement we have that there exists an 

x E (l + 6)*B such that 

cp(f) - (~, f) whenever f E F 

But we have chosen F so that F c F. Therefore 

cp(f) = (~,f) for all f E F. 

This establishes the result. // 

Let £1 denote the space of absolutely summable sequences and let m 

denote its dual space of bounded sequences. There is no simple 

representation of the dual of m. We do have however as an immediate 

consequence of Theorem 2.2.3 the following result of Robinson [l, 

Theorem 4 .1]. 

2 . 2 . 4 COROLLARY . Let x" belong to the dua,l of m. Then there exists 

a point E .,. n 
X ":tv 

l 
such that II xii ~ II x "II and such that 

f ( x) = x" ( f) for every f E m . 

2 . 3 Compactness arguments. 

It is frequent that results in the theory of TVSs depend on one or more 
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of three general methods. They depend primarily on convexity arguments, 

on compactness arguments and on category results. The principal compact

ness results which find use are Tychonoff's theorem, the Banach-Alaoglu 

V 

theorem and to a lesser extent Smulian's compactness criterion. The 

purpose of this section is to show how these and similar compactness 

results may be proved, and often efficiently replaced, by non-standard 

methods. 

The next few results are basic to this section and to the next two 

chapters. 

Theorem 2.3.1 is well-known and is due to Robinson [2, p. 93]. 

2.3.1 THEOREM. A topological space T ~s compact if and only if every 

point of *T ~s near-standard. 

PROOF. Suppose there is a point x in *T which is not near-standard. 

Then for each x ET there is an open neighbourhood U of 
X 

that x 1 *U 
X 

The family {U : x ET} 
X 

is a covering of T 

X such 

so that, 

if T is compact, it contains a finite subcover {u
1

, ... ,Un} . Thus 

As this equation can be formulated in our higher order language we may 

interpret its statement in M . We obtain 

*U u *U u ... u *U = *T . 1 2 n 



But then x E ·'-T whilst it does not belong to any of the sets 

*U . , i = 1 , ... , n . This is a contradiction. 
l 
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The condition is also sufficient . Suppose that T is not compact. 

Then there exists a covering ~ of open sets of T such that ~ 

contains no finite subcover . We define a concurrent relation R(U,x) 

to hold between U and x if U E ~, x ET and x ~ U . Thus there 

exists a point x E ·'-T such th at x ~ •'•U for every U E ~ If X lS 

any point in T , then x EV for some VE~. But x ~ *V so that 

x ~ µ(x) . I I 

For subsets of TVSs we may obtain the following result. 

2 . 3 . 2 THEOREM. Let E be a TVS and let A be a subset of E. Then 

A i,s compact if and only if each point x E ·'-A belongs to the monad 

of a (standard) point in A. 

A more useful result is the following. 

2 . 3 . 3 THEOREM. Let E be a TVS and let A be a subset of E. Then 

A i,s relatively compact if and only if each point x E ·'-A 

standard . 

. i,s near-

PROOF. As E is a TVS, E is regular (see Wilansky [l, p. 175]). 



The result is therefore implied by Theorem 5.5.3 of Machover and 

Hirs2hfeld [l , p. 31] . // 

25. 

We recall that a subset A of a (separated) TVS E is precompact (or 

totally bounded) if , for each 0-neighbourhood V in E, there is a 

n 
finite subset {x

1
, .. . , xn} of E such that A C U ( x. + V) . 

i=l i 

The f o llowing result has been established more generally by Luxemburg 

[3 , p . 77] for uniformities ; see also Machover and Hirschfeld [l, p. 55]. 

2 . 3 . 4 THEOREM . Let E be a TVS and let A be a subset of E. Then 

A ~s precompaot if and only if each point x E *A ~s pre-near-standard. 

PROOF . We prove the necessity of the condition first. Let x E *A and 

suppose that V is a 0-neighbourhood in E. As A is precompact there 

exists a finite set {x
1 

, ... ,xn} C E such that 

n 
AC U (x. + V) • 

i=l i 

Reinterpreting this statement in *M yields the result that 

for some i . 

X E X. + ;':V 
i 

Let us now suppose that A is not precompact. Then there exists a 

0-neighbourhood V in E such that there is no finite subset 

n 
in E such that A is contained in U (x. + V) 

i=l i 
We 
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denote the family {x + V : x EE} by f and define a binary relation 

R(U,x ) to hold in M if U E f , x EA and if x ~ U . By assumption 

R is concurrent and therefore there exists an x E *A such that 

d: ·'·u X 't " for each U E f . This implies that x is not pre-near-standard. 

Our next characterization is due to Luxemburg [3, Theorem 3.7.1]. If T 

is a non- compact space the compact Frechet filter is the filter generated 

by the complements of the compact subsets of T; we denote this filter 

by Fe. • 

2 . 3 . 5 THEOREM . A topological space T ~s locally compact if and only 

if every near - standard point ~n ;',T ~s compact. 

PROOF . Let us suppose that T is locally compact. If x is near-

standard there exists an x ET such that x E µ(x) If V is a 

compact neighbourhood of x then x E *V so that x is compact. 

Otherwise suppose each near-standard point is compact. We may assume 

that T is not compa::t. Then, for each standard point x , 

µ(x) n µ( Fe.)= 0 . Hence for every x ET there exists a neighbourhood 

V and a set FE Fe. such that V n F = 0 . This implies that X - F 
X X 

is a compact neighbourhood of x. II 

We now give a short non-standard proof of Alexander's sub-base theorem 

(see Kelley [l , p . 139]). 

II 
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2.3.6 THEOREM. Suppose that S ~s a sub-base for a topological space 

T and suppose that every cover of T by members of S has a finite 

subcover. Then T is compact . 

PROOF . Suppose that T is not compact. Theorem 2.3.l implies there 

exists a point xE -;':T which is not near-standard. Then for 

. 
XE T there s E S such that XE s but such that is an 

X X 

But U{s . X E T} covers T and so' by assumption , there is . 
X 

subcover {s , ... , S } of X . This implies that x E 
xl xn 

i . This is a contradiction and so T must be compact. 

;': s 
X. 

i 

II 

every 

x~ ";': s . 
X 

a finite 

for some 

A non-standard proof of Tychonoff ' s theorem is to be found in Robinson 

[2, p . 95] . 

2 . 3 .7 THEOREM . The topological product of a family of compact topological 

spaces is compact. 

PROOF . Let T = X{T 
Cl 

Cl EA} where each T is a compact topological 
Cl 

space and where T has the product topology. We suppose that x E ~·~T . 

By Theorem 2.3 . l it is sufficient to show that x is near-standard. 

Now x(a) E *Ta for each a EA and so, since each Ta is compact, 

x(a) is near-standard for each Cl EA. Hence , by using the axiom of 

choice, we determine a point x = (x(a)) in T such that x(a) belongs 

to the monad of x(a) for all a. It is not difficult to check that 
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this implies that x belongs to the monad of x (Robinson [2, Theorem 

4.1.17]). // 

The Banach-Alaoglu theorem is a fundamental result in the theory of TVSs. 

Here we prove a more general result which does not seem to be stated 

explicitly in the literature. We will use Theorem 2.3.8 in Chapter 5. 

We suppose that E is a TVS and we denote by Ea the space of 

homogeneous functionals on E which are continuous at zero. Hence 

f E Ea if f is a functional on E , f(ax) = af(x) for all scalars 

a, and if f is bounded on a 0-neighbourhood in E (see Wilansky 

[l, p. 186]). If S is a subset of E we extend the notion of polar 

by defining the general polar S0 to be the subset 
a 

{ f E Ea : j f ( x) j < 1 for all x E S} . 

2.3.8 THEOREM . Let E be a TVS. Then for any 0-neighbourhood V ~n 

E, V0 

a 
a 

o(E , E)-compact . 

PROOF. Suppose that By Theorem 2.3.2 it is sufficient to 

show that f belongs to the monad of some 

equipped with the a 
o(E ,E)-topology. 

We define a functional f on E by 

f E V0 , when Ea 
a 

f(x) - 0 [f(x)] for each x EE. 

lS 
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Then f is well-defined. Furthermore f is homogeneous and is 

continuous at zero; indeed f E V0 • A slight extension to Corollary a 

2.1.5 implies that f is the standard part of f in the 

topology. II 

a 
o(E ,E)-

2.3.9 COROLLARY. Let E be a TVS. Then for any 0-neighbourhood V 

~n E, v0 ~s a(E' ,E)-compa.et. 

PROOF. It is easily checked that V0 lS 
a 

o(E ,E)-closed as a subset 

Consequently V0 is o(Ea,E)-compact and is therefore 

o(E' ,E)-compact. II 

V 

We now establish Smulian's criterion for weak compactness. Kelley and 

Namioka [l, p. 142] provide a standard proof of this result. 

2.3.10 THEOREM. Let (E,F) be a duality and let B be a a(E,F)

closed3 circled convex subset of E. Then B ~s a(E,F)-compa.et if 

and only if B0 is absorbing and each linear functional on F which 

is bounded on B0 is represented by some member of E . 

PROOF. We show the necessity of the condition first. If B is 

o(E,F)-compact then B is o(E,F)-bounded so that B0 is absorbing. 

Now suppose that ¢ is a linear functional on F which is bounded on 

B0 
• Without loss of generality we may assume that j¢(B0 )j < l . 
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Then, by Theorem 2.2.3, there exists an x E *B such that 

¢(f) ~ (x,f) for every f E F. 

As E ·'·B X " , X is near-standard in the o(E,F)-topology. By Theorem 

2.1.3 there exists an x EB such that 

(x,f) ~ (x,f) for every f E F. 

It follows that 

¢(f) = (x,f) for every f E F , 

thus establishing the necessity. 

On the other hand the condition is sufficient, for suppose that x E *B. 

Then we may define a linear functional ¢ on F by 

¢(f) = 0 (~,f) for each f E F . 

As B0 is absorbing B is o(E,F)-bounded so that ¢ is well-defined. 

Furthermore ¢ is bounded by unity on B0 • Therefore, by assumption, 

there is an x EE such that 

¢(f) = (x,f) for every f E F . 

But then 

( x ,f) ~ (x ,f) whenever f E F , 

so that x is near-standard in the o(E,F)-topology. Hence B is 
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o(E , F)-compact by Theorem 2.3.3. // 

2.4 Non-standard proofs of some standard theorems. 

The theorems we prove here are chosen generally because they have some 

relation to the following chapters. We refer the reader in particular 

to the relevant parts of Robinson [2] and Machover and Hirschfeld [l] 

for many more applications. 

We begin by outlining a proof of the Hahn-Banach theorem. A non-standard 

proof of this result appeared in Luxemburg [l]; see also Luxemburg [4] 

for a more detailed and interesting discussion of this and related results. 

2 . 4 . 1 THEOREM. Let E be a real vector space~ let p be a sub-linear 

functional on E , and let M be a linear subspace of E • If f i.s 

a linear functional on M such that f(x) s p(x) 

exists a lineari functional f
1 

on E such that 

x EM and f
1

(x) < p(x) for all x EE. 

for all x EM , there 

f
1

(x) = f(x) for all 

PROOF . The first step in Banach's proof shows that if N is a linear 

subspace in E containing M with dim N/M < 00 , f can be extended 

to a linear functional g on N satisfying the condition g(x) S p(x) 

for all x EN . We start with this assumption. Suppose then that E 

is a "finite dimensional" subspace containing E as in Theorem 2.2 . 2 . 
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Then there exists a linear functional £ defined on E which satisfies 

the conditions g(x) = f(~) for every x E *M and g(~) < p(x) for 

every x EE. We define f
1 

by 

f
1

(x) = 0 [~(x)] for every x EE . 

It is easily checked that f
1 

is a suitable functional. II 

2.4.2 THEOREM. Let A be a subset of a TVS E. Then A is compact 

if and only if A ~s precorrrpact and complete (see Luxemburg [3, p. 79]). 

PROOF. The result is an immediate consequence of Theorem 2.1.10, 

Theorem 2.3.3 and Theorem 2.3.4. II 

We frequently use the technique involved in the next proof. 

2.4.3 THEOREM. The (weakly) bounded sets in a LCTVS E are weakly 

precompact. 

PROOF. Let B be a bounded set in E and let x E ~·:B ( so that x is 

a bounded point in E ). We then define x" EE" by 

x"(f) = 0 [f(x)] for each f EE' . 

That x" EE" follows as x" is bounded on the 0-neighbourhood B0 in 

E ' . Let S be a finite set in E' . The statement 
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3 X (Vf (f E S) :> ( lx"(f) - f(x) I < 1)) 

holds in ~';M (for x satisfies the condition). Thus it also holds in 

M and so there is an X EE s such that 

I x" ( f ) - f ( x S ) I < 1 for a 11 f E S . 

But then X E X + ~';so 
- s so that x is pre-near-standard. 

follows by Theorem 2.3.4. // 

The result 

Next we prove the converse of the Banach-Alaoglu theorem in a Banach 

space setting. The result is due to Dixrnier [l, p. 1069]; we comment 

that Dixrnier uses "compact" in the sense of Bourbaki for separated 

spaces only . 

2 . 4 . 4 THEOREM. Let X be a Banach space. Suppose that V is a closed~ 

total subspace of X' and that the unit ball of X is relatively 

o(X ,V)-compact. Then X is isomorphic to V' . 

PROOF. We denote the unit ball by B . Let TI be the natural map 

from X into V' . Suppose that ¢ E V' and that II ¢11 < 1 . By the 

Hahn-Banach theorem we may suppose that ¢EX" . Therefore, by 

Theorem 2.2.3, there exists an x E *B satisfying 

¢ ( f) = f ( x) for all f E X 1 • 

As B is relatively o(X,V)-compact Theorems 2 .3. 1 and 2.1.3 combine 
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to imply the existence of an x EX such that 

f(x) ~ f(x) for all f EV . 

Therefore , 

¢(f) = f(x) for all f EV 

and consequently TI is onto. As V is total TI is one-to-one. That 

TI is an isomorphism then follows from the interior mapping principle 

(Dunford and Schwartz [l, p. 57]) as TI is continuous. This establishes 

the result. // 



CHAPTER 3 

GENERALIZATIONS OF WEAK COMPACTNESS 

3.0 Introduction. 

The notion of weak compactness plays a central role in the theory of 

LCTVSs. However in the statement of many theorems, completeness of the 

space, or at least quasi-completeness of the space in the Mackey 

topology, is an important assumption. 

In this chapter we extend the concept of weak compactness in a general 

manner and obtain a number of interesting particular cases. If we 

replace weak compactness by one of these generalizations we can drop 

the completeness assumption from the statement of many theorems. Using 

non-standard techniques we are able to prove a generalized version of 

Eberlein's classical theorem. We then consider generalizations of semi

reflexivity and reflexivity and characterize these properties in terms 

of our new notions as well as in terms of known concepts. 

3.1 Notation and Definitions. 

Suppose E is a (separated) LCTVS with topological dual E' and that 

S is a family of o(E' ,E)-bounded subsets of E' which cover E' Let 

35. 
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ES denote E equipped with the S-topology and let S
1 

= {s} be a 

family of subsets of (Es)' . 

Corresponding to a map ¢ from E into the set of finite subsets of 

SE s
1 

we define a a(E,(Es)' )-neighbourhood of each point x EE by 

U (¢,S) = {y · jf(y - x)j < 1 for all f E ¢(x)}. 
X 

The system of a(E,(Es)' )-neighbourhoods {U (¢,S) : x EE} 
X 

covering of E , which we call the (¢,S)-covering of E . 

Using this notation we introduce the following definition. 

3.1.1 DEFINITION. Let A be a subset of a LCTVS E and 

s1 be two families of sets as described. Then we say A 

forms a 

let s and 

. 
lS 

s1 - a(E,(Es)')-compact if, for each S E s1 and each map ¢ previously 

described, the (¢,S)-covering of E contains a finite subcover of 

i.e., there exists a finite subset {x
1

, .. . ,xn} of E such that 

AC U (¢,S) 
xl 

u ... u U (¢,S) . 
X 

n 

A 
' 

We will be mostly interested in s
1 

- o(E,(Es)')-compactness when S
1 

generates a topology on E , specificct,lly the S-topology. If the 

S-topology is consistent with duality and the S
1

-topology is the Mackey 

topology T(E,E') , we introduce another definition. 
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3.1.2 DEFINITION. Suppose S
1 

is the family K of all circled, 

convex, a(E' ,E)-compact subsets of E' . If a subset A of E is 

K - o(E,E')-compact we say that A is nearly o(E,E')-compact (or 

nearly weakly compact). 

Although our proofs need only be altered slightly in the complex case 

we restrict our attention to real spaces. As in Chapter 2 we find it 

convenient to use the term "polar" in the sense of "absolute polar". 

We emphasise that, if E is a LCTVS, ES denotes the bidual E" 

equipped with the S-topology. Most of the standard texts on TVSs 

(for example, Schaefer [l], Horvath [l] or Kothe [l]) are suitable 

references for this chapter. 

3.2 S - o(E,(Es)')-compactness. 

Let E be a LCTVS. It is an immediate consequence of Corollary 2.1.5 

that a point x E ~·:E is weak near-standard (i.e. , near-standard in the 

weak topology) if and only if there is an x EE such that 

f(x) ~ f(x) for all f EE' . We generalize this property of points 

of *E in the following way. 

3.2.1 DEFINITION. Let E be a LCTVS and let s and s1 be defined 

as in 3.1. We say that the point XE ~'~E lS s1 a ( E , ( ES ) ' ) - near-

standard if, for each S E S 
l ' 

there is an xE E such that 



J f ( ~ - x) J < l for a 11 f E S . 

This allows us to generalize Theorem 2.3.2. 

3.2.2 THEOREM. Let E be a LCTVS. A subset A of E 
. 
i,s 

s
1 

- a(E, (ES)' )-compact if and only if each point x E ~':A i-s 

S
1 

- a(E ,(ES)' )-near-standard. 
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PROOF. Suppose there exists an x E *E which is not S
1 

- o(E,(Es)')

near-standard. Then there is an SE S
1 

so that given x EE there is 

f ES such that jf(x - x)J > 1. That is to say, there is a map ¢ 

such that X tj. ~':LJ ( ,J., S ) 
- X 't', for each x E E Now A lS 

compact, and so there is a finite subset {x
1

, ... ,xn} of E such that 

AC U (¢,S) 
xl 

u ... u U (¢,S) . 
X 

n 

This equation can be formulated as a sentence of K, which interpreted 

in ~·:M , yields 

~':A C ~·:u c rh s) 
X '+'' 

l 
u • . • u ~·:u c ¢, s) . 

X 
n 

We know that x does not belong to any of the sets on the right hand 

side and consequently it does not belong to *A . 

Now on the other hand suppose A is not S
1 

- o(E,(Es)')-compact. Then 

there exists an SE S
1 

together with a map ¢ such that the (¢,S)

covering ~ of E has no finite subcover of A . We define a binary 



39. 

relation R(U,y) to hold in M if and only if U E f and y EA but 

y ~ U. By assumption R(U,y) is concurrent, so that by definition of 

*M, there is a point X E ~·-A such that for all XE E • 

This then means that x is not S
1 

- o(E,(Es)')-near-standard (for 

remember that { ·'·f ·'·f }) = .... 4''9 1, ... , n • II 

3 . 2 . 3 REMARK. It is interesting to note that an analysis of the 

previous proof reveals that when defining S
1 

- o(E,(E
5

) 1 )-compact sets 

it suffices to consider only those (¢,S)-coverings of E for which ¢ 

maps E into singletons of S . 

As a consequence of Theorem 3 . 2.2 we note the following. 

3 . 2.4 COROLLARY. Suppose S and S
1 

both equal the family of finit e 

subsets F of E. Then a subset A of E ~s F - o(E,E')-compact i f 

and only if A is weakly precompact. 

PROOF. Suppose A is F - o(E,E')-compact. Then given an x E *A 

and SE F there exists an x EE such that 

I f ( x - x ) I < 1 for all f E S . 

I f ( ~ - x ) I < 1 for al 1 f E ~·. S . 
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This means that x is pre-near-standard in the weak topology and hence, 

by Theorem 2.3.4, that A is weakly precompact. The converse is 

similarly established. // 

We find it convenient to denote the family of equicontinuous subsets of 

-(Es)' by S. For the remainder of this section we intend to examine 

-
properties of S - O(E,(Es)' )-compactness. 

Before continuing it is important to know to what extent this notion is 

-independent of our choice of S . Theorem 3.2.5 clarifies this situation. 

We let S1 be another family of subsets which cover (Es)' such that the 

polars of its sets form a basis of 0-neighbourhoods in ES . (This 

requires that S
1 

satisfies the two conditions: 

(Srr If A lS a real number and s E sl there is an sl E sl such 

that AS CS .) 
1 

3.2.5 THEOREM. Let A be a subset of a LCTVS E . Then A ~s 

S1 - o(E,(Es)' )-compact if and only if A is S - o(E,(Es)' )-compact. 

PROOF. By Theorem 3.2.2 it suffices to show that a point x E *A . 
lS 

-S1 - O(E,(Es)' )-near-standard if and only if x is S - o(E,(Es)')-
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near-standard. We suppose that 
. 

s1 - o(E ,(ES)' )-near-standard. X is -

For any SES there exists an XS such that 
1 

I f(x - xS) I < 1 for all f E S . -

It follows that {xs} is a Cauchy net in ES if the sets {s} are 

"' "' 
ordered by containment. Therefore given a set S E S there exists an 

s
0 

E S
1 

such that whenever Sl,S2 :) s 
0 

jf(xs - xs ) I < 1/2 for all fE s -

1 2 

Consider an arbitrary functional g ES. As S
1 

covers (Es)' and 

satisfies condition (S
11

) there exists an s
3 

:J s
0 

such that 

Consequently , 

jg(x - xS )j < 1/2 whenever s 4 :J s 3 
4 

But s
0 

was chosen independently of g and so it follows that x is 

"' 
S - o(E,(Es)')-near-standard. The converse is immediate since 

"' s
1 

c s . 11 

A 

We denote the natural embeddings of x and A in the bidual by x and 

A 

A; and in this and the next section we use Has an abbreviation for 
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3 .2.6 LEMMA. Suppose x ~s a bounded point in *H. Then x ~s 

S - a(E,(Es)' )-near-standard if and only if ~ is weak near-standard 

PROOF. We prove the necessity of the condition first. As in Theorem 

2.4.3 we define x" EH" by 

x"(f) - 0 [f(x)] for all f E H' . (1) 

A 

Let x" ' E ( H ~ ) ' • s The restriction of x" to H may be assumed to be 

an element of H' which we denote by g. If x is S - a(E,(Es)')

near-standard, given an equicontinuous subset S of H' there is a point 

xS EE such that 

Jf(x - xs) J < 1 for all f ES . 

Therefore (1) implies that 
A 

x" - xS E S0 
• Consequently, if the sets 

A 

{S} are ordered by containment, {xS} is a net convergent to x" in 

"' 
the S-topology. In particular , 

so that x" '(x") = x"(g) . Therefore, 

x'"(x") = x"(g) ~ g(x) 

A 

and 

A 

=x'"(x) 

A 

x' " ( X ) -+- x" I ( X" ) s 

and X is weak near-standard as a consequence of Corollary 2.1.5. 

A 

Now let us suppose that x is weak near-standard. Then there exists an 

x" E H" such that 



A 

x'"(x") ~x"'(x) for all x"' E ( H~) ' • s 
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It follows (see Robinson [2, p. 91]) that x" belongs to the weak 

A 

closure of H in " HS , and thus to the closure of 

[l, p. 130]). It is then an easy consequence that 

"' 
S - o(E,(Es)')-near-standard. II 

A 

H 
. in 

. 
X is 

H~ s ( Schaefer 

Of course if the S-topology on E is compatible with the duality 

(E,E') , Lemma 3.2.6 simplifies to the extent that H and " H-
S 

may be 

replaced by E and E~ s 
res pe cti vely . Indeed a similar substitution 

can be made if S is a family of strongly bounded sets (so that the 

S-topology on E" is a linear topology) as we now show. 

3.2.7 LEMMA. Suppose S &Sa family of strongly bounded subsets of 

E' and that x is a bounded point &n Then x &S 

"' 
S - o(E,(ES)' )-near-standard if and only if X is weak near-standa_rd &n 

·'·E" , .. s . 

PROOF. The proof is similar to that of Lemma 3.2.6. We suppose that 

"' 
x is S - o(E,(Es)')-near-standard and define x" EH" as in the 

previous lemma; we let y" EE" be the restriction of x" to H' . 

If y'" E (E")' s the restriction g Of y'' I 
A 

to E may be assumed to be 

an element of H' . Then we find, extending the method of Lemma 3.2.6 

slightly, that 

y"'(y") - x"(g) ~ g(x) 
A 

= y "' ( x) 
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Corollary 2.1.5 implies that x is weak near-standard in 

We now prove the converse. Suppose that there exists a y" E E" such 

that 

A 

y"' (y") ~ y"' (x) for all y"' E (Es) I • 

o(E",(ES) ')-closure of 
A 

Then y" belongs to the E in E" and thus to 

A 

T(E" ,(Es) I )-closure 
. s the of E in E" . We may assume that satisfies 

the general conditions SI and S II ( see Schaefer [l, p. 81]). Then 

"' "' 
if S E S there is a set S E s such that each f E s is bounded by 

unity on the polar S 0 of S in E. The polar S0 of S in E" is 

a 0-neighbourhood in E" s and so, by the Banach-Alaoglu theorem, soo is 

0 ( (Es) 1 
, E 11 

)- compact in (Es) 1 Therefore as y" belongs to the 

T(E" ,(Es)')- closure of 
A 

E there is an XE E such that 

A 

jy"' (y") - y"' (x) I < l for all y"' E s 00 , 

which implies 

IY"' (~) - y'" (~) I < l for all y'" E S00 
• 

"' 
It is an easy consequence of the Hahn-Banach theorem that each f ES 

can be extended to a functional y'" E S00 (if p is the gauge of s 0 , 

then jf(x)j S p(x) for all x EE). Thus 

If ( x - x) I < l for all f E S 
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which implies x is S - o(E,(Es)')-near-standard. II 

As consequences of the previous two lemmas we obtain the following 

results. Since the proofs are very similar we only give that of the 

first theorem. 

3 . 2.8 THEOREM. Let A be a subset of a LCTVS E • Then A 
. 

1.,S 

- A 

S - o(E,(Es)')-compact if and only if A is relatively weakly compact 

as a subset of H~ • 

- -
PROOF. Suppose that A is S - o(E,(Es)')-compact. As S covers H' 

it follows that A lS o(H,H' )-bounded and hence bounded ( Schaefer [l, 

-
p. 132]). By Theorem 3.2.2 each point XE ;',A is s - o(E,(Es)')-

A 

near-standard and so, by Lemma 3.2.6, each X is weak near-standard ln -
Hl. Theorem 2.3.3 then establishes the necessity of the condition. 

A 

Conversely suppose that A has the stated property. Theorem 2.3.3 

A A 

implies that each point xE ;',A lS weak near-standard in H~ It s -follows in turn that X lS s - o(E,(Es)')-near-standard and thus A -
is S - o(E,(Es)')-compact by Theorem 3.2.2. II 

3.2.9 THEOREM. Suppose E 1.,S a LCTVS and that s 1.,S a family of 

-strongly bounded subsets of E' Then A 1.,S s - o( E' (Es) I )-compact 
A 

if and only if A is relatively weakly compact i,n E II 

s 
. 
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3 . 2 . 10 LEMMA. Let A be a bounded subset of ES . A point x E *A 

- -is S - a(E,(Es)')-near-standard if and only if for every S E S there 

exists an x belonging to the convex hull of A~ such that 

jf(x - x)j < l for all f ES. 

PROOF . It is immediate that the condition is sufficient. 

-
Therefore we suppose that x is S o(E,(Es)')-near-standard. Then by 

Lemma 3 . 2 . 6 there exists an x" E F" such that 

A 

x' " (x) ~ x"' (x") for all ( H~'-) I x", E --
S 

A 

This implies that x" belongs to the weak closure of A in 
II 

H
S 

and 

thus to the closure of its convex hull (Schaefer [l, p. 130]). Hence 

-given SES there is a point x belonging to the convex hull of A 

such that 

jf(x) - x"(f)j < l for all f ES . 

Therefore 

jf(x - x) I < l for all f ES . // 

3 . 2 . 11 THEOREM. Let A be a subset of a LCTVS E . If A ~s 

S - a(E,(Es)')-compact and the closed convex hull of A ~n ES ~s 

complete~ then A is relatively a(E,(E~')-compact. 
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-
PROOF. By Lemma 3.2.10 given an x E *A and an SES there is a point 

xS belonging to the convex hull of A such that 

lf(xs - x)I < l for all f ES . 

Thus {xS} is a Cauchy net in the convex hull of A (where the sets 

{s} are ordered by containment). By the completeness assumption {xs} 

has a limit x which is the standard part of x in the o(E,(Es)')

topology. By Theorem 2.3.3 A is relatively o(E,(Es)')-compact. // 

3.2.12 REMARK. It is a simple consequence of Lemma 3.2.10 and the proof 

-
of Theorem 3.2.2 that, when defining S - o(E,(Es)')-compactness, we may 

require that the finite subset {x
1

, ... ,xn} in Definition 3.1.1, be 

chosen in the convex hull of A . 

3.3 Eberlein's theorem. 

The main purpose of this section is to give a non-standard proof of 

Theorem 3.3.2. From this result we derive Eberlein's theorem. As in 

Section 3.2 S denotes a family of o(E' ,E)-bounded subsets of E' 

unless the contrary is stated; we use H as before to denote ES . 

3.3.l LEMMA . Let E be a LCTVS and suppose that x ~s a bounded 

point ~n *E s 
-

Then x ~s S - o(E,(Es)')-near-standard if and only 

-if~ for each SES , there is a finite subset CS of E such that for 
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each f Es , there ~s an x E CS satisfying f(x - x) < l. 

PROOF . The necessity of the condition is immediate. 

It therefore only remains to prove the sufficiency of the condition. As 

x is bounded we define, as in Lemma 3.2.6, x" EH" by 

x"(f) - 0 [f(x)] for all f EH' . 

We let C equal U{cs . S ES} and let D equal the closed convex hull . 

"' H~ of C in . We claim that x" E D and establish this claim by s ~--
contradiction. If x" ft;. D the separation theorem ( Schaefer [l, p. 65]) 

implies there is a continuous functional x'" E (H~)' 
s 

and real number 

such that 

As x"' E (H~)' s x'" 

x'" (D) < c - 2 < c < x'" (x") . 

is bounded on a 0-neighbourhood of H~ s 
( Schaefer 

[l, p. 74]). Hence we may assume that x"' is bounded by unity on a 

-

C 

polar S 0 in H" of a convex , circled, equicontinuous set SES . Now 

S is strongly bounded and so, by Theorem 2.2.1, for an arbitrarily small 

E > 0 , there is an f E (1 + E)S "' such that x"' = f on 

CS= {~1 , ... '~n } and x" . Then we have 

so that 

f(x.) + 2 < x"(f) for i - l, ... ,n, 
i 

f(x) f(x.) > 2 for i - 1, ... ,n 
i 
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This is a contradiction and so x" ED. But then x is 

"' "' 
S - o(E,(Es)')-near-standard. For suppose SES , then there is an x 

belonging to the convex hull of C such that 

Jx"(f) - f(x)J < l for all f ES . 

But then 

Jf(x - x)/ < l for all f ES . // 

3.3.2 THEOREM. Let E be a LCTVS and let A be a subset of E . If 

A 

A ~s relatively countably weakly compact in H~ s then the 

"' closure of A ~s S - o(E,(Es)')-compact. 

-
PROOF. Let A denote the closure of A in the o(E,(Es)')-topology. 

Then 
-
A is bounded in so that, if XE ~':A X 

' 
is a bounded point 

"' -. 
in Let us suppose A is not S o(E,(Es)')-compact. Then, by 

"' 
Theorem 3.2.2 and Lemma 3.3.1, there is a set SES such that for each 

finite set C of E there is an f ES such that for all x EC , 

f(x - x) > l . 

{x} C 
-

{y } C A {f } C S . We construct three sequences A 
' 

and in the 
n n n 

following manner. We choose XO -
Yo arbitrarily in A then f E S -

' 0 

such that fo(Yo - x) > 1 . Now the statement 

-
3x (x E A (\ (fo(Yo - x) > 1)) 



holds in ,'~M (for X satisfies both conditions) , and so it is -
-

M . Hence there is an xl E A such that fo (yo xl) > l . As 

there exists Y1 E A such that lfo(xl - yl) I < 1/2 . Suppose 

we have chosen for k = 0,1, ... ,n - l , and f. 
J 

j = 0,1, ... ,n - 2 satisfying 

f. (y. - x) > l i - 0,1, ... ,j 
' 

-
' J i -

f. (y. xk) > l 0 < < . < k < l - i J n -
' - -J i 

If. Cy. x. )I < 1/2 . 0,1, ... ,i l J = 
' J i i 

Then we choose f E s such that 
n-1 

f l(y. n- J 
x) > l, J - 0,1, ... ,n - l. 

The abbreviated statement 

' 

3x ( ( x E A) /\ ( f. ( y . - x) > l , 0 ::: j ::: i < n)) 
i J 

for 
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true in 

-
x E A 

l 

now that 

is true in *M (for again x satisfies these conditions) and so it is 

-
true in M. This means we can choose x EA such that 

n 

f. (y. - X ) > l , 0 < ] < i < n , 
i J n 

and in turn y EA such that 
n 

Jfk(x -y )J <l/2, k-O,l, ... ,n-1. n n 

Therefore we can choose sequences {y} 
n 

in A ' {f} 
n 

in 

fk(y. - y ) > 1/2 , 0 < i < k < n . 
i n 

s satisfying 
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A A 

As A is relatively countably weakly compact in H~ 
' 

{y } has a weak 
s n 

limit point x" in H~ 
s Subsequently, 

(fk(yi) x"(f ) ) > 112 0 < . < k - - ' - i . 
k 

Now , because 

implies S00 

so is a 0-neighbourhood in 

o( (H~)' ,H")-compact. 

H~ , the Banach-Alaoglu theorem s 
is Consequently {fk} has a limit 

point x'" in the o( ( H_s) ' ,H" )-topology. But then 

A 

x'" (y.) - x'" (x") > 112 , i - 1,2, ... , 
l 

{A} contradicting the assumption that x" is a weak limit point of y n 

. 
in H!J s II 

If S is a family of strongly bounded subsets of E' we may replace 

Hi by ES (cf. Theorems 3.2.8 and 3.2.9). We outline the proof for 

completion. 

3.3 . 3 THEOREM. Suppose S &Sa family of strongly bounded subsets of 
A 

E' . If A &S relatively countably weakly compact in ES , then the 

-o(E,(Es)')-closure of A S - o ( E , ( ES ) ' ) - compact. 

PROOF. Following the method of Theorem 3.3.2 we suppose the closure of 

A is not S - o(E,(Es)')-compact and we then construct sequences {y } 
n 

in A and {f} 
n 

-in a set SES satisfying 
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fk(y. - y) > 112 , 0 < i < k < n . 
i n 

As in the proof of Lemma 3. 2. 7 there is a o( (Es)' ,E" )-compact set sl 

in ( E") I s such that each has an extension y'" 
k 

to E" s 
belongs to s 1 . Rewriting the previous equation we obtain 

A 

A 

y) > 112 , 0 < i < k < n. 
n 

which 

If the sequence {y } has a weak limit point y" in E" it follows 
n S 

that 

But the sequence {y'k~ has a limit point y'" in the o( (Es) I ' E" )

topology and so 

A 

y"' (y.) - y"' (y") > 112 , i = 1,2, ... , 
i 

thus contradicting the assumption that y" is a weak limit point of 

in E ll s . II 

3.3.4 COROLLARY - (Eberlein's theorem). Let E be a LCTVS and let A 

be a suhset of E. If A is relatively countably weakly compact then 

A is nearly weakly compact. Furthermore~ if the~convex hull of A ~s 

complete in the Mackey topology~ then A is relatively weakly compact. 

PROOF. By Theorem 3.3.3 A is nearly weakly compact. The end remark 

is a consequence of Theorem 3.2.11. II 
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3.3.5 REMARKS. Recent standard proofs of Eberlein's theorem in a 

Banach space context have been obtained by Pelczynski [3] and Whitley 

[l]; see also Dunford and Schwartz [l, p. 466] for a discussion of the 

history of the theorem. We comment too that Theorem 3.2.8 ensures that 

the converse of Theorem 3.3.2 holds. It would be interesting to obtain 

the natural generalization of Krein's theorem (Schaefer [l, p. 189]) by 

non-standard methods. We give the result here as a corollary to Krein's 

theorem and Theorem 3.2.8. 

3.3.6 COROLLARY. Let E be a LCTVS and A be a subset of E . If 

-S - o(E,(Es)')-compact then its convex hull is also A 
. 
~s 

S - o(E,(Es)')-compact. 

PROOF. Suppose B is the convex hull of A. Now every Cauchy net from 

A 

B ln " H-
S 

A 

has a limit point and so the closure of B is complete. As 

- A 

A lS s o(E,(Es)')-compact A is relatively weakly compact by Theorem 

A 

3.2.8. Therefore Krein's theorem ensures that B is relatively weakly 

compact in H~ s and consequently 

Theorem 3.2.8 once more. II 

B lS S - o(E,(Es)')-compact using 

3.4 Generalizations of semi-reflexive spaces. 

We intend now to consider a class of generalizations of semi-reflexive 

spaces. We find again that non-standard techniques are helpful in the 
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investigation of these properties. 

In the following work S denotes a covering of· E' by strongly bounded 

subsets which satisfy conditions SI and SII mentioned in Section 3.2: 

thus the polars S0 of the sets SES form a basis of 0-neighbourhoods 

in E" . Initially we do not assume that the S-topology on E is 

consistent with the duality (E,E') . With these further restrictions 

on S we introduce the following definition. 

3 . 4 . l DEFINITION. Let E be a LCTVS. We say that E is S-semi-
A 

reflexive if E is dense in Ell s . 

Thus if F is the family of finite subsets of E' , then E is 

F-semi-reflexive (for recall result 5.4 of Schaefer [l, p. 143]). It is 

well-known (Schaefer [l, p. 144]) that a LCTVS E is semi-reflexive if 

and only if each bounded suhset of E is relatively weakly compact. 

The following theorem generalizes this result. 

3 . 4.2 THEOREM. Let E be a LCTVS. Then E &S S-semi-reflexive if 

and only if each bounded set of E &S S - a(E,E')-compact. 

PROOF . Suppose first that E is S-semi-reflexive and let B be a 

bounded set of E. If x E *B it is sufficient, by Theorem 3.2.2, to 

show that x is S - a( E ,E' )-near-standard. We define x" E E" by 

x"(f) - 0 [f(x)] for all f E E' . 
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Now let SES . By assumption there exists an x EE such that 

jf(x) - x"(f)j < l for all f ES . 

But this implies that 

jf(x) - f(x)j < l for all f ES , 

and consequently that x is S - o(E , E ' )-near-standard. 

Conversely , let us suppose each bounded set of E is S - o(E,E')

compact. Accordingly , by Theorem 3.2.2 , each bounded point x E *E 

is S - o(E , E ' )-near-standard. Consider an arbitrary element x" of 

E" . By Theorem 2 . 2 . 3 , there exists a bounded point x E ~';E such that 

f(x) = x"(f) for all f EE' . 

Let SE S . As x is S - o(E,E')-near-standard there exists an 

x E E such that 

jf(x - x)j < l for all f ES . 

This implies that 

jf(x) - x"(f) I < l for all f ES . 

Therefore , as S was chosen arbitrarily, and the family of polars 

{S 0 : SES} forms a basis of 0-neighbourhoods in 
A 

E" E s ' is dense in 
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Suppose now that the S-touology on E is consistent with the duality 

(E,E') . Theorem 3.2.5 then implies that S - o(E,E' )-compact sets are 

-S - o(E,E')-compact. It is therefore an easy consequence of Lemma 3.2.10 

that if E is S-s emi-reflexi ve and x" E E" we can choose a bounded 

net { xS} in E convergent to x" in the S-topology. It follows 

that if E is S-semi-reflexive and quasi-complete in the S-topology 

then E is semi-reflexive. It is not difficult to check that if the 

quasi-completion of ES is S-semi-reflexive E is semi-reflexive. 

The converse seems more difficult. It is at least true if E 
. 
is 

distinguished. 

3.4.3 THEOREM . Suppose the LCTVS E ~s distinguished. Then E ~s 

S-semi-reflexive if and only if the quasi- completion of ES 

reflexive. 

. 
~s se~-

PROOF . We only prove the necessity of the condition. We note that as 

E is distinguished E" is the quasi-completion of E 
0 

(Kothe [l, p. 306]). 

Therefore , since E is S-semi-reflexive, E" is the quasi-completion 

of Furthermore the strong topologies S(E' ,E) and S(E' ,E") are 

identical on E' for E' is barrelled (Kothe [l, p. 306]). Thus E" 

is semi-reflexive establishing that the quasi-completion of ES is 

semi-reflexive. // 

Let S be a subset of E' and F be a subspace of E . Suppose the 
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set of restrictions of functionals in S to F is denoted by ~. 

Then the S-topology on E induces a topology on F which is the 

S-topology, where S = {~ SES} . If F is S-semi-reflexive we 

agree to say that F is S-semi-reflexive. With this notation we prove 

the following generalization of a result of Fleming [l, Theorem 4.1]. 

3.4.4 THEOREM. Let E be a LCTVS. Then E ~s S-semi-reflexive if 

and only if every separable suhspace ~s S-semi-reflexive. 

PROOF. We prove the necessity of the condition first. Suppose that F 

is any subspace of E. Let B be a bounded set in F and let 

XE *B As E is S-semi-reflexive x is S o(E,E')-near-standard 

and so, by Lemma 3.2.10, for each SES there is a point x belonging 

to the convex hull of B such that 

jf(x - x)j < 1 for all f ES . 

This implies that x is s - o(F,F')-near-standard so that B is 

~ - o(F,F')-compact. That F is S-semi-reflexive therefore follows 

by Theorem 3.4.2. 

Next we prove the sufficiency of the condition. Suppose in fact that 

E is not S-semi-reflexive . Hence there is a bounded subset B of E 

which is not S - o(E,E')-compact. Thus Theorem 3.2.2 implies there is 

a sequence {x} in B such that {~} has no weak limit point in n n 
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E II s . Let F be the linear span of {x } 
n 

Then F is a separable 

space and {x} 
n 

is a bounded sequence in F. Suppose that {~ } has 
n 

a weak limit point yll in F II 
~ 

We define an element x" E E 11 by 

x 11 
( f) = y 11 

( f / F) for all f E E ' . 

A 

It follows that x" is a weak limit point of 

a contradiction. // 

{x} 
n in Es 'which is 

If S generates the Mackey topology the notion of S-semi-reflexivity 

is of special interest. 

3 . 4 . 5 DEFINITION. Let K be the family of circled, convex, o(E' ,E)-

compact subsets of E' 

nearly semi- reflexive. 

If E is K-semi-reflexive we say E 
. 
lS 

As a consequence of Theorem 3.4.4 we have the following. 

3 . 4 . 6 COROLLARY. Let E be a LCTVS and suppose that E 
. 1.,s quas1.,-

complete in the Mackey topology. Then E is semi-reflexive if and only 

if each separable subspace is nearly semi-reflexive. 

PROOF. The necessity of the condition is obvious. The sufficiency is 

an immediate consequence of Theorem 3.4.4 and the comment preceding 

Theorem 3.4.3. // 
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3 . 4 . 7 EXAMPLE. We refer the reader to Day [2, p. 28] for a discussion 

of the following spaces. Let r be an arbitrary set and define 

m(f) to be the space of all bounded real functions on r 

with norm defined by II X" II = sup {I x"(y)I . y E f} . 
' 

m
0

(r) to be the subspace of all those x" in m( r) which 

vanish except on a countable set, and 

,Q,l (f) to be the space of real functions f on y for 

which II fll - I I f(y) I < 00 - . 
'Y Ef 

If E denotes m
0
(f) equipped with the o(m

0
(f),£

1
(f))-topology E is 

nearly semi-reflexive (see Corollary 6.2 . 2). However, if r is 

uncountable , E is not semi-reflexive since E' = Jl (f) s l 
so that 

E" = m( f) . On the other hand if G is a separable subspace of E 

the set {y E f x"(y) -:/ 0 for some x" E G} is countable. From this 

observation it is an easy consequence that a closed separable subspace 

of E is quasi-complete and hence semi-reflexive. This exanple, together 

with our previous results , clarifies the comment made by Fleming after 

the proof of Theorem 4.1 [l, p. 77]. 

The following is a useful characterization of nearly semi-reflexive 

spaces . 

3 . 4 . 8 THEOREM. Let E be a LCTVS. Then E ~s nearly semi-reflexive 

if and only if the topology -r( E" ,E' ) coincides on E with the 
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topology T(E,E') . 

PROOF. Let us suppose firstly that E is nearly semi-reflexive. Then 

every circled, convex, o(E' ,E)-compact set S is o(E',E")-compact and 

it therefore follows that the topologies are equivalent. 

Conversely, we know that E" is obtained from E by taking the 

o(E" ,E' )-closure points of the bounded sets in E . Since these can be 

taken to be circled and convex it is sufficient to consider the 

T(E" ,E' )-closure points. 

nearly semi-reflexive. // 

But by assumption this implies that E 
. 
lS 

So far we have only considered generalizations of semi-reflexivity. 

There is an obvious generalization of reflexivity too. 

3.4.9 DEFINITION. Let E be a LCTVS. We say E is nearly reflexive 

if E is nearly semi-reflexive and E" induces the topology on E . 
' 

i.e., if E is nearly semi-reflexive and E is infrabarrelled (see 

Schaefer [l, p. 144]). 

It is possible to extend a number of known results using Definition 3.4.9. 

We prove one here. 

3.4.10 THEOREM. Suppose the strong dual of a LCTVS E ~s semi-reflexive. 
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Then E ~s nearly reflexive. 
T 

PROOF . Let B be a strongly bounded set in E' . It follows from the 

semi-reflexivity of E' s that B is relatively o(E' ,E")-compact, and 

thus relatively o(E' ,E)-compact. This implies that E is infrabarrelled. 

We complete the proof once we show that E is nearly semi-reflexive. 

Suppose S is a circled, convex, o(E' ,E)-compact set in E' , then, as 

S is strongly bounded, S is o(E' ,E")-compact. Therefore E is 

nearly semi-reflexive by Theorem 3.4.8. // 



4 . 0 Introduction . 

CHAPTER 4 

LINEAR MAPPINGS BETWEEN TOPOLOGICAL 

VECTOR SPACES 

In Non- Standard Analysis Robinson gave non-standard characterizations 

of bounded and compact linear operators on normed spaces. It was by using 

these characterizations that Bernstein and Robinson [l] showed that 

a linear operator in Hilbert space which has a compact square, possesses 

a non-trivial invariant subspace. 

In this chapter we characterize certain linear maps between (separated) 

TVSs by non-standard properties. We use these characterizations to 

obtain and generalize results of Grothendieck [l] which extended results 

of Schauder and Gantmacher (see Dunford and Schwartz [l, p. 485]). We 

also give non-standard proofs of two theorems of Ringrose (see [l], [2]) 

and generalize one of his results. We find the main concepts of Chapter 

3 useful in this work. Some examples of linear maps are included to 

clarify the results. 

The author would like to comment that he became aware of the relevant 

work of Grothendieck only after he had developed much of this chapter; 

62. 
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indeed it seems very likely that Ringrose was also unaware of Grothendieck's 

results at the time he wrote his papers ([l] and [2]). 

4.1 Notation and Definitions. 

Throughout this chapter E,F and G denote either (separated) TVSs or 

LCTVSs. The scalar field may be assumed to be either the real numbers 

or the complex numbers (provided it is the same for all spaces mentioned 

in any result). Generally we will be concerned with continuous linear 

maps between pairs of the spaces E,F and G . 

In Definitions 4.1.1 to 4.1.3 we consider a linear map T from a TVS 

E into a TVS F. 

4.1.l DEFINITION. The map T is boundedly precompact (boundedly compact) 

if the set T(B) is precompact (relatively compact) in F whenever B 

is a bounded subset in E . 

4.1.2 DEFINITION. The map T is precompact (compact) if there is a 

0-neighbourhood V 
. 
ln E such that T(V) is a precompact (relatively 

compact) set in F . 

4.1.3 DEFINITION. The map T is bounded if there is a 0-neighbourhood 

V in E such that T(V) is a bounded subset in F . 
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In the remaining definitions we consider a linear map T from a LCTVS 

E into a LCTVS F. 

4.1.4 DEFINITION. The map T is boundedly weakly compact if the set 

T(B) is relatively weakly compact in F whenever B is a bounded 

subset in E. 

More generally, if S is a covering of F' by weakly bounded sets and 

S
1 

is a family of subsets of ( F S)' we may introduce the following 

definition (where the notation is that of Chapter 3). 

4.1.5 DEFINITION. The map T is boundedly S
1 

- o(F(Fs)')-compact if 

T(B) is S
1 

- o(F,(Fs)')-compact in F whenever B is a bounded set 

in E. 

4.2 Non-standard characterizations of linear maps. 

Our first theorem is a restatement of a result of Robinson [2, p. 98]. 

We include it for completeness although we do not offer a proof. 

4.2.l THEOREM. Let E and F be TVSs and let T be a linear map 

from E into F. Then T ~s continuous if and only if Tx is the 

standard part of Tx ~n *F whenever x ~s the standard part of x 
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4 . 2 . 2 REMARK. It is not true in general that continuity of T is 

characterized by T preserving bounded points, as is the case when T 

is an operator on a normed space (Robinson [2, p . 178]). The following 

simple example illustrates this. Let X be an infinite dimensional 

Banach space and let T be the identity map of X 
0 

into X . Then it 

is clear that T preserves bounded points but that T is not continuous. 

4 . 2 . 3 THEOREM . Let E and F be TVSs and T be a linear map from 

E into F . Then T is closed if and only if whenever x is the 

standard part of x ,':E , and y is the standnrd part of Tx 
. i,n 

,':f it follows that y = Tx . 

PROOF. Let T be a closed map . Suppose that x is the standard part 

of x and that y is the standard part of Tx . Then (x,y) is the 

standard part of (x,Tx) in Ex F. Since T is closed (x,y) belongs 

to the graph G(T) of T , so consequently y - Tx Conversely, let 

T satisfy the given condition. We show that G(T) is closed. Suppose 

the point u EE x F is the standard part of u E *G(T) . Let 

u = (x,Tx) and let u = (x,y) . Then x is the standard part of x 

in *E and y is the standard part of Tx in *F. By hypothesis, 

y = Tx so that u E G(T) and the result follows by Robinson [2, p. 91]. // 

4.2.4 THEOREM. Let E and F be TVSs and let T map E into F. 

Then T is boundedly precompact (boundedly compact) if and only if Tx 

i,s pre- near- standnrd (near-standard) whenever x i,s a bounded point in 

;';E • 
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PROOF. Suppose T is boundedly precompact and that x is a bounded 

point in *E. Then x E *B where B is a bounded set in E . By 

assumption T(B) is precompact and therefore, by Theorem 2.3.4, Tx is 

pre-near-standard. To establish the converse we consider a bounded set 

B in E. By assumption each point of *(T(B)) is pre-near-st~ndard 

and so T(B) is precompact again by Theorem 2.3.4. II 

We list some similar results for reference omitting the proofs. 

4.2.5 THEOREM. Let E and F be TVSs and let T map E into F. 

Then T is precompact (compact) if and only if there exists a 

0-neighbourhood V in E such that Tx is pre-near-standard (near

standard) for each x E ~·:v . 

4.2.6 THEOREM. Let E and F be LCTVSs and let T map E into F. 

Then T is boundedly weakly compact if and only if Tx ~s weak near

standard whenever x is a bounded point in ~·:E • 

4.2.7 THEOREM. Let E and F be LCTVSs and let T map E into F. 

Then T is boundedly s
1 

- a(F,(Fs)')-compact if and only //:f Tx ~s 

S
1 

- o(F, (F S) ')-near-standard for each bounded point x E ~·:E . 

4.3 Properties of the adjoint map. 

Let E,F be two TVSs and T be a linear map of E into F. We denote 
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the algebraic adjoint of T by T# and, if T is continuous, the 

adjoint map by T' . The reader is referred to Edwards [l, p. 514] for 

a discussion of these concepts. We intend to investigate properties of 

T' . 

It is well-known that if T is a compact linear map of E into itself 

the adjoint map T' of ES into itself is not necessarily precompact . 

Conversely , it is also true that if the adjoint T' 
. 
is compact T 

. 
is 

not necessarily precompact. Examples illustrating this type of behaviour 

were first published by Ringrose [l, p. 585]. However, Ringrose did 

publish an interesting positive result [2, Theorem 4.2]. Theorem 4.3.l 

generalizes this result of Ringrose. 

4 . 3 . 1 THEOREM . Let E,F and G be TVSs with S a family of weakly 

bounded subsets of E . Suppose that T is a continuous linear map of 

E into F which maps sets of S into precompact sets in F and suppose 

is a bounded linear map from F into 

compact map from G' s into 

G . Then T'T' 
1 

i,s a 

PROOF. As the quasi-completion of F has the same dual as F we may 

suppose that T maps sets of S into compact sets. Since T
1 

is bounded 

there is a 0-neighbourhood U in F such that T
1

(U) is bounded in G • 

It follows that 

show that T'T'(V) 
1 

is a 0-neighbourhood in G' s Let us 

is relatively compact in ES . This is true if, for 
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each f E -;':v 
' 

T'T'f 
1-

is near-standard in the S-topology. Let us define 

g by 

As 

g(x) = o[T{f(x)] for all x E F. 

T'f E *U 0 the Banach-Alaoglu theorem ensures that g E U0 • 1- Now 

consider a set SES and suppose x E *S . Since T maps S into a 

compact set Tx is near-standard in *F. Therefore, if y is the 

standard part of Tx 

Consequently we have 

Theorem 2 . 1.3 thus 

S-topology. II 

g(Tx) ~ g(y) for all g E *U 0 • 

implies that T'T'f is near-standard in the 
1-

4 . 3.2 COROLLARY (Ringrose). Let E be a TVS and T be a precompact 

linear map of E 

into itself. 

into its elf. Then is a compact map from E' s 

PROOF. Since T is precompact, it is bounded and maps the family of 

(weakly) bounded subsets of E into precompact sets. II 

4 . 3 . 3 REMARK. Let X be an infinite dimensional Banach space, and let 
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0 
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into itself. It is easily checked that 

T is boundedly precompact but that (T' )
2 

= T' is not compact. This 

shows it is not sufficient to assume in Corollary 4.3.2 that T is only 

boundedly precompact. 

The natural continuation of this aspect of the work of Ringrose is to 

alter the initial topologies on E and F and to consider topologies 

other than the strong on the dual spaces. Our next result is due to 

Grothendieck [l, Lemme l]. 

4.3.4 THEOREM. Let E and F be LCTVSs, S be a fwnily of weakly 

bounded subsets of E and S' be a fwnily of weakly bounded subsets of 

F' . Suppose T bS a continuous map from E into F. Then T maps 

sets of S into precompact sets in Fs, if and only if T' maps the 

sets of S' into precompact sets in ES . 

PROOF. Let us prove the necessity of the condition first. Consider a 

Set S ' ES' and suppose that f E *S' . It ff" b Th 2 3 4 su ices, y eorem .. , 

to show that T 'f is pre-near-standard in *E' s . For such an f we 

define f Er# by 

f(y) = 0 [f(y)] for 11 E F a y . 

Now consider a set SES and a point x E *S . As T(S) is a precompact 

set in FS, Tx is pre-near-standard in the S'-topology. Thus given 

an arbitrary E > 0 , there exists y E F such that 
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J f ( Tx - y) J s s for all f E ~·;s ' . 

It follows too that jf(Tx - y)J < s, so that as f(y) ~ f(y) , 

jf(Tx) - f(Tx) J < 3s. But s > 0 was chosen arbitrarily so that 

(T'f)x ~ (T#f)x for each x E *S . 

This equation ensures that T'f is pre-near-standard in Es . The 

sufficiency of the condition now follows by symmetry. // 

If S' is a family of o(F' ,F)-compact subsets of F' it is easily 

checked that T ' maps the sets of S' into compact sets in ES . This 

is because the f Er# defined in the previous proof then belongs to 

S' . Using this observation we note three consequences of Theorem 4.3.4. 

We point out that in Corollary 4.3.6 F Q·'· µ" 
denotes F equipped with 

the topology S*(F,F') of uniform convergence on strongly bounded 

subsets of F' . 

4.3.5 COROLLARY . Let E,F be LCTVSs and let T be a continuous linear 

map from E into F. Then T is boundedly precompact as a map from 

E into F if and only if the adjoint T' maps circled~ convex~ 
'T 

o(F' ,F)-compact sets into compact sets in EB . 

4.3.6 COROLLARY. Let E , F be LCTVSs and let T be a continuous linear 

map from E into F . Then T is boundedly precompact as a map from 

E into F o·'· µ" 
if and only if the adjoint T' from F' s into E' 

8 
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boundedly precompact. 

4.3.7 COROLLARY. Let E,F be LCTVSs and let T be a continuous linear 

map from E into F. Then T is boundedly compact as a map from E 

into FS if and only if the adjoint map from 

is boundedly precompact. 

F' 
'T 

(or F' ) into 
a 

E' s 

In Theorem 4.3.8 we suppose that S is a covering of E by weakly 

bounded subsets and that S' is a covering of F' by weakly bounded 

subsets. Furthermore for simplicity we assume that S' satisfies the 

conditions SI and SII of Section 3.2 and that it also contains the 

circled, convex hulls of its members. We use H to denote FS, and 

-
we denote the family of equicontinuous subsets of H by S' . 

4.3.8 THEOREM. Let E and F be LCTVSs. Suppose that T is a linear 

map from E into F, continuous from E into Fs, . Then T maps 

the sets of S into S' - a(F ,(Fs,)')-compact sets if and only if T' 

maps the sets of S' into relatively a(E' ,(Es)')-compact sets. 

PROOF. We prove the necessity of the condition first. First note that we 

may assume that S satisfies conditions SI and SII . Furthermore 

Corollary 3 . 3.6 ensures that if SES we may assume that its circled, 

convex hull f(S) is also ln S We begin by considering a set 

S ' ES' and an fE}',S'. We define x'"E(H~ )' by 
S' 
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x'"(y 11
) = 0 [y 11 (f)] for all y 11 EH". 

Now suppose x II E (Es) ' • Then, by Theorem 2. 2. 3, there exists an 

x E *S , for some SES , such that 

x 11 
( g) = g ( x) for all g E E ' . 

- -Since T(S) is S' - o(F,(FS')')-compact Tx is S' - o(F,(F
51

)
1 )-near-

s tandard. Therefore Lemma 3. 2. 6 guarantees the existence of a z II E H" 

such that 

A 

y'"(z") ~ y"'(Tx) for all y"' E (H~ ) I • 

S' 

We have then, for f EH' 
' 

x 11 (T'f) = (T'f)x - f(Tx) ~ z 11 (f) 

so that consequently T11 x 11 = z" . Hence the following equation holds: 

As T 11 x 11 

A 

x 11 (T'f) = (T"x")f ~ x"'(T 11 x")~ x"' (Tx) 

A 

belongs to the closure of H in H~ 
S' 

for each 

A 

T11
' x 11

' = T' f where f is the restriction of x"' to H . Thus we have 

x 11 (T'f) 
A 

~ (T 111 x 11 ')x = ( T,,, x', , ) x,, 

which ensures that T'f is o(E' ,(E.s)')-near-standard as required. 

Conversely suppose that T' maps the sets of S' into relatively 

- - -o(E' ,( Es)')-compact sets. We first observe that if s E S 1 'T'(S) lS 
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also relatively o(E' ,(Es)')-compact. For given such a set S there is 

-a circled, convex set S'E S' such that each f ES is bounded by unity 

on S' 0
, the polar of S' in F . Theorem 2.2.3 thus implies that if 

-f ES there is an f E *S' such that 

f(x) ~ f(x) for all x E F . 

Because T'(9) is relatively o(E',(E~)')-compact T'f is near-standard 

in the o(E',(Es)')-top?logy. It follows that T'f is equal to the 

standard part of T'f, ·from whence it is easily seen that -TI ( s) lS 

relatively o(E',(Es)')-compact. Now consider a set SES and take an 

We define z" E (EI) I s by 

z"(f) = 0 [f(x)] for all f E E' . 

If x'" is an arbitrary functional in (H~ ) I 

S' 
by Theorem 2.2.3 there 

- - -exists an f E *S for some 
' 

S E S ' , such that 

x'"(x") - x"(f) for all x" E H" . 

-Since T'(S) is relatively o(E',(Es)')-compact T'f is o(E',(Es)')-

near-standard so that there exists a g EE' such that 

y" (T I f) ~ y" ( g) for all y" E (ES) ' • 

Hence we have 

x'"(T"y") = (T"y")f = y"(T'f) ~ y"(g) for all y" E (ES)' • 
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This implies that T'" x'" 
A 

= g and consequently we have 

A A A 

XII I ( T X ) = XI II ( T II X ) = ( TI II XI") X ~ ( TI" X Ill ) z II = XI II ( TII z II ) • 

"" Lemma 3.2.6 therefore implies that Tx is S' - o(F,(Fs,)')-near-

standard and thus T(S) is S' - o(F,(Fs,)')-compact completing the 

proof. II 

Theorem 4.3.8 should be compared with a result of Grothendieck [l, Lemme 

l]; see also Edwards [l, Theorem 9 .3. l]. Perhaps the most interesting 

consequences of the theorem occur when S is the family of weakly 

bounded subsets of E. We note four corollaries (recall Theorem 3.2.5). 

4.3.9 COROLLARY . Suppose that E,F are LCTVSs and that E denotes the 

family of equicontinuous subsets of F' . Let T be a continuous linear 

map from E into F. Then T is boundedly E - a(F,F')-compact if and 

only if T' maps members of E into relatively weakly corrpact sets in 

4.3.10 COROLLARY. Suppose E,F are LCTVSs and that K denotes the 

family of circled~ convex~ a(F' ,F)-corrpact subsets of F' . Let T be 

a continuous linear map from E into F Then T ~s boundedly 

K - a(F,F')-corrpact if and only if T' maps sets of K into weakly 

compact sets in ES . 
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4.3 . 11 COROLLARY. Suppose E,F are LCTVSs and that B denotes the 

family of strongly bounded subsets of F' . Let T be a linear map from 

E into F , continuous from E into rs·'· . " 
Then T is boundedly 

-B - o(F , (Fs~·) ' )-compact if and only if T' is a boundedly weakly compact 

map from F ' s into 

4 . 3 . 12 COROLLARY . Suppose E, F are LCTVSs and that B 
0 

denotes the 

family of weakly bounded subsets of ff • Let T be a linear map from 

E into F ~ continuous from E into FS. Then T is boundedly 

-
Bo - o(F , (Fs) I )-compact if and only if T' 

relatively weakly compact sets in ES . 

4 . 4 Related results . 

maps sets of B into 
0 

The next two results are due to Ringrose [2, Theorems 3.3 and 3.4]. 

Edwards [l , p . 619] attributes similar results to Grothendieck (see 

Grothendieck [l , Lemme 3]). 

4 . 4 . 1 THEOREM. Let E,F be TVSs and let T be a continuous linear 

map from E into F . Then 

(a) If T i-s continuous as a mappi-ng from each bounded set 

of E under the E' -topology into F it is boundedly 

precompact . 

(b) The converse of (a) holds provided the F' - topology on 



76. 

the quasi-completion of F ~s separated. 

PROOF. We establish (a) first. Suppose that x is a bounded point in 

*E The proof of Theorem 2.4.3 implies that x is pre-near-standard 

in the o(E,E')-topology (here Definition 2 .1.9 is extended to non

separated spaces). Therefore, by the continuity condition, Tx is a 

pre-near-standard point in ,':r Theorem 4.2.4 then implies that T is 

~ 

boundedly precompact. We now prove (b). If F is the quasi-completion 

~ 

of F the map T: E ~ F is boundedly compact. Let B be a bounded 

set in E and suppose that x belongs to the monad of x in the 

o(E,E' )-topology where both x and ,':x belong to ,':B It follows by 

~ 

Theorem 4.2.4 that Tx is near-standard in ~':r . 
' 

part y . Since T is continuous as a map from 

let it have standard 

E 
0 

into r -- it 
0 

follows, using the separation assumption, that Tx = y . That T has 

the desired property now follows by a simple extension to Theorem 4.2.1. // 

A similar technique allows us to establish: 

4.4.2 THEOREM . Let E,F be TVSs and let T be a continuous linear 

map from E into F . Then 

(a) If T ~s continuous from a 0-neighbourhood V of E under the 

E'-topology into F , T is precompact. 

(b) The converse of (a) holds provided the quasi-completion of F 

equipped with the F'-topology is separated. 
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We n ow wish to consider a different type of problem. Consider a linear 

map T E -+ F The reduced mapping T
0 

E-+ R(T) is defined by 

T x = Tx (here R(T) denotes the range of T ). It is well-known (see 
0 

Goldberg and Thorp [l]) that if T is compact T is not necessarily 
0 

compact . However we do have the following easy result. 

4 . 4 . 3 THEOREM . Let T be a boundedly corrrpact (compact) map from E 

into F . Then T ~s boundedly precompact (precompact). 
0 

PROOF . Let x be a bounded point in *E and suppose that y is the 

standard part of Tx in ~·:r Then y belongs to the closure of T(E) 

Now given a 0-neighbourhood V in F there exists a 0-neighbourhood 

U such that U +UC V so that if we choose a point Yv E T(E) such 

that y - y EU we have that 
V Tx E y V + ~·:v . Consequently Tx 

. 
is 

pre-near-standard in *R(T) as required by Theorem 4.2.4. // 

Indeed if T is weakly compact T need not be weakly compact (see 
0 

Arterburn [l]) . In the context of our work it is instructive to note 

the following result. 

4 . 4 . 4 THEOREM. Let E,F be LCTVSs and let T be a linear map from E 

into F . If T ~s boundedly weakly compact then T
0 

is boundedly 

K - o(F , F' )-compact. 
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PROOF. Let x be a bounded point in *E and suppose that y is the 

standard part of Tx in the o(F,F')-topology. It follows that y 

belongs to the o(F,F')-closure of T(E) , and thus to the T(F,F')

closure of T(E) . Let S be a circled, convex, o(F' ,F)-compact subset 

of F' . Then there is a point y
8 

E T(E) such that 

lf(y - y
8

)1 < l for all f Es . 

Consequently we have 

lf(y8 - Tx)I s l for all f ES 

so that Tx is K - o(F,F')-near-standard. The result therefore follows 

by Theorem 4.2.7. // 



CHAPTER 5 

THE CONJUGATE OF A SMOOTH BANACH SPACE 

5.0 Introduction. 

The preceding three chapters have been largely concerned with a non

standard treatment of compactness in TVSs. In this chapter compactness 

arguments by way of the Banach-Alaoglu and Tychonoff theorems again play 

a central role. 

The main purpose of this chapter is to show that if X is a smooth 

Banach space with a certain property, X' is isomorphic to a rotund 

space. This follows from a mapping theorem which guarantees the existence 

of a set r and a continuous one-to-one linear map of X' into c
0
(f) . 

The proof of this theorem occupies the major part of this chapter. We 

begin with a short outline of some pertinent results and end with a 

brief discussion of a number of related problems. 

5 .1 Definitions and Basic Results . 

Throughout this chapter we consider a real infinite dimensional Banach 

space X . 

79 . 
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5 . 1.1 DEFINITION. A Banach space X is smooth if at every point of 

the unit sphere there is only one supporting hyperplane of the unit ball. 

5 . 1 . 2 DEFINITION. A Banach space X is rotund , or strictly convex, if 

the unit sphere contains no line segment . 

We refer the reader to Day [2 , pp 111-113] and to the relevant sections 

of Kothe [l] for a discussion of the above concepts. If X is smooth 

for x EX we denote by f the unique element of X' 
X 

such that 

II f II = II xii and f ( x) = II f II II xii . Non-standard analysis is used to prove 
X X X 

the following result of Cudia [2 , p . 300] . 

5 . 1.3 PROPOSITION. Let X be a smooth Banach space and let {x} 
n 

a sequence convergent to X i,n the norm topology. Then f -+- f 
X X n 

the weak;', topology. 

PROOF. Let w be an infinite integer , so that x belongs to the 
w 

be 

i,n 

monad of x. We consider f and define a linear functional f EX' 
X 

w 
by 

f(x) = 0 [f (x)] for each x EX . 
X 

w 

It is readily checked that f(x) - llf llllxll 
X 

and that II fll = II xii . 

Because X is smooth we have that f = f 
X 

The proposition theref ore 

follows by Corollary 2.1.5 and Theorem 4.2.1 . // 
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Let Y be a closed linear subspace of X . Then we denote the set of 

f EX ' which attain their norm on the unit sphere Sy of Y by 

DX 1 (Y) ; thus f E DX 1 (Y) if there exists a point y E Sy such that 

f(y) = II fll . When DX , (X) is norm dense in X' X 
' 

is said to be 

subreflexive . Bishop and Phelps [l] have shown that all Banach spaces 

are subreflexive and often this result can be used in conjunction with 

smoothness with considerable effect; see, for example, Giles [l]. In 

A 

the next proposition K(X) denotes the weak* sequential closure of X 

in X" ( K(X) is sometimes termed the Baire subspace of class one). 

5 . 1 . 4 PROPOSITION. Suppose X ~s a Banach space such that the conjugate 

space X' is smooth . Then K(X) = X" . 

PROOF . Suppose ffEDX 11 (X ' ) As X is subreflexive there exists a 

5 . 1.3 Ff ~ Ff 
n 

in the 

n = l , 2 , . . . , so that 

such that f ~ f in norm. 
n 

o(X" ,X' )-topology. But 

X ~ F 
n f 

in the weak;', topology. 

By Proposition 

A 
- X 

n 
for 

The subreflexivity 

of X' therefore implies that K(X) is norm dense in X" . But K(X) 

is closed in the norm topology (see McWilliams [l]) and thus K(X) = X" 

as claimed. // 

5 . 1 . 5 COROLLARY. The space m of bounded sequences ~snot isomorphic 

to a smooth conjugate space. 
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PROOF . The corollary is a consequence of the proposition since 

K(£) = £ . ' I 

In Section 5.2 we require a stronger property than smoothness. It is 

well-known (Day [2 , p . 112]) that X is smooth if and only if its norm 

is Gateau (weakly) differentiable at each point except the origin. If 

the norm of X is Frechet (strongly) differentiable X is sometimes 

said to be strongly smooth . With this stronger assumption on X in 

Proposition 5.1.3 we may assume that 

(see Giles [l , Theorem l]) . 

f ~ f 
X X 

n 
in the norm topology 

5 . 1 . 6 DEFINITION. We say that a Banach space has property A if it is 

smooth and if , whenever x ~ x in norm , f belongs to the closed 
n X 

linear span of {f : n = 1 , 2, ... } . 
X 

n 

Superficially at least, it seems that property A is a weaker condition 

than Frechet differentiability of the norm. If X is a 'Grothendieck 

space (i . e ., if weak* convergent sequences in X' are weakly convergent) 

which is smooth X has property A. This follows by a result of Mazur 

(Dunford and Schwartz [l , p. 422]) and Proposition 5.1.3. The next 

result , which generalizes a theorem of Smulian (Giles [l, Theorem 2]), 

is relevant to Section 5.2. 

5.1 . 7 PROPOSITION. Suppose X ~s a Banach space and that its conjugate 
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space X' has property A. Then X is reflexive. 

PROOF. Extending the proof of Proposition 5.1.4 we obtain that 

A 

The subreflexivity of X' therefore implies that X is 

dense in XII 
' 

but X is complete and consequently is reflexive. II 

5.2 Statement of the main result. 

There are a number of basic problems connected with smoothness, rotundity, 

and the stronger properties which arise by imposing uniformity conditions 

on these concepts. One such problem is the extent of the duality between 

these concepts. Another is the degree of rotundity or smoothness of X 

which can be obtained by renorming the space without changing the 

topology. 

For example it is well-known (see Day [2, p. 112]) that if X' is smooth 

(rotund) then X is rotund (smooth). This implies that, if X is 

reflexive, X is smooth (rotund) if and only if X' is rotund (smooth). 

Day [l] showed that these properties are not quite dual in general, by 

giving an example of a rotund space whose dual space is not smooth (in 

fact, whose dual space is not isomorphic to a smooth space). Klee [l] 

has produced a smooth space whose conjugate is not rotund. However there 

is no known example of a smooth space with conjugate not isomorphic to 

a rotund space (see Day [l, p . 518] and Cudia [l, p. 88]). We shall show 
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that if X has property A its conjugate is isomorphic to a rotund 

space . This follows from the following mapping theorem, the proof of 

which we give in the next section. 

5 . 2 . 1 THEOREM . Let X be a Banach space with property A. Then 

there exist a set r and a bounded one-to-one linear map T from X' 

into co(r) . 

Let us recall that c0 (r) is the Banach space consisting of the real

valued functions f on r which vanish at infinity; i.e., such that 

{y : y Er , jf(y) I > s} is finite for every s > 0 . 

Theorem 5 . 2 . 1 should be compared with the following powerful result of 

Lindenstrauss [2] : If X is a reflexive Banach space, then there exist 

a set r and a continuous one-to-one linear map T of X into c
0
(r) . 

In fact Theorem 5.2.1 follows from this result if we assume X to be a 

conjugate space, for then X is reflexive as we observed in Proposition 

5 . 1.7 . More generally, Amir and Lindenstrauss [l] have shown that if X 

is weakly compactly generated (i.e ., is the closed linear span of a 

weakly compact subset), then there exist such a set r and mapping T. 

We prove our smoothness result as a corollary of Theorem 5.2.1 at this 

point. 
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5 . 2.2 COROLLARY. Let X be a Banach space with property A. Then 

X' ~s isomorphic to a rotund space. 

PROOF. Theorem 5.2.1 implies the existence of a set r and a one-to-one 

bounded linear map T from X' into c
0
(f) . But by Day [l, p. 523] 

c0 (f) admits an equivalent strictly convex norm I ·I . We renorm X' 

by putting If I = II fll + I Tf I . It is readily checked that I· I is an 

equivalent strictly convex norm on X' and so the result follows. // 

We point out that though we consider spaces over- the reals our results 

are equally valid for complex spaces. 

5 . 3 Proof of Theorem 5.2.1. 

The proof of Theorem 5 . 2.1 is based on techniques developed by 

Lindenstrauss [land 2]. It is long and is broken up by a series of 

lemmas . 

The first result is due to Lindenstrauss [2, Lemma l]. As the proof is 

not short we refer the reader to the above reference for a proof. 

5 . 3 . 1 LEMMA. Let X be a Banach space and let B be a finite 

dimensional subspace of X. Let k be an integer and suppose s > O . 

Then there is a finite dimensional subspace Z of X containing B such 
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that for every subspace Y of X containing B with dim Y/B = k 

there is a linear map T 

Tb = b for every b EB . 

Y -+ Z with II TII s 1 + E: , and such that 

We denote by Xa the space of homogeneous functionals on X which are 

bounded on the unit ball of X . If f E Xa we define II fll , the norm 

of f , by ll fll = sup {/f(x)/ : ll x ll S l} With this norm the unit ball 

xa A 

of is compact in the X-topology as we established in Theorem 2.3.8. 

If C is a subspace of X and T is a map from C' into X' we find 

it convenient to denote the extension map of T from X' into X' by 

"' T . i. e . , T is defined by T( f) = T(f/C) where f/C denotes the ' ' 
restriction of f to C . 

5 . 3 . 2 LEMMA . Let X be a Banach space and let B be a finite 

dimensional subspace of X • Then there exist a separable subspace C 

of X and a linear map T C ' -+ X' such that "' 
II TII = 1 and 

"' A A 

T'x = x 

for each x EB. 

PROOF . Let C ~ B , n = 1 , 2, . . . be the subspaces of X given by n 

Lemma 5 . 3.1 for k = n and E: = 1/n , and let 
- 00 

C = sp[ U C ] • 
n=l n 

If E 

is a subspace of X containing B and such that dim E/B = n there 
' 

is a linear map TE E -+ C such that II TEii S 1 + 1/n and TEx = X 

for every XE B . We extend TE to a map (not linear) UE 
. . X -+ C by 

defining U X = 0 if x E X \ E Consider the adjoint map U' . C' -+ xa E . 
E 

. 

In the space of all bounded linear maps from C' into xa we take the 

. 
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"' pointwise topology, and on X-topology. As the unit ball of 

A 

lS X-compact, Tychnonoff's theorem ensures that the net 

{U ' E ~ B} (here we order the subspaces E by inclusion) has a limit 
E 

point 
a 

T : C ' -+ X . 

Let us show that T maps C' into X' . Suppose that f EC' and that 

x , y EX . If E ~ B © x © y then 

(UEf)(x + y) = (UEf)x + (UEf)y 

Consequently the above equation holds for the limit point T . This 

implies that T maps C' into X' . Similarly we can show that 

IITII S 1. Therefore it suffices to show that T'x = x whenever x EB . 

We consider an arbitrary f EX' and x EB . Given s > 0 there 

exists a subspace E containing B such that ICUEf/C)x - (Tf/C)xl < s" 

This implies l(f/C)x - (Tf/C)xl < s and in turn that 

l~(f) - (T'x)fl < s . But the f and s > O were chosen arbitrarily; 

hence we have the result. // 

5 . 3 . 3 LEMMA . Let X be a smooth Banach space., let x. l = 1, ... , n 
l ' 

and f. J = 1, ... , m be finite sets i,n X and X' respectively, 
J ' ' 

and let s > 0 . Then there exist a separable subspace C of X and 

linear C' X' such that - "' "' a map T -+ IITII - l T'x. - x. l - 1, ... , n -
' 

-
' 

-
l l 

-and II Tf. f .11 < s J = 1, ... , m 
J J ' . 

PROOF. By subreflexivity there exist y. , J - 1, ... ,m, such that 
J 

' 

' 
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II f . - f II < E ' 
J yj 

j = l , . . . , m . By Lemma 5 . 3 . 2 there exist a separable 

subspace C of -X and a linear map T : C' -+ X' such that II TII = l , 

- "' "' - "' T'x. = X. l - l , . . . , n and T'y . ' 
-

' l l J 

A • 

- y j , J = l , . . . , m • - "' "' As T 'y. = y. , 
J J -. - l , . .. , m we have f = Tf J -

' ' y. y. 
- J J 

j = l , ... , m This implies that 

II Tf . - f .II < E J = l , ... , m II ' J J 

Before continuing we note an easy result . 

5 . 3 . 4 LEMMA . Let Y be a closed subspace of X . . 
'lS a 

linear subspace, then it is isometric to Y' . 

PROOF . Let T DX 1 ( Y)-+ Y' be the restriction map. T is a linear norm 

preserving map of DX 1 (Y) into Y' . That T is onto follows from the 

Hahn-Banach theorem as Y is subreflexive. II 

By the density character of a Banach space we mean the minimal cardinality 

of a dense subset. 

5 . 3 . 5 LEMMA . Let X be a smooth Banach space and let M be an infinite 

cardinal number. Suppose z,w are subspaces of XX' 
' 

respectively of 

density character not greater than M. Then there exists a subspace C 

of X of density character not greater than M which contains z , 

together with a linear map T 

linear projection satisfying 

-C'-+ X' such that P = T 1,s a bounded 

II PII = l , Pf = f 

for every x EC , and such that PX' = DX
1
(C) 

for every f E W A A 

P'x = x 
' 

In particular, PX' 
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is isometric to the dual of C. 

PROOF. The proof is by transfinite induction. Initially we assume that 

{f. : J - 1,2, ... } is dense in W, and that 
J 

dense in z . By Lemma 5.3.3 we can construct 

{c n - 1,2, ... } of separable subspaces of -
n 

{T n - 1,2, ... } of linear maps T C' -+ -
n n n 

-(i) II T II - l n - l, 2 , ... -
' -n 

- '"' A 
(ii) T X. = x. l < i < n n i i ' ' - Ak Ak 

T 'x. - X. l < i < n -
' - ' n i i 

-(iii) II T f. f .II < 1/n l < i < n 
' ' n i i 

k 

{x. : j = 1,2, ... } is 
J 

inductively a sequence 

X and a sequence 

X' 
' 

such that 

' 
n = l, 2 , ... 

' 
l < k < n - l and - - ' 
n = 1, 2, ... 

1,2, ... } where {x. i = is dense in ck for k = 1, 2 , ... . i 

00 

We let C = sp[ UC J and we consider the extensions of T , 
n=l n n 

T : C ' -+ X' , for n = l , 2 , . . . , n defined by T ( f) = T ( f /C ) 
n n n 

where 

f EC' . Following the technique of Lemma 5 . 3.2 we let T be a limit 

A 

point in the X-operator topology of the sequence {T 
n 

n = 1,2, ... } 

-and let P - T It follows then that II PII = l , P is linear and that 

Ak Ak A A 

P'x. = x. for every i,k . This last equation ensures that P'x = x 
i l 

for each x EC. This implies that Pf= f for each f E DX
1
(C) as 

X is smooth. Using the subreflexivity of C we easily obtain that 

DX 1 (C) = PX' and that P is a projection. The last remark follows 

from Lemma 5.3.4. 
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We assume now that the lemma holds for all cardinals less than M. 

Suppose that D is the well-ordered set of ordinals less than M. Then 

there are closed subspaces {z Cl E D} of z {w . a E D} of w 
' 

. 
Cl Cl 

with z C ZS ' 
W C W 

Cl Cl s for Cl < s ' 
such that the density characters 

of z 
' 

w are at most the cardinality of Cl for infinite Cl 
' 

and 
Cl Cl 

such that Z = UZa 
a E D 

W = UWCl 
a E D 

By the induction hypothesis we can 

construct inductively for every a ED a subspace C of X whose 
Cl 

density character is at most the cardinality of a for infinite a and 

such that C ~ Z u U CQ . 
a a S<a µ 

Together with each C we can construct 
Cl 

a linear map T 
Cl 

C'-+ X' 
Cl 

such that 

satisfying the conditions II Pall = 1 , 

and consider the extensions of T 
' Cl 

for T we take a limit point in the 

-
T 

{T . Cl ED} We leave the reader to . . 
Cl 

the conditions of the lemma . II 

Cl 
A 

-P = T is a linear projection 
Cl Cl 

A A 

P ' x = x for each x EC , 
Cl Cl 

C' -+ X' . . 

We let C = UCa 
a E D 

for each Cl . Again 

X-operator topology of the net 

check that T and C satisfy 

Before proceeding we need to note two simple properties of Banach spaces 

with property A . 

5 . 3. 6 LEMMA. Let Y be a Banach space with property A. Th en t he 

density character of Y' is that of Y . 

PROOF . It is sufficient to check that the density character of Y' is 
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not greater than the density character M of Y . If D is the well-

ordered set of ordinals less than M we may assume that {ya a ED} 

is dense in Y. The set <P consisting of all finite rational linear 

combinations of the elements f is a set of cardinality M. We show 
Ya 

first that <P is dense in Dy,(Y) If y E Y there is a sequence 

{ya . n - 1,2, ... } such that Ya -+ y ln norm. Property A implies . -
n n 

that f E sp{f } which ensures that f belongs to the closure of y Ya y 
n 

<P . The lemma now follows as y lS subreflexive. II 

5.3.7 LEMMA. Suppose X ~s a Banach space with property A, and that 

Ya C YS C X for a< S < y. Then 

DX' ( UYa ) = UDX' (Ya) ' 

a < y a < y 

provided 

is a subspace. 

PROOF. It suffices to show 

DX' ( UY a ) C UDX' (Ya) . 

a < y a < y 

To establish this we consider a support functional f where y E UYa y 
a < y 

Then there exists a sequence {y n = 1,2, ... } C UYa such that n 
a < y 

Yn-+ Y in norm. We need only invoke property A once more to obtain 

the result. I I 

. 
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We are now in a position to prove a theorem whereby it will be possible 

to reduce the proof of Theorem 5.2.l to the separable case . 

5.3 .8 THEOREM . Let X be a Banach space with property A. Let µ 

be the first ordinal of cardinality the density character M of X . 

For every a satisfying w s asµ , there is a subspace X of X of 
a 

density character at most the cardinality of a, together with a linear 

map T 
a 

X ' -+ X ' 
a 

such that P - T 'ls a bounded linear projection of a a 

X' into X' satisfying 

1. IIP all = l ' 
2. p X' = Dx ,(Xa) and is isometric to X' a ' a ' 
3. paps = p p = PS where s < a 

S a ' 
4. UPS 1X ' 

. 
dense p X' for a > w 'lS -in 

' 
every . 

S<a + a 

Moreover, UP X' 'ls dense 'ln X' . 
a a<µ 

PROOF. By Lemma 5.3.6 we may assume that {f : a<µ} is a dense 
a 

subset of X' We construct {T · w Sa S µ} by transfinite induction. 
a 

If 

map 

p f 
w a 

and 

M = X 

T 
w 

- f -
a 

0 ' 
T = P = I w w has the required properties. Assume now that 

By Lemma 5.3.5 there is a separable space X together with a 
w 

such that p = T satisfies IIPWII = l p X' - Dx,(xw) and 
' 

-w w w 

for a < w . We therefore assume that the subs paces XS ' 
corresponding maps TS have been defined for w s s < y 

' 
and that 

they satisfy conditions l to 4 of the theorem. 
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Suppose that y =a+ l o Then we invoke Lemma 5.3.5 to obtain a subspace 

X and a linear map T so that X C X 
y y a y and also so that p = T y y 

restricted to PX' u {f} is the identity. a a Lemma 5.3.5 is applicable 

by Lemma 5.3.6. It follows that PyPS = p p p = paps= PS for s < y 
y a S 

Similarly P'P' 
y s 

= P' 
s 

provided s < y may be establish using the fact 

A 

is weak* dense in (Dunford and Schwartz [l, 425]). that X X" p. a a 

If on the other hand y lS a limiting ordinal, let X = ux- a'.nd let y a 
a < y 

T . X' -+ X' be the extensions of T to X' for w s a < y For . . a y a y 

limit point 
A 

T we take a in the X-operator topology of the net y 

{T . w s a < y} Properties 1, 2 and 3 follow without diff'.iculty . . a 

whilst 4 holds by virtue of Lemma 5.3.7. 

. 

The last statement now follows as f E PX' a w for a< w and f E P X' 
a a+l 

for a ::::. w • // 

5.3.9 LEMMA. Let X be a Banach space with property A and let 

{P : w s asµ} be the set of projections on X' as ~n Theorem 5.3.8. a 

Then for every f EX' 

is finite. 

and s > o the set {a: IIP 
1

f - P fll > s} 
a+ a 

PROOF. Suppose we assume on the contrary that there is an infinite 

sequence of ordinals w S a
1 

< a
2 

< .•. < µ such that II P f - P f 11 ::::. s 

for i = l , 2 , • • • o Let us denote a. by 
l 

2i - l 
' 

a. 
1 

a. 
l+ l 

a. 
1 

by 
i+ 

2i Let 
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00 

-
X = 

00 
U X. 

. l i i= 
and consider the extensions of T T ·. X' ~ X' , . ' . i i OO 

for 

A 

i = 1,2, .... Suppose that T is a limit point in the X-operator 
00 

{T. 1,2, ... } 
~ 

topology of the sequence i = . Then p = T lS a i 00 00 

00 

projection of X' onto u P.X' and P.P - P. for i = 1, 2, ... - • i i 00 i i=l 

If h E PX' 
' 

it follows that lim IIP.h - hll = 0 . 00 i i 
For suppose that 

g E P.X' and that II g - hll < 0/2 
' 

then 
J 

II P.h - hll s IIP.h - P.gll + II P.g - gll + Ilg - hll < 0 i i i i for i > J • Hence 

lim II P. f - p fll = lim IIP.P f - p fll = 0 . i 00 l 00 00 

But this implies that {P.f : i = 1,2, ... } is a Cauchy sequence which 
l 

contradicts our original assumption. // 

Before establishing Theorem 5.2.l we need observe an elementary result. 

5.3.10 LEMMA . Let X be a Banach space with property A. Then if 

Y &Sa closed subspace of X , Y is a Banach space with proper±y A. 

PROOF. As X lS smooth we have that y is smooth. Let us therefore 

suppose that {y } lS a sequence in n 
y such that yn ~y in norm. Let 

gy ,gy denote the support functionals in Y' and f f the support y ' y n n 

functionals in X' . 

Since f E sp{f } in X' 
y yn 

it follows that g E sp{g } in Y' 
y yn 

and 
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this completes the proof. II 

PROOF OF THEOREM 5.2.1. The proof is by transfinite induction on the 

density character M of X or X' (recall Lemma 5.3.6). If M = N 
0 

the result is well-known: we may take {x} to be a dense subsequence 
n 

of the unit ball and define (Tf)(n) = f(x )In , for n = 1,2, .... 
n 

Let us assume now that the theorem has been proved for all cardinals 

smaller than M. Let {P 
a 

constructed in Theorem 5.3.8. 

w Sa<µ} be the set of projections 

We. know by the previous lemma that p X' 
a 

is isometric to X' the conjugate of a Banach space with property A. a 

Furthermore the density character of X 
a 

is less than M and so the 

induction hypothesis implies the existence of a set r and a one-to-one 
a 

bounded linear map from p X' 
a 

into We may assume that the 

r are pairwise disjoint and that II T II S 1 for a satisfying a a 

w s a < µ • We let f =Nu U{f : w s a<µ} where 
a+l N denotes the 

natural numbers. Then we define 

(Tf)n = (T P f)n w w for n EN, and 

(Tf)y = 112 T 
1

(P 
1

f - P f)y 
a+ a+ a for Y E f 

a+l 

Lemma 5.3.9 guarantees that T maps X' into c
0
(r) . It is - a l so clear 

that T is linear and II TII S 1 Furthermore if Tf = 0 we have 

Pf= 0 and P 1 f =Pf for a satisfying w Sa<µ. As w a+ a 

UPsX' is dense in Pa.X' for every limiting ordinal a> w, it follows 

S < a 
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Cl 

for all a<µ. 
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But UP X' 
Cl 

Cl < µ 

is dense in X' so that f = 0 . Hence T is one-to-one and the proof 

is completed. II 

5.4 Remarks on the proof of Theorem 5.2.1. 

There are a number of immediate questions concerning Theorem 5.2.1. We 

would of course like to establish the existence of a bounded one-to-one 

linear map from X into c
0
(f) for some set r . Then the technique 

of Corollary 5.2.2 would allow us to assert that if X is a Banach space 

with property A , it is isomorphic to a rotund space. It is not 

difficult to see that we could show the existence of such a map if the 

linear maps {T : w S Cl S µ} of Theorem 5.3.8 were adjoints. 
Cl In 

Lemma 5.3.2 we began by considering a net of adjoints {UE : E :) -B} 

and then taking a limit point T in the 
A 

X-operator topology. The 

following simple example shows that generally we could not expect T to 

be an adjoint also. 

5 .4. l EXAMPLE. We consider a sequence of maps Pn: m + c
0 

defined 

by P n : ( x1 , x2 , . .. ) 1+ ( x1 , x 2 , ... , xn, 0 ... ) for n = 1, 2, . . . . Now the 

natural embedding TI of C I 
0 

into m' is a limit point of ~h e 
A sequence {P'} 

n in the X-operator topology. However TI is not an adjoint 

map for it is not continuous from (c
0

' ,o(c
0

1 ,c
0

)) into (m' ,o(m' ,m)) . 
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5 . 4.2 REMARKS. We comment that one consequence of Lemma 5.3.6 is that 

not all smooth spaces have property A. For example, £
1 

is isomorphic 

to a smooth space as it is separable (see Day [l, Theorem 4])-,--y:__~t 

£
1 

= m is non-separable. On the other hand it is interesting to observe 1 

that a result of Klee [2, Corollary 1.5] implies that a Banach space X 

with separable conjugate X' is isomorphic to a strongly smooth space 

(and hence to a Banach space with property A). 

It is perhaps instructive to observe another consequence of Klee's 

result. Suppose we consider a Banach space X with separable second 

conjugate X" . Klee's corollary implies that X' is isomorphic to a 

strongly smooth space. If this space were a conjugate space we would 

have that X is reflexive by Proposition 5.1.7. But separable quasi

reflexive spaces (see Civin and Yood [l]) have separable second conjugates. 

Thus we have an example of a conjugate space with an equivalent -n-0rm 

which is not a dual norm. In fact there is a considerable history to 

this problem which was posed first by Dixmier [l, p. 1070]. Recently 

Williams [l] has shown that each equivalent norm on X' is a dual norm 

if and only if X is reflexive. 



CHAPTER 6 

ALMOST REFLEXIVITY AND RELATED PROPERTIES 

6.0 Introduction. 

In Chapter 3 we discussed a generalization of weak compactness for 

subsets of LCTVSs. Then we considered a class of generalizations of 

semi-reflexivity. In this final chapter we are chiefly concerned with 

a different type of generalization of reflexivity called almost reflexivity. 

This concept is of special relevance in the theory of Banach spaces and 

so our attention is again restricted to these spaces. We use only 

standard methods in this treatment: the author was unable to gain any 

advantage by the use of non-standard techniques. 

6.1 Basic definitions and questions. 

6 .11.1 DEFINITION. Let X be a Banach space and suppose that A is a 

subset of X . We say that A is weakly conditionally sequentially 

compact if every sequence in A contains a weak Cauchy subsequence. If 

the unit ball is weakly conditionally sequentially compact X is said 

to be almost reflexive; i.e., X is almost reflexive if every bounded 

sequence contains a weak Cauchy subsequence. 

9 8. 
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We remark that in arbitrary Banach spaces every bounded sequence has a 

weak Cauchy subnet . This follows as bounded sets are weakly precompact 

for recall Theorem 2 . 4.3 . Furthermore, if a bounded set is weakly 

metrizable it is weakly conditionally sequentially compact (for in 

metric spaces sequential compactness is equivalent to compactness). 

Eberlein ' s theorem implies that a weakly sequentially complete space 

which is almost reflexive is reflexive . 

6 . 1 . 2 DEFINITION . A Banach space X is quasi-separahle if every 

separable subspace of X has a separable conjugate space. 

Lacey and Whitley [l , Theorem 3] show that a quasi-separable space X 

is almost reflexive . On the other hand they were not able to decide 

whether the converse also holds . There is another concept closely 

related to almost reflexivity and we find it convenient to name it for 

the purposes of this chapter . 

6 . 1 . 3 DEFINITION . We say that a Banach space X is nearly almost 

reflexive if for each bounded sequence 

Cauchy sequence of averages far out in 

{x} in X there is a weak 
n 

{x} 
n 

(see Day [2, p. 40]). 

An almost reflexive space is nearly almost reflexive. McWilliams [2, 

Theorem 2] shows that a Banach space X which is weak* sequentially 

dense in X" (i.e . , for which K(X) = X") is nearly almost reflexive. 

Conversely, McWilliams shows that if X is almost reflexive then K(X) 
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need not equal X" . However the converse remains open for separable 

spaces. We comment that if X' is separable then K(X) = X" . 
' 

for 

the unit ball B is weak~': dense in B" and B" equipped with the 

X'-topology is metrizable (Dunford and Schwartz [l, p. 426]). These and 

other questions are closely related to Problem 5.4 of Bessaga and 

Pelczynski [2]. Let us recall it here. 

Let X be a separable Banach space. Are the following conditions 

equivalent: 

(a) every bounded set in X is weakly conditionally sequentially 

compact., 

(b) no subspace of X ~s isomorphic to £., 

( c") X' is separable? 

It is clear that the equivalence of these conditions implies the equival

ence of almost reflexivity, quasi-separability and nearly almost 

reflexivity for spaces of arbitrary density character . Indeed if X 

were separable these conditions would then be equivalent to the condition 

that K( X) = X" . 

Furthermore a number of other results would follow trivially from the 

equivalence of (a), (b) and (c"). For example we easily obtain that if 

X' is almost reflexive then X is almost reflexive (for assuming that 

X is not almost reflexive we would have that X contains a copy of £
1 

so that consequently, since m is not almost reflexive, X' would not 



101 

be almost reflexive). 

One important positive result is the following. 

6.1.4 THEOREM. Let X be a subspace of a Banach space with an 

unconditional basis. Then the following conditions are equivalent: 

(1) X is almost reflexive~ 

(2) X ~s nearly almost reflexive~ 

( 3 ) X ' ~s s eparab le~ 

(4) K(X) = X" . 

PROOF. The result is an immediate consequence of Theorem 1 of Bessaga 

and Pelczynski [2]. // 

In this context it may prove useful to know that Pelczynski [2, p. 373] 

has shown that a Banach space X is almost reflexive if and only if 

every subspace of X with a basis is almost reflexive. 

6.2 Almost reflexive spaces. 

In this section we are concerned with almost reflexive spaces and weakly 

conditionally sequentially compact subsets of Banach spaces. As we 

remarked in the previous section it is not true that X almost reflexive 

implies K( X) = X" the space c
0 

( r) is almost ref le xi ve but is not 

weak* sequentially dense in m(f) when r is uncountable (McWilliams 
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[2 , Example 2]). We do have however the following result. 

6.2 . 1 THEOREM. Let X be an almost reflexive Banach space. Then 

K(X) equipped with the X'- topology is nearly semi-reflexive. 

PROOF . Let E denote (K(X) , o(K(X),X')) . It suffices by Theorem 

3 . 4 . 2 to show that each bounded set in E is nearly weakly compact. If 

B is s u ch a set it is bounded in the norm topology on K(X) by the 

uniform boundedness principle . Consequently there exists a bounded set 

A 

A in X such that B is contained in the closure of A considered as 

a subset of E . Now A is weakly conditionally sequentially compact, 

so that A is a weakly sequentially compact subset in E . Corollary 

3 . 3 . 4 implies that B is nearly weakly compact which establishes the 

result . // 

We observe that K(X) = X" if and only if E is semi-reflexive. An 

interesting consequence of the previous theorem is obtained by considering 

the space co(r) . 

6 . 2 . 2 COROLLARY. Let r be an arbitrary set. Then the space m
0
(r) 

equipped with the £
1

(I')-topology is nearly semi-reflexive. 

PROOF . The corollary follows from Theorem 6.2.l as c
0
(r) is almost 

reflexive and K(c
0
(f)) = m

0
(r) . // 
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6.2.3 EXAMPLE. It is not generally true that if X is almost reflexive 

then the unit ball B" of X" is weak~': sequentially compact. Let 

X = c0 (f) where r = [0,2TI] . Then X is almost reflexive but the 

unit ball of X" - m(f) is not weak~': sequentially compact as we now 

show. We define a bounded sequence {x"} m(f) by x"(y) 
. in = sin ny n n 

for all y E [0,2TI] and for n = 1, 2 , ... . If {x"} has a weak~': 
n 

Cauchy sequence {x" } 
' 

lim x" (f) exists for each f E ,Q,l(f) . This 
nk k nk 

implies that lim sin nky exists for each y E [0,2TI] 
k 

But this is 

impossible (see Rudin [l, p. 143]). The question remains whether if X 

is separable and almost reflexive, B" is weak~': sequentially compact (if, 

in fact, X' is then separable, B" is weak~': sequentially compact). 

Th · l t Thus i·f X' e converse is a ways rue. is weakly compactly generated 

X is almost reflexive for B" is weak~': sequentially compact by a result 

of Amir and Lindenstrauss [l, Corollary 2]. 

Let us now consider a weakly conditionally sequentially compact subset 

A of a Banach space X . It is of some interest and importance to know 

whether the closed, circled, convex hull of A , f(A) , is also weakly 

conditionally sequentially compact. We do have the following result. 

6.2.4 THEOREM. Suppose that {x} ~s a weak Cauchy sequence in X. 
n 

Then the closed~ convex~ circled hull of 

sequentially compact. 

{x} 
n ~s weakly conditionally 



PROOF. We denote ( x 11
, a ( X 11

, x' ) ) by 
A A 

E and consider A - {x} 
n 
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as a 

subset of E. Then A is relatively compact and so Krein's theorem 

A 

implies that I'(A) is compact. Now as A is the set of points of a 

Cauchy sequence in E , I'(A) is metrizable (Edwards [l, p. 634]). 

Therefore I'(A) is sequentially compact which in turn implies that 

I'(A) is weakly conditionally sequentially compact in X. // 

Garling [l , Proposition 2] has shown that if the unit ball is contained 

in the closed , circled , convex hull of a weak Cauchy sequence then the 

space is finite dimensional. 

Let xy be Banach spaces. A linear map T : X + Y is completely 

continuous if it maps weakly convergent sequences into norm convergent 

sequences . 

6 . 2.5 DEFINITION. Let X be a Banach space. If for every Banach space 

Y , each weakly compact map T X + Y is completely continuous then X 

is said to have property D.P . (i.e., the Dunford-Pettis property). 

The following result is essentially one of Grothendieck [l, Theoreme 10]; 

see also Pelczynski [4, Proposition 1.2]. 

6.2 . 6 THEOREM. Let X be an almost reflexive Banach space. Suppose 

that either X or X' has property D.P. Then every weak Cauchy sequence 

~n X' converges in the norm topology of X' . 
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PROOF. If X' has property D.P., X has property D.P. (Grothendieck 

[l, p. 136]). Therefore it suffices to establish the result under the 

assumption that X has property D.P. It is sufficient to show that 

every sequence which is weakly convergent to zero in X' 
. 

converges in 

the norm topology of X' . This follows from the fact that in a Banach 

space a sequence {x} is (weak) Cauchy if and only if {x 
n n. 

l 

is (weakly) convergent to zero for each subsequence {x } of 
n. 

For such a sequence {f} we define 
n 

Tx = (f (x)) for all x EX . 
n 

l 

- X } 
n. 1 l+ 

{x} . 
n 

T lS a linear map from X into co and lS weakly compact as we now 

show. We first observe that T'e' - f where e' - (om) lS the nth - -
n n n n 

unit vector in the space Q, = co 
I Since . the unit ball B Q, of Q, lS 

the closed, circled, convex hull of the unit vectors , the set T'B,Q, is 

the closed, circled, convex hull of a sequence which is weakly convergent 

to zero in X' . Hence by Krein's theorem T'B,Q, is a weakly compact 

subset of X' . Thus T' is weakly compact and therefore so is T. 

As X has property D.P. this implies that TBX is a relatively compact 

subset of since X is almost reflexive. 

Therefore lim II f II - lim sup { I e' Tx I 
n n n n 

II xii < 1} = o • / / 

6.2.7 COROLLARY. Suppose X is an almost reflexive Grothendieck space 

which has property D.P. Then weak* convergent sequences in X' are norm 
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convergent. 

6.2 . 8 REMARK . A simple generalization of Lemma 8 of Grothendieck [l] 

shows that the condition that weak * convergent sequences in X' be norm 

convergent is equivalent to the property that any continuous linear map 

from X into a separable Banach space Y . 
is compact. 

6.2.9 COROLLARY . Suppose X is a separable~ almost reflexive space 

which has property D.P. If X ~s isomorphic to a conjugate space then 

X ~s finite dimensional. 

PROOF. If X is isomorphic to a conjugate space weak Cauchy sequences 

in X converge in the norm topology. As X is almost reflexive this 

implies that the unit ball BX is compact. Thus X is finite 

dimensional as claimed. // 

6.3 Nearly almost reflexive spaces. 

6 . 3.l DEFINITION. Let X be a Banach space. Then X has property 

D (i.e., the Dieudonne property) if for every Banach space Y each 

linear map T: X ~ Y which maps weak Cauchy sequences into weakly 

convergent sequences is weakly compact. 

6.3.2 THEOREM. Let X be a Banach space. If X is nearly almost 
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reflexive then X has property D. 

PROOF . Let T : X ~ Y and suppose T maps weak Cauchy sequences into 

weakly convergent sequences. Consider a bounded sequence 

Then there is a weak Cauchy sequence of averages far out in 

{x} in X . 
n 

{x} , say 
n 

{w} Therefore {Tw} is a weakly convergent sequence in Y and so 
n n 

T is weakly compact by a result of Nishuira and Waterman [l, Theorem 2]. // 

The following corollary should be compared with Proposition 15 of 

Grothendieck [l , p . 170] . 

6 . 3 . 3 COROLLARY . Let X be nearly almost reflexive and let T be a 

linear map from X into Y . Then if T is completely continuous T 

is weakly compact . 

PROOF . If T is completely continuous T maps weak Cauchy sequences 

into norm convergent sequences . // 

6 . 3 . 4 DEFINITION . A continuous linear map T is strictly singular if 

whenever the restriction of T to a closed subspace has a bounded inverse 

it follows that the subspace is finite dimensional. 

The following result generalizes Theorem 7 of Lacey and Whitley [l]. 

6 . 3 . 5 THEOREM. Let Y be nearly almost reflexive and suppose that T 
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. 
~s a linear map from X into Y. If T ~s completely continuous then 

it is strictly singular. 

PROOF . Suppose that T is completely continuous and that the restriction 

of T to a closed subspace M has a bounded inverse. Then M 
. is 

nearly almost reflexive and so , by Corollary 6.3.3, T/M is weakly compact. 

The result is implied by a theorem in Goldberg [l, p. 88]. // 

6 . 3 . 6 REMARK. The result of Nishiura and Waterman [l, Theorem 2] implies 

that if a weakly sequentially complete space X is nearly almost 

reflexive then X is reflexive . Thus for weakly sequentially complete 

spaces we have that nearly almost reflexivity is equivalent to almost 

reflexivity , which in turn is equivalent to reflexivity. 

6 . 3 . 7 DEFINITION. (a) The series Ix is weakly unconditionally 
n 

Cauchy (w . u . c . ) if for every permutation 

weak Cauchy. 

(k) 
n 

the series 
. 
is 

(b) The series Ix is unconditionally convergent (u.c.) if for 
n 

every permutation (k ) 
n 

the series L~ converges. 
n 

6 . 3 . 8 THEOREM. Suppose X is nearly almost reflexive. Then in X' 

every w. u.c. series is u.c .. 

PROOF . Suppose there exists in X' a w.u.c. series which is not u.c .. 

By Theorem 5 of Bessaga and Pelczynski [l] X' contains a subspace 
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isomorphic to c0 . By Theorem 4 of the same paper this implies X 

contains a subspace isomorphic to £
1 

. But £
1 

is not nearly almost 

reflexive . // 

6 . 3 . 9 DEFINITION. (a) Let X, Y be Banach spaces. A linear map 

T : X + Y is unconditionally converg~ng (u . c . ) if it maps every w.u.c. 

. . 
series in X into u.c . . . 

series in y . 

(b) A Banach space X has property (V) if every u.c. map 

T X + Y is weakly compact . 

( c) A Banach space X has property (u) if for every weak Cauchy 

sequence {x } in X there exists a w. u . c . series Iuk such that n 
n 

{x l uk} is weakly convergent to zero. n 
k=l 

6 . 3 . 10 THEOREM . If X is a nearly almost reflexive Banach space which 

has property ( u) , then X has property ( V) • 

PROOF . Let Y be an arbitrary Banach space and let T: X + Y be u. c .. 

Let {x} be an arbitrary sequence in X. Then, by assumption, there n 

exists a weak Cauchy sequence of averages {w} far out in {x} . 
n n 

Since X has property (u) there is a w.u.c. series I~ such that the 
n 

sequence {w 
n - l ~} 

k=l 
converges weakly to zero. Thus as T isu.c., 

{Twn} converges weakly to the element ITuk of Y . That T is weakly 

compact follows by the result of Nishiura and Waterman [l]. / / 
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6.3 . 11 COROLLARY. If X is a nearly almost reflexive space which is 

isomorphic to a suhspace of a space with an unconditional basis~ then 

X has property (V) • 

PROOF. Corollary 2 of a paper of Pelczynski [l] implies such a space 

has property (u) . The result is therefore a consequence of Theorem 

6 . 3.10 . // 
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