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So, naturalists observe, a fl ea 
Hath smaller fleas that on him prey; 
And these have smaller fleas to bi te 'em, 
And so proceed ad infinitum. 

Thus every poet, in his kind, 
Is bit by him that comes behind. 

- Jonathan Swift , On Poetry 
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Abstract 

This thesis is concerned with the finite-difference multigrid solution of stat ic 
scalar nonlinear two-dimensional ellipt ic Diri ch let boundary value problems, and 
aspects of the implementation of the multigrid algorithm on a parallel processing 
system, namely the Connect ion Machine CM-2 . 

The numerical solution of boundary value problems is a very important 
area of computational mathematics, as such problems frequently arise from the 
modelling and simulation of various physical systems. 

The multigrid philosophy for the problems under consideration is in principle 
a simple one: approximations with smooth errors are efficiently obtained by ap­
plying suitable relaxation methods; because of the error smoothness, corrections 
to these approximations may then be calcu lated by projecting a corresponding 
equation to a coarser grid. This idea is recursively applied to a hierarchy of suc­
cessively coarser grids, and leads to an asymptotically optimal iteration for the 
numerical solution of a wide class of partial differential equations. 

Despite the excellent convergence properties of these algorithms for ell ipti c 
problems however , the multigrid process cannot be thought of as a fixed method 
- researchers often experiment a great deal with the many multigrid parame­
ters available to them before obtaining suitable convergence properties. For this 
reason, we have written a software package called MGLAB which aims to provide a 
robust user-friendly "laboratory" environment, allowing the researcher to quickly 
and simply experiment with the multigrid solution of boundary value problems. 
The package is available in a standard FORTRA 77 version for use on conven­
tional serial computers and also in a CM Fortran version to gain the benefits of 
parallel data processing on the Connection Machine. 

With the advent of new computer technologies, it is imperative that nu­
merical algorithms keep up to date. The increasingly widespread use of parallel 
processing systems in advanced computing technologies creates a certain chal­
lenge for multigrid algorithms, for they are not readily adapted to such machines . 

In this report, we discuss the fundamentals of the multigrid method for 
linear and nonlinear equations, including theoretical aspects which are of concern 
to both the multigrid programmer and practitioner. We then present numerical 
results obtained from MGLAB for certain model problems; these cover a range of 
complexity from Poisson's equation to the nonlinear geometric problem of finding 
surfaces of prescribed curvature. We also consider the special requirements of 
implementing a multigrid scheme on the Connection Machine CM-2. Finally we 
discuss how to generalise the problems under investigation here to the solution 
of time-dependent vector boundary value problems in higher dimensions . 
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Preface: An Essay on Three 
Revolutions in Science 

Humanity's greatest achievement has been t he invention of Science. It has com­
pletely transformed our lives , our society and our planet , and is inextricably 
linked with our very idea of advancement and progress. Indeed, the word science 
is derived from the Latin word meaning knowledge. 

The ancient Greek empire provided a stable environment for the birth of 
a great school of early philosophers , which arose in Alexandria, Egypt. Of all 
the ancient peoples , it was the Greeks who left the greatest heritage to present­
day science by layi ng the foundations of the scientific method. One of a long 
line of Greek scholars, Aristotle (384-322 Be) epitomised this new systematic 
thinking. He studied all areas' of science and familiarised himself with the entire 
development of Greek thought preceding him. Aristotle developed deductive logic 
as a means of reaching conclusions. In this method , one reasons from known 
scientific principles in order to draw a conclusion relating to a specific case. In 
his books Physics and Metaphysics , Aristot le defined natural ph ilosophy and 
investigated the most general and basic principles of reality and knowledge. 

Aristotle and his contemporaries instigated the first scientific revolution by 
bringing to bear the full weight of abstract reasoning and logic upon the natural 
world . In fact, Aristotle went too far with this theoretic formalism by distancing 
himself and his school from nature itself; they tried to create a great metaphysi­
cal framework for explaining the nature of the universe, which was too abstract. 
He and his disciples concentrated on intellectual debate regarding form , change, 
elementary being and so on, while neglecting actual observation and experimen­
tation . Although Aristotle greatly contributed to the birth of classical science, 
many of his deductive conclusions were false , since he based his arguments on 
mistaken ideas and premises , rather than on experiments. 

In about 150 AD , Ptolemy developed a unified model of t he universe . Hi s 
theories and observations are preserved in a 13-volume work called Math ematike 
Syntaxis (Mathematical Composition), but which became widely known as the 
Almagest (an Arabic word meaning "the greatest") due to the admiration and 
acclaim that it won. Ptolemy believed that the Sun, Moon, stars and planets all 
moved at various speeds about a stationary Earth , which he placed at the centre 
of the universe. 

In this same period , the Greek anatomist Galen practised medicine in Rome. 
Just as Aristotle had emphasised abstract reasoning, Galen simi larly based his 
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anatomical conclusions on thoughts rather than observations, though for a differ­
ent reason: dissection of human cadavers was prohibited in ancient Rome. In any 
event, Galen also had many mistaken ideas. Nevertheless , the schools of thought 
founded by Aristotle, Ptolemy, Galen and their contemporaries were accepted as 
authoritative throughout Europe until the sixteenth century. 

The teachings of the ancient Greeks were lost to Europe in the Dark Ages, 
being reintroduced through the Arab empire in the 11th century. (In fact , it was 
Aristotle who taught the young Alexander the Great, who later carried Greek 
culture to Egypt , Asia Minor and Persia.) 

During the Middle Ages, Europe was controlled by Church States and the 
development of science stagnated. Roger Bacon, an English monk living in the 
1200's for example, was greatly interested in advancing scientific knowledge. He 
criticised the deductive method of obtaining knowledge, seeing the need for ex­
periment, measurement and mathematics. He was imprisoned for criti cising de­
pendence on accepted authority. 

In general, European scholars of that time preferred theology to the study 
of nature. During the thirteenth century, theologians organised the knowledge in 
the Greek writings so as to agree with their own religious views. Scholars saw 
no need for direct observation of nature. The writings of Aristotle, Ptolemy and 
Galen were considered Truth; to disagree with them was considered heresy. 

The great scientific renaissance can be traced to precisely 1543, when two revo­
lutionary works were published. icolaus Copernicus, a Polish astronomer, pub­
lished De R evolutionibus Orbium Coelestium (On the Revolutions of the Celestial 
Orbs), which .contradicted Ptolemy 's model of the universe. Simultaneously and 
independently, the Belgian anatomist Andreas Vesalius published De Humani 
Corporis Fabrica (On the Fabric of the Human Body), which described his own 
anatomical observations, rather than merely repeating Galen 's statements. 

While each volume was conceived in terms of the corresponding work of 
classical antiquity, each was consciously novel in its approach, and proved to be 
revolutionary in its implications. A new philosophy - Copernicanism - was 
emerging, one which was rational , radical and profoundly anti-Aristotelian and 
anti-Ptolemaic. It also became a symbol of the struggle for free unconventional 
intellectual development. 

Some fifty years later, Galileo Galilee made fundamental astronomical dis­
coveries with the newly-invented telescope, and Copernicanism was publicised in 
a highly dramatic manner. Galileo and Francis Bacon became the patron saints 
of the new philosophy in England , where the scientific revolution reached its 
pinnacle in the work of the Royal Society and especially of its most celebrated 
Fellow, Sir Isaac ewton. The important ingredient of this revolution was a deep 
concern with methodology. A profound belief arose in the discovery of a scientific 
method, which was presumed to be unique and universal. The most influential 
writers in this regard were Descartes and Bacon, who each had a grand vision of 
its potential. The science historian Marie Boas Hall writes [54]: 

Both Bacon and Descartes saw natural philosophy as the most urgent and 
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profitable field for investigation ; both saw it yielding its secrets rapidly if 

the proper methods of research were applied; both insisted that the world is 
utterly rational, composed of nothing but matter and motion , and that only 
rational, anti-mystical methods of thought could therefore comprehend it. 

Whereas Descartes began with self-evident principles and deduced complex 
metaphysical laws ("I think, therefore I am"), Bacon began with empirically­
determined fact. Bacon rejected a priori hypotheses in favour of those based on 
sense experience. Further, he insisted that all hypotheses be subject to cru cial 
deciding experiments, by which they are accepted or not. 

Some time later in 1660, the Royal Society of London was formed by scien­
tists who saw themselves as being inspired by Bacon and Galileo, men who had 
given them a profound belief in experiment, and a conviction of the importance 
of mathematical physics . 

The greatest English scientist , ewton, drew the profound vision of a me­
chanical universe from Descartes; the experimental method from Boyle and 
Hooke; the distrust of hypotheses not based on empirical evidence and a fas­
cination for induction from Bacon , and from Galileo he deri ved the concept of a 
mathematical universe to be properly described only in the language of mathe­
matics. In this way ewton's Philosophice N aluralis Principia M alhemalica (The 

Mathematical Principles of Natural Philosophy) differs from Descartes ' Principia 
Philosoph ice. 

Thus the great minds of the scientific revolution had formulated a mechanical 
universe of matter and motion , reasonable, rational , obeying fixed mathematical 
laws, to be ascertained by means of theory and experiment. 

For the 'last three or four centuries , the scientific method has reli ed upon 
these twin paradigms of abstract thought and observation. A great deal of 
progress has been achieved through the methodical application of the scientifi c 
method, a process which may be summarised as follows : 

1. state the problem 
2. form the hypothesis 
3. observe/experiment 
4. interpret the data 
5. draw conclusions 

The third great revolution in science began in this century, although it was pre­
saged much earlier by Charles Babbage. He saw the need for automatic, speedy 
and error-free calculation of such things as tables of logarithms. Babbage devised 
and built a mechanical calcu lating device called a difference engine in 1822. His 
later, more ambitious project of a fairly general calcu lating machine called an 
analytical engine was never completed because of financial constraints and a tool 
industry which lacked sufficient precision. 

The true era of the computer dawned during the 1940's, when automatic 
computing machines were first built, a technological leap spurred on by the war 
effort. Indeed , these early computers were designed for specific military pur­
poses, such as the calculation of missile trajectories, to aid in the investigation 
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of implosion and detonation, and to break codes and ciphers. The first elec­
tronic computer is generally recogni sed to be EN lAC (the Electronic Integrator 
and Calculator), constructed in the Moore School of Engineering, Philadelphia 
in 1946. 

John von Neumann was an early prophet of the importance of computing to 
the field of science, especially mathematics. It is incredible that as early as 1946 
he and Herman Goldstine wrote [46]: 

We could , of course, continue to mention still other examples to justify 
our contention that many branches of both pure and applied mathematics 
are in great need of computing inst ruments to break the present stalemate 
created by the failure of the purely analytical approach to nonlinear prob­
lems. Instead we conclude by remarking that really efficient high-speed 
computing devices may, in the field of nonlinear partial differential equa­
tions as well as in many other fields which are now difficult to access or are 
entirely denied of access, provide us with those heuristic hints which are 
needed in all parts of mathematics for genuine progress. In the specific case 
of fluid dynamics these hints have not been forthcoming for the last two 
generations from the pure intuition of mathematicians, although a great 
deal of first-class mathematical effort has been expended in attempts to 
break the deadlock in that field. To the extent to which such hints arose 
at all (and that was much less than one might desire), they originated in a 
type of physical experimentation which is really computing. We can now 
make computing so much more efficient, fast , and flexible that it should 
be possible to use the new computers to supply the needed heuristic hints. 
This should ultimately lead to important analytical advances. 

It is sad that von eumann did not live long enough to see his vision of computer­
assisted science come true. 

The rise of the computer to pre-eminent importance in our modern world 
has taken place because, just as the birth of science involved abstraction , the 
computer is a tool for processing information in an abstract form , and so it can 
be utilised for an exceedingly broad range of activities. 

Within the last decade or so, it has become clear that scientific computa­
tion has progressed to a stage where it can now be considered as a new and 
significant part of the scientific method . This is because computer hardware, 
software and methodologies are now sufficient ly advanced to allow scientists to 
experiment with physical systems in the abstract space of a computer, rather 
than being restricted to observations of the real world. Modern techniques in 
numerical analysis, simulation , modelling and visualisation now give us a new 
window on nature. ew areas of science have recently appeared, such as fractals , 
chaotic systems and cellular automata. The computer serves as a new observ­
ing instrument for these newly-discovered worlds. The impact of the computer 
on mathematics is not limited to so-called applied mathematics and engineering; 
consider for example Appel and Haken 's proof-by-computer of the four-colour 
theorem in 1976 [6]. The mathematical community has still not come to terms 
with the philosophical ramifications of such automated reasoning. 
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The ability to rapidly solve nonlinear partial differential equations allows 
us to study time-dependent simulation of many physical systems. These and 
other difficult numerically-intensive problems are becoming more accessible to 
scientists with the advent of parallel and other advanced computing technologies. 
The following list is a sample of the many and various areas of science which 
modern supercomputers are helping to advance: 

• fluid and gas dynamics: aerodynamics , study of shocks, jets, boundary 
layers, recirculating flows , instability and turbulence 

• N-body problems: particle and swarm simulations , galaxy formation and 
evolution , cosmology 

• theoretical physics: gauge theories, particle and field interaction, quantum 
electrodynamics and chromodynamics , condensed matter research 

• applied physics: properties of materials and defects, surface physics , optical 
fibre technology, fusion and plasma research 

• astrophysics: galactic jets, gas-matter interactions , accretion disks and 
black holes , magnetohydrodynamics 

• cellular automata: complexity theory, artificial life, statistical mechanics , 
bush-fire simulation 

• artificial intelligence: robotics, neural networks, knowledge-based reasoning, 
automated theorem proving, pattern recognition 

• commercial applications: database searching, industrial design 
• device and circuit simulation: VLSI design and layout, propagation of elec­

trons through semiconductors 
• theoretical chemistry: biomolecular design , quantum simulations , super­

conductors, macroscopic phenomena 

• environmental science: climate modelling, weather forecasting, ozone dis­
tribution, oceanography, tidal modelling 

• structure dynamics: solid mechanics, engineering, stress and fracturing 
characteristics, structural mechanics, elastodynamics 

• geophysics: reservoir simulation, flow through porous media, seismic anal­
ysis, geodetic networks, tectonics 

• image processing: medical imaging, remote sensing, astronomical imaging, 
tomography, image restoration 

• biology: gene sequencing, molecular geometry, drug design. 

To summarise, the birth of Western science took place in the ancient Greek empire 
in the 300's Be, when Aristotle and other scholars developed abstract reasoning 
and theory as the foundation-stone of the scientific method. Little progress was 
made then until the 1500's, when Copernicus and others brought about a great 
renaissance in science. This second revolution was based on the perceived im­
portance of observation and experiment, tied with theory and mathematics. The 
third great revolution in science began in the 1940's when the electronic computer 
was invented. By the 1980's, the speed and capability of computers enabled scien­
tists to effectively simu late the workings of nature, creating a crucial new element 
of the scientific method. 
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Chapter 1 

Introduction 

Science has become a collection of mathematical theories adorned with 
a few physical facts . Further, if one can speak of the goal of modern 
scientific theory, it is to subsume all its results under one mathe­
matical principle whose implications would describe the multifarious 
operations of nature. 

- Morris Kline [63] 

The computer revolution is the greatest challenge facing mathematics 
in the coming ypars. Mathematicians have set great stock in abstract 
mathematics, in which concepts and rigour have been the dominant 
things, but now algorithms are really important. 

- Albert Tucker [71] 

1.1 Overview 

In this research report, we will be concerned with the finite-difference multigrid 
solution of nonlinear elliptic boundary value problems (BVP's) , and consider 
the implementation of multigrid algorithms on the Connection Machine CM-2, 
a parallel processing supercomputer in relatively widespread use throughout the 
scientific world. To keep matters reasonably uncomplicated, we generally discuss 
only time-independent scalar two-dimensional partial differential equations, with 
Dirichlet boundary conditions on the unit square. This will enable the exposition 
to be clear and concise; we consider extensions to this class of problem in Chap­
ter 9. We will discuss the fundamentals of the multigrid method for linear and 
nonl inear equations, presenting results for certain model problems obtained from 
a new and original multigrid software package. This package is implemented on 
both standard serial computers and on the CM-2. We look at issues arising from 
serial and parallel implementation of multigrid algorithms. We also consider how 
these numerical results reflect upon the structure of the multigrid iteration. 
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CHAPTER 1: INTRODUCTION 2 

Many problems of mathematical physics lead to boundary value problems 
involving partial differential equations of elliptic type. This type of equation , to be 
carefully defined in Chapter 2, is characterised by global properties of its solution: 
the solution at every point depends upon the solution at every other point in the 
domain. The physical law behind this "collective behaviour ' is usually a force 
field of some type, where the forces (instantly propagated) depend on the solution 
and vice versa. In contrast, hyperbolic equations have a diminished sense of 
collectiveness: their behaviour is much more local. These underlying properties 
mean that numerical techniques for solving the various types of equations are 
likewise different. 

Elliptic BVP's arise in areas such as fluid dynamics, electromagnetics , solid 
state and materials science, general relativity, applied mechanics and engineering. 
These areas encompass many different types of physical processes , for example 
vibration, conduction, convection, diffusion, particle and field interaction , stress 
and fracture. The challenge to the computational mathematician is often not 
merely to solve such a problem, but to do so rapidly and efficiently, thus allowing 
researchers to study the behaviour of parabolic systems. 

The last decade has seen the evolution of a major new technique to tackle 
some of these difficult problems in scientific computation. Multigrid methods 
have proven to be powerful PDE-solvers , although multigrid has not yet become 
a mature field of numerical analysis. In particular, convergence theory lags behind 
our practical knowledge of multigrid algorithms, which deliver results at speeds 
comparable to any other numerical method. Tevertheless , it is now well-known 
that multigrid is an optimal O(N) solver (for problems involving N unknowns) 
for a wide cla:ss of PDE's, including the class of well-behaved discrete elliptic 
boundary value problems [17 , 51, 93]. 

The past history of numerical analysis and computation has been marked by 
a sharp division into the finite-difference and the finite-element fields. Multigrid 
can be viewed as a fairly general acceleration technique, one which is applicable 
to both these fields . (For an early discussion of multigrid methods for finite 
elements, see McCormick and Ruge [78].) Moreover, mul tigrid and multilevel 
techniques in general are now being applied to a very broad range of numerical 
problems (see Brandt 's 1988 Weizmann Report [18]), such as: 

• inverse problems, 

• integral equations , 

• global optimisation, 

• n- body interactions, 

• linear programming, 

• fast Fourier transforms 

• combinatorial optimisation , 

• nonlinear non-elliptic PDE's, 

• behaviour of statistical fields, 



CHAPTER 1: I NTRODUCTION 3 

• determinants of systems of equations , and 

• approximation of piecewise-smooth functions . 

To quote from Brandt [18]: 

Multilevel computations have evolved into an independent discipline, in­
teracting with other computational methodologies, it has its own in ternal 
development , gradually increasing the understanding of the many types of 
multi-scale interactions , their modes of operation and domains of applica­
tion. The research exhibits the deep interdisciplinary and cross-fertilising 
role of applied mathematics , in that various underlying relations and algo­
rithmic ideas are carried back and forth between widely varying areas of 
applications. It is thus quite beneficial that an advanced research group 
works widely across this discipline, not too limited to some specific app li­
cations. 

Multilevel solvers can even be constructed when problems have no explicit geo­
metric basis. In these algebraic multigrid (A MG ) solvers , we require fine-level 
variables to be "strongly connected" by the fine-level equations to at least some 
coarse-level variables. The inter-level transfers may also be based purely on al­
gebraic equations. For more details , see Ruge and Stuben [87]. 

A revolution in computer science occurred in 1985 with the announcement 
of the Connection Machine by Thinking Machines Corporation [56]. This was 
the first computer system to use massive parallelism to achieve supercomputer 
status. Designed specifically to study artificial in telligence, the CM- 1 utilised 
tens of thousands of primitive single-bit processors in a highly connected network. 
The hope was ·to imitate the architecture of the human brain . Ironically, much 
more interest in the Connection Machine was aroused in numerical fields than in 
artificial intelligence. We classify the operation of this machine as SIMD (single 
instruction , multiple data) , meaning that identical instructions are performed on 
all processors in unison , on data sets local to each processor. This classification 
contrasts with MIMD (multiple instructions , multiple data) machines in which 
processors execute a local sequence of instructions (see Chapter 8 for further 
details). The SIMD CM-1 computer was found to be ideal for solvi ng finite­
difference and finite-element problems on regular grids, in particular. 

Thinking Machines Corporation responded by introducing the CM-2 in 1987, 
which included double-precision floating-point units, thus giving computational 
scient ists potential gigaflop performance. At the present time, the great majority 
of applications that are run on the 80 or so Connection Machines throughout the 
world are mathematical in nature. The remaining applications tend to fall into 
the two smaller categories of artificial intelligence and database applications [57]. 

Thinking Machines Corporation has recently announced the CM-5 [9 ]. It 
is intended to be a uni versal computer (that is , dual MIMDjSIMD) operating 
on "cooperative" principles, and is designed to be scalable to the teraflop per­
formance level (tri llions of floating-point operations per second). Up until now , 
parallel computer users have been forced to choose between MIMD machines, 
which are good at independent branching but poor at synchronisation and com-
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munication, and SIMD machines , which have complementary characterist ics. The 
CM-5 is claimed to combine the best of both these architectures , while taking ad­
vantage of the latest developments in VLSI , compiling methods , RISC processors 
networking and so on. 

Apart from massively-parallel systems, there are many other types of high­
performance computer available to researchers. These include machines con­
structed from extremely advanced solid-state technologies, relying on one or a 
handful of CPU's with vector pipelines (eg. Cray Y-MP and Fujitsu VP). An­
other class of supercomputer is the moderately-parallel system which employs 
tens or hundreds of processors to share the computational work (eg. Intel iPSC 
and NCUBE). We will say more about parallel processing systems in Chapter 8. 

With the advent of new computer technologies, it is necessary for numerical 
algorithms to be kept up to date. The increasingly widespread use of parallel 
processing systems in supercomputers creates a certain challenge for multigrid 
algorithms , for they are not readily adapted to SIMD machines. On t he other 
hand , finite-difference methodologies are well suited to such an architecture. 

Multigrid is a relatively recent numerical method , which presents the numer­
ical practitioner with a large choi ce of parameters. At this stage of development 
multigrid cannot be considered a fixed method. The optimal value of the multi­
grid parameters is often not known in advance, hence it is common for a certain 
amount of experimentation to take place, in order to obtain suitable convergence 
properties. In a survey article of 1991, Frederickson, McBryan, Stliben , Trotten­
berg et al [75J wrote: 

For a wi'de class of problems in scientific computing, in particular for par­
tial differential equations, the multigrid (more generally, the multilevel) 
principle has proved to yield highly efficient numerical methods. How­
ever, the principle has to be applied carefully; if the multigrid compo­
nents are not chosen appropriately for the given problem , the efficiency 
may be far from optimal. This has been demonstrated for many practical 
problems. Unfortunately, the general theories on multigrid convergence do 
not give much help in constructing really efficient multigrid algorithms, 
though some progress has been made in bridging the gap between theory 
and practice during the last few years. Research in finding highly-efficient 
algorithms for non model applications therefore is still a sophisticated mix­
ture of theoretical considerations, transfer of experiences from model to 
real-life problems, and systematic experimental work . 

One of the goals of this research project was to write a software package for 
the CM-2 suitable for solving arbitrary PDE's in the class specified above, using 
the multigrid method in a "laboratory-style" environment. This would provide 
a suitable platform for experimenting with the various multigrid parameters , in 
contrast to a "black-box" solver. For this reason , we have sometimes sacrificed 
performance for the sake of flexibility and ease-of-programming. This has resulted 
in the user's ability to program and solve PDE's from scratch in as little as ten 
minutes. We have also emphasised user-friendliness, to a degree that the user is 
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easily able to perform a thorough parameter-space investigation. 
This software package, called MGLAB , was initially written in standard FOR­

TRAN 77, then ported to the Connection Machine using the CM Fortran language. 
Results will be presented for various model problems which were obtained from 
serial machines as well as from the CM-2 located at the Australian ational Uni­
versity. These problems begin with simple linear constant-coefficient equations, 
and progress to more interesting nonlinear geometric problems. We will relate 
these results to the multigrid process and to considerations of parallel multigrid 
implementation. 

1.2 A Brief History of Multigrid 

Virtually every problem of mathematical physics leads naturally to solving one 
or more functional equations of the form 

Au = j, (1.1 ) 

where A is an operator from some space X into some space y, lis given in y, and 
u is the desired solution in X. Examples of such classes of problems are ordinary 
differential equations , partial differential equations and integral equations . In 
general , it is not possible to determine the solution explicitly, or its explicit form 
may be so complicated as to be practically useless , so that one is interested in an 
approximate solution of the equation. 

The standard numerical procedure for solving the problem (1.1) is to first 
discretise the problem, using some discretisation parameter h, thereby construct­
ing approximating algebraic equations on finite-dimensional approximation sub­
spaces Xh and Yh, and then to create some numerical process to approximately 
solve this system of discrete equations, which we write as 

( 1.2) 

In the case of differential equations , such discretisation algorithms typically give 
rise to a large sparse system of algebraic equations. If this system is linear then 
we write it in the matrix form AhUh = !h. 

The study of numerical analysis investigates the following fundamental ques­
tions which immediately arise (see for example [94]): 

1. Do the discrete equations (1.2) converge to the continuous equations (1.1) 
as h -t O? 

2. Is existence and uniqueness guaranteed for the approximate eq uations (1. 2) ? 

3. Equations (1.2) may be nonlinear or otherwise difficult. Can we develop an 
algorithm to solve them? 

4. Will this process be stable, convergent and consistent? (See Chapter 2 for 
definitions of these three terms.) 

5. How do we implement an efficient algorithm on a computer (in terms of 
CPU time, memory usage, etc)? 
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The last few decades has seen an enormous amount of research into the 
problem of numerically solving such systems. Typically these algorithms fall into 
two classes: direct and iterative methods. 

Direct methods calculate the solution exactly (to within machine precision) 
in a finite number of algorithmic steps, an amount of computation that can be 
determined in advance. The archetypal direct method is Gaussian elimination; 
other methods are based on FFT's (fast Fourier transforms), cycl ic reduction or 
special properties of certain classes of matrices. Applied to a dense problem on 
an n x n grid, these algorithms require O(n2 10g n) arithmetic operations, and 
so approach the optimal O(n2

) operation count. Unfortunately, direct methods 
are rather specialised, are best applied to separable self-adjoint BVP 's, and can 
break down in other cases. They also require inordinate amounts of computer 
memory when applied to large dense problems. 

In contrast, iterative (or relaxation) methods start from an initial guess and 
proceed to obtain more and more accurate approximations from some compu­
tational cycle. This iteration may be repeated as often as necessary to achieve 
a desired accuracy, hence the amount of computation depends on the required 
accuracy. This sequence of simple updating iterations converges to the numerical 
exact solution of the system (that is , within machine precision ). The prototypes 
of this class are the Jacobi and Gauss-Seidel methods of relaxation. While di­
rect methods can be applied to any non-singular problem , iterative methods are 
generally more efficient for multidimensional problems; moreover, they are often 
better-suited to computer solution, as they consist of a repetition of simple steps. 
They also take good advantage of the sparse nature of the finite-difference system 
of equations, and may require no computer memory in addition to the storage of 
the discretised domain . The two classic references on iterative methods are Varga 
[101J and Young [105J. 

Relaxation suffers from two deficiencies , however , which are manifestations 
of the same underlying property. (These are discussed in detail in Chapter 2.) 
The first is that the con vergence factor is 1 - O( h 2) or 1- O( h) , where h is the size 
of the grid or mesh ; hence convergence deteriorates as the grid is refined. This is 
unfortunate, as accurate results require the use of fine grids, especially in regions 
where there are small-scale changes. The second difficulty is that smooth (ie . long 
frequency) error modes are very slowly reduced. Hence relaxation quickly stalls 
once high-frequency errors are removed. Multigrid is a hybrid process which 
overcomes these difficulties . It combines the following three elements: 

1. relaxation to obtain smooth errors, 

2. calculation of corrections on increasingly coarse grids, and 

3. incorporation of nested iteration (using coarser grids to obtain good initial 
approximations on finer grids). 

Multilevel numerical processes have been independently devised by many 
investigators. While the above three processes have been separately known for 
many years, it is only the multigrid combination which results in an optimal 
iteration. 
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As early as 1935, Southwell [90,91] recognised that coarser grids hold com­
putational benefits. In [91] he describes a process whereby a problem is first 
(approximately) solved on a coarse grid (involving a much smaller amount of 
computational work) , then this solution is interpolated to a finer grid, serving as 
a good initial guess for subsequent relaxation on that grid. In his words: 

Our techniques will provide for steadily increasing accuracy, attainable at 
the cost of proportionally increased labour; and to this end they will utilise 
results obtained on one size of net as a starting assumption in relation to 
a net of smaller mesh. This device will be termed advance to a finer net. 

The natural next step is to apply this idea to successively finer grids. In 1954, 
Allen [29] wrote (still using arcane language): 

Successively finer nets are always chosen, each to have strings one-half as 
long as the previous (coarser) net. The solution should always be worked 
first on the coarsest net , for it will contain the fewest nodes , and the liqui­
dation process will be correspondingly easier ... Indeed in some problems 
it may be that less work is involved in the end if the solution is fir st found 
on the coarsest possible net , followed by several advances to successively 
finer nets, until sufficient accuracy is achieved eventually on a very fine 
net. 

The modern term for this technique is nested iteration. 
Coarse-grid acceleration techn iques were used in the 1950 's and 1960 's by 

Stiefel [92], Fedorenko [37], Wachspress [102] and de la Vallee Poussin [30], for 
example. These were all two-grid methods. 

A more advanced idea is to consider how the current fine-grid approximation 
can be improved by further references to the coarse grid problem, a procedure 
which exploits the "proximity" between the fine and coarse gr ids. 

Brandt [15] and Stuben and Trottenberg [93] give a description of the content 
of two pivotal Russian papers, published in the 1960 's. In 1964, Fedorenko [38J 
introduced the multigrid method in a narrow sense by introducing the idea of 
a nested hierarchy of grids (that is , using elements (1) and (2) above) , so as to 
prove a theoretical result. In the case of Poisson 's equation on a rectangular 
grid containing N points , using the standard five-point discretisation , Fedorenko 
proved that the number of operations required to reduce the residuals by a factor t 

is O(N I log tl). This is asymptotically the optimal result, although the constants 
in his estimate are very large; in fact they are four orders of magnitude larger 
than those we find in practice. Fedorenko also proved that multigrid has a rate 
of convergence bounded by orne number less than unity, which is independent 
of the grid size h. This is a remarkable result , one which highlights t he optimal 
nature of the multigrid method. 

Bakhvalov [9] later generalised this result to any second-order elliptic PDE 
with continuous coefficients; but derived even larger constants in his theoretical 
bounds . Because these estimates were far worse than those of other methods , the 
multigrid idea of Fedorenko languished for some time. He himself did not seem to 
realise the true practical potential of the method , even though he also indicated 
the possibility of combining all three multigrid elements. 
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It was not until 1973 that the first full multigrid algorithms and results were 
published by Brandt [14], who seems to be the first person to have recogni sed 
the true practical efficiency of multigrid. Moreover , he introduced a general two­
pronged method called the multilevel adaptive technique (MLAT) for solving 
partial differential boundary value problems. MLAT consists of adaptive dis­
cretisation and "multilevel iterative procedures in which coarser grids constant ly 
participate in solving the equations on finer grids ," that is, multigrid methods. 
(For more information on adaptive grids , see [48, 76 , 79] .) Over the next decade, 
more and more researchers became enthusiastic about multigrid , noting in par­
ticular the very high rates of convergence that can be achieved in practice. 

In 1975 Hackbusch independently re-invented the elements comprising mul ti­
grid. He began to systemat ise convergence analyses of general multigrid methods, 
a process which continued for some years [49 , 50, 51] . In 1977, Brandt published 
what many regard as the seminal paper in the field , Multi-level Adaptive Solutions 
to Boundary Valu e Problems [15]. As the method was developed and refined in the 
1980's , it was seen how to apply multigrid and multilevel techniques to diverse ar­
eas of computational mathematics , such as finite-element problems, vector-valued 
BVP 's, eigenvalue and bifurcation problems, 'parabolic and other time-dependent 
PDE's, hyperbolic problems in fluid dynamics (transonic flow, shocks , full avier­
Stokes equations), singular perturbation phenomena (see [16, 61]), and integral 
equations. With this increasing interest , the number of papers published on 
multigrid methods snowballed in the last decade. At the present time we may 
describe multigrid as a maturing new field of computational mathematics, one 
which holds great promise for certain types of problems facing the researchers of 
today. 

Good introductions to multigrid may be found in Briggs [20] and Jespersen 
[58] . 

1.3 Thesis Outline 

Chapter 2 introduces definitions and notation used in this thesis. It discusses the 
basic material required for subsequent chapters, in particular the fundam ental 
concepts of finite-difference discretisation and relaxation. Various methods of 
relaxation are discussed , along with their convergence rates and other properties . 
This material comprises the classical techniques for the numerical solution of 
partial differential equations. 

Chapter 3 presents the basic ingredients of the multigrid method for lin­
ear equations: intergrid transfer, coarse-grid correction and nested iteration. We 
consider theoretical smoothing and convergence rates and how these vary with 
certain parameters. The multigrid elements are brought together to form a syn­
ergistic union. Various types of cycles and other multigrid options are presented , 
giving rise to a large multigrid parameter space. 

Chapter 4 reports on the results of applying the multigrid method to our 
model linear problems, which are chosen to be representative of their type. These 
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results come from our "laboratory-style" multigrid software package MGLAB . This 
gives us the opportunity to investigate the effect of the multigrid parameters on 
convergence properties of different types of problems. The standard FORTRAN 77 
implementation of MGLAB and the structure of the package is discussed , as are 
aspects of debugging and algorithm correctness . 

Chapter 5 is concerned with the modifications we make to the linear multi­
grid process in order to solve nonlinear PDE's - the so-called full approximation 
scheme (FAS). We extend the concepts discussed in Chapter 3 to the nonlinear 
case, and look at the implementation of nonlinear multigrid in MGLAB . 

Chapter 6 presents the results of our multigrid solution of some model non­
linear problems. We make similar observations and interpretations to those in 
Chapter 4 for these nonlinear equations. 

Chapter 7 considers some interesting nonlinear problems from geometry, 
namely surfaces of prescribed curvature. These equations are derived from phys­
ical models of soap films and bubbles. After discussing some theoretical consid­
erations, we present results obtained using MGLAB. A theorem of Serrin provides 
a convenient sharp test for our numerical method. 

Chapter 8 discusses the implementation details for MGLAB on the Connec­
tion Machine CM-2 parallel supercomputer. Relevant aspects of the CM-2's ar­
chitecture are presented, in particular, the hypercube communications network. 
Performance and timing results are given for serial codes on a selection of conven­
tional computers, in addition to the CM Fortran version of MGLAB. These results 
are interpreted to give insights into aspects of machine architecture and efficient 
implementation thereon. 

Chapter .9 describes extensions to the material presented in the previous 
chapters: we discuss various types of parallel multigrid schemes, including Fred­
erickson and McBryan's PSMG method; time-dependent problems; parametric 
PDE's; systems of equations; PDE's with Neumann, mixed and periodic bound­
ary conditions; and BVP's on Riemannian manifolds. We also briefly consider 
finite-volume methods in the multigrid context. 

Chapter 10 summarises the material presented in this thesis , and draws 
conclusions regarding the multigrid solution of boundary value problems. 

Appendix A contains a listing of rngl0 . fern , the CM Fortran implementa­
tion of Problem MG10 (see Chapter 6), Poisson's equation with zero boundary 
conditions . It gives an example of a driver program, which combines with the 
back-end multigrid library package MGLAB. It demonstrates which subroutines are 
required to be written by the user when solving a nonlinear problem. 

Appendix B contains sample output for Problem MG 10 using rngl0 . fern and 
MGLAB run on the Connection Machine CM-2. 

Appendix C contains a partial listing of rnglab . fern , the CM Fortran imple­
mentation of the multigrid library MGLAB . A complete listing was not feasible due 
to its length, nor desirable since much of the code is of little interest. We list the 
kernel routines essential to the multigrid process: relaxation, restriction , prolon­
gation, coarse-grid correction, etc. These demonstrate the ease of programming 
in the CM Fortran language, given a simple multigrid implementation . 



Chapter 2 

Fundamental Concepts 

Relaxation can be deceptive. It can look as if you aren't doing much 
at all. 

- Bob Montgomery and Linda Evans [81] 

In this chapter , we give an overview of the fundamental ideas used in the clas­
sical numerical solution of partial differential equations. We begin with some 
basic definitions and terminology, followed by a discussion of finite-difference dis­
cretisation. We then consider various relaxation methods for solving boundary 
value problems , examining their rates of convergence and other properties. Relax­
ation methods are important because these iterations form the basis of multigrid 
algorithms. Indeed , many of the multigrid parameters arise from the various 
relaxation techniques. 

2.1 Definitions and Problem Statement 

This research report is concerned with the solution of time-independent (possibly 
nonlinear) elliptic boundary value problems. We will firstly define the concept of 
ellipticity for linear, quasilinear and fully-nonlinear equations. 

A ph-order partial differential equation in n independent variables is a re­
lation of the form 

(2 .1 ) 

. The general form of a second-order linear PDE in n independent variables is [44] 

n 82u(x) n 8u(x) 
i~1 Qij(X) 8x

i
8xj + r; /3i(X) --a;:- + ,(x) u(x) = f(x), 

10 
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which we write more concisely as 

(2.2) 

In this notation , a kth-order linear PDE is of the form 

By definition, the second-order linear PDE of equation (2.2) is elliptic in some 
region n E R n 

if the coefficient matrix [o,ij (x)J is positive definite in n. In the 
case of two independent variables (x,y), this second-order PDE reduces to an 
equation of the form 

f 

and so this equation is 

e lli ptic if 4ac - b2 > O. 

In addition , we say that equation (2.3) is 

parabolic if 

hy pe'rbolic if 

4ac - b2 = 0, and 

4ac - b2 < O. 

(2.3) 

For higher-order linear PDE's of even order, the e llipticity condition [aiiJ > 0 is 
generalised to the positivity of t he contraction of the highest-order tensor: 

V non-zero tensors ~jl . i2 .... . im ' 

The prototypes for the class of linear elliptic PDE's are Laplace 's equation 

Llu == Diju = 0 

and Poisson's equation Llu = f . 
A PDE is said to be quasilin ear if the functional F in equation (2.1 ) is 

linear in the highest order derivatives [59]. A second-order equation is therefore 
quasilinear if it can be writ ten in the form 

a ii (x ,u , Du) DiiU + f3 (x ,u,Du) = O. 

One of the most widely known quasi linear elliptic PDE's is the minimal surface 
equation (see Chapter 6) . 

A general second-order equation on a domain n E R n can be written in the 
form [44J 

F(x , u, Du , D2 u) = 0, (2.4 ) 

where F is a real function on the set r = n x R x R n x sn , where sn is the linear 
space of real symmetric n x n matrices . Suppose a point "{ = "{(x, u, v , w) lies in 
r, where x En, u E R , vERn and w E sn , then equation (2.4) is quasilinear 
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when F is an affine function of the w variables; otherwise it is fully-nonlinear. 
Hence the general second-order equation is elliptic if the matrix [Fij(-y)] given by 

is positive definite. 

It is a simple matter to map any quadrilateral domain to the unit square 
by an affine transformation (perhaps as part of transforming the problem to 
dimensionless form); because of this and the fact that ellipticity, linearity and 
quasilinearity are preserved in such as transformation, we can restrict ourselves 
to considering PDE's on the unit square. Further , we generally consider only 
Dirichlet boundary value problems , where function values are prescribed on the 
boundary of the domain. Our problem is therefore to find the solution u = u( x, y) 
to the BVP 

YIu = f 
u=g 

III fl = [0,1] x [0,1] 
on afl (2 .5) 

where u E G2m(fl), f E GO(fl), YI : C2m(fl) -t GO(fl) is an elliptic operator , and 
9 E G2m(afl). 

2.2 Discretisation 

Equation (2.5) is of course the continuous problem. To enable a numerical so­
lution to this problem, we now proceed with the standard finite-difference dis­
cretisation, whereby a uniform grid of horizontal spacing h and vertical spacing 
k is superimposed on the domain, producing a subspace flh . (We will be using 
the subscript h as a generic discretisation parameter.) Defining 'vf = 1/ hand 
N = 1/ k, we construct discrete functions in the following manner: 

fij = f(ih,jk) for i = 0, 1, ... M ; j = 0, 1, ... , V. 

The standard finite-difference formulation replaces continuous variables by their 
values restricted to the grid points of 

flh = {(ih , jk):i=O , l, ... ,M;j=O,I, . .. ,N}, 

and replaces continuous derivatives by central difference expressions obtained 
from truncated Taylor series. 

We will use the notation 

u for the continuous exact solution, 
Uh for the discretised exact solut ion: ul nh , 
Vh for the exact solution of the discrete problem, and 
Vh for an approximate solution of the discrete problem. 
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We are now required to solve an (M+1)(N+l) x (M+l)(N+l) system of 
algebraic equations. The discrete problem is therefore to find the solution Vh to 

(2 .6) 

where Vh, fh E Sh (an appropriate space of grid functions on [h) , Jl.h : Sh -t S h is 
a discrete elli ptic operator, and 9h E (j h (an appropriate space of grid functions 
on arh). 

Since the PDE's considered here lie on the unit square, it is usual to, use 
an isotropic grid (M = Nand h = k), unless the PDE itself has some preferred 
direction , as does an equation with boundary-layer properties , for example. 

Taylor's theorem and the associated Taylor series are one of the most im­
portant tools in numerical analysis. It allows the approximation of a continuous 
function f(x) by nLh-order polynomials , also giving an estimate of the truncation 
error thus produced. 

Theorem 2.1 (Taylor) If f(x) E Cn+1[a,bJ and X,Xo E [a,b], then 

n ()k ()n+ 1 
f(x) = f(xo) + L x - ~o f(k}(Xo) + X - Xo I fn+1} (O 

k= 1 k. (n + 1). 

for some ~ E [xo, xJ if Xo < x, or ~ E [x, xoJ if x < Xo. 

An elementary application of Taylor 's theorem leads to the following ap­
proximations for the first-order partial derivatives in the x-direction, along with 
the indicated truncation error: 

(forward difference) 

(central difference) 

(backward difference) 

The following is a list of the most compact central finite-difference approxi­
mations in two dimensions up to second-order derivatives. 

Uxl ·· I) 

uyl ·· I) 

uxxl ·· I) 

Uyyl · . 
I) 

UXyl ·· IJ 

~M (Ui+l,i - Ui-l,i) + O(h2) 

~N (Ui ,i+l - ui,i-t) + O(k2) 

M2 (Ui+l,i - 2Uii + Ui-l,i) + O(h2) 

N 2 
(ui,i+l - 2Uii + ui,i-l) + O(k2) 

~M N (Ui+l ,i+l - Ui+ l ,i-l - Ui-l ,i+l + Ui-l,i-t) + O(h2+k2) 

In addition, one can readily apply Taylor's theorem to obtain more accurate 
(higher-order) fini te-difference approxi mat ions. 

During the process of discretisation, central differences are typically used to 
replace the continuous derivatives, rather than forward or backward differences , 
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Figure 2.1: Two common computational molecules for Llh on isotropic grids. 

unless the characteristics of the problem suggest otherwise. (The use of forward or 
backward differences is often desirable in solving fluid-flow problems; in that field, 
these processes are commonly called upwinding and downwinding respecti vely.) 

A common method of defining finite-difference operators is to draw so-called 
computational molecules (also known as stars or stencils). Figure 2.1 shows 
the standard five-point and nine-point computational molecules for the discrete 
Laplacian operator on an isotropic grid. The five-point molecule has truncation 
error O(h2), while the nine-point star is accurate to O(h4). 

Application of the isotropic five-point star to Poisson's equation in two di­
mensions gives us the discrete problem 

for i,j = 1,2,... -1 

This represents ' the system of N 2 x N 2 linear equations (with appropriate bound­
ary equations) 

Vi+l,j + Vi-I,j + Vi,j+1 + Vi,j-I - 4Vij (2.7) 

which we write as AhVh = fh. 

Note that for f == 0, the solutions to the finite-difference equations retain two 
important properties of the harmonic function u: the mean value property (u(x, y) 
is equal to the arithmetic average of u at points in an arbitrary neighbourhood of 
(x,y)) and the maximum principle (extreme values of u occur on the boundary 
on). 

An elliptic PDE will generally give rise to a matrix ~h which is diagonally 
dominant: 

N2 

aii ~ L laijl with strict inequality for some i. 
j=l,i#j 

. This property is a consequence of the discretisation process for elliptic equations. 
Finite-difference schemes are often divided into explicit and implicit cate­

gories. An explicit algorithm is a non-iterative "marching" process designed to 
obtain the solution at some current set of points in the domain (usually those cor­
responding to a particular time-step) in terms of the known preceding points and 
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the boundary points. Parabolic and hyperbolic equations characteristically have 
open domains , and so explicit methods are applicable to these types of problem. 
On the other hand , implicit schemes usually consist of simultaneous iterative cal­
culations on all points in the domain in terms of the known values at the previous 
iterate and the boundary conditions. 

The terms truncation error and discretisation error are commonly used in­
terchangeably; indeed , numerical analysts seem to use a number of sl ightly differ­
ent definitions of truncation error. Wasow [103] defines the di scretisat ion error to 
be the combination of truncation errors arising from the Taylor series approxima­
tion of the continuous functions and from the finite-difference approximation of 
the boundary conditions. However , it is clear that the latter contributes nothing 
in the case of Dirich let boundary condit ions. 

In addition, computed solu tions always introduce round-off error, since cal­
culations can only proceed to a finite number of binary or decimal places. Dis­
cretisation error is proportional to the interval size h, whereas round-off error 
is generally inversely proportional to h. For this reason we cannot assert that 
decreasing the grid size always increases the accuracy. 

Finally, there are three terms which arise in the general investigation of 
numerical algorithms which should be explained (see for example [83, 94]): con­
vergence, consistency and stability. A solution to a finite-difference equation 
which approximates a given PDE is said to be convergent if, at each grid point, 
the finite difference solution approaches the true solution of the PDE as the grid 
spacing approaches zero: 

Vh --+ U as h --+ 0, 

in other words, the discretisation error u - Vh vanishes in the limit. 

A fin ite-difference equation is said to be consistent with a PDE if, at each grid 
point, the discrete equation itself becomes identical to the PDE as the grid spacing 
approaches zero. The truncation error at some grid point can be defined as the 
difference between the discrete equation with the exact values Uh substituted for 
Vh, and the PDE; therefore consistency means that the truncation error vanishes 
in the limit. 

The third important feature of a finite-difference method is the stability of 
the discrete equation, and of the algorithm which attempts to solve it ; that is , 
the growth or decay of errors introduced by values previously calculated. Given 
a direct method or a converging iterative method , the numerical solution to the 
finite-difference equations is not Vh but Vh, since no computer has infinite-precision 
arithmetic. A finite-difference system is said to be stable if the cumulative effect 
of all round-off errors is negligible. To be more precise, let 0 be the maximum 
round-off error committed during some numerical procedure, then this procedure 

.is stable if the cumulative departure of this solution from the error-free solution 
tends to zero as 0 --+ 0 and is bounded by some multiple of h- 1 as h --+ o. 

The following theorem provides a link between these three fundamental con­
cepts. It concerns so-called well-posed problems, meaning problems which have 
a unique solution which depends continuously on the initial data. 
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Theorem 2.2 (Lax) Given a well-posed linear initial value problem and a con­
sistent finite-difference approximati(m to it, stability is the necessary and suffi­
cient condition for convergence. 

Although restricted to linear problems, the Lax Equivalence theorem is important 
as it is often easier to prove stability and consistency than to show convergence. 

2.3 Relaxation 

In any iterative solution process, one begins with an initial approximation , then 
repeatedly refines the approximation according to some rule. The iteration ob­
viously should converge to the true solution , but to be considered useful this 
convergence must also be rapid. This is especially true in the multigrid context , 
as only a small number of relaxation iterations are ever performed on the same 
equation. 

Consider the system of n linear equations 

Jl.u = f with u,f E X (2.8) 

where X is an n-dimensional vector space. We desire some iterative process to 
(numerically) solve this syster,ri by generating a sequence of converging approxi­
mations VO ~ V I -+ v 2 -+ .. . . The iteration is to be generated by some linear 
mapping 1/; : 

v k+l = 1/; (JI., f, v k). 

We have assumed that 1/; is independent of k; such iterations are said to be 
stationary. Since 1/; is linear by assumption , we can write the iteration in the 
form 

(2.9) 

in which case ']v( is called the iteration matrix. The iteration is completely de­
scribed by ']v( , as we now demonstrate. Since this iteration must have the solution 
of the system (2.8) as a fixed point , we have 

v f EX 

so that 

where I is the n x n identity matrix, and hence the iteration process is 

provided JI. is non-singular. (If JI. is singular then t his equation has an appropriate 
.interpretation in terms of the Moore- Penrose pseudo- inverse JI.+.) 

An explicit formula for the kth iterate is 

k- I 

v k ']v(kvO + L ']v(1<'Jlj 

K=O 
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and so we see that the error in the kth iterate is 

(2.10) 

in other words the iteration matrix is the amplification matrix of the error [51]. 
The spectral radius of a matrix M is defined by p(M) = max lAd , where Ai 

is an eigenvalue of M . Since 

lim Mk = 0 
k-oo 

we have the following important result: 

iff p(M) < 1, 

Theorem 2.3 The iteration (2 .9) converges for every initial guess iff p( M) < 1. 

Iterative methods fall into two classes: point iterative and block iterative. 
Point iterative processes use explicit components of the previous approximation 
to update the next iterate , while block iterative methods at each stage require 
the solution of several linear systems. 

Most of the well-known point iterative methods are based on a partition of 
the matrix A of the form 

A=D-L-U 

where D is the diagonal of A, and Land U are the negatives of the lower and 
upper triangular parts of A, respectively. (We decompose A this way because , 
due to the mean value property, elliptic finite-difference equations generally give 
rise to a matrix A with diago al entries of opposi te sign to off-diagonal entries. ) 
We assume that"the diagonal elements of A are non-zero, so that (D - L) -I exists . 

We introduce definitions of the algebraic error 

e=u - v (2.11) 

and the residual (or residue , a measure of how well v satisfies the PDE) 

r = f - Jlv, (2.12) 

from which we obtain the crucial relation 

Jle = r (2.13) 

which is called the residual equation. ( ote that some authors use the defect, 
defined to be the negative of the residual.) Combining these definitions with 
equation (2.9), we find for this general iteration that 

which corresponds to the relation 
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Hence an effective iteration will be const ructed when 'J{ = (I - ?vf );<I-1 is a close 
approximation to ;<I-I in some sense. 

The method of Ja cobi relaxation is derived simply by solving the fini te­
difference equation in terms of Vij . In our standard example of Poisson s equation 
discretised by a five-point star (equation (2. 7)) we find that the (k + 1)th iterate 
at the (i, j) grid point is gi ven by 

V
k+l = 1 (k + k + k + k h2f ) 'J 4" Vi+l,j Vi-l ,j Vi ,j +l Vi ,j -l - ij 

which we will write as 

vt+ I = l (L vtj - h 2 
f ij ) , 

nn 
(2.14) 

the sum over nn signifying the nearest (orthogonal ) neighbours. ote that the 
order in which the grid points Vij are updated during one relaxat ion "sweep" is 
irrelevant. 

The term relaxation historically arose through the idea of updating the value 
of v at a particular grid point by relaxing the "residual forces" arising because 
current values of v at neighbouring grid points do not correctly sat isfy the P D E. 

The matrix A is called reducible if there exists a permutation matrix P such 
that 

This means that some values of u are independent of some boundary cond itions. 
Well-posed linear elliptic boundary value problems almost always lead to irre­
ducible matrices [4]. Collatz [28] proved the following important theorem: 

Theorem 2.4 (Collatz) If ;<I is diagonally dominant and irreducible, then 
Jacobi relaxation converges. 

An important generalisation of an iteration scheme such as Jacobi relax­
ation incorporates the idea of weighted or damped relaxation. This technique is 
also called successive over-relaxation (SOR). It is essentially a way to accelerate 
convergence by extrapolating the changes in the previous iterates to provide a 
superior new iterate V

k+ l
. In general, the method is given by 

where the weighting factor w is generally in the range [0 , 2]' and Vk+1 is now the 
iterate obtained in the manner described above, for example by equation (2. 14 ). 
Clearly if w = 1, then the method reduces to the standard relaxation. Hence we 
see that in the weighted relaxation method , the new value of v is extrapolated 
from the standard iterate and the previous value. 

The matrix representation of Jacobi relaxation is 
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which corresponds to solving the iph finite-difference equation 10 terms of Vij. 

Similarly for weighted Jacobi relaxation we have: 

(2.15) 

Gauss-Seidel relaxation incorporates a slight modification of the Jacobi 
method: the updated grid values are used as soon as they are calculated , rather 
than waiting until the next iteration ; consequently we now require a systematic 
ordering of the grid points. Such orderings are numerous ; for example, lex ico­
graphic (row-wise or column-wise ascending or descending) , symmetric (ascending 
then descending), and red-black (all odd points then all even points). 

Suppose in two dimensions we have some arbitrary, but fixed, ordering of 
interior grid points, indicated by v"', for K, = 1,2, . .. , (M -l)(N -1 ). To obtain 
the K,th component of the next iterate of the Gauss-Seidel relaxation , V~+ l , we 
solve the equation 

",-1 (M -1 )(N -1) 

L A"'AV~+l + AI<I<V", + L A"'AV~ = f", (2.16) 
A=1 A=K+1 

in terms of V K • The Gauss-Seidel iteration is more conveniently written in matrix 
form: 

or equivalent ly as 
V k+ 1 = v k - (D - L)-l (Avk - J). 

Generalising to .w-weighted relaxation , we find 

or in a form which shows the iteration matrix M explicitly [101]: 

Red-black Gauss-Seidel relaxation is based on a division of the interior grid 
points Vij into two equal classes: 

red 

black 

for (i,j) = (odd, odd) or (even, even) 

for (i,j) = (odd, even) or (even, odd) . 

Figure 2.2 depicts the chequerboard pattern which this classification produces. 
(This scheme can be generalised to n-colour relaxation by classifying grid points 
according to the rule (i + j) mod n.) ote that this labelling of the grid points 
allows any five-point operator to independent ly update all grid points within each 
colour group. 

For our example of the five-point star on Poisson's equation, ascending row­
wise lexicographic Gauss-Seidel relaxation is given by 

k+1 v ·· IJ 
1 ( k k+1 k k+L h2f .. ) 4 Vi+1 ,j + Vi_ 1,j + Vi,j+L + Vi,j_ 1 - 'J ' 
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Figure 2.2: A 9 x 7 grid, where "red" grid points are indicated with a (. ). 

where the updating of Vij proceeds in the order 

Va,a, VI ,a, ... , VM,a; Va, l, VI , I , .. . , VM,I ; ... ; Va ,N, VI ,N, ... , VM,N. 

We can de-emphasise the ordering role of k in this equation by simply writing 

v·· +-- ~ (~v .· - h2f ·· ) lJ 4 L lJ lJ , 
nn 

(where the arrow indicates replacement) for some general ordering of the grid 
points. 

Thus far we have discussed only point iterations , whereby a single grid point 
is updated at each step of t he process, and the value of V~+ I is determined by 
an explicit formula. Block iterative processes (also known as group iterative 
or implicit iterative methods) are a natural extension whereby groups of grid 
points are updated simultaneously at each step. The process requires the solution 
of simultaneous equations, and typically increases the convergence rate, while 
increasing the complexity of the relaxation algorithm. 

There are a large number of possible ways of dividing the domain into blocks. 
We shall only consider line relaxation, in which individual rows or columns of grid 
points are simultaneously updated. Nevertheless, this still creates many different 
possible strategies for such relaxation: by row or column; with ascending, de­
scending, symmetric (ascending then descending) or zebra (the block analogue of 
red-black) updates; and alternating direction implicit (ADl ) methods which swap 
between row and column updates. In addition, we have our previous possibilities 
of w-weighted Jacobi or Gauss-Seidel relaxation. 

For our example of the five-point star on Poisson 's equation in two dimen­
sions , ascending row-wise Jacobi line relaxation is given by 

k+1 1 (k+l k+1 k + k h2f ) 
Vij = 4' Vi+l,j + Vi_I,j + Vi,j+l Vi,j _1 - ij· (2. 17) 

Thus we need to solve a system of M -1 linear equations in M -1 unknowns 
(the grid row Vij, for i = 1,2, . .. , M -1). Given the use of a five-point star as 
a discretisation operator, we see that this system will be tridiagonal. Various 
efficient direct methods exist to solve such a system. 
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We can precisely analyse the convergence of a relaxation process by studying 
the properties of the iteration matri x. Recall that the general linear iteration 

after k iterations gave rise to an error of 

and so the iteration converges unconditionally iff the spectral radius p(%) < l. 
Thus it is the eigenvalues and eigenvectors of % which determine the convergence 
properties. 

For the sake of clarity, we restrict ourselves to one dimension for the moment. 
Using equation (2. 15), we find t he iteration matrix for weighted Jacobi relaxation 
for the one-dimensional Poisson equation discretised by the five-point star to be 

hence relaxation is given by 

The eigenvalues of A = N 2 TRIDIAG[-l , 2, -1] are 

for j =1 ,2, ... , -1 

and so the eigenvalues of % are 

1- 2wsin2 (tzp) 
1 - w (1 - cos j 7r h) 

(see Figure 2.3). In particular we note that w E (0, 1] gives IAj(% )1 < 1, and 
therefore a convergent Jacobi iteration. Weighted relaxation with w E (0, 1) is 
called under-relaxation, whereas relaxation with w > 1 is referred to as over­
relaxation. We also observe that the convergence factor for J acobi relaxation is 
1 - O(h2) irrespective of w. 

Since the eigenvectors of JI. , Wj say, form an orthogonal basis, the error in 
the initial guess can be expressed in terms of an eigenvector expansion: 

N-l 

eO = u - v
O = L ej Wj 

j =1 

for some constants ej, hence after k weighted Jacobi relaxations we have 

N-l 

~ e · %k w · 
~ ) ) 

j= 1 

N-l 

= L ej A/(%) Wj. 

j= 1 
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Figure 2.3: Graph of the eigenvalues of the I-D weighted Jacobi iteration matrix 
for Poisson 's equation, \(M) = 1 - 2w sin2(j7rh/2), for various values of w, 
plotted for large N = 1/ h. 

In other words , the ph mode of the initial error is reduced by the factor >}(M) 
after k iterations. Moreover, since I . .vl ~ 1 for high frequencies (when w is not 
close to 0 or 1) , the error ek is much smoother than the original error eO. This 
fact will be important when we later examine the multigrid process. We also ee 
that Jacobi relaxation is mode-invariant: when applied to a linear combination of 
modes, the iteration can only alter their amplitudes, not convert some modes into 
others . The introduction of elementary Fourier analysis will allow us to better 
understand this behaviour. 

One-dimensional Fourier modes are vectors of the form 

Vj = sin(jK,7rh) for j=O,l, ... ,N 

where the wavenumber K, = 1,2, ... , N - 1 gives the number of half-sine waves 
on the unit interval [0,1]. We call modes in the lower half of the frequen cy 
spectrum (K, = 1,2, ... , N /2 - 1) smooth modes , while high-frequency modes 
(K, = N/2,N/2 + 1, ... ,N- l) are called oscillatory modes (see Figure 2.3). 

Since the eigenvalue corresponding to the smoothest mode is 

Al = 1 - ~w7r2h2 + O(h4) 

we see that there is no value of w which will satisfactorily reduce the smooth com­
ponents of the error. (Moreover, attempting to increase accuracy by decreasing h 

] 
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only results in worse convergence.) In fact , only the high-frequency components 
of the error are much reduced. The optimal value of w in this case is given by 
imposing the most stringent reduction on the oscillatory modes: 

which results in Wopt = 2/3 and then we have IAjl < 1/3 for these oscillatory 
modes - a most satisfactory reduction of the high-frequency error modes. ote 
that this smoothing factor is independent of h; but also recall that these preci e 
figures are for Poisson's equation only, although we expect similar behaviour for 
ellipti c PDE's. 

We now understand that the slow convergence of classical relaxation schemes 
is due to the presence of low-frequency Fourier components of the error, which 
are very slowly reduced. A relaxation scheme is said to possess the smoothing 
property if it effectively eliminates oscillatory modes , while having little effect 
on smooth modes. This property is a serious deficiency of relaxation techniques' 
however the construction of the multigrid method is based on this observation. 

Convergence results for Gauss-Seidel relaxation are similar to those we have 
found for Jacobi relaxation; in particular, both methods possess the smoothing 
property, and both have convergence factors of 1- O(h2). Optimal wopt-weighted 
(S OR) relaxation improves the convergence factor of Gauss-Seidel (but not Ja­
cobi) relaxation to 1 - O(h). These comments also apply to Jacobi and Gauss­
Seidel line relaxation. 

Weighted Gauss-Seidel relaxation converges for 0 < W :S 2 (see Ames [4]). 
Over-relaxation, with w E (1,2]' results in a better convergence rate than ordinary 
Gauss-Seidel relaxation. However under-relaxation , with w E (0,1), improves the 
smoothing rate (even though this adversely affects the overall convergence rate), 
and is more often used in connection with multigrid. 

In this' same vein, we may remark that before the emergence of multigrid, 
Gauss-Seidel relaxation was favoured over Jacobi relaxation , due to its superior 
convergence properties. In fact under many circumstances, optimal Gauss-Seidel 
relaxation is exactly twice as fast as Jacobi's method [4]. However Jacobi re­
laxation may have superior smoothing properties , and so is quite popular in the 
multigrid field. 

We have examined some of the simpler relaxation methods. Many more 
sophisticated iteration schemes exist (see for example [4, 5, 80D, however these 
are not required for our purposes. The multigrid method is a construction of a 
powerful solution process from a set of simple tools, as we shall now see. 



Chapter 3 

Elements of Linear Multigrid 

To iterate is human; to recurse, divine. 

- Anonymous 

Following on from our discussion of relaxation in the previous chapter, we now 
consider the other fundamental elements of the multigrid method: intergrid trans­
fer, coarse-grid correction and nested iteration. We examine the two-grid multi­
grid scheme (for linear equations), which leads us to the full multi-grid process . 
To clarify the presentation, some of the material in this chapter is based upon 
one-dimensional problems; Section 3.3 extends the coverage to multidimensional 
problems. We then look at the large multigrid parameter space, and consider an 
automatic initial guess algorithm. Finally, we discuss the multigrid implementa­
tion for conventional serial computers. 

3.1 Two-Grid Multigrid 

In Chapter 1 we described how Southwell [91] used coarser grids to improve the 
speed of his hand-calculated relaxation . The heuristic reasons for the succe s of 
this modification are that an iteration scheme is improved by a more accurate 
initial guess, and that convergence factors are slightly better on coarser grids , 
since these behave like 1 - O(h2) or 1 - O(h). We have employed the Fourier 
or spectral viewpoint of relaxation to show that many of the standard iterations 
possess the smoothing property; that is, the iteration process efficiently reduces 
the high-frequency components of the error, while acting very slowly on the low­
frequency components. Since these frequencies are measured with respect to 
local grid scales, it becomes clear that once we have smoothed the current ap­
proximation on the fine grid fh, we can begin to tackle the smooth modes which 
·remain by transferring the problem to the coarse grid [22h, whereby those smooth 
modes appear more oscillatory, and so can be effectively damped by coarse-grid 
relaxation. We shall now consider this idea more carefully. 

Recall that (one-dimensional) Fourier components with wave number K. are 
smooth modes if 1 S K. < N/2, and oscillatory modes if N/2 S K. S N -1. Given 

24 



CHAPTER 3: ELEME TS OF LINEAR MULTIGRID 2.5 

that the coarse grid n2h (j = 0,1, ... , N/2) consists of the even-numbered points 
of the fine grid nh (j = 0, 1, ... , N), we see that the fine-grid smooth modes 
are transformed into more oscillatory modes on the coarse grid; this situation is 
illustrated in Figure 3.1(a). The special case when", = N/2 on n

h 
gives rise to 

the zero vector ",' = 0 on the coarse grid (see Figure 3.1(b)). Fine-grid oscillatory 
modes with N/2 < '" < N are transformed into relatively smooth ",' = ( _ "') 
coarse-grid modes - a misrepresentation phenomenon known as aliasing (see 
Figure 3.1(c)). 

Suppose that for some problem we have obtained a relatively smooth approx­
imate solution v

k 
by relaxation. The essential multigrid idea is to improve the 

approximation by calculating the residual rk = f - Avk and solving the residual 
equation Ae

k 
= rk for ek to obtain the correction vk + ek = u. These equa­

tions are useful provided that we can solve the residual equation exactly, which 
of course we cannot do in general. However, the residual equation is precisely 
of the same form as the original equation Au = f, and so we employ the same 
technique to approximately solve it: namely, we relax directly on the error on the 
coarse grid, using zero as our initial guess. It is important to note that ek will 
be a smooth function, as indicated in the previous chapter , and can therefore be 
properly represented on a coarse grid. 

Up to this point , we have two loosely-connected ideas. The first is called 
nested iteration, whereby we relax on the equation Au = f on the coarse grid n2h 
to obtain a good initial guess for relaxation on the fine grid nh: 

1. perform V2h relaxations on IAu = fin (with some initial guess vgh) to obtain 
a new approximation Vn 

2. interpolat~ V2h to the fine grid to obtain Vh 

3. perform Vh relaxations on IAu = flh (with initial guess Vh) to obtain a new 
approximation Vh 

The second idea is called coarse-grid correction: 

1. perform Vh relaxations on IAu = flh (with some initial guess v~) to obtain 
a new smooth Vh 

2. compute the residual rh = f - AVh 

3. restrict rh to the coarse grid to obtain r2h 

4. perform V2h relaxations on IAe = rln (with initial guess e2h = 0) to obtain 
a new e2h (or directly solve the coarse-grid equation: en = A;-~r2h) 

5. interpolate the approximate error e2h to the fine grid to obtain eh 

6. correct the current approximation by Vh f- Vh + eh 

It will be apparent that we require intergrid transfer mechanisms to facilitate the 
coarse-to-fine-grid interpolation (also called prolongation), and the fine-to- coarse­
grid restriction operations. We now turn our attention to these operations. 

Consider the approximation of some linear equation AhVh = fh by the coarse­
grid equation A2hV21. = hI.. The finite-difference discretisation ensures that there 
is a natural interpretation of A 2h : in one dimension, it is simply the N/2 x N/2 
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n2h 
... --~.~ ... ----.---.......... --........... --....... ' ..... ---..1--. ___ ..... __ ~ • 

....•. 

(b) 

nh4v~~~ 
n2h0v9~ 

(c) 

Figure 3.1: Fine-grid Fourier modes are classified according to how they are 
transformed onto a coarse grid: (a) smooth modes become more oscillatory, 
(b) '" = N/2 becomes the zero vector, and (c) oscillatory modes become smoother 
(aliasing). The cases", = 4,8 and 12 are shown for N = 16 on a one-dimensional 
fine grid nh , being projected onto the coarse grid with N = 8, where they become 
modes with ",' = 4, 0 and 4 respectively. 
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matrix constructed from the operator A in the same manner as A
h

. The vector 
V2h should depend linearly on Vh by some restriction 

V2h = I ;h Vh· 

The simplest choice of restriction operator I~h is called injection, and is defined 
by 

2h h f ' 0 1 N 
vi =V2i or 2= , ""'2' 

that is, the coarse-grid vector takes its values directly from the corresponding fine 
grid point (see Figure 3.2(a)). 

An operator which preserves more fine-grid information is obtained using a 
weighted restriction , where the values of the coarse grid vector are a weighted 
average of values at neighbouring fine grid points. The operator most frequ ent ly 
used is called full-weighting (see Figure 3.2(b )). It is defined by 

2h 1 h 1 h 1 h 
Vi = 4" V 2i - 1 + 2 v 2i + 4" v 2i+1 

or in matrix notation 

2 1 
121 

f ' -I') !'!..-1 or 2 - , - , ... , 2 

121 
1 2 1 

We generalise the concept of restriction to tv-weighted restriction , whereby 
the restriction operator is multiplied by some parameter tv. This process is com­
plementary to t....?-weighted relaxation , since it effectively extrapolates the residual 
equation correction step, in the same way that weighted relaxation extrapolates 
the relaxation step. 

The reverse process, that of coarse-to-fine-grid prolongation Vh = I r V2h, is 
usually achieved with the use of a low-order interpolation , often simply piecewise 
linear interpolation : 

v'fh 
1 

for i=O,I, ... ,~ -1 
h 1. (v 2h + v2h ) V 2i+1 2 1 1+1 

(illustrated in Figure 3.2(c)) , whose matrix form is 

1 
2 
1 1 

2 
1 1 
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Figure 3.2: Intergrid transfer operations in one dimension: (a) injection restric­
.tion, (b) full-weighting restriction, and (c) linear interpolation. The numbers 
near each arrowhead indicate the relative weighting attached to that grid point 
for the transfer operation . 
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Piecewise linear interpolation suffices as the prolongation operator provided the 
PDE is of second order. In fact , an equat ion of order 2n requires an interpola­
tion of degree n [51]. Cubic interpolation requires the same amount of work as 
quadratic, and so is more often used for higher-order PDE's; in one dimension it 
is given by 

h I (2h 2h ) 9 (2h 2h ) Vi = -16 Vi_3 + Vi+3 + 16 Vi_1 + Vi+1 • 

ote that the linear interpolation operator and the full-weighting restri ction op­
erator are adjoints of each other, up to a constant factor. 

With this intergrid operator notation, we can now compactly represent the 
coarse-grid correction process as 

It should be noted that coarse-grid correction may not be a convergent iteration , 
as we now demonstrate (following Hackbusch [51]). Choose some non-zero vector 
x E ker(1;h) , that is I;h x = 0, and set the initial guess to be V O = A-I(J - x). 
Then rO = f - AvO = x and so I;h r~ = I;h x = 0, and hence our coarse-grid 
correction iteration is invariant. 

We have some flexibility in our choice of coarse-grid matrix A2h , since the 
coarse-grid equation is itself an approximation . As we have indicated above, the 
natural choice is to define A2h by the same discretisation as for Ah. A second 
approach is to define the coarse-grid operator as 

A2h = I;h Ah Ilh 

which is called . the Galerkin approximation. This approach has the advantage 
of a more precise representation of coarse-grid equations , but at the expense 
of increased computational effort. In fact, we found the Galerkin approach for 
one-dimensional problems improves convergence only marginally, and does not 
compensate for the necessary extra work; for this reason, we do not cater for the 
Galerkin approach in MGLAB . 

By themselves, relaxation and coarse-grid correction converge slowly, or not 
at all; it is the complementary union of these methods which results in the highly 
convergent process of two-grid multigrid. Algorithm 3.1 gives an encapsulated 
description of this process , introducing the notation 1(1. for the relaxation step 
performed /I times in succession on the fh grid . 

Algorithm 3.1 (Two-grid Multigrid) 
A n iteration for solving Ah Uh = fh ] given some initial guess Vh. 

Vh +-- 1(1.1 (Vh, fh) pre-smoothing 
rh +-- fh - Ahvh residual calculation 

r2h +-- I;h rh resid ual restriction 
e2h +-- A-I 2h r2h coarse-grid equation solution 
Vh +-- I 2h Vh + h e2h coarse-grid correction 
Vh +-- 1(';;(vh,fh) post-smoothing 
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Hackbusch [51] rigorously proves convergence of this iteration . We shall postpone 
discussion and analysis of convergence to the next section. 

The final necessary com ponent of our multigrid iteration is a measure of the 
closeness of the approximation v to the exact solution u. We use the following 
standard discrete norms for the error e = u - v: 

and Ilell oo = max leJ 
15: i~N 

Of course, t he exact solution is frequently unavailable, in which case we measure 
how closely v satisfies the PDE, by using the above norms applied to the residue 
r = f - Av. 

Many other measures may be defined, for example [1] 

f = Ilell 
Ilu - iill 

where v (the "exact discrete solution") is the result of iterating many V£,2,I-cycles 
(see below). Note that the denominator Ilu - iill is a measure of the discretisation 
error. 

3.2 Full Multigrid 

The two-grid multigrid iteration offers computational benefits, but of course 
leaves open the .question of how to solve the coarse-grid (residual) equation 

(3.1 ) 

Although a direct solution is possible, and involves only N/2 unknowns , this is 
sti ll impractical for real-world problems. However, since the coarse-grid equa­
tion is itself an approximation (to the fine-grid problem), we need only solve it 
approximately. Indeed, equation (3.1) is of the same form as our original linear 
equation, hence we can embed the same two-grid procedure to (approx imately) 
solve our residual equation. This involves excursions to coarser and coarser grids 
il2h , il4h' nSh , ... ; the recursive process ceasing when the grid is so coarse (con­
tains so few unknown grid values) that a direct solution is possible or that a few 
relaxations give the coarsest-grid solution to the required accuracy. Often the 
grid is coarsened until there is a single interior grid point . This ensures that the 
broadest possible range of Fourier components of the error can be attacked. 

To allow a convenient description, we introduce a numbering of grid levels 
of the form 

L = 1, 2, ... , A 

where level L = 1 indicates the coarsest grid, and L = A labels the finest grid 
(that is, ilA == nh)' This means that the grid spacing on level L is 

hL = 2A
-

L h 
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and the number of grid points on level L is 

NL = 2L- A N. 

Note that we only discuss the case where grid meshes are coarsened by a factor of 
two: hL/hL+l = 2; this is called standard coarsening. There are other possibilities 
(see Hackbusch [51]), but these are infrequently used. 

The multigrid process described above visits the grids in the order 

and so is called a V-cycle (see Figure 3.3(a)) . Algorithm 3.2 presents a recursive 
description of the V-cycle iteration. We also give a non-recursive description of 
the process, since standard FORTRA 77 does not permit recursion (see Algo­
rithm 3.3). 

We introduce the notation V;1 ,vO,V2_cycle to indicate a V-cycle of depth A lev­
els, with 111 pre-relaxations , 110 coarsest-grid relaxations , and 112 post-relaxations. 

A slight generalisation of the V-cycle is made by replacing the recursive call 

V-cycle (v,r,L -1) 

in Algorithm 3.2 by a sequence of recursive calls: 

fol," i = 1 to 'Y do 
V-cycle (v, T, L - 1) 

endfor 

Hence 'Y = 1 gives the V-cycle, while 'Y = 2 produces a scheme known as the 
W-cycle (see Figure 3.3(b)) . In practice, no other values of'Y are used . 

So far we have only used the coarse-grid correction idea to construct a multi­
grid method. By embedding V-cycles in a nested iteration scheme, we arrive at 
the full multigrid V-cycle, which we call the M-cycle, also known as the FMV 
cycle (see Figure 3.3(c)). This removes the need for a reasonable fine-grid initial 
guess to commence the V-cycle; we instead begin the M-cycle with a coarsest-grid 
initial guess , the accuracy of which is practically irrelevant since the first step is 
to perform 110 coarsest-grid relaxations: 1(~o. Algorithm 3.4 describes the process. 
We also give a non-recursive description (see Algorithm 3.5). 

3.3 Multi-dimensional Multigrid 

The material in the preceding sections was based on one-dimensional multigrid, 
so that it could be presented more clearly. We now indicate how these concepts 
are applied to two-dimensional problems, with obvious generalisations to higher 
dimensions. 

We begin with the intergrid transfer operators: restriction and interpolation. 
Injection is again defined as the direct transfer of the value at fine-grid points to 
corresponding coarse-grid points: 

for i= O,l, ... ,~; j= O,l, ... ,tf. 
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!h L=6 
fl2h L=5 
fl4h L=4 
fl8h L=3 
nI6h L = 2 

n32h L=l 
( a) 

!h L=5 

fl2h L=4 

fl4h L=3 

fl8h L=2 
fl I6h L=l 

(b) 

flh L=6 

fl2h L=5 

fl4h L=4 

fl8h L=3 

fl I6h L = 2 

fl32h L=l 
(c) 

Figure 3.3: Diagram indicating the order in which grid levels are visited (reading 
from left to righ t) for the (a) V6 -cycle, (b) Ws-cycle, and (c) M6 -cycle. 
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Algorithm 3.2 (Multigrid V-cycle ) 
A recursive iteration for solving AAUA = fA , given some init ial gu ess VA. 

procedure V-cycle (v, f, L) 

begin 
if L = 1 then 

else 
v L f- fJ(Lo ( v L , f d :::::: A ~ 1 f 

VL f- fJ(L1 (V L, h) 

rL-1 f- I Ll (h - ALVd 

VL-l f- 0 

V-cycle (v , r, L - 1) 

+ I L-1 
VL f- VL L VL-l 

VL f- fJ(L2 (VL' fd 

endif 
end 

Algorithm 3.3 (Multigrid V-cycle ) 
A non-recursive iteration f or solving AA UA = fA , given some initial gu ess VA . 

procedure V-cycle (v, f , L) 

begin 
for L = 1 to A-I do 

VL f- 0 
endfor 
for L = A downto 2 do 

VL f- fJ(L1 (VL , fd 

h-1 f- I L l (h - ALVd 

endfor 
VI f- fJ( ~O (VI , fd 
for L = 2 to A do 

I L - l 
VL f- VL + L VL-l 

VL f- fJ(L2 (VL , fd 

endfor 
end 

:33 
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Algorithm 3.4 (Multigrid M-cy cle) 

A recursive iteration for solving A" u" = fA J given some initial guess VI. 

procedure M-cycle (v, f, L) 

begin 
if L =11 then 

h-l +-- ILl (h - A[,vL) 

V[,-1 +-- 0 

V[,-1 +-- M-cycle (v, f, L - 1) 

1[,- 1 
V[, +-- V[, + [, V[,-l 

endif 
v[, +-- V-cycle (v,f,L) 
end 

Algorithm 3.5 (Multigrid M-cycle) 

A non-recursive iteration for solving A" u" = f", given some initial guess VI ' 

procedure M-cycle (v, f, L) 

begin 
VI +-- 1<.ro ( VI , fd 
for L = 2 to A do 

1[, -1 
V [, +-- [, v [,_ 1 

V[, +-- V-cycle (v,f,L) 
endfor 
end 
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Full-weighting restri ct ion is given by 

v;,j i V;i ,2j + k (V;i- l ,2j + V;i+l ,2j + V;i ,2j _l + V;i ,2j+l ) 

+ 1~ (V;i-l,2j_l + V;i -l ,2j+l + V;i+l ,2j-l + V;i+l ,2j+ l ) 

3.5 

for i = 1,2, ... , ~ -1 ; j = 1,2"" ' 2- 1 

which we can write in stencil form as (cf our earlier molecu le diagrams) 

1161H H 
The analogue of one-dimensional linear interpolat ion is called bilinear inter­

polation: 
h 

V2i ,2j 

h 
V2i+1,2] 

h 
V2i ,2j+ l 

which in stencil form is given by 

1 (2h 2h) 2 v i,] + vi+l ,j 

~ (v?J + V;,;+l) 

1 ( 2h + 2h 2h + 2h ) 4 Vi ,j V i+1 ,jVi ,j+ l Vi+ 1,j+l 

for i =1 ,2, ... ,~ -1· j=1,2 , ... , ~- 1 

11~~~[ · 
4 121 

We shall henceforth use linear interpolation as a generic term for interpolation 
in n dimensions using linear functions . Again note that full-weighting restr iction 
and linear interpolation form a natural pair of intergrid operators, since I~h and 
Ilh are then adjoint operators (up to a constant factor). 

Cubic interpolation in two dimensions can be written in stencil form as 

1 0 -9 -16 -9 0 1 
0 0 0 0 0 0 0 

1 -9 0 81 144 81 0 -9 
-16 0 144 256 144 0 -16 

256 
-9 0 81 144 81 0 -9 

0 0 0 0 0 0 0 
1 0 -9 -16 -9 0 1 

The coarse-grid PDE operator A2h is naturally defined in two dimensions by 
the discretisation ; the matrix is of size M N x M 

The two-dimensional accuracy measures for Vh are also analogous to those 
defined in one dimension; the discrete norms are given by 

M N 

hkLL ei} and /Ie/l oo = 
i=l j= 1 
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We now consider the computational cost of relaxation for t he various multi­
grid cycles. Relaxation is generally the most costly element of a multigr id al­
gorithm (see Appendix B for an example cost-b reakdown ); indeed some authors 
ignore the cost of all other operations. In order to keep our remarks independent 
of the implementation, we choose the framework of work units (WU) used by 
Briggs [20] and others . A work unit is defined to be the cost of performing one 
relaxation sweep on the finest grid. We will assume that Nl and Ml (t he number 
of grid points on the coarsest grid) are small, and that A is reasonab ly large so 
that 

1\ 

L 2-L ;:::::; l. 
L=1 

First ly consider one-dimensional multigrid ; t he co t of relaxation on level L 
IS 

WL = 2L -1\ WU 

therefore the total relaxation cos t for a Vi ,2, l- cycle is 

1\ 

Wv = 2 L W L ;:::::; 4 WU. 
L=1 

For a Vi,2 ,I-cycle , the cost is 

hence the total relaxation cost for an M~,2 , I- cycle is 

1\ 

W M = L WV(L) ;:::::; 8 WU. 
L=I 

For the purposes of calculating the cost of a W~ ,2, I _cycle, we introduce the quan­
tity TIL, the number of visits to level L during a W-cycle: 

(see Figure 3.3) , hence 

21\-2 

3 ·21\-L-I 

2 

1\ 

L = 1 
L = 2 3, ... , A-I 
L=A 

Ww L WL 77L = ~ (3A - 1) WU. 
L=1 

To generalise these results to d dimensions , we note that the basic cost of relax­
ation is now 

W
L 

= 2 d(L-I\) WU 

hence 

Wv ;:::::; 
2 

1 - 2-d WU 
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WU 

and 
A-I 

Ww = 2 + 2(I-A)(d-I)-1 + 3· 2A(I-d)-1 L 2L(d-l) WU. 
L=2 

The following table compares the relaxation costs for some typical cycles . 

d VI,2,1 M I ,2 ,1 W I ,2,1 
00 00 7 

1 4.00 8.00 10.0 
2 2.67 3.50 3.46 
3 2.29 2.50 2.50 

Formulae very similar to those given above apply to the cost of restriction, 
prolongation and residue calculation (each in terms of the cost on the finest grid). 
This is as much as we can say for the moment without considering the arithmetic 
cost of explicit finite-difference operators AL, '1( , ILl ' It-I , and an exp li cit 
computer implementation for these. 

3.4 Smoothing and Convergence Rates 

In Chapter 2 we saw that the optimal smoothing rate for 1-D weighted Jacobi 
relaxation on the Poisson equation discretised by the five-point star occurs for 
WOpl = 2/3. We also introduced some terms describing the smoothing and conver­
gence properties , which we now define more rigorously (and in two d imensions). 

The convergence factor of a relaxation scheme is defined as [50] 

which is just the spectral radius of the iteration matrix:M. By writing the error of 
the klh iterate in terms of a discrete Fourier expansion, we can see how relaxation 
affects the various frequency modes: 

where z2 = -1 and () 
measured by 

(()I , ()2). Thus the convergence factor IS conveniently 

/
1/;;+1/ 

p = max --::;:r-. 
0$8$7r '1/8 

Strictly speak ing, the error should be expressed as an expansion in the eigenbasis 
of :M; hence this equation is valid on ly for discrete operators whose eigenvectors 
are Fourier modes (such as those ar ising from Poisson's equation) . However, this 
is the standard treatment since it is very convenient (and is exact) for the simple 
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linear equations, and because the true eigenvectors are often perturbations of the 
Fourier modes. 

The smoothing factor of a relaxation scheme is simply t he convergence factor 
over the domain of oscillatory modes: 

11 = 

l

1j;k+l I max - () -
.!!:<()<1f . I.k . 
2 - - 'f'() 

The smoothing rate is defined as 1/ I log 111. 
We therefore have two mathematical too ls at our disposal which allow us 

to predict the all-important smoothing rate of a relaxation: eigenvalue analysis 
and Fourier analys is. The analysis of Fourier components is called local mode 
analysis, and enables us to calculate the smoothing rate for a given difference and 
relaxation scheme. Note, however, that local mode analysis is not rigorous: it 
assumes periodic boundary conditions, and "freezes" the coefficients of a var iable­
coefficient PDE. 

As a demonstration , we summarise the eigenvalue analysis for I-D weighted 
Jacobi relaxation for the Poisson equation Llu = f discretised by the usual five­
point scheme (see also Section 2.3). We begin with the matrix part it ion (or 
splitting) of the PDE operator 

Au = (D - L - U) u = f 

which results in a weighted Jacobi iteration scheme of 

hence our iteration matrix is 

M (1-w)I+wD-1(L+U). 

The eigenvalues of Mare 

A·(M) = 1 - 2wsin2 ~ 
J 2N for j = 1,2, ... ,N -1. 

The optimal weighting WOpl is given by the condition 

hence 

which gives us 
2 

WOpl = 3 and 1 
I10Pl = 3' 

This compares favourably with a I-D Gauss-Seidel relaxation smoothing factor 
of l10pl = 4 (see Hackbusch [51]). 

-
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To contrast t hi s technique, we proceed to analyse 2- D weighted J acob i point 
relaxation for the Poi sson equat ion using Fourier analys is. The re laxat ion is given 
by 

V
k
+

I = (1 - W) V
k

. + 1. w ('" V~ . , _ h2 f · ) I ) I) 4 L I ) I ) 

nn' 

and so the error in the (k +l )th iterate is 

e7t = (1 - w) e7j + ~ w L e7lj l. 
nn' 

The Fourier representat ion of this is 

L 7/;;+1 e' (i lf l +)lf2) 
If 

L [7/;; + ~ w(7/;;e-
,lfl + 7/;;e+1lfl + 7/;;e - 1lf2 + 7/;;e+1lf2 - 47/;;)] e,(ilf l +)1I2) 

II 

hence 
7/; k+ 1 

;~ = 1 + 1w(cosB1 + cosB2 - 2) 

(see Figure 3.4) and so the smooth ing factor is 

We therefore obtain 

jJ, = max (11 - 2wl , 11 - ~I). 

4 Wopt = 5 and 3 jJ,opt = 5 

with a general smoothing factor for weighted Jacobi relaxat ion of 

jJ,_{(I- ~r 
(2w - 1)" 

for 0 ~ w ~ ~ 

for ~ ~ w < 1 

We wish to emphasise t hat t his result is exact because t hese Fourie r modes are 
indeed the e igenbasis of the discrete 2- D Laplacian operator. In fact , the eigen­
values of A = N 2 TRIDIAG[D , T , D ], where T = TRID IAG[-1 4, -1] and D = -1, 
are 

for i,j = 1, 2, . .. ,N-l 

and the iteration matrix is (cf Section 2.3) 

9vf = I - ~wh2A, 

yielding precisely 

in this case. 

For other relaxation schemes, we find smoothing factors of [51] 
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1- 3w 
2 

1-w 
~--------~----~--~4-___ 8

1 o ~ ~ 
2 

40 

Figure 3.4: Fourier space diagram of the smoothing action of 2-D weighted Jacob i 
relaxation: 'I/;;+lj 'l/J; = 1 +~(COS81+cos82-2 ). The shaded region of the (81,82) 
plane contains the high-frequency (oscillatory) modes. Several representative 
points in that region are evaluated in terms of w. 

lexicographic pointwise Gauss-Seidel relaxation: 

lexicographic linewise Gauss-Seidel relaxation: 

symmetric linewise Gauss-Seidel relaxation: 

{t = 2-1/ 

{t = 5- 1//2 

{t = 4 - 1/ . 

We may also summarise the convergence factors as follows (see Ames [5] for 
further details): 

p 

p 

p 

max !Aij! 
max !),ij! 
1 - 2h 

cos h '" 1 - 1. h 2 
2 

cos 2 h '" 1 - h 2 

(Jacobi) 

(Gauss-Seidel) 

(optimal Gauss-Seidel) 

The optimal weighting for Gauss-Seidel relaxation on Poisson 's equation in 2- D 
discretised by the five-point star is [5] 

whereas for Jacobi relaxation it is 

2 

1 + ~h' 

_ 2 
Wopt - 3' 

Matrix analysis provides a method of computing convergence of the entire 
multigrid scheme, although it is somewhat cumbersome. The two-grid process is 
described by 

(3.2) 

and the multigrid cycle (without post-relaxation) from level k to level j (j < k) 
is given by 

for 1 < k ~ A, 
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Tk,j = Tk,k-1 + 1;_1 TL1,j (Ak_d- 1 1;-1 Ak '1(~ for 1 < j < k :::; 1\, 

where I is the depth of recursion (1 for the V-cycle, 2 for the W-cycle) . The 
process of optimising the convergence rate involves minimising the spectral radius 
of the total process matrix p(T) , a process which must be done numerically. 

Much more extensive and detailed material on the subject of convergence 
and its relation to the various multigrid parameters is presented in Brandt [15, 17] 
and Hackbusch [49, 50, 51] . Bramble et al are currently writing an important se­
ries of papers on the convergence of multigrid algorithms, which appear to place 
multigrid on a strong theoretical basis. For example in [12], results are given 
which guarantee convergence of V- and W-cycles for symmetric positive-definite 
problems. These results generally assume a "regularity and approximation" hy­
pothesis, which involves a parameter a E (0, 1]. In [13] and subsequent papers , 
they extend these results to nonsymmetric problems, indefinite problems, etc. 
This coverage of convergence results may turn out to be a milestone in the de­
velopment of multigrid methods. 

3.5 Multigrid Parameter Space 

We have drawn a picture of the multigrid process as a collection of neatly inter­
related subprocesses, each ha~ing several free parameters . This results in a high­
dimensional multigrid parameter space; in other words, there is a great deal of 
choice presented to the multigrid practitioner. The following is a partial Ii t of 
these parameters: 

• Type of cycle (V-cycle, W-cycle, M-cycle, ... ) 

• Number of cycles (fixed , determined adaptively, . .. ) 

• Number of gri d levels (1\) 

• Type of restriction It-I (injection, full-weighting , . .. ) 

• Restriction weighting (tv) 

• Type of interpolation It- 1 (piecewise linear, quadratic, cubic, ... ) 

• umber of relaxations (1/1, I/o, 1/2, determined adaptively, ... ) 

• Type of relaxation '1( 

Jacobi, Gauss-Seidel , . .. 
weight ing (S OR) factor w 
pointwise, row-wise , column-wise, ... 
red-black, lexicographic, symmetric, zebra, alternating, . . . 

• Size of coarsest grid (hi) 

• Type of grid coarsening hL/ hL+1 (standard coarsenlfig, semi-coarsening, 
V2-coarsening, ... ) 

• Choice of coarse-grid matrix AL (L 
approach, ... ) 

1,2, .. . ,1\-1) (natural, Galerkin 
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• Type of grid (uniform, isotropic , non-isotropic, fixed , adapti ve , ... ) 

• Type of finite-difference discretisation (five-point , nine-point , .. . ) 

• Type of error estimate (error, residual, two-norm, infinity-norm, . .. ) 

• Type of initial guess (zero, user-defined, discrete-Laplacian , . .. ) 

• Arithmetic precision (double, single, .. . ) 

• Use of visualisation , immediate correction, debugging , graphic output , ... 

We have various theoretical principles to guide us in the choice of multigrid 
parameters (such as "match the interpolation to the order of the PDE", "smooth 
sufficient ly to reach truncation error on each level", and "red-black Gauss-Seidel 
relaxation is incompatible with injection") . Despite these guidelines , multigrid 
is far from being a fixed method, and some experimentation is desirable. As we 
have said, it was for this purpose that the software package MGLAB was written. It 
allows the multigrid practitioner to freely experiment with the parameter pace 
for a given problem. 

The above list contains three items not yet discussed: immediate c01Teclion 
adapti ve strategies and a discrel e-Laplacian ini tial guess. 

Immediate correction is a very useful tool for analysing (and debugging) 
multigrid algorithms. It is a process which may be added to the multigrid algo­
rithm which makes a coarse-grid correction directly to the fine grid after each set 
of coarse-grid relaxations. This enables us to observe the immediate effect of each 
coars -grid adjustment with respect to the fine-grid solution , a process which is 
otherwise not quantitatively apparent . Immediate correction is merely an aid to 
interpreting multigrid convergence, and has no effect itself on the convergence. 

Strategies for the multigrid process may include the use of fixed or adaptive 
grids, fixed or adaptive values of /J (ie. relax until some tolerance condit ion is 
met), and fixed or adapti ve cycle st rategies (where swi tching from one level to 
another is controlled by some criterion). 

3.6 Automatic Fine-grid Initial Guess 

An interesting sub-problem is to find a method of generating an automatic initial 
guess v~, satisfying the boundary conditions of the PDE. This is a useful option 
for V- and W-cycles, which begin on the finest grid rh. As we expect ellipti c 
boundary value problems to result in smooth solutions, a reasonable method is 
to generate the initial guess using a discrete Laplacian-type interpolation of the 
boundary data. 

Firstly consider the following one-dimensional situation: 

L e c r R 
---+----------~--------+_---+I----+-------------- X 

-+----- hL ---....... ..- hR -
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Writing VL for v(x = L) etc, the forward and backward finite-difference deriv­
atives of the function v at the point Care 

and , (C) _ Vc - VL 
vbwd - hL . 

Taking the mean of these, we find the central derivative to be 

v'( C) = hL (VR - vc) + hR (vc - VL) 
2hLhR . 

We also know the central derivatives at the midpoints e and r: 

V'(e) = Vc - VL 
hL 

and '() VR - Vc 
V r = hR . 

(3.3) 

Applying equation 3.3 to first derivatives, we obtain for the second derivative 

VI/(C) = 
~ [v'(r) - v'(C)] + ¥ [v'(C) - v' (L)] 

2 !1:..I.. !l.a. 
2 2 

hi (v R - vc) + h L h R ( V R - 2vc + V L) + h"k (v L - vc) 
2 hi h"k 

which reduces to the usual second derivative when hL = hR = h. 
In two dimensions , consider the following situation : 

T 

1 - y 

L 
x C 1 - x 

R 

y 

B 

Applying our one-dimensional result to Laplace 's equation Vxx + Vyy = 0 gives 

y2(1 - y)2 [XVR + (1 - x)vd + x2(1- X)2 [YVT + (1 - y)VB] 
y2(1 - y)2 + x2(1 - x)2 Vc = 

which relates t he value of an interior point v(x, y) to the boundary data, and 
·is our desired result. ote that the coefficients of VR,VL,VT,VB sum to unity, 
as expected. In the coming chapters, we will present results which demonstrate 
that this discrete-Laplacian function indeed produces a very smooth (and visually 
sat isfying) initial guess (see for example Figures 6.1 to 6.3), and gives rise to very 
significant computational benefits over simple initial guesses. 
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3.7 Multigrid Implementation 

MGLAB was developed firstly in standard FORTRA 77 so that the package cou ld 
be run on the widest possible class of computers. Once it was complete, the 
library of routines was then ported to a Connection Machine, using the CM For­
tran language, so that observations could be made about multigrid on a parallel 
processing system (see Chapter 8). This section is concerned with the implemen­
tation of MGLAB on a standard serial machine. 

We will firstly consider memory requirements for the multigrid algorithm. 
Recall that Ml + 1 and Nl + 1 give the actual number of points on the coarsest 
grid (L = 1) in the x- and y-directions, respectively. Then standard coarsening 
of the grid defines M Land N L for all finer grids: 

and for L = 2,3, .. . A. 

The total number of grid points on level L is 

and hence the total number of grid points on all levels is 

L=l (3.4) 

Rather than storing the boundary grid points separately from the interior 
grid points, it is more convenient to explicitly store all grid-point values in the 
same data structure, without distinguishing interior from boundary grid points. 
Hence TA is the total amount of memory required for storing one full representa­
tion of the multi-grid hierarchy, for example for the variable VL (L = 1, 2, . .. ,A) . 
The standard FORTRAN method of implementing a data structure of this kind is 
to declare a single long array (V say), create a virtual allocation of grid variables 
VI, V2, "" VA from it, and write code to keep track of the correspondence between 
an element VCr) and some grid point vh. Figure 3.5 shows how we assemble 
virtual blocks of memory of increasing size 

in this way. 
Since FORTRA indices are numbered from one upwards , the index into the 

single array V of the grid point v{;o (the "start" of level L) is 

L-I 

SL 1 + L MkNk 
k= l 

~MINI(4L-l_1) + (MI +Nd(2L- 1 -1) + L. 
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y(j=O,l, ... ,NL) 

L x(i=O,], ... ,Mhi 

9 10 11 12 
5 6 7 8 
1 2 3 4 

4 

3 
2 

1 

o 

41 
34 
27 
20 
13 

42 43 
35 36 
28 29 
21 22 
14 15 

44 45 46 47 
37 38 39 40 
30 31 32 33 
23 24 25 26 
16 17 18 19 

8 

7 

6 

5 

4 

3 

2 

1 

o 48 49 ... 

4·5 

.. . 16J 16 

o 1 2 3 o 1 234 5 6 o 1 2 3 4 5 6 7 8 9 10 11 12 

L=1 L=2 L=3 

Figure 3.5: Diagram of the first three levels of a multi-grid hierarchy with M\ = 3 
and Nl = 2 laid out with respect to a single long FORTRA array. Each square 
corresponds to a grid point, and is labelled with its index MAP (L, i,j). 

One way to achieve the index book-keeping is to use a FORTRAN statement func­
tion 

MAP(L,i,j) = SL + (NL +1)*i + j. 

This is efficient due to the combination of using look-up tables (LUT's) for SL and 
the statement function, which is compi led to in-line code on almost all machines. 

We need to allocate sufficient memory to store a full multi-grid repre enta­
tion for the variables v and j, and a single A-grid for the variables T and e. Thus 
the total memory required for the major data structures is 

Each variable is of the nominated precision; we regard double precision ( -byte 
variables) to be the standard choi ce . Moreover, a standard choice for the coarsest 
grid is Ml = Nl = 2 (see Section 3.2). Using equation (3.4), the following table 
gives the number of real variab les required for a single multi-grid hierarchy of A 
levels , TA, and the total memory requirement in megabytes of MGLAB , T A , assuming 
double-precision variables. 

A 5 6 7 8 9 10 

TA 1493 5718 22359 88408 351577 1402202 

TA 0.04 0.15 0.60 2.36 9.38 37.43 

To obtain solutions of fine resolution , we see that a substantial amount of memory 
is required. For this reason alone, it is desirable to utilise a computer with a large 
amount of main memory, such as the Connection Machine. 
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Having discussed the major data structures, we now turn our attention to 
the organisation of the software package itself. MGLAB consists of a front- end 
driver plus a number of back-end library routines which implement user-specified 
choices for most of the multigrid parameters li sted in Section 3.5. In addition , 
the user is required to write PDE-specific routines to calculate on any level L 

• the boundary conditions vlan 

• the right-hand side function f 
• the five-point discretisation parameters f3o ,{31, ... , f34 (see below) 

and optionally 

• the action of the PDE operator Av 

• the ini tial guess V
O 

• the exact solution u 

• a pointwise relaxation based on A. 

Recall from Section 2.3 that the method of ascending row-wise Jacobi line 
relaxation for Poisson 's equation discretised by the five-point star is given by 

vt+
l = ~ (vt:ll,j + vt!/, j + V;j+ l + V;j_ l - h2fij), 

that is , v is the solution of some tridiagonal system B v = ¢. We have implemented 
line relaxation using the LINPA C K [34] tridiagonal sol ver. For efficiency reasons, 
the process is decomposed into two parts : firstly pre-factorisation of the coefficient 
matrix B (using the routine xGBFA), and secondly repeated solution of the system 
for some ¢ (using xGBSL), where x = D for double precision and S for single 
precision. To simplify this discussion, we shall consider only constant coefficient 
PDE's. Suppose we wish to solve a BVP of the form 

auxx + CU yy + dux + euy + gu = f 
with the Dirichlet boundary conditions 

u(O ,y)=XO, 

u(x 0) = Yo, 

u(l,y) = Xl, 

u(x,l)=y,. 

By employing the standard five-point finite differences , we find that the discre­
tised equation is 

f30Vij + f3 ,vi- l,J + f32 Vi+ l ,j + f33 vi,j-' + f34 vi,j+l = J;j 

where 

f30 = " g - 2(aM2 + cN2) 

f31 M (aM - ~ d) 
f32 M (aM + ~ d) 
f33 N (cN - ~ e) 
f34 N (cN + ~ e). 

~----~- ~~--------------------------------------------------------------------.. 
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Thus for ascending row-wise line relaxation we need to successively update each 
row j by solving the tridiagonal system 

for i = 1,2, .. . , \If - 1 

in other words the (M -1) x (M - 1) system 

where the boundary conditions are incorporated into the column vector rP as 
fo llows 

<P I ji) - {33 VI,j_ 1 - {34 V I ,)+ I - {31 Xo· 

rPM-I jij - {33 VM-I ,j -l - {34 VM-I ,J+I - {32 Xl· 

As already stated, the constant matrix B = TRIDIAG [{3I, {3o, {32] is pre-factored 
using the routine xG BFA , then relaxation proceeds by forming rP for each row then 
solving B Vj = rP by means of xGBSL. 

ote that the five-point discretisation parameters {3o, {31, . .. ,{34 are also em­
ployed by MGLAB to enable automatic pointwise relaxation 

and automatic residual calculation 

of constant-coefficient PDE's on isotropic grids. Where this is not appropriate, 
t he user is required to write a routine to explicit ly calculate the action of t he 
P DE operator Av and another routine to perform relaxation . 

The fo llowi ng is a list of subroutines found in a typical MGL AB front -end 
(those marked wi th an asterisk are essential): 

<main program>' 

INIT J>DEJ> ARAHS' 

CALC.-.BDY _CONDS ' 

CALC...RHS...FUNCTION...F* 

CALC...RESIDUE...R 

CALC_INITIAL_GUESS _V 

CALC-EXACT ..50LN_U 

·USER_JACOBI...RELAX 

Allocate memory 

Define PDE parameters and relaxation coefficients {3i 

Calculate v ['l an 
Calculate h 
Calculate h - A[,v [, 

Calculate v~ 

Calculate ul nL 
Perform pointwise weighted Jacobi relaxation 'i('L 

USER...ASC_GAUSS..5EIDEL...RELAX Perform pointwise weighted ascending G-S relaxation 

USER...R_.1LGAUSS..5EIDEL...RELAX Perform pointwise weighted red-black G-S relaxat ion 

T he fo llowing subroutines are to be found in the serial MGLAB library: 
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INITIALISE Ini tialise data structures and parameters 

INILCONSTANTS Ini tial ise constants 

READ _USER_OPTIONS Query user for multigrid parameter choices 

INIT...LEVEL...LUT Initialise look-up tables 

VALIDATE...LMAX Ensure sufficient memory is available for A levels 

FACTORISE...LINE...RELAX...MATRIX Pre-factorise tridiagonal matrix B 

PRINLHEADING Indicate which PDE is being solved 

SOLVE...PDE Perform the chosen multigrid process 

MULTI GRID_V _CYCLE Perform 1 x M2 ,VO,V2 -cycle 

V_CYCLE Perform 1 x vt ,Vo,V2_cycle 

PERFORM...RELAXATION Perform w-weighted relaxation 'l\. 'L: 
JACOBI...RELAXATION pointwise Jacobi 

ASCENDING _GAUSS-SEIDEL...RELAX ascending pointwise Gauss-Seidel 

RED...BLACK-GAUSS-SEIDEL...RELAX red-black pointwise Gauss-Seidel 

HORIZ_JACOBI...LINE...RELAX row-wise Jacobi 

VERLJACOBI...LINE...RELAX column-wise Jacobi 

HORIZ...ASCGS...LINE...RELAX ascending row-wise Gauss-Seidel 

PERFORM...RESTRICTION Perform tV-weighted restriction ILl : 

INJECTION...RESTRICTION injection 

WEIGHTED...RESTRICTION full-weighting 

IMMEDIATE_CORRECTION Output result of V II. + If VL 

COARSE_GRID_CORRECTION Perform VL ~ V L + It- I 
V L-I 

BILINEARJNTERPOLATION Perform interpolation It- I 

CALC...RESULT Calculate Ilell and IIril as appropriate 

CALC...ERROR Calcu late e = u - v 

PRINLVF Output all elements of V L or h 
PRINT...R Output all elements of rL 

FUNCTION INFINITY...NORM Calculate IIxlioo 
FUNCTION TWO...NORM Calculate II x II 2 

FUNCTION LOG_l0 Calculate loglo x 

The following is a list of multigrid parameter options which are available 
to the user of the serial version of MGLAB . (We use the terminology "P-cycle" to 
mean pure relaxation on a fine grid.) 

• cycle type (P, V, W , or M) 

• number of grid levels (A) 

• number of grid points on the coarsest grid (M1 , Nd 
• number of cycles (n) 

• number of pre-relaxations (vd 
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• number of relaxations on the coarsest grid (va) 

• number of post-relaxations (V2) 

• relaxation class (based on Av = f (user-defined), based on (Ji (automati c), 
or based on ±Llv = 1) 

• relaxation method (pointwise or linewise) 

• relaxation type (Jacobi, ascending Gauss-Seidel , or red-black Gauss-Seidel) 
if pointwise method 

• relaxation type (row Jacobi , column J acobi, or ascending row Gauss-Seidel) 
if linewise method 

• relaxation weighting (SOR) factor (w) 

• restriction type (injection or full-weighting) 

• restriction weighting factor (r;;:;) 

• norm type (two-norm, infinity-norm, or both ) 

• when to print out intermediate calculations (never, once per cycle, or after 
each calculation) 

• whether or not to use immediate correct ion 

In addition , each package is available in single or double precision. 
The inclusion of r;;:;-weighted restriction in the package allows us to inves­

tigate half-injection , in particular. It is well-known that the combination of in­
jection restriction and red-black Gauss-Seidel relaxation yields poor convergence 
[20 , 93J. This is due to decoupling of the red and black modes , and is partially 
remedied by employing half-injection. 

One will observe the absence of some parameter choices mentioned in Sec­
tion 3.5 , such as higher-order interpolation and further methods of relaxation 
(symmetric, zebra, etc) . These absences are simply the result of time constraints, 
not programming difficulties . 

A complete listing of the front-end program implementing Problem MG 10 
is given in Appendix A, while a partial lis ting of the MGLAB package appears at 
Appendix C. (These listings are of the CM Fortran versions, rather than the 
standard FORTRA 77 versions, because these are more compact and much more 
readable.) 

It should be noted that MGLAB is not highly optimised for speed of execu­
tion nor for memory requirements. This is because of the experimental research 
philosophy of the laboratory-type software, also performance has somet imes been 
sacrificed for the sake of flexibility. Nevertheless , its performance is reasonable; 
a typical problem is solved by 1 x Mi,2,2- cycle in less than ten CP U seconds on 
a typical serial machine, such as a Sun-4. The following chapter considers the 
numerical results of some model linear problems in detail. 



Chapter 4 

Model Linear Problems 

What is shown by example, men think they may justly do. 

- Cicero, Ad Alticum 

What we have to learn to do, we learn by doing. 

- Aristotle, Ethica Nicomachea 

In this chapter, we discuss t he numerical solution of several model linear boundary 
value problems using MGLAB . The results give us insights into t he multigrid process 
and, conversely, permit us to check the validity of our algorithm. 

4.1 Statement of Model Linear Problems 

Five representative linear problems were created to enable testing of and experi­
mentation with the software package MGLAB , our implementation of a laboratory­
type environment for solving elliptic boundary value problems. The ellip tic two­
dimensional second-order linear problems to be solved are Poisson 's equation, 
the convection-diffusion equation, an inhomogeneous Helmholtz equation, the 
anisotropic diffusion (boundary-layer) equation, and a variable-coefficient PDE. 
All have Dirichlet boundary conditions on the unit square, as discussed in Chap­
ter 2. A statement of these model linear problems appears on the following 
page. Where no initial guess vO is specified , we shall be rely ing on the automat ic 
discrete-Laplacian initial guess. These problems are fairly representative of the 
types of linear elliptic boundary value problems which researchers deal with. Fig­
ures 4.1 and 4.2 show the solutions of these problems for the following data (which 
we call the standard data set): 

Problem MG12 
Problem MG14 
Problem MG16 

(7 = 1, T = 2, 0' = 6.0, (3 = 10.0 
(7 = 1, T = 4 
c2 = 4.0 

50 
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Problem MGIO (Poisson's equation ) 

u=o on on 

Problem MG12 (inhomogeneous Helmholtz equation) 

/\ {3 2 2 , , 
-uU + 7r U = Q7r SIn O'7r X SIn T7ry In J? ; O', TEZ ; Q,{3 ER 

U 

U=o on on 

. . 
SIn O'7rX SIn T7ry 

{3 + 0'2 + T2 

Problem MG14 (convection-diffusion equation) 

51 

-L1u + O'7rUx + T7rU y = ' 0'2 e -
X sin Y + T2 sinh X (sin Y + cos Y ) In J?; 

U(O , y) 0 
'u(x ,O) = 0 

U 

where X = O'7rX Y = T7ry; 0' , T E Z ; 

u(1 , y) = 7r- 2 sinh 0'7r sin Y 
u(x,l) = 0 

7r-2 sinh X sin Y 

Problem MG16 (anisotropic diffusion equation) 

u 

u(O , y) = SIn7rY 
u(x,O) = 0 

in J? ; 

u( 1 y) 
u(x,l) 

o 
o 

C: ER , c: #0 

vO = (I-x) sin 7ry 

sinhC:7r(I-x) , 
SIn 7ry 

sinh E7r 

Problem MG18 (variable-coefficient equation) 

u(O , y) = 
u(x,O) 1 

u(l,y) 
u(x,l) 
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u 

~ x 

Figure 4.1: Solutions to the model linear problems MG10, MG12 and MG14 (top , 
centre and bottom, respectively) for the standard data set. 
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u 

l( 
X 

Figure 4.2: Solutions to the model linear problems MG16 and MGl (top a.nd 
bottom, respectively) for the standa.rd data set. 
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Figure 4.3: Convergence of various multigrid cycles: error two-norms (solid lines) 
and infinity-norms (dashed lines). MG10 , /\. = 9, w = O. weighted Jacobi 
point re laxation , w = l.0 full-weighting restriction , MI = NI = 2, v a = O. 
VI = Va = V2 = 2. Multigrid methods are vastly superior to traditional relaxation . 

Before proceeding with detailed results, we wish to give a quick general in­
dication of the efficiency of multigrid iteration . Figure 4.3 shows the convergence 
of various multigrid cycles for Problem MG 10. We see that multigrid , in partic­
ular one full multigrid M-cycle, is orders of magnitude more efficient than simple 
re laxation (P-cycles) in solving such a problem. 

4.2 Multigrid Algorithm Results 

In this section, we will present data which verify that the procedures compris­
ing MGLAB produce valid numerical results. For this reason , we will generally be 
concerned with Problem MGIO (Poisson 's equation) , as it has widely-recognised 
properties (see Chapters 2 and 3). When we do examine our other model prob­
lems, we shall use the standard data set. Results are given using double precision 
and isotropic gr ids with MI = NI = 2 unless otherwise specified. 

We shall begin our discussion with some experiments concerning relaxation , 
as t his is the key element of the mu ltigrid process. The following table shows the 
measured convergence factor 

p 
lIek+111 
lIekll 

for the two-norm of the error averaged over 4 x PL -cycles of O. -weighted Jacobi 
re laxation on P roblem MGIO with an initial guess of va = O. The quantity 
g = 1 - P is a lso shown, together with its ratio with respect to g on level L-l. 
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L p(ll eI12) £ 
!1l1ell2 

£-1/ £ 
!1l1 e1 12 !1l1ell2 

£-1 / £ 
!1l1ell oo !111e11 00 

4 0.9756352 0.0243648 - -

5 0.9936601 0.0063400 3.84 3 .. 57 
6 0.9983959 0.0016041 3.95 4.30 
7 0.9995977 0.0004024 3.99 3.96 
8 0.9998993 0.0001007 4.00 3.98 
9 0.9999748 0.0000252 4.00 4.00 

As expected, this ratio is found to be approaching 4, indicating that the 
convergence factor of Jacobi relaxation is 1-0(h2), owing to ou r standard grid­
coarsening h£/ h£+1 = 2. (Recall t hat optimal-weighted Jacobi relaxat ion does 
not have a convergence factor of 1 - O(h).) The corresponding ratio for the 
infinity-norm of the error is a lso given in the above tab le. The convergence factor 
for Gauss-Seidel relaxat ion is found to have t he same characteri stics as for J acobi 
relaxation. 

The following table gives similar figures to those above for optimal- weighted 
(ascending) Gauss-Seidel relaxation . Recall from Section 3.4 that the optimal 
weighting for Gauss-Seidel relaxation on Poisson 's equation discretised by the 
five-point star is Wopt = 2/(1 + 7rh). 

L wopt 
£ 

!1l1e1 12 
£-1/ £ 

!1l1ell2 LJ llel12 
£ 

LJII ell 00 
£-1 / £ 

LJll elioo LJll elioo 

4 1.67175 0.1268433 0.133140 

5 1.82120 0.0673781 1.88 0.0706676 1. 8 

6 1.90642 0.0351 858 1.91 0.0365719 1.93 

7 1.95209 0.0180439 1.95 0.01 86633 1.96 

8 1.97575 0.0091428 1.97 0.0094359 1.98 

9 1.98780 0.0046025 1.99 0.0047435 1.99 

As expected, this ratio is found to be approaching 2, indicating that the conver­
gence factor of optimal SOR Gauss-Seidel relaxation is indeed 1-0(h). 

Next we shall confirm that the theoretical smoothing rates are achieved in 
practice. For this purpose , we have created Problem MGO as fol lows: 

Problem MGO (Laplace's equation) 

L1u = 0 1l1n 

u=O on an 
V O = sin(k7rx) sin (k7rY) 

u=O 
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otice that the initial guess is a single Fourier k-mode (k = 0, 1, ... , N) in each 
dimension, and that we will have e == r and II . 112 == II . 11 00 ' Figure 4.4 (on 
page 60) shows the measured convergence factor p of various w-weighted Jacob i 
relaxations for each initial guess. Recall from Section 3.4 that the convergence 
factor for weighted Jacobi relaxation on the two-dimensional Poisson equation 
discretised by the five-point star is 

l

1j; k+1 I 
p = ~~ = 11 + ~W(COS01 + cos O2 - 2)1 

As expected, each set of measured points follows the graph of 

p = 11 + w ( cos br h - 1) I. 
In other words , we have verified the convergence factor for the points along the 
line 01 = O2 in the Fourier space diagram of Figure 3.4. To verify all points 
(0 1 , ( 2 ), we would require initial guesses of 

for j = 0, 1, . . . , M ; k = 0, 1, ... , N. 

Figure 4.5 shows the convergence of weighted Jacobi relaxation for various w. 
We see that, as expected, th,e optimal smoothing weight Wopt = 0.8 is not the 
optimal convergence weight . The eigenvalues of the weighted Jacobi iteration 
matrix for the 2-D Poisson equation are ,\ (9vf ) = 1 + 1w(cosOI + cos O2 - 2), 
hence the eigenvalue corresponding to the highest frequency mode is ). :::::: 1-2w. 
Thus after sufficiently many relaxations with w > 1, we see the appearance of 
divergent high-frequency modes. 

Figure 4.6 shows the convergence of 0.8-weighted Jacobi relaxation on grids 
at various levels L , each profile being scaled to the same work units. It is clear 
that relaxation can be very inefficient on fine grids ; this is because non-oscillatory 
functions appear very smooth on fine gr ids. 

Considering these results, we have validated our relaxation algorithms to 
our satisfaction. Let us now turn to results of the multigrid iteration itself. 

Figure 4.7 shows the convergence of 1 x Vg2,2,2_cycle for Problem MGI0. We 
use immediate correct ion (see Section 3.5) to observe the convergence behaviour 
inside the cycle; we call this the micro-structure. The abscissa has units of W , 
hence the points indicate the relative amount of (relaxation) computation , which 
initially is large (due to fine-grid relaxation) , becomes very small (working on the 
coarsest grid) and becomes large again. Concentrating on the liell . profile, we see 
the importance of coarse-grid correct ion : convergence is poor until we begin the 
second half of the V-cycle. 

Figure 4.8 is the analogue of Figure 4.6 for V:cycles for various \ . We have 
performed consecu ti ve V -cycles so that each trial soil! tion has approxi mately 
the same cost in work units. As before, we see that the efficiency of iteration 
is high on coarse grids, hence these are not only crucial for multigrid, but are 
computationally cheap. We also observe that the profiles for A. = 2,4,6 reach a 
limiting value of Il eik this is the discretisation error. 
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Figure 4.9 clarifies the position with respect to discretisation error. We 
have plotted the limiting value of the error infinity-norm after many VA-cycles 
for successive A, and for each model problem (us ing the standard data). We find 
that each profile has a slope of 

m = -0.6025 ± 0.0008 

and hence 10m = 0.2497 ± 0.0005 ~ ~. Since we have used standard coarsening 
hL+l/hL = ~,our experiment confirms that the discretisation error is O(h2). 

Figure 4.10 shows the convergence of 21 x V;,2,2-cycles for various A. It is 
immediately apparent that V -cycle convergence is independent of h, one of the 
startling features of multigrid iteration. Eventually the profiles reach a limiting 
value of residue norm, due to round-off error. 

Figure 4.11 shows the convergence of 10 x VA
2.2.2-cycles for various multi-grid 

hierarchies. These are as follows: 

A Ml x N 1 M2 X V2 M3 X V3 M4 X N4 Ms x 5 M6 X 6 M7 X 7 

3 33 x 33 65 x 65 129 x 129 
4 17 x 17 33 x 33 65 x 65 129 x 129 
5 9 x 9 17 x 17 33 x 33 65 x 65 129 x 129 
6 5 x 5 9 ~ 9 17 x 17 33 x 33 65 x 65 129 x 129 
7 3 x 3 5 x 5 9 x 9 17 x 17 33 x 33 6.5 x 6.5 129 x 129 

These are chosen so that each hierarchy results in a 129 x 129 fine grid. The 
graph shows that the fastest convergence is attained using a hierarchy with the 
coarsest possible grid. This is because a 3 x 3 grid permits the lowest frequen cy 
error modes to be reduced with relaxation. 

It is interesting to note that increasing v for the A = 3 hierarchy does 
not improve convergence. The following experiment demonstrates this; we have 
increased v from two to five, and we have reduced the number of V-cycles to 
com pensate for the increased relaxation cost. 

Method lIell oo Ilrlloo W 

lO x V3
2.2,2 -cycle 0.0509124 2.0306385 5l.25 

4 x V3
S,s,s -cycle 0.0509118 2.0278172 5l.25 

There is very little computational gain in increasing v for the A = 3 hierarchy ; 
the coarsest possible grids are required for good convergence. 

Figure 4.12 shows the convergence of 10 x vt,Vo ,v2_cycles for various combi­
nations of (Vl ,VO,V2). We see that larger v gives greater accuracy, but naturally 
at a certain computational cost. An exception to this is the case of (1,2,2) which 
costs the same as (2,2,1), yet gives a ignificantly better solution. The v com­
bination with the best performance is a matter of judgement, however (2,2,2) 
seems a reasonable choice. 
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Lastly, let us consider resul ts for the full multigrid M-cycle. Figure 4.1:3 
shows the micro- structure of one M-cycle for Problem MG 10. The graph reflects 
the fact that the M-cycle is composed of successively larger V-cycles , resulting in 
an increasingly accurate solu t ion. Looking at the error norm profile, we see that 
(after the first few V-cycles) the accuracy is consistently improved by more than 
half a decimal digit for each successive V-cycle . We can see this more clearly from 
the following table of figures . aturally, each succeeding V-cycle is computat ion­
ally more expensive than the previous one (by a factor of approximately four) , 
hence convergence will appear to slow with respect to computation time. 

L loglo //e//2 p(//e//2) 10glO I/ r l/2 P(I/ r l/2) 

1 -1.76 - -0.73 -

2 - 2.49 0.1 6 -l.39 0.21 
3 -2 . 5 0.429 -l.31 l.212 
4 -3 .30 0.357 -l.41 0.779 
5 -3.80 0.316 -l.56 0.71.5 
6 - 4.33 0.293 -l.71 0.708 
7 -4.89 0. 279 -l.86 0.709 
8 -5.46 0.270 -2.01 0.711 
9 -6 .03 0.265 -2.15 0.715 

Figure 4.14 shows the convergence of 1 x Mi ,2,2- cycle for each of the model 
linear problems, using the discrete-Laplacian initial guess described in Section 3.6. 
The profiles have very similar characterist ics ; however less accurate solu t ions were 
obtained for the two anisotropic problems , as would be expected. 

A close inspection of the graph will show that the MG12 profile does not 
have a value plotted for zero work units. This is because the initial guess on t he 
coarsest grid was fortuitously identical to the exact solution. 

Figure 4.15 compares the convergence of V-cycles for single- and double­
precision arithmetic. We see that each norm approaches some limiting value 
(for the residue norms in double precision , this value is about 10- 12 ) which is 
determined by a combination of discretisation and round-off errors. For residue 
norms in this case, this value is roughly four or five orders of magnitude greater 
than arithmetic precision ; while there is relatively li tt le difference in t he limi t ing 
value of t he error norms. We observe that virtually no discrepancy appears 
between the single- and double-precision results until about the fourth V-cycle. 
This leads us to conjecture that an M-cycle, which does not repeat a V-cycle 
on the same level, will give results almost independent of precision in certain 
circumstances. The following tab le indicates that this is true for a smooth BVP ; 
it. shows the result of 1 x M~,2.2_cycle on Problem MG10 with the usual l11ultigrid 
parameters for single and double precision. 

Let us now return our attention to Figure 4.3, which shows the accuracy of 
three types of multigrid iteration. The seq uence of V-cycles evidently converges to 
the numerical solution of the di screte problem ; that is , the solu tion to the linear 
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IIel12 lIeli co IIrll2 IIrli co 
SP 0.00000092 0.00000206 0.00703635 0.16377530 
DP 0.00000088 0.00000191 0.00724267 0.16387057 

system Av = f is eventually computed to within round-off error (dictated by 
arithmetic precision). Further evidence of this is that the residuals do approach 
the level of round-off error (Figure 4.10). Since the system Av = f is itself 
an approximation to the continuous problem , discretisation errors (of O(h2 )) 
prevent the solution from approaching an accuracy comparable to round-off error . 
We notice that neither the W- nor M-cycle attain the numerical solution of the 
discrete algebraic problem that the 10 x V-cycles do ; this is because insufficient 
smoothing was performed in this case . To remedy this , we would increase the 
number of relaxations v. 

Finally, Figure 4.16 shows the CPU execution times for MGLAB on some of 
the many different serial machines available at the Australian" ational Univer­
si ty. These times are averaged over at least four separate trials , and execution 
took place during periods of minimal activity. Some details of the hardware and 
compilation are as follows: 

Name Make and Model Memory (Mb) Compilation command 

phys4 VAX 3100 16 fortran/nocheck/optimize 
cscl VAX 8700 32 fortran/nocheck/optimize 

romeo SUI) 4/390 32 f77 -03 or f77 -04 
huxley Sun 4/690 (x4) 32 f77 -03 or f77 -04 
vulcan Sequent S27 (x8) 16 fortran -03 
gauss Apollo DN10000 16 f77 -0 -A cpu,a88k 

vp Fujitsu VP2200 256 frt -Wv,-p2200 -Ne -Os 

Most of these types of computers are familiar to researchers, except perhaps the 
Fujitsu VP2200: a vector-processing supercomputer. We will not describe its 
hardware nor architecture because we are treating it merely as a (very large and 
fast) scalar machine. Indeed, the vector processor was virtually idle during the 
execution of MGLAB because the statement function MAP ( ee Section 3.7) could 
not be vectorised by the compi ler. The times for the VP2200 were obtained 
during March 1992 when the cycle time of the machine was 4.0 nanoseconds ; 
very recently this was reduced to 3.2 nanoseconds. 

We can see from Figure 4.16 that (even with virtually no vectorisation) the 
VP2200 performs multigrid very rapidly, while the execution t ime for standard 
serial machines can be significant. 

We have examined the basic results produced by MGLAB , and are satisfied 
that they are consistent with the multigrid concepts presented in the previous 
chapters. We have not made an attempt to present exhaustive results for all 
possible multigrid parameters. 
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Figure 4.4: Convergence factor of w-weighted Jacobi point relaxation for variou 
w on Laplace 's equation in 2-D with the initial guesses VO = sin (brx) sin(bry) 
(Fourier modes) k = 0,1 , ... ,64 on a 65 x 65 grid. The optimal smoothing factor 
(over all high-frequency Fourier modes) !1-opt = 0.6 occurs for w = O.S. 
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'Figure 4.5: Convergence of 50 x Ps-cycles using weighted Jacobi point relaxation 
for various w. MGI0, VO = O. Optimal convergence does not imply optimal 
smoothing. 
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Figure 4.6: Convergence of various PL-cycles , each performing approximately 
t he same amount of work. MGIO, w = 0.8 weighted Jacobi point relaxation , 
VO = 0, work units (WU ) for each L a re scaled to those for L = 2. For smooth v, 
relaxation on fine grids is very inefficient. 
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Figure 4.7: Micro-structure of V-cycle convergence as measured by two-norms 
·(solid lines) and infinity-norms (dashed lines). MGIO, 1 x Vs2 ,2,2-cycle w = O. 
weighted Jacobi point relaxation , 'W = 1.0 full-weighting restriction, VO = 0 im­
mediate correction. Coarse-grid correction is essential for rapid convergence. 
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Figure 4.8: Convergence of n x V; ,2,2_cycles for various A, each performing ap­
proximately the same amount of work. MGIO, w = 0.8 weighted Jacob i point 
relaxation , 'W = 1.0 full-weighting restriction , V O = 0, work units (WU ) for each 
A are scaled to those for A = 2. As much computation as possible should be 
performed on coarse grids. 
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Figure 4.10: Convergence of 21 x V;,2,2-cycles for various A. MG10, w = O. 
weighted Jacobi point relaxation , w = l.0 full-weighting restriction , va "'7 O. 
Convergence is independent of h. 
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Figure 4.11: Convergence of 10 x V;,2,2-cycles for various multi-grid hierarchie , 
each resulting in identical finest grids of size 129 x 129. MGIO, w = 0.8 weighted 
Jacobi point relaxation, w = 1.0 full-weighting restriction, va = O. Rapid con­
vergence requires the inclusion of the coarsest possible grids. 
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Figure 4.12: Convergence of 10 x VsVl,VO'''2_cycles for various combinations of 
(VI, Vo, V2)' MG10, W = 0.8 weighted Jacobi point relaxation , w = 1.0 full­
weighting restriction, V O = O. 
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Figure 4.13: Micro-structure of M-cycle convergence. Larger circles mark the 
juncture of successive V-cycles. MG10, 1 x Mi·2

,2-cycle, w = a 8 weighted Jacobi 
point relaxation, w = 1.0 full-weighting restriction , v O = 0, immediate correction . 
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Figure 4.14: Convergence of 1 x Mi ,2,2- cycle for the model linear problems. 
w = 0.8 weighted Jacobi point relaxation, 'W = 1.0 full-weighting rest ri ct ion , 
discrete-Laplacian initial guess, immediate correction. Multigrid iterations for 
each model problem have similar characteristics. 
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Figure 4.15: Multigrid convergence using single-precision (dashed lines) and 
double-precision arithmet ic (solid lines). MGI0, 11 x Vs2,2,2_cycle, w = 0. 
'weighted Jacobi point relaxation, 'W = 1.0 full-weighting restriction , v O = 0, 
immediate correction. Accuracy of solutions is almost independent of arithmetic 
precIsion. 
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Figure 4.16: CP U execution times on various serial machines for solving Problem 
MG10 using t he double-precision FORTRAN 77 version of MGLAB . The method used 
is 1 x M~,2 ,2_cycle using w = 0.8 weighted Jacobi point relaxation and w = 1.0 
full -weighting restriction. (See text for details of the hardware of these seven 
machines.) Each dashed line is an estimated result. 
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4.3 Model Problem R esults 

In this section, we will accept our multigrid implementation as valid and concen­
trate on numerical results for Problems MG12 , MG14, MG16 and MG1S. Results 
are given using double precision and isotropic grids with Ml = Nl = 2 unless 
otherwise specified. 

Figure 4.17 shows the convergen ce of an M-cycle for Problem MG12 using 
single- and double-precision arithmetic. Un like Problem MG10 (see Figure 4.15), 
si ngle precision proves to be unstable for this set of parameters . This is because 
the solution is more oscillatory than in the case of MG 10. 

F igures 4.1S and 4.19 show the convergence of V-cycles for Problems MG 16 
and MG18 respectively, comparing initial guesses of the zero function and the 
discrete-Laplacian function described in Section 3.6. We see that a good initial 
guess results in substantial improvements in numeri cal accuracy. Recall , however 
that the quality of the initial guess is virtually irrelevant for M-cycles . 

Figure 4.20 shows the convergence of an M-cycle for Problem MG1S, com­
paring full-weighting and inject ion restriction. We find that full-weighting is 
superior to injection , as one might expect. There are situations , however , where 
the decrease in convergence is more than compensated for by the increase in 
computational speed. 

Figure 4.21 shows the convergence of an M-cycle for Problem MG14 , with 
the data (J = 1 and increasing values of T. As T increases, we are increasing 
the anisotropy inherent in the equation: the solution becomes more and more 
oscillatory (more detailed ) in the y-direction . Eventually the iteration becomes 
unstable because of this . To remedy this , we would need to use a finer anisotropic 
grid and/or use line relaxation. 

Figure 4.22 shows the convergence of an M-cycle for Problem MG16, with 
increas ing values of f-2. This is a standard prob lem for investigating anisotropy. 
As in the previous example, the given multigrid iteration becomes practically 
useless for a sufficient ly large degree of anisotropy. We show the improvement in 
convergence obtained by switching from point to line relaxation. 
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Figure 4.17: Convergence of 1 x M~62 ,2 -cycle using single-precision (dashed lines) 
and double-precision arithmet ic (solid lines) . MG 12 , standard data, w = o. '" 
weighted Jacobi point relaxation , tv = l.0 full-weighting restriction , V O = O. 
Single precision is unstable in this case . 
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Figure 4.18: Convergence of 10 x V8
2

,2 ,2- cycles for initial guesses of V O = 0 (dashed 
lines) and the discrete-Laplacian function (solid lines ). MG16 , standard data, 
w = 0.8 weighted J acobi point relaxation , tv = 1.0 full-weighting rest ri ction. A 
smooth initial guess has significant advantages. 
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Figure 4.19: Convergence of 10 x Vs2 ,2,2-cycles for initial guesses of V O = 0 (dashed 
lines) and the discrete- Laplacian function (solid lines). MG 18, standard data, 
w = 0.8 weighted Jacobi point relaxation, w = 1.0 full-weighting restriction. A 
smooth initial guess has significant advantages. 
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Figure 4.20: Convergence of 1 x M~,2,2-cycle for Problem MGl , comparing in­
jection rest ri ction (dashed lines) and w = 1.0 full-weighting (solid lines). w = O. 
weighted Jacobi point relaxation , V

O = O. Full-weighting is generally su perior to 
inj ection. 
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Figure 4.21: Convergence of 1 x M~,2,2_cycle for Problem MG14 with (j = 1 
and various values of 7. W = 0.8 weighted Jacobi point relaxation, w = l.0 
full-weighting restriction. The iteration becomes more unstable as the degree of 
anisotropy increases. 
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4.4 Debugging and Algorithm Correctness 

Suppose that a researcher writes a multigrid program to solve some particular 
problem of interest. It is often the case that the numerical results produced by 
such code seem reasonable, that is, the approximate solution v converges to an 
actual solution, as measured by a discrete norm of the residual fo r example. Given 
that multigrid software may be of moderate complexity, how is the researcher to 
know that these are the correct results, that the appropriate convergence rate 
has been achieved , and that the program is free of errors? Furthermore, we have 
indicated the multifarious nature of the sub-procedures making up a mul t igrid 
method; how can the researcher be sure that no conceptual errors have been made 
in assembling these multigrid components? 

These important questions are discussed in Brandt's seminal paper [17]. The 
essence of the "Guide to Multigrid Development" is that careful analysis should 
be made of each component of the mul t igrid process, and that act ual results 
be compared to these t heoreti cal rates of convergence. Brandt's golden rule is 
that the amount of computat ional work should be proport ional to the amount 
of physical change in the computed system: that stalling numeri cal processes 
indicate there is a better way to achieve the same goal. 

The process of writing a multigrid algorithm should begin with a stable 
discretisatiqn scheme. For regular ell iptic problems, simple differencing is stab le 
in every respect [17] . Possibly the most crucial step in constructing a multigrid 
process is to next obtain a relaxation scheme with a good smoothing rate, as 
discussed in Section 2.3. Here the principal theoretic tool described by Brandt 
is local mode an9-lysis. While this is not entirely rigorous - it assumes periodic 
boundary conditions and frozen coeffi cients in variable-coefficient problems - it 
serves as a very useful tool. The next step is to choose intergrid operators and 
the coarse-grid operator. Unless the particular boundary value problem dictates 
otherwise, the operators discussed in Section 3.1 are usually standard choices. 
Finally, it is sensible to cautiously advance the software development from pure 
relaxation to a two-grid scheme to a VA -cycle t hen to a full multigrid MA -cycle. 

There are a number of other aids available to the multigrid software devel-
oper: 

• standard software engineering practices - modular design , individual com­
ponent testing, full documentation, and so on; 

• verification of numerical results by comparison with hand-calculated res ults 
(clearly this is possible only for small problems) ; 

• scientific visuali sation - graph ical output of the solution process assists 
the developer in diagnosing faulty multigrid components; 

• the immediate-correction process - an excellent tool for diagnosing soft­
ware faults: the point of failure can traced to a particular multigrid element; 

• reference to and comparison with published software and results; and 

• cross-checking of results from dual independent platforms - in our case, the 
eM Fortran and standard FORTRAN 77 codes for MGLAB are quite different . 
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4.5 Comparison w ith P ublished Results 

A desirable method of verifying software is to compare its results for some given 
problem against those produced by publicly available software, or published re­
sults. The difficulty with attempting to directly compare multigrid results this 
way is that usually not all of the multigrid parameters are fully specified in a 
paper, or that the reference software package does not have exactly the same 
choice of parameters. 

Nevertheless, we have at our disposal two simple multigrid programs which 
have been explicitly published: MGOOD by Foerster and Witsch (listed in the ap­
pendix of [93] and described in [40]) , and FMV by Briggs and McCormick [77]. 
Both programs are designed to be illustrative of the multigrid process , and hence 
are elementary. Each is designed to solve Poisson's equation on the unit square 
with Dirichlet boundary conditions , corresponding to our Problem MG10 . They 
both use the usual five-point discretisation , together with red-black Gauss-Seidel 
relaxation , half-injection and bilinear interpolation. FMV performs 1 x M~, I,l-cycle , 
while MGOOD is a little more flexible , allowing n x V;1,1 ,V2_ W- and M-cycles . It 
was found that MGLAB gave the same results as these two programs, and hence 
our confidence in the correctness of MGLAB is increased. 

Turning now to published multigrid results, we have found two sources which 
seem to permit direct comparison of results, although there is often some uncer­
tainty with some multigrid parameters, as we have mentioned. The first set 
of results appear in Briggs [20], where he solves Problem MG10 using red-black 
Gauss-Seidel relaxation with (a.) 6 x Vi,l,l-cycles (1\ = 4, 5, 6) , (b) 1 x Mi,l ,l-cycle , 
a.nd (c) 1 x Mi,l,l-cycle. Again, we have reproduced the results with MGLAB. 

ext, we shall attempt to compare our multigrid results with those of Adams 
[1] who has published results for the package MUDPACK j his Example 4 is identical 
to our P roblem MG16, with the notation to = 1/[2. This is the model anisotropic 
diffusion equation, in which a boundary layer forms along x = 0 as [--+ 00. Adams 
states that he used 1 x Mi,l-cycle with line y relaxation to solve this problem. 
We have assumed that the following parameters were used: 

• Ml = Nl = 2, 

• standard five-point discretisation: (30 = 2([2+1) , (31 = (32 = 1, (33 = (34 = [ 2, 

• w-weighted Jacobi column-wise relaxation, 

• tv-fu ll-weighting restriction, 

• standard discrete two-norms, 

• an initial guess of V O = 0, and 

• double precis ion calculations. 

In addition, we set Vo = 5 as an approximation to solving directly on the coarsest 
grid , and we found the optimal values of wand tv by numerical experiment. The 
resul ts of MUDPACK and MGLAB are presented in Table 4.1. Given the number of 
uncertain parameters, the comparison seems favourable. 
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c2 
Wopt tvopt L=5 L=6 L=7 

1 0.69 1.15 -3.93 -4.52 -5.12 

-3.94 -4.54 -5 .14 

10 0.64 1.13 -3.36 -4.28 -5.05 

-3.5 -4.2 - 4.8 

100 0.64 1.20 -2.53 -3.28 -4.21 

-3 .8- -3 .5 - 4.1 

1000 0.76 1.54 -2.25 -2.58 -3.31 

-2.4 -2.7 -3 .3 

10000 1.35 10.5 - 2.1 5 -2.50 -2.74 

- 2.96- -2.72 -2.74 

Table 4.1: Comparison of results of loglo IIel 12 obtained by MGLAB (first row of 
figures in each block) and MUDPACK (second row of figures) in solving Problem 
MG 16 for various values of c. The MGLAB method used is 1 x Mi,5,l-cycle with 
column-wise Wopt weighted Jacobi line relaxation , tvopt full-weighting restriction 
and zero initial guess . 

A further source of discrepancy may be that Adams actually used the mea­
sure Ilv - uo112' where Uo is the injection of the limiting value of numerous vi.:.\­
cycles, since the exact solutio u was not available to him. Also note that the 
entries in Table '4. 1 marked with an asterisk seem questionable, as the norm 
appears to increase as L increases (as we proceed deeper into the M-cycle). 

Note that a simple multigrid approach to solving this anisotropic problem 
(c ~ 1) is not particularly efficient. Such specialised problems require more 
refined techniques; see for example [51 , 53, 61J. 



Chapter 5 

Nonlinear Multigrid 

The assumption of lin earity underlies, as a fundam ental postulate, 
a considerable domain of mathematics. Therefore the mathematical 
tools available to the natural scientist are essentially linear. However 
Nature, with scant regard for the desires of the mathematician, is 
essentially nonlinear . .. 

- W . F. Ames [4] 

In this chapter, we discuss multigrid methods for solving nonlinear partial dif­
ferential equations. We will concentrate on the full approximation scheme (FAS ) 
proposed by Brandt [15] in 1977. We will find that the FAS cycle requires only 
minor modifications to the linear multigrid algorithm already presented. 

5.1 Full Approximation Scheme 

The most interesting boundary value problems are often nonlinear in nature. 
Examples of nonlinear physical problems include chaotic and turbulent systems, 
which exhibit complex behaviour, not to mention more classical problems such 
as elasticity, diffusion and vibration. In order to simplify the discussion , so far 
we have dealt only with linear equations, however multigrid is also ideally suited 
to solving nonlinear problems. 

Our notation is unchanged; we require the solution u to the nonlinear bound­
ary value problem 

Jl.u = f 
u=g 

In n = [0 , 1] x [0,1] 
on an (5. 1 ) 

where Jl. is a nonlinear elliptic operator. We will sometimes write Jl.u = f in the 
form 1" == Jl.u - f = 0. This problem is well-posed if and only if the Jacobian of 
:r., J = a:F/av, evaluated at u is non-singular [51]. 

One approach to solving problem (5.1) is to combine a linearisation process 
(such as Newton 's method) with the linear multigrid iteration , which transforms 
the nonlinear problem into a sequence of linear ones. While this indirect method 
requires a relatively simple addition to the linear multigrid process, it is somewhat 

74 
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restricted in its application, so we shall instead develop an intrinsically nonlinear 
multigrid iteration. 

Before proceeding, we define Fi , the components of t he operator 'T Suppose 
~ : R m 

--t Rn , 

~ (Xl,X2, ... ,Xm) = (Y l , Y2 '''',Yn) 

say, then we can split this action of ~ into its components 

for i = 1,2, ... , n. 

The first element of the multigrid scheme, the relaxation process, is again re­
quired to have suitable smoothing properties. Linear relaxation methods usually 
have several analogues for nonlinear problems (see for example Ortega and Rhein­
boldt [84]) . Recall that linear 2-D Gauss-Seidel relaxation is given by (cf equa­
tion 2.16) 

for t;; =1 ,2, ... ,T 

where T = (M -l )(N -1 ). If we interpret this iteration in terms of solving the 
t;;lh equation of the system for V:+l , while keeping the other T -1 variables fixed 
then we can extend this idea to nonlinear equations; that is , if ~ has components 
Fl, . .. , Fr , then the basic step of the nonlinear Gauss-Seidel iteration is to replace 
v~ by the solution V K of the t;;lh equat ion 

(5.2) 

Thus one complete relaxation iteration Vk+ l +-- v k involves the successive solution 
of these T nonlinear equations, t;; = 1,2, ... , T. Naturally, we may generalise this 
iteration by introducing a weighting parameter w: 

In a completely analogous fashion , we can derive the nonlinear Jacob i iter­
ation from the linear iteration 

k+l _ 1 (1 ~ A k) V K - A K - ~ K'x V,X 
KK 'x= l 

,X i-K 

for t;; = 1,2, ... , T 

which is equivalent to solving the t;;lh equation for V K while all other V,X are held at 
their values from the previous iterate v~. Therefore the nonlinear Jacobi iteration 
updates v: with the solution VI< of the equations 

for t;; = 1,2, ... , T. (5. 3) 

Even assuming that the nonlinear equations (5.2) and (5.3) have unique 
solutions , there remains the difficulty of solving them analytically. In general 
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this is not possible, therefore a one-dimensional iterative method is applied, such 
as Newton's method, the secant method , or Steffensen iteration (see [84J or [102]). 
For example, the one-step Jacobi-Newton nonlinear iteration is defined by 

k+l _ k FK( V
k

) 
VK - vK - fJKFK(V k ) for K = 1, 2, 00.,7. 

Unfortunately, nonlinear relaxation cannot guarantee simultaneous reduc­
tion of all smooth error modes. 

Let us now turn our attention to the second element of the multigrid method: 
the coarse-grid problem. The exact coarse-grid correction e is given by 

JI(v-e) = j. 

Combining this with the residual equation v = JI-I(J - 1') and the definition 
Vi = JI- I f gives us [51J 

e 

since 

JI-I(J -1') - JI- I f 

_J-I(V' ) l' + 0( 111'112) by Taylor's theorem 

[JI- I fj' = J-I(JI- I J) . 

Given a coarse-grid approximation VL-I, we define 

and 

In the usual two-grid fashion, we assume that the coarse-grid equation can be 
solved exactly: eL-I = JIL~I (rL-t), hence a Taylor expansion applied to 

I lL-I( ) VL ;:;; L VL-I - eL-I 

~ 1£-1 [JIL~I (h-I) - JIL~I (-h-I - rolt-I1'L)] 

gives us [51J 

We conclude from these two Taylor expansions that 

and - I L-I",-I I L VL::::; L ./1.L_I L_I1'L 

and so we expecteL::::; v when the residue is smooth, just as in the linear case. 
The most commonly used nonlinear multigrid scheme is the full approxima­

tion scheme (FAS) introduced by Brandt [15], which uses ro = 1 and 

-L 
VL-I = lL_I VL, 

where it-I may differ from t he restriction ILl ' In this direct nonlinear approach 
to multigrid, no global linearisation is explicitly carried out. A diagram of the 
FAS two-grid process appears at Figure 5.1. 
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(a) Two-grid linear V-cycle 

(b) Two-grid nonlinear V-cycle 

]2h 
h 

77 

Figure 5.1: Pictorial representation of the (a) linear, and (b) nonlinear (FAS) 
two-grid V-cycle schemes (after Stiiben and Trottenberg [93]). The linear cycle 
consists of pre-relaxation, residual calculation, residual restriction , solution of 
the coarse-grid residual equation, error interpolation , error correction and post­
relaxation. The full approximation scheme adds a vh-restriction step j~h ' and re­
quires the solution of a full version of the coarse-grid equation. Multigrid schemes 
recursively solve the coarse-grid equation, which is of the same form as the original 
problem: solve Jilv = j, where vl en = g, with initial guess V

O = Vo· 
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The derivation of the coarse-grid equation for the nonlinear method proceeds 
as follows: 

rn hh - Jt2hV2h 

Jt 2hU2h - Jt 2hV2h 

Jt 2h(V2h + e2h) - Jt2hV2h 

since Jt is a nonlinear operator. 

Therefore we wish to solve 

which is of the same form as the original equation Jt v = f. It is important 
to note that we have projected the full PDE to the coarse grid (not just t he 
residual equation), hence we solve the FAS coarse-grid equation with the act ual 
boundary conditions g of the problem, rather than with zero boundary cond it ions 
as in the linear case. Another notable point is that while we solve for t he "full 
approximation" (v + e) on the coarse grid (rather than just the correct ion e as 
in the linear case), it is the correction e that is transferred back to the fine grid . 
This is important since only residual and correction quantities are smoot hed by 
relaxation and so can be properly represented on coarser grids. 

Finally consider the intergrid operators , the thi rd ingredient of our nonlinear 
multigrid ~cheme . Since these operators are indifferent to the linearity of the grid 
functions they act UPOIl , it is sufficient to use those already discussed for the linear 
case (see Chapter 3). Although we now have an additional rest ri ct ion operator 
i;h , it turns out that the use of simple injection results in adequate accuracy, and 
th is is a standard choice for i;h unless the solution is expected to vary trongly 

over the grid scale h [75] . 
Given all the above considerations , we are now able to present the two-grid 

FAS algorithm (where the steps added to the linear algorithm are written in 

boldface): 

Algorithm 5.1 (Two-grid Full Approximation Scheme) 
A n iteration for solving Jth Uh = h , given some initial gu ess Vh· 

Vh +- 1(';.1 (Vh, h) pre-smoothing 

rh +- h - JthVh resid ual calculation 

r2h +- I;h rh residual restriction 

V2h +-
-h 
12h Vh approximate solution restriction 

e2h +- Jt2~ (r2h + Jt2hV2h) - V2 h coarse-grid equation solution 

Vh +- Vh + I~h e2h coarse-grid correction 

Vh +- 1(';.2 (Vh, fh) post-smoothing 

This naturally extends to the multigrid FAS algorithm, where (as b fore) 
, = 1 gives the V-cycle, while, = 2 produces the W-cycle: 
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Algorithm 5.2 (Multigrid full Approximation Scheme V- or W-cycle) 
A recursive iteration for solving 5lA UA = fA , given some initial guess VA. 

procedure FAS-VW-cycle (v,f,L) 

begin 
if L = 1 then 

else 
VL +- '1('[; (VL, fd 

VL +- '1('2 (VL, fd 
rL-I +- ILl (h - 5lLVL) 

- I-L 
VL-I +- L-I VL 

VL-I +- VL-I 

fL-I +- rL-I + 5lL-I VL-I 

for i = 1 to I do 
FAS-VW-cycle (v,J, L - 1) 

endfor 
eL-I +- VL-I - VL-I 

+ I L-I 
VL +- VL L eL-I 

VL +- '1('2 (VL, h) 
endif 
end 

Just as in the linear case, the M-cycle is recursively constructed from a sequence 
of increasingly· larger V-cycles (or possibly W-cycles , although this is not t he 
usual choice): 

Algorithm 5.3 (Multigrid full Approximation Scheme M-cycle) 
A recursive iteration for solving 5lA UA = fA , given some initial guess VI · 

procedure FAS-M-cycle (v, f, L) 

begin 
if L -# 1 then 

h-l +- ILl (h - 5lLVL) 

VL- I +- 0 
VL- I +- FAS-M-cycle (v, f , L - 1) 

VL +- VL + It-1 
VL- I 

endif 
VL +- FAS-VW-cycle (v,f,L) 
end 

We note that these algorithms are generalisations of the linear multigrid meth­
ods in the sense that they produce identical results for a linear boundary value 
problem. 
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Convergence analysis of nonlinear multigrid is a difficult area. There are two 
aspects of our theoretical knowledge which lag behind our practical experience: 
it is difficult to prove convergence without imposing fairly strict conditions on 
the boundary value problem, and the theoretical convergence bounds are not 
particularly sharp. Numerical experiments indicate that the class of problems 
suitable for multigrid is far wider than we can currently prove, moreover that the 
actual numerical convergence rates generally far exceed any theoretical estimate. 

Hackbusch [50, 51] analyses the convergence of the nonlinear multigrid itera­
tion in some detail. His main result is that these iterations behave asymptotically 
in the same manner as the corresponding linear processes. 

Stiiben and Trottenberg [93] show that, under reasonable assumptions , the 
FAS M-cycle has the following two properties: 

1. an approximation Uh to the exact solution of the discrete problem Uh can be 
computed with an error Iluh - uhll which is smaller than the discretisation 
error Ilu - uhll, and 

2. the number of arithmetic operations required to do so is proportional to 'JIU,. , 
the number of grid points on {h, with a small constant of proportionality 
(depending on " hL /hL+l, the type of cycle, etc) . 

We can confirm this second property by extending the discussion of computa­
tional costs of multigrid in Section 3.3 as follows [93]. Suppose wr+1 denotes the 
computational work involved in one (L , L+1) two-grid cycle (excluding the work 
required to solve the coarse-grid equation), and let WI be the work performed on 
the coarsest grid .01 . Then the work required for a complete multigrid (V- or W-) 
cycle is 

A 

WA = L ,A-L wt- 1 + ,A-I W1 . 

L=1 

Ignoring boundary effects, we have in d dimensions 

Let the computational work per grid point for a two-grid cycle be bounded by 
some constant C 

then we obtain (in 2-D) 

for, = 1 (V-cycle) 

for, = 2 (W-cycle) 

This estimate of WA, together with the fact that the multigrid convergence 
rate is independent of h, shows that the multigrid iteration is asymptotically 
optimal; that is, multigrid solves an algebraic system of n unknowns to the level 
of truncation error in O(n) operations. 
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5.2 FAS Implementation 

To simplify the design of MGLAB , we chose to forego the general nonlinear relax­
ation methods discussed above in favour of single-step ewton relaxation on the 
nonlinear equation; this idea is discussed in Stuben and Trottenberg [93]. This 
is sufficient, since (as always) we only require the approximate solution to the 
(approximate) coarse-grid equation - it is fruitless to attempt to calculate the 
exact solution of an approximate equation. 

If our discretised PDE is represented in the form F( Vij) = 0, then we generate 
a relaxation scheme from the Newton iteration 

for i = 0,1, .. . ,M; j = 0, 1, ... ,N. ( 5.4) 

The results of this relaxation method are most acceptable, as we demonstrate in 
the next chapter. 

A sufficient condition for the convergence of ewton's iteration is [8] 

I 
F(Vij)F"(Vij) I < 1 

[F'(Vij)]2 
(5.5) 

which must be satisfied for each PDE treated in this way. 
It is fortunate that the linear multigrid algorithm can be easily modified to 

perform the nonlinear full approximation scheme. The back-end library routines 
in MGLAB require only two minor changes. Firstly, each routine which performs 
some coarse-grid calculation with the boundary conditions is modified to use the 
~ctual boundary conditions of the problem, rather than zero boundary conditions 
as in the linear method. 

Secondly, subroutine V_CYCLE is changed (see Algorithm 5.1) to 

• set the initial coarse-grid guess to J;h VL-l , 

• add J4.LvL to the right-hand side functional , and 

• subtract the full approximation VL from the coarse-grid error correction 
term. 

We also require the user to write a PDE-specific relaxation routine (a ewton-step 
method as described above, for example) for the front-end driver program. 

This gives us a fully nonlinear multigrid method , which we shall apply to 
several interesting nonlinear problems in the next two chapters. 



Chapter 6 

Model Nonlinear Problems 

How can it be that mathematics, a product of human thought in ­
dependent of experience, is so admirably adapted to the objects of 
reality? 

- Albert Einstein 

In this chapter , we discuss t he numerical solution of several model nonlinear 
boundary value pr.oblems using MGLAB. This will be analogous to t he di scussion 
of the linear model problems in Chapter 4. These results will help to confirm 
that we have a valid nonlinear multigrid implementation. 

6.1 Statement of Model Nonlinear Problems 

Four nonlinear boundary value problems were selected to test MGLAB and to ex­
plore the effect of various multigrid parameters on the solution process. A state­
ment of these model nonlinear problems appears on the following page. 

These problems cover a certain range of nonlinear behaviour. Problem MG20 
is related to an equation believed to govern the (free) boundary of phase transi t ion 
in a solid/liquid interface model. In fact , the parabolic problem Ut = ~(u) coupled 
with a suitable thermal equation is a model for crystalisation and dendrite growth 
(see Caginalp and Fife [21]). 

Problem MG22 is the static porous medium equation. It models the density 
of an ideal gas (with ratio of specific heats 'Y) which has reached an equilibrium 
flow through a homogeneous porous medium. This equation also arises in models 
of plasma physics. For the equation to represent a physical system, we must have 
U ~ 0 and 'Y > O. The PDE is elliptic except at any point where U = o. For more 
details on our present knowledge of this difficult equation, see Aronson [7]. 

Problem MG24 is a scalar version of the avier-Stokes equations , where /I 

is the kinematic viscosity (it is also an ellipticity parameter). This problem has 
rather arbitrary boundary conditions, hence the exact solution is unknown. 

Finally, Problem MG26 is perhaps the most interesting model quasilinear 
elliptic equation, as it encompasses the behaviour of soap films (minimal surfaces , 

82 
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Problem MG20 (solidification equation) 

in n; a ,/3" ER 

U(O , y) 

u(x, O) 

tanh[ ,(a-y)] 

tanh[ ,(a-/3x)] 

u(1 , y) 

u(x,l) 

u = tanh[,(a-/3x-y)] 

Problem MG22 (static porous medium equation) 

L1(u"l ) = ° in n; 

u(O, y) [sin~ cO:~(ILY+~ ) ]lh u(l,y) 

U(X , O) [sin(lLx~~) cosh~ ]lh u(x,1) 

tanh[ ,( a- /3 -y ) ] 

tanh['(a- /3x-l ) ] 

, E R , , =/:O 

[ sin ~ cO:~(ILY+ ~ ) ]1 h 
[sin(ILX+~~~OSh( lI" -~ ) ]lh 

3 

where J.L = 7r - 2c:; c: E R 

[ 
. h ] Ih sin c: ""c

2

os c: 
VO = " 

Problem MG24 (pseudo avier-Stokes equation) 

vLlu - u(ux + uy) = ° in n; v E R , v=/:O 

u(O,y) Sill 7ry u(l,y) sin ~7ry 

u(x,O) ° u(x, 1) x 

VO = ° in n 
u is unknown 

Problem MG26 (prescribed mean curvature equation) 

uxx (1 + uy2
) - 2uxuyuxy +/ uyy(l + ux2

) = H( x,y) in n 
(1 + ux2 + uy2)3 2 
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l( 
x 

Figure 6.1: Solution (top) and discrete-Laplacian initial guess (bottom) for Prob­
lem MG20 using the standard data set (except, = -2.5). 
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u 

k: x 

Figure 6.2: Solution (top) and discrete-Laplacian initial guess (bottom) for Prob­
lem MG22 using the standard data set. 
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Figure 6.3: umerical solution (top) and discrete-Laplacian ini tial guess (bottom ) 
for Probl m MG24 using the standard data set. 
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t hat is , surfaces of zero mean curvature), soap bubbles (surfaces of constant mean 
cu rvature), and more complex st ructures (surfaces of prescribed mean curvatu re). 
We shall devote Chapter 7 to the discussion of such problems. 

The standard data set for the model nonlinear problems will be: 

Problem MG20 
Problem MG22 
Problem MG24 

0' = 1.0, (3 = 2.0, ,= -1.0 
, = 2.0, c: = 0.1 
v = 0.8 

Figures 6.1 and 6.2 show the solution and discrete-Laplacian initial guess for 
Problems MG20 and MG22 for these particular parameters. Since t he analyt ic 
solution to Problem MG24 is unknown, Figure 6.3 shows the numerical solu tion 
obtained using MGLAB . Note that all numerical-solution and initial-guess surface 
plots in this chap ter (and the next chapter) are of the interior of n - the bound­
ary data is not shown. 

Unless otherwise stated, the multigrid results in this chapter will be based 
on a discrete- Laplacian initial guess, w = 1.0 full-weighting restriction , isotropic 
grids with Ml = Nl = 2, and double-precision arithmetic. 

6.2 Model Problem Results 

In Section 5.2, we claimed that single-step ewton iteration on the nonlinear 
equation is an adequate form of relaxation. We are now in a position to demon­
strate this, since we can derive the exact nonlinear relaxation for Problem 1G20. 
Let T = 2,2(1+(32), then the 'sotropi c five-point discretisation of t he PDE is 

N
2 (~ Vij - 4Vij) + T (Vij - Vrj) = !i j 

hence nonlinear relaxation is based on the solution of the cubic equation 

TVrj + (4N 2 -T)Vij + !ij - N 2 L Vij = O. 
nn 

Provided 4N2 > T, the solution to this equation is 

Vij = ()' -
()' 

where 

~ = ~ (4N2 - T) 
3T 

On the other hand, the single Newton step is based on 

F(v .. ) _ IJ 

Vij = Vij - F'( Vij) 
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where 

hence 
_ 2 (vrj - 1/ ) 
Vij = 3 (vlj + 0 . 

In the following experiment, we perform 1 x V82,2,2_cycle of w = 1.0 weighted 
Jacobi relaxation on Problem MG20 with the standard data set, comparing the 
results of a Newton step and the exact nonlinear relaxation (thus we guarantee 

that 4N2 2 16 > T = 10.0). 

Method IIel12 Ilell oo IIrl12 II r lloo 

Initial Guess 0.088609 0.174754 5.871917 220.52840 

Exact 0.012512 0.024418 0.729692 14.575176 

Newton 0.012495 0.024382 0.729485 14.575177 

This clearly shows that single-step Newton iteration is very satisfactory. A sim­
ilar experiment can be performed on Problem MG22, since the exact nonlinear 

relaxation is 

We next wish to experimentally determine the optimal weighting for re­
laxation for Problem MG20. Figure 6.4 (on page 92) shows the convergence of 
11 x V

8
2,2,2 -cycles for Problem MG20 using w-weighted Jacobi point relaxation. 

We find that the multigrid iteration is unstable for w > 1.0, presumably be­
cause over-relaxation excites some oscillatory modes. While the residue norm 
for w = 0.8 is linear and descends most steeply after eleven V-cycles , we chose 
Wopt = 1.0 since both residue and error norms converge fastest of all the asymp­
totically stable weights after one V-cycle. In fact it does turn out that w = 1.0 
results in approximately optimal residue convergence over 1 x M~,2 , 2 -cycle, as we 

see from the following figures . 

w 

0.8 

0.9 

1.0 
1.1 

Ilell oo 

0.00000804 

0.00000527 

0.00000398 

0.00000341 

Ilrlloo 

0.22085107 

0.14771 894 

0.12505166 

0.21971002 

Figure 6.5 shows the micro-structure of one V -cycle for Problem MG20. 
The characteristics of the error profiles are similar to those of the linear multi­
grid scheme (cf Figure4.7). The residue profiles are slightly different , however , 
reflecting the fact that the FAS scheme maintains an approximation of the full 
equation on each grid level, rather than just the residual equation . 
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Figure 6.6 shows the micro-structure of one M-cycle for Problem MG20. 
The M-cycle has the same overall behaviour as in the linear multigrid scheme 
(cf Figure4.13); this is to be expected since the M-cycle is composed of single 
V-cycles. 

Figure 6.7 (analogous to Figure 4.9) examines the discretisation error of the 
FAS scheme for Problems MG20 and MG22. We have again plotted the limiting 
value of the error infinity-norm after many VA -cycles for successive A. We find 
that each profile has a slope of 

m = -0.602 ± 0.001 

and hence lorn = 0.250 ± 0.001. This experiment confirms that the discretisation 
error is O(h2) for nonlinear problems. 

Figure 6.8 (analogous to Figure 4.10) shows the convergence of 14 x V;,2,2_ 
cycles for Problem MG20 for various A. We find that FAS V-cycle convergence 
is independent of h. 

We believe that the above results are consistent with a valid nonlinear multi­
grid scheme; let us now experiment with the model problem parameters. 

The following table shows the result of 1 x Mi,2,2 -cycle using w = 1.0 Jacobi 
relaxation on Problem MG20. We set a = 1.0, f3 = 2.0 and vary,. 

, T loglO lIell oo loglO IIrlloo 

-0.1 0.1 -7.694 -3 .217 

-0.5 2.5 -6.004 -1.505 

-1.0 10.0 -5.400 -0.903 

-1.5 22.5 -5.172 -0.551 

-2.0 40.0 -3.119 -0.302 

-2.2 48.4 -3.151 -0.219 

-2.3 52.9 -1.293 0.136 

-2.4 57.6 -0.712 0.672 

-2.5 62.5 -0.376 1.080 

-2.6 67.6 0.518 2.922 

We see that this particular multigrid iteration becomes unstable for T ~ 60. This 
is because increasing T makes the interface in the solution increasingly sharp; in 
fact in the limit as T --+ 00, this becomes a step function . In the xy-plane, the 
edge of the interface has the equation y = a - f3x; anisotropic grids are therefore 
of little use to us because the interface does not necessarily lie parallel to either 
coordinate axis. To numerically investigate the behaviour of this problem for 
large T, we would need to increase the grid resolution (by utilising larger A's); 
however we note that because the solution is slowly-varying everywhere except 
at the interface, this is a wasteful scheme, and a more appropriate one would be 

to use adaptive gridding. 
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Let us now turn our attention to the porous medium equation. The following 
table shows the result of 1 x M; ,2,2 -cycle for Problem MG22 using w-weighted 

Jacobi point relaxation. 

W logio Il ell oo logio IIrll oo 
O. -3.550 0.442 

0.9 -3 .694 0.280 

1.0 -3.817 0.143 

1.1 -3.909 0.249 

We choose w = 1.0 since it approximately minimises the resultant residue norm. 
Since the porous medium equation degenerates when u = 0, we have con­

structed Problem MG22 with a parameter c; so that the domain of the sine func­
tion is restricted to [c; , 7I"- c;] rather than [0,71"], thus ensuring u > 0 for 0 < c; < %. 
In the following experiment , we have performed 1 x M;,2,2_cycle with w = 1.0, 
, = 2.0 and various values of c; . 

c; 10gIO lIeli oo logio IIrll oo 
0.1 -3.817 0.143 

0.01 -2.892 0.945 

0.001 -2.572 1.229 

0.0 -2.447 1.355 

We find that convergence does indeed deteriorate as the boundary data ap­
proaches zero, but the iteration remains stable. 

Next let us fix c; to be 0.1 and vary,. We know that for large " the solution 
tends towards u = 1, while for small positive " the solution tends to u = 0 
everywhere except for a spike at x = 1, y = 1: 

as ,~O+. 

We therefore expect the performance of a multigrid iteration to deteriorate as 
, ~ O. Figure 6.9 shows the result of one M-cycle for various , ; we do indeed 
find that this iteration becomes ineffective for, ;S 0.1. We note that the best 
solution is obtained when, = 1, as we would expect, since this corresponds to 

Laplace's equation. 
MGLAB allows us to investigate the behaviour of multigrid in more detail; for 

example, the surface plot on the following page shows the resultant numerical 
error e for, = 0.05 from the above experiment. It is clear that the greatest error 
occurs where the solution is rapidly-changing, as we expect. 

Finally, let us briefly look at the pseudo-Navier-Stokes equation. Table 6.1 
shows the result of 1 x Mi,2.2 -cycle for Problem MG24 using w-weighted Jacobi 
point relaxation. In this case, w = 0.9 appears to be an appropriate choice for 

the Jacobi relaxation weight. 
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Figure 6.10 shows the resulting residue norms after one M-cycle with various 
values of v. The iteration becomes unstable as v -+ 0 because the PDE becomes 
less elliptic (the equation is singular for v = 0). 

u 

k( 
x 

W Jog lO IIrl12 loglo Ilrlloo 
0.7 -0.63 0.63 

0.8 -0.85 0.43 

0.9 -1.02 0.30 

1.0 -0.95 0.37 

1.1 -0.64 0.61 

Table 6.1: Result of 1 x Mi·2
,2-cycle for Problem MG24 using w-weighted Jacobi 

point relaxation. 



C HAPTER 6: 10DEL ONLI NEAR PROBLEM S 92 

loglo II . 11 00 

~ w=1.10 

~ 2 
/' 

~, 

,/' 
/' 

\\\'\. 
/' 

./ 
/' 

\\' 
,... 

\ , /' 

\ \\ , /' 
/ 

~\ "-
/ 

/ 

\\ '. , / ..... --
~'\\ -'-- --' -- _' w = 1.0·5 -,-

, \ ..... -
~~ "\ ' -,- - --\" '- '- -,-

0 ~\ , 
\ ..... , 

\\ ....... ' , 
\ ' ,,' " "--'-
\\ " , 

,\ , "- - -
-1 --

,~ 
-'- - , W = 1.00 , , 

,\ '\ 
, 

~ \ 
, 

"' , , 
'\ , , 

-2 \ " '\ 
~ , , 

\' \ 
, 

\, \ 
, , . , 

-3 ' ,\ 
, 

\ '", , 
\, ", , 

\ , 
\ 

-4 
, , 

" w = 0.60 

" " \ .... w = 0.90 
-5 

, w = 0.70 

\ 
-6 1.01=1 .00 

\ 

\. w = O. 0 
WU 

0 10 20 30 40 50 60 

Figure 6.4: Convergence of 11 x VS
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Figure 6.5: Micro-convergence of 1 x VS
2,2,2 -cycle for MG20 using w = 1.0 weighted 

point Jacobi relaxation , standard data and a zero initial guess. Solid lines are 
two-norms , dashed lines are infinity-norms. 
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Figure 6.6: Micro-convergence of 1 x M~,2 , 2 -cycle for MG20 using w = 1.0 weighted 
point Jacobi relaxation and standard data. 
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MG20 

Figure 6.7: Discretisation errors as measured by the error norm of lim n x V; ,2,2_ 
n - oo 

cycles for various A using w = 1.0 weighted Jacobi point relaxation. The discreti-
sation error is O(h2). 
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Figure 6.8: Convergence of 14 x V;,2,2 -cycles for various /\ . Solid lines are error 
norms , dashed lines are residue norms. MG20 , w = 1.0 weighted Jacobi point 
relaxation. Convergence is independent of h. 
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Figure 6.9: Convergence of 1 x Mi,2,2-cycle for various, for Problem MG22 
using w = 1.0 weighted Jacobi 'point relaxation. This multigrid iteration becomes 
ineffective for , ~ 0.1. . 
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Figure 6.10: Convergence of 1 x Mi,2,2-cycle for various v for Problem MG24 
using w = 0.9 weighted Jacobi point relaxation. This multigrid iteration becomes 

unstable for v ~ 0.1. 



Chapter 7 

Geometric Problems 

There is not , to our knowledge, an example where observation has 
supported theory with more delightful forms [than in the field of min­
imal surfaces}. What could be more beautiful to the eyes of a math­
ematician, than these weightless shapes of the most brilliant colours, 
endowed, despite their extreme fragility, with an astonishing persis­

tence? 

- G. Van der Mensbrugghe, as quoted in Nitsche [82] 

In this chapter, we examine some interesting problems which arise in the field of 
differential geometry, in particular nonlinear boundary value problems involving 
surfaces of prescribed mean curvature. This gives us the opportunity to consider 
the numerical solution of some difficult problems, involving singularities for exam­
ple. Numerical differential geometry is currently an active field of computational 
mathematics, and there are many open questions (see for example Kazdan [62]). 

7.1 Surfaces of Prescribed Curvature 

Two standard references in the field of differential geometry are Kobayashi and 
Nomizu [64] and doCarmo [33]; while the classic reference for the more specific 
subject of minimal surfaces is Nitsche [82]. We will firstly discuss some back­

ground material. 
Consider a 2-surface S in Euclidean 3-space R3. Here we will only consider 

surfaces S which are graphs of some function u over the domain st, ie. u = u(x, y). 
(To be able to compute on arbitrary surfaces, we need to parameterise the surface; 
see Section 9.2.1.) At a point P on the surface, one considers the curve formed 
by the intersection of a plane containing the normal and the surface itself. The 
normal curvature at P in the direction defined by the plane is then the reciprocal 
of the radius of the osculating circle, that is, the circle which matches the curve 
infinitesimally around P . One chooses either direction of the normal to fix the 
sign of the curvature. The principal curvatures kl and k2 at P are defined to be 
the maximum and minimum of the normal curvatures at P, respectively (see [33] 

96 
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for more details). These principal curvatures are always in direct ions orthogonal 
to each other, unless the normal curvature is the same in all direct ions (as on a 
sphere) - this is called an umbilic point. 

There are various types of curvature; each is defined in terms of t he principal 
curvatures. For example: 

H 

J< 

N 

kl + k2 

kl k2 

kll + k:;l 

mean curvat ure 

Gauss curvature 

harmonic mean curvature. 

(Note that some authors write H = ~ L~l ki .) These lead to the following 
equations for prescribed mean curvature 

Uxx (1 + Uy 2) - 2uxUyu xy + uyy(l + Ux 2) 
(1 + u x

2 + Uy2)3/2 

prescribed Gauss curvature 

2 UxxU yy - u xy 

(1 + u x
2 + u y2)2 

and prescribed harmonic mean curvature 

J«x , y), 

H(x, y), 

[U xx(1+uy2) - 2uxu yu xy + Uyy (1+ux
2) ] (1 +u/+Uy2)1/2 

UxxU yy - u x/ 

for a surface U = u(x ,y). 

(7 .1 ) 

(7.2) 

(x,y) 

We mention in passing that a more compact expression for the prescribed 
mean curvature equation is 

div 
( 

V'u ) 
)1 + lV'ul2 

H(x y) 

and similarly for the prescribed Gauss curvature equation: 

We note that the left-hand side is the determinant of the Hessian of u , and 
therefore the equation is of the Monge-Ampere type. We also observe that 

HI/(· 
Let us investigate the ellipticity of these equations. The quantity lo,ijl (see 

Section 2.1) for the mean curvat ure equation is 
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which is evidently positive, irrespective of the nature of the solution u, hence 
equation (7.1) is elliptic everywhere. For the Gauss curvature equation , we have 

-U
xy I = f( (x,y) 

U xx 

and so equation (7.2) is elliptic if K > 0 in n. 
Now let us consider the suitability of these equations for numerical solu­

tion using MGLAB. The standard isotropic discretisation for the residual of equa­
tion (7.1) is 

N 2 
{ (£, - 2e +:R) [1 + ~2 (11- 1»2] - ~2 (:R - £, )(11- 1» X 

+ (1) - 2e + 11) [1 + ~2 (:R - £,)2J) 

{I + ~2 [( :R _ £,)2 + (11-1»2]) - 3/2 

h h · d f k k k k d k were we ave wntten e, £' , :R, 11 an 1> or Vij' Vi-l ,j' Vi+ I,j' Vi,j+ l an Vi,j_l 
respectively, and where X = (Vtl ,j-l +V!+l,j+l -Vtl ,j+l - Vf+l ,j-l)' t herefore the 
basic step of Newton iteration (see equation (5.4)) is 

e -

where 

\II (£, - 2e +:R) [1 + ~2 (11-1»2] - ~2 (:R - £, )(11- 1» X 

+ (1) - 2e + 11) [1 + ~2 (:R - £')l 

We observe that <j(Vij) = 82ri jj8e2 = 0, hence by equation (5 .5) , this ewton 
iteration scheme is guaranteed to converge. 

On the other hand , the prescribed Gauss curvature equation leads to a 
discrete residual of 

16(£' - 2e + :R)(1) - 2e + 11) - X2 

j ij - [~+ (:R - £,F + (11-1>Ff 

and so the Newton convergence criterion in this case is 

16 (£, - 2e + :R)(1) - 2e + 11) + X2 - lij [~ + (:R - £,)2 + (11-1»2f 

8 (£, + :R + 11 + 1> - 4e)2 
< 1. 

There is essentially nothing that can be said a priori about this inequality. More­
over, the left-hand side is not well-behaved , as the denominator vanishes wherever 
the surface is locally flat. In any case, we find experimentally that this imple 
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approach to a relaxation scheme for Gauss curvature problems generally leads 
to divergent iterations. To be able to solve such problems, we would need to 
use other relaxation methods. It turns out that equations of the Monge-Ampere 
type are difficult to analyse and especially difficult to solve numerically. However, 
necessary conditions for the existence of unique solutions were found in 1983 [99]: 

Theorem 7.1 (Trudinger and Urbas) Let n be a uniformly convex domain 
in R n

, and K a positive function in n. Then the classical Dirichlet problem 

!'.±l 
det D2u = K(x) (1 + IDun 2 in n; u = </> on an 

has a unique convex solution for arbitrary </> iff 

In K dx < Wn and Kl an = O. 

(The quantity Wn is the volume of a unit ball of dimension n.) They go on to 
consider the Dirichlet problem for general Monge-Ampere equations: 

det D2u = f(x , u , Du) in n; u = </> on an. 
In [65], Kuo and Trudinger prove the stability of a discretisation scheme of 

the Dirichlet problem for fully nonlinear uniformly elliptic second-order PDE's 

f(x , u, Du , D2u) = 0 

in bounded domains n E Rn. 
This is as much as we shall say about the equations of prescribed Gauss 

and harmonic mean curvature. Let us therefore turn our attention back to the 
consideration of prescribed mean curvature, as we are able to investigate the 
numerical solution of such problems using the current version of MGLAB . 

The existence t heorem corresponding to Theorem 5.1 is due to Serrin [88] 
(part (a)) and to Giusti [45] (part (b)): 

Theorem 7.2 (Serrin and Giusti) Let n be a smooth bounded domain in R n
, 

and H a smooth function in n. 
(a) Then the prescribed mean curvature Dirichlet problem 

div (J 'Yu ) = H(x,y) in n; 
1 + IV'ul2 

u = </> on an 

has a unique solution u E C2(n) n CO,I(n) for arbitrary </> E C2(n) iff 

and v x E an (7.3) 

where H n - l is the (n-I)-dimensional mean curvature of an . 
(b) The mean curvature equation has a solution in n iff lIn H dxl ::; lanl · In the 
extreme case of equality, the solution is unique up to a constant and is "vertical" 

on an. 
This existence theorem provides us with a sharp test for the numerical solution 
of a parameterised boundary value problem (see Section 7.4). 
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7.2 Minimal Surfaces 

Let us now consider the minimal surface problem, where we seek a surface whose 
graph u = u(x,y) everywhere has zero mean curvature: 

(7.4 ) 

This equation models the shape of a soap film within wire boundaries where the 
surface tension of the film is the dominant force, and hence the soap film forms 
a surface locally of least surface area. The problem of determining a minimal 
surface with some given closed space curve boundary is called Plateau's problem , 
after the Belgian mathematician who investigated it around 1873. In fact , the 
history of minimal surfaces began with Lagrange more than a century earlier [82]. 

There are various ways to approach the minimal surface problem: by using 
tools from the calculus of variations, PDE theory, and functional analysis. In 
1937, Courant gave an existence proof by reducing Plateau 's problem to Dirich­
let 's problem [82]. 

There are a number of families of classical solutions to the minimal surface 
equation; prototypes of some of these families are as follows: 

u(x ,y) Ax + By + C (plane) 

u(x,y) Jcosh2 x _ y2 (horizontal catenoid) 

u(x,y) cosh-1 J x2 + y2 (vertical catenoid) 

u(x,y) tan-1 (y/x) (helicoid) 

u(x,y) log I sinx I 
Stny 

(Scherk 's surface) 

u(x,y) sin-I(sinh x sinh y) (Scherk's fifth surface) 

In addition, there are known solutions which are given implicitly, or in terms of 
inverses of elliptic integrals , or as power series solutions, for example Enneper 's 

surface. 
Four minimal surface problems were selected, all defined by equation (7.4) 

with the boundary conditions specified on the following page. Problems MG30 
and MG32 have simple straight- line boundaries , yet the surface u in each case is 
defined by inverses of elliptic integrals. For MG30, it is found that (see itsche 

[82] section 5.2) 

~(y)~(u(x,y)) + ~(u(x,y))~(x) + ~(x)~(y) -1 

where ~ is the inverse of the elliptic integral ~ given by 

f' 2 d(7 
~(s) = Jo J3 + 10(72 + 3(74 

In the case of Problem MG32, the surface is defined by c:(x) c:(y) 
where c: is the inverse of ( given by ((t) = I~(l + 7 2 + T4

)-1/2dT. 

c:(u(x, y)) 
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Problem MG30 ("batwing") 

u(O,y) 

u(x,O) 

y 

x 

u(1 , y) 

u(x,l) 

1-y 

1 - x 

u is unknown in closed form 

u has ruled solutions and u=y=~ 

Problem MG32 ("step") 

u(O, y) 

u(x, O) 

o 
o 

u(l, y) 

u(x,l) 

u is unknown in closed form 

1 

1 

u is singular at x = 0; y = 1 and x = 1; Y = 0 

u has ruled solutions x = y; u = ~, 

x = 1 - y ; u = ~ and x = 1. u = Y 
2 ' 

Problem MG34 (helicoid) 

u(O,y) 

u(x ,O) o 
u(l, y) 

u(x,l) 

u=tan-l~ 
x 

tan- 1 y 

tan-I.! 
x 

u is singular at x = 0; y = 0 

Problem MG36 (Scherk's surface) 

u(O, y) 

u(x, O) 

10 [~] g sin(y+t:) 

10 [ sin\x+ t:) ] g SlO t: 

u(l , y) = log [sin(1+t:) ] 
sin(y+t:) 

( 1) I [
sin(x+t:)] 

U x, = og sin(1+t:) 

where 0 < € < 1['-1 

I [
sin(x+€) ] 

u = og 
sin(y + €) 

u is singular as € ---t 0 

---

101 
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Figure 7.1: Numerical solution (top) and discrete-Laplacian initial guess (bottom) 

of Problem MG30. 
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u 

L( 
x 

Figure 7.2: Numerical solution (top) and discrete- Laplacian ini tial guess (bottom) 

of Problem MG32. 
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Figure 7.3: Numerical solution (top) and discrete-Laplacian initial guess (bottom) 

of Problem MG34. 
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Figure 7.4: umerical solution (top) and discrete-Laplacian initia.l guess (bottom) 

of Problem MG36 (c; = 1.0) . 
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While the exact solutions of Problems MG30 and MG32 are unavailable 
to MGLAB , several properties of the solutions are more accessible. For example, 
both surfaces have particular ruled-line solutions; these would enable accuracy 
measurements to be made in these cases. In fact, these are more realistic problems 
than those of the previous chapter in the sense that researchers investigating some 
difficult equation are likely to know certain properties of the solution , but not 
the solut ion itself. 

Problem MG34 involves the helicoid minimal surface and is difficult because 
of the singulari ty at the origin. ote that we have imposed the mean Dirichlet 
boundary condition at the origin 

u(O,O) = -2
1 

[limu(x,O) + limu(O,y)] = 7r 
x~o y- O 4 

The helicoid surface is entirely composed of ruled lines. 
Problem MG36 has been put into a form parameterised by a small quantity € 

since Scherk's saddle-shaped surface approaches ±oo on all boundaries as € --+ O. 
We will investigate the numerical process as € decreases. The standard data for 
this problem will be € = l.0. 

Figures 7.1 to 7.4 show the (numerical) solution and discrete-Laplacian ini­
tial guess for each of these geometric problems. 

7.3 Minimal Surface Results 

We will firstly find the approximately-optimal multigrid parameters for our prob­
lems. Without ex'ception, we will use the discrete-Laplacian initial guess. 

Figure 7.5 (on page 108) shows the result of one M-cycle on Problem MG36 
for various weights and both J acobi and red-black Gauss-Seidel point relaxation. 
We find the optimal relaxation parameters to be w ~ l.07 and red-black Gauss­
Seidel relaxation. While each minimal surface problem is based on the same 
PDE, it is quite possible that certain multigrid parameters will be optimal for 
one problem and not another (due to the presence of singularities, for example). 
We have found these relaxation parameters to be satisfactory for all four problems, 

however. 
The following table shows the result of 1 x Mi,2 ,2 -cycle for Problem MG36 

with w = l.07 red-black Gauss-Seidel relaxation and various values of restriction 

weighting 'W. 

We are not surprised to find that 'W = l.0 is the optimal restriction weighting . 
Figure 7.6 shows the residue convergence of Problem MG36 over several V­

cycles for various relaxation numbers v (analogous to Figure 4.12). We again find 

v = (2,2,2) to be a satisfactory choice. 
We therefore fix our mu ltigrid parameters (for all minimal surface problems) 

to be 

• isotropic grids NI = M I = 2 

• discrete- Laplacian initi al guess 
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tv loglo IIel12 10giO llell oo 10giO IIrl12 loglo Ilrll oo 

0.90 -5.92 -5.57 -3.22 -2.24 
0.95 -6.40 -6.04 -3.40 -2.35 
1.00 -7.33 -6.82 -3.51 -2.50 
1.05 -6.59 -6.19 -3.43 -2.46 
1.10 -6.44 -6.02 -3 .30 -2.34 

• two relaxation sweeps VI = V2 = Vo = 2 

• w = 1.07 weighted red-black Gauss-Seidel point relaxation 

• tv = 1.0 full-weighted restriction 

Using these parameters results in a satisfactory convergence rate for Prob­
lems MG30 and MG36 using 1 x M;,2,2_ cycle: 

MG30 MG36 

L 10glO Ilrll oo P(lIrlloo) 10giO lIeli oo p(lIell oo ) 10glO IIrll oo p(lIrll oo ) 

1 -00 - -00 - -00 -

2 -4.88 - -4.61 - -4.31 -

3 -2.26 420.3 -4.94 0.468 -2.64 46.13 

4 -1.99 1.885 -5 .20 0.554 -2.53 1.30 

5 -2.25 0.550 -5.73 0.299 -2.50 1.065 

6 -2.55 0.500 -6.33 0.248 -2.50 1.00 

7 -2.69 0.721 -6.82 0.325 -2.50 0.991 

8 -2.76 0.846 -7.35 0.294 -2.50 0.992 

Figure 7.7 compares the convergence of Problem MG32 for one M-cycle and 
twelve V-cycles . We find that a single full multigrid cycle does not perform as 
well as usual , because errors are not reduced sufficiently (ie. to the magnitude 
of discretisation errors) on each level. We find that we require very large values 
of V to ensure v is sufficiently smooth on each level. It is interesting to see that 
1 x M I8 ,18,18_cycle still achieves a better result than 12 x V2,2,2-cycles. We may 
compare this with the results from well-behaved problems (see Figure 4.3 for 
example) , where one M-cycle is much more efficient than many V-cycles. An 
alternative strategy in cases such as Problem MG32 would be to perform one 
M-cycle followed by several V- or W-cycles. 

Problem MG34 yields almost identical results to those shown in Figure 7.7; 
we therefore conjecture that it is the singularities in Problems MG32 and MG34 
which cause them to behave in this way. Figures 7.2 and 7.3 shows how the 
numerical solution "pulls away" from the infinitely-steep points of u. 

Finally, Figure 7.8 shows the result of one M-cycle for Problem MG36 for 
various c. As expected, the accuracy of the solution diminishes as c --t 0, in this 
case it does so smoothly. 
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loglo II . II · 
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Figure 7.5: Result of 1 x Mi·2•
2-cycle on Problem MG36 for Jacobi (thin lines) 

and red-black Gauss-Seidel (t hick lines) relaxation of various weights. Solid lines 
are two-norms, dashed lines are infinity-norms. 
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-2 

-4 

(2 , 2,1) 
(1,2, 2) (2,2, 2) -6 

-8 

w 

4, 4,4) wu 
o 10 20 30 40 50 60 

Figure 7.6: Convergence of 6 x V.(l .tlo·"2_cycles for various combinations of 
(VI, Va , V2). MG36, W = 1.07 weighted Jacobi point relaxation . 
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loglO Ilrll· 

2 

o -- -- - --I - ..... -
-2 ....- ( a) - . 

- --- - - _e- (d) 
-3 (c) 

WU 
0 10 20 30 40 50 60 

Figure 7.7: Convergence of (a) 1 x Mi ,4,4-cycle, (b) 1 x Mi,9,9- cycie, (c) 1 x 
M;8 ,18 ,18_cycle, and (d) 12 x V/,2,2-cycles for Problem MG32. Solid lines are 

two-norms, dashed lines are infinity-norms. 
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-4 

-5 

-6 

-7 
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Figure 7.8: Convergence of 1 x Mi ,2,2 -cycle for various c: for Problem MG36. 
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7.4 Surfaces of Prescribed Mean Curvature 

We now turn our attention to solving problems of 'prescribed mean curvature, 
including surfaces of constant mean curvature. T he latter problem models the 
shape of soap bubbles, where the internal gas pressure induces a constant right­
hand side fun ction H (x, y) in the equation 

uxx (l+u y2
) - 2ux uyuxy + uyy (l+u x

2
) = H(x ) 

(1 + u x
2 + u/)3/2 Y . 

(7 .5) 

Every child knows that the unconstrained shape of an isolated soap bubble is 
a sphere; not every child knows that the sphere of radius R has mean curva­
ture 2/ R, nor t hat spheres are the only compact surfaces embedded in R3 which 
have constant mean cu rvat ure [62]. More interesting questions arise when we 
consider bubbles with arbitrary wire boundaries, with other bubble surfaces as 
boundaries, and bubbles-within-bubbles. Unfortunately we are again restricted 
to the case where the surface is a graph, so we cannot as yet investigate such 
problems; nevertheless, we introduce a further group of model problems for pre­
scribed mean curvature to test the versatility of MGLAB and to compare numeri cal 
results with the existence t heorems already discussed. These BVP 's are based on 
equation (7.5) with the prescribed curvatures H(x, y) and boundary conditions 

specified on: the following page. 
Figures 7.9 and 7.10 show t he numerical solution and discrete-Laplacian 

initial guess for Problem:; MG40 and MG42. Figure 7.11 shows t he numerical 
solution for Problem MG50 for three representative values of >.. 

Problems MG40 and MG42 model part of a bubble surface with the given 
wire boundary. Another viewpoint is that these are soap films on the wire frame, 
but with a constant force or gas pressure "blowing" from underneath. Both prob­
lems have solutions which are infinitely steep on part of the boundary. Problem 
MG50 is included so that we can compare our numerical results against the exis­
tence theorem for prescribed mean curvature (Theorem 5.2). The standard data 
for this problem will be p = q = 1, >. = 0.5. From Equation 7.3 we compute 

Ifn H dxl = 4>. and lanl = 4 

hence a unique solution exists for 1>'1 ~ 1; moreover , the solution is infinitely 
steep on the boundary when 1>'1 = 1. Figure 7.11 illustrates this behaviour: for 
>. = 0 the solution is U = 0; as >. increases , the solution "bulges" downward more 
and more. Combining the known theoretical properties of U and our numeri cal 
results , it seems certain that as >. -t 1, u grows unboundedly towards - 00 and 

thus becomes "vertical" on an. 
It is also interesting to consider this problem embedded in R

3
, ie. U( x , y) is 

not restricted to being a graph. We might conjecture that for 1>'1 > 1, the solution 
to the generalised problem is a surface whose "bulge" has expanded outside the 
unit square, so that it has roughly the shape of a sphere of diameter D > 1 with 

a square-shaped hole at the top/bottom. 
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Problem MG40 (quarter cylinder) 

H(x , y) = 1 

u(O, y) = Vy (2 - y) u(l, y) 

u(x,l) u(x,O) 0 

u = VY(2 - y) 

u is infinitely steep at y = 0 

Problem MG42 (cut hemisphere) 

H(x,y) = 2J2 

u(O;y) = Vy (l-y) u(l, y) 

u(x, O) = v x (1-x) u( x, 1) 

u = vx(l-x)+y(l-y) 

vy (2-y) 

1 

Vy(l-y) 

vx(l-x) 

111 

u is infinitely steep at the four corners (x,y) = {(O,O), (O,l), (l ,O),( l ,l)} 

Problem MG50 (prescribed mean curvature) 

H(x , y) = )..pq7r2 sin(p7rx) sin(q7rY) p , q E ZOdd; ).. E R 

u(l , y) o u(O, y) = 0 

u(x,O) = 0 u(x,l) = 0 

u is unknown 

u exists and is unique when \)..\ ::; 1 

u is infinitely steep on an when \)..\ = 1 

----~~ ~~--------------------------------------------........ ~ 
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u 

k: x 

Figure 7.9: Solution (top) and discrete-Laplacian initial guess (bottom) for Prob­
lem MG40. 
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u 

L( 
x 

Figure 7.10: Solution (top) and discrete-Laplacian initial guess (bottom) for Prob­
lem MG42 . 
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u 

k: x 

Figure 7.11: umerical solution of Problem MG50 for p = q = 1 and A = 0.2 
(top), A = 0.5 (cent re), A = 0.7 (bottom). 
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7.5 Prescribed Mean Curvat ure Results 

Figures 7.12 and 7.13 show the result of w-weighted relaxation for several V-cycles 
for Problems MG42 and MG50, respectively. Our conclusion is that optimal 
weights for red-black Gauss-Seidel relaxation are approximately w = 1.2 and 
w = 1.36, respectively. We find that w = 1.28 also minimises the residue norms 
for Problem MG40. The following table shows the result of 4 x V/ ,2,2 -cycles for 
Problems MG42 and MG50 for various values of restriction weighting tv (and the 
above relaxation weights). 

MG42 MG50 

tv loglo IIel12 loglo Ilell oo loglo IIrl12 10glo Ilrlloo 10gIO II r l12 10gIO IIrll 
0.9 -2.4. -2.22 -1.10 -0.79 -1.08 -0.56 

1.0 -3.92 -2.23 -3.93 -2.80 -5.08 - 4.29 

1.1 -2.27 -2.02 -0.85 -0.42 -0.69 -0.04 

Once again we find tv = 1.0 to be optimal. We will therefore use the following 
multigrid parameters for our constant mean curvature problems: 

• isotropic grids Nl = Ml = 2 

• discrete- Laplacian ini tial guess 

• two relaxation sweeps III = 112 = 110 = 2 

• w = 1.28 weighted red-black Gauss-Seidel point relaxation 

• tv = 1.0 fu.ll-weighted restriction 

and w = 1.36 for Problem MG50. 
Figures 7.14 and 7.15 compare the convergence of 1 x M"I,10 ll'z-cycle and 

6 x V2,2,2-cycles for Problems MG42 and MG50 , respectively. Unlike minimal 
surface problems (cf Figure 7.7), in these cases single M -cycles do not perform 
as well as several V-cycles. We believe this is due merely to the complexity of 
the prescribed mean curvature equation for H i= 0, since Problem MG50 (for 
A = 0.5) has no singularities or other obvious difficulties. 

For our final experiment, we attempt to solve Problem MG50 for various 
values of A E [0,1]. Figure 7.16 demonstrates that the specified multigrid con­
figuration converges to the solution for A E [0 , 0.7] approximately; however for 
A .2: 0.7 , the iteration edges towards instability. Figure 7.17 shows the residue 
arising from the case A = 0.78. We see that most of the difficulty lies not at the 
boundaries, but on a broad ring where there is a point of inflection in the solu­
tion. The oscillatory nature of the residue indicates that the multigrid iteration 
is marginally unstable. A close inspection of the graph reveals a chequerboard 
.pattern of positive and negative "spikes"; this strongly suggests that red-black 
relaxation is the cause of this behaviour. We implicitly assumed above that 
Wopt did not vary with A; in fact, in the A ~ 0.8 regime, we now find w = 0.8 
weighted Jacobi relaxation to be approximately optimal, but only slightly supe­
rior to red-black Gauss-Seidel (see Figure 7.16). Figures 7.18 and 7.19 show the 
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approximate solution v and residue rafter 6 x V/ ,5,5-cycles of w = O.S weighted 
Jacobi relaxation for}. = O.S. The Jacobi residue has the same "ripple" pattern as 
the Gauss-Seidel residue; while it is somewhat smoother, we can see instabilities 
(high-frequency errors) arising around the edge of the ring. All this goes to show 
that the breakdown of our multigrid iteration is due to an unstable relaxation 
method for}. 2: O.S. 

The instability we have found has the same characteristics as the instability 
which arises when attempting to solve the heat equation Ut = Llu with too large 
a time-step. In that case also, the instability germinates at the inflection points. 

We have discussed this problem in considerable detail because we feel it 
demonstrates the synergistic way in which numerical and theoretical mathematics 
can assist each other in the investigation of many interesting as yet unsolved 
problems. 



CHAPTER 7: GEOMETRIC PROBLEMS 117 

loglo II . II · 
/ -.- .... 

-1 --- - - - - - -- - ----_/ 
-2 - - -

-3 

-4 

0.8 0.9 1.1 1.2 1.3 1.4 

Figure 7.12: Result of 3 x V/,2,2-cycles on Problem MG42 for Jacobi (thin lines) 
and red-black Gauss-Seidel (thick lines) relaxation of various weights. Solid lines 
are two-norms, dashed lines are infinity-norms. 
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Figure 7.13: Result of 4 x V/,2,2-cycles on Problem MG50 for Jacobi (thin lines) 
and red-black Gauss-Seidel (thick lines) relaxation of various weights. Solid line 
are two-norms , dashed lines are infinity-norms. 
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Figure 7.14: Convergence of (a) 1 x Mi ,2,2- cycle, (b) 1 x M~,5,5-cy cle , (c) 1 x Mi ,9,9_ 
cycle, and (d) 6 X V/,2 ,2 -cycles for Problem MG42. Solid lines are two-norms , 
dashed lines are infinity-norms. 
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Figure 7.15: Convergence of (a) 1 x Mi ,2,2- cycle, (b) 1 x M~,5,5_cycle, (c) 1 x Mi ,9,9_ 
cycle, and (d) 6 X V/,2 ,2 -cycles for Problem MG50. Solid lines are two-norms , 
dashed lines are infinity-norms. 
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loglo Ilrll · 
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Figure 7.16: Convergence of 6 x V/,2,2_cycles for Problem MG50 for w = 1.36 

weighted red-black Gauss-Seidel relaxation for various A. Also shown is 6 x Vi
5

•
5

•
5

_ 

cycles of w = 0.8 weighted Jacobi relaxation (thin lines, see text for details). Solid 
lines are two-norms , dashed lines are infinity-norms. 

Figure 7.17: Residue rafter 6 x V/,2,2-cycles of w = 1.36 weighted red-black 

Gauss-Seidel point relaxation on Problem MG50 with A = 0.7 . 
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Figure 7.18: Approximate solu t ion v after 6 x V/·5 •
5-cycles of w = 0.8 weighted 

Jacobi point relaxation on Problem MG50 with A = O . . 

Figure 7.19: Residue r after 6 x V/· 5
•
5-cycles of w = 0.8 weighted Jacobi point 

relaxation on Problem MG50 with A = 0.8. 



Chapter 8 

CM-2 Implementation 
Considerations 

Writing multigrid programs can be both fun and challenging. 

- William Briggs [20] 

I still have my first computer program. It factored numbers into 
primes. You would dial a ten-digit number into the console, and it 
would punch the factors on cards. The program initially was about 
70 instructions long, and as I recall, by the time I finished it I had 
removed more than 100 errors out of those 70 lines of code. 

- Donald Knuth [3] 

In this chapter, we look at the issues which arise when a multigrid scheme is 
implemented on a parallel processing system, in this case the Connection Machine 
CM-2. We will find that the programmer requires a detailed knowledge of the 
architecture and low-level operations in order to extract the optimal performance 
from such a computer - a statement wh ich is true in general for supercomputer 
applications; accordingly, we will consider the architecture and other aspects of 
the CM-2 in some detail. We will also present and interpret performance figures 
for MGLAB running on the CM-2. 

8.1 Introduction to Parallel Computers 

As discussed in the Preface and in Chapter 1, supercomputers are the key to 
solving some of t he most difficult problems facing today's researchers. Often 
such problems are simulations of some physical phenomenon for which there are 
a large number of degrees of freedom: most likely three spatial and one temporal 
dimension, together with a possibly high-dimensional parameter space. In many 
of these cases, such as aerodynamic design and oi l reservoir simulation, advances 
in research are limited by avai lable computer resources rather than by lack of 
understanding of the underlyi ng physics. 

121 
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The advanced scientific computation community is eagerly awaiting the de­
velopment of a teraflop machine (one capable of 1012 floating-point operations 
per second) , a goal which will soon be realised. It is expected that this develop­
ment will foster major advances in many areas of research, as it corresponds to 
roughly an order of magnitude increase in spat ial resolution for three-dimensional 
simulations. 

Supercomputers may be defined as the class of computers which, at any given 
point in history, perform extremely fast computation (relative to the mainstream). 
Conventional supercomputers, such as the Cray series, are essentially based on 
serial technology, and suffer from physical limitations such as the need to dissipate 
heat in a small volume, the speed of light and input/output bottlenecks. In the 
past few years , the performance of these machines has been improved by the 
use of vector pipelines and further developments in VLSI technology, however it 
seems unlikely t hat computer manufacturers can in the future sustain their order­
of-magnitude improvements in performance every few years. It is widely believed 
that parallel computers provide the only hope for achieving teraflop performance 
in the foreseeable future . Furthermore, massively-parallel systems provide a very 
economical dollar cost per megaflop , due to their economies of scale. For these 
reasons , a great deal of effort has been recently invested into research on parallel 
machines . 

Following McBryan et at [75], we briefly describe a taxonomy of computers. 
The three cri teria are: 

l. SIMD or MIMD, 

2. shared or distributed memory, 

3. scalar or vector-pipelined floating-point units , 

which distinguishes eight classes of machine. 
SIMD (single instruction , multiple data) means that every processor syn­

chronously executes the same instruction, but on different data. MIMD (multiple 
instruction, multiple data) means that each asynchronous independent processor 
may execute a different instruction stream on different data. In this way, a con­
ventional serial scalar computer is classified as an SISD machine. 

In shared (global) memory machines , each processor has direct access to all 
memory, whereas processors in distributed (local) memory machines have direct 
access only to their own private memory. 

Pipelined FPU's utilise special hardware to allow, in effect, several sub­
procedures of an arithmetic operation to be performed simultaneously. Thus 
when many similar operations are required , such as adding two long vectors ai+bi, 

high performance can be achieved. 
The following list gives some examples of the eight classes thus formed: 

l. scalar (SISD) computers: PC , Macintosh , Sun , VAX 

2. vector computers: IBM 3090 , Cray 1, Fujitsu VP-100 series 

3. scalar shared memory multiprocessors: Sequent , Concurrent, Butterfly 

4. vector shared memory multiprocessors: Cray Y-MP, ETA-10, VP-2600 
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5. scalar array processors: ICL DAP, CM-l, MasPar 

6. pipelined array processors: CM-2 

7. scalar distributed memory multiprocessors: CU BE, iPSCjl 

8. pipelined distributed memory multiprocessors: SUPRENUM, iPSCj2 , CM-5 

It should be pointed out that this simple classification scheme is not rigorous: 
there are certain computers which do not easily fit into these categories. 

When innovative computer hardware is introduced , one of the main prob­
lems encountered by computational researchers is how to efficient ly redesign the 
existing numerical algorithms , or how to invent completely new algorithms, so as 
to take best advantage of the special capabi lities of the new machine. Parallel 
computers of one form or another are beginning to dominate the supercomputer 
market , and it is ev ident that this trend will continue for some time. Numerical 
methods for solving boundary value problems are well established for conventional 
serial machines , whereas the field of parallel algorithms is still undergoing rapid 
development. Moreover, there exist a large number of different parallel machines 
and a large body of experimental algorithms which run on them. With such 
a wide variety of architectures and systems, one of the challenges is to develop 
efficient and semi-portable parallel codes. 

Here we shall 'consider the implementation of our multigrid package MGLAB 

on the Connection Machine CM-2, using the CM Fortran language (see [96]). 
This language is an implementation of FORTRAN 77 by Thinking Machines Cor­
poration, designed to provide high-level parallel constructs for the programmer 
which run efficiently on the CM-2, whilst retaining a good deal of portability. 
CM Fortran includes the array-handling facilities of Fortran 90 , plus extra array 
facilities included in early versions of the Fortran 90 draft standard, but removed 
in the final ANSI standard. On the other hand, CM Fortran does not support 
those features of FORTRAN 77 which depend on the order in which data is stored 
in CM memory, as one might expect. CM Fortran is recognised as being an im­
portant parallel programming language in its own right ; indeed, Sun and IBM 
have committed themselves to supporting CM Fortran [57] . 

The Connection Machine is one of the few examples of a parallel machine 
on which a serial FORTRAN 77 programmer can easily understand the execution 
model, which is based on simple principles , and immediately start writing or 
porting programs in CM Fortran. 

We have demonstrated that multigrid is among the most effective methods 
for solving elliptic partial differential equations on serial computers. Moreover , 
it is known that multigrid can be effectively mapped to a hypercube so as to 
maintain its optimal properties . Specifically, this is true for massively-parallel 
systems and for small systems where there are many grid points per processor (see 
Chan and Tuminaro [24]). However , we shall see that there are some interesting 
problems in implementing a parallel multigrid algorithm. At this stage, there is 
no definitive parallel multigrid method, however the problem is being attacked 
on both the computer science and numerical analysis fronts . 
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8.2 Overview of the CM-2 System 

We have emphasised that an efficient program must be carefully designed to suit 
the hardware upon which it executes. Here we describe relevant aspects of the 
architecture and operation of the Connection Machine CM-2, a massively-parallel 
SIMD supercomputer currently sited at the Australian ational University, and 
operated by the Parallel Computing Research Facility within the Centre for In­
formation Science Research , and the A U Supercomputer Facility. For further 
background or technical information, the reader is referred to Hillis [56] and the 
CM-2 Technical Summary [95]. 

The design philosophy of the CM-2 is that of a data-parallel computing 
system. Data parallel computing associates one processor with each data ele­
ment, and so exp loits the natural parallelism that is inherent in grid-based finite­
difference problems, as well as many other computationally intensive types of 
problem. An SIMD architecture is well-suited to such problems, where the same 
operation is applied to different data at each grid point. ot only does the exe­
cution time decrease by perhaps orders of magnitude, but the programming task 
is often simplified. 

The CM-2 installed at the A U at the end of 1990 is configured with 16K 
single-bit processors, each with 256K bits of memory (t he equivalent of 4K double­
precision variables), which share 512 Weitek 32-bit (s ingle precision) ftoating­
point units. It has twin Sun-4 front-end hosts ; all programs are developed and 
executed on a front-end as usual, except that when a parallel instruction is en­
countered , this instruction is broadcast to all processors in the CM via a sequencer 
and an instruction broadcast bus. Hence the CM may be viewed simply as an 
external array processor , designed to speed-up computations on large data struc­
tures. All serial data remains on the front-end. Masks (which define a context) 
allow selected processors to participate in or ignore certain parallel instructions. 

When parallel data structures total more than the available number of phys­
ical processors , the system software operates in virtual processor mode, whereby 
some larger number (2n x 16K) of data processors are made available to the user, 
each with correspondingly reduced memory. Each physical processor then simu­
lates the appropriate number of virtual processors. This operation is transparent 
to the programmer, and provides a very convenient programming feature. The 
virtual processor (VP) ratio is defined to be 

VP ratio = (number of virtual processors) / (number of physical processors ). 

Inter-processor communication is implemented by means of a binary hyper­
cube network with a total bandwidth of about 65 megabytes per second (on a 
16K machine). Arbitrary communication patterns on the Connection Machine 
are supported by wormhole routing. The general router can be thought of as al­
lowing every processor to send a message to any other processor, with all messages 
being sent and delivered at the same times. earest-neighbour communication in 
multidimensional rectangular grids, called NEWS communication, is particularly 
efficient since it is implemented with special hardware; indeed it is approximately 
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15 times faster than general router communication. We will discuss hypercube 
communication in much greater detail in Section 8.5. 

There are three mechanisms for transferring data between the front-end and 
the thousands of processors: (a) broadcasting (a single front-end datum is sent to 
all the processors at once), (b) global combining (the front-end recei ves the sum, 
maximum, logical OR etc. of some parallel variable), and (c) the scalar memory 
bus (whereby the front-end can read or write a single datum to an individual 
processor) . 

The input/output system supports high-speed parallel transfer between pro­
cessors and a bank of disk drives (called a Data Vault) at 25 megabytes per second, 
and between processors and a graphics display device (called a frame buffer) at 40 
megabytes per second, allowing CM data to be examined graphically in real-time. 
These I/O operations proceed independently from the sequencer and front-end . 

Connection Machine software includes parallel versions of FORTRAN C and 
Lisp. Each language includes extensions to support data parallelism, but oth­
erwise is entirely based upon the relevant draft standard. 0 synchronisation 
instructions are required , due to the SIMD architecture. In each case one de­
clares parallel variables, which are automatically allocated on the hypercube. 
The compilers produce code that is a mixture of front-end assembler code and 
Paris , the assembler language of the CM-2. (In Section 8.8 we will describe a 
slicewise model not currently available on the Connection Machine at the AU; 
under this execution model , the assembler language produced is called PEAC.) 

The CM system carr support multiple users , and may be configured to run 
several programs simultaneously under timesharing. 

This overview gives us enough information to now consider a simple multi­
grid implementation on the CM-2. Later, we will look more closely at the CM 
architecture when we discuss high-performance algorithms. 

8.3 Simple Multigrid Implementation 

We have stated that there is great interest in the design of parallel algorithms for 
mathematical computations. The goal of such research is to find algorithms which 
efficiently exploit the parallelism on a given machine architecture. This task must 
take into account the inter-processor communication overhead, an expense which 
is absent in conventional serial algorithms. Much of our discussion will be aimed 
at determining efficient multigrid communications on the Connection Machine. 
The hierarchy of grids in multigrid algorithms presents a special challenge in 
minimising the communications overhead. 

Given that our goal is to port an existing serial version of MGLAB to the CM-2, 
the most important consideration is the layout of the parallel data structures. Due 
to the hypercube nature of the CM, all array dimensions are expanded to the 
next highest power of two. This is somewhat unfortunate, as our serial version of 
MGLAB incorporates explicit boundary conditions, and so uses grids of dimension 
(2A+l) x (2A+l). These figures assume that there is precisely one interior grid 
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point on the coarsest grid (ie. MI = NI = 2) , a restriction which we must impose 
for multigrid efficiency reasons (see Section 3.2). In the eM version of MGLAB we 
therefore choose to incorporate boundary conditions implicitly, a scheme which 
uses grids of dimension (2A -1) x (2A -1) , while insisting that MI = NI = 2. 

For the moment , let us view the thousands of eM processors as being ar­
ranged in a two-dimensional array 2A x 2A, with the last row and column not 
being used in our multigrid algorithm. Then the simplest layout of the parall­
el variables v, j, T and so on, is to layer each level L within the memory of a 
processor (see Figure 8.1). Hence an appropriate declaration is 

DOUBLE PRECISION v(lmax,nmax,nmax) 
CMF$ LAYOUT v( : SERIAL, : NEWS, :NEWS) 

where nmax = 2**lmax-l = 2A - l. 
The advantages of this approach are that 

• a multigrid algorithm is simple to implement (obvious data structures), and 

• intergrid transfers can be optimally efficient (injection is intra-processor) . 

The disadvantages of this approach are that on coarse grids 

• many processors are idle (parallel efficiency decreases), and 

• nearest grid neighbours are far apart (stencil communication costs increase). 

Recall that the multigrid iteration is essentially some combination of the grid 
operators JtL , 1lL' I t- l and ILl ' each of which can be represented as a stencil, 
involving some mixture of computation and communication on the grid. Since the 
eM architecture favours nearest-neighbour orthogonal (NEWS) communication, 
we prefer to use highly compact five-point operators, though sometimes we are 
forced to use nine-point stenci ls. Given our eM implementation strategy, we see 
that nearest-neighbour communication on coarser grids corresponds to power-of­
two communication - an important fact which will explained shortly. 

Our Dirichlet boundary conditions wi ll be stored on single (2A-1) x (2A-1) 
grids, so as to ensure intra-processor availability of boundary conditions data for 
each and every grid point. An appropriate declaration for the "left ' (x = 0) 
boundary condition is therefore 

DOUBLE PRECISION left __ be(nmax,nmax) 
CMF$ LAYOUT left_bcC:NEWS, : NEWS) 

A very convenient way to implicitly treat the boundary conditions is to use the 
EOSHIFT statement of eM Fortran: for example, 

DOUBLE PRECISION left(nmax,nmax) 
CMF$ LAYOUT left( :NEWS, :NEWS) 

left = EOSHIFT(v(L,:, : ), DIM = 1, SHIFT = -step(L), 
BOUNDARY = left_be(l,:» 

where step (L) = 2** (lmax-L) = 2A-L. Recall that coarse grids for linear PDE's 
have zero boundary conditions : 
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Figure 8.1: Pictorial representation of the (a) one-dimensional , and (b) two­
dimensional pyramidal hierarchy of multi-grids for A = 6 and 3 respectively. 
Grid points depicted above one another are stored within the same processor. 
Boundary grid points are marked with open circles because they are handled 
implicitly in the eM Fortran version of MGLAB . 
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left = EOSHIFT ( v(L ,: , : ) , DIM = 1, SHIFT = -step (L) , 
BOUNDARY = zero) 

12 

To implement line relaxation, we use a CMSSL (Connection Machine Sci­
entific Software Library) routine called gen_trid i ag...sol ve (see [97]) analogous 
to the LIN PACK routines in the serial version of MGLAB (see Chapter 4). This 
routine supports the solution of multiple tridiagonal systems, each with multiple 
right- hand sides, using an odd-even cyclic reduction algorithm, which is stable 
fo r the di agonally-dominant systems arising from our elliptic PDE's. (Gaussian 
elimination is numerically more stable than cyclic reduction [47], and is used in 
t he slicewise version of CMSSL; however this is not available to us - see Sec­
tion 8.8.) The number of floating-point operations (flops) required to solve the n 

instances of size n tridiagonal systems is 23n2 -32n. This figure is quite modest, 
compared with the flop counts for Jacobi relaxation (9n2 ) and red-black Gauss­
Seidel relaxation (18n2 ). Of course, line relaxation is best suited to anisotropic 
problems, when its superior convergence properties compensates for its increased 
computational complexity. 

8.4 Unrolled Implementation 

It 'is obvious that the implementation described in the previous section is some­
what wastefu l of CM resources . That simple scheme is made more efficient by 
moving the e coarsest grids to the front-end computer, which produces a speed 
benefit (offset by the consequent front-end to CM communication) and which 
also releases a good deal of wasted CM memory. We refer to this process as "un­
rolling" the parallel variables to a depth e, analogous to the software technique 

of unrolling loops . 
T he current version of MGLAB uses parallel var iables unrolled to a depth 

e = 1. The appropriate declaration for the main data structures is therefore (see 
t he listing of nmaLdee larations . i ne in Appendix A) : 

DOUBLE PRECISION, ARRAY(2 : lmax , nmax,nmax ) :: v , f , old_v 
DOUBLE PRECISION , ARRAY(nmax , nmax) :: 

u, r , e, x, y, x2 , y2 , r i ght_ be , left _ be, top __ be, bottom_be 
LOGICAL, ARRAY(2:lmax , nmax,nmax) : : red, blaek 

By way of compensation, we require new grid level L = 1 variables vl , fl , ul , rl 
and el which reside in front-end memory. In t his unrolled implementation, all 
rout ines which reference the above parallel var iables must be of a simi lar structure 

to the following piece of code: 

IF (L == 1) THEN 
vl = zero 

ELSE 
vel, : , : ) = zero 

ENDIF 
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Routines such as bilinear_interpolate_v listed in Appendix C indicate 
the increase in programming complexity required for ( = 1 unrolling. In the ideal 
situation, we would unroll to a depth of (opt levels, determined experimentally to 
be the point at which execution times no longer decrease (due to the increasing 
amount of front-end to CM communication and the slower serial calculations 
for large arrays on the front-end). This programming task was not attempted. 
However, we estimate the optimal depth to be (opt ~ 3. This implementation 
would then consist of a serial multigrid algorithm on the front-end for levels 
L = 1,2, .. . ,(oPt and a parallel algorithm on the CM for levels L = ( oPt + 1, ... ,A . 
In Section 8.7 we will show that a significant speed-up is obtained by unrolling 
to a depth of ( = l. 

Analogous to the discussion in Section 3.7 , we now consider the memory 
requirements for the implementation of MGLAB just described (e = 1) on the 
CM-2. As we have mentioned , the CM at the ANU is configured with 16K 
processors, each with access to 256K bits of RAM , equivalent to 4K double­
precision variables , giving a total capacity of 226 ~ 67 million double-precision 
variables. Since logicals are stored in single bits on the CM , the amount of 
memory required for allocation of global data is 

double-precision variables , 

where Lmax and Nmax are respectively lrnax -1 and nrnax rounded up to the next 
power of two. Serial dimensions of arrays are treated similarly to EWS dimen­
sions in that allocation sizes are rounded up to a power of two, even though this 
appears to be unnecessary. We therefore find the following memory requirements 

for multigrid on L levels: 

L Lmax Nmax EL 

4 4 16 5920 

5 4 32 23680 

6 8 64 144384 

7 128 577536 

8 8 256 2310144 

9 8 512 9240576 

10 16 1024 62390272 

11 16 2048 249561088 

We see that we have sufficient memory to solve to a depth of A = 10 levels, giving 
a satisfactory linear resolution of at least 0.001 in our solution u. 

The above figures relate strictly to allocation of the main CM data struc­
tures. (MGLAB dynamically allocates exactly the amount of required CM memory.) 
When we attempt to execute such a program, we find that the CM requires a 
certain amount of memory for house-keeping and, more significantly, temporary 
variables introduced by the compiler. In the field wise model (see Section 8.8), 
these temporary variables consume a great deal of memory. For example, NEWS 
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communication generates temporary copies of the target array, and any opera­
tions on logical variables (stored in 1 bit) create 32-bit temporary copies of the 
entire array variable. 

For these reasons , the standard CM version of MGLAB exhausts the memory 
capacity of the A U's 16K machine when attempting to solve to a depth of 
A = 10 levels. However, we have been lavish in our use of memory, and we have 
therefore built a "cut-down' version of MGLAB which differs in three respects from 
the original: 

1. red-black relaxation is not permitted (the parallel variables red and black 
can be deleted) , 

2. immediate correction is not permitted (old_v can be deleted) , and 

3. the statement 

v(2 : lmax-l, :,:) = zero 

in subroutine V _CYCLE is changed to 

DO 1 = 2, lmax-l 
v(l,:, : ) = zero 

ENDDO 

(reducing the size of compiler temporaries). 

Using this small version of MGLAB , we may proceed to A = 10 levels. (Except 
that even these memory requirements exceed the capacity of. 8K processors run­
ning field wise double-precision multigrid.) We note that to obtain a resolution 
corresponding to A = 11 , one would need to totally redesign the multigrid imple­
mentation , since even a single parallel variable of the form 

DOUBLE PRECISION v(2:lmax,nmax,nmax) 
CMF$ LAYOUT v(:SERIAL, : NEWS , :NEWS) 

would then occupy 67108864 double-precision variables, exactly the capacity of 
the ANU's Connection Machine. 

8.5 Hypercubes and Gray Codes 

Let us now return to the hypercube viewpoint of the CM-2. We shall look at the 
relationship between grids and hypercube structures, and the effect on multigrid 
communication. 

A hypercube of dimension n (an n-cube) is an undirected graph consisting 
of 2n nodes that are labelled by the n-bit binary numbers 0, 1, ... ,2n -1 (see 
Figure 8.2). Two nodes are directly connected by an edge (corresponding to a 
wire) if and only if their labels differ by one bit in one position of the binary 
code. The m th bit of the n-bit binary number corresponds to the mth dimension 
of the hypercube. The diameter of an n-cube is n, that is , the traversal of at 
most n edges is required to reach any node from any other node. One appealing 
feature of the hypercube is its isotropic homogeneity ; unlike many other ensemble 
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Figure 8.2: (a) Three-dimensional pictorial representation of a 3-cube, and (b) 
two-dimensional representation of a 4-cube. In both cases, wires which appear to 
cross in fact do not physically touch. 

architectures , no node plays a privileged role. We can now picture the CM-2 
situated at the . A U as having its 16K processors connected in the form of a 
14-dimensional hypercube. 

With the widespread availability of architectures based on the binary hy­
percube topology, there is growing interest in the relationship between this and 
other topologies, such as linear arrays, trees, rings and multidimensional grids. 
For instance , the question of algorithm portability across architectures reduces to 
the problem of embedding certain graphs into some target graph, in this case a 
hypercube. Such embeddings of linear arrays, rings , trees, pyramids and grids are 
well-known to computer scientists [67]. Indeed , a class of binary codes known as 
binary reflected Gray codes (BRGC's) provide simple algorithms for embedding 
linear arrays, rings and in particular , multidimensional grids into a hypercube. 
In other words, the Gray code assigns a processor to each grid point in a manner 
which ensures certain beneficial properties . These codes and their properties have 

been extensively studied [85]. 
BRGC's and other issues relating to multigrid on hypercube systems are 

discussed in, for example, Chan et al [23], Chan and Saad [24] and Briggs et at 
. [19]. See also the very comprehensive list of references in [19]. 

A BRGC can be recursively defined as follows . Let Gk = {go , gl,· .. , g2 k -d 
be a k-bit Gray code; let Gk denote the sequence obtained from Gk by reversing 
its order; and let OGk denote the sequence obtained from G" by prefixing a zero 
to each element of the sequence (and similarly for 1Gk ). Then a BRGC of order 

-----~--------------------------------------...... ~. 
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Figure 8. 3: Layout of (a) 8 one-dimensional grid points on a 3-cube, and (b) 16 
one-dimensional grid points on a 4-cube, according to a binary reflected Gray 

code. 

k-1 is defined by G I = {O, I} and 

For example, 

G2 --

G3 --

G4 --

GHI = {OG k , lGd for k = 1, 2, ... 

{00 , 01 , 11 , 10} 
{000, 001 , 011 , 010 , 110,111 , 101,100} 
{0000, 0001 , 0011 , 0010, 0110 ,0111 ,0101 , 0100, 

1100, 1101 , 1111 , 1110, 1010, 1011 , 1001 , 1000}. 

We see that the Gray code for successive integers (grid points) differs by only one 
bit. This property guarantees that communication between any two neighbouring 
grid points involves only nearest-neighbour processors . Thus we have defined a 
mapping of 2n one-dimensional grid points to a hypercube of dimension n which 
preserves the proximity property; in the terminology of graph theory, we have 
found a Hamiltonian path on the hypercube. Figure 8.3 shows this layout of 
one-dimensional grid points on the 3- and 4-cubes depicted in Figure 8.2. 

The embedding of higher-dimensional grids into a hypercube is accomplished 
. by means of the cross- product of one-dimensional BRG C's, an operation which 

preserves the proximity property. Suppose we have an m i X m2 two-dimensional 
grid, where mk = 2Pk • Then the appropriate mapping onto an n-cube, where 
n = PI + P2, is given by the cross-product G 10 G2 , where Gk is the BRGC of 
the mk grid points in the kth coordinate. The cross-product of Gray codes is 

----~--------------------------------------.. 
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Figure 8.4: Layout of an 8 x 4 two-dimensional grid on a 5-cube according to the 
cross-product of 2 binary reflected Gray codes. 

defined to be simply the concatenation of the individual bit sequences. This 
embedding obviously generalises to higher dimensions. As a two-dimensional 
example, consider the layout of an 8 x 4 grid on a 5-cube (see Figure 8.4). The 
binary node number of each grid point is obtained by concatenating its binary 
x-coordinate and its binary y-coordinate. (It is now clear why the Connection 
Machine expands all di mensions to a power of two.) 

A more critical requirement for multigrid is that the proximity property 
be preserved on coarser grids. A remarkable property of the BRGC is that the 
distance between neighbouring grid points on all coarse grids is exactly two. 
(For a proof of this, see [60 , 85] .) This is because coarse-grid neighbours are 
always separated by 2n fine-grid points (in our square array model of the CM 
discussed earlier). Thus the compact stencil operations of multigrid are using the 
communications system of the CM very efficiently, operating over distances of 

either one or two hypercube wires. 
We mention that in 1986 Chan and Saad [22] developed an exchange algo­

rithm which reduces the cost of coarse-grid communication to exactly one. The 
idea is to exchange the data of some nodes so as to ensure that the grid points 
of that level reside in physically neighbouring processors . However , this strategy 
is only effective when sufficiently many relaxations are performed on each level, 
in order to overcome the exchange overhead. 

Finally, we mention that the concurrent multigrid algorithm of Gannon and 
Van Rosendale (see Chapter 9) can also be mapped with minimum communication 
overhead onto a hypercube by means of BRGC 's. 

To summarise, it is imperative for an algorithm to efficiently utilise the 
communication hardware, since communication can be more expensive than com­
putation. We have seen that the marriage of power-of-two grid communication 
and BRGC-mapped hypercubes produces a natural and efficient communication 

scheme. 
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8.6 Complexity of Parallel Multigrid Solution 

Before presenting actual performance results for MGLAB , it is appropriate to firstly 
consider the theoretical complexity of parallel multigrid algorithms in very broad 
terms (we do so following the discussion of Chan and Tuminaro [25, 100]). 

Suppose that we have an elliptic partial differential equation discretised on 
a mesh containing N grid points, and that these are equally divided amongst P 
parallel processors. It is well-known that the solution to an elliptic PDE at each 
point depends on some information from all points in the interior of the domain . 
We can see this quite clearly from the Green 's function solution of Yiu = j, where 
the solution at any interior point is given in terms of an integral over the whole 
domain. For example, the Green 's formulation of Poisson 's equation with zero 
boundary data is 

u(x ,y) = In G(x , y,~,"l)j(~ , "l)d~d"l 

where G is the Green's function. The global nature of discrete ellipt ic PDE's is 
characterised by the dense nature of the matrix Yih'l . We are therefore concerned 
with the optimal asymptotic time for collapsing information from N grid points 
to (any) single grid point. The best that can be done within a processor is 
O(~), since each point must contribute; and the optimal time for combining the 
resulting P pieces of information into one datum is O(log P ) using a tree-vi iting 
method . Hence a lower bound on the time for solving an elliptic PDE is 

t = 0 (~ + log p) . 

If P ~ N then this time is O(log N). 
Crude lower bounds for the convergence of an iterative algorithm can simi­

larly be obtained by determining the minimum number of iterations required to 
propagate information between any two grid points. Thus the necessary condi­
tion for a rapidly-convergent method is a "global" iteration operator. We now 
see why traditional explicit methods such as Jacobi iteration converge slowly: 
a single iteration involves updating the value at each grid point with re pect 
to its immediate neighbours . Purely local methods such as these require many 
iterations to propagate information throughout the domain. Specifically, after 
k Jacobi iterations with a nine-point stencil, information will have been trans­
mitted no further than k grid points away, and therefore a lower bound on the 
convergence rate of Jacobi 's method on an n x n grid is O( n). The true parallel 
multigrid algorithm, on the other hand , converges in O(log N) iterations. This 
is because the fine-to-coarse then coarse-to-fine intergrid transfers allow informa­
tion to quickly propagate throughout the domain; in other words , multigrid has 

a global iteration operator. 
On parallel processing systems, we see that a computatIOnal trade-off arises: 

local methods parallelise easily, but converge more slowly than global methods. 
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8.7 Timing Results 

Let us firstly investigate the raw speed of the ANU's CM-2 by examining the fun­
damental times for typical communication and calculation in single and double 
precision. The times quoted here will be "CM-busy" t imes (from the CM For­
tran timing facilities) obtained from 16K processors running at 7 megahertz in 
single-user batch mode. Programs were compiled with optimisation (emf -0 ) and 
executed without any run-time checking. The CM software used was CM Fortran 
1.1.3, CMSSL 2.2.1 and CMSS (CM system software) 6.1.1. 

Since we are only concerned with power-of-two NEWS communication, we 
shall use the notation s = 2n and terminology "s-shift" for the CSHIFT operation 
of distance s. Figure 8.5 shows a graph of the CPU times for 10000 repetitions 
of various s-shifts on a 128 x 128 grid on 16K processors (and hence a VP ratio 
of one). This is compared with the ideal hypercube communication times of 

1 t ime unit 
2 ti me units 

for n = 0 
for n = 1, 2, .... 

We see that s -shifts for n = 0, 1,2 are faster than model hypercube times due to 
efficient on-chip communication (see Section 8.8); nevertheless , we confirm that 
multidimensional arrays are mapped onto the CM using binary reflected Gray 
codes. We also note that double-precision s-shifts are about twice as slow as in 
single precision 

OP / SP "- 2 t comm comm "-

as expected. Figure 8.5 also indicates t he corresponding CPU times on a 512 x 512 
grid (a VP ratio of 16). The next section explains how each processor then 
contains a 4 x 4 contiguous block of grid points . In that case, significant amounts 
of off-chip communication do not occur until n = 5, compared with n = 3 for a 
unit VP ratio. This difference is a factor of 25

-
3 = 4 because the larger grid has 

4 x 4 times the number of grid points. Also note that the ratio of communication 
times with respect to VP ratio are 

as expected. 
We next consider fundamental times for calculation on the Connection Ma­

chine, as measured by 5000 repetitions of the array operation C = C + MB , where 
each array is 128 x 128 or 256 x 256. We find the following times t calc: 

VP ratio 

1 

16 

t SP 
calc 

0.62 

7.40 

tOP 
calc 

18.1 

289 

0.26 

3.78 

tmp 
calc 

0.36 

5.50 

We see that a typical floating-point calculation is from 30 to 40 times slower in 
double precision than in single precision: 

t OP / t SP "- 35 calc calc "- . 
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Figure 8.5: CPU execution times on a 16K-processor CM-2 for CSHIFTs of length 
s = 2n in single precision (SP) and double precision (DP) at a VP ratio of (a) 
one and (b) sixteen. Each dashed line represents the ideal hypercube times. 
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In contrast to the precision ratio for communication, this figure does vary ac­
cording to the VP ratio. This is because a fixed number of physical processors 
share a Weitek floating-point unit (see Section 8.8) . The CPU times above la­
belled l calc were obtained from a 16K CM (operating in sli cewise mode) with 
64-bit FPU 's, courtesy of Thinking Machines Corporation. It is remarkable that 
double-precision arithmetic is more than 50 times faster on such a machine than 
it is on a CM with 32-bit FPU 's, and that the precision ratio drops dramatically: 

[DP /;sp ,...., 1 4 
calc t calc """ . (64-b it FPU 's) . 

Combining the above fundamental times gives us the following two impor­

tant measures of a parallel computing system: 

sp / sp ,...., a 
t calc t comm """ .4 and DP / DP ,...., 

t calc t comm """ 9 ( .1) 

where we are comparing a floating-point add and multiply against two I-shifts, 
and the result varies somewhat according to VP ratio. These figures are important 
because they ident ify potential bottlenecks; for example, if an application which 
uses only I- shifts must be run in double precision on the A U's current system, 

then it is likely to be compute-bound. 
Let us now turn to CPU .times for MGLAB itself. Figure 8.6 indicates the t ime 

required to solve Problem MGI0 on various (fieldwise) CM-2 configurations. We 
have included estimated CPU times for a 64K machine (with identical hardware 
specifications to those at the ANU) by means of scaling. Similarly, Figure .7 
shows CPU times from Thinking Machines' 16K slicewise CM-2 , with estimates 

for execution times on a corresponding 64K machine. 
Let us firstly consider the interpretation of Figure 8.6. Comparing the two 

sets of three profiles , we find the precision ratio to be 

a ratio which increases slightly as A increases. Given our previous precision ratios 
of about 2 and 35 for pure communication and pure calculation respectively 
we conclude that MGLAB contains a reasonable mixture of communication and 

calculation instructions. 
Focusing on a single profile now , we see that the slope indicates there are 

precisely two rates of MGLAB execution on the CM. A fast rate occurs for small A 
and a slower rate for larger A, with the transition occurring between A = 6 and 
7 for 8K processors , A = 7 for 16K processors and A = 8 for 64K processors. It 
will be evident that the transition occurs when "saturation" takes place, that is, 
the grid size (2A x 2A) has expanded to fill the available number of processors. To 

. put it another way, saturation occurs when the VP ratio reaches unity. Before 
saturation has occurred, M-cycle CP U time increases slowly with A; this is solely 
due to the increasing number of grid visits. Indeed, the CP U times for 50 x PA-
cycles shown in Table 8.1 for 16K demonstrate that there is virtually no increase 

in CPU time up to saturation , as expected. 
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Figure 8.6: CPU execution times on various fieldwise Connection Machine CM-2 
configurations for solving Problem MG10 using the CM Fortran version of MGLAB . 
(For A = 10, the "small" version is utilised .) The method used is 1 x M~·2 .2 -cycle 
using 0.8-weighted Jacobi point relaxation, full-weight restriction and zero initial 

. guess. Two sets of three configurations are shown: single precision (S P) and 
double precision (DP) for each of 8K, 16K and 64K processors. Each dashed line 

is an estimated result (see text for details). 
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Figure 8.7: CPU execution times on various slicewise Connection Machine CM-2 
configurations for solving Problem MG10 using the CM Fortran version of MGLAB . 
Other details are as for Figure 8.6. Two sets of two configurations are shown: 
single precision (SP) and double precision (DP) for 16K and 64K processors . 
Each dashed line is an estimated result (see text for details) . 
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A 5 6 7 8 9 10 

SP 0.65 0.66 0.68 l.11 2.63 8.31 

DP 3.07 3.08 3.08 lOA 39.1 153 

Table 8.1: CPU times for 50 X PA-cycles on a 16K machine. 

Figure 8.7 shows at a glance the significant performance advantage of 64-bit 
FPU's over 32-bit FPU 's for double precision; double-precision MGLAB runs about 
five times faster on a slicewise machine. Moreover, the precision ratio drops to 
approximately l.5. We also note that the CPU time increases more smoothly with 
A than for field wise operation , indicating the fundamental change of execution 
model. 

Let us also look at the micro-structure of CPU times during a multigrid 
cycle. Figure 8.8 shows the cumulative execution time for Problem MG10 on 
16K processors within a V8

2
•
2

•
2_cycle using immediate correction (and hence a VP 

ratio of 1) . The micro-structure of the error 2-norm is also plotted. We see 
that (with immediate correction enabled) the CPU time increases almost linearly 
within the cycle, indicating about the same amount of work is performed on each 
level independent of L. The reduction in work associated with the "unrolled" 
L = 1 level is barely visible in the graph because it is overshadowed by work due 
to the immediate correction process itself. 

We are reluctant to directly compare the CPU times on the CM with those 
of serial machines (see Figure 4.16) since the CM Fortran version of MGLAB is not 
optimised for speed; it is evident, however , that double precision MGLAB runs on a 
fully-configured CM at about the same speed as on huxley , the four-processor Sun 
4/690 mainframe. This tends to confirm that our simple parallel implementation 
is inefficient. (We discuss highly-efficient parallel multigrid algorithms in the next 

section and in Chapter 9.) 
We similarly hesitate to quote megaflop rates for MGLAB , however we shall 

present some figures based on the specific case of Problem MGIO using single 
precision. To simplify our discussion, consider the execution of n X PA -cycles. 
Let F be the number of SP flops per VP for some process , and let S similarly be 
the number of 1-shifts . Then 

hence 

F (RELAX-V) = 12 

F (CALC...RESULT) = F(CALC...RESIDULR) + 3 

F (CALC...RES IDUE...R) = 11 

S (CALC...RESULT) = 4 

S (CALC...RESI DUE...R) = 4 

F(n x PA-cycles) (n + 1) F (CALC...RESULT) + n F (RELAX-V ) 

26n + 14 
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Figure 8.8: Cumulative CP U execution times within a VS
2

,2.2 -cycle for Problem 
MG10 on 16K processors in single precision (SP) and double precision (DP ). The 
method used is 0.8-weighted Jacobi point relaxation and full-weight restriction 
with immediate correction and 2-norms. The abscissa indicates the active level 
within the V -cycle; values are taken after relaxation at that level. Also shown 
are the corresponding error norms (dashed line and right-hand axis.) 

and similarly 
S (n x PA-cycles) = 8n + 4. 

Therefore the SP flop rate is given by 

= F(2A_1)2 It, 
a figure which ignores CSHIFT's and front-end calculations (as is customary). In 
fact, we already know from equation (8.1) that one 1-shift takes about the same 
time as 2.5 flops in single precision. Let the actual value be 8, then a flop rate 
which approximately incorporates the cost of communication is given by 

N = (F + 8S)(2A_1)2 It. 
Taking the figure t = 8.31 seconds for 50 x Pw- cycles from Table 8.1, we find 

N = 279 SP megaflops. 

On a 16K sli cewise machine, we can accurately estimate the performance to be 

at least 
7.40 -
- x N = 546 
3.78 

SP megaflops 

J ...... ------ ----------------------------...................... .. 
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using figures from t he table on page 135. 

Finally, in Section 8.4 we described the CM Fortran version of MGLAB as being 
"unrolled" to a depth e = 1. The following table demonstrates the significant 
speed-up t his modification results in over a purely parallel implementation ; the 
figures give the percentage increase in speed on 16K processors. 

A 5 6 7 8 9 

SP 36 27 20 20 20 

DP 38 31 27 25 24 

8.8 Further Architectural Details 

In this section we delve more deeply into the architecture of the CM-2, in order 
to draw conclusions about how to implement a more efficient multigrid scheme. 
Earlier we stated that the CM-2 provides a si mple parallel envi ronment for novice 
SIMD programming. While this is true simple implementations of algorithms 
(such as we have presented) will not achieve optimal performance from the CM -
this requires a detailed knowledge of its architecture and mode of operation. We 
will only consider standard multigrid in this section, postponing a discussion of 
parallel multigrid methods to Chapter 9. 

The Connection Machine CM-2 is constructed from replicated units called 
boards . Each fully-configured board contains two proprietary CM chips (some­
times called nodes), 256K of bit-addressable RAM on commercial chips , a Weitek 
floating-point interface chip (sometimes called a sprint chip ) and a floating-point 
execution chip (see Figure 8.9). 

Each CM chip consists of 16 bi t -serial data processors , a communications 
controller, and an error-correcting code (ECC) unit . Each processor has four 
connections: 

1. each processor is connected to an instruction bus, which distributes instruc­
tions broadcast from the sequencer 

2. each processor is connected to a global bus , allowing for global results (such 
as sum or max) to be combined from all processors 

3. each processor is connected to off-chip memory and t he floating-point ac­
celerator via the ECC unit (16 data signals plus 6 ECC bits) 

4. each processor is connected to the communications controller, interfacing 
the 16 processors to 12 hypercube wires . 

The CM-2 at the ANU has 214 processors , hence only 10 of t he 12 hypercube 
wires are used . The data processors are rated at 7 or 9 megahertz and are 
capable of performing a 32-bit add in about 21 microseconds [95]. For a VP ratio 
of n, any instruction is repeated n times, once for each data element in the n 
virtual processors . A program's performance (expressed in terms of megaflops , 
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Figure 8.9: Diagram of the components of a CM-2 board. Each board contains a 
pair of CM-2 chips which share a group of memory chips, a floating-point interface 
("sprint") chip , and a floating-point execution chip. The memory chips provide 
a 44-bit data path: 16 data and 6 ECC bits to each CM-2 chip. A CM-2 chip 
contains 16 single-bit processors (P), an error- correcting code (ECC) chip, and a 
hypercube communications interface chip. The internal wiring of the CM-2 chips 
is not shown. Also not shown are t he instruct ion and global-result buses which 
connect to each CM-2 chip . 

------~_" ~~~------------------........................................ .. 
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Figure 8.10: Representation of the layout of a 2-D grid with VP ratio of 64 on 
the 16 processors of a CM-2 chip. Open circles indicate grid points which require 
inter-processor communication. Grid points with solid circles require off-chip 
communication. See text for further details. 

for example) will normally increase with increasing VP ratio, since an increasing 
fraction of communication will be intra-processor. 

Suppose we wish to implement a 1024 x 1024 EWS grid on a 16K machine 
giving a VP ratio of 210+10-14 = 26 = 64. Gray-coding of the grid points onto the 
14-dimensional hypercube proceeds just as described in Section 8.5, except for 
two details. Firstly, the 6 virtual dimensions are specified by the least-significant 
bits of the Gray code [89]; ensuring that a local contiguous block of x grid 
points reside in the same physical processor. Secondly, we in fact have a 10-
dimensional hypercube, with each node consisting of a CM chip , each with 16 
processors. Again , Gray-cod ing over our two-dimensional grid means that we can 
think of these 16 processors as forming a 4 x 4 group over the grid, each processor 
storing an 8 x 8 block of grid points (see Figure 8.10). 

Consider a single NEWS communication on this VP set; say each processor 
sends a datum to its "eas tern" neighbour. Within each group of 64 virtual proces­
sors, 56 of them send data within the same physical processor, while the on the 
. "eastern edge" of the block require inter-processor communication. Thus 7/8 of 
the work is done by a physical processor simply rearranging data in its memory; 
this is handled by sequencer software. The remaining 1/8 of the work requi res 
each physical processor to send 8 messages to its physical processor neighbour 
to the east. Within each group of 16 processors, 12 of them send data within 
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the same chip ("on-chip communication" ), while the 4 on the eastern edge of the 
chip require off-chip communication. This is the second of the specialised transfer 
methods: 3/4 of the remaining work is performed by a special per-node permu­
tation circuit which is independent of the hypercube mechanism. The remaining 
1/32 of communication work requires each chip to send 4 x 8 = 32 messages to its 
eastern neighbour along one hypercube wire. This is the third of the specialised 
transfer methods: the same permutation circuit is connected to the hypercube 
wires, bypassing the general router. 

Our example has used specific shapes , sizes and VP ratios , but the CM 
hardware is flexible enough to handle any power-of-two size and shape. It is this 
specialised hardware that makes EWS communication very rapid and efficient. 
We also see that the default CM layout gives rise to a "blocked" data structure, 
as one would hope. 

Now we consider the floating-point accelerator , and its effect on execution. 
Recall that the accelerator is shared by 32 processors , and that the Weitek units 
currently at the A U are 32-bit (single) precision. The function of the sprint 
chip is to serve as an interface between memory and the floating-point execution 
(FPE) chip. 

Suppose we wish to add two 32-bit operands using the Weitek unit. Exe­
cution proceeds in five stages [95], each stage consisting of 32 "nano-instruction" 
cycles, one cycle for each of the 32 on-board processors. 

1. The first operand (for each of the 32 processors) is moved from memory to 
the sprint chip . 

2. Simultaneously, the first operands are moved to the FPE, and the second 
set of operands is moved from memory to the sprint chip . 

3. The second operands are moved to the FPE, where the addition IS per­

formed. 

4. The set of 32 results is moved from the FPE to the sprint chip. 

5. The results are moved from the sprint chip to memory. 

For a VP ratio of n, this process is pipelined to require 3n + 2 stages , rather than 
5n. Since memory bandwidth is a limiting factor, simple 64-bit floating-point 
operations (on a CM with 64-bit FPU 's) take precisely twice as long as 32-bit 

operations. 
Careful consideration of the relationship between the 32 processors , memory 

and the floating-point unit reveals that there are two possible modes of opera­
tion. There is the standard approach whereby processors store data in contiguous 
words of memory; this is called the fi eldwise execution model. There is room for 
improvement because the data is moved serially to the sprint chip, then "trans­
posed" to feed the FPE all 32 bits at once. The alternative approach is to store 

. the 32 bits of data across the memory, one bit corresponding to each proces­
sor on the board; this is called the slice wise execution model. Thus the data 
is in a form where it can be sent directly to the FFE. Slicewise operation gen­
erally gives significantly better performance; unfortunately, slicewise execution 
is only available for Connection Machines equipped with 64-bit floating-point 

-
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units. Moreover, Thinking Machines has recently written a good deal of slice­
wise software which would very significantly improve the performance of MGLAB , 

including compi lers designed to produce highly optimised micro-instructions for 
typical finite-difference stenci l operations. 

Given our fieldwise hardware, Thinking Machine software engineers [104] 
have advised that a substantial speed-up would only be obtained by writing a 
hand-coded blocked algorithm. In such an implementation , the coarsest grid is 
chosen such that all (or almost all) CM processors are utilised (near the point of 
processor saturation). For example, the coarsest gr id on a 16K Connection Ma­
chine would be 128 x 128 (L = 7 in our standard grid hierarchy). Coarser grids 
are not employed at all , while finer grids are implemented by the many hand­
coded grid interactions , in a somewhat similar way to the optimisation process of 
unrolling loops. Thus each CM processor acts like a serial multigrid implemen­
tation for the very deep (fine) levels , where v, J, r and so on are represented a 
single long arrays (see Section 3.7). Moreover , inter-processor communication i 
greatly reduced - most communication occurs within a physical processor and 
consequently very high performance is achieved. This is a difficult programming 
exercise, however. 

This approach works better for parabolic PDE's than it does for ellipti c 
PDE's; parabolic equations seem to satisfactorily converge without moving to 
very coarse grids, unlike elliptic equations where attempting multigrid only on 
levels L = 7,8, 9,10 would generally result in poor convergence. Also , the hand­
coded approach is more suited for three dimensional problems , since then satura­
tion oc urs on a much coarser grid. For example, a 3-D coarsest grid of 16 x 16 x 32 
processors results in a 100% processor utilisation on an 8K Connection Machine . 

-



Chapter 9 

Extensions 

Research is what I'm doing when I don 't know what I'm doing. 

- Wernher von Braun 

In this chapter , we firstly discuss how a multigrid algorithm can be modified 
for highly efficient execution . ~n parallel processing systems, in particular for 
the Connection Machine CM-2. Research into parallel multigrid is becoming a 
significant topic in computational mathematics , especially as it has become clear 
that supercomputing will incorporate some degree of parallelism in the foreseeable 
future. Secondly, we consider how the MGLAB multigrid package could be extended 
to solve more difficult problems; in other words , how we might broaden the class 
of boundary value problems specified in Chapter 1 which are solvable using MGLAB . 

9.1 Multigrid on Parallel Processing Systems 

Chapter 8 described the simple CM-2 implementation of the current version of 
MGLAB , which is considered a standard parallel multigrid algorithm. Perhaps 
the most severe inefficiency in this implementation is the idle-processor problem, 
where large numbers of processors operating on coarse grids perform no useful 
computational work. This is a fundamental difficulty with the implementation 
of standard multigrid on massively-parallel systems. With N processors working 
on N grid points , standard parallel multigrid is an O(log N) rather than an 
0(1) solution method (as it must be) . In this section, we shall discuss multigrid 
schemes which are highly parallelisable; schemes designed to avoid the difficulties 
of standard multigrid, such as increasing numbers of idle processors on coarser 
grids. Time constraints in t his project did not permit us to implement any of 

these schemes. 
For a very recent discussion of multigrid methods on parallel computers , see 

McBryan et al [75] . See also Chan and Tuminaro [26]. 
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CHAPTER 9: EXTENSIONS 14 

9.1.1 Parallel Superconvergent Multigrid 

Perhaps the best-known parallel multigrid scheme is an algorithm called Parallel 
Superconvergent Multigrid (PSMG), introduced by Frederickson and McBryan 
[41] in 1988 (see also [42, 73, 74]). PSMG is based on the simple idea of solv­
ing many coarse-grid problems simultaneously, then combining these results to 
provide a better fine-grid approximation. Apart from this last step, no extra 
computation time is involved, since the coarse-grid problems are solved on pro­
cessors which would otherwise have been idle. While PSMG is still an O(log N) 
algorithm, the method results in a smaller constant than for standard parallel 

multigrid , due to a more rapid convergence rate. 
Let us assume periodic boundary conditions for the moment. For a d-dimen­

sional regular grid , we have the choice of 2d different coarse grids. Multigrid 
traditionally chooses the even points in each dimension to arrive at a single coarse 
grid [l2h. The idea of PS IG is to project the fine-grid approximation Vh to all of 
these possible coarse grids, since they all should provide equally good solutions. 
In general, these different coarse grids receive slightly different. data from the 
fine grid, and so combining these complementary views of the fine-grid problem 
should produce a superior approximation to the solution. We let this combination 
operator be denoted by Q. The most common way to combine the 2d coarse-grid 
approximations V~h is simply to use a linear interpolation of all these N

d 
coarse 

grid points ; in two dimensions for example, a simple choice for Q is the average 

of the four bilinear interpolations: v~ = Irv~h' 
The simplest approach to implementing Dirichlet or eumann boundary 

conditions is to use reflection principles on an extended grid - see Section 9.2.2. 
Algorithm ·9.1 presents the PSMG version of the linear multigrid V-cycle , 

analogous to Algorithm 3.2 from Chapter 3. The extensions to a nonlinear scheme 
and to a full multigrid M-cycle scheme are as before (see Chapter 3). 

PSMG can be viewed as a process which operates on a single grid of points 
[lA of size 2A in each dimension , with operators of scales L < A; hence it may 

also be called a multiscale method. 
The PSMG strategy is to choose Q Land '1(L as functions of ~L in order to 

optimise the convergence rate. In Section 3.4 , we mentioned that optimisation 
of the multigrid convergence rate involves minimising the spectral radius of TL · 

However it is well-known that for square matrices p(~) < 1 if and only if II ~ II < 1, 
hence the spectral radius is "simi lar" to a matrix norm [8]. In [41,42]' Freder­
ickson and McBryan have chosen to define the convergence rate T in terms of 
IITII. Moreover, they indicate how to calculate convergence rates for translation­
invariant operators using the discrete Fourier transform. In the case of ~ = -.6 
with periodic boundary conditions, discretised by the usual five-point star 

1 
0 -1 0 [ 

At L2 -1 4 -1 , 
o -1 0 

it is found that the optimal two-grid symmetric nine-point Q Land '1(L operators 
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Algorithm 9.1 (Linear PSMG V-cycle) 
A recursive iteration for solving AA UA = I A I given some ini tial guess VA· 

are 

procedure PSMG-V-cycle (v, f , L ) 

begin 
if L = 1 then 

VL f-1('Z (V L, h) 
else 

VL f- 1('L1 (V L, It) 
foraB k = 1 to 2d do 

rLI f- It-I (h - ALVt) 

VL l f- 0 
PSMG-V-cycle (vk,rk, L -1 ) 

VL f- VL + QLvLl 
endforaB 
V L f- 1(';; ( v L , f t) 

endif 
end 

1 
0.066460 0.132920 0.066460 [ 

Qt = 0.132920 0.265840 0.132920 
0.066460 0.132920 0.066460 

and 

1 
0.006308 

1(t = N L 
2 0.041304 

0.006308 

~:~!~~~~ ~:~~~~~! [, 
0.041304 0.006308 

giving a two-grid convergence rate of 

where 

T == sup IITd = 0.063 
L 

TL = I - [1(L+(I-1(LAt)QLAL~llAL 
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is the two-grid PSMG iteration operator (cf. equation (3.2)) . (If AL is singular , 
as above, then this equation has an appropriate interpretation in terms of the 

Moore-Penrose pseudo-inverse At·) 
Choosing the nine-point M ehrstellen discretisation 

- 4 -1 [ 
20 -4 
-4 -1 
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and the standard interpolation 

leads to an optimal 

0.0625 0.1250 0.0625 [ 
0.1250 0.2500 0.1250 
0.0625 0.1250 0.0625 

1 
0.015666 0.046489 0.015666 [ 

1(t = NL 2 0.046489 0.305900 0.046489 
0.015666 0.046489 0.015666 
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with a convergence rate T = 0.026. These convergence figures compare favourably 
with a standard red-black Gauss-Seidel rate of 0.074 (see Decker [31, 32]). 

The authors also compute optimal operators and convergence rates for multi­
grid V-cycles; see [41] for further details. 

While these results prove the benefits of the PSMG algorithm for Poisson 's 
equation, to our knowledge a super convergent rate has not yet been demonstrated 
for more complex problems. Moreover, while PSMG can produce extremely good 
convergence rates, it does so at the cost of communication-intensive operators. 
For example, the multigrid convergence rate for two smoothing steps per level, 
the Mehrstellen operator A9 , a nine-point relaxation operator and a 25-point 
interpolation operator Q is a remarkable 0.001. In fact, i.n 1990 Decker [31] 
carefully examined the PSMG algorithm and concluded that, while it achieves 
perfect processor utilisation, the actual efficiency (for the Poisson equation) is the 
same as for a parallelised versio of standard red-black Gauss-Seidel multigrid . 
This is because, as we have said, the superior convergence rate of PSMG is 
counter-balanced by substantially more expensive operators Yl , Q and 'l( (in terms 
of both communication and computation). 

9.1.2 Other Parallel Multigrid Schemes 

In addition to the PSMG method of Frederickson and McBryan , there have 
been a number of other parallel multigrid methods proposed; for example, fil­
tering multigrid" by Chan and Tuminaro [25, 100], "aggregation/disaggregation 
multigrid" of Douglas and Miranker [35], "robust multigrid" of Hackbusch [52] 
"symmetric/antisymmetric multigrid" of Douglas and Smith [36], "concurrent 
multigrid" of Gannon and Van Rosendale [43], and the PVM algorithm of Lin, 
Proskurowski and Gaudiot [69]. A good discussion of many of these schemes 
appears in Tuminaro's doctoral thesis on parallel multigrid algorithms [100]. 

These novel methods are essentially based on the same principle used in 
PSMG: that new sub-problems are found for coarser grids, designed to be pro­
cessed in parallel by otherwise idle processors. The crucial step is to deter­
mine suitable coarse-grid sub-problems which will combine effectively. Tuminaro 
[100, 27] has identified two general principles which are used in many paral­
lel multigrid algorithms: "aliasing-error cancellation" and "non-interfering sub­
spaces". The former refers to the annihilation of unwanted error components on 
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coarse grids; in standard multigrid this is the result of projecting high frequencies 
onto coarse grids (see Section 3.1). In PSMG , this aliasing-error cancellation is 
the mechanism which accelerates convergence. Non-interfering subspace meth­
ods create multiple approximate solutions corresponding to different subspaces; 
many of the parallel methods listed above fall into this category. These methods 
demand a proper choice of interpolation, restriction and coarse-grid operators. 

The PSMG algorithm is quite simple to implement, as the same intergrid 
operators are used in the four sub-problems. In contrast, the non-interfering 
subspace methods of Hackbusch , Douglas and Miranker, and Douglas and Smith 
utilise different intergrid operators for each sub-problem, which are constructed 
so as to approximate the solution of the fine-grid problem in different subspaces. 
These must be chosen so that each approximation, when combined, does not 
adversely affect the approximation from the other subspaces. Tuminaro analyses 
these methods in terms of "A-orthogonal decompositions"; see [100] for more 
details. 

To give a flavour of such subspace methods, we now give a brief overview of 
Hackbusch 's "robust" multigrid. The method is motivated by the role of coarse­
grid correction in standard multigrid , namely to reduce errors having low frequen­
cies in both the x and y directions (see Figure 3.4). Hackbusch introduced the 
following three complementary corrections to reduce errors in the other frequency 
subspaces: 

1. high frequencies in both the x and y directions, 

2. low x-frequency and high y-frequency, 

3. high x-frequency and low y-frequency. 

The specific restriction stencils proposed are 

~ 1 
1 2 1 [, ~ 1 

-1 2 -1 [, Rl 2 4 2 R2 -2 4 -2 
1 2 1 -1 2 -1 

R3 = ~ 1 
-1 -2 -1 [, 1 1 1 

-2 1 [ , 2 4 2 R4 = 8 -; 4 -2 
-1 -2 -1 -2 1 

which are applied at the even x - even y points, the even-odd, odd-even and odd­
odd grid points, respectively. The corresponding prolongation and coarse-grid 

operators are 
and 

This is as much as we shall say about subspace methods. 
Instead of accelerating the convergence of the iteration, the other approach 

in · creating a fast parallel multigrid method is to reduce the time per iteration. 
Concurrent multigrid aims to iterate on all grid levels simultaneously. It achieves 
this by first distributing the original problem over all grids, relaxing on all levels 
in parallel, and then recombining the approximations. Since the function of 
successively coarser grids is to reduce lower and lower frequency components of 
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the error, it is natural to distribute these various errors across the grids; this 
is achieved by restriction and interpolation of the residue. One then performs 
relaxation on all grids, and computes the recombination of the residue with some 
operator Q. A difficulty with concurrent multigrid is that there is no natural 
way to map a pyramidal hierarchy of grid points to a hypercube , hence many 
processors may remain idle: in two dimensions this fraction is approximately 
1/3, while in three dimensions it rises to about 3/7 (see Chan and Saad [22]). 

The field of parallel multigrid is still in its infancy, although a good deal of 
promising research is currently underway in the area, and an increasing number 
of papers are appearing. 

9.2 More Difficult Problems 

There are several ways in which MGLAB could be extended, so as to increase the 
range of boundary value problems that may be solved. We will also discuss more 
difficult problems that can be recast into a form suitable for numerical solution 
by MGLAB. 

9.2.1 PDE's on Manifolds 

Given an arbitrary basis (el , e2, ... ,ed) of Euclidean space 'E d, the covariant 
components of a vector x a.re defined as 

while the contravariant components are numbers xi such that 

(see for example [68]) , using Einstein 's summation convention over raised and 
lowered indices. By convention, covariant components are written with subscripts 
and contravariant with superscripts. With the definition 

we have the basic relations 

Xi = gii xi and Xi - gi j x ' 
~ - 1· 

Now consider an arbitrary two-dimensional manifold S . If we assume that 
S is embedded in R 3

, then we may introduce a parametric representation of S in 
3-space as x = x(u ,v ), where the components x, y and z of the position vector 
x are functions of two parameters u and v. We can then consider the first and 
second fundamental f01'ms of the manifold (see for example [33]) 

ds 2 = E(u,v)du2 + 2F(u,v)dudv + G(U, V)dV2 = gii duidu j 
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and 
L(u ,v)du2 + 2M(u,v)dudv + N(u,v) dv2 = hiJdui du j. 

These relate to the material of Chapter 7 in the following way. The principal 
curvatures kl and k2 are the solutions to the quadratic equation 

e _ EN + GL - 2F M LN - M2 
EG - F2 k + EG _ F2 0 

and the mean curvature and Gauss curvature are given by 

EN +GL -2FM 
H = kl + k2 = EG- F2 

and 
LN-M2 

J( = kl k2 = EG _ F2 . 

In fact, we need not restrict ourselves to such embedded manifolds. The follow­
ing procedure allows us to consider arbitrary 2-manifolds, and by generalisation , 
arbitrary d-dimensional manifolds. 

To investigate some differential equation ~u = 0 on S rather than simply 
on ,£2, our Cartesian coordinates (x, y) are replaced by more a general frame of 
curvilinear coordinates (Xl, x2 ). We need to express all second derivatives in ~ 
in covariant form using a connection r 

U;ij = U,ij - rkUk 
'J ' 

with i,j, k E {1 , ... , d=2}, and where we use a standard notation of a subscripted 
semi-colon to indicate a covariant derivative and a subscripted comma to indicate 
a partial derivative: U,i = au/ axi. The Christoffel symbol ri; is defined by 

r k 1 kl( ) ij = "2 9 gli ,j + gjl,i - gij,l 

where gij are the contravariant elements of the metric 

ote that first derivatives are already frame-invariant. In principle , the same 
modifications apply to higher-order derivatives, but we shall restrict ourselves 
here to second-order equations. 

The generalisation of the Laplacian operator on a manifold is the Laplace-

B eltrami operator 
J\ U = gij U .. 

L.J.g - ;'J' 

Thus we have a procedure by which we may apply an operator ~ on some ar­
bitrary manifold S. As an example of this procedure, consider Poisson 's equation 

on a sphere of radius one: 
i ' 1 2 gJU ;ij = f(x,x). 
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The transformation from Cartesian to spherical polar coordinates is given by 

x rsin8cos ¢ 
y r sin 8 si n ¢ 
z r cos 8 

hence 

dx sin8cos¢dr + rcos8cos¢d8 - rsin8sin ¢d¢ 

dy sin 8 sin ¢ dr + r cos 8 sin ¢ d8 + r sin 8 cos ¢ d¢ 

dz cos8dr - rsin8d8. 

We have a surface S defined by r = 1 with coordinates (Xl , x 2
) == (8, ¢), hence 

ds 2 dx 2 + dy2 + dz2 

d82 + sin2 8 d¢2 

therefore our metric is 

and 

so that 911 ,1 = 8911 /88 = 0, and so on. The first of the eight components of the 
connection is 

r1\ ~ 9 11 (911 ,1 + 911,1 - 911 ,1) + ~ 9 12
(921 ,1 + 912,1 - 911 ,2) 

o. 

In a similar fashion, we have 

r1
2
1 0 

ri2 - sin 8 cos 8 

r i2 0 

hence the Laplace-Beltrami operator Llgu 
iJ' . 

9 U;ij IS 

11 12 21 + 22 + 2 Ll 9 U ;ll + 9 U;12 + 9 U;2 1 9 U;22 = U;11 CSC U U'22 

but these covariant derivatives are given by 

U;11 U , ll - rtl U,k 

U ,I1 

Uoo 

U;22 U,22 - r;2 U,k 

U,22 + sin 8 cos 0 U, l 

_ U"'''' + sin 8 cos 0 Uo 
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and so Poisson's equation on a sphere is 

U(J(J + CSC
2 0U,p,p + cotOU(J = f(O ,</» 

which is a well-known result. 
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To numerically solve this equation , we would renormalise from the domain 
{(O, </» E [O,7rJ X [0,27r)} to {(e, p) E [0, lJ x [0, 1]}: 

4uee + csc2
( 7re) u,z;,z; + 47r cot( 7re) Ue = 47r 2 f ( e, p) 

and then implement the solution in the usual way using MGLAB . 
We want to solve this equation on the whole manifold S, so care must be 

taken at the boundaries. Since P = 0 corresponds to P = 1, the "left" and 
"right" Dirichlet boundary conditions need to be replaced by appropriate regu­
larity conditions (for example, if we desire a C2-smooth solution, then we require 
matching first and second derivatives across the longitudinal cut in the sphere). 
Moreover, e = 0 and e = 1 correspond to the north and south pole respect ively, 
so the "top" and "bottom" boundaries correspond to single points on S and so 
must remain constant. Additionally, regularity demands that all derivatives up 
to order n match across the north pole: 

lim Diu(e , p) 
e-o-
lim Diu (e , p+~) 

e-o+ 
for P E [O,~], i = 1, 2 ... , n 

and similarly for the south pole. This unpleasant constraint is difficult to achieve 
numerically. In fac.t , it is well-known that the sphere cannot be mapped isomor­
phi cally to the square. 

These are the sort of additional considerations required to solve global prob­
lems on S; local problems are more straight-forward. For example, the above 
procedure could be applied to solve .r(u) = 0 on a region of a minimal surface, 
with a certain amount of calculation in order to recast the problem and with no 
modification to MGLAB. 

In general, solving PDE's on manifolds is a difficult problem , and there 
are many open questions in the field . A very recent paper by Lanza [66] , for 
example, addresses the multigrid solution of certain boundary value problems on 
non-Euclidean manifolds arising in general relativity. 

9.2.2 Non-Dirichlet Boundary Conditions 

The functionality of MGLAB could be expanded by allowing the solution of PDE's 
with Neumann boundary conditions: 

~~(x, y) = g(x , y) on an 

where au/an indicates the appropriate normal derivative, and also with mixed 

(or Robbins) boundary conditions: 

~~(x, y) + Cu(x, y) = g(x, y) on an 
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and, in principle, higher-order boundary derivative conditions. 
In the finite-difference method, the eumann condition ux(O, y) = g(y) for 

example, corresponds to 

M(UI . - Uo .) ,3 ,) gj for j=0 , 1, ... , N 

but which is accurate only to O(h). The standard technique is to introduce a 
fictitious column of grid points U-l ,j, so that we may use the O(h2) approximation 

for j = 0, 1, . .. ,N. 

The equation 5l( Uij) = ji j is then applied to the grid column i = 0, as well as to 
the interior points of [2, i = 1,2, ... , M. If the operator 5l is of order 2n , then 
we would require n fictitious columns in this case. 

Another common problem to arise is for a PDE to have periodic boundary 
conditions: 

U(O,y) = u(1 , y) 

ux(O,y) = ux(l,y) 

(continuity) 

(regularity) 

for example. We can then reduce our set of discrete grid points by one column , 
and maintain only the columns i = 0,1, ... ,M -1. One then applies relaxation 
sweeps uniformly to all grid points - the distinction between interior and exte­
rior grid points vanishes. If we treat these columns as though they connect to 
form a torus , the periodic boundary conditions are automatically satisfied . ote 
that this situation is ideally suited to the architecture of a hypercube parallel 
processor, such as the Connection Machine CM-2, since tori embed perfectly into 

hypercubes. 

9.2.3 Systems of PDE's 

Suppose that we desire the solution of a system of PDE's, 5l(u) = f such as 
the steady-state Navier-Stokes equations describing the flow of an incompressible 
viscous fluid in three dimensions [11] 

t OUi = ° 
i=1 OXi 

for i = 1, 2, 3 

where the viscosity p. and density p are assumed to be constant, p is the pressure 
a~d u == (Ul ' U2, U3) is the velocity. This is a system of four equations in four 

unknowns: 
pF - \lp + p.Llu - pu\lu = ° 

div u = 0. 
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To extend MGLAB to enable the solution of vector equations would require 
a certain amount of additional house-keeping code, but no new ideas. In the 
simplest method , one would apply the elements of the multigrid process (relax­
ation, restriction, etc.) in turn to each unknown u;, whose values are stored in an 
additional serial dimension of the multi-grid hierarchy. One might have to apply 
this idea more carefully if the PDE concealed a great deal of interdependence 
amongst the unknown functions. 

These comments also apply to PDE's in n complex variables, which can be 
regarded as systems of 2n real variables. 

9.2.4 PDE's in Higher Dimensions 

The above example of the avier-Stokes equations has a three-dimensional do­
main n. This is a very common situation for problems modelling the physical 
world. The current version of MGLAB is able to solve problems only in two dimen­
sions , although it is obvious how it could be modified to handle d dimensions , in 
principle. The programming effort required for this would not be great , since the 
CM Fortran language incorporates the intrinsic array structures of Fortran 90 , 
making the task much easier than it would be using FORTRAN 77, say. Of course, 
even on a supercomputer such as the Connection Machine, one would exhaust the 
memory capacity before reachi'ng a very fine grid resolution. For example, on the 
CM-2 curre~tly situated at the Australian National University, the total amount 
of memory is 226 double-precision variables. Extending the results of Section .3 
to d = 3, we see that a simple implementation of multigrid could probe no deeper 

than A = 7 levels . 
As a final not~ regarding PDE's in d dimensions, we mention that the notion 

of line-relaxation extends to d-l hyperplane relaxation. In three dimensions, we 
therefore have access to several variations of plane-relaxation; these involve the 

solution of a penta-diagonal system. 

9.2.5 Evolution Equations 

Suppose that we desire the solution u(x, t) of some t ime-dependent PDE 

au 2 at = :J(u , Du, D u, ... ) 

such as the Navier-Stokes equation 

au 
Pat + u ·V'u = pF - V'p + J.LLlu. 

Time-dependent partial differential equations in three dimensions represent the 
c~tting edge of research in many areas of science, as such problems are difficult 

and demanding on computer resources. 
We will consider only the most basic treatment of evolving systems (for 

further details, see for example Richtmyer and Morton [86]); to this end, suppose 
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we wish to solve for u(x, t) the equation 

du 
dt = AU. 

Time derivatives are discretised almost exclusively using finite differences [39]. 
Defining u = u(x, t -dt), a quantity known from the previous time-step, we can 
choose to solve one of the following options: 

{

AU 

u ~ u = A (utu) 

Xu 

(fully implicit) 

(Crank-Nicholson) 

(fully explicit) 

A more complex evolution problem is the two-dimensional unnormalised 

Ricci flow [55] 
ago 
_1_) = -21(g .. at I) 

On a 2-torus with flat metric, this may be written as 

aU -u at = e Llu , 

where gij(t) = eu( t)gij(O). Applying the Crank- icholson method to this equation 

u-u __ = e-(u+u)/2 l(Llu - Llu) 
dt 2 

in other words 

where 
and 

Hence our time-dependent equation is transformed into a series of static nonlinear 
problems of the form JI(u) = j , where JI and j change at each time-step; this 
problem is now in a form which MGLAB could solve. 

This procedure allows us to solve parabolic PDE's which are elliptic at each 
time-step: Ut = ,]" where']' is an elliptic operator. 

9.2.6 Finite-Volume Methods 

The finite-volume method (see for example Fletcher [39]) is commonly used in the 
field of computational fluid dynamics (CFD) , where the underlying concepts of 
flow, flux , continuity and conservation are more natural than for elliptic problems. 
However, we mention the technique since it results in a numerical scheme which 
is well-suited to the architecture of a hypercube parallel processor, such as the 
Connection Machine. Recall from Chapter 8 that the use of the standard finite­
difference method results in grids of dimension 2L + 1, which we implement on 
the CM-2 as an implicit boundary scheme with grids of dimension 2L -1. Using 



CHAPTER 9: EXTENSIONS 1·59 

finite-volume techniques, we work on grids of dimension exactly 2L, and so this 
scheme is a natural one for any hypercube computer. 

In contrast to the finite-difference method which is applied to a PDE in 
differential form, the finite-volume method is a discretisation of the governing 
equation in integral form. For example, one begins with Laplace's equation and 
integrates over a small subdomain Y: 

hI (U xx + Uyy ) dx dy 

and uses Green's theorem to obtain 

h H · nds = 0 

where H = (u x , u y) and n is the outward-pointing normal. One then chooses 
some discrete representation of this integral. For more details, see Fletcher [39]. 

The finite-volume method has advantages in situations where the equation 
obeys conservation properties; in complicated domains using curvilinear coor­
dinates or nonuniform grids; in its ability to produce simple stencils , and also 
because eumann boundary conditions can be handled as readily as those of 
Dirichlet type. Perhaps most interestingly, McCormick [76] and Liu [70] have" re­
cently described a hybrid finite-volume element method which is ideal for multi­
grid, and multilevel adaptive techniques in general. This is a most interesting 
development, but is beyond the scope of this report. 
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Summary and Conclusions 

I think that computers will bring about great changes in the aspect 
of both stating and proving theorems. . .. Certainly I believe in the 
heuristic or experimental value of computers, where by working exam­
ples, one will get intuitions about the more general fact. Ultimately 
the computers will be able to make formal proofs and operate sym­
bolically the way we do now in thinking about mathematics. 

- Stanislaw Ulam [10] 

So, is the computer important to mathematics? My answer is "no". 
It is important, but not to mathematics. 

- Paul Halmos [2J 

On my list [of the twenty most important events in the history of 
mathematics] appears the modern computer as one of the very most 
important mathematical events of all time. . .. It would be closer to 
the truth to say that the development of the eJectronic computer is 
one of the major events not just in scientific history, but in world 
history. 

- Kenneth O. May [72J 

This thesis has reported the results of our research into multigrid methods for 
solving elliptic boundary value problems , and how these methods may be imple­
mented on parallel processing systems. We have generally restricted ourselves to 
consideration of the case of static scalar two-dimensional Dirichlet problems with 
finite-difference discretisation , and we have discussed aspects of the implementa­
tion of the multigrid algorithm specifically for the massively-parallel Connection 
Machine CM-2. 

We began by giving an overview of the fundamental concepts of discretisa­
tion and relaxation for elliptic equations (Chapter 2), then proceeded to discuss 
the elements which comprise multigrid methods for linear problems (Chapter 3), 
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and the generalisation to nonlinear problems (Chapter 5). We also considered 
the theoretical smoothing and convergence properties of relaxation and multigrid 
iteration. In Section 3.6, we formulated an ini tial guess based on a discrete­
Laplacian function; this proved to give substantial computational benefits for 
smooth problems with non-constant boundary data. To learn more about the 
practicalities of multigrid solution, we wrote a software package designed to func­
tion as a laboratory for multigrid experiments on a broad range of boundary value 
problems. MGLAB allows the user to freely and conveniently experiment with the 
many possible multigrid parameters. The standard FORTRA 77 implementation 
of this package is discussed in Chapter 3, while the CM Fortran parallel imple­
mentation is discussed in detail in Chapter 8. This chapter included a discussion 
of the architecture of the Connection Machine, which was necessary for under­
standing the issues of parallel performance. Some CM-2 code is presented in the 
Appendices , which demonstrate the suitability of the CM Fortran language and 
the ease of use of MGLAB . We selected several sets of model problems to illustrate 
and examine the multigrid solution process ; these ranged from simple linear prob­
lems (Chapter 4) to relatively simple nonlinear equations (Chapter 6), to difficult 
nonlinear problems involving surfaces of prescribed curvature (Chapter 7). We 
were able to validate the numerical results of MGLAB by comparing these with cer­
tain theoretical results and published data. Some of the model problems involved 
singularities; we examined the behaviour of multigrid iteration in these cases. 
Finally, in Chapter 9 we considered highly-efficient parallel multigrid methods 
which are currently the focus of much research; also we looked at techniques for 
extending the range of problems which may be numerically solved using MGLAB . 

We have found that , while multigrid is not yet a mature field of compu­
tational mathematics, it has the potential to become the pre-eminent numerical 
method - for the class of elliptic PDE's at least. A great deal of effort is currently 
underway into placing multigrid methods on a firm theoretical basis; substantial 
progress has been made in this regard . We have demonstrated that serial multi­
grid is an O(N) method , while parallel multigrid is an O(log N) method ; in other 
words, multigrid is an asymptotically optimal iteration for elliptic PDE's. It is 
clear that multigrid is also the most efficient method for well-behaved problems 
in practice; however, while this may be true for more difficult nonlinear PDE's, 
the application of multigrid methods to such problems is much less understood. 

The efficient implementation of multigrid on massively-parallel computing 
systems remains a difficult issue; in contrast, it is a simple exercise to implement a 
fast and efficient multigrid algorithm on a vector supercomputer. Researchers are 
investigating various hybrid schemes in an attempt to overcome inefficiencies such 
as the idle-processor problem. Perhaps the advent of "universal" machines such 
as the CM-5 will foster the development of some highly efficient multigrid-type 

schemes. 



Appendix A 

eM Fortran Listing of rngl0. fern 

T hi s a ppendix contains a listing of rnglO . fcrn , the CM Fortran implementation of 
Problem MG IO, a type of Poisson equation (see Chapter 4). It gives an example 
of a dr iver program, whi ch combines with the back-end mul tigrid library package 
MGLAB (a partial li sti ng of which appears in Append ix C) . We are demonstrating 
t hat p rograms written in CM Fortran are often simpler and more readable than 
t hose in FORT RA 77, and that the subrout ines to be written by the user of 
MGLAB can require m inimal programming effort . For fu rther details of the organ­
isation and structure of MGLAB , and t he format of programs which link with it , 

see Section .3.7. 
T he program list ing is preceded by the two include fi les nrnax_declarations. inc 
and rng_common . inc , which are used throughout MGLAB and its driver programs. 
Sample ou tput from the complete program MGI O appears in Append ix B. These 

listi ngs are fo r t he ."unrolled" version of MGLAB (see Section 8.4). 

C========================== Start of ' nmax_dec larations. inc , ========================== 

C 
LOGICAL red (2: Lmax ,nmax,nmax ) , black(2: Lmax ,nmax ,nmax ) 

CHF$ LAYOUT r ed (: SERIAL, : NEWS ,: NEWS ), blac k(:SERIAL, : NEWS , : NEWS ) 
DOUBLE PRECISION x(nmax ,nmax ), y(nmax ,nmax), x2(nmax ,nmax), y2(nmax ,nmax ) 

CHF$ LAYOUT x (: NEWS ,: NEWS ), y(: NEWS, : NEWS ), x2(: NEWS , :NEWS ) , y2(: NEWS ,: NEWS ) 

C 
DOUBLE PRECISION right __ bc(nmax ,nmax ) , l eft ___ bc(nmax ,nmax ) , top ____ bc(nmax ,nmax) 

CHF$ LAYOUT right __ bc (: NEWS, : NEWS ) , l eft ___ bc(: NEWS ,: NEWS ), top ____ bc(: NEWS ,: NEWS ) 

DOUBLE PRECISION bottom_bc(nmax,nmax) 
CHF$ LAYOUT bottom_bc ( :NEWS, :NEWS ) 

C 
DOUBLE PRECISION v(2: Lmax,nmax ,nmax), f (2 : Lmax ,nmax,nmax) , old_v(2: Lmax ,nmax , nmax ) 

CHF$ LAYOUT v (: SERIAL, :NEWS ,: NEWS ) , f (: SERIAL, :NEWS, : NEWS ) , old_v(: SERIAL ,: NEWS, : NEWS ) 
DOUBLE PRECISION u(nmax ,nmax ), e (nmax ,nmax), r (nmax ,nmax ) 

CHF$ LAYOUT u (: NEWS ,: NEWS ) , e (: NEWS ,: NEWS ), r (: NEWS ,: NEWS ) 

C 
C=========================== End of ' nmax_declarations . inc' =========================== 
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C============================== Start of 'mg_common.inc' ============================== 
C 

C 

C 

DOUBLE PRECISION zero, sixteenth, eighth, quarter, half, one, two, three, four 
DOUBLE PRECISION five, six, pi, pi2 

INTEGER max_Lmax, max nmax 
PARAMETER (max_Lmax = 10, max_nmax 1023) 

INTEGER ni(max_Lmax), step(max_Lmax) 
CMF$ LAYOUT ni(:SERIAL), step (: SERIAL) 

DOUBLE PRECISION n(max_Lmax), n2(max_Lmax), h(max_Lmax), h2 (max_Lmax) 
CMF$ LAYOUT n(:SERIAL), n2 (:SERIAL), h(:SERIAL), h2( : SERIAL) 

DOUBLE PRECISION cc_centre(3,max_Lmax), cc_right(3,max_Lmax) 
CMF$ LAYOUT cc_centre( :SERIAL,:SERIAL), cc_right( : SERIAL, : SERIAL) 

DOUBLE PRECISION cc __ left (3,max_Lmax), cc ____ up(3,max_Lmax), cc __ down (3,max_Lmax) 
CMF$ LAYOUT cc __ left( :SERIAL,:SERIAL), cc ____ up(:SERIAL,:SERIAL) , cc __ down (: SERIAL ,:SERIAL ) 

C · 

C 

C 

C 

INTEGER Lmax, nmax, mid , nu_pre, nu_coarsest, nu_post, nu_guess, num_cycles 
INTEGER user_relax, work_scale, debug, rotate_pause_flag, initial_guess_type 
INTEGER colour_graphics_flag, plot_scale_type 
DOUBLE PRECISION relax_weight, restrict_weight, work, error_2_norm 
DOUBLE PRECISION old_error_2_norm, error_inf_norm, old_error_inf_norm 
DOUBLE PRECISION residue_2_norm, old_residue_2_norm, residue_inf_norm 

t 

t 
t 
t 
t 
t 
t 
t 
t 
t 

DOUBLE PRECISION old_residue_inf_norm, line_relax_tolerance, v_cycle_convergence 
DOUBLE PRECISION u_scale, f_scale, r_scale, plane_a, plane_b, plane_c 
DOUBLE PRECISION vl , fl, el, rl, ul, top __ left, top_right, bot __ left, bot_right 
LOGICAL non_linear_PDE, imm_rep, solution_given, graphics 

INTEGER num_theta 
PARAMETER (num_theta = 32) 
REAL theta, phi, this_theta 

CHARACTER.7 relax_type 
CHARACTER.6 restrict_type 
CHARACTER.S relax_method 
CHARACTER.3 norm_type 
CHARACTER.2 timing_type 
CHARACTER.l method 

Used by CMFB graphics: must be single precision. 

COHMON / constants / zero, sixteenth, eighth, quarter, half, one, two , three, 
four, five, six, pi, pi2 

COHMON / front_end / ni, step, n, n2, h, h2, cc_centre, cc_right, cc __ Ieft, 
cc ____ up, cc __ down, Lmax, nmax , mid, nu_pre, nu_coarsest, 
nu_post, nu_guess, num_cycles, user_relax, work_scale, debug, 
rotate_pause_flag, initial_guess_type, colour_graphics_flag, 
plot_scale_type , relax_weight, restrict_weight, work, 
error_2_norm, old_error_2_norm, error_inf_norm , 
old_error_inf_norm, residue_2_norm, old_residue_2_norm, 

t 

residue_inf_norm, old_residue_inf_norm, 
line_relax_tolerance, v_cycle_convergence, u_scale, f_scale, 
r_scale, plane_a, plane_b, plane_c, non_linear_PDE, imm_rep, 
solution_given, graphics, theta, phi, this_theta 

COHMON / 
COHMON / 
COHMON / 

t 

level_one / 
corners / 
fe_strings/ 

vl, fl , el, rl, ul 
top __ left, top_right, bot __ left, bot_right 
relax_type, restrict_type, relax_method, norm_type, method , 

timing_type 

C=============================== End of ' mg_ common.inc' =============================== 
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C====·8~===-a=========================================================================c 

C 

C Solving - /\ u 
C u 

C 

- 2 [ (1-6xx ) yy (1-yy) + (1-6yy)xx(1-xx) ] 
o 

C with initial guess v = 0 
C The exact solution is u = xxyy ( l-xx )( l-yy ) 
C 

on 
on 

C 
(O,l)x (O,l) C 
the boundary C 

C 
C 
C 
C 

C=====================================================================================C 
C 

C 

C 

C 

C 

PROGRAM mg10 
IMPLICIT NONE 

INCLUDE 'mg_common.inc ' 

CALL calculate_solution 

STOP 
END 

C====================================================================================== 
C 

C 

C 

C 

SUBROUTINE print_pde_heading 
IMPLICIT NONE 

PRINT., 'Solving - /\ u -2 [ ( 1-6xx)yy(1-yy) + ( 1-6yy)xx (1 -xx) ] , 
PRINT., ' with zero boundary conditions on [O,l]x[O , l] ' 
PRINT., 'with initial guess v - 0' 
PRINT., ' The exact solution is u = xxyy(l-xx)(l-yy), 

RETURN 
END 

C====================================================================================== 
C 

C 

SUBROUTINE initialise_pde_params 
IMPLICIT NONE 

C Define the parameters and relaxation coefficients of the POE. 
C 

C 

C 

C 

C 

INCLUDE ' mg_common . inc' 

INTEGER L 

non_linear_PDE = .FALSE. 
solution_given = .TRUE. 

DO L = 1, max_Lmax 
cc_centre(2,L) = -four 
cc_right (2,L) -one 
cc __ left(2,L) -one 
cc ____ up(2,L) -one 
cc __ down(2,L) -one 

ENDDO 

RETURN 
END 



ApPENDIX A: eM FORTRAN LI STI NG OF rnglO. fern 165 

C 

C~=····aRCas ___ ===~================~==~==============================================:. 
C 

C 

C 

C 

C 

SUBROUTINE initialise_bdy_conds (right __ bc, left ___ bc, top ____ bc, bottom_bc, 
t x , y, x2 , y2 ) 

IKPLICIT NONE 
INCLUDE 'mg_common.inc' 
INCLUDE 'nmax_declarations.inc' 

right __ bc = zero 
left ___ bc = zero 
top ____ bc = zero 
bOttOM_bc = zero 

top __ left zero 
top_right zero 
bot left zero 
bot_right zero 

RETURN 
END 

C====================================================================================== 
C 

C 

C 

C 

SUBROUTINE user_calc_initial_guess_v (v , x, y, x2, y2, L) 
IMPLICIT NONE 
INTEGER L 
INCLUDE 'mg_common. inc , 
INCLUDE ' nmax_declarations .inc ' 

IF (L == 1) THEN 
vi = zero 

ELSE 
v(L, :,:) zero 

ENDIF 

RETURN 
END 

C====================================================================================== 
C 

C 

C 

C 

SUBROUTINE calc_rhs_function_f (f, x, y, x2, y2, L) 
IMPLICIT NONE 
INTEGER L 
INCLUDE ' mg_ common . inc ' 
INCLUDE ' nmax_declarations . inc , 

IF (L == 1) THEN 
f1 = three. eighth 

ELSE 
teL,:,: ) -two • 

t ( (one - six.x2) • y2 • (one - y2) + (one - six.y2) • x2 • (one - x2) ) 

ENDIF 

RETURN 
END 
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C------______ Ka_====~zz==========~==~=a===============_K ___ =========================== 

C 

C 

C 

C 

SUBROUTINE calc_exact_soln_u (u , x, y, x2, y2) 
IMPLICIT NONE 
INCLUDE 'mg_common.inc' 
INCLUDE 'nmax_declarations. inc , 

u = x2 * y2 * (one-x2 ) * (one-y2 ) 

RETURN 
END 

C=====~================================================================================ 

C 

C 

SUBROUTINE user_calc_residue_r 
STOP ' III USER_CALC_RESIDUE_R was called! ' 
END 

C====================================================================================== 
C 

C 

SUBROUTINE user_relaxation 
STOP ' III USER_RELAXATION was called! ' 
END 

C====================================================================================== 
C 

C 

SUBROUTINE user_jacobi_relaxation 
STOP ' III USER_JACOB I_RELAXATION was called! ' 
END 

C================================~===================================================== 

C 

C 

SUBROUTINE user_red_black_relaxation 
STOP ' III USER_RED_BLACK_RELAXATION was called! ' 
END 

c====================================================================================== 



Appendix B 

Sample Output from rng10. fern 

This appendix contains sample output from the program MG10 (see Appendix A). 
In t hi s case, we are using 1 x Mi,2 ,2-cycle of w = 0.8 weighted Jacobi point 
relaxation and full-weighting restriction to solve this boundary value problem . 

Solving - /\ u = -2 [ ( 1-6xx)y~ ( 1-yy) + ( 1-6yy)xx ( 1-xx ) 
with zero boundary conditions o~ [O,1]x[O,1] 

with initial guess v = 0 
The exact solution is u = xxyy ( 1-xx) (1 -yy ) 

1. Method = m ( P = pure relax, V = V- cyc l es , W = W- cycles, M 

2. No of levels =. 9 

full multigrid) 
( LMAX ) 

4 . No of m-cycles = (NUM_CYCLES ) 

5. No of pre-relaxations (moving to coarser grids) = 2 ( NU_PRE ) 

6 . No of relaxations on the coarsest grid = 2 (NU_COARSEST) 

7 . No of post-relaxations (moving to finer grids) = 2 (NU_POST ) 
8 . User-relax = 2 (-1=-Lapl, O=user-defined, l=+Lapl, 2=auto relax 1 residue ) 
9 . Relaxation method = point (POINT = pointwise, LINE = Jacobi linewise ) 

10 . Relaxation type = jacobi ( JACOBI = Jacobi , GAUSS = red-black Gauss-Seidel ) 
11 . Weight (SOR) factor for relaxation = 0.80000000000000004 ( RELAX_WEIGHT) 

12. Restriction = fullwt (I NJECT = injection, FULLWT = full weighting ) 

13. Weighting factor for restri c tion = 1. 00000000000000000 (RESTRICT_WEIGHT) 
14. Norm type = two ( INF = infinity-norm, TWO = 2-norm, ALL = both norms ) 

15. Show internal steps = 0 (O=no, l=v once, 2=vrf once, 3=v all, 4=vrf all ) 
16 . Use immediate replacement = F (T = true, F = false ) 
17. Scale WORK to level L 9 (WORK_SCALE) 

18. Use graphic display = F (T = true, F = false ) 
22. Timing type = cm (WU = work-unit cost, CM = CM busy time) 

24. Initial guess = 0 (0=user,l=plane,2=diag,3=lin,4=quad.5=quint,6=Lapl,7=soln) 

Which option do you wish to change ? (0 = OK ) 

o 

Warning : Paris safety has been turned off . 

CM speed = 7 . 00 MHz 
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Level Error norm (two) Converg Residue norm (t wo) Converg CM (secs) 

--------------------------------------------------------------------------------
1 

2 

3 

4 

5 

6 

7 

8 

9 

0.18750000 = -0.73 (0.000) 0 . 61237 244 = -0.21 

.00326471 = -2.49 ( .017) . 04084632 = -1.39 

. 00140017 = -2.85 . 429) . 04950647 = -1. 31 

.00049932 = -3 . 30 . 357) .03857822 = -1.41 

.00015791 = -3.80 .3 16 ) . 02756616 = -1.56 

.00004629 = -4.33 .293) . 01951418 = -1.71 

.00001292 = -4.89 .279 ) .01383591 = -1 . 86 

.00000349 = -5.46 .270) . 00983982 = -2 . 01 

. 00000092 = -6 . 03 . 265) . 00703635 = -2.15 

Breakdown of CM-Busy Times ( seconds ) 

Relaxation (point jacobi 61.788 

Residue calculation 13 .971 

Restriction (fullwt) 9 . 082 

Prolongation (bilinear interp) 7 . 198 

Result calculation 5 . 058 

Other V- cycle calculation 3.202 

Other multigrid c alculation 1 . 844 

Total of the above times 102 . 143 

Total CM-busy time 

Total CM-elapsed time 

101 . 603 sec 

103.320 sec 

60 'I. 
14 'I. 
9 'I. 
7 'I. 
5 '!. 
3 'I. 
2 'I. 

100 'I. 

(0.000) 0 . 15756 

( . 066) 2.83482 

(1.212) 9.27129 

( .779 ) 18.54574 

( .7 15 ) 30 . 36103 

.708) 44 . 59921 

. 709 ) 61 . 23992 

. 711) 80.24603 

.715) 101. 60307 
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Appendix C 

CM Fortran Listing of mglab. fern 

This appendix contains a partial listing of rnglab . fern , the eM Fortran implemen­
tation of the back-end multigrid library package MGLAB . For further details of the 
organisation and st ructure of MGLAB , see Section 3.7. A complete listing was not 
feasible due to its lengt h, nor desirable since much of the code is of little interest. 
We list here the kernel routines essential to the mul tigrid process: relaxation , 
restriction , prolongation, coarse-grid correction, and so on. 

C=====:===============================================================================c 

C 

C 

C 

C 

C 

2 - 0 M U L T I G RID LIB R A R Y R 0 UTI N EPA C K AGE 

(Double Precision Connection Machine CM-2 Version ) 

C 

C 

C 

C 

C 

C=z===~===============================================================================c 

C 

C 

C 

Author 
Date 

Nicholas Keith Spencer 
May 1991 

C 

C 

C 

C Place Australian National University C 
C C 

C=====================================================================================C 
C C 

C 

C 

C 

Purpose and Structure of this Package : C 

C 

C 

C=====================================================================================C 
C 
C This package contains the following routines : 
C 

C SUBROUTINE calculate_solution 
C SUBROUTINE general_initialisation 
C SUBROUTINE initialise_constants 
C SUBROUTINE read_user_options 
C SUBROUTINE solve_pde 
C SUBROUTINE specific_initialisation 
C SUBROUTINE print_heading 
C SUBROUTINE calc_initial_guess_v (v , L) 
C SUBROUTINE v_cycle (v , f, r, u , e, old_v, start_L, 
C SUBROUTINE relax_v (v , f, L, num_sweeps, depth) 
C SUBROUTINE relax_on_level_l (num_sweeps , depth) 

169 

stop_L) 

C 

C 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

SUBROUTINE jacobi_point_relax (v , f, L, num_sweeps, depth ) 
SUBROUTINE rb_gauss_seidel_point_relax ( v, f, L, num_sweeps, depth) 
SUBROUTINE horiz_jacobi_line_relax (v, f, L, num_sweeps, depth ) 
SUBROUTINE vert_jacobi_line_relax (v , f, L, num_sweeps, depth ) 
SUBROUTINE calc_residue_r (v, f, r , L, depth) 
SUBROUTINE restrict_r_to_f (f, r, L) 
SUBROUTINE injection_restriction_of_r_to_f ( f , r , L) 
SUBROUTINE weighted_restriction_of_r_to_f (f, r, L) 
SUBROUTINE immediate_correction (v, f, r, u, e , old_v, Ltop, L) 
SUBROUTINE bilinear_interpolate_v (v, L) 
SUBROUTINE coarse_grid_correct_v (v, L) 
SUBROUTINE calc_result (v , f, r, u, e , L, immediate_correction, from_L ) 
DOUBLE PRECISION FUNCTION 10g_10 (x) 
SUBROUTINE plot_vf (input_array, L, depth, vf ) 
SUBROUTINE plot_ur (input_array, ur ) 
SUBROUTINE pause 

170 

C 

C 

C 

C 

C 

C 

C 
C 

C 

C 

C 

C 

C 

C 

C 

C 
C C 

C=====================================================================================C 
C 

C 

C 

C 

c 

SUBROUTINE calculate_solution 
IKPLICIT NONE 

INCLUDE ' mg_common.inc ' 

CALL general_initialisation 
CALL initialise_pde_params 
CALL print_pde_heading 
CALL read_user_options 
CALL solve_pde 

RETURN 
END 

C========a============================================================================= 

C 

SUBROUTINE general_initialisation 
c 
C Initialise problem-independent data structures and parameters. 
C 

C 
C========-K============================================================================ 

C 
SUBROUTINE initialise_constants 

c 
C Initialise the common block ' constants ' . 
C 

C 
C~·= ____ aa-=a=_============================z=========================================== 

C 
SUBROUTINE read_user_options 

C 
C Query the user for the desired way to solve the POE. Validate these options . 
C 

C 
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C 

SUBROUTINE solve_pde 
C 

C Solve the POE using the multigrid parameters def i ned by the user . 
C 

C 

171 

C====================================================================================== 
C 

SUBROUTINE specific_initialisation (red, black, x, y, x2, y2, r i ght __ bc , 
t left ___ bc, top ____ bc , bottom_bc) 

C 

C Initialise problem-specific data structures and parameters . 
C 

C 

C====================================================================================== 
C 

SUBROUTINE print_heading 
C 
C Print the appropriate heading l i ne (s) for subsequent results. 
C 

C 
c====================================================================================== 

C 
SUBROUTINE cal c _initial_guess_v (v, right __ bc, left ___ bc, top ____ bc, bottom_bc, 

t x, y , x2 , y2, L) 
C 
C Choose one of several possible methods for calculating an initial guess v(L, : , :). 
C 

ELSEIF (initial_guess_type 
xl - one - x 
yl = one - y 
x12 = x2 * xl * xl 
y12 - y2 * yl * yl 

6) THEN 

FORALL (i = nmax, j = 1 : nmax ) 
t v(L,i , j) x1 2( i,j ) * ( top ____ bc (i ,l )*y ( i ,j) + bottom_bc ( i , l ) *yl (i ,j » 
t + y1 2(i,j) * ( right __ bc ( l,j )*x ( i , j ) + left ___ bc ( l,j ) *xl (i,j» 

/ x12(i,j) + y12 ( i,j) 

C 
C=z_.a.=~============================================================================= 

C 

C 

SUBROUTINE v_cycle (v, f, r, u, e, old_v, x, y, x2, y2 , red, black, right __ bc, 
t left ___ bc, top ____ bc, bottom_bc, start_L , stop_L) 

IMPLICIT NONE 
INTEGER start_L, stop_L 
INCLUDE ' mg_common . inc ' 
INCLUDE 'nmax_declarations.inc' 

C Perform a V-cycle from level ' start_L ' dovn to levell, and back up to level 's top_L '. 
C Normally start_L = stop_L; othervise this indicates ve are doing a W-cycle composed 
C of several pieces of V-cycles . We do ' nu_pre ' relaxations moving to the coarsest 
C grid, ' nu_coarsest ' relaxations on the coarsest grid, and 'nu_post' relaxations 
C moving back to the finest grid. 'imm_rep ' indicates immediate replacement : an error 
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relaxation C 

C 

C 

correction is made directly to the f i ne grid after every coarse grid 
(simply for display purposes - this has no ef fe c t on the iteration). 
V v ( the discret ized fine-grid current guess ) upon entry 

We mus t have 

INTEGER L 
DOUBLE PRECISION old_fl 
CHARACTER*13 word (4 ) 

to this rout i ne. 

DOUBLE PRECISION av (nmax ,nmax ) , old_f (nmax , nmax ) 
CKF$ LAYOUT av (: NEWS , :NEWS), old_f (: NEWS ,: NEWS ) 

Used only for FAS cycl e. 

C 

C 

C 

C 

DATA word el l / ' neg Laplac ian ' / 
DATA word(2 ) / ' user-defined ' / 
DATA word (3) / ' pos Laplac ian ' / 
DATA word (4) / ' auto- defined ' / 

IF ( timing_type == 'cm' ) THEN 
CALL cm_timer_stop (7) 
CALL cm_timer_start (6) 

ENDIF 

IF (start_L < 2) . OR . (s tart_L > Lmax ) ) STOP ' ### V_CYCLE : s tart_L not i n [2, Lmax] ' 
IF (s top_L < 2) . OR . (stop_L > Lmax ) ) STOP ' ### V_ CYC LE: stop_L not i n [2, Lmax] ' 

C V- cycle initialisation. 
C 

C 

IF (. NOT . non_linear_PDE ) THEN 
vl = zero 
v (2 :start_L-l , : , :) = zero 

ENDIF 
IF (start_L == stop_L) CALL calc_rhs_function_f (f, x, y, x2, y2 , start_L) 

IF (debug >= 3) THEN 
WRITE (* , lO) start_L 

10 FORKAT(/lX, ' At the start of this V(' , 11, ' ) - cycle : ') 
IF (graphics ) CALL plot_vf (v, right __ bc, left ___ bc , top ____ bc, bottom_bc , 

t s t art_L , 0, ' v ') 
ENDIF 
IF ( (debug == 4 ) . AND . graphics ) THEN 

CALL plot_vf (f, right __ bc, l eft ___ bc , top ____ bc, bottom_bc , start_L , 0 , ' f ' ) 
CALL calc _residue _r (v , f , r , right __ bc , left ___ bc, top ____ bc , bottom_bc, 

t x, y, x2, y2 , start_L , 0) 
CALL plot_ur (r, ' r ' ) 

ENDIF 
C 

C Step A: Koving from the fine grid (L=start_L) to the coarsest gri d (L=l ), do 
C ( 1) 'nu_pre' x pre-relaxations v (L) = Rel(v (L) , f(L » 
C (2 ) calculate the r esidue r = f el l - A(L) . v (L) 
C (3) restrict the residue to the coarser grid f( L- 1) = I(L , L-1) r 
C 

DO L = s tart_L , 2 , -1 
C 

C· ( 1) 'nu_pre ' x pre-relaxations vel ) = Rel(v (L) ,f(L» 
C 

IF ( . NOT. ( (start _L<>stop_L) .AND . (start_L==L) ) ) THEN 
IF (timing_type == 'cm' ) THEN 

CALL c._timer_stop (6) 
CALL cm_timer_start ( 1) 
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20 

c 

ENDIF 
CALL relax_v (v, f, right __ bc , left ___ bc, top ____ bc, bottom_bc, red, black, 

t x, y, x2, y2, L, nu_pre , start_L-L) 
IF (timing_type == 'cm') THEN 

CALL cm_timer_stop ( 1) 
CALL cm_timer_start (6) 

ENDIF 
IF (debug >= 3) THEN 

WRITE(*,20) nu_pre, relax_type, relax_method , word (user_relax+2) 
FDRMAT(/IX, ' 1. After ' , 12, lX, A7, lX, AS, lX, A13, 'relaxations: ' ) 
IF (graphics) CALL plot_vf ( v, right __ bc, left ___ bc, top ____ bc, 

bottom_bc, L, start_L-L, ' v ') 
ENDIF 
IF ( imm_rep ) CALL immediate correction ( v , f, r, u, e, old_v, right __ bc, 

t left ___ bc , top ____ bc, bottom_bc, 
t x , y, x2, y2, start_L, L) 

ENDIF 

C (2) calculate the residue r = f (L) - A(L). v(L) 
C 

c 

IF ( timing_type == 'cm') THEN 
CALL cm_timer_stop (6) 

CALL cm_timer_start (2) 
ENDIF 
CALL calc_residue_r ( v, f, r , right __ bc, left ___ bc , top ____ bc, bottom_bc, 

t x , y, x2 , y2, L, start_L-L) 
IF (timing~type == 'cm') THEN 

CALL cm_timer_stop (2) 
CALL cm_timer_start (6) 

ENDIF 
IF ( (debug == 4) . AND. graphics CALL plot_ur (r, ' r ') 

C (3) restrict the residue to the coarser grid f (L-l ) = I (L,L-l ) r 
C 

IF (timing_type == 'cm') THEN 
CALL cm_timer_stop (6) 
CALL cm_timer_start (3) 

ENDIF 
CALL restrict_r_to_f (f, r, L) 
IF (non_linear_PDE) THEN 

IF (L =~ 2) THEN 
old_fl = fl 
f1 = zero 
vi = v(2,mid,mid) 

Use Full Approximation Scheme ( FAS ): 

CALL calc_residue_r ( v, f, av, right __ bc, left ___ bc, top ____ bc, bottom_bc, 
x, y, x2, y2, L-l, 0) 

fl = old_fl - av (mid,mid) 
ELSE 

old_f = f (L-l, : ,: ) 
f(L-l,:,: ) = zero 
v(L-l,: ,:) = v (L,: ,:) 
CALL calc_residue_r ( v, f, av, 

x, y , x2, 

f(L-l, : ,:) = old_f - av 
ENDIF 

Save a copy of just-calculated f (L-l ) 
Prepare to call special calc_residue_r 
Injected initial guess on coarse grid 

right __ bc, left ___ bc, top ____ bc, bottom_bc, 
y2, L-l, 0) 

Calc temp av = -A*v(L-l) [actual BC 's] 
! f(L-l) = f(L-l) + A*v (L-l) 

IF ( (debug == 4) . AND . graphics THEN 
CALL plot_vf (f, right __ bc, left ___ bc, top ____ bc, bottom_bc, L-l, 0, ' f ') 
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CALL plot_vf (v, right __ bc , left ___ bc, top ____ bc, bottom_bc, L-l, 0, 'v') 

30 

C 

C 

ENDIF 
ENDIF 
IF (timing_type == 'cm') THEN 

CALL cm_timer_stop (3) 
CALL cm_timer_start (6) 

ENDIF 
IF (debug == 4) THEN 

WRITE(-,30) restrict_Reight, restrict_type 
FORMAT(flX, '2. After ', FS.2, ' - " A6, ' restriction : ') 
IF (graphics) CALL plot_vf (f, right __ bc, left ___ bc , top ____ bc, bottom_bc, 

L-l, start_L-L+l, ' f' ) 
ENDIF 

ENDDO 

C Step B: On the coarsest grid (L=I), do 
C (1) ' nu_coarsest' x relaxations vel) Rel(v (L) ,f(L» 
C 

IF ( timing_type == 'cm') THEN 
CALL cm_timer_stop (6) 
CALL cm_timer_start ( 1) 

ENDIF 
CALL relax_v (v, f, right __ bc, left ___ bc, top ____ bc, bottom_bc, red, black, x, y , 

t x2, y2, I, nu_coarsest, start_L-l) 
IF ( timing_type == 'cm') THEN 

CALL cm_timer_stop (1) 
CALL cm_timer_start (6) 

ENDIF 
IF (debug >= 3) THEN 

WRITE(-,40) nu_coarsest, relax_type, relax_method, Rord (user_relax+2 ) 
40 FORMAT(flX, '3. After ', 12, lX, A7, lX, AS, lX, A13 , 

t ' relaxations on the coarsest grid: ') 
IF (graphics ) CALL plot_vf (v, right __ bc, left ___ bc, top ____ bc , bottom_bc, I, 

t start_L-I, ' v ') 
ENDIF 
IF ( (debug == 4) . AND . graphics) THEN 

CALL calc_residue_r (v, f, r, right __ bc, left ___ bc, top ____ bc, bottom_bc, x, 
t y, x2, y2, I, start_L-l) 

CALL plot_ur (r, ' r ') 
ENDIF 
IF (ima_rep) CALL immediate correction (v , f, r, u, e, old_v , right __ bc, 

t left ___ bc, top ____ bc, bottom_bc, 
t x, y, x2, y2, start_L, L) 

C 
C Step C: Moving from the coarsest grid (L=I) to the fine grid (L=stop_L), do 
C (1) coarse-grid correction vel) ~ v el) + I(L-l,L) v (L-l) 
C (2) 'nu_post' x post-relaxations vel) = Rel(v (L) ,f (L» 
C 

c 
C (1) coarse-grid correction vel) = vel) + I(L-l,L) v(L-l) 
C 

IF (timing_type == 'cm') THEN 
CALL cm_timer_stop (6) 
CALL cm_timer_start (4) 

ENDIF 
IF (non_linear_PDE) THEN 
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50 

C 

t 

IF (L == 2) THEN 
vl = vl - v(2,mid,mid) 

ELSE 
v(L-l,:,:) = v(L-l ,: , :) - v (L,: ,:) 

ENDIF 
ENDIF 
CALL coarse_grid_correct_v ( v, L) 
IF (timing_type == 'cm') THEN 

CALL cm_timer_stop (4) 
CALL cm_timer_start (6) 

ENDIF 
IF (debug >= 3) THEN 

WRITE(- , 50 ) 
FORHAT(/lX, ' 4 . After coarse-grid correction by bilinear interpolation : ') 
IF (graphics ) CALL plot_vf ( v, right __ bc, left ___ bc, top ____ bc, bottom_bc, 

L, stop_L-L, ' v ') 
ENDIF 
IF ( (debug == 4) . AND. graphics ) THEN 

CALL calc_residue_r ( v, f, r, right __ bc , left ___ bc , top ____ bc, bottom_bc , 
t x, y, x2, y2, L, stop_L-L) 

CALL plot_ur (r, ' r ' ) 
ENDIF 

C (2) ' nu_post ' x post-relaxations v ( L) 
C 

ReI( v (L) ,f(L» 

IF ( timing_type == 'cm') THEN 
CALL cm_timer_stop (6) 
CALL cm_timer_start ( 1) 

ENDIF 
CALL relax_v ( v , f , right __ bc , left ___ bc, top ____ bc, bottom_bc , red, black, 

t x , y , x2 , y2, L, nu_post, stop_L-L) 
IF ( timing_type == 'cm') THEN 

CALL cm_timer_stop (1) 
CALL cm_timer_start (6) 

ENDIF 
IF (debug >= 3) THEN 

WRITE(-,60) nu_post, relax_type, relax_method, ~ord (user_relax+2) 

60 FORHAT(/lX, ' 5 . After ', 12, lX, A7, lX, AS, lX, A13, ' relaxations : ') 

C 

C 
C 

C 

IF (graphics) CALL plot_vf ( v, right __ bc, left ___ bc , top ____ bc, bottom_bc, 
t L, stop_L-L, ' v' ) 

ENDIF 
IF ( (debug == 4) .AND . graphics) THEN 

CALL calc_residue_r (v, f, r, right __ bc, left ___ bc , top ____ bc, bottom_bc, 
t x, y, x2, y2, L, stop_L-L) 

CALL plot_ur (r, 'r') 
ENDIF 
IF ( imm_rep . AND. ( L <> stop_L) ) 

t CALL immediate_correction (v, f , r, u, e, old_v, right __ bc, left ___ bc, 
t top ____ bc, bottom_bc , x, y, x2, y2, stop_L, L) 

ENDDO 

IF (timing_type == 'cm') THEN 
CALL cm_timer_stop (6) 
CALL cm_timer_start (5) 

ENDIF 
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C 

CALL calc_result (v, f, r, u, e, right __ bc, left ___ bc, top ____ bc , bottom_bc , 
t x, y, x2, y2, stop_L, . FALSE . , 0) 

IF (timing_type == 'cm ' ) THEN 
CALL cm_timer_stop (5) 
CALL cm_timer_start (6) 

ENDIF 

IF (debug> 0) THEN 
WRITE (.,80) stop_L 

80 FORMAT(/lX, ' At the end of this V(' , 11 , ') -cycle: ') 

C 

C 

C 

IF (graphics ) CALL plot_vf (v , r i ght __ bc , left ___ bc, top ____ bc, bottom_bc , 
t stop_L, 0, ' v ') 

ENDIF 
IF ( (debug == 2) . OR. (debug 4» THEN 

CALL cal c_residue_r (v , f, r, right __ bc, left ___ bc, top ____ bc, bottom_bc, 
t x, y , x2 , y2, stop_L , 0) 

IF (graphics ) CALL plot_ur (r , ' r ') 
ENDIF 

IF ( timing_type == 'cm') THEN 
CALL cm_timer_stop ( 6 ) 

CALL cm_timer_start ( 7 ) 

ENDIF 

RETURN 
END 

C====================================================================================== 
C 

SUBROUTINE relax_v (v, f, right __ bc , left ___ bc , top ____ bc , bottom_bc , red, black , 
t x, y , x2, y2 , L, num_sweeps , depth ) 

C 

C Select the appropriate relaxation routine . 
C 

C 

C====================================================================================== 
C 

t 

C 

SUBROUTINE relax_on_level_l 

IKPLICIT NONE 
INTEGER num_sweeps, depth 
INCLUDE ' mg_common . inc ' 

(right __ bc, left ___ bc , top ____ bc , bottom_bc , 

num_sweeps, depth ) 

INCLUDE ' nmax_declarations . inc ' 

C Vel) is updated by ' num_sweeps ' of weighted relaxation . 
C 

C 

C 

INTEGER ur 
DOUBLE PRECISION wbar, wtemp 

wbar ,. one - relax_weight 
IF (user_relax == 2) THEN 

ur ,. 2 
ELSE 

ur ,. user_relax + 2 
ENDIF 
wtemp a relax_weight / cc_centre (ur,l) 
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c 

c 

IF ( (depth == 0) .OR. non_linear_PDE ) THEN ! Use actual boundary conditions. 
DO (num_sweeps) TIMES 

vi wtemp * ( cc_right(ur,l) * r ight __ bc(nmax,mid) 
t + cc __ left(ur,l) * left ___ bc(l,mid) 
t + cc ____ up(ur,l) * top ____ bc (mid,nmax ) 
t + cc __ down (ur,l ) * bottom_bc (mid , l ) 
t - f 1 * h2 ( 1) ) 

t + wbar * vi 
ENDDO 

ELSE Use zero boundary conditions (since this is a coarse grid). 
DO (num_sweeps) TIMES 

vi 
ENDDO 

ENDIF 

RETURN 
END 

-wtemp * fl * h2(1) + wbar * vi 

c====================================================================================== 
C 

C 

SUBROUTINE jacobi_point_relax (v, f, right __ bc, left ___ bc, top ____ bc , bottom_bc, 
t L, num_sweeps, depth ) 

IMPLICIT NONE 
INTEGER L, num_sweeps, depth 
INCLUDE ' mg_common . inc ' 
INCLUDE 'nmax_declaration~.inc' 

C V(L) is updated by ' num_sweeps' of pointwise weighted (SOR) Jacobi relaxation. 
C 

C 

C 

INTEGER ur, s 
DOUBLE PRECISION wbar, wtemp 

s = step(L) 
IF (user_relax == 2) THEN 

ur '" 2 
ELSE 

ur • user_relax + 2 
ENDIF 
wbar = one - relax_weight 
wtemp = relax_weight / cc_centre(ur , L) 

IF ( (depth == 0) . OR . non_linear_PDE ) THEN 
DO (num_sweeps) TIMES 

v(L,: ,:) wtemp * ( cc_right (ur,L ) * 
t EOSHIFT(v (L,:,:), DIM = 1, SHIFT = 

t 

t 

a: 
a: 
a: 
a: 
a: 
a: 

ENDDO 

+ cc __ left (ur,L) * 
EOSHIFT(v(L ,:, :), DIM = 1, SHIFT = 

+ cc ____ up(ur,L) * 
EOSHIFT(v(L,:, :), DIM = 2, SHIFT = 

+ cc __ down(ur,L) * 
EOSHIFT(v(L, : , :) , DIM = 2, SHIFT = 

- f(L,: ,:) * h2(L) 
+ wbar * v(L, : ,: ) 

Use actual boundary conditions. 

+s, BOUNDARY right __ bc (nmax, :» 

-s, BOUNDARY left ___ bc (1, :» 

+s, BOUNDARY top ____ bc ( : ,nmax » 

-s, BOUNDARY bottom_be{: ,1) 

ELSE ! Use zero boundary conditions (since this is a coarse grid) . 
DO (num_sweeps) TIMES 

v(L,: , : ) wtemp * ( cc_right(ur,L) * 
a: EOSHIFT(v(L, :, : ), DIM = 1, SHIFT +s, BOUNDARY zero ) 
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t + cc __ left(ur,L) * 
t EOSHIFT (v(L,:, :), DIK 1, SHIFT = -s, BOUNDARY = zero) 
t + cc ____ up(ur,L ) * 
t EOSHIFT(v(L, : ,:), DIK 2, SHIFT = +s, BOUNDARY = zero ) 
t + cc __ down(ur,L) * 
t EOSHIFT(v(L,:, :), DIK 2, SHIFT = -s, BOUNDARY = zero ) 
t - f(L,:,:) * h2 (L) 
t + wbar * v(L,: , :) 

ENDDO 
ENDIF 

C 
RETURN 
END 

C 
C====================================================================================== 
C 

SUBROUTINE rb_gauss_seidel_point_relax (v, f, right __ bc, left ___ bc, top ____ bc, 
t bottom_bc , red, black, L, num_sweeps, depth) 

C 

C V(L) is updated by pointwise weighted (SOR) red-black Gauss-Seidel relaxation . 
C 

C 
c====================================================================================== 

C 

C 

SUBROUTINE hor iz_jacobi_line_relax (v, f, right __ bc, left ___ bc, top ____ bc, 
t bottom_bc, L, num_sweeps, depth) 

IKPLICIT NONE 
INTEGER L, num_sweeps, depth 
INCLUDE ' mg_common.inc' 
INCLUDE 'nmax_declarations.inc' 

C V(L) is updated by 'num_sweeps' of horizontal linewise weighted Jacobi relaxation . 
C 

C 

INCLUDE '/usr/include/cm/ cmssl-cmf.h' 

INTEGER s, us, status 
DOUBLE PRECISION vbar 
DOUBLE PRECISION temp_rov(nmax,nmax) 

CKF$ LAYDUT temp_row(:NEWS,:NEWS) 
DOUBLE PRECISION upper_diag (nmax,nmax), diag(nmax,nmax), lower_diag(nmax,nmax) 

CKF$ LAYOUT upper_diag(:NEWS, : NEWS ) , diag( : NEWS,:NEWS), lower_diag( : NEWS, : NEWS) 
C 

C 

s = step(L) 
IF (user_relax == 2) THEN 

us 2 
ELSE 

us user_relax + 2 
ENDIF 
wbar - one - relax_weight 

C Assemble the tridiagonal matr ix. 
C· 

C 

upper_diag = -cc_right(us,L) 
diag = cc_centre(us,L) 
lower_diag = -cc __ left(us,L) 

DO (num_sweeps) TIKES 
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C 

C Assemble temp_row . 
C 

179 

IF ( (depth == 0) .OR . non_linear_PDE ) THEN ! Use act ual boundary conds . 

C 

t 
t 
t 
t 

t 
t 
t 

" 

temp_row cc ____ up (us,L) * 
EOSHIFT (v(L,: ,:) , DIM 2, SHIFT +s, 

+ cc __ down (us,L) * 
EOSHIFT (v(L,: , :) , DIM 2 , SHIFT = -s, 

f (L, : , :) * h2 (L) 

BOUNDARY top ____ bc(: ,nmax» 

BOUNDARY = bottom_bc(:, l » 

ELSE Use zero boundary condit i ons (since this is a coarse gr i d). 
temp_row 

ENDIF 

cc ____ up (us , L) * 
EOSHIFT (v (L, : ,: ) , DIM 2, SHIFT +s , BOUNDARY 

+ cc __ down(us,L) * 
zero ) 

EOSHIFT ( v(L,: ,:) , DIM 
te L, : , :) * h2 (L) 

2, SHIFT = -s , BOUNDARY zero ) 

C Incorporate the left and r i ght boundary conditions for each t emp_row . 
C 

IF ( (depth == 0) . OR. non_linear_PDE ) THEN ! Use actual boundary conds . 
temp_row (s ,:) temp_row (s, :) + cc __ left (us,L) * left ___ bc( l, :) 
temp_row (ni (L) *s, :) 

t temp_row (ni (L) *s,: ) + cc_right (us,L ) * r i ght __ bc(nmax ,:) 
ENDIF 

C 

C Update each temp_row by solving the ni (L) tridiagonal systems . 
C 

status = 0 
CALL gen_tr i diag_s vlve ( temp_row (s :nmax : s , s :nmax :s ), 

t upper_di ag (s:nmax:s,s :nmax : s ) , 
t di ag (s:nmax :s,s :nmax : s ) , 
" lower_diag (s:nmax:s,s :nmax : s ) , 
" 1, line_relax_tolerance, status ) 

IF (status <> 0) 
t STOP ' ### HORIZ_JACOBI_LINE_RELAX : error occured in GEN_TRIDIAG_SOLVE ' 

C 

C Update v. 
C 

C 

C 

v (L, s:nmax:s,s :nmax :s ) 

ENDDO 

RETURN 
END 

wbar * v (L,s:nmax:s,s:nmax :s ) 
+ relax_weight * temp_row (s : nmax :s,s :nmax :s ) 

c====================================================================================== 

C 
SUBROUTINE vert_jacobi_line_relax (v, f, right __ bc, left ___ bc, top ____ bc, 

t bottom_bc , L, num_sweeps, depth ) 
C 

C Vel) is updated by 'num_sweeps' of vertical linewise weighted Jacobi relaxat i on . 
C 

C 
c====================================================================================== 
C 

SUBRDUTINE calc_residue_r (v, f, r, right __ bc, left ___ bc, top ____ bc , bottom_bc , 
t x, y, x2 , y2, L, depth) 
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C 

IMPLICIT NONE 
INTEGER L, depth 
INCLUDE ' mg_common.inc ' 
INCLUDE 'nmax_declarations.inc' 

C r ~ f - A *v 
C L L L 
C 

C 

C 

C 

C 

INTEGER s 

IF (user_relax <> 2) THEN 
CALL user_calc_residue_r (v, f, r, right __ bc, left ___ bc , top ____ bc, bottom_bc, 

t x, y, x2, y2, L, depth) 
RETURN 

ENDIF 

IF ( L == 1) THEN 
IF ( (depth == 0) . OR . non_linear_PDE ) THEN ! Use actual boundary conditions. 

r1 = f1 - n2 (L) * ( cc_right(2,L) * right __ bc (nmax,mid) 
t + cc __ left (2,L) * left ___ bc(l,mid) 
t + cc ____ up (2, L) * top ____ bc (mid , nmax ) 
t + cc __ down (2 ,L) * bottom_bc (mid,l ) 
t - cc _centre (2, L) * v1 ) 

ELSEIF (depth> 0) THEN ! Use zero boundary conditions (this is a coarse grid). 
r1 = f1 + n2 (L) * cc_centre (2, L) * v1 

ELSE 
STOP ' ### CALC_RESIDUE_R: depth < 0' 

ENDIF 
RETURN 

ENIHF 

s " step(L) 
IF ( (depth == 0) .OR . non_linear_PDE ) THEN ! Use actual boundary conditions. 

r = f(L,: ,:) - n2(L) * ( cc_right(2,L) * 
t EOSHIFT(v (L, : , :) , DIM = 1, SHIFT = +s, BOUNDARY = right __ bc (nmax, :» 
t + cc __ left(2,L) * 
t EOSHIFT(v(L, :,:), DIM = 1, SHIFT = -s, BOUNDARY = left ___ bc (l ,: » 
t + cc ____ up(2,L) * 
t EOSHIFT(v (L, : , :), DIM = 2, SHIFT = +s, BOUNDARY = top ____ bc (: ,nmax » 
t + cc __ down(2,L) * 
t EOSHIFT(v (L, :,:) , DIM = 2, SHIFT = -s, BOUNDARY = bottom_bc (: , 1» 
t - cc_centre(2,L) * v(L, : , :) ) 
ELSEIF (depth> 0) THEN ! Use zero boundary conditions ( this is a coarse grid). 

r = f(L,: ,:) - n2(L) * ( cc_right(2,L) * 
t EOSHIFT(v(L,:,:), DIM = 1, SHIFT = +s, BOUNDARY = zero) 
t 
t 
t 
t 
t 
t 
t 

ELSE 

+ cc __ left(2,L) * 
EOSHIFT(v(L,:, :), DIM = 1, SHIFT" -s, BOUNDARY = zero) 

+ cc ____ up(2,L) * 
EOSHIFT(v(L, : , :) , DIM = 2, SHIFT = +s, BOUNDARY = zero ) 

+ cc __ down(2,L) * 
EOSHIFT(v(L, : ,:), DIM = 2, SHIFT" -s, BOUNDARY = zero) 

- cc_centre(2,L) * v(L, : ,:) ) 

STOP '### CALC_RESIDUE_R: depth < 0 ' 
ENDIF 

RETURN 
END 
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C 

c====================================================================================== 
C 

C 

C Select the appropriate restriction routine. 
C 

C 

C====================================================================================== 
C 

C 

SUBROUTINE injection_restriction_of_r_to_f (f, r, L) 
IMPLICIT NONE 
INTEGER L 
INCLUOE 'mg_common.inc ' 
INCLUDE 'nmax_declarations.inc' 

C F(L-l) = I(L,L-l) R, 
C 

vhere I = restriction by ' restrict_veight'-injection. 

C 

C 

IF (L == 2) THEN 
fl = restrict_veight * r(mid,mid) 

ELSE 
f(L-l,: ,:) = restrict_veight * r 

ENDIF 

RETURN 
END 

C=========================~~=========================================================== 

C 

C 

SUBROUTINE veighted_restriction_of_r_to_f (f, r, L) 
IMPLICIT NONE 
INTEGER L 
INCLUDE ' mg_common . inc , 
INCLUDE ' nmax_declarations.inc ' 

C F(L-l) = I(L,L-l) R, vhere I = restriction by 'restrict_veight'-full-veighting. 

C 

INTEGER il, i2, i3. s 
DOUBLE PRECISION stencil(nmax,nmax) 

CHF$ LAYOUT stencil(:NEWS, : NEWS ) 
C 

c 

IF (L =z 2) THEN 
i2 mid 
il - i2 / 2 
i3 .. 3 * i1 
fl sixteenth * restrict_veight * 

t ( four * r(i2,i2) 
t + tva * (r(il,i2) + r(i2,il) + r(i3,i2) + r(i2,i3» 
t + r(il,il) + r(il,i3) + r(i3,il) + r(i3,i3) 

RETURN 
ENDIF 

s = step(L) 
stencil = quarter * 

t ( EOSHIFT(r, DIM" 1, SHIFT" +s, BOUNDARY" zero) 

t + two * r 
t + EOSHIFT(r, DIM m 1, SHIFT" -s, BOUNDARY" zero) 



.... 

ApPENDIX C: CM FORTRA N LI STI NG OF rnglab. fern 

C 

C 

stencil" quarter * 
t ( EOSHIFT (stencil, DIM 2, SHIFT,. +s, BOUNDARY = zero ) 
t 
t 
f(L-1, : , :) 

RETURN 
END 

+ tvo * stencil 
+ EOSHIFT (stenc i l, DIM 2, SHIFT = -s , 

restrict_veight * stenc il 
BOUNDARY = zero ) 

1 2 

C====================================================================================== 
C 

SUBROUTINE immediate_correction ( v, f, r, u, e, old_v, right __ bc, left ___ bc, 
t top ____ bc , bottom_bc , x , y, x2 , y2, Ltop , L ) 

C 
C nevv (Ltop) 
C 

v (Ltop ) + I (Ltop,L) v el ) , vhere I = bi l i near i nterpolat i on . 

C 
C=====~=====-========================================================================== 

C 
SUBROUTINE bilinear_interpolate_v ( v , right __ bc , left __ _ bc, top ____ bc , bot t om_bc , L) 
IMPLICIT NONE 
INTEGER L 
INCLUDE ' mg_c ommon . inc' 
INCLUDE ' nmax_declarations:inc ' 

C 
C Vel ) = I (L-1,L ) V(L-l) 
C 

vhere I b i linear interpolat i on . 

C 

C 

INTEGER i1, i 2, i 3, 5, t 

DOUBLE PRECISION v1l , v1r , v1b, v1t 

IF (L == 2) THEN 
i 2 • mid 
i1 = i2 / 2 
i3 = 3 * i1 
v11 • left ___ bc (1,i2) 
v1r = right __ bc (nmax , i 2) 
v1b ,. bottom_bc ( i 2 ,1 ) 
v1t z top ____ bc( i 2, nmax ) 
v (2, i2,i2 ) v1 
v (2 ,i1 , i 2) half * ( v11 + v1 ) 
v (2 ,i3,i2) half * ( v1r + v1 ) 
v(2 , i2,i1 ) = half * (v1b + v1 ) 
v (2,i2 , i3 ) half * ( v1t + v1 ) 
v(2,i1,il) 
v( 2 ,i1,i3) 
v(2,i3 , il) 
v (2,i3 , i3) 
RETURN 

ENDIF 

s ,. step (L-l) 

,. quarter * 
quarter * 
quarter * 

= quarter * 

t = step ( L) 
v el, : , : ) = zero 

(bot __ left + 
(bot_right + 
( top __ left + 

( top_right + 

vll + v1b + 

v1r + vlb + 
vll + v1t + 
v1r + v1t + 

v (L, s :nmax :s,s :nmax : s ) = v(L-1,s :nmax :s,s :nmax:s ) 
v (L, : , : ) v (L, :,:) + half * 

vl) 
vl) 
vl) 
vl) 

t EOSHIFT (v (L,: , :) , DIM 1, SHIFT = +t, BOUNDARY = right __ bc(nmax .:)) 
t + EOSHIFT(v(L, : , :) , DIM = 1, SHIFT = -t, BOUNDARY = left ___ bc( l, :)) ) 
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v el, : , :) 
t 
t 

C 
RETURN 
END 

C 

v el,: ,:) + half * 
EOSHIFT(v (L, :,:), DIM 2, SH IFT = +t, BOUNDARY 

+ EOSHIFT (v (L,: ,:), DIM 2, SHIFT = -t, BOUNDARY 
top ____ bc (: ,nmax » 
bottom_bc(: ,1» ) 

c--=-----------~~============~======a=================-=---_=_======================== 

C 

C 

SUBROUTINE coarse_grid_correct_v (v, L) 
IMPLICIT NONE 
INTEGER L 
INCLUDE 'mg_common . inc ' 
INCLUDE ' nmax_declarations .inc ' 

C Vel ) = Vel ) + I(L-1,L) V( L-1 ) 
C 

where bilinear interpolation. 

INTEGER i1, i2, i3, s, t 
DOUBLE PRECISION temp_v (nmax,nmax ) 

CMF$ LAYOUT temp_v ( :NEWS,:NEWS ) 
C 

C 

C 

C 

t 
t 

t 
t 

IF (L == 2) THEN 
i2 mid 
i1 = i2 / 2 
i3 = 3 * it 
v (2 ,i2 , i2) = v (2,i2,i2) 
v (2,i 1,i2) v (2,it,i2) 
v (2,i3,i2) v (2,i3,i2) 
v (2,i2,il) v(2,i2,il) 
v (2, i2,i3 ) v (2,i2,i3) 
v(2,i1,il) v (2,i1,il) 
v (2,i l,i3 ) v (2,it,i3) 
v(2,i3,i1 ) v(2,i3,il) 
v (2,i 3,i3) v (2,i3,i3) 
RETURN 

ENDIF 

s = step(L-l) 
t = step(L) 
temp_v = vel, : ,:) 
v(L ,:,:) = zero 

+ v1 
+ half * v1 
+ half * v1 
+ half * v1 
+ half * v1 
+ quarter * v1 
+ quarter * v1 
+ quarter * v1 
+ quarter * v1 

v (L, s :nmax :s,s :nmax : s ) 
vel, : , :) - vel, : ,:) 

= v (L-1,s :nmax :s,s :nmax:s) 
+ half * 

vel, : , :) 

vel, : , :) 

RETURN 
END 

( 

v el, : , :) 

EOSHIFT(v(L, :,:), DIM = 1, SHIFT 
+ EOSHIFT (v(L,:,:), DIM = 1, SHIFT 

+ half * 
( EOSHIFT (v (L,:,:), DIM = 2, SHIFT 
+ EOSHIFT(v(L,:, :), DIM = 2, SHIFT 

v( L, :,:) + t emp_v 

+t, BOUNDARY = zero) 
-t, BOUNDARY zero) 

+t, BOUNDARY zero) 
-t, BOUNDARY zero) 

C==·a=z== __ ~_.==============================Z========================================== 
C 

SUBROUTINE calc_result (v, f, r, u , e, right __ bc, left ___ bc, t op ____ bc, bottom_bc, 
t x, y, x2, y2, L, immediate_correction , from_L) 

C 
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C Calculate and print the error and residual norms. 
C 

C 

1 4 

C====================================================================================== 
C 

DOUBLE PRECISION FUNCTION 10g_10 (x) 
C 

C Return LOG10 (x) while checking for a zero argument . 
C 

C 

c=-------------====================--================================================== 

C 
SUBROUTINE plot_vf ( input_array , right __ bc , left ___ bc , top ____ bc, bottom_bc, L, 

t depth , vf ) 
C 

C Plot input_array (L, : ,:) on the Connection Machine frame buffer or an X-term i nal . 
C For coarser grids, this means expanding the value of each coarse-gr i d point to t he 
C step (L) x step (L) sized block surrounding it . 
C Note : rotate_pause_flag = - 2 means rotate after each plot, 
C rotate_pause_flag = -1 means rotate and pause after each plot , 
C rotate_pause_flag = 0 means don ' t pause after each plot, 
C 

C 

C 

rotate_pause_flag +1 means pause after each plot. 

C====================================================================================== 
C 

SUBROUTINE plot_ur ( input_array , ur ) 
C 
C Plot input_array( : ,:) in a similar fashion to the above routine ' plot_vf '. 
C 

C 

C====================================================================================== 
C 

C 

C 

SUBROUTINE pause 
IMPLICIT NONE 

CHARACTER-1 dummy 

WRITE(-,10) 
10 FORHAT(lX, 'Hit <CR> to continue . . . . ' $ ) 

READ(-,20) dummy 
20 FORHAT(A1) 
C 

C 

RETURN 
END 
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