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Abstract

This thesis is concerned with the finite-difference multigrid solution of static
scalar nonlinear two-dimensional elliptic Dirichlet boundary value problems, and
aspects of the implementation of the multigrid algorithm on a parallel processing
system, namely the Connection Machine CM-2.

The numerical solution of boundary value problems is a very important
area of computational mathematics, as such problems frequently arise from the
modelling and simulation of various physical systems.

The multigrid philosophy for the problems under consideration is in principle
a simple one: approximations with smooth errors are efficiently obtained by ap-
plying suitable relaxation methods: because of the error smoothness. corrections
to these approximations may then be calculated by projecting a corresponding
equation to a coarser grid. This idea is recursively applied to a hierarchy of suc-
cessively coarser grids, and leads to an asymptotically optimal iteration for the
numerical solution of a wide class of partial differential equations.

Despite the excellent convergence properties of these algorithms for elliptic
problems however, the multigrid process cannot be thought of as a fixed method
— researchers often experiment a great deal with the many multigrid parame-
ters available to them before obtaining suitable convergence properties. For this
reason, we have written a software package called MGLAB which aims to provide a
robust user-friendly “laboratory” environment, allowing the researcher to quickly
and simply experiment with the multigrid solution of boundary value problems.
The package is available in a standard FORTRAN 77 version for use on conven-
tional serial computers and also in a CM Fortran version to gain the benefits of
parallel data processing on the Connection Machine.

With the advent of new computer technologies, it is imperative that nu-
merical algorithms keep up to date. The increasingly widespread use of parallel
processing systems in advanced computing technologies creates a certain chal-
lenge for multigrid algorithms, for they are not readily adapted to such machines.

In this report, we discuss the fundamentals of the multigrid method for
linear and nonlinear equations, including theoretical aspects which are of concern
to both the multigrid programmer and practitioner. We then present numerical
results obtained from MGLAB for certain model problems; these cover a range of
complexity from Poisson’s equation to the nonlinear geometric problem of finding
surfaces of prescribed curvature. We also consider the special requirements of
implementing a multigrid scheme on the Connection Machine CM-2. Finally we
discuss how to generalise the problems under investigation here to the solution
of time-dependent vector boundary value problems in higher dimensions.
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Preface: An Essay on Three
Revolutions in Science

Humanity’s greatest achievement has been the invention of Science. It has com-
pletely transformed our lives, our society and our planet, and is inextricably
linked with our very idea of advancement and progress. Indeed, the word science
i1s derived from the Latin word meaning knowledge.

The ancient Greek empire provided a stable environment for the birth of
a great school of early philosophers, which arose in Alexandria. Egypt. Of all
the ancient peoples, it was the Greeks who left the greatest heritage to present-
day science by laying the foundations of the scientific method. One of a long
line of Greek scholars, Aristotle (384-322 BC) epitomised this new systematic
thinking. He studied all areas of science and familiarised himself with the entire
development of Greek thought preceding him. Aristotle developed deductive logic
as a means of reaching conclusions. In this method, one reasons from known
scientific principles in order to draw a conclusion relating to a specific case. In
his books Physics and Metaphysics, Aristotle defined natural philosophy and
investigated the most general and basic principles of reality and knowledge.

Aristotle and his contemporaries instigated the first scientific revolution by
bringing to bear the full weight of abstract reasoning and logic upon the natural
world. In fact, Aristotle went too far with this theoretic formalism by distancing
himself and his school from nature itself; they tried to create a great metaphysi-
cal framework for explaining the nature of the universe, which was too abstract.
He and his disciples concentrated on intellectual debate regarding form, change,
elementary being and so on, while neglecting actual observation and experimen-
tation. Although Aristotle greatly contributed to the birth of classical science,
many of his deductive conclusions were false, since he based his arguments on
mistaken ideas and premises, rather than on experiments.

In about 150 AD, Ptolemy developed a unified model of the universe. His
theories and observations are preserved in a 13-volume work called Mathematike
Syntazis (Mathematical Composition), but which became widely known as the
Almagest (an Arabic word meaning “the greatest”) due to the admiration and
acclaim that it won. Ptolemy believed that the Sun, Moon, stars and planets all
moved at various speeds about a stationary Earth, which he placed at the centre
of the universe.

In this same period, the Greek anatomist Galen practised medicine in Rome.
Just as Aristotle had emphasised abstract reasoning, Galen similarly based his
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anatomical conclusions on thoughts rather than observations, though for a differ-
ent reason: dissection of human cadavers was prohibited in ancient Rome. In any
event, Galen also had many mistaken ideas. Nevertheless, the schools of thought
founded by Aristotle, Ptolemy, Galen and their contemporaries were accepted as
authoritative throughout Europe until the sixteenth century.

The teachings of the ancient Greeks were lost to Europe in the Dark Ages,
being reintroduced through the Arab empire in the 11th century. (In fact, it was
Aristotle who taught the young Alexander the Great, who later carried Greek
culture to Egypt, Asia Minor and Persia.)

During the Middle Ages, Europe was controlled by Church States and the
development of science stagnated. Roger Bacon, an English monk living in the
1200’s for example, was greatly interested in advancing scientific knowledge. He
criticised the deductive method of obtaining knowledge, seeing the need for ex-
periment, measurement and mathematics. He was imprisoned for criticising de-
pendence on accepted authority.

In general, European scholars of that time preferred theology to the study
of nature. During the thirteenth century, theologians organised the knowledge in
the Greek writings so as to agree with their own religious views. Scholars saw
no need for direct observation of nature. The writings of Aristotle, Ptolemy and
Galen were considered Truth; to disagree with them was considered heresy.

The great scientific renaissance can be traced to precisely 1543, when two revo-
lutionary works were published. Nicolaus Copernicus, a Polish astronomer, pub-
lished De Revolutionibus Orbium Coelestium (On the Revolutions of the Celestial
Orbs), which contradicted Ptolemy’s model of the universe. Simultaneously and
independently, the Belgian anatomist Andreas Vesalius published De Human:
Corporis Fabrica (On the Fabric of the Human Body), which described his own
anatomical observations, rather than merely repeating Galen’s statements.

While each volume was conceived in terms of the corresponding work of
classical antiquity, each was consciously novel in its approach, and proved to be
revolutionary in its implications. A new philosophy — Copernicanism — was
emerging, one which was rational, radical and profoundly anti-Aristotelian and
anti-Ptolemaic. It also became a symbol of the struggle for free unconventional
intellectual development.

Some fifty years later, Galileo Galilee made fundamental astronomical dis-
coveries with the newly-invented telescope, and Copernicanism was publicised in
a highly dramatic manner. Galileo and Francis Bacon became the patron saints
of the new philosophy in England, where the scientific revolution reached its
pinnacle in the work of the Royal Society and especially of its most celebrated
Fellow, Sir Isaac Newton. The important ingredient of this revolution was a deep
concern with methodology. A profound belief arose in the discovery of a scientific
method, which was presumed to be unique and universal. The most influential
writers in this regard were Descartes and Bacon, who each had a grand vision of
its potential. The science historian Marie Boas Hall writes [54]:

Both Bacon and Descartes saw natural philosophy as the most urgent and
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profitable field for investigation; both saw it yielding its secrets rapidly if
the proper methods of research were applied; both insisted that the world is
utterly rational, composed of nothing but matter and motion, and that only
rational, anti-mystical methods of thought could therefore comprehend it.

Whereas Descartes began with self-evident principles and deduced complex
metaphysical laws (“I think, therefore I am”), Bacon began with empirically-
determined fact. Bacon rejected a priori hypotheses in favour of those based on
sense experience. Further, he insisted that all hypotheses be subject to crucial
deciding experiments, by which they are accepted or not.

Some time later in 1660, the Royal Society of London was formed by scien-
tists who saw themselves as being inspired by Bacon and Galileo, men who had
given them a profound belief in experiment, and a conviction of the importance
of mathematical physics.

The greatest English scientist, Newton, drew the profound vision of a me-
chanical universe from Descartes; the experimental method from Boyle and
Hooke; the distrust of hypotheses not based on empirical evidence and a fas-
cination for induction from Bacon, and from Galileo he derived the concept of a
mathematical universe to be properly described only in the language of mathe-
matics. In this way Newton’s Philosophie Naturalis Principia Mathematica ( The
Mathematical Principles of Natural Philosophy) differs from Descartes’ Principia
Philosophie.

Thus the great minds of the scientific revolution had formulated a mechanical
universe of matter and motion, reasonable, rational, obeying fixed mathematical
laws, to be ascertained by means of theory and experiment.

For the last three or four centuries, the scientific method has relied upon
these twin paradigms of abstract thought and observation. A great deal of
progress has been achieved through the methodical application of the scientific
method, a process which may be summarised as follows:

1. state the problem
. form the hypothesis
. observe/experiment
. interpret the data
. draw conclusions

The third great revolution in science began in this century, although it was pre-
saged much earlier by Charles Babbage. He saw the need for automatic, speedy
and error-free calculation of such things as tables of logarithms. Babbage devised
and built a mechanical calculating device called a difference engine in 1822. His
later, more ambitious project of a fairly general calculating machine called an

analytical engine was never completed because of financial constraints and a tool
industry which lacked sufficient precision.

The true era of the computer dawned during the 1940’s, when automatic
computing machines were first built, a technological leap spurred on by the war
effort. Indeed, these early computers were designed for specific military pur-
poses, such as the calculation of missile trajectories, to aid in the investigation

Viii




of implosion and detonation, and to break codes and ciphers. The first elec-
tronic computer is generally recognised to be ENIAC (the Electronic Integrator
and Calculator), constructed in the Moore School of Engineering, Philadelphia
in 1946.

John von Neumann was an early prophet of the importance of computing to
the field of science, especially mathematics. It is incredible that as early as 1946,
he and Herman Goldstine wrote [46]:

We could, of course, continue to mention still other examples to justify
our contention that many branches of both pure and applied mathematics
are in great need of computing instruments to break the present stalemate
created by the failure of the purely analytical approach to nonlinear prob-
lems. Instead we conclude by remarking that really efficient high-speed
computing devices may, in the field of nonlinear partial differential equa-
tions as well as in many other fields which are now difficult to access or are
entirely denied of access, provide us with those heuristic hints which are
needed in all parts of mathematics for genuine progress. In the specific case
of fluid dynamics these hints have not been forthcoming for the last two
generations from the pure intuition of mathematicians, although a great
deal of first-class mathematical effort has been expended in attempts to
break the deadlock in that field. To the extent to which such hints arose
at all (and that was much less than one might desire), they originated in a
type of physical experimentation which is really computing. We can now
make computing so much more efficient, fast, and flexible that it should
be possible to use the new computers to supply the needed heuristic hints.
This should ultimately lead to important analytical advances.

It is sad that von Neumann did not live long enough to see his vision of computer-
assisted science come true.

The rise of the computer to pre-eminent importance in our modern world
has taken place because, just as the birth of science involved abstraction, the
computer is a tool for processing information in an abstract form, and so it can
be utilised for an exceedingly broad range of activities.

Within the last decade or so, it has become clear that scientific computa-
tion has progressed to a stage where it can now be considered as a new and
significant part of the scientific method. This is because computer hardware,
software and methodologies are now sufficiently advanced to allow scientists to
experiment with physical systems in the abstract space of a computer, rather
than being restricted to observations of the real world. Modern techniques in
numerical analysis, simulation, modelling and visualisation now give us a new
window on nature. New areas of science have recently appeared, such as fractals,
chaotic systems and cellular automata. The computer serves as a new observ-
ing instrument for these newly-discovered worlds. The impact of the computer
on mathematics is not limited to so-called applied mathematics and engineering;
consider for example Appel and Haken’s proof-by-computer of the four-colour
theorem in 1976 [6]. The mathematical community has still not come to terms
with the philosophical ramifications of such automated reasoning.




The ability to rapidly solve nonlinear partial differential equations allows
us to study time-dependent simulation of many physical systems. These and
other difficult numerically-intensive problems are becoming more accessible to
scientists with the advent of parallel and other advanced computing technologies.
The following list is a sample of the many and various areas of science which
modern supercomputers are helping to advance:

e fluid and gas dynamics: aerodynamics, study of shocks, jets, boundary
layers, recirculating flows, instability and turbulence

e N-body problems: particle and swarm simulations, galaxy formation and
evolution, cosmology

o theoretical physics: gauge theories, particle and field interaction, quantum
electrodynamics and chromodynamics, condensed matter research

e applied physics: properties of materials and defects, surface physics, optical
fibre technology, fusion and plasma research

e astrophysics: galactic jets, gas-matter interactions, accretion disks and
black holes, magnetohydrodynamics

e cellular automata: complexity theory, artificial life, statistical mechanics.
bush-fire simulation

e artificial intelligence: robotics, neural networks, knowledge-based reasoning,
automated theorem proving, pattern recognition

e commercial applications: database searching, industrial design

e device and circuit simulation: VLSI design and layout, propagation of elec-
trons through semiconductors

e theoretical chemistry: biomolecular design, quantum simulations, super-
conductors, macroscopic phenomena

e environmental science: climate modelling, weather forecasting, ozone dis-
tribution, oceanography, tidal modelling

e structure dynamics: solid mechanics, engineering, stress and fracturing
characteristics, structural mechanics, elastodynamics

e geophysics: reservoir simulation, flow through porous media, seismic anal-
ysis, geodetic networks, tectonics

e image processing: medical imaging, remote sensing, astronomical imaging,
tomography, image restoration

e biology: gene sequencing, molecular geometry, drug design.

To summarise, the birth of Western science took place in the ancient Greek empire
in the 300’s BC, when Aristotle and other scholars developed abstract reasoning
and theory as the foundation-stone of the scientific method. Little progress was
made then until the 1500’s, when Copernicus and others brought about a great
renaissance in science. This second revolution was based on the perceived im-
portance of observation and experiment, tied with theory and mathematics. The
third great revolution in science began in the 1940’s when the electronic computer
was invented. By the 1980’s, the speed and capability of computers enabled scien-
tists to effectively simulate the workings of nature, creating a crucial new element
of the scientific method.




Chapter 1

Introduction

Science has become a collection of mathematical theories adorned with
a few physical facts. Further, if one can speak of the goal of modern
scientific theory, it is to subsume all its results under one mathe-
matical principle whose implications would describe the multifarious
operations of nature.

— Morris Kline [63]

The computer revolution is the greatest challenge facing mathematics
in the coming years. Mathematicians have set great stock in abstract
mathematics, in which concepts and rigour have been the dominant
things, but now algorithms are really important.

— Albert Tucker [71]

1.1 Overview

In this research report, we will be concerned with the finite-difference multigrid
solution of nonlinear elliptic boundary value problems (BVP’s), and consider
the implementation of multigrid algorithms on the Connection Machine CM-2,
a parallel processing supercomputer in relatively widespread use throughout the
scientific world. To keep matters reasonably uncomplicated, we generally discuss
only time-independent scalar two-dimensional partial differential equations, with
Dirichlet boundary conditions on the unit square. This will enable the exposition
to be clear and concise; we consider extensions to this class of problem in Chap-
ter 9. We will discuss the fundamentals of the multigrid method for linear and
nonlinear equations, presenting results for certain model problems obtained from
a new and original multigrid software package. This package is implemented on
both standard serial computers and on the CM-2. We look at issues arising from
serial and parallel implementation of multigrid algorithms. We also consider how
these numerical results reflect upon the structure of the multigrid iteration.
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CHAPTER 1: INTRODUCTION

Many problems of mathematical physics lead to boundary value problems
involving partial differential equations of elliptic type. This type of equation, to be
carefully defined in Chapter 2, is characterised by global properties of its solution:
the solution at every point depends upon the solution at every other point in the
domain. The physical law behind this “collective behaviour” is usually a force
field of some type, where the forces (instantly propagated) depend on the solution
and vice versa. In contrast, hyperbolic equations have a diminished sense of
collectiveness: their behaviour is much more local. These underlying properties
mean that numerical techniques for solving the various types of equations are
likewise different.

Elliptic BVP’s arise in areas such as fluid dynamics, electromagnetics, solid
state and materials science, general relativity, applied mechanics and engineering.
These areas encompass many different types of physical processes, for example
vibration, conduction, convection, diffusion. particle and field interaction, stress
and fracture. The challenge to the computational mathematician is often not
merely to solve such a problem, but to do so rapidly and efficiently, thus allowing
researchers to study the behaviour of parabolic systems.

The last decade has seen the evolution of a major new technique to tackle
some of these difficult problems in scientific computation. Multigrid methods
have proven to be powerful PDE-solvers, although multigrid has not yet become
a mature field of numerical analysis. In particular, convergence theory lags behind
our practical knowledge of multigrid algorithms, which deliver results at speeds
comparable to any other numerical method. Nevertheless, it is now well-known
that multigrid is an optimal O(/N) solver (for problems involving N unknowns)
for a wide class of PDE’s, including the class of well-behaved discrete elliptic
boundary value problems [17, 51, 93].

The past history of numerical analysis and computation has been marked by
a sharp division into the finite-difference and the finite-element fields. Multigrid
can be viewed as a fairly general acceleration technique, one which is applicable
to both these fields. (For an early discussion of multigrid methods for finite
elements, see McCormick and Ruge (78].) Moreover, multigrid and multilevel
techniques in general are now being applied to a very broad range of numerical
problems (see Brandt’s 1988 Weizmann Report [18]), such as:

e inverse problems,

e integral equations,

e global optimisation,
n-body interactions,
linear programming,
fast Fourier transforms,
combinatorial optimisation,
nonlinear non-elliptic PDE’s,

behaviour of statistical fields,




CHAPTER 1: INTRODUCTION

e determinants of systems of equations, and

® approximation of piecewise-smooth functions.
To quote from Brandt [18]:

Multilevel computations have evolved into an independent discipline, in-
teracting with other computational methodologies, it has its own internal
development, gradually increasing the understanding of the many types of
multi-scale interactions, their modes of operation and domains of applica-
tion. The research exhibits the deep interdisciplinary and cross-fertilising
role of applied mathematics, in that various underlying relations and algo-
rithmic ideas are carried back and forth between widely varying areas of
applications. It is thus quite beneficial that an advanced research group
works widely across this discipline, not too limited to some specific appli-
cations.

Multilevel solvers can even be constructed when problems have no explicit geo-
metric basis. In these algebraic multigrid (AMG) solvers, we require fine-level
variables to be “strongly connected” by the fine-level equations to at least some
coarse-level variables. The inter-level transfers may also be based purely on al-
gebraic equations. For more details, see Ruge and Stiiben (87].

A revolution in computer science occurred in 1985 with the announcement
of the Connection Machine by Thinking Machines Corporation [56]. This was
the first computer system to use massive parallelism to achieve supercomputer
status. Designed specifically to study artificial intelligence, the CM-1 utilised
tens of thousands of primitive single-bit processors in a highly connected network.
The hope was to imitate the architecture of the human brain. [ronically, much
more interest in the Connection Machine was aroused in numerical fields than in
artificial intelligence. We classify the operation of this machine as SIMD (single
instruction, multiple data), meaning that identical instructions are performed on
all processors in unison, on data sets local to each processor. This classification
contrasts with MIMD (multiple instructions, multiple data) machines in which
processors execute a local sequence of instructions (see Chapter 8 for further
details). The SIMD CM-1 computer was found to be ideal for solving finite-
difference and finite-element problems on regular grids, in particular.

Thinking Machines Corporation responded by introducing the CM-2 in 1987,
which included double-precision floating-point units, thus giving computational
scientists potential gigaflop performance. At the present time, the great majority
of applications that are run on the 80 or so Connection Machines throughout the
world are mathematical in nature. The remaining applications tend to fall into
the two smaller categories of artificial intelligence and database applications [57].

Thinking Machines Corporation has recently announced the CM-5 [98]. It
is intended to be a universal computer (that is, dual MIMD/SIMD), operating
on “cooperative” principles, and is designed to be scalable to the teraflop per-
formance level (trillions of floating-point operations per second). Up until now,
parallel computer users have been forced to choose between MIMD machines,
which are good at independent branching but poor at synchronisation and com-
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CHAPTER 1: INTRODUCTION

munication, and SIMD machines, which have complementary characteristics. The
CM-5 is claimed to combine the best of both these architectures, while taking ad-
vantage of the latest developments in VLSI, compiling methods, RISC processors,
networking and so on.

Apart from massively-parallel systems, there are many other types of high-
performance computer available to researchers. These include machines con-
structed from extremely advanced solid-state technologies, relying on one or a
handful of CPU’s with vector pipelines (eg. Cray Y-MP and Fujitsu VP). An-
other class of supercomputer is the moderately-parallel system which employs
tens or hundreds of processors to share the computational work (eg. Intel iPSC
and NCUBE). We will say more about parallel processing systems in Chapter 8.

With the advent of new computer technologies, it is necessary for numerical
algorithms to be kept up to date. The increasingly widespread use of parallel
processing systems in supercomputers creates a certain challenge for multigrid
algorithms, for they are not readily adapted to SIMD machines. On the other
hand, finite-difference methodologies are well suited to such an architecture.

Multigrid is a relatively recent numerical method, which presents the numer-
ical practitioner with a large choice of parameters. At this stage of development,
multigrid cannot be considered a fixed method. The optimal value of the multi-
grid parameters is often not known in advance, hence it is common for a certain
amount of experimentation to take place, in order to obtain suitable convergence
properties. In a survey article of 1991, Frederickson, McBryan, Stiiben, Trotten-
berg et al [75] wrote:

For a wide class of problems in scientific computing, in particular for par-
tial differential equations, the multigrid (more generally, the multilevel)
principle has proved to yield highly efficient numerical methods. How-
ever, the principle has to be applied carefully; if the multigrid compo-
nents are not chosen appropriately for the given problem, the efficiency
may be far from optimal. This has been demonstrated for many practical
problems. Unfortunately, the general theories on multigrid convergence do
not give much help in constructing really efficient multigrid algorithms,
though some progress has been made in bridging the gap between theory
and practice during the last few years. Research in finding highly-efficient
algorithms for nonmodel applications therefore is still a sophisticated mix-
ture of theoretical considerations, transfer of experiences from model to
real-life problems, and systematic experimental work.

One of the goals of this research project was to write a software package for
the CM-2 suitable for solving arbitrary PDE’s in the class specified above, using
the multigrid method in a “laboratory-style” environment. This would provide
a suitable platform for experimenting with the various multigrid parameters, in
contrast to a “black-box” solver. For this reason, we have sometimes sacrificed
performance for the sake of flexibility and ease-of-programming. This has resulted
in the user’s ability to program and solve PDE’s from scratch in as little as ten
minutes. We have also emphasised user-friendliness, to a degree that the user is
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easily able to perform a thorough parameter-space investigation.

This software package, called MGLAB, was initially written in standard FOR-
TRAN 77, then ported to the Connection Machine using the CM Fortran language.
Results will be presented for various model problems which were obtained from
serial machines as well as from the CM-2 located at the Australian National Uni-
versity. These problems begin with simple linear constant-coefficient equations,
and progress to more interesting nonlinear geometric problems. We will relate

these results to the multigrid process and to considerations of parallel multigrid
implementation.

1.2 A Brief History of Multigrid

Virtually every problem of mathematical physics leads naturally to solving one
or more functional equations of the form

Au=f (1

where A is an operator from some space X into some space 9, fis given in 9, and
u is the desired solution in X. Examples of such classes of problems are ordinary
differential equations, partial differential equations and integral equations. In
general, it is not possible to determine the solution explicitly, or its explicit form
may be so complicated as to be practically useless, so that one is interested in an
approximate solution of the equation.

The standard numerical procedure for solving the problem (1.1) is to first
discretise the problem, using some discretisation parameter h, thereby construct-
ing approximating algebraic equations on finite-dimensional approximation sub-
spaces X and 9, and then to create some numerical process to approximately
solve this system of discrete equations, which we write as

Apup = fr (1.2)

In the case of differential equations, such discretisation algorithms typically give
rise to a large sparse system of algebraic equations. If this system is linear then
we write it in the matrix form Ayup = fi.

The study of numerical analysis investigates the following fundamental ques-
tions which immediately arise (see for example [94]):

1. Do the discrete equations (1.2) converge to the continuous equations (1.1)
as h — 07

2. Is existence and uniqueness guaranteed for the approximate equations (1.2)?

. Equations (1.2) may be nonlinear or otherwise difficult. Can we develop an
algorithm to solve them?

. Will this process be stable, convergent and consistent? (See Chapter 2 for
definitions of these three terms.)

. How do we implement an efficient algorithm on a computer (in terms of
CPU time, memory usage, etc)?
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The last few decades has seen an enormous amount of research into the
problem of numerically solving such systems. Typically these algorithms fall into
two classes: direct and iterative methods.

Direct methods calculate the solution exactly (to within machine precision)
in a finite number of algorithmic steps, an amount of computation that can be
determined in advance. The archetypal direct method is Gaussian elimination;
other methods are based on FFT’s (fast Fourier transforms), cyclic reduction or
special properties of certain classes of matrices. Applied to a dense problem on
an n x n grid, these algorithms require O(n*logn) arithmetic operations, and
so approach the optimal O(n?) operation count. Unfortunately, direct methods
are rather specialised, are best applied to separable self-adjoint BVP’s, and can
break down in other cases. They also require inordinate amounts of computer
memory when applied to large dense problems.

In contrast, iterative (or relazation) methods start from an initial guess and
proceed to obtain more and more accurate approximations from some compu-
tational cycle. This iteration may be repeated as often as necessary to achieve
a desired accuracy, hence the amount of computation depends on the required
accuracy. This sequence of simple updating iterations converges to the numerical
exact solution of the system (that is, within machine precision). The prototypes
of this class are the Jacobi and Gauss-Seidel methods of relaxation. While di-
rect methods can be applied to any non-singular problem, iterative methods are
generally more efficient for multidimensional problems; moreover, they are often
better-suited to computer solution, as they consist of a repetition of simple steps.
They also take good advantage of the sparse nature of the finite-difference system
of equations, and may require no computer memory in addition to the storage of
the discretised domain. The two classic references on iterative methods are Varga
(101] and Young [105].

Relaxation suffers from two deficiencies, however, which are manifestations
of the same underlying property. (These are discussed in detail in Chapter 2.)
The first is that the convergence factor is 1 —O(h?) or 1 — O(h), where h is the size
of the grid or mesh; hence convergence deteriorates as the grid is refined. This is
unfortunate, as accurate results require the use of fine grids, especially in regions
where there are small-scale changes. The second difficulty is that smooth (ze. long
frequency) error modes are very slowly reduced. Hence relaxation quickly stalls
once high-frequency errors are removed. Multigrid is a hybrid process which
overcomes these difficulties. It combines the following three elements:

1. relaxation to obtain smooth errors,
2. calculation of corrections on increasingly coarse grids, and

3. incorporation of nested iteration (using coarser grids to obtain good initial
approximations on finer grids).

Multilevel numerical processes have been independently devised by many
investigators. While the above three processes have been separately known for
many years, it is only the multigrid combination which results in an optimal
iteration.
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As early as 1935, Southwell [90, 91] recognised that coarser grids hold com-
putational benefits. In [91] he describes a process whereby a problem is first
(approximately) solved on a coarse grid (involving a much smaller amount of
computational work), then this solution is interpolated to a finer grid, serving as
a good initial guess for subsequent relaxation on that grid. In his words:

Our techniques will provide for steadily increasing accuracy, attainable at
the cost of proportionally increased labour; and to this end they will utilise
results obtained on one size of net as a starting assumption in relation to
a net of smaller mesh. This device will be termed advance to a finer net.

The natural next step is to apply this idea to successively finer grids. In 1954,
Allen [29] wrote (still using arcane language):

Successively finer nets are always chosen, each to have strings one-half as

long as the previous (coarser) net. The solution should always be worked

first on the coarsest net, for it will contain the fewest nodes. and the liqui-

dation process will be correspondingly easier ... Indeed, in some problems

it may be that less work is involved in the end if the solution is first found

on the coarsest possible net, followed by several advances to successively

finer nets, until sufficient accuracy is achieved eventually on a very fine
net.

The modern term for this technique is nested iteration.

Coarse-grid acceleration techniques were used in the 1950’s and 1960’s by
Stiefel [92], Fedorenko [37], Wachspress [102] and de la Vallée Poussin [30], for
example. These were all two-grid methods.

A more advanced idea is to consider how the current fine-grid approximation
can be improved by further references to the coarse grid problem, a procedure
which exploits the “proximity” between the fine and coarse grids.

Brandt [15] and Stiiben and Trottenberg [93] give a description of the content
of two pivotal Russian papers, published in the 1960’s. In 1964, Fedorenko [38]
introduced the multigrid method in a narrow sense by introducing the idea of
a nested hierarchy of grids (that is, using elements (1) and (2) above), so as to
prove a theoretical result. In the case of Poisson’s equation on a rectangular
grid containing N points, using the standard five-point discretisation, Fedorenko
proved that the number of operations required to reduce the residuals by a factor €
is O(N |loge|). This is asymptotically the optimal result, although the constants
in his estimate are very large; in fact they are four orders of magnitude larger
than those we find in practice. Fedorenko also proved that multigrid has a rate
of convergence bounded by some number less than unity, which is independent
of the grid size h. This is a remarkable result, one which highlights the optimal
nature of the multigrid method.

Bakhvalov [9] later generalised this result to any second-order elliptic PDE
with continuous coefficients; but derived even larger constants in his theoretical
bounds. Because these estimates were far worse than those of other methods, the
multigrid idea of Fedorenko languished for some time. He himself did not seem to
realise the true practical potential of the method, even though he also indicated
the possibility of combining all three multigrid elements.
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It was not until 1973 that the first full multigrid algorithms and results were
published by Brandt [14], who seems to be the first person to have recognised
the true practical efficiency of multigrid. Moreover, he introduced a general two-
pronged method called the multilevel adaptive technique (MLAT) for solving
partial differential boundary value problems. MLAT consists of adaptive dis-
cretisation and “multilevel iterative procedures in which coarser grids constantly
participate in solving the equations on finer grids,” that is, multigrid methods.
(For more information on adaptive grids, see (48, 76, 79].) Over the next decade,
more and more researchers became enthusiastic about multigrid, noting in par-
ticular the very high rates of convergence that can be achieved in practice.

In 1975 Hackbusch independently re-invented the elements comprising multi-
grid. He began to systematise convergence analyses of general multigrid methods,
a process which continued for some years [49, 50, 51]. In 1977, Brandt published
what many regard as the seminal paper in the field, Multi-level Adaptive Solutions
to Boundary Value Problems [15]. As the method was developed and refined in the
1980’s, it was seen how to apply multigrid and multilevel techniques to diverse ar-
eas of computational mathematics, such as finite-element problems, vector-valued
BVP’s, eigenvalue and bifurcation problems, parabolic and other time-dependent
PDE’s, hyperbolic problems in fluid dynamics (transonic flow, shocks, full Navier-
Stokes equations), singular perturbation phenomena (see [16, 61]), and integral
equations. With this increasing interest, the number of papers published on
multigrid methods snowballed in the last decade. At the present time we may
describe multigrid as a maturing new field of computational mathematics, one
which holds great promise for certain types of problems facing the researchers of
today.

Good introductions to multigrid may be found in Briggs [20] and Jespersen

[58)].

1.3 Thesis Outline

Chapter 2 introduces definitions and notation used in this thesis. It discusses the
basic material required for subsequent chapters, in particular the fundamental
concepts of finite-difference discretisation and relaxation. Various methods of
relaxation are discussed, along with their convergence rates and other properties.
This material comprises the classical techniques for the numerical solution of
partial differential equations.

Chapter 3 presents the basic ingredients of the multigrid method for lin-
ear equations: intergrid transfer, coarse-grid correction and nested iteration. We
consider theoretical smoothing and convergence rates and how these vary with
certain parameters. The multigrid elements are brought together to form a syn-
ergistic union. Various types of cycles and other multigrid options are presented,
giving rise to a large multigrid parameter space.

Chapter 4 reports on the results of applying the multigrid method to our
model linear problems, which are chosen to be representative of their type. These
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results come from our “laboratory-style” multigrid software package MGLAB. This
gives us the opportunity to investigate the effect of the multigrid parameters on
convergence properties of different types of problems. The standard FORTRAN 77
implementation of MGLAB and the structure of the package is discussed, as are
aspects of debugging and algorithm correctness.

Chapter 5 is concerned with the modifications we make to the linear multi-
grid process in order to solve nonlinear PDE’s — the so-called full approximation
scheme (FAS). We extend the concepts discussed in Chapter 3 to the nonlinear
case, and look at the implementation of nonlinear multigrid in MGLAB.

Chapter 6 presents the results of our multigrid solution of some model non-
linear problems. We make similar observations and interpretations to those in
Chapter 4 for these nonlinear equations.

Chapter 7 considers some interesting nonlinear problems from geometry,
namely surfaces of prescribed curvature. These equations are derived from phys-
ical models of soap films and bubbles. After discussing some theoretical consid-
erations, we present results obtained using MGLAB. A theorem of Serrin provides
a convenient sharp test for our numerical method.

Chapter 8 discusses the implementation details for MGLAB on the Connec-
tion Machine CM-2 parallel supercomputer. Relevant aspects of the CM-2’s ar-
chitecture are presented, in particular, the hypercube communications network.
Performance and timing results are given for serial codes on a selection of conven-
tional computers, in addition to the CM Fortran version of MGLAB. These results
are interpreted to give insights into aspects of machine architecture and efficient
implementation thereon.

Chapter 9 describes extensions to the material presented in the previous
chapters: we discuss various types of parallel multigrid schemes, including Fred-
erickson and McBryan’s PSMG method; time-dependent problems; parametric
PDE’s; systems of equations; PDE’s with Neumann, mixed and periodic bound-
ary conditions; and BVP’s on Riemannian manifolds. We also briefly consider
finite-volume methods in the multigrid context.

Chapter 10 summarises the material presented in this thesis, and draws
conclusions regarding the multigrid solution of boundary value problems.

Appendix A contains a listing of mg10.fcm, the CM Fortran implementa-
tion of Problem MG10 (see Chapter 6), Poisson’s equation with zero boundary
conditions. It gives an example of a driver program, which combines with the
back-end multigrid library package MGLAB. It demonstrates which subroutines are
required to be written by the user when solving a nonlinear problem.

Appendix B contains sample output for Problem MG10 using mg10.fcm and
MGLAB run on the Connection Machine CM-2.

Appendix C contains a partial listing of mglab.fcm, the CM Fortran imple-
mentation of the multigrid library MGLAB. A complete listing was not feasible due
to its length, nor desirable since much of the code is of little interest. We list the
kernel routines essential to the multigrid process: relaxation, restriction, prolon-
gation, coarse-grid correction, etc. These demonstrate the ease of programming
in the CM Fortran language, given a simple multigrid implementation.

T LT 71 L) T

I g RN RNENAN AR IR NS A AN TRt AN sty

RGN A B e B e T e W




Chapter 2

Fundamental Concepts

Relaxation can be deceptive. It can look as if you aren’t doing much
at all.

— Bob Montgomery and Linda Evans [81]

In this chapter, we give an overview of the fundamental ideas used in the clas-
sical numerical solution of partial differential equations. We begin with some
basic definitions and terminology, followed by a discussion of finite-difference dis-
cretisation. We then consider various relaxation methods for solving boundary
value problems, examining their rates of convergence and other properties. Relax-
ation methods are important because these iterations form the basis of multigrid

algorithms. Indeed, many of the multigrid parameters arise from the various
relaxation techniques.

2.1 Definitions and Problem Statement

This research report is concerned with the solution of time-independent (possibly
nonlinear) elliptic boundary value problems. We will firstly define the concept of
ellipticity for linear, quasilinear and fully-nonlinear equations.

A k'™-order partial differential equation in n independent variables is a re-
lation of the form

F(x, 1L,Du,D2lz,...,Dku) =) (2:1)
where x = (z,,27,...,2,) € R", u: R - R and

Du. = (Dyu, Dau, . .., D) = (

ou o
dz;’ Oz’ 0zn)

The general form of a second-order linear PDE in n independent variables is [44]

2 0%u(x (x)
2. aii(x) oo axj + 3 A dr,

V=1 !
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CHAPTER 2: FUNDAMENTAL CONCEPTS

which we write more concisely as

a'jD,]u + 8D +qu = f.

In this notation, a k*"-order linear PDE is of the form

11,1200k 11,8200k —1
ay Dl],l2 ,,,,, zku + 02 Di;,l;,.”,ik_,u A0l G Ay + aru = f

By definition, the second-order linear PDE of equation (2.2) is elliptic in some
region {2 € R" if the coefficient matrix [a'’(x)] is positive definite in 2. In the

case of two independent variables (z,y), this second-order PDE reduces to an
equation of the form

QUzz + bugy + cuyy + du, + eu, + gu = f (2.3)
and so this equation is
elliptic if 4ac—b>0.
In addition, we say that equation (2.3) is

parabolic if 4ac—b*=0, and
hyperbolic if 4ac—b% < 0.

For higher-order linear PDE’s of even order, the ellipticity condition [a*’] > 0 is
generalised to the positivity of the contraction of the highest-order tensor:

11,8250 0y8m 01102100000 '
« 0 ik Y i = 1) V  non-zero tensors &;,

182500y im*

The prototypes for the class of linear elliptic PDE’s are Laplace’s equation
Au = Djyu = 0

and Poisson’s equation Au = f.
A PDE is said to be quasilinear if the functional F in equation (2.1) is

linear in the highest order derivatives [59]. A second-order equation is therefore
quasilinear if it can be written in the form

a’(z,u, Du) Diju + f(z,u,Du) = 0.

One of the most widely known quasilinear elliptic PDE’s is the minimal surface
equation (see Chapter 6).

A general second-order equation on a domain 2 € R" can be written in the
form [44]

F(x,u, Du, D*u) = 0, (2.4)
where F' is a real function on the set I' = 2 x R x R™ x S™, where S™ is the linear

space of real symmetric n x n matrices. Suppose a point ¥ = y(x, u, v, w) lies in
I', where x € 2, u € R, v € R" and w € S§", then equation (2.4) is quasilinear
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CHAPTER 2: FUNDAMENTAL CONCEPTS 12

when F' is an affine function of the w variables; otherwise it is fully-nonlinear.
Hence the general second-order equation is elliptic if the matrix [F;(+)] given by

oF
Fx](“/) = aau§7)
1)

is positive definite.

It is a simple matter to map any quadrilateral domain to the unit square
by an affine transformation (perhaps as part of transforming the problem to
dimensionless form); because of this and the fact that ellipticity, linearity and
quasilinearity are preserved in such as transformation, we can restrict ourselves
to considering PDE’s on the unit square. Further, we generally consider only
Dirichlet boundary value problems, where function values are prescribed on the
boundary of the domain. Our problem is therefore to find the solution 1 = u(z,y)
to the BVP

Au=f in 2=[0,1] x [0,1]

95
u=g on Of2 &2

where u € C*™(£2), f € C°(2), 4 : C*™(2) = C°(£2) is an elliptic operator, and
g € C™(90).

2.2 Discretisation

Equation (2.5) is of course the continuous problem. To enable a numerical so-
lution to this problem, we now proceed with the standard finite-difference dis-
cretisation, whereby a uniform grid of horizontal spacing h and vertical spacing
k is superimposed on the domain, producing a subspace £2,. (We will be using
the subscript h as a generic discretisation parameter.) Defining M = 1/h and
N = 1/k, we construct discrete functions in the following manner:

fij = f(ih, jk) g e

The standard finite-difference formulation replaces continuous variables by their
values restricted to the grid points of

2 = {(z’h,jk):z’:O,l,...,M;j=O,1....,N},

and replaces continuous derivatives by central difference expressions obtained
from truncated Taylor series.

We will use the notation

u  for the continuous exact solution,

up for the discretised exact solution: ulg,

vy for the exact solution of the discrete problem, and
vy for an approximate solution of the discrete problem.
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CHAPTER 2: FUNDAMENTAL CONCEPTS 13

We are now required to solve an (M +1)(N+1) x (M+1)(N+1) system of
algebraic equations. The discrete problem is therefore to find the solution v}, to

ﬂhvh = fh in .Qh

)
Uhp = Gh on GQh (_6)

where vy, fi, € S, (an appropriate space of grid functions on §2;,), 4 : $1 — Si is
a discrete elliptic operator, and g, € G (an appropriate space of grid functions

on 6.0,,)

Since the PDE’s considered here lie on the unit square, it is usual to use
an isotropic grid (M = N and h = k), unless the PDE itself has some preferred
direction, as does an equation with boundary-layer properties, for example.

Taylor’s theorem and the associated Taylor series are one of the most im-
portant tools in numerical analysis. It allows the approximation of a continuous

function f(z) by n*h-order polynomials, also giving an estimate of the truncation
error thus produced.

Theorem 2.1 (Taylor) If f(z) € C™"*'[a,b] and z,z, € [a,b], then
8 = (2= 20)" (z = 2™ (ns1),,
f(z) = flzo) + g o [ (=o) + Wf (€)
for some € € [zo,z] if To < z, or € € [z,20] if T < T0.

An elementary application of Taylor’s theorem leads to the following ap-
proximations for the first-order partial derivatives in the z-direction, along with
the indicated truncation error:

M(uit1,; — uwij) + O(h) (forward difference)
uz| = il %M(u,-HJ —ui_1;) + O(h?) (central difference)

i dx|.
iy M(ui; — ui—1;) + O(h) (backward difference)

The following is a list of the most compact central finite-difference approxi-
mations in two dimensions up to second-order derivatives.

%AI(U,’.HJ —ui—1;) + O(h?)

3V (uija —uijo1) + O(F%)

M? (wiy1,; — 2uy; + ui-1;) + O(h?)

N? (u; jy1 — 2uij + uij1) + O(k?)

TMN (Uigrj41 — Uigr,j-1 — Uic1j41 + Uicy,j1) + O(RP+KE?)

In addition, one can readily apply Taylor’s theorem to obtain more accurate
(higher-order) finite-difference approximations.

During the process of discretisation, central differences are typically used to
replace the continuous derivatives, rather than forward or backward differences,
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CHAPTER 2: FUNDAMENTAL CONCEPTS 14

Figure 2.1: Two common computational molecules for A, on isotropic grids.

unless the characteristics of the problem suggest otherwise. (The use of forward or
backward differences is often desirable in solving fluid-flow problems; in that field,
these processes are commonly called upwinding and downwinding respectively.)

A common method of defining finite-difference operators is to draw so-called
computational molecules (also known as stars or stencils). Figure 2.1 shows
the standard five-point and nine-point computational molecules for the discrete
Laplacian operator on an isotropic grid. The five-point molecule has truncation
error O(h?), while the nine-point star is accurate to O(h*).

Application of the isotropic five-point star to Poisson’s equation in two di-
mensions gives us the discrete problem

2 ¢ AT ¢
"V (Uz+1‘] e szj = U:-—l,]) -+ 4\/2 (Ul.]+1 - 2”1] - l'x}]—l) = fx]

This represents the system of N? x N? linear equations (with appropriate bound-
ary equations)

: 2 0 "
Vgt o Visig T Qg Uiy — dv = Ly (2.7)

which we write as Apvy = f.

Note that for f = 0, the solutions to the finite-difference equations retain two
important properties of the harmonic function u: the mean value property (u(z,y)
is equal to the arithmetic average of u at points in an arbitrary neighbourhood of
(z,y)) and the maximum principle (extreme values of u occur on the boundary
o).

An elliptic PDE will generally give rise to a matrix A, which is diagonally
dominant:

A’V2
a; > E |a;]| with strict inequality for some z.

1=1,1%)

This property is a consequence of the discretisation process for elliptic equations.

Finite-difference schemes are often divided into explicit and implicit cate-
gories. An explicit algorithm is a non-iterative “marching” process designed to
obtain the solution at some current set of points in the domain (usually those cor-
responding to a particular time-step) in terms of the known preceding points and




CHAPTER 2: FUNDAMENTAL CONCEPTS 15

the boundary points. Parabolic and hyperbolic equations characteristically have
open domains, and so explicit methods are applicable to these types of problem.
On the other hand, implicit schemes usually consist of simultaneous iterative cal-
culations on all points in the domain in terms of the known values at the previous
iterate and the boundary conditions.

The terms truncation error and discretisation error are commonly used in-
terchangeably; indeed, numerical analysts seem to use a number of slightly differ-
ent definitions of truncation error. Wasow [103] defines the discretisation error to
be the combination of truncation errors arising from the Taylor series approxima-
tion of the continuous functions and from the finite-difference approximation of
the boundary conditions. However, it is clear that the latter contributes nothing
in the case of Dirichlet boundary conditions.

In addition, computed solutions always introduce round-off error, since cal-
culations can only proceed to a finite number of binary or decimal places. Dis-
cretisation error is proportional to the interval size h, whereas round-off error
is generally inversely proportional to h. For this reason we cannot assert that
decreasing the grid size always increases the accuracy.

Finally, there are three terms which arise in the general investigation of
numerical algorithms which should be explained (see for example [83, 94]): con-
vergence, consistency and stability. A solution to a finite-difference equation
which approximates a given PDE is said to be convergent if, at each grid point,
the finite difference solution approaches the true solution of the PDE as the grid
spacing approaches zero:

vh —u as h—0,

in other words, the discretisation error v — v, vanishes in the limit.

A finite-difference equation is said to be consistent with a PDE if, at each grid
point, the discrete equation itself becomes identical to the PDE as the grid spacing
approaches zero. The truncation error at some grid point can be defined as the
difference between the discrete equation with the exact values uj substituted for
vy, and the PDE; therefore consistency means that the truncation error vanishes
in the limit.

The third important feature of a finite-difference method is the stability of
the discrete equation, and of the algorithm which attempts to solve it; that is,
the growth or decay of errors introduced by values previously calculated. Given
a direct method or a converging iterative method, the numerical solution to the
finite-difference equations is not v, but vy, since no computer has infinite-precision
arithmetic. A finite-difference system is said to be stable if the cumulative effect
of all round-off errors is negligible. To be more precise, let § be the maximum
round-off error committed during some numerical procedure, then this procedure
is stable if the cumulative departure of this solution from the error-free solution
tends to zero as § — 0 and is bounded by some multiple of A~! as h — 0.

The following theorem provides a link between these three fundamental con-
cepts. It concerns so-called well-posed problems, meaning problems which have
a unique solution which depends continuously on the initial data.
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Theorem 2.2 (Lax) Given a well-posed linear initial value problem and a con-
sistent finite-difference approzimation to it, stability is the necessary and suffi-
cient condition for convergence.

Although restricted to linear problems, the Lax Equivalence theorem is important
as it is often easier to prove stability and consistency than to show convergence.

2.3 Relaxation

In any iterative solution process, one begins with an initial approximation, then
repeatedly refines the approximation according to some rule. The iteration ob-
viously should converge to the true solution, but to be considered useful this
convergence must also be rapid. This is especially true in the multigrid context,
as only a small number of relaxation iterations are ever performed on the same
equation.

Consider the system of n linear equations

Au = f with wu, feXx (2.8)

where X is an n-dimensional vector space. We desire some iterative process to
(numerically) solve this system by generating a sequence of converging approxi-
mations v°

mapping :

— v' = v? — ..., The iteration is to be generated by some linear

l'k+1 = w(ﬂ‘f’ Uk).

We have assumed that i) is independent of k; such iterations are said to be
stationary. Since v is linear by assumption, we can write the iteration in the
form

v*t = vk + Af (2.9)

in which case M is called the iteration matriz. The iteration is completely de-
scribed by M, as we now demonstrate. Since this iteration must have the solution
of the system (2.8) as a fixed point, we have

u=Mu+ Nf V fex

so that
[ =M+ NA

where [ is the n x n identity matrix, and hence the iteration process is
vft = afof 4+ (I — M)A~ f

provided A4 is non-singular. (If 4 is singular then this equation has an appropriate
interpretation in terms of the Moore-Penrose pseudo-inverse 4%.)
An explicit formula for the k" iterate is

k-1
vf = M50 + Y M

x=0
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and so we see that the error in the k'" iterate is
vF —u = M* (v°—u), (2.10)

in other words the iteration matrix is the amplification matrix of the error [51].
The spectral radius of a matrix M is defined by p(M) = max |);|, where ),
is an eigenvalue of M. Since

lim M* =0 iff p(M) <1,

k—oo

we have the following important result:
Theorem 2.3 The iteration (2.9) converges for every initial quess iff p(M) < 1.

[terative methods fall into two classes: point iterative and block iterative.
Point iterative processes use explicit components of the previous approximation
to update the next iterate, while block iterative methods at each stage require
the solution of several linear systems.

Most of the well-known point iterative methods are based on a partition of
the matrix A of the form

A=D-L-U

where D is the diagonal of A, and L and U are the negatives of the lower and

upper triangular parts of A, respectively. (We decompose A this way because,

due to the mean value property, elliptic finite-difference equations generally give

rise to a matrix A with diagonal entries of opposite sign to off-diagonal entries.)

We assume that the diagonal elements of A are non-zero, so that (D — L)™" exists.
We introduce definitions of the algebraic error

e=u—v (2.11)
and the residual (or residue, a measure of how well v satisfies the PDE)
r=f— A4v, (22l
from which we obtain the crucial relation
Ae=r (2.13)

which is called the residual equation. (Note that some authors use the defect,
defined to be the negative of the residual.) Combining these definitions with
equation (2.9), we find for this general iteration that

okt = ok 4 ek
which corresponds to the relation

u=v+ a4 7.
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Hence an effective iteration will be constructed when A = (I — M)A~ is a close
approximation to 4~! in some sense.

The method of Jacobi relazation is derived simply by solving the finite-
difference equation in terms of v;;. In our standard example of Poisson’s equation
discretised by a five-point star (equation (2.7)) we find that the (k+1)*™h iterate
at the (z,7) grid point is given by

k+1

1
o o k k k 2
kgt e (Vipr,; +vila; + V0 050 — B2 S)

which we will write as

T i(ZvU R ;) (2.14)

the sum over nn signifying the nearest (orthogonal) neighbours. Note that the
order in which the grid points v;; are updated during one relaxation “sweep” is
irrelevant.

The term relazation historically arose through the idea of updating the value
of v at a particular grid point by relaxing the “residual forces” arising because
current values of v at neighbouring grid points do not correctly satisfy the PDE.

The matrix A is called reducible if there exists a permutation matrix P such
that

T AR A 0
Pl = PAR "= [ b i } .
This means that some values of u are independent of some boundary conditions.
Well-posed linear elliptic boundary value problems almost always lead to irre-
ducible matrices [4]. Collatz [28] proved the following important theorem:

Theorem 2.4 (Collatz) If A is diagonally dominant and irreducible, then

Jacobi relazation converges.

An important generalisation of an iteration scheme such as Jacobi relax-
ation incorporates the idea of weighted or damped relaxation. This technique is
also called successive over-relaxation (SOR). It is essentially a way to accelerate
convergence by extrapolating the changes in the previous iterates to provide a

k+1

superior new iterate v"7'. In general, the method is given by

vk+l = wvlﬂ-l £ (1 —W)Uk

where the weighting factor w is generally in the range [0,2], and 2**! is now the
iterate obtained in the manner described above, for example by equation (2.14).
Clearly if w = 1, then the method reduces to the standard relaxation. Hence we
see that in the weighted relaxation method, the new value of v is extrapolated
from the standard iterate and the previous value.

The matrix representation of Jacobi relaxation is

vk+1 = D_l(L-{-U)vk ki D_]f,
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which corresponds to solving the 7" finite-difference equation in terms of Vi
Similarly for weighted Jacobi relaxation we have:

vt = [(1-w)I +wD™Y(L + U)]v* + wD™'f. (2.15)

Gauss-Seidel relaxation incorporates a slight modification of the Jacobi
method: the updated grid values are used as soon as they are calculated, rather
than waiting until the next iteration; consequently we now require a systematic
ordering of the grid points. Such orderings are numerous; for example, lexico-
graphic (row-wise or column-wise ascending or descending), symmetric (ascending
then descending), and red-black (all odd points then all even points).

Suppose in two dimensions we have some arbitrary, but fixed, ordering of
interior grid points, indicated by v,, for Kk = 1,2..... (M—1)(N—-1). To obtain
the k" component of the next iterate of the Gauss-Seidel relaxation, vt we
solve the equation

x—1 (M=1)(N-1)
Yo Aamt L dge. 2 Y Aget = 1, (2.16)
A=1

A=x+1

in terms of v.. The Gauss-Seidel iteration is more conveniently written in matrix
form:

v — (D= L)""Uv + (D - L)',

or equivalently as

pP I e g = — )Y Ap® e

Generalising to w-weighted relaxation, we find
v = of — (D —wL) AV - f),
or in a form which shows the iteration matrix M explicitly [101]:
¥ = (I —wD L)' [(1-w)] +wD W] v* + w(l —wD L) 'D7f.

Red-black Gauss-Seidel relaxation is based on a division of the interior grid
points v;; into two equal classes:

red for (2,7) = (odd, odd) or (even, even)
black for (z,7) = (odd, even) or (even, odd) .

Figure 2.2 depicts the chequerboard pattern which this classification produces.
(This scheme can be generalised to n-colour relaxation by classifying grid points
according to the rule (z + j) mod n.) Note that this labelling of the grid points
allows any five-point operator to independently update all grid points within each
colour group.

' For our example of the five-point star on Poisson’s equation, ascending row-
wise lexicographic Gauss-Seidel relaxation is given by

EICO

1 ‘
k k+1 k Rt e
(I — Z(UH-],_) W st Ui 0 — R S),
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Figure 2.2: A 9 x 7 grid, where “red” grid points are indicated with a (o).

where the updating of v;; proceeds in the order

V0,05 V1,05 =1s =0 UM0; Vodis V1L« vio 0 UMAS s osit VoiNs D1Ny -5 UM,N-

We can de-emphasise the ordering role of k in this equation by simply writing
1
< (Zv.'j — hzfij),

(where the arrow indicates replacement) for some general ordering of the grid
points.

Thus far we have discussed only point iterations, whereby a single grid point
is updated at each step of the process, and the value of L‘,"']“ is determined by
an explicit formula. Block iterative processes (also known as group iterative
or implicit iterative methods) are a natural extension whereby groups of grid
points are updated simultaneously at each step. The process requires the solution
of simultaneous equations, and typically increases the convergence rate, while
increasing the complexity of the relaxation algorithm.

There are a large number of possible ways of dividing the domain into blocks.
We shall only consider line relazation, in which individual rows or columns of grid
points are simultaneously updated. Nevertheless, this still creates many different
possible strategies for such relaxation: by row or column; with ascending, de-
scending, symmetric (ascending then descending) or zebra (the block analogue of
red-black) updates; and alternating direction implicit (ADI) methods which swap
between row and column updates. In addition, we have our previous possibilities
of w-weighted Jacobi or Gauss-Seidel relaxation.

For our example of the five-point star on Poisson’s equation in two dimen-
sions, ascending row-wise Jacobi line relaxation is given by

" : 2 k N A
U,.H’l = (ul“‘:’lld + vf_*'ll‘] + v‘-ka‘1 M~ h%f:;). {2.17)

| —

Thus we need to solve a system of M —1 linear equations in M —1 unknowns
(the grid row v;;, for 2 = 1,2,..., M —1). Given the use of a five-point star as
a discretisation operator, we see that this system will be tridiagonal. Various
efficient direct methods exist to solve such a system.
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We can precisely analyse the convergence of a relaxation process by studying
the properties of the iteration matrix. Recall that the general linear iteration

VRl = Mok 4 S
after k iterations gave rise to an error of
ek = M* e,
and so the iteration converges unconditionally iff the spectral radius p(M) < 1.

Thus it is the eigenvalues and eigenvectors of M which determine the convergence
properties.

For the sake of clarity, we restrict ourselves to one dimension for the moment.
Using equation (2.15), we find the iteration matrix for weighted Jacobi relaxation
for the one-dimensional Poisson equation discretised by the five-point star to be

M =1-1wh’A,
hence relaxation is given by
pitl =gk %u)hz(Avk - f).
The eigenvalues of A = N? TRIDIAG[—1,2, —1] are
Aj(A) = 4N%sin? (122) for j=1,2,...,] N —1
and so the eigenvalues of M are

Aj(M)

1 — 2wsin? (%")
= 1 — w(l —cosjmh)

(see Figure 2.3). In particular we note that w € (0,1] gives [A\;(M)| < 1, and
therefore a convergent Jacobi iteration. Weighted relaxation with w € (0,1) is
called under-relazation, whereas relaxation with w > 1 is referred to as over-
relazation. We also observe that the convergence factor for Jacobi relaxation is
1 — O(h?) irrespective of w.

Since the eigenvectors of A4, w; say, form an orthogonal basis, the error in
the initial guess can be expressed in terms of an eigenvector expansion:

N-1
B e 0 _ :
e =1uU-—-0 —Zc]wJ

=1

<.

for some constants c;, hence after k weighted Jacobi relaxations we have

N-1

N-1
ek = e, MFw; = c; A (M) w;.
J J ) J

=1

I=1
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'< low freq
modes

Figure 2.3: Graph of the eigenvalues of the 1-D weighted Jacobi iteration matrix
for Poisson’s equation, A\;(M) = 1 — 2wsin®(j7rh/2), for various values of w,
plotted for large N = 1/h.

In other words, the j** mode of the initial error is reduced by the factor ,\J"(M)
after k iterations. Moreover, since [\ *| < 1 for high frequencies (when w is not
close to 0 or 1), the error e* is much smoother than the original error ¢°. This
fact will be important when we later examine the multigrid process. We also see
that Jacobi relaxation is mode-invariant: when applied to a linear combination of
modes, the iteration can only alter their amplitudes, not convert some modes into

others. The introduction of elementary Fourier analysis will allow us to better
understand this behaviour.

One-dimensional Fourier modes are vectors of the form
v; = sin(yKmh) far 3 =0.1... .. N

where the wavenumber k = 1,2,..., N —1 gives the number of half-sine waves

on the unit interval [0,1]. We call modes in the lower half of the frequency

spectrum (k = 1,2,...,N/2 — 1) smooth modes, while high-frequency modes

(k=N/2,N/2+1,...,N—1) are called oscillatory modes (see Figure 2.3).
Since the eigenvalue corresponding to the smoothest mode is

A = 1= 1wr’h? + O(hY)

we see that there is no value of w which will satisfactorily reduce the smooth com-
ponents of the error. (Moreover, attempting to increase accuracy by decreasing h
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only results in worse convergence.) In fact, only the high-frequency components
of the error are much reduced. The optimal value of w in this case is given by
imposing the most stringent reduction on the oscillatory modes:

P(30)] = [rv(a)

which results in wyp, = 2/3 and then we have |A;l < 1/3 for these oscillatory
modes — a most satisfactory reduction of the high-frequency error modes. Note
that this smoothing factor is independent of A; but also recall that these precise
figures are for Poisson’s equation only, although we expect similar behaviour for
elliptic PDE’s.

We now understand that the slow convergence of classical relaxation schemes
is due to the presence of low-frequency Fourier components of the error. which
are very slowly reduced. A relaxation scheme is said to possess the smoothing
property if it effectively eliminates oscillatory modes, while having little effect
on smooth modes. This property is a serious deficiency of relaxation techniques;
however the construction of the multigrid method is based on this observation.

Convergence results for Gauss-Seidel relaxation are similar to those we have
found for Jacobi relaxation; in particular, both methods possess the smoothing
property, and both have convergence factors of 1 — O(h?). Optimal w,p,-weighted
(SOR) relaxation improves the convergence factor of Gauss-Seidel (but not Ja-
cobi) relaxation to 1 — O(h). These comments also apply to Jacobi and Gauss-
Seidel line relaxation.

Weighted Gauss-Seidel relaxation converges for 0 < w < 2 (see Ames [4]).
Over-relaxation, with w € (1, 2], results in a better convergence rate than ordinary
Gauss-Seidel relaxation. However under-relaxation, with w € (0,1), improves the
smoothing rate (even though this adversely affects the overall convergence rate),
and is more often used in connection with multigrid.

In this same vein, we may remark that before the emergence of multigrid,
Gauss-Seidel relaxation was favoured over Jacobi relaxation, due to its superior
convergence properties. In fact under many circumstances, optimal Gauss-Seidel
relaxation is exactly twice as fast as Jacobi’s method [4]. However, Jacobi re-
laxation may have superior smoothing properties, and so is quite popular in the
multigrid field.

We have examined some of the simpler relaxation methods. Many more
sophisticated iteration schemes exist (see for example [4, 5, 80]), however these
are not required for our purposes. The multigrid method is a construction of a
powerful solution process from a set of simple tools, as we shall now see.
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Chapter 3

Elements of Linear Multigrid

To iterate is human; to recurse. divine.

— Anonymous

Following on from our discussion of relaxation in the previous chapter, we now
consider the other fundamental elements of the multigrid method: intergrid trans-
fer, coarse-grid correction and nested iteration. We examine the two-grid multi-
grid scheme (for linear equations), which leads us to the full multi-grid process.
To clarify the presentation, some of the material in this chapter is based upon
one-dimensional problems: Section 3.3 extends the coverage to multidimensional
problems. We then look at the large multigrid parameter space, and consider an

automatic initial guess algorithm. Finally, we discuss the multigrid implementa-
tion for conventional serial computers.

3.1 Two-Grid Multigrid

In Chapter 1 we described how Southwell [91] used coarser grids to improve the
speed of his hand-calculated relaxation. The heuristic reasons for the success of
this modification are that an iteration scheme is improved by a more accurate
initial guess, and that convergence factors are slightly better on coarser grids,
since these behave like 1 — O(h?) or 1 — O(h). We have employed the Fourier
or spectral viewpoint of relaxation to show that many of the standard iterations
possess the smoothing property; that is, the iteration process efficiently reduces
the high-frequency components of the error, while acting very slowly on the low-
frequency components. Since these frequencies are measured with respect to
local grid scales, it becomes clear that once we have smoothed the current ap-
proximation on the fine grid 2, we can begin to tackle the smooth modes which
remain by transferring the problem to the coarse grid 12,4, whereby those smooth
modes appear more oscillatory, and so can be effectively damped by coarse-grid
relaxation. We shall now consider this idea more carefully.

Recall that (one-dimensional) Fourier components with wave number & are
smooth modes if 1 < x < N/2, and oscillatory modes if N/2 < k < N—1. Given

24
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that the coarse grid 25, (j = 0,1,. ... N/2) consists of the even-numbered points
of the fine grid 2, (j = 0, l,...,N), we see that the fine-grid smooth modes
are transformed into more oscillatory modes on the coarse grid; this situation is
illustrated in Figure 3.1(a). The special case when x — N/2 on (2, gives rise to
the zero vector k' = 0 on the coarse grid (see Figure 3.1(b)). Fine-grid oscillatory
modes with N/2 < k < N are transformed into relatively smooth x' = (N — )
coarse-grid modes — a misrepresentation phenomenon known as aliasing (see
Figure 3.1(c)).

Suppose that for some problem we have obtained a relatively smooth approx-
imate solution v* by relaxation. The essential multigrid idea is to improve the
approximation by calculating the residual r* = f — Av* and solving the residual
equation Ae* = r* for €* to obtain the correction v* + €* = u. These equa-
tions are useful provided that we can solve the residual equation exactly, which
of course we cannot do in general. However, the residual equation is precisely
of the same form as the original equation Au = f, and so we employ the same
technique to approximately solve it: namely, we relax directly on the error on the
coarse grid, using zero as our initial guess. It is important to note that e¢* will
be a smooth function, as indicated in the previous chapter, and can therefore be
properly represented on a coarse grid.

Up to this point, we have two loosely-connected ideas. The first is called
nested iteration, whereby we relax on the equation Au = f on the coarse grid (2,
to obtain a good initial guess for relaxation on the fine grid (2;:

1. perform v,y relaxations on |Au = f|,, (with some initial guess vY, ) to obtain
a new approximation vsy

2. interpolate vy, to the fine grid to obtain vy

. perform vy relaxations on |Au = f|; (with initial guess v4) to obtain a new
approximation vy

The second idea is called coarse-grid correction:

1. perform v} relaxations on |Au = f|, (with some initial guess vy) to obtain
a new smooth vy

2. compute the residual r, = f — Av,
. restrict r, to the coarse grid to obtain ry,

. perform vy, relaxations on |Ae = r|y;, (with initial guess ey, = 0) to obtain
a new ez, (or directly solve the coarse-grid equation: ey, = A;hlrgh)

5. interpolate the approximate error ey to the fine grid to obtain e
6. correct the current approximation by v, «— v, + €4

It will be apparent that we require intergrid transfer mechanisms to facilitate the
coarse-to-fine-grid interpolation (also called prolongation), and the fine-to-coarse-
grid restriction operations. We now turn our attention to these operations.
Consider the approximation of some linear equation A,v, = fi by the coarse-
grid equation Aj,vy, = fo,. The finite-difference discretisation ensures that there
is a natural interpretation of Ay,: in one dimension, it is simply the N/2 x N/2
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Figure 3.1: Fine-grid Fourier modes are classified according to how they are
transformed onto a coarse grid: (a) smooth modes become more oscillatory,
(b) &K = N/2 becomes the zero vector, and (c) oscillatory modes become smoother
(aliasing). The cases x = 4,8 and 12 are shown for N = 16 on a one-dimensjonal
fine grid (25, being projected onto the coarse grid with N = 8, where they become
modes with &’ = 4,0 and 4 respectively.
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matrix constructed from the operator A in the same manner as Ap.

The vector
v2n should depend linearly on vy by some restriction

Uop = ];h Uh.
The simplest choice of restriction operator I7, is called injection, and is defined
by
v?h:v;‘, for i:O.l.....‘—j.
that is, the coarse-grid vector takes its values directly from the corres
grid point (see Figure 3.2(a)).

An operator which preserves more fine-grid information is obtained using a
weighted restriction, where the values of the coarse grid vector are a weighted
average of values at neighbouring fine grid points. The operator most frequently
used is called full-weighting (see Figure 3.2(b)). It is defined by

2h <

’ e b il el 1k RS D N
v; *31’21—1+§U2x+3"?l+1 forl w=1.2 ...7—1

ponding fine

or in matrix notation
o o aan |
i il

I 1 2 1 |
We generalise the concept of restriction to w-weighted restriction, whereby
the restriction operator is multiplied by some parameter w. This process is com-
plementary to w-weighted relaxation, since it effectively extrapolates the residual

equation correction step, in the same way that weighted relaxation extrapolates
the relaxation step.

The reverse process, that of coarse-to-fine-grid prolongation v, = " vy, is

usually achieved with the use of a low-order interpolation, often simply piecewise
linear interpolation:

h 2h
Uy v,

fort Ve () lws

h _ 1(,2h 2h
Vaipr = 3 (v + i)

(illustrated in Figure 3.2(c)), whose matrix form is

I
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) injection restric-

a

(

sion:

near each arrowhead indicate the relative weighting attached to that grid point

tion, (b) full-weighting restriction, and (c) linear interpolation.
for the transfer operation.

Figure 3.2: Intergrid transfer operations in one dimen

CHAPTER 3: ELEMENTS OF LINEAR MULTIGRID




CHAPTER 3: ELEMENTS OF LINEAR MULTIGRID 29

Piecewise linear interpolation suffices as the
PDE is of second order.
tion of degree n [51].

prolongation operator provided the
[n fact, an equation of order 2n requires an interpola-

Cubic interpolation requires the same amount of work as

quadratic, and so is more often used for higher-order PDE’s; in one dimension it
is given by

B 1 ok 2k 9 (.2h 2h

= _ﬁ(l’:—S + Lx+3) -+ 16 (Li—1 = U;+1)'
Note that the linear interpolation operator and the full-weighting restriction op-
erator are adjoints of each other, up to a constant factor.

With this intergrid operator notation, we can now compactly represent the
coarse-grid correction process as

2h A4-1 7h
Vh & Yy + [h .*1.2,1 ['2h Th.

It should be noted that coarse-grid correction may not be a convergent iteration,
as we now demonstrate (following Hackbusch [51]). Choose some non-zero vector

z € ker(1},), that is I z = 0, and set the initial guess to be v° = A-Y(f — 7).
Then r° = f — Av® = z and so [

correction iteration is invariant.

anTh = Ih z = 0, and hence our coarse-grid

We have some flexibility in our choice of coarse-grid matrix A,j, since the
coarse-grid equation is itself an approximation. As we have indicated above, the

natural choice is to define A, by the same discretisation as for An. A

second
approach is to define the coarse-grid operator as

Agp = 1 A T2

which is called the Galerkin approzimation. This approach has the advantage
of a more precise representation of coarse-grid equations, but at the expense
of increased computational effort. In fact, we found the Galerkin approach for
one-dimensional problems improves convergence only marginally, and does not
compensate for the necessary extra work; for this reason, we do not cater for the
Galerkin approach in MGLAB.

By themselves, relaxation and coarse-grid correction converge slowly, or not
at all; it is the complementary union of these methods which results in the highly
convergent process of two-grid multigrid. Algorithm 3.1 gives an encapsulated

description of this process, introducing the notation R} for the relaxation step
performed v times in succession on the 2, grid.

Algorithm 3.1 (Two-grid Multigrid)
An iteration for solving Ayuy = fy,, given some initial JUESS V.

vy o= R (vk, fr) pre-smoothing

Th — fn— Ay residual calculation

P — [{,‘h Th residual restriction
ean — Al ron coarse-grid equation solution
Vh — vp+ IZ" €ah coarse-grid correction

v — R7(vn, fr) post-smoothing
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Hackbusch [51] rigorously proves convergence of this iteration. We shall postpone
discussion and analysis of convergence to the next sectior.

The final necessary component of our multigrid iteration is a measure of the
closeness of the approximation v to the exact solution u. We use the following
standard discrete norms for the error e = u — v-

Of course, the exact solution is frequently unavailable, in which case we measure
how closely v satisfies the PDE, by using the above norms applied to the residue
r=f— Av.

Many other measures may be defined, for example (1]

el

IR

where ¥ (the “exact discrete solution”) is the result of iterating many V*'-cycles
(see below). Note that the denominator |ju — v|| is a measure of the discretisation
error.

3.2 Full Multigrid

The two-grid multigrid iteration offers computational benefits, but of course
leaves open the question of how to solve the coarse-grid (residual) equation

Azn €2 = T2p. (3.1)

Although a direct solution is possible, and involves only N/2 unknowns, this is
still impractical for real-world problems. However, since the coarse-grid equa-
tion is itself an approximation (to the fine-grid problem), we need only solve it
approximately. Indeed, equation (3.1) is of the same form as our original linear
equation, hence we can embed the same two-grid procedure to (approximately)
solve our residual equation. This involves excursions to coarser and coarser grids
$29n, $24n, L28h, .. .; the recursive process ceasing when the grid is so coarse (con-
tains so few unknown grid values) that a direct solution is possible or that a few
relaxations give the coarsest-grid solution to the required accuracy. Often the
grid is coarsened until there is a single interior grid point. This ensures that the
broadest possible range of Fourier components of the error can be attacked.

To allow a convenient description, we introduce a numbering of grid levels

of the form
Sl e

where level L = 1 indicates the coarsest grid, and L = A labels the finest grid
(that is, 24 = £2,). This means that the grid spacing on level L is

hy = 2A-L p
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and the number of grid points on level [ is
Np = al-A RE

Note that we only discuss the case where

two: hr/hpy1 = 2; this is called standard coarsening. There are other possibilities
(see Hackbusch [51]), but these are infrequently used.

The multigrid process described above visits the grids in the order

055 Pyt = vy P, 24, 0y ..., BPirs 24,

and so is called a V-cycle (see Figure 3.3(a))
description of the V-cycle iteration. We al
the process, since standard FORTRAN 77
rithm 3.3).
We introduce the notation Vit cycle to indicate a V-cycle of depth A lev-
els, with v; pre-relaxations, v, coarsest-grid relaxations, and v, post-relaxations.
A slight generalisation of the V-cycle is made by replacing the recursive call

V-cycle (v,r, L — 1)

. Algorithm 3.2 presents a recursive
so give a non-recursive description of
does not permit recursion (see Algo-

in Algorithm 3.2 by a sequence of recursive calls:

fori =1 to v do
V-cycle (v,r, L — 1)
endfor

Hence v = 1 gives the V-cycle, while Y = 2 produces a scheme known as the
W-cycle (see Figure 3.3(b)). In practice, no other values of v are used.

So far we have only used the coarse-grid correction idea to construct a multi-
grid method. By embedding V-cycles in a nested iteration scheme, we arrive at
the full multigrid V-cycle, which we call the M-cycle, also known as the FMV
cycle (see Figure 3.3(c)). This removes the need for a reasonable fine-grid initial
guess to commence the V-cycle; we instead begin the M-cycle with a coarsest-grid
initial guess, the accuracy of which is practically irrelevant since the first step is
to perform v coarsest-grid relaxations: ® . Algorithm 3.4 describes the process.
We also give a non-recursive description (see Algorithm 3.5)

3.3 Multi-dimensional Multigrid

The material in the preceding sections was based on one-dimensional multigrid,
so that it could be presented more clearly. We now indicate how these concepts
are applied to two-dimensional problems, with obvious generalisations to higher
dimensions.

We begin with the intergrid transfer operators: restriction and interpolation.

Injection is again defined as the direct transfer of the value at fine-grid points to
corresponding coarse-grid points:

2h _ .k o D\, R
vt = v, fon =10 Sl 7=0,1,..
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2 L=
29 =
an I =
281 L =
en o
2321 =

2 / I =
$29h b=
24 / =
281 =
$6h L=
(b)
2 = =
25 / =
an / =
28n I=
$6n L=
2328 L=

(c)

Figure 3.3: Diagram indicating the order in which grid levels are visited (reading
from left to right) for the (a) Vi-cycle, (b) Wis-cycle, and (c) Mg-cycle.
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Algorithm 3.2 (Multigrid V-cycle)

A recursive iteration for solving Apyu, = i
procedure V-cycle (v, f, L)
begin
if L =1 then

v #=RE (. fp) 2 AT f
else

v — R (v, fL)
re—1 — If_y (fo — Apvr)
vp—1 <+ 0
V-cycle (v,r, L — 1)
vp — v + IF  opy
v Ky (og, Tl
endif

end

Algorithm 3.3 (Multigrid V-cycle)

A non-recursive iteration for solving Ayup = fi, given some initial guess v

procedure V-cycle (v, f, L)

begin

forl=1te A—1do
vy «— 0

endfor

for L = A downto 2 do
vpte— K7 (or, (L)
fro = If_; (fi — Arvr)
endfor
v — R°(v1, f1)
for L =2 to A do
v —vp + If v,
vy — R (v, fL)

endfor

end

A, given some initial guess vy .

A-
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Algorithm 3.4 (Multigrid M-cycle) %
A recursive iteration for solving Ayu, = fa, given some initial guess vy. ,‘;
procedure M-cycle (v, f, L)
begin
if L # 1 then
fr1 — If_ (fL — Agvr)
vp—1 — 0

v-1 +— M-cycle (v, f,L — 1)
v — v + 11{‘_1 VL_1

endif

vy «— V-cycle (v, f, L)

end

Algorithm 3.5 (Multigrid M-cycle)

A non-recursive iteration for solving Ayup = fy, given some initial guess vy.
procedure M-cycle (v, f, L)

begin

v1 — R{°(v1, f1)

for L =2 to A do
QT = 1[[:_1 Ur—1

v — V-cycle (v, f, L)
endfor

end
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Full-weighting restriction is given by

s RS W 1,k h h h
i = V22 T 5 (Va0 + Vg0 05, Vi2i+1)

v
By h h h

+ 26 (1’21’-1'2]—1 + V21241 T V2i+1,2j-1 T V2i41,2j41)

o1 Ty — 12

which we can write in stencil form as (cf. our earlier molecule diagrams)

1
16

N =
o = o
— DN

The analogue of one-dimensional linear interpolation is called bilinear inter-
polation:

A R
121,2] gh Ux,_]
h B 1 o T
1121+1.21 e E(ll,_] +lt+l,])
Jh s B o7 Al oY
L21,2]+1 ¥ 5(1‘1,1 + Lx,j+])
_ 1(,2h 2h 2k 2h
Uigr2i40h = A% Vit1,iVii+1 T Vik1,541)
b ) — ) ﬂ_ . Y — 9 N
for ey il 1=12,...,5=1
which in stencil form is given by
1 Iy 2«
R U
4
ik, g At

We shall henceforth use linear interpolation as a generic term for interpolation
in n dimensions using linear functions. Again note that full-weighting restriction
and linear interpolation form a natural pair of intergrid operators, since [}, and
I?" are then adjoint operators (up to a constant factor).

Cubic interpolation in two dimensions can be written in stencil form as

T L 0 =G =18 =9 p 1 (
| B <6 0 0
) -9 0 81 144 8 0 -9
= —16 0 144 256 144 0 —16
5 =800 TRE IR BE Y
0 0 0 S 0

] 1.0 -9 -16 -9 0 5l

The coarse-grid PDE operator Ay is naturally defined in two dimensions by
the discretisation; the matrix is of size MN x MN.

The two-dimensional accuracy measures for v, are also analogous to those
defined in one dimension; the discrete norms are given by

M N

lell: = (R e’ and lefls = max el

1<i<M
=1 =1 1<,XN

i
¥
B
b3
a
<
5
3
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We now consider the computational cost of relaxation for the various multi-
grid cycles. Relaxation is generally the most costly element of a multigrid al-
gorithm (see Appendix B for an example cost-breakdown); indeed some authors

ignore the cost of all other operations. In order to keep our remarks independent
of the implementation, we choose the framework of work units (WU) used by
Briggs [20] and others. A work unit is defined to be the cost of performing one
relaxation sweep on the finest grid. We will assume that N, and M, (the number
of grid points on the coarsest grid) are small, and that A is reasonably large so

that
A
Nl
L=1
Firstly consider one-dimensional multigrid; the cost of relaxation on level L
Wrassag=h . T
therefore the total relaxation cost for a V*'-cycle is

A
Wy =23 W, ~4 WU.
L=1

For a V}'"*'-cycle, the cost is .
Wy =~ 4Wp = 2L-442 wu
hence the total relaxation cost for an M} -cycle is
A
Wy =) Wy ~8 WU.
L=1

For the purposes of calculating the cost of a W, *Lcycle, we introduce the quan-
tity 7z, the number of visits to level L during a W-cycle:

oo

s L=1
T/L == : _2/\—L—l ‘

o WO
|
= o

(see Figure 3.3), hence

A
Ww =3 Wen = 130-1) WuU.
Li=1

To generalise these results to d dimensions, we note that the basic cost of relax-
ation is now

W, = 24E-4) Wy

hence

WU

%

Wy 1—_?

&
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9
W TP WU

A-1
Ww = 2 4 20-8)(E-1)-1 | 3 9A(1-d)-1 Y 2Ll-1 wy,

=2
The following table compares the relaxation costs for some typical cycles.

Vl,?.l :‘[1,2,1 LV—I'z'l
4.00 8.00 10.0
2.67 3.50 3.46
2.29 2.50 2.50

Formulae very similar to those given above apply to the cost of restriction,
prolongation and residue calculation (each in terms of the cost on the finest grid).
This is as much as we can say for the moment without considering the arithmetic
cost of explicit finite-difference operators Ay, R, Ik [,f“

L-1s , and an explicit
computer implementation for these.

3.4 Smoothing and Convergence Rates

In Chapter 2 we saw that the optimal smoothing rate for 1-D weighted Jacobi

relaxation on the Poisson equation discretised by the five-point star occurs for

wopt = 2/3. We also introduced some terms describing the smoothing and conver-

gence properties, which we now define more rigorously (and in two dimensions).
The convergence factor of a relaxation scheme is defined as (50]

= max max |A;(M
p 1<i<M 1<;<N (M)
which is just the spectral radius of the iteration matrix M. By writing the error of

the k'M iterate in terms of a discrete Fourier expansion, we can see how relaxation
affects the various frequency modes:

B b Lk _1(16,4367)
e = 2. Yse
0<6<r

where 1?2 =

—1 and 6 = (60,,0,). Thus the convergence factor is conveniently
measured by
e
pi= 01;1022\" oF
Strictly speaking, the error should be expressed as an expansion in the eigenbasis
of M hence this equation is valid only for discrete operators whose eigenvectors
are Fourier modes (such as those arising from Poisson’s equation). However, this
is the standard treatment since it is very convenient (and is exact) for the simple

e T LELE LT L) L

PIRCEEREICRpE autesnep - one et L TERRET L ELELREEEEPELY PR FUEUET P R
ORI AP St i
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linear equations, and because the true eigenvectors are often perturbations of the
Fourier modes.

The smoothing factor of a relaxation scheme is simply the convergence factor
over the domain of oscillatory modes:

/£ = max max
Micm Y<ien

Ay (M)

x
SIS

The smoothing rate is defined as 1/|log p|.

We therefore have two mathematical tools at our disposal which allow us
to predict the all-important smoothing rate of a relaxation: eigenvalue analysis
and Fourier analysis. The analysis of Fourier components 1s called local mode
analysis, and enables us to calculate the smoothing rate for a given difference and
relaxation scheme. Note, however, that local mode analysis is not rigorous: it
assumes periodic boundary conditions, and “freezes” the coefficients of a variable-
coefficient PDE.

As a demonstration, we summarise the eigenvalue analysis for 1-D weighted
Jacobi relaxation for the Poisson equation Au = f discretised by the usual five-
point scheme (see also Section 2.3). We begin with the matrix partition (or
splitting) of the PDE operator

" NG A AU B . :-«-.q,:!lu--l..‘uﬂ-1.}i-'lili\i.ﬁn‘wi‘pihivi;}tiiEniﬂ;n‘(‘4..»,.,,»',!7!‘.!-'»‘"’-
st Y B R

Au= (D—-L-U)u = f

which results in a weighted Jacobi iteration scheme of

Uk+l L. uJD—l(L S U)Uk o (1 —w’)l/‘k Rt “"D_lf

hence our iteration matrix is

M= (1-w)l + wD YL +U).

The eigenvalues of M are

, T : .
— wsin? I for 3 =1,2, ..., N=1.

A (M) o

The optimal weighting w,p, is given by the condition

Ay

= |
hence
¢ R 2 S ¢ D o
(1 — 2Wopy SIN 3) = — (1 — 2Wope SIN 5)
which gives us
2 ol
""'Opt = 3 and /-lopt = 3>

This compares favourably with a 1-D Gauss-Seidel relaxation smoothing factor
of piope = 3 (see Hackbusch [51]).
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To contrast this technique, we proceed to analyse 2-D weig}

1ited Jacobi point
relaxation for the Poisson equation using Fourier analysis. The relaxation is given
by

nn'

and so the error in the (k+1)" iterate is
k+1 k k
6,-1 = (I—UJ)CU + &LUZCI/JI.
nn

The Fourier representation of this is

z ¢,g+1€x(19:+182)

6
.k 1 1k _—18 k 2] / s :
= ) [¥5 + Jw(fe® 4 phett® 4 yke—t 4 ppett? — qypk)] erlir+i0)
6
hence o
wg+

: =1+ %w(cos@l + cos 0; — 2)

(see Figure 3.4) and so the smoothing factor is
= THiak (Il - 2w|, |1 - ‘f])
We therefore obtain

) = = 3
Wopt = 3 and Hopt = 3

with a general smoothing factor for weighted Jacobi relaxation of

13 (1 — %’)V for
(2w —=1) for

o
IN

w

IA
—_ s

SIS
IN

w <

We wish to emphasise that this result is exact because these Fourier modes are
indeed the eigenbasis of the discrete 2-D Laplacian operator. In fact, the eigen-

values of A = N?TRIDIAG[D, T, D], where T = TRIDIAG[—1,4,—1] and D = —],
are

Aij(A) = 2N2(‘2—cosi7rh,—cosj7rh) for g o V-1
and the iteration matrix is (¢f. Section 2.3)
M = ] — iwh?A,

yielding precisely

= \j(M
= (%)

in this case.

For other relaxation schemes, we find smoothing factors of [51]

TuaaGHiwpAan AUmE mUmIG
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Figure 3.4: Fourier space diagram of the smoothing action of 2-D weighted Jacobi
relaxation: u’ré‘“/u-é‘ = 1+ %(cos b +cosf,—2). The shaded region of the (6, 6,)
plane contains the high-frequency (oscillatory) modes. Several representative
points in that region are evaluated in terms of w.

lexicographic pointwise Gauss-Seidel relaxation: (=5

lexicographic linewise Gauss-Seidel relaxation: & e

symmetric linewise Gauss-Seidel relaxation: 4=

We may also summarise the convergence factors as follows (see Ames [5] for
further details):

p = max|A;| = cosh ~ 1 —1h? (Jacobi)
p = max|A;| = cos’h ~ 1 — A2 (Gauss-Seidel )

p~1=2h (optimal Gauss-Seidel)

The optimal weighting for Gauss-Seidel relaxation on Poisson’s equation in 2-D
discretised by the five-point star is [5]
2

1+ 7h’

*“"opt =

whereas for Jacobi relaxation it is
2
“)Opt = §

Matrix analysis provides a method of computing convergence of the entire

multigrid scheme, although it is somewhat cumbersome. The two-grid process is
described by

T = [I-I"(A) 1L A RY, (3.2)
and the multigrid cycle (without post-relaxation) from level k to level j L < k)
is given by

Tt =i = B (A I AR for 1< k<A,

PP LT L E

CETPL BT

SRR ECE LT T PEPTDY PP

B S e i
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Tk,j — Tk,/c—l + I:—l ;__1'] (Ak_x)—l Ifﬁl Ak R_Z for <j <k S .\,

where 7 is the depth of recursion (1 for the V-cycle, 2 for the W-cycle). The
process of optimising the convergence rate involves minimising the spectral radius
of the total process matrix p(T'), a process which must be done numerically.

Much more extensive and detailed material on the subject of convergence
and its relation to the various multigrid parameters is presented in Brandt (15, 17]
and Hackbusch [49, 50, 51]. Bramble et al are currently writing an important se-
ries of papers on the convergence of multigrid algorithms, which appear to place
multigrid on a strong theoretical basis. For example in [12], results are given
which guarantee convergence of V- and W-cycles for symmetric positive-definite
problems. These results generally assume a “regularity and approximation” hy-
pothesis, which involves a parameter @ € (0,1]. In [13] and subsequent papers,
they extend these results to nonsymmetric problems, indefinite problems, etc.
This coverage of convergence results may turn out to be a milestone in the de-
velopment of multigrid methods.

3.5 Multigrid Parameter Space

We have drawn a picture of the multigrid process as a collection of neatly inter-
related subprocesses, each having several free parameters. This results in a high-
dimensional multigrid parameter space; in other words, there is a great deal of
choice presented to the multigrid practitioner. The following is a partial list of
these parameters:

e Type of cycle (V-cycle, W-cycle, M-cycle, .. .)

e Number of cycles (fixed, determined adaptively, ...)

e Number of grid levels (A)

e Type of restriction IF_, (injection, full-weighting, ...

e Restriction weighting (=)

e Type of interpolation If" (piecewise linear, quadratic, cubic, ...)

e Number of relaxations (v, o, v2, determined adaptively, ...)

e Type of relaxation X

— Jacobi, Gauss-Seidel, ...

— weighting (SOR) factor w

— pointwise, row-wise, column-wise, . ..

— red-black, lexicographic, symmetric, zebra, alternating, ...

e Size of coarsest grid (k)

e Type of grid coarsening hp/hr4+1 (standard coarsening, semi-coarsening,
V/2-coarsening, ...)

e Choice of coarse-grid matrix Ay (L = 1,2,...,A—1) (natural, Galerkin
approach, ...)

MTTLEI T B L

E T R L L T L e o

EERTT S R LA TLEEY
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e Type of grid (uniform, isotropic, non-isotropic, fixed, adaptive, ... )
e Type of finite-difference discretisation (five-point, nine-point, ...)
e Type of error estimate (error, residual, two-norm, infinity-norm, ... )

o Type of initial guess (zero, user-defined, discrete-Laplacian, .. .)

Arithmetic precision (double, single, .. .)

o Use of visualisation, immediate correction, debugging, graphic output, . ..

We have various theoretical principles to guide us in the choice of multigrid
parameters (such as “match the interpolation to the order of the PDE”, “smooth
sufficiently to reach truncation error on each level”, and “red-black Gauss-Seidel
relaxation is incompatible with injection”). Despite these guidelines, multigrid
is far from being a fixed method, and some experimentation is desirable. As we
have said, it was for this purpose that the software package MGLAB was written. It
allows the multigrid practitioner to freely experiment with the parameter space
for a given problem.

The above list contains three items not yet discussed: immediate correction,
adaptive strategies and a discrete-Laplacian initial guess.

Immediate correction is a very useful tool for analysing (and debugging)
multigrid algorithms. It is a process which may be added to the multigrid algo-
rithm which makes a coarse-grid correction directly to the fine grid after each set
of coarse-grid relaxations. This enables us to observe the immediate effect of each
coarse-grid adjustment with respect to the fine-grid solution, a process which is
otherwise not quantitatively apparent. Immediate correction is merely an aid to
interpreting multigrid convergence, and has no effect itself on the convergence.

Strategies for the multigrid process may include the use of fixed or adaptive
grids, fixed or adaptive values of v (7e. relax until some tolerance condition is
met), and fixed or adaptive cycle strategies (where switching from one level to
another is controlled by some criterion).

3.6 Automatic Fine-grid Initial Guess

An interesting sub-problem is to find a method of generating an automatic initial
guess v}, satisfying the boundary conditions of the PDE. This is a useful option
for V- and W-cycles, which begin on the finest grid {2,. As we expect elliptic
boundary value problems to result in smooth solutions, a reasonable method is
to generate the initial guess using a discrete Laplacian-type interpolation of the
boundary data.

Firstly consider the following one-dimensional situation:

L ¢ C .t

N : N 4 .
+ t + t t T

h.L ‘—hR_’
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Writing vy, for v(z = L) etc, the forward and backward finite-difference deriv-
atives of the function v at the point C are

P VR — VUC / ’ Ve — VL
Viwa(C) = ———— and Vpwa(C) = ————.
fwd hR bwd( ) }ZL
Taking the mean of these, we find the central derivative to be
) hr (vr —ve) + kg (ve — vL)
2thR

We also know the central derivatives at the midpoints ¢ and r:

v(l) = S and o) = ‘Rh;“
/ R

Applying equation 3.3 to first derivatives, we obtain for the second derivative

%L [v'(r) = v'(C)] + 22 [v(C) — v'(L)]
2

hy
S

L}”(C) -

hi (vrR —ve) + hp hr(vR — 2ve + vr) + b, (v — ve)
2h} h%
which reduces to the usual second derivative when hy = hg = h.
In two dimensions, consider the following situation:

B

Applying our one-dimensional result to Laplace’s equation v, + vy, = 0 gives

v’ (1 —y)’[rvr+ (1 - 2)ur] + 2%(1 — 2)? [yvr + (1 — y)vg]
y2(1 —y)? + z%(1 — z)?

which relates the value of an interior point v(z,y) to the boundary data, and
is our desired result. Note that the coefficients of vg,vp,v7,vg sum to unity,
as expected. In the coming chapters, we will present results which demonstrate
that this discrete-Laplacian function indeed produces a very smooth (and visually
satisfying) initial guess (see for example Figures 6.1 to 6.3), and gives rise to very
significant computational benefits over simple initial guesses.

Ve =
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3.7 Multigrid Implementation

MGLAB was developed firstly in standard FORTRAN 77 so that the package could
be run on the widest possible class of computers. Once it was complete, the
library of routines was then ported to a Connection Machine, using the CM For-
tran language, so that observations could be made about multigrid on a parallel
processing system (see Chapter 8). This section is concerned with the implemen-
tation of MGLAB on a standard serial machine.

We will firstly consider memory requirements for the multigrid algorithm.
Recall that M, +1 and N;+1 give the actual number of points on the coarsest
grid (L = 1) in the z- and y-directions, respectively. Then standard coarsening

of the grid defines My and Ny, for all finer grids:
M = 21, and Np = 281N, for
The total number of grid points on level L is
tp = (2"7'M +1) (2" + 1),

and hence the total number of grid points on all levels is

A

>t

=1 (3.4)
“I]lvl (4/\"1) + (;\'[1+JV1)(2A—'1) + \

Rather than storing the boundary grid points separately from the interior
grid points, it is more convenient to explicitly store all grid-point values in the
same data structure, without distinguishing interior from boundary grid points.
Hence 7, is the total amount of memory required for storing one full representa-
tion of the multi-grid hierarchy, for example for the variable vy (L =1,2,...,A).
The standard FORTRAN method of implementing a data structure of this kind is
to declare a single long array (V say), create a virtual allocation of grid variables
v1,V2,. .., from it, and write code to keep track of the correspondence between
an element V(I) and some grid point vl-LJ. Figure 3.5 shows how we assemble
virtual blocks of memory of increasing size

M; x Ny, M, x Ny, ..., Mj x Ny

in this way.
Since FORTRAN indices are numbered from one upwards, the index into the
single array V of the grid point v, (the “start” of level L) is

L-1
1 + Z M. Ny

k=1

LMNy (4571 =1) + (My+DNy) (251 -1) + L.
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-~ 0o
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Figure 3.5: Diagram of the first three levels of a multi-grid hierarchy with M, = 3
and N; = 2 laid out with respect to a single long FORTRAN array. Each square
corresponds to a grid point, and is labelled with its index MAP(L,z, j).

One way to achieve the index book-keeping is to use a FORTRAN statement func-
tion
MAP(L,2,j) = sp + (Np+1) x7 + .

This is efficient due to the combination of using look-up tables (LUT’s) for s, and
the statement function, which is compiled to in-line code on almost all machines.

We need to allocate sufficient memory to store a full multi-grid representa-
tion for the variables v and f, and a single A-grid for the variables r and e. Thus
the total memory required for the major data structures is

Tx = 2(Ta +ta) variables.

Each variable is of the nominated precision; we regard double precision (8-byte
variables) to be the standard choice. Moreover, a standard choice for the coarsest
grid is M; = N; = 2 (see Section 3.2). Using equation (3.4), the following table
gives the number of real variables required for a single multi-grid hierarchy of A
levels, 74, and the total memory requirement in megabytes of MGLAB, T;, assuming
double-precision variables.

A 5 6 i 8 9 10
Ta | 1493 5718 22359 88408 351577 1402202
Tr | 0.04 0.15 0.60 2.36 9.38 37.43

To obtain solutions of fine resolution, we see that a substantial amount of memory
is required. For this reason alone, it is desirable to utilise a computer with a large
amount of main memory, such as the Connection Machine.

e T I L L
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Having discussed the major data structures, we now turn our attention to
the organisation of the software package itself. MGLAB consists of a front-end
driver plus a number of back-end library routines which implement user-specified
choices for most of the multigrid parameters listed in Section 3.5. In addition,
the user is required to write PDE-specific routines to calculate on any level L

e the boundary conditions v|,,
e the right-hand side function f
e the five-point discretisation parameters £, Bi,..., B4 (see below)
and optionally
e the action of the PDE operator Av
the initial guess v°
the exact solution u

a pointwise relaxation based on A.

Recall from Section 2.3 that the method of ascending row-wise Jacobi line
relaxation for Poisson’s equation discretised by the five-point star is given by

Uk+1 e I(Uk+l _+_Uk+1

k k 2
1) o= g i+1, i—1, oa Ui,]+1 + Ul.]—l T h flJ)’

that is, v is the solution of some tridiagonal system Bv = ¢. We have implemented
line relaxation using the LINPACK [34] tridiagonal solver. For efficiency reasons,

the process is decomposed into two parts: firstly pre-factorisation of the coefficient
matrix B (using the routine xGBFA), and secondly repeated solution of the system
for some ¢ (using xGBSL), where x = D for double precision and § for single
precision. To simplify this discussion, we shall consider only constant coefficient
PDE’s. Suppose we wish to solve a BVP of the form

AUzy + CUyy + du, + euy + gu = f
with the Dirichlet boundary conditions

u(0,y) = o, u(l,y) = 2

u(z,0) = yo, u(e, 1) = y.

By employing the standard five-point finite differences, we find that the discre-
tised equation is

3001',‘ + ;310._1,, + sz,+1_,' ar 531’.',]-1 + Bavij41 = b

where
Bo g —2(aM?+ cN?)
B
52
B

Ba
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Thus for ascending row-wise line relaxation we need to successively update each
row j by solving the tridiagonal system

r’ljlvi—l,] + }jovzj i ,321,‘1_'_1‘] =gl }331'1.]—1 i *34U1.]+1 fOI'

in other words the (M —1) x (M —1) system
TRIDIAG[1, o, 2] v; = ¢,

where the boundary conditions are incorporated into the column vector ¢ as
follows

¢1 = fij — Bavij-1 — Bavij41 — Pizo.

M = fu — B UM-1,5-1 — By UM-1,j41 — B2 1.

As already stated, the constant matrix B = TRIDIAG(Sy, 3o, 32] is pre-factored

using the routine xGBFA, then relaxation proceeds by forming ¢ for each row then
solving Bv; = ¢ by means of xGBSL.

Note that the five-point discretisation parameters 3o, 31, ..., 34 are also em-
ployed by MGLAB to enable automatic pointwise relaxation

i

| :
Vij = J_ [.311’1-1,1 + Bavigr,j + Bavi j—1 + Bavi i1 —
0

and automatic residual calculation

ru e fl] — [‘Blvx—l‘_] + ‘j2vx+l,] + ,‘331"1,]-—1 + J4L’x.j+l T 30“)]

of constant-coefficient PDE’s on isotropic grids. Where this is not appropriate,
the user is required to write a routine to explicitly calculate the action of the
PDE operator Av and another routine to perform relaxation.

The following is a list of subroutines found in a typical MGLAB front-end
(those marked with an asterisk are essential):

<main program>" Allocate memory

INIT_PDE_PARAMS™ Define PDE parameters and relaxation coefficients f;
CALC_BDY_CONDS* Calculate vg |5,

CALC_RHS _FUNCTION F~ Calculate fr,

CALC_RESIDUER Calculate fr, — Apvg

CALC_INITIAL_GUESS.V Calculate v{

CALC_EXACT_SOLN_U Calculate u|,

USER_JACOBI_RELAX Perform pointwise weighted Jacobi relaxation R}
USER_ASC_GAUSS_SEIDEL RELAX Perform pointwise weighted ascending G-S relaxation
USER_R_B_GAUSS_SEIDEL RELAX Perform pointwise weighted red-black G-S relaxation

The following subroutines are to be found in the serial MGLAB library:
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INITIALISE Initialise data structures and parameters
INIT_CONSTANTS Initialise constants

READ_USER_OPTIONS Query user for multigrid parameter choices
INIT_LEVEL LUT Initialise look-up tables

VALIDATE_LMAX Ensure sufficient memory is available for A levels
FACTORISE_LINE RELAX MATRIX Pre-factorise tridiagonal matrix B
PRINT_HEADING Indicate which PDE is being solved
SOLVE_PDE Perform the chosen multigrid process
MULTIGRID_V_CYCLE Perform 1 x M;*"*"**-cycle

V_CYCLE Perform 1 x V;""*"*?-cycle
PERFORM_RELAXATION Perform w-weighted relaxation R :
JACOBI_RELAXATION pointwise Jacobi
ASCENDING_GAUSS_SEIDEL RELAX ascending pointwise Gauss-Seidel
RED_BLACK_GAUSS_SEIDEL RELAX red-black pointwise Gauss-Seidel
HORIZ_JACOBI_LINE_RELAX row-wise Jacobi

PN SR LTS EEEEEP LY FEFFTEUED B B

VERT_JACOBI_LINE_RELAX column-wise Jacobi
HORIZ_ASC_GS_LINE_RELAX ascending row-wise Gauss-Seidel
PERFORM_RESTRICTION Perform w-weighted restriction IF_:
INJECTION RESTRICTION injection
WEIGHTED RESTRICTION full-weighting
IMMEDIATE_CORRECTION Output result of vy + I¥ vy,
COARSE_GRID_CORRECTION Perform vy «— vy + [ LL“ VL-1
BILINEAR_INTERPOLATION Perform interpolation /F~!
CALC_RESULT Calculate ||le|| and ||r|| as appropriate
CALC_ERROR Calculate e = u — v
PRINT_VF Output all elements of vy or fg
PRINTR Output all elements of r,
FUNCTION INFINITY_NORM Calculate ||z||s
FUNCTION TWO_NORM Calculate ||z||;
FUNCTION LOG_10 Calculate log,, «

The following is a list of multigrid parameter options which are available

to the user of the serial version of MGLAB. (We use the terminology “P-cycle” to
mean pure relaxation on a fine grid.)

e cycle type (P, V, W, or M)

e number of grid levels (A)

e number of grid points on the coarsest grid (M;, Nq)
number of cycles (n)

number of pre-relaxations (vy)
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number of relaxations on the coarsest grid (1)

number of post-relaxations (v;)

relaxation class (based on Av = f (user-defined), based on 2, (automatic),
or based on +Av = f)

relaxation method (pointwise or linewise)

relaxation type (Jacobi, ascending Gauss-Seidel, or red-black Gauss-Seidel)
if pointwise method

relaxation type (row Jacobi, column Jacobi, or ascending row Gauss-Seidel)
if linewise method

relaxation weighting (SOR) factor (w)
restriction type (injection or full-weighting)
restriction weighting factor (=)

norm type (two-norm, infinity-norm, or both)

when to print out intermediate calculations (never, once per cycle, or after
each calculation)

e whether or not to use immediate correction

In addition, each package is available in single or double precision.

The inclusion of w-weighted restriction in the package allows us to inves-
tigate half-injection, in particular. It is well-known that the combination of in-
Jection restriction and red-black Gauss-Seidel relaxation yields poor convergence
(20, 93]. This is due to decoupling of the red and black modes, and is partially
remedied by employing half-injection.

One will observe the absence of some parameter choices mentioned in Sec-
tion 3.5, such as higher-order interpolation and further methods of relaxation
(symmetric, zebra, etc). These absences are simply the result of time constraints,
not programming difficulties.

A complete listing of the front-end program implementing Problem MG10
is given in Appendix A, while a partial listing of the MGLAB package appears at
Appendix C. (These listings are of the CM Fortran versions, rather than the
standard FORTRAN 77 versions, because these are more compact and much more
readable.)

It should be noted that MGLAB is not highly optimised for speed of execu-
tion nor for memory requirements. This is because of the experimental research
philosophy of the laboratory-type software, also performance has sometimes been
sacrificed for the sake of flexibility. Nevertheless, its performance is reasonable;
a typical problem is solved by 1 x MZ**-cycle in less than ten CPU seconds on
a typical serial machine, such as a Sun-4. The following chapter considers the
numerical results of some model linear problems in detail.
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Chapter 4

Model Linear Problems

What is shown by example, men think they may justly do.

— Cicero, Ad Atticum

What we have to learn to do, we learn by doing.

— Aristotle, Ethica Nicomachea

In this chapter, we discuss the numerical solution of several model linear boundary
value problems using MGLAB. The results give us insights into the multigrid process
and, conversely, permit us to check the validity of our algorithm.

4.1 Statement of Model Linear Problems

Five representative linear problems were created to enable testing of and experi-
mentation with the software package MGLAB, our implementation of a laboratory-
type environment for solving elliptic boundary value problems. The elliptic two-
dimensional second-order linear problems to be solved are Poisson’s equation,
the convection-diffusion equation, an inhomogeneous Helmholtz equation, the
anisotropic diffusion (boundary-layer) equation, and a variable-coefficient PDE.
All have Dirichlet boundary conditions on the unit square, as discussed in Chap-
ter 2. A statement of these model linear problems appears on the following
page. Where no initial guess v° is specified, we shall be relying on the automatic
discrete-Laplacian initial guess. These problems are fairly representative of the
types of linear elliptic boundary value problems which researchers deal with. Fig-
ures 4.1 and 4.2 show the solutions of these problems for the following data (which
we call the standard data set):

Problem MG12 =] = =l R =
Problem MG14 =]
Problem MG16 g =40
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Problem MG10 (Poisson’s equation)
Au = 2y*(1—-y?)(1-622) + 22%(1-2%)(1-6y?) in §2
u =10 on 0Of2
i

u = 2y (1-2%)(1-y?)

Problem MG12 (inhomogeneous Helmholtz equation)

—Au + Br*u = ar?sinorz sin TTY in 2; o,7€Z; o,BER
u =0 on 0Of2
00 =0
TR Ty sinomz sin Ty (B+ 0%+ 12 4£0)
B+ 0?4 12 ‘
Problem MG14 (convection-diffusion equation)
—Au + oru; + t7uy = ole ¥ sinY 4 72sinh X (sinY + cos Y) in §2;
where X =onz, Y = ny; o,7TE€EZL:
u(0,y) = 0 u(l,y) = 7 ?sinhor sinY
Uz, 0) =10 gt i) =0
u =71 2sinh X sin¥
Problem MG16 (anisotropic diffusion equation)
u”+52u_,,y:0 ing2 ce€ER, €#0
u(0,y) = sinmy il = A
u(z, 0) =50 bl = 0
v? = (1-z)sinny
1 —epmuism) " T _ sinher(l-z)
u = —1;6276 sSInTy = W sSIn Ty
Problem MG18 (variable-coefficient equation)
(1+y*) uze + (1+z®)uy — (*+yY)u = (22 +y?) e™ in {2
0y 7= "1 () R=NeY
sl =l Vil = R
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Figure 4.1: Solutions to the model linear problems MG10, MG12 and MG14 (top,
centre and bottom, respectively) for the standard data set.
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u

Figure 4.2: Solutions to the model linear problems MG16 and MGI1S (top and
bottom, respectively) for the standard data set.
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log,o ||e||

Figure 4.3: Convergence of various multigrid cycles: error two-norms (solid lines)
and infinity-norms (dashed lines). MG10, A = 9, w = 0.8 weighted Jacobi
point relaxation, @ = 1.0 full-weighting restriction, M; = N; = 2, v = 0,
V1 = vo = v = 2. Multigrid methods are vastly superior to traditional relaxation.

Before proceeding with detailed results, we wish to give a quick general in-
dication of the efficiency of multigrid iteration. Figure 4.3 shows the convergence
of various multigrid cycles for Problem MG10. We see that multigrid, in partic-
ular one full multigrid M-cycle, is orders of magnitude more efficient than simple
relaxation (P-cycles) in solving such a problem.

4.2 Multigrid Algorithm Results

In this section, we will present data which verify that the procedures compris-
ing MGLAB produce valid numerical results. For this reason, we will generally be
concerned with Problem MG10 (Poisson’s equation), as it has widely-recognised
properties (see Chapters 2 and 3). When we do examine our other model prob-
lems, we shall use the standard data set. Results are given using double precision
and isotropic grids with M; = N; = 2 unless otherwise specified.

We shall begin our discussion with some experiments concerning relaxation,
as this is the key element of the multigrid process. The following table shows the
measured convergence factor

k|
[l
for the two-norm of the error averaged over 4 x Pp-cycles of 0.8-weighted Jacobi

relaxation on Problem MGI10 with an initial guess of v = 0. The quantity
o =1 — p is also shown, together with its ratio with respect to o on level L—1.
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L pllell2) Qﬁe“? Qﬁeﬂ;/gﬁe“; Q{feﬂ;/é’[[fe”w
4 0.9756352 0.0243648 - E

) 0.9936601 0.0063400 3.84 3.5T

6 0.9983959 0.0016041 3.95 4.30

7 0.9995977 0.0004024 3.99 3.96

8 0.9998993 0.0001007 4.00 3.98

9 0.9999748 0.0000252 4.00 4.00

As expected, this ratio is found to be approaching 4, indicating that the
convergence factor of Jacobi relaxation is 1—O(h?), owing to our standard grid-
coarsening hrp/hry1 = 2. (Recall that optimal-weighted Jacobi relaxation does
not have a convergence factor of 1 —O(h).) The corresponding ratio for the
infinity-norm of the error is also given in the above table. The convergence factor
for Gauss-Seidel relaxation is found to have the same characteristics as for Jacobi
relaxation.

The following table gives similar figures to those above for optimal-weighted
(ascending) Gauss-Seidel relaxation. Recall from Section 3.4 that the optimal
weighting for Gauss-Seidel relaxation on Poisson’s equation discretised by the
five-point star is wope = 2/(1 4 7h).

L Wopt Ofela e/ el Olello A
4 1.67175  0.1268433 : 0.1331408

5 1.82120  0.0673781 1.88 0.0706676 1.88

6  1.90642  0.0351858 1.91 0.0365719 1.93

T 1.95209 0.0180439 1.95 0.0186633 1.96

8 1.97575 0.0091428 1.97 0.0094359 1.98

9  1.98780  0.0046025 1.99 0.0047435 1.99

As expected, this ratio is found to be approaching 2, indicating that the conver-
gence factor of optimal SOR Gauss-Seidel relaxation is indeed 1 —0(h).

Next we shall confirm that the theoretical smoothing rates are achieved in
practice. For this purpose, we have created Problem MGO as follows:

Problem MGO (Laplace’s equation)

Aun=10 in §2
=1 on 0f?
v® = sin(kwz) sin(kmy) ke€Z

=0
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Notice that the initial guess is a single Fourier k-mode (k=0,1,...,N) in each
dimension, and that we will have e = r and || - ||, = | - |lc. Figure 4.4 (on
page 60) shows the measured convergence factor 5 of various w-weighted Jacobi
relaxations for each initial guess. Recall from Section 3.4 that the convergence
factor for weighted Jacobi relaxation on the two-dimensional Poisson equation
discretised by the five-point star is

k+1
Y

g

s '1 + 1w (cos ) + cosf, — 2)

As expected, each set of measured points follows the graph of
D= ‘1 + w(cos kmh — 1)|.

In other words, we have verified the convergence factor for the points along the
line 6; = 0, in the Fourier space diagram of Figure 3.4. To verify all points
(61,02), we would require initial guesses of

v’ = sin(jrz) sin(kry) for L g M; k=0,1,...,1 V.

Figure 4.5 shows the convergence of weighted Jacobi relaxation for various w.
We see that, as expected, the optimal smoothing weight wopt = 0.8 1s not the
optimal convergence weight. The eigenvalues of the weighted Jacobi iteration
matrix for the 2-D Poisson equation are \(M) = 1 + %w(cos 0, + cosf, — 2),
hence the eigenvalue corresponding to the highest frequency mode is A &~ 1—2w.
Thus after sufficiently many relaxations with w > 1, we see the appearance of
divergent high-frequency modes.

Figure 4.6 shows the convergence of 0.8-weighted Jacobi relaxation on grids
at various levels L, each profile being scaled to the same work units. It is clear
that relaxation can be very inefficient on fine grids; this is because non-oscillatory
functions appear very smooth on fine grids.

Considering these results, we have validated our relaxation algorithms to
our satisfaction. Let us now turn to results of the multigrid iteration itself.

Figure 4.7 shows the convergence of 1 x Vy'**-cycle for Problem MG10. We
use immediate correction (see Section 3.5) to observe the convergence behaviour
inside the cycle; we call this the micro-structure. The abscissa has units of WU,
hence the points indicate the relative amount of (relaxation) computation, which
initially is large (due to fine-grid relaxation), becomes very small (working on the
coarsest grid) and becomes large again. Concentrating on the ||e||. profile, we see
the importance of coarse-grid correction: convergence is poor until we begin the
second half of the V-cycle.

Figure 4.8 is the analogue of Figure 4.6 for V-cycles for various A. We have
performed consecutive V-cycles so that each trial solution has approximately
the same cost in work units. As before, we see that the efficiency of iteration
is high on coarse grids, hence these are not only crucial for multigrid, but are
computationally cheap. We also observe that the profiles for A = 2,4,6 reach a
limiting value of ||e||2: this is the discretisation error.
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Figure 4.9 clarifies the position with respect to discretisation error. We
have plotted the limiting value of the error infinity-norm after many Vj-cycles
for successive A, and for each model problem (using the standard data). We find
that each profile has a slope of

m = —0.6025 £+ 0.0008

and hence 10™ = 0.2497 4 0.0005 ~ i~ Since we have used standard coarsening
hps1/hr = %, our experiment confirms that the discretisation error is O(h?)

Figure 4.10 shows the convergence of 21 x VZ'** cycles for various A. It is
immediately apparent that V-cycle convergence is independent of A, one of the
startling features of multigrid iteration. Eventually the profiles reach a limiting
value of residue norm, due to round-off error.

Figure 4.11 shows the convergence of 10 x V"**-cycles for various multi-grid
hierarchies. These are as follows:

A A[l X A',Vl 1‘12 X A\‘rz "‘[3 X )\/3 “]4 X 1\74 .‘[5 X A\"5 ‘\[6 X A\'YG “[7 X .\/’7

3 33'%33 65 %65 129:% 129 . . g -
4 1T 171 33%33 65 %65 129 31929 - - .
5 9x9 17 % 17T . 33 %33 . 65,x656 129 x 129 - -
65 HHES 9x9 17 % IT » 33 x33 6bx65 129

IR 350! 5 X b 9x9 kgl 337 %33 65

X X
(=2
(S B S

129 x 129

These are chosen so that each hierarchy results in a 129 x 129 fine grid. The
graph shows that the fastest convergence is attained using a hierarchy with the
coarsest possible grid. This is because a 3 x 3 grid permits the lowest frequency
error modes to be reduced with relaxation.

It is interesting to note that increasing v for the A = 3 hierarchy does
not improve convergence. The following experiment demonstrates this; we have
increased v from two to five, and we have reduced the number of V-cycles to
compensate for the increased relaxation cost.

Method llelloo 171l oo WL
10 x Vi*2%cycle | 0.0509124  2.0306385  51.25
4 x V3*%-cycle | 0.0509118  2.0278172  51.25

There is very little computational gain in increasing v for the A = 3 hierarchy;
the coarsest possible grids are required for good convergence.

Figure 4.12 shows the convergence of 10 x V""****?-cycles for various combi-
nations of (v, vg,v2). We see that larger v gives greater accuracy, but naturally
at a certain computational cost. An exception to this is the case of (1,2,2) which
costs the same as (2,2,1), yet gives a significantly better solution. The v com-
bination with the best performance is a matter of judgement, however (2,2, 2)

seems a reasonable choice.
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Lastly, let us consider results for the full multigrid M-cycle. Figure 4.13
shows the micro-structure of one M-cycle for Problem MG10. The graph reflects
the fact that the M-cycle is composed of successively larger V-cycles, resulting in
an increasingly accurate solution. Looking at the error norm profile, we see that
(after the first few V-cycles) the accuracy is consistently improved by more than
half a decimal digit for each successive V-cycle. We can see this more clearly from
the following table of figures. Naturally, each succeeding V-cycle is computation-
ally more expensive than the previous one (by a factor of approximately four),
hence convergence will appear to slow with respect to computation time.

L | logollella Alllell2) | logiollrlla  A(lI7Il2)
1 ~1.76 - —0.73

2 —2.49 0.186 ~1.39 0.218
3 —2.85 0.429 ~1.31 1.212
4 —3.30 0.357 ~1.41 0.779
5 ~3.80 0.316 ~1.56 0.715
6 —4.33 0.293 ~1.71 0.708
7 —4.89 0.279 —1.86 0.709
8 —5.46 0.270 ~2.01 0.711
9 —6.03 0.265 —2.15 0.715

Figure 4.14 shows the convergence of 1 x MZ*?-cycle for each of the model
linear problems, using the discrete-Laplacian initial guess described in Section 3.6.
The profiles have very similar characteristics; however less accurate solutions were
obtained for the two anisotropic problems, as would be expected.

A close inspection of the graph will show that the MG12 profile does not
have a value plotted for zero work units. This is because the initial guess on the
coarsest grid was fortuitously identical to the exact solution.

Figure 4.15 compares the convergence of V-cycles for single- and double-
precision arithmetic. We see that each norm approaches some limiting value
(for the residue norms in double precision, this value is about 107'?) which is
determined by a combination of discretisation and round-off errors. For residue
norms in this case, this value is roughly four or five orders of magnitude greater
than arithmetic precision; while there is relatively little difference in the limiting
value of the error norms. We observe that virtually no discrepancy appears
between the single- and double-precision results until about the fourth V-cycle.
This leads us to conjecture that an M-cycle, which does not repeat a V-cycle
on the same level, will give results almost independent of precision in certain
circumstances. The following table indicates that this is true for a smooth BVP;
it shows the result of 1 x M2'**-cycle on Problem MG10 with the usual multigrid
parameters for single and double precision.

Let us now return our attention to Figure 4.3, which shows the accuracy of
three types of multigrid iteration. The sequence of V-cycles evidently converges to
the numerical solution of the discrete problem; that is, the solution to the linear
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SP 0.00000092  0.00000206 | 0.00703635  0.1637
DP | 0.00000088  0.00000191 0.00724267  0.1638
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system Av = f is eventually computed to within round-off error (dictated by
arithmetic precision). Further evidence of this is that the residuals do approach
the level of round-off error (Figure 4.10). Since the system Av = f is itself
an approximation to the continuous problem, discretisation errors (of O(h?))
prevent the solution from approaching an accuracy comparable to round-off error.
We notice that neither the W- nor M-cycle attain the numerical solution of the
discrete algebraic problem that the 10 x V-cycles do; this is because insufficient
smoothing was performed in this case. To remedy this, we would increase the
number of relaxations v.

Finally, Figure 4.16 shows the CPU execution times for MGLAB on some of
the many different serial machines available at the Australian National Unjver-
sity. These times are averaged over at least four separate trials, and execution

took place during periods of minimal activity. Some details of the hardware and
compilation are as follows:

Name  Make and Model ~Memory (Mb) Compilation command

phys4 VAX 3100 16 fortran/nocheck/optimize
cscl VAX 8700 32 fortran/nocheck/optimize
romeo Sun 4/390 32 £77 -03 or £77 -04
huxley  Sun 4/690 (x4) 32 £77 -03 or £f77 -04
vulcan Sequent S27 (x8) 16 fortran -03
gauss  Apollo DN10000 16 £77 -0 -A cpu,a88k

vp Fujitsu VP2200 256 frt -Wv,-p2200 -Ne -Os

Most of these types of computers are familiar to researchers, except perhaps the
Fujitsu VP2200: a vector-processing supercomputer. We will not describe its
hardware nor architecture because we are treating it merely as a (very large and
fast) scalar machine. Indeed, the vector processor was virtually idle during the
execution of MGLAB because the statement function MAP (see Section 3.7) could
not be vectorised by the compiler. The times for the VP2200 were obtained
during March 1992 when the cycle time of the machine was 4.0 nanoseconds:
very recently this was reduced to 3.2 nanoseconds.

We can see from Figure 4.16 that (even with virtually no vectorisation) the
VP2200 performs multigrid very rapidly, while the execution time for standard
serial machines can be significant.

We have examined the basic results produced by MGLAB, and are satisfied
that they are consistent with the multigrid concepts presented in the previous
chapters. We have not made an attempt to present exhaustive results for all
possible multigrid parameters.
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Figure 4.4: Convergence factor of w-weighted Jacobi point relaxation for various
w on Laplace’s equation in 2-D with the initial guesses v° = sin(krz) sin(k7y)
(Fourier modes) £ = 0,1,...,64 on a 65 x 65 grid. The optimal smoothing factor
(over all high-frequency Fourier modes) pop = 0.6 occurs for w = 0.8.
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Figure 4.5: Convergence of 50 x Ps-cycles using weighted Jacobi point relaxation

for various w. MGI10, v° = 0. Optimal convergence does not imply optimal
smoothing.
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logyo [|7]|2

100 150 200
Figure 4.6: Convergence of various P-cycles, each performing approximately

the same amount of work. MG10, w = 0.8 weighted Jacobi point relaxation

v® = 0, work units (WU) for each L are scaled to those for L = 2. For smooth v
relaxation on fine grids is very inefficient.

logyo || - |-

Figure 4.7: Micro-structure of V-cycle convergence as measured by two-norms
(solid lines) and infinity-norms (dashed lines). MG10, 1 x Vg&*%-cycle, w = 0.8
weighted Jacobi point relaxation, @ = 1.0 full-weighting restriction, v°

= 0, im-
mediate correction. Coarse-grid correction is essential for rapid convergence.




PO STLEL T L) L

CHAPTER 4: MODEL LINEAR PROBLEMS

EL P LU

logyo ||6“2

graaninasaobssalNEcanavin

T bt A A1 00 B M e

0 iEA R

1

5000 10000 20(300

Figure 4.8: Convergence of n x L"f‘?'z—cycles for various A, each performing ap-
proximately the same amount of work. MG10, w = 0.8 weighted Jacobi point
relaxation, @ = 1.0 full-weighting restriction, v = 0, work units (WU) for each
A are scaled to those for A = 2. As much computation as possible should be
performed on coarse grids.
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Figure 4.9: Discretisation errors as measured by the error norm of nango B Sl
cycles for various A. w = 0.8 weighted Jacobi point relaxation, @ = 1.0 full-

weighting restriction. The discretisation error is O(h?).
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Figure 4.10: Convergence of 21 x V:'Q'Q—cycles for various A. MGI10, w = 0.8

weighted Jacobi point relaxation, @ = 1.0 full-weighting restriction, v° = 0.
Convergence is independent of A.
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Figure 4.11: Convergence of 10 x Vf\z'z'?'-cycles for various multi-grid hierarchies,
each resulting in identical finest grids of size 129 x 129. MG10, w = 0.8 weighted
Jacobi point relaxation, @ = 1.0 full-weighting restriction, v® = 0. Rapid con-
vergence requires the inclusion of the coarsest possible grids.
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Figure 4.12: Convergence of 10 x V;""°"*?-cycles for various combinations of

(1,v0,v2). MGI10, w = 0.8 weighted Jacobi point relaxation, @ = 1.0 full-
weighting restriction, v° = 0.
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Figure 4.13: Micro-structure of M-cycle convergence. Larger circles mark the
juncture of successive V-cycles. MG10, 1 x Mg**-cycle, w = 0.8 weighted Jacobi
point relaxation, @ = 1.0 full-weighting restriction, v® = 0, immediate correction.
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Figure 4.14: Convergence of 1 x Mg**.cycle for the model linear problems.
w = 0.8 weighted Jacobi point relaxation, @ = 1.0 full-weighting restriction,
discrete-Laplacian initial guess, immediate correction. Multigrid iterations for
each model problem have similar characteristics.
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Figure 4.15: Multigrid convergence using single-precision (dashed lines) and
double-precision arithmetic (solid lines). MGI10, 11 x ‘»’gz‘z'z-cycle. gyl =048
weighted Jacobi point relaxation, @ = 1.0 full-weighting restriction, v° = 0,

immediate correction. Accuracy of solutions is almost independent of arithmetic

precision.
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Figure 4.16: CPU execution times on various serial machines for solving Problem
MG10 using the double-precision FORTRAN 77 version of MGLAB. The method used
is 1 x My**cycle using w = 0.8 weighted Jacobi point relaxation and @ = 1.0
full-weighting restriction. (See text for details of the hardware of these seven
machines.) Each dashed line is an estimated result.
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4.3 Model Problem Results

In this section, we will accept our multigrid implementation as valid and concen-
trate on numerical results for Problems MG12, MG14, MG16 and MG18. Results
are given using double precision and isotropic grids with M; = N, = 2 unless
otherwise specified.

Figure 4.17 shows the convergence of an M-cycle for Problem MG12 using
single- and double-precision arithmetic. Unlike Problem MG10 (see Figure 4.15),
single precision proves to be unstable for this set of parameters. This is because
the solution is more oscillatory than in the case of MG10.

Figures 4.18 and 4.19 show the convergence of V-cycles for Problems MG16
and MG18 respectively, comparing initial guesses of the zero function and the
discrete-Laplacian function described in Section 3.6. We see that a good initial
guess results in substantial improvements in numerical accuracy. Recall, however,
that the quality of the initial guess is virtually irrelevant for M-cycles.

Figure 4.20 shows the convergence of an M-cycle for Problem MGI18, com-
paring full-weighting and injection restriction. We find that full-weighting is
superior to injection, as one might expect. There are situations, however, where
the decrease in convergence is more than compensated for by the increase in
computational speed.

Figure 4.21 shows the convergence of an M-cycle for Problem MG14, with
the data o = 1 and increasing values of 7. As T increases, we are increasing
the anisotropy inherent in the equation: the solution becomes more and more
oscillatory (more detailed) in the y-direction. Eventually the iteration becomes
unstable because of this. To remedy this, we would need to use a finer anisotropic
grid and/or use line relaxation.

Figure 4.22 shows the convergence of an M-cycle for Problem MG16, with
increasing values of ¢?. This is a standard problem for investigating anisotropy.
As in the previous example, the given multigrid iteration becomes practically
useless for a sufficiently large degree of anisotropy. We show the improvement in

convergence obtained by switching from point to line relaxation.
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Figure 4.17: Convergence of 1 x M}*?-cycle using single-precision (dashed lines)
and double-precision arithmetic (solid lines). MGI12, standard data, w = 0.8
weighted Jacobi point relaxation, @ = 1.0 full-weighting restriction, v° = 0.
Single precision is unstable in this case.
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Figure 4.18: Convergence of 10 x Vi***-cycles for initial guesses of v° = 0 (dashed
lines) and the discrete-Laplacian function (solid lines). MG16, standard data,
w = 0.8 weighted Jacobi point relaxation, @ = 1.0 full-weighting restriction. A
smooth initial guess has significant advantages.
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logio || - lleo
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Figure 4.19: Convergence of 10 x Vg"**-cycles for initial guesses of v° = 0 (dashed
lines) and the discrete-Laplacian function (solid lines). MG18, standard data.
w = 0.8 weighted Jacobi point relaxation, @ = 1.0 full-weighting restriction. A
smooth initial guess has significant advantages.
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Figure 4.20: Convergence of 1 x Mg***-cycle for Problem MG18, comparing in-
jection restriction (dashed lines) and @ = 1.0 full-weighting (solid lines). w = 0.8

weighted Jacobi point relaxation, v® = 0. Full-weighting is generally superior to
injection.
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log,g ”e”oo

Figure 4.21: Convergence of 1 x MZ?**-cycle for Problem MG14 with o = 1

and various values of 7. w = 0.8 weighted Jacobi point relaxation, = = 1.0

full-weighting restriction. The iteration becomes more unstable as the degree of
anisotropy increases.

log, ”6”00
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Figure 4.22: Convergence of 1 x Mg'*?-cycle for Problem MG16 for various values
of e2. w = 0.8 weighted Jacobi point relaxation, @ = 1.0 full-weighting restriction,

user-defined initial guess. Also w = 0.6 weighted Jacobi column relaxation for
€% = 64 is shown (dashed line).
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4.4 Debugging and Algorithm Correctness

Suppose that a researcher writes a multigrid program to solve some particular
problem of interest. It is often the case that the numerical results produced by
such code seem reasonable, that is, the approximate solution v converges to an
actual solution, as measured by a discrete norm of the residual for example. Given
that multigrid software may be of moderate complexity, how is the researcher to
know that these are the correct results, that the appropriate convergence rate
has been achieved, and that the program is free of errors? Furthermore, we have
indicated the multifarious nature of the sub-procedures making up a multigrid
method; how can the researcher be sure that no conceptual errors have been made
in assembling these multigrid components?

These important questions are discussed in Brandt’s seminal paper [17]. The
essence of the “Guide to Multigrid Development” is that careful analysis should
be made of each component of the multigrid process, and that actual results
be compared to these theoretical rates of convergence. Brandt’s golden rule is
that the amount of computational work should be proportional to the amount
of physical change in the computed system: that stalling numerical processes
indicate there is a better way to achieve the same goal.

The process of writing a multigrid algorithm should begin with a stable
discretisation scheme. For regular elliptic problems, simple differencing is stable
in every respect [17]. Possibly the most crucial step in constructing a multigrid
process 1s to next obtain a relaxation scheme with a good smoothing rate, as
discussed in Section 2.3. Here the principal theoretic tool described by Brandt
is local mode analysis. While this is not entirely rigorous — it assumes periodic
boundary conditions and frozen coefficients in variable-coefficient problems — it
serves as a very useful tool. The next step is to choose intergrid operators and
the coarse-grid operator. Unless the particular boundary value problem dictates
otherwise, the operators discussed in Section 3.1 are usually standard choices.
Finally, it is sensible to cautiously advance the software development from pure
relaxation to a two-grid scheme to a Vj-cycle then to a full multigrid My-cycle.

There are a number of other aids available to the multigrid software devel-
oper:

e standard software engineering practices — modular design, individual com-
ponent testing, full documentation, and so on:

verification of numerical results by comparison with hand-calculated results
(clearly this is possible only for small problems);

scientific visualisation — graphical output of the solution process assists
the developer in diagnosing faulty multigrid components;

the immediate-correction process — an excellent tool for diagnosing soft-
ware faults: the point of failure can traced to a particular multigrid element;

reference to and comparison with published software and results; and

cross-checking of results from dual independent platforms — in our case, the
CM Fortran and standard FORTRAN 77 codes for MGLAB are quite different.
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4.5 Comparison with Published Results

A desirable method of verifying software is to compare its results for some given
problem against those produced by publicly available software, or published re-
sults. The difficulty with attempting to directly compare multigrid results this
way is that usually not all of the multigrid parameters are fully specified in a
paper, or that the reference software package does not have exactly the same
choice of parameters.

Nevertheless, we have at our disposal two simple multigrid programs which
have been explicitly published: MGOOD by Foerster and Witsch (listed in the ap-
pendix of [93] and described in [40]), and FMV by Briggs and McCormick [77).
Both programs are designed to be illustrative of the multigrid process, and hence
are elementary. Each is designed to solve Poisson’s equation on the unit square
with Dirichlet boundary conditions, corresponding to our Problem MG10. They
both use the usual five-point discretisation, together with red-black Gauss-Seidel
relaxation, half-injection and bilinear interpolation. FMV performs 1 x A\[K"‘l-cycle.
while MGOOD is a little more flexible, allowing n x V3*""*2- W- and M-cycles. It
was found that MGLAB gave the same results as these two programs, and hence
our confidence in the correctness of MGLAB is increased.

Turning now to published multigrid results, we have found two sources which
seem to permit direct comparison of results, although there is often some uncer-
tainty with some multigrid parameters, as we have mentioned. The first set
of results appear in Briggs [20], where he solves Problem MG10 using red-black
Gauss-Seidel relaxation with (a) 6 x V,"!"!-cycles (A = 4,5,6), (b) 1 x Mg "-cycle,
and (c) 1 x M2 -cycle. Again, we have reproduced the results with MGLAB.

Next, we shall attempt to compare our multigrid results with those of Adams
(1] who has published results for the package MUDPACK; his Example 4 is identical
to our Problem MG16, with the notation e = 1/e2. This is the model anisotropic
diffusion equation, in which a boundary layer forms along z = 0 as ¢ = co. Adams
states that he used 1 x M?'-cycle with line y relaxation to solve this problem.
We have assumed that the following parameters were used:

[ ] A’I} = N1 = 2,

e standard five-point discretisation: Bp = 2(e*+1), 1 = B2 = 1, B3 = B4 = €2,
e w-weighted Jacobi column-wise relaxation,

e w-full-weighting restriction,

e standard discrete two-norms,

e an initial guess of v° = 0, and

e double precision calculations.

In addition, we set vy = 5 as an approximation to solving directly on the coarsest
grid, and we found the optimal values of w and @ by numerical experiment. The
results of MUDPACK and MGLAB are presented in Table 4.1. Given the number of
uncertain parameters, the comparison seems favourable.
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—4.8

—4,1

-3.3

—2.74

Table 4.1: Comparison of results of log,, ||€|l2 obtained by MGLAB (first row of
figures in each block) and MUDPACK (second row of figures) in solving Problem
MG16 for various values of . The MGLAB method used is 1 x M;>-cycle with
column-wise w,p, weighted Jacobi line relaxation, w,p, full-weighting restriction
and zero initial guess.

A further source of discrepancy may be that Adams actually used the mea-
sure ||v—uol|2, where ug is the injection of the limiting value of numerous V"' -
cycles, since the exact solution u was not available to him. Also note that the
entries in Table 4.1 marked with an asterisk seem questionable, as the norm
appears to increase as L increases (as we proceed deeper into the M-cycle).

Note that a simple multigrid approach to solving this anisotropic problem
(¢ > 1) is not particularly efficient. Such specialised problems require more
refined techniques; see for example [51, 53, 61].
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Chapter 5

Nonlinear Multigrid

The assumption of linearity underlies, as a fundamental postulate,
a considerable domain of mathematics. Therefore the mathematical
tools available to the natural scientist are essentially linear. However
Nature, with scant regard for the desires of the mathematician, is
essentially nonlinear . ..

— W. F. Ames [4]

In this chapter, we discuss multigrid methods for solving nonlinear partial dif-
ferential equations. We will concentrate on the full approximation scheme (FAS)
proposed by Brandt [15] in 1977. We will find that the FAS cycle requires only
minor modifications to the linear multigrid algorithm already presented.

5.1 Full Approximation Scheme

The most interesting boundary value problems are often nonlinear in nature.
Examples of nonlinear physical problems include chaotic and turbulent systems,
which exhibit complex behaviour, not to mention more classical problems such
as elasticity, diffusion and vibration. In order to simplify the discussion, so far
we have dealt only with linear equations, however multigrid is also ideally suited
to solving nonlinear problems.
Our notation is unchanged; we require the solution u to the nonlinear bound-
ary value problem
Au=F niiR=[0,1 x[0,1]

u=g on 80 5L

where 4 is a nonlinear elliptic operator. We will sometimes write Au = f in the
form F = Au — f = 0. This problem is well-posed if and only if the Jacobian of
F, J = 0F/0v, evaluated at u is non-singular [51].

One approach to solving problem (5.1) is to combine a linearisation process
(such as Newton’s method) with the linear multigrid iteration, which transforms
the nonlinear problem into a sequence of linear ones. While this indirect method
requires a relatively simple addition to the linear multigrid process, it is somewhat

74
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CHAPTER 5: NONLINEAR MULTIGRID

restricted in its application, so we shall instead develop an intrinsically nonlinear
multigrid iteration.

Before proceeding, we define F}, the components of the operator ¥. Suppose
F:R" - R",
?(IlsIQs'-‘wlm) —_— (yl3y2v"'7yﬂ.)

say, then we can split this action of ¥ into its components
Fi @y @y s B) = U tort =12 . 5

The first element of the multigrid scheme, the relaxation process, is again re-
quired to have suitable smoothing properties. Linear relaxation methods usually
have several analogues for nonlinear problems (see for example Ortega and Rhein-
boldt [84]). Recall that linear 2-D Gauss-Seidel relaxation is given by (cf. equa-
tion 2.16)

1 x—1 7

. o k+1 k

Vg o fr( 78 Z Ay Uy — Z Ay vy
Anx e

A=xr+1

where 7 = (M —1)(N —1). If we interpret this iteration in terms of solving the
" equation of the system for v¥*!, while keeping the other 7—1 variables fixed,
then we can extend this idea to nonlinear equations; that is, if F has components
Fy, ..., F;, then the basic step of the nonlinear Gauss-Seidel iteration is to replace
v¥ by the solution v, of the k" equation

k k k k "
FK(UIH,...,vﬂf{,vmvnﬂ,....vr) 0. (5.2)

Thus one complete relaxation iteration v**! « v* involves the successive solution

of these 7 nonlinear equations, k = 1,2,...,7. Naturally, we may generalise this
iteration by introducing a weighting parameter w:

k+1 _ ok &
v,T = v, + w(ve—v)).
In a completely analogous fashion, we can derive the nonlinear Jacobi iter-
ation from the linear iteration

1 i g2

i k 2
= — | fx — ZA"*U/\ e S
Axx =1

A#x

which is equivalent to solving the k™ equation for v, while all other v, are held at
their values from the previous iterate v§. Therefore the nonlinear Jacobi iteration
updates v* with the solution v, of the equations

k k k e PR ‘
F(V3 s s i B Vs sty ) =5 0 fons =il 2o (5.3)

Even assuming that the nonlinear equations (5.2) and (5.3) have unique
solutions, there remains the difficulty of solving them analytically. In general
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this is not possible, therefore a one-dimensional iterative method is applied, such
as Newton’s method, the secant method, or Steffensen iteration (see [84] or [102]).
For example, the one-step Jacobi-Newton nonlinear iteration is defined by

k
k+1 k Fy(v¥)
vetl = of — for &=m,2.%."

O Fe(v¥)

Unfortunately, nonlinear relaxation cannot guarantee simultaneous reduc-
tion of all smooth error modes.

Let us now turn our attention to the second element of the multigrid method:
the coarse-grid problem. The exact coarse-grid correction e is given by

A(v—e) = f.

Combining this with the residual equation v = A~!(f—r) and the definition
v' = 27! f gives us [5]]

e = ANf-r) - A
—J7)r + O(|I7|I>) by Taylor’s theorem

since

la]” = Ay

Given a coarse-grid approximation vr_;, we define
L
fr-1 = Apa(vi-1) and  rpy = =fia — @l L.

In the usual two-grid fashion, we assume that the coarse-grid equation can be
solved exactly: er_; = A7, (rL-1), hence a Taylor expansion applied to

U — ﬁ ]f_l(l/‘L-l ~ €r-1)
LIE (A7t (f) = AL (= fir = @I ro)
gives us [51]
o = IEEN () s + O (@llTE ).
We conclude from these two Taylor expansions that
er & A'ri and STACUI el ol )

and so we expect e;, &~ 0 when the residue is smooth, just as in the linear case.
The most commonly used nonlinear multigrid scheme is the full approzima-
tion scheme (FAS) introduced by Brandt [15], which uses @ = 1 and

37
v = Iy _yve,

where IE_, may differ from the restriction IF_,. In this direct nonlinear approach
to multigrid, no global linearisation is explicitly carried out. A diagram of the
FAS two-grid process appears at Figure 5.1.
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Zl RU)
p /
R ——— Uy = rh = fp — Aps en —= vy = v} + e Ll vy

h
I3, I’

4

T‘2h —_—

solve Ajpean = Top,

!
e 6'
0 2h
e } e O' € — O
2h 50 2h

(a) Two-grid linear V-cycle

121 v2
h
V) ——— U;'L — = fi —,th;l e — v;: = v;_l + ep Lahady v;l"

h h 2h
]2h [2h Ih

/ 4
Wohim=> To) ==

solve Aax(v + €)on — A2nvon = Tas,

(b) Two-grid nonlinear V-cycle

Figure 5.1: Pictorial representation of the (a) linear, and (b) nonlinear (FAS)
two-grid V-cycle schemes (after Stiiben and Trottenberg [93]). The linear cycle
consists of pre-relaxation, residual calculation, residual restriction, solution of
the coarse-grid residual equation, error interpolation, error correction and post-
relaxation. The full approximation scheme adds a v -restriction step, I, and re-
quires the solution of a full version of the coarse-grid equation. Multigrid schemes
recursively solve the coarse-grid equation, which is of the same form as the original
problem: solve Av = f, where v|,, = g, with initial guess v° = vj.
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The derivation of the coarse-grid equation for the nonlinear method proceeds
as follows:

= fon — A2nvan

Aapuan — A2nV2h

T2h

= Azn(ven + €2n) — A2nv2n

#  Aapean since 4 is a nonlinear operator.

Therefore we wish to solve
Azn(van + €2n) = Ton + A2nv2n

which is of the same form as the original equation Av = f. It is important
to note that we have projected the full PDE to the coarse grid (not just the
residual equation), hence we solve the FAS coarse-grid equation with the actual
boundary conditions g of the problem, rather than with zero boundary conditions
as in the linear case. Another notable point is that while we solve for the “full
approximation” (v+e€) on the coarse grid (rather than just the correction e as
in the linear case), it is the correction e that is transferred back to the fine grid.
This is important since only residual and correction quantities are smoothed by
relaxation and so can be properly represented on coarser grids.

Finally consider the intergrid operators, the third ingredient of our nonlinear
multigrid scheme. Since these operators are indifferent to the linearity of the grid
functions they act upou, it is sufficient to use those already discussed for the linear
case (see Chapter 3). Although we now have an additional restriction operator
ié‘h, it turns out that the use of simple injection results in adequate accuracy, and
this is a standard choice for I%, unless the solution is expected to vary strongly
over the grid scale h [75].

Given all the above considerations, we are now able to present the two-grid
FAS algorithm (where the steps added to the linear algorithm are written in
boldface):

Algorithm 5.1 (Two-grid Full Approximation Scheme)
An iteration for solving Apun = fr, given some initial quess vy.

vp — R (vh, fr) pre-smoothing

rh — fn— Anvp residual calculation

Ton — Ié‘h Th residual restriction

van — 1By approximate solution restriction
€rp — ﬂz'hl (ron + A2nv2n) — Va2n coarse-grid equation solution

vn — v+ I3Pegn coarse-grid correction

vp — R2(vh, fa) post-smoothing

This naturally extends to the multigrid FAS algorithm, where (as before)
~ = 1 gives the V-cycle, while 7 = 2 produces the W-cycle:
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Algorithm 5.2 (Multigrid Full Approximation Scheme V- or W-cycle)
A recursive iteration for solving Apup = fa, given some initial quess vy.

procedure FAS-VW-cycle (v, f, L)
begin
if L =1 then

vy — R (v, fL)
else

v Rep (Ve fE)
re-1 — If_ (fL — Arvr)

Vp—1 — [f_l vy,

e

i

R WA AU

ULy # UL
Jr-1 & 71+ A 1904
for 1 = I to ¥ do
FAS-VW-cycle (v, f,L — 1)
endfor
ep=1 =g — 011
v — g + IF e
v — R7 (vr, fL)
endif
end

Just as in the linear case, the M-cycle is recursively constructed from a sequence
of increasingly larger V-cycles (or possibly W-cycles, although this is not the
usual choice):

Algorithm 5.3 (Multigrid Full Approximation Scheme M-cycle)
A recursive iteration for solving Ayup = fa, given some initial guess v;.

procedure FAS-M-cycle (v, f, L)

begin
if L #1 then
fr1 — If (fo— Arvr)
vp-1 «— 0
vr—1 — FAS-M-cycle (v, f,L — 1)
vy — v+ IF vy
endif
v — FAS-VW-cycle (v, f, L)
end

We note that these algorithms are generalisations of the linear multigrid meth-
ods in the sense that they produce identical results for a linear boundary value
problem.
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Convergence analysis of nonlinear multigrid is a difficult area. There are two
aspects of our theoretical knowledge which lag behind our practical experience:
it is difficult to prove convergence without imposing fairly strict conditions on
the boundary value problem, and the theoretical convergence bounds are not
particularly sharp. Numerical experiments indicate that the class of problems
suitable for multigrid is far wider than we can currently prove, moreover that the
actual numerical convergence rates generally far exceed any theoretical estimate.

Hackbusch [50, 51] analyses the convergence of the nonlinear multigrid itera-
tion in some detail. His main result is that these iterations behave asymptotically
in the same manner as the corresponding linear processes.

Stiiben and Trottenberg [93] show that, under reasonable assumptions, the
FAS M-cycle has the following two properties:

1. an approximation uy to the exact solution of the discrete problem iy can be
computed with an error ||uy — w|| which is smaller than the discretisation
error ||u — u|, and

2. the number of arithmetic operations required to do so is proportional to N},
the number of grid points on §2;, with a small constant of proportionality
(depending on «, hr/hr+1, the type of cycle, etc).

We can confirm this second property by extending the discussion of computa-
tional costs of multigrid in Section 3.3 as follows [93]. Suppose wf,, denotes the
computational work involved in one (L, L+1) two-grid cycle (excluding the work
required to solve the coarse-grid equation), and let w; be the work performed on
the coarsest grid {2,. Then the work required for a complete multigrid (V- or W-)
cycle is

A
A-L , L-1 A-1
wp = Z g wy, -1 4 wy.
L=1
Ignoring boundary effects, we have in d dimensions

N = 2 N1

Let the computational work per grid point for a two-grid cycle be bounded by
some constant C

wit <« ON;

then we obtain (in 2-D)

3CNx fory=1 (V-cycle)
WA <
2C N\ fory =2 (W-cycle)

This estimate of wy, together with the fact that the multigrid convergence
rate is independent of h, shows that the multigrid iteration is asymptotically
optimal; that is, multigrid solves an algebraic system of n unknowns to the level
of truncation error in O(n) operations.
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5.2 FAS Implementation

To simplify the design of MGLAB, we chose to forego the general nonlinear relax-
ation methods discussed above in favour of single-step Newton relaxation on the
nonlinear equation; this idea is discussed in Stuben and Trottenberg [93]. This
is sufficient, since (as always) we only require the approximate solution to the
(approximate) coarse-grid equation — it is fruitless to attempt to calculate the
exact solution of an approximate equation.

If our discretised PDE is represented in the form F'(v;;) = 0, then we generate
a relaxation scheme from the Newton iteration

v S ) i=0.1...M; §=01..N {54

The results of this relaxation method are most acceptable, as we demonstrate in
the next chapter.

A sufficient condition for the convergence of Newton’s iteration is [8]

. F(vi;) F"(vi;)
[F'(UiJ)]2

which must be satisfied for each PDE treated in this way.

It is fortunate that the linear multigrid algorithm can be easily modified to
perform the nonlinear full approximation scheme. The back-end library routines
in MGLAB require only two minor changes. Firstly, each routine which performs
some coarse-grid calculation with the boundary conditions is modified to use the
actual boundary conditions of the problem, rather than zero boundary conditions
as in the linear method.

Secondly, subroutine V_CYCLE is changed (see Algorithm 5.1) to

e set the initial coarse-grid guess to f;‘h V-1,
e add 4 vy to the right-hand side functional, and

e subtract the full approximation vy from the coarse-grid error correction
term.

We also require the user to write a PDE-specific relaxation routine (a Newton-step
method as described above, for example) for the front-end driver program.

This gives us a fully nonlinear multigrid method, which we shall apply to
several interesting nonlinear problems in the next two chapters.
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Chapter 6

Model Nonlinear Problems

How can it be that mathematics, a product of human thought in-
dependent of experience, is so admirably adapted to the objects of
reality?

— Albert Einstein

In this chapter, we discuss the numerical solution of several model nonlinear
boundary value problems using MGLAB. This will be analogous to the discussion
of the linear model problems in Chapter 4. These results will help to confirm
that we have a valid nonlinear multigrid implementation.

6.1 Statement of Model Nonlinear Problems

Four nonlinear boundary value problems were selected to test MGLAB and to ex-
plore the effect of various multigrid parameters on the solution process. A state-
ment of these model nonlinear problems appears on the following page.

These problems cover a certain range of nonlinear behaviour. Problem MG20
is related to an equation believed to govern the (free) boundary of phase transition
in a solid/liquid interface model. In fact, the parabolic problem u; = F(u) coupled
with a suitable thermal equation is a model for crystalisation and dendrite growth
(see Caginalp and Fife [21]).

Problem MG22 is the static porous medium equation. It models the density
of an ideal gas (with ratio of specific heats ) which has reached an equilibrium
flow through a homogeneous porous medium. This equation also arises in models
of plasma physics. For the equation to represent a physical system, we must have
u >0 and v > 0. The PDE is elliptic except at any point where u = 0. For more
details on our present knowledge of this difficult equation, see Aronson [7].

Problem MG24 is a scalar version of the Navier-Stokes equations, where v
is the kinematic viscosity (it is also an ellipticity parameter). This problem has
rather arbitrary boundary conditions, hence the exact solution is unknown.

Finally, Problem MG26 is perhaps the most interesting model quasilinear
elliptic equation, as it encompasses the behaviour of soap films (minimal surfaces,
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CHAPTER 6: MODEL NONLINEAR PROBLEMS

Problem MG20 (solidification equation)

Au + 29*(1 + B (u — v?) in £2; o,8,y€ R
= tanh[vy(a—y)] 4 tanh[y(a—3—y)]
= tanh[y(a—pz)] ( tanh[y(a—pfz—1)]

=0

u = tanh[y(a—pBz—y)]

Problem MG22 (static porous medium equation)

Al =0 in {2; yeR, ~v#0

m2 =

[sinscosh(uy+e)]l/7 u(l,y) = [sinscosh(uwf)]l/"

sin(ur+s)coshs]1/'Y u(l‘,l) s

ﬂ'2 =5

[sin(ur+s) cosh(r—¢) ] 1/~

12

where pu=m—-2¢ c€eR

[sin £ cosh 5] My

T2

sin(uz + €) cosh(py + ¢) i
o= —

Problem MG24 (pseudo Navier-Stokes equation)
vAu — u(uz +uy) =0 in2; veR, v#0

= sinmy ( sin%ny
= 0 =
W'=0 in {2

u is unknown

Problem MG26 (prescribed mean curvature equation)

uzz(1l + uy?) — 2uguyuzy + uyy(l + uz?)

(1 4+ u?+ uy'z)a/2

= H=,y) in {2
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Figure 6.1: Solution (top) and discrete-Laplacian initial guess (bottom) for Prob-
lem MG20 using the standard data set (except vy = —2.5).
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Figure 6.2: Solution (top) and discrete-Laplacian initial guess (bottom) for Prob-
lem MG22 using the standard data set.
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Figure 6.3: Numerical solution (top) and discrete-Laplacian initial guess (bottom)
for Problem MG24 using the standard data set.
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that is, surfaces of zero mean curvature), soap bubbles (surfaces of constant mean
curvature), and more complex structures (surfaces of prescribed mean curvature).
We shall devote Chapter 7 to the discussion of such problems.

The standard data set for the model nonlinear problems will be:

Problem MG20 a=10; =20, v=—1.0
Problem MG22 =20, &=0.1
Problem MG24 v=0.8

Figures 6.1 and 6.2 show the solution and discrete-Laplacian initial guess for
Problems MG20 and MG?22 for these particular parameters. Since the analytic
solution to Problem MG24 is unknown, Figure 6.3 shows the numerical solution
obtained using MGLAB. Note that all numerical-solution and initial-guess surface
plots in this chapter (and the next chapter) are of the interior of {2 — the bound-
ary data is not shown.

Unless otherwise stated, the multigrid results in this chapter will be based
on a discrete-Laplacian initial guess, = 1.0 full-weighting restriction, isotropic
grids with M; = N; = 2, and double-precision arithmetic.

6.2 Model Problem Results

In Section 5.2, we claimed that single-step Newton iteration on the nonlinear
equation is an adequate form of relaxation. We are now in a position to demon-
strate this, since we can derive the exact nonlinear relaxation for Problem MG20.
Let 7 = 29%(14 %), then the isotropic five-point discretisation of the PDE is

N* (Z Vij — 41&;‘) + 7\ = 0,3]) = fij

hence nonlinear relaxation is based on the solution of the cubic equation

rod + (AN —1)v;; + fij — N? Y vi; = 0.

Provided 4N? > 7, the solution to this equation is

I £
U,'J—G'—;

o= (Jrre-n)"
1

1 ;
€ = 5 (4]\’2—T> and g = (f,J —J\ZZU,-J).

nn

On the other hand, the single Newton step is based on

F(vi;)
F'(vi;)

Vij = Vij —

PO TTEE L) b
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DI ANR S L D T PEPEDY PEPEIE R PE

LN et Y T R b AL ST B i




CHAPTER 6: MODEL NONLINEAR PROBLEMS 88

where
F(vy) = U?J + 36vi; + 27
hence
Al
e o R T
3(v% +¢)

In the following experiment, we perform 1 x V2*2.cycle of w = 1.0 weighted
Jacobi relaxation on Problem MG20 with the standard data set, comparing the
results of a Newton step and the exact nonlinear relaxation (thus we guarantee

that 4N2 > 16 > 7 = 10.0).

Method llell2 llellos 7|2 [I7{l
Initial Guess | 0.088609  0.174754 | 5.871917  220.52840
Exact 0.012512  0.024418 | 0.729692  14.575176
Newton 0.012495  0.024382 | 0.729485  14.575177

This clearly shows that single-step Newton iteration is very satisfactory. A sim-
ilar experiment can be performed on Problem MG22, since the exact nonlinear

relaxation 1s :
1 ; f;] 5 3 b
UIIJ — |:I (; vx] — ‘_‘\/'_'2 .

We next wish to experimentally determine the optimal weighting for re-
laxation for Problem MG20. Figure 6.4 (on page 92) shows the convergence of
11 x Vi*2.cycles for Problem MG20 using w-weighted Jacobi point relaxation.
We find that the multigrid iteration is unstable for w > 1.0, presumably be-
cause over-relaxation excites some oscillatory modes. While the residue norm
for w = 0.8 is linear and descends most steeply after eleven V-cycles, we chose
wopt = 1.0 since both residue and error norms converge fastest of all the asymp-
totically stable weights after one V-cycle. In fact it does turn out that w = 1.0
results in approximately optimal residue convergence over 153 11[82‘2‘2-cyc1e, as we
see from the following figures.

w llello 17l

0.8  0.00000804  0.22085107
0.9  0.00000527  0.14771894
1.0 0.00000398  0.12505166
1.1 0.00000341  0.21971002

Figure 6.5 shows the micro-structure of one V-cycle for Problem MG20.
The characteristics of the error profiles are similar to those of the linear multi-

grid scheme (cf. Figured.).
reflecting the fact that the FA

The residue profiles are slightly different, however,

S scheme maintains an approximation of the full
equation on each grid level, rather than just the residual equation.
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Figure 6.6 shows the micro-structure of one M-cycle for Problem MG20.
The M-cycle has the same overall behaviour as in the linear multigrid scheme
(cf. Figure4.13); this is to be expected since the M-cycle is composed of single
V-cycles.

Figure 6.7 (analogous to Figure 4.9) examines the discretisation error of the
FAS scheme for Problems MG20 and MG22. We have again plotted the limiting
value of the error infinity-norm after many Vj-cycles for successive A. We find
that each profile has a slope of

m = —0.602 £+ 0.001

and hence 10™ = 0.250 + 0.001. This experiment confirms that the discretisation
error is O(h?) for nonlinear problems.

Figure 6.8 (analogous to Figure 4.10) shows the convergence of 14 x Vit
cycles for Problem MG20 for various A. We find that FAS V-cycle convergence
is independent of A.

We believe that the above results are consistent with a valid nonlinear multi-
grid scheme; let us now experiment with the model problem parameters.

The following table shows the result of 1 x MZ**-cycle using w = 1.0 Jacobi
relaxation on Problem MG20. We set a = 1.0, 3 = 2.0 and vary 7.

G r logpllello  logioll7lle
—0.1 0.1 —17.694 ~3.91T
—05 « 25 —6.004 ~1.505
sgpee (90 —5.400 —0.903
21 5150 —5.172 —0.551
—2.0 40.0 -3.119 —0.302
L — 3151 —0.219
23" 529 21993 0.136
—24 516 —0.712 0.672
25 625 —0.376 1.080
o8 "5lE 0.518 2.922

We see that this particular multigrid iteration becomes unstable for 7 > 60. This
is because increasing T makes the interface in the solution increasingly sharp; in
fact in the limit as 7 — oo, this becomes a step function. In the zy-plane, the
edge of the interface has the equation y = a — Bz; anisotropic grids are therefore
of little use to us because the interface does not necessarily lie parallel to either
coordinate axis. To numerically investigate the behaviour of this problem for
large 7, we would need to increase the grid resolution (by utilising larger A’s);
however we note that because the solution is slowly-varying everywhere except
at the interface, this is a wasteful scheme, and a more appropriate one would be
to use adaptive gridding.
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Let us now turn our attention to the porous medium equation. The following
table shows the result of 1 x M7?**-cycle for Problem MG22 using w-weighted
Jacobi point relaxation.

w 10g10 Her)o 1OglO HTHOO

0.8 —3.550 0.442
0.9 —3.694 0.280
1.0 —3.817 0.143
1.1 —3.909 0.249

We choose w = 1.0 since it approximately minimises the resultant residue norm.

Since the porous medium equation degenerates when u = 0, we have con-
structed Problem MG22 with a parameter ¢ so that the domain of the sine func-
tion is restricted to [¢, 7—&] rather than [0, 7], thus ensuring u > 0 for 0 <& < 7.

In the following experiment, we have performed 1 x M2*?%_cycle with w = 1.0,
~ = 2.0 and various values of ¢.

€ logyo llelloo logy |7 ]| e

0.1 =~ —3.817 0.143
0.01 —2.892 0.945
0.001  —2.572 1.229
0.0 —2.447 1.355

We find that convergence does indeed deteriorate as the boundary data ap-
proaches zero, but the iteration remains stable.

Next let us fix € to be 0.1 and vary 7. We know that for large v, the solution
tends towards u = 1, while for small positive v, the solution tends to u = 0
everywhere except for a spike at = = %, y =1

u—»é(%,l) as v— 0%,

We therefore expect the performance of a multigrid iteration to deteriorate as
~ — 0. Figure 6.9 shows the result of one M-cycle for various v; we do indeed
find that this iteration becomes ineffective for ¥ < 0.1. We note that the best
solution is obtained when 4 = 1, as we would expect, since this corresponds to
Laplace’s equation.

MGLAB allows us to investigate the behaviour of multigrid in more detail; for
example, the surface plot on the following page shows the resultant numerical
error e for v = 0.05 from the above experiment. It is clear that the greatest error
occurs where the solution is rapidly-changing, as we expect.

Finally, let us briefly look at the pseudo-Navier-Stokes equation. Table 6.1
shows the result of 1 x M2**-cycle for Problem MG24 using w-weighted Jacobi
point relaxation. In this case, w = 0.9 appears to be an appropriate choice for
the Jacobi relaxation weight.
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Figure 6.10 shows the resulting residue norms after one M-cycle with various
values of v. The iteration becomes unstable as v — 0 because the PDE becomes
less elliptic (the equation is singular for v = 0).

A 5 ) e Y A AL BRI e B S T M Bl 1 SRR N A E AN R TR A AN TsanAn gy

o s i & e e S

1
0.75
0.5
0.25
A
0 2 :
u
Y
-
w  logpllrlla  logio lIrle
0.7 —0.63 0.63
0.8 —0.85 0.43
0.9 —1.02 0.30
1.0 —0.95 0.37
15 —0.64 0.61
Table 6.1: Result of 1 x M>**-cycle for Problem MG24 using w-weighted Jacobi
point relaxation.
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Figure 6.4: Convergence of 11 x V2?2 cycles for Problem MG20 using various

w-weighted Jacobi point relaxation. Solid lines are error norms, dashed lines are

residue norms.
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logyo || - Il

5

i Wi AU B S

Figure 6.5: Micro-convergence of 1 x V2?2 cycle for MG20 using w = 1.0 weighted
point Jacobi relaxation, standard data and a zero initial guess. Solid lines are
two-norms, dashed lines are infinity-norms.
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Figure 6.6: Micro-convergence of 1 x ME*%-cycle for MG20 using w = 1.0 weighted
point Jacobi relaxation and standard data.
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logyo [|€loo
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Figure 6.7: Discretisation errors as measured by the error norm of lim n x V%
n—oo ~

cycles for various A using w = 1.0 weighted Jacobi point relaxation. The discreti-
sation error is O(h?).

logyo || - Il2

h

5

A

6 10 12

Figure 6.8: Convergence of 14 x Vl\z‘Z‘z-cycles for various A. Solid lines are error
norms, dashed lines are residue norms. MG20, w = 1.0 weighted Jacobi point
relaxation. Convergence is independent of h.




CHAPTER 6: MODEL NONLINEAR PROBLEMS 95
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Figure 6.9: Convergence of 1 x M**?_cycle for various 4 for Problem MG22
using w = 1.0 weighted Jacobi point relaxation. This multigrid iteration becomes
ineffective for v < 0.1. '
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Figure 6.10: Convergence of 1 x MZ>?*?_cycle for various v for Problem MG24
using w = 0.9 weighted Jacobi point relaxation. This multigrid iteration becomes
unstable for » < 0.1.
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Chapter 7

Geometric Problems

There is not, to our knowledge, an example where observation has
supported theory with more delightful forms [than in the field of min-
imal surfaces|. What could be more beautiful to the eyes of a math-
ematician, than these weightless shapes of the most brilliant colours,
endowed, despite their extreme fragility, with an astonishing persis-
tence?

— G. Van der Mensbrugghe, as quoted in Nitsche [82]

In this chapter, we examine some interesting problems which arise in the field of
differential geometry, in particular nonlinear boundary value problems involving
surfaces of prescribed mean curvature. This gives us the opportunity to consider
the numerical solution of some difficult problems, involving singularities for exam-
ple. Numerical differential geometry is currently an active field of computational
mathematics, and there are many open questions (see for example Kazdan [62]).

7.1 Surfaces of Prescribed Curvature

Two standard references in the field of differential geometry are Kobayashi and
Nomizu [64] and doCarmo [33]; while the classic reference for the more specific
subject of minimal surfaces is Nitsche [82]. We will firstly discuss some back-
ground material.

Consider a 2-surface § in Euclidean 3-space R®. Here we will only consider
surfaces § which are graphs of some function u over the domain {2, ze. u = u(z, Y).
(To be able to compute on arbitrary surfaces, we need to parameterise the surface;
see Section 9.2.1.) At a point P on the surface, one considers the curve formed
by the intersection of a plane containing the normal and the surface itself. The
normal curvature at P in the direction defined by the plane is then the reciprocal
of the radius of the osculating circle, that is, the circle which matches the curve
infinitesimally around P. One chooses either direction of the normal to fix the
sign of the curvature. The principal curvatures k and k, at P are defined to be
the maximum and minimum of the normal curvatures at P, respectively (see [33]
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CHAPTER 7: GEOMETRIC PROBLEMS 97

for more details). These principal curvatures are always in directions orthogonal
to each other, unless the normal curvature is the same in all directions (as on a
sphere) — this is called an umbilic point.

There are various types of curvature; each is defined in terms of the principal
curvatures. For example:

H =k +k; mean curvature
= Gauss curvature
N = k' + k5! harmonic mean curvature.
(Note that some authors write H = 137 k) These lead to the following

equations for prescribed mean curvature

Urr(l 4 uy?) — 2upuyry + Uy (1 + ug?)
(1 + uz? 4 u,2)3/?

= H{z,y), (7.1)

prescribed Gauss curvature

7 2
urruyy % ury

(1 + uz? + u,?)?

= K(z,y), (7.

-]
oo

and prescribed harmonic mean curvature

[uzz(l +uy?) — 2upuyuzy + ugy(l + uz?)] (1 + us? + u,2)/2

= N(z,y)
Uzzlyy — Ugy?
for a surface u = u(z,y).

We mention in passing that a more compact expression for the prescribed
mean curvature equation is

= H(z,y)

Vu
div| —m—| =
V1 + |Vul?
and similarly for the prescribed Gauss curvature equation:
2
det D*u = K(z,y) (1 - |Du[2) :
We note that the left-hand side is the determinant of the Hessian of u, and
therefore the equation is of the Monge-Ampere type. We also observe that N '=
H/K.
Let us investigate the ellipticity of these equations. The quantity |a*| (see
Section 2.1) for the mean curvature equation is

2

14+ uy® —uzuy
2

—Uyly Lt

(1+ ugl + '1Ly2)'3/2 = (=L Uz + uf)‘”2

SERCEL R TRV R

ALt S a1

b O et

ki plsi




CHAPTER 7: GEOMETRIC PROBLEMS 98

which is evidently positive, irrespective of the nature of the solution u, hence
equation (7.1) is elliptic everywhere. For the Gauss curvature equation, we have
Uyl Uy

la¥| = (14 u,® + u,2)? = K(z,y)

Sye g
and so equation (7.2) is elliptic if K > 0 in 2.

Now let us consider the suitability of these equations for numerical solu-
tion using MGLAB. The standard isotropic discretisation for the residual of equa-
tion (7.1) is

ry = i — N? { (6 — 204 Jz)[l + - 'D)ﬂ - X@Rr-L)(u-D)x
+(D—2e+ )1+ %(R—L)z]}
-3/2
{1+2[(®-2)*+u-)|}

e B Sk k k
where we have written €, £, ®, U and D for v;}, v, ;, viy,, v;;4; and Ui

respectively, and where X = (vf‘_u_1 - Utk+1.j+1 - vzk—l,j+1 - ka+1,]-1)« therefore the
basic step of Newton iteration (see equation (5.4)) is

3/2

s I f{l+ 2 [(®-2p+@-2p]} " - N

o N2 {4+ (- 2)2 + (u-D)|}
where

U= (t-2e+R)[1+2u-0)? - L)(U—D)X

+(’D—‘ZG+U)[1+—32 £)¥.

We observe that r{’(v;;) = d%r;;/0€* = 0, hence by equation (5.5), this Newton
iteration scheme is guaranteed to converge.

On the other hand, the prescribed Gauss curvature equation leads to a
discrete residual of

16(L — 2€ + R)(D — 2€ + U) —
[+ @2 + -]

Ty = fi] =

and so the Newton convergence criterion in this case is

2
16(L — 26+ R)(D—2e+U) + X2 — fi;[3 + (R —£)* + (U —D)?]
S(L+R+U+D—4e)?

<.

There is essentially nothing that can be said a priori about this inequality. More-
over, the left-hand side is not well-behaved, as the denominator vanishes wherever
the surface is locally flat. In any case, we find experimentally that this simple
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approach to a relaxation scheme for Gauss curvature problems generally leads
to divergent iterations. To be able to solve such problems, we would need to
use other relaxation methods. It turns out that equations of the Monge- Ampere
type are difficult to analyse and especially difficult to solve numerically. However,
necessary conditions for the existence of unique solutions were found in 1983 [99]:

Theorem 7.1 (Trudinger and Urbas) Let 2 be a uniformly conver domain
in R", and K a positive function in 2. Then the classical Dirichlet problem

det D*u = K(z) (1 - |Du|2)l§_2 in £2; =
= n §2; u=¢ on O

has a unique convex solution for arbitrary ¢ iff
/n[\’dx < gt Leandr - gy el

(The quantity w, is the volume of a unit ball of dimension n.) They go on to
consider the Dirichlet problem for general Monge-Ampere equations:

det D*u = f(z,u,Du) in §2; u=¢ on 0.

In [65], Kuo and Trudinger prove the stability of a discretisation scheme of
the Dirichlet problem for fully nonlinear uniformly elliptic second-order PDE’s

f(z,u, Du, D*u) = 0

in bounded domains 2 € R".

This is as much as we shall say about the equations of prescribed Gauss
and harmonic mean curvature. Let us therefore turn our attention back to the
consideration of prescribed mean curvature, as we are able to investigate the
numerical solution of such problems using the current version of MGLAB.

The existence theorem corresponding to Theorem 5.1 is due to Serrin [88]
(part (a)) and to Giusti [45] (part (b)):

Theorem 7.2 (Serrin and Giusti) Let {2 be a smooth bounded domain in R",
and H a smooth function in {2.
(a) Then the prescribed mean curvature Dirichlet problem

dw ST o = Hix,y)  in f2; u=¢ on Of2
v1+ |Vul?

has a unique solution u € C*(2) N C*Y(R2) for arbitrary ¢ € C*(2) iff

‘/()Hdl‘

where H,_, is the (n—1)-dimensional mean curvature of 0f2.
(b) The mean curvature equation has a solution in 2 iff |[o H dz| < |982|. In the
extreme case of equality, the solution is unique up to a constant and is “vertical”

on 0f2.

< |00 and " Hia) < H,_. (=) V z€df {7.8)

This existence theorem provides us with a sharp test for the numerical solution
of a parameterised boundary value problem (see Section 7.4).
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7.2 Minimal Surfaces

Let us now consider the minimal surface problem, where we seek a surface whose
graph u = u(z,y) everywhere has zero mean curvature:

Uze(l + uy%) = 2uzuyuzy + uyy(l +uz?) = 0. (7.4)

This equation models the shape of a soap film within wire boundaries where the
surface tension of the film is the dominant force, and hence the soap film forms
a surface locally of least surface area. The problem of determining a minimal
surface with some given closed space curve boundary is called Plateau’s problem,
after the Belgian mathematician who investigated it around 1873. In fact, the
history of minimal surfaces began with Lagrange more than a century earlier [82].

There are various ways to approach the minimal surface problem: by using
tools from the calculus of variations, PDE theory, and functional analysis. In
1937, Courant gave an existence proof by reducing Plateau’s problem to Dirich-
let’s problem [82].

There are a number of families of classical solutions to the minimal surface
equation; prototypes of some of these families are as follows:

u(z,y) = Az + By+C (plane)

u(z,y) = m (horizontal catenoid)
u(z,y) = cosh™ /22 +y? (vertical catenoid)
u(z,y) = tan"!(y/z) (helicoid)

u(z,y) = log Smi (Scherk’s surface)
u(z,y) = sin”'(sinh zsinhy) (Scherk’s fifth surface)

In addition, there are known solutions which are given implicitly, or in terms of
inverses of elliptic integrals, or as power series solutions, for example Enneper’s
surface.

Four minimal surface problems were selected, all defined by equation (7.4)
with the boundary conditions specified on the following page. Problems MG30
and MG32 have simple straight-line boundaries, yet the surface u in each case is
defined by inverses of elliptic integrals. For MG30, it is found that (see Nitsche
[82] section 5.2)

F(y) F(u(z,y)) + Flu(z,y)) F(z) + F(z) F(y) = -1

where ¥ is the inverse of the elliptic integral { given by

) /3 2do
) = .
o V3 + 1002 + 30t

In the case of Problem MG32, the surface is defined by &(z) &(y) = E(u(z,y))
where & is the inverse of ¢ given by ((t) = [g(1+ 7% + )Yy,
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Problem MG30 (“batwing”)

u(0,y) = vy u(l,y) = 1—y
u(z,0) = = u(z,1) = 1—=2

v is unknown in closed form

u has ruled solutions u =z = % and L= = %
Problem MG32 (“step”)
u(0,y) = 0 il N=
wla, 0) = 10 (sl =]

v is unknown in closed form

wis singularat z=0; y=1 and z=1; y=0

I

v has ruled solutions z=y; u= —;ﬁ

Bl T i
z=l—y u=3 and = =3; u

Il

y

Problem MG34 (helicoid)

u(0,y) = 3 u(l,y) = tan"'y
ufe,0) =10 u(z,1) = tan™'1
u = tan™! J
T
w is singular at z =0; y =0
Problem MG36 (Scherk’s surface)
w0,y) = log[glss]  u(ly) = log [
u(z,0) = log[B=9]  u(z,1) = log [5E3)]

where 0<e<7m—1
[sin(r +5)]
= lagl—=————u
sin(y + ¢€)

u is singular as ¢ — 0
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Figure 7.1: Numerical solution (top) and discrete-Laplacian initial guess (bottom)

of Problem MG30.
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Figure 7.2: Numerical solution (top) and discrete-Laplacian initial guess (bottom)
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of Problem MG32.
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Figure 7.4: Numerical solution (top) and discrete-Laplacian initial guess (bottom)
of Problem MG36 (¢ = 1.0).
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While the exact solutions of Problems MG30 and MG32 are unavailable
to MGLAB, several properties of the solutions are more accessible. For example,
both surfaces have particular ruled-line solutions; these would enable accuracy
measurements to be made in these cases. In fact, these are more realistic problems
than those of the previous chapter in the sense that researchers investigating some
difficult equation are likely to know certain properties of the solution, but not
the solution itself.

Problem MG34 involves the helicoid minimal surface and is difficult because
of the singularity at the origin. Note that we have imposed the mean Dirichlet
boundary condition at the origin

1
u(0,0) = = limu(z,0) + ii_r.%u((].y) —

T
2 [z—0 4
The helicoid surface is entirely composed of ruled lines.

Problem MG36 has been put into a form parameterised by a small quantity ¢
since Scherk’s saddle-shaped surface approaches +oo on all boundaries as ¢ — 0.
We will investigate the numerical process as ¢ decreases. The standard data for
this problem will be ¢ = 1.0.

Figures 7.1 to 7.4 show the (numerical) solution and discrete-Laplacian ini-

tial guess for each of these geometric problems.

7.3 Minimal Surface Results

We will firstly find the approximately-optimal multigrid parameters for our prob-
lems. Without exception, we will use the discrete-Laplacian initial guess.

Figure 7.5 (on page 108) shows the result of one M-cycle on Problem MG36
for various weights and both Jacobi and red-black Gauss-Seidel point relaxation.
We find the optimal relaxation parameters to be w =~ 1.07 and red-black Gauss-
Seidel relaxation. While each minimal surface problem is based on the same
PDE, it is quite possible that certain multigrid parameters will be optimal for
one problem and not another (due to the presence of singularities, for example).
We have found these relaxation parameters to be satisfactory for all four problems,
however.

The following table shows the result of 1 x M72'2‘2-cycle for Problem MG36
with w = 1.07 red-black Gauss-Seidel relaxation and various values of restriction
weighting @.

We are not surprised to find that @ = 1.0 is the optimal restriction weighting.

Figure 7.6 shows the residue convergence of Problem MG36 over several V-
cycles for various relaxation numbers v (analogous to Figure 4.12). We again find
v = (2,2,2) to be a satisfactory choice.

We therefore fix our multigrid parameters (for all minimal surface problems)
to be

e isotropic grids Ny = M, =2

e discrete-Laplacian initial guess
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w logyo l€ll2 logyo || €] oo logyo |7 |2 logo [|7]loo
0.90 —5.92 —5.57 —-3.22 —2.24
0.95 —6.40 —6.04 —3.40 —2.35
1.00 —-7.33 —6.82 —-3.51 —2.50
1.05 —6.59 —6.19 —3.43 —2.46
1.10 —6.44 —6.02 -3.30 —2.34

e two relaxation sweeps v; = vy = 1y = 2
e w = 1.07 weighted red-black Gauss-Seidel point relaxation
e w = 1.0 full-weighted restriction

Using these parameters results in a satisfactory convergence rate for Prob-

lems MG30 and MG36 using 1 x Mg'**-cycle:

MG30 MG36

L | logyllrlle  A(llTlleo) | logiollelle  Alllello) logiollTllec  AClIT o)
1 —00 - —00 - —00 -

2 —4.88 - —4.61 - —4.31 -

3 —2.26 420.3 —4.94 0.468 —2.64 46.13
4 —1.99 1.885 —5.20 0.554 —2.53 1.308
5] —2.25 0.550 —-5.73 0.299 —2.50 1.065
6 —2.55 0.500 —6.33 0.248 —2.50 1.008
7 —2.69 0.721 —6.82 0.325 —2.50 0.991
8 —2.76 0.846 —T7.35 0.294 —2.50 0.992

Figure 7.7 compares the convergence of Problem MG32 for one M-cycle and
twelve V-cycles. We find that a single full multigrid cycle does not perform as
well as usual, because errors are not reduced sufficiently (ze. to the magnitude
of discretisation errors) on each level. We find that we require very large values
of v to ensure v is sufficiently smooth on each level. It is interesting to see that
1 x M'81818 cycle still achieves a better result than 12 x V2?2-cycles. We may
compare this with the results from well-behaved problems (see Figure 4.3 for
example), where one M-cycle is much more efficient than many V-cycles. An
alternative strategy in cases such as Problem MG32 would be to perform one
M-cycle followed by several V- or W-cycles.

Problem MG34 yields almost identical results to those shown in Figure 7.7;
we therefore conjecture that it is the singularities in Problems MG32 and MG34
which cause them to behave in this way. Figures 7.2 and 7.3 shows how the
numerical solution “pulls away” from the infinitely-steep points of w.

Finally, Figure 7.8 shows the result of one M-cycle for Problem MG36 for
various €. As expected, the accuracy of the solution diminishes as ¢ — 0, in this
case it does so smoothly.
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Figure 7.5: Result of 1 x MZ2*%%_cycle on Problem MG36 for Jacobi (thin lines)
and red-black Gauss-Seidel (thick lines) relaxation of various weights. Solid lines
are two-norms, dashed lines are infinity-norms.
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Figure 7.6: Convergence of 6 x V;""-cycles for various combinations of
(v1,v0,2). MG36, w = 1.07 weighted Jacobi point relaxation.
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Figure 7.7: Convergence of (a) 1 X M7** cycle, (b) 1 x M2*°.cycle, (c) 1 x
MI81818 cycle, and (d) 12 X V2 %% cycles for Problem MG32. Solid lines are
two-norms, dashed lines are infinity-norms.
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Figure 7.8: Convergence of 1 x MZ*%_cycle for various ¢ for Problem MG36.
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7.4 Surfaces of Prescribed Mean Curvature

We now turn our attention to solving problems of prescribed mean curvature,
including surfaces of constant mean curvature. The latter problem models the
shape of soap bubbles, where the internal gas pressure induces a constant right-
hand side function H(z,y) in the equation

uzz (1 + uy2) — 2uzu gy + Uyy(l + uz?)
= Hz0).
[+ w2 + w22

Every child knows that the unconstrained shape of an isolated soap bubble is
a sphere; not every child knows that the sphere of radius R has mean curva-
ture 2/ R, nor that spheres are the only compact surfaces embedded in R* which
have constant mean curvature [62]. More interesting questions arise when we
consider bubbles with arbitrary wire boundaries, with other bubble surfaces as
boundaries. and bubbles-within-bubbles. Unfortunately we are again restricted
to the case where the surface is a graph, so we cannot as yet investigate such
problems; nevertheless, we introduce a further group of model problems for pre-
scribed mean curvature to test the versatility of MGLAB and to compare numerical
results with the existence theorems already discussed. These BVP’s are based on
equation (7.5) with the prescribed curvatures H(z,y) and boundary conditions
specified on the following page.

Figures 7.9 and 7.10 show the numerical solution and discrete-Laplacian
initial guess for Problems MG40 and MG42. Figure 7.11 shows the numerical
solution for Problem MG50 for three representative values of A.

Problems MG40 and MG42 model part of a bubble surface with the given
wire boundary. Another viewpoint is that these are soap films on the wire frame,
but with a constant force or gas pressure “blowing” from underneath. Both prob-
lems have solutions which are infinitely steep on part of the boundary. Problem
MG50 is included so that we can compare our numerical results against the exis-
tence theorem for prescribed mean curvature (Theorem 5.2). The standard data
for this problem will be p = ¢ =1, A = 0.5. From Equation 7.3 we compute

/de
n

hence a unique solution exists for |A
steep on the boundary when [A| = 1. Figure 7.11 illustrates this behaviour: for
\ = 0 the solution is u = 0; as A increases, the solution “bulges” downward more
and more. Combining the known theoretical properties of u and our numerical
results, it seems certain that as A — 1, u grows unboundedly towards —oc and
thus becomes “vertical” on 0f2.

It is also interesting to consider this problem embedded in R3, ie. u(z,y) is
not restricted to being a graph. We might conjecture that for |A| > 1, the solution
to the generalised problem is a surface whose “bulge” has expanded outside the
unit square, so that it has roughly the shape of a sphere of diameter D > 1 with
a square-shaped hole at the top/bottom.

= 4\ and |02| = 4

< 1; moreover, the solution is infinitely
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Problem MG40 (quarter cylinder)

H(z,y) =1
u(0,y) = y(2-y) u(l,y) = y(2-y)
ufz,0) = 0 ufz, 1) = 1

u = \/y(2-y)

u is infinitely steep at y =0

Problem MG42 (cut hemisphere)

H(z,y) = 2V2
u(0,y) = y(l—-y) u(l,y) = Jy(l—y)
u(z,0) = z(l—2) u(z,1) = z(l—2z)

u = \/;(1—I)+y(1—y)
u is infinitely steep at the four corners (z,y) = {(0,0),(0,1),(1,0), (1, 1)}

Problem MG50 (prescribed mean curvature)

H(z,y) = Apgr? sin(prz) sin(qmy) p,g€Z% MeR

u(0,y) = 0 u(l,y) = 0
u(z,0) = 0 u(z,1) = 0
u is unknown
u exists and is unique when [A| <1

u is infinitely steep on 92 when [A| =1
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Figure 7.9: Solution (top) and discrete-Laplacian initial guess (bottom) for Prob-
lem MG40.
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u

Figure 7.10: Solution (top) and discrete-Laplacian initial guess (bottom) for Prob-
lem MG42.
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Figure 7.11: Numerical solution of Problem MG50 for p = ¢ =1 and A = 0.2
(top), A = 0.5 (centre), A = 0.7 (bottom).
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7.5 Prescribed Mean Curvature Results

Figures 7.12 and 7.13 show the result of w-weighted relaxation for several V-cycles
for Problems MG42 and MG50, respectively. Our conclusion is that optimal
weights for red-black Gauss-Seidel relaxation are approximately w = 1.28 and
w = 1.36, respectively. We find that w = 1.28 also minimises the residue norms
for Problem MG40. The following table shows the result of 4 x Vi***-cycles for
Problems MG42 and MG50 for various values of restriction weighting = (and the
above relaxation weights).

MG42 MG50
@ | logygllellz loggllelleo | logio[I7ll2  logio lITlloo | l0go lI7ll2  logio [[7[l
0.9| -243 ~2.22 ~1.10 ~0.79 ~1.08 ~0.56
1.0 | -3.92 —2.23 -3.93 ~2.80 —5.08 ~4.29
14| =220 —2.02 ~0.85 —0.42 —0.69 —0.04

Once again we find @ = 1.0 to be optimal. We will therefore use the following
multigrid parameters for our constant mean curvature problems:

.’\'11 == 2

o discrete-Laplacian initial guess

e isotropic grids N; =

e two relaxation sweeps vy = v, = vy = 2
e w = 1.28 weighted red-black Gauss-Seidel point relaxation
o w = 1.0 full-weighted restriction

and w = 1.36 for Problem MG50.

Figures 7.14 and 7.15 compare the convergence of 1 x M"***2-cycle and
6 x V222 cycles for Problems MG42 and MG50, respectively. Unlike minimal
surface problems (cf. Figure 7.7), in these cases single M-cycles do not perform
as well as several V-cycles. We believe this is due merely to the complexity of
the prescribed mean curvature equation for H # 0, since Problem MG50 (for
X = 0.5) has no singularities or other obvious difficulties.

For our final experiment, we attempt to solve Problem MG50 for various
values of A\ € [0,1]. Figure 7.16 demonstrates that the specified multigrid con-
figuration converges to the solution for A € [0,0.7] approximately; however for
A > 0.7, the iteration edges towards instability. Figure 7.17 shows the residue
arising from the case A\ = 0.78. We see that most of the difficulty lies not at the
boundaries, but on a broad ring where there is a point of inflection in the solu-
tion. The oscillatory nature of the residue indicates that the multigrid iteration
is marginally unstable. A close inspection of the graph reveals a chequerboard
pattern of positive and negative “spikes”; this strongly suggests that red-black
relaxation is the cause of this behaviour. We implicitly assumed above that
wopt did not vary with A; in fact, in the A ~ 0.8 regime, we now find w = 0.8
weighted Jacobi relaxation to be approximately optimal, but only slightly supe-
rior to red-black Gauss-Seidel (see Figure 7.16). Figures 7.18 and 7.19 show the

——
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approximate solution v and residue r after 6 x V;">*-cycles of w = 0.8 weighted
Jacobi relaxation for A = 0.8. The Jacobi residue has the same “ripple” pattern as
the Gauss-Seidel residue; while it i1s somewhat smoother, we can see instabilities
(high-frequency errors) arising around the edge of the ring. All this goes to show
that the breakdown of our multigrid iteration is due to an unstable relaxation
method for A > 0.8.

The instability we have found has the same characteristics as the instability
which arises when attempting to solve the heat equation u; = Au with too large
a time-step. In that case also, the instability germinates at the inflection points.

We have discussed this problem in considerable detail because we feel it
demonstrates the synergistic way in which numerical and theoretical mathematics

can assist each other in the investigation of many interesting as yet unsolved
problems.
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Figure 7.12: Result of 3 x Vi**?-cycles on Problem MG42 for Jacobi (thin lines)
and red-black Gauss-Seidel (thick lines) relaxation of various weights. Solid lines
are two-norms, dashed lines are infinity-norms.
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Figure 7.13: Result of 4 x V2*2% cycles on Problem MG50 for Jacobi (thin lines)
and red-black Gauss-Seidel (thick lines) relaxation of various weights. Solid lines
are two-norms, dashed lines are infinity-norms.
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Figure 7.14: Convergence of (a) 1 x M7**-cycle, (b) 1 x M2*®-cycle, (c) 1 x M2*°-

cycle, and (d) 6 x V®*-cycles for Problem MG42. Solid lines are two-norms,
dashed lines are infinity-norms.
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Figure 7.15: Convergence of (a) 1 x MZ?*2 cycle, (b) 1 x M7*"-cycle, (c) 1 x M5,
cycle, and (d) 6 x Vi2*?*-cycles for Problem MG50. Solid lines are two-norms,
dashed lines are infinity-norms.
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Figure 7.16: Convergence of 6 x V2?2 cycles for Problem MG50 for w = 1.36

weighted red-black Gauss-Seidel relaxation for various A. Also shown is 6 x Vo2
cycles of w = 0.8 weighted Jacobi relaxation (thin lines, see text for details). Solid
lines are two-norms, dashed lines are infinity-norms.

Figure 7.17: Residue r after 6 x VA2 cycles of w = 1.36 weighted red-black

Gauss-Seidel point relaxation on Problem MG50 with A = 0.78.
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Figure 7.18: Approximate solution v after 6 x V5*°-cycles of w = 0.8 weighted
Jacobi point relaxation on Problem MG50 with A = 0.8.

Figure 7.19: Residue r after 6 x V255 cycles of w = 0.8 weighted Jacobi point

relaxation on Problem MG50 with A = 0.8.




Chapter 8

CM-2 Implementation
Considerations

Writing multigrid programs can be both fun and challenging.
— William Briggs [20]

I still have my first computer program. It factored numbers into
primes. You would dial a ten-digit number into the console, and it
would punch the factors on cards. The program initially was about
70 instructions long, and as I recall, by the time I finished it I had
removed more than 100 errors out of those 70 lines of code.

— Donald Knuth (3]

In this chapter, we look at the issues which arise when a multigrid scheme is
implemented on a parallel processing system, in this case the Connection Machine
CM-2. We will find that the programmer requires a detailed knowledge of the
architecture and low-level operations in order to extract the optimal performance
from such a computer — a statement which is true in general for supercomputer
applications; accordingly, we will consider the architecture and other aspects of
the CM-2 in some detail. We will also present and interpret performance figures
for MGLAB running on the CM-2.

8.1 Introduction to Parallel Computers

As discussed in the Preface and in Chapter 1, supercomputers are the key to
solving some of the most difficult problems facing today’s researchers. Often
such problems are simulations of some physical phenomenon for which there are
a large number of degrees of freedom: most likely three spatial and one temporal
dimension, together with a possibly high-dimensional parameter space. In many
of these cases, such as aerodynamic design and oil reservoir simulation, advances
in research are limited by available computer resources rather than by lack of
understanding of the underlying physics.

121
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The advanced scientific computation community is eagerly awaiting the de-
velopment of a teraflop machine (one capable of 10'? floating-point operations
per second), a goal which will soon be realised. It is expected that this develop-
ment will foster major advances in many areas of research, as it corresponds to
roughly an order of magnitude increase in spatial resolution for three-dimensional
simulations.

Supercomputers may be defined as the class of computers which, at any given
point in history, perform extremely fast computation (relative to the mainstream).
Conventional supercomputers, such as the Cray series, are essentially based on
serial technology, and suffer from physical limitations such as the need to dissipate
heat in a small volume, the speed of light and input/output bottlenecks. In the
past few years, the performance of these machines has been improved by the
use of vector pipelines and further developments in VLSI technology, however it
seems unlikely that computer manufacturers can in the future sustain their order-
of-magnitude improvements in performance every few years. It is widely believed
that parallel computers provide the only hope for achieving teraflop performance
in the foreseeable future. Furthermore, massively-parallel systems provide a very
economical dollar cost per megaflop, due to their economies of scale. For these
reasons, a great deal of effort has been recently invested into research on parallel
machines.

Following McBryan et al [75], we briefly describe a taxonomy of computers.
The three criteria are:

1. SIMD or MIMD,
2. shared or distributed memory,
3. scalar or vector-pipelined floating-point units,

which distinguishes eight classes of machine.

SIMD (single instruction, multiple data) means that every processor syn-
chronously executes the same instruction, but on different data. MIMD (multiple
instruction, multiple data) means that each asynchronous independent processor
may execute a different instruction stream on different data. In this way, a con-
ventional serial scalar computer is classified as an SISD machine.

In shared (global) memory machines, each processor has direct access to all
memory, whereas processors in distributed (local) memory machines have direct
access only to their own private memory.

Pipelined FPU’s utilise special hardware to allow, in effect, several sub-
procedures of an arithmetic operation to be performed simultaneously. Thus
when many similar operations are required, such as adding two long vectors a;+b;,
high performance can be achieved.

The following list gives some examples of the eight classes thus formed:

1. scalar (SISD) computers: PC, Macintosh, Sun, VAX

2. vector computers: IBM 3090, Cray 1, Fujitsu VP-100 series

3. scalar shared memory multiprocessors: Sequent, Concurrent, Butterfly
4. vector shared memory multiprocessors: Cray Y-MP, ETA-10, VP-2600
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5. scalar array processors: [CL DAP, CM-1, MasPar
6. pipelined array processors: CM-2
7. scalar distributed memory multiprocessors: NCUBE, iPSC/1

8. pipelined distributed memory multiprocessors: SUPRENUM, iPSC/2, CM-5

It should be pointed out that this simple classification scheme is not rigorous:
there are certain computers which do not easily fit into these categories.

When innovative computer hardware is introduced, one of the main prob-
lems encountered by computational researchers is how to efficiently redesign the
existing numerical algorithms, or how to invent completely new algorithms, so as
to take best advantage of the special capabilities of the new machine. Parallel
computers of one form or another are beginning to dominate the supercomputer
market, and it is evident that this trend will continue for some time. Numerical
methods for solving boundary value problems are well established for conventional
serial machines, whereas the field of parallel algorithms is still undergoing rapid
development. Moreover, there exist a large number of different parallel machines
and a large body of experimental algorithms which run on them. With such
a wide variety of architectures and systems, one of the challenges is to develop
efficient and semi-portable parallel codes.

Here we shall -consider the implementation of our multigrid package MGLAB
on the Connection Machine CM-2, using the CM Fortran language (see [96]).
This language is an implementation of FORTRAN 77 by Thinking Machines Cor-
poration, designed to provide high-level parallel constructs for the programmer
which run efficiently on the CM-2, whilst retaining a good deal of portability.
CM Fortran includes the array-handling facilities of Fortran 90, plus extra array
facilities included in early versions of the Fortran 90 draft standard, but removed
in the final ANSI standard. On the other hand, CM Fortran does not support
those features of FORTRAN 77 which depend on the order in which data is stored
in CM memory, as one might expect. CM Fortran is recognised as being an im-
portant parallel programming language in its own right; indeed, Sun and IBM
have committed themselves to supporting CM Fortran [57].

The Connection Machine is one of the few examples of a parallel] machine
on which a serial FORTRAN 77 programmer can easily understand the execution
model, which is based on simple principles, and immediately start writing or
porting programs in CM Fortran.

We have demonstrated that multigrid is among the most effective methods
for solving elliptic partial differential equations on serial computers. Moreover,
it is known that multigrid can be effectively mapped to a hypercube so as to
maintain its optimal properties. Specifically, this is true for massively-parallel
systems and for small systems where there are many grid points per processor (see
Chan and Tuminaro [24]). However, we shall see that there are some interesting
problems in implementing a parallel multigrid algorithm. At this stage, there is
no definitive parallel multigrid method, however the problem is being attacked
on both the computer science and numerical analysis fronts.
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8.2 Overview of the CM-2 System

We have emphasised that an efficient program must be carefully designed to suit
the hardware upon which it executes. Here we describe relevant aspects of the
architecture and operation of the Connection Machine CM-2, a massively-parallel
SIMD supercomputer currently sited at the Australian National University, and
operated by the Parallel Computing Research Facility within the Centre for In-
formation Science Research, and the ANU Supercomputer Facility. For further
background or technical information, the reader is referred to Hillis [56] and the
CM-2 Technical Summary [95].

The design philosophy of the CM-2 is that of a data-parallel computing
system. Data parallel computing associates one processor with each data ele-
ment, and so exploits the natural parallelism that is inherent in grid-based finite-
difference problems, as well as many other computationally intensive types of
problem. An SIMD architecture is well-suited to such problems, where the same
operation is applied to different data at each grid point. Not only does the exe-
cution time decrease by perhaps orders of magnitude, but the programming task
is often simplified.

The CM-2 installed at the ANU at the end of 1990 is configured with 16K
single-bit processors, each with 256K bits of memory (the equivalent of 4K double-
precision variables), which share 512 Weitek 32-bit (single precision) floating-
point units. It has twin Sun-4 front-end hosts; all programs are developed and
executed on a front-end as usual, except that when a parallel instruction is en-
countered, this instruction is broadcast to all processors in the CM via a sequencer
and an instruction broadcast bus. Hence the CM may be viewed simply as an
external array processor, designed to speed-up computations on large data struc-
tures. All serial data remains on the front-end. Masks (which define a context)
allow selected processors to participate in or ignore certain parallel instructions.

When parallel data structures total more than the available number of phys-
ical processors, the system software operates in virtual processor mode, whereby
some larger number (2" x 16K) of data processors are made available to the user,
each with correspondingly reduced memory. Each physical processor then simu-
lates the appropriate number of virtual processors. This operation is transparent
to the programmer, and provides a very convenient programming feature. The
virtual processor (VP) ratio is defined to be

VP ratio = (number of virtual processors) / (number of physical processors).

Inter-processor communication is implemented by means of a binary hyper-
cube network with a total bandwidth of about 65 megabytes per second (on a
16K machine). Arbitrary communication patterns on the Connection Machine
are supported by wormhole routing. The general router can be thought of as al-
lowing every processor to send a message to any other processor, with all messages
being sent and delivered at the same times. Nearest-neighbour communication in
multidimensional rectangular grids, called NEWS communication, is particularly
efficient since it is implemented with special hardware; indeed it is approximately
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15 times faster than general router communication. We will discuss hypercube
communication in much greater detail in Section 8.5.

There are three mechanisms for transferring data between the front-end and
the thousands of processors: (a) broadcasting (a single front-end datum is sent to
all the processors at once), (b) global combining (the front-end receives the sum,
maximum, logical OR etc. of some parallel variable), and (c) the scalar memory
bus (whereby the front-end can read or write a single datum to an individual
processor).

The input/output system supports high-speed parallel transfer between pro-
cessors and a bank of disk drives (called a DataVault) at 25 megabytes per second,
and between processors and a graphics display device (called a frame buffer) at 40
megabytes per second, allowing CM data to be examined graphically in real-time.
These 1/O operations proceed independently from the sequencer and front-end.

Connection Machine software includes parallel versions of FORTRAN, C and
Lisp. Each language includes extensions to support data parallelism, but oth-
erwise is entirely based upon the relevant draft standard. No synchronisation
instructions are required, due to the SIMD architecture. In each case one de-
clares parallel variables, which are automatically allocated on the hypercube.
The compilers produce code that is a mixture of front-end assembler code and
Paris, the assembler language of the CM-2. (In Section 8.8 we will describe a
slicewise model not currently available on the Connection Machine at the ANU;
under this execution model, the assembler language produced is called PEAC.)

The CM system can support multiple users, and may be configured to run
several programs simultaneously under timesharing.

This overview gives us enough information to now consider a simple multi-
grid implementation on the CM-2. Later, we will look more closely at the CM
architecture when we discuss high-performance algorithms.

8.3 Simple Multigrid Implementation

We have stated that there is great interest in the design of parallel algorithms for
mathematical computations. The goal of such research is to find algorithms which
efficiently exploit the parallelism on a given machine architecture. This task must
take into account the inter-processor communication overhead, an expense which
is absent in conventional serial algorithms. Much of our discussion will be aimed
at determining efficient multigrid communications on the Connection Machine.
The hierarchy of grids in multigrid algorithms presents a special challenge in
minimising the communications overhead.

Given that our goal is to port an existing serial version of MGLAB to the CM-2,
the most important consideration is the layout of the parallel data structures. Due
to the hypercube nature of the CM, all array dimensions are expanded to the
next highest power of two. This is somewhat unfortunate, as our serial version of
MGLAB incorporates explicit boundary conditions, and so uses grids of dimension
(22 4+1) x (22 41). These figures assume that there is precisely one interior grid
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point on the coarsest grid (ie. M, = N; = 2), a restriction which we must impose
for multigrid efficiency reasons (see Section 3.2). In the CM version of MGLAB we
therefore choose to incorporate boundary conditions implicitly, a scheme which
uses grids of dimension (2 —1) x (2" —1), while insisting that M, = N; = 2.

For the moment, let us view the thousands of CM processors as being ar-
ranged in a two-dimensional array 24 x 24| with the last row and column not
being used in our multigrid algorithm. Then the simplest layout of the parall-
el variables v, f, r and so on, is to layer each level L within the memory of a
processor (see Figure 8.1). Hence an appropriate declaration is

DOUBLE PRECISION v(lmax,nmax,nmax)
CMF$ LAYOUT v(:SERIAL, :NEWS, :NEWS)

where nmax = 2**lmax-1 = 2% — 1.
The advantages of this approach are that

e a multigrid algorithm is simple to implement (obvious data structures), and

e intergrid transfers can be optimally efficient (injection is intra-processor).
The disadvantages of this approach are that on coarse grids

e many processors are idle (parallel efficiency decreases), and

e nearest grid neighbours are far apart (stencil communication costs increase).

Recall that the multigrid iteration is essentially some combination of the grid
operators Az, R, IF~" and IE_,, each of which can be represented as a stencil,
involving some mixture of computation and communication on the grid. Since the
CM architecture favours nearest-neighbour orthogonal (NEWS) communication,
we prefer to use highly compact five-point operators, though sometimes we are
forced to use nine-point stencils. Given our CM implementation strategy, we see
that nearest-neighbour communication on coarser grids corresponds to power-of-
two communication — an important fact which will explained shortly.

Our Dirichlet boundary conditions will be stored on single (2*—1) x (24—1)
grids, so as to ensure intra-processor availability of boundary conditions data for
each and every grid point. An appropriate declaration for the “left” (z = 0)
boundary condition is therefore

DOUBLE PRECISION left__bc(nmax,nmax)
CMF$ LAYOUT left__bc(:NEWS, :NEWS)

A very convenient way to implicitly treat the boundary conditions is to use the
EOSHIFT statement of CM Fortran: for example,

DOUBLE PRECISION left(nmax,nmax)
CMF$ LAYOUT left (:NEWS, :NEWS)

left = EOSHIFT(v(L,:,:), DIM = 1, SHIFT = -step(L),
BOUNDARY = left__bc(1,:))

where step(L) = 2%*(1lmax-L) = 2~L. Recall that coarse grids for linear PDE’s
have zero boundary conditions:
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Figure 8.1: Pictorial representation of the (a) one-dimensional, and (b) two-
dimensional pyramidal hierarchy of multi-grids for A = 6 and 3 respectively.
Grid points depicted above one another are stored within the same processor.
Boundary grid points are marked with open circles because they are handled
implicitly in the CM Fortran version of MGLAB.
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left = EOSHIFT(v(L,:,:), DIM = 1, SHIFT = -step(L),
BOUNDARY = zero)

To implement line relaxation, we use a CMSSL (Connection Machine Sci-
entific Software Library) routine called gen_tridiag _solve (see [97]) analogous
to the LINPACK routines in the serial version of MGLAB (see Chapter 4). This
routine supports the solution of multiple tridiagonal systems, each with multiple
right-hand sides, using an odd-even cyclic reduction algorithm, which is stable
for the diagonally-dominant systems arising from our elliptic PDE’s. (Gaussian
elimination is numerically more stable than cyclic reduction [47], and is used in
the slicewise version of CMSSL: however this is not available to us — see Sec-
tion 8.8.) The number of floating-point operations (flops) required to solve the n
instances of size n tridiagonal systems is 23n*—32n. This figure is quite modest,
compared with the flop counts for Jacobi relaxation (9n?) and red-black Gauss-
Seidel relaxation (18n?). Of course, line relaxation is best suited to anisotropic
problems, when its superior convergence properties compensates for its increased
computational complexity.

8.4 Unrolled Implementation

It is obvious that the implementation described in the previous section is some-
what wasteful of CM resources. That simple scheme is made more efficient by
moving the £ coarsest grids to the front-end computer, which produces a speed
benefit (offset by the consequent front-end to CM communication) and which
also releases a good deal of wasted CM memory. We refer to this process as “un-
rolling” the parallel variables to a depth £, analogous to the software technique
of unrolling loops.

The current version of MGLAB uses parallel variables unrolled to a depth
¢ = 1. The appropriate declaration for the main data structures is therefore (see
the listing of nmax_declarations.inc in Appendix A):

DOUBLE PRECISION, ARRAY(2:1lmax,nmax,nmax) :: v, f, oldv
DOUBLE PRECISION, ARRAY(nmax,nmax)

u, T, @5 X, ¥, %2, y2, right_bec, left___bc, top__bc, bottombc
LOGICAL, ARRAY(2:1lmax,nmax,nmax) :: red, black

By way of compensation, we require new grid level L =1 variables v1, f1, ul, r1
and el which reside in front-end memory. In this unrolled implementation, all
routines which reference the above parallel variables must be of a similar structure
to the following piece of code:

IF (L == 1) THEN
vl = zero
ELSE
v(L,:,:) = zero

ENDIF
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Routines such as bilinear_interpolate.v listed in Appendix C indicate
the increase in programming complexity required for £ = 1 unrolling. In the ideal
situation, we would unroll to a depth of £,p, levels, determined experimentally to
be the point at which execution times no longer decrease (due to the increasing
amount of front-end to CM communication and the slower serial calculations
for large arrays on the front-end). This programming task was not attempted.
However, we estimate the optimal depth to be /., &~ 3. This implementation
would then consist of a serial multigrid algorithm on the front-end for levels
L =1,2,...,lyp and a parallel algorithm on the CM for levels L = o5 +1,..., A.
In Section 8.7 we will show that a significant speed-up is obtained by unrolling
to a depth of £ = 1.

Analogous to the discussion in Section 3.7, we now consider the memory
requirements for the implementation of MGLAB just described (¢ = 1) on the
CM-2. As we have mentioned, the CM at the ANU is configured with 16K
processors, each with access to 256K bits of RAM, equivalent to 4K double-
precision variables, giving a total capacity of 2?® ~ 67 million double-precision
variables. Since logicals are stored in single bits on the CM, the amount of
memory required for allocation of global data is

P2 e — (‘}é Loz + 11) N2 double-precision variables,

mazxr

where L,,., and N,... are respectively Imax— 1 and nmax rounded up to the next
power of two. Serial dimensions of arrays are treated similarly to NEWS dimen-
sions in that allocation sizes are rounded up to a power of two, even though this
appears to be unnecessary. We therefore find the following memory requirements
for multigrid on L levels:

L Lma_-,; Nma, EL

4 4 16 5920
5 1 32 23680
6 8 64 144384
7 8 128 577536
8 8 256 2310144
9 8 512 9240576
10 16 1024 62390272
11 16 2048 249561088

We see that we have sufficient memory to solve to a depth of A = 10 levels, giving
a satisfactory linear resolution of at least 0.001 in our solution u.

The above figures relate strictly to allocation of the main CM data struc-
tures. (MGLAB dynamically allocates exactly the amount of required CM memory.)
When we attempt to execute such a program, we find that the CM requires a
certain amount of memory for house-keeping and, more significantly, temporary
variables introduced by the compiler. In the fieldwise model (see Section 8.8),
these temporary variables consume a great deal of memory. For example, NEWS
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communication generates temporary copies of the target array, and any opera-
tions on logical variables (stored in 1 bit) create 32-bit temporary copies of the
entire array variable.

For these reasons, the standard CM version of MGLAB exhausts the memory
capacity of the ANU’s 16K machine when attempting to solve to a depth of
A =10 levels. However, we have been lavish in our use of memory, and we have
therefore built a “cut-down” version of MGLAB which differs in three respects from
the original:

1. red-black relaxation is not permitted (the parallel variables red and black
can be deleted),

2. immediate correction is not permitted (old_v can be deleted), and
3. the statement
v(2:1max-1,:,:) = zero
in subroutine V_CYCLE is changed to

DO 1 = 2, lmax-1
v(L,: ;) = zero
ENDDO

(reducing the size of compiler temporaries).

Using this small version of MGLAB, we may proceed to A = 10 levels. (Except
that even these memory requirements exceed the capacity of 8K processors run-
ning fieldwise double-precision multigrid.) We note that to obtain a resolution
corresponding to A = 11, one would need to totally redesign the multigrid imple-
mentation, since even a single parallel variable of the form

DOUBLE PRECISION v(2:1lmax,nmax,nmax)
CMF$ LAYOUT v(:SERIAL, :NEWS, :NEWS)

would then occupy 67108864 double-precision variables, exactly the capacity of
the ANU’s Connection Machine.

8.5 Hypercubes and Gray Codes

Let us now return to the hypercube viewpoint of the CM-2. We shall look at the
relationship between grids and hypercube structures, and the effect on multigrid
communication.

A hypercube of dimension n (an n-cube) is an undirected graph consisting
of 2" nodes that are labelled by the n-bit binary numbers 0,1,...,2" —1 (see
Figure 8.2). Two nodes are directly connected by an edge (corresponding to a
wire) if and only if their labels differ by one bit in one position of the binary
code. The m*™® bit of the n-bit binary number corresponds to the m'® dimension
of the hypercube. The diameter of an n-cube is n, that is, the traversal of at
most n edges is required to reach any node from any other node. One appealing
feature of the hypercube is its isotropic homogeneity; unlike many other ensemble
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Figure 8.2: (a) Three-dimensional pictorial representation of a 3-cube, and (b)
two-dimensional representation of a 4-cube. In both cases, wires which appear to
cross in fact do not physically touch.

architectures, no node plays a privileged role. We can now picture the CM-2
situated at the. ANU as having its 16K processors connected in the form of a
14-dimensional hypercube.

With the widespread availability of architectures based on the binary hy-
percube topology, there is growing interest in the relationship between this and
other topologies, such as linear arrays, trees, rings and multidimensional grids.
For instance, the question of algorithm portability across architectures reduces to
the problem of embedding certain graphs into some target graph, in this case a
hypercube. Such embeddings of linear arrays, rings, trees, pyramids and grids are
well-known to computer scientists [67]. Indeed, a class of binary codes known as
binary reflected Gray codes (BRGC’s) provide simple algorithms for embedding
linear arrays, rings and in particular, multidimensional grids into a hypercube.
In other words, the Gray code assigns a processor to each grid point in a manner
which ensures certain beneficial properties. These codes and their properties have
been extensively studied [85].

BRGC’s and other issues relating to multigrid on hypercube systems are
discussed in, for example, Chan et al [23], Chan and Saad [24] and Briggs et al
[19]. See also the very comprehensive list of references in [19].

A BRGC can be recursively defined as follows. Let Gk = {go, 91, - ,Gak_1}
be a k-bit Gray code; let Gy denote the sequence obtained from Gy by reversing
its order; and let 0G denote the sequence obtained from Gy by prefixing a zero
to each element of the sequence (and similarly for 1Gy). Then a BRGC of order
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Figure 8.3: Layout of (a) 8 one-dimensional grid points on a 3-cube, and (b) 16
one-dimensional grid points on a 4-cube, according to a binary reflected Gray
code.

k—1 is defined by G, = {0,1} and
Gry1 = {0Gk, 1Gi} for k=12 ...
For example,

G, = {00,01,11,10}

G, = {000,001,011,010,110,111,101,100}

Gy = {0000,0001,0011,0010,0110,0111,0101,0100,
1100,1101,1111,1110,1010, 1011,1001, 1000}.

We see that the Gray code for successive integers (grid points) differs by only one
bit. This property guarantees that communication between any two neighbouring
grid points involves only nearest-neighbour processors. Thus we have defined a
mapping of 2" one-dimensional grid points to a hypercube of dimension n which
preserves the proximity property; in the terminology of graph theory, we have
found a Hamiltonian path on the hypercube. Figure 8.3 shows this layout of
one-dimensional grid points on the 3- and 4-cubes depicted in Figure 8.2.

The embedding of higher-dimensional grids into a hypercube is accomplished
by means of the cross-product of one-dimensional BRGC’s, an operation which
preserves the proximity property. Suppose we have an m; x m; two-dimensional
grid, where m; = 2P¢. Then the appropriate mapping onto an n-cube, where
n = py + pa, is given by the cross-product G1®Ga, where Gy is the BRGC of
the my grid points in the k' coordinate. The cross-product of Gray codes is
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Figure 8.4: Layout of an 8 x 4 two-dimensional grid on a 5-cube according to the
cross-product of 2 binary reflected Gray codes.

defined to be simply the concatenation of the individual bit sequences. This
embedding obviously generalises to higher dimensions. As a two-dimensional
example, consider the layout of an 8 x 4 grid on a 5-cube (see Figure 8.4). The
binary node number of each grid point is obtained by concatenating its binary
z-coordinate and its binary y-coordinate. (It is now clear why the Connection
Machine expands all dimensions to a power of two.)

A more critical requirement for multigrid is that the proximity property
be preserved omn coarser grids. A remarkable property of the BRGC is that the
distance between neighbouring grid points on all coarse grids is exactly two.
(For a proof of this, see [60, 85].) This is because coarse-grid neighbours are
always separated by 2" fine-grid points (in our square array model of the CM
discussed earlier). Thus the compact stencil operations of multigrid are using the
communications system of the CM very efficiently, operating over distances of
either one or two hypercube wires.

We mention that in 1986 Chan and Saad [22] developed an exchange algo-
rithm which reduces the cost of coarse-grid communication to exactly one. The
idea is to exchange the data of some nodes so as to ensure that the grid points
of that level reside in physically neighbouring processors. However, this strategy
is only effective when sufficiently many relaxations are performed on each level,
in order to overcome the exchange overhead.

Finally, we mention that the concurrent multigrid algorithm of Gannon and
Van Rosendale (see Chapter 9) can also be mapped with minimum communication
overhead onto a hypercube by means of BRGC’s.

To summarise, it is imperative for an algorithm to efficiently utilise the
communication hardware, since communication can be more expensive than com-
putation. We have seen that the marriage of power-of-two grid communication
and BRGC-mapped hypercubes produces a natural and efficient communication
scheme.

RN P T e 1 o R LT A A e N e a— ]




CHAPTER 8: CM-2 IMPLEMENTATION CONSIDERATIONS 134

8.6 Complexity of Parallel Multigrid Solution

Before presenting actual performance results for MGLAB, it is appropriate to firstly
consider the theoretical complexity of parallel multigrid algorithms in very broad
terms (we do so following the discussion of Chan and Tuminaro (25, 100]).

Suppose that we have an elliptic partial differential equation discretised on
a mesh containing N grid points, and that these are equally divided amongst P
parallel processors. It is well-known that the solution to an elliptic PDE at each
point depends on some information from all points in the interior of the domain.
We can see this quite clearly from the Green’s function solution of Au = f, where
the solution at any interior point is given in terms of an integral over the whole
domain. For example, the Green’s formulation of Poisson’s equation with zero
boundary data i1s

u(z,y) = /I?G(r.y,a,n)f@«n)dadn

where G is the Green’s function. The global nature of discrete elliptic PDE’s is
characterised by the dense nature of the matrix 4;'. We are therefore concerned
with the optimal asymptotic time for collapsing information from N grid points
to (any) single grid point. The best that can be done within a processor is
O(%), since each point must contribute; and the optimal time for combining the
resulting P pieces of information into one datum is O(log P) using a tree-visiting

method. Hence a lower bound on the time for solving an elliptic PDE is
o O(‘—;;’+logP).

If P~ N then this time is O(log V).

Crude lower bounds for the convergence of an iterative algorithm can simi-
larly be obtained by determining the minimum number of iterations required to
propagate information between any two grid points. Thus the necessary condi-
tion for a rapidly-convergent method is a “global” iteration operator. We now
see why traditional explicit methods such as Jacobi iteration converge slowly:
a single iteration involves updating the value at each grid point with respect
to its immediate neighbours. Purely local methods such as these require many
iterations to propagate information throughout the domain. Specifically, after
k Jacobi iterations with a nine-point stencil, information will have been trans-
mitted no further than k grid points away, and therefore a lower bound on the
convergence rate of Jacobi’s method on an n x n grid is O(n). The true parallel
multigrid algorithm, on the other hand, converges in O(log V) iterations. This
is because the fine-to-coarse then coarse-to-fine intergrid transfers allow informa-
tion to quickly propagate throughout the domain; in other words, multigrid has
a global iteration operator.

On parallel processing systems, we see that a computational trade-off arises:
local methods parallelise easily, but converge more slowly than global methods.

—<——_
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8.7 Timing Results

Let us firstly investigate the raw speed of the ANU’s CM-2 by examining the fun-
damental times for typical communication and calculation in single and double
precision. The times quoted here will be “CM-busy” times (from the CM For-
tran timing facilities) obtained from 16K processors running at 7 megahertz in
single-user batch mode. Programs were compiled with optimisation (cmf -0) and
executed without any run-time checking. The CM software used was CM Fortran
1.1.3, CMSSL 2.2.1 and CMSS (CM system software) 6.1.1.

Since we are only concerned with power-of-two NEWS communication, we
shall use the notation s = 2" and terminology “s-shift” for the CSHIFT operation
of distance s. Figure 8.5 shows a graph of the CPU times for 10000 repetitions
of various s-shifts on a 128 x 128 grid on 16K processors (and hence a VP ratio
of one). This is compared with the ideal hypercube communication times of

1 time unit for n =290
2 time units fors =il 2

We see that s-shifts for n = 0, 1,2 are faster than model hypercube times due to
efficient on-chip communication (see Section 8.8); nevertheless, we confirm that
multidimensional arrays are mapped onto the CM using binary reflected Gray
codes. We also note that double-precision s-shifts are about twice as slow as in
single precision

{DP

N

as expected. Figure 8.5 also indicates the corresponding CPU timeson a 512x512
grid (a VP ratio of 16). The next section explains how each processor then
contains a 4 x 4 contiguous block of grid points. In that case, significant amounts
of off-chip communication do not occur until n = 5, compared with n = 3 for a
unit VP ratio. This difference is a factor of 2°~2 = 4 because the larger grid has
4 x 4 times the number of grid points. Also note that the ratio of communication

times with respect to VP ratio are

16
tcomm/ tcomm

~ 16

as expected.

We next consider fundamental times for calculation on the Connection Ma-
chine, as measured by 5000 repetitions of the array operation C = C + A*B, where
each array is 128 x 128 or 256 x 256. We find the following times tcaic:

VP ratio | @, {8

calc tcalc tcalc

1 062 18.1 | 0.26 0.36
16 7.40 289 3.78 5.50

We see that a typical floating-point calculation is from 30 to 40 times slower in
double precision than in single precision:

calc / tcalc ~
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Figure 8.5: CPU execution times on a 16K-processor CM-2 for CSHIFTs of length
s = 2" in single precision (SP) and double precision (DP) at a VP ratio of (a)
one and (b) sixteen. Each dashed line represents the ideal hypercube times.
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In contrast to the precision ratio for communication, this figure does vary ac-
cording to the VP ratio. This is because a fixed number of physical processors
share a Weitek floating-point unit (see Section 8.8). The CPU times above la-
belled f.u. were obtained from a 16K CM (operating in slicewise mode) with
64-bit FPU’s, courtesy of Thinking Machines Corporation. It is remarkable that
double-precision arithmetic is more than 50 times faster on such a machine than
it is on a CM with 32-bit FPU’s, and that the precision ratio drops dramatically:
oP JBE =~ 14  (64-bit FPU’).

Combining the above fundamental times gives us the following two impor-
tant measures of a parallel computing system:

S e and g (8.1)
where we are comparing a floating-point add and multiply against two 1-shifts,
and the result varies somewhat according to VP ratio. These figures are important
because they identify potential bottlenecks; for example, if an application which
uses only 1-shifts must be run in double precision on the ANU’s current system,
then it is likely to be compute-bound.

Let us now turn to CPU times for MGLAB itself. Figure 8.6 indicates the time
required to solve Problem MG10 on various (fieldwise) CM-2 configurations. We
have included estimated CPU times for a 64K machine (with identical hardware
specifications to those at the ANU) by means of scaling. Similarly, Figure 8.7
shows CPU times from Thinking Machines’ 16K slicewise CM-2, with estimates
for execution times on a corresponding 64K machine.

Let us firstly consider the interpretation of Figure 8.6. Comparing the two
sets of three profiles, we find the precision ratio to be

o i T,
a ratio which increases slightly as A increases. Given our previous precision ratios
of about 2 and 35 for pure communication and pure calculation respectively,
we conclude that MGLAB contains a reasonable mixture of communication and
calculation instructions.

Focusing on a single profile now, we see that the slope indicates there are
precisely two rates of MGLAB execution on the CM. A fast rate occurs for small A
and a slower rate for larger A, with the transition occurring between A = 6 and
7 for 8K processors, A = 7 for 16K processors and A = 8 for 64K processors. It
will be evident that the transition occurs when “saturation” takes place, that is,
the grid size (2% x 2%) has expanded to fill the available number of processors. To
put it another way, saturation occurs when the VP ratio reaches unity. Before
saturation has occurred, M-cycle CPU time increases slowly with A; this is solely
due to the increasing number of grid visits. Indeed, the CPU times for 50 x Pa-
cycles shown in Table 8.1 for 16K demonstrate that there is virtually no increase
in CPU time up to saturation, as expected.
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Figure 8.6: CPU execution times on various fieldwise Connection Machine CM-2
configurations for solving Problem MG10 using the CM Fortran version of MGLAB.
(For A = 10, the “small” version is utilised.) The method used is 1 x ‘\[,‘i'?'z-cycle
using 0.8-weighted Jacobi point relaxation, full-weight restriction and zero initial
guess. Two sets of three configurations are shown: single precision (SP) and
double precision (DP) for each of 8K, 16K and 64K processors. Each dashed line
is an estimated result (see text for details).
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Figure 8.7: CPU execution times on various slicewise Connection Machine CM-2
configurations for solving Problem MG10 using the CM Fortran version of MGLAB.
Other details are as for Figure 8.6. Two sets of two configurations are shown:
single precision (SP) and double precision (DP) for 16K and 64K processors.
Each dashed line is an estimated result (see text for details).
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A 5 6 i 8 9 10
SP | 065 0.66 0.68 IS 216380 - i8iGil
DP | 3.07 3.08 3.08 104 39.1 153

Table 8.1: CPU times for 50 x Pj-cycles on a 16K machine.

Figure 8.7 shows at a glance the significant performance advantage of 64-bit
FPU’s over 32-bit FPU’s for double precision; double-precision MGLAB runs about
five times faster on a slicewise machine. Moreover, the precision ratio drops to
approximately 1.5. We also note that the CPU time increases more smoothly with
A than for fieldwise operation, indicating the fundamental change of execution
model.

Let us also look at the micro-structure of CPU times during a multigrid
cycle. Figure 8.8 shows the cumulative execution time for Problem MG10 on
16K processors within a Vg'**-cycle using immediate correction (and hence a VP
ratio of 1). The micro-structure of the error 2-norm is also plotted. We see
that (with immediate correction enabled) the CPU time increases almost linearly
within the cycle, indicating about the same amount of work is performed on each
level independent of L. The reduction in work associated with the “unrolled”
L =1 level is barely visible in the graph because it is overshadowed by work due
to the immediate correction process itself.

We are reluctant to directly compare the CPU times on the CM with those
of serial machines (see Figure 4.16) since the CM Fortran version of MGLAB is not
optimised for speed; it is evident, however, that double precision MGLAB runs on a
fully-configured CM at about the same speed as on huxley, the four-processor Sun
4/690 mainframe. This tends to confirm that our simple parallel implementation
is inefficient. (We discuss highly-efficient parallel multigrid algorithms in the next
section and in Chapter 9.)

We similarly hesitate to quote megaflop rates for MGLAB, however we shall
present some figures based on the specific case of Problem MG10 using single
precision. To simplify our discussion, consider the execution of n x Py-cycles.
Let F be the number of SP flops per VP for some process, and let S similarly be
the number of 1-shifts. Then

F (RELAX.V) = 12
F (CALCRESULT) = F(CALCRESIDUER) + 3
F (CALC_RESIDUER) = 11
S (CALC_RESULT) = 4
S (CALC_RESIDUER) = 4

hence

(n + 1) F (CALCRESULT) + n F (RELAX.V)
26n + 14

F (n x Py-cycles)
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Figure 8.8: Cumulative CPU execution times within a Vi*% cycle for Problem
MG10 on 16K processors in single precision (SP) and double precision (DP). The
method used is 0.8-weighted Jacobi point relaxation and full-weight restriction
with immediate correction and 2-norms. The abscissa indicates the active level

within the V-cycle; values are taken after relaxation at that level. Also shown
are the corresponding error norms (dashed line and right-hand axis.)

and similarly

S (n x Pj-cycles) = 8n +4.
Therefore the SP flop rate is given by
N = F(2"-1)*/t,

a figure which ignores CSHIFT’s and front-end calculations (as is customary). In
fact, we already know from equation (8.1) that one 1-shift takes about the same
time as 2.5 flops in single precision. Let the actual value be é, then a flop rate
which approximately incorporates the cost of communication is given by

N = (F+68)(2*-1)*/t.
Taking the figure t = 8.31 seconds for 50 x Pjo-cycles from Table 8.1, we find
N = 279 SP megaflops.

On a 16K slicewise machine, we can accurately estimate the performance to be

at least - 40
:;'—_é x N = 546 SP megaflops
ol
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using figures from the table on page 135.

Finally, in Section 8.4 we described the CM Fortran version of MGLAB as being
“unrolled” to a depth ¢ = 1. The following table demonstrates the significant
speed-up this modification results in over a purely parallel implementation; the
figures give the percentage increase in speed on 16K processors.

A 5 6 7 8 9
P | 36 2¢ 20 20 20
DFF 138 3L 27 |26 2

8.8 Further Architectural Details

In this section we delve more deeply into the architecture of the CM-2, in order
to draw conclusions about how to implement a more efficient multigrid scheme.
Earlier we stated that the CM-2 provides a simple parallel environment for novice
SIMD programming. While this is true, simple implementations of algorithms
(such as we have presented) will not achieve optimal performance from the CM —
this requires a detailed knowledge of its architecture and mode of operation. We
will only consider standard multigrid in this section, postponing a discussion of
parallel multigrid methods to Chapter 9.

The Connection Machine CM-2 is constructed from replicated units called
boards. Each fully-configured board contains two proprietary CM chips (some-
times called nodes), 256K of bit-addressable RAM on commercial chips, a Weitek
floating-point interface chip (sometimes called a sprint chip) and a floating-point
execution chip (see Figure 8.9).

Each CM chip consists of 16 bit-serial data processors, a communications
controller, and an error-correcting code (ECC) unit. Each processor has four
connections:

1. each processor is connected to an instruction bus, which distributes instruc-
tions broadcast from the sequencer

2. each processor is connected to a global bus, allowing for global results (such
as sum or max) to be combined from all processors

3. each processor is connected to off-chip memory and the floating-point ac-
celerator via the ECC unit (16 data signals plus 6 ECC bits)

4. each processor is connected to the communications controller, interfacing
the 16 processors to 12 hypercube wires.

The CM-2 at the ANU has 2'* processors, hence only 10 of the 12 hypercube
wires are used. The data processors are rated at 7 or 9 megahertz and are
capable of performing a 32-bit add in about 21 microseconds [95]. For a VP ratio
of n, any instruction is repeated n times, once for each data element in the n
virtual processors. A program’s performance (expressed in terms of megaflops,

—é
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11 hypercube wires 11 hypercube wires

[P] (7] [P] [P] [F] [P] [P]
Router [E IE @ lE Router @ IE] E] IE
News | [B] [P] [P] [P) News | [B] [B] [F] [P]

hypercube [ [P [ [ hypercube winicie

interface interface

ECC ECC

Memory
2 x (16 +6)x
256K bits RAM

Floating-point Floating-point
interface execution

Figure 8.9: Diagram of the components of a CM-2 board. Each board contains a
pair of CM-2 chips which share a group of memory chips, a floating-point interface
(“sprint”) chip, and a floating-point execution chip. The memory chips provide
a 44-bit data path: 16 data and 6 ECC bits to each CM-2 chip. A CM-2 chip
contains 16 single-bit processors (P), an error-correcting code (ECC) chip, and a
hypercube communications interface chip. The internal wiring of the CM-2 chips
is not shown. Also not shown are the instruction and global-result buses which
connect to each CM-2 chip.
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Figure 8.10: Representation of the layout of a 2-D grid with VP ratio of 64 on
the 16 processors of a CM-2 chip. Open circles indicate grid points which require
inter-processor communication. Grid points with solid circles require off-chip
communication. See text for further details.

for example) will normally increase with increasing VP ratio, since an increasing
fraction of communication will be intra-processor.

Suppose we wish to implement a 1024 x 1024 NEWS grid on a 16K machine,
giving a VP ratio of 21°+19-14 = 26 = 64. Gray-coding of the grid points onto the
14-dimensional hypercube proceeds just as described in Section 8.5, except for
two details. Firstly, the 6 virtual dimensions are specified by the least-significant
bits of the Gray code [89]; ensuring that a local contiguous block of 8 x 8 grid
points reside in the same physical processor. Secondly, we in fact have a 10-
dimensional hypercube, with each node consisting of a CM chip, each with 16
processors. Again, Gray-coding over our two-dimensional grid means that we can
think of these 16 processors as forming a 4 x 4 group over the grid, each processor
storing an 8 x 8 block of grid points (see Figure 8.10).

Consider a single NEWS communication on this VP set; say each processor
sends a datum to its “eastern” neighbour. Within each group of 64 virtual proces-
sors, 56 of them send data within the same physical processor, while the 8 on the
“eastern edge” of the block require inter-processor communication. Thus 7/8 of
the work is done by a physical processor simply rearranging data in its memory;
this is handled by sequencer software. The remaining 1/8 of the work requires
each physical processor to send 8 messages to its physical processor neighbour
to the east. Within each group of 16 processors, 12 of them send data within

G e L
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the same chip (“on-chip communication”), while the 4 on the eastern edge of the
chip require off-chip communication. This is the second of the specialised transfer
methods: 3/4 of the remaining work is performed by a special per-node permu-
tation circuit which is independent of the hypercube mechanism. The remaining
1/32 of communication work requires each chip to send 4 x 8 = 32 messages to its
eastern neighbour along one hypercube wire. This is the third of the specialised
transfer methods: the same permutation circuit is connected to the hypercube
wires, bypassing the general router.

Our example has used specific shapes, sizes and VP ratios, but the CM
hardware is flexible enough to handle any power-of-two size and shape. It is this
specialised hardware that makes NEWS communication very rapid and efficient.
We also see that the default CM layout gives rise to a “blocked” data structure,
as one would hope.

Now we consider the floating-point accelerator, and its effect on execution.
Recall that the accelerator is shared by 32 processors, and that the Weitek units
currently at the ANU are 32-bit (single) precision. The function of the sprint
chip is to serve as an interface between memory and the floating-point execution
(FPE) chip.

Suppose we wish to add two 32-bit operands using the Weitek unit. Exe-
cution proceeds in five stages [95], each stage consisting of 32 “nano-instruction”
cycles, one cycle for each of the 32 on-board processors.

1. The first operand (for each of the 32 processors) is moved from memory to
the sprint chip.

6o

. Simultaneously, the first operands are moved to the FPE, and the second
set of operands is moved from memory to the sprint chip.

3. The second operands are moved to the FPE, where the addition is per-
formed.

4. The set of 32 results is moved from the FPE to the sprint chip.
5. The results are moved from the sprint chip to memory.

For a VP ratio of n, this process is pipelined to require 3n + 2 stages, rather than
5n. Since memory bandwidth is a limiting factor, simple 64-bit floating-point
operations (on a CM with 64-bit FPU’s) take precisely twice as long as 32-bit
operations.

Careful consideration of the relationship between the 32 processors, memory
and the floating-point unit reveals that there are two possible modes of opera-
tion. There is the standard approach whereby processors store data in contiguous
words of memory; this is called the fieldwise execution model. There is room for
improvement because the data is moved serially to the sprint chip, then “trans-
posed” to feed the FPE all 32 bits at once. The alternative approach is to store
the 32 bits of data across the memory, one bit corresponding to each proces-
sor on the board; this is called the slicewise execution model. Thus the data
is in a form where it can be sent directly to the FRE. Slicewise operation gen-
erally gives significantly better performance; unfortunately, slicewise execution
is only available for Connection Machines equipped with 64-bit floating-point
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units. Moreover, Thinking Machines has recently written a good deal of slice-
wise software which would very significantly improve the performance of MGLAB,
including compilers designed to produce highly optimised micro-instructions for
typical finite-difference stencil operations.

Given our fieldwise hardware, Thinking Machine software engineers [104]
have advised that a substantial speed-up would only be obtained by writing a
hand-coded blocked algorithm. In such an implementation, the coarsest grid is
chosen such that all (or almost all) CM processors are utilised (near the point of
processor saturation). For example, the coarsest grid on a 16K Connection Ma-
chine would be 128 x 128 (L = T in our standard grid hierarchy). Coarser grids
are not employed at all, while finer grids are implemented by the many hand-
coded grid interactions, in a somewhat similar way to the optimisation process of
unrolling loops. Thus each CM processor acts like a serial multigrid implemen-
tation for the very deep (fine) levels, where v, f, r and so on are represented as
single long arrays (see Section 3.7). Moreover, inter-processor communication is
greatly reduced — most communication occurs within a physical processor, and
consequently very high performance is achieved. This is a difficult programming
exercise, however.

This approach works better for parabolic PDE’s than it does for elliptic
PDE’s; parabolic equations seem to satisfactorily converge without moving to
very coarse grids, unlike elliptic equations where attempting multigrid only on
levels L = 7,8,9,10 would generally result in poor convergence. Also, the hand-
coded approach is more suited for three dimensional problems, since then satura-
tion occurs on a much coarser grid. For example, a 3-D coarsest grid of 16 x 16 x 32
processors results in a 100% processor utilisation on an 8K Connection Machine.




Chapter 9

Extensions

Research is what I'm doing when I don’t know what I'm doing.

— Wernher von Braun

In this chapter, we firstly discuss how a multigrid algorithm can be modified
for highly efficient execution.on parallel processing systems, in particular for
the Connection Machine CM-2. Research into parallel multigrid is becoming a
significant topic in computational mathematics, especially as it has become clear
that supercomputing will incorporate some degree of parallelism in the foreseeable
future. Secondly, we consider how the MGLAB multigrid package could be extended
to solve more difficult problems; in other words, how we might broaden the class
of boundary value problems specified in Chapter 1 which are solvable using MGLAB.

9.1 Multigrid on Parallel Processing Systems

Chapter 8 described the simple CM-2 implementation of the current version of
MGLAB, which is considered a standard parallel multigrid algorithm. Perhaps
the most severe inefficiency in this implementation is the idle-processor problem,
where large numbers of processors operating on coarse grids perform no useful
computational work. This is a fundamental difficulty with the implementation
of standard multigrid on massively-parallel systems. With N processors working
on N grid points, standard parallel multigrid is an O(log N) rather than an
O(1) solution method (as it must be). In this section, we shall discuss multigrid
schemes which are highly parallelisable; schemes designed to avoid the difficulties
of standard multigrid, such as increasing numbers of idle processors on coarser
grids. Time constraints in this project did not permit us to implement any of
these schemes.

For a very recent discussion of multigrid methods on parallel computers, see
McBryan et al [75]. See also Chan and Tuminaro [26].

147
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9.1.1 Parallel Superconvergent Multigrid

Perhaps the best-known parallel multigrid scheme is an algorithm called Parallel
Superconvergent Multigrid (PSMG), introduced by Frederickson and McBryan
[41] in 1988 (see also [42, 73, 74]). PSMG is based on the simple idea of solv-
ing many coarse-grid problems simultaneously, then combining these results to
provide a better fine-grid approximation. Apart from this last step, no extra
computation time is involved, since the coarse-grid problems are solved on pro-
cessors which would otherwise have been idle. While PSMG is still an O(log N)
algorithm, the method results in a smaller constant than for standard parallel
multigrid, due to a more rapid convergence rate.

Let us assume periodic boundary conditions for the moment. For a d-dimen-
sional regular grid, we have the choice of 2¢ different coarse grids. Multigrid
traditionally chooses the even points in each dimension to arrive at a single coarse
grid ;4. The idea of PSMG is to project the fine-grid approximation vy, to all of
these possible coarse grids, since they all should provide equally good solutions.
In general, these different coarse grids receive slightly different data from the
fine grid, and so combining these complementary views of the fine-grid problem
should produce a superior approximation to the solution. We let this combination
operator be denoted by Q. The most common way to combine the 24 coarse-grid
approximations véh is simply to use a linear interpolation of all these N? coarse
grid points; in two dimensions for example, a simple choice for @ is the average
of the four bilinear interpolations: vf = It"v5.

The simplest approach to implementing Dirichlet or Neumann boundary
conditions is to use reflection principles on an extended grid — see Section 9.2.2.

Algorithm 9.1 presents the PSMG version of the linear multigrid V-cycle,
analogous to Algorithm 3.2 from Chapter 3. The extensions to a nonlinear scheme
and to a full multigrid M-cycle scheme are as before (see Chapter 3).

PSMG can be viewed as a process which operates on a single grid of points
24 of size 2% in each dimension, with operators of scales L < A; hence it may
also be called a multiscale method.

The PSMG strategy is to choose Qr and R as functions of Ay in order to
optimise the convergence rate. In Section 3.4, we mentioned that optimisation
of the multigrid convergence rate involves minimising the spectral radius of Tf.
However it is well-known that for square matrices p(A4) < 1 if and only if || || < 1,
hence the spectral radius is “similar” to a matrix norm [8]. In [41, 42], Freder-
ickson and McBryan have chosen to define the convergence rate 7 in terms of
|IT||. Moreover, they indicate how to calculate convergence rates for translation-
invariant operators using the discrete Fourier transform. In the case of 2 = —A
with periodic boundary conditions, discretised by the usual five-point star

0 -1 0
AS = N2 -1 4 -1,
0 -1 0

it is found that the optimal two-grid symmetric nine-point Qr and R ; operators
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Algorithm 9.1 (Linear PSMG V-cycle)

A recursive iteration for solving Apua = fa, given some initial guess vy.
procedure PSMG-V-cycle (v, f, L)

begin
if L =1 then
v, — Rp(ve, fL)
else
vg, — R7 (vL, fr)
forall k =1 to 2¢ do
r‘i_l — [£_1 (fr — Arvr)
v’[‘;_l — 0
PSMG-V-cycle (v*,r* L — 1)
v, — vr + QrLvi_;
endforall
vy — R7 (v, fL)
endif
end

0.066460 0.132920 0.066460
0.132920 0.265840 0.132920
0.066460 0.132920 0.066460

0.006308 0.041304 0.006308
RS = Ni? | 0.041304 0.257070 0.041304
0.006308 0.041304 0.006308

giving a two-grid convergence rate of

r = sup ||Tt|| = 0.063
L

where

T, =1 — [Ry+(I-RpAL)QrALL ] AL

is the two-grid PSMG iteration operator (cf. equation (3.2)). (If Ap, is singular,
as above, then this equation has an appropriate interpretation in terms of the
Moore-Penrose pseudo-inverse At.)

Choosing the nine-point Mehrstellen discretisation

K e
A2 = 1N | -4 20 —4

-1 -4 -1
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and the standard interpolation

0.0625 0.1250 0.0625
Q% = |0.1250 0.2500 0.1250
0.0625 0.1250 0.0625

leads to an optimal

0.015666 0.046489 0.015666
R7 = Np? | 0.046489 0.305900 0.046489
0.015666 0.046489 0.015666

with a convergence rate 7 = 0.026. These convergence figures compare favourably
with a standard red-black Gauss-Seidel rate of 0.074 (see Decker [31, 32]).

The authors also compute optimal operators and convergence rates for multi-
grid V-cycles; see [41] for further details.

While these results prove the benefits of the PSMG algorithm for Poisson’s
equation, to our knowledge a superconvergent rate has not yet been demonstrated
for more complex problems. Moreover, while PSMG can produce extremely good
convergence rates, it does so at the cost of communication-intensive operators.
For example, the multigrid convergence rate for two smoothing steps per level,
the Mehrstellen operator A°, a nine-point relaxation operator and a 25-point
interpolation operator ) is a remarkable 0.001. In fact, in 1990 Decker [31]
carefully examined the PSMG algorithm and concluded that, while it achieves
perfect processor utilisation, the actual efficiency (for the Poisson equation) is the
same as for a parallelised version of standard red-black Gauss-Seidel multigrid.
This is because, as we have said, the superior convergence rate of PSMG is
counter-balanced by substantially more expensive operators 4, ) and ®_(in terms
of both communication and computation).

9.1.2 Other Parallel Multigrid Schemes

In addition to the PSMG method of Frederickson and McBryan, there have
been a number of other parallel multigrid methods proposed; for example, “fil-
tering multigrid” by Chan and Tuminaro [25, 100], “aggregation/disaggregation
multigrid” of Douglas and Miranker [35], “robust multigrid” of Hackbusch [52],
“symmetric/antisymmetric multigrid” of Douglas and Smith [36], “concurrent
multigrid” of Gannon and Van Rosendale [43], and the PVM algorithm of Lin,
Proskurowski and Gaudiot [69]. A good discussion of many of these schemes
appears in Tuminaro’s doctoral thesis on parallel multigrid algorithms [100].
These novel methods are essentially based on the same principle used in
PSMG: that new sub-problems are found for coarser grids, designed to be pro-
cessed in parallel by otherwise idle processors. The crucial step is to deter-
mine suitable coarse-grid sub-problems which will combine effectively. Tuminaro
(100, 27] has identified two general principles which are used in many paral-
lel multigrid algorithms: “aliasing-error cancellation” and “non-interfering sub-
spaces”. The former refers to the annihilation of unwanted error components on
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coarse grids; in standard multigrid this is the result of projecting high frequencies
onto coarse grids (see Section 3.1). In PSMG, this aliasing-error cancellation is
the mechanism which accelerates convergence. Non-interfering subspace meth-
ods create multiple approximate solutions corresponding to different subspaces;
many of the parallel methods listed above fall into this category. These methods
demand a proper choice of interpolation, restriction and coarse-grid operators.

The PSMG algorithm is quite simple to implement, as the same intergrid
operators are used in the four sub-problems. In contrast, the non-interfering
subspace methods of Hackbusch, Douglas and Miranker, and Douglas and Smith
utilise different intergrid operators for each sub-problem, which are constructed
so as to approximate the solution of the fine-grid problem in different subspaces.
These must be chosen so that each approximation, when combined, does not
adversely affect the approximation from the other subspaces. Tuminaro analyses
these methods in terms of “A-orthogonal decompositions”; see [100] for more
details.

To give a flavour of such subspace methods, we now give a brief overview of
Hackbusch’s “robust” multigrid. The method is motivated by the role of coarse-
grid correction in standard multigrid, namely to reduce errors having low frequen-
cies in both the z and y directions (see Figure 3.4). Hackbusch introduced the
following three complementary corrections to reduce errors in the other frequency
subspaces:

1. high frequencies in both the x and y directions,
2. low z-frequency and high y-frequency,
3. high z-frequency and low y-frequency.

The specific restriction stencils proposed are

e

R] 3 y Rz =

= e e
Ra_ 2 2 R4_
P T ~

which are applied at the even z - even y points, the even-odd, odd-even and odd-
odd grid points, respectively. The corresponding prolongation and coarse-grid
operators are

P,=RF and A= RAP.

This is as much as we shall say about subspace methods.

Instead of accelerating the convergence of the iteration, the other approach
in' creating a fast parallel multigrid method is to reduce the time per iteration.
Concurrent multigrid aims to iterate on all grid levels simultaneously. It achieves
this by first distributing the original problem over all grids, relaxing on all levels
in parallel, and then recombining the approximations. Since the function of
successively coarser grids is to reduce lower and lower frequency components of
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the error, it is natural to distribute these various errors across the grids; this
is achieved by restriction and interpolation of the residue. One then performs
relaxation on all grids, and computes the recombination of the residue with some
operator Q. A difficulty with concurrent multigrid is that there is no natural
way to map a pyramidal hierarchy of grid points to a hypercube, hence many
processors may remain idle: in two dimensions this fraction is approximately
1/3, while in three dimensions it rises to about 3/7 (see Chan and Saad [22)).

The field of parallel multigrid is still in its infancy, although a good deal of
promising research is currently underway in the area, and an increasing number
of papers are appearing.

9.2 More Difficult Problems

There are several ways in which MGLAB could be extended, so as to increase the
range of boundary value problems that may be solved. We will also discuss more
difficult problems that can be recast into a form suitable for numerical solution
by MGLAB.

9.2.1 PDE’s on Manifolds

Given an arbitrary basis (e, es,...,es) of Euclidean space E?, the covariant
components of a vector x are defined as

while the contravariant components are numbers z* such that
X = 12‘9,‘

(see for example [68]), using Einstein’s summation convention over raised and
lowered indices. By convention, covariant components are written with subscripts
and contravariant with superscripts. With the definition

ex'e] = gi_; = g_]i

we have the basic relations

= ger 27 and =

Now consider an arbitrary two-dimensional manifold S. If we assume that
S is embedded in R>, then we may introduce a parametric representation of § in
3-space as X = x(u,v), where the components z, y and z of the position vector
x are functions of two parameters u and v. We can then consider the first and
second fundamental forms of the manifold (see for example [33])

ds* = E(u,v)du® + 2F(u,v)dudv + G(u,v)dv? = g;; du' du’
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and
L(u,v)du® + 2M(u,v)dudv + N(u,v)dv? = hi; du' du’.

These relate to the material of Chapter 7 in the following way. The principal
curvatures k; and k; are the solutions to the quadratic equation

EN +GL -2FM LN — M?

= e S
e P T ¥ 7= T W

and the mean curvature and Gauss curvature are given by

EN + GL - 2FM

H—_—I\71+AT2: EG_F2

LN — M?
EG - F?*’
In fact, we need not restrict ourselves to such embedded manifolds. The follow-

ing procedure allows us to consider arbitrary 2-manifolds, and by generalisation,
arbitrary d-dimensional manifolds.

[\’ = kl k‘g =

To investigate some differential equation Fu = 0 on S rather than simply
on ‘E2, our Cartesian coordinates (z,y) are replaced by more a general frame of
curvilinear coordinates (z!,z?). We need to express all second derivatives in F
in covariant form using a connection I’

Uiy = Uij — Fi‘; Uk
with i, 7,k € {1,...,d=2}, and where we use a standard notation of a subscripted
semi-colon to indicate a covariant derivative and a subscripted comma to indicate
a partial derivative: u; = du/0dz'. The Christoffel symbol 1“,-'; is defined by

[115 = %gkl(g[l.j +g]l,i _gz_],l)

where g are the contravariant elements of the metric
-1
9] = lga]™

Note that first derivatives are already frame-invariant. In principle, the same
modifications apply to higher-order derivatives, but we shall restrict ourselves
here to second-order equations.

The generalisation of the Laplacian operator on a manifold is the Laplace-
Beltram: operator

A = g" uj.

Thus we have a procedure by which we may apply an operator ¥ on some ar-
bitrary manifold S. As an example of this procedure, consider Poisson’s equation
on a sphere of radius one:

gl uy; = f(IleZ)
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The transformation from Cartesian to spherical polar coordinates is given by

z = rsinfcoso
y = rsinfsing
z = rcosf
hence
dr = sinfcospdr + rcosfcospdf — rsinfsin¢do
dy = sinfsingdr + rcosfsin¢df + rsinfcos ¢ do
dz = cosfdr — rsinfdo.

We have a surface S defined by » = 1 with coordinates (z',z?) = (6, ¢), hence

ds? = dz* + dy* + d7?
= df* + sin’0do*
therefore our metric is
1 0
lgu] = ( 0 sin20>
and
1 0
5 1 (S
l9"] = (0 csc20>

so that gi11 = 0¢11/98 = 0, and so on. The first of the eight components of the
connection is

Flll :%
=)}

In a similar fashion, we have

12

¢ (9111 + 9110 — gn1a) + %9 (9211 + 9120 — 911.2)

Fe =0
Iy, = —sinfcosf
[7222 =0
hence the Laplace-Beltrami operator Aju = g% uy; 1s
w4+ 9% us + g% um + 9% wa = un + osc Qup

but these covariant derivatives are given by

k
U1 = U1 — Ly Uk
=T
= Upo
ia pk
Upgpg = Uy — LUk

wq + sinfcosfu,

uge + sinfcos O ug
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and so Poisson’s equation on a sphere is

ugg + csc? Qugg + cotOug = f(6,9)

which is a well-known result.
To numerically solve this equation, we would renormalise from the domain

{(6,9) € [0,7] x [0,27)} to {(@,®) € [0,1] x [0,1]}:
duge + csc(r@)uge + 4w cot(r@)ug = 4n*f(O, D)

and then implement the solution in the usual way using MGLAB.

We want to solve this equation on the whole manifold §, so care must be
taken at the boundaries. Since @ = 0 corresponds to @ = 1, the “left” and
“right” Dirichlet boundary conditions need to be replaced by appropriate regu-
larity conditions (for example, if we desire a C*-smooth solution, then we require
matching first and second derivatives across the longitudinal cut in the sphere).
Moreover, @ = 0 and @ = 1 correspond to the north and south pole respectively,
so the “top” and “bottom” boundaries correspond to single points on $ and so
must remain constant. Additionally, regularity demands that all derivatives up
to order n match across the north pole:

lim D'u(@,8) = lim D'u(®,®)

0—0t 0—0—

= GILT+Diu(9,¢+%) for &€ [0,3],

and similarly for the south pole. This unpleasant constraint is difficult to achieve
numerically. In fact, it is well-known that the sphere cannot be mapped isomor-
phically to the square.

These are the sort of additional considerations required to solve global prob-
lems on S; local problems are more straight-forward. For example, the above
procedure could be applied to solve F(u) = 0 on a region of a minimal surface,
with a certain amount of calculation in order to recast the problem and with no
modification to MGLAB.

In general, solving PDE’s on manifolds is a difficult problem, and there
are many open questions in the field. A very recent paper by Lanza [66], for
example, addresses the multigrid solution of certain boundary value problems on
non-Euclidean manifolds arising in general relativity.

9.2.2 Non-Dirichlet Boundary Conditions
The functionality of MGLAB could be expanded by allowing the solution of PDE’s
with Neumann boundary conditions:

du
an

(z,y) = g(z,y) on 872

where du/0n indicates the appropriate normal derivative, and also with mized
(or Robbins) boundary conditions:

2(,y) + Cu(z,y) = g(z,y) on 9N
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and, in principle, higher-order boundary derivative conditions.
In the finite-difference method, the Neumann condition u.(0,y) = ¢(y) for
example, corresponds to

M(uy; — uo;) = g; for

but which is accurate only to O(h). The standard technique is to introduce a
fictitious column of grid points u_; ;, so that we may use the O(h?) approximation

%(UIJ —u-1;) = g; for j=0,1,...,! V.

The equation ﬁl(uu) — f,] is then applied to the grid column ¢ = 0, as well as to
M. 1If the operator A is of order 2n, then
we would require n ﬁctltlous columns in this case.
Another common problem to arise is for a PDE to have periodic boundary
conditions:

w(0,y) = u(l,y) (continuity)
ur(0,y) = uz(1,y) (regularity)

for example. We can then reduce our set of discrete grid points by one column,
and maintain only the columns ¢ = 0,1,..., M —1. One then applies relaxation
sweeps uniformly to all grid points — the distinction between interior and exte-
rior grid points vanishes. If we treat these columns as though they connect to
form a torus, the periodic boundary conditions are automatically satisfied. Note
that this situation is ideally suited to the architecture of a hypercube parallel
processor, such as the Connection Machine CM-2, since tori embed perfectly into
hypercubes.

9.2.3 Systems of PDE’s

Suppose that we desire the solution of a system of PDE’s, A(u) = f, such as
the steady-state Navier-Stokes equations describing the flow of an incompressible
viscous fluid in three dimensions [11]

U; Bp
E — = + pAu; + pF;
o e Oz S iR

ou; ;..
Z or;

where the viscosity x and density p are assumed to be constant, p is the pressure
and u = (uy,us,u3) is the velocity. This is a system of four equations in four
unknowns:

pF — Vp + pAu — puVu = 0
divu = 0.
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To extend MGLAB to enable the solution of vector equations would require
a certain amount of additional house-keeping code, but no new ideas. In the
simplest method, one would apply the elements of the multigrid process (relax-
ation, restriction, etc.) in turn to each unknown u;, whose values are stored in an
additional serial dimension of the multi-grid hierarchy. One might have to apply
this idea more carefully if the PDE concealed a great deal of interdependence
amongst the unknown functions.

These comments also apply to PDE’s in n complex variables, which can be
regarded as systems of 2n real variables.

9.2.4 PDE’s in Higher Dimensions

The above example of the Navier-Stokes equations has a three-dimensional do-
main {2. This is a very common situation for problems modelling the physical
world. The current version of MGLAB is able to solve problems only in two dimen-
sions, although it is obvious how it could be modified to handle d dimensions, in
principle. The programming effort required for this would not be great, since the
CM Fortran language incorporates the intrinsic array structures of Fortran 90,
making the task much easier than it would be using FORTRAN 77, say. Of course,
even on a supercomputer such as the Connection Machine, one would exhaust the
memory capacity before reaching a very fine grid resolution. For example, on the
CM-2 currently situated at the Australian National University, the total amount
of memory is 2?6 double-precision variables. Extending the results of Section 8.3
to d = 3, we see that a simple implementation of multigrid could probe no deeper
than A =7 levels.

As a finai note regarding PDE’s in d dimensions, we mention that the notion
of line-relaxation extends to d—1 hyperplane relaxation. In three dimensions, we
therefore have access to several variations of plane-relazation; these involve the
solution of a penta-diagonal system.

9.2.5 Evolution Equations

Suppose that we desire the solution u(z,t) of some time-dependent PDE
% = (e, Du, D?u, .. )

such as the Navier-Stokes equation

du

P ot

Time-dependent partial differential equations in three dimensions represent the

cutting edge of research in many areas of science, as such problems are difficult
and demanding on computer resources.

We will consider only the most basic treatment of evolving systems (for
further details, see for example Richtmyer and Morton [86]); to this end, suppose

+ u-Vu = pF — Vp + pAu.
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we wish to solve for u(z,t) the equation
du
— = )u.
dt
Time derivatives are discretised almost exclusively using finite differences [39].
Defining @ = u(z,t—dt), a quantity known from the previous time-step, we can
choose to solve one of the following options:
(fully implicit)
(Crank-Nicholson)
(fully explicit)

u—7u
dt

A more complex evolution problem is the two-dimensional unnormalised
Ricci flow [55]
ot

On a 2-torus with flat metric, this may be written as

ou S
Et_ —e AU,

= —2Kg;;

where g;;(t) = €“(Yg;;(0). Applying the Crank-Nicholson method to this equation
gives

U — U =
_ _—(u+um)/2 1 —
= € o AU — £\

7 ! Au)

in other words
u — CyAue™?dt + Cre*?dt =@

where

) = Le /% and G = €1 At

1
2
Hence our time-dependent equation is transformed into a series of static nonlinear
problems of the form 4(u) = f, where 4 and f change at each time-step; this
problem is now in a form which MGLAB could solve.

This procedure allows us to solve parabolic PDE’s which are elliptic at each
time-step: u; = F, where ¥ is an elliptic operator.

9.2.6 Finite-Volume Methods

The finite-volume method (see for example Fletcher [39]) is commonly used in the
field of computational fluid dynamics (CFD), where the underlying concepts of
flow, flux, continuity and conservation are more natural than for elliptic problems.
However, we mention the technique since it results in a numerical scheme which
is well-suited to the architecture of a hypercube parallel processor, such as the
Connection Machine. Recall from Chapter 8 that the use of the standard finite-
difference method results in grids of dimension 2£+1, which we implement on
the CM-2 as an implicit boundary scheme with grids of dimension 2L _1. Using
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finite-volume techniques, we work on grids of dimension exactly 2¢, and so this
scheme is a natural one for any hypercube computer.

In contrast to the finite-difference method which is applied to a PDE in
differential form, the finite-volume method is a discretisation of the governing
equation in integral form. For example, one begins with Laplace’s equation and
integrates over a small subdomain Y:

/1(uu+uyy)drdy = /(urdy—uya'r)
T i

and uses Green’s theorem to obtain

/TH-nds =

where H = (u;,u,) and n is the outward-pointing normal. One then chooses
some discrete representation of this integral. For more details, see Fletcher (39].

The finite-volume method has advantages in situations where the equation
obeys conservation properties; in complicated domains using curvilinear coor-
dinates or nonuniform grids; in its ability to produce simple stencils, and also
because Neumann boundary conditions can be handled as readily as those of
Dirichlet type. Perhaps most interestingly, McCormick [76] and Liu [70] have re-
cently described a hybrid finite-volume element method which is ideal for multi-
grid, and multilevel adaptive techniques in general. This is a most interesting
development, but is beyond the scope of this report.
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Summary and Conclusions

I think that computers will bring about great changes in the aspect
of both stating and proving theorems .... Certainly I believe in the
heuristic or experimental value of computers, where by working exam-
ples, one will get intuitions about the more general fact. Ultimately
the computers will be able to make formal proofs and operate sym-
bolically the way we do now in thinking about mathematics.

— Stanislaw Ulam [10]

So, is the computer important to mathematics? My answer is “no”.
It is important, but not to mathematics.

— Paul Halmos [2]

On my list [of the twenty most important events in the history of
mathematics| appears the modern computer as one of the very most
important mathematical events of all time. ...It would be closer to
the truth to say that the development of the electronic computer is
one of the major events not just in scientific history, but in world
history.

— Kenneth O. May [72]

This thesis has reported the results of our research into multigrid methods for
solving elliptic boundary value problems, and how these methods may be imple-
mented on parallel processing systems. We have generally restricted ourselves to
consideration of the case of static scalar two-dimensional Dirichlet problems with
finite-difference discretisation, and we have discussed aspects of the implementa-
tion of the multigrid algorithm specifically for the massively-parallel Connection
Machine CM-2.

We began by giving an overview of the fundamental concepts of discretisa-
tion and relaxation for elliptic equations (Chapter 2), then proceeded to discuss
the elements which comprise multigrid methods for linear problems (Chapter 3),
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and the generalisation to nonlinear problems (Chapter 5). We also considered
the theoretical smoothing and convergence properties of relaxation and multigrid
iteration. In Section 3.6, we formulated an initial guess based on a discrete-
Laplacian function; this proved to give substantial computational benefits for
smooth problems with non-constant boundary data. To learn more about the
practicalities of multigrid solution, we wrote a software package designed to func-
tion as a laboratory for multigrid experiments on a broad range of boundary value
problems. MGLAB allows the user to freely and conveniently experiment with the
many possible multigrid parameters. The standard FORTRAN 77 implementation
of this package is discussed in Chapter 3, while the CM Fortran parallel imple-
mentation is discussed in detail in Chapter 8. This chapter included a discussion
of the architecture of the Connection Machine, which was necessary for under-
standing the issues of parallel performance. Some CM-2 code is presented in the
Appendices, which demonstrate the suitability of the CM Fortran language and
the ease of use of MGLAB. We selected several sets of model problems to illustrate
and examine the multigrid solution process; these ranged from simple linear prob-
lems (Chapter 4) to relatively simple nonlinear equations (Chapter 6), to difficult
nonlinear problems involving surfaces of prescribed curvature (Chapter 7). We
were able to validate the numerical results of MGLAB by comparing these with cer-
tain theoretical results and published data. Some of the model problems involved
singularities; we examined the behaviour of multigrid iteration in these cases.
Finally, in Chapter 9 we considered highly-efficient parallel multigrid methods
which are currently the focus of much research; also we looked at techniques for
extending the range of problems which may be numerically solved using MGLAB.

We have found that, while multigrid is not yet a mature field of compu-
tational mathematics, it has the potential to become the pre-eminent numerical
method — for the class of elliptic PDE’s at least. A great deal of effort is currently
underway into placing multigrid methods on a firm theoretical basis; substantial
progress has been made in this regard. We have demonstrated that serial multi-
grid is an O(N) method, while parallel multigrid is an O(log V) method; in other
words, multigrid is an asymptotically optimal iteration for elliptic PDE’s. It is
clear that multigrid is also the most efficient method for well-behaved problems
in practice; however, while this may be true for more difficult nonlinear PDE’s,
the application of multigrid methods to such problems is much less understood.

The efficient implementation of multigrid on massively-parallel computing
systems remains a difficult issue; in contrast, it is a simple exercise to implement a
fast and efficient multigrid algorithm on a vector supercomputer. Researchers are
investigating various hybrid schemes in an attempt to overcome inefficiencies such
as the idle-processor problem. Perhaps the advent of “universal” machines such
as the CM-5 will foster the development of some highly efficient multigrid-type
schemes.




Appendix A
CM PFortran Listing of mg10.fcm

This appendix contains a listing of mg10.fcm, the CM Fortran implementation of
Problem MG10, a type of Poisson equation (see Chapter 4). It gives an example
of a driver program, which combines with the back-end multigrid library package
MGLAB (a partial listing of which appears in Appendix C). We are demonstrating
that programs written in CM Fortran are often simpler and more readable than
those in FORTRAN 77, and that the subroutines to be written by the user of
MGLAB can require minimal programming effort. For further details of the organ-
isation and structure of MGLAB, and the format of programs which link with it,
see Section.3.7.

The program listing is preceded by the two include files nmax_declarations.inc
and mg_common. inc, which are used throughout MGLAB and its driver programs.
Sample output from the complete program MG10 appears in Appendix B. These
listings are for the “unrolled” version of MGLAB (see Section 8.4).

Start of ’'nmax_declarations.inc’ ==

LOGICAL red(2:Lmax,nmax,nmax), black(2:Lmax,nmax,nmax)

LAYOUT red(:SERIAL, :NEWS, :NEWS), black(:SERIAL, :NEWS, : NEWS)

DOUBLE PRECISION x(nmax,nmax), y(nmax,nmax), x2(nmax,nmax), y2(nmax,nmax)
LAYOUT x(:NEWS, :NEWS), y(:NEWS, :NEWS), x2(:NEWS, :NEWS), y2(:NEWS, :NEWS)

DOUBLE PRECISION right__bc(nmax,nmax), left___bc(nmax,nmax), top____bc(nmax,nmax)
LAYOUT right__bC(:HEUS.:NEHS), left___bc(:NEWS,:NEWS), top____bc(:NEUS,:NEHS)
DOUBLE PRECISION bottom_bc(nmax,nmax)

LAYOUT bottom_bc(:NEWS, :NEWS)

DOUBLE PRECISION v(2:Lmax,nmax,nmax), £(2:Lmax,nmax,nmax), old_v(2:Lmax,nmax,nmax)
LAYOUT v (:SERIAL, :NEWS,:NEWS), f(:SERIAL,:NEWS,:NEWS), old_v(:SERIAL, :NEWS, :NEWS)
DOUBLE PRECISION u(nmax,nmax), e(nmax,nmax), r(nmax,nmax)

LAYOUT u(:NEWS, :NEWS), e(:NEWS, :NEWS), r(:NEWS, :NEWS)

End of ’nmax_declarations.inc’
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Start of ’'mg_common.inc’

DOUBLE PRECISION zero, sixteenth, eighth, quarter, half, one, two, three, four
DOUBLE PRECISION five, six, pi, pi2

INTEGER max_Lmax, max_nmax
PARAMETER (max_Lmax = 10, max_nmax = 1023)

INTEGER ni(max_Lmax), step(max_Lmax)

LAYOUT ni(:SERIAL), step(:SERIAL)

DOUBLE PRECISION n(max_Lmax), n2(max_Lmax), h(max_Lmax), h2(max_Lmax)

LAYOUT n(:SERIAL), n2(:SERIAL), h(:SERIAL), h2(:SERIAL)

DOUBLE PRECISION cc_centre(3,max_Lmax), cc_right(3,max_Lmax)

LAYOUT cc_centre(:SERIAL, :SERIAL), cc_right (:SERIAL,:SERIAL)

DOUBLE PRECISION cc__left(3,max_Lmax), cc____up(3,max_Lmax), cc__down(3,max_Lmax)
LAYOUT cc__left (:SERIAL,:SERIAL), cc____up(:SERIAL,:SERIAL), cc__down(:SERIAL,:SERIAL)
INTEGER Lmax, nmax, mid, nu_pre, nu_coarsest, nu_post, nu_guess, num_cycles
INTEGER user_relax, work_scale, debug, rotate_pause_flag, initial_guess_type
INTEGER colour_graphics_flag, plot_scale_type

DOUBLE PRECISION relax_weight, restrict_weight, work, error_2_norm

DOUBLE PRECISION old_error_2_norm, error_inf_norm, old_error_inf_norm

DOUBLE PRECISION residue_2_norm, old_residue_2_norm, residue_inf_norm

DOUBLE PRECISION old_residue_inf_norm, line_relax_tolerance, v_cycle_convergence
DOUBLE PRECISION u_scale, f_scale, r_scale, plane_a, plane_b, plane_c

DOUBLE PRECISION vi, f1, el, r1, ul, top__left, top_right, bot__left, bot_right
LOGICAL non_linear_PDE, imm_rep, solution_given, graphics

INTEGER num_theta
PARAMETER (num_theta = 32)
REAL theta, phi, this_theta ! Used by CMFB graphics: must be single precision.

CHARACTER*7 relax_type
CHARACTER*6 restrict_type
CHARACTER*S relax_method
CHARACTER#*3 norm_type
CHARACTER*2 timing_type
CHARACTER#*1 method

COMMON / constants / zero, sixteenth, eighth, quarter, half, one, two, three,

& four, five, six, pi, pi2

COMMON / front_end / ni, step, n, n2, h, h2, cc_centre, cc_right, cc__left,
cc____up, cc__down, Lmax, nmax, mid, nu_pre, nu_coarsest,
nu_post, nu_guess, num_cycles, user_relax, work_scale, debug,
rotate_pause_flag, initial_guess_type, colour_graphics_flag,
plot_scale_type, relax_weight, restrict_weight, work,
error_2_norm, old_error_2_norm, error_inf_norm,
old_error_inf_norm, residue_2_norm, old_residue_2_norm,
residue_inf_norm, old_residue_inf_norm,
line_relax_tolerance, v_cycle_convergence, u_scale, f_scale,
r_scale, plane_a, plane_b, plane_c, non_linear_PDE, imm_rep,
solution_given, graphics, theta, phi, this_theta

COMMON / level_one / v1, f1, el, r1, ul

COMMON / corners / top__left, top_right, bot__left, bot_right

COMMON / fe_strings/ relax_type, restrict_type, relax_method, norm_type, method,

& timing_type

PR R R R R R R

End of ’'mg_common.inc’
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Solving - /\ u -2 [ (1-6xx)yy(1-yy) + (1-6yy)xx(1-xx) ] on (0,1)x(0,1)
u 0 on the boundary

with initial guess 0
The exact solution i xxyy (1-xx) (1-yy)

QA O O @ G ara

PROGRAM mg10
IMPLICIT NONE

INCLUDE ’'mg_common.inc’
CALL calculate_solution

STOP
END

SUBROUTINE print_pde_heading
IMPLICIT NONE

PRINT*, ’Solving - /\ u = -2 [ (1-6xx)yy(1-yy) + (1-6yy)xx(1-xx) ]’
PRINT*, ’with zero boundary conditions on [0,1]1x[0,1]’

PRINT#*, ’with initial guess v=20

PRINT*, 'The exact solution is u = xxyy(1-xx)(1-yy)’

RETURN
END

SUBROUTINE initialise_pde_params
IMPLICIT NONE

Define the parameters and relaxation coefficients of the PDE.
INCLUDE ’mg_common.inc’
INTEGER L

non_linear_PDE = .FALSE.
solution_given = .TRUE.

DO L = 1, max_Lmax
cc_centre(2,L) = -four
cc_right(2,L) = -one
cc__left(2,L) = -one
cc____up(2,L) = -one

cc__down(2,L) -one
ENDDO

RETURN
END
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Q

Q

SUBROUTINE initialise_bdy_conds (right__bc,
& X, ¥ X2, ¥
IMPLICIT NONE

INCLUDE ’mg_common.inc’

INCLUDE ’nmax_declarations.inc’

right__bc = zero
left___bc = zero
top____bc = zero
bottom_bc = zero

top__left = zero
top_right = zero
bot__left = zero
bot_right = zero

RETURN
END

left___bc, top____bc, bottom_bc,
2)

SUBROUTINE user_calc_initial_guess_v (v, x,
IMPLICIT NONE

INTEGER L

INCLUDE ’mg_common.inc’

INCLUDE ’nmax_declarations.inc’

IF (L == 1) THEN
vl = zero
ELSE
v(L,:,:) = zero
ENDIF

RETURN
END

Y. X2, ¥2, L)

SUBROUTINE calc_rhs_function_f (f, x, y, x2,
IMPLICIT NONE

INTEGER L

INCLUDE ’'mg_common.inc’

INCLUDE ’'nmax_declarations.inc’

IF (L == 1) THEN
f1 = three * eighth

ELSE
FOL, 2 - —tua *
& ( (one - six*x2) * y2 * (one - y2)
ENDIF
RETURN
END

y2, L)

+ (one - six*y2) * x2 * (one - x2) )
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Q

(]

SUBROUTINE calc_exact_soln_u (u, x, y, x2, y2)
IMPLICIT NONE

INCLUDE ’'mg_common.inc’

INCLUDE ’nmax_declarations.inc’

u = x2 * y2 * (one-x2) * (one-y2)

RETURN
END

SUBROUTINE user_calc_residue_r
STOP ’### USER_CALC_RESIDUE_R was called!’
END

SUBROUTINE user_relaxation
STOP ’### USER_RELAXATION was called!’
END

SUBROUTINE user_jacobi_relaxation
STOP ’### USER_JACOBI_RELAXATION was called!’
END

SUBROUTINE user_red_black_relaxation
STOP ’### USER_RED_BLACK_RELAXATION was called!’
END
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Sample Output from mgl0.fcm

This appendix contains sample output from the program MG10 (see Appendix A).
In this case, we are using 1 x Mg**-cycle of w = 0.8 weighted Jacobi point
relaxation and full-weighting restriction to solve this boundary value problem.

Solving - /\ u = -2 [ (1-6xx)yy(1-yy) + (1-6yy)xx(1-xx) ]
with zero boundary conditions on [0,1]x[0,1]

with initial guess v =0

The exact solution is u = xxyy(1-xx) (1-yy)

1. Method = m (P = pure relax, V = V-cycles, W = W-cycles, M = full multigrid)
2. No of levels =9 (LMAX)
4. No of m-cycles = 1 (NUM_CYCLES)
5. No of pre-relaxations (moving to coarser grids) = 2 (NU_PRE)
6. No of relaxations on the coarsest grid = 2 (NU_COARSEST)
7. No of post-relaxations (moving to finer grids) = 2 (NU_POST)
8. User-relax = 2 (-1=-Lapl, O=user-defined, 1=+Lapl, 2=auto relax & residue)
9. Relaxation method = point (POINT = pointwise, LINE = Jacobi linewise)
10. Relaxation type = jacobi (JACOBI = Jacobi, GAUSS = red-black Gauss-Seidel)
11. Weight (SOR) factor for relaxation = 0.80000000000000004 (RELAX_WEIGHT)
12. Restriction = fullwt (INJECT = injection, FULLWT = full weighting)
13. Weighting factor for restriction = 1.00000000000000000 (RESTRICT_WEIGHT)
14. Norm type = two (INF = infinity-norm, TWO = 2-norm, ALL = both norms)
15. Show internal steps = 0 (0=no, 1=v once, 2=vrf once, 3=v all, 4=vrf all)
16. Use immediate replacement = F (T = true, F = false)

. Scale WORK to level L = 9
. Use graphic display = F

S I
N 0 N

. Timing type = cm

%)
I

Which option do you wish to change ?
0

(WORK_SCALE)
(T = true, F = false)
(WU = work-unit cost, CM = CM busy time)

. Initial guess = 0 (0=user, 1=plane,2=diag,3=1lin,4=quad,5=quint,6=Lapl,7=soln)

(0 = 0K)

Warning: Paris safety has been turned off.

CM speed = 7.00 MHz
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Level Error norm (two) Converg Residue norm (two) Converg CM (secs)

0.18750000 2 (0.000) 0.61237244 : (0.000)
.00326471 .017) .04084632 - ( .066)
.00140017 .429) .04950647 . »212)
.00049932 .357) .03857822 . <)
.00015791 .316) .02756616 . .715)
.00004629 .293) .01951418 : .708)
.00001292 .279) .01383591 g .709)
.00000349 .270) .00983982 - JT1L)
.00000092 .00703635

Breakdown of CM-Busy Times (seconds)

Relaxation (point jacobi ) 61.
Residue calculation

Restriction (fullwt)

Prolongation (bilinear interp)
Result calculation

Other V-cycle calculation

Other multigrid calculation

Total of the above times

Total CM-busy time 101.603 sec
Total CM-elapsed time 103.320 sec




Appendix C
CM Fortran Listing of mglab.fcm

This appendix contains a partial listing of mglab.fcm, the CM Fortran implemen-
tation of the back-end multigrid library package MGLAB. For further details of the
organisation and structure of MGLAB, see Section 3.7. A complete listing was not
feasible due to its length, nor desirable since much of the code is of little interest.
We list here the kernel routines essential to the multigrid process: relaxation,
restriction, prolongation, coarse-grid correction, and so on.

2=-D MULTIGRID LIBRARY ROUTINE PACKAGE

(Double Precision Connection Machine CM-2 Version)

W W5 i e R

Author : Nicholas Keith Spencer
Date ¢ May 1991
Place : Australian National University

1O O O aaa

Purpose and Structure of this Package:

3 A a aQ

This package contains the following routines:

SUBROUTINE calculate_solution

SUBROUTINE general_initialisation

SUBROUTINE initialise_constants

SUBROUTINE read_user_options

SUBROUTINE solve_pde

SUBROUTINE specific_initialisation

SUBROUTINE print_heading

SUBROUTINE calc_initial_guess_v (v, L)
SUBROUTINE v_cycle (v, f, r, u, e, old_v, start_L, stop_L)
SUBROUTINE relax_v (v, f, L, num_sveeps, depth)
SUBROUTINE relax_on_level_1 (num_sweeps, depth)

G CANCAREAREST QArFIFQNGY QARG QARG AlRraaY QI OIRIre A QreM O e

A G0 akkaaaanaaa
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C SUBROUTINE jacobi_point_relax (v, f, L, num_sweeps, depth) C
C SUBROUTINE rb_gauss_seidel_point_relax (v, f, L, num_sweeps, depth) C
C SUBROUTINE horiz_jacobi_line_relax (v, f, L, num_sweeps, depth) C
C SUBROUTINE vert_jacobi_line_relax (v, f, L, num_sweeps, depth) c
C SUBROUTINE calc_residue_r (v, f, r, L, depth) (-
G SUBROUTINE restrict_r_to_f (f, r, L) (e
C SUBROUTINE injection_restriction_of_r_to_f (f, r, L) e
C SUBROUTINE weighted_restriction_of_r_to_f (f, r, L) C
C SUBROUTINE immediate_correction (v, f, r, u, e, old_v, Ltop, L) C
C SUBROUTINE bilinear_interpolate_v (v, L) C
(o SUBROUTINE coarse_grid_correct_v (v, L) (o
(¢} SUBROUTINE calc_result (v, f, r, u, e, L, immediate_correction, from_L) Cc
(¢ DOUBLE PRECISION FUNCTION log_10 (x) C
C SUBROUTINE plot_vf (input_array, L, depth, vf) C
(o SUBROUTINE plot_ur (input_array, ur) c
C SUBROUTINE pause c
C c
c =
C

SUBROUTINE calculate_solution

IMPLICIT NONE
C

INCLUDE ’mg_common.inc’
C

CALL general_initialisation

CALL initialise_pde_params

CALL print_pde_heading

CALL read_user_options

CALL solve_pde
c

RETURN

END
C
C
(o

SUBROUTINE general_initialisation
c
C Initialise problem-independent data structures and parameters.
(o
C
(o
C

SUBROUTINE initialise_constants
c
C Initialise the common block ’constants’.
C
c
C
C

SUBROUTINE read_user_options
C
C Query the user for the desired way to solve the PDE. Validate these options.
c
(o]
¢ e
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SUBROUTINE solve_pde

Solve the PDE using the multigrid parameters defined by the user.

SUBROUTINE specific_initialisation (red, black, x, y, x2, y2, right__bc,
& left___bc, top____bc, bottom_bc)

Initialise problem-specific data structures and parameters.

SUBROUTINE print_heading

Print the appropriate heading line(s) for subsequent results.

SUBROUTINE calc_initial_guess_v (v, right__bc, left___bc, top____bc, bottom_bc,
% X, Vi X2, Y2, L)

Choose one of several possible methods for calculating an initial guess v(L,:,:).

ELSEIF (initial_guess_type == 6) THEN
x1l = one - x
yl = one - y
x12 = x2 * x1 * x1
y12 = y2 *= y1 * yl
FORALL (i = 1 : nmax, j = 1 : nmax)
& v(L,i,j) = ( x12(i,j) * (top____bc(i,1)*y(i,j) + bottom_bc(i,1)*y1(i,j))
& + y12(i,j) *= (right__bc(1,j)*x(i,j) + left___bc(1,j)*x1(i,j)) )

( x12(x;3) + ylZ@si) 2

SUBROUTINE v_cycle (v, f, r, u, e, old_v, x, y, x2, y2, red, black, right__bc,
& left___bc, top____bc, bottom_bc, start_L, stop_L)
IMPLICIT NONE

INTEGER start_L, stop_L

INCLUDE ’mg_common.inc’

INCLUDE ’nmax_declarations.inc’

Perform a V-cycle from level ’start_L’ down to level 1, and back up to level ’stop_L’.
Normally start_L = stop_L; otherwise this indicates we are doing a W-cycle composed
of several pieces of V-cycles. We do ’nu_pre’ relaxations moving to the coarsest
grid, ’'nu_coarsest’ relaxations on the coarsest grid, and ’'nu_post’ relaxations
moving back to the finest grid. ’imm_rep’ indicates immediate replacement: an error
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C correction is made directly to the fine grid after every coarse grid relaxation
C (simply for display purposes - this has no effect on the iteration). We must have
c v = v (the discretized fine-grid current guess) upon entry to this routine.
C start_L j
C
INTEGER L
DOUBLE PRECISION old_f1
CHARACTER*13 word(4)
DOUBLE PRECISION av(nmax,nmax), old_f(nmax,nmax) ! Used only for FAS cycle.
CMF$ LAYOUT av(:NEWS,:NEWS), old_f(:NEWS,:NEWS)
C
DATA word(1) / ’'neg Laplacian’ /
DATA word(2) / ’user-defined ’ /
DATA word(3) / ’pos Laplacian’ /
DATA word(4) / ’auto-defined ’ /
C
IF (timing_type == ’cm’) THEN
CALL cm_timer_stop (7)
CALL cm_timer_start (6)
ENDIF
c
IF ( (start_L < 2) .OR. (start_L > Lmax) ) STOP ’### V_CYCLE: start_L not in [2,Lmax]’
IF ( (stop_L < 2) .OR. (stop_L > Lmax) ) STOP ’### V_CYCLE: stop_L not in [2,Lmax]’
C
C V-cycle initialisation.
C .
IF (.NOT. non_linear_PDE) THEN
vl = zero
v(2:start l=lsse Jmuzera
ENDIF
IF (start_L == stop_L) CALL calc_rhs_function_f (f, x, y, x2, y2, start_L)
C
IF (debug >= 3) THEN
WRITE(*,10) start_L
10 FORMAT(/1X, ’At the start of this V(’, I1, ’)-cycle:’)
IF (graphics) CALL plot_vf (v, right__bc, left___bc, top____bc, bottom_bc,
& start_ L, 0, v')
ENDIF
IF ( (debug == 4) .AND. graphics ) THEN
CALL plot_vf (£, right__bc, left___bc, top____bc, bottom_bc, start_L, 0, 'f’)
CALL calc_residue_r (v, f, r, right__bc, left___bc, top____bc, bottom_bc,
& X, ¥, X2, y2, start_L, 0)
CALL plot_ur (r, ’r’)
ENDIF
C
C Step A: Moving from the fine grid (L=start_L) to the coarsest grid (L=1), do
GR35 (1) ’'nu_pre’ x pre-relaxations v(L) = Rel(v(L),f(L))
c (2) calculate the residue r = f(L) - A(L).v(L)
c (3) restrict the residue to the coarser grid f(L-1) = I(L,L-1) r
C
DO L = start_L, 2, -1
C
C (1) ’'nu_pre’ x pre-relaxations v(L) = Rel(v(L),f(L))
c
IF ( .NOT. ( (start_L<>stop_L) .AND. (start_L==L) ) ) THEN
IF (timing_type == ’cm’) THEN
CALL cm_timer_stop (6)
CALL cm_timer_start (1)
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ENDIF

CALL relax_v (v, f, right__bc, left___bc, top____bc, bottom_bc, red, black,
& X, ¥, x2, y2, L, nu_pre, start_L-L)

IF (timing_type == ’cm’) THEN

CALL cm_timer_stop (1)
CALL cm_timer_start (6)
ENDIF
IF (debug >= 3) THEN
WRITE(*,20) nu_pre, relax_type, relax_method, word(user_relax+2)

20 FORMAT(/1X, ’1. After’, I2, 1X, A7, 1X, A5, 1X, A13, ’ relaxations:’)
IF (graphics) CALL plot_vf (v, right__bc, left___bc, top____bc,
& bottom_bc, L, start_L-L, ’v’)
ENDIF
IF (imm_rep) CALL immediate_correction (v, f, r, u, e, old_v, right__bc,
& left___bc, top____bc, bottom_bc,
& X; ¥, X2, ¥2; start L, L)
ENDIF
C
C (2) calculate the residue r = f(L) - A(L).v(L)
C
IF (timing_type == ’cm’) THEN

CALL cm_timer_stop (6)
CALL cm_timer_start (2)

ENDIF

CALL calc_residue_r (v, f, r, right__bc, left___bc, top____bc, bottom_bc,
& Xy ¥sr X2, y2, L, start_L-L)

IF (timing_type == ’cm’) THEN

CALL cm_timer_stop (2)
CALL cm_timer_start (6)
ENDIF
IF ( (debug == 4) .AND. graphics ) CALL plot_ur (r, ’'r’)
C
C (3) restrict the residue to the coarser grid f(L-1) = I(L,L-1) r
C
IF (timing_type == ’cm’) THEN
CALL cm_timer_stop (6)
CALL cm_timer_start (3)

ENDIF
CALL restrict_r_to_f (f, r, L)
IF (non_linear_PDE) THEN ! Use Full Approximation Scheme (FAS):
IF (L == 2) THEN
old_f1 = f1
f1 = zero

vl = v(2,mid,mid)
CALL calc_residue_r (v, f, av, right__bc, left___bc, top____bc, bottom_bc,

& Ko ¥ X250y 2, Lal; £0)
f1 = old_f1 - av(mid,mid)
ELSE
old_f = £(L=1,2;) ! Save a copy of just-calculated f(L-1)
f(L=1,:,:) = zexo ! Prepare to call special calc_residue_r
VCL=1ees ) oty iy 155 ) ! Injected initial guess on coarse grid
CALL calc_residue_r (v, f, av, right__bc, left___bc, top____bc, bottom_bc,
& sy Vs X2y Y2 u Ll 102
! Calc temp av = -A*v(L-1) [actual BC’s]
f(L=1,:,:) = old_£ - av ' £(L-1) = f(L-1) + A=*v(L-1)
ENDIF

IF ( (debug == 4) .AND. graphics ) THEN
CALL plot_vf (f, right__bc, left___bc, top____bc, bottom_bc, L-1, 0, ’f’)
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30

40

CALL plot_vf (v, right__bc, left___bc, top____bc, bottom_bc, L-1, 0, ’v’)
ENDIF
ENDIF
IF (timing_type == ’cm’) THEN

CALL cm_timer_stop (3)
CALL cm_timer_start (6)
ENDIF
IF (debug == 4) THEN
WRITE(*,30) restrict_weight, restrict_type
FORMAT(/1X, ’2. After’, F5.2, ” * ’, A6, ’ restriction:’)
IF (graphics) CALL plot_vf (f, right__bc, left___bc, top____bc, bottom_bc,
3 =1, start L=L+1, *£2)
ENDIF

ENDDO

Step B: On the coarsest grid (L=1), do
""" (1) ’nu_coarsest’ x relaxations v(L) = Rel(v(L),f(L))

IF (timing_type == ’cm’) THEN
CALL cm_timer_stop (6)
CALL cm_timer_start (1)

ENDIF

CALL relax_v (v, f, right__bc, left___bc, top____bc, bottom_bc, red, black, x, y,
& x2, y2, 1, nu_coarsest, start L-1)

IF (timing_type == ’cm’) THEN

CALL cm_timer_stop (1)
CALL cm_timer_start (6)
ENDIF
IF (debug >= 3) THEN
WRITE(*,40) nu_coarsest, relax_type, relax_method, word(user_relax+2)
EDRMAT(/1X, 23 Aftex?, I2,'1X, A7, 1X, A5, 1X, A13,

& ’ relaxations on the coarsest grid:’)

IF (graphics) CALL plot_vf (v, right__bc, left___bc, top____bc, bottom_bc, 1,
& start _L=1, v*)
ENDIF

IF ( (debug == 4) .AND. graphics ) THEN
CALL calc_residue_r (v, f, r, right__bc, left___bc, top____bc, bottom_bc, x,

& Y5 X2, 4y25 91, vatiart L=1)
CALL plot_ur (r, 'r’)
ENDIF
IF (imm_rep) CALL immediate_correction (v, f, r, u, e, old_v, right__bc,
4 left___bc, top____bc, bottom_bc,
& Xy Y5 X2,0y2, start_L, L)

Step C: Moving from the coarsest grid (L=1) to the fine grid (L=stop_L), do
"""" (1) coarse-grid correction v(L) = v(L) + I(L-1,L) v(L-1)
(2) ’nu_post’ x post-relaxations v(L) = Rel(v(L),f(L))
DO L = 2, stop_L

(1) coarse-grid correction v(L) = v(L) + I(L-1,L) v(L-1)

IF (timing_type == ’cm’) THEN
CALL cm_timer_stop (6)
CALL cm_timer_start (4)

ENDIF

IF (non_linear_PDE) THEN
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IF (L == 2) THEN
vl = vl - v(2,mid,mid)

ELSE
VL1 s = vi(l=1,5 530 = wlL, s 8
ENDIF
ENDIF
CALL coarse_grid_correct_v (v, L)
IF (timing_type == ’cm’) THEN

CALL cm_timer_stop (4)
CALL cm_timer_start (6)
ENDIF
IF (debug >= 3) THEN
WRITE(*,50)

50 FORMAT(/1X, ’4. After coarse-grid correction by bilinear interpolation:’)
IF (graphics) CALL plot_vf (v, right__bc, left___bc, top____bc, bottom_bc,
% L stepil=L, “*v?)
ENDIF

IF ( (debug == 4) .AND. graphics ) THEN

CALL calc_residue_r (v, f, r, right__bc, left bc, top____bc, bottom_bc,

& XY, %2, y25 E; stopiL-L)
CALL plot_ur’ (r, ’r’)
ENDIF
C
C (2) ’nu_post’ x post-relaxations v(L) = Rel(v(L),f(L))
C
IF (timing_type == ’cm’) THEN
CALL cm_timer_stop (6)
CALL cm_timer_start (1)
ENDIF
CALL relax_v (v, f, right__bc, left___bc, top____bc, bottom_bc, red, black,
& X, ¥s X2, y2, L, nu_post, stop._L-L)
IF (timing_type == ’cm’) THEN
CALL cm_timer_stop (1)
CALL cm_timer_start (6)
ENDIF
IF (debug >= 3) THEN
WRITE(*,60) nu_post, relax_type, relax_method, word(user_relax+2)
60 FORMAT(/1X, ’S. After’, I2, 1X, A7, 1X, A5, 1X, A13, ’ relaxations:’)
IF (graphics) CALL plot_vf (v, right__bc, left___bc, top____bc, bottom_bc,
3 L, stop_L-L, 'v’)
ENDIF
IF ( (debug == 4) .AND. graphics ) THEN
CALL calc_residue_r (v, f, r, right__bc, left___bc, top____bc, bottom_bc,
& xyty, x2, y2, L, stop.L-L)
CALL plot_ur (r, ’r’)
ENDIF
IF ( imm_rep .AND. (L <> stop_L) )
& CALL immediate_correction (v, f, r, u, e, old_v, right__bc, left___bc,
& top____bc, bottom_bc, x, y, x2, y2, stop_L, L)
C
ENDDO
C
C
c
IF (timing_type == ’cm’) THEN

CALL cm_timer_stop (6)
CALL cm_timer_start (5)
ENDIF
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80

CALL calictresnlt (vt £, T, 1, e, right__bc, left___bc, top____bc, bottom_bc,
& X, ¥, X2, y2, stop_L, .FALSE., 0)
IF (timing_type == ’cm’) THEN
CALL cm_timer_stop (5)
CALL cm_timer_start (6)
ENDIF

IF (debug > 0) THEN
WRITE(*,80) stop_L
FORMAT(/1X, ’At the end of this V(’, I1, ’)-cycle:’)
IF (graphics) CALL plot_vf (v, right__bc, left___bc, top____bc, bottom_bc,
& Stop_ L3105 2v2)
ENDIF
IF ( (debug == 2) .OR. (debug == 4) ) THEN
CALL calc_residue_r (v, f, r, right__bc, left___bc, top____bc, bottom_bc,

& x, y, x2, y2, stop_L, 0)
IF (graphics) CALL plot_ur (r, ’r’)
ENDIF
IF (timing_type == ’cm’) THEN

CALL cm_timer_stop (6)
CALL cm_timer_start (7)
ENDIF

RETURN
END

SUBROUTINE relax_v (v, f, right__bc, left___bc, top____bc, bottom_bc, red, black,
& X, ¥y, x2, y2, L, num_sweeps, depth)

Select the appropriate relaxation routine.

Q

SUBROUTINE relax_on_level_1 (right__bc, left___bc, top____bc, bottom_bc,
& num_swveeps, depth)

IMPLICIT NONE

INTEGER num_sweeps, depth

INCLUDE ’mg_common.inc’

INCLUDE ’nmax_declarations.inc’
V(1) is updated by ’num_sweeps’ of weighted relaxation.

INTEGER ur
DOUBLE PRECISION wbar, wtemp

wbar = one - relax_veight
IF (user_relax == 2) THEN
ur = 2
ELSE
ur = user_relax + 2
ENDIF
wtemp = relax_weight / cc_centre(ur,1)
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IF ( (depth == 0) .OR. non_linear_PDE ) THEN ! Use actual boundary conditions.
DO (num_sweeps) TIMES
vl = wtemp * ( cc_right(ur,1) * right__bc(nmax,mid)
& + cc__left(ur,1) * left___bc(1,mid)
& + cc____up(ur,1) * top____bc(mid,nmax)
3 + cc__down(ur,1) * bottom_bc(mid,1)
& - £1 & h2(1) )
& + wbar * vi
ENDDO
ELSE ! Use zero boundary conditions (since this is a coarse grid).
DO (num_sweeps) TIMES
vli = -wtemp * f1 * h2(1) + wbar * vi
ENDDO
ENDIF
C
RETURN
END
C
C =——
C
SUBROUTINE jacobi_point_relax (v, f, right__bc, left___bc, top____bc, bottom_bc,
3 L, num_sweeps, depth)
IMPLICIT NONE
INTEGER L, num_sweeps, depth
INCLUDE ’mg_common.inc’
INCLUDE ’nmax_declarations.inc’
C
C V(L) is updated by ’num_sweeps’ of pointwise weighted (SOR) Jacobi relaxation.
c
INTEGER ur, s
DOUBLE PRECISION wbar, wtemp
c
s = step(L)
IF (user_relax == 2) THEN
ur = 2
ELSE
ur = user_relax + 2
ENDIF
vbar = one - relax_weight
wtemp = relax_weight / cc_centre(ur,L)
c
IF ( (depth == 0) .OR. non_linear_PDE ) THEN ! Use actual boundary conditions.
DO (num_sweeps) TIMES
v(L,:,:) = wtemp * ( cc_right(ur,L) *
& EOSHIFT(v(L,:,:), DIM = 1, SHIFT = +s, BOUNDARY = right__bc (nmax,:))
& + cc__left(ur,L) *
& EOSHIFT(v(L,:,:), DIM = 1, SHIFT = -s, BOUNDARY = left___bc(1,:))
s + cc____up(ur,L) =
& EOSHIFT(v(L,:,:), DIM = 2, SHIFT = +s, BOUNDARY = top____bc(:,nmax))
& + cc__down(ur,L) =*
& EOSHIFT(v(L,:,:), DIM = 2, SHIFT = -s, BOUNDARY = bottom_bc(:,1))
3 - f(L,:,:) = h2(L) )
& + wbar * v(L,:,:)
ENDDO
ELSE ! Use zero boundary conditions (since this is a coarse grid).
DO (num_sweeps) TIMES
v(L,:,:) = wtemp * ( cc_right(ur,L) *

zero)

& EOSHIFT(v(L,:,:), DIM = 1, SHIFT = +s, BOUNDARY
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+ cc__left(ur,L) =

EOSHIFT(v(L,:,:), DIM = 1, SHIFT -s, BOUNDARY
+ cc.___up(ur,L) =

EOSHIFT(v(L,:,:), DIM = 2, SHIFT +s, BOUNDARY
+ cc__down(ur,L) =

EOSHIFT(v(L,:,:), DIM 2, SHIFT -s, BOUNDARY
=i A0L5 2,5 & h2 (L)

+ wbar * v(L,:,:)

PR R R R

ENDDO
ENDIF

RETURN

SUBROUTINE rb_gauss_seidel_point_relax (v, f, right__bc, left___bc, top____bc,
& bottom_bc, red, black, L, num_sweeps, depth)

V(L) is updated by pointwise weighted (SOR) red-black Gauss-Seidel relaxation.

SUBROUTINE horiz_jacobi_line_relax (v, f, right__bc, left___bc, top____bc,
% - bottom_bc, L, num_sweeps, depth)
IMPLICIT NONE

INTEGER L, num_sweeps, depth

INCLUDE ’mg_common.inc’

INCLUDE ’nmax_declarations.inc’

V(L) is updated by ’num_sweeps’ of horizontal linewise weighted Jacobi relaxation.
INCLUDE ’/usr/include/cm/cmssl-cmf.h’

INTEGER s, us, status

DOUBLE PRECISION wbar

DOUBLE PRECISION temp_row(nmax,nmax)

LAYOUT temp_row(:NEWS, :NEWS)

DOUBLE PRECISION upper_diag(nmax,nmax), diag(nmax,nmax), lower_diag(nmax,nmax)
LAYOUT upper_diag(:NEWS, :NEWS), diag(:NEWS,:NEWS), lower_diag(:NEWS, :NEWS)

s = step(L)
IF (user_relax == 2) THEN
us = 2
ELSE
us = user_relax + 2
ENDIF
wbar = one - relax_weight

Assemble the tridiagonal matrix.
upper_diag = -cc_right(us,L)
diag = cc_centre(us,L)

lower_diag = -cc__left(us,L)

DO (num_sweeps) TIMES
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c
C Assemble temp_row.
C
IF ( (depth == 0) .OR. non_linear_PDE ) THEN ! Use actual boundary conds.
temp_row = cc____up(us,L) =*
& EOSHIFT(v(L,:,:), DIM = 2, SHIFT = +s, BOUNDARY = top____bc(:,nmax))
& + cc__down(us,L) =
& EOSHIFT(v(L,:,:), DIM = 2, SHIFT = -s, BOUNDARY = bottom_bc(:,1))
& =  £(L,z2,:) ®» h2(L)
ELSE ! Use zero boundary conditions (since this is a coarse grid).
temp_row = cc____up(us,L) =
& EOSHIFT(v(L,:,:), DIM = 2, SHIFT = +s, BOUNDARY = zero)
& + cc__down(us,L) *
& EOSHIFT(v(L,:,:), DIM = 2, SHIFT = -s, BOUNDARY = zero)
& =1 £(Ly s 0) » KoL)
ENDIF
C
C Incorporate the left and right boundary conditions for each temp_row.
c
IF ( (depth == 0) .OR. non_linear_PDE ) THEN ! Use actual boundary conds.
temp_row(s,:) = temp_row(s,:) + cc__left(us,L) * left___bc(1,:)
temp_row(ni(L)=*s,:)
& = temp_row(ni(L)*s,:) + cc_right(us,L) * right__bc(nmax,:)
ENDIF
C
C Update each temp_row by solving the ni(L) tridiagonal systems.
C
status = 0
CALL gen_tridiag_sclve (temp_row(s:nmax:s,s:nmax:s),
& upper _diag(s:nmax:s,s:nmax:s),
& diag(s:nmax:s,s:nmax:s),
& lower_diag(s:nmax:s,s:nmax:s),
& 1, line_relax_tolerance, status)
IF (status <> 0)
'3 STOP ’### HORIZ_JACOBI_LINE_RELAX: error occured in GEN_TRIDIAG_SOLVE’
c
C Update v.
C
v(L,s:nmax:s,s:nmax:s) = wbar * v(L,s:nmax:s,s:nmax:s)
& + relax_veight * temp_row(s:nmax:s,s:nmax:s)
ENDDO
C
RETURN
END
C
C
C
SUBROUTINE vert_jacobi_line_relax (v, f, right__bc, left___bc, top____bc,
& bottom_bc, L, num_sweeps, depth)
C
C V(L) is updated by ’'num_sweeps’ of vertical linewise weighted Jacobi relaxation.
C
C
e i e W o e e R e R SR e e e e
C

SUBROUTINE calc_residue_r (v, f, r, right__bc, left___bc, top____bc, bottom_bc,
& X5 ¥» X2y y2, L, depth)
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IMPLICIT NONE

INTEGER L, depth

INCLUDE ’mg_common. inc’

INCLUDE ’'nmax_declarations.inc’

C
G =gl e DAY
C L | R &
C
INTEGER =
C
IF (user_relax <> 2) THEN
CALL user_calc_residue_r (v, f, r, right__bc), left___bc, top____bc, bottom_bc,
& X, ¥y, x2, y2, L, depth)
RETURN
ENDIF
C
IF (L == 1) THEN
IF ( (depth == 0) .OR. non_linear_PDE ) THEN ! Use actual boundary conditions.
rt = f1 - n2(L) * ( cc_right(2,L) * right__bc(nmax,mid)
& + cc__left(2,L) * left___bc(1,mid)
& + cc____up(2,L) * top____bc(mid,nmax)
& + cc__down(2,L) * bottom_bc(mid,1)
& - cc_centre(2,L) = v1 )
ELSEIF (depth > 0) THEN ! Use zero boundary conditions (this is a coarse grid).
ri = f1 + n2(L) * cc_centre(2,L) * vi1
ELSE
STOP ’### CALC_RESIDUE_R: depth < 0’
ENDIF
RETURN
ENDIF
C
s = step(L)
IF ( (depth == 0) .OR. non_linear_PDE ) THEN ! Use actual boundary conditions.
v L e ~en2(L) = ( cc right(2,L)
& EOSHIFT(v(L,:,:), DIM = 1, SHIFT = +s, BOUNDARY = right__bc(nmax,:))
& + cc__left(2,L) =
& EOSHIFT(v(L,:,:), DIM = 1, SHIFT = -s, BOUNDARY = left___bc(1,:))
& + cc____up(2,L) *
& EOSHIFT(v(L,:,:), DIM = 2, SHIFT = +s, BOUNDARY = top____bc(:,nmax))
& + cc__down(2,L) =
& EOSHIFT(v(L,:,:), DIM = 2, SHIFT = -s, BOUNDARY = bottom_bc(:,1))
% - cc_centre(2,L) * v(L,:,:) )
ELSEIF (depth > 0) THEN ! Use zero boundary conditions (this is a coarse grid).
arms ML, ss) = m2L) ® ¢ ccorighti(2,L) *
& EOSHIFT(v(L,:,:), DIM = 1, SHIFT = +s, BOUNDARY = zero)
& + cc__left(2,L) =
& EOSHIFT(v(L,:,:), DIM = 1, SHIFT = -s, BOUNDARY = zero)
& % ‘ec i iiup(2,L) *
& EOSHIFT(v(L,:,:), DIM = 2, SHIFT = +s, BOUNDARY = zero)
& + cc__down(2,L) =
& EOSHIFT(v(L,:,:), DIM = 2, SHIFT = -s, BOUNDARY = zero)
& - cc_centre(2,L) = v(L,:,:) )
ELSE
STOP ’'### CALC_RESIDUE_R: depth < 0’
ENDIF
C
RETURN

END
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C
C = -
C

SUBROUTINE restrict_r_to_f (f, r, L)
C
C Select the appropriate restriction routine.
C
C
C ==
C

SUBROUTINE injection_restriction_of_r_to_f (f, r, L)

IMPLICIT NONE

INTEGER L

INCLUDE ’mg_common.inc’

INCLUDE ’nmax_declarations.inc’
C
C F(L-1) = I(L,L-1) R, where I = restriction by ’restrict_weight’-injection.
C

IF (L == 2) THEN

f1 = restrict_veight * r(mid,mid)
ELSE
f(L-1,:,:) = restrict_veight * r

ENDIF
C

RETURN

END
C
C =
C

SUBROUTINE weighted_restriction_of_r_to_f (f, r, L)

IMPLICIT NONE

INTEGER L

INCLUDE ’mg_common.inc’

INCLUDE ’nmax_declarations.inc’
C
¢ F(L-1) = I(L,L-1) R, where I = restriction by ’restrict_weight’-full-weighting.
C

INTEGER i1, 12, i3, s
DOUBLE PRECISION stencil (nmax,nmax)
CMF$ LAYOUT stencil (:NEWS, :NEWS)

C
IF (L == 2) THEN
i2 = mid
i1 m 242 o 2
i3 =3 = il
f1 = sixteenth * restrict_veight #
& ( four * r(i2,i2)
& + two * (r(i1,i2) + r(i2,i1) + r(i3,i2) + r(i2,i3))
& + r(if,i1l) + r(i1,i3) + r(i3,i1) + r(i3,i3) )
RETURN
ENDIF
C
s = step(L)
stencil = quarter *
& ( EOSHIFT(r, DIM = 1, SHIFT = +s, BOUNDARY = zero)
& + tvo * T

& + EOSHIFT(r, DIM = 1, SHIFT = -s, BOUNDARY = zero) )
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stencil = quarter *

& ( EOSHIFT(stencil, DIM = 2, SHIFT = +s, BOUNDARY = zero)
& + two * stencil
& + EOSHIFT(stencil, DIM = 2, SHIFT = -s, BOUNDARY = zero) )
f(L-1,:,:) = restrict_veight * stencil
C
RETURN
END
C
c i e e
C
SUBROUTINE immediate_correction (v, f, r, u, e, old_v, right__bc, left___bc,
& top____bc, bottom_bc, x, y, x2, y2, Ltop, L)
C
C newv(Ltop) = v(Ltop) + I(Ltop,L) v(L) , wvhere I = bilinear interpolation.
c
C
C
C
SUBROUTINE bilinear_interpolate_v (v, right__bc, left___bc, top____bc, bottom_bc, L)
IMPLICIT NONE
INTEGER L
INCLUDE ’mg_common.inc’
INCLUDE ’nmax_declarations.inc’
c ‘
¢ V(L) = I(L-1,L) V(L-1) , where I = bilinear interpolation.
C
INTEGER il W25 i35iweyit
DOUBLE PRECISION vi1l, vir, vib, vit
(]
IF (L == 2) THEN
i2 = mid
il = 12 / 2
i3 = 3 » 11
vil = left___bc(1,1i2)
vir = right__bc(nmax,i2)
vib = bottom_bc(i2,1)
vit = top____bc(i2,nmax)
v(2,12,1i2) = vi1
v(2,i1,i2) = half * (v1l + v1)
v(2,i3,i2) = half * (vir + vi1)
v(2,i2,i1) = half * (vib + v1)
v(2,i2,13) = half * (vit + v1)
v(2,i1,i1) = quarter * (bot__left + vil + vib + v1)
v(2,i1,i3) = quarter * (bot_right + vir + vib + v1)
v(2,i3,i1) = quarter * (top__left + vil + vit + v1)
v(2,i3,i3) = quarter * (top_right + vir + vit + v1)
RETURN
ENDIF
C
s = step(L-1)
t = step(L)
v(L,:,:) = zero
v(L,s:nmax:s,s:nmax:s) = v(L-1,s:nmax:s,s:nmax:s)
VORN-s e e (L s SRS &% Jhalt s
& ( EOSHIFT(v(L,:,:), DIM = 1, SHIFT = +t, BOUNDARY = right__bc(nmax,:))
& + EOSHIFT(v(L,:,:), DIM = 1, SHIFT = -t, BOUNDARY = left___bc(1,:)) )
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Wi QL feay s i (L el ss e e hald ox
& ( EOSHIFT(v(L,:,:), DIM = 2, SHIFT = +t, BOUNDARY = top____bc(:,nmax))
& + EOSHIFT(v(L,:,:), DIM = 2, SHIFT = -t, BOUNDARY = bottom_bc(:,1)) )
C
RETURN
END
C
C =====
C
SUBROUTINE coarse_grid_correct_v (v, L)
IMPLICIT NONE
INTEGER L
INCLUDE ’mg_common.inc’
INCLUDE ’nmax_declarations.inc’
(o}
c V(L) = V(L) + I(L-1,L) V(L=-1) , vhere I = bilinear interpolation.
C

INTEGER i1, i2, i3, s, t
DOUBLE PRECISION temp_v(nmax,nmax)
CMF$ LAYOUT temp_v(:NEWS, :NEWS)

C
IF (L == 2) THEN
i2 = mid
D16 = 520 /2
i3 = 3 * i1l
v(2,12,i2) = v(2,i2,i2) + vi
v(2,i1,i2) = v(2,i1,i2) + half *= vi1
v(2,13;i2) = v(2,13,12) + half » vi
v(2,i2,i1) = v(2,§2,i1) + half * vi
v(2,12,13) = v(2,i2,13) + half =* vi
v(2,i1,i1) = v(2,i1,i1) + quarter * vi
v(2,i1,13) = v(2,11,1i3) + quarter * vi
v(2,i3,i1) = v(2,i3,i1) + quarter * vl
v(2,13,13) = v(2,13,13) + quarter * vl
RETURN
ENDIF
Cc
s = step(L-1)
t = step(L)
temp_v = v(L,:,:)
v(L,:,:) = zero
v(L,s:nmax:s,s:nmax:s) = v(L-1,s:nmax:s,s:nmax:s)
vl st vlL,:,3) % half =
& ( EOSHIFT(v(L,:,:), DIM = 1, SHIFT = +t, BOUNDARY = zero)
& + EOSHIFT(v(L,:,:), DIM = 1, SHIFT = -t, BOUNDARY = zero) )
WOELEER DS im ik, 2y 50 & Thald
& ( EOSHIFT(v(L,:,:), DIM = 2, SHIFT = +t, BOUNDARY = zero)
& + EOSHIFT(v(L,:,:), DIM = 2, SHIFT = -t, BOUNDARY = zero) )
w0k, 5,5 = w(Ly5,5) ¥ temp.V
C
RETURN
END
C
C
C

SUBROUTINE calc_result (v, f, r, u, e, right__bc, left___bc, top____bc, bottom_bc,
& x, y, x2, y2, L, immediate_correction, from_L)
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C
c

Q

Calculate and print the error and residual norms.

Q

DOUBLE PRECISION FUNCTION log_10 (x)

Return LOG10(x) while checking for a zero argument.

0 & a A i G aQ

a aQ

SUBROUTINE plot_vf (input_array, right__bc, left___bc, top____bc, bottom_bc, L,
& depth, vf)

Plot input_array(L,:,:) on the Connection Machine frame buffer or an X-terminal.
For coarser grids, this means expanding the value of each coarse-grid point to the
step(L) x step(L) sized block surrounding it.

Note: rotate_pause_flag = -2 means rotate after each plot,
rotate_pause_flag = -1 means rotate and pause after each plot,
rotate_pause_flag = 0 means don’t pause after each plot,

rotate_pause_flag = +1 means pause after each plot.

SUBROUTINE plot_ur (input_array, ur)

Plot input_array(:,:) in a similar fashion to the above routine ’plot_vf’.

10

20

SUBROUTINE pause
IMPLICIT NONE

CHARACTER*1 dummy

WRITE(*,10)

FORMAT(1X, ’Hit <CR> to continue .... ’ $)
READ(*,20) dummy

FORMAT (A1)

RETURN

END
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