Vibrational spectroscopy
 of

selected halocarbons.

A thesis submitted for the degree of Doctor of Philosophy of the Australian National University.

Marilyn P. Olliff
June 1994.

Dept. of Chemistry, The Faculties, Australian National University, Canberra, ACT.

Declaration.

This thesis is my own original work, except where otherwise stated. It was completed in the Department of Chemistry at the ANU during the period February 1991 to May 1994. The programs NORCORD and OVER were supplied free of copyright, CALST was written by me, and the program identified as GAUSSIAN 92 in this work refers to Gaussian 92^{TM} of Gaussian Inc. and is referenced on page R3.

Marilyn Cliff.

Acknowledgments

I would like to thank my supervisor Dr Gad Fischer for his most helpful advice throughout this project, and for the unlimited availability of his computer, vacuum line, and glass blowing skills. I would also like to thank my advisers, Professor Jack Elix for helpful suggestions with the halocarbon syntheses, and Professor Ben Selinger for introducing me to my supervisor at the start of my honours year. I am very grateful to Dr Eric Magnusson for introducing me to Gaussian 92^{TM} and for allowing me to use the computer at ADFA to complete my theoretical studies.

I have enjoyed working in the Department of Chemistry, and I am indebted to its members for their assistance in many aspects of this work. I would particularly like to thank Karin Ahrling and Alwell Nwankwoala who have been good friends, even to the extent of reading some of this work, and have supplied a considerable amount of moral support.

I would like to thank the Research School of Chemistry for the use of the Perkin-Elmer 1800 spectrophotometer, the ANU Computer Services Centre for the use of the SUN/UNIX system; and the Supercomputer Facility for the use of the Fujitsu Vector Processor.

This work has been completed with the assistance of an Australian Postgraduate Research Award, for which I and my family were very thankful.

My children, Peter and Alex, have admirably withstood the trials of having a postgraduate student for a parent, and I am indebted to them for remaining cooperative and amiable throughout the exercise. Penny Lees, my cousin, deserves acknowledgment for encouraging me to begin my studies in the first place, and helping me to retain my sense of humour.

My most grateful thanks goes to my husband, Nick, who has given unfailing support and encouragement throughout my studies, and has done more than his fair share of parenting and housework without complaint.

Abstract

.

The vibrational spectroscopy of selected halocarbons has been investigated in this work, with the intention of determining the absolute integrated absorption intensities in the atmospheric window region, and investigating the changes in intensities and force constants with changing numbers of fluorine atoms in the molecule. The halocarbons selected included commercially useful substances as well as two groups of fluorinated ethanes and chloroethanes. Two halopropanes with potential commercial uses were synthesised, since at the start of this project no samples of this type could be obtained from chemical manufacturers. A detailed analysis of the errors encountered in infrared spectroscopy was carried out and the infrared band intensities of 25 halocarbons were measured. These measurements are suitable for use in the calculation of global warming potentials for climate modelling.

Theoretical studies were carried out on 19 haloethanes to determine frequencies, force constants and intensities. Two approaches were used, a mechanistic method using a simple Urey-Bradley force field, and an electronic structure method using ab initio calculations. Comparisons between the frequencies from both types of calculations and the experimental results enabled confirmation of literature frequency assignments, where available, and the tentative assignment of some previously unassigned modes. Changes in force constants with changing numbers of fluorine atoms within the molecule were investigated and, where possible, comparisons were made between the calculated force constants from the Urey-Bradley force field and ab initio results.

Integrated absorbance intensities from the experimental results were compared to the calculated intensities from the $a b$ initio computations for the regions $3500-450 \mathrm{~cm}^{-1}$, $1350-1000 \mathrm{~cm}^{-1}$ and $3200-2800 \mathrm{~cm}^{-1}$. Intensity results were not available from the UreyBradley force field calculations. The region $1350-1000 \mathrm{~cm}^{-1}$ includes the C-F and the CC bond stretching vibrational modes and is of particular interest, since it coincides with the atmospheric window. It is because fluorocarbons absorb so strongly in this region that they are considered to be environmentally damaging. A scaling factor of 0.734 for the calculated intensities was derived, resulting in a good agreement between the experimental and calculated values in the $3500-450 \mathrm{~cm}^{-1}$ and $1350-1000 \mathrm{~cm}^{-1}$ regions. Attempts were made to find a relationship between the intensities in the C-F bond stretching region and the number of fluorine atoms in the molecule. A line of best fit was found for each group of halocarbons such that the intensity is proportional to the square of the number of fluorines. This information may assist in the prediction of vibrational spectra of halocarbons which have not yet been synthesised.

Contents.

Chapter 1 Introduction 1
1.1 Halocarbons. 1
1.2 Infrared radiation. 2
1.3 Selection of halocarbons for investigation. 5
1.3.1 Commercially useful halocarbons. 5
1.3.2 Series selection and grouping. 7
1.4 Syntheses of two halopropanes. 9
1.5 Fourier Transform Infrared Spectroscopy 11
1.5.1 The infrared spectrum. 11
1.5.2 Quantitative analysis. 13
1.5.2.1 Position and shape of absorption bands. 13
1.5.2.2 Integrated absorption intensities. 19
1.5.3 Error analysis. 20
1.5.3.1 Deviation from the Beer-Lambert law. 20
1.5.3.2 Errors arising from the sample and the sample cell 21
1.5.3.3 Instrumental errors. 21
1.5.3.4 Errors in interpretation of spectra. 22
1.5.4 Band intensity measurement. 22
1.6 Calculations of vibrational frequencies, intensities and force constants 23
1.6.1 Urey-Bradley normal coordinate analysis. 23
1.6.2 Ab initio calculations. 29
1.6.3 Vibrational assignments, force constants and intensities. 32
1.7 Summary. 33
Chapter 2 Halocarbon syntheses. 34
2.1 Experimental methods. 34
2.2 Results and product characterisation. 36
2.3 Discussion. 39
Chapter 3. Fourier Transform Infrared Spectroscopy (FTIRS). 45
3.1 Sources of experimental errors. 45
3.1.1 The sample cell. 45
3.1.2 The vapour. 46
3.1.3 The spectrophotometer. 47
3.2 Errors in computation and interpretation. 48
3.3 Comparison of results between different instruments 51
3.4 Experimental procedure for measuring band intensities. 52
Chapter 4 Integrated absorption intensities of selected halocarbons 53
4.1 Experimental methods. 53
4.2 Band intensity results. 53
4.3 Discussion. 56
Chapter 5 Data input for computer calculations. 87
5.1 Urey-Bradley force field calculations. 87
5.1.1 Data input for the program NORCORD. 88
5.1.2 Data input for the program OVER. 96
5.2 Ab initio calculations. 102
5.2.1 Data input for the program GAUSSIAN92. 102
Chapter 6 Assignments of frequencies and resultant force constants 106
6.1 Fundamental frequencies and assignments. 106
6.1.1 Results and assignments for each compound 107
6.1.2 Discussion of assignments 128
6.2 Force constants. 130
6.2.1 Force constants calculated using a Urey-Bradley force field 130
6.2.2 Force constants calculated using ab initio methods. 134
6.2.3 Comparisons between UB and ab initio force constants 137
Chapter 7 Infrared absorbance intensities and optimised geometries 139
7.1 Infrared absorption intensities. 139
7.2 Optimised molecular geometries 147
Chapter 8 Conclusion. 151
Appendix A Nomenclature of hydrochlorofluorocarbons. A1
Appendix B Data input for the Urey-Bradley force field calculations B1
Appendix C Data input for the $a b$ initio calculations. C1
Appendix D Listing of the fortran program CALST. D1
Appendix E Potential energies for the Urey-Bradley force field calculations. E1
Appendix F Individual intensities from the $a b$ initio calculations. F1
References. R1

List of Figures and Tables.

Figures.
1.1 Absorption by water vapour and carbon dioxide showing the position of the atmospheric window (Wang et al. 1976). 3
1.2 The absorbance spectrum for HFC143a (1,1,1-trifluoroethane) in the mid-infrared region. 12
1.3 The fundamental transition $\mathrm{v}=1 \leftarrow \mathrm{v}=0$. 14
1.4 A simple rotational-vibrational band showing the P, Q and R branches. 15
1.5 Changes in band shape due to pressure broadening. 20
1.6 A block diagram of the force constant refinement. 28
2.1 Experiment A: infrared spectra of reactants 2,2,3,3-tetrafluoropropanol and toluenesulfonyl chloride, and product 2,2,3,3-tetrafluoropropyltosylate 37
2.2 Experiment B: infrared spectra of reactants 2,2,3,3,3-pentafluoropropanol and toluenesulfonyl chloride, and product 2,2,3,3,3-pentafluoropropyltosylate. 38
2.3 Infrared spectra of the product of experiment C, 1-chloro-2,2,3,3- tetrafluoropropane, and experiment $\mathrm{D}, 1$-chloro-2,2,3,3,3-pentafluoropropane. 40
2.4 Mass spectra of (a) 1-chloro-2,2,3,3-tetrafluoropropane (HCFC244ca) and (b) 1-chloro-2,2,3,3,3-pentafluoropropane (HCFC235cb). 41
3.1 The sample cell. 45
3.2 Weak and strong Norton-Beer apodisation compared to a band with no apodisation (Perkin-Elmer 1985). 49
3.3 Measurement of area under a band. 50
4.1 to 4.25 Spectra for all compounds listed in table 4.1. 58
4.26 Discrepancies between (a) calculated areas and (b) 'true' areas. 83
5.1 The internal coordinates of the molecule. 90
5.2 Dihedral angles viewed along the $\mathrm{C} 1-\mathrm{C} 2$ axis. 104
7.1 Changes in intensities with changing numbers of fluorine atoms for the CFCs. 143
7.2 Changes in intensities with changing numbers of fluorine atoms for the HFCs. 144
7.3 Changes in intensities with changing numbers of fluorine atoms for the HCFCs. 145
Tables.
1.1 CFCs and potential replacements. 6
1.2 Halocarbons selected for study. 8
2.1 Comparison of the infrared spectral peaks of HCFC235cb. 42
2.2 Molecular weights of fragments of HCFC244ca and HCFC235cb. 43
3.1 Error ranges for the FTIR spectrophotometers used. 47
3.2 Comparison of areas of $\mathrm{CFC113a}$ with a 10° misalignment of the sample cell. 48
3.3 Comparison of the effects of apodisation functions using HCFC22 data. 49
3.4 Average band intensities in $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$ from all three FTIR spectrophotometers used. 51
4.1 Cell size, pressure ranges and purity for all halocarbons used. 54
4.2 Absolute integrated absorption intensities $\left(\mathrm{cm}^{-2} \mathrm{~atm}^{-1}\right)$ of the total region and regions $1250-833 \mathrm{~cm}^{-1}$ and $1300-700 \mathrm{~cm}^{-1}$. 55
4.3 to 4.27 Tables of band intensities for all compounds listed in table 4.1. 58
5.1 Experimental geometries for the halocarbons used in the calculations. 89
5.2 Initial force constants for the UB calculations. 97
5.3 Initial values of the observed frequencies for the UB calculations. 98
5.4 Contributions to the UB Z matrix. 99
6.1 to 6.19 Experimental frequencies in symmetry group sequence with the corresponding calculated results for each compound. 108
6.20 Force constants in mdyne \AA^{-1} from a UB force field for the CFCs. 132
6.21 Force constants in mdyne \AA^{-1} from a UB force field for the HFCs. 133
6.22 A comparison of some UB force constants for halogenated alkanes. 134
6.23 Unscaled stretching force constants in mdyne \AA^{-1} from the ab initio calculations for the CFCs. 135
6.24 Unscaled stretching force constants in mdyne \AA^{-1} from the $a b$ initio calculations for the HFCs. 136
7.1 Comparison of experimental and calculated intensities for the range $3500-450 \mathrm{~cm}^{-1}$. 140
7.2 Comparison of intensities for the approximate C-F stretching region of $1350-1000 \mathrm{~cm}^{-1}$. 142
7.3 Intensities for the C-H stretching region, approximately $3200-2800 \mathrm{~cm}^{-1}$. 146
7.4 Experimental values and HF optimised values for the geometry of the CFCs. 148
7.5 Experimental values and HF optimised values for the geometry of the HFCs. 149

List of abbreviations.

A Absorbance, where $A=\log _{e}\left(\mathrm{I}_{\mathrm{o}} / \mathrm{I}\right)$.
$\mathrm{A}_{10} \quad$ Absorbance, where $\mathrm{A}_{10}=\log _{10}$. $\left(\mathrm{I}_{0} / \mathrm{I}\right)$.
ADFA Australian Defence Force Academy.
AL Atmospheric lifetime.
ANU Australian National University.
BI Band intensities.
CFC Chlorofluorocarbon.
CFCa Chlorofluorocarbon of type 'a' as defined in appendix A.
DMSO Dimethyl sulfoxide.
F, F' Non-bonded interaction constants for a Urey-Bradleyforce field
FTIR Fourier transform infrared.
GWP Global warming potential.
$\mathrm{H}, \mathrm{H}^{\prime}$ Bending force constants for a Urey-Bradley force field.
HCFC Hydrochlorofluorocarbon.
HF Hartree-Fock self-consistent field theory.
HFC Hydrofluorocarbon.
HFCa Hydrofluorocarbon of type ' a ' as defined in appendix A.
I_{o}, I Intensity of radiation incident on sample and emergent from sample respectively.
K, K' Stretching force constants for aUrey-Bradeyforce field
$\mathrm{K}_{\bar{\nu}}$ Absorption coefficientat wavenumber $\overline{\mathrm{v}}$
MP2 Mbller-Plesset second order perturbation theory.
$\tilde{v} \quad$ Wavenumber in cm^{-1}.
ODP Ozone depletion potential.
P-E Perkin-Elmer.
PE Potential energy.
Q Normal coordinate.
RISC Reduced instruction set central processor.
S Band strength, band intensity.
SCF Self-consistent field.
T Kinetic energy.
UB Urey-Bradley.
v Vibrational quantum numbers.
V Potential energy.
$\psi \quad$ Wavefunction of a particle.
6-31G* Polarised basis set as defined by Foresman and Frisch (1993).

Chapter 1.

Introduction

Halocarbons have proved to be beneficial in raising the standard of living in many parts of the world. Recent studies, however, have highlighted some serious disadvantages in the use of fluorine- and chlorine- containing compounds with regard to the effects they may have on the environment. The present work is an investigation of the molecular vibrations of a range of fluorine-containing halocarbons, motivated by the requirement for further research in this area. Experimentally, molecular vibrations may be studied using Fourier Transform Infrared (FTIR) Spectroscopy. In order to produce a set of reproducible results, a detailed examination of the errors found in the acquisition of quantitative spectroscopic measurements was carried out. Vibrational frequencies and force constants for a range of haloethanes have been calculated using a Urey-Bradley force field. Further theoretical studies of vibrational frequencies, intensities and force constants have been made using $a b$ initio methods. From the experimental and theoretical results it has been possible to complete vibrational assignments for most of the compounds and to determine the change in absorbance due to changing numbers of fluorine atoms in a range of chloro- and hydro- fluoroethanes. This information can be used qualitatively when attempting to find new halocarbons with less environmentally damaging properties.

1.1 Halocarbons.

Halocarbons are non-flammable, odourless, and stable man-made compounds with many uses in the areas of refrigeration, air conditioning, cleaning and plastic foam manufacture. The three most commonly found groups of these substances are known as the chlorofluorocarbons (CFCs), the hydrofluorocarbons (HFCs), and the hydrochlorofluorocarbons (HCFCs). These molecules all consist of some combination of carbon and fluorine atoms, with chlorine atoms in CFCs, hydrogen atoms in HFCs, and both chlorine and hydrogen atoms in HCFCs. A numbering system has been developed by commercial manufacturers in order to simplify the nomenclature of the halocarbons. This numbering system is used throughout, and described in appendix A.

Since the early 1930s halocarbons have been manufactured for commercial use and, once used, are released into the atmosphere (ANZEC 1990). Due to their
molecular stability, halocarbons accumulate in the lower atmosphere and slowly diffuse into the upper atmosphere, giving rise to two important environmental problems, global warming in the troposphere, and ozone depletion in the stratosphere. In the troposphere, intact halocarbon molecules are efficient absorbers of infrared radiation and so trap heat near the surface of the Earth (Dickinson and Cicerone 1986). In the stratosphere, ultra-violet radiation from the sun releases chlorine atoms from chlorinecontaining halocarbons. The chlorine atoms react with ozone, breaking it down to oxygen and hence are partly responsible for the depletion of the ozone layer (Rowland 1989).

It is important, therefore, to investigate the physical and chemical properties of halocarbons in order to increase our understanding of the role played by these chemicals in global warming and ozone depletion. To this end, considerable research is being undertaken in the areas of chemical kinetics and reaction mechanisms relating to both ozone depletion potentials and atmospheric lifetimes of various halocarbons. The World Meteorological Organisation has published many of these works as part of the Global Ozone Research and Monitoring project (1989). Many papers are available in the literature on various aspects of the behaviour of atmospheric halocarbons including those by Hampson et al. (1989), Golombek and Prinn (1989), Brown et al. (1990), DeMore et al. (1990), Gierczak et al. (1990), Liu et al. (1990), Zhang et al. (1991). The model calculations carried out by Fisher et al. (1990 a \& b) use many of the results obtained up to that time. The intensities of infrared absorption by CFCs, HFCs and HCFCs are used in computer modelling of potential climate changes, where the band intensities of all the trace gases in the atmosphere contribute to the overall effect. Intensity measurements have been made for some of these substances (Fisher et al. and references therein 1990 b, Varanasi \& Chudamani 1988, Olliff \& Fischer 1992) but some discrepancies in the results obtained by different research groups are apparent and are discussed in chapter three.

1.2 Infrared Radiation.

The electromagnetic spectrum between approximately 1 and $100 \mu \mathrm{~m}(10,000-$ $100 \mathrm{~cm}^{-1}$) is known as the region of infrared radiation (Thorne 1988). The Earth's surface is warmed by solar radiation, 99% of which extends through the UV, visible and near IR regiot to the mid- \mathbb{R} region with wavelengths in the range of 0.2 to $4.0 \mu \mathrm{~m}\left(50,000-2500 \mathrm{~cm}^{-1}\right)$, the absorbed radiation is re-emitted as thermal radiation in the infrared region of approximately 4.0 to $100.0 \mu \mathrm{~m}\left(2500-100 \mathrm{~cm}^{-1}\right)$ (Coulson 1975). Infrared radiation is absorbed by many substances, giving rise to vibrational excitation of the molecules. In
the atmosphere, infrared radiation is strongly absorbed by water vapour at wavelengths longer than $18 \mu \mathrm{~m}$ and shorter than $8 \mu \mathrm{~m}$, and by carbon dioxide in the region of 12 to $18 \mu \mathrm{~m}$, leaving a gap between approximately 8 and $12 \mu \mathrm{~m}\left(1250-833 \mathrm{~cm}^{-1}\right)$ in which little or no absorption takes place. Approximately 25% of the thermal emission from the Earth is lost through this gap, known as the 'atmospheric window' (Dickinson and Cicerone 1986), keeping the troposphere at a temperature suitable to sustain life. Figure 1.1 shows the transmission of radiation through the atmospheric window.

Figure 1.1. Absorption by water vapour and carbon dioxide showing the position of the atmospheric window (Wang et al. 1976).

It has been found (Fisher et al. and references therein 1990 b) that many halocarbons absorb strongly in the atmospheric window region. The accumulation of halocarbons in the troposphere may, therefore, reduce the loss of heat through radiation from the Earth's atmosphere, subsequently increasing the ambient temperature. Since halocarbons are stable compounds which are currently being released into the atmosphere, detailed studies of infrared absorption by these compounds are required and must be taken into consideration when predicting global warming. This work has been carried out in part to measure the infrared absorption potential of a range of halocarbons, with an emphasis on some new HFCs and HCFCs which have been proposed as suitable replacements for the more damaging CFCs currently being phased out.

Infrared spectroscopy allows the investigation of vibrational motions in molecules leading to an understanding of several physical properties. Vibrational frequencies depend on the molecular geometry, atomic masses and the forces between the atoms within the molecule. The intensity of the absorption is related to the change in
dipole moment caused by the vibrational motion. Fundamental vibrations are those due to the transition between adjacent vibrational energy levels of a molecule in the ground state. Identifications of fundamentals, that is the assignment of an observed frequency to a particular fundamental mode leads to improved calculations of thermodynamic properties (Fogarasi \& Pulay 1985). Forces between the atoms within a molecule depend on the masses and electronic structures of the atoms, the neighbouring atoms and the interatomic distances. A simple harmonic vibrational motion for a diatomic molecule has a potential energy close to the minimum of $\mathrm{V}=1 / 2 \mathrm{k}(\Delta \mathrm{x})^{2}$ (Atkins 1988) where $\Delta \mathrm{x}$ is the displacement from the minimum and k is the force constant. Force constants may be calculated from vibrational frequencies. Conversely, if the force constants are known, then it is possible to calculate the spectrum, which in turn can be used to investigate the structure and conformation of the molecule (Califano 1976).

Part of this work involves assigning the observed frequencies to fundamental modes and to particular molecular motions. By identifying the motions which contribute to an observed frequency, molecules with similar bonds will be known to absorb in the same region. This is of particular interest in the case of halocarbons, where carbonfluorine and carbon-carbon bond stretches and bends are known to absorb in the atmospheric window region. Vibrational assignments may be found in the literature for many haloethanes, as shown in chapter six. A large proportion of the work was completed in the 1950s and 1960s (Smith et al. 1952, Nielsen et al. 1953 a \& b, Carney et al. 1961) when $a b$ initio calculations were not available, leaving some tentative assignments and unassigned modes. By using molecular mechanics and $a b$ initio methods in this work, calculations of frequencies and comparisons with the experimental spectra have made it possible to confirm some existing assignments and to suggest the assignments of some previously unidentified modes.

Once it is known which observed frequencies are due to the carbon-fluorine bond stretches, it becomes possible to study relationships between the infrared absorption and the number and position of fluorine atoms within the molecules. Theoretical calculations of force constants have been carried out in order to investigate the transferability of force constants between similar molecules and to study the trends in force constants with changes in the number and positions of fluorine atoms. When these properties are examined together it becomes possible to predict, at least qualitatively, the spectra of halocarbons as yet unsynthesised and the likely magnitude of infrared absorption in the atmospheric window region.

1.3. Selection of halocarbons for investigation.

The enormous numbers of halocarbons containing fluorine, chlorine and hydrogen made it necessary to select only a few groups for investigation. Two criteria were used in the selection of appropriate compounds. With the present concern about global warming, the initial requirement was that halocarbons of topical interest be used, resulting in a selection of both halocarbons currently manufactured by industry and those proposed as replacement substances. The desire to examine trends in vibrational absorption intensities and force constants lead to the second requirement, that of including closely related halocarbons, even though some of them may not have potential commercial uses. The vibrational spectroscopy of halomethanes has already been studied extensively by many research groups including Chen et al. (1976), Shimanouchi (1963), Giorgianni (1979) and references in Person and Zerbi (1982). Fluoroethanes are used extensively in refrigeration and cleaning, and can easily be grouped into CFCs and HFCs containing increasing numbers of fluorine atoms. This gives two sets of compounds suitable for studying trends in force constants and intensities with changes in the number of fluorine atoms. Recently halopropanes have been suggested as solvents by the chemical manufacturers Asahi Glass Co. (Yamabe 1989) and ICI (Dudman et al. 1990), so four of these have been included in this work.

1.3.1. Commercially useful halocarbons.

Several large chemical companies were surveyed to find which halocarbons are currently in use, and which compounds are being promoted as potential replacements. The companies approached were Du Pont de Nemours (USA), ICI (UK), ATOCHEM (France) and Asahi Glass Co. (Japan), these being among the largest producers of halocarbons in the world. Table 1.1 lists the compounds in use and their potential replacements. Some substances may eventually be replaced by compounds which are not halocarbons, but these will not be discussed in this work.

The general reluctance of companies to make available samples of products not yet on the market made it difficult to obtain prototype substances. Enquires at Du Pont de Nemours yielded little information due to the secrecy surrounding new developments, so considerable time was spent in contacting other manufacturers to obtain the most recent information.

The most commonly used and potent substances with respect to environmental damage are CFC12 used in refrigeration and air conditioning, and CFC113 used as a solvent. Ozone Depletion Potentials (ODP) relative to that for CFC11 are 1.0 for CFC12 and 0.89 for CFC113 (Fisher et al. 1990 a), and Global Warming Potentials
(GWP) also relative to CFC11, are 2.8 for CFC12 and 1.4 for CFC113 (Fisher et al. 1990 b).

Table 1.1. CFCs and potential replacements.

CFC in use	Molecular formula	Commercial use	Potential replacement	Replacement formula
CFC11	$\mathrm{CCl}_{3} \mathrm{~F}$	Refrigerant, propellant, solvent	HCFC123 HCFC141b	$\begin{aligned} & \mathrm{CHCl}_{2} \mathrm{CF}_{3} \\ & \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{~F} \end{aligned}$
CFC12	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	Refrigerant, propellant, used in air conditioners	HFC134a HCFC22 HFC152a HCFC141b HCFC142b	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{FCF}_{3} \\ & \mathrm{CHClF}_{2} \\ & \mathrm{CH}_{3} \mathrm{CF}_{2} \mathrm{H} \\ & \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{~F} \\ & \mathrm{CH}_{3} \mathrm{CCFF}_{2} \end{aligned}$
CFC113	$\mathrm{CCl}_{2} \mathrm{FCClF}_{2}$	Solvent	HCFC141b HCFC123 Several possible halopropanes	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{~F} \\ & \mathrm{CHCl}_{2} \mathrm{CF}_{3} \\ & \mathrm{CH}_{2} \mathrm{FbCl}_{\mathrm{c}}-\mathrm{CF}_{2}- \\ & \mathrm{CH}_{\mathrm{x}} \mathrm{~F}_{\mathrm{y}} \mathrm{Cl}_{\mathrm{z}} \end{aligned}$
CFC114	$\mathrm{CClF}_{2} \mathrm{CClF}_{2}$	Propellant, heat pumps	HCFC124 HCFC22 HCFC142b	$\begin{aligned} & \mathrm{CHFClCF}_{3} \\ & \mathrm{CHClF}_{2} \\ & \mathrm{CH}_{3} \mathrm{CClF}_{2} \end{aligned}$
CFC115	$\mathrm{CF}_{3} \mathrm{CClF}_{2}$	Refrigerant	HCFC22	CHClF_{2}

In mid 1991 ICI launched 'KLEA', the gas 1,1,1,2-tetrafluoroethane known as HFC 134 a , as a replacement for CFC12 in air conditioners and refrigerators. This halocarbon was considered to be the most appropriate replacement as with no chlorine atoms it has no known effect on ozone molecules in the stratosphere. However, with four carbon-fluorine bonds, the molecule absorbs radiation strongly in the region of the atmospheric window. After unsuccessfully requesting samples of HFC134a from several manufacturers, ATOCHEM in Sydney kindly donated a sample from their pilot plant. Subsequently a further sample was obtained from PCR Inc. in Florida USA.

The search for a 'drop-in' replacement for CFC113 has proved more difficult (Hey 1991). Among the properties which make CFC113 a good solvent is the fact that it has no known toxic effects and, although it must be used in a ventilated area to avoid suffocation (Millar 1989), minimal safety precautions make it easy and inexpensive to use. Some electronics industries have discontinued the use of halocarbons and are using combinations of soap and water, terpenes and flux-free soldering (Erskine 1990). Several halopropanes have been suggested as 'drop in' replacements for CFC113 by Asahi Glass Co. (Yamabe 1989) and ICI (Dudman et al. 1990). The halopropanes must have the following structure: at least one chlorine atom to enhance solvent characteristics; at least one hydrogen atom to introduce atmospheric instability, since

C-H groups react readily with atmospheric hydroxyl radicals by hydrogen abstraction; and a $-\mathrm{CF}_{2}$ - group in the centre so that HCl is not formed in the atmosphere, leaving a toxic propene (Dudman et al.1990). Initially, no halopropanes fulfilling these requirements were available for use, so two new halopropanes were synthesised as part of this project. Two additional halopropanes, HCFC225ca and HCFC225cb, were subsequently obtained from PCR Inc., enabling four to be used in the experimental section of this work.

1.3.2 Series selection and grouping.

In order to study relationships between the infrared absorption intensities of a range of haloethanes depending on the numbers and positions of the fluorine atoms in each molecule, the compounds selected have been arranged in groups of increasing numbers of fluorine atoms. Table 1.2 lists the compounds selected, showing the number of carbon-fluorine bonds, and where known, the atmospheric lifetime (AL), ODP and GWP of each molecule. For completion, some groups containing halocarbons with no known commercial use have been included. Due to their structure, it has been necessary to include some molecules in more than one group, and for completeness, molecules with no fluorine atoms have been included in the appropriate groups. Experimental work was completed for all compounds listed, except for CFC110, HFC170, and HFC152. CFC110 (hexachloroethane) and HFC170 (ethane) have been previously studied in detail (Tanabe \& Saëki and references therein 1972), and a sample of HFC152 was not available.

Theoretical work was carried out on the two groups listed in Table 1.2 identified as CFCs with 2 carbon atoms and HFCs with 2 carbon atoms. The following chemicals were obtained from PCR Inc.: CFC111, CFC112, CFC112a, CFC114a, FC116, HFC161, HFC143, HFC143a, HFC134, HFC134a, HFC125, HCFC141b, HCFC124, FC218, HCFC225ca, HCFC225cb. CFC113, CFC113a, CFC114, CFC115, HFC152a, HCFC142b and HCFC123 were obtained from Aldrich Chemicals.

Table 1.2 Halocarbons selected for study.

a Fisher et al. 1990 a.
b Fisher et al. 1990 b.
c World Meteorological Organisation (WMO) 1989 b.
\dagger PCR Inc. 1992.
\ddagger Ramanathan et al. 1985

1.4. Syntheses of two halopropanes.

The initial unavailability of an appropriate 3-carbon compound led to the syntheses of two halopropanes. A literature search was carried out to find a suitable method for the synthesis of a halopropane fulfilling the criteria detailed in section 1.3.1. That is, a halopropane of the general formula

$$
\begin{gathered}
\mathrm{CH}_{\mathrm{a}} \mathrm{~F}_{\mathrm{b}} \mathrm{Cl}_{\mathrm{c}} \mathrm{CF}_{2} \mathrm{CH}_{\mathrm{x}} \mathrm{FyCl}_{\mathrm{z}} \\
\text { where } \mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{x}+\mathrm{y}+\mathrm{z}=3 \text {, and } 0 \leq \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z} \leq 3 .
\end{gathered}
$$

The reaction of tetrafluoroethylene with appropriate halomethanes in the presence of aluminium chloride (Coffman et al. 1949, Paleta et al. 1971) is well known, for example,

$$
\mathrm{CF}_{2}=\mathrm{CF}_{2}+\mathrm{CHClF}_{2} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CHCl}_{2}+\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{CHClF}
$$ A mixture of halogenated propanes is obtained.

Chlorinated propanes can be fluorinated by the addition of antimony trifluoride or antimony pentafluoride depending on the starting material (Henne \& Renoll 1937).

$$
\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{CH}_{3} \xrightarrow{\mathrm{SbF}_{3}} \mathrm{CH}_{3} \mathrm{CF}_{2} \mathrm{CH}_{3}
$$

Provided that the end groups are hydrogen bearing carbons, the central $-\mathrm{CCl}_{2}$ - group was found to be easily fluorinated. However attempts at subsequent addition of fluorine to an end group resulted in very low yields (Henne \& Ladd 1938, Henne \& Renoll 1939). Using 2,2-difluoropropane as synthesised by Henne \& Renoll (1937) McBee and co-workers (1940) produced a number of chlorinated fluoropropanes by the photochemical reaction of chlorine. The resultant HCFCs were further fluorinated by reaction with equimolar amounts of SbF_{3} and $\mathrm{SbF}_{3} \mathrm{Cl}_{2}$. Henne and Whaley (1942) used hydrogen fluoride in the presence of SbCl_{5}, to replace chlorine atoms in a dichloropropene. This was also attempted by McBee et al. (1948)

Halogenated alkanes may be derived from fluorine containing alcohols (McBee et al. 1955). This method has also been proposed by ICI (Dudman et al. 1990), since by using the appropriate alcohol, high yields of the required hydrochlorofluoropropane
may be obtained. From a manufacturers point of view, the starting materials make this method expensive, however, for this work only small amounts of product were necessary. The apparatus required to carry out this method of synthesis is very inexpensive compared to the cost of the equipment necessary when using $\mathrm{CF}_{2}=\mathrm{CF}_{2}$ or HF as reactants. In order to obtain an HCFC, the hydroxyl group of the alcohol must be replaced by a chlorine atom. The first step is to replace the hydroxyl with a tosyl group (McBee et al. 1955). A general method for producing esters of sulfonic acids was developed by Patterson and Frew (1906). An example of this type of reaction was carefully described by Marvel and Sekera (1940). In this case n-dodecanol was converted to n-dodecyl-p-toluene sulfonate,

Several methods of preparing esters of p-toluene sulfonic acid were investigated by Tipson (1944). The use of dry pyridine to neutralise the HCl as fast as it formed was found to be the most satisfactory method, as long as the experiment was carried out at $0^{\circ} \mathrm{C}$ or below. Tipson (1944) gave detailed experimental procedures for producing several tosyl esters. The subsequent replacement of the tosyl group by a chlorine atom may be carried out by the reaction of the tosyl ester with lithium chloride (Tiers et al. 1953). For example,

The methods of syntheses described using tetrafluoroethylene and hydrogen fluoride produce mixtures of halopropanes requiring separation. The simplest method is that used by McBee et al. (1955) as only one halopropane is produced from each alcohol used. 2,2,3,3-Tetrafluoropropanol and 2,2,3,3,3-pentafluoropropanol were readily available from PCR Inc., and from these alcohols, two suitable halopropanes, 1 -chloro-2,2,3,3,3-pentafluoropropane (HCFC235cb) and 1-chloro-2,2,3,3-tetrafluoropropane (HCFC244ca), fulfilling all the structural criteria for a possible replacement solvent could be made, using the two steps described above. First, the production of the tosyl esters,

and

then the removal of the tosyl groups,

and

The experimental method used and the results of the syntheses are given in chapter two.

1.5 Fourier Transform Infrared Spectroscopy.

FTIR spectroscopy uses an interferometer to obtain an interference beam of the required radiation which is passed through the sample, and the resultant interferogram is converted into a frequency-based spectrum using a Fourier transformation. This is carried out quickly and easily by a computer, which is an integral part of the spectrophotometer. The initial spectrum gives the percentage of radiation transmitted through the sample, and a simple relationship between transmission and absorbance is used to convert the results into an absorbance spectrum.

1.5.1 The infrared spectrum.

The infrared spectrum gives the absorbance of radiation in the infrared region passing through a sample of the material under investigation. In this work, the midinfrared region corresponding to $3500-450 \mathrm{~cm}^{-1}(2.86-22.2 \mu \mathrm{~m})$ has been studied.

Figure 1.2. An absorbance spectrum of HFC143a (1,1,1-trifluoroethane) in the mid-infrared region.

The fraction of radiation not absorbed by the sample, known as the transmissivity, is related to the absorbance by the Beer-Lambert law (Atkins 1986),

$$
\mathrm{I} / \mathrm{I}_{\mathrm{o}}=\mathrm{e}^{-\mathrm{Kcl}}=\mathrm{e}^{-\mathrm{A}}
$$

where:
$\mathrm{I}=$ intensity of radiation emergent from the sample,
$\mathrm{I}_{\mathrm{o}}=$ intensity of radiation incident on the sample,
$\mathrm{A}=$ Absorbance $=\mathrm{Kcl}$,
$K=$ absorption coefficient,
$\mathrm{c}=$ concentration of sample,
$1=$ thickness of sample (path length).

The relationship between absorbance and the fraction of radiation being transmitted is therefore logarithmic,

$$
\mathrm{A}=\log _{\mathrm{e}}\left(\mathrm{I}_{\mathrm{o}} / \mathrm{I}\right)=2.303 \log _{10}\left(\mathrm{I}_{0} / \mathrm{I}\right)
$$

The FTIR Spectrophotometer automatically converts the transmissivity into absorbance, using log to the base 10 . The spectra obtained show a plot of $\mathrm{A}_{10} \mathrm{vs} \widetilde{\mathrm{v}}$, where $\widetilde{\mathrm{v}}$ is the wavenumber in cm^{-1}. Figure 1.2 shows an example of an absorbance spectrum in the mid-IR region of $3500-450 \mathrm{~cm}^{-1}$.

1.5.2. Quantitative analysis.

Infrared spectroscopy is widely used in a qualitative way to identify compounds. Groups of atoms in a compound often absorb at a specific frequency, and so can be readily identified by noting the positions of the absorption bands in the spectrum. In this work, the magnitude of the absorbance is of interest as well as the position, as this also varies with different molecules. The magnitude of absorbance due to a particular vibration, known as the band intensity, may be obtained by summing the absorbance at each wavenumber within a band. Thus the band intensity gives a measure of the amount of radiation absorbed by a particular substance in a specified range and is one of the many parameters used in climate modelling to predict temperature increases in the troposphere.

1.5.2.1 Position and shape of absorbance bands.

When the frequency of the radiation incident on the sample is the same as the frequency of a molecular vibration, and a change in the dipole moment is caused by that vibration, absorption will occur. Since there are many possible vibrations within
one molecule, there will be many different frequencies of radiation absorbed. This gives rise to a number of bands in the spectrum. In addition, within one vibrational energy level there are many rotational levels. Vibrational-rotational absorption transitions for linear molecules are governed by the selection rules $\Delta v=+1, \Delta J=0, \pm 1$, where Δv is the change in vibrational quantum number and ΔJ isthe change in rotational quantum number. Figure 1.3 shows some examples of possible transitions.

Figure 1.3 The fundamental transition $\mathrm{v}=1 \leftarrow \mathrm{v}=0$.

The rotational energy levels are inversely related to the moments of inertia of the molecule, thus the separation of levels is very small in heavy molecules and rotational lines in the spectrum for one vibrational transition may be very close together, giving rise to spectral bands. Depending on the resolution of the instrument, it may not be possible to resolve individual lines within a band.

A fundamental transition occurs when the molecule is excited from the ground state to the first vibrational level of a particular vibrational mode. The number of fundamental bands present in a spectrum can be calculated, and depends on the symmetry of the molecule and the number of different bending and stretching vibrational modes which occur. For the movement in three dimensional space of a molecule of N atoms, there are 3 N degrees of freedom. 3 degrees of freedom describe the translational motion and 3 describe the rotation of the system about its axes, leaving 3N-6 degrees of freedom for the normal vibrations of a non-linear molecule (Brügel
1962). Fundamental bands will only appear in the spectrum for those vibrational modes which cause a change in the dipole moment of the molecule. The existence of a permanent dipole moment is not required for infrared active vibrations (Atkins 1986).

Bands other than fundamental bands may appear in the spectrum. These bands are forbidden by the selection rule of the harmonic oscillator, however, they are weakly observed because of the anharmonicity of the vibrations (Nakamoto 1986). They may be defined as:
(a) Overtones, when a molecule is excited to more than one vibrational quantum by one photon.
(b) Combinations, when more than one vibrational mode in the same molecule is excited by one photon.
(c) Hot bands, when a vibrationally excited molecule is excited further to a higher vibrational level. Hot bands with $\Delta v=1$ are allowed in the harmonic approximation.

The strength and shape of each band depends on the absorption coefficients of the band, the number of molecules of the gas present, the moments of inertia for both the upper and lower vibrational states, and the population of the rotational energy levels when the molecules are in the vibrational ground state. Figure 1.4 shows a simple rotational-vibrational band for a diatomic molecule. For the polyatomic halocarbons the individual lines are very close together and more complex bands are seen in the spectra. Fundamental bands are often of irregular shapes, depending on many factors, including: (a) The rotational structure of the band.

The separation between the rotational levels is dependant on the rotational constants, which are inversely proportional to the moments of inertia of the molecule. Halocarbons containing little or no hydrogen have high moments of inertia, and so the rotational lines in the spectrum are very close together.

Figure 1.4 A simple rotational-vibrational band showing the P , and R branches.

For example CFC113a has $\mathrm{C}_{3 \mathrm{v}}$ symmetry, and is a symmetric top molecule, (two moments of inertia equal $\left(I_{\perp}\right)$, one different $\left(I_{I I}\right)$), where the energy difference between the two states $\mathrm{J}^{\prime \prime}, \mathrm{K}^{\prime \prime}$ and $\mathrm{J}, \mathrm{K}^{\prime}$ can be expressed as,

$$
\Delta \mathrm{E}_{(\mathrm{J}, \mathrm{~K})} \approx \mathrm{B}\left[\mathrm{~J}^{\prime}\left(\mathrm{J}^{\prime}+1\right)-\mathrm{J}(\mathrm{~J}+1)\right]+(\mathrm{A}-\mathrm{B})\left[\mathrm{K}^{\prime 2}-\mathrm{K}^{2}\right]
$$

where
$\mathrm{J}^{\prime}, \mathrm{J}$ are the upper and lower rotational quantum numbers respectively.
$\mathrm{K}^{\prime}, \mathrm{K}$ are the upper and lower quantum numbers, denoting the component of angular momentum along the unique axis (Atkins 1986). $\mathrm{K} \leq \mathrm{J}$, when $\Delta \mathrm{K}=0$ the energy levels depend only on I_{\perp}.
A and B are the average rotational constants of the upper and lower states (since the changes in the rotational constants between both states are assumed to be small), where $A=h /\left(8 \pi^{2} \mathrm{cI}_{11}\right)$ and $B=h /\left(8 \pi^{2} \mathrm{cI}_{\perp}\right)$.
$\mathrm{h}=$ Planck's constant
$\mathrm{c}=$ velocity of light
$\mathrm{I}_{11}=$ the moment of inertia parallel to the principal axis of symmetry.
$I_{\perp}=$ the moment of inertia perpendicular to the principal axis of symmetry.
For CFC113a, $\mathrm{I}_{\mathrm{ll}}=6.34 \times 10^{-45} \mathrm{kgm}^{2}$ and $\mathrm{I}_{\perp}=7.66 \times 10^{-45} \mathrm{kgm}^{2}$ giving rotational constants $\mathrm{A}=0.044 \mathrm{~cm}^{-1}$ and $\mathrm{B}=0.037 \mathrm{~cm}^{-1}$. The rotational lines are so close together that fine structure can only be observed when using spectrophotometers of very high resolution. The highest resolution available for use in this work was $0.2 \mathrm{~cm}^{-1}$. Typically the mid-infrared spectra were recorded at $2.0 \mathrm{~cm}^{-1}$, and errors in the measurement of areas due to unresolved line spacings were reduced by using pressure broadening.

Spectral lines are not infinitely sharp, broadening of the lines can be due to natural (radiative) broadening, Doppler broadening and pressure broadening. Natural broadening arises from the uncertainty principle, where the energy spread is inversely proportional to the uncertainty in time associated with finding the molecule in that particular state (Thorne 1988). The line width can be approximately calculated from

$$
\begin{equation*}
\Delta \mathrm{E}=\mathrm{h} / 2 \pi \Delta \mathrm{t} \text { so that } \Delta \overline{\mathrm{V}}=1 / 2 \pi \mathrm{c} \Delta \mathrm{t} \tag{Atkins1986}
\end{equation*}
$$

where Δt is the natural lifetime of the state. For a typical vibrational natural lifetime of $\Delta t \approx 10^{-4}$ secs (for an energy change of around $1000 \mathrm{~cm}^{-1}$) the linewidth $\Delta \bar{v} \approx 5 \times 10^{-8}$ cm^{-1}. The line shape due to lifetime or natural broadening is Lorentzian. For Doppler broadening, the line is of Gaussian shape, and the line width can be obtained from

$$
\Delta \bar{v}=\frac{2 \bar{v}_{0}}{c} \sqrt{\frac{2 R T \ln 2}{M}}=7.16 \times 10^{-7} \bar{v}_{0} \sqrt{\frac{T}{M}} \text { (Thorne 1988) }
$$

For example, for CFC113a, molecular weight M of 187.35 , at 300 K , the band centred at $909 \mathrm{~cm}^{-1}$ would have rotational linewidths of only $0.00082 \mathrm{~cm}^{-1}$ which cannot be experimentally observed with the resolutions of current commercial instruments.

The effects of pressure on absorption can be described in two ways:
i) Collision broadening.

The collision between two excited molecules results in a loss of the vibrational energy, hence shortening the lifetime of the state. This broadens the line as for uncertainty broadening, giving a Lorentzian distribution with linewidth $\propto 1 / \Delta t$, where Δt is the lifetime of the state (Thorne 1988).
ii) Molecular interaction.

Depending on the proximity of neighbouring molecules, interactions between the molecules may cause perturbation in the molecular potential. This changes the transition frequency, enabling the perturbed molecule to absorb radiation of a slightly different wavelength,

$$
\Delta v=\left[V_{2}(R)-V_{1}(R)\right]
$$

where V_{2} and V_{1} are the perturbations to the excited state and ground state energy levels respectively and R is the distance between the molecules (Thorne 1988). These molecular interactions enable absorption over a wider range of frequencies than before, so that as an increase in pressure gives an increase in perturbations, the resultant spectral line is broadened.

Pressure broadening occurs both by the increase in the pressure of the vapour itself and by the addition of a non-absorbing gas such as nitrogen. An approximate broadening of the line may be calculated using the collision frequency, z . The collision frequency, in collisions per second, is given by kinetic theory (Atkins 1986),

$$
z=\frac{\sqrt{2 \sigma c_{\text {rel }} N}}{V}
$$

where $\sigma=$ collision cross-section,
$\mathrm{c}_{\text {rel }} \quad=$ mean relative velocity $=\frac{8 \mathrm{kT}}{\sqrt{\pi \mu}}$
$\mathrm{N}=$ no. of molecules
$\mathrm{V}=$ volume
$\mu=$ reduced mass of colliding particles.
The average time between collisions, $t=\frac{1}{z}$, so for self broadening, the lifetime $\Delta t=\frac{\mathrm{t}}{2}=\frac{1}{2 \mathrm{z}}$, since every collision removes 2 molecules from that state, and

$$
\Delta t=\frac{h}{2 \pi \Delta E}
$$

where the energy change, $\Delta \mathrm{E}=\mathrm{h} \Delta \overline{\mathrm{V}} \mathrm{c}$, hence the change in linewidth becomes

$$
\Delta \overline{\mathrm{v}}=\frac{\mathrm{z}}{\pi \mathrm{c}}
$$

Pressure broadening is typically much greater than natural or Doppler broadening. Experimentally, the pressure required to smooth out the rotational structure depends on the separation of the rotational lines. The moments of inertia of the
molecules used in this work give very small rotational line separation, for example, for HFC143a which is one of the lightest molecules used, $\mathrm{A}=0.18 \mathrm{~cm}^{-1}$ and $\mathrm{B}=0.17 \mathrm{~cm}^{-1}$. The maximum resolution of the instruments available was $0.2 \mathrm{~cm}^{-1}$, so that pressures of only a few torr were required to smooth out the bands. If the individual lines are not broadened, errors in measuring areas may be introduced since an instrument at $0.2 \mathrm{~cm}^{-1}$ resolution does not recognise the small 'gaps' between the lines, but includes them in the total area.
(b) The direction of the transition dipole moment.

Infrared absorption occurs when there is a change in the dipole moment of the molecule. If this transition moment lies along the principal axis, the band is a parallel band, and $\Delta \mathrm{J}= \pm 1, \Delta \mathrm{~K}=0$, giving,

$$
\Delta \mathrm{E}(\mathrm{~J}, \mathrm{~K})=\mathrm{B}\left[\mathrm{~J}^{\prime}\left(\mathrm{J}^{\prime}+1\right)-\mathrm{J}(\mathrm{~J}+1)\right]
$$

If the transition moment is perpendicular to this axis, $\Delta J=0, \pm 1$, and $\Delta K= \pm 1$ and separate P, Q, and R branches are obtained for each K, causing overlapping of lines and an overall broadened band. For asymmetric top molecules, splitting of K occurs for $\mathrm{J} \geq 1$ resulting in even more complex bands (King 1964).
(c) Isotopic substitution.

The energy required for transition varies with the mass of the molecules. This means that the same transition for different isotopomers has slightly different frequencies (Thorne 1988). If there is isotopic substitution of one or more atoms in the molecule, lines due to each isotope overlap each other, making the fine structure even more indistinct. For CFC113a, for different isotopes of chlorine, the changes to the moments of inertia, and hence A and B are very small, for example, for 3 atoms of ${ }^{37} \mathrm{Cl}, \mathrm{A}=$ $0.043 \mathrm{~cm}^{-1}$, and $B=0.036 \mathrm{~cm}^{-1}$ compared to $A=0.044 \mathrm{~cm}^{-1}$, and $B=0.037 \mathrm{~cm}^{-1}$ when using the average molecular weight of chlorine of 35.45 .
(d) Temperature.

A change in temperature changes the populations of the rotational levels in the ground state. All spectra were taken at room temperature, and changes due to a small change in temperature are discussed in section 3.1.2.
(e) Fermi resonance.

When two vibrational levels are very close together, mixing can occur between the two states, affecting the intensities of both bands and shifting them away from each other.
(f) Coriolis coupling.

Interactions between vibrational and rotational energy levels distort the band shape. While both Fermi resonance and Coriolis coupling make band centres more difficult to define accurately, band assignments can still be made, so this project will not cover these two phenomena.

1.5.2.2 Integrated absorption intensities.

The absorption coefficient , $\mathrm{K}_{\boldsymbol{\nabla}}$, gives a measure of the amount of radiation of wavenumber,\vec{v}, which can be absorbed by the compound. It is independent of the quantity of material present, and so is a constant for a particular substance at a particular wavelength. The intensity of a band is the sum of the absorbance for all wavenumbers covered by the band, ie., the area under the spectral band. Absorbance for one spectral line $A_{\vec{v}}=K_{\gamma} \mathrm{cl}$, so for a spectral band, which covers a range of wavenumbers, the area under the band in the spectrum is

$$
\int_{\text {band }} A d \tilde{v}
$$

Since the absorbance obtained from the FTIR spectrophotometer is A_{10}, where $\mathrm{A}_{10}=$ A/2.303
the integrated absorbance coefficient can be obtained from

$$
2.303 \int_{\text {band }} \mathrm{A}_{10} \mathrm{~d} \tilde{v}=\int_{\text {band }} \mathrm{K}_{\bar{v}} \mathrm{cld} \bar{v}
$$

The Band Intensity (BI), often known as the band strength, S, is given by the sum of the absorbance coefficients for each wavenumber in the band.

$$
\begin{aligned}
S & =\int_{\text {band }} K_{\bar{v}} \mathrm{~d} \bar{v} \\
& =1 / \mathrm{cl} \int_{\text {band }} K_{\bar{v}} \mathrm{cld} \bar{v} \\
& =2.303 / \mathrm{cl} \int_{\text {band }} A_{10} \mathrm{~d} \bar{v} \bar{v}
\end{aligned}
$$

$\int_{\text {band }} A_{10} d \bar{v}$ is the area under the band and may be calculated directly by the on-line $\int^{\text {computer and associated software attached to the instrument. The relationship } S=}$ $\int_{\text {band }} K_{\bar{\nabla}} \mathrm{d} \bar{v}$ is only valid for a spectrophotometer with infinite resolving power, therefore since the instruments used have a finite resolving power, not all the possible values of $\mathrm{K}_{\bar{v}}$ can be obtained. This problem can be alleviated by using pressures high enough to eliminate the rotational fine structure which cannot be resolved by the instrument. In the
case of most halocarbons, the rotational structure is so dense that the pressures used in this work for intensity measurements easily smoothed out the bands. Figure 1.5 shows the effects of pressure broadening on a band.

Figure 1.5 Changes in band shape due to pressure broadening.

1.5.3 Error analysis.

When reporting the results of quantitative analysis in infrared spectroscopy it is often the case that the results cannot be reproduced by research groups in different laboratories (Willis et al. 1987). For example, in the measurement of the band intensities for CFC113, the results of Varanasi \& Chudamani (1988) and Rogers \& Stephens (1988) differ by more than 20%. The use of a FTIR spectrophotometer with high signal-to-noise ratios and wavenumber accuracy has improved the reliability of quantitative analysis, however, the error range on measurements of absolute band intensities is still large (Willis et al. 1987). Possible sources of errors arise from both the equipment used and the interpretation of the spectra (Hirschfeld 1979). By closely examining each aspect of absorption intensity measurements, an attempt has been made to devise a method for measuring band strengths to give both accurate and reproducible results.

1.5.3.1 Deviation from the Beer-Lambert law.

For accurate values of absorption intensities, the absorbance must be linearly proportional to the concentration of the sample, that is, the Beer-Lambert law must hold (Griffiths \& de Haseth 1986). Deviations occur depending on the nature of the sample and the way light passes through the sample (Willis et al. 1987).The use of compounds in the gaseous phase enables homogenous samples to be used, since the molecules are evenly dispersed throughout the cell. Scattering of light by the sample was negligible for these compounds at the low pressures used. Absorbance values obtained from the instrument must be in the range 0.1 to 3.0 absorbance units as recommended by the manufacturers. At absorbances of less than 0.1 , very few photons are absorbed and
noise levels may interfere with readings. At absorbances of more than 3.0, almost all photons are absorbed, that is, less than 1 in 1000 is transmitted and so inaccuracies may occur in the detection of the number of photons.

1.5.3.2 Errors arising from the sample and the sample cell.

Liquid samples broaden spectral bands and introduce problems in the measurement of path lengths and concentrations. Many of the halocarbons used were gaseous at room temperature. The solid and liquid halocarbons used had relatively high vapour pressures, and so it was easy to use them in the vapour state. However, errors may arise from the pressure measurements. Cappellani and Restelli (1992) observed very weak temperature dependence of the absorption intensities. This will contribute to the overall error, since all spectra were taken at room temperature. Impurities in the samples may distort the spectra and need to be considered when reporting results. Spectral artefacts arising from the sample cell can be reduced to a minimum by taking a background sample of the empty cell and subtracting this from the sample spectrum. The measurement of the cell length, giving the path length through the sample may also introduce small errors.

1.5.3.3 Instrumental errors.

The three main components of a spectrophotometer are the optical unit, the computer and the sample compartment. The optical unit consists of an internal source of a continuum of infrared radiation, an interferometer and a detector on the opposite side of the sample compartment. The radiation is split and recombined by the interferometer to give an interference pattern. This interferogram is recorded by the detector when it has passed through the sample, and the computer software controlling the instrumentation converts the time-based pattern into a frequency-based spectrum using a fast Fourier transform (Perkin-Elmer 1985). For this work, the optical unit is not under user control, so the instrument specifications giving the error limits have been used in the estimation of total errors.

The computer controls the collection of data from the detector, performs the Fourier transformation on the interferogram and stores the resultant spectra. Several other operations may be carried out such as apodisation, spectral subtraction of a background, conversion from transmission to absorbance, and integration of the area under a band. Computational errors due to averaging of data points, truncation of the interferogram and rounding of values are generally very small. Errors relating to the sample compartment come from inconsistent positioning of the sample and the presence
of atmospheric gases around the cell. Section 3.1.3 presents some examples of these problems.

1.5.3.4 Errors in the interpretation of spectra.

In order to be able to compare band intensities, it is important that the range of the band be fixed (Olliff \& Fischer 1992). Difficulties may be encountered when determining the limits of the band, since many bands overlap and may partially coincide with small combination and overtone bands not easy to identify. Once the range has been established, a baseline must be selected. Large discrepancies in literature values are often due, not to real 'errors', but to the fact that different band ranges and baselines have been selected but not specifically identified in the reporting of results. Care has been taken in this work in the choice of band range and baseline, and these values are given in the tables of absorbance intensity measurements. The techniques used in baseline selection were the same for all compounds so that some spectral features could be compared, however, when comparing results, variations in baselines for different spectra need to be taken into consideration.

When all the errors had been analysed as far as possible, a set procedure was formulated and followed for all experimental measurements of the infrared spectra.

1.5.4. Band intensity measurement.

When new substances are being developed for commercial use, the suitability, toxicity, ozone depletion potential, and manufacturing costs are investigated thoroughly. With the current concern on global warming, band intensities and lifetimes should also be criteria for selection, so that, when confronted with two or more potentially useful substances, those with the highest global warming potentials could be rejected. By comparing band strengths of a series of molecules, it may be possible to predict the approximate absorption intensities of proposed substances, without actually having to synthesise them. Those with long lifetimes and high band intensities in the atmospheric window region may then be discarded at an early stage, thus reducing development costs. Some band intensities have already been published(Fisher et al. and references therein 1990 b), however, since a set procedure has been derived for reducing errors in quantitative FTIR spectroscopy as part of this work, measurements have been taken for all available compounds in Table 1.2. Chapter four details the experimental methods used, and reports the results of this section of the work.

1.6 Calculations of vibrational frequencies, intensities and force constants.

In order to interpret the experimental spectra in more detail, fundamental vibrational frequencies, force constants, absolute intensities and potential energy distributions were calculated. The ethane series of CFCs and HFCs were selected for study, each with increasing number of fluorine atoms. The methods of calculations used depended on the availability of both computer time and suitable programs. The programs NORCORD and OVER, running on the ANU's VAX and subsequently SUN/UNIX systems, were used for normal coordinate analyses using a Urey-Bradley force field. The program GAUSSIAN92, which carries out ab initio calculations was available on a RISC processor at the Australian Defence Force Academy and on the ANU's Fujitsu Vector Processor.

1.6.1 Urey-Bradley normal coordinate analysis.

Normal coordinate analysis has been used to find a set of force constants for each of the HFCs and CFCs studied, and to facilitate the assignment of particular molecular vibrations to the absorption of energy at a particular frequency, by calculating the potential energy of the system. A normal coordinate describes the change in the arrangement of the atoms within a molecule with respect to one another for each fundamental or normal mode of vibration. When the geometry of the molecule is known, a set of Cartesian coordinates and internal coordinates can be determined, giving respectively, the relative positions of the atoms, and the possible stretches and bends between the bonds. From this information, with the masses of the atoms, the kinetic energy of the molecule can be calculated and subsequently, using a set of force constants, the fundamental vibrational frequencies can be determined.

The frequency of a normal vibration is obtained from the kinetic and potential energies of the system. The kinetic energy is determined by the masses of the atoms and their geometric arrangements in the molecule and the potential energy relates to the interaction between individual atoms and is described in terms of the force constants (Nakamoto 1986). For the displacement of any atom i, the Cartesian coordinates change as $\Delta x_{i}, \Delta y_{i}, \Delta z_{i}$, so that the kinetic energy of an n-atom molecule becomes
$T=\frac{1}{2} \sum_{i=1}^{n} m_{i}\left[\left(\frac{d \Delta x_{i}}{d t}\right)^{2}+\left(\frac{d \Delta y_{i}}{d t}\right)^{2}+\left(\frac{d \Delta z_{i}}{d t}\right)^{2}\right]$
where m_{i} is the mass of the atom i. By using the mass weighted coordinates, $\mathrm{q}_{1}=\sqrt{\mathrm{m}_{1}} \Delta \mathrm{x}_{1}, \mathrm{q}_{2}=\sqrt{\mathrm{m}_{1}} \Delta \mathrm{y}_{1}, \mathrm{q}_{3}=\sqrt{\mathrm{m}_{1}} \Delta \mathrm{z}_{1}, \mathrm{q}_{4}=\sqrt{\mathrm{m}_{2}} \Delta \mathrm{x}_{2} \ldots .$.
the kinetic energy may be written as
$2 \mathrm{~T}=\sum_{\mathrm{i}=1}^{3 \mathrm{n}} \dot{\mathrm{q}}_{\mathrm{i}}^{2} \quad$ where $\dot{\mathrm{q}}=\frac{\mathrm{dq}}{\mathrm{dt}}$
(Califano 1976)

The potential energy of the system is a function of all the displacement coordinates. For small displacements the Taylor series expansion may be used:
$V=V_{0}+\sum_{i}^{3 n}\left(\frac{\partial V}{\partial q_{i}}\right)_{0} q_{i}+\frac{1}{2} \sum_{i j}^{3 n}\left(\frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}\right)_{0} q_{i} q_{j}+\frac{1}{6} \sum_{i j k}^{3 n}\left(\frac{\partial^{3} V}{\partial q_{i} \partial q_{j} \partial q_{k}}\right)_{0} q_{i} q_{j} q_{k}+\ldots$.
Let the potential energy of the equilibrium configuration V_{0} be zero, hence the equilibrium position is at a minimum,

$$
\left(\frac{\partial V}{\partial q_{i}}\right)_{0} q_{i}=0
$$

The terms of the expansion greater than second order may be ignored (Nakamoto 1986) giving,

$$
V=\frac{1}{2} \sum_{i j}^{3 n}\left(\frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}\right)_{0} q_{i} q_{j}
$$

$\left(\frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}\right)_{0}$ may be written as the force constants $f_{i j}$, so named because they represent the proportionality factors between the displacements of the nuclei and the restoring forces acting upon them (Califano 1976). For a simple diatomic molecule, acting as a harmonic operator,

$$
\mathrm{f}=-\mathrm{kx}=\mu \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}
$$

where μ is the reduced mass of the molecule and the calculated wavenumber is obtaned from

$$
\tilde{v}=\frac{1}{2 \pi c} \sqrt{\frac{k}{\mu}}
$$

With polyatomic molecules, problems arise in the calculations by the presence of the cross products $\mathrm{q}_{\mathrm{i}} \mathrm{q}_{\mathrm{j}}$. In order to eliminate the cross products, a new set of coordinates, the normal coordinates are used. The transformation from mass-weighted Cartesian coordinates can be shown as

$$
\mathrm{Q}_{\mathrm{k}}=\sum_{\mathrm{i}} \mathrm{l}_{\mathrm{ki}}^{\prime} \mathrm{q}_{\mathrm{i}}
$$

where the coefficients l_{ki} relate each normal coordinate to each Cartesian coordinate such that the normal coordinate Q_{k} is a linear combination of all $3 n$ Cartesian coordinates used to describe the molecule. The kinetic energy becomes

$$
\mathrm{T}=\frac{1}{2} \sum_{\mathrm{i}} \dot{\mathrm{Q}}_{\mathrm{i}}^{2}
$$

and the potential energy

$$
\mathrm{V}=\frac{1}{2} \sum_{\mathrm{i}} \lambda_{i} \mathrm{Q}_{\mathrm{i}}^{2}
$$

where λ_{i} is related to the force constants and is the polyatomic equivalent of $\frac{k}{\mu}$ for diatomic molecules. The equation of motion becomes

$$
\ddot{Q}_{\mathrm{i}}+\lambda_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}=0
$$

with the solution

$$
\mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{\mathrm{i}}^{0} \sin \left(\sqrt{\lambda_{i} \mathrm{t}}+\delta_{\mathrm{i}}\right)
$$

where Q_{i}^{0} is the amplitude and δ_{i} is the phase constant of the motion, and the frequency of a normal vibration is

$$
v_{i}=\frac{1}{2 \pi} \sqrt{\lambda_{i}}
$$

In order to obtain a reasonably accurate set of force constants, an approximate set of force constants is used to calculate the fundamental frequencies. If there are large
discrepancies between the calculated and observed frequencies, the force constants are adjusted and the calculations repeated until a satisfactory correlation is obtained (Nakamoto 1986). When agreement between the calculated and observed frequencies is reached, the force constants are considered to be a representation of the potential energy of the system.

One of the difficulties encountered with this type of calculation is that the number of force constants of a molecule is generally larger than the number of frequencies, resulting in solutions which are not unique. For small molecules with high symmetry the calculations are more satisfactory as a number of the force constants are identical. (Califano 1976).

A generalised valence force (GVF) field consisting of bond stretching and bending force constants and the interaction force constants between each coordinate may be used, however the number of interaction constants is often too large to obtain reliable results. The simpler Urey-Bradley (UB) force field was introduced by Shimanouchi (1949) consisting of stretching, bending and repulsive force constants. The repulsive force constants represent the forces between non-bonded atoms. The method for calculation of UB constants is described by Overend and Scherer (1960). Fewer force constants are used for this method and since they relate specifically to stretches, bends and non-bonded interactions between two atoms should be easier to transfer to similar molecules. The general form of the potential field is given by

$$
\begin{aligned}
& 2 \mathrm{~V}=\sum_{\mathrm{i}}\left[2 \mathrm{~K}_{\mathrm{i}}^{\prime} \mathrm{r}_{\mathrm{i}} \Delta \mathrm{r}_{\mathrm{i}}+\mathrm{K}_{\mathrm{i}}\left(\Delta \mathrm{r}_{\mathrm{i}}\right)^{2}\right] \\
& \\
& \left.\qquad \begin{array}{l}
+\sum_{\mathrm{i}<\mathrm{j}}\left[2 \mathrm{H}_{\mathrm{ij}} \mathrm{r}_{\mathrm{i}}^{2} \Delta\right.
\end{array} \alpha_{\mathrm{ij}}+\mathrm{H}_{\mathrm{ij}}\left(\mathrm{r}_{\mathrm{i}} \Delta \alpha_{\mathrm{ij}}\right)^{2}\right] \\
& \\
& \quad+\sum_{\mathrm{i}<\mathrm{j}}\left[2 \mathrm{~F}_{\mathrm{ij}}^{\prime} \mathrm{q}_{\mathrm{ij}} \Delta \mathrm{q}_{\mathrm{ij}}+\mathrm{F}_{\mathrm{ij}}\left(\Delta \mathrm{q}_{\mathrm{ij}}\right)^{2}\right]
\end{aligned}
$$

where $\mathrm{K}, \mathrm{K}^{\prime}$ are the stretching force constants, $\mathrm{H}, \mathrm{H}^{\prime}$ are the bending force constants and F, F^{\prime} are the repulsive force constants between the non-bonded atoms. $\Delta r, \Delta \alpha$, and $\Delta \mathrm{q}$ are the changes in the bond lengths, bond angles and non-bonded atom separations respectively, and i and j represent the atoms involved in the vibration.

The advantage of using the UB force field is that the final force constants can be directly related to the internal coordinates, and when there is little internal torsion in the molecule, they are often transferable between similar molecules (Shimanouchi 1963). One disadvantage of this method is that redundancies may occur in the coordinates as the non-bonded distances must be included. Since the coordinates are not independent, the linear terms in the potential energy equation may not be zero (Califano 1976). The relationship between the molecular parameters is

$$
\begin{equation*}
q_{i j}^{2}=r_{i}^{2}+r_{j}^{2}-2 r_{i} r_{j} \cos \alpha_{i j} \tag{Califano1976}
\end{equation*}
$$

Using this relationship the redundant coordinates may be removed from the potential energy equation. The linear terms then become zero and F^{\prime} is introduced into the quadratic terms.

$$
\begin{aligned}
& 2 V=\sum_{i}\left[K_{i}+\sum_{j \neq i}\left(t_{i j}^{2} F_{i j}^{\prime}+s_{i j}^{2} F_{i j}\right)\right]\left(\Delta r_{i}\right)^{2} \\
& +\sum_{i<j}\left[H_{i j}-s_{i j} \mathrm{~s}_{\mathrm{ji}} \mathrm{~F}_{\mathrm{ij}}+\mathrm{t}_{\mathrm{ij}} \mathrm{j}_{\mathrm{j} i} \mathrm{~F}_{\mathrm{ij}}\right]\left(\mathrm{r}_{\mathrm{ij}} \Delta \alpha_{\mathrm{ij}}\right)^{2} \\
& +2 \sum_{i<j}\left[-t_{i j} t_{j i} F_{i j}^{\prime}+s_{i j} s_{j i} F_{i j}\right]\left(\Delta r_{i}\right)\left(\Delta r_{j}\right) \\
& +2 \sum_{i<j}\left[\mathrm{t}_{\mathrm{ij}} \mathrm{~S}_{\mathrm{ji}} \mathrm{~F}_{\mathrm{ij}}+\mathrm{t}_{\mathrm{ji}} \mathrm{~s}_{\mathrm{ij}} \mathrm{~F}_{\mathrm{ij}}\right] \sqrt{\mathrm{r}_{\mathrm{j}} / \mathrm{r}_{\mathrm{i}}}\left(\Delta \mathrm{r}_{\mathrm{i}}\right)\left(\mathrm{r}_{\mathrm{ij}} \Delta \alpha_{\mathrm{ij}}\right)
\end{aligned}
$$

where

$$
\mathrm{s}_{\mathrm{ij}}=\frac{\left(\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{j}} \cos \alpha_{\mathrm{ij}}\right)}{\mathrm{q}_{\mathrm{ij}}} \quad \text { and } \quad \mathrm{t}_{\mathrm{ij}}=\frac{\left(\mathrm{r}_{\mathrm{j}} \sin \alpha_{\mathrm{ij}}\right)}{\mathrm{q}_{\mathrm{ij}}} \quad \text { (Overend \& Scherer 1960) }
$$

The relationship between F and F^{\prime} has been established for the short distances between two non-bonded atoms such that $F^{\prime}=-0.1 \mathrm{~F}$ (Califano 1976). In all these calculations it is assumed that the repulsive forces between two atoms across 3 bonds is negligible (Califano 1976).

The programs NORCORD and OVER carry out a normal coordinate analysis using the UB force field method described by Overend and Scherer (1960). The sequence of calculations and perturbation cycle is given in the flowchart shown in figure 1.6.

Input to the program NORCORD consists of the Cartesian coordinates, the internal coordinates, the symmetry blocks of the molecule and the \mathbf{U} matrix. The U matrix gives the magnitude of the contribution of each internal coordinate (columns) for each symmetry coordinate (rows). The internal coordinates include all the stretches and bends and the symmetry coordinates are determined using the appropriate character table, depending on the symmetry group of the molecule. All redundancies are removed during the calculations, a G matrix of kinetic energy data is computed, transformed into symmetry coordinates and saved on disk in a form ready for use by the program OVER. The internal and symmetry coordinates used for each symmetry group are given in chapter five, and the detailed input to NORCORD for each molecule is given in appendix B.

Figure 1.6. A block diagram of the force constant refinement.

The program OVER requires a set of approximate force constants to calculate the fundamental vibrational frequencies and the potential energy distribution. The exact values of the force constants within the molecules being studied were not available, so values found in the literature for C-H, C-F, C-Cl and C-C bonds (Bucker \& Nielsen 1963, Naito et al. 1955) have been used to give an approximate set of force constants for the initial calculations. The input data also includes the observed frequencies from an infrared spectrum of the molecule, the kinetic energy and symmetry coordinate information from NORCORD, and the \mathbf{Z} matrix. The \mathbf{Z} matrix transforms the force constants into the F matrix in the required coordinates, such that the secular equation $|G F-E \lambda|=0$ can be solved for all λ and hence the normal frequencies calculated (Overend \& Scherer 1960). The coefficients of \mathbf{Z} are calculated using the table of
relationships between the force constants and F_{ij} and $\mathrm{F}_{\mathrm{ij}}^{\prime}$ in the publication by Overend and Scherer (1960). The method used for constructing the input to OVER is detailed in chapter five and the final force constants and calculated frequencies are given in chapter six. The detailed input for each molecule is given in appendix B. A copy of the programs adapted for use on the VAX computer was available here at the Australian National University. Errors were found in the programs when using bond lengths correct to only two decimal places or attempting to refine five or more force constants. Considerable time was spent amending the programs to facilitate their use, correcting the errors, and adapting them to run on the SUN/UNIX system. The transferability of force constants between different CFCs and different HFCs has been investigated in this work, and the results shown in chapter six. Attempts to fit the calculated frequencies to the observed frequencies for individual molecules have also been made, and the resulting trends in the force constants over each set of molecules is given in chapter six.

1.6.2 Ab initio calculations.

The ab initio method of computing model chemical structures and molecular properties uses the laws of quantum mechanics, the fundamental constants c, m, e and h, (the speed of light, the masses and charges of electrons and nuclei, and Plank's constant respectively), and a set of mathematical approximations to calculate the solutions of the Schrödinger equations for the system (Foresman and Frisch 1993). The time-independent Schrödinger equation for the energy of a wavefunction Ψ can be written as,

$$
\mathrm{H} \Psi=\mathrm{E} \Psi
$$

(Atkins 1986.)
the Hamiltonian operator,

$$
H=\frac{-h^{2}}{8 \pi^{2} m} \nabla^{2}+V
$$

for a moving particle of mass m , where,

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

and
$\mathrm{V}=$ the potential energy of the particle.

With appropriate boundary conditions, many properties of a particle can be found by solving the above equation for Ψ. There are many solutions depending on the stationary states of the system. For a stationary state, the time independent Schrödinger equation gives a wave function representing a wave oscillating with a single frequency.

The solution of the equation with the lowest energy is the ground state. For a molecule, Ψ is a function of the positions of all the particles (electrons and nuclei) in the system. A nucleus is treated as a single entity.

The potential energy of the system,

$$
V=\sum_{j} \sum_{k<j} \frac{e_{j} e_{k}}{\Delta r_{j k}}
$$

is the Coulomb interaction between each pair of charged particles j and k, with charge e_{j} and e_{k} and separation $\Delta r_{j k}$. For an electron the charge is -e, and for a nucleus the charge is Ze where Z is the atomic number for the atom (Foresman \& Frisch 1993).

To solve Schrödinger's equation for a molecule, several approximations are made. The Born-Oppenheimer approximation allows the nuclear and electronic wavefunctions to be separated (Boggs 1992), since the mass of the nucleus is so much greater than the mass of the electron, and the nuclear motion is so much slower than electronic motion, making the nuclei appear stationary relative to the electrons. The Hamiltonian for the molecule can be written as

$$
H=T(r)+T(R)+V(r, R)
$$

where T is the kinetic energy, r represents the electronic coordinates and R the nuclear coordinates.

$$
V(r, R)=-\sum_{i}^{\text {elec }} \sum_{I}^{\text {nucl }} \frac{Z_{I^{2}}{ }^{2}}{\Delta r_{i I}}+\sum_{i}^{\text {elec }} \sum_{j<i}^{\text {elec }} \frac{e^{2}}{\Delta r_{i j}}+\sum_{I}^{\text {nucl }} \sum_{J<I}^{\text {nucl }} \frac{Z_{I} Z_{J e^{2}}}{\Delta r_{\mathrm{IJ}}}
$$

The electronic and nuclear wavefunctions can then be separated. The energy obtained from solving the electronic wavefunction gives the potential energy surface of the system which can then be used as the potential for the nuclear Hamiltonian.
Approximate solutions of the nuclear Schrödinger equation are necessary for predicting vibrational spectra (Foresman \& Frisch 1993). All relativistic and spin coupling terms are omitted from the Hamiltonian since these contribute insignificantly when studying atoms lighter than the transition elements (Boggs 1992).

Different levels of ab initio calculations are possible depending on the mathematical approximations and methods used. The theoretical method chosen however, must strike a reasonable balance between the reliability of the results and the computing time required for the complete calculations. In this work Hartree-Fock (HF) self consistent field (SCF) and Mbller-Plesset second order perturbation (MP2) levels of calculations have been used. GAUSSIAN92 uses the principle that a theoretical model should be uniformly applicable to molecular systems which are to be compared with each other, based on the practical availability of computer resources. It is not
meaningful to compare results for similar molecules obtained at different levels of theory. Four halocarbons have been modelled using both HF and MP2 levels with the same basis sets, to show how the results for the same molecule differ with different levels of theory.

Theoretical models used by GAUSSIAN92 are characterised by a combination of theoretical procedure and basis set. The HF theory expands the wave function for a molecule as a linear combination of atomic spin orbitals. Electron correlation, that is the energy contributions arising from electrons interacting with one another, is excluded. Each electron sees all other electrons as an average distribution (Foresman \& Frisch 1993). The variation principle used at HF level, states that if an arbitrary wavefunction is used to calculate energy then the value obtained is never less than the true energy. This gives a direction for the calculation for repeated iterations such that the result with the lowest energy is the best. Calculations are repeated for a pre-determined number of iterations. Minima are found on the energy surface where the first derivative is zero. Identification of the true minimum by the use of the second derivative enables optimisation of the geometry (Foresman \& Frisch 1993). Once optimisation is completed, the theoretical bond distances and angles are used in the next step, that of calculating the force constants and the vibrational frequencies using an harmonic approximation. This method is insufficient to model reaction energetics, but is suitable for vibrational frequencies provided that a scaling factor is used. Frequencies obtained using HF SCF theory contain known systematic errors due to the neglect of the electron correlation. This results in an overestimation of about $10-12 \%$, so it is customary to scale the frequencies by $0.8-0.9$. The scaling factor varies, depending on the level of theory used. The recommended scaling factors of 0.8953 for the HF results and 0.9427 for the MP2 results (Pople et al. 1993) were used in this work. M\$ller-Plesset perturbation theory for second-order energies, where some electron correlation is included, was used in the calculations for some of the molecules for comparison. A small perturbation is applied to the Hamiltonian to give a perturbed wave function of lower energy than that obtained by the HF method. Considerably more computer time is required for MP2 calculations and so only a few of the lightest molecules were modelled to see the difference in the results.

Another aspect of the approximations used relates to the basis functions. The basis set is the mathematical representation of the molecular orbitals restricting each electron to a particular region of space. A basis function represents a one-electron function, GAUSSIAN92 uses a linear combination of gaussian-type functions of the general form

$$
\mathrm{g}=\mathrm{cx} \mathrm{x}^{\mathrm{n}} \mathrm{~m}_{\mathrm{z}} \mathrm{z}^{-\alpha \mathrm{x}^{2}}
$$

where α is a constant determining the size of the function; n, m, and $l=0,1,2$. depending on the orbital of the electron, and c is the normalisation constant (Foresman \& Frisch 1993).

The larger the number of basis functions used, the more accurate the results, however, the cost in computer time for the larger basis sets cannot always be justified. The larger the basis set, the fewer constraints on the electrons, giving more accurate orbitals, however, the larger the set the more computing power required (Fogarasi \& Pulay 1985). In this work, the basis set $6-31 G^{*}$ was used as this was the highest basis set available for the computer time allowed. This is the standard basis set for calculations involving up to medium sized systems; it allows orbitals to change size and shape for each atom beyond the ground state requirements, for example some small contribution from unfilled d orbitals is included for carbon atoms (Foresman \& Frisch 1993).

Vibrational intensities are also computed, however they are thought to be only relatively correct, and may be used to indicate whether the absorbance of a fundamental mode is expected to be strong, medium or weak (Fogarasi \& Pulay 1985). Raman depolarisations are also given by the program, but have only been used when other information does not conclusively confirm an assignment. Diagonal force constants in internal coordinates are calculated, however errors in bond lengths contribute to consistent overestimation, particularly of the stretching force constants and must be corrected as for the vibrational frequencies by the use of a linear scaling factor (Fogarasi \& Pulay 1985). Initially, experimental geometry obtained from the literature was to be used for the theoretical frequencies, since the calculated SCF geometries are known to yield shorter bond lengths than expected (Fogarasi \& Pulay 1985). However due to the lack of accurate experimental data for all the molecules, and since part of this work is to observe trends in force constants, it was decided to optimise the geometry, so obtaining systematic errors, rather than use the experimental geometries and work with random errors. A description of the input to GAUSSIAN92 is given in chapter five, and the results are presented in chapters six and seven. Detailed input to the program is given in appendix \mathbf{C}.

1.6.3 Vibrational assignments, force constants and intensities.

For those molecules where the assignments of frequencies were in doubt, tentative assignments have been made using the results of both Urey-Bradley and $a b$ initio calculations. These are discussed in chapter six. Vibrational assignments of fundamental modes are made by a combination of information. The literature was searched for assignments of all the relevant molecules. The symmetry species of each
frequency calculated by $a b$ initio methods is given by the program, and may be used to check assignments. Using this information and by studying the observed spectra it was possible to confirm most of the fundamental frequencies for the UB force field calculations. If no reasonable agreement between the observed and calculated frequencies could be found after several attempts at adjusting force constants, the observed frequencies were interchanged as far as possible to see if any improvement could be made.

Using the UB force field, one set of force constants has been derived for the CFCs and one for the HFCs. These force constants give only a reasonable fit across all the molecules in each group. Further refinements were carried out on individual molecules to obtain a better match between the observed and the calculated frequencies. The resultant force constants for each molecule were then compared to look for trends. Force constants in internal coordinates are available from the output from GAUSSIAN92. These force constants are not directly comparable with the UB results, except in the case of the stretching force constants, as the internal coordinates for the $a b$ initio calculations are not identical to those for the UB calculations. Another difficulty encountered with comparing the force constants is that scaling factors are required for the $a b$ initio results (Zhou et al. 1993).

New assignments made in this work are reported in section 6.1. The force constants are presented in section 6.2, and the intensities and optimised geometries are given in chapter seven. The infrared bands due to the carbon-fluorine and carboncarbon bond stretches have been approximately identified and the changes in infrared absorption intensity with the change in number and position of fluorine atoms have been compared for the halocarbons studied.

1.7 Summary.

In order to gain an insight into the nature of the vibrational excitation of halocarbons, a combination of experimental and theoretical work has been carried out. The infrared band intensities of halocarbons of topical interest have been measured and an analysis of the errors encountered in infrared spectroscopy investigated. Theoretical vibrational analysis has enabled the tentative assignment of fundamental vibrational modes and the calculation of force constants for nineteen haloethanes. Investigations of both the trends in force constants across a group of like molecules and the relationships between the intensity of absorption and the number and position of fluorine-carbon bonds have been carried out. The use of this information may assist in the prediction of vibrational spectra of halocarbons which have not yet been synthesised.

Chapter 2.

Halocarbon syntheses.

Two halopropanes were synthesised as part of this work since, at the start of the project, none of the substances fulfilling the requirements detailed in section 1.3.1 were available. An identical procedure was followed for the synthesis of both halopropanes, and consisted of two steps: the formation of a tosyl ester from an appropriate alcohol; and the substitution of the tosylate group by a chlorine atom. The method of Tipson (1944) described in section 1.4 was followed for the first reaction step, since the two alcohols 2,2,3,3-tetrafluoropropanol and 2,2,3,3,3-pentafluoropropanol were available from Aldrich chemicals and may be readily converted into suitable halopropanes. The second step of the reaction was carried out according to the method by McBee et al. (1955) detailed in section 1.4.

2.1 Experimental methods.

STEP 1. The formation of the tosyl ester was carried out using (A) 2,2,3,3tetrafluoropropanol, and (B) 2,2,3,3,3-pentafluoropropanol. A 250 ml three-necked flask was fitted with a thermometer and appropriate volumes of fluorinated propanol and pyridine were mixed using a magnetic stirrer, in the molar ratio 1:4. The base of the flask was immersed in a water/ice bath and tosyl chloride added at a rate such that the temperature of the mixture did not rise above $10^{\circ} \mathrm{C}$. The mixture was stirred for approximately 3 hours. The quantities of reactants used for step 1 were as follows: (A) 25 ml (0.278 mole) of 2,2,3,3-tetrafluoropropanol with 53 g (0.278 mole) of tosyl chloride in 100 ml of pyridine.

(B) 9 ml (0.090 mole) of 2,2,3,3,3-pentafluoropropanol with 17.5 g (0.092 mole) of tosyl chloride in 36 ml of pyridine.

Pyridine hydrochloride crystals were observed in the mixture in the reaction vessel in both cases. After 3 hours, sufficient (approximately 15 x no. of ml of alcohol) 1 M hydrochloric acid was added slowly to dissolve the pyridine hydrochloride and any other impurities. A similar quantity of ether was added to dissolve the new tosylate, which could then be separated from the aqueous layer using a separating funnel. After separation, the ether + tosylate solution was dried by the addition of anhydrous magnesium sulphate. The magnesium sulphate was then filtered off and the ether was allowed to evaporate, leaving the pure tosylate. 2,2,3,3-Tetrafluoropropyltosylate is a clear oily liquid, and 2,2,3,3,3-pentafluoropropyltosylate is a white crystalline solid. The purity of each tosylate was checked using thin-layer chromatography. Small amounts of 2,2,3,3-tetrafluoropropanol, 2,2,3,3,3-pentafluoropropanol, tosyl chloride in acetone, and the products of experiments A and B were spotted onto a glass chromatographic plate. The plates were left to stand in a $50: 50$ mixture of cyclohexane:ethyl acetate until the solvent had risen to near the top of the plate. An infrared spectrum was taken of each reactant and purified product.

STEP 2. The substitution of the tosyl group by a chlorine atom was carried out using (C) 2,2,3,3-tetrafluoropropyltosylate and (D) 2,2,3,3,3pentafluoropropyltosylate. Using a 500 ml 3 -necked flask fitted with a thermometer, an inlet from N_{2} gas and an outlet to two liquid N_{2} traps, a known amount of the appropriate tosylate made in step 1 was added to lithium chloride in dimethyl sulfoxide (DMSO) and the mixture heated to $160^{\circ} \mathrm{C}$ for 2.5 to 3 hours. Enough DMSO was used to dissolve both reactants and to cover the inlet tube from the N_{2} gas. As the chlorofluoropropane products are very volatile the easiest way to collect them was to flush them out of the reaction mixture with N_{2} gas, and trap them in a glass tube cooled by liquid nitrogen. Lithium tosylate remained in the reaction vessel with the DMSO. The quantities of reactants used for step 2 were as follows:
(C) 50 g (0.175 mole) of 2,2,3,3-tetrafluoropropyltosylate with 8.0 g (0.189 mole$)$ of lithium chloride in 300 ml DMSO.

(D) 23 g (0.076 mole) of 2,2,3,3,3-pentafluoropropyltosylate with 4.0 g (0.094 mole) of lithium chloride in 200 ml DMSO.

The trap containing the frozen product was quickly transferred to the vacuum line and kept under liquid N_{2} during evacuation. A trap-to-trap distillation was carried out to collect the pure liquid halopropane in a clean, evacuated vessel. 1-chloro-2,2,3,3tetrafluoropropane and 1 -chloro-2,2,3,3,3-pentafluoropropane are clear oily liquids. A mass spectrum was taken for each of the final products.

2.2 Results and product characterisation.

The results of each experiment in step 1 were found to be as follows:
(A) 0.278 mole of $2,2,3,3$-tetrafluoropropanol were treated with an equivalent amount of tosyl chloride in 100 ml of pyridine. $64.6 \mathrm{~g}(0.226 \mathrm{~mole})$ of $2,2,3,3-$ tetrafluoropropyltosylate were obtained, a yield of 81.3%. (B) 0.090 mole of $2,2,3,3,3$-pentafluoropropanol were treated with an equivalent amount of tosyl chloride in 36 ml of pyridine. 23.1 g (0.076 mole) of $2,2,3,3,3-$ pentafluoropropyltosylate were obtained, a yield of 84.4%.

The thin-layer chromatogram showed the movement of the tosyl chloride, and each of the products of experiments A and B. The tosylates did not travel so far up the plate as the tosyl chloride sample. No trace of tosyl chloride was seen arising from the spots made with the purified products of experiments A and B. The alcohols could not be detected by this method of thin-layer chromatography. Figure 2.1 shows the infrared spectra of 2,2,3,3-tetrafluoropropanol (liquid sample), tosyl chloride (solid sample in nujol) and the purified product (liquid sample) from experiment A. Figure 2.2 shows the spectra of 2,2,3,3,3-pentafluoropropanol (liquid sample), tosyl chloride (solid sample in nujol) and the purified product (solid sample in nujol) from experiment B.

The results of each experiment in step 2 were found to be as follows: (C) 0.175 mole of $2,2,3,3$-tetrafluoropropyltosylate were treated with an excess of lithium chloride to give 15.95 g (0.106 mole) of 1-chloro-2,2,3,3-tetrafluoropropane, a yield of 60.6%.

Figure 2.1. Experiment A: infrared spectra of reactants 2,2,3,3-tetrafluoropropanol and toluenesulfonyl chloride, and product 2,2,3,3-tetrafluoropropyltosylate.

Figure 2.2. Experiment B: infrared spectra of reactants 2,2,3,3,3-pentafluoropropanol and toluenesulfonyl chloride, and product 2,2,3,3,3-pentafluoropropyltosylate.
(D) 0.076 mole of $2,2,3,3,3$-pentafluoropropyltosylate were treated with an excess of lithium chloride giving 9.1 g (0.054 mole) of 1 -chloro-2,2,3,3,3-pentafluoropropane, a yield of 71.1%.

Figure 2.3 shows the infrared spectra of 1-chloro-2,2,3,3-tetrafluoropropane, HCFC244ca, and 1-chloro-2,2,3,3,3-pentafluoropropane, HCFC235cb. The mass spectra of HCFC244ca and HCFC235cb are presented in figure 2.4. The infrared spectrum of HCFC235cb was compared to that by Paleta et al. (1971) for confirmation of identification. Microanalysis results for HCFC244ca gave 24.8% carbon (23.94% calc.) 2.1% hydrogen (2.01% calc.) and 23.5% chlorine (23.56% calc.). No microanalysis for fluorine was available.

2.3. Discussion.

The thin-layer chromatography results for step 1 of the syntheses showed that no tosyl chloride remained with the products. The infrared spectra of reactants and products shown in figures 2.1 and 2.2 have been used for further identification. From the experiments, it was possible that some ether remained with the product. Checks were also made for the presence of the starting alcohol, tosyl chloride and pyridine, although it was expected that since pyridine is soluble in water, it was successfully separated from the product in ether.

The spectra of both starting alcohols show two distinctive features due to the presence of -OH , a broad band centred near $3360 \mathrm{~cm}^{-1}$ and weaker broad band around $1420 \mathrm{~cm}^{-1}$ (Lin-Vien et al. 1991). Both of these bands are absent on the spectra of the corresponding products. Other characteristic $\mathrm{C}-\mathrm{OH}$ bands are obscured by the presence of bands due to C-F stretches and bends. The fluorines of the alcohol are distinguished mainly by strong absorption in the $1200-1100 \mathrm{~cm}^{-1}$ region due to $\mathrm{C}-\mathrm{F}$ stretches, and by many peaks below $850 \mathrm{~cm}^{-1}$ due to $\mathrm{C}-\mathrm{F}$ bending modes. Similar bands can be seen in the spectrum of the product.

The presence of a para-substituted benzene ring can be seen in both the spectra of tosyl chloride and the tosylate products, mainly identified by bands in the regions $3000 \mathrm{~cm}^{-1}$ and $1620-1585 \mathrm{~cm}^{-1}$. These areas are partly obscured by the presence of nujol in the case of the solid samples, but can be distinguished more easily in the spectrum of 2,2,3,3-tetrafluorotosylate. Typical changes in the spectra when comparing the $-\mathrm{SO}_{2} \mathrm{Cl}$ and the $-\mathrm{SO}_{2} \mathrm{O}$ - groups may be seen as shifts from $1385-1375 \mathrm{~cm}^{-1}$ to 1375 $1365 \mathrm{~cm}^{-1}$ and from $1175-1170 \mathrm{~cm}^{-1}$ to $1195-1180 \mathrm{~cm}^{-1}$ (Lin-Vien et al. 1991).

Figure 2.3. Infrared spectra of the product of experiment C, 1-chloro-2,2,3,3tetrafluoropropane, and experiment $D, 1$-chloro-2,2,3,3,3-pentafluoropropane.

Figure 2.4. Mass spectra of (a) 1-chloro-2,2,3,3-tetrafluoropropane (HCFC244ca) and (b) 1-chloro-2,2,3,3,3-pentafluoropropane (HCFC235cb).

These changes are small, and while some evidence of these shifts may be seen, they are again obscured by the presence of strong nujol bands at $1461 \mathrm{~cm}^{-1}$ and $1377 \mathrm{~cm}^{-1}$, and in the case of the tosylates, the strong absorption of C-F bands. The thin-layer chromatogram confirmed that the tosyl chloride had reacted in step 1.

Pyridine has strong bands in the $750-700 \mathrm{~cm}^{-1}$ region, which have not been observed in the tosylate spectra. The presence of diethyl ether may be detected by predominant bands at 2989, 2871, 1394, and $1138 \mathrm{~cm}^{-1}$ (Lin-Vien et al. 1991). Again these bands are difficult to identify, but since there are no strong peaks at 2989 or $2871 \mathrm{~cm}^{-1}$ in the spectrum of 2,2,3,3-tetrafluoropropyltosylate, and no strong peaks at 1394 or $1138 \mathrm{~cm}^{-1}$ in the spectrum of $2,2,3,3,3$-pentafluoropropyltosylate, it was concluded that a sample of both tosylates, of purity suitable to be used in step 2 , had been produced.

In step 2, the conversion of the tosylates to halopropanes has been confirmed by infrared and mass spectroscopy. The infrared spectra of both products are free from contamination by tosylates, as can be seen from the fact that the broad band around $3000 \mathrm{~cm}^{-1}$ due to the presence of the benzene ring has been replaced by the characteristically sharp peaks of isolated C-H stretches. The bands near $1595 \mathrm{~cm}^{-1}$ also due to the tosylate group are absent. DMSO absorbs strongly in the region of $1102 \mathrm{~cm}^{-1}$, however, this band would be obscured by absorption due to the C-F stretches in the product spectra. DMSO also absorbs in the regions of $3001,1443,1420$ and $673 \mathrm{~cm}^{-1}$ (Aldrich Chemical Co. 1989), these bands are not present on the spectra of the products, indicating that the halopropanes were successfully separated from the solvent. No infrared spectra of HCFC244ca were found in the literature.

Table 2.1. Comparison of the infrared spectral peaks of HCFC235cb.

Paleta et al. (1971) cm^{-1}		this work cm^{-1}	
2988	weak	2984.2	weak
1253	medium	1251.4	medium
1216	very strong	1214.1	very strong
1186	medium	1186.2	medium
1132	medium	1133.8	medium
1109	medium	1108.6	medium
1061	medium	1062.9	medium
1038	medium	1038.0	medium strong
798	medium weak	794.4	medium weak
709	medium	709.6	medium

Identification of HCFC235cb was confirmed by comparison of the infrared spectrum shown in figure 2.3 with the results given by Paleta et al. (1971). Table 2.1
shows the positions of the most significant absorption peaks of HCFC235cb. The small discrepancies between the results are most likely due to the different choice of peak maxima, for example, the peak at $2984.2 \mathrm{~cm}^{-1}$ is part of a broader band. No illustration of the spectrum was presented by Paleta et al. (1971) for direct comparison, however, the correlation between the peaks leads to the assumption that HCFC235cb has been synthesised.

Further confirmation of the products was obtained from the fragments shown in the low resolution mass spectra of the samples in figure 2.4. Table 2.2 lists the molecular weights of fragments of both halopropanes.

Table 2.2. Molecular weights of fragments of HCFC244ca and HCFC235cb.

HCFC 244 ca fragment	molecular weight	HCFC 235 cb fragment	molecular weight	
$\mathrm{CF}_{2} \mathrm{HCF}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	150,152	ratio 3:1	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	168,170
$-\mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	99,101	ratio 3:1 3:1	$-\mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	99,101
$-\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{H}$	101		$-\mathrm{CF}_{2} \mathrm{CF}_{3}$	119
$-\mathrm{CH}_{2} \mathrm{Cl}$	49,51	ratio 3:1 3:1	$-\mathrm{CH}_{2} \mathrm{Cl}$	49,51
$-\mathrm{CF}_{2} \mathrm{H}$	51		$-\mathrm{CF}_{3}$	ratio 3:1
$-\mathrm{CF}_{2-}$	50		$-\mathrm{CF}_{2-}$	69

The presence of a chlorine atom in some of the fragments of both molecules resulted in peaks in the spectrum 2 units apart due to the two isotopic forms ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ which naturally occur in the ratio 3:1. The mass spectrum of HCFC244ca given in figure 2.4 (a) shows the fragments listed in table 2.2 in the expected ratios. The molecular weights 150 and 152 for the whole molecule appear in the spectrum in the ratio 3:1. The fragments $-\mathrm{CF}_{2} \mathrm{CH}_{2}{ }^{37} \mathrm{Cl}$ and $-\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{H}$ both have a molecular weight of 101, which is consistent with the fact that the observed ratio of 99 and 101 is not $3: 1$, as would be expected if $-\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{H}$ did not exist. Similarly, $-\mathrm{CH}_{2}{ }^{37} \mathrm{Cl}$ and $-\mathrm{CF}_{2} \mathrm{H}$ have the same molecular weight of 51 , resulting in a different ratio of molecular weights of 49 to 51 . Fragments shown at 129.9 and 131.9 may be due to the loss of both one H and F atom; at 114, due to the loss of both one H and Cl atom; at 98 and 100 , due to loss of both $-\mathrm{CF}_{2} \mathrm{H}$ and an H atom; at 100 due to loss of both $-\mathrm{CH}_{2} \mathrm{Cl}$ and an H atom; and at 64 due to loss of both $-\mathrm{CF}_{2} \mathrm{H}$ and a Cl atom. The mass spectrum of HCFC 235 cb in figure 2.4 (b) shows the fragments listed for that compound in table 2.2. The fragments containing a chlorine atom appear in the spectrum in the expected ratios of 3:1. Fragments shown at 149 and 151 may be attributed to the loss of one F atom, and the fragment at 131 may be $-\mathrm{CCF}_{2} \mathrm{CF}_{3}$.

The microanalysis of HCFC244ca gave a satisfactory result for chlorine content at 23.5%, but gave an error in the order of 4% for the carbon and hydrogen contents. Unfortunately, the compound was found to be too volatile for the analysis of fluorine.

From a close examination of all the results it was concluded that samples of 1 -chloro-2,2,3,3-tetrafluoropropane, HCFC244ca, and 1-chloro-2,2,3,3,3pentafluoropropane, HCFC 235 cb , had been produced. The quantities and purities of the products were considered to be acceptable for use in the spectral band intensity measurements which were made as part of this work.

Chapter 3.

Fourier Transform Infrared (FTIR) Spectroscopy.

The possible sources of errors in band intensity measurement have been outlined in section 1.5.3. This chapter presents the results of several experiments carried out to find, where possible, the contribution to the overall error of various aspects of the work. A list of procedures to be followed when measuring band intensities, in order to obtain the most accurate results, is given at the end of the chapter .

3.1 Sources of experimental errors.

3.1.1 The sample cell.

Two airtight glass cells were used for all the measurements. The cells were fitted with O-rings and potassium bromide windows of 40 mm . diameter. The path lengths for the cells were $3.415 \pm 0.005 \mathrm{~cm}$ and $10.429 \pm 0.005 \mathrm{~cm}$. When not in use the cells were kept in a desiccator to protect the windows from moisture. Figure 3.1 illustrates the cell.

Figure 3.1 The sample cell.

It is important to keep the windows free from dirt or grease, however, they should not be polished between recordings of spectra for one compound as this may change the base transmission line of the radiation. The cells have been tested extensively for leakage, and will hold a vacuum at less than 10^{-4} torr for more than a week.

3.1.2 The vapour.

All samples were used in the vapour state. The pressure was measured using a Baratron differential pressure head of range $0-100$ torr (1 torr $=0.1333 \mathrm{kPa}$), with digital readout accurate to 0.3% of the full scale reading. The pressures used were mostly in the range $15-50$ torr, giving percentage errors ranging from 2.0 to 0.6%. In a few cases the presence of very strong bands meant that lower pressures were required to keep the absorbance within a suitable range, increasing the error in pressure measurement to a maximum of $\pm 4.0 \%$.

As described in section 1.5.2.1 it is important to broaden the bands so that the fine structure is smoothed out. To this end, a few spectra were taken for each compound so that suitable pressure ranges could be chosen for accurate measurements and the cell of the most appropriate length used for selected bands. The lowest pressure must be such that the fine structure is not observed at the highest resolution, and the absorbance maximum at the centre of the band exceeds 0.1 absorbance units. The highest pressure must be such that the maximum absorbance value does not exceed 3.0 absorbance units. These absorbance limits are recommended by the instrument manufacturers for a linear relationship between concentration and absorbance, in accordance with the Beer-Lambert law. When using the 3 cm cell, higher pressures may be used to achieve the same absorbance as that obtained in the 10 cm cell. This had the effect of reducing pressure errors. In the case of very weak bands the 10 cm cell was more appropriate as the longer path length enabled higher absorbances to be achieved, without having to use very high pressures.

Changes in temperature may affect the absorption due to changes in populations of energy levels. Hannah (1988) reported that the intensity of an absorption band changes by approximately 0.1% per ${ }^{\circ} \mathrm{C}$. However, Cappellani and Restelli (1992) observed only weak temperature dependence of the absorption intensities of some HFCs and HCFCs over a temperature range of $60^{\circ} \mathrm{C}$. All spectra in this work were taken at room temperature, which did not vary by more than a few degrees. It was assumed from this, that the change in intensity due to temperature fluctuations was negligible.

All compounds were purchased at the highest purity available from the manufacturers. When using CFC113a, the presence of CFC13 was detected on the infrared spectrum. Two trap-to-trap vacuum distillations were carried out, and no more problems were encountered, since CFC113a freezes at $14^{\circ} \mathrm{C}$, whereas CFC13 is a gas at this temperature with a boiling point of $-81.4^{\circ} \mathrm{C}$ (PCR Inc. 1992). During many of the manufacturing processes of halocarbons, other halocarbons are sometimes formed as by-products. Bands due to contaminants may therefore coincide with the sample bands,
and so not be seen in the spectra. This phenomenon may be noticed by large discrepancies in area measurements due to varying ratios of sample/contaminant pressures when each sample is collected. This error cannot be quantified, so all spectra were carefully scrutinised for impurities, and discarded if either unexpected peaks were observed, or large discrepancies in areas were found. No attempt was made to correct the data using the percentage purity given by the suppliers, but this purity is reported with the band intensity results in chapter four.

3.1.3. The spectrophotometer.

Most of the spectra were recorded on a Perkin-Elmer (P-E) 1600 in the Department of Chemistry. However, since it was possible that discrepancies arose in the data, some spectra were taken on a P-E 1800 in the Research School of Chemistry at the ANU and a Bio-Rad F60 belonging to the Australian National Library. Table 3.1 gives the manufacturers error ranges for the three instruments used.

Table 3.1 Error ranges for the FTIR spectrophotometers used.

Instrument	max. resolution	wavenumber accuracy
Perkin-Elmer 1600	$2.0 \mathrm{~cm}^{-1}$	$\pm 0.02 \mathrm{~cm}^{-1}$
Perkin-Elmer 1800	$0.2 \mathrm{~cm}^{-1}$	$\pm 0.01 \mathrm{~cm}^{-1}$
Bio-Rad F60	$0.1 \mathrm{~cm}^{-1}$	$\pm 0.01 \mathrm{~cm}^{-1}$

There is no currently accepted method to measure ordinate accuracy in an FTIR spectrophotometer (Perkin-Elmer 1985), but the transmission line has a repeatability better than 0.1%, and the absorbance is linear from 0 to 3.0 for the P-E instruments. The signal to noise ratio in A is 3500:1 at a resolution of $2 \mathrm{~cm}^{-1}$ and 700:1 at a resolution of $0.2 \mathrm{~cm}^{-1}$ for the P-E instruments.

The sample compartments on the P-E instruments can easily be purged using nitrogen gas. When air is in the compartment, absorption by carbon dioxide and water vapour may be seen in the spectra, with intensities varying from day to day. By eliminating air from the compartment while recording all spectra, the possibility of changes in the trace gases in the laboratory could be ignored. It was not possible to purge the compartment of the Bio-Rad instrument. However, by ratioing all sample spectra with a background spectrum of the evacuated cell, spectral artefacts due to atmospheric conditions could be almost eliminated. The time between the recordings of the background and sample spectra was kept to a minimum.

The position of the sample cell within the compartment is important. Special holders were made to accommodate the cells. The following results show the difference in area measurements when the cell is set at an angle of 10° to the infrared source. As shown in table 3.2, the difference in these results is very small for such a large misalignment of the cell, however, care was always taken in the positioning of the cell.

Table 3.2. Comparison of areas of $\mathrm{CFCl113a}$ with a 10° misalignment of the sample cell

Position	Areas under the bands for each range in absorbance units cm^{-1}					
	$1300-700$ $\mathrm{~cm}^{-1}$	$1290-1238$ $\mathrm{~cm}^{-1}$	$1238-1200$ $\mathrm{~cm}^{-1}$	$945-880$ $\mathrm{~cm}^{-1}$	$880-825$ $\mathrm{~cm}^{-1}$	$750-690$ $\mathrm{~cm}^{-1}$
Normal 10° offset	126.60					
125.52	31.42	31.42	45.61	45.84	5.85	

A slightly longer path length may increase absorbance, however, reflection of the $I R$ beam at the surface of the cell window (since it is no longer at 90°) may result in a reduction of intensity.

3.2. Errors in computation and interpretation.

When recording a spectrum, the cell windows and trace gases in the sample compartment may also absorb some of the infrared radiation, and consequently distort the spectrum. This problem was overcome by recording a spectrum of the evacuated cell and storing it as a 'background' transmission spectrum. Each time the sample spectrum was taken, it was then ratioed with the 'background' spectrum before being converted from transmission to absorbance. This eliminated any absorption due to the cell or compartment, leaving a spectrum due to the vapour alone. Very slight errors could be introduced by incorrect alignment of the cell in subsequent runs, but this was reduced to a minimum by the use of special holders. A new background was taken before starting a new compound as minute amounts of dirt or grease may have accumulated on the windows when the cell was in use. If, for any reason, the windows were cleaned, a new background was taken and used for subsequent vapour spectra.

When an interferogram undergoes Fourier transform, it must be truncated. This results in a series of side-lobes at the sides of the spectral bands, which interfere with the real spectral features. An apodisation function reduces side-lobes at the cost of broadening the bands. Apodisation functions are included in the instrument software. Some apodisation is required to reduce errors in the selection of baseline points, so in order to optimise the results, weak Norton-Beer apodisation, as supplied by the manufacturers of the spectrophotometers, was used in this work. Figure 3.2 illustrates the effects of apodisation. The difference in integrated areas is very small for the
different apodisation routines, but the ripples on the wings of the bands do affect baseline point selection.

Figure 3.2. Weak and Strong Norton-Beer apodisation compared to a band with no apodisation (Perkin-Elmer 1985).

For this error analysis and the instrument comparisons, the gas CHClF_{2}, HCFC22, was used as it has low moments of inertia, and hence relatively widely spaced rotational structure, which may contribute to area discrepancies. Thus if the errors are small with HCFC22, they can be expected to be smaller with the haloethanes. Table 3.3 shows the differences in the absorbance when different apodisation routines are used.

Table 3.3. Comparison of the effects of apodisation functions using HCFC22 data.

Apodisation	area under band in absorbance units $\mathrm{x} \mathrm{cm}^{-1}$.		
	$1300-700 \mathrm{~cm}^{-1}$	$1200-1050 \mathrm{~cm}^{-1}$	$850-750 \mathrm{~cm}^{-1}$
None	52.03	33.20	10.66
Weak Norton-Beer	51.50	32.98	10.47
Strong Norton-Beer	51.38	32.79	10.42

The difference in the results between no apodisation and apodisation is larger than that between the two apodisation routines. However, since the differences between weak and strong Norton-Beer functions are in the order of 0.2% to 0.6%, it is necessary to name the apodisation function used when publishing the results. It cannot be judged which of the two functions is more 'correct' since the change in linewidth by one function may be equivalent to a change in band range or movement in baseline by a different function, therefore, discrepancies due to alternative functions are not included in the overall error.

Overall, band intensities were measured for the approximate atmospheric window regions of $1250-833 \mathrm{~cm}^{-1}$ and $1300-700 \mathrm{~cm}^{-1}$. Band intensities were also measured for individual bands. For each compound analysed, a spectrum using the relevant mid-range pressure was studied, looking closely at the wings of each band. Points were selected on each side of the band, so that they included the wings of the band, but not the start of an adjacent band. If bands overlapped, then they were not separated, and one range was used to include both bands. Difficulties arose when trying to estimate the intensities due to individual fundamental bands, however, some estimations were made by examination of the spectra.

In order to measure the area under a band, a baseline must be selected to enclose the relevant area. There are several possible approaches to the selection of a baseline (Willis et al. 1987). For this work the baseline was chosen by selection of a point in the spectrum where no apparent absorption occurred. A horizontal line was then constructed through this point, enclosing an area between the specified band ranges as shown in figure 3.3. Where possible, the baseline point was selected close to the bands to be measured, however, where the absorbance at the limits of a band were significantly higher than the zero absorption line, the baseline point was selected at any position within the range of the spectrum where the absorbance was close to zero. By close inspection of high resolution spectra, it was seen that the magnitude of absorbance at the selected baseline point for repeated recording of the same spectra varied by a maximum of $\pm 0.5 \%$.

Figure. 3.3. Measurement of area under a band.

Due to instrumental 'drift' reported by Perkin-Elmer (1985) near the $3500 \mathrm{~cm}^{-1}$ end of the spectrum where the absorbance line sometimes tended to go below zero for no known reason, the baseline point was usually restricted to the region between 2000 and $500 \mathrm{~cm}^{-1}$. For very weak bands in the region 3500 to $2800 \mathrm{~cm}^{-1}$, where bands due to C-H stretches occur, it sometimes became necessary to draw a baseline between the points of the range limits, to avoid errors due to the instrumental 'drift'. No satisfactory explanation for the random instrumental 'drift' was obtained from Perkin-Elmer or from this work, however it was usually very small.

3.3. Comparison of results between different instruments.

A series of spectra for HCFC22 at several different pressures was recorded using a P-E 1600, a P-E 1800 and a Bio-Rad F60 instrument. Table 3.4 shows the results with the percentage deviation from the overall average band intensity for the compound. It can be seen that the deviations are small, and are not dependent on the resolution or the manufacturer. The maximum deviation, taking into consideration all band intensities for all instruments and resolutions, is that between the band intensity of the $1200-1050 \mathrm{~cm}^{-1}$ band taken on the P-E 1800 at $0.2 \mathrm{~cm}^{-1}$ resolution, and the same band on the Bio-rad F60 at $0.1 \mathrm{~cm}^{-1}$ where the gap is 3.8%.

Table 3.4. Average band intensities in $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$ from all three FTIR spectrophotometers used.

Band range cm^{-1}	P-E 1600 res. 2.0cm-1	P-E 1800 res. $0.2 \mathrm{~cm}^{-1}$	Bio-Rad res. $2.0 \mathrm{~cm}^{-1}$	Bio-Rad res. $0.2 \mathrm{~cm}^{-1}$	Overall average
$1300-700$	$2695+0.2 \%$	$2697+0.3 \%$	26900.0%	$2677-0.5 \%$	2690
$1200-1050$	$1737-0.3 \%$	$1717-1.5 \%$	$1731-0.6 \%$	$1783+2.3 \%$	1742
$850-750$	$560-1.6 \%$	$573+0.7 \%$	$568-0.2 \%$	$575+1.0 \%$	569

When the band is very wide, as in the case of the $1300-700 \mathrm{~cm}^{-1}$ band, the differences are considerably smaller. Two out of the three sets of results for the spectra taken for $2.0 \mathrm{~cm}^{-1}$ resolution fall between those of the spectra at higher resolution, suggesting that the discrepancies are not due to problems with rotational fine structure contributing to area errors. It is not possible to determine which instrument is 'right' and which is 'wrong', so as with the apodisation function, it becomes necessary to name the instrument used when reporting results.

3.4. Experimental procedure for measuring band intensities.

When all possible sources of errors are considered, the most significant errors arise from the pressure measurements. When attempting to reproduce reported band intensities, some differences in results may occur which cannot be quantified and it becomes important to specify several experimental constraints when presenting results. From the experiments carried out as detailed in this chapter, the instrument type, the apodisation routine, the band limits, the baseline point and the purity of the compound should be reported with the results. For this work, the error range is considered to be in the order of $\pm 4 \%$ for a P-E 1600 with $2.0 \mathrm{~cm}^{-1}$ resolution, weak Norton-Beer apodisation and the range limits, baseline points and purity specified for each compound in chapter four.

Having examined each error as far as possible, the following list is a set of procedures which was followed for the measurement of band intensities.

1. Cell and cell windows were cleaned prior to recording the background spectra for a new compound. The cell windows were not removed until all data for that compound had been collected.
2. All spectra, where possible were recorded using pressures of between 10 and 100torr.
3. A suitable pressure range for linear absorbance and band smoothing was determined for each compound.
4. All spectra were taken at room temperature.
5. Spectra with unexpected peaks or large discrepancies in areas suggesting contamination were discarded.
6. The sample compartment was purged with dry nitrogen gas.
7. The sample cell was always placed in the same position in the compartment.
8. A background spectrum was taken using the evacuated cell before starting measurements for a new compound.
9. The P-E 1600 at $2.0 \mathrm{~cm}^{-1}$ resolution with weak Norton-Beer apodisation was used throughout.
10. Band ranges and a single baseline point for the construction of a horizontal baseline were selected for each compound and used for all spectral measurements.

Chapter 4.

Integrated absorption intensities of selected halocarbons.

Abstract

The integrated absorption intensities, or band intensities (BI), have been measured for twenty-five of the compounds selected. The method used, results and discussion are reported in this chapter. Values of BI for the atmospheric window are given, as well as values for smaller and less well defined regions of the mid-infrared spectrum.

4.1. Experimental methods.

Taking care to adhere to the procedures listed in section 3.4, the following method was used for each substance. The cell described in section 3.1.1. was evacuated using a vacuum line fitted with both a rotary and a diffusion pump. The vacuum attained was at a pressure of less than 10^{-4} torr, which is adequate for these experiments. A background spectrum was recorded with the evacuated cell in the purged compartment of the spectrophotometer. This spectrum was stored on disk for later use. The cell was then removed from the instrument and filled with the selected vapour at a pressure fulfilling the requirements of pressure given in section 3.1.2. Using the background spectrum just saved, the new spectrum was recorded and ratioed to the background spectrum to give a spectrum of the vapour alone. Using ranges and a baseline point appropriate for the compound, areas under the spectral bands were calculated. The cell was then evacuated and refilled with the same vapour at a different pressure and a new spectrum recorded. This process was repeated at least 10 times for each compound so that data for a range of pressures were obtained. The length of cell and the ranges of pressures used for each compound are given in table 4.1. The purity of the substance given by the manufacturer is also listed in table 4.1.

4.2 Band intensity results.

Table 4.2 shows the average band intensities for selected regions of the spectra. Literature values for some of the compounds are shown for comparison.

Table 4.1. Cell size, pressure ranges and purity for all halocarbons used.

Halocarbon	Cells used (cm)	Pressure (torr)	Mol. wt.	Purity	B.pt. $\left({ }^{\circ} \mathrm{C}\right)$
CFC111	10.429	$4-9$	220.3	97%	$137-138$
CFC112	10.429	$7-12$	203.8	97%	92.8
CFC112a	10.429	$4-9$	203.8	97%	91.5
CFC113	10.318	$4-25$	187.4	$99.9 \% \dagger$	$47-48 \dagger$
CFC113a	$10.318,3.245$	$3-32$	187.4	$99 \% \dagger$	$46 \dagger$
CFC114	$10.429,3.415$	$7-13$	170.9	$99 \% \dagger$	$3.8 \dagger$
CFC114a	$10.429,3.415$	$8-15$	170.9	97%	3
CFC115	$10.429,3.415$	$4-15$	154.5	$98 \% \dagger$	$-39 \dagger$
FC116	$10.429,3.415$	$3-15$	138.0	99%	-78.1
HFC161	$10.429,3.415$	$20-96$	48.1	97%	-37.1
HFC152a	3.415	$15-31$	66.1	$98 \% \dagger$	$-25 \dagger$
HFC143	$10.429,3.415$	$13-21$	84.0	99%	5
HFC143a	3.415	$10-20$	84.0	99%	-47
HFC134	$10.429,3.415$	$7-18$	102.0	99%	-19.7
HFC134a	3.415	$20-29$	102.0	99%	-26.5
HFC125	3.415	$12-21$	120.0	98%	-48.5
HCFC141b	3.415	$25-55$	117.0	97%	32
HCFC142b	3.415	$14-36$	100.5	$98 \% \dagger$	$-10 \dagger$
HCFC123	3.415	$18-36$	152.9	$99 \% \dagger$	$28.7 \dagger$
HCFC124	3.415	$18-36$	136.5	98%	-12
HCFC244ca	$10.429,3.415$	$5-30$	150.5		liquid
HCFC235cb	$10.429,3.415$	$8-30$	168.5		liquid
HCFC225ca	$10.429,3.415$	$7-15$	202.9	88%	51.1
HCFC225cb	$10.429,3.415$	$7-15$	202.9	95%	56.1
FC218	3.415	$7-15$	188.0	98%	-39
P					
Haty					

Purity and boiling point data from PCR catalogue 1992, except for those marked \dagger which came from Aldrich Chemical catalogue 1992.

Table 4.2. Absolute integrated absorption intensities $\left(\mathrm{cm}^{-2} \mathrm{~atm}^{-1}\right)$ of the regions 1250 $833 \mathrm{~cm}^{-1}$ and $1300-700 \mathrm{~cm}^{-1}$. Total refers to the range $3500-450 \mathrm{~cm}^{-1}$.

		total	$\begin{array}{r} 1250- \\ 833 \end{array}$	$\begin{array}{r} 1300 \\ 700 \end{array}$	(a)	(b)	(c)
CFC111	$\mathrm{CCl}_{3} \mathrm{CCl}_{2} \mathrm{~F}$	2015	926	1946			
CFC112	$\mathrm{CCl}_{2} \mathrm{FCCl}_{2} \mathrm{~F}$	2708	1975	2579			
CFC112a	$\mathrm{CCl}_{3} \mathrm{CClF}_{2}$	2622	2053	2639			
CFC113	$\mathrm{CCl}_{2} \mathrm{FCClF}_{2}$	3402	2616	3289	3401	3126	3507*
CFC113a	$\mathrm{CCl}_{3} \mathrm{CF}_{3}$	3177	2514	3143			
CFC114	$\mathrm{CClF}_{2} \mathrm{CClF}_{2}$	3979	3577	3836	4141		3937*
CFC114a	$\mathrm{CCl}_{2} \mathrm{FCF}_{3}$	3803	3107	3707			
CFC115	$\mathrm{CClF}_{2} \mathrm{CF}_{3}$	4588	3867	4190	4678		
FC116	$\mathrm{CF}_{3} \mathrm{CF}_{3}$	5049	2640	4965			5327
HFC161	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~F}$	1064	507	510			
HFC152a	$\mathrm{CH}_{3} \mathrm{CHF}_{2}$	1746	1392	1398	1648		1719
HFC143	$\mathrm{CH}_{2} \mathrm{FCHF}_{2}$	2043	1557	1591			
HFC143a	$\mathrm{CH}_{3} \mathrm{CF}_{3}$	3210	2252	2750		3401	
HFC134	$\mathrm{CHF}_{2} \mathrm{CHF}_{2}$	2802	2343	2400			
HFC134a	$\mathrm{CH}_{2} \mathrm{FCF}_{3}$	3481	2010	2703	3272	3169	3261
HFC125	$\mathrm{CHF}_{2} \mathrm{CF}_{3}$	4224	3159	3522		3908	
HCFC141b	$\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{~F}$	1941	1199	1761	1912	1732	
HCFC142b	$\mathrm{CH}_{3} \mathrm{CClF}_{2}$	2717	2261	2281	2577	2474	2643
HCFC123	$\mathrm{CHCl}_{2} \mathrm{CF}_{3}$	3145	2026	2745	2859	2552	3160
HCFC124	$\mathrm{CHClFCF}_{3}$	3641	2469	3171		4043	
HCFC244ca	$\mathrm{CHF}_{2} \mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	2788	2011	2218			
HCFC235cb	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	3893	2846	3446			
HCFC225ca	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CHCl}_{2}$	4379	3122	3824			
HCFC225cb	$\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{CFHCl}$	4196	3027	3710			
FC218	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{3}$	5887	2330	5460			

(a) H.Magid. Personal comm. reported in Fisher et al. (1990 b) range $1535-440 \mathrm{~cm}^{-1}$.
(b) D.G.Gehring. Personal comm. reported in Fisher et al. (1990 b) range undefined.
(c) Cappellani \& Restelli (1992) range $1500-600 \mathrm{~cm}^{-1}$; otherwise * Varanasi \& Chudamani (1988) range $1300-700 \mathrm{~cm}^{-1}$.

For each halocarbon, individual band intensities were calculated from the area under selected spectral bands. Using data obtained for at least 10 spectra, the average band intensity was calculated for each band within a compound.

For each band, the range of wavenumbers in cm^{-1}, the position of maximum absorbance in cm^{-1}, the position of the point in cm^{-1} through which the baseline was drawn, and the average band intensity are presented in tables 4.3 to 4.27 , one table for each of the twenty-five halocarbons investigated. The average band intensity for each spectral band was calculated using the series of intensity results measured for each band for each compound. The maximum percentage variation from the average band intensity is given in the tables, along with the standard deviation to show the spread of the individual results. A typical spectrum for each compound is given in figures 4.1 to 4.25 corresponding to the tables 4.3 to 4.27 .

4.3 Discussion.

Band intensity values for the total range ($3500-450 \mathrm{~cm}^{-1}$) given in table 4.2 have larger errors associated with them than the results for the two smaller regions shown, since baseline errors become relatively more significant over wide ranges where no absorbance occurs (Olliff \& Fischer 1994). It can be seen from table 4.2 that in some cases there are considerable differences between the band intensities of the region 1250 $833 \mathrm{~cm}^{-1}$ and the region $1300-700 \mathrm{~cm}^{-1}$. This is of interest when calculating global warming potentials, as different research groups use different window regions. For example, the results reported by Fisher et al (1990 b) covered the region $1535-440 \mathrm{~cm}^{-1}$, Cappellani \& Restelli (1992) covered the region $1500-600 \mathrm{~cm}^{-1}$, and Varanasi \& Chudamani (1988) covered the region $1300-700 \mathrm{~cm}^{-1}$, although Dickinson and Cicerone (1986) defined the atmospheric window as being $1250-833 \mathrm{~cm}^{-1}$. These results are given in table 4.2 for comparison with the results from this work, however direct comparisons are not possible, since all the criteria relating to band intensity measurements, as detailed in chapter three, were not given in the literature.

Tables 4.3-4.27 list the band intensities for individual bands for each compound. It was sometimes difficult to identify individual bands due to overlapping areas. Results are presented for each range selected, and also for a group of bands (indicated by '*' in the tables) adjacent to each other where the separation of individual bands was considered to be somewhat arbitrary. The position of maximum absorbance recorded on the spectrum for each band is not always the band centre, due to the problem of overlapping bands or the absence of a Q branch. However, the wavenumbers of these positions are given in the tables as a means of identifying the
bands. The band intensity is the average value for 10 or more recorded spectra for each compound. Of these 10 values, the maximum percentage deviation from the average is given in both the positive and negative directions. In most cases it can be seen that the deviations are well within the predicted error range of $\pm 4 \%$, however, occasionally large errors occurred in individual results. In order to show that these large errors were infrequent, the standard deviation has also been reported, in the same units as the band intensities, to show the spread around the average of the majority of the results.

In some cases, for individual band intensities, it was observed that absorbance by one band was less than the average while absorbance by an adjacent band was more. This situation was reversed in another spectrum for the same compound, suggesting that the absorbance appears to vary by some small amount independent of the concentration of the substance. For example, in the case of CFC114a, the adjacent bands $1355-1266 \mathrm{~cm}^{-1}$ and $1266-1206 \mathrm{~cm}^{-1}$ were respectively 450.5 and $1375.3 \mathrm{~cm}^{-2} \mathrm{~atm}^{-1}$ at one pressure, and 464.8 and $1362.4 \mathrm{~cm}^{-2} \mathrm{~atm}^{-1}$ respectively for another pressure. When grouping these bands for the region $1355-1206 \mathrm{~cm}^{-1}$, the resultant band intensities were 1825.8 and $1827.2 \mathrm{~cm}^{-2} \mathrm{~atm}^{-1}$ respectively, much closer to each other than the individual values. There seems to be no obvious explanation for this phenomenon, however, the problem could arise in part from inaccuracies introduced into the areas under individual bands by separating them at a point where the absorbance is not close to zero, as is the case for the CFC114a bands previously discussed.

The 'true' area under the band is not calculated since the exact band shape is not known. Figure 4.26 (a) gives an example of areas calculated for two overlapping bands. Figure 4.26 (b) illustrates areas which may be considered to be closer to the 'true' areas, however, these areas are difficult to measure. As can be seen from figure 4.26, a small amount of area is lost by the truncation at the range limit, and a small amount is gained, since the absorbance at the range limit between the two bands is greater than for either of the individual bands. Using the same compound at a different pressure, changes in these losses and gains may contribute to area discrepancies. When the bands are measured as a group, errors associated with the individual bands are reduced since the total area is the same as that obtained from adding area 1 to area 2. For bands of more complex shapes, it becomes even more difficult to decide on the magnitude of the wings of overlapping bands, making the determination of absolute band intensities of individual bands impracticable. However, satisfactory results for band intensities may be reported, provided that the method used for area calculation is specified.

Table 4.3. Band intensities for CFC111, pentachlorofluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}						Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Max. \% variation from average band intensity	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
$1155-1088$	1114	700	287	± 2.5	3.59					
$1057-980$	1018	700	105	$-1.4,+1.7$	0.88					
$940-870$	911	700	187	$-1.7,+1.9$	1.76					
$870-834$	856	700	336	$-2.8,+3.8$	6.28					
$834-762$	810	700	706	$-2.4,+2.7$	8.81					
$762-700$	731	700	316	$-1.6,+2.1$	3.44					
$* 940-700$	810	700	1545	$-2.3,+2.7$	18.90					

Figure 4.1. Infrared spectrum of CFC111, using 6.3 torr and a 10 cm cell.

Table 4.4. Band intensities for CFC112, 1,1,2,2-tetrachlorodifluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}						Band Intensity	Max. \% variation from average band intensity	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
$1225-1063$	1121	680	678	$-1.4,+1.0$	5.72					
$1063-995$	1032	680	207	$-2.9,+1.7$	2.38					
$* 1225-995$	1121	680	885	$-1.8,+1.2$	7.60					
$973-810$	844	680	1160	$-2.0,+1.4$	11.92					
$810-725$	788	680	579	$-2.0,+1.5$	6.20					
$* 973-725$	788	680	1739	$-2.0,+1.4$	18.11					
$645-612$	627	680	4.7	$-12.3,+12.5$	0.38					
$498-463$	484	680	10.5	$-13.2,+9.9$	0.60					

Figure 4.2. Infrared spectrum of CFC112, using 11.0 torr and a 10 cm cell.

Table 4.5. Band intensities of CFC112a, 1,1,1,2-tetrachlorodifluoroethane.

Band range (* group) cm^{-1}	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	$\begin{aligned} & \text { Max. \% variation } \\ & \text { from average } \\ & \text { band intensity } \end{aligned}$	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
1215-1150	1171	700	821	$-2.4,+1.0$	6.87
1056-985	1036	700	446	$-3.0,+0.7$	4.12
922-812	856	700	718	$-2.8,+0.9$	6.82
812-723	783	700	575	-3.1, +0.8	5.66
* 922-723	856	700	1293	$-2.9,+0.9$	12.45
650-610	627	700	37.5	-4.1, +2.4	0.77

Figure 4.3. An infrared spectrum of CFC112a using 6.8 torr and a 10 cm cell.

Table 4.6. Band intensities of CFC113, 1,1,2-trichlorotrifluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Band Intensity	Linear regression for areas from individual spectra
$1237-1138$	1180	841	0.999
$1138-1078$	1118	486	0.999
$1078-997$	1042	461	0.998
$* 1237-997$	1118		
$954-847$	910	765	0.999
$846-765$	816	665	0.999
$* 954-765$	816		

Results taken from Olliff and Fischer.

Figure 4.4. Infrared spectrum of CFC 113 using 9.7 torr and a 10 cm cell.

Table 4.7. Band intensities of CFC113a, 1,1,1-trichlorotrifluoroethane.

Band range (* group)	Position of max. abs.	Band Intensity cm^{-1}	cm cm^{-1}
$1290-1238$	1256	Linear regression for areas from individual spectra (1.0 for exact fit.)	
$1238-1200$	1225	1278	0.996
$* 1290-1200$	1225	2005	0.998
$945-880$	909	134	
$880-825$	858	873	0.999
$* 945-825$	858	1007	0.997
$750-690$	713	126	
$590-525$	561	39	0.997

Results taken from Olliff and Fischer 1992.

Figure 4.5. Infrared spectrum of CFC113a using 16.8 torr and a 3 cm cell.

Table 4.8. Band intensities of CFC114, 1,2-dichlorotetrafluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Max. \% variation from average band intensity	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
$1312-1253$	1271	700	191	$-4.6,+2.5$	3.83
$1253-1216$	1231	700	138	$-1.8,+1.2$	1.08
$1216-1079$	1185	700	1847	$-3.1,+2.2$	26.54
$1079-1019$	1052	700	546	$-3.7,+2.0$	8.47
$1312-1019$	1185	700	2722	$-3.1,+2.1$	39.02
$972-902$	922	700	437	$-2.3,+1.7$	5.49
$902-862$	887	700	151	$-3.1,+2.3$	2.34
$862-820$	847	700	479	$-4.3,+2.0$	8.40
$* 972-820$	847	700	1067	$-3.3,+1.9$	16.06
$758-713$	735	700	16.0	$-15.6,+10.4$	1.16
$698-653$	678	700	16.7	$-4.2,+6.0$	0.53
$636-586$	616	700	44.6	$-5.9,+3.6$	1.11

Figure 4.6. Infrared spectrum of CFC114 using.9.5torr and a 10 cm cell.

Table 4.9. Band intensities of CFC114a, 1,1-dichlorotetrafluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity cm^{-2} atm $^{-1}$	Max. \% variation from average band intensity	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
$1355-1266$	1294	700	456	$-3.2,+2.5$	9.03
$1266-1206$	1232	700	1354	$-5.6,+4.7$	48.15
$1206-1160$	1195	700	124	$-8.7,+3.0$	4.18
$1160-1070$	1110	700	483	$-5.0,+1.4$	9.09
$1070-1024$	1052	700	57.4	$-13.6,+13.0$	4.64
$* 1355-1024$	1232	700	2474	$-4.1,+3.1$	60.95
$955-861$	920	700	1100	$-3.7,+2.5$	22.26
$861-822$	847	700	51.5	$-11.8,+9.0$	3.04
$* 955-822$	920	700	1152	$-3.1,+2.2$	21.42
$756-713$	735	700	128	$-3.6,+1.2$	1.71
$603-575$	589	700	12.2	$-5.0,+4.1$	0.28
$575-543$	560	700	16.7	$-5.7,+3.5$	0.46
$* 603-543$	560	700	28.9	$-5.4,+3.8$	0.72

Figure 4.7. Infrared spectrum of CFC114a using 7.9torr and a 10 cm cell.

Table 4.10. Band intensities of CFC115, chloropentafluoroethane.

Band range (* groups)	Position of max. abs.	Waveno. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Max. \% variation from average band intensity	Standard deviation
$1378-1314$	1349	700	220	$-5.4,+6.0$	7.76
$1273-1211$	1239	700	1851	$-4.7,+1.7$	32.11
$1211-1156$	1184	700	497	$-3.3,+4.1$	11.66
$1156-1066$	1131	700	744	$-2.0,+2.5$	9.57
$* 1273-1066$	1239	700	3093	$-1.6,+1.3$	32.70
$1025-931$	982	700	891	$-4.2,+4.1$	23.46
$781-738$	762	700	96.7	$-4.2,+4.7$	2.45
$666-628$	647	700	43.3	$-7.1,+6.0$	1.72
$580-538$	560	700	16.8	$-5.8,+5.9$	0.63

Figure 4.8. Infrared spectrum of CFC115 using 4.3 torr and a 10 cm cell.

Table 4.11. Band intensities of FC 116 , hexafluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Max. \% variation from average band intensity	Standard deviation
$1359-1295$	1328	1070	91.4	$-9.2,+9.2$	5.64
$1277-1222$	1250	1070	3757	$-4.8,+2.5$	92.32
$1220-1186$	1206	1070	33.4	$-15.9,+11.4$	3.28
$* 1277-1186$	1250	1070	3790	$-4.6,+2.5$	91.19
$1157-1134$	1139	1070	41.5	$-7.4,+7.5$	1.99
$1134-1084$	1115	1070	1011	$-3.6,+1.5$	14.75
$* 1157-1084$	1115	1070	1053	$-3.7,+1.5$	15.91
$737-692$	714	1070	130	$-5.4,+2.7$	3.21
$542-495$	519	1070	29.3	$-11.0,+11.1$	2.41

Figure 4.9. Infrared spectrum of FC116 using 5.2 torr and a 3 cm cell.

Table 4.12. Band intensities of HFC161, fluoroethane.

Band range (* group) cm^{-1}	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	$\begin{aligned} & \text { Max. \% variation } \\ & \text { from average } \\ & \text { band intensity } \end{aligned}$	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
3080-2820	2999	3500	437	-1.4, +3.5	7.59
1552-1433	1448	3500	25.5	-17.6, +9.3	2.20
1433-1343	1396	3500	89.7	-2.6, +2.2	1.26
* 1552-1343	1396	3500	115.2	$-5.9,+3.8$	3.40
1224-1110	1120	3500	73.3	$-2.9,+2.0$	1.10
1110-985	1061	3500	361	-1.1, +0.6	2.29
* 1224-985	1061	3500	434	-1.3, +0.9	3.20
930-825	880	3500	69.4	$-3.0,+2.4$	1.13

Figure 4.10. Infrared spectrum of HFC161 using 45.6 torr and a 10 cm cell.

Table 4.13. Band intensities of HFC152a, 1,1-difluoroethane.

Band range (* group)	Position of max. abs.	Waveno. of baseline point	Band Intensity	Max. \% variation from average band intensity	Standard deviation cm^{-1}
$\mathrm{~cm}^{-1}$	$\mathrm{~cm}^{-2} \mathrm{~atm}^{-1}$		$\mathrm{~cm}^{-2} \mathrm{~atm}^{-1}$		
$3100-2910$	2975	3100	195	$-1.5,+2.0$	1.95
$1500-1300$	1412	700	344	$-2.0,+2.3$	4.22
$1210-1020$	1139	700	1093	$-1.6,+0.7$	7.82
$1005-900$	943	700	261	$-1.9,+1.5$	2.37
$900-830$	868	700	33.8	$-3.3,+6.6$	0.99
$* 1005-830$	943	700	295	$-2.0,+2.0$	3.16
$610-530$	569	700	24.3	$-6.6,+9.7$	1.20
$510-450$	468	700	48.8	$-2.7,+6.0$	1.33

Figure 4.11. Infrared spectrum of HFC152a using 25.3 torr and a 3 cm cell.

Table 4.14. Band intensities of HFC143, 1,1,2-trifluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Max. \% variation from average band intensity	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
$3055-2866$	3005	$3055-2866$	186	$-0.5,+1.3$	1.26
$1503-1408$	1433	800	70.1	$-0.8,+1.0$	0.38
$1408-1345$	1379	800	68.8	$-1.0,+0.8$	0.35
$1345-1290$	1319	800	41.8	$-1.3,+1.5$	0.35
$1290-1214$	1249	800	56.1	$-1.3,+1.7$	0.50
$1214-1033$	1107	800	1369	$-1.5,+1.0$	12.90
$* 1503-1033$	1107	800	1606	$-1.3,+1.0$	14.15
$945-832$	911	800	135	$-1.1,+1.2$	0.96
$777-727$	753	800	9.22	$-1.9,+3.7$	0.14
$613-545$	577	800	15.9	$-2.1,+2.5$	0.21
$545-450$	476	800	73.3	$-1.5,+2.1$	0.89
$* 613-450$	476	800	89.2	$-1.5,+2.0$	1.09

Figure 4.12. Infrared spectrum of HFC143 using 15.6 torr and a 10 cm cell.

Table 4.15. Band intensities of HFC143a, 1,1,1-trifluoroethane.

$\begin{gathered} \text { (* group) } \\ \mathrm{cm}^{-1} \\ \hline \end{gathered}$	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	$\begin{gathered} \text { Band } \\ \text { Intensity } \\ \mathrm{cm}^{-2} \mathrm{~atm}^{-1} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Max. \% variation } \\ \text { from average } \\ \text { band intensity } \end{gathered}$	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
3068-2999	3034	3068-2999	27.7	-2.6, +4.0	0.53
1474-1319	1407	700	354	$-4.7,+2.8$	8.22
1319-1252	1280	700	488	$-1.4,+0.8$	3.52
1252-1113	1233	700	1837	-1.1, +1.0	12.27
* 1474-1113	1233	700	2679	$-1.4,+1.2$	21.95
1050-928	973	700	408	$-1.6,+1.1$	3.43
862-796	830	700	18.8	$-9.1,+12.7$	1.12
643-570	603	700	77.7	-3.6, +2.0	1.27

Figure 4.13. Infrared spectrum of HFC143a using 16.3 torr and a 3 cm cell.

Table 4.16. Band intensities of HFC134, 1,1,2,2-tetrafluoroethane.

Band range (* group) cm^{-1}	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Max. \% variation from average band intensity	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
3059-2938	2995	3059-2938	128	$-1.8,+1.2$	1.64
1420-1369	1391	650	15.7	-10.1, +6.0	1.13
1369-1262	1309	650	175	-2.7, +1.8	3.43
* 1420-1262	1309	650	191	$-3.3,+2.2$	4.56
1257-1180	1205	650	124	$-2.4,+1.7$	2.20
1180-1089	1133	650	2145	$-0.8,+0.5$	12.11
* 1257-1089	1133	650	2269	-0.9, +0.6	14.30
938-873	905	650	21.6	-3.6, +4.4	0.75
802-738	779	650	35.7	-3.0, +3.9	1.06
570-505	541	650	41.6	$-2.4,+2.6$	0.86

Figure 4.14. Infrared spectrum of HFC134 using 15.8 torr and a 3 cm cell.

Table 4.17. Band intensities of HFC134a, 1,1,1,2-tetrafluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Max. \% variation from average band intensity	Standard deviation
$3100-2750$	2984	3100	80.4	$-6.1,+6.7$	4.20
$1490-1447$	1464	720	34.1	$-2.1,+1.7$	0.40
$1447-1397$	1428	720	79.8	$-1.6,+0.6$	0.52
$* 1490-1397$	1428	720	114	$-1.8,+0.9$	0.87
$1344-1243$	1301	720	1030	$-1.6,+0.9$	7.50
$1243-1133$	1191	720	1366	$-1.9,+1.0$	12.63
$1133-1027$	1105	720	370	$-2.2,+1.3$	3.80
$1027-920$	973	720	220	$-2.3,+1.3$	2.28
$* 1344-920$	1191	720	2986	$-1.8,+0.9$	25.61
$873-800$	843	720	62.3	$-3.7,+3.0$	1.11
$700-594$	666	720	132	$-3.0,+1.5$	1.87
$594-500$	549	720	38.6	$-4.1,+4.5$	1.17

Figure 4.15. Infrared spectrum of HFC134a using 27.6torr and a 3 cm cell.

Table 4.18. Band intensities of HFC125, pentafluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}						Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Max. \% variation from average band intensity	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
$3040-2960$	3001	$3040-2960$	51.2	$-2.5,+2.0$	0.67					
$1476-1412$	1444	650	14.7	$-6.0,+5.4$	0.55					
$1412-1337$	1357	650	37.2	$-4.2,+2.4$	0.76					
$1337-1255$	1308	650	588	$-1.6,+1.4$	5.69					
$1255-1171$	1209	650	1981	$-2.5,+0.8$	18.76					
$1171-1051$	1146	650	969	$-2.1,+0.9$	8.99					
$1476-1051$	1209	650	3590	$-2.2,+0.9$	33.33					
$915-824$	867	650	167	$-1.8,+1.6$	1.76					
$756-693$	727	650	128	$-2.2,+1.6$	1.44					
$605-557$	578	650	55.3	$-1.7,+2.8$	0.82					
$549-496$	523	650	25.4	$-4.0,+5.1$	0.77					

Figure 4.16. Infrared spectrum of HFC 125 using 20.8 torr and a 3 cm cell.

Table 4.19. Band intensities of HCFC141b, 1,1-dichloro-1-fluoroethane.

$\begin{gathered} \hline \begin{array}{c} \text { Band range } \\ \text { (* group) } \end{array} \\ \mathrm{cm}^{-1} \\ \hline \end{gathered}$	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	$\begin{gathered} \text { Band } \\ \text { Intensity } \\ \mathrm{cm}^{-2} \mathrm{~atm}^{-1} \\ \hline \end{gathered}$	Max. \% variation from average band intensity	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
3054-2985	3013	3054-2985	25.1	-2.1, +1.0	0.20
2985-2914	2954	2985-2914	8.19	-8.0, +3.4	0.27
* 3054-2914	3013	3054-2914	33.3	-1.8, +1.2	0.29
1475-1417	1445	650	18.5	$-1.6,+2.0$	0.20
1417-1359	1387	650	65.7	-0.7, +0.7	0.29
* 1475-1359	1387	650	84.2	$-0.9,+1.0$	0.45
1207-1137	1161	650	336	-0.5, +0.3	0.71
1137-1050	1102	650	575	$-0.3,+0.2$	1.07
* 1207-1050	1102	650	911	$-0.3,+0.2$	1.75
960-880	927	650	259	$-0.5,+0.2$	0.47
800-700	754	650	555	-0.7, +0.6	2.01
621-560	593	650	79.1	$-0.8,+0.3$	0.29

Figure 4.17. Infrared spectrum of HCFC141b using 47.9 torr and a 3 cm cell.

Table 4.20. Band intensities of HCFC142b, 1-chloro-1,1-difluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Waven. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Max. \% variation from average band intensity	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
$3077-2991$	3021	$3077-2991$	25.5	$-2.6,+1.7$	0.29
$2991-2936$	2961	$2991-2936$	6.22	$-6.6,+2.9$	0.17
$* 3077-2936$	3021	$3077-2936$	31.7	$-2.0,+1.8$	0.33
$1474-1423$	1447	600	19.5	$-6.5,+7.1$	0.72
$1423-1356$	1395	600	136	$-0.6,+2.7$	1.31
$* 1474-1356$	1395	600	156	$-1.6,+3.0$	1.93
$1268-1159$	1192	600	995	$-1.3,+1.4$	7.09
$1159-1060$	1134	600	671	$-1.4,+1.3$	5.17
$* 1268-1060$	1192	600	1666	$-1.3,+1.4$	12.23
$1001-932$	967	600	200	$-1.2,+1.6$	1.66
$932-865$	904	600	389	$-1.8,+1.5$	4.03
$* 1001-865$	904	600	589	$-1.6,+1.5$	5.44
$718-641$	682	600	174	$-1.4,+2.2$	1.92
$574-510$	543	600	53.5	$-3.7,+3.4$	1.08

Figure 4.18.Infrared spectrum of HCFC142b using 32.8 torr and a 3 cm cell.

Table 4.21. Band intensities of HCFC123, 1,1-dichloro-2,2,2-trifluoroethane.

Band range (* group)	Position of max. abs.	Waveno. of baseline point cm^{-1}	Band Intensity	Max. \% variation from average band intensity	Standard deviation
$3031-2972$	3011	$3031-2972$	13.2	$-0.9,+2.6$	$\mathrm{~cm}^{-2} \mathrm{~atm}^{-1}$
$1342-1303$	1324	700	279	$-0.5,+1.1$	0.13
$1303-1256$	1279	700	557	$-0.7,+0.9$	2.89
$1256-1172$	1195	700	844	$-0.7,+0.6$	4.26
$1172-1119$	1146	700	656	$-0.6,+0.6$	3.01
$1119-1082$	1107	700	51.5	$-0.8,+1.4$	0.31
$1082-1040$	1064	700	30.3	$-2.2,+1.9$	0.37
$1342-1040$	1279	700	2418	$-0.6,+0.6$	11.69
$1019-966$	999	700	37.8	$-1.8,+1.9$	0.39
$893-800$	842	700	493	$-0.6,+0.4$	1.84
$800-731$	770	700	71.6	$-1.1,+0.9$	0.50
$* 893-731$	842	700	565	$-0.6,+0.6$	2.17
$691-647$	672	700	96.2	$-1.0,+1.7$	0.74
$647-614$	633	700	9.58	$-3.6,+3.1$	0.22
$* 691-614$	672	700	106	$-1.1,+1.5$	0.84
$578-542$	559	700	12.4	$-3.0,+3.0$	0.28
$542-505$	527	700	16.0	$-3.4,+4.1$	0.33
$* 578-505$	527	700	28.4	$-2.7,+2.9$	0.56

Figure 4.19. Infrared spectrum of HCFC123 using 35.8 torr and a 3 cm cell.

Table 4.22. Band intensities of HCFC124, 1-chloro-1,2,2,2-tetrafluoroethane.

Band range (* group)	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity	Max. \% variation from average band intensity	Standard deviation
$3026-2970$	3002	$3026-2970$	19.0	$-1.9,+2.3$	0.23
$1433-1324$	1377	1500	179	$-1.1,+1.3$	1.30
$1324-1254$	1286	1500	605	$-1.3,+1.2$	4.38
$1254-1187$	1215	1500	977	$-1.3,+1.3$	7.35
$1187-1125$	1166	1500	774	$-1.4,+1.0$	5.31
$1125-1071$	1107	1500	395	$-1.1,+1.3$	2.88
$* 1433-1071$	1166	1500	2930	$-1.3,+1.0$	20.32
$925-849$	885	1500	289	$-1.4,+1.3$	2.16
$849-786$	818	1500	147	$-1.8,+2.1$	1.62
$* 925-786$	885	1500	436	$-1.5,+1.5$	3.69
$720-671$	697	1500	130	$-1.3,+2.0$	1.28
$590-552$	573	1500	13.8	$-4.3,+5.3$	0.37
$552-506$	531	1500	24.8	$-3.8,+3.7$	0.56
$* 590-506$	531	1500	38.6	$-4.0,+3.4$	0.88

Figure 4.20. Infrared spectrum of HCFC124 using 28.6 torr and a 3 cm cell.

Table 4.23. Band intensities of HCFC244ca, 1-chloro-2,2,3,3-tetrafluoropropane.

Band range (* group)	Position of max. abs. cm^{-1}	Waven. of baseline point						Band (ntensity	Max. \% variation from average band intensity	Smandard deviation
$3100-2720$	2990	$3100-2720$	128	$-1.1,+2.4$	1.81					
$1500-1370$	1441	2000	108	$-0.6,+2.1$	1.28					
$1370-1295$	1312	2000	72.5	$-1.7,+2.0$	0.91					
$1295-1000$	1120	2000	1986	$-1.9,+1.8$	24.50					
$* 1500-1000$	1120	2000	2167	$-1.9,+1.8$	26.51					
$930-815$	852	2000	150	$-1.9,+2.4$	2.21					
$805-750$	787	2000	64.3	$-1.6,+2.5$	0.96					
$690-620$	647	2000	90.2	$-1.6,+1.9$	1.07					
$595-495$	573	2000	119	$-2.0,+2.5$	1.95					

Figure 4.21. Infrared spectrum of HCFC244ca using 12.7 torr and a 10 cm cell.

Table 4.24. Band intensities of $\mathrm{HCFC} 235 \mathrm{cb}, 1$-chloro-2,2,3,3,3-pentafluoropropane.

$\begin{gathered} \begin{array}{c} \text { Band range } \\ \text { (group) } \end{array} \\ \mathrm{cm}^{-1} \\ \hline \end{gathered}$	Position of max. abs. cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	$\begin{aligned} & \text { Max. \% variation } \\ & \text { from average } \\ & \text { band intensity } \end{aligned}$	opropane. Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
3020-2935	2984	3020-2935	21.3	-3.2, +4.8	0.46
1465-1415	1441	1500	39.0	-3.7, +2.5	0.66
1415-1328	1367	1500	194	-1.7, +2.6	3.00
1328-1160	1214	1500	2467	-3.2, +2.0	35.19
1160-1082	1134	1500	396	-2.7, +2.4	6.13
1082-1000	1038	1500	423	-3.1, +2.0	7.09
* 1465-1000	1214	1500	3520	-3.1, +1.8	52.38
845-750	794	1500	136	-4.4, +2.3	2.99
750-690	710	1500	133	-3.8, +2.0	2.28
* 845-690	710	1500	269	-4.1, +2.2	5.20
655-570	632	1500	51.9	$-6.3,+3.8$	1.74
550-490	519	1500	37.9	-7.7, +5.3	1.58

Figure 4.22. Infrared spectrum of HCFC235cb using 5.3 torr and a 10 cm cell.

Table 4.25. Band intensities of HCFC225ca, 1,1-dichloro-2,2,3,3,3pentafluoropropane.

Band range (* group)	Position of max. abs.	Waveno. of baseline point cm^{-1}	Band cm^{-1}						Intensity	Max. \% variation from average band intensity	Standard deviation
$3050-2965$	3016	$3050-2965$	12.7	$-4.7,+2.3$	0.23						
$1420-1320$	1349	1000	236	$-3.9,+2.4$	3.79						
$1320-1100$	1209	1000	2824	$-2.6,+2.1$	36.10						
$* 1420-1100$	1209	1000	3060	$-2.7,+2.1$	39.55						
$1065-1010$	1041	1000	317	$-3.1,+1.8$	4.03						
$865-780$	840	1000	339	$-2.7,+1.6$	3.97						
$780-738$	758	1000	53.3	$-2.5,+1.3$	0.62						
$738-695$	713	1000	216	$-2.7,+1.7$	2.52						
$* 865-695$	713	1000	607	$-2.7,+1.6$	7.05						

Figure 4.23. Infrared spectrum of HCFC225ca using 8.8 torr and a 10 cm cell.

Table 4.26. Band intensities of HCFC225cb, 1,3-dichloro-1,2,2,3,3-
pentafluoropropane.

$\begin{gathered} \hline \text { Band range } \\ \text { (* group) } \\ \mathrm{cm}^{-1} \\ \hline \end{gathered}$	Position of max. abs. \qquad cm^{-1}	Waveno. of baseline point cm^{-1}	Band Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	$\begin{aligned} & \text { Max. \% variation } \\ & \text { from average } \\ & \text { band intensity } \end{aligned}$	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$
3040-2950	3008	3040-2950	12.1	$-4.1,+2.4$	0.23
1450-1330	1355	1600	46.4	$-2.2,+1.7$	0.53
1330-1010	1179	1600	2710	-1.0, +2.1	22.58
1010-890	960	1600	423	$-0.9,+1.9$	3.34
890-695	745	1600	785	-1.1, +2.1	7.04
695-626	670	1600	70.8	$-1.0,+0.8$	0.42
626-587	615	1600	38.5	$-0.8,+0.5$	0.17
* 1450-587	1179	1600	4074	$-0.9,+2.0$	32.31

Figure 4.24. Infrared spectrum of HCFC225cb using 10.7 torr and a 10 cm cell.

Table 4.27. Band intensities of FC218, octafluoropropane.

Band range (* group)	Position of max. abs.	Waveno. of baseline point cm^{-1}	Band cm^{-1}	Intensity $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Max. \% variation from average band intensity
$1415-1329$	1350	800	484	Standard deviation $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	
$1287-1227$	1262	800	3050	$-2.8,+2.5$	8.02
$1227-1180$	1209	800	590	$-3.3,+3.6$	76.75
$* 1287-1180$	1262	800	3640	$-1.8,+1.6$	6.93
$1171-1110$	1154	800	685	$-2.9,+3.2$	77.90
$1022-960$	1007	800	825	$-2.0,+1.7$	8.27
$750-705$	731	800	191	$-2.9,+1.5$	9.23
$563-520$	537	800	49.6	$-10.5,+7.0$	2.83

Figure 4.25. Infrared spectrum of FC218 using 7.0torr and a 3 cm cell.

Figure 4.26. Discrepancies between (a) calculated areas and (b) 'true' areas.

The band intensities for a group of bands were obtained by adding the areas for all the bands in the spectra for the group, calculating the band intensity and averaging over all spectra for one compound. The 'errors' discussed here refer to the variation from the average band intensity. The individual sets of results are discussed below for each halocarbon.

CFC111. Results for CFC111 are presented in table 4.3 and figure 4.1. It is solid at room temperature, so only low pressures of vapour were obtained. The maximum percentage deviation from the average was $+3.8 \%$ suggesting that all the results were satisfactory. The standard deviation for the group is slightly lower than that for the individual bands indicating that errors due to overlapping bands have been reduced. CFC112. Results for CFC112 are presented in table 4.4 and figure 4.2. This substance is also solid at room temperature. The errors are all within the expected $\pm 4 \%$, except for the bands $645-612 \mathrm{~cm}^{-1}$ and $498-462 \mathrm{~cm}^{-1}$. These bands are very weak, and with the pressures available for use, are very difficult to measure due to noise in the spectrum and the low absorbance. It is possible that there was some contamination of the sample by CFC112a, however, many of the bands are coincident and no large discrepancies were found in the areas.

CFC112a. Results for CFC112a are presented in table 4.5 and figure 4.3. As for CFC112, the substance is solid at room temperature, and the largest errors occurred in the weakest band.

CFC113 and CFC113a. Data for these compounds were taken from the publication by Olliff \& Fischer (1992). The results are presented in tables 4.6 and 4.7 and figures 4.4 and 4.5 .

CFC114. The results for CFC114 are presented in table 4.8 and figure 4.6. The largest errors are due to the very weak bands between 758 and $586 \mathrm{~cm}^{-1}$. In the case of the $1315-1253 \mathrm{~cm}^{-1}$ band, one value was 4.6% less than the average. The other eleven values were all within 3%. Similarly, for the $862-820 \mathrm{~cm}^{-1}$ band, one value was 4.3% less than the average, the other 11 values were all within 2%.
CFC114a. The results for CFC114a are presented in table 4.9 and figure 4.7. Several errors in the band intensities are apparent for this compound. While the large errors for the bands $1070-1024 \mathrm{~cm}^{-1}, 861-822 \mathrm{~cm}^{-1}$ and $603-543 \mathrm{~cm}^{-1}$ may be attributed to the fact that the bands are very weak, the errors in the strong band $1266-1206 \mathrm{~cm}^{-1}$ cannot be easily explained. The errors for the group including this band are acceptable, as some variations have been decreased by the grouping of bands as described above. It is possible however, that CFC114a is contaminated by CFC114, since the strongest bands of CFC114 are found at 1185,1052 , and $847 \mathrm{~cm}^{-1}$, and weak peaks can be seen at these positions in the spectrum in figure 4.7. Separation of the two gases was not possible in this work, so the results are reported as calculated at the given purity. The two compounds are isomeric, so it is possible that small amounts of CFC114 were formed during the manufacture of CFC114a.
CFC115. The results for CFC115 are presented in table 4.10 and figure 4.8. The error for the group $1273-1066 \mathrm{~cm}^{-1}$ is considerably smaller than the individual band intensity errors suggesting that the choice of individual band ranges was not satisfactory. Again, the largest errors arose in the weakest bands.
FC116. The results for FC 116 are presented in table 4.11 and figure 4.9. The very strong band between $1277-1222 \mathrm{~cm}^{-1}$ made it necessary to measure the area using two sets of data, since maximum absorbance of the strong band exceeded 3.0 absorbance units when pressures high enough to bring the weak bands into the range 0.1 to 3.0 absorbance units were used.
HFC161. The results for HFC161 are presented in table 4.12 and figure 4.10. The errors for the band intensity data were well within the limit of $\pm 4 \%$, except for the weakest band from $1552-1433 \mathrm{~cm}^{-1}$. The strength of the band $3080-2820 \mathrm{~cm}^{-1}$ and the lack of instrumental 'drift' observed in the spectrum, as described in chapter three, resulted in the choice of $3500 \mathrm{~cm}^{-1}$ as the baseline point.

HFC152a. The results for HFC152a are presented in table 4.13 and figure 4.11. Since bands occurred at both ends of the spectrum, and that at $3100-2910 \mathrm{~cm}^{-1}$ was relatively small, two different baseline points were selected. One adjacent to the $3100-2910 \mathrm{~cm}^{-1}$ band and one at $700 \mathrm{~cm}^{-1}$ for the remaining bands.
HFC143. The results for HFC143 are presented in table 4.14 and figure 4.12. Several of the spectra for this compound showed instrumental 'drift', so the area under the $3055-2866 \mathrm{~cm}^{-1}$ band was calculated using a diagonal baseline drawn through the range limits. The remaining bands were calculated using a baseline through $800 \mathrm{~cm}^{-1}$. The errors were all small even for the weakest bands.
HFC143a. The results for HFC143a are presented in table 4.15 and figure 4.13. As for HFC143, two different baselines were used.
HFC134. The results for HFC134 are presented in table 4.16 and figure 4.14. Again two baselines were used. The errors were small, except for the very weak band at 1420 $1369 \mathrm{~cm}^{-1}$.

HFC134a. The results for HFC134a are presented in table 4.17 and figure 4.15. Only one baseline point was used for the $3100-2750 \mathrm{~cm}^{-1}$ band. The largest error was found in this band, suggesting that some baseline errors were apparent.
HFC125. The results for HFC125 are presented in table 4.18 and figure 4.16. Two baselines were used as for HFC143. Again the errors were all acceptable, except for those associated with the weakest bands.
HCFC141b. The results for HCFC141b are presented in table 4.19 and figure 4.17. Very consistent results were obtained for this compound, except for the very weak band at $2985-2914 \mathrm{~cm}^{-1}$. When combining the two bands at this end of the spectrum into the group $3054-2914 \mathrm{~cm}^{-1}$, the error in the band intensity was acceptable, suggesting that the bands should not have been divided.
HCFC142b. The results for HCFC142b are presented in table 4.20 and figure 4.18. Acceptable results were obtained, provided that the absorption due to $\mathrm{C}-\mathrm{H}$ stretches between $3077-2936 \mathrm{~cm}^{-1}$ are treated as a group.
HCFC123. The results for HCFC123 are presented in table 4.21 and figure 4.19. Despite the fact that these spectra were divided into many bands, the errors in the band intensities were small.

HCFC124, The results for HCFC124 are presented in table 4.22 and figure 4.20. The errors obtained from the data for this compound are acceptable, with slightly larger errors occurring for the very weak bands.
HCFC244ca. The results for HCFC244ca are presented in table 4.23 and figure 4.21. This compound was synthesised as part of this work, and although the product was purified as far as possible, the exact purity was not determined. The variations in the results are all within the expected range of $\pm 4 \%$, hence are acceptable.

HCFC235cb. The results for HCFC235cb are presented in table 4.24 and figure 4.22. This compound was also synthesised as part of this work, but as for HCFC244ca, the exact purity was not determined. The errors exceeded the 4% error range for the weaker bands, but the group results are acceptable.
HCFC225ca. The results for HCFC225ca are presented in table 4.25 and figure 4.23. The manufacturer specified a purity of only 88%, however, the errors in the band intensities show that the results were consistent. These values may still be valid when using the data for global warming predictions, since the compound will be used as a solvent at the purity supplied by the manufacturer.
HCFC225cb. The results for HCFC225cb are presented in table 4.26 and figure 4.24. This compound was available at a higher purity than HCFC225ca, and the band intensity errors are, in general, lower. As can be seen in the spectrum, many of the bands overlap, and so were not all separated for integration of absorbance under the bands.

FC218. The results for FC218 are presented in table 4.27 and figure 4.25. One baseline point was used for all of the bands, since no hydrogen is present in the molecule, and fundamental absorption occurs below $1500 \mathrm{~cm}^{-1}$. The errors are in the acceptable range, except for the weak band at $563-520 \mathrm{~cm}^{-1}$.

From the tables 4.3 to 4.27 , it can be seen that the variations in the band intensities fall mostly within the acceptable error range of $\pm 4 \%$. The overall error obtained from pressure, pathlength and instrumental errors was found to be between $\pm 2 \%$ and $\pm 4 \%$ as defined in chapter three. This value is primarily dependent on pressure. The variations in errors between individual bands within one spectrum are due to errors in the choice of band range and baseline. In general, these variations are small, except in the case of the very weak bands, where, even at higher pressures, the maximum absorbance is still small and hence the effects of instrumental noise affect the integration of the absorbance under the bands.

Chapter 5

Data input for computer calculations.

The frequencies of molecular vibrations may be calculated by various methods. In this work, two approaches were used, a normal coordinate analysis using a UreyBradley force field and an $a b$ initio electronic structure method, as described in section 1.6. The data required for the Urey-Bradley force field calculations are described in section 5.1, and the detailed computer input is given in appendix B. The data required for the $a b$ initio calculations are described in section 5.2 , and the detailed computer input is given in appendix C.

Nineteen halocarbons were selected for theoretical study. The halocarbons were divided into two groups, each group consisting of a series of two carbon compounds with increasing numbers of fluorine atoms. The first group includes the CFCs CFC110, CFC111, CFC112, CFC112a, CFC113, CFC113a, CFC114, CFC114a, CFC115, FC116. The second group includes the HFCs HFC170 (ethane), HFC161, HFC152, HFC152a, HFC143, HFC143a, HFC134, HFC134a, HFC125, FC116.
Hexafluoroethane, FC116, is included in each group so that comparisons can be made between a fully fluorinated ethane and the partially fluorinated ethanes in both cases. In order to investigate changes in the infrared spectra with changes in the positions of the fluorine atoms within the molecule, all structural isomers were included.

5.1 Urey-Bradley force field calculations.

The programs NORCORD and OVER, when run consecutively, enable the fundamental vibrational frequencies for molecules of known geometry to be calculated. Using approximate values for initial force constants, the programs refine the force constants until calculated frequencies close to the observed values are obtained as described in section 1.6.1, using the techniques devised by Overend and Scherer (1960). The programs were made available for this work by Dr. Gad Fischer at the ANU, and had been written in Fortran and used on a VAX computer. Initially, considerable time was spent converting the programs to run on the SUN/UNIX computer system at the ANU, and to correct the previously undiagnosed errors due to problems with rounding of the Cartesian coordinates in NORCORD, and refining five or more force constants in OVER. An extra section was inserted into OVER to enable
interactive changes of the force constants by the user between iterative calculations. This was useful when newly-refined force constants were deemed to be unsuitable. The fortran program CALST was written and run on a Macintosh computer to facilitate the construction of the Z matrix by calculating the force constant coefficients. It must be noted here that the Z matrix used by OVER, described in section 5.1.2, is entirely different to the Z matrix used by GAUSSIAN92. In order to carry out the two types of calculation independently, the optimised geometry from the $a b$ initio calculations was not used for this part of the work. The molecular geometry used was that obtained from the literature and given in table 5.1.

5.1.1 Data input for the program NORCORD.

The program NORCORD uses Cartesian coordinates, internal coordinates and molecular symmetry to calculate moments of inertia, create a G matrix and hence a W matrix for use by the program OVER for a molecule of up to 30 atoms. The W matrix is obtained from the matrix calculation, $U G U^{\prime}$, this procedure removes redundancies and introduces the molecular symmetry into the G matrix (Overend \& Scherer 1960). The W matrix is output to disk by NORCORD for use by OVER in subsequent calculations for the same molecule.

Using the data in table 5.1, the Cartesian coordinates were easily calculated. For these 8 atom molecules, the number of fundamental vibrations is 18 , as described in section 1.5.2. There are 22 internal coordinates hence 4 redundancies. The redundancies occur because all the angles about the tetrahedral carbons are included. A general diagram of the internal coordinates used is shown in figure 5.1. Xn represents the atoms F, Cl, or H , depending on the molecule. The bond stretches are represented by r_{n}; the angle bends between the $\mathrm{C}-\mathrm{C}$ backbone and a third atom by α_{n}; the angle bends between the atoms attached to the same carbon atom by β_{n}; and the torsion of the molecule about the $\mathrm{C}-\mathrm{C}$ axis by γ_{n}.

A U matrix for each molecule was constructed, relating internal coordinates to symmetry coordinates. It was first necessary to determine the symmetry point group of each molecule, then, using the character tables given in Wilson et al. (1955), the irreducible representations were calculated giving the symmetry coordinates for the fundamental vibrations.

	$\mathrm{C}_{1}-\mathrm{C}_{2}$	$\mathrm{C}_{1}-\mathrm{F}$	$\mathrm{C}_{2}-\mathrm{F}$	$\mathrm{C}_{1}-\mathrm{X}$	$\mathrm{C}_{2}-\mathrm{X}$	$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{~F}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~F}$	$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{X}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{X}$	FCF	FCX	XCX	ref.
CFC110	1.499			1.763	1.763			110.7	110.7			108.2	Tanabe \& Saëki 1972
CFC111	1.54		1.37	1.77	1.77		T		T		T	T	Nielsen et al. 1953 (a)
CFC112	1.54	1.37	1.37	1.77	1.77	T	T	T	T		T	T	using CFC 111 values.
CFC112a	1.55		1.33	1.76	1.74		108.0	110.7	110.6	108.0	110.5	108.2	Brown et al. 1967 *
CFC113	1.54	1.37	1.35	1.75	1.74	T	T	T	T	T	T	T	Brown et al. 1967
CFC113a	1.545	1.33			1.771	108.9			110.7	110.0		108.2	Bürger et al. 1980
CFC114	1.55	1.33	1.33	1.74	1.74	108.0	108.0	110.6	110.6	108.0	110.5		Brown et al. 1967*
CFC114a	1.56	1.33	1.40		1.78	T	T		T	T	T	T	Brown et al. 1967
CFC115	1.555	1.33	1.33		1.74	110.9	108.0		110.6	108.0	110.5		Brown et al. 1967 *
FC116	1.545	1.326	1.326			109.8	109.8			109.1			Gallaher et al. 1974
HFC170	1.5324			1.1068	1.1068			111.0	111.0			107.9	Tanabe \& Saëki 1972
HFC161	1.505		1.398	1.090	1.095		109.7	109.7	112.9		106.1	108.8	Chen et al. 1975
HFC152	1.5033	1.3892	1.3892	1.1034	1.1034	110.3	110.3	111.0	111.0		107.9	108.5	Huber-Wälchli et al. 1975
HFC152a	1.54		1.345	1.10	1.10		109.4	108.7	109.8	109.1	110.0	110.2	Chen et al. 1975
HFC143	1.500	1.3878	1.3534	1.0881	1.0881	109.1	109.1	108.9	108.9	106.9		120.9	Beagley \& Brown 1979
HFC143a	1.530	1.335			1.085	111.0			108.3	107.9		110.6	Chen et al. 1975
HFC134	1.518	1.350	1.350	1.098	1.098	108.2	108.2	110.3	110.3	107.3	111.3		Brown \& Beagley 1977
HFC134a	1.525	1.335	1.39		1.09	110.9	109.7		109.8	108.0	109.4	108.8	Chen et al. 1975
HFC125	1.52	1.335	1.345		1.10	110.8	109.6		110.0	109.1	109.3		Chen et al. 1975

* angles have been taken from Tanabe \& Saëki 1972.

The symmetry point groups for the molecules studied here were found to be:
CFC110, FC116, HFC170
CFC111, CFC112a, CFC114a, CFC115, HFC161, HFC152a, HFC134a, HFC125
CFC112, CFC114, HFC152, HFC134 C_{s}

CFC113, HFC143
CFC113a, HFC143a $\mathrm{C}_{2 \mathrm{~h}}$ C_{1} $\mathrm{C}_{3 \mathrm{v}}$ assuming in all cases, a staggered configuration.

Figure 5.1. The internal coordinates of the molecule (a) used for the point groups $D_{3 d}$, $C_{s}, C_{1}, C_{3 v}$ and (b) used for the point group $C_{2 h}$, where atoms X_{3} and X_{6} are identical, as are $\mathrm{X}_{4}, \mathrm{X}_{5}, \mathrm{X}_{7}$ and X_{8}.

To obtain the irreducible representations, the reducible representations were calculated. These were found by summing the coordinates of the atoms which do not move during a particular symmetry operation. For atoms which rotate, the change of direction of the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ vectors must be noted. The symmetry operations from the
character tables, as given by Wilson et al. (1955) with the corresponding reducible representations were found to be:

$\mathrm{D}_{3 \mathrm{~d}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	i	$2 \mathrm{~S}_{6}$	$3 \sigma_{\mathrm{d}}$
$\Gamma_{\text {rep }}$	24	0	0	0	0	4

C_{S}	E	σ_{h}
$\Gamma_{\text {rep }}$	24	4

$\mathrm{C}_{2 \mathrm{~h}}$	E	C_{2}	i	σ_{h}
$\Gamma_{\text {rep }}$	24	0	0	4

C_{1}	E
$\Gamma_{\text {rep }}$	24

$\mathrm{C}_{3 \mathrm{v}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$
$\Gamma_{\text {rep }}$	24	0	4

E denotes the identity operation; C_{n} denotes an n -fold rotation about a symmetry axis; i denotes an inversion about the centre of symmetry; S_{n} denotes an improper rotation, such that $S_{n}=\sigma_{h} C_{n}$; and σ_{x} denotes a reflection in a plane of symmetry where $\mathrm{x}=\mathrm{h}$ for a plane perpendicular to the principal axis, $\mathrm{x}=\mathrm{v}$ for a plane containing the principal axis, and $\mathrm{x}=\mathrm{d}$ for a plane containing the principal axis and bisecting the angles between the horizontal axes.
The number of fundamental vibrations for each species was then calculated using the formula , (Nakamoto 1986),

$$
a_{i}=\frac{1}{h} \int n \chi(R) \chi_{i}(R)
$$

where:
a_{i} is the species
h is the order of the group
$\chi(\mathrm{R})$ is a reducible representation element
$\chi_{\mathrm{i}}(\mathrm{R})$ is the character of the operation R (an irreducible operation element.) n is the number of times a particular class is present.

From this, the irreducible representations were found to be:
$\mathrm{D}_{3 \mathrm{~d}} \quad 3 \mathrm{~A}_{1 \mathrm{~g}}+1 \mathrm{~A}_{1 \mathrm{u}}+2 \mathrm{~A}_{2 \mathrm{u}}+3 \mathrm{E}_{\mathrm{g}}+3 \mathrm{E}_{\mathrm{u}}$
$C_{s} \quad 11 \mathrm{~A}^{\prime}+7 \mathrm{~A}^{\prime \prime}$
$\mathrm{C}_{2 \mathrm{~h}} \quad 6 \mathrm{Ag}_{\mathrm{g}}+4 \mathrm{~A}_{\mathrm{u}}+3 \mathrm{Bg}_{\mathrm{g}}+5 \mathrm{~B}_{\mathrm{u}}$
$\mathrm{C}_{1} \quad 18 \mathrm{~A}$
$\mathrm{C}_{3 \mathrm{v}} \quad 5 \mathrm{~A}_{1}+1 \mathrm{~A}_{2}+6 \mathrm{E}$
A_{n}, B_{n} are one-dimensional species. The suffix n is used when different irreducible representations of the same dimensions occur. A^{\prime} is used for species symmetric under σ_{h}, and $\mathrm{A}^{\prime \prime}$ for species antisymmetric under σ_{h}.
E represents a two dimensional species.
For the groups $D_{3 d}$ and $C_{2 h}$, where $D_{3 d}=D_{3} \times i$ and $C_{2 h}=C_{n} \times i$, further notation is required since the number of irreducible representations is doubled. The species which are symmetric under inversion are subscripted g and the antisymmetric species are subscripted u (Schonland 1965)

Each row in the U matrix represents a symmetry species, including redundancies. Each column represents a particular internal coordinate. The sequence of these items is the same as that used for the symmetry block and internal coordinate vector data. Projection operators are used to calculate the magnitude of the contribution of each internal coordinate to each symmetry coordinate (Nakamoto 1978),

$$
\mathrm{p}_{\mathrm{i}}=\frac{1}{\mathrm{~h}} \sum_{\mathrm{n}} \chi_{\mathrm{i}}\left(\mathrm{R}_{\mathrm{n}}\right) \mathrm{R}_{\mathrm{n}}
$$

where,

$$
\begin{aligned}
& p_{i}=\text { projection operator } \\
& l_{i}=\text { degeneracy, eg. } 1=1 \text { for species } A, B ; 1=2 \text { for species } E \\
& h=\text { order of the group } \\
& \chi_{i}\left(R_{n}\right)=\text { character of } R_{n} \\
& R_{n}=\text { symmetry operation } n
\end{aligned}
$$

The general form for the non-normalised U matrix for each point group was found to be as follows:
$D_{3 d} \quad$ (The bonds r_{2} to r_{7} are equivalent.)
$\mathrm{A}_{\mathrm{lg}} \quad \mathrm{r}_{1}$
$A_{l g} \quad\left(r_{2}+r_{3}+r_{4}+r_{5}+r_{6}+r_{7}\right) / 6$
$\mathrm{A}_{1 g} \quad\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}\right) / 6$
$A_{1 g} \quad\left(\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}+\beta_{5}+\beta_{6}\right) / 6$
$A_{1 u} \quad\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right) / 3$
$\mathrm{A}_{2 \mathrm{u}} \quad\left(\mathrm{r}_{2}+\mathrm{r}_{3}+\mathrm{r}_{4}-\mathrm{r}_{5}-\mathrm{r}_{6}-\mathrm{r}_{7}\right) / 6$
$A_{2 u} \quad\left(\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{4}-\alpha_{5}-\alpha_{6}\right) / 6$
$A_{2 u} \quad\left(\beta_{1}+\beta_{2}+\beta_{3}-\beta_{4}-\beta_{5}-\beta_{6}\right) / 6$

E_{g}	$\left(2 \mathrm{r}_{2}-\mathrm{r}_{3}-\mathrm{r}_{4}-\mathrm{r}_{5}-\mathrm{r}_{6}+2 \mathrm{r}_{7}\right) / 12$,	$\left(\mathrm{r}_{3}-\mathrm{r}_{4}-\mathrm{r}_{5}+\mathrm{r}_{6}\right) / 4$
E_{g}	$\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}+2 \alpha_{6}\right) / 12$	$\left(\alpha_{2}-\alpha_{3}-\alpha_{4}+\alpha_{5}\right) / 4$
E_{g}	$\left(2 \beta_{1}-\beta_{2}-\beta_{3}-\beta_{4}-\beta_{5}+2 \beta_{6}\right) / 12$	$\left(\beta_{2}-\beta_{3}-\beta_{4}+\beta_{5}\right) / 4$
E_{u}	$\left(2 \mathrm{r}_{2}-\mathrm{r}_{3}-\mathrm{r}_{4}+\mathrm{r}_{5}+\mathrm{r}_{6}-2 \mathrm{r}_{7}\right) / 12$	$\left(\mathrm{r}_{3}-\mathrm{r}_{4}+\mathrm{r}_{5}-\mathrm{r}_{6}\right) / 4$
E_{u}	$\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}+\alpha_{4}+\alpha_{5}-2 \alpha_{6}\right) / 12$	$\left(\alpha_{2}-\alpha_{3}+\alpha_{4}-\alpha_{5}\right) / 4$
E_{u}	$\left(2 \beta_{1}-\beta_{2}-\beta_{3}+\beta_{4}+\beta_{5}-2 \beta_{6}\right) / 12$	$\left(-\beta_{2}+\beta_{3}-\beta_{4}+\beta_{5}\right) / 4$
E_{u}	$\left(2 \gamma_{1}-\gamma_{2}-\gamma_{3}\right) / 6$	$\left(\gamma_{2}-\gamma_{3}\right) / 2$

Showing redundancies as $1 \mathrm{~A}_{1 \mathrm{~g}}, 1 \mathrm{~A}_{2 \mathrm{u}}$ and $1 \mathrm{E}_{\mathrm{u}}$
$\mathrm{C}_{\boldsymbol{s}}$ (assuming the mirror plane bisects the angle between the bonds r_{2} and r_{3}, and r_{6} and r_{7})
$\mathrm{A}^{\prime} \quad \mathrm{r}_{1}$
A $^{\prime} \quad\left(\mathrm{r}_{2}+\mathrm{r}_{3}\right) / 2$
$\mathrm{A}^{\prime} \quad \mathrm{r}_{4}$
$\mathrm{A}^{\prime} \quad \mathrm{r}_{5}$
$A^{\prime} \quad\left(\mathrm{r}_{6}+\mathrm{r}_{7}\right) / 2$
$A^{\prime} \quad\left(\alpha_{1}+\alpha_{2}\right) / 2$
A $^{\prime} \quad \alpha_{3}$
$\mathrm{A}^{\prime} \quad \alpha_{4}$
$A^{\prime} \quad\left(\alpha_{5}+\alpha_{6}\right) / 2$
A $^{\prime} \quad \beta_{1}$
$A^{\prime} \quad\left(\beta_{2}+\beta_{3}\right) / 2$
A $^{\prime} \quad\left(\beta_{4}+\beta_{5}\right) / 2$
A $^{\prime} \quad \beta_{6}$
A' $^{\prime} \quad\left(\gamma_{2}-\gamma_{3}\right) / 2$
$A^{\prime \prime} \quad\left(\mathrm{r}_{2}-\mathrm{r}_{3}\right) / 2$
$A^{\prime \prime} \quad\left(\mathrm{r}_{6}-\mathrm{r}_{7}\right) / 2$
$A^{\prime \prime} \quad\left(\alpha_{1}-\alpha_{2}\right) / 2$
$A^{\prime \prime} \quad\left(\alpha_{5}-\alpha_{6}\right) / 2$
$A^{\prime \prime} \quad\left(\beta_{2}-\beta_{3}\right) / 2$
$\mathrm{A}^{\prime \prime} \quad\left(\beta_{4}-\beta_{5}\right) / 2$
$\mathrm{A}^{\prime \prime} \quad \gamma_{1}$
A" $\quad\left(\gamma_{2}+\gamma_{3}\right) / 2$
Showing redundancies A^{\prime} and $\mathrm{A}^{\prime \prime}$.
$\mathrm{C}_{2 \mathrm{~h}} \quad$ (assuming the bonds r_{2} and r_{5} are equivalent, see figure 5.1 (b).)
$\mathrm{A}_{\mathrm{g}} \quad \mathrm{r}_{1}$
$\mathrm{Ag}_{\mathrm{g}} \quad\left(\mathrm{r}_{2}+\mathrm{r}_{5}\right) / 2$

A_{g}	$\left(\mathrm{r}_{3}+\mathrm{r}_{4}+\mathrm{r}_{6}+\mathrm{r}_{7}\right) / 4$
$\mathrm{~A}_{\mathrm{g}}$	$\left(\alpha_{1}+\alpha_{4}\right) / 2$
$\mathrm{~A}_{\mathrm{g}}$	$\left(\alpha_{2}+\alpha_{3}+\alpha_{5}+\alpha_{6}\right) / 4$
$\mathrm{~A}_{\mathrm{g}}$	$\left(\beta_{3}+\beta_{6}\right) / 2$
$\mathrm{~A}_{\mathrm{g}}$	$\left(\beta_{1}+\beta_{2}+\beta_{4}+\beta_{5}\right) / 4$
$\mathrm{~A}_{\mathrm{u}}$	$\left(\mathrm{r}_{3}-\mathrm{r}_{4}-\mathrm{r}_{6}+\mathrm{r}_{7}\right) / 4$
$\mathrm{~A}_{\mathrm{u}}$	$\left(\alpha_{2}-\alpha_{3}-\alpha_{5}+\alpha_{6}\right) / 4$
$\mathrm{~A}_{\mathrm{u}}$	$\left(\beta_{1}-\beta_{2}-\beta_{4}+\beta_{5}\right) / 4$
$\mathrm{~A}_{\mathrm{u}}$	γ_{1}
$\mathrm{~A}_{\mathrm{u}}$	$\left(\gamma_{2}+\gamma_{3}\right) / 2$
$\mathrm{~B}_{\mathrm{g}}$	$\left(\mathrm{r}_{3}-\mathrm{r}_{4}+\mathrm{r}_{6}-\mathrm{r}_{7}\right) / 4$
$\mathrm{~B}_{\mathrm{g}}$	$\left(\alpha_{2}-\alpha_{3}+\alpha_{5}-\alpha_{6}\right) / 4$
$\mathrm{~B}_{\mathrm{g}}$	$\left(\beta_{1}-\beta_{2}+\beta_{4}-\beta_{5}\right) / 4$
$\mathrm{~B}_{\mathrm{u}}$	$\left(\mathrm{r}_{2}-\mathrm{r}_{5}\right) / 2$
$\mathrm{~B}_{\mathrm{u}}$	$\left(\mathrm{r}_{3}+\mathrm{r}_{4}-\mathrm{r}_{6}-\mathrm{r}_{7}\right) / 4$
$\mathrm{~B}_{\mathrm{u}}$	$\left(\alpha_{1}-\alpha_{4}\right) / 2$
$\mathrm{~B}_{\mathrm{u}}$	$\left(\alpha_{2}+\alpha_{3}-\alpha_{5}-\alpha_{6}\right) / 4$
$\mathrm{~B}_{\mathrm{u}}$	$\left(\beta_{3}-\beta_{6}\right) / 2$
$\mathrm{~B}_{\mathrm{u}}$	$\left(\beta_{1}+\beta_{2}-\beta_{4}-\beta_{5}\right) / 4$
$\mathrm{~B}_{\mathrm{u}}$	$\left(\gamma_{2}-\gamma_{3}\right) / 2$
Showing redundancies as $1 \mathrm{~A}_{\mathrm{g}}, 1 \mathrm{~A}_{\mathrm{u}}$ and $2 \mathrm{~B}_{\mathrm{u}}$	
Sher	

C_{1} This point group has no symmetry, so all coordinates are designated A.
$C_{3 v}$ (assuming the bonds r_{2}, r_{3} and r_{4} are equivalent, and r_{5}, r_{6} and r_{7} are equivalent.)
$\mathrm{A}_{1} \quad \mathrm{r}_{1}$
$A_{1} \quad\left(r_{2}+r_{3}+r_{4}\right) / 3$
$\mathrm{A}_{1} \quad\left(\mathrm{r}_{5}+\mathrm{r}_{6}+\mathrm{r}_{7}\right) / 3$
$\mathrm{A}_{1} \quad\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) / 3$
$A_{1} \quad\left(\alpha_{4}+\alpha_{5}+\alpha_{6}\right) / 3$
$A_{1} \quad\left(\beta_{1}+\beta_{2}+\beta_{3}\right) / 3$
$A_{1} \quad\left(\beta_{4}+\beta_{5}+\beta_{6}\right) / 3$
$A_{2} \quad\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right) / 3$
E $\quad\left(2 \mathrm{r}_{2}-\mathrm{r}_{3}-\mathrm{r}_{4}\right) / 6 \quad\left(\mathrm{r}_{3}-\mathrm{r}_{4}\right) / 2$
E $\quad\left(2 \mathrm{r}_{5}-\mathrm{r}_{6}-\mathrm{r}_{7}\right) / 6 \quad\left(\mathrm{r}_{6}-\mathrm{r}_{7}\right) / 2$
E $\quad\left(2 \alpha_{1}-\alpha_{2}-\alpha_{3}\right) / 6 \quad\left(\alpha_{2}-\alpha_{3}\right) / 2$
E $\quad\left(2 \alpha_{4}-\alpha_{5}-\alpha_{6}\right) / 6 \quad\left(\alpha_{5}-\alpha_{6}\right) / 2$

E	$\left(2 \beta_{1}-\beta_{2}-\beta_{3}\right) / 6$	$\left(\beta_{2}-\beta_{3}\right) / 2$
E	$\left(2 \beta_{4}-\beta_{5}-\beta_{6}\right) / 6$	$\left(\beta_{5}-\beta_{6}\right) / 2$
E	$\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right) / 3$	$\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right) / 3$

Showing redundancies $2 \mathrm{~A}_{1}$ and 1 E .

The general format for the input records of NORCORD follows in bold type. The complete input to the program for each molecule is given in appendix B.
-09
This record indicates the start of a problem

1 1nnnbbbiiisssrrrvyvwgmut

The first two numbers indicate the problem number (1) and the number of isotopes (1). The number of atoms in the molecule is given in nnn, which is 8 for all the molecules studied here; bbb gives the no. of symmetry blocks in the molecule; iii gives the no. of internal coordinates (22); sss gives the no. of symmetry coordinates, inc. redundancies (22); rrr gives the number of redundancies (4), and vvv gives the number of internal coordinate vectors (22). The next 5 digits control the output from the program; $w=1$ for W matrix required; $g=1$ for G matrix eigenvalues required; $m=1$ for B matrix required; $\mathrm{u}=1$ for $\mathrm{U}^{*} \mathrm{~B}$ to be output and $\mathrm{t}=1$ for $\mathrm{U}^{*} \mathrm{U}$ to be output.
xxxyyyxxxyyy.....
This record contains a pair of numbers for each symmetry block in the order they are presented in the rows of the U matrix. xxx is the number of symmetry coordinates, including redundancies and yyy is the number of redundancies for each block.

Molecular formula and name

date
Two records of descriptive information are given, usually used to identify the molecule and give the date.

cccaaaxxxx.xxxxxxx.....

A group of records containing the Cartesian coordinates for the molecule follows. Each coordinate is given in the format, $\mathrm{ccc}=1$ for $\mathrm{x}, 2$ for $\mathrm{y}, 3$ for z coordinate or -1 for end of coordinate input,
$a a a=$ atom number within the molecule, (the atoms are numbered in the sequence of the atomic masses given in the last record), and $\mathbf{x x x x . x x x x x x x ~ i s ~ t h e ~ v a l u e ~ o f ~ t h e ~}$ coordinate. Four coordinates are entered on each input line.

nnnccciiijjjkkklll

One line of input is entered for each internal coordinate, where; $\mathrm{nnn}=$ number assigned to the internal coordinate, this is the sequence of the internal coordinates used for the columns of the U matrix; $\mathrm{ccc}=1$ for a bond stretch, 2 for an angle bend, or 4 for four atom torsion; $\mathrm{iii}, \mathrm{jjj}, \mathrm{kkk}, 111$ are the numbers of the atoms defining the coordinate
($\mathrm{kkk}=111=0$ for a simple bond stretch). The atom numbers must be the same as those used for the Cartesian coordinates.

rrrccexxxx.xxxxxxx......

U matrix data are entered, four entries for each input line, where; rrr= row number (-3 for end of input of U matrix); ccc=column number and $x x x x . x x x x x x x=$ non-normalised U matrix value. Zero elements need not be entered. It is important that the rows of the U matrix are in the same sequence as the symmetry block information given in input line 2 , and the columns are in the same sequence as the internal coordinate vectors.

XXXXX.XXXXXX

The masses of the atoms are entered next, up to six per line. The values must be entered in the same sequence of atoms as that used in the input of the Cartesian coordinates. 000

This is the last record in the input stream.
The name of the file to be used to hold the W matrix output is entered interactively at the start of the run.

5.1.2. Data input for the program OVER.

Approximate force constants are used by this program to calculate the fundamental vibrational frequencies and the potential energy distribution. The force constants may be refined in an attempt to fit the calculated frequencies to the observed frequencies. The input data includes the observed frequencies from an infrared spectrum of the molecule, a W matrix from NORCORD, a set of approximate force constants and a Z matrix. This Z matrix is a vector of the coefficients of contributions of each internal coordinate to each force constant, for each symmetry coordinate. For this work, Z matrix elements were calculated using the equations given in Overend \& Scherer (1960).

The initial force constants, which need only be approximate values, were obtained from the data for similar molecules published by Bucker and Nielsen (1963) and Naito et al. (1955). These force constants were calculated using a Urey-Bradley force field for the molecules $\mathrm{C}_{2} \mathrm{H}_{6}$ ($\mathrm{HFC170}$), $\mathrm{CH}_{3} \mathrm{CF}_{3}$ ($\mathrm{HFC143a}$), and $\mathrm{C}_{2} \mathrm{~F}_{6}$ (FC116) by Bucker and Nielsen (1963), and $\mathrm{CCl}_{2} \mathrm{HCCl}_{2} \mathrm{H}$ by Naito et al. (1955). The same initial force constants were used for all molecules and are given in table 5.2.

The values for the torsion were expected to be small and so were initially set to $0.01 \mathrm{mdyn} \AA^{\AA} \AA^{-1}$. The Urey-Bradley force field has four types of force constants, K for bond stretching, H for angle bending, F and F for non-bonded or repulsive interactions as defined in section 1.6.1. F and F^{\prime} are not independent as they are related to the Van
der Waal's forces between non-bonded atoms, and F is usually taken as -0.1 F (Nakamoto 1986).

Table 5.2. Initial force constants for the UB calculations. Force constants are given in mdyne \AA^{-1}, taken from Bucker \& Nielsen (1963) except for those indicated \dagger which come from Naito et al. (1955) and * which are assumed approximate values.

Stretching force constants		bending force constants		non-bonded force constants	
K_{CC}	3.5	$\mathrm{H}_{\mathrm{CCF}}$	0.3	$\mathrm{~F}_{\mathrm{FC}}$	0.4
$\mathrm{~K}_{\mathrm{CF}}$	4.4	$\mathrm{H}_{\mathrm{CCH}}$	0.14	$\mathrm{~F}_{\mathrm{HC}}$	0.4
$\mathrm{~K}_{\mathrm{CH}}$	4.6	$\mathrm{H}_{\mathrm{CCCl}}$	$0.10 \dagger$	$\mathrm{~F}_{\mathrm{ClC}}$	$0.6 \dagger$
$\mathrm{~K}_{\mathrm{Cl}}$	1.8	$\mathrm{H}_{\mathrm{FCF}}$	0.1	$\mathrm{~F}_{\mathrm{FF}}$	1.1
	$\mathrm{H}_{\mathrm{HCH}}$	0.43	$\mathrm{~F}_{\mathrm{HH}}$	0.09	
	$\mathrm{H}_{\mathrm{ClCl}}$	$0.10 \dagger$	$\mathrm{~F}_{\mathrm{ClCl}}$	$0.64 \dagger$	
	$\mathrm{H}_{\mathrm{FCH}}$	$0.1 *$	$\mathrm{~F}_{\mathrm{FH}}$	0.06	
	$\mathrm{H}_{\mathrm{ClCH}}$	$0.05 \dagger$	$\mathrm{~F}_{\mathrm{HCl}}$	$0.80 \dagger$	
	$\mathrm{H}_{\mathrm{ClCF}}$	$0.1 *$	$\mathrm{~F}_{\mathrm{FCl}}$	$0.5 *$	

The initial values were adjusted by the program for subsequent runs of OVER, new frequencies calculated and compared to the observed frequencies. This process was repeated as many times as necessary to obtain a reasonable fit between calculated and observed frequencies. The required number of such perturbations was input to the program for each run. The number of cycles generally used was five, as it was more efficient to alter the input with updated force constants than allow a large number of perturbations to be run, as the adjusted force constants were sometimes given inappropriate values by the program. The decision as to whether or not the values were inappropriate was subjective and based on the following assumptions; stretching force constants were expected to be within the range 1 to $7 \mathrm{mdyne}^{-1}$; stretching force constants were assumed to be larger than bending force constants; and bending force constants and non-bonded force constants were expected to be less than $2 \mathrm{mdyne} \AA^{-1}$. Literature values from Bucker and Nielsen (1963), Shimanouchi (1963), Overend and Scherer (1960), and Naito et al. (1955) suggest that these are reasonable assumptions.

In order to compare calculated and observed frequencies, the observed frequencies must be assigned to the correct fundamental mode. The assignment of a frequency taken from an infrared spectrum is a difficult task, and the results from the literature may not always be correct. Complete assignments for all the molecules could not be found in the literature, and so some tentative assignments were made as part of this work and, initially, some observed frequencies were omitted.

Table 5.3. Initial values of the observed frequencies for the UB calculations, in symmetry group sequence.

Molecule		Observed frequencies cm^{-1}	Reference
CFC110	D3d	$\begin{aligned} & 978,432,169,-, 679,375,858,858,341, \\ & 341,224,224,780,780,278,278,115,115 \end{aligned}$	$\begin{aligned} & \hline \text { Tanabe \& Saëki } \\ & 1972 \end{aligned}$
CFC111	C_{s}	$\begin{aligned} & 1101,1009,847,725,508,407,382,314,281,227,174, \\ & 883,796,395,314,266,174,77 \end{aligned}$	Nielsen et al. 1953 a
$\begin{aligned} & \text { CFC112 } \\ & \text { CFC112a } \end{aligned}$	$\mathrm{C}_{2 \mathrm{~h}}$	$1111,1027,847,775,627,525,446,420,331,231,165$, $1165,844,456,331,268,183,81$	not available Nielsen et al. 1953 a
CFC113	C_{1}	$\begin{aligned} & 1212,1119,1047,-, 909,816,632,532,460, \\ & 442,391,350,309,288,240,203,168,80 \end{aligned}$	Klaboe \& Nielsen. 1961
CFC113a	$\mathrm{C}_{3} \mathrm{v}$	$\begin{aligned} & 1255,909,714,430,260,1225,1225,859,859,563, \\ & 563,366,366,265,265,182,182,- \end{aligned}$	Bürger et al. 1980
$\begin{aligned} & \text { CFC114 } \\ & \text { CFC114a } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{2 \mathrm{~h}} \\ & \mathrm{C}_{\mathrm{s}} \end{aligned}$	$\begin{aligned} & 1295,1232,1110,943,735,590,507,399,311,265,20 \\ & 0,1232,897,560,399,330,181,- \end{aligned}$	not available Nielsen et al. 1953 b
CFC115	C_{s}	$\begin{aligned} & 1351,1224,1133,982,762,648,560,441,362,314,18 \\ & 6,1241,1185,596,454,331,186,- \end{aligned}$	Nielsen et al. 1953 b
FC116	D3d	1417,808,348,-,1117,714, 1250,1250,619, 619,372,372, 1251,1251,523,523,216,216	Bucker\& Nielsen 1963
HFC170	D3d	$2954,1388,995,289,2954,1379,2969,2969,1460$, $1460,1190,1190,2996,2996,1486,1486,820,820$	Tanabe \& Saëki 1972
HFC161	C_{s}	3003,2941,2915,1479,1449,1395,1365,1108,1048, $880,415,3003,3003,1449,1277,1048,810,243$	Chen et al. 1975
HFC152	$\mathrm{C}_{2 \mathrm{~h}}$	$\begin{aligned} & 2962,1416,1079,1049,858,804,2994,1415,320,-, \\ & 2990,1285,450,2951,1376,1065,897,652 \end{aligned}$	Klaboe \& Nielsen 1960
HFC152a	C_{s}	3018,2978,2960,1460,1414,1372,1143,1129,868, 571,470,3001,1460,1360,1171,930,383,222	Chen et al. 1975
HFC143	C_{1}	3005,2986,2978,1465,1433,1379,1319,1249,1152, $1125,1076,-, 905,577,476,426,247,117$	Kalasinsky et al. 1982
HFC143a	$\mathrm{C}_{3 \mathrm{v}}$	2975,1408,1280,830,602,220,3035,3035,1443,144 3,1233,1233,970,970,541,541,365,365	Chen et al. 1975
HFC134	$\mathrm{C}_{2} \mathrm{~h}$	$\begin{aligned} & \text { 2995,1442,1149,1106,625,362, 1330,1136,212,82, } \\ & 1365,1081,480,2995,1320,1125,541,414 \end{aligned}$	Kalasinsky et al. 1982
HFC134a	C_{s}	2984,1464,1427,1298,1103,972,842,665,549,408, 225, 3013,1374,1182,885,539,352,120	Chen et al. 1975
HFC125	$\mathrm{C}_{\text {s }}$	$\begin{aligned} & 3008,1393,1309,1218,1111,867,725,577,523,361, \\ & 246,1359,1198,1145,508,413,216,82 \end{aligned}$	Chen et al. 1975

During subsequent runs of the program OVER, some assignments were altered when it was found that the calculated values were not in agreement with the observed
values, and it was possible to interchange two or more observed values for a better fit. This could only be done if the constraints of matching the frequency to a particular mode were maintained, for example, in the case of $C_{2 h}$, the A_{g} and B_{g} vibrations are infrared inactive and so could not be exchanged with observed values for the A_{u} and B_{u} modes. The initial values for the observed frequencies input to the program are given in table 5.3. The altered assignments, along with new assignments made in this part of the work are presented with the results of the calculations in chapter six. With new or altered assignments, experimental data from this work were used for the observed frequencies, however, this could only be done if the observed band was of a simple structure with no overlapping bands, since difficulties were encountered in locating the exact band centre of complex bands. For ambiguous results, the frequencies calculated using the ab initio methods were used to assist in assignments; appropriate changes made to the UB input data; and the UB calculations repeated.

The construction of the Z matrix was facilitated by the fortran program CALST, written specifically for use in this work. A listing of CALST is given in appendix D. Using the formulae given in the publication by Overend and Scherer (1960), values for the coefficients of \mathbf{Z} were calculated. The input to CALST consisted of the bond lengths, and angles for each molecule, as given in table 5.1, and the non-bonded distances between two atoms i and j attached to an atom k. CALST computed all possible values for s and t where,

$$
\mathrm{s}_{\mathrm{ij}}=\frac{\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{j}} \cos \alpha_{\mathrm{ij}}}{\mathrm{q}_{\mathrm{ij}}} \text { and } \mathrm{t}_{\mathrm{ij}}=\frac{r_{j} \sin \alpha_{\mathrm{ij}}}{\mathrm{q}_{\mathrm{ij}}} \text { (Overend \& Scherer 1960) }
$$

for $i=1$ to 8 and $j=1$ to 8 representing all the atoms within the molecule. The coefficients for each of the atoms i and j bonded to a common atom k were calculated using definitions given in table 5.4 . For this work, it was assumed that the contribution to the force field by forces between atoms more than two bonds apart was negligible.

Table 5.4. Contributions to the UB Z matrix as given by Overend and Scherer (1960) for the atoms i and j bonded to the common atom k .

f vector	coefficients for F_{ij}	coefficients for Fij
$\left(\Delta r_{i}\right)^{2}$	sij^{2}	tij^{2}
$\left(\Delta r_{j}\right)^{2}$	sji^{2}	tji^{2}
$\left(\mathrm{r}_{\mathrm{i}} \Delta \alpha_{\mathrm{ij}}\right)^{2}$	$\mathrm{t}_{\mathrm{ij}} \mathrm{tji}\left(\frac{\mathrm{T}_{\mathrm{j}}}{\mathrm{r}_{\mathrm{i}}}\right)$	$-\mathrm{s}_{\mathrm{ij}} \mathrm{s} j \mathrm{ji}\left(\frac{\mathrm{r}_{\mathrm{i}}}{\mathrm{r}_{\mathrm{i}}}\right)$
($\Delta \mathrm{r}_{\mathrm{i}} \Delta \mathrm{r}_{\mathrm{j}}$)	$\mathrm{s}_{\mathrm{ij}} \mathrm{s} \mathrm{ji}$	$-\mathrm{tijij}_{\mathrm{ji}}$
$\left(\Delta r_{i} \mathrm{r}_{\mathrm{i}} \Delta \alpha_{i j}\right)$	$s_{\mathrm{ij}} \sqrt{\mathrm{t}_{\mathrm{ij}} \mathrm{t}_{\mathrm{ji}}} \sqrt{\frac{r_{\mathrm{i}}}{\mathrm{r}_{\mathrm{i}}}}$	$\mathrm{t}_{\mathrm{ij}} \mathrm{S}_{\mathrm{ji}}\left(\frac{\mathrm{r}_{\mathrm{j}}}{\mathrm{r}_{\mathrm{i}}}\right.$)
($\Delta \mathrm{r}_{\mathrm{j}} \mathrm{r}_{\mathrm{i}} \Delta \alpha_{\mathrm{ij}}$)	$s_{\mathrm{jij}} \sqrt{\mathrm{t}_{\mathrm{ij}} \mathrm{t}_{\mathrm{ji}}} \sqrt{\frac{r_{\mathrm{j}}}{\mathrm{r}_{\mathrm{i}}}}$	$\mathrm{t}_{\mathrm{ji}} \mathrm{Sj}$

The program CALST calculated each of the values given in table 5.4 for each s and t. The resultant Z matrix coefficients were then printed out for each molecule, and subsequently entered into the data input stream for OVER, as required by the Z matrix, relating each non-bonded interaction to each pair of coordinates in turn, for the F and F^{\prime} force constants. The diagonal force constants K_{i} and H_{ij} are each represented by a coefficient of 1 in the Z matrix, in the appropriate diagonal element.

The general format of the input data for OVER follows, with the format of each input line given in bold type. In order to find a set of force constants which would give reasonable values for calculated frequencies across a group of molecules as well as for individual compounds, OVER was executed in two different ways. Initially, one set of force constants was used with the frequency data for all CFCs or HFCs and refined until the lowest possible errors in all the calculated frequencies for the group were obtained. Secondly, the same initial set of force constants was used for individual compounds and refined as before. In this way it was possible to see the changes in force constants across a group and to enable any trends in force constants with changes in the number or position of fluorine atoms to be detected. The compounds were divided into four groups, in ascending numbers of fluorine atoms.
Group 1. CFC110, CFC111, CFC112, CFC113, CFC114, CFC115, FC116 Group 2. CFC110, CFC111, CFC112a, CFC113a, CFC114a, CFC115, FC116 Group 3. HFC170, HFC161, HFC152, HFC143, HFC134, HFC125, FC116 Group 4. HFC170, HFC161, HFC152a, HFC143a, HFC134a, HFC125, FC116 The detailed input for the initial run of the program for the individual molecules is given in appendix B.

1 nfffaaaoooppp 11100

The first line is known as the problem control record. The first digit, in column 6, is the number of the problem (1); n gives the number of different molecules to be used for the set of force constants given, $\mathrm{n}=7$ for a group fit where the input stream includes the frequencies and Z matrices for all seven molecules or $\mathrm{n}=1$ for an individual fit, and only one set of frequencies and one Z matrix follow; fff gives the total number of force constants supplied; aaa gives the number of force constants to be adjusted; 000 gives the number of observed frequencies (18); ppp gives the number of perturbations or cycles for this run; the remaining digits denote the following, in sequence; 1 - intermediate results to be printed; 1 - perturbation required; 1 - force constants to be adjusted; $0-$ no weighting elements; 0 - use default convergence constants; 1 - output of FB matrix; 00 0 - no related force constants; 1 - F matrix output required; 0 follows; 1 - output new force constants; 0 - default convergence; 0 - no restarts; 0 - output to terminal.
Molecule name
date

Two comment lines, usually containing the molecule name and the date. xxxxx.xxxxxyyyyy.yyyyyy...
The next lines of input consist of a block of force constants in mdyne \AA^{-1}, six per line, in the sequence, all K 's, all H 's, then pairs of F, F '.

aaabbbcccddd......

A line of integers, denoting the force constants to be adjusted. The force constants are numbered in ascending order as they are input.
$\mathrm{CX}_{3} \mathrm{CX}_{3}$
This line gives the molecular formula.

12218 ff s

This parameter line gives the following information; $1=$ number of isotopes; $22=$ number of internal coordinates; $18=$ number of symmetry coordinates without redundancies; $\mathrm{ff}=$ number of force constants; $\mathrm{s}=$ number symmetry blocks.
aaabbbcceddd......
The dimension of each symmetry block is given in three column fields in the order of the symmetry blocks used in NORCORD.
aaabbbcceddd.
A line of three column field integers in ascending order from 1 to the number of force constants used.
XXXXX.XXXXXX.....
XXXXX.XXXXXX....
XXXXX.XXXXXX....。
Three lines of input for the eighteen observed frequencies, six per line in decreasing order within each symmetry block. Unknown frequencies are entered as zero, in the correct position.

rrrcceffixx.xxxxxx.....

Input lines for the Z matrix contain four entries per line in fixed format, as follows: rrr $=\mathrm{F}$ matrix row number, $\mathrm{ccc}=\mathrm{F}$ matrix column number (ccc is not less than rir since F is a symmetric matrix); $\mathrm{fff}=$ number of the force constant (from the sequence given above) and $\mathrm{xx} . \mathrm{xxxxxx}=$ the relevant coefficient calculated by CALST. Termination of the Z matrix input is indicated by $\mathrm{rr}=-4$.
For group output, lines starting with the molecular formula input line are repeated for each molecule in the group, so that the same set of force constants is used for each set of frequencies and Z matrix. When OVER begins, the names of all the required W matrices are requested interactively.

The output from the program includes the refined force constants, calculated frequencies and potential energy distributions. The entire output for all four groups and nineteen individual molecules is not presented in this work, however, all relevant results
are given in chapter six. The potential energy distributions in matrix form are presented in appendix E .

5.2. $A b$ initio calculations.

Many different methods of calculation are available when using the program GAUSSIAN92 (Foresman \& Frisch 1993), however the choice of method used in this work was governed primarily by the availability of computer time. The Hartree-Fock theoretical method with the basis set $6-31 G^{*}$ was used on the RISC processor at ADFA, and the Mbller-Plesset theoretical method with the basis set 6-31G* was used on the Fujitsu vector processor at the ANU, as the latter method takes considerably more computer time. A geometry optimisation was carried out for each molecule to locate minima on the potential energy surface and hence to predict the equilibrium structure for each molecule. $A b$ initio frequency calculations are only valid at stationary points on the potential energy surface (Foresman \& Frisch 1993), thus it was necessary to optimise the molecular structure first.

Experimental bond lengths and angles were required for each molecule as a starting point for the optimisation, the values used are presented in table 5.1. Experimental geometries were obtained from a number of different sources, as indicated in table 5.1. When no data for an individual molecule were available, bond lengths and angles from similar molecules were used. When no values for angles were available, the tetrahedral angle was used, since both carbons may be considered to be approximately tetrahedral.

5.2.1. Data input for the program GAUSSIAN92

GAUSSIAN92 was run as a two step job, a geometry optimisation followed by frequency calculations. The computer input for each molecule was similar and followed the general description given here. The exact input for each molecule is given in appendix C. Computer input lines are shown in bold type. The general format of the input lines is as follows:

\%chk=cfexxx

This line initialises a checkpoint file to hold the output from the optimisation step, for use in the frequency calculation step. Checkpoint files have been named cfcxxx or hfcxxx where xxx is the halocarbon number of the molecule.

This input line, known as the route section indicates to GAUSSIAN92 that a restricted Hartree-Fock calculation using the basis set 6-31G* for geometry optimisation is required. Full optimisation was not used as the molecules were taken as being in the 'trans' configuration, which sometimes forced them into a symmetry group different to that selected by the program for full optimisation. The parameter 'test' indicates to the program that the results are not to be stored in the GAUSSIAN92 archives. This input line must be followed by a blank line.

cfcxxx optimisation

A comment line, followed by a blank line.

01

These values give the charge and spin multiplicity respectively. For a neutral molecule in a singlet state, which applies to all the molecules studied here, the charge is zero and the multiplicity is one.
C1
C2 C1 cc
$\mathrm{X} 1 \mathrm{C} 1 \quad \mathrm{cx} 1 \mathrm{C} 2$ ccx1
$\mathrm{X} 2 \mathrm{C} 1 \quad \mathrm{cx} 2 \mathrm{C} 2 \quad \mathrm{ccx} 2 \mathrm{X} 1 \quad \mathrm{dx} 1$
$\mathrm{X} 3 \mathrm{C} 1 \quad \mathrm{cx} 3 \mathrm{C} 2 \quad \mathrm{ccx} 3 \mathrm{Xn}$ dx2
$\begin{array}{lllllll}\mathrm{X} 4 & \mathrm{C} 2 & \text { cx4 } & \mathrm{C} 1 & \text { cex4 } & \mathrm{Xn} & \text { dx3 }\end{array}$
$\begin{array}{lllllll}\mathrm{X} 5 & \mathrm{C} 2 & \mathrm{cx5} & \mathrm{C} 1 & \mathrm{ccx} 5 & \mathrm{Xn} & \mathrm{dx} 4\end{array}$
X 6 C 2 cx6 $\mathrm{C} 1 \quad$ cex6 $\quad \mathrm{Xn}$ dx5
This is a list of approximate dimensions for the atoms within the molecules, known as the Z matrix. C 1 and C 2 represent the two carbon atoms, present in all the molecules, and Xn represents the remaining atoms F, H or Cl , depending on the molecule. The internuclear distances are given by cc for the distance C 1 to C 2 , and cxn for the distances C 1 to Xn , or C 2 to Xn . From row three onwards, the third atom in the row allows the angle between the atoms to be input as ccxn, for example, ccx1 is the angle formed by X1-C1-C2. To complete the definition of the molecule, for line 4 onward, the dihedral angle must be entered, shown as dxn. This angle is defined as the angle between atom 1 and atom 4 in the input row, when viewed along the $\mathrm{C} 1-\mathrm{C} 2$ axis. Atom 4 may be any of the atoms X1 to X5 provided that it has already been defined in the Z matrix. Dihedral angles are shown in figure 5.2 using Newman projections. Positive dihedral angles correspond to a clockwise rotation in the Newman projection. It should be noted that for this work, all molecules are assumed to be in the 'trans' position, and the dihedral angles have been calculated accordingly. For some molecules, a different numbering sequence has been used for the atoms attached to the carbon atoms. This occurred as the numbering sequence was taken from the UB calculations, and not all the
calculations were done at the same time. This has no effect on the results, as the correct dihedral angles for each case have been used.

(b)

Figure 5.2. Dihedral angles when viewed along the C1-C2 axis (a) between atoms joined to the same carbon, and (b) between atoms joined to different carbons.

The variables cc, cxn, ccxn and dxn may be used as defined below, or may be numeric values. It is usual to omit ' 1 ' from X1, cx1, ccx1 and dx1. This block of information is followed by a blank line.
cc=x. x
cxn=x.x
cexn=xxx.x
dxn=xxx.x
A list of variables is entered next, giving the initial value for each length in ångstroms or angle in degrees. More than one decimal place may be entered if available. For molecules with some symmetry, the same variable may be used on more than one input line of the Z matrix. In this way, the program can optimise the values and still retain the symmetry of the molecule, for example, if the bonds C1-X2, C1-X3 and C2-X4 are equivalent the variables $\mathrm{cx} 2, \mathrm{cx} 3$ and cx 4 can be replaced by the one variable cx 2 so that this length will apply to all the bonds for which cx2 was defined. When two different bonds or angles have the same value, it is necessary to slightly change the variables so that the program does not interpret such cases as imposing symmetry constraints (Foresman \& Frisch 1993), for example, when using the tetrahedral angle for different bonds, it should be entered as ccx $1=109.40, \operatorname{cx} 2=109.45, \operatorname{ccx} 3=109.50$ where $\mathrm{cx} 1 \neq \mathrm{cx} 2 \neq \mathrm{cx} 3$. The block of variables is followed by a blank line. $\mathbf{d x n = x x x} . x$

For the partial optimisation used, this section, known as the constants section, includes variables which remain constant throughout the optimisation. In particular, for ethanetype molecules used in the 'trans' position, it is usual for the dihedral angle between
atom X 1 and atom X 6 to be 180.0 degrees as shown in figure 5.2. This block is followed by a blank line.

--Link1--

This line lets the program know that the second step follows.

\%chk=cfexxx

The checkpoint file created in the last step is identified for use by the frequency calculations.
\# rhf/6-31G* freq geom=checkpoint test
The second route section initiates the frequency calculation step. Geom=checkpoint indicates that the optimised geometry for input to the frequency calculation can be found in the checkpoint file. This line is followed by a blank line.

cfcxxx hf/6-31G* freq vibxxx

A comment line, followed by a blank line. The file vibxxx contains the data for input to GAUSSIAN92.
01
Again, the spin and multiplicity are entered, followed by a blank line to terminate the job.

For comparison, calculations for the first four of the HFCs listed were made using the Møller-Plesset theoretical method. Computer time was not available to compute the frequencies for the other molecules using this method. The first four HFCs were selected as they contain the least number of electrons and therefore use the least amount of computer time. The input data is the same, except for the two route sections (lines beginning with \#). For the optimisation the route input line is

\# mp2=fulldirect/6-31G* Opt test

and for the frequency step,
\# mp2=fulldirect/6-31G* freq geom=checkpoint guess=checkpoint scf= direct test

The parameters 'guess' and 'scf', and the parameter options 'fulldirect' and 'direct', are used to minimise time and disk space.

The entire output for all nineteen molecules from GAUSSIAN92 is not presented in this work, however, all relevant results are given in chapters six and seven.

Chapter 6

Assignments of frequencies and resultant force constants.

Abstract

In this chapter, the final results of the calculations of fundamental vibrational frequencies and force constants are tabulated. Some tentative assignments of vibrational modes have been made for comparison with the calculated values. Changes in force constants with changes in the number and position of fluorine atoms are discussed in section 6.2.

6.1 Fundamental frequencies and assignments.

In order to carry out the ab initio calculations, only the experimental geometry for each molecule was required. The Urey-Bradley (UB) force field calculations needed, in addition, the values of observed fundamental frequencies. In some cases this caused difficulties, as complete assignments for all the molecules could not be found in the literature. Initially, the available assignments were used, as shown in tables 6.1 to 6.19 , and these were amended, where possible, when large discrepancies between the UB results, the $a b$ initio results and the literature values were found. In the case of the unassigned modes, frequencies were taken from the spectra recorded as part of this work or from literature sources, if it was possible to attribute them to fundamental modes. As reported in chapter four, a detailed investigation of the true centres of the bands was not carried out, so errors of a few wavenumbers may have been introduced by the use of the frequency at which maximum absorbance occurred within a band. In addition to the problem of correct assignments, initial force constants were required. The values used in the UB calculations are given in table 5.2. In order to refine the force constants to obtain the best agreement between the observed and calculated frequencies, the program OVER was executed repeatedly, both for the individual molecules and the groups of molecules discussed in section 5.1.2.

An average percentage difference for all the frequencies for each molecule was calculated. The overall percentage difference between the observed and calculated frequencies for all CFC molecules (including FC116) was 5.33% for the individual calculations and 6.41% for the group calculations. This was found when attempting to fit 170 of the possible 180 frequencies for the ten molecules involved. Similarly, for the
nine HFC molecules, the overall difference was found to be 3.93% for the individual calculations and 4.98% for the group calculations. This was for 155 assigned frequencies out of a possible 162. It should be noted that the higher overall error for the CFCs is partly due to the fact that the frequency values are in the range $1500-10 \mathrm{~cm}^{-1}$, compared to the range $3100-10 \mathrm{~cm}^{-1}$ for the HFCs, and a difference of 30 wavenumbers gives an error of 2% for $1500 \mathrm{~cm}^{-1}$ compared to 1% for $3000 \mathrm{~cm}^{-1}$. The average difference for the same frequencies using the results from the Hartree-Fock $a b$ initio calculations was 2.07% for the CFCs and 2.12% for the HFCs. $A b$ initio calculations using the theoretical method MP2 gave an average difference of 2.04% for the first four HFC molecules.

For the individual molecules, an exact fit using the UB force field was not sought since too few force constants were used to create the force field exactly. For example, forces for non-bonded interactions may be expected to vary slightly, depending on the neighbouring atoms. However, the number of force constants had to be kept to a minimum as the possibility of more than one solution existed for molecules with more force constants than frequencies. Instead, an individual fit was carried out to see if a better agreement could be found between observed and calculated frequencies by adjusting the group force constants by small amounts. It can be seen from the overall percentage differences that the improvement for the individual molecules was small. Errors may also have been introduced into the calculations by the imposition of symmetry constraints. The individual molecules were placed into a particular symmetry group by the assumption of a staggered configuration. Experimentally, the molecules freely rotate about the C-C axis, and while the staggered configuration may be preferred, some mixing of modes may occur due to the loss of symmetry on rotation.

6.1.1 Results and assignments for each compound.

A discussion of the assignments for each molecule accompanies the relevant table of frequency data given in this section. The columns of the tables 6.1 to 6.19 display the following information:
(a) Observed values with assignments from the literature, given in symmetry block sequence.
(b) Tentative assignments made in this work, or taken from alternative literature sources.

References to the literature used for columns (a) and (b) are given after each table. Columns (c) to (g) are the same for all the tables, and give the following information: (c) Calculated frequencies, using a UB force field, obtained by refining individual force constants for the molecule.
(d) Percentage difference between the observed and calculated frequencies using $\frac{\text { calc. freq. - obs. freq. }}{\text { obs.freq. }} * 100 \%$
The observed frequency is obtained from column (b) if there is an entry, or column (a) if not.
(e) Calculated frequencies using a UB force field with group force constants. Two sets of group force constants have been derived as part of this work, one for all the CFCs and one for all the HFCs. FC116 is present in all groups. Table 6.10, column (e) gives the results when FC116 is part of the CFC group and column (h) gives the results when it is part of the HFC group.
(f) Scaled calculated frequencies using ab initio methods, with the Hartree-Fock theoretical model and the basis set 6-31G** The scaling factor used is 0.8953 (Scott 1994).
(g) Scaled calculated frequencies using $a b$ initio methods, with the Mbller-Plesset theoretical model and the basis set 6-31G*. The scaling factor used is 0.9427 (Scott 1994).
(h) Calculated frequencies using a UB force field for FC 116 as part of the HFC group.

CFC110.

Table 6.1. Observed frequencies in symmetry group sequence with corresponding calculated values for CFC110. All frequencies are given in cm^{-1}.

Observed frequencies (a) (b)			Urey-Bradley force field calculations (c) (d) (e) (d)				$\begin{aligned} & \hline \text { Hartree-Fock/ } \\ & 6-31 \mathrm{G}^{*} \\ & \text { (f) } \end{aligned}$	
$\mathrm{A}_{1 \mathrm{~g}}$			980	0.20	1016	3.89	983	0.51
	432		417	-3.47	424	-1.85	423	-2.08
	169	228	181	-20.6	171	-25.0	218	--4.39
	-	77	77	0.00	77	0.00	83	7.79
	679		731	7.66	720	6.04	676	-0.44
	375		373	-0.53	380	1.33	372	-0.80
Eg_{g}	858		1026	19.6	1028	19.8	882	- 2.80
	858		1026	19.6	1028	19.8	882	2.80
	341		301	-11.7	302	-11.4	335	-1.76
	341		301	-11.7	302	-11.4	335	-1.76
	224		231	3.13	224	0.00	222	-0.89
	224		231	3.13	224	0.00	222	-0.89
$\mathrm{E}_{\mathbf{u}}$	780		787	0.90	802	2.82	793	-0.67
	780		787	0.90	802	2.82	793	1.67
	278		294	5.76	297	6.83	276	-0.72
	278		294	5.76	297	6.83	276	-0.72
	115	167	149	-10.8	141	-15.6	163	-2.40
	115	167	149	-10.8	141	-15.6	163	-2.40

(a) Observed values with assignments from Tanabe \& Saëki 1972.
(b) Tentative assignments made in this work using data from Woost \& Bougeard 1986

The observed fundamental frequencies and the corresponding calculated values for CFC110 are given in table 6.1. The initial frequencies given by Tanabe \& Saëki (1972) agreed well with the ab initio results except for the lowest A_{lg} and E_{u} modes. These modes have been attributed to the symmetric deformation and antisymmetric rocking of the CCl_{3} groups respectively by Woost and Bougeard (1986), who suggest that the $A_{1 g}$ can be assigned to a frequency of $228 \mathrm{~cm}^{-1}$, and the E_{u} to $167 \mathrm{~cm}^{-1}$. While these assignments are in better agreement with the HF results, it was not possible to obtain similar values using the UB calculations. The torsional frequency of $77 \mathrm{~cm}^{-1}$ observed by Woost and Bougeard (1986) is slightly lower than the HF value, but is in agreement with the UB result. Some calculated results were found in the literature (Carney et al. 1961) but are generally lower than the results given here, so they have not been included.

The largest discrepancy in the UB calculations was found in the highest E_{g} at $858 \mathrm{~cm}^{-1}$ (Tanabe \& Saëki 1972). The potential energy results, given in appendix E, suggest that this mode is due to a $\mathrm{C}-\mathrm{Cl}$ stretch, with some contribution from a CCl_{3} deformation. While this is essentially in agreement with Woost and Bougeard (1986), a considerable number of force constant refinements could not reduce the UB value without greatly increasing the errors in the other frequencies. The large difference between $858 \mathrm{~cm}^{-1}$ and $1026 \mathrm{~cm}^{-1}$ shown in table 6.1 may be attributed to the inadequacy of the UB potential as suggested by Bucker and Nielsen (1963), particularly as in this work, no consideration has been taken of the possible interaction between chlorine atoms attached to different carbon atoms.

CFC111.

The observed fundamental frequencies and the corresponding calculated values for CFC111 are given in table 6.2. The initial assignments used were taken from Nielsen et al. (1953 a) where frequencies were obtained using the compound as a solid glass and in CS_{2} solution. This introduces discrepancies between the observed and calculated frequencies as the latter are calculated for an isolated molecule. Since no further literature references were found for the assignments, the spectrum of CFC111 recorded as part of this work was compared to that of Nielsen et al. (1953 a) and tentative values were obtained for the vapour phase.

For the fundamentals between 1120 and $500 \mathrm{~cm}^{-1}$ the bands were well defined, except in the case of the band centred at $889 \mathrm{~cm}^{-1}$. This value may only be considered accurate within a few wavenumbers as a close inspection of the spectrum did not conclusively give the band centre.

Nielsen et al. (1953 a) expressed some doubt that $314 \mathrm{~cm}^{-1}$ represented the coincidence of two fundamentals, and the HF results suggest that it may be due to the
$\mathrm{A}^{\prime \prime} \mathrm{CCl}_{3}$ deformation. This is confirmed by the UB results. The subsequent reassignment of the $266 \mathrm{~cm}^{-1}$ rocking mode as A^{\prime} and the possibility that $227 \mathrm{~cm}^{-1}$ represents a superposition of A^{\prime} and $A^{\prime \prime}$ modes, leads to good agreement with the HF calculations. Comparatively large errors occur in the UB frequencies around $459 \mathrm{~cm}^{-1}$, $329 \mathrm{~cm}^{-1}, 191 \mathrm{~cm}^{-1}, 356 \mathrm{~cm}^{-1}$ and $141 \mathrm{~cm}^{-1}$ which cannot be satisfactorily explained, however, the difference in wavenumbers between the observed and calculated values is in the order of $30-50 \mathrm{~cm}^{-1}$ which is acceptable for this level of calculations.

Table 6.2. Observed frequencies in symmetry group sequence with corresponding calculated values for CFC111. All frequencies are given in cm^{-1}.

$\begin{array}{rr}\text { Observed frequencies } \\ \text { (a) } & \text { (b) }\end{array}$			Urey-Bradley force field calculations (c) (d) (e) (d)				$\begin{aligned} & \text { Hartree-Fock/ } \\ & 6-31 G^{*} \\ & \begin{array}{ll} \text { (f) } & \text { (d) } \end{array} \end{aligned}$	
A^{\prime}	1101	$1114 \dagger$	1137	2.06	1203	7.99	1155	3.68
	1009	$1018 \dagger$	1015	-0.29	1038	1.96	1035	3.68
	847	$856 \dagger$	882	3.04	903	5.49	860	0.47
	725	$731 \dagger$	739	1.09	742	1.50	723	-1.09
	508	507 \dagger	459	-9.47	487	-3.94	493	-2.76
	407		397	-2.46	405	-0.49	401	-1.47
	382		329	-13.9	333	-12.8	378	-1.05
	314	281*	297	5.69	300	6.76	281	0.00
	281	266*	261	-1.88	263	-1.13	262	-1.50
	227		191	-15.9	186	-18.1	221	-2.64
	174		156	-10.3	152	-12.6	171	-2.64
A"	883	$889 \dagger$	1042	17.2	1063	-19.6	919	-3.37
	796	$810 \dagger$	820	1.23	837	3.33	816	0.74
	395		356	-9.87	383	-3.04	390	-1.27
	314		299	-4.78	298	-5.10	311	-0.96
	266	227*	239	5.29	235	3.52	229	0.88
	174		141	-19.0	137	-21.3	161	-7.47
	77		76	-1.30	72	-6.49	79	2.60

(a) Observed values with assignments from Nielsen et al. 1953 a.
(b) Tentative assignments using \dagger experimental data obtained in this work, and * reassigned values from Nielsen et al. 1953 a.

A problem arises in the antisymmetric $\mathrm{C}-\mathrm{Cl}$ stretch at $889 \mathrm{~cm}^{-1}$. The HF results confirm this assignment, but the UB values are very high at $1042 \mathrm{~cm}^{-1}$ and $1063 \mathrm{~cm}^{-1}$ for the individual and group results respectively. It is likely, as in the case for CFC110, that the UB potential used here is inadequate to fully account for the interaction of the heavy chlorine atoms.

CFC112.

The observed fundamental frequencies and the corresponding calculated values for CFC 112 are given in table 6.3. A complete assignment of CFC112 could not be found in the literature, however, some Raman and infrared frequencies were given by

Kagarise and Daasch (1955) and were used with one experimental value from this work. Initially, no observed values were used for the UB calculations so no force constant refinement could be carried out, however, a rough comparison of calculated and observed values could be made. For the purpose of these calculations it was assumed that the molecule exists in the staggered configuration with the fluorine atoms in the 'trans' position, placing the molecule in the $\mathrm{C}_{2 \mathrm{~h}}$ symmetry group. This assists with the assignments of the vibrational modes, as it is expected that the classes A_{g} and B_{g} are Raman active only, and A_{u} and B_{u} are infrared active only (Kagarise and Daasch 1955). Tentative assignments were made for some of the modes, and used in subsequent UB calculations to enable a force constant refinement to be carried out. A reasonable agreement was obtained between the observed and calculated values, although only 12 observed frequencies were used.

Table 6.3. Observed frequencies in symmetry group sequence with corresponding calculated values for CFC112. All frequencies are given in cm^{-1}.

Observed frequencies \qquad	Urey-Bradley force field calculations					
Ag $\quad 1141 \dagger$	1200	5.17	1245	9.11	1205	5.61
$1045 \dagger$	1052	0.67	1061	1.53	1084	3.73
$587 \dagger$	524	-10.7	535	-8.86	567	-3.41
$411 \dagger$	361	-12.2	360	-12.4	406	-1.22
$297 \dagger$	295	-0.67	295	-0.67	292	-1.68
	182		180		225	- 68
$\mathrm{A}_{\mathbf{u}} \quad 844 *$	874	3.55	883	4.62	842	-0.24
$375 \dagger$	378	0.80	382	1.87	373	-0.53
	135		134		160	
	73 1074		77		72	
Bg	1074		1079		925	
$400 \dagger$	377	-5.75	382	-4.50	388	-3.00
	248		246		254	
	1064 761	-6.34 1.20	1120 760	-1.41	1173 749	3.26
$473 \dagger$	459	-2.96	465	-1.69	749	-0.40
$293 \dagger$	304	3.75	303	3.41	291	-0.68
	199		198		198	

(a) No complete set of assigned frequencies was found in the literature.
(b) Tentative assignments from the results \dagger given in Kagarise \& Daasch 1955 , and * experimental values from this work.

Where no observed frequency was available, a comparison between the results for the two types of calculation shows a good agreement, except in the case of the highest Bg_{g} mode. The UB value of $1074 \mathrm{~cm}^{-1}$ does not correspond well with the $925 \mathrm{~cm}^{-1}$ from the HF calculations. No experimental data could be found to agree with either of these values.

CFC112a.

The observed fundamental frequencies and the corresponding calculated values for CFC112a are given in table 6.4. The initial assignments were taken directly from the publication by Nielsen et al. (1953 a). The observed frequencies given were obtained using a liquid sample, so the results are not expected to match exactly. Some doubt is expressed by Nielsen et al. (1953 a) about the weak band at $525 \mathrm{~cm}^{-1}$, and removal of this as a fundamental gives a good agreement between the observed and HF values, with the exception of the C-F stretching mode at $1111 \mathrm{~cm}^{-1}$. Nielsen et al. (1953 a) stated that the band at $1111 \mathrm{~cm}^{-1}$ could be regarded as a combination band, which may account for the discrepancy, however, there is no band in the region of $1200 \mathrm{~cm}^{-1}$ which could be assigned to this mode.

The UB results are somewhat lower than the newly assigned values, however, they are closer to these values than to the original frequencies suggested by Nielsen et al. (1953 a).

Table 6.4. Observed frequencies in symmetry group sequence with corresponding calculated values for CFC112a. All frequencies are given in cm^{-1}.

Observed frequencies\qquad			Urey-Bradley force field calculations (c) \qquad (d) (e) (d)				$\begin{gathered} \text { Hartree-Fock } \\ / 6-31 G^{*} \\ (\mathrm{f}) \end{gathered}$ (d)	
A^{\prime}	1111		1170	5.31	1209	8.82	1202	8.19
	1027		1075	4.67	1085	5.65	1058	3.19
	847		894	5.55	898	6.02	870	2.72
	775		793	2.32	794	2.45	780	0.65
	627		589	-6.06	600	-4.31	612	-2.39
	525	446	416	-6.73	420	-5.83	435	-2.47
	446	420	391	-6.90	398	-5.24	412	-1.90
	420	331	304	-8.16	303	-8.46	326	-1.51
	331		261		259	-8.46	258	-1.51
	231		211	-8.66	209	-9.52	227	-1.73
	165		143	-13.3	143	-13.3	160	-3.03
A"	1165		1218	4.55	1268	-8.84	1227	-3.03 5.32
	844		899	6.52	903	6.99	862	2.13
	456		416	-8.77	425	-6.80	447	-1.97
	331		333	0.60	333	0.60	327	-1.21
	268		285	6.34	282	5.22	265	-1.12
	183		180	-1.64	178	-2.73	179	-2.19
	81		80	-1.23	70	-13.6	- 81	-1.19 0.00

(a) Observed values with assignments from Nielsen et al. 1953 a.
(b) Tentative assignments made in this work using observed frequencies from Nielsen et al. 1953 a.

CFC113.

The observed fundamental frequencies and the corresponding calculated values for CFC113 are given in table 6.5. The initial assignments were taken directly from the
publication by Klaboe and Nielsen (1961). The UB calculations were carried out assuming a staggered configuration for the molecule such that there is no symmetry. Klaboe and Nielsen (1961) reported some difficulty in assigning the observed frequencies, however, they divided the frequencies into two groups, since the staggered molecule may exhibit either C_{s} or C_{1} symmetry depending on the relative positions of the atoms about the $\mathrm{C}-\mathrm{C}$ bond. They were unable to specify which of the two groups was C_{1}, however, by comparison with the HF results, one of the groups was selected and the assignments used in this work.

Table 6.5. Observed frequencies in symmetry group sequence with corresponding calculated values for CFC113. All frequencies are given in cm^{-1}.

(a) Observed values with assignments from Klaboe and Nielsen 1961.
(b) Tentative assignments made in this work using data from Varanasi and Chudamani 1988.

A good agreement was found between the HF and observed frequencies, except for the four highest values. Tentative assignments for these modes have been made using frequencies from Varanasi and Chudamani (1988), and while they are closer to the HF values, the percentage differences are still larger than expected.

The UB results show similar discrepancies to those for the other molecules under investigation, where some of the lower frequencies due to end group deformations are somewhat smaller than the observed and HF results.

CFC113a.

The observed fundamental frequencies and the corresponding calculated values for CFC113a are given in table 6.6. The assignments suggested by Bürger et al. (1980) agree well with the HF results, except in the case of the degenerate C-F stretching mode at $1225 \mathrm{~cm}^{-1}$. The calculated value was found to be higher for both types of calculation, however, from the spectrum shown in figure 4.5 , it can be seen that the assignment of the very strong band at $1225 \mathrm{~cm}^{-1}$ is most likely correct.

No observed frequency value for the torsional mode was found in the literature. The HF result of $83 \mathrm{~cm}^{-1}$ is similar to the torsional frequencies for the other molecules, but the UB results are rather higher than might be expected.

Table 6.6. Observed frequencies in symmetry group sequence with corresponding calculated values for CFC113a. All frequencies are given in cm^{-1}.

Observed frequencies (a) (b)	Urey-Bradley force field calculations (c) (d) (e) (d)				Hartree-Fock$\substack{/ 6-31 G^{*} \\(\mathrm{f})}$	
$\mathrm{A}_{1} 1255$	1208	-3.75	1170	-6.77	1266	
909	890	-2.09	884	-6.77	1266 909	0.88
714	656	-8.12	655	-8.75	909	0.00 -2.24
430	417	-3.02	412	-4.19	418	-2.79
260	235	-9.62	226	-13.1	255	-1.92
$\mathrm{A}_{2}{ }^{-}$	96		195		83	-1.92
E 1225	1309	6.86	1335	8.98	1277	4.24
1225	1309	6.86	1335	8.98	1277	4.24
859	905	5.36	901	4.89	865	4.24 0.70
859	905	5.36	901	4.89	865	0.70
563	547	-2.84	545	-3.20	547	-2.74 -2.70
563 366	547	-2.84	545	-3.20	547	-2.84
366	343	-6.28	343	-6.28	360	-1.84
366	343	-6.28	343	-6.28	360	-1.64
265	282	6.42	276	4.15	262	-1.13
265	282	6.42	276	4.15	262	-1.13
182	185	1.65	181	-0.55	177	-2.75
182	185	1.65	181	-0.55	177	-2.75 -2.75

(a) Observed values with assignments from Bürger et al. 1980.
(b) No alternative assignments were made as part of this work.

CFC114.

The observed fundamental frequencies and the corresponding calculated values for CFC114 are given in table 6.7. As for CFC112, no complete set of assignments could be found in the literature. After an initial set of calculated frequencies were obtained using the UB method, an attempt was made to assign the frequencies given by Kagarise (1957), and Brown et al. (1967) by comparing values with both the UB and the HF results. When considering the staggered conformation, with the chlorine atoms in the 'trans' position, the molecule belongs to the symmetry group $\mathrm{C}_{2 \mathrm{~h}}$. This assists in
the assignments as the A_{g} and B_{g} classes are exclusively Raman active, and the A_{u} and B_{u} classes are infrared active only.

Tentative assignments are given in column (b) in table 6.7. No observed Raman frequencies were found for the highest A_{g} and B_{g} modes. These modes can be attributed to the symmetric and antisymmetric C-F stretching modes respectively. The results for the two methods of calculation differ considerably for some modes, and in some cases the difference cannot be attributed to an incorrect assignment, for example, in the case of the observed band at $1112 \mathrm{~cm}^{-1}$, the UB result is higher at $1156 \mathrm{~cm}^{-1}$, whereas the HF result is lower at $1098 \mathrm{~cm}^{-1}$.

Table 6.7. Observed frequencies in symmetry group sequence with corresponding calculated values for CFC114. All frequencies are given in cm^{-1}.

(a) No complete set of assigned frequencies were found in the literature.
(b) Tentative assignments using data from \dagger Kagarise 1957 ,
\ddagger Brown et al. 1967 and * experimental results obtained in this work.

It is possible that some assignments are incorrect, for example, the observed frequency at $616 \mathrm{~cm}^{-1}$ is higher than both the UB result at $586 \mathrm{~cm}^{-1}$ and the HF result at $594 \mathrm{~cm}^{-1}$. Since the HF results have corresponded reasonably well for many of the other molecules, the assignments of observed frequencies which differ substantially from the HF results must be in doubt. This applies particularly to the observed frequencies at $382 \mathrm{~cm}^{-1}$ and $230 \mathrm{~cm}^{-1}$ with percentage differences of -4.45% and -7.83% respectively. However, since the assignment of lower frequencies to these two modes would increase
the error for the UB calculations, the tentative assignments given in column (b) table 6.7 have been retained.

CFC114a.

The observed fundamental frequencies and the corresponding calculated values for CFC114a are given in table 6.8.

Table 6.8. Observed frequencies in symmetry group sequence with corresponding calculated values for CFC114a. All frequencies are given in cm^{-1}.

$\begin{array}{cc}\text { Observed frequencies } \\ \text { (a) } & \text { (b) }\end{array}$	Urey-Bradley force field calculations (c) (d) (e) (d)				$\begin{aligned} & \text { Hartree-Fock } \\ & 16-31 \mathrm{G}^{*} \\ & \text { (f) } \end{aligned}$	
$A^{\prime} 1295$	1320	1.93	1340	3.47	1322	2.08
1232	1249	1.38	1203	-2.35	1282	4.06
1110	1131	1.89	1138	2.52	1148	3.42
943	911	-3.39	900	-4.56	943	3.42 0.00
735	658	-10.5	664	-9.66	720	-2.04
590	545	-7.63	550	-6.78	577	-2.20
507	506	-0.20	498	-1.78	492	-2.96
399	378	-5.26	375	-6.02	395	-1.00
311	314	0.96	304	-2.25	304	-2.25
265	259	-2.26	256	-3.40	259	-2.26
A" 200	202	1.00	197	-1.50	194	-3.20
A" 1232	1312	6.49	1327	-7.71	1276	3.57
897	975	8.70	964	7.47	918	2.34
560	542	-3.21	547	-2.32	546	2.34 -2.50
399	384	-3.76	379	-5.01	390	-2.26
330	332	0.61	340	- 3.03	323	-2.26
181	180	-0.55	174	-3.87	178	-1.66
-	64		64		74	

(a) Observed values with assignments from Nielsen et al. 1953 b .
(b) No changes in the assignments were made in this work.

A good agreement was obtained between the HF results and the assignments by Nielsen et al. (1953 b), although the calculated frequencies for the C-F stretching modes are again somewhat higher than expected.

The large discrepancies in the UB results for the $\mathrm{C}-\mathrm{Cl}$ stretching modes, identified by Nielsen et al. (1953 b) at $735 \mathrm{~cm}^{-1}$ and $897 \mathrm{~cm}^{-1}$ cannot readily be explained. In order to keep the total number of force constants less than the number of frequencies, the same non-bonded interaction force constants were associated with the fluorines at both ends of the molecule. This may well have introduced errors, since three fluorine atoms are bonded to one carbon, and the fourth fluorine atom shares the other carbon with the two chlorine atoms, hence forces associated with the fourth fluorine atom may be somewhat different to those for the other fluorine atoms.

CFC115.

The observed fundamental frequencies and the corresponding calculated values for CFC 115 are given in table 6.9. A reasonable agreement is obtained between the assigned frequencies from the work by Nielsen et al. (1953 (b)) and the HF results. Brown et al. (1967) suggested that the bands at $222 \mathrm{~cm}^{-1}$ and $185 \mathrm{~cm}^{-1}$ for the $\mathrm{CF}_{2} \mathrm{Cl}$ rocking modes should be designated A^{\prime} and $\mathrm{A}^{\prime \prime}$ respectively. This is not in agreement with the HF results, hence for the purpose of refining the force constants, the frequencies $222 \mathrm{~cm}^{-1}$ and $185 \mathrm{~cm}^{-1}$ were interchanged.

Table 6.9. Observed frequencies in symmetry group sequence with corresponding calculated values for CFC115. All frequencies are given in cm^{-1}.

Observed frequencies\qquad			Urey-Bradley force field calculation (c) (d) (e) (d)				$$	
A^{\prime}	1351		1327	-1.78	1329	-1.63	1386	2.59
	1224		1270	3.76	1241	1.39	1278	4.41
	1133		1164	2.74	1145	1.06	1147	1.24
	982		977	-0.51	967	-1.53	981	1.24 -0.10
	762		682	-10.5	681	-10.6	746	-2.10
	648		617	-4.78	613	-5.40	631	-2.62
	560		541	-3.39	542	-3.21	541	-3.39
	441		441	0.00	418	-5.22	430	-2.49
	362		353	-2.49	360	-0.55	356	-1.66
	314		291	-7.32	295	-6.05	304	-3.18
	186	185	184	-0.54	183	-1.08	179	-3.24
A"	1241		1339	7.90	1356	-1.08 9.27	1283	-3.24 3.38
	1185		1211	2.19	1206	1.77	1234	4.14
	596		544	-8.72	546	-8.39	583	-2.18
	454		449	-1.10	452	-0.44	441	-2.86
	331		365	10.3	370	-11.8	327	-2.86
	186	222	239	7.66	255	14.9	211	-1.21
	-	70	70	0.00	66	-5.71	68	-2.86

(a) Observed values with assignments from Nielsen et al. 1953 b.
(b) Tentative assignments made in this work using data from Brown et al. 1967 .

Raman depolarisation has been frequently used as an aid in the assignment of fundamental frequencies. Totally symmetric modes are expected to have low Raman depolarisation ratios, however, since the molecule is freely rotating about the C-C axis, the symmetry may be reduced, resulting in some mixing of the A^{\prime} and $A^{\prime \prime}$ character. This problem occurs for the highest frequencies, since Brown et al. (1967) designated $1241 \mathrm{~cm}^{-1}$ as A^{\prime} and $1351 \mathrm{~cm}^{-1}$ as $\mathrm{A}^{\prime \prime}$. This has been taken from the publication by Risgin and Taylor (1959) which reported Raman depolarisation for the higher frequency only and consequently assigned $1351 \mathrm{~cm}^{-1}$ as an $\mathrm{A}^{\prime \prime}$ stretching mode. The results for the HF calculations give Raman depolarisation ratios of 0.5778 for $1386 \mathrm{~cm}^{-1}$ and 0.7500 for $1283 \mathrm{~cm}^{-1}$, assigning them to A^{\prime} and $\mathrm{A}^{\prime \prime}$ respectively. (It should be noted here that
the Raman depolarisation values given by the HF calculations are relative, not absolute (Foresman and Frisch 1993)). The UB results do not assist in this assignment, as the two frequencies obtained from the calculations at $1327 \mathrm{~cm}^{-1}$ and $1339 \mathrm{~cm}^{-1}$ are relatively close together.

FC116.

The observed fundamental frequencies and the corresponding calculated values for FC 116 are given in table 6.10. The assigned frequencies reported by Bucker and Nielsen (1963) are in reasonable agreement with the HF results. The normal vibrations for molecules belonging to the $\mathrm{D}_{3 \mathrm{~d}}$ symmetry group are Raman active for the $\mathrm{A}_{1 \mathrm{~g}}$ and E_{g} modes, infrared active for the $\mathrm{A}_{2 \mathrm{u}}$ and E_{u} modes, and inactive for the $\mathrm{A}_{1 \mathrm{u}}$ torsional mode. The value of $68 \mathrm{~cm}^{-1}$ for the torsional mode was taken from the calculations by Carney et al. (1961).

Table 6.10. Observed frequencies in symmetry group sequence with corresponding calculated values for FC 116 . All frequencies are given in cm^{-1}.

Observed freq. $\begin{array}{ll} \text { (a) } \\ \hline \end{array}$	Urey-Bradley force field calculations						$\begin{gathered} \text { Hartree-Fock } \\ / 6-31 G^{*} \end{gathered}$	
$\mathrm{A}_{18} 1417$	1391	-1.83	1424	0.49	1263	-10.9	1458	2.89
808	717	-11.3	745	-7.80	713	-11.8	795	-1.61
348	319	-8.33	336	-3.45	310	-10.9	338	-2.87
$\mathrm{A}_{1 \mathrm{lu}}{ }^{\text {a }}$	68	0.00	71	4.41	68	-10.9 0.00	63	-2.87 -7.35
$\mathrm{A}_{2 \mathrm{at}} 1117$	1051	-5.91	1111	-0.54	1070	-4.21	1113	-0.36
714 $\mathrm{Eg}_{1} 1250$	631 1359	-11.6	661	-7.42	644	-9.80	693	-2.94
Eg 1250	1359	8.72 8.72	1451	16.1	1388	11.0	1277	2.16
619	553	-10.7	- 567	-8.40	1388 554	-11.0	1277	2.16 -2.58
619	553	-10.7	567	-8.40	554	-10.5	603	-2.58
372	375	0.81	420	-12.9	405	-10.87	603 371	-2.58
- 372	375	0.81	420	12.9	405	8.87	371	-0.27
$\mathrm{E}_{\mathrm{u}} 1251$	1248	-0.24	1299	3.84	1241	-0.80	1283	2.56
1251	1248	-0.24	1299	3.84	1241	-0.80	1283	2.56
523	548	4.78	556	6.31	546	4.40	505	-3.44
523	548	4.78	556	6.31	546	4.40	505	-3.44
216	230	6.48	268	24.1	257	19.0	206	-4.63
216	230	6.48	268	24.1	257	19.0	206	-4.63

(a) Observed values with assignments from Bucker and Nielsen 1963 .
(b) Torsional value calculated by Carney et al. 1961.
(e) Results for FC116 as part of the CFC group.
(h) Results for FC116 as part of the HFC group.

The most significant error arising from the UB calculations is that for the highest E_{g} mode, where a difference of over 100 wavenumbers occurs. This vibration may be attributed to a C-F symmetric bond stretch, and may be higher than expected due to the
omission of forces relating to the interaction between the fluorine atoms bonded to different carbon atoms. The UB results for the individual molecule are not very satisfactory, mainly due to the constraints used when refining the force constants. By attempting to use similar force constants to those for the other molecules in the group, no satisfactory fit could be obtained. It can be seen from both sets of group results that the UB calculated frequencies did not fit well for either group.

HFC170.

The observed fundamental frequencies and the corresponding calculated values for HFC170 are given in table 6.11. The assignments reported by Tanabe \& Saëki (1972) are in good agreement with the results from the $a b$ initio calculations. For HFC170, both the HF and MP2 theoretical methods of calculation were available, enabling a comparison between the two different methods to be made.

Table 6.11. Observed frequencies in symmetry group sequence with corresponding calculated values for HFC170. All frequencies are given in cm^{-1}.

$\begin{aligned} & \text { Obs. frequencies } \\ & \text { (a) } \end{aligned}$	Urey-Bradley force field calcs. (c) (d) (e) (d)				$\begin{array}{cc} \mathrm{HF} / 6-31 \mathrm{G}^{*} \\ \text { (f) } \\ \hline \end{array}$		MP2/6-31G* (g) (d)	
$\mathrm{A}_{1 \mathrm{~g}} 2954$	2907	-1.59	2920	-1.15	2870	-2.84	2933	-0.71
1388	1433	3.24	1429	2.95	1415	1.95	1406	1.30
- 995	1005	1.01	1009	1.41	951	-4.42	990	-0.50
$\begin{aligned} & \mathrm{A}_{1 \mathrm{u}} 289 \\ & \mathrm{~A}_{2 \mathrm{u}} 2954 \end{aligned}$	289	0.00 -0.17	245	-15.2	292	1.04	312	7.96
$\begin{array}{r} \mathrm{A}_{2 \mathrm{u}} 2954 \\ 1379 \end{array}$	2933	-0.17 1.67	2943 1379	-0.37	2864	-3.05	2934	-0.68
$\mathrm{Eg}_{\mathrm{g}} 2969$	14095	1.67 0.88	1379	0.00 1.28	1386	0.51 -2.02	1381	0.15
2969	2995	0.88	3007	1.28	2909	-2.02	3006	1.25 1.25
1460	1447	-0.89	1396	-4.38	1472	0.82	1479	1.30
1460	1447	-0.89	1396	-4.38	1472	0.82	1479	1.30
1190	1007	-15.4	1009	-15.2	1198	0.67	1198	0.67
E 1190	1007	-15.4	1009	-15.2	1198	0.67	1198	0.67
E 22996	3006	0.33	3017	0.70	2931	-2.17	3024	0.93
2996	3006	0.33	3017	0.70	2931	-2.17	3024	0.93
1486	1490	0.27	1434	-3.50	1477	-0.61	1483	-0.20
1486	1490	0.27	1434	-3.50	1477	-0.61	1483	-0.20
820	835	1.83	834	1.71	796	-2.93	801	-2.32
820	835	1.83	834	1.71	796	-2.93	801	-2.32

(a) Observed values with assignments from Tanabe \& Saëki 1972.
(b) No new assignments were made in this work.

It can be seen from table 6.11 that the percentage difference between the calculated and observed frequencies is generally lower for the MP2 results than the HF results, although overall, the difference is small. The largest error occurs for the torsional mode, where the MP2 result at $312 \mathrm{~cm}^{-1}$ is considerably higher than expected. The UB results also agree well with the observed values, except in the case of the
lowest E_{g} mode which is calculated to be at $1007 \mathrm{~cm}^{-1}$. The calculations by Bucker and Nielsen (1963) give a frequency of $1004 \mathrm{~cm}^{-1}$, which agrees well with the result obtained here. Smith et al. (1952) reported that the value $1190 \mathrm{~cm}^{-1}$ was derived from overtone or combination bands and was not observed directly, suggesting that the assignment may not be correct.

HFC161.

The observed fundamental frequencies and the corresponding calculated values for HFC161 are given in table 6.12.

Table 6.12. Observed frequencies in symmetry group sequence with corresponding calculated values for HFC 161 . All frequencies are given in cm^{-1}.

(a) Observed values with assignments from Chen et al. 1975.
(b) Tentative assignments made in this work using data from \dagger Crowder and Mao 1973, and * Smith et al. 1952.

Initially, the assigned frequencies given in Chen et al. (1975) were used. Reasonable agreement was obtained with both the HF and MP2 calculations, except in the case of one of the antisymmetric $A^{\prime \prime}$ stretches at $3003 \mathrm{~cm}^{-1}$, and the $A^{\prime \prime}$ mode at $1048 \mathrm{~cm}^{-1}$. In both cases, the observed values were derived by assuming the superposition of two or more frequencies.

The results given by Crowder and Mao (1973) suggested that one of the antisymmetric C-H stretches occurred at a frequency of $2967 \mathrm{~cm}^{-1}$. Smith et al. (1952) designated a strong band at $1171 \mathrm{~cm}^{-1}$ as an A^{\prime} mode, but the Raman depolarisation ratio
was not measured. The HF results give a Raman depolarisation ratio of 0.7500 for a frequency at $1172 \mathrm{~cm}^{-1}$ which may well correspond to the observed frequency at $1171 \mathrm{~cm}^{-1}$ suggesting it could be assigned to an $\mathrm{A}^{\prime \prime}$ mode. The MP2 calculations did not report Raman depolarisation ratios. In contrast, the UB results give a much lower value for this fundamental at $978 \mathrm{~cm}^{-1}$ which does not correlate well with either assignment.

From the potential energy matrix, the lower than expected UB results of $1037 \mathrm{~cm}^{-1}, 1178 \mathrm{~cm}^{-1}$ and $978 \mathrm{~cm}^{-1}$ are all partly associated with rocking of the CFH_{2} group. Shimanouchi (1963) reported that calculated rocking frequencies for several $\mathrm{RCH}_{2} \mathrm{X}$ ($\mathrm{X}=$ halogen) molecules were too low without the inclusion of an angle interaction constant between H and X as well as the standard UB bending and repulsive force constants.

HFC152.

The observed fundamental frequencies and the corresponding calculated values for HFC152 are given in table 6.13. The initial assignments were taken from the publication by Klaboe and Nielsen (1960).

Table 6.13. Observed frequencies in symmetry group sequence with corresponding calculated values for HFC152. All frequencies are given in cm^{-1}.

Obs. frequencies		Urey-Bradley force field calcs.$\begin{array}{lll} \text { (c) } & \text { (d) } & \text { (e) } \end{array}$				$\begin{array}{cl} \mathrm{HF} / 6-31 \mathrm{G}^{*} \\ \text { (f) } \\ \hline \end{array}$		$\begin{array}{ll} \text { MP2/6-31G* } \\ \text { (g) } & \text { (d) } \\ \hline \end{array}$	
Ag 2962		2945	-0.57	2954	-0.27	2921	-1.38	2955	-0.24
1416	$1456 \dagger$	1460	0.27	1461	0.34	1506	3.43	1502	-0.16
1079	$1416 \dagger$	1377	-2.75	1382	-2.40	1450	2.40	1424	0.56
1049	1079 \ddagger	1054	-2.32	1040	-3.61	1070	-0.83	1070	-0.83
858	1049 \ddagger	957	-8.77	931	-11.3	1048	-0.10	1043	-0.87
- 804	$450 \ddagger$	412	-8.44	374	-16.9	445	-1.11	440	-0.22
A 1415 1994		3005	0.37	3019	0.84	2978	-0.53	3028	1.14
1415		1146		1089		1213		1189	
320		754		714		786		789	
		129		125		130		133	
Bg 2990		2997	0.23	3010	0.67	2954	-1.20	3007	0.57
1285		1186	-7.70	1135	-11.7	1271	-1.09	1260	-1.95
Bu $\begin{array}{r}450 \\ \hline 951\end{array}$		871 2961		820		1158		1145	
Bu $\begin{array}{r}13951 \\ \end{array}$	$1415 \dagger$	2961 1424	0.34 0.64	2971 1469	0.68	2922	-0.98	2960	0.30
1065	$1376 \dagger$	1325	-3.71	1269	$\begin{array}{r}3.82 \\ -7.78 \\ \hline\end{array}$	1543	6.93 -2.40	1510	6.71
897	$1065 \dagger$	983	-7.70	960	-9.86	1073	-2.40	1053	-4.22
652	$320 \ddagger$	338	5.63	305	-4.69	275	-14.1	263	-17.8

(a) Observed values with assignments from Klaboe and Nielsen 1960.
(b) Tentative assignments were taken from \dagger Beagley and Brown 1979, and, \ddagger made in this work using data from Klaboe and Nielsen 1960.

Several large discrepancies were found between the calculated and observed frequencies. In an attempt to obtain a better agreement, some assignments suggested by

Beagley and Brown (1979) were substituted and a further four tentative assignments were made using values from Klaboe and Nielsen (1960) for alternative modes. HFC152 has $\mathrm{C}_{2 \mathrm{~h}}$ symmetry, where the A_{g} and B_{g} modes are Raman active and the A_{u} and B_{u} modes are infrared active. No sample of HFC152 was available for experimental use as part of this work.

Using the data presented in column (b) table 6.13, a better agreement is obtained between the ab initio and observed frequencies. In the case of the B_{u} mode observed at $1415 \mathrm{~cm}^{-1}$ by Beagley and Brown (1979) however, the results from the ab initio calculations are 100 wavenumbers higher, suggesting an incorrect assignment, although the UB result does not confirm this.

The presence of two $\mathrm{CH}_{2} \mathrm{~F}$ groups and the lack of angle interaction constants, as described by Shimanouchi (1963), may well account for the lower than expected UB values at $957 \mathrm{~cm}^{-1}$ and $983 \mathrm{~cm}^{-1}$. The reassignment of $320 \mathrm{~cm}^{-1}$ to the torsional mode may be incorrect, although the actual value observed by Klaboe and Nielsen (1960) was said to be approximate. The four unassigned frequencies do not agree for the two types of calculation, possibly suggesting that the UB force field is not adequate for this type of molecule.

HFC152a.

The observed fundamental frequencies and the corresponding calculated values for HFC152a are given in table 6.14. A good agreement was obtained between the observed frequencies and the $a b$ initio calculated values, except in the case of the lower frequencies observed at $571 \mathrm{~cm}^{-1}, 470 \mathrm{~cm}^{-1}, 383 \mathrm{~cm}^{-1}$ and $222 \mathrm{~cm}^{-1}$. The percentage differences shown are high, however, as has been noted previously, the difference is in the order of 20-30 wavenumbers which is comparable with the difference for some of the higher frequencies. A better fit has been obtained from the UB calculations for this molecule than for HFC152, suggesting that the angle interaction constant is not so significant without the $-\mathrm{CH}_{2} \mathrm{~F}$ end group.

Guirgis and Crowder (1984) have suggested alternative assignments for the observed frequencies at $1143 \mathrm{~cm}^{-1}, 1129 \mathrm{~cm}^{-1}, 1360 \mathrm{~cm}^{-1}$, and $1171 \mathrm{~cm}^{-1}$, giving the values $1171 \mathrm{~cm}^{-1}, 1142 \mathrm{~cm}^{-1}, 1164 \mathrm{~cm}^{-1}$, and $1149 \mathrm{~cm}^{-1}$ respectively. These new assignments are not in agreement with the results calculated here, except in the case of the exchange of $1171 \mathrm{~cm}^{-1}$ for the new value of $1149 \mathrm{~cm}^{-1}$. Guirgis and Crowder (1984) also indicate that by force constant adjustment alternative assignments can be made to fit, however, when attempting to determine transferable force constants for use with similar molecules, as is the case in this work, large changes in force constants are not desirable.

Table 6.14. Observed frequencies in symmetry group sequence with corresponding calculated values for HFC152a. All frequencies are given in cm^{-1}.

$\begin{aligned} & \text { Obs. frequencies } \\ & \begin{array}{ll} \text { (a) } & \text { (b) } \end{array} \end{aligned}$	Urey-Bradley force field calcs.$\begin{array}{llll} (\mathrm{c}) & (\mathrm{d}) & (\mathrm{e}) & \text { (d) } \end{array}$				$\begin{array}{cc} \mathrm{HF} / 6-31 \mathrm{G}^{*} \\ \text { (f) } \\ \hline \end{array}$		$\begin{array}{ll} \text { MP2/6-31G** } \\ \text { (g) } & \text { (d) } \\ \hline \end{array}$	
A' 3018	3016	-0.07	3015	-0.10	2976	-1.39	3051	1.09
2978	2995	0.57	2991	0.44	2956	-0.74	2981	0.10
2960	2924	-1.22	2920	-1.35	2891	-2.33	2953	-0.24
1460	1451	-0.62	1481	1.44	1459	-0.07	1461	0.07
1414	1435	1.49	1418	0.28	1435	1.49	1412	-0.14
1372	1359	-0.95	1349	-1.68	1380	0.58	1363	-0.66
1143	1104	-3.41	1084	-5.16	1149	0.52	1133	-0.87
1129	1045	-7.44	1024	-9.30	1121	-0.71	1120	-0.80
868	882	1.61	869	0.12	849	-2.19	853	-1.73
571	540	-5.43	528	-7.53	549	-3.85	537	-5.95
A" 470	477	1.49	459	-2.34	450	-4.26	440	-6.38
A" 3001	3016	0.50	3014	0.43	2959	-1.40	3047	-6.58 1.53
1460	1523	4.32	1486	1.78	1462	0.14	1463	0.21
1360	1426	4.85	1449	6.54	1395	2.57	1370	0.74
1171	1136	-2.99	1102	-5.89	1162	-0.77	1137	-2.90
930	916	-1.51	903	-2.90	961	3.33	942	- 1.29
383	422	10.2	391	2.09	365	-4.70	363	-5.22
222	221	-0.45	236	6.31	231	4.05	252	-13.5

(a) Observed values with assignments from Chen et al. 1975.
(b) No changes in the assignments were made for this compound.

HFC143.
Table 6.15. Observed frequencies in symmetry group sequence with corresponding calculated values for HFC143. All frequencies are given in cm^{-1}.

Observed frequencies (a) (b)	Urey-Bradley force field calculations (c) (d) (e) (d)				$\substack{\text { Hartree-Fock } \\ \text { /6-31G* } \\ \text { (f) }}$ (d)	
A 3005	3035	1.00	3033	0.93	2994	-0.37
2986	2993	0.23	2992	0.20	2977	-0.37 -0.30
2978	2946	-1.07	2938	-1.34	2929	-1.65
1465	1527	4.23	1553	6.01	1491	-1.77
1433	1491	4.05	1484	3.56	1460	1.88
1379	1442	4.57	1428	3.55	1403	1.74
1319	1341	1.67	1305	-1.06	1339	1.52
1249	1175	-5.92	1139	-8.81	1240	-0.72
1152	1110	-3.65	1094	-5.03	1152	0.00
1125	1093	-2.84	1075	-4.44	1132	0.00 0.62
1076	992	-7.81	973	-9.57	1117	3.81
005	964		951	-9.57	1086	3.81
905	860	-4.97	835	-7.73	887	-0.88
577	538	-6.76	524	-9.19	858	-0.88
476	491	3.15	475	-0.21	474	-0.42
426	404	-5.16	389	-8.69	411	-3.52
247	265	7.29	258	4.45	234	-5.26
117	117	0.00	112	-4.27	120	2.56

(a) Observed values with assignments from Kalasinsky et al. 1982.
(b) No changes were made in the assignments for this compound.

The observed fundamental frequencies and the corresponding calculated values for HFC143 are given in table 6.15. The results for the HF calculations are in good agreement with the assignments reported by Kalasinsky et al. (1982), except for the observed value at $1076 \mathrm{~cm}^{-1}$. The HF results suggest that the omitted observed frequency should be switched with the frequency of $1076 \mathrm{~cm}^{-1}$, which would then correspond well to the calculated frequency at $1086 \mathrm{~cm}^{-1}$. This does not, however, concur with the UB results, which are considerably lower for both frequencies.

Difficulties in obtaining comparable UB results may arise from the use of only one force constant for the fluorine atoms, since one of the fluorine atoms is in a different environment to the other two. In addition, the presence of a $\mathrm{CH}_{2} \mathrm{~F}$ group may require an angle interaction constant to be incorporated into the UB potential.

HFC143a.

The observed fundamental frequencies and the corresponding calculated values for HFC143a are given in table 6.16. The overall difference between the HF calculated values and the observed frequencies is somewhat higher than for the other moleculesstudied, with an average value of 2.17%. The calculated results suggest that the observed frequency at $602 \mathrm{~cm}^{-1}$ may be high, since the UB value is $558 \mathrm{~cm}^{-1}$ and the HF value is $579 \mathrm{~cm}^{-1}$.

Table 6.16. Observed frequencies in symmetry group sequence with corresponding calculated values for HFC143a. All frequencies are given in cm^{-1}.

$\begin{array}{cc}\text { Observed frequencies } \\ \text { (a) } & \text { (b) }\end{array}$	Urey-Bradley force field calculations (c) (d) \quad (e)				$\begin{aligned} & \hline \text { Hartree-Fock } \\ & \substack{/ 6-31 G^{*} \\ \text { (f) }} \\ & \hline \end{aligned}$	
$\mathrm{A}_{1} 2975$	2957	-0.61	2918	-1.92	2906	-2.32
1408	1421	0.92	1423	1.07	1433	-2.32 1.78
1280	1292	0.94	1302	1.72	1280	0.00
830	790	-4.82	790	-4.82	813	-2.05
- 602	558	-7.31	566	-5.98	579	-3.82
$\mathrm{A}_{2} \mathrm{E}_{2} 220$	249	13.2	252	14.6	225	2.27
E 3035	3035	0.00	3015	-0.66	2981	-1.78
3035	3035	0.00	3015	-0.66	2981	-1.78
1443	1445	0.14	1491	3.33	1457	-1.78
1443	1445	0.14	1491	3.33	1457	0.97
1233	1360 1360	10.3	1364	10.6	1266	2.68
1233 970	1360	10.3	1364	10.6	1266	2.68
970 970	932	-3.92	920	-5.15	980	1.03
970	932	-3.92	920	-5.15	980	1.03
541	536	-0.92	542	0.18	524	-3.14
541	536	-0.92	542	0.18	524	-3.14
365	422	15.6	433	18.6	351	-3.84
365	422	15.6	433	18.6	351	-3.84 -3.84

(a) Observed values with assignments from Chen et al. 1975.
(b) No changes in assignments have been made for this molecule.

However, the spectrum in figure 4.13 shows an obviously PQR shaped band centred at $602.9 \mathrm{~cm}^{-1}$ confirming the assignment given by Chen et al. (1975). The UB calculated frequency at $1360 \mathrm{~cm}^{-1}$ is considerably higher than expected. The potential energy matrix gives a 63% contribution to this vibrational mode from the C-F stretching force constant, however, reduction of this force constant would affect the other vibrational modes associated with a C-F stretch, calculated at $1292 \mathrm{~cm}^{-1}, 790 \mathrm{~cm}^{-1}, 932 \mathrm{~cm}^{-1}$. Although all three fluorine atoms belonging to this molecule are attached to the same carbon atom, and therefore should require only one force constant, no interaction between atoms more than two bonds apart has been included in the calculation which may account for this discrepancy.

HFC134.

The observed fundamental frequencies and the corresponding calculated values for HFC 134 are given in table 6.17. For all but one of the frequencies, there is a good agreement between the HF results and the observed values. The spectrum given by Kalasinsky et al. (1982) for the region $300-50 \mathrm{~cm}^{-1}$ distinctly shows the band centred around $216-204 \mathrm{~cm}^{-1}$, although the exact centre is difficult to determine. The difference in wavenumbers between the observed frequency at $212 \mathrm{~cm}^{-1}$ and the HF frequency at $194 \mathrm{~cm}^{-1}$ is relatively small, compared to the difference for the other frequencies.

Table 6.17. Observed frequencies in symmetry group sequence with corresponding calculated values for HFC134. All frequencies are given in cm^{-1}.

$\begin{array}{cc}\text { Observed frequencies } \\ \text { (a) } & \text { (b) }\end{array}$	Urey-Bradley force field calculations (c) (d) (e) (d)				$\begin{gathered} \text { Hartree-Fock } \\ / 6-31 \mathrm{G}^{*} \\ (\mathrm{f}) \end{gathered}$ (d)	
Ag 2995	2989	-0.20	2988	-0.23	3002	0.23
1442	1478	2.50	1455	0.90	1480	2.64
1149	1101	-4.18	1101	-4.18	1145	2.64 -0.35
1106	1011	-8.59	1018	-7.96	1098	-0.72
625	563	-9.92	561	-10.2	613	-1.92
- 362	332	-8.29	330	-8.84	352	-2.76
Au 1330	1429	7.44	1457	9.55	1358	- 2.11
1136	1050	-7.57	1056	-7.04	1158	1.94
212	236	11.3	237	11.8	194	-8.49
- $\begin{array}{r}82 \\ \\ \hline 165\end{array}$	82	0.00	83	1.22	194 85	-8.49 3.66
Bg 1365	1477	8.21	1499	9.82	1385	1.47
1081	1090	0.83	1104	2.13	1131	4.63
$B_{4} \quad 2995$	425	-11.5	425	-11.5	478	-0.42
Bu 2995	2997	0.07	3000	0.17	3011	0.53
$\begin{aligned} & 1320 \\ & 1125 \end{aligned}$	1332	0.91	1322	0.15	1304	-1.21
1125	1068	-5.07	1064	-5.42	1125	0.00
541	520	-3.88	519	-4.07	530	-2.03
414	456	10.1	457	$\begin{array}{r}-4.07 \\ 10.4 \\ \hline\end{array}$	412	-2.03 -0.48

(a) Observed values with assignments from Kalasinsky et al. 1982.
(b) No changes in assignments have been made in this work.

The UB results are not very satisfactory, it can be seen in table 6.17 that little improvement was made when refining the force constants for the individual fit. Again, the problem of one antisymmetric C-F stretching mode having a calculated value too high at $1477 \mathrm{~cm}^{-1}$ compared to $1365 \mathrm{~cm}^{-1}$ for the observed frequency occurs. Other modes influenced by a C-F stretch are too low, $1011 \mathrm{~cm}^{-1}$ compared to $1106 \mathrm{~cm}^{-1}$ and $1050 \mathrm{~cm}^{-1}$ compared to $1136 \mathrm{~cm}^{-1}$. For HFC134, the fluorine atoms are all in the same environment, so the problems must partly arise from the omission of interaction between the two ends of the molecule in the UB potential.

HFC134a.

The observed fundamental frequencies and the corresponding calculated values for HFC134a are given in table 6.18. Since large differences have been found between several of the observed and calculated frequencies, three of the original assignments made by Chen et al. (1975) have been amended in this work. The assignments suggested by Nielsen and Halley (1965) and Edgell et al. (1963) were not in agreement, however, Chen et al. (1975) used the observed frequencies reported in these publications, with the torsional frequency of $120 \mathrm{~cm}^{-1}$ observed by Dante and Wood (1959), to derive the set of assignments given in table 6.18.

Table 6.18. Observed frequencies in symmetry group sequence with corresponding calculated values for HFC134a. All frequencies are given in cm^{-1}.

(a) Observed values with assignments from Chen et al. 1975.
(b) Tentative assignments made in this work using data from \dagger Nielsen and Halley 1965 and \ddagger Edgell et al. 1963.

In order to reach a closer agreement between the observed and calculated values, the observed value from Nielsen and Halley's work (1965) of $1103 \mathrm{~cm}^{-1}$ was assigned to v_{6}, and v_{5} was omitted. Edgell et al. (1963) assigned $968 \mathrm{~cm}^{-1}$ to the $v_{15} \mathrm{~A}^{\prime \prime}$ mode, which is in reasonable agreement with the HF results. Edgell et al.(1963) also suggested $201 \mathrm{~cm}^{-1}$ in place of the observed $225 \mathrm{~cm}^{-1}$, and $407 \mathrm{~cm}^{-1}$ in place of the observed $352 \mathrm{~cm}^{-1} \mathrm{~A}^{\prime \prime}$ mode. The former is in closer agreement to the HF results, and the latter corresponds to the UB results. Changes in assignments have not been made to fit with the UB results at the expense of agreement with the HF results because, although the HF calculations are based on approximations and therefore do not exactly replicate the observed frequencies, they have been seen to be more reliable in this work than frequencies obtained from the UB calculations.

HFC125.

The observed fundamental frequencies and the corresponding calculated values for HFC125 are given in table 6.19.

Table 6.19. Observed frequencies in symmetry group sequence with corresponding calculated values for HFC125. All frequencies are given in cm^{-1}.

Observed frequencies\qquad			Urey-Bradley force field calculations				$\begin{aligned} & \text { Hartree-Fock/6- } \\ & 31 \mathbf{G}^{*} \\ & \text { (f) } \\ & \text { (d) } \end{aligned}$	
A'	3008		3002	-0.20	2993	-0.50	3002	-0.20
	1393	1447	1437	-0.69	1541	- 6.50	1470	-0.20
	1309		1344	2.67	1376	5.12	1318	1.59
	1218		1219	0.08	1283	5.34	1222	0.63
	1111		1017	-8.46	1054	-5.13	1133	1.98
	867		800	-7.73	829	-4.38	861	-0.69
	725		629	-13.2	654	-9.79	708	-2.34
	577		542	-6.07	555	-3.81	560	-2.95
	523		531	1.53	541	3.44	506	-3.25
	361		349	-3.32	362	0.28	351	-2.77
	246		262	6.50	278	13.0	239	-2.85
A"	1359		1430	5.22	1496	10.1	1389	- 2.21
	1198	1224	1314	7.35	1353	10.5	1267	3.51
	1145		1046	-8.65	1087	-5.1	1173	3.51 2.45
	508	-	543		554	-5.1	571	2.45
	413		411	-0.48	431	4.36	407	-1.45
	216		234	8.33	250	15.7	201	-6.94
	82		82	0.00	81	-1.22	73	-11.0

(a) Observed values with assignments from Chen et al. 1975.
(b) Tentative assignments made in this work using data from Nielsen et al. 1955 .

Three observed frequencies assigned by Chen et al (1975) differed from the HF results by more than 60 wavenumbers. This led to the tentative assignments listed in column (b) of table 6.19. Nielsen et al. (1955) suggested that $1447 \mathrm{~cm}^{-1}$ could be used
as an alternative to $1393 \mathrm{~cm}^{-1}$, and reported a strong band centred around $1224 \mathrm{~cm}^{-1}$, but did not identify it. From the spectrum of HFC125 in figure 4.16, a strong, broad band occurs between $1255 \mathrm{~cm}^{-1}$ and $1171 \mathrm{~cm}^{-1}$, which may include both an A^{\prime} and an $\mathrm{A}^{\prime \prime}$ mode. The tentative assignments of $1447 \mathrm{~cm}^{-1}$ to v_{2} and $1224 \mathrm{~cm}^{-1}$ to v_{13} have been made in this work.

Nielsen et al. (1955) expressed uncertainty about the assignment of $508 \mathrm{~cm}^{-1}$, and it has been omitted here as it is not in agreement with the calculated results. The UB results exhibit the same problems here as for the other HFCs, with the calculated frequency for a C-F stretch at $1314 \mathrm{~cm}^{-1}$ being too large, and the other frequencies affected by C-F stretching being too low. Tipton et al. (1967) report a torsional frequency of $74 \mathrm{~cm}^{-1}$ which is in agreement with the HF results, however, Kinumaki and Kozuka (1968) reported an observed torsional band centred at $82 \mathrm{~cm}^{-1}$. Kinumaki and Kozuka (1968) referred to the band around $216 \mathrm{~cm}^{-1}$ as being weak, diffuse and structureless, indicating that the position of the band centre is uncertain, suggesting that the HF result of $201 \mathrm{~cm}^{-1}$ may be close to the true centre of the band.

6.1.2 Discussion of assignments.

When comparing observed and calculated frequencies, many factors need to be considered. Problems arise with inaccuracies in the observed values, incorrect assignments, and the inadequacies of the theoretical models used for the calculations.

Most of the assignments of the vibrational fundamentals found in the literature may be considered reliable, since they were made using both Raman and infrared spectra, and the study and identification of the combination bands. However, the observed values may vary by a few wavenumbers, due to inaccuracies in the recording of the spectra and the difficulties in the selection of the correct centre of a band when two or more bands overlap. The assignment of inactive modes is difficult, and was usually based on the interpretation of combination bands. Further misinterpretation of the spectra may have been caused by the presence of weak bands due to contamination of the samples used.

It can be seen from tables 6.1 to 6.19 that reasonable agreement is obtained between the $a b$ initio results and the observed frequencies. It should be noted however, that the $a b$ initio calculations are based on several approximations as described in section 1.6.2. The neglect of electron correlation by the HF method will result in errors in the computation, however, comparison of the results obtained from the HF and MP2 levels of theory indicate that at least for the lighter HFCs the differences were small. It is possible that the results for the heavier molecules may be improved by the use of a higher level of theory, however, considerable computer time would have been required
to complete these calculations, and generally the HF results seem acceptable for this work.

The scaling factors used to adjust the frequencies have been determined from a large number of $a b$ initio calculations (Pople et al. 1993). Another source of error may arise from the calculation of the equilibrium geometry of the molecule. Fogarasi and Pulay (1985) state that SCF wave functions (as used for the HF calculations) generally yield bond lengths which are too short. This is confirmed by the results for CF_{4} and $\mathrm{C}_{2} \mathrm{~F}_{6}$ calculated by Cooper et al. (1989). The effects of anharmonicity for the C-H stretching modes may increase the error for the calculated values, but even with errors in the range of $20-30 \mathrm{~cm}^{-1}$, Fogarasi and Pulay (1985) suggest that the results are suitable for checking vibrational assignments.

The Urey-Bradley calculations have not agreed as well as the $a b$ initio calculations with the fundamental assignments. The programs used in this work allow only the simple Urey-Bradley potential field to be used. Shimanouchi (1963) divided various molecules into three groups, those for which the simple UB field was successful, such as CX_{4} ($\mathrm{X}=$ halogen); those for which the UB field was successful,but the resultant force constants were not transferable to similar molecules, such as the halomethanes with at least one hydrogen atom; and those for which the force field had to be modified, such as the dichloroethanes. The modification of the UB force field includes the incorporation of a 'trans' interaction constant, a 'gauche' interaction constant and an angle interaction constant. The 'trans' and 'gauche' interaction constants given by Shimanouchi (1963) involve interactions between atoms attached to adjacent carbon atoms, and the angle interaction constant involves interactions between atoms attached to the same carbon, but not directly affected by the rocking or twisting motions involved. The use of the same force constants for bonded atoms in different environments may also have introduced errors, for example, the C-F stretching force constants for fluorine atoms sharing the same carbon atom may not all be the same if the atoms on the other carbon atom are not identical to each other. For example, the C-F stretching force constants for CFC115, shown in table 6.23, are not all the same, even for the three fluorines attached to the same carbon atom.

Errors in the experimental geometry will have introduced errors in the frequencies, since a small change in bond length or angle results in a change of frequency by a few wavenumbers.

The most time-consuming problem arose from the difficulty of starting with two sets of 'approximate' values, the initial force constants and the assigned frequencies. While most of the assigned frequencies may be considered to be accurate within a few wavenumbers, the force constants, in particular for the non-bonded interactions were not reliable. The assumption was made that the assignments given in tables 6.1 to 6.19
were correct, and the force constants adjusted accordingly. Difficulties arose for those frequencies where the assignments were doubtful or missing, as, a change in a particular force constant may change the calculated frequency to correspond to any specified value within a range of approximately 100 wavenumbers. This problem was also encountered by Guirgis and Crowder (1984) when they were calculating the frequencies for HFC152a.

Further refinements of the force constants could have been carried out, however, the possible reduction of the overall errors by tenths of a percent was not considered to be beneficial, since it is the trends in force constants that are of more interest here, as the simple UB force field used will not give exact values.

6.2 Force constants.

Force constants derived from calculations using the UB force field have clear physical meanings in that they are associated directly with stretches, bends or nonbonded interactions between atoms within the molecule. When a set of transferable force constants has been determined, they may be used to calculate the vibrational frequencies for a compound which is not available for experimental studies. The resultant frequencies may also be used to assist in the assignment of fundamentals when experimental results are available. In this work it has been found that, for the simple UB force field used by the programs NORCORD and OVER, some of the calculated frequencies are not close enough to the observed values to confirm assignments. However, the group force constants obtained still provide a useful starting point for the calculation of frequencies for similar molecules.

The $a b$ initio models calculate force constants for the internal coordinates input via the Z matrix for GAUSSIAN92. These internal coordinates are different to those used for the UB calculations, since they consist of seven stretches, six bends between the F, Cl or H atoms and the $\mathrm{C}-\mathrm{C}$ axis, and five dihedral angles. It is possible therefore, to compare only the stretching force constants. The bending and non-bonded interaction force constants for the UB force field are some combination of the force constants for the internal coordinates used in the $a b$ initio calculations.

6.2.1. Force constants calculated using a UB force field.

Tables 6.20 and 6.21 present the UB force constants for the CFCs and HFCs respectively. UB force constants for stretches and bends appear lower than those from other force fields. This is due to the fact that the F matrix diagonal elements used in the
calculation of frequencies are a combination of the UB stretches and bending force constants and the relevant non-bonded interactions. The number and magnitude of the non-bonded interaction force constants incorporated in the F matrix is determined by the Z matrix entries input to the program OVER.

From table 6.20 and 6.21 it can be seen that the C-C, C-H and C-Cl stretching force constants increase as the number of fluorine atoms increases. A strengthening of the $\mathrm{C}-\mathrm{C}$ bond with fluorine substitution has been reported in the literature by Bucker and Nielsen (1963). This has been observed here with both the CFCs and HFCs suggesting that the trend does not directly depend on the type of atom replaced. Conversely, the C-F stretching force constant increases with fluorine substitution of the CFCs and decreases when fluorine atoms replace hydrogen atoms. It would be expected that the presence of the chlorine atoms affect the fluorine atoms to a greater extent than the hydrogen atoms, and this is shown by the non-bonded interaction force constant of $0.5316 \mathrm{mdyne}^{-1} \AA^{-1}$ for the $\mathrm{F} . . . \mathrm{Cl}$ interaction and $0.0602 \mathrm{mdyne}^{\AA} \AA^{-1}$ for the $\mathrm{F} . . . \mathrm{H}$ interaction. The bending force constants are smaller than the stretching force constants as would be expected, with stronger interactions between the halogen atoms in the $\mathrm{ClCCl}, \mathrm{FCCl}$, and FCF bends than the halogen and carbon atoms in the XCC bends. In contrast, in the case of the HFCs, the force constants for the FCH and HCH bends are very small.

The force constants relating to the torsion of the molecules (designated by $\mathrm{X} \sim \mathrm{X}$) are relatively small, with the magnitude increasing in the sequence $\mathrm{H} \sim \mathrm{H}<\mathrm{F} \sim \mathrm{H}<\mathrm{F} \sim \mathrm{F}<\mathrm{F} \sim \mathrm{Cl}<\mathrm{Cl} \sim \mathrm{Cl}$, although there is some doubt about the sequence of $\mathrm{F} \sim \mathrm{Cl}$ and $\mathrm{F} \sim \mathrm{H}$ as these values had to be decreased substantially for the individual refinement of the force constants for the $\mathrm{C}_{3 \mathrm{v}}$ molecules CFC113a and HFC143a.

Some values for UB force constants relating to halogenated alkanes were found in the literature, and are given in table 6.22, together with the force constants obtained in this work. There is a reasonable agreement between the literature values and the values calculated as part of this work, except in the case of the bending force constants between like atoms bonded to the same carbon atom. From this work, $\mathrm{H}_{\mathrm{HCH}}$ is much smaller than the literature values, and both $\mathrm{H}_{\mathrm{CiCCl}}$ and $\mathrm{H}_{\mathrm{FCF}}$ are much larger. The nonbonded interactions between like atoms show a good agreement with the literature values, so it cannot be argued that these force constants compensate for the discrepancy found in the bending force constants. The calculations were repeated using the values for $\mathrm{H}_{\mathrm{FCF}}, \mathrm{H}_{\mathrm{ClCCl}}$ and $\mathrm{H}_{\mathrm{HCH}}$ given by Shimanouchi (1963), but despite refining the other force constants, no reasonable set of calculated frequencies could be obtained. It should be noted, however, that the results obtained by Shimanouchi (1963) were calculated using a modified UB force field including additional interaction constants.
Table 6.20. Force constants in mdyne \AA^{-1}, from a Urey-Bradley force field for the CFCs. $\mathrm{X} \sim \mathrm{X}$ signifies atoms 1 and 4 in a 4-atom torsion.

| Force
 constant | CFC | Force constants for individual CFCs and CFCas | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| group | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 112 a | 113 a | 114 a | |
| C-C | 1.9021 | 1.4734 | 1.6921 | 1.8018 | 2.1162 | 2.1801 | 2.3154 | 3.3740 | 1.8123 | 2.3067 | 2.5145 |
| C-F | 4.3106 | - | 3.5868 | 3.7842 | 4.0983 | 4.3445 | 4.3506 | 4.3810 | 3.8219 | 4.0122 | 4.1844 |
| C-Cl | 1.8365 | 1.6365 | 1.6946 | 1.7834 | 1.8365 | 2.1103 | 2.2535 | - | 1.8047 | 1.8318 | 1.9022 |
| CCF | 0.2944 | - | 0.3267 | 0.3134 | 0.2620 | 0.2055 | 0.1549 | 0.1117 | 0.3044 | 0.2539 | 0.2037 |
| CCCl | 0.2863 | 0.2433 | 0.2633 | 0.2748 | 0.2846 | 0.3381 | 0.3427 | - | 0.2663 | 0.2919 | 0.3102 |
| FCF | 0.6037 | - | - | - | 0.5975 | 0.6190 | 0.6237 | 0.6282 | 0.5537 | 0.5830 | 0.5965 |
| FCCl | 0.5891 | - | 0.4947 | 0.5645 | 0.5784 | 0.5963 | 0.6327 | - | 0.5134 | - | 0.5235 |
| ClCCl | 0.4555 | 0.4085 | 0.4385 | 0.4634 | 0.5233 | - | - | - | 0.4832 | 0.4936 | 0.5334 |
| F~F | 0.0397 | - | - | 0.0386 | 0.0594 | 0.0323 | 0.0444 | 0.0402 | - | - | 0.0397 |
| F~Cl | 0.0507 | - | 0.1045 | - | 0.0932 | - | 0.0673 | - | 0.0974 | 0.0139 | 0.0570 |
| Cl~Cl | 0.1692 | 0.1692 | 0.1652 | 0.1544 | 0.1692 | 0.1364 | - | - | 0.1692 | - | - |
| C..F | 0.3797 | - | 0.3937 | 0.3895 | 0.3784 | 0.3734 | 0.3524 | 0.3459 | 0.3784 | 0.3576 | 0.3526 |
| C..Cl | 0.1901 | 0.3523 | 0.3001 | 0.2201 | 0.2144 | 0.2023 | 0.1621 | - | 0.2301 | 0.2293 | 0.2113 |
| F..F | 0.6339 | - | - | - | 0.6847 | 0.6561 | 0.6273 | 0.6097 | 0.6944 | 0.6888 | 0.6347 |
| F..Cl | 0.5316 | - | 0.3524 | 0.5016 | 0.5394 | 0.6214 | 0.6408 | - | 0.4646 | - | 0.5493 |
| Cl..Cl | 0.7518 | 0.6947 | 0.7247 | 0.7747 | 0.8873 | - | - | - | 0.7422 | 0.7630 | 0.9964 |

Table 6.21. Force constants in mdyne \AA^{-1}, from a Urey-Bradley force field for the HFCs. $\mathrm{X} \sim \mathrm{X}$ signifies atoms 1 and 4 in a 4 -atom torsion.

| Force
 constant | HFC | Force constants for individual HFCs and HFCas. | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| group | 170 | 161 | 152 | 143 | 134 | 125 | 116 | 152 a | 143 a | 134 a | |
| C-C | 3.2300 | 2.8992 | 3.0592 | 3.1239 | 3.2943 | 3.3265 | 3.3318 | 3.3740 | 3.2792 | 3.3104 | 3.3278 |
| C-F | 4.8070 | - | 4.9227 | 4.9002 | 4.8993 | 4.8539 | 4.6111 | 4.3810 | 4.9168 | 4.8411 | 4.7643 |
| C-H | 4.6447 | 4.5887 | 4.5937 | 4.6056 | 4.6723 | 4.6847 | 4.7254 | - | 4.6478 | 4.7083 | 4.7101 |
| CCF | 0.3763 | - | 0.5597 | 0.5304 | 0.3973 | 0.3573 | 0.2914 | 0.1117 | 0.5208 | 0.3131 | 0.2936 |
| CCH | 0.2244 | 0.1874 | 0.1985 | 0.2298 | 0.2594 | 0.2668 | 0.2824 | - | 0.2384 | 0.2421 | 0.2507 |
| FCF | 0.6321 | - | - | - | 0.5684 | 0.6098 | 0.6232 | 0.6882 | 0.5432 | 0.5657 | 0.6098 |
| FCH | 0.0422 | - | 0.0671 | 0.0522 | 0.0447 | 0.0272 | 0.0268 | - | 0.0632 | - | 0.0496 |
| HCH | 0.0848 | 0.0848 | 0.0567 | 0.0302 | 0.0159 | - | - | - | 0.0443 | 0.0423 | 0.404 |
| F~F | 0.0435 | - | - | 0.0435 | 0.0487 | 0.0435 | 0.0454 | 0.0402 | - | - | 0.0489 |
| F~X | 0.0418 | - | 0.0443 | - | 0.0464 | - | 0.0427 | - | 0.0353 | 0.0042 | 0.0473 |
| X~X | 0.0190 | 0.0264 | 0.0241 | 0.0224 | 0.0197 | 0.0154 | - | - | 0.0190 | - | - |
| C..F | 0.4078 | - | 0.5582 | 0.5381 | 0.5094 | 0.4428 | 0.3712 | 0.3459 | 0.4528 | 0.3901 | 0.3783 |
| C..H | 0.3813 | 0.4249 | 0.3970 | 0.3744 | 0.3394 | 0.3121 | 0.3058 | - | 0.3824 | 0.3525 | 0.3271 |
| F..F | 0.6262 | - | - | - | 0.6652 | 0.6349 | 0.6152 | 0.6097 | 0.6562 | 0.6427 | 0.6312 |
| F..H | 0.0602 | - | 0.0715 | 0.0554 | 0.0548 | 0.0501 | 0.0481 | - | 0.0702 | - | 0.0682 |
| H..H | 0.0372 | 0.0343 | 0.0388 | 0.0494 | 0.0534 | - | - | - | 0.0418 | 0.0643 | 0.0734 |

Table 6.22. A comparison of some UB force constants for halogenated alkanes. All force constants are given in mdyne \AA^{-1}.

	This work	(a)	(b)	(c)
K_{CC}	$1.5-3.4$	$2.9-4.0$		$2.0-2.3$
$\mathrm{~K}_{\mathrm{CF}}$	$3.6-4.9$		5.15	4.2
$\mathrm{~K}_{\mathrm{CCl}}$	$1.6-2.6$			$1.8-2.1$
$\mathrm{~K}_{\mathrm{CH}}$	$4.5-4.7$		4.698	$3.9-4.8$
$\mathrm{H}_{\mathrm{FCC}}$	$0.11-0.56$	0.3		0.1
$\mathrm{H}_{\mathrm{HCC}}$	$0.19-0.28$	0.14		$0.19-0.21$
$\mathrm{H}_{\mathrm{FCF}}$	$0.57-0.69$	0.1	0.3	
$\mathrm{H}_{\mathrm{ClCCl}}$	$0.41-0.52$			0.08
$\mathrm{H}_{\mathrm{HCH}}$	$0.02-0.08$	0.43	0.14	$0.34-0.44$
$\mathrm{~F}_{\mathrm{FC}}$	$0.35-0.56$	0.4		
$\mathrm{~F}_{\mathrm{ClC}}$	$0.16-0.35$			0.60
$\mathrm{~F}_{\mathrm{HC}}$	$0.31-0.42$	0.4	$0.48-0.54$	
$\mathrm{~F}_{\mathrm{FF}}$	$0.60-0.69$	1.1		
$\mathrm{~F}_{\mathrm{ClCl}}$	$0.69-1.0$		$0.6-0.7$	
$\mathrm{~F}_{\mathrm{HH}}$	$0.03-0.07$	0.09	0.03	$0.04-0.10$

(a) UB force constants for $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CF}_{3} \mathrm{CH}_{3}$, and $\mathrm{C}_{2} \mathrm{~F}_{6}$ reported by Bucker and Nielsen (1963).
(b) UB Force constants from Crowder and Mao (1973).
(c) UB force constants for a range of hydrocarbons, excluding the CFCs and HFCs used here, reported by Shimanouchi (1963).

The final force constants for the isomeric pairs of molecules (CFC112, CFC112a; CFC113, CFC113a; CFC114, CFC114a; HFC152, HFC152a; HFC143, HFC143a; HFC134, HFC134a) do not differ by large amounts, and fit the trends of the overall groups.

6.2.2. Force constants calculated using ab initio methods.

Tables 6.23 and 6.24 present the unscaled stretching force constants obtained from both the HF and MP2 calculations. In order to confirm the trends in changes of the stretching force constants, comparisons have been made between the UB force constants and those obtained from the $a b$ initio calculations. Direct comparison is not possible, since the UB force constants as shown in tables 6.20 and 6.21 are not the same as the final force constants found in the F matrix diagonal elements used for

Force constant	Force constants for individual CFCs and CFCas.									
	110	111	112	113	114	115	116	112a	113a	114a
$\mathrm{C}_{1}-\mathrm{C}_{2}$	4.3266	4.5430	4.7548	4.9634	5.1476	5.3360	5.4956	4.7710	5.0048	5.1824
$\mathrm{C}_{1}-\mathrm{F}_{1}$	-	-	7.7595	-	-	8.3041	8.2922	-	8.2451	8.2552
$\mathrm{C}_{1}-\mathrm{F}_{2}$	-	-	-	-	7.9398	8.2574	8.2922	-	8.2451	8.3132
$\mathrm{C}_{1}-\mathrm{F}_{3}$	-	-	-	7.6107	7.9398	8.3041	8.2922	-	8.2451	8.2552
$\mathrm{C}_{2}-\mathrm{F}_{4}$	-	7.5006	7.7595	7.9538	7.9398	-	8.2922	-	-	7.5552
$\mathrm{C}_{2}-\mathrm{F}_{5}$	-	-	-	7.9313	7.9398	7.9520	8.2922	7.8869	-	-
$\mathrm{C}_{2}-\mathrm{F}_{6}$	-	-	-	-	-	7.9520	8.2922	7.8869	-	-
$\mathrm{C}_{1}-\mathrm{Cl}_{1}$	3.9019	3.9449	-	4.1454	4.3464	-	-	4.0004	-	-
$\mathrm{C}_{1}-\mathrm{Cl}_{2}$	3.9019	3.9728	4.0459	4.1431	-	-	-	3.9762	-	-
$\mathrm{C}_{1}-\mathrm{Cl}_{3}$	3.9019	3.9449	4.0459	-	-	-	-	4.0004	-	-
$\mathrm{C}_{2}-\mathrm{Cl}_{4}$	3.9019	-	-	-	-	4.3538	-	4.2642	4.0163	-
$\mathrm{C}_{2}-\mathrm{Cl}_{5}$	3.9019	4.0773	4.0459	-	-	-	-	-	4.0163	4.1906
$\mathrm{C}_{2}-\mathrm{Cl}_{6}$	3.9019	4.0773	4.0459	4.2774	4.3464	-	-	-	4.0163	4.1906

Table 6.24. Unscaled stretching force constants in mdyne \AA^{-1}, from the HF (MP2) calculations for the HFCs.

Force constant	Force constants for individual HFCs and HFCas.									
	170	161	152	143	134	125	116	152a	143a	134a
$\mathrm{C}_{1}-\mathrm{C}_{2}$	5.0262(4.9080)	5.1965(5.0026)	5.2559(4.9491)	5.3830	5.4339	5.4430	5.4956	5.3862(5.1303)	5.5190	5.4479
$\mathrm{C}_{1}-\mathrm{F}_{1}$	-	-	6.9276(6.0069)	-	-	8.1414	8.2922	-	7.6847	7.9136
$\mathrm{C}_{1}-\mathrm{F}_{2}$	-	-	-	-	7.5855	8.0955	8.2922	-	7.6847	7.9567
$\mathrm{C}_{1}-\mathrm{F}_{3}$	-	-	-	7.1534	7.5855	8.1414	8.2922	-	7.6847	7.9136
$\mathrm{C}_{2}-\mathrm{F}_{4}$	-	6.6784(5.7926)	6.9276(6.0069)	7.4295	7.5855	-	8.2922	-	-	7.3709
$\mathrm{C}_{2}-\mathrm{F}_{5}$	-	-	-	7.3822	7.5855	7.8371	8.2922	7.1706(6.0797)	-	-
$\mathrm{C}_{2}-\mathrm{F}_{6}$	-	-	-	-	-	7.8371	8.2922	7.1706(6.0797)	-	-
$\mathrm{C}_{1}-\mathrm{H}_{1}$	5.7988(5.5406)	5.8669(5.5918)	-	5.9936	6.1862	-	-	5.9338(5.6440)	-	-
$\mathrm{C}_{1}-\mathrm{H}_{2}$	5.7988(5.5406)	5.8645(5.5916)	5.9507(5.5270)	6.0079	-	-	-	5.9452(5.6549)	-	-
$\mathrm{C}_{1}-\mathrm{H}_{3}$	5.7988(5.5406)	5.8669(5.5918)	5.9507(5.5270)	-	-	-	-	5.9338(5.6440)	-	-
$\mathrm{C}_{2}-\mathrm{H}_{4}$	5.7988(5.5406)	-	-	-	-	6.1717	-	6.0427(5.4958)	6.0111	-
$\mathrm{C}_{2}-\mathrm{H}_{5}$	5.7988(5.5406)	5.8754(5.4608)	5.9507(5.5270)	-	-	-	-	-	6.0111	6.0525
$\mathrm{C}_{2}-\mathrm{H}_{6}$	5.7988(5.5406)	5.8754(5.4608)	5.9507(5.5270)	6.1179	6.1862	-	-	-	6.0111	6.0525

calculating the fundamental frequencies. The F matrix diagonals include contributions from the non-bonded interactions. In addition, the HF and MP2 force constants need to be scaled to account for systematic errors. The determination of the scaling factors requires reliable assignments of all vibrational fundamentals followed by refinement of individual scaling factors until an optimised set can be obtained (Fogarasi and Pulay 1985). It has been found that several scaling factors may be required, depending on the nature of the stretch or bend, for example, six scaling factors were used when calculating the vibrational frequencies for benzene, ranging in magnitude from 0.690 to 0.919 (Fogarasi and Pulay 1985). At present, research is being carried out by Zhou et al. (1993) on the compilation of force constants using suitable scaling factors in order to obtain accurate scaled quantum mechanical force fields for a range of molecules. The values in tables 6.23 and 6.24 are therefore unscaled.

For the first four HFCs, the results from the MP2 calculations have been included in tables 6.23 and 6.24 . These force constants are somewhat smaller than the HF values, which may be due in part to the fact that the scaling factors for the two theoretical methods are not likely to be identical. Since electron correlation is included in the MP2 calculations, it might be expected that the MP2 force constants are more accurate. However, some other discrepancies are apparent, for example, the C-C stretching force constant for the MP2 results does not increase for HFC152 from that for HFC161, and some of the C-H stretching force constants are not as expected. The differences are small however, and until further information on scaling factors is available, reasons for the discrepancies cannot be determined.

6.2.3. Comparisons between the UB and HF force constants.

The C-C stretching force constants obtained by the HF method of calculation increase with an increasing number of fluorine atoms, in agreement with the UB results. For the CFCs there is a larger increase than for the HFCs, from 4.3266 to 5.4956 mdyne \AA^{-1} compared to 5.0262 to $5.4956 \mathrm{mdyne}^{-1} \AA^{-1}$ for the HF results and 1.4734 to 3.3740 mdyne \AA^{-1} compared to 2.8992 to $3.3740 \mathrm{mdyne}^{-1}$ for the UB results.

The $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{H}$ stretching force constants also increase with increasing numbers of fluorine atoms, however, for the HFCs, the HF force constant for the C-F stretch increases, unlike that for the UB force field. Table 6.23 and 6.24 illustrate the problem of using only one UB force constant for similar stretches. For example, for CFC115, there is not only a difference between the stretching force constants for the C-F bond belonging to the $\mathrm{CF}_{2} \mathrm{Cl}$ end and that from the CF_{3} end, but also between the force constants associated with the three stretches at the CF_{3} end alone. This is due to
the fact that the chlorine atom is not equidistant from all three fluorine atoms in that group. The UB force field will allow for the difference in the stretching force constants for the two ends of the molecule, by incorporating some non-bonded interactions between atoms attached to the same carbon when creating the F matrix, but no difference will be seen between the C-F stretches at the CF_{3} end, as non-bonded interactions between atoms more than two bonds apart are not included in the construction of the force field.

By comparing the stretching force constants from table 6.20 and 6.21 to those of table 6.23 and 6.24 respectively, it can be concluded that by allowing for small nonbonded contributions to the UB results, and with scaling factors in the range 0.6 to 0.8 for the HF results, the force constants for both types of calculations are similar.

Chapter 7.

Infrared absorbance intensities and optimised geometries.

Comparisons have been made between the calculated infrared absorbance intensities from the $a b$ initio calculations and the experimental integrated intensities reported in chapter four of this work. The change in intensity with increasing numbers of fluorine atoms in the molecule is investigated. It was necessary to optimise the geometry using $a b$ initio methods before calculating frequencies. The optimised bond lengths and angles are given in tables 7.4 and 7.5 , and compared to the experimental values used in the initial calculations.

7.1 Infrared absorption intensities.

Although infrared intensities are determined by $a b$ initio methods at HF level when the frequency calculations are requested these values have always been seen as qualitative rather than quantitative (Foresman and Frisch 1993). The intensity calculations involve the determination of the dipole moment and Fogarasy and Pulay (1985) report that basis sets without polarisation and diffuse functions only produce semi-quantitative results. In this work the polarised basis set 6-31G*, which allows orbitals to change shape, is used. However, the basis set 6-31G* does not include diffuse functions, which allow orbitals to occupy a large region of space (Foresman and Frisch 1993). Calculated intensities are considered to be correct qualitatively, in that they correctly differentiate between strong, medium and weak bands (Fogarasy \& Pulay 1985), however, in this work, comparisons between the total intensities from both the calculated and experimental results show a reasonable quantitative agreement when a scaling factor is used. Individual intensities and corresponding frequencies for all 19 molecules are given in appendix F . The units for the HF results are $\mathrm{km} \mathrm{mole}^{-1}$, whereas the experimental results are given in $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$, the commonly used unit for experimental methods. The conversion factor 0.245 (Person and Zerbi 1982) is used to convert from $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$ to $\mathrm{km} \mathrm{mole}^{-1}$ since it can be assumed that the results obtained in this work are valid for a temperature of 298 K . Table 7.1 shows the total experimental and calculated infrared intensities for the region $3500 \mathrm{~cm}^{-1}$ to $450 \mathrm{~cm}^{-1}$. Intensities below
$450 \mathrm{~cm}^{-1}$ were not measured experimentally, and, as can be seen from the individual calculated results in appendix F , these intensities are relatively very small.

Table 7.1. Comparison of experimental and calculated intensities for the range 3500$450 \mathrm{~cm}^{-1}$.

	Expt. intens. $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Expt. intens. km mole-1	HF intens. km mole $^{-1}$	Scaled $\dagger \mathrm{HF}$ km mole $^{-1}$	\% diff. \ddagger
CFC110	1781^{*}	436.3	471.09	345.78	-20.8
CFC111	2015	493.7	693.70	509.18	3.13
CFC112	2708	663.5	902.84	662.68	-0.12
CFC112a	2622	642.4	922.37	677.02	5.39
CFC113	3402	833.5	1132.44	831.21	-0.27
CFC113a	3177	778.4	1119.15	821.46	5.53
CFC114	3979	974.9	1313.57	964.16	-1.10
CFC114a	3803	931.7	1340.89	984.21	5.64
CFC115	4588	1124.1	1545.16	1134.15	0.89
FC116	5049	1237.0	1677.91	1231.59	-0.44
HFC170	$793 *$	194.3	292.48	214.68	10.5
HFC161	1064	260.7	392.83	288.34	10.6
HFC152	-	-	459.47	377.25	
HFC152a	1746	427.8	660.79	485.02	13.4
HFC143	2043	500.5	715.59	525.24	4.94
HFC143a	3210	786.5	994.15	729.71	-7.22
HFC134	2802	686.5	904.91	664.20	-3.25
HFC134a	3481	852.8	1068.30	784.13	-8.05
HFC125	4224	1034.9	1322.07	970.40	-6.23

* Values taken from Tanabe \& Saëki 1972.
\dagger Scaling Factor $=0.734$, as described in text.
$\ddagger \%$ diff. $=[$ (scaled HF value - experimental value)/experimental value $] * 100$.

The scaling factor of 0.734 was derived by calculating the ratio of the experimental total intensities to the HF total intensities for each molecule, and then averaging this value over all the compounds, excluding HFC152 for which no experimental results were available. The intensities of CFC110 and HFC170 were not measured in this work, and so intensity values were taken from Tanabe \& Saëki (1972). The percentage differences between the experimental and the calculated values are less than 6% for the CFCs, with the exception of that for CFC110. The large discrepancy for CFC110 may be due to the fact that the intensities measured by Tanabe \& Saëki
(1972) were not obtained using the same criteria as those used in the measurements taken in this work. It is possible that if all the intensities had been measured using the method followed by Tanabe \& Saëki (1972), a different scaling factor would be required overall. The intensities for the HFCs are not in such good agreement, although the percentage differences between the experimental and calculated results are not large, considering that the experimental values have an error margin of $\pm 4 \%$.

The results for the MP2 theoretical level of calculations are not included here, as there are only two experimental results to compare with the four molecules investigated. The MP2 results are given in appendix F and are , in general, lower than the HF results, therefore needing a larger scaling factor. It should be noted that the calculated frequencies required a larger scaling factor for the MP2 level of theory than for the HF calculations.

It is not possible to attribute individual bands to C - F stretching modes, since there is considerable mixing of modes between the C-F and C-C stretches and some of the higher CH bending vibrations, as can be seen from the potential energy distributions given in appendix E . However, $\mathrm{C}-\mathrm{F}$ stretching frequencies dominate the region of approximately $1350-1000 \mathrm{~cm}^{-1}$, and so this area has been investigated more closely. Table 7.2 lists the intensities in this region, and using the scaling factor 0.734 derived for the total intensities, comparisons have been made between the experimental and calculated values. CFC110 and HFC170 have been excluded from this table, as they do not contain fluorine atoms, and do not absorb in the region of interest. Experimental results for the HCFCs are also included in the table, although time did not permit theoretical studies of these molecules to be carried out. The percentage differences between the experimental and calculated results for this region are generally larger than those for the total region, however, they are still less than 10% for the CFCs.

Changes in intensities with changes in the number of fluorine atoms have been plotted and displayed in figures 7.1 for the CFCs, 7.2 for the HFCs and 7.3 for the HCFCs. From the graphs, the increase in intensities for the CFCs and the HFCs with increasing numbers of fluorine atoms can be seen. For interest, lines were fitted for all the points on each graph, using the commercial package CA-Cricket Graph ${ }^{\mathrm{TM}}$. Attempts were made to find a line of best fit using linear, polynomial and exponential functions. In each case, the line of best fit was found to be a polynomial of order 2, suggesting that the intensity increases proportionally with the square of the number of fluorine atoms in the molecule. No references were found in the literature suggesting such a quantitative relationship. The HCFCs are not directly comparable, as the change in the number of the fluorine atoms is not the only difference between the molecules.

Table 7.2. Comparison of intensities for the approximate C-F stretching region of 1350$1000 \mathrm{~cm}^{-1}$.

	Expt. intens. $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Expt. intens. $\mathrm{km} \mathrm{~mole}^{-1}$	HF intens. $\mathrm{km} \mathrm{~mole}^{-1}$	Scaled \dagger HF km mole- ${ }^{-1}$	\% diff. \ddagger
CFC111	392	96.0	142.15	104.34	8.69
CFC112	885	216.8	316.13	232.04	7.03
CFC112a	1267	310.4	460.09	338.71	8.80
CFC113	1788	438.1	589.83	432.94	-1.18
CFC113a	2005	491.2	687.03	504.27	2.66
CFC114	2722	666.9	875.50	642.62	-3.64
CFC114a	2474	606.1	833.59	611.86	0.95
CFC115	3313	811.7	1142.04	838.26	3.27
FC116	4934	1208.8	1609.05	1181.04	-2.30
HFC161	434	106.3	125.97	92.46	-13.02
HFC152	-	-	288.35	211.65	-
HFC152a	1093	267.8	312.23	229.18	-14.42
HFC143	1425	349.1	440.15	323.07	-7.46
HFC143a	2325	569.6	741.36	544.16	-4.47
HFC134	2269	555.9	684.25	502.24	-9.65
HFC134a	2766	677.7	854.72	627.36	-7.43
HFC125	3538	866.8	1122.24	823.72	-4.97
HCFC141b	911	223.2			
HCFC142b	1666	408.2			
HCFC123	2418	592.4			
HCFC124	2751	674.0			
HCFC244ca	2059	504.5			
HCFC235cb	3286	805.1			
HCFC225ca	2824	691.9			
HCFC225cb	2710	664.0			
FC218	5150	1261.8			

\dagger Scaling factor $=0.734$, as described in text.
$\ddagger \%$ diff. $=[($ scaled HF value - experimental value $) /$ experimental value $] * 100$.
(a) CFC vibrational intensities for the region $1350-1000 \mathrm{~cm}-1$.

(b) CFCa vibrational intensities for the region $1350-1000 \mathrm{~cm}-1$

Figure 7.1. Changes in intensities with changing numbers of fluorine atoms for the (a) CFCs and (b) CFCas.
(a) HFC vibrational intensities for the region $1350-1000 \mathrm{~cm}-1$

No. of fluorine atoms
(b) HFCa vibrational intensities for the region $1350-1000 \mathrm{~cm}-1$

No. of fluorine atoms
Figure 7.2. Changes in intensities with changing numbers of fluorine atoms for the (a) HFCs and (b) HFCas.

HCFC experimental intensities for the region $1350-1000 \mathrm{~cm}-1$

Figure 7.3. Change in intensities with changing numbers of fluorine atoms for the HCFCs.

For the CFCs, the differences between intensities of the isomeric pairs of molecules are relatively small. For the experimental values of the 'a' type molecules, where the fluorine atoms preferentially share the same carbon atom, the intensities are lower than for the molecules with a more even distribution of fluorine atoms within the molecule. This is reversed for the calculated intensities of CFC112, CFC112a and CFC114, CFC114a, however, the differences are small. For the HFCs, the differences are much larger, and in all cases the 'a' type molecules have higher total intensities. This suggests that the intensity of a C-F stretching mode may be less when the fluorine atom shares a carbon atom with a hydrogen atom, than when the fluorine atom shares the carbon atom with another fluorine atom. However, since only five experimental values and six theoretical values are available, any conclusion from these results must be tentative.

In contrast, the $\mathrm{C}-\mathrm{H}$ stretching region intensities do not agree well. These values are given in table 7.3. This is due, in part, to the fact that the experimental intensities are
weak and therefore may include large errors. The calculated frequencies for the $\mathrm{C}-\mathrm{H}$ stretching region show generally larger errors than for the other regions for both the HF and MP2 calculations. This has been attributed to the use of the harmonic approximation in the calculations (Fogarasy and Pulay 1985).This may also be a contributing factor to the larger percentage differences obtained for the calculated intensities involving a $\mathrm{C}-\mathrm{H}$ stretch. It can be seen from table 7.3, however, that the calculated intensities could be used to give the relative strengths of the bands.

Table 7.3. Intensities for the C-H stretching region, approximately $3200-2800 \mathrm{~cm}^{-1}$.

	Expt. intens. $\mathrm{cm}^{-2} \mathrm{~atm}^{-1}$	Expt. intens. km mole	HF intens. km mole	Scaled \dagger HF km mole
HFC170	698^{*}	171.0	275.94	202.54
HFC161	437	107.1	203.89	149.66
HFC152	-	-	167.01	122.59
HFC152a	195	47.8	113.20	83.09
HFC143	186	45.6	102.76	75.43
HFC143a	27.7	6.79	24.45	17.95
HFC134	128	31.4	59.75	43.86
HFC134a	80.4	19.7	40.91	30.03
HFC125	51.2	12.5	30.39	22.31

* Value taken from Tanabe and Saëki 1972.
\dagger Scaling Factor $=0.734$, as described in text.

A more difficult problem arose in the comparison of intensities attributed to individual bands. For example, for CFC111, shown in figure 4.1, the individual intensities for the bands centred around $1114,1018,856$ and $810 \mathrm{~cm}^{-1}$ are $70.3,25.7$, 82.3 and $173 \mathrm{~km}^{2}$ mole $^{-1}$ respectively. When compared to the HF results, the corresponding bands at $1135,1035,860$ and $816 \mathrm{~cm}-1$ have unscaled intensities of 113 , $30.0,136$ and $245 \mathrm{~km} \mathrm{~mole}^{-1}$ respectively, and scaled intensities of $82.9,22.0,100$ and 180 km mole $^{-1}$ respectively. While these results are in reasonable agreement, those for HFC143, shown in figure 4.12, are not. For HFC143, experimental bands at 1433, 1379,1319 and $1249 \mathrm{~cm}^{-1}$ have intensities $17.2,16.9,10.2$ and $13.7 \mathrm{~km} \mathrm{~mole}^{-1}$ respectively. These do not compare well with the corresponding calculated bands at $1460,1403,1339$ and $1240 \mathrm{~cm}^{-1}$, having unscaled intensities of $15.8,40.1,41.2$ and 15.7 km mole $^{-1}$ respectively, and scaled intensities of $11.6,29.4,30.3$ and 11.5 km mole ${ }^{-1}$ respectively. These discrepancies may be attributed to several different problems: the experimental intensities are relatively weak, and therefore may include large errors in absorbance measurements; the spectral bands are adjacent to one another and errors in
areas at the band limits may have occurred; and the presence of , as yet, uninvestigated errors in the calculations of small intensities.

7.2. Optimised molecular geometries.

Comparisons between experimental values used for the UB calculations and the optimised geometries from the $\mathrm{HF} a b$ initio calculations are given in tables 7.4 and 7.5 . Only bond lengths and angles between fluorine, chlorine or hydrogen atoms attached to a carbon atom and the $\mathrm{C}-\mathrm{C}$ axis are compared. Comparisons of angles between fluorine, chlorine and hydrogen atoms attached to the same carbon atom and the dihedral angles used in the ab initio results have not been made, as conversions between the results for the two methods of calculation would have had to be carried out.

The lengths of the C-C bonds obtained from the literature vary considerably, as do the optimised results. However, for the CFCs, the optimised C-C bond length decreases with a decreasing number of chlorine atoms, corresponding to the increase in the C-C stretching force constants calculated using both the UB force field and $a b$ initio methods. The C-C bond lengths for the HFCs show a smaller and more random variation. This again is expected since these calculated force constants show only small variations.

For all the molecules, whether CFCs or HFCs, a trend can be seen in the lengths of the $\mathrm{C}-\mathrm{F}$ bonds, where the bond lengths increase with fewer fluorines in the end group such that, $\mathrm{C}-\mathrm{F}\left(\mathrm{CF}_{3}\right.$ group $)<\mathrm{C}-\mathrm{F}\left(\mathrm{CF}_{2} \mathrm{H}\right.$ group) $<\mathrm{C}-\mathrm{F}\left(\mathrm{CFH}_{2}\right.$ group). The changes in the bond lengths between atoms in the same end group but with a different total number of fluorine atoms in the molecule are very small. $\mathrm{C}-\mathrm{Cl}$ bond lengths increase with an increasing number of chlorines in the group. This corresponds to the changes in the $\mathrm{C}-\mathrm{Cl}$ stretching force constants shown in tables 6.20 and 6.23. The same trend can be seen for the C -H bond lengths, although overall, the variations in bond lengths for the $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{H}$ bonds are smaller than those for the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{F}$ bonds.

The CCX angles are variable, however, a small decrease in the CCF angle for fewer fluorine atoms in the group can be detected. The CCCl angle increases for fewer chlorines in the group and the CCH angle increases for fewer hydrogens. A change in one CCX angle will affect the other angles between the atoms in the same group, so no conclusion has been drawn here.

The optimised geometries are determined from the calculations when searching for a stationary point on the energy surface, and thus are calculated using the approximations described in section 1.6.2.

Table 7.4. Experimental values from table 5.1* and HF optimised values for the geometry of the CFCs. Bond lengths are given in \AA, and angles in degrees.

Stretch or bend \dagger	CFC110		CFC111		CFC112		CFC112a		CFC113	
	Expt.	Opt.								
C-C	1.499	1.582	1.54	1.570	1.54	1.558	1.55	1.559	1.54	. 549
$\mathrm{C}-\mathrm{F}\left(\mathrm{CF}_{3}\right)$										
C-F ($\mathrm{CF}_{2} \mathrm{Cl}$)							1.33	1.318	1.35	1.317
C-F (CFCl_{2})			1.37	1.328	1.37	1.321			1.37	1.327
$\mathrm{C}-\mathrm{Cl}\left(\mathrm{CCl}_{3}\right)$	1.763	1.769	1.77	1.767			1.76	1.765		
$\mathrm{C}-\mathrm{Cl}\left(\mathrm{CCl}_{2} \mathrm{~F}\right)$			1.77	1.760	1.77	1.762			1.75	1.757
$\mathrm{C}-\mathrm{Cl}\left(\mathrm{CClF}_{2}\right)$							1.74	1.753	1.74	1.752
$\mathrm{CCF}\left(\mathrm{CF}_{3}\right)$										
$\mathrm{CCF}\left(\mathrm{CF}_{2} \mathrm{Cl}\right)$							108.0	108.50	109.5	108.69
$\mathrm{CCF}\left(\mathrm{CFCl}_{2}\right)$			109.5	106.69	109.5	108.51			109.5	107.25
$\mathrm{CCCl}\left(\mathrm{CCl}_{3}\right)$	110.7	110.12	109.5	109.57			110.7	109.11		
$\mathrm{CCCl}\left(\mathrm{CCl}_{2} \mathrm{~F}\right)$			109.5	112.07	109.5	110.43			109.5	110.53
$\underline{\mathrm{CCCl}\left(\mathrm{CCIF}_{2}\right)}$							110.6	114.01	109.5	112.54
	CFC	113a	CFC	114	CFC	114a	CFC	115	FC1	116
	Expt.	Opt.								
C-C	1.545	1.549	1.55	1.540	1.56	1.540	1.555	1.532	1.545	1.525
C-F (CF_{3})	1.33	1.310			1.33	1.310	1.33	1.311	1.326	1.311
C-F ($\mathrm{CF}_{2} \mathrm{Cl}$)			1.33	1.319			1.33	1.319		
C-F (CFCl_{2})					1.40	1.330				
$\mathrm{C}-\mathrm{Cl}\left(\mathrm{CCl}_{3}\right)$	1.771	1.764								
$\mathrm{C}-\mathrm{Cl}\left(\mathrm{CCl}_{2} \mathrm{~F}\right)$					1.78	1.754				
$\mathrm{C}-\mathrm{Cl}\left(\mathrm{CClF}_{2}\right)$			1.74	1.748			1.74	1.748		
$\mathrm{CCF}\left(\mathrm{CF}_{3}\right)$	108.9	110.29			109.5	110.07	110.9	109.9	109.8	109.8
$\mathrm{CCF}\left(\mathrm{CF}_{2} \mathrm{Cl}\right)$			108.0	108.59			108.0	108.1		
$\mathrm{CCF}\left(\mathrm{CFCl}_{2}\right)$					109.5	106.33				
$\mathrm{CCCl}\left(\mathrm{CCl}_{3}\right)$	110.7	108.76								
$\mathrm{CCCl}\left(\mathrm{CCl}_{2} \mathrm{~F}\right)$			110.6	111.88	109.5	110.58				
$\mathrm{CCCl}\left(\mathrm{CClF}_{2}\right)$							110.6	112.30		

\dagger The stretches and bends define the atoms involved. The atoms belong to the end group shown in the brackets.

* Literature references for the experimental geometries are given in table 5.1.

Table 7.5. Experimental values from table 5.1* and HF optimised values for the geometry of the HFCs. Bond lengths are given in \AA, and angles in degrees.

Stretch or bend \dagger	HFC170		HFC161		HFC152		HFC152a		HFC143	
	Expt.	Opt.								
C-C	1.5324	1.527	1.505	1.512	1.5033	1.512	1.54	1.502	1.500	1.506
$\mathrm{C}-\mathrm{F}\left(\mathrm{CF}_{3}\right)$										
C-F ($\left.\mathrm{CF}_{2} \mathrm{H}\right)$							1.345	1.346	1.3534	1.341
$\mathrm{C}-\mathrm{F}\left(\mathrm{CFH}_{2}\right)$			1.398	1.373	1.3892	1.367			1.3878	1.361
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	1.1068	1.086	1.090	1.085			1.10	1.083		
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2} \mathrm{~F}\right)$			1.095	1.083	1.1034	1.082			1.0881	1.081
$\mathrm{C}-\mathrm{H}\left(\mathrm{CHF}_{2}\right)$							1.10	1.079	1.0881	1.078
$\mathrm{CCF}\left(\mathrm{CF}_{3}\right)$										
$\mathrm{CCF}\left(\mathrm{CF}_{2} \mathrm{H}\right)$							109.4	110.07	109.1	108.99
$\mathrm{CCF}\left(\mathrm{CFH}_{2}\right)$			109.7	109.5	110.3	108.10			109.1	108.23
$\mathrm{CCH}\left(\mathrm{CH}_{3}\right)$	111.0	111.2	109.7	110.4			108.7	109.81		
$\mathrm{CCH}\left(\mathrm{CH}_{2} \mathrm{~F}\right)$			112.9	111.5	111.0	110.81			108.9-	109.97
$\mathrm{CCH}\left(\mathrm{CHF}_{2}\right)$							109.8	113.71	108.9	113.22
	HFC	143a	HFC	134	HFC	134a	HFC	125	FC	116
	Expt.	Opt.								
C-C	1.53	1.500	1.518	1.510	1.525	1.508	1.52	1.518	1.545	1.525
C-F (CF_{3})	1.335	1.325			1.335	1.320	1.335	1.315	1.326	1.311
C-F ($\mathrm{CF}_{2} \mathrm{H}$)			1.350	1.337			1.345	1.330		
C-F (CFH_{2})					1.39	1.355				
$\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)$	1.085	1.082								
C-H ($\mathrm{CH}_{2} \mathrm{~F}$)					1.09	1.080				
$\mathrm{C}-\mathrm{H}\left(\mathrm{CHF}_{2}\right)$			1.098	1.07			1.10	1.077		
$\mathrm{CCF}\left(\mathrm{CF}_{3}\right)$	111.0	111.64			110.9	110.84	110.8	110.22	109.8	109.79
$\mathrm{CCF}\left(\mathrm{CF}_{2} \mathrm{H}\right)$			108.2	108.25			109.6	108.42		
$\mathrm{CCF}\left(\mathrm{CFH}_{2}\right)$					109.7	108.26				
$\mathrm{CCH}\left(\mathrm{CH}_{3}\right)$	108.3	109.40								
$\mathrm{CCH}\left(\mathrm{CH}_{2} \mathrm{~F}\right)$					109.8	109.44				
$\mathrm{CCH}\left(\mathrm{CHF}_{2}\right)$			110.3	112.57			110.0	111.41		

\dagger The stretches and bends define the atoms involved. The atoms belong to the end group shown in the brackets.

* Literature references for the experimental geometries are given in table 5.1.

The force constants are directly related to the molecular geometries and so any errors introduced by optimisation are carried over into the force constant calculations (Fogarasy and Pulay 1985). Initially, the ab initio calculations were carried out using the experimental geometries with no optimisation, as it was thought that it would be more meaningful to compare the two types of calculations when identical molecular geometries had been used. Fogarasy and Pulay (1985) suggested that this may be done, provided that corrections to the frequencies were made to compensate for the fact that the molecule, when constructed using the experimental geometries, is not necessarily at a potential minimum. It was not possible to calculate the corrections required for the energies, and so the frequency calculations were preceded by an optimisation step, as suggested by Foresman and Frisch (1993).

Chapter 8.

Conclusion.

The aim of this work has been to measure the integrated absorption intensities of both halocarbons of topical interest and a range of chloroethanes and ethanes to observe the effects of fluorination. Difficulties were encountered in obtaining new halocarbons thought to have commercial applications, resulting in the syntheses of two halopropanes. 1-Chloro-2,2,3,3-tetrafluoropropane (HCFC244ca) and 1-chloro-2,2,3,3,3-pentafluoropropane (HCFC235cb) were synthesised and used in subsequent spectroscopic measurements. The consistency of the resultant integrated band intensities confirmed that the compounds were of a purity comparable with the other halocarbons used.

In an attempt to obtain reproducible results for the absorption intensities, the errors in FTIR spectroscopy were examined closely, and results from different instruments were compared. A comprehensive set of procedures for recording and analysing infrared spectra was determined in an attempt to reduce errors and discrepancies in the data. Band intensities in the ranges $3500-450 \mathrm{~cm}^{-1}, 1250-833 \mathrm{~cm}^{-1}$, and $1300-700 \mathrm{~cm}^{-1}$ were measured for 25 compounds with an estimated error of $\pm 4 \%$.

In order to investigate the effects on the vibrational absorbance of fluorine atoms in a molecule, 19 ethane-type compounds were selected for theoretical studies. Several different methods of modelling chemical substances may be found in the literature, and in order to compare experimental and theoretical results, two approaches were used in this work: a normal coordinate analysis using a Urey-Bradley force field; and ab initio calculations. The UB force field gives a relatively simple mechanistic model, without reference to quantum theories and methods. In contrast, $a b$ initio methods are based on Schrödinger's wave equation and a number of mathematical approximations. The calculations enabled some comparisons of fundamental frequencies, force constants, intensities and molecular geometries to be made. The results from three different sources were combined; those from both experiments reported in the literature and experiments carried out as part of this work; from the normal coordinate analyses; and from $a b$ initio methods. Using these results, literature assignments of the fundamental frequencies have been confirmed and some new assignments tentatively made for the 19 compounds studied.

While the discrepancies between the experimental frequencies and the UB force field were larger than those for the $a b$ initio results, the errors were such that the resultant force constants may be considered reasonable, and the group force constants may be used as a starting point for frequency calculations for similar molecules. As far as possible, the UB and ab initio force constants were compared and found to be in reasonable agreement, in that the trends across a group of molecules with increasing numbers of fluorine atoms were generally consistent. C-H stretching force constants from the two methods of calculation were not in agreement, however, variation was also seen in the geometries. Problems occur when using the simple UB force field for the C-H group (Shimanouchi 1963), and have been reported for C-H stretching frequencies and force constants when using ab initio methods (Fogarasy and Pulay 1985).

The theoretical methods and basis set used for $a b$ initio calculations were the most sophisticated available for this work, and have produced satisfactory results. Comparisons of HF and MP2 calculations using the basis set 6-31G* show similar results with the judicious use of scaling factors.

It was not possible to calculate intensities as part of the UB force field, however, intensity calculations were obtained from the $a b$ initio calculations. Comparison between the experimental and theoretical results have shown surprisingly good agreement, considering that calculated intensities have been assumed to be only qualitative (Foresman and Frisch 1993). The derivation of a scaling factor of 0.734 for intensities in the range $3500-450 \mathrm{~cm}^{-1}$ has enabled comparisons to be made between the experimental and calculated results for the C-F stretching region of approximately 1350 $1000 \mathrm{~cm}^{-1}$ and the C-H stretching region of $3200-2800 \mathrm{~cm}^{-1}$. A satisfactory agreement was found in the results for the C-F stretching region, but not for the C-H region, due, in part, to the problems associated with calculating frequencies and force constants for the $\mathrm{C}-\mathrm{H}$ bond.

A relationship has been observed between the number of fluorine atoms and the absorption intensity of the molecule in the mid-infrared region. Initially, the calculations for the HCFCs were not carried out as there is insufficient relationship between the HCFC molecules used in the experimental part of this work. However, the usefulness of combining experimental and theoretical results has become apparent for studies of frequencies and intensities, and so it would be of interest to complete calculations for the HCFCs used. Barton et al. (1993) suggested that the combination of theoretical calculations and experimental measurements in the study of vibrational spectroscopy is much more powerful than if either technique is used alone. This has proved to be the case in this work, where the assignment of fundamental modes has been made easier by the use of both observed and calculated values. Calculations
involving all halopropanes containing fluorine, chlorine and hydrogen atoms would enable further investigation of the effects on intensities of the position of the fluorine atoms within the molecules, as well as facilitate the assignments of fundamental frequencies should the relevant spectra become available.

The experimental results of this work may be useful in the calculations of global warming potentials. The frequencies, force constants and intensity calculations carried out suggest that these methods of calculation, when applied to fluorocarbons thought to have commercial uses, may be used to predict infrared spectra with an accuracy suitable for use in climate modelling techniques. Should further studies of the relationship between the intensities and the number of fluorine atoms be undertaken to confirm the findings made in chapter seven, it may be possible to estimate the intensity of new halopropanes in the C-F stretching region using graphs such as those in figures 7.1, 7.2 and 7.3, without recourse to synthesis or expensive $a b$ initio calculations.

Appendix A

Nomenclature of Chlorofluorocarbons.

Chlorofluorocarbons have been collectively named 'freonXYZ', where,
X is the number of carbon atoms minus 1 , if $X=0$, it is omitted.
Y is the number of hydrogen atoms plus one.
Z is the number of fluorine atoms.
(Selinger 1989)
The number of chlorine atoms required to complete the compound can be easily calculated. 'Freon' is usually replaced by CFC for compounds containing carbon, fluorine and chlorine only, HFC for compounds containing carbon, fluorine and hydrogen only, and HCFC for compounds containing carbon, fluorine, chlorine and hydrogen.
For example, $\mathrm{CHCl}_{2} \mathrm{~F}$ is known as freon21 or HCFC 21
$\mathrm{CH}_{2} \mathrm{FCHF}_{2}$ is known as freon 143 or HFC 143
Molecules exhibiting isomerism are further designated with lower case letters. In the case of the 2-carbon molecules, the difference between the sum of the atomic weights of the atoms at each carbon is calculated. The isomer with the smallest difference has no letter, the next smallest is designated ' a ', the next ' b ' and so on. For example $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}$ has two isomers; $\mathrm{CCl}_{2} \mathrm{FCF}_{2} \mathrm{Cl}$, where the difference between the atomic weights at the two ends is $90-73=17$, so it is designated $\mathrm{CFC1} 13$; and $\mathrm{CCl}_{3} \mathrm{CF}_{3}$, where the difference is $106-57=49$ hence CFC113a. In the case of 3 -carbon molecules, two letters are used. The first relates to the central carbon atom, $-\mathrm{CCl}_{2}$ - ' a ', $-\mathrm{CFCl}-\mathrm{b}$ ', $-\mathrm{CF}_{2}$ - ' c ', $-\mathrm{CHCl}-$ ' d ', -CHF-'e', - CH_{2} - ' f . The second letter follows the logic of the 2 -carbon molecule numbering system, except that it cannot be omitted, hence 'a' denotes the smallest difference, ' b ' the next smallest and so on. (Dudman et al.1990)

Appendix B

Data input for the Urey-Bradley force field calculations.
Data input for the program NORCORD.

09 CFC110						
-09						
1185222242211111						
4110316082						
$\mathrm{CCl3CCl} 3$ hexachloroethane						
October 1992						
110	21	1.564	31		12	
220.0	32		13	0.8312	23	2.1690
331.4396	14	0.8312	24	2.1690	34	-1.4396
$15-1.66232$	52.	. 1690	35		16	1.6623
$266-0.6050$	36	0.0	17	-0.8312	27	-0.6050
371.4396	18	-0.8312	28	-0.6050	38	-1.4396
1112						
2113						
3114						
4115						
5126						
6127						
7128						
82213						
92214						
102215						
112126						
122127						
132128						
142314						
152315						
162415						
172627						
182628						
192728						
2045126						
2143128						
2244127						
$\begin{array}{lll}1 & 1 & 1.000000\end{array}$	22	0.166667	23	0.166667	24	0.166667
$\begin{array}{lll}2 & 5 & 0.166667 \\ 3 & 9 & 0.166667\end{array}$	26	0.166667	27	0.166667	38	0.166667
$\begin{array}{ccc}3 & 9 & 0.166667 \\ 3 & 13 & 0.166667\end{array}$	310	0.166667	311	0.166667	312	0.166667
$\begin{array}{lll}3113 & 0.166667 \\ 417 & 0.166667\end{array}$	414 418	0.166667	415	0.166667	416	0.166667
5210.333333	418 522	0.166667 0.333333	419 62	0.166667	520	0.333333
6400.166667	65	-0.166667	66	-0.166667	67	- -0.166667
$\begin{array}{lll}78 & 0.166667\end{array}$	79	0.166667	710	0.166667	711	-0.166667
$\begin{array}{lll}712 & -0.166667 \\ 816\end{array}$	713	-0.166667	814	0.166667	815	0.166667
$\begin{array}{lll}816 \\ 92 & 0.166667\end{array}$	817	-0.166667	818	-0.166667	819	-0.166667
$\begin{array}{llr}9 & 2 & 0.166667 \\ 9 & 6 & -0.083333\end{array}$	93	-0.083333	94	-0.083333	95	-0.083333
$\begin{array}{ccc}9 & 6 & -0.083333 \\ 10 & 5 & -0.25\end{array}$	97	0.166667	103	0.25	104	-0.25
$\begin{array}{lll}10 & 5 & -0.25 \\ 11 & 10 & -0.083333\end{array}$	106	0.25	118	0.166667	119	-0.083333
$1110-0.083333$	1111	-0.083333	1112	-0.083333	1113	0.166667

129	0.25	1210	-0.25	1211	-0.25	2	0.25
1314	0.166667	1315	-0.083333	1316	-0.083333	1317	-0.083333
1318	-0.083333	1319	0.166667	1415	0.25	1416	-0.25
1417	-0.25	1418	0.25	152	0.166667	153	-0.083333
154	-0.083333	155	0.083333	156	0.083333	157	-0.166667
163	0.25	164	-0.25	165	0.25	166	-0.25
178	0.166667	179	-0.083333	1710	-0.083333	1711	0.083333
1712	0.083333	1713	-0.166667	189	0.25	1810	-0.25
1811	0.25	1812	-0.25	1914	0.166667	1915	-0.083333
1916	-0.083333	1917	0.083333	1918	0.083333	1919	-0.083333
2015	-0.25	2016	0.25	2017	-0.25	2018	-0.166667 0.25
2120	0.333333	2121	-0.166667	2122	-0.166667	2221	0.5
2222	-0.5	-3			-0.166667	2221	0.5
12.01	12.01	35.45	35.45	35.45	35.45		
${ }_{0} 3500$	35.45			35.45	35.45		

CFC111

-09
1182222242211111
14381
CFCl2CCl3 1,1,1,2,2-pentachlorofluoroethane
September 1992

$\begin{array}{lll}1 & 1 & 0.0\end{array}$		1.54	31		12	
220.0	32	0.0	13	0.8343	23	2.1308
331.4455	14	0.8343	24	2.1308	34	-1.4455
$15-1.6685$	25	2.1308		0.0	16	1.2914
$266-0.4573$	36	0.0	17	-0.8343	27	-0.5908
371.4455	18	-0.8343	28	-0.5908	38	-1.4455
$\begin{array}{rr}-1 & \\ 1 & 1\end{array} 12$						
$\begin{array}{lllll}2 & 1 & 1 & 3\end{array}$						
3114						
4115						
5126						
6127						
7128						
82213						
92214						
102215						
112126						
122127						
132128						
142314						
152315						
162415						
172627						
182628						
192728						
2045126						
2143128						
2244127						
111.000000	22	0.5				
451.0	56	0.5	57	0.5		
690.5	710	1.0	811	1.0	912	0.5
9130.5	1014	1.0	1115	0.5	1116	0.5
12170.5	1218	0.5	1319	1.0	1421	0.5
$1422-0.5$	152	0.5	153	-0.5	166	0.5

16	7	-0.5	17	8	0.5	17	9	-0.5	18
18	13	-0.5	19	15	0.5	19	0.5		
20	18	-0.5	21	-0.5	1.0	22	21	0.5	20
-3			17	0.5					
12.01	12.01	35.45	35.45	35.45	19.00		0.5		
35.45	35.45								
000									

-09

CFC112

1184222242211111
71513072
CFCl2CFCl2 1,1,2,2-tetrachlorodifluoroethane October 1992

110.0	211.54		0.0	12	0.0
220.0	320.0	13	1.2914	23	1.9973
330.0	$14-0.8333$	24	2.1308	34	-1.4455
$15-0.8333$	252.1308	35	1.4455	16	-1.2914
$266-0.4573$	360.0	17	0.8333	27	-0.5908
371.4455	180.8333	28	-0.5908	38	-1.4455
$\begin{array}{rrrrr}-1 & 1 & 1 & \\ 1 & 1 & 1 & 2\end{array}$					
2113					
3114					
4115					
5126					
6127					
7128					
82213					
92214					
102215					
112126					
122127					
132128					
142314					
152315					
162415					
172627					
182628					
192728					
2043126					
2144127					
2245128					
111.000000	220.5	25	0.5	33	0.25
$\begin{array}{lll}3 & 4 & 0.25\end{array}$	360.25	37	0.25	48.	0.5
4110.5	590.25	510	0.25	512	0.5
5130.25	6140.25	615	${ }_{0}^{0.25}$	617	0.25
618 0.25	7160.5	719	0.25 0.5	817	0.25
$\begin{array}{lll}8 & 4 & -0.25 \\ 9\end{array}$	86.0 .25	87	0.25	81 9	0.25 0.25
$\begin{array}{cc}9 & 10\end{array}-0.25$	912-0.25	913	0.25	1014	0.25
$\begin{array}{ccc}10 & 15 & -0.25 \\ 12 & 21 & 0.5\end{array}$	$1017-0.25$	1018	0.25	1120	1.0
$\begin{array}{ccc}1221 & 0.5 \\ 13 & 6 & 0.25\end{array}$	12220.5	133	0.25	134	-0.25
$\begin{array}{ccc}13 & 6 & 0.25 \\ 14 & 12 & 0.25\end{array}$	$\begin{array}{llll}13 & 7 & -0.25\end{array}$	149	0.25	1410	-0.25
$\begin{array}{lll}1412 & 0.25 \\ 1517 & 0.25\end{array}$	$1413-0.25$	1514	0.25	1515	-0.25
$\begin{array}{lll}1517 & 0.25\end{array}$	1518 -0.25	1621	0.5	1622	-0.5
$\begin{array}{llc}17 & 2 & 0.5 \\ 18 & 6 & -0.25\end{array}$	$175-0.5$	183	0.25	184	0.25
$\begin{array}{rrr}18 & 6 & -0.25 \\ 20 & 9 & 0.25\end{array}$	187 -0.25	198	0.5	1911	-0.5
2090.25	$2010 \quad 0.25$	2012	-0.25	2013	-0.25

2114	0.25	2115	0.25	2117	-0.25	2118	-0.25
2216	0.5	2219	-0.5	-3			
12.01	12.01	19.0	35.45	35.45	19.00		
35.45	35.45						
000							

CFC112a

1182222242211111
14381
CF2ClCCl3 1,1,1,2-tetrachlorodifluoroethane October 1992
1100
220.0
$\begin{array}{lll}3 & 3 & 1.4258\end{array}$
15 -1.6464
$26-0.6131$
371.0760 -1
1112
2113
3114
4115
5126
6127
7128
82213
92214
102215
112126
122127
132128
142314
152315
162415
172627
182628
192728
2045126
2143128
2244127

11	1.000000	22	0.5	23	0.5	34	1.0
45	1.0	56	0.5	57	0.5	68	0.5
69	0.5	710	1.0	811	1.0	912	0.5
913	0.5	1014	1.0	1115	0.5	1116	0.5
1217	0.5	1218	0.5	1319	1.0	1421	0.5
1422	-0.5	152	0.5	153	-0.5	166	0.5
167	-0.5	178	0.5	179	-0.5	1812	0.5
1813	-0.5	1915	0.5	1916	-0.5	2017	0.5
2018	-0.5	2120	1.0	2221	0.5	2222	0.5
12.01	12.01	35.45	35.45	35.45	35.45		
19.00	19.00			35.45	35.45		

CFC113

-09

224
CFCl2CF2Cl 1,1,2-trichlorotrifluoroethane
October 1992

CFC113a

-09
1183222242211111
7212032
CF3CCl3 1,1,1-trichlorotrifluoroethane
May 1992

$\begin{array}{lll}1 & 1 & 0.0\end{array}$	$\begin{array}{llll}2 & 1 & 0.0\end{array}$	3110.0	12	
220.0	321.545	$\begin{array}{llll}1 & 3 & 1.2583\end{array}$	23	
$\begin{array}{llll}3 & 3 & -0.4308\end{array}$	$14-0.6292$	241.0897	34	-0.4308
$15-0.6292$	2 5 -1.0897	$\begin{array}{llll}3 & 5 & -0.4308\end{array}$	16	-1.6567
260.0	362.1710	170.8284	27	1.4347
372.1710	180.8284	$28-1.4347$	38	2.1710
$\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array} 12$				
2113				
3114				

102215						
112126						
122127						
132128						
142314						
152315						
162415						
172627						
182628						
192728						
2045126						
2143128						
2244127						
111.000000	22		23		34	
451.0	56	0.5	57		68	0.5
690.5	710	1.0	811	1.0	912	0.5
9130.5	1014	41.0	1115	50.5	1116	$6 \quad 0.5$
12170.5	1218	0.5	1319	1.0	1421	$1 \begin{array}{ll}1 & 0.5\end{array}$
$1422-0.5$	152	0.5	153	-0.5	166	$\begin{array}{lll} & 0.5\end{array}$
$167-0.5$	178	0.5	179	-0.5	1812	2.5
$1813-0.5$	1915	$\begin{array}{ll}5 & 0.5\end{array}$	1916	-0.5	2017	$\begin{array}{ll}7 & 0.5\end{array}$
$\begin{array}{llllllll}-3 & & 2120 & 1.0 & 2221 & 0.5 & 2222 & 0.5\end{array}$						
$12.01 \quad 12.01$	19.00	$0 \quad 19.00$	19.00	19.		
$35.45 \quad 35.45$						
000						
CFC115						
1182222242211111						
14381						
CF2ClCF3 chloropentafluoroethane						
$\begin{array}{lll}1 & 1 \\ 2 & 0.0\end{array}$	21	1.555				
220.0	32	0.0		0.6213	23	2.0295
$\begin{array}{llll}3 & 3 & 1.0760\end{array}$	14	0.6213	24	2.0295	34 -	-1.0760
$\begin{aligned} & 1 \\ & 2\end{aligned} 5-1.2425$	25	2.0295	35	0.0	16	-1.6287
$26-0.6122$	36	0.0	17	-0.6325	27	-0.4110
$\begin{array}{rrr}37 & 1.0760\end{array}$	18	-0.6325	28	-0.4110	38 -	-1.0760
1112						
2113						
3114						
4115						
5126						
6127						
7128						
82213						
92214						
102215						
112126						
122127						
132128						
142314						
152315						
162415						
172627						
182628						

192728						
2045126						
2143128						
2244127						
111.000000	22		23			
451.0	56	0.5	57			
$\begin{array}{lll}69 & 0.5\end{array}$	710	1.0	811	1.0	912	0.5
9130.5	1014	41.0	1115	0.5	1116	0.5
12170.5	1218	8	1319	1.0	1421	0.5 0.5
$1422-0.5$	152	0.5	153	-0.5	166	0.5
$167-0.5$	178	0.5	179	-0.5	1812	0.5
$1813-0.5$	1915	50.5	1916	-0.5	2017	0.5
2018 -0.5	2120	1.0	2221	1-5	2222	0.5
$\begin{array}{ll} 12.01 & 12.01 \\ 19.00 & 19.00 \end{array}$	19.00	019.00	19.00	35.45		
000						
FC116						
1185222242211111						
4110316082						
CF3CF3 hexafluoroethane						
October 1992						
1100.0	21	1.5450	31			
220.0	32		13	0.6238		1.9942
$\begin{array}{lll}3 & 3 & 1.08045\end{array}$	14	0.6238	24	1.9942	34	1.9942
15 -1.2476	25	1.9942	35		16	1.2476
$26-0.4492$	36	0.0	17	-0.6238	27	-0.4492
371.08045	18	-0.6238	28	-0.4492	38	1.08045
1112						
2113						
3114						
41115						
5126						
6127						
7128						
82213						
92214						
102215						
112126						
122127						
132128						
142314						
152315						
162415						
172627						
182628						
192728						
2045126						
2143128						
2244127						
$\begin{array}{lll}1 & 1 & 1.000000\end{array}$	22	0.166667	23	0.166667		
2500.166667	26	0.166667	27	0.166667	38	0.166667
$\begin{array}{lll}3 & 9 & 0.166667 \\ 3 & 13 & 0.16667\end{array}$	310	0.166667	311	0.166667	312	0.166667
$\begin{array}{lll}313 & 0.166667 \\ 417 & 0.166667\end{array}$	414	0.166667	415	0.166667	416	0.166667
4170.166667	418	0.166667	419	0.166667	520	0.333333

521	0.333333	522	0.333333	62	0.166667	63	0.166667
64	0.166667	65	-0.166667	66	-0.166667	67	-0.166667
78	0.166667	79	0.166667	710	0.166667	711	-0.166667
712	-0.166667	713	-0.166667	814	0.166667	815	0.166667
816	0.166667	817	-0.166667	818	-0.166667	819	-0.166667
92	0.166667	93	-0.083333	94	-0.083333	95	-0.083333
96	-0.083333	97	0.166667	103	0.25	104	-0.25
105	-0.25	106	0.25	118	0.166667	119	-0.083333
1110	-0.083333	1111	-0.083333	1112	-0.083333	1113	0.166667
129	0.25	1210	-0.25	1211	-0.25	1212	0.25
1314	0.166667	1315	-0.083333	1316	-0.083333	1317	-0.083333
1318	-0.083333	1319	0.166667	1415	0.25	1416	-0.25
1417	-0.25	1418	0.25	152	0.166667	153	-0.083333
154	-0.083333	155	0.083333	156	0.083333	157	-0.166667
163	0.25	164	-0.25	165	0.25	166	-0.25
178	0.166667	179	-0.083333	1710	-0.083333	1711	0.083333
1712	0.083333	1713	-0.166667	189	0.25	1810	-0.25
1811	0.25	1812	-0.25	1914	0.166667	1915	-0.083333
1916	-0.083333	1917	0.083333	1918	0.083333	1919	-0.083333
2015	0.25	2016	-0.25	2017	0.25	2018	-0.25
2120	0.333333	2121	-0.166667	2122	-0.166667	2221	0.5
2222	-0.5	-3		2122	-0.166667	2221	0.5
12.01	12.01	19.00	19.00	19.00	19.00		
19.00	- 19.00						
000							

HFC170

-09
1185222242211111
4110316082
CH 3 CH 3 ethane
December 1992

$\begin{array}{lll}1 & 1 & 0.0\end{array}$	$\begin{array}{lll}2 & 1 & 1.5324\end{array}$	310.0	20.0
220.0	320.0	$\begin{array}{llll}1 & 3 & 0.5167\end{array}$	231.9290
330.8949	140.5167	241.9290	$34-0.8949$
15 -1.0333	$\begin{array}{lll}2 & 5 & 1.9290\end{array}$	$\begin{array}{llll}3 & 5 & 0.0\end{array}$	161.0333
$26-0.3966$	360.0	1780.05167	$27-0.3966$
370.8949	$18-0.5167$	$28-0.3966$	$\begin{array}{llll}3 & 8 & -0.8949\end{array}$
-11 11			3 -0.8949
2113			
3114			
4115			
5126			
6127			
7128			
82213			
92214			
102215			
112126			
122127			
132128			
142314			
152315			
162415			
172627			
182628			
192728			

2045126						
2143128						
2244127						
$\begin{array}{lll}1 & 1 & 1.000000\end{array}$	22	0.166667	23	0.166667	24	0.166667
250.166667	26	0.166667	27	0.166667	38	0.166667
$\begin{array}{lll}3 & 9 & 0.166667\end{array}$	310	0.166667	311	0.166667	312	0.166667
3130.166667	414	0.166667	415	0.166667	416	0.166667
4170.166667	418	0.166667	419	0.166667	520	0.333333
5210.333333	522	0.333333	62	0.166667	63	0.166667
6400.166667	65	-0.166667	66	-0.166667	67	-0.166667
780.166667	79	0.166667	710	0.166667	711	-0.166667
$712-0.166667$	713	-0.166667	814	0.166667	815	0.166667
8160.166667	817	-0.166667	818	-0.166667	819	-0.166667
920.166667	93	-0.083333	94	-0.083333	95	-0.083333
$96-0.083333$	97	0.166667	103	0.25	104	-0.25
$105-0.25$	106	0.25	118	0.166667	119	-0.083333
$1110-0.083333$	1111	-0.083333	1112	-0.083333	1113	0.166667
1290.25	1210	-0.25	1211	-0.25	1212	0.25
13140.166667	1315	-0.083333	1316	-0.083333	1317	-0.083333
1318 -0.083333	1319	0.166667	1415	0.25	1416	-0.25
$1417-0.25$	1418	0.25	152	0.166667	153	-0.083333
$154-0.083333$	155	0.083333	156	0.083333	157	-0.166667
1630.25	164	-0.25	165	0.25	166	-0.25
17800.166667	179	-0.083333	1710	-0.083333	1711	0.083333
17120.083333	1713	-0.166667	189	0.25	1810	-0.25
18110.25	1812	-0.25	1914	0.166667	1915	-0.083333
$1916-0.083333$	1917	0.083333	1918	0.083333	1919	-0.166667
2015 -0.25	2016	0.25	2017	-0.25	2018	0.25
$2120 \quad 0.333333$	2121	-0.166667	2122	-0.166667	2221	0.5
$2222-0.5$	-3		2122	-0.166667	22	0.5
$12.01 \quad 12.01$	1.008	$8 \quad 1.008$	1.008	1.008		
1.0081 .008						

HFC161

1182222242211111

14381
CFH2CH3 1-fluoroethane
december 1992

1100.0	$\begin{array}{lll}2 & 1 & 1.505\end{array}$	310.0	120.0
220.0	320.0	1340.5131	$\begin{array}{llll}2 & 3 & 1.8724\end{array}$
330.8887	40.5131	241.8724	$3{ }^{3} 4-0.8887$
$15-1.0262$	$\begin{array}{llll}2 & 5 & 1.8724\end{array}$	350.0	161.3162
$26-0.4713$	360.0	1780.4741	$27-0.4261$
370.8904	18 -0.4741	28 -0.4261	3 3-0.8904
-1			
1112			
2113			
3114			
4115			
5126			
6127			
7128			
82213			
92214			
102215			
112126			

122127						
132128						
142314						
152315						
162415						
172627						
182628						
192728						
2045126						
2143128						
2244127						
111.000000	22	0.5	23		34	
451.0	56	0.5	57		68	0.5
$\begin{array}{lll}69 & 0.5\end{array}$	710	1.0	811	1.0	912	0.5
9130.5	1014	1.0	1115	10.5	1116	0.5
12170.5	1218	0.5	1319	1.0	1421	0.5
$1422-0.5$	152	0.5	153	-0.5	166	0.5
$167-0.5$	178	0.5	179	-0.5	1812	0.5
$1813-0.5$	1915	0.5	1916	-0.5	2017	0.5
$2018-0.5$	2120	1.0	2221	10.5	2222	0.5
$\begin{array}{llllllllllllllllll}-3 & 12.01 & 1.008 & 1.008 & 1.008 & 19.00 & \end{array}$						
$12.01 \quad 12.01$	1.008	$8 \quad 1.008$	1.008	19.00		
1.0081 .008						
000						
-09 HFC152						
1184222242211111						
71513072						
CFH2CFH2 1,2-difluoroethane						
January 1992						
110.0	211	1.5033	31			
220.0	320	0.0	13	1.3029		1.9853
$\begin{array}{lll}3 & 3 & 0.0\end{array}$	14 -0.	0.5091	24	1.8987		-0.8955
$155-0.5091$	251	1.8987	35	0.8955	16	-1.3029
$266-0.4820$	36	0.0	17	0.5091	27	-0.3954
370.8955	18	0.5091	28	-0.3954	38	-0.8955
-1						
1112						
2113						
$\begin{array}{lllll}3 & 1 & 1 & 4\end{array}$						
4115						
5126						
6127						
7128						
82213						
92214						
102215						
112126						
122127						
1321281421						
142314						
152315						
162415						
172627						
182628						
192728						
2043126						

2144127
2245128

HFC152a
1182222242211111
14381
Ch3Chf2 2,2-difluoroethane december 1992

$\begin{array}{llll}1 & 1 & 0.0\end{array}$	21	1.54	31	0.0	2	0.0
220.0	32	0.0	13	0.5209	23	1.8927
$\begin{array}{llll}3 & 3 & 0.9022 \\ 1 & 5 & 10417\end{array}$	14	0.5209	24	1.8927	34	-0.9022
15 5 -1.0417	25	1.8927	35	0.0	16	1.0350
$\begin{array}{lll}2 & 6 & -0.3726\end{array}$	36	0.0	17	-0.6394	27	-0.4468
$\begin{array}{lll}3 & 7 & 1.0957\end{array}$	18	-0.6394	28	-0.4468	38	-1.0957

11	1.000000	22	0.5	23	0.5	34	1.0
45	1.0	56	0.5	57	0.5	68	0.5
69	0.5	710	1.0	811	1.0	912	0.5
913	0.5	1014	1.0	1115	5.5	1116	0.5
1217	0.5	1218	0.5	1319	1.0	1421	0.5
1422	-0.5	152	0.5	153	-0.5	166	0.5
167	-0.5	178	0.5	179	-0.5	1812	0.5
1813	-0.5	1915	0.5	1916	-0.5	2017	0.5
2018	-0.5	2120	1.0	2221	10.5	2222	0.5
12.01	12.01	1.008	$8 \quad 1.008$	1.008	1.0		
19.00	- 19.00						
000							
				C143			
-09 -							
11181222242211111							
CFH2CF2H 1,2,2-trifluoroethane							
Decemb	ber 1992						
11	0.0	211	1.50	31		12	
22	0.0	320	0.0	13	0.4046	23	1.8525
33	0.9466	140	0.4046	24	1.8525	34	-0.9466
15	1.3114	251	1.9541	35	0.0	16	1.2789
26	0.4429	360	0.0	17	-0.5696	27	-0.4429
37	1.1450	18 -0	0.5420	28	-0.3525	38	-0.8752
1112							
2113							
3114							
4115							
5126							
6127							
7128							
822	13						
92214							
102215							
112126							
122127							
132128							
142314							
152315							
162415							
172627							
182628							
192728							
2045126							
2143128							
2244127							
11	1.000000	22	1.0	33	1.0		
55	1.0	66	1.0	77	1.0	88	1.0
99	1.0	1010	1.0	1111	1.0	1212	1.0
1313	1.0	1414	1.0	1515	1.0	1616	1.0
1717	1.0	1818	1.0	1919	1.0	2020	1.0
2121	1.0	2222	1.0	-3		20	
12.01	12.01	1.008	1.008	19.00	19.0		
19.00	1.008						
000							

HFC143a

118322222211111
7212032
CF3CH3 1,1,1-trifluoroethane June 1992

$\begin{array}{llll}1 & 1 & 0.0\end{array}$	21	1.530	31	0.0	12	
220.0	32	0.0	13	0.6232	23	2.0084
$\begin{array}{llll}3 & 3 & 1.0794\end{array}$	14	0.6232	24	2.0084	34	-1.0794
$15-1.2463$	25	2.0084	35	0.0	16	1.0301
$26-0.3407$	36	0.0	17	-0.5152	27	-0.3407
$\begin{array}{lll}3 & 7 & 0.8920\end{array}$	18	-0.5152	28	-0.3407	38	-0.8920
-1						
1112						
2113						
3114						
4115						
5126						
6127						
7128						
82312						
92412						
102512						
112621						
122721						
132821						
142314						
152315						
162415						
172627						
182628						
192728						
2043128						
2144127						
2245126						
$\begin{array}{lll}1 & 1 & 1.000000\end{array}$	22	0.333333	23	0.333333	24	0.333333
$\begin{array}{lll}3 & 5 & 0.333333\end{array}$	36	0.333333	37	0.333333	48	0.333333
$\begin{array}{lll}49 & 0.333333\end{array}$	410	0.333333	511	0.333333	512	0.333333
51300.333333	614	0.333333	615	0.333333	616	0.333333
$\begin{array}{lrr}717 & 0.333333 \\ 83 & -0.166667\end{array}$	718	0.333333	719	0.333333	82	0.333333
$\begin{array}{rrrr}8 & 3 & -0.166667 \\ 10 & 5 & 0.333333\end{array}$	84	-0.166667	93	0.5	94	-0.5
$\begin{array}{lll}10 & 5 & 0.333333 \\ 11 & 7 & -0.5\end{array}$	106	-0.166667	107	-0.166667	116	0.5
$\begin{array}{ccc}11 & 7 & -0.5 \\ 13 & 9 & 0.5\end{array}$	128	0.333333	129	-0.166667	1210	-0.166667
$\begin{array}{lll}13 & 9 & 0.5 \\ 14 & 13 & -0.166667\end{array}$	1310	-0.5	1411	0.333333	1412	-0.166667
$\begin{array}{lll}14 & 13 & -0.166667 \\ 16 & 15 & -0.166667\end{array}$	1512	0.5	1513	-0.5	1614	0.333333
$\begin{array}{rrr}1615 & -0.166667 \\ 18 & 17 & 0.333333\end{array}$	1616	-0.166667	1715	0.5	1716	-0.5
1817 19 19 0.0 .533333	1818	-0.166667	1819	-0.166667	1918	0.5
$\begin{array}{lll}1919 & -0.5 \\ 2120 & 0.333333\end{array}$	2020	0.333333	2021	0.333333	2022	0.333333
222100.333333	2121	0.333333 0.333333	${ }_{-3}^{21} 22$	0.333333	2220	0.333333
$12.01 \quad 12.01$	19.00	19.00	19.00	1.008		
1.0081 .008						

HFC134

71513072
CF2HCF2H 1,1,2,2-tetrafluoroethane January 1992

HFC134a

-09
1182222222211111
14381
CF3CFH2 1,1,1,2-tetrafluoroethane

May 1992						
$\begin{array}{lll}1 & 1 & 0.0\end{array}$	21	1.525	31		12	
220.0	32	0.0	13	0.6237	23	2.0012
331.0800	14	0.6237	24	2.0012	34 -	-1.0800
$15-1.2472$	25	2.0012	35		16	1.3086
$26-0.4686$	36	0.0	17	-0.5160	27	-0.3692
370.8863	18	-0.5160	28	-0.3692	38	-0.8863
-1						
1112						
2113						
3114						
4115						
5126						
6127						
7128						
82213						
92214						
102215						
112126						
122127						
132128						
142314						
152315						
162415						
172627						
182628						
192728						
2045126						
2143128						
2244127						
111.0	22	0.5	23	0.5		1.0
451.0	56	0.5	57	0.5	68	0.5
$\begin{array}{lll}69 & 0.5\end{array}$	710	1.0	811	1.0	912	0.5
9130.5	1014	41.0	1115	$\begin{array}{ll}5 & 0.5\end{array}$	1116	0.5
12170.5	1218	0.5	1319	1.0	1421	0.5
$1422-0.5$	152	0.5	153	-0.5	166	0.5
$\begin{array}{lll}167 & -0.5\end{array}$	178	0.5	179	-0.5	1812	0.5
$1813-0.5$	1915	$\begin{array}{ll}5 & 0.5\end{array}$	1916	-0.5	2017	0.5
$\begin{array}{llllllllllllll}-3 & 12.01 & 19.00 & 19.00 & 19.00 & 19.00 & & \end{array}$						
1.0081 .008			19.00	19.00		
000						
HFC125						
1182222242211111						
14381						
CF3CF2H pentafluoroethane						
$\begin{array}{lll}1 & 1 & 0.0\end{array}$	21	1.520	31			
220.0	32	0.0	13	0.6240	23	1.9941
$\begin{array}{llll}3 & 3 & 1.0807\end{array}$	14	0.6240	24	1.9941	34	1.0807
$155-1.2480$	25	1.9941	35	0.0	16	1.0337
$\begin{array}{lll}2 & 6 & -0.3762\end{array}$	36	0.0	17	-0.6365	27 -0.	-0.4512
$\begin{array}{rrrr}3 & 7 & 1.0957 \\ -1 & & \end{array}$	18	-0.6365	28	-0.4512	38 -1	-1.0957
1112						

21113						
31114						
4115						
5126						
6127						
7128						
82213						
92214						
102215						
112126						
122127						
13 212 1						
142314						
152315						
162415						
172627						
182628						
192728						
2045126						
2143128						
2244127						
111.000000	22	0.5	23	0.5		
451.0	56	0.5	57	0.5	68	0.5
690.5	710	1.0	811	1.0	912	0.5
9130.5	1014	1.0	1115	0.5	1116	0.5
12170.5	1218	0.5	1319	1.0	1421	0.5
$1422-0.5$	152	0.5	153	-0.5	166	0.5
$167-0.5$	178	0.5	179	-0.5	1812	0.5
$1813-0.5$	1915	0.5	1916	-0.5	2017	0.5
$2018-0.5$	2120	1.0	2221	0.5	2222	0.5
$12.01 \quad 12.01$	19.00	19.00	19.00			
19.0019 .00						
000						

Data input for the program OVER.

(With initial force constants and frequencies.)

$119418211100 \quad$ CFC110							
$\begin{aligned} & 119418211100 \\ & \text { hexachloroethane } \end{aligned}$							
november 1992							
3.5	1.8			0.1	0.01		0.64
-0.64	0.6				0.01		0.64
1268 -0.06							
ccl3ccl3							
1221895							
31266							
123456789							
978.0432 .0	169.0	- 0.0	679.0	- 375.0			
858.08588 .0	341.0	- 341.0	224.0	- 224.0			
$780.0 \quad 780.0$	278.0	- 278.0	115.0	- 115.0			
1111.0	118	80.6300	11	90.3700		80.6300	
$\begin{array}{llll}1 & 1 & 9 & 0.3700\end{array}$	118	80.6300	11	90.3700	11	80.6300 80.6300	
11190.3700	118	80.6300	11	90.3700	11	80.6300 80.6300	
1190.3700	128	80.6691	12	9-0.3271	13	80.6691	
13 9-0.3271	148	80.6691	14	9-0.3271	15	80.6691	

$1599-0.3271$	680.6691	16 9-0.3271	780.6691
17 9-0.3271	1880.4828	1890.5800	980.4828
1990.5800	11080.4828	11090.5800	11180.4828
11190.5800	11280.4828	11290.5800	11380.4828
11390.5800	2221.0	2280.7108	2290.2892
2260.6617	2270.3379	2260.6617	2270.3379
2360.6617	23 7-0.3379	2460.6617	24 7-0.3379
2880.4534	2890.3774	21460.4728	21470.4728
21560.4728	21570.4728	3321.0	$\begin{array}{llll}3 & 3 & 80.7108\end{array}$
3390.2892	3360.6617	3170.3379	3 3 60.6617
3370.3379	3460.6617	34 7-0.3379	3980.4534
3990.3774	31460.4728	31470.4728	31660.4728
31670.4728	4421.0	4480.7108	4490.2892
4460.6617	4470.3379	4460.6617	4470.3379
41080.4534	41090.3774	41560.4728	41570.4728
41660.4728	41670.4728	5521.0	5580.7108
5590.2792	5560.6617	5570.3379	5560.6617
5570.3379	5660.6617	56 7-0.3379	5760.6617
57 7-0.3379	51180.4534	51190.3774	51760.4728
51770.4728	51860.4728	51870.4728	6621.0
6680.7108	6690.2892	6660.6617	6670.3379
6660.6617	6670.3379	6760.6617	67 7-0.3379
61280.4534	61290.3774	61760.4728	61770.4728
61960.4728	61970.4728	7721.0	7780.7108
7790.2892	7760.6617	7770.3379	7760.6617
7770.3379	71380.4534	71390.3774	71860.4728
71870.4728	71960.4728	71970.4728	8831.0
8880.3700	$8889-0.7568$	8880.3700	88 9-0.7568
8880.3700	$8889-0.7568$	8860.3379	8887 7-0.6617
8860.3379	88 7-0.6617	9931.0	9980.3700
9 9 9-0.7568	9980.3700	999 9-0.7568	9980.3700
$999-0.7568$	9960.3379	99 7-0.6617	9960.3438
9970.6617	101031.0	101080.3700	10109.0 .7568
101080.3700	1010 9-0.7568	101080.3700	1010 9-0.7568
101060.3379	1010 7-0.6617	101060.3379	1010 7-0.6617
111131.0	111180.3700	1111 9-0.7568	111180.3700
1111 9-0.7568	111180.3700	1111 9-0.7568	111160.3379
1111 7-0.6617	111160.3379	1111 7-0.6617	$\begin{array}{ll}11 & 11260.3379 \\ 12 & 1.0\end{array}$
121280.3700	1212 9-0.7568	121280.3700	1212 9-0.7568
121280.3700	1212 9-0.7568	121260.3379	1212 7-0.6617
121260.3379	1212 7-0.6617	131331.0	131380.3700
1313 9-0.7568	131380.3700	1313 9-0.7568	131380.3700
1313 9-0.7568	131360.3379	1313 7-0.6617	131360.3379
1313 7-0.6617	141441.0	141460.3379	1414 7-0.6617
141460.3379	1414 7-0.6617	141480.2892	1414 9-0.5916
141480.2892	1414 9-0.5916	141460.3379	1414 7-0.6617
151541.0	151560.3379	1515 7-0.6617	151560.3379
1515 7-0.6617	151580.2892	1515 9-0.5916	151580.2892
1515 9-0.5916	151560.3379	1515 7-0.6617	161641.0
161660.3379	1616 7-0.6617	161660.3379	1616 7-0.6617
161660.3379	1616 7-0.6617	161680.2892	1616 9-0.5916
161680.2892	1616 9-0.5916	171741.0	171760.3379
1717 7-0.6617	171760.3379	1717 7-0.6617	171760.3379
1717 7-0.6617	171780.2892	1717 9-0.5916	171780.2892
1717 9-0.5916	181841.0	181860.3379	1818 7-0.6617
181860.3379	1818 7-0.6617	181860.3379	1818 7-0.6617
181880.2892	1818 9-0.5916	181880.2892	1818 9-0.5916
191941.0	191960.3379	1919 7-0.6617	191960.3379

212151.0
191980.2892
191960.3379
222251.0

1919 9-0.5916 1919 7-0.6617 -4
191980.2892
202051.0

CFC111
1117718311100 pentachlorofluoroethane september 1992

3.5	1.8	4.4	0.1	0.3	0.1
0.1	0.01	0.01	0.64	-0.064	0.6
-0.06	0.5	-0.05	0.4	-0.04	

12310121416
cfcl2ccl3
12218172
117
1234567891011121314151617

1111.0	1009.0	847.0	725.0	508.0	407.0
382.0	314.0	281.0	227.0	174.0	883.0
796.0	395.0	314.0	266.0	174.0	77.0

1111.0
11130.3801
11130.3801
11170.2948

13 13-0.3307
1 517-0.3314
17 13-0.3307
19130.5980
111170.3826
113130.5980
22100.6669
23100.6669
28120.4527
215100.4713
33130.2877
33110.3331
39130.3675
316110.4713
44100.6669
410120.4527
416100.4713
55170.3725
55150.4200

57 15-0.3251
517150.7243
66120.7123
66100.6669
612120.4527
619100.4713
77130.2877
77110.3331
718150.2957
88120.3801
88120.3801
88100.3331

9 13-0.7638
99 13-0.7638
9 911-0.6669
1010120.3801
11120.6199 11120.6199 11120.6199 12120.6645 14120.6645 16120.6645 18120.4854
110120.4854
112120.4854
2221.0
22110.3331

2 3 11-0.3331
28130.3675
215110.4713
33100.6669
34100.6669
314100.4713
4421.0
44110.3331
410130.3675
416110.4713
55140.5800
56140.6589
511160.4835
518140.4936
66130.2877
66110.3331
612130.3675
619110.4713
77140.7484
713120.4527
719100.4713

88 13-0.7638
8 813-0.7638
88 11-0.6669
99120.3801
99100.3331
101041.0

1010 13-0.7638
$174.0 \quad 77.0$
11130.3801
11130.3801
11130.3801

12 13-0.3307
14 13-0.3307
16 13-0.3307
18130.5980
110130.5980
112130.5980
22120.7123
22100.6669
24100.6669
214100.4713
3321.0
33110.3331

3 4 11-0.3331
314110.4713
44120.7123
44100.6669
415100.4713
5531.0
55150.4200

5 615-0.3251
511170.5761
518150.7243
66140.7484
67100.6669
617140.4339
7721.0
77150.2516
713130.3675
719110.4713
88120.3801
88100.3331
9941.0

9 913-0.7638
9 9 11-0.6669
1010120.3801
1010120.3801
11120.6199
11120.6199
11160.7052
13120.6645
15160.6652
17120.6645
19120.4854
111160.4559
113120.4854
22130.2877
22110.3331

24 11-0.3331
214110.4713
33120.7123
33100.6669
39120.4527
316100.4713
44130.2877
44110.3331
415110.4713
55160.6275
55140.5800
57140.6589
517140.4936
6621.0
66150.2516

67 11-0.3331
617150.2957
77120.7123
77100.6669
718140.4339
8841.0

88 13-0.7638
8 811-0.6669
99120.3801
99120.3801
99100.3331

1010 13-0.7638
1010 13-0.7638
1010100.3331
111151.0

1111 13-0.7638 1111 15-0.8512 1212120.3801 1212160.2948 1212100.3331 1313 13-0.7638 1313 17-0.5917 1313 11-0.6669 1414100.3331 1414120.2877 151561.0

1515 11-0.6669 1515 13-0.5782 1616100.3331 1616100.3331 1616120.2877 1717 15-0.8512 1717 11-0.6669 1717 17-0.7477 1818140.4200 1818120.2877 191961.0

1919 15-0.5100 1919 13-0.5782 212191.0

1010 11-0.6669
1111160.2948 1111120.3801 1111140.4200 1212 13-0.7638 1212 17-0.5917 1212 11-0.6669 1313120.3801 1313140.2516 141461.0 1414 11-0.6669 1414 13-0.5782 1515100.3331 1515100.3331 1515120.2877 1616 11-0.6669 1616 11-0.6669 1616 13-0.5782 1717140.4200 1717120.2877 181871.0 1818 15-0.8512 1818 13-0.5782 1919100.3331 1919140.2516 1919120.2877 222291.0
1010100.3331

1111 17-0.5917 1111 13-0.7638 1111 15-0.8512 1212120.3801 1212140.2516 131341.0 1313 13-0.7638 1313 15-0.5100 1414100.3331 1414120.2877 1414100.3331 1515 11-0.6669 1515 11-0.6669 1515 13-0.5782 1616100.3331 1616120.2877 171771.0 1717 15-0.8512 1717 13-0.5782 1818140.4200 1818100.3331 1818160.3725 1919 11-0.6669 1919 15-0.5100 1919 13-0.5782 -4

3.5	4.4	1.8	0.3	0.1	0.1
0.1	0.01	0.01	0.4	-0.04	0.6
-0.06	0.5	-0.05	0.64	-0.064	

1010 11-0.6669 1111120.3801 1111140.4200 121241.0 1212 13-0.7638 1212 15-0.5100 1313120.3801 1313160.2948 1313100.3331 1414 11-0.6669 1414 13-0.5782 1414 11-0.6669 1515100.3331 1515120.2877 161661.0

1616 11-0.6669 1616 13-0.5782 1717140.4200 1717100.3331 1717160.3725 1818 15-0.8512 1818 11-0.6669 1818 17-0.7477 1919140.2516 1919120.2877 202081.0
$1117518511100 \quad 1000101000$ 1,1,2,2-tetrachlorodifluoroethane october 1992

CFC112
12218174
6435
1234567891011121314151617

0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0

1	1	1	1.0		1	1	10	0.7052
1	1	13	0.3801				1	1

11120.6199
11100.7052
11120.6199
13120.6645
15100.6652
17120.6645
19120.4854
111100.4559
113120.4854
22110.3725
22150.4204

24 15-0.3254 214150.7251 33120.7123 33160.6669

| | 3 | 3 | 17 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1120818311100 CFC112a					
$1120818311100 \quad 1000101000$ 1,1,1,2-tetrachlorodifluoroethane november 1992					
3.5	1.8	4.4	0.1	0.3	0.1
0.1	0.1	0.01	0.01	0.6	-0.06

0.4	-0.04 0.64	-0.064	0.5
1.1			
12345678			
CFC112a			
12218202			
117			
1234567	9101112131415	1617181920	
1111.01027 .0	$847.0 \quad 775.0$	$627.0 \quad 525.0$	
$446.0 \quad 420.0$	$331.0 \quad 231.0$	$165.0 \quad 1165.0$	
844.0456 .0	$331.0 \quad 268.0$	$183.0 \quad 81.0$	
1111.0	11110.6351	11120.3649	11130.7170
11140.2830	11130.7170	11140.2830	$\begin{array}{llll}1 & 1 & 11 & 0.6351\end{array}$
11120.3649	11110.6351	11120.3649	1 1 1 11
11120.3649	12110.6748	$1212-0.3213$	13110.6748
13 12-0.3213	14110.6748	$1412-0.3213$	15110.6741
15 12-0.3224	16130.6514	$1614-0.3424$	17130.6514
$1714-0.3424$	18110.4814	18120.5808	9110.4814
19120.5808	110110.4814	110120.5808	111110.4804
111120.5700	112130.4555	112140.3605	113130.4555
113140.3605	2221.0	22110.7170	22120.2830
22150.6561	22160.3438	22150.6561	22160.3438
23150.6561	$2316-0.3438$	24150.6561	$2416-0.3438$
28110.4504	28120.3734	214150.4749	214160.4749
215150.4749	215160.4749		214160.4749 3
33120.2830	33150.6561	33160.3438	3 3 1150.6561
33160.3438	34150.6561	$3416-0.3438$	3 1110.4504
39120.3734	314150.4749	314160.4749	316150.4749
316160.4749	4421.0	44110.7170	44120.4830
44150.6561	44160.3438	44150.6561	44160.3438
410110.4504	410120.3734	415150.4749	415160.4749
416150.4749	416160.4749	5521.0	55110.7125
${ }_{5}^{5} 51120.2872$	55170.7534	55180.2403	55170.7534
55180.2403	56170.6624	5 6 18-0.3144	57170.6624
$5718-0.3144$	511110.4523	511120.3812	517170.4255
517180.2859	518170.4255	518180.2859	6631.0
66130.6009	66140.3990	66170.5824	66180.4113
66190.6545	66200.3455	67190.6545	67 20-0.3455
612130.4897	612140.6186	617170.4894	617180.7283
619190.4755	619200.4755	7731.0	77130.6009
77140.3990	77170.5824	77180.4113	77190.6545
77200.3455	713130.4897	713140.6186	718170.4894
718180.7283	719190.4755	719200.4755	$\begin{aligned} & 718170.4894 \\ & 8818 \\ & 8 \end{aligned}$
88110.3649	88 12-0.7662	88110.3649	
88110.3649	88 12-0.7662	88150.3438	$8816-0.6561$
$\begin{array}{llll}8 & 8 & 150.3438 \\ 9 & 9 & 12 & 0.7662\end{array}$	$8816-0.6561$	9941.0	99110.3649
${ }_{9} 9912-0.7662$	99110.3649	$9912-0.7662$	99110.3649
99 9 12-0.7662	99150.3438	99 16-0.6561	99150.3438
9 9 16-0.6561	101041.0	1010110.3649	1010 12-0.7662
1010110.3649	1010 12-0.7662	1010110.3649	1010 12-0.7662
1010150.3438	1010 16-0.6561	1010150.3438	1010 16-0.6561
111141.0	1111110.3619	1111 12-0.7567	1111130.2938
$111114-0.5590$	1111130.2938	$111114-0.5590$	1111170.2403
$111118-0.5063$	1111170.2403	1111 18-0.5063	121251.0
1212130.2938	1212 14-0.5590	1212130.2938	$121214-0.5590$
1212110.3619	1212 12-0.7567	1212170.4113	$121218-0.8666$
1212190.3455	1212 20-0.6545	131351.0	1313130.2938
$131314-0.5590$	1313130.2938	1313 14-0.5590	1313110.3619
1313 12-0.7567	1313170.4113	1313 18-0.8666	1313190.3455

1313 20-0.6545
1414150.3438 1414110.2830 151561.0

1515 16-0.6561 1515 12-0.5943 1616150.3438 1616150.3438 1616110.2830 1717 18-0.5063 1717 20-0.6545 1717 12-0.6005 1818170.2403 1818130.3990 191981.0 1919 18-0.8666 1919 14-0.7592 2121101.0
141461.0

1414 16-0.6561 1414 12-0.5943 1515150.3438 1515110.2830 1515150.3438 1616 16-0.6561 1616 16-0.6561 1616 12-0.5943 1717170.2403 1717130.3990 181871.0 1818 18-0.5063 1818 14-0.7592 1919190.3455 1919170.4113 1919130.3990 2222101.0
1414150.3438
1414110.2830 1414150.3438 15 15 16-0.6561 1515 12-0.5943 1515 16-0.6561 1616150.3438 1616110.2830 171771.0 1717 18-0.5063 1717 14-0.7592 1818170.2403 1818190.3455 1818110.2872 1919 20-0.6545 1919 18-0.8666 1919 14-0.7592 -4

1414 16-0.6561 1414 12-0.5943 1414 16-0.6561 1515150.3438 1515110.2830 161661.0 1616 16-0.6561 1616 12-0.5943 1717170.2403 1717190.3455 1717110.2872 1818 18-0.5063 1818 20-0.6545 1818 12-0.6005 1919170.4113 1919130.3990 202091.0

CFC113

1000101000
1121218311100
1,1,2-trichlorotrifluoroethane november 1992

3.5	1.8	4.4	0.1	0.3	0.1
0.1	0.1	0.01	0.01	0.01	0.6
-0.06	0.4	-0.04	0.64	-0.064	0.5
-0.05	1.1	-0.11			

1214
CFC113
12218211
18
123456789101112131415161718192021
$\begin{array}{llllll}1212.0 & 1119.0 & 1047.0 & 0.0 & 909.0 & 816.0\end{array}$
$\begin{array}{llllll}632.0 & 532.0 & 460.0 & 442.0 & 391.0 & 350.0\end{array}$
$309.0 \quad 288$.
1111.0
11150.2901
11130.3762
11150.2941

1 313-0.3311
15 15-0.3310
17 13-0.3312
19130.5867
111150.3725
113130.5811
22160.6674
23160.6674
28120.4544
215180.4358
33130.2913
33190.2545
39130.3751
316190.3010
44180.5835
410140.4837
416180.4934
55150.3775
55190.4194
240.0
11140.7099
11120.6257
11120.6238
12120.6649
14140.6651
16140.6648
18120.4844
110140.4556
112140.4538
2221.0
22170.3333

23 17-0.3333
28130.3751
215190.3010
33160.6674
34180.6599
314160.4717
4431.0
44190.4171
410150.5783
416190.7142
55200.6673
56200.6673
$168.0 \quad 80.0$

1	1	15	0.2901
1	1	13	0.3743
1	1	13	0.3762
1	2	$13-0.3311$	
1	4	$15-0.3313$	
1	6	$15-0.3310$	
1	8	13	0.5867
1	10	15	0.3811
1	12	15	0.3725
2	2	12	0.7087
2	2	18	0.7461
2	4	18	0.6599
2	14	16	0.4717
3	3	2	1.0
3	3	17	0.3333
3	4	$19-0.3258$	
3	14	17	0.4717
4	4	14	0.6267
4	4	18	0.5835
4	15	18	0.4934
5	5	3	1.0
5	5	21	0.3333
5	6	21	0.3333

11140.7099
11120.6238
11140.7059
13120.6649
15140.6648
17120.6650
19120.4844
111140.4538
113120.4839
22130.2913
22190.2545

24 19-0.3258
214170.4717
33120.7087
33180.7461
39120.4544
316180.4358
44150.3733
44190.4171
415190.7142
55140.6225
55180.5812
57180.6594

$5719-0.3254$	511140.4848	511150.5906	517200.4716
517210.4716	518180.4937	518190.7220	6631.0
66140.6225	66150.3775	66200.6673	66210.3333
66180.5812	66190.4194	67180.6594	67 19-0.3254
612140.4848	612150.5906	617200.4716	617210.4716
619180.4937	619190.7220	7721.0	77120.7068
77130.2932	77180.7482	77190.2525	77180.7482
77190.2525	713120.4552	713130.3791	718180.4346
718190.2972	719180.4346	719190.2972	8841.0
88120.3762	8 813-0.7555	88140.2941	$8815-0.5904$
88120.3762	$88813-0.7555$	88160.3333	$8817-0.6674$
88180.2545	8 8 19-0.5154	9941.0	99120.3762
9 9 13-0.7555	99140.2941	99 15-0.5904	99120.3762
$9913-0.7555$	99180.2545	9 9 19-0.5154	99160.3333
9 9 17-0.6674	101051.0	1010140.2941	1010 15-0.5904
1010120.3762	1010 13-0.7555	1010120.3762	1010 13-0.7555
1010180.4171	1010 19-0.8447	1010180.4171	1010 19-0.8447
111151.0	1111140.2901	1111 15-0.5828	1111140.2901
$111115-0.5828$	1111120.3743	1111 13-0.7514	111111400.2901
1111 21-0.6673	1111180.4194	1111 19-0.8500	121251.0
1212140.2901	1212 15-0.5828	1212120.3743	1212 13-0.7514
1212140.2901	1212 15-0.5828	1212200.3333	1212 21-0.6673
1212180.2525	1212 19-0.5116	131341.0	1313120.3743
1313 13-0.7514	1313140.2901	1313 15-0.5828	1313140.2901
1313 15-0.5828	1313180.2525	1313 19-0.5116	1313180.2525
1313 19-0.5116	141461.0	1414160.3333	1414 17-0.6674
1414180.2545	1414 19-0.5154	1414120.2913	1414 13-0.5851
1414120.2913	1414 13-0.5851	1414180.2545	1414 19-0.5154
151571.0	1515180.2545	1515 19-0.5154	1515160.3333
1515 17-0.6674	1515180.4171	1515 19-0.8447	1515120.2913
1515 13-0.5851	1515140.3733	1515 15-0.7493	161671.0
1616180.2545	1616 19-0.5154	11616160.3333	161671.0 $161617-0.6674$
1616180.4171	1616 19-0.8447	1616120.2913	1616 13-0.5851
1616140.3733	1616 15-0.7493	171781.0	1717200.3333
1717 21-0.6673	1717180.4194	1717 19-0.8500	1717180.4194
1717 19-0.8500	1717140.3775	1717 15-0.7583	1717140.3775
1717 15-0.7583	181871.0	1818180.4194	1818 19-0.8500
1818200.3333	1818 21-0.6673	1818180.2525	1818 19-0.5116
1818120.2932	1818 13-0.5886	1818140.3775	1818 18-0.7583
191971.0	1919180.4194	1919 19-0.8500	1919200.3333
1919 21-0.6673	1919180.2525	1919 19-0.5116	1919140.3775
1919 15-0.7583	1919120.2932	1919 13-0.5886	202091.0
2121101.0	2222		20201.0

CFC113a
1000101000 1,1,1-trichlorotrifluoroethane december 1992

3.5	4.4	1.8	0.3	0.1	0.1
0.1	0.01	0.4	-0.04	0.6	-0.06
1.1	-0.11	0.64	-0.064		

1315
cf3ccl3
12218163
5121
12345678910111213141516
$\begin{array}{rlllrr}1255.0 & 909.0 & 714.0 & 430.0 & 260.0 & 1225.0 \\ 1225.0 & 859.0 & 857.0 & 563.0 & 563.0 & 366.0\end{array}$

$366.0 \quad 265.0$	$265.0 \quad 182.0$	$182.0 \quad 0.0$	
1111.0	11110.6320	11120.3680	11110.6320
11120.3680	111110.6320	$\begin{array}{lllll}1 & 1 & 120.3680\end{array}$	11990.7114
11100.2885	1190.7114	111100.2885	11190.7114
11100.2885	1290.6591	$1210-0.3352$	1390.6591
$1310-0.3352$	1490.6591	$1410-0.3352$	15110.6745
$1512-0.3210$	16110.6745	1 6 12-0.3210	17110.6745
$1712-0.3210$	1890.4531	18100.3613	1990.4531
19100.3613	11090.4531	110100.3613	111110.4823
111120.5900	112110.4823	112120.5900	113110.4823
113120.5900	2221.0	2290.6106	22100.3894
22130.6707	22140.3289	22130.6707	22140.3289
23130.6707	$2314-0.3289$	24130.6707	24 14-0.3289
2890.4876	28100.6114	214130.4696	214140.4696
215130.4696	215140.4696	3321.0	3390.6106
3 3 100.3894	33130.6707	3 3 140.3289	33130.6707
33140.3289	34130.6707	3 4 14-0.3289	3990.4876
39100.6114	314130.4696	314140.4696	316130.4696
316140.4696	4421.0	4490.6106	44100.3894
44130.6707	44140.3289	44130.6707	44140.3289
41090.4876	410100.6114	415130.4696	415140.4696
416130.4696	416140.4696	5531.0	55110.7199
55120.2801	55150.6561	55160.3438	55150.6561
55160.3438	56150.6561	5 6 16-0.3438	57150.6561
$5716-0.3438$	511110.4490	511120.3670	517150.4749
517160.4749	518150.4749	518160.4749	6631.0
66110.7199	66120.2801	66150.6561	66160.3438
66150.6561	66160.3438	67150.6561	67 16-0.3438
612110.4490	612120.3670	617150.4749	617160.4749
619150.4749	619160.4749	7731.0	77110.7199
77120.2801	77150.6561	77160.3438	77150.6561
77160.3438	713110.4490	713120.3670	718150.4749
718160.4749	719150.4749	719160.4749	8841.0
8890.2885	$8810-0.5674$	8890.2885	$8810-0.5674$
88890.2885	$8810-0.5674$	88130.3289	$8814-0.6707$
88130.3289	$8814-0.6707$	9941.0	9990.2885
$99810-0.5674$	9990.2885	$9910-0.5674$	9990.2885
$9910-0.5674$	99130.3289	$9914-0.6707$	99130.3289
9 9 14-0.6707	101041.0	101090.2885	$101010-0.5674$
101090.2885	1010 10-0.5674	101090.2885	1010 10-0.5674
1010130.3289	$101014-0.6707$	1010130.3289	1010 14-0.6707
111151.0	1111110.3680	$111112-0.7732$	1111110.3680
$111112-0.7732$	1111110.3680	$111112-0.7732$	1111150.3438
1111 16-0.6561	1111150.3438	1111 16-0.6561	121251.0
1212110.3680	1212 12-0.7732	1212110.3680	1212 12-0.7732
1212110.3680	1212 12-0.7732	1212150.3438	1212 16-0.6561
1212150.3438	1212 16-0.6561	131351.0	1313110.3680
$131312-0.7732$	1313110.3680	1313 12-0.7732	1313110.3680
1313 12-0.7732	1313150.3438	1313 16-0.6561	1313150.3438
$131316-0.6561$	141461.0	1414130.3289	1414 14-0.6707
1414130.3289	1414 14-0.6707	141490.3894	1414 10-0.7656
141490.3894	1414 10-0.7656	1414130.3289	1414 14-0.6707
151561.0	1515130.3289	$151514-0.6707$	1515130.3289
1515 14-0.6707	1515130.3289	$151514-0.6707$	151590.3894
$151510-0.7656$	151590.3894	$151510-0.7656$	161661.0
1616130.3289	$161614-0.6707$	1616130.3289	$161614-0.6707$
1616130.3289	1616 14-0.6707	161690.3894	$161610-0.7656$
161690.3894	1616 10-0.7656	171771.0	1717150.3438

1717 16-0.6561
1717 16-0.6561
1717 12-0.5884 1818150.3438 1818110.2801 191971.0 1919 16-0.6561 1919 12-0.5884 212181.0
1717150.3438
1717110.2801 181871.0 1818 16-0.6561 1818 12-0.5884 1919150.3438 1919150.3438 1919110.2801 222281.0

1717 16-0.6561 1717 12-0.5884 1818150.3438 1818150.3438 1818110.2801 1919 16-0.6561 1919 16-0.6561 1919 12-0.5884 -4
1717150.3438
1717110.2801

1818 16-0.6561
1818 16-0.6561
1818 12-0.5884 1919150.3438 1919110.2801 202081.0

CFC114
1117518511100
1,2-dichlorotetrafluoroethane december 1992

3.5	1.8	4.4	0.1	0.3	0.1
0.1	0.01	0.01	0.6	-0.06	0.4
-0.04	0.5	-0.05	1.1	-0.11	

12345
CFC114
12218174
6435
$\begin{array}{cccccc}123 & 456 & 8 & 91011121314151617 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\end{array}$
$\begin{array}{lll}1 & 1 & 11.0 \\ 1 & 1100.6381\end{array}$
$11130.2938 \quad 11120.7062$
$11110.3621 \quad 11120.7062$
11130.2938

13 13-0.3424
12100.6744

15 11-0.3225
14120.6514

17 13-0.3424
16120.6514
110120.4555
112120.4555
2221.0
22130.2403

23 13-0.3144
28110.3814
215130.2860
33120.5824
34160.6545
314120.4895
4431.0
44130.4113
410130.6186
416170.4755
55140.7534
56140.6624
511100.4526
518140.4255
66130.3990
66170.3455
612130.6186
619170.4755
77140.5824
713120.4897
719160.4755

8 111-0.7571
11110.3621
$\begin{array}{lll}1 & 1 & 130.3938\end{array}$
11130.2938
$1211-0.3225$
14 13-0.3424
1 613-0.3424
18110.5703
110130.3605
112130.3605
22100.7128
22120.7534
24120.6624
214120.4255
3331.0
33130.4113

3 4 17-0.3455
314130.7283
44120.6009
44160.6545
415120.4895
5521.0
55150.2403

5 615-0.3144
511110.3814
518150.2860
66140.5824
67160.6545
617140.4895
7731.0
77150.4113
713130.6186
719170.4755
88120.2938
11120.7062
11100.6381
11120.7062
13120.6514
15100.6744
17120.6514
19120.4555
111100.4807
113120.4555
22110.2873
22130.2403

24 13-0.3144
214130.2860
33120.6009
33160.6545
39120.4897
316160.4755
44130.3990
44170.3455
415130.7283
55100.7128
55140.7534
57140.6624
517140.4255
6631.0
66150.4113

67 17-0.3455
617150.7283
77120.6009
77160.6545
718140.4895
8841.0

8 813-0.5590

${ }_{8}^{8} 8120.2938$	$88813-0.5590$	88120.2403	$8813-0.5063$
88120.2403	$8813-0.5063$	9951.0	99120.2938
$9913-0.5590$	99120.2938	9 9 13-0.5590	99100.3621
$99111-0.7571$	99160.3455	9 917-0.6545	99120.4113
9 9 13-0.8666	101051.0	1010120.2938	1010 13-0.5590
1010120.2938	1010 13-0.5590	1010100.3621	1010 11-0.7571
1010160.3455	1010 17-0.6545	1010120.4113	1010 13-0.8666
111141.0	1111100.3621	$111111-0.7571$	1111120.2938
1111 13-0.5590	1111120.2938	1111 13-0.5590	1111140.2403
1111 15-0.5063	1111140.2403	1111 15-0.5063	121251.0
1212120.2938	$121213-0.5590$	1212120.2938	1212 13-0.5590
1212100.3621	1212 11-0.7571	1212140.4113	1212 15-0.8666
1212160.3455	1212 17-0.6545	131351.0	1313120.2938
1313 13-0.5590	1313120.2938	1313 13-0.5590	1313100.3621
1313 11-0.7571	1313140.4113	1313 15-0.8666	1313160.3455
1313 17-0.6545	141461.0	1414120.2403	1414 13-0.5063
1414120.2403	1414 13-0.5063	1414100.2873	1414 11-0.6008
1414120.3990	1414 13-0.7592	1414160.3455	1414 17-0.6545
151561.0	1515120.2403	1515 13-0.5063	1515120.2403
1515 13-0.5063	1515160.3455	1515 17-0.6545	1515120.2403 1515100.2873
1515 11-0.6008	1515120.3990	1515 13-0.7592	161671.0
1616160.3455	1616 17-0.6545	1616120.4113	1616 13-0.8666
1616120.4113	1616 13-0.8666	1616120.3990	1616 13-0.7592
1616120.3990	1616 13-0.7592	171761.0	1717140.2403
1717 15-0.5063	1717140.2403	1717 15-0.5063	1717160.3455
1717 17-0.6545	1717120.3990	1717 13-0.7592	1717100.2873
1717 11-0.6008	181861.0	1818140.2403	1818 15-0.5063
1818140.2403	1818 15-0.5063	1818160.3455	1818 17-0.6545
1818120.3990	1818 13-0.7592	1818100.2873	1818 11-0.6008
191971.0	1919160.3455	1919 17-0.6545	1919140.4113
1919 15-0.8666	1919140.4113	1919 15-0.8666	1919120.3990
1919 13-0.7592	1919120.3990	1919 13-0.7592	202081.0
212191.0	222291.0		

1120518311100
1,1-dichlorotetrafluoroethane december 1992

3.5	4.4	1.8	0.3	0.1	0.1
0.1	0.1	0.01	0.01	0.4	-0.04
0.6	-0.06	1.1	-0.11	0.5	-0.05
0.64	-0.064				

1113151719
CFC114a
12218202
117
1234567891011121314151617181920
$\begin{array}{rrrrrr}1295.0 & 1232.0 & 1110.0 & 943.0 & 735.0 & 590.0 \\ 507.0 & 399.0 & 311.0 & 265.0 & 200.0 & 1232.0\end{array}$ $\begin{array}{llllll}897.0 & 560.0 & 399.0 & 330.0 & 181.0 & 1232.0\end{array}$
1111.0
11140.3776
11120.2813
11120.2813

1 3 12-0.3299
1 512-0.3316
17 14-0.3309
19120.3540
11110.7024
11130.6224
11110.7187
12110.6638
14110.6638
16130.6647
18110.4496
110110.4496
11120.2976
11140.3776
11120.2813

12 12-0.3299
14 12-0.3299
1 614-0.3309
18120.3540
110120.3540
11130.6224
11110.7187
11110.7187
13110.6638
15110.6655
17130.6647
19110.4496
111110.4572

111120.3888	112130.4848	112140.5908	113130.4848
113140.5908	2221.0	22110.6130	22120.3870
22150.6674	22160.3333	22150.6674	22160.3333
23150.6674	23 16-0.3333	24150.6674	24 16-0.3333
28110.4871	28120.6186	214150.4717	214160.4717
215150.4717	215160.4717	3321.0	33110.6130
3 3 3 120.3870	33150.6674	33160.3333	33150.6674
33160.3333	34150.6674	3 4 16-0.3333	39110.4871
39120.6186	314150.4717	314160.4717	316150.4717
316160.4717	4421.0	44110.6130	44120.3870
44150.6674	44160.3333	44150.6674	44160.3333
410110.4871	410120.6186	415150.4717	415160.4717
416150.4717	416160.4717	5521.0	55110.6305
555120.3695	55170.5859	55180.4148	55170.5859
55180.4148	56170.6603	5 6 18-0.3262	57170.6603
5 718-0.3262	511110.4827	511120.5677	517170.4930
517180.7063	518170.4930	518180.7063	6631.0
66130.7099	66140.2900	66170.7441	66180.2566
66190.6674	66200.3333	67190.6674	67 20-0.3333
612130.4538	612140.3723	617170.4369	617180.3050
619190.4717	619200.4717	7731.0	77130.7099
77140.2900	77170.7441	77180.2566	77190.6674
77200.3333	713130.4538	713140.3723	718170.4369
718180.3050	719190.4717	719200.4717	8841.0
88110.2813	88 12-0.5659	88110.2813	88 12-0.5659
88110.2813	$8812-0.5659$	88150.3333	88 16-0.6674
88150.3333	$8816-0.6674$	9941.0	99110.2813
9 9 12-0.5659	99110.2813	$9912-0.5659$	99110.2813
9 9 12-0.5659	99150.3333	99 16-0.6674	99150.3333
$9916-0.6674$	101041.0	1010110.2813	1010 12-0.5659
1010110.2813	1010 12-0.5659	1010110.2813	1010 12-0.5659
1010150.3333	1010 16-0.6674	1010150.3333	1010 16-0.6674
111141.0	1111110.2976	1111 12-0.5972	1111130.3776
1111 14-0.7585	1111130.3776	$111114-0.7585$	1111170.4148
1111 18-0.8395	1111170.4148	$111118-0.8395$	121251.0
1212130.3776	1212 14-0.7585	1212130.3776	1212 14-0.7585
1212110.2976	1212 12-0.5972	1212170.2566	1212 18-0.5193
1212190.3333	1212 20-0.6674	131351.0	1313130.3776
1313 14-0.7585	1313130.3776	1313 14-0.7585	1313110.2976
1313 12-0.5972	1313170.2566	1313 18-0.5193	1313190.3333
1313 20-0.6674	141461.0	1414150.3333	1414 16-0.667
1414150.3333	1414 16-0.6674	1414110.3870	1414 12-0.7785
1414110.3870	1414 12-0.7785	1414150.3333	1414 16-0.6674
151561.0	1515150.3333	$151516-0.6674$	1515150.3333
$151516-0.6674$	1515110.3870	1515 12-0.7785	1515110.3870
$151512-0.7785$	1515150.3333	1515 16-0.6674	161661.0
1616150.3333	1616 16-0.6674	1616150.3333	1616 16-0.6674
1616150.3333	1616 16-0.6674	1616110.3870	1616 12-0.7785
1616110.3870	1616 12-0.7785	171771.0	1717170.4148
1717 18-0.8395	1717170.4148	1717 18-0.8395	1717190.3333
1717 20-0.6674	1717130.2900	1717 14-0.5826	1717110.3695
1717 12-0.7415	181871.0	1818170.4148	1818 18-0.8395
1818170.4148	1818 18-0.8395	1818190.3333	1818 20-0.6674
1818130.2900	1818 14-0.5826	1818110.3695	1818 12-0.7415
191981.0	1919190.3333	1919 20-0.6674	1919170.2566
1919 18-0.5193	1919170.2566	1919 18-0.5193	1919130.2900
1919 14-0.5826	1919130.2900	1919 14-0.5826	202091.0
2121101.0	22221010	19 14-0.5826	202091.0

1117418311100 chloropentafluoroethane december 1992

3.5					
0.1	4.4	1.8	0.3	0.1	0.1
-0.06	0.01	0.01	0.4	-0.04	0.6
3.4	1.1	-0.11	0.5	-0.05	

1234
cf2clcf3
12218172
117
1234567891011121314151617

1351.0	1224.0	1133.0	982.0	762.0	648.0
560.0	441.0	362.0	314.0	186.0	1241.0
1185.0	596.0	454.0	331.0	186.0	

185.0 596.0
11110.2950
11110.2726
11110.2726
$1311-0.3188$
1 513-0.3226
17 11-0.3450 19110.3537
111130.5672
113110.3612
22140.6545
23140.6545
28100.4835
215140.4755
33110.3727
33150.3455
39110.6087
316150.4755
44140.6545
410100.4835
416140.4755
55130.2883
55170.2459

57 17-0.3217
517170.2926
66100.6045
66160.5959
612100.4938
619140.4755
77110.4033
77150.3455
718170.7452
88100.2726
88100.2726
88140.3455

9 911-0.5778
9 911-0.5778
99 15-0.6545
1010100.2726
1010140.3455
111151.0

1111 11-0.5614
11120.6391
11100.7127
11100.7274
12100.6755
14100.6755
16100.6564
18100.4453
110100.4453
112100.4586
2221.0
22150.3455

2 3 15-0.3455
28110.6087
215150.4755
33140.6545
34140.6545
314140.4755
4421.0
44150.3455
410110.6087
416150.4755
55160.7709
56160.6778
511120.4530
518160.4354
66110.4033
66170.4209
612110.6269
619150.4755
77160.5959
713100.4938
719140.4755

8 811-0.5778
88 11-0.5778
8 815-0.6545
99100.2726
99140.3455
101041.0

1010 11-0.5778
1010 15-0.6545
1111120.3609
1111100.2950

CFC115
1000101000
0.1
-0.04
-0.05
0.1
0.6

.

1111 17-0.5181
1212100.2950
1212120.3609
1212140.3455

1313 11-0.5614
1313 13-0.7547
1313 15-0.6545
1414140.3455
1414100.3727
151561.0

1515 15-0.6545
1515 11-0.7898
1616140.3455
1616140.3455
1616100.3727

1717 17-0.5181
1717 15-0.6545
1717 13-0.6027
1818140.3455
1818120.2883
191961.0

1919 17-0.8868
1919 11-0.7674
212191.0
1111160.2459

1212 11-0.5614 1212 13-0.7547 1212 15-0.6545 1313100.2950 1313160.4209 141461.0 1414 15-0.6545 1414 11-0.7898 1515140.3455
1515140.3455
1515100.3727

1616 15-0.6545
1616 15-0.6545
1616 11-0.7898
1717160.2459
1717100.4033
181871.0

1818 15-0.6545
1818 13-0.6027
1919140.3455
1919160.4209
1919100.4033
222291.0

1111 17-0.5181
1212100.2950 1212160.4209 131341.0

1313 11-0.5614 1313 17-0.8868 1414140.3455 1414140.3455 1414100.3727 1515 15-0.6545 1515 15-0.6545 1515 11-0.7898 1616140.3455 1616100.3727 171771.0

1717 17-0.5181 1717 11-0.7674 1818160.2459 1818100.4033 1818160.2459 1919 15-0.6545 1919 17-0.8868 1919 11-0.7674 -4
121241.0

1212 11-0.5614
1212 17-0.8868
1313100.2950
1313120.3609
1313140.3455

1414 15-0.6545
1414 15-0.6545
1414 11-0.7898
1515140.3455
1515100.3727
161661.0

1616 15-0.6545
1616 11-0.7898
1717160.2459
1717140.3455
1717120.2883

1818 17-0.5181
1818 11-0.7674
1818 17-0.5181
1919160.4209
1919100.4033 202081.0

FC116
1000101000
119118211100
hexafluoroethane
december 1992

3.5	4.4	0.3	0.1	0.01	0.4
-0.04	1.1	-0.11			

4
cf3cf3
1221895
31266
123456789

1417.0808 .0	348.0 0.0	$1117.0 \quad 714.0$
1250.01250 .0	$619.0 \quad 619.0$	$372.0 \quad 372.0$
$1251.0 \quad 1251.0$	$523.0 \quad 523.0$	$216.0 \quad 216.0$
1111.0	1160.7187	1170.2813
1170.2813	1160.7187	1170.2813
1170.2813	1160.7187	1170.2813
1170.2813	1260.6665	1270.3278
13 7-0.3278	1460.6665	14 7-0.3278
$157-0.3278$	1660.6665	16 7-0.3278
17 7-0.3278	1860.4496	1870.3579
1970.3579	11060.4496	11070.3579
11170.3579	11260.4496	11270.3579
11370.3579	2221.0	2260.6181
2280.6633	2290.3362	2280.6633
2380.6633	23 9-0.3362	2480.6633
2860.4858	2870.6104	21480.4722
21580.4722	21590.4722	3321.0
3370.3819	3380.6633	3390.3362
3390.3362	3480.6633	34 9-0.3362
3970.6104	31480.4722	31490.4722
31690.4722	4421.0	4460.6181
4480.6633	4490.3362	4480.6633

41060.4858	41070.6104
41680.4722	41690.4722
5570.3819	5580.6633
5590.3362	5680.6633
57 9-0.3362	51160.4858
51790.4722	51880.4722
6660.6181	6670.3819
6680.6633	6690.3362
61260.4858	61270.6104
61980.4722	61990.4722
7770.3819	7780.6633
7790.3362	71360.4858
71890.4722	71980.4722
8860.2813	88 7-0.5720
8860.2813	88 7-0.5720
8880.3362	88 9-0.6633
99 7-0.5720	9960.2813
99 7-0.5720	9980.3362
9 9 9-0.6633	101031.0
101060.2813	1010 7-0.5720
101080.3362	1010 9-0.6633
111131.0	111160.2813
1111 7-0.5720	111160.2813
1111 9-0.6633	111180.3362
121260.2813	1212 7-0.5720
121260.2813	1212 7-0.5720
121280.3362	1212 9-0.6633
1313 7-0.5720	131360.2813
1313 7-0.5720	131380.3362
1313 9-0.6633	141441.0
141480.3362	1414 9-0.6633
141460.3819	1414 7-0.7766
151541.0	151580.3362
1515 9-0.6633	151560.3819
1515 7-0.7766	151580.3362
161680.3362	1616 9-0.6633
161680.3362	1616 9-0.6633
161660.3819	1616 7-0.7766
1717 9-0.6633	171780.3362
1717 9-0.6633	171760.3819
1717 7-0.7766	181841.0
181880.3362	1818 9-0.6633
181860.3819	1818 7-0.7766
191941.0	191980.3362
1919 9-0.6633	191960.3819
1919 7-0.7766	191980.3362
212151.0	222251.0

41580.4722
5521.0
5590.3362

5 6-0.3362
51170.6104
51890.4722
6680.6633
6780.6633
61780.4722
7721.0
7790.3362
71370.6104
71990.4722
8860.2813
8880.3362
9931.0

99 7-0.5720
9 9-0.6633
101060.2813
101060.2813
101080.3362

1111 7-0.5720
1111 7-0.5720
1111 9-0.6633
121260.2813
121280.3362
131331.0

1313 7-0.5720
1313 9-0.6633
141480.3362
141460.3819
141480.3362

1515 9-0.6633
1515 7-0.7766
1515 9-0.6633
161680.3362
161660.3819
171741.0

1717 9-0.6633
1717 7-0.7766
181880.3362
181880.3362
181860.3819

1919 9-0.6633
1919 7-0.7766
1919 9-0.6633
-4

HFC170

119218311100
ethane
february 1993

3.5	4.6	0.4	0.43	0.01	0.09
-0.009	0.4	-0.04			

23
ch3ch3
1221895
31266

123456			
2954.01388 .0	$995.0 \quad 289.0$	$2954.0 \quad 1379.0$	
$2969.0 \quad 2969.0$	1460.01460 .0	$1190.0 \quad 1190.0$	
2996.02996 .0	1486.01486 .0	$820.0 \quad 820.0$	
1111.0	1180.7770	1190.2229	180.7770
1190.2229	1180.7770	1190.2229	1180.7770
1190.2229	1180.7770	1190.2229	1180.7770
1190.2229	1280.6670	12 9-0.3087	1380.6670
13 9-0.3087	1480.6670	14 9-0.3087	580.6670
15 9-0.3087	1680.6670	16 9-0.3087	1780.6670
17 9-0.3087	1880.4162	1890.2581	1980.4162
1990.2581	11080.4162	11090.2581	11180.4162
11190.2581	11280.4162	11290.2581	11380.4162
11390.2581	2221.0	2280.5726	2290.4274
2260.6537	$\begin{array}{llll}2 & 2 & 70.3463\end{array}$	2260.6537	2270.3463
2360.6537	23 7-0.3463	2460.6537	24 7-0.3463
2880.4947	2890.7978	21460.4758	21470.4758
21560.4758	21570.4758	$\begin{array}{ll}3 & 311.0\end{array}$	3380.5726
3390.4274	3360.6537	3 3 70.3463	3360.6537
3370.3463	3460.6537	34 7-0.3463	3980.4947
3990.7978	31460.4758	31470.4758	31660.4758
31670.4758	4421.0	4480.5726	4490.4274
4460.6537	4470.3463	4460.6537	4470.3463
41080.4947	41090.7978	41560.4758	41570.4758
41660.4758	41670.4758	5521.0	5580.5726
$\begin{array}{llll}5 & 5 & 90.4274\end{array}$	5560.6537	5570.3463	5560.6537
5570.3463	5660.6537	$567-0.3463$	5760.6537
$577-0.3463$	51180.4947	51190.7978	51760.4758
51770.4758	51860.4758	51870.4758	6621.0
6680.5726	6690.4274	6660.6537	6670.3463
6660.6537	6670.3463	6760.6537	67 7-0.3463
61280.4947	61290.7978	61760.4758	61770.4758
61960.4758	61970.4758	7721.0	7780.5726
7790.4274	7760.6537	7770.3463	7760.6537
7770.3463	71380.4947	71390.7978	71860.4758
71870.4758	71960.4758	71970.4758	8831.0
8880.2229	88 9-0.4818	8880.2229	88 9-0.4818
8880.2229	88 9-0.4818	8860.3463	88 7-0.6537
8860.3463	88 7-0.6537	9931.0	9980.2229
9 9 9-0.4818	9980.2229	99 9-0.4818	9980.2229
$999-0.4818$	9960.3463	99 7-0.6537	9960.3463
9 9 7-0.6537	101031.0	101080.2229	1010 9-0.4818
101080.2229	1010 9-0.4818	101080.2229	1010 9-0.4818
101060.3463	1010 7-0.6537	101060.3463	1010 7-0.6537
111131.0	111180.2229	1111 9-0.4818	1111880.2229
1111 9-0.4818	111180.2229	1111 9-0.4818	111160.3463
1111 7-0.6537	111160.3463	1111 7-0.6537	121231.0
121280.2229	1212 9-0.4818	121280.2229	1212 9-0.4818
121280.2229	1212 9-0.4818	121260.3463	1212 7-0.6537
121260.3463	1212 7-0.6537	131331.0	131380.2229
1313 9-0.4818	131380.2229	1313 9-0.4818	131380.2229
1313 9-0.4818	131360.3463	1313 7-0.6537	131360.3463
1313 7-0.6537	141441.0	141460.3463	1414 7-0.6537
141460.3463	1414 7-0.6537	141480.4274	1414 9-0.9235
141480.4274	1414 9-0.9235	141460.3463	1414 7-0.6537
151541.0	151560.3463	1515 7-0.6537	151560.3463
1515 7-0.6537	151580.4274	1515 9-0.9235	151580.4274
1515 9-0.9235	151560.3463	1515 7-0.6537	161641.0

161660.3463	1616 7-0.6537	161660.3463	1616 7-0.6537
161660.3463	1616 7-0.6537	161680.4274	1616 9-0.9235
161680.4274	1616 9-0.9235	171741.0	171760.3463
1717 7-0.6537	171760.3463	1717 7-0.6537	171760.3463
1717 7-0.6537	171780.4274	1717 9-0.9235	171780.4274
1717 9-0.9235	181841.0	181860.3463	1818 7-0.6537
181860.3463	1818 7-0.6537	181860.3463	1818 7-0.6537
181880.4274	1818 9-0.9235	181880.4274	1818 9-0.9235
191941.0	191960.3463	1919 7-0.6537	191960.3463
1919 7-0.6537	191980.4274	1919 9-0.9235	191980.4274
1919 9-0.9235	191960.3463	1919 7-0.6537	202051.0
212151.0	222251.0	-4	

HFC161
1000101000
1117318211100
fluoroethane february 1993

3.5	4.6	4.4	0.14	0.3	0.43
0.1	0.01	0.01	0.09	-0.009	0.4
-0.04	0.06	-0.006	0.4	-0.04	
16					

51416 ch3cfh2
12218172
117
1234567891011121314151617

3003.02941 .0	$2915.0 \quad 1479.0$	1449.0139	
1365.01108 .0	1048.08880 .0	$415.0 \quad 300$	
3003.01449 .0	1277.01048 .0	810.024	
1111.0	11120.7690	11130.2310	11120.7690
11130.2310	11120.7690	11130.2310	11120.7856
11130.2144	11120.7856	11130.2144	11160.6928
$\begin{array}{lllllllll}1 & 1 & 17 & 0.3073 \\ 1 & 3 & 13\end{array}$	12120.6560	$1213-0.3189$	13120.6560
$\begin{array}{ll}1 & 313-0.3189 \\ 1 & 5 \\ 17-0.3308\end{array}$	14120.6560	14 13-0.3189	15160.6679
$1517-0.3308$	16120.6837	$1613-0.2946$	17120.6837
$1713-0.2946$	18120.4215	18130.2604	19120.4215
19130.2604	110120.4215	110130.2604	111160.4614
111170.4132	112120.4104	112130.2598	113120.4104
113130.2598	2221.0	22120.5596	22130.4404
22100.6575	22110.3370	22100.6575	22110.3370
23100.6575	23 11-0.3370	24100.6575	$2411-0.3370$
28120.4964	28130.8035	214100.4708	214110.4708
215100.4708	215110.4708	3 3	314120.4596
33130.4404	33100.6575	33110.3370	33100.6575
33110.3370	34100.6575	3 4 11-0.3370	39120.4964
39130.8035	314100.4708	314110.4708	316100.4708
316110.4708	4421.0	44120.5596	44130.4404
44100.6575	44110.3370	44100.6575	44110.3370
410120.4964	410130.8035	415100.4708	415110.4708
416100.4708	416110.4708	5531.0	55160.6439
${ }_{5} 55170.3561$	55140.7239	${ }_{5}^{5} 5150.2767$	55140.7239
${ }_{5} 55150.2767$	56140.6308	${ }^{5} 5615-0.3533$	$\begin{array}{r}5 \\ 5 \\ \hline\end{array} 140.6308$
${ }_{5} 5715-0.3533$	511160.4789	511170.5347	517140.4476
517150.3054	518140.4476	518150.3054	6621.0
66120.5950	66130.4049	66140.5496	66150.4510
66100.6611	66110.3388	67100.6611	$6711-0.3388$
612120.4909	612130.7752	617140.4979	617150.7295
619100.4733	619110.4733	7721.0	77120.5950
77130.4049	77140.5496	77150.4510	77100.6611

77110.3388	713120.4909	713130.7752	718140.4979
718150.7295	719100.4733	719110.4733	8841.0
88120.2310	$8813-0.4751$	88120.2310	88 13-0.4751
88120.2310	$88813-0.4751$	88100.3370	8 8 11-0.6575
88100.3370	$8811-0.6575$	9941.0	99120.2310
9 9 13-0.4751	99120.2310	$9913-0.4751$	99120.2310
9 9 13-0.4751	99100.3370	9 911-0.6575	99100.3370
9 9 11-0.6575	101041.0	1010120.2310	1010 13-0.4751
1010120.2310	1010 13-0.4751	1010120.2310	1010 13-0.4751
1010100.3370	1010 11-0.6575	1010100.3370	$101011-0.6575$
111151.0	1111160.3073	$111117-0.6204$	1111120.2144
1111 13-0.4975	1111120.2144	$111113-0.4975$	1111140.2767
1111 15-0.4940	1111140.2767	1111 15-0.4940	121241.0
1212120.2144	1212 13-0.4975	1212120.2144	1212 13-0.4975
1212160.3073	1212 17-0.6204	1212140.4510	1212 15-0.8053
1212100.3388	1212 11-0.6611	131341.0	1313120.2144
1313 13-0.4975	1313120.2144	1313 13-0.4975	1313160.3073
1313 17-0.6204	1313140.4510	1313 15-0.8053	1313100.3388
1313 11-0.6611	141461.0	1414100.3370	1414 11-0.6575
1414100.3370	1414 11-0.6575	1414120.4404	1414 13-0.9058
1414120.4404	1414 13-0.9058	1414100.3370	1414 11-0.6575
151561.0	1515100.3370	1515 11-0.6575	1515100.3370
1515 11-0.6575	1515100.3370	1515 11-0.6575	1515120.4404
1515 13-0.9058	1515120.4404	1515 13-0.9058	161661.0
1616100.3370	1616 11-0.6575	1616100.3370	1616 11-0.6575
1616100.3370	$161611-0.6575$	1616120.4404	1616 13-0.9058
1616120.4404	1616 13-0.9058	171771.0	1717140.2767
1717 15-0.4940	1717140.2767	1717 15-0.4940	1717100.3388
1717 11-0.6611	1717120.4049	1717 13-0.9397	1717160.3561
1717 17-0.7190	181871.0	1818140.2767	1818 15-0.4940
1818140.2767	1818 15-0.4940	1818100.3388	1818 11-0.6611
1818120.4049	1818 13-0.9397	1818160.3561	1818 17-0.7190
191961.0	1919100.3388	1919 11-0.6611	1919140.4510
1919 15-0.8053	1919140.4510	1919 15-0.8053	1919120.4049
1919 13-0.9397	1919120.4049	1919 13-0.9397	202081.0
212191.0	222291.0	-4	
HFC152			
111721821	1100 100	0101000	
1,2-difluoroethane february 1993		010100	
3.5	4.4	0.3	$0.14 \quad 0.1$
0.43	$0.01 \quad 0.01$	0.4	-0.04
-0.04	$0.06-0.006$	0.09	-0.009
1012			
CFH2CFH2			
12218174			
6435			
1234567891011121314151617			
2962.01416 .0	$1079.0 \quad 1049.0$	$858.0 \quad 804.0$	
2994.01415 .0	$320.0 \quad 0.0$	2990.01285 .0	
$450.0 \quad 2951.0$	$1376.0 \quad 1065.0$	897.0652 .0	
1111.0	11100.6990	11110.3011	
11130.2274	11120.7726	11130.2274	$\begin{array}{llll}1 & 1 & 10 & 0.6990\end{array}$
11110.3011	11120.7726	$\begin{array}{llllll}1 & 1 & 130.2274\end{array}$	11120.7726
11130.2274	12100.6727	$1211-0.3258$	13120.6682
$1313-0.3098$	14120.6682	$1413-0.3098$	$\begin{array}{ll}1 \\ 1 & 5100.6727\end{array}$
$1511-0.3258$	16120.6682	1 6 13-0.3098	17120.6682

17 13-0.3098
19130.2661
111110.4080 113130.2661
22140.7298
23140.6462
28100.4778
215140.4434
33130.4221
33170.3413
39130.7781
316170.4742
44140.5722
410120.4939
416160.4742
55110.3525
55150.2694

57 15-0.3391
517150.3118
66120.5779
66140.5722
612120.4939
619160.4742
77130.4221
77170.3413
718150.7028
88100.3011
88120.2274
88140.2694

9 913-0.4905
9 11-0.6217
9 915-0.8136
1010120.2274 1010160.3413
111141.0

1111 13-0.4905
1111 15-0.5133
1212120.2274
1212100.3011
1212140.4270

1313 13-0.4905
1313 11-0.6217
1313 15-0.8136
1414140.2694
1414120.4221
151561.0

1515 15-0.5133 15 15 13-0.9104 1616160.3413 1616140.4270 1616120.4221

1717 15-0.5133
1717 11-0.7280
1717 17-0.6586
1818140.2694
1818120.4221
191971.0

1919 15-0.8136
18100.4587
110120.4192
112120.4192
2221.0
22150.2694

2 3 15-0.3391
28110.5372
215150.3118
33140.5722
34160.6586
314140.4943
4431.0
44150.4270
410130.7781
416170.4742
55140.7298
56140.6462
511100.4778
518140.4434
66130.4221
66150.4270
612130.7781
619170.4742
77140.5722
713120.4939
719160.4742

88 11-0.6217
8 8 13-0.4905
8 815-0.5133
99120.2274
99160.3413
101051.0

1010 13-0.4905
1010 17-0.6586
1111100.3011
1111120.2274
1111140.2694

1212 13-0.4905
1212 11-0.6217
1212 15-0.8136
1313120.2274
1313160.3413
141461.0

1414 15-0.5133
1414 13-0.9104
1515140.2694
1515100.3525
1515160.3413

1616 17-0.6586
1616 15-0.8136
1616 13-0.9104
1717140.2694
1717120.4221
181861.0

1818 15-0.5133 1818 13-0.9104 1919160.3413 1919140.4270
18110.4080
110130.2661
112130.2661
22100.6475
22140.7298
24140.6462
214140.4434
3331.0
33150.4270

3 4 17-0.3413
314150.7028
44120.5779
44160.6586
415140.4943
5521.0
55150.2694

5 6 15-0.3391
511110.5372
518150.3118
67160.6586
66160.6586
617140.4943
7731.0
77150.4270
713130.7781
719170.4742
88120.2274
88140.2694
951.0

9 913-0.4905
9 917-0.6586
1010120.2274
1010100.3011
1010140.4270

1111 11-0.6217
1111 13-0.4905
1111 15-0.5133
1212120.2274
1212160.3413
131351.0

1313 13-0.4905
1313 17-0.6586
1414140.2694
1414100.3525
1414160.3413

1515 15-0.5133
1515 11-0.7280
1515 17-0.6586
1616140.4270
1616120.4221
171761.0

1717 15-0.5133
1717 13-0.9104
1818140.2694
1818100.3525
1818160.3413

1919 17-0.6586
1919 15-0.8136
19120.4192
111100.4587
113120.4192
22110.3525
22150.2694

24 15-0.3391
214150.3118
33120.5779
33160.6586
39120.4939
316160.4742
44130.4221
44170.3413
415150.7028
55100.6475
55140.7298
57140.6462
517140.4434
6631.0

67 17-0.3413
66170.3413
617150.7028
77120.5779
77160.6586
718140.4943
8841.0

8 813-0.4905
8 8 15-0.5133
99120.2274
99100.3011
99140.4270

1010 13-0.4905
1010 11-0.6217
1010 15-0.8136
1111120.2274
1111140.2694
121251.0

1212 13-0.4905
1212 17-0.6586
1313120.2274
1313100.3011
1313140.4270

1414 15-0.5133
1414 11-0.7280
1414 17-0.6586
1515140.2694
1515120.4221
161671.0

1616 15-0.8136
1616 13-0.9104
1717140.2694
1717100.3525
1717160.3413

1818 15-0.5133
1818 11-0.7280
1818 17-0.6586
1919140.4270
1919120.4221

1120118211100
2,2-difluoroethane february 1993

3.5	4.6	4.4	0.14	0.3	0.43
0.1	0.1	0.01	0.01	0.4	-0.04
0.4	-0.04	0.09	-0.009	0.06	-0.006
1.1	-0.11				

19
CH3CHF2
12218202
117
1234567891011121314151617181920

3018.0	2978.0	2960.0	1460.0	1414.0	1372.0
1143.0	1129.0	868.0	571.0	470.0	3001.0
1460.0	1360.0	1171.0	930.0	383.0	222.0

1111.0
11140.2896
11120.2326
11120.2326

1 3 12-0.3256
15 12-0.3171
17 14-0.3316
19120.2541
111120.2535
113140.3702
22150.6727
23150.6727
28110.4981
215150.4693
33120.4559
33160.3274
39120.8281
316160.4693
44150.6727
410110.4981
416150.4693
55120.4439
55180.4020

5 718-0.3287
517180.6626
66130.6203
66190.6636
612130.4853
619190.4725
77140.3797
77200.3364
718180.3278
88110.2326
88110.2326
88150.3274

9 12-0.4616
9 9 12-0.4616
9 916-0.6727
1010110.2326
11110.7735
11130.7103
11110.7674
12110.6462
14110.6462
16130.6638
18110.4225
110110.4225
112130.4536
2221.0
22160.3274

23 16-0.3274
28120.8281
215160.4693
33150.6727
34150.6727
314150.4693
4421.0
44160.3274
410120.8281
416160.4693
55170.5975
56170.6607
511110.4968
518170.4901
66140.3797
66200.3364
612140.5946
619200.4725
77170.7306
713130.4853
719190.4725

8 12-0.4616
8 812-0.4616
8 16-0.6727
99110.2326
99150.3274
101041.0 1010 12-0.4616
$383.0 \quad 222.0$
$11120.2265 \quad 11130.7103$
$11140.2896 \quad 11110.7674$
$11120.2326 \quad 11110.7674$
$1212-0.3256 \quad 13110.6462$
$1412-0.3256 \quad 15110.6558$
$1614-0.3316 \quad 17130.6638$
$18120.2541 \quad 19110.4225$
$110120.2541 \quad 111110.4186$
$112140.3702 \quad 113130.4536$
$22110.5442 \quad 22120.4559$
$22150.6727 \quad 22160.3274$
$24150.6727 \quad 2416-0.3274$
$214150.4693 \quad 214160.4693$
3321.0
33160.3274

3 4 16-0.3274
314160.4693
44110.5442
44150.6727
415150.4693
5521.0
55180.4020

5 618-0.3287
511120.8204
518180.6626
66170.7306
67190.6636
617170.4432
7731.0
77180.2689
713140.5946
719200.4725
88110.2326
88150.3274
9941.0

9 12-0.4616
9 916-0.6727
1010110.2326
1010110.2326
33110.5442
33150.6727
39110.4981
316150.4693
44120.4559
44160.3274
415160.4693
55110.5561
55170.5975
57170.6607
517170.4901
6631.0
66180.2689

67 20-0.3364
617180.3278
77130.6203
77190.6636
718170.4432
8841.0

88 12-0.4616
8 8 16-0.6727
99110.2326
99110.2326
99150.3274

1010 12-0.4616
1010 12-0.4616
1010150.3274
111141.0

1111 14-0.5797
1111 18-0.8079
1212130.2896
1212110.2265
1212190.3364

1313 14-0.5797
1313 12-0.4684
1313 20-0.6636
1414150.3274
1414110.4559
151561.0

1515 16-0.6727
1515 12-0.9047
1616150.3274
1616150.3274
1616110.4559

1717 18-0.8079
1717 20-0.6636
1717 12-0.9182
1818170.4020
1818130.3797
191981.0

1919 18-0.5404 1919 14-0.7600 2121101.0

1010 16-0.6727 1111110.2265 1111130.2896 1111170.4020 1212 14-0.5797 1212 12-0.4684 1212 20-0.6636 1313130.2896 1313170.2689 141461.0 1414 16-0.6727 1414 12-0.9047 1515150.3274 1515110.4559 1515150.3274 1616 16-0.6727 1616 16-0.6727 1616 12-0.9047 1717170.4020 1717130.3797 181871.0 1818 18-0.8079 1818 14-0.7600 1919190.3364 1919170.2689 1919130.3797 2222101.0
1010150.3274 1111 12-0.4684 1111 14-0.5797 1111 18-0.8079 1212130.2896 1212170.2689 131351.0

1313 14-0.5797 1313 18-0.5404 1414150.3274 1414110.4559 1414150.3274 1515 16-0.6727 15 15 12-0.9047 1515 16-0.6727 1616150.3274 1616110.4559 171771.0 1717 18-0.8079 1717 14-0.7600 1818170.4020 1818190.3364 1818110.4439 1919 20-0.6636 1919 18-0.5404 1919 14-0.7600 -4

1010 16-0.6727 1111130.2896 1111170.4020 121251.0 1212 14-0.5797 1212 18-0.5404 1313130.2896 1313110.2265 1313190.3364 1414 16-0.6727 1414 12-0.9047 1414 16-0.6727 1515150.3274 1515110.4559 161661.0 1616 16-0.6727 1616 12-0.9047 1717170.4020 1717190.3364 1717110.4439 1818 18-0.8079 1818 20-0.6636 1818 12-0.9182 1919170.2689 1919130.3797 202091.0

HFC143
1000101000
1121318211100
1,1,2-trifluoroethane february 1993

3.5	4.6
0.1	0.1
-0.04	0.4
-0.006	1.1

678
CFH2CF2H 12218211 18
123456789101112131415161718192021 $\begin{array}{llllll}3005.0 & 2986.0 & 2978.0 & 1465.0 & 1433.0 & 1379.0\end{array}$ $1319.0 \quad 1249.0$ $905.0 \quad 577.0$
1111.0
11150.3023
11130.2359
11150.2953

13 13-0.3253
1 515-0.3351
17 13-0.3253
19130.2617
111150.3933
113130.2617
22160.7567
23160.7567
28120.4973
215180.4838
$\begin{array}{llll}1152.0 & 1125.0 & 1076.0 & 0.0\end{array}$ $\begin{array}{llll}476.0 & 426.0 & 247.0 & 117.0\end{array}$ 11140.6977 11120.7640 11120.7640 12120.6492
14140.6469
16140.6623
18120.4246
110140.4486
112140.4593
2221.0
22170.2432

2 3 17-0.2432
28130.8069
215190.6866
11150.3023
11130.2359
11130.2359

12 13-0.3253
$1415-0.3273 \quad 15140.6623$
1 615-0.3351 17120.6492
$18130.2617 \quad 19120.4246$
110150.3842
112150.3933
22120.5516
22180.5237
24180.5975
214160.4290
3321.0
13120.6492
11140.6977
11120.7640
11140.6815
111140.4593
113120.4246
22130.4484
22190.4470

24 19-0.3594
214170.4290
3120.5516

$\begin{array}{llll}3 & 3130.4484\end{array}$	33160.7567	33170.2432	33180.5237
33190.4470	34180.5975	$3419-0.3594$	39120.4973
39130.8069	314160.4290	314170.4290	316180.4838
316190.6866	4431.0	44140.6141	44150.3628
44180.6818	44190.2889	44180.6818	44190.2889
410140.4720	410150.5511	415180.4438	415190.3127
416180.4438	416190.3127	5 51	55140.6287
55150.3713	55200.6454	55210.3547	55180.7462
55190.2516	56200.6454	5 621-0.3547	57180.6454
5 7 19-0.3547	511140.4832	511150.5641	517200.4784
517210.4784	518180.4333	518190.3146	6631.0
66140.6287	66150.3713	66200.6454	66210.3547
66180.7462	66190.2516	67180.6738	$6719-0.3130$
612140.4832	612150.5641	617200.4784	617210.4784
619180.4333	619190.3146	7721.0	77120.5516
77130.4484	77180.6085	77190.3893	77180.6085
77190.3893	713120.4973	713130.8069	718180.4867
718190.6704	719180.4867	719190.6704	8841.0
88120.2359	8 813-0.4709	88140.2953	88 15-0.5837
88120.2359	$8813-0.4709$	88160.2492	$8817-0.7567$
88180.4470	8 8 19-0.7432	9941.0	99120.2359
9 9 13-0.4709	99140.2953	9 915-0.5837	99120.2359
$9913-0.4709$	99180.4470	$9919-0.7432$	99160.2432
$9917-0.7567$	101051.0	1010140.2953	1010 15-0.5837
1010120.2359	1010 13-0.4709	1010120.2359	1010 13-0.4709
1010180.2889	1010 19-0.4804	1010180.2889	1010 19-0.4804
111151.0	1111140.3023	$111115-0.5975$	1111140.3023
1111 15-0.5975	1111120.2359	1111 13-0.4709	1111200.3547
1111 21-0.6454	1111180.2516	$111119-0.5417$	121251.0
1212140.3023	1212 15-0.5975	1212120.2359	1212 13-0.4709
1212140.3023	1212 15-0.5975	1212200.3547	1212 21-0.6454
1212180.3893	1212 19-0.8381	131341.0	1313120.2359
1313 13-0.4709	1313140.3023	1313 15-0.5975	1313140.3093
1313 15-0.5975	1313180.3893	1313 19-0.8381	1313180.3893
1313 19-0.8381	141461.0	1414160.3547	1414 17-0.6454
1414180.4470	1414 19-0.7432	1414120.4484	1414 13-0.8949
1414120.4484	1414 13-0.8949	1414180.4470	1414 19-0.7432
151571.0	1515180.4470	1515 19-0.7432	1515160.2432
1515 17-0.7567	1515180.2889	15 15 19-0.4804	1515120.4484
1515 13-0.8949	1515140.3628	1515 15-0.7170	161671.0
1616180.4470	1616 19-0.7432	1616160.2432	1616 17-0.7567
1616180.2889	1616 19-0.4804	1616120.4484	1616 13-0.8949
1616140.3628	$161615-0.7170$	171781.0	1717200.3547
1717 21-0.6454	1717180.2516	1717 19-0.5417	1717180.2516
1717 19-0.5417	1717140.3713	1717 15-0.7340	1717140.3713
1717 15-0.7340	181871.0	1818180.2516	1818 19-0.5417
1818200.3547	1818 21-0.6454	1818180.3893	1818 19-0.8381
1818120.4484	1818 13-0.8949	1818140.3713	1818 15-0.7340
191971.0	1919180.2516	1919 19-0.5417	1919200.3547
1919 21-0.6454	1919180.3893	1919 19-0.8381	1919140.3713
1919 15-0.7340	1919120.4484	1919 13-0.8949	202091.0
2121101.0	2222111.0		202091.0

HFC143a

1000101000
1116218211100 1,1,1-trifluoroethane february 1993 $3.5 \quad 4.4$
4.6
0.3
0.14
0.1

0.43	$0.01 \quad 0.4$	-0.04	$0.4-0.04$
1.1	$\begin{array}{ll}-0.11 & 0.09\end{array}$	-0.009	$0.4-0.04$
$\begin{gathered} 46 \\ \text { cf3ch3 } \end{gathered}$			
12218163			
5121			
12345678	910111213		
2975.01408 .0	1280.0830 .0	602.03035 .0	
$3035.0 \quad 1443.0$	$1443.0 \quad 1233.0$	$1233.0 \quad 970.0$	
970.0541 .0	$541.0 \quad 365.0$	$365.0 \quad 220.0$	
1111.0	11110.7673	11120.2327	11110.7673
11120.2327	111110.7673	11120.2327	$\begin{array}{llll}1 & 1 & 90.7226\end{array}$
11100.2783	$\begin{array}{lll}1 & 1 & 90.7226\end{array}$	11100.2783	$\begin{array}{lll}1 & 1 & 90.7226\end{array}$
11100.2783	1290.6776	$1210-0.3189$	1390.6776
$1310-0.3189$	1490.6776	14 10-0.3189	15110.6421
$1512-0.3281$	16110.6421	1 612-0.3281	17110.6421
$1712-0.3281$	1890.4484	18100.3669	1990.4484
19100.3669	11090.4484	110100.3669	111110.4225
111120.2507	112110.4225	112120.2507	113110.4225
113120.2507	2221.0	2290.6354	22100.3655
2 2 130.6537	22140.3463	22130.6537	2 2 2140.3463
23130.6537	23 14-0.3463	24130.6537	24 14-0.3463
2890.4819	28100.5890	214130.4758	214140.4758
215130.4758	215140.4758	$\begin{array}{llll}3 & 3 & 21.0\end{array}$	3390.6354
3 3 3 100.3655	33130.6537	33140.3463	33130.6537
33140.3463	34130.6537	$3414-0.3463$	3990.4819
39100.5890	314130.4758	314140.4758	316130.4758
316140.4758	4421.0	4490.6354	44100.3655
44130.6537	44140.3463	44130.6537	44140.3463
41090.4819	410100.5890	415130.4758	415140.4758
416130.4758	416140.4758	5531.0	55110.5373
5 5 5120.4627	55150.6759	${ }^{5} 5160.3241$	${ }_{5} 55150.6759$
55160.3241	56150.6759	5 6 16-0.3241	57150.6759
5 5 716-0.3241	511110.4986	511120.8402	517150.4680
517160.4680	518150.4680	518160.4680	6631.0
66110.5373	66120.4627	66150.6759	6631.0 66160.3241
66150.6759	66160.3241	67150.6759	6 6 1600.3241
612110.4986	612120.8402	617150.4680	617160.4680
619150.4680	619160.4680	7731.0	77110.5373
77120.4627	77150.6759	77160.3241	77150.6759
77160.3241	713110.4986	713120.8402	718150.4680
718160.4680	719150.4680	719160.4680	8841.0
8890.2783	$8810-0.5912$	8890.2783	$8810-0.5912$
88900.2783	$8810-0.5912$	88130.3463	$8814-0.6537$
88130.3463	$8814-0.6537$	9941.0	89 99 9
9 9 10-0.5912	9990.2783	$9910-0.5912$	99990.2783 99
$9910-0.5912$	99130.3463	$9914-0.6537$	99130.3463
$9914-0.6537$	101041.0	101090.2783	$101010-0.5912$
101090.2783	1010 10-0.5912	101090.2783	$10101010-0.5912$
1010130.3463	1010 14-0.6537	1010130.3463	1010 14-0.6537
	1111110.2327	$111112-0.4553$	1111110.2327
$111112-0.4553$	1111110.2327	1111 12-0.4553	1111150.3241
$111116-0.6759$	1111150.3241	1111 16-0.6759	121251.0
1212110.2327	1212 12-0.4553	1212110.2327	1212 12-0.4553
1212110.2327	1212 12-0.4553	1212150.3241	1212 16-0.6759
1212150.3241	1212 16-0.6759	131351.0	1313110.2327
$131312-0.4553$	1313110.2327	1313 12-0.4553	1313110.2327
1313 12-0.4553	1313150.3241	1313 16-0.6759	1313150.3241

B40

1313 16-0.6759
1414130.3463 141490.3655
151561.0

1515 14-0.6537
1515 10-0.7765
1616130.3463
1616130.3463
161690.3655

1717 16-0.6759
1717 16-0.6759
1717 12-0.9054
1818150.3241
1818110.4627
191971.0

1919 16-0.6759
1919 12-0.9054
212181.0
141461.0

1414 14-0.6537
1414 10-0.7765
1515130.3463
1515130.3463
151590.3655

1616 14-0.6537
1616 14-0.6537
1616 10-0.7765
1717150.3241
1717110.4627
181871.0

1818 16-0.6759
1818 12-0.9054
1919150.3241
1919150.3241
1919110.4627
222281.0
1414130.3463
141490.3655
1414130.3463

1515 14-0.6537
1515 14-0.6537
1515 10-0.7765
1616130.3463
161690.3655
171771.0

1717 16-0.6759
1717 12-0.9054
1818150.3241
1818150.3241
1818110.4627

1919 16-0.6759
1919 16-0.6759
1919 12-0.9054 -4

1414 14-0.6537 1414 10-0.7765 1414 14-0.6537 1515130.3463 151590.3655 161661.0 1616 14-0.6537 1616 10-0.7765 1717150.3241 1717150.3241 1717110.4627 1818 16-0.6759 1818 16-0.6759 1818 12-0.9054 1919150.3241 1919110.4627 202081.0

HFC134
1117218211100
1,1,2,2-tetrafluoroethane february 1993

3.5	4.6	4.4	0.14	0.3	$0.1-$
0.1	0.01	0.01	0.4	-0.04	0.4
-0.04	0.06	-0.006	1.1	-0.11	

316
CF2HCF2H
12218174
6435
1234567891011121314151617
$\begin{array}{rrrrrr}2995.0 & 1442.0 & 1149.0 & 1106.0 & 625.0 & 362.0 \\ 1330.0 & 1136.0 & 212.0 & 82.0 & 1365.0 & 1081.0\end{array}$

480.0	2995.0	1320.0	1125.0	541.0	414.0

1111.0	11100.7727	11110.2273	20.6958
1130.3042	11120.6958	11130.3042	11100.7727
1110.2273	11120.6958	11130.3042	11120.6958
1130.3042	12100.6611	$1211-0.3142$	13120.6544
$313-0.3420$	14120.6544	14 13-0.3420	15100.6611
$511-0.3142$	16120.6544	$1613-0.3420$	17120.6544
7 13-0.3420	18100.4191	18110.2593	19120.4601
9130.3848	110120.4601	110130.3848	111100.4191
111110.2593	112120.4601	112130.3848	113120.4601
113130.3848	2221.0	22100.5656	22110.4344
22140.6142	22150.3852	22140.6142	22150.3852
23140.6763	23 15-0.3133	24140.6763	24 15-0.3133
28100.4957	28110.8010	214140.4864	214150.6584
215140.4864	215150.6584	3331.0	33120.6154
33130.3846	33140.7446	33150.2548	33160.6487
3 3 3 170.3513	34160.6487	$3417-0.3513$	39120.4865
39130.5817	314140.4356	314150.3218	316160.4774
316170.4774	4431.0	44120.6154	44130.3846
44140.7446	44150.2548	44160.6487	44170.3513
410120.4865	410130.5817	415140.4356	415150.3218
416160.4774	416170.4774	5521.0	55100.5656
55110.4344	55140.6142	55150.3852	55140.6142
55150.3852	56140.6763	5 615-0.3133	57140.6763
57 15-0.3133	511100.4957	511110.8010	517140.4864

517150.6584
66120.6154
66160.6487
612120.4865
619160.4774
77130.3846
77170.3513
718150.3218
88100.2273
88120.3042
88140.3852

9 13-0.5819
9 911-0.4782
9 915-0.5500
1010120.3042
1010160.3513
111141.0

1111 13-0.5819
1111 15-0.8315
1212120.3042
1212100.2273
1212160.3513

1313 13-0.5819
13 13 11-0.4782
1313 17-0.6487
1414140.3852
1414120.3846
151561.0

1515 15-0.8315
1515 11-0.9140
1616160.3513 1616140.2548 1616120.3846

1717 15-0.8315
1717 17-0.6487
17 17 11-0.9140
1818140.3852
1818120.3846
191971.0

1919 15-0.5500
1919 13-0.7358
212191.0
518140.4864 66130.3846 66170.3513 612130.5817 619170.4774 77140.7446 713120.4865 719160.4774

8 111-0.4782
88 13-0.5819
8 815-0.8315
99120.3042 99160.3513 101051.0 1010 13-0.5819 1010 17-0.6487 1111100.2273 1111120.3042 1111140.3852 1212 13-0.5819 1212 11-0.4782 1212 17-0.6487 1313120.3042 1313140.2548 141461.0 1414 15-0.8315 1414 13-0.7358 1515140.3852 1515160.3513 1515120.3846 1616 17-0.6487 1616 15-0.5500 1616 13-0.7358 1717140.3852 1717120.3846 181861.0 1818 15-0.8315 1818 13-0.7358 1919160.3513 1919140.2548 1919120.3846 222291.0
518150.6584
66140.7446
67160.6487
617140.4356
7731.0
77150.2548
713130.5817
719170.4774
88120.3042
88140.3852
951.0

99 13-0.5819
9 17-0.6487
1010120.3042 1010100.2273 1010140.2548

1111 11-0.4782 1111 13-0.5819 1111 15-0.8315 1212120.3042 1212140.2548
131351.0

1313 13-0.5819
1313 15-0.5500
1414140.3852
1414100.4344
1414160.3513

1515 15-0.8315
15 15 17-0.6487
1515 13-0.7358
1616140.2548
1616120.3846
171761.0

1717 15-0.8315
1717 13-0.7358
1818140.3852
1818160.3513
1818100.4344

1919 17-0.6487
1919 15-0.5500
1919 13-0.7358
-4
6631.0
66150.2548

67 17-0.3513
617150.3218
77120.6154
77160.6487
718140.4356
8841.0

88 13-0.5819
8 8 15-0.8315
99120.3042
99100.2273
99140.2548

1010 13-0.5819
1010 11-0.4782
1010 13-0.5500
1111120.3042
1111140.3852
121251.0

1212 13-0.5819
1212 15-0.5500
1313120.3042
1313100.2273
1313160.3513

1414 15-0.8315
1414 11-0.9140
1414 17-0.6487
1515140.3852
1515100.4344
161671.0

1616 15-0.5500
1616 13-0.7358
1717140.3852
1717160.3513
1717100.4344

1818 15-0.8315
1818 17-0.6487
1818 11-0.9140
1919140.2548
1919120.3846
202081.0

HFC134a

1120318211100
1,1,1,2-tetrafluoroethane february 1993

3.5	4.4	4.6	0.3	0.14	0.1
0.1	0.43	0.01	0.01	0.4	-0.04
0.4	-0.04	1.1	-0.11	0.06	-0.006
0.09	-0.009				

357
CF3CFH2
12218202
117
1234567891011121314151617181920
$\begin{array}{llllll}2984.0 & 1464.0 & 1427.0 & 1298.0 & 1103.0 & 972.0\end{array}$
$\begin{array}{rrrrrr}842.0 & 665.0 & 549.0 & 408.0 & 225.0 & 3013.0\end{array}$

$1374.0 \quad 1182.0$	$885.0 \quad 539.0$	$352.0 \quad 120.0$	
1111.0	11110.6989	11120.3011	11130.7733
11140.2267	11130.7733	11140.2267	$1 \begin{array}{llll}1 & 1 & 11 & 0.7203\end{array}$
11120.2797	11110.7203	11120.2797	11110.7203
11120.2797	12110.6763	$1212-0.3196$	13110.6763
$1312-0.3196$	14110.6763	14 12-0.3196	15110.6675
15 12-0.3304	16130.6559	$1614-0.3172$	17130.6559
$1714-0.3172$	18110.4489	18120.3690	19110.4489
19120.3690	110110.4489	110120.3690	111110.4588
111120.3994	112130.4187	112140.2538	113130.4187
113140.2538	2221.0	22110.6350	22120.3650
22150.6545	22160.3455	22150.6545	22160.3455
23150.6545	$2316-0.3455$	24150.6545	$2416-0.3455$
28110.4815	28120.5858	214150.4755	214160.4755
215150.4755	215160.4755	3321.0	314110.6350
33120.3650	33150.6545	33160.3455	33150.6545
33160.3455	34150.6545	$3416-0.3455$	39110.4815
39120.5858	314150.4755	314160.4755	316150.4755
316160.4755	4421.0	44110.6350	44120.3650
44150.6545	44160.3455	44150.6545	44160.3455
410110.4815	410120.5858	415150.4755	415160.4755
416150.4755	416160.4755	5521.0	55110.6375
55120.3625	55170.7442	55180.2563	55170.7442
55180.2563	56170.6591	5 618-0.3268	57170.6591
5 7 18-0.3268	511110.4807	511120.5522	517170.4367
517180.3033	518170.4367	518180.3033	6631.0
66130.5563	66140.4437	66170.5838	66180.4168
66190.6611	66200.3389	67190.6611	67 20-0.3389
612130.4968	612140.8196	617170.4932	617180.7102
619190.4733	619200.4733	7731.0	77130.5563
77140.4437	77170.5838	77180.4168	77190.6611
77200.3389	713130.4968	713140.8196	718170.4932
718180.7102	719190.4733	719200.4733	8841.0
88110.2797	$8812-0.5920$	88110.2797	$8812-0.5920$
88110.2797	88 12-0.5920	88150.3455	8 8 16-0.6545
88150.3455	$8816-0.6545$	9941.0	99110.2797
$9912-0.5920$	99110.2797	$9912-0.5920$	99110.2797
$9912-0.5920$	99150.3455	$9916-0.6545$	99150.3455
9 9 16-0.6545	101041.0	1010110.2797	$101012-0.5920$
1010110.2797	1010 12-0.5920	1010110.2797	1010 12-0.5920
1010150.3455	1010 16-0.6545	1010150.3455	1010 16-0.6545
111141.0	1111110.3011	$111112-0.6084$	1111130.2267
1111 14-0.4688	1111130.2267	$111114-0.4688$	1111170.2563
$111118-0.5169$	1111170.2563	1111 18-0.5169	121251.0
1212130.2267	1212 14-0.4688	1212130.2267	1212 14-0.4688
1212110.3011	1212 12-0.6084	1212170.4168	1212 18-0.8406
1212190.3389	1212 20-0.6611	131351.0	
1313 14-0.4688	1313130.2267	1313 14-0.4688	131313130.2267 1313110.3011
1313 12-0.6084	1313170.4168	1313 18-0.8406	1313190.3389
1313 20-0.6611	141461.0	1414150.3455	1414 16-0.6545
1414150.3455	1414 16-0.6545	1414110.3650	1414 12-0.7726
1414110.3650	1414 12-0.7726	1414150.3455	1414 16-0.6545
151561.0	1515150.3455	$151516-0.6545$	1515150.3455
1515 16-0.6545	1515110.3650	15 15 12-0.7726	1515110.3650
1515 12-0.7726	1515150.3455	1515 16-0.6545	161661.0
1616150.3455	1616 16-0.6545	1616150.3455	1616 16-0.6545
1616150.3455	1616 16-0.6545	1616110.3650	1616 12-0.7726
1616110.3650	1616 12-0.7726	171771.0	1717170.2563

1717 18-0.5169 1717 20-0.6611 1717 12-0.7323 1818170.2563
1818130.4437
191981.0

1919 18-0.8406
1919 14-0.9177
2121101.0
1717170.2563
1717130.4737
181871.0

1818 18-0.5169
1818 14-0.9177
1919190.3389
1919170.4168
1919130.4437
2222101.0

1717 18-0.5169
1717 14-0.9177 1818170.2563 1818190.3389 1818110.3625 1919 20-0.6611 1919 18-0.8406 1919 14-0.9177 -4

HFC125

1117118211100 pentafluoroethane february 1993

3.5	4.4
0.1	0.01
-0.04	1.1

1
cf2hcf3
12218172
117
1234567891011121314151617
$\begin{array}{llllll}3008.0 & 1393.0 & 1309.0 & 1218.0 & 1111.0 & 867.0\end{array}$ $725.0 \quad 577.0$ $1198.0 \quad 1145.0$
1111.0
11110.2924
11110.2815
11110.2815

13 11-0.3205
1 5 13-0.3165
17 11-0.3304
19110.3713
111130.2598
113110.3787
22140.6554
23140.6554
28100.4814
215140.4753
33110.3649
33150.3447
39110.5830
316150.4753
44140.6554
410100.4814
416140.4753
55130.4374
55170.4033

5 717-0.3298
517170.6637
66100.6266
66160.7306
612100.4837
619140.4724
77110.3734
77150.3364
718170.3282
88100.2815
$523.0 \quad 361.0$ $508.0 \quad 413.0$
11120.7709
11100.7076
11100.7186
12100.6756
14100.6756
16100.6659
18100.4497
110100.4497
112100.4549
2221.0
22150.3447

2 3 15-0.3447
28110.5830
215150.4753
33140.6554
34140.6554
314140.4753
4421.0
44150.3447
410110.5830
416150.4753
55160.5971
56160.6605
511120.4960
518160.4907
66110.3734
66170.2698
612110.5809
619150.4724
77160.7306
713100.4837
719140.4724

8 11-0.5933
246.0
$216.0 \quad 82.0$
11130.2291
11110.2924
11110.2815

12 11-0.3205
14 11-0.3205
16 11-0.3304
18110.3713
110110.3713
112110.3787
22100.6351
22140.6554
24140.6554
214140.4753
3321.0
33150.3447

3 4 15-0.3447
314150.4753
44100.6351
44140.6554
415140.4753
5531.0
55170.4033

5 617-0.3298
511130.8024
518170.6637
66140.6636
67140.6636
617160.4439
7721.0
77170.2698
713110.5809
719150.4724
88100.2815
1717190.3389 1717110.3625 1818 18-0.5169 1818 20-0.6611 1818 12-0.7323 1919170.4168 1919130.4437 202091.0

0.14	0.1
-0.04	0.4
-0.006	

11100.7076
11100.7186
11100.7186
13100.6756
15120.6585
17100.6659
19100.4497
111120.4202
113100.4549
22110.3649
22150.3447

24 15-0.3447
214150.4753
33100.6351
33140.6554
39100.4814
316140.4753
44110.3649
44150.3447
415150.4753
55120.5626
55160.5917
57160.6605
517160.4907
6621.0
66150.3364

67 15-0.3364
617170.3282
77100.6266
77140.6636
718160.4439
8841.0

8 811-0.5933

8	8	10	0.2815
8	8	14	0.3447
9	9	$11-0.5933$	
9	9	$11-0.5933$	
9	9	$15-0.6554$	
10	10	10	0.2815
10	10	14	0.3447
11	11	5	1.0
11	11	$11-0.5892$	
11	11	$17-0.8076$	
12	12	10	0.2924
12	12	12	0.2291
12	12	14	0.3364
13	13	$11-0.5892$	
13	13	$13-0.4766$	
13	13	$15-0.6636$	
14	14	14	0.3447
14	14	10	0.3649
15	15	6	1.0
15	15	$15-0.6554$	
15	15	$11-0.7692$	
16	16	14	0.3447
16	16	14	0.3447
16	16	10	0.3649
17	17	$17-0.8076$	
17	17	$15-0.6636$	
17	17	$13-0.9100$	
18	18	14	0.3364
18	18	120.4374	
19	19	61.0	
19	19	$17-0.5402$	
19	19	$11-0.7525$	
21	21	9	1.0

88100.2815
88140.3447

9 911-0.5933
9 915-0.6554
1010100.2815
1010140.3447
111151.0
$11111-0.5892$
$11117-0.8076$
1212120.2291
1212140.3364

13 13 11-0.5892
1313 13-0.4766
1313 15-0.6636
1414140.344
151561.0

1515 15-0.6554
1515 11-0.7692
1616140.3447
1616140.3447

1616
1717 15-0.6636
1717 13-0.9100
1818140.3364
1818120.4374

1919 17-0.5402
1919 11-0.7525
212191.0

88 11-0.5933
88 15-0.6554
99100.2815
99140.3447
101041.0

1010 11-0.5933
1010 15-0.6554
1111120.2291
1111100.2924
1111160.4033

1212 11-0.5892
1212 13-0.4766
1212 15-0.6636
1313100.2924
1313160.2698
141461.0

1414 15-0.6554
1414 11-0.7692
1515140.3447
1515140.3447
1515100.3649

1616 15-0.6554
1616 15-0.6554
1616 11-0.7692
1717160.4033
1717100.3734
181871.0

1818 15-0.6636
1818 13-0.9100
1919140.3364
1919160.2698
1919100.3734
222291.0
88140.3447
9941.0

9 11-0.5933
9 15-0.6554
1010100.2815
1010100.2815
1010140.3447

1111 13-0.4766
1111 11-0.5892
1111 17-0.8076
1212100.2924
1212160.2698
131341.0

1313 11-0.5892
1313 17-0.5402
1414140.3447
1414140.3447
1414100.3649

1515 15-0.6554
15 15 15-0.6554
1515 11-0.7692
1616140.3447
1616100.3649
171771.0

1717 17-0.8076
1717 11-0.7525
1818160.4033
1818100.3734
1818160.4033

1919 15-0.6636
1919 17-0.5402
1919 11-0.7525
-4

8 8 15-0.6554
99100.2815
99100.2815
99140.3447

1010 11-0.5933
1010 11-0.5933
1010 15-0.6554
1111100.2924
1111160.4033
121241.0

1212 11-0.5892
1212 17-0.5402
1313100.2924
1313120.2291
1313140.3364

1414 15-0.6554
1414 15-0.6554
1414 11-0.7692
1515140.3447
1515100.3649
161661.0

1616 15-0.6554
1616 11-0.7692
1717160.4033
1717140.3364
1717120.4374

1818 17-0.8076
1818 11-0.7525
1818 17-0.8076
1919160.2698
1919100.3734
202081.0

Appendix C

Data input for the ab initio calculations.

```
%chk=cfc110
# rhf/6-31G* Opt test
cfc110 optimisation
0
C
C2 C cc
Cl C clc C2 clcc
Cl2 C clc C2 clcc Cl 120.0
Cl3 C clc C2 clce Cl -120.0
C14 C2 cle C clcc Cl }60.
Cl5 C2 cle C clec Cl -60.0
C16 C2 clc C clec Cl 180.0
cc=1.499
clc=1.763
clcc=110.7
--Link1--
%chk=cfc110
# rhf/6-31G* freq geom=checkpoint test
cfc110 hf/6-31G* freq vib110
01
%chk=cfc111
# rhf/6-31G* Opt test
cfc111 optimisation
0
C
C2 C cc
Cl C clc C2 clcc
Cl2 C clc C2 clcc Cl dcl
Cl3 C clc C2 clcc Cl -dcl
F C2 fc C fcc Cl
-dcl
Cl4 C2 clc2 C clcc2 F -dcl1
Cl5 C2 clc2 C clcc2 F dcl1
cc=1.54
clc=1.77
clc2=1.70
fc=1.37
clcc=109.40
fcc=109.45
```

```
clcc2=109.50
dcl1=120.5
dcl=120.0
df1=60.0
--Link1--
%chk=cfc111
# rhf/6-31G* freq geom=checkpoint test
cfc111 hf/6-31G* freq vib111
01
```


CFC112

\%chk=cfc112
\# rhf/6-31G* Opt test
cfc112 optimisation
$\stackrel{0}{\mathrm{C}}$
C2 C cc
$F \quad \mathrm{C}$ fc C 2 fcc
Cl C clc C 2 clcc F df
Cl 2 C clc C 2 clcc $\mathrm{F}-\mathrm{df}$
F2 C2 fc C fcc F df1
Cl 3 C 2 clc C clcc $\mathrm{F}-\mathrm{dcl}$
C 4 C 2 clc C clec F del
$\mathrm{cc}=1.54$
$\mathrm{clc}=1.77$
$\mathrm{fc}=1.37$
clec $=109.40$
fcc=109.50
$\mathrm{df}=120.0$
df1=180.0
$\mathrm{dcl}=60.0$
--Link1--
\%chk=cfc112
\# rhf/6-31G* freq geom=checkpoint test
cfc112 hf/6-31G* freq vib112
01
\%chk=cfc112a
\# rhf/6-31G* Opt test
cfc112a optimisation
01
C

```
\(\mathrm{C} 2 \mathrm{C} \quad \mathrm{c}\)
Cl C clc C 2 clcc
Cl 2 C clc C 2 clcc Cl del
Cl 3 C clc C 2 clcc \(\mathrm{Cl} \quad-\mathrm{dcl}\)
\(\mathrm{Cl} 4 \mathrm{C} 2 \mathrm{clc} 2 \mathrm{C} \quad \mathrm{clcc} 2 \mathrm{Cl}\) dcl1
\(\begin{array}{lllllll}\mathrm{F} & \mathrm{C} 2 & \mathrm{fc} & \mathrm{C} & \mathrm{fcc} & \mathrm{Cl} 4 & -\mathrm{df}\end{array}\)
F2 C2 fc C fcc Cl4 df
\(\mathrm{cc}=1.55\)
\(\mathrm{clc}=1.76\)
clc2=1.74
\(\mathrm{fc}=1.33\)
clcc \(=110.7\)
clcc2 \(=110.6\)
fcc=108.0
\(\mathrm{df}=121.7\)
dcl=120.0
\(\mathrm{dcl}=60.0\)
--Link1--
\%chk=cfc112a
\# rhf/6-31G* freq geom=checkpoint test
cfc112a hf/6-31G* freq vib112a
01
```

 CFC113
 \%chk=cfc113
\# rhf/6-31G* Opt test
cfc113 optimisation
01

C		
C 2	C	

Cl	C	clc	C 2	clcc		
Cl 2	C	clc	C 2	clc	Cl	dcl
F	C	fc	C 2	fcc	C	df
F 2	C 2	fc 2	C	fcc 2	F	df 1
F 3	C 2	fc 2	C	fcc 2	F	df
Cl 3	C 2	clc 2	C	clcc 2	F	dcl 1

cc=1.54
clc=1.75
clc2 $=1.74$
$\mathrm{fc}=1.37$
fc2=1.35
clcc $=109.4$
clcc2=109.55
$\mathrm{fcc}=109.45$
fcc2 $=109.5$
df=-120.04
df2 $=59.98$
$\mathrm{dcl}=120.02$
$\mathrm{dcl} 1=-60.03$

```
df1=180.0
--Link1--
%chk=cfc113
# rhf/6-31G* freq geom=checkpoint test
cfc113 hf/6-31G* freq vib113
01
%chk=cfc113a
# rhf/6-31G* Opt test
cfc113a optimisation
0
C
C2 C c
F C fc C2 fcc
F2 C fc C2 fcc F 120.0
F3 C fc C2 fcc F
Cl C2 clc C clcc F }60.
C12 C2 clc
Cl3 C2 clc
Clcc
F -60.0
clcc F 180.0
cc=1.545
clc=1.771
fc=1.33
clcc=110.7
fcc=108.9
--Link1--
%chk=cfc113a
# rhf/6-31G* freq geom=checkpoint test
cfc113a hf/6-31G* freq vib113a
01
%chk=cfc114
# rhf/6-31G* Opt test
cfc114 optimisation
01
C
C2 C cc
Cl C clc C2 clcc
F
F2 C fc C2 fcc Cl -df
F3 C2 fc C fcc Cl -df1
F4 C2 fc C fcc Cl df1
Cl2 C2 clc C clcc Cl dcl
```

```
cc=1.55
clc=1.74
fc=1.33
clcc=110.6
fcc=108.0
df=-121.7
df1=58.3
dcl=180.0
--Link1--
%chk=cfc114
# rhf/6-31G* freq geom=checkpoint test
cfc114 hf/6-31G* freq vib114
01
```

 CEC114a
 \%chk=cfc114a
\# rhf/6-31G* Opt test
cfc114a optimisation
01
C
$\mathrm{C} 2 \mathrm{C} \quad \mathrm{c}$
$\mathrm{F} \quad \mathrm{C} \quad \mathrm{fc} \quad \mathrm{C} 2 \mathrm{fcc}$
F2 C fc C2 fcc $\quad \mathrm{F} \quad \mathrm{df}$
$\begin{array}{lllllll}\text { F3 } & \text { C } & \text { fc } & \mathrm{C} 2 & \text { fcc } & \mathrm{F} & \text { df }\end{array}$
$\begin{array}{lllllll}\mathrm{F} 4 & \mathrm{C} 2 & \mathrm{fc} 2 & \mathrm{C} & \mathrm{fcc} 2 & \mathrm{~F} & \mathrm{df} 1\end{array}$

Cl	C 2	clc	C	clcc	F 4

Cl 2 C 2 clc C clcc F 4 df2
cc=1.56
$\mathrm{clc}=1.78$
$\mathrm{fc}=1.33$
fc2 $=1.40$
clcc=109.4
fcc=109.45
fcc2 $=109.5$
df2=120.1
$\mathrm{df} 1=60.0$
$\mathrm{df}=120.0$
--Link1--
\%chk=cfc114a
\# rhf/6-31G* freq geom=checkpoint test
cfc114a hf/6-31G* freq vib114a
01
\%chk=cfc115
\# rhf/6-31G* Opt test
cfc115 optimisation
01
C

C2	C	cc				
F	C	fc				
F2	C	fc	C2	fcc	F	df
F3	C	fc	C2	fcc	F	-df
Cl	C2	clc	C	clcc	F	dcl
F4	C2	fc2	C	fcc 2	Cl	-df1
F5	C2	fc2		fcc2	Cl	df

$\mathrm{cc}=1.555$
clc=1.74
$\mathrm{fc}=1.33$
fc2 $=1.34$
clcc $=110.6$
fcc=110.9
fcc2 $=108.0$
df1=121.7
$\mathrm{df}=-120.0$
$\mathrm{dcl}=60.0$
--Link1--
\%chk=cfc115
\# rhf/6-31G* freq geom=checkpoint test
cfc115 hf/6-31G* freq vib115
01
\%chk=cfc116
FC116
\# rhf/6-31G* Opt test
fc116 optimisation
${ }_{\mathrm{C}} \mathrm{C}$

2 C					
C	fc	C2			
F2 C	fc	C2	fcc	F	120.0
F3 C	fc	C2	fcc	F	-120.0
F4 C2	fc	C	fcc	F	60.0
F5 C2	fc	C	fcc	F	-60.0
F6 C2	fc	C	fcc	F	180.0

$\mathrm{cc}=1.545$
fc=1.326
fcc $=109.8$
--Link1--

```
%chk=cfc116
# rhf/6-31G* freq geom=checkpoint test
fc116 hf/6-31G* freq vib116
01
                                    HFC170
%chk=hfc170
# rhf/6-31G* Opt test
hfc170 optimisation
0
C
H
H2 C hc C2 hac Cl 120.0
H3 C hc C2 hce Cl -120.0
H4 C2 hc C hcc Cl 60.0
H5 C2 hc C hac Cl -60.0
H6 C2 he C hec Cl 180.0
cc=1.5324
hc=1.1068
hcc=111.0
--Link1--
%chk=hfc170
# rhf/6-31G* freq geom=checkpoint test
hfc170 hf/6-31G* freq vib170
01
%chk=hfc161
HFC161
# rhf/6-31G* Opt test
hfc161 optimisation
0
C
C2 C
H C hc C2 hce
H2 C hc C2 hac H dh
H3 C hc C2 hoc H -dh
F C2 fc C fcc H df1
H4 C2 hc2 C hcc2 H -dh1
H5 C2 hc2 C hcc2 H dh2
cc=1.505
hc=1.090
hc2=1.095
fc=1.398
hcc=109.65
```

```
fcc=109.75
hcc2=112.9
dh1=-58.0
dh2=178.0
dh=120.0
df1=60.0
--Link1--
%chk=hfc161
# rhf/6-31G* freq geom=checkpoint test
hfc161 hf/6-31G* freq vib161
01
%chk=hfc152
# rhf/6-31G* Opt test
hfc152 optimisation
0
C
C2 C cc
F
H C hc C2 hce F df
H2 C hc C2 hcc F -df
\begin{array} { l l l l l l l } { \mathrm { F } 2 } & { \text { C2 } } & { \text { fc } } & { \text { C } } & { \text { fcc } } & { \text { F df1 } } \\ { \text { H3 } } & { \text { C2 } } & { \text { hc } } & { \text { C } } & { \text { hcc } } & { \text { F } } & { \text { -dh} } \end{array}
\begin{array} { l l l l l l l } { \text { F2 } } & { \text { C2 } } & { \text { fc } } & { \text { C C fcc } } & { \text { F } } & { \text { df1 } } \\ { \text { H3 } } & { \text { C2 } } & { \text { hc } } & { \text { C } } & { \text { hcc } } & { \text { F } } & { \text { -dh} } \end{array}
H4 C2 hc
\begin{array} { l l l l l l l } { \text { F2 } } & { \text { C2 } } & { \text { fc } } & { \text { C C fcc } } & { \text { F } } & { \text { df1 } } \\ { \text { H3 } } & { \text { C2 } } & { \text { hc } } & { \text { C } } & { \text { hcc } } & { \text { F } } & { \text { -dh} } \end{array}
Fllllllll
C hcc
HFC152
cc=1.5033
hc=1.1034
fc=1.3892
hcc=111.0
fcc=110.3
df=119.6
df1=180.0
dh=60.4
--Link1--
%chk=hfc152
# rhf/6-31G* freq geom=checkpoint test
hfc152 hf/6-31G* freq vib152
01
%chk=hfc152a
HFC152a
# rhf/6-31G* Opt test
hfc152a optimisation
```

```
01
C
C2 C cc
H C hc C2 hcc
H2 C hc C2 hcc H dh
H3 C hc C2 hcc H -dh
H4 C2 hc2 C hcc2 H dh1
F
F2 C2 fc C fcc H4 df
cc=1.54
hc=1.10
hc2=1.09
fc=1.345
hcc=108.7
hcc2=109.8
fcc=109.4
df=120.3
dh=120.0
dh1=60.0
--Link1--
%chk=hfc152a
# rhf/6-31G* freq geom=checkpoint test
hfc152a hf/6-31G* freq vib152a
01
```


HFC143

```
\%chk=hfc143
\# rhf/6-31G* Opt test
hfc143 optimisation
01
C
\(\mathrm{C} 2 \mathrm{C} \quad \underset{ }{c}\)
H C hc C 2 hce
H 2 C hc C 2 hce H dh
\(\mathrm{F} \quad \mathrm{C} \quad \mathrm{fc} \quad \mathrm{C} 2 \mathrm{fcc} \quad \mathrm{H} \quad \mathrm{df}\)
F2 C2 fc2 C fcc2 F df1
F3 C2 fc2 \(\quad\) C \(\begin{array}{lllll}\text { fcc } 2 & \mathrm{~F} & \mathrm{df} 2\end{array}\)
H3 C2 hc2 C hac2 F dh1
\(\mathrm{cc}=1.50\)
hc=1.0881
hc2 \(=1.09\)
\(\mathrm{fc}=1.3878\)
fc2 \(=1.3534\)
hcc \(=108.9\)
hcc2 \(=108.8\)
fcc=109.1
fcc2=109.2
\(\mathrm{df}=-113.15\)
```

```
df2=63.5
dh=133.7
dh1=-58.2
df1=180.0
--Link1--
%chk=hfc143
# rhf/6-31G* freq geom=checkpoint test
hfc143 hf/6-31G* freq vib143
01
HFC143a
%chk=hfc143a
# rhf/6-31G* Opt test
hfc143a optimisation
O
C
C2 C cc
F C fc C2 fcc
F2 C fc C2 fcc F F 120.0
F3 C fc C2 fcc F F -120.0
H
H2 C2 hc C hcc F -60.0
H3 C2 he C hec F 180.0
cc=1.530
hc=1.085
fc=1.335
hcc=108.3
fcc=111.0
--Link1--
%chk=hfc143a
# rhf/6-31G* freq geom=checkpoint test
hfc143a hf/6-31G* freq vib143a
01
%chk=hfc134
HFC134
# rhf/6-31G* Opt test
hfc134 optimisation
01
C
C2 C c
H C hc C2 hcc
F C fc C2 fcc Cl df
F2 C fc C2 fcc Cl -df
```

```
\begin{tabular}{lllllll} 
F3 & C 2 & fc & C & fcc & Cl & -df1 \\
F4 & C 2 & fc & C & fcc & Cl & df1 \\
H 2 & C 2 & hc & C & hcc & Cl & dh
\end{tabular}
cc=1.518
hc=1.098
fc=1.35
hcc=110.3
fcc=108.2
df=-122.0
df1=58.0
dh=180.0
--Link1--
%chk=hfc134
# rhf/6-31G* freq geom=checkpoint test
hfc134 hf/6-31G* freq vib134
01
%chk=hfc134a
# rhf/6-31G* Opt test
hfc134a optimisation
01
C
C22 C
F2 C fc C2 fcc F df
F3 C fc C2 fcc F - -df
F4 C2 fc2 C fcc2 F df1
H C2 hc C
H2 C2 hc C hcc F4 df2
cc=1.525
hc=1.09
fc=1.335
fc2=1.39
hcc=109.8
fcc=110.9
fcc2=109.7
df2=120.2
df1=60.0
df=120.0
--Link1--
%chk=hfc134a
# rhf/6-31G* freq geom=checkpoint test
hfc134a hf/6-31G* freq vib134a
01
```

\%chk=hfc 125

HFC125

\# rhf/6-31G* Opt test
hfc125 optimisation
${ }^{0} 1$
$\mathrm{C} 2 \mathrm{C} \quad \mathrm{c}$
F3 C C2 fcc F df

H	C 2	hc	C	hcc	F
dh					

F4 C2 fc2
F5 C2 fc2
C fec 2 H
dh
F5 Clllllll
$\mathrm{cc}=1.52$
hc=1.10
fc=1.335
fc2 $=1.345$
hcc=110.0
fcc $=110.8$
fcc $2=109.6$
df2 $=120.2$
$\mathrm{df}=-120.0$
$\mathrm{dcl}=60.0$
--Link1--
\%chk=hfc125
\# rhf/6-31G* freq geom=checkpoint test
$\mathrm{hfc} 125 \mathrm{hf} / 6-31 \mathrm{G} *$ freq vib125
01

HFC170 (MP2 version).
\%chk=hfc170
\# mp2=fulldirect/6-31G* Opt test
hfc170 optimisation
01
C
$\mathrm{C} 2 \mathrm{C} \quad \mathrm{c}$
H C hc C 2 hcc
H 2 C hc C 2 hac Cl 120.0
H3 C he C2 hec Cl -120.0
$\begin{array}{lllll}\mathrm{H} 4 & \mathrm{C} 2 & \text { he } & \mathrm{C} & \text { hac } \\ \mathrm{Cl} & 60.0\end{array}$
H5 C2 hc
H6 C2 hc C
hec $\mathrm{Cl}-60.0$
hec Cl 180.0
$\mathrm{cc}=1.5324$
$\mathrm{hc}=1.1068$

```
hcc=111.0
--Link1--
%chk=hfc170
# mp2=fulldirect/6-31G* freq geom=checkpoint guess=checkpoint scf=direct test
hfc170 mp2/6-31G* freq vib170
01
%chk=hfc161
# mp2=fulldirect/6-31G* Opt test
hfc161 optimisation
O
C
H C hc C2 hcc
H2 C hc C2 hcc H dh
H3 C hc C2 hcc H-dh
F C2 fc C fcc H df1
H4 C2 hc2 C hcc2 H -dh1
H5 C2 hc2 C hcc2 H dh2
cc=1.505
hc=1.090
hc2=1.095
fc=1.398
hcc=109.65
fcc=109.75
hcc2=112.9
dh1=-58.0
dh2=178.0
dh=120.0
df1=60.0
--Link1--
%chk=hfc161
# mp2=fulldirect/6-31G* freq geom=checkpoint guess=checkpoint scf=direct test
hfc161 mp2/6-31G* freq vib161
01
```


HFC152

\%chk=hfc152

```
\# mp2=fulldirect/6-31G* Opt test
hfc152 optimisation
01
C
```

C2	C	cc				
F	C	fc	C2	fcc		
H	C	hc	C2	hcc	F	df
H2	C	hc	C2	hcc	F	-df
F2	C2	fc	C	fcc	F	df1
H3	C2	hc	C	hcc	F	-dh
H4	C2	hc	C	hcc	F	dh

$\mathrm{cc}=1.5033$
hc=1.1034
$\mathrm{fc}=1.3892$
hcc=111.0
fcc $=110.3$
$\mathrm{df}=119.6$
df1=180.0
$\mathrm{dh}=60.4$
--Link1--
\%chk=hfc152
\# mp2=fulldirect/6-31G* freq geom=checkpoint guess=checkpoint $\mathrm{scf}=$ direct test
hfc152 mp2/6-31G* freq vib152
01

HEC152a

\%chk=hfc152a
\# mp2=fulldirect/6-31G* Opt test
hfc152a optimisation
01
C

C2	C	c				
H	C	hc	C2	hac		
H2	C	hc	C2	hac	H	dh
H3	C	hc	C2	hac	H	-dh
H4	C2	hc2	C	hec2	H	dh1
F	C2	fc	C	fcc	H4	-df
F2	C2	fc			H4	df

```
cc=1.54
hc=1.10
hc2=1.09
fc=1.345
hcc=108.7
hcc2=109.8
fcc=109.4
df=120.3
dh=120.0
dh1=60.0
--Link1--
%chk=hfc152a
```

\# mp2=fulldirect/6-31G* freq geom=checkpoint guess=checkpoint scf=direct test
hfc152a mp2/6-31G* freq vib152a
01

Appendix D

```
Listing of the fortran program CalSt.
    DIMENSION S(9,12),T(9,12),R(7),ALP(12),Q(12),MOLNAM(10)
    WRITE}(9,999
999 FORMAT(' ENTER NAME OF COMPOUND')
    READ(9,998)MOLNAM
    FORMAT(10A2)
998
C
C 7 bonds lengths are entered interactively in the atom number sequence used by
C OVER and NORCORD
    WRITE}(9,99
99 FORMAT('ENTER BOND LENGTHS')
    WRITE(9,990)
990 FORMAT(' X.XXXX X.XXXX X.XXXX X.XXXX X.XXXX X.XXXX
X.XXXX')
            READ(9,98)R
98 FORMAT(7F7.4)
C
    12 angles are entered, 6 for the CCX angles and 6 for the XCX angles.
    WRITE (9,97)
97 FORMAT('ENTER·ANGLES',/,' XXX.X XXX.X XXX.X XXX.X
XXX.X XXX.X')
    READ(9,96) ALP
96 FORMAT(6F6.1)
C 12 non-bonded distances are entered, 6 for the C...X distances
C and 6 for the X...X distances
    WRITE(9,95)
    FORMAT(' ENTER NON-BONDED DISTANCES')
        WRITE(9,950)
950 FORMAT(' X.XXXX X.XXXX X.XXXX X.XXXX X.XXXX
X.XXXX')
    READ(9,94)Q
    FORMAT(6F7.4)
    check input
    WRITE}(9,89)
    FORMAT(7(F6.4,2X))
    WRITE(9,88)ALP
    FORMAT(6(F5.1,2X))
    WRITE(9,87)Q
    FORMAT(6(F6.4,2X))
C
C
C
    clear s and t arrays
DO \(25 \mathrm{~J}=1,9\)
DO \(25 \mathrm{~K}=1,12\)
\(\mathrm{S}(\mathrm{J}, \mathrm{K})=0\)
\(\mathrm{T}(\mathrm{J}, \mathrm{K})=0\)
```

calculate s and t values for each atom combination
initiate pointers for atoms 1 and 2
$\mathrm{I}=1$
$\mathrm{J}=2$
DO $100 \mathrm{~K}=1,12$
CALL SANDT(S(1,K),T(1,K),R(I),R(J),ALP(K),Q(K))
$\mathrm{J}=\mathrm{J}+1$
KK=K-5
IF(KK) 100,100,5
GOTO (10,20,30,40,50,60),KK
5
reset pointers to next atoms for the calculations.
$\mathrm{I}=2$
$\mathrm{J}=3$
GOTO 100
$\mathrm{I}=2$
$\mathrm{J}=4$
GOTO 100
$\mathrm{I}=3$
$\mathrm{J}=4$
GOTO 100
$\mathrm{I}=5$
$\mathrm{J}=6$
GO TO 100
50

60
$\mathrm{J}=7$
GO TO 100
$\mathrm{I}=6$
$\mathrm{J}=7$
CONTINUE
$\stackrel{C}{\text { C }}$ output results
305 WRITE(6,305)MOLNAM
FORMAT(' COMPOUND:',10A2)
WRITE $(6,310)$ R
310 FORMAT(' BOND LENGTHS:',7(F6.4,1X))
WRITE $(6,320)$ ALP
FORMAT(' ANGLES:',12(F5.1,1X))
WRITE $(6,330)$ Q
330 FORMAT(' Qs:',12(F6.4,1X),/)

WRITE $(6,200)$
200 FORMAT(1H,12X,S/T12 \quad S/T13 \quad S/T14 \quad S/T15 \quad S/T16 1S/T17')
M=1
$\mathrm{N}=6$
DO 300 II=1,2
WRITE $(6,210)(\mathrm{S}(1, \mathrm{I}), \mathrm{I}=\mathrm{M}, \mathrm{N}),(\mathrm{T}(1, \mathrm{I}), \mathrm{I}=\mathrm{M}, \mathrm{N})$
210
FORMAT(' S(IJ) \quad, $6(\mathrm{~F} 7.4,3 \mathrm{X}), /, ' \mathrm{~T}(\mathrm{IJ}) \quad$ ',6(F7.4,3X))

```
            WRITE(6,220)(S(2,I),I=M,N),(T(2,I),I=M,N)
```

```
WRITE}(6,205
FORMAT(1H,/,/1H ,12X,'S/T23 S/T24 S/T34 S/T56
1S/T57 S/T67',/)
    CONTINUE
    PAUSE
    END
subroutine to calculate appropriate s and t .
```

```
SUBROUTINE SANDT(SS,TS,R1,R2,A,Q)
```

SUBROUTINE SANDT(SS,TS,R1,R2,A,Q)
DIMENSION SS(9),TS(9)
convert degrees to radians
$\mathrm{AR}=\mathrm{A} * 0.017453292$
calculate s and t as defined by Overend and Scherer 1960)
SS(1)=(R1-(R2*COS(AR)))/Q
$T S(1)=(R 2 * \operatorname{SIN}(A R)) / Q$
$\operatorname{SS}(2)=(\mathrm{R} 2-(\mathrm{R} 1 * \operatorname{COS}(\mathrm{AR})) / \mathrm{Q}$
$\mathrm{TS}(2)=(\mathrm{R} 1 * \operatorname{SIN}(A R)) / \mathrm{Q}$

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{C} \\
\hline C & \(s\) and \(t\) squared \\
\hline & SS(3) \(=\mathbf{S S}(1) * S S(1)\) \\
\hline & \(\mathrm{TS}(3)=\mathrm{TS}(1) * \mathrm{TS}(1)\) \\
\hline & \(\mathrm{SS}(4)=\mathrm{SS}(2) * S S(2)\) \\
\hline & \(\mathrm{TS}(4)=\mathrm{TS}(2) * \mathrm{TS}(2)\) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multirow[t]{3}{*}{C} & adjacent bonds stretch-stretch interaction \\
\hline & \(\mathrm{SS}(5)=\mathrm{SS}(1) * S S(2)\) \\
\hline & TS(5)=-TS(1)*TS(2) \\
\hline C & adjacent stretch and be \\
\hline \multirow[t]{8}{*}{C} & \\
\hline & TEMP1 \(=(\mathrm{TS}(1) * \mathrm{TS}(2))^{* * 0.5}\) \\
\hline & TEMP2=(R2/R1)**0.5 \\
\hline & SS(6)=SS(1)*TEMP1*TEMP2 \\
\hline & \(\mathrm{TS}(6)=\mathrm{TS}(1) * S S(2) *(\mathrm{R} 2 / \mathrm{R} 1)\) \\
\hline & TEMP2=(R1/R2)**0.5 \\
\hline & SS(7)=SS(2)*TEMP1*TEMP2 \\
\hline & \(\mathrm{TS}(7)=\mathrm{TS}(2) * S S(1) *(\mathrm{R} 1 / \mathrm{R} 2)\) \\
\hline C & adjacent angles interactions \\
\hline \multirow[t]{7}{*}{C} & \\
\hline & \\
\hline & \[
\mathrm{TS}(8)=-\mathrm{SS}(1) * \mathrm{SS}(2) *(\mathrm{R} 2 / \mathrm{R} 1)
\] \\
\hline & SS(9)=TS(2)*TS(1)*(R1/R2) \\
\hline & TS(9)=-SS(2)*SS(1)*(R1/R2) \\
\hline & RETURN \\
\hline & END \\
\hline
\end{tabular}

\section*{Appendix E}

Potential energy matrices from the UB calculations.
Potential energy distribution for the molecule for each force constant (rows) for each fundamental frequency in symmetry group sequence (columns).
\begin{tabular}{lcccccc} 
& & & CFC110 & & & \\
\(\mathrm{C}-\mathrm{C}\) & 0.426310 & 0.015825 & 0.133826 & 0.000000 & 0.000000 & 0.000000 \\
0.000000 & 0.00000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & & \\
\(\mathrm{C}-\mathrm{Cl}\) & 0.099454 & 0.368563 & 0.002629 & 0.000000 & 0.245182 & 0.204157 \\
0.332039 & 0.332254 & 0.339536 & 0.339282 & 0.075413 & 0.075439 & 0.602008 \\
0.602014 & 0.138945 & 0.138943 & 0.002693 & 0.002682 & & \\
CCCl & 0.031763 & 0.002989 & 0.055328 & 0.000000 & 0.052154 & 0.035526 \\
0.104487 & 0.104542 & 0.019669 & 0.019677 & 0.067815 & 0.067959 & 0.002441 \\
0.002441 & 0.001090 & 0.001089 & 0.182259 & 0.182454 & & \\
ClCCl & 0.055410 & 0.005215 & 0.096523 & 0.000000 & 0.090983 & 0.061974 \\
0.045676 & 0.045702 & 0.074687 & 0.074791 & 0.159958 & 0.159829 & 0.078414 \\
0.078423 & 0.172151 & 0.172152 & 0.000583 & 0.000584 & & \\
\(\mathrm{Cl} \sim \mathrm{Cl}\) & 0.000000 & 0.000000 & 0.000000 & 1.000000 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.041294 \\
0.041300 & 0.065283 & 0.065285 & 0.028072 & 0.028102 & & \\
\(\mathrm{Cl} . . \mathrm{Cl}\) & 0.149362 & 0.499322 & 0.250673 & 0.000000 & 0.293116 & 0.585618 \\
0.275272 & 0.274839 & 0.390136 & 0.390189 & 0.339933 & 0.339635 & 0.134433 \\
0.134444 & 0.462169 & 0.462163 & 0.353470 & 0.352822 & & \\
& 0.042655 & -0.004156 & 0.056076 & 0.000000 & 0.074454 & 0.016278 \\
0.050531 & 0.050557 & 0.005043 & 0.005288 & 0.085241 & 0.085249 & 0.018953 \\
0.018957 & 0.040140 & 0.040141 & 0.069082 & 0.069157 & & \\
\(\mathrm{Cl} . . \mathrm{C}\) & 0.192595 & 0.108526 & 0.398245 & 0.000000 & 0.223980 & 0.076137 \\
0.147232 & 0.147310 & 0.162199 & 0.162218 & 0.236535 & 0.236751 & 0.115748 \\
0.115753 & 0.102656 & 0.102658 & 0.304863 & 0.305157 & & \\
0.044763 & 0.002450 & 0.003716 & 0.006700 & 0.000000 & 0.020130 & 0.020311 \\
0.044796 & 0.008529 & 0.008555 & 0.035105 & 0.035138 & 0.006709
\end{tabular}
\begin{tabular}{lcccccc} 
& & & CFC111 & & & \\
C-C & 0.020943 & 0.410376 & 0.022949 & 0.000568 & 0.012664 & 0.009027 \\
0.000059 & 0.003298 & 0.036419 & 0.076303 & 0.034977 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & & \\
\(\mathrm{C}-\mathrm{Cl}\) & 0.077877 & 0.114492 & 0.378708 & 0.285875 & 0.257813 & 0.227732 \\
0.284850 & 0.128643 & 0.002035 & 0.025691 & 0.004903 & 0.331160 & 0.557915 \\
0.269231 & 0.260320 & 0.150594 & 0.002222 & 0.000502 & & \\
\(\mathrm{C}-\mathrm{F}\) & 0.504399 & 0.003675 & 0.173775 & 0.002869 & 0.136261 & 0.014689 \\
0.033690 & 0.002809 & 0.000830 & 0.001108 & 0.000001 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & & \\
CCCl & 0.051048 & 0.02607 & 0.024629 & 0.038628 & 0.019245 & 0.024660 \\
0.021550 & 0.004522 & 0.026377 & 0.078288 & 0.149887 & 0.109476 & 0.004234 \\
0.003360 & 0.014967 & 0.098386 & 0.221837 & 0.000444 & & \\
CCF & 0.023074 & 0.031736 & 0.007165 & 0.026267 & 0.000032 & 0.007095 \\
0.049319 & 0.000992 & 0.050415 & 0.013726 & 0.033837 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & \\
ClCCl & 0.017434 & 0.040668 & 0.059958 & 0.076235 & 0.007212 & 0.027667 \\
0.043866 & 0.179954 & 0.159088 & 0.126901 & 0.019923 & 0.019583 & 0.047023 \\
0.000104 & 0.123944 & 0.094958 & 0.000017 & 0.000876 & & \\
ClCF & 0.020447 & 0.021190 & 0.003321 & 0.029010 & 0.048419 & 0.038495 \\
0.003552 & 0.015400 & 0.051276 & 0.000847 & 0.014684 & 0.055914 & 0.066214 \\
0.196865 & 0.000020 & 0.017271 & 0.000575 & 0.000411 & &
\end{tabular}
\begin{tabular}{lclllll} 
Cl F & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000963 & 0.022504 \\
0.022285 & 0.009170 & 0.000862 & 0.012280 & 0.247211 & & \\
Cl Cl & 0.001965 & 0.000101 & 0.021005 & 0.004588 & 0.008708 & 0.001624 \\
0.009585 & 0.059555 & 0.000803 & 0.011837 & 0.019811 & 0.000082 & 0.012314 \\
0.001459 & 0.007442 & 0.004742 & 0.010934 & 0.746468 & & \\
\(\mathrm{Cl} . . \mathrm{Cl}\) & 0.099078 & 0.094888 & 0.135850 & 0.192880 & 0.188582 & 0.482452 \\
0.279382 & 0.417914 & 0.235206 & 0.218004 & 0.243293 & 0.207111 & 0.114651 \\
0.102358 & 0.421502 & 0.269175 & 0.284316 & 0.001790 & & \\
& 0.022252 & 0.027391 & 0.025685 & 0.050978 & 0.014485 & 0.008353 \\
0.003296 & 0.033554 & 0.050973 & 0.055211 & 0.050622 & 0.034631 & 0.012858 \\
0.012104 & 0.020771 & 0.061886 & 0.056855 & 0.000433 & & \\
\(\mathrm{Cl} . . \mathrm{C}\) & 0.073954 & 0.139716 & 0.068795 & 0.170974 & 0.077245 & 0.070059 \\
0.143393 & 0.093591 & 0.155222 & 0.276308 & 0.275415 & 0.100198 & 0.090169 \\
0.060528 & 0.118498 & 0.216815 & 0.239654 & 0.000705 & & \\
& 0.020015 & 0.003591 & 0.012516 & 0.015273 & 0.007613 & 0.012399 \\
0.011768 & 0.015579 & 0.025505 & 0.022329 & 0.033622 & 0.031820 & 0.005586 \\
0.007035 & 0.009816 & 0.025610 & 0.045530 & 0.000174 & & \\
\(\mathrm{~F} . . \mathrm{Cl}\) & 0.042694 & 0.046643 & 0.013627 & 0.059571 & 0.177059 & 0.050316 \\
0.070119 & 0.030319 & 0.108258 & 0.048854 & 0.062820 & 0.047734 & 0.033347 \\
0.235453 & 0.008016 & 0.026440 & 0.045401 & 0.000547 & & \\
& 0.007677 & 0.010975 & 0.001234 & 0.012979 & 0.000775 & 0.004806 \\
0.011337 & 0.006179 & 0.022215 & 0.009819 & 0.012899 & 0.011928 & 0.009612 \\
0.017522 & 0.000498 & 0.005318 & 0.009222 & 0.000069 & & \\
\(\mathrm{~F} . . \mathrm{C}\) & 0.012156 & 0.027174 & 0.052108 & 0.029085 & 0.039841 & 0.017346 \\
0.038557 & 0.006525 & 0.069649 & 0.034599 & 0.033296 & 0.041137 & 0.019630 \\
0.059703 & 0.004194 & 0.023269 & 0.059255 & 0.000308 & & \\
0.002270 & 0.004987 & 0.004777 & -0.001326 & 0.004219 & 0.004046 & 0.003280 \\
0.001166 & 0.005727 & 0.000175 & 0.010009 & 0.008263 & 0.003943 \\
0.011993 & 0.000842 & 0.004674 & 0.011902 & 0.000062 & & \\
& & & & & CFC112 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline , & 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 \\
\hline 0.010449 & 0.001801 & 0.011275 & 0.870064 & 0.000000 & \multirow[t]{2}{*}{0.000000} & \multirow[t]{2}{*}{0.00000} \\
\hline 0.013597 & 0.005219 & 0.012796 & 0.071329 & 0.029634 & & \\
\hline F...C & 0.016360 & 0.054228 & 0.115393 & 0.068204 & 0.101933 & 0.065985 \\
\hline 0.042777 & 0.045562 & 0.103855 & 0.000858 & 0.070878 & \multirow[t]{2}{*}{0.058303} & \multirow[t]{2}{*}{0.067902} \\
\hline \multirow[t]{2}{*}{0.062851} & 0.041484 & 0.033591 & 0.015911 & 0.102353 & & \\
\hline & 0.007769 & 0.009194 & 0.000485 & 0.003611 & 0.006616 & 0.005537 \\
\hline 0.008597 & 0.009157 & 0.020872 & 0.000172 & 0.014245 & \multirow[t]{2}{*}{0.011718} & \multirow[t]{2}{*}{0.013646} \\
\hline 0.001188 & 0.008997 & 0.010177 & 0.002257 & 0.019017 & & \\
\hline Cl...C & 0.044225 & 0.086284 & 0.037645 & 0.083470 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.089820 \\
& 0.036748
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.216448 \\
& 0.169739
\end{aligned}
\]} \\
\hline 0.054047 & 0.041603 & 0.159430 & 0.000770 & 0.052102 & & \\
\hline \multirow[t]{2}{*}{0.009199} & 0.116058 & 0.035931 & 0.068146 & 0.145329 & & \\
\hline & 0.013402 & 0.000969 & 0.009500 & 0.008700 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.010602 \\
& 0.005667
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.009527 \\
& 0.012781
\end{aligned}
\]} \\
\hline 0.002891 & 0.003496 & 0.029735 & 0.000248 & 0.018560 & & \\
\hline 0.002057 & 0.009989 & 0.007068 & 0.014287 & 0.028210 & & \\
\hline F...Cl & 0.097280 & 0.118357 & 0.252219 & 0.151583 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.199995 \\
& 0.304246
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.130798 \\
& 0.105691
\end{aligned}
\]} \\
\hline 0.103649 & 0.296686 & 0.114677 & 0.001127 & 0.114736 & & \\
\hline \multirow[t]{2}{*}{0.036366} & 0.157372 & 0.326145 & 0.144661 & 0.245789 & & \\
\hline & 0.018694 & 0.026602 & 0.004177 & 0.020878 & \[
0.042317
\] & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.026516 \\
& 0.018893
\end{aligned}
\]} \\
\hline 0.029826 & 0.017618 & 0.023202 & 0.000270 & 0.028445 & \multirow[t]{2}{*}{0.025558} & \\
\hline 0.005595 & 0.032411 & 0.014458 & 0.028906 & 0.049691 & & \\
\hline Cl...Cl & 0.050291 & 0.038696 & 0.082045 & 0.244539 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.156256 \\
& 0.104840
\end{aligned}
\]} & \[
0.114895
\] \\
\hline 0.076473 & 0.081303 & 0.233374 & 0.001852 & 0.147068 & & \multirow[t]{2}{*}{0.148852} \\
\hline \multirow[t]{2}{*}{0.023741} & 0.103166 & 0.135239 & 0.306026 & 0.100985 & & \\
\hline & 0.012986 & 0.014949 & 0.010740 & -0.003829 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.023187 \\
& 0.014775
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.040918 \\
& 0.022115
\end{aligned}
\]} \\
\hline 0.001004 & 0.007404 & 0.046653 & 0.000330 & 0.020039 & & \\
\hline 0.007453 & 0.032776 & 0.016299 & 0.015778 & 0.020762 & & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & 0.004275 & 0.126168 & 0.203048 & 0.085706 & \multirow[t]{3}{*}{\[
\begin{gathered}
0.018294 \\
0.000205
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
0.007591 \\
0.070563
\end{gathered}
\]} \\
\hline 0.012862 & 0.017683 & 0.000031 & 0.004222 & 0.000223 & & \\
\hline 0.004785 & 0.054186 & 0.050304 & 0.009232 & 0.000063 & & \\
\hline \(\mathrm{C}-\mathrm{Cl}\) & 0.014673 & 0.048306 & 0.140248 & 0.066151 & \multirow[t]{3}{*}{\[
\begin{gathered}
0.353340 \\
0.139353
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
0.268734 \\
0.038690
\end{gathered}
\]} \\
\hline 0.044458 & 0.102817 & 0.058702 & 0.295266 & 0.253245 & & \\
\hline 0.134635 & 0.071693 & 0.009460 & 0.005720 & 0.000151 & & \\
\hline C-F & 0.622488 & 0.424617 & 0.179966 & 0.547743 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.103713 \\
& 0.031438
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.035489 \\
& 0.004195
\end{aligned}
\]} \\
\hline 0.269303 & 0.172339 & 0.127735 & 0.001869 & 0.001141 & & \\
\hline 0.014757 & 0.002334 & 0.001904 & 0.000402 & 0.000078 & & \\
\hline CCCl & 0.015476 & 0.047052 & 0.021532 & 0.002382 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.022215 \\
& 0.003200
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.013272 \\
& 0.003940
\end{aligned}
\]} \\
\hline 0.010223 & 0.022235 & 0.004094 & 0.009932 & 0.003107 & & \\
\hline 0.044478 & 0.096503 & 0.098291 & 0.212856 & 0.002671 & & \\
\hline CCF & 0.049736 & 0.001094 & 0.030093 & 0.022179 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.009288 \\
& 0.075255
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.041372 \\
& 0.042338
\end{aligned}
\]} \\
\hline 0.014952 & 0.024578 & 0.019805 & 0.004370 & 0.001077 & & \\
\hline 0.076201 & 0.048899 & 0.079968 & 0.027173 & 0.000599 & & \\
\hline ClCCl & 0.003865 & 0.000007 & 0.001609 & 0.019492 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.003967 \\
& 0.024705
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.031359 \\
& 0.081697
\end{aligned}
\]} \\
\hline 0.003578 & 0.003061 & 0.000519 & 0.000003 & 0.000028 & & \\
\hline 0.073017 & 0.043417 & 0.036430 & 0.004179 & 0.000471 & & \\
\hline ClCF & 0.038535 & 0.018288 & 0.077918 & 0.023557 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.113723 \\
& 0.091043
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.108512 \\
& 0.119079
\end{aligned}
\]} \\
\hline 0.001645 & 0.056160 & 0.207038 & 0.097098 & 0.196858 & & \\
\hline 0.029682 & 0.038090 & 0.019370 & 0.010045 & 0.008134 & & \\
\hline FCF & 0.001122 & 0.059683 & 0.008135 & 0.012979 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.009284 \\
& 0.000179
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.000001 \\
& 0.011211
\end{aligned}
\]} \\
\hline 0.106728 & 0.030309 & 0.000108 & 0.046896 & 0.001491 & & \\
\hline 0.004803 & 0.000444 & 0.001093 & 0.000956 & 0.001110 & & \\
\hline \(\mathrm{Cl} \sim \mathrm{Cl}\) & 0.000445 & 0.002262 & 0.000294 & 0.000000 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.026051 \\
& 0.001674
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.007319 \\
& 0.001379
\end{aligned}
\]} \\
\hline 0.005461 & 0.002446 & 0.018491 & 0.004799 & 0.021225 & & \\
\hline 0.000376 & 0.001645 & 0.000560 & 0.030535 & 0.446207 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Cl~F & 0.000387 & 0.000423 & 0.000778 & 0.002746 & 0.00222 & 0.000118 \\
\hline 0.000107 & 0.000509 & 0.007561 & 0.000019 & 0.000038 & 212 & 78 \\
\hline 0.005615 & 0.008077 & 0.002786 & 0.000023 & & & \\
\hline F~F & 0.000187 & 0.000126 & 0.001626 & 0.002061 & . 00 & \\
\hline 0.0010 & 0.001393 & 0.004495 & 0.002665 & 0.000208 & 0.0043 & 0.002035 \\
\hline . 001803 & 0.002455 & 0.004791 & 0.001143 & 0.200581 & . & . 002035 \\
\hline C...Cl & 0.030063 & 0.022090 & 0.041522 & 0.022653 & & \\
\hline 0.016652 & 0.027429 & 0.041961 & 0.032656 & 0.037567 & 0.0621 & 22 \\
\hline 0.091606 & 0.140444 & 0.147402 & 0.122943 & 0.002531 & & \\
\hline & 0.007443 & 0.007230 & 0.003193 & 0.001292 & & \\
\hline 002790 & 0.007357 & 0.006573 & 0.003523 & 0.004393 & . & \\
\hline 0.011012 & 0.011495 & 0.016723 & 0.018783 & 0.000444 & , & \\
\hline C...F & 0.026669 & 0.069659 & 0.078582 & 0.065021 & & \\
\hline 0.091819 & 0.099556 & 0.083291 & 0.057025 & 0.051538 & 0.095353 & 0.136972 \\
\hline 0.120633 & 0.127996 & 0.111670 & 0.142737 & 0.004484 & & .136072 \\
\hline & 0.015034 & 0.006262 & 0.012253 & 0.006366 & .0084 & 0528 \\
\hline 1503 & 0.009207 & 0.011086 & 0.011130 & 0.010124 & 0.0137 & \\
\hline 017228 & 0.017189 & 0.018600 & 0.029948 & 0.000928 & & \\
\hline l...Cl & 0.019255 & 0.029026 & 0.034400 & 0.012908 & & \\
\hline 0.010406 & 0.095526 & 0.042259 & 0.008361 & 0.101881 & 0.1653 & \\
\hline 0.093664 & 0.074207 & 0.109406 & 0.116777 & 0.004174 & & \\
\hline & 0.004719 & 0.005353 & 0.006360 & 0.007154 & 0.006128 & \\
\hline 0.002000 & 0.012490 & 0.002924 & 0.001281 & 0.012077 & -0.0035 & 0.017703 \\
\hline 0.009273 & 0.017066 & 0.026961 & 0.023839 & 0.000890 & & \\
\hline Cl...F & 0.078735 & 0.091470 & 0.089240 & 0.060778 & . 0889 & . 140529 \\
\hline 0.169349 & 0.261319 & 0.242322 & 0.343740 & 0.283723 & 0.1582 & . 190228 \\
\hline 0.157190 & 0.162240 & 0.177935 & 0.175879 & 0.008844 & & . 1 \\
\hline & 0.020400 & 0.016188 & 0.020827 & 0.009637 & & \\
\hline 0.022139 & 0.009356 & 0.022155 & 0.010911 & 0.016949 & .0289 & 92 \\
\hline 028608 & 0.034358 & 0.036669 & 0.036138 & 0.001669 & & \\
\hline F...F & 0.043137 & 0.012691 & 0.039427 & 0.023652 & &  \\
\hline 0.199357 & 0.038206 & 0.083544 & 0.053450 & 0.002529 & . 0802 & \[
.025305
\] \\
\hline 0.066701 & 0.039605 & 0.041376 & 0.025568 & 0.001994 & & \\
\hline & 0.003358 & 0.012003 & 0.008950 & 0.005541 & & \\
\hline 0.000071 & 0.006025 & 0.015305 & 0.010784 & 0.000576 & . 0160 & \[
170
\] \\
\hline 0.013932 & 0.007657 & 0.008303 & 0.005123 & 0.000426 & & \\
\hline & & &  & & & \\
\hline & & 0.356176 & 0.031914 & 0.021978 & 0.061385 & 0.114816 \\
\hline \[
000000
\] & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.00 & & & \\
\hline C-Cl & 0.082972 & 0.137928 & 0.046960 & 0.241938 & .152046 & \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.00000 & \\
\hline 0.101321 & 0.289231 & 0.005520 & 0.331148 & 0.001143 & & \\
\hline C-F & 0.412924 & 0.003169 & 0.358547 & 0.000699 & 01 & . 004011 \\
\hline 0.839685 & 0.076948 & 0.002054 & 0.000644 & 0.671645 & 0.241870 & 0.006435 \\
\hline 0.556989 & 0.038579 & 0.188736 & 0.000177 & 0.000020 & & \\
\hline CCCl & 0.064994 & 0.001118 & 0.018565 & 0.013743 & 0.031692 & . 141322 \\
\hline 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.00434 & 0.008443 & 0.006176 & 0.005829 & 0.245273 & & \\
\hline CCF & 0.004463 & 0.046677 & 0.00007 & 0.002385 & 07096 & 222 \\
\hline 0.001003 & 0.004231 & 0.183350 & 0.000874 & 0.049693 & 0.071426 & 0.071468 \\
\hline 0.001523 & 0.038649 & 0.023596 & 0.008321 & 0.050533 & . 0714 & \\
\hline ClCF & 0.003703 & 0.089970 & 0.003588 & 0.068166 & 0.019452 & 0.115168 \\
\hline 0.053536 & 0.349310 & 0.002999 & 0.002655 & 0.046540 & 0.116319 & 0.264959 \\
\hline 0.006366 & 0.163241 & 0.001486 & 0.117579 & 0.006501 & 0.1 & 0.264959 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline FCF & 0.083784 & 0.0007 & 0.076566 & 0.120910 & 0.035152 & 003065 \\
\hline 0.00000 & 0.000000 & 0.00000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 095464 & 0.000001 & 0.182902 & 0.035130 & 0.000908 & & \\
\hline \(\mathrm{Cl} \sim \mathrm{Cl}\) & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.0000 & 0.00000 \\
\hline 0.008089 & 0.022737 & 0.020604 & 0.646814 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & & \\
\hline F~F & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & \\
\hline 0.001881 & 0.012661 & 0.006044 & 0.342258 & 0.000000 & & \\
\hline 0.005107 & 0.003380 & 0.004839 & 0.005963 & & & \\
\hline C... Cl & 0.006167 & 0.041079 & 0.004128 & 0.024656 & . 035 & 8557 \\
\hline 0.005576 & 0.035555 & 0.065650 & 0.000570 & 0.022250 & 0.036798 & . 051301 \\
\hline 0.004479 & 0.061994 & 0.009005 & 0.028793 & 0.075495 & & \\
\hline & 0.007202 & 0.000151 & 0.002365 & 0.003711 & . & \\
\hline 0.00116 & 0.007424 & 0.013706 & 0.000119 & 0.004645 & 0.0076 & . 010711 \\
\hline 0.000544 & 0.004884 & 0.002157 & 0.003167 & 0.014679 & & \\
\hline C...F & 0.132086 & 0.137008 & 0.166617 & 0.211539 & , & 76 \\
\hline 0.051768 & 0.163454 & 0.273424 & 0.001933 & 0.050824 & , & 0.213184 \\
\hline 0.119958 & 0.144897 & 0.169219 & 0.174634 & 0.300386 & & \\
\hline & 0.017756 & 0.023912 & 0.015065 & 0.022082 & 0.023165 & 0.032352 \\
\hline 00515 & 0.026558 & 0.050864 & 0.000512 & 0.026096 & 0.018814 & 0.040714 \\
\hline 0.008723 & 0.026843 & 0.036266 & 0.013707 & 0.058802 & & \\
\hline Cl...F & 0.068569 & 0.046771 & 0.079909 & 0.174860 & . 117 & 77 \\
\hline 0.008935 & 0.124292 & 0.115323 & 0.000988 & 0.037119 & 0.1153 & 57 \\
\hline 0.046672 & 0.067293 & 0.112703 & 0.193276 & 0.141138 & & 0.10325 \\
\hline & 0.009913 & 0.013197 & 0.009669 & 0.011033 & & \\
\hline 0.00644 & 0.014139 & 0.024090 & 0.000289 & 0.01195 & 0.0100 & 70 \\
\hline 0.003614 & 0.020353 & 0.018810 & 0.004067 & 0.0 & . 010 & \\
\hline F...F & 0.018557 & 0.085769 & 0.189444 & 0.0680 & & 0.047828 \\
\hline 0.021458 & 0.137457 & 0.203390 & 0.001974 & 0.07250 & . 12 & 0.179559 \\
\hline 0.025090 & 0.112391 & 0.230857 & 0.065435 & 0.05862 & & 0.15 \\
\hline & 0.017017 & 0.016361 & -0.003343 & 0.014288 & 0.019933 & . 008363 \\
\hline 0.004697 & 0.025232 & 0.038502 & 0.000367 & 0.00672 & 0.020775 & 0.033942 \\
\hline 0.019804 & 0.019821 & 0.007728 & 0.012775 & 0.011082 & & .033942 \\
\hline \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\(0.338005{ }^{\text {CFC115 }}\)}} \\
\hline & & & & 0.035917 & 0.030925 & 0.001806 \\
\hline 0.000166 & 0.015049 & 0.017977 & 0.171605 & 0.018229 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000 & .00000 \\
\hline C-F & 0.561698 & 0.256431 & 0.482963 & 0.227748 & , 40976 & 13 \\
\hline 0.166074 & 0.001028 & 0.046437 & 0.004470 & 0.001750 & 0.633126 & . 806908 \\
\hline 0.184867 & 0.150616 & 0.029252 & 0.001744 & 0.000072 & & \\
\hline C-Cl & 0.026566 & 0.002241 & 0.116512 & 0.143305 & . 0337 & 4284 \\
\hline 0.000728 & 0.260385 & 0.099713 & 0.006801 & 0.012223 & .000000 & . 000000 \\
\hline 0.00000 & 0.000000 & 0.000000 & 0.00000 & 0.000000 & & . 00000 \\
\hline CCF & 0.022474 & 0.018579 & 0.004876 & 0.029540 & 0.009416 & 0.018266 \\
\hline 0.000998 & 0.003741 & 0.083309 & 0.051324 & 0.053244 & 0.036846 & 0.001729 \\
\hline 0.00481 & 0.037340 & 0.072045 & 0.144705 & 0.000026 & . 03 & . 0 \\
\hline CCCl & 0.025222 & 0.001901 & 0.007288 & 0.001277 & 0.001150 & 007389 \\
\hline 0.003205 & 0.009583 & 0.025516 & 0.003385 & 0.176046 & . 000000 & . 000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.00000 & , & \\
\hline FCF & 0.071707 & 0.076672 & 0.090506 & 0.031720 & 0.050576 & 0.144093 \\
\hline 0.258670 & 0.075233 & 0.043389 & 0.051027 & 0.005015 & 0.044369 & 0.028634 \\
\hline 0.244684 & 0.017703 & 0.024843 & 0.000005 & 0.000271 & & \\
\hline FCCl & 0.002812 & 0.010384 & 0.018444 & 0.088709 & 0.006711 & 0.001174 \\
\hline 0.001012 & 0.092601 & 0.000623 & 0.062736 & 0.017614 & 0.016278 & 0.034855 \\
\hline 0.000060 & 0.190545 & 0.174825 & 0.002141 & 0.000205 & & 0.034855 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000493 & 85 \\
\hline 0.008123 & 0.005874 & 0.000354 & 0.011218 & & & \\
\hline F~F & 0.000661 & 0.000581 & 0.006349 & 0.001333 & 0.00 & \\
\hline 01064 & 0.003753 & 0.000060 & 0.002114 & 0.008125 & 0.0000 & 0.002372 \\
\hline 00262 & 0.006442 & 0.002654 & 0.006422 & 0.569982 & & \\
\hline F...C & 0.071021 & 0.109930 & 0.092268 & 0.142118 & & \\
\hline 0.125270 & 0.078074 & 0.239760 & 0.306419 & 0.202707 & 0.0501 & \\
\hline 0.127246 & 0.145026 & 0.180222 & 0.241337 & 0.000182 & & \\
\hline & 0.021036 & 0.005939 & 0.01004 & 0.011790 & 0.01154 & \\
\hline 02280 & 0.012403 & 0.032343 & 0.015173 & 0.040676 & 0.022823 & . 003538 \\
\hline 02166 & 0.019120 & 0.029792 & 0.046844 & & & \\
\hline 1...C & 0.001960 & 0.011829 & 0.002399 & 0.018306 & , & .003230 \\
\hline 0.000949 & 0.018140 & 0.017189 & 0.027878 & 0.057976 & 0.00772 & . 003228 \\
\hline 0.001410 & 0.018782 & 0.029212 & 0.025749 & 0.000024 & & \\
\hline & 0.001897 & 0.000202 & 0.000310 & 0.002399 & & \\
\hline 00015 & 0.002458 & 0.001508 & 0.001561 & 0.005999 & , & \\
\hline 0.000295 & 0.003924 & 0.006104 & 0.005381 & 0.000005 & & \\
\hline F...F & 0.104664 & 0.099309 & 0.053941 & 0.132324 & . 29 & \\
\hline 0.361799 & 0.076874 & 0.235248 & 0.184344 & 0.137049 & 0.120478 & . 038142 \\
\hline 0.356124 & 0.166863 & 0.220435 & 0.310984 & 0.000366 & & \\
\hline & 0.023576 & 0.029787 & 0.021839 & 0.027110 & . 00407 & 012387 \\
\hline 0.041443 & 0.013876 & 0.048007 & 0.036504 & 0.026057 & 0.02129 & . 002181 \\
\hline . 03955 & 0.031272 & 0.043455 & 0.058837 & 0.000076 & & \\
\hline ..Cl & 0.046242 & 0.030012 & 0.071431 & 0.081582 & & \\
\hline 004988 & 0.323534 & 0.097964 & 0.059069 & 0.195114 & 0.034597 & \\
\hline 0.007233 & 0.192201 & 0.150894 & 0.119621 & 0.000188 & & \\
\hline & 0.007508 & 0.008196 & 0.005582 & 0.024821 & & 896 \\
\hline 0.001093 & 0.013270 & 0.010960 & 0.015589 & 0.042175 & 0.010 & . 008832 \\
\hline 0.001304 & 0.014291 & 0.035913 & 0.02501 & 0.000024 & & \\
\hline \multicolumn{7}{|c|}{CFC112a} \\
\hline & 0.027982 & 0.370467 & 0.032021 & 0.008269 & 0.004318 & 0.027532 \\
\hline \[
0.001394
\] & 0.003259 & 0.033189 & 0.123728 & 0.018314 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.00000 & & \\
\hline C-Cl & 0.122259 & 0.113299 & 0.377134 & 0.313354 & 0.043501 & 0.329156 \\
\hline 0.291448 & 0.278179 & 0.053926 & 0.041468 & 0.004042 & 0.021865 & 0.437694 \\
\hline F 03993 & 0.221915 & 0.034131 & 0.027081 & 0.000357 & & \\
\hline -F00426 & 0.371468 & 0.017321 & 0.112699 & 0.029216 & 0.221732 & . 000074 \\
\hline 000426 & 0.003134 & 0.007817 & 0.001015 & 0.000024 & 0.61868 & . 127234 \\
\hline 0.150002 & 0.010628 & 0.003923 & 0.001506 & 0.000108 & & \\
\hline CCCl & 0.056198 & 0.015902 & 0.033158 & 0.028170 & .011562 & 12 \\
\hline 0.016753 & 0.026288 & 0.060825 & 0.082454 & 0.206707 & 0.0253 & 512 \\
\hline 0.010514 & 0.004771 & 0.000613 & 0.153451 & 0.000058 & & \\
\hline CCF & 0.004807 & 0.043566 & 0.008632 & 0.021487 & 0.013235 & 0.002479 \\
\hline 0.008135 & 0.010540 & 0.031011 & 0.009558 & 0.021161 & 0.039416 & 0.015663 \\
\hline 0.011759 & 0.109454 & 0.028146 & 0.049737 & 0.00054 & & \\
\hline ClCCl & 0.004231 & 0.021439 & 0.061843 & 0.056593 & 0.005953 & 716 \\
\hline 0.016438 & 0.105238 & 0.143115 & 0.067787 & 0.005605 & 0.003189 & . 061171 \\
\hline 0.003068 & 0.005951 & 0.219847 & 0.011886 & 0.001464 & & \\
\hline ClCF & 0.008827 & 0.050852 & 0.000404 & 0.063830 & . 00009 & 437 \\
\hline 0.080663 & 0.000364 & 0.000234 & 0.032363 & 0.015802 & 0.042237 & . 006039 \\
\hline 0.224084 & 0.072934 & 0.015784 & 0.009605 & 0.000290 & .042237 & ,006039 \\
\hline FCF & 0.075213 & 0.003454 & 0.011407 & & 0.131581 & 0.036201 \\
\hline 0.018362 & 0.001147 & 0.010822 & 0.001424 & 0.002382 & 0.00000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.000000 & .00000 & 0.00000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{Cl} \sim \mathrm{Cl}\) & 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.002156 & 0.014726 \\
\hline 0.018348 & 0.001196 & 0.027982 & 0.009190 & & & \\
\hline 1~F & 0.003580 & 0.000041 & 0.01293 & 0.008758 & . 00 & . 00 \\
\hline 06418 & 0.011416 & 0.009208 & 0.000693 & 0.015580 & 0.001445 & 0.005182 \\
\hline 01928 & 0.003390 & 0.004649 & 0.015532 & 0.540068 & & . 0 \\
\hline C...Cl & 0.030867 & 0.078924 & 0.049016 & 0.092091 & & \\
\hline 0.035103 & 0.089958 & 0.111731 & 0.212152 & 0.164983 & 0.0360 & \\
\hline 0.052609 & 0.075464 & 0.071319 & 0.184944 & 0.000577 & & \\
\hline & 0.010571 & 0.002049 & 0.010562 & 0.008898 & &  \\
\hline 00648 & 0.006947 & 0.015765 & 0.012605 & 0.024087 & & \\
\hline 0.008313 & 0.007901 & 0.014590 & 0.032558 & 0.000100 & & \\
\hline C...F & 0.068719 & 0.065483 & 0.070179 & 0.064289 & 位 & \\
\hline 0.047769 & 0.029559 & 0.093309 & 0.079056 & 0.112563 & 0.0243 & 0.036126 \\
\hline 0.097843 & 0.113750 & 0.029045 & 0.036271 & 0.000105 & & \\
\hline & 0.011731 & 0.009101 & 0.000904 & 0.005562 & .0189 & \\
\hline 00861 & 0.003570 & 0.007389 & 0.001181 & 0.023666 & 0.012162 & \\
\hline 011745 & 0.017752 & 0.004319 & 0.007811 & 0.000027 & & \\
\hline ...Cl & 0.056409 & 0.061785 & 0.149516 & 0.142226 & & \\
\hline 0.164529 & 0.375824 & 0.262471 & 0.228969 & 0.176738 & 0.053197 & \\
\hline 0.027428 & 0.105884 & 0.424066 & 0.306667 & 0.001981 & & . 146130 \\
\hline & 0.010634 & 0.015736 & 0.02745 & 0.033802 & & -0.002059 \\
\hline 0.003325 & 0.012836 & 0.057645 & 0.050131 & 0.034281 & 0.009929 & 0.022702 \\
\hline 0.003913 & -0.008610 & 0.058689 & 0.059903 & 0.000503 & & \\
\hline Cl...F & 0.086532 & . 045817 & 0.01960 & 0.046028 & . 1441 & 0.089623 \\
\hline 0.229418 & 0.0274 & 0.060314 & 0.020686 & 0.118673 & 0.03443 & 0.012468 \\
\hline 0.174979 & 0.092145 & 0.022257 & 0.034273 & 0.000225 & 0.034 & . 01 \\
\hline & 0.010038 & 0.014234 & 0.002250 & 0.014315 & 0.022105 & \\
\hline 0.004317 & 0.003973 & 0.009909 & 0.006117 & 0.025680 & 0.0138 & \\
\hline 0.012493 & 0.022472 & 0.005534 & 0.007642 & 0.00025 & & \\
\hline F...F & 0.021541 & 0.058751 & 0.015720 & 0.054285 & & \\
\hline 0.050368 & 0.008503 & 0.025194 & 0.024286 & 0.024946 & 0508 & 67 \\
\hline 0.113984 & 0.120350 & 0.029559 & 0.043690 & 0.000178 & & \\
\hline & 0.018393 & 0.011780 & 0.004560 & 0.008800 & & \\
\hline 0.010036 & 0.001821 & 0.006126 & 0.004329 & 0.004766 & .0018 & . 001275 \\
\hline 0.019698 & 0.022652 & 0.005547 & 0.008253 & 0.000032 & 0.00185 & \\
\hline & & &  & & & \\
\hline & & & 0.001919 & 0.032881 & 0.178742 & 0.000000 \\
\hline 00000 & \[
0.000000
\] & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.00000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & \\
\hline C-F & 0.158370 & 0.231748 & 0.284127 & 0.000004 & . 0013 & \\
\hline 0.574653 & 0.096332 & 0.096323 & 0.172598 & 0.172579 & 0.0325 & . 032563 \\
\hline 0.005282 & 0.005282 & 0.001962 & 0.001961 & 0.00000 & & \\
\hline C-Cl & 0.018633 & 0.109535 & 0.041995 & 0.303090 & . 002888 & \\
\hline 0.013428 & 0.450258 & 0.450253 & 0.006475 & 0.006475 & 0.260502 & 0.260507 \\
\hline 0.027822 & 0.027823 & 0.025002 & 0.025002 & 0.000000 & & , \\
\hline FCC & 0.030135 & 0.010152 & 0.031500 & 0.005644 & 0.013976 & 0.028861 \\
\hline 0.02885 & 0.016253 & 0.016254 & 0.000036 & 0.000036 & 0.102604 & 0. 102604 \\
\hline 0.01884 & 0.018847 & 0.051384 & 0.051383 & 0.000000 & & \\
\hline ClCC & 0.006041 & 0.028608 & 0.006770 & 0.010619 & . 05025 & 600 \\
\hline 0.022599 & 0.034560 & 0.034561 & 0.001180 & 0.001180 & 0.013090 & 0.013090 \\
\hline 0.002069 & 0.002068 & 0.165937 & 0.165938 & 0.000000 & , & 0.013090 \\
\hline FCF & 0.066260 & 0.022321 & 0.069262 & 0.012410 & 0.030732 & 0.071213 \\
\hline 0.071222 & 0.007871 & 0.007871 & 0.238194 & 0.238202 & 0.016995 & 0.016994 \\
\hline 0.002147 & 0.002147 & 0.003290 & 0.003290 & 0.000000 & & . 01699 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ClCCl & 0.011140 & 0.052756 & 0.012484 & 0.019583 & 677 & 0.001982 \\
\hline 0.001982 & 0.061737 & 0.061743 & 0.000646 & 0.000646 & 0.001418 & 0.001418 \\
\hline 0.248516 & 0.248518 & 0.005817 & 0.005817 & 0.000000 & & \\
\hline \(\mathrm{F} \sim \mathrm{Cl}\) & 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.00000 & 0.00000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.000000 & . \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 1.00000 & & \\
\hline F...C & 0.083751 & 0.139035 & 0.055459 & 0.033527 & 0.13 & \\
\hline 0.055980 & 0.042487 & 0.042486 & 0.124088 & 0.124092 & 0.154937 & 0.154935 \\
\hline 0.027737 & 0.027735 & 0.060846 & 0.060846 & 0.00000 & & 0.15435 \\
\hline & 0.007625 & 0.000695 & 0.017937 & 0.001284 & . 000 & \\
\hline 0.017212 & 0.002590 & 0.002590 & 0.021697 & 0.021697 & 0.02360 & 3604 \\
\hline 0.004275 & 0.004274 & 0.013071 & 0.013071 & 0.00000 & & \\
\hline Cl...C & 0.041476 & 0.032121 & 0.022037 & 0.049136 & , & \\
\hline 0.016419 & 0.051486 & 0.051488 & 0.002553 & 0.002553 & 0.051 & \\
\hline 0.066838 & 0.066839 & 0.165812 & 0.165812 & 0.00000 & . & \\
\hline & -0.001167 & 0.007103 & 0.001264 & 0.005187 & 0.006835 & 0.004574 \\
\hline 0.004574 & 0.010951 & 0.010951 & 0.000164 & 0.000164 & 0.000205 & 0.000205 \\
\hline 0.014021 & 0.014021 & 0.028946 & 0.028946 & 0.00000 & & \\
\hline F...F & 0.117301 & 0.090029 & 0.386491 & 0.024731 & 0.055928 & 0.115121 \\
\hline 0.115122 & 0.037625 & 0.037625 & 0.383380 & 0.383384 & 0.196711 & 0.196710 \\
\hline 0.035322 & 0.035319 & 0.094683 & 0.094682 & 0.000000 & & \\
\hline & 0.035394 & 0.015089 & 0.016065 & 0.004986 & 0.012942 & \\
\hline 0.026264 & 0.007321 & 0.007321 & 0.045151 & 0.045153 & . 04 & \\
\hline 0.007425 & 0.007424 & 0.019561 & 0.019561 & 0.000000 & & \\
\hline Cl...Cl & 0.027027 & 0.139396 & 0.043078 & 0.499060 & . 2163 & \\
\hline 0.043515 & 0.156527 & 0.156530 & 0.003361 & 0.003361 & 0.1116 & \\
\hline 0.470909 & 0.470913 & 0.305159 & 0.305160 & 0.000000 & & \\
\hline & 0.007658 & 0.037451 & 0.009611 & -0.002143 & 0.047930 & 0.008171 \\
\hline 0.008171 & 0.024001 & 0.024004 & 0.000479 & 0.000479 & -0.007735 & -0.007735 \\
\hline 0.068790 & 0.068790 & 0.058531 & 0.058531 & 0.000000 & & \\
\hline & \multicolumn{6}{|l|}{08550 CFC114a} \\
\hline C-C & 0.008550 & 0.387094 & 0.014125 & 0.061425 & 0.009771 & 0.000974 \\
\hline 0.017455 & 0.000423 & 0.073454 & 0.079230 & 0.040331 & 0.00000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.000000 & & \\
\hline C-F & 0.600569 & 0.223083 & 0.682517 & 0.233489 & 0.318826 & \\
\hline 0.129131 & 0.058874 & 0.005937 & 0.004813 & 0.002315 & 0.596253 & . 086217 \\
\hline 0.172710 & 0.001225 & 0.035235 & 0.001673 & 0.000019 & & \\
\hline \(\mathrm{C}-\mathrm{Cl}\) & 0.006621 & 0.006277 & 0.049812 & 0.130273 & . 0457 & 000423 \\
\hline 0.138145 & 0.151202 & 0.003580 & 0.000979 & 0.007168 & 0.014890 & 392490 \\
\hline 0.002585 & 0.204806 & 0.174124 & 0.024226 & 0.000082 & & \\
\hline CCF & 0.034847 & 0.021627 & 0.009573 & 0.030345 & 0.028251 & 0.003379 \\
\hline 0.015703 & 0.083624 & 0.030629 & 0.078543 & 0.080493 & 0.022861 & 0.009759 \\
\hline 0.000241 & 0.002604 & 0.106729 & 0.048205 & 0.000021 & 0.02286 & \\
\hline CCCl & 0.011872 & 0.004613 & 0.004789 & 0.009213 & 0.00089 & . 003984 \\
\hline 0.019455 & 0.004985 & 0.001290 & 0.005333 & 0.097637 & 0.02335 & . 028499 \\
\hline 0.002273 & 0.004523 & 0.023034 & 0.177134 & 0.000119 & . 0233 & \\
\hline FCF & 0.060681 & 0.057548 & 0.023979 & 0.025409 & 0.066011 & 0.227858 \\
\hline 0.037619 & 0.020090 & 0.023507 & 0.020281 & 0.008569 & 0.069277 & 0.007578 \\
\hline 0.248922 & 0.002081 & 0.021820 & 0.002572 & 0.000173 & & 0.007578 \\
\hline FCCl & 0.003293 & 0.014643 & 0.012166 & 0.025706 & 0.004004 & 0.001489 \\
\hline 0.050436 & 0.000070 & 0.108713 & 0.000776 & 0.006222 & 0.003733 & 0.103303 \\
\hline 0.001370 & 0.190168 & 0.006769 & 0.002351 & 0.000122 & 0.00373 & . 1033 \\
\hline ClCCl & 0.002089 & 0.001909 & 0.015809 & 0.033334 & 0.006529 & 0.000008 \\
\hline 0.003058 & 0.020630 & 0.091203 & 0.125811 & 0.027833 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.00000 & 0.0000 & 0.000000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline F~F & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.001026 & 0.005561 \\
\hline 0.006120 & 0.006725 & 0.000405 & 0.00449 & & & \\
\hline \(\mathrm{F} \sim \mathrm{Cl}\) & 0.001686 & 0.000480 & & & & \\
\hline 0.00425 & 0.002055 & 0.005075 & 0.012946 & 0. & 0.000876 & 0.0001392 \\
\hline . 004082 & 0.000360 & 0.000087 & 0.004608 & 0.738380 & & \\
\hline F...C & 0.054334 & 0.090951 & 0.059673 & 0.130498 & & \\
\hline 0.084633 & 0.134499 & 0.128125 & 0.181264 & 0.132055 & 0.06 & 0.068319 \\
\hline 0.126669 & 0.054342 & 0.200002 & 0.128844 & 0.000174 & & \\
\hline & 0.018743 & 0.004974 & 0.004584 & 0.006790 & & \\
\hline 011102 & 0.018600 & 0.008572 & 0.015401 & 0.024851 & & \\
\hline 0.022361 & 0.010685 & 0.032298 & 0.026994 & 0.000037 & & \\
\hline C... Cl & 0.012469 & 0.026475 & 0.009744 & 0.032944 & . 01745 & \\
\hline 0.019277 & 0.048673 & 0.058059 & 0.069029 & 0.119395 & 0.00 & . 031299 \\
\hline 0.002139 & 0.033138 & 0.042183 & 0.109662 & 0.000057 & & \\
\hline & 0.003626 & 0.000055 & 0.001567 & 0.004974 & 0.00102 & \\
\hline 0502 & 0.004565 & 0.010308 & 0.009088 & 0.013745 & 0.0028 & \\
\hline . 000209 & 0.004896 & 0.000680 & 0.016915 & 0.000017 & & \\
\hline F...F & 0.100446 & 0.088103 & 0.034625 & 0.081342 & & \\
\hline 0.076916 & 0.134512 & 0.041651 & 0.128618 & 0.103404 & 0.104521 & 73 \\
\hline 0.361404 & 0.007142 & 0.237952 & 0.102243 & 0.000207 & & \\
\hline & 0.021993 & 0.026221 & 0.008902 & 0.01501 & 0.012925 & \\
\hline . 01418 & 0.028598 & 0.009275 & 0.02669 & 0.021139 & & \\
\hline 0.04267 & 0.001569 & . 049578 & 0.020660 & 0.000047 & & \\
\hline F...Cl & 0.032311 & 0.020398 & 0.032632 & 0.090314 & .0287 & 0.011410 \\
\hline 33521 & 0.082882 & 0.185487 & 0.126531 & 0.140488 & 0.0134 & \\
\hline 0.001876 & 0.306525 & 0.037260 & 0.084109 & 0.000226 & & \\
\hline & 0.006335 & 0.006769 & 0.001943 & 0.019135 & & \\
\hline 002235 & 0.011786 & 0.038593 & 0.025709 & 0.028500 & . 002 &  \\
\hline 0.000494 & 0.025760 & 0.003171 & 0.016768 & 0.000028 & & \\
\hline \(\mathrm{Cl} . . . \mathrm{Cl}\) & 0.015821 & 0.015237 & 0.020481 & 0.051041 & & 88 \\
\hline 0.124193 & 0.197653 & 0.153479 & 0.070571 & 0.112177 & . 0273 & 55 \\
\hline 0.003303 & 0.125482 & 0.028954 & 0.191131 & 0.000205 & & \\
\hline & 0.003713 & 0.003542 & . 008243 & 0.018086 & & 36 \\
\hline 013666 & -0.003720 & 0.023063 & . 018384 & 0.027045 & 0.004958 &  \\
\hline 0.000571 & 0.017968 & -0.000282 & 0.037411 & 0.000038 & . & \\
\hline & & & & & & \\
\hline & & 0.049185 & 0.199800 & 0.000000 & . 0000 & 000000 \\
\hline 000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & . 00000 \\
\hline 0000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & \\
\hline C-F & 0.165216 & 0.553637 & 0.003969 & 0.000000 & , & \\
\hline 0.616052 & 0.616051 & 0.219637 & 0.219635 & 0.065137 & . 065 & 750128 \\
\hline 0.750128 & 0.149561 & 0.149561 & 0.000762 & 0.000762 & & \\
\hline CCF & 0.013184 & 0.002729 & 0.025697 & 0.000000 & . 0186 & 0.022506 \\
\hline 0.026565 & 0.026565 & 0.004255 & 0.004254 & 0.086828 & . 0868 & 0.000609 \\
\hline 0.000609 & 0.000598 & 0.000598 & 0.115170 & 0.115170 & & \\
\hline FCF & 0.083214 & 0.017226 & 0.162190 & 0.000000 & 0.117534 & 0.142054 \\
\hline 0.079104 & 0.079105 & 0.250387 & 0.250389 & 0.068595 & 0.068593 & 0.091745 \\
\hline 0.091 & 0.297088 & 0.297088 & 0.000122 & 0.000122 & & \\
\hline F~F & 0.000000 & 0.000000 & 0.000000 & 1.000000 & . 000000 & 000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & . 000000 & . 0065593 \\
\hline 0.006593 & 0.015645 & 0.015645 & 0.011310 & 0.011310 & & \\
\hline C...F & 0.125005 & 0.077931 & 0.319989 & 0.00000 & 0.16013 & 0.089321 \\
\hline 0.068396 & 0.068396 & 0.132646 & 0.132646 & 0.292548 & 0.292549 & 0.063150 \\
\hline 0.063150 & 0.118370 & 0.118370 & 0.305558 & 0.305558 & 0.2925 & , \\
\hline
\end{tabular}
\begin{tabular}{ll} 
& 0.005812 \\
0.026164 & 0.026164 \\
0.006516 & 0.023637 \\
F...F & 0.105986 \\
0.151848 & 0.151848 \\
0.066466 & 0.351363 \\
& 0.032009 \\
0.031870 & 0.031871 \\
0.014792 & 0.043739
\end{tabular}
0.006152
0.019306
0.023637
0.294605
0.337389
0.351363
-0.001465
0.036380
0.043739
0.015571
0.019306
0.060660
0.223878
0.337390
0.422980
0.048907
0.036381
0.083438
\begin{tabular}{lll}
0.000000 & 0.012153 & 0.026882 \\
0.046772 & 0.046772 & 0.006516 \\
0.060660 & & \\
0.000000 & 0.187836 & 0.432082 \\
0.363816 & 0.363815 & 0.066467 \\
0.422980 & & \\
0.000000 & 0.049552 & 0.028645 \\
0.076305 & 0.076305 & 0.014792 \\
0.083438 & &
\end{tabular}
\begin{tabular}{lclllllll} 
& & & \multicolumn{1}{c}{ HFC170 } & & & \\
C-C & 0.002500 & 0.156155 & 0.472816 & 0.000000 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & & \\
C-H & 0.942466 & 0.002260 & 0.013641 & 0.000000 & 0.924577 & 0.014606 \\
0.955632 & 0.955631 & 0.002886 & 0.002886 & 0.002072 & 0.002073 & 0.947195 \\
0.947195 & 0.005353 & 0.005352 & 0.007848 & 0.007848 & & & \\
CCH & 0.000442 & 0.141217 & 0.020153 & 0.000000 & 0.000664 & 0.156877 \\
0.000880 & 0.000880 & 0.012714 & 0.012717 & 0.324225 & 0.324228 & 0.000000 \\
0.000000 & 0.019263 & 0.019266 & 0.314085 & 0.314087 & & & \\
HCH & 0.000222 & 0.071077 & 0.010144 & 0.000000 & 0.000334 & 0.078960 \\
0.000432 & 0.000432 & 0.143156 & 0.143155 & 0.005509 & 0.005508 & 0.000506 \\
0.000506 & 0.135050 & 0.135049 & 0.006638 & 0.006637 & & & \\
H~H & 0.000000 & 0.000000 & 0.000000 & 1.000000 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000168 \\
0.000168 & 0.033409 & 0.033408 & 0.025909 & 0.025911 & & & \\
H...H & 0.017055 & 0.049140 & 0.008315 & 0.000000 & 0.016457 & 0.056906 \\
0.003899 & 0.003899 & 0.062846 & 0.062846 & 0.043250 & 0.043249 & 0.003696 \\
0.003696 & 0.060625 & 0.060625 & 0.042266 & 0.042266 & & \\
& 0.000178 & 0.008807 & 0.001154 & 0.000000 & 0.000224 & 0.009577 \\
0.000575 & -0.000575 & 0.011450 & 0.011450 & 0.008140 & 0.008140 & -0.000576 & - \\
0.000576 & 0.010932 & 0.010932 & 0.008004 & 0.008003 & & & \\
H..C & 0.042837 & 0.449865 & 0.474425 & 0.000000 & 0.062689 & 0.555116 \\
0.040705 & 0.040706 & 0.629832 & 0.629831 & 0.503537 & 0.503535 & 0.052274 \\
0.052274 & 0.603318 & 0.603318 & 0.482549 & 0.482546 & & & \\
0.000973 & -0.005700 & 0.121479 & -0.000647 & 0.000000 & -0.004945 & 0.127958 & - \\
0.003263 & 0.132049 & 0.132049 & 0.112702 & 0.112701 & & &
\end{tabular}
\begin{tabular}{lcllllll} 
& & & \multicolumn{5}{c}{ HFC161 } \\
C-C & 0.000003 & 0.000546 & 0.001663 & 0.044381 & 0.023849 & 0.115784 \\
0.000367 & 0.274772 & 0.148173 & 0.02944 & 0.012740 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & \\
C-H & 0.954337 & 0.933452 & 0.938367 & 0.005800 & 0.003066 & 0.003323 \\
0.005202 & 0.004582 & 0.006140 & 0.002378 & 0.001374 & 0.949217 & 0.957151 \\
0.003948 & 0.002608 & 0.002629 & 0.003065 & 0.000004 & & \\
C-F & 0.000009 & 0.001052 & 0.000111 & 0.000267 & 0.028232 & 0.089032 \\
0.162231 & 0.093199 & 0.260114 & 0.287327 & 0.009455 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & \\
CCH & 0.000325 & 0.000257 & 0.000488 & 0.083882 & 0.039410 & 0.096089 \\
0.114141 & 0.095559 & 0.068625 & 0.205498 & 0.025607 & 0.000071 & 0.001029 \\
0.016538 & 0.211996 & 0.235687 & 0.186478 & 0.000320 & & \\
CCF & 0.000328 & 0.000693 & 0.000025 & 0.002603 & 0.000520 & 0.000929 \\
0.003894 & 0.052363 & 0.001101 & 0.000086 & 0.432673 & 0.000000 & 0.000000 \\
0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & \\
HCH & 0.000338 & 0.000253 & 0.000148 & 0.070053 & 0.084768 & 0.044450 \\
0.029264 & 0.004881 & 0.002541 & 0.003038 & 0.001662 & 0.000104 & 0.000233 \\
0.099428 & 0.000155 & 0.003570 & 0.000863 & 0.000287 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline HCF & 0.000000 & 0.000001 & 0.000001 & 0.000026 & 3 & 17 \\
\hline 0.025547 & 0.003474 & 0.024496 & 0.001343 & 0.004410 & 0.000137 & 0.000042 \\
\hline 0.000217 & 0.034927 & 0.034713 & 0.043112 & 0.001819 & & \\
\hline H~F & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.0000 & \\
\hline 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.001 & 23 \\
\hline . 020837 & 0.000004 & 0.003236 & 0.008908 & 0.484562 & & \\
\hline \(\mathrm{H} \sim \mathrm{H}\) & 0.000077 & 0.000026 & 0.000002 & 0.012253 & 0.016050 & \\
\hline 0.002945 & 0.003473 & 0.010182 & 0.003359 & 0.005843 & 0.00004 & 0.000003 \\
\hline 0.006181 & 0.003812 & 0.004375 & 0.045965 & 0.496328 & & \\
\hline H...H & 0.004301 & 0.009415 & 0.018799 & 0.027414 & & \\
\hline 0.037658 & 0.016576 & 0.012980 & 0.029089 & 0.003940 & . 0011 & \\
\hline 0.072328 & 0.022218 & 0.039698 & 0.027265 & 0.000576 & & \\
\hline & -0.000634 & 0.000175 & 0.000199 & 0.004795 & 0.01 & \\
\hline 006949 & 0.003090 & 0.002529 & 0.005729 & 0.000780 & -0.000562 & -0.000602 \\
\hline 0.013765 & 0.004358 & 0.007840 & 0.005371 & 0.000113 & & \\
\hline H...C & 0.042733 & 0.051232 & 0.044753 & 0.450199 & 0.567782 & . 401239 \\
\hline 0.370235 & 0.360502 & 0.270837 & 0.313087 & 0.178333 & 0.047684 & 0.037344 \\
\hline 0.632781 & 0.267806 & 0.420060 & 0.307109 & 0.006423 & & \\
\hline & -0.002124 & -0.003684 & -0.005128 & 0.112361 & . 120 & \\
\hline 0.082784 & 0.032137 & 0.028253 & 0.063987 & 0.041684 & -0.002965 & \\
\hline 0.131358 & 0.064791 & 0.091789 & 0.071528 & 0.001438 & -0.02965 & \\
\hline F...H & 0.000063 & 0.006965 & 0.000393 & 0.084512 & 0.005577 & \\
\hline 0.019016 & 0.011833 & 0.041374 & 0.010473 & 0.035907 & 0.00471 & \\
\hline 0.000375 & 0.053210 & 0.022090 & 0.040130 & 0.001133 & & \\
\hline & 0.000005 & -0.000590 & -0.000040 & 0.015199 & 0.0012 & 0.004380 \\
\hline 0.00 & 0.001061 & 0.002602 & -0.000184 & 0.006657 & -0.000285 & 0.000103 \\
\hline 0.00005 & 0.009164 & 0.003796 & 0.007482 & 0.000200 & & \\
\hline F...C & 0.000207 & 0.000089 & 0.000213 & 0.071887 & & \\
\hline 0.112550 & 0.030514 & 0.102808 & 0.044647 & 0.212013 & . 000 & 05 \\
\hline 0.001817 & 0.270383 & 0.108599 & 0.210280 & 0.005654 & & \\
\hline & 0.000033 & 0.000116 & 0.000005 & 0.014371 & & \\
\hline 0.022108 & 0.011985 & 0.017245 & 0.000694 & 0.026921 & . 0000 & 22 \\
\hline 0.000367 & 0.054570 & 0.021919 & 0.042441 & 0.001141 & & \\
\hline \multicolumn{7}{|c|}{HFC152} \\
\hline C-C & 0.001714 & 0.171028 & 0.000002 & 0.424423 & . 0284 & 0.034275 \\
\hline 0.000000 & 0.00000 & 0.00000 & 0.000000 & 0.00000 & . 0000 & 0.000000 \\
\hline 0.000000 & 0.00000 & 0.00000 & 0.000000 & 0.000000 & & \\
\hline C-F & 0.001626 & 0.155194 & 0.136655 & 0.049694 & . 495698 & . 101303 \\
\hline 0.000000 & 0.00000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.001342 & 0.014487 & 0.268523 & 0.639558 & 0.007310 & 0.00000 & \\
\hline C-H & 0.944821 & 0.000133 & 0.002136 & 0.002439 & 0.003385 & \\
\hline 0.953051 & 0.005930 & 0.001257 & 0.000001 & 0.959366 & 0.000923 & . 000120 \\
\hline 0.933427 & 0.006358 & 0.001502 & 0.001865 & 0.000130 & & \\
\hline CCF & 0.001349 & 0.000560 & 0.024323 & 0.095585 & 0.022943 & . 352410 \\
\hline 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & . 000000 \\
\hline 0.000202 & 0.001299 & 0.001742 & 0.000531 & 0.485576 & . 00000 & \\
\hline CCH & 0.000001 & 0.158930 & 0.000904 & 0.028300 & 7787 & 007416 \\
\hline 0.00000 & 0.178702 & 0.155808 & 0.001421 & 0.001315 & 0.283785 & 0.055129 \\
\hline 0.0002 & 0.075815 & 0.103299 & 0.027079 & 0.023847 & 0.28378 & \\
\hline FCH & 0.00000 & 0.013412 & 0.018362 & 0.000410 & 0.025986 & 945 \\
\hline 0.000165 & 0.045429 & 0.044546 & 0.002636 & 0.000139 & 0.016118 & 0.082494 \\
\hline 0.000001 & 0.002507 & 0.037898 & 0.017153 & 0.003216 & & . 0824 \\
\hline HCH & 0.000099 & 0.007078 & 0.039299 & 0.001252 & 0.000907 & 0.000635 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.00000 & 0.000000 & 0.000000 \\
\hline 0.000124 & 0.043705 & 0.000614 & 0.002071 & 0.000814 & , & 0.00000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline , & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000080 & 0.000203 & 0.003580 & 0.525848 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & & \\
\hline H~H & 0.00000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000039 & 0.012574 & 0.087514 & 0.443226 & 0.000000 & 0.000000 & 0.00000 \\
\hline 0.000052 & 0.021283 & 0.015091 & 0.009738 & 0.005951 & & \\
\hline F...C & 0.000082 & 0.172884 & 0.066100 & 0.063162 & 0.118937 & 0.281598 \\
\hline 0.000602 & 0.291073 & 0.271720 & 0.010580 & 0.001433 & 0.258654 & 0.338630 \\
\hline 0.000188 & 0.062606 & 0.237064 & 0.121180 & 0.158348 & & \\
\hline & 0.000209 & 0.028654 & 0.016962 & 0.019886 & 0.025316 & 0.014937 \\
\hline 0.000124 & 0.060097 & 0.056101 & 0.002185 & 0.000296 & 0.053399 & 0.069921 \\
\hline 0.000067 & 0.013097 & 0.041766 & 0.015030 & 0.038613 & & \\
\hline H...C & 0.036260 & 0.173423 & 0.474984 & 0.293043 & 0.151881 & 0.140798 \\
\hline 0.044639 & 0.258527 & 0.245340 & 0.009049 & 0.033698 & 0.253303 & 0.291530 \\
\hline 0.051160 & 0.513998 & 0.193858 & 0.091372 & 0.191183 & & \\
\hline & -0.003495 & 0.056323 & 0.102487 & 0.004517 & 0.025273 & 0.030453 \\
\hline 0.003059 & 0.059985 & 0.054720 & 0.001944 & -0.000978 & 0.056735 & 0.062465 \\
\hline 0.003766 & 0.113600 & 0.043418 & 0.020614 & 0.041428 & & 0.062465 \\
\hline F...H & 0.005954 & 0.031496 & 0.068581 & 0.011598 & 0.047177 & 0.023040 \\
\hline 0.005254 & 0.046248 & 0.040684 & 0.001660 & 0.005528 & 0.038867 & 0.053200 \\
\hline 0.005811 & 0.076993 & 0.024363 & 0.042193 & 0.033590 & & \\
\hline & -0.000487 & 0.006967 & 0.014423 & 0.001913 & 0.002567 & 0.004743 \\
\hline 0.000270 & 0.008132 & 0.007970 & 0.000312 & -0.000266 & 0.007208 & 0.009947 \\
\hline 0.000455 & 0.014832 & 0.006974 & 0.001559 & 0.006181 & & \\
\hline H...H & 0.011684 & 0.020118 & 0.029595 & 0.003253 & 0.011409 & 0.002590 \\
\hline 0.000054 & 0.027785 & 0.025819 & 0.000956 & 0.000141 & 0.026027 & 0.030690 \\
\hline 0.011368 & 0.033823 & 0.020013 & 0.008360 & 0.003187 & .0260 & 0.030690 \\
\hline & 0.000181 & 0.003800 & 0.005186 & 0.000526 & 0.002265 & 0.000469 \\
\hline 0.000682 & 0.005314 & 0.004941 & 0.000183 & -0.000670 & 0.004981 & 0.005874 \\
\hline 0.000207 & 0.005596 & 0.003876 & 0.001697 & 0.000626 & & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{C-C \(\quad 0.000001 \quad 0.000248 \quad \underline{\text { HFC143 }}\)}} \\
\hline & & & & & & \\
\hline 0.015773 & 0.00000 & 0.302382 & 0.003836 & 0.083664 & 0.004140 & 0.035206 \\
\hline 0.007732 & 0.013663 & 0.027999 & 0.007482 & 0.000281 & & \\
\hline C-H & 0.962150 & 0.950959 & 0.943072 & 0.000300 & 0.000234 & 0.004789 \\
\hline 0.000587 & 0.003658 & 0.002573 & 0.001023 & 0.001357 & 0.001531 & 0.000144 \\
\hline 0.000290 & 0.000611 & 0.000252 & 0.000180 & 0.00013 & & \\
\hline C-F & 0.000005 & 0.001906 & 0.000994 & 0.226280 & 0.112518 & 0.038293 \\
\hline 0.279967 & 0.097651 & 0.152714 & 0.602217 & 0.318904 & 0.545588 & 0.125743 \\
\hline 0.085526 & 0.034824 & 0.091706 & 0.002621 & 0.000771 & & \\
\hline CCH & 0.000695 & 0.000331 & 0.000172 & 0.028365 & 0.153666 & 0.102392 \\
\hline 0.088757 & 0.224590 & 0.076499 & 0.006690 & 0.010984 & 0.034475 & 0.107006 \\
\hline 0.033559 & 0.022386 & 0.001800 & 0.010165 & 0.003035 & & \\
\hline CCF & 0.000225 & 0.000514 & 0.000469 & 0.014298 & 0.003663 & 0.009275 \\
\hline 0.009585 & 0.006172 & 0.033432 & 0.022428 & 0.035583 & 0.013645 & 0.006206 \\
\hline 0.032904 & 0.247283 & 0.231410 & 0.379029 & 0.007916 & & \\
\hline HCH & 0.000000 & 0.000001 & 0.000054 & 0.001511 & 0.001540 & 0.018846 \\
\hline 0.001572 & 0.000050 & 0.000451 & 0.000001 & 0.000028 & 0.000943 & 0.000003 \\
\hline 0.000026 & 0.000022 & 0.000031 & 0.000271 & 0.000001 & & , \\
\hline HCF & 0.000139 & 0.000080 & 0.000000 & 0.033952 & 0.013192 & 0.006602 \\
\hline 0.029958 & 0.020293 & 0.003623 & 0.015853 & 0.027734 & 0.021380 & 0.037638 \\
\hline 0.008700 & 0.002544 & 0.000984 & 0.002048 & 0.006173 & 0.021380 & 0.037638 \\
\hline FCF & 0.000001 & 0.000410 & 0.00008 & 0.000219 & 0.011812 & 0.001106 \\
\hline 0.001087 & 0.007277 & 0.013017 & 0.008975 & 0.017635 & 0.000011 & 0.001197 \\
\hline 0.183139 & 0.066637 & 0.054101 & 0.012238 & 0.000118 & & .001197 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline H~H & 0.000022 & 0.000009 & 0.000000 & 0.000082 & 000026 & 0.000003 \\
\hline 0.000000 & 0.000105 & 0.000068 & 0.000011 & 0.000149 & 0.000006 & 0.001088 \\
\hline 0.002520 & 0.000116 & 0.000316 & 0.002909 & 0.196205 & & \\
\hline H~F & 0.000013 & 0.000000 & 0.000022 & 0.028550 & & \\
\hline 0.016797 & 0.000034 & 0.001597 & 0.013207 & 0.007101 & 0.0055 & 0.022715 \\
\hline 0.002599 & 0.003969 & 0.000878 & 0.024502 & & & \\
\hline F~F & 0.000017 & 0.000029 & 0.000017 & 0.000765 & 0.00 & \\
\hline 0.010378 & 0.001794 & 0.000213 & 0.005440 & 0.004189 & 0.009 & 0.025936 \\
\hline 020976 & 0.007892 & 0.000087 & 0.000362 & 0.375119 & & \\
\hline C...H & 0.032844 & 0.035170 & 0.037594 & 0.158757 & & 000 \\
\hline 0.176123 & 0.202189 & 0.189590 & 0.064854 & 0.142904 & 0.1202 & 0.208900 \\
\hline 0.047057 & 0.088939 & 0.062248 & 0.149336 & 0.024802 & & \\
\hline & -0.001885 & -0.002706 & -0.003581 & 0.033453 & . 0304 & \\
\hline 037006 & 0.042667 & 0.007076 & 0.012487 & 0.020737 & 0.02 & 0.038530 \\
\hline 0.010098 & 0.017154 & 0.011715 & 0.030241 & 0.004994 & & \\
\hline C...F & 0.001279 & 0.001014 & 0.000359 & 0.170148 & , & \\
\hline 0.209228 & 0.224729 & 0.131435 & 0.104511 & 0.174870 & 0.1266 & 0.259112 \\
\hline 0.263483 & 0.246809 & 0.304809 & 0.226168 & 0.034128 & & \\
\hline & 0.000248 & 0.000297 & 0.000113 & 0.034817 & 0.04065 & 0.023068 \\
\hline 0.037595 & 0.045457 & 0.021176 & 0.019015 & 0.037796 & 0.022582 & 0.042815 \\
\hline 0.040140 & 0.044659 & 0.032345 & 0.039282 & 0.006315 & & \\
\hline H...H & 0.000066 & 0.000135 & 0.014547 & 0.003350 & 0.004190 & \\
\hline 0.012893 & 0.015064 & 0.002843 & 0.001363 & 0.007459 & 0.008783 & 0.016203 \\
\hline 0.000495 & 0.001090 & 0.000289 & 0.001363 & 0.001693 & & 0.016203 \\
\hline & -0.000509 & 0.000005 & 0.000181 & 0.000738 & & \\
\hline 0.003765 & 0.004599 & 0.000725 & 0.000419 & 0.002291 & 0.0026 & \\
\hline 0.000145 & 0.000330 & 0.000076 & 0.000385 & 0.000522 & & \\
\hline H...F & 0.004804 & 0.011343 & 0.005538 & 0.027928 & 0.035710 & \\
\hline 0.033524 & 0.044381 & 0.020570 & 0.028949 & 0.035798 & 0.051533 & \\
\hline 0.020555 & 0.023864 & 0.013939 & 0.031226 & 0.006352 & & \\
\hline & -0.000278 & -0.000689 & -0.000504 & 0.007745 & 0.008089 & 0.013336 \\
\hline 0.007981 & 0.006651 & 0.003116 & 0.002338 & 0.004633 & 0.002880 & 0.007395 \\
\hline 0.00493 & 0.004611 & 0.002818 & 0.005445 & 0.001098 & 0.002880 & \\
\hline F...F & 0.000139 & 0.000736 & 0.000057 & 0.185652 & . 0666 & . 026158 \\
\hline 0.023066 & 0.043753 & 0.029588 & 0.075943 & 0.054862 & 0.004253 & . 012483 \\
\hline 0.216342 & 0.150267 & 0.137281 & 0.062628 & 0.007223 & & \\
\hline & 0.000025 & 0.000208 & 0.000012 & 0.031680 & 0.0141 & \\
\hline 0.004357 & 0.008885 & 0.007312 & 0.010437 & 0.011321 & 0.000745 & 0.000860 \\
\hline 0.018776 & 0.022331 & 0.024917 & 0.012119 & 0.001307 & & \\
\hline \multicolumn{7}{|r|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \\
\hline 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & \\
\hline C-H & 0.957049 & 0.000024 & 0.000895 & 0.003354 & 0.000201 & 0.000276 \\
\hline 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.951148 & 0.003656 & 0.003395 & 0.000022 & 0.000023 & & \\
\hline C-F & 0.002045 & 0.145211 & 0.013329 & 0.497466 & 0.17091 & . 008830 \\
\hline 0.287012 & 0.669358 & 0.000030 & 0.001694 & 0.359849 & 0.428609 & . 169690 \\
\hline 0.001811 & 0.068114 & 0.660470 & 0.096179 & 0.000042 & & \\
\hline CCH & 0.000451 & 0.163735 & 0.108250 & 0.002299 & 0.015865 & 0.003670 \\
\hline 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 \\
\hline 0.000043 & 0.210158 & 0.014949 & 0.000004 & 0.066959 & & \\
\hline CCF & 0.000942 & 0.002275 & 0.044347 & 0.044768 & 0.022733 & 0.141655 \\
\hline 0.000502 & 0.001433 & 0.339000 & 0.000169 & 0.045527 & 0.038545 & 0.258755 \\
\hline 0.000123 & 0.006274 & 0.002569 & 0.056770 & 0.185611 & .0385 & 0.25875 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline H & 0.000040 & 0.006671 & 0.000784 & 0.009041 & 0.005202 & 682 \\
\hline 0.026582 & 0.010815 & 0.000002 & 0.000115 & 0.020616 & 0.017881 & 0.000071 \\
\hline 0.000054 & 0.012395 & 0.002604 & 0.000258 & 0.006536 & & \\
\hline FCF & 0.000484 & 0.025027 & 0.003481 & 0.041188 & & \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.00000 & 0.00000 & 0.000000 \\
\hline 0.000435 & 0.008736 & 0.065770 & 0.298671 & 0.035764 & & \\
\hline H~H & 0.000000 & 0.000000 & 0.00000 & 0.00000 & & \\
\hline 0.019670 & 0.010633 & 0.003303 & 0.144243 & 0.00000 & & 0 \\
\hline 00000 & 0.000000 & 0.000000 & 0.000000 & & & \\
\hline F & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & 000 \\
\hline 001107 & 0.000771 & 0.002000 & 0.850591 & 0.00000 & 0.00000 & . 000000 \\
\hline 0.000089 & 0.000078 & 0.004549 & 0.012087 & 0.029305 & & \\
\hline C...H & 0.027016 & 0.035262 & 0.170926 & 0.054430 & .030825 & \\
\hline 0.132597 & 0.054189 & 0.067317 & 0.000609 & 0.111798 & 0.0967 & \\
\hline 0.037920 & 0.111374 & 0.015622 & 0.012558 & 0.086890 & & \\
\hline & -0.001950 & 0.019712 & 0.002484 & 0.011708 & 0.007 & 0.006835 \\
\hline 027890 & 0.011398 & 0.014158 & 0.000128 & 0.023515 & 0.0203 & 0.010879 \\
\hline 0.002974 & 0.026238 & 0.003982 & 0.002642 & 0.018402 & & \\
\hline C...F & 0.001370 & 0.246767 & 0.181603 & 0.103572 & 0.237701 & 0.336306 \\
\hline 0.17899 & 0.096236 & 0.254578 & 0.000770 & 0.141732 & 0.12302 & 0.273621 \\
\hline 0.000666 & 0.310010 & 0.120628 & 0.192472 & 0.267546 & & \\
\hline & 0.000448 & 0.036898 & 0.029272 & 0.029317 & & \\
\hline 0.031399 & 0.012054 & 0.054821 & 0.000181 & 0.035797 & . 03 & 033037 \\
\hline 0.000152 & 0.056363 & 0.009525 & 0.043954 & 0.054651 & & 0.033037 \\
\hline H...F & 0.010713 & 0.031621 & 0.019236 & 0.030292 & . 01 & \\
\hline 0.029452 & 0.030762 & 0.012116 & 0.000236 & 0.023300 & 40 & \\
\hline 0.010432 & 0.046646 & 0.020332 & 0.015026 & 0.027078 & & \\
\hline & -0.000633 & 0.007631 & 0.003849 & 0.002632 & 0.0040 & 0.002666 \\
\hline . 00882 & 0.002385 & 0.001957 & 0.000032 & 0.007233 & 0.0048 & 0.001501 \\
\hline 0.00061 & 0.010500 & 0.001293 & 0.003116 & 0.005484 & & \\
\hline F...F & 0.000946 & 0.059882 & 0.034250 & 0.130237 & 0.2421 & \\
\hline 0.218288 & 0.089575 & 0.211633 & 0.001052 & 0.197471 & 0.170685 & . 162106 \\
\hline 0.000546 & 0.108156 & 0.055241 & 0.247576 & 0.181936 & & \\
\hline & 0.000252 & 0.015061 & 0.006874 & 0.028769 & 0.01413 & \\
\hline 0.03767 & 0.010391 & 0.039085 & 0.000179 & 0.033163 & 0.02758 & 0.028379 \\
\hline 0.00017 & 0.021301 & 0.019070 & 0.018665 & 0.033773 & & \\
\hline & & & & & & \\
\hline C-C & 0.00039 & 0.235250 & 0.162574 & 0.034354 & . 004285 & . 131080 \\
\hline 0.007687 & 0.014748 & 0.001390 & 0.069782 & 0.047133 & 0.000000 & . 000000 \\
\hline 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & .000000 & \\
\hline C-F & 0.001469 & 0.214622 & 0.461688 & 0.337552 & . 548392 & 0.406406 \\
\hline 0.188787 & 0.170372 & 0.100406 & 0.024796 & 0.003571 & 0.402443 & \\
\hline 0.558803 & 0.179606 & 0.121930 & 0.000779 & 0.000510 & & \\
\hline C-H & 0.956668 & 0.000041 & 0.000163 & 0.001358 & 0.003476 & 0.000010 \\
\hline 0.000029 & 0.000074 & 0.000046 & 0.000245 & 0.000043 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & \\
\hline CCF & 0.000554 & 0.015719 & 0.037826 & 0.019723 & 011149 & 043569 \\
\hline 0.097517 & 0.019861 & 0.011461 & 0.119855 & 0.195572 & 0.042423 & . 019095 \\
\hline 0.012841 & 0.011350 & 0.194255 & 0.291037 & 0.000211 & & \\
\hline CCH & 0.000057 & 0.118806 & 0.015939 & 0.098253 & 0.028543 & 0.024456 \\
\hline 0.019182 & 0.001289 & 0.005232 & 0.000159 & 0.024666 & 0.00000 & 0.000000 \\
\hline 0.00000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.00000 & . 000 \\
\hline FCF & 0.000408 & 0.042846 & 0.065305 & 0.053745 & 0.062020 & 0.001979 \\
\hline 0.090082 & 0.242563 & 0.294689 & 0.171631 & 0.015925 & 0.009496 & 0.056054 \\
\hline 0.002238 & 0.248040 & 0.046639 & 0.000457 & 0.000057 & 0.00949 & 0.056054 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline FCH & 0.000046 & 0.004571 & 0.000001 & 0.005759 & 0.006147 & 0.000664 \\
\hline 0.001532 & 0.000984 & 0.001209 & 0.000014 & 0.003654 & 0.017919 & 0.006761 \\
\hline 0.014692 & 0.000009 & 0.000043 & 0.000018 & 0.000514 & & \\
\hline F~H & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.013873 & 0.016253 \\
\hline 0.017277 & 0.005094 & 0.000024 & 0.007611 & 0.297867 & & \\
\hline F~F & 0.000047 & 0.000095 & 0.001574 & 0.001431 & 0.002346 & 0.001872 \\
\hline 0.001323 & 0.000176 & 0.021452 & 0.004874 & 0.012747 & 0.000110 & 0.001497 \\
\hline 0.000512 & 0.002781 & 0.001121 & 0.003820 & 0.688246 & & \\
\hline F...C & 0.000939 & 0.176370 & 0.080533 & 0.171578 & 0.116859 & 0.156770 \\
\hline 0.145747 & 0.163274 & 0.153245 & 0.283497 & 0.288642 & 0.116236 & 0.085412 \\
\hline 0.096870 & 0.136352 & 0.255806 & 0.250744 & 0.002850 & & \\
\hline & 0.000230 & 0.026478 & 0.016622 & 0.028393 & 0.016901 & 0.013972 \\
\hline 0.031386 & 0.026024 & 0.031895 & 0.034961 & 0.040497 & 0.030939 & 0.017161 \\
\hline 0.018278 & 0.022980 & 0.036840 & 0.049884 & 0.000584 & & \\
\hline H...C & 0.031308 & 0.024680 & 0.030347 & 0.067978 & 0.038212 & 0.042867 \\
\hline 0.027787 & 0.005282 & 0.006829 & 0.011087 & 0.043763 & 0.094833 & 0.035027 \\
\hline 0.075634 & 0.001970 & 0.018189 & 0.048983 & 0.002594 & & 0.035027 \\
\hline & -0.002425 & 0.013302 & 0.000177 & 0.010636 & 0.008086 & 0.002600 \\
\hline 0.004706 & 0.001150 & 0.001547 & 0.000979 & 0.010833 & 0.019742 & 0.007292 \\
\hline 0.015746 & 0.000410 & 0.003786 & 0.010197 & 0.000540 & & \\
\hline F...F & 0.000940 & 0.079739 & 0.100508 & 0.116227 & 0.097286 & 0.156364 \\
\hline 0.344448 & 0.316876 & 0.323691 & 0.222086 & 0.248301 & 0.190994 & 0.121396 \\
\hline 0.127124 & 0.350270 & 0.264104 & 0.272740 & 0.004236 & & \\
\hline & 0.000243 & 0.020601 & 0.023539 & 0.027442 & 0.026178 & 0.009451 \\
\hline 0.031698 & 0.030422 & 0.038011 & 0.048031 & 0.048578 & 0.034766 & 0.023762 \\
\hline 0.020173 & 0.040612 & 0.052773 & 0.052837 & 0.000834 & & 0.023762 \\
\hline F...H & 0.009755 & 0.022000 & 0.002676 & 0.021104 & 0.027808 & 0.006795 \\
\hline 0.006676 & 0.005637 & 0.007276 & 0.006681 & 0.013398 & 0.020261 & 0.008514 \\
\hline 0.036413 & 0.000455 & 0.003820 & 0.009075 & 0.000812 & & \\
\hline & -0.000633 & 0.004881 & 0.000528 & 0.004466 & 0.002312 & 0.001145 \\
\hline 0.001416 & 0.001266 & 0.001621 & 0.001321 & 0.002677 & 0.005963 & 0.002123 \\
\hline 0.003398 & 0.000070 & 0.000671 & 0.001816 & 0.000145 & & \\
\hline \multicolumn{7}{|c|}{HFC152a} \\
\hline C-C & 0.000008 & 0.000265 & 0.001231 & 0.188120 & 0.016537 & 0.031056 \\
\hline 0.196658 & 0.094124 & 0.089980 & 0.017196 & 0.041837 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & & 0.000000 \\
\hline C-H & 0.955920 & 0.945517 & 0.937803 & 0.001068 & 0.003085 & 0.007077 \\
\hline 0.007463 & 0.002588 & 0.002379 & 0.000781 & 0.000594 & 0.957104 & 0.000247 \\
\hline 0.003098 & 0.000173 & 0.002067 & 0.001679 & 0.000010 & 0.95104 & 0.00024 \\
\hline C-F & 0.000053 & 0.001485 & 0.000040 & 0.084963 & 0.010624 & 0.012661 \\
\hline 0.240616 & 0.135899 & 0.266289 & 0.057814 & 0.014614 & 0.000000 & 0.255861 \\
\hline 0.008490 & 0.450557 & 0.191908 & 0.049647 & 0.000412 & & \\
\hline CCH & 0.000387 & 0.000361 & 0.000546 & 0.136142 & 0.026734 & 0.215391 \\
\hline 0.067551 & 0.194768 & 0.185255 & 0.053012 & 0.006629 & 0.000307 & 0.016191 \\
\hline 0.012116 & 0.058533 & 0.303940 & 0.013837 & 0.000200 & & 0.0161 \\
\hline CCF & 0.000081 & 0.000677 & 0.000000 & 0.006809 & 0.001437 & 0.000008 \\
\hline 0.007026 & 0.041678 & 0.002537 & 0.089313 & 0.166305 & 0.000527 & 0.016451 \\
\hline 0.003182 & 0.034008 & 0.001077 & 0.370037 & 0.000675 & 0.000527 & 0.016451 \\
\hline HCH & 0.000255 & 0.000007 & 0.000095 & 0.008967 & 0.075030 & 0.030702 \\
\hline 0.002974 & 0.002992 & 0.001842 & 0.000184 & 0.000314 & 0.000261 & 0.002095 \\
\hline 0.078922 & 0.000442 & 0.002380 & 0.000542 & 0.000181 & & 0.002095 \\
\hline HCF & 0.000006 & 0.000114 & 0.000000 & 0.015487 & 0.000509 & 0.004096 \\
\hline 0.008967 & 0.004593 & 0.000381 & 0.013119 & 0.000203 & 0.00000 & 0.050247 \\
\hline 0.002222 & 0.023898 & 0.000682 & 0.000047 & 0.000236 & & 0.05027 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline F & 0.000012 & 0.000337 & 0.000008 & 0.013170 & 0.001741 & 15 \\
\hline 0.027948 & 0.009662 & 0.006607 & 0.119179 & 0.197092 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & & \\
\hline H~H & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & \\
\hline 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.000038 & 0.012579 \\
\hline 0.005143 & 0.009391 & 0.001814 & 0.001592 & 0.213384 & & \\
\hline H~F & 0.000126 & 0.000019 & 0.000000 & 0.001166 & & 72 \\
\hline 0.000045 & 0.000870 & 0.010572 & 0.020948 & 0.000355 & & 0.000972 \\
\hline . 007626 & 0.000007 & 0.004304 & 0.004485 & 0.779100 & & \\
\hline C...H & 0.040790 & 0.038897 & 0.043583 & 0.151764 & 0.616378 & 94 \\
\hline 0.208953 & 0.307614 & 0.261450 & 0.078984 & 0.048818 & 0.039134 & 0.171595 \\
\hline 0.639152 & 0.137694 & 0.351964 & 0.079749 & 0.002376 & & \\
\hline & -0.002398 & -0.002779 & -0.004958 & 0.040477 & 0.123592 & 6396 \\
\hline 0.011620 & 0.049403 & 0.043000 & 0.017157 & 0.006900 & -0.002063 & 0.035433 \\
\hline 0.127526 & 0.028300 & 0.073071 & 0.016938 & 0.000483 & & \\
\hline C...F & 0.000293 & 0.000733 & 0.000295 & 0.184365 & .006243 & \\
\hline 0.104339 & 0.047101 & 0.060774 & 0.249078 & 0.240083 & 0.000268 & \\
\hline 0.006705 & 0.073878 & 0.017307 & 0.225217 & 0.000860 & & \\
\hline & 0.000048 & 0.000234 & -0.000005 & 0.033131 & 0.0009 & 0.010838 \\
\hline 015935 & 0.013875 & 0.003211 & 0.035917 & 0.040586 & 0.000053 & 0.030320 \\
\hline 0.001677 & 0.019039 & -0.000675 & 0.032756 & 0.000213 & & \\
\hline H...H & 0.004543 & 0.000299 & 0.021075 & 0.010994 & 0.073604 & 0.051219 \\
\hline 0.005012 & 0.024641 & 0.022741 & 0.001823 & 0.000686 & 0.004702 & 0.003865 \\
\hline 0.075904 & 0.007107 & 0.036922 & 0.002018 & 0.000187 & & \\
\hline & -0.000635 & -0.000013 & 0.000194 & 0.002246 & & 826 \\
\hline 0.000882 & 0.005054 & 0.004688 & 0.000377 & 0.000137 & -0.0006 & 000778 \\
\hline 0.015249 & 0.001474 & 0.007677 & 0.000438 & 0.000040 & -00065 & . 000778 \\
\hline H...F & 0.000457 & 0.013818 & 0.000096 & 0.039047 & . & 0.012554 \\
\hline 0.032391 & 0.012285 & 0.005192 & 0.029940 & 0.021082 & . 00 & 0.035481 \\
\hline 0.001704 & 0.038857 & 0.003926 & 0.013775 & 0.000274 & & \\
\hline & -0.000016 & -0.000877 & -0.000008 & 0.008568 & 0.000278 & 0.002589 \\
\hline 0.003946 & 0.001226 & 0.000100 & 0.006684 & 0.004127 & 0.000004 & 0.009947 \\
\hline 0.000453 & 0.003497 & -0.000038 & 0.002691 & 0.000044 & & \\
\hline F...F & 0.000057 & 0.000705 & 0.00001 & 0.059430 & 0.002667 & 0.014856 \\
\hline 0.044270 & 0.042262 & 0.029749 & 0.186895 & 0.182681 & 0.000223 & . 182476 \\
\hline 0.009110 & 0.097885 & 0.002837 & 0.157008 & 0.001110 & & \\
\hline & 0.000013 & 0.000200 & 0.000002 & 0.014086 & 0.0008 & \\
\hline 0.013403 & 0.009366 & 0.003254 & 0.021600 & 0.026957 & 0.000044 & . 033688 \\
\hline 0.001720 & 0.015259 & -0.001163 & 0.030544 & 0.000215 & & \\
\hline & & & & & & \\
\hline & 0.001074 & 0.295458 & 0.114711 & 0.160326 & 0.123896 & 0.00000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & & \\
\hline C-F & 0.000011 & 0.065275 & 0.154858 & 0.471454 & 0.036975 & 0.000000 \\
\hline 0.000000 & 0.013021 & 0.013044 & 0.629549 & 0.629560 & 0.110789 & 0.110742 \\
\hline 0.124501 & 0.124486 & 0.025072 & 0.025070 & 0.000000 & & \\
\hline C-H & 0.928592 & 0.000513 & 0.005770 & 0.000790 & 0.000504 & 498 \\
\hline 0.958497 & 0.002252 & 0.002252 & 0.000001 & 0.000001 & 0.001672 & 0.001673 \\
\hline 0.000063 & 0.000063 & 0.001585 & 0.001585 & 0.000000 & & .001673 \\
\hline CCF & 0.000002 & 0.011244 & 0.021946 & 0.000169 & 0.068007 & 0.000324 \\
\hline 0.000324 & 0.000000 & 0.000000 & 0.030385 & 0.030384 & 0.001681 & 0.001683 \\
\hline 0.003191 & 0.003192 & 0.218535 & 0.218536 & 0.000000 & .001681 & . 0016 \\
\hline CCH & 0.000468 & 0.124061 & 0.100025 & 0.004698 & 0.002012 & 0.000338 \\
\hline 0.000338 & 0.025503 & 0.025531 & 0.032121 & 0.032090 & 0.340135 & 0.340138 \\
\hline 0.002004 & 0.002005 & 0.012777 & 0.012777 & 0.00000 & 0.340135 & 0.340138 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline FCF & 0.000004 & 0.022598 & 0.044109 & 0.000339 & 0.136685 & 0.000000 \\
\hline 0.000000 & 0.001163 & 0.001165 & 0.052110 & 0.052116 & 0.004494 & 0.004493 \\
\hline 0.257964 & 0.257968 & 0.018757 & 0.018754 & 0.000000 & & \\
\hline HCH & 0.000075 & 0.019793 & 0.015959 & 0.000750 & 0.000321 & 0.000237 \\
\hline 0.000237 & 0.075641 & 0.075633 & 0.002952 & 0.002956 & 0.002841 & 0.002844 \\
\hline 0.000033 & 0.000033 & 0.000637 & 0.000638 & 0.000000 & & \\
\hline F~H & 0.000000 & 0.00000 & 0.00000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 0.000000 & 0.00000 & 0.000000 & 0.000000 & 1.000000 & & \\
\hline F...C & 0.000334 & 0.044109 & 0.039751 & 0.122510 & 0.197025 & 0.000337 \\
\hline 0.000337 & 0.001278 & 0.001280 & 0.047872 & 0.047875 & 0.013854 & 0.013854 \\
\hline 0.145817 & 0.145820 & 0.260670 & 0.260668 & 0.000000 & & \\
\hline & -0.000011 & 0.002106 & 0.006820 & 0.000653 & 0.025005 & 0.000072 \\
\hline 0.000072 & 0.000083 & 0.000084 & 0.015599 & 0.015600 & 0.000017 & 0.000017 \\
\hline 0.027214 & 0.027214 & 0.047451 & 0.047451 & 0.000000 & & \\
\hline H...C & 0.038850 & 0.240668 & 0.301796 & 0.062830 & 0.042109 & 0.034806 \\
\hline 0.034809 & 0.606837 & 0.606803 & 0.055481 & 0.055482 & 0.359847 & 0.359874 \\
\hline 0.002176 & 0.002176 & 0.016484 & 0.016488 & 0.000000 & & \\
\hline & -0.004478 & 0.059542 & 0.040568 & -0.000075 & -0.000603 & -0.001899 \\
\hline 0.001900 & 0.119797 & 0.119791 & 0.010846 & 0.010846 & 0.073353 & 0.073358 \\
\hline 0.000468 & 0.000468 & 0.003752 & 0.003753 & 0.000000 & & \\
\hline F...F & 0.000007 & 0.036929 & 0.075932 & 0.173641 & 0.323398 & 0.000461 \\
\hline 0.000460 & 0.001065 & 0.001067 & 0.092402 & 0.092404 & 0.009062 & 0.009062 \\
\hline 0.386049 & 0.386051 & 0.326992 & 0.326990 & 0.000000 & & \\
\hline & 0.000002 & 0.010896 & 0.021836 & -0.000814 & 0.043471 & 0.000087 \\
\hline 0.000087 & 0.000224 & 0.000224 & 0.017784 & 0.017785 & 0.000749 & 0.000750 \\
\hline 0.050015 & 0.050016 & 0.063313 & 0.063312 & 0.000000 & 0.00749 & 0.000750 \\
\hline H...H & 0.034788 & 0.055575 & 0.047066 & 0.002324 & 0.001023 & 0.007795 \\
\hline 0.007795 & 0.127325 & 0.127317 & 0.010686 & 0.010687 & 0.067432 & 0.067437 \\
\hline 0.000419 & 0.000419 & 0.003260 & 0.003261 & 0.000000 & & \\
\hline & 0.000284 & 0.011234 & 0.008854 & 0.000407 & 0.000172 & -0.001056 \\
\hline 0.001056 & 0.025810 & 0.025808 & 0.002213 & 0.002213 & 0.014073 & 0.014074 \\
\hline 0.000089 & 0.000089 & 0.000715 & 0.000716 & 0.000000 & & \\
\hline & \multicolumn{6}{|c|}{HFC134a} \\
\hline C-C & 0.000799 & 0.170175 & 0.051020 & 0.162338 & 0.035644 & 0.000024 \\
\hline 0.161455 & 0.065612 & 0.011965 & 0.029180 & 0.017794 & 0.00000 & 0.000000 \\
\hline 0.000000 & 0.000000 & 0.00000 & 0.000000 & 0.000000 & & 0.00000 \\
\hline C-F & 0.001598 & 0.103337 & 0.243139 & 0.479726 & 0.393235 & 0.579745 \\
\hline 0.455613 & 0.101971 & 0.125127 & 0.091592 & 0.000810 & 0.000000 & 0.597236 \\
\hline 0.101823 & 0.048092 & 0.132384 & 0.023004 & 0.000492 & 0.00000 & 0.597236 \\
\hline C-H & 0.940164 & 0.000753 & 0.001149 & 0.000480 & 0.001206 & 0.001774 \\
\hline 0.000308 & 0.000109 & 0.000025 & 0.000226 & 0.000072 & 0.961842 & 0.000094 \\
\hline 0.002004 & 0.000005 & 0.000024 & 0.001257 & 0.000034 & & \\
\hline CCF & 0.000455 & 0.007788 & 0.018839 & 0.037720 & 0.014063 & 0.014944 \\
\hline 0.016447 & 0.104320 & 0.005794 & 0.184109 & 0.324204 & 0.000299 & 0.025906 \\
\hline 0.001909 & 0.012203 & 0.001855 & 0.196886 & 0.005864 & & 0.02590 \\
\hline CCH & 0.000049 & 0.114418 & 0.005677 & 0.004154 & 0.084467 & 0.039085 \\
\hline 0.010878 & 0.008285 & 0.000218 & 0.000780 & 0.015215 & 0.000401 & 0.059283 \\
\hline 0.196844 & 0.122236 & 0.001154 & 0.013113 & 0.003067 & & \\
\hline FCF & 0.000002 & 0.017163 & 0.010289 & 0.064468 & 0.044850 & 0.000206 \\
\hline 0.000184 & 0.124333 & 0.262802 & 0.041553 & 0.006615 & 0.000000 & 0.055763 \\
\hline 0.006662 & 0.001931 & 0.269731 & 0.017599 & 0.000223 & & \\
\hline FCH & 0.000000 & 0.000440 & 0.022480 & 0.000322 & 0.012469 & 0.021763 \\
\hline 0.000023 & 0.000311 & 0.000000 & 0.001266 & 0.004996 & 0.000145 & 0.000792 \\
\hline 0.039181 & 0.053164 & 0.000012 & 0.00 & & & 0.00078 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 000129 & 0.029829 & 0.030623 & 0.000476 & 0.000985 & 0.001647 \\
\hline . 0005 & 0.000034 & 0.000069 & 0.000088 & 0.001133 & 0.000000 & 0.000000 \\
\hline 000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & & \\
\hline F & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\
\hline 000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.00004 & . \\
\hline 0.000160 & 0.003454 & 0.007252 & 0.002518 & 0.376513 & & \\
\hline F~H & 0.000051 & 0.008880 & 0.023343 & 0.003737 & & \\
\hline 000339 & 0.000006 & 0.010292 & 0.000058 & 0.010699 & & \\
\hline 0.009100 & 0.076502 & 0.007808 & 0.052818 & & & \\
\hline F...C & 0.000390 & 0.088009 & 0.081769 & 0.061698 & & \\
\hline 0.130649 & 0.159677 & 0.141433 & 0.270650 & 0.223526 & . 0009 & \\
\hline 0.203683 & 0.226482 & 0.136217 & 0.255036 & 0.023831 & & \\
\hline & 0.000091 & 0.012064 & 0.017288 & 0.014226 & .020193 &  \\
\hline . 0037 & 0.027853 & 0.025386 & 0.035446 & 0.036220 & . 00018 & 73 \\
\hline 0.041225 & 0.042812 & 0.025402 & 0.046603 & 0.004697 & & \\
\hline C...H & 0.035319 & 0.249127 & 0.294034 & 0.045950 & & \\
\hline 0.055251 & 0.048315 & 0.003022 & 0.024957 & 0.162663 & . 031 & 63 \\
\hline 0.229107 & 0.232898 & 0.000671 & 0.013541 & 0.018621 & & \\
\hline & -0.003199 & 0.061963 & 0.060324 & 0.001089 & 0.01825 & 0.021659 \\
\hline 仡 & 0.005154 & 0.000033 & 0.004641 & 0.034841 & -0.00185 & \\
\hline . 04875 & 0.047153 & 0.000156 & 0.003190 & 0.003771 & & \\
\hline F...F & 0.000179 & 0.025520 & 0.029482 & 0.096500 & . 0619 & \\
\hline 0.158459 & 0.310171 & 0.366697 & 0.257285 & 0.091099 & 0.0004 & . 085830 \\
\hline 0.009641 & 0.020976 & 0.370170 & 0.306275 & 0.008877 & & \\
\hline & 0.000034 & 0.006785 & 0.006334 & 0.022914 & & \\
\hline 0.000152 & 0.034698 & 0.046872 & 0.050956 & 0.017601 & . 0000 & \\
\hline 0.001410 & 0.003504 & 0.046855 & 0.059358 & 0.001700 & & \\
\hline F...H & 0.007290 & 0.055737 & 0.053315 & 0.002522 & 016120 & 02 \\
\hline 0.003166 & 0.006601 & 0.000157 & 0.005132 & 0.039057 & 006703 & \\
\hline 0.051710 & 0.051785 & 0.000139 & 0.002910 & 0.004268 & & \\
\hline & -0.000588 & 0.011285 & 0.013021 & 0.000539 & . 0043 & 002838 \\
\hline 0.00063 & 0.001368 & 0.000023 & 0.001131 & 0.007884 & -0.000318 & 0.001480 \\
\hline 0.0100 & 0.010484 & 0.000029 & 0.000667 & 0.000883 & & \\
\hline H...H & 0.016971 & 0.031024 & 0.032053 & 0.000984 & 0.015512 & 0.015458 \\
\hline 0.001158 & 0.000987 & 0.000074 & 0.000803 & 0.004650 & 0.000113 & 0.006280 \\
\hline 0.039181 & 0.038792 & 0.000121 & 0.002453 & 0.003107 & & \\
\hline & 0.000264 & 0.005703 & 0.005822 & 0.000157 & 0.002933 & 0.003105 \\
\hline 0.000215 & 0.000195 & 0.000011 & 0.000146 & 0.000921 & -0.000989 & 0.001218 \\
\hline 0.007599 & 0.007526 & 0.000023 & 0.000475 & 0.000603 & & \\
\hline
\end{tabular}
Appendix \(\mathbf{F}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{110} & \multicolumn{2}{|l|}{111} & \multicolumn{2}{|l|}{112} & \multicolumn{2}{|l|}{112a} & \multicolumn{2}{|l|}{113} & \multicolumn{2}{|l|}{113a} & \multicolumn{2}{|l|}{114} & \multicolumn{2}{|l|}{114a} & \multicolumn{2}{|l|}{115} & \multicolumn{2}{|l|}{116} \\
\hline Freq. & Intens. & Frea. & Intens. & Feq. & Intens. & Freq. & Intens. & Freq. & Intens. & Freq. & Intens. \\
\hline 983 & 0 & 1155 & 113.16 & 1205 & 0 & 1227 & 144.90 & 1249 & 101.05 & 1277 & 208.93 & 1308 & 0 & 1322 & 187.33 & 1386 & 86.44 & 1458 & 0 \\
\hline 882 & 0 & 1035 & 28.99 & 1173 & 316.13 & 1202 & 168.67 & 1234 & 161.19 & 1277 & 208.93 & 1233 & 424.49 & 1282 & 261.53 & 1283 & 334.08 & 1283 & 619.88 \\
\hline 882 & 0 & 919 & 48.96 & 1084 & 0 & 1058 & 146.52 & 1157 & 234.82 & 1266 & 269.17 & 1228 & 0 & 1276 & 210.00 & 1278 & 244.69 & 1283 & 619.88 \\
\hline 793 & 202.42 & 860 & 135.99 & 925 & 0 & 870 & 98.35 & 1080 & 92.77 & 909 & 50.19 & 1158 & 451.01 & 1148 & 174.73 & 1234 & 189.09 & 1277 & 0 \\
\hline 793 & 202.42 & 816 & 245.00 & 842 & 389.36 & 862 & 157.00 & 914 & 226.08 & 865 & 156.70 & 1098 & 0 & 943 & 151.53 & 1147 & 287.74 & 1277 & 0 \\
\hline 676 & 66.25 & 723 & 118.71 & 749 & 192.58 & 780 & 187.56 & 811 & 295.09 & 865 & 156.70 & 849 & 419.18 & 918 & 280.60 & 981 & 327.58 & 1113 & 369.29 \\
\hline 423 & 0 & 493 & 2.89 & 567 & 0 & 612 & 19.37 & 640 & 14.23 & 698 & 52.57 & 693 & 0 & 720 & 56.42 & 746 & 40.32 & 795 & 0 \\
\hline 372 & 1.38 & 401 & 1.99 & 459 & 4.77 & 447 & 2.08 & 521 & 5.48 & 547 & 7.98 & 594 & 18.89 & 577 & 5.51 & 631 & 20.96 & 693 & 51.64 \\
\hline 335 & 0 & 390 & 0.61 & 406 & 0 & 435 & 0.74 & 450 & 1.73 & 547 & 7.98 & 534 & 0 & 546 & 9.31 & 583 & 1.61 & 603 & 0 \\
\hline 335 & 0 & 378 & 0.05 & 388 & 0 & 412 & 1.51 & 433 & 1.30 & 418 & 0.66 & 437 & 0 & 492 & 3.93 & 541 & 9.56 & 603 & 0 \\
\hline 276 & 0.15 & 311 & 0.54 & 373 & 1.78 & 327 & 0.001 & 387 & 1.49 & 360 & 0.002 & 429 & 4.13 & 395 & 0.42 & 441 & 3.09 & 505 & 8.61 \\
\hline 276 & 0.15 & 281 & 0.04 & 292 & 0 & 326 & 0.47 & 346 & 0.63 & 360 & 0.002 & 365 & 1.33 & 390 & 0.69 & 430 & 1.12 & 505 & 8.61 \\
\hline 222 & 0 & 262 & 0.40 & 291 & 0.33 & 265 & 0.53 & 306 & 0.58 & 262 & 0.68 & 352 & 0 & 323 & 1.31 & 356 & 0.04 & 371 & 0 \\
\hline 222 & 0 & 229 & 0.001 & 254 & 0 & 258 & 0.32 & 285 & 0.19 & 262 & 0.68 & 318 & 0 & 304 & 0.32 & 327 & 0.10 & 371 & 0 \\
\hline 218 & 0 & 221 & 0.02 & 225 & 0 & 227 & 0.04 & 236 & 0.22 & 255 & 0.0003 & 250 & 0 & 259 & 0.74 & 304 & 1.47 & 338 & 0 \\
\hline 163 & 0.25 & 171 & 0.43 & 198 & 1.41 & 179 & 0.70 & 197 & 1.39 & 177 & 1.02 & 212 & 2.42 & 194 & 1.59 & 211 & 3.11 & 206 & 3.79 \\
\hline 163 & 0.25 & 161 & 0.35 & 160 & 0.44 & 160 & 0.60 & 162 & 0.91 & 177 & 1.02 & 166 & 1.63 & 178 & 1.42 & 179 & 1.94 & 206 & 3.79 \\
\hline 83 & 0 & 79 & 0.08 & 72 & 0.31 & 81 & 0.10 & 73 & 0.22 & 83 & 0 & 67 & 0.29 & 74 & 0.07 & 68 & 0.07 & 63 & 0 \\
\hline
\end{tabular}
Frequencies \(\left(\mathrm{cm}^{-1}\right.\) ) and intensities ( \(\mathrm{kmmole}^{-1}\) ) for the HFCs calculated using the HF method.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{170} & \multicolumn{2}{|l|}{161} & \multicolumn{2}{|l|}{152} & \multicolumn{2}{|l|}{152a} & \multicolumn{2}{|l|}{143} & \multicolumn{2}{|l|}{143a} & \multicolumn{2}{|l|}{134} & \multicolumn{2}{|l|}{134a} & \multicolumn{2}{|l|}{125} \\
\hline Freg. & Intens. & Freq. & Intens & Freq. & Intens. & Freq. & Intens. \\
\hline 2931 & 101.69 & 2954 & 94.09 & 2978 & 92.62 & 2976 & 78.79 & 2994 & 69.82 & 2981 & 11.11 & 3011 & 59.75 & 2997 & 23.95 & 3002 & 30.39 \\
\hline 2931 & 101.69 & 2940 & 48.28 & 2954 & 0 & 2959 & 22.16 & 2977 & 9.07 & 2981 & 11.11 & 3002 & 0 & 2942 & 16.96 & 1470 & 2.66 \\
\hline 2909 & 0 & 2931 & 1.41 & 2922 & 74.39 & 2956 & 5.69 & 2929 & 23.87 & 2906 & 2.23 & 1480 & 0 & 1490 & 9.17 & 1389 & 27.05 \\
\hline 2909 & 0 & 2904 & 39.20 & 2921 & 0 & 2891 & 6.56 & 1491 & 5.05 & 1457 & 0.19 & 1385 & 0 & 1451 & 19.52 & 1318 & 206.58 \\
\hline 2870 & 0 & 2877 & 20.91 & 1513 & 3.44 & 1462 & 0.50 & 1460 & 15.78 & 1457 & 0.19 & 1358 & 92.66 & 1313 & 194.05 & 1267 & 389.50 \\
\hline 2864 & 72.56 & 1507 & 0.54 & 1506 & 0 & 1459 & 11.87 & 1403 & 40.11 & 1433 & 94.16 & 1304 & 54.43 & 1302 & 193.42 & 1222 & 238.46 \\
\hline 1477 & 5.70 & 1473 & 2.14 & 1450 & 0 & 1435 & 73.44 & 1339 & 41.21 & 1280 & 178.68 & 1158 & 399.94 & 1233 & 303.87 & 1173 & 141.34 \\
\hline 1477 & 5.70 & 1456 & 3.00 & 1343 & 29.56 & 1395 & 48.70 & 1240 & 15.69 & 1266 & 281.34 & 1145 & 0 & 1201 & 56.06 & 1133 & 146.36 \\
\hline 1472 & 0 & 1421 & 36.01 & 1271 & 0 & 1380 & 8.09 & 1152 & 132.71 & 1266 & 281.34 & 1131 & 0 & 1104 & 107.32 & 861 & 61.96 \\
\hline 1472 & 0 & 1385 & 4.43 & 1213 & 6.92 & 1162 & 160.70 & 1132 & 173.54 & 980 & 47.06 & 1125 & 284.31 & 983 & 64.20 & 708 & 44.80 \\
\hline 1415 & 0 & 1272 & 0.31 & 1158 & 0 & 1149 & 94.40 & 1117 & 36.73 & 980 & 47.06 & 1098 & 0 & 831 & 20.03 & 571 & 1.92 \\
\hline 1386 & 0.14 & 1172 & 6.48 & 1073 & 0 & 1121 & 57.13 & 1086 & 81.48 & 813 & 4.24 & 613 & 0 & 648 & 42.45 & 560 & 19.03 \\
\hline 1198 & 0 & 1110 & 55.65 & 1070 & 251.87 & 961 & 56.53 & 897 & 39.99 & 579 & 30.08 & 530 & 13.82 & 530 & 13.07 & 506 & 12.02 \\
\hline 1198 & 0 & 1046 & 63.53 & 1048 & 0 & 849 & 11.47 & 558 & 6.27 & 524 & 2.68 & 478 & 0 & 518 & 4.24 & 407 & 1.80 \\
\hline 951 & 0 & 869 & 16.82 & 786 & 0.67 & 549 & 8.46 & 474 & 24.27 & 524 & 2.68 & 412 & 63.04 & 395 & 0.93 & 351 & 0.12 \\
\hline 796 & 2.50 & 787 & 0.03 & 445 & 0 & 450 & 16.29 & 411 & 7.09 & 351 & 0.45 & 352 & 0 & 346 & 1.18 & 239 & 5.25 \\
\hline 796 & 2.50 & 393 & 7.23 & 275 & 23.41 & 365 & 0.006 & 234 & 9.54 & 351 & 0.45 & 194 & 3.06 & 210 & 3.98 & 201 & 3.20 \\
\hline 292 & 0 & 244 & 0.92 & 130 & 15.77 & 231 & 0.09 & 120 & 9.37 & 225 & 0 & 85 & 3.16 & 107 & 6.96 & 73 & 1.14 \\
\hline
\end{tabular}
Frequencies ( \(\mathrm{cm}^{-1}\) ) and intensities ( \(\mathrm{kmmole}^{-1}\) ) for HFC170, HFC161, HFC152, HFC152a calculated using the MP2 method.
\begin{tabular}{llllllll}
\hline \multicolumn{2}{c}{170} & \multicolumn{2}{c}{161} & \multicolumn{2}{c}{152} & \multicolumn{2}{c}{ 152a } \\
\hline Freq. & Intens. & Freq. & Intens. & Freq. & Intens. & Freq. & Intens. \\
\hline 3024 & 54.72 & 3034 & 27.80 & 3028 & 58.99 & 3051 & 9.86 \\
\hline
\end{tabular}
\(\begin{array}{llllllll}3024 & 54.72 & 3031 & 18.30 & 3007 & 0 & 3047 & 7.69\end{array}\)
\(\begin{array}{llllllll}3006 & 0 & 2994 & 29.51 & 2960 & 52.83 & 2981 & 49.80\end{array}\)
\(\begin{array}{llllllll}3006 & 0 & 2942 & 12.21 & 2955 & 0 & 2953 & 2.09\end{array}\)
\(\begin{array}{lllllllll}2934 & 45.20 & 2941 & 35.48 & 1510 & 2.12 & 1463 & 0.30\end{array}\)


 \(\begin{array}{ll}1363 & 5.09\end{array}\) \begin{tabular}{c} 
n \\
た \\
\\
\\
\hline
\end{tabular} \(\stackrel{n}{\text { ~ }}\) 20.98 0zII䔍 0.07
0.10


\section*{References}

Cited as for the Journal of Geophysical Research
Aldrich Chemical Co. Inc. Catalog - Handbook of fine chemicals. Aldrich, Australia.1992-1993.

Aldrich Chemical Co. Inc. The Aldrich Library of FT-IR Spectra Vapour Phase. Edition I. C.J. Pouchert. Aldrich, USA 1989.

ANZEC (Australian and New Zealand Environmental Council.) Towards a National Greenhouse Strategy for Australia. Australian Government Publishing Service. Canberra 1990.

Atkins P.W. Physical Chemistry. 3rd. edition. Oxford University Press, Oxford, 1986.
Baton J.E., Comerford J., Heard G.,Ivanic J., Marsden C.J. and Smart B.A. 'Vibrational spectroscopy ab initio.' Australian Conference on Optics, Lasers and Spectroscopy (ACOLS 93). Univ. Melb. Australia 1993.

Beagley B., Brown D.E. 'A gas phase electron diffraction study of the molecular structure of \(1,1,2\)-trifluoroethane, assisted by calculation of the vibrational amplitudes for 1,2-difluoroethane from spectroscopic data.' J. Mol. Struct., 54, 175-184, 1979.

Boggs J.E. 'Quantum mechanical determination of static and dynamic structure.' Accurate Molecular Structures. Eds. A. Domenicano, I. Hargittai. Oxford University Press. 1992.

Brown A.C., Canosa-Mas C.E., Parr A.D., Rothwell K., Wayne R.P. 'Tropospheric lifetimes of three compounds for possible replacement of CFCs and Halons'. Nature, 347, 541-543, 1990.

Brown D.E., Beagley B. 'The gas-phase rotamers of 1,1,2,2-tetrafluoroethane - force field, vibrational amplitudes and geometry - a joint electron diffraction and spectroscopic study.' J. Mol. Struct., 38, 167-176, 1977.

Brown F.B., Clague A.D.H., Heitkamp N.D., Koster D.F., Danti A. 'Far Infrared Spectra and Barriers to Internal Rotation of Five Halogenated Ethanes.' J. Mol. Spec., 24, 163-173, 1967.

Brügel W. An introduction to InfraredSpectroscopy. Methuen \& Co. Ltd. London 1962.

Bucker H.P., Nielsen J.R. 'Normal coordinate analysis of \(\mathrm{CF}_{3}-\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{6}\) and \(\mathrm{C}_{2} \mathrm{~F}_{6}\).' J. Mol. Spec,. 11, 243-252, 1963.

Bürger H., Niepel H., Pawelke G. 'Schwingungsspektren und Normalkoordinateanalyse von CF3-Verbindungen. XXXI 1.1.1.-trifluorathane \(\mathrm{CX}_{3} \mathrm{CF}_{3}\). Spectrochimica Acta, 36A , 7-15, 1980.

Califano S. Vibrational States. John Wiley and Sons. London 1976.
Cappellani F., Restelli G. 'Infrared band strengths and their temperature dependence of the hydrohalocarbons HFC-134a, HFC-152a, HCFC-22, HCFC-142b.'
Spectrochimica Acta, 48A, 1127-1131, 1992.

Carney R.A., Piotrowski A., Meisler A.G., Braun J.H., Cleveland F.F. 'Substituted Ethanes Part V. Raman and Infrared Spectra, Assignments, Potential Constants, and Calculated Thermodynamic Properties for \(\mathrm{C}_{2} \mathrm{~F}_{6}, \mathrm{C}_{2} \mathrm{Cl}_{6}\), and \(\mathrm{C}_{2} \mathrm{Br}_{6}\).' J. Mol. Spec., 7, 209-222, 1961.

Chen S.S., Rodgers A.S., Chao J., Wilhoit R.C., Zwolinski B.J. 'Ideal Gas Thermodynamic Properties of Six Fluoroethanes'. J.Phys. Chem. Ref. Data, 4 , 441456, 1975.

Chen S.S., Wilhoit R.C., Zwolinski B.J. 'Ideal Gas Thermodynamic Properties of Six Chlorofluoromethanes'. J.Phys. Chem. Ref. Data , 5, 571-580, 1976.

Coffman D.D., Cramer R., Rigby G.W. 'Synthesis of Chlorofluoropropanes.' J. Am. Chem. Soc., 71, 979-980, 1949.

Cooper D.L. 'Theoretical Studies of Fluorocarbons. Part I. Small Perfluoroalkane Molecules.' J. Fluorine Chem., 46, 317-337, 1989.

Coulson K.L. Solar and Terrestrial Radiation. Academic Press N.Y. 1975.
Crowder G.A., Mao H.K. 'Vibrational analysis of Ethyl and n-Propyl Fluorides.' J. Mol. Struct., 18 , 33-41, 1973.

Danti A., Wood J.L. 'Far Infrared Spectrum and the Barrier to Internal Rotation in 1,1,1,2-Tetrafluoroethane.' J. Chem. Phys., 30, 582-584, 1959.

DeMore W.B., Sander S.P., Moline M.J., Hampson R.F., Kurylo M.J., Golden D.M., Howard C.J., Ravishankara A.R. 'Chemical Kinetic and Photochemical Data for use in Stratospheric Modelling: Evaluation No. 9 of the NASA Panel for data Evaluation' JPL publication 90-1. 1990.

Dickinson R. E., Cicerone R.J. 'Future global warming from atmospheric trace gases'. Nature., 319, 109-115, 1986.

Dudman C.C., Hey D.G., Johnson P.G., McBeth D.C., Milne N.J., Winterton N. 'Solvent Cleaning: ICI's New Product Development.' Conference on CFC and Halon Alternatives, Baltimore, USA 1990.

\section*{Edgell W.F., Riethof T.R., Ward C. 'The Infrared and Raman Spectra of \(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}\), \(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{Br}\), and \(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{~F}\).' J. Mol.Spec., 11, 92-107, 1963.}

Erskine C. Executive Digest. Chlorofluorocarbons and alternatives. Information Edge. State Library of NSW, 1990.

Fisher D.A., Hales C.H., Filkin D.L., Ko M.K.W., Dak Sze N., Connell P.S., Wuebbles D.J., Isaksen I.S.A., Stordal F. 'Model Calculations of the Relative Effects of CFCs and their Replacements on Stratospheric Ozone.' Nature , 344, 508-512, 1990 (a).

Fisher D.A., Hales C.H., Wang W.C., Ko M.K.W., Dak Sze N. 'Model Calculations of the Relative Effects of CFCs and their Replacements on Global Warming.' Nature, 344, 513-516, 1990 (b).

Fogarasi G., Pulay P. 'Ab Initio Calculations of Force Fields and Vibrational Spectra.' Vibrational Spectra and Structure, 14, 125-219 Ed. J.R.Durig, Elsevier, Amsterdam 1985.

Foresman J.B., Frisch A. Exploring Chemistry with Electronic Structure Methods: A guide to Using Gaussian. Gaussian Inc. Pittsburgh USA 1993.

Gallaher K.L., Yokozeki A., Bauer S.H. 'Reinvestigation of the structure of perfluoroethane by electron diffraction.' J. Phys. Chem., 78, 2389-2395, 1974.

Gans P. Vibrating molecules. Chapman and Hall, London 1971
Gaussian 92, Revision A, Frisch M.J., Trucks G.W.,Head-Gordon M., Gill P.M.W., Wong M.W., Foresman J.B., Johnson B.G., Schlegel H.B., Robb M.A., Replogle E.S., Gomperts R., Andres J.L., Raghavachari K., Binkley J.S., Gonzalez G., Martin R.L., Fox D.J., Defrees D.J., Baker J., Stewart J.J.P., and Pople, J.A., Gaussian Inc., Pittsburgh PA, 1992.

Gierczak T., Talukday R., Vaghjiani G.L., Lovejoy E.R. and Ravishankara A.R. 'Atmospheric fate of Hydrofluoroethanes and Hydrofluorochloroethanes:1. Rate Coefficients for reactions with OH'. J. Geophys. Res. Submitted 1990.

Giogianni S., Gambi A., Franco L., Ghersetti S. 'Infrared spectrum and Molecular Force Field of \(\mathrm{CF}_{2} \mathrm{Cl}_{2}{ }^{\prime}\) J. Mol. Spec., 75, 389-405, 1979

Golombek A., Prinn R.G. 'Global three-dimensional model calculations of the budgets and present day atmospheric lifetimes of \(\mathrm{CF}_{2} \mathrm{ClCFCl}_{2}(\mathrm{CFC113})\) and \(\mathrm{CHClF}_{2}\)
(CFC22).' Geophysical Research Letters, 16, 1153-1156, 1989.
Griffiths P.R., de Haseth J.A. Fourier Transform Infrared Spectrometry. J. Wiley \& Sons. New York 1986.

Guirgis G.A., Crowder G.A. 'Vibrational analysis of 1,1-difluoroethane.' J. Fluorine Chem., 25, 405-418, 1984.

Hampson R.F., Kurylo M.J., Sander S.P. 'Evaluated Rate Constants for Selected HCFCs and HFCs with OH and \(\mathrm{O}\left({ }^{1} \mathrm{D}\right)^{1}\). World Meteorological Organisation Global Research and Monitoring Project. Report 20 , Appendix AFEAS 1989.

Hannah R. Advances in Applied FTIR Spectroscopy. Ed. M.W.Mackenzie, J. Wiley and Sons, 1988.

Henne A., Ladd E.C. 'Fluorinated Derivatives of Propane II.' J. Am. Chem. Soc., 60 , 2491-2495, 1938.

Henne A., Renoll M.W. 'Fluorinated Derivatives of Propane.' J. Am. Chem. Soc., 59, 2434-2436, 1937.

Henne A., Renoll M.W. 'Fluorinated Derivatives of Propane III.' J. Am. Chem. Soc., 61, 2489-2491, 1939.

Henne A.L., Whaley A.M. 'The preparation and Directed Chlorination of 1,1,1trifluoropropane'. J.Am. Chem.Soc., 64, 1157-1159, 1942.

Hirschfeld T. 'Quantitative FTIR: A Detailed Look at the Problems Involved.' FTIRS Volume 2 Applications to Chemical Systems. Academic Press. London 1979.

Hey D.G. 'HCFCs Alternatives to CFC113 Regulated Under the Montreal Protocol' Internal Memo, ICI UK 1991.

Huber-Wälchli P., Günthard H.H. 'Trapping of unstable molecular conformations in argon matrices: gauch- and trans-1,2-Difluoroethane.' Chem. Phys. Letts., 30, 347351, 1975.

Kagarise R.E. 'Spectroscopic Studies of Rotational Isomerism in Fluorinated Ethanes. III. \(\mathrm{CF}_{2} \mathrm{Cl}^{-} \mathrm{CF}_{2} \mathrm{Cl}^{\prime}\) J. Chem. Phys., 26, 380-383, 1957.

Kagarise R.E., Daasch L.W. 'Spectroscopic studies of Rotational Isomerism in Fluorinated Ethanes.I. 1,2-Difluoro-1,1,2,2-Tetrachloroethane' J. Chem. Phys., 23, 113-117, 1955.

Kalasinsky V.F., Anjaria H.V., Little T.S. 'Vibrational Spectra and Conformations of 1,1,2-Trifluoroethane and 1,1,2,2-Tetrafluoroethane' J.Phys.Chem., 86, 1351-1357, 1982.

King G.W. Spectroscopy and Molecular Structure. Holt, Rinehart and Winston, New York 1964.

Kinumaki S., Kozuka M. 'Low Frequency Bands and Barrier to Internal Rotation in Pentafluoroethane.' Bull. Chem. Soc. Japan, 41, 809-813, 1968.

Klaboe P. ,Nielsen J.R. 'Infrared and Raman Spectra of Fluorinated Ethanes. Part XIII. 1,2-Difluoroethane.' J. Chem. Phys., 33, 1764-1774, 1960.

Klaboe P. ,Nielsen J.R. 'Infrared and Raman Spectra of Fluorinated Ethanes. Part XV. 1,1,2-Trifluoro-1,2,2-trichloroethane.' J.Mol. Spec., 6, 379-393, 1961.

Konaka S., Takeuchi M., Kimura M. 'The Average Structure and Force Constants of Gaseous Trichlorotrifluoromethane Determined by Electron Diffraction and Spectroscopy.' J. Mol. Struct., 131, 317-325, 1985.

Lin-Vien D., Colthup N.B., Fateley W.G., Grasselli J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press Inc. San Diego USA 1991.

Liu R., Huie R.E. and Kurylo M.J. 'Rate constants for the reactions of the Hydroxyl Radical with some Hydrochlorofluorocarbons over the temperature range 270-400K'. J. Phys. Chem.,94, 3247-3249, 1990.

Marvel C.S., Sekera V.C. 'n-Dodecyl (Lauryl) p-toluenesulfonate' Org. Synth., 20, 50-51, 1940.

McBee E.T., Campbell D.H., Roberts C.W. 'Highly Halogenated Alkanes Derived from Fluorine-containing Alcohols.' Am. Chem. Soc., 77, 3149-3151, 1955.

McBee E.T., Henne A.L., Hass H.B., Elmore N. 'Chlorofluoropropanes' J.Am. Chem. Soc., 62, 3340-3341, 1940.

McBee E.T., Truchan A., Bolt R.O. 'Some fluorinated Derivatives of Propane'. J. Am. Chem. Soc., 70, 2023-2024, 1948.

Millar J.D. 'Preventing Death from Excessive Exposure to Chlorofluorocarbon 113' US Department of Health and Human Services Publication. May 1989.

Naito K., Nakagawa I., Kuratani K., Ichishima I. and Mizushima S. 'Infrared and Raman Spectra of 1,1,2,2-Tetrachloroethane; calculations of Normal Vibrations.' J. Chem. Phys., 23, 1907-1910, 1955.

Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 4th Edition, Wiley Interscience. 1986.

Nielsen J.R., Claassen H.H., Moran N.B. 'Infrared and Raman Spectra of Fluorinated Ethanes. VIII Pentafluoroethane.' J. Chem. Phys., 23, 329-333, 1955.

Nielsen J.R., Halley C.J. 'Infrared and Raman Spectra of Fluorinated Ethanes. XVIII 1,1,1,2-Tetrafluoroethane. J. Mol. Spec., 17, 341-347, 1965.

Nielsen J.R., Liang C.Y., Smith D.C., Alpert M. 'Infrared and Raman Spectra of Fluorinated Ethanes. VII \(\mathrm{CCl}_{3} \mathrm{CF}_{2} \mathrm{Cl}\) and \(\mathrm{CCl}_{3} \mathrm{CFCl}_{2}\).' J. Chem. Phys., 21, 10701076, 1953 (a).

Nielsen J.R., Liang C.Y., Smith R.M., Smith D.C. 'Infrared and Raman Spectra of Fluorinated Ethanes. V The series \(\mathrm{CF}_{3} \mathrm{CF}_{3}, \mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{Cl}, \mathrm{CF}_{3} \mathrm{CFCl}_{2}\), and \(\mathrm{CF}_{3} \mathrm{CCl}_{3}\).' \(J\). Chem. Phys., 21, 383-393, 1953.

Olliff M.P., Fischer G. 'Integrated Band Intensities of 1,1,1-Trichlorotrifluoroethane, CFC113a and 1,1,2-Trichlorotrifluoroethane, CFC113'. Spectrochimica Acta, 48A, 229-235, 1992.

Olliff M.P., Fischer G. 'Integrated absorption intensities of haloethanes and halopropanes.' Spectrochimica Acta A, accepted for publication 1994.

Overend J. ,Scherer J.R. 'Transferability of Urey-Bradley Force Constants. 1. Calculation of Force Constants on a Digital Computer.' J. Chem. Phys., 32, 12891295, 1960.

Paleta O.A., Posta A., Tesarik K. 'Addition reactions of Haloolefins. XI. Reaction of tetrafluoroethylene with Monofluoromethanes in the presence of aluminium chloride.' Coll. Czech. Chem. Comm., 36, 1867-1875, 1971.

Patterson T.S., Frew J.,'XXXVI - Menthyl Benzenesulphonate and Menthyl Naphthalene-b-sulphonate' J.Chem. Soc., 89, 332-339, 1906.

PCR Inc. Research chemicals catalog. Florida 1992.
Perkin-Elmer. Instruction and Specification manual for the FTIR spectrophotometer. 1985.

Person W.B., Zerbi G., 'Vibrational Intensities in Infrared and Raman Spectroscopy' Editors. Studies in physical and theoretical chemistry. Volume 20, Elsevier Scientific Publishing Company. The Netherlands. 1982.

Pople J.A., Scott A.P., Wong M.W., Radom L. 'Scaling factors for obtaining fundamental vibrational frequencies and zero-point energies from \(\mathrm{HF} / 6-31 \mathrm{G}^{*}\) and MP2/6-31G* harmonic frequencies.' Israel Journal of Chemistry, 33, 345-350, 1993.

Ramanathan V.,Cicerone R.J., Singh H.B. ,Kiehl J.T. 'Trace Gas Trends and Their Potential Role in Climate Change.' J. of Geophys. Res., 90, 5547-5566. 1985.

Risgin O., Taylor R.C. 'The infrared and Raman spectra of the pentafluoroethyl halides.' Spectrochimica Acta, 12, 1036-1050, 1959.

Rogers J.D., Stephens R.D. 'Absolute Infrared Intensities for F-113 and F-114 and an Assessment of Their Greenhouse Warming Potential Relative to Other Chlorofluorocarbons.' J. Geophys. Res., 93, 2423-2428, 1988.

Rowland F.S., 'Chlorofluorocarbons and the depletion of Stratospheric Ozone.' American Scientist., 77, 36-44, 1989.

Schonland D.S. Molecular Symmetry D van Nostrand Co. Ltd. London 1965.
Scott A. Personal communication. 1994.
Selinger B. Chemistry in the market place. 4th Ed. Harcourt Brace Jovanovich, Australia. 1989.

Shimanouchi T. 'Force Constants of small molecules' Pure Appl. Chem., 7, 131-145, 1963.

Shimanouchi T. 'The Normal Vibrations of Polyatomic Molecules as Calculated by Urey-Bradley Field. III. A Table of Force Constants.' J. Chem. Phys., 17, 848-851, 1949.

Smith D.C., Brown G.M., Nielsen J.Rud, Smith R.M., Liang C.Y. 'Infrared and Raman Spectra of Fluorinated Ethanes III. The series \(\mathrm{CH}_{3}-\mathrm{CF}_{3}, \mathrm{CH}_{3}-\mathrm{CF}_{2} \mathrm{Cl}_{2} \mathrm{CH}_{3}-\) \(\mathrm{CFCl}_{2}\), and \(\mathrm{CH}_{3}-\mathrm{CCl}_{3}\).' J. Chem. Phys., 20, 473-486, 1952.

Tanabe K., Saëki S. 'Calculation of Infrared Band Intensities of Various Chlorinated Ethanes.' Bull. Chem. Soc. Japan, 45, 32-38, 1972.

Thorne, A. Spectrophysics. 2nd.edn. Chapman and Hall, London. 1988.
Tiers G.V.D., Brown.H.A., Reid T.S. '1,1-Di-H-perfluoroalkyl Halides.' J.Am. Chem. Soc., 75, 5978-5979, 1953.

Tipson R.S. 'On Esters of p-toluenesulfonic acid.' J. Org. Chem., 9, 235-241, 1944.
Tipton A.B., Britt C.O., Boggs J.E. 'Microwave Spectrum, Structure, and Barrier to Internal Rotation of Pentafluoroethane.' J.Chem. Phys., 46, 1606-1609, 1967.

Varanasi P. ,Chudamani S. 'Infrared Intensities of some Chlorofluorocarbons Capable of Perturbing the Global Climate' J. Geophys. Res., 93, 1666-1668, 1988.

Wang W.C., Yung Y.L., Lacis A.A., Mo T., Hansen J.E. 'Greenhouse Effects due to Man-Made Perturbations of Trace Gases.' Science, 194, 685-690, 1976.

Willis H.A., Van der Mass J.H., Miller R.G.J. Laboratory Methods in Vibrational Spectroscopy. 3rd. Ed. John Wiley \& Sons. London. 1987.

\section*{Wilson E.B., Decius J.C., Cross P.C. Molecular Vibrations Mcgraw-Hill. USA 1955. \\ WMO. 'Scientific Assessment of Stratospheric Ozone.' Global Ozone Research and Monitoring Project. Report no. 201989 (a).}

WMO. 'Scientific Assessment of Stratospheric Ozone.' Global Ozone Research and Monitoring Project. Appendix AFEAS. 1989 (b).

Woost B., Bougeard D. 'Vibrational spectra and phase transitions of crystalline hexachloroethane.' J. Chem. Phys., 84, 4810-4817, 1986.

Yamabe Y. 'HCFC225ca and 225cb as Alternates to CFC113' International conference on CFC and Halon alternatives. Geneva 1989.

Zhang Z., Liu R., Huie R.E. Kurylo M.J. 'Rate constants for the gas phase reactions of the OH radical with \(\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CHCl}_{2}\) ( HCFC 225 ca ) and \(\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{CHClF}\) (HCFC225cb)'. Geophysical research letters ,18, 5-7, 1991.

Zhou X., Fogarasi G., Ruifeng L., Pulay P. 'Building a database of force constants based on scaled ab initio (SQM) results. I. Chlorobenzenes.' Spectrochimica Acta A, 49A, 1499-1514, 1993.```

