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Abstract

Excitation functions for elastic and inelastic scattering and single
neutron transfer reactions have been measured for incident energies

spanning the Coulomb barrier at nominally 120° to the beam direction.

The elastic scattering data for 12,13C on “8ca, 50Ti, S2cr, S3cr
and °“Fe and 16180 on 52Cr and 5“Fe have been analysed using the Optical
Model. From the extracted optical potentials Coulomb barriers were

obtained.

The inelastic scattering measurements to the first 2" states of
52Cr and S“Fe induced by !2c, 13C, 160 and 180 exhibit nuclear-Coulomb
interference patterns which are reﬁarkably different‘for the different
projectiles. The cross-section data is reproduced by the distorted-
wave Born approximation (DWBA) with a collective model form factor for
nuclear excitation. From the sub-Coulomb data, B(E2) values were
extracted and above the Coulomb barrier, nuclear deformation parameters

RBN were obtained.

The single.neutron transfer reactions (12C,13C) to the N=29 nuclei
~ have been interpreted using full finite range (FFR) DWBA calculations.
The excitation functions are generally well described by FFR-DWBA.
Spectroscopic factors have been extracted from the data below the

Coulomb barrier and are in agreement with values obtained from light

“ion work.



Chapter 1

INTRODUCTION

One of the attractive featufes of heavy ion induced reactions is
the appropriateness of a semi-classical description. This is due to the
relatively small de Broglie wavelength, X associated with the relative
motion of the colliding nuclei, which is typically % = 0.2 fm compared

with some characteristic length, say, the sum of the nuclear radii =8 fm.

Thus the wave packet describing the relative motion of two heavy ions

is localised in space and leads to the concept of a well defined classical
orbit (Fo59, Br72). Using this description, the many reactions that

occur when two heavy ions interact can be broadly classified into three
main groups. With trajectories corresponding to a large impact parameter,
b (fig.1.1(a)) the nuclei are kept well separated by the centrifugal

and Coulomb forces. The non-elastic reactions that can occur in this region
of b are 'Coulomb excitation' (Al166) and 'sub-Coulomb transfer' (Go74).
For orbits with small impact parameters (fig.l.1(c)) the ions surmount the
Coulomb and small centrifﬁgal barriers resulting predominantly in compound
nucleus formation. Projectiles with intermediate impact parameters have
limited mass overlap and unlike the previous case the mass, charge, energy
and angular momentum transferred are generally small. ' The reactions
studied in this work are assumed to be direct and span the region between
large and intermediate impact parameters. These processes are called

'Quasi-Elastic'.

Light ion induced reactions, such as (p,p'), (d,p), (3He,d) and (p,t)
have long been established as a powerful spectroscopic tool. From these
measurements a large volume of information has been compiled on energy

levels, spins and parities of nuclei throughout the periodic table.



(a)

(b)

(c)

Fig.1.1

Experimental information from heavy ion induced direct reactions, however
is less comprehensive. The first measurements with heavy ion beams were
performed in the mid 1950s (Ch54, Re56), although relatively few direct
heavy ion reactions were measured until the late 60s when adequate heavy
ion accelerators and techniques for detecting heav} particles were
developed. The direct reactions studicd in the past eight years comprise
elastic and inelastic scattering and one, two and four nucleon transfer,
induced by a large range of projectiles, from Li to S. The spectroscopic
information obtained from heavy ion reactions, excluding Coulomb

excitation, have been mostly complementary to light ion work.

Most light ion induced reactions have been analysed, with a large

measure of success, using the distorted wave Born approximation (DWBA).



Through these studies a relatively good understanding of the reaction
mechanisms and mutual interactions between the colliding nuclei has been
gained. Further, from single nucleon transfer reaction measurements,
'spectroscopic factors' are extracted by comparing the DWBA calculations
with the data. The spectroscopic factor yields information on the
magnitude of the single particle components in the wave function which
describes the populated state. Hence the spectroscopic factors are a
valuable test of nuclear structure model calculations. In view of this
success with light ions it is therefore a natural progression to analyse
the quasi-elastic heavy ion reactions with the same direct reaction

theories.

The knowledge of the ion-ion effective potential is of importance
since it is necessary for direct reaction calculations. The average
potential is generally provided by analysing the elastic scattering data
in terms of the 'optical model' (Chapter 2). Historically the optical
model was formulated for nucleon-nucleus scattering by Bethe. (Be35) and
Fernbarh.et al (Fe49) who assumed that the nucleon-nucleus interaction
is a siéple two body potential. Later, Feshbach et al (Fe54) further
developed the model to include an imaginary potential to take into account'
the effect of other channels absorbing flux from the elastic scattering.
The introduction of the imaginary potential was necessary to predict the
broad neutron scattering resonances (Fe54). Subsequently, the optical
quel was used to investigate the mass distribution of nuclei and
dynamical effects such as target excitation and refined to study details
of the nucleon-nucleus interaction (mass asymmetry, spin-orbit and tensor
forces) (Si75). The applicability of the optical model to heavy ion elastic
scattering is not entirely clear especially when the nuclear overlap
between the ions is significant. Under these circumstances it is difficult

to envisage a static potential, which is a function only of the separation




of the centres of mass, as appropriate wheﬁ dynamic distortions of the
nuclei might be large. However, for heavy ion peripheral collisions

the distortions should be small and therefore the optical model should
be reliable (Sa74). Elastic scattering data induced by heavy ions is
generally fitted by approximating the nuclear interaction in terms of a
local, complex, Wood-Saxon potential (Gl67). Four free parameters are
determined by the data or six if the geometry of the real and imaginary
potentials are éssumed to be different. Heavy-ion elastic scattering

is generally well reproduced by the optical model. However, because of
the many competing reactions, the absorptipn of the elastic flux becomes
large once the nuclei start to overlap, therefore elastic scattering
data is only sensitive to the tail of the optical potential. It has
long been known that this results in large ambiguities in the choice of
optical potential parameters (Ig 58). Because the average potential, to
a large degree, determines whether the colliding ions will fuse or
scatter elastically, or quasi-elastically, ways are being sought to
reduce thé potential ambiguities. Following the technique used in light
ions studies (Gr68), attempts are being made to calculate the real ion-
ion potential using the 'Folding model' in order to reduce some df the
ambiguities. Preliminary studies using the fblded‘potentials (Br72,

Va73, Br74, Ba75) have not given full satisfactory results (Sa75).7

The Coulomb barrier VB is defined (0Ob72) as the value of the potential

when the sum of the Coulomb and real nuclear potentials is a maximum

(fig.1.2)
VB = VC(RB) + VN(RB) 1.1

where Rp is called the 'barrier radius'. From the optical model analysis

of the elastic data the values of VB can be calculated, which are

important for heavy ion fusion mechanisms studies (Be67, Je7l1, Wo72).



The term 'Coulomb barrier' is however used rather loosely in this work.

r(fm)

Fig.1.2

Heavy-ion inelastic scattering can be roughly divided into two .
incident energy regions, well below fhe Coulomb barrier, termed 'Coulomb
excitation', and above the barrier. For low enough bombarding energies
the»nﬁclear interactions are negligibly small and the excitation of the
projectile or target is only through the Coulomb force. The
calculations of Coulomb excitations cross-sections are well established
- and use a semi-classical treatment to perform thé otherwise difficult
coupled channel calculations (Wi66). Since the Coulomb force is known
the comparison between theory and experiment yields model independent
reduced matrix elements (lifetimes) and quadrupole moments. Coulomb

excitation studies have been extensive and very successful.

For incident energies around the Coulomb barrier the inelastic

scattering is generally analysed using DWBA with a phenomonological



collective form factor which assumes that the optical potential which
describes the elastic scattering is deformed (Ba62). This model has
been quite successful in reproducing the inelastic data, not only for
heavy ions (Ch73), but also light ion scattering (Gs67, Ma68). The main
difficulty with this model is that the deformation parameter, obtained
by comparing theory with experiment is difficult to relate to intrinsic
nuclear properties. However, lacking better alternatives for heavy ion
scattering, this model cannot be dismissed lightly. Inelastic scattering
induced by heavy ions for energies around the Coulomb barrier has
generally a large cross-section, relative to transfer reactions, and has
been measured for a large range of projectile-target combinations (Sa68,
Re75, Be72, Gr74). The prime interest in this reaction has been the
study of the 'Coulomb-nuclear interference' phenomenon in the hope of
accurately determining the optical potential. The Coulomb-nuclear
interference is generally manifested by a minimum in the measured angular
distribution or excitation functions (Be73, Le76) when the repulsive
Coulomb and attractive nuclear forces are of equal magnitude. Therefore
these reactions are a formidable means of determining the strength and
gradiént of thé tail of real nuclear potential by comparison with the
Coulomb potential. Hence, éome of the optical potential ambiguities are
resolved (Co75, Pe73, Ch73) and the resultant potentials can then be
used with increased confidence to determine spectroscopic information
from heavy ion transfer reactions. It must be stressed however, that

it is not entirely clear whether an optical poténtial which gives a good
representation of the elastic and inelastic scattering data should in |

turn give a good fit to the corresponding transfer data (Au70, p.80).

The study of single nucleon transfer induced by heavy ions was
originally motivated by Breit et al (Br52). Breit et al advocated the
possibility of employing classical mechanics to describe the relative

motion of the two ions. Subsequently, Breit et al (Br56, Br64) performed



semi-classical single nucleon transfer calculations which gave good
account of experimental measurements for bombarding energies below the
Coulomb barrier (Mc60, Be63). The fully quantised calculation was
developed by Buttle and Goldfarb using DWBA with a zero-range
approximation (Bu66). The calculations by Buttle and Goldfarb reproduce

the sub-Coulomb transfer data very well and the extracted spectroscopic

factors are in reasonable agreement with values obtained ffom light ion
work (Ba7l, Pa74). The attractive feature of sub-Coulomb transfer is

that at these energies the ions have a large distance of closest approach
and so they have negligible nuclear interaction.

Therefore the relétive motion is well described by Coulomb wave functions.
Hence the extracted spectroscopic factors are independent of any problem
associated with the choice of the optical potential. The shapes of the
angular distributions or excitation function, at these energies, are

rather insensitive to the angular momentum transferred L (Bu71).

Therefore, sub-Coulomb transfer reactions alone cannot be used to determine
spin assignments. To extract spectroscopic factors using DWBA
calculations, the configuration of the populated states must be known

from other reactions. However the magnitude of the cross-section depends
strongly on the magnitude of the single particle wave functions at‘the
surface. Hence this dependence might be used to indicate what configuration

might be populated.

The magnitude of the cross-section is a strong function of the
Q-value of the reactions. The optimum Q-value Qopt for neutron or proton

transfer can be roughly estimated using classical arguments and giVen by

(Ch73b)

opt i\z.z "1 : 1.2



where Ei is the incident centre of mass cnergy, z5 and z_. are the charges

f
of the incident (i) and outgoing (f) particles and Zi and Zf are the
charges of the target (i) and residual (f) target. TFigure 1.3 shows

the dramatic variation in the cross-section with Q-value.

~G0rt © @o?t

Fig.1.3 Single nucleon transfer cross-section dependence on the reaction
Q-value.

At incident energies close to the Coulomb barrier the single nucleonk
transfer angular distributions or excitation functions have a
characteristic bell shape‘(Ch73b). As the incident energy is increased
the beak cross-section of the Bell shape shifts té smaller angles in the
angular distribution. For high enough bombarding energy the angular
- distributions exhibit structure at the peak cross-section (Bo73). 1In
particular instéhces, from this structure, L and ihe tbtal angular momentum
j of the populated state can be determined (Sc73, Wh74). The no-recoil
DWBA transfer calculatious for energies above the Coulomb barrier fail
to give a good description of‘the data and full finite range (FFR) DWBA
has to be used (Ko73, De73). The extracted spectroscopic factors are
generally within 20% of values obtained from light ion reactions. The
shape of the angular distributions or excitation functions are generally

well produced by FFR-DWBA, although in some instances discrepancies do



occur, particularly for high Q-value proton transfer reactions. These
discrepancics appear at extreme forward angles and also as a systematic
shift between theory and experiment. In most instances the discrepancies
can be removed by empirically changing the outgoing channel optical
parameters (Lo74). Since this prescription is rather arbitrary it is
questionable whether it is correct. Further, this disagreement might
reflect something fundamentally wrong with DWBA calculations for heavy
ions. Therefore for such cases it is vital to determine the optical

potential accurately to assess the validity of DWBA.

The reactions studied in this work (table 1.1) are all in the form
of excitation functions at nominally 120° (lab) for incident energies
around the Coulomb barrier. The elastic scattering and single neutron
transfer reactions induced by the carbon isotopes were measured by
Parkinson (Pa74) and the experimental method used in the measurement of
the other reactions are described in Chapter 3. The reactions are
analysed using the optical model and DWBA as outlined in Chapter 4 and
the results are discussed in Chapter 5. The purpose of this investigation
is to determine if the theories employed can give satisfactory reproduction
of the data with extracted spectroscopic information in agreement with
values obtained from other reactions. The comparison between theory and
experiment is particularly meaningful in the case of 13¢C scittering from
52Cr where data from three different reactions are measured. This
represents a good test of the assumption that the optical potential
which gives a good representation of the elastic and inelastic data
should in turn give a good fit to the single nucleon transfer measurement.
Of course this tests the individual theories at the same time. The
reactions induced by 13C on 5“Fe present a weaker test since the optical
potential in the outgoing channel for the 3%Fe(l3C,12C)S5Fe reaction

cannot be obtained. Furthermore, all the reactions studied cover a domain



TABLE 1.1

Reaction

Angle (Lab)

48ca(12C,12c)H8Ca
HSCa(13C,13c]48Ca
48C3(13C’12C)49Ca (GS)

5°Ti(12C,12C)5°Ti
50T1(13C,13C)50Ti
S0Ti(13¢,12¢)51Ti (GS, 1.16 MeV, 2.37 MeV)

52cr(12c,12¢) 52¢r

52y (13¢c,13¢) 52Cr

53cr(12¢,12¢)53Cr

S2cy(12c,12¢)52cr* (1.434 MeV)
S2cy(13c,13¢c)5%Cr* (1.434 MeV)
52cr(13¢,120)53Cr (GS, 2.32 MeV, 3.71 MeV)
53cr(12¢,13¢)52Cr (GS)

52cr(160,160)52Ccr* (GS, 1.434 MeV)
S2cr(180,180)52cr* (GS, 1.434 MeV)

Stpe(l2c,12¢) S4Fe
54F8(13C’13stupe
S4re(12c,12c)S4Fe* (1.409 MeV)
Shpe(l3c, 13¢)S4Fe* (1.409 MeV)
Stpe(13c,120) 55Fe (GS)
StFe(160,160)%Fe* (GS, 1.409 MeV)
Stre(180,180) S4Fe* (GS, 1.409 MeV)

120°, 150°
116°, 146°
120°

120°
120°
120°

120°
117°, 147°
120°
120°
120°
120°
120°
120°
120°

120°
118°, 148°
120°
120°
120°
120°
120°

All reactions are in the form of excitation functions.

10
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of bombarding energies from below the Coulomb barrier, where the
calculations are most reliable, to energies above the barrier, where

the reaction mechanism might not be well understood. Therefore a
comparison between theory and experiment over the whole range of energies
should provide a sensitive probe.as to whether the calculations can be
extrapolated to high incident energies. Finally, the measurement of
inelastic scattering induced by four projectiles on 52Cr and S“%Fe targets
might reveal information on the role played by the projectile in the

inelastic scattering mechanism.
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Chapter 2

OPTICAL MODEL AND DWBA

2.1 FOREWORD

In this chapter a review of the Optical Model and Distorted Wave
Born approximation (DWBA) is given in support of the two final chapters,
where analysis of the elastic, inelastic and transfer data is presented

and discussed.

2.2 THE OPTICAL MODEL

To calculate the differential cross-section for elastic scattering
it is necessary to know the form of the potential between the interacting
complex nuclei. A microscopic treatment of the potential is exceedingly
difficult; the nucleons in the target interact with nucleons in the
projectile through non-local, spin-dependent and many-body forces. At
present this complex problem cannot be solved. Another problem is that
when two ions interact many possible reactions can occur (Ko76) and a
proper treatment requires acoupled-channel calculation, which although
possible is difficult to perform. An alternative approach which avoids
the above difficulties‘is to use the Optical Model (OM). This model
essentially assumes that the details of the microscopic interactions
‘can be averaged out and can be represented by a phenomenological potential
with a number of parameters, which are determined by systematically

adjusting them in order to reproduce the elastic scattering data.

The OM as used in this work assumes that the ion-ion interaction

is a simple, local, complex, spin-indeperdent two-body potential V(r),
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where r is the distance between the centres of the two ions. The
imaginary part of the potential is basic to the OM and takes into account
the many open channels by absorbing flux from the incident channel.
Differentiating between the channels is not necessary unless one of

them is strongly coupled to the elastic channel. The exclusion of spin-
dependent forces is justified because it is possible to obtain good
representation of the data without them (Bi74). This does not imply
that they are not important for heavy ions, it simply means that the
present experiments are insensitive to these forces. Similér arguments
can be put forward for not including contributions from non-local effects,
density dependent and three-body forces. However it must be stressed
that by using an effective potential these interactions are indirectly

taken into account.

For energies above the Coulomb barrier, the dominant physical
process in heavy ion reactions is the strong absorption, predominantly,
into the compound nucleﬁs formation (Ko76). This is demonstrated by the
characteristic rapid fall in the elastic cross-section from Rutherford
scattering (Ba75, Wi75, Re75) and occurs when the two ions have only
limited inter-nuclear overlap (Sa74, Ba75). This implies that the
reactions which can be observed experimentally are predominantly surface
reactions and sample only the tail of the effective potential V(r).

This also implies thaﬁ:zhenomenological optical potential is not without

physical basis since the assumptions made in the OM become increasingly

better for limited nuclear overlap (Ja76).

The elastic scattering cross-sections for a given effective
potential V(r) are obtained by solving the Schrddinger equation,
describing the relative motion of the projectile and target. The
method of solving this differential equation and expressions for the

differential cross-section are given elsewhere (Ro67, Ho66).
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2.3 THE OPTICAL POTENTIAL

*
The average potential V(r)( ) between two heavy ions is written
as the sum of the Coulomb Vc(r) and nuclear VN(r) potentials. In the

two following sections the functional form of Vc and Vn are discussed.

2.3.1 Coulomb Potential Vh(r)

In the optical model and DWBA calculations an approximate Vc(r) is
used. The target is assumed to have a uniform charge (Ho71) distribution
of radius Rc (fig.2.1), while the projectile is described by a point

charge.

Fig.2.1

To take into account the finite size of the incident particle the Coulomb
1 11 '
: : 3 3,73
radius RC is extended from rocAT to roc(AT+AP) where AT and AP are
the target and projectile mass numbers and Toe is the Coulomb radius

parameter. The Coulomb potential using the above assumptions is given

by

*
( )The ~ denotes effective potential.
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Z.2 e2
~ TP
Vc(r) — > T > Rc 2.1a
7.7 e?
TP T .2
—Eﬁz—_ 3—(§;J J s T < RC 2.1b

ZTe, Zpe are the atomic numbers of the target and projectile

respectively.

The criticism of this prescription is evident: an unrealistic
target charge distribution is assumed and the finite size and shape of
the projectile is not explicitly taken into account. Since the Coulomb
potential plays a crucial role in all the calculations it is important

to examine the validity of above assumptions.

A more realistic form for the electrostatic potential is given by
(Va74)
c c

A = 2 ([ 43 g3
Vo) = Z,Z.e J[d rp 41 T | 2.2

where p; and pg are the charge density distributions of the target and

projectile respectively and are assumed to be spherically symmetric.

Fig.2.2
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The co-ordinates are shown in fig.2.2. Vz(r) takes into account most
of the deficiencies present in Vc(r), however it does assume that

charge distributions do not change with decreasing r.

c c
T and DP extracted

from published electron scattering data using a modified harmonic

Equation 2.2 was evaluated for 12C+52Cr with p
oscillator shape for 12¢ (K173)
[ _ C z_ 2 _ _]E‘_ 2
pp(r) = pop(l+a(8) )exP( (B) ) 2'3

(a=1.15, B=1.67 fm) and for 52Cr a Wood-Saxon distribution was used

(Beb64)

c .
- -1 ‘
)) 2.4

c c
pp(r) = pppl+exp(—;
(R;=3.91 fm, a=0.53 fm). The volume integrals of (2.3) and (2.4) were

normalised to unity.

The result of this calculation shows (fig.2.3) that ngand Vc‘agree
to within 0.1% for values of r larger thén Rc=7‘2 fm (roc=1.2 fm) .
Heavy ionsat Cdulomb barrier energies do not come within r smaller than
Rc (Sa74, Mo76), therefore Vc (2.1) is a good approximation. This
agreement was not unexpected since the Coulomb potential is of such a
long range. The large discrepancy between Vi and Vc at small values
of T is not meaningful since equation (2.2) is not valid where dynamic

effects are severe (My74).




r r(fm)
b

Fig.2.3 Coulomb potentials VC (2.1) and VE (2.2)y as a function of r
(szTe2 = 1). ‘

2.3.2 Nuclear Potential V _(r)

The complex nuclear potential VN used in all the OM and DWBA

‘calculations had the conventional Wood-Saxon form:

IRl 2.5

a

V() = V0(1+exp(£§B-))~l +1i Wo(1+exp(

where R

i

’ 1 1
3,43 _
ro(AT+AP)

i

R! ro'(Aé;Aéi

r, r,' are the real and imaginary radius parameters

O!
a, a' are the real and imaginary diffuseness parameters

Vo’ W0 are the real and imaginary potential depths.

This form of potential is chosen because it is simple to compute and

has been shown to give good fits to a wide range of elastic data (Wi75,
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Ba75, Re75, Zi75). However, as in light-ion work, many optical
parameter sets can be found which give equivalent fits to the data.
Indeed with heavy ions the ambiguities are not only discrete but in
many cases continucus (1g59). In an effort to reduce or eliminate the
ambiguities in the real part of VN’ attempts have been made to calculate
the nucleus-nucleus potential with a 'microscopic' approach using the

'Folding model' (Sa74, Ei71, Va73).

The folding model assumes that the mass distributions are
unperturbed when overlap occurs and that the real potential is
calculated by convoluting the densities with an effective nucleon-

nucleon interaction v, i.e.

oF - 3. 43 - el )
VN(r) = ‘J.d er Tp DT(LT)V(liT g_gpf)pp(rp) 2.6

where fp and Py are spherically symmetric mass distributions of the
projectile and targef and the co-ordinates are shown in fig.2.2. This
description is expected to be fairly accurate for elastic or quasi-
elastic processes since exchange, dynamic and other effects should

theoretically be small (Br74b, Ja76) for restricted density overlap

(fig-2-4)‘ T r T Y T T T T v
l.
2 0.6 ;
pO
0.2

0. 2. 4. 6.
r (fm)

Fig.2.4  Charge distributions (De74) along the line of centres for
separation 10 fm,
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Elastic scattering data have been analysed using expression (2.6) with
several forms of v (gaussian, Yukawa, zero-range) each giving reasonable
results. The main discrepency is that a normalisation of V; by
approximately one half is necessary to fit the data (Sa75), which
indicates that an important effect in the calculation is being neglected.
The imaginary potential is not predicted by the model and is generally

assumed to be of the same form as V; with adjustable strength (Ba75).

The mass distributions are generally assumed to be the same as the

charge distributions obtained from electron scattering studies.

1.0 =1 [ l | I [T

107! —

----ELECTRON | -

. SCATTERING | -

n |— SCALED TO —]
£ TOTAL MASS

= =

|_. — -—

n [ -

p=d — —

i

o - ]

103 = —

= =

-, X

- \

2.0 4.0 6.0
Fig. Mass distribution (2.7} and charge distribution for “0OCa.

Figure copied from reference (Va74).

However it is generally the case that electron scattering experiments

are not sensitive enough to determine the tail of the distribution

(Va74) (see fig. above). So in the more sophisticated calculétions
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(Do76) the p's have been obtained by using shell model wave functions

¢; (x).
o(r) = iwil(bi(r)lz 2.7

where i runs over occupied neutron and proton bound states and Wi is the

statistical weight.

The choice of nucleon-nucleon interaction v to be used is not clear
(Sé75) since different authors have used a variety of potentials with
the same measure of success, thus in most cases the elastic data cannot
discriminate between them (Ba75). However discounting the uncertainty
in the choice of v, the use of the folding model reduces the number of free
parameters to two, if the imaginary potential is assumed to have the
same shape as the real part. Hence the number of ambiguities are

greatly reduced.

An interesting result from folding calculations is that for large
values of r, V; has the same exponential fall off as a Wood-Saxon
potential (fig.2.5). Because heavy ion scattering is only
sensitive to the tail of the ﬁotential this result makes the use of

Wood-Saxon potentials less ad hoc.
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Fig.2.5

Folded potential for >“Fe + 160 using a S§-function for v

and mass distributions assumed to have the same shape as

electron scattering measurements (De74) (pr(T)dr

2.4 THE DISTORTED-WAVE BORN APPROXIMATION

= Apny)

dfﬂur'

The experimentally measured inelastic and single neutron transfer

reactions which are analysed in this work are assumed to be direct,

single-step processes.

the distorted-wave Born approximation, if the cross-section is weak

relative to the corresponding elastic channel.

2.4,1 Mathematical Formalism

Such a reaction mechanism is well described by

Consider the reaction A+a - B+b, where a and b are not necessarily

different.

or equivalently

(HA+Ha)+Va+Ka

The Hamiltonian H for this system is written:

2.8a
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H = H_,+V_,+K = (HB+Hb)+VB+K 2.8b

B

where a(a,A) and g(b,B) denote the incident and outgoing channels
respectively. Ka(KB) and Va(VB) are the relative kinetic and potential
energies between the two composite particles in channel a(B). HA,

HB and Hb are the Hamiltonians describing the internal motion in each

H,
a
of the nuclei. The eigenfunctions for Ha can be written as
Ha¢a(£a) = (HA+Ha)¢A(€A)¢a(Ea) = Ea¢u(ﬁa) 2.9

where Ea is the total energy of internal motion and £a=(EA,£a) are the

internal co-ordinates. The total energy E is then given by
= 212
E Ea+ﬁ k 0L/me 2.10

where ka is the wave number and My, the reduced mass. Similar equations

as (2.9, 2.10) are written for channel B.

The exact transition amplitude Tu for transferring from channel

B
o to B can be derived from formal scattering theory and given by (Au70)

ik .r ' .
- =88 €3]
T,g = S$g(Egle lvﬁlwa > 2.11a
or alternatively
-) Ky 2y
T.e = <Yg lva|¢a(ga)e > 2.11b

Equation (2.11la) is known as the Post representation of the exact
amplitude while (2.11b) is called the Prior representation. Both forms
are equivalent (Me62). W£+) and Wé_) are the exact stationary solutions

of the Hamiltonian (2.8). '+' ('-') denotes incoming plane (outgoing
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spherical) waves in channel a(B) and outgoing spherical (incoming

plane) waves in all permissible channels B(a), i.e.

ik .r ikorg

-0, —0 [S]
¢, (B, e * {B} ek =% 2.12

HO!
Q

where r and r. are the channel co-ordinates and f is related
- -8 aB

to the differential cross-section by (Me62)

do k u

ap _ B o 2
de  ~ k lfaB(Ea’EB)I
a B
uou k : ‘
or = o8 —§-|T |2 2.13

(2mh2)2 Ky oB

A minor modification to the Hamiltonian H is required to render the

numerical calculation of (2.13) possible.

H = H-V +V 2.14a
[6 ) 6]

sy
f

H-VB+VB | 2.14b

The choice of the function GB'(?W) is arbitrary and in anticipation it

is the optical potential in the outgoing (incident) channel. Replacing
VB by VB B+VB in (2.11a) and using Gell-mann Goldberg transformatlon

(Me62), T . becomes

af

> +

T = <¢ )|v -V lw( +) )|v |¢ e E“t£“> 2.15
aB g%8  Vp7'8 “eXg | ‘

where the x's are the solutions of the Schrddinger's equation:

_BLzB) 2.16

Again '+' and '-' denote the asympotic boundary conditions:
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X(+)(E3£) = elkfz- + outgoing spherical waves 2.17

and Pt = xF 2.18
where (*) denotes the complex conjugate. The x's are called
'Distorted waves' and describe the relative motion of the ions in the

~

potential VB or Va'

The second term in (2.15) is normally considered to be equal to
zero for a#B. This is indeed true for inelastic scaFtering since ¢a
and ¢B are orthogonal. However for a rearrangement collision the
orthogonality is no longer valid since ¢a and ¢B are solutions to
different Hamiltonians, Ha and HB (2.8). This problem was resolved by
H.L. Goldberg and K.H. Watson (G§64) who pointed out that wave packets
located at asymptotically large values of T, and Ty are necessarily

non-overlapping and hence orthogonal.

By substituting ¢a(6a)x§+)(ga,£a) for W(+) in (2.15), the transition

amplitude in the Born approximation Tz is obtained.

B
. B (=) Ky (+)
Te = Tag = <0axg Gguzd [Ve-Vglox ™ (k,.x,)> 2.20
where x£+) is calculated with an optical potential Va which gives

a good description of the elastic scattering in the incident channel.

This approximation is justified if ¢ux£+) and w§+) differ very little -

in the field of VB—QB. Therefore VB is no 1onger arbitrary and choosen

so |VB-VB| is small, V,_ is set to the optical potential which

B
describes the elastic scattering in channel g. Similarly, TB in the

aB

prior representation implies lVa—Vu[ must be a small perturbation to

Va' Thus for the Born approximation to hold the elastic cross-sections
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in both the incident and outgoing channels must be large compared to the

inelastic or transfer cross-sections.

. B . . . .
Expressing TuB in integral form over the relative co-ordinates

Ty and 33 gives:
B (=)« Y (+)
T, = |d3rdd *(k - .
o8 J r 4oy xg (_8,36)<bB|VB Vglansy, ™ (k,»x ) 2.200
where the 'nuclear matrix element' tN is given by

2.20c
The integration(z.ZOC) is done over those co-ordinates independent of

r, and g hence generally the nuclear amplitude depends only on the

channel co-ordinates, whilst tN contains all the information on the nuclear

structure and angular momentum selection rules. Also since tN factors
out from (2.20b) the calculation and extraction of the spectroscopic

information is generally easy to perform.

To summarise, the calculations of the transition amplitude in the
Born approximation assumes that the relative motion of the colliding
pair is assumed to be determined by the optical potential Ga which
describes the elastic scattering in that channel. The inferaction
VB (or Vu) gives rise to a single-step transition from the initial state
(defined by Ha) to the final state (defined by HB) of the system. The
outgoing parpicles move in the optical potential VB defined by the
eiastic scattering in the outgoing channel. The necessary conditions
which must be fulfilled for DWBA to be applicable are that the reaction
must be direct, one-step process, with ihe elastic channelsbeing much

stronger than any other channel.
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2.5 INELASTIC SCATTERING

When two ions interact a non-elastic process can occur in which
some of the relative energy and angular momentum is transferred to one
of the nuclei. This is known as inelastic scattering, and denoted by

A(a,a)A* for target A excitation.

To simplify the calculation of the transition amplitude for
inelastic scattering it is assumed that the potential contains no
exchange terms and no spin dependent components. The first assumption

implies that the displacement variables T, and are equal, thus the

Eﬁ
six dimension integral of TEB (2.20) is reduced to three dimensions
(Au70). From the second assumption the internal wave functions for the
projectile have identical spin components (no spin flip) and are
therefore orthogonal. So the reduced nuclear amplitude becomes simply
<JBMﬂ|VB-VB]JAMA> where (JAMA) and (JBMB) are the angular momentum and

projection of the target before and after excitation. Thus the

generalised transition amplitude (2.20) reduces to
B . - 3 (")* _~ (+)
Tyg (inel) = Jd TXg Q<_B,£)<JBMB|VB VBIJAMA>xa (k1) 2.21

Another simplifying assumption which is made is to ignore any difference

between the optical potentials ﬁa and VB and GB = ﬁa = V is solely

determined from the incident elastic scattering channel.

To evaluate the transition amplitude (2.21) the interaction
V(r,a), where o represents an operator acting on the internal co-ordinates

of the target, is expanded into multipoles (Ba62)

.2 A
V(r,a) = = V,_ _(r,0) (1Y, (£))* 2.22a
= 2,m m 2m

and
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N .
Vlm(r,a) = LJNV(gja)YQm(r)dQ 2.22b

Further, the reduced matrix elements <JBIIV2IIJA> of V(r,a) are obtained
by expanding (2.22a) into multipoles using Wigner-Ekart theorem (Me62)

: , .
- £ 3
<JBMB|V|JAMA> = i <JAQ,,MA,m|JBMB><JB| lvzl ]JA> [\ )’CMLYJ 2.23

where m=MB—M . The lth moment of the expansion corresponds to the
angular momentum transfer & to the target. From the Clebsch-Gordan
coefficient <JB£,MA,m|JBMB},2 is confined to

|35-35] < 2 < Iptg | 2.24
and the spherical harmonic Yﬁm determines the change in parity (—1)1
The reduced matrix elements are only a function of the radius r and

for convenience are expressed as a product of a 'form factor' Fz(r)

and the 'strength' AQ, which contains all the spectroscopic information.
<JB||Y5L][JA> = AF (@) 2.25
Inserting (2.23) in (2.21) and in (2.13) and making use of the properties

of Clebsch-Gordan coefficients, the cross section for exciting the

target nucleus is given by

2
do _ u(! B 2 myo
o - (W) ]_(—ZAQ, ZIB l 2.26a
o 2 m
.2 _wm 3. (=) x ran. ()
where  (20+1)% i% g™ = fdrx6 (e Py V5, @) (k)
2.26b

To evaluate (2.26b) for a given form factor Fg(r), the distorted waves,

x's are expanded in partial waves. This procedure is standard (Ba62)
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and will not be given here.

2.5.1 The Inelastic Form Factor

Unlike light ion inelastic scattering (Ma75), there is at present
no successful microscopic calculétion of the inelastic form factor for
heavy ions. Therefore, in this work a phenomenological form factor is
used. This is derived by assuming that the target nucleus is described
by collective model wave functions interacting via an effective non-
spherical potential (Bo53). The main difficulty with such a description
is to relate the parameters used in this model to other nuclear
properties. On the other hand the phenomenological picture.has been
largely successful in interpreting a large variety of heavy ion inelastic

data (Ch73, Re75, Br74, Co76).

The phenomonological approach is an extension of the optical model.
The deformed potential V(r,o), representing the interaction between the
projectile and target, is derived by introducing a dynamic variable or
deformation in the Coulomb and optical potentials. This is normally

achieved by replacing the usual radius parameter R = RP+RT (2.5) by
- * * N ‘
;t - RP+RT(1+£ﬁa2m ng(r)) 2.27

where Rp and RT are the projectile and target radii respectively and

a=(a2m) are operators which create the excitation in the target.

The following discussion of the form factor will be devoted to
excitation of pure vibrational states from the ground state of even-
even nuclei. Thus the eigenfunctions of the collective Hamiltonian
can be expressed in terms of quadrupole creation operators a&L acting

on the ground state vacuum |00>. The first 2* state with z-projection
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M is then given by (L=2)
a?:[00> = |2M> 2.28

and the operators (“Qm) create or annihilate vibrational phonons with

angular momentum 2 and z-projection m

: Aw \%
* = L * o m o2
o - (B on
‘ﬁw2 is the energy of the phonon and Cz is the restoring force (Ba62).

Fg(r) is made up of the sum of the nuclear and Coulomb form factors

and in the next two sections these will be discussed.

N
2.5.2 Nuclear Form Factor F£(r)

Assuming that the strength of the nuclear potential VN depends only
on the distance r-J&from the surface (Be62), then expanding the

dynamically deformed nuclear potential VN(r{xJ in a Taylor series about

R gives
% (-1)n d N ' vl
V.(r-%) = V_(r-R) + I —— (r-R-) AR 2.30
N N - n! n. v o
n=1 dR
T
where AR = g “em

Lot Y* (£) 2.31

(Since the deformation is dynamic, (2.30) and (2.31) are referring to the
space fixed axis.) VN(r—R) is the spherically symmetric optical potential
and in the usual notation is given by V... The second term in the sum
(2.30) (n=1) contributes to transitions from the ground sfate of the
target to the lowest adjacent vibration state of order 2, and is the

only one retained in this treatment. The second and higher order terms
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in a, can couple the ground state to higher collective states which
introduce changes in the elastic scattering and hence in the first order
contribution. These corrections are assumed to be small and they
cannot be treated consistently in DWBA, for terms of comparable order
and equal importance have been neglected in the DW (Au70). When such

terms become important a couple channel calculation has to be performed.
Thus the matrix elements are given by

av

~ an N
- - - * * ——
<JM|VN VNI00> <ou| 'Timasz m(r) dR(T)IOO>
= R, qV :
p V(DI Yy (®) <JM|a;m|00> 2.32

@R

where the r dependence factors out. Comparing (2.32) with (2.23) for

JB=J=£, JA=O and m=M gives

dv (1)

TR <JM1aEnJ00> 2.33

<y llos = "R
It is customary (Ba62, Ho71) to introduce the root mean square deformation,

Bg of the ground state due to zero-point oscillation, where

B

=/ <zla, |2 2.34

L

i
which from (2.29) is equal to ((22+1)ﬁwz/2Cl)‘. Hence the strength

and form factor (2.25) in the collective model are given by

N R’ ‘
Ay = — B, 2.35a
(22+1)7
and FN(r) = R fzﬁfil 2.35b
2 T dR ’



31

The derived form factor for rotational excitation of a deformed axially
symmetric even-even nucleus is identical to 2.35 (Be62), hence
rotational states cannot be distinguished from vibrational states by

an appropriate choice of form factor.

The salient feature of this result (2.35) is that there is only

one free parameter B This can be determined very easily in most

X
instances, since Ag factors out from the cross-section expression (2.26a).
All the other parameters are related to VN and extracted from the OM
analysis of the corresponding elastic scattering. It is however

important to note that Fz, unlike that for Coulomb excitation (2.5.2)

has no explicit % dependence.

the .
The real part of nuclear form factor can also be derived

for a folded potential (2.6) by deforming the target mass distribution
- i i * Y* (7 . .
pT(nrRT), i.e. replacing Ry by RT(1+§ma£mY2m(r))- By expanding p. in a

Taylor series about RT up to first order in a,

dp ,
T ~
olry-Ry) = Ry g (ErRy) Gty () 2.36

inserting in (2.6) and forming the matrix elements with the non-spherical

part of the resultant potential, the expression for FzOLD(r) is obtained
° 1

FOLD ) L

= d 2,02 ¢l

FQ, Uo Tf drT DT(I‘T) TTJ dupl(u)pp((r Ty 2rTrp) )
o v 1

T | 2.37

N . . . .
AQ is still given by 2.35a and PQ are Legendre polynomials. In. the above
expression a §-function nucleon-nucleon interaction v with adjustable

strength U0 is used. Computing (2.37) with parameters for o, and op

T

from electron scattering measurements (De74), shows that FiOLD has an

explicit % dependence{ (fig.2.7), unlike 2.35a. Also for a Wood-Saxon

potential with choice of parameters such that GN(r) = G;(r) for r
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between 9 to 11 fm, 2.35b and 2.37 differ only in magnitude (fig.2.6).
These two results still hold when using a finite range nucleon-nucleon

potential v (Mo75).

FOLD
2

2 =2, 3, 4 and

Fig.2.6 TRe F for

TRe Fg as a

function of r.

r(fm).

It is important to note that the extra;ted 82 using the folding
model refers to the root-mean-square mass deformation of the target,
while for the other method, Bl refers to that of the ion-ion optical
potential due to the mass deformation of the target. It is often
assumed that the mass and potential deformations are equal or simply
related (Ch73), however there is no clear justification for this

assumption (Sa72).

2.5.3 Coulomb Form Factor Ff(r)

The Coulomb potential Vc is given by the two-centre integral (2.2).

Let,

3 <
UClzpr]) = Zpe [ Tp bplrp) 2.38a
Eaed
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so (2.2) becomes
_ | 43 c -
Vc(r) = ZTe J‘d rr pT(rT) U(er r[) 2.38b

where p; is not necessarily spherically symmetric. Evaluating 2.38a
for 12C with MHO (2.3) charge distribution (K173) shows that
U(|zg-z|).|zy-r| is essentially unity for values of [r-r.| larger than R;
=3.91 fm for 52Cr with a Wood-Saxon distribution, p; (Be64) . Therefore,
since heavy ions have limited density overlap, the projectile
distribution can be represented by a point charge. Hence 2.38b is
written as

p;(zT)

- 2 3 '
V@) = Z e JdrT 2.39

|57
Expanding 1/|£T—£J in spherical harmonics (Me62)

7.7 e2 'Q’

- . PT * 3 *
VCCI) = gi 4w (22+1) Y (_) J.d T £+1 Yzm(rT)p (r ) 2.40

where r_ and r_ are the larger and the smaller of the lengths To and r.
The first term of the expansion 2.40 is the monopole-monopole term and

comparing expressions (2.40) with (2.22a) gives

c 4ﬂZPZTe 2 3 ri c
Van ™ = @ Jd T o YomEp)er Xy 2.41
: >

The deformation in the charge distribution p; is again introduced

by replacing the target charge radius, Rg, by

RT(l + Z agm zmch)) 2.42
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where (a;m) are the charge dynamic distortion operators. I:xpanding
p% in a Taylor series about R% (retaining terms linear in o), inserting

in (2.41) and using the orthogonality of the spherical harmonics gives

.t L c
LA4nZ Z e? v~ dp
c _ PT c* ¢ < T _nC 4
fen™ T TR % RTJdrT T e Fr7Ryp) 2ot
, T, dRT

In most DWBA calculations‘pg is assumed to be a uniform distribution

1]
with cut off radius R; , then the reduced matrix element from (2.43) is

given by the product of the form factor Fi(r) and the strength Az.

.. .C
Cc 1 82
N AR, ' = *(—z—mu 2.443
cle, g+1 c!
RPN T s Ry
C - 2
Fk(r) SZPZTe . 2.44b
'3 cla+l c!
r/R)T T, T <Ry

where Bz is the root-mean-square charge deformation. If a more realistic
distribution is used for p;, such as a Wood-Saxon form then Fz(r)

becomes

C _ C 2
Fl(r) = 4nRTZTZPe (X+Y) 2.45

where

T

K = 1 dr dr 942
T TngrT

<
i
o]
=
Q.B
H
-3
’8‘
2]
=L
T
pamd
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Fig.2.7 shows the contributions of X and Y to (2.45). For r > RZ, Y
can be ignored and rl+lx is essentially constant. By comparing 2.44b
with 2.45 for r > R$' > R%, determines R;' with a charge distribution
p; obtained from electron scattering experiments. Thus the expression
(2.44) has no free parameters (0w64)

2 g4mrS (7 d'pc

1 T

(R% )= : Tl gy —L 22 2.46

d C
o Ry

L

). 2. . 3. 4, S
Fig.2.7

1
It is very important to note that for r > Rg (2.44) can be

written in a model independent form (A166, Ba62) using the relationship

(Ow64)

2
B(EL) = (233}? (Rfli')“ Ze sl) 2.47

where B(E2) is the reduced transition amplitude.
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To summarise, the main features of the Coulomb form factor F;(r)

are

(1) that for r > R%' it is model independent

(ii) it has an explicit 2 dependence and finally

(iii) because of the long range of the l/rjl+1 term it is
necessary to have a large number of partial waves

in the distorted wave expansion.

2.6 SINGLE NEUTRON TRANSFER

Consider the stripping reaction A(a,b)B where a=b+n, B=A+n and
n denotes the transferred neutron. The reaction mechanism used to
construct the reaction amplitude (2.21) assumes that the neutron is
stripped off the projectile from a particular shell model configuration
and placed into another in the target,without either of the cores
taking an active role. This process takes place through the interaction

AVB (Post) or AVa (Prior).

In the post representation AV, is the remaining interaction between

B
the final fragments B and b after the effective potential VB has been
subtracted
v, = v-¥, o= Wy sy F 2.48
8 B B bA 'bn CE "B

VﬁA represents the core-core nuclear interaction and it's contributions
are assumed to be cancelled out by the nuclear part of the effective
potential. This approximation is most accurate for energies below the
Coulomb barrier where both VN and the optical potential are small

bA

(Bu71). The Coulomb interaction VCE is the sum of the monopole-monopole
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and multipole-multipole terms. The monopole-monopole term is subtracted

out by the Coulomb part of the average potential V The multipole-

g
multipole term represents Coulomb excitation before or after the
transfer and therefore cannot be treated consistently in a single step
calculation, hence they are neglected. However such multistep processes
are generally of second order. The remaining term of eq. (2.48) is the

binding potential of the neutron to the core b Vbn

interaction through which the stripping occurs. Vbn is assumed to be

spin independent and only a function of Ton (fig.2.9)..

, and is the

Centre of mass
of a

Centre of mass n
of B

Fig.2.9

The co-ordinates (fig.2.9) are related vectorially by

5 T Zam ~ Ton 2.49a
r = Eé T -7 ' 2.49b
—8 XB ~An —bn )

where Xy denotes the mass of the ith particle.

The wave function for the particle B with total angular momentum
Jg and z-projection MB is expanded in wave functions of the core A,
with angular momentum and z-projection (JAMA), vector coupled to single

particle wave functions of the neutron (G163). .

o
B | . o
. _ %, . A n
IMp Bt Ta) = T SpritJJpe e [\PJ M, (Ep) ¢n.m.(gn’rAr?]J M
QjJAn AA i3 -<"B'B

b4

2.50

where the square brackets denote vector coupling to (JBMB), a's are the
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quantum numbers other than the one specified and £'s represent the
internal co-ordinates of the appropriate particles. The wave functions
¢, with angular momentum and z-projection (j,mj), are the single
particle shell model wave functions for the neutron in the target and

given by

n - _2, A
¢2jmj(5n’5An) = R (rAn)[} Yy ) x%(gni]jmj 2.51
where Rnl is the radial wave function with principle quantum number n
and orbital angular momentum 2, and X% is the neutron spin function.
1
The coefficients {s% (2.50) are called spectroscopic factors and
reprasent the degree to which the final state has the configuration
denoted by the indices. Since the core A is assumed to play no role
A’ A’ °B
1
are dropped from S*. The projectile wave functions have the same form

in the reaction and is in its ground state the indices, J JB’ o

as (2.51).

Using the wave functions given above,the nuclear matrix elements

are evaluated and given by

- I My o
<bB|ArBlaA> = jj§L1 (-1) (23, +1) <JA3MAmj|JBMB>

x <Jan Ma’_Mb[jlmj'> <Lj'M mjlljmj>

x FLij' (zAn’Ibn)

2 '
Loy (2 41)7 (27 +1)
F LM W(aLkjt, gw) 1AL

e

Lijt(EArfEbn) = (-1) (2JB+1)

« SEmin) S3m'iren) |1 S Y @ ) kY., ()
B J a J 2m —An 2'm' “~bHn L -M
g

x Rnl(rAn) Vbn(rbn) Rn'k'(rbn)
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mj = MB-MA; mj = Ma-Mb; M = mj —mj, 2,52

where the primed quantum numbers refer to the neutron plus core b, W is
a Racah coefficient and L the orbit angular momentum transferred.

No summation over the principle quantum numbers is required because of
energy consideration. The triangular conditions (denoted by A) over
the various quantum numbers, as a resuit of angular momentum and parity

conservation are given below:

3 . N . 1
A(JA,JB’J): A(Ja’Jb’J )’ A(L’R"'Q' )
A(L,3,3") ACR,5,%) A(RY,5',%) 2.53

- . = -1}
TMy = (-1)7 ; TATR = -1

The % in the above conditions is the spin of the neutron.

The eXpression for the differential cross-section is obtained by
inserting (2.52) in (2.13) and making use of the Clebsch-Gordan

coefficients relations to sum over the z-projections giving

do i uuuB l_c_B_ (2J +1)(2J +1) 5 IB . )|2 s
dg 22 Ky (2 +1)(2J oF1) IMjjt IS5
where
L. L LM _ 3p 43y ¢ ()F (+) ‘
(2L+1) 1 (6)-:J—d rad BXB ( ,T )F J'(zAn,Ebn)Xa (Ea,za) 2.55

Finally to compute (2.54), the x's are expanded into a finite number of
partial waves, which for heavy ion scattering could be quite large.
Because the radial parts of the bound state and partial wave functions’
are not analytic the final expression for (2.55) involves calculation

of a large number of two dimensional (2-D) radial integrals which
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present a large computational effort. Such a calculation is commonly
called 'full finite range'. The transfer analysis presented in this
work used the full finite range DWBA code LOLA (De73). The code was
based on the calculations of Austern et al (Au64) and uses Gaussian

numerical integration to evaluate the (2-D) integrals.

Conventional DWBA codes use the 'zero-range approximation' (whereby
B??, (2.55), is reduced from a 6-D to a 3-D integral) which in essence
implies that the nucleon is restricted to move along the vector R
" (fig.2.11) in the transfer process and ignores the resultant change in
the centre of mass of the projectile (De73). As a result of this

approximation the transferred angular momentum L besides conforming with

conditions imposed by (2.53) must also comply with (Bu7l, De73)
21 + 29 + L = even . 2.56

The values of L which satisfy (2.56) are called 'normal', whilst those
which do not are termed 'non-normal'. The zero-range calculations
performed by Buttle and Golfarb (Bu7l1) have been shown to give good
representation of single nucleon transfer data (Pa74) for incident
energies below the Coulomb Barrier. For higher bombarding energies,
the zero range approximation becomes dubious and in some cases toﬁally

inadequate in reproducing heavy ion transfer data (Ko73, De73).

In summary, the calculation of the single neutron stripping (or
pickup) assumes that the neutron is picked up from a single particle
orbit in the projectile and placed into one in the target, with cores
b and A playing only a passive role. Also that the interaction an’
responsible for the transfer is spin independent and a function only of
Tin® Finally the process is assumed to be a single-step direct process

and hence Coulomb excitation is ignored.
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Chapter 3

EXPERIMENTAL METHOD

3.1 INTRODUCTION

In this chapter the experimental procedures adopted for the
measurement of the elastic and inelastic excitation functions at
ehergies close to Coulomb barrier are described. The reactions listed
in table 3.1 were studied and the scattered projectiles were observed
using a magnetic spectrometer at 120° with a position sensitive detector

located in the focal plane.

Table 3.1
Reactions Energy Range (MeV) Lab.
S2cr(12¢,12¢)52Cr* (1.434 MeV) 22.0 - 30.0
52Cr(13C,13C)52Cr* (1.434 MeV) ' 19.5 - 30.0
Skpe(l2C,12C)S4pe* (1.409 MeV) 19.5 - 32.0
Skre (13¢,13C)S4Fe* (1.409 MeV) 19.5 - 32.0
52cr(160,160)52cr (G.S.) 31.0 - 40.0
S2¢r(160,160)52Cr* (1.434 MeV) 31.0 - 40.0
52cr(180,180)52cr (G.S.) 30.0 - 40.0
52Cr(180,180)52Cr* (1.434 MeV) 30.0 - 40.0
Shkre(160,160)54Fe (G.S.) 30.0 - 44,0
Skre (160,160) S*Fe* (1.409 MeV) 30.0 - 44.0
S4Fe (180,180)5%Fe  (G.S.) 31.5 - 44.0
Shre (180,180)StFe* (1.409 MeV) 32.0 - 44.0
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Because of contaminants in the targets and the many transfer
channels which are open for bombarding energies above the Coulomb
barrier, the detection system had to incorporate good energy resolution
and mass identification. The alternative techniques which are available
for the cross-section measurements involved the use of a semi-conductor
particle telescope or particle-gamma coincidences. The semi-conductor
telescope had to have mass identification capabilities better than
1 in 18 for incident particle energies of approximately 10 MeV. This
required a transmission detector less than 5 um thick, a requirement
unattainable at the time. The second technique was attempted with a
7.5 cm x 7.5 cm NaI(T1) and annular surface barrier detector using an
160 peam. The large cross-sections for compound nucleus formation with
carbon and 6xygen contaminants in the target give both gamma rays and
alpha particles in the energy regions of interest. In order to reduce
the carbon build-up a copper shroud, surrounding the self'supporting
52Cr and S%Fe targets, was maintained at liquid nitrogen temperature.
However tﬁe relative compound nucleus to inelastic yield was still high

and made the data reduction difficult.

The double focussing spectrometer inherently can provide good
energy resolution. The background contribution under the inelastic
group from the low energy tail of the elastic peak was negligible. The
elastic peaks from contaminants in the targets were resolved. Also with
the energy and momentum analysis the nucleon transfer reactions could
be resolved from the peaks of interest. However there are obvious
disadvantages associated with the use of the spectrometer; -only one
reaction at one angle could be measured at any one time, whereas with
the other methods several reactions could be studied at two or three
angles simultaneously. The use of the spectrometer also requires charge

state distributions to be measured and associated corrections to be made.
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3.2 TARGET PREPARATION

The carbon backed targets were prepared from enriched material
(52cr, 99.8% and S%Fe, 96.8%) in the form of oxides, obtained from
Oak Ridge National Laboratory. The carbon backings were made by
evaporating natural carbon onto glass slides coated with a releasing
agent (RBS 25, Stansen & Co., Melbourne). The SYre targets were
prepéred by placing the oxide in a tungsten boat and heating it in an
atmosphere of hydrogén. Then the isotopic metal was evaporated in
vacuum onto the carbon coated slides. The carbon backed foils were
floated on distilled water and picked up on target frames. The S2cr
targets were made almost in the same way except a tantalum boat was used
to act as a reducing agent. The reduction of the chromiuﬁ oxide to the

metal was achieved by slowly heating the crucible before evaporation.

The energy resolution for detecting carbon and 6xygen ions is
primarily determined by the target thickness. Since the ions were
detected after reflection froﬁ the target, the energy spread due to
straggling and energy loss of the beam and reaction products is
considerable. Therefore the targets had to be thin. Target thicknesses
were measured using a mixed a-source (241Am, 2””Cm, 239Pu) by comparing
the energy loss for a-particles transmitted through the carbon and
carbon plus target. The targets used had 10-15 pgms/cm? carbon backing
and 12-16 ugms/cm? of 5%Fe or 32Cr for the carbon beams énd 5-12
ugms/cm? for the oxygen beams. The lowering in the mean incident
energy due to energy loss in the target was less than 0.07% and hence

ignored.

v
The calculated energy spread due to energy loss and sggggling in

the target, added in quadrature, is approximately 110 keV, with the

target at 65°. Smaller target angles would have interfe-red with the

operation of the monitor detector at 45°.
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3.3 BEAMS

The elastic and inelastic excitation functions of 12¢, 13¢, 160
and 180 projectiles were studied using the ANU EN tandem. The negatively
charged carbon and oxygen ions were produced by HVEC duo plasmatron
using isotopically enriched methane for 13C and carbon dioxide for 180
each mixed with 98% hydrogen. The C  and O beams were stripped in a
carbon foil at: the terminal and were subsequently momentum analysed by
a 90° double focussing magnet. The beams were deflected by a switching
magnet and then focussed onto the target by a magnetic quadrupole doubiet.
A tantalum collimator (0.3 cm diameter) was placed 32 cm in front of the
target. The collimator was polished to reduce slit edge scattering and

therefore decreasing the low energy tail of the elastic peak.

The beam was collected in a small, magnetically suppressed Faraday
cup 5 cm away from the target and current integrated by an Ortec 439
digitizer. The Faraday cup had a graphite beam stop to eliminate any
backscattering of carbon and oxygen ions. Beam intensities were

typically 50 particle nano amps.

3.4 SCATTERING CHAMBER AND MONITOR ASSEMBLY

To monitor the measured yield in the spectrometer two monitors at i45°
and +40°, for carbon and oxygen scattering respectively, were used. The
elastic cross-section at these angles, within the range of the excitation
fﬁnctions, is equal to that for Rutherford scattering. This was confirmed
by éalculating the elastic scattering at these angles with optical
potentials which fit the elastic scattering data. Two monitors were used
to reduce the error in the normalisation due to beam spot movement in the

horizontal plane. The calculated uncertainty in the normalisation due
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to the motion of the beam spot on the target is approximately 2%.

The target chamber (fig.3.1, 3.2) 1is of a sliding band type with
iﬁternal diameter 13.4 cm. The monitor assemblies are held by a central
column (fig.3.2). This is clamped to an external rigid support so that
the monitors do not move relative to the optical axis of the beam line

when the spectrometer is moved.

The monitors were mounted on pe{pex blocks with twoAtantalum
collimators placed in front of each detector. The collimators were set
1 cm apart and the front collimator was 4.0£0.2 mm in diameter and the
rear was 1.0120.01 mm. Each monitor assembly was suspended from a steel
arm clamped to thé‘central support. The rear collimators were set at
5.020.1 cm away from the target by sliding the_pe{%ex blocks along the
steel arms. The monitor angles were nominally set against an angular
scale abdve the steel arms (fig.3.2). To accurately measure the angles
with respect to the optical axis of the beam line the clamp between the
external and the central support was removed, allowing the monitors to
rotate with the spectrometer. Then with aAtelescope mounted along the
beam axis, the spectrometer was rotated until the rear collimator was
sighted. For reproducable and accurate measurements of the monitor
angles (E168) the spectrometer was leveled and rotated through +10° to
reach the required angles. The clamp was placed Luck with spectrometer
at an angle such that the monitor angles were equal relative to the
optical axis of the beam line. The monitors were small area surface
barrier detectors with a maximum depletioi: depth of 100 um manufactured

at the ANU Nuclear Physics Laboratory.

Since the particles reaching the position sensitive. detector from
the target had to travel 200 cm it was necessary to have good vacuum

to minimise charge exchange collisions. The pressure in the chamber and
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in the magnet box was maintained at a maximum of 8.0x10°® torr by a
250 litre/sec oil diffusion pump. At this pressure the mean free path

is of the order of 1000 cm.
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Fig.3.1 Top elevation of the spectrometer scattering chamber.
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3.5 SPECTROMETER

The spectrometer, designed by Ikegami (Ik58) is a double focussing
(n=%), large solid angle (13 mstr) magnet with target and focal plane
outside the magnetic field. Documentation of the tests and properties
of this instrument are described.by Elliot (E168). The spectrometer
has a total bending>ang1e of 188° with a 61 cm radius and could be set
between -10° and 155° to the beam axis with an accuracy of +0.05°. The
focal plane is 24.2 cm outside the magnetic field and inclined at an
angle ¢=48° (fig.3.3) to the mean ray. The position of the focal plane
has been shown to be independent of the energy and momentum of the
incident particles. The maximum energy carbon (5+) and oxygen (6+) ions
which can be focussed oﬁ the image plahe are 56 MeV and 60 MeV

respectively and thus was no limitation on the present experiments.

An ion implanted position sensitive detector (PSD), with a maximum
depletion depth of 100 um and active area 4.8 cm x 0.8 cm, was used in

the focal plane.

The dispersion D, is the property of the spectrometer that enables
it to spacially separate particles with different momenta p and p+ &p,

and is defined by (E168)

D = gl.lg-g = & - 5.58:0.07 3.1
where R=61 cm and 8y is the change, induced by 8p, in the position at

the focal plane, perpendicular to the mean ray. Using equafion (3.1)

the energy spanned by the PSD at the focal plane for 8 MeV 12C is 240

keV, where 8y=% cos 48° cm and 2=4.8 cm is the length of the PSD. When
using oxygen beams the PSD was rotated so that it was normal to the

mean ray. This resulted in a slight degradation of the position resolution

(E168), however was offset by a 33% increase in kinematic range to 480 keV
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for 11. MeV 160. Thus for the elastic or inelastic peaks to be well
on the counter the energy spread had to be considerably less than 240
keV and 480 keV for carbon and oxygen respectively. These values placed

the limit on the maximum target thickness and horizontal slit settings.

The solid angle defining slits for the spectrometer are positioned
at the boundaries of the inhomogeneous magnetic field. The horizontal
and vertical slit settings used for carbon and oxygen scattering were
+0.5°% £4.5° and 0.25°, #4.0° respectively. This resulted in kinematic

broadening of approximately 80 and 50 keV respectively.

3.6 CHARGE STATE FRACTION

The measured 5+, 6 and 7" charge étate (CS) distributions for 160
on S%Fe as a function of emitted 180 energy are shown on fig.3.4. The
distributions were obtained by using the elastic scattering yield for
the various CS's with the spectrometer at 120°kfor the low energy points.
For emitted energies larger than 12.5 MeV the spectrometer was set at
90°. The measured CS fractions were corrected for small contributions
for the 4° and 8" CS using equilibrium CS distributions published by
D.L. Bach et al (Ba65) obtained for 160 on relatively thick Ni targets
(580 ugms/cm?). It was shown that these corrections were appropriate
by measuring the 4" and 8" CS fractions at two energies. The more
prolific charge state (6+) was used to measure all the oxygen cross-
sections. For carbon scattering the charge state distributions measured

on S%Fe targets were available from previous work done at ANU (Pa74)

(fig.3.5).
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3.7 DATA STORAGE

The electronic configuration used to collect the data is shown in
fig.3.6. For the PSD the energy and enérgy x position signals were
amplified and shaped, then both pulses were passed through an Ortec 464
PSD analyser which divided the éignals and removed low energy noise.
The output pulses were then proportional to the incident energy and
position. The data were stored on disc in event-by-event mode using
an IBM 1800, and could be easily sorted on line, to check that the

position peak was well centred on the counter.
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Fig.3.6 Electronic configuration used in the collection of the
PSD and monitors spectra.
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Energy signals from the monitors were amplified and shaped and
discriminators used to remove low energy pulses. The spectra were
stored in a ND 2400, which routed the signals from the different
detectors to appropriate sections of the total spectrum. The spectra

were transferred onto disc (IBM 1800) after each run.

Dead time corrections in the ADC's were done by scaling the number
of gate pulses from the PSD and monitors. The difference in the scalar
readings and the total number of counts in each spectrum gave the
required dead time. Dead time in the computer was very small since the
counting rate in the PSD was about three counts a second for elastic

scattering. For the multichannel analyser the dead time was typically

0.5%.

3.8 DATA ANALYSIS

The cross-section for elastic scattering at low incident energies
were normalised to those of Rutherford scattering. The same
normalisation N, was then used for the elastic and inélastic cross-
sections at higher incident energies. An alternative of normalisation
is to use the physically measured angles and solid angles to calculate N.
However the former method eliminates any error in setting the monitor
angles (Rutherford cross-section varies very rapidly at forward angles)
and measured solid angles. When both methods were u#ed the agreement

was excellent.
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The differential cross-section as a function of incident energy E

was calculated from:

N1 Ys
K. "2 Y1Yp

do
Eﬁ'(E) 3.2
where Kr is the CS fraction for CS r, Ys is the elastic or inelastic
yield in the spectrometer and Yj, Y, are the elastic scattering yields

in the monitors.

The quantities Y; and Y, were extracted from the monitor spectra
(Fig.3.7) by summing between two markers set around the elastic scattering
peak of 52Cr or 5“Fe. Background between the markers was subtracted by

linear interpolation from the average number of counts in a window set
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below the elastic peak and a window above. The backgrounds under the

elastic peaks were typically 1.5% of Y; or Y. Because of the adopted
method of normalisation, it was not necessary to take into account

the 3% impurity of °6Fe in the 5"“Fe targets which was not resolved in

the monitocr spectra. The elastically scattered oxygen ions from 56pe

detected in the spectrometer were well away in energy from those

scattered off “Fe and not present in the energy spectrum of the PSD.

The energy spectrum from the PSD was calibrated by recording the
energy spectra of the elastic peaks at several bombarding energies.
The reaction products were then identified by their energy and position.
The background under the inelastic peaks was checked with 160 projectile.
by setting the magnetic field»in the $pectrometer so that particles
with energy 300 keV higher than the inelastic scattered 160 could be
detected on the PSD. The background was estimated to be less than 2%
and not corrected for in the inelastic yield. The yiéld YS was extracted
by setting a window over the elastic or inelastic péak in the energy
spectrum and integrating the total projection of the position spectrum,
after making sure that the position peak is well centred on the counter.
The 180 inelastic data was not as straight forward to analyse because
of ‘single nucleon transfer reactions contaminating the 180 peaks. The
reactions 52Cr(180,170), S“Fe(180,170), 5“Fe(180,19F) have small ground
state Q-values -0.012 MeV, 1.2228 MeV and -0;86‘MeV respectively and;
for'transfer to excited states of the residual nuclei the reaction
products are within 300 keV of the inelastic 180. So for the 180
inelastic scattering thinner targets (®7 ugms/cmz) weie used to increase
the energy resolution. By moving a narrow window across the 180 inelastic 
energy peak, the corresponding projections showed the 170 or 19F to be
.well separated in position from the 180 group. Thus Ys was obtained by

summing the position peaks of interest for each projection.
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The measured elastic and inelastic excitation functions are shown
in Chapter 4. The assigned error bars were calculated from the
statistical error in the spectrometer yield # Yo and the error in the
charge state distributions, estimated to be 2%. The error in the
monitor yield Y;+Y, was very small and not included. The total error
was obtained by adding the individual contributions in quadrature. The

estimated error in the normalisation (2%) was not included.
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Chapter 4

RESULTS OF THE OPTICAL MODEL AND DWBA ANALYSES

4.1 ELASTIC SCATTERING

4.1.1 FOREWORD

In this section the 1680 and 180 elastic scattering data are described
in a semi-classical framework and parameterised using' the op-tical model
(OM). The elastic data for !2C and !3C scattering from "“8Ca, 50Ti, 52Cr,
53Cr and >“Fe measured by Parkinson (Pa74) are also studied. The carbon
data had not been previously analysed. The purpose of this analysis is
to extract optical potentials to be used in the inelastic and transfer
DWBA codes. The sets are also used to calculate>Cou10mb barriers and
to determine the variation in the effective potentidl with target mass

numbers for the different projectiles.

4.1.2 Semi-Classical Description of the Elastic Data

The results of the elastic scattering measurements of 160 and 1v80
on 52Cr and S%Fe are shown on fig.4.1. The excitation functions are
structureless and all exhibit the same qualitative features. The general
features can be physically understood through a semi-classical description,
where the projectile is assumed to travel along a classical trajectory.
This treatment is justified since the Sommerfeld parameter
n = ZPZTez/i ¥ 18 (Wi66, Br72) is large (St64). A useful parameter to
use in this description is the apsidal distance D for a pure Coulomb

orbit:
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2
ZPZTe

where ECM and 6 are the centre of mass energy and angle respectively.
It is important to note that (4.1) does not take into account the nuclear
force (fig.4.2), however since the heavy ion reactions discussed here are

peripheral or gentle collisions, this parameterisation is appropriate

for a qualitative discussion.

‘(/Coulomb orbit

“Snuclear
deflected orbit

—Target

Fig, 4.2

At low incident energy the apsidal distance is large and the nuclei
interact only through the long range Coulomb force, therefore the
elastic differential cross-section is equal to that for Rutherford
scéttering. For smaller D, the nuclei start to overlap and the strong
nuciear attraction gives rise to a rapid increase in the probability for
population of non-elastic channels, nameiy compound nucleus formation,
inelastic and transfer reactions. This results in flux being removed
from the elastic channel and an exponential drop in the measured ratio
of the elastic to Rutherford cross-sections (daen/dGR) with decreasing

D (fig.4.1).

Similar excitation functions at 176° (Lab.) for °2Cr(l€0,160)52Ccr

and 32Cr(180,180)52Cr have been reported by Eisen et al (Ei72). The
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Fig.4.3 12C and !3C elastic scattering excitation functions at
nominally 120° (Lab). The OM fits to the data are obtained
using optical model parameter sets in table 4.la.
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elastic scattering of 12C and 13C on “8Ca, °9Ti, 52Cr, 53Cr and S%Fe
(Pa74) also show the same qualitative behaviour (fig.4.2). Unlike
angular distributions or excitation functions measured at forward angles
(Vi72, Ba75), the data does not exhibit any oscillations or rise in
(doezlch) before the final fall off. These oscillations are attributed
to interference between two or more orbits which have the same scattering
angle but different impact parameters (Ma73). Such a phenomenon has not

been observed for back angle scattering.

Several important features can be pointed out by plotting the
experimental (dcez/dUR) as a function of D. The plots for both 12C and
13¢ scattering are indistinguishable between “*8Ca, 50Ti, 52Cr, 53Cr and
StFe (fig.4.4). 1Indeed only a close examination of the data reveals
differences between the !2C and 13C scattering. The !3C data have a
slightly faster initial drop in (doez/dGR) wifh increasing energy, around
D=10.5 fm. This small difference can be explained by noting that 13¢,
with a loosely bound neutron has a larger number ofbopen transfer éhannels
for the same centre of mass energy. On the other hand, the 160 and 180
scattering on a common target are clearly different (fig.4.S). For 180
scattering, the ratio (doeg/ch) has a gradual deviation from unity,
starting at a relatively large apsidal distance, while for 160 the
deviation is very sudden and occurs at a smaller D. This difference is
attributed to the prolific number of open channels availaple in the 180 case,
particularly the inelastic and the low Q-value transfer reaction which
are strongly populated at relatively large D. Also the two neutrons
attached to the 160 core make 180 physically larger (Si70) and hence the

nuclear ion-ion interaction becomes measurable for a relatively large D.
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4.1.3 Optical Model

The effective potential V(r) used in the OM analysis was the sum of
the Coulomb Vc(r) (2.1) and nuclear potential VN(r) (2.5). For VN there
are six parameters (VO, T

, a'), whilst only one is necessary

[¢)

a, W, r'
3 3 0} O

for Gc’ namely .. With this parameterisation the occurrence of
ambiguities is well recognised. Often continuous as well as discrete
sets of parameters will give equally good fits to the data. The most
familiar of these is the depth versus radius continuous ambiguity,

otherwise known as Igo ambiguity (Ig58).

It is interesting to discusé the Igo ambiguity since it demonstrates
an important aspect of heavy ion scdttering. Consider the real potential
Re VN,displayed in fig.4.6 together with its evaluated (doez/ch), both
plotted as a function of apsidal distance D. As shown, the region which

primarily determines the elastic cross-section is the extreme tail of

the nuclear potential.

I
50
0. 1 ! 0.
_ } t
6. 7
= 50.MeV.
.25 —~ A:fs 1.2 6'fmn.
’ g = .46 tm.
(MeV)
-50 F

Fig.4.0
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Obviously this happens because of strong absorption; projectiles which
venture into distances of separation smaller than <8 fm are effectively
absorbed into the compound nucleus and non-elastic channels. For such
large r, V,, is well approximated by

N

VN(r) = V0 exp(R/a) exp(-r/a) + i WO exp(R'/a') exp(-r/a') 4.2

So with fixed values of a, a' and a wide range of values for (VO,R),
(WO,R') such that K = Vo exp(R/a), K' = WO exp(R'/a') are constant, the
potentials will have the same tail and hence reproduce the same elastic

T Excitation functions calculated for two such potentials

scattering.
are shown in fig.4.7. The difference at high incident energy occurs
because the lower % partial waves do sample the potentials where they
are significantly different. Thus measurement of elastic scattering to
small values of (doez/dGR) is desirable to narrow the range of Igo
ambiguities. Continuous ambiguities involving the diffuseness parameter
a also occur. Acceptable fits to the elastic data can be obtained

for different pairs (a,Vo) as demonstrated by Obst et al (0b72). The
point to be stressed from the above is that elastic scattering at
energies about the Coulomb barrier are sensitive only to thé potential

tail.

Detailed studies (Sa74, Mo76) of the OM for heavy ions have shown
that elastic scattering measurements can only determine the magnitude
of the real potential in a narrow region (=1 fm) about the strong
absorbing radius D%. (Dl/2 can be defined as the apsidal distance for a
classical Coulomb orbit which has the same angular momentum L_l/2 as the
partial wave for which the transmission coefficient T, is %.) The

L 1 L%
value of D, is approximately 1.5 (A% + AS) fm (Sa74). These

+The parameters K, K' are called Igo Constants.
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studies also indicate that only broad limits can be placed on the values

of the diffuseness parameters.

4.1.4 The Nuclear Potential V

In this section an attempt is‘made to give a physical insight into
the effeéts of using a complex nuclear potential. In a classical
description, the effect of]Re ﬁN on a pure Coulomb orbit is demonstrated
in fig.4.2. Particles which have a sufficiently high bombarding energy
are pulled in by the attractive nuclear force, and thus sample a larger
part of the imaginary potential. Clearly, therefore, increasing the

strength of Re VN or Im V, about D, will reduce the elastic cross-section.
2

N
This result can be expressed using the semi-classical equation (Br72)
do ®
ef - _ _ 2 y
(ch) = PABS =  exp [ A J Im VN(r(t))dt] 4.3

where r(t) is the separation between centres of the ions at time t, and
is determined by solving the classical equations of motion for a particle
moving in a field ﬁc(r) + TRe VN(r). From the above equation, a strong

Re V. results in a closer collision, hence P is small and for a

N ABS 77
larger |Im VN|the same effect is produced. This indicates that the
parameters which define the real and imaginary potentials are coupled

(La74).

In the quantum mechanical description the calculated excitation
functions are very sensitive to changes in Vo’ r, ora and depend only
slightly on changes in Wo, r'0 and a' (fig.4.8). Thus the real potential
is wéll determined by the elastic scéttering while the imaginary
potential is poorly defined. Also increasing any of the parameters is

accompanied by an increase in the magnitudes of TRe VN or Im VN at D, and
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results in a lowering of (doeg/doR), as predicted by the semi-classical
model. A quantum mechanical effect not taken into account by the semi-
classical description is that the imaginary potential not only absorbs

but reflects flux (La74). The reflective part is generally small and

can simulate the repulsive component of the ion-ion potential due to
Pauli's exclusion principle.+ Also, in the quantum mechanical description,
when the imaginary potential is removed or made very small, the resultant
excitation funcfions or angular distributions have very large and rapid
oscillations. Since‘the elastic data is structureless, an imaginary

component in VN is therefore necessary.

4.1.5 Optical Model Analysis

The OM analysis of the elastic data consisted in systematically

varying the optical potential parameters until a minimum value of 2

obtained;
j=n )
XZ i} 1 1;nj exp(E ,0. ) -0 (E.,ej) »
% n. i3 Tex (E 50 . ) :
j J s) P

where ot(Ei,ej) and oexp(Ei,ej) are the theoretical and experimentél
elastic cross-sections at an angle ej and eneigy Ei’ Aoexp(E ,e ) is the
absolute error, ny is the number of experimental points in the excitation
function at an angle ej and n is the number of angles. ‘The OM global
search code Genoa (Pe) was used to generate the fits. Fifty partial
waves were used for all the calculations and increasing the number to 80
did not make any significant difference to the final result. It is worth
noting that the computing time necessary to fit excitation functions is

considerably greater than that for angular distributions since the phase

Talthough the real potential has a large reflective component.
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shifts have to be generated for each energy.

Most heavy ion élastic data is analysed using a fixed geometry for
the real and imaginary potentials, i.e. T, = r'0 and a = a' (Ba75,
Th76, Wi75). Imposing these conditions leaves four free parameters
(Vo, T 2, wo) and since V0 and-r0 are related by the Igo relationship
(4.2) one of them is generaily fixed. There is no theoretical
justification for using this prescription, however preliminary studies

using different geometries for the real and imaginary potentials did

not give better values of x2.

Two types of fixed geometry searches were conducted:

(a) Vo was fixed and (ro, a, Wé) varied, and

(b) (Vo, Wo) were fixed and (ro, a) véried.
The starting parameters for each search were.V0 = 50 MeV, r0 = 1.2 fm,
a = 0.55 fm and Wo = 5 MeV (or 45 MeV). These parameters are average
sets obtained from the literature for projectile and targets in the same
mass region. To justify fiXing V0 at 50 MeV for all the séarches a
study was conducted, where V0 was increased in 10 MeV stepsrbetween 20
MeV and 180 MeV and for each value of Vo’ (ro, a, WO) were allowed‘to'
vary to obtain a minimum x2., Because of the large amount of computer
time required to perform such a study, only the elastic}scatteriﬁg of
12¢ and 13¢C on S50Ti were so analysed. The minimum x2 changed

insignificantly for VO between 30 and 130 MeV. Values of Vo outside

this range resulted in an increased value of the minimum x2.

The Coulomb parameter r, was varied between 1.1 and 1.3 with

insignificant change in the value of x2 and was therefore set at 1.2 fm.
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The results of searches (a) are given in tables 4.1(a) and 4.2(a),
and the graphical variation of the parameters with mass number are
shown in fig.4.9y. The fits to the 12¢ and 13C elastic scattering data
using parameter sets in table 4.1(a) are shown on fig.4.2. There are
three striking features about the optical parameters;

(1) T, increases and a decreases with target mass number AT

(fig.4.9y),

(ii) the iﬁaginary potential is weak relative to the real

potential, WO/V0 ¥ 0.12 and

(iii) there is no distinct difference between the parameters

for 12C and 13C scattering.

The OM fits to the oxygen elastic scattering data are shown in fig.4.1
and the parameters used are given in table 4.2(a). Unlike the sets for
12¢ and 13¢ scattering, the 189 parameters have a large imaginary

potential relative to those for 160,

The optical parameters obtained from searches (b) are given in tables
4.1(b) and 4;2(b). ’This search is very similar to the previous one except
that the imaginary depth Wo was also fixed. For the carbon analysis Wo was
set at 5 MeV. The extracted parameters for T, and a (table 4.1(b))
show similar variation with AT as in search (a) (fig.4.9k) except. for
7“8Ca + 13C where fixing W =5 MeV has made r relatively large and a
relatively small. Comparing the minimum x2 with those of search (a)
showed that they are not significantly different, hence tﬁe additional
"constraint of fixing Wo does not change the quality of the fits. This
result is attributed to the insensitivity of the data to the strength
of the imaginary potential. The values of T, and a vary from those
obtained in search (a) and indicate that the real and imaginary pofentials

are coupled.




Optical Model Parameters from the Three Free Parameter Searches

TABLE 4.1 (a)
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Vo (MeV) T, (£fm) a (fm) W0 (MeV)
la 12¢ 4 48Cq 50.0 1.24 0.50 3.4
2a 13C + 48Cg 50.0 1.23 0.54 22.3
3a 12¢ 4+ 5073 50.0 1.23 0.51 7.9
4a 13c + S0T3 50.0 1.25 0.49 7.0
5a 12¢ 4+ S2¢y 50.0 1.28 0.45 2.9
6a 13¢c 4+ 52¢p 50.0 1.30 0.42 3.5
7a 12¢ 4+ 53cy 50.0 1.28 0.45 3.2
8a 12¢ 4+ Shpe 50.0 1.28 0.43 3.0
9a 13c + Stpe 50.0 1.30 0.43 3.2

TABLE 4.1 (b)
Optical Model Parameters from the Two Free Parameter Searches

V0 MeV) T, (£m) a(fm) WO MeV)
1b 12¢ 4+ 48Cy 50.0 1.21 0.53 5.0
2b 13c + 48cy 50.0 1.33 0.41 5.0
3b 12¢ 4+ 5073 50.0 1.25 0.49 5.0
4b 13c + 5073 50.0 1.25 0.49 5.0
5b 12¢ 4+ 52¢y 50.0 1.27 0.46 5.0
6b 13¢ + 52¢y 50.0 1.30 0.43 5.0
7b 12¢ + 53¢y 50.0 1.28 0.46 5.0
8b 12¢ 4+ Shpe 50.0 1.28 0.44 5.0
9b 13Cc + Shfe 50.0 1.32 0.41 5.0




TABLE 4.2(a)

Optical Model Parameters from the Three Free Parameter Searches
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VO(MeV) ro(fm) a(fm) WO(MeV)
la 160 + 52Cy 50.0 1.26 0.50 8.3
2a 180 + 52¢y 50.0 1.30 0.45 22.5
3a 169 4+ Shpe 50.0 1.25 0.52 2.0
4a 180 + Shpe 50.0 1.37 0.35 9.5

TABLE 4.2 (b)
Optical Model Parameters from the Two Free Parameter Searches

Vo(MeV) roffm) a(fm) Wo(MeV)
1b 160 + 52Cy 50.0 1.33 0.40 5.0
2b 180 + S2¢yp 50.0 1.25 0.50 45,0
3b 1609 + Slpe 50.0 1.24 0.54 5.0
4b 180 + Shpe 50.0 1.33 0.39 45,0
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For the analysis of the 180 scattering data, unlike that of !©0,
fits could not be obtained with Wo = 5 MeV. However by setting Wo at
a relatively large value of 45 MeV good fits were obtained. Once again
the x2 for the oxygen scattering are as good as for the previous search

and the parameters (ro, a) are similar to the ones in table 4.2(a).

The results of these fits are indistinguishable from those of figures

4.1 and 4. 3.

4.2 INELASTIC SCATTERING

4.2.1 Foreword

In the following section the inelastic data is described in a semi-
classical contekt and analysed using DWBA calculations with collective
form factors. The principle aim of this study is to determine if thé
calculations can reproduce the excitation functions induced by the
carbon and oxygen isotopes. The success of the theory is judged by how
well it can reproduce the different shapes of the excitation functions
and if the extracted deformation strengths By are consistent with those
obtained for other reactions. Also, below the Coulomb barrier modél

independent B(E2)'s are extracted.

4.2,2 Semi-Classical Description of the Inelastic Data

The results of the inelastic scattering measurements to the first 2"
states of 52Cr (1.434 MeV) and S%Fe (1.409 MeV) induced by 12¢, !3c,
160 and 180 are shown in figs.4.10. The excitation functions have similar
gross structure; for low incident energies, the cross-section increases

with energy and is well described by pure Coulomb excitation. The
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curves shown in figures 4.10 are calculated using the code COULEX
(written by Winter and de Boer (Wi66)) which calculates the pure
Coulomb excitation cross-sections. For higher bombarding energies the
cross-section goes through a minimum, rises to a second maximum and
finally drops rapidly with energy. The dip in the excitation functions
is called the Coulomb-nuclear interference minimum. This interference
phenomenon has been observed with projectiles as light as protons (Le68)
and as heavy as 325 (Re75) on a‘large range of targets. Published
measurements are either in the form of angular distributions at forward
angles (Co76, Be76, Sa68) or excitation functions (Ch73, Re75, Vi72).

As with elastic scattering, forward angle measurements at high incident
energies generally exhibit complex interference patterns apart from the
nuclear-Coulomb minimum (Re75, Vi76). This arises because inelastically
scattered particles travelling along different classical trajectorieé
are deflected by the combined Coulomb and nuclear fields, to the same

angle of observation (fig.4.2).

The 180 induced inelastic scattering data have an interference
minimum which is not as pronounced as for the other reactions. Such
flat distributions in the region of the minimum have been reported by
Rehm et al (Re75) for the reactions 6ONi(180,180)60Ni* (2%, 1.434 MeV)
and 90Mo(180,180)90Mo* (2%, 1.148 MeV) and by Ulfine et al (Ul172) for
70Ge(180,180)70Ge* (2¥, 1.04 MeV). These measurements were performed.
at back angles and for energies close to the Coulomb barrier. Further,
this is to be compared with the excitation functions at back angles for
70Ge (160, 160)70Ge* (2", 1.04 Mev) (UL72), S8Ni(160,160)58Ni* (2", 1.45
MeV) (Ch73) and the 12C, 13C and 160 inelastic data presented here,
where the minimum is well pronoﬁnced. Thus the shape of the 189 jnduced
inelastic scattering is independent of target and can only be associated

with the 180 projectile.
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In first order perturbation the semi-classical amplitude for

inelastic scattering is proportional to

o]

c.C N_N AEt .
J;t(AgFg(r(t)) + Ale(r(t)))cos(—E—-+ m¢ (t)) 4.6a
o .

where AzFi and Aﬁ?é are the Coulomb (2.44) and nuclear (2.35) reduced
matrix elements. (r(t), ¢(t)) describe the Coulomb trajectory in the -

focal co-ordinate system with time t, 2 is the angular momentum transfer
with z-projection m and AE is the excitation energy. Equation (4.6a) can

be written as

(a () + ag(®) + 1 ag(®) 4.6

where a. is the corresponding Coulgmb amplitude and aﬁ and aé are the
real and imaginary components of the nuclear amplitude. Plots of the
various amplitudes as a function of D are shown in fig.4.11 and are
very similar to the variation with r for corresponding form factors.
The amplitudes a. and ag are of opposite sign because the Coulomb
potential is repulsive while the nuclear potential is attractive. Also
ag varies eXponentially with D while a, varies like 1/D3, and this
reflects the short and long range nature of the two interactions.
Further, a; decreases expongntially with D but generally has a much

smaller magnitude than as, since WO/Vo << 1., The probability Pm for

excitation a particular substate m is proportional to
Rp112 I 2 '
(2, (D) * a, (D)2 + (a (D)) 4.7

and the inelastic differential cross-section given by (Br74)

= IP (D) —=— = ZP . 4.8
m m
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Fig.4.11 a.s aﬁ, aﬁ and probability for excitation (4.7) as a

function of D.
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Thus, for large D = 12 fm (fig.4.11), the nuclear amplitudes are
relatively small, so the excitation process is dominantly through the
long range electromagnetic interaction. Since Pppg is essentially
unity for large D, (dcin/dﬂ) follows pure Coulomb excitation, as observed
experimentally. At smaller D, (ac + aﬁ)z goes through a sharp minimum
then rises rapidly with D. The corresponding minimum in ZPm(D) is less
pronounced since the amplitude from the different substatgs do not reach
their minimum at the same D and because of the incoherent contribution

from (a;(D))z. The absorption probability P does not vary rapidly in

ABS
the region of the dip, so the semi-classical calculated cross-section
displays the experimentally observed minimum, hence the name, "Coulomb-
nuclear interference'. The final monotonic drop in the experimental
cross-section afises because the elastic and inelastic flux is mostly
channelled into multistep processes or compound nucleus formation for

small D. This effect is taken into account in the semi-classical model

3.
by }ABS'

By plotting the inelastic data as a function of D, interesting
similarities and differences in the eXcitation functions are displayed.
The inelastic scattering data of 12¢ or 13c from 52Cr is .essentially
the same as that for S%Fe (fig.4.12). A similar effect is
observed. for the oxygen scattering (fig.4.13). This implies that
the shape of the excitation functions are not strongly dependent on the

target (Ch73).

Of particular interest is the difference between the plots forllzc
and 13C scattering (fig.4.14), and even more so for.160 and 180 (fig.4.15)
The minima for !2C and 13C occur at D = 10.2 fm and D = 10.7 fm
respectively and while the 12C minima are well defined, those for 13C are
shallow. What is surprising about this result is that the optical

potentials for the corresponding elastic scattering are very similar
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(table 4.1). Since these effects are independent of the target and the
Coulomb interaction is not sensitive to the charge distributions of the
projectiles ( T ), then these differences can only be attributed to
different reaction mechanisms for 12C and 13C scattering. Alternatively,
since inelastic scattering is very sensitive to the effective ion-ion
potential (Ch73), the interference patterns reflect very different OM

potentials.

The differences 'in the inelastic excitation functions induced by
160 and 180 arc clearly demonstrated in fig.4.15. The very shallow
minimus observed for 180 scattering can be ascribed to the large
ab;orptive potential required to fit the elastic data (table 4.2). For

—

W =V, aI contributes very strongly to %Pm, hence the interference

o) 0 N
minimum becomes less pronounced, but (dcin/dQ) (4.8) still retains the

characteristic rise and fall at low and high incident energy.

Finally it must be stressed that the nuclear ion-ion interactions
occur far beyond the nuclear surface R = 1.25 ( % + Aé) ® 8 fm. Thus

. [N )
these reactions can be called perpheral or gent-le collisions.
A

4.2.3 DWBA Analysis

The principle difficulty in evaluatiﬁg the inelastic scattering
cross-sections is the long range behaviour of the Coulomb form factor.
This implies that to evaluate the transition amplitude (2.26b) the
integration has to be performed to about 100 fms and many partial waves
(=200) have to be included. These calculations were performed with the
code NUCSCAT (Sa73) which computes‘the contributions from the first Lc
partial waves using conventional methods. For higher partial waves,
where the nuclear contributions are negligible, the amplitudes are

computed using a recursion rclation (Sa73). The code was shown to

1LChap‘cer 2
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reproduce the results from COULEX (Wi66) to better than 3% for pure

Coulomb excitation.

A necessary condition which must be satisfied by the data for the
first order Born approximation to be applicable is that the ratio of

measured inelastic to elastic cross-sections (dcin/do must be small

eR)EXP

(He75). This condition is sometimes overlooked in the literature (Ch73),

although it is difficult to assign an upper bound for (dcin/do for

el)EXP’
which the approximation is justified, without performing laborious
coupled-channel calculations. The data presented here partially fulfills
this condition. For bombarding energies above about 25 MeV (cm) for

carbon and 30 MeV (cm) for oxygen, (dcin/daek) are high (fig.4.16)

EXP
and the DWBA results are considered doubtful.

Another cdnsideration is whether the first excited states of °2Cr
and S“%Fe have a large enough colléctive component to justify the use of
a collective form factor. This is verified by noting that the B(E2)
values have a large single particle (sp) strength (11.7 sp units for
S2cy (2+, 1.434 MeV) and 8.7 sp units for Shre (2+, 1.409 MeV)) and that
the energy spacings of the first few excited states show a strong
vibrational character. Also the angular distributions for 52Cr(a,d)52Cr*
(27, 1.434 MeV) and 5%Fe(a,a')5%Fe* (2, 1.409 MeV) (Br70) have been

successfully analysed using collective form factors.

To calculate DWBA inelastic cross-sections with a collective form
factor the following parameters are required; the optical potential set
(Vv ,r ,a,Wo,ro', a') (2.5), the Coulomb potential charge radius Rc 2.1),

o" o

. .
the target charge radius R% (2.46), B(E2) and S defined by

S = BN/Bc 4.9
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where BN = BZ (2.34) and Bc’= B; (2.44a) are the r
deformations of the optical potential and charge d

reference the collective form factor for quadrupol

restated below
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00t mean square
istribution. For easy

e excitation F,(r) is

A, (r) = ASES(r) + ANFD (1) 4.10
. ] ) 1
where 5 [ REH2 28, T3 R%
. 5 T
-B L3Z Z e
ACFC(r) - c PT
2%2 532
2 c' 3 cl
Lr /(RT )°, T <R,
and : ‘
-By &/ -V, R exp(x) -iW_R' exp(x"')
N_N N
AFp(r) = — <j oL - 0.t
o ‘ 5* a  (l+exp(x))? a'  (l+exp(x'))?
;-v
= - = 3
X (r - R)/a 3 RT rOAT1
= -~ R")/a' - 1 A3
X" (r - R"Y)/a', y R\, = 1! AJ
- 4r (B(E2)) _
By = B.S 1, O

3 ZTe RT
Theoretically to obtain fits to the inelastic

two free parameters, the B(E2) and 'S. The optical

(Vo,ro,a,wo,ro',a') is determined from the corresp

data there are only
potential

onding elastic scattering.

The B(E2) is easy to determine since the DWBA differential cross-section

is proportional to this parameter. S is extracted
varying it until an optimum fit to the data is obt
following two subsections the parameters which app

discussed.

. 1
4.2.4 Determination of the B(E2), R% and R

To extract a model independent value of the B

theory is compared with the experimental points on

by systematically
ained.. In the

ear in (4.10) are

(E2) (Chapter 2) the

ly at low energies,
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where the nuclear contributions are less than 3%. The nuclear

contribution is estimated with optical parameters which fit the elastic

and inelastic excitation functions. The quoted B(E2} values (table 4.4, P.96)
are given by the weighted mean for the considered data points and have

assigned errors of typically 8%. -

]
The values of R% (table 4.3) for 52Cy and S%Fe are evaluated from
expression (2.46), where p;(r) have a Wood-Saxon form with parameters

from electron scattering measurements.

TABLE 4.3
ot Wood-Saxon Parameters
Target RT (fm) Ref.
R (fm) a (fm)
Cr 4,283 3.975 0.53 (Be64)
Fe 4.322 4.012 0.533 (Li72)

Varying Rc by +10% about RC =1.2 ( %.+ Aé} produced insignificant
changes (<0.1%) in the calculated inelastic cross-sections. So the value of
Rc is fixed at the same value used in the OM analeis of the elastic data,

1
_ 3, .3
R =1.2 (AT + AP) fm,

C

4.2.,5 Sensitivity of the Inelastic Excitation Functions to S

and the Optical Potential

The parameter S is introduced because the nuclear vibrational
parameter BN is not necessarily equal to that of the charge Bc (Ch73).
In fact, attempts to fit the data with BN = Bc were unsuccessful. The
shape of the calculated excitation functions are strongly dependent on

S and (Vo,ro,a), but only weakly so on (Wo,ro',a') (fig.4.17).
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Fig.4.17 Sensitivity of the calculated (do;,/d?) to changes in
the optical parameters and S using the code NUCSCAT.
Thus the imaginary potential is not well determined by inelastic

scattering and conversely for S and the real potential.

The parameter S scales the nuclear form factor (4.10) and hence the
nuclear contributions to be calculated cross-sections. Increasing S shifts
the interference minimum‘to a lower energy making it more pronounced,
and also increases the magnitude of the second maximum (fig.4.17). A
rough guide to the effects of varying the real or imaginary potential is
given by the semi-classical model (4.7, 4.8). As in the case of elastic
scattering, the calculated inelastic cross-sections exhibit strong

oscillations when the imaginary potential is made too small.
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Two optical parameter sets which are related through the Igo
relationship and give equally good fits to the elastic data do not
necessarily give the same results for the calculated inelastic cross-
sections. Consider Re FN(r) (4.10) for large r

' -V B
TRe FN(r) z ——fzrli RTexp(R/a) exp(-r/a) 4.11

Thus two sets which have a common Igo constant K = V0 exp(R/a) will not

necessarily have the same magnitude for TRe FN(r). A similar result is

obtained for Im FN(r). However, if S is adjusted by the ratio of the product

of the depth and radius parameters of the two sets, then the ambiguity is

still retained for the calculated inelastic scattering. Hence the extracted

value of S can depend on the choice of optical parameters and the
inelastic scattering is only sensitive to the tail of the optical

potential (Mo76).

4.2.6 Analysis of the 52Cr(13C,13C)52Cr* and °“Fe(13¢,13C)%%Fe* Data

The bWBA calcuations for !3C inelastic scattering with OM parameters
which gave an optimum fit to the elastic data (table 4.la) are shown in
figs., 4.18 and 4.19. 1In both cases the low energy data is reproduced
and so is the position and depth of the interference minima. However
the theoretical curves overestimate the high energy points. The
calculaticns with OM sets from the three and two free parameter searches
give almost indistinguishable results. The B(E2)'s and S values

extracted are shown in table 4.4 and arediscussed in Chapter 5.

4.2.7 Analysis of the °2Cr(!2c,12C)52Cr* and S%Fe(12C,12¢)5%Fe* Data

The DWBA predictions with appropriate OM (table 4.1) parameters

for the !2C inelastic data show an overall disagreement with the data
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where the nuclear potential plays an important role. The theoretical
curves (dashed in figs. 4.18 and 4.19) were calculated with B(E2)'s and

S values used for the corresponding 13¢ inelastic scattering and
reproduce only the low energy data. The discrepancy at higher energies
could not be removed by varying S. This result is not surprising
however, since the 12C and 13C inelastic excitation functions are so
different in shape, yet the extracted optical parameters for the elastic

scattering are very similar.

In a successful attempt to find parameter sets which reproduce both
the elastic and inelastic data a grid search was conducted. For the
52Cr data, T, and a were Varied in 0.03 fm step between 1.14-1.32 fm and
0.4 and 0.64 fm respectively, while the remaining parameteré were fixed
at V0 = 50 MeV, W0 = 5 MeV, ro' =1.2 fm, a' = 0.5 fm and S = 0.75.
When a relatively good fit was obtained to both reactions small adjustments
were made in ro; a and a'. The optimum optical potential obtained (table
4.4), have a smaller T, and larger a compared to the appropriate
parameter sets in table 4.1. The same parameter set resulted in good
fits to the S*Fe(!2C,!2C)S%Fe and S“Fe(l2C,12C)SH“Fe* excitation functions

when S was adjusted to the value used for the S*Fe(l3c,!3¢)5%Fe* reaction.

The results of the grid search are shown by the solid curves in
figures 4.18 and 4.19. The DWBA calculations reproduce the inelastic
data very well for all the energy range. The fits to elastic excitation
functions are relatively poor at high incident energy, however for the
lower, more important energies the agreement is still quite good. The
B(E2)'s used for 13¢ scattering were found to give excellent fits to the

low energy data for 12C.
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4.2.8 Analysis of the >2Cr(1®0,160)32Cr* and 5%Fe(1°0,160)5%Fe* Data

The DWBA calculations for these reactions reproduce the data (figs.
4.20, 4.21). The optical potentials used were 1a and 3b (table 4.2) for
52Cr and 5“Fe respectively. The other appropriate potentials did not
give as good a fit to the inelastic data. It is noticeable that for
52Cr(160,160)52Cr* the first maximum is underestimated by the theory
and an attempt to fit this region using a grid search was unsuccessful.
The extracted values of the B(E2)'s and S's are in agreement with the

ones used for the corresponding carbon scattering (table 4.4).

4.2.9 Analysis of the 5“Fe(180,180)5%Fe* Data

For this reaction the optimum optical potential sets (table 4.2)
only partially reproduced the inelastic data (fig.4.21, dashed‘curve, set
4a) (table 4.2a). So a grid search similar to the one conducted for 12C
scattering was performed. As demonstrated by the solid curve, the final
fit to the inelastic data is superior, with only a marginal increase in
the value of x2, from 1;4 to 1.6 for the elastic scattering data. As
in the case of !2C scattering,»the resulting parameter set has a large .

a and small T (table 4.4) compared to the appropriate sets in table 4.2.

The B(E2) extracted from the low energy data is in -agreement with
that extracted for 160 scattering, however S = 0.56 is considerably
smaller. Such a small value was necessary to suppress the second
maximum and the filling-in of the interference minimum. In an attempt to
find a value of S consistent with that for the 160 data, S was varied

throughout the grid search without success.

4.2.10 Analysis of the 52Cr(1%0,180)52Cr* Data

The solid curve in fig.4.20 is the DWBA calculation using the

parameter set 2a (table 4.2a). Set 2b did not give a good fit. The
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TABLE 4.5

B(E2) and B, Values from Other Work

B(E2) )

o2 b2 By Reaction Ref.
0.048%0.002 Coulex, 160 Si65
0.061+0.015 Coulex, 160 Ad60
0.080+0.020 Coulex, 10 0£60
0.067+0.007 Coulex, 328 To60

52Cr

0.17 (p,p") Fub4

0.19 (p,p") Be69

0.14+0.028 (a,a') Bu72*

0.051%0.002 Coulex, 160 Si65

0.061 Coulex, 160 Al68

Shre 0.14 (p,p") Fu64
0.17 (psp") St64b

0.11+0.022 (a,a") Bu72*

0.15 (160,1601) Be72

*Analysed with Austern-Blair model

100
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B(E2) used is within values extracted from the other reactions on °2Cr,
however the value of S = 0.55 is low compared to that for 160 scattering.
S had to be small, as in the case of °>“Fe(180,180)5"%Fe*, to reproduce

the featureless excitation function.

The dashed curves are calculated with optical parameters used for
the °“Fe + 180 reaction and S = 0.55. The elastic and inelastic data

are almost as well reproduced by this set as with set Z2a.

4.2.11 The Folding Model Predictions

In this section the real part of the phenomenological potentials,
Re VN which give fits to the elastic and inelastic data are compared with

the predictions of the folding model (Chapter 2).

The short ranged nucleon-nucleon interaction v, for simplicity, is
approximated by a §-function with adjustable strength Uo; Thus the

folded potential (2.6) is given by:
U@ = U |adn pnr) pp(lr-r|)
N 0 T "T>T "P~'= =T

- The mass distributions Prr (2.4) and °p (2.3) are assumed to have the same
shape as the charge distributions obtained from electron scattering

experiments (De74) and U_ is adjusted so that ﬁF(Dl) =R _V (D).
. o N> e N4

In fig.4.22 the folding model predictions are compared with the real
. part of the optical potentials (table 4.4). The values of Uo used
(table 4.6) vary mainly with projectile type by about 30%. This variation

is expected since U, varies rapidly with the parameters for p_ and Prp

P
which are not accurately determined by electron scattering at the extreme
tails (Jo76). Similar results for UO were obtained by Vary et al

(Va73). The shape of the calculated folded potentials for !2C and oxygen
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scattering are in fair agreement with the real phenuviicnological potentials.
However for !3¢C, 0; has a relatively small gradient, corresponding to a =
0.58 for a Wood-Saxon potential. Also for !3C scattering Uo‘s are
abnormally high. This discrepancy would imply that Pp for 13C is very
different from that of 12C. However, varying the parameters for Pp>
through a large range of values, the folded potentials still did not
reproduce the steép gradient of TRe VN for 13C. 1In another attempt to
correct for this inconsistency, the 13¢ elastic and inelastic data were
reanalysed with fixed a = a' = 0.58 and V0 = 50 and varying r, = ro' and
Wo, but no successful description of the data could’be obtained.

~

An interesting result emerges when calculating the inelastic form
FOLD ' . .
factors FR (2.37). With different values for U0 and parameter
sets for Pp» such that the Q;'s have the same magnitude and

gradients at D, as a given Wood-Saxon potential, the resulting FEOL
“3

o have
the same gradient as that given by the Wood-Saxon potential TRe Fg (4.10)
but differ in magnitude. The ratio FEOLD(D%)ARC F§(D%) varies with the
different parameters and are less than unity. Clearly this implies that
the deformation amplitudel&r%qextracted by Wood-Saxon effective potential
will depend uponrthe shape of the incident parficle. Assuming that the
folded potentials overlap the real Wood-Saxon potentials in the tail,
then thel{rBN/R%'sc (table 4.4) can be corrected for the projectile size.
It is important to note that the correctedRTBNrefers to the amplitude

of the mass deformation (+). The corrected values of RTBN/R%E% are given

1
in table 4.6 and show better consistency with RTFN/R$ BC

In conclusion it is seen that in spite of the crude choice of v
and mass distributions, the folded potentials approximate the real
phenbmenological potentials in the tail with only one free parameter.

The only exception is the 13C scattering.

1-Chap‘cer 2, p.3l.
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TABLE 4.6
D u Corrected
. < L o . F c! ]
Reaction (£m) ey INPy o ByRp/BRp s R /g RS
' : ‘ ' NT cRT
12¢ + 52Cp 9.4 047 0.91 0.71 0.79
12¢ + Shpe 9.4 931 0.91 0.79 0.86
13¢ + 52y 9.6 . 1148 0.64 0.72 1.13
13c + Shre 9.7 1098 0.63 0.88 . 1.40
160 + 52cp 9.8 882 . 0.71 - 0.81  1.14
160 + Shrpe 10.0 955 0.72 0.79 - 1.09
180 + S2cp 10.0 890 0.82 0.59 0.72
180 + S4Fe 10.0 - 884 0.81 0.61 0.75

Also it is'shbwn,»that for a legitimate comparison to be made between

. mass and charge deformations, the projectile'méés distribution has té

be explicitiy taken into éccount,‘ It must be emphasised however, that
this fair agreemént might be fqrfuitou§;'since if a finite range nucleon-
nucleon interaction (such asra Yukawa or Gaussian) were to be uséd a
much more diffused folded potential will result (Sa74,ABa7S). This,vas
well as the discrepan¢y.for 13C»i_ndicates that the ion-ion effective
rinteraction might be also a function of the internal structure of the

combined target and projectiie system (Ei72).

4.3 SINGLE NEUTRON TRANSFER

4.3,1 Semi-Classical Description of the Transfer Data

In this section the sing1e neutroh transfer (SNT) reactions (table
- 4.7) measured by Parkinson (Pa74) are analysed using the full finite

range (FFR) DWBA code LOLA (De73).
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TABLE 4.7
Projectile
Reaction GrggtgliZate Energy Range
MeV)

48ca (13c,12¢)*%ca (GS) . 0.197 18.0 - 25.5
5074 (13c,120)51Ti (GS, 1.16 MeV, 2.16 MeV) 1.432 17.5 - 27.5
52¢y (13¢,12C)53Cr (GS, 2.32 MeV, 3.58 MeV) 2.995 19.0 - 29.5
53cr(l2c,13¢)52cr (GS) -2.995 25.0 - 30.0
Shpe (13¢,12¢)55Fe (GS) 4.353 23.5 - 31.5

The aim of this analysis is to extract spectroscopic factors and to
determine if the theory is able to reproduce the transfer data for
energies about the Coulomb barrier with optical paramefers which
reproduce the corresponding elastic and available inelastic data.’ The
experimental technique used was similar to the one described in Chabter

3 and as documented by Parkinson (Pa74).

Each of the transfer excitation functions has the same 'bell' shape,
characteristic of measurements at large angles and energies around the
Coulomb barrier (Mo72, Na73). For low incident energies, where (g%) s 1,
the transfer cross-section rises exponentially with energy (fig.4.23).
The excitation functions peak at an energy correésponding approximately
to the strong absorption radius in the elastic scattering. At higher
incident energies the cross-section falls monotonically. Unlike
measurements taken at more forward angles (Bo74) the excitation functions
do not exhibit any fine structure. The peak cross-sections vary

systematically with Q-value (fig.4.23) and occur at higher energies as
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the Z of the target increases. There are no strong characteristic changes
in the 'bell' shapes associated with the different angular momentum

transfers.

The physical process and general features of the excitation functions
can be qualitively understood usiﬁg the semi-classical description.
In this treatment the incident particle is assumed to approach the target
along a Rutherford orbit. At about the apsidal distance D, there is a
relatively large probability that the neutron tunnels through the
projectile's potential well into that of the target. Following the
transfer, the residual projectile emergies along anotﬁer Rutherford orbit
with the appropriate energy and angular mohentum. The transfer
probability Pt’ in the first order perturbation is related to the overlap
of the bound state wave functions ofrthe neutron in the projectile and
target with the potential AV (2.48) aﬁd integrated'over an average orbit.

Clearly, therefore, P, increases with smaller apsidal distance and with

t
wave functions which extend further from the nuclear interior. Thus Pt
depends upon the incident energy and on the configurationsoccupied by the

neutron. The transfer cross-section in the semi-classical description is

written as (Br72):

T_t_ = P (dce") 4.12
an t\da / .

where (dcel/dﬂ) is given by (4.8) and takes into account the absorption
above the Coulomb barrier. Chiistensen et al (Ch72b) have shown empirically,
using (4.12), that Pt rises exponentially with decreasing D. A near
exponential rise is also predicted by the semi-classical calculations of
Alder et al (A172). Thus the observed rise in the experimental cross-
section reflects the increasing overlap of phe bound state wave functions

of the neutron, while the fall in cross-section is attributed to the
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incident and outgoing flux being absorbed into compound nucleus formation

or other direct reactions.

4.3.2 DWBA Analysis of the Single Neutron Transfer Measurements

The calculations for the tr;nsfer reactions assume that the neutron
is transferred from a lp% orbit in 13 into a single orbit in the
residual nucleus. Hence for each reaction there are two possible angular
momentum transfers (normal and non-normal) which can populate a given
state in the target (2.56). The non-normal contribution will be shown
to be negligible for these reactions, and therefore tﬁe calculated cross-

section can be written as (Chapter 2)

do, aoPBA
aa - SaSB de 4.13

where L refers to the normal angular momentum transfer. This decomposition
of dot/dﬂ into a nuclear structure part SaSB (product of the spectroscopic
factors) and the part which describes the dynamics of the reaction is of
great value, enabling SaSB to be readily extracted by comparison with
experiment., The reliability of the value SaSB however,dependson the

validity of the assumption for the reaction mechanism.

The differential cross-sections (dGEWBA/dQ) were computed using the

FFR-DWBA code LOLA in the post representation. The calculations were
performed using 55 partiai waves and a 0.3 fm integration step length.
Increasing the number of partial wave§ to 80 and decreasing the
integration step length to 0.15 fm for “8Ca(l3C,12C)%%Ca (GS) reaction
did not change the results. The width of the kernel bond (De73) was set

at 3.0 fm for all cases.

The product of the spectroscopic factors SaSB was extracted by

fitting the theoretical curves to the low incident energy data. The
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;pectroscoPic_factors thus obtained are independent of any-ambigﬁities
invthe optical potentials. In fact setting Vo and W0 to zero does not
change the value of SaSB (fig.4.23). Furthermore, with this. procedure
of scaling the theoretical curves to the data,‘if'is possible to

- critically determine whether the reaction model can be extrapolated to

higher incident energies.

To perform a DWBA analysis it is necessary to examine the ratio of‘v’

 the transfer to elastic cioss—section. For large values'of this ratio

- the Born apprOX1mat10n is considered dubious (He75). Bécause of the small
Q-value and large spectroscoplc factor for L*8Ca(13C 12cy49¢ca (GS) the

».ratlo is qulte high at the peak cross-section (0.15 at 18 MeV)

Therefore it is debatable whether ‘the DWBA calculations are valid beyond

the peak cross-section, however for lower energies the ratio is acceptably

low (0.02 at 15 MeV).

4.3.3 Optical Potentials for the Transfer Reactions

The calculation of (do DWBA/dQ) requires the knowledge of the 0pt1ca1

potentials in both the incident and outg01ng,channels. For the incident
channels the OM parameters which reproduce the elastic and évaiiable
inelastic data are used. However the outgoing channel paramefers are
only obtained for 52Cr(13C,12C)53Cr and v53Cr(12C,13C)53Cr since 9 Ca, 5174
and SSFe ére unstable to B decay or electron capture. The prescription
adopted by most authoré,(Mo72, Bo73) is to ﬁse the same parameters sets
for both channels. However, for the present analysis the optical
parameters for 12C scattering on the N = 28 are uéed for the outgoing
channei, except for the reactions on °2Cr and 53Cr. This choicevshould
provide a closer representation than the incident channel parameters,
since it is only the N = 29 nuclei which are not takeﬁ into account

precisely.
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4.3.4 Bound State Wave Functions (BSWF)

The code LOLA evaluates the radial part of the BSWF for the neutron
Rnl(r) numerically. The potential well for the target and the core of
the projectile are assumed to have Wood-Saxon fofms. For a given n,% and
set of BS parameters (Ib’a)’ which define the well, the depth of each
potential is adjusted by the code to reproduce the known neutron binding

energy.

Varying T, and a by #5% about r, = 1.25 fm and a = 0.65 fm for the
target has shown that the excitation functions only change slightly at
high incident energies. No difference in shape occurs when varying the
BS parameters of the projectile. Therefore the BS parameters cannot be
determined from the shape of experimental excitation functions. However

the overall normalisations are a strong function of r, and a (fig.4.24).

a(fm)
.55 .60 .65 70
1.1 L 4 ]
Io= I25(fm)
1.0 L 4 i
S8

0.9 L 4 n

a-= 065 fm)
08 L | 1

kL|8 .22 .26

ro(fm)

‘Fig.4.24 The extracted spectroscopic factor for Ca (GS) S, as a
function of bound state parameters. B

Therefore, since the product of the spectroscopic factors SaSB are
determined by fitting the theoretical cross-sections to the data, SaSB
cannot be extracted accurately without a precise knowledge of T, and a.

This dependence is well known for heavy ion transfer (Go74, Jo74) and
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also present in sub-Coulomb (d,p) reactions (Ra72).

It has been shown by (Go74) that for values ofvro and a, such that the
root mean square radius <r2>1/2 of the BSWF is constant, will give idenficalA
results for the extracted SaSB' That is SaSB depend only on the <r2>%
for bofh the projectilevand-target. Parkinson (Pa74) has shown, using

the DWBA code of Buttle and Golfarb, that a similar result is obtained . -

if the root mean square radius of the pofential well of the neutron

'<r2>% is kept fixed. For a Wood-SaXon potential

o0 = 32y 4. 7 (a2 |
T7p ‘_sR_'[l"’S(R)] | +.14

where R = rOAT(P).b.Parkinson's result has also been confirmed with the

program LOLA.

: o L
Since accurate values of <r2s?

for neutron orbits are not avéilable
(Ko?l) the BS parameters were fixed at r, =1.25 and a = 0.651for all

the targets. These valges were chosen from published I+8Ca(d,p)"‘SCa (Ra72)
andyszCr(d,p)53Cr (Ra68) reacfions studies. The specfroscopic factor for
12¢ + n was fixed at the théoretical value of Cohén and Kurath (Co67), |
S, = 0.61. This is in good agreement with measured,vaiUeS‘of S, = 0.66
(De73) and S, = 0.59 (Be76) both using the reaction 13c(l2c,13c)1%c aﬁd
S, = 0.83 from the (d,p) reaction (Mi72). The BS parameters fof 12C.were
fixed at.ro = 1.220 fm and a = 0.60 fm, which were chosen to give SB = 1;0
(Ra72, Be68j forIFQCa-(GS) when the theoretical curve was fitted to the
data points at low incident energy. This procedure was adoptéd because
when the set T, = 1.25 fm and a = 0.65 fm (De73) was used the extracted
spectroscopic factors were 33% low. All:the spectroscopic factors were
ﬁormalised to the *8Ca + n valﬁe becéusé of its experimental reliability.
The “8Ca(d,p)*9Ca experiment (Ra72) wés performed below the Coulomb

barrier and thus the spectroscopic factor is independent of optical
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potential ambiguities. Further, the large single particle strength for

“3Ca (GS) is acceptable because the *8Ca core is doubly magic.

The SNT data has been previously anaiysed by Parkinson (Pa74)
using the DWBA code written by Buttle and Golférb (Bu71). Unlike LOLA,
this code uses a mno-recoil (zero—raﬁge) approximation and the BSWE's
are replaced by Hankel functions,‘which tbgefher make the calculations
much simpler. These approximations have been shown to be valid for
transfer aﬁ energieé beibw the Coulomb barrier, but are poor for higher
incident energies (De73, Bu71) . Moreover, the no-ie;oil approximation
‘used'does not give the samé results in the post and priorvrepresehfation

and therefore violates the bésic theory (Chapter 2, Section 2.4.1).

Parkinson analysed the SNT data using optical'barameters which did
not give a gbod,description of the‘elastic.scattering measurements.
Clearly for incident energies where the Coulomb wave functions are -
significantly disturﬁed by the nuclear field; the compariéon between
theory and experiment iglnot acceptable. Indéed Parkinson did‘not claim,
validity at these energies.‘ However. for enérgies below the barrier the
use of an'apbroximate effective potential is justified (Pa74), in fact,

the theory reproduces the low energy data very‘well;

4.3.5 Transfer to the Ground States of the N = 29 Nucléi

The gfbund states of “9Caé 51Ti,‘53Cr and °S5Fe all have a closed
»neutroﬁ shell N = 28 with an extra neutron predominantly in the 2p3§
orbit (Ve66), while 13C has a GS spin assignment of J" = %" . Thus for
each of these reactions the angular momentum transfer L (2.53) is either‘

L = 1 (non-normal) or L = 2 (normal).
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The normal and non-normal L contributions to the cross-sections of
48ca(13c,12c)%*9%Ca (GS) and S“Fe(13C,12C)55Fe (GS) are shown in fig.4.25.
Clearly, the cross-sections for L = 1 are negligible and are therefore

ignored. Similar results were obtained for the 50Ti and °3Cr targets.

The{computed differential cfoss—sections are compared to the data
in fig.4.23. The optical potentials, BS parameters and spectroscopic
factors used are shown in tables 4.8 and 4.9. The DWBA calculations
reproduce the experimentally measured rise in cross-section with energy
for all the excitation functions. For the 3%Fe(13C,12C)55Fe case
however, the data does not extend to low enough energy‘and hence the
steep gradient is not well defined. At higher incident energies the
5075 (13¢,120)SiTi (GS) data is very well reproduced and to a less extent
the 52Cr(13c,'2C)53Cr (GS) and S%Fe(!3C,12C)55Fe (GS) reactions. For the
latter two reactions when the appropriate OM potentials (table 4.1) were
used in the incident channeis, discrepancies occur at high energy
(dashed-dot curves, fig.4.23). Better agreement was obtained (solid
curves, 4.23) when the imaginary potential for 52cr(l2c,12¢) 52y
(table 4.6) was used in the incident channels for 52cy(13¢,12c)53%Cr and
S4pe(13c,12C)%5Fe. Further, the quality of the fits for 52cy(13¢,13¢) 32Cr*
and 5%Fe(!3c,3C)5Fe* with these potentials (table 4.8) change

insignificantly, and similarly for the corresponding elastic data.

The inverse reaction 53Cr(12C,13C)52Cr (GS) is reproduced by the
calculation (fig.4.26) using the same parameters used for
52¢p(13¢,12¢)53cr (GS) (tables 4.8, 4.9). The errors associated with

53Cr(12C,13C)52Cr (GS) are large and a detailed comparison is not possible.

The l+8Ca(13C,12C)“9Ca (GS) data is not well fitted by the theory.
The energy of the peak cross-section is reproduced but the calculation
underestimates it's magnitude by 20%. This discrepancy could be attributed

to the large (dot/dGeQ)EXP’ although it is not clear whether this effect
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TABLE 4.9

Spectroscopic Factors

™ 1) 2)
J >p 53 S
*9Ca (6GS) 3/2° %) ‘ 1.0Y
5075 | - . - 5)
Ti (GS) 3/2 0.84 0.91 %0.09 0.82
(1.16 MeV) 1727 0.62 0.86 +0.08 0.585)
(2.14 MeV) - 5/27 0.51 0.39 +0.04 0.24%)
(2.19 MeV) . 3/2°  0.11 0.085+0.01 0.06>)
53 | . A : : 6)
Cr (GS) 3/27 0.60 0.63 +0.13 0.72"
(2.32 MeV) 3/2° 0.30 0.30 0.06 0.40%)
(3.59 MeV) - 322 ~—  0.15 *0.003 .
(3.61 MeV) 1/2 —  0.459
(3.71 MeV) 9/2” — ~ 0.52 #0.2 '0.526)
55pe (G6S) 3/2° 0.56 0.65 +0.11

The BS parameters for !2C where T, = 1.22 fm, a = 0.60 fm

and those of the targets r, = 1.25 fm, a = 0.65 fm

1) Present work, assuming Sa = 0.61 (Co66)
2) (Ve66)

3) BS parameters for 13C were adjusted to make this.spectroscopic
factor unity ' '

4)  (Ra72)
5)  (G168)

6) (De69)
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Fig.4.26  Fit to the 53cr(12c,13¢)52¢r with parameters from
. tables 4.8 and 4.9.



119

might be caused by a poor choice of optical potential.r When the OM set
2a (table 4.1a) was used in the incident channel, the fit above 20 MeV
(Lab) was totally unacceptable, because the relatively large imaginary

potential Wo = 22 MeV, absorbed too much flux.

It is important to note that‘the optical potentials used in the
incideﬁt and outgoing channelé are predominantly from the three parameter
searches on the elastic data (see table 4.8). The sets from the two
parameter searches generally’gave a larger discrepancy at high incident

energy.

The extracted spectroscopic factors from these reactions are compared

to published values in table 4.9.

4.3.6 Single Neutron Transfer to Excited States of °ITi

The SNT data to the 1.16 MeV and unresolved 2.136-2.189 MeV excited
states of °1Ti are shown together with the DWBA predictions in fig.4.27.
The optical potentials and BS parameters used for the calculations are

the same as the ones used for the transfer to the ground state.

The 1.16 MeV level is a strong éingle particle 2pli state (SB = 0,86
(Ve66)). The non-normal contribution to the cross-section (L =1) is
a factor of 100 smaller than for the normal component (L = 0). The data
to this state are restricted to low bombarding energies, hence a detailed
comparison with the theory is not possible. However the extracted
spectroscopic factor is in good agreement with the value from (d,p) work

(G168) .

With the experimental energy resolution it was not possible to
resolve the 2.136 MeV and 2.189 MeV levels. Therefore an attempt was

made to reproduce the data by a simple addition of the calculated cross-
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Fig.4.27 Single neutron transfer to the ground state and excited

states of °ITi.

The fits to the curves are calculated

with parameters from tables 4.8 and 4.9.
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sections from the individual states. The spectroscopic factors used in
the calculation were in the ratio of SB(2.136)/SB(2.189) = 4.6 (G168,
Ve66) . |

The 2.136 MeV and 2.189 MeV levels have configurations 11:'5/2 and
2p9y2 respectivély (G168,-Vé66), therefore ihe normal angular momen tum
is L =.2 in each case. The fit to the datavis shown in fig.4.27. :The
cross-éection for the,2.189vMerlevel:iébapproximatély a factor of 3
larger than for the 2.136 Mev state, this is_inSpite bf.the large ratio
for SB(2.13§)/SB(2f189); Tﬁis:is be;ause,thg 2p§§ABSWF has”an extra

node and therefore has a relatively large vélue at large radii.

From this analysis the extracted spectroscopic factors of the 2.136
MéV and 2;189 MeV states are 30% higher than the calculated (V¢66) and |
meaépred values (G168) (table 4t9).. 1t is important to néte fﬁat the -
extracted spectroscopic factors depend critically on the vélué of the
ratio SB(2.136)/Sé(2,189), because of‘thevlarge COntribution from the
2p§@' Increasing SB(2.189) from 0.085 to 0.135,‘the'calcu1ation
reproduces'the_magnitude of the exPerimental'cross—seétion without
changing SB(2.14).u»Adopting this procedure is not unreasonable‘since
the cross-section for transfer to this state in (d,p) work is small and

could have a much larger error than the one quoted in the literature.

4.,3.7 Single Neutron Transfer to the Excited States of 53Cr

The 2.32 MeV level in 53Cr has:a configuration 2p3/2 (De69), hence
the normal angular momentum transfer to this state is L = 2, Tﬁe
measured excitation function is well reproduced by DWBA with optical
potentials used for the transfer to the GS (fig.4.28). The extraéted

spectroscopic factor is in agreement with the values given by (De69, Ve66).
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The excited state of °3Cr at 3.61 MeV (ZP%) has two bther stafes
within 100 keV, namely 3.59 MeV-(ép%@)and 3.71 MeVv (lggé) %tates (De69,
Ra68) which are not resolved. Attempts to get fits to the data by
adding the calculated cross-sections from the individual states gaﬁe
unsatisfactory results (fig.4.28). The calpulation has the wrong
gradient at low energy side of the bell shape which indicates that the
disagreemenf does not stem from inéppropfiéte OM parameters. The
disagréement can be traced tO'thevéalculated contribution.ffom the ZP%'
state which has the largest cross-seétion but too low a gradient.b The
lg%é does haVe_the apprdpriafe gradient but undérestimates the,data by
a factor of 4. Fufther, thé calcuiaﬁed peak cross-section is shifted -
to>higher energy witﬁ respect to the data by 300 keV. No satiéfactoryv
reason for these discrépancies éan'be given.- However it»is.impbrtant té
point out that there is‘no,réason to suspect that theory is inadequate
since good fits and spectroéc0pic‘factors were obtéiﬁed'for_the other

two excitation functions on °2Cr.
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Chapter 5

DISCUSSION AND CONCLUSIONS

The elastic data has been saown to be reasonably well reproduced
by the OM with the same geometry for the real and imaginary Wood-Saxon
potentials. The parameters Vo’ T, and a are well determined since the
quality of the fits to the elastic and inelastic data are sensitive to
small changes in these parameters. On the other hand W0 is poorly
determined. The insensitivity to Wo is partially reflected in the fact
that the sets from the two and three free parameter searches give
equally good fits to the elastic and inelastic data. However, the single
nucleon transfer excitation functions are better described with OM
parameter sets from the three free parameter searches. This indicates

that the imaginary potential might be better defined by the transfer

reactions.

The parameters obtained from the OM analysis of the elastic
scattering measurements have average values of T, and a of 1.28 fm and
0.46 fm respectively and are consistent with previously published results
(Be73, Ch73, 2i75), for similar projectile-target combinations at
incident energies around the Coulomb barrier. However they are in
disagreement with sets obtained at higher bombarding energies where r
and a are typically 1.15 fm and 0.70 fm respectively (Sa75b). This
change in the parameter sets with bombarding energy, has been suggested
by Satchler (Sa75b),to indicate deficiencies in the Wood-Saxon
parameterisation. It should be noted however, that to obtain a good fit to
some of the present elastic and corresponding inelastic scattering data, a
relatively 1argef a and smaller r, are generally required. This is

compared to the sets obtained from the analysis of the elastic
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scattering data alone. This would indicate that the deficiencies suggested
by Satchler would not exist if the optical potential is required to give a

good representation of both the elastic and inelastic data.

Another feature of the extracted OM potentials is that the ratio of
the imaginary to the real potential at the strong absorption radius is
small (*0.1) for all the potentials with the exception Qf those for 189
scattering. Similar results have been reported (Or71, Bo72, Ch73, Cu74)
for incident energies about the Coulomb barrier. The large imaginéry
potential for 189 scattering compared to 160 can be a;tributed to the
two neutrons outside 80 core which have a smaller binding energy than
the nucleons in the core. Therefore the number of open inelastic and
transfer channels is much larger than for 160, hence the difference in
the imaginary potentials. This conclusion is supported by the OM and
coupled channel Born approximation (CCBA) analysis of the °8Ni(!®0,160)358Ni
58Ni(180,180)58Ni and ©4Ni(160,160)6%Ni and ©4Ni(180,180)€4Ni performed by
Videback et al (Vi76). When using the OM, the ratio W /V, = 0.2 for 160 and
W /V, = 0.4 for 180 were obtained but when the inelastic channel (180,180%)
is explicitly taken into account using the CCBA the ratio,wo/v0 becomes
* 0.2 for 180, Therefore this indicatés that an increase in the number

of open channels results in a larger imaginary potential.

The optical potentials for 12C and !3C scattering show an increase
in T, and decrease in a with target nucleon number AT (figs. 4.9a and 4.9b).
A similar result is observed for 160 + “OCa, ““Ca, 52cr, 62Ni elastic
scattering (Ei72). Further, the Coulomb barrier VB (Equation 1.1) for
carbon and oxygen scattering, calculated with parameters from tables
4.1(a) and 4.4 show an almost linear increase with atomic number. This
is consistent with extracted values of VB by Obst et al (0b72) and

Williams et al (Wi75) and is due to the increase in the Coulomb potential.
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In fig.5.1, values of VB for oxygen scattering are compared with those of

Obst et al (0b72). The extracted barrier radii RB (Eqﬁation 1.1) are well
1 1

: 3 E z ~
parameterised by roB(AT + AP) with TR 1.56 fm for carbon and TR 1.52

fm for oxygen. The strong absorption radii can also be parameterised in
1 1

_ 3, a3 . x
the same way D% = roD(AT + AP) and give T 1.58 fm for both oxygen

and carbon scattering.
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Fig.5.1 Barrier heights for 160 4+ 52Crnand 169 4+ S4fe (+). The
other barrier heights (e) are from (0b72).

Calculating the]Re QN at D% shows that it is approximately 1 MeV
(table 5.1) which indicates that elastic scattering is dominated by
Coulomb scattering because GC(D% ) %20 MeV. Also, D % 9.5 fm (table 5.1)
and since elastic and inelastic scattering and single nucleon transfer
have the same localisation (Mo76), the measured reactions occur far out
on the nuclear surface, approximately 2 fms beyond the nuclear touching
distance 1.28 (A§'+ Aﬁ) fm. Therefore the reactions studied are indeed‘
peripheral., Furthermore, in almost all instances the extracted values
of Ry, Vg, D, e GN(D%) and In \~1N(D;5), for 12C and 13 and for 160 and

180 have small, but systematic differences. Particularly, the magnitude
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TABLE 5.1
Reaction RB(fm) Vg (MeV) * D‘/Z ~R, VN (lez) -In (Dlxz) T oo
(fm) (Mev) (MeV)
“8ca + 12¢ 9,25 17.60 9.41 0.799 0.056 1.56
48ca + 13c  9.30 17.45 9.56 1.048 0.1048 1.55
507y + 12¢ g.24 19.40 9.45 0.831 0.131 1.55
50Ti + 13¢ 9,35 19.15 9.54 0.847 0.119 1.55
S2cr + 12¢ 9,41 20.95 9.47 0.964 0.056 1.56
52cr + 13¢ 9.64 20.58 9.62 0.971 0.068 1.59
S3cr + 12¢ 9,53 20.75 9.56 0.917 0.059 1.58
Shre + 12¢ 9,38 22.82 9.48 '0.985 0.059 1.55
Stpe + 13¢c  9.65 22.24 9.65 1.046 0.073 1.57
S2cr + 160 9,60 27.25 9,80 1.04 0.167 1.53
S2cr + 180  9.61 27.02 10.02 0.85 0.455 1.51
Shpe + 160 9,58 29.44 9.97 0.90 0.09 1.52
Stre + 180 9,62 29.24 10.02 0.95 0.51 1.50
*Centre of Mass barrier heights
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of IHIGN(DI) and Re GN(DL) are slightly larger for !3C than for 14C.

3 2
The more absorptive potential for 13¢ is expected. A larger | Re VN(D%)I
for 13¢ naively suggest that 13¢ has a mass distribution extending further

radially than for 12¢,

This is contrary to what is expected from electron
scattering measurements (fig.5.2) and would imply that 13¢ has a neutron
skin. However, (i) electron scattering is not very sensitive to the tail
of the charge distribution (Jo76), and (ii) it is difficult to draw any
definite conclusions about the mass distribution of the projectiles from

TRe V., because it might critically depend upon the microscopic

N)

properties of the combined system as a whole (Ei72).

I3C

A

ey g

Do R T )
| ... 2 ™3 4

T r(fm)

Fig.5.2 Charge distribution for 13¢ (solid); the experimental
12¢_13¢ difference (dashed) (He70).

The preseht inelastic scattering measurements at 120° (lab) have
an advantage over those performed at forward angles in that only one
classical orbit contributes, hence there are no additional complications
due to interfering trajectories (G174). Further, for back angle
measurements the nuclear’and Coulomb inelastic amplitudes are approximately

of equal magnitude at the interference minimum, while for small angle
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'scattering the Coulomb amplitude could be a factor of two larger (Co76).
Thus the cross-sections at back angles are more sensitive to the
geometry of the nuclear form factor. Furthermore for these measurements,
the nuclear interaction, which is not well understood, can be accurately
compared with the well known Coulomb.intefaction and any erroneous

assumptions about thé former should be more apparent.

The sensitivity of the‘inelastic scattering was exploited in this
work by measuring cross-sections for inelastic scattering induced by
12¢, 13¢, 160 and 186. By using a Seriesvof:isotopes as projéﬁtileé
to excite a state ih a given nucleus, the Coulohb interaction
is th¢ samé. This‘is because the Coulomb form factor does not |
depend upon the charge distributibns of the'préjectiles'and the excitation
energ&, reduced matrix elements and atomic numbers aré'the same.
Thérefore the measured differences between the excitatidn functions of‘
12¢ and:13C and betﬁeen 160 and 180 can Be only due to different reaction
mechaniéms br‘ion—ion potentials. ;Indeed the various shapes of the
‘excitations are quantitatively reproduced by DWBA using collective form

factors with different optical potentials.

The main discrepancies in the fits arise at high'incident energies
wher¢ the theoreticélvcurves overestimate the data. However atbthese
energies the first order calculations might be suspect because the
experimenfal elastic and inelastic cross-sections are of comparable magni-
tude (He75). This implies that the inelastic flux removed from the elastic
channel can be cbupled back to the ground state, or to transfer and
other inelastic channels. _Indee&, the CCBA caiculatioh‘(8t74) fof
56fe (160,160)56Fex (2%, 0.86 MeV), unlike DWBA, does not overestimate
the data at small apsidal distance,.yet both calculations give very

similar results below and around the interference minimum.
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The OM potentials which give optimum fits to the elastic data do
not necessarily give good quantitive fits to the inelastic data.' It is
shown that this discrepancy may be removed by performing grid searches
on the OM parameters; thus the measurement of inelastic scattering
imposes additional constraints on the choice of potential. This does
not mean that the elastic scattering measurements are redundant, for
as shown in fig.5.3, a set can be found that gives an excellent fit to

the inelastic data, yet gives a totally unacceptable one to the elastic

data. Clearly such a set is not appropriate.

IOO — —_—t ———— —, _._"\‘ . . LO
vV, = 50.0 MeV
i r,= [17fm
do. 0 - 060fm
Tﬁﬂ W, = 450 MeV
L r' =122fm
(mb/str).» a =050fm
1.0 L
L } _—
ot
- /
o4h//*' |
‘ l I . ) | 1 1
22 24 26 °° *°
ECM

Fig.5.3

It is interesting to note that for those cases where a grid search was
necessary the resulting potential tails are more diffuse comparéd to
those obtained from just the elastic scattering. This choice of
potentials is necessary to fit the inelastic data, particularly in the
cases where the interference minimum is very pronounced. No systematic

study of potential ambiguities was attempted. However by demanding that
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a given set reproduces two or three reactions, the effective ion-ion
potential is accurately determined in the region of the strong
absorption radius (Ch73, Pe73, Go76) A good example of this is-the
scattering of the carbon 1sotopes on °2Cr and >“Fe where the parameters
for just the elastic scatterlng are very 51m11ar, yet when the inelastic
scatterlng is taken into account the sets. are very different. Where
grid searches-were performed only one'set}of parameters could be found'

to fit the data, within the limits of the searches.

In addition to providing a sensitive probe for the optical potential,
the.inelastic'data gives model independent B(E2) values for incident
energies below the Coulomb barrier. The B(E2)'s for 52Cr (1 434 MeV)

and 3"Fe (1. 409 MeV) from the varlous reactions are con51stent w1th each

»other and with most values obtalned from Coulomb excitation (table 4. 5)

Also, above the Coulomb barrler the optlcal potent1a1 deformation
parameters, BN are obtalned (table 4.4) andrare-con51stent with values
from (p,p'), (a,a')‘and (1%0,160) experiments (table 4.5).

The extracted B 'Valnes.for.lzc '13¢ and 160 on the two'tergets are
BN 0.16-0.17 and do not show any dependence on the pro;ectlle used
It is more appropriate however, to examine the variation of R B /R B

for the different projectiles since in the inelastic scattering experiments

- the nuclear and Coulomb form factors are,stringently,compared. Table 4.4

shows that there is indeed a rough correlation with the incident
projectile. This is not surprisingﬁsinceRTpN'represents'the deformation
length of the ion-ion potential which changes’with incident projectiie
on a given target, while BCR;', the charge density defermation length
of the target, is fixed. Further, it is shown nsing.crude foiding model
calculations that in order to extract parameters representative of the
target mass defermation the projectile mass distribution has to be

explicitly taken into account.:
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For 180 induced inelastic scattering the extracted BN's are
considerably lower (27%) than those for %0 and the carbon projectiles.
Such small values of BN were necessary,tb fit_thevinelastic data and
since fits with a large number of optical potentials were attempted (1.00

fm < < 1.34 fm, 0.40 fm < a < 0.72 fm, V_ = 50 MeV, W_ = 45 MeV, a' =’

0.50 fm, ro' = 1.2»fm) it can be'Stated,With reasqnab1e,certainty that
this discrepancy is not due to an inappropriate choice of optical
~potentials. Values of BN consistent'with'the ones obtéined for 150

. scattering result in a rise in the‘cross4Section before the monbtonic"
fall at high incident,energies.which:is inconsistent with the data.
Further,vthe small BN cannot be attributed to the large imagihary potential
required by the eléstic scattering, in fact a smaller’wo gives risé to a
pronounced interference minimum which is clearly not present in the data.
This inconsistency might indicate some inadequacyIOf the collective form
factor. However a more likely cause of this discrepénqy is that DWBA is
not applicable for this reactioﬁ because 180 induced reactions, ﬁniike
160, tend to be very senSitive to multistep processes (Co76, Re75, Vi76).
This conclusion can be strengthened by noting‘that when using higher
values of BN,‘the discrepancies between theory and experiment occur
predominantly at high incident energies where multistep are expected

to be larger (Gl174). Therefore éoupled chaﬁnel caléuiations might be

necessary to establish the cause of this discrepancy.

The full finite range DWBA calculatiohs'are, on the whole, in good
agreement with the experimental measurements. The steep gradient of the
low energy data is well reproduced for all cases witﬁ the eXcéption of
‘the 52Cr(13C,12C)53Cr (3.59 MeV) reaction. The spectrdscbpic factors were
obtained from the low energy data and are therefore:independent of any
optical poténtial ambiguities, althoughAthe extracted spectroscopic_factors

are very sensitive to small changes in the bound states parameters.
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To obtain spectroscopic factors in agreement with calculated values by
Vervier (Ve66) and measufed values from iight ion work it was necessary to
scale the bound state parameters of 12¢ to give the right spectroscopic factor
for “9Ca (GS). The bound state parameters for all the targets were the

same ones used for *8Ca(d,p)*°Ca .(Ra72) and 32Cr(d,p)°3Cr (De69) reactionms.
Therefore the spectroscopic factors shown in table 4.9 are relative to

the value of “*°Ca (GS).

The‘optical parameters used for the SNT calculations. (table 4.8)
all give a good description to the corresponding elastic data. In the
cases of 52Cr(13C,12C)53Cr and 5L*Fe(13C,12C)55f;‘e reac£ions the incident
channel OM parameters alsoAreproduce the inelastic scattering data.
Using these parameters the transfer peak cross-sections are well predictéd
in energy and reasonably well in magnitude with the exceptions of
4804 (13c,120)4%a (GS) (see fig.4.26). This shows that the strong Q-value
dependence for these reactions'is well reproduced, particularly for the
5‘*Fe(13C,IZC)55Fe reaction, where the Q-value mismatch is felatively
large. Further, this shows that spectroscopic factors can be extracted
fairly reliably for incident energies where the nuclear potential plays
a crucial fole, provided appropriate optical potentials are used. Eeyond
the peak cross-section the theory generally underestimates the
experimental points. Attempts toramend these discrepancies by varying
the optical potentials showed that weaker imaginary potentials gave‘
better descriptions to the data. However the resulting potentials did
not necessarily give good fits to the elastic or inelastic’measurementé.
This could indicétg that the outgoing channel OM parameters are not
precisely taken into account. Alternatively it might be that one or more -
assumptions made in the SNT calculationsstartéto break down as the ions

come into closer contact.
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The reaction 52Cr(13C,12C)53Cr (3.59>MeV) reaetion is not'reproduced
by the DWBA calculations. It is difficult to attribute thie inconsisteney
to inadequacy of the theory since the 52Cr(13C,12C)53Cr (Gs),
S3cr(l2c,i3¢)S2cy (GS) and 32cr(l3c,2c)S3cr (2.32 MeV) data are well
reproduced, althoughvit might be that the heavy ion tfanSfer nechanism
assumed for this State is not appropriate. The experimentally meesured
excitation functlon has contribution from three states (3.586 MeV,

3.61 MeV 3.71 MeV) and an a551gned 3 69 MeV state (Ra68) whlch makes

a clear comparlson between theory and experiment rather d1ff1cu1t

In conclusion, the heevy'ion.reactions induced by the carbon and
oxygenylsotopes studles in thls work have been shown to be phy51cally
understoodvu51ng sem1-c13551eal»treatments. The OM and DWBA give a
quantitive description of the data wifh relatlvely minor disagreements
at high inCident energies. The inelastic scatteringbreactions induced ‘

by 12C

13¢ and 160 are con51stent1y described by DWBA. However, coupled
channel calculations mlght be necessary to give satlsfactory descrlptlon
of the 180 induced inelastic scatterlng. ‘Realistic foldlng model or

microscopic calculations might also be necessary to explain the very

- different optical potentials for !2C and !3C scattering.
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