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ABSTRACT
The work of this thesis presents a simple phenomenological model for

calculating properties of magnetic insulators when an exciton-magnon

interaction is involved. The advantage of the model is its simplicity while

-still being able to explain the essential features of observations of the

phenomena studied. The model is solved exactly and therefore allows precise
thsidal interpretation,of the results;

In chapter I we present a discussion of the.forms of the Hamiltonians
necessary fof the calculation, and discuss the effect of a substitutional
spin impurity on the form of the_crysta; Hamiltonian and therefore on the

crystal spectrum. We present a discussion of the means of calculating

“the optical absorption of a crystal using Green function methods.

Model calculations'of mégnon sideband lineshapes in pure.ferromagnetic
and antiferromagnetic insulators are presented in chapter II. The main
features of fhe>results‘are discuséed with respect to specific examples of
face centred cubic ferromagnetic crystals such as Eu0 and perovskite anti-

ferromagnetic crystals such as RbM%F3 . For a wavenumber-independent :

exciton-magnon interaction. strength g it is found that the magnon sideband
iineshape is closely approximated by'the shape of the corresponding magnon

density of ‘states, the sideband being situated on the high—énergy side of

‘the parent exciton frequency and of width given by the maximum value of the

magnon energy.

The éffect of substitutional spin impurities on the magnon sideband
have been studied in chapter III using a Koster;Slater'typermodel.
Calculations have been given for both ferromagnetic and antiferromagnetic
crystals with the chaﬁges in the spectrum of the pure crystal examples
discussed in chapter II'given in some detail. It is f&und for certain

values of an impurity parameter <Yy that local modes may occur outside the
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pure crystal absorption band separated by an amount dependent on the
absolute magnitude of Y . For all positive values of Y' it is found thatl
a local mode will occur on the high-energy side of the band for both the
fee and perovékite crystals stﬁdied. When Y is negative there may occﬁr
local modes on the low energy side of the band, for cerfain_values of Y -

The possibility of the occqrfence‘of resonance modes within the band
has been considered for certain valueé of Yy for which there will be no
local modes. It is found that for both the fcc and perovskite examples used
that the criteria for resonance modes to appear are not all satisfied and
it is therefore expected that these will not be observable.

In the appendices we present‘discuséions-of the forms of exciton—magnon
and perturbation Hamiltonians that have been used in the.model; a discussion
of how the calculation may be dbne’exactly for a more realistic form of the
impurity paft of the Hamiltonian; a descriptiaﬁ of the methods ﬁsed to
perform‘the numerical calculafions which were done using a Monte-Carlo
method and also with'the help of a Fourier series expansion, and a
discussion of some aspécts of'the.model.dalculation when.the grystal has an
infinite numﬁer of ions in its latfice. It is shown that the form of the
results obtained for a finite crystal still applies. Anbindication of how
the model may beAsblved exactly for-the_case where fhe excitonlhas some
dispersion, aﬁd the exciton-magnon interaction strength has somé

k-dependence, is given also..
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INTRODUCTION

This thesis presents an approach to the calculation of magnon sidebands
in magnetic insulators. The method usedviﬁuthe model is basically one of
matrix manipulation and the success of fhe method lies in being éble to use
a phenomenological model Hamiltonian of the systém which is exactly
solvable and which describes the essential features of the magnon'sidebaﬁds
observed in the crystal spectra or expected to be observed on physical
grounds.

vOne useful property of the phenomenological Hamiltonian selected is
that it allows inclusion of the'effect of substitutional spin impuritieé'on‘

* the magnon sidebaﬁdﬂ As expected from the general theory of impurity
- effects (Callaway 1974; Blliott,‘Krumhansl and Leath 1974) the inclusion of
an impurity may lead to the appearance of '"resonances" which modify the
crystal densify of states, and may.also cause the appearance oflldcal modes
outside the’sideband. -

Magnon sidebands are the result of an exciton-magnon interaction ip the -
magnetic crystal. They are‘characterised by the following properties:
(refer also:to Sell 1968, McClure 1368)

>(l) They almost'élways ocdﬁr on the higthnebgy side of the parent
excition line, though "hot bands" are sometimes found on the low energy
side. The separation between the parent exciton and the high-energy cut-off
of the magnon sideband is typically véry close to the maximum magnon band
energy. |

(2) They are usually of different dipole character to the parent line,
. . . 6 TR e
e.g. in antiferromagnetic RbM'nF3 the Al > Tl( GQ exciton line is a

weak magnetic dipole transition while the sideband is much stronger and

considered to be electric dipole in character (Imbusch and Guggenheim 1968).



The majority of sidebands so far observed are electric dipole with magnetic
dipole parent excitons, but magnetic dipole sidebands have been observed,

for example, in antiferromagnetic FeF2 . The character of the transition

is determined from the polarisation of tﬁe transition and its beﬁaviour in
applied magnetic fields.

| (3) HSell, Greene and White (1967) have discussed the temperature
dependence of spin wave energies and‘conclude that the dependence is
similar to that of sublattice magnetisation M(T)/M(0) , so increasing
temperature will cause the magﬁonfenerg§ to decrease. Such behaviour should
be and is reflected in the‘temperature dependence of the magnon sideband
since the exciton frequency is highly,insehsitive to temperature.

(4) Since magnons are usually insensitive to stress applied to the-
bcrystal, the magnon sideband foliows the same behaviour under stress oﬁ the
prystal as the pafént exciton, fof'stfess~applied aléng the directién of
cryétal magnetisation. For stress along other axes in fhe.crystal,.the
effect is mére>cbmplicated since the ﬁaghetic ions will be affected due to
theirbdifferent symmétries,jesbecially for an ;ntiferromagnet ﬁhere the
‘sublattices have different orientations. Dietz, Misetich and Guggenheim
.(1966), for:example, use uniaxial stress along the direction of

magnetisation [001] in antiferromagnetic »MnFQ ‘to decide which excitons

are the parents of the observéd magnonksidebénds, but find that the excitons
and sidgbands‘split and behave'differently to each other in the [110]
~ direction where one sublattice is affected along the x4direction and the
other along the y-direction, which are inequivalent for the magnetic ion.
Uniaxial stress aloﬁg-the direction of magnetisation may thus be used to
determine thé parent exciton of a magnon sideband. |

(5} Sidebands are typically aS‘broadlas the pure magnon transition
from which they are derived. That is, the magnon transition'ﬁas a range of

approximately €y = E(k)max, the maximum value of the magnon energy within



the first Brillouin zone which also closely reproduces the range of the
magnon sideband. Hence in most cases‘the effect of the exciton dispersion
(which is.small) on the sideband is negligible.

(6) Almost all magnon sidebands observed have been found in anti;
ferromagnetic insulators. Only two cases of‘their existence.in ferrémagnéts
have been reported (Hulin, Beﬂoitlé la Guillaume and Hanus 1971 and Meltzer
1972). This may be merely a resﬁltAof‘the rarity of ferromagnetic insulators,
though Moriya (1968) states that large nonuniaxial anisotropy energy compared
with the exchange energy may be necessary for their observation.,

The thesisvis organised as.foliows: in chapter I we discuSvaarious.
theoretical and phehoménologicalAaépects of magnon sidebands-and‘the'
Hamiltonians required for their calculation. We include discﬁssion of the
‘effects of a loﬁ cqncentfation of”spbstitutional spin impufities on the
calculation of magnon sidebands. Chapter II presents sideband calculations
for pure crystalline ferro- and antiferromagnetic iﬁsﬁlatoré with.examples

of sidebands in ferromagnetic Bu0  and antiferromagnetic RanF3 discussed

from the viewpoint of the model calculations. In chapter III the
calculations are extended to include substitutional spin impurities.
Examples of a hypothetical oneedimensional-ferromagnet and also Eu0. and

RanF3 - are discussed with emphasis on the effect of an impurity.



CHAPTER I

I.1 InteractingrExcitations in a Crystal: Exciton-Magnon Interaction

There are two basic kinds of interactions between excitations in a
crystal. The first is when one type of excitation is scatteréd due to
interaction with another, as it propagates through the crystal. Such
interaction is independent of any external field for its existence, though
it may effectiveiy be_temperature dependent. The other type of interaction
arises froﬁ the interaction of an applied field with thé excitations in the
crystal. In such an interactiop there may be indu¢ed coupling between many
typeé'of excitationé. |

“The former type of interaction between excitations will cause a change
in the spectrum of the crystal Hamiltonian independent of any applied field.
C It has been common pfactice.until récently to-ignore the change in the
crystal.Hamiltonian due to an infrinsic exciton-magnon interaction and treat
oﬁly'excitoﬁs and magnons interacting together with an applied radiation
field as it perturbs the crystal. : Eremenko, Novikov and,Petroﬁ (1974),
hdwever, have obtained an e#pressionrfor the intrinsic.excitgn—magnon'
interaction, as previously used by Parkinson and Loudon (1968).and Moriya and
Inoue (19685, who concluded that the'intrinsic interactién-may héve a - |
significant éffeétvoﬁ the sideband liﬂeshape.

In tﬁé present work we choose a phenomenological intrinsic exciton-
magnon interactipn.Hamiltonian. This allows the crystal Hamiltonian to be
diagonalisgd eXactly,'an& gives exact expressions for the shape and position
of ﬁagnon éidebands. The problem is thus reduced to what extent our assumed
Hamiltonian describes a real crystal., Justification of the form chosen for
the Hamiltonian depends on the faithfulness of the result.

The calculations of Parkinson and Loudon (1968), Moriya and Inoue (1968)

and Eremenko and others (1974) are rather involved because of the complexity



of their Hamiltonians, and it is néceséary to introduce certain
approximations during the course of their calculations to make them tractable.
These appréximations cause some difficulty in physical interpretation of their
effect on the final result. The féct that the present model calculation may
be done exactly therefore represents.some advantage over these theories, and
as will be‘demonstrated,.gives a reasonébly faithful description of fhe‘
observed data. _

Eremenko, Novikov and Petrov (1974) (see'also Petrov 1971) obtain the

following exciton-magnon Hamiltonian for an antiferromégnet with two

_sublattices represented by u =1, 2 , 'N ions per sublattice,

! ~ +
Hex—mag'ﬁk Zk . Zu 14 B (kl, f)B
) ll.. Ll_ J_... u
+ ' :
. b (k)b (k I.1
(o, ()

where V represents the magnitude of the interaction (the values of V are

given by the authors), the sums over kl .es Kk, are over the first Brillouin

zone corresponding to the lattice whose unit cell has an ion from both

‘sublattices, and B;(k; i) 'is the creation operator of an exciton in the

fth optical state with wavenumber K , on the wuth branch, and b;(k) is

the creation operator of a magnon With wavenumber K _inlthé uth branch.
(Note that if there are two sﬁblatticeé, there will in general be two
branches of,excitons'énd magnons.) A Hamiltonian With intefaction term like
I.1 cannot be‘diagonaiised exactly, and the most commqnl? used
dpproximation is to "decouple" the desired Green function obtained from the
Hamiltonian in some way.

The fﬁrm of exciton-magnon interaction given by'eqn. I.1 is the only
form given in the literature for the intéraction apart ‘from one given by
Dietz and Misetich (1968) to describe the effect of coupling’betﬁeen

excitons and magnons as the result of localisation of.states around



substitutional impurities. These authors present an exciton-magnon

Hamiltonian of the form

_ + o+ o
Hex—mag ) i%?'cij(Aibj+Aibj] - L.la

for an antiferromagnetic crystel. On Fourier transfofming this equéfion and

making the appropriate Bogoliubov transformation (section I.2) we obtain a

form very similar fo that chosen for the present work for the antiferro-

magnetic case, The ferromagnetic crystai Hamiltonian is related to this by

using an equivalent form for the combination of exciton end magnon operafors.
The following phenomenological forms for the ferro- and antiferro-

magnetic crystal  exciton-magnon interaction are taken in the present work:

(F) R +

Hex—mag -9 % (akbk+akbk) ‘ I.2
(4r)  _ + + +o o+

Hex-mag = 9 E (oA 44 By By BBy ) L.3

' . + L+ . . .
where -in 1.2, Ay s bk are the creation operators of a magnon and exciton

respectively of wavenumber k and in 1.3, a;,’ AE end BE,‘ BE are obtained
feom _ o " ' ‘ :
‘creation operators of magnons apd.excitonsbon sublattices 4 and B
respectively. 'We take the interaction g as independent of wavenumber.
The sums over Kk are over the first Brillouin zone, and for I.3 taken as
for eqn;bl.l forba Brillouin zonebwifh»a unit cell having an ion from each
sublattice. We have assumed further that there is only a single orbitai,
excited state involved, and‘drop the excited state notation (f) from I.2
“and I.3. In eppendix 1 we relate eqn;_I.S to eqn. I.1.
As pointed out earlier, the usefulness of the»fbrmS'eqns. I.2 and I;é
" would be in their ebility to give an edequate description of a real crystal.
This point will be discussed further in chapters II and IIi'where we eompare
the present moael calcﬁlation_with observations on a real crystal;
The form of the perturbation of the crystal by an external electro-

magnetic field has been discussed in the literature more widely. Two



different mechanisms were presented for describing the perturbation coupling
an external field with both excitons and magnons (Sugano and Tanabe 1963;
Tanabe, Moriya and Sugano 1965 and Halley and Silvera 1965). Though the two
mechanisms are quite diffefentAin the_magnitude of the interaction, the
functional form of the two Hamiltonians is similar. Both meehanisﬁs involve
two-ion interaction, Tanabe; Moriya and Sugano (i965) proposing an exchange
interaction resulting from-overlap ef the neighbouring ion wavefunctions,‘
while Halley and Silvera (1965) end Halley (1966) ascribe the interaction te
a spin-orbit induced electric quadrupole moment on one atom interacting with
an electric dipole moment, created by interaction with the radiatiOn‘field,
on a neighbour. Allen, Loudon end Richards (1966) have pointed out that
both two-ion interactions are cases of a general theory of Dexter (1962)
describiﬁg electric-dipole induced twoeion transitions in a solid. We will
present a discussion of the two electric field.induced'exciton—megnon
transitions in more detail.

We willjfirstly describe tﬁevexchange mechanism propoeed by Sugano and
Tanabe (1963) and elaborated on:by Tanabe, Moriya and Sugano (1965). Moriya
(1968, 1970) and McClure (1968) have given.good reviews of the interaction.
The exchange mechanism has elso been used to describe the magnon~-magnon
interaction.leading to two-magnon .and n-magnon absorption (n ? 2) (Moriya
and Inoue 1968),
| McClure (1968) has depicted the exchange interaction between ions as
shown in fig. I.1. The crystai’is a two-sublattiee aﬁtiferromagnet with
sublattice 4 having spin up and sublattice B 5pin down. The spin
projection of the pair is conserved in the interaction-and there is an
intermediate state of oddiparity on,one’ion_(Bu _in fig. I.l). In the‘figure,
the ion om sublattice A exchanges an electron with a ﬁeighbouring ioﬁ en |
sublattice. B , the electron from the ground state B°‘ moving to state A'

and that from A° _going‘to the intermediate state B where it then under-

- goes an electric dipole transition to its final state fBg .
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|
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FIGURE I.1., Illustration of the two-ion exchange interaction induced by an

external electric field (after McClure 1958).



The trahsition moment in the crystal as a result of the interaction
shown in fig. I.1 is (McClure 1968)
o k.8 : '
M= %:e P6 . I.4

vwhere § are the locations of the nearest neighbour ions and Ps 'is the

effective electric dipole moment due to the éxchange interaction (Tanabe,
Moriya and Sugano 1965). Summing over all wavenumbers in the first

Brillouin zone, we obtain the sideband lineshape in the form
' a2 e m :
o_(w) = const. M (k) G[w— - ] 1.5
p T %I p (K| %% | ,
for a polarisation p . In egn. I.5, w is the frequency of the line,

m : e . .
wﬁ and W represent the dispersion frequencies of the exciton and magnon,

respectively.
Eqn. I.5 for the sideband lineshape ignores any intrinsic exciton—magnon
interaction as discussed earlier in this section. B
Petrov and Gaididei (1971) and Eremenko, Novikov and Petrov (1974) have
given a derivation of the form of the crystal-radiation fieid Hamiltdnian in
second quantised form. The result is -
H . =EP 'e—iwt + Hérm.conj. - 1;6
cry-field eff
where
Pose = V2 T ICO (¥ (0BT, PIBIK) 1.7
| T b o |
B:(k, f) and b:(—k) are the creation operators for excitonsAand
magnoﬁs of wavenumber k , the exciton being in excited state f . The
sublattice is represented by u = l; 2 (as in eqn. I.1). I(k) may be
determined from the symmetry‘of the ion sité and is related to the dipolar
moment of the transition in the pair of magnetic ions from opposite
sublattices (Eremenko, Novikov and Petrov 1974). Values for the c6efficient

have been given for several crystals (Meltzer, Lowe and McClure 1969,
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Parkinson and Loudon 1968, Tanabe, Moriya and Sugano 1965, Gondiara and

Tanabe 1966, Loudon 1968). The functions uu(k) are the coefficients of

the Bogoliubov transformation (e.g.'Kittel 1963) and correspond to the

functions Zl(k) and 12(k) of eqns. I.25. They are used to diagonalise

the antiferromagnetic magnon Hamiltonian.

The other préposed mechanism for interaction of the crystal with the
radiation field was first put forward by Halley and Silvera (1965).. It
involves a direct interaction betéeén neighbouring ions via a dipole?
quadrupole interacfion (Halley 1966). The interaction is illustrated
schematically in fig. I.2. An ion on one sublattice is excited through an
electric dipole transition while a neighbouping ibn (j+8) has a magnoh
localised on it so that thé spin on the‘ibn precessés. Such spins thén
inferact wifh‘the ionic charge cloud via the spin-orbit’ coupling tefm
(AL.S) to create a quadrupole moment on the ion. The inter-ion interaction
is then that between the quédrupole (@) bon ion J + ¢ with.theidipole\
(T) on ion J . This leads to a coupling between odd and even states 6
and e' which leads to the exciton-magnon iﬁferaction. The resultant
Hamiltonian has a form very similar to that of egn. I.6 for the exchange
interaction.

It has beenvpointed:oﬁt by‘sevefal authors (e.g. Tanabe, Moriya and
- Sugano 1965, Allen, Loudon and Richards 1966, Moriya 1968) that the direét
interaction may be very weak compared to tHe exchaﬁge inferaction,_and for
rcertain'site symmetries of the ions, may actually be identically Zero. In
systems where the exchange interaction is wéak, however, the direct: inter-

action ‘may be imﬁortant,‘e.g. in CoF, (Moriya 1968).

For the present phenomenological model, it is sufficient to choose a
suitable form for the interaction between the crystal and radiation. Since
the dependence of both the direct and exchange interaction Hamiltonians on

the creation and anhihilation operators is identical we will use a Hamiltonian



FIGURE 1.2, Iilustration of the direct interaction between ions in a
radiation field‘(after»Halley 1966). States labelled 0

and e, e' have odd and even parity réspectively;

11
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of that form, The Hamiltonians for the ferro- and antiferromagnetic crystals

are taken respectively as follows:

(F) _ + 4

Hoopt = f(? (@ brtady) | 1.8
(4F) _' + + o+ .

Hoert = E(“k‘lk“‘k‘*k*skBk*BkBk) I.9

where the symbols are explained after eqn. (I.é); We choose fof convenience
that the interaction energy 7 is independent of wavenumber but time
dependent, including the time dependence of the.applied field. The.
Hamiltonians I.8 and I.9 are treated as pertﬁrbations_on the full crystal.

Hamiltonian (Chapter II). It is shown in appendix 1 that eqn. I.8, for.

»example, may also be justified from time-dependent perturbation and

consideration of the matrix elements involved.

Halley (1967) has considered‘arthird mechanism for interaction of the
crystal with an applied‘fiela. The process involves the inferaction of a
photon with a-(viptuai) phonon which in turn interacts with an exciton (or

magnon) via exchange striction and dipole-dipole interactions. The

interaction has not, however, been popular in explaining the absorption'

sideband.

1.2 Thé Ideal Crystal »Hamiltom’an

Apart from the exciton-magnon interaction terﬁ considered in seCtidn
I.1, the crystal Hamiltonian must include terms representing the creation
and annihilation of both excitons and magnons individuélly. In the preseht
section we shall discuss each of these terms.

We begin with a discussionvof excitons in’the.crystal. Good reviews of
exciton fheory are given by Knox (1963), Callaway (1974). Experiments on
crystals exhibiting magnon sidebands reveal that the exciton and magnon
involved are.both’strongly localised on particular adjacent ion sites (McCiure

1968). We may thus consider the excitons in the crystal to be well
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represented as Frenkel excitons (Heller and Marcus 1951).

The forms of the exciton Hamiltonians we have chosen for the present

work are as follows

(A _ + 3
Ho' = e Ebkbk , - I1.10
(AF) _ + +
Hox 5 %AkAk + BB, | - I.11

where b;, bk are the creation and annihilation operators of excitons in a
. ‘ + +o .
ferromagnetic crystal and Ak’ Ak and Bk, Bk are creation and

annihilation operators of excitons on sublattices 4 and B of an anti-

ferromagnetic crystal. The exciton energy - g, (not necessarily the same

for ferro- as for antiferromaghetic crystals) is taken to be indépendent of

wavenumber K in both cases, i.e. the excitons are assumed to have no

dispersion. This assumption is generally valid (Parkinson 1969b) compared
tolthe disbersion-of other quaﬁ%ties (e.g. magnons)*, though there are
exceptions, where exciton dispersion may be quité large-(McClure'iSGS). The
sum over wavenumber K - in I.LO and‘I.ll‘is over -the first Brillouin zone,
which, for'thé antiferromagnet, has a unit cell.with one atom from éach
sublattice. This means that for the simple’Hamiltoniah»I.ll the exciton
iine is_doubly degenerate, i.e. there is no Davydqv‘splitting of the exciton

(Eremenko and Belyaeva 1969 Loudon 1968).

Frenkel excitons are commonly observed to have both electric dlpole and
magnetic dipole orbital transitions of individual crystal ions associated

with them. Magnetic dipole transitions are generally much weaker than

: : N2 \ .
electric dipole ones, because of the factor &ﬂ in the interaction, where
v is the orbital velocity of the electron making the transition, ¢ the

* The splitting is roughly (a/d)2 where a = Bohr radius, d is

separation between ions. Since d 2 10a the splitting will be ndO_Q of
the transition energy.
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speed of light (Sobel'man 1972). This factor is typically of order 10—5 .
Hence even parity magnetic dipole (forbidden) transitions are much reduced
in intensity‘over electric dipolerdd‘parity (allowed) transitions. VApart
from the magnitude and dispersion of the exciton, however, the excitons may
be described by a Hamiltonian of identical form fbr béth electric and |
magnetic dipole transitions. fhus our choice of egns. I.10 and I.11 for
exciton Hamiltonians would apply to both electric and magnetic dipole
transitions, the latter being mﬁch reduced in intensity over the former.

The dipole nature of the exciton in a phenomenological model such as the

‘present case will be determined from the intéraction between excitons and

the radiation field. We will treat the case of magnetic dipole excitons and
hence ignore any interactions with an applied electric field. It would be

possible to treat the absorption of the exciton separately by inclusion of

" the magnetic field component'of the radiation, which, as just mentioned,

would give a weak exciton line at the energy €y o

We also ighore in our model any crystal field effects on further
splitting of the exciton line; Tanabe éﬁd Gondiara (1967) have presented a
detailed discussion of such effects in relation to the magnon-sideband
problem. Our'model may be considered as treating a single poiarisafion
directibn in the crystal (see Seétibnrl}u)."As illustrated by fhe absorption
eqﬁ. I.5, the problem may be decomposed into a separaté treat¢ment of
polarisation directions in‘a quite general manner.

We now turn to.the magnon part of‘the Hamiltonian and will present a
detailed qalculation-of the ferromaghetic crystal Hamiltonian we have used
in éuf model,

We begin with the assumption that the magnetic syétem is adquately

described by a Heisenberg Hamiltonian with only nearest neighbour interactions.

~ That is, we assume that the exchange integral J is short range, and also

that its value is independent of the position of the interacting ions
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in thercrystal. The Hamiltonian is then written
Hy=d ¥ % S.S | 1.12
where Sn is the spin‘of the nth ion»in the crystal and the sum over n

is over all magnetic ion sites in the crystal. The sum over A is over all

nearest neighbours of the site n , Sn+A being the spins of the nearest -

neighbours. Egn. I.12 applies equally well to antiferromagnets and ferro-
magnets, with o > 0 in the former case, and J,< 0 in the latter. For
the present ferromagnetic calculation we rewrite J as -17]

Consider the Hamiltonian I.12 written in terms of spin raising and

: ) @, Ly S
lowering operators Sn = Sn x zS which satisfy the commutation rules

[0 6] - 26t 0 ,
[S(Z); S(%)] - ( )A(n, n") _ 113
n n . .
where S(x), S(y) and vS(z). are the x, y vand Zz components of 'S andi
n n n - A _ n

Mn, n') 1is the Kronecker delta function which is unity when n = n’ “and

zero otherwise..

Then egn. I.12 for the magnon Hamiltonian becomes

P = -l BT (s e De] L s

n nth “nthn
We now assﬁme that the temperature of the‘system is sﬁfficiently iow
that only a uﬁit spin deviation‘frbm the ground state-is possible ét any
site, and define aISingle unit spin deViation state at site [ as

1

= Z o> - I.15°

|2y =

where the ground state is |0)_= |¥¥ ... ¥) , the state in which all spins
are p01nt1ng down. We also assume that any eigenfunction for the entire
crystal is-separable into a product of single-ion site wavefunctions such as

eqn. I.15, i.e. we assume Heitler-London wavefunctions.
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We now consider a "magnon'" wavefunction as the space Fourier transform

of wavefunctions eqn. I.15,

Wk =

RIS
[z1

a0 _ | 1,16
where 1 1is a crystal lattice vector, and Q& magnon annihilation

operator, defined'by egn. 1.16,
‘The Hamiltonian in second quantiéed form is then given as follows
(Landau and Lifshitz = 1958)

yF)

1 -ik.1 | k11!
v T a;ak,e t (Z]H;?)IZ')e%- ' . - ~1.17

)
Kk’ [21,02']

Using the wavefunctions I.15, we obtain after some algebra
HE) 2F e(Kala, - iJle2z o I.18
M k™k ‘ , g

where the magnon dispersion e(k) is giVén by .

e = Tl |zttt
-1 ‘
= 2|75z (1-v,) - | | 1.19
for
1o« ik - o
Y, == ) e I.20
k2 | - |

where z 1is the number of nearest neighbours of any ion (co-ordination

number). Note that Y = Yo for crystals with orthogonal primitive lattice

vectors.
In this and what follows we always assume cyclic (Born-Von Karman 1912)
boundary conditions so that |Z) = |l+Na) for N atoms in the crystal, and

lattice parameter a . The sum in I.19 over . - I'. results from the fact



17

that H;F) in the lattice-space representation . is circulant (cyclic) and
. . zk.1 :
has eigenvalues given by z:‘HZ e where HZ 11 = (Z|H]2") and
[Z] -
eigenvectors with components of the form uk(Z) =N 2 ik.1 (Berlin and Kac

1952). Use has been made of the relations

A(L, nth)

<olsiMs( 10y =
5,010 = (srees, D)D)
(+) 5(- )]o> = 25%A(n, 1) |0

where A(n, ) is a Kronecker delta function.
The magnon Hamiltonian I,18 may also be obtained by means of the

Holstein-Primakoff approximation, writing

S(+) V25 fa
_ ninn

o .
Sn' VQSn fhan %

+ ,
-St+taa ,.
nn

} +
a.a %

- nn
where one assumes fn' = -

;( .
25,] ~ 1 , ignoring terms with products of

more than two operators. Keffer (1966) in a review article on spin waves
has discussed the implications.of the Holstein-Primakoff approximation_ih
detail. The magnon creation and annihilation operators are obtained as the

space Fourier transforms

oL Z’+1,kna+

k \/— n n
! a = 41- z: e_ik'na ’;. I.21
| VN [n] n

The magnon operators aﬁ and ay can be shown to satisfy the boson

commutation rules
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(s @) = 8k, kD,

_ + 49 :
[ak, ak,] = [ak, ak,] =0 I.22
where &(K, k') is the Dirac delta function,

The term —IJINS?z occurring'in'eqn.‘l.lB is the exchange energy when
all spins are aligned (Keffer 1966). Its effect is to determine the spin
Hamiltonian_ground state and, because it is a constant, will be ignored in
the present caiculétion as if will merely cause a shift of the entire ‘
spectrum, without aitering its other properties.

in a similar mannef to the abo§e>ferromagnetic magnon éalﬁulation; it.
is possible to obtain the antiferromagnétic mégnon Hamiltonian as

HI\(JAF) = 275z %‘yk (ayby+ayb,) + 275z % (agaytbyby) - 2290 S .23

: + ot . ‘ ' . - +3
where ay s bk are creation operators for magnons localised on sublattices

4 and B , NO is the number of atoms on each sublattice and bYk is given
by eqn. I.20.
The’HamithnianlI;QS is not yet diagonal and may be diagonalised by a

canonical Bogoliubov transformation (Kittel 1963)

+ +
a = Doyt LBy s
bkv- 22ak‘+ ZlBk . o ‘-‘I.29
where |
. 1- (—1-\@% ¥
1 z(l_Yi)% -
) l+[l'Yi)% %
Sl e
2 2Gvp)®
-Y
2 2 _ . _ k L
2.0 =1y 200, = ——r

2(1-v7)
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2 2 2)~*
Zl + 22 = [l—yk]v . I1.25
The antiferromagnetic magnon Hamiltonian in diagonal form, is then

ur) _
Hy = = E:e(k)(azuk+8;8k) 1.26

where

%X

2

e(k) = 2JSz[l—Yi] . 7 ‘ I.27

In a review article on spin waves by Keffef (1966) is presented a more
bbgeneral expression for the magnon dispepsion than 1.27. In oﬁr derivation

we have neglected anisotropy and eXfernal.magnetic fields. The effeetvof'an;
applied magnetic field is to split the two degenerate bands represented by

a, and Bk , with splitting of v2guBHo for splitting factor g , Bohr
magneton Ug and applied field HO (Zeeman effect). The effect of an

anisotropy field HA is the same for both bands and is expressed by

. 2JdSz

'Q“BHA]2 2

feplacing 1- Yi by [l‘+ — Y in I.27. -Similar modifications of
the ferromagnetic dispersion eqn.”I;lQ are»possible also.

At:this ﬁoint_it should be:stated‘that magnon Hamiltonians have been
calculated more precisely than the above. A more exact Hamiltonian is of
value, for‘exaﬁple, when‘temperatureedependeht effects are to be studied.
Hone, Callen and Walker (1966) have presented a temperature dependent
calculation for a Heisenberg ferbomagnetkwhile Ghoeh (1973) and Swendsen
(1975) have discussed the antiferromegnet problem. These calculations make
use of the Green function method (Zubarev 1960, Mahanty 1974, Abrikoso&,
Gorkov and Dzyaloshinski 1963) and involyeidecoupling the equation of motion
~of the crystal Green function et some stage, the method of decoupling
affecting the degree of accuracy of the calculation. Shah, Umezawa and
Vitielio (1974) have discussed the derivation of the magnon operators which

avoids the use of the Holstein—Primakoff»approximatioh, Though their work is
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of value in imposing restrainfs on any model calcﬁlation, the method used
does not allow therdirect calculation of specific model-dependent quantities.
Another interesting aspect of‘mégnon (spin-wave) calculations is a

determination of the ground sfate-of_ferro— and antiferromagnets described
by a Heisenberg Hamiltonian. Bloch (1930) has. calculated the ferromagnetic
ground state, but, as discussed by Ghosh (1973), the’antiferrémagnetic
ground state has étill not been galculated, although. some épeciallcases have
been given. Mermin and Wagner (1966) have proved that,. at finite
temperatures, no ferro- or antiferrqmagnetic order exists in one- or two-
dimensional crystals which have a finite range‘exchange integral, and which
are isotropic._ Tﬁe theorem does not apply to absolute zero of temperatpre.
Glass and Lawson (1973) have shéwn that.dipolar ferromagnetism cannot exist
in a simple_cubic‘array of infinite volume, and Reeh (1973) has discussed
“the poséible degeneracy of the antiferromagnetiﬁ‘ground state.’ Swendsen
(1973) has discussed the effects of crystal géometry, for cubic crystals,
on}antiferromagpetic order. | | |
| In summary, then, including fhe exciton-magnon interaction‘terms, eqns. -
I.2, I.3, the pure crystal Hamilténiéns which we have chosen for our model
calculation of magﬁon sidebands for ferromagnets and antiferromagnets are
reséectiveiy_ |

Y T eoaya + < T By + g {:I'(aiblk}b-l:ak) - o 128

AF ' | ‘e N

+ + + + ’
tg % (oA 4 00 +8, B +B B ) . 1.29
. K -

Use will be made of these Hamiltonians in chapter'II.

As pointed out, for example, by Parkinson (1969a), the effect of an

exciton-magnon interaction is very similar to that of a substitutional

magnetic impurity in the crystal. As will be shown below, one effect of the
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latter is to add a constant term to the magnon energy €(k) , thus
effectively shifting the magnon line. Parkinson and Loudon (1968) have
shown that one effect of the exciton-magnon interaction is to add a constant

term to the exciton energy, 82 . In our phenomenological theory, we would

thus expect the exciton line to be shifted by an adjustable parametér
depending in some manner on the stfengfh g of the exciton-magnon
_interaction. As shown below or as is evident ffom the delta function in
eqn. I.5, one would also expéct a shift in the magnon sideband &ue to g as

a result of the term added to €y > though this méy be small.’

1.3 Substitutional Magnetic Impurity

We now consider how‘the pure crystal Hamiltonians I.28 and I.29 will

» be modified by the inclusion‘ofra substitutional defeét whose sole differénce
from‘the host atoms is a difference in spin and exchange interaction with its
neighbours. We assume thét the excitons will be unaffected.

An excéllent.review of defegts.in solids has been given by Elliott,
Krumhansl and Leath (1974);and.Cowley andeuYefé (1972) have given a review
of the effects of impurities‘on magnetic~crYstals.' We begin by obtaining an
expression for one impurity in a ferromagnet, extend»the resulf to an anti-~
ferromagnet, and finally discﬁss the implications of the magnetic impurity
as it might affect the crystél spectrum.: |

The Heisenberg Hamiltonian for a ferromagnet with aﬁ impurity at site
1, with-spin Si and exchange integral J' with nearest neigﬁbours ish
given by (White 1970)

Hfﬁ} ==lg] ¥ ¥ S.S.at QI(IJISZ_—,IJ'lSZ’) . 'E Syen + L.80
: N A | o o

We write I.30 in second quantised form using the same methods outlined

in section I.2. - The result is
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(F) _ ,(F) .1 «. _. ¥ 2 ¥
HM+I = HM ty kEk' vk, k')akak, - JSzp %akak I.31
(7). ., t’"
where HM is the pure crystal HamlltOEZglven by egn. I.28 and
: . '.- » .
v(k, k") = 2|J|s2 oK' k)f][e+pyk,_k—y(yk,+Yk)] > L.32
e = (J'-J)/J ,
p = (J’Sf—JS)/JS y
' » ‘ '
y:J—J- %-1_.' o - I.33

Yk is given by egn. I.20., Egns. I.33 conform with the notation of

Lovesey (1968a) and others. The expression for vy(k, k') , eqn. 1.32 has
been obtained previously by Callaway.(1963).

Fér the model used in this work, we assume that we.afe able to write
Cy(k, k') as indepéqdent of wavenumber, i.e. we put Y(k, k') =y . Our
problem then reduces to treéting the impurity along the lines of the»Koster—'
. Slater model (CalléWay 1964, 1974, Wolfram and Callaway 1963).> In
appendix 2 we discuss fhé‘model éalculation using the érystal Hamiltonian
I.31 with the.full‘expression 1.32 for bf(k, k') and show ‘that the‘model.

l calculation is still possibie without the assumption on 7y(k, k') , thdugh
mathematically more complicated; | | = |

| Impurities in a Heiseﬁbe?g ferrémagnet’have also béen.studied.by

Takeno (1963a, 1963b) and Isﬁii; Kanamori and Nékamura (1965). Takeno (1963&, ,
1963Db) has discussed a Koster-Slater type model for an iﬁpurity with ferroév'
magnetic interaction with its neighbours (J' < 0) , as we have assumed
above. 'He has discussed in detail fhe nature of the localised spin-waves
~which occur in the vicinity of the impurity. 1Ishii and‘others (1965) have
treated in deéth the case‘of'antiferromagnetic coupling of the impurity with
the host. We need not discuss the defails~of’such work here, but will
present the essential effects of a ferromagnetically coupled impurity towards

the end of the present section.
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The antiferromagnetic crystal with impurity has a Hamiltonian
corresponding to the ferromagnetic one (eqn. I.30) which is more
conveniently written in matrix notation as follows:

[a+B] M. .M

H = el \ I.34
R M+I ‘ ‘ A ..A. + L] )
| My o M| 1B :
where - .
4 + + + ot T
O = [0 5 eeey Oy - 5 B = |Bp s eees By s
o, kNd] | [By, ‘kN]
, 0
. (1),(u) 2 .
by )55 = Vi ¥ ["S f"‘”s(ki)]“" 2
_(2),(3)
(M2,3)_ij = Ygi I1.35
and
Y”%) . Y(l)(ki’kj) = (2. (k)7 k 2 (k2. (K. )y,
205z 2097 = (2 ()2, ( j)ij*- AL j)Yki)Y

+ e 2, (k;) Zl(kj) + kai_kj 1,(k;)2, (kj) ,

MO RN NI X |
g _ 'ig , 12737 _ Ndo(
295z 28z 2J%a —_[Zl(ki) Z_l (kj)ijJ“Zz k)2, (kj)”ki)Y

te1,(k;) Z,l(kj,) + pyki_kj z (k)2 (kj] I.36
where Y, € and p are'given'by'eqns; 1.33 and 'Zi(k), Zz(k) are given by

| () CH I :
egns. I.25. Yij is the same as Yij with Zl replaced by ZQ and vice

versa,.everywhere. We have considered the impurity to be situated af the
origin, and on sublattice 4 , fqb Convenience.

For the present phenomeno;ogical model Hamiltonian we assume that ppiﬁts
close to the edge of the Brilloﬁin zone‘contribute mesf to the regions where
the density of states of the magnon system'is large (as is true for cubic
crystals, for example). These points of the Brillouin zone-cqrrespond,to

small values of Yk ‘for the antiferromagnetic dispersion, eqn. I1.27. We
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also consider that the impurity may lie on either sublattice and so to first

(1)

Yij where- Yij is the average of Yij of

(1) (3) _

appro$1matlon Yij = ng

)

eqn., 1.36 and Y;; resulting from the interchange of Zl(k) and 22(k) R

(2)

1J

(2)

and similarly for Y = Y;z) as the average of Yij of eqgns. I.36'and

the version with Zi replaced by 12-. Then for points in the Brillouin

zone near its boundary, it is readily shown from equations I.25 that

and hence from equations I.36 it follows that
Yij ~ 2J58E = Y
and

'Y(.Q.) =

(3) ‘
iJ Yj‘l: ~0 . S I.36a

We therefore aésume that sub-matrices &2 and &3' of eqn. 1.34 may‘be
ignored, and that sub—matriges ﬁi ‘and @u are identical and independent

of wavenumber k . With these assumptions, the antiferromagnetic magnoh ,

Hamiltonian with spin impurity eqn. I.34, is taken as

(A ratgfIf 6] [a |
HM+I = A A - I1.37
0 M||[B
where .
| 2 | |
;5= [JS p‘z,fe(ki)]G(ki, kj) . | - 1.8

Note that <y in eqn. I1.38 is not tﬁebséme as Y in eén. I.33, but is a
free paréﬁeter in‘our phenomenologicallmodel which has to.be chosen to best
represent the effect of an impurity in the crystal. The severity of the
assumptions made to obtain the impurity Hamiltonian I.37 (and I.31) will be

decided by its ability to describe real crystals with impurities.
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Note in the impurity Hamiltonians the presence of a term which is

diagonal in the‘magnon operators, of‘magnitude JSsz . This term amounts
to a correction to the pure magnon term of the full crystal Hamiitonian, in
each case, and represents a‘shift in the magnon band due to the impurity, as
. pointed out earlier. For later calculations,_this term will be assumed t§'
be iﬁcluded in the expression for the magnon energy €(k) (eqns. I.27 and
I.19). | |

Note also that the terms with operators like a;qk, will lead to

scattering of magnons with different Waveﬁumbers, thus. leading to modification
of the magnon density‘éf states due toAthe impurity;

Magnetic impﬁrities in antiferromagnets have been studied bysTonegawa
and Kanamori (1966), Tonegawa (1968), and Lovesey (1968a, 1968b). These
authors have studied, in particular, the iocal-médes which will occur outside
the pure crystal magnon band due to the impurity, and consider criterion
for the existence of such local'modesA and their dependencé on various para-
meters of the calculation. Both'calculations treat the impqriiy gffects iﬁ 
much more detail. than will.be done in tﬂe présgnt’wbrk, though.it is felt
that our simplified model will bring out the essential effects of an impurityv
in the cryStél. |

It is expected that all fhe effects fhat an impurity in a crystal will
cause may also be‘found in fhe perturbed~magn0n sidebands in a crystal.’
The-generél effects of any impurity are listed as‘follows,(Elliott,

Krumhansl and Leath 1974): |
(1) ‘shifting of the pure spectrum line or lines affected, e.g. for
a spin impurity the pure magnon.baﬁd‘will be shifted by the
.lasf term of eqn..I.3l. | | | -

(2) modification of the pure density of states, and hence of the

observed spectrum line. This effe;t is considéred to’be the

result of "resonances" or "virtual states" which result from
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the scattering of magnons due to the impurity (Wolfram and
Callaway 1963, see also,chépter IiI). Resonances can only
occur if there are no local modes outside the band of pure
crystal states.‘

(3) the appearance of local modes, sharp lines which occur out-
side the pure crystal band, whése intensity is a function of
the concentration of impurity and whose'separation from the
band as modified by (1) and (2)»is ch;racteristic of the
impurity involved. The existence of local modes in general is
a result of the relative strength of the impurity scattering
over the bandwidth of the host pure band. (In the present
case, Y Vs eo'= E(k)ﬁax .]..

All or some of the above phenomena arebexpectedkfo occur Qhenever.there
is an impurity in‘a crystal. The conditions for their appearances depend on
the magnitudes of the energies involved. Because of the dependence of the
magnon sideband on the ﬁagnon dispefsion e(k) , if is expected,that these>
phenomena will effect the magnon sidebaﬁd5 as well as the magnbné themselves;
Parkinson (léGQa, lQGQb) has discussed'the éffécts of iﬁpurities on magnon
sidebands in anfifefromagnetiq perévSkiteS, stréssing the appearance of'iocal
ﬁodes, confirming their appearance under certain conditiohs. 

The total crystal Hamiltoniéns to be usedfin ouf phenomenological model
are, with fhe inclusion of an impurity term, now given by |

(F). + o 4 + ’ B
HE = % e(aa, + €, % by + g % (akbk+bkak) + % kzk"a'kak' , I1.39

y(AF) _ % e(k) (oc"lzu‘szsk) t e, % (A;Akw;Bk)

+ g % (aEAk-rA;ock-rBEBkntBEBk) + W%kzkr. (anoek,+BEBk,] .

‘Use will be made of these Hamiltonians in chapter III where we calculate

the effect of an impurity on the magnon sideband in detail.
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I.4 Optical Absorption

Although the calculation of the optical absorption of a crystal with an |
exciton-magnon interaction will not be given until Chapter II, we give here
an indication of how the optical ébsorption may be obtained. We make use
of the Green function method in solid state physics (Zubarev 1960, Mahanty
1974), | | |

Consider a system which is perturbed by a time dependent Hamiltonian

Hl » which may be resolved into time—dépendent and time independent parts,

as ' : Hl = Bf(¢) . I.h
For dielectric response of a system to an external electric field this

will have the form

(0)

H) = -p.E cos wt. o I.42

" where w is the frequency of the applied field, p is the dipole moment

of the crystal, E(Q)

| the time independent part of the applied field.
The change of the :nth compénent of a.physical qualtity A4 is given
as the time integral (for linear fesponse, Kubo 1957)
. . ,. :
X 4

VvV -

. . .' (O) . )
WEE B d!

1

An(t)‘

2

(O)f(t')dt' - I.u3

Y

- %:rm

_ Y
(A4 (¢=t"), p VE
7 =0
where A(t) on the right hand side of eqn. I.43 is an operator with time

dependence given according to the Heisenberg formula

o iHt/h -iHot/h |
A(t) = e Ae . ' | I.44

The Green function (¢ ... )) in eqn. I1.43 is defined as

! : S k
Gnv(t_t ) (<An(t‘t ),‘pv(o)>>

= s7cay Trlexe (-8H ) (4, (e-t"), p ()] }e(®)

"_h’:<[An<t-t'),pv(o)]>Q(t> I B X
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where Z(B) is the canonical partition function, B8 = l/kBT with
Boltzmann's constant kB and temperature T . 6(t) is a step function which
is unity for ¢ > 0 and zero for ¢ <0 . [}n, pQ] represents the

commutator of An, and p,, -

For the dielectric respoﬁse we are interested in the change in dipole

moment of the system due to the perturbation, that is, from eqn. I.43,

(0]

p(®) = - Zf <<p (&8, p (DB cos wt'dt’ . L.e
V . . : )

-00

Thus the dielectric susceptibility for a linear response to the

perturbation is given by
o | -
xnv(t)'= - [_m ((pn(t-t'), pv(O))) cos wt'dt' . - L.y
Defiﬁing the time Fourier tfanéform of the Gréen‘function, eqn. I.45 as
G(w) = J G(t)e” We g _— o I.48
-~ : :

Xnv(t) may be written as

Xnv(t) = _[bos.wt,Re Gnv(w) - sin wt Im Gnv(uDJ . I.49

writing - G. in its real and imaginary parts, using the fact that
G(-w) = G*(w) , the complex conjugate of G(w) .
~ Then

- (0) S
p(t) an\)(t)E’ . , 1.50

The power absorbed by the system is given by the time average
Z{;v(t)E(O) cos wt - 1,51
' v time av. -
where 'é is the time derivative of p . This gives

P=-%u ) Im G (w)E(O) (0) | N 1.52

n:\)

making use of the fact that the time average of sin wt cos wt and cos wt
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are zero and % respectively.
What is normally observed is the value of power absorbed for a

particular orientation of the crystal and of the field, that is, a component

.of the optical absorption tensor

Gy = - In G (@ .  1.53

In the model calculations presented in this work, no considération is
specifically taken of polarisation'9f~either the crystal.of the appliéd
field. The results that are obtained may, however,‘be considéred as the
absofption for one pafticular coméoneht of the optical absorption tensor,
eqn. I1.53. |

‘The problem of calculating optical»absorption is thus reduced to

evaluating the Green function G(w) . - This is done by solving the (time

- Fourier transformed) equation of motion

. _ ' = L : A ) A X ) . .
hat Cp, (8-27), p (00 ‘ (EpHQO)?_pv(O)]) + <<Epn? Hols p,», I.54
where the first term on the right hand side of'eqn. I.54 is the equal time

average of the commutator of . and . The commutator of the second
Py ad p, nutator of the

term is taken at time ¢ . We have made use of the fact that

J s(t)e Wit =1 . | 1.55

-0
In chapter II it will be shown that the Green function on the right
hand side of eqn. I;SH'may be written, for the present model, as

proportional to Gnv(w) of the left hand side, thus enabling the Green

function to be obtained directly and exactly.
It should be pointed out that many physical properties of the dielectric
system may be obtained from the dielectric Suéceptibility tensor, eqn. I1.49,

not just the optical absorption. "For example, the dielectric constant:

 tensor will be given by

Env(w) = G(n,‘v) + um xnv(w) . | 1.56
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Hence the Gréen function _
o " | .
G (W) = Up (-t )? p,,(0) 1.57

“contains all the information required to calculate the linear response of

 the system to an external perturbation of the sort given by egqn. I.u2,
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CHAPTER I1I

In this section we present calculations of the magnon sideband in pure
crystals, making use of the’Hamiltonians 1.28 and I.29. We attempt to
diagonalise these Hamiltonians written in matrix form. Diagonalisétion is
easy because of the form of the phenomenological Hamiltonian chosen. We
treat the ferromagnetic crystal firét,Aand then the antiferfomagnet,

presenting some numerical calculations of linéshape af_each stage.

II.1 Magnon Sidebands in a Pure Fer‘rohlaghet '

Very few ferromagnetic insulators exist: in nature and there have been

.énly a couple of reports of magnon sidebands occurring in ferromagnetic
insulators. Because of this there has been little interest to date in
calculating magnon sidebands in ferromagnets. One exception is the early
work of Wortis (1963) who, whilevnot calculating éideband effects, did
calculate the two-magnon bound state in a ferromagnet. Wortis (1963) used‘é
Heisenberg Hamiltonian, and the Green fﬁnétion,method with decoupling to
solve the problem.. Hulin, Benoit a la Guillaume énd Hanus (1971) have
discﬁssed a. theory of‘magnon sidebands in ferromagnets in their paper which
-reportsisidebands in Eu0 . 'Meltzer (1972) presented an alternative

mechanism to that of Tanabe, Moriya and Sugano (1965) to describe the magnon

~sideband found in GdCZ3 .

In these models leading to the magnon sideband, some approximations are
made during the course of'the calculation which make it difficult to
interpret the results strictly in physical terms."fhe,éalculations we
present in this work use Hamiltonians’which ailow the calculation to be made
exactly while being sufficiently realistic to give a beasonabie description
of the observed phenomena.

From eqn. I.28, the pure crystal Hamiltonian is given by
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(F) + + + +
H = % E(k)akak + €2 %bkbk + g % (akbk‘l'bkak) IT.1 -
where
e(k) = 2|75z (1-v,) , o CILL2
Yy T ﬁ- AL II.3

[A]
The perturbation on the crystal due to the exiefnal'field is given from

I.8 as

(F) ., ¢ (st . | ‘
Hpgrt-.“‘ Z % _(akbkfakbk) . | II.4

As indicated in section I.4, we require to evaluate the Green function
: RS ST | S '
G(w) = k%' <<a&b5+a5b5, al(,bkﬁali,b!(—,))w ) L5

(F)

To do this, we first diagonalise H eqn. II.1 and then thain Gw)

from its equation of motion. We consider only the case of close>to absolute
zero of temperature in all the calculations of this work, so the spin-wave
approximation holds (section I.2).

(F)

Writing H in matrix form as

(" atp" I B[a

H - II.6

o>
()4
(=

where

+ + : +q o Wt >+ +
a =1[a, 5 eeesa, ] 3 b =1[b, 5 eeus b, ]
‘[ kl ‘k _ kl | kN

: ' . . + L+ .
for magnon and exciton creation operators ak and bk , N atoms in the

crystal and

(B)ij = g6(z, j) R :’ : _ II.8
(D)ij = 526(i, J) o - | ' I;.g

.we see that all submatrices are diagonal, and commute with each other. We

y()

may thus diagonalise by treating it as a 2 X'2: matrix, The
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elgenvalues are given by

+ E(k)+€2 82-€(k) 2 5 %
AT(k) = 5 * [[ 5 ] t+g ] . II.10
Defining the functions
o eymek) ;
x(k) = ——ng—— . II.ll
y(k) = Er(k)2+l]% | } II.12
the matrix which diagonalises H(F) , the matrix of eigenvectors,may be
written
. 11 12
3 = . 11.13
- |21 P22
| where , ,
o Sk, k
‘(Sll)kk' - e . ?
, V2y (k) (y(k)-x(k))
(A )
(530) ki

< R GOERY

_ , -X

o = = /oo ok KD
- /Y )+ ' ' . ‘

(Szz)kkf “voy(k) Sk, k7 - TE. 14

A Awa

. . . o at e . s
It is easily shown that S is unitary, so S T S . the Hermitian adjoint
of § .

Then the pure crystal Hamiltonian in diagonal form is

| [a';b"1 ,[4 B],..[a
e A
| B bl |b

Eﬁx_(k)nznk + AT vp, - 11as

where U and vy are defined by

that is,
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_ S -y
Mk = Vv ooy Pk
V2y (y-x) :
a . _
Vi SP.. . JE= b, | I1.16
V2y(y+x5. Y »
where we have dropped the k—subscfipt.on x and Yy . As the exciton-

magnon interaction goes to zero, 1, > aq, and Vv, > b, as required
g g k™ % k™ %k quireds

since in this limit H(F) is already diagonal.
From the fact that a and bk. both satisfy boson commutation rules,
eqn, II.16 may be used to,determine.the commutation rules for Nk and

Vy o The result is

sCk, k'),

1

S+
[nk,-nk,]
+ 9 _ ] - : S
[\)k’ \)kl] - a(kg k ) . IIol7
and all other commutators are zero. Hence N and Vg also satisfy boson’
commutation rules. _Eqn.»II;lG plus the limits as g > 0 indicate that
and v represent two new types of~excitation,>with some exciton and some
magnon character in each. The limits indicate that: n - is 'magnon-like" and
- v 1is "exciton-like". The diagonalised Hamiltonian, éqh. II.15 thus has two.
: +
branches. If we expand the square roots in A (k) we obtain the first
approximétiqn that ‘A+ &:e2 » A ~ e(k) confirming the magnon- and exciton-
like natures of n and v .

The optical absorption may be obtained by expressing ay and bk in

terms of M and vk , and evaluating the Green functions of the latter.

We have
n AY)
o = e
yvby(y-x) V2y (y+x)
== JYE /Y ,
bk‘ 29 nk + %y Vk . II.lg

SO
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+, + _ (.t z + + +_+ '
ayby + ayby = (Vv ) /2y + 7 (nkvkmk\)k) - [nknk+nknk)/2y . II.19
The non-zero Green functions obtained from using II.19 in egn. II.5 are
SR S - ob uf + oty
((nknk, nk,nk,>) , ((\)k K> k,vk,)) and ((nkyk, nk,vk,)) .
We will demonstrate how these may be found by calculating the last one.

The equation of motién, from eqn. I.54, is, in time Fourier transform
hut <NV n;,\)z,» = (.[nkvk‘, n;,\fl:,]) + (( [nkvk, HO], n;,\)i,n . 11.20
Now the equal time average commufator is |
v M V) = ‘nkﬂi}>5ﬁka k') + Copvp) 8Ck, k")

8k, k" . | ’ 11.21

since vk|0) =0 .

The Green function which is the last term on the right hand side of

eqn. I1.20 is

(<[”k k? H ] ”k' k’ Y = %: (([hk k> A (k')nknnkn+x (k" )an ,J nkr k'

(kA (|<))<<nk K ”k'\’k' ‘ . I1.22

from standard manipulations of the commutators.
Hence from egns. II,20-II.22,
: o ’ ’ ) : v
((nk\)k: T'IE '\);')) = G_E_k’k )_ o : I1.23
: ha- (AT CR+AT(K))

Similarly, the other two. Green functions may bebcalculated to give

o+ 5k, k") -
nyny, Ny My, ,0 ) = ———2—— II.24 .
B R TAPS O |
L e(k,k N
(v v, Vi Vr = —r II.25
ke VY hu-21" (k)

The optical absorption'is then proportional to the imaginary part of

‘the sum of these three Green functions (section I.4):

, 2. vy
o) ~ -2 7 1n| 2K Stk
kok! (k) “+1 hw- (A7 (K)+A7(K))
¢ SkokD) [ L + 1 )| . 1.2
u(z(k)2+1) Yhe-227(k) - hw-2at (k)
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The Green functions II1.23-II1.25 are considered with the energy huw

having a small imaginary part, <n . Use is then made of the relation

Im(x—in’)—ll 4 = m8(x) ‘ 11.27
o

leading to the optical absorption

2 4~ 2

. v 2 ‘
uw)w_ﬂy%ﬂﬁ_w@wuvmnwmn
k ‘z(k)™+1 - ‘

+ -——-5;-;- (8 (hw-21" (k) ) +6 (hw-22 (k)))} . 1I.28

(ac(k) +l)
It will be seen that the last fwo terms of eqn. Ii.28 will contribute
to the absorption at frequencies of 2\ (k) and 2A¥(k) . Hence these
represent “two-mégnon" and "two ‘exciton" lines in the spectrum. Since by

is not exactly’ e(k) and AT not exactly €, , the lines are shifted by

the exciton-magnon interaction. The intensity of the lines is also affected,

as is the shape, by the factor [}(x(k)2+l)]_l which is also dependent on
g s
2

i (2(k)?+1)] 7t = _ g . o I1.29
L+ (= (eyme(k)) P4ug?

The first term of II.28 yields the ‘magnon sideband at a frequency of

AT TR = ey kel L - II.30
The sideband lineshape is given;from’II.ZS as

(eymetk))?
oolw) ~ - —E, 5
: (ez—e(k)] +ig®

8 (hw-(e,+e(k)))

(0%

~ ._% Iy J 5 S(hw-(e,*e) ) ,(e)de
. . (82-5) +hg :

(252—hw) 2

(2e,-hw) Ziug

~ - 2T 5 9 (hw-e,) | B | II.31

where ,go(e) is the pure magnon density of states,
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9‘0(8) = %% § (e-e(k)) I1.32

which may be shown to be non-zero only in the range [0, 80] thus giving

the range of the magnon-sideband.

The expression 11,31 will 5e seen from later work to be a characteriétic
form for all the magnon-sideband calculations,

From equations II.30, II.3l it is clear that the magnon sideband lies on

the high energy side of the exciton energy €, and has a bandwidth of

2
€g = E(k)m3x . So the 31debapd lies w1th1n the range [82, E,t€, and has

the shape of the magnon density of states modified. by the function

' 2
o\ 2e-hw
flw, g) = - ( 2 )

11.33
(2e,-hw) 2+ug”

discussed in detail below.

We haveiindicated‘in seétion I.1 that the exciton-magnon ihteractién
,wi}l cause a. shift in the valué of €, from the non—interaéting case, SO
the poéition of the sidebénd with‘respect.to fhe magnetic dipole exciton
- 1line (nof‘given‘in the absérption ébectrum here because we have ignored fhe"
magnetic component of the applied field) Will‘be not exactly in thé'range

[62, egfsoj’ but shifted to slightly higher energy by a g-dependent

constant, though the bandwidth o

will be unaffected, as also will the

lineshape be unaffected. In the preéent model such a shift is treated as a
free pafameter determined by any observed shift in the sideband. It is
expected any such shift will be small és the high-energy cut-off of the

sideband is often seen to.be very close to €, +A€0 .

The more specific dependence on the strength of the exciton-magnon
interaction g is given by the factor f(w, g) , eqn. IL.33.
It will be shown in subsequent sections that this term is the same for

all cases considered here, and’aparf from the shift just discussed, will
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contain all the dependence‘on‘the excitén—magnon,interaction streﬁgth. It
is therefore éf interest to consider the effect f(w, g) eqn. II.33 has in
modifying the expression for‘the absorptién in the region of the magnon
sideband (egn. II.31) from its value as the density of states when g . is
zero, |

In order to_ascértain which values of g will have the greatesf affect
on the sideband consider the function ‘f(w, g) as a function of g . It

has a maximum at g = 0 of unity ahd'a'point of inflection at

0= [: 11.2} a
2 | 2 V3
L

since the absorption band lies in the range [52, eyten] - At this point
flw, g) is 0.75. Since €, >> € in general, the point of inflection will

lie at a large distance from the origin, and the function f(m)‘ will be
slowly varying everywhere in both g and w . Though it will have
maximum slope at the point of inflection, in this neighbourhood it will be

very close to linear over the range €, of the absorption band. Hence one

would expect the density of states to be altered little by ‘f(m, g)', at

most being convoluted with -a straight.liﬁe with a makimum slope of

| o 3 -1 : :
approximately 3 [(62—80)] which, in general, will be small as the exciton
energy sé is large. This line will tend to reduce the absorption.mqst near

the high;energy-edge of the band though this effect will still be small,
because of the small slope of f(w, g) . The only case where there may be a

large effect is in the far infra-red where €, is ‘much closer to € than’

in the more commonly studied near infra-red and visible regioms.
We must therefore conclude that the effect of exciton-magnon interaction

“on the magnon sideband will be small for the model Hamiltonian we have chosen,
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and the dominant contribution to the magnon sideband comes from the
perturbation Hamiltonian. According to Parkinson and Loudon (1968),
Eremenko, Novikov and Petrov (1974) and.others, the effect of the exciton-
magnon interaction may have an observable effect on the magnon sideband
lineshape, though experimental evidence is still not clear on the point..
Hence the generally small contribution of the-exc1ton—magnon interaction
represents a limitation of the present model.h The effect of the inter-

action becomes more noticable as one goes to longer wavelengths so €,

becomes closer in magnitude to‘ €y -
We will now present some numerical examples of the sideband predlcted
by egn. II.31. Unfortunately, probably due to the scarcity of ferromagnetlc‘
insulators in nature, very few 1nstances of magnon sidebands in ferromagnets
'have neen reported. Hulin, Benoit 3 la Guillaume and Hanus (197l)rhave
given a brief interpretation of a line in the luminescenee spectrum of
ferromagnetie Eu0 as the result of a coupled exciton-magnon process, while

Meltzer (1972) has discussed a p0331ble magnon 31deband in the absorptlon

spectrum of GdCZ Insufficient detalls.are_glven in either paper to

‘allow very satisfactory comparison with a model calculation.

For the purposes of illustration we will choose to study the face-
A centred.cubic crystal EuO . We do this for‘eeverai:reasons;‘ Firstly
Meltzer (1972) indicates that the sideband reperted by him may be.explained
by -a single-ion rather than an exchange:eouplea mechanism and so it is not

* Note that if we give the exciton-magnon interaction .strength ¢ some
k-dependence the result of the first line of equation II.31 will be unchanged
except for g being replaced by g(k) .- It is then possible to have a
significant effect on the sideband shape if g(k) has some large value for
particular values of k (e.g. near the edge of the Brillouin zone) and the
‘sideband will look like a weighted density of states function with a form
which can give a lineshape similar to that of Parkinson and Louddn (1968) for
an appropriate form for g as a function of Kk . This statement also

applies to the pure antiferromagnet magnon sideband lineshape, eqn. II.60. For
. the impurity case (Chapter III) the form of the Hamiltonian sub-matrices is
such that they no longer commute and hence the simple diagonalisation scheme
no longer applies, though the Hamiltonian may still be diagonalised.

Hence we may also-obtain a 51gn1f1cant effect from the exciton-magnon
interaction if g4 has some ' k-dependence, in this case.
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clear that the present model is relevént. On the other hand, though the
line reported by Hulin and others (1971) was found in luminescence, and may
not appear in absorption (Huliﬁ, Hanus, Benoit a la Guillaumé and Reed
1970), other sidebands may be so obsefvable. We also choose the"fbc
structured Eu0 because of its appérently small anisotropy and small next
nearest neighbour exchange integral (McGuire, Argyle,Shafer and Smart 1963)
though Barak, Gabai and Kaplén (1974) have considered the next nearest
neighbouf case in their study of nuclear spin-lattice réla#ation in Eu0 .

We therefore choose to base‘our'example'on ferromagnetic EuOb and
neglect any anisotropy or next nearést neighbour exchange interaction in the

crystal. For an fee ferromagnet the .magnon energy is given by

X kK a k a 'kza
e(k). 480[3 ‘[cos 5 cos —%—- + cos .—%— cos +
S kza kxa
'?‘ cos . T cos '—2— ):l »
€, = 3205 . | | - II.34

The magnon denéity-of states for the pure crystal, go(e) , eqn. II,32

was calculatea numefically‘using a Monte-Carlo method (Buchheit aﬁd'Loly v
1972, Loly and Buchheit 1972) and the detailé'éf this and other numerical
calculations required in later parts‘df this work are presented'in dppendix

- 3. The.accﬁracy of the calculations has not been estimated explicitly but
the essential features of the density of sfates are éhown using an écéuracy
éf betfgrbthan 5% . The details of the fee Brillouin zone, including its
sjmmetry Points are well known and wiil.not be .given hére. The only features
we nofe'ihvpassing‘are the logarifhmicvsingularity in the density of states -
at the high énergy edge of the band, and the cusp point at 0.75 of the

bandwidth, the former due to zeros in the group velocity |Vk€(k)| along

the line joining kX = — (0, 1, 0) with kW = g-(%,.l, 0) and equivalent

- Q)=

lines, and the latter being due to zeros in the group velocity at the point

k, =

B

(%, ¥, ¥) (Loly and Buchheit 1972). The cusp point is a type I-
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van Hove singularity which behaves like

for w, the cusp-point frequency at 0.75 of the bandwidth (Swendsen and

Callen 1972).
For Eu0 , Barak and others (1974) give a value for the nearest

neighbour exchange integral ranging from 0.37 to 0.52 cm"l giving vélues
for €, (eqn. II;SH) of between‘ LAl band 58 c:m-'l for a ground state spin
of %—. Using tﬁe value of the Curie<temperatur§ of  69.4 K for FEul we
may alternatively estimate éo from moiecular field theory (McGuire and

others 1963) using

T = 85(S+1)d .

giving a value of 43 cm—l , for a spin of 7

5 which correspondsvto a

possible ground state spin‘in, Eu0 for an absorption process.(Hulin and
. others 1971). For this examble we choose € = 45 cm_l' . We will also
consider the magnetic dipole parent exciton to have an energy of

3.366V = 27100 cm-l, a value which has no‘great»significance but will servé
to,illustraté the behaviour in thisvpegion of the’specffum where an
absOrption band might occur (though there is no evidenqe that one wili occur).,
We will ignore the éffect.of‘a shift of the sideband due to the exciton-
magﬁon interaction étrength g which is expected to be small.,
The results of the magndn sideband calculation for a ferromagnetic fee
1 |

crysfal with 80 = 45 cm . 82 = '27100‘cm_l are shown in fig. II.1 for

several values of the ratio g/e2 . All the curves were obtained from the -

same numerical values of the density of states to enable a comparison to be .
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00
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Absorption, ox(w)

€3075€;  €F€
Frequency,w

FIGURE II.1., Curves represenfing‘magnon sidebands in the absorption
spectrum of an fee cryétal such as Eu0O for various values
of the exciton-magnon interaction strength g , shown in the

figure as the dimehsionless quantity g/E2 .
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made. The logarithmic singularity at the upper band edge is not well
described in the calculations where cone obtains a finite value at the edge.

The pure density of states is very closely approximated by l/S2 times the

| g/e2 = 0 curve, since g, >> €, . Note that the magnon sideband retains

2 0
the basic shape of the density of states for this model, the effect of
increasing g is merely to reduée the inteﬁsityvin the high—energy region
slightly over the lower end;‘as described earlier in this section. The
overall'reduction in the absorption shown in fig. II.1 as g is inéreased
will be 6ffset somewhat by an increase in the»perturbatibnvstrength [/
(eQn. II,R) whiﬁh mightvbé expected to be larger as the crystai—field

effects (which will affect ¢ ) increase. That is, since g and 7 both

involve some form of coupling between excitons and magnons, if one is large

the other should also be large.

As no direct obsérvations of absorption'magnon sidebands have been made
in Eu0 to date, it is not poésible to_obtain.any experimental test of the
Validity of the forms Qf the magﬁon sidebands shown in fig. II;l.  We ﬁould‘
predict from the present model, howe?er;‘fhét the sidebaﬁd will be skewed
to have its maximum very close to the high-energy cut-off of thé béﬁd, and
its widfh will be.approximately given by the separation of the-cusp poinf
from that edge, i.e. the band width éhouid be measured at about 0.25 times
the separation between the weék magngtic dipole‘barent exciton and the‘highf
energy cut—offipf the bandvsince‘most of the exciton-magnon states
represented by N and Vv (eqn. II.16) lie in this region. It would be 
interesting to see if lines in the absorption épectfumbof Eu0 exhibit

these properties.

I1.2 Magnon Sidebands in a Pure Antiferromagnet

Many more antiferromagnetic insulators occur in nature than ferro-

magnetic ones, and many of these are found to exhibit magnon sidebands in
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their spectra.. Several theories have been proposed to describe these
sidebands, principélly by Sell, Greene and White (1967), Tanabe and
‘Gondiara (1967), Tanabe, Gondiafa and Murata (19685, Loudon (1968),
Parkinson and Loudon (1968), Moriya (1966, 1968), Moriya and Inoue (1968),
Freeman and Hopfield (1968), McClure (1968), Misetich,vDietz and Guggenheim
(1968), Dietz, Meixner and Guggenheim (1970), Stokowski, Sell and Guggenhiem
(1371), Bhandari and Falicov (1972), Petrov and Gaididei (1971), Gaididéi
and Loktev (1974), Eremenko, Novikov and Petrov.(1974). ‘Some of these
theories are very complex. ‘The'valuelof‘the present model is because of
its simplicity and the important fact that the siaeband‘maybbe calculated |
exactly from the phenomenological Hamiltonian assumed, thus allowing fqr a
clear physical interpretation of the result.

The calculation:of magnoﬁ sidebands in a pure.antiferromagnet‘follows
similar lines to that of the ferromagnet in the.last section. 'In the
present case there are two sublattices, and, using the Hamiltonian I.29,
_thefe is no splitting of fhe consequent twofold degeneracy. In.a.real
crystal, if the exciton parent liﬁe has.its.degeneracy totally, or partially
remoﬁed, fhe maghon sideband wili aiso»split, with cémponents corresponding -
to separafe exciton lines. The presenf calculation may be considered to
treat oply'one of the exciton lines;iand give its cﬁrresponding sideband,
with negligible influence from other_excitbh transitions. |

The Hamiltonian, from eqn. I.29 is

(4F) + + +, ot
A % e(k) (o o *B B, ) + €y % (4,4, +B,B,)
tg % (oA Ay +ByB, +ByB, )  11.35
where
e(k) = 275z [l—yk] R : II.36
Y -% > A I1.37
[A] '
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The perturbation on the crystal due to the applied field is given by

eqn. I.9 as

i(AF) _ +,+ +ot
Hoort = z% [ockAk+ockAk.+Bk.Bk+BkBk) . II.38

We consider each sublattice to have ;NO = N/2 ions on it. Writing

y (AF) . . e -
, eqn., II.35 in matrix form, as in section II.1l, gives
A ~ . -

‘[a+B+A+B+]'Mi 0 ﬁé 0 1fa

3 n
H(AE) R N II.39
Mg 0 Mg 0 [|A
o M, o M||B
. 7 M8_ L J
where |
+ + o+ +
"0 = {0, 5 O 5 eees O etc.,
[kl, k, ’ kzv] ’ , '
0 » ;
_’(Ml)ij = (Ma)ij = ek }s(k,, kj) . - II.40
(Mg)ij = (M’-l-)'l:j = '(Ms)ij = (M7)7:J = gﬁ(ki, kJ) s - ‘ II{H’I
(Me)ij = (Ms)ij = e,8(k,, kJ.) . - oI

We see again that all submatrices are diagonal. Hence the matrix is
diagonalised readily along the same lines as section II.1l, giving eigen-

values

: e(k)+e e -e(k)y2 %
) =P [{ 2 - ] +92]- II.43

in direct correspondence with the ferromagnetic case. -Because of the

sublattice degeﬁeracy, though, there are two states with the same eigenvalue
for every;wavenumber.' ,
(AF)

Diagonalisation of H is achieved by the unitary matrix



where

S 0 5, 0
A 0 Sl 0 52
S = A A
$3 0 Su 0
AR
%
le)ij = [2y(y-=)] %G(ki, kj) ,
B Lk
(5p) 5 = L)1 sk, k)
_ -2
(55)55 = - Gy Sk ks
_ +x :
(5355 = /55 8k k)

where xz(k) and y(k) are given by eqns. II.11, II.12, as

Hence the pure crystal Hamiltohianibecomes

where

that is,

x(k)

y(k)

.[d+B+A+B+] 'A ‘ -ﬁ

O
(52

- + + . + »
%.[k (k)(¢k¢k+xkxk)+A (k)(wzwk+gzwk

e X ©

E

W = W™

R,

'EQ*E(k) .
T

E]

En(k)?+l]% .

Ant
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II.uh

IT.45

II.46

II.47

IT.u8

II.49

II.50

II.51

- I1.52
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¢y = [2y(y-x)]_;5ock - -y_;;';_] Ak R >. II.53
IEV ek

Xy = [2y(y-x)] 2Bk - _%Z] B > II.54
. ‘ _ .%

R = 1SS

' 5 4] o -

we = [2y(yra) 1778y + _H'E‘_'Bk . 11.56

© It is readily shown that as thevexciton—magnoﬁ interaction goes to
Zero, ¢k o s X ? Bk ’ 'wk +'Ak., Wy +‘Bk while AT > €, and
A" > e(k) . Hence we again have two branches of the spectrum, one which is =
‘magnon like and one exditqn like, both being modified by the excitpn—mégnon
interaction, g .. It is‘readily shown that ¢, Xs w‘ and w all have |
boson commutation rules, and commute with each other.  This faqf follows
from the boson cpmmutation fules for o, B, A and >B .
| Following sgction II.1 we again write the_perfurbing Hamiltonian in
terms of operators which diagonalise the unperturbed Hamiltonian, giving the
result
Héﬁ?c =1 %{mlﬁ [l e (8o by )]

. +‘§%§% [¢;¢E+¢kwk+x;w;kawk]} . I1.57

Again only a few of the Green functions obtained from these operatofs
(see eqn. I.54) are non-zero, because of the commutation rules. The non-zero
Green functions are obtained in an identical manner to those of section 1.1,

and are found to be

5(k, k)
hw52kf(k)

by s B by r D

+ e ' iy
((xkxk, xk,xk,)> , : I1.58

s(k, k")
how-2A" (k)

CP¥ys Yy sV

((wkwk, w;,w;,)) . : II.59
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kLK)

o by, b U, 0
L A |

((kak, x;’w;,)) . I1.60

Again the degeneracy caused by the two sublattices is revealed in eqns.
II.58-1I.60. The two-magnon and two-exciton lines are also obtained as for
‘the ferromagnet, and again the magnon sideband is obtained from the
imaginary part of egqn. II.60 as

alw) ~ -w ‘f(: ' I
(ez—s(k)) +hg©

where we have used eqn. I1.27 to take the imaginary part, and

§ (ho-(e,+e(K))) | I1.61

AT AR = ey +e(k) ‘ II.62
from eqn. II.43, The factor of 2 in eqn. II.61 arises from fhe degeneracy

of the sublattices, which is absent from éqn. II.31.

Performing the sum over Kk , we obtain
' 2
-h
(22 -hw)*

a(w) ~ 47w
(2 e,-hw) 2ug?

hw- ‘ -
90( 52] | ‘ II,63
where gO(E) is the pure magnon density of states,

| 9(€) = %Eé(e—s(p] - o _ ‘ 11.69

. by A
for e(k) given by eqn. II.36. It can be shown that gO(E) is non-zero

. only within the range B), EOJ , thus giving the range of the sideband.

The identical nature of the expressién for . the magnon sideband for the
ferromagnet and antiferromagnet is immediately obvious, comparing eqn., II.63
with eqn. II.31. The‘comments_made‘in’section II.1 abdut the g-dependence
of egqn. II.3L apply eqﬁally to eqn. II.63, and for thege reasons we will
ignore the effect of g in what follows. |

We will now discuss some obsérvations on a magnon sideband in a-real
crysfal, and combare the results with the magnon sideband daléulated using

eqn. II.63,
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Many antiferromagnetic insulatérs have been found to exhibit magnon
sideband behaviour. A good review ofAfhe obsérvations of such crystals is
given by Sell (1968), and also by Eremenko and Belyaeva (1969), and studies
continue up to the present. The twovmost popular crystals for these

studies are MnF2 and RbM’nF3 . We present an analysis of our caiculations

based on the observations of RanF3 .

1

RanF3 has a perovskite structuré‘és shown in fig. II.2 with each

magnetic ion at the corners of a simple cubic lattice. The lattice
parameter is a = 4.26 A (Stokowski, Sell and Guggenheim 1971), the’crystal

being very highly isotropic, with a negligible anisotropy field (Elliott and

others 1968). The mégnetic'propertieé of the Mn2+ ion are well summarised
by Richards and Brya (i974) and Fﬁjiwara, Gebhardt, Petanides and Tanabe
(1972) who aiso discuss the temperathre dependence ofvmagnon sidébands. ‘The
Néel temperature is 83K . In fig. II;S we show the Brillouin zone of the
crystal, with some important symmetry points (after Eremenko, Novikov and -
Petrov 1974). |

Richards and Brya (1974) give the value of the neapest neighbour exchaﬁge

- integral in xRanFs as: 2J = 4.7 cm—l with an uncertainty of 0,25 cm"l at

300K , a value which agrees well with-many'other authors. As poiﬁted out by
Srivastava and Steﬁenson (1972), for»éxample,'the next nearest neighbour

exchange integral is 0 * 0.14 cm—l (for 2J2 ) and hence negligible. The

anisotropy field is also_négligible. Using the value of 2J given, the
maximum magnon energy may be obtained from the expression for the perovskite

magnon dispersion of

(k)

1

1 o ak
eo[l - §{cos ka t cos kya + cos kza) } ]

€

o = 1278 , L ~ II.65

which; for a ground state spin of g— gives a value for €y of 71 cm-l
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FIGURE II.2.

®-Rp O-F @ -Mn

Unit cell of the perovskite RanF3 . The Rb ions appear at

the cube_vertices, Mn ions at the body centre of the cube,

and .F ions at the. centre of the éube faces. The magnetic

2+ . . . . .
Mn ions form a simple cubic structure with lattice parameter

a .
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FIGURE II.3. Brillouin zone of antiferfomagnetic perovskite RthFs , with '
values of the function Yk bgiven for some symmetry points of

the zone (after Eremenko, Novikov and Petrov 1374).
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with the limits on 2J giving a range from 67 to 74 cm_l . Hence one
would expect the magnon sideband cut-off to have a value near this, though

Srivastava and Stevenson (1972) point out that the uncertainty in the next

nearest neighbour exchange integral of 2J2 = +,14 cm-l could alléw € to

lie within the range 55 +to 89 cm-lj which would account for the variation -

in the value of the cut-off observed for various transitions in RanF3

with a ground state spin of 5/2 .
From eqn. II.63 the predicted magnon sideband shape for a transition in

RanF3 will be given very closely by the puré crystal magnon density of

states. The latter is shown in fig.- IT.4, for the range normalised to the

interval [0, 11 . Note the cusp point at V/g due to symmetry point. X
of the first Brillouin zone (fig. I1.3) and the divergence at the high
energy end of the band, due to the symmetry points L and W in the

Brillouin zone.

From fig. II.4 we wOuld,expect-thevmagnon sideband to have its peak at -
the cut-off point, and to have a width which is approximately (l - V/§1th
of the distance between the parent exciton frequency and the cut-off

frequency. This sort of behaviour has been measured for example by . :
' 6 (6. . b (b . . '
Stevenson (1966) for the Alg( S] -> Eg( G) transition which has also been

studied in some detail by Srivastava and Stevenson (1972) and Eremenké;
Ndvikovland Petrov (1974). The .relevant curve of Stevénson (1966) is shown
in fig, II.5 with the calculated magnon»sideband superimposed for comparison,
with the absorption scale chosen arbitrarily to give a reasonable fit. The
experimental cufve has been greatly expanded and so ié-not considered to be
§éry accurate, but is merely intended for qomparison. It will be seen fhat
the general shape of the experimental cuﬁve is reproduced, though the curvé

is much smaller_near the top edge of the band. This may be a real effect due
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10-

Density of States, go()\) |

L.wW

FIGURE II.4.

/891

Frequency, A

Plot of the pure crYstal magnon density of states for an

. antiferromagnetic pérbvskite crystal. The fpequency has been

normalised to the range [0, 1] . The calculated magnon

sideband lineshape is a very good apprbximation to this curve,



Absorption, d((w)
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FIGURE II.S.

€,+€,
Frequency, w

Comparison of the (approximate) observed magnon sideband
lineshape of the GAlg(SS) - FEQ(HG] transition in RanF3
observed by Stevenson (1966) (solid curve), with the calculated

magnon sideband absorption with parameters chosen to give a

reasonable fit (dashed curve). Exfw‘% M!lu ,

 yadum K txatm ewnyy and Aigh” enirgry

cul - iy | -
A 4# €, =  2,§'19'8 ‘”f ,
€, -+ €, > 252298 am"[snlvu'fm &

Stevensom, 1972)
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to the impeffection in describing the magnon energy by the form of eqn.
I1.65, or it may be due to experimental problems of resolution (or both).
It is observed experimentally that és the temperature is increased,

the maximum of the sideband moves away from the edge of the band
(Srivastava'and Stevenson 19725 Srivaétava, Stevenson and Linz ‘1973).
Thus one possible explanation for the shift of the maximum of the sideband
from the band edge may be due to its temperature dependence, which we have
made no attempt to describe here.‘ Pérkinson and Loudon (1968) on the~'
other hand state that the shift eiists even at»témperatures close fQ Zero
-and isudug to the effect of the exciton—magnoh interaction. This view is
suppOrtéd by Eremenko, Novikov and Petrov (1974). A further alternative
explanation is discﬁssed in chapter IV whefe we point out that it may be
possible to éxplain the observed shift by taking into . account a small
sécond nearest neighboﬁr interactioﬁ, or by otherwise making thé magnon

energy, eqn. II.65 more realistic. ~See also the footnote on page 39.
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* CHAPTER III

MAGNON SIDEBANDS'IN CRYSTALS WITH SPIN IMPURITIES

We now turn to the problem.of the effect of spin impurities on the
spectrum of‘an insulator in the region of its magnon sidebands. The.problém
has been treated for an antiferromagnet previously by Parkinson (1969a,
1969b) as an extension>of the work'of Parkinson and Loudon (1968). As noted
by Parkinson (1969a) the theory‘ofba substitutional impurity is very similar
to that of a magnon sideband. ‘This will be borne out by the great
similarity between the results‘of'this chapfer and those of chapter II. The
theory employed by Pafkinson (1969b) is'wellipresented in the review article
of Elliott, Keunhansl and Leath (1974). |

This chapter is divided up as follows: In:the first sectién we present
the model calculation of magnon sidebands of a>ferromagnet_with impurity,
and then give an example for a ohe—dimensional crystal. FWe also copsider
the effeéts of an impurity on the magnon sideband in Eu0 whiéh was
calculated for the pure crystal in sectioﬁ»II.l, after a general discussion
»of the effects éf an impurity Qn'the magnén sideband. Seéfion II1.2
contains the cofresponding impurity calculation for an antiferromagﬁefic‘

cryétal; and the results are illustrated by a numerical example of a
substitutional Ni2+ impurity in the RanF3 crystal described in section

I1.2.

IIT.1 Substitutional Impurity in a Ferromagnet: Magnon Sidebands

There have not been any reported observatigns of fhe effects of a
substitutional impurity on magnon sidebands in.a ferromagnetic insulator.
The calculations of this'séction are entirély prédictive.  We‘present the
calculations as a preliminary stage‘fo discussing the impure antiferro-

magnetic crystal, as an aid to understanding the phenomena involved, and to
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demonstrate the adaptability of the method prescribed by the model to
several of the magnetically ordered states of a crystal.

The model Hamiltonian for an impure ferromagnet was discussed in section
I.3, and is taken as egn. 1,39, tﬁat is

(F)

+ + +, ot r
= Ee(k)akak t g, %bkbk tg % (qkbk+bkak) + Y bkzk' @, IIL.1

H

where the magnon dispersion is given by

e(k) = 27|52 (1) + |7|s%0z » I11.2
1 ¢ kA '
Y, == 3 e . : IIT.3
k=2
Cp = (JISI-gS)/IS. | - IIT.4

for an impurity with spih S'" and nearest neighbour exchange integral” J'
in a host lattice whose ions have spin S and exchange integral J . The

+ L+ ' . .
operators ak, bk represent creation operators of magnons .and excitons,

respectively, with wavenumber ‘k'.' The sum over A in eqn. III.3 is over .
the neafest neighbours of‘any magnetic ion in the crystal. Note the-shift.'
in the magnon—énergy eqn. III.2 due tb the impgrity term .IJISsz.. This
causes a shift in energy of the overail spectrum but will_not alter its
shape. .

The perturbation on the crystal due to the applied field is assumed to

couple only to the pure host excitations and is given by eqn. I.8 as’

(F) o« (4 + S | ,
Hoert = Z% (@b taby) - o - IIL.S

To calculate the magnon sideband in the absorption spectrﬁm of the
crystal, we write the crystal Hamiltonian egn. III.1l in matrix form as

[~a+;b+] A B)[a

y(E) III.6

e

B D|ib
+ ot . . . R
where a , b etc., are as given in section II.1l, e.g.

+ + +
a = [a e e 0 a ] .
o kl ° " kzv



Submatrices -

SO

The matrices

A

i, B

B and 5

, ‘and D vstill_commute; but 4

g = clk)sligs &
i = gd(ki, kj) ,
i - szﬁ(ki, kg)

8

is no longer
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are assumed to be unaffected by the impurity,

III.7
I1T1.8

II1.9

diagonal. We proceed by performing the diagonalisation of A and then

diagonalising the full matrix. of eqn. III.6 by treating it as a 2 X 2

matrix, as before. The diagonalisation of the Hamiltonian eqn. III.6 is

thus a two-stage procedure.

We treat here the case of a finite crystal

with N atoms, where N 1is large. The problem of an infinite lattice is

discussed in appendix 4.

The secular equation for the eigenvalues A of 2 is'given by the

‘determinant of 2 - A} which is

det(4-A1) =

= TT (elk))-)

9 o0 ey

LI Y

=TT (o) [l Y Eaﬁ:w]

s 1t

€,=A

III.10
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performing row operations on the determinant. The pure crystal eigenvalues
are simply €(k) , given by the first term of eqn. III.10. Hence the impure

crystal eigenvalues satisfy the secular equation

D(A) = 1+y ‘f(:?ﬂl('ﬁ =0. III.11

The eigenvectors of 4 are obtained in the usual manner from the
equation (A-XD)T = 0 » giving the relation
o ,é:(kj)-x -
T (‘ki) = SrHE Tx,(kj)' . | III.12
When the eigenvectors are properly normélised, one obtains the eigen-

vector TA with kith component as
V. l . . l ' -
T, (k.) = S - II1.13
where" ' | |
. 2 A | .
2 1 : : _ ‘ o
N = ‘Z(j [E | _;\] | - - IIL.4

A

is the squared normalisation constant. The matrix T whose columns are

given by TA will then diagonalise the matrix A . - The ¢rystal Hamiltonian

may then be‘writteh

H = oo | | III.15
. B D b
where A is given by ‘
sz A8(L. 4 o II1.16
(Mg = 480 1
and
C o
T=1 L

~

for Ai the <th eigenvalue of matrix 4 .

Treating the matrix in eqn. III.15 as a 2 X 2. matrix one obtains the

eigenvalues of H(F) as
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N €, +\ €.-\2 % ‘_
O [[ 2 } +g?} III.17
and the matrix U which diagonalises the matrix in eqn. III.15 as
X Uy U,
v=1{. . N  III.18
Uy U,
where
(?41)7;3 = [2“%”]'-%5(71, 3 s | III.19
(uz)q;j ‘=‘f2¥‘¥*§()]—%é(i, o, o III.20
| . . . o -
[us)ij _= ‘[(Y‘x’/zyjza(i, j) ’ -I1I.21
) ’ . . ;/ I . . | ; !
(“u]q;j = [(Yi')()/zﬂed(z, J) I11.22
for the A-dependent functions
X = (e,mN)/2g - , III.23
Y= [xon3a]® . 3 . IIL.2u

Then the crystal Hamiltoniah;‘fully diagonalised, is given by

fasbl A (a) | . 1,
. '. - » O .
CaAT(h) : UL
H = il ro U+T+|: }
(A b
g .
N
] A (AN)E
T P ‘ - -
= ; (A (M)HyHy A (x):zv)\lzvx) ‘ ! III.25

where the operators for which the Hamiltonian is diagonal, HA"NA , are.

JR “
= o't o 1I1.26
N b | | |

defined by~

or
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B = - [27(¥-x)17% ) k1 [(¥-x)/27]% > ’k

A Nx x £ eI n-}\ - 15 - oK 111,27
N o= [2r(ren 157 ¥ “k S (v % Py '

A A EElOX TN [(r+x)/2Y]; %——k——”( % - 11128

Note that in the limit of ¢ - 0 , we have that- N €, » AT > X so
that again we have an exciton-like branch represented by the operators y
and a magnon-like branch represented by Hy . The effect of the impurify

is to alter the magnitude of the magnon eigenvalues from e(k) . We

illustrate this fact by giving in fig. III.1 a schematic plot of the one-

1 . . '
show —-? ,» the impurity-dependent part. The intersections of the two

curves represent soiutions of the secularwequation III.11,

It ﬁill be seen from'fig. III.l that for the contribﬁtion_of the
impurity, Y., going to zero thé'roots of> D()A) correspond to thé values of
é(k) . TFor a finite <Y , however, the roots of the equation'afe at higher
energies than thervalues of €(k);,'by an amount which is a function of

E‘. Note>also that there is a root which lies outside the pure crystal
range of values of €(k) , i.e. outside the magnon band. For large Y o
this "local mode" may be far rémoved frombthe magnoﬁ band.®* The ldcal mode
will be seen to occur for both positive and negative values of .Yy being_oﬁ
the high eﬁérgy side of the band for vy > 0 and on the low energy side for
y <0 for |y| sufficiently large. Note also that as y > 0 the local

- modes approach the edges of the band. | '

For an infinite crystal.thendiscrete”roots df’fig, III.1 mefge into a
continuous band, described by the density of states. The density of states
will be perturbed by the impurity as it is in the discrete case. The

behaviour of the local mode will be very similar to that of the discrete

* Since it will be shown later in this section that the real part of D(})
vanishes within the band for a one-dimensional crystal, such a crystal can
have no resonance modes. The existence criteria for resonant modes in three-
‘dimensional crystals is discussed near the end of this section.
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Frequency, A

-

| \ C@(N-1y

ey [ elkg) [ elky) eln) eliy)

" FIGURE III.1. Illustration of the properties of the secular function

(N .
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crystal case, We discuss the‘aspects of an infinite crystal calculation in
more detail in appendix 4. Maradﬁdin, Montroll and Weiss (1963) have
discussed vibrational density of states of the one-dimensional infinite
crystal.

The commutation rules for HX‘ and NX fbllow from the boson

commutation rules of ak and bk . For example

[y, #,] =
- . ' nY1-% Sk, k")
: T {[uy(x)yw) F-x(D) (Z(A-x(A")] kg' E0=3) (e Ck=77)
| ‘ | ¥ s(k,k’)
+ [(y(x)—x(x)](z(af)—x(x'))/(uy»(xv)x(w))] k%" E00=) (s(k,)_m},
= 80, m[y—%+ .Y_;_Xf] = 6(h, AN o 111,29
since
1 1 (1 1 ,
% EO-A (e(O-NT] - A7 % [e(k)-x e(k)‘-w] > A EN
. .

from the secular equation, III.1l, and for A= AT we get N(K)2 .
Similarly,
: . ' _

[y, 0y ) = 6(h, A II1.30
and all other commutators are zero., Hence H and N also satisfy boson
commutation rules and so may be considered to represent new types of
excitations in the crystal.

The perturbatibn Hamiltonian, eqn. III.5 is now written in terms of HA

and W, , making use of the fact that

! 1 1 '
= §(A, A7 : III.31
NI f? S0O=x sCoaT = 0 AN, |

as
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HI(DZ it =1 % {Q_YJ(;X-)— (N;\LN{+N>¥N}\- (.H;HI+H>\'H>\)] ¥ ’;&g (H;N;‘fﬂx”ﬂ} : I1I.32
Note the similarity of III.32 with the pure crystal form of the
perturbation Hamiltonian oPerétors, eqn. II.19,.
We may now evaluate the non—zeré Green functions which -occur in the

expression for the optical absorption, section I.4 in a similar manner to

those of section II.l, making use of the boson commutation rules for H

A
and NA . We obtain
4
<<H)\ X )\,H}\,))‘ = SLAD I1I.33
 hw-2AT(A)
b ' o :
CCHH 5 W) )Y = —(S(—A’—i‘——)— A I3
A : hw-2X " (X))
<(HANA’ HX’NA')) = ’——QSAiAL%— 3
hw-(X+X )
S(ALT)

-

[ ) III-35
h - +

which are identical in form to the Green functions obtained .in chapter II.
Egqns. III.33 and III;34 will‘again give fhe absorpfion due to two-magnon and
two-exciton excitations which are perturbed by the exciton—magnon‘interaction'
(whose strength is g ) while.eqn} III1.35 gives the absorpfion‘of the magnon
sideband, that is, |

W X(X)\2 1
olw) ~ - EIT“§[Y<A)J hw=Te,#A)

® (€5U2

(262—hw)2 '
~ =2TW g(hw-¢,) : - III.36
‘ (2¢ 2-‘hm) 2+l+g2 2

where we have made use of eqn. II.27 to take the imaginary part, and g(A)

is the impure crystal magnon density of states, which is given by
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gA) = - #%-Im é%-ln D(A) | 1I1.37

where N is the number of cells in the crystal. D(A) is the. secular

determinant of matrix A4 , eqn. III.1O0,

DOA) = D (MDA  III.38

where D()\) is given by eqn. III.11 and

D (A) = T;T‘(e(k)_x) a III.39

- is the pure crystal secular function. Hence eqn. IIi;37 may be written

S9(A) = g (A) + Ag(A) | III.u0
for gO(A)' the pure crystal density of states, eqn. II.32. If we define a

phase shift ¢ as

o Im DA .
. tan § = - m , IIT.4l

it is readily shown (Callaway 1974, appendix 4) that the change in density
of states due to the "impurity  is ‘

Ag(A) = - %%-%%-. : : CIIILN2

This result is for a single impurity. For the case of 7 impurities,
~ where 7 is.sufficienfly small so that the impurity ions do not interact
with each other, the contribution from each impurity may be added, and

Ag(A) = - %‘%%‘ . III.43

for concentration ¢ = N of impurities.

The g-depéndent coeffiéient éf thg densityﬁof states of eqn. III.BB is
identical witﬁ that occurihg in chapter II. It isrthusrexpected to have
little effect on the sideband lineshape, as discussed theré; We therefore
ignore its.effect in what follows. |

IFWe will now give a calculation éf the magnon sideband in a one-
dimensional ferromagnet. This example has been discussed.by Richardson

(1974) for a model which is somewhat different from that proposed here,
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because of the.férm taken for thé coupling of the crystal with the external
field. While the model of Richardson (1974) predicts a lineshape due to an
exciton-magnon interaction, it sﬁfférs from the iimitation that it is unable
to explain both the width of the éideband and its position with respect to

the exciton energy €, , because of the absence of magnon operators in the

2
perturbing Hamiltonian. The preseht'model therefore presents some improvement
in describing observed magnon sidebands (see also appendix 1).

For a one-dimensional crystal the magnoh energy is

e(k) .= eo(l'— cos k)/2 + a | A III.uY
where
g, = W5z - ILas
o = J5%z | :  III.u6
o= SIS -1 . | III.u7

Since o has the effeqt of a constant shift of the spectrum by that
amount, and does not affect the épectrum.in any other way, we ignore it in
the following anal&sis. |

The secular determinant D(X) , eqn. III.1l1l may be integrated analytically
if we change the sum to an integral (i.e. if the number of atoms in the
crystal is infinite)‘giving*"

D(A) =1+ iy[(eOQA)A]‘% | - III.48

for
(egMA >0 | III.49

i.e. < A< .
i.e. 0 <A €4

If A lies outside the range III.49, 0D(X) is purely real, but inside
the range III.49 the real part of D(X) is a constant. Hence local modes

may occur outside the band whose range is'éqn. III.49, but there can be no

% From eqn. III.36, the magnon sideband will have A replaced by

hw - €, > that is the range of the sideband is 0 < A—eg < gy
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resonance modes inside the band since the derivative of the real part
vanishes in this region (see towards the end of this section for a more
detailed analysis of resonant modes). Note that D(A) , whose imaginary

part is proportional to the pure crystal density of states gO(A) ,hés

square-root singularities at both edges of the band, eqn. III.us.
The change in the density of states due to the impurity is, from

eqns. III.43 and III.48,

Ag () ¢ d8 e o ITI.50
g = =T T T Y T :
. m dl 2m '[[EO—X)A+y?][(EOfA)A]%
where from egn. III.41,

tan § = fY[(€O-X)X]q% o ‘ ITII.51

and ¢ 1is the concentration of impurity. The pure crystal density of states
gO(A) is obtained from the imaginary part of D(A) , eqn. III.48 (making use
of egn, II.27) as

. go(x) =-%—[(e0—x)xjf% : | - III.52

. The total density of states is thus

g = gg(A) + ag(N)

2|

III.53

[leg] 4 - g )

) 2
(eg=A) Aty
which reduces to go(k) when the effect of the impurity, Y goes to zero,

as required.

Note that when A =‘O.5€0 » the change of density of states Ag(A) is

zero for all values of y . For A < 0.5¢, the change of density of states

0

is negative, and for A > 0.5e it is positive (for 7y > 0 ) . The effect

0
of the impurity is thus to introduce some skewness to the symmetric pure

crystal density of states gO(A) . It will be readily seen, in fact, that

Ag(}) 1is antisymmetric about A = 0.580 .
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Closer examination of the Y-dependénce of the change of density of
states reveals that eqn. III.50 as a function of Y is a peaked function,
and hence the effect of 7Yy  on the densitj of states is not unique. That>is,
the amount of skewness introducedkby Yy for any‘one value of A is not a
unique function of <y , but there afe in generai two values of vy .for which
the.density of states will be idehtical at a gi&en distance from the centre .

of the band. For a given value of A , Ag(}) will be'largest when

v = (0N
'In any eVent, fhe change in the deﬁsity of stafes within the band will
be‘small because we have assuméd the concentration of impurity, e , to be‘
sﬁall. This is illustrated in fig. I1I.2 where we'piot the total deﬁsity of

states for Yy = 0 and Yy = 0.43380,,3 value of vy for which the overall

skewnesé of the density of states is large.

When A lies outside the raﬁge, eqn. III.49, D(A) is purely real and
the existence of local modes is possible. These will occur when 'b(A) is
zero,forv )\ outside the band. »That is, when

%

1 y[(A-edN]F =0 . IIL.s4
i.e.
€
%o 2 0
. A= > * ioﬂ . IIT.55
(the - sign is for A > €y » the + sign for A < 0 . in eqn. III.SS)

which lie outside the band since .Y2-> 0. For vy going'to zero, the local
modes will both occur at the edges of the band. The situation is illustrated

- in fig. III.3 where we show the intersection of

RO = [(r=e)A]
with -1/y . The points of intersection define the local mode frequencies.
Local modes at these frequencies are represented as delta functions whose

height is proportional to the concentration ¢ of impurity. Note that for
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FIGURE III.2. Plot of the pure crystal density of states (solid curve) and

impure crystal density ofbstates for Y/i—:O = 0.433 (dashed

curve) for a one-dimensional crystal. Note the small amount
of skewness introduced by the impurity despite a concentration

¢ = 0.1 - which is made large to demonstrate the effect.
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FIGURE III.3. Plot of the real part R(X)_ of the one-dimensional lattice

Green function.  The point Kl- where the curve -1/y

intersects R(\) defines the frequency of the local mode.
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Y < 0 the local mode lies on the low energy side of the band, while for
Y > 0 the local mode occurs on the higﬁ energy side of the band, both modes
are removed from the band by the same amount for fhe same value of {Yl .

The effect of an impurity on a one-dimensional magnon sidebénd is to
shift the density of states slightly so that for Yy > 0 , for eiample the
magnon excitation modes are shifted from the low . energies to higher 6neé
within the band. The effectkig small within the band. For all values' of
Y there will also be local modes which ;ie on onebside of the bagd or the
other depending on the sign of Y ; both types of mode separated from the
band by the same amount. Thé reﬁoval from the band of the ;ocal modes is a
function of Y ;,and_they merge with the edges of the band as Yy goes to
ZEero. Thesereffects are illgstrated in fig. IT1.1. | |

 As pointed out in chapter I; Merhin and Wagner (1966) have proved that
there is no férromagnefic ground state in a oné—dimensional crystal., There
are, however, SQme antiferromagnetic qrystals which exhibit one-dimensional
ferromagnetic behaviour of theif.magnetic_ions (Sorgéh, Cohen and Makovsky
1974, for example) ana a calculation éuch as the above may be useful if the
intefadtioﬁ between chainsvof magnétic ions is small compared wifh tﬁe
interactiqn within a row of the ioms.

We now move to a more realistic calculation: that of a_three—
dimensional ferromagnet with an impufity. We will treat the samé.crystai as
was usea in the pure crystal-célculation of section II.1, EuO . Unforfun—
ately because of thé lack of‘experimental work done on this crystal, there
are no reports of the effects of impurities on the sideband. We will
therefore study hypothetical cases which cover the various possibilities for
the effect of an impurity prédictedAby the model. The magnoﬁ sideband is
calculated using .eqn. III.36>and so we must calculate the impurity density
of states. We begin by writing the secular functién, D(A) in its real‘and

imaginary parts, making use of Dirac's relation



72

lim
€0

1 P _ .
e Rl LN € I1I.56
where P represents the principal part. Then

D(A) = 1 + yR(A) + 2mygy (A) II1I.57
where go(A) is the pure crystal density‘of states, and R(A) is related
to g,(A) by the Hilbert transform

: o g(AD ,
- = e, ]
R(}) = — fo o A | »III.SB

for the demsity of states normalised to the range (0, 1) ®. The properties
~of -R(A) "have been discussed for a simple cubic ferromagnet by Callaway
(1964),

Calculations of the pure crystal density of states go(k) for an fee

crystal havé been reported in section II.1. An attempt has been made t§
calculate R(A) from these caiculations, and to obtain the impure magnon
density of states, eqn. III1.37 by making use of the phase factor § to obtain
the change in the density of states, eqn.nIII.u3.. The details of the
numerical analysis are presénted in appendix»3. |

We begin by considering how, in general,’the impurify may affect the
spectrum. The discussion will apply to bothwthe ferrqmagnétic case and.the
antiferromagnetic one.presented in the next section. The’ﬁroperties of the
spectra affected By the impurity ﬁhich we enunciate hefe are general
propertieé_ofrthe model and will apply to ény three-dimensional crystal"
which has a Hamiltonian of the form discussed in this work.

The most important'featuré of thevcalculation of the cﬁange in ther
spectrum due to spin impuritiés is the behaviour of fhe,real part of the
lattice Green function’ R(\) , eqn. III.58 both within and without the
pufe crystal absorption band, We will begin by considering the behaviour

* R(\) 1is often defined to be the negative of this, then the sign of R(})
in egn. III.57 is changed (Callaway 1974).
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outside the band, where the imaginary part of the secular determinant, and
hence also the pure crystal density of states, are zero.

For frequencies outside the band, the impure crystal density of states
is zero except possibly for a number‘of‘discrete points, where it is
represented as a delta'fﬁnction.ﬁhose intensity is proportional to the
impurity concentraction, ¢ . Such states outside the band are called -
iocal modes, and will occur at freQuencies whichlare.the solutions of the

equation o
1+ yR(A) ¥‘0 s A oﬁtside band. ..> I111.59

It is not always possible to find Valuee of A which satisfy eqn.
II1.59, and we will now COnsidef when a local mode is likely to occur. The
most straightforward way to determine if there are solutions of eqn. III.SQ
and what they are, is to eensider the intersection of R(A) with -1/y ,
for A outside the band. In this region R()A) will be monotonic on each
side offthe band‘and there can'be’at most one local mode on either side of
the band.

In fig. III.4 we depict the curves R(A) end —i/yi for Varioue values |
of y . The calculation is for an'fbc crysfal like EuO . For Yy > 0. (curve

.(:)) the curves intersect at a point Al on the high energy side of the band,
and hence there will be a local mode at this point. For <Yy small, Al will

lie close to the band edge and may not be observable. For 7Y < 0 the
situation is interesting. For -l/lYI.smaller than the value. of R(A) at

(curve (:)) we again find an intersection outside

“the lower band edge, R,

the band, but this time on the low-energy side of the band. For 1/|y|

greater than er (curve C:)), however, there are no local modes, and the
problem of the existence of resonances arises for l/lyl-'lying between Rl
and R2 . For |y| sufficiently small that 'l/IYI lies above R2 » there

can be neither resonances nor local modes in the spectrum, which will then
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®

FIGURE III.4. Plot of the real part of the fee lattice Green function both

within and without the band 0 < A < ¢ The curves

O .
labelled (:), (:),and (:) represent values of —l/Y as

~ described in the text.
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not have any large changes over any region of the bana due to the impurity.
When a local mode is present, sincé the total number of states of the
system is unaltered by the impurity (Wolfram and Callaway 1963) the net
change of the spectrum within the band is small in any given regién as may
be seen for example from fig. III.l which.illustrateS'that property of
Réyleigh's theoremé (Maradudin, Montroll, Weiss and-Ipatova 1971). Hence
‘when a local mo&e exists as it does fbr
Yy >0
and (see fig. III.4) : ’
ey > I11.60
Rl o
the chahge in the density of states within the band will be everywhere
small, because of the smail concentration e ,band hence the.in—bahd region
will have no observable changg made to it by the impurity.
| When there can be no local ques, there is the possibility of a

resonance mode within the band appearing. This may appear for

él-> Yo . III.61
ST

(see figf III.4). The resonance will occur at points which satiéfy
| 1+ YR(A) = 0, A inside band ‘ | I1T1.62

if Y satiéfies eqn.'III.Gl and also provided the change in the density of
states is positive for A satisfying gqn; IIT.62. ' The width of the
resonance must also be small compéred to the value of A satisfying eqn.
II1.62 so the peak‘will have a lérge height and thus be observable déspite
the small impurity concentration. [Note the comparison with therone—
dimensional>model where R(A) 1is zero inside the band, and diverges as the
Band is approached from outside so that local modeg will éccur for all
Yy , fig. II1.3.]

The nature of a resonance may be determined as follows: in appendix U
we expréés the change in the density of states due fo-the impurity in the

form
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g5 (M) (1+YR() ) -ymg (MR (A)

Ag(A) = ym ,
(1+vR()) 2+ (g (1)) 2

ITI.63

where the prime denotes differentiation with respect to A , If 1 + YR())
is small we may expand it in a Taylor series and retain only the first term,
so

L+ YR xv[A = A R(A)

\

where the maximum value of the resonance occurs at A = A

O L]
Then eqn. III.63 becomes,‘near_a resonance,
. .1
JENCN L, (Mg (A2
BAg(A) z-ﬂc[m] 0y +[F"TX')"] .
: A=X | RS EN
-0 0
R III.64
(A-2g) “4T%/u :
where the wiath of the resonance is described by (Callaway 1974)
- Y/R! ’ :
[ = om gO(A)/R<(X)IX=XO . III.65 -

So near X = XO , Ag()\) has a Lorentzian lineshape with a width
determined by T , eqn. III.65. The change,k Ag(}) near Xo will be large

only if T is small so that Ag()A) has a large harrOW‘peak near A = XO'.
The change in density of states must be positive (or one can have an
"antiresonance') which will occur only if T . is negative, from eqn. III.64. -

The conditions for a resonance near A = AO

are then given by
T} = 2mg (M/R'(A) << 1,

r<o. SR I11.66

Of the two possible positions of a resonance A

| 3vuandv Au shown in

fig. III.4 only at A = AS does R(A) have a negative slope thus permitting

the second of the conditions eqn. III.66 to be satisfied. Thus only values

of AS which are greater than the cusp point (at 0.7560' in fig. III.4) may
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be considered for the position of a possible resonance.

For fee cryétals such as Eu0 we have plotted the mode lifetime
|%{ vs |y| in fig. I11.5 for Y safisfying eqn. III.61. For there to be a
resonance we require the first of the inequalities III.66 to be satisfied,
and hence ‘|%¢ must be much greater than unity. To the accuracy of the

present calculations we find from fig. III.5 that a resonance is most likely .

to occur near where R(A) = RQI_(fig. ;II.H)."Since the lifetime in this

region is only about . 1.2 which is not much greater than unity, however, we
therefore conclude that theré will not appear a resonance mode in the magnon‘
sideband of an fbc.qrystal,even_whén’ Y satisfies eqn. III.61, under the
assumptions‘of the present modél and to within the'accuracy”of the numerical
work. It is unlikely that the‘nﬁmerical differentiation is in error By
orders  of mégnitude and the conclusion’that’a local mode will nof occur is
made with sbme confidence.

To.summarise the results we expect from observations of the effeét of a
substitutional spin impurity on the fee ferromégnet Eu0 , we expect that 
for Y >0, that‘is, for the impurity-host exchaﬁge integral J' greéter
than the host-host exchange integral J in absolute magnitude® there‘wiil
be a local mode on thé‘high—energy side of the band whose separation from
the band will be large for large Y and small for small Yy . For Y
negative but sufficientiy large so that

|yl <By .'  I11.67

(see fig, III.4) a local mode will appear on the low energy side of the band,

approaching the band as l/|Y| approaches Rl . When local modes appear on

either side of the band the density of states and hence the magnon sideband

o

* Note that antiferromagnetic coupling of the impurity is also possible, in
which case Y will be negative for all possible values of J' .
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Plot of possible resonant mode lifetimes for the fee crystal

for various values of 7Y satisfying eqn., III.61., The range

of Y/SO shown is from -1.05 to -1.53. while the range of

Y/€

0 satisfying condition III.6Y isvfrom -1.05 to -1.75.
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lineshaﬁe, will be affected only slightly in any one regioﬁ of the band, and
the change is unlikely to be observablé for the smail_concentration of
impurities considered by the model.

For vy negative and satisfying the condition III.61 it is possible for

resonance modes to appear when Y approaches —l/RQ., but numerical -

calculations suggest that the width of the mode for these values of 7Yy is

too large for the resonance to be observable.

When Y is negative and smaller in magnitude than l/R2 there will be

no dramatic changes in'the magnon sideband lineshape and it is expected

that the effect of the impurity will be unobservable.

III.ZF’Substitutiona1 Impurity in an Antiferromagnet: Magnon Sidebands

Calculations of the effect of a substitutional spin impurity in an
antiferromagnet having magnon sidebands in its absérption spectrum have been
made by Parkinson (1969a, 1969b), discussing several crystals, but in

particular the appearance of local modes that will occur from Ni2+

impurities in RanF3 . The work follows directly from the pure crystal

magnon sideband study of Parkinson and Loudon (1968). In this section we
will consider the general theory of subStitutional’impurity effects which
fesult from our model and then consider the specific effects an impurity

might have on an antiferromagnetic perovskite such as ’RanFs .

The model calculation is very similar to that of section III.l for‘the
ferromagnet. The main difference is the degeneracy'which results from the
existence of two sublattices, as discussed in section II.2. Fof the model
Hamiltonian iﬁéludiﬁg impurity,!which we use in the présent calculation,
egn. I.40, we haye:ignoredfany effect of the impurity sgaftering excitations

A

from one branch to another, an effect which is small (i.e} M2 = M3 =90
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from eqn. I.37 as discussed in section I.3), and hence the impurity will not
cause the degeneracy to be split. The Hamiltonian, eqn. I.40 is
H(AF)

+
= %e(k) (o0 *B,B) + €, % (4,4, +B;B, )

tg T([: (aEAk+AEak+B;Bk+BEBk) +y kzk (azak,+8;6k,] . III.68

!

The- calculation proceeds as in section III.1., The Hamiltonian which

perturbs the system is given by equation I.9 as
(4F) _ e b - .
Hoopt = 1 % '(qk4k+akAk+BkBk+BkBk) . | III.69

The magnon dispersion in eqn. III.68 is given by

%

- , _
e(k) = 2JSz[1;Yi] + JSsz s ' III.70
0 =§ y kA III.71
a1
and
p = (J'S'-J8) /IS i - IIILL72

where J' and S’ are the exchange integral and spin of the impurity and

J and S ‘the corresponding values for the host ions. The operators ak, Ak

are annihilation operators for magnons and excitons on sublattice 4 ,

respectively, and Bkr,and Bk those for sublattice B . The sum over K

is over the first Brillouin zone of é,crystal whose unit cell hés one ion
'from-each sublattice in it; : |
The shift in the ground state enefgy due»tobthé impurity, JSQQz in
eqn. III.70 is iﬁdependent‘of kK , and will merely cause a shift of the
entire spectrum without affecting the lineshape. For this_reaéon it:méy be
ignored in the calculations which folléw.
| We begin the célculaticn by again writing the Hamiltonian in matrix

form, now as,
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e'g™A" BT, o M

1 2 ||
Jo M, o u/lle
HAD) o L II1.73
M5> 0 M6 0 A
o #, o (8]
where the notation is that of section II.2 with the exception that now
'(Ml)ij = (Me).ij = e(ki)bé (k; s kj) vy IIT.74
We therefore diagonalise the submatrix
M. o
Lo III1.75
0 My
before we may proceed to diagonalise the entire matrix. .Each of the
submatrices ﬁi = ﬁS has been diagonalised in section III.1. The secular
equation for III.75 then becomes (from eqn. III,11)
: L )
D(A) = [1 + Yém] =0.  II1.76.

The matrix which diagonalises III.75 is block diagohal, the diagonal

‘blocks having identical matrices with ;(A: ki)th element (eqn. III.13)

1 | '
7, (k;) = NS II1.77
for.
‘ 2
> o« 1% | -
,NX = % [“a(k)-xJ . I11.78

Eqn. III.76 reveals_immediatelyrthe two-fold degeneracy of the eiggne
‘values of the impurity parf of the 'Hamiltonién,. which are the result of the |
unit cell having one ion froﬁ each sublattice;

The matrix- 7 whose coiumné are the eigenvegtors T ofveqn.FIII.77

~ A

~will diagonalise each of the matrices Mi, M3 . Hence the Hamiltonian in

block diagonal-form is
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o' 8"AB"1 [A. 0o #. o]
T 1 2
o A, o . ,
AT - G D 111,79
M5 0 MG 0
0 M.7 o M| [B]
where
( l)ij = A;8(4, §)
= (A) .. ITI.
( 2)w 11.80
and
T o] o o
o T{o of | A |
T = —] . '~ III.el
o o { T o
o oo T
The diagonalisation of III.79 may now proceed as if the matrix were a
2 X 2 matrix. This is a result of the fact that &2 = @4 ) &5 = &7 s
& = M_ and all these matrices are scalar. The matrix in eqn. III.79 is

) 8

then diagonalised by the matrix

v=| -~ III.82

L_O u 0 Uu

~

where the matrices us; » 1= i, 4 are given by eqns. III.19 to III.22. We

may thus define new operators for which the Hamiltonian - H(AF) is diagonél.
That is,
(4F) _ - bt by ot

H 4 _;:[>\.(A)_(cpx‘@kfx}\xx)_u_(A)(\PA\FA@A N II1.83

where
: 1z 2
o1 “F o % 1 [r-x)? k
N —N—;[_QY(Y-X)] EHT)TX \ [—-ﬁ} zs(k)_-x , III.84
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_ B | % B
1 -% k 1 [r-x]? k .
X)\ = N—;\- [2Y(Y-X)] %m - 'N-; [—2—17-] %E—(-m ) III.85
1 ke %1 ¥ o A
Y= g RYHOTF Y iyt T ey Y Toox III.86
_ A k A LR
_ 8 g B
1 -% k . 1 [r+x]? k
QA.— N; [zi'(mo] ‘ %m + N:\' =7 %E’(‘D’-’X - "II1I1.87
and | |
| E,TA T rrE,-Ay2 % o
Ai(}\) = 22 t [{ 2'2 ] +92] s III.88
x(A) = (ey-A)/2g . - III.89
2. % -
YA = [xO)+1]* . , : I1I.90

: . ~ .
As g=~>0, X +g, and X > X , so that we recover the exciton

2
energy and the magnon energy which is perturbedrby the impurity, A being
‘given bybthe solutions of eqn. III;76. ﬁoth exciton'aﬁd magnon states are
still doubly degenerate. Heﬁce for g non-zero we have two (degenerate)
branéhes, one exciton-like and one magnon—like,_represeﬁted by the operators

QK’ XA and WA’ QA respectively. .

.In section IiI;l we presented some discussion of the existence of local
modes which may be inferred from the secular determinant; eqn. Iilﬂll. The
same considerations apply in the present work, though any.local modes of
eqn. I1I1I1.76 which may exist will4als§ be doubly degenerate. As in the last
section, thé frequency of local modes may be determined from‘the-solution of -
eqn. III.76 outside the band, where it is purely real. For three—dimenéional
cubic crystals this is most simply done’numericaily after the ﬁanner of
. section III.1.

The operators @, X, ¥ ‘and Ql can be readily shown to satiSfy.boson
commutation rules and to commute with'each other., -'This last fact emphésiSes

that the impurity Hamiltonian we.haVe chosen does not cause any scattering
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of excitations from one sublattice to another,

The magnon sideband lineshape may now be calculated along similar
lines to the previous exaﬁples. We express the perturbation Hamiltonian,
eqn..III.69 in the new operators for which theICPYStal Hamiltonian is

diagonal. After the usual manipulations we obtain

(4F) _ 1 ottty b+
Hpert_ =1 ; {_—QY( y) [?AW)\#QAQA+W>\\1’>\'+Q>\Q)‘\— (®A®A+X)\X)\+®)\®>\+XAX)\)]

- +tyt, vtat ' |
+ [@AWA+XAQA+®XWA+XAQ¥]} III.91

K
7~
> >
A

whiéh has a similar form to the pure crystal ferfufbation Hamiltonian, eqn.
11.57. | |

The pptical absorption is given from<secti6n I.4 by Green functions of
the time-independent part of’eqn. III;91.  The commﬁtation rules for fhe
operator§ ¢, X, ¥, @ , and use of tﬁe diégonal form of the crystal

Hamiltonian, eqn. III.83 give us the following non-zero Green functions:

. . ]
((0y0y, &) ,01,)) = SLATD)
CAAT AT hw-21" (1)
—-— ' ‘ + + - .
= (XX, Xy %) ) I11.92
’ !
«ny, ¥ty = ST
’ hw-21" (1)
, ot ot ‘ |
=R, 49,0, © IIT.93
?
(¥, &) ¥, =,—§531%—;:—
AT re-(A )
ST
- hw—lez+k
= X0, X000, IIILO4

A A’ AT *
The Green functions III.92 and III.93 again give thevtwobmagnon and
two-exciton absorptions, and fhe Green functidn‘III.gu gives the magnon side-
band. The optical absorptioh in the fegion of the sideband is therefdre

given by
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(2€2fhw) 2

a(w) ~ -l g(hw-e,) . III.95

(282—hw)2+492
which is identical»in form to the pure crystal result, eqn. II.63 with the
difference that g(e) is now the impure crystal density of states, given by
g(A) = -;T—lﬁ In ZZCZX n DY) TIT.96
and '
D(A) = DOU\)D(X) o 8 I1I1.97
for vD(A) given by eqﬁ. I1I1.76, and DO(A) is the pﬁre cryéta; density of

states, given for example by the square of eqn. I11.39. In eqn. III.96, N
is the number of unit cells in the lattice.
~ The density of states, eqn. III.96 may be evaluated in'a similar

manner to that for the ferromagnet (section III.1). We make use of the

expression IIT.u4l

_Im DN ’
‘tan 6 = — m III.98

to write the change in demsity of states from the pure crystal value as

(eqn. III.u3)
Nay . e db
where c¢ 1is the (small) concentration of ‘impurities within the crystal.
Following the discussion in section II.1 of the dependence of the magnon

sideband lineshape on the exciton-magnon interaction strength ¢ , we expect

the effect fo be small, and ignore the term

(2e,hu) 2/,[(282-}1«») 2+l{g2]; |  III.100
in what follows. Hence from eqn., III.95, if sé  is large éompared'with the
maximum magnon enérgy €y » the magnon sideband wi;l be closely approkimated
in shape to the impure mégnon density of states g(hw_€2) and we must thus

consider the changes of this which are due to the impurity. The effects of
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an impurity on the density of states were discussed in section III.1 in a
general way, and we will consider here only the éituation as it affects an
antiferromagnetic crystal, taking a,perovskife structure as our example, as
was done for the pure crystal case in éection I1.2,

Johnson, Dietz and Guggenheim (1966) have reported on the effects of

Ni2+ impurities on the emission spectra of MnF, KMnF and RanF3 .

‘ : . . ts s g
Unfortunately the spectrum taken in em1831on.fre complicated because of the

ppssibility'of different coupling of the excitons and magnons with each
other and with the radiation fiéld.' Therefore if_is likely that the model .
Hamiitonians‘we have chosen Specifiéally to studyvabsofptidn effects may not
describe the situation very»well. This is:confifmed by the occurrence of

sidebands lower in energy than the parent excitons, and for energies of

separatibh much larger than € é;?O cm—l in the case of. RbM'nF3 ,'és
expected from the discussion of section II.2. The sidebands at lower energy
than the parent are probably thé highly temperature dependent '"hot-bands"
mentioned briefly in the introduction. We therefore conclude that we are
unable to deécribe the.phenomenavobserved‘by Johnson and: others (1966) with
‘the present model calculations. We take note, however of the value of the
impurity—host exchange integral. J' determined by the authors to be given
in teﬁ@é of the_pﬁre crystal vélue, J as

J'

= : III.101
= 3.5 A :

for ¥i?T in a host of Mﬂ2+ jons. Since from eqn. I.36a, Y is
approximated by

~ 2J5z¢€

<
2

’ g ) ) :
2JSz e 1) ‘ ‘ II11.102

This value of J'/J (eqn. I1I.101) gives Yy a positive value of

2.580 , for € and the magnon dispersionfenergy given by egns. II.65 as

O 2
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%

1 2
eo[l = (cos.kxa +‘cos kya + cos kza) J .

e(k) 9

£, = 128 - . II1.103

for the perovskite structure.

In fig. III.6 we present thé‘curve of R(A) 'for the pérovskite
structure which has the magnetic iOns arranged antiferromagnetically on a
simple cﬁbic,lattice. R()\) is thevHilbert transform of the pure crystal

density of states gO(A) 'shown in fig. II.4. Following the discussion of

section III.1 a local mode will occur whenever Y is positive, or for vy .
negative and sufficiently large thaf |
0 < -‘;/y‘< Ry . | . . III.lom
In»;he former case the local mode is on thé high energy side of the‘band,
and for condition III.104 it lies on the low energy side. |
There is also the possibility of resonant modes appearing for the range
Rl < - 1/y < 32 ' : . III,105
as explained in section III.1l. FTor resonance modes to océur the conditioﬁs
II1.66 must be met for Y satisfying eqn. III.105. The'secénd of these
conditions will apply if A is greater than the cusp boint of fig.'III;G
iat v@7§'.' We must thus examine the first criterion of eqn{ I11.66 for
1.0 > X > VB/9 : - III1.106

and Y satisfying eqn. III.105,
We have plotted the lifetimes |%1 for possible resonance modes of

the perovskite structure inyfig. III.7. We again find that the largest

lifetime occurs for - '1l/Yy very. close to’ R2 , but again also the lifetime

of about 2.1 1is not sufficiehtly larger than unity for the resonance to be
observable, though the lifetime for this structure is longer than that for
the ferromagnetic fece structure. Another complication in this case is the

greater proximity of points of possible resonance to the divergence of the
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a1 BCE | A 2

FIGURE III.6. Plot of the real part of . R(A) of the lattice Green function

for a perovskite structure crystal such as RbMnF

3 The.

energy has been normalised so that the pﬁre absorption band

lies between 0 and 1 .
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FIGURE III.7. Values of the lifetimes of possible resonant modes for the
perovskite crystal for Yy satisfying condition III.105 and

A satisfying condition III1,.106. Values shown. are for Y/eo
in the range -0.32 to -0.515 where the lifetime is
largest. . The range of Y/€0> satisfying condition III,105

is -0.32 to =-2.7. Data for Yy < -0.4% are highly

inaccurate.
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density of states at the band edge (fig. II.4) which will make any other
close maximum in the density of states difficult to resolve,
We therefore summarise the expected.effects of a substitutional spin

impurity on a perovskite structure crystal like RanF3 as follows. Local

modes will occur for 7y positive, and fof negative values of vy sufficiently‘
large to satisfy condition iII.lOM*. When local-modes exist thepe_will be
only small and pfobably unobservable changes to the in-band region of the
spectrum. For the Ni2+“impurity studied by Johnéon and others (l§66) there
will be a local mode at an energy approximately 0.71 times the bandwidth
higher than the top of the band in the absorption specfruﬁ.

In tﬁe region of the spectrum satisfied by condition III1.106 and for vy
vsatisfying condition III.105 the possiﬁility of the appearaﬁce of resonance
modes was explored, and it was found.thaf althoughvthe lifetime of states in
this region is longer than that fdr the fefromagnetic fbcAsfructure studied
in section III.1, the lifetimes are not sufficiently long for a resonance to
become observable. Hence for éllIValues of ¥y such‘that

- 1/y > Ry ‘ - IIL.107"

it is expected that the impurity will not have any observable effect on the
magnon sideband lineshape.
Parkinson (1969a, 1969b) has also studied impurity effects on the magnon

sidebands of 'RanFa “and concludes that local modes (for 8o vsymmetry

modes localised on the impurity) will occur above the band for ¢ > 0 » l.e.
in our case for Yy > 0 (eqn. iII.lOQ)rapart from any effect of anisotropy

fields (small in RbMnF o ). He does not mention any condition for the

appearance of local modes below the band, however. Parkinson (1969b)

* Note: The condition that y is negative may be fulfilled if the impﬁrity
couples ferromagnetically to the host crystal, though in this case interband
scattering of magnons may not be negligible and it may not bg reasonable

to. ignore the effect of off-diagonal sub-matrices M2 and M3 .of

eqn. 1,34,
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discusses resonance modes within'the‘band but does not give any strong‘

arguments for their existence, or otherwise. it would thus appear that the
~present simple model is capable of explaining many of.the impurity phenomena
discussed by Parkinson (19695, 1969b) with his more sophisticated model; but
also permits a discussion ofvthé existence of resonant modeé withiﬁ the band

in a semi-qualitative manner.
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CHAPTER 1V

CONCLUSION

In this work we have présented“a simple model for the éxciton-magnqn
interaction for deséribing magﬁon sidebands in absorbtion spectra in an
ideal crystal and a Koster-Slater type model for describing the effect of a
substitutional spin impurity on the syéfem. ‘ |

| Despite the simplicity of the model, we are abie té describe the
essential features of the pure érystal magnon sideband ahd-give an account
of the effect of an impurity which allows considgr;tion of both locai mode
and resonant mode phenomena. It is this aspect which justifies the chosén
form of the phenomenological Hamiltonians. |

One short-coming of the model is the Sméll effect that the exciton-
'magnon interaction strength g has on the resultént magnon sideband line- |
shape ﬁhose shape is closely approximated by the magnon density of states.
This is contrary to the calculation of Parkinson and Loudon (1968) who
found for their model that a non;zero exciton-magnon interaction in' perovskite

'RbDMnF, causes the sideband shape to change from the perovskite density of

states with a singularity at the high energy edge of the band (fig. II.4)
so that the singularity is removed:and the band has a maximum

which lieé inside the band rather thanvét the edgé. As discussed in
appendix 1 thié arises from a mbre sophisticated_effective exciton-magnon
Hamiltonian, leading to the lattigg Green function (Parkinson and Loudon

1968, their eqn. (47))

. EgP
where G is approximately the lattice Green function we have used and
"J'S!

g~ 1 : .IV.2
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where J' and S' are the excited state (not impurity) values of the
exchange integral and spin for the exciton interaction. The Green function

G used by Parkinson and Loudon (1968) is given by
. 2 2
sty = }_2:2Sln'(kxa)12(k)
N g hw—e:Q-e(k)

V.3

where vlz(k) is givén by eqn. I.25. The Green function éonsidered in the

present work was

G(w) =%%h—w_—€l_€—(k) . | | IV.u
2 .

‘The additional,factor in eqn. IV.3 has little efféct in the region‘
where G(w) is large, i.e. ét the edge of the.Brillouin zone and therefore'
 the Green functions may be considered approximately equivalent.

| In the present model our results therefore obtain from considering p in
eqn.FIV.l to be zero., With a'more-réalistic treatment of the exciton-magnon
interaction Hamiltonian we would expect to cbtain a Green function like that
of eQﬁ. Iv.1l (appendi#'l) and hencevgét a more significant contribution from
the interaction to the magnon sideband lineshape.

Any explanation of a shift of the magnon méximum of the magnon sideband
must take into account a more realistic expression for the magnon dispersion.
e(k) . For example, a shift of the maximum of the'sidebénd in a ferromagnefic
fee crystai'could‘be effected by inclusion of sdme simple cubic next nearest.
neighbéﬁr'interaction, as diséussed by Swendsen and Callen (1972) and Loly
and Buchheit (1972).' The‘amount of shift due to this effect will depend on
the relafive magnitudes of the nearest neighbour to next nearest neighbour
interactions. Such an improvement to the expression‘for e(k) is readily
included in the present model>calculation, and will not alter the form of
the expressions for the magﬁon §idebands derived here. vIt is thus also
possible to at least partially ekpiain'the shift of the sideband maximum by

effects which do not depehd on any exciton-magnon interaction.
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Local modes are found to occur in the model when the equation

1+ yRQ\) =0 - | IV.5
for R(A) the real part of the lattiéé Green funétion; eqn; IV.4, has -
solutions for X outside the band of frequencies,where the imaginary part
of eqn. IV.4 is zero. For sﬁch éoiufiéhs ﬁhere Y is‘positive thé local.
mode lies on the high-energy side of thelband; and where Y is negative it ‘
lies on the low-energy side. Since ‘R(A) ié monotonic outside the band,
only one local mode can occur for any given value of vy . Near the edge of
the band, pg()A) will bé large,if‘theré is a large siﬁgularity in the demsity
of states just within the edge'of the band, and so fbr Y small the ldcal
mode will be very close to the edge and may be unobser?able.

For;the threeédimenéionalfqrystals'studied thefe are certain values of
the impurity parameter <y for which there willAbe.no local mode, and the
poésibility of resonances appearingrwithin the band must be considered{
Resonances will occur in the absence of local modes if there are solutions
of eqn. V.5 for X Vlying within the:baﬁd provided the width in’thé peak of.
the»change of density of'stateé is éﬁall.- This was found not to be the case
(to within the accuracy of the.numeriéal calculationé) for either of the
crystals studied, though the width was smaller for the perovskite structure

than the fee structure for the value of vy such that the width was

~smallest.

For the ?articular model we haﬁe stﬁdied, the résonance (if it éccurs)
will occur at exactly the solutions of eqn. IV.5 iﬁside the band. This is
because the solutions lie ét the point of inflexion of the function &
(eqn; IIi.#l) whose negative derivative gives the change of the density of

states (eqn. III.43). [This may be seen by substituting Y(K—AO)R'(A) for
R()\) near AO into the expression for § and noting that § has a maximum of

/2 at AO and its derivative has zero slope at A = A

0 from the change

in sign of the slope at A = AO .] We illustrate these points in
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figures IV.1 and IV.2 where we have plotted the function 6 of eqn. III.4l
in the former and the change in the density of states

in the latter, for the fee structure considered in sections II.1 and III.1

(for which the calculations of R(A) were most accurate - appendix 3). At

the higher energy point AO for which eqn. IV.5 is satisfied within the

band, the functién 8§ undergoes a cﬁaﬁge'in the sign of its slope. If the
slope-ét this point is lafge gnough,‘avresonanée will occur because‘the
excitation mode at this point will bersufficientlybnarrow in width to be
observed (seqtion III.1). Asvillustfated in fig. IV.2 there is a peak in

the change of density of states at A ;'KO but it is not sufficiently large

to account for the small factor e, thé céncentration of impurities‘which
multiplies the derivative confirming the qonclusionAmade in.séctionvIII.l
to thié.effeqt. The'same éonsideration élso:means thaf the increase in Ag'
near the edges of the band will'also be,Epo small to have an Qbservable
effect 6n the shape of the total>den$ity of.states.

In the perovskite structure studied in sections II.2 and III.2 one
further»feature bgcomes importaht.‘ This is the fact that as resonance
modes will lie to the high energy sidé of the cusp poiﬁt at V§7§-;_if they
exist, the resonance lies very close to the lérge singﬁlarity at the edge
of the band and hence may bg difficult to resolve,

Parkinson (1969b) remarksrthat the fesonant mode frequency will be

shifted from A = XO satisfying eqn. IV.5 within the band due to the strong
energy dependence of  90(X) ."However; for a resonance to appear, the.

condition for a narrow. resonance width must be satisfied (eqn. III.66)vand'

this can only be so if -QO(A) does not have a strong energy. dependence at

this point. Thérefore, for the present model we cannot support the»assertion

of Parkinson (1969b) and expect any resonance to occur exactly at the
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FIGURE IV.1. Plot of the function &(X) vs A/EO for the fee crystal with

Y chosen so that R(A) has a large slope. Y = ~1.3¢

0 °



97

a.lo_
(S

[

A, 10
Frequency. A [€,

FIGURE 1V.2. Plot of the derivative of J§(A) of fig. IV.1l vs A/EO , which

‘is proportional to the change of the density of states, for

y = -1.3e. . The derivative isrobtained numerically and is

0
not considered to be very accurate,bparficularly near the ends
of the interval, thoﬁgh it does indicate the features of
'intérest. Thelnegafive kink just below AO is due to a

numerical problem.
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frequency A = XO .

Unfortunately very little experimental work has been done to date on
ferromagnetic insulators which might have magnon sidebands in their
absorption spectra, and also little work has been done on the effects of
impurities on the spectra of either-ferro- or antiferromagnetic insulators.
It would be interesting to see how fhe fésUlts of such experiments éompare
with thé predictions of the.present modei, pafticularly for values of Y
such that localvmodes may occur, but alsb for vy ih‘fhe region where a
resonant'mode may(oécur to test the pbediction that resonant modes will not
occur within fhe band._ It is to be hoped that the effect -of impufities on
magnoﬁ sidebands will receive more attention from experimenters in the near
fﬁture. |

We conclude with a final remark on the modei. As pdinted dut'in
section I.M; use of the lattice'Greén»fﬁnctions calculated in the‘present
work may.élso be made to predict other phenomena of the crystals treated
here. From fhis point of view, the apprdach indiéated by this model will_
have much wider‘application in solid state calculations than indicated by
the magnon sideband calculatioms. _It‘should also be noted that predictions
of two-magnon and two-exciton lineshapes as affected by the'exciton—magnén
iﬁteraction and the impurity arise naturally fromithe calculation leading
to the magnon sideband absorptipn band, and such predictibné may also be éf
value in interpretingvthe spectra neér}where these phenomena are likely to
occur,

| Although the mﬁdel used in this work hasbtreated the exciton énergy €,
and the exciton-magnon interaction strength g as independent of wave-
number, it‘is.also pqssible'to'solve the problem exadtly When‘these are
dependént on wavenumber. We give a brief~indication,of how this may be done
in appendig 5. Apart. from theiimportaﬁt effect that g as a function of
wavenumbér has on the spectrum'(appendix 1), the treatment of a finite exciton
dispersion is necessary.to accurately describe some experimentally observéd

sidebands.
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APPENDIX 1

DISCUSSION OF THE FORM OF THE EXCITON-MAGNON HAMILTONIANS

We present in this appendix, a discussion of’fhe~f§rm of the
perturbation Hamiltonian for‘interaction bf radiation with‘a crystal, having
both exciton and magnon.excitations; The problem is treated from the form
of the crystal wavefuﬁctions (unpértufbed) and fhe allowed‘métri# elements
which are obtained from them. ‘The discussion is not intended to be a
rigorous derivation of the form of,fheAperturbation but islpresented to
‘give some insight iﬁto‘the sigﬁifiéance of the perturbation‘Hamiitonian
chosen for the model discussed in the main text, eqns; 1.8 and I.9.

It is sufficient to discuss the ferrbﬁagnetic crystal Hémiltonian'for
the pure crystal. Though the other Hamiltonians used in the present work
are more complicated,.tﬁe argumént presented here applies equally:weil to
them. We thusiconsider the pure cfystal'Hémiltonién, eqn. 1;28,

H(F)‘ = E e(k)a;ak + €, ;bzbk tg % (azbk+b;ak] - AL
where the symbols have the same.meaning as in the main text.

We havevchosen'the'tﬁird term of eqn. A.l to represent the excitonf
‘magnon interaction as it may'be‘considered as a siﬁple approximation to the
rigorous form eqn. I.l. This may be seen by considering the eqﬁation of
motion of a Green function," G » eqn. I.54, Ve ﬁay prqceed in one of two
wéys. We may differentiate the Green function G n times and then take
some approximation to the resultant Green function on the right hand side
by, for example; taking part of the Gréen fundtion as a statistical average,
so that the remainderrgives the same G as the left hand side. The
resultant solution for"G may therefore also be 6btaihed directly from a

simpler effective crystal Hamiltonian 'HO . For the present case where G

LA
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is quadratic in the exciton and magnon operators, the effective Hamiltonian
may be reduced from the four-operator form of egqn. I.1 to a two-operator
form of the type we have chosen by the above procedure,

The other method of solving the equation of motion for G 1is to take
the equation of motion of the new Green functién on the right handlside of
eqn. I.54, and so on until one obtains a Green function on the right hand
side which may be épproximated by the original ohe, thus leaving a éystem‘
of linear equations to be solved. :Such a procgdure is équivalent to the
first one but may account for many more-terms than by truncating the series
obtained by taking highervprAer derivatives of @ directly,'ﬁecause of
the algebraic complexity df‘taking a large number of terms.

Our approximate eﬁciton-magﬁdn intéraction.Hamiltonian might be
considered to arise from use of the first of the above procedures, and its
small overall effect on the shape of the magnon sidéband (seétion‘II.l)
may be explained by the fact fhat We‘haVe'rejected’too“many terms of the
series of Green functions. The analysis of Parkinson and Loudén (;968) on

the other hand was made using the second of these procedures and therefore

the Green function they obtain, eqn, IV.1, may be a more accurate represent-
ation of an exact Green function found using the compléte excitonFmagnon
interaction Hamiltonian eqn. I.1, This is reflected in the greater

effect of the exciton-magnon intebgction on the magnon sideband found by
these.authors. It can be shown, howéver, in the‘casevof a pure crystal,A
that if ﬁe give g some k-dependence then the fesﬁlt will be a weighted
Green function depending on ‘g(k) which may have a large effect on the
Green function for some values of k. . In this way it would also be
possible to éxplain the shift of the maximum as deécribed‘by Parkinson andA
Loudon (1968) within the framework of the preseﬁt modei. In principle at
least this is also possible with the impurity preseht. Hence  the differencé

between the form of exciton—magnon Hamiltonian chosen in the present work and
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the effective Hamiltonian used by Parkinson and Loudon (1968) is not as
great as it may at first appear.:
The diagonélisation of the Hamiltonian A.l has been given in section.
II.1 and has the form (eqn. II.15)
(r _ -ttt _ ,
where mn  and Vg are harmonic-~oscillator-1like annihilation operators.

They satisfy boson commutation rules, and_commﬁte with each other. As
discussed in section II.1l one may consider the Hamiltonian A.2 as
describing a system with two new types of excitation, one represented by

hk and the other by Vi These excitations may be described by wave-
functions lnﬂ) and Inv) . 'Hence the wavefunctions of the entire system

will be given by products of the individual excitation wavefunctions. ' The

wave equation for the system is then'given by

(F), _ | | -
H lnn)ln\)) = (nnkavxk) |nn>|_nv>, “ A.3

since, for example

= A nhm | -
k knkln ) kankVnn Inn 1)

n_ln ). IR Ay
ni‘n : ' :
The wavefunctions - Inn) and. |hv), for which the Hamiltonian is

diagonal may be written as a unitary transformation of the original exciton

and magnon wavefunctions Ine) and"lnm) by making use of the unitary

matrix S ) eqns; II.13 and II.14. The relationship between the wave-

functions is (Schiff 1968)

In > = :
ln )y = —2— - '%;—-|n ) s
n V2y(y-x) e '
| n ) ] A.5
Iy = 2y [ |,
V2y (y+x) y e

where the symbols (k) and Ay(k) are defined in eqns. II.1l and II.12.
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We now consider the system to be perturbed by a time-dependent

perturbation of the form Hl = Bf(t) where B 1is independent of time. The

Green function fepresenting the linear response of an observable A4(%) to
the perturbation is given e.g. by Mahanty (1974) and at T = OK becomes

(Richardson 1975)

Gypw) = -1 E{(O[A]n)4(n|‘B|0) _ (n|A]2)(O|B]n)} ‘ AB
ot U Y%y Wy,
For the present problem we requife the imaginary part of the Green
function egn. A.6 (see section I.4) which is. given by
In G, (W) = —— ¥ {¢o|a|n)¢n|B|0)s(w-w. )-n]a]|0)<0|B|n)8 (wh. )} . A.7
4B hV2T 720 i G ' on

In eqns. A.6 and A.7, Ih) répresents the nth excited state of the

unperturbed system and w_ = (EO—En)/h where

on
HE ) = £ |n) .
n
From eqn. A.7 the optical absorbtion is obtained: from evaluation of the
matrix elements (0l4|n> and (0|B|n) . In section I.4 it was shown that

. for optical absorption, 4 and B are both dipole moment operators.

We may now study the possible forms of A or B in terms of the

éXciton and magnon operators- ay and bk .” From éqn. A.5,
|o) = loe>]0m>v= {|on>|on)flov}lov)}/2y ¥ |on>|ov>x/y", | A.8
|n) = Ine)|nm) = {]nﬁ)lnn}+[n6)|nv)}/2y + {Inﬁ?]nv)+|nn)|n6)}x/2y . A.9

Then for the matrix elements of A to be non-zero, operations like the
‘one shown in eqn. A.# reveal that A must contain some or all of the
operators -
n+, N v+, vV, n+n+, nn, v+v+, W, nfv+, nv, etc. , A.io
while terms like n+n, n+v , etc. will not contribute. Making use of eqn.‘
II.i6, A -~ may have terﬁs like

+ + | i + 1)t +
(@t ) > (b)) [1 + ay] _(a;ak-rakak), [1 ‘-Ey‘} (B bbby
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. '(a';:b;mkbk] | ete. AL
giving non-zero matrix.elementé in eqn. A.7. Since magnon sidebands only
involvé combinations of excitons and magnoﬁs, only the last term shown in
eqn. A.1ll will contribute to the calculation of mégnoﬁ sidebands. Richardson

(1974) has attempted to calculate magnon sidebands using the second term of

eqn. A.ll stating that the exciton-magnon interaction in the crystal

Hamiltonian H(F) will cause»the correct coupling between excitationé.

‘This is not‘strictly true, aﬁd the lineshapes'predicted by that theory
represent changes to the pure mégponvand pure exciton transitions due to‘the
exciton-magnon interaction. In a reai crystal the exciton and its associated
magnon sideband do not, in general, both couple to the electric comﬁonent of -
the radiation. From a phenomenoiogical péint of view, the theory givén by
Richardson (1974) is a "Zeroth—ofder"‘estimation of magnon sideband behaviouf.

The present work represents some improvement on that.
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APPENDIX 2

CONSIDERATION OF A k-DEPENDENT FUNCTION y(k, k')

The main féature of the model presented in this work is the fact that
the crystal Hamiltonian chosen to describe the system can be diagonaliéed
exactly. The key to this diagonalisation is the fact that the foup sub-
matricesrof the Hamiltonian in matrix representation commute (eqn. II.6).
For the case df an impurity; however;boné further requirement is made. For
>advantage to be faken.qf the‘commutation of the submatrices, one must be
able to diagonalise the impurity part of the Hamiltohian without affecting
the other szmatfices, thét_is, the»othef submatrices must commute with the
transformation matrix which diagonalises the impurity part (for example
submatrix A in egn. III.6). This problem is taken care of‘in the present 
calculation by taking matrices B andl ﬁ (eqn. III.6 for example) . as
scalar matrices. The methods would étill be useful more generally for aﬁy
matrices g and 5 which commuté with the matrix T which -diagonalises
submatrix A . This problem ié qﬁite complex, depending on the form of T
which initurn is a function of the impurity ﬁamiltoniaﬁ under considefation.
We will not diséuSs this complex problem, but'rathervwill consider the
possibility of‘diagonalising the impurity part of:fhe Hamiltonian when the
more rigorous form eqn. I.31l is considered, so that the impurity contribution
Y is a function of k‘, eqn. I.32; that is

: F(kr-K). T -
v(k, k') = 2|7 |52 K ][€+9Yk,_k—Y(Yk 1) B.1

for the impurity at site 1 in the crystal. We demonstrate in this
appendik-that the matrix 4 - AT , such that
255 = (ele) N8 (kg k) + vlkgs k) B.2
may be diagonalised exactly, though the caléulation is rather lengthy.
We write eqn. B.l in matrix form as follows, taking the impurity at

the origin, for convenience,
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vk, k') = 2|Jlstze£-”é D) {ppj-pj-Y[pj-E+£.5j) }}
J
= 2|J|S|E.] D..H. .
II[€“+JZpJnJ] ‘ 8.3
where |
)
= 5 R B.4
g PJ
L] | LQI(VJ)-
for (j) = iki Aj‘
ei = e and
pn = zef - Y'Z pj "
. = . A - . - ‘ .5
n; = PP Yg B

p; being the complex conjugate of pj and p -is the transpose of p .

The sum over j is over the number z of nearest neighbours. We consider v
only the case where the lattice vectors A are orthogonal (e.g. cubic
crystals).

From eqn. B.2 the eigenvalue equation may be written as

{Z'+(g.ﬁ +Y pﬁ]}u =0 B.6
) j Jd d : . »

where u are the eigenvectors and _2' is the matrix with elements

N e(k.)-A . .
4N, . = —sr=r=—6(k.» k) - B.7
1d 2|J|S 1’ g : | _ .

' We now write eqn. B.6 as

A ','%@'+g.§ + Y pj.lnj]ﬁ’_%(/l ';éu) = 0

or

where

X =4y . | B.9
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We now define vectors

f=4"% , g='?, B.10
hj = 2'-%pj , ]j = ﬁjﬁ'-% , Jd =1, 2 B.11
so egn. B.8 is written as
[fffg +Zhj1j].x=o s d=1,2,
o d g
or
==X, =1, = B.12

f(g.X) + 3y h,(1..X) =
3 Jd-d

The vector X may now be written as an expansion in the orthogonal

functions f and hj o d =1, 2 (for cubic crystals the primitive lattice
vectors are orthogonal) as

X = af +§bjhj _ | | N B.13

We therefore solve for a and bj N j 5 1, 2 by substituting eqn.

B.13 intb egqn. B.12 so we have

f[g.[af + ?bjhjn + )Jj hj[lj.[af + z' bj,hj,]]' = -af - ) bh . B.14
o J. dJd
| Eéuating_coefficients’giyes the following i(z+l)b>< (2+1) system of
" equations - _ | | |
[g.f-1 g.hl‘ g.h, g.h, 1[a]]

1l.f 1l.hl—1 ]l.h2 P ]1'hz | bl

1..f 1_.h oo 1..ho-1 |,
L 2 2" 1 _ 2z 3]

-t b

which -may be solved to yield g, bj s § =1, 2z to give the eigenvectors of

the system, making use of eqn. B.9.. The eigenvalues may be obtained from
the secular determinant of eqn. B.15.

It is thus clear that the Hamiltonian with vy(k, k') included as a
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function of the wavenumbers may be diagonalised exactly, though the algebra
involved is tedious. For the model calculation we present in this thesis, it
is considered sufficienf to treat Y as indepehdent of wavenumber, since

the phenomenological effects of an impurity are éfill predicted by the
simpler form. Similar considerations aiso apply to the even more complicated

form of 7y(k, k') in an antiferromagnetic crystal.
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APPENDIX 3

NUMERICAL CALCULATIONS OF LATTICE GREEN FUNCTIONS AND DENSITIES OF STATES

- In this appendix we discuss the various numerical calculatioﬁs that
have been performed throughouf the ;egt. We begin by-describing the
calculation of tﬁe pure crystal dénsity of states for the fee and perovskite
crystals we have studied. The impure crystal den§ity of staté calculations
are then presented, and finally we consider the estimation of local mode
frequencies in the impure crystals."Aé pointed out in‘section iII.l the
6ne—dimensional density of states may be evaiuated analytically and will not
be'treated here. We present in this appendix only ﬁhe calculations for

three-dimensional crystals.

i) - Pure crystal density of states
There have been many and varied attempts to evaluate numerically the:

pure,crystal density of states

g,(A) =

S

¥ 8 (e(k)-2) | ca
K | - |

of magnons in three—dimensional,érystalsi Attempts have been made to obtain
analytic expressions with limited éuccess. For example Jojce (1971) ﬁas
given an exPreésion for the fee crystal Green function (from which'the
density of states‘may‘be'obfained) in terms of completevelliptic integréls
of the first kind.* ‘The moét common metﬁod'of_estimatibn until recently

has been to aftempt to calculate series approximafions for the intégralé‘
involved. Mahanty (1966) and Ra (1971) for example have given'a Fourier
series method for calculating lattice Green functions, while Byrnes, Podgor
and Zachary-(1969) have given a calculation for bee Green functions in which

they expand the integrand into a geometric series.. Chadi and Cohen (1973)

* Such expressions are usually very complicated and of little practical
value, unfortunately. Jelitto (1969) has, however, given useful approximate
analytic expressions for go(k) for the cubic crystals.
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and Morita (1975) have made use of the special symmetries present in the
Brillouin zone of cubic crystals to enable accurate averages over the zone

to be made, and to predict values of the lattice Green function at any point

in the zone, given its value at certain special points. All the methods

described so far have the restriction that they must be rederived for each

particular crystal of interest, and often there is no guarantee that a

method which is successful for one crystal structure will be tractable for

~any other structure.

Recently, however, a new procedure'for evaluating lattice Green

‘functions has become available. This method involves the use of Monte-Carlo

type integration using random.numberé generated over the first Briilouin
zone. A good aescriptién of the simplest form of the method is givén by
Buchheit and ﬁoly‘(1972). Other Monté—Carlo calculations using various types
of interbolations with improved accuracy for a given gbmputation.time have
been described by Mueller, Garland, Cohen and Bennemann (1971), Gilat_and’
Raubenheimer (1966) and Cooke and Wood-(19725.

In the presént work we have evaiuafed the magﬁon densify of states in
the manner of Buchheit‘and Loly (1972). Thé procedure is as folléws:

For an infinite crystal, the sum of eqn. C.1 may be replaced by an
integral over the wavevector K , the volume of integratioh being‘the first
Briilouinkzone. For cubic crystalé'the volume is obtained froﬁ a basic
cube which facilitates the calcu;ation. For.example, the fbckBrillouin zone
is shown in fig. C.l where we illustrate the irreducible zone, 1/48.th
part of the entire zope, any point of which may be transformed to other
equivalent points of the'Brillduin zone (compietely covering the entire zone
by so doing) by crystal group operafionsf Such a zéne'is common to ali
cubic crystals and greatly simplifies.integration over the entire zone, as
the total integral will be simply u8 fimes thébintegral over this volume.
For the Monté—Carlo calculation we generate points throughout the cube of

side TI'X in the first quadrant. This cube contains 12 irreducible zones,
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Illustration of the‘firéf Brillcuin zone of the fec crystal.

The irreducible zone is bounded by TLKWXU and is 1/48 th

of the entire zone. The cube for the numerical infégration’

described in appendix 3 is that in the positive octant with a

side TX . It contains 12 equivalent irreducible zomes.
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and the integral will be multiplied by 4 to give the correct value for

go(k) .

The Monte-Carlo method involves generating triplets of random numbers
between 0 and 1, multiplying each by 7, and evaluating (k) for the
triplet. The range of energies (A) is divided up into a set of
histograms and ﬁnity is added to the histogram corresponding to the
magnitude of e(k) ; This is done until sufficient smoothness of the curve
is obtained, the accuracy of the result being inversely proportional‘to the
square root of the number of points generated in the Brillouin zone. This
simple procedure gives better than 5% accuracy after 106‘ values of Kk ,
in the cubic crystals studied. |

As also pointed out by\Buchheit and Loly (1972) an estimate of the
energy at which van Hove.singularities occur in the density of states may be
made from evaluatiqg the minimum of the group velocity at the energy of each
histogram. The group velocity is given by the expression

Vg = Vka(k) . : ' c.2

We find the minimum of the modulus of vg , which goes to zero at any
van Hove singularity, but is non-zero elsewhere. This procedure is highly
sensitive, and is valuable for determining singularities near the edges of
the zone, or where there is only a slight change in slope of the density of

states at the singularity.

ii) Impure crystal density of states
l The impure crystal density of states was given by equation III.37 or

III.HQ.. The impurity density of states requires evaluation of the integral

(for an infinite crystal - see appendix 4)

3
- _dk

which for 0 < A < e(k)max is complex. The imaginary part' is just the pure
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crystal density of states ‘go(l) , using Dirac's relation, eqn. III.56,

and the real part is the Hilbert transform of go(A) , eqn. III.58,

P l. go.()\') .
R()\) = FJ WCD\' : C.h4
0

for P signifying the principal part of the integral and gO(K)F normalised

so that it is non-zero between 0 and 1 .°

As described in section III.1 the impure crystal density of states is

~given by N
g = g () + Ag(N) . -
where-.
.; ¢ ds : o
Ag(A) = - =3, C.6
tan 8 = —yrg (A)/(1+yR(})) c.7

o 4 ;
the impurity having a (small) concentration of ¢ .

R(A) may be evaluated using the Monte-Carlo method as for the pure -

density of states go(k) » but instead of only one histogram haviﬁg a weight

of unity for each value of Kk , all histograms have a weight for each k.

The <th histogram has weight

w. W

V. = - 1n|-X¥L _m c.8
1 W.~W
T m

where w, is the energy of the kith histogram, w is the energy of the
histogram in which e€(k) lies, for that particular k , and W, o=0.
The expression C.8 for Wi is just the Hilbert transform of a step function

which is unity between w; and W, and zero elsewhere. As a consequence

1
of the weight function C.8, the numerical calculation takes almost an order
of magnitude longer in time to achieve the same accuracy as the calculation

of gO(X) . It was thus considered desirable to find an alternative means of
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evaluating R(A)
The method used follows from combining the Monte-Carlo calculation of
Buchheit and Loly (1972) with the Fourier sine series calculation of Mahanty

(1966). The pure crystal density of states »gO(X) is evaluated using the

Monte-Carlo method to the desired accuracy. Use is then made of a numerical
fast Fourier transform procedure (Gentleman and Sande 1966) to evaluate the

Fourier coefficients a, of"gO(X) . - This enables the real part R(X) - to
be readily calculated since (Mahanty 1966)

B = 2 Y a {cos(amh) [5i(amh)+5i (am(1-0))]
- |

- sin(nm\) [Ci(nmA)-CZ (nm(1-M))]} c.9
where S7i and (€7 are sine and cosine integrals (Abramowitz and Stegun

1965). From the nature of the calculation, the accuracy of R(A) is less

than that of gO(X) . particularly near the singularities where high frequency

terms of the Fourier series may be required, but which will have poor

accuracy due to the statistical noise present in the evaluation oflggo(X) .

It ié felt, however, that the accuracy is adequate for describing the

essential features of the éhange in density of states due to the impurity.*
The next stage is to evéluate the»derivativé of 6  with rgspect to

energy, eqn. C.6. The differenjiation numerically is very difficﬁlf because

of the large amount of noise, particulérly on"go(k) . The method used was

developed by Anderssen and Bloomfield (197u4a, 1974b) whose papers give the
details of the computation. Because of the high level of noise the data is

smoothed considerably when differentiated, and there is some distortion of

o

% For the perovskite structure the Fourier coefficients gave fairly poor
values of R(A) between the cusp point at V8/9 and the upper edge of the
band, because of the small range of this interval, i.e. the small number of
points in this interval compared to the total, and it was found better to
use the Monte-Carlo method in this region, though the computation time for

the desired accuracy of approx. 5% was over an order of magnitude greater
than the series method. : ' ‘
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the differentiated value of tan § , particularly near the singularities.
One way to improve this situation is to reduce the noise by calculating a

more accurate value for gO(A) , but for the present purposes the expense

of computation time was considered too great. It is felt, however, that the
results obtained are qualitatively accurate in describing the effect of the
impurity, a situation which is adequate for the exemplary nature of the.

calculations.

1i1) Local mode frequencies
The frequencies at which local modes occur werekdiscussed in section
III.1. The energy of the local mode is given as a solution of.
1+ yR(A) =0 o .10
where R()A) is given by eqn.'C.4 and vy iska parameter dependent on fhe
impurity. The range of A for which C.10.gives ;ocai modes is that fqr which

go(x) is zero, i.e. outside the main absorption band.

There afe‘séveral ways that solutions of eqn. C.lO may be found. Since
A lies outside the main band, there are no singularities’'in R(A) (except
at the band édge); and the direct analytic integration of R(X) may be
possible. For the fec crystal model used in sections II.1 and III.1 to
describe Fu0 , the integral has been done analytically by Joyée (1971) and
is given in terms of complete elliptic integréls of the first kind. The
integral for the perovskite'structure is not known, however.
| Values of R(X) outside the band may also be estimated by the proéedure
For finding R()A) described in part ii) of this appendix. It is found,
however, that the‘inaccuracy of the determination of Fourier coefficients from

gO(A) limits thevaccuracy for which the value of R(A) may be calculated

as A moves away from the band. For example, for the ferromagnetic fecec
crystal the curve for R(A) 1is limited to cases'where_ A is less than about

1.5 times the width of'the band. Hence the method is good when the local
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mode is ciose to the band (i.e. 7y is small) ﬁut fails for a strong -
impurity effect, where the analytic expressions are more iikely td be
accurate. |

The simplest method of calcﬁlating R(A) outside the band is to use
the Monte-Carlo method described in»pért ii) of this appendix, with eaéh‘
histogram having the weight given by eqn. C.8. The accuracy of the
calculation may be made aé good as desired, with increasing computer time,
and the accuracy will not vary éfeatly over the range of the calculation,
unless it is far removed from the méinAabsorption band when the differences
in eqn. C.8 may become large.. Because bf the smoothness of the curve and
the absence of singulafities in the region of interest, the calculatién of
R(A) outside the band gives far better‘aéquracy for‘the same‘number of
random numﬁers than the same calculation inside the band. It is this method
which has been used to discuss the local modes in chapter III.

Although some of the methods mentioned in this abpéndix give greater
accuracy of calculating the magnén'density ofbstates and local modes, the
methods chosen for use in this wérk'weré selected on the grounds of fhe ease -
with which they may be applied to any cubic crystal, and many other crystals
as well. Because of this it is felt that the methods selected have much

wider application than the uses made of them here.
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APPENDIX 4

SOME LIMITS FOR THE INFINITE CRYSTAL

In this appendix we indicate explicitly the limiting behaviour of
~ certain expressions in the case when the crystal is infinite, that is, the
number of unit cells in the crystal 1s infinite. To simplify the analysis

slightly we will consider a ferromagnet, with the Hamiltonian eqn. 1.39,

AF A + : .
HAF) % e(Kaa + €, iz(:bzbk +g % (aibk@"‘:ak) + %k%' a'l:ak., s D.»l

where the sums over K are now infinite sums, as for an infinite crystal

the Brillouin zone is dense. That is we replace the sum over K by

1 Q 3 1 3, ' '
e fdk=—Jdk . D.2
N K (2“)3 v* ' ,

where § 1is the volume of a primitive cell and V* the volume of the first
Brillouin zone of the érystal,

With an impurity present the magnon part of the Hamiltonian D.1l is
written in the form , _
A+P)ppr = (eC)-AJ8(k-k") + v . D.3

The general expression for an eigenvector is

S, = S(A+P-AT)X D.14
for arbitrary X .

Making use of the fact that
8(A+P-AI) = — [A+P-(A-i€)I] _ ~ D.5
we define a Green function matrix
~ _ A A A ___l ' ‘ . -
G(A) = [A+P-AI] .. ‘ D.6
For the pure crystal, consider

G,(0) = (4177
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with components

§(k-k") |
G (k- k' )\) E—(—k-)—_—)\—' . D.8

Then we may write eqn. D.6 as

G(X)‘ Gy (A) = G (MPG(A)

[2+6,(0B] 16, (0 - Y
In the first line‘of eqn; D.9 the firsf term represents the pube
crystal Green function and‘the éecohd the change of the Green function due
to the impurity. |
We obtain an expression,for.-a(k) of eqn. D.9 in component form by the
following procedure which we show hefé for thé infinite crysfal though the
mefhod is identicai for a finite crystal if we make use of eqn.'D.2.

Eqn. D.9'may be written

Gk, krs 2y = kD Y ” SUKD Geknr, k75 Mydkrdk

e(k)-A A2 e(k)-A
_6,<k—k'> y 1 AU
‘e_(lo-—x‘ijG(k"" kfs Mkt . D10

Multiply both sides by 1/V* aﬁd.integratekover k , giving

Jde(k k',)\)[l +—Y—J kv 1 _ 1 D.11

e(k")—kj AL
SO

1

—J G(ks k'3 A)dk = Dy, A) ~ D.12

v* e(k’) Y

for
( ). L+ _dk' 17  p.a3
= + . ) N
Dlys A Y[ SCHEN | o0
It may be noted by comparison with eqn. III.1l that eqn. D.13 is
related to the secular determinant of A4 + P .
Therefore the Green function for the infinite crystal may be written

from eqn. D.10 using eqn. D.12 as

- S8(k- k ) 1

ay o1 | .
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The crystal density of states is obtained from the diagonal part of

eqn. D.5, as

g(A) = EE'%-E:G(k, k; ) (finite crystal)
T K
Im 1 ‘ e e s . :
= ——-—;-j G(k, k; AM)dk (infinite crystal) : D.15"
™V gy |

for integration over the volume of the first Brillouin zone .

We make use of Dirac's relation

(l) 7 imé(x) \ '  D1s

where P represents'the'principal‘part‘of the integral, in obtaining the
imaginary part of eqn. D.15. The first term of eqn. D.l& gives the pure
crystal density of states das’

goN) = 7 f, sekr-Nd*x .  par
B7 o

The impurity part of the density of states is given by the second term

of eqn. D.1H in eqn. D.15,

Ag(h) = f%—J : dskslg-[—QSXJAl—éﬂ . R - D.18
| BY, T Le(k)-2)

Now we write

N & T i_%_[ _d%
% . E -
" Ipg (etkr-n)2 @ BZ e(k)-A

= %—[B(A)%HQO(DJ | | D.19

making use of egns. D.16 and D.1l7 and defining the function

_ P 4k ' o
R(A) f O-x - D.20 |

Hence from eqn. D.13 wevwrife
. D(Y, A) = (l+YR(}\)+7/ﬂ’Ygo(>\)) v - D.21

So that eqgn. D.18 becomes



119

In Y(R'_Q)ﬁlﬂgé(k)]
m l+yR(A)+iﬂng(A)

Ag(A) = D.22

where primes denote differentiation with respect to A .

Now define a function G6(A) (Callaway 1974) such that -

ﬂygo(k)

tan 6(}\) = “m.

D.23
‘Then from eqn. D.22,
9 () (14YR(D) -R* (Mg, (M)

[1+yR(X))2+(wygo(A))?‘

Ag(A)

_ 148 B .
Stwrax N D-2%
since

deans LoD (1+¥ROD) ~vg (IR (V)]
T A D.25

and

as _ 2. dtané v B
ax = cos 8 o o - D.26

Hence use of eqn. IiI.43 is still valid_for an infinite crystal. For a
concentration ¢ of impﬁrity, the change in‘density of‘stafes for each
impurity may be added if ¢ is sﬁfficiently_small, so the total effect is‘
¢ times Ag(A) of eqn. D.24 as.used in egn. III.43.

| The rest of the calculation leading tolthe magnon sideband lineshépeﬂis
straightforward for the infinite crystal, with the sum ovér A repléced‘by
an integral over- A and the densityrof states given.by eqns. D.l7.and D.2u
rather thén théir discrete values.

The analysis of the antiferromagnet will foliow similar lines to tho;e'
given here, with the same conclusions obtained conéerhipg the changes in

formulae for an infinite crystal.
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APPENDIX. 5

THE MODEL WITH k-DEPENDENT EXCITON ENERGY AND
EXCITON MAGNON INTERACTION STRENGTH

We treat the ferromagnetic crystal for simplicity.

For the situation where

g =gk,
€y = E,5(K)

the submatrices of eqn. II1.6 no longer commute, and we must diagonalise the
Hamiltonian matrixAdirectly. . This may be done using operations on the TOWS
and columns of the determipant tq_give the. secular équation for the eigen-
values of the complete Hamiltonian matrix as

- L gk
bV = TT (ek)-A) TT [82(k ) - A - %%1ZTT:X}

K K’

.[lfYZ = k}2:|' E.l
et !

2
The change in the density of states due to the impurity is now given by -
the imaginary part of the logarithmic determinant of

D=1+Y z: = o E.2

2
E(k)—A——%(-E;_—)\
2

while the first two terms of eqn. E.l give the pure crystal density of

states; Note the modification of the density of states due to the
g(k)-dependent term.

A typical eigenvector has the form
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1
2
() - 7 -
B
. 2
() -
T, = E.3
VN ~g(k,) ’ .
(e, (k) -0) (e(k)-2)-g (k) ?
—g.(kN)
(62 (kN) _)‘) (EZ (kIV) 'A] —g(kN] QJ
.Nizz | - + _ ‘»lg(k) 2 . E.4

k |le(k) - A - (e,Ck)-2) (eCk)-A)-g(k)*

So the matrix, T , formed with eigenvectors TX> of eqn. E.3 as columns

will diagonalise the Hamiltonian matrix. We may therefore define new
operators for'ﬁhich the Hamiltonian is diagonal, and then proceed to
calculate the magnon sideband lineshape, as described in section III.1l. The
result in this case will not be exactly like the magnon density of states,
But will be a modified density of states, depending on the k—dependenqe of
g and €y « The lineshape of the sideband may bé calculated by the Monte-

Carlo method of appendix 3.
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