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Abstract 

In this thesis methods for the stabilization and identification of nonlinear systems are 

presented. By considering successful theories for the stabilization of linear systems, ap­

proaches to the nonlinear problem are uncovered. This is one of the motivating forces of 

this thesis. We are interested in pushing back the restrictions of linearity as far as is possi­

ble so as to both expose the more general underlying nonlinear theory and to highlight the 

limitations of the linear theory when applied to nonlinear systems. One question which 

motivates our work is: " What class of systems may be stabilized by a specific adaptive 

controller. " 

In the first part of the thesis a factorization approach to the stabilization of nonlinear 

systems is taken. This is initially considered from an input-output point of view. on­

linear definitions for coprimeness are presented, and conditions for the existence of such 

factorizations are examined. The role of the operators represented by matrices consisting 

of the factors of the plant and controller in the stability and well-posedness of the system 

is examined. 

The Youla-Kucera parameterization for the class of all controllers for a given plant is 

extended to the nonlinear case. These stabilizing controllers are parameterized by a single 

stable operator, Q. By using the left factorizations of the plant and controller it is seen 

that the linear results may be readily generalized. The class of all plants stabilized by a 

particular controller may be parameterized by the stable operator S. This leads naturally 

to a characterization of the class of all bounded-input stable pairs . Given an initial stable 

plant-controller pair, a new system derived from the original plant and controller by the 

parameters S and Q will be stable if and only if the feedback system of Sand Q is stable. 

Some results in Nonlinear Robust Control follow. 

By formulating a generalization of linear fractional maps, an exact relationship between 

the nonlinear plant (controller) and its parameterizing operator S (Q), may be derived. 

This may be expressed either in terms of the right or left factorizations of the plant and 
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controller, although it is noted that unless the left factorization approach is taken, it is 

not clear how the stability of the original system will relate to that of the feedback system 

consisting of Sand Q. 

A state space approach to the problem is then taken. It is seen that if a solution to 

the smooth stabilization problem can be found, a right factorization for the plant may 

be derived. A candidate controller is designed, based on the idea of constructing a state 

estimator for the plant. This controller also has a right factorization, and some of the 

earlier right factorization results may be applied. A left factorization is presented for a 

restricted class of plants. It is seen that in order to prove coprimeness for this scheme, 

the plant must be augmented by a unity feedthrough term. An example of constructing a 

right factorization is presented. 

The need for a model to construct a stabilizing controller for a given system motivates 

the second part of the thesis. Here the possible role of Artificial eural etworks in 

nonlinear system identification is investigated. By using these networks within a Recursive 

Prediction Error scheme, the convergence theory of Ljung may be applied. Some analysis 

of this scheme shows that this approach to the problem bears promise. 

The power of eural etworks in representing functions is then investigated. Specifi­

cally an architecture is proposed for which a bound on the number of nodes required to 

represent a general Lipschitz continuous function may be derived. 
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Preface 

This thesis is divided into 7 chapters. 

Chapter 1 introduces the topics considered, and motivates the approach that will be 

taken by presenting an overview of some relevant linear results . 

In Chapter 2 the definitions which will be required for the following chapters are 

given, and the connections between coprimeness, matrices of the factors of the plant and 

controller, and the stability of the system are explored. 

Chapters 3 and 4 explore the factorization approach to feedback stability. Firstly from 

an input-output framework, and-secondly via state space techniques. 

Chapter 5 presents a nonlinear Recursive Prediction Error algorithm in which Artificial 

Neural Networks are used as function estimators. 

Chapter 6 investigates the representation properties of an A N by deriving an upper 

bound on the number of nodes required to represent any Lipschitz continuous function. 

Chapter 7 concludes the thesis, summarizing the main results and indicating areas for 

further research. 

This thesis presents my own original research as well as some results obtained in 

collaboration with others in the three years I have been enrolled in the Department of 

Systems Engineering as a PhD student. A substantial part of this work was carried out by 

myself, approximately 80% of the total. More specifically I contributed all the technical 

details of Chapters 1 to 5, and approximately 30% of those of Chapter 6. 

The research in Chapters 2 to 4 was carried out mostly in collaboration with Prof. 

J.B. Moore, although discussions with Prof. Roberto Horowitz lead to some of the in­

sights relating to right factorizations of Chapter 2. The research which lead to Chapter 

5 was started with Prof. Mark Damborg, Prof. J .B. Moore and Dr. Robert Williamson. 

The technical details and simulations presented herein were done by myself. The results 

of Chapter 6 are largely due to Dr. Robert Williamson, my contribution was through 

discussions, and working out some of the technical details. 
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Chapter 1 

Introduction 

1.1 M ot ivat ion 

In standard (linear) control theory two main approaches to the control of an uncertain 

system may be identified, the Robust and Adaptive Control approaches. The first involves 

assuming that there is some form of model to work with, but acknowledging that there will 

be some error between the actual and modelled plant. The objective is thus to design a 

controller which will stabilize the modelled plant, and hence the real plant if the modelling 

error is small enough. Results such as the Small Gain Theorem become useful in this case. 

The alternative is to use an Adaptive Control scheme, either designing the controller in 

terms of an identifier and from the identified plant producing (on-line) an appropriate 

stabilizing controller, or adjusting the parameters of the controller to minimise an error 

index via some other algorithm. 

For linear systems, the class of all stabilizing controllers for a given plant may be 

characterized via the Youla-Kucera parameterization. A dual result gives the class of all 

plants stabilized by a given controller. By designing the controller so that the true plant is 

likely to be in this class of stabilized plants, robust stabiUzation results may be obtained . 

A time-varying generalization of this work allows adaptive controllers to be incorporated 

into the theory, unless the dynamics are inherently nonlinear. 

Thus, by taking a factorization approach to stability it is possible to design robust 

controllers, or integrate an adaptive scheme into the system in a natural way. In developing 

a nonlinear version of the linear results on the factorization theory, we hope to take steps 

towards a useful approach to nonlinear control. 

Note that in either case it is important to know in which class of functions the plant 
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that is to be stabilized belongs . Additionally, in most adaptive schemes some form of plant 

identification algorithm is required. Hence it is natural to consider some form of nonlinear 

identification scheme. This motivates the second part of the thesis in which an approach 

to nonlinear system identification is considered. 

In this first part of the thesis an overview of the linear results of the Youla-Kucera 

parameterization is presented, giving an introduction to the factorization approach to the 

stabilization of nonlinear systems. The ideas of coprimeness and how to construct the 

parameterization are reviewed briefly. A short introduction to system identification is also 

presented. More formal definitions , which generalize to the nonlinear case, are presented 

in later chapters. 

Initially it is assumed t hat the plant which is to be stabilized is linear and exactly 

known, and that the designed controller may be exactly implemented. In this highly 

simplified environment some of the underlying issues of stabilization may be identified. 

By characterizing the stability of the system in terms of the Bezout identities a natural 

method of generating other controllers which st abilize the given plant is found. The dual 

result is readily obtained to give the class of plants stabilized by the given controller. In 

this way issues such as robustness of the controller to plant uncertainties may be naturally 

introduced. A state space approach to the problem is touched upon. Observe that once the 

state space representations are given, the factorization results may be directly applied. In 

deriving a candidate controller the need for a plant model is highlighted. In the case where 

there is a priori knowledge of the plant , factorization theory may be applied, however in 

most instances a system identification problem will have to be solved. By considering 

on-line identification, applications to adaptive control may be found. 

1.1.1 Problem Statement 

Consider a linear plant G: U 1--+ Y which we wish to stabilize by a linear controller K : Y 1--+ U , 

as shown in Fig 1-1. For convenience we denote this feedback control system {G, K}. 

Simple manipulations show that: 

( e1 ) = [I -K ]-1 ( u1 ) 

e2 -G I U2 
(1.1.1) 

Hence the feedback loop will be well-posed if this matrix inverse exists, and stable if the 

matrix inverse is stable. Using the principle of superposition it may be shown that the 
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• - -

----

E r----+l G f-------r--_ Y1 

Y2 .._----L-___ -l K 1+-----1 E 

Figure 1-1: The feedback system {G, K}. 

existence and stability of this operator is equivalent to finding a controller K such that 

the maps from each of the inputs to each of the outputs exist and are stable. Considering 

the effect of either U1 or U2 on e1 and e2, while the other input is set to zero, in Fig 1-1 

gives: 

e1 = 

e1 = 

e2 --

e2 --

(I - KG)-1 u1 

(I - KG)-1 KU2 

(1 - GK)-lu2 

(I - GK)- 1Gu1 

(1.1.2) 

(1.1.3) 

(1. 1.4) 

(1.1.5) 

These equations are known as the closed-loop transfer mappings. Applying the principle 

of superposition we find that: 

[ ]

-1 

1 -K 
exists 

-G 1 

[ ]

-1 

1 -K 
is stable 

-G 1 

(I - KG)-l 

(I - KG)-1K 

(I - GK)-1 

(I - GK)- lG 

(I - KG )-l 

(I - KG)-l K 

(I - GK)-l 

exist (1.1.6) 

are stable (1.1.7) 

Hence the problem of stabilizing G is equivalent to the problem of finding K such that 

the right hand sides of (1.1.6) and (1.1.7) are satisfied. 
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1.1.2 Coprime Factors 

Now suppose that it were possible to obtain left and right factorizations of G and K , as 

follows. 

N sr -+ y 

M sr -+ U 
G = NM-1 , (1.1. ) 

N U -+ Sl 

M y -+ Sl 

G = M-1fr , (1.1.9) 

U Sl-+ U 

V Sl-+ Y 
K = UV-1 , (1.1.10) 

u y -+ sr 

V y -+ sr 
K = V - 1U , (1.1.11) 

Where sr and Sl are appropriate factorization spaces. This is not an unreasonable as­

sumption. For example if the system is well-posed, then an obvious left factorization 

for G is G = [(I - GK)] [(I _.GK)-lG]. As these are all linear matrices, it is possi­

ble to show that (I - GK)-lG = G(I - KG)-l, so G will have a right factorization 

G = [G(J - KG)-l] [(I - KG)] . 

The right hand sides of (1.1.6) and (1.1.7) now transform as follows: 

(I - KG)-l = MeV M - U N)-lV (1.1.12) 

(J - KG)-lK MeVM - UN)-lU (1.1.13) 

(I - GK)-l = V(MV - frU)-l M (1.1.14) 

(I - GK)-lG V(MV - frU) - lfr (1.1.15) 

Thus, if the factors of G and K are stable and the operators eV M - {; N)-l and 

(MV - frU)-l exist and are stable, then the right hand sides of (1.1.6) and (1. 1.7) will 

be satisfied. If the feedback system is stable then the closed loop transfer mappings will 

be stable. Thus the factorizations suggested previously for G will be stable factorizations. 

Furthermore it is possible to choose these factorizations such that: 

MV-frU J 

VM-UN = J 

4 
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These equations are known as the Bezout identities , and they identify a property of the 

factors known as coprimeness [57J. It is easily verified that given right and left coprime 

factorizations, that (1.1.16) and (1.1.17) are equivalent to the following matrix equation. 

(1.1.1 ) 

The results of this section are summarized in the following lemma. 

Lemma 1.1 Given a plant G with stable right and left factorizations (1. 1.8), (1.1.9), 

suppose there exist stable maps U, V, U, V with V, V invertible, which satisfy the identity 

(1.1.1 8) . Then K = UV-l = V - 1U is a stabilizing controller for G, and these are coprime 

factorizations for G and K . o 

1.1.3 The Youla-Kucera Parameterization 

We have established that if there exist stable right and left factorizations for the plant G 

and controller K such that the Bezout identities (1.1.16), (1.1.17) hold, then the system 

{G , K} is well-posed and stable. ot e that no guarantee of the uniqueness of this controller 

is given. Additionally, in this idealized case , nothing can be said about the effect of 

approximations to the plant and controller being used in place of the original plant and 

controller. This leads us to consider whether the system of equations which have been 

developed could be used to determine if other controllers may stabilize the plant, and how 

an approximation to the plant or controller may be stabilized. 

Given a stable factorization for the plant and controller as in (1.1.8)-(1.1.11) the stabil­

ity of the system is determined by the Bezout identities. Consider the following identities. 

£1(V + NQ) - N(U + MQ) 

(V + QN)M - (U + Q£1)N 

£1V - NU + (£1 N - N M )Q 

I 

VM - UN + Q(NM - £1N) 

I 

(1.1.19) 

(1.1.20) 

It is possible to show (see Appendix A.1) that these define right and left factorizations of 
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a new controller, K Q. 

KQ = V- 1U Q Q 

= (ii + Qi'/)-l (U + QM) (1.1.21) 

= u V - l 
Q Q 

= (U + MQ)(V + NQ )-l (1.1.22) 

If the operator Q is stable, then (1.1.21) and (1.1.22) describe stable factorizations for 

KQ which satisfy the Bezout identities (1.1. 16), (1.1.17), and are thus coprime. Hence the 

system {G, KQ} is stable. This is summarized and extended in the following lemma. 

Lemma 1.2 Given a stable plant, controller pair with stable right and left coprime 

factorizations, (1.1 .8)-(1 .1.11), such that (1.1.18) is satisfied. Then the operator KQ as 

defined in (1.1.21) , (1 .1.22) will stabilize the plant G iffQ is stable. Furthermore, given a 

controller K* such that {G , K*} is stable, there will exist a stable operator Q* such that 

KQ* = K*, this operator, Q*, will be given by: 

Q* = M-l(I - K*G)-l (K* - K )V 

V(K* - K )(I - GK*)- lM- l 

(1.1.23) 

(1.1.24) 

o 

This is known as the Youla-Kucera parameterization of the class of all controllers of 

the plant G. It parameterizes every controller which will stabilize G in terms of a stable 

map Q. Hence, by finding a single stabilizing controller, all possible controllers may be 

generated. It is now possible to optimise the controller with respect to a given performance 

criteria by searching over the space of stable Q. Additionally we may now consider the 

effect of a different controller, K* , being used in place of the original, K, through the use 

of the parameter Q* as given in (1.1.24). If the Q* thus generated is stable , then K* will 

stabilize G. Furthermore, this gives a measure of how robust the system is to errors in 

implementing the controller. Given that the difference between the desired controller K , 

and the implemented controller K*, is small enough, Q* will be stable. Thus the system 

will be stable and robust with respect to small errors in controller implementation. 

Additionally this gives a natural way of incorporating a priori knowledge of the plant 

into an adaptive scheme. A controller is designed to stabilize a plant with the known 
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properties, and an adaptive controller is then incorporated into Q, which then adapts to 

stabilize unknown plant characteristics. See, for example, Tay [47], [48J. 

The dual results to those obtained for the controller may be readily obtained, giving 

the class of all plants stabilized by a given controller, and parameterized by the stable 

operator 5. 

Gs = (N + V5)(M + U5)-1 = (M + 5tj)-1(N + 5V) (1.1.25) 

This leads to results in robust control. The parameter 5 gives a measure of how robust 

the system is to uncertainties in the plant. 

5 = V- 1(I - GSK)- l (GS - G )M 

= M(Gs - G )(I - KGS )-lV-1 

(1.1.26) 

(1.1.27) 

If the difference between the actual and nominal plant is small enough, then the system 

will be stable. 

Further, these results may be used to prove that the problem of simultaneously sta­

bilizing m plants is equivalent to the problem of stabilizing m - 1 plants with a stable 

controller. 

The challenge is now to consider the stability of the system {Gs, KQ}. The Youla-

Kucera parameterization gives results on how to account for uncertainties in the plant or 

the controller, but not both. By considering the stability of {Gs, KQ} a more complete 

theory is obtained. 

An alternative proof to Lemma 1.2 is instructive. It is possible to show that if the 

factorizations of G and K are coprime, the following results hold. 

[ 
I -K ]-1 is stable ¢:} 

-G I 

[ 
I -K ]-1 is stable ¢:} 

-G I 

[ ]

-1 
V -(; 

_ _ is stable 
-N M 

[ ]

-1 

M -U 
is stable 

-N V 

(1.1.28) 

(1.1.29) 

From (1.1.20) we know that KQ = VQ
1
(; is a left coprime factorization . ote that: 

(1.1.30) 
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-- -.~ 

(1.1.31) 

(1.1.32) 

Since [v_ -~] -1 = [M U], it is straightforward to see that {G, KQ} is stable 
-N M N v 

iff Q is stable. Additionally this approach gives an approach to the problem of considering 

the stability of {Gs , KQ}. See Appendices A.2 and A.3 for details . 

(1.1.33) 

(1.1.34) 

These equations indicate that the stability of {Gs, KQ} is tied to the stability of t he 

system {S, Q}. In [51 J it is shown that {G s , K Q} is stable iff {S, Q} is stable. This 

characterizes the class of all stabilizing plant, controller pairs. 

It is now possible to combine the adaptive and robustness results in a natural way. By 

searching over the class of Q we can adaptively stabilize the plant , while the map S gives 

a measure of robustness. 

1.1.4 State Space Realizations 

It has been established that once factorizations of the plant and controller have been found 

a theory which may incorporate the results of Robust and Adaptive control is developed. 

The problem is now to discover whether such factorizations may be found for a general 

linear plant. 

For a good review of the solution to this problem, see [57J. The problem of finding a 

right coprime factorization (ref) for G turns out to be related to the stabilizability of G, 

while finding a left coprime factorization (lef) is related to the detectability of G. 

Suppose G: U ~ Y is a continuous time linear plant with a feed-through term, then G 
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will have a state space realization given by: 

G(xo): 
x = Ax + Bu 

y = Cx + Du 

x(O) = Xo 
(1.1.35) 

Where A, B, C, D are matrices. Then suppose there exists a matrix F such that A + BF 

is stable, i.e. the eigenvalues of A + BF lie in the left half plane. Then G(xo) has a right 

coprime factorization given by: 

G(xo) 

M(xo) 
u 

N(xo) 
y 

N(xo)M(xo)-l 

(A + BF)xm + Bs 

(A + BF)xn + Bs 

CXn + Ds 

(1.1.36) 

(1.1.37) 

(1.1.38) 

Dually, if there exists a matrix H such that the matrix A + H C is stable, then there 

exists a left coprime factorization for G(xo) as follows 

(1.1.39) 

AXm + H (Cxm - y) 
(1.1.40) 

S CXm - Y 

Xn = AXn + Bu - H (Cxn + Du) 
(1.1.41) 

y CXn + Ds 

Additionally, given the matrices F and H as above, it is possible to construct a con­

troller for G(xo) as follows. 

K(xo) (1.1.42) 

This controller has stable left and right coprime factorizations which satisfy the Double 

Bezout Identity (1.1.18). 

1.1. 5 Identification 

It may be seen that the controller (1.1.42) stabilizes the plant by firstly acting as a state 

estimator for the G(xo), and then setting the input to the plant to be the stabilizing 
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state feedback Fx . Note the importance of having an accurate model of the plant. If the 

plant is not known it is not possible to design a controller based on this approach. Hence, 

when considering the problem of controlling an unknown plant, some form of identification 

algorithm must first be considered. Then, when a model of the plant is known, it is possible 

to design a nominal controller. 

An on-line version of this idea is used in Adaptive Control. This is known as the 

Certainty Equivalence Principle. It is assumed that at each time instant the estimate 

of the plant model within the adaptive controller is an accurate one, and the controller 

outputs are based on this. The plant identification parameters are then updated based 

on the difference between the predicted and the actual output of the plant. Here it is 

important to have a parameterization which may be adjusted to find a representation of 

the plant . 

Thus the importance of system identification has been established. It is straightfor­

ward to see that the parameterization used in the identification algorithm is of crucial 

importance. In performing the initial identification it is important to use as general a 

class of models as possible . Consider the single input, single output (SISO) case first. 

Any linear, time invariant , discrete time, SISO plant has a representation as follows: 

Yk 
CXl CXl 

L aiYk-i + L biUk-i 
i=l i=O 

(1.1.43) 

(1. 1.44) 

This allows far more generality than is necessary, however. Most linear systems of interest 

are of finite order, and thus have the form: 

n m 

Yk L aiYk-i + L biUk-i (1.1.45) 
i=l i=O 

This allows a very simple form of plant identification. First, nominal values for m and n are 

chosen, then the parameter set, a1, ... , an, bo, ... , bm , which leads to a representation 

of the plants input-output behaviour is determined. 

Formally, define the parameter OT = (a 1, ... , an, bo , ... , bm ). Given an input 

sequence of length l, U = {ud~=o, define Yo to be the sequence of length l resulting from 

substituting U into (1.1.35), and let YB be the sequence resulting from (1.1.45), where 

Ui = 0, Vi < O. Note that it may be the case that l = 00. Then the identification problem 
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becomes one of solving the following problem: 

min IIYO - yoll o (1.1.46) 

There are a few difficulties with taking this approach to system identification . Firstly, 

the effects of the initial conditions may only be accounted for by estimating values for 

{Ui}~l_m ' Additionally, once we have an estimate for B, it is then necessary to calculate 

a realization of the form of (1.1.35). Since it is usually the case that there are errors in 

the measurement of the inputs and outputs of the plant it is also necessary to incorporate 

noise into the estimation scheme. ote also that it is difficult to include a priori knowledge 

about the plant in such a scheme, and generalization to multi-input, multi-output systems 

is not straightforward. Hence consider a parameterization of the form: 

Xk+l = A (B)Xk + B (B)Uk + Vk 

Yk C (B)Xk + D(B)Uk + Wk 
(1.1.47) 

Estimating the noise sequence Vk is difficult in this framework , as it is not easy to separate 

the effects of the noise Wk from that of the filtered noise KVk. Additionally, due to the non 

un'queness of a realization for G(xo ) of this form, convergence of the parameter B is difficult 

to guarantee. These problems may be solved by using an innovations representation, where 

it is assumed that Vk = Kwk, and K is then estimated by K(B ). 

Xk+l = A(B)Xk + B(B)Uk + K(B)Wk 

Yk C (B)Xk + Wk 
(1.1.48) 

Having found the form of the model estimate that will be used, we choose an algorithm 

that gives the estimate of B. These algorithms may be divided into two broad classes, based 

on whether they use on-line or off-line techniques. Off-line algorithms seek to minimise a 

cost such as (1.1.46) given an input signal and the resulting output signal. An alternative 

is an on-line algorithm which, at each time step, updates the estimate of the state and 

the parameter B. In this case we seek to minimise a prediction error index, with respect 

to the parameter B, for example: 

(1.1.49) 

Note that an on-line algorithm may be used as part of an adaptive controller, which 
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may in turn be incorporated into an existing feedback system through the factori zation 

framework. Alternatively it may be simplified to give a state estimator, rather than a 

combined state and parameter estimator, thus leading to a controller such as (1.1.42). 

Hence we have more interest in on-line estimators than off-line estimators. One example 

of an on-line estimation scheme which may be generalized to the nonlinear case is the 

Recursive Prediction Error scheme, which will be studied in Chapter 5. 

Note that in the linear case we are constrained to using matrices for A(8), B (8), C(8), 

D(8), hence it is straightforward to obtain a parameterization, once the dimension of the 

state estimate Xk has been decided upon. 

1.2 Thesis Outline. 

In the first three chapters we develop a factorization approach to the problem of stabilizing 

the system {G, K} of Fig 1-1 when the plant and controller may be nonlinear. The 

approach taken is similar to the development given in the previous section . By finding 

nonlinear generalizations of these results it is hoped that some of the Robust Stabilization 

and Adaptive Control results may be reproduced in a nonlinear setting. 

In Chapter 2 the stage is set for later work. First the signal spaces which will be used are 

defined . Ideas for the stability of nonlinear operators are then presented, and definitions 

of the well-posedness and stability of the closed loop {G, K} are given. Coprimeness 

definitions are developed from an input-output perspective rather than algebraically, and 

results concerning the relationship between the fractional descriptions of the plant and 

controller and the stability of the system are presented. This gives a body of results on 

which a more complete nonlinear factorization theory can be based. 

The Youla-Kucera parameterization for nonlinear systems is developed in Chapter 3. 

The class of all controllers stabilizing a given plant is derived, and the class of all plants 

stabilized by a given controller is presented. This leads to a characterization of the class 

of all stabilizing plant-controller pairs. Some nonlinear robust stabilization results may 

now be easily proved. 

In Chapter 4 a state space approach to the factorization of nonlinear systems is pre­

sented. Techniques are demonstrated which lead to right factorizations for a plant for 

which one can solve the smooth stabilization problem. The problem of solving left factor­

izations does not appear to be solvable within the presented framework, however a solution 

due to Moore and Irlicht [36] is presented to demonstrate that there are alternative ap-
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proaches which are met with some success. 

This completes our investigations into taking a factorization approach to the stabiliza­

tion of nonlinear systems. The discussion of state space realizations and left factorizations 

leads us to consider the problem of the identification of nonlinear systems. 

In Chapter 5 research into the use of a Recursive Prediction Error algorithm in conjunc­

tion with Artificial eural Networks (A Ns) to perform nonlinear system identification 

is presented. It is found that the results of the theory on recursive stochastic algorithms 

due to Ljung [31], [33], may be applied to prove convergence of the proposed scheme for 

some cases. Simulation studies are also presented. 

As A s are being used to represent the nonlinear operators of Chapter 5, we are 

motivated to consider the power of an A to represent a given function . It is already 

known that AN s may act as universal approximators. In Cybenko [4], Funahashi [11] 

and Hornik, Stinchcombe and White [22], for instance it is shown that given a sufficient 

number of nodes, any function may be approximated to any given accuracy. However, 

the reverse problem of stating the number of nodes required to represent a function from 

a given functional class to a prescribed accuracy is yet to be solved. This problem is 

considered in Chapter 6. An AN architecture is proposed for which the number of nodes 

required to represent any map from the class of Lipschitz continuous functions defined 

on a compact domain, is determined. It is then possible to calculate the bit complexity 

of this representation, which may then be compared with the €-entropy for this class of 

functions. In this wayan idea of the efficiency of the proposed architecture to represent 

general Lipschitz continuous functions is obtained. 

Conclusions and suggestions for further work are given in Chapter 7. 
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Chapter 2 

Preliminaries 

2.1 Introduction 

As seen in the introduction, the study of coprime factorizations of linear systems leads to 

a theory giving the class of all stabilizing controllers for a linear plant, the class of plants 

stabilized by a given controller, and thus to a theory which may be used to derive results 

in Robust and Adaptive Control. The key concept in this field is that of coprimeness, 

considered as resulting from the Bezout identity. As seen in Section 1.1, if a plant and 

controller satisfy a Bezout identity the class of all controllers and plants may be naturally 

generated. In this chapter we seek a definition of coprimeness which allows us to generalize 

these results. 

The Bezout approach to coprimeness was initially carried over to the nonlinear field 

see Desoer [6, 7], Verma [55]. Verma [54] took a geometric approach and found Bezout­

independent definitions which used the idea of the graph Qr(G), of the plant G. It was 

demonstrated that there is a set-theoretic definition of right coprimeness, which is equiva­

lent to the Bezout definition for linear operators, based on the idea of preventing pole-zero 

cancellations between the factors . This generalizes readily to give a right coprimeness def­

inition for arbitrary nonlinear operators. However the approach to take for defining left 

coprimeness is not as clear. A set-theoretic left coprimeness definition based on preventing 

pole-zero cancellations is not equivalent to the factorization satisfying a Bezout identity. 

Hammer, in his series of papers [13]-[16] considered a left factorization approach to the 

feedback stabilization problem. In this work a definition of left coprimeness is developed 

based on an input-output approach. The plant is restricted to be injective (one to one), and 

the left factorization derived is first used within a Bezout identity. Tay [49] generalized 
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these results to a slightly larger class of nonlinear plants, including noninjective plants 

which are constrained such that the pre-image of any output signal is either bounded , 

or has no elements which are bounded. Once again the left factorization is used within 

a Bezout identity. Thus it is not clear whether left coprime ness should be defined via a 

Bezout identity or a set-theoretic condition. 

The interest in finding Bezout independent definitions comes from results such as 

(1.1.28), and the dual result for right factorizations. Given an arbitrary plant and con­

troller each with left factorizations, we can test for stability of the system via (1.1.2 ) 

if the factorizations are coprime. It appears to be easier to check a set-theoretic defini­

tion than to construct solutions to the Bezout identity. Additionally the interpretation 

of coprimeness is more straight forward with a set based definition in that the links to 

preventing pole-zero cancellations are more evident than when coprimeness is considered 

in the context of a Bezout identity. 

In this chapter we set the stage for the following chapters. First definitions for the 

stability and well-posedness of a feedback system with external inputs are given. We then 

move onto the definitions of left and right coprimeness developed by us in [40, 41], which 

represent a natural generalization of the idea of right-half-plane coprimeness for continuous 

time systems. These are based on the definitions presented by Tay and by Hammer. It is 

observed that the condition imposed on the plant in [49J is both necessary and sufficient 

for the existence of a lcf for a plant . 

The connections between the well-posedness and stability of a system, and the factors of 

the plant and controller are considered. It is found that for rcfs the results are comparable 

to those available in linear systems theory. However, the connection is not clear for 

lcfs. The linear results obtained in this case rely implicitly on the use of the principle 

of superposition, which is disallowed in the nonlinear case. The main contribution here 

is to demonstrate ways of getting around this restriction. The idea is to find a way of 

restricting the operator so that the change in the output may be bounded when the change 

in the input is known. The method that we use is to use differential boundedness , which 

bounds the change in the output of an operator given that the input changes by less than 

a prescribed amount. It may be seen that if the plant satisfies a Lipschitz condition , where 

the change in the output is bounded by an amount proportional to the change in the input, 

or some similar condition, the results will still hold. 
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G t-----,-- Yl 

Y2 ----'--------1 K 

Figure 2-1: The feedback system {G, K} . 

2.2 Signal Spaces and Stability 

In the sequel the stability problem for the feedback system {G, K}, as in Figure 2-1 , is 

developed from an input-output point of view. The mapping G will represent the plant , 

and K the controller. 

A signal, x, is referred to as coming from some vector space X without saying whether 

it is a discrete or continuous time signal. We partition the space X into two subspaces , 

Xb and Xu' The former consists of all signals in X which are bounded, or stable, while 

the latter consists of all signals in X which are unbounded. The signal x E X is said to 

be bounded when Il xll is finite , for some norm 11·11. 

As Hammer pioneered the work in this area in discrete time, we use his notation when 

presenting discrete time results . In particular we work with the signal sequences 50 (Rn ), 

the set of all sequences with elements in Rn , where R is the set of extended real numbers, 

such that all elements of the sequence before the oth place are zero. We also work with the 

set of signals 50 (en), the subset of 50(Rn) which has the elements of its sequences bounded 

by c. When we do not want to specify the explicit bound we will use the notation 5u(Rn ) 

and 5b(Rn) to denote the unbounded and bounded subspaces of 50(Rn), respectively. 

Continuous time systems with real input spaces are also considered. Given a real 

vector space X, the space G( X) is the space of continuous functions with continuous first 

derivative, mapping from some open interval of lR to X. The subspaces of bounded and 

unbounded signals are denoted Gb(X) and Gu(X), respectively. 

The definition of stability that is to be used is now presented. It has a very general form 

so that it may account for the various specific notions of stability which exist. Almost any 

specific stability definition may be constructed by an appropriate definition of the spaces 

Ub and Yb · 

Definition 2.1 [ BIBO Stability J A map F:U ~ Y is said to be bounded-input, 

bounded-output stable (BIBO stable) when the image OfUb under F is contained in Yb . 
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Definition 2.2 [ Unimodularity 1 An invertible operator P: U ~ Y is said to be 

unimodular when P is BIBO stable and p-1 is also BIBO stable. 

These definitions for single operators naturally lead to definitions for the stability of 

the feedback system Figure 2-1. 

Definition 2.3 [ Well-posedness 1 Th e system {G , K} is well-posed if the closed-loop 

system input-output operator from Ul, U2 to e1, e2, namely 

[ 
I -K ]-1 exists. 

-G I 
(2.2 .1) 

Remark 2.1 Note that if (2.2. 1) holds , the closed loop transfer mappings will exist . 

i. e. (I - G K ) - 1 and (I - KG ) -1) will exist. This may be seen by considering one of U1 , U2 

identically zero. However the converse does not hold due to G and K being nonlinear. 

Thus the implication in (1.1.6) holds, but the reverse implication does not. 

In the sequel only those systems which are well-posed will be considered. 

Definition 2.4 [Internal Stability 1 The system {G , K} , assumed well-posed, is said 

to be internally stable iff for all bounded-inputs U1, U2 the outputs Yl, Y2 and el , e2 are 

bounded. This is equivalent to 

[ 
I - K ]-1 is BIBO stable. 

-G I 
(2.2.2) 

Remark 2.2 Further to Remark 2.1, (2.2.2) is a sufficient condition for the stability of 

the closed loop transfer mappings, but the converse does not hold. 

As we are dealing with nonlinear systems a notion of local stability will be required. 

Formally, local stability is defined in terms of the norm of the largest signal which will not 

destabilize the system. 

Definition 2.5 [Bounded-Input Stability 1 The system {G, K} , assumed well-posed, 

is said to be C1> C2 bounded-input stable iff for all inputs lUll < Cl , IU21 < C2 the outputs 

Y1, Y2 and e1, e2 are bounded. 

Remark 2.3 Note that internal stability is a stronger condition than bounded-input 

stabili ty. All internally stable systems, {G, K}, are C1, C2 bounded-input stable for all 

C1 , C2. Additionally, all C1 , C2 bounded-input stable systems are c~, C2 bounded-input 

stable for all c~ ::; C1, C2 ::; C2. 

Remark 2.4 In the linear case all bounded-input systems are internally stable. If 

17 



lUll < el, IU 21 < e2 implies that the outputs YI, Y2 and el , e2 are bounded , then by 

linearity it is possible to bound the output resulting from any other bounded signal. 

Hence the system is BIBO stable. 

2.3 Coprimeness 

If a factorization approach to the stabilization of the plant G is to be taken in analogy 

with the linear theory of Youla-Kucera parameterizations, the concepts of right and left 

coprimeness should be explored in a nonlinear systems context. Definitions of right and 

left coprimeness are now given, and are explored in the following sections. 

The following definitions were first presented in [41], and have been developed from the 

point of view of preventing the nonlinear equivalent of unstable pole-zero cancellations, 

and thus, for linear systems, specialize to right half plane coprimeness. Motivation for 

taking this approach to coprimeness may be found in Hammer [15J. 

Definition 2.6 [Right Coprimeness J Let M , N be a right factorization for G : U ~ Y 

G = N M - l , N: sr ~ Y 

M: Sr ~U (2.3.1) 

where M and N are BIBO stable mappings from the factorization space sr to the input and 

output spaces. Then M, N is a right coprime factorization of G (rcf) iff for all unbounded 

inputs s E S~, M s or N s is unbounded. 

Definition 2.7 [ Left Coprimeness J Let M, if be a left factorization for G : C(U) ~ 

C(Y) 

if:U~Sl 

M:Y~Sl (2.3 .2) 

where M, if are BIBO stable mappings from the input and output spaces to the factor­

ization space C(Sd. Then M, if is a left coprime factorization of G (lcf) iff the set of all 

unbounded U f Cu (U) such that Gu is bounded and if u is unbounded is the empty set, 0. 

In other words, for all bounded s E Cb(Sd, M-Is is bounded or {u: ifu = s} is bounded, 

which is an explicit dual statement of the definition for right coprimeness. 

If the system {G, K} is well-posed and stable, assume that in addition to having stable 
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coprime descriptions for G as in (2.3.1) and (2.3.2) there are factorizations for K: Y 1--+ U. 

The problem of the existence of such factorizations will be considered in the next two 

su bsections. 

K = UV- 1 , U: SI -+ U 

V: SI-+ Y 

K = fr-l(; , (;: y -+ sr 

fr : U -+ Sr 

(2.3.3) 

(2. 3.4) 

where V, u, fr, (; are BIBO stable operators and SI and sr are the factorization spaces. 

In this section the definitions of stability that we will be using have been presented , 

along with set-theoretic definitions of coprimeness. In this section the existence of these 

factorizations, and the relationship between the stability and well-posedness of the system 

and the factors, and matrices of these factors is explored. 

2.3.1 Right Coprime Fac~orization Results 

We first review the cormection between right coprime factorizations and the Bezout iden-

tity. 

Lemma 2.1 [42J Given a stable right factorization ofG, as in (2.3.1), suppose that 

there exists a BlBO stable mapping L: U x y 1--+ sr such that 

L [ : 1 ~ z, Z unimodul., (2.3.5) 

Then G = N M- 1 is a right coprime factorization for G o 

Proof. Consider L:U x Y 1--+ sr a BIBO stable mapping which satisfies (2.3.5). Suppose 

that N, M is not a coprime factorization for G. Then there exists an unbounded s E C(Sr) 

such that M sand N s are both bounded. As L is BIBO, L ( ~: ) = z. is bounded, 

however as Z is unimodular, Zs is unbounded. This gives a contradiction, proving the 

~~. . 
Remark 2.5 In the case that L = [Ll L2]' this lemma specializes to Lemma 2.1 of 

[40J . 
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Remark 2.6 This result specializes directly to the linear case. 

The link between well-posedness and stability of the system {G, K} , and the existence 

of rcf of G is now explored. These results were first presented by Hammer [12, 14] in 

discrete time. 

Lemma 2.2 (Review) Consider a nonlinear plant G : SO(Rffl) -+ So (Rn) such that 

the inverse image of an unbounded element of the range of G is either bounded, or contains 

no elements which are bounded. Furthermore, suppose that there exists a feedback con­

troller K : So(Rn) -+ SO(Rffl), as in Fig. 2-1 such that the closed-loop is well posed, giving 

existence of (I - KG)-l, and achieves stability of G (I - KG)-l, but not necessarily other 

closed-loop transfer mappings. Then, 

(i). [12) existence of tbe controller K, with KG strictly causal, implies the existence of 

right bounded input bounded output (BIBO) stable factorizations, 

(2.3.6) 

where N* and. M* are BIBO stable and S* is the factorization space. 

(ii). {14} existence of N* and M*, as in (i), implies the existence of a right coprime 

factorization, 

(2.3.7) 

where N and Mare BIBO stable and sr is the factorization space. 

(iii) . {14} existence of a right coprime factorization of G over the factorization space, sr, 
implies the existence of BIB 0 stable maps 

(2.3.8) 

such that the following Bezout identity holds, 

(2.3 .9) 

o 

Remark 2.7 This provides a springboard to the use of lcfs in stabilizing G, as shall be 
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seen in Section 2.3.2 

Remark 2.8 This lemma may be readily dualized in terms of giving right factorizat ions 

and a Bezout Identity for the controller K . Combining the dual results gives the following 

corollary. 

Corollary 2.1 Consider a nonlinear plant G : So (Rm ) --> So (Rn ) such that the 

inverse image of an unbounded element of the range of G is either bounded, or con­

tains no elements which are bounded. Furthermore, suppose that there exists a feedback 

controller K : So(Rn) --> So (Rm ), as in Fig. 2-1 such that the closed-loop is well posed, 

giving existence of all the closed-loop transfer mappings, and stability of G(I - KG )- l 

and K (I - G K ) -1. Then there will exist right coprime factorizations of G and K as in 

(2.3.1), (2.3.3). Furtbermore there wjJJ exist maps V, U, M, if sucb tbat tbe Bezout 

identities (1.1.16), (1.1.17) bold. o 

Remark 2.9 Note that the maps V, U, M, if referred to in this Corollary are not 

necessarily left factorizations of the plant and controller. 

Thus the relationship from the well-posedness and stability of the system {G, K} is 

established. Further results , more along the lines of the linear results (1.1.28), may also be 

obtained. The following theorem and lemma show that well-posedness and coprimeness 

are necessary and sufficient for the existence and stability of the operator inverse. 

Theorem 2.1 

Given {G, K}, and G = N M- 1 and K = UV-1 rcfs as in (2.3.1) and (2.3.3), then {G, K} 

is well-posed iff 

and is internally stable iff 

[ 

M -U ]-1 
exists 

-N V 

[ 

M -U ]-1 
is BlBO stable 

-N V 
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Proof. First we note that 

[ 
I -K ]-1 = [ I -UV-l ]-1 

-G I -NM-l I 

= {[ M -U] [M-l 0 ]}-1 
-N V 0 V-I 

[ 
M 0] [M -U ]-1 
o V -N V 

(2.3.12) 

It is straightforward to see (2.3.10) holds iff {G, K} is well-posed. 

({=:) Suppose that (2.3.11) holds, then for all a, b bounded we define e, d as follows . 

(2.3.13) 

e, d are bounded. Hence, by (2.3.12), 

[-~ -; r ( :) ~ [: ~](:) (2.3.14) 

Under (2.3.1), (2.3.3) M and V are BIBO stable. Hence Me and V dare BIBO thus 

showing that the system inverse operator exists and is BIBO. 

(=» Suppose that {G, K} is well posed and stable and that G = NM-1 and K = 

UV-l are stable refs. Let 

(2.3.15) 

then for all a, b bounded, we have e, f bounded. Define e, d as in (2.3.13), note that as 

a, band e, f are bounded, the following equations hold 

(2.3.16) 

(2.3.17) 
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As e is bounded Me is bounded, and since a and Me are bounded, U d is bounded. 

Similarly, as band f are bounded, V d and N c are bounded. By coprimeness of N M-l, 

since N c and Me are both bounded c is bounded. Similarly, by coprimeness of UV-l, d 

is bounded. This completes the proof. • 
Hence the stability and well-posedness of the system depends on the existence and 

stability of the operator [M -u ] -1. In fact the relationship is somewhat stronger, 
-N V 

coprimeness also results from the stability of this operator. 

Lemma 2.3 Suppose we have G = N M-1 and K = UV-l, such that the operators 

M, N, U, V are BlBO stable. Then these are refs for G and K if they satisfy (2.3.11) 0 

Proof. Since the matrix inverse is stable we require that unbounded inputs yield un­

bounded inputs. Consider x an unbounded signal, and consider the action of the system 

as follows. 

(2. 3.18) 

As x is unbounded, the output is also unbounded. As V and U are BIBO stable operators , 

M x or N x must be unbounded, giving coprimeness of M, N. Considering the action of 

[ _: -: ] ( : ) for y unbounded gives coprimeness of U, V. • 

Remark 2.10 These results are exactly the same as those obtained in the linear theory, 

as described by (1.1.29). This generalization to the nonlinear case is straightforward as 

the principle of superposition is not required in the proof. When left factorizations are 

considered the principle of superposition is essential to the proof, and so the linear results 

do not readily generalize. 

2.3.2 Left Coprime Factorization Results 

In linear systems theory the Bezout identity may be used to check left coprimeness. There 

does not appear to be a generalization for nonlinear systems. 

Note that the definition of left coprimeness we use induces some restrictions on the 

plant G. In discrete time, consider plants G : So(Rm) -+ So(Rn) such that the inverse 

image of an unbounded element of the range of G is either bounded, or contains no 
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Figure 2-2: Feedback system with external inputs. 

elements which are bounded. It is shown in Lemma 3.1 of [49] that under this assumption , 

G will have a lel Furthermore , if this condition is violated it can be seen that for any 

left factorization , either N is not BIBO stable, or fj-l N is not a lel Hence we shall only 

consider plants G such that this assumption holds. 

Left coprime factorizations started out being considered in conjunction with the Bezout 

identity. By considering feedback systems for injective nonlinear plants with a particular 

pre-compensator V-l and feedback-compensator U, as in Fig. 2-2, Hammer [15] uses t he 

Bezout identity to obtain a method of stabilization. 

Lemma 2.4 [From [15]] Consider a nonlinear plant G : So(Rm) --. So(Rn), suppose 

that there exists a feedback controller K : So(Rn) --. So(Rm), as in Fig. 2-1 such that 

the closed-loop is well posed. Further, consider that there is a right coprime factorization 

for the plant, G = N M- l
, which satisfies a Bezout identity as in Lemma 2.2, (2.3.9). 

Then the feedback system shown in Fig. 2-2, in the ease Wl , W2 = 0, is stable, and the 

closed-loop transfer mappings as defined under (2.3.9) are 

e Mw, y Nw (2 .3.19) 

o 

However this stability is not robust to small signal injections around the loop , so the 

resulting closed loop system is not necessarily internally stable. To cope with such small 

signals, Hammer introduces a differential boundedness constraint on V and U. Differential 

boundedness is defined as follows. 

Definition 2.8 [ Differential Boundedness 1 An operator F : C(X) ....... C(Y) is said 

to be differentially bounded by OF , c F iff for all signals al, a2 E C(X) , if lal - a21 < CF 

then IFal - Fa21 < OF. 
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Lemma 2.5 (Mild generalization of Lemma 3.4 of [15]) Consider the feedback system 

of Fig. 2-2, where G satisfies the constraints of Lemma 2.2, giving existence of BlBO stable 

V, {; such that (2.3.9) and (2.3.19) hold, bu t with (small) external input signals Wl , W2. 

Consider that 

V is differentially bounded by By, c y 

(; is differentially bounded by Bu , C
u 

(2.3.20) 

(2.3.21) 

In addition, consider that N is stable over So (Bn ), where B > Bu + By. Then the system is 

internally (bounded-input) stable for W € So ([B - Bu - By]m), Wl € So (c:), W2 € So (c~), in 

that under these constraints all signals are bounded for all possible inputs, or equivalently 

all the closed-loop transfer mappings are BlBO stable. o 

Proof. First consider the case when Wl = W2 = O. Then for W € So (Bm) we have all 

internal signals bounded. The transfer mappings of Fig. 2-2 are given implicitly, via 

(2.3. 19) (2.3.9), in 

- - - - - 1 
e = (I - UGV)-!w = VMw, el = V- e = Mw, y = e2 = Gel = Nw (2.3.22) 

These are all BIBO stable by Lemma 2.2. Consider now the effect of adding in t he small 

signal W2 € So(c~) with WI = O. Then the response at e will be given by 

e = w + {; (W2 + y) (2.3.23) 

Define the mapping a So (c~) -+ S by 

(2.3 .24) 

Since (; is differentially bounded by Bu and W2 € So (c~), we have a(w2) € SoW;;') . ote 

that the response at e when W2 f 0 is the same as if we replace the input signal w with 

w + a(w2) and set W2 = O. Hence we conclude that for w € So([B - Bu]m) the introduction 

of W2 € So(c~) does not affect the boundedness of the signals e , el and y. The signal e2 

will remain bounded as it is the sum of two bounded signals. 

Consider now the effect of adding in the small signal WI € So (B:) and, without loss of 
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generality, as shown above we can take W2 = O. The response of el will be given by 

(2. 3.25) 

Define the mapping f3 : So(c;;') -+ S by 

(2.3.26) 

Since V is differentially bounded and Wl £ So (£;;' ), we have f3(W l ) £ So (e;;, ). If we replace 

the input W by 

(2.3.27) 

and set the input at Wl zero , then it is straightforward to show that the output el is 

unchanged. Consequently, e l is bounded , as then are e, e2 and y . Likewise, with the input 

W £ So([e - eu - ev Jm) the effects of both WI £ So (e;;, ) and W2 £ So(e~) can be incorporated 

into t he input signal, under the differential boundedness assumptions on V, fj. This gives 

us the result. • 
Remark 2.11 When using this lemma in the development of the main results of the 

following chapter, N is taken to be BIBO stable, and we are able to choose 0 < e < 00 

arbitrarily large, so that W is effectively unrestricted. 

Remark 2.12 In the linear case fj, V are differentially bounded by all e, and Cu ex: e, 
Cv ex: e. As a consequence the closed-loop system is internally stable, without restriction 

on the inputs w, WI, W2. 

Remark 2.13 By considering that in Fig . 2-2 we have W = 0, then we can construct 

a controller K = v-Ifj which will bounded-input stabilize the plant G. This is more 

precisely stated in the following corollary. 

Corollary 2.2 Consider the feedback system of Fig. 2-2, where G satisfies the 

constraints of Lemma 2.2, giving existence of BIBO stable V, U such that (2.3.9) and 

(2. 3.19) hold. Further, assume that N is BIBO stable, and that (2.3.20) and (2.3.21) hold, 

and that the signal W = O. Construct a controller by K = V-Ifj, then the system {G, K} 

thus formed is cv , Cu bounded-input stable. o 

Remark 2.14 If a dual approach to Lemma 2.2 we find a ref of K, which satisfies a 
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Bezout identity, 

(2.3.2 ) 

then we can construct a stabilized plant G = M-1 N. Further, if the Ie! of G is differentially 

bounded as follows 

M is differentially bounded by B M' C
U 

N is differentially bounded by Bu , C
v 

(2.3.29) 

(2.3 .30) 

and then the system {G, K} will be stable in the presence of inputs W1 €So(c~) and 

W2 €So(c;;'). Equivalently there is cv , Cu bounded-input stability of the system {G, K}. 

Thus it is demonstrated that given a Bezout identity and differential boundedness of 

some of the nonlinear operators , a limited form of stability may be proven. In the linear 

case, and for nonlinear right coprime factorizations , Theorem 2.1 and Lemma 2.3, it was 

shown that matrix versions of this result are possible. We are thus motivated to derive 

:~:~,:;::':~~,:O:e:~n;:e l:::a:~::::: :::::::t:::'~p~,:::: ace[pr;_ble~; ]i~ It~~:gt:: 
-N M 

stability and well-posedness of {G, K} does not generalize directly from the linear case. In 

the linear case we have that this operator is stable iff the system {G, K} is well-posed and 

stable, as stated in (1.1.28). The first result attainable for a matrix of nonlinear operators 

of this form is as follows. 

Lemma 2.6 [41) Consider the system {G, K}, where G and K are sueh that each 

has stable left coprime factorizations as give in (2.3.2), (2.3.4). Consider the system of 

Fig. 2-3, with inputs W1, W2 zero. Then this system will be well-posed if 

]

- 1 

-u 
M exists. (2.3.31) 

- -1--1' in the sense that the inputs and outputs for each of N, M- , U, V - WJll be well-defined. 

Furthermore this system will be stable in the sense that the inputs and outputs for each 

of N, iiJ- 1
, U, V - 1 will be bounded if Sl and S2 are bounded iff 

[ ]

- 1 

V -U 
_ _ is stable. 

-N M 
(2.3.32) 

o 
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M-l 

V-I fj 

Figure 2-3: System of the leis of G and K. 

Proof. From Fig 2-3, 

(2.3 .33) 

(2.3.34) 

Using simple algebraic manipulations, then under the existence assumption (2 .3.32), 

( :: ) = [~ -: r (:: ) (2 .3.35) 

This mapping is BIBO stable under (2.3.32), so that Ul, U2 are bounded if $1, $2 are 

bounded. Furthermore Ul, U2 bounded gives el = MU2 and e2 = VUl both bounded . 

Hence the result. • 
Remark 2.15 Note that this result is similar to applying Lemma 2.3 and then Theo­

rem 2.1 to the system {lVV-I, fj !VI-I} . 

Remark 2.16 This assumption forms the basis of the following theory. In the following 

chapter it is found that this assumption allows the characterization of the class of all 

stabilizing plants and controllers. 

Remark 2.17 Further to Remark 2.14, note that if V or lV is differentially bounded 

as in (2.3.20), (2.3.30), respectively, and !VI or fj is differentially bounded as in (2.3.20), 

(2.3.30), respectively, then {G, K} will be ev , eu bounded-input stable. 

Remark 2.18 The assumption (2.3.32) does not seem overly restrictive when considered 

in the context of the linear theory. In the linear case we have the double Bezout equations 
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holding, giving 

Here V, U, M, N are the stable coprime factors given from the refs of C, K as C = 

N M- 1 and K = UV-l, so that (2.3.32) holds. We can interpret (2. 3.32) as the nonlinear 

equivalent of the double Bezout identity as the following corollary explores. 

Corollary 2.3 Consider a plant, C, and controller, K such that each has a lef, 

and the conditions of Lemma 2.6 are satisfied. Suppose that the system of Fig 2-3 is 

well-posed, so that (2.3.31) holds, then it is necessary for the operators (V - UC)-l and 

(M - N K) - l to exist. Further, there exist right factorizations for C and K as in (2.3.1), 

(2. 3.3), with M, N, U, V not necessarily stable, and the following Bezout Identities hold. 

VM-UN=I (2. 3.36) 

MV-NU =I (2.3 .37) 

Further if the system is stable so that (2.3.32) holds, the right factorizations of C and K 

will be stable and the factorizations will thus be coprime. o 

[ v_ -_U J Proof. Consider the action of the 
-N M 

on the vector 

[:N ~ ](:a ) ( 
MM_-INa ~ Na ) 

-UCa+ Va 

( (V - ~G)a ) 

(:) (2.3.38) 

Hence under (2.3.31) it is necessary that this be invertible, giving a = (V - .UC)-lb. Hence 

it is necessary that (V - UC)-l exists. 

Now define the mappings M and N as follows. 

(2.3.39) 
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The Bezout identity (2 .3 .36) may now be simply proved. 

if M - UN = if(V - UC)-1 - UC(V - UC) - 1 

= (V - UC)(V - UC) - 1 

= I 

Considering the action of [Ii -u] on (a) gives the dual results of the 
-N M Ka 

existence of (iiI - N K)-1, a right factorization for K 

(2 .3.40) 

and that (2.3.37) holds. 

Consider now the result of (2.3.32) holding. Note that 

(2.3.41) 

Hence if b is bounded Nb and Mb are both bounded and so M and N are BIBO stable. 

Further if b is unbounded we have Nb or Mb unbounded, and since C = M- 1 this gives 

a rcf for C. 

Dually, under (2. 3.32), the right factorization of K, (2. 3.40), will be coprime. • 

Remark 2.19 The condition (2.3.32) is a stronger one than merely the satisfaction of 

the double Bezout identities (1.1.18). The additional strength appears to be necessary to 

deal with both the signals S1 and S2 as in Fig. 2-3, rather than just S1 or S2 acting alone. 

More general results are elusive, although under other assumptions other results may 

be obtained. In the case that there exist lcfs for C and K in which the operators if, iiI 
are linear, the following result will hold. 

Lemma 2.1 Suppose that for C and K, we have lefs as in (2. 3.2), (2.3.4), with 

if and iiI linear. Then {C, K} is well-posed iff (2.3.31) holds, and is stable if (2.3.32) 

holds. o 
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Proof. ote that with V, !iiI linear the following will hold. 

(2.3.42) 

(2.3.43) 

(2.3.44) 

It is straightforward to see that {G, K} is well-posed iff (2.3.31) holds. As V and !iiI are 

BIBO stable we have that [I -K] -I is stable if [V_ -_U J -I is stable. • 
-G I -N M 

Remark 2.20 Currently there does not appear to be any way to link stability and well­

posedness of {G, K} to equations (2.3.31), (2.3.32) without this linearity assumption. 

2.4 Conclusion 

In this chapter we have introduced the stability definition for our work and attempted to 

develop a clear picture of why coprime factorizations are important in nonlinear systems. 

The definition of right coprimeness is shown to link closely with the existence of a 

generalized Bezout identity, and give a simple characterization for the well-posedness and 

stability of a system {G, K}. Furthermore, given a well posed system, it is possible to 

find a right factorization for the plant or controller, with a corresponding Bezout identity. 

It is interesting to note that given a right factorization of G, a bounded-input stabilizing 

controller may be constructed through the Bezout identity V M - {; N = f. 

Left coprime factorizations do not give the same straightforward characterizations as 

refs, but when combined with differential boundedness, prove to have close links with the 

bounded-input stability of the {G, K}. Additionally the use of left factorizations allows 

the injection of signals within the plant and controller, as in Fig. 2-3, which do not interfere 

with the stability of the system. This proves to be crucial in characterizing the classes of 

stabilizing plant and controller pairs, as seen in the following chapter. 

This brings us to the point where the ideas developed in forming the Youla-Kucera pa­

rameterization for linear systems, as in Section 1.1.3, may now be generalized to nonlinear 

systems. 
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Chapter 3 

Youla-K ucera parameterization 

for Nonlinear Systems 

3.1 Introduction 

In this chapter we develop the Youla-Kucera parameterization for nonlinear systems , gen­

eralizing the results of Section 1.1.3. Most earlier work assumes linearity in the plant 

or controller, or applies only to systems with a certain structure. Here we attempt to 

develop a general parameterization which provides for the generalization of the existing 

linear results to the nonlinear arena. 

In his work Hammer [12, 14] derives a stabilization scheme for injective nonlinear 

plants having right coprime factorizations. This is achieved through the construction of a 

pre- and feedback-compensator pair such that a Bezout identity is satisfied. Further work 

done by Tay and Moore [49] shows that for a wider class of systems the same procedure 

can be followed and the class of all stabilizing pre- and feedback-compensators satisfying 

the Bezout identity can be constructed. Through the introduction of the concept of 

differential boundedness Hammer [15] shows how to derive internal stability results for 

such a system. Paice [40] was able to combine these results to derive a class of controllers 

which bounded-input stabilize a given plant. In particular, the characterizations are such 

that the bounded-input, bounded-output stable system parameter can be realized in a 

single feedback loop, as in the linear theory of [8] . This work was further developed 

in Paice [41] to generate a result giving the classes of all plants stabilized by a given 

controller. Note that these papers worked mainly with the left factorizations of a given 

plant, controller pair, and worked within a purely input-output framework. 
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In other work Desoer [6] and then Verma [55] have developed an approach based on 

the right coprime factorizations of the plant and controller in an input-output framework. 

However , in order to construct the class of controllers stabilizing a given plant in a man­

ner similar to that of the Youla-Kucera parametrization, it is necessary that linearity 

be assumed for the plant. By taking a left coprime approach to the problem the need 

of assuming linearity is avoided , however differential boundedness assumptions become 

necessary. 

In this chapter we build on the results of the previous chapter to develop a nonlinear 

version of the Youla-Kucera parameterization for nonlinear systems. By considering the 

left coprime factorization of G, it is shown that a class of stabilizing pre- and feedback­

compensator pairs can be constructed. It is shown that the class of pre- and feedback­

compensator pairs each parametrized by BIBO stable maps Q generates a class of feedback 

controllers for G. Further it is shown that this class can be generated by a single BIBO 

stable map Qr, which can be calculated in terms of the original map Q. It is then shown 

that a necessary and sufficient condition on Qr for the system to be bounded-input stable, 

under certain differential boundedness conditions on factorizations of G and K, is that Qr 

is BIBO stable. Serendipitously , the differential boundedness assumptions do not involve 

Qr. 

These results may be readily dualized to give a parameterization for the class of plants 

G s., stabilized by a given controller. This new structure, which only requires single maps 

Sr and Qr to parameterize these classes of plants, allows a simple characterization of the 

class of systems {G s., KQ.} which are stable. Some robust stabilization results follow. 

3.2 A Class of Stabilizing Controllers for G 

Recall the connections between refs and the Bezout identity from Section 2.3.1. Specif­

ically, in Lemma 2.2, p . 20 and Lemma 2.4, p . 24 it is shown that a plant with a right 

coprime factorization may be stabilized by a pre- and feedback-compensator pair. This re­

sults from the Bezout identity (2.3.9). It is now shown how the techniques of Section 1.1.3 

may be applied to give the class of controllers KQ which stabilize a given plant. 

The following theorem is based on Theorem 3.1 of Tay [49], and has been generalized 

using the techniques presented in Hammer [15]. 
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w G 

Figure 3-1: The class of all bounded-input stabilizers of C. 

Theorem 3.1 (Mild generalization of Theorem 3.1 of [49]) 

Consider a nonlinear plant G : 50(Rm) ~ 50(Rn), satisfying the assumptions of Lemma 2.2, 

with right and left coprime factorizations, G = N M- 1 = M-1 N over the factorization 

spaces 5, S. Consider also BIBO stable mappings 

(3.2.1) 

such that the feedback system shown in Figure 2-2, p. 24 has stable transfer mappings of 

(2.3. 19). Then 

(i). [49} the class of all stable maps VQ , (;Q satisfying 

(3.2 .2) 

is characterized in terms of an arbitrary BlBO stable nonlinear map Q : S ~ 5 as 

(3.2.3) 

(3.2.4) 

Moreover, the feedback system of Figure 3-1 for the case Wl > W2 = 0 is well-posed 

and has stable input-output transfer mappings given from 

Mw, y = Nw (3.2.5) 

(ii). (Generalization of (i)) Moreover, consider that (; and V satisfy the differential 

boundedness constraints of (2. 3.20), (2. 3.21) and M and N are such that there 

exist BIBO stable maps Q : S ~ 5 achieving 

QN is differentially bounded by ()QN > ev (3.2.6) 
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QM is different ially bounded by BQM , Cu (3.2.7) 

Then the class of all stable maps UQ and VQ differentially bounded by Bu, Bv, 

respectively, satisfying the Bezout identity (2.3.9), and achieving bounded-input 

stability of the feedback system of Figure 3-1 ,is characterized in terms of a BIBO 

stable map Q : S -+ S , constrained to satisfy (3.2.6) and (3.2.7). Furthermore UQ 

and VQ are given by (2.16). 

(iii ) . If the system of Figure 3-1 is to be structurally stable then , whether or not (3.2. 6) and 

(3.2.7) holds, it is necessary that Q be BIBO stable. [By structural stability we mean 

that the mappings VQv ' UQ u will bounded-input stabilize the system for arbitrary 

Q u, Qv in some "small" neighbourhood ofQ , without the constraint Qu = Qv '] 

o 

Proof. See [49] for a proof of (i). 

Proof of (ii). Suppose Q is BIBO stable and makes Q M and Q N different ially bounded, 

as. above , then UQ and VQ, given by (2.15) will be differentially bounded by Bu and Bv, 

respectively. Substituting UQ and VQ into (2.3.9) shows that they sat isfy the Bezout 

identity, hence the closed-loop transfer mappings given by (3.2.5) will be stable . Applying 

Lemma 2.5 shows that UQ and VQ bounded-input stabilize the system. 

Now suppose that U* and V* are differentially bounded by Bu and Bv, respectively, 

and satisfy (2.3.9), stabilizing the system. Then as both they and U, V sat isfy (2.3.9) we 

get 

(V* - V)M = (U* - U)N (3.2.8) 

Now define Q by the equation 

(3.2.9) 

which is differentially bounded by Bu' Substituting into (3.2.8) gives 

(V* - V)M = QM N = QN M, V* - V = QN (3.2.10) 

which is differentially bounded by Bv under (3.2.10). Note that (3.2.9) is in the form of 

(3.2.3) and (3 .2.10) is of the form of (3.2.4), and so we have the required result. 

Proof of (iii). Suppose that the system of Figure 3-1 is structurally stable and that Q 

is unstable. Then for unstable Q u' Q v in the neighbourhood of Q the system is stable, 
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and e2, u are bounded. Note that since Q u' Q v are unstable e = Q u iiI e2 - Q v N u + w is 

bounded only if (QuiiI e2 - QvNu) is bounded . This condition generically fails for Q u, Q v 

pairs in the neighbourhood of Q, and the result obtained follows . • 
Remark 3.1 In the linear case, the conditions requiring differential boundedness evanesce, 

as do the restrictions on the magnitudes of the inputs Wl, W2. 

Remark 3.2 The differential boundedness conditions (3.2 .6) and (3.2.7) appear to be 

overly restrictive, however we are unable to give sufficiency of Q BIBO without it. This 

motivates, to some extent, the work of the next section. 

Remark 3.3 Referring to result (iii ), when Q u and Q v are unstable and, Q u = Q v, 

then it appears difficult to show that (Q u iiI e2 - Q v N u ) is bounded for all possible u, e2 

bounded. Of course in the linear case, where superposition holds, this situation is excluded 

by well-posedness assumptions. 

Remark 3.4 Applying Corollary 2.2, p. 26 , to Theorem 3.1 and assuming W = 0 gives 

the Youla-Kucera parametrization for a class of stabilizing controllers for a linear plant 

G. This is more precisely stated in the following lemma. 

Lemma 3.1 Consider a possibly noninjective plant G with right and left coprime 

factorizations as in (2. 3.1), (2.3.2). Suppose that there exist mappings V, (; which are 

differentially bounded as in (2.3.20), (2.3.21), respectively, and the Bezou t identity (2.3.9) 

holds, leading to a controller class KQ, constructed as in Figure 3-2 with W = 0, where Q 

is a BIBO stable mapping, and given by 

(3.2.11 ) 

Then the system {G, KQ} will be cv , Cu bounded-input stable when Q is a BIBO stable 

mapping constrained so that (3.2.6) and (3.2.7) are satisfied. 0 

Remark 3.5 Note that this is a sufficient, but not necessary, condition. It may be possible 

for a mapping Q which does not satisfy (3.2.6) or (3.2.7) to bounded-input stabilize the 

system {G, KQ}. 

Remark 3.6 The map from Q is well defined, but the map from KQ to Q is not , so it 

is difficult to use this lemma to generate a stability result. 

Remark 3.7 Note that in this lemma we have assumed that W = O. As the stability 

is based on the Bezout identity (2.3.9), if w # 0 the stability of the system will not be 
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Figure 3-2: The controller KQ . 
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disturbed. 

In the sequel it will be assumed that w = 0, however in general this is not necessary, 

and is assumed so as to rearrange the feedback system of Figure 2-2, p. 24, to that of 

Figure 2-1, p. 16. 

The following corollary to Theorem 3.1, giving a class of stabilizing pre- and feedback­

compensator pairs for a stable plant , will be useful in later sections . 

Corollary 3.1 Consider that the conditions of Theorem 3.1 apply, and in addition 

G is stable, with right and left coprime factorization pairs N = G, M = I and N = 

G, iiI = I . Then a pre- and feedback-compensator pair V- 1, [; satisfying the Bezout 

identity (2. 3.9) is given by V = I , [; = O. Moreover the class of all stabilizing controllers 

for G, characterized in terms of a BlBO stable map Q such that QG is differentially 

bounded, and gives stability of the feedback system of Figure 3-1 is given by 

(3.2.12) 

o 

Proof. Examination of the definitions of left and right coprime factorizations gives co­

primeness of (3.2.12). Application of Theorem 3.1 then gives the result. ote that the 0 

and I operators are differentially bounded by any 0, so the bounds given by Theorem 3.1 

on the inputs are determined solely by the differential boundedness of Q and QG. • 

Thus a first class of controllers has been constructed. By using a Bezout identity and 

differential boundedness a set of controllers which will stabilize G has been constructed. 

However , as noted, this scheme does not lend itself to giving a stability test for a different 

controller. This motivates us to find another form for the controller which gives a test for 

the stability of a system when a different controller is used. 

3.3 A Second Class of Stabilizing Controllers for G 

Consider again the class of stabilizing controllers for a nonlinear plant G which satisfies 

the conditions of Theorem 3.1. This gives a system with the structure of the system 

{G, KQ}, where KQ is as in Figure 3-2. This class of feedback controllers KQ stabilizing 

G is characterized in terms of a BIBO stable mapping Q, restricted as in Theorem 3.1. 

In the linear case, the principle of superposition applies to allow re-configuration of the 
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Figure 3-3: The controller K Qr ' 

controller of Figure 3-2, now denoted KQr' as in Figure 3-3, where Qr = Q. Notice that 

the controller class of Figure 3-3 has the form of Figure 3-4 for some operator J , whereas 

the arrangement of Figure 3-2 does not. 

Our purpose in this section is to examine for the nonlinear case, where superposition 

does not hold, the controller class KQr of Figure 3-3 and 3-4, parametrized in terms of Qr. 

Is KQr stabilizing for arbitrary stable Qr? Is there some stable Qr such that KQ = KQr 

for arbitrary stable Q? In other words, is there a natural generalization to the linear 

results where the class of all stabilizing controllers can be conveniently parametrized as in 

Figure 3-4 with the block Q implemented in a single feedback loop? 

To proceed, let us note that for the controller shown in Figure 3-3, 

Since u = KQe2 we substitute for u and rearrange to get 

(3.3.1) 

However, from (3.2.11), we have that (if KQ - U) = QM - QN KQ, so that substitution 

into (3. 3.1) gives 

(3.3.2) 

and the following lemma is established. 
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Figure 3-4: Reconfiguration of the controller K Q r . 

Lemma 3.2 Consider a nonlinear plant G = M-1 if bounded-input internally 

stabilized by the controller class KQ of (3.2.11), Figure 3-2, under the conditions of The­

orem 3.1, with w = O. Then for each Q , there exists a nonlinear mapping Qr such that 

(3.3.3) 

Further, Qr is given by equations (3.3.1) and (3.3.2). o 

Remark 3.8 Note that from a comparison of Figure 3-2 and Figure 3-3 it is straight­

forward to conclude that Qr is linear if and only if Q is linear, and in this case Qr = Q. 

Moreover, in the case where all operators are linear and Qr = Q , then the controller classes 

of Figure 3-2, 3-3 and 3-4 are equivalent with J defined from 

( 
u ) [ K y-l 1 ( e2 ) 

r - M(I - GK) _ify-l s 
(3.3.4) 

Remark 3.9 When (M - if KQ) - l is BIBO stable it may be shown that Q BIBO stable 

implies Qr BIBO stable. In the linear case this condition is trivially satisfied as Q = Qr, 

however it is not clear whether this result carries over to the general nonlinear case. Thus 

we cannot currently guarantee stability of Qr when given stability of Q. 

Remark 3.10 In the case w f. 0 the controllers KQ and KQr of Figure 3-2, 3-3 will 

bounded-input stabilize the system, although there is no general relationship between Qr 
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Figure 3-5: Reconfiguration of the system {G, K QJ. 

and Q which gives KQr = KQ . Conditions on Qr giving bounded-input stability of the 

system are yet to be derived. 

Motivated by the linear results we now look for conditions on Qr to achieve bounded­

input internal stability of the closed loop system with plant G and controller KQr' Lemma 3.2 

shows that when W = 0 the class of bounded-input stabilizing controllers for G may be 

parametrized in terms of a single Qr. This allows us to restructure the nonlinear system 

of Figure 3-1 into that of Figure 3-4 and 3-5, where ~ = [e , el , e21' and :!Q = [w, wI , W21' . 

In this case we can obtain an expression for J in terms of the composition of two nonlinear 

operators . This may be seen from the examination of the following 

(3.3.5) 

Where 0 denotes composition of operators. 

We now look for conditions on Q .. that will give stability of the system. By studying 

this structure, and using Corollary 3.1 the following result is derived. 

Lemma 3.3 Consider the feedback system of Figure 3-5, or equivalently Figure 3-6 

with s = Q .. s, where G, [; and V satisfy the conditions of TbeOlem 3.1. Also consider that 

s is bounded, WI , W2 are bounded by c u and c v' respectively, and W is bounded. Then 
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Figure 3-6: Structure of the operator T. 

(i) . the mapping 

T (3.3.6) 

is EIBO stable. 

(ii) . Moreover, if M and N are differentially bounded, as in (2.3.29) , (2.3.30), with 

1 Wi 1< Cv and 1 W2 1< cU ' then r is bounded by OM + ON 
o 

Proof. (i) The subsystem of T with inputs (s,:YL) and outputs §. is itself are-organisation 

of the scheme of Figure 2-2, p . 24, where the input W of Figure 2-2, p. 24 is replaced by 

s + w. Thus under the conditions of the lemma, by Theorem 3.1 the outputs §. will be 

bounded. 

Now Mis BIBO stable, hence Me2 is bounded. Also V-ie = ei - Wi, hence V-ie is 

bounded, and since N is BIBO stable NV-ie is bounded. Consequently r = M e2 - NV-ie 

is bounded. Hence for inputs (s,w) bounded as given in the l.emma, the outputs (r,§.) are 

bounded, giving the result, (i). 

(ii) Referring to Figure 3-6 , clearly r can be expressed as 

r = Me2 - Nu 

= M(W2 + G(Wi + u) - Nu (3 .3.7) 
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Figure 3-7: The class of bounded-input stabilizers for T 

Now define the functions O'(Wl) and (3(W2) by 

O'(Wl) = N(u + Wl) - N(u) 

(J(W2) = M(W2 + M-1b) - M(M-1b ) 

(3.3.8) 

(3.3.9) 

where b = NU+O'(Wl)' Since N, M are differentially bounded by ()v,()u respectively, then 

0'( wt) and (3( W2) are also bounded by () N' () M' Further, (3.3.7) can be rewritten as 

T M(W2 + M-1 (Nu + O'(wt))) - Nu 

= M(M-1 (Nu + O'(wt) + (3(W2)) - Nu 

0'( Wl) + (3( W2) (3.3.10) 

Since O'(Wl ) and (3(W2) are bounded by ()N and ()M ' respectively, r is bounded by () N +()M" 

This completes the proof. • 

Remark 3.11 Note that we are assuming N is BillO, so the assumption that s be 

bounded may be dropped as noted Remark 2.11 . 

Remark 3.12 In the case Wl = W2 = 0 we have T == O. When Wl and W2 are not zero, 

but suitably small, we have T non-zero, but bounded by ()N + ()M' The value of T will , in 

general , depend on the value of s , but it will remain bounded for all input signals s. In 

the linear case, the terms of O'(wt) and (3(W2) depend on s, but T = O'(wt) + (3(W2) does 

not, giving the result T22 = O. The bound on T that we have obtained here , depending on 

Wl, W2 and s is the nonlinear version of the result T22 = O. 

Remark 3.13 Note that we have not assumed W = 0 in this lemma. This is due to 

the fact that since N is BIBO stable, the boundedness of the system will be invariant of 

arbitrary inputs prior to the pre-compensator. 
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As T is a BIBO stable plant we may now apply Corollary 3.1 to give the class of 

pre- and feedback-compensator pairs which will stabilize T, characterized in terms of a 

BIBO stable map Q* , as depicted in Figure 3-7. Thus we find that if Q* and Q*T are 

differentially bounded, then the system will be stable. We now try to put Figure 3-7 into 

a form similar to that of Figure 3-5. We set w* = 0 and define KQ' as 

(3.3 .11) 

note that if we set wi = (w, r), wi = 0 and constrain KQ' to be of the form 

(3.3.12) 

we have put the system into a form similar to Figure 3-5. We now find a Q* which satisfies 

this constraint. 

Lemma 3.4 A Q* satisfying (3.3.12) is 

(3.3.13) 

o 

Proof. We give a proof by substitution. For the lemma to hold we must have 

Q' ( : ) 
(3.3.14) 

~ (Qn 
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Recalling Remark 3.12 we have 

Therefore 

o (3.3.15) 

Substituting this into (3.3.14) completes the proof. • 
Remark 3.14 The most important result from this lemma is that the pre-compensator 

Vi.l is always equivalent to the identity when there is no input between Vi.l and UQ" 

This would seem to indicate that in the case depicted in Figure 3-5 we need only require 

Qr stable and differentially bounded to give stability of the system. Even this is a stronger 

condition than required, as is now explored. 

Theorem 3.2 

Consider the system of Figure 3-5, where the operators N,!VI, "if , N are all differentially 

bounded as given by (2.3.20), (2. 3.21), (2.3.29) and (2. 3.30) respectively, and 

Wl and W2 bounded by cv , cU ' respective/yo (3.3.16) 

and W = O. The closed-loop system is bounded-input stable iff the operator Qr is BlBO 

stable for all inputs T bounded by 8M + 8N • i.e. the system {G, KQr} will be cv , Cu 

bounded-input stable iff Qr is (8M + 8 N) bounded-input stable. o 

Proof. By Lemma 3.3 the conditions of the theorem give the result that for s bounded 

the outputs C~., T) of the system are bounded . Due to the restrictions on the inputs Wl and 

W2 given by(3.3.16) the value of the output T is bounded by 8M + 8N" If Qr is stable for 

all inputs T bounded by 8 N + 8M then the value of 8 will be well defined, where 8 is given 

by 

B = sup I Qrx I (3.3 .17) 
/", /<8M +8N 

Therefore for all inputs, :!Q, bounded as above s will be bounded by B. Hence the outputs 
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will be bounded, and the closed-loop system is bounded-input stable. 

If Qr is unstable , then for some r, s = Qrr will be unbounded. If the signals e, el and 

e2 remain bounded the system would be stable. Suppose that e2 is bounded, then since 

{; is BIBO stable {; e2 is bounded, therefore e = s + {; e2 is unbounded. Furthermore as V 

is BIBO , if V-I has an unbounded input it will have an unbounded output, so e will be 

unbounded. ow suppose that e = s + U e2 is bounded, then U e2 is unbounded, and as U 

is BIBO , this implies that the signal e2 is unbounded. We have shown that if the signal s 

is unbounded then one of the signals e, el and e2 must also be unbounded. Therefore the 

system is unstable. This gives us the result. • 
Remark 3.15 Notice that in this theorem the differential boundedness assumption 3.2.7 

is absent, so that in this respect the characterization of this section are more elegant than 

those in the Youla-Kucera formulation of the previous section. 

Remark 3.16 The introduction of an arbitrary bo~ded signal W will not disturb sta­

bility of the system. This follows since N is BIBO stable, and using arguments from 

Remarks 3.11-3.13. 

Remark 3.17 In the case that the mappings V, U, if and !VI satisfy a Lipschi tz condition 

instead of satisfying the differential boundedness constraints, the theorem again holds, 

although the bounds on the inputs WI, w2 will be different. Proof details on this result 

are straightforward, following closely the above proof, and are therefore omitted. 

Remark 3.18 This result specializes directly to known linear results, since in the linear 

case the bounds on WI, w2 may be arbitrarily large. 

Remark 3.19 Further to Remark 3.9, following Lemma 3.2 , we may now show that 

BIBO stability of Q implies Qr is BIBO stable. When Q is BIBO stable, then KQ will 

bounded-input stabilize G , and by Lemma 3.2 the Qr given by (3.3) will ensure KQr = KQ. 

Hence KQr will bounded-input stabilize G, and so Qr will stabilize T. Application of the 

theorem gives BIBO stability of Qr . 

3.4 The Class of Stabilized Plants 

In the previous section the class of all bounded-input stabilizers KQr' for a nonlinear plant 

G was characterized. Here we find the dual result which characterizes the class of all plants 

which are bounded-input stabilized by a given nonlinear controller K, and thereby achieve 

a first robust stabilization result. In the next section a more general robust stabilization 
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N M-1 

Figure 3-8: The plant Gs . 

result is developed. 

The dual procedure to constructing the class of stabilizers KQ of Figure 3-2 , is followed 

to produce the class of all plants bounded-input stabilized by a given controller. Suppose 

that K : So(Rm) -+ So(Rn) has right and left coprime factorizations, as in (2 .3.3), (2.3.4), 

and that the following Bezout identity holds, 

MV - NU = t, unimodular (3.4.1) 

with G = M-1 N. Then dualizing Lemma 3.1 we have. 

Lemma 3.5 Consider an ev , eu bounded-input stable system {G, K}, such that 

G has a lei, as given by (2.3.2), which is differentially bounded, as in (2.3.29), (2.3.30), 

and K has both right and left coprime factorizations, as in (2.3.3) and (2.3.4). Suppose 

further that the Bezout identity (3.4.1) holds, leading to a class of plants G s, constructed 

as in Figure 3-8, where S is a BIBO stable mapping, and Gs is given by 

(3.4.2) 
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--------~·I~ ___ G_ST __ ~---------.Ul 

Figure 3-9: The plant class G Sr' 

Then the system {Gs, K} will be cV' Cu bounded-input stable when S is a BlEO stable 

mapping constrained so that 

SU is differentially bounded by ()su, CU 

SV is differentially bounded by ()sv , Cv 

(3.4 .3) 

(3.4.4) 

o 

In order to encompass a wider class of plants stabilized by the controller K , we dualize 

the results of Lemma 3.2 , and Theorem 3.2, thus constructing the class of plants G Sr as 

shown in Figure 3-9. 

Lemma 3.6 For every BIBO stable S sucb tbat (3.4.3) and (3.4.4) hold, there 

exists a stable Sr such that the controllers of Figure 3-8 and 3-9 are equivalent, in that 

GSr = Gs . Furthermore, Sr is given by 

Theorem 3.3 

Sr = (MGs - N)(V - UGS)-l 

= (SV - SUGs)(V - UGS)-l 

(3.4.5) 

(3.4.6) 

o 

Consider an cv, Cu bounded-input stable system {G, K}, such that G bas a Ie!, as given 

by (2. 3.2), which is differentially bounded, as in (2.3.29), (2. 3.30), and K has both right 

and left coprime factorizations, as in (2.3. 3) and (2.3.4), with the Ie! being differentially 
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bounded as given in (2.3.20), (2.3.21). Then the system {Gs
r

, K}, with GS
r 

given as in 

Figure 3-9, will becv , Cu bounded-inputstableiffSr is (Bv+Bu) bounded-input stable. 0 

Remark 3.20 Just as in the linear case, for example Tay [50], this result could form 

the basis of a nonlinear theory for two-degree-of-freedom controllers for a given nonlinear 

plant. 

Remark 3.21 This result may also be used to generalize existing results for the linear 

case, for example Xia [37],in the area of model-matching controllers, to the nonlinear case. 

Remark 3.22 If we design controller K to satisfy the constraints of the theorem when 

stabilizing a nominal plant G, then if the actual plant is suitably "near" to the nominal 

plant , the system will be stable. The following lemma explores this property. 

Lemma 3.7 Consider that the conditions of Theorem 3.3 bold and tbat the difference 

between G sand G is "small", in the sense that 1 (Gs -G)u 1< Cu for all inputs u € SO (RM ). 

Then Sr given by (3.4.5) is BlBO stable, moreover, all outputs of Sr are bounded by Bu ' 0 

Proof. First note that (3.4.5) can be rewritten as follows, 

Sr = (MGs - N)(V - UGS)-l 

= (M(G + (Gs - G)) - M(G))(V - UGS)-l 

(3.4.7) 

Now define the mapping a : SO(RM) ~ So(Rn) as follows, 

a(u) M(G + ~G)u - M(G)u (3.4. ) 

Under the differential boundedness assumption on M, (2. 3.29), note that if ~Gu < cu ' 

then a(u) < Cu for all inputs u. Setting ~G == Gs - G, then the conditions of the lemma 

give the required restriction, so that the lemma is proved. • 

3.5 Stability of {Gs, KQ} 

In this section the results of the previous sections are generalized to obtain a more com­

plete robust stabilization result . In the notation of the previous sections, we show that 
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under an appropriate double Bezout condition, KQ. "stabilizes" 0 Sr iff Qr "stabilizes" 

Sr. Thus when Sr == 0, the result specializes to that of Section 3.2, and when Qr == 0, the 

results specialize to those of Section 3.4. In adaptive control , for example, when the plant 

is uncertain or changing, then an adaptive operator Qr in the otherwise non-adaptive con­

troller will stabilize the system iff Qr "stabilizes" Sr. The stability result also is useful in 

coping with controller uncertainties , or implementation artifacts in the presence of plant 

uncertainties. 

We follow an approach similar to that taken by Verma in [55], in considering the 

stability of the inverse of a matrix of nonlinear mappings as the basis of a stability result . 

In his work Verma considered a matrix consisting of the rcfs of the plant , 0, and controller, 

K . Here, the dual approach is presented, in that we first consider the stability of a matrix 

constructed from the lcfs of 0 and K. 

Recall the results of Lemma 2.6 , which gives stability of the system of Figure 2-3 ~ 

Consequently, under (2.3.32) we can achieve stability results for the system {Os., KQr} 

of Figure 3.5, as follows. 

Theorem 3.4 

Consider the system {Os., KQrl of Figure 3.5, where the maps iii, iiI, U, if are lcfs of 0 

and K, and satisfy (2.3.32), {2.3.20}, {2.3.21}, {2.3.29} and {2.3.30}. Then the system is 

£ v' £ u bounded-input stable iff the system {Sr, Qr} of Figure 3.5 is (Bu + Bv ), (B M + B N) 

bounded-input stable. 0 

Proof. Under the conditions of the theorem first apply Lemma 2.6 to give boundedness of 

the outputs el, e2 and Yl , Y2 when 81, 82 are bounded, and the signals WI, W2 are bounded 

by £1, £2 respectively. Hence the system will be stable iff 81 , 82 are bounded. ow the 

boundedness of SI, 82 is dependent on the mappings Sr, Qr and their inputs Tl, T2, so let 

us next consider the response of the signals Tl, T2 to the inputs 81, 82 and WI, w2· 

Tl 
- - 1 - - 1 V(WI + V- e2) - UM- el (3.5.1) 

T2 
- - 1 -- 1 M(W2 + M- ed - NV- e2 (3.5 .2) 

el 
- - 1 

81 + N(WI + V- e2) (3.5.3) 

e2 
- - 1 

82 + U(W2 + M- el) (3.5.4) 

In order to take advantage of the differential boundedness properties of iii, iiI, U, if we 
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Figure 3-10: The System {Gs,) KQJ. 
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82 _+_--.......l---------I Q 

F igure 3-11: The system {Sr I Qr }. 

define the following functions. 

a (wl ) = V (WI + V-1e2 ) - V(V-l e2 ) 

(3(W2) = M (W2 + M-1et) - M(M-1et) 

i( WI ) - - 1 - - 1 N (WI + V- e2 ) - N (V- e2) 

8(W2 ) = U(W2 + M- 1ed - U(M-1el ) 

w * 2 

(3.5.5) 

(3.5.6) 

(3.5.7) 

(3.5 .8) 

Substituting equations (3.5.5)-(3.5.8) into (3.5.1)-(3.5.4) and then subst ituting the expres­

sions obtained for el and e2 into those for TI and T2 gives the following result . 

82 + a (wd + 8(W2 ) 

81 + (3(W2 ) + i(Wl ) 

(3.5.9) 

(3.5.10) 

Note that due to the differential boundedness assumptions (2.3.20), (2.3.21), (2.3.29) and 

(2.3.30), wi = a(wd+8(W2) is bounded by (Bu+Bv), and w2 = (3(W2) +i(Wl ) is bounded 

by (B M + B N)' Hence the behaviour of Tl , T2 and 81, 82 is given by the system {Sr , Qr} 

as shown in Figure 3.5. Now assume that the system {Sr, Qr} is (Bu + Bv), (BM + BN ) 

bounded input stable, then any inputs WI , W2 bounded as given in the theorem will lead to 

bounded inputs wi, w2 to the system {Sr , Qr}. Since this system is bounded-input stable, 

the signals 81, 82 and TI, T2 will be bounded. Applying Lemma 2.6 gives boundedness of 

the signals Ul, U2 and ell e2. Hence for inputs WI, W2 bounded by e l , e 2 , all internal 

signals are bounded and the system {G Sr' KQr} is bounded-input stable. 

Conversely suppose that {Sr, Qr} were not-bounded input stable, then there exist 

bounded inputs WI, W2 giving rise to bounded signals wi, w2 which will cause the outputs 

81, 82 or TI, T2 to be unbounded. Application of Lemma 2.6 shows that this leads to 

unbounded signals in the system {Gsr, KQr}' Thus the system is not bounded input 

stable and there is a contradiction. • 
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Remark 3.23 Note that in the case that the plant and controller are linear, this result 

reduces to give that of Tay [48, 51]' which is the linear version of this result. 

Remark 3.24 This theorem may be of use in the area of adaptive control of nonlinear 

systems In adaptive schemes which generalize the work of Tay [48, 51, 47] to nonlinear 

plants, then it is reasonable that Qr be an adaptive operator. Stability analysis of such 

adaptive Qr schemes are then possible, in that there is stability if Qrstabilizes the operator 

Sr. 

Remark 3.25 Note that in this chapter we have considered robust stabilization from an 

input-output framework, so that although care must be taken of initial conditions, we can 

allow for time-variations of the plant and controller. 

Remark 3.26 This result may be used to produce a link with the problem of simul­

taneously stabilizing m+ 1 nonlinear plants with the problem of strongly stabilizing m 

nonlinear plants, as is explored by the following corollary. 

Corollary 3.2 Consider the system {Go, Ko}, which is bounded-input stable and 

satisfies the assumptions of Theorem 3.4 . Then the problem of finding a single controller 

KQ that will stabilize the m+l plants Go, G1, .... Gm is equivalent to that of finding a 

single controller Q fo!' each member of the set of m plants Sl, S2 , ... Sm , which are given 

as follows 

(3.5.11) 

Where V, fj, if, if are the lcfs of Ko and Go, respectively. o 

Proof. Comparing (3.5.11) and (3.4.5), observe that GSi == Gi, where Gs, is constructed 

as shown in Figure 3-9, with the mapping S == Si . Let us seek to construct a controller 

KQ of the form of Figure 3-3 that will stabilize all of the G Si ' By Theorem 3.4, the system 

{G Si' KQ} is stable iff the system {Si, Q} is stable. Restricting Q to be BIBO stable gives 

stabili ty of the system {Go, K Q } . Thus to stabilize the set of plants {Sd we need only 

find a stable mapping Q such that the systems {Si, Q} are stable. Hence the problem has 

reduced to that of finding a single stable mapping Q that will stabilize the set of m plants 

• 
Remark 3.27 Note that in the case when m=l, we have the nonlinear version of the 

well known result for the linear case that the problem of simultaneously stabilizing two 
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plants is equivalent to the strong stabilization of a single plant . 

In the following section and the next chapter there will be a slight abuse of notation. 

We shall refer to a class of plants G s without specifying whether it is the scheme of 

Figure 3-8 or Figure 3-9 , however , we will usually be referring to the later. The scheme 

being referred to will generally be clear from the context. The same abuse of notation will 

be used when referring to the class of plants K Q . 

3.6 Fractional Maps 

In order to fully explore the relationships between Gs and S, and dually between KQ and 

Q, we now study a nonlinear equivalent of the idea of linear fractional maps. The idea 

is to develop a framework to characterize the class of stabilizing controllers for a given 

plant, and the class of plants stabilized by a given controller. The first result concerns left 

coprime factorizations for G s, "stabilized" by K in a restricted sense. 

Theorem 3.5 

Consider a well-posed and internally stable system {G , K} with left coprime factorizations 

(2.3.2), (2.3.4). Consider also any plant G s such that 

(3.6.1) 

then G s has a right factorization 

Gs 
[ 

Ms 1 [I 1 cV - UGS)-l 
Ns = Gs 

(3.6.2) 

and satisfies the Bezout identity 

VMs-UNS = I (3.6.3) 

If Ms, Ns are stable they are coprime. Moreover defining an operator S from 

S MNs - NMs 
- - - - 1 = (MGs - N)(V - UGs)- (3.6.4) 

then under existence of the relevant inverse as in (2.3.31), Ms, Ns can be characterized 
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by a mapping on S as 

(3.6.5) 

Additionally, when K "stabilizes" G in the restricted sense of (2.3.32), then Ms, N swill 

be stable iff S is stable. Furthermore, (3.6.4)-(3.6.5) give a bijection between the set of all 

plants Gs such that (3.6.1) holds, and the set of all operators S such that 

exists. (3.6.6) 

o 

Proof. Note that under existence of (11 - UGS)-l we have 

(3.6.7) 

Thus verifying (3.6.2) . Now show (3.6.3) 

(if - UGs)(if - UGS)-l = I 

(3.6.8) 

Combining G s = N SM'Sl and (3.6.3) proves (3.6.4). Now note that 

-_U 1 [ Ms 1 [ ~ Ms - ~ Ns 1 [ I 1 
M Ns MNs-NMs S 

(3.6.9) 

So under (2.3.31), (3.6.5) holds as claimed. 

Under our assumptions, including (2.3.32) we have [ 
v_ -_u ] unimodular. Hence 

- N M 

(3 .6.5) gives [;;] stable iff [~] is stable. The identity mapping I is trivially 

stable, hence Ms, Ns are stable iff S is stable. 

Now let us prove bijectivity of the maps (3.6.4)-(3.6.5). It is evident from the equations 

that given an S such that (3.6.6) holds, Gs = NsM'Sl is constructed from (3.6.5), and 

(3.6.1) holds. Similarly given Gs such that (3.6.1) holds, the S obtained from (3.6.4) will 

satisfy (3.6.6), as Ms = (l1Gs - U) - 1 is invertible. Hence the mapping from each class 

to the other is well defined, and thus onto. To prove bijectivity it remains to prove that 
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the images under the maps are unique. 

Note that (3.6.5) shows that for each S there exists a unique pair Ms , Ns. 

(3.6. 10) 

so it is necessary that S satisfy (3.6.6) for Mil to exist. Further the plant G s so obtained 

will satisfy (3.6.1 ). Hence the conditions (3 .6.1 ) and (3.6.6) are equivalent. The bijectivity 

of the maps (3.6.4)-(3.6.5 ) is now established. 

The map from S to G as defined by (3.6.2) is onto (surjective), as for all G such that 

(3.6.1) holds we have an S as given by (3.6.4) which maps to G. To prove one to oneness 

(injectivity) consider that there exist S1 and S2 such that G Sl = G S2' Then the S's of 

(3.6.4) are the same, giving 

(MNs1 - NMs1) = (MNS2 - NMs2) 

LHS = [M -N l[ Ns, ] 
MS1 

[0 I l[ _VN :][!N : r [ :, ] 
= [oIl[:,] 

S1 

RHS [M -N l[ Ns, ] 
MS2 

[0 Il[!N :][!N :r[:,] 
[oIl[:,] 

= S2 

S1 S2 

Hence the mapping is injective. This gives bijectivity of the maps, thus completing the 

proof. • 
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Remark 3.28 A dual result to this involving right factorizations of G and K, and giving a 

left factorization for G s is elusive at the moment, unless additional assumptions are made. 

However , dualizing in terms of interchanging the roles of G and S gives an expression for 

S when Gs is expressed in terms of rcfs of G, K, as shown in the following theorem. 

Remark 3.29 In the case that (V - UG)-l exists, then the theorem gives Gs = G iff 

S = O. ie, given a left factorization of G, K we can get a ref for G, also for K as is 

shown in the dual to this theorem, Theorem 3.7. 

Remark 3.30 In the linear S case the expression for Gs simplifies to gIve Gs 

(M + SU)-l (N + SV). 

Remark 3.31 This theorem is of interest in the work done by Hammer [15], and by Tay 

and Moore [49]. In this work the plant G is stabilized by a pre- , post-compensator pair 

V- 1, U, so that the question of well-posedness and stability of the system is reduced to 

that of the existence and stability of the operator ('Ii - U G) -1. This theorem shows that 

any plant G s for which this system is well posed is related to a nominal plant G by means 

of (3.6.5), and is parameterized by the operator S. Furthermore , as ('Ii - UGS)-l = Ms, 

the system is stable iff S is stable . Thus the theorem gives the class of all plants stabilized 

by the pre-, post-compensator pair '11- 1 , U. 

Theorem 3.6 

Consider a well-posed and stable system {G, K} with right coprime factorizations (2.3.1 ), 

(2.3.3), so that existence and stability conditions (2. 3.10) and (2. 3.11) hold. Consider a 

map S such that (M - US)-l exists . Then S has a right factorization S = PeDe/ given 

by 

I (3.6.11) 

Further there exists a plant G S such that 

Gs = NDe-VPe = (N-VS)(M - US)-l (3.6.12) 

(3.6.13) 

Moreover this gives a bijection between the class of all operators S such that (M - U S)- l 
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exists and the class of all plants such that 

(3.6.14) 

o 

Proof. The details of the proof of this result are the same of those of the previous theorem, 

as they are dual results , interchanging the roles of 8 and G. • 
Remark 3.32 In the case that the plant and controller, and their factorizations , are 

linear, the conditions (3.6.1) and (3.6.14) are equivalent, as are (3.6.6) and the existence 

of (M + U 8)-1. The theorems then give the same result. 

Remark 3.33 Note that these theorems provide a natural setting for generating the 

class of all plants stabilized by the controller K, and in the dual case, the class of all 

controllers stabilizing a given plant. Theorem 3.5 may be applied to the main results of 

[41] to generate the class of all plants bounded-input stabilized by a given controller. By 

assuming linearity of K , it is possible to show that the class of all controllers stabilized 

by K can be generated by Theorem 3.5. More general results are elusive at this time, so 

that it is not possible to say whether G s will be stabilized by K. 

Remark 3.34 These results may be readily dualized, interchanging the roles of the plant 

and controller, as is explored in the following theorems. 

Theorem 3.7 

Consider a well-posed and stable system {G, K} with left coprime factorizations (2.3.2), 

(2. 3.4). Consider also any controller KQ such that 

exists, (3.6.15) 

then KQ has a right factorization KQ = UQ ViI, not necessarily stable, given by 

(3.6.16) 

58 



and satisfies the Bezout identity 

I (3.6 .17) 

IfVQ, UQ are stable they are coprime. Moreover VQ, UQ can be characterized in terms of 

an operator Q, defined as 

Q = VUQ - UVQ 

= (V KQ - U)(M - N KQ)-l 

Under existence of the inverse, as in (2.3.31), 

(3.6. 18) 

(3.6 .19) 

(3.6.20) 

Additionally if {G, K} is stable so that (2.3.32) holds, VQ, UQ are stable iff Q is stable. 

Moreover, equations (3.6.18)-(3 .. 6.20) give a bijection between the set of all controllers KQ 

such that (3.6.15) holds, and the set of all operators Q such that 

exists. (3.6.21) 

o 

Theorem 3.8 

Consider a well-posed and stable system {G , K} with right coprime factorizations (2. 3.1 ), 

(2.3.3), so that (2.3.10) and (2.3.11) hold. Consider a map Q such that 

(V + NQ)-l exists. (3.6.22) 

Then Q has a right factorization Q = TK R}/ given by 

[ :: 1 (3.6.23) 
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and satisfies 

I 

Further there exists a controller KQ such that 

KQ = URK+MTK 

(U + MQ)(V + NQ)-l 

and 

[ :: 1 [: ~ r [ ~ 1 

(3.6.24) 

(3.6.25) 

(3.6.26) 

(3.6 .27) 

Moreover (3.6.25)-(3.6.27) give a bijection between the class of all operators Q such that 

(3.6.22) holds and the class of all plants such that 

exists. (3.6.28) 

o 

3.7 Conclusion 

In this chapter we have developed a left factorization approach to a nonlinear generalization 

of the Youla-Kucera parameterization for nonlinear systems. By starting with a Bezout 

identity, and the assumption of differential boundedness, the class of all controllers which 

bounded-input stabilize a given plant was derived. This dualizes readily to give the class 

of all plants stabilized by a given controller. These classes could be combined, and a simple 

characterization of the class of all bounded-input stable plane controller pairs was derived. 

These results specialize readily to the linear case. Robust stabilization results were thus 

obtained. 

The theorems of the last section on a generalization of linear fractional mappings 

completes the relationship between G Sr and Sr, and dually KQr and Qr . Given an original 

stable plant and controller, it is now possible to find the Sr, Qr pair that corresponds 
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to any other plant, controller pair, and thus the stability properties of the new system 

may be deduced. Additionally the deviations of the actual plant and controller from the 

nominal plant and controller may be accounted for in some way. 

The question to be tackled now is whether it is possible to implement these results. 

Many of the preliminary results were based on work by Hammer and use a geometric ap­

proach. The later results all assume the existence of the factorizations. In the next chapter 

a state space approach to the problem is taken, and we attempt to derive realizations of 

the factors of the plant and controller. 
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Chapter 4 

State Space and Factorizations 

4.1 Introduction 

Interest in finding state-space realizations for the factorizations of nonlinear systems is 

relatively new. Initial studies in the area were carried out by Sontag [44], who presented 

results giving a right factorization for a class of nonlinear plants , and linked them to 

the problem of finding a smooth stabilizing state feedback map for the plant of interest. 

Krener [28] presented results showing t hat right and left factorizations could be obtained 

for nonlinear plants with controller and observer normal forms . Of particular interest here 

was the augmentation of the plant by a unity feedthrough term, which appeared necessary 

to obtain a left factorization. This is also required in the work by Moore and Irlicht [36], 

in which a factorization theory is developed for a quite general form of nonlinear plants , 

giving right factorizations, and left factorizations for an augmented version of the plant . 

In [56] Verma presented a construction of the right coprime factorization of a general 

continuous time nonlinear plant , while in [17] Hammer gives a construction for discrete 

time systems. 

Throughout the previous chapters, while considering the input-output approach to 

nonlinear factorizations, it has become apparent that by making very few simplifying 

assumptions, a framework which closely mimics the linear factorization theory may be 

developed . It is now of interest to see how closely the state-space approach to nonlinear 

factorizations mimics the linear theory. It is the purpose of this chapter to examine this. 

Starting with a general state space description of a continuous time plant , stable right 

factorizations are developed, based on the assumption that the state equation of the plant 

is stabilizable by nonlinear state feedback . A stabilizing controller for a given plant is 
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derived, and some of the results derived in previous chapters are applied giving an approach 

to the stabilization problem which allows for differing initial conditions and unmodelled 

dynamics. The development parallels the development of the theory for linear systems. 

Although we work in continuous time in this chapter, the results for discrete time are 

very similar. The main difference being that instead of appealing to Theorem 4.1, an 

inductive proof may be used. 

In Section 4.2 the stage is set for the rest of the chapter. The class of nonlinear plants 

which we are interested in is defined, and some useful results concerning the algebra of 

nonlinear operators are proved. A right factorization for a plant for which there exists a 

stabilizing state feedback map is derived in Section 4.3 we derive right factorizations for a 

plant for which there exists a stabilizing state feedback map. A controller is also designed, 

based on the idea of constructing a stable state estimator for the plant, a right factorization 

for this controller is also presented. Through the use of some of the results of Chapter 2 

it is shown that these factorizations are coprime and that the plant controller feedback 

loop is stable. An approach to the stabilization of a plant with different initial conditions 

to those of the controller through the use of Theorem 3.6, p. 57, is also presented. In 

Section 4.4.1 a specia.l form of the nonlinear system is considered as a means of obtaining 

left factorizations is presented. Theorem 3.4, p . 50, may then be applied to give the class 

of all bounded input stable plants and controllers. In Section 4.5 some concrete examples 

are given. The universal stabilizing controller of ussbaum [39J is factorized. 

4.2 Preliminaries 

4.2.1 Continuous Time Nonlinear Operators. 

Given a real vector space X, define the space of trajectories within X, C( X) as in Sec­

tion 2.2. Any function which is continuous and has continuous first derivative is called 

C1 . 

In this chapter slightly different notation to that of the previous chapters is used. 

Assume that the state space realization of a general nonlinear operator, G(xo): C(U) i-+ 

C(Y), which maps inputs uC) to outputs y(.)' is of the form, 

G(xo) : 
:i; = j (x,u) 

y = h(x,u) 
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As a plant with different initial conditions is almost guaranteed to give a different map 

from the input space to the output space, this dependency is made explicit . Thus the 

operator G(xo) is different to G(X l ) for Xo :j:. Xl. 

ote that we are implicitly assuming causality of the plant by choosing a state space 

realization of the form of (4.2.1). 

A fundamental property of differential equations that we shall be exploiting is the 

existence and uniqueness of solutions of the differential equation. A brief review of the 

results which will be required is now presented. The following theorem, adapted from 

Hirsh and Smale [21) and stated without proof is useful. 

Theorem 4.1 

Let f : X ........ X be a elmap and let Xo E X. Then there exists a unique maximal open 

interval (a, b) containing 0, and a unique function x: (a, b) ........ X satisfying 

x = f (x) , x(o) = Xo (4.2.2) 

o 

Remark 4.1 ote that a, b may be equal to plus or minus infinity. In the case that b is 

finite, the system is unstable, with finite escape time. Similarly if a is finite, the reverse 

time system has finite escape time. 

Remark 4.2 This theorem also gives results for the time varying case, and for systems 

of the form of (4.2.1), as is explored in the following corollaries. 

Corollary 4.1 Let f: X x R ........ X be a elmap, and let Xo E X. Then there exists 

a unique maximal open interval ( a, b) containing 0, and a unique function x: ( a, b) ........ X 

satisfying 

x=f(x,t) , x(o) = Xo (4.2.3) 

o 

Proof. Let y ~ ( : ). and 9(Y) 

Theorem 4.1. 

As f IS el , 9 IS el , now apply 

• 
Corollary 4.2 Let f : X xU ........ X be a elmap, and let Xo E X . Then given 

u E C(U) there exists a unique maximal open interval (a, b) containing 0, and a unique 
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function x: (a, b) 1--+ X satisfying 

x = f (x, u(t)) , x(O) = Xo ( 4.2.4) 

o 

Proof. Given u E C(U) set g(x, t) = f (x, u(t)) which is Clas f and u are both C\ and 

apply the previous corollary. • 
In order to guarantee existence and uniqueness of solutions it is assumed that the map 

fe ·) of (4.2 .1) is Cl. Unless otherwise stated all functions in the work to follow shall be 

assumed to be C1 . 

4.2.2 Algebra with Nonlinear Operators. 

Consider two operators of the form of (4.2.1), A(xo): C(U) 1--+ C(Y) and B (vo): C(Y) 1--+ 

C(Z). 

A(xo) : 

B(vo) : 

x = fA (X,U) 

Y = hA(X,U) 

fB (V, y) 

z hB(V, y) 

x(O) = Xo 
(4.2.5) 

v(O) = vo 
(4.2 .6) 

Then the operator C(xo , vo) = B(vo )A(xo): C(U) 1--+ C(Z ) will have state space descrip-

tion 

C(xo, vo) 
( 

x(O) ) = ( xo ) (4. 2.7) 
v(O) Vo 

(4.2.8) 

Note that in general the dimension of the state of C(xo, vo) is equal to the sum of the 

dimensions of the states of A(xo) and B (vo). In some special cases, however, it may be 

possible to reduce the state, as shown in the following lemma. 
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Lemma 4.1 [State ReductionJ Consider operators A(xo), B(vo) as given by (4.2.5) , 

(4.2.6). Then if 

(4.2.9) 

then C(xo, vo) = C(xo, xo) = C(xo) is reduced to the form 

z 

fA(X,U) 

hB(X, hA(x, u)) 
( 4.2.10) 

x(O) = Xo 
C(xo) : 

o 

Proof. Suppose that (4.2.9) holds, and consider the evolution of the state equations 

(4.2.5), (4.2.6). Substituting v(t) = x(t) into (4.2.7) gives 

v(t) = fB(V(t), hA(X(t), u(t))) 

fB(X(t), hA(X(t), u(t))) 

= fA(X(t),u(t)) 

:i: (t) 

Hence a solution of (4.2.5), (4.2.6) is v(t) = x(t), 'it. ote that fB, hA, fA are e1functions. 

Hence by Theorem 4.1 this is the unique solution, and the lemma is established. • 

In deriving later results it will be necessary to be able to invert a nonlinear operator 

of the form of (4.2.1). The following lemma shows that given the existence of a map 

hi: X x y ~ U, associated with the map h of (4.2.1), it is possible to invert the operator. 

The map h# e, .) is called the pseudo-inverse of h(·, .), and the map he, .) is called pseudo­

invertible, this is an analogue of the reversible feedback function of [18J. ote that if h(·,·) 

is el , then h#(·,·) is e1. 

Lemma 4.2 [InversionJ Consider an operator G (xo) as in (4.2.1), construct the 

operator S(xo): C(Y) ~ C(U) as follows. 

S(vo) : 
v = f ( v, h # ( v, y) ) v (0) = Vo 

(4.2.11) 
u 
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Consider also that h# satisfies 

h#(x, h(x ,u)) = u "Ix, u (4.2 .12) 

then S (xo) is a left inverse for G(xo), ie S (xo) G(xo) = I, and if h# satisfies 

h(x, h#(x, u )) = u "Ix, u (4.2 .13) 

then S (xo) is a right inverse for G(x o), ie G(xo )S (xo ) = I. Moreover, when hand h# 

satisfy both (4.2.12), then (4.2.13), S (xo) is an inverse for G(xo ), ie 

Proof. Consider the state equation of the composition S (xo )G(xo) 

! (x,u) 

! (v, h#(v, h(x, u ))) 

x(O) = Xo 

v(O) = Xo 

(4.2.14) 

o 

( 4.2.15) 

( 4.2.16) 

Note that by (4.2.12) we have for x = v, ! (x ,u) = ! (v, h#(v, h(x,u))) . Applying 

Lemma 4.1 gives x(t) = v(t), "It . The output equation for S (xo )G(xo ) thus becomes 

z = h#(v, h(x , u)) = u (4.2 .17) 

This proves the first part of the lemma. A similar argument shows that when (4.2.13) is 

satisfied G(xo)S(xo) = I. This completes the proof. • 

Remark 4.3 Note the dependence on initial conditions for ensuring that the states 

remain equal for all time. This may be difficult to guarantee, additionally the error 

dynamics may be such that any small error is magnified . The question of when it is 

possi ble to stably invert a function , i. e. invert it and have the error dynamics such that 

any error will decrease with time, is a difficult one, and is dependent on the particular 

functions!, h, h# . 
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u 

.--- x - g(-, .) - f (', .) J 
'---

Figure 4-1 : State feedback g(., .) . 

4.3 Right Factorizations 

In this section a right factorization for the plant G(xo) is derived. Based on the ideas thus 

presented a candidate stabilizing controller is given. It is shown that this also has a right 

factorization . 

4.3.1 Right Factorization for G(xo) 

The development of a stable right factorization for the plant G(xo) is critically dependent 

on the solution of the smooth state feedback stabilization problem for the state equation 

of G(xo ). This is in itself an open problem, and a treatment of such is beyond the bounds 

of the thesis.. Here, the assumption is made that for plants of interest the stabilization 

problem has been solved and that the solution is available. 

Consider the state feedback map g(., .): X x U ~ U, applied as in Figure 4-1, so that 

the state equation for G(xo) becomes 

f (x, g(x, u)) , x(O) = xo (4.3.1) 

Assumption 4.1 For the plant G(xo ) of (4.2.1) there exists a pseudo-invertible C1map 

g(. , .): X x U ~ U such that the state equation (4.3.1) is stable, and there exists a map 

g#(.,.) which satisfies both (4.2.12) and (4.2.13). 

It is now possible to construct a stable right factorization for G(xo) as is explored in 

the following lemma. This lemma is equivalent to Theorem 3 of Verma, [56], and parallels 

the discrete time results found in Hammer, [17J 

Lemma 4.3 Consider a plant G(xo) such that there exists a map g(-,') satisfying 

Assumption 4.3.1. Then it is possible to construct a stable right factorization for G(xo) 

as follows. 

(4 .3 .2) 
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M(xo) : 
xm f (xm, g(xm, s)) xm(O) = Xo 

(4.3.3) 
z g(xm, s) 

N(xo) : 
Xn f (xn,g(xn,s)) xn (O) = Xo 

( 4.3.4) 
Y h(xn,g(Xn,s)) 

0 

Remark 4.4 By introducing the notion of detectability Verma [56J is able to prove that 

this a coprime factorization. The notion of detect ability used is that if u and yare stable, 

then x i, ,table, and fu,themme, that fa, 'orne P > 0, /lxll $ PII [ : ]11. 

Remark 4.5 Note that the equation G(xo) = N(xo)M-l(xO) depends on the initial 

conditions being identical, so that Remark 4.3 is appropriate. 

Remark 4.6 The requirement that g(-,,) be pseudo-invertible is necessary for invertibility 

of M(xo)· It does not appear overly restrictive, as in the linear case we have g(x, u) = 

Fx + u, so that g# (x, y) = y - Fx, where F is some matrix chosen such that A + B F 

is stable. Furtherm<>re, note that Sontag [45J proves an input to state stability result 

which gives a stability result satisfying Assumption 4.3.1. Specifically it is shown that for 

systems of the form of (4 .2.1), a feedback law of the form 

g(x, u) = K(x) + G(x)u ( 4.3.5) 

where G(x) is invertible for all x. In this case we have 

(4.3.6) 

and Assumption 4.3.1 is satisfied. 

4.3.2 A Stabilizing Controller 

Following the linear theory a controller is designed based on the idea of a state estimator. 

Consider that there exists a map l (', -): X X Y f-+ X, such that the state equation 

v = f (v, u) - l(v, h(x, u) - h(v, u)) v(O) = vo (4.3 .7) 

acts as a state estimator for (4.2.1). t.e. 
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Assumpt ion 4.2 For the plant G(xo) of (4.2.1) there exists a C1map l(·, .): X x Y r-+ X 

such that (4.3.7) acts as a state estimator for G(xo), in that for all Xo, vo, as t --; 00, 

v(t) --; x(t). 

It is evident that l(x,O) = 0, 'rjx, otherwise when v(t) = x(t), v(t) i- x(t). As in the 

previous case of the design of a stabilizing state feedback map, the derivation of an l(.,.) 

for a particular realization (4.2.1) is an open problem, and as such is beyond the scope of 

the thesis. The controller K(xo): C(Y) r-+ C(U) is then constructed as follows. 

U 

j(Xk> g(Xk> 0)) -l(xk>Y - h(Xk,9(Xk,O))), Xk(O) = Xo 

g( Xk> 0) 
( 4.3.8) 

The stable right factorization K = UV- 1 is realizable with state space realizations 

V(vo) : 
X'V f(x'V, g(x'V, 0)) - l(x'V, s) x'V (O) = Vo 

(4.3.9) 
z - h(x'V,g(x'V, 0)) + s 

Xu = f(xu, g(xu, 0)) - l(xu, s) xu(O) = Uo 
U(uo) : ( 4.3 .10) 

U g(xu,O) 

Coprimeness of these factoriza.tions is shown via Lemma 2.3, p. 23. Consider the 

inverse of the operator [M -u]. First note that M(xo) and N(xo) have the same 
-N V 

initial conditions, and the same state when driven from the same input. Let us denote 

the identical states for these operators as xm. Similarly V(xo) and U(xo) have identical 

states denoted X'V' 

[:: -: ]( :: ) 
(4.3.11) 

(:) ( 4.3.12) 

From Lemma 4.2, invertibility of this system follows if it is possible to rearrange (4.3.12) 

t o give Sl, S2 in terms of u, y. Note that 

Sl = g#(xm,u+g(x'V, O)) 
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(4.3.14) 

Hence the operator is invertible and has state space realization given by: 

[: -:f(::) 

( 4.3.16) 

Note that for u = y = 0 and vm(O) = vv(O), vm = Vv = f( vv, g(vv, O)), which is stable. 

In the case u -::j:. 0, y -::j:. 0 it is not as clear that (4.3.15) will remain stable , although the 

assumption Assumption 4.3.2 implies that the state Vv will mimic vm , giving stability. In 

[44] and [45] it is proven that if a system may be stabilized by state feedback so that 

for the zero input case the system is stable, then the system may also be input to state 

stabilized. Hence in this case it would seem that (4.3.15) will remain stable in the case 

u -::j:. 0, y -::j:. 0, at least for bounded u, y, however precise results are elusive at this time. 

If this inverse operator (4.3.15), (4.3.16) is stable, Lemma 2.3 and Theorem 2.1 can be 

applied to give coprimeness of the factorizations and stability of the system {G(xo), K (xo)}. 

These results are summarized in the following lemma. 

Lem ma 4.4 Consider a plant G(xo), with state space description (4.2.1), such that 

there exist mappings g(., .), and l(·,·) satisfying Assumption 4.3.1 and Assumption 4.3.2 

respectively. Then there exists a controller K(xo), given by (4.3.8), and such that the sys­

tem {G(xo), K(xo)} is stable. Furthermore, the right factorizations of G(xo) and K (xo) 

given by (4.3.3), (4.3.4), (4.3.9), (4.3.10) are coprime. o 

R emark 4 .1 Note that this is only one possible approach to the stabilization of non­

linear systems, albeit the one which is the most fruitful if we are to take advantage of 

Assumption 4.3.1. 

71 



4.4 Left Coprime Factorizations 

With the formulation of the plant G(xo ) as in (4.2.1) it does not appear possible to generate 

stable left factorizations in t he form of (2.3.2). In the linear theory the construction of 

the left factorizations is crit ically dependent on being able to addi t ively decompose the 

state of G(xo) into it 's st able and unstable parts. The state of ft, Xn is the stable part 

of the state of G , x. The state of lVI-I , xm models the difference between t hese, giving 

x = xn + xm as is shown in the following equations. 

N xn = AXn + Bu + H (Cxn + Du) 

s = CXn + Du 

lVI - I Xm = AXm - Hs = AXm - H (Cxn + Du) 

G X = Xn + Xm = A(xn + Xm ) + Bu = Ax + Bu 

A nonlinear analogue of this process is not possible in the framework developed in this 

chapter. Other attempts have been more successful. In Moore and Irlicht [36] lcf s were 

obtained by using a specialized version of (4.2.1), as is now explored. 

4.4.1 Augmented Systems 

In this section a restricted form of (4.2.1) is given, and it is shown how this leads to a 

more complete factorization theory than that developed in the previous sections. These 

results are presented without proof, further details may be found in the paper by Moore 

and Irlicht [36] . 

Consider that the operator G(xo) has state space description given by 

G(Xo) 
x = A(x)x + B (x)u 

y C(x)x + D(x)u 
X(O ) = Xo (4.4.1 ) 

Then the existence of a map g( .,. ) = F(x)x + u satisfying Assumption 4.3.1 gives a stable 

right factorization as developed in Section 4. The exact forms of M (xo ) and N (xo ) follow 

from the definitions given , and may be found in Section 2 of [36] . Further if there exists a 

function l (., .) = H (x)y satisfying Assumption 4.3.2, it is possible to construct a controller 

K(xo) , with stable right factorization U(xo)V(xO)-I. 

Working with this form of (4.2.1) is instructive as it illustrates more clearly how the 

linear theory generalizes to the results presented in this chapter. Although further results 
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do not appear attainable in this framework, it does present a natural setting for the 

development of left coprime factorizations, and thus a more complete factorization theory. 

Consider the generalization of (4.4.1) where there is an external signal Yw which is 

injected into each of the matrices A(·), B (.), C(.), DO as follows, 

y 

A(yw)x + B (yw)u 

C(Yw)x + D(yw)u 
x(O) = Xo ( 4.4.2) 

Here Yw is a signal which is generated by a strictly causal filter W(wo) acting on y , or 

u. Then by constructing the matrices F(yw), H (yw) such that A(yw) + B (Yw)F(yw) and 

A(yw) + H(yw)C(yw) are stable for all Yw, it is possible to construct stable right and left 

factorizations for Gw(xo) as follows. 

Gw(xo) = N(xo)M(xo)-l 

M(xo) : 
xm (A(yw) + B (Yw)F(Yw))x m + B (Yw)sr 

u = F (Yw)xm + Sr 

N(xo) : 
xn (A(yw) + B (Yw) F (Yw))xn + B (Yw)sr 

y 

Gw(xo) = M(xO)-lN(xo) 

xN A(Yw)xN + B (yw)u + H (Yw)(C(Yw)xN + D(yw)u) 
N(xo) : xN(O) = xo/2 

C(Yw)xN +D(yw)u 

(A(yw) + H(Yw)C(Yw))xM - H(yw )y 
xM (0) = xo/2 

Note that as A(·), B(·) , C(·), D (·) are matrices it is possible to add the states of M-1 

and N to get the state of G, ie x = v. + x., where v. is the state of M-1. The choice 
M N M 

xM(xo) = xo/2 is somewhat arbitrary since G(xo) = M(mo)-lN(no) for all mo, no such 

that mo/2 + no/2 = Xo. 

A controller K(xo) may be constructed, having left and right factorizations as follows. 

u Xk(O) = Xo 
( 4.4.3) 
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K (xo) = U(XO )V (XO )- l 

V(XO) : 
Xv (A(yw ) + B (Yw )F (yw)) xv + B (Ywh 

u (C(Yw ) + D(Yw )F (yw ))xv + sl 

U(XO ) : 
Xu (A(yw ) + B (Yw) F (yw )) xu + B (yw )s{ 

y = F (yw )xu 

K (xo) = V (XO )-lU(XO) 

U(XO): Xo = (A(yw ) + H (yw )C (yw )xo - H (yw )y 

S l = F (yw )xo 

Xv (A(yw ) + H (yw )C(Yw )) x" + (B (yw ) + H (Yw) D(yw ))u 

xv(O) = Xo 

xu(O) = Xo 

xo(O) = xo/2 

Xv (0) = xo/2 

As in Section 4.3 when there are no external inputs to t he system, and when the initial 

conditions of the plant and controller are the same, the state of Kw (xo) will track t hat of 

Gw (xo) giving stability of the system {Gw (xo ), Kw (xo)}. 

The problem then addressed is how to construct the signal Yw such that it may be 

included in the fractional descriptions of the plant and controller in a natural way. By 

making Yw a function of the output y of G(xo), it is possible to construct right and left 

factorizations for G(xo) and K (xo), however difficulties are encountered in trying to derive 

left factorizations of the controller which satisfy the Bezout identity V M - UN = I . In 

fact it is shown that with this particular formulation it is not possible to construct a left 

factorization which satisfies this Bezout identity. To overcome this problem t he notion 

of an augmented plant Q(xo) = [G(xo )' IJ' is introduced. The state of G(xo) is used to 

construct the signal Yw as follows. 

W(xo) : (4.4.4) 
Yw = Xw 

Hence G(xo) = Gw(xo) and the right factorizations derived for G(xo) are equal to those 

of Gw(xo). The unity feedthrough term of the augmented plant ensures that the input to 

G(xo) is available to the controller K(xo ) which is constructed as follows. 

K(xo) C(Y) x C(U) 1-+ C(U) 
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Xw A(xw)xw + B (xw)u xw(O) = Xo 

Xk (A(xw) + B(xw)F(xw))Xk - H (xw)(y - (C(xw) + D(xw)F(xw))Xk) Xk(O) = Xo 

uk = F(Xw)Xk 

( 4.4.5) 

Note that the state Xw is the same as that of W(xo), so that the signal fed into the 

matrices A(-), . . . , D (·) in (4.4 .3) and (4.4 .2) are the same. It is shown that if the system 

{9(xo), K(xo)} is bounded-input stable, then there exists a controller K(xo ) such that the 

system {G(xo), K(xo)} is bounded-input stable. 

Factorizations for the augmented plant and controller may now be constructed. The 

plant factorizations may be given in terms of the previous factorizations, recalling that 

the signal Yw is given by (4.4.4), as follows. 

9(xo) [ G~o) 1 N(xo)M(xo)-1 M(XO)-1N(xo) 

M(xo) M(xo) N(xo) N(xo) 1 = 
M(xo) 

N(xo) [ N~o) 1 M(xo) 
M(xo) ~ 1 

= 
0 

A left factorization for the controller may be written 

Xw A(xw)xw + B(xw)u 

V(xo): X{r (A(xw) + H(Xw)C(XW))X{r + (B(xw) + H (xw) D(xw))u 

82 = -F(xw)x{r + u 

Xw = A(xw)xw + B(xw)u 

U(xo) : Xo = (A(xw) + H(xw)C(Xw))Xo - H(xw)y 

81 F(xw)xo 

Xw 

xo(O) = 

The main result of Chapter 3, Theorem 3.4, p. 50, may now be applied giving the class 

of all stabilizing plants and controllers as follows. 
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9s(xo, so) 
V(xo) rep.: U(xo) 

yo5 
el N (xo) ---d;' M (XOtl UI 

WI W2 
I: I: 

U2 V(XO)-I rep., U( XO) e2 

~ 
KQ(xo , qO) 

N(xo) Hb' M (xo) 

Figure 4-2 : The feedback system {9s (so , qo ), K:Q (XO ,qo )}. 
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w· 1 

Theorem 4.2 

S(so) 

Q(qo) 

Figure 4-3: The feedback system {S (so), Q(qo)} . 

w· 2 

Consider the system {9s(xo, so), J(Q (xo, qo)} as shown in Fig. 4-2, where M (xo ), N(xo), 

U[-(~;:,; XO~~:~::' lO~ f:::~:::a:::':::: ::e::::::~, b:::;::, :O;':::;~:~ ::a; 
-U(xo ) V (xo) 

bounded input stable iff the system {S(so), Q(qo )}, of Fig. 4-3 is (BCr + Bv )' (B
M 

+ B
N

) 

bounded input stable. o 

Remark 4.8 Note that the relationship between 9s (so , qo ) and S (so) is that described 

by Theorem 3.5 , p. 54. Dualizing this theorem in terms of interchanging the role of the 

plant and controller gives the relationship between J(Q (xo, qo) and Q( qo ) 

4.5 An Example 

To illustrate the effectiveness of this approach to right factorization we give a right fac­

torization of a universally stabilizing controller due to Nussbaum [39J . 

Lemma 4.5 Consider a first order 5I50 linear plant, with realization 

G: :i: = ax + bu x(O) = Xo 
(4.5.1 ) 

y=x 

Where b =1= O. Then there exists a nonlinear controller which will stabilize this plant for 

all values of a and b. The state equations are: 

K : v = y(v2 + 1) v(O) = 0 

u = y(v 2 + l )h(v) 
(4.5.2) 

o 

The proof of this lemma may be found in [39J. The function hC) must satisfy certain 

conditions to ensure convergence, see [39J for details . Note that the function h(x ) = 
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eX cos x satisfies these conditions. 

Lemma 4.6 The controller K of (4.5.2) has a pseudo-invertible stabilizing state 

feedback, g(v, y) = y - v, and thus has a stable right coprime factorization K = UV-l 

given by 

U: x'u = (s - xu)(x~ + 1) xu(O) = 0 

u = s(x~ + l )h(xu ) 

V: x'V = (s - xv)(x~ + 1) xv(O) = 0 

y = s - Xv 

(4.5.3) 

( 4.5.4) 

o 

Proof. It is straightforward to see that g(.,. ) is pseudo-invertible. It is now shown that 

v = (y - v)(v
2 + 1) is stable. First note that v = 0 iff y = v . If v < y, then v> 0, so v will 

grow to converge t o y. If v > y, then v < 0, so v will converge down to y. Hence v will 

track y, and so if y is stable v will be stable. Now apply Lemma 4.3 to show that UV-l 

is a stable right factorization of K . Following Remark 4.4 we note that this is a rcf. • 

4.6 Conclusion 

In this chapter we have described a state space approach to the factorization of nonlinear 

systems. This has been based on attempting to find right and left factorizations which 

allow application of the theory of Chapters 2 and 3 to give a factorization theory. Ad­

ditionally, by developing a general framework for the algebra of nonlinear operators we 

allow for the possibility of extending the results from the input-output approach. 

It has been shown that a continuous time nonlinear system of the form of (4.2. 1) will 

have a right factorization if there exists a solution to the smooth stabilization problem, 

Assumption 4.3.1. Taking advantage of this, a stabilizing controller is given, based on 

finding a state estimator for the plant , as in Assumption 4.3.2. This controller also has 

a right factorization. Left factorizations do not appear to follow from such a simple 

assumption. However results from Moore and Irlicht [36] are presented as one successful 

approach to the problem of finding a left factorization for a nonlinear plant G(xo). 

As support for our approach to factorization a right factorization of the universally 

stabilizing controller of Nussbaum [39] is presented. 

78 



Chapter 5 

Adaptive Nonlinear Estimation 

with Artificial Neural Networks 

5.1 Introduct ion 

The questions addressed in this chapter concern the applicability and limitations of Recur­

sive Prediction Error ·(RPE) methods to the adaptive identification, estimation , prediction 

and control of uncertain nonlinear dynamic signal models formulated in terms of Artificial 

Neural etworks (ANNs). As seen in the previous chapter, if factorizations for a given 

nonlinear plant are to be derived, a stabilizing static state feedback map, g(-, .), satisfying 

Assumption 4.3.1, p. 68, must be found. In order to find such a map, an accurate estimate 

of the state equation, f(-, .), of (4.2.1) is required. Hence it is necessary to consider some 

form of nonlinear system identification. 

Functional representations in artificial neural networks (A s) are now quite common 

in the literature. The question arises whether such representations, with their attractive 

training capabilities, could be useful in the representation and identification of uncertain 

nonlinear dynamical systems. In this chapter we formulate quite a general class of nonlin­

ear dynamical systems in terms of neural networks with weights which may be adaptively 

adjusted by standard, well studied recursive prediction error (RPE) methods. 

Identification theory and methodology has most to say about linear, stable systems 

with input-output descriptions. A key property is that the measurements are linear in 

t he input-output model parameters, so that least squares methods apply, as well as the 

more general RPE methods and related extended Kalman filter (EKF) based methods. 

Where some a priori knowledge is avai lable state space matrices characterized in terms 
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of some vector B, perhaps in a nonlinear fashion, may be used to represent the system. 

In this case RPE or EKF based methods [33 , 32J are still applicable. When the model 

class is nonlinear in states and/or inputs, as well as in the uncertain parameters, there 

must be great caution in applying such identification methods. The scheme must satisfy 

the convergence requirements of the theory, and additionally the general approximation 

scheme which is used to represent the nonlinearities must be decided upon. With the 

growing application of AN s, there is a building up of confidence in the role of A Ns as 

general purpose nonlinear function representations. Hence , it makes sense to investigate 

the possible role that they might play in adaptive nonlinear filtering via the existing RPE 

methods. 

In Section 5.2 we give some background on the RPE approach to system identification, 

giving a thorough treatment of the conditions which must be satisfied to give convergence 

of the algorithm. The theorems which specify the convergence results possible are also 

stated. The ANN structure that is to be used is detailed in Section 5.3.1. In Section 5.4, 

the algorithm which is used to estimate the system is given, and convergence issues are 

discussed. Rest rictions on the range of parameters which will guarantee convergence of 

the algorithm are given. Conclusions are drawn in Section 5.6. 

5.2 The RPE problem formulation 

5.2.1 Model structure. 

Let us first recall formulations for linear stable systems. 

When there is some a priori knowledge of the stable system dynamics , it is common 

to work with state space models of the following form: 

Xt+! = A(B)Xt + B (B)Ut + K (B)Wt 

Yt C(B)Xt + Wt 

(5.2 .1) 

(5.2.2) 

Here the system matrices are expressed as known functions of an unknown parameter vec­

tor B. Notice that since there is uncertainty in the model, we have chosen to work with an 

innovations representation in which the state process noise is identical to the measurement 

noise. Such representations are uniquely parametrized when the parametrizations A(-) , 

B(-) , K( ·) and CO are unique. 

We seek a parameter estimate, 8, which minimises a prediction error index. Recursive 
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prediction error methods seek to achieve recursive estimates iJ t so that in the limit as 

t --+ 00, iJ t converges to the true e, that of (5.2.1), (5.2.2). A prediction error index 

such as Vi(iJ) = t L:!=l w[(B), where Wt = Yt - ilt, the difference between the actual and 

estimated output of the plant, is appropriate and RPE methods can be applied to achieve 

asymptotically optimal estimates in terms of this index. 

For nonlinear stable systems, rather than work with the most general formulations, we 

work here with a natural generalization of the class of models (5.2.1), (5.2.2) . 

Yt 

A(e, Xt) + B (e,Ut ) + K(e,Wt) 

C(e, Xt) + Wt 

(5.2.3) 

(5.2.4) 

Such a model class may also be called an innovations representation. In the linear case 

these parameterizations are uniquely parametrized. This property may carryover to the 

nonlinear case, however in general it may not be true that (5.2.4) gives a unique repre­

sentation when the parametrizations A(-, .), B (·, .), K (·, .), C(·,.) are unique. Of course, 

starting with such model classes avoids questions concerning actual signal generating sys­

tems as to whether or not there is an associated innovations representation. 

The specific class of nonlinear systems of the form of (5.2.3), (5.2.4) which are studied 

in this chapter, are those for which the nonlinear functions A(e,Xt), B (e,Ut), K(e,Wt ), 

C(e, Xt) are A Ns, parametrized by the vector e, and driven by inputs Xt, Ut, WI, respec­

tively. The system model may then be naturally generated by substituting an estimated 

parameter value B for the actual parameter value, as follows: 

Xt+! = 

Yt = 

Wt 

A(Bt,Xt) + B (Bt,Ut) + K(Bt,Wt) 

C(Bt , Xt) 

Yt - Yt 

(5.2.5) 

(5.2.6) 

(5.2.7) 

Since ANNs are typically functional representations with a large number of weights, 

it is expected that the dimension of e is large. The key question of interest is whether or 

not such representations are useful general nonlinear systems representations for adaptive 

identification or estimation of uncertain nonlinear systems with no a priori constraints or 

knowledge of system nonlinearities. 
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5.2.2 General Algorithm structure. 

Recursive prediction error approaches such as those in Weiss and Moore [60] , Moore and 

Boel [38] or Ljung [31] have been formulated to take advantage of the convergence theory 

for stochastic algorithms developed by Ljung [30, 33] . This formulation assumes the basic 

recursive algorithm can be written as: 

(5.2.8) 

The vector (t E Rn contains the unknown parameters ()t as well as additional elements 

to be discussed below. The vector <Pt E Rm , which includes the dynamic system state, is 

generated by the equation: 

(5 .2 .9) 

or more generally: 

(5.2. 10) 

where et E RT contains the system inputs which may be stochastic. This equation is 

known as the observer equation, and the <Pt are referred to as the observations. 

Ljung [30] provides three sets of assumptions under which the system (5.2. ), (5.2.9) 

converges. The first two are for et a stochastic process and one for when it is deterministic 

sequence. In [29] Ljung gives another set of assumptions which give convergence for the 

more general form (5.2.10). As the ANN representation requires the observer equation to 

have the form (5.2 .10), this last set of assumptions is the set which will be used. 

The assumptions require exponential stability of (5.2.10) in some domain Ds , which 

may be the entire space , and that the sequence <Pt is bounded for all ( E Ds. It may 

then be shown that convergence of (5.2.8) is governed by that of an ordinary differential 

equation of the form: 

(5.2.11 ) 

The sequence (t is shown to be close to the solution ((7) of (5.2.11) in some sense, and it 

is shown that the possible convergence points of (5.2.8) are exactly those stationary points 

of (5.2.11). 

As these assumptions form the basis for the convergence theory for our RPE scheme, 

they are now presented from Ljung [29]. 
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5.2.3 Assumptions for the convergence of the Algorithm (5.2.8) (5.2.10) 

In this section the assumptions on (5.2 .8) and (5.2.10) which allow the convergence theory 

developed by Ljung to be applied are detailed. These assumptions are taken from Ljung 

[29J. Theorems relating the convergence of the algorithm and the stationary points of 

(5.2.11) are also presented. 

Firstly for some domain of (, DR which is to be determined later, assume: 

Ig(¢,(,e, t )I<C, V¢, e, V(E D R 

The constant C may be dependent on DR . Further, assume that 

Q(t,(,¢) is continuously differentiable with respect to ( and ¢, and the 

derivatives are bounded in t, V( E DR . 

g( ¢, (, e, t) is continuously differentiable with respect to (, V( E DR. 

(5. 2.12) 

(5.2.13) 

(5.2 .14) 

The sequence ¢t(() is now defined. This equation gives the dynamics of (5.2.10) when the 

parameter ( is held constant, o~ '''frozen'' at the value (. 

¢o(() = 0 (5.2.15) 

This equation will be referred to as the frozen observer equation. 

It is also assumed that g(¢,(,e,t) has the property that given ¢n(() = ¢n: 

(5.2.16) 

This implies that small variations in ( will not be amplified by the action of the observer 

¢. 

The domain of exponential stability of (5.2.10) is now defined. Let ¢~((), i = 1, 2, be 

the solutions of (5.2.15), where ¢!(() = ¢b. Then , 

(5.2. 17) 

where 0 < A(() < 1. In the sequel DR is taken to be an open, connected subset of Ds . 

The averaged form of (5.2.8) is now defined. 

fD (() = lim E{Q(t,(,¢t(())} 
t--+oo 

(5.2. 18) 
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The expectation E {.} is taken over el ' We now make t he following assumptions on the 

random variable el, and the sequence II. 

el is a sequence of independent random variables. 
00 

1= 1 
00 

L I f = 00, for some integer p > 1 
1= 1 

I I is decreasing 

lim sup [~ __ 1_] < 00 
1->00 I I 1 1-1 

(5.2.19) 

(5.2.20) 

(5 .2.21 ) 

(5.2.22) 

(5.2.23) 

Under these assumptions Lemma 1 and Theorems 1-6 of Ljung [29] will hold. Some of 

these results are re-stated here , thus formally relating the convergence of the differential 

equation (5.2.11) to the evolution of the algorithm (5.2.8), (5.2 .10). Note that these results 

may be also proved under any of the assumption sets of Ljung [30]. 

Theorem 5.1 Theorem 1, [29] 

Consider the algorithm (5.2.8), (5.2.10) , subject to the assumptions (5.2.12)- (5.2.23) . Let 

[) be a compact subset of DR such that the trajectories of (5.2.11) that start in [) remain 

in a closed subset of DR for all T > O. Assume that there is a random variable C such 

that: 

( (t ) E [) and 1¢>(t) 1 < C infinitely often, with probability 1 

and that: 

the differential equation {5.2. 11} has an invariant set Dc with domain of 

attraction D A :J [). 

Then ((t) - Dc with probability one as t - 00 . 

(5.2.24) 

(5.2.25) 

o 

Remark 5.1 An interesting case is when the set Dc is a stationary point , ( * of (5.2.11 ). 

In this case the theorem gives convergence of ( (t) to C . 

Remark 5.2 The assumption (5.2.24) is known as a boundedness condition. It forces 

the algorithm to remain within the exponentially stable region DR, so that the differential 

equation (5 .2.11) is a valid representation of the algorithms behaviour. However , although 

analytically tractable, this condition may be difficult to guarantee in practice. One alter­

native is to project ( back into the exponential stability domain DR whenever the update 
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would force it out. This is formalized in the following theorem. 

Theorem 5.2 Theorem 3, [29] 

Consider the algorithm (5.2.8), (5.2 .10), subject to the assumptions (5. 2.12)-(5. 2.23), 

where (5.2.8) has been modified to 

[(t- 1 + 'YtQ (t, (t-1, ¢t)] D
1

, D2 (5.2.26) 

~ {~ED' if f E D1 

if f tt. D1 

where D1 C DR is an open, bounded set containing the compact set D2. Define jj = 

D1 \D2' Further assume that D2 C DA CDs , with DA as defined in Theorem 5.1. Suppose 

that there exists a twice differentiable function U (x ) ~ 0 defined in a neighbourhood of jj 

with the properties: 

sup U'(x)f(x) < 0 
xED 

U(x) ~ C1 

U(x) ~ C2 < C1 

Then Theorem 5.1 holds without (5 .2.24). 

for x tt. D1 

for x E D2 

(5.2.27) 

(5.2.28) 

(5.2.29) 

o 

Remark 5.3 The function U(x) is made a Lyapunov function in jj by (5.2 .27), so the 

trajectories of (5.2.11) will converge to D2. The intuitive notion of the trajectories from 

D2 never leaving D1 is formalized by (5.2.28) and (5.2.29). These equations will hold if 

the trajectories of (5.2.11) only pass through the boundary of D1 when entering D1, and 

D2 is sufficiently close to D1. 

Conditions which guarantee the convergence of the algorithm have now been stated. 

The relationship between the stationary points of the differential equation (5.2.11) and the 

limit points of (5.2.8) is now investigated. The following theorem proves that the possible 

convergence points of the algorithm are exactly those of the differential equation. 

Theorem 5.3 Theorem 4, [29] 

Consider the algorithm (5.2.8), (5.2.10), subject to the assumptions (5.2.12)-(5.2.23). Sup­

pose that (* E DR has the property that: 

P (((t) --+ 8((*, p)) > 0 Vp> 0 (5.2.30) 
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where B ((, p) is the ball of radius p about (. Further suppose that 

Q(t , (*, ¢(t, (*)) has a covariance matrix bounded from below Qo > o. (5.2 .31 ) 

and that 

E{ Q(t, (, ¢(t, ())) is continuously differentiable with respect to ( in a neigh-

bourhood of (*, and the derivati ves converge uniformly in this neighbour- (5.2. 32 ) 

hood as t -+ 00 

Then j ((*) = 0, and H ((*) = i( j (() I has all eigenvalues in the left half plane. 0 
(=(' 

Remark 5.4 The matrix H ((*) is the matrix obtained for the linearization of j D (-) 

about the point (*. Hence the theorem states that the algorithm can only converge to 

stable points of the differential equation (5.2.11). 

The following theorem relates the trajectories of the differential equation (5 .2 .11) to 

the paths of the algorithm, (5.2.8). This is done by comparing the values of (t with the 

values of the solution to (5.2.11 ) at the times Tt, given by: 

(5.2.33) 

Let (t be the solution to (5.2.8), (5.2 .10) , and let (D (T) be the solution of (5.2 .11) with 

initial value ((to) at time Tto. Let I be a set of integers, then the probability that all 

points (t, tEl are within a certain distance c from the trajectory is given by the following 

theorem. 

Theorem 5.4 Theorem 6, [29] 

Consider the algorithm (5.2.8), (5.2.10), subject to the assumptions (5.2.12)-(5.2.23). As­

sume that j(() is continuously differentiable, and that (5.2.24) holds . Assume that the 

solutions to (5.2.11) with initial conditions in jj are exponentially stable, and let I be a 

set of integers, such that inf h - Tj I = 60 where i =I- j, i, j E I . Then for any p 2: 1 there 

exist constants K, co and To that depend on p, D and 60 , such that for c < co and to > To: 

(5.2.34) 

where N = sUPi EI i, which may be infinite. o 
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Output 

Figure 5-1 : The structure of a three layer ANN. 

As has been seen the convergence properties for the system of (5.2.8), (5.2.10) are 

dependent on the convergence of (5.2.11). Further the existence of local minima may be 

predicted by considering the fixed points of fD O . It is not difficult to construct RPE 

schemes so that (5.2 .11) is guaranteed to converge. The other conditions may be less 

straightforward to guarantee. 

Once the RPE scheme has been set up, the results of this section may be applied 

to give conditions for the convergence of the RPE algorithm when used with A Ns for 

nonlinear system identification . 

5.3 Artificial Neural Networks 

5.3.1 Network Architecture 

The term "Artificial Neural Network" (ANN) refers to a highly connected array of elemen­

tary processors referred to as neurons , or nodes. The standard configuration for a three 

layer network having is to have an input layer, one hidden layer and an output layer , as 

shown in Figure 5-1. Note, however that an ANN may have any number of hidden layers , 

and commonly the nodes in the input layer are the identity. Each node only receives 
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inputs from the layer above it and has a nonlinear input-output characteristic given by ' 

(5.3.1 ) 

where the function O' (t ) is a sigmoid defined as any function on 1R such that: 

{ 

1 as x --+ +00 
O' (x ) --+ 

o as x --+ -00 
(5.3.2) 

These sigmoids can take any form , but for convenience 0' ( x) is taken to be a smooth 

function. Specifically: 

1 
O' (x ) ---

1 + e-Z (5.3.3) 

In (5.3.1) the ri are the inputs from the previous layer and b is a bias input. Thus 

the input to a particular node is an affine function of the outputs of the nodes of the 

previous layer. Formally, the following conventions for referring to the weights, offsets and 

the inputs and outputs of the la:yers for an N layer network are adopted. 

Denote the output from the' ith layer by si, and the output of the ph node in the i th 

layer by s}, the input to the ph node in the i th layer is denoted r} . The input to the net 

is considered to be the output of the oth layer, so . Denote the weights matrix from the 

(i - 1)th layer to the ith layer by Oi, and the ph row of this matrix as oj. The offset to 

each node is accounted for by setting the last node in each layer always equal to 1, thus 

the offset to the jth node of the ith layer is given by the last component of O} . Hence, if 

ni is the number of nodes in the ith layer of the network, dim(si) = ni + 1, dim(r i) = ni , 

and Oi is a (ni-1 + 1) x ni matrix. The exception to this is the final layer, where the extra 

node with output 1 is not added, as this is the output of the A N. 

Hence the inputs and outputs of the layers of the network will be given by: 

sO (:) (5.3.4) 

y sN 
(5.3.5) 

ri = Oi si- 1 
(5.3.6) 

si = Fi(r i) (5.3.7) 
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The exception to the above is that the "1" in the output vector of FN (-) is suppressed. 

Thus the output y, of a general N layer feedforward ANN is given by: 

(5.3.9) 

In the special case where the vector x represents the n inputs to a 3-layer A ,we can 

represent the total output of a network with r nodes in the hidden layer and m outputs 

by G(B,x) where: 

G(B, x) (5.3.10) 

5:3.2 Functional representation and training using ANNs 

We are interested in using an ANN to approximate a function of many variables, f (x). The 

weights and offsets contained in the ANN provide a convenient mode of parameterization, 

which we may use in our RPE scheme. Hornik, Stinchcombe and White [22J (see also [46]) 

have proved a general representation theorem for a class of Neural Networks called ~II 

networks. The class of neural networks described in the previous section is a special case 

of this class of ANNs , called ~r(G) networks. In [22J it is shown that our class of A s 

are able to approximate any continuous function arbitrarily well provided that there are 

enough nodes in the hidden layer. Similar results were also obtained by Cybenko [4J and 

Funahashi [11 J using different methods of proof. For our purposes, it is not vital to consider 

the details of these proofs, apart from noting that the proofs were non-constructive. That 

is, they are purely existence proofs: they say nothing about the number of nodes needed 

in order to achieve a certain approximation accuracy. 

To train our ANNs we will use an approach introduced by Werbos [61], known as 

Back-Propagation. This is essentially a gradient descent technique based on using the 

chain rule to find the change of the output of the net with respect to the change of the 

parameters. This is a useful approach for our purposes as the algorithm uses gradient 
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informat ion to calculate the parameter updates. The details of how t o differentiate an 

ANN of the structure (5.3.9) wi t h respect to the parameter and input vectors are presented 

in Appendix B.l. 

5.4 Nonlinear RPE Problem Using ANNs 

In the previous sections the propert ies of A Ns and the RPE approach to estimation 

were out lined . Specifically, RPE problems have been provided with a general theory 

for convergence of unknown parameters , while ANNs have shown to have strong function 

represent ation properties. Bot h schemes are compatible in terms of the RPE algorithm re­

quiring differentiability with respect to the parameters , and the ANNs being different iable 

with respect to the parameters and inputs . In this section we show that these two schemes 

may be combined, leading to an effect ive approach to nonlinear system identification. 

5.4.1 Formulation of the Algorithm 

We assume an unknown nonlinear syst em driven by an input Ut and a noise process Wt 

and having output Yt as in (5.2.3), (5.2 .4) . It is assumed that it is possible to use AN s 

to parameterize each of the nonlinearities . The estimating system is as given in (5.2.5)-

(5.2.7), where the A(·, .), B e, .), K (-' ·) and Ge, ·) are A Ns. Within the algori t hm, 

this becomes (5.4.1) and (5.4.2). Thus the problem is to find an algorithm of the form 

of (5 .2.8), (5.2.10), which can incorporate this model, and estimate the parameter () of 

(5.2.3), (5.2.4) . 

Following the customary description of RPE problems, Ljung [31 , 32, 33] , Weiss and 

Moore [60] , Moore and Boel [38], the RPE scheme of (5.4.1)-(5.4 .9) is constructed. Before 

stating the algorithm, a short description is given so as to indicate the action of each of 

the equations. 

The parameter vector estimate at time t, Bt , is updated by the system given in (5.4 .3)­

(5.4.4). Here Wt /t-l is the predicted error, the error obtained using the current state 

estimate but the lagged parameter estimate, as shown in (5.4.5) . The matrix Rt is positive 

definite and bounded from below by 61 where 8 is some small positive constant and 

Ro = 61. The sequence ,t must adhere to the convergence requirements of Ljung [30], 

(5.2.20)-(5.2.23) The prediction error sensitivity function 1f;; ~ --!aWt/t-l (a ) 1",=8,_1 and 

related state sensitivity function Wt ~ -!aXt(a) 1",=8t-l are updated as in equations (5.4 .6) 

and (5.4.7), where Ft and Gt are intermediate variables defined in (5.4.8) and (5.4 .9). 
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The algorithm is stated as follows: 

Xt 

Wt-l 

Bt 

Rt 

Wt/t-l 

'l/;t 

Wt 

Ft 

Gt 

= 

= 

= 

A(Bt- 1, Xt-l) + B (Bt- 1, Ut-l) + K (Bt- 1,Wt-d 

Yt-l - C(Bt- 1 , Xt-l) 

Bt- 1 + 'Yt R;!l'l/;tWt/t-l 

Rt-l + 'Yt('l/;t'l/;; + 51 - Rt- 1) 

Yt - C(Bt-1, Xt) 

CdBt- 1, Xt)Wt + C1 (fJt- 1, Xt) 

Ft Wt-1 + G t 

A2(Bt- 1, Xt-1) - K2 (Bt- 1,Wt-1)C2(Bt- 1, Xt-l) 

(5 .4.1 ) 

(5.4. 2) 

(5.4.3) 

(5 .4.4) 

(5 .4 .5) 

(5.4 .6) 

(5.4.7) 

(5.4.8) 

(5.4.9) 

Here a subscript j is used to denote differentiation with respect to the j-th variable, so 

. a' 
that C2(Bt- 1,Xt) is axC(Bt-1,x)x=z,. 

5.4.2 Requirements for the convergence of the algorithm. 

By properly identifying the variables, this system of equations can be put into a form 

similar to (5.2.8), (5.2.10), and the results of Section 5.2.3 may be applied giving the 

conditions on (5.4.1)-(5.4.9) which guarantee convergence of the algorithm. ote that 

although it may be necessary to later modify the algorithm to project onto a stability 

domain, as in Theorem 5.2, the algorithm (5. 2.8), (5.2.10) will be considered for the 

moment. 

If ( is defined as, 

(5.4.10) 

where colRt denotes the vector formed by concatenating the columns of Rt , then (5.4.3) 

and (5.4.4) correspond to (5.2.8) by writing: 

(5.4.11) 

From (5.4.5) and (5.4.6), note that Wt/t-l and'l/;t are functions of Bt-l, Xt, Wt and Yt· 

Thus (5.4.11) is of the form of (5.2.8), giving Q((t-l, ¢t) provided that ¢t and e(t) are 
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appropriately defined. This may be done by defining rP and e(t) as follows. 

rPi = (Xt,COl Wt,Yt)T 

ei (Ut-1,Ytf 

(5.4. 12) 

(5.4.13) 

ote that under these defini tions Wt /t-l and 1/;t are functions of (t-l and rPt, and can 

thus be considered to be part of the function Q((t-l, rPt). Similarly, Wt-l, Ft and Gt 

are functions of Ut-l, Yt-1, (t-l and rPt- l and may thus be included in g(rPt-l,(t-l ,et). 

Equations (5.4.1), (5.4.7) thus correspond to (5.2.10). 

l 

A(8t-l' Xt-I) + B (8t-l,Ut-l) + K(8t-1, Yt-l - C(8t-l, Xt-l)) 1 
rP t = col(FtWt- 1 + Gt) (5.4. 14) 

Yt 

The equations (5.4.11), (5.4.14) are thus of the form of (5.2.8), (5.2.10) when Q((t- l, rPt) 

and g(rPt-l,(t-1, et) are defined by: 

[ 
R;_\ 1/;tWt/t-l 1 

col(1/;t1/;; + OJ - Rt-d 
(5.4 .15) 

A(8t- 1, Xt-I} + B(8t-l, Ut-l) + K(8t- 1, Yt-1 - C(8t- 1, Xt-l)) 

Yt 
(5.4.16) 

where the auxiliary variables Wt /t-l, 1/;t, Ft and Gt are given by (5.4.5), (5.4.6) , (5.4.8) 

and (5.4.9) respectively. 

As (5.4.11), (5.4.14) are of the form (5.2.8), (5.2.10) the results of Section 5.2.3 may 

now be applied to derive conditions on the algorithm which guarantee convergence of the 

algorithm. It is shown that under some restrictions the assumptions (5.2.12)-(5.2.23) may 

be satisfied. In the sequel the time dependency of the variables will be suppressed, unless 

it is necessary for the particular property being considered. 

Consider (5.2.12), which requires that g(rP,(,e) be bounded, \lrP, e \I( E DR· ote 

that ( affects g( rP, (, e) only through the action of () within the A Ns. As the AN s are 

bounded for all (), ( will not affect the boundedness of g( rP, (, e) . Similarly x only has an 

effect through the ANNs, and thus will not lead to unboundedness of g(rP,(,e). However, 
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note that g(¢ ,(, e) is linear in W t and Yt, thus it is not possible t o guarantee (5.2. 12) for 

all ¢, e. Hence it is necessary to assume that Wt and Yt are bounded , so that (5.2.12) is 

satisfied. 

As shall be seen later, it is necessary that the dynamics of (5.4 .14) are stable, so it does 

not appear too restrictive to assume that Wt is bounded. Similarly, due to the assumptions 

on et, we must assume that the system being estimated is stable, giving boundedness of 

Yt· 

Provided that R is bounded below by a constant, positive definite matrix it is straight­

forward to see that Q((, ¢) is continuously differentiable with respect to (. As noted 

previously, with the update equat ion (5.4.4), Rt is bounded below by /5I. Since Q((, ¢) is 

independent of t , the derivatives are bounded with respect to t. Hence (5.2.13) is satisfied . 

If g(¢, (,e ) is differentiable with respect to e, (5.2.14) will be satisfied. Thus the 

satisfaction of this requirement is dependent on the differentiability of the A Ns with 

respect to the parameter vector e. ote that Ft and Gt include first derivatives of the 

ANNs with respect to e, hence if the AN s used are twice differentiable with respect 

to e (5 .2.14) will be satisfied. Examining (5.3.10) shows that this is dependent on the 

smoothness 'of the sigmoid function, aO. As we are using a smooth function for 0'0, 

this assumption is trivially satisfied. See Appendix B.1 for details on the derivatives of an 

ANN with respect to it's parameter and input vectors. 

The exact form of ¢ is now stated, giving the dynamics of (5.4.14) when ( is held fixed . 

A(B, Xt-I) + B(B, Ut-I) + K(B, Yt - I - C(B, Xt-I)) 

col (FtWt- 1 + at) 

Yt 

The intermediate variables Ft , at and Wt-l are defined as follows: 

Ft = A2(B,Xt-l) - K2(B,Wt-I)C2(B,Xt-l) 

at = AI(B,Xt-l) + BI(B,Ut-l) + KI (B,Wt-l) - K2(B,Wt-l)CI(B,Xt-l ) 

Wt - I = Yt - C(B, Xt-I ) 

(5.4 .17) 

(5.4 .18) 

(5.4 .19) 

(5.4.20) 

The various properties of the frozen observer equation are now investigated. That 
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g( <1>, (, e) leads to the property (5.2.16) is not obvious. However if we assume that g( <1>, (, e) 

is Lipschitz continuous in each of the first two variables, then it is possible to show that 

(5.2.16) holds. This is more precisely stated in the following lemma. 

Lemma 5.1 Suppose that the function g(<I>, (, e, t) of (5. 2.10) is uniformly Lipschitz 

continuous with respect to <I> and ( with Lipschitz constants L1, L2 respectively, and the 

sequence ¢t is defined by (5.2.15). Then if L1 < 1 and C 2: L2 /(1- L1 ), equation (5.2.16) 

will hold. 0 

Proof. If g( <1>, (, e, t) is uniformly Lipschitz continuous with respect to <I> and ( with 

Lipschitz constants L 1, L2 respectively, then independently of t the following equations 

will hold. 

Ig(<I> l ,(, e,t ) - g(<I>2,(,e,t)1 

Ig(<I>,(l,e,t) - g(<I>,(2,e,t)1 

L1 1<1> l - <1>21 

L2 1(1 - (21 

(5.4.21) 

(5.4.22) 

That property (5.2 .16) holds will now be proved by induction. Suppose at some time 

n, it is true that ¢~ = <l>n. Then applying (5.4.21) and (5.4.22) to (5.2.10) and (5.2. 15) 

gives the following expression. 

I¢n+l - <l>n+ll = Ig(¢n,(,en,n) - g(<I>n,(n,en,n)1 

< L2 1( - (nl 

L2 max I( - (kl 
n$k<n+1 

Now for some time m > n consider that ¢m =I- <l>m, and that: 

for some C > O. We now calculate a bound on I¢m+l - <l>m+11· 

Ig(¢m,(,em) - g(<I>m,(m, em)1 

(5.4.23) 

(5.4. 24) 

(5 .4.25) 

(5.4 .26) 

Ig(¢m,(,em) - g(<I>m,(,em) + g(<I>m,( ,em) - g(<I>m,(m ,em)1 

< Ig(¢m,(,em) - g(<I>m,(,em)1 + Ig(<I>m,(,em) - g(<I>m,(m,em )1 

< L11¢ - <l>ml + L21( - (ml 

< L 1C max I( - (kl + L21( - (ml 
n$k<m 
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< L1C max 1(" - (kl + L2 max 1(" - (kl 
n~k<m+ l n~k<m+l 

= (L 1C + L2) max 1(" - (kl 
n~ k<m+l 

Hence if L 1C + L2 ::; C, we have proved that: 

(5.4.27) 

As the premise is true for m = n + 1, (5.4.26) will hold for all m > n, and (5.2. 16) will be 

true. 

Note that if Ll < 1 and C ~ L2/1-Ll' then LIC+L2 ::; C and the proof is complete . • 

The assumptions of the lemma are not as restrictive as they may first appear. In 

our case 9( ¢>, (, e, t) is independent of t, so that if it is Lipschitz continuous, it will be 

uniformly Lipschitz continuous. Since AN s with smooth activation functions are used 

to generate 9(¢> ,(,e), it will be smooth, and so it will be possible to define Lipschitz 

constants with respect to (and ¢>. Recall the definition of 9(¢>,(,e) (5.4.16). For the 

following discussion denote the components of this equation 91, 92, 93 . These correspond 

to the update equations for Xt, Wt and Yt respectively. 

ote that 93 is independent of Bt, Wt and Xt, and so is automatically Lipschitz contin­

uous with constants Ll = 0, L2 = O. The function 91 consists entirely of the outputs of 

ANNs . It is shown in Appendix B.2 that ANNs are Lipschitz continuous in the inputs and 

parameters, and so it is possible to define Lipschitz constants for this component. These 

constants are Dependant on ( and ¢>, so the previous lemma naturally introduces some 

restrictions on the domain of interest of ( and ¢>. 

The second component, 92, does not admit such simple characterizations. This function 

is linear in Wt, but all the other parameters contribute through the first derivative of the 

output of an ANN. Specifically, 92 = Pt Wt- 1 + Ct. The function Pt corresponds to 

the derivative of Xt with respect to Xt-l, and C t corresponds to the derivative of Xt with 

respect to Bt - 1 . Thus, although it is straightforward to bound Pt and C t thus obtaining the 

Lipschitz constants for 91, it is very difficult to obtain bounds on the Lipschitz constants 

for 92. Even in the case where the signals Yt, Xt, Ut, Wt are real valued sequences, the 

expressions are very complicated. Although it is possible to find Lipschitz constants in 

such cases, there does not appear to be any readily accessible underlying structure. Thus, 

although we note that it is possible to obtain Lipschitz constants for 92, a simple expression 
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is not currently obtainable. 

Note that it is possible to absolutely bound the difference between W t and W
t 

by 

max {W." L2/(1 - Ld}. 

Thus the only restriction that the lemma imposes on our scheme is that the domain 

of ( is such that L1 < 1. Even this assumption is not restrictive as this restriction on ( is 

exactly that which guarantees that the evolution of 1>t is stable, which is what is required 

to form the set Ds. 

The following lemma leads to a sufficient condition on ( for ( to be in the set Ds. It 

proves that there is an exponential bound on the distance between trajectories of (5 .2 .15). 

Lemma 5.2 Suppose that g(¢, (, e, t) is Lipschitz continuous in ¢, with Lipschitz 

constant dependent on (. i.e. V( there exists a value L( () such that 

(5.4 .2 ) 

Then for 1>~(() = ¢h, i = 1, 2 and t > s: 

Furthermore, M(¢6, ¢a) = 1¢6 - ¢al + €, for some f > 0, and .A(() = L(8) < 1. 0 

Proof. This result is proved by a simple inductive argument. Suppose that at time t, it 

is true that: 

(5.4.30) 

Then at time t + 1: 

11>;+1(() - 1>;+l(()1 
-1 - -2 -

Ig(¢t, (, et+l, t + 1) - g(¢t, (, et+1, t + 1)1 (5.4.31) 

< L(()I1>;(() - 1>;(()1 (5.4.32) 

< L(()M(¢~, ¢6)Lt-.(() (5.4.33) 

= M(¢~,¢6)Lt+l-.(() (5.4.34) 

Thus if (5.4.30) holds for time t, then it will hold at time t + 1. Considering t = s, and 

defining M(-,·) as in the lemma gives an initial time at which (5.4.30) holds and completes 

the proof of the lemma. • 
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Remark 5.5 When L(() < 1, ( satisfies the condition in (5.2.17) and so is an element 

of Ds. Note that for the particular form of (5.2.8), (5.2.10) being considered (5.4 .11), 

(5.4.14), it has already been necessary to restrict ( such that L(() < 1, in order to satisfy 

(5.2 .16) . 

Remark 5.6 Although it is not possible to obtain a general expression giving the Lipschitz 

constants, in this case when ( is restricted to force L1 of 91 to be less than 1, the form of 

92 guarantees exponential stability of Wt. Thus when the induced norm of Pt for a given 

( is less than 1, ( E Ds. 

The set Ds is thus defined. 

Ds (5.4.35) 

It is now possible to state the differential equation (5.2.11) which governs the behaviour 

of the system given by equations (5 .2.12)-(5.4.9). Theorems 5.1-5.4 may then be applied 

to give the convergence points of the algorithm. 

Combining (5.2 .18) and (5.4.15) gives: 

(5.4.36) 

where the expectation is taken over the signal e(t). 

In the limit as t ~ 00, the algorithm will converge to the fixed points of (5.4 .36), in 

the sense detailed by the theorems of Section 5.2 .3. It is straightforward to see that: 

(5.4.37) 

is the fixed point for the second component of the equation. Where it is assumed that 

4>t (() has reached a stationary point 4>( (), leading to the expression 1/;( (). As R > 0, B 

will converge only if: 

(5.4.38) 

That is, the expected value of the prediction error is perpendicular to the sensitivity 

function. So that the algorithm is acting as a whitening filter . Thus it is concluded that 

the parameter has converged to an estimate that gives an accurate model for the system. 

The preceding discussion is summarized in the following theorem. 
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Theorem 5.5 

Consider the Recursive Prediction Error scheme given by (5.4.1)-(5.4.9), where the func­

tions A(B, .), B (B, .), C(B, .), K (B, .), are Artificial Neural Networks parameterized by the 

weights vector B. Then this system is given the form of (5.2.8), (5.2.10) by the identifi­

cations of (5.4. 11), (5.4.14). Assume that the system of (5.2.3), (5.2.4), and the signals 

Ut and Wt are such that et = (uLl' yT)T is a sequence of independent random variables, 

and Yt is bounded above by some fixed constant. For a compact domain of cp , D¢, de­

note L2 = max¢E D", L2 (CP) · Then if ( is restricted to lie in the domain Ds , and cp is 

restricted to D¢, the assumptions (5.2. 12)-(5.2.18) will hold, and if (5.2.19)-(5.2.23) hold, 

Theorems 5.1-5.4 may be applied giving convergence of the algorithm to a fixed point of 

(5.4.36) . o 

5 .5 An Example 

In this section we consider a specific example of the general scheme presented here in 

order to demonstrate some of the properties of tills scheme. Specifically, a single-input, 

single-output system with one dimensional state is considered. A system of the form 

of (5.2.3), (5.2.4) where the A, B , K and C are A s, is used as the system model. 

These networks have a single hidden layer of 5 nodes. The problem now becomes that of 

correctly identifying the weights of the system model. There are a total of 64 weights to 

be estimated. For convenience, the parameter vector B is subdivided into 4 sub-vectors, 

B A, B B, Be and B K, each vector corresponding to the ANN it represents. 

Following Theorem 5.5, if the existence of the constants Ll < 1 and L2 may be proven, 

the asymptotic behaviour of the algorithm will follow the behaviour of the associated 

differential equation, giving convergence of {j to a fixed point of (5.4.36). ote that L2 

may be regarded as the maximum value of a smooth function. As we are considering the 

algorithm over a compact domain, the existence of this constant is guaranteed. Hence we 

will not attempt to find an expression for it . The constant Ll must be bounded above , so 

it is necessary to derive conditions on B in order to find the exponential stability domain 

of (5.2.17). An expression for the upper bound of Ll is now derived. 

The following lemmas regarding the calculation of Lipschitz constants are useful. 
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Lemma 5.3 

(i). Ifg(x) has the form [gl(x)T, 92 (x)T, 93 (x) T]T, then its Lipschitz constant is bounded 

by: 

(5.5.1) 

(ii). Consider the function f (X 1, X2, X3) which has Lipschitz constants with respect to 

each parameter, L1(1 ), L1(1 ), L 1(1 ), then the Lipschitz constant with respect to 

the vector (X l , x2, X3 ) is bounded as follows: 

(5.5.2) 

(iii). The following bounds may be obtained for the product and composition of two 

functions with known Lipschitz constants. 

Lemma 5.4 

L1(1(X)g(X )) 

L1(1 (g(X)) 

< L1(1 ) max lg(x)1 + L 1(g) max If (x )1 
'" '" 

< L 1(1 )L1(g) 

(5.5 .3) 

(5.5.4) 

o 

Consider a 3 layer feedforward ANN, as described by (5.3.10), with 

one input x, and one output y and parameter vector (). 

y = N((), x) 

Denote the derivatives of N ((), x) with respect to () and x by N 1((), x) and N 1((), x ) respec­

tively. Then the Lipschitz constants of these functions will be bounded by the following 

expressions. 

L",(N) < ~1I()111 1I()211 (5.5.5) 16 
I 

L(}(N) < ~ [116 (lIxll2 + 1) 1I ()211 2 + (n + 1)] 2" (5 .5.6) 

L",(N1) < ~11()111211()2 11 (~ 1I ()211 + 1) (5.5.7) 
I 

L",(N2 ) < 4 L",(N)L(} (N) + ~1I()211 + [ CIa 11()211 1I()111) 2 + I16 11 ()1112] 2" (5.5.8) 

0 
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Remark 5.7 The proofs of these lemmas are based on the idea that the Lipschitz constant 

may be determined by deriving the maximum value of the derivative of the function. As 

the proofs are straightforward and tedious, they are not presented here. 

These lemmas may now be applied to give an expression for an upper bound on L1 as 

follows. 

Note that g((, ¢, e) is composed of the components g1 , g2 , g3, so that (5 .5 .1) so that: 

1 

L1 = (L1 (91 )2 + L1 (g2)2 + L1 (93 )2) 2 (5.5.9) 

The Lipschitz constants of the gi may be determined through the use of (5.5 .2): 

1 

L1(gi ) = (Lx (9i )2 + Lw (gY + LY (9i)2) 2 , i = 1,2, 3 (5.5.10) 

Note that 93 (¢ t-1, Bt- 1,et) = Yt, so L1(93) = O. 

The expression for g1 is relatively straightforward, so that the Lipschitz constants may 

be stated as follows: 

1 1 2 1 1 1 2 1 2 
Lx(g1) < 16 11BAIIII BA il + 256 11 BK Ill BK lIlI Bc llll Bc li 

LW(g1) 0 

Ly(gd < 11611Bk 1l1l B}1I 

(5 .5.11) 

(5.5.12) 

(5 .5.13) 

The expressions for the components of L1 (92) are not as tractable, as Ft and Gt are the 

first derivatives of g1 with respect to x and B respectively. 

Lx (92) < Lx(F) max II WII + Lx(G) (5.5.14) 
¢>ED~ 

LW(g2) < maxllFl1 = L1(g1) (5.5.15) 
¢>ED~ 

Ly(92) < Ly(F) max IIWII + Ly(G) (5.5.16) 
¢>ED~ 

From (5.4.8) and (5.4.9), and applying Lemma 5.3 and Lemma 5.4, the following expres­

sions may be derived. 

Lx(F) < L2(A2) + L2(K2)L2(C)2 + L2(K)L2(C2) (5.5.17) 

Lx(G) < L2(Ad + L2(K1)L2(C) + L2(K2)L2(C)L1(C) + L2(K)L2(C1) (5.5.18) 

100 



Ly (F ) < L2(K2 ) 

Ly (G) < L2(Kd + LdC)L2(K2) 

(5.5.19) 

(5.5 .20) 

Substituting equations (5.5.10)-(5.5.20) into (5.5.9) gives an upper bound on L
1

. By 

ensuring t hat this is less than 1, the conditions of the theorem will be sat isfied. 

By choosing a e from within the region thus specified to represent the system which 

IS to be identified, and then choosing an initial estimate from wi thin the same region , 

the discussion of the previous section indicates that convergence will occur when (5.4 .38) 

holds. 

The algorithm (5.4.1)-(5.4 .9) was encoded using the XMATH simulation package. A 

number of estimation problems were then simulated . The system parameter vect or B, and 

the initial parameter estimate (h were chosen randomly so as to be guarant eed to satisfy 

the requirement L1 < 1. Three choices for ,t were used, 1/ 10, l / t , e l / 5 . The sequences 

Ut and Wt were chosen to be sequences of random numbers in the range [0, 1]' generated 

by XMATH. 

In all cases the parameters converged to some limiting value i)* , however at widely 

varying rates. This seemed to be dependent on a combination of the choice of , t , Ut and 

Wt as well as e and {h . An important point to note is that the limit ing value ()* seemed to 

bear no discernible relationship to the actual system parameter e. However, in all cases 

as the parameter converged the difference between the noiseless system output and the 

estimated system output approached 0, or some small positive constant . This appeared 

to be dependent on the choice of the sequence 't. The slower that ,t - 0, the bet ter the 

approximation to the system output . 

The parameter vector and initial conditions were chosen randomly. In presenting this 

simulation results, we only intend giving an idea of how the algorithm behaves, in terms 

of the convergence of the parameter estimate to the models parameter value, and in terms 

of how well the identified system models the model. From this point of view the exact 

parameters are not important , and so are not presented here. 

The evolution of ilt is shown in Figure 5.5, and the evolution of the difference between 

the system model's output and the estimated system 's output is shown in Figure 5.5 . ote 

that this is Yt - Wt - Yt, and not Yt - Yt. The noise input Wt was sufficiently large that the 

signal Yt - Yt was meaningless. 

As may be seen from the figures, the ouput of the estimated plant was approaching 

that of the model. It is interesting to note , however that ill was not approaching e. This 
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Figure 5-2: Evolution of the estimation error, Yt - Yt - w. 

indicates that there are many potential convergence points for the algorithm. 

It is recognised that the simulation presented offers a very limited viewpoint of the 

properties of the algorithm, however it does demonstrate the promise of this approach to 

nonlinear system identification. 

5.6 Conclusion 

In this chapter we have presented an algorithm for the identification of an unknown stable 

nonlinear system, as given by (5.4 .1 )-(5.4.9), which is based on an RPE approach. The 

nonlinearities in the system are modelled by feedforward AN s with smooth sigmoidal 

nodes , as described in Section 5.3.1. Convergence of the algorithm is guaranteed when the 

algorithm satisfies the conditions of Section 5.4 .2. Furthermore an ordinary different ial 

equation is presented which has as it 's stationary points exactly those points to which the 

parameter estimate will converge. 

It is shown in Theorem 5.5 that under some restrictions on the range of parameters 

allowed, the algorithm presented will satisfy these assumptions, and so it is possible to 

predict the behaviour of the system in terms of the solutions to the associated ordinary 
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Figure 5-3: 'Evolution of the parameter estimate, Ot. 

differential equation. As was stated in Section 5.5, the parameter {j will converge , such 

that the system behaviour is modelled , however no relationship between the actual system 

parameter () and {j is guaranteed. 

Although much further work is required, the RPE-ANN algorithm presented is inter­

esting. A simple example confirms the appropriateness of this approach, and indicates the 

potential of this approach to nonlinear system identification. 

Artificial Neural Networks have been used for the function estimators as it has been 

shown that they can act as universal approximators. For a given approximation error 

an adequate number of nodes will be required, however this has not been adequately 

determined in the past. As the parameter vector, (), is the vector of all the weights in the 

ANNs, its dimension will be determined by the accuracy required. As this is not currently 

determined, it seems appropriate to use as many nodes as possible. However, note that 

the dimension of Rt is equal to the square of the dimension of (), and a matrix inverse 

must be calculated for each iteration. Thus it is desirable for the number of nodes used 

to be as small as possible. At this point a result giving the some relationship between 

the accuracy of approximation and the number of nodes required is required. This is the 

subject of the following chapter. For a specific architecture the number of nodes required 
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to represent any function from a given function class is given. 
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Chapter 6 

The N umber of Nodes Required 

in a Feed-Forward Neural 

Network for Functional 

Representation 

6.1 Introduct ion 

Feedforward Artificial Neural Networks (ANNs) have been shown to be "universal ap­

proximators" in the sense that a wide class of functions can be approximately represented 

in terms of a neural network. These results say nothing of the number of nodes needed 

to attain a given level of approximation. As indicated in the previous chapter, in some 

circumstances it is useful to be able to specify the number of nodes required to represent a 

function to a given level of accuracy. Specifically, for a particular architecture presented, 

a bound on the number of nodes required to represent any function from a given function 

class is calculated. Further, the number of bits required to represent the neural network 

is compared to the t:-entropy of the class of functions being represented as a means of 

determining the efficiency of the representation. 

Consider t he use of feedforward neural networks as functional representations, approx­

imating some function f: lRn ~ R, where R is typically a closed and compact interval. 

While the problem of determining whether feedforward neural nets are in some sense 

"universal approximators" can be considered solved, the solutions to date are still unsatis­

factory. Most of the currently available results either appeal to Kolmogorov's famous the-
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orem, such as Funahashi [11], Hecht-Nielsen [20], Kolmogorov [25], or are non-constructive 

existence statements, Cybenko [4], Funahashi [11], Hornik, Stinchcombe and White [22]. 

The only exceptions we know of are Carroll and Dickinson [2] and Pati and Krishnaprasad 

[43]. The problem of determining the rate at which the number of hidden units needed to 

attain a given accuracy of approximation must grow as t he dimension of the input space 

increases is yet to be solved. 

In this chapter we will consider the difficulty of representing an arbitrary function from 

a given function class which is specified a priori. The representability problem is studied 

using Kolmogorov's c-entropy. A new neural network structure for uniform functional 

approximation is presented, and it is shown that it is close to optimal in terms of the 

bit efficiency of storage. An explicit upper bound on the number of nodes needed in this 

neural network architecture is also obtained. 

This new scheme represents a function via convex polytopal approximations to the 

level sets of the function. All but one of the neurons in the network have threshold logic 

output functions. Note that in the previous chapter we used smooth activation functions , 

and not threshold functions as used in this chapter. We have chosen to work with step 

functions as the analysis of an A N with smooth activation functions is considerably more 

difficult. However, note that a step function may be regarded as the limiting case of the 

sigmoid of the previous chapter as the gradient at the origin approaches infinity. Hence it 

is expected that the results of this chapter also provide a bound on the number of smooth 

nodes required to represent any function from the given function class. 

This chapter is organised as follows. Section 6.2 introduces the idea of c-entropy, and 

some useful results are presented. In Section 6.3 the method of representing a function in 

terms of its level sets is described. The new neural network architecture is presented in 

Section 6.4. This architecture is based on the level set representation of a function from 

Section 6.3. The number of nodes required for this network to achieve an c-approximation 

is calculated, giving the main result of the chapter, Theorem 6.8, Section 6.4. These results 

are then compared with the c-entropy for the function class for which this architecture gives 

an c-approximation, giving an idea of the efficiency of our representation. Conclusions are 

presented in Section 6.5. 
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6.2 c-Entropy of Functional Classes 

The concept of c:-entropy was introduced by Kolmogorov [23, 24], Vitushkin [58, 59] and 

Tikhomirov [52]. The c:-entropy is sometimes called the metric entropy [9, 10, 35] 

6.2.1 Basic Concepts and Results of c:-Entropy 

Let F be a non-empty set in a metric space <1>. By a metric space we shall mean a function 

space which has a metric d( ·, .) associated with it. Note that all logarithms are to base 2. 

D efinition 6.1 [ c:-covering] A system 'Y of subsets of <1> is called an c:-covering of F 

if the diameter of any set U E 'Y is less than 2c: and if F C UU E"( U. 

D efinition 6 .2 [ c:-net] A set U C <1> is called an c:-net of F if for all x E F there 

exists y E U such that d( x, y) < c:. 

D efinition 6.3 [ c:-separation 1 A set U C <1> is called c:-separated if every pair of 

distinct points in U are at a distance greater than c: apart. 

Note that the set F is more important to our discussion than the space in which it is 

embedded, <1>, which is not unique. For example, if F is a collection of sequences in [2, <1> 

could be taken to be [P for any p = 2,3, ... , 00. 

We will work with totally bounded sets as they have three equivalent useful properties, 

as stated in the following theorem. 

Theorem 6.1 [52] 

The following three properties of the set F are equivalent and depend on the metric of F . 

T h at is, they bold indep endently of the space <1> within which F is embedded. 

(i). For all c:, th ere exists a finite c:-covering of F. 

(ii). For all c:, th ere exists a finite c:-net of F. 

(iii). For all c:, every c:-separated set is finite. 

o 

For a totally bounded set F it is natural to introduce three functions which are mea­

sures of t he size of t he set F. 

D efinition 6.4 [ minimal c:-covering 1 N.(F) is the minimal number of sets in an 

c:-covering of F . 

Definition 6.5 [ minimal c:-net 1 N.q,(F) is the m inimal n umber of sets in an c:-net 

of F . 
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D efinition 6.6 [ maximal c-separated set J Me (F ) is the maximal number of points 

in an c-separated subset of F. 

Note that for a given metric , Ne(F) and Me(F) are independent of the set <fl in which 

F is embedded, while Neif!(F) in general depends on <fl . 

D efinit ion 6 .7 [ absolute c-entropy J Th e absolute c-entropy for a set F is given by 

7-ie(F ) = logNe(F ). 

D efinition 6 .8 [ relative c-entropy J The relative c-entropy for a set F with respect 

to <fl is given by 7-if (F ) = logNeif! (F ). 

D efinition 6 .9 [c-capacity J The c-capacity of a set F is given by Ce( F ) = logMe(F) . 

Theorem 6.2 [59] 

The absolute c-entropy of a compact metric space F is equal to the lower bound on the 

relative c-entropies of F for all possible metric expansions <fl of F: 

(6.2.1) 

o 

Theorem 6.3 [59] 

For any compact metric space F , any metric expansion <fl of F and any c > 0, 

(6.2.2) 

o 

Vitushkin [59J introduces the idea of a table Tf.,e of functions of a metric space F. This 

may be thought of as an encoding of an c-net , or c-representation of F . In this way the idea 

of representing an arbitrary function from the class F is introduced. Further, the relative 

€-entropy with respect to this €-net gives an idea of the efficiency of the representation. 

The most efficient €-representation has an entropy equal to the absolute €-entropy for the 

class of functions F . 

Let C = C(I) be the metric space of continuous functions on I = [0, 1Jn with the sup 

(or uniform) metric doc : 

doc(J, g) = sup If(x) - g(x)1 Vf , 9 E C(I) (6.2.3) 
zEI 
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Theorem 6.4 [59] 

C is the best metric expansion for a compact metric space F in the sense that 

(6.2.4) 

for any metric expansion cp of F. o 

Remark 6.1 This theorem states that if the Loo norm is used for calculating the c­

entropy of a function class F , it will be less than if a different norm, for instance the L2 

norm, where used. i. e. 1{f= (F) ~ 1{f2 (F) . evertheless there may be circumstances in 

which we wish to use a different metric (thus meaning that the approximations will not be 

uniform: for example using the Euclidean distance in the definitions above, we would end 

up with mean-square approximations). Many of the results on c-entropy in terms of the 

uniform metric carryover to other metrics. Details can be found in the papers by Lorentz 

[34 , 35J. 

6.2.2 c-Entropy' for some Function Classes 

The c-entropy is now calculated for some specific function classes. Proofs may be found 

in [26J. 

Definition 6.10 [ Lipschitz Function J A function f which is a member of some 

metric space F with metric dp satisfies a Lipschitz condition with constant L and index 

a if for all x, y E dom f, 

If(x) - f (y)1 ~ L [dp(x, yW'· (6.2.5) 

Theorem 6.5 

Let Ff be the space of all functions f(x) defined on the interval p = [a,b]' satisfying a 

Lipschitz condition with constant L under the metric doo and satisfying f(a) = O. Then 

IplL + 0(1) 
c 

(6.2.6) 

21plL + 0 (1), 
c 

(6.2.7) 

where Ipi = b - a. o 
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Definition 6.11 [The Class P:"Z,c] For a given non-negative integer p and Q E (0, 1]' 

set s = P + Q. Then P:''Z,c denotes the space of real fun ctions f defined on [0, p]n all of 

whose partial derivatives of order p satisfy a Lipschitz condition with constant L and index 

Q (6. 2.5), and are such that 

n 

for L:>i:::; p. 

Theorem 6.6 [Kolmogorov, Vitushkin [59, p.86]] 

For sufficiently small € 

i=l 

where A(s, n) and B (s , n) are positive constants depending only on sand n 

(6.2. ) 

(6.2.9) 

o 

This theorem is proved in [59, pp.86ff] and [26, pp .308ffl The constants A(s , n) and 

B (s, n) can not be determined exactly. 

Theorem 6.6 says that one can trade off dimensionality n against smoothness s, thus 

indicating a way of avoiding complexities exponential in t he dimension of the input space. 

The class of Lipschitz continuous functions from IR.n to IR., ie Pi2,c, shall be referred 

t pp,n o as L,G' 

Corollary 6.1 For sufficiently small € 

(6.2.10) 

o 

6.3 Representation of Functions in Terms of Their Level 

Sets 

The main idea in this chapter is a scheme whereby a function of n variables with a domain 

which is a compact subset of IR. can be represented in terms of its level sets. It is first 

shown how this representation works mathematically, and then a simple discretization of 

it is described. Our motivation for this representation is from Arnol 'd [1] . 
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Figure 6-1 : Illustration of Tf and [aU ) for f defined on IR? For this function all levels 
below ai-4 have only one component. Also note that the levels are shown equally spaced 
and finite in number for the purpose of illustration. 

6.3.1 Level Sets and the · Space of Components 

Definition 6.12 [ a-level set] The a -level set of a function f : D -; R is defined by 

6. 
loU ) = {x : f (x ) = a}. (6.3 .1) 

If dim D = n, dim loU) ~ n - 1. Each set la U ) of a different level consists of 

components, [27] (see [1, p.128]) continua that do not intersect each other. That is loU ) = 

Uj c;a) and c;a) n C1a) = 0 for j =I- k. Denote by Tf the space of components of all the level 

sets of f. These concepts are illustrated for a function in two dimensions in figure 6-1. 

Theorem 6.7 [1, p. 129] 

The real continuous mapping f: A -; lR., such that A is a continuum, is the product of 

two continuous mappings, a monotone mapping t: A -; Tf , where T f is the space of com­

ponents of f, and g: Tf -; lR.. under which the counter image of every point is of zero 

dimension. o 

A topological space A is said to be a continuum if it is compact, complete and path­

connected. A continuous mapping is said to be monotone if the counterimage of every 

point is connected. Before continuing, note that since f is continuous and A is compact , 

ran f is compact. Furthermore if A is connected then ran f is connected (i.e. a closed 
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interval in JR). 

Consider the space of components Tf of the level sets of !. The mappings t and 9 may 

now be defined in a natural way: 

t(x) ~ c~a) where x E c~a) 

g(c~a)) ~ a 

(6. 3.2) 

(6.3. 3) 

Remark 6.2 The proof of this theorem may be interpreted as showing that any contin­

uous function on a continuum may be represented exactly in terms of it's level sets. 

Proof. The theorem will be proved by firstly defining a metric on Tf , thus inducing a 

topology on Tf. It will then be possible to prove continuity of t and g, that t is monotone, 

and that g-l(x) is of zero dimension. 

Note that c, an element of Tf will be considered as a point in Tf and a subset of A 

with no change in notation. The particular sense of c being referred to will be clear from 

the context. Also, note that whereas c~a) denotes the itk component of la, Ci (without the 

(a) superscript) denotes the itk (in some other indexing) component out of all the possible 

components of all the level sets. Two given components Ci and Cj need not be of the same 

level set. 

Let Cl, C2 E Tf and define the operator d(-,') on Tf by 

d(Cl,C2) ~ inf [max!(x) - min!(x)] , 
C1 UC 2 <;; F<;;A zEF zEF 

(6 .3.4) 

F ccmnected 

where the term in brackets is known as the oscillation of ! on F. Note that the infinum 

in (6.3.4) is taken over F, a connected superset of Cl U C2· It is obvious that 

(6.3.5) 

and that d(Cl ' Cl) = 0. In order to prove that d(·,·) is in fact a metric we need to show 

d(Cl ' C2) = ° => Cl = C2 · 

If g(ct} =1= g(C2) it is obvious that d(Cl, C2) =1= 0, so the only case we need to deal with 

is when Cl and C2 are disjoint components of the same level set, c(a) . As Cl and C2 are 

disjoint, there must exist points x E F such that ! (x) =1= a, hence the oscillation over 

F must be non-zero. Thus the only case in which d(Cl' C2) = 0 is when Cl and C2 are 

connected components of the same level set. By the definition of a component of a level 
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set this means that Cl = C2· Thus d(., .) is a metric on Tf . 

Since f is continuous, for all c > ° there exists a 8 > ° such that, if y E B (x,8), 

then f (y) E BU (x),c/2). This implies that f has oscillation less than con B (x,8). ow 

consider Cl and C2 passing through B (x, 8). Then d( Cl , C2) < c. Let C1 be t( x) and C2 be 

t(y) . Then for all y E B (x, 8), t (y) E BU (x), c), which establishes the continuity of t. 

Consider Cl , C2 E Tf , such that d(Cl' C2) < c. Then for Xl E Cl and X2 E C2, If (X l ) -

f (X2) I < c as otherwise the oscillation on F ~ Cl U C2 would be greater than c. This 

establishes continuity of g, as g(Cl ) = f (Xl) and g(C2 ) = f (X2). 

We now consider the counterimage of f , thus showing monotonicity of t. The coun­

terimage of any element of Tf under the mapping t is c, a component of a level set of f . 

By the definition of a component of a level set of f , C will be connected and hence t is 

monotone. This establishes the theorem. • 
6.3.2 €-Approximations Based on Theorem 6.7 

Consider now c-approximations based on the representation of theorem 6.7 Since dom f 

is assumed to be a continuum, ran f will be a closed interval which can be mapped iso-

metrically to [0,1]. Thus the following development is quite general. 

Definition 6.13 [ a-above set] The a-above set of a function f is defined by 

Io.U) 6. {x: f(x ) 2: a} 

= U IfJU)· 
fJ?o. 

(6. 3.6) 

(6.3.7) 

Obviously the above-sets will also consist of components Cj U ), i.e. to. U) = Uj Cj U). 

Definition 6.14 [N-uas representation] Let a(N) g {al , ... ,aN} where ai = i t./ 
be a set of levels over [0, 1] (a uniform quantization over [0,1]) and let D be a compact 

interval in JRn
. Then the N-uniform above set representation of f: D -+ [0,1] is given by 

(6.3. ) 

where I s is the indicator function of a set S . 

The ~ term arises in (6.3.8) because the error is in terms of absolute values: the 

approximation is allowed to be greater than or less than the function f . The inter-level 

spacing, or step-size, 1r shall be referred to as So.. 
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Lemma 6.1 IN(x) of (6.3.8) is an c-approximation of f : D -+ [0, 1] in the sup-metric 

if Sa ::; c. 0 

Proof. By Theorem 6.7 and the construction of 1 N( x), it is apparent that 11 N (x) - f (x) I ::; 
Sa for all xED . Setting Sa ::; c proves the lemma. • 

6.4 A Neural Network c-Approximation Based on Lemma 

6.1 

In this section a new neural network architecture is proposed, based on representing a 

function by N equally spaced level sets. Such an AN will be denoted a L 2E:,-N -AN . 

The main result of this chapter is: 

Theorem 6.8 

The number of nodes needed in a L2E:,-N -ANN in order to represent any f E pp,n to L,G 

within Cr in the sup-metric is bounded above by 

(6.4 .1) 

(6 .4.2) 

o 

6.4.1 The Architecture of the Networks we will Consider 

We now develop an ANN architecture based on N uniform above set representations which 

can be used to approximately represent functions f E Pf:~. The type of architecture we 

adopt is shown in figure 6-2 . The idea is that the neural net N i approximately represents 

lai (1) by la, (1) where (Xi is as in definition 6.3.2. The function f is then approximated by 

(6. 3.8). Each subnet NNi is a two layer net with Heavyside step functions as activation 

nodes. The first layer implements a number of hyperplane decision boundaries ; the second 

layer forms convex polytopes by and-ing the outputs of the first layer ; and the third layer 

forms general regions by or-ing the outputs of the second layer. 

The output of the Neural Network may be precisely stated as 
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Figure 6-2 : The Neural etwork architecture we adopt. 

N ./ ' ) 1/( ' ) ( ) 
j N (x) = _1 + ~ S V2 /\1 v(i) sgn ;.... w(i) x _ O(i) 

2N ~ a 1.k ~ k .q q k 
i=1 j=1 k=1 q=1 
~ '-v-" ..............-' , 

last third second first 

(6.4. 3) 

where x = (Xl> ... ,Xn)T, wi~~ E 1R. and v;~l E {l,a,-l}. We denote ANNs described by 

(6.4.3) as N-uniform above-set ANNs (N-ANNs). 

6.4.2 The Errors Incurred in the iNN Approximation 

Consider the errors incurred by the approximation (6.4.3). Denote by ca, the error incurred 

by approximating the ith above-set by the net N Ni. 

(6.4.4) 

where A(i ) is the number of components in the above-level-set Z(a;l(J), c}a;l(J) is a compo­

nent of the above-level-set , and cJail (j) is the approximation to this (actually the boundary 

of cJa')(j), the approximation to the ph component of the O'i-above-set). ote that the 

distance used to define ca, is not a metric (it does not satisfy the triangle inequality). 

However it is the distance we want because symmetrizing it (as in the Hausdorff metric 
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[19, p.166]) would mean we do not make use of the fact that the Lipschitz condition is 

defined in terms of doo (x, y): the point is that it is the minimum distance (in the doo 

sense) from y E c}O')U) to a given x E c}O' )U) that determines the maximum possible 

allowable representation error (because of the Lipschi tz condition). 

The quantity co; is the maximum error (over all components) between the approximate 

and the true above-sets. This error is defined assuming there is no error involved in forming 

the half-spaces in the first layer of each subnet. If finite precision is used for representing 

the weights wk~~' then obviously an extra error is incurred. This is called the hyperplane 

error and is denoted by Ch. 

where Hand iI are given by, 

H 

iI 

6. -
Ch = sup d(H, H) 

xE[O,pjn 

6. 
H w ,8 = {x :w .. . x - e = O} 

H.riJ ,9 = {x: w ... x - B = O}, 

and the distance between the hyperplanes is 

d (H, iI) ~ sup inf II x - y 1100 . 
y EH xEH 

(6.4 .5) 

(6.4.6) 

(6.4.7) 

(6.4 . ) 

Assume the same number of bits are used to represent all of the weights in the first layer. 

The quantity d(H, iI) may be interpreted as the maximum distance between the two 

closest points on the hyperplanes. 

Hyperplane Error Resulting From Inaccuracy of Weights 

Consider the problem of approximating a given hyperplane, H, by iI on the n-dimensional 

cube J = [0, p]n. Assume that II w 11= 1, and that II w II is close to 1. Define Cw E ffin, the 

error in the weights, and C8 E ffi the offset error by 

6. 
Cw w - w 

6. e - B. 
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Lemma 6.2 For an approximation if to the hyperplane H to be within Ch of H 

over all [0, pln, it is sufficient that the errors cWi (i = 1, ... , n) and c9 satisfy 

(6.4. 11) 

o 

Proof. Consider first the problem of finding the distance to the closest point on H from 

a given point y E if. If we were to use the Euclidean norm, II . 112, it may be seen that 

this distance will be given by the radius of the sphere centered on y, and tangent to the 

hyperplane H, intersecting it at the point Xo' Furthermore the vector Xo - Y will be 

normal to H and thus parallel to w. Note that for all x, II x 1100::; Vn II x 112' Hence , 

taking account of this factor, we can use the Euclidean norm to bound d (H , if). We have 

for any y E H, 

inf II x - y 112 
xEH 

I t I 

where t E lR satisfies 

tw = Xo - Y 

and hence 

( T ) T T t w . w = w . Xo - W . y. 

Recalling that II w 11= 1 = v'wT . w we have 

Therefore we find that 

t B - yT. w 

- T c9 + B - y . tV - y . Cw 

d(H,if) < Vnsup I C9 - Y 'Cw I 
yEH 

< Vn sup I C9 - Y . Cw I . 
yEJ 

(6.4 .12) 

(6.4 .13) 

(6.4.14) 

(6.4 .15) 

(6.4.16) 

Note that the supremum in (6.4.1 6) will be attained when y = (p, ... , p)T, and the weight 
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errors are of similar sign, and of opposite sign to the offset error. Hence the following 

inequality is obtained: 

(6.4. 17) 

It is evident that if equation (6.4.11) is satisfied, then d (H , if ) S; Ch , and we have estab­

lished the lemma. 

• 
Corollary 6.2 Consider the special case where the elements of the weight error 

and of the offset error have similar magnitude, so that Cw = ce = cw, for i = 1, .. . , n 

(where c; = (CW1' ... , cwJ), then the hyperplane error will be less than Ch if 

Cw < 
fo(l + np) 

(6 .4.18) 

o 

Effects of Errors on the Step Size Sa 

Let 

(6 .4.19) 

denote the total error in the LaU) approximations to IaU ) and use Cr to denote the 

representation error: 

£::,. I - N I Cr = sup f (x) - f (x) . 
xE R 

(6 .4.20) 

Lemma 6.3 Consider f E Ff:~. To achieve a given representation error, Cr (6 .4.20), 

Sa must satisfy the relationship 

(6.4.21 ) 

o 

Proof. By the Lipschitz condition on f the maximum error in j(x) caused by an error CI 

in x is L CI (i.e. II x - x 1100= cl) . The error caused by the quantization process is at most 
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~ (and not Sa because the quantizat ion error can be of either sign) . Thus the total error 

in j is Cr = ~ + Lc/. If Sa is set less than or equal to 2(cr - Lc/), t hen (6.4.20) will be 

met. • 
ote that errors in the hyperplane positions could cause the approximations c(a , ) of 

J 

(a,) t h " ". th b f' li f h h em 0 ave gaps III em ecause 0 mlsa gnment 0 t e yperplanes . However we 

can ignore any such errors as long as (6.4 .20) is satisfied. In any case, if we share t he 

hyperplanes as much as possible, "gaps" will rarely occur. 

6.4.3 Construction of the "Worst Case" f E Ff:~ for an N-ANN 

Consider now t he number of nodes necessary in aN-ANN in order to achieve an Cr­

approximation of any f E Ff:~· We do this by considering the worst function to represent 

in the given class . 

Arrangement of the Hyperplanes 

Consider the choice and arrangement of the hyperplanes in the first layer. Observe that 

if it is possible to share hyperplanes between the subnets NNi , then a reduced number of 

nodes will be needed in total. The structure which allows the greatest degree of sharing 

has an architecture in which the first layer is common to all of the subnets N i. The 

hyperplanes in this first layer are arranged to form a regular 2c/-Iattice, £2. , on [0, pln. 

There are l ~ J hyperplanes H U
J 

,(J parallel to each of the (n - 1 )-dimensional hyperplanes 

HUj,o. This leads to a total of 

III = l npJ 
2c/ 

(6.4.22) 

hyperplanes and hence III nodes in the first layer. The approximations la, (J ) to la, (J ) will 

be finite unions of n-rectangular regions formed by the 2n-fold intersections of the half 

spaces formed by the hyperplanes. 

Note that if arbitrary orientations are allowed it is easy to show (using [3, p.27, eq.57]) 

a lower bound for the number of 2c/-distinguishable hyperplanes is (Ie;) n , so there is far 

less opportunity for sharing hyperplanes in that case. Since, as shall be seen below, the 

number of nodes in the first layer is dominated by the number of nodes in the the second 

layer, The lattice structure is preferred and is assumed from now on. We will denote such 

ANNs as £2., -N -ANNs. 

Two plausible worst case functions are now constructed and the costs associated with 

each determined. 
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-aN --------:------ ------ r--------- r--""""'"'" ----~---

fA--"" 
€r ________________________________________ ~ 

€r 

aN-l --------------- ----............... ----~ ---- hr.,.."..". -- __ _ 

Figure 6-3: The function fA. Note that boy = er - ~ and thus using (6.4.21) wit h 
equality, boy = Lei and thus 6 = 2el . 

Case A 

-

The idea here is to construct a function fA which swings above and below a certain 

level a ..; "as fast as possible" in the sense that the maximum number of c/-distinguishable 

components of la, (J ) are created. The idea can be easily seen in one dimension in figure 6-

3. 

The number of c/-distinguishable components of IaN (J A) IS l fz; J n, and since each 

component is an n-rectangle (and thus the (convex) intersection of half spaces defined by 

hyperplanes in £2tl)' the number of nodes in the second layer is 

vt = (N - 1) + l..LJ n , 
4c/ 

(6.4 .23) 

where the (N -1) term accounts for the single component (comprising the whole domain 

[O,p]n) OfIa,(JA), fori = 1, .. . ,N -1. Note that since 8 = 2c/ (see figure 6-3), there does 

not exist a function of this general form with more components. 

Case B 

The idea behind case B is to construct a function f B which swings up and down as far 

as possible as rapidly as the Lipschitz condition allows, thus crossing as many levels ai as 

possible as often as possible. In one dimension f B is as shown in figure 6-4 

Obviously each "cycle" (in each dimension) is of length 4c/ + i = 6.. There are N 

components of the ai-above-sets la, (J B) formed in each cycle. Noting that partial cycles 
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1 

fB 

o 

Figure 6-4: The function f B when n = 1. 

are also possible, the total number of components for all levels ai, i = 1, .. . , N formed by 

f B is l N (40,+2/ L) n J, and since all the components are n-rectangles, this is the number 

of nodes needed in the second layer for case B: 

. v: = IN ( P 2) nJ . 
4c:/ + L 

(6 .4 .24) 

Lemma 6.4 Case A is worse than case B [or all reasonable values of Sa and c: / . 

That is case A requires more nodes than case B. o 

Proof. Let vA and vB denote the total number of nodes for cases A and B respectively. 

From (6.4.22), (6.4.23) and (6.4.24) 

vA = - + (N - 1) + -np ( p )n 
2c:/ 4c:/ 

(6.4.25) 

and 

B np + N ( P )n 
V = 2c:/ 4c:/ + i (6.4.26) 

and the constraint that Sa = 2(C:r - c/L) . Setting c/ = ~7; with ~ E (0,1) implies 

sa = 2cr (1 - ~). This means that 

A np 1 ( pL )n 
v = 2~cr + 2cr(1-~) - 1 + 4~cr (6.4.27) 
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and 

v - + -----:-----,-B npL 1 (pL)n 
- 2~er 2er(1 - 0 4~er + 2 

(6.4 .28) 

Thus vA = 0 ( (4{~r f) and vB = 0 (2£r(i-O (4~!':+2 f)· Thus unless 1 - ~ « 1, 

vA » vB . 

How close ~ has to be to 1 in order for this not to hold can be seen as follows . If ~ ~ 1, 

then 2 + 4~er ~ 2 (since er is small), and t hus B is worse than A only if 2£r(i-
O 

> (2~)n . 

That is if 

(6.4 .29) 

• 
Lemma 6 .5 The number of nodes, vA(m), is minimised by setting el = (1-2-m)er/ L, 

where m = ~ log (ner (if;) n). In this case 

(6.4 .30) 

o 

R emark 6 .3 Theorem 6.8 is an immediate consequence of this lemma. 

P roof. Note that while it is possible to differentiate (6.4.25) with respect to e / and set to 

zero, the resulting equation is not solvable algebraically. Instead note that the two effects 

due to terms (1 and 3) and 2 in (6.4 .25) , respectively are monotonic. Set 

(6.4.31) 

and thus 

(6 .4 .32) 

Now determine the relative decrease (from m to m + 1) of the first and last terms, and 

the relative increase of the second term of vA(m). When these are roughly the same in 

magnitude, we must be near the minimum of vA as a function of e/. Substituting for el, Sa 

in (6.4.25) gives 
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(6.4 .33) 

Note that the first term is changing slowly with m in comparison with the second and 

third terms. Thus we find the value of m for which the decrease in the third term is 

approximately the same as the increase in the third term. 

ote that 

( 2'" )n '" (2"'+1)n _ ( 1 )n '" ( n ~ ( 2'" -1 '" 2"" - 1 + 2'" '" 1 + 2"') - X m). 

Now x(m + 1) - x(m) = (1 + 2",+1) - (1 + 2';,.) = 2;;;4\' Thus the third term decreases by 

2':+1 (ff;) n as m goes to m + 1. 

The second term is 2::1 -1, and we will ignore the -1. Obviously as m goes to m+ 1 

b 
2'" 2",-1 2",-1 this increases y - = - ,-. 

Er '"'r 

To determine m such that these relative increases are the same, solve 

2m
-

1 
_ n (PL)n 

~ - 2m +! 4cr 

for m. Rearrangement of (6.4.34), followed by taking logarithms gives 

(6.4.34) 

(6.4.35) 

We can now substitute the value of c/ and Sa given by (6.4.35), (6.4. 31) and (6.4.32). 

First we rewrite (6.4.33) as 

(6.4.36) 

Noting that (1 + 2-m)n ~ (1 + n2-m), we can thus substitute to obtain 

(6.4.37) 
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Neglecting the (very small) second term we can thus write 

(6.4 .38) 

(6.4 .39) 

• 
6.4.4 The Bit Complexity of an L2.,-N-ANN €-representation 

Theorem 6.8 would appear to be one of the first explicit upper bounds on the number 

of nodes needed by a neural net to represent a function to within a specified accuracy. 

However, it is not just the number of nodes that determines the complexity of a net. A 

more reasonable idea is to determine the number of bits required to specify a net which 

represents any function from a given function class. Clearly some measure of information 

required to specify the network is needed, and the number of bits needed to specify any 

given net from a specified class seems appropriate. 

Theorem 6.9 

The number of bits needed to represent the weights of an £2.,-N -AN in order to represent 

an arbitrary f E Ff:~ to witbin Cr in the sup-metric is 

(6.4.40) 

o 

Proof. Recall that the number of nodes required in the net is given by (6.4.1) , now 

calculate the number of weights in the net. The number of nodes in the ith layer of the 

net is denoted IIi, and the number of weights in the ith layer is denoted /-Li. 

The number of weights in the first layer is given by the number of nodes in the first 

layer times the number of inputs to each node. However, since the £2., lattice structure 

has been adopted, all but one of the weights for each node will be zero. Thus there will 

be one weight and the threshold for each node, giving a total of 

(6.4.41) 

124 

..... 



Since it is possible for any node in the first layer to be connected to any node in the 

second layer, J.L2 will be given by 

(6 .4.42) 

From corollary 6.2, Cw = ch/( jn(l +np)). Recalling that II w II::; 1, in order to achieve 

a hyperplane accuracy of Ch, it is necessary to have flog fo(!~np)l bits per weight. This 

gi ves a total of 

f3I = flOg jn(l + n p
)l2n l~J 

Ch 2cI 
( 6.4.43) 

bits for the first layer. 

To calculate the number of bits per weight in the second layer, observe that the weights 

on all the possible VIV2 interconnections between the first and second layer need to be able 

to take one of the three possible values {l,O,-l}. There is a 1 representing the output 

from S(h), a ° if there is no connection, and a -1 if the hyperplane is actually -S(h). 

This last case is necessary if there is to be the maximum possible sharing of hyperplanes 

that the lattice .c2~1 allows. Thus f32, the number of bits required for the second layer is 

given by 

f32 = (flog 31 VI + threshold term) V2· (6.4.44) 

The threshold term is the number of bits needed to represent the threshold (M - ~) 

required to implement the logical "or" in (6.4.3)). While in general M could reach VI, for 

the function fA, M is clearly bounded above by 2n for every node. In order to represent 

(2n - ~) ± ~, flog(4n - 1)1 bits are required. 

Thus the total number of bits required for the second layer is 

f32 = (2n l:cIJ + 2 + Pogn1) ((N + 1) + l:c1f)· (6.4.45) 

The total number of bits required f3 is now given by f3I + f32. In order to calculate the 

asymptotic upper bound, drop the floor and ceiling operators and write 

( 6.4.46) 

Let 

(6.4.47) 
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and 

(6.4.48) 

and let N = .: = 2(£r~L£,)' Consider what value of Ch makes tl ::::: t2. Solving 

log (~) n 2
p = np (~)n 

£h 2c/ C/ 4c/ 
( 6.4.49) 

for Ch gives 

Ch = vn n p2 
_[~ (...E....)n] 

n 4£1 
(6.4 .50) 

which is a very small number. 

Hence as long as Ch is small enough, but not as small as (6.4.50), then t2 > tl, and 

hence 

f3 = 0 (np [ 1 + (~)n]) 
C/ 2(CT - Lce) 4c/ . 

(6.4.51 ) 

It is now possible to effectively ignore the Ch error. Recalling the argument used at the 

end of Section 4, (6.4.51) can be roughly minimised by setting C/ = (1 - 2-m )y and 

Sa = 2-m +I cT) where m = ~ log' (ncT (#;) n). Upon substituting into (6.4 .51 ) 

(6.4.52) 

• 
R e mark 6.4 Note that (6.4.40) is suboptimal by a factor of ~ when compared with 

1i£(Ff:~) (see (6.2.10)). 
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6.5 Conclusions 

In this chapter we have calculated the number of nodes needed to represent an arbitrary 

function from the class of multi-dimensional Lipschitz continuous functions over a com-

pact domain. An ANN architecture has been proposed, taking advantage of the work by 

Kolmogorov which proves that any function may be represented in terms of its level sets. 

We have pointed out the connection between the number of bits required to represent the 

parameters and the c-entropy of the function class from which the function to be approx­

imated is drawn. The scheme proposed is thus seen to be close to optimal, in the sense 

that the bit representation of our scheme is only a factor of ~ more complicated than 
~r 

the best possible representation. It should be noted that all of the results are for approx-

imation in the oo-norm, or supremum metric. From a statistical point of view the L2, or 

weighted L2 metrics are of more interest as they lead naturally to a least squares approach 

to the problem, with weightings according to the distribution of the data. However such 

a treatment of the representation problem is beyond the scope of this work. 
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Chapter 7 

Conclusions 

7.1 Overview of the T hesis 

The thesis begins with a factorization approach to the stabilization of nonlinear systems. 

The problem is first considered via an input-output approach, and then through a state 

space formulation, thus demonstrating that system identification is also relevant. . An 

initial study of an approach using Artificial Neural Networks (AN s) within a Recursive 

Prediction Error (RPE) algorithm is presented. This in turn leads to an investigation of 

the representation power of AN s. 

Nonlinear generalizations of the definitions of right and left coprimeness are presented. 

It is demonstrated that well-posedness and stability of the system is sufficient for the 

existence of these factorizations . The connections between matrices of coprime factors 

and the stability and well-posedness of the system are also studied. The stabili ty of these 

matrix operators is seen to relate to the stability of the system. Contrary to the linear 

case, it is found that the stability of the inverses of the matrices of lcfs and refs may not 

be simply related. This is due to the requirement of superposition in deriving many of 

the left factorization results. Thus it is made evident that it is necessary to distinguish 

between the right and left factorization approaches to the general problem, 

Past approaches have taken a right factorization approach using the Bezout identity. 

These have ultimately required the assumption of linearity in the plant, controller, or both 

in order to derive results similar to those of the Youla-Kucera parameterization for linear 

systems. This is avoided here by taking a left factorization approach, then differential 

boundedness assumptions on the left factors are required. 

The linear results are generalized to give the class K Q of all controllers which stabilize 
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a given plant, and dually the class G s of all plants stabilized by a given controller. A 

generalization of Linear Fractional Mappings gives a bijection between KQ and the class 

of all stable operators Q . Dually, a bijection between G sand S is given. These classes of 

plants and controllers are then combined to prove that the system {G s, KQ} is stable if 

and only if the system {S, Q} is stable. Two nonlinear robust stabilization results follow. 

The preceding results are derived via left factorizations, so the only regulari ty assumptions 

required are that the factors be differentially bounded. 

Having conducted a detailed study of the problem from an input-output point of view, 

state space results are then presented . Note that once realizations for the factorizations 

have been given, the theory developed from the input-output point of view may be applied. 

Hence the problem of deriving these realizations is considered. It is shown that right 

coprime factorizations may be derived when a solution to the smooth stabilization problem 

may be found . A static stabilizing state feedback map is used to give the right factors of 

the nonlinear operator. This leads to an approach to the design of a stabilizing controller 

for the plant. By assuming that a state estimator may be designed, the stabilizing state 

feedback map may be used to provide a stabilizing input to the plant. The controller thus 

constructed is seen to have a right factorization. 

Obtaining left factorizat"ons for a given operator is seen to be less tractable. A spe­

cialization is presented which allows the construction of a left factorization when the plant 

is augmented by a unity feed-through term. 

Completing the first part of the thesis on the factorization approach to the stabilization 

of nonlinear systems, a right factorization of the universally stabilizing controller due to 

Nussbaum is presented. 

The requirement for an accurate model in deriving a state feedback map demonstrates 

the need for a system identification scheme. Thus the second part of the thesis is motivated, 

giving an approach to the nonlinear system identification problem. The power of Ljung 's 

theory in giving the convergence of RPE schemes when the parameterization is nonlinear 

leads us to use such an algorithm for the nonlinear problem. ANNs have been seen to 

give a convenient representation of the class of all continuous maps between real vector 

spaces, hence they are used for function estimators within the identification scheme. It is 

demonstrated that the algorithm presented satisfies the convergence requirements of the 

theory, and thus may be used for the identification of some nonlinear systems. 

The use of ANNs as function estimators in such a scheme leads us to consider exactly 

how large a network must be in order to adequately estimate a given function. An ar-
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chitecture is proposed based on the idea of representing a function in terms of its level 

sets. This structure is easily analysed, giving the n~mber of nodes which are required to 

estimate any function from a given function class. 

7.2 Further Research 

There is scope for future work arising from the results presented in all the areas stud­

ied. This research may be divided roughly into the areas of factorization theory, RPE 

convergence when using ANN as estimators and ANN representation theory. 

7.2.1 Coprime Factorizations 

There are many areas for further research continuing from the work presented in chapters 

2 to 4, in terms of extending the existing factorization theory and in applying the theory 

which has already been developed. 

Most of the work developed in these chapters may be considered to apply in either 

discrete or continuous time as the proofs use techniques which are independent of the 

input and output spaces. This requires some formalization. Specifically, some of the earlier 

results due to Hammer, presented in Chapter 2, have no continuous time analogues. Before 

the nonlinear factorization theory can be considered complete, continuous time versions 

of these results will need to be proved. 

The proofs of the results of Chapter 3 do not appeal to the definition of left coprimeness 

presented, but instead appeal to the use of a Bezout identity, or the stability of the inverse 

of the matrix formed by the left factors of the plant and controller. It is not clear whether 

a set-theoretic, or algebraic definition should be used. Also, it is not known if there exists a 

set theoretic definition for left coprimeness which is equivalent to the algebraic expressions 

which are necessary to the proofs. 

To date it has not been possible to develop a dual result to Theorem 3.4, p. 50 using 

right factorizations. This may now be possible to prove using the generalization of linear 

fractional maps of Section 3.6. It is not clear what additional restrictions on the right 

factors will be necessary to prove such a result , but it is likely that a condition such as 

differential boundedness will be required. This issue has become more important since the ' 

results of Chapter 4 have shown the ease of constructing right factorizations. 

The foremost problem in the state space approach to the factorization theory lies 

in developing techniques for obtaining a left factorization of a general nonlinear system. 
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Results quoted solve the problem for a special case. This indicates that there may be a 

more general approach to deriving left factorizations. 

As the linear results rely on adding the states of the factors to prove that the plant 

G is e<l,uivalent to M- 1 if, it would appear that some form of decomposition of the state 

equation of the plant may be appropriate. It may be possible to apply the results of Center 

Manifold Theory in this case. An approach which may give some intuition for the problem 

is to give expressions for the factors M and if, and then investigate the properties of the 

operator M- 1 if thus formed. 

Another approach to this problem is to consider it in terms of the design of a stable, 

stabilizing, post-filter for the plant. Once obtained, such an operator gives a candidate 

for M, and thus if = MG. This may be possible through the design of a stable state 

estimator. 

Supposing that the problem for deriving left factorizations for the plant and controller 

is solved, it will still be necessary to ensure that these maps are differentially bounded. 

Thus it will be necessary to derive state space conditions which ensure differential bound­

edness of the operator. An alte.rnative is to derive a Lipschitz constant for the operator, 

based on the realization. This appears possible for discrete time, stable systems, but a 

general approach is not clear. 

State space techniques may offer a solution to the problem mentioned earlier of deriv­

ing a more complete theory based on right factorizations. Once the right factorizations 

have been expressed, algebraic techniques might give rise to more general results. Initial 

investigations that I have carried out into the area yield an algebraic requirement on the 

output maps of the plant and controller. There exists a simple example for which this 

requirement is not satisfied, so it is clear that some restrictions on these output maps will 

be required. 

The greatest scope for research arising from this work lies in the application of the 

techniques developed to other problems. Part of the motivation for developing this theory 

was to provide a method for solving problems in Robust and Adaptive Control. Excluding 

the robust stabilization results presented in Chapter 3, the application of these results has 

yet to be considered. 

Another area of application for this theory is in providing an approach to solving the 

nonlinear regulator problem. 
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7.2.2 Nonlinear System Identification via ANNs 

The work presented on the identification problem represents only preliminary studies. 

There are many further cases which could be examined in order to develop an under­

standing of the general problem. For instance, it is possible to represent the state and 

output relations by fewer neural networks. These model architectures have yet to be 

investigated, so it is not clear what benefits such an approach may yield. 

The bounds on the Lipschitz constants derived for the observer equation merit further 

study. The approach taken was somewhat naive, and it may be possible to further tighten 

these bounds. This would have the effect of increasing the domain of exponential stability, 

expanding the range of systems which may be estimated. 

Additionally there is scope for further simulation studies. Due to the algebraic com­

plexity of the problem, Monte Carlo simulations could be the best way to examine the 

properties of the algorithm presented. 

It is not clear how the convergence requirements presented in Chapter 5 should be 

best applied, or if they are too restrictive for the case we are studying. Currently in 

order to guarantee convergence of the proposed scheme, an exponential stability domain 

must be derived. This involves taking second derivatives of the output of a number 

of neural networks, yielding highly complex equations. A more t horough investigation 

of Ljung 's theory is indicated. Through such a study less restrictive conditions on the 

parameter vector may be obtained, potentially increasing the domain of application for 

this algorithm. 

It is apparent from the simulation studies carried out so far that substantially different 

weight sets can give rise to the same input-output map. As yet it is not clear how this 

affects the convergence properties of the algorithm. 

Another difficulty is determining the level of accuracy with which we have to estimate 

the state equations. For feedforward equations, the effect of taking an approximation is 

easily seen and understood. For a nonlinear dynamical system it is not clear that having 

a given level of approximation for the state and output equations guarantees a finite error 

in the output. 

Note that the proposed scheme acts as a dual parameter and state estimator. It may 

be possible to use this scheme to derive a nonlinear state estimator, as is required in the 

design of the candidate controller of Chapter 4. 

The application of the results to an adaptive scheme has not yet been considered. We 
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have the option of combining this wit h the factorization results obtained so far to guarantee 

stability for the system. Our algorithm could be used in an adaptive Q, estimating the S 

which represents the difference between the actual and modelled plant . 

As a method for identifying unstable plants, it may be possible to use the ident ificat ion 

scheme presented to estimate instead the stable factors of the plant . 

7.2.3 ANNs and Functional Representation 

The work that has been completed leaves a number of unanswered questions and problems 

to be investigated. In this chapter only the use of a piecewise constant activation function 

has been considered, it is conceivable that there may be some benefit derived from using a 

piecewise linear, or quadratic activation function instead. This would generalize to show 

the possible benefits to be derived from considering a smooth activation function . Such 

results may accommodate the calculation of the number of nodes required to represent an 

arbitrary function from the class of functions which has a Lipschitz condition on the firs t 

or higher derivatives . A first step would be to prove that it is possible to attain the same 

bound for the number of nodes required to achieve a given level of approximation using 

smooth activation functions in the nodes of the proposed architecture. 

Additionally the results given account for the worst case in the class of functions being 

represented. If a probability measure is defined on this functional class , it may be that 

the average number of nodes required to represent a member of the class is significantly 

less than the bound given. The effects of the probability measure used, and in fact what 

measure would be appropriate have not been studied. 

The results presented are entirely constructive and theoretical. Examples have yet 

to be constructed to illustrate that this scheme will work. Additionally the problem of 

learning has been left untouched. As the construction is based on level sets of the function 

being estimated it seems that the algorithms developed for learning decision regions are 

appropriate. 
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Appendix A 

A.1 Factorizations of KQ 

It is shown that for the linear case, the parameterizations based on the left and right 

factorizations of the original controller give the same controller for each Q. That is , it is 

proved that 

VQIUQ 

(V + Qin-I(U + QM) 

First consider the Bezout identity 

Substituting into the left hand side of (A.I. 1) 

Note that (I + DC)-1 D = D (I + CD )-I 

U V-I 
Q Q 

(U + MQ)(V + NQ)-I 

VQIUQ = M(U+QM) (I +N(U+ QM)f1 

(MU + MQM) (I + NU + NQM)-1 
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Reversing equation (1.1.18) gives 

Therefore 

Substituting into (A.1.2) 

Which is as required. 

[ M U] [ V_ -_u] = I 
N V -N M 

MU UM 

VM - NU = I 

(UM+MQM) (VM+NQMf1 

= (U + MQ)(V + NQ)-l 

= U V- 1 
Q Q 

A.2 Stability of {G s, KQ} via left factorizations. 

[ 
V~ _~Q ]-1 

-Ns Ms 

Note that the only point at which linearity was used was in stating 

[ 
-QN QM 1 [0 Q 1 [v -U l· 
sV -SU - S 0 -N M 

141 

(A.1.3) 

(A.1.4) 

• 

(A.2.5) 

-



Hence it would seem that it is possible to consider that only the operators Q and S are 

linear, while the factorizations of the plant and controller, and thus G and K are nonlinear. 

A.3 Stability of {G 5 , KQ} via right factorizations. 

[ 

Ms -UQ ]-1 
-Ns VQ [ 

M+US _U_MQ] - 1 

-N-VS V+NQ 

{[: -:]- [-:: :~] r 
{[: -:]- [: -:][ ~ ~] r 

_Q ]-1 [ M 

I -N -:f 
Note that the only point at which linearity was used was in stating 

[

-US 

VS 
MQ 1 [ M 

-NQ - N -: ][ ~ ~] 

(A.3 .1 ) 

(A. 3.2) 

(A.3.3) 

(A.3.4) 

(A.3 .5) 

Hence it would seem that if the plant and controller are linear, the operators Q and S 

may be nonlinear , and the stability result will still hold. 
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Appendix B 

B.l Differentiating the output of an A NN 

As was seen in Chapter 5, it is important to be able to guarantee that it is possible to 

differentiate the output of an AN with respect to the input and the parameter vector. In 

this appendix we detail the procedure for calculating the derivative of a the feed-forward 

neural network of Section 5.3.1, with sigmoid given by (5.3.3), with respect to the input 

or parameter vector. 

Consider that the AN has the structure detailed in Section 5.3.1, and has N layers, 

not including the input layer. Where the map from the inputs x to the outputs y, which 

is dependent on the parameter, 0 is denoted, 

y = G(O,x) 

Recall the definitions of the inputs and outputs to layer i, ri and si, and the weights 

matrix Oi, giving the map from the output of layer i -1 to the input to layer i, the precise 

definitions being given in (5.3.4)-(5.3.8). 

The method for calculating the derivative of G(O,x) with respect to 0 and x is now 

detailed. Note that as the ANN is defined recursively, with each layer defined in terms of 

the outputs of the previous layer and the weights, the chain rule may be applied to give 

the derivative of the output with respect to inputs and weights . Firstly, the derivatives of 

si with respect to i-I and Oi are given. Note that the sigmoid of (5. 3.3) is used, giving a 

simple form for the derivative of Pi· 

(B.l.1) 

{ ~~- I ,l = j 
(B.l.2) 

,l:j:j 
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,j = k 
(B.1.3) 

,j =/: k 

Hence the Jacobian of the map si-1 1--+ si, denoted Jl , is a ni x ni-l matrix, dependent 

on si, Oi and is given by, 

P t (B.1.4) 

where ei is the matrix Oi with the final column deleted. Strictly speaking, this matrix 

[

Dia9{s ;(1-S1), ... , s~ (l-S:' o)}] 0 

should be 0" 0', but since the final node in each layer is constant, 

it does not appear important to consider this case. 

The Jacobian of the map Oi 1--+ si, denoted J! , is calculated as follows. First note that 

Oi must be arranged into a vector. The vector 8 i is thus constructed as follows, 

8 i 

Then J! is a ni X ni(ni-l + 1) matrix, which is constructed by concatenating the ni, 

ni x (ni-l + 1) matrices, Tj. 

(J [ 0 0 0 1 Ji = 'Ii T2 ... r:.. i 
(B.1.5) 

The matrix Tj is zero everywhere except the /h row, which is given by 

Thus the derivatives of y with respect to the inputs x and the entire parameter vector 

8 = (81,82, ... ,8N) may be stated as follows: 

8y 

8x 
8y 

80 

(Bo1.6) 

(B.1.7) 

For the particular, 3-1ayer, architecture which is used in Chapter 5, the function G(O, x) 

is given by, 

(B.1.8) 

Hence, using the notation for the derivatives of G(O,x) from Section 5.4, the following 
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expressions for the derivatives of an A N with respect to it's parameter and input vectors 

are derived. 

G1(B,x) [Jilf I J~] 

G2(B, x) = Jilt 

Note that G1 (B, x ) and G2 (B, x) are functions of both x and B. 

B.2 The Lipschit z constant for an ANN 

(B.1.9) 

(B.1.l0) 

Following the development in Section 5.4.2, the need for specifying the Lipschitz constant 

for an AN with respect to its parameter and input vectors becomes evident. In this 

section this problem is considered. Recall that a nonlinear function F : Rn -+ Rm is said 

to be Lipschitz with Lipschitz constant Lp if, 

\;Ix, YERn, IIF(x) - F(Y)II ::; Lllx - YII· (B.2. l ) 

Where the norms II . II are defined on the appropriate spaces. 

First note two properties of Lipschitz functions which are important to the problem. 

1. If two functions, F : Rn -+ Rm , G : Rm -+ Rl, are both Lipschitz with Lipschitz 

constants Lp, La, respectively, then the composite function Go F : Rn 
-+ Rl is also 

Lipschitz, and has Lipschitz constant LpLc· 

2. If we consider the Lipschitz function F as defined above, then the constant Lp puts 

a bound on the derivative of F in the following sense. Let Jp(y) be the Jacobian of 

F evaluated at the point y, so that Jp(y)x is the rate of change of the function F 

at the point y, in the direction x . Then the following inequality holds. 

II h{y)zll 
IIzll < Lp (B.2.2) 

We can view (B.2.2) as giving another definition of the Lipschitz constant for F. 

Lp = sup IIJp(y)xll (B.2.3) 
yER", lIz ll =1 

i. e. we search for the supremum over y of the induced norm of J p(y) . 

Consider an ANN as described in Appendix B.1. To find the Lipschitz constants for 
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G(B, x), use the second definition of the Lipschitz constant (B.2.3), and the expressions 

for the derivatives of the ANN with respect to its parameter and input vectors (B.1.6), 

(B.1.7). Lipschitz constants are calculated with respect to B and x, and are denoted L1 

and L2 respectively. 

An expression for L2 is first calculated. The expression (B.1.7) is regarded as the 

composition of N linear operators. ote that, since 0 < O'(x) < 1 for all x, it is true that 

s~(1 - s}) ::; 1/4, Vi, j. Hence a bound on the Lipschitz constant associated with Jl is 

given by 

(B.2 .4) 

Thus the Lipschitz constant, L2, for the A 

1, .. . , N, is bounded by 

with N layers and weight matrices B" i = 

N 

2-2N II IIBil1 (B.2.5) 
i=l 

The equation (B.2.5) represents a bound on the Lipschitz constant for a given A N. 

Due to the effects of offsets on the nodes within the net, and the effect of the restriction 

of the domain of input to one layer due to the range of the previous layer , it is possible 

that this bound will not be attained. Nevertheless this bound will not be exceeded, so it 

is the expression for L2 which shall be used. 

In a similar fashion, a bound on L1 may be obtained, although the expression obtained 

is more complicated due to the form for G2(B ,x). The problem that we need solve is to 

find L2 such that 

= 

First note that J~ (B, x) has a special form . Specifically it is constructed by concatenating 

linear operators. The following lemma may be applied. 

Lemma B.1 Given a matrix M, which is constructed by, 
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Then the 2-norm of M is bounded above as follows , 

1 

IIMI12 ::; [~IIMill~r 

Proof. Recall the definition of II . 112. 

IIMxl1 
s~p - llxll = sup IIMxl1 110: 11 =1 

(B.2.6) 

o 

Consider that the vector x is made up of n sub-vectors, such that Xi corresponds to the 

input to Mi. ote that, 

IIM1X1 + M2X2 + ... Mnxnll < IIM1Xli + IIM2Xli + ... + IIMnxl1 

< IIM11111 xli + IIM21111xli + ... + IIMnllllxl1 

From the construction of x, it is true that IIxll2 = L:i:1 IIxil12 so that 

n 

2:: ai liMili 
i= 1 

1 

A simple geometric argument shows that this is true for ai = IIMill/ [L:i:11IMiI1212', which 

gives the result, (B.2.6). • 
Applying this lemma twice, once to the matrix J[J and once to J~ ( (), x) gives us a 

bound on the Lipschitz constant for the A N with respect to the parameter vector. 

First calculate a bound on the norm of Jf, Recall that Jt is given by (B.1.5). Thus it 

is only necessary to calculate the norm of the Tj, and then apply Lemma B.l. As the Tj 
are zero everywhere, except one row, it is only necessary to consider the effect of this row, 

which is given by [ si.(1 - si.)si-1 si.(1 - si.)si-1 i(1 - si.)si-1 i(1 - i) ] J J 1 'J J 2 , ... , J J ni-I' J J 

For i :1= 1 all the s~ are between 0 and 1, so that, the maximum norm possible for Tj is 

1/4, and so the norm for Jt must be less than (ni-1 + l)t /4. For i = 1, the situation is 

somewhat different as sO = (xT , I)T which is potentially unbounded. Thus the expression 

obtained for II Jf II is t II ( : ) II = (110:11 2 + 1)1/2/4. 
Applying the same reasoning as lead to a bound on L2, and Lemma B.l gives the 
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following bound on L 1 . 

I 

+2-8 (nN-2 + 1) 11 8N II2 + T4 (nN-1 + 1)] 2" (B .2.7) 

These results, and the specialization to the case we are interested in , are summarized 

in the following lemma. 

Lemma B.2 Consider the n layer ANN G (8, x) as described in Appendix B.l . 

Then the Lipschitz constants with respect to the parameter and input vectors, L1 and 

L2 respectively, for G (8, x ) will not exceed the bounds given by equations (B .2.7) and 

(B .2.5). For the particular case we are interested in, G (8, x) given by (B .l.8), this leads 

to the expressions, 

~ [T4 (lIxll2 + 1) 11 82112 + (n1 + 1)] t 
1 

16118111 11 8211 
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